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Abstract 
The critical role of the hippocampus in human learning has been illuminated by neuroimaging studies that increasingly 
improve the detail with which hippocampal function is understood. However, the hippocampal information developed 
with different types of imaging technologies is seldom integrated within a single investigation of the neural changes that 
occur during learning. Here we show three different ways in which a small hippocampal region changes as the structures 
and names of a set of organic compounds are being learned, reflecting changes at the microstructural, informational, and 
cortical network levels. The microstructural changes are sensed using measures of water diffusivity. The informational 
changes are assessed using machine learning of the neural representations of organic compounds as they are encoded in 
the fMRI-measured activation levels of a set of hippocampal voxels. The changes in cortical networks are measured in 
terms of the functional connectivity between hippocampus and parietal regions. The co-location of these three 
hippocampal changes reflects that structure’s involvement in learning at all three levels of explanation, consistent with 
the multiple ways in which learning brings about neural change. 
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Introduction 
 
Learning is one of the most complex and yet fundamental 
processes that underlie human capabilities, enabling the 
acquisition of a huge amount of various types of 
knowledge over a lifetime. Here we describe the 
phenomenon of learning in a real world task (learning 
organic molecular structures) in terms of three types of 
brain changes in approximately 1.3 cm3 of the left 
hippocampus. Different brain imaging modalities sensed 
three types of changes that occurred in this volume as a 
result of the learning: microstructural changes in tissues, 
informational changes (referring to encodings of the 
structure of individual organic molecules), and network-
level synchronization changes (referring to organization 
among brain subsystems). The three concomitant changes 
in the same hippocampal locations reflect the anatomical, 
informational, and organizational brain changes that 
occur with learning. 
 
 
 
 
 
 
 
 
 
 
 

 
 
One of the challenges of understanding the neural 

basis of learning is that it can be described at several 
scales of time and space. Our study describes brain 
changes that occur over the course of approximately 40 
minutes and over volumes from 1 mm3 to distances of 
about 10 cm (between the hippocampus and the parietal 
regions). This type of description is referred to as 
multimodal, in the sense that multiple brain imaging 
modalities (types) are used for the different 
characterizations. Notably, the three descriptions here all 
refer to the same neural tissues or brain locations. The 
multiple modalities all converge on a small distributed 
region of about 1.3 cm3; we use 22 functional 3x3x6-mm 
voxels for decoding in the hippocampus, where all three 
types of changes can be observed. This convergence 
results in a multilevel neural description of learning as 
people study molecular structures that can occur in an 
organic chemistry course.  

The hippocampus is strongly associated with spatial 
navigation and memory and the formation of cognitive 
maps, including fine-grain information about its place 
cells and grid cells (e.g., Morris et al., 1982; O’Keefe and 
Nadel, 1978).  Numerous fMRI studies have reported 
activation of the hippocampus during tasks that require 
spatial memory (e.g., Brown et al., 2014), although it is 
uncertain whether spatial processing in the absence of a 
mnemonic component involves the hippocampus 
3hippocampus have been reported to be associated with 
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spatial memory abilities or tasks. Maguire et al. (Maguire 
et al., 2000) showed that the posterior hippocampi of 
London taxi drivers with extensive navigation experience 
were larger than those of control participants.  

Microstructural changes in hippocampus with 
learning. Recent research has used MR diffusion imaging 
to detect short-term microstructural changes in the 
hippocampus resulting from spatial learning in both 
animals and humans (Blumenfeld-Katzir et al., 2011; 
Keller & Just, 2016; Sagi et al., 2012; Tavor et al., 2013). 
The studies in humans have all shown decreases in mean 
diffusivity (MD) in the left but not the right hippocampus 
(although Sagi et al., 2012 did find MD decreases in the 
right parahippocampal gyrus). Although the physiological 
changes that could produce these changes in diffusion 
measures remain to be fully explored, the findings in 
rodents suggest that they are quantitatively associated 
with cellular biomarkers of synaptic change 
(synaptophysin, (SYN)), astrocytic change (glial fibrillary 
acidic protein, (GFAP)), and long-term potentiation 
(brain-derived neurotrophic factor, (BDNF)). We 
expected to detect such hippocampal changes during the 
learning of the structure of organic compounds. 
Furthermore, we expected these microstructural changes 
to occur in the same hippocampal locations as changes in 
network synchronization and changes in informational 
content. 

Network-level changes with learning. Another neural 
property sensed by a magnetic-resonance modality is the 
synchronization of activation across distal brain regions 
(or functional connectivity, (FC)), providing a measure of 
the functional connectomics of the nodes of large scale 
brain networks (Biswal et al., 1995; Buchel et al., 1999). 
The role of the hippocampus in memory consolidation 
requires coordination with other brain regions in a large-
scale network. During such consolidation, the functional 
connectivity between the hippocampus and the other 
regions provides an index of such processing (van 
Kesteren et al. 2010). Increases in task-related FC are 
thought to reflect dynamic functional changes in inter-
regional communication across networks of areas and 
could therefore result from short-term physiological and 
structural neuroplastic changes (e.g., LTP, 
synaptogenesis, astrocyte signaling). For example, Mack 
and colleagues (Mack et al., 2016) found increased FC 
between hippocampus and several frontal regions during 
concept updating.  In the current study, a hippocampal 
region showing microstructural change might be 
expected to also show a change in FC with other regions 
involved in learning the structure of organic compounds. 

