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BACKGROUND iii

Introduction

In this thesis we report work completed in the study of nonlinear partial differential equations, and in
particular those arising from the physical world and fluid dynamics. We study two two augmented versions
of the incompressible Navier-Stokes equations, studying microstructure and interfaces in particular.

In joint work completed with Ian Tice [RTTa] we study anisotropic micropolar fluids, and prove that
their stability depends on the shape of the microstructure. In joint work completed with Ian Tice [RTTb]
we consider the implications of bending energies being stored at a free interface, proving a stability result.

In both instances, the stability analysis is rendered difficult by the presence of partial differential equa-
tions of mixed type. This means that the system studied contains equations of parabolic, hyperbolic, and
elliptic type. To wrest these systems of mixed type under control we employ a nonlinear energy method.

Guide to the reader. There are four introductions in this thesis: the present one and one for each
of the three chapters comprising the thesis. We highly recommend starting there for (1) broader context
regarding the physical effects that are taken into account and the state of research in the area and for (2)
high-level discussions of the technical content of each chapter.

Background

Nonlinear partial differential equations. The work reported here lies squarely in the area of non-
linear partial differential equations (PDE), and in particular in the area of nonlinear PDE arising from fluid
dynamics. The research questions currently focusing most attention in the area of nonlinear PDE from fluid
dynamics are old ones: we seek to establish local well-posedness of the equation and to then characterize
long-time behaviour. Proving local well-posedness here means proving that solutions exist, are unique, and
depend continuously on the initial data.

Once local well-posedness is established, the question becomes whether or not the unique solution exists
for all time. If it does not, then can we characterize the blow-up scenarios? If it does, then can we characterize
the long-time asymptotic behaviour of the solution? In particular it is often appealing to study the long-
time behaviour of solutions whose initial data lives in a neighbourhood of equilibria, i.e. solutions which
are stationary in time. This study of the stability of equilibria is particularly important because physical
systems are typically expected to spend most of their time in configurations close to equilibria, and because
long-time behaviour “at large”, i.e. for arbitrary initial data, may be particularly difficult.

More specifically, we report here work on nonlinear PDE arising from augmented versions of the incom-
pressible Navier-Stokes equations. The augmentations have consisted in incorporating one of two additional
physical effects: the presence of an interface between the fluid and its surrounding medium, or the presence
of additional structure within the fluid at a microscopic scale, so-called microstructure.

The incompressible Navier-Stokes equations. Before diving into greater detail into the conse-
quences of the incorporation of these physical effects, let us briefly recall what the incompressible Navier-
Stokes equations are. They consist of a system of equations whose unknowns are u : [0, T ) × Ω → R3 and
p : [0, T ) × Ω → R, where u is a vector field describing the fluid’s velocity, p is a scalar field corresponding
to the fluid’s pressure, T > 0 is some (possibly infinite) time horizon, and the domain Ω ⊆ Rn is some open
set. The system consists of the equations

{
∂tu+ (u · ∇)u = ∆u−∇p in Ω and (0.1a)

∇ · u = 0 in Ω, (0.1b)

which are coupled with the initial condition u (t = 0) = u0 for some given u0. If Ω is a bounded set then the
equations must be supplemented with appropriate boundary conditions, such as for example the classical
no-slip boundary condition where we impose that u = 0 on the boundary ∂Ω.

What do these equations mean? The equation (0.1a) states that linear momentum is conserved by the
motion of the fluid and the equation (0.1b) is the incompressibility condition which states that the flow is
locally volume-preserving (i.e. the volume of any subset of Ω remains constant throughout the motion of
the fluid). Note that the right-hand side of (0.1a) may be written as (the negative of) the divergence of the
stress tensor S(p, u) = pI −Du, where Du is the symmetrized gradient of u, defined as twice the symmetric
part of the gradient of u. Physically, the stress tensor encodes how the fluid reacts to external forces – this
interpretation will be important later when discussing free boundary problems. Long-time behaviour of the
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incompressible Navier-Stokes is notoriously difficult to analyze. A heuristic explanation as to why, which
highlights a key feature recurrent in nonlinear PDE from fluid dynamics, is that although sufficiently regular
solutions of the incompressible Navier-Stokes equation satisfy the equation

d

dt

ˆ
Ω

|u|2 +

ˆ
Ω

|∇u|2 = 0,

these conserved quantities are not sufficiently strong to wrest control over the nonlinearity (u · ∇)u, at least
in dimension n = 3.

Microstructure

Figure 1. A micropolar continuum describes both the macroscopic motion of the con-
tinuum and the microscopic motion of the rigid microstructure. Micropolar continua are
studied in Chapters 1 and 2

What do we mean by microstructure? Loosely speaking, fluids with microstructure correspond to
a class of fluids for which a structure is present in the fluid, usually at a microscopic level, such that this
structure has an impact on the overall dynamics of the fluid. A typical example of such a fluid is a liquid
crystal, which is a fluid whose constituting particles are rigid rods. In particular, I have worked on micropolar
fluids, introduced by Eringen [Eri66] which are fluids for which a rigid microstructure is postulated to be
present at every point, where it is free to rotate, but not otherwise deform (see [Eri99, Eri01] for Eringen’s
reference 2-volume treatise on the matter) . This theory can be used to describe aerosols and colloidal
suspensions such as those appearing in biological fluids [Mau85], blood flow [Ram85, BBR+08, MK08],
lubrication [AK71, B L96, NS12] and in particular the lubrication of human joints [SSP82], liquid crystals
[Eri66, LR04, GBRT13], and ferromagnetic fluids [NST16].

To account for this rotating microstructure, the incompressible Navier-Stokes equations (0.1a)–(0.1b)
are supplemented with two additional equations governing the dynamics of two additional unknowns.

• One unknown that needs to be taken into account is the moment of inertia of the microstructure,
known as the micro-inertia, which essentially tracks the orientation of the microstructure. Its
dynamics are governed by an additional equation, simply known as the conservation of micro-
inertia.
• The other unknown to take into account is the angular velocity of the microstructure. The dynamics

of the angular velocity are governed by the conservation of angular momentum.

It is important to note that the equations governing the dynamics of a micropolar fluid are derived from
first principles. This means that the equations are derived from postulating that mass, micro-inertia, linear
momentum, and angular momentum are conserved, and from postulating that the stress tensors depend
linearly on the gradients of the fluid velocity and of the microstructure’s angular velocity. Crucially, this is
the same path as that which is followed to derive the Navier-Stokes equations (see for example [Gur81]),
the only addition being the incorporation of the rigid microstructure.
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Why do we care about microstructure? The interest in micropolar fluids is two-prong, coming
from both physics and mathematics.

Physically, micropolar fluids are interesting because they are very common in the physical world. For
example: milk, blood, and liquid crystals are all fluids which contain a microstructure (whether it be,
respectively, fat molecules, hemoglobin, or the constituting molecules of the liquid crystal).

Mathematically, the study of anisotropic micropolar fluids is particularly enticing because, despite being
vastly studied in the engineering and physics literature, anisotropic micropolar fluids are as of yet absent
from the mathematical literature. Indeed, the mathematical endeavours to study micropolar fluids have so
far been limited to the isotropic case, where the microstructure is taken to be spherical (see [ Luk99] for a
reference on what is known about isotropic micropolar fluids). The study of anisotropic micropolar fluids is
thus particularly enticing since it provides an opportunity for the development of new analytical techniques,
especially in light of the difficulties engendered by the introduction of anisotropy.

Work reported here – Chapters 1 and 2. In joint work with Ian Tice we have studied the stability of
anisotropic micropolar fluids under a constant microtorque (i.e. a constant torque acting on the microstruc-
ture) in a three-dimensional periodic domain, and where the microstructure is assumed to (essentially) have
an axis of symmetry. The microstructure is thus rod-like or pancake-like depending on whether it is thin
and long or wide and short, respectively. In this situation, a unique equilibrium exists corresponding to
the microstructure rotating about its axis of symmetry, and the stability of this equilibrium depends on the
shape of the molecule. We have proved that the equilibrium is unstable for rod-like microstructure [RTTa],
and this result is report in Chapter 2.

In Chapter 1 we take care to carefully derive the equations of motion of micropolar fluids, following the
path of rational continuum mechanics. Again, due to the scarcity of attention that anisotropic micropolar
fluids are received in the mathematical literature we hope that this mathematically-minded introduction to
the subject be of use to folks interested in studying this topic more robustly.

Interfaces and free boundary problems

Figure 2. The geometry of the free boundary problem studied in Chapter 3

What do we mean by interfaces and free boundary problems? Free boundary problems arise
when the domain on which the equations are solved changes with time, such that the dynamics of the domain
are coupled to the unknowns. Physically, this occurs when a free interface between the fluid and its medium
is present. Such situations are very common: the air–coffee interface in a cup of coffee, the elastic walls of
blood vessels, the surface of the ocean, or the surface of a star are all examples of free boundaries on at least
one side of which a fluid is present. Augmenting the incompressible Navier-Stokes equations (0.1a)–(0.1b)
in order to account for a free boundary means supplementing that system with two equations: a dynamic
boundary condition which accounts for the balance of stresses at the free boundary and a kinematic boundary
condition which accounts for the fact that the free boundary is transported by the fluid’s velocity normal to
the interface.

An example of such a dynamic boundary condition would be Sν = −Hν where ν denotes the unit normal
to the free boundary and H denotes its mean curvature (i.e. the sum of its principal curvatures). If the free
boundary is given as the graph of a function η then we may write the mean curvature as

H = ∇ ·


 ∇η√

1 + |∇η|2


 (0.2)
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This force −Hν arises as the surface force acting on the fluid due to surface tension. This is not surprising:
surface tension appears because the fluid seeks to minimize the surface area of its fluid–medium interface,
and the first variation of the surface area is precisely (the negative of) the mean curvature.

As one can now begin to see, introducing these additional boundary conditions introduces equations
of mixed type into the system. Indeed: whilst the kinematic boundary condition is of hyperbolic type, by
virtue of being a transport equation, the dynamic boundary condition is often of elliptic type.

Why do we care about interfaces and free boundary problems? Free boundary problems are
particularly enticing because they are both physically and mathematically interesting. They are physically
interesting, because they are frequently found in nature, and also because it is often the case that various
physical effects are at play at interfaces. This is the case for example in biological models used to model
the elastic lipid membranes surrounding living cells. They are also mathematically interesting for at least a
couple of reasons.

• They are intrinsically appealing because they correspond to PDE whose domain changes and such
that the dynamics of the domain is coupled with the unknowns.

• They are also of particular appeal given the current state of the research area. As evidenced by
recent works [Bea81, Bea84, BN85, GT13a, GT13b, NTY04] who have made advances by
developing new tools, free boundary problems are fertile ground for the development of new analytic
techniques.

Work reported here – Chapter 3. In joint work with Ian Tice we have shown that, if the domain is
three-dimensional and horizontally periodic with its free boundary given as the graph of a function, and if
the physical effects taken into account at the interface are those coming from gravity, surface tension, and
the presence of an elastic membrane at the interface, then the flat equilibrium is nonlinearly stable. This
result is reported in Chapter 3.

Challenges

There are common challenges posed by the study of both free boundaries and micropolar fluids, and in
particular when studying their stability.

First, let us recall that most nonlinear evolution PDE can be written as infinite-dimensional dynamical
systems, where an evolution PDE is one of the form ∂tX = N(X) for some unknown function X and some
operator N . By contrast with the finite-dimensional case, where it is known that linear stability implies
nonlinear stability, this is not true in the infinite-dimensional case.

Moreover, both the study of free boundaries and of anisotropic micropolar fluids lead to the consideration
of nonlinear PDE of mixed type. In order to solve equations of mixed type, whether it be in a moving domain
(as is the case for free boundary problems) or in a fixed domain, there is no “off-the-shelf” theory that can
be invoked to produce local well-posedness.

Finally: upon fixing their domains, free boundary problems give rise to quasilinear equations, and their
analysis must therefore be carefully adapted to the nonlinearities, whilst some of the equations arising in the
study of anisotropic micropolar fluids are hypocoercive, or equivalently can be thought of as equations that
are degenerate parabolic, which means that their stability analysis is delicate since some components of the
solution do not decay.

Nonlinear energy method. Overcoming these challenges is often achieved through a nonlinear energy
method. As its name suggests, this method is inspired from traditional energy estimates. However it is
important to contrast the two: whilst energy estimates are derived by using the linear structure of the
equations considered, the nonlinear energy method leverages the nonlinear structure of the equations at
hand. Put simply: energy estimates, obtained by integrating by parts, allow us to pass from the equations
to “summary” equations involving functional norms of the solutions which provide bounds on these norms.
Similarly, the nonlinear energy method relies on careful integration by parts (which must be respectful
of the nonlinear structure) to obtain “summary” equations involving norm-like functionals which contain
coefficients depending on the unknowns (this is due precisely to the nonlinear nature of the equations).

A sketch of the nonlinear energy method follows. Suppose we are considering a nonlinear evolution PDE
of the form ∂tX = N(X) for some unknown function X and some operator N . If there exists non-negative
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functionals E and D of X satisfying the following “summary” equation,

d

dt
E +D 6 0,

which we call an energy-dissipation relation, then we are in business. This is referred to as a “summary
equation” since it provides a succinct but coarse description of the dynamics: the energy E of the solutions is
non-increasing in time, and spent through the dissipative mechanisms giving rise to the dissipation D. This
relation immediately provides us with a priori estimates, as it tells us for example that the energy is non-
decreasing in time. Moreover, we may deduce some decay information from the energy-dissipation relation
provided that we can show a coercivity estimate of the form E 6 CD (or E 6 CDθ for some 0 < θ < 1
in the hypocoercive case), for some constant C > 0. Combining this estimate with the energy-dissipation
relation tells us that the energy decays at an exponential rate (or at an algebraic rate dependent on θ in the
hypocoercive case). The key challenge is due to the fact that the coercivity estimate does not hold for the
natural energy and dissipation E and D above, but only holds for higher-order variants which are obtained by
performing energy estimates on differentiated versions of the problem. Due to its nonlinear nature, the PDE
usually does not behave well under differentiation, and hence this step introduces commutators. Taming
these commutators is where modern tools come in, such as product and composition estimates in Sobolev
spaces, interpolation theory, and high-low product estimates.

What is important to note about the nonlinear energy method is that it is robust and flexible. It is
robust in the sense that it has been used in various areas, whether it be for problems arising from free
boundaries in fluid dynamics or in the theory of self-gravitating stars. It is flexible in the sense that it can
be used to prove stability and instability, even when the problem at hand is hypo-coercive and quasilinear.

Disclaimer

The work reported in Chapter 2 and Chapter 3 was first reported in [RTTa] and [RTTb], respectively.
In particular, all work contained in those chapters is joint work with Ian Tice.
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CHAPTER 1

A short treatise on micropolar continuum mechanics

Abstract.

We derive the equations of motion of Newtonian incompressible homogeneous
micropolar fluids by following the path of rational continuum mechanics. By
contrast with classical fluids, micropolar fluids allows for the non-trivial behaviour
of a rigid microstructure at the microscopic scale. This introduces an additional
kinematic quantity, an additional conserved quantity, and an additional stress
tensor responsible for the mediation of couples at the microscopic scale, namely
the angular velocity and the microinertia of the microstructure and the couple
stress tensor, respectively.
To be more precise, we derive the equations by postulating (1) the integral balance
laws for conserved physical quantities such as mass, linear, and angular momen-
tum, (2) the frame-invariance of the constitutive equations for the stress and
couple-stress tensor, and (3) the satisfaction of the Onsager reciprocity relations.
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1. INTRODUCTION 3

Micropolar fluids were introduced by Eringen in [Eri66] as part of an effort to describe microcontinuum
mechanics, which extend classical continuum mechanics by taking into account the effects of microstructure
present in the medium. For viscous, incompressible continua, this results in a model in which the incom-
pressible Navier-Stokes equations are coupled to an evolution equation for the rigid microstructure present
at every point of the continuum. This theory can be used to describe aerosols and colloidal suspensions
such as those appearing in biological fluids [Mau85], blood flow [Ram85, BBR+08, MK08], lubrica-
tion [AK71, B L96, NS12] and in particular the lubrication of human joints [SSP82], liquid crystals
[Eri66, LR04, GBRT13], and ferromagnetic fluids [NST16].

In this chapter we carefully derive the equations governing micropolar fluids in the spirit of rational
continuum mechanics, under the additional assumption that the fluid is incompressible and homogeneous.

Disclaimer. It is important to note that the derivation of the equations of motion for micropolar fluids is
heavily inspired by the sections of [Eri99, Eri01] relevant to micropolar fluids. To a large degree, many
portions of this chapter are more mathematically-minded reformulations of Eringen’s original description of
micropolar fluids.

1. Introduction

In this introduction we briefly sketch the derivation of the equations of motion of micropolar fluids,
pointing out the relevant sections of this chapter where more details can be found regarding each step in
the derivation. We will also highlight the differences between micropolar continua and classical continua
throughout. This introduction will contain numerous links to later portion of this chapter, pointing to the
precise definition of the notions discussed here.

The story of micropolar continuum mechanics, like that of classical continuum mechanics, begins with
a kinematic description of the continuum. In the classical realm, this means that a continuum is fully
determined by a flow map η : [0,∞) → Rn → Rn which determines the motion of the continuum. In the
micropolar realm this description is supplemented by a microrotation map Q : [0,∞)× Rn → SO(n) which
assigns an orientation to every point in the micropolar continuum. This is illustrated in Figure 1. This
kinematic description of continua and micropolar continua is detailed in Section 2, which also contains an
elementary discussion of rigid motions and incompressible flows, two fundamental classes of continua. Once

I0

Ω0Ω0

•y

I(t, y) = Q I0QT

Ω (t)Ω (t)

• x = η (t, y)

η (t, ·)

Q(t, y)

Figure 1. A depiction of how a subset Ω0 ⊆ Rn of the micropolar continuum behaves under
the flow of η and Q. Ω (t) = η (t,Ω0) is the image of Ω0 under the flow of η and y ∈ Ω0 is a
point in Ω0 at which the micropolar continuum has microinertia I0. At the point x = η (t, y)
the microinertia is I (t, y) = Q (t) I0Q

t (t) since the microinertia transforms as a 2-tensor
under the flow of the microrotation Q.

a kinematic description of micropolar continua is established we throw physics into the mix. The objective,
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at this stage, is to postulate appropriate conservation laws for various physical quantities associated with the
continuum. In order to do this we must first (1) carefully define these physical quantities and (2) carefully
study them in the special case where the (classical) continuum is a rigid body. This is essential since the
defining feature of micropolar continua is the presence of rigid microstructure. A good understanding of the
physics of rigid bodies is therefore essential to ensure that the conservation laws which we will posit to hold
for micropolar continua are physically sound. We define these physical quantities, namely mass, moment of
inertia, linear momentum, and angular momentum in Section 3.

With these tools in hand we may now postulate appropriate conservation laws for micropolar continua.
These conservation laws are formulated as integral balance laws and so the key point at the stage is to derive
the corresponding local differential equations satisfied by the micropolar continuum. The formulation of
the balance laws and the derivation of their local counterparts is carried out in Section 4. In particular,
while classical continua are taken to conserve mass, linear momentum, and angular momentum, micropolar
continua are posited to also conserve microinertia, which is defined to be the moment of inertia of the
microstructure.

Note that throughout this treatment of micropolar fluids we deliberately avoid discussing boundary
conditions. We make an exception in Section 4 to derive the natural boundary conditions that naturally
arise from the conservation laws. This is done solely so that we may ultimately obtain a complete set of
partial differential equations, and we do not focus on boundary effects in this chapter.

At this stage we already have in hand the complete set of equations satisfied by the micropolar continuum.
However the balances of linear and angular momentum introduced two additional unknowns: the stress tensor
T and the couple stress tensor M .

Physically, these tensors encode the response of the micropolar fluid to the forces and the torques
induced by the neighbouring fluid. Note that only the stress tensor appears in classical fluids since in that
case there is no microstructure that can support torques and hence no way for the fluid to apply torques
to itself. Mathematically, these tensors render the system overdetermined, pending constitutive relations
which determine T and M in terms of the dynamic variables. In the micropolar world there are two dynamic
variables at play: the velocity u and angular velocity ω, which are essentially time-derivatives of the flow
map and microrotation map, respectively.

To conclude we therefore impose three constraints on the stress tensor T and M : (1) they only depend
on the dynamic variables and their gradients, and in a linear fashion (this is the Newtonian assumption),
(2) their dependence on the dynamic variables is frame-invariant, i.e. independent of the frame of reference
used to observe the fluid, and (3) they respect the Onsager reciprocity relations (which is a thermodynamical
restriction). The constraints (1) and (2) are familiar from classical Newtonian fluids but (3) may not be,
so we direct the reader’s attention to Section 5.3 for a more detailed discussion of the Onsager reciprocity
relations. The determination of the necessary forms of T and M given the constraints (1)–(3) is carried out
in Section 5. We conclude Section 5 by recording the equations of motion of micropolar fluids in Corollary
5.21.

The last section of Chapter 1, namely Section 6, is a short appendix collecting various identities which
are either well-known or elementary and which are used elsewhere in Chapter 1.

2. Kinematics

In this section we introduce the fundamental objects used to describe continua and micropolar continua,
in Section 2.1 and Section 2.3 respectively. We also take the time to carefully discuss two important classes
of continua, namely rigid motions and incompressible flows in Section 2.2.

2.1. Continua. We begin with a discussion of continua, which are defined below in Definition 2.1. In
this section we also record elementary results regarding derivatives of functions defined along the flow of a
continuum.

Definition 2.1. (Continuum)
A continuum is a pair (Ω0, η) where:
(1) Ω0 is open, with ∂Ω0 Lipschitz, and is called a reference configuration.
(2) η : [0,∞) × Ω0 → Rn is a map such that for every t ≥ 0, ηt := η (t, · ) is an orientation-preserving

C1-diffeomorphism onto its image, called a flow map.
We write Ω (t) := ηt (Ω).
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With the definition of a continuum in hand we can define what it means for functions and measures to
be defined “along the flow”. Put simply, and informally, a function is defined along the flow of a continuum
(Ω, η) if its domain is [0,∞)× Ω (t). The precise definition is below in Definition 2.2.

Definition 2.2. (Functions and measures defined ‘along the flow’)
Let (Ω0, η) be a continuum.
(1) A map f : [0,∞)× Ω0 → X is a called a Lagrangian function defined along the flow.
(2) A collection of measures µ = (µt)t>0 such that for every t > 0, µt is a measure on Ω0 is called a

Lagrangian measure defined along the flow.
(3) We say that g is an Eulerian function defined along the flow if there exists a Lagrangian function f

defined along the flow such that g (t, x) = f
(
t, η−1

t (x)
)
, i.e. for every t > 0, g (t, · ) is a map on Ω (t).

We summarize this informally by writing g = f ◦ η−1.
(4) We say that ν is an Eulerian measure defined along the flow if there exists a Lagrangian measure µ

defined along the flow such that νt = (ηt)#µt, i.e. for every t > 0, νt is a measure on Ω (t). We
summarize this informally by writing ν = η#µ.

We now introduce the notion of Lagrangian and Eulerian coordinates. The motivation behind La-
grangian and Eulerian coordinates is that the former correspond to coordinates in the continuum’s reference
configuration Ω0 whilst the latter correspond to coordinates in an observer’s frame of reference where the
complete history of the trajectory of each point of the continuum is not kept track of.

Definition 2.3. (Lagrangian and Eulerian coordinates)
Let (Ω0, η) be a continuum.
(1) (t, y) ∈ [0,∞)× Ω0 are called Lagrangian coordinates.
(2) (t, x) ∈ [0,∞)× Ω(t) are called Eulerian coordinates.

We continue this initial avalanche of definitions by introducing the velocity and acceleration of a con-
tinuum. These notions are absolutely fundamental for our purposes here: we seek equations of motion for
micropolar fluids and one of these unknowns will be precisely the Eulerian velocity.

Definition 2.4. (Velocity and acceleration)
Let (Ω0, η) be a continuum.
(1) v := ∂tη : [0,∞)× Ω0 → R3 is called the Lagrangian velocity.
(2) a := ∂tv = ∂2

t η : [0,∞)× Ω0 → R3 is called the Lagrangian acceleration.
(3) u : [0,∞)× Ω(t), defined via, for every t ≥ 0, ut := vt ◦ η−1

t , is called the Eulerian velocity.
(4) b : [0,∞)× Ω(t), defined via, for every t ≥ 0, bt := at ◦ η−1

t , is called the Eulerian acceleration.

In Lagrangian coordinates the acceleration a and the velocity v satisfy the familiar relation a = ∂tv.
This picture is slightly more complicated in Eulerian coordinates since the relationship between the Eulerian
acceleration b and the Eulerian velocity u is given by b = ∂tu+(u·∇)u. Indeed we can verify from Proposition
2.6 below that

a = ∂tv = ((∂t + u · ∇)u) ◦ η
and hence b = a ◦ η−1 = (∂t + u · ∇)u. This means that the Eulerian acceleration is the material derivative
of the Eulerian velocity. Actually, the operators f 7→ ∂tf + (u · ∇)f and its closely related cousin f 7→
∂tf +∇ · (fu), which we refer to as material derivatives, occur so often in continuum mechanics that they
are given their own notation - see Definition 2.5 below.

Definition 2.5. (Material derivatives)
Let T be a tensor field differentiable in both space and time and let u be a vector field. We define

Du
t T := ∂tT + (u · ∇)T and Dut := ∂tT +∇ · (T ⊗ u)

where we use the notation (T ⊗ u)i1...ikj := Ti1...ikuj .

Now that we have introduce the fundamental objects of continuum mechanics we start recording some
fundamental results associated with their derivatives. In particular in Proposition 2.6 below we record an
identity for the temporal derivatives of functions and measures defined along the flow.

Proposition 2.6. (Derivatives along a flow)
Let (Ω0, η) be a continuum with Eulerian velocity field u.



6 1. MICROPOLAR CONTINUUM MECHANICS

(1) (Derivatives of functions defined along the flow)
For any f : [0,∞)× Ω(t)→ R,

d

dt
(f ◦ η) =

(
(∂t + u · ∇) f

)
◦ η

(2) (Derivatives of the volume form, i.e. of the Lebesgue measure, along the flow)
For any Lebesgue-measurable E0 ⊆ Ω0, writing E (t) := ηt (E0), we have that

d

dt
Ln (E (t)) = ((∇ · u) dLn) (E (t))

where the measure denoted fdµ is defined via (fdµ) (A) :=
´
A
fdµ.

Note that this boils down to the following equation, which is essentially a pointwise version of the
equation above:

d

dt
det∇η = ((∇ · u) ◦ η) det∇η

Proof. (1) follows from an immediate computation upon recalling that ∂tη = u ◦ η:

d

dt
f ◦ η =

d

dt
f (η (y, t) , t) = (∇f ◦ η) · ∂tη + ∂tf ◦ η = ((∂t + u · ∇) f) ◦ η

To derive (2), recall from Corollary 6.22 that det′|M0
(A) = det (M0) tr

(
M−1

0 A
)
. Therefore

d

dt
det∇η = det′|∇η (∂t∇η) = det (∇η) tr

(
(∇η)

−1
∂t∇η

)

where

∂t∇η · (∇η)
−1

= ∇∂tη ·
(
∇
(
η−1

)
◦ η
)

=
((
∇∂tη ◦ η−1

)
· ∇
(
η−1

))
◦ η =

(
∇
(
∂tη ◦ η−1

))
◦ η = ∇u ◦ η

and hence d
dt det∇η = det (∇η) tr (∇u ◦ η) = ((∇ · u) ◦ η) det∇η. So finally

d

dt
Ln (E (t)) =

d

dt

ˆ
E(t)

dLn =
d

dt

ˆ
E0

det(∇η)dLn =

ˆ
E0

(∇ · u) ◦ η det(∇η)dLn =

ˆ
E(t)

(∇ · u) dLn

= ((∇ · u) dLn) (E (t))

�

Using Proposition 2.6 above we are now equipped to prove a result which will be absolutely essential
when it comes to deriving local versions of the integral balance laws. Indeed, Theorem 2.7 below tells us
precisely how to “push time derivatives inside integrals defined over domains carried by the flow”.

Theorem 2.7. (Reynolds’ transport theorem)
Let U0 ⊆ Rn be open and let η : [0,∞) × U0 → Rn be a map such that, for every t ≥ 0, ηt := η (t, · ) is an
orientation-preserving C1-diffeomorphism. Define U (t) := ηt (U0), and ut := ∂tηt ◦ η−1

t for every t > 0. For
any sufficiently regular f : [0,∞)× U(t)→ R,

d

dt

ˆ
U(t)

f =

ˆ
U(t)

∂tf +∇ · (fu) .

Proof. Equipped with Proposition 2.6, this is a direct computation

d

dt

ˆ
U(t)

f =
d

dt

ˆ
U0

(f ◦ η) det∇η =

ˆ
U0

((∂t + u · ∇) f ◦ η) det∇η + f ((∇ · u) ◦ η) det∇η

=

ˆ
U(t)

∂tf + (∇f) · u+ f (∇ · u) =

ˆ
U(t)

∂tf +∇ · (fu) .

�

We can interpret Proposition 2.6 and Theorem 2.7 above as telling us how to differentiate 0-forms and n-
forms, i.e. smooth functions and volume forms respectively, in terms of the material derivatives introduced in
Definition 2.5. More precisely: for a 0-form f and its associated n-form fdLn, Proposition 2.6 and Theorem
2.7 tell us that, if U (t) denotes a subset of Ω (t) carried by the flow (i.e. U (t) = ηt(U0) for some U0 ⊆ Ω0)
then

∂t(f ◦ η) = (Du
t f) ◦ η and ∂t

(
fdLn|U(t)

)
= (Dut f) dLn|U(t).
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In particular, note that when ∇ · u vanishes (i.e. the flows is incompressible – see Definition 2.12 below)
then the two material derivatives agree, i.e. Du

t = Dut , and therefore 0-forms and n-forms behave in the
same way when differentiated in time along the flow. This is a manifestation of a feature of incompressible
flows that we will prove below (in Proposition 2.15), namely that incompressible flows preserve the Lebesgue
measure.

2.2. Important classes of continua: rigid motions and incompressible flows. In this section we
introduce rigid motions and incompressible flows, which are two fundamental examples of continua. We also
establish some of their properties, and in particular will establish the implications laid out in the diagram
below:

Isometric flow
Preserves the metric

Rigid motion u ∈ kerD

Locally volume-preserving flow
Preserves the Lebesgue measure

∇ · u = 0 (incompressible flow)

Rigid motions and rigid bodies, introduced in Definition 2.8 below, are important for several reasons.
(1) They are the simplest class of continua that one can study.
(2) They motivate and help to illustrate numerous definitions in the realm of micropolar continua, such as

the definitions of linear momentum and angular momentum. Indeed, the microstructure of micropolar
fluids is posited to be a microscopic rigid body, so a good understanding of rigid bodies is important in
motivating the defining properties of micropolar media.

(3) They are necessary to define the notion of frame-invariance, which plays in essential role in the deter-
mination of the equations of motion of micropolar fluids.

Definition 2.8. (Rigid motion and rigid body)
(1) We say that f : Rn → Rn is a rigid motion if f = R + z for some R ∈ O (n) and z ∈ Rn. Note that f

is orientation-preserving if and only if R ∈ SO (n).
(2) We say that a flow map η : [0,∞)× Rn → Rn is a rigid motion if ηt is a rigid motion for every t ≥ 0.
(3) A continuum whose flow map is a rigid motion is called a rigid body.

The first property of rigid motions we establish is that rigid motions are precisely the isometries of Rn.
This also serves as a justification for the central important of rigid motions.

Proposition 2.9. Rigid motions are precisely the isometries of Euclidean space, and moreover isome-
tries of Euclidean space are necessarily bijective.

Proof. First we show that rigid motions are isometries. Let f = R + z be a rigid motion. Then, for
every x, y ∈ Rn, |f (x)− f (y)| = |Rx−Ry| = |x− y| since R is orthogonal and hence

|R (x− y)| = (R (x− y) ·R (x− y))
1/2

=
(
RTR (x− y) · (x− y)

)1/2
= |x− y|

such that indeed f is an isometry.
Now we show that isometries must rigid motions. We proceed in several steps. In step 1 we use a

polarization identity to show that isometries preserve inner products (i.e. angles). In step 2 we deduce that
isometries must therefore be additive. In step 3 we note that isometries must be continuous and injective.
In step 4 we deduce from the additivity and the continuity of the isometry that it must be linear. We finally
conclude in step 5.

Step 1. Let f be an isometry of Rn. We will use a polarization identity, which allows us to relate inner
products and norms, to show that f also preserves the inner product. Suppose without loss of generality
that f(0) = 0. Then, for any x, y ∈ Rn,

x · y =
1

2

(
|x|2 + |y|2 − |x− y|2

)
=

1

2

(
|x− 0|2 + |y − 0|2 − |x− y|2

)

=
1

2

(
|f(x)− f(0)|2 + |f(y)− f(0)|2 − |f(x)− f(y)|2

)

=
1

2

(
|f(x)|2 + |f(y)|2 − |f(x)− f(y)|2

)
= f(x) · f(y).
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Step 2. We now show that f is additive. For any x, y, z ∈ Rn,

|(x+ y)− z|2 = |x|2 + 2x · y + |y|2 − 2 (x · z + y · z) + |z|2

= |f(x)|2 + 2f(x) · f(y) + |f(y)|2 − 2 (f(x) · f(z) + f(y) · f(z)) + |f(z)|2

= |(f(x) + f(y))− f(z)|
and thus in particular if we pick z = x+ y we obtain that

f (x) + f (y)− f (x+ y) = 0

Step 3. We now note that, since f is an isometry, it must be a continuous injection. For every x 6= y,
x, y ∈ Rn |f (x)− f (y)| = |x− y| > 0 and hence f (x) 6= f (y). Continuity is immediate since isometries are
1-Lipschitz.

Step 4. We now show that, since f is additive and continuous, it must be 1-homogeneous, and hence
linear/. Let f be additive and continuous. Then, for any x ∈ Rn, and for any z ∈ Z, f (zx) = zf (x), and
hence zf

(
x
z

)
= f

(
z xz
)

= f (x). It follows that f
(
x
z

)
= 1

z f (x), and thus f (qx) = qf (x) for any rational q.
Finally, by continuity of f and density of Q in R, we obtain that f (λx) = λf (x) for any λ ∈ R. So indeed
f is 1-homogeneous. Since it is also additive, it must be linear.

Step 5. We may now conclude the argument and show that f is a rigid motion. We know that f is linear
and injective. It is therefore bijective (since the dimensions of the domain and codomain of f coincide). So
let us write f(x) = Ax for some n-by-n matrix A. We note that, for arbitrary x, y ∈ Rn,

x · y = f(x) · f(y) = Ax ·Ay = ATAx · y
and hence A is indeed an orthogonal matrix. �

We now introduce the symmetrized gradient. Due to its connections with rigid motions with frame-
invariance, this differential operator appears throughout our treatment of micropolar continuum mechanics.

Definition 2.10. (Symmetrized gradient)
For any differentiable vector field v we define its symmetrized gradient, denoted Dv, to be (Dv)ij = ∂ivj+∂jvi,
i.e. Dv = 2 Sym∇v.

Having defined the symmetrized gradient we show that it can be used to characterize the Eulerian
velocities of rigid motions.

Proposition 2.11. A flow map is a rigid motion if and only if its Eulerian velocity belongs to the kernel
of the symmetrized gradient.

Proof. ⇒ Suppose η (t, y) = z (t) + R (t) y for some z : [0,∞) → Rn and some R : [0,∞) → O (n).

Note that η−1 (t, x) = R (t) (x− z (t)), and therefore:

u (t, x) =
(
∂tη ◦ η−1

)
(t, x) = ż (t) + Ṙ (t)R (t)

−1
(x− z (t))

i.e. u (t, · ) = v + Ω for {
v = ż − ṘR−1z and

Ω = ṘR−1.
(2.1)

Now note that, by Proposition 6.18, Ṙ = RB for some B ∈ Ω (n), and hence by Proposition 6.19 Ω =
RBR−1 ∈ A (n). So finally, by Lemma 6.6, u ∈ kerD.
⇐ This direction of the proof amounts to solving the ODE (2.1), treating (Ω, v) as data and (R, z) as

unknowns, with initial conditions z (0) = 0 and R (0) = I (to ensure that η0 = id). So let u ∈ kerD, i.e by
Lemma 6.6, u (t, x) = v (t) + Ω (t)x for some v : [0,∞) → Rn and some Ω : [0,∞) → Skew (Rn×n). Then
define, for t ≥ 0,

z (t) =

ˆ t

0

eΩ(t−s)v (s) ds and R (t) = eΩt,

i.e. z (t) = R (t)
´ t

0
R (s)

−1
v (s) ds. Upon taking a derivative we see that

ż = RR−1v + Ṙ

ˆ
R−1v = v + ṘR−1z and Ṙ = ΩR

such that (2.1) holds indeed. �
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Having discussed rigid motions we now introduce the second of the two classes of continua that we
consider in this section, namely incompressible flows.

Definition 2.12. (Incompressible flow)
We say that a flow map η is incompressible if its Eulerian velocity is divergence-free.

We now define what it means for a flow to be locally volume-preserving, a notion which will play with
incompressible flows the role that isometries played with rigid motions.

Definition 2.13. (Locally volume-preserving maps and flows)
(1) Let E ⊆ Rn be Lebesgue measurable. A map f : E → Rn is said to be locally volume-preserving if

f#Ln = Ln.
(2) A flow map η is said to be locally volume-preserving if, for every t > 0, ηn is locally volume-preserving,

i.e. (ηt)#Ln = Ln.

Having introduced locally volume-preserving flows we record a few different equivalent characterizations
of such flows. This will be helpful later when discussing the relationships between locally volume-preserving
flows, incompressible flows, and isometries.

Lemma 2.14. (Alternative characterizations of locally volume-preserving flow maps)
Let η be a flow map. The following are equivalent:
(1) η is locally volume-preserving.
(2) For every Lebesgue-measurable set E0 ⊆ Ω0, writing E (t) := ηt (E0), we have that

Ln (E (t)) = Ln (E0) .

(3) |det∇η| ≡ 1.

Proof. (1)⇔ (2) This follows from the observation that, since ηt is a bijection for every t ≥ 0,

Ln (E0) = Ln
(
η−1
t (E (t))

)
=
(

(ηt)# Ln
)

(E (t)) .

(2)⇔ (3) This follows from the observation that

Ln (E (t)) =

ˆ
E(t)

dLn =

ˆ
E0

|det∇η|dLn = (|det∇η|dLn) (E0) .

�

We now show an analog of Proposition 2.9 in the realm of incompressible flows.

Proposition 2.15. A flow map is locally volume-preserving if and only if it is incompressible.

Proof. This follows from combining one of the alternative characterization of locally volume-preserving
flows in Lemma 2.14 which says that a flow map η is locally volume-preserving if and only if |det∇η| ≡ 1,
with the computation of the time derivative of the volume form in Proposition 2.6, which tells us that
d
dt det∇η = (∇ · u)◦η det∇η. Note that we also need to use the fact that η0 = id, and hence det∇η0 ≡ 1. �

Finally we conclude this section by remarking on the relationship between locally volume-preserving
isometric flow maps.

Proposition 2.16. Isometric flow maps are locally volume-preserving.

Proof. Since η is an isometry, it follows from Proposition 2.9 that it is a rigid motion, i.e.

η (t, x) = z (t) +R (t)x

for some z : [0,∞) → Rn and some R : [0,∞) → O (n). In particular, |det∇η| = |detR| = |±1| = 1, which
by Lemma 2.14 tells us precisely that η is locally volume-preserving. �
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Configuration at time t = 0 •
y0

Case 1 Case 2 Case 3

η (t, ·) etR (· − y0) etR (· − y0) I
Q (t, y) etR I etR

u (t, x) Rx Rx 0
1
2∇× u (t, x) e3 e3 0
ω (t, x) e3 0 e3

1
2∇× u− ω 0 e3 −e3

Configuration at time t = π
2

•
y0

•
y0

•
y0

Table 1. Three explicit examples of the motion of a micropolar continuum with the same
initial configuration. These motions are chosen to be similar to emphasize that the microro-
tation Q is an absolute rotation. The figures shown correspond to cross-sections perpendic-
ular to e3, each colored arrow is a depiction of the orientation of the microstructure at that
point, y0 is some point in the micropolar continuum, and R = e2⊗ e1− e1⊗ e2 corresponds
to a (counter-clockwise) rotation by π/2 in the plane perpendicular to e3.

2.3. Micropolar continua. In this section we follow a path similar to that which we took in Section
2.1 earlier: we define the fundamental kinematic objects used to describe micropolar continua. This begins
with the definition of a micropolar continuum.

Definition 2.17. (Micropolar continuum and microrotation map)
A micropolar continuum is a triple (Ω0, η,Q) where
(1) (Ω0, η) is a continuum.
(2) Q : Ω0 × [0,∞)→ SO (n) is called a microrotation map.

A word of warning: there are two ways to define the microrotation map and we have chosen here the
convention that Q is absolute. Indeed, one may either define Q to be the rotation of the microstructure with
respect to its immediate environment, in which case Q would be equal to the identity when the micropolar
continuum undergoes rigid motions such as rotations, or one may define Q to be the identity at time t = 0
and to be the absolute rotation underwent by the micropolar continuum thereafter. We choose the latter
convention. In order to illustrate the physical interpretation of the microrotation map Q, Table 1 contrasts
the motions obtained for various simple expressions of η and Q

We now introduce two linear maps, ten and vec, which will play a fundamental role throughout.

Definition 2.18. (ten and vec)
We define ten : R3 → Skew (3) and vec : Skew (3)→ R3 via: for every v ∈ R3 and every A ∈ Skew(3),

(ten v)ij := εiajva and (vecA)i :=
1

2
εaibAab.

The linear maps ten and vec are essential since they allows us, in light of Proposition 6.13, to identify
R3 with Skew(3), the space of 3-by-3 skew-symmetric matrices. Quantities like angular velocity and angular
momentum, that would naturally take the form of a skew-symmetric matrix (since they arise from the
rotational invariance of physical system and, as noted in Proposition 6.19, the tangent space to the space of
orthogonal matrices is precisely the space of skew-symmetric matrices), will thus be treated as vectors.
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We conclude this section with the analog of Definition 2.4 for the micropolar realm and introduce the
dynamic quantities that can be used to describe the motion of the microstructure of micropolar continua.

Definition 2.19. (Angular velocity and angular velocity tensor)
Let (Ω0, η,Q) be a micropolar continuum.
(1) Θ := (∂tQ)Q−1 : Ω0 × [0,∞)→ A (n) is called the Lagrangian angular velocity tensor.
(2) if n = 3, θ := vec Θ : Ω0 × [0,∞)→ R3 is called the Lagrangian angular velocity.
(3) Ω : Ω (t) → A (n), defined via, for every t > 0, Ωt := Θt ◦ η−1

t , is called the Eulerian angular velocity
tensor

(4) if n = 3, ω : Ω (t) → R3, defined via, for every t > 0, ωt := vec Ωt = θt ◦ η−1
t , is called the Eulerian

angular velocity

We can motivate the definition of the angular velocity tensors as follows. If a rigid motion f maps maps
a points y in the reference configuration to

x(t, y) = f(t, y) = b(t) +R(t)(y − b0) (2.2)

for b0 ∈ Rn, b : [0,∞) → Rn, and R : [0,∞) → O(n), then ∂tf(t, y) = ḃ + Ṙy. In particular, since we may
invert (2.2) to write y(t, x) = RT (x− b) + b0, we deduce that

∂tf(t, y(t, x)) = ḃ+ ṘRT (x− b).
Expressing the time derivative of f in these coordinates is not merely a sleight of hand: those are precisely
the coordinates in which we can measure f if we are not keeping track of the original position of each point
x. Crucially: this expression motivates defining the angular velocity of the rigid motion as ṘRT , which is
akin to how we defined the angular velocity tensors in Definition 2.19 above.

3. Physics and rigid bodies

In this section we introduce various physical quantities associated with continua and micropolar continua,
such as mass and moment of inertia in Section 3.1 and linear momentum and angular momentum in Section
3.3. In Section 3.2 we take care to characterize the admissible moments of inertia, i.e. determining precisely
which positive symmetric matrices are the moment of inertia of some continuum.

3.1. Mass and moments of inertia. In this section we introduce several concepts and quantities
related to mass and moment of inertia. We then take care to compute the values of these quantities for some
simple example, and we record how these quantities behave under rigid motions and Cartesian products.
This will come in handy in Section 3.2 when we seek to characterize the admissible moments of inertia.

We being by defining the mass, moment of inertia, and other associated objects for a continuum. Recall
that, physically-speaking, the mass and moment of inertia play very similar role. Each of these quantities is
a phenomenological constant which encodes the inertia response of a body to exerted forces and torques.

Definition 3.1. (Mass, center of mass, and associated notions)
(1) Given a Borel measure ν on Rn we define, for every Borel set E,

(a) its mass, denoted M (E), via M (E) := ν (E),
(b) its center of mass, denoted x, via

x :=
1

M (E)︸ ︷︷ ︸
ν(E)

ˆ
E

xdν (x) =

 
E

xdν (x) = Eν [x]

(c) its covariance matrix, denoted V , via

V :=

 
E

(x− x)⊗ (x− x) dν (x) = Eν [(x− Eν [x])⊗ (x− Eν [x])] = Vν [x]

(d) if n = 3, its moment of inertia, denoted J , via

J :=

ˆ
E

(
|x− x|2 − (x− x)⊗ (x− x)

)
dν (x) =M (E) ((trV ) I − V )

(2) We say that a measure is finite if the mass of its support is finite.
(3) We say that a measure has finite second moment if the covariance matrix of its support is finite.
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(4) A Lagrangian measure µ defined along the flow such that, for every t > 0, µt is a finite Borel measure
with finite second moment is also called a Lagrangian mass measure.

(5) If a Lagrangian mass measure µ is absolutely continuous with respect to the Lebesgue measure, meaning
that for every t, µt � Ln, then we call the Lagrangian function σ defined along the flow via, for all
t > 0, σt := dµt

dLn the Lagrangian mass density associated with µ.
(6) An Eulerian measure defined along the flow such that, for every t > 0, νt is a finite Borel measure with

finite second moment is also called an Eulerian mass measure.
(7) If an Eulerian mass measure ν is absolutely continuous with respect to the Lebesgue measure, then we

call the Eulerian function ρ defined along the flow via, for all t > 0, ρt := dνt
dLn the Eulerian mass density

associated with ν.

Since the center of mass and covariance matrix of a finite measure with finite second moment are nothing
more than the expectation and covariance matrix of the probability measure obtained by normalizing the
measure, we will often refer to these quantities as statistic functionals of the measure.

Remark 3.2. The fact that the moment of inertia J has a form which is, at first sight, somewhat odd
is worth remarking on. This particular form of J is a consequence of our insistence to identify Skew(3) with
R3. Indeed: the natural space for the angular velocity tensor Ω to live in is Skew(3), which would mean that
the moment of inertia J would be a linear map on Skew(3). It can be shown that this matrix-to-matrix
moment of inertia would take the form

JΩ = {V,Ω} = V Ω + ΩV,

where { · , · } denotes the anti-commutator of two matrices and where V denotes the covariance matrix of
the mass measure under consideration. J then gives rise to a linear map J on R3 by making the following
diagram commute.

R3 Skew(3)

R3 Skew(3)

ten

J

vec

J
ten

vec

More precisely, for any ω ∈ R3, Jω = vecJ (vecω) and hence, using Lemma 6.1, the fact that, since
J = {V, · }, Jabcd = Vacδbd + δacVbd, and the fact that V is symmetric,

(Jω)i =
1

2
εaibJabcdεcmdωm =

1

2
εaib(Vacδbd + δacVbd)εcmdωm =

1

2
(εaibVacεcmb + εaibVbdεamd)ωm

=
1

2
(δacδimVac − δamδicVac + δimδbdVbd − δidδbmVbd)ωm

=
1

2
(Vaaωi − Vaiωa + Vbbωi − Vbiωb) = (trV )ωi − (V ω))i,

i.e. indeed J = (trV )I − V .

We now record a useful decomposition for the Eulerian velocity of a rigid body. Despite seeming quite
innocuous, Proposition 3.3 below is quite important since it is later used to compute the linear and angular
momentum of a rigid body. These computations are essential since they will in turn motivate the definition
of the linear momentum and angular momentum densities.

Proposition 3.3. (Decomposition of the Eulerian velocity of a rigid body)
Let (U , η0) be a rigid body. Then there exists constants ū, ω̄ ∈ R3 such that, if u denotes the Eulerian velocity

and x̄ denotes the center of mass of the rigid body, then we can decompose u as u = ū+ ω̄ × ( · − x̄).

Proof. Since η is a rigid motion we know from Proposition 2.11 that Du = 0. Lemma 6.6 then tells us
that there exists constants ũ ∈ R3 and Ω̄ ∈ Skew(3) such that u(x) = ũ+ Ω̄x. So finally, for ω̄ := vec Ω̄ and
ū := ũ+ Ω̄x̄ we have that u = ū+ ω̄ × ( · − x̄). �

We now compute that mass, center of mass, covariance matrix, and moment of inertia of several simple
rigid bodies. These computations serve several purposes.
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(1) They serve a pedagogical purpose by showing us what these physical quantities look like for simple
cases. For example, these computations tell us that the roles of eigenspaces corresponding to zero and
non-zero eigenvalues are flipped when translating between the covariance matrix V and the moment of
inertia J . In more geometric terms we can phrase this as follows: the geometric extent of a rigid body
is concentrated along the orthogonal complement of the kernel of V , which corresponds to the kernel of
J . This is particularly evident when considering Example 3.4 below.

(2) These examples will later be used as elementary building blocks to construct mass measures with
arbitrarily prescribed moments of inertia.

Example 3.4. (Idealized dumbbell)
Consider the measure ν = m

2 δ len2
+ m

2 δ−len2
.

m
2

m
2

l

Figure 2. Idealized dumbbell

The center of mass and covariance matrix are given by

x̄ =
1

m

( len
2

m

2
+
−len

2

m

2

)
= 0 and V =

1

m

(( len
2
⊗ len

2

)
m

2
+

(−len
2
⊗ −len

2

)
m

2

)
=
l2

4
en ⊗ en

and therefore the moment of inertia is

J = m
(

(trV ) I − V
)

= m

(
l2

4
I − l2

4
en ⊗ en

)
=
ml2

4
(I − en ⊗ en) .

Example 3.5. (Idealized n-dumbbell)

Consider the measure ν = 1
n

∑n
i=1

m
2

(
δ lei

2

+ δ−lei
2

)
.

m
2n

Figure 3. Idealized 3-dumbbell

The center of mass and covariance matrix are given by


x̄ = 1

m

(
1
n

∑n
i=1

lei
2
m
2 + −lei

2
m
2

)
= l

4n

∑n
i=1 (ei − ei) = 0 and

V = 1
m

(
1
n

∑n
i=1

(
lei
2 ⊗ lei

2

)
m
2 +

(−lei
2 ⊗ −lei2

)
m
2

)
= l2

4n

∑n
i=1 ei ⊗ ei = l2

4nI

and therefore the moment of inertia is

J = m ((trV ) I − I) = m

(
l2

4
I − l2

4n
I

)
=
ml2

4

n− 1

n
I

Example 3.6. (Rod)
Consider the measure ν = ρH1 l

2 [−e1, e1] where [−e1, e1] := {θ (−e1) + (1− θ) e1 | θ ∈ [0, 1]}. The mass
and center of mass of the rod are given by

M =

ˆ l
2 e1

− l
2 e1

ρdH1 (x) =

ˆ l
2

− l
2

ρds = ρl and x̄ =

 l
2 e1

− l
2 e1

ρxdH1 (x) =
1

ρl

(ˆ l
2

− l
2

ρsds

)
e1 = 0.

The covariance matrix is given by

V =

 l
2 e1

− l
2 e1

ρx⊗ xdH1 (x) =

( l
2 e1

− l
2 e1

ρs2ds

)
e1 ⊗ e1 =

1

ρl

ρl3

3
e1 ⊗ e1 =

l2

3
e1 ⊗ e1
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and hence the angular moment of inertia is J = l2

3 (I − e1 ⊗ e1).

Example 3.7. (Sphere)
Consider the measure ν = Ln B (0, r). When evaluating integrals below, we will often use the following
fact: given a map Φ : Rn → Rn preserving the Lebesgue measure, if the integrand f is odd under Φ, i.e.
f ◦ Φ = −f and E is some (Lebesgue-measurable) set invariant under Φ, then

´
E
f dx = 0.

First we compute the center of mass: by symmetry,

x̄ =

 
B(0,r)

x dx = 0.

Now we compute the covariance matrix and moment of inertia. By symmetry,

Vii =

( 
B(0,r)

x⊗ x dx
)

ii

=

 
B(0,r)

x2
i dx =

1

n

( 
B(0,r)

x2
1 dx+ · · ·+

 
B(0,r)

x2
n dx

)
=

1

n

 
B(0,r)

|x|2 dx

and

Vij =

( 
B(0,r)

x⊗ x dx
)

ij

=

 
B(0,r)

xixj dx = 0 if i 6= j.

Now let us write αn := Ln (B (0, 1)) and note that then Hn−1 (∂B (0, 1)) = nαn. We can then compute:

1

n

 
B(0,r)

|x|2 dx =
1

nLn (B (0, r))

ˆ r

0

(ˆ
∂B(0,s)

|x|2 dHn−1 (x)

)
ds =

1

nαnrn

ˆ r

0

Hn−1 (∂B (0, s)) s2 ds

=
H (∂B (0, 1))

nαnrn

ˆ r

0

s(n−1)+2 ds =
nαn
nαnrn

rn+2

n+ 2
=

r2

n+ 2

Therefore the covariance matrix is V = r2

n+2I. So finally the moment of inertia is

J = Ln (B (0, r)) ((trV ) I − V ) = αnr
n

(
nr2

n+ 2
I − r2

n+ 2
I

)
=
αn (n− 1)

n+ 2
rn+2I.

Example 3.8. (Cylinder)
Consider the measure nu = L3 C where

C = B2 (r)× (−l, l) =
{

(x1, x2, x3) ∈ R3
∣∣ x2

1 + x2
2 < r2 and |x3| < l

}
.

Then the mass is

M = L3 (C) = L2 (B2 (r))L1 ((−l, l)) = 2πr2l

and by symmetry of C the center of mass is

x̄ =

 
C

x dx =
1

M

ˆ l

−l

ˆ
B2(r)

x d (x1, x2)

︸ ︷︷ ︸
=0

dx3 = 0.

Now let us compute the covariance matrix. Observe that by symmetry of C, Vij =
ffl
C
xi ⊗ xj dx = 0 when

i 6= j, and that

V11 = V22 =
1

M

ˆ l

−l
dx3

ˆ
B2(r)

x2
1d (x1, x2) =

2l

2πr2l

1

2

ˆ
B2(r)

(
x2

1 + x2
2

)
d (x1, x2) =

1

2πr2

ˆ r

0

s2 (2πs) ds =
r2

4

whilst

V33 =
1

M

ˆ l

−l
x2

3

(
πr2
)
dx3 =

πr2

2πr2l

2l3

3
=
l2

3
.

We have thus computed the covariance matrix to be

V =



r2

4 0 0

0 r2

4 0

0 0 l2

3


 .



3. PHYSICS AND RIGID BODIES 15

So finally, the moment of inertia is

J = M ((trV ) I − V ) = 2πr2l



(
r2

2
+
l2

3

)
I −



r2

4 0 0

0 r2

4 0

0 0 l2

3





 = 2πr2l



r2

4 + l2

3 0 0

0 r2

4 + l2

3 0

0 0 r2

2




=
πr2l

6




3r2 + 4l2 0 0
0 3r2 + 4l2 0
0 0 6r2


 =

M

12

(
3r2I + 4l2I2 + 3r2e3 ⊗ e3

)

where I2 := e1 ⊗ e1 + e2 ⊗ e2. In particular, if 4l2 = 3r2, then J = M
2 r

2I. It is worth contrasting this with

the moment of inertia of a sphere of mass M and radius R, which is 2M
5 r2I.

Recall that the computations above are helpful since they provide building blocks that can later be used
to construct more complicated mass measures – this will be essential in Section 3.2 when we characterize
admissible moments of inertia. The other tool we need is to be able to say how statistical functionals
associated with various rigid bodies behave under various transformation. First we record how statistical
functionals behave under transformation by rigid motions.

Proposition 3.9. (Transformation of statistical functionals of a measure under rigid motions)
Let ν be a finite Borel measure with finite second moment and let T : Rn → Rn be a rigid motion.
(1) If T is a translation, i.e. T (x) = x+ z for some z ∈ Rn, then the mass, center of mass, and covariance

matrix of the measure transform as

(M, x̄, V )→ (M, x̄+ z, V )

i.e. (M, x̄+ z, V ) are the statistical functionals of T#ν. In particular the moment of inertia is invariant
under translations, i.e. J → J .

(2) If T is a rotation, i.e. T (x) = Rx for some R ∈ O (n), then the mass, center of mass, and covariance
matrix of the measure transform as

(M, x̄, V )→
(
M,Rx̄,RV RT

)

i.e.
(
M,Rx̄,RV RT

)
are the statistical functionals of T#ν. In particular the moment of inertia trans-

forms as J → RJRT .

Proof. (1) Denote by µ the push-forward of ν under T , i.e. µ := T#ν such that

dµ (x+ z) = dν (x) .

Mass: performing the change of variables y = x+ z we obtainˆ
E+z

dµ (y) =

ˆ
E

dµ (x+ z) =

ˆ
E

dν (x) = M.

Center of mass: we perform the same change of variable y = x+ z to compute 
E+z

ydµ (y) =

 
E

(x+ z) dν (x) = x̄+ z.

Covariance matrix: since ȳ = x̄+ z, performing the change of variables y = x+ z yields y − ȳ = x− x̄
and hence  

E+z

(y − ȳ)⊗ (y − ȳ) dµ (y) =

 
E

(x− x̄)⊗ (x− x̄) dν (x) = V.

(2) Denote by µ the push-forward of ν under T , i.e. µ := T#ν such that dµ (Rx) = dν (x). To compute
the mass, we perform the change of variables y = Rx, noting that dy = dx since R ∈ O (n) and hence
|detR| = 1. Therefore we haveˆ

RE

dµ (y) =

ˆ
E

dµ (Rx) =

ˆ
E

dν (x) = M.

Now we compute the center of mass, performing the same change of variables: 
RE

ydµ (y) =

 
E

Rxdν (x) = Rx̄.
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Finally we compute the covariance matrix: 
RE

(y − ȳ)⊗ (y − ȳ) dµ (y) =

 
E

R (x− x̄)⊗R (x− x̄) dν (x) = RV RT .

�

Proposition 3.9 gives us a particularly simple rule for the transformation of statistical functionals under
rigid motions that preserve the center of mass. This is recorded in Corollary 3.10 below.

Corollary 3.10. Under the transformation T (x) = R (x− x̄)+ x̄ for some R ∈ O (n), the mass, center
of mass, and covariance matrix of a measure transform as

(M, x̄, V )→
(
M, x̄,RV RT

)

In particular the moment of inertia transforms as J → RJRT .

We continue establishing properties of statistical functionals of mass measures under various transfor-
mations. Having established how they transform under rigid motions we now record how they behave with
respect to Cartesian products.

Proposition 3.11. (Statistical functionals of product measures)
Let ν1, ν2 be finite Borel measures with finite second moment on Rn1 ,Rn2 respectively, with masses M1,M2,
centers of masses x̄1, x̄2, and covariance matrices V1, V2. The measure ν := ν1 × ν2 on Rn1+n2 has mass

M1M2, center of mass (x̄1, x̄2), and covariance matrix

(
V1 0
0 V2

)
.

Proof. First we compute the mass: ν (Rn1+n2) = ν (Rn1 × Rn2) = ν1 (Rn1) ν2 (Rn2) = M1M2. Now we
compute the covariance matrix, writing x = (x1, x2) ∈ Rn1 × Rn2 = Rn1+n2 to obtain 

Rn1+n2

xdν (x) =
1

M1M2

ˆ
Rn1×Rn2

(x1, x2) dν1 (x1) dν2 (x2)

=
1

M2

ˆ
Rn2

(
1

M1

ˆ
Rn1

(x1, x2) dν1 (x1)

)
dν2 (x2) =

1

M2

ˆ
Rn2

(x̄1, x2) dν2 (x2) = (x̄1, x̄2) .

Finally, to compute the covariance matrix, we first note that since covariance matrices are invariant under
translation, we may without loss of generality assume that x̄ = 0. Then 

Rn1+n2

x⊗ xdν (x) =

 
Rn2

 
Rn1

(x1, x2)⊗ (x1, x2) dν1 (x) dν2 (x)

=

 
Rn2

( 
Rn1

(
x1 ⊗ x1 x1 ⊗ x2

x2 ⊗ x1 x2 ⊗ x2

)
dν1 (x)

)
dν2 (x)

=

 
Rn2

(
V1 0⊗ x2

x2 ⊗ 0 x2 ⊗ x2

)
dν2 (x2) =

(
V1 0
0 V2

)
.

�

3.2. Admissible moments of inertia. The goal of this section is to characterize precisely when, given
a positive symmetric matrix J , it is the moment of inertia of some mass measure.

We begin with preliminary results from linear algebra used to formulate the conditions on the eigenvalues
of J that will characterize admissible moments of inertia. First we record a result telling us to relate the
spectrum of a covariance matrix with the spectrum of its moment of inertia.

Lemma 3.12. Let V ∈ Rn×n be symmetric and positive. Then S := (trV ) I − V is symmetric and
positive. Moreover S and V have the same eigenspaces and, if λ = (λ1, . . . , λn) denotes the eigenvalues of
V and µ = (µ1, . . . , µn) denotes the corresponding (which is well-defined by item 1 above) eigenvalues of S,
then µ = (C − I)λ, where C ∈ Rn×n such that Cij = 1 for all i, j.

Proof. Clearly S is symmetric since V is. Now, since V is symmetric and positive, it has positive
eigenvalues and is diagonal in some orthonormal basis {vi}ni=1, i.e. V =

∑
i λivi ⊗ vi for some λi > 0.

Therefore, for any ξ ∈ Rn,

Sξ · ξ =

(∑

i

λi

)
|ξ|2 −

∑

i

λi(vi · ξ)2
=
∑

i

λi

(
|ξ|2 − (vi · ξ)2

)
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where indeed, since |vi| = 1 for each i, |ξ|2 − (vi · ξ)2
= |ξ|2|vi|2 − (vi · ξ)2 > 0 by Cauchy-Schwarz. Finally

observe that

Svi =


∑

j

λj


 vi − λivi =


∑

j 6=i
λj




︸ ︷︷ ︸
=µi

vi

i.e. indeed S and V share the same eigenspaces, with moreover µ = (C − I)λ. �

Since Lemma 3.12 established that there was a linear relationship between the spectrum of a covariance
matrix and its associated moment of inertia we now observe, in Lemma 3.13 below, that this relationship is
invertible and compute its inverse.

Lemma 3.13. Let C ∈ Rn×n such that Cij = 1 for all i, j. Then C − I is invertible, with

(C − I)
−1

=
1

n− 1
C − I.

Proof. Since C and I commute, it is sufficient to show that (C − I)
(

1
n−1C − I

)
= I. The key

observation is that C2 = nC. We may now compute directly that

(C − I)

(
1

n− 1
C − I

)
=

1

n− 1
C2 − C − 1

n− 1
C + I =

(
n

n− 1
− 1− 1

n− 1

)
C + I = I.

�

We now have the tools to establish the first of the two main results of this section, namely providing a
necessary condition for a positive symmetric matrix to be the moment of inertia of some mass measure.

Proposition 3.14. (Admissible moments of inertia – necessity)
Let ν be a finite Borel measure on Rn with finite second moment. Its moment of inertia is a positive
symmetric n-by-n matrix, and moreover if we denote by µ ∈ Rn its eigenvalues, then

(1) µi 6
1

n− 1

n∑

j=1

µj for all i = 1, . . . , n

or equivalently

(2) µ ∈ R+∇n−1 =
{
sx
∣∣ s ∈ R+, x ∈ ∇n−1

}

where R+ := [0,∞) and ∇n−1 = 1−∆n−1 , for ∆n−1 denoting the (n− 1)-simplex such that

∇n−1 :=



x ∈ Rn

∣∣∣∣∣∣
xi = 1− θi =

∑

j 6=i
θj for some θj > 0 with

∑

j

θj = 1



 .

