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Abstract

The advent of brain reading techniques has enabled new approaches to the study of concept 

representation, based on the analysis of multivoxel activation patterns evoked by the contemplation 

of individual concepts such as animal concepts. The present fMRI study characterized the 

representation of 30 animal concepts. Dimensionality reduction of the multivoxel activation 

patterns underlying the individual animal concepts indicated that the semantic building blocks of 

the brain’s representations of the animals corresponded to intrinsic animal properties (e.g. 

fierceness, intelligence, size). These findings were compared to behavioral studies of concept 

representation, which have typically collected pairwise similarity ratings between two concepts 

(e.g. Henley, 1969). Behavioral similarity judgments, by contrast, indicated that the animals were 

organized into taxonomically defined groups (e.g. canine, feline, equine). The difference in the 

results between the brain reading and behavioral approaches might derive from differences in 

cognitive processing during judging similarities versus contemplating one animal at a time. Brain 

reading approaches may have an advantage in describing thoughts about an individual concept, 

owing to the ability to decode brain activation patterns elicited by the brief consideration of a 

single concept (e.g. word reading) without a complex cognitive or behavioral task (e.g. similarity 

judgments). On the other hand, some behavioral tasks may tend to evoke a concept from numerous 

perspectives, yielding a representation of the breadth and sophistication of the concept knowledge. 

These results suggest that neural and behavioral measures offer complementary perspectives that 

together characterize the content and structure of concept representations.

Keywords

Neural representation; concept representation; concept; semantic memory; fMRI; MVPA

1 Introduction

The advent of brain reading techniques has enabled new approaches to the study of concept 

representation, based on analysis of the fine-grained brain activation patterns evoked by the 
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contemplation of different concepts (O’Toole et al., 2007; Mitchell et al., 2008; Huth et al., 

2016). Research on knowledge of objects and other concepts has traditionally employed 

methods that collect behavioral responses, such as dissimilarity ratings between pairs of 

objects or lists of their properties (Murphy, 2004). Brain reading research has added to the 

body of behavioral work in characterizing the knowledge of a range of concepts, including 

concrete objects such as animals and tools (e.g. Henley, 1969; Ruts et al., 2004; Just et al., 

2010) and abstract entities such as emotions and academic physics concepts (Baucom et al., 

2012; Kassam et al., 2013; Mason & Just, 2016). Moreover, the two approaches have been 

shown to yield convergent results regarding some of the content of the concepts (e.g. Weber 

et al., 2009; Connolly et al., 2012; Connolly et al., 2016). Thus a major focus of 

neurosemantic research has been to provide an additional level of analysis that strengthens 

the behavioral evidence regarding some of the content of the representation of different 

concepts.

Although previous research has described a similarity between brain reading and behavioral 

methods, the question of how concept representations might differ between the paradigms 

has received less attention. An even greater understanding of concept representation may be 

enabled by an assessment of the unique perspective afforded by brain reading methods 

(Barsalou, 2017). Semantic cognition refers to several fundamental facets of concept 

knowledge, including the breadth and organization of the knowledge stored in long-term 

memory, and also the representation of individual concepts and the content evoked during 

their on-line retrieval (Lambon Ralph, 2014). Brain reading approaches may be particularly 

well suited for illuminating the nature of the representation of individual concepts, owing to 

their ability to decode patterns of neural activity elicited by the consideration of a concept in 

the absence of a complex task, such as pairwise dissimilarity judgments (Bauer & Just, in 

press). Moreover, rich patterns of activation can be evoked by brief periods of consideration 

of a concept (e.g. 1 to 3 seconds or less). Brain reading methods can minimize the scope of a 

concept’s evoked representation, reducing semantic processing that might otherwise arise 

from spreading activation (Anderson, 1983) or explicit consideration of other concepts. 

These attributes of neural measures of concept representation thus grant brain reading 

approaches high construct validity in interrogating the semantic basis for thinking about 

individual concepts.

Studies of the neural representation of individual concepts have enjoyed much success in 

revealing the kinds of properties or semantic dimensions underlying a concept’s evoked 

representation. For example, data reduction techniques such as factor analysis have revealed 

the principal dimensions underlying concepts of emotions, such as valence and lust (Kassam 

et al., 2013). fMRI and MEG studies have also used regression models to predict the 

spatially distributed activation patterns of object concepts, based on some of the objects’ 

properties extracted from text corpora (Mitchell et al., 2008; Pereira et al., 2013) or 

generated by human participants (Chang et al., 2011; Sudre et al., 2012). Thus, neural 

measures of concept representation suggest that the basis for thinking about individual 

concepts corresponds to thoughts about some of the fundamental properties of a concept.

Previous research has revealed that concept representations are encoded by spatially diverse 

neuronal populations across multiple lobes of the brain (Huth et al., 2016; Bauer & Just, in 
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press). There are several theories regarding the neural representation of concepts, one of 

which is that a concept is encoded in spatially distributed, modality-specific areas that are 

specialized to process a concept’s sensorimotor and affective properties (Kiefer & 

Pulvermüller, 2012). A related theory, called the “hub-and-spoke” theory, further posits that 

a centralized hub integrates a concept’s anatomically distributed representations of its 

properties (Patterson et al., 2007). A major commonality to these theories is that a concept’s 

properties are neurally represented across different brain systems.

On the other hand, behavioral research has delineated both the various properties of concepts 

and also the structural form of domains of concepts. For example, multidimensional scaling 

techniques have been used to reveal some of the fundamental properties of concepts about 

odors, colors, and concrete objects such as animals (Henley, 1969; Berglund et al., 1972; 

Indow & Aoki, 1983; Shepard & Cooper, 1992). Behavioral measures have also been used to 

reveal the structural or organizational form that underlies the knowledge of a domain of 

concepts. For example, although lists of properties generated for individual animals have 

been reduced to a low-dimensional space defined by some of the animals’ intrinsic 

properties, these same data are better modeled as a hierarchical tree structure that groups the 

animals into increasingly specific taxonomic groups (e.g. rodents and mammals, primates 

and rodents) (Kemp & Tenenbaum, 2008). Behavioral measures may therefore describe the 

breadth and structural form of concept knowledge stored in long-term memory, which 

subsumes the concepts’ more fundamental properties. This may derive from the fact that 

many behavioral studies collect a large amount of responses. For example, studies that 

collect lists of properties of concepts have tended to instruct participants to thoroughly 

consider each concept (e.g. 10 properties listed per concept, Ruts et al., 2004). Moreover, in 

studies that collect dissimilarity ratings, each concept might be judged against a large 

number of other concepts, thereby evoking a concept from numerous perspectives (Henley, 

1969).

