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Abstract

Although it has been possible to identify individual concepts from a concept’s brain activation 

pattern, there have been significant obstacles to identifying a proposition from its fMRI signature. 

Here we demonstrate the ability to decode individual prototype sentences from readers’ brain 

activation patterns, by using theory-driven regions of interest and semantic properties. It is 

possible to predict the fMRI brain activation patterns evoked by propositions and words which are 

entirely new to the model with reliably above-chance rank accuracy. The two core components 

implemented in the model that reflect the theory were the choice of intermediate semantic features 

and the brain regions associated with the neurosemantic dimensions. This approach also predicts 

the neural representation of object nouns across participants, studies, and sentence contexts. 

Moreover, we find that the neural representation of an agent-verb-object proto-sentence is more 

accurately characterized by the neural signatures of its components as they occur in a similar 

context than by the neural signatures of these components as they occur in isolation.
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1. Introduction

Concepts may be the basic building blocks of thought, but the minimally composed structure 

of human thought is a proposition consisting of multiple concepts. We report here the 

capability of predicting the brain activation patterns evoked by the reading of an agent-verb-

object proto-sentence. We develop a model that estimates the activation pattern of 

component words from the mappings learned in context-sensitive environments, and 

combines them to produce predictions of the resulting activation.
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The types of concepts that have previously been most amenable to a mapping between a 

stimulus item and a brain activation pattern have been concrete object concepts. This type of 

mapping was initially demonstrated in studies in which the objects were presented visually 

or were being recalled (Carlson et al., 2003; Connolly et al., 2012; Cox and Savoy, 2003; 

Eger et al., 2008; Hanson et al., 2004; Haxby et al., 2001; Ishai et al., 1999; Mitchell et al., 

2004; O’Toole et al., 2005; Polyn et al., 2005; Shinkareva et al., 2008), and subsequently in 

studies where the concept was evoked by the word that named it (Just et al., 2010; Peelen 

and Caramazza, 2012; Shinkareva et al., 2011). Predictive modeling of brain activity 

associated with concepts was enabled by the postulation of a mediating layer of perceptual 

and semantic features of the objects, resulting in the decoding from their fMRI signature 

pictures or text concerning objects (Anderson et al., 2015; Mitchell et al., 2008; Pereira et 

al., 2011), natural images (Naselaris et al., 2009), faces (Cowen et al., 2014), objects and 

actions in video clips (Huth et al., 2012; Nishimoto et al., 2011) and in speech (Huth et al., 

2016). Other studies have found distinct activation patterns associated with the neural 

representations of concepts of varying degrees of semantic abstractness (Anderson et al., 

2014; Ghio et al., 2016; Wang et al., 2013). A few studies have further demonstrated the 

ability to associate brain activation patterns with inter-concept relations in a proposition 

(Frankland and Greene, 2015; Wang et al., 2016). However, characterizing the neural 

representations of sentences and the effect of contexts has remained a considerable 

challenge.

The major advance attempted in the current study was to characterize the neural 

representation of simplified prototype sentences and the effect of context within a theory-

driven computational framework. The model was theory-driven, built on the previous 

knowledge of the neural representations of objects in several ways. First, the stimulus 

sentence prototypes (e.g., Plumber grabs pliers) described a scenario associated with a 

general theme pertaining to one of three known semantic dimensions of neural 

representation, namely shelter, manipulation, or eating. Second, the meaning components of 

the stimulus word-concepts were defined as the concepts’ relatedness to each of the three 

dimensions. These three semantic properties were used to predict the neural representation 

of word concepts and the proto-sentences that they composed. Third, the analysis of the 

activation patterns focused on the a priori specified brain regions that were associated with 

these three dimensions. The approach was computational in the sense that it established the 

mapping between the concepts’ semantic properties on the three dimensions and the voxel 

activation patterns associated with reading the sentences. This mapping was sufficiently 

detailed to characterize the behavior of individual voxels with respect to the neurosemantic 

properties, and sufficiently robust to be generalized to predict the neural signatures of new 

sentences with similar contexts but composed of new words.

A brief terminological and theoretical disclaimer is warranted about our use of the word 

sentence in this article. The stimuli were proto-sentences, in that they were lacking articles 

for the nouns: Hiker enters house was presented instead of The hiker enters the house. The 

stimuli would be more accurately referred to as proto-sentences, but for brevity following 

this disclaimer we use the term sentences. The theoretical disclaimer concerns the fact that 

our analysis and model focuses on the neural representation of the three content words of 

each sentence, and not their thematic or syntactic structure. In fact, all of the stimuli were 
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identical with respect to thematic and syntactic structure (agent-verb-object), and our model 

does not characterize the representation of these identical aspects of the sentences. Thus our 

reference to the neural representation of the sentence stimuli refers to the neural 

representation of the three content words, and not to thematic or syntactic aspects of the 

representation.