Proof. Suppose without loss of generality that ν has unit mass. Let V denote the covariance matrix
of ν and let J denote the corresponding moment of inertia, i.e. J = (trV ) I − V . It follows from Lemma
3.12 that J is symmetric, positive, has the same eigenspaces as V , and that if λ and µ ∈ Rn denote the
eigenvalues of V and J respectively, then µ = (C − I)λ where C ∈ Rn such that Cij = 1 for all i, j. Note
that since V is symmetric and positive, it follows that λ ∈ Rn+ and hence µ ∈ (C − I)Rn+. Now Lemma 3.13

says that C − I is invertible with inverse 1
n−1C − I and therefore

(
1

n−1C − I
)
µ ∈ Rn+, i.e.

1

n− 1

n∑

j=1

µj − µi > 0 for all i

so (1) holds. Now let us show that (1)⇒ (2). To do so, simply define

s :=
1

n− 1

∑

j

µj and θ := 1− µ

s

where 1i = 1 for all i, and observe that then
• s > 0 since J is positive and hence it’s eigenvalues µi are positive,
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• θ > 0 since, by (1), s > 0, and
• ∑i θi = n− 1

s

∑
i µi = n− (n− 1) = 1.

So indeed µ = s(1− θ) ∈ R+∇n−1. Finally we show that (2)⇒ (1). This is immediate since by assumption
µ = s(1 − θ) for some s > 0 and some θ ∈ ∆n−1, and therefore

∑
i µi = s (n− 1), i.e. s = 1

n−1

∑
i µi. We

can thus conclude that, since θi 6 1, µi = s (1− θi) 6 s = 1
n−1

∑
i µi. �

The remainder of this section is now devoted to proving that the necessary condition for a positive
symmetric matrix to be the moment of inertia of some mass measure recorded in Proposition 3.14 above is
actually sufficient. To do so means being able to, given any positive symmetric matrix J satisfying one of the
equivalent conditions provided in Proposition 3.14, constructing a mass measure whose moment of inertia is
J . Our strategy to do so is to use the simples examples considered in Section 3.1 as building blocks that we
can piece together using the results also proved in Section 3.1.

We begin by noting that, using Example 3.6 we may construct a mass measure corresponding to any
one-dimensional covariance matrix.

Lemma 3.15. (Existence of mass measures with prescribed one-dimensional covariance matrix)
For any M > 0 and any λ > 0 there exists a Borel measure ν on Rn with mass M , center of mass 0 and
covariance matrix λe1 ⊗ e1.

Proof. If λ = 0 then define a ‘point-mass’ measure nu := Mδ0 such that indeed

ν (Rn) = M, Eν [x] = 0, and Vν [x] = Eν [x⊗ x] = 0.

If λ > 0 then define ν := ρH1 l
2 [−e1, e1] where l :=

√
3λ and ρ := M

l . We may thus compute, as in example
3.6, and obtain

ν (Rn) = ρl = M, Eν [x] = 0, and Vν [x] =
l2

3
e1 ⊗ 31 = λe1 ⊗ e1.

�

Using Lemma 3.15 immediately above and Proposition 3.11 we now show that we can construct mass
measures corresponding to arbitrary diagonal covariance matrices.

Lemma 3.16. (Existence of mass measures with prescribed diagonal covariance matrix)
For any M > 0 and any λ1, . . . , λn > 0 there exists a Borel measure ν on Rn with mass M , center of mass
0 and covariance matrix diag (λ1, . . . , λn).

Proof. This follows immediately from combining Lemma 3.15 and Proposition 3.11. For any M > 0
and λ1, . . . , λn > 0, by Lemma 3.15 there are Borel measures νi, i = 1 . . . , n, on R1 with masses M1/n,
centers of mass 0 and covariance matrices λi

(
∈ R1×1 = R

)
. Therefore, by Proposition 3.9 the measure

ν := ν1 × · · · × νn has the desired statistical functionals. �

Combing Lemma 3.16 with Lemma 3.12 allows us to deduce that we can construct mass measures
corresponding to arbitrary diagonal moment of inertia.

Lemma 3.17. (Existence of mass measures with prescribed diagonal moment of inertia)
For any M > 0 and any µ ∈ R+∇n−1 there exists a Borel measure ν on Rn with finite second moment, mass
M , center of mass 0 and moment of inertia diag (µ1, . . . , µn).

Proof. Let λ := 1
M

(
1

n−1C − I
)
µ. Note that part (1) of Proposition 3.14 tells us precisely that

λ ∈ Rn+. By Lemma 3.16 we therefore know that there exists a Borel measure ν with mass M , center
of mass 0 and covariance matrix diag (λ1, . . . , λn). Since the moment of inertia is J = M ((trV ) I − V ),
Lemma 3.12 tells us that J is diagonal with eigenvalues M (C − I)λ. Finally, since Lemma 3.13 tells us that

(C − I)
−1

= 1
n−1C − I, it follows that the eigenvalues of J are indeed µ. �

We now have all the tools to prove the sufficiency of the conditions for admissibility of a moment of
inertia introduced in Proposition 3.14. We do so to conclude this section.
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Proposition 3.18. (Admissible moments of inertia – sufficiency)
Let M > 0 and let J be a positive symmetric n-by-n matrix with eigenvalues µ1, . . . , µn satisfying

µi 6
1

n− 1

n∑

j=1

µj for every i.

Then there exist a Borel measure ν with mass M , center of mass 0, and angular moment of inertia J .

Proof. Since J is symmetric and positive, there exists a rotation matrix R ∈ O (n) such that

J = R diag (µ1, . . . , µn)RT .

Since, by Proposition 3.14, µ ∈ R+∇n−1 it follows from Lemma 3.17 that there exists a Borel measure ν̃
with mass M , center of mass 0 and moment of inertia diag (µ1, . . . , µn). Finally Corollary 3.10 tells us that
after applying the transformation T (x) := R (x− x) + x the measure ν := T#ν̃ has mass M , center of mass
0 and moment of inertia R diag (µ1, . . . , µn)RT = J . �

Putting Proposition 3.14 and Proposition 3.18 together, we have proved the theorem below.

Theorem 3.19. (Admissible moments of inertia)
Let J be a positive symmetric n-by-n matrix. There exists a finite Borel measure ν on Rn with moment of

inertia J if and only if the eigenvalues µ = (µ1, . . . , µn) of J satisfy

µi 6
1

n− 1

n∑

j=1

µj for every i.

3.3. Linear and angular momentum. In this section we define the linear and angular momentum
associated with a rigid body and compute their values for a rigid body.

Definition 3.20. (Linear and angular momentum)
Let (Ω0, η) be a continuum with Eulerian mass measure ν. For every Borel set E ⊆ Ω (t) we define
(1) its linear momentum P (E) :=

´
E
udνt and

(2) if n = 3, its angular momentum about a point z ∈ Zn is defined to be

Lz (E) :=

ˆ
E

(x− z)× ut (x) dνt (x) .

In particular, its angular momentum about its center of mass is simply called its angular momentum
and denoted L (E).

Having defined linear and angular momentum, we compute their values for a rigid body.

Proposition 3.21. (Linear and angular momentum of a rigid body)
Let (U0, η) be a rigid body. Then, using the notation of Proposition 3.3 for ū and ω̄ and using M and J to
denote respectively the mass and moment of inertia of U (t), we have

P (U (t)) = Mū and L (U (t)) = J · ω̄.
Proof. In light of Proposition 3.3 we may immediately compute the linear momentum to be

P (U (t)) =

ˆ
U(t)

udνt =

ˆ
U(t)

(ū+ ω × (x− x̄)) dνt = Mū+ ω ×
(ˆ
U(t)

xdνt −Mx̄

)

︸ ︷︷ ︸
=0

= Mū.

Using the ‘vectorized’ version of the epsilon-delta identity in Lemma 6.2 we may now compute the angular
momentum to be

L (U (t)) =

ˆ
U(t)

(x− x̄)× udνt =

ˆ
U(t)

((x− x̄)× ū+ (x− x̄)× (ω × (x− x̄))) dνt

= 0 +

ˆ
U(t)

(
|x− x̄|2ω − (ω · (x− x̄)) (x− x̄)

)
dνt = J · ω.

�

Proposition 3.21 comes in handy later since it motivates the definition of a linear momentum density
and a angular momentum density.
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4. Conservation laws

The goal of this section is two-fold:
(1) introduce the integral balance laws corresponding to the conservation of mass, linear and angular mo-

mentum, and energy, and
(2) derive the corresponding local versions of these balance laws.

To be more precise, we discuss the conservation of mass in Section 4.1, the conservation of microinertia
in Section 4.2, the conservation of linear and angular momentum in Section 4.3. We conclude Section 4 with
a brief discussion of boundary conditions in Section 4.5.

4.1. Mass. In this section we define what it means for a mass measure to be conserved and we derive
the associated local conservation law. We also use the conserved mass of rigid body to obtain a useful
characterization of the kinematic and dynamics variables describing a rigid body.

Definition 4.1. (Conservation of mass)
Let (Ω0, η) be a continuum. An Eulerian mass measure ν satisfying νt = (ηt)# ν0 is called a conserved
Eulerian mass measure.

Having defined what it means for mass to be conserved we derive the associated local conservation law,
which turns out to be the well-known continuity equation.

Proposition 4.2. (Local conservation of mass - continuity equation)
Let (Ω0, η) be a continuum with Eulerian velocity u. If a conserved Eulerian mass measure is absolutely
continuous with respect to the Lebesgue measure, then its Eulerian mass density ρ satisfies

∂tρ+∇ · (ρu) = 0.

In other words: as a consequence of conservation of mass, the Eulerian mass density satisfies the continuity
equation.

Proof. We simply use Reynolds’ transport theorem, i.e. Theorem 2.7, to take a time derivative of the
equation of conservation of mass for an arbitrary set. Indeed, if we let U0 ⊆ Ω0 be any open set, then

0 =
d

dt
M (U0) =

d

dt
M (U (t)) =

d

dt

ˆ
U(t)

ρ =

ˆ
U(t)

∂tρ+∇ · (ρu) .

Therefore, since U0 was an arbitrary subset of the Lagrangian domain and since ηt are diffeomorphisms (such
that we can go back and forth between Lagrangian and Eulerian coordinates), the integrand above must
vanish everywhere in the Eulerian domain. �

We now record a result relating the fact that a flow is locally volume preserving with the absolute
continuity of its conserved mass measure. This result will be used in Proposition 4.5 below, which is itself
used to justify the definition of micropolar continua.

Proposition 4.3. (Locally volume-preserving flows preserve absolute continuity of the Eulerian mass
measure)
Let η be a locally volume-preserving flow map and let ν be the conserved Eulerian mass measure. Suppose that
ν is initially absolutely continuous (with respect to the Lebesgue measure). Then ν is absolutely continuous
for all time, and moreover we have an explicit representation for the Eulerian mass density in terms of the
initial density and the flow map, namely: ρt = ρ0 ◦ η−1

t .

Proof. Since η is locally volume-preserving and ν is conserved by the flow, both sides of the ‘inequality’
ν0 � Ln are preserved under pushforwards along the flow, i.e.: νt = (ηt)# ν0 � (ηt)# Ln = Ln. Moreover

(ρtdLn) (E) = dνt (E) = d
(
η−1
t (E)

)
=

ˆ
η−1
t (E)

ρ0 (y) dy
(∗)
=

ˆ
E

ρ0

(
η−1
t (x)

)
dx =

((
ρ0 ◦ η−1

t

)
dLn

)
(E)

i.e. indeed ρt = ρ0 ◦ η−1
t , where (∗) holds since η is locally volume-preserving, and hence by Lemma 2.14

|det∇η| = 1. �

We now record another result having to do with the densities of conserved mass measures which allows
us to translate between the Lagrangian and Eulerian mass densities.
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Proposition 4.4. (Relating Eulerian and Lagrangian mass densities)
Let (Ω0, η) be a continuum, let µ be a Lagrangian mass measure with mass density σ and let ν be an Eulerian
mass measure with mass density ρ. If νt = (ηt)#µt for every t > 0 then

σt = (ρt ◦ ηt) det∇ηt
for every t > 0.

Proof. Let v0 ∈ Ω0, let r > 0, and let t > 0. On one hand

µt (B (y0, r)) =

ˆ
B(y0,r)

σt (y) dy

and on the other hand, upon using the change of variables x = ηt (y) we see that

νt (ηt (B (y0, r))) =

ˆ
ηt(B(y0,r))

ρt (x) dx =

ˆ
B(y0,r)

(ρt ◦ ηt) (y) det∇ηt (y) dy.

Since νt = (ηt)#µt, we have in particular that νt (ηt (B (y0, r))) = µt (B (y0, r)), and henceˆ
B(y0,r)

σt (y) dy =

ˆ
B(y0,r)

(ρt ◦ ηt) (y) det∇ηt (y) dy.

So finally, dividing both sides of the equation immediately above by Ln (B (y0, r)) and sending r ↓ 0 we
obtain:

σt (y0) = lim
r↓0

 
B(y0,r)

σt (y) dy = lim
r↓0

 
B(y0,r)

(ρt ◦ ηt) (y) det∇ηt (y) dy = (ρt ◦ ηt) (y0) det∇ηt (y0) .

�

We conclude this section with a characterization of the kinematic and dynamic descriptors of a rigid
body, i.e. its flow map η and its Eulerian velocity u respectively, provided this rigid body has a conserved
mass measure.

Proposition 4.5. (Canonical representation of rigid motions via their Eulerian mass measures)
If η is a rigid body with conserved Eulerian mass measure ν, then

η(t, y) = x̄(t) +R(t)(y − x̄(0)) and u(t, x) = ū(t) + Ω(t)(x− x̄(t))

where x̄ : [0,∞)→ Rn, V : [0,∞)→ Sym(b), and R : [0,∞)→ O(n) are given by, for every t > 0,

x̄(t) = Eνt [x] =

 
U(t)

xdνt(x), V (t) = Vνt [x] =

 
U(t)

(x−x̄(t))⊗(x−x̄(t))dνt(x), and R(t) = V (t)
1/2
V (0)

1/2
,

and ū : [0,∞)→ Rn and Ω : [0,∞)→ Skew(n) are given by, for every t > 0,

ū(t) = ˙̄x(t) and Ω(t) = Ṙ(t)R(t)
T

=
(
V (t)

1/2
)′
V (t)

−1/2
.

Proof. First we show that η = x̄+R ( · − x̄ (0)). Since η is a rigid motion, we have by Proposition 2.11
that η (t, y) = z (t) +R (t) y for some z : [0,∞)→ Rn and some R : [0,∞)→ O (n). The key computation is:

1

M (U (t))

ˆ
U(t)

xρt (x) dx
(1)
=

1

M (U (t))

ˆ
U0

η (y, t) ρt (η (y, t) , t) dy
(2)
=

1

M (U0)

ˆ
U0

(z (t) +R (t) y) ρ0 (y) dy

which relies in (1) on the fact that η is a rigid motion and so by Lemma 2.14 |det∇η| = 1, and in (2) on the
fact that ρt = ρ0 ◦ ηt by Proposition 4.3. So finally, where the computation above comes into play in (∗), we
obtain that:

x = Eνt (x)
(∗)
= Eν0 (z +Ry) = z +REν0 (y) = z +Rx (0) .

Now we show that R = V 1/2V
−1/2
0 . To do this, we first compute how to express the covariance matrix at

a time t in terms of the initial covariance matrix. Using the same change of variable as above, and observing
that x− x̄ = η − x̄ = R (y − x̄0), we obtain that, using Lemma 6.5,

V = Vνt
(

(x− x̄)⊗ (x− x̄)
)

= Vν0

(
R (y − x̄0)⊗R (y − x̄0)

)

= R Vν0

(
(y − x̄0)⊗ (y − x̄0)

)
RT = RV0R

T .
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Now all that is left to do is to solve the conjugacy equation V = RV0R
T for R. We make the educated guess

R := V 1/2V
−1/2
0 , noting that the square root of V is well-defined since V is symmetric and positive-definite,

and observe that then:

RV0R
T = V 1/2

(
V
−1/2
0 V0

(
V
−1/2
0

)T)(
V 1/2

)T
= V 1/2V 1/2 = V

where we have used that for S symmetric and positive-definite,
(
S1/2

)T
=
(
ST
)1/2

= S1/2.

Now we show that Ω = ṘR−1. Since the flow map is

ηt (y) = x (t) +R (t) (y − x (0))

it follows that the inverse flow map is

η−1
t (x) = x (0) +R (t)

−1
(x− x (t)) .

We can therefore compute the Lagrangian and Eulerian velocities to be

v (y, t) =
d

dt
ηt (y) = ˙̄x+ Ṙ (t) (y − x (0))

and

u (x, t) = v
(
η−1
t (x) , t

)
= ˙̄x (t)u (t) + Ṙ (t)R (t)

−1
(x− x (t)) = ū(t) + Ω(t)(x− x̄(t)).

Finally we show that Ω =
(
V 1/2

)′
V −1/2. We proceed as above, but using V instead of R. Indeed, since

ηt = x̄+ V 1/2V
−1/2
0 (· − x̄0)

it follows that

η−1
t = x̄0 +

(
V 1/2V

−1/2
0

)−1

(· − x̄) .

Therefore

v = x̄+
(
V 1/2V

−1/2
0

)′
and u = ˙̄x+

(
V 1/2V

1/2
0

)′ (
V 1/2V

−1/2
0

)−1

( · − x̄) = ˙̄x+ (V 1/2)
′
V −1/2( · − x̄).

�

Proposition 4.5 above helps us motivate the definition of a micropolar continuum provided in Definition
2.17. Indeed, Proposition 4.5 tells us that a rigid motion way be fully characterized by the behaviour of its
center of mass x̄(t) and some rotation matrix R(t), and therefore it stands to reason that we would define
the motion of a micropolar continuum to be determined by a flow map η and a microrotation map Q: η
plays the role of x̄ since it tracks the translational motion of the microstructure, and Q plays the role of R
since it tracks the rotational motion of the microstructure.

4.2. Microinertia. In this section we define the microinertia of a micropolar continuum, define what
it means for microinertia to be conserved, and finally derive the associate local conservation law. First we
recall that we have characterized the space of admissible moments of inertia.

Definition 4.6. (Admissible moments of inertia)
We denote by I(n) the set of admissible moments of inertia, i.e. in light of Theorem 3.19,

I(n) :=



J ∈ Rn×n

∣∣∣∣∣∣
J > 0, J = JT , and its eigenvalues µ1, . . . , µn satisfy µi 6

1

n− 1

n∑

j=1

µj for all i



 .

We now define the microinertia of a micropolar continuum, which is nothing more than a function defined
along the flow taking values in the space of admissible moments of inertia.

Definition 4.7. (Microinertia)
Let (Ω0, η,Q) be a micropolar continuum.
(1) A Lagrangian function defined along the flow with codomain I (n), i.e. a map

i : Ω0 × [0,∞)→ I (n) ,

is also called a Lagrangian microinertia density .



4. CONSERVATION LAWS 23

(2) Given a Lagrangian mass measure µ and a Lagrangian microinertia density i, the Lagrangian measure
defined along the flow γ := iµ is also called a Lagrangian microinertia measure, and we say that γ
is subordinate to µ to mean that γ is absolutely continuous with respect to µ. Moreover, if µ has an
associated Lagrangian mass density σ (i.e. µ � Ln and σ = dµ

dLn ) then I := iσ is called a Lagrangian
microinertia.

(3) An Eulerian function defined along the flow with codomain I (n) is also called an Eulerian microinertia
density .

(4) Given an Eulerian mass measure ν and an Eulerian microinertia density j, the Eulerian measure defined
along the flow λ, defined via λt := jtνt for all t > 0, is also called an Eulerian microinertia measure,
and we say that λ is subordinate to ν to mean that λt is absolutely continuous with respect to νu for
every t > 0. Moreover, if ν has an associated Eulerian mass density ρ (i.e. νt � Ln and ρt = dνt

dLn for
all t > 0) then J := jρ is called an Eulerian microinertia.

In Definition 4.7 above we make a careful distinction between the microinertia density and the microin-
ertia. However in the sequel we will almost exclusively devote our attention to incompressible flows, in which
case the microinertia density and the microinertia are the same up to a constant factor of the mass density
ρ. Nonetheless, it is important to make this distinction in order for the foundation of micropolar continuum
mechanics laid so far to also be useful when it is used to investigate compressible micropolar fluids.

We now define what it means for the microinertia density to be conserved. This definition is inspired
from the way in which the moment of inertia transforms under rigid motions that preserve the center of
mass, as recorded in Corollary 3.10.

Definition 4.8. (Conservation of a microinertia density)
Let (Ω0, η,Q) be a micropolar continuum
(1) A Lagrangian microinertia density i satisfying i = Qi0Q

T , i.e.

i (t, y) = Q (t, y) i (0, y)QT (t, y) for all (t, y) ∈ [0,∞)× Ω0

is called a conserved Lagrangian microinertia density .
(2) An Eulerian microinertia density j is called a conserved Eulerian microinertia density if jt = it ◦ η−1

t

for all t > 0 for some conserved Lagrangian microinertia density i.

Having defined what it means for microinertia density to be conserved we derive the associate local
conservation law.

Proposition 4.9. (Local conservation of a microinertia density)
Let (Ω0, η,Q) be a micropolar continuum with Eulerian velocity u, Eulerian angular velocity tensor Ω and
conserved Eulerian microinertia density j. Then

∂tj + (u · ∇)j − [Ω, j] = 0.

Proof. Let i be the Lagrangian microinertia density corresponding to j, i.e. i = j ◦ η. Then, by
conservation of microinertia,

j ◦ η = i = Qi0Q
T .

Upon taking a time derivative, using Proposition 2.6 to compute d
dt (j ◦ η) and denoting by Θ the Lagrangian

angular velocity tensor Θ := Ω ◦ η = (∂tQ)Q−1 we have that

((∂t + u · ∇) j) ◦ η = ∂tQi0Q
T +Qi0∂tQ

T =
(
∂tQQ

−1
) (
Qi0Q

T
)

+
(
Qi0Q

T
) (
Q−T∂tQ

T
)

= Θ (j ◦ η) + (j ◦ η) ΘT .

So finally, precomposing by η−1 on both sides and recalling that Θ and Ω are anti-symmetric we obtain that

∂tj + (u · ∇) j =
(
Θ ◦ η−1

)
j + j

(
Θ ◦ η−1

)T
= Ωj − jΩ.

�

It is worth noting that the differential operator ∂t + u · ∇ − [Ω, · ], which appears in Proposition 4.9
and will appear throughout the sequel whenever the microinertia is involved, is an analog of the well-known
advection operator ∂t + u · ∇. Indeed: while the advection operator ∂t + u · ∇ takes into account the change
in a quantity defined along the flow due to the advection by the flow map , a heuristic explanation made
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precise in Proposition 2.6, the operator ∂t + u · ∇ − [Ω, · ] also takes into account the rotation due to the
microrotation map. We will thus refer to this operator as an advection-rotation operator.

We now note that, as a consequence of Proposition 4.2 and Proposition 4.9 which provide us with the
local conservations of mass and microinertia density respectively, we may now derive the local conservation
law satisfied by the microinertia.

Corollary 4.10. (Local conservation of the microinertia)
Let (Ω0, η,Q) be a micropolar continuum with Eulerian velocity u and Eulerian angular velocity tensor Ω.
Let ρ be an Eulerian mass density which is conserved and let j be a conserved Eulerian microinertia density.
Then the microinertia J := jρ satisfies

∂tJ +∇ · (J ⊗ u)− [Ω, J ] = 0.

Proof. In light of Proposition 4.2 which says that Du
t j = [Ω, j], Proposition 4.9 which says that Dut ρ =

0, and Lemma 6.7 which provides a “Leibniz Rule” for material derivatives, this result is the consequence of
a direct computation:

∂tJ +∇ · (J ⊗ u) = Dut J = Dut (jρ) = (Du
t j)ρ+ j(Dut ) = [j,Ω] ρ = [J,Ω] .

�

4.3. Momenta and stresses. In this section we define the linear momentum measure and angular
momentum measure associated with a conserved mass measure, state what it means for linear and angular
momentum to be conserved – introducing the stress and couple stress tensor in the process, and conclude
with the derivation of the associated local conservation law. First we define the linear momentum measure
and angular momentum measure.

Definition 4.11. (Linear momentum measure, linear momentum density)
Let (Ω0, η) be a continuum, let ν be an Eulerian mass measure, and let u denote the Eulerian velocity of the
continuum. We call νu a linear momentum measure. Moreover, if ρ is the Eulerian mass density of ν, i.e.
dν = ρdLn, then we call ρu a linear momentum density.

Definition 4.12. (Angular momentum measure, angular momentum density)
Let n = 3, let (Ω0, η,Q) be a micropolar continuum, let ν be an Eulerian mass measure, let j be an Eulerian
microinertia density and let ω be the Eulerian angular velocity of the continuum. We call jων a angular
momentum measure. Moreover, if ρ is the Eulerian mass density of ν, i.e. dν = ρdLn, and J := ρi is the
associated Eulerian microinertia then we call Jω a angular momentum density.

With Definition 4.11 and Definition 4.12 in hand we are now ready to define what it means for linear
and angular momentum to be conserved. Prior to doing so we introduce the notion of a physical micropolar
continuum. This is simply a convenient way to combine together kinematic and physical information. The
kinematic information, namely the flow map and the microrotation map, is already built in the definition of a
micropolar continuum, and so when defining a physical micropolar continuum we add in physical information,
namely postulating the existence of a conserved mass measure and a conserved microinertia density.

Definition 4.13. (Physical micropolar continuum)
A physical micropolar continuum is a tuple (Ω0, η,Q, ν, j) such that
(1) (Ω0, η,Q) is a micropolar continuum,
(2) ν is a conserved Eulerian mass measure, and
(3) j is a conserved Eulerian microinertia density.

At last we are equipped to define what it means for linear and angular momentum to be conserved.
Note that this introduces the notion of a stress tensor and a couple stress tensor. The postulation that
such tensors exist is a core tenet of rational continuum mechanics. Physically, these stress and couple stress
tensors are manifestations of Newton’s third law: “Every action creates an equal and opposite reaction”,
which in this context means that they encode how the fluid reacts to forces and torques induces by the
neighbouring fluid.

Definition 4.14. (Balance of momenta, stress and couple stress tensor, and external force and torque)
Let n = 3, let (Ω0, η,Q, ν, j) be a physical micropolar continuum, let
• u denote the Eulerian velocity,
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• ω denote the Eulerian angular velocity,
• ρ denote the Eulerian mass density, i.e. dν = ρdL3,
• J = ρj denote the Eulerian microinertia,
• T,M be Eulerian functions defined along the flow with codomain R3×3 called the stress tensor and

couple stress tensor respectively,
• f, τ be Eulerian functions defined along the flow with codomain R3 called the external force and external

torque respectively.
If, for every U0 ⊂⊂ Ω0,

d

dt

ˆ
U(t)

ρu dx =

ˆ
∂U(t)

Tn dx+

ˆ
U(t)

f dx

and

d

dt

(ˆ
U(t)

x× ρu dx+

ˆ
U(t)

Jω dx

)
=

ˆ
∂U(t)

x× (Tn) dx+

ˆ
∂U(t)

Mndx+

ˆ
U(t)

x× f dx+

ˆ
U(t)

τ dx

where U (t) := ηt (U0) for every t > 0, then we say that the physical micropolar continuum is governed by
(T,M) subject to (f, τ). Moreover, the two integral equations above are referred to as the balance of linear
momentum and the balance of angular momentum respectively.

Note that in the definition of the balances of linear and angular momentum above we restrict the
integral balances to subsets of the continuum satisfying U0 ⊂⊂ Ω0, i.e. staying away from the boundary of
the continuum. This is done because the stress tensor T and the couple stress tensor M are manifestations
of Newton’s third law. Indeed, as mentioned earlier, these tensors encode the fact that the continuum reacts
to forces and torques induced at a point by the continuum present in a neighbourhood of that point. In
particular, if ∂U0∩∂Ω0 6= then the balances of linear and angular momentum must be modified slightly from
their respective versions provided in Definition 4.14 above. This is done in Section 4.5.

Lemmas 4.15 and 4.16 below are useful intermediate computations which are consequences of the local
conservation of mass and microinertia respectively, as well as the “Leibniz Rule” for material derivatives
recorded in Lemma 6.7. This two lemmas allow us to compute the material derivatives of the linear momen-
tum density ρu and of the angular momentum density Jω. These computations come in very handy when
deriving the local version of the balance of linear and angular momentum in Proposition 4.17.

Lemma 4.15. (Material derivative of the linear momentum density)
Let (Ω0, η) be a continuum with Eulerian velocity u. If a conserved Eulerian mass measure is absolutely

continuous with respect to the Lebesgue measure, then the following identity holds:

∂t (ρu) +∇ · (ρu⊗ u) = ρ (∂tu+ (u · ∇)u) .

Proof. This follows from the local conservation of mass (which says that Dut ρ = 0) and Lemma 6.7:

∂t (ρu) +∇ · (ρu⊗ u) = Dut (ρu) = (Dut ρ)u+ ρ (Du
t u) = 0 + ρ (∂tu+ (u · ∇)u) .

�

Lemma 4.16. (Material derivative of the angular momentum density)
Let (Ω0, η,Q) be a micropolar continuum with Eulerian velocity u and Eulerian angular velocity ω. Let ρ

be an Eulerian mass density which is conserved, let j be a conserved Eulerian microinertia density, and let
J := jρ denote the microinertia. The following identity holds:

∂t (Jω) +∇ · (Jω ⊗ u) = J (∂tω + (u · ∇)ω) + ω × Jω.
Proof. This follows from Corollary 4.10 and Lemma 6.7. Indeed, local conservation of microinertia

says that Dut J = [Ω, J ] where Ω = tenω is the Eulerian angular velocity tensor, and hence we obtain that,
since (tenω)ω = ω × ω = 0,

(Dut J)ω = [Ω, J ]ω = (tenω)Jω − J(tenω)ω = ω × (Jω) .

So finally:

∂t (Jω) +∇ · ((Jω)⊗ u) = Dut (Jω) = (Dut J)ω + J (Du
t ω) = ω × (Jω) + J (∂tω + (u · ∇)ω)

�
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We now come to the main result of this section, and one of the main results of this chapter, as we derive
the local version of the balance of linear and angular momentum.

Proposition 4.17. (Local conservation of linear and angular momentum)
Let n = 3, let (Ω0, η,Q, ν, j) be a physical micropolar continuum governed by (T,M) subject to (f, τ), and
let
• u denote the Eulerian velocity,
• ω denote the Eulerian angular velocity,
• ρ denote the Eulerian mass density, i.e. dν = ρdL3, and
• J = ρj denote the Eulerian microinertia.

Then

ρ (∂tu+ (u · ∇)u) = ∇ · T + f and J (∂tω + (u · ∇)ω) + ω × (Jω) = 2 vecT +∇ ·M + τ.

Proof. The key idea is to use the Reynolds and divergence theorems (c.f. Theorem 2.7) to write all
terms of the balance of linear and angular momentum as integrals over U (t), no longer differentiated in
time, and to then use the conservation of mass and the conservation of micro-inertia to simplify the resulting
equations.

First we deal with linear momentum. The balance of linear momentum is

d

dt

ˆ
U(t)

ρu =

ˆ
∂U(t)

T · n+

ˆ
U(t)

f.

By the Reynolds transport theorem

d

dt

ˆ
U(t)

ρu =

ˆ
U(t)

∂t (ρu) +∇ · (ρu⊗ u)

and by the divergence theorem ˆ
∂U(t)

T · n =

ˆ
U(t)

∇ · T.

We may thus write the balance of linear momentum asˆ
U(t)

∂t (ρu) +∇ · (ρu⊗ u) =

ˆ
U(t)

∇ · T + f.

Since U0 ⊂⊂ Ω0 is arbitrary and ηt is a diffeomorphism it follows that the integral equation immediately
above holds for arbitrary subsets U (t) ⊆ Ω (t) and hence the following PDE holds pointwise:

∂t (ρu) +∇ · (ρu⊗ u) = ∇ · T + f (4.1)

In particular, note that local conservation of mass, and more specifically Lemma 4.15, tells us that

∂t (ρu) +∇ · (ρu⊗ u) = ρ (∂tu+ (u · ∇)u) .

So finally:

ρ (∂tu+ (u · ∇)u) = ∇ · T + f. (4.2)

Now we deal with angular momentum. We begin by recording some preliminary computations:

∇ · ((x× ρu)⊗ u) = x×∇ · (ρu⊗ u) , (4.3)

x× (Tn) = (x× T )n, and (4.4)

∇ · (x× T ) = x× (∇ · T ) + 2 vecT, (4.5)

where we define (v × v)ij := εiabvaTbj . Note that, in particular, it follows from (4.3) that

Dut (x× ρu) = x× Dut (ρu) . (4.6)

Indeed, (4.3), (4.4), and (4.5) follow from direct computations:

(∇ · ((x× ρu)⊗ u))i = ∂j (εiklxkρuluj) = εiklxk∂j (ρuluj) + εiklδjkρuluj

= (x×∇ · (ρu⊗ u))i + εijlρuluj
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where εijluluj = 0 since εijl is anti-symmetric with respect to (j, l) but uluj is symmetric with respect to
(j, l),

(x× (Tn))i = εijkxjTklnl = (x× T )ilnl = ((x× T )n)i,

and finally

(∇ · (x× T ))i = ∂j (εiklxkTlj) = εiklxk∂jTlj + εiklδjkTlj = (x× (∇ · T ))i + (2 vecT )i.

Now recall that the balance of angular momentum is

d

dt

(ˆ
U(t)

x× ρu+

ˆ
U(t)

Jω

)
=

ˆ
∂U(t)

x× (Tn) +

ˆ
∂U(t)

Mn+

ˆ
U(t)

x× f +

ˆ
U(t)

τ.

By the Reynolds transport theorem, (4.6), Lemma 4.15, and Lemma 4.16 we obtain that

d

dt

(ˆ
U(t)

x× ρu+ Jω

)
=

ˆ
U(t)

Dut (x× ρu) + Dut (Jω)

=

ˆ
U(t)

x× Dut (ρu) + Dut (Jω) =

ˆ
U(t)

x× (ρDu
t u) + J (Du

t ω) + ω × (Jω)

whilst using (4.4), the divergence theorem, and (4.5) yieldsˆ
∂U(t)

x× (Tn) +Mn =

ˆ
∂U(t)

(x× T +M)n =

ˆ
U(t)

∇ · (x× T +M)

=

ˆ
U(t)

x× (∇ · T ) + 2 vecT +∇ ·M.

We may thus write the balance of angular momentum asˆ
U(t)

x× (ρDu
t u) + J (Du

t ω) + ω × (Jω) =

ˆ
U(t)

x× (∇ · T + f) + 2 vecT +∇ ·M + τ.

Since U0 ⊂⊂ Ω0 is arbitrary and ηt is a diffeomorphism it follows that the integral equation immediately
above holds for arbitrary subsets U (t) ⊆ Ω (t) and hence the following PDE holds pointwise:

x× (ρDu
t u) + J (Du

t ω) + ω × (Jω) = x× (∇ · T + f) + 2 vecT +∇ ·M + τ.

In particular, since (4.2) says that
ρDu

t u = ∇ · T + f

it follows that
J (Du

t ω) + ω × (Jω) = 2 vecT +∇ ·M + τ

or, in more expansive but standard notation,

J (∂tω + (u · ∇)ω) + ω × (Jω) = 2 vecT +∇ ·M + τ.

�

4.4. Energy. Having introduced the conservation of mass, microinertia, and linear and angular mo-
mentum, we conclude Section 4 by considering another conserved quantity: energy. We proceed with the
process: we define the kinetic energy associated with a continuum, we compute its expression for a rigid
body and use that to define an appropriate notion of the conservation of energy for micropolar continua,
and finally we derive a local version of the balance of energy.

Definition 4.18. (Kinetic energy of a flow map)
Let (Ω0, η) be a continuum with Eulerian velocity u and conserved mass measure ν. For any Borel subset

E ⊆ Ω (t) we define the kinetic energy of E to be K (E) := 1
2 ||u||

2
L2
ν(E), i.e.

K (E) =
1

2

ˆ
E

|u (x, t)|2dνt (x) .

As alluded to earlier, now that we have defined the kinetic energy associated with a continuum we
compute its expression for a rigid body. This makes use of the decomposition of the Eulerian velocity of a
rigid body established in Proposition 3.3.
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Proposition 4.19. (Kinetic energy of 3-dimensional rigid motions)
Let n = 3, let (Ω0, η) be a rigid body, and let ū and ω̄ be as in Proposition 3.3. Then the kinetic energy of
the rigid body is a quadratic form

K : R3 × R3 → [0,∞)

(ū, ω̄) 7→ 1

2
M |ū|2 +

1

2
J : (ω̄ ⊗ ω̄)

where M and J are the mass and moment of inertia of the rigid body, respectively.

Proof. First we show that ū and ω̄ × (· − x̄) are orthogonal in L2
ν . This is a direct computation:

(
ū, ω̄ × (· − x̄)

)
L2
ν

= M

 
U(t)

ū · ω̄ × (x− x̄) dνt (x) = Mū · ω̄ ×
( 
U(t)

xdνt (x)− x̄
)

︸ ︷︷ ︸
=0

= 0

where M :=M (U (t)). Since ū and ω̄ × (· − x̄) are orthogonal in L2
ν , we know that

K (ū, ω̄) =
1

2
Ĩ : (ū⊗ ū) +

1

2
J̃ : (ω̄ ⊗ ω̄)

for some Ĩ , J̃ ∈ R3x3. Let us compute Ĩ and J̃ :

K (ū, ω̄) =
1

2
||u||2L2

ν
=

1

2
||ū||2L2

ν
+

1

2
||ω̄ × (· − x̄)||2L2

ν

where

||ū||2L2
ν

=

ˆ
U(t)

|ū|2dνt = M |ū|2

i.e. Ĩ = MI, and where

||ω̄ × (· − x̄)||2L2
ν

=

ˆ
U(t)

|ω̄ × (x− x̄)|2dνt (x) =

ˆ
U(t)

(
|ω̄|2|x− x̄|2 − |ω̄ · (x− x̄)|2

)
dνt (x)

=

ˆ
U(t)

(
|x− x̄|2I − (x− x̄)⊗ (x− x̄)

)
dνt (x) : (ω̄ ⊗ ω̄) = M ((trV ) I − V ) : (ω̄ ⊗ ω̄) = J : (ω̄ ⊗ ω̄)

where we have used Proposition 6.3 to expand |ω̄ × (x− x̄)|2. So indeed J̃ = J . �

Note that Proposition 4.19 helps motivate the definition of the kinetic energy density in Definition 4.20
below where we define what it means for energy to be conserved for a micropolar continuum.

Definition 4.20. (Purely mechanical micropolar continuum, balance of energy, and related notions)
Let n = 3. We say that a physical micropolar continuum (Ω0, η,Q, ν, j) governed by (T,M) subject to (f, τ),
where
• u denote the Eulerian velocity,
• ω denote the Eulerian angular velocity,
• ρ denote the Eulerian mass density, i.e. dν = ρdL3,
• J = ρj denote the Eulerian microinertia,

is purely mechanical if there exist Eulerian functions defined along the flow with codomain R+, denoted ε
and δ, called respectively the mechanical energy density and the thermodynamic dissipation density, such
that

d

dt

(ˆ
U(t)

(ε+K)

)
+

ˆ
U(t)

δ =

ˆ
∂U(t)

(Tn) · u+ (Mn) · ω +

ˆ
U(t)

f · u+ τ · ω

where n is the outer unit normal and where K := 1
2ρ|u|2 + 1

2J : ω ⊗ ω is called the kinetic energy density.
Moreover, the integral equation above is referred to as the balance of energy.

We are now ready to conclude this section by obtaining the local version of the balance of energy
introduce in Definition 4.20 above.

Theorem 4.21. (Local conservation of energy)
Let n = 3, let (Ω0, η,Q, ν, j) be a purely mechanical physical micropolar continuum governed by (T,M)
subject to (f, τ), and let
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• u denote the Eulerian velocity,
• ω denote the Eulerian angular velocity,
• Ω denote the Eulerian angular velocity tensor,
• ε denote the mechanical energy density.

Then

∂tε+∇ · (εu) 6 (∇u− Ω) : T +∇ω : M.

Proof. We begin by observing that, since the thermodynamic dissipation density δ is non-negative, we
can re-write the balance of energy as the inequality

d

dt

(ˆ
U(t)

(ε+K)

)
6
ˆ
∂U(t)

(T · n) · u+ (M · n) · ω +

ˆ
U(t)

f · u+ τ · ω,

which will hereafter be referred to as the energy inequality.
We now seek to rewrite all integrals appearing in the energy inequality in terms of non-time-differentiated

integrals over the bulk domain U (t). In particular, we use the Reynolds transport theorem to see that

d

dt

(ˆ
U(t)

(ε+K)

)
=

ˆ
U(t)

∂t (ε+K) +∇ · ((ε+K)u)

and we use the divergence theorem to see thatˆ
∂U(t)

(T · n) · u+ (M · n) · ω =

ˆ
U(t)

∇ · (u · T ) +∇ · (ω ·M)

since indeed, for any differentiable matrix and vector fields A and v and any sufficiently regular open set U ,ˆ
∂U

(An) · v =

ˆ
∂U
Aijnjvi =

ˆ
U
∂j (Aijvi) =

ˆ
U
∇ · (v ·A) .

For simplicity, we now define the power density P := ∇ · (u · T ) +∇ · (ω ·M) + f · u + τ · ω. We can thus
write the energy inequality asˆ

U(t)

∂t (ε+K) +∇ · ((ε+K)u) 6
ˆ
U(t)

∇ · (u · T ) +∇ · (ω ·M) + f · u+ τ · ω =

ˆ
U(t)

P

i.e. ˆ
U(t)

∂tε+∇ · (εu) 6
ˆ
U(t)

P − (∂tK +∇ · (Ku)) .

Since U0 ⊆ Ω0 is arbitrary and ηt is a diffeomorphism it follows that the integral equation immediately above
holds for arbitrary subsets U (t) ⊆ Ω (t) and hence the following differential inequality holds pointwise:

∂tε+∇ · (εu) 6 P − (∂tK +∇ · (Ku)) .

To conclude the proof, we simply compute P − (∂tK +∇ · (Ku)) = P − DutK. The key observation is that

DutK = (ρDu
t u) · u+ (JDu

t ω + ω × Jω) · ω. (4.7)

Indeed, this follows from writing K =
(

1
2ρu

)
·u+ (Jω) ·ω, using Lemma 6.7 and simplifying the result using

Lemma 4.15, Lemma 4.16, and the symmetry of J :

Dut
(

1

2
ρu · u

)
= Dut

(
1

2
ρu

)
· u+

1

2
ρu · (Du

t u) =
1

2
ρ (Du

t u) · u+
1

2
ρu · (Du

t u) = (ρDu
t u) · u

and

Dut
(

1

2
Jω · ω

)
= Dut

(
1

2
Jω

)
· ω +

1

2
Jω ·Du

t ω =

(
1

2
J (Du

t ω) +
1

2
ω × Jω

)
· ω +

1

2
Jω ·Du

t ω

=
1

2

((
J + JT

)
(Du

t ω) + ω × Jω
)
· ω = J Du

t ω · ω.
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So finally, using (4.7), Proposition 4.17, Lemma 6.8, Proposition 6.13, and Lemma 6.17 we obtain that

P − (∂tK −∇ · (Ku)) = ∇ · (u · T + ω ·M) + f · u+ τ ·M − DutK
= ∇u : T +∇ω : M + (∇ · T + f) · u+ (∇ ·M + τ) · ω
− (ρDu

t u) · u− (J Du
t ω + ω × Jω) · ω

= ∇u : T +∇ω : M − (2 vecT ) · ω
= (∇u− Ω) : T +∇ω : M

such that indeed

∂tε+∇ · (εu) 6 (∇u− Ω) : T +∇ω : M.

�

4.5. Boundary conditions. In this section we only briefly discuss boundary conditions associated
with micropolar continua. The only purpose of the boundary conditions detailed here is to be such that the
equations of motion for micropolar fluids ultimately derived are complete, and so we only consider so-called
natural boundary conditions. That is not to say that there is not much to be done when it comes to discussing
appropriate boundary conditions for micropolar continua in various contexts, but such a discussion is simply
not the focus here.

This section follows the usual path: we define a version of the balance of linear and angular momentum
taking into account boundary effects and derive the local version of this balance law.

Definition 4.22. (External boundary force and torque)
Let n = 3, let (Ω0, η,Q, ν, j) be a physical micropolar continuum governed by (T,M) subject to (f, τ), and

let
• u denote the Eulerian velocity,
• ω denote the Eulerian angular velocity,
• ρ denote the Eulerian mass density, i.e. dν = ρdL3, and
• J = ρj denote the Eulerian microinertia.

Let fb and τb Eulerian functions defined along the flow with codomain R3 called the external boundary force
and external boundary torque respectively. If, for every U0 ⊆ Ω0,

d

dt

ˆ
U(t)

ρu dx =

ˆ
∂U(t)\∂Ω(t)

Tn dx+

ˆ
∂U(t)∩∂Ω(t)

fb dx+

ˆ
U(t)

f dx

and

d

dt

(ˆ
U(t)

x× ρu dx+

ˆ
U(t)

Jω dx

)
=

ˆ
∂U(t)\∂Ω(t)

x× (Tn) dx+

ˆ
∂U(t)\∂Ω(t)

Mndx

+

ˆ
∂U(t)∩∂Ω(t)

x× fb dx+

ˆ
∂U(t)∩∂Ω(t)

τb dx+

ˆ
U(t)

x× f dx+

ˆ
U(t)

τ dx

where U (t) := ηt (U0) for every t > 0, then we say that the physical micropolar continuum is subject to the
boundary effects (fb, τb). Moreover, the two integral equations above are referred to as the balance of linear
momentum for boundary flows and the balance of angular momentum for boundary flows respectively.

We now derive the local version of the balance of linear and angular momentum introduced above in
Definition 4.22, which are called the natural boundary conditions.

Proposition 4.23. (Natural boundary conditions)
Let n = 3, let (Ω0, η,Q, ν, j) be a physical micropolar continuum governed by (T,M) subject to (f, τ) and

the boundary effects (fb, τb), and let
• u denote the Eulerian velocity,
• ω denote the Eulerian angular velocity,
• ρ denote the Eulerian mass density, i.e. dν = ρdL3, and
• J = ρj denote the Eulerian microinertia.

Then

Tn = fb and Mn = τn on ∂Ω (t) ,
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where n denotes the outer unit normal to Ω (t). These two equations are called the natural boundary
conditions associated with the boundary effects (fb, τb).

Proof. The key is to write ˆ
∂U(t)\∂Ω(t)

=

ˆ
∂U(t)

−
ˆ
∂U(t)∩∂Ω(t)

where the integrand is either Tn or x× Tn+Mn. Combining this with the balances of linear and angular
momentum for boundary flows tells us that

d

dt

ˆ
U(t)

ρu−
ˆ
∂U(t)

Tn−
ˆ
U(t)

f =

ˆ
∂Ω(t)∩∂Ω(t)

(fb − Tn) (4.8)

and

d

dt

(ˆ
U(t)

x× ρu+

ˆ
U(t)

Jω

)
−
ˆ
∂U(t)

x× Tn−
ˆ
∂U(t)

Mn−
ˆ
U(t)

x× f −
ˆ
U(t)

τ

=

ˆ
∂Ω(t)∩∂U(t)

x× (ff − Tn) +

ˆ
∂Ω(t)∩∂U(t)

(τb −Mn) . (4.9)

Proceeding as in the proof of Proposition 4.17 tells us that the left-hand side of (4.8) isˆ
U(t)

Dut (ρu)−∇ · T − f

which, by Proposition 4.17, vanishes. Similarly, the left-hand side of (4.9) may be written asˆ
U(t)

Dut (x× ρu+ Jω)−∇ · (x× Jω)−∇ ·M − x× f − τ,

which also vanishes. So finally we deduce from (4.8) and the arbitrariness of U0 that fb = Tn on ∂Ω (t).
Plugging this into (4.9) and once again using the fact that U0 is arbitrary tells us that τb = Mn on ∂Ω (t). �

5. Constitutive equations

To begin this section let us comment on where we stand with respect to the derivation of the equations
of motions for micropolar fluids. Combing Corollary 4.10 and Proposition 4.17 tells us what the equations
of motion are. To close the system all that we have to do is specify how the stress tensor T and the couple
stress tensor M depend on the dynamic variables (u, ω). This is precisely what we do in this section.

First we discuss frame-invariance in Section 5.1, then we record some results on the representation of
frame-invariant linear maps in Section 5.2. We discuss the Onsager reciprocity relations in Section 5.3
and we conclude this section by putting it all together to derive the equations of motion of homogeneous
incompressible Newtonian micropolar fluids in Section 5.4.

5.1. Frame-invariance. In this section we introduce the notions of frame-invariance for tensor-valued
functions, and in particular for functions defined along the flow under the notion of similarity of continua
and micropolar continua. We then compute how various kinematic quantities behave under similarity..

Definition 5.1. (Similar continua)

Given two continua (Ω0, η) and (Ω̃0, η̃) we say that they are similar if there exists a time-dependent

orientation-preserving rigid motion f : [0,∞) × Rn → Rn such that Ω0 = Ω̃0 and η̃t = ft ◦ ηt for every
t > 0. Moreover we say that f maps η to η̃.

Note that since rigid motions form a group under composition, similarity of continua is an equivalence
relation on the set of continua. The notion of similar continua is important since constitutive equations,
which postulate which quantities the stress tensor and couple stress tensor may depend on, must pass to the
quotient induced by the equivalence relation of similarity. In other words: the constitutive equations for the
stress and couple stress tensor must be well-defined on equivalence classes of continua. This is made precise
in Definition 5.5 under the name of frame-invariance.

Of course, the similarity of continua can be interpreted physically: two continua (Ω0, η) and (Ω0, η̃) are
similar precisely when they correspond to the same system, but viewed by different observers.
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Having defined the similarity of continua we now compute how various kinematic quantities behave
under similarity.

Proposition 5.2 (The behaviour of kinematic quantities of continua under similarity). Let (Ω0, η) and
(Ω0, η̃) be similar continua where the rigid motion f which maps η to η̃ is given by

f(t, x) = b(t) +R(t)(x− b0) (5.1)

for b0 ∈ Rn, b : [0,∞)→ Rn, and R : [0,∞)→ SO(n). Then

(1) ∂tη̃ = ḃ+ Ṙ(η − b0) +R∂tη,
(2) ∇η̃ = R∇η,

(3) ũ ◦ f = ḃ+ Ṙ( · − b0) +Ru, and

(4) (∇ũ) ◦ f = ṘRT +R∇uRT ,
where u and ũ denote the Eulerian velocities of (Ω0, η) and (Ω0, η̃) respectively.

Proof. Throughout this proof we will abuse notation to various degrees. We will omit the explicit
dependence of the various functions on their variables, except when that dependence is essential to the
computation being carried out. We will also abusively write f ◦ η to denotes f(t, η(t, x)) wherever it is
helpful to do so for the brevity and clarity of the argument.

We begin by computing the derivatives of f . It follows immediately from (5.1) that

∂tf = ḃ+ Ṙ( · − b0) and ∇f = R. (5.2)

We are now equipped to compute the derivatives of η̃. Since η̃(t) = f(t, η(t)) it follows that

∂tη̃ = (∂tf) ◦ η + ((∇f) ◦ η)∂tη and ∇η̃ = ((∇f) ◦ η)∇η
such that, in light of (5.2),

∂tη̃ = ḃ+R(η − b0) +R∂tη and ∇η̃ = R∇η,
i.e. (1) and (2) hold.

We now compute the Eulerian velocity ũ. Since ũ is defined as ũ := ∂tη̃ ◦ η̃−1 we must first compute the
inverse of η̃. Since η̃ = f ◦ η this is immediate:

η̃−1 = η−1 ◦ f−1. (5.3)

Note that this really means that, for every t > 0,

η̃−1
t = η−1

t ◦ f−1
t .

We may now compute ũ. Using (1) and (5.3) we see that

ũ = ∂tη̃ ◦ η̃−1 =
(
ḃ+R(η − b0) +R∂tη

)
◦
(
η−1 ◦ f−1

)
=
(
ḃ+R( · − b0) +Ru

)
◦ f−1

from which (3) follows.
Finally we compute (∇ũ) ◦ f . We introduce (∇ũ) ◦ f by differentiating both sides of (3), which yields

((∇ũ) ◦ f)∇f = Ṙ+R∇u. (5.4)

Using (5.2) we may apply RT to both sides of (5.4) and obtain that

(∇ũ) ◦ f = ṘRT +R∇uRT ,
i.e. (4) holds. �

We now define an analog of Definition 5.1 for the micropolar realm by defining the similarity of micropolar
continua.

Definition 5.3. (Similar micropolar continua)

Given two micropolar continua (Ω0, η,Q) and (Ω̃0, η̃, Q̃) we say that they are similar if there exists a time-

dependent orientation-preserving rigid motion f = b + R( · − b0) such that Ω̃0 = Ω0, η̃t = ft ◦ ηt, and

Q̃t = RtQt for every t > 0. Moreover we say that f maps (η,Q) to (η̃, Q̃).

A justification for why we define the similarity of micropolar continua in this way is provided in Figure
4. Having defined similarity for micropolar continua we now proceed as we did for classical continua and
compute how various kinematic quantities behave under similarity.
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Ω0

Ω(t)

Ω̃(t)

η

Q

η̃

Q̃

f

R

• y

I0

• x

I(t)

• x̃

Ĩ(t)

Figure 4. Two micropolar continua (Ω0, η,Q) and (Ω0, η̃, Q̃) are similar when there exists
a rigid motion f = b + R( · − b0) such that this diagram commutes, i.e. η̃ = f ◦ η and

Q̃ = RQ.

Proposition 5.4. (The behaviour of kinematic quantities of micropolar continua under similarity)

Let (Ω0, η,Q) and (Ω0, η̃, Q̃) be similar micropolar continua where f = b+R( · − b0) maps (η,Q) to (η̃, Q̃).
Then
(1) Items (1)–(4) of Proposition 5.2 hold,

(2) ∂tQ̃ = ṘQ+R∂tQ,

(3) Ω̃ ◦ f = ṘRT +RΩRT ,

(4) ω̃ ◦ f = vec
(
ṘRT

)
+Rω, and

(5) (∇ω̃) ◦ f = R∇ωRT .

Proof. We know that items (1)–(4) of Proposition 5.2 hold since the continua underlying similar
micropolar continua must themselves be similar, so here (Ω0, η) and (Ω0, η̃) are similar continua. Note that

(2) is immediate since Q̃ = RQ. To obtain (3) we compute that

Ω̃ = ((∂tQ̃)Q̃T ) ◦ η̃−1 = ((ṘQ+R∂tQ)(QTRT )) ◦ (η−1 ◦ f−1) = (ṘRT +R(∂tQ)QTRT ) ◦ (η−1 ◦ f−1)

= (ṘRT +RΩRT ) ◦ f−1
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from which (3) follows. Since f is orientation-preserving we know that detR = 1, and hence we may use
Lemma 6.14 and apply vec to both sides of the chain of equalities immediately above to deduce (4). To
derive (5) we proceed as we did to obtain item (4) of Proposition 5.2: we differentiate (4), which tells us that

((∇ω̃) ◦ f)∇f = R∇ω
and use the fact that ∇f = R to obtain (5). �

We conclude this section with the definition of the notion of frame-invariance.

Definition 5.5. (Frame-invariance)
(1) (Vector functions) We say that F : Rn → Rn is frame-invariant if F (RV ) = RF (v) for every v ∈ Rn

and every R ∈ SO(n).
(2) (Tensors functions) Let X,Y ⊆ Rn×n be closed under conjugation by orientation-preserving orthogonal

matrices. We say that F : X → Y is frame-invariant if F (RMRT ) = RF (M)RT for every M ∈ X and
every R ∈ SO(n).

(3) (Functions defined along the flow) Let T be a function which maps continua to k-tensor fields along

that flow. We say that T is frame-invariant if for every similar continua (Ω0, η) and (Ω̃0, η̃), where f
which maps η to η̃ is given by

f(t, x) = b(t) +R(t)(x− b0)

for some b0 ∈ Rn, b : [0,∞)→ Rn, and R : [0,∞)→ Rn, if we write

T := T (Ω0, η) and T̃ := T (Ω̃0, η̃)

then

T̃j1, ··· , jk ◦ f = Rj1i1Rj2i2 . . . RjkikTi1, ··· , ik .

Note that this definition applies mutatis-mutandis to functions mapping micropolar continua to k-tensor
fields along that flow.

With the notion of frame-invariance in hand, we can look back at our computations from Proposition 5.2
and Proposition 5.4 to identity the kinematic quantities which are frame-invariant. We record this below.

Corollary 5.6. (Identification of the frame-invariant kinematic quantities)
Let (Ω0, η,Q) be a micropolar continuum, let u denotes its Eulerian velocity, and let ω be its Eulerian

angular velocity. Then ∇u− ω and ∇ω are frame-invariant.

Proof. The frame-invariance of ∇ω is precisely item (5) of Proposition 5.4. The frame-invariance of
∇u− Ω follows from item (4) of Proposition 5.2 and item (3) of Proposition 5.4 since upon subtracting the
former from the latter we see that

∇ũ− Ω̃ = (ṘRT +R∇uRT )− (ṘRT +RΩRT ) = R(∇u− Ω)RT .

�

5.2. Representation of frame-invariant linear maps. In this section we record several results
on the representation of frame-invariant linear maps, which are inspired by analogous results in [Gur81,
Wan70a, Wan70b, Smi71].

We make the technical assumption that the dimension n be odd, which is not concerning for our purposes
here since we ultimately wish to consider the case n = 3. Nonetheless, it seems that the results below should
hold in arbitrary dimensions. The source of this technical restriction lies in the fact that we consider the
angular velocity and angular momentum to be in R3 (and not in Skew(3)). Crucially: the identification of
R3 and Skew(3) is made via ten and vec, which are not invariant under actions by O(3), but only invariant
under actions by SO(3). A key tool in obtaining the representation formulae below is to consider, for an
appropriately chosen unit vector v, the transformation 2v⊗ v− I. This matrix is always in O(n) but is only
in SO(n) when n is odd, and this is precisely the source of our technical restriction.

We begin with a couple of lemmas that will come in handy when discussing the frame-invariance of linear
maps whose domain lies within the space of symmetric matrices. First we note relate the commutativity of
symmetric matrices to the invariance of eigenspaces.
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Lemma 5.7. (Commuting symmetric operators keep eigenspaces invariant)
Let S and T be real symmetric matrices. S and T commute if and only if the eigenspaces of S are invariant

under T .

Proof. Suppose first that S and T commute and let V ⊆ Rn be an eigenspace of S with eigenvalue
λ. Then, for every x ∈ V , STx = TSx = λTx such that Tx ∈ V (since Tx is an eigenvector of S with
eigenvalue λ) and so indeed the eigenspaces of S are invariant under S.

Suppose now that the eigenspaces of S are invariant under T and let us write S =
∑
i λivi ⊗ vi (such a

decomposition exists since S is symmetric). By assumption we know that, for every i, Tvi belongs to the
eigenspace of vi such that S(Tvi) = λiTvi = TSvi and thus S and T commute on each of the eigenspaces of
S. Since the union of the eigenspaces of S constitutes all of Rn we conclude that S and T commute. �

We now note that frame-invariant functions whose domain is the space of symmetric matrices preserve
eigenspaces.

Lemma 5.8. (Frame-invariant functions preserve eigenspaces)
Let n be odd and let F : Sym(n)→ Rn×n be frame-invariant. Then, for every S ∈ Sym(n), eigenvectors of
S are eigenvectors of F (S).

Proof. Let S ∈ Sym(n) and let v ∈ Rn be an eigenvector of S. Let us define R := 2v⊗ v− I, which is
an orthogonal transformation since it is symmetric and satisfies

(2v ⊗ v − I)
2

= 4|v|2 − 4v ⊗ v − I = I.

Moreover, R is orientation preserving. Indeed: let us complete v to a basis {v, w1, . . . , wn−1} of Rn. Then
Rv = v and Rwi = −wi such that every element of that basis is an eigenvector of R. Therefore, since n is
odd, detR = 1 · (−1)

n−1
= 1.

Geometrically, we may describe R as the reflection through the line spanned by v. Indeed, as already
mentioned above when showing that R is orientation-preserving:

Rv = v and Rw = −w if w ⊥ v. (5.5)

In particular: for any eigenvector w of S distinct from v we have that Rw = −w, so the eigenspaces of S are
invariant under R. As a consequence, we deduce from Lemma 5.7 that S and R commute. Combining this
with the frame-invariance of F tells us that

RF (S)RT = F (RSRT ) = F (S),

i.e. F (S) and R also commute. So finally:

R(F (S)v) = F (S)(Rv) = F (S)v

which, by (5.5), may only occur if F (X)v ∈ span {v}. So indeed we may conclude that v is an eigenvector
of F (S). �

As an immediate consequence of Lemma 5.8 we obtain the following corollary.

Corollary 5.9. Let F : Sym(n)→ Rn×n be frame-invariant. Then imF ⊆ Sym(n).

Proof. Let S ∈ Sym(n) and let us write S =
∑
i λivi ⊗ vi where the vi’s form an orthonormal basis of

Rn. By Lemma 5.8 we know that there exists µi’s such that F (S) has eigenpairs {(µi, vi)}, and therefore:

F (S) =
∑

i

µivi ⊗ vi

such that indeed F (S) is symmetric. �

We are now ready to begin to establish a slew of representation formulae for frame-invariant linear maps.
We begin with vector-to-vector frame-invariant linear maps.

Lemma 5.10. (Representation formula for linear frame-invariant maps from Rn to itself)
Let n be odd and let F : Rn → Rn be linear and frame-invariant. Then F is a scalar multiple of the identity.



36 1. MICROPOLAR CONTINUUM MECHANICS

Proof. Since F is linear we know that there exists a matrix M ∈ Rn×n such that F (v) = Mv for every
v ∈ Rn. The fact that F is frame-invariant then tells us that M commutes with all orientation-preserving
orthogonal matrices.

So let us consider a particular orthogonal matrix: let x ∈ Rn be a unit vector and note that I − 2x⊗ x
is orthogonal since it is symmetric and satisfies

(2x⊗ x− I)
2

= 4|x|2x⊗ x− 4x⊗ x+ I = I.

Moreover, R is orientation-preserving. To see this, note that if we complete {x} to a basis {x, v1, . . . , vn−1}
of Rn then Rx = x and Rvi = −vi, therefore each of the basis vectors is an eigenvectors of R. So finally:
detR = 1 · (−1)

n−1
= 1 since n is odd.

Therefore M commutes with 2x⊗ x− I, and hence with x⊗ x, such that

(Mx)⊗ x = M(x⊗ x) = (x⊗ x)M = x⊗ (MTx).

Applying both sides of this equality to x we see that, since x is a unit vector,

Mx = (MTx · x)x = (Mx · x)x.

In particular, since M commutes with all orientation-preserving orthogonal matrices we may pick R ∈ SO(n)
such that x = Re1 and observe that then

MRe1 ·Re1 = RTRMe1 · e1 = Me1 · e1

and hence Mx = (Me1 · e1)x for all unit vectors x. So indeed M is a multiple of the identity since
M = (Me1 · e1)I. �

We now prove a representation formula for linear frame-invariant maps from Sym(n) to itself.

Lemma 5.11. (Representation formula for linear frame-invariant maps from Sym(n) to itself)
Let n be odd and let F : Sym(n)→ Sym(n) be linear and frame-invariant. Then there exist c1, c2 ∈ R such

that
F (S) = c1(trS)I + c2S for every S ∈ Sym(n).