Research that directly compares neural and behavioral measures of representations of the 

same concepts could thus lead to a greater understanding that distinguishes between on-line 

retrieval of individual concepts and the long-term, comprehensive knowledge of the 

concepts. This was the goal of the current fMRI study, which compared the neural 

representations of 30 animal concepts to pairwise dissimilarity ratings of the same animals 

collected in a previous behavioral study (Henley, 1969). Schematic depictions of the two 

tasks are shown in Figure 1. The behavioral data consisted of 29 dissimilarity ratings per 

animal, and the neural representations corresponded to the multivoxel activation patterns 

evoked by the participants’ limited consideration of each individual animal. Spatial patterns 

of activation composed of individual voxels are thought to reflect neural population codes 

and thus to indicate representational content (Mur et al., 2009).

The approach taken here was to consider a distribution of brain areas that collectively 

contain the information about the animal concepts, consistent with previous research 

showing that concept representations are spatially distributed. Some studies have employed a 

searchlight procedure to locate small clusters of contiguous voxels whose activation patterns 

resemble behavioral dissimilarity ratings (Connolly et al., 2012; Connolly et al., 2016). 

While using for interrogating the representational content of regional clusters, the 
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searchlight procedure cannot assess information encoded in a distributed network of brain 

areas (Haynes, 2015). The approach taken here was to better capture the totality of the 

spatially distributed neural representations without focusing the analysis only on regional 

activation that resembles the dissimilarity ratings. This approach enables an unbiased 

characterization of the neural representations to compare to the behavioral data.

Ever since the development of multidimensional scaling and clustering techniques, which 

model the structure of similarity data, concept representations have traditionally been 

explored using behavioral similarity judgments (Borg & Groenen, 1997; Ruts et al., 2004). 

Only more recently have alternative similarity measures been employed, such as those based 

on statistical regularities between words in large text corpora. The current study therefore 

sought to illuminate how brain reading studies may offer a unique perspective on concept 

representation that complements the conclusions drawn from behavioral similarity ratings, 

which constitute the main source of information of how concepts are represented.

The current study compared both the content and the structural form of the animal 

representations evoked by the fMRI and dissimilarity rating paradigms. The 29 dissimilarity 

ratings per animal were hypothesized to implicitly encode a large number of properties of 

the animals, which should overlap with the more limited content expected in the individual 

animals’ neural representations. Thus some degree of commonality was expected in the 

evoked content (Hypothesis 1), which was assessed using representational similarity 

analysis. This analysis enables relating together different measures of a putatively identical 

phenomenon by mapping the datasets to the same abstract space of inter-stimulus 

similarities which can then be compared (Shepard & Chipman, 1970; Kriegeskorte et al., 

2008).

The structural form underlying the individual animals’ neural representations was 

hypothesized to correspond to a low-dimensional space defined by intrinsic properties of the 

animals (Hypothesis 2A). This hypothesis draws from the multidimensional scaling analysis 

of the dissimilarity ratings originally reported in Henley (1969), which showed that the 

animal concept knowledge could be modeled by 3-dimensional space defined by the 

animals’ size, fierceness, and intelligence. An exploratory factor analysis of the fMRI 

activation patterns was predicted to recover these three dimensions in addition to other 

intrinsic properties. Consistent with previous research on concept representation in the brain, 

the neural representations of the animal properties were predicted to correspond to activation 

patterns distributed across different sensory, motor, and affective areas. For example, the 

representation of the property fierceness might plausibly extend to areas underlying affective 

processing such as orbitofrontal cortex, as suggested by previous research that examined 

animal concept representations in the brain (Connolly et al., 2016).

On the other hand, a re-analysis of the ratings data from Henley (1969) was hypothesized to 

indicate a more complex underlying structure, specifically a partitioning of the animals into 

taxonomic groups (Hypothesis 2B). This hypothesis is consistent with more recent 

demonstrations of a taxonomic basis to lists of properties generated for various animals 

(Kemp & Tenenbaum, 2008). A factor analysis that requests several additional components 

should yield factors that divide the animals into taxonomic groups (e.g. a feline factor on 
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which only members of the feline taxonomic family have high factor loadings). 

Furthermore, a clustering analysis should yield taxonomic groups that resemble a scientific 

taxonomic classification of the animals.

2 Material and methods

2.1 Participants

Twelve right-handed adults (four males, eight females; mean age of 23.9 years, ranging from 

20 to 35) from Carnegie Mellon University and the Pittsburgh community participated and 

gave written informed consent approved by the Carnegie Mellon Institutional Review Board. 

Three additional participants’ data were discarded due to falling asleep, and four other 

participants’ data were excluded because of excessive head motion (greater than half the size 

of a voxel: 1.5mm total displacement in the x or y dimensions or 3mm in the z dimension). 

Four additional participants’ data were discarded due to chance-level accuracy in multivoxel 

pattern classification of the animal concepts (classification features were the 120 most 

“stable” voxels selected from anywhere in the brain excluding the occipital lobe; more detail 

concerning classification is provided in section 2.4.4). This classification, which differed 

from the classification that tested the hypotheses, was used to check for systematicity in a 

participant’s activation patterns regardless of its correspondence to the hypotheses.

2.2 Experimental paradigm and task

The stimuli in the fMRI task were 30 words each of which was the name of an animal, as 

shown in Table I. The 30 animals were the same 30 animals used in the previous behavioral 

study that collected pairwise dissimilarity ratings (Henley, 1969). During scanning, the 30 

words were presented six times in six different random permutation orders (two permutation 

orders were presented during each of three scans). Each word was presented for 3s, followed 

by a 5s rest period, during which the participants were instructed to clear their minds and 

fixate on an “X” displayed in the center of the screen. There were nine total presentations of 

an “X” alone in the center of the screen, 24s each, distributed evenly throughout the three 

scans to provide a baseline measure for calculating percent signal change in the fMRI signal.

