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Abstract

Buildings account for a significant portion of the total energy consumption of many countries. Energy

efficiency is one of the primary objectives of today’s building projects. Whole building energy model

(BEM), a physics-based modeling method for building thermal and energy behaviors, is widely used

by building designers to predict and improve the energy performance of building design. BEM

also has potential for developing supervisory control strategies for heating, ventilation and air-

conditioning (HVAC) systems. The BEM-derived control strategies may significantly improve HVAC

energy efficiency compared to the commonly-used rule-based control strategies.

However, it is challenging to use BEM for HVAC control. This is because, firstly, BEM is a

high-order model so classical model-based control methods cannot be directly applied. Heuristic

search algorithms, such as genetic algorithm, are usually used for BEM-based control optimization.

Secondly, BEM is computationally-intensive compared to other black-box or grey-box models, which

limits its application for large-scale control optimization problems.

Model-free reinforcement learning (RL) is an alternative method to use BEM for HVAC control.

Model-free RL is a “trial-and-error” learning method that is applicable for any complex systems.

As a result, BEM can be used as a simulator to train an RL agent offline to learn an energy-

efficient supervisory control strategy. However, reinforcement learning for HVAC control has not

been adequately studied. Most existing studies are based on over-simplified HVAC systems and a

limited number of experiment scenarios.

This study develops a BEM-assisted reinforcement learning framework for HVAC supervisory

control for energy efficiency. The control framework uses a design-stage BEM to “learn” a control

strategy via model-free RL. The RL agent is a neural network model which performs as a func-

tion approximator. Through computer simulations, the control framework is evaluated in different

scenarios covering four typical commercial HVAC systems, four climates, and two building thermal
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mass levels. The RL-trained control strategies are also evaluated for “versatility”, i.e., the tolerance

for the variations of HVAC operational conditions. Multiple “perturbed” simulators are created for

this purpose, with varying weather conditions, occupancy and plug-load schedules, and indoor air

temperature setpoint schedules.

The control framework has achieved better-then-baseline control performance in a variable-air-

volume (VAV) system (a common type of air-based secondary HVAC system) for both cooling and

heating under different climates and building thermal mass levels. Compared to a baseline rule-based

control strategy, the RL-trained strategies can achieve obvious energy-savings and less “setpoint

notmet time” (i.e., the cumulative time that indoor air temperature setpoints are not met). Also,

the RL-trained strategies can tolerate the variations in weather conditions and occupancy/plug-load

schedules. However, the RL-trained control strategies have worse-than-baseline energy performance

if indoor air temperature setpoint schedules are significantly changed.

The control framework has also achieved reduced heating demand and improved-or-similar ther-

mal comfort (compared to a baseline rule-based control) for a slow-response radiant heating system

in all the experiment scenarios. The RL-trained strategies have also achieved improved control per-

formance in different perturbed simulators. However, the reward function must include a specially-

designed heuristic to deal with the slow thermal response and the imperfect energy metric of this

system. The heuristic encourages low supply water temperature setpoint values and reward increas-

ing trends of the predicted mean vote (PMV) if it is below the setpoint. This indicates that the

reward function design is crucial for the control performance of this control framework.

Control performance may be poor if the reward function is over-complicated, as shown in the ex-

periments related to a multi-chiller chilled water system. The reward function for this system consists

of three complicated penalty functions corresponding to three operational constraints, including the

chiller cycling time, the chiller partial-load-ratio, and the system supply water temperature. The RL-

trained control strategies have violated some operational constraints significantly, and only achieved

a limited amount of energy savings.

This thesis also studied the effects of the neural network model (the RL agent function approx-

imator) complexity on the control and convergence performance of the control framework. It is

found that a complex neural network model does not necessarily lead to better control performance

compared to a simple neural network model. A complex neural network model may make the rein-

forcement learning hard to converge. Thus, “deep” reinforcement learning is not always a suitable

choice, even though it is a popular concept in recent literature. As a general guideline, this study
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recommends using a narrow and shallow non-linear neural network model for the control framework.

In future work, the control framework should be evaluated in more scenarios, such as more types

of HVAC systems and more climate zones. It is also necessary to conduct a more comprehensive

versatility analysis for a trained RL control policy. Future work should also develop an adaptive

RL control method that could self-adapt to the changing characteristics of an HVAC system. Last

but not least, theoretical investigations are needed to guide the future development of the control

framework.

xi



xii



Contents

Acknowledgements iv

Abstract ix

List of Figures xix

List of Tables xxx

1 Introduction 1

1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Building Energy Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Control of HVAC Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.3 Whole Building Energy Model . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.4 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.1 Model Predictive Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.2 Whole Building Energy Model (BEM) based Predictive Control . . . . . . . . 9

1.2.3 Reinforcement Learning Control . . . . . . . . . . . . . . . . . . . . . . . . . 10

xiii



CONTENTS CONTENTS

1.2.4 Summary of Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.3 Research Scope and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.4 Summary of the Chapters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2 Control Framework 23

2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2 Key Terminologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3 RL Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3.1 Standard Reinforcement Learning Problem . . . . . . . . . . . . . . . . . . . 26

2.3.2 Value Functions and Function Approximation . . . . . . . . . . . . . . . . . . 27

2.3.3 Policy Gradient Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3.4 Gradient Descent Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3.5 Exploration Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3.6 Summary of the Reinforcement Learning Algorithm . . . . . . . . . . . . . . 33

2.4 State, Action and Reward . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.4.1 State Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.4.2 Action Space Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.4.3 Reward Function Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.5 EnergyPlus Simulator for RL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3 Experimental Design 41

3.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 Experiment Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

xiv



CONTENTS CONTENTS

3.3 Neural Network Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4 Experimental Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4.1 Preparation of a Training Simulator . . . . . . . . . . . . . . . . . . . . . . . 47

3.4.2 Offline Reinforcement Learning Training . . . . . . . . . . . . . . . . . . . . . 48

3.4.3 Control Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4.4 Evaluation Simulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4 VAVCooling 57

4.1 HVAC System Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.1.1 System Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.1.2 Thermal Zones and Envelopes . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.1.3 Target Control Variable and Baseline Control Strategy . . . . . . . . . . . . . 60

4.1.4 Whole Building Energy Model . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2 Training and Perturbed Simulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3 Reinforcement Learning Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3.1 State Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3.2 Action Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3.3 Reward Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3.4 Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4.1 Convergence Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4.2 Control Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.4.3 Effects of the Indoor Air Temperature Setpoint Strategy . . . . . . . . . . . . 72

xv



CONTENTS CONTENTS

4.5 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5 VAVHeating 81

5.1 HVAC System Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.1.1 System Layout, Thermal Zones and Envelopes . . . . . . . . . . . . . . . . . 82

5.1.2 Target Control Variable and Baseline Control Strategy . . . . . . . . . . . . . 83

5.2 Training and Perturbed Simulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.3 Reinforcement Learning Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.3.1 State Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.3.2 Action Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.3.3 Reward Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.3.4 Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.4.1 Convergence Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.4.2 Control Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.4.3 Effects of the Indoor Air Temperature Setpoint Strategy . . . . . . . . . . . . 92

5.5 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6 RadiantHeating 99

6.1 Heating System Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.1.1 System Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.1.2 Mullion Radiant Surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.1.3 Thermal Zones and Envelopes . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

xvi



CONTENTS CONTENTS

6.1.4 Target Control Variable and Baseline Control Strategy . . . . . . . . . . . . . 102

6.1.5 Whole Building Energy Model . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.2 Reinforcement Learning Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.2.1 State Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.2.2 Action Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.2.3 Reward Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.2.4 Action Repeat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.2.5 Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.3 Training and Perturbed Simulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.4.1 Convergence Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.4.2 Control Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.5 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7 ChilledWater 127

7.1 System Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7.1.1 System Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7.1.2 Target Control Variable and Baseline Control Strategy . . . . . . . . . . . . . 129

7.1.3 Operational Constraints of a Chiller . . . . . . . . . . . . . . . . . . . . . . . 131

7.1.4 Whole Building Energy Model . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.2 Reinforcement Learning Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

7.2.1 State Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

7.2.2 Action Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

xvii



CONTENTS CONTENTS

7.2.3 Reward Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

7.2.4 Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

7.3 Training and Perturbed Simulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

7.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

7.4.1 Convergence Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

7.4.2 Control Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

7.5 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

8 Deployment Case Study 151

8.1 Case Study Building . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

8.2 Control Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

8.3 Deployment Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

8.3.1 Building Energy Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

8.3.2 Model Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

8.3.3 RL Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

8.3.4 Deployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

8.4 Energy Efficiency Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

8.4.1 Method Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

8.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

8.5 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

9 Usage Guidelines 171

9.1 For Offline Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

xviii



CONTENTS CONTENTS

9.2 For Control Policy Deployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

10 Conclusion 185

10.1 Summary of Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

10.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

10.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

xix



CONTENTS CONTENTS

xx



List of Figures

1.1 Supervisory and Local Level Control in HVAC Systems . . . . . . . . . . . . . . . . 3

1.2 Mentioned Building Simulation Tools in Bldg-sim Mailing List Over the Years (Miller

et al., 2019) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Cart-Pole Balancing Problem (Michie and Chambers, 1968) . . . . . . . . . . . . . . 11

1.4 A Framework of Offline Reinforcement Learning for HVAC Supervisory Control (Zhang

and Lam, 2018) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1 Use a Whole Building Energy Model (EnergyPlus) to Develop HVAC Supervisory

Control Strategies via Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . 24

2.2 A Standard Reinforcement Learning Problem . . . . . . . . . . . . . . . . . . . . . . 26

2.3 Policy and State-value Function Architecture . . . . . . . . . . . . . . . . . . . . . . 31

2.4 Schematic Diagram of Asynchronous Reinforcement Learning . . . . . . . . . . . . . 32

2.5 Relationship between the Observation at the Next Time Step and the Historical Time

Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.6 Architecture of the EnergyPlus Simulator for Reinforcement Learning . . . . . . . . 39

3.1 Boxplots for the Climates of the Four Locations in Cooling Season (the data is from

June 1st to Aug 31st for Pittsburgh, Beijing and Shanghai, Sept 1st to Nov 30th for

Singapore) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

xxi



LIST OF FIGURES LIST OF FIGURES

3.2 Boxplots for the Climates of the Three Locations in Heating Season (the data is from

Jan 1st to Mar 31st for Pittsburgh, Beijing and Shanghai) . . . . . . . . . . . . . . . 45

3.3 Experiment Scenarios for the Cooling Systems . . . . . . . . . . . . . . . . . . . . . . 45

3.4 Experiment Scenarios for the Heating Systems . . . . . . . . . . . . . . . . . . . . . 46

3.5 Experiments for the Neural Network Model Architecture and the Learning Rate . . . 47

3.6 Versatility Evaluation for an RL-trained Control Policy . . . . . . . . . . . . . . . . 50

3.7 Comparisons of the Occupancy Schedules in the Training and Perturbed Simulators

in a Selected Period (June 3rd and June 4th are weekends, all the other days are

weekdays) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.8 Comparisons of the Plug-load Schedules in the Training and Perturbed Simulators in

a Selected Period (June 3rd and June 4th are weekends, all the other days are weekdays) 52

3.9 Comparisons of the IAT Cooling Setpoint Schedules the Training and Perturbed Sim-

ulators for a Selected Time Period in Cooling Season (Note: 1: the shown PMV-based

schedule is from a zone in the training simulator of VAVCooling with Pittsburgh cli-

mate, lightweight structure and baseline control strategy; 2: June 3rd and 4th are

weekends and the other days are weekdays) . . . . . . . . . . . . . . . . . . . . . . . 54

3.10 Comparisons of the IAT Heating Setpoint Schedules the Training and Perturbed Sim-

ulators for a Selected Time Period in Heating Season (Note: 1: the shown PMV-based

schedule is from a zone in the training simulator of VAVHeating with Pittsburgh cli-

mate, lightweight structure and baseline control strategy; 2: Jan 1st and 7th are

weekends and the other days are weekdays) . . . . . . . . . . . . . . . . . . . . . . . 55

4.1 VAVCooling Experiment Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2 System Layout of VAVCooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3 Room Functions of the Thermal Zones Served by VAVCooling . . . . . . . . . . . . . 59

4.4 3D Rendering of the Geometry of the Whole Building Energy Model for VAVCooling

(rendered by BuildSimHub, Inc. (2018)) . . . . . . . . . . . . . . . . . . . . . . . . . 61

xxii



LIST OF FIGURES LIST OF FIGURES

4.5 Relationship Between the Time Interval n and dcorn (specified in Equation (2.23))

for All the VAVCooling Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.6 VAVCooling: Convergence Robustness to the Learning Rate (count of convergence

out of the six learning rates) vs. Neural Network Models for All the Experiment

Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.7 VAVCooling: Convergence Count out of the Seven Neural Network Models vs. the

Learning Rate for All the Experiment Scenarios . . . . . . . . . . . . . . . . . . . . . 68

4.8 VAVCooling: Training Evaluation History for the Learning Rate 1e-5 vs. Neural

Network Models (Pittsburgh Climate) . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.9 VAVCooling: Training Evaluation History for the Learning Rate 1e-5 vs. Neural

Network Models (Beijing Climate) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.10 VAVCooling: Training Evaluation History for the Learning Rate 1e-5 vs. Neural

Network Models (Shanghai Climate) . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.11 VAVCooling: Training Evaluation History for the Learning Rate 1e-5 vs. Neural

Network Models (Singapore Climate) . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.12 VAVCooling: Control Performance in Pittsburgh Climate (n/a means the reinforce-

ment learning does not converge; the results of each neural network model are from the

best-performing learning rate; baseline HVAC EUI means the total HVAC electricity

consumption per building floor area using the baseline control strategy) . . . . . . . 73

4.13 VAVCooling: Control Performance in Beijing Climate (the results of each neural

network model are from the best-performing learning rate; baseline HVAC EUI means

the total HVAC electricity consumption per building floor area using the baseline

control strategy) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.14 VAVCooling: Control Performance in Shanghai Climate (the results of each neural

network model are from the best-performing learning rate; baseline HVAC EUI means

the total HVAC electricity consumption per building floor area using the baseline

control strategy) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

xxiii



LIST OF FIGURES LIST OF FIGURES

4.15 VAVCooling: Control Performance in Singapore Climate (the results of each neural

network model are from the best-performing learning rate; baseline HVAC EUI means

the total HVAC electricity consumption per building floor area using the baseline

control strategy) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.16 VAVCooling: Box-plots of the Average Cooling Setpoint in All Conference and Office

Zones in Working Hours of the Original Training Simulator, Perturbed1 Simulator

and Perturbed2 Simulator of the Selected Control Policies (the control policy of the

ReLu64-2 model is used for the Beijing-Lightweight scenario, the control policies of

the linear model are used for all the other scenarios) . . . . . . . . . . . . . . . . . . 75

4.17 VAVCooling: Comparison of the Control Performance of the Best-performing RL Con-

trol Policies Trained in the New and Original Training Simulator for the Pittsburgh-

Lightweight-Building Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.18 VAVCooling: Box-plots of the Average Cooling Setpoint of All Conference and Of-

fice Zones in Working Hours of the New Training Simulator, Perturbed1 Simulator

and Perturbed2 Simulator of the Pittsburgh-Lightweight-Building Scenario using the

Control Policies Trained by the New Training Simulator . . . . . . . . . . . . . . . . 77

5.1 VAVHeating Experiment Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.2 Terminal Air Flow Rate and Temperature Control Logic of VAV Systems with Ter-

minal Reheat (re-generated based on (EnergyPlus, 2019)) . . . . . . . . . . . . . . . 82

5.3 Relationship Between Time Interval n and dcorn (specified in Equation (2.23)) for

All VAVHeating Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.4 VAVHeating: Convergence Robustness to Learning Rate (the count of convergence

out of the six learning rates) vs. Neural Network Models . . . . . . . . . . . . . . . . 88

5.5 VAVHeating: Convergence Count of the Seven Neural Network Models vs. the Six

Learning Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.6 VAVHeating: Training Evaluation History for the Learning Rate 1e-5 vs. Neural

Network Models (Pittsburgh Climate) . . . . . . . . . . . . . . . . . . . . . . . . . . 90

xxiv



LIST OF FIGURES LIST OF FIGURES

5.7 VAVHeating: Training Evaluation History for the Learning Rate 1e-5 vs. Neural

Network Models (Beijing Climate) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.8 VAVHeating: Training Evaluation History for the Learning Rate 1e-5 vs. Neural

Network Models (Shanghai Climate) . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.9 VAVHeating: Control Performance in Pittsburgh Climate (the results of each neu-

ral network model are from the best-performing learning rate; n/a means none of

the learning rates lead to convergence; baseline HVAC EUI means the total HVAC

electricity consumption per building floor area using the baseline control strategy) . 92

5.10 VAVHeating: Control Performance in Beijing Climate (the results of each neural

network model are from the best-performing learning rate; n/a means none of the

learning rates lead to convergence; baseline HVAC EUI means the total HVAC elec-

tricity consumption per building floor area using the baseline control strategy) . . . 93

5.11 VAVHeating: Control Performance in Shanghai Climate (the results of each neural

network model are from the best-performing learning rate; n/a means none of the

learning rates lead to convergence; baseline HVAC EUI means the total HVAC elec-

tricity consumption per building floor area using the baseline control strategy) . . . 93

5.12 VAVHeating: Box-plots of the Average Heating Setpoint of All Conference and Office

Zones in Working Hours of the Original Training Simulator, Perturbed1 Simulator and

Perturbed2 Simulator of the Selected Control Policy (Pittsburgh-Light: ReLu256-8,

Pittsburgh-Heavy: ReLu64-2, Beijing-Light: ReLu256-4, Beijing-Heavy: ReLu256-2,

Shanghai-Light: ReLu256-8, Shanghai-Heavy: ReLu256-2) . . . . . . . . . . . . . . . 94

5.13 VAVHeating: Comparison of the Control Performance of the Best-performing RL

Control Policies Trained Using the New and Old Training Simulator for the Pittsburgh-

Lightweight-Building Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.14 VAVHeating: Box-plots of the Average Heating Setpoint of All Conference and Of-

fice Zones in Working Hours of the New Training Simulator, Perturbed1 Simulator

and Perturbed2 Simulator of the Pittsburgh-Lightweight-Building Scenario using the

Control Policy Trained by the New Training Simulator . . . . . . . . . . . . . . . . . 96

6.1 RadiantHeating Experiment Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . 99

xxv



LIST OF FIGURES LIST OF FIGURES

6.2 System Layout and Control Principles of RadiantHeating . . . . . . . . . . . . . . . 100

6.3 Top View of the Mullion Radiant Surface (Gong and Claridge, 2006) . . . . . . . . . 101

6.4 Thermal Zones Served by RadiantHeating . . . . . . . . . . . . . . . . . . . . . . . . 102

6.5 Behaviors of the Average Indoor Air Temperature of the Selected Day of RadiantHe-

ating Using the Baseline Control Strategy in Pittsburgh Climate . . . . . . . . . . . 104

6.6 Geometry Rendering of the Whole Building Energy Model for RadiantHeating (ren-

dered by BuildSimHub, Inc. (2018)) . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.7 Relationship Between the Time Interval n and the Distance Correlation dcorn (spec-

ified in Equation (2.23)) for All the RadiantHeating Scenarios . . . . . . . . . . . . . 108

6.8 “Delayed Reward” Problem of RadiantHeating: Behaviors of the PMV vs. Con-

trol Actions (SWT) in a Selected Day of RadiantHeating using the Baseline Control

Strategy in Pittsburgh Climate (SWT: supply water temperature) . . . . . . . . . . 110

6.9 Imperfect Energy Metric Problem: Control Action vs. the Heating Demand of Radi-

antHeating in the Training Simulator of the Pittsburgh-Lightweight-Building Scenario

using a Random Control Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.10 RadiantHeating: Convergence Robustness to Learning Rate (the count of convergence

out of the six learning rates) vs. Neural Network Models . . . . . . . . . . . . . . . . 116

6.11 RadiantHeating: Convergence Count out of the Seven Neural Network Models vs.

Learning Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.12 RadiantHeating: Training Evaluation History for the Learning Rate 5e-4 vs. Neural

Network Models (Pittsburgh Climate) . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.13 RadiantHeating: Training Evaluation History for the Learning Rate 5e-4 vs. Neural

Network Models (Beijing Climate) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.14 RadiantHeating: Training Evaluation History for the Learning Rate 5e-4 vs. Neural

Network Models (Shanghai Climate) . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

xxvi



LIST OF FIGURES LIST OF FIGURES

6.15 RadiantHeating: Control Performance in Pittsburgh Climate (the results of each neu-

ral network model are from the best-performing learning rate; baseline heating de-

mand means the cumulative heating demand per building floor area using the baseline

control strategy) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.16 RadiantHeating: Control Performance in Beijing Climate (the results of each neural

network model are from the best-performing learning rate; baseline heating demand

means the cumulative heating demand per building floor area using the baseline con-

trol strategy) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.17 RadiantHeating: Control Performance in Shanghai Climate (the results of each neural

network model are from the best-performing learning rate; baseline heating demand

means the cumulative heating demand per building floor area using the baseline con-

trol strategy) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.18 RadiantHeating: Control Performance in the Training Simulator for the Checkpointed

Control Policies Obtained During the Reinforcement Learning Training for the Pittsburgh-

Heavyweight-Building Scenario with the ReLu64-2 Model and the Best-performing

Learning Rate (each dot in the figure represents a control policy after every 50K

reinforcement learning interaction steps) . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.1 ChilledWater Experiment Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7.2 System Layout of ChilledWater . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.3 Relationship Between the Time Interval n (control time step is 10-min) and the Dis-

tance Correlation dcorn for All the ChilledWater Scenarios . . . . . . . . . . . . . . 136

7.4 Cooling Demand Profiles at a Selected Time Period of the Training and Perturbed

Simulators for ChilledWater (the time period at the shaded region is weekends) . . . 139

7.5 ChilledWater: Convergence Robustness to the Learning Rate (the count of conver-

gence out of the six learning rates) vs. Neural Network Models . . . . . . . . . . . . 140

7.6 ChilledWater: Convergence Count out of the Seven Neural Network Models vs. the

Learning Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

xxvii



LIST OF FIGURES LIST OF FIGURES

7.7 ChilledWater: Training Evaluation History for the Learning Rate 1e-5 vs. Neural

Network Models (Pittsburgh Climate) . . . . . . . . . . . . . . . . . . . . . . . . . . 142

7.8 ChilledWater: Training Evaluation History for the Learning Rate 1e-5 vs. Neural

Network Models (Beijing Climate) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

7.9 ChilledWater: Training Evaluation History for the Learning Rate 1e-5 vs. Neural

Network Models (Shanghai Climate) . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

7.10 ChilledWater: Training Evaluation History for the Learning Rate 1e-5 vs. Neural

Network Models (Singapore Climate) . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

7.11 ChilledWater: Control Performance in Pittsburgh Climate (the results of each neural

network model are from the best-performing learning rate) . . . . . . . . . . . . . . . 145

7.12 ChilledWater: Control Performance in Beijing Climate (the results of each neural

network model are from the best-performing learning rate) . . . . . . . . . . . . . . . 146

7.13 ChilledWater: Control Performance in Shanghai Climate (the results of each neural

network model are from the best-performing learning rate) . . . . . . . . . . . . . . . 147

7.14 ChilledWater: Control Performance in Singapore Climate (the results of each neural

network model are from the best-performing learning rate) . . . . . . . . . . . . . . . 148

8.1 The Intelligent Workplace (IW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

8.2 Hot Water Pipes Integrated on Window Mullions . . . . . . . . . . . . . . . . . . . . 152

8.3 The Existing Control Principle of the Heating System in IW . . . . . . . . . . . . . . 153

8.4 Deployment Procedure of the IW Case Study . . . . . . . . . . . . . . . . . . . . . . 155

8.5 Mullion System Modeling in EnergyPlus . . . . . . . . . . . . . . . . . . . . . . . . . 155

8.6 Cross-section of the Mullion Radiant Surface in the EnergyPlus Model . . . . . . . . 156

8.7 Hourly and 5-min Comparison between the Simulated (after Bayesian Calibration)

and Observed Heating Demand in the Evaluation Dataset . . . . . . . . . . . . . . . 161

8.8 Deployment Architecture of the RL Control Policy in the Intelligent Workplace . . . 164

xxviii



LIST OF FIGURES LIST OF FIGURES

8.9 Workflow of the Normalized Energy Saving Performance Evaluation Approach . . . 166

8.10 Baseline Daily Heating Demand Samples generated from the GP Model (50 out of

10000 samples are shown) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

8.11 Caption for LOF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

9.1 Control Performance for Different Values of dcorThres in the VAVCooling-Pittsburgh-

Lightweight Scenario with the ReLu64-2 Neural Network Model (Note: the results are

from the best-performing learning rate) . . . . . . . . . . . . . . . . . . . . . . . . . 177

9.2 Example of the Training Evaluation History . . . . . . . . . . . . . . . . . . . . . . . 179

9.3 A Procedure to Terminate the Training and Select a Control Policy (assuming the

checkpoints are at every 50K interaction steps) . . . . . . . . . . . . . . . . . . . . . 180