Changes in the neural representation of concepts. A 
third MR-based capability makes it possible to identify the 
activation of a concept (such as apple or hammer) from its 
fMRI signature, by applying multivoxel pattern analysis 
(MVPA) or machine learning to fMRI brain imaging data 
(Mitchell et al., 2008; Just et al., 2010). Among several 

domains of concepts to which this approach has been 
applied, such as emotions, quantities, and social 
interactions, the most relevant here is the study of physics 
concepts (Mason & Just, 2016). It is possible to identify a 
physics concept such as gravity or frequency from its fMRI 
signature, and furthermore, the neural representation of 
a given concept is similar across all participants. Thus it 
should be possible to observe the neural emergence of a 
new concept of an organic compound. It would be 
particularly significant if a new neural concept emerged at 
the hippocampal location that showed microstructural 
changes and a network connectivity change. 

The ability to decode some of the informational 
content of the hippocampus has been demonstrated in 
several previous studies. Chadwick et al. (2010) 
demonstrated the ability to decode which of three events 
was being recalled by applying a classifier to the 
activation levels of hippocampal voxels. Bonnici et al. 
(2012) used MVPA to show that CA1 and CA3 played a 
greater role in pattern completion than did other 
hippocampal subregions. Mack and Preston (2016) used 
MVPA to show that hippocampal representations are 
updated as additional knowledge about them is acquired. 
It is clear that conceptual content can be decoded from 
hippocampus using MVPA. 

The present study collected the data necessary to 
examine each of these neuroimaging metrics of learning 
in a single one-hour MRI scanning session, focusing on the 
role of the hippocampus and its change in structure, 
information representation, and connectivity during 
paired-associate learning that had direct relevance to 
science education.  The items to be learned were selected 
to have ecological validity for the typical introductory 
organic chemistry courses taught in high-school and 
college settings.  Although some previous work has 
combined MVPA decoding and functional connectivity 
analyses to examine of paired-associate learning in the 
hippocampus (e.g., Mack & Preston, 2016; Schlichting & 
Preston, 2014; Schlichting et al., 2015), these have all 
involved arbitrary pairings of visually presented objects 
with other objects, with faces, or with natural scenes.  A 
recent study examined paired-associate learning of real 
words and previously unknow objects (pictures of types 
of flowers) using changes in diffusivity to track learning. 
The learning task in this case is educationally relevant, 
although the authors did collect fMRI data in addition to 
the diffusion data. Here we combine an educationally 
relevant task with acquisition of both BOLD fMRI data and 
diffusion data at multiple time points so that diffusivity 
changes, MVPA changes, and functional connectivity 
changes can all be examined simultaneously. The stimuli 
were 2D depictions of 3D visuospatial representations 
(colored sphere-and-rod models) of compounds studied 
in such settings.  The learning involved the acquisition of 
the relationship between the visuospatial representations 
of molecules and their verbal labels used in the 
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International Union of Pure and Applied Chemistry 
(IUPAC) nomenclature. An advantage of these stimuli is 
that there is a morpho-semantic relationship between the 
words and the molecular structures when considered 
across items, which may contribute to faster learning and 
allow us to detect neuroplastic changes within a single 
scanning session.   

The hypotheses tested in the experiment include 1. 
microstructural changes in the left hippocampus will 
occur with learning in a scientific domain; 2. functional 
connectivity (FC) will increase with learning between the 
region of microstructural change in the left hippocampus 
and neocortical regions; and 3. when a classifier is trained 
only on the initial perception of the to be learned spatial 
representations of the compounds, it will be able to 
reliably classify the compounds by their retrieved fMRI 
signature in left hippocampus.  
 

Materials and Methods 
 
Participants 

 
10 right-handed adults (9 females, 1 male between the 
ages of 19 and 37, Mean = 24.7 years, SD = 5.2 years, 1 
African American, 9 Caucasian) from the Carnegie Mellon 
University community participated.  All participants gave 
signed informed consent approved by the Carnegie 
Mellon Institutional Review Board. None of the 
participants had taken an Organic Chemistry course and 
were consequently unfamiliar with the structure and 
naming system of the organic compounds presented 
during the study.  

Although the sample size is modest, the findings 
from a similar paired associate learning task that 
suggested that the effect size of changes in diffusivity 
within gray matter are quite large and consistent across 
participants.  Hoffstetter et al. (2017) acquired data from 
15 participants, and our calculation of Cohen’s d based on 
the percentage changes and standard errors for the 
reliable percentage decreases in diffusivity reported in 
their Table 1 suggested that effect sizes between 1.2 and 
1.4 were obtained, much higher than the d = 0.8 criteria 
that Cohen (1969) suggested for considering an effect to 
be “large.” This indicates that sample size required to 
detect such effects with 80% power at p < .05 would be 
from eight to nine participants for a two-tailed t-test.   
 
Experimental Paradigm 

 
The 9 organic compound images used in this experiment 
were originally taken from www.openmolecules.org.  
Images were then adapted to more clearly display their 
physical characteristics and to eliminate potential 
distracting aspects of each graphic. The names of the 
compounds had a systematic relation to the compound 
structures, but this systematicity was not described to the 

participants. (The prefix (eth-, prop-, but-) describes the 
number of carbon atoms present in a given molecule. The 
suffix (-ane, -ol, -oic acid), reflects how many oxygen 
atoms are present and how they bond to carbon and 
hydrogen atoms in the compound.)   

 
 
MRI session 

 
Each participant completed a series of different tasks 
involving the visualization or learning of each of the 
organic compounds.  Participants first completed a pre-
learning exposure phase.  During this phase participants 
were presented with each picture of the organic 
compounds without their names.  This phase provided the 
unlabeled neural representation of the structure of each 
of the compounds. Each picture was presented for 3 s for 
a total of six repetitions, during which the participant 
attended to each compound and familiarized themselves 
with their structure. This was followed by a 7-s rest period 
during which the participant fixated on an “X” displayed 
in the center of the screen.  There were three additional 
presentations of a fixation “X”, 17 s each, distributed 
across the session to provide a baseline measure. 