When a word was presented, the participants’ task was to actively imagine and think about 

the properties of the animal to which the word referred. To promote their consideration of a 

consistent set of properties across the six presentations of an animal, the participants were 

asked to generate a set of three properties for each animal prior to the scanning session (for 

example, some properties generated for squirrel were “is small and nimble, eats nuts, climbs 

trees”). The participants were instructed to list the properties that came immediately to mind 

for each animal. Each participant was free to choose any properties for a given animal, and 

there was no attempt to impose consistency across participants in the choice of properties.

2.3 fMRI scanning parameters and data preprocessing

Functional blood oxygen level-dependent (BOLD) images were acquired on a 3T Siemens 

Verio Scanner and 32-channel phased-array head coil (Siemens Medical Solutions, 

Erlangen, Germany) at the Scientific Imaging and Brain Research Center of Carnegie 

Mellon University using a gradient echo EPI sequence with TR = 1000ms, TE = 25ms, and a 
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60° flip angle. Twenty 5mm-thick AC-PC-aligned slices were imaged with a gap of 1mm 

between slices, in an interleaved spatial order starting at the bottom. The acquisition matrix 

was 64 × 64 with 3.125 × 3.125 × 5mm in-plane resolution.

Data preprocessing was performed with the Statistical Parametric Mapping software (SPM8, 

Wellcome Department of Cognitive Neurology, London, UK). Images were corrected for 

slice acquisition timing, motion, and linear trend; temporally smoothed with a high-pass 

filter using a 190s cutoff; and normalized to the Montreal Neurological Institute (MNI) 

template without changing voxel size (3.125 × 3.125 × 6mm).

The percent signal change relative to the baseline condition was computed at each gray 

matter voxel for each stimulus presentation, using SPM8. The main input measure for the 

subsequent analyses consisted of the mean of the four brain images acquired within a 4s 

window, offset 5s from the stimulus onset (to account for the delay in hemodynamic 

response). The intensities of the voxels in this mean image for each stimulus presentation 

were then normalized (mean = 0, SD = 1).

2.4 Data analysis

2.4.1 Overview—Representational similarity analysis was used to assess the 

commonality of the content encoded in the animal representations evoked by the brain 

reading task and behavioral dissimilarity judgements. Additionally, each dataset from these 

two tasks was separately submitted to exploratory factor analysis and clustering analysis to 

ascertain its underlying structural form.

2.4.2 Assessing the representational similarity between the brain activation 
patterns and dissimilarity ratings—To compare the two datasets, the fMRI activation 

patterns (described in section 2.4.3) were first converted into a vector of pairwise neural 

dissimilarities, and then correlated with the vector of pairwise dissimilarity ratings. (The 

activation data used for the representational similarity analysis corresponded to the same 255 

stable voxels submitted to the factor analysis.) First, the vector of the pairwise neural 

dissimilarities was formed by computing the correlation distance (i.e. 1 – the Pearson 

correlation) between the activation patterns of each pair of animals, averaged across the six 

presentations of each animal. (Correlation distance has been shown to provide better 

accounts than other dissimilarity metrics, such as Euclidean distance; see Kriegeskorte et al., 

2008.) This resulted in a vector of correlation distances, or dissimilarities, for the 435 

possible pairs of animals. This vector of neural dissimilarities, averaged across participants, 

was then correlated with the vector of behavioral dissimilarities, which yielded an index of 

the commonality of the information carried in the two datasets.

2.4.3 Factor analysis of the brain activation patterns—The brain activation 

associated with the 30 animal concepts was factored into different components shared across 

participants using a two-level exploratory factor analysis, as described in previous studies 

(e.g. Just et al., 2010). The factor analysis was based on principal axis factoring with 

varimax rotation, implemented in MATLAB 7 (Mathworks, MA) using the same algorithm 

as the SAS factor procedure (www.sas.com).
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The goal of the first-level factor analysis was to find the participant-specific distributed brain 

networks involved in the representation of the animal concepts. The first-level factor analysis 

was performed separately for each participant, resulting in 10 first-level factors. (The 

number of first-level factors was fixed at 10, which was the modal number of factors for all 

participants based on the Kaiser criterion.) These factors were characterized by their vector 

of scores for the 30 animals and their associations with specific subsets of an initially 

selected set of 255 voxels. These voxels had the most “stable” activation profiles; the 

stability of a voxel was computed as the average pairwise correlation between its activation 

profiles (vector of its activation levels across the 30 animals) across the repetitions of the 

animals (Just et al., 2010). The choice of the particular number of voxels used as the input 

was motivated by similar analyses in previous studies (Just et al., 2010; Just et al., 2014; 

Mason & Just, 2016). For each participant, the 255 most stable voxels were selected from 

five major brain areas, and the number of voxels selected from a brain area was proportional 

to that brain area’s size: frontal lobe (100 voxels), temporal lobe (45), fusiform gyrus (15), 

parietal lobe (55), and occipital lobe (40). (The selection of voxels from different brain areas 

was motivated by the assumption that a semantic factor would be composed of a large-scale 

cortical network with representation in multiple brain areas.) The fusiform area was 

separated from the other areas because of its prominence in previous studies of object 

representation. The voxels were assigned to anatomical areas using Anatomical Automatic 

Labeling (AAL) (Tzourio-Mazoyer et al., 2002). Before the selection of stable voxels, 

occipital voxels were removed whose activation levels correlated with the character lengths 

of the stimulus words.

A second-level factor analysis was then run to identify factors that were common across the 

participants. The number of factors in this group-level factor analysis was limited to 6, 

beyond which they were not easily interpretable. The group-level factors were characterized 

by their vector of scores for the 30 animals and their associations with specific subsets of the 

first-level factors, and, through these associations, to subsets of originally selected voxels.

Note that a large number of voxels (255) was selected to better capture the majority of the 

activation data that jointly constitute the neural representation of the animal concepts. (A 

number of stable voxels close to 250 was selected such that the number of voxels chosen 

from a given major lobe was proportional to the size of that brain area, which resulted in a 

total of 255 voxels.) Also, the stable voxels were selected in proportion to each major brain 

area, rather than from anywhere in the brain, in order to prevent selection of voxels based 

solely on stability score. For example, because voxels from visual brain regions tend to have 

higher stability scores, a disproportionate number of occipital voxels would result from an 

agnostic selection criterion based only on stability. To compare the results to this agnostic 

selection method, 250, 500, and 1000 stable voxels were selected from anywhere in the brain 

(excluding visual voxels that correlated with length of the word stimuli). Representational 

similarity analysis was used to assess whether the information in these additional sets of 

activation patterns were similar to the activation data submitted to the main analyses.