9.4 Deploy a Trained RL Agent to Substitute an Original Rule-Based Control (RBC) . . 182

xxix



LIST OF FIGURES LIST OF FIGURES

xxx



List of Tables

1.1 Summary of the Studies on Reinforcement Learning for HVAC Supervisory Control . 14

1.2 Summary of the Convergence Performance of Online Reinforcement Learning for

HVAC Supervisory Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1 Conditions for the Control Framework Evaluation . . . . . . . . . . . . . . . . . . . . 43

4.1 Basic Simulation Settings of the Whole Building Energy Models for the VAVCooling

Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2 Comparison of the Training and Perturbed Simulators for the VAVCooling Scenarios 62

4.3 Observation Vector in the State for VAVCooling . . . . . . . . . . . . . . . . . . . . 63

4.4 Length of the History in the State for VAVCooling Scenarios . . . . . . . . . . . . . 65

4.5 Hyperparameters for the RL Training for the VAVCooling Scenarios . . . . . . . . . 66

4.6 VAVCooling: Kullback–Leibler (KL) Divergence between the Training Cooling Set-

point and the Perturbed Cooling Setpoint of the Pittsburgh-Lightweight-Building

Scenario in the New and Original Training Settings (all results are based on the

best-performing control policies) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.1 Basic Simulation Settings of the Whole Building Energy Models for the VAVHeating

Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.2 Comparison of the Training and Perturbed Simulators for VAVHeating Scenarios . . 85

xxxi



LIST OF TABLES LIST OF TABLES

5.3 Observation Vector in the State for VAVHeating . . . . . . . . . . . . . . . . . . . . 86

5.4 Length of the History in the State for VAVHeating Scenarios . . . . . . . . . . . . . 87

5.5 VAVHeating: Kullback–Leibler (KL) Divergence between the Training Heating Set-

point and the Perturbed Heating Setpoint of the Pittsburgh-Lightweight-Building

Scenario in the New and Original Training Settings (all results are based on the

best-performing control policies) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.1 Basic Simulation Settings of the Whole Building Energy Models for RadiantHeating

Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.2 Observation Vector in the State for RadiantHeating . . . . . . . . . . . . . . . . . . 107

6.3 Length of History in the State for RadiantHeating Scenarios . . . . . . . . . . . . . . 108

6.4 Hyperparameters for the RL Training for RadiantHeating Scenarios . . . . . . . . . 114

6.5 Comparison of the Training and Perturbed Simulators for the RadiantHeating Scenarios115

6.6 Control Performance Comparison Between the “Max-reward” and “Better Choice” RL

Control Policy for the Pittsburgh-Heavyweight-Building Scenario with the ReLu64-2

Model and the Best-performing Learning Rate . . . . . . . . . . . . . . . . . . . . . 123

7.1 Operation Modes for the Three Chillers’ On/Off Status for ChilledWater . . . . . . . 131

7.2 Basic Simulation Settings of the Energy Models for ChilledWater . . . . . . . . . . . 132

7.3 Configurations of the Chillers in the Different Climates for ChilledWater . . . . . . . 133

7.4 Observation Vector in the State for ChilledWater . . . . . . . . . . . . . . . . . . . . 135

7.5 Length of the History in the State for ChilledWater Scenarios . . . . . . . . . . . . . 135

7.6 Hyperparameters for the RL Training for ChilledWater Scenarios . . . . . . . . . . . 137

7.7 Comparison of the Training and Perturbed Simulators for the ChilledWater Scenarios 138

7.8 Configurations of the “Context” Building Energy Models to Generate the Cooling

Demand Profiles for the ChilledWater Scenarios . . . . . . . . . . . . . . . . . . . . . 139

xxxii



LIST OF TABLES LIST OF TABLES

8.1 Selected Four Calibration Parameters for the IW EnergyPlus Model . . . . . . . . . 157

8.2 Items in the Datasets for Bayesian Calibration of the IW EnergyPlus Model . . . . . 158

8.3 Modeling Errors after Bayesian Calibration of the IW EnergyPlus Model (IAT: indoor

air temperature) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

8.4 Observation Vector in the State for the RL Training of the IW Case Study . . . . . 162

8.5 RL Training Hyperparameters for the IW Case Study . . . . . . . . . . . . . . . . . 163

8.6 IW Case Study: Simulated Performance of the Selected RL Control Policy . . . . . . 163

8.7 Caption for LOF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

xxxiii



LIST OF TABLES LIST OF TABLES

xxxiv



Chapter 1

Introduction

1



1.1. BACKGROUND AND MOTIVATION CHAPTER 1. INTRODUCTION

1.1 Background and Motivation

1.1.1 Building Energy Efficiency

Buildings are one of the major energy consumers in many countries. For example, buildings (in-5

cluding both residential and commercial buildings) account for nearly 39% of the total energy con-

sumption in the U.S. (The U.S. Energy Information Administration, 2017), 19% of the total energy

consumption in China (Huo et al., 2018), and 50% of the total electricity consumption in Singapore

(Energy Market Authority of Singapore, 2018). Hence, building energy efficiency has been a popular

topic in both research and practice for years.10

The energy efficiency of today’s buildings has been significantly improved thanks to the increas-

ingly stringent codes and standards. Green building certification programs also motivate building

owners and designers to pursue higher building energy efficiency. As a result, buildings now have

better-optimized orientations, more insulated envelopes, better energy-efficient equipment, larger-

scale sensor networks, and other improvements.15

However, compared to the advancements in other areas, most buildings still use simple control

strategies, e.g., fixed operation schedules and rule-based control. Control strategies can significantly

affect building energy efficiency, especially for commercial heating, ventilation and air-conditioning

(HVAC) systems. Hence, building energy efficiency can be further improved if HVAC systems adopt

more sophisticated control strategies. It can be a “free” energy efficiency measure since it does not20

change building structures and hardware.

1.1.2 Control of HVAC Systems

The control of a commercial HVAC system can be divided into two levels, supervisory level and local

level (Wang and Ma, 2007), as shown Figure 1.1.

• Supervisory level: Control at this level uses building observations to determine the high-25

level setpoints and operation states in an HVAC system. For example, a supervisory level

control strategy may use outdoor air temperature and indoor occupancy state to determine

system supply air temperature setpoints or a chiller’s on/off state. Note that the setpoints

and operation states are virtual points in a control system which are not directly related to

2
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Figure 1.1: Supervisory and Local Level Control in HVAC Systems

any physical HVAC components.30

In current practice, the supervisory level control is usually rule-based (i.e., based on static

if-then-else rules). The control design is often determined by engineers’ experience. However,

an HVAC system is an integration of a plethora of components, and the detailed design of each

HVAC system is unique. Thus, static and experience-based control strategies are not energy-

efficient solutions for HVAC operations. Recent research tries to develop better supervisory35

control strategies to improve HVAC energy efficiency.

• Local level: Control at this level determines the state of an HVAC actuator based on building

observations, the supervisory level setpoints, and the supervisory level operation states. The

local level control aims to make an HVAC system meet the supervisory setpoints. For example,

a local level controller controls an air damper to minimize the error between indoor air temper-40

ature and its setpoint. Note that the local level control is directly related to the operations of

HVAC physical components. Rule-based control (RBC) and Proportional-Integral-Derivative

(PID) control are common control strategies.

This thesis focuses on the supervisory-level control for HVAC energy efficiency. This is because,

firstly, it is easier to manipulate the supervisory level setpoints since these setpoints do not directly45

control any HVAC actuators; secondly, compared to the local level control, the supervisory level

control has a wider impact on HVAC operations since the change of one setpoint may affect multiple

HVAC actuators.
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1.1.3 Whole Building Energy Model

Whole building energy model (BEM) is a physics-based simulation program to predict the sub-hourly50

thermal and energy behaviors of a building, such as heating and cooling loads, energy consumption,

indoor environmental conditions and even renewable energy generation. It does not require building

operation data and is flexible to model different buildings and systems.

BEM is widely used for design decision support. Building designers use BEM to predict the

energy performance of their design and compare different design alternatives to improve building55

energy efficiency. The popularity of BEM in building design is probably driven by the require-

ments in various energy efficiency standards and certification programs, such as LEED, BREEAM,

ASHRAE 90.1, California Title 24, etc. For example, the latest version of LEED Building Design

and Construction (The U.S. Green Building Council, 2019) (a green building certification program)

suggests building designers to use building energy models to calculate the energy-saving potential60

of their design. ASHRAE 90.1 (American Society of Heating, Ventilating, and Air Conditioning

Engineers, 2016) (a building energy efficiency standard in the U.S.) allows building designers to use

BEMs to meet standard compliance requirements.

Software Tools for Building Energy Modeling In the U.S., the development of building

energy modeling tools dates back to 1950s (Kusuda, 1999). Initially, computer programs were65

developed to only solve some simple and specific building simulation problems, such as calculating

the overshadowing of a building and simulating the thermal environment of an underground shelter

(Kusuda, 1999). In the early 1970s, a general-purpose tool NBSLD (Kusuda, 1976) was developed to

calculate building heating and cooling loads based on the detailed heat balance calculation. NBSLD

was then modified for annual energy simulation, but it can only model a single zone with a simple70

HVAC system (Kusuda, 1999). In the later 1970s, CAL-ERDA (Winkelmann et al., 1977) was

developed to simulate the annual energy performance of a multi-zone building with HVAC systems.

CAL-ERDA uses a simplified method, weighting factors, to calculate the heating and cooling loads

of a building, which is not as sophisticated as the heat balance method in NBSLD. CAL-ERDA

then evolved into DOE-2 (James J. Hirsch Associates, 2019), which is still one of the most popular75

BEM tools in the U.S. EnergyPlus (The U.S. Department of Energy, 2019a) was then launched

in the later 1990s to combine the best features of the existing simulation tools at that time (e.g.,

DOE-2, BLAST-the successor of NBSLD). EnergyPlus also provides new features, such as integrated

simulation of building thermal loads and HVAC systems (Crawley et al., 1998). After over 20 years
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Figure 1.2: Mentioned Building Simulation Tools in Bldg-sim Mailing List Over the Years (Miller
et al., 2019)

of continuous development, the recent versions of EnergyPlus can adequately model most buildings80

and HVAC systems. For the future, Spawn-of-EnergyPlus (SOEP) (The U.S. Department of Energy,

2019b) is potentially the next-generation BEM engine, which aims to integrate Modelica modeling

language into the EnergyPlus workflow. SOEP has a specific goal to make BEM more accessible for

building control.

Different BEM tools have different levels of complexity and capability that fit into different pur-85

poses. Miller et al. (2019) conducts text mining for BLDG-SIM public email archive (a popular

mailing list for the building energy modeling professionals since 1999, managed by onebuilding.org

(2019)). They find that EnergyPlus-based tools (including EnergyPlus, OpenStudio, and Design-

Builder) are mentioned more frequently than DOE-2-based tools (including DOE-2, eQUEST, and

PowerDOE (James J. Hirsch Associates, 1998)) in recent years, as shown in Figure 1.2. This is90

probably because EnergyPlus is more accurate for the sub-hourly prediction of building thermal and

energy performance. EnergyPlus is arguably the most sophisticated BEM tool in the industry.

1.1.4 Motivation

Buildings account for a significant share of the total energy consumption in many countries, and

HVAC systems are major energy consumers in commercial buildings. The energy efficiency of HVAC95

systems can be affected by their supervisory control strategies. However, most HVAC systems use

simple rules-based control as the supervisory control strategies, which may not be energy-efficient.
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Whole building energy model is widely used for design decision support. However, it is rarely

used for developing HVAC supervisory control strategies. As a detailed and physics-based model,

BEM (simulation)-based building control can potentially deliver a complex control strategy that100

achieves “habitability, sustainability and feasibility” simultaneously (Mahdavi, 2001). The life-cycle

cost of BEM development could also be reduced if BEM is used for HVAC control to further improve

the energy efficiency of a building.

Thus, this thesis aims to develop a method to using BEM for HVAC supervisory control to im-

prove HVAC energy efficiency. The following sections will review the relevant studies of model-based105

or model-assisted HVAC control methods for energy efficiency, including model-based predictive

control, BEM-based predictive control and reinforcement learning control. As will be shown in the

following section, reinforcement learning is selected as the control algorithm of this thesis because

of its applicability on complex dynamic models such as BEM.
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1.2 Literature Review110

1.2.1 Model Predictive Control

Model predictive control (MPC) is one of the most popular model-based control methods for HVAC

systems. Hence, it is worth briefly introducing this method and discussing its limitations.

MPC is defined as an optimization problem with the equality and inequality constraints (Fragki-

adaki, 2018),

min
x,µ

T∑
k=t

ck(xk, µk) (1.1a)

s.t. xt = �xt (1.1b)

xk+1 = f(xk, µk) ∀k ∈ t, t+ 1, t+ 2, ..., T − 1 (1.1c)

g(µt, µt+1, ..., µT , xt, xt+1, ..., xT ) = 0 (1.1d)

h(µt, µt+1, ..., µT , xt, xt+1, ..., xT ) ≤ 0 (1.1e)

where x is the state variable, µ is the control variable, c is the cost function, f is the system

dynamics (a.k.a. the model), T is the prediction horizon, t is one control time step, �xt is the actual115

state observation at the time step t, and g and h are the additional equality and inequality constraints

such as the thermal comfort constraints and the operational constraints of an HVAC system. The

result of the above optimization problem is a control trajectory {µt, xt+1, µt+1, xt+2, ..., xT , µT } but

only µt is actually executed. The optimization problem is repeated for each control time step of a

process. This repeated optimization mechanism is also called receding horizon because the prediction120

horizon is moving forward at each control time step.

MPC was initially popular in the oil processing industry in 1970s (García et al., 1989), and the

research of its application in HVAC dates back to the early 1990s (MacArthur and Foslien, 1993).

Since MPC has solid theoretical foundations (e.g., optimality guarantee), abundant research studies

can be found to use MPC for HVAC supervisory control for energy efficiency, such as controlling125

supply heating/cooling power setpoint (O’Dwyer et al., 2017; Fielsch et al., 2017; Vana et al., 2014;

Coninck and Helsen, 2016; Huang et al., 2015; Li et al., 2015), supply water temperature setpoint

(Lindelöf et al., 2015; Killian and Kozek, 2018), supply air temperature setpoint (Liang et al., 2015;

Chen et al., 2016; Ma et al., 2014b; Razmara et al., 2015), supply airflow rate setpoint (Liang et al.,
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2015; Ma et al., 2014b; Shi et al., 2017), indoor temperature setpoint (Ma et al., 2014a; Yu et al.,130

2017; West et al., 2014).

Despite of the popularity of MPC, scalability becomes an issue when the optimization solvers

of MPC are applied to complex models and cost functions. One example is the linear quadratic

regulator which requires a linear model and quadratic cost function. As a result, BEM cannot

be directly used for MPC because BEM is a high-order simulation program. Besides, commercial135

HVAC systems may have very complex dynamics due to their convoluted system configurations. For

example, for an all-air based system, the relationship between the air-handling-unit (AHU) supply

air temperature (control variable) and the system energy consumption may be nonlinear and even

non-continuous because of the nonlinear dynamics of the HVAC components and the complicated

interrelationships among their operations. Thus, to use MPC for HVAC supervisory control, control140

problems must be simplified or workaround methods must be proposed, for example:

• Since the control goal of MPC is to minimize the energy consumption of an HVAC system,

some studies directly use HVAC heating/cooling demand as the control variable. However,

simplified models have to be used to approximate the nonlinear relationships between HVAC

heating/cooling demand and HVAC electricity/natural gas consumption (Fielsch et al., 2017;145

Vana et al., 2014; Coninck and Helsen, 2016; Huang et al., 2015). Besides, HVAC heat-

ing/cooling demand is not a directly controllable setpoint in some HVAC systems. Hence, a

second-level controller is needed to transform the heating/cooling demand into a controllable

setpoint (e.g., supply water flow rate, supply water temperature) (Huang et al., 2015; Vana

et al., 2014). The workarounds weaken the theoretical advantages of MPC.150

• Another simplification method is to use a linear function to identify the relationships between

the control variable and HVAC supply heating/cooling demand (e.g., using specific heat equa-

tion), and minimize the HVAC supply heating/cooling demand during the optimization (Liang

et al., 2015; Chen et al., 2016; Ma et al., 2014b,a; Yu et al., 2017; West et al., 2014). How-

ever, minimizing HVAC heating/cooling demand is not equivalent to minimizing HVAC energy155

consumption (electricity/gas consumption) because complex non-monotonic relationships may

exist between the two variables.

• Some studies propose more complicated workaround methods to deal with the complex dynam-

ics of HVAC systems, including nonlinear black-box model and heuristic search based MPC

(Lindelöf et al., 2015; Chen et al., 2018a), cooperative distributed MPC (Killian and Kozek,160

2018), MPC with prioritized objectives (O’Dwyer et al., 2017), and data-driven MPC (Smarra
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et al., 2018; Jain et al., 2018). However, these methods add another layer of complexity to the

basic MPC, and cannot guarantee a globally optimal solution sometimes.

1.2.2 Whole Building Energy Model (BEM) based Predictive Control

Since MPC can potentially deliver significant energy efficiency improvements for HVAC systems,165

researchers have been exploring whether BEM can be used in the MPC framework. However,

BEM is a high-order simulation program and cannot be used in existing MPC methods directly.

Workarounds have to be proposed. For example:

• Zhao et al. (2015) have proposed a real-time EnergyPlus model-based predictive control

(EPMPC) method that uses an EnergyPlus model directly for HVAC real-time control. Heuristic-170

search is used as the optimization solver of the method. However, the prediction horizon of

the study is one (i.e., predict for next time step only) because the EnergyPlus-based heuristic-

search is too computationally heavy for real-time control. A successive real-life field test of

EPMPC (Zhang and Lam, 2017) concludes that, even though EPMPC can be implemented in

real-life for real-time control, its scalability is limited due to the over-intensive computation of175

EnergyPlus.

• Ascione et al. (2016) and May-Ostendorp et al. (2011) have developed non-real-time BEM-

based predictive control methods that use heuristic search to pre-calculate the optimized set-

point schedules for next day. Since the control methods are non-real-time, more time is

available for the BEM-based heuristic search.180

• Aftab et al. (2017) and Miezis et al. (2017) have used BEM to calculate the optimized start or

stop time of an HVAC system. This is a simpler control problem because it does not require

real-time computation. The control method only needs to run once a day every morning.

• Kwak et al. (2015) develops a simple, optimization-free control algorithm based on EnergyPlus,

in which EnergyPlus-predicted next-time-step thermal conditions are used as feedback signals185

for current-time-step control. This control method only shows limited energy savings in a

simulation case study.

It can be seen in the existing studies that, building energy models are difficult to be used for real-

time model-based control. The major constraints are its high-order nature and relatively intensive

computation.190

9
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1.2.3 Reinforcement Learning Control

Reinforcement learning (RL) is divided into model-based and model-free approaches. In this study,

the term “reinforcement learning” refers to model-free reinforcement learning. “Model-free” means

a reinforcement learning algorithm does not use the “transition probability distribution” of an en-

vironment. This means an RL agent does not try to learn the environment dynamics. Instead, the195

RL agent develops a control strategy by “trial-and-error”, i.e., it tries different control actions and

improves itself by the feedback from the environment.

A Brief History of Reinforcement Learning As a natural learning phenomenon, the concept

of “trial-and-error” learning is among the earliest thoughts for artificial intelligence (Sutton and

Barto, 2017). Turing (1948) described a design of “trial-and-error” learning, which is conceptually200

similar to today’s reinforcement learning methods:

“When a configuration is reached for which the action is undetermined, a random choice

for the missing data is made and the appropriate entry is made in the description,

tentatively, and is applied. When a pain stimulus occurs all tentative entries are canceled,

and when a pleasure stimulus occurs they are all made permanent.”205

To demonstrate “trial-and-error” learning, researchers built electro-mechanical devices in the 1950s

and a famous example is Shannon’s mouse (AT&T, 1950), which is an electro-mechanical mouse

that can find its way to the target in a maze by itself. Digital computer-based studies followed and

one of the most influential studies is BOXES (Michie and Chambers, 1968), in which reinforcement

learning is used to solve a pole-balancing problem (as shown in Figure 1.3). The pole-balancing210

problem is a classical reinforcement learning problem with incomplete knowledge, and it influences

the later work of temporal difference learning (Sutton and Barto, 2017).

Temporal difference learning has its origin from “secondary reinforcers”, which is a concept in

animal learning psychology (Sutton and Barto, 2017). In short, a secondary reinforcer is a stimulus

that is related to a primary reinforcer. For example, “death” is a primary reinforcer for a goat, and215

“sounds of predators” are the secondary reinforcer because it means predators are nearby to threaten

the goat’s life. Thus, the goat can identify the secondary reinforcer and predict the potential threat

in the future. Inspired by this concept, Barto et al. (1983) develops the actor-critic method that

combines temporal difference learning with trial-and-error learning, where an RL agent is trained to

predict a system’s future behavior using past observations. Q-learning (Watkins, 1989) is another220
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Figure 1.3: Cart-Pole Balancing Problem (Michie and Chambers, 1968)

milestone in the development of reinforcement learning because it bridges the gap between temporal

difference learning and optimal control (Sutton and Barto, 2017). Since then, reinforcement learning

problems are formulated as a Markov decision process (an optimal control problem firstly studied by

Bellman (1957)). Actor-critic and Q-learning are still widely used in today’s reinforcement learning.

Deep reinforcement learning (DRL) becomes a popular branch in reinforcement learning since225

2013, when Mnih et al. (2013) demonstrates it can match or beat human’s performance on some

Atari video games by just observing raw game frames. The success of AlphaGo (Silver et al.,

2017) in Go games further elevates people’s expectations in deep reinforcement learning. The most

recent important achievement of deep reinforcement learning is mastering StarCraft II, a real-time

multiplayer strategy game (DeepMind, 2019). Deep reinforcement learning is fundamentally the230

same as classic reinforcement learning methods. The major difference is that DRL uses a deep

neural network as the function approximation for an RL agent. The use of a neural network in

reinforcement learning is not news. For example, it was studied by Anderson (1986) in the 1980s

and used in the famous TD-Gammon program (Tesauro, 1995) (a backgammon playing program).

However, only simple neural networks were studied at that time rather than “deep” neural networks235

(actually TD-Gammon is the “deep” RL of the 1990s). Deep neural networks are now possible thanks

to the advancement in computing power. With the help of deep neural networks, deep reinforcement

learning can achieve “end-to-end” learning for some complicated tasks. This means that a DRL agent

11
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can use raw sensor data (e.g., raw video frames) as input to make control decisions.

Deep reinforcement learning is still facing several challenges. Firstly, the optimization of a240

complex neural network is harder than a simple neural network (Goodfellow et al., 2016). A number

of methods are proposed in recent literature to make the optimization more effective, such as replay

memory (Mnih et al., 2013), double Q-learning (van Hasselt et al., 2015), dueling network (Wang

et al., 2015), consistent Bellman operator (Bellemare et al., 2015), optimality tightening (He et al.,

2016), proximal policy optimization (Schulman et al., 2017), etc. Secondly, deep reinforcement245

learning still cannot perform well in an environment with sparse or delayed rewards. Thus, effective

exploration has been a popular research topic in the recent years, such as episodic control (Blundell

et al., 2016), bootstrapped Q-learning (Osband et al., 2016), count-based exploration (Ostrovski

et al., 2017), distributional Q-learning (Bellemare et al., 2017), noisy neural networks (Fortunato

et al., 2017), etc. However, the listed methods cannot always achieve better performance in empirical250

experiments, and extensive hyperparameter tuning is still necessary.

Reinforcement Learning for HVAC Supervisory Control Most HVAC systems have com-

plex dynamics. Compared to model-based control methods, model-free reinforcement learning is

easier to implement for HVAC control because it has no restriction for the complexity of a dynam-

ical system. Research in this area dates back to 1990s (e.g., Anderson et al. (1997); Mozer (1998))255

and it gained popularity after 2013 (Vázquez-Canteli and Nagy, 2019) when DeepMind successfully

applied deep reinforcement learning to play Atari games.

Table 1.1 summarizes some recent studies on reinforcement learning for HVAC supervisory con-

trol. The applied environment (or simulator), HVAC system type, climate, experiment design, and

RL agent function approximation model of the studies are summarized in the table. There are260

several research gaps:

1. Most existing studies are based on over-simplified single-zone building simulation models, such

as lumped parameter model (LPM) or steady-state model. The simple modeling methods

cannot realistically simulate the complicated transient thermal behaviors of a building, and

a single-zone building has much simpler thermal behaviors than a multi-zone building. A265

few studies use multi-zone EnergyPlus models, but the models are simplified with box-shaped

geometries and simple thermal zoning. Only one study (Zhang and Lam, 2018) uses a detailed

EnergyPlus model as a thermal simulator.