Proof. First we will show that the claim holds on the set of rank-1 symmetric matrices with unit norm.
Let v ∈ Rn be a unit vector and let us consider the symmetric matrix v ⊗ v. Lemma 5.8 tells us that, since
F is frame-invariant, F (v ⊗ v) has two eigenspaces: span {v} and its orthogonal complement. So either the
eigenspaces of F (v ⊗ v) are the same as those of v ⊗ v or the sole eigenspace of F (v ⊗ v) is Rn. Either way
we have that

F (v ⊗ v) = c̃1(v)v ⊗ v + c̃2(v)(I − v ⊗ v) = c1(v)v ⊗ v + c2(v)I

for some c1, c2 : Sn−1 → R.
Now let w ∈ Rn be another unit vector and let R be the orientation-preserving orthogonal transformation

which takes v to w, i.e. Rv = w. Then, by the frame-invariance of F ,

0 = F (R(v ⊗ v)RT )− F (w ⊗ w) = RF (v ⊗ v)RT − F (w ⊗ w)

= R(c1(v)v ⊗ v + c2(v)I)RT − (c1(w)w ⊗ w + c2(w)I)

= (c1(v)− c1(w))w ⊗ w + (c2(v)− c2(w))I.

So finally, since w ⊗ w and I are linearly independent we know that c1 and c2 are constants on Sn−1, i.e.

F (v ⊗ v) = c1v ⊗ v + c2I, (5.6)

for every v ∈ Sn−1. We have thus just shown that the representation formula holds on the set of symmetric
matrices of rank-1 with unit norm (up to switching c1 and c2).

To conclude we leverage the linearity of F . Let S be an arbitrary real symmetric matrix and let us
decompose it as

S =
∑

i

λivi ⊗ vi

where each of the vi has unit norm. Then, by (5.6) and the linearity of F we deduce that

F (S) =
∑

i

λi(c1vi ⊗ vi + c2I) = c1S + c2(trS)I

which is precisely the representation formula we sought (up to interchanging c1 and c2). �
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We now prove a result similar to Lemma 5.11 but considering frame-invariant linear maps whose domain
now lies within the space of skew-symmetric matrices. Moreover we restrict our attention to dimension n = 3
in order to be able to use ten and vec and thus streamline the argument.

Lemma 5.12. (Representation formula for linear frame-invariant maps from Skew(3) to R3×3)
Let n = 3 and let F : Skew(3) → R3×3 be linear and frame-invariant. Then F is a scalar multiple of the

identity.

Proof. Let A ∈ Skew(3) with |A|2 = A : A = 2 and let v ∈ R3 be defined as v := vecA. Note that we
have chosen the seemingly odd normalization |A|2 = 2 since it ensures that v is a unit vector. Indeed, by
Lemma 6.17,

|v|2 = vecA : vecA =
1

2
A : ten vecA =

1

2
|A|2 = 1.

It will be helpful throughout to recall the geometric interpretation of the action of A: A is a (counter-
clockwise) rotation by π

2 in the plane orthogonal to v and annihilates vectors colinear with v.
Before beginning the proof in earnest we record some useful computations about A whose outcomes are

obvious in light of the geometric interpretation of the action of A. First, note that

A(v ⊗ v) = (v ⊗ v)A = 0. (5.7)

Indeed, for any w ∈ R3,

A(v ⊗ v)w = (v · w)Av = (v · w)(v × w) = 0 and (v ⊗ v)Aw = (v ·Aw)v = (v · (v × w))v = 0.

Second, observe that
−A2 = I − v ⊗ v = proj{v}⊥ . (5.8)

Indeed: −A2v = −A(v × v) = 0 whilst, for any w ⊥ v,

−A2w = −v × (v × w) = −(v · w)v + (v · v)w = w.

Step 1. It will be very convenient for the remainder of this argument to consider the transformation
R := A+ v⊗ v. In particular we will show that R is orthogonal, orientation-preserving, and commutes with
F (A). The orthogonality of R follows from (5.7) and (5.8) since

RRT = (A+ v ⊗ v)(−A+ v ⊗ v) = −A2 + v ⊗ v = I

and, similarly, RTR = I. We can understand the action of R geometrically by comparing it to the action of
A: R acts in the same way as A on vectors orthogonal to v but is the identity on the span of v. In particular,
this tells us that R can de decomposed as the direct sum of two orientation-preserving transformations, so
R itself is orientation-preserving. Now let us show that R and F (A) commute. Observe that, by (5.7) and
(5.8),

RART = (A+ v ⊗ v)A(−A+ v ⊗ v) = −A3 = A(I − v ⊗ v) = A

and hence, since F is frame-invariant,

F (A) = F (RART ) = RF (A)RT

such that indeed F (A) and R commute.

Step 2. We now show that the actions of A and F (A) agree on span {v} and span {v}⊥. To do so,
observe that we may characterize the action of R2 as follows:{

R2x = x ⇐⇒ x ∈ span {v} and

R2x = −x ⇐⇒ x ⊥ v.
(5.9)

Indeed:

R2 − I = (A+ v ⊗ v)
2 − I = A2 + v ⊗ v − I = −(I + v ⊗ v) + v ⊗ v − I = −2(I − v ⊗ v)

= −2 proj{v}⊥

and thus R2 + I = 2v ⊗ v = 2 projspan{v}.
Since R and F (A) commute we may then compute that, for any w ⊥ v,

{
R2F (A)v = F (A)R2v = F (A)v and

R2F (A)w = F (A)R2w = −F (A)w
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such that, by (5.9),

F (A)v ∈ span {v} and F (A)w ⊥ v. (5.10)

Now let us pick w1, w2 ∈ R3 to be unit vectors orthogonal to v such that (v, w1, w2) forms an oriented
orthonormal basis of R3, i.e.

v × w1 = w2, w1 × w2 = v, and w2 × v = w1.

Note that, since w1, w2 ⊥ v, we have that

Rw1 = Aw1 = v × w1 = w2 and Rw2 = Aw2 = v × w2 = −w1.

Therefore, since R and F (A) commute,

RF (A)w1 = F (A)Rw1 = F (A)w2 and RF (A)w2 = F (A)Rw2 = −F (A)w1

and hence, in light of (5.10), (F (A)v, F (A)w1, F (A)w2) forms an oriented orthogonal basis of R3.

This allows us to characterize the behaviour of F (A) on span {v}⊥: F (A) takes the orthonormal basis

{w1, w2} of span {v}⊥, which complements v to an oriented orthonormal basis (v, w1, w2) of R3, to an

orthogonal basis {F (A)w1, F (A)w2} of span {v}⊥, which complements v to an oriented orthogonal basis

(F (A)v, F (A)w1, F (A)w2) of R3. So indeed the actions of F (A) and A agree on span {v}⊥. Combining this
observation with (5.10) allows us to conclude that

F (A) = c1(A)v ⊗ v + c2(A)A

for some scalars c1(A), c2(A) ∈ R.

Step 3. We know show that F is constant on the set of skew-symmetric matrices of norm
√

2. Let A
and B be 3-by-3 skew-symmetric matrices with |A|2 = |B|2 = 2 and let v := vecA and w := vecB. Then,
by Step 2, there exist scalars c1(A), c2(A), c1(B), and c2(B) ∈ R such that

F (A) = c1(A)v ⊗ v + c2(A)A and F (B) = c1(B)w ⊗ w + c2(B)B.

Now let Q ∈ SO(3) such that w = Qv, and hence, by Lemma 6.14, B = QAQT . Then, by frame-invariance
of A we have that

c1(B)w ⊗ w + c2(B)B = F (B) = QF (A)QT = Q(c1(A)v ⊗ v + c2(A)A)QT = c1(A)w ⊗ w + c2(A)B.

Since w ⊗w and B are linearly independent we deduce that c1(A) = c1(B) and c2(A) = c2(B), so indeed F
is constant on

{
A ∈ Skew(3) : |A|2 = 2

}
.

Step 4. We conclude by linearity of F . Since there exist scalars c1, c2 ∈ R such that

F (A) = c1 vecA⊗ vecA+ c2A

for every 3-by-3 skew-symmetric matrix A satisfying |A|2 = 2 it follows that, for any B ∈ Skew(3),

F (B) =
|B|√

2
F

(√
2

|B|B
)

=
c1
√

2

|B| vecB ⊗ vecB + c2B.

In particular, leveraging once again the linearity of F we note F (B)−F (C)−F (B −C) must vanish for all
B,C ∈ Skew(3), from which we deduce that c1 = 0. So finally:

F (B) = c2B for every B ∈ Skew(3).

�

We conclude this section with a representation formulae for general frame-invariant linear maps from
Rn×n it itself (i.e. we do not specify, as we did in the previous two results, that the domain is contained
in either the space of symmetric matrices or the space of skew-symmetric matrices). Once again we restrict
our attention to dimension n = 3.

Proposition 5.13. (Representation formula for linear frame-invariant maps from R3×3 to itself)
Let n = 3 and let F : R3×3 → R3×3 be linear and frame-invariant. Then there exists c1, c2, c3 ∈ R such that

F (M) = c1(trM)I + c2 Sym(M) + c3 Skew(M) for every M ∈ Rn×n.
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Proof. Equipped with Corollary 5.9, Lemma 5.11, Lemma 5.12, and the observation that Sym + Skew =
id, the only details that remain to be checked are that Sym and Skew are frame-invariant. This follows

immediately from the observation that, for any M ∈ R3×3 and any R ∈ SO(3), (RMRT )
T

= R(MT )RT .
Therefore

Sym
(
RMRT

)
=

1

2

(
RMRT +RMTRT

)
= R Sym(M)RT

and

Skew
(
RMRT

)
=

1

2

(
RMRT −RMTRT

)
= R Skew(M)RT .

Using the linearity of F we may then decompose

F = F ◦ Sym +F ◦ Skew,

where
• F ◦Sym : Sym(3)→ R3×3 is linear and frame-invariant, and so by Corollary 5.9 and Lemma 5.11 above

we know that F ◦ Sym = c1 tr( · ) + c2 id for some scalars c1, c2 ∈ R and
• F ◦ Skew : Skew(3) → R3×3 is linear and frame-invariant, and so by Lemma 5.12 above we know that
F ◦ Skew = c3 id for some scalar c3 ∈ R.

Putting it all together we see that indeed

F = F ◦ Sym +F ◦ Skew = c1 tr( · ) + c2 Sym + c3 Skew .

�

5.3. Onsager reciprocity relations. The Onsager reciprocity relations were proposed by Onsager
[Ons31a, Ons31b] to provide a theoretical justification for the fact that, in some physical systems, the
irreversibility of an underlying microscopic process leads to symmetry properties of some macroscopic ob-
servables. This fact has since been extensively verified experimentally [Mil60]. As pointed out in [MRP16],
the fact that the symmetry arises at the macroscopic level as a consequence of irreversibility at a microscopic
level is a purely mathematical feature, as shown in Theorem 5.14 below. Note that the statement of Theorem
5.14 is taken from [MRP16] and its proof is taken from [dGM62].

It is also worth pointing out that the Onsager reciprocity relations need not be invoked when the
equations of motion of classical fluids are derived. This is explained in more detail in Remark 5.19 below.

Theorem 5.14. (Onsager reciprocity relations)
Let Xt be a Markov process in Rn with transition kernel Pt(dx|x0) and invariant measure µ(dx). Define the
expectation zt(x0) of Xt given that X0 = x0, i.e.

zt(x0) = Ex0
Xt =

ˆ
xPt(dx|x0).

Assume that
(1) µ is reversible, i.e. µ(dx0)Pt(dx|x0) = µ(dx)Pt(dx0|x) for every x, x0 ∈ Rn and every t > 0,
(2) µ is Gaussian with mean zero and covariance matrix G, and
(3) t 7→ zt(x0) satisfies the equation żt = −Azt for some nonnegative matrix A.

Then M := AG is symmetric.

Proof. It follows immediately from item 3 that, for every t > 0 and every x0 ∈ Rn,

zt(x0) = e−Atx0. (5.11)

Taking the outer product of (5.11) with x0 and integrating with respect to µ(dx0) tells us that

ˆ
x0 ⊗ zt(x0)µ(dx0) =

ˆ
x0 ⊗ e−Atx0µ(dx0).
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By definition of z, reversibility of µ, and (5.11) we note that we may rearrange the left-hand side to see thatˆ
x0 ⊗ zt(x0)µ(dx0) =

ˆ
x0 ⊗

(ˆ
xPt(dx|x0)

)
µ(dx0) =

ˆ ˆ
x0 ⊗ xPt(dx|x0)µ(dx0)

=

ˆ ˆ
x0 ⊗ xPt(dx0|x)µ(dx) =

ˆ (ˆ
x0Pt(dx0|x)

)
⊗ xµ(dx)

=

ˆ
zt(x)⊗ xµ(dx) =

ˆ
e−Atx⊗ xµ(dx).

In particular, since µ is a centered Gaussian with covariance matrix G we note that
´
y ⊗ yµ(dx) = G and

hence ˆ
e−Atx⊗ xµ(dx) = e−AtG and

ˆ
x0 ⊗ e−Atx0µ(dx0) =

(ˆ
x0 ⊗ x0µ(dx0)

)
e−At = Ge−At

such that

e−AtG = Ge−At

holds for all t > 0. Differentiating in time and setting t = 0, we deduce that

AG = GAT

such that indeed M = AG is symmetric. �

5.4. Micropolar fluids: definition and derivation of their constitutive equations. This section
is the conclusion of this chapter, where we define micropolar fluids and derive their equations of motion. First
we define various classes of micropolar continua. In particular, note that we will only consider homogeneous
incompressible continua in the sequel.

Definition 5.15. (Homogeneity, incompressibility, and isotropy of micropolar continua)
Let (Ω0, η,Q, ν, j) be a physical micropolar continuum. We say that it is
• homogeneous if dν = ρdL3 for some constant ρ > 0,
• incompressible if the flow map η is incompressible, and
• isotropic if j = I, i.e. if the microinertia density is constant and equal to the identity matrix.

We are now ready to define a micropolar fluid.

Definition 5.16. (Homogeneous incompressible micropolar fluid and homogeneous incompressible New-
tonian micropolar fluid)
A homogeneous incompressible micropolar fluid is a homogeneous incompressible physical micropolar contin-
uum governed by (T,M) for which there exist a scalar function p defined along the flow, called the pressure,

as well as functions T̂ , M̂ : R3×3×R3×R3×3 → R3×3 and ε̂ : R3×3×R3×R3×3 → R, which are independent
of the flow, such that

T = −pI + T̂ (∇u, ω,∇ω) , M = M̂ (∇u, ω,∇ω) , and ε = ε̂ (∇u, ω,∇ω)

where u denotes the Eulerian velocity, ω denotes the Eulerian angular velocity, and ε denotes the mechanical
energy density. Moreover, if both T̂ and M̂ are linear then the homogeneous incompressible micropolar fluid
is said to be Newtonian.

Now that we have defined micropolar fluids we seek to use frame-invariance and the balance of energy to
establish precisely in what ways the stress tensor and couple stress tensor depend on the dynamic variables
and their gradients. First we note that, for incompressible micropolar fluids, the mechanical energy density
must be constant.

Proposition 5.17. (Constancy of the mechanical energy in incompressible fluids)
Consider a homogeneous incompressible micropolar fluid governed by (T,M). If the fluid is purely mechanical

then its mechanical energy density ε must be constant.

Proof. As proven in Theorem 4.21 and in light of the Eulerian velocity u being divergence-free (by
incompressibility), the inequality

∂tε+ u · ∇ε− T : (∇u− Ω) = M : ∇ω 6 0
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holds. To make the computation more palatable, let us write ε̂ = ε̂(A, v,B). Then, since incompressibility
and Lemma 6.7 tells us that Du

t obeys the Leibniz Rule, we may compute that

(∂Aε̂)(∇u, ω,∇ω) : Du
t∇u+ (∂v ε̂)(∇u, ω,∇ω) : Du

t ω + (∂B ε̂)(∇u, ω,∇ω) : Du
t∇ω

−T : (∇u− Ω)−M : ∇ω 6 0. (5.12)

Since the inequality (5.12) must hold for all possible flows, the key observation is that for any n-by-n matrices
A,B,C,D and any vectors e, f ∈ Rn we may construct a flow such that, at some space-time point (t, x),

Du
t∇u = A, ∇u = B, Du

t∇ω = C, ∇ω = D, Du
t ω = e, and Dω = f.

Therefore, since Du
t∇u, Du

t ω, and Du
t∇ω appear linearly in (5.12), we may violate the inequality unless

∂Aε̂ = ∂B ε̂ = 0 and ∂v ε̂ = 0, in which case ε is indeed constant. �

It is worth noting that the constancy of the mechanical energy proven in Proposition 5.17 above is a
feature of incompressibility. Indeed, this result is a mathematical manifestation of the physical observation
that incompressible continua are incapable of exerting mechanical work.

Our goal remains to establish the dependence of the stress tensor and the couple stress tensor on the
dynamic variables and their gradients. In particular, to do so we need to invoke the Onsager reciprocity re-
lations, which are phrased in terms of the inequality obtained in Theorem 4.21. The corresponding postulate
is stated below.

Definition 5.18. (Dissipation inequality and Onsager reciprocity relations)
Consider a homogeneous incompressible micropolar fluid governed by (T,M) that is purely mechanical. The
inequality

T : (∇u− Ω) +M : ∇ω > 0

is called the dissipation inequality. In particular, for Y := (∇u−Ω,∇ω) and J (Y) := (T,M) the dissipation
inequality may be written as

Y · J (Y) > 0.

We say that the micropolar fluid obeys the Onsager reciprocity relations if ∇J is symmetric, i.e. ∂iJj = ∂jJi
for every i, j.

Note that in the context of continuum mechanics the dissipation inequality is also known as the Clausius-
Duhem inequality.

Remark 5.19. Note that, when we derive the equations of motion of classical fluids (e.g. the Euler or
Navier-Stokes) equations by arguments from rational continuum mechanics we do not appeal to the Onsager
reciprocity relations since the symmetry is guaranteed by the dissipation inequality and frame-invariance.

Indeed, for classical fluids the Clausius-Duhem inequality reads

T (Du) : ∇u = T (Du) : Du > 0.

Under the Newtonian assumption which postulates that the stress tensor T is linear, we deduce from frame-
invariance arguments (and Lemma 5.11 in particular) that T = c1 tr( · )I + c2 id for some constants c1, c2. In
particular T is necessarily symmetric.

We are now ready to state and prove the necessary form of the constitutive equations relating the stress
tensor and the couple stress tensor to the dynamic variables and their gradients.

Theorem 5.20. (Constitutive equations of homogeneous incompressible Newtonian micropolar fluids)

Consider a homogeneous incompressible micropolar fluid governed by (T,M) that is purely mechanical. If T̂

and M̂ are frame-invariant and the micropolar fluid satisfies Onsager’s reciprocity relations then there exist
universal constants µ, κ, α, β, γ > 0 such that

T = µDu+ κ ten

(
1

2
∇× u− ω

)
− pI and M = α(∇ · ω)I + βD0ω + γ ten∇× ω.

Proof. In light of Corollary 5.6 the frame-invariance of T̂ = T̂ (∇u, ω,∇ω) and M̂ tells us that we may
write

T̂ = T̂ (∇u− Ω,∇ω) and M̂ = M̂(∇u− Ω,∇ω).
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Since T̂ and M̂ are linear we may write L̂ := (T̂ , M̂) for some linear operator L̂ which, by Onsager’s

reciprocity relations, is symmetric. This means that L̂ is completely determined by the quadratic form it
generates.

Adapting the arguments from Section 5.1 and Wang’s paper on the representation of frame-invariant
(or, in the terminology he employs, isotropic) functions we deduce that, since T̂ and M̂ are linear and
frame-invariant and since u is divergence-free,

T̂ (∇u− Ω,∇ω) = c1Du+ c2(Skew∇u− Ω) + c3(∇ · ω)I + c4Dω + c5 Skew∇ω

and

M̂(∇u− Ω,∇ω) = c6(∇ · u)I + c7Du+ c8(Skew∇u− Ω) + c9(∇ · ω)I + c10Dω + c11 Skew∇ω

for some constants c1, c2, . . . , c11 ∈ R.
The quadratic form generated by L̂ is therefore

L̂(∇u− Ω,∇ω) · (∇u− Ω,∇ω) = T̂ : (∇u− Ω) + M̂ : ∇ω
= c1|Du|2 + c2|Skew∇u− Ω|2 + c9|∇ · ω|2 + c10|Dω|2 + c11|Skew∇ω|2

and so we deduce that c3 = c4 = c5 = c6 = c7 = c8 = 0. In particular this tells us that T̂ = T̂ (∇u− Ω) and

that M̂ = M̂(∇ω).
Finally we seek to leverage the dissipation inequality

T̂ : (∇u− Ω) + M̂ : ∇ω > 0

to obtain sign conditions on the coefficients appearing in T and M . To make this process easier we group the
terms in T̂ and M̂ according to the orthogonal decomposition (with respect to the Frobenius inner product)

Rn×n ∼= RI ⊕Dev(n)⊕ Skew(n). (5.13)

Recalling the identities

Dv = D0v +
2

3
(∇ · v)I and Skew∇v =

1

2
ten∇× v

from Lemma 6.11 and Lemma 6.16 respectively, we write

T̂ (∇u− Ω) = c2Du+ c3 ten

(
1

2
∇× u− ω

)

and

M̂(∇ω) = (c9 + (2/3)c10)(∇ · ω)I + c10D0ω + (c11/2) ten∇× ω.
Defining µ = c2, κ = c3, α = c9 + (2/3)c10, β = c10, and γ = c11/2 and employing Lemma 6.17, the
dissipation inequality now read

µ|Du|2 + 2κ|(1/2)∇× u− ω|2 + α|∇ · ω|2 + β|D0ω|2 + 2γ|∇ × ω|2 > 0. (5.14)

This inequality must hold for arbitrary flows. Since we can construct flows with arbitrary values of ∇u−Ω
and ∇ω we deduce from (5.14) and the orthogonality of the decomposition (5.13) that µ, κ, α, β, γ > 0. �

Finally, we may now state and prove the main result of this chapter which establishes the equations of
motion for homogeneous incompressible Newtonian micropolar fluids.

Corollary 5.21. (Equations of motions for homogeneous incompressible Newtonian micropolar fluids)
Let (R3, η,Q) be a homogeneous incompressible Newtonian micropolar fluid subject to (f, τ) and the boundary

effects (fb, τb) such that
• the fluid is purely mechanical,
• the stress tensor T and couple stress tensor M are frame-invariant, and
• the Onsager reciprocity relations are satisfied.
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Then the Eulerian velocity u, pressure p, Eulerian microinertia J , and Eulerian angular velocity ω satisfy




ρ(∂tu+ u · ∇u) = (µ+ κ/2)∆u+ κ∇× ω −∇p+ f in Ω (t) ,

∇ · u = 0 in Ω (t) ,

J(∂tω + u · ∇ω) + ω × Jω = κ∇× u− 2κω + (α+ β/3− γ)∇(∇ · ω) + (β + γ)∆ω + τ in Ω (t) ,

∂tJ + u · ∇J − [Ω, J ] = 0 in Ω (t) ,

µ(Du)n+ κ((1/2)∇× u− ω)× n− pn = fb on ∂Ω (t) , and

α(∇ · ω)n+ β(D0ω)n+ γ(∇× ω)× n = τb on ∂Ω (t)

for some mass density ρ > 0, dissipation coefficients µ, κ, α, β, γ > 0, and where n denotes the outer unit
normal to Ω (t).

Proof. It follows from the incompressibility, Corollary 4.10, Proposition 4.17, that (u, ω, J) satisfy




ρ(∂tu+ u · ∇u) = ∇ · T + f,∇ · u = 0,

J(∂tω + u · ∇ω) + ω × Jω = 2 vecT +∇ ·M + τ, and

∂tJ +∇ · (J ⊗ u)− [Ω, J ] .

In particular since u is divergence-free we see immediately that

∂tJ +∇ · (J ⊗ u)− [Ω, J ] = ∂tJ + u · ∇J − [Ω, J ] .

Now we deduce from Theorem 5.20 that

T = µDu+ κ ten

(
1

2
∇× u− ω

)
− pI and M = α(∇ · ω)I + βD0ω + γ ten∇× ω

such that, in light of Lemma 6.16, Lemma 6.12, and the incompressibility,

∇ · T = µ∇ · Du+ κ∇ · ten

(
1

2
∇× u− ω

)
−∇p

= µ∆u− κ∇×
(

1

2
∇× u− ω

)
−∇p

=
(
µ+

κ

2

)
∆u+ κ∇× ω −∇p

whilst

2 vecT = 2 vec

(
κ ten

(
1

2
∇× u− ω

))
= κ∇× u− 2κω,

and therefore

∇ ·M = α∇ (∇ · ω) + β∇ ·
(
D0ω

)
+ γ∇ · ten∇× ω

= α∇ (∇ · ω) + β

(
1− 2

n

)
∇ (∇ · ω) + β∆ω − γ∇×∇× ω

=

(
α+

β

3

)
∇ (∇ · ω) + β∆ω − γ∇ (∇ · ω) + γ∆ω

=

(
α+

β

3
− γ
)
∇ (∇ · ω) + (β + γ) ∆ω.

To conclude we combine Proposition 4.23 and Theorem 5.20 to obtain the boundary conditions. �

6. Appendix

In this section we record various results that are either well-known or elementary, but which are nonethe-
less useful elsewhere in this chapter. In Section 6.1 we record identities from calculus and linear algebra, in
Section 6.2 we record results related to ten and vec, and in Section 6.3 we record some elementary results
related to matrix groups and Lie groups.
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6.1. Identities from linear algebra and calculus. First we record the well-known ε− δ identity.

Lemma 6.1. (Epsilon-delta identities)
The following identities hold: εijaεkla = δikδjl − δilδjk and εiabεjab = 2δij .

We then record a vectorized version of the ε− δ identity.

Lemma 6.2. (Vectorized epsilon-delta identities) Let a, b, c ∈ R3. Then a× (b× c) = (a · c)b− (a · b)c.
Proof. This is nothing more than the ‘vectorized’ version of an epsilon-delta identity of Lemma 6.1:

(a× (b× c))i = εijkaj(b× c)k = εijkεlmkajblcm = (δilδjm − δimδjl) ajblcm = ((a · c) b− (a · b) c)i.
�

We now record a characterization of orthogonal projections in R3 using cross-products.

Proposition 6.3. Let e, v ∈ R3 with e a unit vector. We can write the orthogonal decomposition of v
with respect to e conveniently as

v = (v · e) e− e× (e× v)

such that
|v|2 = |v · e|2 + |e× v|2.

More generally, for v, w ∈ R3,

v =

(
v · w|w|

)
w

|w| −
w

|w| ×
(
w

|w| × v
)

and |v|2|w|2 = |v · w|2 + |v × w|2.

Proof. It suffices to show that −e × (e × · ) = (I − e ⊗ e) since the latter is precisely the orthogonal
projection unto the orthogonal complement of e. This identity follows from Lemma 6.1:

(−e× (e× v))i = −εijkεlmkejelvm = −(δilδjm − δimδjl)ejelvm = −(ejeivj − ejejvi) = (v − (v · e)e)i
i.e. indeed −e× (e× v) = (I − e⊗ e)v. �

We now record the frame-invariance of the cross product, which is not surprising since cross products
are characterized in terms of lengths and angles, both of which are preserved by orientation-preserving
orthogonal transformations.

Lemma 6.4. (Frame-invariance of the cross product)
Let Q be an orthogonal transformation of R3, i.e. Q ∈ O(3). Then, for all v, w ∈ R3

Q(v × w) = (detQ)(Qv)× (Qw).

Proof. The key observation is that for any u, v, w ∈ R3, det(Qu |Qv |Qw) = (detQ) det(u | v |w) since
detQ = 1 if Q is orientation-preserving and detQ = −1 if Q is orientation-reversing. So, for all u, v, w ∈ R3,

u ·Q(v × w) = (QTu) · (v × w) = det(QTu | v |w) = (detQT ) det(u |Qv |Qw) = (detQ)u · ((Qv)× (Qw))

such that indeed the identity holds. �

We now record an elementary computation dealing with outer products and matrix multiplication.

Lemma 6.5. Let A ∈ Rr×s, B ∈ Rt×u, v ∈ Rs and w ∈ Rt. Then (Av)⊗ (wB) = A (v ⊗ w)B.

Proof. This is the result of an immediate computation:
(

(Av)⊗ (wB)
)
ij

= AikvkwlBlj = Aik (v ⊗ w)klBlj =
(
A (v ⊗ w)B

)
ij
.

�

We prove here a characterization of the kernel of the symmetrized gradient.

Lemma 6.6. (Characterization of the kernel of the symmetrized gradient)
Let U ⊆ Rn be a bounded open set with Lipschitz boundary. Then

kerD ∼= Rn × Skew (n)

i.e. for every v ∈ H1 (U), Dv = 0 if and only if v (x) = v̄ + Ω̄x for some v̄ ∈ Rn and some Ω̄ ∈ Skew (n).
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Proof. If v (x) = v̄ + Ω̄x with (v) ∈ Rn and Ω̄ ∈ Skew (n), then Dv = Sym (∇v) = Sym (Ω) = 0.
Conversely, suppose that v ∈ kerD, and define

v̄ :=

 
v and Ω̄ :=

 
Skew (∇v)

such that
(
x 7→ v̄ + Ω̄x

)
= projkerD v. Let w := v− (v̄+ Ω̄ · ) and observe that Dw = Dv = 0. Crucially, note

that  
w = 0 and

 
Skew(∇w) = 0.

Using the fundamental theorem of calculus to expand w about its average we deduce that w = 0. So indeed
v(x) = v̄ + Ω̄x. �

We prove a “Leibniz Rule” for the material derivatives introduced in Definition 2.5.

Lemma 6.7. (‘Leibniz rule’ for material derivatives)
Let u be a vector field and let T and S be differentiable tensor fields. Then Dut (T · S) = (Dut T )·S+T ·(Du

t S) .

Proof. For better readability despite the number of indices involved, we will write I instead of i1 . . . ik
and J instead of j1 . . . jl. We then compute:

Dut (T · S) = ∂t (T · S) +∇ · ((T · S)u)

where

(∇ · ((T · S)u))IJ = ∂a (TIbSbJua) = ∂a (TIbua)SbJ + TIbua∂aSbJ = (∇ · (T ⊗ u))IbSbJ + TIb((u · ∇)S)bJ

= ((∇ · (T ⊗ u)) · S + T · ((u · ∇)S))IJ

and hence

Dut (T · S) = (∂tT ) · S + T · (∂tS) + (∇ · (T ⊗ u)) · S + T · ((u · ∇)S) = (Dut T ) · S + T · (Du
t S) .

�

We record a differential identity useful when deriving the local version of the balance of energy.

Lemma 6.8. Let M and v be differentiable matrix and vector fields respectively, i.e. M : Rn → Rk×n
and v : Rn → Rn. Then ∇ · (v ·M) = (∇ ·M) · v +M : ∇v.

Proof. We compute: ∇ · (v ·M) = ∂i (vjMji) = Mji∂ivj + (∂iMji) vj = M : ∇v + (∇ ·M) · v. �

Here we define the deviatoric part of a matrix. Due to the fact that this plays well with an orthogonal
decomposition of Rn×n, this comes in handy when establishing sign conditions on the coefficients that arise
in the constitutive equations for the stress and couple stress tensors.

Definition 6.9. (Deviatoric part)
We define Dev : Rn×n → Rn×n via, for every M ∈ Rn×n, DevM := Sym(M)− 1

n trMI, i.e. DevM is the
traceless symmetric part of M .

We also define the related notion of the deviatoric gradient.

Definition 6.10. (Deviatoric gradient)
Let v be a differentiable vector field on Rn. Its deviatoric gradient, denoted D0v, is defined to be the

deviatoric part of the symmetrized gradient of v, i.e. D0v := Dev(Dv).

Now we take note of how to relate the deviatoric gradient to the symmetrized gradient.

Lemma 6.11. (Relating the symmetrized gradient and the deviatoric gradient)
For any differentiable n-dimensional vector field v, i.e. v ∈ C1 (Rn,Rn), D0v = Dv − 2

n (∇ · v)I.

We conclude this section with elementary identities involving various first order differential operators.

Lemma 6.12. (Identities involving the curl, divergence, symmetrized gradient, and deviatoric gradient).
For any twice-differentiable n-dimensional vector field v, i.e. v ∈ C2 (Rn,Rn), the following hold:
(1) ∇× (∇× v) = ∇ (∇ · v)−∆v (when n = 3)
(2) ∇ · (Dv) = ∇ (∇ · v) + ∆v



46 1. MICROPOLAR CONTINUUM MECHANICS

(3) ∇ ·
(
D0v

)
=
(
1− 2

n

)
∇ (∇ · v) + ∆v

Proof. These identities follow from direct computations. To obtain (1) we use Lemma 6.1:

(∇× (∇× v))i = εkij∂j (εklm∂lvm) = (δilδjm − δimδjl) (∂j∂lvm) = ∂i (∂jvj)− ∂j∂jvi = (∇ (∇ · v)−∆v)i.

(2) and (3) then follow from direct computations:
(2) (∇ · (Dv))i = ∂j(Dv)ij = ∂j (∂jvi + ∂ivj) = ∂j∂jvi + ∂i (∂jvj) = (∆v +∇ (∇ · v))i and

(3) ∇ ·
(
D0v

)
= ∇ · (Dev (Dv)) = ∇ ·

(
Dv − 2

n (∇ · v) I
)

= ∆v +
(
1− 2

n

)
∇ (∇ · v) .

�

6.2. Skew-symmetric matrices in three dimensions. In this section we obtain various results that
have to do with ten and vec. The first result is the most important one, showing that ten and vec are linear
isomorphisms and can thus indeed be used to identify Skew(3) and R3.

Proposition 6.13. (Isomorphism between 3-by-3 skew-symmetric matrices and 3-dimensional vectors)
vec : Skew(3)→ R3 is an isomorphism, whose inverse is ten, such that for every Ω ∈ Skew(3), Ω = vec (Ω)×,
i.e. the action of skew-symmetric matrices is equivalent to the action of a vectors via the cross-product.

Proof. It suffices to show that vec and ten from Definition 2.18 satisfy

vec ◦ ten = idSkew(3) and ten ◦ vec = idR3

and that, for every Ω ∈ Skew (3) and every v ∈ R3, Ωv = vec (Ω) × v. The first two identities follow from
the epsilon-delta identities in Lemma 6.1. Indeed we may compute that

vec (ten (ω))i =
1

2
εaib ten (ω)ab =

1

2
εaibεajbωj =

1

2
(2δij)ωj = ωi

and

ten (vec (Ω))ij = εiaj

(
1

2
εkalΩkl

)
=

1

2
(δikδjl − δilδjk) Ωkl = Skew (Ω)ij = Ωij

Similarly, a direct computation shows that

((vec Ω)× v)i = εijk(vec Ω)jvk =
1

2
εijkεajbΩabvk =

1

2
(δiaδkb − δibδka) Ωabvk =

1

2
(Ωik − Ωki) vk

i.e. (vec Ω)× v = (Skew Ω) v = Ωv. �

We now record the fact that ten and vec are frame-invariant.

Lemma 6.14. (Frame-invariance of ten and vec)
For any v ∈ R3, any 3-by-3 skew-symmetric matrix A, and any orthogonal transformation Q,

ten(Qv) = (detQ)Q(ten v)QT and vecQAQT = (detQ) vecA.

Proof. This is an immediate consequence of Lemma 6.4 since it allows us to compute that, for any
w ∈ R3,

ten(Qv)w = (Qv)× w = (detQ)Q(v × (QTw)) = (detQ)Q(ten v)QTw

and
vec(QAQT )× w = QAQTw = Q(vecA×QTw) = (detQ)(Q vecA)× w.

�

Here we record how ten and vec relate to Skew, the linear operator which isolates the skew-symmetric
part of a matrix.

Lemma 6.15. (Relation between ten, vec, and Skew) The following identity holds: ten ◦ vec = Skew.

Proof. This identity is nothing more than the classical epsilon-delta identity (c.f. Lemma 6.1) in
coordinate-invariant-form. Indeed, let A be a real n-by-n matrix. Then using Lemma 6.1 and Proposition
6.13 we compute that

ten (vecA)ij = εiaj(vecA)a =
1

2
εiajεpaqApq =

1

2
(δipδjq − δiqδjp)Apq =

1

2
(Aij −Aji) = (SkewA)ij .

�
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We now derive the relationship between ten, vec, and various first order differential operators.

Lemma 6.16. (Relation of ten, vec, Skew, and differential operators)
For any 3-dimensional differentiable vector field v, i.e. v : R3 → R3, the following identities hold:

vec∇v =
1

2
∇× v, Skew∇v =

1

2
ten∇× v, and ∇ · (ten v) = −∇× v.

Proof. Recall that (∇× v)i = εijk∂jvk. We may thus compute that

(vec∇v)i =
1

2
εaib(∇v)ab =

1

2
εiba∂bva =

1

2
∇× v and (∇ · (ten v))i = ∂j(ten v)ij = ∂j (εiajva) = −∇× v

such that the first and third identities hold. The second identity follows from combining the first identity
and Lemma 6.15 since Skew∇v = ten vec∇v = 1

2 ten∇× v. �

We conclude this section with a result relating ten, vec, and inner products.

Lemma 6.17. (Relation between ten, vec, and inner products)
For any v ∈ R3 and any M ∈ R3×3, (vecM) · v = 1

2M : (ten v).

Proof. We compute: (vecM) · v = (vecM)ivi = 1
2εaibMabvi = 1

2Mab(ten v)ab = 1
2M : (ten v) . �

6.3. Matrix groups, and Lie groups. In this section we prove some elementary results concerning
matrix groups and Lie groups. We begin by showing that the space of skew-symmetric matrices is closed
under conjugacy by orthogonal matrices.

Proposition 6.18. (Closure of skew-symmetric matrices under conjugacy by orthogonal matrices)
Skew (n) is closed under conjugacy by O (n), i.e. for any A ∈ Skew (n) and R ∈ O (n), RAR−1 ∈ Skew (n).

Proof. This is immediate:
(
RAR−1

)T
= R−TATRT = R (−A)R−1 = −

(
RAR−1

)
. �

We now record a result dealing with matrix groups, identifying the tangent space to the Lie group of
orthogonal matrices.

Proposition 6.19. (Tangents to matrix groups, or a glimpse into Lie algebras)
(1) TI O (n) = Skew (n), i.e. the Lie algebra of orthogonal matrices consists precisely of the algebra of

skew-symmetric matrices.
(2) For any R ∈ O (n), TRO (n) = R Skew (n).

Proof. (1) Consider R : R→ O (n) such that R (0) = I. Upon differentiating I = RRT and evaluating

at 0, we obtain that: 0 = Ṙ (0)R (0)
T

+ R (0) Ṙ (0)
T

= Ṙ (0) + Ṙ (0)
T

i.e. indeed Ṙ (0) ∈ Skew (n).
Conversely, for any A ∈ Skew (n), define R (t) := eAt and observe that

(
eAt
)T
eAt = eA

T teAt = e(A
T+A)t = e0 = I and

(
eAt
)′ |t=0 = Ae0 = A

such that indeed Skew (n) ⊆ TI O (n) and so (1) holds.
(2) Fix R0 ∈ O (n) and consider R : R→ O (n) such that R (0) = R0. Note that LR−1

0
◦ R is a path along

O (n) going through the identity at time zero, and hence by the above:

d
(
LR−1

0
◦R
)
|t=0 =: A ∈ Skew (n)

Now, since the exterior derivative ‘commutes’ with composition, we have that

A = d
(
LR−1

0
◦R
)

= dL ◦ dR = R−1
0 ◦ Ṙ

i.e. Ṙ = R0A ∈ R0 Skew (n).
Conversely, for any R0 ∈ O (n) and A ∈ Skew (n), define R (t) := R0e

At such that
(
R0e

At
)T
R0e

At = eA
T tRT0 R0e

At = e(A
T+A)t = I and

(
R0e

At
)′ |t=0 = R0Ae

0 = R0A

such that indeed R0 Skew(n) ⊆ TR0O(n) and thus (2) holds.
�
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We now prove results about Lie groups and the determinant in particular. The goal of these results is
to justify in a clean way the formula for the derivative of the determinant. First we prove that, in order to
compute the derivative of a Lie group homomorphism (such as the determinant), it suffices to compute its
derivative at the identity.

Proposition 6.20. (Differential of a Lie group homomorphism)
Let G,H be Lie groups and let F : G → H be a Lie group homomorphism. Recall that for any g ∈ G, Lg
denotes left-multiplication, i.e. Lg (h) = gh for any h ∈ G. Then, for any g ∈ G,

dF g = dLF (g) ◦ dF e ◦ dLg−1

or, written in all its gory detail: dF |g = dL
(H)
F (g)

∣∣∣
eH
◦ dF |eG ◦ dL(G)

g−1

∣∣∣
g
.

Moral: To compute the differential of a Lie group homomorphism it is enough to know how to compute its
differential at the identity and the differentials of the left-multiplication operators.

TgG TF (g)H

TeG TeH

dF g

dLg−1

dF e

dLF (g)

Proof. Since F is a group homomorphism, the following holds for any g ∈ G:

F = LF (g) ◦ F ◦ Lg−1

Therefore, upon applying the exterior derivative and noting that it ‘commutes’ with composition, we obtain
the desired result. �

Following Proposition 6.20, since we are seeking a formula for the derivative of the determinant we
compute its derivative at the identity.

Lemma 6.21. (Derivative of the determinant at the identity)

det′|I = tr

Proof. Let H be an arbitrary n-by-n matrix which we write as H = (h1|h2| . . . |hn). Then

det (I + εH) = det (e1 + εh1| . . . |en + εhn)

= det (e1| . . . |en) + ε (det (h1| . . . |en) + · · ·+ det (e1| . . . |hn)) +O
(
ε2
)

= 1 + ε (h11 + · · ·+ hnn)︸ ︷︷ ︸
trH

+O
(
ε2
)

and hence

det′|I (H) = lim
ε→0

det (I + εH)− det I

ε
= trH

�

Finally we conclude this section by using Proposition 6.20 and Lemma 6.21 to establish a formula for
the derivative of the determinant.

Corollary 6.22. (Derivative of the determinant)
Let A and M0 be n-by-n matrices, with M0 invertible. Then

det′|M0
(A) = det (M0) tr

(
M−1

0 A
)

Proof. Since the determinant is a Lie group homomorphism from GL (n) to R (as a multiplicative
group), we know by Proposition 6.20 that it is enough to compute the derivative of the determinant at the
identity as well as the derivative of the left-multiplications. By Lemma 6.21, det′|I = tr, and since here both
left-multiplications are linear (and hence equal to their derivatives), we obtain that:

det′|M0 (A) =
(
Ldet(M0) ◦ tr ◦LM−1

0

)
(A) = det (M0) det

(
M−1

0 A
)

�



CHAPTER 2

Anisotropic micropolar fluids subject to a uniform microtorque:
the unstable case

Abstract.

We study a three-dimensional, incompressible, viscous, micropolar fluid with
anisotropic microstructure on a periodic domain. Subject to a uniform micro-
torque, this system admits a unique nontrivial equilibrium. We prove that this
equilibrium is nonlinearly unstable. Our proof relies on a nonlinear boostrap
instability argument which uses control of higher-order norms to identify the in-
stability at the L2 level.
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1. Introduction

1.1. Brief discussion of the model. We restrict our attention to problems in which the microinertia
plays a significant role, and so in this chapter we only consider anisotropic micropolar fluids for which the
microinertia tensor is not isotropic, i.e. J has at least two distinct eigenvalues. In fact, we study micropolar
fluids whose microstructure has an inertial axis of symmetry, which means that the microinertia J has a
repeated eigenvalue. More concretely: there are some physical constants λ, ν > 0 which depend on the
microstructure such that, at every point, J is a symmetric matrix with spectrum {λ, λ, ν}. This is in some
sense the intermediate case between the case of isotropic microstructure where the microinertia has a repeated
eigenvalue of multiplicity three and the “fully” anisotropic case where the microstructure has three distinct
eigenvalues.

The equations of motion related to these quantities in the periodic spatial domain T3 = R3/(2πZ)
3
,

subject to an external microtorque τe3, read:




∂tu+ (u · ∇)u = µ̃∆u+ κ∇× ω −∇p on (0, T )× T3, (1.1a)

∇ · u = 0 on (0, T )× T3, (1.1b)

J (∂tω + (u · ∇)ω) + ω × Jω = κ∇× u− 2κω + (α̃− γ̃)∇ (∇ · ω) + γ̃∆ω + τe3 on (0, T )× T3, (1.1c)

∂tJ + (u · ∇) J = [Ω, J ] on (0, T )× T3, (1.1d)

where [ · , · ] denotes the matrix commutator, µ̃, κ, α̃, and γ̃ are physical constants related to viscosity, τ
denotes the magnitude of the microtorque, and Ω is the 3-by-3 antisymmetric matrix identified with ω via
the identity Ωv = ω × v for every v ∈ R3.

We have chosen to consider the situation in which external forces are absent and the external microtorque
is constant, namely equal to τe3 for some fixed τ > 0. Note that the choice of e3 as the direction of the mi-
crotorque may be made without loss of generality since the equations are equivariant under proper rotations,
in the sense that if (u, p, ω, J) is a solution of (1.1a)–(1.1d) then, for any R ∈ SO (3),

(
u, p,Rω,RJRT

)
is

a solution of (1.1a)–(1.1d) provided that the external torque τe3 is replaced by τRe3.
It is worth noting that this system is equivariant under Galilean transformations. More precisely: if

(u, p, ω, J) is a sufficiently regular solution of (1.1a)–(1.1d) then uavg :=
ffl
T3 u is constant in time and

(0, T )× T3 3 (t, y) 7→ (u− uavg, p, ω, J) (t, y + uavg)

also satisfies (1.1a)–(1.1d). We may therefore assume without loss of generality that u has average zero at
all times. Similarly, since the pressure only appears in the equations with a gradient, we are free to posit
that p has average zero for all times.

There are two ways to motivate our choice to have no external forces and a constant microtorque.
On one hand, it is reminiscent of certain chiral active fluids constituted of self-spinning particles which
continually pump energy into the system [BSAV17], as our constant microtorque does. On the other hand,
this choice of an external force – external microtorque pair is motivated by the dearth of analytical results
on anisotropic micropolar fluids. It is indeed natural, as a first step in the study of non-trivial equilibria
of anisotropic micropolar fluids, to consider a simple external force – external microtorque pair yielding
non-trivial equilibria for the angular velocity ω and the microinertia J . The simplest nonzero such pair is
precisely our choice of (0, τe3).

Let us now turn to the aforementioned equilibrium. Due to the uniform microtorque, the system admits a
nontrivial equilibrium. At equilibrium the fluid velocity is quiescent (ueq = 0), the pressure is null (peq = 0),
the angular velocity is aligned with the microtorque (ωeq = τ

2κe3), and the inertial axis of symmetry of the
microstructure is aligned with the microtorque such that the microinertia is Jeq = diag(λ, λ, ν).

Physically-motivated heuristics (which again we postpone until Section 2) suggest that the stability of
this equilibrium depends on the ‘shape’ of the microstructure. The heuristics suggest that if the microinertia
is inertially oblong, i.e. if λ > ν, then the equilibrium is unstable, and that if the microinertia is inertially
oblate, i.e. if ν > λ, then the equilibrium is stable. This nomenclature is justified by the fact that for rigid
bodies with an axis of symmetry and a uniform mass density, the notions of being oblong (or oblate), which
essentially means that the body is longer (respectively shorter) along its axis of symmetry than it is wide
across it, and being inertially oblong (respectivelly inertially oblate) coincide. Examples of inertially oblong
and oblate rigid bodies are provided in Figure 1. This chapter deals with the instability of inertially oblong
microstructure. In future work we will study the stability of inertially oblate microstructure.
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(a) This rigid body is inertially oblong if h2 > 6r2.

h

r

(b) This rigid body is inertially oblate if h2 < 6r2.

Figure 1. Two rigid bodies with uniform density which possess an inertial axis of symmetry.

1.2. Statement of the main result. The main thrust of this chapter is to prove that if the mi-
crostructure is inertially oblong, then the equilibrium is nonlinearly unstable in L2. A precise statement of
the theorem may be found in Theorem 5.2, but an informal statement of the result is the following.

Theorem 1.1 (L2 instability of the equilibrium). Suppose that the microstructure is inertially oblong,
i.e. suppose that λ > ν, and let Xeq = (ueq, ωeq, Jeq) = (0, τ2κe3,diag(λ, λ, ν)) be the equilibrium solution of

(1.1a)–(1.1d). Then Xeq is nonlinearly unstable in L2.

Here the notion of nonlinear instability is the familiar one from dynamical systems: there exists a
radius δ > 0 and a sequence of initial data {X0

n}∞n=0, converging to Xeq in L2, such that the solutions to
(1.1a)–(1.1d) starting from X0

n exit the ball B(Xeq, δ) in finite time, depending on n.
Note that in Theorem 1.1 the pressure has disappeared from consideration. This is because the pressure

plays only an auxiliary role in the equations and may be eliminated from (1.1a) by projecting onto the space
of divergence-free vector fields.

2. Background, preliminaries, and discussion

2.1. Previous work. Micropolar fluids have been extensively studied by the continuum mechanics
community over the last fifty years and an exhaustive literature review is beyond the scope of this chapter.
We restrict our attention to the mathematics literature here, in which case, to the best of our knowledge all
results relate to isotropic microstructure, where the microinertia J is a scalar multiple of the identity. In
that case the precession term ω × Jω from (1.1c) vanishes and the entire equation (1.1d) trivializes. Note
that in two dimensions the micro-inertia is a scalar, and therefore all micropolar fluids are isotropic.

In two dimensions the problem is globally well-posed, as per [ Luk01] where global well-posedness and
qualitative results on the long-time behaviour are obtained. Some quantitative information on long-time
behaviour is also known in two dimensions: for example, decay rates are obtained in [DC09]. The situation
is more delicate in three dimensions, which is an unsurprising assertion in the setting of viscous fluids. The
first discussion of well-posedness in three dimensions is due to Galdi and Rionero [GR77].  Lukaszewicz
then obtained weak solutions in [ Luk90] and uniqueness of strong solutions in [Lu89]. More recent work
has established global well-posedness for small data in critical Besov spaces [CM12] and in the space of
pseudomeasures [FVR07], as well as derived blow-up criteria [Yua10]. There is also an industry devoted
to the study of micropolar fluids when one or more of the viscosity coefficients vanishes: we refer to [DZ10]
for an illustrative example.

Various extensions of the incompressible micropolar fluid model considered here have been studied. For
example, compressible models [LZ16], models coupled to heat transfer [Tar06, KL L19], and models with
coupled magnetic fields [AS74, RM97] have all been studied. Again, to the best of our knowledge all of
these works consider isotropic micropolar fluids.

2.2. Equilibria. In this section we describe the two classes of equilibria which arise as particular
solutions of (1.1a)–(1.1d). A critical piece of this description is the following energy-dissipation relation:

d

dt

ˆ
T3

1

2
|u|2 +

1

2
J (ω − ωeq) · (ω − ωeq)−

1

2
Jωeq · ωeq (2.1)

= −
ˆ
T3

µ

2
|Du|2 + 2κ

∣∣∣∣
1

2
∇× u− (ω − ωeq)

∣∣∣∣
2

+ α|∇ · ω|2 +
β

2
|D0ω|2 + 2γ|∇ × ω|2.
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It is obtained by testing (1.1a) and (1.1c) against u and ω − ωeq respectively and integrating by parts. For
a full derivation, see Appendix 6.3. With the relation (2.1) in hand we may define two classes of equilibria.

Definition 2.1. We say that a solution (u, p, ω, J) of (1.1a)–(1.1d) is an equilibrium if ∂t (u, p, ω, J) = 0
and we say that it is an energetic equilibrium if d

dtErel = 0 where the relative energy Erel is given as in (2.1)
by

Erel (u, p, ω, J) =

ˆ
T3

1

2
|u|2 +

1

2
J (ω − ωeq) · (ω − ωeq)−

1

2
Jωeq · ωeq. (2.2)

There are two reasons why one might study the energetic equilibria introduced in Definition 2.1: (1) they
arise naturally as the stationary points of a Lyapunov functional and (2) we believe that they play an essential
role in characterizing the long-time behaviour of the system.

We justify (1) now and postpone the justification of (2) until after the identification of the various
equilibria is carried out in Proposition 2.2. Since the relative energy Erel is both non-increasing in time and
bounded below we may indeed view it as a Lyapunov functional. The observation that d

dtErel 6 0 follows
immediately from (2.1) and the boundedness from below of Erel follows from the fact that the spectrum of
the microinertia J is invariant over time.

More precisely: the conservation of microinertia for a homogeneous micropolar fluid means that there
exists some reference microinertia Jref to which J(t, x) is similar at all times 0 6 t < T and at every point
x ∈ T3. Denoting by λmax the largest eigenvalue of Jref it follows that the only non-positive term in Erel is
bounded below: −Jωeq · ωeq > −λmax|ωeq|2, and hence Erel itself is bounded below.

We now identify all of the (sufficiently regular) equilibria which belong to each class as defined in
Definition 2.1. Recall that we are considering a homogeneous micropolar fluid whose microstructure has an
inertial axis of symmetry, which means that there are physical constants λ, ν > 0 such that the microinertia
has spectrum {λ, λ, ν}. In particular this microinertia tensor is physical precisely when 2λ > ν > 0. We
will assume thereafter that strict inequalities hold, i.e. 2λ > ν > 0. This assumptions means that the
microstructure is not degenerate, in the sense that it corresponds to a genuinely three-dimensional rigid
body (as opposed to a degenerate rigid body which would be lower-dimensional, e.g. because it is flat in one
or more directions).

Proposition 2.2. Let (u, p, ω, J) be a sufficiently regular solution of (1.1a)–(1.1d) where u has average
zero.

(1) If (u, p, ω, J) is an equilibrium then u = 0, p = 0, ω = ωeq = τ
2κe3, and J = diag(λ, λ, ν) = λI2 ⊕ ν.

(2) If (u, p, ω, J) is an energetic equilibrium then either it is an equilibrium or u = 0, p = 0, ω = ωeq, and

J = et
τ
2κRJ̄(0)e−t

τ
2κR ⊕ λ where R =

(
0 −1
1 0

)
and where the spectrum of J̄(0) is {λ, ν}. Here ‘⊕’

denotes the direct sum of two linear operators, see Section 2.6 to recall the precise definition.

In simpler words Proposition 2.2 says that for both equilibria and energetic equilibria the microstructure
rotates in the direction of the imposed microtorque, with one crucial difference: the unique equilibrium
corresponds to the inertial axis of symmetry of the microstructure being aligned with the microtorque,
giving rise to a constant microinertia, whilst the energetic equilibria consist of an orbit where the inertial
axis of symmetry rotates in the plane perpendicular to the microtorque, giving rise to a periodic microinertia
(with period 4πκ/τ).

Proof of Proposition 2.2. Since equilibria are energetic equilibria we suppose that (u, p, ω, J) is an
energetic equilibrium. It follows from the energy-dissipation relation (2.1) that the dissipation vanishes, i.e.ˆ

T3

µ

2
|Du|2 + 2κ

∣∣∣∣
1

2
∇× u− (ω − ωeq)

∣∣∣∣
2

+ α|∇ · ω|2 +
β

2
|D0ω|2 + 2γ|∇ × ω|2 = 0.

In particular: ω is constant and u has constant curl. Coupling this with the fact that u is divergence-free
we deduce that u is harmonic. Since u has average zero, it follows that u = 0, and hence that p = 0 (recall
that we require p to have average zero) and ω = ωeq.

So now we know from (1.1c) that the precession term ω×Jω =
(
τ
2κ

)2
e3×Je3 vanishes, and hence J has

the block form J = J̄ ⊕ J33 for some 2-by-2 matrix J̄ . The conservation of microinertia (1.1d) now becomes
the ODE ∂tJ = [tenωeq, J ] = τ

2κ

[
R, J̄

]
⊕ 0 which may be solved explicitly to yield J̄(t) = et

τ
2κRJ̄(0)e−t

τ
2κR

and J33(t) = J33(0).



54 2. INSTABILITY OF AN ANISOTROPIC MICROPOLAR FLUID

e3

(a) Unstable.

e3

(b) Globally attracting?

e3

(c) Globally attracting?

e3

(d) Unstable?

Figure 2. Depictions of the microstructure for the equilibrium (A, C) and an energetic
equilibrium (B, D) corresponding to both the oblong (A, B) and oblate cases (C, D). B and
C are conjectured to be globally attracting for the oblong and oblate cases respectively, D
is conjectured to be be unstable for the oblate case, and we prove in Theorem 1.1 that A is
unstable.

There are now two cases to consider: either J̄ has a repeated eigenvalue λ or J̄ has distinct eigenvalues
λ and ν. Since et

τ
2κRJ̄(0)e−t

τ
2κR is constant in time if and only if J̄(0), and hence J̄(t), has a repeated

eigenvalue, the result follows. �

As the next section suggests, we believe that the global attractors of (1.1a)–(1.1d) may be characterized
in terms of the equilibrium and the orbit of energetic equilibria. This is summarized in the conjecture below,
which is the second reason why energetic equilibria are worthy of attention.

Conjecture 2.3.

(1) If the microstructure is inertially oblong, i.e. λ > ν, then the orbit of energetic equilibria identified in
Proposition 2.2 is the global attractor of the system (1.1a)–(1.1d).

(2) If the microstructure is inertially oblate, i.e. λ < ν, then the equilibrium identified in Proposition 2.2
is the global attractor of the system (1.1a)–(1.1d).

A depiction of the equilibrium and the energetic equilibria configurations of the microstructure can be
found in Figure 2, where we also label each configuration with its relevant conjectured long-time behaviour.

2.3. Heuristics for the long-time behaviour. In this section we briefly discuss heuristics for the
long-term behaviour of the system (1.1a)–(1.1d). The central element of the reasoning that follows is the
energy-dissipation relation (2.1). As remarked in Section 2.2, this relation tells us that the relative energy
Erel defined in (2.2) is non-increasing in time and bounded below. Let us therefore, for the sake of this
discussion, assume that Erel approaches its absolute minimum as time approaches +∞. In particular this
means that each term in Erel approaches its absolute minimum, from which we deduce that u approaches zero,
ω approaches ωeq (since J is strictly positive-definite at time t = 0 and hence strictly positive-definite for all
time), and −J33 approaches −λmax for λmax denoting the maximum eigenvalue of J , i.e. λmax = max(λ, ν).

This last observation is precisely where the dichotomy between inertially oblong and inertially oblate
microstructure comes in. If the microstructure is inertially oblong, i.e. λ > ν, then J33 approaches λ which
means that J̄ must consist of the distinct eigenvalues λ, ν, and hence the global attractor is conjectured to
be the orbit of energetic equilibria. If the microstructure is inertially oblate, i.e. ν > λ, then J33 approaches
ν and hence J̄ has repeated eigenvalues equal to λ, such that the global attractor is conjectured to be the
equilibrium.

2.4. Heuristics for the origin of the instability. In this section we discuss heuristics for the origin
of the instability of the system (1.1a)–(1.1d). Beyond being helpful heuristics that physically motivate the
instability of the system, the ideas presented below actually form the core of our proof of the nonlinear
instability.

We begin with another energy-dissipation relation, which is associated with the linearization of the
problem (1.1a)–(1.1d) about its equilibrium. This relation is

d

dt
Elin :=

d

dt

ˆ
T3

(
1

2
|u|2 +

1

2
Jeqω · ω −

1

2

1

λ− ν
( τ

2κ

)2

|a|2
)

= −D (u, ω − ωeq) (2.3)
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(a) Physical parameters: λ = 3.2, ν = 0.6, µ = 4.3,
κ = 3.3, α = 0.9, β = 6.8, γ = 0.4, τ = 4.4.
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(b) Physical parameters: λ = 3.6, ν = 1.2, µ = 2.4,
κ = 0.4, α = 5.3, β = 3.1, γ = 1.7, τ = 20.

Figure 3. An illustration of the fact that the instability is not exclusively due to the zero
mode: depending on the physical parameter regime the eigenvalue with largest real part
may or may not occur when k = 0. Here Mk denotes the symbol of the linearization of
(1.1a)–(1.1d) about the equilibrium.

where a = (J31, J32) = (J13, J23) and where the dissipation D is given as in (2.1) by

D (u, ω) =

ˆ
T3

µ

2
|Du|2 + 2κ

∣∣∣∣
1

2
∇× u− ω

∣∣∣∣
2

+ α|∇ · ω|2 +
β

2
|D0ω|2 + 2γ|∇ × ω|2.

Note that only part of the micro-inertia J appears in (2.3), namely a = (J31, J32) which corresponds to the
products of inertia which describe the moment of inertia about the e1-axis and e2-axis, respectively, when the
microstructure rotates about the e3-axis. This is due to the fact that, as explained in detail in Section 3.1,
the linearized problem can de decomposed into blocks which do not interact with one another. In particular
the block governing the dynamics of u, ω, and a is the only block which produces non-trivial dynamics, and
it is this block which gives rise to (2.3).

Since the integrand of Elin in (2.3), viewed as a quadratic form on (u, ω, a), has negative directions
precisely when the microstructure is inertially oblong, i.e. when λ > ν, this suggests that the equilibrium is
unstable in that case.

We actually know a little bit more about the instability mechanism. If we denote by M (k), where
k ∈ Z3, the symbol of the linearized operator about the equilibrium, then we can compute the spectrum of
M(0) explicitly and see that is has exactly two unstable eigenvalues, which come as a conjugate pair. An
important point to note here is that the only nonzero components of the eigenvectors corresponding to this
conjugate pair are the components corresponding to a and ω̄, which denotes the horizontal components of
ω, i.e. ω̄ = (ω1, ω2). It is thus precisely a and ω̄ that are at the origin of the instability.

This is particularly interesting since M(0) is precisely (up to neglecting its components depending on u)
the linearization of the ODE 




J
dω

dt
+ ω × Jω = τe3 − 2κω

dJ

dt
= [Ω, J ]

about its equilibrium (ωeq, Jeq) =
(
τ
2κe3,diag (λ, λ, ν)

)
, where here ω and J are only time-dependent. This

ODE describes the rotation of a damped rigid body subject to a uniform torque, which tells us that instability
of the system (1.1a)–(1.1d) stems precisely from the instability of this ODE.

Finally note that, although this ODE plays a key role in explaining the instability mechanism, it does
not fully characterize it. To understand what we mean by this, recall that the linearization of the ODE about
its equilibrium describes the evolution of the zero Fourier mode of the linearized PDE. However, the nonzero
Fourier modes play a nontrivial role in the instability mechanism. Indeed numerics show that, depending on
the physical regime, the most unstable mode (i.e. that giving rise to the eigenvalue with the largest positive
real part) may or may not be the zero mode. This is shown in Figure 3.



56 2. INSTABILITY OF AN ANISOTROPIC MICROPOLAR FLUID

2.5. Summary of techniques and plan of chapter. Our technique for proving Theorem 1.1 is to
employ the nonlinear bootstrap instability framework first introduced by Guo-Strauss [GS95a], which is
not so much a black-box theorem as it is a strategy for proving instability. In broad strokes, the idea is
to construct a maximally unstable solution to the linearized equations and then employ a nonlinear energy
method to prove that this solution is nonlinearly stable, i.e. the nonlinear dynamics stay close to the linear
growing mode, which then leads to instability.

An essential feature of the Guo-Strauss bootstrap instability framework is that it does not require the
presence of a spectral gap, as is required for other standard methods used to prove nonlinear instability (see
for example [FSV97]). This is crucial for us since it is quite delicate to obtain spectral information about
the problem at hand, as discussed in more detail below. In particular, note that Proposition 3.9 tells us that
a pair of conjugate eigenvalues of the linearized operator approach the imaginary axis as the wavenumber
approaches infinity. As an immediate consequence, we may thus deduce that there is no spectral gap.

In order to implement the bootstrap instability strategy we need four ingredients. The first is the
maximally unstable linear growing mode. This is a solution to the linearized equations (linearized around
the equilibrium) that grows exponentially in time (when measured in various Sobolev norms) at a rate that
is maximal in the sense that no other solution to the linearized equations grows more rapidly. The second is
a scheme of nonlinear energy estimates that allows us to obtain control of high-regularity norms of solutions
to the nonlinear problems in terms of certain low-regularity norms. This is the bootstrap portion of the
argument. The third is a low-regularity estimate of the nonlinearity in terms of the square of the high-
regularity energy, valid at least in a small energy regime. Finally, we need a local existence theory for the
nonlinear problem that is capable of producing solutions to which the bootstrap estimates apply. With these
ingredients in hand, we can then prove that the nonlinear solution stays sufficiently close to the growing
linearized solution that it must leave a ball of fixed radius within a timescale computed in terms of the data.