Following the pre-learning exposure, participants 
performed a sequence of three separate activities, a 
sequence through which they would iterate two times. 
The first of these activities was a learning phase in which 
each of the compound structures was shown paired with 
its name. Participants were instructed to learn the pairing 
of the compound names with the pictures of the 
structures.  

After each block of the learning phase, participants 
were tested for their retention of the picture-name pairs. 
Each compound name was first presented for 1 s followed 
by a compound picture presented for 2 s.  While the 
picture was on the screen, participants were told to 
indicate whether the name and picture were correctly or 
incorrectly paired, using two single button mice held by 
the participant in the scanner.  Participants completed 
two learning phase blocks and two name-picture 
retention test periods per block of study tasks. 

After completing two iterations of a learning phase 
and a testing phase, participants performed a post-
learning cued retrieval task. The name of the compound 
was the cue (presented for 3 s), during which time 
participants were asked to visualize (retrieve) the 
structure of the corresponding compound. This was 
followed by a 7 s rest period during which the participant 
fixated on an “X”. The set of compound names was 
presented 6 times in different random orders. There were 
three additional presentations of a fixation “X”, 17 s each, 
distributed across the session to provide a baseline 
measure.  This sequence of a learning phase, testing phase, 
and post-learning visualization phase was completed by 

http://www.openmolecules.org/
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each participant twice. Figure 1 provides a schematic of 
the experimental session.  
 

 

 

 

 

 

 

 
Fig. 1. Design of fMRI paradigm for the study. Participants were 
first exposed only to the pictures of hydrocarbon compounds, 
and data from the 7-s ISI was used to classify which item they 
were seeing. This was followed by presentation of the names 
with the pictures, and a test phase requiring them to decide if a 
picture corresponded to the preceding compound name.  
Participants then saw only the names and were instructed to 
retrieve and imagine an image of the compound during the 
delay interval. The learn-test-retrieve phases were repeated 
twice.  

 
Image acquisition  

 
All neuroimaging data were acquired on a Siemens Verio 
(Erlangen, Germany) 3.0 T scanner at the Scientific 
Imaging and Brain Research Center of Carnegie Mellon 
University with a 32-channel Siemens receive coil. 
Diffusion-weighted structural images were acquired 
using the multi-band sequences (version R011 for Syngo 
VB17A) provided by the University of Minnesota Center 
for Magnetic Resonance Research 
(https://www.cmrr.umn.edu/ multiband/). Diffusion-
weighted and functional images were all collected as 
oblique-axial scans aligned with the Anterior 
Commissure–Posterior Commissure (AC–PC) line at 
midline.  

The diffusion-weighted images were collected with 
the monopolar cmrr_mbep2d_diff sequence 
(http://www.cmrr.umn.edu/multiband) in 54 slices (an 
ascending interleaved acquisition with 2.4-mm-thick 
slices and no inter-slice gap). The matrix was 96 × 96 and 
FOV was 230 mm, resulting in 2.4-mm isotropic voxels 
(TR = 2264 ms, TE = 74.8 ms, multi-band acceleration 
factor = 3, number of diffusion encoded directions = 30, 
diffusion b-value = 1000 s/mm2, number of non-diffusion-
encoded images = 4, bandwidth = 1860 Hz/Pixel, partial 
Fourier factor of 6/8). The 30 diffusion encoding vectors 
were taken from standard Siemens gradient table. Three 
sets of these images were collected for each participant in 
the scanning session (one before the learning and again 
following each learning phase) with opposite phase 
encoding directions (anterior to posterior (AP) and 
posterior to anterior (PA)) so that geometric distortions 
and eddy currents could be corrected using FSL v. 5.0 
tools (topup and eddy). The total acquisition time for 
these two scans was 3 min and 20 s. Each scanning session 
involved several functional scans using a gradient-echo 
echo-planar imaging pulse sequence with a repetition 

time of 1,000 ms, echo time of 25 ms, and a flip angle of 
60°. Twenty 5-mm slices, aligned along the anterior 
commissure-posterior commissure line, were imaged 
with a 1-mm interslice gap and a 32-channel head coil. 
The acquisition matrix was 64 × 64 with 3.125- × 3.125- × 
5.0-mm in-plane resolution.  Although this resolution of 
the functional data is somewhat coarser than that of the 
diffusion data, we have previously found this resolution to 
work well for machine learning classification (e.g., Just et 
al., 2010; Mitchell et al., 2008). Our choice of a lower 
resolution the fMRI acquisition was motivated not only by 
the benefit of higher signal to noise ratio for decoding the 
neural signatures of the compounds (by virtue of 
aggregating over a larger voxel volume), but also by the 
desire for higher temporal resolution for the functional 
connectivity analyses. Images were corrected for slice 
acquisition timing, motion, and linear trend, and they 
were normalized to the Montreal Neurological Institute 
template without changing voxel size (3.125 × 3.125 × 6 
mm). There were various numbers of images acquired for 
each type of functional scan.  The pre-exposure and post 
learning retrieval tasks involved the acquisition of 605 
images over 10 min, 5 s.  The two in-scanner learning-
phase sessions involved the collection of 198 images over 
3 min, 18 s. 
 