2. A majority of the studies focuses on the control of a heating/cooling unit (e.g., window A/C

12
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unit), which is one of the simplest HVAC systems. Compared to other larger-scale HVAC270

systems, a heating/cooling unit does not have complex operation characteristics, such as the

interrelationship among chillers, pumps, fans, and air dampers.

3. Most of the papers study a single type of HVAC system in a single climate zone. Such studies

are incomplete for HVAC-related research since different HVAC systems may have different

characteristics in different climates.275

4. Several studies have tested only one scenario in the experiment. To validate the robustness

of a control method, it is valuable to evaluate it under different possible scenarios, such as

different operation schedules, different buildings, etc.

5. The necessity is not justified about the use of “deep” neural networks (NN) as the function

approximation of an RL agent. It is interesting to find that, since 2017, almost all the studies280

have claimed the use of “deep” NN. However, none of them provide evidence of the benefits

of a “deep” NN versus a “shallow” NN. In addition, the definition of “deep” is blurred. A

two-layer NN is also named “deep” NN in some studies.

Online vs. Offline Learning Online learning means a reinforcement learning agent learns to

control when a building is in operation. Theoretically, an online reinforcement learning agent can285

learn an energy-efficient control policy without any human intervention, and it can adapt to changing

building operation characteristics. These advantages are appealing for the practical implementation

of a control method. However, as a trial-and-error learning method, a reinforcement learning agent

needs sufficient explorations to converge to a stable control policy. Thus, a reinforcement learning

agent may take random and wrong control actions when it initially interacts with an HVAC system,290

and its convergence speed may be slow.

Table 1.2 summarizes the convergence performance of the recent online learning studies which

have reported the convergence results. It can be seen that online reinforcement learning requires a

significant amount of time to converge even for single-zone buildings with simple HVAC systems.

Besides, comfort is compromised during the initial stage of learning. Some recent studies (Ruelens295

et al., 2015; Dong Li et al., 2015; Costanzo et al., 2016; Nagy et al., 2018) uniformly report half

a month for an agent to converge. Even though half a month is a short period compared to the

life-cycle of a building, in practice, it may be difficult to convince a building owner if occupants’

thermal comfort will be significantly compromised and the learning convergence time is not certain.

Moreover, Nagy et al. (2018) shows that online reinforcement learning cannot adapt to the change300
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Table 1.1: Summary of the Studies on Reinforcement Learning for HVAC Supervisory Control

Thermal
Environment

HVAC
System

Climate
Zone

Exp
Design

RL
Agent

Liu and Henze (2006)

SZ
LPM

VAV 5A 1 scenario Tabular

Dalamagkidis et al. (2007) Heating/
cooling unit N/K 2 insulation

levels Linear

Yu and Dexter (2010) VAV 5 Simulator
errors Tabular

Urieli and Stone (2013) Heating/
cooling unit N/A 1 scenario NN

Sun et al. (2013) MZ LPM FCU 4 2 building
scales

TabularFazenda et al. (2014) SZ LPM Heating
unit N/K

1 scenario
Barrett and Linder (2015) SZ

steady-state Heating/
cooling unit

4

Ruelens et al. (2015) SZ LPM 5 2 insulation
levels

Regression
(type N/K)

Yang et al. (2015) System
model only

PV/T+
GSHP 5

1 scenario
NN

Dong Li et al. (2015) MZ Eplus
(simplified) VAV N/K

Tabular
Peng and Morrison (2016)

SZ LPM

Heating/
cooling unit 2B Inaccurate

simulator

Costanzo et al. (2016) Heating
unit N/K

1 scenario

Regression
tree

Ruelens et al. (2017) Heating/
cooling unit 5

Schmidt et al. (2017) SZ real-life Heating
(boiler) 4

Wang et al. (2017) MZ Eplus
(simplified) VAV 7 “Deep”

LSTM

Wei et al. (2017) 3B “Deep” NN
(4 layers)

Chen et al. (2018b) SZ
steady-state

Cooling
unit

1A,
3B N/K

Nagy et al. (2018) SZ LPM Heating
unit 5 3 operation

scenarios “Deep” NN

Zhang and Lam (2018) MZ Eplus
(detailed)

Radiant
heating 5

1 scenario

“Deep” NN
(4 layers)

Jia et al. (2019) MZ Eplus
(simplified) VAV 3C “Deep” NN

Valladares et al. (2019) SZ Eplus
(simplified)

Cooling
unit 2 2 buildings “Deep” NN

(6 layers)

Vázquez-Canteli et al. (2019) MZ LPM TES
+PV 2A 5 operation

scenarios
“Deep” NN
(2 layers)

Gao et al. (2019) SZ TRNSYS
(simplified)

Cooling
unit 1 1 scenario “Deep” NN

(2 layers)

Zhang (2019) MZ Eplus
(detailed)

VAV,
radiant heating,

chilled water

1,3,
4,5

Multiple
scenarios

Simple to
deep NN

1. Abbreviations: Exp: experiment, SZ: single zone, MZ: multi-zone, LPM: lumped parameter model, Eplus:
EnergyPlus, VAV: Variable air volume, FCU: fac coil unit, PV/T: photovoltaic/thermal, GSHP: ground source
heat pump, TES: thermal energy storage, NN: neural network, LSTM: long short-term memory neural network.
2. Climate zones are defined in American Society of Heating, Ventilating, and Air Conditioning Engineers
(2016). 14
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of indoor air temperature setpoint fast enough, which weakens one of the major advantages of online

reinforcement learning. Note that, all of the studies in Table 1.2 are based on simplified computer

simulations. Real-life HVAC systems are much more complicated, so the learning convergence speed

may be even slower. An unsuccessful recent attempt (Kazmi et al., 2019) to implement online

reinforcement learning in real-life admits that the learning time is very long and is of high complexity.305

Offline reinforcement learning is another branch for HVAC supervisory control. In this approach,

an environment simulator is used to train a reinforcement learning agent offline, and the pre-trained

agent is deployed in an actual HVAC system. An example of this approach is shown in Figure 1.4.

In this example, a calibrated EnergyPlus model is used as a simulator to train an RL agent offline,

and the trained RL agent is deployed in an actual system as a static control policy. Offline rein-310

forcement learning avoids “surprises” because an RL agent can be thoroughly tuned and evaluated

in a simulator before deployment. This approach has been successfully validated in the real-life

experiments including Liu and Henze (2006); Zhang and Lam (2018); Valladares et al. (2019).
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Table 1.2: Summary of the Convergence Performance of Online Reinforcement Learning for HVAC Supervi-
sory Control

Learning Scenario
Convergence

Speed
Other Comments

Dalamagkidis et al. (2007)

Optimize comfort and energy

in a single-zone building

with a heating/cooling unit

>36 months

PMV is out of the

acceptable bounds

during learning

Yu and Dexter (2010)

Optimize comfort and energy

by learning the parameters

in a fuzzy controller

>12 months

Comfort is worse

than the baseline

during learning

Urieli and Stone (2013)
Optimize comfort and energy

in a house with a heating unit

3-day random

exploration

Detailed convergence

history not reported

Fazenda et al. (2014)
Optimize comfort and energy

in a house with a heating unit
>1 month

Detailed comfort

performance not reported

Ruelens et al. (2015)

Optimize comfort and energy

in a single-zone building

with a heating/cooling unit

>0.5 month
Significant IAT violation

during learning

Dong Li et al. (2015)

Optimize comfort and energy

in a multi-zone building

with VAV cooling

>0.5 month
Detailed comfort

performance not reported

Costanzo et al. (2016)

Optimize comfort and energy

in a single-zone building

with a heating unit

>0.5 month
Detailed comfort

performance not reported

Chen et al. (2018b)

Optimize comfort and energy

in a single-zone building

with a cooling unit

“sufficiently long”
Detailed convergence

history not reported

Nagy et al. (2018)

Optimize comfort and energy

in a single-zone building

with a heating unit

>0.5 month

Significant IAT violation

during learning;

RL cannot adapt to IAT

setpoint change fast enough

Abbreviations: PMV: predicted mean vote (a calculated thermal comfort metric), IAT: indoor air temperature,

VAV: Variable air volume system (a common HVAC system in the U.S.).
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Figure 1.4: A Framework of Offline Reinforcement Learning for HVAC Supervisory Control (Zhang
and Lam, 2018)

1.2.4 Summary of Literature Review315

Model predictive control (MPC) is the most popular model-based control methods for HVAC sys-

tems. However, it has strict requirements for the order of system dynamics and cost functions.

This means whole building energy models (BEM) cannot be directly used for MPC because BEMs

are high-order physics-based simulation programs. Workarounds have to be proposed to integrate

BEMs into the MPC framework, which makes these methods difficult to implement and scale-up.320

Reinforcement learning has no restrictions for the order of system dynamics. Online reinforce-

ment learning is theoretically possible for HVAC control, but it may take too long to converge and

may significantly compromise thermal comfort in the initial stage of learning. Practically, an HVAC

simulator is used to pre-train a reinforcement learning agent offline. BEM is an ideal candidate for

the simulator since it can simulate HVAC behaviors in detail.325

Research gaps are existed in the field of reinforcement learning for HVAC supervisory control,

including:

• Most existing studies are based on over-simplified building models and HVAC systems.

• Most proposed control methods are evaluated in a single type of HVAC system under a single

climate and a single experimental scenario.330

• The use “deep” reinforcement learning is not justified.

This study (Zhang, 2019) will fill the gaps, as shown in Table 1.1.
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1.3 Research Scope and Objectives

Whole building energy model (BEM) has been widely used for new building design but is seldom

used to develop energy-efficient HVAC supervisory control strategies. As a detailed physics-based335

energy simulation model, BEM-based (or BEM-assisted) control can potentially reduce HVAC energy

consumption and reduce the life-cycle cost of BEM development. However, BEM cannot be directly

used in classical model-based control methods, such as model predictive control, because of its

high-order nature. Hence, this study uses reinforcement learning to “learn” energy-efficient control

strategies via BEM. The general objective of this study is to develop a reinforcement learning-340

based method to use BEMs to develop energy-efficient supervisory control strategies for complicated

commercial HVAC systems.

The assumed application scenario of the proposed method is:

During the design phase of a new commercial building, control engineers use the proposed

method to develop an energy-efficient strategy for HVAC supervisory control using the345

detailed whole building energy model created by thermal modelers.

Based on the general objective and assumed application scenario, this study has the following

sub-tasks:

1. Develop a general framework and its related software programs to use BEM and reinforcement

learning to develop energy-efficient HVAC supervisory control strategies;350

2. Systematically evaluate the proposed framework through computer simulations, including:

• Evaluate the proposed framework in detailed whole building energy models.

• Evaluate the proposed framework for four typical commercial HVAC systems, including

a variable-air-volume (VAV) system for cooling, a VAV system for heating, a radiant

heating system, and a multi-chiller chilled water system.355

• Evaluate the proposed framework for four different climate zones, including climate zone

5 (Pittsburgh, PA), 4 (Beijing, China), 3 (Shanghai, China) and 1 (Singapore)1.

• Evaluate the proposed framework for two different levels of building thermal mass.
1The climate zones are defined in American Society of Heating, Ventilating, and Air Conditioning Engineers (2016)
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• Evaluate the versatility of the RL-trained control strategies under different variations in

HVAC operational conditions, including weather conditions, internal load schedules, and360

indoor air temperature setpoints.

• Evaluate the convergence and control performance of different function approximation

models in reinforcement learning, from simple to complex neural networks.

3. Implement the control framework in an actual radiant heating system to demonstrate its

practical feasibility and effectiveness of the control framework.365

4. Provide a usage guideline for the proposed control framework.

This study has the following hypotheses:

1. The proposed reinforcement learning-based control framework can directly use a whole

building model to develop an HVAC supervisory control strategy to achieve reduced

HVAC energy consumption and reduced operational constraint violations than rule-based370

control strategies.

2. Simple neural network models of reinforcement learning are easier to train (i.e., they

converge faster and are more robust to different learning rates), but complex neural

network models can achieve better control performance (i.e., they achieve less energy

consumption and less operational constraint violations).375
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1.4 Summary of the Chapters

There are ten chapters in this thesis:

Chapter 1, Introduction: Provide the necessary background and motivation of this study; Review

relevant literature on model predictive control, whole building energy model-based predictive control

and reinforcement learning control for HVAC systems; identify research gaps and determine the scope380

and objectives of this study.

Chapter 2, Control Framework Development: Present the control framework based on Asyn-

chronous Advantage Actor-critic method, including step-by-step workflow, theoretical backgrounds,

and the architecture of related software programs.

Chapter 3, Experimental Design for the Control Framework Evaluation: Present the general385

objectives of the experimental design; describe experiment scenarios and a general experimental

procedure.

Chapter 4, Experiment 1: Variable-air-volume (VAV) System for Cooling: Present the detailed

experimental design of a VAV system for cooling, including the configurations of the VAV system,

simulation assumptions, state/action/reward design for reinforcement learning, evaluation simula-390

tors, the choice of the hyperparameters of RL and the baseline control strategy; analyze the results

of both convergence performance and control performance.

Chapter 5, Experiment 2: Variable-air-volume (VAV) System for Heating: Present the detailed

experimental design of a VAV system for heating (which is similar to Experimental 1); analyze the

results of both convergence performance and control performance.395

Chapter 6, Experiment 3: Radiant Heating System: Present the detailed experimental design of a

slow-response radiant heating system, including the system configurations, simulation assumptions,

state/action/reward design for reinforcement learning, approaches to solve reward design challenges,

evaluation simulators, the choice of the hyperparameters of RL and the baseline control strategy;

analyze the results of both convergence performance and control performance.400

Chapter 7, Experiment 4: Multi-chiller Chilled Water System: Present the detailed experimental

design of a multi-chiller chilled water system, including the system configurations, simulation as-

sumptions, practical operation requirements, state/action/reward design for reinforcement learning,

evaluation simulators, the choice of the hyperparameters of RL and the baseline control strategy;
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analyze the results of both convergence performance and control performance.405

Chapter 8, A Real-life Deployment Case Study: Present an implementation and deployment case

study of the control framework in an actual radiant heating system, including EnergyPlus modeling,

model calibration, offline RL training, and deployment; analyze the energy efficiency performance

of the deployment via a data-driven normalized energy saving analysis method.

Chapter 9, Usage Guidelines for the Control Framework: List the usage guidelines of the control410

framework based on the simulation experiments.

Chapter 10, Conclusion and Future Work: Summarize the major findings of this study; summa-

rize the limitations of this study; list the future work.
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Chapter 2

Control Framework Development415
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Figure 2.1: Use aWhole Building Energy Model (EnergyPlus) to Develop HVAC Supervisory Control
Strategies via Reinforcement Learning

2.1 Overview

The control framework aims to use a whole building energy model to develop energy-efficient strate-

gies for HVAC supervisory control via reinforcement learning (RL). Figure 2.1 schematically shows

the control framework, where a whole building energy model is used as a simulator to train a re-

inforcement learning agent offline, and the outcome of the offline training is a supervisory control420

policy. The RL-trained control policy can be used to control an actual building HVAC system.

EnergyPlus is used as the whole building modeling engine throughout this study because it is one

of the most popular and sophisticated programs in the industry.

Three components are needed to realize this control framework, including:

1. A reinforcement learning algorithm;425

2. Definition of the state/action/reward;

3. Connection between an EnergyPlus simulator and an RL agent.

The following sections will describe the three components in detail.
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2.2 Key Terminologies

Four key terminologies are defined as follows:430

• Control time step: A time interval when an RL agent observes the state and the reward,

executes a control action and waits for the resulting state and reward of the next time step.

• Simulation time step (e.g., EnergyPlus): The time step defined in EnergyPlus simulators. It

is independent of the control time step. For example, if the control time step is 15-min and

the simulation time step is 5-min, this means an RL agent interacts with the simulator every435

three simulation time steps.

• Simulation episode: The simulation time period of a simulator, e.g., Jan 1st-Mar 31st. During

the RL training, an EnergyPlus simulation will be repeated for multiple episodes.

• Interaction steps: The number of times that an RL agent (including its local RL agent “work-

ers” if using an asynchronous method, will be explained later) interacts with its environment440

(one interaction means an RL agent finishes one control time step).

• Control policy: the control strategy given by an RL agent after the RL training. It is a function

that takes the state as its input and outputs a control action.
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Figure 2.2: A Standard Reinforcement Learning Problem

2.3 Reinforcement Learning Algorithm

2.3.1 Standard Reinforcement Learning Problem445

A standard reinforcement learning problem, as shown in Figure 2.2, is formulated as a Markov

decision process (MDP) where, at a control time step t, an agent observes the state St and reward

Rt to provide the control action At (Sutton and Barto, 2017). In this formulation:

• State represents an RL agent’s observations, typical observations include indoor air tempera-

ture, outdoor air temperature, HVAC energy consumption, etc.;450

• action represents the control actions that an RL agent takes for its environment, such as “turn

on heating”;

• reward is a numeric value representing the degree of goodness of a state/action pair, for ex-

ample, [comfortable indoor environment, turn off heating] may lead to a high reward value.

By formulating the control problem as a MDP, it is assumed state transitions meet the Markov

property, i.e.,

P (St+1 = st+1|St = st, At = at) = P (St+1 = st+1|St = st, At = at, ..., S0 = s0, A0 = a0), (2.1)

which means the next state is only dependent on the last state and last action, and is conditionally455

independent of all the previous states and actions. However, empirically, some problems can be well

solved by reinforcement learning even though the input state is not a full information state (a.k.a.,

Markov property), such as the Atari games (Mnih et al., 2013).

The goal of reinforcement learning is to learn a control policy π : St → At that maximizes the

cumulative reward
∑T∞

t Rt at each control time step. The control policy can be a stochastic one,
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that is:

π(s, a) = P (a|s), (2.2)

which means the probability of taking the action a given the state s.

2.3.2 Value Functions and Function Approximation460

There are two closely-related value functions to describe the degree of goodness of a control policy

π, including the state-value function vπ(s) and the action-value function qπ(s, a), as shown below

(Sutton and Barto, 2017):

vπ(s)_=Eπ

[ ∞∑
k=0

γkRt+k+1|St = s
]

(2.3a)

_=E[Rt+1 + γvπ(s
′)|St = s, St+1 = s′], (2.3b)

qπ(s, a)_=Eπ

[ ∞∑
k=0

γkRt+k+1|St = s,At = a
]

(2.4a)

_=E[Rt+1 + γvπ(s
′)|St = s,At = a, St+1 = s′], (2.4b)

where γ is the reward discount factor. The state-value function vπ(s) is the expected cumulative

discounted reward of a control policy π given the state St = s, which intuitively represents “how

good is the state”. The action-value function qπ(s, a) is similar to the state-value function, but it

is conditioned on a {St = s, At = a} tuple. Intuitively, this function represents “how good is the

action”.465

Classical reinforcement learning uses a table to store the state-values and action-values for each

state and state/action pair (tabular reinforcement learning). The tabular method is simple and

fast to compute, but the table becomes excessively large for complicated continuous-state problems.

Hence, parameterized functions are used to represent the state-value function, the action-value

function and the control policy (Sutton and Barto, 2017), i.e.,

vπ(s) ≈ v(s;θv), (2.5)

qπ(s, a) ≈ q(s, a;θq), (2.6)

π(s, a) ≈ π(s, a;θ), (2.7)
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where θv, θq, and θ are weight vectors in the parameterized functions. Any parameterized regression

models can be used as the parameterized functions, such as linear regression, multi-layer perceptron,

and deep neural networks.

2.3.3 Policy Gradient Method

In general, mainstream reinforcement learning methods are divided into value-based methods and470

policy gradient methods. Value-based methods, such as Q-learning, learn the value functions to

derive a control policy. For example, a greedy control policy always selects the action with the

highest action-value. Another branch is policy gradient. Policy gradient methods directly learn a

parameterized control policy, rather than derive a control policy from the value functions. Thus,

policy gradient methods have better convergence property and can develop a stochastic control475

policy (Sutton and Barto, 2017).

A policy gradient method aims to learn the parameter θ in the parameterized stochastic control

policy:

P (a|s) = π(s, a) ≈ π(s, a;θ), (2.8)

that maximizes the average reward per control time step. The problem can be formulated as:

max
θ

J(θ) =
∑
s

dπ(s)
∑
a

Ra
sπ(s, a;θ), (2.9)

where dπ(s) is the stationary distribution for the state s of the Markov chain starting from the initial

state following a policy π, and Ra
s is the environment reward at a state s taking an action a (Sutton

and Barto, 2017).

Equation (2.9) is an unconstrained optimization problem which can be solved by gradient descent

(GD), i.e.,

θ ← θ + α∇θJ(θ), (2.10)

where α is the learning rate. The key part of gradient descent is to calculate ∇θJ(θ), which is the
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gradient of J(θ) with respect to θ. Sutton and Barto (2017) derives it as:

∇θJ(θ) =
∑
s

dπ(s)
∑
a

Ra
sπ(s, a;θ)

∇θπ(s, a;θ)

π(s, a;θ)
(2.11a)

=
∑
s

dπ(s)
∑
a

Ra
sπ(s, a;θ)∇θ logπ(s, a;θ) (2.11b)

= Eπ [∇θ logπ(s, a;θ)q(s, a;θq)] (2.11c)

= Eπ [∇θ logπ (s, a;θ) (q (s, a;θq)− v (s;θv))] . (2.11d)

In the above derivation, Equation (2.11a) and Equation (2.11b) follow the properties of derivatives480

of logarithmic functions, Equation (2.11c) is obtained based on policy gradient theorem (Sutton and

Barto, 2017). Equation (2.11c) is then subtracted by a zero-valued function Eπ[∇θ logπ(s, a;θ)v(s;θv)]

because it reduces the variance of q(s, a;θq) for better learning stability (Sutton and Barto, 2017).

Equation (2.11c) is called actor-critic method, since there is a “critic” (q(s, a;θq)) to evaluate the

“actor” (π(s, a;θ)). Equation (2.11d) is called advantage actor-critic because the advantage-value485

function (q(s, a;θq)− v(s;θv)) is used as the “critic” instead of the action-value function.

2.3.4 Gradient Descent Formulation

After the gradient is known, Equation (2.10) becomes

θ ← θ + αEπ

[
∇θ logπ(s, a;θ)

(
q(s, a;θq)− v(s;θv)

)]
(2.12a)

= θ + αEπ[∇θ logπ(s, a;θ)
(
Rb(s)− v(s;θv)

)]
, (2.12b)

where,

Eπ[Rb(s)] =

n∑
i=1

γn−1r′i,π + γnv(s′n,π;θv) (2.13)

in which r′n,π and s′n,π are the reward and state at n-control-time-step after the current state s

following the policy π. Usually, n is a small number. Equation (2.13) follows from the definition of

Equation (2.4).490

Equation (2.12b) has a new unknown variable θv, which is the weight in the parameterized state-

value function. This parameter can also be learned using gradient descent to minimize the mean
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squared error between the “true” and the “predicted” state-value, that is,

θv ← θv − αEπ

[
∇θv

(
vtrue − v(s;θv)

)2] (2.14a)

≈ θv − αEπ

[
∇θv

(
Rb(s)− v(s;θv)

)2]
, (2.14b)

where Eπ[Rb(s)] is used as a biased estimate of vtrue. This is called temporal-difference learning

(Sutton and Barto, 2017), which uses a bootstrapped state-value function Eπ[Rb(s)] as a biased

estimation of the true state-value function. As n in Eπ[Rb(s)] increases, the above bootstrapped

function infinitely approaches the true value. If n = ∞, it is called Monte-Carlo reinforcement

learning. While Monte-Carlo reinforcement learning has better convergence property, temporal495

difference learning is computationally more efficient.

To reduce the complexity of the problem, the parameterized functions v(;θv) and π(;θ) can be

partially combined with parameter sharing in a single neural network (Mnih et al., 2016), as shown

in Figure 2.3. We then have the state-value function v(s;θv) = v(s;θπ,v) and the policy distribution

π(s, a;θ) = π(s, a;θπ,v)
1. As a result, the one-step learning update of the gradient descent of θπ,v

becomes:

θπ,v ← θπ,v − αEπ

[
β∇θπ,v

(
Rb(s)− v(s;θπ,v)

)2 (2.15a)

−∇θπ,vAd logπ(s, a;θπ,v)
]
, (2.15b)

where β is the value loss weight and Ad is a constant representing the advantage-value function (not

used in the gradient calculation):

Ad = Rb(s)− v(s;θπ,v). (2.16)

2.3.5 Exploration Methods

A reinforcement learning agent needs to explore different control policies to converge to a near-

optimal one. Random exploration (i.e., take random control actions) is the most commonly used

one, such as ϵ-greedy and entropy regularization. However, random exploration is inefficient and500

requires extensive hyperparameter tuning. This study adopts two structured and easy-to-implement

methods for the exploration, including NoisyNet (Fortunato et al., 2017) and Asynchronous method
1The notations here are slightly abused since the state-value function and the policy distribution do not share all

the function parameters.
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Figure 2.3: Policy and State-value Function Architecture

(Mnih et al., 2016).