In Section 3 we construct the maximally unstable solution to the linearized equations. A principal
difficulty is encountered immediately upon linearizing: the resulting (spatial) differential operator is not self-
adjoint. This is due entirely to the anisotropy of the microstructure, and in particular to the term ω×Jω in
(1.1c); indeed, in the case of isotropic microstructure this term vanishes and the linearized operator becomes
self-adjoint. The lack of self-adjointness means we have far fewer tools at our disposal, and in particular it
means that we cannot employ variational methods to find the maximal growing mode.

Since we work on the torus and the linearization is a constant coefficient problem, we are naturally
led to seek the maximal solution in the form of a growing Fourier mode solution. This leads to an ODE
in C8 of the form ∂tX̂k = B̂kX̂k, where k ∈ Z3 is the wavenumber and B̂k ∈ C8×8 is not Hermitian.
Without the precision tools associated to Hermitian matrices, we are forced to naively study the degree eight
characteristic polynomial of B̂k, which, due to the appearance of the physical parameters α, β, γ, κ, µ, τ , λ,
ν, in addition to the wave number k, is an unmitigated mess. Numerics (see Figure 3) suggest that for any
k ∈ Z3 the spectrum consists of a conjugate pair of unstable eigenvalues, a zero eigenvalue (coming from the

incompressibility condition), and five stable eigenvalues. However, due to the inherent complexity of B̂k and
its characteristic polynomial, we were unable to prove this, except in the case k = 0.

Failing at the direct approach of simply factoring the characteristic polynomial of B̂k, we instead employ
an indirect approach based on isolating the highest order (in terms of the wavenumber k) part of the char-
acteristic polynomial and deriving its asymptotic form as |k| → ∞. For this it’s convenient to parameterize
the matrices in terms of k ∈ R3 rather than Z3. Using this idea, the special form of the highest-order term,
and the implicit function theorem, we are then able to prove the existence of an unstable conjugate pair of
eigenvalues, smoothly parameterized by k ∈ R3 in a neighborhood of infinity. Remarkably, since the neigh-
borhood of infinity contains all but finitely many lattice points from Z3, we conclude from this argument
that for all but finitely many wavenumbers B̂k is unstable. Combining this with a number of delicate spectral
estimates and an application of Rouché’s theorem, we are then able to find k∗ ∈ Z3 with the largest growth
rate. From this and a Fourier synthesis we then construct the desired maximal growing mode.

The lack of self-adjointness is also an issue when we seek to use spectral information about B̂k to obtain

bounds on the corresponding matrix exponential etB̂k . These bounds are required to obtain the bounds on
the semigroup generated by the linearization that verify that our growing mode is actually maximal among

all linear solutions. We only know that etB̂k is similar to its diagonal matrix up to a change of basis matrix
whose norm depends on k. Circumventing this issue requires a good understanding of the decay of the
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spectrum of the symmetric part of B̂k as k becomes large, and the precise workaround is discussed at the
beginning of the proof of Proposition 3.11.

In Section 4 we derive the nonlinear bootstrap energy estimates and the nonlinearity estimate. Here the
primary difficulty is related to rewriting the problem in a way that prevents time derivatives from entering the
nonlinearity. If we were to naively rewrite (1.1c) by writing J∂tω = Jeq∂tω + (J − Jeq) ∂tω and considering
the term (J − Jeq) ∂tω as a remainder term, then we would then not be able to close the estimates due to
this time derivative being present as part of the nonlinear remainder. Instead we must multiply (1.1c) by
JeqJ

−1, which solves the time derivative problem but significantly worsens the form of the remaining terms
in the nonlinearity. In spite of this, we are able to derive the appropriate estimates needed for the bootstrap
argument.

We delay the development of the final ingredient, the local existence theory, until Appendix 6.1. Our
local existence theory is built on a nonlinear Galerkin scheme that employs the Fourier basis for the finite
dimensional approximations. To solve the resulting nonlinear, but finite dimensional, ODE we borrow many
of the nonlinear estimates from Section 4.

Section 5 combines the four ingredients to prove our instability result. This culminates in Theorem 5.2,
the main result of the chapter. Finally, in Appendix 6.2 we record a number of auxiliary results that are
used throughout the main body of the chapter.

2.6. Notation. We say a constant C is universal if it only depends on the various parameters of the
problem, the dimension, etc., but not on the solution or the data. The notation α . β will be used to mean
that there exists a universal constant C > 0 such that α 6 Cβ.

Let us also record here some basic notation for linear algebraic operations. For any w ∈ Rn we denote by
P‖ (w) and P⊥ (w) the orthogonal projections onto the span of w and its orthogonal complement, respectively.

More precisely: for any nonzero w, P‖ (w) = w⊗w
|w|2 and P⊥ (w) = I − w⊗w

|w|2 , whilst P‖ (0) = 0 and P⊥ (0) = I.

For any v ∈ R2 and w ∈ R3 we write w̄ = (w1, w2), w̄⊥ = (−w2, w1), ṽ = (v1, v2, 0), and ṽ⊥ = (−v2, v1, 0).
Finally, let X1, X2, Y1, and Y2 be normed vector spaces, let L1 ∈ L (X1, Y1), and let L2 ∈ L (X2, Y2). The
direct sum of L1 and L2, denoted L1 ⊕ L2, is the bounded linear operator from X1 ×X2 to Y1 × Y2 defined
via, for every (f1, f2) ∈ X1 ×X2, (L1 ⊕ L2) (f1, f2) := (L1f1, L2f2).

3. Analysis of the linearization

To begin we record the precise form of the linearization of (1.1a)–(1.1d) about the equilibrium solution
(ueq, peq, ωeq, Jeq) = (0, 0, τ2κe3,diag(λ, λ, ν)) and introduce notation which allows us to write the linearized
problem in a compact form. Then in Section 3.1 we note that the linearized operator has a natural block
structure with only one block which gives rise to non-trivial dynamics. It is this component whose spectrum
we study in detail in Section 3.2. The results from Section 3.2 are then used to construct the semigroup asso-
ciated with the linearization in Section 3.3 and to construct a maximally unstable solution to the linearized
problem in Section 3.4.

The linearization is



∂tu = (µ+ κ/2) ∆u+ κ∇× ω −∇p, (3.1a)

Jeq∂tω = − (ω × Jeqωeq + ωeq × Jωeq + ωeq × Jeqω)

+κ∇× u− 2κω + (α+ β/3− γ)∇∇ · ω + (β + γ) ∆ω, and (3.1b)

∂tJ = [Ωeq, J ] + [Ω, Jeq] (3.1c)

subject to ∇ · u = 0 which, for X = (u, ω, J), D = I3 ⊕ Jeq ⊕ IMat(3) (where IMat(3) denotes the identity

function on the space of 3-by-3 matrices), Λ (p) = (−∇p, 0, 0), and an appropriate linear operator L̃ can be
written more succintly as

∂tDX = L̃X + Λ (p) subject to ∇ · u = 0. (3.2)

3.1. The block structure. The linearization (3.1a)–(3.1c) can be decomposed into blocks which do
not interact with one another. Notably, only one of these blocks gives rise to non-trivial dynamics, so we
will identify this block before studying its spectrum in Section 3.2. More precisely: writing

J =

(
J̄ a
aT J33

)
,
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the linearization becomes




∂tu = (µ+ κ/2) ∆u+ κ∇× ω −∇p, (3.3a)

Jeq∂tω = κ∇× u− 2κω + (α+ β/3− γ)∇∇ · ω + (β + γ) ∆ω − (λ− ν)
t

2κ
ω̃⊥ −

(
t

2κ

)2

ã⊥, (3.3b)

∂ta = (λ− ν) ω̄⊥ +
t

2κ
a⊥, (3.3c)

∂tJ̄ =
τ

2κ

[
R, J̄

]
, and (3.3d)

∂tJ33 = 0 (3.3e)

subject to ∇ · u = 0, where R is the 2-by-2 matrix given by R = e2 ⊗ e1 − e1 ⊗ e2. In particular, if we write

Y = (u, ω, a) and D̄ = I3 ⊕ Jeq ⊕ I2 then (3.3a), (3.3b), and (3.3c) can be written as ∂tD̄Y = M̃Y + Λ (p)

subject to ∇ · u = 0 for an appropriate operator M̃. In particular, since M̃ commutes with the application

of the Leray projector to u it suffices to study ∂tD̄Y = M̃ P̄Y , where P̄ := PL ⊕ I3 ⊕ I2 for PL denoting the
Leray projector. Recall that the Leray projector is the projection onto divergence-free vector fields, which
on the 3-torus can be written explicitly as PL = −∇×∆−1∇× (see Lemma 6.26).

So finally, for B := D̄−1M̃ P̄ we have that L := D−1L̃P, where P := PL⊕ I3⊕ IMat(3), can be written as
L = B ⊕ τ

2κ [R, · ]⊕ 0. Note that using this notation we may write the linearized problem (3.2), after Leray
projection, as

∂tX = LX. (3.4)

This is a particularly convenient formulation since it is amenable to attack via semigroup theory.
What matters for the purpose of the spectral analysis carried out in the following section is that the

equations governing the non-trivial dynamics of the problem can be written as ∂tY = BY . The punchline is
that it suffices to study the spectrum of B, which is precisely what we do in Section 3.2 below.

3.2. Spectral analysis. In this subsection we study the spectrum of the operator B introduced in the
preceding section. Since our domain is the torus it is natural to consider the symbol B̂ of this operator,
which gives a matrix in C8×8 for each wavenumber k ∈ Z3. However, it will be more convenient for us to
parameterize these with a continuous wavenumber k ∈ R3; for each such k we define B̂k ∈ C8×8 according to

B̂k :=


−
(
µ+ κ

2

)
|k|2P⊥ (k) iκk× 0

J−1
eq (iκk×)P⊥ (k) −2κJ−1

eq − α̃|k|2J−1
eq P‖ (k)− γ̃|k|2J−1

eq P⊥ (k)−
(
1− ν

λ

)
τ
2κR33 − 1

λ

(
τ
2κ

)2
R32

0 (λ− ν)R23
τ
2κR22


 ,

(3.5)

where P‖ and P⊥ are as defined in Section 2.6, and

R22 = R =

(
0 −1
1 0

)
, R23 =

(
0 −1 0
1 0 0

)
, R32 =




0 −1
1 0
0 0


 , and R33 =




0 −1 0
1 0 0
0 0 0


 .

Note here that we have abused notation by writing iκk× as a place-holder to indicate the matrix corre-
sponding to the linear map z 7→ iκk × z.

It is somewhat tricky to extract useful spectral information from B̂k directly. Instead, we introduce a
sort of similarity transformation Mk := QkB̂kQ̄k in such a way that Mk is a real matrix, i.e. Mk ∈ R8×8 for
each k ∈ R3, which carries the spectral information of B̂k. Here the matrices Qk, Q̄k ∈ C8×8 are defined by

Qk := T (k)⊕ J1/2
eq ⊕ sR22 and Q̄k := T (k)⊕ J−1/2

eq ⊕
(
−s−1

)
R22,

where T (k) := ik×
|k| if k 6= 0, T (0) := 0, and s := −1√

λ−ν
t

2κ . Unfortunately, Qk and Q̄k are not quite invertible,

so this isn’t exactly a similarity transformation. When k 6= 0, this is due to the fact that (k, 0, 0) belongs to
the kernels of both operators, a fact that is ultimately related to the divergence-free condition for u, which
reads k · ûk = 0 on the Fourier side. In principle we could remove the kernel and restore invertibility, but the
resulting 7-by-7 matrices are less convenient to work with. As such, we will stick with the 8-by-8 setup and
find a work-around for the invertibility issue. Ultimately we will prove in Propositions 3.10 and 3.11 that
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we can gain good spectral information about Mk, and it will follow from Definition 3.1 and Lemmas 3.2 and
6.8 that the spectrum of B̂k coincides with that of Mk. Note that for all these k-dependent matrices we will
write equivalently Mk or M (k).

An important observation is that the matrix Mk ∈ R8×8 may be decomposed into its symmetric part
Sk ∈ R8×8 and its antisymmetric part A ∈ R8×8 such that A is independent of k. More precisely

Sk =



−
(
µ+ κ

2

)
|k|2P⊥ (k) κ|k|P⊥ (k) J

−1/2
eq 0

κ|k|J−1/2
eq P⊥ (k) −2κJ−1

eq − α̃|k|2J−1/2
eq P‖ (k) J

−1/2
eq − γ̃|k|2J−1/2

eq P⊥ (k) J
−1/2
eq φI32

0 φI23 0


 (3.6)

and
A = 0⊕ cR33 ⊕ dR22, (3.7)

where

φ =

√
1− ν

λ

t

2κ
, c =

(ν
λ
− 1
) t

2κ
, and d =

t

2κ
. (3.8)

Note that Mk is written out explicitly in all its gory details in Appendix 6.4.
We now turn to the issue of proving that the spectra of B̂k and Mk coincide. To do this we will need to

use the notion of linear maps acting on quotient spaces. Here we quotient out by the spaces Vk defined as
V0 := span

{
(v, 0, 0)

∣∣ v ∈ R3
}

as well as, for any nonzero k ∈ R3, Vk := span (k, 0, 0).

Definition 3.1 (Linear maps acting on quotient spaces). Let A ∈ Cn×n and let V be a subspace of
Cn. We say that A acts on Cn/ V if and only if kerA = V and imA ⊆ V ⊥, where V ⊥ is the orthogonal
complement relative to the standard Hermitian structure on Cn.

We refer to Lemma 6.8 for the key property of linear maps acting on quotient spaces which we will use
in the sequel, namely conditions under which two matrix representations of such maps are equivalent, even
when the ‘change of basis’ matrices involved are not invertible. We now prove that the matrices we are
dealing with here do satisfy the hypotheses of Lemma 6.8.

Lemma 3.2. For any k ∈ R3, B̂k, Qk, and Q̄k act on C8/ Vk and QkQ̄k = Q̄kQk = projV ⊥k .

Proof. First we consider B̂k for k 6= 0. Since B̂†k (k, 0, 0) = B̂k (k, 0, 0) = 0, where † denotes the

conjugate transpose, we know that im B̂k ⊆ Vk and that Vk ⊆ ker B̂k, so we only have to show that ker B̂k ⊆
Vk. Let y = (v, θ, b) ∈ ker B̂k. The third row of (3.5) tells us that b = 2κ(λ−ν)

t θ̄ and hence

0 = D̄B̂ky · y = −µ|k|2|v⊥|2 − 2κ

∣∣∣∣
1

2
ik × v − θ

∣∣∣∣
2

− α̃|k|2
∣∣θ‖
∣∣2 − γ̃|k|2|θ⊥|2.

Therefore θ = v⊥ = 0, and hence also b = 0, such that indeed y =
(
v‖, 0, 0

)
∈ Vk. So indeed B̂k acts on

C8/ Vk.

Now we consider B̂0, proceeding essentially as we did above for the case k 6= 0. Since B̂†0 (v, 0, 0) =

B̂0 (v, 0, 0) = 0 for any v ∈ R3 it follows that im B̂0 ⊆ V0 and that V0 ⊆ ker B̂0. Now let y = (v, θ, b) ∈ ker B̂0

and observe that, as above, b = 2κ(λ−ν)
t θ̄ and that hence 0 = D̄B̂0y · y = −2κ|θ|2. Therefore θ = 0 and b = 0

such that indeed y = (v, 0, 0) ∈ V0. So ker B̂0 ⊆ V0 and thus indeed B̂0 acts on C8/ V0.

We now turn our attention to Qk and Q̄k. Since (k, 0, 0)
T
Qk = (k, 0, 0)

T
Q̄k = (k · T (k)) ⊕ 0 ⊕ 0 = 0

for any nonzero k ∈ R3 and since (v, 0, 0) · Q0 = (v, 0, 0) · Q̄0 = v · T (0) ⊕ 0 ⊕ 0 = 0, we may deduce that

imQk, im Q̄k ⊆ V ⊥k for all k ∈ Z3. Now observe that, since J
1/2
eq and R22 are invertible, we deduce that

kerQk = ker Q̄k = (kerT (k)) ⊕ 0 ⊕ 0. Therefore, since kerT (k) = span {k} when k is nonzero and since
kerT (0) = R3, we have that indeed kerQk = ker Q̄k = Vk for all k ∈ Z3, i.e. Qk and Q̄k act on C8/ Vk for
all k ∈ Z3.

Finally observe that, since R2
22 = −I2, it follows that QkQ̄k = Q̄kQk = T (k)

2⊕I3⊕I2, where T (0)
2

= 0

and T (k)
2

= (ik×)2

|k|2 = projspan{k}⊥ for k 6= 0. Note that we have used the ε-δ identity εaijεakl = δikδjl−δilδjk
to deduce that (k×)

2
= −|k|2 projspan{k}⊥ . So indeed QkQ̄k = Q̄kQk = projV ⊥k . �

We now record how Mk behaves under transformations of the form k 7→ −k and k = (k̄, k3) 7→ (H̄k̄, k3)
for H̄ an orthogonal map. This comes in handy when constructing the maximally unstable solution in Section
3.4.
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Lemma 3.3 (Equivariance and invariance of M). Let H be a horizontal rotation, i.e. H ∈ R3×3 such

that H = H̄⊕1 for some 2-by-2 orthogonal matrix H̄. We call H̃ := H⊕H⊕H̄ the joint horizontal rotation
associated with H.

(1) M is equivariant under horizontal rotations, i.e. for any k ∈ R3 and any horizontal rotation H,

M (Hk) = H̃M (k) H̃T and
(2) M is even, i.e. for any k ∈ R3, M (−k) = M (k).

Proof. Note that k 7→ P‖ (k) , P⊥ (k) are both even and equivariant under horizontal rotations, i.e., for

any horizontal rotation H, P‖ (Hk) = HP‖ (k)HT and similarly for P⊥, whilst k 7→ |k| is even and invariant
under horizontal rotations. We can therefore write

S (k) =



A (k) B (k) 0
C (k) −2κJ−1

eq +D (k) φI32

0 φI23 0




for some A,B,C,D which are equivariant under horizontal rotations and even. It follows immediately that
M is even. Now let H be a horizontal rotation. Since H̄I23H = I23, HI32H̄ = I32, and since H commutes

with J−1
eq one may readily compute that S (Hk) = H̃S (k) H̃T . Finally, since two-dimensional rotations (i.e.

elements of O (2)) commute with one another, A = H̃AH̃T and so indeed M is equivariant under horizontal
rotations. �

We now obtain some fairly crude bounds on the spectrum of Mk in Lemmas 3.5, 3.6, and 3.7. These
bounds are nonetheless essential in the proofs of Propositions 3.10 and 3.11. As a first step in obtaining
these bounds we identify the quadratic form associated with Sk, the symmetric part of Mk, in Lemma 3.4.

Lemma 3.4 (Quadratic form associated with Sk). For any y = (v, θ, b) ∈ R3 × R3 × R2 = R8 and any
k ∈ R3,

S (k) y · y = −µ|k|2|v⊥|2 − 2κ

∣∣∣∣
1

2
|k|v⊥ − J−1/2

eq θ

∣∣∣∣
2

− α̃|k|2
∣∣∣∣
(
J−1/2
eq θ

)
‖

∣∣∣∣
2

− γ̃|k|2
∣∣∣
(
J−1/2
eq θ

)
⊥

∣∣∣
2

+ 2φθ̄ · b.

where, for any w ∈ R3, w‖ := projk w and w⊥ := (I − projk)w, and φ is as in (3.8).

Proof. This follows immediately from the definition of S in (3.6). �

We now use Lemma 3.4 to obtain upper bounds on the eigenvalues of S.

Lemma 3.5 (Spectral bounds on Sk). For any k ∈ R3, it holds that maxσ (Sk) 6 min
(
φ, Cσ
|k|2
)

, where

Cσ := φ2λ
min(α̃,γ̃) and φ is as in (3.8).

Proof. Let k ∈ R3 and let y = (v, θ, b) ∈ R3 × R3 × R2. By Lemma 3.4

S (k) y · y 6 −α̃|k|2
∣∣∣∣
(
J−1/2
eq θ

)
‖

∣∣∣∣
2

− γ̃|k|2
∣∣∣
(
J−1/2
eq θ

)
⊥

∣∣∣
2

+ 2φθ̄ · b (3.9)

from which it follows that S (k) y · y 6 φ
(
|θ̄|2 + |b|2

)
and hence that maxσ (Sk) 6 φ. Now observe that

− α̃|k|2
∣∣∣∣
(
J−1/2
eq θ

)
‖

∣∣∣∣
2

− γ̃|k|2
∣∣∣
(
J−1/2
eq θ

)
⊥

∣∣∣
2

6 −min (α̃, γ̃) |k|2
∣∣∣J−1/2
eq θ

∣∣∣
2

6 − 1

λ
min (α̃, γ̃) |k|2|θ̄|2. (3.10)

Combining (3.9) and (3.10) tells us that, for k 6= 0,

S (k) y · y 6 −φ
2|k|2
Cσ

|θ̄|2 + 2φθ̄ · b = −φ
2|k|2
Cσ

∣∣∣∣θ̄ −
Cσ
φ|k|2 b

∣∣∣∣
2

+
Cσ
|k|2 |b|

2 6
Cσ
|k|2 |y|

2

from which we deduce that maxσ (Sk) 6 Cσ
|k|2 . �

The bounds on S from Lemma 3.5 coupled with elementary considerations from linear algebra allow us to
deduce bounds on the real parts of the eigenvalues of Mk.

Lemma 3.6 (Bounds on the real parts of eigenvalues of Mk). For any k ∈ R3, and with φ as in (3.8), it
holds that max Reσ (Mk) 6 φ.
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Proof. This follows immediately from Lemmas 3.5 and 6.9. �

To conclude this batch of spectral estimates we obtain bounds on the imaginary parts of the eigenvalues of
Mk as a corollary of the Gershgorin disk theorem (Theorem 6.10).

Lemma 3.7 (Bounds on the imaginary parts of eigenvalues of Mk). For any k ∈ R3 it holds that

max|Imσ (Mk)| 6
√

7t
2κ .

Proof. This follows from Corollary 6.11 since

||A||22 = 2
(
c2 + d2

)
=

(
t

2κ

)2

(1− 2ν (ν − 2λ)) 6

(
t

2κ

)2

.

�

We now record some useful facts about the characteristic polynomial p of Mk. Computing p was done
by using a computer algebra system, and we thus record Mk in Appendix 6.4 in a form which can readily
be used for computer-assisted algebraic manipulations.

Upon computing p we observe that it is a polynomial in k of degree 10 and that it only depends on even
powers of |k̄| and k3. Therefore we may write

p (x, k) =

5∑

q=0

rq
(
x, |k̄|, k3

)
(3.11)

where each rq is a polynomial in
(
x, |k̄|, k3

)
which is homogeneous of degree 2q in

(
|k̄|, k3

)
. In particular:

r5

(
x, |k̄|, k3

)
= C0x

(
x2 + d2

)
|k|10 and r4

(
x, |k̄|, k3

)
= |k|6

(
t1 (x) |k̄|2 + t2 (x) k2

3

)
(3.12)

where
ti (x) = x2

(
−Ci,0 + Ci,1x+ Ci,2

(
x2 + d2

))
(3.13)

and

C0 = (µ+ κ/2)
2

(α+ 4β/3) (β + γ)
2
/(νλ2),

C1,0 = (α+ 5β/3 + γ) (β + γ) (µ+ κ/2)
2
φ/(νλ), C2,0 = 2 (α+ 4β/3) (β + γ) (µ+ κ/2)φ/(νλ),

C1,1 = C2,1 = 2κ (µ+ κ/2) (β + γ) (2µ (α+ 4β/3) + (µ+ κ/2) (β + γ)) /(νλ2),

C1,2 = (µ+ κ/2) (β + γ) (2 (α+ 4β/3) (β + γ) + (µ+ κ/2) ((α+ 5β/3 + γ)λ+ (α+ 4β/3) ν)) /(νλ2) and

C2,2 = 2 (µ+ κ/2) (β + γ) ((α+ 4β/3) (β + γ) + (µ+ κ/2) ((α+ 4β/3)λ+ (β + γ) ν/2)) /(νλ2).

The exact dependence of these constants on the various physical parameters is not of concern here, since all
that matters is that all these constants are strictly positive, i.e. C0, Ci,j > 0 for all i, j.

We now use Rouché’s Theorem (c.f. Theorem 6.16) and our explicit expressions for the leading factors
(with respect to |k|) of the characteristic polynomial p of Mk to control the number of eigenvalues remaining
within bounded neighbourhoods of the origin as |k| becomes large. This is stated precisely in Lemma 3.8
below, which is another ingredient of the proof of Proposition 3.10.

Lemma 3.8 (Isolation of some eigenvalues of M for large wavenumbers). For any R > t
2κ there exist

KI > 0 such that for any k ∈ R3, if |k| > KI then there are precisely three eigenvalues of Mk in an open
ball of radius R about the origin.

Proof. Let k ∈ R3 be nonzero, let p (·, k) denote the characteristic polynomial of Mk, and let us write
s := p− r5 for r5 as in (3.12). The key observations are that r5 has precisely three roots in BR when R > t

2κ
and that s is lower-order in k than r5. The result then follows from Rouché’s Theorem since r5 dominates s
for large |k|.

More precisely, let R > d = t
2κ and let r̃5 (x) := C0x

(
x2 + d2

)
for C0 as in (3.12) such that r5 (x, k) =

r̃5 (x) |k|10. Since r̃5 is a polynomial whose roots are away from ∂BR, since s (x, k) is a polynomial of degree

8 in k, and since ∂BR is compact, it follows that Cr := inf∂BR |r̃5| > 0 and that Cs := sup
x∈∂BR
k 6=0

s(x,k)
|k|8 <∞.

So pick KI :=
√

Cs
Cr

and observe that for any k ∈ Z3, if |k| > KI then, on ∂BR,

|r5 (·, k)| = |r̃5||k|10 > Cr|k|8K2
I >

Cr
Cs
K2
I |s (·, k)| = |s (·, k)|. (3.14)
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Since r5 (·, k) has three roots in BR, namely 0 and ± t
2κ , we may use (3.14) to deduce from Theorem 6.16

that p (·, k) has three roots in BR. �

In Proposition 3.9 below we use the Implicit Function Theorem to identify the trajectories of some
unstable eigenvalues of Mk when |k| is large. In particular we will see in the proof of Proposition 3.10 that,
combining this result with earlier results from this section, we may deduce that these eigenvalues are the
most unstable eigenvalues of Mk for large k. Here we say that an eigenvalue is unstable when it has strictly
positive real part.

Proposition 3.9 (Trajectories of some eigenvalues of M for large wavenumbers). There exists KT > 0
and a function z :

{
k ∈ R3 : |k| > KT

}
→ C, which is continuously differentiable in the real sense (i.e. after

identifying C with R2 in the canonical way), such that

(1) for every k ∈ R3, if |k| > KT then

(a) z (k) and z (k) are eigenvalues of M (k) and
(b) Re z (k) > 0, and

(2) z (k)→ it
2κ as |k| → ∞.

Proof. Recall that d = t
2κ and let p (·, k) denote the characteristic polynomial of Mk. We proceed

in three steps: first we define s to be essentially |ε|5p
(
· , ε−1/2

)
(such that the study of s about zero is

equivalent to the study of p about infinity) and verify that we may apply the Implicit Function Theorem to
s about (x, ε) ∼ (id, 0), second we deduce from explicit computations of p (namely (3.12)) that, for small
nonzero ε, s has two roots with strictly positive real parts, and third we write k ∼ ε−1/2 to turn our result
from step 2 about ε ∼ 0 into a result about k ∼ ∞ which allows us to conclude that, for large |k|, p has two
roots with strictly positive real part.

Step 1: Recall (from (3.11) and the preceding discussion) that p only depends on |k̄| and k3, so we
may write p (x, k) = p̃

(
x, |k̄|, k3

)
. Now define, for any x ∈ C and any ε = (εh, εv) ∈ R2

>0, s (x, ε) :=

|ε|51 p̃
(
x,

(
√
εh,
√
εv)

|ε|1

)
, where | · |1 denotes the l1 norm. It follows from (3.11) that s (x, ε) =

∑5
q=0 uq (x, ε)

for u5−q (x, ε) := |ε|51 rq
(
x,
√
εh
|ε|1 ,

√
εh
|ε|1

)
. Since the only dependence of rq on k is through

(
|k̄|, k3

)
, i.e. since

rq
(
x, |k̄|, k3

)
= r̃q

(
x, |k̄|2, k2

3

)
for some r̃q, we may write rq

(
x, |k̄|, k3

)
= Cq (x) •

(
|k̄|2, k2

3

)⊗q
for some

polynomial Cq. In particular, it follows that

u2 (x, ε) = C3 (x) • ε
⊗3

|ε|1
, u3 (x, ε) = |ε|1 C2 (x) • ε⊗2, u4 (x, ε) = |ε|31 C1 (x) , and u5 (x, ε) = |ε|51 C0 (x)

such that, for q > 2, uq (x, 0) = 0 and both ∂xuq (x, 0) = 0 and ∇εuq (x, 0) = 0. Moreover we may compute,
using (3.12), that

u0 (x, ε) = C0x
(
x2 + d2

)
=: u0 (x) and u1 (x, ε) = (t1 (x) , t2 (x)) · ε =: ū1 (ε) . (3.15)

So finally, for v := s − (u0 + u1) =
∑5
q=2 uq, we have that s (x, ε) = u0 (x) + ū1 (x) · ε + v (x, ε) where

v (x, 0) = 0 and both ∂xv (x, 0) = 0 and ∇εv (x, 0) = 0. In particular, note that s (id, 0) = u0 (id) = 0 and
that ∂xs (id, 0) = u′0 (id) = −2C0d

2 6= 0.
Step 2: By step 1 we may apply Theorem 6.17 to s about id to deduce that there exists a number ξ > 0

and a function w : B+
1,ξ → C which is continuously differentiable in the real sense, where B+

1,ξ is the intersec-

tion of the first quadrant and the l1-ball of radius ξ, i.e. B+
1,ξ := {(εh, εv) | εh, εv > 0 and εh + εv < ξ}, such

that w (0) = id, s (w (ε) , ε) = 0 for every ε ∈ B+
1,ξ, and ∇εw (0) = −∇εs(id,0)

∂xs(id,0) . Moreover we may compute

from (3.13) and (3.15) that ∇εw (0) = 1
2C0

(
C1,0 + iC1,1d
C2,0 + iC2,1d

)
, such that Re∇εw (0) ∈ R2

>0. It follows that

there exists 0 < σ < ξ such that Rew (ε) > 0 for all ε ∈ B+
1,σ.

Step 3: Pick KT := 1/
√
σ and define z via, for every k ∈ R3 such that |k| > KT , z (k) := w (ε (k))

for ε (k) := 1
|k|4

(
|k̄|2, k2

3

)
. Note that z is well-defined on

{
k ∈ R3 : |k| > KT

}
since, for every k ∈ R3,

|k| > KT ⇐⇒ |ε (k)| = 1/|k|2 < σ. Now observe that, for every k ∈ R3 such that |k| > KT , p̃ (z (k) , k) =
1
|ε|51

s (w (ε (k)) , ε (k)) = 0, i.e. indeed z (k) is a root of p (·, k) and hence an eigenvalue of Mk. Since Mk is

a matrix with real entries, we may deduce that z̄ (k) is also an eigenvalue of Mk. Moreover it follows from
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step 2 above that Re z (k) > 0 for every |k| > KT . Finally, note that since w (0) = id, since w is continuous,
and since ε (k) is continuous away from k = 0, we may conclude that z (k)→ id as k →∞. �

We now have all the ingredients in hand to prove one of the two key results of this section, namely
Proposition 3.10. This result tells us that there exists a most unstable eigenvalue of Mk, i.e. an eigenvalue
with largest strictly positive real part.

Proposition 3.10 (Maximally unstable eigenvalues). There exist k∗ ∈ Z3 and w∗ ∈ C with strictly
positive real part such that

(1) w∗ is an eigenvalue of M (k∗) and
(2) for every k ∈ Z3 and every eigenvalue w of M (k), Rew 6 Rew∗.

We define η∗ := Rew∗.

Proof. The key observations are that: (i) by combining Proposition 3.9 and Lemmas 3.6 and 3.7, we
can show that for |k| large enough, the eigenvalues whose trajectory can be obtained via the implicit function
theorem in Proposition 3.9 are the most unstable eigenvalues (i.e those with the largest real part) and that
(ii) by Proposition 3.9 we know that Re z (k) → 0 as |k| → ∞. We prove the first observation in step 1
below, and in step 2 we use the first step and the second observation to conclude.

Step 1: We show that there exists K∗ > 0 such that, for every |k| > K∗, Re z (k) = max
w∈σ(M(k))

Rew.

Pick R > φ2 + 7d2 and note that since R > d = t
2κ we may pick KI = KI (R) as in Lemma 3.8. Let K∗ :=

max (KI ,KT ) for KT as in Proposition 3.9, let H denote the half-slab
{
w ∈ C

∣∣ Re z 6 φ, |Im z| 6
√

7d
}

,
and let BR ⊆ C denote the open ball of radius R about the origin.

Let k ∈ Z3 such that |k| > K∗. By Lemmas 3.6 and 3.7 we know that all the eigenvalues ofM (k) are inH,
and by Lemma 3.8 we know that exactly three eigenvalues of M (k) are in BR∩H. Moreover, by Proposition
3.9 we know that the three eigenvalues of M (k) in BR ∩H are precisely 0 (since M (k) (k, 0, 0) = 0), z (k),
and ¯z (k), for z as in Proposition 3.9.

In particular, since R > φ2 + 7d2 such that no points in the half-slab H have larger real parts than all
points in BR ∩H, it follows that indeed the eigenvalues of M (k) with largest real part are z (k) and ¯z (k).

R

iR

H

H \BR

BR

z(k)

z(k)

Figure 4. A pictorial summary of step 1 of the proof of Proposition 3.10.

Step 2: We want to show that the supremum

sup
k∈Z3

max
w∈σ(M(k))

Rew
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is strictly positive and attained. It is clearly strictly positive since for any k ∈ Z3 such that |k| > KT it
follows from Proposition 3.9 that z (k) is an eigenvalue of M (k) with strictly positive real part. To see that
this supremum is attained, we write for simplicity

s (E) := sup
k∈E

max
w∈σ(M(k))

Rew

for any E ⊆ Z3. We thus want to show that s
(
Z3
)

is attained. On one hand, by step 1, the supremum

s
({
k ∈ Z3 : |k| > K∗

})
is achieved. Indeed, we may pick the eigenvalue z (kcrit) of M (kcrit) corresponding

to any kcrit such that |kcrit| is equal to the smallest integer strictly larger than K∗ which can be written
as a sum of squares of integers. On the other hand the supremum s

({
k ∈ Z3 : |k| 6 K∗

})
is attained since

it is taken over a finite set. Since Z3 is the union of
{
k ∈ Z3 : |k| > K∗

}
and

{
k ∈ Z3 : |k| 6 K∗

}
we may

conclude that the supremum s
(
Z3
)

is attained. �

We conclude this section with the second of its two key results: Proposition 3.11. This result is essential
in the construction of the semigroup associated with the linearized operator. This construction is performed
in Section 3.3 below.

Proposition 3.11 (Uniform bound on the matrix exponentials). Let η∗ be as in Proposition 3.10. There
exists CS > 0 such that for every k ∈ Z3 and every t > 0, |etMk | 6 CS

(
1 + t8

)
eη∗t. As a consequence, for

every ε > 0 there exists CS (ε) > 0 such that for every k ∈ Z3 and every t > 0, |etB̂k | 6 CS (ε) e(η∗+ε)t.

Proof. Naively, one may seek to use the bound from Corollary 6.14 to control etMk . However, this
bounds only holds up to a constant dependent on k. To circumvent this issue, we observe that alternatively
one may bound etMk using its symmetric part (as per Lemma 6.9). Coupling this observation with the fact
that we have an upper bound which decays as |k|−2 for the spectrum of Sk, namely Lemma 3.5, we see that
for sufficiently large |k| the exponential etMk grows at most like eη∗t. It thus suffices to use Corollary 6.14 for
the finitely many modes with non-large |k|, in which case the dependence of the constant on k is harmless.

More precisely: let KS :=
√

Cσ
η∗

where Cσ is as in Lemma 3.5, write C (k) := C (Mk) for C (M) as

in Corollary 6.14, and let CS := max

(
1, max
|k|<KS

C (k)

)
> 0. Then, for every k ∈ Z3, if |k| > KS then

Cσt
|k|2 6

Cσt
K2
S

= η∗t and hence, by Lemmas 6.9 and 3.5,
∣∣∣∣etMk

∣∣∣∣
L(l2, l2)

6 e
Cσt

|k|2 6 eη∗t, and if |k| < KS then by

Corollary 6.14, the choice of CS , and Proposition 3.10
∣∣∣∣etMk

∣∣∣∣
L(l2, l2)

6 C (k)
(
1 + t8

)
e(max Reσ(Mk))t 6 CS

(
1 + t8

)
eη∗t

from which the first part of the result follows. To obtain the second part we simply use the fact that
polynomials of arbitrarily large degree can be controlled by exponentials of arbitrarily slow growth, i.e.
the fact that for every j ∈ N and every ε > 0 there exists C = C (j, ε) > 0 such that, for every t > 0,
1 + tj 6 Ceεt. �

3.3. The semigroup. In this section we proceed in a standard fashion and use Proposition 3.11 to
construct the semigroup associated with the linearized problem as recorded after Leray projection in (3.4).

Proposition 3.12 (Semigroup for the linearization). Let η∗ be as in Proposition 3.10. For every t > 0

we define the operator etB on L2
(
T3, R8

)
via the Fourier multiplier

(
etB
)∧

(k) := etB̂k for every k ∈ Z3 and

we define etL as etL := etB⊕et[Ω̄eq, · ]⊕1, i.e. for every
(
f, J̄ , J33

)
∈ L2

(
T3, R8

)
×L2

(
T3, R2×2

)
×L2

(
T3, R

)
,

etL
(
f, J̄ , J33

)
:=
(
etBf, et[Ω̄eq, · ]J̄ , J33

)
.

Then
(
etL
)
t>0

is a semigroup on L2 and for every ε > 0 it is an (η∗ + ε)-contractive semigroup with

domain containing H2
(
T3, R6

)
× L2

(
T3, R2

)
× L2

(
T3, R2×2

)
× L2

(
T3, R

)
=: D and generator L.

Moreover, for every ε > 0 there exists a constant CS (ε) > 0 such that, for every p, q, r > 0 and every
t > 0, etL is a bounded operator on Hp,q,r := Hp

(
T3,R8

)
×Hq

(
T3,R2×2

)
×Hr

(
T3,R

)
such that for any(

f, J̄ , J33

)
∈ Hp,q,r,

∣∣∣∣etL
(
f, J̄ , J33

)∣∣∣∣2
Hp,q,r

6 C2
S (ε) e2(η∗+ε)t

∣∣∣∣(f, J̄ , J33

)∣∣∣∣2
Hp,q,r

, where

∣∣∣∣(f, J̄ , J33

)∣∣∣∣2
Hp,q,r

:= ||f ||2Hp +
∣∣∣∣J̄
∣∣∣∣2
Hq

+ ||J33||2Hr .
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Finally: the semigroup propagates incompressibility. More precisely: let

X0 =
(
u0, ω0, a0, J̄0, (J33)0

)
∈ L2

(
T3, R3

)
× L2

(
T3, R3

)
× L2

(
T3, R2

)
× L2

(
T3, R2×2

)
× L2

(
T3, R

)

and let X (t, ·) =
(
u, ω, a, J̄ , J33

)
(t, ·) := etLX0 for all t > 0. If u0 is incompressible, in a distributional

sense, then u (t, ·) is incompressible for all time t > 0.

Proof. Step 1: We begin by constructing the semigroup etB. Note that, in this proof, all matrix
norms are norms in L

(
l2, l2

)
. To construct this semigroup we will use Proposition 6.15 and must therefore

verify that (i) for every ε > 0 there exists CS (ε) > 0 such that for every k ∈ Z3 and every t > 0,
∣∣∣
∣∣∣etB̂k

∣∣∣
∣∣∣ 6

CS (ε) e(η∗+ε)t and that (ii) there exists CD > 0 such that for every (v, θ, b) ∈ R3 × R3 × R2,
∣∣∣B̂k (v, θ, b)

∣∣∣ 6
CD

(
〈k〉4

(
|u|2 + |ω|2

)
+ |a|2

)
. Note that (ii) follows immediately from the expression provided for B̂ in (3.5).

To obtain (i) we note that it follows from Lemmas 3.2 and 6.8 that

B̂nk =
(
Q̄kMkQk

)n
= Q̄kM

n
kQk for every n > 1

whilst B̂0
k = id = projVk + projV ⊥k = projVk +Q̄kM

0
kQk. Therefore

etB̂k = projVk + Q̄ke
tMkQk (3.16)

where

1

2

(
||Qk||2 +

∣∣∣∣Q̄k
∣∣∣∣2
)
6

∣∣∣∣
∣∣∣∣
ik×
|k|

∣∣∣∣
∣∣∣∣
2

+
1

2

(∣∣∣
∣∣∣J1/2
eq

∣∣∣
∣∣∣
2

+
∣∣∣
∣∣∣J−1/2
eq

∣∣∣
∣∣∣
2
)

+
1

2

(
s+ s−1

)
||R||2 6 Cb (3.17)

for some Cb > 0 independent of k. We may thus deduce from (3.16), (3.17), and Proposition 3.10 that (i)
holds.

With (i) and (ii) in hand we apply Proposition 6.15 and obtain that etB is a semigroup on L2 which is
(η∗ + ε)-contractive on all Hr spaces, for r > 0, with domain H2

(
T3, R3 × R3

)
×L2

(
T3, R3

)
and generator

B.
Step 2: Now we construct the full semigroup etL. First observe that, since

[
Ω̄eq, ·

]
is a finite-dimensional

linear operator,
(
et[Ω̄eq, · ]

)
t>0

is a semigroup on R2×2 and moreover

the domain of
(
et[Ω̄eq, · ]

)
t>0

is R2×2 and its generator is
[
Ω̄eq, ·

]
. (3.18)

Moreover, Lemma 6.20 tells us that
[
Ω̄eq, ·

]
is antisymmetric, and thus it follows from Lemma 6.12 that(

et[Ω̄eq, · ]
)
t>0

is a contractive semigroup, i.e.

∣∣∣
∣∣∣et[Ω̄eq, · ]

∣∣∣
∣∣∣
L(l2,l2)

6 1. (3.19)

From (3.19) and step 1 it follows that etL = etN ⊕ et[Ω̄eq, · ] ⊕ 1 is a direct sum of semigroups which are,
for every ε > 0, (η∗ + ε)-contractive (since contractive semigroups are η-contractive for any η > 0 and since
1 = e0 is the trivial semigroup, which is contractive), and is hence (η∗ + ε)-contractive itself. Moreover, it
follows from the observation (3.18) and step 1 that the domain and generator of etL are as claimed. Finally
the Hp,q,r estimates follow immediately from (3.19) and the Hr estimates of step 1, upon observing that

since, for each t > 0, et[Ω̄eq, · ] is a linear operator independent of the spatial variable x, it commutes with
partial derivatives and with the Fourier transform.

Step 3: We now prove that incompressibility is propagated. Let us write Y (t, ·) := (u, ω, a) (t, ·). The

key observation is that, as a consequence of Lemma 3.2, ∂t

(
(k, 0, 0) · Ŷk

)
= (k, 0, 0) · B̂kŶk = 0 for every

k ∈ Z3. In particular, if ∇ ·0 u = 0 then indeed

(∇ · u) (t, ·) =
∑

k∈Z3

(k, 0, 0) · Ŷk (t) =
∑

k∈Z3

(k, 0, 0) · Ŷk (0) = ∇ · u0 = 0.

�
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3.4. A maximally unstable solution. In this section we construct a maximally unstable solution of
the linearized problem (3.4). Recall that (3.4) is obtained from the linearized problem by Leray projection.
In particular, since (3.4) is invariant under the transformation u 7→ u+C for any constant C, the component
corresponding to u in this maximally unstable solution will have average zero (this is as expected in light
of the Galilean equivariance of the original system of equations). Note that, just as Proposition 3.12 is
essentially a semigroup version of Proposition 3.11, Proposition 3.13 below is essentially a semigroup version
of Proposition 3.10.

Proposition 3.13 (Maximally unstable solution). Let η∗ be as in Proposition 3.10. There is a smooth
function Y : [0,∞)×T3 → R8 such that ∂tY = BY and ||Y (t, ·)||Hr(T3,R8) = eη∗t||Y (0, ·)||Hr(T3,R8) for every

t > 0 and every r > 0. Moreover, if we write Y = (u, ω, a) ∈ R3 × R3 × R2, then ∇ · u = 0, and for every
t > 0 and every r > 0

||u (t, ·)||Hr(T3,R3) = eη∗t||u (0, ·)||Hr(T3,R3),

||ω (t, ·)||Hr(T3,R3) = eη∗t||ω (0, ·)||Hr(T3,R3), and

||a (t, ·)||Hr(T3,R3) = eη∗t||a (0, ·)||Hr(T3,R3).

Proof. Let k∗ ∈ Z3 and w∗ ∈ C be as in Proposition 3.10 and recall that η∗ := Rew∗. It follows from
Lemma 3.2 and Lemma 6.8 that, for any k ∈ Z3, B̂k and Mk are similar, so in particular w∗ is an eigenvalue
of B̂k and thus there exists v∗ ∈ C8 such that B̂ (k∗) v∗ = w∗v∗. Now define, for every t > 0 and every x ∈ T3,

Y (t, x) := v∗ew∗t+ik∗·x+v†∗ew
†
∗t−ik∗·x where, for any complex number w, we denote its complex conjugate by

w†. For a complex matrix A we will write, in this proof only, A† to denote its entry-wise complex conjugate
(and not its conjugate transpose).

Observe that Y † = Y and hence Y is real-valued. Note that since B̂k = QkMkQ̄k (which follows from

Lemmas 3.2 and 6.8), since Mk has real entries and is even in k (i.e. M−k = Mk), and since Q (k)
†

= Q (−k)

and Q̄ (k)
†

= Q̄ (−k), we obtain that B̂ (k)
†

= B̂ (−k) and hence
(
w†∗, v

†
∗
)

is an eigenvalue-eigenvector pair

for B̂ (−k∗). Therefore

∂tY = w∗v∗e
w∗t+ik∗·x + w†∗v

†
∗e
w†∗t−ik∗·x = B̂ (k∗) v∗e

w∗t+ik∗·x + B̂ (−k∗) v†∗ew
†
∗t−ik∗·x = BY. (3.20)

Now we argue that u := (Y1, Y2, Y3) is divergence-free. Observe that if k∗ = 0 then Y is constant in the
spatial variable x ∈ T3 and thus u is constant and hence divergence-free. Now consider the case k∗ 6= 0.
Note that we have proved in Lemma 3.2 that, for all k ∈ Z3, im B̂k ⊆ V ⊥k and hence (k, 0, 0) · v = 0 for any

eigenvector v of B̂k. We may thus compute:

∇ · u =
∑

k∈Z3

k · û (k) = (k∗, 0, 0) · Ŷ (k∗) + (−k∗, 0, 0) · Ŷ (−k∗) = 0. (3.21)

Finally, observe that for any j = 1, . . . , 8, Yj (t, x) = (v∗)j e
w∗t+ik∗·x + (v†∗)j e

w†∗t−ik∗·x and hence,
proceeding as above yields

||Yj (t, ·)||2Hr = 〈k∗〉2r|(v∗)j |2 |eRew∗t|2 + 〈k∗〉2r|(v†∗)j |2 |eRew†∗t|2 = 2〈k∗〉2r|v∗| e2η∗t = e2η∗t ||Yj (0, ·)||2Hr .
We can thus conclude that, for u = (Y1, Y2, Y3), ω = (Y4, Y5, Y6), and a = (Y7, Y8),

||u (t, ·)||2Hr = e2η∗t||u (0, ·)||2Hr , ||ω (t, ·)||2Hr = e2η∗t||ω (0, ·)||2Hr , and ||a (t, ·)||2Hr = e2η∗t||a (0, ·)||2Hr .
�

4. Nonlinear energy estimates

In this section we perform the nonlinear energy estimates necessary to carry out the bootstrap instability
argument in Section 5. First we record the precise form of the nonlinearities and introduce, in Definitions 4.1
and 4.2, notation used in the remainder of the chapter. In Section 4.1 we obtain bounds on the nonlinearity
in L2. We record the energy-dissipation relations satisfied by solutions of (1.1a)–(1.1d) and their derivatives
in Section 4.2. In Section 4.3 we estimate the interaction terms appearing in the relations obtained in the
preceding section. Finally we use the results of Sections 4.2 and 4.3 in Section 4.4 to obtain a chain of energy
inequalities from which we deduce the key bootstrap energy inequality.
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Writing the problem compactly using the same notation as that which was used in (3.2) and defining
Z := X −Xeq and q := p− peq we may write the original problem (1.1a)–(1.1d) as

∂tDZ = L̃Z + Λ (q) +N (Z) subject to ∇ · u = 0. (4.1)

For simplicity we will abuse notation in this section and write the components of the perturbative unknown
Z as Z = (u, ω, J). This does conflict with the notation used in Section 3 for X. However confusion may be
avoided by noting that all the unknowns appearing in this section are perturbative, i.e. (u, ω, J) will always
denote the components of Z. We also abuse notation and, in this section, write p = q.

Using this notation we have that N = (N1, N2, N3) for

N1 (Z) = − (u · ∇)u, N3 (Z) = [Ω, J ]− (u · ∇) J, (4.2)

and

N2 (Z) = −Jeq (u · ∇)ω −
(
I + JJ−1

eq

)−1
(ω × Jω + ωeq × Jω + ω × Jeqω + ω × Jωeq)

−JJ−1
eq

(
I + JJ−1

eq

)−1 (
κ∇× u− 2κω + (α̃− γ̃)∇ (∇ · ω) + γ̃∆ω

−ω × Jeqωeq − ωeq × Jωeq − ωeq × Jeqω
)

(4.3)

Note that Z being a solution of (4.1) is equivalent to Z being a solution of

∂tZ = LZ + Λ (p) +D−1N (Z) subject to ∇ · u = 0, (4.4)

for L as in (3.4). The fact that both of these formulations are equivalent is very handy since (4.1) is
particularly convenient for energy estimates whilst semigroup theory may be readily applied to (4.4).

Definition 4.1. Let B :=
{
A ∈ Rn×n

∣∣∣ ||A||op < 1
}

and define m (A) := (I +A)
−1

for any A ∈ B.

Note that m is well-defined by Corollary 6.19.

Definition 4.2 (Small energy regime). Since n = 3 there exists C0 > 0 such that ||J ||∞ 6 C0||J ||H4

for every J ∈ H4
(
T3, R3×3

)
. We define δ0 := min

(
1
2 ,

1

2C0||J−1
eq ||∞

)
.

4.1. Estimating the nonlinearity. In this section we record some preliminary results in Lemmas 4.3
and 4.4 and then estimate the nonlinearity in L2 in Proposition 4.5.

First we record for convenience some elementary consequences of the Sobolev embeddings. In particular
Lemma 4.3 tells us that in the small energy regime Z, ∇Z, and ∇2Z are L∞-multipliers, which simplifies
many of the estimates below. It is precisely because the estimates are easier to perform when ∇2Z is in L∞

that we have chosen to close the estimates in H4.

Lemma 4.3. Let Z ∈ H4
(
T3,R3 × R2×2 × R

)
.

(1) There exists C > 0 independent of Z such that ||Z||L∞ + ||∇Z||L∞ +
∣∣∣∣∇2Z

∣∣∣∣
L∞
6 C||Z||H4 .

(2) For any polynomial p with no zeroth-order term there exists C (p) > 0 such that if ||Z||H4 6 1 then
p (||Z||H4) 6 C (p) ||Z||H4 .

Proof. (1) follows from the Sobolev embedding H2
(
T3
)
↪→ L∞

(
T3
)

and (2) is immediate. �

The result below ensures, when combined with Corollary 6.19, that the nonlinearities written in (4.2)
and (4.3) are well-defined. Note that the only subtlety in ensuring that the nonlinearities are well-defined

comes from the presence of
(
I + JJeq−1

)−1
= m

(
JJ−1

eq

)
. This terms owes its appearance to our choice to

write (1.1c) in a form such that the left-hand side is Jeq∂tω, and not J∂tω. The former is more convenient
since it makes it possible to use semigroup theory.

Lemma 4.4. Let δ0 be as in the small energy regime (c.f. Definition 4.2). If ||Z||H4 6 δ0 then∣∣∣∣JJ−1
eq

∣∣∣∣
∞ 6

1
2 and

∣∣∣∣m
(
JJ−1

eq

)∣∣∣∣
∞ 6 2.

Proof. If ||Z||H4 6 δ0 then
∣∣∣∣JJ−1

eq

∣∣∣∣
∞ 6 ||J ||∞

∣∣∣∣J−1
eq

∣∣∣∣
∞ 6 C0||J ||H4

∣∣∣∣J−1
eq

∣∣∣∣
∞ 6 C0δ0

∣∣∣∣J−1
eq

∣∣∣∣
∞ 6

1
2

and hence, by Corollary 6.19,
∣∣∣∣m

(
JJ−1

eq

)∣∣∣∣
∞ 6

1

1−||JJ−1
eq ||∞

6 2. �

We now prove the main result of this section, namely the L2 bound on the nonlinearity.
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Proposition 4.5 (Estimate of the nonlinearity). Let δ0 be as in the small energy regime (c.f. Definition

4.2). There exists CN > 0 such that if ||Z||H4 6 δ0 then ||N (Z)||L2 6 CN ||Z||2H2 .

Proof. Recall that N = (N1, N2, N3) is recorded in (4.2)–(4.3). In particular, one immediately obtains

that ||N1||L2+||N3||L2 . ||Z||L2 ||Z||H1 . ||Z||2H2 . Dealing withN2 is only slightly more delicate. Considering

m
(
JJ−1

eq

)
as a fixed L∞ multiplier we see that all terms in N2 are quadratic or cubic in Z (more precisely:

the only cubic term is −
(
I + JJ−1

eq

)−1
(ω × Jω)). We can thus use the generalized Hölder inequality as well

as the Sobolev embeddings H1
(
T3
)
↪→ L6

(
T3
)
↪→ Lp

(
T3
)

for all p ∈ [1, 6] and H2
(
T3
)
↪→ L∞

(
T3
)

to

obtain that ||N2||L2 . ||Z||2H2 + ||Z||3H2 . (1 + δ0) ||Z||2H2 . �

Remark 4.6. The operator which must be estimated in the bootstrap instability argument is actually
PN (and not merely N as is done in Proposition 4.5 above), where P = PL ⊕ id⊕ id for PL denoting the

Leray projector. However, since P̂L (k) = proj(span k)⊥ = I− k⊗k
|k|2 for every k ∈ Z3, i.e. since PL is a bounded

Fourier multiplier, it follows that it is bounded on L2.

4.2. The energy-dissipation identities. In this section we begin by recording the energy-dissipation
relation and then remark on the coercivity of the dissipation.

Proposition 4.7 (The energy-dissipation relation). If Z solves (4.1) then for any multi-index α ∈ N3

1

2

d

dt

∣∣∣
∣∣∣
√
D (∂αZ)

∣∣∣
∣∣∣
2

L2
+D (∂αu, ∂αω) = B (∂αω̄, ∂αa) +

ˆ
T3

∂αN (Z) · ∂αZ

where

D (u, ω) :=

ˆ
T3

µ

2
|Du|2 + 2κ

∣∣∣∣
1

2
∇× u− ω

∣∣∣∣
2

+ α|∇ · ω|2 +
β

2
|D0ω|2 + 2γ|∇ × ω|2

and

B (ω̄, a) :=

(
2 (λ− ν) +

(
t

2κ

)2
)ˆ

T3

ω̄⊥ · a.

Proof. To compute the energy-dissipation relation we take a derivative ∂α of (4.1), multiply by Z, and
integrate over the torus. Note that due to incompressibility

´
T3 ∂

αΛ (p) · ∂αZ =
´
T3 − (∇∂αp) · ∂αu = 0.

Now we compute
´
T3 L̃Z · Z. Observe that for T and M denoting the stress and couple stress tensors, if we

write T̃ for the trace-free part of T , i.e. T̃ = T + pI, then we have thatˆ
T3

((µ+ κ/2) ∆u+ κ∇× ω) · u+

ˆ
T3

(κ∇× u− 2κω + (α+ β/3− γ)∇ (∇ · ω) + (β + γ) ∆ω) · ω

=

ˆ
T3

(
∇ · T̃

)
· u+

(
2 vec T̃ +∇ ·M

)
· ω = −

ˆ
T3

T̃ : (∇u− Ω) +M : ∇ω = −D (u, ω) . (4.5)

Moreover, we may compute

ωeq × Jωeq =

(
t

2κ

)2

ã⊥, ωeq × Jeqω =
λt

2κ
ω̃⊥, and [Ω, Jeq] = (λ− ν)




0 0 −ω2

0 0 ω1

ω2 −ω1 0




such thatˆ
T3

− (ω × Jeqωeq + ωeq × Jωeq + ωeq × Jeqω) · ω +

ˆ
T3

([Ωeq, J ] + [Ω, Jeq]) : J = B (ω̄, a) (4.6)

where we have used that [Ωeq, J ] : J = 0 (c.f. Lemma 6.20). Combining (4.5) and (4.6), we obtain that´
T3 L̃Z · Z = −D (u, ω) +B (ω̄, a), and hence we may conclude that

1

2

d

dt

∣∣∣
∣∣∣
√
D (∂αZ)

∣∣∣
∣∣∣
2

L2
=

ˆ
T3

∂t (D∂αZ) · ∂αZ =

ˆ
T3

L̃ ∂αZ · ∂αZ +

ˆ
T3

∂αN (Z) · ∂αZ

= −D (∂αu, ∂αω) +B (∂α (ω) , ∂αa) +

ˆ
T3

∂αN (Z) · ∂αZ.

�
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Besides the interaction term
´
T3 ∂

αN (Z)·∂αZ, the only term appearing in the energy-dissipation relation
which does not have a sign is the term B (∂αω̄, ∂αa). We refer to this term as the unstable term since, as
detailed in Section 2.4 the instability originates from ω̄ and a. In Lemma 4.8 below we estimate this term
in a manner which allows us to absorb a high-order contribution into the dissipation and leaves us with a
lower-order term which is controlled by the energy.

Lemma 4.8 (Bounds on the unstable term). For any σ > 0 there exists Cσ > 0 such that for any
sufficiently regular (ω, a) and any nonzero multi-index α,

|B (∂αω̄, ∂αa)| 6 σ
∣∣∣∣∂α+1ω̄

∣∣∣∣2
L2 + Cσ

∣∣∣∣∂α−1a
∣∣∣∣2
L2

where we write α± 1 := α± ei for some i such that αi nonzero.

Proof. This follows immediately from integrating by parts and applying an ε-Cauchy inequality: if we

define C := 2 (λ− ν) +
(

t
2κ

)2
then, for any ε > 0,

|B (∂αω̄, ∂αa)| = C

∣∣∣∣
ˆ
T3

∂α+1ω̄⊥ · ∂α−1a

∣∣∣∣ 6 ε
∣∣∣∣∂α+1ω̄⊥

∣∣∣∣2
L2 +

C2

4ε

∣∣∣∣∂α−1a
∣∣∣∣2
L2 .

�

We now prove that the dissipation is coercive, since the velocity u has average zero.

Lemma 4.9 (Coercivity of the dissipation over linear velocities of average zero). There exists a constant

CD > 0 such that for every (u, ω) ∈ H1
(
T3, R3 × R3

)
, if

ffl
u = 0 then D (u, ω) > CD

(
||u||2H1 + ||ω||2H1

)
.

Proof. Since u has average zero, it follows from Propositions 6.21 and 6.22 that

||u||2H1 . ||Du||2L2 . D (u, ω) . (4.7)

To see that the dissipation also controls the H1 norm of ω we observe that, by (4.7),

||ω||2L2 .
ˆ
T3

∣∣∣∣
1

2
∇× u− ω

∣∣∣∣
2

+

ˆ
T3

∣∣∣∣
1

2
∇× u

∣∣∣∣
2

. D (u, ω) + ||u||2H1 . D (u, ω)

whilst, by Lemma 6.23, ||∇ω||2L2 =
´
T3 |∇·ω|2 +

´
T3 |∇×ω|2 . D (u, ω), such that indeed ||ω||2H1 . D (u, ω).

�

Recall that, due to the Galilean equivariance of (1.1a)–(1.1d) solutions of that system can be assumed
without loss of generality to have an Eulerian velocity with average zero. Since ueq = 0 it follows that we
can assume that the perturbative velocity u has average zero as well, and hence the coercivity result proven
in Lemma 4.9 applies.

4.3. Estimating the interactions. In this section we introduce notation which makes it easier to write
down the Faà di Bruno formula for the chain rule, use this notation to record useful bounds on m (defined in
Definition 4.1), and finally we estimate the interactions arising from the energy-dissipation relations satisfied
by derivatives of solutions to (1.1a)–(1.1d) in Proposition 4.16.

Definition 4.10 (Integer partitions and derivatives). Let k ∈ N.

• Let i1 > i2 > · · · > il > 1 be integers such that k = i1 + i2 + · · · + il. The sequence (i1, i2, . . . , il) is
called an integer partition of k and l is referred to as the size of that partition.
• For 1 6 i 6 k we denote by Pi (k) the set of integer partitions of k of size i, and by P (k) the set of

integer partitions of k. In particular note that P (k) =
∐k
i=1 Pi (k).

• Let f : Rn → Rm be k-times differentiable. For any π = (i1, . . . , il) ∈ P (k) (where possibly ip = iq for
p 6= q) we define ∇πf := Sym

(
∇i1f ⊗ · · · ⊗ ∇ilf

)
where for any tensor T of rank r, (SymT )j1 ... jr :=

1
r!

∑
σ∈Sr Tjσ(1) ... jσ(r)

.

Example 4.11. Examples of integer partitions and derivatives indexed by integer partitions are

• P2(4) = {(3, 1) , (2, 2)},
• P (4) = {(4) , (3, 1) , (2, 2) , (2, 1, 1) , (1, 1, 1, 1)}, and
• ∇(2,1,1)f = Sym

(
∇2f ⊗∇f ⊗∇f

)
= Sym

(
∇f ⊗∇2f ⊗∇f

)
= Sym

(
∇f ⊗∇f ⊗∇2f

)
.
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Remark 4.12. Derivatives indexed by integer partitions, denoted by ∇πf , are a convenient shorthand
for terms appearing in the Faà di Bruno formula for derivatives of compositions. Their key property which

we will use in estimates is that, for any integer partition π = (i1, . . . , il), |∇πf | 6
∏l
j=1

∣∣∇ijf
∣∣. For example∣∣∇(2,1,1)f

∣∣ 6
∣∣∇2f

∣∣ |∇f |2.

Having introduced notation for derivatives indexed by integer partitions we now use it to obtain bounds
on derivatives of m in Lemma 4.13 below.

Lemma 4.13 (Bounds on derivatives of m). The function m from Definition 4.1 is smooth and moreover
for every k ∈ N there exists Ck > 0 such that, for every A ∈ B,

∣∣∇km (A)
∣∣ 6 Ck|m (A)|k+1.

Proof. First we observe that it suffices to show that, for ∂ijm := ∂m(A)
∂Aij

,

∂ijmkl = −mkimjl, (4.8)

To prove that (4.8) holds, note that for any smooth A : (−1, 1) → B (where B is as in Definition 4.1),
d
dtm (A (t)) = −m (A (t))

(
d
dtA (t)

)
m (A (t)). Since we can pick A such that A (0) and d

dtA (0) are arbitrarily
specified, it follows that for any A0 ∈ B and any V ∈ Rn×n, ∇m (A0)V = −m (A0)V m (A), i.e. indeed
∂ijmkl = ∇mkl (ei ⊗ ej) = −(m (ei ⊗ ej)m)kl = −mkimjl. �

We now use the bounds on m we have just obtained to derive bounds on post-compositions with m.