2.4.4 Testing the interpretation of the factors underlying the neural 
representations—The factors that emerged were initially interpreted by observing which 

animals had the highest and lowest factor scores for a given factor, and by observing the 
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brain locations of the factors. As detailed in the results, the semantic labels initially assigned 

to the factors were tested by comparing the animals’ scores on a particular factor to two 

independent measures: independent behavioral ratings of the animals with respect to that 

factor, and the animal names’ co-occurrence with words that describe that factor in a large 

corpus of text (i.e. latent semantic analysis).

Multivoxel pattern classification was also performed to determine whether an animal could 

be identified based on its activation pattern composed of the brain locations associated with 

the factors. Classification proceeded through three stages: algorithmic selection of a set of 

voxels (features) to be used for classification; training of a classifier on a subset of the data; 

and testing of the classifier on the remaining subset of the data. The training and testing used 

cross-validation procedures that iterated through all possible partitionings of the data into 

training and test sets, always keeping the training and test sets separate. The classification 

was performed with a support vector machines classifier that used 120 “stable” voxels 

(described above), where 20 of the most stable voxels were drawn from the clusters of 

voxels associated with each of the six factors. (Set sizes of 90 and 150 voxels, where 15 and 

25 voxels were drawn from the clusters of voxels associated with each factor, resulted in 

similar classification accuracies, reported in section 3.2.2.) For each partitioning into 

training and test data, the voxel selection criterion was applied to the training set and the 

classifier was trained to associate an activation pattern to each of the 30 animals. Four (out 

of the six) repetitions of each animal were used for training and the mean of the remaining 

two repetitions was used for testing, resulting in 15 total partitionings into training and test 

data. The activation values of the voxels were normalized (mean = 0, SD = 1) across all the 

animals, separately for the training and test sets, to correct for possible drift in the signal 

across the six repetitions. Classification rank accuracy (referred to as accuracy) was the 

percentile rank of the correct word in the classifier’s ranked output (Mitchell et al., 2004).

2.4.5 Factor analysis of the dissimilarity ratings—A single-level factor analysis 

was performed on the mean dissimilarity ratings (across participants) in Henley (1969). (The 

data for the individual participants were not available.) The number of factors requested was 

set to 6, as in the factor analysis of the fMRI data. This number was greater than the three 

dimensions visualized in the original multidimensional scaling analysis in Henley (1969).

In Henley (1969), 21 participants rated the dissimilarity between each pair of animals on a 

0–10 scale, for a total 435 pairs (all possible pairs of the 30 animals). The ratings were 

repeated in a second session in which the positions of the animal names presented in each 

pair were inverted, and the ratings from both sessions were averaged together. Three 

participants’ data with the greatest deviation from the sample had been removed and the 

remaining 18 participants’ data were averaged together.

2.4.6 Testing the interpretation of the factors underlying the dissimilarity 
ratings—To test the hypothesis that the factors underlying the dissimilarity ratings 

correspond to taxonomic groups of animals (e.g. rodent), the groups of animals indicated in 

the factors were compared to a scientifically-defined taxonomic classification of the animals, 

as detailed in the results. K-means clustering of the dissimilarity ratings was used a data-

driven method to separate the animals into the taxonomic groups suggested by the factors. 

Bauer and Just Page 8

Neuroimage. Author manuscript; available in PMC 2019 February 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The degree of agreement in the animals’ group assignments between the dissimilarity ratings 

and taxonomic classification was quantified using the Wallace coefficient of congruence 

(Wallace, 1983). This agreement was then statistically assessed against chance using the null 

hypothesis testing procedure in http://www.comparingpartitions.info (Pinto et al., 2008), as 

detailed in the results.

3 Results

3.1 Modest commonality in the content of the animal representations evoked by the fMRI 
and behavioral tasks

There was some commonality in the content of the animal representations evoked by the two 

paradigms. The pairwise neural dissimilarities among the animal concepts (obtained by 

using representational similarity analysis) were modestly but statistically reliably correlated 

with the behavioral dissimilarity ratings: r(433) = 0.12, p < 0.05. This finding of 

representational commonality across the two types of measures was expected (Hypothesis 

1), although the representational formats of the animal concepts were hypothesized to differ. 

As detailed below, in the fMRI measure of thinking of the individual animals, the principal 

dimensions underlying their neural representations corresponded to intrinsic properties of 

the animals (e.g. size, intelligence, habitat). On the other hand, the factors underlying the 

pairwise dissimilarity ratings corresponded to taxonomic groups of the animals (e.g. rodent, 
feline, canine).

3.2 Neural representations of the animals, considered individually, were underpinned by 
intrinsic properties of the animals

The six factors underlying the multivoxel brain activation patterns of the animal concepts 

corresponded to the animals’ fierceness (two factors), intelligence, habitat, farm-relatedness, 

and size. The factor analysis was performed across participants, which points to the 

generality of the findings.

Figure 2 shows how the factor scores ordered the animals along each factor. For example, for 

the first fierceness factor (factor 1), the highest scores occurred for bear and elephant and 

some of the lowest scores occurred for donkey, mouse, and sheep. Here fierceness seems to 

refer to an animal’s predacity or how threatening it is due to its size. The intelligence factor 

accorded its highest scores to chimpanzee and dog, and its lowest scores to mouse and 

beaver. Another factor appeared to reflect the degree of enclosure of habitat (e.g. den or 

burrow versus open field), and it assigned its highest scores to animals such as lion, beaver, 
and bear and some if its lowest scores to horse, antelope, and camel (animals that graze on 

open land). A fourth factor seemed to refer to another kind of fierceness, and it ranked wolf 
and fox highest and goat lowest. A fifth factor (farm-relatedness) favored many farm 

animals, assigning some of its highest scores to horse, cow, and goat. A sixth factor encoded 

size, according some of its highest scores to elephant, zebra, and giraffe, and its lowest 

scores to squirrel and chipmunk. The percentage of variance accounted for by each of the six 

factors was fierceness: 7.3; intelligence: 6.3; enclosure of habitat: 5.7; second kind of 

fierceness: 5.4; farm-relatedness: 5.0; and size: 4.9.
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Note that the results of the factor analysis are unlikely to have critically depended on the 

voxel selection method employed, namely the selection of voxels proportional to the size of 

each major brain area. Representational similarity analysis was used to assess whether the 

information encoded in the voxels submitted to the factor analysis was similar to the content 

encoded in 250, 500, and 1000 voxels selected from anywhere in the brain. The vector of 

pairwise neural dissimilarities (averaged across participants) computed from the voxels used 

in the main analyses was statistically reliably correlated with the dissimilarities computed 

from each set of voxels for comparison: r(433) = 0.18, p < 0.001 (compared to 250 voxels); r 
= 0.22, p < 0.001 (500 voxels); and r = 0.20, p < 0.001 (1000 voxels).