NoisyNet

A layer in a conventional feed-forward fully-connected neural network is written as (without activa-

tion):

h = ωx+ b (2.17)

where h is the layer output, ω is the weight matrix, x is the layer input, and b is the bias vector.505

During reinforcement learning, ω and b are learned through gradient descent optimization.

A layer in NoisyNet (Fortunato et al., 2017) is written as (without activation):

h_=(µω + σωϵω)x+ µb + σbϵb, (2.18)

where µω, σω, µb, σb are learnable variables, and ϵb and ϵω are noise random variables. Compared

to the conventional layer in Equation (2.17), NoisyNet introduces noises in the weight matrix and

bias vector. During reinforcement learning, the learnable variables are also learned through gradient

descent optimization, but the noise random variables are changing for each learning step.510

Unlike dithering approaches (e.g., ϵ-greedy) that add independent randomness to a control pol-

icy, NoisyNet can “induce a consistent, and potentially very complex, state-dependent change in

policy over multiple time steps” (Fortunato et al., 2017). Intuitively, this is because stochasticity is
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Figure 2.4: Schematic Diagram of Asynchronous Reinforcement Learning

embedded in the reinforcement learning process so an RL agent has more structured explorations.

In addition, the level of noises does not require tuning since it will be learned in the learning process515

(via σω and σb in Equation (2.18)). NoisyNet shows obvious improvements in a wide range of Atari

games (Fortunato et al., 2017).

In this study, NoisyNet is used as the last layer of the function approximation model, as shown

in Figure 2.3. During reinforcement learning training, ϵb and ϵω are sampled from a Gaussian

distribution with 0 mean and 1 standard deviation. After reinforcement learning training, ϵb and520

ϵω are set to zero for inference.

Asynchronous Method

Conventional reinforcement learning has only one agent to interact with the environment. When

the environment has complex dynamics, it may take a long time for a single agent to explore the

whole state space. Mnih et al. (2016) develops an asynchronous reinforcement learning method525

which fires many local RL agents in parallel to explore the environment. Since each local RL agent

has a stochastic control policy, they will explore different regions of the state space. At a certain

frequency, the local RL agents asynchronously perform gradient descent update for the global RL

agent, and the global RL agent also updates the local RL agents. The principle of this method is

schematically shown in Figure 2.4.530

In addition to the advantage of efficient exploration, the asynchronous method is computationally

efficient. Thus, it can be performed using only CPUs.

32



CHAPTER 2. CONTROL FRAMEWORK 2.3. RL ALGORITHM

2.3.6 Summary of the Reinforcement Learning Algorithm

This study formulates the reinforcement learning problem into a Markov decision process, where an

RL agent observes the current state, take an action, and receives the next state observation and535

reward. The goal of reinforcement learning is to develop a control policy π : St → At that maximizes

the cumulative reward.

Policy gradient is used to directly optimize a parameterized control policy. More specifically,

advantage actor-critic (A2C) is the algorithm for the policy gradient reinforcement learning. In

addition to the optimization of the control policy, A2C needs to solve an unknown state-value540

function at the same time. To make the problem simpler, this study uses a shared neural network

architecture to approximate both control policy and state-value function. Gradient descent is used

for optimization.

Efficient exploration is important for efficient reinforcement learning. Rather than using random

exploration, this study adopts NoisyNet and the asynchronous method. The asynchronous version545

of A2C is called A3C.
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2.4 Definition of State, Action and Reward

As presented in section 2.3.1, a standard reinforcement learning problem should define the state,

action, and reward.

2.4.1 State Design550

The state represents an RL agent’s observation for the environment. In addition, the state should be

designed to make the whole process obey the Markov property, i.e., the state transition depends only

on the current state and the current control action, and is conditionally independent of the previous

states. In other words, an RL agent can sufficiently make a control decision by just observing the

current state.555

Many building HVAC systems have delayed responses, e.g., indoor air temperature may remain

high even after a heater is turned off, or supply water temperature may remain low even after a boiler

is turned on. The delayed responses are firstly caused by the thermal mass of building structures,

and are also caused by the insufficient capacity or non-ideal operations of HVAC components. Thus,

observations at one single control time step are not sufficient for an RL agent to make control560

decisions.

This study designs the state as a stack of the observations at the current and past control time

steps, as shown below:

St =
{
obt, obt−1, ..., obt−n

}
, (2.19)

where obt is the environment observation at the control time step t, n is the length of the history to

be considered. All items in ob are normalized to 0-1 for the optimization purpose of neural networks.

Min-max normalization is used, as shown below:

obnorm =
ob− obmin

obmax − obmin
, (2.20)

where obmin and obmax are determined based on the physical limitations or the operational ranges

of an item.
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Figure 2.5: Relationship between the Observation at the Next Time Step and the Historical Time
Steps

Determine the Length of the History Ideally, the length of the history (n in Equation (2.19))

should be determined based on the Markov property testing, i.e., the value of n should make the565

process obey the Markov property. However, Markov property testing is highly complicated. This

study proposes a simpler alternative approach to determine the length of history to be considered

in the state.

In HVAC systems, the environment observation at the time step t+ 1 usually depends more on

recent historical observations, and less on older historical observations. For example, the indoor570

air temperature of the next time step is closely related to the current indoor air temperature, and

may not be related to the indoor air temperature of 3 hours ago. This is schematically illustrated

in Figure 2.5. Hence, it is only necessary to include the historical observations that have a strong

relationship with the next-time-step observation. The relationship (dependence) can be measured

by distance correlation (Székely et al., 2008). Distance correlation can measure both linear and575

nonlinear associations between two variables, and it ranges from 0 to 1 where 0 means no association

and 1 means linear association between two variables.

Since HVAC simulators are available, they can be used to generate necessary data to determine

the length of the history in the state. The full procedure is as follows:

1. Run the simulation of an HVAC system for one episode using a random control policy.580

2. Record the observations of all control time steps from the simulation , i.e., oball ∈ Rp×q

where p is the number of the observations (i.e., the total number of control time steps in one

simulation episode) and q is the number of items in each observation; The first row in oball is

the observation of the first control time step in a simulation episode.
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3. Test the dependence between the next-control-time-step observations (obt+1) and the obser-

vations at n control time steps before the current control time step (obt−n). obt+1 and obt−n

are R(p−1−n)×q matrices where each row in obt+1 is the observation at the control time step

t+1 and each row in obt−n is the observation at the control time step t− n, as shown below:

obt+1 = [obt=n+2, obt=n+3, ..., obt=p]
T , (2.21)

obt−n = [obt=1, obt=2, ..., obt=p−1−n]
T , (2.22)

The distance correlation between the observations at t+1 and the observations at t−n (dcorn)

is:

dcorn = dcor(obt+1,obt−n), (2.23)

where dcor() is the function to calculate the distance correlation.585

dcorn is calculated for all choices of n from n = 1 upwards (i.e., n = 1, 2, 3, ...), until dcorn <

dcorThres whereby the dependence is not significant anymore. Then the last choice of n that

makes dcorn ≥ dcorThres is the length of the history in the state. dcorThres is a tunable

hyperparameter. Since dcorn ranges from 0 to 1, this thesis simply uses dcroThres = 0.5 to

save the computational cost related to the hyperparameter tuning.590

The above procedures are summarized in Algorithm 1.

Algorithm 1 Determine the Length of the History in the State
1: procedure determineN(oball, dcorThres)

▷ oball is all the observations in one simulation episode, which has p rows and q cols

▷ dcorThres is the threshold for the distance correlation
2: dcorThis = 1 ▷ init with the maximum distance correlation value

3: n = 0

4: while dcorThis ≥ dcorThres do

5: n = n + 1

6: obNext = oball[n+2:p,:] ▷ slice oball from the row n+2 to the row p (inclusive)

7: obHist = oball[1:p-1-n,:] ▷ slice oball from the first row to the row p-1-n (inclusive)

8: dcorThis = dcor(obNext, obHist)

9: return n - 1 ▷ return the last choice of n
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2.4.2 Action Space Design

The action space in this study is a discrete set of control choices, as shown below,

At =
{
a1, a2, ..., an

}
, (2.24)

where an is a control action choice, such as “turn on chiller1 and chiller2”.

2.4.3 Reward Function Design

The reward is a function of the state at the last time step, the state at the current time state and

the action at the last time step, i.e.,

Rt+1 = [freward(St, St+1, At)]
1
0. (2.25)

The reward is a scalar value in the range of [0, 1] representing how good are the states and/or the595

action. The reward function (freward()) is user-defined and can be dramatically different for different

scenarios. The following chapters will show some examples of the reward function design. In general,

this function gives a small reward value when HVAC energy consumption is high and/or HVAC

operational constraints are not met (e.g., thermal comfort constraints, equipment safety constraints),

and gives a large value when the energy consumption is low and the operational constraints are met.600
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2.5 EnergyPlus Simulator for Reinforcement Learning (EPRL)

EnergyPlus (The U.S. Department of Energy, 2019a) is a dynamic simulation program for building

energy performance. In this study, an EnergyPlus model is viewed as the virtual environment for an

HVAC system. As shown in section 2.3.1, a reinforcement learning agent needs to interact with the

environment by observing the state and reward, and taking control actions. This study develops a605

Python-based program to realize such interactions.

The program is named EnergyPlus Simulator for Reinforcement Learning (EPRL), which wraps

an EnergyPlus model in the Python-based OpenAI Gym interface (Brockman et al., 2016). OpenAI

Gym is a prevailing programming interface for reinforcement learning. EPRL is based on the ex-

isting inter-program communication function of EnergyPlus (ExternalInterface in EnergyPlus) and610

BCVTB middleware (Lawrence Berkeley National Laboratory, 2016). The architecture of EPRL is

shown in Figure 2.6. The main component of this architecture is the OpenAI gym interface, which

is a Python object with three functions: object constructor (__init__), reset() and step(a). The

operation sequence of EPRL is as follows:

1. When an OpenAI gym interface object (gym object) is initiated (by calling the object con-615

structor), a server socket for inter-program communications is created.

2. The function reset() is called once by an RL agent when the learning first starts. When it is

called, an EnergyPlus instance is first created using the EnergyPlus input definition file (IDF)

and data exchange file (with the .cfg extension) stored in the local drive.

The data exchange file specifies the types of control actions related to the input to and the620

output from the EnergyPlus simulation.

3. The gym object then creates a TCP connection with the EnergyPlus instance, in which Ex-

ternalInterface of EnergyPlus performs as a client through BCVTB.

4. The gym object reads the initial output from the EnergyPlus simulation using the TCP con-

nection, and returns the output to the RL agent. The RL agent is responsible to process the625

output to extract the state and reward for reinforcement learning.

5. The function step(a) is called once at each control time step. When it is called, the gym object

uses the TCP connection to send the action a to the EnergyPlus simulation and read the

resulting simulation output. The gym object then returns the output to the RL agent. The

output should be processed by the RL agent to extract the state and reward for the learning.630
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Figure 2.6: Architecture of the EnergyPlus Simulator for Reinforcement Learning

EPRL and a demo are available at https://github.com/zhangzhizza/Gym-Eplus.
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Chapter 3

Experimental Design for the

Control Framework Evaluation

This chapter describes the overall experimental design to sufficiently evaluate the proposed con-635

trol framework for its convergence performance and control performance (i.e., energy saving and

operational constraint fulfillment). The experiments are solely based on computer simulations.
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3.1 Experimental Design Objectives

The behavior of an HVAC system is affected by several factors, including system type, climate,

building thermal mass, operational pattern, etc. For example, an air-based system (supply hot/cold640

air to the rooms) usually has a much faster thermal response than a water-based system (supply

hot/cold water to the rooms). Thus, the proposed control method should be evaluated under a

variety of conditions to provide convincing conclusions on its effectiveness. However, most existing

studies only evaluate their reinforcement learning methods under limited conditions. Hence, the first

objective of the experimental design is to evaluate the proposed control framework under various645

conditions, including different system types, different climates, and different building thermal mass

levels.

As a “learning” method, reinforcement learning uses gradient descent to solve a non-convex op-

timization problem. The convergence of the learning cannot be guaranteed, and is sensitive to the

choice of hyperparameters, such as neural network model architecture, learning rate, optimizer, etc.650

The recent success of “deep” reinforcement learning motivates researchers to use complex neural net-

work models, assuming complex models can achieve better energy efficiency performance. However,

the reinforcement learning with complex neural network models is more difficult to converge. The

existing studies have never compared the performance of different neural network models to justify

the use of “deep” reinforcement learning. Hence, the second objective of the experimental design655

is to compare the performance of simple and complex neural network models for their convergence

performance and control performance.
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Table 3.1: Conditions for the Control Framework Evaluation

HVAC

System Type

variable-air-volume terminal reheat system with an

air-cooled heat pump in cooling season (VAVCooling)

variable-air-volume terminal reheat system with an

air-cooled heat pump in heating season (VAVHeating)

radiant heating system (RadiantHeating)

three-chiller chilled water system (ChilledWater)

Climate

Zone

Pittsburgh (ASHRAE Climate Zone 5A)

Beijing (ASHRAE Climate Zone 4)

Shanghai (ASHRAE Climate Zone 3)

Singapore (ASHRAE Climate Zone 1)

Thermal

Mass Level

lightweight structure (metallic cladding based structure)1

heavyweight structure (concrete based structure)2

1. The outmost layer of external walls is metallic cladding with thickness 0.006m,
thermal conductivity 290W/m-K, density 1250kg/m3, specific heat 1000J/kg-K,
thermal absorptance 0.9, solar absorptance 0.4. 2. The outmost layer of external
walls is concrete block with thickness 0.15m, thermal conductivity 1.63 W/m-
K, density 2300kg/m3, specific heat 1000J/kg-K, thermal absorptance 0.9, solar
absorptance 0.6.

3.2 Experiment Scenarios

The control framework is evaluated for different HVAC systems, different climate zones, and different

thermal mass levels, as shown in Table 3.1.660

Four HVAC systems are selected, including a variable-air-volume (VAV) system for cooling, a

VAV system for heating, a radiant heating system, and a three-chiller chilled water system. They

represent some of the most common commercial system types. The details of the systems can be

found in the following chapters.

Four climate zones are selected, ranging from the cool climate of Pittsburgh to the hot climate665

of Singapore. Figure 3.1 and 3.2 show the summary of the climates in the four locations from both

typical meteorological year (TMY) data and the actual meteorological year (AMY) data of 2017. It

can be seen that Pittsburgh has the coolest outdoor air temperature and is humid in both heating

and cooling seasons. Beijing and Shanghai are warm and humid in cooling season, but Beijing

is significantly drier and colder than Shanghai in heating season. Singapore is warm and humid,670
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Figure 3.1: Boxplots for the Climates of the Four Locations in Cooling Season (the data is from
June 1st to Aug 31st for Pittsburgh, Beijing and Shanghai, Sept 1st to Nov 30th for Singapore)

and the outdoor air temperature and relative humidity have small variations. The solar radiation

data does not show a clear trend across the four locations, except that the direct solar radiation of

Singapore has a smaller variation than the other locations.

Two thermal mass levels will be experimented, including a light metallic structure and a heavy

concrete structure. Thermal mass levels affect a building’s thermal response. The light structure675

has a faster thermal response than the heavy structure.

By combing all the possible conditions, 24 experiment scenarios are obtained as shown in Figure

3.3 and Figure 3.4. Building thermal mass is not applicable to ChilledWater because it is a primary-

system (i.e., generate cooling source only) without considering room conditioning. Singapore is not

included in the heating system scenarios because heating is not needed in a hot climate.680
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Figure 3.2: Boxplots for the Climates of the Three Locations in Heating Season (the data is from
Jan 1st to Mar 31st for Pittsburgh, Beijing and Shanghai)

Figure 3.3: Experiment Scenarios for the Cooling Systems
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Figure 3.4: Experiment Scenarios for the Heating Systems

3.3 Neural Network Models

The control framework uses a neural network as the function approximation for an RL agent. The

neural network architecture has the shared layers followed by a Softmax layer for the control policy

and a linear layer for the state-value function, as shown in Figure 2.3. Different neural network

models will be evaluated for the shared layers, ranging from a linear model to “deep” neural network685

models. Since neural network optimization is highly sensitive to the learning rate (α in Equation

(2.10)), different learning rates will be tuned for each neural network model. The experiments on

neural network models and learning rates are shown in Figure 3.5. In this figure, “ReLu x-y” means

a feed-forward fully connected neural network that has y layers (the depth of a neural network) with

x neurons (the width of a neural network) at each layer, and ReLu is the nonlinear activation of690

each neuron. The tuning for the neural network model and the learning rate is repeated for each

experiment scenario listed in the previous section.
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Figure 3.5: Experiments for the Neural Network Model Architecture and the Learning Rate

3.4 Experimental Procedure

This section presents a general experimental procedure for all the experiment scenarios. The detailed

procedure for each specific experiment scenario can be found in the following chapters.695

3.4.1 Preparation of a Training Simulator

1. Build a whole building energy model: An EnergyPlus model is built for each experiment

scenario.

2. Set the simulation episode length: One simulation episode lasts for one cooling or heating

season which is two or three months. Compared to a short simulation episode (e.g., several700

days), the long one could cover more weather variations to generate a more robust control

policy and provide more comprehensive control performance results.

3. Set the simulation time step size: 10 minutes for all the experiment scenarios.
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3.4.2 Offline Reinforcement Learning Training

1. Design the state/reward/action: They are designed based on the definitions in Section 2.4.705

Same HVAC system type will have the same design for the state, reward and action. More

detailed information can be found in the following chapters.

2. Set the control time step size: it is 10 minutes for VAVCooling, VAVHeating, and ChilledWater

systems; 20 minutes for RadiantHeating system because of its slow thermal response.

3. Set the neural network model and the learning rate: Use one of the combinations in Figure710

3.5 as the neural network model and learning rate.

4. Set checkpoints during the training: Checkpoints are set at different interaction steps of an

RL training process. At each checkpoint, the training is paused and the current control policy

is backed up. Then, the current control policy is used to control the training simulator for one

simulation episode to record the cumulative reward. This value is named “training cumulative715

reward” or RtrainCumulative.

5. Assess the convergence: The convergence is assessed by plotting the training evaluation history,

which shows the training cumulative reward at different RL interaction steps. The training

converges if the training cumulative reward increases and becomes stable.

6. Set the maximum interaction steps: Different RL agents need different numbers of interac-720

tion steps to converge. The maximum interaction steps are determined by trial-and-error

for each RL agent. Basically, a large number is firstly guessed, and the number increases if

RtrainCumulative is not stable and has an increasing trend. If RtrainCumulative has no sign

of convergence (e.g., fluctuating at a low level), the maximum interaction steps will not be

increased and the training is terminated.725

7. Select a control policy: If the training converges, the “checkpointed” control policy with the

maximum RtrainCumulative is selected as the final output.

3.4.3 Control Performance Evaluation

Baseline Control Strategies The RL-trained control policies are compared with rule-based con-

trol (RBC) strategies as the baseline. RBC is widely used in practice for HVAC supervisory control,730
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so it is used as the baseline to evaluate the control framework against the industry common prac-

tice. The baseline control strategy stays the same for the experiment scenarios with the same HVAC

system type.

The RL control policies are not compared with other optimal control methods, such as model

predictive control (MPC), because they cannot be directly applied for the complex HVAC control735

problems as shown in this study. For example, the system dynamics of VAVCooling is nonlinear and

even non-continuous, which is not solvable using common MPC methods.

Evaluation Metrics The RL-trained control policies are evaluated on HVAC energy consumption

savings and operational constraints fulfillment. The HVAC energy consumption metric is system

total electricity consumption (in kW, for VAVCooling, VAVHeating and ChilledWater) or system740

total heating demand (in kW, for RadiantHeating, because it is the only available energy metric for

this system). The operational constraints vary in different HVAC system types. The details will be

presented in the respective chapters of the experiment scenarios.

3.4.4 Evaluation Simulators

Each RL-trained control policy is evaluated in two types of simulators, including the training sim-745

ulator for training evaluation and different “perturbed” simulators for “versatility” evaluation. The

simulations last for one episode in both types of simulators.

Training Evaluation Simulator The training simulator is the same as the one that trains an

RL agent. It is used to evaluate the “ideal” control performance of a trained RL control policy.

Versatility Evaluation Simulators An RL-trained control policy is obtained through the train-750

ing based a design-stage BEM. The design-stage BEM contains assumed information for some HVAC

operational conditions, such as weather conditions and building operation schedules. However, ac-

tual operational conditions may be different from the assumptions. For example, it is impossible

to 100% accurately predict the weather conditions of a building even for a short future, and it is

difficult to accurately predict the occupancy schedules of a building before it is built.755

Hence, each RL-trained control policy is evaluated for its “versatility”, which is the ability to

tolerate the variations in HVAC operational conditions. The versatility evaluation is conducted based
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Figure 3.6: Versatility Evaluation for an RL-trained Control Policy

on different “perturbed” simulators, which are built based on the training simulator with changed

HVAC operational conditions. Each RL-trained control policy is used to control the perturbed

simulators, and the control performance is compared with that in the training simulator. This760

process is demonstrated in Figure 3.6.

The perturbed simulators contain the following variations in HVAC operational conditions:

• Weather conditions:

– Training: typical weather data, such as Typical Meteorological Year (TMY) data or The

International Weather for Energy Calculation (IWEC) data. These weather data are765

commonly used for building energy modeling because they are the most accessible and

maybe the only available weather data during building design.

– Perturbed: two different weather conditions will be used, including: 1) the Actual Me-

teorological Year (AMY)-2017 data; 2) the typical weather data (TMY3 or IWEC) with

additive white Gaussian noises.770

The comparison between the typical weather conditions (without additive white Gaussian

noise) and AMY-2017 weather conditions is shown in Figure 3.1 (cooling season) and Figure

3.2 (heating season). It can be seen that the distributions of the two weather conditions are

different.

• Occupancy schedules:775

– Training: simple deterministic schedules with additive white Gaussian noises. Occupancy

schedules are impossible to predict before a building is in operation. Thus, simple deter-

ministic schedules are widely used for building energy modeling. Since it is known that
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Figure 3.7: Comparisons of the Occupancy Schedules in the Training and Perturbed Simulators in
a Selected Period (June 3rd and June 4th are weekends, all the other days are weekdays)

occupancy schedules are stochastic, additive white Gaussian noises are added to the basic

deterministic schedules to increase the robustness of a reinforcement learning agent.780

– Perturbed: 1) stochastic schedules generated by the Occupancy Simulator (Chen et al.,

2018a).

Figure 3.7 shows the occupancy schedules in the training and perturbed simulators. It is

assumed that office and conference rooms are only occupied in weekdays, and classrooms are

only occupied in weekends (for outreach programs). Note that some experiment scenarios may785

not have all the room types. The detailed configuration of room types is presented in the

respective chapter of each experiment.

• Plug-load schedules:

– Training: simple deterministic schedules with additive white Gaussian noises. Similar to

occupancy schedules, plug-load schedules are impossible to predict in the building design790

stage. Thus, deterministic schedules are used and white Gaussian noises are added for

robustness.
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Figure 3.8: Comparisons of the Plug-load Schedules in the Training and Perturbed Simulators in a
Selected Period (June 3rd and June 4th are weekends, all the other days are weekdays)

– Perturbed: 1) stochastic schedules. It is generated by the stochastic occupancy schedules

with additive white Gaussian noises because the usage of plug-load equipment is closely

related to occupancy.795

Figure 3.8 shows the plug-load schedules in the training and perturbed simulators. The profiles

are similar to the occupancy schedules. Some experiment scenarios may not have all the room

types. The detailed room type configuration is presented in the respective chapter of each

experiment.

• Indoor air temperature (IAT) setpoint schedules:800

– Training: simple deterministic schedules with additive white Gaussian noises. The IAT

setpoint of a building is also subjective to the actual building operation. During building

design, engineers usually assume a constant temperature with night setback (e.g., 24◦C

in the day and 18◦C in the night).

– Perturbed: two different IAT setpoint schedules will be used, including: 1) Predicted805

Mean Vote (PMV)1-based schedules (this reflects a condition that occupants have access
1Predicted Mean Vote is a calculated thermal comfort metric based on Fanger’s model (Fanger, 1970). Its value
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to thermostats so IAT setpoint changes according to their thermal comfort responses);

2) deterministic schedules (this reflects a condition that occupants have no access to

thermostats so IAT setpoint is pre-set by facility managers).