Lemma 4.14 (Bounds on derivatives of post-compositions with m). Let 0 < δ < 1 and consider m from
Definition 4.1, which is smooth by Lemma 4.13. For every k ∈ N there exists Ck,δ > 0 such that for every
smooth A : Tn → Rn×n, if ||A||∞ < δ then, for every x ∈ Tn,

∣∣∇k (m (A)) (x)
∣∣ 6 Ck,δ

∑
π∈P (k) |∇πA (x)|,

where P (k) and ∇π are defined in Notation 4.10.

Proof. Note that since ||A||∞ < δ < 1 it follows from Corollary 6.19 that ||m (A)||∞ < 1
1−δ . Therefore,

by Proposition 6.24 and Lemma 4.13,

|∇k (m (A)) (x)| 6 C
k∑

i=1

|∇im (A (x))|
∑

π∈Pi(k)

|∇πA (x)| 6 C
k∑

i=1

|m (A (x))|i+1
∑

π∈Pi(k)

|∇πA (x)|

6 Ck,δ
∑

π∈P (k)

|∇πA (x)|.

�

Below we specialize Lemma 4.14 to the only case which matters for us, namely the case of m
(
JJ−1

eq

)
.

Corollary 4.15. Let δ0 be as in the small energy regime (c.f. Definition 4.2). For every k ∈ N there
exists Ck > 0 such that if ||Z||H4 6 δ0 then

∣∣∇k
(
m
(
JJ−1

eq

))
(x)
∣∣ 6 Ck

∑
π∈P (k) |∇πJ (x)|, for almost every

x ∈ T3.

Proof. This follow immediately from combining Lemmas 4.4 and 4.14. �

Having obtained good estimates on terms involving m which appear in the nonlinearity we are ready to
estimate the interaction terms.

Proposition 4.16 (Estimates of the interactions). Let δ0 be as in the small energy regime (c.f. Definition
4.2). For every k = 0, 1, 2, 3, 4 there exists CI, k > 0 such that if ||Z||H4 6 δ0 then

∣∣∣∣
ˆ
T3

N (Z) · Z
∣∣∣∣ 6 CI, 0||Z||H4 ||Z||2L2

and

∑

|α|=k

∣∣∣∣
ˆ
T3

∂αN (Z) · ∂αZ
∣∣∣∣ 6 CI, k||Z||H4

(
k∑

i=1

∣∣∣∣∇iZ
∣∣∣∣2
L2 +

∣∣∣∣∇k+1 (u, ω)
∣∣∣∣2
L2

)
.
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Proof. The nonlinearities are all of one of three types, and so we write N = NI +NII +NIII for

NI := − ((u · ∇)u, Jeq (u · ∇)ω, (u · ∇) J) ,

NII :=
(

0, JJ−1
eq m

(
JJ−1

eq

)
(ω × Jeqωeq + ωeq × Jωeq + ωeq × Jeqω + 2κω)

−m
(
JJ−1

eq

)
(ω × Jω + ω × Jωeq + ω × Jeqω + ωeq × Jω) , [Ω, J ]

)
, and

NIII :=
(
0, −JJ−1

eq m
(
JJ−1

eq

)
(κ∇× u+ α̃∇ (∇ · ω) + γ̃∆ω) , 0

)
.

We first consider the case of α nonzero and so for T ∈ {I, II, III} and i = 1, 2, 3, 4 we write NT,i :=∑
|α|=i

´
T3 ∂

αNT (Z) · ∂αZ.

Estimating nonlinearities of type I is fairly straightforward. We expand out
´
T3 ∂

αNI (Z) · ∂αZ and

use the generalized Hölder inequality, putting two factors in L2 and putting the remaining factors in L∞

(thanks to Lemma 4.3). For example, writing for simplicity NI (Z) = (u · ∇)Z and considering the case
where ∂α = ∂ijkl, one of the terms that appears is

´
T3 (∂ijku · ∇)∇lZ · ∂ijklZ, and it can be estimated in

the following way, which is typical of how nonlinear interactions of type I are handled:
∣∣∣∣
ˆ
T3

(∂ijku · ∇)∇lZ · ∂ijklZ
∣∣∣∣ 6

∣∣∣∣∇3u
∣∣∣∣
L2

∣∣∣∣∇2Z
∣∣∣∣
∞
∣∣∣∣∇4Z

∣∣∣∣
L2 . ||Z||H4

(∣∣∣∣∇3Z
∣∣∣∣2
L2 +

∣∣∣∣∇4Z
∣∣∣∣2
L2

)
.

The only subtlety for these nonlinear terms is the fact that when ∂α hits ∇Z in (u · ∇)Z, the interaction
vanishes due to the incompressibility constraint. Indeed, for any multi-index α,ˆ

T3

(u · ∇) ∂αZ · ∂αZ = −1

2

ˆ
T3

(∇ · u) |∂αZ|2 = 0.

This cancellation is essential since we have no dissipative control of J and hence we would not be able to
control interactions involving ∇∂αJ (which is a component of ∇∂αZ). Estimating all the nonlinearities of
type I in this manner we obtain:

|NI,1| . ||Z||H4 ||∇Z||2L2 , |NI,3| . ||Z||H4

(∣∣∣∣∇3Z
∣∣∣∣2
L2 +

∣∣∣∣∇2Z
∣∣∣∣2
L2

)
, and

|NI,2| . ||Z||H4

∣∣∣∣∇2Z
∣∣∣∣2
L2 , |NI,4| . ||Z||H4

(∣∣∣∣∇4Z
∣∣∣∣2
L2 +

∣∣∣∣∇3Z
∣∣∣∣2
L2

)
.

To estimate nonlinearities of type II we proceed similarly, namely applying the generalized Hölder
inequality with two factors in L2 and the rest in L∞. In particular we use Lemma 4.4 and Corollary
4.15 to control m

(
JJ−1

eq

)
and its derivatives, as well as the second part of Lemma 4.3 for the terms ap-

pearing when applying Corollary 4.15 which are cubic or higher-order. As an illustrative example let
us write the nonlinearities of type II as NII (Z) = m (J) b (Z,Z) for some bilinear form b and consider´
T3 ∂ijk

(
m
(
JJ−1

eq

))
b (∂lZ,Z) · ∂ijklZ. This terms appears when ∂α = ∂ijkl and can be estimated as follows:

∣∣∣∣
ˆ
T3

∂ijk
(
m
(
JJ−1

eq

))
b (∂lZ,Z) · ∂ijklZ

∣∣∣∣ .
ˆ
T3

(
|∇3J |+ |∇2J ||∇J |+ |∇J |3

)
|∇Z||Z||∇4Z|

.
(∣∣∣∣∇3Z

∣∣∣∣
L2 + ||Z||H4

∣∣∣∣∇2Z
∣∣∣∣
L2 + ||Z||2H4 ||∇Z||L2

)
||Z||2H4

∣∣∣∣∇4Z
∣∣∣∣
L2

. ||Z||H4

(∣∣∣∣∇3Z
∣∣∣∣
L2 +

∣∣∣∣∇2Z
∣∣∣∣
L2 + ||∇Z||L2

) ∣∣∣∣∇4Z
∣∣∣∣
L2

. ||Z||H4

(∣∣∣∣∇4Z
∣∣∣∣2
L2 +

∣∣∣∣∇3Z
∣∣∣∣2
L2 +

∣∣∣∣∇2Z
∣∣∣∣2
L2 + ||∇Z||2L2

)
.

Estimating all terms of type II in this fashion yields, for i = 1, 2, 3, 4, |NII,i| . ||Z||H4

∑i
j=1

∣∣∣∣∇jZ
∣∣∣∣2
L2 .

Nonlinearities of type III are the most delicate to estimate due to the presence of ∇× u, ∇ (∇ · ω), and
∆ω. The presence of these terms causes two difficulties

(1) when ∂α hits ∆ω (or ∇ (∇ · ω)) we must integrate by parts since we do not have any control, even
through the dissipation, on ∇|α|+2ω, and

(2) there are precisely two terms in which more than two derivatives of order three or above appear, terms
for which we cannot simply use L2 and L∞ in the right-hand side of the generalized Hölder inequality.
This is easily remedied by more carefully choosing the Lp spaces used, which is done explicitly below.
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Let us write the nonlinearity schematically as NIII (Z) = m
(
JJ−1

eq

)
b
(
Z,∇2ω

)
for some bilinear form b. Here

is how we handle (1) discussed above: for any multi-index α

Nα :=

ˆ
T3

m
(
JJ−1

eq

)
b (Z,∆∂αω) · ∂αω = −

ˆ
T3

∂i
(
m
(
JJ−1

eq

))
b (Z, ∂i∂

αω) · ∂αω

−
ˆ
T3

m
(
JJ−1

eq

)
b (∂iZ, ∂i∂

αω) · ∂αω −
ˆ
T3

m
(
JJ−1

eq

)
b (Z, ∂i∂

αω) · ∂i∂αω

and hence

|Nα| . (||∇Z||∞||Z||∞ + ||∇Z||∞)
∣∣∣
∣∣∣∇|α|+1ω

∣∣∣
∣∣∣
L2

∣∣∣
∣∣∣∇|α|ω

∣∣∣
∣∣∣
L2

+ ||Z||∞
∣∣∣
∣∣∣∇|α|+1ω

∣∣∣
∣∣∣
L2

. ||Z||H4

(∣∣∣
∣∣∣∇|α|+1ω

∣∣∣
∣∣∣
2

L2
+
∣∣∣
∣∣∣∇|α|+1ω

∣∣∣
∣∣∣
2

L2

)
.

Now we show how to handle (2) discussed above. Both terms under consideration appear when |α| = 4,
and so we write ∂α = ∂ijkl. Note that we will use Corollary 4.15 to bound |m

(
JJ−1

eq

)
| above by |∇3J | +

|∇2J ||∇J |+ |∇J |3, but below we will only indicate how to deal with the first one amongst these three terms
(since the last two can be taken care of by a generalized Hölder inequality using only L2 and L∞). We have,
using the fact that H1

(
T3
)
↪→ L4

(
T3
)
,

∣∣∣∣
ˆ
T3

m
(
JJ−1

eq

)
b (∂ijkZ,∆∂lω) · ∂ijklω +

ˆ
T3

∂ijk
(
m
(
JJ−1

eq

))
b (Z,∆∂lω) · ∂ijklω

∣∣∣∣

.
ˆ
T3

|∇3Z||∇3ω||∇4ω|+ ||Z||∞
ˆ
T3

|∇3J ||∇3ω||∇4ω|+ . . .

.
ˆ
T3

|∇3Z||∇3ω||∇4ω| .
∣∣∣∣∇3Z

∣∣∣∣
H1

∣∣∣∣∇3ω
∣∣∣∣
H1

∣∣∣∣∇4ω
∣∣∣∣
L2

. ||Z||H4

(∣∣∣∣∇3ω
∣∣∣∣
L2 +

∣∣∣∣∇4ω
∣∣∣∣
L2

) ∣∣∣∣∇4ω
∣∣∣∣
L2 . ||Z||H4

(∣∣∣∣∇4ω
∣∣∣∣
L2 +

∣∣∣∣∇3ω
∣∣∣∣
L2

)
.

Estimating all nonlinearities of type III in this fashion yields, for i = 1, 2, 3, 4,

|NIII,i| . ||Z||H4




i∑

j=1

∣∣∣∣∇jZ
∣∣∣∣2
L2 +

∣∣∣∣∇i+1 (u, ω)
∣∣∣∣2
L2


 .

Finally we consider the case α = 0. Using the fact that
´
T3 (u · ∇)Z · Z = 0 and that [Ω, J ] : J = 0 (see

Lemma 6.20) we see thatˆ
T3

N (Z) · Z = −
ˆ
T3

m
(
JJ−1

eq

)
(ω × Jω + ω × Jωeq + ω × Jeqω + ωeq × Jω) · ω

+

ˆ
T3

JJ−1
eq m

(
JJ−1

eq

)
(ω × Jeqωeq + ωeq × Jωeq + ωeq × Jeqω + 2κω − κ∇× u− α̃∇ (∇ · ω)− γ̃∆ω) · ω.

It thus follows from Lemmas 4.3 and 4.4 that
∣∣´

T3 N (Z) · Z
∣∣ . ||Z||H4 ||Z||2L2 . �

4.4. The chain of energy inequalities. We begin this section by combining the results of Sections
4.2 and 4.3 in order to obtain a chain of energy inequalities.

Proposition 4.17 (Chain of energy inequalities). There exist C0, C1, CD > 0 such that for every 0 <
ε < 1 there exists 0 < δ (ε) < 1 such that if sup06t6T ||Z (t)||H4 6 δ (ε) and Z solves (4.1) then

1

2

d

dt

∣∣∣
∣∣∣
√
DZ

∣∣∣
∣∣∣
2

L2
+D (u, ω) 6 ε||Z||2L2 + C0

(
||ω̄||2L2 + ||a||2L2

)

and, for k = 1, 2, 3, 4,

1

2

d

dt

∣∣∣
∣∣∣∇k

(√
DZ

)∣∣∣
∣∣∣
2

L2
+
CD
2

∣∣∣∣∇k (u, ω)
∣∣∣∣2
H1 6 ε

∣∣∣∣∇kZ
∣∣∣∣2
L2 + C1

k−1∑

i=0

∣∣∣∣∇iZ
∣∣∣∣2
L2 .

Proof. Let ε > 0, let CD and CI, k be as in Lemma 4.9 and Proposition 4.16 respectively, let Cσ be as

in Lemma 4.8 for σ := CD
4 , let nk := # {multi-index α : |α| = k}, and pick δ := min

06k64

{
δ0,

ε
CI,knk

, CD
4CI,k

}
.
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First we consider k = 0. Observe that for 2C0 := 2 (λ− ν) +
(

t
2κ

)2
,

B (ω̄, a) = 2C0

ˆ
T3

ω̄⊥ · a 6 C0

(
||ω̄||2L2 + ||a||2L2

)
. (4.9)

By Propositions 4.7, 4.16, (4.9), and the fact that δ 6 ε
CI,0

we deduce the energy inequality for k = 0.

Now we consider k = 1, 2, 3, 4. For any nonzero multi-index α it follows from Propositions 4.7 and 4.16
and from Lemmas 4.9 and 4.8 that

1

2

d

dt

∣∣∣
∣∣∣
√
D (∂αZ)

∣∣∣
∣∣∣
2

L2
+ CD||∂α (u, ω)||2H1 6

(
CD
4

∣∣∣∣∂α+1ω
∣∣∣∣2
L2 + Cσ

∣∣∣∣∂α−1a
∣∣∣∣2
L2

)

+CI,k||Z||H4

(
k∑

i=1

∣∣∣∣∇iZ
∣∣∣∣2
L2 +

∣∣∣∣∇k+1 (u, ω)
∣∣∣∣2
L2

)
.

Summing over |α| = k and using that δ 6 min
(

CD
4CI,k

, ε
CI,knk

)
we observe that, after absorbing

∣∣∣∣∂α+1ω
∣∣∣∣2
L2

and
∣∣∣∣∇k+1 (u, ω)

∣∣∣∣2
L2 into the dissipation on the left-hand side,

1

2

d

dt

∣∣∣
∣∣∣∇k

(√
DZ

)∣∣∣
∣∣∣
2

L2
+
CD
2

∣∣∣∣∇k (u, ω)
∣∣∣∣2
H1 6 nkCσ

∣∣∣∣∂k−1a
∣∣∣∣2
L2 + ε

k∑

i=1

∣∣∣∣∇iZ
∣∣∣∣2
L2

from which the result follows upon taking C1 := max (1, n4Cσ). �

We now record, in abstract form, a Gronwall-type lemma for chains of differential inequalities.

Lemma 4.18 (Chain of Gronwall inequalities). Consider, for k > −1, Ek : [0,∞) → [0,∞). Suppose
that there exists C−1, C > 0, 0 < θ 6 θ0 < ψ, and kmax > −1 such that for every t > 0, E−1 (t) 6 C−1e

ψt

and every k > 0,

d

dt
Ek (t) 6 θEk (t) + C

k−1∑

i=−1

Ei (t) . (4.10)

Then, for every 0 6 k 6 kmax, there exist Ck > 0 such that for every t > 0

Ek (t) 6 Ck

(
C−1 +

k∑

i=0

Ei (0)

)
eψt =: C̃ke

ψt. (4.11)

Moreover: if (4.10) holds for every k > −1 then so does (4.11).

Proof. We induct on k, noting that the base case k = −1 holds by assumption. Now suppose that

(4.11) holds for every i = −1, . . . , k− 1. Then, by (4.10), d
dt

(
Ek (t) e−θt

)
6 C

∑k−1
i=−1Ei (t) e−θt and hence,

integrating in time and using (4.11), where C̃−1 := C−1,

Ek(t)6Ek(0) eθt + C

k−1∑

i=−1

eθt
ˆ t

0

C̃ie
(ψ−θ)sds6

(
Ek(0) +

C

ψ − θ0

k−1∑

i=−1

C̃i

)
eψt6Ck

(
C−1 +

k∑

i=0

Ei(0)

)
eψt.

for some Ck > 0. �

We conclude this section by applying Lemma 4.18 to the chain of differential inequalities obtained in
Proposition 4.17, which yields a bootstrap energy inequality.

Proposition 4.19 (Bootstrap energy inequality). There exists 0 < δB < 1 such that if Z solves (4.1)
and sup06t6T ||Z (t)||H4 6 δB then for every ψ > 0 there exists C (ψ) > 0 such that if there exists Cins > 0

such that Eins (t) := ||ω̄ (t)||2L2 + ||a (t)||2L2 satisfies Eins (t) 6 Cinse
ψt for all t > 0 then, for all t > 0,

||Z (t)||2H4 6 C (ψ)
(
||Z (0)||2H4 + Cins

)
eψt.

Proof. Let us define E−1 := Eins, Ek (t) :=
∣∣∣
∣∣∣∇k

(√
DZ

)∣∣∣
∣∣∣
2

L2
for every t > 0 and every k > 0, and

C := max (C0, C1) for C0 and C1 as in Proposition 4.17. Observe that |J1/2
eq w|2 > ν/2|w|2 for any w ∈ R3

and hence ||Z||2L2 6 max (1, 2/ν)
∣∣∣
∣∣∣
√
DZ

∣∣∣
∣∣∣
2

L2
. Let ψ > 0 and note that we may deduce from Proposition 4.17,
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picking ε = 1
2 min (1, ψ/2, ψν/2), δB := δ (ε), and neglecting the dissipation, that for k = 0, . . . , 4 and every

t > 0

d

dt
Ek (t) 6

ψ

2
Ek (t) + C

k−1∑

i=−1

Ei (t) . (4.12)

Now suppose that, for every t > 0, E−1 (t) = Eins (t) 6 Cinse
ψt =: C−1e

ψt. Using Lemma 4.18 we obtain

that for k = 0, . . . , 4 there exists Ck > 0 such that Ek (t) 6 Ck
(
C−1 +

∑k
i=0Ei (0)

)
eψt. Finally, summing

over k = 0, . . . , 4 we obtain that

||Z (t)||2H4 6 max (1, 2/ν)

4∑

k=0

Ek (t) 6 C̃ (ψ)

(
C−1 +

∣∣∣
∣∣∣
√
DZ (0)

∣∣∣
∣∣∣
2

H4

)
eψt

6 max (1, λ, ν) C̃ (ψ)
(
Cins + ||Z (0)||2H4

)
eψt

for some C̃ (ψ) > 0, so we may simply pick C (ψ) := max (1, λ, ν) C̃ (ψ). �

5. The bootstrap instability argument

In this section we prove our main result using a Guo-Strauss bootstrapping argument. This technique
was introduced by Guo and Strauss in [GS95a], inspired by [GS95b] and [FSV97]. For a cleanly written
and very readable form of the bootstrap instability argument we refer to Lemma 1.1 of [GHS07].

For the purpose of the theorem below, we define what we mean by a strong solution of (1.1a)–(1.1d).

Definition 5.1 (Strong solutions). For any X0 ∈ H2
(
T3
)

and any T > 0 we define a strong solu-

tion of (1.1a)–(1.1d) with initial condition X0 to be any function X ∈ L∞
(
[0, T ] , H2

(
T3
))

with ∂tX ∈
L∞

(
[0, T ] , L2

(
T3
))

for which (1.1a)–(1.1d) is satisfied almost everywhere in (0, T ) × T3 and such that
X(0) = X0.

Theorem 5.2 (Bootstrap instability). Let η∗ be as in Proposition 3.10 and assume that µ, κ, α+ 4β
3 , β+

γ > 0. There exists θ, δ > 0 and Z0 ∈ L2
(
T3, R3 × R3 × R3×3

)
such that for all 0 < ι < δ if we define

TI := 1
η∗

log θ
ι then there exists a strong solution X = (u, ω, J) ∈ L∞

(
[0, TI ] , H

4
(
T3
))

of (1.1a)–(1.1d) with

pressure p ∈ L∞
(
[0, TI ] , H

4
(
T3
))

and initial condition X (0) = Xeq+ ιZ0 such that ||X (TI)−Xeq||L2 >
θ
2 .

Proof. The crux of the argument is to compare three timescales: the instability timescale TI , the
linear-dominance timescale TL, and the smallness timescale TS . We will show that at times living in both
the linear-dominance and the smallness timescale (i.e. times anterior to both TL and TS) two key estimates
hold, namely (5.1) and (5.2). This will allow us, by way of contradiction, to show that the instability
timescale is the shortest of the three. It will thus follow that instability occurs while the dynamics are
dominated by the linearization and while we are in the small energy regime.

We begin by recalling appropriate notation from previous results. Let (u0, ω0, a0) =: Y be as in Proposi-
tion 3.13 and note that without loss of generality we may assume that ||Y ||L2 = 1. Define Z0 := (u0, ω0, J0)

where J0 =

(
02×2 a0

aT0 0

)
. Let δ0 be as in the small energy regime (c.f. Definition 4.2), let CS := CS

(
η∗
2

)

as in Proposition 3.12, let CN be as in Proposition 4.5, let ψ := 2η∗ such that CB := C (ψ) and δB are as
in Proposition 4.17, and let δlwp be as in Theorem 6.3 with δlwp being chosen small enough so as to ensure
that L 6 η∗.

We can now define the appropriate small scales θ and δ, which in turn will later allow us to precisely
define the timescales. Let

θ =
1

2
min

(
δ0, δB ,

1

C
, ||Z0||L2

(
δlwp

||Z0||H4

)η∗/L)
,

δ =
1

2
min

(
1, δlwp,

θ

||Z0||H4

,
(
CB

(
||Z0||2H4 + 4

)
θ
)−1/2

,
1

2Cθ

)
,

and let 0 < ι < δ.
By our local well-posedness result (see Section 6.1 and Corollary 6.6 in particular) there exists TE > 0

and a unique strong solution Z ∈ L∞
(
[0, TE ] ; H4

(
T3
))

of (4.1) with pressure p ∈ L∞H4 and initial



6. APPENDIX 75

data Z (0) = ιZ0. Note that our local existence result (Theorem 6.3) tells us moreover that the solu-
tion Z may be continued as long as Z remains in an open H4-ball of radius δlwp. We may thus with-
out loss of generality assume TE to be the maximal time of existence of the solution in the sense that
TE := sup

{
T > 0 : Z exists on [0, T ] and sup06t<T ||Z (t)||H4 < δlwp

}
. Expanding out the definition of the

notation in (4.1) we see that X := Xeq + Z is a strong solution of (1.1a)–(1.1d) with initial condition
X (0) = Xeq + ιZ0.

We may now define the timescales. We define

TL := sup
{

0 < t < TE : ||ω̄ (t)||L2 + ||a (t)||L2 6 2ιeη∗t
}
, TI :=

1

η∗
log

θ

ι
, and

TS := sup {0 < t < TE : ||Z (t)||H4 < θ} .
Note that TL > 0 since ||Z (0)||L2 = ι, that TS > 0 since ||Z (t)||H4 = ι||Z0||H4 < θ, and that TS , TL 6 TE

Step 1: Since θ 6 δB we deduce from Proposition 4.19 that if t 6 min (TL, TS) then

||Z (t)||2H4 6 CBι
2
(
||Z0||2H4 + 4

)
e2η∗t. (5.1)

Now we apply the Leray projector to eliminate the pressure and write (4.1) in the reduced form ∂tZ =

LZ + Ñ (Z), where Ñ := PD−1N . More precisely we apply P and observe that P̄B = B and hence PL = L.

Indeed this follows from the observation that on one hand, for k 6= 0, ˆ̄P (k) =
(
I − k⊗k

|k|2
)
⊕I3⊕I2 = I−projVk

and the fact that, since B̂k acts on C8/ Vk, it follows that projVk ◦B̂k = B̂k, whilst on the other hand, for

k = 0, we have that P̂L (0) = I3 (since constant vector fields are divergence-free) and hence P̂ (0) = id.
We can thus apply the Duhamel formula to obtain

Z (t)− etLZ (0) =

ˆ t

0

e(t−s)LÑ (Z (s)) ds

which can be estimated, when t 6 min (TL, TS), using the fact that θ 6 δ0, Proposition 3.12, the fact that

the Leray projector is bounded on L2, the inequality
∣∣∣∣D−1

∣∣∣∣ 6
√

max (1, 2/ν), and Proposition 4.5 to yield,

for C := 2
η∗

max (1, 2/ν)CSCNCB

(
||Z0||2H4 + 4

)
,

∣∣∣∣Z (t)− etLιZ0

∣∣∣∣
L2 6 Cι

2e2η∗t. (5.2)

Step 2: Now we show that TI = min (TI , TL, TS), using the key estimates (5.1) and (5.2). First suppose
for the sake of contradiction that TL = min (TI , TL, TS). By definition of TL,

||ω̄ (TL)||L2 + ||a (TL)||L2 = 2ιeη∗TL . (5.3)

Now note that (5.2) applies since TL 6 TS and thus it follows from Proposition 3.13 and the choice of Z0

that ||Z (TL)||L2 6
(
1 + Cιeη∗TL

)
ιeη∗TL < 2ιeη∗TL , where we have used that TL 6 TI and hence Cιeη∗TL 6

Cιeη∗TI = Cθ < 1. This contradicts (5.3) and hence the linear-dominance timescale TL is not the smallest
of the three timescales considered.

Now suppose for the sake of contradiction that TS = min (TI , TL, TS). By definition of TS ,

||Z (TS)||H4 = θ. (5.4)

Since TS 6 TL we may use (5.1) and since TS 6 TI we have that e2η∗TS 6 e2η∗TI = θ. Putting these two

facts together tells us that ||Z (TS)||2H4 6 CBι
2
(
||Z0||2H4 + 4

)
θ2 < θ which contradicts (5.4). Therefore

the smallness timescale TS is not the smallest of the three timescales considered. We thus deduce that
TI = min (TI , TL, TS).

Step 3: Finally we show that ||Z (TI)||L2 > θ
2 . Since TI is smaller than both TL and TS (and hence

smaller than TE) we may use (5.1) and (5.2), as well as Proposition 3.13, the choice of Z0, and the fact that
ιeη∗TI = θ to see that ||X (TI)−Xeq||L2 = ||Z (TI)||L2 > ιeη∗TI − Cι2e2η∗TI = θ (1− Cιθ) > 1

2 . �

6. Appendix

6.1. Local well-posedness. In this section we prove the local well-posedness of (1.1a)–(1.1d). This
is done in two steps: we prove local existence in the small energy regime in Theorem 6.3 and we prove
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uniqueness within a broader class of solutions in Theorem 6.5. Notably, this uniqueness result makes no
smallness assumption and only requires that the unknowns belong to appropriate Sobolev spaces.

A key step on the way to our local existence result is to prove that the nonlinearity is sufficiently regular.
We do this below in Lemma 6.1 where we prove that the nonlinearity is analytic.

Lemma 6.1 (Analyticity of the nonlinearity). Let 0 < δ 6 δ0 for δ0 as in the small energy regime. For
every s > 3

2 , N : Hs+2 ∩H4
δ0
→ Hs is analytic (as a mapping from Hs+2 to Hs). Moreover the Lipschitz

constant of N on Hs+2 ∩H4
δ0
→ Hs approaches zero as δ ↓ 0.

Proof. The two key observations are that (i) we may write N (Z) = P
(
m
(
JJ−1

eq

)
, Z,∇Z,∇2Z

)
for

some polynomial P and that (ii) m is analytic (recall that m is defined in Definition 4.1). Indeed m can

be written as a geometric series, namely m (A) =
∑∞
i=0 (−1)

i
Ai for every A ∈ B, where B is defined in

Definition 4.1.
Using Lemma 6.25, the fact that Hs is a continuous algebra when s > 3

2 , and the fact that polynomials

are analytic, it follows that we may write N = F
(
J 2Z

)
for some function F : domF ⊆ Hs → Hs which

is analytic on its domain (i.e. where it is well-defined), where J 2Z :=
(
Z,∇Z,∇2Z

)
. The last observation

we need is that J 2
(
Hs ∩H4

δ0

)
⊆ domF . This holds since, if Z = (u, ω, J) ∈ Hs+2 ∩ H4

δ0
for δ0 as in

the small energy regime, then by Lemma 4.4 we know that J 7→ m
(
JJ−1

eq

)
is well-defined, and hence

analytic. Since J is a bounded linear map from Hs+2 to Hs it is also analytic, and so we may conclude that
N : Hs+2 ∩H4

δ0
→ Hs is analytic as a map from Hs+2 to Hs.

Finally, note that the polynomial P above is at least quadratic in
(
Z,∇Z,∇2Z

)
and that therefore

DN (0) = 0. In particular it follows that the Lipschitz constant of N on balls of vanishingly small radii
approaches zero, as claimed. �

Remark 6.2. See [Whi65] for a brief and clean summary of basic results regarding analytic functions
between Banach spaces.

With Lemma 6.1 in hand we may now prove our local existence result.

Theorem 6.3 (Local existence and continuous dependence on the data). There are universal constants
ρ, δlwp, C > 0 such that for any Z0 = (u0, ω0, J0) ∈ H4 with ∇ · u0 = 0,

ffl
T3 u0 = 0, and ||Z0||H4 < δlwp,

there exists a time of existence Tlwp > 0, there exists Z = (u, ω, J) ∈ L∞H4 with (u, ω) ∈ L2H5, ∂tZ ∈
L∞H2 ∩ L2H3, and ∂tJ ∈ L∞H3, and there exists p ∈ L∞H4 ∩ L2H5 with average zero such that u is
divergence-free and has average zero, (u, p, ω, J) solves

∂tDZ = L̃Z + Λ (p) +N (Z) a.e. in (0, Tlwp) and Z (0) = Z0 in H4− 1
4 , (6.1)

and the estimates

||Z||L∞H4 + ||(u, ω)||L2H5 + ||∂tZ||L∞H2∩L2H3 + ||∂tJ ||L∞H3 6 C||Z0||H4 (6.2)

and

||p||L∞H4∩L2H5 6 C||u||2L∞H4∩L2H5 . (6.3)

hold. Moreover we have the lower bound Tlwp > 1
ρ log

δlwp

||Z0||H4
.

Proof. We proceed via a standard Galerkin scheme and thus omit the fine details of the proof here.
A key point is that everything we need to know about the nonlinearity for the purpose of this local well-
posedness result is obtained in Lemma 6.1.

We now proceed in five steps. In Step 1 we eliminate the pressure via Leray projection, in Step 2 we
prove local well-posedness for a sequence of appropriate approximate problems, in Step 3 we obtain uniform
bounds on these approximate solutions, in Step 4 we pass to the limit via a compactness argument, and in
Step 5 we reconstruct the pressure.

First we recall some notation from earlier results which is required to define the smallness parameter
δlwp. Let δ0 be as in the small energy regime, let δ = δ

(
1
2

)
be as in Proposition 4.17, and define C2 :=

max (1, λ, ν) max (1, 2/ν). Then take δlwp := 1
3 min (δ0/C2, δ).

Step 1: Leray projection eliminating the pressure.
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Recall that we denote the Leray projector by PL and that we write P = PL ⊕ I3 ⊕ I3×3. Upon applying

P to (6.1) we thus see that (noting that PZ = Z since ∇ · u = 0 and that P and L̃ commute since they are

both Fourier multipliers): ∂tDZ = L̃Z + PN (Z).
Step 2: Local well-posedness of a sequence of approximate problems.

Let Vn :=
{
Z ∈ L2

(
T3;R3 × R3 × R3×3

) ∣∣∣ Ẑ (k) = 0 if |k| > n and ∇ · u = 0
}

, let Un := Vn ∩ H4
δ0/2

where Hα
R denotes the open ball around zero of radius R in Hα, and let Pn be the orthogonal projection

onto Vn defined by P̂n (k) = 1 (|k| 6 n).
We approximate the system obtained after Leray projection in Step 1 by

∂tDZn = L̃Zn + PnPN (Zn) and Zn (0) = PnZ0. (6.4)

In order to use standard finite-dimensional ODE theory we write (6.4) as

∂tZn = Fn (Zn) and Zn (0) = PnZ0 (6.5)

for Fn = D−1
(
L̃+ PnPN

)
. It follows from Lemma 6.1 that Fn is analytic from H4

δ0
to H2, and since Un is

a subset of H4
δ0

and P ◦ P maps onto Vn we deduce that Fn maps Un to Vn.
We may now apply standard ODE theory, which tells us that if we pick an initial condition Z0 =

(u0, ω0, J0) ∈ H4 which satisfies ∇ · u0 =,
ffl
T3 u0 = 0, and ||Z0||H4 < δlwp then there exists a maximal time

of existence Tn > 0, a unique Zn ∈ C∞ ([0, Tn) ;Un) solving (6.5), and the following blow-up criterion holds:
for any T > 0 if sup06t6T ||Zn (t)||H4 <

δ0
2 then T 6 Tn.

Step 3: Uniform bounds on the approximate solutions.
To obtain uniform bounds it suffices to apply Proposition 4.17 to the approximate solutions Zn. Since

Proposition 4.17 is only applicable in a small energy regime we must first ensure that ||Zn||H4 remains

sufficiently small. We defined T̃n to this effect below.
Let δu = 1

3 min (δ0, δ), and let T̃n = sup {t > 0 | ||Zn||H4 6 δu}. Note that T̃n > Tn by the blow-up

criterion from Step 1. We may now apply a time-integrated version of Proposition 4.17 (with ε = 1
2 ) to

obtain

1

2

∣∣∣
∣∣∣
√
DZn (t)

∣∣∣
∣∣∣
2

L2
− 1

2

∣∣∣
∣∣∣
√
DZn (0)

∣∣∣
∣∣∣
2

L2
+

ˆ t

0

D (un, ωn) (s) ds 6
ˆ t

0

(
1

2
+ C0

)
||Zn (s)||2L2ds (6.6)

and, for k = 1, 2, 3, 4,

1

2

∣∣∣
∣∣∣∇k

(√
DZn (t)

)∣∣∣
∣∣∣
2

L2
− 1

2

∣∣∣
∣∣∣∇k

(√
DZn (0)

)∣∣∣
∣∣∣
2

L2
+

ˆ t

0

CD
2

∣∣∣∣∇k (un, ωn) (s)
∣∣∣∣2
H1ds

6
ˆ t

0

max

(
1

2
, C1

) k∑

i=0

∣∣∣∣∇iZn (s)
∣∣∣∣2
L2ds. (6.7)

where C0, C1, and CD are as in Proposition 4.17. Note that Proposition 4.17 as stated applies to solutions

of ∂tDZ = L̃Z +N (Z) + Λ (p) whereas Zn satisfies ∂tDZn = L̃Zn +PnPLN (Zn). Nonetheless, Proposition
4.17 applies to Zn as well since this theorem relies solely on energy estimates, and in particular, since´
T3 Λ (p) · Z = 0 when ∇ · u = 0 and

´
T3 PnPN (Zn) · Zn =

´
T3 N (Zn) · Zn since Zn belongs to the image of

the projection Pn ◦ P, it follows that the estimate obtained for Z in Proposition 4.17 also holds for Zn.
Summing (6.6) and (6.7) and using the integral form of the Gronwall inequality tells us that, for any

0 < t < T̃n,

||Zn (t)||2H4 +

ˆ t

0

||(un, ωn)||2H5 6 C2e
ρt||Z0||2H4 (6.8)

where ρ := 2 (1 + C0 + C1) max (1, 2/ν). In particular we deduce from the blow-up criterion that if we denote

by Tlwp the infimum of Tn over n then Tlwp > 1
ρ log

δlwp

||Z0||H4
. In other words we have a uniform lower bound

on the time of existence of the approximate solutions.
Now we obtain bounds on the time derivative ∂tZn, which are required for the compactness argument

in Step 4. Note first that (6.8) tells us that, for C4 = C2e
ρTlwp ,

sup
n

(
||(un, ωn, Jn)||2L∞H4 + ||(un, ωn)||2L2H5

)
6 C4||Z0||2H4 (6.9)
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where LpHs denote Lp ([0, Tlwp] ;Hs). Using Lemma 6.1 and the boundedness of L̃, Pn, and P we deduce
from (6.9) that, for some C5 > 0,

sup
n

(
||∂t (un, ωn, Jn)||2L∞H2 + ||∂t (un, ωn)||2L2H3

)
6 C5||Z0||2H4 . (6.10)

Finally we improve this bound on ∂tZn by paying closer attention to the structure of the PDE (6.4).

Specifically: since L̃3 and N3 lose fewer derivatives than L̃ and N do, we obtain an improved estimate
for ∂tJn:

sup
n
||∂tJn||2L∞H3 6 C4||Z0||2H4 . (6.11)

Step 4: Passing to the limit by compactness.
By applying Banach-Alaoglu (i.e. the weak-∗ compactness of bounded sets) to the bounds provided by

(6.9), (6.10), and (6.11) we obtain a subsequence of (Zn), which for simplicity we do not relabel, such that

Zn
∗
⇀ Z in L∞H4, (un, ωn) ⇀ (u, ω) in L2H5, (6.12)

∂tZn
∗
⇀ ∂tZ in L∞H2, ∂tZn ⇀ ∂tZ in L2H3, and ∂tJn

∗
⇀ ∂tJ in L∞H3 (6.13)

for some Z = (u, ω, J) ∈ L∞H4 with (u, ω) ∈ L2H5, ∂tZ ∈ L∞H2 ∩ L2H3, and ∂tJ ∈ L∞H3. Moreover, it
follows from Aubin-Lions-Simon that, passing to another subsequence which we do not relabel,

Zn → Z in C0H4− 1
4 (6.14)

and that Z ∈ C0H4− 1
4 .

We now pass to the limit. It follows immediately from (6.12) and (6.13) that

∂tDZn
∗
⇀ ∂tDZ and L̃Zn ∗⇀ L̃Z in L∞H2. (6.15)

To pass to the limit in the nonlinearity we write

PnPN (Zn)− PN (Z) = PnP (N (Zn)−N (Z)) + (Pn − I)PN (Z) := A+B.

Passing to the limit in B is immediate: by weak-∗ lower semi-continuity of the L∞H4 norm we know that
sup06t6T0

||Z (t)||H4 6 δ0
2 < δ0 such that N (Z) is a well-defined element of L∞H2. In particular, since

||(I − Pn) f ||Hs → 0 for all s > 0 and all f ∈ Hs, it follows that

||B||L∞H2 = ||(I − Pn)PN (Z)||L∞H2 → 0. (6.16)

Passing to the limit in A relies on the analyticity of the nonlinearity obtained in Lemma 6.1: since Zn → Z
in C0H4− 1

4 and since, as observed above, both the sequence (Zn) and its limit Z lie in H4
δ0/2

, it follows from

Lemma 6.1 (since 2− 1
4 >

3
2 ) that N (Zn)→ N (Z) in C0H4− 1

4 . So finally:

||A||
L∞H2− 1

4
= ||PnP (N (Zn)−N (Z))||

L∞H2− 1
4
6 ||N (Zn)−N (Z)||

L∞H2− 1
4
→ 0. (6.17)

We conclude from (6.4), (6.15), (6.16), and (6.17) that Z is a strong solution of ∂tDZ = L̃Z + PN (Z). As
a consequence we deduce that the conditions ∇ · u = 0 and

ffl
T3 u = 0 are propagated in time, i.e. they hold

for every 0 6 t < Tlwp.
Finally we deduce from (6.9), (6.10), and (6.11) and the weak and weak-∗ lower semi-continuity of the

appropriate norms that, for some C > 0,

||(u, ω, J)||L∞H4 + ||(u, ω)||L2H5 + ||∂t (u, ω, J)||L∞H2∩L2H3 + ||∂tJ ||L∞H3 6 C||Z0||H4 . (6.18)

Step 5: Reconstructing the pressure.
The key observation is that since P = PL ⊕ I3 ⊕ I3×3 we may reconstruct p via I − PL, where I − PL =

∇∆−1∇· as per Lemma 6.26. More precisely: let p := ∆−1 (∇ ·N1 (Z)) and note that p thus defined has
average zero. Then, by Lemma 6.26, ∇p = (I − PL)N1 (Z) and hence Λ (p) = − (I − P)N (Z) such that
(6.1) holds. Finally, since N1 (Z) = − (u · ∇)u and since Hs is an algebra for s > 3/2 we have that, for
s = 3 or 4,

||p||Hs . ||N1 (Z)||Hs−1 = ||(u · ∇)u||Hs−1 . ||u||Hs−1 ||u||Hs .
Combining these estimates with (6.18) yields (6.3). �
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Remark 6.4. It may appear somewhat odd that the initial condition Z (0) = Z0 of (6.1) holds in H4− 1
4

and not in H4 as one might expect. This is due to the loss of spatial regularity incurred when applying
the Aubin-Lions-Simon lemma to obtain strong convergence of the approximate solutions in C0H4− 1

4 . In
particular, note that the only thing which is special about 1

4 is that it sits squarely between 0 and 1
2 and

that we use that
(
4− 1

4

)
− 2 > 3

2 when we leverage Lemma 6.1 to pass to the limit in the nonlinearity in

Step 4 of the proof of Theorem 6.3. This means that we can actually show that Z (0) = Z0 in H4−ε for any
0 < ε < 1

2 , since then 4− ε < 4 such that Aubin-Lions-Simon applies and (4− ε)− 2 > 3
2 such that we may

still use Lemma 6.1.

We now state and prove our uniqueness result. Note that the only assumptions made are boundedness
of appropriate Sobolev norms of the solutions. No smallness assumptions are made here.

Theorem 6.5 (Uniqueness). Suppose that, for i = 1, 2, (ui, pi, ωi, Ji) are strong solutions of




∂tui + (ui · ∇)ui = (∇ · T ) (ui, pi, ωi) ,

∇ · ui = 0,

Ji (∂tωi + (ui · ∇)ωi) + ωi ∧ Jiωi = 2 vecT (ui, pi, ωi) + (∇ ·M) (ωi) + τe3, and

∂tJi + (ui · ∇) Ji = [Ωi, Ji]

on some common time interval (0, T ) which agree initially, i.e. which agree at time t = 0. If J1 is uniformly
positive-definite, pi, ∂t (ui, ωi, Ji) ∈ L2

TL
2, (ui, ωi, Ji) ,∇ (ui, ωi, Ji) ∈ L∞T L∞, and ∂tJ1, ∂tω2 ∈ L∞T L∞, then

these solutions coincide on (0, T ).

Proof. This follows from simple energy estimates for the equations satisfied by the difference of the
two solutions. The difference (u, p, ω, J) = (u1 − u2, p1 − p2, ω1 − ω2, J1 − J2) satisfies





(∂t + u1 · ∇)u = (∇ · T ) (u, p, ω) + f, (6.19a)

∇ · u1 = 0, (6.19b)

(J1 (∂t + u1 · ∇) + ω1 ∧ J1)ω = 2 vecT (u, p, ω) + (∇ ·M) (ω) + g, (6.19c)

(∂t + u1 · ∇) J1 = [Ω1, J1] , and (6.19d)

(∂t + u1 · ∇) J = [Ω, J ] + h (6.19e)

for 



f = − (u · ∇)u2

g = −J∂tω2 − J1 (u · ∇)ω2 − J (u2 · ∇)ω2 − ω1 ∧ Jω2 − ω ∧ J2ω2, and

h = − (u · ∇) J2 + [Ω, J2] .

We can thus multiply (6.19a), (6.19c), and (6.19e) by u, ω, and J respectively to see that, for every 0 < t < T ,ˆ
T3

1

2
|u|2 +

1

2
J1ω · ω +

1

2
|J |2

∣∣∣∣
s=t

−
ˆ
T3

1

2
|u|2 +

1

2
J1ω · ω +

1

2
|J |2

∣∣∣∣
s=0

+

ˆ t

0

ˆ
T3

µ

2
|Du|2 + 2κ

∣∣∣∣
1

2
∇× u− ω

∣∣∣∣
2

+ α|∇ · ω|2 +
β

2
|D0ω|2 + 2γ|∇ × ω|2 =

ˆ t

0

ˆ
T3

f · u+ g · ω + h : J.

We can write this energy-dissipation-interaction relation more succintly as E(t) − E(0) +
´ t

0
D =

´ t
0
I for

I =
´
T3 f · u+ g · ω + h : J . It follows from straightforward application of the Hölder and Cauchy-Schwartz

inequalities that the interactions are controlled by the energy, i.e. |I| 6 CE for some constant C > 0. Note
that since the two solutions agree initially we have that E(0) = 0. Therefore the integral version of Gronwall’s
inequality tells us that E(t) = 0 for all 0 < t < T . Since J1 is uniformly positive definite we deduce that

(u, ω, J) = 0. Finally, since −∆p = ∇u1 : ∇uT +∇u : ∇u2
T = 0, we conclude that indeed the two solutions

coincide. �

Putting Theorem 6.3 and Theorem 6.5 together yields our local well-posedness result, stated below.

Corollary 6.6 (Local well-posedness). The solution obtained in Theorem 6.3 is unique.

Proof. This is immediate since the assumptions of Theorem 6.3 ensure that Theorem 6.5 applies. �
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6.2. Auxiliary results. Here we record auxiliary results which are used throughout the main body of
the chapter. Whilst these results are typically either elementary lemmas or well-known theorems, they are
of interest since they are applicable beyond the scope of this chapter.

Lemma 6.7 (Lower bound on the real part of complex square roots). Let x, y ∈ R with y 6= 0 and
let α > 0. We follow the convention according to which the square root of a complex number with non-
trivial imaginary part is chosen to have a strictly positive real part. Then Re

√
x+ iy > α if and only if

x > α2 − y2

4α2 .

Proof. Let us write
√
x+ iy = u+ iv for some u > 0 and v ∈ R, such that x = u2 − v2 and y = 2uv.

What we wish to prove can then be written as u > α if and only if u2−v2 > α2− u2v2

α2 . The latter inequality

can be rearranged as u2 − α2 > − v2

α2

(
u2 − α2

)
. This can be simplified, using the fact that u + α > 0, to

(u− α)
(

1 + v2

α2

)
> 0. This is indeed equivalent to u > α so we are done. �

Lemma 6.8 (Similarity of matrices acting on quotient spaces). Let V be a subspace of Cn and let A, G,
and H be complex n-by-n matrices which act on Cn/ V (c.f. Definition 3.1) such that GH = HG = projV ⊥ .
Then (1) B := GAH acts on Cn/ V , (2) A = HBG, and (3) A and B are similar.

Proof. First we show that B acts on Cn/ V . We know that imB ⊆ imG ⊆ V ⊥ and that V = kerH ⊆
kerB, so it is enough to show that kerB ⊆ V . Let x ∈ kerB. Since Hx ∈ V ⊥, it suffices to show that
Hx ∈ V as then Hx = 0, i.e. x ∈ kerH = V . The key observation is that since imA ⊆ V ⊥ and since G
and H are inverses on V ⊥, we obtain that A = HGA. It follows that AHx = HGAHx = HBx = 0, i.e.
Hx ∈ kerA = V , and hence (1) holds.

Now observe that in order to prove that A = HBG it is enough to show that HGA = A, which was
done above, and that AHG = A, which we do now. Pick any x ∈ Cn and write x = x‖ + x⊥ for x‖ ∈ V and

X⊥ ∈ V ⊥. Since kerG = kerA = V and since HG = projV ⊥ it follows that AHGx = AHGx⊥ = Ax⊥ = Ax,
i.e. indeed AHG = A.

Finally we show that A and B are similar by explicitly finding an appropriate change-of-basis matrix.
Let P be the orthogonal projection onto V , i.e. kerP = V ⊥ and P |V = id |V . Observe that, since kerB =
V = imP and since imB ⊆ V ⊥ = kerP , we may deduce that BP = PB = 0. Therefore

(H + P )B (G+ P ) = A. (6.20)

We will now show thatG+P andH+P are invertible and (G+P )−1 = H+P , from which it follows that (6.20)
witnesses (3). Let x ∈ ker (G+ P ) and let us write x = x‖ + x⊥ as above. Then 0 = (G+ P )x = Gx⊥ + x‖
with Gx⊥ ∈ V ⊥ and x‖ ∈ V , and hence we must have Px⊥ = 0 and x‖ = 0. In particular, since kerG = V ,

we know that x⊥ belongs to both V and V ⊥ and hence x⊥ = 0, such that x = 0. This shows that G + P
has trivial kernel and is thus invertible. We may deduce in exactly the same way that H + P is invertible.
To conclude we simply compute (H + P )(G+ P ) = HG+HP + PG+ P 2 = HG+ P = I. �

Lemma 6.9 (Bounds on the real parts of the eigenvalues of a matrix using the spectrum of its symmetric
part). Let S and A be symmetric and antisymmetric real n-by-n matrices respectively. It then holds that
minσ (S) 6 Reσ (S +A) 6 maxσ (S).

Proof. Let us denote by λ+ and λ− the maximal and minimal eigenvalues of S, respectively, let us
define M = S + A, and let a + ib, a, b ∈ R, be an eigenvalue of M with eigenvector x + iy, x, y ∈ Rn.
Then, since M (x+ iy) = (a+ ib) (x+ iy) it follows that Mx = ax − by and My = bx + ay. In particular
Sx ·x+Sy ·y = Mx ·x+My ·y = a

(
|x|2 + |y|2

)
where Sx ·x+Sy ·y 6 λ+

(
|x|2 + |y|2

)
, and therefore a 6 λ+.

We may obtain in exactly the same way that a > λ−, and hence indeed λ− 6 Reσ (S +A) 6 λ+. �

Theorem 6.10 (Gershgorin disk theorem). Let A be a complex n-by-n matrix and let Ri :=
∑
j 6=i|Aij |

for i = 1, . . . , n. Every eigenvalue of A lies in one of the closed disks B (Aii, Ri), where i = 1, . . . , n. These
disks are called the Gershgorin disks of A.

Proof. Let v be an eigenvector of A with eigenvalue λ. Without loss of generality (otherwise we may
divide v by ±||v||∞): vi = 1 for some index i and |vj | 6 1 for all indices j different from i. Now observe that

(Av)i = λvi ⇔ Aiivi +
∑

j 6=i
Aijvj = λvi ⇔ λ−Aii =

∑

j 6=i
Aijvj
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and thus |λ − Aii| 6
∑
j 6=i|Aij ||vj | 6

∑
j 6=i|Aij | = Ri i.e. indeed λ lies in B (Aii, Ri), which is one of the

Gershgorin disks of A. �

Corollary 6.11 (Bounds on the imaginary parts of the eigenvalues of a matrix using the Frobenius norm
of its antisymmetric part). Let S and A be symmetric and antisymmetric real n-by-n matrices respectively.

Then |Imσ (S +A)| 6
√
n− 1||A||2, where ||A||2 :=

√
A : A is the Frobenius norm of A.

Proof. Since S is symmetric, there exists an orthogonal matrix Q and a diagonal matrix D such that
QSQT = D. Therefore Q (S +A)QT = D + QAQT . In particular, for Ã := QAQT , we know that S + A

and D + Ã have the same spectrum. Writing D = diag (λ1, . . . , λn) where the λi’s are the eigenvalues of S,

we may apply Theorem 6.10 to deduce that the eigenvalues of D + Ã lie within closed disks centered at λi
(since Ã is antisymmetric and hence all its diagonal entries are equal to zero) and with corresponding radii

Ri =
∑
j 6=i|Ãij | 6

√
n− 1 ||Ã||2. The result then follows from the observation that the eigenvalues λi of

the symmetric matrix S are real and the fact that ||Ã||22 = QAQT : QAQT = QTQAQTQ : A = ||A||22. �

Lemma 6.12 (Bounds on matrix exponentials using the symmetric part). Let M be a real n-by-n matrix,
let S := 1

2

(
M +MT

)
denote its symmetric part, and let σ denote the largest eigenvalue of S. Then, for

every t > 0,
∣∣∣∣etM

∣∣∣∣
L(l2,l2)

6 eσt.

Proof. This follows from a simple Gronwall inequality upon noticing that, for any x ∈ Rn, Mx · x =
Sx · x. More precisely: pick any x0 ∈ Rn and define x (t) := etMx0 for every t > 0. Observe that
d
dtx (t) = Mx (t) and hence d

dt ||x (t)||22 = 2Sx (t) · x (t) 6 2σ||x (t)||22. Since x (0) = x0, applying Gronwall’s

inequality yields that, for every t > 0,
∣∣∣∣etMx0

∣∣∣∣2
2

= ||x (t)||22 6 e2σt||x0||22, from which the result follows. �

Lemma 6.13 (Bounds on matrix exponentials for Jordan canonical forms). For any matrix norm | · |
there exists a constant Cn > 0 such that for every complex n-by-n matrix M in Jordan canonical form, if
η := max Reσ (M) then, for every t > 0, |etM | 6 Cn (1 + tn) eηt.

Proof. Since M is in Jordan canonical form it can be written as M = Ja1
(λ1)⊕ · · · ⊕ Jak (λk) where

the λi’s are eigenvalues of M and Ja (λ) = λIa + Na for (Na)ij = 1 if j = i + 1 and (Na)ij = 0 otherwise,
Note that, since Na is an a-by-a matrix whose only non-zero entries are those immediately above the
diagonal, it is nilpotent of order a. In particular, note that since the identity commutes with all matrices,
it follows that eJa(λ) = eλeNa , and recall that for any nilpotent matrix N of order q its matrix exponential
is given by a finite sum, i.e. eN =

∑q−1
j=0

1
j!N

j . We can thus compute the matrix exponential of M to be

etM = eλ1tetNa1 ⊕eλktetNak which can be estimated by |etM | 6∑k
i=1 e

(Reλi)t
∣∣∣
∑ai
j=0

1
j! (tNai)

j
∣∣∣ . eηt (1 + tn)

where have used that polynomials of degree q in a real variable x can be bounded above (up to a constant)
by 1+xq, and where the constants up to which the inequalities above hold only depends on n and the choice
of the matrix norm. �

Corollary 6.14 (Bounds on matrix exponentials). Let M be a real n-by-n matrix and let η :=
max Reσ (M). For any matrix norm | · | there exists a constant C = C (M) > 0 such that, for every
t ∈ R, it holds that |etM | 6 C (1 + tn) eηt.

Proof. This follows from Lemma 6.13 since every matrix M is similar to a matrix in Jordan canonical
form. The constant obtained depends on M since the norm of the matrices used to conjugate M to put it
in Jordan canonical form depend on M . �

Proposition 6.15 (Construction of a semigroup via matrix exponentials as Fourier multipliers). Let
M : Zn → Rl×l be a family of matrices for which there exists η ∈ R and CF > 0 such that, for every k ∈ Zn
and every t > 0, ∣∣∣

∣∣∣etM(k)
∣∣∣
∣∣∣
L(l2, l2)

6 CF e
ηt. (6.21)

For any t > 0 the operator etL defined by the multiplier
(
etL
)∧

(k) := etM(k) is a bounded operator on

L2
(
Tn;Rl

)
such that

(
etL
)
t>0

defines an η-contractive semigroup, i.e.

(1) e0L is the identity,
(2) for every t, s > 0, etLesL = esLetL = e(t+s)L,
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(3) for every f ∈ L2
(
Tn;Rl

)
, t→ etLf is a continuous map from [0,∞) to L2

(
Tn;Rl

)
, and

(4) for every r > 0,
∣∣∣∣etL

∣∣∣∣
L(Hr(Tn;Rl);Hr(Tn;Rl)) 6 CF e

ηt.

Moreover, let us write v = (v1, . . . , vp) ∈ Rq1 × · · · × Rqp , where q1 + · · · + qp = l, and suppose that there
exists α1, . . . , αp ∈ N and CD > 0 such that for every k ∈ Zn and every v ∈ Rl,

|M (k) v|2 6 CD
p∑

i=1

〈k〉2αi |vi|2. (6.22)

Then

(5) the domain of the semigroup
(
etL
)
t>0

contains Hα1 (Tn,Rq1)× · · · ×Hαp (Tn,Rqp) and

(6) its generator is the linear differential operator L with symbol M , i.e. L̂ (k) := M (k).

Proof. The boundedness of etL and (4) follow directly from (6.21). (1) and (2) follow from the fact
that, for any matrix M ,

(
etM

)
t>0

is a representation of the semigroup (R>0,+), i.e. e0M = I and etMesM =

esMetM = e(t+s)M . To prove that (3) holds it suffices to show that t 7→ etLf is continuous at t = 0. This is
immediate since ∣∣∣∣etLf − f

∣∣∣∣
L2 6

∑

|k|6K
|
(
etMk − I

)
f̂(k)|2 +

(
eηt + 1

)2 ∑

|k|>K
|f̂(k)|2

︸ ︷︷ ︸
=:Rf (K)

where Rf (K)→ 0 as K →∞ since f ∈ L2, and hence, since for any fixed K the collection
{
t 7→ etMk

}
|k|6K

is as finite collection of continuous maps, we indeed obtain that etLf → f in L2 as t→ 0.
Finally, to prove (5) and (6) we proceed as we did for (3). First we note that, by the mean-value theorem,

for every k ∈ Zn and every t > 0, etMk−I
t −Mk =

´ 1

0

(
estMk − I

)
Mkds. Therefore, for any f ∈ L2 and any

0 < t < δ, if we write f̂ =
(
f̂1, . . . , f̂p

)
∈ Rq1 × · · · × Rqp then

∣∣∣∣
∣∣∣∣
etLf − f

t
− Lf

∣∣∣∣
∣∣∣∣
2

L2

6
∑

k∈Zl

∣∣∣∣
∣∣∣∣
ˆ 1

0

(
estMk − I

)
ds

∣∣∣∣
∣∣∣∣
2

L(l2, l2)

∣∣∣Mkf̂ (k)
∣∣∣
2

6 C (K, f)
∑

|k|<K

∣∣∣∣
∣∣∣∣
ˆ 1

0

(
estMk − I

)
ds

∣∣∣∣
∣∣∣∣
2

L(l2, l2)

+ C (η, δ)
∑

|k|>K

p∑

i=1

〈k〉2αi
∣∣∣f̂i (k)

∣∣∣
2

︸ ︷︷ ︸
=:Hf (K)

In particular, if f ∈ Hα1 × · · · × Hαp then Hf (K) → 0 as K → ∞ and thus, since, for any fixed K,{
t 7→ etMk

}
|k|6K is as finite collection of continuous maps, we may conclude that indeed etLf−f

t → Lf in

L2 as t→ 0. �

Theorem 6.16 (Rouché). Let Ω ⊆ C be a connected open set whose boundary is a simple curve and let
f and g be holomorphic in Ω. If |f − g| < |f | on ∂Ω then f and g have the same number of zeros in Ω.

Proof. See Chapter 4 of [Ahl78]. �

Theorem 6.17 (Implicit Function Theorem for mixed real-complex functions). Let f : O ⊆ C×Rm → C,
where O is open, be continuously differentiable in the real sense (i.e. after identifying C with R2 in the
canonical way) is continuously differentiable. Let (z0, v0) ∈ O and let us write f = f (z, v) for z ∈ C and
v ∈ Rm. If (1) f (z0, v0) = 0 and (2) ∂zf (z0, v0) 6= 0 then there exist open sets U ⊆ C×Rm and W ⊆ Rm and
a function g : W → C which is continuously differentiable in the real sense such that (1) (z0, v0) ∈ U , v0 ∈W ,
(2) g (v0) = z0, (3) (g (v) , v) ∈ U for every v ∈W , (4) f (g (v) , v) = 0 for every v ∈W and

∇vg (v0) =
−∇vf (z0, v0)

∂zf (z0, v0)
.

Moreover, if f is more regular, in the real sense, then so is g.

Proof. See Chapter 9 of [Rud76]. �
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Lemma 6.18 (Coercivity implies invertibility and bounds on the inverse). Let B be a real n-by-n matrix.
If B is coercive, i.e. if there exists C0 > 0 such that for every x ∈ Rn, |Bx| > C0|x|, then B is invertible
and

∣∣∣∣B−1
∣∣∣∣
op
6 1

C0
.

Proof. Observe that since B is coercive, it has trivial kernel, and is hence invertible. To obtain the
bound on the operator norm of B−1 simply observe that for every y ∈ Rn, |y| = |BB−1y| > C0|B−1y|. �

Corollary 6.19 (Invertibility and bounds for perturbations of the identity). Let B be a real n-by-n

matrix. If ||B||op < 1 then I +B is invertible and
∣∣∣
∣∣∣(I +B)

−1
∣∣∣
∣∣∣
op
6 1

1−||B||op
.

Proof. The key observation is that I + B is coercive with coercivity constant 1 − ||B||op. The result
then follows from Lemma 6.18. �

Lemma 6.20. Let A and N be real n-by-n matrices such that N is normal, i.e. NNT = NTN . Then
[A,N ] : N = 0.

Proof. This follows from a direct computation: NA : N = A : NTN = A : NNT = AN : N and hence
[A,N ] : N = AN : N −NA : N = 0. �

Proposition 6.21 (Korn inequality). There exists CK > 0 such that for every u ∈ H1
(
T3, R3

)
,

||∇u||L2 6 CK (||u||L2 + ||Du||L2).

Proof. See Lemma IV.7.6 in [BF13]. �

Proposition 6.22 (Korn-Poincaré inequality). There exists CKP > 0 such that for every u ∈ H1
(
T3, R3

)
,

||u||L2 6 CKP
(∣∣ffl u∣∣+ ||Du||L2

)
.

Proof. This is a consequence of Proposition 6.21 – see for example Lemma IV.7.7 in [BF13] – noting
that ∇× u has average zero on the torus. �

Lemma 6.23 (A div-curl identity on the torus). For any v ∈ H1
(
T3, R3

)
, it holds that ||∇v||2L2 =

||∇ · v||2L2 + ||∇ × v||2L2 .

Proof. The key observation is that for any w ∈ R3 and any nonzero k ∈ Z3, w 7→ k×w
|k| is an isometry

on span⊥k , and hence |w|2 = |projk w|2 + |projk⊥ w|2 = |k·w|2
|k|2 + |k×w|2

|k|2 . Combining this observation with

Parseval’s identity allows us to conclude:

||∇v||2L2 =
∑

k∈Z3

|k⊗ v̂ (k)|2 =
∑

k∈Z3\{0}
|k|2|v̂ (k)|2 =

∑

k∈Z3

|k · v̂ (k)|2 +
∑

k∈Z3

|k× v̂ (k)|2 = ||∇ · v||2L2 + ||∇ × v||2L2 .

�

Proposition 6.24 (Estimates from the Faà di Bruno formula). Let U ⊆ Rn and V ⊆ Rp be open and
let g : U → V and F : V → Rq be k-times differentiable. There exists a constant C = C (n, p, q, k) > 0 which
does not depend on F or g such that, for every x ∈ U ,

∣∣∇k (F ◦ g) (x)
∣∣ 6 C

k∑

i=1

∣∣∇iF (g (x))
∣∣ ∑

π∈Pi(k)

|∇πg (x)| .

Proof. This estimate follows immediately from the Faà di Bruno formula, which was first proven in
[Arb00] and can be found in a rather clean form in [Har06]. �

Lemma 6.25 (Post-compositions by analytic functions are analytic). Suppose that F : Rk → Rl is
analytic about zero and let s > n

2 . There exists δ > 0 such that F ∗ : Hs
δ

(
Tn;Rk

)
→ Hs

(
Tn;Rl

)
, defined by

F ∗ (G) = F ◦G for every G ∈ Hs
δ , is analytic.