Image processing and analysis 
 
To allow comparison across imaging modalities, sessions, 
and participants a number of precise pre-processing 
corrections and co-registrations of the imaging data were 
required.  Preprocessing of the diffusion-weighted images 
(DWI) made use of tools from FSL v. 5.0.8 
(http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/) (Smith et al., 
2004), and code written in-house for motion correction of 
diffusion data (Jung, 2010; Jung et al., 2013) running 
under MATLAB®, v. R2011a 
(www.mathworks.com/products/matlab). Brain-only 
masks of images at each stage of the following procedures 
were extracted using the FSL’s “bet2.” Estimation and 
correction of geometric distortion was carried out for 
each session (pre-training and post-training) using the 
eight non-diffusion-weighted images (b-value = 0), four 
collected with each phase encoding direction (A>P, P>A) 
(Andersson et al., 2003). FSL’s “topup” tool was first used 
to estimate a warp-field and the data were subsequently 
resliced and the two diffusion runs averaged using the 
“applytopup” tool. FSL’s “eddy” tool was then used to 
simultaneously model the eddy current effects and head 
motion effects in the run-averaged data using default 
values for all parameters (i.e., a quadratic spatial model, 
no spatial filtering, and five iterations of the non-linear 
estimation).  

Additional pre-processing involved generation of an 
estimated diffusion-weighted image for each corrected 
diffusion-weighted image on the basis of average signal 

 

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
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intensities across the corrected un-weighted (b-value = 0) 
images, a method proposed by Bai & Alexander (2008) 
and shown to improve the co-registration of diffusion-
weighted data collected with even relatively low b-values 
(1200 s/mm2).  This is similar to the well-known 
UNDISTORT (Using Non-Distorted Images to Simulate a 
Template of the Registration Target) method proposed by 
Ben-Amitay et al. (2012), except that a simple diffusion 
tensor model is used rather than the more complex 
CHARMED (Composite Hindered and Restricted Model of 
Diffusion) proposed by Assaf & Basser (2005). It is also 
essentially the same as a method proposed by Nam & Park 
(2011) that used a diffusion tensor model to simulate the 
high b-value image templates, but also incorporated a 
non-linear registration method for the motion correction. 
The  estimation and reslicing was carried out with FSL’s 
“mcflirt” program, using a correlation ratio cost function. 
Finally, each of the affine transformation matrices 
computed above were combined, and a single reslicing of 
the original data was carried out with FSL’s “applywarp” 
and the direction of the diffusion vectors were rotated on 
the basis of this combined transformation prior to fitting 
a weighted-least squared diffusion tensor model with 
FSL’s “dtifit.”  

An additional co-registration was required to 
compare the before and after repeated measures of DTI 
metrics within each participant. The fractional anisotropy 
(FA) images calculated for each session provide exquisite 
contrast for carrying out this co-registration and so these 
were used in preference to the mean of the un-weighted 
(b-value=0) images, and because FA is a normalized 
measure (the standard deviation of three eigenvalues 
from the DTI fit), changes in signal due to scanner drift 
between acquisitions can be ignored. Specifically, a 
forward (pre- to post-training) and backward (post- to 
pre-training) 12-parameter affine transformation matrix 
was calculated with FSL’s “flirt” for each participant’s two 
FA images, and the half-way transformation matrix of 
each was used to re-slice the data into a position half-way 
between the two FA images. This method ensures that 
both the pre- and post-training images undergo 
comparable spatial blurring during the re-slicing process.  

To allow comparison across participants, we used 
FSL’s “fnirt” tool with default parameters for FA to FA non-
linear co-registration, to estimate the warping from each 
participant’s pre- and post-training FA map to the 
FMRIB_FA_1mm template included in FSL. This nonlinear 
warping was applied to each participant’s mean 
diffusivity image (the average of the three eigenvalues 
resulting from the tensor fit). Following the initial 
transformation to the FMRIB_FA_1mm template, a study 
specific template was created by averaging all FA data 
from both groups and both sessions, and this was used as 
the target for final non-linear spatial normalization of 
each FA image. These final warp coefficients were then 
applied to the mean diffusivity maps for each participant. 

In contrast to the approach used to compare FA across 
participants using Tract-based Spatial Statistics (Smith et 
al., 2006), instead of projecting the diffusivity data to the 
white matter skeleton defined by peak FA, we used a 
voxel-wise analysis restricted to the left and right 
hippocampus (as defined by the automated anatomical 
labeling (AAL) atlas).  The specific hypothesis that 
structural changes in the form of decreased MD would be 
found in the left hippocampus was tested by calculating 
voxel-wise changes in this region of interest (and 
separately in the right hippocampus for comparison). 
Analysis of changes in mean diffusivity within these 
regions was then tested by comparing pre- and post-
training data as a paired t-test across all participants 
family-error-corrected for multiple comparisons using 
Gaussian random field theory and the cluster extent 
threshold with a cluster forming t-threshold of 2.00.  

Pre-processing of the T2*-weighted EPI data was 
carried out with a combination of tools from MATLAB® v. 
R2011a, SPM12, and FSL v. 5.0.8. Because the position of 
the head was not perfectly aligned between sessions, we 
first corrected each run separately for geometric 
distortions using the gradient echo field map collected 
within the same session and FSL’s “prelude” and “fugue” 
tools. Motion was then estimated separately within each 
run with FSL’s “mcflirt” using default (six-parameter 
affine, reference as the temporally middle image, 
normalized correlation cost functions settings (Jenkinson 
et al., 2002) and the “fsl_motion_outliers” script was used 
to calculate the temporal derivative of the root-mean-
square variance (DVARs) (Power et al., 2012) between 
each image and the next and motion outliers were 
identified as any point with a DVAR value greater that the 
75th percentile + 1.5 times the interquartile range. Indices 
for images considered outliers were saved were saved in 
a regressor so that their effect could be removed (i.e., 
“scrubbed”) prior to functional connectivity analyses.  