We hypothesized that the neural activation pattern evoked by a simple proto-sentence can be 

predicted by the semantic properties of the sentence’s component words. The theoretical 

background for construing the neural representations of concrete objects is a neural/semantic 

account of concrete object representation (Just et al., 2010; Mitchell et al., 2008) that 

postulates that the neural signature of a concept is composed of component activations in the 

various brain subsystems that come into play during the consideration of, or interaction with, 

the concept. These component activations are associated with different dimensions of the 

meaning of the concept. For example, thinking about a knife evokes motor and premotor 

areas, which have been associated with action verb processing in previous studies (Hauk et 

al., 2004; Pulvermüller et al., 2005). These regions are found to respond to various 

manipulable objects such as hand tools, and to not respond to non-manipulable objects, 

indicating their role in representing the meaning dimension of manipulation or body-object 

interaction. The three main neurosemantic dimensions underlying the representation of 60 

concrete nouns were shelter, manipulation, and eating (Just et al., 2010). Such sets of 

dimensions and their corresponding brain subsystems are proposed to constitute part of the 

basis set for neurally representing concrete objects. Thus, the activation pattern associated 

with a particular concrete concept should be predictable, based on the concept’s semantic 

properties that are encoded by these brain subsystems.

Of course, a sentence context is very likely to modulate the neural representation of its 

component concepts, but the neural modulatory principles by which such context effects 

operate have not been determined. We propose a hypothesis and a method to decode the 

multiple concepts embedded in a sentence context from a particular form of their fMRI 

activation signature. One key to the method is to base the estimate of a concept’s neural 

signature on its instantiation in a set of roughly similar sentence contexts (excluding the 

sentence whose activation is being predicted). This approach assumes that the neural 

signature of a component concept in context is modulated by the context, and thus differs 

systematically from the signature of the word when it is processed in isolation, an 

assumption that we tested. The estimate of the neural signature of a concept was obtained by 

averaging the activation patterns of several different sentences containing the concept, on the 

assumption that the neural signals contributed by the other concepts in the sentences would 

be cancelled out by the averaging. The implication underlying this method is that the neural 

representation of a simple proto-sentence can be predicted by the sum of the neural 

representations of its content word concepts, as estimated from approximately similar 

contextual environments.
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2. Materials and Methods

2.1 Materials

Each of the 36 simplified three-word sentences (of the form Agent-verb-object) described a 

scenario associated with a general theme pertaining to one of three semantic factors shelter, 
manipulation, or eating, previously shown to underlie the representations of concrete nouns 

(Just et al., 2010). The objects were selected from among the 60 concrete objects whose 

associated activation patterns were factor analyzed in a previous study (Just et al., 2010); the 

selected objects were those with some of the highest factor scores for their dominant 

semantic factor. The agents and verbs were chosen for consistency with the theme or factor. 

There were 12 sentences per theme, for a total of 36 sentences, as shown in Table 1. The 

sentences were composed of triplets of words from among 27 content words: 9 words of 

each word class (agent, verb, and object). Within each class, 3 words were associated with 

each neurosemantic factor. The 36 sentences were assigned to four sets, so that each set 

contained nine sentences, three per theme, and sentences in each set used all 27 words, each 

occurring in one sentence. Each of the four blocks of trials presented the 36 sentences in a 

different order.

2.2 Participants

Ten healthy, right-handed, native speaking adults (7 females) from the Carnegie Mellon 

community participated in the fMRI experiment. All participants gave written informed 

consent approved by the Carnegie Mellon Institutional Review Board. The data from all the 

participants were included in the analyses below.

2.3 Procedure

Participants were asked to read a set of 36 sentences that was presented 4 times. The three 

words of each sentence were presented one at a time and they accumulated on the screen, 

with each additional word appearing 500 ms after the onset of the preceding word. After all 

the words had been displayed (1500 ms after sentence onset), the screen was blanked for 

3500 ms, followed by a 7000 ms presentation of the letter “X” in the center of the screen. 

The total duration of a sentence trial was thus 12 sec.

As the participants read each word, they were to think of the intrinsic properties of that 

concept, and integrate their representation of the concept with the accumulating context of 

the sentence. After the whole sentence had been presented, they were to finish their thought 

of the sentence during the blank screen period. Participants were instructed to relax and clear 

their mind during the fixation interval (indicated by a central “X”) that followed the blank 

screen period. This instruction was intended to evoke a rest state and allow the 

hemodynamic response associated with the task to decrease toward baseline. The participant 

was instructed to consistently think of the same properties of a concept across the four 

presentations. This instruction facilitated the identification of the voxels that had a stable set 

of responses to the stimuli across multiple presentations. At the beginning of each 

presentation block and after the last block, the fixation “X” was presented for 17 s, to obtain 

baseline activation measures. These instructions and general procedures have been used in 

several previous fMRI studies of semantic decoding (Buchweitz et al., 2012; Damarla and 
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Just, 2013; Just et al., 2014, 2010; Mason and Just, 2016; Shinkareva et al., 2011; Wang et 

al., 2013).

In the last scan session, participants were asked to read the 27 content words presented in 

isolation. Each word was presented for 3 s, followed by a 7 s fixation. Participants were 

instructed to keep thinking about the properties of the concept during the 3 s presentation, 

and clear their mind when the fixation cross appeared. The 27 words were presented 5 times 

in 5 blocks of presentations. At the beginning of each presentation block and after the last 

block, the fixation cross was presented for 17 s, to obtain baseline activation measures.

2.4 fMRI imaging protocol

Data were collected using a Siemens Verio 3T at the Scientific Imaging and Brain Research 

(SIBR) Center at Carnegie Mellon University. Functional images were acquired using a 

gradient echo EPI pulse sequence with TR = 1000ms, TE = 25ms and a 60° flip angle. 

Twenty 5-mm thick, AC-PC aligned slices were imaged with a gap of 1 mm between slices. 

The acquisition matrix was 64 × 64 with 3.125 × 3.125 × 5 mm3 voxels.