Since each animal had a score for each of the factors, an animal concept’s neural 

representation was a composition of these six factors. For example, mouse ranked high in 

enclosure of habitat and low in intelligence. The interpretations of the factors that are 

presented here are supported by the converging evidence below.

3.2.1 Brain areas associated with each factor—Each of the six factors was 

associated with multiple brain locations, distributed across multiple lobes. The clusters of 

voxels associated with each factor (identified by their high factor loadings) are shown in 

Figure 3. The fierceness factor (factor 1) showed high factor loadings for a cluster of voxels 

located in left orbitofrontal cortex which has been implicated in affective evaluation (e.g. 

reward and punishment in decision making) (Montague & Berns, 2002; Mitchell, 2009). A 

cluster of voxels corresponding to the second fierceness factor (factor 4) was also located in 

this brain area, and there were additional clusters in medial prefrontal cortex and left 

temporoparietal junction, which have also been implicated in social cognition (e.g. reasoning 

about another’s beliefs or intent) (Samson et al., 2004; Mitchell, 2009). This network of 

regions implicated in social cognition has also been identified in a previous study that 

searched for multivoxel representations of an animal’s predacity (Connolly et al., 2016). 

Connolly et al. (2016) found activation related to animal fierceness in superior temporal 

sulcus and other social cognition areas, and conclude that perception of threat extends to 

thoughts about non-human animals. These previous findings, along with the ordering of the 

animals along these two factors, provide support for the fierceness interpretations of factors 

1 and 4.

The brain locations corresponding to intelligence (factor 2) were widely distributed in the 

brain. Among these locations were left inferior frontal gyrus and left middle temporal gyrus, 

which have been widely implicated in language (Price, 2010) and have been shown to 

underlie the representation of abstract concepts (e.g. dogma) more than concrete concepts 

(e.g. screwdriver) (Binder et al., 2005; Wang et al., 2010; Wang et al., 2013). There were 

also clusters of voxels associated with intelligence in bilateral superior angular gyrus/

intraparietal sulcus, a heteromodal hub thought to organize information from different 

modalities and thus to construct abstract concepts (Binder & Desai, 2011; Bonner et al., 

2013). Thoughts about intelligent animals could plausibly be multifaceted or abstract, 

referring to their complex methods of communication or social interactions.

The brain locations associated with enclosure of habitat (factor 3) notably included bilateral 

superior retrosplenial cortex/precuneus. These areas have been shown to activate to 
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information about scenes and dwellings (Just et al., 2010; Bauer & Just, 2015), and are 

thought to be important for spatial navigation (Epstein & Higgins, 2007; Vann et al., 2009). 

Thus these areas could underlie thoughts about the spatial configuration or topography of an 

animal’s habitat. There were also clusters of voxels associated with this factor in medial 

prefrontal cortex. Previous research suggests that medial prefrontal cortex and precuneus, 

where activation was also observed for this factor, constitute a circuit that underlies 

perspective-taking and the representation of the self in relation to the external world 

(Gusnard & Raichle, 2001; Cavanna & Trimble, 2006). Thus, the presence of activation in 

these clusters may indicate that thoughts about an animal include taking the perspective of 

an animal in relation to its habitat.

The factor farm-relatedness (factor 5) included clusters in bilateral inferior gyrus/precentral 

gyrus, in particular the mouth and face areas of the motor cortex. These areas have been 

shown to underlie food and eating concepts, for example concepts of vegetables and eating 

utensils, and concepts of mouth actions such as chewing (Hauk et al., 2004; Just et al., 2010; 

Carota et al., 2012; Bauer & Just, 2015; Carota et al., 2017). The information represented in 

these areas might therefore refer to thoughts of consumption of farm animal meat or other 

farm animal products.

Chief among the brain locations associated with size (factor 6) were bilateral 

parahippocampal gyrus, which has been implicated in the representation of object size 

(Konkle & Oliva, 2012), and bilateral intraparietal sulcus, important to visuospatial working 

memory (Todd & Marois, 2004). Additional clusters of voxels associated with size were 

located in visual regions such as lateral occipital complex (namely bilateral middle and 

superior occipital gyrus).

The attributions accorded to the brain locations (and hence factors) above are instances of 

reverse inference, which are complemented by the orderings of the animals along the factors.

3.2.2 Animal identification accuracy based on the factors—It was possible to 

identify which animal concept a person was thinking about with accuracies above chance 

level by training a classifier on a subset of that person’s brain activation patterns (four out of 

six presentations) and then making the identification over an independent dataset (the mean 

of the remaining two presentations). The classification was performed using voxels drawn 

from the clusters of voxels discovered to underlie each of the six factors. The resulting mean 

classification rank accuracy (averaged across participants) was 0.74, with a range of 0.60 to 

0.86. The accuracies for all the individual participants were above chance level, as 

determined by permutation testing (the p < 0.001 probability threshold for a rank accuracy 

being greater than chance level is 0.54). (Furthermore, set sizes of 90 and 150 voxels 

resulted in similar mean classification accuracies, namely 0.73 and 0.75.)