To allow comparison across sessions, a co-
registration strategy similar to that used for the DWI data 
was carried out. The mean of each motion corrected fMRI 
run was used to calculate a forward (pre- to post-training) 
and backward (post- to pre-training) six-parameter affine 
transformation matrix with FSL’s “flirt” tool. The half-way 
transformation matrix of each was then saved to later re-
slice the data into a position half-way between the two 
means. These means were averaged for each participant 
and a non-linear transformation between each 
participant’s mean EPI image and the MNI averaged 152-
participant T2-weighted template was carried out using 
FSL’s “fnirt” tool with default registration schedule 
parameters for intra-modal T2-weighted registration. All 
participants’ data were then averaged to create a study 
specific EPI template, and the transformation from the 
participant’s mean to this new template was saved as the 
final non-linear warping. (Note that final re-slicing of the 
data was all done in a single step that concatenated all the 
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pre-calculated transformation matrices together and used 
a final sync interpolation to an MNI space with the same 
resolution as the acquired functional data.) 

For the analysis of functional connectivity, a region 
of interest was defined taking the 100 1-mm3 voxels from 
the diffusion data showing the largest decrease in mean 
diffusivity for each participant distributed throughout the 
AAL-defined left hippocampus. The averaged time-series 
of all voxels within each region of interest defined by the 
automated anatomical labeling (AAL) atlas (Tzourio-
Mazoyer et al., 2002) were also calculated for each 
participant, and all pairwise correlations were calculated 
among regions of interest, Fisher-z- transformed, and 
submitted to a group paired t-test.  The analysis of 
intrinsic functional connectivity was identical, except that 
spatially-normalized data were band pass filtered using 
FSL’s “fslmaths” tool, retaining frequencies between 
approximately 0.01 Hz (high-pass sigma = 50) and 0.1 Hz 
(low-pass sigma = 5).  

 
MVPA classification 
 
The percentage signal change relative to the fixation 
condition was computed at each gray-matter voxel for 
each stimulus presentation. The main input measure for 
the subsequent analyses consisted of the mean activation 
level over the six brain images acquired within a 4-s 
window, offset 6 s from the stimulus onset (to account for 
the delay in hemodynamic response). The percentage 
signal-change data of the voxels in the mean image for 
each word were then converted to z-scores.   

A critical step in multi-voxel pattern analysis is the 
selection of a relatively small set of voxels likely to provide 
systematic information about the identity of the neural 
representation that is active without contributing 
additional noise. The approach to selection taken here 
was to first identify those voxels that are stable across the 
multiple presentations of the set of items, and then to 
select from within the most stable voxels those that show 
evidence of microstructural change. Voxel stability is 
measured by the correlation of activation across the set of 
items and averaged over the multiple pairs of 
presentations. High stability is thus an analytic for the 
replicability of the voxel’s activity in its participation in 
the neural representation of the item.  The voxel selection 
is based on only the classifier’s training data for the model 
in each cross-validation fold and is then applied to the test 
data.  

The multivoxel pattern analyses used a Gaussian 
Naïve Bayes (GNB) classifier (using pooled variance) 
(support vector machine classifiers were also explored 
but found to provide no significant advantage in item 
classification). The classifier here is a mapping function f 
of the form f: voxel activation levels X1,…,Xn → Yi, i = 
1,…,m, where Yi are stimulus items and where voxel 
activation levels are mean activation levels of the selected 

voxels. GNB is a discriminative classifier that models the 
joint distribution of class Y and attributes X1,…, Xn,  which 
are conditionally independent given Y. The rank accuracy 
(hereafter, simply “accuracy”) of the classification is the 
normalized rank of the correct label in the classifier’s 
posterior-probability-ordered list of classes. If the 
classifier were operating at chance, the correct label 
would on average appear in the middle of the ranked list, 
producing a chance level accuracy of .50. Accuracies are 
calculated for each item in each fold and then averaged 
across folds, and then across items. The cutoff for 
determining whether rank accuracy exceeds that 
expected by chance are obtained using Monte Carlo 
testing with 10,000 randomly generated data sets given 
the number of items and the number of folds, and 
performing the same calculations to obtain a normal 
probability distribution with mu and sigma estimated 
from the random data. The machine learning establishes a 
measure of the correspondence between the stimulus 
items and the activation patterns. 
 
Results 
 
All data were collected in a single scanning session. 
Diffusion-weighted MRI data were collected prior to 
training, and following each of the two testing sessions. 
Functional MRI data was collected during each phase in a 
single scanning session, and the cycle of training, testing, 
and retrieving the visuo-spatial representation of the 
compound when provided with only the names was 
repeated twice following pre-exposure to the stimuli.  
 
Microstructural changes in hippocampus following 
learning, assessed with diffusion-weighted imaging 
 
A region of the left hippocampus showed a reliable 
decrease in mean diffusivity (MD) between the pre-
learning and post-learning DTI scans (peak t(9) = 2.72, p 
< 0.5, corrected for cluster extent at a height threshold of 
t = 2.00). The center of mass of the change was at MNI 
coordinates -25, -18, -16. This cluster is approximately 
420 mm3 in volume or 13% of the L hippocampus and is 
shown in Figure 2. This location is approximately 1 cm 
more posterior and superior to the one previously found 
following spatial route learning (e.g., Keller & Just, 2016; 
Sagi et al., 2012). The location of this changed region can 
be localized probabilistically to different L. hippocampal 
subregions using the Juelich Histological atlas in FSL v.5.0, 
resulting in a probability of 57% for CA, 50% for the 
dentate gyrus, 34% for the subiculum. 