2.5 Behavioral ratings

To independently assess the strength of the relation of the 27 content words to each of the 

three neurosemantic factors, behavioral ratings of the semantic relatedness (on a 1–7 scale) 

of each of the 27 stimulus words to each of the 3 semantic factors were obtained from 17 

participants who did not participate in the fMRI studies. The mean ratings across these 

participants were then used as the latent semantic features in the modeling. The mean score 

of shelter-related words on the 3 factors: shelter = 5.08 (SD = 0.83), manipulation = 3.57 

(SD = 1.16), eating = 2.43 (SD = 0.88). For manipulation-related words, the score of shelter 
= 2.40 (SD = 0.80), manipulation = 6.27 (SD = 0.59), eating = 2.56 (SD = 0.84). For eating-

related words, the score of shelter = 1.52 (SD = 0.52), manipulation = 2.84 (SD = 0.69), 

eating = 6.83 (SD = 0.30). The behavioral ratings for all the content words are shown in 

Table S1.

2.6 fMRI data preprocessing

The fMRI data were corrected for slice timing, head motion and linear trend, and were 

normalized into MNI space with a voxel size of 3.125 × 3.125 × 6 mm3, using SPM2 

(Wellcome Department of Cognitive Neurology, London). The percent signal change (PSC) 

in signal intensity during each presentation of a sentence was computed at each voxel 

relative to a baseline activation level measured during fixation intervals and averaged over 

sixteen such intervals, each one 17 s long (but excluding the first 4 s from the measurement 

to account for the hemodynamic response delay). The fMRI data from the sentence 

presentation that were used for analysis consisted of the mean of 5 s of brain images (5 

images with a TR of 1 s), the first starting after 6 s from the sentence onset. This same 

window was optimal for decoding the agent, verb, and object. (This temporal window was 

determined in an independent pilot study, as described in Supplementary Materials). The 

PSC of this mean image was then normalized to a mean of 0 and variance of 1 across voxels 

for each image, to equate the overall intensities of the mean PSC images.
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2.7 Predicting neural signatures of sentences

The predictions of the neural activity associated with a sentence within a participant were 

generated using the following steps, depicted schematically in Figure 1. The model first 

predicts the brain image for each word (based on the mapping between the word’s semantic 

properties and the activation patterns evoked by those properties in other words) and then 

combines these predicted images to produce predicted images of a large number of 

sentences. The predicted sentence images are compared to the observed image, and the 

model accuracy (based on the ranked similarity between the predicted and observed 

activation of a sentence) is computed.

The predictions used a cross-validation procedure that partitioned the data into a training set 

and a test set during the prediction generation and testing of each sentence. The brain images 

associated with a given sentence, including all four sentence presentations, were left out of 

the training set in each cross-validation fold. When each of the word classes of agent, verb, 

or object was modeled, the sentences that contained the word of that class in the test 

sentence were also excluded from training. For example, when the sentence Explorer enters 
car was tested, the model of agent was trained without using data from sentences containing 

the word explorer, and the model of verb was trained using sentences without enter, etc.

1. The 120 voxels distributed in the three semantic factors areas (12 spheres; Figure 

2 and Table S2) with the most stable profiles over presentations for the words in 

the training set were selected as neural features. A voxel’s activation profile is its 

vector of activation levels evoked by the set of stimulus items, in this case, the 

images evoked by the set of sentences containing any of the 8 training words 

within a class. The stability of a voxel was measured by the mean of the pairwise 

correlations between the pairs of activation profiles across the 4 presentations. In 

each of the 12 spheres, the 3 most stable voxels in that sphere (175.8 mm3 per 

sphere) were first selected. Then the next 84 most stable voxels were selected 

regardless of which sphere they were in. Such selection criteria obtain 

contributions from all a priori locations and the contribution of voxels with 

highest overall stability. Stability-based voxel selection is a common practice in 

fMRI decoding studies (Pereira et al., 2009). The rationale for selecting voxels 

within the a priori clusters, instead of using all the voxels in these regions, was 

that these spherical clusters represent the approximate locations of the neural 

substrates that contribute most to the factors. Selecting particular voxels within 

the spheres counteracts the spatial and coregistration variations across scans and 

across individuals. The choice of the number of voxels to be selected (3 voxels 

per sphere, 120 voxels in total) was arbitrary. Post hoc analysis showed that the 

decoding accuracy was robust to the number of voxels being chosen (Table S3).

2. The relations between PSCs at each voxel and the latent semantic features of the 

8 training words were mapped using a linear multiple regression model. The 

semantic properties of each content word on the three dimensions of shelter, 
manipulation, and eating were ratings from an independent group of 17 

participants. The PSCs associated with a word were estimated by the mean PSCs 

of training sentences that contain the word. The assumption underlying this 
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procedure was that the neural representation of each sentence contained a 

representation of its content words; averaging the representation of a set of 

sentences all containing a given content word would bring out the representation 

of that shared content word while averaging out the representations of the other 

words. The weight bvi that specifies the contribution of the ith semantic feature 

to the activation level is learned by training the regression model and then the 

predicted images for the three content words in a sentence are combined

where PSCv is the percent signal change in the representation of sentence at 

voxel v, and fi is the ith feature. The trained model should predict the neural 

signatures of all 9 words using the corresponding semantic features (i.e., each 

separate model based on 8 words should predict PSCv for the 9th, left-out word).