Note that the PMV-based setpoint is a dynamic schedule. Its profile is affected by several810

building operational conditions, such as weather conditions, internal loads, HVAC control

strategies, etc. The equation of the PMV-based IAT setpoint is shown below,

StoStptheating,t,i = DetStptheating,t,i +Adjt,i, (3.1a)

StoStptcooling,t,i = DetStptcooling,t,i +Adjt,i, (3.1b)

Adjt,i =

−
(
2.0 ∗ PMVt,i + [N (0, 0.5)]

1
−1

)
Occp = 1 and |PMVt,i| > 0.5,

Adjt−1,i All other cases,
(3.1c)

where subscript t and i represent a control time step and a zone, StoStptheating and

StoStptcooling are the PMV-based IAT heating and cooling setpoint, DetStptheating and

DetStptcooling are the deterministic IAT heating and cooling setpoint, PMV is calculated815

predicted mean vote based Fanger’s model (Fanger, 1970), N (0, 0.5) is a number sampled

from a Gaussian distribution with 0 mean and 0.5 standard deviation, Occp is occupancy

flag. Intuitively, the PMV-based setpoint mimics the behaviors of occupants, who increase

IAT setpoint when they feel cool (when PMV < −0.5), decrease IAT setpoints when

they feel warm (when PMV > 0.5), and do nothing when they feel neural (when −0.5 ≤820

PMV ≤ 0.5).

Figure 3.9 and 3.10 show the comparisons of different IAT cooling and heating setpoint sched-

ules. It should be noted that the PMV-based setpoint does not have a fixed profile. The

resulting schedule is different in different conditions because PMV is affected by weather con-

ditions, internal loads, HVAC control strategies, etc. The PMV-based setpoint of the figures825

is from a specific room in a specific simulator. It can be seen that the PMV-based setpoint

has large differences from the deterministic one in some periods.

Note that the above perturbations may not apply to all the experiment scenarios. The details

about the perturbed simulators are described in the respective chapter of each experiment.

ranges from -3 to +3 where -3 represents “cold” and +3 represents “warm”.
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Figure 3.9: Comparisons of the IAT Cooling Setpoint Schedules the Training and Perturbed Sim-
ulators for a Selected Time Period in Cooling Season (Note: 1: the shown PMV-based schedule is
from a zone in the training simulator of VAVCooling with Pittsburgh climate, lightweight structure
and baseline control strategy; 2: June 3rd and 4th are weekends and the other days are weekdays)
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Figure 3.10: Comparisons of the IAT Heating Setpoint Schedules the Training and Perturbed Sim-
ulators for a Selected Time Period in Heating Season (Note: 1: the shown PMV-based schedule is
from a zone in the training simulator of VAVHeating with Pittsburgh climate, lightweight structure
and baseline control strategy; 2: Jan 1st and 7th are weekends and the other days are weekdays)
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Chapter 4830

Experiment 1: VAVCooling

This chapter presents the experiments related to VAVCooling, as shown in Figure 4.1. There are

8 scenarios related to this system, for two thermal mass levels and four climate zones. For each

scenario, seven different neural network models and six learning rates are tuned.
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Figure 4.1: VAVCooling Experiment Scenarios

4.1 HVAC System Description835

4.1.1 System Layout

VAVCooling is a variable-air-volume system with terminal reheat. The system layout is shown in

Figure 4.2. This system has a centralized air handling unit to condition outdoor air and return

air. The conditioned air is supplied to all building zones. In the air handling unit, there is a solid-

desiccant air dehumidifier, a heat-recovery wheel, an air-cooled heat pump (provide either heating840

or cooling) and a variable-speed fan. In each zone, there is an air damper with electric heating coils.

The system follows common operation strategies of VAV systems. In cooling mode, the air

damper at each zone adjusts the air flow rate to meet the zone air temperature setpoints. Basically,

if the zone air temperature is above its cooling setpoint, the air damper opens more to supply more

conditioned air; if the zone air temperature is below its heating setpoint, the air damper opens less845

to reduce the air flow rate. If the zone air flow rate is at the minimum (10% of the maximum airflow

rate) but the zone air temperature is still below its heating setpoint (the zone is over-cooled), the

electric heater in the air damper will be turned on to provide additional heating (this may happen

in some zones even in cooling season).
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Figure 4.2: System Layout of VAVCooling

4.1.2 Thermal Zones and Envelopes850

This system serves a two-level building with 22 conditioned thermal zones. The thermal zones

include open-plan office rooms, conference rooms, and a classroom, as shown in Figure 4.3. The

office rooms and conference rooms are occupied at regular work hours, and the classroom is only

occupied on weekends.

The thermal properties of the envelopes (external walls, roofs, ground floors, and windows)855

follow the requirements of ASHRAE 90.1-2016 (American Society of Heating, Ventilating, and Air

Figure 4.3: Room Functions of the Thermal Zones Served by VAVCooling
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Conditioning Engineers, 2016).

4.1.3 Target Control Variable and Baseline Control Strategy

The target supervisory control variable is the supply air temperature setpoint (as illustrated in Figure

4.2). This setpoint is selected because it has deep effects on the operation of all HVAC components860

(Zhao, 2015; Jia et al., 2019). For example, in cooling season, the colder supply air temperature

may lead to reduced supply airflow rate, reduced outdoor air intake, reduced fan power, reduced

dehumidification load, increased or reduced cooling power and increased terminal reheating power

if some zones are overcooled.

The baseline control strategy for this setpoint is a built-in function of EnergyPlus called “warmest”,

which use the cooling load of the warmest zone to determine the supply air temperature setpoint

(Tsa), as shown below:

Tsa,t =

[
min

i∈all zones
Tia,i,t−1 +

_Qcooling,i,t−1

Cp,air_mmax,i

] �Tsa

�Tsa

, (4.1)

where subscript t is one control time step, i is one zone, Tia is zone indoor air temperature, _Qcooling865

is zone cooling load, Cp,air is specific heat of air, _mmax is zone maximum supply air mass flow rate,
�Tsa and �Tsa are the high and low limit of the supply air temperature setpoint (in this case, 24◦C and

12◦C). The baseline control strategy provides the highest possible supply air temperature setpoint

that could satisfy all zones’ cooling demands. This strategy may reduce cooling energy consumption

but may result in increased fan energy consumption. This is a commonly used strategy among870

EnergyPlus users.

4.1.4 Whole Building Energy Model

EnergyPlus version 8.3 is used to generate whole building energy models for the system. The

geometry 3D rendering is shown in Figure 4.4.

The capacities of the components in the system (e.g., fan, heat pump, air dampers, etc.) are875

auto-sized by EnergyPlus based on the design conditions of each climate zone. One simulation

episode lasts for 3-month with 10-min as the simulation time step, as shown in Table 4.1.
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Figure 4.4: 3D Rendering of the Geometry of the Whole Building Energy Model for VAVCooling
(rendered by BuildSimHub, Inc. (2018))

Table 4.1: Basic Simulation Settings of the Whole Building Energy Models for the VAVCooling
Scenarios

Climate
Thermal

Mass
Simulation Period

Simulation

Time Step

Pittsburgh
Light

June 1st-Aug 31st 10-min
Heavy

Beijing
Light

June 1st-Aug 31st 10-min
Heavy

Shanghai
Light

June 1st-Aug 31st 10-min
Heavy

Singapore
Light

Sept 1st-Nov 30th 10-min
Heavy
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Table 4.2: Comparison of the Training and Perturbed Simulators for the VAVCooling Scenarios

Training
Perturbed

1 2 3 4

Weather
TMY3 for Pittsburgh,

IWEC for other

locations

AMY

2017

TMY/IWEC with

additive white

Gaussian noise

AMY

2017

TMY3/IWEC with

additive white

Gaussian noise

Occupancy

Schedule

Deterministic with

additive white

Gaussian noise

Stochastic

Plug-load

Schedule

Deterministic with

additive white

Gaussian noise

Stochastic

IAT

Setpoint

Deterministic with

additive white

Gaussian noise

PMV-based Deterministic

4.2 Training and Perturbed Simulators

As specified in section 3.4.4, the control performance will be evaluated in the training simulator and

perturbed simulators. The perturbed simulators are varied from the training simulator in weather880

conditions, occupancy schedules, plug-load schedules and indoor air temperature (IAT) setpoint

schedules. The perturbed simulators are used to evaluate the versatility of the trained RL control

policies. The configurations of the training simulator and the perturbed simulators are shown in

Table 4.2.
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Table 4.3: Observation Vector in the State for VAVCooling

No. Item

1 Is weekday or not

2 Hour of the day

3 Outdoor air temperature (◦C)

4 Outdoor air relative humidity (%)

5 Diffuse solar radiation (W/m2)

6 Direct solar radiation (W/m2)

7-28 Zone air temperature (of 22 zones, ◦C)

29-50 Zone cooling setpoint temperature (of 22 zones, ◦C)

51-72 Zone heating setpoint temperature (of 22 zones, ◦C)

73 Total HVAC Electric Demand (kW)

4.3 Reinforcement Learning Setup885

4.3.1 State Design

As specified in section 2.4.1, the state is a stack of the current and historical observations. Two

variables should be determined, including the observation vector and the length of the history in the

state.

The observation vector (ob in Equation (2.19)) includes the sensor data of the VAV system, as890

shown in Table 4.3.

The length of the history in the state is determined using the method described in section

2.4.1. The process is repeated for all the experiment scenarios based on the data from the training

simulators. Control time step length is 10-minute. Figure 4.5 shows the relationships between the

time interval n and the distance correlation dcorn. A large dcorn means there is a strong dependence895

between the observations at t+1 (i.e., obt+1) and the observations at t− n (i.e., obt−n), and vice-

versa. It can be seen in the figure that dcorn decays slower in the heavyweight scenarios of Pittsburgh,

Beijing, and Shanghai. In the Singapore scenarios, dcorn has similar behaviors in both lightweight

and heavyweight simulators. This may be attributed to the stable weather conditions of Singapore

so thermal mass has less effect on building thermal behaviors. In addition, dcorn repeats its pattern900
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Figure 4.5: Relationship Between the Time Interval n and dcorn (specified in Equation (2.23)) for
All the VAVCooling Scenarios

after n = 144 = 1 day. This is because both weather conditions and building operations have daily

cyclic patterns.

By using Algorithm 1 with dcorThres as 0.5, the length of the history in the state is determined,

as shown in Table 4.4.

4.3.2 Action Design905

The discrete action space for the supply air temperature setpoint is:

Avavcooling = {12◦C, 12.5◦C, ..., 23.5◦C, 24◦C} (4.2)
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Table 4.4: Length of the History in the State for VAVCooling Scenarios

Climate
Thermal

Mass

Length of History

(in control time steps)

Pittsburgh
Light 34 (5.7 hr)

Heavy 41 (6.8 hr)

Beijing
Light 31 (5.2 hr)

Heavy 36 (6.0 hr)

Shanghai
Light 23 (3.8 hr)

Heavy 25 (4.2 hr)

Singapore
Light 15 (2.5 hr)

Heavy 14 (2.3 hr)

4.3.3 Reward Design

The reward determines the control objective of reinforcement learning. In the VAVCooling scenarios,

the control framework aims to minimize the total HVAC electric energy consumption and minimize

the indoor air temperature setpoint notmet time1. As a result, the reward function is:

Rvavcooling,t = 1.0− [Penergy,t + Pcomfort,t]
1
0 ,

where,

Penergy,t = β ∗ Ehvac,t,

Pcomfort,t = τ ∗
[
max

(
[Tia,t −Tclgstpt,t]

+
)
+max

(
[Thtgstpt,t −Tia,t]

+
)]

.

(4.3)

In the above function, subscript t is one control time step, β and τ are tunable hyperparameters

controlling the weights for the energy penalty and setpoint notmet penalty, Ehvac is the normalized

total HVAC electric demand, and Tia,Tclgstpt,Thtgstpt are the normalized indoor air temperature,

cooling setpoint and heating setpoint of all the 22 zones910

4.3.4 Hyperparameters

The reinforcement learning agents are trained using the training simulators with the hyperparameters

shown in Table 4.5. For the training of each experiment scenario, 7 neural network models and 6

1setpoint notmet time means the cumulative time that the indoor air temperature of all the 22 zones is either above
the cooling setpoints or below the heating setpoints
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Table 4.5: Hyperparameters for the RL Training for the VAVCooling Sce-
narios

Item Value Item Value

Simulation time step 10-min A3C local agent number 16

Control time step 10-min Reward discount factor 0.99

Nonlinear activation∗ ReLu RL interaction steps 5M

Optimizer RMSProp Learning batch size 5

RMSProp decay rate 0.99 Value loss weight 0.5

RMSProp momentum 0.0 τ in the reward+ 1.0

RMSPorp epsilon 1e−10 β in the reward 1.2

Gradient clip method L2-norm Gradient clip threshold 5.0

Note: * nonlinear activation applies to the shared layers of the neural net-
works (except the one with the linear shared layers); + τ = 1 means that
when the setpoint notmet of any zones is larger than 1◦C, the reward is zero.

learning rates will be tuned, as shown in Figure 3.5.
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4.4 Results915

4.4.1 Convergence Results

This section shows the results related to the convergence performance of the reinforcement learning

training.

Convergence Robustness to Different Learning Rates

Reinforcement learning problems are sensitive to the learning rate. Inappropriate choices of the920

learning rate may lead to training divergence. However, there is not a well-established theory to

pre-determine the best learning rate choice. Its number must be tuned.

This study tunes six learning rates, from 1e-3 to 5e-6, for all the neural network models. Figure 4.6

shows the count of convergence out of the six learning rates vs. the neural network models. A larger

count means a neural network model is more robust to different learning rates for convergence. As a925

general trend, the shallower neural network models (the models with fewer layers) are more robust

for convergence than the deeper neural network models (the models with more layers). In all the

scenarios, the linear model is easier to converge than the 4-layer and 8-layer models. The width of a

neural network model (the number of neurons per layer) does not affect the convergence robustness

to the learning rate. The results align with the expectation because deep neural networks suffer930

vanishing or exploding gradients during gradient descent optimization (Goodfellow et al., 2016).

Figure 4.7 shows the relationship between the convergence count out of the seven neural network

models vs. the six learning rates. A larger count means the corresponding learning rate is more

favorable for convergence. It is clear that a small learning rate is more favorable than a large learning

rate for all the experiment scenarios.935

Convergence History

To further analyze the convergence behaviors of the neural network models, Figures 4.8, 4.9, 4.10

and 4.11 show the training evaluation history of the seven neural network models at the same

learning rate (1e-5). The training evaluation history is the total evaluation reward in the training

simulator for one simulation episode at different RL interaction steps. For example, when an RL940
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Figure 4.6: VAVCooling: Convergence Robustness to the Learning Rate (count of convergence out
of the six learning rates) vs. Neural Network Models for All the Experiment Scenarios

Figure 4.7: VAVCooling: Convergence Count out of the Seven Neural Network Models vs. the
Learning Rate for All the Experiment Scenarios
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Figure 4.8: VAVCooling: Training Evaluation History for the Learning Rate 1e-5 vs. Neural Network
Models (Pittsburgh Climate)

Figure 4.9: VAVCooling: Training Evaluation History for the Learning Rate 1e-5 vs. Neural Network
Models (Beijing Climate)

agent interacts with its environment after 1-million times (in this study we use A3C, so the 1-million

times are jointly from 16 local RL agents), it pauses the training and uses the current trained control

policy to control the training simulator for one episode. The cumulative reward obtained in this

one-episode simulation is the total evaluation reward at the interaction step 1-million.

As shown in the Figures of the training evaluation history, a deep neural network has more945

fluctuations and is easier to diverge and saturate (i.e., when the total evaluation reward remains

constant) than a shallow neural network. The linear model has smooth convergence histories for

all the experiment scenarios. The neural network width and building thermal mass level have no

obvious effects on the training evaluation history.
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Figure 4.10: VAVCooling: Training Evaluation History for the Learning Rate 1e-5 vs. Neural
Network Models (Shanghai Climate)

Figure 4.11: VAVCooling: Training Evaluation History for the Learning Rate 1e-5 vs. Neural
Network Models (Singapore Climate)
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4.4.2 Control Performance950

The control performance of the reinforcement learning agents is evaluated by the percentage saving

of the total HVAC electricity consumption (Esaving) and setpoint notmet time (Tinmt). Esaving is

Esaving =
Ebaseline − Erl

Ebaseline
∗ 100, (4.4)

where Erl is the total HVAC electricity consumption using a trained RL agent, Ebaseline is the total

HVAC electricity consumption using the baseline control strategy. Tinmt is

Tinmt = Tisimstep ∗
Tsimend∑

t=0

([ ∑
i∈all zones

(
(Tia,t,i − Tclgstpt,t,i) > 0.5

)]1

0

+

[ ∑
i∈all zones

(
(Thtgstpt,t,i − Tia,t,i) > 0.5

)]1

0

)
,

(4.5)

where Tisimstep is the time step length of the simulation (10-min in this case), t is one time step in

the simulation, Tsimend is the number of time steps in one simulation episode, i is one conditioned

zone, Tia is zone air temperature (◦C), Tclgstpt is zone cooling setpoint (◦C) and Thtgstpt is zone

heating setpoint (◦C). Intuitively, Tinmt shows the cumulative time that at least one zone cannot

meet its cooling or heating setpoint. ASHRAE 90.1-2016 requires that Tinmt for one year is less955

than 300 hours.

Figures 4.12, 4.13, 4.14 and 4.15 show the control performance of the reinforcement learning

method in the four climates. The configurations of the different simulators are described in Table

4.2. In the figures, it can be seen that:

• In most experiment scenarios (except Perturbed1 and Perturbed2 in the Pittsburgh-Lightweight-960

Building and Pittsburgh-Heavyweight-Building scenarios as shown in Figure 4.12), the rein-

forcement learning method can achieve significant HVAC energy savings and smaller setpoint

notmet time compared to the baseline control strategy. The specific control performance is

different in different climates and different thermal mass levels.

• There is no obvious relationship between a neural network model and the control performance.965

The linear model can achieve similar control performance with the other more complex neu-

ral network models, except in the Beijing-Lightweight-Building scenario (as shown in Figure

4.13). In this scenario, the linear model leads to smaller energy savings in the Perturbed1 and
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Perturbed2 simulators than the other neural network models.

• There is no significant difference in the control performance between the lightweight-building970

scenarios and heavyweight-building scenarios. This means the reinforcement learning method

is robust for different thermal mass levels in VAVCooling.

• In the Pittsburgh scenarios (Figure 4.12) and Beijing-Lightweight-Building scenario (Figure

4.13), the control performance in the Perturbed1 and Perturbed2 simulators is worse than that

in the training simulator. This phenomenon does not occur in the Perturbed3 and Perturbed4975

simulators. Compared to the Perturbed3 and Perturbed4 simulators, the Perturbed1 and

Perturbed2 simulators have PMV-based indoor air temperature setpoint, which may lead to a

significant different setpoint distribution from that in the training simulator. This means that

the reinforcement learning agents do not tolerate the variations of the indoor air temperature

setpoint.980

• The control performance in the Perturbed3 and Perturbed4 simulators is better than that in the

training simulator for all the experiment scenarios. The Perturbed3 and Perturbed4 simulators

have the deterministic indoor air temperature setpoint, which has a similar distribution as

the setpoint in the training simulator. However, the two perturbed simulators have different

weather data and occupancy/plug-load schedules from the training simulator. This means the985

RL agents are tolerant of the weather change and occupancy/plug-load schedule change.

4.4.3 Effects of the Indoor Air Temperature Setpoint Strategy

The previous section finds that the control performance in the Perturbed1 and Perturbed2 simulators

is worse than the training control performance in some experiment scenarios. In the Pittsburgh

scenarios, the trained control policy even leads to negative HVAC energy savings in the Perturbed1990

and Perturbed2 simulators. This is mainly because the two perturbed simulators have the PMV-

based indoor air temperature setpoint, which is significantly different from the one in the training

simulator.

Figure 4.16 shows the comparisons of the cooling setpoint in different simulators. It can be

seen that, in the Pittsburgh scenarios and Beijing scenarios, the cooling setpoint in the perturbed995

simulators is significantly higher than that in the training simulator. Correspondingly, as shown

in Figures 4.12 and 4.13, the energy efficiency performance in the perturbed simulators is signif-

icantly worse than that in the training simulator (with one exception in the Beijing-Heavyweight
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Figure 4.12: VAVCooling: Control Performance in Pittsburgh Climate (n/a means the reinforcement
learning does not converge; the results of each neural network model are from the best-performing
learning rate; baseline HVAC EUI means the total HVAC electricity consumption per building floor
area using the baseline control strategy)

Figure 4.13: VAVCooling: Control Performance in Beijing Climate (the results of each neural net-
work model are from the best-performing learning rate; baseline HVAC EUI means the total HVAC
electricity consumption per building floor area using the baseline control strategy)
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Figure 4.14: VAVCooling: Control Performance in Shanghai Climate (the results of each neural
network model are from the best-performing learning rate; baseline HVAC EUI means the total
HVAC electricity consumption per building floor area using the baseline control strategy)

Figure 4.15: VAVCooling: Control Performance in Singapore Climate (the results of each neural
network model are from the best-performing learning rate; baseline HVAC EUI means the total
HVAC electricity consumption per building floor area using the baseline control strategy)
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Figure 4.16: VAVCooling: Box-plots of the Average Cooling Setpoint in All Conference and Office
Zones in Working Hours of the Original Training Simulator, Perturbed1 Simulator and Perturbed2
Simulator of the Selected Control Policies (the control policy of the ReLu64-2 model is used for
the Beijing-Lightweight scenario, the control policies of the linear model are used for all the other
scenarios)

scenario). For Shanghai climate, the perturbed cooling setpoint is higher than the training cooling

setpoint, but the amount of difference is smaller than the Pittsburgh and Beijing scenarios. For1000

Singapore climate, the median of the perturbed cooling setpoint is lower than the median of the

training setpoint, which means the PMV-based strategy tends to generate low cooling setpoint val-

ues. Correspondingly, as shown in Figures 4.14 and 4.15, the Shanghai and Singapore scenarios

have similar-to-the-training energy efficiency performance in the perturbed simulators. The results

indicate that the trained control policies are more tolerant of the decreased cooling setpoint than1005

the increased cooling setpoint.

To further analyze the effects of the indoor air temperature setpoint, a new RL agent is trained

for the Pittsburgh-Lightweight scenario using a new training simulator. The new training simulator

is exactly the same as the original one except that the indoor air temperature setpoint is PMV-based

(same as the Perturbed1 and Perturbed2 simulators). Figure 4.17 shows the control performance1010

comparison between the new training setting and the original setting. The best-performing control

policy is selected from both settings. It can be seen that the control performance is significantly

improved by using the new training simulator. The new trained RL agent has achieved positive

energy-savings and better-than-baseline setpoint notmet time in the Perturbed1 and Perturbed2
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Figure 4.17: VAVCooling: Comparison of the Control Performance of the Best-performing RL
Control Policies Trained in the New and Original Training Simulator for the Pittsburgh-Lightweight-
Building Scenario

simulators. The improvements are attributed to the decreased difference between the training and1015

perturbed cooling setpoint. As shown in Table 4.6, the KL divergence between the two cooling

setpoint distributions has been significantly reduced. However, the control performance of the new

control policy in the perturbed simulators is still worse than that in the new training simulator.

This is because the PMV-based setpoint uses PMV to determine the setpoint value at each control

time step, so the distribution of the setpoint is different for different conditions (such as different1020

weather conditions). Thus, as shown in Figure 4.18 and Table 4.6, even though the new training and

perturbed simulators use the same PMV-based setpoint strategy, the cooling setpoint distributions

are still different.
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Figure 4.18: VAVCooling: Box-plots of the Average Cooling Setpoint of All Conference and Office
Zones in Working Hours of the New Training Simulator, Perturbed1 Simulator and Perturbed2
Simulator of the Pittsburgh-Lightweight-Building Scenario using the Control Policies Trained by
the New Training Simulator

Table 4.6: VAVCooling: Kullback–Leibler (KL) Divergence between the Training Cooling Setpoint
and the Perturbed Cooling Setpoint of the Pittsburgh-Lightweight-Building Scenario in the New
and Original Training Settings (all results are based on the best-performing control policies)

Training vs. Perturbed1 Training vs. Perturbed2

Original Training 9.691 9.689

New Training 3.898 2.657
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4.5 Summary and Discussion

This chapter presents the simulation experiments of VAVCooling, a variable-air-volume system serv-1025

ing 22 thermal zones for cooling. The system has complex dynamics because it is an integration of

multiple HVAC components, including a heat pump, a variable-speed fan, a solid-desiccant dehumid-

ification wheel, an air-to-air heat exchange wheel, an air-side economizer, multiple terminal reheat

electric coils, etc. Also, the operation of all the HVAC components is highly correlative, which makes

the control problem even more complicated. This chapter applies the proposed control framework to1030

develop energy-efficient control strategies for this complex system. Eight experiment scenarios are

considered including four different climates and two different thermal mass levels mixed together.

The effects of the neural network model complexity and the learning rate are studied.

The state/action/reward are designed following the requirements of the control framework. The

observation vector in the state includes the information of time, weather, operational state, and1035

energy consumption. The action space is the discrete AHU supply air temperature setpoints. Based

on the literature review, this control variable is the most influential variable for a VAV system.

Different values of the setpoint significantly affect the operations of all HVAC components. The

reward function is design as such that it is negatively proportional to the current-time-step HVAC

energy consumption if the indoor air temperature setpoints are met. This reward function contains1040

the minimum prior-knowledge for the HVAC system dynamics, so the exploration space of an RL

agent is not constrained.