As noted in the methods, our modest sample size was 
still estimated to be large enough to detect the size of 
effects found for gray matter diffusivity changes following 
learning in a recent study (Hoffstetter, et al. 2017).  For 
the present data, a post hoc power analysis yielded a 
similarly large effect size. Cohen’s d (adjusted for a paired 
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t-test by the method recommended by Dunlap et al. 
(1996), was 1.15, indicating that for 80% power at p < .05 
for a one tailed test, we should have planned to test at least 
7 participants). Unlike many conventional fMRI studies, 
our analyses of changes in mean diffusivity seem to 
benefit from relatively low variability across participants 
compared to the relatively large decreases in MD that can 
be induced by learning. 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.  Region of left hippocampus (in red) showing decreased 
mean diffusivity (MD) after learning. Hippocampal 
subregions: CA shown in blue; dentate gyrus in green; 
subiculum in yellow.   

 
We acquired the DWI data at a higher spatial 

resolution than the fMRI data upon which the remaining 
analyses were based to maximize the possibility of 
isolating which of the anatomically differentiable 
hippocampal regions were affected by the neuroplasticity.  
To verify that we obtained similar results when the 
diffusion data were resliced to match the resolution of the 
fMRI data, we carried out the same analysis of the 
diffusion data with spatial normalization performed using 
the version of the MNI template resampled to match the 
acquired resolution of the functional data.  The results 
were similar to those reported above, although the 
location of the largest group difference in MD was slightly 
more anterior and inferior to that found with the higher 
resolution data (MNI coordinates -28, -9, -20; t(9) = 2.54, 
p < .05).   
 
Informational changes in hippocampus following learning, 
assessed with MVPA classification  

 
If the neural representations of the stimulus compound 
structures become differentiated with learning, then a 
classifier should be able to identify which item was being 
cued (by the item’s name) when the item structure was 
retrieved. A Gaussian naïve Bayes classifier was trained 
only on fMRI data from the pre-learning picture 
presentation blocks at the beginning of the study (which 
established the neural representation of each item’s 
structure before any item names were introduced). The 
classifier was then tested on its ability to identify the 
neural representation of each item’s structure during the 
last post learning test phase when participants were cued 
with only the item name.  

To test whether the same left hippocampal region 
that showed a diffusivity change also encoded the learned 
association (between the item’s name and its structure), 
the voxels for MVPA classification were selected for each 
individual participant by considering the 100 1-mm3 
voxels in that participant’s left hippocampus that had the 
highest mean diffusivity decrease with learning. The 
features selected for use in classification were any 3.125 x 
3.125 x 6 mm functional (fMRI) voxel that contained one 
or more of the 100 1-mm3 voxels whose mean diffusivity 
had decreased most.  This resulted in a selection of a mean 
of 22.2 functional voxels per participant (range 16-30) 
which constitutes a mean volume of 1.3 cm3 or about 40% 
of the total L. hippocampal volume. To verify that these 
selected features (functional voxels) were predominantly 
co-located with the area of decreased MD in the left 
hippocampus in the group analysis of the diffusion data, 
we constructed of “hit-map” of the functional voxels 
selected across all participants and calculated the overlap 
between these voxels and the region of decreased MD 
shown in Figure 2.  The volume of the functional voxels 
selected for at least 4 of the 10 participants was 820 mm3 
and their overlap with the 420 mm3 region of decreased 
MD in the group analysis was nearly complete (410 mm3  
of shared tissue).  The temporal window within which the 
activation of these functional voxels was analyzed 
spanned from 6 to 9 sec after stimulus onset.  

The classification accuracy after the second iteration 
of learning using these voxels in the left hippocampus 
with decreased mean diffusivity produced a rank accuracy 
of 0.57, reliably above chance level (p < .05), as shown in 
Figure 3. This result shows that retrieved mnemonic 
representations of the structure of individual items can be 
decoded from the hippocampus, consistent with a 
theorized hippocampal function of pattern separation 
(learning distinctions between patterns). Furthermore, 
this classification accuracy reliably increased from the 
0.45 level obtained after the first iteration of learning (t(9) 
= 2.23, p = .05).  In contrast, voxels selected in the same 
way from the right hippocampus did not result in 
classification accuracy above chance at either time point. 

The ability to decode the retrieved structural 
representation of the compounds in response to the 
words was also examined in a number of neocortical 
regions that might also be involved in the neural 
representation of the spatial structure of the compounds 
(namely, superior and inferior parietal lobules, fusiform 
gyrus, parahippocampal gyrus, superior and inferior 
extrastriate occipital regions, and calcarine sulcus). The 
functional voxels used as features for the classification 
were each participant’s 60 most stable voxels within each 
region, with regions defined by AAL parcellation 
(Automated Anatomical Labeling Atlas).  The temporal 
window of the functional voxels in the classifier’s training 
set spanned from 6 to 9 seconds post stimulus onset, and 
the test set used a window of 8 to 11 seconds. As above, 
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the training set was based on data evoked by the unnamed 
pictures presented during the pre-learning phase. The test 
sets were acquired during the post learning test phase, in 
which only the name of the compound was presented. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.  Mean rank accuracy of the GNB classifier trained on only 
activation evoked by the initial unlabeled pictures presented 
prior to learning the compounds’ names. The classifier then 
predicted which of 9 molecular structures a participant was 
retrieving when they were given only the name of the molecule 
as a cue, at two time points (after first and second learning 
session). The p < .05 critical value for rank accuracy greater than 
chance is shown by the dashed horizontal line.  Region 
abbreviations for regions displaying reliable classification 
accuracy after the second learning session: L and R indicate 
hemisphere, HIP = hippocampus, IPS = intraparietal sulcus, IPL 
= inferior parietal lobule, SPL = superior parietal lobule. Error 
bars indicate standard error of the mean. 