3. The predicted activation patterns for a given sentence were generated as follows. 

Predicted brain images of 351 sensible sentences (out of 729 possible agent-

verb-object combinations, excluding nonsense sentences such as Carpenter 
chews car) consisting of one of the 9 agents, one of the 9 verbs, and one of the 9 

objects were generated by averaging the predicted images of each of the 

combinations of words that formed a meaningful sentence. The predicted 

sentence image consisted of the union of the images of the selected voxels in 

each word-class model.

4. The accuracy of the sentence prediction was assessed by comparing each 

predicted image to the observed test sentence image using cosine similarity. The 

measure of the prediction’s accuracy was the normalized rank of its similarity 

among the 351 (i.e., the normalized rank of the correct label in the posterior-

probability-ordered list). The rank accuracy in Figure 3 was averaged across all 

cross-validation folds, in which each of the 36 sentences was tested.

5. The statistical significance of a model’s accuracy was evaluated by random 

permutation testing. The model’s accuracy was compared with the accuracy of a 

random classifier with the same design parameters: the same number of classes, 

cross-validation folds, and items with arbitrary labels. Given the distribution of 

accuracies of such a random classifier in a large (100,000 or 10,000) number of 

permutations, the critical levels of accuracy were computed for a given 

probability level.

2.8 The effects of sentence context on the neural and semantic representations of 
component concepts

PSCs evoked by the words presented in isolation were computed using the same approach as 

sentence PSC, except that the images were based on a 4 s window starting after 4 s from the 

word onset (Pereira et al., 2009). The same approach as described above used these images 

to predict the neural signature of a sentence, except that the training data were the PSCs of 
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words in isolation. The sentence predictions used the same procedure as in the main 

analysis. In addition, a non-predictive sentence classification task was performed without 

modeling the association to the intermediate semantic features latent factors, by directly 

averaging the word PSCs to estimate sentence activation.

The comparison of activation differences between words-in-context and words-in-isolation 

was performed within the set of spheres associated with each neurosemantic factor. The 

activation data of words-in-context were the mean PSC across all the sentences containing 

the word. The activation levels of the voxels within the set of spheres associated with each 

neurosemantic factor were averaged. No additional image normalization (aside from setting 

each image to have mean of 0 and variance of 1) was applied.

2.9 Predicting activation patterns of concrete nouns across studies and across 
participants

In a previous study (Just et al., 2010), 11 participants were scanned while being presented 

with 60 concrete nouns (in a paradigm similar to the presentation of the words in isolation in 

the current study). Nine of these nouns were the same as the 9 objects of the action in the 

current study. Factor analysis of the data revealed the presence of three main semantic 

factors underpinning the neural representation of nouns naming physical objects, factors 

labeled as manipulation, shelter, and eating. The interpretation of these factors was 

supported by the finding that behavioral ratings of the salience of each of the three factors to 

each of the nouns were highly correlated with the nouns’ fMRI-based factor scores. These 

factors were represented in a total of 12 brain locations. The goal of the analysis here was to 

predict activation patterns across studies and across participants.

A Gaussian Naïve Bayes classifier was trained on the fMRI data of the 11 participants in the 

previous study (Just et al., 2010) for the 9 nouns, denoting 9 objects, viewed in isolation. 

The classifier was then tested on data acquired in the current experiment in which the same 9 

nouns appeared in sentence contexts, and the classifier attempted to identify these 9 nouns. 

In this cross-study classification, using the exact same voxels across participants as features 

is not a viable approach. Instead, the locations of the features were specified in terms of the 

12 factor-related-spheres (where each sphere was characterized by the mean activation of its 

representative voxels). In the training set data, the most representative voxels were the 10 

voxels per sphere with the highest product of their stability scores times the correlation 

between the voxel’s set of mean activation levels for the 9 nouns and the independent ratings 

of these nouns with respect to the factor associated with the sphere. This definition of 

representativeness was chosen a priori, based on the analyses reported in the previous study 

(Just et al., 2010). For example, a representative voxel in the premotor sphere would have a 

stable profile across presentations and would have higher activation levels for the more 

manipulation-salient (defined by the independent ratings) objects like pliers and hammer. 
The 12 features for the model’s training set were thus the means of the activation levels of 

the 10 most representative voxels in each sphere for each of 54 observations (9 nouns 

presented 6 times each) for each of the 11 participants in the previous study, as well as the 9 

labels of the concepts.
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The model was then tested on the corresponding test data from each participant in the 

current study, averaging over the 4 presentations of the nouns. The test brain images from 

the current study for the nine nouns were obtained by averaging the fMRI images of all of 

the sentences in the current study that included that noun. The 12 features of the test set 

were the mean activation levels of the 10 voxels in each sphere that were most stable across 

4 presentation blocks. As mentioned above, this approach allowed for cross-scan and cross-

individual variation. Note that the stability was measured by using only the nominal labels of 

the test data without knowing which label was which. No information from outside of the 

test set entered into the processing of the test set.

The choice of specific parameters (total number of voxels, minimum number of voxels per 

sphere) did not substantially affect the accuracy of within-participant sentence classification 

(as shown in Table S3). The specific number (10) of representative voxels per sphere for 

cross-participant analysis was chosen to equate the total number of voxels in the two main 

analyses. The statistical significance of model accuracy was evaluated by random 

permutation testing.

The following is a summary of the main analyses that were performed, which assess the 

accuracy of the machine learning predictions of sentence activation, and which compare 

accuracies across different models, including random models.