The results of the classification analysis indicate that the pattern information represented in 

the brain locations associated with the factors systematically differed for the animal 

concepts. These results are expected if the uncovered factors correspond to different 

semantic dimensions of animal concepts that jointly define the animals.
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3.2.3 Testing the interpretation of the factors using independent behavioral 
ratings on animal properties—One test of the semantic labels assigned to the factors 

was obtained by comparing the factor scores to independent behavioral ratings of the 

animals according to different animal properties. A previous study collected ratings of 

animals with respect to four properties, namely intelligence, size, fierceness, and speed 
(Holyoak & Mah, 1981). Three of these properties resembled four of the six uncovered 

factors (intelligence, size, and the two factors for fierceness). In Holyoak & Mah (1981), 25 

participants rated the subjective magnitude of each property a 9-point scale, for each of the 

animals (28 animals were common between Holyoak & Mah, 1981, and the present fMRI 

study). For each property, the ratings of the 28 animals in common were correlated with the 

corresponding factor scores derived from the brain activation patterns. The mean ratings 

(averaged over participants) were correlated with the corresponding factor scores as follows: 

intelligence: r(26) = 0.59, p < 0.001; size: r = 0.69, p < 0.001; and fierceness (factor 1): r = 

0.36, p = 0.06 (marginally significant). The other factor for fierceness (factor 4) was not 

correlated with the ratings, suggesting that this factor has a more limited association with 

fierceness: (r = 0.24, p = 0.23). The low correlations with the behavioral ratings of fierceness 
suggests that a constellation of animal properties related to an animal’s fierceness is 

represented in these two factors.

3.2.4 Testing the interpretation of the factors using latent semantic analysis
—Three of the six factors did not correspond to any of the rated properties in Holyoak & 

Mah (1981). These factors were enclosure of habitat, farm-relatedness, and the second 

fierceness factor (factor 4). To test the interpretation of the semantic labels associated with 

these factors, latent semantic analysis (LSA, http://lsa.colorado.edu) was used, which 

represents a word’s meaning by its statistical co-occurrence with other words in a large 

corpus of text (Deerwester et al., 1990; Landauer & Dumais, 1997). LSA was used to 

determine the distance between each of the 30 animal names and a string of one to three 

words (excluding the animal names) intended to describe a given factor. The string defined 

for enclosure of habitat was “hole den burrow”; for farm-relatedness it was “farm”; and for 

the second factor for fierceness it was “attack ferocious force.” The resulting LSA-computed 

distances between each animal and the descriptive strings were correlated with the animals’ 

corresponding factor scores derived from the brain activation patterns as follows: enclosure 
of habitat: r(28) = 0.50, p < 0.01; farm-relatedness: r = 0.35, p = 0.06 (marginally 

significant); and fierceness (factor 4): r = 0.38, p < 0.05, indicating that the second factor for 

fierceness retains some association with this attribute.

Note that the choice of LSA over WordNet was made to provide a linguistic interpretation of 

the factors to test the hypothesis that the factors correspond to animal properties. LSA has 

been used by previous studies to provide a linguistic interpretation of factors (e.g. Just et al., 

2010). The possibility of a taxonomic basis to the animals’ neural representation was 

explored in the comparison of the k-means clusters of the neural representations with the 

scientifically-defined taxonomic groups, rather than through a comparison to WordNet’s 

taxonomic structure (Miller, 1995). Although some studies have shown a correspondence 

between activation patterns of object concepts and taxonomic structure as modeled by 

WordNet, these studies considered objects across qualitatively different categories (e.g. 
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animate and non-living categories) and thus demonstrate a significant effect of category 

boundary (e.g. Kriegeskorte, 2008; Fairhall & Caramazza, 2013; Carlson et al., 2014). By 

contrast, research that examined within-category neural similarity (e.g. only between 

animals) did not find a relationship with WordNet (Carlson et al., 2014).

3.2.5 Summary—The principal dimensions underlying the neural representations of the 

animal concepts corresponded to intrinsic properties of animals. The brain areas associated 

with a given factor have been shown in previous studies to be involved in perceptual, 

cognitive, or social processing related to that factor. Furthermore, two independent metrics 

obtained without brain imaging (i.e. behavioral ratings of animal properties, and corpus-

based characterizations of word meaning) bore a substantial relation to the characterization 

obtained through factor analysis of the brain activation patterns. These results are consistent 

with the hypothesis that the fMRI data reveal the core properties of animal concepts evoked 

during contemplation of individual animals (Hypothesis 2A).

3.3 The factors underlying the dissimilarity ratings indicated taxonomic groups of the 
animals

The factors underlying the dissimilarity ratings ordered the animals according to the degree 

to which they fit into different taxonomic groups (taxa). These factors corresponded to 

rodent, equine, feline, primate, canine, and bovine taxa. (The bovine factor might also be 

interpreted as a farm-relatedness factor, although this is less likely given the taxonomic basis 

for the other factors.) Figure 4 shows how the factor loadings ordered the animals along each 

factor.

There were two clusters of animals in each factor: one cluster containing a few animals with 

high loadings on that factor, and one cluster with most or all of the remaining animals with 

low loadings on that factor. For example, in the feline factor (factor 3) there was a cluster of 

feline animals as well as a non-feline cluster. The equine factor (factor 2) had a cluster of 

equine-like animals with intermediate factor loadings, and some of these animals did not 

load high on any of the factors, namely camel, giraffe, and elephant (other ungulates, i.e. 

hoofed animals). The percentage of variance accounted for by each of the six factors was 

rodent: 15.3; equine: 13.9; feline: 10.4; primate: 7.2; canine: 5.6; and bovine: 5.4.

3.3.1 Testing the interpretation of the factors against a scientific taxonomic 
classification of the animals—To test the interpretation that the factors underlying the 

dissimilarity ratings correspond to different taxa, the groups of animals indicated in the 

factors were compared to a scientific taxonomic classification of the animals (as specified by 

the Integrated Taxonomic Information System, www.itis.gov). First, a data-driven method, 

k-means clustering, was applied to the dissimilarity ratings to separate the animals into the 

groups that were suggested by the factors. The number of requested clusters k was set to 7, 

which equaled the number of distinct taxonomic groups indicated in the factors (including a 

group of equine-like animals suggested in the equine factor, which did not load high in any 

factor). The scientifically-defined taxonomic groups of the animals were formed by 

grouping together animals that have the same classification at a taxonomic rank of genus, 

family, or order (the three ranks directly above species). There were nine such groups. Two 
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of the 30 animals did not share their taxonomic classification with any of the other animals, 

and so constituted their own singleton groups.

The groups of animals from the clustering of the dissimilarity ratings and as defined from 

the scientific taxonomic classification are detailed in Table II. The degree of agreement in 

the animals’ group assignments between the dissimilarity ratings and taxonomic 

classification was quantified using the Wallace coefficient, which expresses this agreement 

on a continuous scale between 0–1 (Wallace, 1983). The degree of congruence between the 

classifications was high: Wtaxonomy→ratings = 0.67, 95% CI [0.55, 0.79], meaning that if two 

animals are in the same group according to the taxonomic classification, they have a 67% 

chance of being in the same group assignment according to the clustering of the dissimilarity 

ratings. This degree of agreement was greater than the value expected by chance: the 

Wallace coefficient of independence Wi (taxonomy→ratings) did not fall within the 

Wtaxonomy→ratings 95% confidence interval (Wi (taxonomy→ratings) = 0.13), hence the null 

hypothesis of independence between the classifications was rejected (Pinto et al., 2008). 