 
Three regions (L inferior parietal and L and R 

intraparietal sulcus), all of which are associated with 
spatial representation, showed a significant increase in 
classification accuracy between the two learning sessions 
(t(9) = 2.76; t(9) = 2.41; t(9) = 2.67 respectively, p-values 
< .05, 1-tailed t-tests) as shown in Figure 3.  (There was 
also a reliable overall main effect of learning session (F(1, 
9) = 7.65, p < .05).)   After the second block of learning, L 
hippocampus and 6 parietal areas (left and right inferior, 
superior, and intraparietal) showed rank classification 
accuracy above chance, as shown in Figure 3.  Thus, the 
molecular structure of the compounds can be reliably 
decoded from the L hippocampus and from several 
parietal regions after two iterations of learning trials. 
 
Functional connectivity changes involving hippocampus, 
assessed with task-based fMRI 
 
There is typically an increase in inter-regional functional 
connectivity (increased synchronization of activation in 
involved regions) with learning (Büchel et al., 1999; 
Schipul et al., 2012). The analysis here tested whether the 
same left hippocampal voxels that showed a mean 
diffusivity change and an informational change were also 
involved in binding together the activity of learning-

relevant neocortical areas. (The learning –relevant areas 
are assumed to be those that contain the neural 
representations of the molecular structures of the organic 
compounds, as revealed by the MVPA analyses above.) 
The hippocampal voxels within each participant with the 
largest mean diffusivity change should show an increase 
in functional connectivity with these regions between the 
time of the initial baseline picture presentations (when 
participants did not know the item names), and the time 
of the scans following the learning trials (when 
participants were actively attempting to visualize the 
molecular structure given the name). We therefore 
compared the functional connectivity between these 
individually chosen left hippocampal voxels and the 6 
parietal regions that showed a reliable classification 
accuracy. Four of these 6 parietal regions showed a 
reliable increase in their functional connectivity with the 
hippocampal region after the initial block of learning, 
namely left inferior parietal (L IPL, t(9) = 2.99), left 
superior parietal (L SPL, t(9) = 3.19), left intraparietal 
sulcus (L IPS, t(9) = 3.19), and right intraparietal sulcus (R 
IPS, t(9) = 3.38), (all p < .05). (The other 2 regions showed 
a non-reliable increase.) Thus, the microstructurally 
altered voxels of the left hippocampus establish 
heightened synchronization with bi-lateral parietal 
regions associated with spatial processing. The functional 
connectivity increased from the time before the 
association between the item names and item structures 
were known, to the time when they had been learned. 
Notably, a similar analysis of connectivity between voxels 
in the right hippocampus showing the largest decrease in 
diffusivity and these bi-lateral parietal regions showed no 
change in synchronization of activation, indicating a clear 
hemispheric difference in the spatial specificity of the 
diffusion and connectivity changes.     

In addition to the increase in the task-related FC 
between the left hippocampal region of microstructural 
change and parietal regions, there was also an increase in 
the intrinsic connectivity between the left hippocampal 
region of MD decrease and these parietal regions. This 
result was obtained by performing a similar analysis on 
the same data which was then low-pass filtered at 0.1 
Hz. In this analysis there were significant increases in 
intrinsic connectivity with the left superior parietal lobule 
(L SPL, t(9) = 3.18, p < .05), and the right superior parietal 
lobule (R SPL, t(9) = 2.92, p < .05). (There were also trends 
toward similar increases in intrinsic connectivity with the 
left and right inferior parietal lobules t(9) = 2.10, p < .10, 
and t(9) = 2.22, p<.10, respectively.) 

Behavioral measure of learning. The multiple 
converging neural measures of learning described above 
corresponded well to the behaviorally-measured learning 
of the association between the names and the structures 
of the molecules. After the second learning session, the 
mean performance was 87.8% correct (8 out of 9 items 
correct). The increase in behavioral accuracy over 
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learning blocks was approximately linear (R2 = .99), as 
shown in Figure 4, and the increase was reliable (F(3,27) 
= 5.86, p < .005).   Reaction times for the behavioral 
judgments also decreased monotonically across the four 
test blocks and the decrease was well-fit by a power 
function (R2 = .89).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.  Mean behavioral accuracy in the test blocks of the 
experiment.  Blocks 1 and 2 were completed prior to the first 
post-learning MVPA and blocks 3 and 4 were completed 
between he first and second post-learning MVPA scans.  Error 
bars indicate standard error of the mean. 

 
 
Discussion 
 
The study found three types of neural changes in the same 
brain tissues (~1.3 cm3) in the left hippocampus while 
participants reliably learned to associate the spatial 
configuration of a set of organic compounds with their 
names. The informational change concerning the 
retrieved structure of individual compounds came to be 
present in distributed left hippocampal locations, 
indicated by the classifier’s ability to reliably identify the 
organic molecule on the basis of its retrieved spatial 
configuration (when participants were prompted by only 
the compound’s name). This outcome is similar to several 
previous findings of hippocampal informational change 
with learning (e.g., Mack & Preston, 2016). During the 
same learning period of 40 min and within a similar gray 
matter location, the mean diffusivity reliably decreased, 
indicating that microstructural neuroplastic changes in 
the dentate gyrus and CA were occurring. Such 
microstructural changes play a role in consolidating the 
learned information. A third type of change occurring 
during this same time period and at the same locations 
was the change in functional connections that were being 
established to other cortical regions. The co-location of 
these three types of neural changes during concept 

learning indicates the centrality of small portions of the 
left hippocampus in the neural establishing of usable new 
knowledge of the spatial properties of a concept, and also 
illustrates some of the learning mechanisms that are 
involved. 

The decoding of individual compounds from the 
hippocampus demonstrates two of this region’s main 
postulated functions: pattern separation and pattern 
completion (Marr, 1971). The finding that a classifier can 
differentiate among the 9 different compounds provides 
evidence of pattern separation, the distinctive encoding of 
similar learning episodes, allowing distinct long term 
access to very similar information. This rapid encoding of 
ongoing episodic information is thought to be carried out 
by a relatively simple autoassociative network involving 
at least the dentate gyrus.  