• The main sentence activation model was applied 1. to group-level data (fMRI 

data averaged across participants to minimize noise) and 2. to individual 

participants’ data.

• The contributions of semantic features and a priori selected brain locations to 

prediction accuracy were assessed in terms of alternative models that used 

randomized semantic features and brain locations. The contribution of the voxel 

(feature) selection procedure was assessed by using voxels outside the factor 

locations (Results, 3.1).

• The differences in the neural representations (activation levels in factor locations) 

between words-in-context and words-in-isolation were assessed by:

– comparing the prediction accuracies of the models that use the data 

acquired from words-in-sentences versus words-in-isolation, and also 

by comparing the similarities between the observed and predicted 

sentence images for the two models (Results, 3.2);

– comparing the neural representations for words-in-3-different-contexts 

with words-in-isolation in the brain regions associated with each of the 

three semantic factors (Results, 3.3).

• The generality of the neural representation of objects is evaluated by a cross-

study, cross-context, cross-participant classification of the 9 stimulus nouns 

(Results, 3.4).
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3. Results

The prediction of the neural signature of a sentence was based on a computational model of 

the association between the sum of the brain activation patterns of the contextualized word 

concepts and the semantic properties of the component concepts of the sentence. The 

semantic-to-neural mapping was learned by the model at a concept-in-context level. When 

the model was evaluated at the group level ((by averaging the PSC data of all 10 participants 

and normalizing each image to a mean of 0 and variance of 1 across voxels, to equate the 

overall intensities of the images), the neural representations of sentences were accurately 

predicted with a mean rank accuracy of 0.91 across the 36 sentences. (This accuracy is far 

above the chance level accuracy of 0.5 (p < 0.0001 based on a 100,000-iteration random 

permutation test; see Table S3 for similar accuracy from models using different numbers of 

voxels from each location). When the list of alternative sentences was expanded to include 

all 729 possible agent-verb-object combinations, including nonsense combinations, the rank 

accuracy of sentence prediction on the group aggregated fMRI data increased from 0.91 to 

0.94 (paired-sample t-test of the accuracy over sentences, t35 = 3.6, p = 0.006), suggesting 

the nonsense sentences were not very confusable by the model with the sensible ones. When 

the list of alternative sentences was restricted to only the 36 stimulus sentences, the rank 

accuracy was 0.86, significantly lower than among all sensible sentences (paired sample t-

test over sentences, t35 = 2.3, p = 0.03) but still far above chance level (p < 0.0001). Further 

decoding analyses computed rank accuracy based only on the sensible set of sentences.

To evaluate the model at the individual participant level, the decoding was performed on 

each participant’s data. The mean rank accuracy of the predictions across participants was 

0.83. The accuracy of each individual participant was reliably above chance level, with p < 

0.0001, as shown in Figure 3 (the analyses below evaluated the models on an individual 

participant basis, unless otherwise specified). These results show that the neural 

representation of a sentence that was previously unseen by the model and containing 

previously unseen words can be predicted by using an additive neurosemantic model of the 

contextualized content word representations. Moreover, this high level of sentence prediction 

accuracy was not due to any single word class; the prediction accuracies for the agent, verb, 

and object classes were 0.81, 0.85, and 0.84 respectively.

3.1 Comparison against three alternative models: randomizing semantic features, 
randomizing brain locations, and selecting voxels outside the factor spheres

The choice of semantic properties and the corresponding a priori brain regions, which 

reflected the core theory underlying the model, were further tested against random models. 

First, to test whether the choice of semantic properties, i.e., the intermediate variables, 

contributed to the reliable modeling of the neural signature of semantic representations, a 

10,000-iteration random permutation test was performed in which the semantic variables 

were randomly assigned to each word (i.e. the semantic vectors associated with the different 

words were interchanged) while all the other aspects of the analysis remained unchanged. 

This analysis was performed on the data aggregated across participants. The neurosemantic 

variables performed significantly better than the random variables (p < 0.0001). Second, to 

test whether the choice of a priori regions contributed to the reliable modeling of the neural 
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signature, a 10,000-iteration random permutation test was performed on the aggregated data 

across participants in which the locations of the spheres in the brain were randomly chosen 

while all the other procedures remained unchanged. The a priori neurosemantic regions 

performed significantly better than randomly selected regions (p = 0.0001). These analyses 

demonstrate the ability of the key components of the theory to account for the data in the 

modeling of the neural representations of multi-concept sentences. While future models may 

well outperform the current one, the current model provides a first account that outperforms 

random models.

An additional exploratory analysis showed that voxels selected from brain regions other than 

the factor-related spheres also contained information about the sentences, resulting in a 

mean rank accuracy of sentence prediction of 0.80, which is significantly lower than the 

accuracy based on factor-related spheres (p < 0.05; see Supplementary Materials). This 

finding suggests that relevant semantic information is also present in brain areas other than 

the regions that are most closely associated with the factors. That is not to say, however, that 

the hypothesis of a commonality of semantically organized brain locations in the brain is 

unnecessary, because (a) the locations of the voxels selected outside the factor-related 

regions were inconsistent across participants (Figure S1; Table S4), (b) the a priori 
neurosemantic regions performed better than this exploratory analysis in which the voxels 

were chosen specifically based on the current dataset, (c) the neurosemantic regions 

outperformed randomly selected locations, and (d) it was the intermediate semantic variables 

that provided the hypothesis of what to model given the voxel activations. In addition, the 

difference of the voxel selection methods between the main analysis and this exploratory 

analysis empirically and intentionally was not biased toward the former. The main analysis 

forced the selection of a minimal number of voxels from each of the spheres, while this 

exploratory analysis did not have such a restriction. The purpose of constraining the 

distributed voxel selection in the main analysis was to test the contributions from all factor-

related locations rather than to produce the highest possible decoding accuracy. When the 

selection of voxels from factor-related locations was solely based on stability, without the 

constraint of distributed selection across these locations, the mean rank accuracy remained at 

0.83. This result indicates that the accuracy difference between using voxels within and 

outside the factor-related locations was not due to the constraint of distributed voxel 

selection.