After the RL training, the convergence results are firstly presented in this chapter. It is found

that the reinforcement learning agents with the shallow neural network models are easier to converge

than those with the deep neural network models. Such results are aligned with the hypotheses of1045

the thesis. It is also found that the small learning rates are obviously more favorable than the large

learning rates for convergence. This is probably because a too aggressive learning rate causes a

neural network to saturate easily, i.e., the neurons of a neural network output the same value for all

different inputs. A neural network cannot “learn” anymore after it saturates.

The control performance of each trained RL policy is evaluated in the training simulator and1050

four different perturbed simulators. The perturbed simulators are used to evaluate a trained control

policy’s versatility under perturbed HVAC operational conditions. For the training simulator evalua-

tion, it is found that the RL control polices have achieved significant energy efficiency improvements

compared the rule-based control for all the scenarios. The energy saving percentages are large than
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20% and the setpoint notmet hours are significantly lower than the baseline. For the evaluation in1055

the perturbed simulators, the control performance is not consistent. The trained control policies

can well tolerate the perturbations in weather conditions and internal load schedules. The major

problem is located in the indoor air temperature setpoint perturbations which are reflected in the

Perturbed1 and Perturbed2 simulators. These two simulators have a different indoor air temperature

setpoint strategy which is “PMV-based” (i.e., set the setpoint based on the simulated thermal com-1060

fort responses). For the Pittsburgh-Lightweight, Pittsburgh-Heavyweight and Beijing-Lightweight

scenarios, the control performance in the Perturbed1 and Perturbed2 simulators is much worse than

the training control performance. For the other scenarios, the Perturbed1 and Perturbed2 simulator

control performance is comparable or even better than the training control performance.

Further analysis is conducted for the effects of the indoor air temperature setpoint on the RL1065

control performance. It is found that, the trained control policies show more tolerance for reduced

indoor air temperature setpoint than for increased indoor air temperature setpoint. An additional

experiment is also conducted, in which a new training simulator is created with the PMV-based

strategy for the indoor air temperature setpoint. The results show that this change in the train-

ing simulator can improve the control performance in the Perturbed1 and Perturbed2 simulators.1070

However, since the PMV-based strategy generates different setpoint distributions for different con-

ditions, the control performance in the Perturbed1 and Perturbed2 simulators still cannot match

that in the new training simulator. The results from the perturbed simulators give two indications

for the actual deployment of the control framework in VAV systems. Firstly, typical weather data

can be used for the offline RL training since the trained control policies can well tolerate weather1075

condition changes; secondly, training simulators must be calibrated to match the behaviors of actual

systems, especially for indoor air temperature setpoint.

The results also show the effects of the neural network model complexity on the control perfor-

mance. It is found that the different neural network models have not shown obvious effects on the

control performance. More interestingly, the linear neural network model has achieved similar con-1080

trol performance with the other more complex nonlinear neural network models in most experiment

scenarios (except the Beijing-Lightweight scenario). This does not support the thesis’s hypotheses.

However, the conclusion is derived from the limited number of experiments shown in this chapter.

Its statistical significance is not tested, and the results cannot be generalized to other scenarios.
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Chapter 51085

Experiment 2: VAVHeating

This chapter presents the experiments related to VAVHeating. There are 6 scenarios related to this

system, for two thermal mass levels and three different climates, as shown in Figure 5.1. Seven

neural network models and six learning rates are tuned for each scenario.

Figure 5.1: VAVHeating Experiment Scenarios
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Figure 5.2: Terminal Air Flow Rate and Temperature Control Logic of VAV Systems with Terminal
Reheat (re-generated based on (EnergyPlus, 2019))

5.1 HVAC System Description1090

5.1.1 System Layout, Thermal Zones and Envelopes

VAVHeating is a variable-air-volume (VAV) system with terminal reheat for heating. The system

serves 22 zones. The system layout, thermal zones and envelopes are the same as VAVCooling (see

sections 4.1.1 and 4.1.2).

The overall operation strategy of VAVHeating is slightly different from VAVCooling. In VAV-1095

Cooling, the supply air flow rate of a zone is proportional to the zone cooling load. In VAVHeating,

the zone supply air flow rate is firstly kept at the minimum and a terminal electric heater “reheats”

the zone supply air to meet the zone heating load; if the temperature of the reheated supply air

reaches its high limit (35 ◦C in this study) but the zone heating load cannot be met, the zone supply

air flow rate starts to increase. This strategy is shown in Figure 5.2.1100
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5.1.2 Target Control Variable and Baseline Control Strategy

The system’s air-handling-unit supply air temperature setpoint is the target control variable of

VAVHeating. It is the same as the experiments of VAVCooling. This setpoint can affect the op-

erations of almost all the components of VAVHeating, such as fan, heat pump, terminal electric

heaters, etc. For example, if this setpoint is low (the air-handling-unit supplies cold air), the power1105

of the heat pump will be reduced, but the power of the fan and the terminal electric heaters will be

increased; if this setpoint is high (the air-handling-unit supplies warm air), the power of the fan and

the terminal electric heaters will be decreased, but more power will be consumed by the heat pump.

The baseline control strategy for this setpoint (Tsa) is called “coldest”, which is a built-in function

in EnergyPlus, as shown below:

Tsa,t =

[
max

i∈all zones
Tia,i,t−1 +

_Qheating,i,t−1

Cp,air_mmax,i

] �Tsa

�Tsa

, (5.1)

where subscript t is one control time step, i is one zone, Tia is zone indoor air temperature, _Qheating

is zone heating load, Cp,air is the specific heat capacity of air, _mmax is zone maximum supply air1110

mass flow rate, �Tsa and �Tsa are the high and low limit of the supply air temperature setpoint (in

this case, 30◦C and 18◦C). Intuitively, the baseline control strategy provides the lowest possible

air-handling-unit supply air temperature setpoint that could meet the heating loads of all zones.

Whole Building Energy Model

Same as VAVCooling, the whole building energy model of VAVHeating is created in EnergyPlus1115

version 8.3. The geometry 3D rendering of the model is shown in the previous section in Figure

4.4. The capacities of the components in the system are autosized by EnergyPlus using the design

conditions of each climate. The length of one simulation episode and simulation time step are shown

in Table 5.1.
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Table 5.1: Basic Simulation Settings of the Whole Building Energy Models for the VAVHeating
Scenarios

Climate
Thermal

Mass
Simulation Period

Simulation

Time Step

Pittsburgh
Light

Jan 1st-Mar 31st 10-min
Heavy

Beijing
Light

Jan 1st-Mar 31st 10-min
Heavy

Shanghai
Light

Jan 1st-Mar 31st 10-min
Heavy

5.2 Training and Perturbed Simulators1120

The configurations of the training and perturbed simulators are the same as that in the VAVCool-

ing scenarios. The four perturbed simulators are different from the training simulator in weather

conditions, occupancy schedules, plug-load schedules and indoor air temperature setpoint schedules.

The detailed configurations are shown in Table 5.2.
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Table 5.2: Comparison of the Training and Perturbed Simulators for VAVHeating Scenarios

Training
Perturbed

1 2 3 4

Weather
TMY3 for Pittsburgh,

IWEC for other

locations

AMY

2017

TMY/IWEC with

additive white

Gaussian noise

AMY

2017

TMY3/IWEC with

additive white

Gaussian noise

Occupancy

Schedule

Deterministic with

additive white

Gaussian noise

Stochastic

Plug-load

Schedule

Deterministic with

additive white

Gaussian noise

Stochastic

IAT

Setpoint

Deterministic with

additive white

Gaussian noise

PMV-based Deterministic

5.3 Reinforcement Learning Setup1125

5.3.1 State Design

The state design is the same as that in VAVCooling scenarios, as shown in Table 5.3. The items are

normalized using min-max normalization (Equation (2.20)).

The length of the history in the state is determined based on the method in section 2.4.1. The

control time step length is 10-min. The relationships between the time interval n and the distance1130

correlation dcorn are shown in Figure 5.3. It can be seen that the dcorn decays slower in the

heavyweight scenarios, and the dcorn pattern is repeated after n = 144 = 1-day. These results are

as expected. Based on algorithm 1, the length of the history in the state is the largest time interval

that makes the dcorn larger or equal to 0.5, as summarized in Table 5.4.
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Table 5.3: Observation Vector in the State for VAVHeating

No. Item

1 Is weekday or not

2 Hour of the day

3 Outdoor air temperature (◦C)

4 Outdoor air relative humidity (%)

5 Diffuse solar radiation (W/m2)

6 Direct solar radiation (W/m2)

7-28 Zone air temperature (of 22 zones, ◦C)

29-50 Zone cooling setpoint temperature (of 22 zones, ◦C)

51-72 Zone heating setpoint temperature (of 22 zones, ◦C)

73 Total HVAC Electric Demand (kW)

Figure 5.3: Relationship Between Time Interval n and dcorn (specified in Equation (2.23)) for All
VAVHeating Scenarios
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Table 5.4: Length of the History in the State for VAVHeating Scenarios

Climate
Thermal

Mass

Length of History

(control time steps)

Pittsburgh
Light 32 (5.3 hr)

Heavy 41 (6.8 hr)

Beijing
Light 22 (3.7 hr)

Heavy 30 (5.0 hr)

Shanghai
Light 12 (2.0 hr)

Heavy 13 (2.2 hr)

5.3.2 Action Design1135

The discrete action space for the air-handling-unit supply air temperature setpoint is:

Avavheating = {18◦C, 18.5◦C, ..., 29.5◦C, 30◦C} (5.2)

5.3.3 Reward Design

The reward function is the same as the VAVCooling scenarios, as shown in Equation (4.3). The

reward function penalizes large HVAC energy consumption and indoor air temperature setpoint

notmet.1140

5.3.4 Hyperparameters

The choice of the hyperparameters is the same as the VAVCooling scenarios, as shown in Table 4.5.

Seven neural network models and six learning rates will be studied for each experiment scenario, as

shown in Figure 3.5.
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Figure 5.4: VAVHeating: Convergence Robustness to Learning Rate (the count of convergence out
of the six learning rates) vs. Neural Network Models

5.4 Results1145

5.4.1 Convergence Results

Six learning rates, from 1e-3 to 5e-6, are tuned for each experiment scenario/neural network model

combination. Figure 5.4 shows the count of convergence out of the six learning rates for all the

combinations. A larger convergence count means the corresponding neural network model is more

robust to different learning rates. It is found that the width of a neural network model does not1150

have obvious effects on the convergence robustness, but the depth does. In general, a shallow neural

network has larger convergence count than a deep neural network. However, exceptions exist, such

as the ReLu256-x neural network models in the Shanghai-Light scenario. Besides, the convergence

count of the linear model varies across different scenarios. For example, in the Beijing-Light scenario,

the linear model has the largest convergence count; but in the Shanghai-Light and Shanghai-Heavy1155

scenarios, its convergence count is zero.

Figure 5.5 shows which learning rate is the most favorable for the reinforcement learning con-

vergence. It is clear that, in general, a smaller learning rate leads to a larger convergence count.
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Figure 5.5: VAVHeating: Convergence Count of the Seven Neural Network Models vs. the Six
Learning Rates

The learning rate 1e-5 has the largest convergence count for all the scenarios. This is different from

VAVCooling where 5e-6 is the most favorable learning rate for convergence.1160

Figures 5.6, 5.7 and 5.8 show the training evaluation histories of the seven neural network models

at the learning rate 1e-5. In the figures, it can be seen that there is no obvious relationship between

the neural network model complexity and the profile of the training evaluation history. Besides,

the linear model has fluctuated or diverged training evaluation histories in all the scenarios. This

is different from VAVCooling where the shallow neural network models and the linear model have1165

more smooth training evaluation histories than the deep neural network models.

5.4.2 Control Performance

The control performance of the reinforcement learning agents is evaluated by the percentage saving

of the total HVAC electricity consumption (Esaving) and the setpoint notmet time (Tinmt). The

equations to calculate Esaving and Tinmt are shown in Equation (4.4) and (4.5).1170

The control performance is shown in Figures 5.9 (Pittsburgh climate), 5.10 (Beijing climate) and

5.11 (Shanghai climate). In the figures it can be seen that:
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Figure 5.6: VAVHeating: Training Evaluation History for the Learning Rate 1e-5 vs. Neural Network
Models (Pittsburgh Climate)

Figure 5.7: VAVHeating: Training Evaluation History for the Learning Rate 1e-5 vs. Neural Network
Models (Beijing Climate)
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Figure 5.8: VAVHeating: Training Evaluation History for the Learning Rate 1e-5 vs. Neural Network
Models (Shanghai Climate)

• Compared to the VAVCooling scenarios, the reinforcement learning control can still achieve

less or similar setpoint notmet time than the baseline control, but the magnitude of HVAC

energy savings is reduced. This is as expected because cooling usually has a larger potential1175

for energy saving than heating.

• Different neural network models lead to different control performance. However, there is no

obvious relationship between the control performance and the width or depth of a neural

network model. The linear model has poor control performance in most experiment scenarios,

except the Beijing-Lightweight-Building scenario (Figure 5.10). The ReLu 64-2 model has the1180

most stable performance across all the scenarios. This is different from VAVCooling where all

the neural network models, including the linear one, have similar control performance.

• There is no significant difference between the control performance in the lightweight-building

scenarios and heavyweight-building scenarios. This indicates that the thermal mass level has

little influence on the control performance of this system.1185

• The control performance in the Perturbed1 and Perturbed2 simulators is worse than that in

the Perturbed3 and Perturbed4 simulators. This result is similar to the VAVCooling scenar-

ios. This is because the reinforcement learning agents cannot tolerate the changed indoor

air temperature setpoint, which has different distributions from the setpoint in the training
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Figure 5.9: VAVHeating: Control Performance in Pittsburgh Climate (the results of each neural
network model are from the best-performing learning rate; n/a means none of the learning rates
lead to convergence; baseline HVAC EUI means the total HVAC electricity consumption per building
floor area using the baseline control strategy)

simulator.1190

• The control performance in the Perturbed3 and Perturbed4 simulators is similar and is com-

parable to that in the training simulator. This indicates that the RL agents are tolerant of

the changes in weather conditions and occupancy/plug-load schedules.

5.4.3 Effects of the Indoor Air Temperature Setpoint Strategy

The previous section finds that the control performance in the Perturbed1 and Perturbed2 simulators1195

is worse than that in the Perturbed3 and Perturbed4 simulators. This is because the Perturbed1

and Perturbed2 simulators use the PMV-based indoor air temperature setpoint, which has different

distributions from the one in the training simulator. Figure 5.12 shows the box-plots of the heating

setpoint in different simulators. It can be seen that the perturbed heating setpoint is significantly

higher than the training heating setpoint in all the scenarios.1200

This section creates a new training simulator that has the same PMV-based setpoint strategy

as the Perturbed1 and Perturbed2 simulators. A new RL agent is trained using the new training

simulator for the Pittsburgh-Lightweight-Building scenario. Figure 5.13 shows the control perfor-
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Figure 5.10: VAVHeating: Control Performance in Beijing Climate (the results of each neural net-
work model are from the best-performing learning rate; n/a means none of the learning rates lead to
convergence; baseline HVAC EUI means the total HVAC electricity consumption per building floor
area using the baseline control strategy)

Figure 5.11: VAVHeating: Control Performance in Shanghai Climate (the results of each neural
network model are from the best-performing learning rate; n/a means none of the learning rates
lead to convergence; baseline HVAC EUI means the total HVAC electricity consumption per building
floor area using the baseline control strategy)
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Figure 5.12: VAVHeating: Box-plots of the Average Heating Setpoint of All Conference and Office
Zones in Working Hours of the Original Training Simulator, Perturbed1 Simulator and Perturbed2
Simulator of the Selected Control Policy (Pittsburgh-Light: ReLu256-8, Pittsburgh-Heavy: ReLu64-
2, Beijing-Light: ReLu256-4, Beijing-Heavy: ReLu256-2, Shanghai-Light: ReLu256-8, Shanghai-
Heavy: ReLu256-2)

mance comparison of the best-performing control policies using the original training simulator and

the new training simulator. It can be seen that, compared to the control policy from the original1205

training simulator, the new control policy leads to the significantly reduced setpoint notmet time

but slightly increased energy consumption. Table 5.5 shows that the KL divergence between the

training and perturbed heating setpoint is slightly reduced by the new training simulator. However,

the new control policy still has worse-than-training control performance in the perturbed simula-

tors. This is because, as shown in Figure 5.14 and Table 5.5, even though both new training and1210

the perturbed simulators use the same PMV-based setpoint strategy, the heating setpoint still has

different distributions in different simulators. This indicates that the new control policy still cannot

tolerate the perturbations in the indoor air temperature setpoint.

Table 5.5: VAVHeating: Kullback–Leibler (KL) Divergence between the Training Heating Setpoint
and the Perturbed Heating Setpoint of the Pittsburgh-Lightweight-Building Scenario in the New
and Original Training Settings (all results are based on the best-performing control policies)

Training vs. Perturbed1 Training vs. Perturbed2

Original Training 8.312 8.608

New Training 7.933 7.089
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Figure 5.13: VAVHeating: Comparison of the Control Performance of the Best-performing RL
Control Policies Trained Using the New and Old Training Simulator for the Pittsburgh-Lightweight-
Building Scenario
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Figure 5.14: VAVHeating: Box-plots of the Average Heating Setpoint of All Conference and Office
Zones in Working Hours of the New Training Simulator, Perturbed1 Simulator and Perturbed2
Simulator of the Pittsburgh-Lightweight-Building Scenario using the Control Policy Trained by the
New Training Simulator
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5.5 Summary and Discussion

This chapter presents the experiments related to VAVHeating, a variable air volume system in heat-1215

ing season. The configuration of VAVHeating is the same as that in VAVCooling, except the simula-

tion period is in heating seasons. The operation strategy and the resulting dynamics of VAVHeating

are dramatically different from VAVCooling. Thus, the experiments are separately presented in two

chapters. The experiment scenarios for VAVHeating include three climates (Pittsburgh, Beijing, and

Shanghai) and two thermal mass levels. For each experiment scenario, seven neural network models1220

and six learning rates are tuned. Since VAVHeating has the same configuration with VAVCooling,

the state/action/reward design is also similar.

The convergence results are firstly presented after the RL training. In general, the shallow neural

network models are more robust to the different learning rates in terms of convergence. However,

the linear model has the poor convergence performance (and also the poor control performance),1225

which is different from the results in VAVCooling. This may be caused by the insufficient represen-

tational capacity of the linear model. The results slightly deviate from the hypotheses of this thesis,

which states that reinforcement learning with a simple neural network model is easier to converge

than a complex neural network model. It is also found that the small learning rates have a larger

convergence count than the large learning rates. Out of the six tuned learning rate, 1e-5 has the1230

largest convergence count. This is different from the VAVCooling experiments where 5e-6 is the

best choice. This indicates that for different experiment scenarios, the most favorable learning rate

is different. Hence, the learning rate needs to be tuned for different scenarios.

The control performance evaluation settings are the same as the VAVCooling experiments. The

trained control policies are evaluated in the training simulator and four different perturbed simu-1235

lators. For the control performance in the training simulator, the magnitude of the HVAC energy

savings is less than that in the VAVCooling scenarios. This is as expected since cooling usually

has a larger energy efficiency improvement potential than heating. Nevertheless, the trained con-

trol polices can still achieve around 10% energy savings and better-than-baseline setpoint notmet

time in all the experiment scenarios. For the control performance in the perturbed simulators, the1240

general trend of the results is also similar to VAVCooling. The trained control policies are tolerant

of the variations in weather conditions and occupancy/plug-load schedules, but are not tolerant of

the PMV-based indoor air temperature setpoints in the Perturbed1 and Perturbed2 simulators. An

additional experiment is also conducted with a new training simulator with the PMV-based setpoint
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strategy. The new trained control policy has improved control performance compared to the orig-1245

inal one, but the control performance in the Pertrubed1 and Perturbed2 simulators is still worse

than that in the new training simulator. This is because the dynamic PMV-based strategy delivers

different distributions of indoor air temperature setpoint for different conditions. The results again

indicate that, for the actual deployment of the control framework in a VAV system, the training

simulator should be calibrated especially for its indoor air temperature setpoint schedule.1250

The results for the effects of the neural network model complexity on the control performance

are different from the VAVCooling experiments. In the VAVCooling experiments, the different neu-

ral network models generate similar control performance for the same experiment scenario. In the

VAVHeating experiments, the different neural network models deliver dramatically different control

performance for the same experiment scenario. Besides, there is still no obvious relationship between1255

the neural network model complexity and the control performance, and the best-performing neural

network model architecture is different in different experiment scenarios. An interesting finding is

that the linear model has much worse control performance than the other more complex neural net-

work models in almost all the experiment scenarios (except the Beijing-Lightweight scenario). This

may be because the linear model is insufficient to solve the control problems of VAVHeating. This is1260

different from the VAVCooling experiments, where the linear model has achieved similar control per-

formance with the other neural network models for almost all the experiment scenarios. In general,

the results indicate that the neural network model architecture is an important hyperparameter that

needs to be tuned for different scenarios. Also, the results do not support the hypothesis stating that

reinforcement learning with a complex neural network model can deliver better control performance1265

than a simple neural network model. However, it should be noted that the conclusions are derived

from the limited number of experiments shown in this chapter, and cannot be generalized for other

scenarios.
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Chapter 6

Experiment 3: RadiantHeating1270

This chapter presents the experiments related to RadiantHeating. There are 6 scenarios for three

different climates and two different thermal mass levels, as shown in Figure 6.1. Seven different

neural network models and six learning rates are tuned for each scenario.

Figure 6.1: RadiantHeating Experiment Scenarios

99



6.1. HEATING SYSTEM DESCRIPTION CHAPTER 6. RADIANTHEATING

Figure 6.2: System Layout and Control Principles of RadiantHeating

6.1 Heating System Description

6.1.1 System Layout1275

RadiantHeating is a constant-water-flow radiant heating system. It has a relatively simpler layout

compared to VAV systems. As shown in Figure 6.2, the system consists of a hot water source (“hot

water from campus”), a three-way valve, a constant-speed water pump (not shown in the figure),

radiant surfaces and a recirculation pipe.

During its operation, the hot water source supplies high-temperature water at a constant tem-1280

perature, and the three-way valve regulates the mixture ratio between the recirculation water and

the hot water from campus to adjust the system supply water temperature (T2 in the figure). A

PID controller (PID2 in the figure) determines the mixture ratio of the three-way valve based on the

error between the system supply water temperature (T2) and its setpoint (SP2). Since the system

has a constant supply water flow rate, SP2 is used to change the amount of heating power supplied1285

by the system.

6.1.2 Mullion Radiant Surface

Even though RadiantSystem has a simple layout and operation strategy, its thermal and energy

behaviors are complicated. This is attributed to the design of the radiant surface. The top view of

the radiant surface is shown in Figure 6.3. The radiant surface is named “mullion radiant surface”1290
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Figure 6.3: Top View of the Mullion Radiant Surface (Gong and Claridge, 2006)

because it uses window mullions as the radiant surface. During heating, a proportion of heat of the

hot water in the water pipe is transferred to the aluminum fin and aluminum structures through heat

conduction, and then the heat is radiated to the zone objects or lost to the outdoor environment.

Hence, the system has a slow thermal response due to the thermal mass of the metal structures and

the radiant heating thermodynamics.1295

6.1.3 Thermal Zones and Envelopes

The system serves a one-level building with 6 conditioned thermal zones, as shown in Figure 6.4.

However, the indoor environmental conditions of the 6 zones are averaged for control purposes. As

a result, from the control perspective, the system serves a single-zone building.
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Figure 6.4: Thermal Zones Served by RadiantHeating

The thermal properties of the envelopes follow the requirements of ASHRAE 90.1-2016.1300

6.1.4 Target Control Variable and Baseline Control Strategy

The target supervisory level control variables are on/off of the whole heating system and SP2:

the system supply water temperature setpoint. SP2 directly affects the amount of heating power

supplied by the system. Also, this setpoint can affect occupants’ thermal comfort by changing the

mean radiant temperature of the building.1305

The baseline control strategy is a rule-based controller (RBC), which is modified based on a

real-life control strategy for a radiant heating system. For the system on/off, the whole system is on

unless the outdoor air temperature is above 10◦C. For SP2, the general control concept is shown in

Figure 6.2, which uses the error between the average indoor air temperature (T1) and its setpoint

(SP1) to determine its value. The details of the logic are shown in Algorithm 2. It can be seen that1310

the baseline control strategy contains several “magic numbers”, which are determined by engineering

experience without any scientific reasons.