Furthermore, Wratings→taxonomy = 0.54, 95% CI [0.34, 0.74], and the corresponding Wallace 

measure of independence Wi (ratings→taxonomy) did not fall within the Wratings→taxonomy 95% 

confidence interval (Wi (ratings→taxonomy) = 0.10). Table III contains the contingency table 

that presents the numbers of animals that shared their group assignment between the two 

classifications.

By contrast, there was no statistically significant agreement between the scientifically-

defined taxonomic groups of animals and k-means clusters of the fMRI data. (K-means 

clustering of the fMRI data yielded k = 7 clusters that were not easily interpretable.) 

WfMRI→taxonomy = 0.12, 95% CI [0, 0.26], and the Wallace coefficient of independence 

Wi (fMRI→taxonomy) was within the WfMRI→taxonomy 95% confidence interval 

(Wi (fMRI→taxonomy) = 0.10), hence the null hypothesis of independence between the 

classifications was not rejected. Furthermore, Wtaxonomy→fMRI = 0.16, 95% CI [0, 0.32], and 

the Wallace coefficient of independence Wi (taxonomy→fMRI) also fell within the 95% 

confidence interval (Wi (taxonomy→fMRI) = 0.13). Table III contains the contingency table 

which presents the lack of congruence between the two classifications.

3.3.2 Summary—The factors of the behavioral dissimilarity ratings were consistent with 

a scientific taxonomic classification of the animals, indicating rodent, feline, canine, and 

other taxa. Taxonomic grouping reflects the degree to which animals are of the same kind 

based on multiple shared properties. These results agree with previous accounts of adults’ 

taxonomic intuitions about animals (Kemp & Tenenbaum, 2008; Unger et al., 2016). The 

results are consistent with the hypothesis that the dissimilarity ratings reveal the domain-

level structure of the knowledge of animals (Hypothesis 2B).

4 Discussion

This study demonstrates that brain reading and behavioral paradigms may provide 

complementary characterizations of the representations of concepts, using animal concepts 

as a case study of the comparison. The current study focused on comparing brain reading 

results to behavioral dissimilarity ratings, given that concept representations have 
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traditionally been explored using dissimilarity judgments since the development of 

multidimensional scaling and clustering techniques, which model the structure of similarity 

data (Borg & Groenen, 1997; Ruts et al., 2004). Exploratory factor analysis was separately 

applied to multivoxel patterns of brain activation underlying animal concepts and to 

dissimilarity ratings between pairs of the same animals, revealing differences in their 

principal dimensions. Representational similarity analysis also indicated that there was some 

commonality in the representations revealed by the two paradigms. Taken together, the 

results suggest that fMRI measures of thinking of individual concepts reveal their intrinsic 

properties, whereas behavioral tasks such as dissimilarity ratings reveal the structure of the 

knowledge of a domain of concepts.

Concept knowledge refers to both the semantic content of individual concepts, and to the 

structure of that knowledge as manifested by the relationships among related concepts. A 

unified characterization of animal concept knowledge emerged from an analysis of 

complementary datasets, namely the neural representations of 30 animal concepts and 

dissimilarity ratings between pairs of the same animals collected in a previous behavioral 

study (Henley, 1969). As hypothesized, the animal concepts’ neural representations encoded 

a set of core properties of animals. On the other hand, the dissimilarity ratings encoded a 

scientifically-defined taxonomic organization of the concept knowledge of the animals. The 

29 dissimilarity judgments made per animal might have been expected to reflect a richness 

of animal properties, including properties that provide contrasts among the animals, but the 

findings suggest that the main information underlying the behavioral dissimilarity ratings 

consists of inter-item taxonomic relatedness, thus indicating a domain-level structure of the 

concept knowledge about animals.

The results here complement previous research that related neural concept representations to 

behavioral dissimilarity ratings of the concepts. Using representational similarity analysis, 

previous studies found that dissimilarities of animal concepts based on multivoxel activation 

patterns in lateral occipital complex, but not in other brain areas, resembled dissimilarity 

ratings of the animals (Weber et al., 2009; Carlson et al., 2014; Connolly et al., 2012; 

Connolly et al., 2016). Lateral occipital complex has been shown to encode information 

about object geometry and other visual features (Grill-Spector et al., 2001). Notably, these 

studies investigated the neural representation of only a small number of animals (between 6–

12), and three studies used animals from different classes (bugs, birds, reptiles, and 

mammals) (Connolly et al., 2012; Carlson et al., 2014; Connolly et al., 2016). Thus, 

information about body shape and other visual features may be sufficient to disambiguate a 

small number of animals from different animal classes, demonstrating an apparent 

taxonomic basis to their neural representations. These studies also found additional brain 

areas that contained information about the animal concepts, such as inferior frontal gyrus, 

precentral gyrus, middle temporal gyrus, and intraparietal sulcus. However, the 

dissimilarities among the neural representations of the animal concepts in these areas did not 

resemble the dissimilarities in the behavioral ratings. These areas, in addition to lateral 

occipital complex, were also found in the present study to underlie the neural representation 

of the animal concepts. Thus, although some brain areas may contain information about 

animals that appears to disambiguate them along taxonomic lines, a more comprehensive 

representation of animal concepts, distributed across many different brain areas, was found 
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here to encode a limited number of intrinsic animal properties that do not constitute a 

scientific classification of animals more generally. The results reported here may possibly 

extend to representations of other types of concepts besides animals, such as tools and other 

manmade objects. That is, contemplation of a given individual concept may generally 

activate only a small number of intrinsic properties of the concept.

The differences in the principal dimensions underlying the representations highlight the 

perspective afforded by fMRI measures of concept representation. Brain reading methods 

enable a characterization of the representation of individual concepts. This is made by 

possible by the evocation of a large multivariate dataset of brain activation associated with a 

concept by even brief periods of consideration.