3.2 Differences between the neural representation of words in context versus words in 
isolation

The main findings reported above entailed the estimation of the neural representations of 

individual concepts by averaging over the brain images evoked by three sentences that 

contained that concept. However, the success of this additivity-based modeling does not 

imply that the neural representation of a sentence is no more than the sum of the activation 

patterns of isolated words. In our estimation procedure, the neural representations of the 

words were acquired while the words were being processed in a sentence context. To 

directly examine this issue, the fMRI data associated with reading individual word concepts 

were also acquired from the same participants, when each of the concepts was presented in 

isolation. The comparison of the concept representations obtained in these two ways 
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provided an illuminating insight into the neural and semantic nature of sentence contexts 

effects.

One way to assess the two types of concept representations is to compare their ability to 

predict new sentences. We found that the sentence prediction was significantly less accurate 

based on the activation patterns associated with the reading of single words in isolation. The 

same approach as the main analysis was used to predict the neural signature of a sentence, 

except that the estimation of the neural signatures of each word concept was the activation 

patterns evoked by reading and thinking about that word in isolation. The mean accuracy of 

sentence prediction based on concept representations obtained in isolation was 0.68 across 

participants, ranging from 0.60 to 0.81, significantly lower than the mean accuracy of 0.83 

based on the representations of component words estimated over other sentences (paired-

sample t test, t9 = −8.73, p < 0.0001). The relatively poor fit provided by the words in 

isolation remained poor even when the sentence modeling involved no predictive mapping: 

when the activation patterns of individual words were directly combined to predict the 

sentence they constituted, the mean accuracy was 0.74, again significantly lower than using 

the learned mapping between semantic properties and neural signatures of words in context 

(paired-sample t test over participants, t9 = −3.9, p = 0.004). In addition to the two 

approaches being compared in terms of prediction accuracies, they were also compared 

using the (Fisher-transformed) correlation between the predicted and actual sentence images 

in the two cases. This comparison showed a clear advantage in prediction accuracy of words 

in sentences. The mean correlation was .56 for words-in-sentences and .17 for words-in-

isolation (F(1,9) = 188.4, p < 0.001).

Thus, the neural representations of isolated words provide a significantly less accurate 

prediction of the neural representation of the sentence that contains them, compared to the 

neural representation of concepts obtained from a sentence context. One possible 

explanation was that the contexts were similar in the training and testing sentences, and so 

the contexts of all the training sentences may have modulated the concept representations in 

a similar way, which was also similar to the modulation effect occurring in the test sentence. 

The evidence below was consistent with this explanation.

3.3 How context selectively modulates the meaning components of a concept

The difference between the activation of a word encountered in a sentence vs. in isolation 

was then directly assessed separately for each semantic factor and each context type. The 

activation pattern of a word encountered in sentences was estimated by the mean activation 

of the sentences that contain the word, on the assumption that the representations of the 

other words are averaged out. This comparison focused on the activations within the a priori 
cortical regions associated with the three semantic factors, as the decoding models did. 

Because the content words of each sentence had been selected to be associated with one of 

the factors, the theme of the sentences was thus expected to be strongly associated with that 

factor. For example, the words picnicker, bite, and carrot all have various meaning 

components, but the sentence they formed, Picnicker bites carrot, conveyed a salient theme 

of eating, the meaning component shared across the concepts. Such a context might increase 

the activation of a component word in the brain regions that represent the theme, relative to 
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the activation of the same word when presented in isolation. In the example above, because 

the sentence context highlighted the eating property of carrot, the neural representation in 

the eating-related regions was expected to be increased when carrot was processed in context 

as opposed to in isolation.

As hypothesized, the mean of the percent signal change (PSC) of words-in-context was 

significantly greater than words-in-isolation in the regions that were identified a priori as 

representing the semantic properties emphasized by the context (paired-sample one-tailed t9 

= 5.9, p = 0.0001). (All p-values in this section are Bonferroni-corrected for the 3 factors). 

This effect was present for each of the three categories of concepts in the brain locations 

associated with each semantic factor respectively (as shown in Figure 4); shelter: t9 = 8.8, p 

= 0.000015; manipulation: t9 = 2.5, p = 0.0493; eating: t9 = 3.1, p = 0.02. Moreover, words 

in some categories showed lower activation when they were presented within a context than 

in isolation in regions specialized for factors other than their home factor, such as the eating-

related concepts in shelter regions (t9 = −7.14, p = 0.0001, paired-sample two-tailed t-test), 

suggesting the representation of the shelter component in a word (e.g., a diner may sit at 

table in an indoor restaurant) was suppressed when the sentence (e.g., Diner bites carrot) 
concerned eating and defocused the spatial setting. Similarly, shelter-related concepts in 

manipulation regions showed less activation when presented in context (t9 = −7.15, p = 

0.0001). There was also a non-significant increase for eating-related concepts in 

manipulation regions (t9 = 2.76, p=0.13), suggesting that eating contexts may highlight 

manipulation as well as eating.