Figure 6.5 shows an example of the behaviors of the average indoor air temperature under the

baseline control strategy. It can be seen that, in the morning, it takes several hours for the average

indoor air temperature to be close to its setpoint. The response time of the heavyweight building1315

is significantly longer than the lightweight building. Also, the temperature never settles around

the setpoint. This is caused by the slow thermal response of the system and the imperfect control

strategy. It is expected that the reinforcement learning control method could find a better control

strategy for the system on/off and SP2.
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Algorithm 2 Baseline Control Strategy for the System Supply Water Temperature Setpoint (SP2)
of RadiantHeating

1: procedure determineSP2(T1, SP1, OAT, Mode, Kp)

▷ T1, SP1, OAT, Mode represent the conditions at the current control time step

▷ OAT is outdoor air temperature, Mode is regular heating/setback mode

▷ Mode is “regular heating” during 7:00-20:00 of weekdays, otherwise it is “setback”

▷ T1, SP1, OAT, SP2 have the unit degree Celsius

▷ Kp is a tunable hyperparameter larger than 0

2: stptError = SP1− T1

3: if stptError < 0.3 then

4: SP2 = T1− 5 ▷ Recirculate all return water if SP1 is met

5: else

6: propError = stptError ∗Kp

7: if Mode is “setback” then ▷ Enter the setback mode

8: SP2 = propError + 29.5

9: SP2 = min(51.5, SP2)

10: else ▷ Enter the regular heating mode

11: if stptError > 10 then

12: SP2 = 65

13: else

14: oatBias = 4.35− 1.71 ∗OAT ▷ Adjust the setpoint based on OAT

15: oatBias = min(30,max(−30, oatBias)) ▷ Limit oatBias to -30 and 30

16: SP2 = propError + oatBias

17: SP2 = min(65,max(0, SP2)) ▷ Limit SP2 to 0 and 65

18: return SP2
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Figure 6.5: Behaviors of the Average Indoor Air Temperature of the Selected Day of RadiantHeating
Using the Baseline Control Strategy in Pittsburgh Climate

6.1.5 Whole Building Energy Model1320

The whole building energy model is built using EnergyPlus (The U.S. Department of Energy, 2019a)

version 8.3. The geometry 3D rendering is shown in Figure 6.6. The capacities of the system

components are autosized by EnergyPlus using the design conditions of each climate. One simulation

episode lasts for 2-month with 10-min as the simulation time step, as shown in Table 6.1.

One challenge to model RadiantHeating is that “Mullion radiant surface” cannot be directly1325

modeled in EnergyPlus. A workaround modeling method is proposed and more details are presented

in Zhang et al. (2019).
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Figure 6.6: Geometry Rendering of the Whole Building Energy Model for RadiantHeating (rendered
by BuildSimHub, Inc. (2018))

Table 6.1: Basic Simulation Settings of the Whole Building Energy Models for RadiantHeating
Scenarios

Climate
Thermal

Mass
Simulation Period

Simulation

Time Step

Pittsburgh
Light

Jan 1st-Feb 28th 10-min
Heavy

Beijing
Light

Jan 1st-Feb 28th 10-min
Heavy

Shanghai
Light

Jan 1st-Feb 28th 10-min
Heavy
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6.2 Reinforcement Learning Setup

6.2.1 State Design

The state is a stack of current and historical observations. The observation vector is shown in Table1330

6.2.

The length of the history in the state is determined using the method proposed in section 2.4.1.

Figure 6.7 shows the relationship between the time interval n (each control time step is 10-min) and

the distance correlation dcorn, which represents the dependence between the observation at t + 1

and t−n. A larger dcorn means a stronger dependency. It is interesting to find that, the lightweight1335

and heavyweight buildings have almost the same dcorn curves. This is because only three items in

the observation vector (ob) are building-weight related, including average indoor air temperature,

average PMV and average system heating demand since the last control time step. The other items

(such as weather conditions, time, setpoint schedules) are the same in both thermal-mass scenarios.

By using Algorithm 1 with dcorThres = 0.5, the length of the history in the state is summarized in1340

Table 6.3.

6.2.2 Action Design

The discrete action space for RadiantHeating is:

Aradiantheating = {turn-off, 20◦C, 25◦C, ..., 65◦C}, (6.1)

where the first action “turn-off” means to turn the heating system off (i.e., the supply water flow

rate is zero) and the following actions are the setpoint for the system supply water temperature.1345
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Table 6.2: Observation Vector in the State for
RadiantHeating

No. Item

1 Is weekday or not

2 Hour of the day

3 Outdoor air temperature (◦C)

4 Outdoor air relative humidity (%)

5 Diffuse solar radiation (W/m2)

6 Direct solar radiation (W/m2)

7
Average indoor air temperature

setpoint in setback mode (◦C)∗

8 Average indoor air temperature (◦C)

9
Average predicted mean vote

by Fanger’s model (PMV)

10 Is building occupied (0 or 1)

11 Heating system on/off (0 or 1)

12
Heating system supply water

temperature setpoint (◦C)

13
Average system heating demand

since last control time step (kW)†

∗Setback mode occurs during weekends and
20:00-07:00 of weekdays.
†It is calculated using the equation
Qheating = Cp_m(T2 − T3) where Cp is the
specific heat of water, _m is the mass flow
rate of hot water. It represents how much
heating power is demanded by the building.
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Figure 6.7: Relationship Between the Time Interval n and the Distance Correlation dcorn (specified
in Equation (2.23)) for All the RadiantHeating Scenarios

Table 6.3: Length of History in the State for RadiantHeating Scenarios

Climate
Thermal

Mass

Length of History

(control time steps)

Pittsburgh
Light 20 (3.3 hr)

Heavy 20 (3.3 hr)

Beijing
Light 16 (2.7 hr)

Heavy 16 (2.7 hr)

Shanghai
Light 18 (3.0 hr)

Heavy 18 (3.0 hr)
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6.2.3 Reward Design

Energy and Comfort Metric

Energy saving and thermal comfort improvement are the control objectives governing the design of

the reward function. RadiantHeating uses “heating demand” and “PMV” as the energy and comfort

metric.1350

For the energy metric, RadiantHeating does not have an independent heating source. Thus, the

electric demand or gas demand for heating is not available. As a common practice, heating demand

(Qheating) is used as the energy metric, i.e.,:

Qheating = Cp_m(T2− T3), (6.2)

where Cp is the specific heat capacity of water, _m is the mass flow rate of water, T2 and T3 are

the supply and return water temperature of the system (illustrated in Figure 6.2). This method

is widely used in practice. However, this method is accurate only for steady-state situations, i.e.,

when all variables are not changed by time. Thus, this method can give an accurate estimation

of the cumulative heating demand of a long period, but may fail to do so for the system transient1355

behaviors. For example, when the supply water temperature suddenly increases, the method may

over-estimate the heating demand since the hot water cannot charge all the pipes of the system

immediately.

For the comfort metric (operational constraints), RadiantHeating uses predicted mean vote

(PMV) based Fanger’s model (Fanger, 1970) rather than setpoint notmet. This is because the1360

Mullion radiant surface can significantly affect the thermal comfort feeling of an occupant by chang-

ing the zone mean radiant temperature. This effect cannot be considered if setpoint notmet is used

as the comfort metric. PMV uses indoor air temperature, relative humidity, mean radiant tempera-

ture, air speed, occupants’ clothing value and occupants’ metabolic rate to calculate a comfort index

value ranging from -3 to 3 (-3 is very cold and 3 is very warm). Thus, the effect on the mean radiant1365

temperature is inherently included in PMV.
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Figure 6.8: “Delayed Reward” Problem of RadiantHeating: Behaviors of the PMV vs. Control Ac-
tions (SWT) in a Selected Day of RadiantHeating using the Baseline Control Strategy in Pittsburgh
Climate (SWT: supply water temperature)

Reward Design for the Slow Thermal Response

A reinforcement learning agent must obtain a clear reward signal to evaluate its state and action.

The reward functions of VAVCooling and VAVHeating only use the state at current control steps to

evaluate an agent, i.e., the agent is rewarded if the energy consumption of the current control step1370

is low and the indoor air temperature of the current control step meets its setpoint. Based on the

results, this design has achieved better energy efficiency compared to the baselines in VAVCooling

and VAVHeating.

However, this design does not fit RadiantHeating because of its slow indoor air temperature

response. As shown in Figure 6.8, in the winter morning, it takes several hours for the PMV to1375

reach a comfortable level (larger than -0.5 as required by ASHRAE 55-2017 (ASHRAE, 2017)) even

though the system supply water temperature setpoint is at the maximum. This is because the system

has a slow air temperature response and air temperature is one of the major factors that influence

PMV. This means that, if the reward function depends only on the PMV observation at the current

control time step, the reward will remain small for several hours even though the right action is1380

taken. This is called “delayed reward” problem and will lead to reinforcement learning divergence

(Zhang et al., 2019).
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Figure 6.9: Imperfect Energy Metric Problem: Control Action vs. the Heating Demand of Ra-
diantHeating in the Training Simulator of the Pittsburgh-Lightweight-Building Scenario using a
Random Control Strategy

An interesting finding in Figure 6.8 is that, even though the PMV is below the threshold in

the winter morning, it has an increasing trend when the system supply water temperature is high.

This trend should be rewarded because it represents the potential to reach a comfortable indoor1385

environment. Thus, in the reward function of RadiantHeating, the reward value is determined by

the change of the PMV in two adjacent control time steps.

Reward Design for the Imperfect Energy Metric

Heating demand, calculated by a steady-state specific heat function (Equation (8.1)), is the energy

metric for RadiantHeating. However, this is not an ideal energy metric and may confuse the rein-1390

forcement learning agents. This is illustrated in Figure 6.9, which shows the relationship between the

system supply water temperature setpoint (the action) and the resulting heating demand. For the

averaged data, the higher supply water temperature setpoint leads to the higher heating demand,
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which is as expected. However, for the “spot” data, the heating demand ranges from nearly zero to

nearly 100 kW for all the possible setpoint values. This is because:1395

• The heating demand is calculated by a steady-state function, which does not consider the

transient behaviors of the system.

• Changing the setpoint may not lead to sufficient changes in the actual supply water temperature

in a short period. For example, when changing the setpoint from a high level (e.g., 65 ◦C)

to a low level (e.g., 30 ◦C), it may take several time steps for the actual water temperature1400

to drop from the high level. This leads to the high heating demand at the low setpoint

because the heating demand is determined by the difference between the actual system supply

water temperature and the return water temperature. This slow response of the supply water

temperature is caused by the system characteristics (more specifically, the working principle

of the three-way mixture valve).1405

• The heating demand is low when the zone is overheated. In this situation, even though the

supply water temperature is high, there will be little heat transfer from the Mullion radiant

surfaces to the zone, so the heating demand is low.

The blurred relationship between the control actions and the heating demand may make the

reinforcement learning difficult because the training of an RL agent can be significantly affected1410

by individual samples. To give an RL agent a clear reward signal, the reward function includes a

heuristic measure that gives high energy-related reward for the low-setpoint actions, and vice-versa.
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Reward Function

Based on the above discussion, the reward function is formulated as:

Rradiantheating,t = 1.0− [(1− Pcomfort) ∗Henergy + Pcomfort ∗Hcomfort]
1
0 ,

where,

Henergy = [Qheating,normalized,t + 0.02 ∗ (Tswstpt,t−1 − 15)]
1
0 ,

Pcomfort =

[2.0 ∗ (19− Tia,t)]
1
0 if not occupied,

[5.0 ∗ (−0.5− PMVt)]
1
0 if occupied,

Hcomfort =

[τ ∗ (Tia,t − Tia,t−1)]
1
0 if not occupied,

[β ∗ (PMVt − PMVt−1)]
1
0 if occupied,

(6.3)

where subscript t is a control time step, Qheating,normalized is the normalized average heating de-1415

mand since last control time step, Tswstpt is the setpoint of the system supply water temperature

(not normalized, the value is 15 if the heating system is turned-off), Tia is the average indoor air

temperature (not normalized), PMV is predicted mean vote by Fanger’s model (not normalized),

τ and β are tunable hyperparameters controlling the rewarding level for the trend of the average

indoor air temperature or PMV.1420

Intuitively, this reward function aims to save the heating demand and keeps the PMV above -0.5

(during occupied time):

• As shown in Pcomfort in Equation (6.3), when the PMV is above -0.5, the reward function

provides an output value solely based on Henergy in Equation (6.3). Henergy is a function

combining the heating demand and a heuristic measure. This function penalizes high heating1425

demands and high values of the supply water temperature setpoint.

• As shown in Pcomfort in Equation (6.3), when the PMV is below -0.5, the reward function will

also consider the PMV to provide an output value. The PMV-related reward is determined

by Hcomfort in Equation (6.3). This heuristic function rewards increasing trends in the PMV

and penalizes decreasing trends in the PMV.1430
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Table 6.4: Hyperparameters for the RL Training for RadiantHeating Sce-
narios

Item Value Item Value

Simulation time step 10-min A3C local agent number 16

Control time step 20-min Reward discount factor 0.99

Nonlinear activation∗ ReLu RL interaction steps 3M

Optimizer RMSProp Learning batch size 25

RMSProp decay rate 0.99 Value loss weight 0.5

RMSProp momentum 0.0 τ in the reward 5.0

RMSPorp epsilon 1e−10 β in the reward 10.0

Gradient clip method L2-norm Gradient clip threshold 1.0

Note: * nonlinear activation applies to the shared layers of the neural net-
works (except the one with the linear shared layers).

6.2.4 Action Repeat

Action repeat means repeating the same action for more than one control time step. This is a simple

strategy to deal with slow-response simulators. For RadiantHeating, action repeat is set to 2, which

means the same control action is executed in the simulators for two control time steps. One control

time step is 10-min. The action repeat of 2 means the effective control time step is 20-min.1435

6.2.5 Hyperparameters

The reinforcement learning agents are trained with the hyperparameters shown in Table 4.5. In the

training of each experiment scenario, seven neural network models and six learning rates will be

tuned, as shown in Figure 3.5.
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Table 6.5: Comparison of the Training and Perturbed Simulators for the RadiantHeating Scenarios

Training
Perturbed

1 2

Weather
TMY3 for Pittsburgh,

IWEC for other locations

AMY

2017

TMY/IWEC with additive

white Gaussian noise

Occupancy

Schedule

Deterministic with additive

white Gaussian noise
Stochastic

Plug-load

Schedule

Deterministic with additive

white Gaussian noise
Stochastic

6.3 Training and Perturbed Simulators1440

Unlike VAVCooling and VAVHeating, there are only two perturbed simulators for RadiantHeating,

as shown in Table 6.5. The perturbation of indoor air temperature setpoint is no longer included

in RadiantHeating, because indoor air temperature setpoint is used neither in the state or in the

reward function. The perturbed simulators still include the variations of weather conditions and

occupancy/plug-load schedules.1445

115



6.4. RESULTS CHAPTER 6. RADIANTHEATING

Figure 6.10: RadiantHeating: Convergence Robustness to Learning Rate (the count of convergence
out of the six learning rates) vs. Neural Network Models

6.4 Results

6.4.1 Convergence Results

This section shows the results related to the convergence performance of the reinforcement learning

training.

Six learning rates, from 1e-3 to 5e-6, are tuned for the seven neural network models. Figure 6.101450

shows the convergence count out of the six learning rates vs. the neural network models for each

experiment scenario. A larger convergence count means the corresponding neural network model

is more robust to the different learning rates. It is found that the complexity of a neural network

model has no obvious effects on the convergence count, except the ReLu256-8 model (the deepest

and widest neural network model) which has the smallest convergence count in all the experiment1455

scenarios. This result is different from VAVCooling and VAVHeating where the shallower neural

network models are more robust to the different learning rates. Besides, the linear model does

not have a larger convergence count than the other more complex neural network models, which is

different from the result in VAVCooling.
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Figure 6.11: RadiantHeating: Convergence Count out of the Seven Neural Network Models vs.
Learning Rate

Figure 6.11 shows the convergence count out of the seven neural network models at the different1460

learning rate. There is no obvious trend between the learning rate and the convergence count. All

the learning rates have relatively large convergence count for all the scenarios. This is different from

VAVCooling and VAVHeating where the smaller learning rates are obviously more favorable than

the larger learning rates for convergence.

Figures 6.12, 6.13 and 6.14 show the training evaluation histories of the seven neural network1465

models at the learning rate 5e-4. It clear in the figures that, in all the experiment scenarios, the

8-layer neural network models have more fluctuations in the training evaluation histories than the

shallower models. This result aligns with the result in VAVCooling. The linear model has smooth

training evaluation histories in all the experiment scenarios. There is no consistent relationship

between the width of a neural network model and the smoothness of the training evaluation histories.1470

The building thermal mass level also does not show any obvious effects on the training evaluation

histories.

6.4.2 Control Performance

The control performance of the reinforcement learning is evaluated by the percentage savings of the

cumulative heating demand (Qsaving), and the cumulative time when the zone is occupied and the
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Figure 6.12: RadiantHeating: Training Evaluation History for the Learning Rate 5e-4 vs. Neural
Network Models (Pittsburgh Climate)

Figure 6.13: RadiantHeating: Training Evaluation History for the Learning Rate 5e-4 vs. Neural
Network Models (Beijing Climate)

118



CHAPTER 6. RADIANTHEATING 6.4. RESULTS

Figure 6.14: RadiantHeating: Training Evaluation History for the Learning Rate 5e-4 vs. Neural
Network Models (Shanghai Climate)

PMV is less than -0.5 (named as “PMV notmet” or Tipmvnmt). Qsaving is

Qsaving =
Qbaseline −Qrl

Qbaseline
∗ 100, (6.4)

where Qrl and Qbaseline are the cumulative heating demand in one simulation episode under an

RL-trained control policy and the baseline control strategy respectively. Tipmvnmt is

Tipmvnmt = Tisimstep ∗
Tsimend∑

t=0

(PMVt < −0.5&OCCPt == 1) , (6.5)

where Tisimstep is the time step length of the simulation (10-min in this case), t is one time step

in the simulation, Tsimend is the number of time steps in one simulation episode, and OCCP is the1475

occupancy flag. The PMV threshold “-0.5” is determined based on the requirement of ASHRAE

55-2017 (ASHRAE, 2017).

Figures 6.15, 6.16 and 6.17 show the control performance of the reinforcement learning method

in the three climates. For each scenario, the performance in the training simulator and two per-

turbed simulators is shown. The two perturbed simulators have stochastic occupancy and plug-load1480

schedules, and the Perturbed1 simulator uses AMY2017 weather data and the Perturbed2 simulator

uses typical weather data with additive white noises. It is seen in the figures that:

• There is no consistent relationship between the control performance and the neural network

model complexity across all the experiment scenarios.

119



6.4. RESULTS CHAPTER 6. RADIANTHEATING

• For the lightweight-building scenarios, almost all the neural network models have achieved ob-1485

vious heating demand savings with less or similar PMV notmet time compared to the baseline.

• For the heavyweight-building scenarios, all the neural network models have achieved obvious

heating demand savings, and the amount of the savings is higher than that in the lightweight-

building scenarios. However, in the Pittsburgh and Shanghai scenarios, the PMV notmet time

is higher than the baseline. This problem is caused by the imperfect design of the reward1490

function.

During the reinforcement learning training, an RL agent continues evolving itself to maximize

the cumulative reward. For RadiantHeating, an RL agent is evaluated after every 50K inter-

action steps and the one with the maximum cumulative reward is selected as the final control

policy. However, the max-reward control policy may not achieve the best balance between1495

the heating demand saving and the PMV notmet. For example, in Figure 6.15 “Heavy Weight

Building” section, the ReLu64-2 model has achieved 21% heating demand saving but the PMV

notmet time is increased compared to the baseline. For the same scenario and the same neu-

ral network model, Figure 6.18 shows the training-simulator control performance of the other

“checkpointed” control policies obtained during the reinforcement learning training. It can1500

be seen that the max-reward choice is dominated by two other choices (i.e., the choices with

both lower heating demand and lower PMV notmet time), even though their reward values

are lower. This means the reward function is not fully consistent with the control performance

evaluation metrics. If one would like a control policy with comparable or better thermal com-

fort than the baseline, a “better choice” is indicated in the figure. This control policy has1505

much less heating demand and slightly less PMV notmet time than the baseline. Table 6.6

shows the control performance of the “better choice” RL control policy under the different

simulators. It can be seen that, compared to the “max-reward” control policy, the “better

choice” has less energy saving but also less PMV notmet time. Compared to the baselines,

the “better choice” has achieved comparable or less PMV notmet time with obvious heating1510

demand savings. This indicates that the reward function should be further studied to achieve

a better balance between multiple control objectives.

• The control performance in the perturbed simulators is comparable or better than that in the

training simulator. This indicates that the reinforcement learning control policies are tolerant

of the variations in weather conditions and occupancy/plug-load schedules.1515
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Figure 6.15: RadiantHeating: Control Performance in Pittsburgh Climate (the results of each neural
network model are from the best-performing learning rate; baseline heating demand means the
cumulative heating demand per building floor area using the baseline control strategy)

Figure 6.16: RadiantHeating: Control Performance in Beijing Climate (the results of each neural
network model are from the best-performing learning rate; baseline heating demand means the
cumulative heating demand per building floor area using the baseline control strategy)
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Figure 6.17: RadiantHeating: Control Performance in Shanghai Climate (the results of each neural
network model are from the best-performing learning rate; baseline heating demand means the
cumulative heating demand per building floor area using the baseline control strategy)

Figure 6.18: RadiantHeating: Control Performance in the Training Simulator for the Check-
pointed Control Policies Obtained During the Reinforcement Learning Training for the Pittsburgh-
Heavyweight-Building Scenario with the ReLu64-2 Model and the Best-performing Learning Rate
(each dot in the figure represents a control policy after every 50K reinforcement learning interaction
steps)
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Table 6.6: Control Performance Comparison Between the “Max-reward” and “Better Choice” RL
Control Policy for the Pittsburgh-Heavyweight-Building Scenario with the ReLu64-2 Model and the
Best-performing Learning Rate

Control Policy Training Perturbed1 Perturbed2

Heating Demand

Saving (%)

”Max-reward” 21.4 27.0 22.0

”Better choice” 15.5 22.9 17.7

PMV Notmet (Hr)
”Max-reward” 180 125 202

”Better choice” 103 74 122

Baseline 114 68 120
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6.5 Summary and Discussion

This chapter presents the experiments related to RadiantHeating, a slow thermal response radiant

heating system. The radiant heating system serves a 6-zone building but the environmental condi-

tions of the 6 zones are averaged (effectively the system serves one zone). The control framework

is applied for this system to reduce the heating demand and keep the PMV in occupied time larger1520

than -0.5. The control variable is the supply water temperature setpoint. Six experiment scenar-

ios are experimented, including three climates and two thermal mass levels. For each experiment

scenario, 7 neural network models and 6 learning rates are tuned.

RadiantHeating has a simpler configuration than the previous VAV systems. However, the dy-

namics of RadiantHeating is not simple. Firstly, it has a much slower thermal response than the VAV1525

systems. The slow thermal response hence affects the behaviors of PMV. It is demonstrated that

the PMV has a delayed behavior, i.e., a large change in the supply water temperature setpoint only

leads to a limited change of PMV. Secondly, the heating demand cannot be appropriately measured.

This chapter uses the specific heat equation to calculate the heating demand, but this equation is

accurate only for steady-state operations. As a result, the spot measurement of the heating demand1530

is not accurate and has large variations. Thus, if the reward function is designed as the form in

the VAV experiments (i.e., the reward is negatively proportional to the heating demand and PMV

setpoint notmet), the reinforcement learning training may experience convergence problems (Zhang

et al., 2018a).

A reward function with heuristics is designed to remediate the above problems. The heuristics1535

includes two measures: firstly, the reward value is proportional to the PMV increase in one control

time step if the PMV is below the setpoint; secondly, the reward value is negatively proportional to

the heating demand and the supply water temperature setpoint (i.e., a low setpoint value has a high

reward). The two heuristic measures are decided after a thorough study on the system dynamics

and several trial-and-error tests. The convergence of this problem is significantly improved by using1540

this reward function design. This indicates that adding heuristics to the reward function can be

a practical solution for the convergence problems of reinforcement learning. However, it should be

noted that, the heuristics in the reward function limits the exploration space of an RL agent.

The convergence results are firstly presented after the RL training. Interestingly, almost all the

neural network models can converge with a wide range of learning rates, except the ReLu256-8 which1545

is the most complex neural network model in the experiments. This is attributed to the heuristics
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in the reward function that makes the whole control problem easier. It is also shown that the RL

agents are easy to converge for all the tuned learning rates. This is different from the results of

VAVCooling and VAVHeating where the small learning rates are more favorable for convergence.

This results again indicate that the learning rate must be tuned for different experiment scenarios.1550

There is not a unified value for the learning rate that works for all scenarios.