Proof. Let δ = R
Cs

where R is the radius of convergence of F about zero and Cs is the constant from

the continuous embedding Hs ·Hs ↪→ Hs and suppose that F (x) =
∑∞
i=0 Fi •X⊗i for every x ∈ B (0, R),

for some fixed tensorial coefficients Fi. Then indeed, for every G ∈ Hs
δ , F ∗ (G) =

∑∞
i=0 Fi •G⊗i with

∞∑

i=0

|Fi|
∣∣∣∣G⊗i

∣∣∣∣
Hs
6
∞∑

i=0

|Fi|Cis ||G||iHs 6
∞∑

i=0

|Fi|Ri <∞.
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�

Lemma 6.26 (Formula for the Leray projector and its complement). Let PL denote the Leray projector
on the torus. Then PL = −∇×∆−1∇× and I − PL = ∇∆−1∇·.

Proof. This is immediate since P̂L (0) = I and P̂L (k) = I − k⊗k
|k|2 if k 6= 0 and since k × k × · =

|k|2 − k ⊗ k. �

6.3. Derivation of the perturbative energy-dissipation relation. In this section we derive the
energy-dissipation relation (2.1), which is satisfied by solutions of (1.1a)–(1.1d). First recall that the Cauchy
stress tensor and the couple stress tensor are denoted by T and M respectively. We will write Teq = −κΩeq
for the equilibrium version of the stress tensor. For simplicity we will also write Dt := ∂t + u · ∇ for the
advective derivative. The conservation of linear momentum (1.1a) can then be written as Dtu = ∇ · T such
that multiplying by u yields

d

dt

ˆ
T3

1

2
|u|2 =

ˆ
T3

Dt

(
1

2
|u|2
)

=

ˆ
T3

Dtu · u =

ˆ
T3

(∇ · T ) · u = −
ˆ
T3

T : ∇u. (6.23)

Similarly, the conservation of angular momentum (1.1c) can be written as

JDtω + [Ω, J ]ω = 2 vec (T − Teq) +∇ ·M
and hence multiplying by ω − ωeq yields

JDtω · (ω − ωeq) + [Ω, J ]ω · (ω − ωeq) = 2 vec (T − Teq) · (ω − ωeq) + (∇ ·M) · (ω − ωeq) . (6.24)

The right-hand side of (6.24) is dealt with in the usual way:ˆ
T3

2 vec (T − Teq) · (ω − ωeq) + (∇ ·M) · (ω − ωeq) =

ˆ
T3

(T − Teq) : (Ω− Ωeq)−M : ∇ (ω − ωeq) . (6.25)

Dealing with the left-hand side of (6.24) requires further rearranging. Using the fact that the conservation
of micro-inertia (1.1d) can be written as DtJ = [Ω, J ] and adding and subtracting 1

2DtJ (ω − ωeq) ·(ω − ωeq)
yields

JDtω · (ω − ωeq) + [Ω, J ]ω · (ω − ωeq) = Dt

(
1

2
J (ω − ωeq) · (ω − ωeq)

)
+

1

2
DtJ (ω + ωeq) · (ω − ωeq) .

(6.26)

The key observation that allows us to conclude is the identity [Ω, J ] (ω + v) · (ω − v) = − [Ω, J ] v · v for every
v ∈ R3. Combining this identity with DtJ = [Ω, J ] tells us that

1

2
DtJ (ω + ωeq) · (ω − ωeq) = −1

2
(DtJ)ωeq · ωeq = −Dt

(
1

2
Jωeq · ωeq

)
. (6.27)

Finally: combining (6.25), (6.26), and (6.27) yields

d

dt

(ˆ
T3

J (ω − ωeq) · (ω − ωeq)−
1

2
Jωeq · ωeq

)
=

ˆ
T3

(T − Teq) : (Ω− Ωeq)−M : ∇ (ω − ωeq) .

Adding this equation to (6.23) yields the energy-dissipation relation (2.1).

6.4. The 8-by-8 matrix M in all its glory. In this section we record the matrix Mk in an explicit
form. Recall that Mk is introduced in Section 3.2, and is written there in a compact form well-suited to the
analysis of its spectrum. However, in order to compute the characteristic polynomial of M , we employed
the assistance of a symbolic algebra package, and this thus requires providing an explicit form of the matrix
Mk. Mk can be written in block form as

Mk =




A B 03×2

BT C D
02×3 E F
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where

A =− (µ+ κ/2)
(
|k|2I3 − k ⊗ k

)
= (µ+ κ/2)



−k2

2 − k2
3 k1k2 k1k3

k1k2 −k2
1 − k2

3 k2k3

k1k3 k2k3 −k3
2 − k2

3


 ,

B =
κ

|k|
(
|k|2I3 − k ⊗ k

)
diag

(
λ−1/2, λ−1/2, ν−1/2

)

=
κ√

k2
1 + k2

2 + k2
3



(
k2

2 + k2
3

)
/
√
λ −k1k2/

√
λ −k1k3/

√
ν

−k1k2/
√
λ

(
k2

1 + k2
3

)
/
√
λ −k2k3/

√
ν

−k1k3/
√
λ −k2k3/

√
λ

(
k2

1 + k2
2

)
/
√
ν




D =
τ

2κ

√
1− ν

λ




1 0
0 1
0 0


 , E =

(
1 0 0
0 1 0

)
, F =

τ

2κ

(
0 −1
1 0

)

and

C =− diag
(
λ−1/2, λ−1/2, ν−1/2

) (
2κI3 + (α+ β/3− γ) k ⊗ k + (β + γ) |k|2I3

)
diag

(
λ−1/2, λ−1/2, ν−1/2

)

−
(

1− ν

λ

) τ

2κ
(e2 ⊗ e1 − e1 ⊗ e2)

such that

C11 = −λ−1
(
2κ+ (α+ 4β/3) k2

1 + (β + γ)
(
k2

2 + k2
3

))
, C12 = −λ−1 (α+ β/3− γ) k1k2 +

τ

2κ

(
1− ν

λ

)
,

C22 = −λ−1
(
2κ+ (α+ 4β/3) k2

2 + (β + γ)
(
k2

1 + k2
3

))
, C21 = −λ−1 (α+ β/3− γ) k1k2 −

τ

2κ

(
1− ν

λ

)
,

C33 = −ν−1
(
2κ+ (α+ 4β/3) k2

3 + (β + γ)
(
k2

1 + k2
2

))
, C13 = C31 = −λ−1/2ν−1/2 (α+ β/3− γ) k1k3,

C23 = C32 = −λ−1/2ν−1/2 (α+ β/3− γ) k2k3.





CHAPTER 3

The viscous surface wave problem with generalized surface
energies

Abstract.

We study a three-dimensional incompressible viscous fluid in a horizontally pe-
riodic domain with finite depth whose free boundary is the graph of a function.
The fluid is subject to gravity and generalized forces arising from a surface en-
ergy. The surface energy incorporates both bending and surface tension effects.
We prove that for initial conditions sufficiently close to equilibrium the problem
is globally well-posed and solutions decay to equilibrium exponentially fast, in an
appropriate norm. Our proof is centered around a nonlinear energy method that
is coupled to careful estimates of the fully nonlinear surface energy.
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90 3. VISCOUS SURFACE WAVES AND SURFACE ENERGIES

1. Introduction

In this chapter we study the dynamics of a three-dimensional periodic layer of viscous incompressible
fluid bounded below by a rigid interface and above by a moving free boundary. The free boundary is advected
with the fluid, but the configuration of the free boundary gives rise to surface stresses that act as forcing
terms on the fluid. In this introductory section we discuss the origin and nature of the surface stresses and
then record the equations of motion.

1.1. Surface energies. We will restrict our attention in this chapter to surface stresses that are gen-
erated as generalized forces associated to an energy functional that depends on the configuration of the
surface. Here the generalized force is understood in the sense that it is the negative gradient of the energy.
The classical example of such a force is surface tension, which is associated to the energy functional given by
a constant multiple of the area functional (the constant is known as the coefficient of surface tension). The
generalized force is then the mean curvature operator, which is the trace of the second fundamental form.
We can account for higher-order geometric effects by considering more general functionals depending on the
second fundamental form itself. The classical example of such an energy is the Willmore functional, which
is the square of the mean curvature integrated over the surface. Our goal here is to briefly survey the vast
literature associated to Willmore-type energies and their relation to interfacial mechanics.

The Willmore energy was popularized in the differential geometry literature by Willmore’s initial work
on it [Wil65] and in his books on Riemannian geometry [Wil82, Wil93]. Willmore also formulated the
so-called Willmore conjecture, which predicted the minimizers of the energy among immersed tori. The
Willmore conjecture was proved recently by Marques–Neves [MN14]. Critical points of the Willmore energy
remain an active topic of study in geometric analysis and PDE: for example, Kuwert–Schätzle [KS04] studied
removable singularities, Rivière [Riv08] developed a theory of weak Willmore immersions, and Bernard–
Rivière [BR14] proved results about energy quantization and compactness.

Remarkably, energies of Willmore-type arise naturally in many areas of applied mathematics, and so such
energies have received much attention outside of differential geometry. Roughly speaking, one can justify the
widespread appearance of Willmore-type energies in applications through the lens of dimension reduction
in elasticity. In many applications one considers a thin three-dimensional elastic material. When the size
of the thin direction is very small relative to the two other directions, then it is natural to seek an effective
two-dimensional model, thereby reducing the dimension. A rigorous derivation of Willmore-type energies as
Γ−limits of three-dimensional elastic energies was carried out by Friesecke–James–Müller [FMJ02, FJM02]
for plates and Friesecke–James–Mora–Müller [FJMM03] for shells.

One major area of interest in these energies is the study of biological membranes, lipid bi-layers, and
vesicles. All of these structures can be thought of as very thin elastic materials, and should thus have some
relation to Willmore-type energies. In [Hel73] Helfrich introduced such an energy to model the structure
of lipid bi-layers, which led to these energies being standard modeling tools in membrane biology. More
recent advances have considered coupled models of fluid-membrane dynamics: Du–Li–Liu [DLL07] and
Du–Liu–Ryham–Wang [DLRW09] used phase field models to model fluid dynamics coupled to vesicles,
Farshbaf-Shaker–Garcke [FSG11] developed thermodynamically consistent higher order phase field models,
and Ryham–Klotz–Yao–Cohen [RKYC16] used Willmore-type energies to study the energetics of membrane
fusion.

The coupling of the full fluid equations to surface stresses generated by Willmore-type energies presents
numerous analytical challenges. Cheng–Coutand–Shkoller [CCS07] proved a local existence result for a
viscous fluid coupled to a nonlinear elastic biofluid shell, and Cheng–Shkoller [CS10] proved local existence
for a model with a Koiter shell. Local existence results for similar models related to hemodynamics were
proved by Muha–Ĉanić [MC15, MC16]. We refer to the work of Bonito–Nochetto–Pauletti [BNP11] and
Barett–Garcke–Nürnberg [BGN17] and the references contained therein for a discussion of the numerical
analysis of such models.

A second major area of interest in energies of this type is the study of thin layers of ice, which can be
thought of as thin elastic materials. We refer to the book by Squire–Hosking–Kerr–Langhorne [SHKL96] and
the references therein for an overview of the physics specific to ice sheets. We refer to the work of Plotnikov–
Toland [PT11] for a discussion of how the Willmore functional is related to bending energies for thin sheets
of ice. The question of how fluids couple to the dynamics of ice sheets has attracted much attention in
recent years, though most attention has focused on inviscid fluids. Solitary and traveling wave solutions and
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effective equations were studied by Milewski–Vanden-Broeck–Wang [MVBW11], Wang–Vanden-Broeck–
Milewski [WVBM13], and Trichtchenko–Milewski–Parau–Vanden-Broeck [TMPVB19] in two dimensions
and by Milewski–Wang [MW13] and Trichtchenko–Parau–Vandedn-Broeck–Milewski [TPVBM18] in three
dimensions. For two-dimensional irrotational two-fluid flows, Liu–Ambrose [LA17] proved well-posedness
and Akers–Ambrose–Sulon [AAS17] constructed traveling wave solutions for a two-fluid model. The one-
fluid model was studied by Ambrose–Siegel [AS17].

Interestingly, Willmore-type energies also appear in other applications with no clear connection to thin
elastic structures. In [Rub17] Rubinstein details how the energy appears in optics in questions related to
optimal lens design. Hawking [Haw68] also introduced a Willmore-like energy in his study of gravitational
radiation.

1.2. Examples of surface energies. In this chapter we are concerned with periodic slab-like geome-
tries, which in particular means that we restrict our attention to surfaces given as the graph of a function
η : T2 → R, where T2 = R2/Z2 is the usual 2−torus. This has the benefit of significantly simplifying the
differential geometry of the surface. The area element, the unit normal, and the shape operator (the matrix
in coordinates whose trace is the mean curvature) are then, respectively,

√
1 + |∇η|2, (−∇η, 1)√

1 + |∇η|2
, and

1√
1 + |∇η|2

(
I − ∇η ⊗∇η

1 + |∇η|2
)
∇2η. (1.1)

We consider generalized Willmore-type energies that depend both on ∇η and ∇2η, which allows for a
combination of surface stresses of surface tension and bending type. We specify the energy functional W
through the use of an energy density f : R2 × R2×2 → R:

W (η) =

ˆ
T2

f
(
∇η,∇2η

)
.

Note in particular that we neglect to allow the energy density to depend on η directly since this is the case
for surface energies that only depend on the geometric quantities defined in (1.1). We now consider various
examples of energies of this type. Along the way we will record both the first and second variations of the
energies.

Willmore energy: We consider the Willmore energy, which arises in the Helfrich model of elasticity
for a lipid membrane [Hel73], modeled as a surface Σ:

WH =

ˆ
Σ

C1 + C2(H −H0)
2

+ C3K

for some non-negative constants C1, C2, C3 and H0, where

• H := tr s is the mean curvature,
• K := det s the Gaussian curvature,

• h := ∇2η
A is the scalar extrinsic curvature, or scalar second fundamental form, and

• s := h# is the shape operator, i.e. for any vector fields X, Y , g (s (X) , Y ) = h (X,Y ), where g is the
metric on Σ.

Note that since
´

Σ
K is a topological invariant (due to Gauss-Bonnet), and that since

´
Σ

1 yields a lower-order
differential operator (see the surface area discussion below), we can simply consider the energy

W =

ˆ
Σ

1

2
H2.

We may rewrite this energy as

2W (η) =

ˆ
Σ

H2 =

ˆ
T2

H2A =

ˆ
T2

∣∣g−1 : h
∣∣2A =

ˆ
T2

1√
1 + |∇η|2

∣∣∣∣
(
I − ∇η ⊗∇η

1 + |∇η|2
)

: ∇2η

∣∣∣∣
2

,

where

• A :=
√

1 + |∇η|2 is the area element, and

• g−1 := I − ∇η⊗∇η1+|∇η|2 is the inverse of the metric tensor.
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The first variation is non-trivial to compute, so we skip it here and refer to [Wil93], where a detailed
computation shows that 1

δW (η) = ∆ΣH +
1

2
H
(
H2 − 4K

)
,

where

∆Σf := − 1

A
∇ ·
(
Ag−1 · ∇f

)

is the Laplace-Beltrami operator on the surface Σ. The second variation about a flat equilibrium is the same
as the linearization of δW (η) about a flat equilibrium, and is the bi-Laplacian:

δ2
0W = ∆2.

‘Scalar’ Willmore energy: Computing the general second variation δ2
ηW of the Willmore energy

presented above is a harrowing experience, and therefore we now discuss a toy model similar to the full
Willmore energy but simple enough to yield tractable computations. This is what we call the ‘scalar’
Willmore energy, namely

W (η) =

ˆ
T2

1

2
m (∇η) |∆η|2

for some smooth m : R2 → (0,∞) with m (0) > 0. Simple computations then show that the variations of W
are given by

δW (η) = ∆
(
m (∇η) ∆η

)
−∇ ·

(1

2
∇m (∇η) |∆η|2

)

and (
δ2
ηW
)
φ = ∆

(
m (∇η) ∆φ

)
+∇ ·

(
∇ (∇η · ∇m (∇η)) · ∇φ− 1

2
|∆η|2∇2m (∇η) · ∇φ

)
.

In particular, the second variation at the flat equilibrium is

δ2
0W =

(√
m (0)∆

)2

.

Anisotropic Willmore energy: The last surface energy we discuss that yields a fourth-order differential
operator is one which, by contrast with the previous two, does not linearize to the bi-Laplacian. This surface
energy is thus a prototypical example of anisotropic bending energies. In particular, we consider the surface
energy

W (η) :=
1

2

ˆ
T2

∣∣C (∇η) : ∇2η
∣∣2

for some C : R2 → Sym
(
R2×2

)
such that C (0) is positive-definite. Then the linearization about the

equilibrium of the first variation of W is

δ2
0W =

(
C (0) : ∇2

)2
.

Note that for C (w) =
√
m (w)I we recover the ‘scalar’ Willmore energy and for

C (w) =
1

(1 + |w|2)
1/4

(
I − w ⊗ w

1 + |w|2
)

we recover the Willmore energy discussed above.
Surface area: We now discuss how surface energies related to surface area yield second order differential

operators that describe, for example, the forces due to surface tension. Consider the surface energyˆ
Σ

1 =

ˆ
T2

A,

where as above (in the discussion of the Willmore energy) A =

√
1 + |∇η|2. It is well-known that the first

variation of the area functional written above is precisely (minus) the mean curvature, and that it models

1 Note that our conventions differ slightly from those used by Willmore: we define the mean curvature to be the sum of
the principal curvatures, and not half of that sum, and we define the Willmore energy to be half of the square of the mean

curvature.
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the effect of surface tension seeking to minimize the surface area of the free surface. More precisely, its
variations are given by

δW (η) = −H = −∇ ·


 ∇η√

1 + |∇η|2




and

(
δ2
ηW
)
φ = −∇ ·

(
g−1 · ∇φ

A

)
= −∇ ·



(
I − ∇η ⊗∇η

1 + |∇η|2

)
· ∇φ√

1 + |∇η|2


 .

In particular, its linearization about equilibrium is

δ2
0W = −∆.

Competing effects of surface tension and flexural forces: Our general form of the surface energy
allows for energetic contributions due to bending as well as area, and as such we will allow for surface stresses
of flexural and surface tension type. Here we record some examples of what these forces look like in terms
of the local geometry of the surface. In particular, we see that there are instances in which the bending and
surface tension stresses are in opposition.

• Circular arc: In a circular (one-dimensional) arc surface tension and flexural forces act in opposite
directions, the former pushing inward and the latter pushing outward. This is due to the simple
observation regarding the scaling of these surface energies:

A =

ˆ
Σ

1 ∼ R and W =

ˆ
Σ

H2 ∼ 1

R2
R =

1

R
.

• Sigmoidal wave: Surface tension and flexural forces acting in opposite directions can also be seen
locally in some more complicated geometries, such as that of the sigmoidal wave shown in Figure 1. In
particular, these forces act in opposite directions to one another at the front and tail of the wave.
• Gaussian wave: This is another example, shown in Figure 1, of a geometry in which, locally, surface

tension and flexural forces may act in opposite directions.

(a) Effect of surface tension on a sigmoidal wave
(b) Effect of surface tension on a Gaussian wave

(c) Effect of flexural forces on a sigmoidal wave
(d) Effect of flexural forces on a Gaussian wave

(e) Combined effects on a sigmoidal wave
(f) Combined effects on a Gaussian wave

Figure 1. The purple curve is the profile of a free surface Σ given as the graph of η = tanh

on the left and of η (x) = e−x
2/2 on the right. The black segments show the force δW (η) νΣ

exercised on the free surface corresponding to a surface energyW. In (A) and (B),W =
´

Σ
1;

in (C) and (D), W =
´

Σ
H2; and in (E) and (F), W =

´
Σ
α + βH2 for some α, β > 0. The

other curve (orange in (A) and (B), pink in (C) and (D), and grey in (E) and (F)) illustrates
the new profile of the free surface after application of the force δW (η) νΣ.
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1.3. Fluid equations. We now consider a slab of periodic fluid occupying the moving domain

Ω (t) :=
{
x = (x̄, x3) ∈ T2 × R

∣∣ −b < x3 < η (t, x̄)
}

for an unknown height function η : [0,∞)×T2 → (−b,∞). The lower boundary of Ω(t) is the rigid unmoving
interface

Σb :=
{
x ∈ T2 × R

∣∣ x3 = −b
}
,

while the upper boundary is the moving interface

Σ (t) :=
{
x ∈ T2 × R

∣∣ x3 = η (t, x̄)
}
.

We assume that the fluid is subject to a uniform gravitational field of strength g ∈ R acting perpendicu-
larly to Σb. Note in particular that we do not require g ≥ 0: more will be said about this below in the latter
part of Section 2.2. We assume that the free interface is subject to surface stresses generated by the energy

W (η) =

ˆ
T2

f
(
∇η,∇2η

)
(1.2)

for a function f : R2 × R2×2 → R satisfying the assumptions enumerated below in Section 2.2. If ν denotes
the unit normal pointing out of Ω(t), then the surface stress is

− δW (η) (−ν) = δW (η) ν, (1.3)

i.e. the magnitude of the stress is −δW (η) but the direction is −ν, which indicates that the surface stress
acts on the fluid. This form of W allows us to consider a generalized mixture of bending and surface tension
stresses. Due to this general form, we will not attribute the source of the energy (and hence the stress) to
any particular model, but as elaborated on above in Section 1.1, such an energy would arise if we viewed
the surface as a thin biological membrane or as a thin layer of ice. Our assumptions on f will always require
that δW (η) is a fourth-order differential operator, typically of quasilinear form.

We will assume that the fluid is incompressible and viscous, which means that we can describe its state
by specifying its velocity v (t, ·) : Ω(t) → R3 and pressure q (t, ·) : Ω(t) → R. For simplicity we will assume
that the fluid density and viscosity are normalized to unity. The equations of motion are then the free
boundary Navier-Stokes equations coupled to surface stresses of the form (1.3) generated by the free energy
(1.2). These read





∂tv + (v · ∇) v = −∇q + ∆v in Ω (t), (1.4a)

∇ · v = 0 in Ω (t), (1.4b)

(qI − Dv) ν =
(
δW (η) + gη

)
ν on Σ (t), (1.4c)

∂tη = (v · ν)
√

1 + |∇η|2 on Σ (t), and (1.4d)

v = 0 on Σb, (1.4e)

where

(Dv)ij = ∂ivj + ∂jvi (1.5)

is the symmetrized gradient and I is the 3 × 3 identity matrix. By a minor standard abuse of notation in
(1.4c) and (1.4d), all quantities involving η and its derivatives at a point (x′, x3) in Σ (t) are understood
to be determined by their values at x′ ∈ T2. The first two equations are the usual incompressible Navier-
Stokes system, the third is the balance of stresses on the free interface, the fourth is the kinematic transport
equation, and the fifth is the no-slip condition at the rigid interface. Note that what we call the pressure
q is really the difference between the standard pressure q̄ and hydrostatic pressure −gx3, i.e. q = q̄ + gx3.
Making this substitution in the first and third equations reveals that the gravitational term is originally a
bulk force acting in Ω(t).

Sufficiently regular solutions to (1.4a)–(1.4e) obey the following equations: the energy-dissipation identity

d

dt

(ˆ
Ω(t)

1

2
|v|2 +

ˆ
T2

g

2
|η|2 +W(η)

)
+

ˆ
Ω(t)

1

2
|Dv|2 = 0, (1.6)

and the mass conservation identity
d

dt

ˆ
T2

η = 0. (1.7)
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The first term in parentheses in (1.6) is the kinetic energy of the fluid, the second is the total gravitational
potential energy stored in the fluid, and the third is the surface energy (1.2). The term outside parentheses
is the usual viscous dissipation, which in particular forces the total energy (the sum of the three terms) to
be non-increasing in time. The equation (1.7) is understood as the integral form of mass conservation since
b+

´
T2 η(·, t) is the mass of the fluid body at time t ≥ 0. We will assume that the parameter b is chosen such

that the initial mass of fluid is b, which means thatˆ
T2

η0 = 0 and hence

ˆ
T2

η (t, ·) = 0 for t ≥ 0. (1.8)

From the no-slip condition, Korn’s inequality (see Proposition 8.22), and (1.6) we conclude that any
equilibrium (time-independent) solutions must satisfy v = 0. In turn, this, (1.4a)–(1.4e), and (1.8) imply
that p = 0, which reduces to η solving

δW (η) + gη = 0. (1.9)

It’s clear that η = 0 is a solution to this, but it does not follow from our assumptions on the energy density f
(enumerated below in Section 2.2) that 0 is the only solution to this equation. However, our assumptions do
require that 0 is a local minimum of the total surface energy (the sum of W and the gravitational potential
P)

W (η) + P (η) :=W (η) +

ˆ
T2

g

2
|η|2 (1.10)

and that the second variation ofW+P is positive definite at 0, when restricted to functions of zero average.
It is a simple matter to check that (1.9) corresponds to the Euler-Lagrange equation δ(W + P) (η) = 0,
which means that 0 is an isolated critical point of W +P. Then η = 0 is the only solution to (1.9) within an
open set containing 0. Thus, there is a locally unique equilibrium corresponding to a flat slab of quiescent
fluid. Our main goal in this chapter is to show that this equilibrium solution is asymptotically stable and to
characterize the rate of decay to equilibrium.

Much is known about problems of the form (1.4a)–(1.4e) whenW is a multiple σ ≥ 0 of the area function,
g > 0, and the cross-section is either periodic (T2) or infinite (R2). The case σ > 0 corresponds to surface
tension, and σ = 0 corresponds to no surface tension. Beale [Bea81] proved the first local well-posedness
results for the infinite cross section without surface tension. Beale [Bea84] also proved global existence of
solutions near equilibrium for the infinite problem with surface tension. Beale–Nishida[BN85] then proved
that these global solutions decay at an algebraic rate. The existence of global solutions with and without
surface tension was also studied by Tani–Tanaka [TT95], but no decay information was obtained. Guo–Tice
[GT13b] proved that for the infinite problem without surface tension, small data leads to global solutions
that decay algebraically. For the periodic problem without surface tension, Hataya [Hat09] constructed
global solutions decaying at a fixed algebraic rate, and Guo–Tice [GT13a] proved that solutions decay
almost exponentially, with the decay rate determined by the data. Nishida–Teramoto–Yoshihara [NTY04]
proved that the periodic problem with surface tension leads to global solutions near equilibrium that decay
exponentially. Tan–Wang [TW14] established a sort of continuity result, proving that the global solutions
with surface tension converge to the global solutions without surface tension as σ → 0.

As mentioned in Section 1.1, there are results on the local existence of solutions to models coupling
incompressible Navier-Stokes to free boundaries with elastic and bending stresses: [CCS07, CS10, MC15,
MC16]. However, to the best of our knowledge, there are no global existence or asymptotic stability results
on the problem (1.4a)–(1.4e) with W combining bending and surface tension stresses.

2. Main result

2.1. Reformulation in a fixed domain. In order to solve the problem (1.4a)–(1.4e) we flatten the
domain, which has the benefit of allowing us to work with a domain that is no longer time-dependent. More
precisely, we move from the Eulerian domain Ω (t) to the fixed equilibrium domain Ω := T2 × (−b, 0) via a
map Φ : [0, T )×T2×R→ T2×R such that for every 0 6 t < T , Φ(t, ·) : Ω→ Ω (t) is a diffeomorphism that
maps the lower/upper boundary of Ω to the upper/lower boundary of Ω(t).

To precisely define this map we need two tools. The first is any smooth cutoff function χ : Ω→ R such
that χ = 1 on Σ and χ = 0 on Σb. For instance, we can define χ (x3) = 1 + x3

b . The second tool is the
harmonic extension map ext, the precise definition of which can be found in Section 8.2. For 0 ≤ t < T , the
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extension allows us to extend η(t, ·) : T2 → R to the function ext η(t, ·) : Ω → R, defined in the bulk. The
extension is done to help with regularity issues when taking the trace of Φ onto Σ.

With these tools in hand, we define

Φ(t, ·) = id + ext η(t, ·)χe3 (2.1)

for the choice of cutoff χ as above. An important observation is that if η is sufficiently small (which is made
precise in item (2) of Remark 4.3), then Φ(t, ·) is a diffeomorphism onto Ω (t). In particular, if we denote
by Σ = T2 × {0} the upper boundary of the fixed domain Ω, then Φ(t, (Σ)) = Σ (t) and Φ(t, ·) = id on Σb:
see Figure 2. Any function f defined on the Eulerian domain Ω (t) thus gives rise to a function F := f ◦ Φ

η(t)

b

Σ(t)

Σb

Ω(t)
Φ−1

b

Σ

Σb

Ω

Figure 2. A cartoon of the diffeomorphism fixing the domain

defined on the fixed domain Ω. In particular, the manifestations on Ω of the temporal and spatial derivatives
of f are given by {

∇GF := ∇
(
F ◦ Φ−1

)
◦ Φ and

∂Gt F := ∂t
(
F ◦ Φ−1

)
◦ Φ

i.e. f = F ◦Φ−1 and ∇f =
(
∇GF

)
◦Φ−1 (and similarly for temporal derivatives). The differential operators

∇G and ∂Gt are called G-differential operators. In more concrete terms, the G-differential operators may be
written as {

∇G = G · ∇ and

∂Gt = ∂t − (∂tΦ) · ∇G

for G := (∇Φ)
−T

. Similarly, we define the G-versions of the symmetrized gradient and of the Laplacian via

DGF := ∇GF +
(
∇GF

)T
and ∆GF := ∇G ·

(
∇GF

)
. We may now reformulate (1.4a)–(1.4e) as a system

of PDEs on the fixed domain Ω. Indeed, solutions X ∗ = (v, q, η) on Ω (t) of (1.4a)–(1.4e) correspond to
solutions X = (v ◦ Φ, q ◦ Φ, η) =: (u, p, η) on Ω of





∂Gt u+
(
u · ∇G

)
u = −∇Gp+ ∆Gu in Ω, (2.2a)

∇G · u = 0 in Ω, (2.2b)
(
pI − DGu

)
ν∂Ω =

(
δW (η) + gη

)
ν∂Ω on Σ, (2.2c)

∂tη = u · νG∂Ω on Σ, and (2.2d)

u = 0 on Σb . (2.2e)

where νG∂Ω is defined in (4.1). The rest of this chapter is therefore concerned with the study of this system.

2.2. Assumptions on the surface energy density. We now make precise the assumptions that we
impose on the surface energy density f : R2 ×R2×2 → R throughout the chapter. We assume the following.

(1) f is smooth, i.e. infinitely differentiable. If we keep track of the regularity needed on f at the lowest
level of regularity to close the estimates in this chapter, then we only need f ∈ C7,1. However, no effort
has been made to make this regularity optimal in light of the fact that if we sought smooth solutions,
then f would have to be smooth as well.

(2) f (0, 0) = 0 and ∇f (0, 0) = 0. This is an assumption that can be made without loss of generality
because we may reduce the general case to this one by adding a null Lagrangian and a constant to the
surface energy. Indeed, for an arbitrary f̃ , we may define

f (w,M) := f̃ (w,M)− f̃ (0, 0) +∇wf̃ (0, 0) · w +∇M f̃ (0, 0) : M
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such that indeed, f (0) = 0, ∇f (0) = 0 and for η : T2 → R sufficiently regular we have thatˆ
T2

f
(
∇η,∇2η

)
=

ˆ
T2

f̃
(
∇η,∇2η

)
−
ˆ
T2

f̃ (0)−
ˆ
T2

∇wf̃ (0, 0) · ∇η +∇M f̃ (0, 0) : ∇2η

=

ˆ
T2

f̃
(
∇η,∇2η

)
−
ˆ
T2

f̃ (0) ,

i.e. the surface energies defined by f and f̃ only differ by an irrelevant constant. Note that the third
integral on the right side of the first equality vanishes by integrating by parts.

(3) The Hessian of f satisfies

∇2
M,Mf (0) •

(
k⊗4

)
−∇2

w,wf (0) •
(
k⊗2

)
+ g & |k|4 (2.3)

for all k ∈ Z2 \ {0}, i.e. δ2
0W + g is strictly elliptic over functions of average zero. See Section 8.8 for a

more detailed discussion of the ellipticity of δ2
0W + g.

Note in particular that our assumptions on f do not necessarily imply that W is positive definite. However,
the third assumption requires that the total surface energy W + P defined in (1.10) is positive definite for
sufficiently small perturbations of 0.

The third assumption can also be understood as saying that flexural effects dominate. For example, if
we consider

W =

ˆ
Σ

α+ βH2,

then δ2
0W = −α∆ + β∆2. If α, g < 0, then upon applying the Fourier transform we see that

(
δ2
0W + g

)∧
(k) = 16π4β|k|4 + 4π2α|k|2 + g >

(
16π4β + 4π2α+ g

)
|k|4

since |k| > 1 for all k ∈ Z2 \ {0}. In particular, even if α, g < 0, as long as 16π4β > −
(
4π2α+ g

)
, then

δ2
0W + g is strictly elliptic over functions of average zero. In physically meaningful terms (c.f. Figure 3 for a

sketch), this means that sufficiently strong flexural effects dominate over adverse surface tension and gravity
effects. In particular, we can allow for g < 0 in general.

g

Figure 3. Sufficiently strong flexural effects dominate adverse gravitational effects.

2.3. Statement of the main result. In order state the main result, it is convenient to introduce the
notion of an admissible initial condition and to introduce the energy and dissipation functionals.

An admissible initial condition is, loosely speaking, a pair (u0, η0) such that u0 is incompressible, the
boundary conditions are satisfied, an appropriate compatibility condition holds, and η0 has average zero.
The precise definition of an admissible initial condition may be found in Definition 6.4, and a more detailed
discussion of the compatibility condition is included in Remark 6.5.

Now let us introduce the energy and dissipation functionals. Given a triple X = (u, p, η), the associated
energy and dissipation functionals are

E (X ) := ||u||2H2(Ω) + ||∂tu||2L2(Ω) + ||p||2H1(Ω) + ||η||2H9/2(T2) + ||∂tη||2H2(T2)

and

D (X ) := ||u||2H3(Ω) + ||∂tu||2H1(Ω) + ||p||2H2(Ω) + ||η||2H11/2(T2) + ||∂tη||2H5/2(T2) +
∣∣∣∣∂2

t η
∣∣∣∣2
H1/2(T2)

,

respectively. We will sometimes abuse notation slightly and write E (t) := E (X (t)) and D (t) := D (X (t))
when it is clear from context which triple X is being used. We may now state the main result of this chapter.

Theorem 2.1. Assume that f satisfies the conditions enumerated in Section 2.2. Then there exist
universal constants C, λ, ε > 0 such that for every admissible initial condition (u0, η0) satisfying

||η0||2H9/2(T2) + ||u0||2H2(Ω) + ||u0 · (−∇η0, 1)||2H2(Σ) 6 ε (2.4)
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there exists a unique solution X = (u, p, η) of (2.2a)–(2.2e) on [0,∞) such that

sup
t>0
E (t) eλt +

ˆ ∞
0

D (t) eλtdt 6 CE (0) .

Note that requiring the smallness of the third term in (2.4) comes from the compatibility condition (c.f.
Section 6 for a more detailed discussion). Theorem 2.1 is proved in Section 6 in the somewhat more precise
form of Theorem 6.11. Theorem 2.1 guarantees that η is regular and small enough to transform the solution
back to the Eulerian system, which then gives rise to a global decaying solution to (1.4a)–(1.4e), obeying
similar estimates.

3. Discussion

In order to prove global well-posedness and decay, we employ a nonlinear energy method. We outline
this method in Section 3.1, discuss the difficulties that arise in Section 3.2, and provide a strategy of the
proof in Section 3.3. We also discuss how the work presented in this chapter fits with respect to previous
work considering other types of surface forces, highlighting that the present work may be viewed, in some
sense, as ‘supercritical.’

3.1. Nonlinear energy method. In this section we provide a high-level overview of the nonlinear
energy method employed to prove global well-posedness and decay. The nonlinear energy method informs
the scheme of a priori estimates that we employ, and begin as follows: we multiply the PDE by the unknown
u and integrate by parts with respect to the nonlinear differential operators ∇G . This yields the energy-
dissipation relation

d

dt

(ˆ
Ω

1

2
|u|2J +W (η) +

ˆ
T2

g

2
|η|2
)

+

(ˆ
Ω

1

2
|DGu|2J

)
= 0

where J := det∇Φ accounts for the local deformation in volume due to the change of coordinates Φ. Close
to the equilibrium solution (u, p, η) = 0, the energy-dissipation relation becomes the same as that which is
obtained by a standard energy estimate for the linearization of the PDE about the equilibrium, namely

d

dt

(ˆ
Ω

1

2
|u|2 +Q0 (η) +

ˆ
T2

g

2
|η|2
)

︸ ︷︷ ︸
E

+

(ˆ
Ω

1

2
|Du|2

)

︸ ︷︷ ︸
D

= 0,

where Q0 denotes the quadratic approximation of W about the equilibrium, and is defined precisely in
Section 4.4.1. The good news is that if we restrict our attention to terms involving u, i.e. consider only
Eu := 1

2

´
Ω
|u|2, then it follows from the no-slip boundary condition u = 0 on Σb and Korn’s inequality,

Proposition 8.22, that the dissipation is coercive over the energy, i.e.

Eu =

ˆ
Ω

1

2
|u|2 .

ˆ
Ω

1

2
|Du|2.

If for the moment we ignore the terms in the energy depending on η, then a Gronwall-type argument shows
that we should expect exponential decay of Eu:

{
d
dtEu +D = 0

Eu 6 CD
⇒ d

dt

(
Eu (t) eCt

)
6 0 ⇒ Eu (t) 6 e−CtEu (0) .

Of course, we are not actually able to ignore the η terms in the energy, so we must find a mechanism for
controlling these terms with the dissipation functional.

Such a mechanism is found by appealing to the equations (2.2c) and (2.2d), which allow us to estimate
η and ∂tη. Indeed, in order to obtain this coercivity we may use the elliptic nature of the dynamic boundary
condition (2.2c) to transfer control of u (and p) onto additional control of η. However at this stage we can
only conclude that u ∈ H1, which is insufficient to make sense of the trace of the stress tensor in the dynamic
boundary condition, and so this mechanism for regularity transfer is not available to us.

To resolve this issue we take derivatives of the problem that are compatible with the no-slip boundary
condition (temporal and horizontal spatial derivatives) and apply a version of the energy-dissipation estimate.
The extra control that this provides then allows us to use a host of auxiliary estimates that permit the transfer
of regularity between u and η. For example, the dynamic boundary condition allows us to gain control of
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higher-order derivatives of η. Proceeding in this fashion, we can close the estimates by showing that the
dissipation is coercive over the full energy.

3.2. Difficulties. We now turn to a discussion of the difficulties encountered when employing the
nonlinear energy method described above. The central difficulty is that there is a nontrivial interdependence
between two essential features of the problem, namely the regularity gain and transfer mechanisms on
one hand and the energy-dissipation structure on the other hand. This difficulty is exacerbated by two
components of the problem in particular:

• W is of order two, which is supercritical (in a sense made precise below),
• δW is generally a quasilinear differential operator of order four.

In order to describe the difficulties we encounter, it is helpful to write the problem in a more compact
form as N (X ) = 0 for X = (u, p, η) the unknown and N the nonlinear differential operator given by

N (X ) = N (u, p, η) =




∂Gt u+
(
u · ∇G

)
u+∇Gp−∆Gu

∇G · u
trΣ

(
pI − DGu

)
νΣ −

(
δW (η) + gη

)
νΣ

∂tη − trΣ u · νΣ

√
1 + |∇η|2

trΣb u



.

3.2.1. Structured estimates. Most terms in N may be viewed as linear operators with multilinear depen-
dence on geometric coefficients under control (such as G and J). When computing the commutators between
N and partial derivatives, the contribution from these kind of terms is relatively benign. A more detailed
description of these operators and the corresponding commutators may be found in Section 5.1. However
the term δW (η), which comes from the fully nonlinear surface energy, cannot be written in this form and
as a consequence it gives rise to commutators that are too singular to be controlled in a structured manner.

More precisely: the first attempt would be to write the equation ∂α (N (X )) = 0 as a perturbation of
LX = 0, where L denotes the linearization of N about the equilibrium. In other words, we would seek
to write ∂α (N (X )) = L∂αX + C (∂αX ) for some commutators C. Then upon integrating by parts and
deriving the corresponding energy-dissipation relation, we would obtain commutators that are too singular
to be controlled in a structured manner.

To elucidate what we mean by this, let us consider the following cartoon: consider the following energy-
dissipation relation

d

dt
E +D = C

where C denotes some commutators. If we can show that

|C| 6
√
ED, (3.1)

then for E 6 1
4 (i.e. in the cartoon version of what we will later call the small energy regime) we have that

d

dt
E +

1

2
D 6 0.

Moreover, if the dissipation D is coercive over the energy E (i.e. E 6 D), then we can conclude that the
energy decays exponentially fast. However, if instead of (3.1) we can only show that

|C| 6 D3/2, (3.2)

then we cannot conclude anything about the boundedness or decay of E. In other words: whilst both (3.1)
and (3.2) show that the commutators C can be controlled, only (3.1) shows that the commutators can be
controlled in a manner respectful of the energy-dissipation structure. In particular, note that unstructured
estimates like (3.2) are typically easier to obtain than structured estimates like (3.1) due to the fact that the

dissipation is coercive over the energy, and hence
√
ED 6 D3/2.

A more specific discussion of why our scheme of a priori estimates would fail due to the term coming
from the nonlinear surface energy may be found in Remark 5.3.
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3.2.2. Parabolic criticality. As hinted at earlier, a particular source of difficulty when attempting to
estimate these commutators comes from the fact that energies of order two, like the energies of Willmore-
type considered here, are ‘supercritical.’ This critical phenomenon comes from the fact that the Stokes
system embedded into our problem imposes parabolic scaling on u, but when we use the equations of motion
to gain dissipative control of spatial and temporal derivatives of η this generally induces non-parabolic scaling
for η estimates. This mismatch between the u scaling and the η scaling is precisely the source of the critical
threshold. In particular, as will be detailed below, previous work dealing with capillary forces due to surface
tension may be viewed as ‘subcritical’ whilst this work dealing with flexural forces due to bending may be
viewed as ‘supercritical.’

To better understand this difficulty it is helpful to consider a toy example in which

W (η) =

ˆ
T2

||∇|αη|2

for some α > 0. We then observe that if u ∈ Hs (Ω) (and so p ∈ Hs−1 (Ω)), then we may use the kinematic
and dynamic boundary conditions,

{(
δ2
0W
)
η = tr (pI − Du) : (e3 ⊗ e3) ∈ Hs− 3

2

(
T2
)

and

∂tη = tru · e3 ∈ Hs− 1
2

(
T2
)
,

to obtain the following control over η and ∂tη:
{
||η||Hs+2α−3/2(T2) . ||u||Hs(Ω) + ||p||Hs−1(Ω) and

||∂tη||Hs−1/2(T2) . ||u||Hs(Ω).

Therefore the difference in regularity between η and ∂tη is
(
s+ 2α− 3

2

)
−
(
s− 1

2

)
= 2α− 1. To summarize

schematically, the induced dissipative η scaling is:

∂tη ∼ |∇|2α−1
η,

where this should be understood in the sense that if we control ∂tη in Hs, then we expect to control η in
Hs+(2α−1),and vice-versa (i.e. control of η in Hs is expected to correspond to control of ∂tη in Hs−(2α−1)).

This scaling mismatch complicates the design of a scheme of a priori estimates in which control of time
derivatives is leveraged to gain control of spatial derivatives, but temporal differentiation of the equations
leads to high-order commutators. In particular:

• For α < 3
2 , temporal derivatives of η are cheap relative to spatial derivatives (by contrast with parabolic

scaling). This is what we refer to as the subcritical case. The case of surface tension, which corresponds
to α = 1, falls into this category.
• For α = 3

2 , η follows parabolic scaling.

• For α > 3
2 , temporal derivatives of η are expensive relative to spatial derivatives (by contrast with

parabolic scaling). This is what we refer to as the supercritical case. The case of flexural forces, which
corresponds to α = 2 and which is considered in this chapter, falls into this category.

Since the Willmore-type energies we consider here are supercritical, we must therefore be very wary of
commutators involving time derivatives of η. Again, the precise manner in which this can be an issue for
the scheme of a priori estimates presented here is discussed in Remark 5.3.

3.2.3. Appropriate linearization. To summarize the difficulties discussed so far: we seek to estimate the
commutators in a structured manner, and we have to be particularly careful regarding terms involving time
derivatives of η due to the supercriticality of the Willmore-type energies discussed here. To address both
of these issues we proceed as follows: instead of linearizing the PDE system directly (whether about the
equilibrium or about any X ), we find a quadratic approximation of the energy and dissipation, and then
derive the associated PDE - which is also linear but not the same as the linearization of the nonlinear operator
N . In some sense, it is beneficial to perform the linearization in this manner since it is more respectful of the
structure of the fully nonlinear surface energy. In a more precise sense, we will see below that performing
the linearization in this manner leads to commutators that can be controlled.

We thus view N as a perturbation of some linear operator LX (i.e. a linear operator whose coefficients
depend on X ) different from its linearization but such that the energy-dissipation relation associated with
LX has ‘good commutators’. Note that we write LX to emphasize that the coefficients of this linear operators
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depend on X . We will thus consider the commutators (called this by a slight abuse of notation) ∂α ◦ N −
LX ◦ ∂α, where LX is given by

LX (Y) := LX (v, q, ζ) =




∂Gt v +
(
u · ∇G

)
v +∇Gp−∆Gv

∇G · v
trΣ

(
qI − DGv

)
νΣ −

(
δ2
ηW (ζ) + gζ

)
νΣ

∂tζ − trΣ v · νΣ

√
1 + |∇η|2

trΣb u.



.

Note here that G = G (η) and νΣ = νΣ (η), i.e. these geometric coefficients depend on η (i.e. on X ) and not
ζ (i.e. not on Y).

This is where the subtle interdependence between the energy-dissipation structure and the regularity
gain and transfer structure is most apparent. On one hand the linearization of N about the equilibrium,
denoted by L, tells us how much regularity can be gained and therefore tell us which commutators can be
controlled, and on the other hand the energy-dissipation structure associated with N tells us which form
of control of these commutators is allowed in order to close the estimates. The precise form of LX is then
chosen such that it yields ‘good’ commutators respectful of both of these features, i.e. commutators upon
which we have structured control, and which are also tame enough despite the supercriticality of the surface
energy. In particular, note that when X is the equilibrium solution, i.e. X = 0, then L0 = L.

3.2.4. Failure of coercivity. We discussed above that surface energies of order α = 3/2 are critical, in
some sense. Nonetheless, close to that exponent, i.e. whether in the case of surface tension where α = 1 or
in the case of bending energies where α = 2, exponential decay of the energy can be obtained. Whilst this
is not addressed directly in this chapter, it is worth pointing out that this is no longer true when α < 1/2 or
α > 5/2.

• When α < 1/2 one does not obtain exponential decay of the energy for the linearized problem about
equilibrium, but only algebraic decay. We refer to Tice–Zbarsky [TZ18] for details.

• When α > 5/2, the scheme of a priori estimates is not sufficient to obtain coercivity of the dissipation
over the energy. Recall that in order to show that the dissipation is coercive over the energy, we must
differentiate the PDE. Indeed, upon differentiating we obtain enough control on u to make sense of the
trace of the stress tensor pI −Du, which in turn allows us to leverage the dynamic boundary condition
to turn control of u into higher-order control of η, thus obtaining coercivity. Taking derivatives up
to parabolic order two (i.e. taking one temporal and two spatial derivatives) we see that the only
appearance of ∂tη in the energy is via the term

Q0 (∂tη) � ||∂tη||2Hα(T2),

whilst the kinematic boundary tells us that

D & ||u||2H3(Ω) & ||tru||
2
H5/2(T2) & ||∂tη||

2
H5/2(T2).

So indeed, for α > 5
2 , D 6& E . Note that this problem cannot be circumvented by applying more time

derivatives, as it will always occur for the highest order term.

3.3. Strategy of the proof. In this section we sketch the strategy of the proof. We describe the key
moving pieces in Section 3.3.1, then discuss how they interact in Section 3.3.2. This allows us to identify in
Section 3.3.3 the ‘hard analysis’ estimates that have to be made to close the estimates and thus conclude
the proof. Throughout this section we also outline the plan of the chapter, pointing to the location of each
step of the proof.

3.3.1. The moving pieces. The key moving pieces are: 1. L, 2. LX , and 3. the various versions of the
energy and the dissipation.

(1) We denote by L the linearization of N about the equilibrium, which is responsible for the regularity
gain and transfer mechanisms.

(2) We denote by LX a linear approximation of N about X , which is responsible for the energy-dissipation
structure of the problem. In particular LX dictates the precise form of the energy-dissipation relation
and of the commutators ∂α ◦N − LX ◦ ∂α.

(3) The various versions of the energy and the dissipation ( precisely defined in Section 4.5.2):



102 3. VISCOUS SURFACE WAVES AND SURFACE ENERGIES

• The equilibrium versions, denoted by E and D, which come from the energy-dissipation relation
corresponding to the linearized problem about the equilibrium and consist of functional norms of the
unknowns.

• The improved versions, denoted by E and D, which are obtained by bootstrapping from the equilib-
rium versions, using the regularity gain and transfer mechanisms embedded in L. In other words, if
LX = 0 then E controls E and D controls D.

• The geometric versions, denoted by Ẽ and D̃, which come from the energy-dissipation relation corre-
sponding to N and LX and consist of functional norms of the unknowns involving the G-differential
operators and weighted by the geometric coefficient (such as J).

In particular, note that since LX depends on X , so do Ẽ and D̃, and so we also write them as Ẽ (· ;X )

and D̃ (· ;X ), respectively. Moreover, note that the notation we use is consistent since on one hand,

when X = 0 we have that L0 = L, and on the other hand Ẽ (· ; 0) = E and D̃ (· ; 0) = D. This is
summarized in the diagram below, where ‘IBP’ denotes integration by parts.

LXY = 0 d
dt Ẽ (Y ;X ) + D̃ (Y ;X ) = 0

LY = 0 d
dtE (Y) +D (Y) = 0

IBP

X=0 X=0

IBP

The precise derivation of the energy-dissipation relations can be found at the start of Section 5.1.

3.3.2. How the moving pieces interact. As discussed earlier, there are two key features of the problem
that our proof relies on:

(1) Given the equilibrium versions of the energy and the dissipation, the regularity gain and transfer
mechanisms embedded in the linearization L dictate the form of the improved versions. The general
form of the auxiliary estimates obtained from those regularity gain and transfer mechanisms can be
found at the start of Section 5.2.

(2) The form of LX dictates the energy-dissipation structure, which thus determines the form of the geo-
metric versions of the energy and dissipation, as well as the form of the commutators ∂α ◦N −LX ◦∂α.
The derivation of the energy-dissipation relation and the computation of the commutators can be found
at the start of Section 5.1.

The interaction of the moving pieces is also summarized more tersely in Figure 4.

LX = R N (X ) = 0 d
dt Ẽ

0 (X ) + D̃0 (X ) = 0

{
E . E +NE
D . D +ND

LX (∂αX ) = Cα d
dt Ẽ (∂αX ;X ) + D̃ (∂αX ;X ) = 〈Cα, ∂αX〉X

G−IBP

∂α

G−IBP

Figure 4. Schematic overview of the strategy of the proof, where G − IBP refers to inte-
gration by part with respect to the G-differential operators (c.f. Section 7.1 for the relevant
integration theorems).

3.3.3. The ‘hard analysis’ estimates. In order to close the estimates, we need to show that, in the small
energy regime,

• the commutators are small, which is done in the latter part of Section 5.1, and
• all versions of the energy are comparable (and similarly for the dissipation), which is done in the

latter part of Section 5.2 (where we essentially show that the equilibrium and improved versions are
comparable) and in Section 5.3 (where we essentially show that the equilibrium and geometric versions
are comparable).

4. Notation

The purpose of this section is to collect in a single place all of the notational conventions we will use
throughout the rest of the chapter.
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4.1. Basics. Here we collect notation for variables, derivatives, and tensor manipulations.
4.1.1. Variables and derivatives. We use the following notation for space-time variables.

• T ∈ (0,∞] denotes a time.
• For any x = (x1, x2, x3) ∈ R3, we write x̄ := (x1, x2) ∈ R2 and x̃ := (x̄, 0) = (x1, x2, 0) ∈ R3.

• Similarly, we employ the following notation for derivatives: ∇ = (∂1, ∂2, ∂3), ∇ := (∂1, ∂2), and ∇̃ :=(
∇, 0

)
= (∂1, ∂2, 0).

4.1.2. Parabolic order of multi-indices. For any α = (α0, ᾱ) ∈ N1+n such that ∂α = ∂α0
t ∂ᾱx̄ , we define

|α|t,x2 := 2α0 + ᾱ, and call it the parabolic order of α.
4.1.3. Inequalities. We say a constant C is universal if it only depends on the various parameters of the

problem, the dimension, etc., but not on the solution or the data. The notation α . β will be used to mean
that there exists a universal constant C > 0 such that α ≤ Cβ.

4.1.4. Contractions, inner products, and derivatives of tensors. Throughout the chapter we will use the
Einstein summation convention of summing over repeated indices. We will also need the following scalar
products:

• a · b = aibi for any a, b ∈ Rn,
• A : B = AijBij for any A,B ∈ Rn×n,

• T • S = Ti1...ikSi1...ik for any T, S ∈ R

k times︷ ︸︸ ︷
n× · · · × n = (Rn)

⊗k
.

When contracting tensors of different ranks we will write

• (T • S)j1...jpk1...kr
= Tj1...jpi1...iqSi1...iqk1...kr for any T ∈ (Rn)

⊗(p+q)
and S ∈ (Rn)

⊗(q+r)
, such that

T • S ∈ (Rn)
⊗(p+r)

.

For derivatives of tensors we write:

•
(
∇lS

)
i1...ika1...al

= ∂a1
. . . ∂alSi1...ik for any S : Rn → (Rn)

⊗k
,

•
((
∇l
)T
S
)
a1...ali1...ik

= ∂a1 . . . ∂alSi1...ik for any S : Rn → (Rn)
⊗k

.

4.2. Sobolev spaces. Here we record our notation for Sobolev spaces.

• For sets of the form D = T2 or Ω we write Hs(D) to denote the usual L2−based Sobolev space of order

s ≥ 0, and write Ḣs (D) to denote their homogeneous counterparts. When D = T2 we extend this to
include s < 0 using the standard Fourier characterization.

• For sets of the form D = T2 or Ω, the notation Hs+ (D) will be employed to mean the following:
{
α . ||f ||Hs+(D) means that ∀ ε > 0,∃C > 0 s.t. α 6 C||f ||Hs+ε(D)

||f ||Hs+(D) . β means that ∃ ε > 0,∃C > 0 s.t. ||f ||Hs+ε(D) 6 Cβ.

4.3. Domains and coefficients. Here we record notation related to the Eulerian and fixed domains
and the coefficients associated to them.

4.3.1. Eulerian and flattened domains. We recall that the Eulerian and fixed or equilibrium domains
satisfy the following.

The Eulerian domain

• Ω (t) :=
{
x ∈ T2 × R

∣∣ −b < x3 < η (t, x̄)
}

• Σ (t) :=
{
x ∈ T2 × R

∣∣ x3 = η (t, x̄)
}

• Σb :=
{
x ∈ T2 × R

∣∣ x3 = −b
}

• ∂Ω (t) = Σ (t) t Σb

The fixed domain

• Ω := T2 × (−b, 0)
• Σ := T2 × {0}
• Σb as before
• ∂Ω = Σ t Σb

4.3.2. Geometric coefficients. Recall that the flattening map Φ defined by (2.1) allows us to map Ω to
Ω(t). Associated to the flattening map are the following essential geometric coefficients.

• J := det∇Φ = 1 + ∂3 (χ ext η)

• G := (∇Φ)
−T

= (I + e3 ⊗∇ (χ ext η))
−T

= I − ∇(χ ext η)⊗e3
1+∂3(χ ext η)

See Lemma 7.1 for the computations of J and G.
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4.3.3. Differential operators with variable coefficients. Given any matrix field M : Ω → R3×3 and any
vector field v : Ω→ R3, we define

• ∇M := M · ∇, i.e. ∂Mi = Mij∂j

• DMv := 2 Sym
(
∇Mv

)
= ∇Mv +

(
∇Mv

)T

When M = G, these operators arise naturally as “Φ-conjugates” of the usual differential operators ∇ and D.
More precisely, upon changing variables via Φ we have that ∇Gf = ∇

(
f ◦ Φ−1

)
◦ Φ (and similarly for the

symmetrized gradient). Note that, as illustrated in Figure 5, horizontal slices in the fixed domain correspond
to curved hypersurfaces in the Eulerian domain. In particular, horizontal derivatives in the fixed domain
correspond to derivatives tangential to these hypersurfaces in the Eulerian domain.

Σ(t)

Σb

Ω(t)
Φ−1

Σ

Σb

Ω

Figure 5. Horizontal slices in the fixed domain are mapped to curved hypersurfaces in the
Eulerian domain by the diffeomorphism flattening the domain.

Since Φ is time-dependent, we also define G-versions of time derivatives:

• ∂Gt := ∂t − (∂tΦ) · ∇G = ∂t − 1
J
χ ext (∂tη) ∂3

• Dv,G
t := ∂Gt + v · ∇G

(c.f. Lemma 7.1 for the computation of ∂tΦ). Once again, these differential operators arise naturally when

changing variables since ∂Gt f = ∂t
(
f ◦ Φ−1

)
◦ Φ. Similarly, Dv,G

t arises naturally in the context of the G-

Reynolds transport theorem (c.f. Proposition 7.3). Finally, when integrating by parts, since ∇G 6= ∇ we will
pick up a normal νG∂Ω 6= ν∂Ω, where ν∂Ω denotes the outer unit normal to ∂Ω, defined as

νG∂Ω := (GJ)︸ ︷︷ ︸
cof∇Φ

· ν∂Ω =

{
−∇̃η + e3 on Σ

−e3 = ν∂Ω on Σb
(4.1)

(see Proposition 7.2 for the statement of the G-divergence theorem and Lemma 7.1 for the computation of
νG∂Ω).

4.4. Terms related to the surface energy. Here we record notation related to the surface energy.
4.4.1. Functionals and operators associated with the surface energy. We consider some surface energy

density f : R2 × R2×2 → R, and define the following for any sufficiently regular η, φ, ψ, φi : T2 → R, where
i = 1, . . . , k.

• Jet: J η :=
(
∇η,∇2η

)
, i.e. J =

(
∇,∇2

)
such that J ∗ (w,M) = −∇ · w +∇2 : M .

• Surface energy: W (η) :=
´
T2 f (J η).

• Directional derivatives: δφW (η) := d
dtW (η + tφ) |t=0.

• Derivative: DW defined via 〈DW (η) , φ〉 := δφW (η).
• Second derivative: D2W defined via

〈
D2W (η) , (φ, ψ)

〉
:= δφδψW (η) = δψδφW (η).

• Higher-order derivatives: for k ∈ N, DkW defined via
〈
DkW (η) , (φ1, φ2, . . . , φk)

〉
:= δφ1

δφ2
. . . δφkW (η) .

• First variation: δW (η) := J ∗ (∇f (J η)) such that

〈DW (η) , φ〉 =

ˆ
T2

δW (η)φ =

ˆ
T2

∇f (J η) · J φ.

• Second variation:
(
δ2
ηW
)
φ := J ∗

(
∇2f (J η) · J φ

)
such that

〈
D2W (η) , (φ, ψ)

〉
=

ˆ
T2

((
δ2
ηW
)
φ
)
ψ =

ˆ
T2

∇2f (J η) • (J φ⊗ Jψ) .



4. NOTATION 105

• Higher-order variations: for k ∈ N,

(
δkηW

)
(φ1, φ2, . . . , φk−1) := J ∗

(
∇kf (J η) • (J φ1 ⊗ J φ2 ⊗ · · · ⊗ J φk−1)

)

such that

〈
DkW (η) , (φ1, φ2, . . . , φk−1, φk)

〉
=

ˆ
T2

( (
δkηW

)
(φ1, φ2, . . . , φk−1)

)
φk

=

ˆ
T2

∇kf (J η) • (J φ1 ⊗ J φ2 ⊗ · · · ⊗ J φk−1 ⊗ J φk) .

• Quadratic approximation:

Qη (φ) :=
1

2

ˆ
T2

∇2f (J η) • (J φ⊗ J φ) =
1

2

ˆ
T2

((
δ2
ηWφ

))
φ =

1

2

〈
D2W (η) , (φ, φ)

〉
.

• Derivatives of the quadratic approximation: for any α ∈ N2,

(∂αQη) (φ) :=
1

2

ˆ
T2

∂α
(
∇2f (J η)

)
• (J φ⊗ J φ)

and in particular Qη̇ := ∂tQη.

4.4.2. Constants associated to f . At several points in our analysis we will need to refer to special con-
stants related to the surface energy density f . We define these now.

Definition 4.1 (Universal constants). We define the following.

• Define

C1 := ||J ||L(H9/2(T2);L∞(T2))

and observe that C1 is a finite universal constant since it only depends on the Sobolev embedding
Hs
(
T2
)
↪→ L∞

(
T2
)

for all s > 1.
• Define, for all k ∈ N,

C
(k)
f :=

∣∣∣∣∇kf
∣∣∣∣
L∞(B(0,C1)).

Crucially, note that if we are in the small energy regime (see Definition 4.2), where in particular E 6 1,
then

∣∣∣∣∇kf (J η)
∣∣∣∣
L∞(T2)

6 C(k)
f <∞

since for all η : T2 → R sufficiently regular

||J η||L∞(T2) 6 C1||η||H9/2(T2) 6 C1

√
E 6 C1.

Note that this will be helpful to recall when we are performing the a priori estimates since the term∣∣∣∣∇kf (J η)
∣∣∣∣
L∞(T2)

frequently appears (for various values of k).

4.5. Quantities associated with the unknowns. Here we collect notation associated with the un-
knowns.

4.5.1. Unknown variables. We will use the following notation to refer to unknowns in the fluid equations.

• Velocities are u, v : [0, T )× Ω→ R3.
• Pressures are p, q : [0, T )× Ω→ R.
• Stress tensors are SG , TG : [0, T )× Ω→ Sym

(
R3×3

)
defined by SG := pI − DGu and TG := qI − DGv.

• Surface elevations are η, ζ : [0, T )× T2 → (−b,∞).
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4.5.2. The different versions of the energy and dissipation. We will need various forms of the energy and
dissipation functionals. We record the definitions of these now.

Geometric versions: For X0 = (u, p, η) and Y = (v, q, ζ), we define




Ẽ0 (X0) :=
1

2

ˆ
Ω

|u|2J (η) +W (η) +
g

2

ˆ
T2

|η|2,

Ẽ (Y;X0) :=
1

2

ˆ
Ω

|v|2J (η) +Qη (ζ) +
g

2

ˆ
T2

|ζ|2,

D̃0 (X0) :=
1

2

ˆ
Ω

|DG(η)u|2J (η) , and

D̃ (Y;X0) :=
1

2

ˆ
Ω

|DG(η)v|2J (η)

where we have written J (η) and G (η) instead of writing, as we do elsewhere, J and G respectively in order
to emphasize the dependence on η of these geometric coefficients. We also define





Ẽ (Y;X0) := Ẽ0 (X0) + Ẽ (∂tY;X0) + Ẽ
(
∇Y;X0

)
+ Ẽ

(
∇2Y;X0

)
and (4.3a)

D̃ (Y;X0) := D̃0 (X0) + D̃ (∂tY;X0) + D̃
(
∇Y;X0

)
+ D̃

(
∇2Y;X0

)
(4.3b)

i.e. sum up to derivatives of parabolic order two, where we write F
(
∇Y

)
to mean

∑
i F
(
∇iY

)
and F

(
∇2Y

)

to mean
∑
i,j F

(
∇ijY

)
.

Note that Ẽ0 (X0) and D̃0 (X0) are functions whose domain is the space where X0 lives, but Ẽ (Y;X0)

and D̃ (Y;X0) are approximations of theses functions about X0, taking values Y in the tangent space to the
space where X0 lives, hence why they are quadratic in Y.

Equilibrium versions: For Xeq = (ueq, peq, ηeq) = (0, 0, 0), i.e. the equilibrium configuration, and
Y = (v, q, ζ), we define





E (Y) := Ẽ (Y;Xeq) =
1

2

ˆ
Ω

|v|2 +Q0 (ζ) +
g

2

ˆ
T2

|ζ|2

=
1

2

ˆ
Ω

|v|2 +
1

2

ˆ
T2

((
δ2
0W + g

)
ζ
)
ζ and

D (Y) := D̃ (Y;Xeq) =
1

2

ˆ
Ω

|Dv|2.