Overall, these results indicate how context modulates the neural representation of a word 

concept: context highlights the context-relevant semantic component and downplays the 

irrelevant components. Highlight and downplay are neurally realized as modulation of the 

activation levels of the relevant components of the representation. The neural signatures of 

context-derived concepts are dilated with respect to the semantic factor that is shared by the 

other words in the sentence, as proposed by a recent computational account of context 

effects (Mitchell and Lapata, 2010). More generally, this finding indicates the neural nature 

of semantically-tuned context effects. According to this account, the context selectively 

elevates and enhances the neural representation of the context-relevant component of the 

concept’s meaning, thus making it fit better into a similar predicted context.

3.4 Predicting activation patterns of concrete nouns across studies

The generality of the findings was tested by decoding the word concepts across two 

independent studies with two different sets of participants. In the previous fMRI study, 11 

participants read the 60 nouns, including the 9 object concepts in the current study, 

presented in isolation (Just et al., 2010). A Gaussian Naïve Bayes classifier was trained on 

data from the participants in the previous study for the 9 nouns, and tested on data of these 

nouns from each participant in the current experiment, using only the 12 critical brain 

locations associated with the three underlying factors. In the previous study, each of three 

factors considered alone (corresponding to 3–5 of the 12 spheres) made a similar 

contribution to the classification of the 60 concrete nouns.
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This cross-study, cross-context, cross-participant classification of the 9 nouns resulted in a 

mean rank accuracy of 0.76 (range over participants = 0.56–0.85). The accuracy was reliably 

above chance level for 8 out of the 10 participants in the current study; the significance level 

was p < 0.01 for 6 of these participants and p < 0.05 for 2 of them. Despite the vast 

difference in experimental protocols and the fact that contexts modulate the neural 

representation of concepts, the neural signature of word concepts was identifiable by a 

pattern that resides in brain areas defined a priori using a theoretically-grounded analysis 

and independent fMRI training data obtained from independent participants. This result 

speaks to the existence of the generalizability of the neural representations of concepts in the 

a priori specified brain regions across contexts, people, and studies.

4. Discussion

The main contributions of this study include (1) a generalizable mapping that incorporates 

neurally driven and semantically interpretable properties of concepts in sentences, (2) the 

finding that words presented in context characterize neural representations of concepts in 

sentences with a similar context better than words presented in isolation, and this seems to 

be due to (3) the finding that the semantic context neurally highlights the context-relevant 

semantic component of a concept and down-modulates the irrelevant component of a 

concept.

The capability of predicting the neural representations of multiple concepts in a sentence, 

without using prior information about the activation evoked by its content words, is general 

across word classes and participants. The accurate predictions are based on learning the 

activation patterns within a small set of brain locations that are independently identified as 

encoding the neurosemantic factors underlying object (concrete noun) representations. The 

activation patterns are modeled solely by a set of three intermediate features that encode the 

semantic relatedness of a word concept to the three factors. Most strikingly, this predictive 

theory generalizes beyond the concrete objects to transitive verbs and nouns referring to 

occupations which have never previously been decoded. Although the neural representation 

of concrete objects has been characterized with increasing granularity over the past fifteen 

years in various modalities of stimuli at various processing levels or across species (Carlson 

et al., 2003; Eger et al., 2008; Haxby et al., 2001; Huth et al., 2012; Kriegeskorte et al., 

2008; Mitchell et al., 2008; Reddy et al., 2010; Shinkareva et al., 2011), the characterization 

of neural representations of individual action verbs or profession nouns has been meager 

(Kemmerer et al., 2008). These representations may have been enriched in particular ways in 

the current study by virtue of their roles in the sentences. This contextualization may have 

contributed to the accurate prediction of the neural representations of verbs and profession 

nouns, reflecting that at least part of the meaning of a word is its use in language 

(Wittgenstein, 1953).

Another interesting finding was that a word’s neural signature as it occurred in a sentence 

was better predicted by that word’s signature in another similar sentence context than by that 

word’s signature when it occurred in isolation. Many previous studies have made excellent 

progress in characterizing the rules of semantic composition, by operating in abstract vector 

or matrix spaces that are derived from the use of words, i.e., text corpora (Baroni and 
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Zamparelli, 2010; Coecke et al., 2010; Kintsch, 2001; Mitchell and Lapata, 2010; 

Smolensky, 1990; Socher et al., 2012). The current model, operating on fMRI images of 

sentences, utilized the observed neural data that contained the context information and 

applied a simple additive model, to deconstruct contextualized concepts and rebuild 

representations of new sentences.

According to this account, a sentence context alters the neural representation of a component 

of a concept, and that altered representation provides a better prediction of that concept’s 

instantiation in a sentence that has a similar context. This phenomenon may be a special case 

of semantic priming. Very many behavioral studies have shown that the time to process a 

word (say, in a lexical decision task) is decreased when it is preceded by a related word (e.g. 

dog is processed faster if it is preceded by cow than by an unrelated word), and this is 

referred to as a semantic priming effect. But fMRI studies have shown that the semantic 

priming phenomenon is more complex than a simple overall priming effect. The priming 

effect can be an increase or a decrease in the brain activation, depending on the brain region 

and the nature of the semantic relation (associative (e.g. key - chain) versus categorical) 

(Kotz, S. A., Cappa, S. F., von Cramon, D. Y., & Friederici, 2002; Rissman et al., 2003; 

Rossell et al., 2003; Sachs et al., 2011; Vuilleumier et al., 2002). In the current study, the 

effect of a sentence context was a reliable increase in the activation of only that part of the 

concept’s representation that pertains to the context. One can refer to this as a special case of 

a semantic priming effect, distinguished by its content-selective effect.