The ability to retrieve the spatial configuration of a 
compound given only its name (indicated by a classifier’s 
ability to identify the retrieved spatial configuration of the 
named compound) demonstrates pattern completion. The 
item name was only a fragment of the activity pattern 
present at encoding and yet the spatial configuration 
activity present during the episode was retrieved.   

Marr’s analysis of the connection properties of 
different regions and different cell types within the 
hippocampus forms much of the basis of the current 
theories of how hippocampal subregions of the dentate 
gyrus and cornus ammonis accomplish the two necessary 
functions, and subsequent computational modeling of the 
processes has been consistent with the basic theory (e.g., 
O’Reilly & McClelland, 1994; O’Reilly & Rudy, 2000)).  The 
current findings demonstrate in detail the presence of the 
postulated pattern separation function in the dentate 
gyrus.  

Functional imaging has supported the idea that 
dorsal hippocampus including the dentate gyrus and CA3, 
is primarily involved in pattern separation, and that the 
ventral hippocampus including the subiculum and CA1 is 
relatively more involved in pattern completion (Bakker et 
al., 2008; Lacy et al., 2010; Yassa & Stark, 2011).  High 
resolution fMRI of the hippocampus has allowed MVPA 
methods to be applied to these separate hippocampal 
fields has attempted to provide more fine-grain 
dissociations and suggests that the dentate gyrus and CA3 
are  specialized for pattern separation and that CA1 is 
more likely involved in pattern completion (Berron et al., 
2016; Bonnici et al., 2012).  The present functional data do 
not allow us to distinguish these functions, likely due to 
the relative coarseness of the MRI resolution. However, 
because both functions are involved in the learning task, 
it is not surprising that the decrease in diffusion within the 
hippocampus with learning extended across both of these 
subfields of the hippocampus.   

The MVPA/machine learning approach makes it  
possible to watch the neural representations of new 
concepts grow in the brains of learners as the concepts are 
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being acquired (Bauer & Just, 2015). The neural 
representations become more distinct and identifiable as 
participants gain additional exposure to the concepts. 
This capability opens the possibility of investigating the 
neural acquisition of individual new STEM concepts, to 
determine which facets of the learning and instruction 
may be amenable to enhancement. 

The ability to identify the neural representation of a 
new concept as it is being learned opens the possibility of 
cognitive neuroscience findings informing and enhancing 
instructional methods. It is possible to assess several 
different types of neural properties of concept 
representations in STEM learners, and to determine how 
these properties are related to behavioral indices of 
learning. One example is that a given participant’s neural 
representations of a set of key concepts can be compared 
to those of a successful advanced student, to determine 
whether neural similarity is an accurate predicter of 
academic mastery of the concepts. Another example is 
that the intrinsic reliability and identifiability of a 
participant’s neural representations might be predictive 
of academic mastery of the concepts. A third possibility is 
that the dimensional structure of the neural 
representations might analyzed with the goal of revealing 
which facets of the concept may be underdeveloped and 
maybe be enhanced with targeted additional instruction.  
The neural properties of a concept representation have 
the potential to substantially contribute to prediction of 
learning outcomes above and beyond what behavioral 
measures can predict. In the long term, it may be possible 
to develop combined neural and behavioral models to 
guide the design of in-classroom interventions that 
leverage the new neural data beyond classical behavioral 
measures.  

The study leaves many interesting questions 
unanswered, but some of them seem readily addressable. 
First, it remains unclear whether the three types of neural 
changes in left hippocampus are specific to the learning of 
spatial information or whether some or all of them also 
occur at the same location and with similar properties 
with the learning of other, non-spatial types of 
information. Second, the left lateralization of the 
hippocampal neuroplasticity in this study and in previous 
studies is somewhat surprising. Although it could be 
argued that this hemispheric specificity is due to the 
linguistic content in the present task, that explanation is 
less tenable for studies showing left lateralized 
hippocampal changes in diffusivity after practice at non-
verbal spatial memory tasks in humans (e.g. Keller & Just, 
2017; Tavor, Hofstetter, & Assaf, 2013).  Interestingly 
though, recent studies in mice have found that 
optogenetic stimulation differentially affects plasticity in 
left and right hippocampus (Kohl et al., 2011) and that 
optogenetic “silencing” of the left hippocampus but not 
the right hippocampus, impairs performance on an 
associative spatial memory task (Shipton et al., 2014). 

Third, there may also be changes in associated white 
matter myelination or structural integrity at the 
hippocampal parcel identified here, but the time frame of 
40 min may be too short for such changes to be 
measurable. We have previously provided evidence of 
such myelination changes following 100 hours of reading 
instruction (Keller & Just, 2009), and Hofstetter et al. 
(2017) have recently shown diffusion changes in both 
gray and white matter following two hours of new word 
learning. Finally, future work applying these methods to a 
wide variety of educational materials in many fields is 
clearly of interest. 

The main focus of the findings is the integration of 
three types of neural changes in left hippocampus with 
learning. As new methods for assessing neural changes 
proliferate, it sometimes becomes difficult to apply 
multiple assessments within the same study. The three 
magnetic-resonance-based sensing technologies used 
here converge to show the co-location of these different 
types of neural changes. The diffusivity-based sensing of 
microstructural change with learning is the newest of the 
three modalities, and it produces, at least in this study, the 
finest grain of spatial granularity. To fully understand a 
phenomenon as complex as human learning will likely 
require increasingly integrated accounts of neural 
changes sensed in different ways.  
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