Note that, using the uniform ellipticity of δ2
0W + g stated in Section 2.2, we obtain that

{
E (Y) � ||v||2L2(Ω) + ||ζ||2H2(T2),

D (Y) � ||Dv||2L2(Ω).

Then we define, once again summing up to derivatives of parabolic order two:




E (Y) := E (Y) + E (∂tY) + E
(
∇Y

)
+ E

(
∇2Y

)
(4.5a)

D (Y) := D (Y) +D (∂tY) +D
(
∇Y

)
+D

(
∇2Y

)
. (4.5b)

Improved versions: For Y = (v, q, ζ), we define




E (Y) := ||u||2H2(Ω) + ||∂tu||2L2(Ω) + ||p||2H1(Ω) + ||η||2H9/2(T2) + ||∂tη||2H2(T2) and (4.6a)

D (Y) := ||u||2H3(Ω) + ||∂tu||2H1(Ω) + ||p||2H2(Ω)

+||η||2H11/2(T2) + ||∂tη||2H5/2(T2) +
∣∣∣∣∂2

t η
∣∣∣∣2
H1/2(T2)

. (4.6b)

Note that defined this way, coercivity is immediate, i.e. we have that E . D.
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4.5.3. Small energy regime. We now define the ‘small energy regime’ that is used throughout the chapter.

Definition 4.2 (Small energy regime). Let C0 > 0 be defined by

C0 := ||ext||L(H3/2(T2); L∞(Ω))

(
1

b
+
∣∣∣
∣∣∣
√
−∆

∣∣∣
∣∣∣
L(H5/2(T2); H3/2(T2))

)

and fix some 0 < δ0 < min
(

1
C2

0
, 1
)

. We say that we are in the ‘small energy regime’ if and only if there

exists a solution X = (u, p, η) on [0, T ) such that

sup
t∈[0,T )

E (X ) 6 δ0 and sup
t∈[0,T )

D (X ) <∞.

The following remarks will be important later.

Remark 4.3.

(1) C0 <∞ since 



√
−∆ ∈ L

(
H5/2

(
T2
)

;H3/2
(
T 2
))
,

ext ∈ L
(
H3/2

(
T2
)

;H2 (Ω)
)

, and

H2 (Ω) ↪→ L∞ (Ω) .

(2) If X is a solution such that E (X ) 6 δ0, then in particular, by definition of χ (c.f. Section 2.1), and by
Lemma 8.7,

||∂3 (χ ext η)||L∞(Ω) =

∣∣∣∣
∣∣∣∣
ext η

b
+ χ ext

√
−∆η

∣∣∣∣
∣∣∣∣
L∞(Ω)

6 ||ext||L(H3/2(T2);L∞(Ω))

(
1

b
||η||H3/2(T2) +

∣∣∣
∣∣∣
√
−∆

∣∣∣
∣∣∣
L(H5/2(T2);H3/2(T2))

||η||H5/2(T2)

)

6 C0||η||H5/2(T2) 6 C0

√
E 6 C0

√
δ0 < 1

and therefore inf ext η > −bC0

√
δ0 > −b such that Φ is well-defined, and

inf J = 1 + inf

(
ext η

b
+ χ ext

√
(−∆η)

)
> 1− C0

√
δ0 > 0

such that Φ is diffeomorphism.
(3) We require δ < 1 in order to simplify the a priori estimates by not having to track powers of the energy.

Indeed, for E 6 δ0 < 1, Eα1 + · · ·+ Eαn . Eminαi .

5. A priori estimates

5.1. Energy-dissipation estimates. In this section we record the energy-dissipation relations arising
from the original problem (known as the zeroth-order energy-dissipation relation) in Proposition 5.1 and
from the differentiated problem (known as the higher-order energy-dissipation relation) in Proposition 5.2.
We then sketch the computation of the commutators, relegating the full details to the appendix, and we
estimate these commutators in Lemma 5.4.

We start by recording, immediately below, the energy-dissipation relation arising from the original
problem. Note that in the notation of Section 3.2 this is the energy-dissipation relation corresponding to the
system of PDEs N (X ) = 0.

Proposition 5.1 (Zeroth-order energy-dissipation relation). If (u, p, η) solves (2.2a)–(2.2e), then

d

dt

(ˆ
Ω

1

2
|u|2J +W (η) +

ˆ
T2

g

2
|η|2
)

+

(ˆ
Ω

1

2
|DGu|2J.

)
= 0

In other words, for Ẽ0 and D̃0 as defined in Section 4.5.2 and X0 = (u, p, η), we have that

d

dt
Ẽ0 (X0) + D̃0 (X0) = 0.
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Proof. We take the dot product of (2.2a) with u, multiply by J to account for the geometry, and
integrate over Ω. This results in:

0 =

ˆ
Ω

(
Du,G
t u

)
· uJ +

ˆ
Ω

(
∇G · SG

)
· uJ

(1)
=

ˆ
Ω

Du,G
t

(
1

2
|u|2
)
J −

ˆ
Ω

SG :
(
∇Gu

)
J +

ˆ
Ω

((
SG
)T · u

)
· νG∂Ω

(2)
=

d

dt

(ˆ
Ω

1

2
|u|2J

)
+

ˆ
Ω

1

2
|DGu|2J +

ˆ
∂Ω

(
SG · νG∂Ω

)
· u

=
d

dt

(ˆ
Ω

1

2
|u|2J

)
+

ˆ
Ω

1

2
|DGu|2J +

ˆ
T2

(δW (η) + gη)
(
u · νG∂Ω

)

=
d

dt

(ˆ
Ω

1

2
|u|2J

)
+

ˆ
Ω

1

2
|DGu|2J +

ˆ
T2

(δW (η) + gη) ∂tη

=
d

dt

(ˆ
Ω

1

2
|u|2J

)
+

ˆ
Ω

1

2
|DGu|2J +

d

dt

(
W (η) +

ˆ
T2

g

2
|η|2
)

=
d

dt

(ˆ
Ω

1

2
|u|2J +W (η) +

ˆ
T2

g

2
|η|2
)

+

ˆ
Ω

1

2
|DGu|2J.

Here in (1) we have used the G-divergence theorem (Proposition 7.2) and the fact that ∇ ·
(
MT · v

)
= M :

∇v+ (∇ ·M) · v. In (2) we have used the G-Reynolds transport theorem (Proposition 7.3) and the fact that
∇G · u = 0. �

Having recorded the energy-dissipation relation associated with the original problem above in Propo-
sition 5.1, we now record the energy-dissipation relation associated with the differentiated problem below
in Proposition 5.2. Note that in the notation of Section 3.2 and for C =

(
C1, C2, C3, C4

)
this is the

energy-dissipation relation corresponding to the system of PDEs LX0
(Y) = C.

Proposition 5.2 (Higher-order energy-dissipation relation). If X0 = (u, p, η) and Y = (v, q, ζ) solve





Du,G
t v +∇G · TG = C1 in Ω, (5.1a)

∇G · v = C2 in Ω, (5.1b)( (
δ2
ηW
)
ζ + gζ

)
νG∂Ω − TG · νG∂Ω = C3 on Σ, (5.1c)

∂tζ − v · νG∂Ω = C4 on Σ, and (5.1d)

v = 0 on Σb, (5.1e)

where recall that TG := qI − DGv (c.f. Section 4.5.1) and where G = G (η), then

d

dt

(ˆ
Ω

1

2
|v|2J (η) +Qη (ζ) +

ˆ
T2

g

2
|ζ|2
)

+

(ˆ
Ω

1

2
|DG(η)v|2J (η)

)
=

= Qη̇ (ζ) +

ˆ
Ω

(
C1 · v

)
J (η) +

ˆ
Ω

C2qJ (η) +

ˆ
T2

C3 · v +

ˆ
T2

C4
(
δ2
ηW + g

)
ζ =: 〈C,Y〉X0

for C =
(
C1, C2, C3, C4

)
. In other words, for Ẽ and D̃ as defined in Section 4.5.2,

d

dt
Ẽ (Y;X0) + D̃ (Y;X0) = 〈C,Y〉X0

,

where we have written J (η) and G (η) instead of writing, as we do elsewhere, J and G respectively in order
to emphasize the dependence on η of these geometric coefficients.



5. A PRIORI ESTIMATES 109

Proof. Taking the dot product of (5.1a) with uJ and integrating over Ω yields

I︷ ︸︸ ︷ˆ
Ω

(
C1 · v

)
J =

ˆ
Ω

(
DGt v

)
· vJ +

ˆ
Ω

(
∇G · TG

)
· vJ

=

ˆ
Ω

DGt

(
1

2
|v|2
)
J −

ˆ
Ω

(
TG : ∇Gv

)
J +

ˆ
∂Ω

(
TG · v

)
· νG∂Ω

=
d

dt

(ˆ
Ω

1

2
|v|2J

)

︸ ︷︷ ︸
II

−
ˆ

Ω

qC2J

︸ ︷︷ ︸
III

+

ˆ
Ω

1

2
|DGv|2J

︸ ︷︷ ︸
IV

+

ˆ
T2

(
TG · νG∂Ω

)
· v

︸ ︷︷ ︸
(?)

where

(?) =

ˆ
T2

( (
δ2
ηW + g

)
ζ
) (
v · νG∂Ω

)
−
ˆ
T2

C3 · v

=

ˆ
T2

( (
δ2
ηW + g

)
ζ
)
∂tζ −

ˆ
T2

( (
δ2
ηW + g

)
ζ
)
C4 −

ˆ
T2

C3 · v

=


 d

dt

(
Qη (ζ)

)

︸ ︷︷ ︸
V

−Qη̇ (ζ)︸ ︷︷ ︸
VI


+

d

dt

(ˆ
T2

g

2
ζ2

)

︸ ︷︷ ︸
VII

−
ˆ
T2

( (
δ2
ηW + g

)
ζ
)
C4

︸ ︷︷ ︸
VIII

−
ˆ
T2

C3 · v
︸ ︷︷ ︸

IX

.

So finally

I = II− III + IV + V−VI + VII−VIII− IX

⇐⇒ (II + V + VII) + IV = VI + I + III + IX + VIII

⇐⇒ d

dt

(ˆ
Ω

1

2
|v|2J +Qη (ζ) +

ˆ
T2

g

2
|ζ|2
)

+

(ˆ
Ω

1

2
|DGv|2J

)
=

= Qη̇ (ζ) +

ˆ
Ω

(
C1 · v

)
J +

ˆ
Ω

C2qJ +

ˆ
T2

C3 · v +

ˆ
T2

C4
(
δ2
ηW + g

)
ζ.

�

Using the notation from the sketch in Section 3.2, we can rephrase Proposition 5.2 as follows: if X0

and Y solve LX0
(Y) = C, then d

dt Ẽ (Y;X0) + D (Y;X0) = 〈C,Y〉X0
. We thus seek to compute Cα =

LX (∂αX )− ∂α (N (X )).
As discussed in Section 3.2, the ‘commutator’ Cα is not quite equal to [N, ∂α] because of the ‘fully

nonlinear’ term coming from the surface energy. In particular, the terms in N are of two types: almost all
terms can be written as non-constant coefficient linear operators which have a multilinear dependence on
their coefficients, and one term (coming from the surface energy) is ‘fully nonlinear’ and cannot be written
in that form. For terms of the first type, we have genuine commutators, and these are easy to compute: if
L = L̂ (πa, . . . , πk), then

[∂α, L] =
∑

β+
∑k
i=1 γi=α
β<α

L̂ (∂γ1π1, . . . , ∂
γkπk) ◦ ∂β .

See Proposition 8.10 for the full computations. For the term of the second type, we do not compute
[
νG∂ΩδW, ∂α

]
=
(
νG∂ΩδW

)
◦ ∂α − ∂α ◦

(
νG∂ΩδW

)

but instead compute

CW,α (η) :=
( (
νG∂Ωδ

2
ηW
)
◦ ∂α − ∂α ◦

(
νG∂ΩδW

) )
(η) .

Remark 5.3. Using δ2
ηW, as opposed to δ2

0W in the differentiated version of the PDE is natural since
it is precisely this operator which appears when differentiating δW, i.e. since

∂α (δW (η)) =
(
δ2
ηW
)

(∂αη) .
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Using δ2
0W instead of δ2

ηW would also make it difficult to close the estimates since it would yield (due to
commutators arising when differentiating the PDE in time) interactions of the formˆ

T2

(
δ2
ηW − δ2

0W
)

︸ ︷︷ ︸
(?)

(∂tη) (tr ∂tu)

where typically, i.e. unless the surface energy density f has a special structure, (?) involves fourth-order
derivatives. For example, in the case of the ‘scalar’ Willmore energy, i.e.

W (η) :=

ˆ
T2

m (∇η) |∆η|2

for some smooth m : R2 → (0,∞) with m (0) > 0, we have that
(
δ2
ηW − δ2

0W
)
φ = (m (∇η)−m (0)) ∆2φ+ 2∇ (m (∇η)) · ∇∆φ+ ∆ (m (∇η)) ∆φ.

In general
(
δ2
ηW − δ2

0W
)
φ = J ∗

((
∇2f (J η)−∇2f (0)

)
• J φ

)

which (again, unless f has some special structure) typically involves fourth-order derivatives of φ. Such
interactions would be troublesome because they would thus take the formˆ

T2

(
∇4∂tη

)
(tr ∂tu) (l.o.t.)

for some lower order terms that could be controlled via the energy. Terms like this cannot be controlled in
our scheme of a priori estimates because we have insufficient control of ∂tη and ∂tu, since we only know that

D &
∣∣∣∣∇4∂tη

∣∣∣∣2
H−3/2(T2)

+ ||tr ∂tu||2H1/2(T2).

The detailed computations of CW,α (η) are in Lemma 7.5. Putting it all together, we obtain that:

〈Cα, ∂αX〉X = Qη̇ (∂αη)−
ˆ

Ω

([
∂tΦ · ∇G , ∂α

]
u
)
· (∂αu) J +

ˆ
Ω

([
u · ∇G , ∂α

]
u
)
· (∂αu) J

−
ˆ

Ω

([(
∇G · GT

)
· ∇, ∂α

]
u
)
· (∂αu) J −

ˆ
Ω

([(
GT · G

)
: ∇2, ∂α

]
u
)
· (∂αu) J

+

ˆ
Ω

([
∇G , ∂α

]
p
)
· (∂αu) J +

ˆ
Ω

([
∇G ·, ∂α

]
u
)

(∂αp) J

+

ˆ
T2

([
νG∂Ω · DG , ∂α

]
u
)
· ∂αu−

ˆ
T2

([
νG∂Ω, ∂

α
]
p
)
· ∂αu

+ g

ˆ
T2

([
νG∂Ω, ∂

α
]
η
)
· ∂αu+

ˆ
T2

CW,α (η) · ∂αu

−
ˆ
T2

([
νG∂Ω·, ∂α

]
u
) ( (

δ2
ηW + g

)
(∂αη)

)

=: I + II + III + IV + V + VI + VII + VIII + IX + X + XI + XII.

(5.2)

The following lemma shows how these terms may be estimated.

Lemma 5.4. If the small energy assumptions hold (see Definition 4.2), then there are functionals C1, C2

such that ∑

|α|t,x2≤2

〈Cα, ∂αX〉X = C1 +
d

dt
C2

with

|C1| .
√
ED and |C2| .

√
EE .

Proof. We begin with a sketch of the general argument. Most of the commutators appearing in I−XII
in (5.2) are multilinear in terms of quantities that we control (such as the unknowns u, p, η and geometric



5. A PRIORI ESTIMATES 111

coefficients J , G, Φ, νG∂Ω). To handle such commutators, we use the Hölder and Sobolev inequalities. See
Proposition 8.11 for how we control terms of the form

∣∣∣∣
ˆ
f1 . . . fk

∣∣∣∣

when we control the fi’s in some Hsi spaces.
In some cases, we may need to use a couple of other tools to be able to place functions in Sobolev spaces

of sufficiently high regularity. We may need to ‘borrow’ regularity, i.e. use that Hs+α (Rn) ·Hs+β (Rn) ↪→
Hs (Rn): see Propositions 8.12, 8.13, and 8.14. We also need to use post-composition results, i.e. use that
Ck,α (Hs (Rn)) ↪→ Hs (Rn): see Proposition 8.15.

For a few commutators, namely XI and XII, we will need to use the smallness and boundedness of
variations of the surface energy, i.e. Lemmas 7.9, 7.10, and 7.11.

Estimates of these forms ultimately contribute to C1. We now turn to the question of how C2 arises. The
term VII involves an appearance of ∂tp, which is not controlled in either the energy or dissipation, though
it is defined through the local existence theory in a manner that allows us to integrate by parts in time:ˆ

Ω

(∂tp)w =
d

dt

(ˆ
Ω

pw

)
−
ˆ

Ω

p (∂tw) .

Note that the non-time-differentiated term can be controlled by
√
ED like any of the other commutators

contributing to C1, but the time-differentiated term must be controlled at a lower regularity level by E3/2.
In particular, the term of the form

´
Ω
pw arising from commutator VII is the only contribution to C2.

We now provide detailed proofs for the estimates of four terms that are particularly delicate. For example,
three of them are ‘critical’ in the sense that they lead to a full factor of D appearing, suggesting that they
are precisely at the limit of what the improved energy and dissipation allow us to control. Moreover, these
four terms are representative of various difficulties encountered. We thus detail how to control:

(1) the commutator I when ∂α = ∂t since it highlights how to handle terms of the form |
´
f1 . . . fk|,

(2) the commutator VII when ∂α = ∂t since this is precisely the term that requires integration by parts in
time in order to be brought under control,

(3) the commutator XI when ∂α = ∇2
since it requires intermediate results about the smallness of δW,

δ2
ηW, and δ3

ηW, and since it highlights how post-composition and product estimates in Sobolev spaces
are used, and

(4) the commutator XII when ∂α = ∂t, for the same reasons.

Estimating the remaining commutators follows a similar procedure and thus we omit those estimates.

(1) A typical estimate on the surface. We detail how to control the commutator I when ∂α = ∂t. The
commutator is

Qη̇ (∂tη) =
1

2

ˆ
T2

∇3f (J η) ·
(

(J ∂tη)
⊗3
,
)

and it can be controlled as follows:

|Qη̇ (∂tη)| .
∣∣∣∣∇3f (J η)

∣∣∣∣
L∞(T2)

||J ∂tη||L2(T2)||J ∂tη||
2
L4(T2)

. C(3)
f ||∂tη||H2(T2)||J ∂tη||

2
H1/2(T2)

.
√
E||∂tη||2H5/2(T2) .

√
ED.

Recall that C
(3)
f is defined in Definition 4.1.

(2) Integration by parts in time. We detail how to control the commutator VII when ∂α = ∂t. The
commutator is ˆ

Ω

(∂tG) : (∇u) (∂tp) J.

Schematically, we have: ˆ
Ω

(∂tp)w =
d

dt

(ˆ
Ω

pw

)
−
ˆ

Ω

p (∂tw)
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where we may only use the energy (and not the dissipation) to control
´

Ω
pw since it is time-differentiated,

and where we may proceed as usual, i.e. using both the energy and the dissipation, but not using the
dissipation more than twice, to control

´
Ω
p (∂tw). The first term isˆ

Ω

(∂tG : ∇u) pJ,

and it can be estimated in the following way:

|. . .| . ||∂tG||L3(Ω)||∇u||L3(Ω)||p||L3(Ω)||J ||L∞(Ω)

. ||∂tG||H1/2(Ω)||∇u||H1/2(Ω)||p||H1/2(Ω)||J ||H3/2+(Ω)

.
(

1 +
√
E
)
E3/2 . E3/2.

The second term isˆ
Ω

(
∂2
t G : ∇u

)
Jp+

ˆ
Ω

(∂tG : ∇∂tu) Jp+

ˆ
Ω

(∂tG : ∇u) (∂tJ) p,

and can be estimated in the following way:

|. . .| .
∣∣∣∣∂2

t G
∣∣∣∣
L2(Ω)

||∇u||L6(Ω)||J ||L∞(Ω)||p||L6(Ω)

+ ||∂tG||L6(Ω)||∇∂tu||L2(Ω)||J ||L∞(Ω)||p||L6(Ω)

+ ||∂tG||L3(Ω)||∇u||L3(Ω)||∂tJ ||L∞(Ω)||p||L3(Ω)

.
∣∣∣∣∂2

t G
∣∣∣∣
L2(Ω)

||∇u||H1(Ω)||J ||H3/2+(Ω)||p||H1(Ω)

+ ||∂tG||H1(Ω)||∇∂tu||L2(Ω)||J ||H3/2+(Ω)||p||H1(Ω)

+ ||∂tG||H1/2(Ω)||∇u||H1/2(Ω)||∂tJ ||H3/2+(Ω)||p||H1/2(Ω)

.
√
D
(

1 +
√
E
)
E +

(
1 +
√
E
)
E3/2 + E2 . (1 + E) E

√
D.

(3) Another typical estimate on the surface. We detail how to control the commutator XI when ∂α = ∇2
.

The commutator isˆ
T2

(
∇3η

)
δW (η)

(
tr∇2u

)
+

ˆ
T2

(
∇2η

) ((
δ2
ηW
)

(∇η)
) (

tr∇2u
)

+

ˆ
T2

νG∂Ω

((
δ3
ηW
)

(∇η,∇η)
) (

tr∇2u
)

=: XI1 + XI2 + XI3.

The first two terms can be estimated in the following way:

|XI1 + XI2| .
∣∣∣∣∇3η

∣∣∣∣
L∞(T2)

||δW (η)||L2(T2)

∣∣∣∣tr∇2u
∣∣∣∣
L2(T2)

+
∣∣∣∣∇2η

∣∣∣∣
L∞(T2)

∣∣∣∣(δ2
ηW
)

(∇η)
∣∣∣∣
L2(T2)

∣∣∣∣∇2u
∣∣∣∣
L2(T2)

.
∣∣∣∣∇3η

∣∣∣∣
H1+(T2)

||δW (η)||L2(T2)

∣∣∣∣∇2u
∣∣∣∣
H1/2(Ω)

+
∣∣∣∣∇2η

∣∣∣∣
H1+(T2)

∣∣∣∣(δ2
ηW
)

(∇η)
∣∣∣∣
L2(T2)

∣∣∣∣∇2u
∣∣∣∣
H1/2(Ω)

.
√
E
√
E
√
D +

√
E
√
D
√
D . E

√
D +

√
ED,

where we have used that ||δW (η)||H1/2(T2) .
√
E , and that

∣∣∣∣(δ2
ηW
)

(∇η)
∣∣∣∣
L2(T2)

=
∣∣∣∣J ∗

(
∇2f (J η) • J∇η

)∣∣∣∣
L2(T2)

.
∣∣∣∣∇2f (J η) • J∇η

∣∣∣∣
H2(T2)

.
∣∣∣∣∇2f (J η)

∣∣∣∣
H2(T2)

||J∇η||H2(T2)

.
(
C

(2)
f + C

(5)
f

(
||J η||H2(T2) + ||J η||2H2(T2)

))
||η||H5(T2)

.
(

1 + ||η||H4(T2) + ||η||2H4(T2)

)√
D .

√
D,
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recalling that C
(3)
f is defined in Definition 4.1. The last term requires a bit more precaution:

|XI3| .
∣∣∣∣νG∂Ω

(
tr∇2u

)∣∣∣∣
H1/2(T2)

∣∣∣∣(δ3
ηW
)

(∇η,∇η)
∣∣∣∣
H−1/2(T2)

.
∣∣∣∣νG∂Ω

∣∣∣∣
H

3
2

+(T2)

∣∣∣∣tr∇2u
∣∣∣∣
H1/2(T2)

∣∣∣∣∇3f (J η) • (J η ⊗ J η)
∣∣∣∣
H3/2(T2)

.
(

1 +
√
E
)√
D
∣∣∣∣∇3f (J η)

∣∣∣∣
H3/2(T2)

||J∇η||2H3/2(T2)

.
(

1 +
√
E
)√
D
√
EE .

(
1 +
√
E
)
E3/2
√
D . E

√
D,

where we have used that
∣∣∣∣∇3f (J η)

∣∣∣∣
H3/2(T2)

. C(3)
f + C

(5)
f

(
||J η||H3/2(T2) + ||J η||2H3/2(T2)

)

. 1 +
√
E + E3/2 . 1.

(4) One last typical estimate on the surface. We detail how to control the commutator XII when ∂α = ∂t.
The commutator is ˆ

T2

(∇∂tη) (tru)
((
δ2
ηW + g

)
(∂tη)

)
,

and it can be estimated in the following way

|. . .| . ||(∇∂tη) (tru)||H3/2(T2)

∣∣∣∣(δ2
ηW + g

)
(∂tη)

∣∣∣∣
H−3/2(T2)

. ||∇∂tη||H3/2(T2)||tru||H3/2(T2)

(∣∣∣∣δ2
ηW
∣∣∣∣
L(H5/2;H−3/2)

+ 1

)
||∂tη||H5/2(T2)

.
√
D
√
E
√
D .

√
ED.

�

5.2. Regularity gain. In this section we record the auxiliary estimates arising from the linearized
problem (about the equilibrium) in Proposition 5.5, we compute the nonlinear remainders obtained when
writing the full nonlinear problem as a perturbation of its linearization, and finally we estimate these non-
linear remainders in Lemma 5.7.

We begin by recording our auxiliary estimates in a general form.

Proposition 5.5 (Generic form of the auxiliary estimates). Let R =
(
R1, R2, R3, R4

)
be given and

suppose that (u, p, η) solves




∂tu−∆u+∇p = R1 in Ω,

∇ · u = R2 in Ω,(
δ2
0W + g

)
ηe3 + Du · e3 − pe3 = R3 on Σ,

∂tη − u · e3 = R4 on Σ, and

u = 0 on Σb.

Then 2

||u||H2(Ω) + ||∂tu||L2(Ω) + ||p||H1(Ω) + ||η||H9/2(T2) + ||∂tη||H2(T2)

. ||∂tu||L2(Ω) + ||η||H4(T2) + ||∂tη||H2(T2) + ||u||L2(Ω)

+
∣∣∣∣R1

∣∣∣∣
L2(Ω)

+
∣∣∣∣R2

∣∣∣∣
H1(Ω)

+
∣∣∣∣R3

∣∣∣∣
H1/2(T2)

+
∣∣∣∣R4

∣∣∣∣
H3/2(T2)

(5.3)

and 3

||u||H3(Ω) + ||∂tu||H1(Ω) + ||p||H2(Ω) + ||η||H11/2(T2) + ||∂tη||H5/2(T2) +
∣∣∣∣∂2

t η
∣∣∣∣
H1/2(T2)

. ||Du||L2(Ω) + ||D∂tu||L2(Ω) +
∣∣∣
∣∣∣D∇2

u
∣∣∣
∣∣∣
L2(Ω)

+
∣∣∣∣R1

∣∣∣∣
H1(Ω)

+
∣∣∣∣R2

∣∣∣∣
H2(Ω)

+
∣∣∣∣R3

∣∣∣∣
H3/2(T2)

+
∣∣∣∣R4

∣∣∣∣
H5/2(T2)

+
∣∣∣∣∂tR4

∣∣∣∣
H1/2(T2)

(5.4)

2Note that the terms
∣∣∣∣∇u

∣∣∣∣
L2 and

∣∣∣∣∣∣∇2
u
∣∣∣∣∣∣
L2

are present in E but are absent from the right-hand side of the estimate.

3Note that the term
∣∣∣∣D∇u

∣∣∣∣
L2 is present in D but are absent from the right-hand side of the estimate.
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i.e. {
E . E +NE and

D . D +ND
for {

NE :=
∣∣∣∣R1

∣∣∣∣2
L2(Ω)

+
∣∣∣∣R2

∣∣∣∣2
H1(Ω)

+
∣∣∣∣R3

∣∣∣∣2
H1/2(T2)

+
∣∣∣∣R4

∣∣∣∣2
H3/2(T2)

ND :=
∣∣∣∣R1

∣∣∣∣2
H1(Ω)

+
∣∣∣∣R2

∣∣∣∣2
H2(Ω)

+
∣∣∣∣R3

∣∣∣∣2
H3/2(T2)

+
∣∣∣∣R4

∣∣∣∣2
H5/2(T2)

+
∣∣∣∣∂tR4

∣∣∣∣2
H1/2(T2)

.

Proof. We begin with the estimates related to the energy. We divide the argument into several steps.

(1) We initiate our scheme of estimates in the usual way for parabolic problems: treat temporal derivatives
as forcing terms in the stationary equations in order to recover control of the spatial derivatives from
control of the temporal derivatives. In particular, note that (u, p, η) solves a Stokes problem with mixed
boundary conditions where ∂tu and ∂tη are treated as forcing terms, i.e.




−∆u+∇p = −∂tu+R1 in Ω,

∇ · u = R2 in Ω,

u · e3 = ∂tη −R4 on Σ,

(Due3)tan =
(
R3
)
tan

on Σ, and

u = 0 on Σb,

where for any vector field w : Σ→ R3 we denote by wtan its tangential part, i.e. wtan = (I − e3 ⊗ e3)w.
Therefore, by using elliptic regularity estimates for the Stokes problem (i.e. the auxiliary estimate 8.17)
we obtain that

||u||H2(Ω) + ||∇p||L2(Ω) .
∣∣∣∣−∂tu+R1

∣∣∣∣
L2(Ω)

+
∣∣∣∣R2

∣∣∣∣
H1(Ω)

+
∣∣∣∣∂tη −R4

∣∣∣∣
H3/2(T2)

+
∣∣∣∣(R3

)
tan

∣∣∣∣
H1/2(T2)

6 ||∂tu||L2(Ω) + ||∂tη||H3/2(T2) +
∣∣∣∣R1

∣∣∣∣
L2(Ω)

+
∣∣∣∣R2

∣∣∣∣
H1(Ω)

+
∣∣∣∣(R3

)
tan

∣∣∣∣
H1/2(T2)

+
∣∣∣∣R4

∣∣∣∣
H3/2(T2)

.

(2) Ultimately, we wish to control the full H1 norm of p via the improved energy, but so far we only control
the gradient of p. In order to proceed further we therefore use the normal component of the dynamic
boundary condition to obtain control of the trace of p on the top boundary. Indeed, since

p = Du : (e3 ⊗ e3) +
(
δ2
0W + g

)
η −R3 · e3 on T2 (∼ Σ)

it follows that

||trΣ p||L2(T2) . ||trΣ Du||L2(T2) + ||η||H4(T2) +
∣∣∣∣R3 · e3

∣∣∣∣
L2(T2)

. ||u||H3/2(Ω) + ||η||H4(T2) +
∣∣∣∣R3 · e3

∣∣∣∣
L2(T2)

.

(3) We can now, as intended, recover control of the full H1 norm of p by using a Poincaré-type inequality
(i.e. auxiliary estimate 8.1):

||p||H1(Ω) . ||trΣ p||L2(T2) + ||∇p||L2(Ω).

(4) Now that we have enough control on the stress tensor to obtain estimates for its trace onto the boundary,
we can use the normal component of the dynamic boundary condition to obtain control of higher-order
spatial derivatives of η. Indeed, since

(
δ2
0W + g

)
η = p− Du : (e3 ⊗ e3) +R3 · e3

it follows from the elliptic regularity of δ2
0W + g (i.e. the auxiliary estimate 8.20) that

||η||H9/2(T2) . ||trΣ p||H1/2(T2) + ||trΣ Du||H1/2(T2) +
∣∣∣∣R3 · e3

∣∣∣∣
H1/2(T2)

. ||p||H1(Ω) + ||u||H2(Ω) +
∣∣∣∣R3 · e3

∣∣∣∣
H1/2(T2)

.

Assembling the above estimates, we see that

||u||H2(Ω) + ||p||H1(Ω) + ||η||H9/2(T2) . ||∂tu||L2(Ω) + ||∂tη||H3/2(T2) + ||η||H4(T2)

+
∣∣∣∣R1

∣∣∣∣
L2(Ω)

+
∣∣∣∣R2

∣∣∣∣
H1(Ω)

+
∣∣∣∣R3

∣∣∣∣
H1/2(T2)

+
∣∣∣∣R4

∣∣∣∣
H3/2(T2)

.

Then (5.3) follows immediately from this.
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We now turn our attention to estimates related to the dissipation. Again, we divide the argument into
steps.

(1) We begin by trading control of the symmetrized gradient for control of full H1 norms. This is possible
due to the no-slip boundary conditions and a Korn-type inequality (i.e. auxiliary estimate 8.22):





||u||H1(Ω) . ||Du||L2(Ω),

||∂tu||H1(Ω) . ||D∂tu||L2(Ω), and∣∣∣
∣∣∣∇2

u
∣∣∣
∣∣∣
H1(Ω)

.
∣∣∣
∣∣∣D∇2

u
∣∣∣
∣∣∣
L2(Ω)

.

(2) Next we use the fact that the horizontal derivatives of the trace of u are equal to the trace of the
horizontal derivatives, i.e. ∇ ◦ trΣ = trΣ ◦∇. From this and standard trace estimates we obtain:

||trΣ u||H5/2(T2) . ||trΣ u||H1/2(T2) +
∣∣∣
∣∣∣∇2

(trΣ u)
∣∣∣
∣∣∣
H1/2(T2)

. ||u||H1(Ω) +
∣∣∣
∣∣∣trΣ∇

2
u
∣∣∣
∣∣∣
H1/2(Ω)

. ||u||H1(Ω) +
∣∣∣
∣∣∣∇2

u
∣∣∣
∣∣∣
H1(Ω)

.

(3) We can now recover control of all the derivatives of u by using the trace of u as datum in a Stokes
problem with Dirichlet boundary conditions. Indeed, since





−∆u+∇p = −∂tu+R1 in Ω,

∇ · u = R2 in Ω,

u = u on Σ,

u = 0 on Σb

it follows from elliptic regularity estimates for the Stokes problem (i.e. the auxiliary estimate 8.16) that

||u||H3(Ω) + ||∇p||H1(Ω) .
∣∣∣∣−∂tu+R1

∣∣∣∣
H1(Ω)

+
∣∣∣∣R2

∣∣∣∣
H2(Ω)

+ ||trΣ u||H5/2(T2)

6 ||∂tu||H1(Ω) + ||trΣ u||H5/2(T2) +
∣∣∣∣R1

∣∣∣∣
H1(Ω)

+
∣∣∣∣R2

∣∣∣∣
H2(Ω)

.

(4) Next we observe that
(
δ2
0W + g

) (
∇η
)

= ∇p− D∇u : (e3 ⊗ e3) +∇R3 on T2 (∼ Σ)

and therefore elliptic estimates for the operator δ2
0W + g (i.e. the auxiliary estimate 8.20) provide the

bounds
∣∣∣∣∇η

∣∣∣∣
H9/2(T2)

.
∣∣∣∣trΣ∇p

∣∣∣∣
H1/2(T2)

+
∣∣∣∣trΣ D∇u

∣∣∣∣
H1/2(T2)

+
∣∣∣∣∇R3

∣∣∣∣
H1/2(T2)

. ||∇p||H1(Ω) + ||u||H3(Ω) +
∣∣∣∣∇R3

∣∣∣∣
H1/2(T2)

.

Moreover, since
´
T2 η = 0, we have that ||η||H11/2 .

∣∣∣∣∇η
∣∣∣∣
H9/2 (by auxiliary estimate 8.2), and so,

finally, we have

||η||H11/2(T2) . ||∇p||H1(Ω) + ||u||H3(Ω) +
∣∣∣∣∇R3

∣∣∣∣
H1/2(T2)

.

(5) We now parlay the η estimates into full H2 control of the pressure by arguing as we did for the energy,
obtaining control of the trace of the pressure. Since

p = Du : (e3 ⊗ e3) +
(
δ2
0W + g

)
η −R3 · e3 on T2 (∼ Σ) ,

it follows that

||trΣ p||L2(T2) . ||trΣ Du||L2(T2) + ||η||H4(T2) +
∣∣∣∣R3

∣∣∣∣
L2(T2)

. ||u||H3/2(Ω) + ||η||H4(T2) +
∣∣∣∣R3

∣∣∣∣
L2(T2)

.

We then use a Poincare-type inequality (i.e. auxiliary estimate 8.1) to bound

||p||H2(Ω) . ||trΣ p||L2(T2) + ||∇p||H1(Ω).
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(6) Finally, we use the kinematic boundary condition and its time-differentiated version to obtain control
of ∂tη and ∂2

t η. Indeed, the kinematic boundary condition tells us that

∂tη = u · e3 +R4 on T2 (∼ Σ) ,

and therefore

||∂tη||H5/2(T2) . ||trΣ u||H5/2(T2) +
∣∣∣∣R4

∣∣∣∣
H5/2(T2)

. ||u||H3(Ω) +
∣∣∣∣R4

∣∣∣∣
H5/2(T2)

.

The time-differentiated kinematic boundary condition tells us that

∂2
t η = (∂tu) · e3 + ∂tR

4 on T2 (∼ Σ)

and therefore ∣∣∣∣∂2
t η
∣∣∣∣
H1/2(T2)

. ||∂tu||H1/2(Ω) +
∣∣∣∣∂tR4

∣∣∣∣
H1/2(T2)

.

Combining these estimates then shows that

||u||H3(Ω) + ||∂tu||H1(Ω) + ||p||H2(Ω) + ||η||H11/2(T2) + ||∂tη||H5/2(T2) +
∣∣∣∣∂2

t η
∣∣∣∣
H1/2(T2)

. ||Du||L2(Ω) + ||D∂tu||L2(Ω) +
∣∣∣
∣∣∣D∇2

u
∣∣∣
∣∣∣
L2(Ω)

+
∣∣∣∣R1

∣∣∣∣
H1(Ω)

+
∣∣∣∣R2

∣∣∣∣
H2(Ω)

+
∣∣∣∣R3

∣∣∣∣
L2(T2)

+
∣∣∣∣∇R3

∣∣∣∣
H1/2(T 2)︸ ︷︷ ︸

.||R3||
H3/2(T2)

+
∣∣∣∣R4

∣∣∣∣
H5/2(T2)

+
∣∣∣∣∂tR4

∣∣∣∣
H1/2(T2)

,

and then (5.4) follows immediately.
�

Proposition 5.5 tells us in which norm we need to be able to control the nonlinear remainders. In the
notation used in the sketch in Section 3.2, these remainders R are given by R = (L−N) (X ). Here N
corresponds to the system (2.2a)–(2.2e), while L corresponds to the system





∂tu+∇ · S = 0 in Ω,

∇ · u = 0 in Ω,(
δ2
0W + g

)
ηe3 − S · e3 = 0 on Σ,

∂tη − u · e3 = 0 on Σ, and

u = 0 on Σb.

It follows that the remainders are given by




R1 =
(
Du,G
t u− ∂tu

)
+
(
∇G · SG −∇ · S

)
, (5.6a)

R2 = ∇G · u−∇ · u, (5.6b)

R3 =
(
δW (η) νG∂Ω −

(
δ2
0W
)
ηe3

)
+ gη

(
νG∂Ω − e3

)
−
(
SG · νG∂Ω − S · e3

)
, and (5.6c)

R4 = u ·
(
νG∂Ω − e3

)
. (5.6d)

Before recording our estimates for these terms we discuss how to Taylor expand the surface energy terms.

Remark 5.6. An important subtetly in performing the estimates in this section arises from the fact
that the surface energy density may be fully nonlinear. This plays a role in two terms in particular: δW (η)
and

(
δW − δ2

0W
)

(η). We write these terms in a manner more amenable to estimates by performing a Taylor
expansion of ∇f , i.e.

• For δW:

δW (η) = J ∗ (∇f (J η)) = J ∗ (∇f (J η)−∇f (0))

= J ∗
(ˆ 1

0

∇2f (tJ η) dt • J η
)

= J ∗ (h (J η) • J η) ,

where

h (z) :=

ˆ 1

0

∇2f (tz) dt
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for z = (w,M) ∈ Rn × Rn×n. Note that we may also write

δW (η) = J ∗ (R0 [∇f, 0] (J η)) ,

where R0 is defined in Proposition 8.24. This is a useful way of writing δW (η) since it provides us with
a unified way of estimating a certain number of terms showing up in the remainders.
• For

(
δW − δ2

0W
)

(η):

δW (η)− δ2
0W (η) = J ∗

(
∇f (J η)−∇2f (0) • J η

)

= J ∗
(
∇f (J η)− P1 [∇f, 0] (J η)

)

= J ∗
(
R1 [∇f, 0] (J η)

)

= J ∗
((

1

2

ˆ 1

0

(1− t)∇3f (tJ η) dt

)
• (J η ⊗ J η)

)

= J ∗
(
q (J η) • (J η ⊗ J η) ,

)

where

q (z) :=
1

2

ˆ 1

0

(1− t)∇3f (tz) dt

for z = (w,M) ∈ Rn × Rn×n and where P1 and R1 are defined in Proposition 8.24.

Summarizing, we have:
{
δW (η) = J ∗ (R0 [∇f, 0] (J η)) = J ∗ (h (J η) • J η)(
δW − δ2

0W
)

(η) = J ∗ (R1 [∇f, 0] (J η)) = J ∗ (q (J η) • (J η ⊗ J η))
(5.7)

where R0 and R1 are defined in Proposition 8.24 and where

h (z) := r0 [∇f, 0] (J η) =

ˆ 1

0

∇2f (tz) dt and q (z) := r1 [∇f, 0] (J η) =
1

2

ˆ 1

0

(1− t)∇3f (tz) dt

for z = (w,M) ∈ Rn × Rn×n and for r0 and r1 defined in Proposition 8.24.

Our next result records estimates for the remainder terms.

Lemma 5.7. Let NE and ND be as defined in Proposition 5.5, and R1, R2, R3, R4 be as defined by
(5.6a)–(5.6d). If the small energy assumptions hold (see Definition 4.2), then

NE . E2 and ND . ED.
Proof. First let us sketch the argument. As in the proof of Proposition 5.5, most terms are easily

handled via the standard combination of Hölder and Sobolev inequalities (c.f. Proposition 8.11) since they
are multilinear, but some terms arising from the fully nonlinear surface energy have to be handled differently.
Essentially, to control those, we make use of the fact that we are in a small energy regime and use Taylor
expansions (c.f. Proposition 8.24 for the notation used) to bring it back to the multilinear (i.e. polynomial)
case. More precisely, the troublesome terms are δW − δ2

0W and δW, which we handle by employing (5.7).
Let us now estimate each remainder in detail. R2 and R4 are easy to deal with since

R2 = (G − I) : ∇u and R4 = − (tru) · ∇η
and therefore we can use standard product estimates in Sobolev spaces (c.f. Propositions 8.12, 8.13, and
8.14).

R1 is similar and only requires expanding out further before being estimated in the same way as R2 and
R4 above:

R1 =− (∂tΦ) · G · (∇u)
T

+ u · G · (∇u)
T

+ (G − I) · ∇p

−∇
(

Sym
(

(∇u) · (G − I)
T
))

: (G − I)

− (∇Du) : (G − I)−∇ ·
(

Sym
(

(∇u) · (G − I)
T
))

.
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R3 requires more care, since it can be expanded out to be

R3 =− (δW (η) + gη) (∇η) +
(
δW (η)− δ2

0W (η)
)
e3 + p∇η

− Sym
(
(∇u)GT

)
· (∇η) + Sym ((∇u) (G − I)) · e3,

where we have used that R3 is defined on Σ and νG∂Ω|Σ = −∇̃η+ e3. Most terms in the expansion of R3 can
be handled by standard product estimates, but as sketched above, two terms require particular care, namely
the ones involving δW (η) and δW (η)− δ2

0W (η).
According to (5.7), the key estimates required to control δW and δW − δ2

0W in Hs are therefore the
control of h (J η) and q (J η) in Hs. The details of this estimate rely on post-composition estimates in
Sobolev spaces, and are recorded in the appendix in Lemma 7.12 and Corollary 7.13. From this we obtain
that for any s > 2,




||h (J η)||Hs(T2) . C

(2)
f + C

(dse+2)
f

(
||η||Hs+2(T2) + ||η||dseHs+2(T2)

)
and

||q (J η)||Hs(T2) . C
(3)
f + C

(dse+3)
f

(
||η||Hs+2(T2) + ||η||dseHs+2(T2)

)
,

where here we recall that the constants C
(k)
f are defined in Definition 4.1.

We may now proceed with the estimates. Since, as detailed above, most terms in the remainder are easy
to control, we only highlight those which are more delicate and representative of the difficulties encountered.
More precisely, we estimate in detail:

(1) the term involving δW (η)− δ2
0W (η) in NE ,

(2) the term involving δW (η) + gη in ND, and
(3) the term involving δW (η)− δ2

0W (η) in ND.

These estimates are obtained as follows.

(1) We seek to control
∣∣∣∣(δW (η)− δ2

0W (η)
)
e3

∣∣∣∣
H1/2(T2)

:

∣∣∣∣(δW (η)− δ2
0W (η)

)
e3

∣∣∣∣
H1/2(T2)

=
∣∣∣
∣∣∣J ∗

(
q (J η) • (J η ⊗ J η)

)∣∣∣
∣∣∣
H1/2(T2)

. ||q (J η) • (J η ⊗ J η)||H5/2(T2)

. ||q (J η)||H5/2(T2)||J η||
2
H5/2(T2) . 1 ·

√
E
√
E = E .

(2) We seek to control ||(δW (η) + gη)∇η||H3/2(T2) and thus the key term to control is ||δW (η)||H3/2(T2).

Since δW (η) is a differential operator of order 4, and since D & ||η||H11/2(T2) &
∣∣∣∣∇4η

∣∣∣∣
H3/2(T2)

, we

cannot get away with writing δW (η) = J ∗ (∇f (J η)) and estimating ||∇f (J η)||H7/2(T2). Instead, we

use Lemma 7.8 to obtain

||δW (η)||H3/2(T2) 6
∣∣∣∣∇2

M,Mf (J η) • ∇4η
∣∣∣∣
H3/2(T2)

+
∣∣∣∣∇2

w,wf (J η) • ∇2η
∣∣∣∣
H3/2(T2)

+
∣∣∣∣∇3

M,M,Mf (J η) •
(
∇3η ⊗∇3η

)∣∣∣∣
H3/2(T2)

+
∣∣∣∣∇3

M,M,wf (J η) •
(
∇3η ⊗∇2η

)∣∣∣∣
H3/2(T2)

+
∣∣∣∣∇3

w,M,wf (J η) •
(
∇2η ⊗∇2η

)∣∣∣∣
H3/2(T2)

.
∣∣∣∣∇2f (J η)

∣∣∣∣
H3/2(T2)

∣∣∣∣∇4η
∣∣∣∣
H3/2(T2)

+
∣∣∣∣∇2f (J η)

∣∣∣∣
H3/2(T2)

∣∣∣∣∇2η
∣∣∣∣
H3/2(T2)

+
∣∣∣∣∇3f (J η)

∣∣∣∣
H3/2(T2)

∣∣∣∣∇3η
∣∣∣∣2
H3/2(T2)

+
∣∣∣∣∇3f (J η)

∣∣∣∣
H3/2(T2)

∣∣∣∣∇3η
∣∣∣∣
H3/2(T2)

∣∣∣∣∇2η
∣∣∣∣
H3/2(T2)

+
∣∣∣∣∇3f (J η)

∣∣∣∣
H3/2(T2)

∣∣∣∣∇2η
∣∣∣∣2
H3/2(T2)

. ||η||H11/2(T2) + ||η||H7/2(T2) + ||η||2H9/2(T2) + ||η||H9/2(T2)||η||H7/2(T2) + ||η||2H7/2(T2)

.
√
D +

√
E + 3E .

√
D,

where we have used that for k = 2, 3,
∣∣∣∣∇kf (J η)

∣∣∣∣
H3/2(T2)

6
∣∣∣∣∇kf (J η)

∣∣∣∣
H2(T2)

. C(k)
f + C

(k+3)
f

(
||η||H4(T2) + ||η||2H4(T2)

)

. 1 +
√
E + E . 1



5. A PRIORI ESTIMATES 119

for the constants C
(k)
f as defined in Definition 4.1. So finally:

||(δW (η) + gη)∇η||H3/2(T2) . ||δW (η) + gη||H3/2(T2)||∇η||H3/2(T2) .
(√
D + ||η||2H3/2(T)

)
||η||H5/2(T2)

.
(√
D +

√
E
)√
E .

√
E
√
D.

(3) We seek to control
∣∣∣∣(δW (η)−

(
δ2
0W
)
η
)∣∣∣∣

H3/2(T2)
. Observe that (using Lemma 7.8 again)

δW (η)−
(
δ2
0W
)
η =

(
∇2
M,Mf (J η)−∇2

M,Mf (0)
)
• ∇4η −

(
∇2
w,wf (J η)−∇2

w,wf (0)
)
• ∇2η

+∇3
M,M,Mf (J η) •

(
∇3η ⊗∇3η

)
+∇3

M,M,wf (J η) •
(
∇3η ⊗∇2η

)

+∇3
w,M,wf (J η) •

(
∇2η ⊗∇2η

)
.

In particular, for

F (z) :=

ˆ 1

0

∇∇2
M,Mf (tz) dt and G (z) :=

ˆ 1

0

∇∇2
p,pf (tz) dt,

where z = (w,M) ∈ Rn × Rn×n, we have (by the Fundamental Theorem of Calculus)

δW (η)−
(
δ2
0W
)
η = (F (J η) • J η) • ∇4η + (G (J η) • J η) • ∇2η

+∇3
M,M,Mf (J η) •

(
∇3η ⊗∇3η

)
+∇3

M,M,wf (J η) •
(
∇3η ⊗∇2η

)

+∇3
w,M,wf (J η) •

(
∇2η ⊗∇2η

)
.

Crucially, all terms have a part which is quadratic in η. By an argument similar to that of Lemma 7.12
we have, in the small energy regime, the estimates

||F (J η)||Hs(T2) . 1 and ||G (J η)||Hs(T2) . 1

for any s ∈
[
2, 5

2

]
. So finally, we can perform the estimate:

∣∣∣∣(δW (η)−
(
δ2
0W
)
η
)∣∣∣∣

H3/2(T2)
. ||F (J η)||H3/2(T2)||J η||H3/2(T2)

∣∣∣∣∇4η
∣∣∣∣
H3/2(T2)

+ ||G (J η)||H3/2(T2)||J η||H3/2(T2)

∣∣∣∣∇2η
∣∣∣∣
H3/2(T2)

+ l.o.t.

. ||F (J η)||H2(T2)||η||H7/2(T2)||η||H11/2(T2) + ||G (J η)||H2(T2)||η||
2
H7/2(T2) + l.o.t.

.
√
E
√
D + E + l.o.t. .

√
E
√
D

where we have omitted the details for the lower order terms involving ∇3f (denoted l.o.t. above) since
they follow exacty as in the second item above.

�

5.3. Geometric corrections. In this section we compute the geometric corrections to the energy and
dissipation (i.e. the difference between their geometric and equilibrium versions) in Remark 5.8, and we
estimate these corrections in Lemma 5.9.

Remark 5.8. The geometric corrections are

GE (X ) = Ẽ (X ;X )− E (X ) and GD (X ) = D̃ (X ;X )−D (X )

(c.f. equations 4.3a, 4.3b, 4.5a, and 4.5b for the definitions of the geometric and equilibrium versions of the
energy and dissipation). For X = (u, p, η) we can compute the geometric corrections to be

GE (X ) =
∑

|α|t,x2≤2

(
1

2

ˆ
Ω

|∂αu|2 (J − 1) +
1

2

ˆ
T2

(ˆ 1

0

gα (t)∇3f (tJ η) dt

)
• (J η ⊗ J ∂αη ⊗ J ∂αη)

)

and

GD (X ) =
∑

|α|t,x2≤2

(
1

2

ˆ
Ω

|DG−I∂αu|2J −
ˆ

Ω

(
DG−I∂αu : D∂αu

)
J +

1

2

ˆ
Ω

|D∂αu|2 (J − 1)

)

(see Section 7.3 for the details of the computation of GE and GD and the definition of gα). All we need to
know about gα in order to estimate the geometric corrections is that |gα| 6 1 on [0, 1].
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Note that ∇3f appears in the geometric corrections to the energy. This is as expected since GE (X ) =

Ẽ (X ;X )−EX ∼ Ẽ (X ;X )−Ẽ (X , 0) where Ẽ depends on ∇2f . Therefore, upon Taylor expanding about the
equilibrium solution X = 0 we pick up a term involving ∇3f .

We now estimate the geometric corrections.

Lemma 5.9. In the small energy regime (see Definition 4.2) we have the estimates

|GE | .
√
EE and |GD| .

√
ED,

where GE and GD are defined in Remark 5.8.

Proof. First we check that the term involving gα is small. Observe that since |gα (t)| ≤ 1 when t ∈ [0, 1],
it follows that

sup
|z|6R

∣∣∣∣
ˆ 1

0

gα (t)∇3f (tz) dt

∣∣∣∣ 6
∣∣∣∣∇3f

∣∣∣∣
L∞(B(0,R))

and hence ∣∣∣∣
∣∣∣∣
ˆ 1

0

gα (t)∇3f (tJ η) dt

∣∣∣∣
∣∣∣∣
∞
≤
∣∣∣∣∇3f

∣∣∣∣
L∞

(
B(0,||J η||∞)

) 6 C(3)
f ,

where the constant C
(3)
f is defined in Definition 4.1. In particular, in a small energy regime, ||J η||∞ .

√
E ,

and hence ∣∣∣∣
∣∣∣∣
ˆ 1

0

gα (t)∇3f (tJ η) dt

∣∣∣∣
∣∣∣∣
∞
. C(3)

f . 1.

Note that due to the fashion in which we perform the estimates, it is sufficient to handle the case ∂α = ∂t,∇
2
.

Recall that the control we have over the geometric coefficients G and J is recorded in Lemma 7.1.
We now estimate the corrections to the energy.

∂t The geometric correction is

1

2

ˆ
Ω

|∂tu|2 (J − 1) +
1

2

ˆ
T2

(ˆ 1

0

∇3f (tJ η) dt

)
• (J η ⊗ J ∂tη ⊗ J ∂tη) ,

and it can be estimated in the following way:

|. . .| . ||∂tu||2L2(Ω)||J − 1||L∞(Ω) +

∣∣∣∣
∣∣∣∣
ˆ 1

0

gα (t)∇3f (tJ η) dt

∣∣∣∣
∣∣∣∣
L∞(T2)

||J η||L∞(T2)||J ∂tη||
2
L2(T2)

. ||∂tu||2L2(Ω)||J − 1||H3/2+(Ω) + ||J η||H1+(T2)||J ∂tη||
2
L2(T2)

. E
√
E +
√
EE . E3/2.

∇2
Note that the control of η in the energy is similar to parabolic scaling, but with a little bit more
spatial regularity. Consequently we handle this term as we did the previous one involving ∂t and obtain
(omitting the details)

∣∣∣∣
1

2

ˆ
Ω

|∇2u|2 (J − 1) +
1

2

ˆ
T2

(ˆ 1

0

∇3f (tJ η) dt

)
•
(
J η ⊗ J∇2η ⊗ J∇2η

)∣∣∣∣ . E3/2.

Next we estimate the dissipative corrections. Note that |DMv| = |2 Sym
(
∇Mv

)
| . |M ||∇v|.

∂t The geometric correction is

1

2

ˆ
Ω

|DG−I∂tu|2J −
ˆ

Ω

(
DG−I∂tu : D∂tu

)
J +

1

2

ˆ
Ω

|D∂tu|2 (J − 1) ,
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and it can be estimated in the following way:

|. . .| . ||G − I||2L∞(Ω)||∇∂tu||
2
L2(Ω)||J ||L∞(Ω) + ||G − I||L∞(Ω)||∇∂tu||

2
L2(Ω)||J ||L∞(Ω)

+ ||∇∂tu||2L2(Ω)||J − 1||L∞(Ω)

. ||G − I||2H3/2+(Ω)||∇∂tu||
2
L2(Ω)||J ||H3/2+(Ω) + ||G − I||H3/2+(Ω)||∇∂tu||

2
L2(Ω)||J ||H3/2+(Ω)

+ ||∇∂tu||2L2(Ω)||J − 1||H3/2+(Ω)

. ED
(

1 +
√
E
)

+
√
ED
(

1 +
√
E
)

+D
√
E .

√
ED.

∇2
Since the control we have on u follows parabolic scaling precisely, upon replacing ∂tu by ∇2u we can
proceed in exactly the same way we did above. We therefore obtain that

∣∣∣∣
1

2

ˆ
Ω

|DG−I∇2u|2J −
ˆ

Ω

(
DG−I∇2u : D∇2u

)
J +

1

2

ˆ
Ω

|D∇2u|2 (J − 1)

∣∣∣∣ .
√
ED.

�

5.4. Synthesis. In this section we piece together the various elements of the a priori estimates into our
main ‘a priori’ theorem.

Theorem 5.10 (A priori estimates). There exist δ, λ, Cap > 0 such that if there exists a solution X =
(u, p, η) on [0, T ) with initial condition X0 = (u0, p0, η0) satisfying

sup
t∈[0,T )

E (X ) 6 δ and

ˆ T

0

D (X ) <∞

(and so in particular, for δ 6 1, we are in the small energy regime as defined in 4.2), then

sup
t∈[0,T )

E (X ) eλt +

ˆ T

0

D (X ) eλs ds 6 CapE (X0) .

Proof. In order to define δ, λ, and Cap, we must keep track of the constants in Lemmas 5.4, 5.7, 5.9
and Proposition 5.5. In particular, we take CC,E , CC,D, CN,E , CN,D, CG,E , CG,D, CA,E , CA,D > 0 such that
{
|C1| 6 CC,E

√
ED,

|C2| 6 CC,D
√
EE ,

{
NE 6 CN,E,E2,

ND 6 CN,DED,

{
|GE | 6 CG,E,

√
EE ,

|GD| 6 CG,D
√
ED,

{
E 6 CA,E

(
E +NE

)
, and

D 6 CA,D
(
D +ND

)
.

Moreover we assume without loss of generality that CC,E , CC,D, CN,E , CN,D, CG,E , CG,D, CA,E , CA,D > 1.
Now pick

δ = min

(
δ0,

1

2CA,ECN,E
,

(
1

2CG,ECA,E

)2

,

(
1

8CC,ECA,E

)2

,

1

2CA,DCN,D
,

(
1

2CG,DCA,D

)2

,

(
1

8CC,DCA,D

)2
)
,

1

2λ
= 8CA,D

(
1 + CC,E

√
δ0

)(
1 + 2CG,ECA,E

√
δ0

)
, and

C := max (8CA,E , 16CA,D) 4CA,E

(
1 + 2CA,ECG,E

√
δ0

)(
1 + (1 + 2CA,E)CG,E

√
δ0

)
> 0.

We divide the remainder of the proof into several steps.
Step 1 : We show that in the δ-small energy regime, i.e. when sup E 6 δ and

´
D < ∞, all versions

of the energy, and all versions of the dissipation, are equivalent. The key observation is that the difference
between various versions of the energy and the dissipation can be controlled (by Lemmas 5.4, 5.7, and 5.9)
by quantities of the form EαE and EαD respectively, for some α > 0. In particular, by picking δ small
and imposing that E 6 δ we may ensure that Eα be small enough to perform absorption arguments. More
precisely, we show that

E � E � Ẽ and D � D � D̃,
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and in particular we show that




E 6 E , (5.8a)

E 6 CEimp,eqE , (5.8b)

Ẽ 6 CEgeo,eqE , (5.8c)

E 6 CEimp,geoẼ , (5.8d)

and 



D 6 D, (5.9a)

D 6 CDimp,eqD, (5.9b)

D̃ 6 CDgeo,eqD, (5.9c)

D 6 CDimp,geoD̃, (5.9d)

where 



CEimp,eq = 2CA,E ,

CEgeo,eq = 1 + 2CG,ECA,E
√
δ0,

CEimp,geo = 4CA,E ,





CDimp,eq = 2CA,D,

CDgeo,eq = 1 + 2CG,DCA,D
√
δ0, and

CDimp,geo = 4CA,D.

To start, note that (5.8a) follows immediately from the definition of E and E . To obtain (5.8b), we apply

Proposition 5.5, Lemma 5.7, and note that since E 6 δ 6 1
2CA,ECN,E

it follows that
CA,E

1−CA,ECN,EE 6 2CA,E =

CEimp,eq. Thus

E 6 CA,E
(
E +NE

)
6 CA,E

(
E + CN,EE2

)

⇒ E 6 CA,E
1− CA,ECN,EE

E 6 CEimp,eqE .

To obtain (5.8c), we use Remark 5.8, Lemma 5.9, and (5.8b) to see that

Ẽ = E + GE 6 E + CG,E
√
EE 6

(
1 + 2CG,ECA,E

√
δ0

)
E = CEgeo,eqE .

To obtain (5.8d) we apply (5.8b), Remark 5.8, and Lemma 5.9 to see that

E 6 CEimp,eqE = CEimp,eq

(
Ẽ − GE

)
6 CEimp,eq

(
Ẽ + CG,E

√
EE
)

⇒ E 6
CEimp,eq

1− CG,ECEimp,eq
√
E
Ẽ =

2CA,E

1− 2CG,ECA,E
√
E
Ẽ

(?)

6 4CA,E Ẽ = CEimp,geoẼ ,

where (?) holds since E 6 δ 6
(

1
2CG,ECA,E

)2

. The bound (5.9a) follows immediately from the definition of

D and D. To obtain (5.9b), we apply Proposition 5.5 and Lemma 5.7 to see that

D 6 CA,D
(
D +ND

)
6 CA,D

(
D + CN,DED

)

⇒ D 6 CA,D
1− CA,DCN,DE

D
(?)

6 2CA,DD = CDimp,eqD,

where (?) holds since E 6 δ 6 1
2CA,DCN,D

. To obtain (5.9c), we use Remark 5.8, Lemma 5.9, and (5.9b) to

see that

D̃ = D + GD 6 D + CG,D
√
ED 6

(
1 + 2CG,DCA,D

√
δ0

)
D = CDgeo,eqD.

To obtain (5.9d) we apply (5.9b), Remark 5.8, and Lemma 5.9 to see that

D 6 CDimp,eqD = CDimp,eq

(
D̃ − GD

)
6 CDimp,eq

(
D̃ + CG,D

√
ED
)

⇒ D 6
CDimp,eq

1− CG,DCDimp,eq
√
E
D̃ =

2CA,D

1− 2CG,DCA,D
√
E
D̃

(?)

6 4CA,DD̃ = CDimp,geoD̃,

where (?) holds since E 6 δ 6
(

1
2CG,DCA,D

)2

.
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Step 2 : We apply the generic energy-dissipation relations computed in Propositions 5.1 and 5.2 to the
case where Y = ∂αX , and then sum over |α|t,x2 6 2 to obtain the energy-dissipation relation:

d

dt
Ẽ + D̃ = C1 +

d

dt
C2 ⇔ d

dt

(
Ẽ − C2

)
+
(
D̃ − C1

)
= 0.

Step 3 : Recall that D > E , i.e. the dissipation is coercive over the energy. We now use Steps 1 and 2
with this coercivity, as well as Lemma 5.4, to obtain a Gronwall-type inequality:

D̃ − C1 >
1

4CA,D
D − C1 >

1

4CA,D
D − CC,D

√
ED by (5.9d) and Lemma 5.4

=

(
1

4CA,D
− CC,D

√
E
)
D > 1

8CA,D
D > 1

8CA,D
E by E 6 δ 6

(
1

8CA,DCC,D

)2

and coercivity

>
1

8CA,D
(
1 + CC,E

√
δ0
) (E − C2

)
by Lemma 5.4 and since E 6 δ 6 δ0

>
1

8CA,D
(
1 + CC,E

√
δ0
)
(

1

1 + 2CG,ECA,E
√
δ0
Ẽ − C2

)
by (5.8c) and (5.8a)

>
1

8CA,D
(
1 + CC,E

√
δ0
) (

1 + 2CG,ECA,E
√
δ0
)
(
Ẽ − C2

)
= 2λ

(
Ẽ − C2

)
,

and therefore

d

dt

(
Ẽ − C2

)
+ λ

(
Ẽ − C2

)
+

1

16CA,D
D 6 0.