Although the current study does not rule out the possibility that the context effect could have 

arisen due to the simple juxtaposition of the concepts in each sentence (as opposed to 

additionally being due to the thematic structure of the sentence), previous studies have 

shown that the same set of words arranged in different thematically structured sentences are 

neurally differentiable (Frankland and Greene, 2015). The dog in Dog chases cat is neurally 

distinguishable from the dog in Cat chases dog, indicating that the neural encoding is more 

than just the sum of the individual concept representations. In another study using the same 

approach as the current one, a classifier was able to reliably discriminate Monkey pats rabbit 
and Rabbit pats monkey and to correctly assign thematic roles to the two animal concepts 

(Wang, J., Cherkassky, V. L., Just, 2016). Thus, the thematic role encoding could be part of a 

structured sentence representation that plays a role in determining how the components of a 

concept are selectively modulated.

This study used sentences highly associated with the semantic factors of shelter, 
manipulation and eating to investigate multi-concept representations, so the generalization of 

the findings to a much larger semantic space awaits further research. Although these three 

factors can also characterize other frequent and typical concrete concepts such as animals 

(Bauer and Just, 2015), there are surely other semantic dimensions that may account for the 

neural representations of concrete concepts to a comparable or greater degree, such animacy 

(Capitani et al., 2003) or intentionality. A related limitation of the current study is that the 

three dimensions are not sufficient to characterize the difference between the concepts from 

the same category. Because the granularity of the model was constrained by the intermediate 

variables (semantic properties), when two concepts received very similar ratings on all the 

three dimensions, such as explorer and hiker (r = 0.986), the model was not able to capture 

Just et al. Page 15

Neuroimage. Author manuscript; available in PMC 2017 September 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the neural representational difference between these concepts. Future studies are needed to 

expand and deepen the model to apply to a broader and richer semantic space.

Perhaps the greatest significance of this research is its potential for providing an approach 

for neurally characterizing not just isolated concepts but more complex thoughts composed 

of multiple concepts. The findings here demonstrate the capability of identifying the 

components of a simple proposition from its fMRI signature. As these lines of research 

make further advances, the neural structure of thoughts of increasing complexity may 

become understood as they never have before.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• The neural signature of the concepts in a sentence can be accurately predicted

• A new concept’s semantic properties can predict its activation pattern

• Word activations in sentence contexts better predict sentence activation than 

words in isolation

• Context neurally highlights the context-relevant semantic component of a 

concept
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Figure 1. 
Block diagram of the processing pipeline for the main analysis.
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Figure 2. 
Twelve brain locations associated with representation of the three factors of shelter, 
manipulation and eating. Five of the spheres are postulated to code various aspects of the 

shelter factor, four for the manipulation factor, and three for eating.
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Figure 3. 
Mean rank accuracies of sentence prediction at the group level and individual level. The 

Group-level indicates the model accuracy on fMRI images aggregated across participants. 

The Mean over participants indicates the mean model accuracy within individual subjects, 

i.e., the mean of the next 10 bars. The dashed and dotted lines indicate the critical values of 

accuracy being significantly different from chance (dashed: p < 0.01; dotted: p < 0.0001). 

The critical values of accuracy were determined by 100,000-iteration random permutation 

tests of the corresponding classification paradigms, taking into account the number of cross-

validation folds, number of test items per fold, and number of classes. All the other analyses 

were performed at the individual participant level unless otherwise specified.
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Figure 4. 
Differences between the activation levels of words in sentences (obtained by averaging the 

activation of all sentences that contain the word) and the activation of words presented in 

isolation are plotted by the three semantic categories of contexts (indicated by color) in three 

types of regions (indicated within vertical panels). The activation levels were averaged 

across voxels in the regions associated with each semantic factor. The mean percent signal 

change (PSC) of words in context was significantly greater than the PSC of words in 

isolation in the home regions of the concepts for each semantic category (indicated by 

asterisks on the upward-directed bars). The mean percent signal change of words in context 

was also significantly lower than words in isolation in the some of the non-home regions of 

some concepts.
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Table 1

Thirty-six stimulus sentences. Each set includes 9 sentences that are composed from 27 content words.

Set 1 Set 2 Set 3 Set 4

Shelter Explorer enters car Explorer repairs church Explorer exits house Tourist enters car

Hiker exits church Hiker enters house Hiker repairs car Explorer exits church

Tourist repairs house Tourist exits car Tourist enters church Hiker repairs house

Manipulation Plumber drops hammer Plumber lifts knife Plumber grabs pliers Mechanic drops hammer

Carpenter grabs knife Carpenter drops pliers Carpenter lifts hammer Plumber grabs knife

Mechanic lifts pliers Mechanic grabs hammer Mechanic drops knife Carpenter lifts pliers

Eating Diner bites carrot Diner tastes celery Diner chews tomato Picnicker bites carrot

Glutton chews celery Glutton bites tomato Glutton tastes carrot Diner chews celery

Picnicker tastes tomato Picnicker chews carrot Picnicker bites celery Glutton tastes tomato
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