Brain reading paradigms might also be useful in revealing core, context-independent 

properties associated with an individual concept. A concept’s neural representation can be 

elicited through minimal cognitive processing, thus circumventing a complex behavioral 

task that might introduce additional cognitive processes and influence the concept’s 

properties that are evoked. The representation of a concept is thought to be variable and to 

depend on the evoking context (Yee & Thompson-Schill, 2016); thus “core properties” here 

refers to intrinsic properties that are most often evoked across different contexts. It may be 

interesting for future research to determine the extent to which spreading brain activation 

evokes additional properties of a concept, such as less critical properties and those not 

explicitly thought about (Collins & Loftus, 1975; Anderson, 1983).

Behavioral methods for determining the properties of a concept may also produce both 

intrinsic and taxonomic information, such as in a task requiring the listing of a concept’s 

properties. These data may indicate the relationships among concepts and thus the structure 

of that knowledge, which can provide insight on how people reason using those concepts 

(Kemp & Tenenbaum, 2008). Dissimilarity ratings may be particularly well suited to focus 

on properties that distinguish concepts, indicating how they are organized in a larger 

representational space that subsumes many different concepts.

What has not yet been attempted is a brain reading study that uses a concept comparison 

task that resembles a dissimilarity rating task. Comparing brain reading and behavioral 

measures while keeping the task the same is an important consideration, given that the types 

of information retrieved about a concept have been shown to depend on the evoking task or 

context (Xu et al., 2018). Dissimilarity rating tasks can require large numbers of judgments, 

which are difficult to accommodate in an fMRI study. However, it is possible that such an 

fMRI task would reveal interesting additional details about taxonomically oriented neural 

representations, such as the properties of animal concepts that underlie the comparisons.

Another avenue of future research could be to explore how neural concept representations 

change as a function of the amount of time allotted to thinking about the concept stimuli. For 

example, studies that evoke event-related potentials present word stimuli tachistoscopically 

(on the order of 100ms stimuli durations) (Hauk & Pulvermüller, 2004). One possibility is 

that minimal semantic processing gives rise to concept representations that are less enriched 

by semantic features (Bauer & Just, in press). Briefer presentations would also serve to 
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further minimize confounds due to stimuli themselves. Future research could more precisely 

characterize the content and structure of concept representations that are activated during 

very brief periods of consideration, such as in everyday speech.

This study shows how a more complete characterization of concept knowledge emerges 

from complementary results from brain reading and behavioral methods such as 

dissimilarity ratings. Comparative research may enable a greater understanding of concept 

representation through future research or an integration of comparable existing datasets.
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Figure 1. Schematics of the tasks performed in the (A) fMRI and (B) behavioral task.
The representations of the same 30 animals evoked by the two tasks were compared. In the 

fMRI task, the participants thought about several properties of each individual animal. In the 

behavioral task, the participants rated the dissimilarity between each pair of animals, 

yielding 29 ratings per animal.
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Figure 2. The factors underlying the neural representations of the animals corresponded to 
intrinsic properties of the animals.
For each factor shown above, the 30 animals are arranged on a line according to their factor 

scores. In each factor there were two sets of animals with high face validity for the factor 

label: animals that had high factor scores (colored in blue) or low scores (red). For farm-
relatedness (factor 5) only the animals with high factor scores could be interpreted as having 

high face validity for that factor.
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Figure 3. The brain locations associated with each of the factors underlying the neural 
representations of the animals.
In the fMRI measure of thinking of the individual animal concepts, the neural 

representations were underpinned by intrinsic properties of the animals. Shown above are 

the clusters of voxels associated with each of the factors that emerged from a cross-

participant exploratory factor analysis, which is the union of the voxels from the individual 

participants found to correspond to the second-level factors. For factors 1–4, the voxels were 

clustered at a threshold of 10 voxels. For factors 5–6, the clustering threshold was set to 5 

voxels, as these factors accounted for lower percentages of variance in the data. Rendering 
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was performed on an MNI template brain using the 3D medical imaging software 

MRIcroGL (Rorden & Brett, 2000).

L: left; MNI: Montreal Neurological Institute
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Figure 4. The factors underlying the dissimilarity ratings indicated a division of the animals into 
taxonomic groups.
For each factor depicted above, the 30 animals are arranged on a line according to their 

loadings on that factor. In each factor there were two clusters of animals: one with few 

animals that had high face validity for the factor label and high loadings (colored in blue); 

and a second cluster with most or all of the remaining animals which loaded low. The equine 
factor (factor 2) had a cluster of equine-like animals with intermediate factor loadings, and 
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some of these animals did not load high on any of the factors, namely camel, giraffe, and 

elephant (other ungulates, i.e. hoofed animals).
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Table I.

The 30 stimulus words (animal names) used in both the fMRI and behavioral tasks

Antelope Donkey Mouse

Bear Elephant Pig

Beaver Fox Rabbit

Camel Giraffe Raccoon

Cat Goat Rat

Chimpanzee Gorilla Sheep

Chipmunk Horse Squirrel

Cow Leopard Tiger

Deer Lion Wolf

Dog Monkey Zebra
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Table III.

Contingency tables demonstrating agreement of the scientific taxonomic classification with the behavioral 

dissimilarity ratings, but not with the fMRI data, in the animals’ group assignments

Groups of animals from scientific taxonomic classification

Rodents Equines Felines Primates Canines and caniforms Bovids Other ungulates Probos-cideans Leporids

Clusters of 
animals 

from 
dissimilarity 

ratings

Rodents 5 1 1

Equines 3 2

Felines 4 1

Primates 3

Canines 3

Bovids 3 1

Other ungulates 2 1

Groups of animals from scientific taxonomic classification

Rodents Equines Felines Primates Canines and caniforms Bovids Other ungulates Probo-scideans Leporids

Clusters of 
animals 

from fMRI 
activation 
patterns

Cluster 1 1 1 1 1 1

Cluster 2 2 1 1

Cluster 3 1 1 1 1 1

Cluster 4 1 2

Cluster 5 1 1 2

Cluster 6 2 1 1 1

Cluster 7 1 1 1 1

Note. The contingency tables specify for each group of animals the numbers of those animals that belong to the groups of the other classification. 
Blank entries denote “0.” Top row: Most or all of the animals in each cluster from the dissimilarity ratings were identically assigned according to 
the scientific taxonomic classification. Bottom row: The animals in the (unnamed) clusters from the fMRI data were randomly distributed among 
the groups of animals defined from the scientific taxonomic classification
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