Upon integrating in time, we obtain that for all t ∈ [0, T ),

(
Ẽ − C2

)
(X ) eλt +

ˆ t

0

1

16CA,D
D (X ) eλsds 6

(
Ẽ − C2

)
(X0) .

Now observe that using (5.8d), Lemma 5.4, and the fact that E 6 δ 6
(

1
8CA,ECC,E

)2

, we obtain that

Ẽ − C2 >
1

4CA,E
E − CC,E

√
EE =

(
1

4CA,E
− CC,E

√
E
)
E > 1

8CA,E
E ,

whilst using (5.8c), (5.8a), and Lemma 5.4, we obtain that

Ẽ − C2 6
(

1 + 2CG,ECA,E
√
δ0

)
E + CC,E

√
δ0E =

(
1 + (1 + 2CA,E)CG,E

√
δ0

)
E .

Therefore, for all t ∈ [0, T ),

1

8CA,E
E (X ) eλt +

ˆ t

0

1

16CA,D
D (X ) eλsds 6

(
1 + (1 + 2CA,E)CG,E

√
δ0

)
E (X0)

6 4CA,E

(
1 + 2CA,ECG,E

√
δ0

)(
1 + (1 + 2CA,E)CG,E

√
δ0

)
E (X0) ,

so indeed we have that

sup
t∈[0,T )

E (X ) eλt +

ˆ T

0

D (X ) eλs ds 6 CapE (X0) .

�

6. Global well-posedness and decay

In this section we prove the main result of the chapter, namely Theorem 6.11. Before proving this global
existence and decay result, we first consider the issue of local well-posedness.



124 3. VISCOUS SURFACE WAVES AND SURFACE ENERGIES

6.1. Local well-posedness. The local existence theory can be rigorously developed by modifying the
techniques used to prove the a priori estimates (see for instance [CCS07, CS10, GT13c, Wu14, WTK14,
Zhe17, ZT17]), so for the sake of brevity we will only sketch what can be obtained in this manner.

In order to discuss the local well-posedness theory, we will need the following notation.

Definition 6.1 (Norm measuring the size of the initial condition). We define the following.

• For Z = (u0, η0) we write

I (Z) := ||η0||2H9/2(T2) + ||u0||2H2(Ω) +
∣∣∣∣u0 · νG∂Ω0

∣∣∣∣2
H2(Σ)

,

where we recall from Section 4.3.3 that, on Σ,

ν∂Ω0 |Σ =

(
−∇η0, 1

)
√

1 + |∇η|2
and νG∂Ω0

|Σ =

√
1 + |∇η|2ν∂Ω0 |Σ =

(
−∇η0, 1

)
.

• For X = (u, p, η) we abuse notations slightly and also write I (X ) := I (u, η).

It is most natural to specify the initial data u0 and η0, but in our analysis we also need E(0), which means
we must construct ∂tu|t=0, p|t=0, and ∂tη|t=0. We sketch how this construction proceeds in the following
remark.

Remark 6.2. In this remark we sketch how to construct p0, ∂tu0 and ∂tη0 from u0 and η0. Recall that
the PDE is (2.2a)–(2.2e).

Constructing p0: Taking the G-divergence of (2.2a) and using (2.2b) yields

−∆Gp = ∇Gu :
(
∇Gu

)T
.

Dotting (2.2c) with νG∂Ω and dividing by
(
1 + |∇η|2

)
then yields

p =
(
DGu

)
33

+ δW (η) + g.

Finally, taking the trace of (2.2a)·e3 onto Σb yields

∂G3 p = ∆Gu3.

So p solves 



−∆Gp = ∇Gu :
(
∇Gu

)T
in Ω,

p =
(
DGu

)
33

+ δW (η) + g on Σ, and

∂G3 p = ∆Gu3 on Σb.

In particular, in the small energy regime where G ∼ I, standard elliptic estimates coupled with product
estimates in Sobolev spaces (to handle the nonlinear but small remainders) allows us to recover p0 from u0

and η0 using this PDE.
Constructing ∂tu0 and ∂tη0: We use (2.2a) and (2.2d) to define

{
∂tu0 := −

(
u0 · ∇G

)
u0 −∇Gp0 + ∆Gu0 and

∂tη0 := u0 · νG∂Ω0
.

Following the procedure outlined in Remark 6.2 leads to the following result, which not only constructs
the data, but provides an estimate in the small energy regime.

Proposition 6.3 (Constructing the initial conditions). There exist β,CIC > 0 such that for every T > 0
for which X = (u, p, η) is a solution on [0, T ], if I (X (0)) 6 β then E (X (0)) 6 CICI (X (0)).

Next we define the notion of admissible data.

Definition 6.4 (Admissible initial condition). We say that (u0, η0) ∈ H2
(
Ω;R3

)
×H9/2

(
T2;R

)
is an

admissible initial condition if it satisfies

• ∇ · u0 = 0,
• trΣb u0 = 0,
• (I − ν∂Ω0 ⊗ ν∂Ω0) (trΣ Du0 · ν∂Ω0) = 0,
• trΣ u0 · νG∂Ω0

∈ H2 (Σ),
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•
´
T2 η0 = 0, and

• I (u, η) 6 β for β as in Proposition 6.3.

A few remarks are in order.

Remark 6.5.

(1) The first three items are nothing more than incompressibility and parts of the boundary conditions.
(2) The fifth condition, namely requiring that

´
T2 η = 0, is related to (1.8).

(3) The fourth condition, namely requiring that tru0 · νG∂Ω0
be in H2, is a compatibility condition. Indeed,

knowing that u belong to H2 and η belongs to H9/2 only allows us to conclude that tru0 · ν∂Ω0
=

tru0 ·
(
−∇η0, 1

)
belongs to H3/2. This gap in regularity means the procedure sketched in Remark 6.2

cannot close without assuming that this additional compatibility condition holds a priori. Note that
we will prove that this condition persists in time, so there is no trouble iteratively applying the local
theory.

(4) The sixth condition is there to ensure that the nonlinear PDEs used in the sketch from Remark 6.2
are sufficiently close to their linear counterpart (corresponding to η = 0 and G = I) such that the
appropriate estimates can be made to produce the result from Proposition 6.3.

We now state the local existence result.

Theorem 6.6 (Local well-posedness). There exist T, κ0, Clwp > 0 such that for every κ ∈ (0, κ0], if

(u0, η0) ∈ H2
(
Ω;R3

)
×H9/2

(
T2;R

)
is an admissible initial condition (c.f. Definition 6.4) satisfying

I (u0, η0) 6 κ

(c.f. Definition 6.1 for the definition of I), then there exists a unique solution X = (u, p, η) of (2.2a)–(2.2e)
on [0, T ] that satisfies

sup
06t6T

E (X (t)) +

ˆ T

0

D (X (t)) dt+
∣∣∣∣∂2

t u
∣∣∣∣2
V∗T
6 Clwpκ,

where

VT :=
{
u ∈ L2

(
[0, T ] ;H1 (Ω)

) ∣∣∣ trΣb u (t) = 0 and ∇G(t) · u (t) = 0 for a.e. t ∈ [0, T ]
}
.

Remark 6.7. The local existence theorem is sufficient to justify our a priori estimates.

Note that in light of Remark 6.5 (and item (2) therein, in particular) the admissibility of initial conditions
is propagated by the flow (provided the solution remains small enough).

Proposition 6.8 (Propagation of admissibility for initial conditions). Suppose that (u, p, η) is a solution
on [0, T ] such that (u0, η0) is an admissible initial condition. For every t ∈ [0, T ], if I (u (t) , η (t)) 6 β, then
(u (t) , η (t)) is an admissible initial condition (c.f. Definition 6.4).

6.2. Proof of the main result. Before stating and proving the main result, i.e. the global well-
posedness and decay result, we state and prove two preliminary lemmas. The first lemma, Lemma 6.9, is
an eventual global well-posedness result that shows that if small solutions exist past a critical time, then
they exist globally in time. The second lemma, Lemma 6.10, is a result about the existence of solution on
arbitrarily large finite time intervals, provided the initial data is small enough. Combining these two lemmas
will then allow us to prove global well-posedness in Theorem 6.11.

We now prove our first lemma. It says that past a critical time Tcrit, the exponential decay from the
a priori estimates is sufficiently strong to ensure that we remain in a regime where the energy is small enough
for the local well-posedness to hold at every time thereafter. This is eventual well-posedness since it tells us
that there exists a critical time past which the solution is globally well-defined.

Lemma 6.9 (Eventual global well-posedness). Let δ, λ, and Cap be as in Theorem 5.10. Let κ0, Clwp,
and T be as in Theorem 6.6 and assume without loss of generality that Clwp > 1. Let CIC be as in Proposition

6.3, and let Tcrit > 0 be such that eλ(Tcrit−
T
2 ) > CapCIC .
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If X = (u, p, η) is a solution on [0, τ ] for some τ > Tcrit, with (u0, η0) an admissible initial condition
that also satisfies the smallness conditions





I (X0) 6 min
{
κ0,

δ
Clwp

}

sup
06t6τ

E (X ) 6 δ and

ˆ τ

0

D (X ) <∞,
(6.1)

then the solution can be uniquely extended to a solution on [0,∞) satisfying

sup
t>0
E (X (t)) 6 δ and

ˆ ∞
0

D (X (t)) dt <∞.

Proof. Let τ > Tcrit and let X = (u, p, η) be a solution on [0, τ ] starting from admissible data (u0, η0)
and satisfying (6.1). Define Tmax > 0 to be

Tmax := sup

{
T > 0

∣∣∣∣∣ solution X exists on [0, T ] and satisfies sup
06t6T

E (X ) 6 δ and

ˆ T

0

D (X ) <∞
}
.

First note that Tmax > τ > Tcrit. Now suppose, by way of contradiction, that Tmax < ∞. Let
T̃ := Tmax − T

2 > 0. By Theorem 5.10, Proposition 6.3, and the definition of Tcrit, which is smaller than
Tmax, we have

E
(
X
(
T̃
))
6 Cape

−λ(Tmax−T2 )E (X (0)) 6 CapCICe
−λ(Tcrit−T2 )I (X (0)) 6 I (X (0)) .

Therefore, since I (X (0)) 6 min
{
κ0,

δ
Clwp

}
, we may employ Proposition 6.8 and Theorem 6.6 to obtain a

unique extension of the solution on
[
0, Tmax + T

2

]
satisfying

sup
06t6Tmax+T

2

E (X ) +

ˆ Tmax+T
2

0

D (X ) 6 Clwp
δ

Clwp
6 δ.

We can thus use Theorem 5.10, Proposition 6.3, and the definition of Tcrit once more, this time on[
0, Tmax + T

2

]
, to obtain that

E
(
X
(
Tmax +

T

2

))
6 Cape

−λ(Tmax+T
2 )E (X (0)) 6 CapCICe

−λTcritI (X (0)) 6 I (X (0)) 6 δ

which contradicts the definition of Tmax. So indeed Tmax =∞. �

We now prove our second key lemma.

Lemma 6.10 (Arbitrary finite-time well-posedness). For every τ > 0 there exists γ > 0 such that if
(u0, η0) is an admissible initial condition with

I (u0, η0) 6 γ,

then there exists a unique solution X = (u, p, η) on [0, τ ] satisfying

sup
06t6τ

E (X (t)) +

ˆ τ

0

D (X (t)) dt 6 δ

for δ as in Theorem 5.10.

Proof. Let τ > 0, let T be as in Theorem 6.6, and pick N ∈ N such that NT > τ . Let Clwp be as
in Theorem 6.6, and note that without loss of generality we may assume that Clwp > 1. Let β be as in

Proposition 6.3 and let γ := β
CNlwp

> 0.

Let (u0, η0) be an admissible initial condition satisfying I (u0, η0) 6 γ. Then we apply the local well-
posedness result, i.e. Theorem 6.6, N times (using Proposition 6.8 to ensure the ‘initial conditions’ are
admissible at every step). More precisely, at step 1 we use Theorem 6.6 to obtain a unique solution X =
(u, p, η) on [0, T ] satisfying

sup
06t6T

E (X ) +

ˆ T

0

D (X ) 6 Clwpγ.
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Since γ 6 β
CNlwp

6 β
Clwp

, it follows that (uT , ηT ) is an admissible initial condition. Then, at step n for

n = 2, . . . , N , suppose that we have solution on [0, (n− 1)T ] satisfying

sup
06t6(n−1)T

E (X ) +

ˆ (n−1)T

0

D (X ) 6 Cn−1
lwp γ

such that
(
u(n−1)T , η(n−1)T

)
is an admissible initial condition. We may then apply Theorem 6.6 to extend

the solution uniquely to [0, nT ] such that it satisfies

sup
06t6nT

E (X ) +

ˆ nT

0

D (X ) 6 Clwp
(
Cn−1
lwp γ

)
= Cnlwpγ.

In particular, since γ 6 β
CNlwp

6 β
Cnlwp

, it follows from Proposition 6.8 that (unT , ηnT ) is also an admissible

initial condition. Finally, after step N , we have a solution on [0, NT ] ⊇ [0, τ ] satisfying

sup
06t6NT

E (X ) +

ˆ NT

0

D (X ) 6 CNlwpγ 6 δ.

�

With the key lemmas in hand, we can now prove our main result.

Theorem 6.11 (Global well-posedness and decay). There exists ε > 0 such that for every admissible
initial condition (u0, η0) satisfying

I (u0, η0) 6 ε

there exists a unique solution X = (u, p, η) on [0,∞) such that

sup
t>0
E (X (t)) eλt +

ˆ ∞
0

D (X (t)) eλtdt 6 CE (X (0)) ,

where C = Cap > 0 and λ > 0 are as in Theorem 5.10. Recall that admissible initial conditions are defined
in Definition 6.4.

Proof. Let δ be as in the a priori estimates (i.e. Theorem 5.10), let κ0 and Clwp be as in the local
well-posedness result (i.e. Theorem 6.6), let Tcrit be as in the eventual global well-posedness result (i.e.
Lemma 6.9), and let γ = γ (Tcrit) be as in the arbitrary finite time existence result (i.e. Lemma 6.10). Pick

ε = min
(
γ, κ0,

δ
Clwp

)
. Now let (u0, η0) be an admissible initial condition satisfying I (u0, η0) 6 ε. By the

arbitrary finite time existence result (i.e. Lemma 6.10) and the choice of ε, there exists a unique solution
X = (u, p, η) on [0, Tcrit] satisfying

sup
06t6Tcrit

E (X (t)) +

ˆ Tcrit

0

D (X (t)) 6 δ

and therefore by the eventual global well-posedness result (i.e. Lemma 6.9) and the choice of ε there exists
a unique extension of this solution to [0,∞) satisfying

sup
t>0
E (X (t)) 6 δ and

ˆ ∞
0

D (X (t)) <∞.

Finally we establish the exponential decay of the energy of this unique global solution. The a priori estimates
(i.e. Theorem 5.10) tell us that for every T > 0

sup
06t6T

E (X (t)) eλt +

ˆ T

0

D (X (t)) eλtdt 6 CE (X (0))

and so indeed, taking the supremum over T > 0 yields the global decay estimate

sup
t>0
E (X (t)) eλt +

ˆ ∞
0

D (X (t)) eλtdt 6 CE (X (0)) .

�
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7. Appendix: intermediate results

In this first part of the appendix we record various intermediate results of particular interest to the
problem discussed in this chapter. We record computations and estimates for the geometric coefficients Φ,
G, J and νG∂Ω, as well as computations and estimates for the variations of the surface energy. We also record
details of the computations of various commutators.

7.1. Geometric coefficients and differential operators. In this section we record estimates for
the geometric coefficients Φ, G, J and νG∂Ω (as defined in Section 4.3) in Lemma 7.1, and we record the
G-divergence and G-transport theorems in Propositions 7.2 and 7.3 respectively.

Lemma 7.1 (Estimates for the geometric coefficients). Recall the notational conventions of Section 4.3.
Suppose that we are in the small energy regime (see Definition 4.2). On the upper surface we have the bounds

||tr (G − I)||H7/2(T2) +
∣∣∣∣νG∂Ω − e3

∣∣∣∣
H7/2(T2)

.
√
E .

In the bulk we have the bounds

||Φ− id||H5(Ω) + ||∂tΦ||H5/2(Ω) + ||J − 1||H4(Ω) + ||∂tJ ||H3/2(Ω) + ||G − I||H4(Ω) + ||∂tG||H3/2(Ω) .
√
E

and

||Φ− id||H6(Ω) + ||∂tΦ||H3(Ω) +
∣∣∣∣∂2

t Φ
∣∣∣∣
H1(Ω)

+ ||J − 1||H5(Ω) + ||∂tJ ||H2(Ω) + ||∂tG||H2(Ω) +
∣∣∣∣∂2

t G
∣∣∣∣
H0(Ω)

.
√
D.

Proof. We begin with estimating Φ = id +χ ext η e3 and its time derivatives: ∂tΦ = χ ext ∂tη e3 and
∂2
t Φ = χ ext ∂2

t η e3. We estimate Φ − id using Proposition 8.13, Corollary 8.9, and the definitions of E and
D (c.f. equations (4.6a) and (4.6b), respectively):

||Φ− id||H5(Ω) = ||χ ext η e3||H5(Ω) . ||χ||H13/2+(Ω)||ext η||H5(Ω) . ||η||H9/2(T2) 6
√
E

and

||Φ− id||H6(Ω) . ||χ||H15/2+(Ω)||η||H11/2(T2) .
√
D.

We proceed similarly to estimate the time derivatives of Φ:





||∂tΦ||H5/2(Ω) . ||∂tη||H2(T2) 6
√
E ,

||∂tΦ||H3(Ω) . ||∂tη||H5/2(T2) 6
√
D, and∣∣∣∣∂2

t Φ
∣∣∣∣
H1(Ω)

.
∣∣∣∣∂2

t η
∣∣∣∣
H1/2(T2)

6
√
D.

Now we compute J , noting first that ∇Φ = I + e3 ⊗∇ (χ ext η) . Therefore, by Lemma 8.23, by definition of
χ (c.f. Section 2.1), and by Lemma 8.7

J = det∇Φ = 1 + ∂3 (χ ext η) = 1 +
ext η

b
+ χ ext

√
−∆η and ∂tJ = ∂3 (χ ext ∂tη) .

We may now estimate J and its time derivatives

||J − 1||H4(Ω) = ||∂3 (χ ext η)||H4(Ω) 6 ||χ ext η||H5(Ω) . ||χ||H13/2+(Ω)||ext η||H5(Ω) . ||η||H9/2(T2) 6
√
E

and similarly




||J − 1||H5(Ω) . ||η||H11/2(T2) 6
√
D,

||∂tJ ||H3/2(Ω) . ||∂tη||H2(T2) 6
√
E , and

||∂tJ ||H2(Ω) . ||∂tη||H5/2(T2) 6
√
D.

Now we compute G. Recall that G := (∇Φ)
−T

with ∇Φ = I + e3 ⊗∇ (χ ext η). Therefore, by Lemma 8.23,

G = I − ∇ (χ ext η)⊗ e3

1 + ∂3 (χ ext η)
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i.e. G − I = g (∇ (χ ext η)) for g (w) := −w⊗e3
1+w·e3 for every w ∈ R3 such that w3 6= 1. We may now estimate

G − I using Proposition 8.15 to obtain

||G − I||H4(Ω) . ||g (∇ (χ ext η))||L2(Ω)

+ ||g||
C4,1

(
B(||∇(χ ext η)||∞)

)
︸ ︷︷ ︸

=:(?)

(
||∇ (χ ext η)||H4(Ω) + ||∇ (χ ext η)||4H4(Ω)

)
.

Crucially, since we are in the small energy regime (c.f. Definition 4.2),

||∂3 (χ ext η)||∞ 6 C0δ0 < 1

such that (?) < ∞ (since g is and well-defined and hence smooth on the compact set B (||∇ (χ ext η)||∞))
and

||g (∇ (χ ext η))||2L2(Ω) =

ˆ
Ω

|∇ (χ ext η)⊗ e3|2

(1 + ∂3 (χ ext η))
2 6

ˆ
Ω

|∇ (χ ext η)|2

(1− ||∂3 (χ ext η)||∞)
2

6
1

(1− C0δ0)
2

ˆ
Ω

(∇ (χ ext η))
2
.

Therefore, employing Proposition 8.13, Corollary 8.9, and the definition of E (c.f. equation (4.6a)), we obtain

||G − I||H4(Ω) . ||∇ (χ ext η)||L2(Ω) + ||∇ (χ ext η)||H4(Ω) + ||∇ (χ ext η)||4H4(Ω)

. ||χ||H13/2+(Ω)||ext η||H5(Ω) +
(
||χ||H13/2+(Ω)||ext η||H5(Ω)

)4

. ||η||H9/2(T2) + ||η||4H9/2(T2) .
√
E + E2 .

√
E since E 6 δ0 < 1.

We now compute the time derivatives of G:





∂tG = ∂t (g (∇ (χ ext η))) = (∇g) (∇ (χ ext η)) · ∇ (χ ext ∂tη) ,

∂2
t G = ∂t ((∇g) (∇ (χ ext η)) · ∇ (χ ext ∂tη)) , and

=
(
∇2g

)
(∇ (χ ext η)) :

(
∇ (χ ext ∂tη)

⊗2
)

+ (∇g) (∇ (χ ext η)) · ∇
(
χ ext ∂2

t η
)

such that we may now estimate them, using Proposition 8.13, Proposition 8.15, Corollary 8.9, equations
(4.6a) and (4.6b), and the fact that we are in the small energy regime. Doing so, we obtain

||∂tG||H3/2(Ω) . ||(∇g) (∇ (χ ext η))||H7/2(Ω)||∇ (χ ext ∂tη)||H3/2(Ω)

.
(
||∇g||

L∞
(
B(||∇(χ ext η)||∞)

)
+ ||∇g||

C3,1
(
B(||∇(χ ext η)||∞)

) (||∇ (χ ext η)||H7/2(Ω) + ||∇ (χ ext η)||4H7/2(Ω)

))
||∂tη||H2(T2)

.
√
E ,

and

||∂tG||H2(Ω) . ||(∇g) (∇ (χ ext η))||H4(Ω)||∇ (χ ext ∂tη)||H2(Ω)

.
(
||∇g||

L∞
(
B(||∇(χ ext η)||∞)

)
+ ||∇g||

C4,1
(
B(||∇(χ ext η)||∞)

) (||∇ (χ ext η)||H4(Ω) + ||∇ (χ ext η)||4H4(Ω)

))
||∂tη||H5/2(T2)

.
√
D.
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Similarly, using Hölder’s inequality, the Sobolev embedding H3/4 (Ω) ↪→ L4 (Ω), Proposition 8.13, Corollary
8.9, equations (4.6a) and (4.6b), and the fact that we are in the small energy regime, we obtain

∣∣∣∣∂2
t G
∣∣∣∣
L2(Ω)

.
∣∣∣∣(∇2g

)
(∇ (χ ext η))

∣∣∣∣
L∞(Ω)

||∇ (χ ext ∂tη)||2H3/4(Ω)

+ ||(∇g) (∇ (χ ext η))||L∞(Ω)

∣∣∣∣∇
(
χ ext ∂2

t η
)∣∣∣∣2

L2(Ω)

. ||∂tη||2H5/4(T2) +
∣∣∣∣∂2

t η
∣∣∣∣
H1/2(T2)

.
√
E +
√
D .

√
D.

Finally we estimate νG∂Ω on Σ. First we compute:

νG∂Ω|Σ = J (trΣ G) · νG∂Ω|Σ = J trΣ

(
I − ∇ (χ ext η)⊗ e3

1 + ∂3 (χ ext η)

)
· e3

= J trΣ

(
I − ext ∇̃η ⊗ e3 + ∂3 (χ ext η) e3 ⊗ e3

1 + ∂3 (χ ext η)

)
· e3 = J

(
e3 −

∇̃η + (J − 1) e3

J

)
= −∇̃η + e3.

Therefore ∣∣∣∣νG∂Ω − e3

∣∣∣∣
H7/2(T2)

= ||∇η||H7/2(T2) .
√
E .

�

We now record versions of the divergence and transport theorem adapted to the differential operators
appearing in the PDE after performing the time-dependent change of variables which fixes the domain. In
particular, we prove the G-divergence theorem in Proposition 7.2 and we prove the G-transport theorem in
Proposition 7.3. The key differences between these theorems and the standard divergence and transport
theorems are that:

• standard operators involving ∇ are replaced by their counterparts involving ∇G , and
• bulk integrands, i.e. integrands over Ω, are multiplied by J

(see Sections 4.3.2 and 4.3.3 for the definitions of J and ∇G respectively).

Proposition 7.2 (G-divergence theorem). For any v : [0, T ]×Ω→ R3 sufficiently regular and integrableˆ
Ω

(
∇G · v

)
J =

ˆ
∂Ω

v · νG∂Ω.

Proof. This result follows from the divergence theorem and the Piola identity. Indeed, we compute:ˆ
Ω

(
∇G · v

)
J =

ˆ
Ω

G : (∇v) J =

ˆ
Ω

∇ ·
(
GT vJ

)
−
ˆ

Ω

(∇ · (GJ))︸ ︷︷ ︸
(?)
= 0

v

=

ˆ
∂Ω

(
GT · v

)
· ν∂ΩJ =

ˆ
∂Ω

v · (G · ν∂Ω) J︸ ︷︷ ︸
=νG∂Ω

,

where in (?) we have used the Piola identity which says that cofactor matrices of gradients are divergence-free:
∇ · (GJ) = ∇ · (cof∇Φ) = 0. �

Next we record a version of the transport theorem.

Proposition 7.3 (G-transport theorem). For any f : [0, T ]× Ω→ R sufficiently regular and integrable

d

dt

(ˆ
Ω

fJ

)
=

ˆ
Ω

(
Du,G
t f

)
J,

where the differential operator Du,G
t is as defined in Section 4.3.3.

The proof of the G-transport theorem relies on two small computations, recorded in the following lemma.

Lemma 7.4. We have that ∂tJ =
(
∇G · ∂tΦ

)
J , and u · νG∂Ω = ∂tΦ · νG∂Ω on ∂Ω.
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Proof of the G-transport theorem. Using Lemma 7.4, this is a direct computation:

d

dt

(ˆ
Ω

fJ

)
=

ˆ
Ω

(∂tf) J +

ˆ
Ω

f (∂tJ) ,

where ˆ
Ω

f (∂tJ) =

ˆ
Ω

f
(
∇G · ∂tΦ

)
J =

ˆ
Ω

∇G · (f∂tΦ) J −
ˆ

Ω

(
∂tΦ · ∇Gf

)
J.

To compute
´

Ω
∇G · (f∂tΦ) J we use the G-divergence theorem and the fact that u · νG∂Ω = ∂tΦ · νG∂Ω on ∂Ω:
ˆ

Ω

∇G · (f∂tΦ) J =

ˆ
∂Ω

f
(
∂tΦ · νG∂Ω

)
J =

ˆ
∂Ω

f
(
u · νG∂Ω

)
J =

ˆ
Ω

∇G · (fu) J.

So, finally

d

dt

(ˆ
Ω

fJ

)
=

ˆ
Ω

(
∂tf − ∂tΦ · ∇Gf

)
︸ ︷︷ ︸

=∂Gt f

J +∇G · (fu) J =

ˆ
Ω

(
Du,G
t f

)
J

since ∇G · u = 0. �

Proof of Lemma 7.4. Computing ∂tJ and ∂tΦ · νG∂Ω is nothing more than unpacking the relevant
notation (c.f. Section 2.1 for the definition of Φ and Section 4.3 for other associated quantities). Indeed,

∂tJ = ∂t det∇Φ = det∇Φ tr
(
∇Φ−1 · ∂t∇Φ

)
= det (∇Φ)︸ ︷︷ ︸

J

(∇Φ)
−T

︸ ︷︷ ︸
G

: ∇∂tΦ =
(
∇G · ∂tΦ

)
J,

which proves the first identity. For the second note that on ∂Ω,

∂tΦ · νG∂Ω = ∂t (id +χ ext η e3) · νG∂Ω = χ ext ∂tη e3 · νG∂Ω =

{
∂tη on Σb

0 on Σ

which means that ∂tΦ · νG∂Ω = u · νG∂Ω. �

7.2. Commutators associated with the surface energy. Recall from Section 5.1 that

CW,α (η) :=
( (
νG∂Ωδ

2
ηW
)
◦ ∂α − ∂α ◦

(
νG∂ΩδW

) )
(η) .

We compute these commutators in the lemma below (for |α| = 1, 2), using Remark 8.2.

Lemma 7.5 (Computing the commutators CW,α). For |α| = 1 we have that

CW,α (η) =
(
∂ανG∂Ω

)
(δW) (η) .

Also, for |α| = |β| = 1 we have that

CW,α+β (η) =
(
∂α+βνG∂Ω

)
(δW) (η) +

(
∂ανG∂Ω

) (
δ2
ηW
) (
∂βη

)

+
(
∂βνG∂Ω

) (
δ2
ηW
)

(∂αη) + νG∂Ω

(
δ3
ηW
) (
∂αη, ∂βη

)
.

Proof. Using Remark 8.2, both of these results follow from direct computations: for |α| = |β| = 1,

∂α
(
νG∂ΩδW (η)

)
=
(
∂ανG∂Ω

)
(δW) (η) + νG∂Ω

(
δ2
ηW
)

(∂αη)

and

∂α+β
(
νG∂Ω (δW) (η)

)
= ∂β

( (
∂ανG∂Ω

)
(δW) (η) + νG∂Ω

(
δ2
ηW
)

(∂αη)
)

=
(
∂α+βνG∂Ω

)
(δW) (η) +

(
∂ανG∂Ω

) (
δ2
ηW
) (
∂βη

)

+
(
∂βνG∂Ω

) (
δ2
ηW
)

(∂αη) + νG∂Ω

(
δ3
ηW
) (
∂αη, ∂βη

)
+ νG∂Ω

(
δ2
ηW
) (
∂α+βη

)
.

�
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7.3. Form of the geometric corrections. Recall from Section 5.3 that the geometric corrections are

GE (X ) = Ẽ (X ;X )− E (X ) and GD (X ) = D̃ (X ;X )−D (X ) .

In this section we show that they can be computed to be




GE (X ) =
∑

|α|t,x2≤1,2

(
1
2

´
Ω
|∂αu|2 (J − 1) + 1

2

´
T2

(´ 1

0
gα (t)∇3f (tJ η) dt

)
• (J η ⊗ J∂αη ⊗ J∂αη)

)
and

GD (X ) =
∑

|α|
t,X2≤1

(
1
2

´
Ω
|DG−I∂αu|2J −

´
Ω

(
DG−I∂αu : D∂αu

)
J + 1

2

´
Ω
|D∂αu|2 (J − 1)

)

(7.1)
where

gα (t) :=

{
1
3 (1− t)2

for α = 0

1 for α 6= 0.
(7.2)

We first compute the geometric correction to the energy:

GE (X ) = Ẽ (X ;X )− E (X ) =
(
Ẽ0 (X )− E0

(X )
)

+
∑

|α|t,x2=1,2

(
Ẽ (∂αX ;X )− E (∂αX )

)

=
1

2

ˆ
Ω

|u|2 (J − 1) + (W −Q0) (η) +
∑

|α|t,x2=1,2

1

2

ˆ
Ω

|∂αu|2 (J − 1) + (Qη −Q0) (∂αη) .

Now we can compute W − Q0 using Taylor’s theorem (using the same notation, namely P2 and R2 as in
Proposition 8.24), recalling that f (0) = 0 and ∇f (0) = 0,

(W −Q0) (η) =

ˆ
T2

f (J η)− 1

2
∇2f (0) • (J η ⊗ J η) =

ˆ
T2

(f − P [f, 0]) (J η)

=

ˆ
T2

R [f, 0] (J η) =
1

6

ˆ
T2

(ˆ 1

0

(1− t)2∇3f (tJ η) dt

)
• (J η)

⊗3
.

Similarly we can compute (Qη −Q0) (ζ) for ζ ∈ {∂αu}|α|t,x2=1,2 using the fundamental theorem of calculus:

(Qη −Q0) (ζ) =
1

2

ˆ
T2

(
∇2f (J η)−∇2f (0)

)
• (Jζ ⊗ Jζ) =

1

2

ˆ
T2

(ˆ 1

0

∇3f (tJ η) dt

)
• (J η ⊗ Jζ ⊗ Jζ) ,

which means equations (7.1) hold for gα given by (7.2).
We now compute the geometric correction to the dissipation. Note that M 7→ DMv is linear, so in

particular |DGu|2 = |DG−Iu− Du|2 = |DG−Iu|2 − 2DG−I : Du+ |Du|2. Therefore,

GD (X ) = D̃ (X ;X )−D (X ) =
(
D̃0 (X )−D0

(X )
)

+
∑

|α|t,x2=1,2

(
D̃ (∂αX ;X )−D (∂αX )

)

=
∑

|α|t,x2=1,2

(
1

2

ˆ
Ω

∣∣DG−Iu
∣∣2J −

ˆ
Ω

(
DG−Iu : Du

)
J +

1

2

ˆ
Ω

|Du|2J − 1

)
.

7.4. More commutators. In this section we record the commutators arising when differentiating the
problem. We record them in a form readily amenable to estimates by writing them as commutators between
partial derivatives and linear operators with multilinear dependence on parameters which we control, namely
Φ, G, J , and νG∂Ω.

Lemma 7.6 (Computation of the commutators in multilinear form). Suppose that (u, p, η) solves (2.2a)–

(2.2e). Then, for each ∂α ∈
{
∂t,∇,∇

2
}

, (∂αu, ∂αp, ∂αη) satisfies




Du,G
t v +∇G · TG = C1,α in Ω,

∇G · v = C2,α in Ω,( (
δ2
ηW
)
ζ + gζ

)
νG∂Ω − TG · νG∂Ω = C3,α on Σ,

∂tζ − v · νG∂Ω = C4,α on Σ, and

v = 0 on Σb
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where




C1,α =
(
−
[
∂α, ∂tΦ · ∇G

]
+
[
∂α, u · ∇G

] )
,

−
( [
∂α,

(
∇G · GT

)
· ∇
]

+
[
∂α,

(
GT · G

)
: ∇2

] )
+
[
∇G , ∂α

]
p

C2,α =
[
∇G ·, ∂α

]
u,

C3,α =
( [
νG∂Ω · DG , ∂α

]
u−

[
νG∂Ω, ∂

α
]
p
)

+ g
[
νG∂Ω, ∂

α
]
η + CW,α (η) , and

C4,α = −
[
νG∂Ω·, ∂α

]
u.

Proof. Upon applying ∂α to (2.2a), we find that

C1,α =
[
Du,G
t −∆G , ∂α

]
u+

[
∇G , ∂α

]
p

=
[
∂α,

(
∂t − ∂tΦ · ∇G

)
+ u · ∇G

]
−
[
∂α,

(
∇G ·

)
◦
(
∇G
)]

= −
[
∂α, ∂tΦ · ∇G

]
+
[
∂α, u · ∇G

]
−
[
∂α,

(
∇G ·

)
◦
(
∇G
)]

= −
[
∂α, ∂tΦ · ∇G

]
+
[
∂α, u · ∇G

]
−
[
∂α,

(
∇G · GT

)
· ∇
]
−
[
∂α,

(
GT · G

)
: ∇2

]
.

The other commutators are computed by similarly differentiating (2.2b)–(2.2e) �

Remark 7.7 (Explicit form of the commutators). Since the commutators above are written in terms of
linear operators with multilinear dependence on parameters, we may use Proposition 8.10 to expand them
into pieces that may be estimated using the strategy described in Proposition 8.11. Indeed: (where for the
sake of readability we suppress the conditions β+

∑
γi = α, β < α, from Proposition 8.10, in the summations

below)




[
∂α, v · ∇G

]
=
∑(

(∂γ1v) · ∇∂γ2G
)
◦ ∂β , where v = −∂tΦ, u,∇G · GT ,

[
∂α,M : ∇2

]
=
∑(

(∂γM) : ∇2
)
◦ ∂β , where M = GT · G,

[
∂α,∇G

]
=
∑
∇∂γG ◦ ∂β ,

[
∂α, νG∂Ω · DG

]
=
∑(

∂γ1
(
νG∂Ω

)
· D∇∂

γ2G
)
◦ ∂β , and

[
∂α, νG∂Ω

]
=
∑

∂γ
(
νG∂Ω

)
◦ ∂β .

7.5. Computing the variations of the surface energy. We record in this section a more explicit
expression for the first variation of the surface energy. This is useful when performing some critical estimates
where more compact expressions for the first variation are not sufficient to close the estimates.

Lemma 7.8. Let W (η) :=

ˆ
T2

f (J η) where we write f = f (w,M). Then the first variation of the

surface energy can be written as

δW (η) = ∇2
M,Mf

(
∇η,∇2η

)
• ∇4η −∇2

w,wf
(
∇η,∇2η

)
• ∇2η +∇3

M,M,Mf
(
∇η,∇2η

)
•
(
∇3η ⊗∇3η

)

+ 2∇3
M,M,wf

(
∇η,∇2η

)
•
(
∇3η ⊗∇2η

)
s+∇3

w,M,wf
(
∇η,∇2η

)
•
(
∇2η ⊗∇2η

)
.

The second variation at the equilibrium is given by
(
δ2
0W
)
φ = ∇2

M,Mf (0, 0) • ∇4φ−∇2
w,wf (0, 0) • ∇2φ.

7.6. Estimates of the variations of the surface energy. In this section we obtain estimates on
the variations of the surface energy, obtaining estimates on δW (Lemma 7.9), δ2

ηW (Lemma 7.10), and δ3
ηW

(Lemma 7.11), as well as estimates on auxiliary functions derived from f by Taylor expanding f about the
equilibrium, i.e. about 0 (Lemma 7.12 and Corollary 7.13).

Lemma 7.9 (Smallness of the first variation). The following hold.

(1) For all s > −1 there exists C > 0 such that for every η : T2 → R sufficiently regular

||δW (η)||Hs(T2) 6 C||h (J η)||Hs+2(T2)||η||Hs+4(T2)
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for h (z) :=
´ 1

0
∇2f (tz) dt, where z = (w,M) ∈ Rn × Rn×n.

(2) In the small energy regime, for all s ∈
[
0, 1

2

]
and for every η : T2 → R sufficiently regular,

||δW (η)||Hs(T2) .
√
E .

Proof. The key observation is that we can rewrite δW in a more amenable way using the fundamental
theorem of calculus. So let s > −1 and observe that

||δW (η)||Hs(T2) = ||J ∗ (∇f (J η))||Hs(T2) =

∣∣∣∣
∣∣∣∣J ∗

(ˆ 1

0

∇2f (tJ η) dt • J η
)∣∣∣∣
∣∣∣∣
Hs(T2)

= ||J ∗ (h (J η) • J η)||Hs(T2) . ||h (J η) • J η||Hs+2(T2)

. ||h (J η)||Hs+2(T2)||η||Hs+4(T2)

where in the last step we have used that s+ 2 > 1 since s > −1.
Next note that in the small energy regime we may use Corollary 7.13 to obtain, for any s ∈

[
0, 1

2

]
,

||δW (η)||Hs(T2) . ||h (J η)||Hs+2(T2)||η||Hs+4(T2) . ||η||H9/2(T2) .
√
E .

�

Next we consider the second variation.

Lemma 7.10 (Boundedness of the second variation of the surface energy). Let s0 > 3 and recall the

constants C
(k)
f defined in Definition 4.1. If η ∈ Hs0

(
T2
)
, then for every s ∈ [2, s0 − 1) and every s ∈ (3, s0],

there exists a constant 0 < C = C
(
||η||Hs0 (T2), C

(bs0c+1)
f

)
such that

δ2
ηW ∈ L

(
Hs
(
T2
)

; Hs−4
(
T2
))

with
∣∣∣∣δ2

ηW
∣∣∣∣
L(Hs(T2);Hs−4(T2))

. C,

i.e. past a certain regularity threshold for η, we obtain that δ2
ηW is a differential operator of order 4, as

expected.

Proof. Let η ∈ Hs0
(
T2
)

and let φ ∈ Hs
(
T2
)

for some s ∈ [2, s0 − 1). If s ∈ [2, s0 − 1), then we may
use Propositions 8.12 and 8.15 to see that

∣∣∣∣(δ2
ηW
)
φ
∣∣∣∣
Hs−4(T2)

=
∣∣∣∣J∗

(
∇2f (J η) • Jφ

)∣∣∣∣
Hs−4(T2)

.
∣∣∣∣∇2f (J η) • Jφ

∣∣∣∣
Hs−2(T2)

.
∣∣∣∣∇2f (J η)

∣∣∣∣
Hs0−2(T2)

||Jφ||Hs−2(T2)

.

(
C

(2)
f + C

(bs0c)
f

(
||J η||Hs0−2(T2) + ||J η||ds0e−2

Hs0−2(T2)

))
||φ||Hs(T2)

.
(
C

(bs0c+1)
f

(
1 + ||η||Hs0 (T2) + ||η||bs0c−2

Hs0 (T2)

))

︸ ︷︷ ︸
=:C

||φ||Hs(T2).

If s ∈ (3, s0], we proceed with the same estimates as above, but replacing s0 with s. In particular, the key
difference is that now, since s > 3, Hs−2

(
T2
)

is an algebra. �

Next we consider the third variation.

Lemma 7.11 (Boundedness of the third variation of the surface energy). Let s0 > 4 and recall that the

constants C
(k)
f are given in Definition 4.1. If η ∈ Hs0

(
T2
)
, then for very s ∈ (3, s0 − 1) and every p, q > 0

such that p+ q > s+ 3 there exists a constant 0 < C = C
(
||η||Hs0 (T2), C

(bs0c+2)
f

)
such that

δ3
ηW ∈ L2

(
Hp ×Hq; Hs−4

)
with

∣∣∣∣δ3
ηW
∣∣∣∣
L2(Hp×Hq ;Hs−4)

. C

where for any normed vector spaces V,W,X, L2 (V ×W ;X) denotes the set of continuous bilinear forms on
V ×W mapping into X.
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Proof. Let η ∈ Hs0
(
T2
)

and let φ ∈ Hp
(
T2
)

and ψ ∈ Hq
(
T2
)

for some s, p, q > 0 such that
s ∈ (2, s0 − 1) and p+ q > s+ 3. Then, using Propositions 8.12 and 8.15 we obtain that

∣∣∣∣(δ3
ηW
)

(Jφ, Jψ)
∣∣∣∣
Hs−4(T2)

=
∣∣∣∣J∗

(
∇3f (J η) • (Jφ⊗ Jψ)

)∣∣∣∣
Hs−4(T2)

.
∣∣∣∣∇3f (J η) • (Jφ⊗ Jψ)

∣∣∣∣
Hs−2(T2)

.
∣∣∣∣∇3f (J η)

∣∣∣∣
Hs0−2(T2)

||Jφ⊗ Jψ||Hs−2(T2)

.

(
C

(3)
f + C

(bs0c+1)
f

(
||J η||Hs0−2(T2) + ||J η||ds0e−2

Hs0−2(T2)

))
||φ||Hp−2(T2)||ψ||Hq−2(T2)

.
(
C

(bs0c+2)
f

(
1 + ||η||Hs0 (T2) + ||η||bs0c−2

Hs0 (T2)

))

︸ ︷︷ ︸
=:C

||φ||Hp(T2)||ψ||Hq(T2).

�

Next we control terms related to Taylor expansions of the surface energy.

Lemma 7.12 (Estimates for the auxiliary functions from the Taylor expansions of the variations of the
surface energy). For any s > 2, f : R2 × R2×2 → R, and η : T2 → R we have that

||rk [f, 0] (J η)||Hs(T2) . C
(k+1)
f + C

(bsc+k+2)
f

(
||η||Hs+2(T2) + ||η||dseHs+2(T2)

)
,

where rk is defined in Proposition 8.24 and C
(k)
f is defined in Definition 4.1. Moreover, in the small energy

regime (see Definition 4.2), if s ∈
[
2, 5

2

]
, then

||rk [f, 0] (J η)||Hs(T2) . 1.

Proof. The result then follows from post-composition estimates in Sobolev spaces (see Proposition
8.15) and from the observation that

(∂α (rk [f, 0])) (z) =

ˆ 1

0

(1− t)kt|α|∂α∇k+1f (tz) dt

such that, for any R > 0 and any l ∈ N,

||rk [f, 0]||
Cl,1(B(0,R)) 6

∣∣∣∣∇k+1f
∣∣∣∣
Cl,1(B(0,R)).

Therefore, since s > 2, we obtain from Proposition 8.15 that

||rk [f, 0] (J η)||Hs(T2) . ||rk [f, 0]||
L∞

(
B
(

0,||J η||L∞(T2)

))
+ ||rk [f, 0]||

Cbsc,1
(
B
(

0,||J η||L∞(T2)

)) (||J η||Hs(T2) + ||J η||dseHs(T2)

)

. C(k+1)
f + C

(bsc+k+2)
f

(
||η||Hs+2(T2) + ||η||dseHs+2(T2)

)
.

In particular, in the small energy regime where ||η||H9/2(T2) .
√
E 6
√
δ0, if s ∈

[
2, 9

2

]
then

||η||H3+(T2) . 1 and ||η||Hs+2(T2) . 1,

and hence
||rk [f, 0] (J η)||Hs(T2) .

∣∣∣∣∇k+1f
∣∣∣∣
L∞(B(0,C)) +

∣∣∣∣∇k+1f
∣∣∣∣
Ck,1(B(0,C)) . 1.

�

Lemma 7.12 has the following immediate corollary.

Corollary 7.13. If for z = (w,M) ∈ Rn × Rn×n we set

h (z) :=

ˆ 1

0

∇2f (tz) dt = r0 [∇f, 0] (z) and q (z) :=
1

2

ˆ 1

0

(1− t)∇3f (tz) dt = r1 [∇f, 0] (z) ,

then for any s > 2 we have the bounds


||h (J η)||Hs(T2) . C

(2)
f + C

(bsc+3)
f

(
||η||Hs+2(T2) + ||η||dseHs+2(T2)

)
and

||q (J η)||Hs(T2) . C
(3)
f + C

(bsc+4)
f

(
||η||Hs+2(T2) + ||η||dseHs+2(T2),

)
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where the constants C
(k)
f are defined in Definition 4.1. In particular, in the small energy regime of Definition

4.2, if s ∈
[
2, 5

2

]
then

||h (J η)||Hs(T2) . 1 and ||q (J η)||Hs(T2) . 1.

8. Appendix: generic tools

In this second part of the appendix we record generic tools, i.e. results that are employed throughout
this chapter but whose applicability is not reduced to the problem in this chapter. In particular, these results
are either well-known or slight modifications of standard results. They are therefore recorded here so that
they may be precisely stated as reference for when they are invoked elsewhere in this chapter.

8.1. Variations/derivatives of the surface energy. In this section we record various expressions
for variations of, and functionals associated with, the surface energy. Recall from Section 4.4.1 that the
surface energy associated with a surface given as the graph of η is

W (η) =

ˆ
T2

f (J η)

where the jet J η is given by J η =
(
∇η,∇2η

)
. Similarly, the definitions of δφ, δW, δ2

ηW, . . . , DW, D2W,
etc are in Section 4.4.1. We begin by giving the form of variations of W.

Lemma 8.1 (Various representations of the variations/derivatives of the surface energy). For any suffi-
ciently regular functions η, φ, ψ, φi : T2 → R, i = 1, . . . , k, the following hold:

(1)

〈DW (η) , φ〉 =

ˆ
T2

δW (η)φ =

ˆ
T2

∇f (J η) · J φ,

(2)
〈
D2W (η) , (φ, ψ)

〉
=

ˆ
T2

((
δ2
ηW
)
φ
)
ψ =

ˆ
T2

∇2f (J η) • (J φ⊗ Jψ) ,

(3)

〈
DkW (η) , (φ1, φ2, . . . , φk−1, φk)

〉
=

ˆ
T2

( (
δkηW

)
(φ1, φ2, . . . , φk−1)

)
φk

=

ˆ
T2

∇kf (J η) • (J φ1 ⊗ J φ2 ⊗ · · · ⊗ J φk−1 ⊗ J φk) .

Remark 8.2. We record here formulae for partial derivatives of the first and second variation. For α, β
multi-indices such that |α| = |β| = 1, we have

∂α
(
δW (η)

)
= δ2

ηW (∂αη) and ∂α+β
(
δW (η)

)
= δ3

ηW
(
∂αη, ∂βη

)
+ δ2

ηW
(
∂α+βη

)
.

We now record a lemma that comes in handy when computing second variations.

Lemma 8.3 (Computing the second variation). For any η, φ : T2 → R sufficiently regular,

δφ (δW (η)) =
(
δ2
ηW
)
φ.

Proof. For any ψ ∈ C∞c
(
T2
)
, we computeˆ

T2

δφ (δW (η))ψ = δφ

ˆ
T2

δW (η)ψ = δφ 〈DW (η) , ψ〉 = δφδψW (η)

=
〈
D2W (η) , (φ, ψ)

〉
=

ˆ
T2

((
δ2
ηW
)
φ
)
ψ.

�

We now record a computation telling us how the quadratic approximation to the surface energy behaves
when differentiated in time, which comes in handy when estimating the commutators.

Proposition 8.4. For any η, ζ : T2 → R sufficiently regular,

d

dt
(Qη (ζ)) = Qη̇ (ζ) +

〈
D2W (η) , (ζ, ∂tζ)

〉
= Qη̇ (ζ) +

ˆ
U

( (
δ2
ηW
)
ζ
)
∂tζ.
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Proof. This result is nothing more than the product rule transcribed into our notation. This is apparent
when rewriting the formula above as:

d

dt

(
1

2

ˆ
T2

∇2f (J η)⊗ (J ζ ⊗ J ζ)

)
=

1

2

ˆ
T2

∂t
(
∇2f (J η)

)
⊗ (J ζ ⊗ J ζ) +

ˆ
T2

∇2f (J η)⊗ (J ζ ⊗ J ∂tζ) .

�

8.2. Harmonic extension. In this section we record the standard definition and estimates of the
harmonic extension of a function from T2 to T2 × (−∞, 0). Although the extension is defined in this large
set, we will typically only need in on T2 × (−b, 0).

Definition 8.5 (Harmonic extension). We define the following.

(1) For any f ∈ L1(T2), define ext f : T2 × (−∞, 0)→ R by, for every x ∈ T2 × (−∞, 0),

(ext f) (x) :=
∑

k̄∈Z2

(
f̂
(
k̄
)
e2π|k̄|x3

)
e2πik̄·x̄,

where ·̂ denotes the Fourier transform and where recall that x = (x̄, x3).
(2) For any f : [0, T )× T2 → R, define ext f : [0, T )× T2 × (−∞, 0)→ R by (ext f)(t, ·) := ext (f(t, ·)).

Remark 8.6. Recall that ext f as defined above is called the harmonic extension of f because it solves
{
−∆ ext f = 0 in T2 × (−b, 0) ,

ext f = f on {x3 = 0} .

Next we record some identities related to the harmonic extension.

Lemma 8.7 (Identities for the derivatives of the harmonic extension). For any f : T2 → R sufficiently
regular,

∂3 ext f = ext
√
−∆f and ∇ ext f = ext∇f,

where
(√
−∆f

)∧ (
k̄
)

:= 2π|k̄| for all k̄ ∈ Z2.

Proof. These results follow directly from short computations on the Fourier side. �

Next we record some useful estimates, starting with L2 ones.

Lemma 8.8 (L2 bound on the harmonic extension). For any f : T2 → R sufficiently regular,

||ext f ||L2(Ω) 6
1

2
√
π
||f ||Ḣ−1/2(T2)

where Ω = T2 × (−b, 0).

Proof. To obtain this inequality we proceed as follows: employ Parseval’s identity on the horizontal
slices, then apply Tonelli’s theorem so that we may integrate exactly along the vertical direction, and finally
note that 1− e−4πb|·| 6 1. �

The L2 bounds coupled with the identities for the derivatives of the harmonic extension lead to Hs

bounds.

Corollary 8.9 (Hs bounds on the harmonic extension). Recall that Ω = T2 × (−b, 0). For any s > 0,
there exists Cs > 0 such that for any f ∈ Hs−1/2

(
T2
)
,

||ext f ||Hs(Ω) . ||f ||Hs−1/2(T2),

Proof. This result follows from Lemmas 8.7 and 8.8 when s is an integer and a standard interpolation
argument otherwise. �
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8.3. Commutators with linear operators with multilinear dependence on their parameters.
In this section we record how to compute commutators between partial derivatives and linear operators with
multilinear dependence on their parameters.

Proposition 8.10. Suppose that L is a linear differential operator acting on functions η : [0, T )×T2 → R
that can be written as L = L̂ (π1, . . . , πk) for some parameters π1, . . . , πk : [0, T ) × T2 → R, where L̂ is
multilinear. Then, for any multi-index α = (α0, ᾱ) ∈ N3 such that ∂α = ∂α0

t ∂ᾱx̄ , we have

[∂α, L] =
∑

β+
∑k
i=1 γi=α
β<α

L̂ (∂γ1π1, . . . , ∂
γkπk) ◦ ∂β .

Proof. For any η : T2 → R, we compute directly, using the multilinearity of L̂ in (?) below:

[∂α, L] η = ∂α
(
L̂ (π1, . . . , πk) η

)
− L (∂αη)

(?)
=


 ∑

β+
∑k
i=1 γi=α

L̂ (∂γ1π1, . . . , ∂
γkπk) ∂βη


− L (∂αη)

=




∑

β+
∑k
i=1 γi=α
β 6=α

L̂ (∂γ1π1, . . . , ∂
γkπk) ◦ ∂β


 η

Since β 6= α above is equivalent to β < α in this context (since necessarily β 6 α), we obtain the result
desired. �

8.4. General recipe for controlling interactions with Sobolev norms. We record here a general
recipe for controlling interactions with Sobolev norms by combining the Hölder inequality and appropriate
Sobolev embeddings.

Proposition 8.11. Let n, k ∈ N and let s1, . . . , sk > 0 be such that either

(i)

k∑

i=1

min
(
si,

n

2

)
> n

(
k

2
− 1

)
or (ii)

k∑

i=1

min
(
si,

n

2

)
> n

(
k

2
− 1

)
and si 6=

n

2
for all i

holds. Then there exists C > 0 such that for every f1 ∈ Hs1 (Tn) , . . . , fk ∈ Hsk (Tn),
∣∣∣∣
ˆ
Tn
f1 . . . fk

∣∣∣∣ 6 C||f1||Hs1 (Tn) . . . ||fk||Hsk (Tn).

8.5. Product estimates in Sobolev spaces. In this section we record for which regularity indices
s, t, u it holds that Hs ·Ht ↪→ Hu. Using Fourier analysis, these results boil down to:

(1) The following pointwise bound on the Fourier side:

〈·〉s |(fg)
s| . 〈·〉s|f̂ | ∗ |ĝ|+ |f̂ | ∗ 〈·〉s|ĝ|

for f, g : Tn → R, which follows from the elementary observation that 〈k〉2 . 〈k − l〉2 + 〈l〉2 for all
k, l ∈ Zn.

(2) Young’s inequality for convolutions.
(3) Using Hölder’s inequality on the Fourier side to show that

∣∣∣
∣∣∣〈·〉sf̂

∣∣∣
∣∣∣
lp(Zn)

. ||f ||Hs+α(Tn)

for the appropriate values s, p and α.

Proposition 8.12 (Hs is a Banach algebra when s > s∗). Let D = T2, Ω and correspondingly let
s∗ = 1, 3

2 . If s > s∗, then

Hs (D) ·Hs (D) ↪→ Hs (D)

i.e. for every s > s∗ there exists C > 0 such that for every f, g ∈ Hs (D), the product fg belongs to Hs (D)
and satisfies the estimate

||fg||Hs(D) 6 C||f ||Hs(D)||g||Hs(D).
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Proposition 8.13 (Hs+α is a continuous multiplier on Hs when α > s∗). Let D = T2, Ω and corre-
spondingly let s∗ = 1, 3

2 . For every s > 0, if α > s∗, then

Hs+α (D) ·Hs (D) ↪→ Hs (D)

i.e. for every such s and α there exists C > 0 such that for every f ∈ Hs+α (D) and g ∈ Hs (D), the product
fg belongs to Hs (D) and satisfies the estimate

||fg||Hs(D) 6 C||f ||Hs+α(D)||g||Hs(D).

Proposition 8.14 (Borrowing regularity from both factors). Let D = T2, Ω and correspondingly let
s∗ = 1, 3

2 . For every s > 0 and α, β > 0, if s+ (α+ β) > s∗, then

Hs+α (D) ·Hs+β (D) ↪→ Hs (D)

i.e. for every such s, α, and β there exists C > 0 such that for every f ∈ Hs+α (D) and g ∈ Hs+β (D), the
product fg belongs to Hs (D) and satisfies the estimate

||fg||Hs(D) 6 C||f ||Hs+α(D)||g||Hs+β(D)

8.6. Post-composition estimates in Sobolev spaces. We record here conditions on s for Hs to be
closed under post-composition by a sufficiently smooth function (also known as a Nemytskii operator, or as
a superposition operator).

These post-composition estimates boils down to estimates of the multilinear terms involving derivatives of
various orders which appear in the Faà di Bruno formula (i.e. the chain rule for higher-order derivatives). The
key observation is that these terms can be written as derivatives of polynomials. Coupling this observation
with the fact that Hs is an algebra for sufficiently large s (c.f. Proposition 8.12) thus yields the post-
composition estimates.

Proposition 8.15. Let D = T2, Ω and correspondingly let s∗ = 1, 3
2 . Let k ∈ N and α ∈ [0, 1). If

k > s∗ then for every g ∈ Hk+α (D;R) and for every F ∈ Ck,1loc (R;R), F ◦ g ∈ Hk+α (D;R) with

||F ◦ g||Hk+α(D) . ||F ◦ g||L2(D) + ||F ||
Ck,1

(
B(0,||g||∞)

) (||g||Hk+α(D) + ||g||k+dαe
Hk+α(D)

)

. ||F ||
L∞

(
B(0,||g||∞)

) + ||F ||
Ck,1

(
B(0,||g||∞)

) (||g||Hk+α(D) + ||g||k+dαe
Hk+α(D)

)

where B (R) = (−R,R) and dxe denotes the smallest integer greater than or equal to x.

8.7. Elliptic estimates for the Stokes problem. In this section we record estimates for the Stokes
problem. We begin with the case of Dirichlet conditions.

Proposition 8.16 (Estimates for the Stokes problem with Dirichlet boundary condition). Let s ≥ 0,
let f ∈ Hs (Ω), g ∈ Hs+1 (Ω), and h ∈ Hs+3/2 (∂Ω) satisfy

´
Ω
f =

´
∂Ω
h · ν, and let (u, p) solve





−∆u+∇p = f in Ω,

∇ · u = g in Ω, and

u = h on ∂Ω.

Then
||u||Hs+2(Ω) + ||∇p||Hs(Ω) . ||f ||Hs(Ω) + ||g||Hs+1(Ω) + ||h||Hs+3/2(∂Ω).

Next we consider the Stokes problem with different boundary conditions.

Proposition 8.17 (Estimates for the Stokes problem with mixed Dirichlet-Neumann boundary con-
dition). Let s ≥ 0, let f ∈ Hs (Ω), g ∈ Hs+1 (Ω), h1 ∈ Hs+3/2 (Σ), and h2 ∈ Hs+1/2 (Σ), and let (u, p)
solve 




−∆u+∇p = f in Ω,

∇ · u = g in Ω,

u · e3 = h1 on Σ,

(Du · e3)tan = h2 on Σ, and

u = 0 on Σb
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where vtan := (I − e3 ⊗ e3) v, i.e. vtan is the tangential part of v. Then

||u||Hs+2(Ω) + ||∇p||Hs(Ω) . ||f ||Hs(Ω) + ||g||Hs+1(Ω) + ||h1||Hs+3/2(Σ) + ||h2||Hs+1/2(Σ).

8.8. Dynamic boundary conditions. We now turn our attention to estimates related to the dynamic
boundary condition (2.2c). We begin with a definition.

Definition 8.18. Let L be a linear differential operator acting on functions η : Tn → R and let k ∈ N.
We say that L is a strictly elliptic k-th order differential operator on functions of average zero if there exists

C > 0 such that L̂ > C|·|k.

Next we record elliptic estimates for such operators.

Proposition 8.19. Let L be a strictly elliptic k-th order differential operator on the n-torus. Then there
exists C > 0 such that for every s ∈ R and every f ∈ Hs (Tn), if η solves Lη = f on Tn, then

||η||Ḣs+k(Tn) 6 C||f ||Ḣs(Tn).

Proof. This result follows immediately from the assumption on L of strict ellipticity over functions of
average zero:

||η||2Ḣs+k(Tn) =
∣∣∣
∣∣∣|·|2sη̂

∣∣∣
∣∣∣
2

l2(Zn)
6

1

C2

∣∣∣
∣∣∣|·|2(s−k)

L̂η̂
∣∣∣
∣∣∣
2

l2(Zn)
=

1

C2
||f ||2Ḣs−k(Tn).

�

A byproduct of Proposition 8.19 is the following estimate, tailored to the dynamic boundary condition.

Corollary 8.20 (Estimates for the dynamic boundary condition). Let g > 0 and f : R2 × R2×2 → R,
write f = f (w,M) for (w,M) ∈ R2 ×R2×2, and suppose that (2.3) holds. Then for every s > 0 there exists

C̃ > 0 such that for every f ∈ Hs
(
T2
)
, if η satisfies

´
T2 η = 0 and solves

(
δ2
0W + g

)
η = f on T2, then

||η||Hs+4(Tn) 6 C̃||f ||Ḣs(Tn).

Proof. The assumption (2.3) tells us precisely that δ2
0W + g is a strictly elliptic fourth-order operator

over functions of average zero. Proposition 8.19 thus yields the desired result, since on Zn \ {0}, |·|s � 〈·〉s,
and hence for functions of average zero ||·||Ḣs(Tn) � ||·||Hs(Tn). �

Next we consider Poincaré-type inequalities.

Proposition 8.21 (Poincaré-type inequalities). The following hold.

(1) There exists CP > 0 such that for every φ ∈ H1 (Ω),

||φ||H1(Ω) ≤ CP
(
||trφ||L2(Σ) + ||∇φ||L2(Ω),

)
(8.1)

(2) For every s ≥ 0, there exists CPs > 0 such that for every η ∈ Hs+1 (Tn) satisfying
´
Tn η = 0 we have

that

||η||Hs+1 ≤ CPs ||∇η||Hs . (8.2)

Korn’s inequality, which we record now, is a sort of Poincaré-type inequality for the symmetrized gradient.
See Lemma 2.7 in [Bea81] for a proof.

Proposition 8.22 (Korn inequality). There exist CK > 0 such that for every φ ∈ H1 (Ω), if φ = 0 on
Σb, then

||φ||H1(Ω) ≤ CK ||Dφ||L2(Ω).

8.9. Linear algebra. In this section we record some simple facts from linear algebra.

Lemma 8.23 (Determinant of a rank 1 perturbation of the identity). Let a, b ∈ Rn and let M = I+a⊗b.
Then detM = 1 + a · b. Moreover, if a · b 6= −1 then M is invertible and M−1 = I − a⊗b

1+a·b .
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8.10. Taylor’s theorem. We record Taylor’s theorem here in order to fix notation.

Proposition 8.24 (Taylor’s theorem with integral remainder). For any f ∈ Ck+1
(
Rd;R

)
and any

z0 ∈ Rd,

f = Pk [f, z0] + rk [f, z0] • (· − z0)
⊗(k+1)

= Pk [f, z0] +Rk [f, z0] ,

where, for any z ∈ Rd,

Pk [f, z0] (z) :=

k∑

l=0

1

l!
∇lf (z0) • (z − z0)

⊗l
,

Rk [f, z0] := rk [f, z0] • (· − z0)
⊗(k+1)

, and

rk [f, z0] (z) :=
1

(k + 1)!

ˆ 1

0

(1− t)k∇k+1f ((1− t) z0 + tz) dt

Example 8.25. For example, when k = 2 we have

f (z) = f (0) +∇f (0) · z +
1

2
∇2f (0) · (z ⊗ z)

︸ ︷︷ ︸
P2[f,0](z)

+
1

6

(ˆ 1

0

(1− t)2∇3f (tz) dt

)
• (z ⊗ z ⊗ z)

︸ ︷︷ ︸
R2[f,0](z)

.
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