The control performance of the trained control policies is evaluated by the heating demand

saving and PMV notmet time in one training simulator and two perturbed simulators. For the

control performance in the training simulator, the RL control policies have achieved 10%-30% heating

demand savings for all the experiment scenarios. However, in the heavyweight building scenarios,1555

the RL control polices have delivered the slightly higher-than-baseline PMV notmet time. This is

because the reward function does not achieve the desired balance between the two control objectives,

heating demand saving and PMV constraint fulfillment. It is shown in an example that, during the

training process of an RL agent, there are multiple solutions that are baseline-dominated. But those

solutions have not been selected as the final control policy because the reward function weights the1560

heating demand saving more than the PMV constraint fulfillment. The RL control polices are also

evaluated in two perturbed simulators with the changed weather conditions and occupancy/plugload

schedules. There are no perturbations for indoor air temperature setpoint because it is not applicable

to this system. It is found the control performance is similar or even better than the training control

performance.1565

The effects of the neural network model complexity on the control performance is also shown

in this chapter. For the Shanghai scenarios, different neural network models have achieved similar

control performance. For the Pittsburgh and Beijing scenarios, different neural network models

have achieved different control performance, but there is not a clear relationship between the neural

network model complexity and the control performance. The results do not support the hypothesis1570

on the benefits of deep reinforcement learning. However, the conclusion is derived from the limited

experiments shown in this chapter, so it cannot be generalized.
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Chapter 7

Experiment 4: ChilledWater

This chapter presents the experiments related to ChilledWater, a three-chiller chilled water system.1575

There are four experiment scenarios in this chapter, as shown in Figure 7.1. The scenarios do not

include different thermal mass levels because they do not apply to this system. As usual, seven

different neural network models and six learning rates are tuned for each scenario.
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Figure 7.1: ChilledWater Experiment Scenarios

7.1 System Description

7.1.1 System Layout1580

ChilledWater is a multi-chiller system to supply chilled water for any cooling purposes. Different

from the previous systems, ChilledWater is a primary system without considering secondary usages.

This means this system is completely decoupled from “buildings”. The system layout is shown in

Figure 7.2. The system has three chillers connected in parallel, a cooling tower, and two water

pumps. The system is used to generate chilled water to meet the provided cooling demands. Since1585

no “buildings” are modeled, building thermal mass level does not apply to this system.

As shown in Figure 7.2, two of the three chillers have a larger cooling capacity (“big chiller”) and

the other one has a smaller cooling capacity (“small chiller”). The two big chillers have the same

capacity. This is a common configuration found in practice to increase the flexibility of the chillers

to handle different cooling demands. During operation, it is assumed that the cooling demand is1590

evenly distributed to “online” chillers (i.e., the chillers that are on), and each chiller has its own

internal control strategy (e.g., via adjusting the inlet vane or the motor speed) to deliver chilled

water at a predefined setpoint temperature. However, the supply chilled water will be warmer than

the setpoint (also called setpoint notmet) if the cooling demand exceeds the total cooling capacity

of “online” chillers.1595
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Figure 7.2: System Layout of ChilledWater

7.1.2 Target Control Variable and Baseline Control Strategy

The efficiency of a chiller is affected by multiple factors, including outdoor weather conditions, the

supply water temperature and the partial load ratio (i.e., the ratio of the delivered cooling load over

the total cooling capacity of a chiller). Since weather conditions and the supply water temperature

cannot be manipulated (the supply water temperature setpoint is usually predefined by designers),1600

the partial load ratio is the only variable that will affect a chiller’s efficiency. Thus, the target

supervisory level control variable is the on/off of each chiller. This will change the partial-load ratio

of each chiller, and affect their efficiencies.

As discussed previously, the three chillers consist of two big chillers with the same capacity and

a small chiller with a smaller cooling capacity. As a result, there are five operation modes for the1605

three chillers’ on/off regarding the maximum cooling capacity that can be provided, as shown in

Table 7.1. The baseline control strategy is rule-based and has a simple principle:

If the cumulative time when the partial load ratio (PLR) of one of the chillers is larger

than 90% (“plr90Time”) is more than 20-min, turn on a new chiller; If the cumulative

time when the PLR of one of the chillers is less than 30% (“plr30Time”) is more than1610

20 min, turn one or more chillers off.

More specifically, the baseline control strategy is shown in Algorithm 3.
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Algorithm 3 Baseline Control Strategy for the On/Off of the Three Chillers of ChilledWater
1: procedure determineOpMode(demand,curMode, plr90Time, plr30Time, capSmall, capBig)

▷ demand: the current cooling demand; curMode: the current on/off mode of the chillers

▷ capSmall, capBig: the cooling capacity of the small chiller and the big chiller

2: newMode = curMode

3: if plr90Time ≥ 20-min then ▷ Need start new chiller(s)

4: if curMode == 1 then ▷ Currently only the small chiller is on

5: newMode = 3 ▷ Start a new big chiller

6: else if curMode == 2 then ▷ Currently only the big chiller is on

7: if demand
2 < capSmall ∗ 0.9 then ▷ If an additional small chiller is sufficient

8: newMode = 3 ▷ Start a new small chiller

9: else

10: newMode = 4 ▷ Start a new big chiller

11: else

12: newMode = 5 ▷ Start all chillers

13: else if plr30Time ≥ 20-min then ▷ Need shut-off one chiller

14: if curMode == 5 then ▷ Currently all chillers are on

15: newMode = 4 ▷ Shut-off the small chiller

16: else if curMode == 4 then ▷ Currently two big chillers are on

17: if demand < capSmall ∗ 0.9 then ▷ If the small chiller alone is sufficient

18: newMode = 1 ▷ Only keep the small chiller on

19: else if demand < capBig ∗ 0.9 then ▷ If the big chiller alone is sufficient

20: newMode = 2 ▷ Only keep the big chiller on

21: else

22: newMode = 3 ▷ Shut-off one big chiller, turn-on on small chiller

23: else if curMode == 3 then ▷ Currently one big and one small chiller are on

24: if demand < capBig ∗ 0.3 then ▷ If one big chiller alone is over-qualified

25: newMode = 1 ▷ Only keep the small chiller on

26: else

27: newMode = 2 ▷ Only keep the big chiller on

28: else if curMode == 2 then ▷ Currently only one big chiller is on

29: if demand < capSmall ∗ 0.9 then ▷ If one small chiller alone is sufficient

30: newMode = 1 ▷ Shut-off the big chiller, turn-on the small chiller

31: return newMode
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Table 7.1: Operation Modes for the Three
Chillers’ On/Off Status for ChilledWater

No. Description

1 Only the small chiller is on

2 Only one big chiller is on

3 One big and one small chiller are on

4 Two big chillers are on

5 All chillers are on

7.1.3 Operational Constraints of a Chiller

A chiller cannot be arbitrarily turned-on or shut-off. Its operation should meet the following condi-

tions:1615

• Avoid shortcycling: Shortcycling is the rapid turning-on/shutting-off/turning-on of a chiller.

It reduces a chiller’s life-span. This is because the motor in a chiller needs much higher current

during starting than during stable operation. The heat must be dissipated quickly otherwise

it will damage the mechanical and electrical components in the motor. The dissipation of the

excessive heat is faster in a running motor. In this study, it is assumed 20-min is the minimum1620

time interval between a turn-on action and a shut-off action or between a shut-off action and

a turn-on action.

• Avoid low partial-load ratio (PLR): A chiller has a low limit for its PLR. If the PLR is lower

than the limit, refrigerant in the evaporator cannot be completely vaporized so the liquid

refrigerant may enter the compressor to cause severe mechanical damages. Note that, some1625

modern chillers have a protection strategy called “false-loading”, which introduces additional

“artificial” cooling loads (e.g., via hot-gas bypass) to increase the PLR. However, false-loading

significantly reduces the energy efficiency of a chiller.

The baseline control strategy in Algorithm 3 has already avoided most shortcycling and low-PLR

problems.1630
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Table 7.2: Basic Simulation Settings of the Energy Models for ChilledWater

Climate Simulation Period
Simulation

Time Step
Pittsburgh June 1st-Aug 31th 10-min

Beijing June 1st-Aug 31th 10-min

Shanghai June 1st-Aug 31th 10-min

Singapore Sep 1st-Nov 30th 10-min

7.1.4 Whole Building Energy Model

The experiments need two building energy models, one for the system ChilledWater, and the other

one (named “context model”) to generate the cooling demand profiles.

The energy model of the system is built using EnergyPlus version 8.7. The model of ChilledWater

does NOT contain any information of “building” because ChilledWater is a primary system. The1635

basic settings of the energy model are shown in Table 7.2.

In addition to the model of ChilledWater, a “context model” is still needed to generate the

cooling demand profiles. This model contains the information of a building, and can be assumed

to be the building that ChilledWater serves. This study uses a 10-level, 27000 m2 office building

energy model as the context model for ChilledWater. This context model is used to generate the1640

cooling demand profiles and size the chillers. The basic settings of the context model are the same

as the energy model of ChilledWater.

Based on the cooling demand profiles, the configurations of the chillers in the different climates

are shown in Table 7.3.
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Table 7.3: Configurations of the Chillers in the Different Climates for ChilledWater

Climate Chiller Name
Nominal

Capacity

Reference

COP

Min

PLR

Max

PLR

Pittsburgh
Trane CVHE 1080 (“Big”) 1080 kW 7.39 0.20 1.05

Trane RTHB 542 (“Small”) 542 kW 5.26 0.30 1.01

Beijing
Carrier 19XR 1294 (“Big”) 1294 kW 7.61 0.16 1.02

Carrier 23XL 686 (“Small”) 686 kW 5.91 0.20 1.04

Shanghai
Carrier 19XR 1656 (“Big”) 1656 kW 8.24 0.17 1.04

Carrier 19XR 869 (“Small”) 869 kW 5.57 0.18 1.03

Singapore
Carrier 19XR 1294 (“Big”) 1294 kW 7.61 0.16 1.02

Carrier 23XL 686 (“Small”) 686 kW 5.91 0.20 1.04
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7.2 Reinforcement Learning Setup1645

7.2.1 State Design

The state contains current and historical observations. The observation vector is shown in Table

7.4. The “cooling demand” (Qcooldemand) and “cooling delivered” (Qcooldelivered) in the observation

vector are calculated by the following equations:

Qcooldemand = Cp_mchw (Tchwreturn − Tchwstpt) , (7.1)

Qcooldelivered = Cp_mchw (Tchwreturn − Tchwsupply) , (7.2)

where Cp is the specific heat capacity of water, _mchw is the mass flow rate of the supply chilled1650

water, Tchwreturn is the return chilled water temperature, Tchwsupply and Tchwstpt are the supply

chilled water temperature and its setpoint.

The length of the history in the state is determined using the method explained in section 2.4.1.

Figure 7.3 shows the relationship between the time interval n and the distance correlation dcorn.

One control time step is 10-min. Similar to the other systems, the dcorn has a repeated pattern after1655

n = 144 because the system operation and weather conditions have daily cyclic patterns. In this

study, dcorThres is set to 0.5, which means the number of the historical observations in the state is

n− 1 where the n has the value that the dcorn firstly drops below 0.5. The results are summarized

in Table 7.5.

7.2.2 Action Design1660

The discrete action space for the on/off of the three chillers is:

Achilledwater = {opMode1, opMode2, opMode3, opMode4, opMode5}, (7.3)

where opMode1∼opMode5 are the operation modes listed in Table 7.1.
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Table 7.4: Observation Vector in the State for ChilledWater

No. Item

1 Is weekday or not

2 Hour of the day

3 Outdoor air temperature (◦C)

4 Outdoor air relative humidity (%)

5 Big chiller 1 on/off

6 Big chiller 1 shortcycling flag∗

7 Big chiller 1 PLR

8 Big chiller 2 on/off

9 Big chiller 2 shortcycling flag∗

10 Big chiller 2 PLR

11 Small chiller 1 on/off

12 Small chiller 1 shortcycling flag∗

13 Small chiller 1 PLR

14 Supply Chilled Water Temperature (◦C)

15 Supply Chilled Water Temperature Setpoint (◦C)

16 Supply Chilled Water Mass Flow Rate (kg/s)

17 Cooling Demand (kW)†

18 Cooling Delivered (kW)†

19 ChilledWater total electric demand (kW)
∗The flag = 1 means that shortcycling occurs.
†See Equation (7.1) and (7.2).

Table 7.5: Length of the History in the State for ChilledWater Scenarios

Climate
Length of History

(control time steps)
Pittsburgh 21 (3.5 hr)
Beijing 26 (4.3 hr)
Shanghai 29 (4.8 hr)
Singapore 18 (3.0 hr)
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Figure 7.3: Relationship Between the Time Interval n (control time step is 10-min) and the Distance
Correlation dcorn for All the ChilledWater Scenarios

7.2.3 Reward Design

The reward function is shown in Equation (7.4):

Rchilledwater,t = 1.0− [β ∗ Penergy + τ ∗ Pswt + Psc + Pplr]
1
0 ,

where,

Penergy = Echilledwater,t,

Pswt = [Tchwsupply,t − Tchwstpt,t]
+
,

Psc =

1, if either chiller experiences shortcycling at t,

0, else,

Pplr =

1, if either chiller’s PLR is less than its low limit at t,

0, else,

(7.4)

where t is a control time step, β and τ are tunable hyperparameters to control the weights on the

energy penalty (Penergy) and setpoint notmet penalty (Pswt), Echilledwater is the normalized electric
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Table 7.6: Hyperparameters for the RL Training for ChilledWater Scenar-
ios

Item Value Item Value

Simulation time step 10-min A3C local agent number 16

Control time step 10-min Reward discount factor 0.99

Nonlinear activation∗ ReLu RL interaction steps 2.5M

Optimizer RMSProp Learning batch size 5

RMSProp decay rate 0.99 Value loss weight 0.5

RMSProp momentum 0.0 τ in the reward+ 50

RMSPorp epsilon 1e−10 β in the reward 1.0

Gradient clip method L2-norm Gradient clip threshold 5.0

Note: * nonlinear activation applies to the shared layers of the neural net-
works (except the one with the linear shared layers); + τ = 50 means the
reward value will be zero if the supply chilled water temperature exceeds the
setpoint by more than 0.2 ◦C.

demand of ChilledWater, Tchwsupply and Tchwstpt are the supply chilled water temperature and its1665

setpoint (both are normalized). Intuitively, this reward function penalizes high energy consumption,

supply chilled water temperature setpoint notmet, shortcycling, and lower-than-threshold PLR.

7.2.4 Hyperparameters

The hyperparameters are summarized in Table 7.6. Severn neural network models and six learning

rates will be tuned for each scenario, as shown in Figure 3.5.1670
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Table 7.7: Comparison of the Training and Perturbed Simulators for the ChilledWater Scenarios

Training
Perturbed

1 2 3 4

Weather
TMY3 for Pittsburgh,

IWEC for other

locations

AMY

2017

TMY/IWEC with

additive white

Gaussian noise

AMY

2017

TMY3/IWEC with

additive white

Gaussian noise

Cooling

Demand

Profile

Generated by the “context” building energy models

based on the configurations listed in Table 7.8

7.3 Training and Perturbed Simulators

The configurations of the training and perturbed simulators are shown in Table 7.7. The simulators

are different in weather conditions and the cooling demand profiles. The cooling demand profiles are

generated by the “context” building energy models (described in section 7.1.4) using the configura-

tions listed in Table 7.8. These configurations are the same as the training and perturbed simulators1675

of VAVCooling and VAVHeating. However, the whole building energy models with these configu-

rations are only used to generate the cooling demand profiles, rather than to train and evaluate an

RL agent. The generated cooling demand profiles at an arbitrarily short period are shown in Figure

7.4. It can be seen that the profiles are obviously different from each other during the weekdays.
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Table 7.8: Configurations of the “Context” Building Energy Models to Generate the Cooling Demand
Profiles for the ChilledWater Scenarios

“Context” BEM for

training simulator

“Context” BEM for perturbed simulator

1 2 3 4

Weather
TMY3 for Pittsburgh,

IWEC for other

locations

AMY

2017

TMY/IWEC with

additive white

Gaussian noise

AMY

2017

TMY3/IWEC with

additive white

Gaussian noise

Occupancy

Schedule

Deterministic with

additive white

Gaussian noise

Stochastic

Plug-load

Schedule

Deterministic with

additive white

Gaussian noise

Stochastic

IAT

Setpoint

Deterministic with

additive white

Gaussian noise

PMV-based Deterministic

Figure 7.4: Cooling Demand Profiles at a Selected Time Period of the Training and Perturbed
Simulators for ChilledWater (the time period at the shaded region is weekends)
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Figure 7.5: ChilledWater: Convergence Robustness to the Learning Rate (the count of convergence
out of the six learning rates) vs. Neural Network Models

7.4 Results1680

7.4.1 Convergence Results

During reinforcement learning training, seven neural network models and six learning rates are

tuned for each experiment scenario. The relationship between the convergence count out of the six

learning rates and the neural network models is shown in Figure 7.5. As a general trend, the linear

and shallow neural network models have a larger convergence count, which means they are more1685

robust to the different learning rates. The results align with that in VAVCooling. Figure 7.6 shows

the relationship between the convergence count out of the seven neural network models and the six

learning rates. This figure shows which learning rates are favorable for the training convergence. In

general, a learning rate has a larger convergence count, which is similar to the results in VAVCooling

and VAVHeating.1690

Figures 7.7, 7.8, 7.9 and 7.10 show the training evaluation histories of the seven neural network

models at the learning rate 1e-5. It is interesting to find that, for all the training evaluation histories,

the total evaluation reward quickly jumps from an initial low level to a relatively high level and then

140



CHAPTER 7. CHILLEDWATER 7.4. RESULTS

Figure 7.6: ChilledWater: Convergence Count out of the Seven Neural Network Models vs. the
Learning Rate

fluctuates or stays constant at the high level. This is different from that in VAVCooling, VAVHeating,

and RadiantHeating, where the total evaluation reward gradually increases (for converged cases).1695

This indicates that the reinforcement learning agents may be stuck at some local optimal solutions.

The neural network models and climates have no obvious effects on the training evaluation history.

7.4.2 Control Performance

The control performance of the RL agents is evaluated by four criteria, including:

1. The percentage saving of the cumulative electric energy consumption of ChilledWater (Esaving):

Esaving =
Ebaseline − Erl

Ebaseline
∗ 100, (7.5)

where Ebaseline and Erl are the cumulative electricity consumption in one simulation episode1700

under the baseline and RL control policies, respectively.

2. The number of simulation time steps of the setpoint notmet for the supply chilled water
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Figure 7.7: ChilledWater: Training Evaluation History for the Learning Rate 1e-5 vs. Neural
Network Models (Pittsburgh Climate)

Figure 7.8: ChilledWater: Training Evaluation History for the Learning Rate 1e-5 vs. Neural
Network Models (Beijing Climate)
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Figure 7.9: ChilledWater: Training Evaluation History for the Learning Rate 1e-5 vs. Neural
Network Models (Shanghai Climate)

Figure 7.10: ChilledWater: Training Evaluation History for the Learning Rate 1e-5 vs. Neural
Network Models (Singapore Climate)

143



7.4. RESULTS CHAPTER 7. CHILLEDWATER

temperature (Tstepnmt):

Tstepnmt =

Tsimend∑
t=0

(
(Tchwsupply,t − Tchwstpt,t) > 0.2

)
, (7.6)

where t is one simulation time step, Tsimend is the number of simulation time steps in one

episode, Tchwsupply and Tchwstpt are the supply chilled water temperature and its setpoint

(◦C).

3. The number of simulation time steps that either chiller experiences shortcycling (turn-on then1705

shut-off or shut-off then turn-on within 20-min).

4. The number of simulation time steps that either chiller’s PLR is lower than the minimum limit

(the minimum limits are shown in Table 7.3).

The control performance in both training and perturbed simulators is shown in Figures 7.11,

7.12, 7.13 and 7.14. It can be seen that:1710

• None of the reinforcement learning control policies could dominate the baseline performance

(i.e., a control policy that has better performance than the baseline in all criteria). Even

though some RL control policies have less energy consumption and less setpoint notmet time

than the baseline, they face the shortcycling and/or low-PLR problems. Also, compared to

the results in the other systems, the amount of energy savings (if there is any) is limited.1715

• There is no clear relationship between the control performance and the neural network model

complexity. These results align with that in VAVCooling, VAVHeating, and RadiantHeating.

• The control performance in the perturbed simulators is similar to that in the training simulator,

which indicates that the reinforcement learning agents are tolerant of the variations in weather

conditions and cooling demand profiles.1720

Overall. the control performance of ChilledWater is not comparable to the other systems. The

RL trained control policies can only achieve limited energy savings, but bring operational constraint

violations such as the shortcycling and low-PLR problems. However, it should be noted that, one

simulation episode contains nearly 13000 time steps. Hence, even though the absolute number of

the operational constraint violations is large (i.e., tens to hundreds), it only accounts for a small1725

proportion of the total simulation period.
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Figure 7.11: ChilledWater: Control Performance in Pittsburgh Climate (the results of each neural
network model are from the best-performing learning rate)
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Figure 7.12: ChilledWater: Control Performance in Beijing Climate (the results of each neural
network model are from the best-performing learning rate)
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Figure 7.13: ChilledWater: Control Performance in Shanghai Climate (the results of each neural
network model are from the best-performing learning rate)
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Figure 7.14: ChilledWater: Control Performance in Singapore Climate (the results of each neural
network model are from the best-performing learning rate)
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7.5 Summary and Discussion

This chapter presents the experiments related to ChilledWater, a three-chiller primary system. This

system delivers chilled water at a predefined temperature setpoint for different cooling demands. The

energy models of this system do not contain any “building” models. Instead, the cooling demand1730

profiles are provided during the simulation. The control framework is applied to find energy-efficient

control strategies for the on/off of each chiller. There are four experiment scenarios for this system,

one for each climate zone. For each experiment scenario, seven neural network models and six

learning rates are tuned.

The challenge of controlling this system is the stringent operational constraints of operating a1735

chiller. Firstly, each chiller should keep its on/off status for at least 20 minutes. Secondly, the

partial load ratio (PLR) of each chiller must be higher than a low limit. Failure to meet the above

constraints may shorten the lifecycle of a chiller or even cause mechanical damages. Also, the

system must supply chilled water at a predefined setpoint. The above operational constraints are

incorporated into the reward function, i.e., the reward function output is negatively proportional to1740

the system energy consumption if all the operational constraints are met; if one of the constraints

is violated, the reward function outputs zero.

The convergence results are firstly presented. It is found that the linear and shallow neural

network models are more robust to the different learning rates for convergence. This supports the

thesis’s hypotheses. However, the training evaluation histories have strange behaviors. The total1745

evaluation reward quickly increases to a high level and stays there with little changes. This may be

because the RL agents are stuck at some local optimal regions. Besides, the small learning rates

are more favorable for convergence than the large learning rates. This result is the same as the

VAVCooling experiments.

The control performance of the RL control policies is evaluated in the training simulator and four1750

perturbed simulators. The four perturbed simulators are different in weather conditions and cooling

demand profiles. For the training control performance, the energy savings are limited (2%-4%) and

the operational constraints are violated for a significant number of times (several tens to several

hundreds of times). These results do not support the hypotheses of the thesis that the proposed

control framework saves HVAC energy consumption and meets operational constraints. The strange1755

training evaluation histories and the poor control performance indicate that, the reinforcement

learning agents may be stuck at some local optimal regions. This may be caused by the over-
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complicated reward function that incorporates three stringent operational constraints. The control

performance in the perturbed simulators is similar to that in the training simulator, which means

the trained control polices are tolerant of the changes in weather conditions and cooling demand1760

profiles.

Even though the trained control policies violate the operational constraints for several tens to

several hundreds of times, it may not as severe as it appears. Firstly, one simulation episode has

about 13,000 time steps. The operational constraint violations only occur in a small proportion of the

total simulation time steps. Secondly, the violations on the supply water temperature setpoint are1765

comparable or much less than the baseline. This means the system can deliver the chilled water with

a better quality. Thirdly, the shortcycling in this thesis means a chiller cycles at a 10-minute interval.

It indeed violates the 20-minute cycling constraint, but it is not a critical violation because the 20-

minute constraint is determined based on experiences. Last, many modern chillers have internal

safe mechanisms to prevent the potential mechanical damages caused by the low-PLR. Hence, the1770

consequence of the low-PLR violations is also not critical for modern chillers. Nevertheless, the

control performance for ChilledWater is not comparable with the other HVAC system types. Future

work should develop a better method to incorporate the operational constraints. For example, a

separate second level controller can be used to incorporate action-based operational constraints (e.g.,

shortcycling, low-PLR).1775

The effects of the neural network model complexity on the control performance are also shown

in this chapter. It is found that there is not a clear relationship between the neural network model

architecture and the control performance. The best-performing neural network model is different

in different scenarios. This result does not support the hypotheses that a complex neural network

model can achieve better control performance than a simple neural network model. However, it1780

should be noted that results are from a limited number of experiments, so the conclusion cannot be

generalized.
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Chapter 8

Case Study: Real-life Deployment

of the Control Framework1785

This chapter presents a real-life deployment case study of the proposed control framework. The

control framework helps a real-life radiant heating system to save 16.7% heating demand, which

partially demonstrates its practical feasibility and effectiveness.
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Figure 8.1: The Intelligent Workplace (IW)

Figure 8.2: Hot Water Pipes Integrated on Window Mullions

8.1 Case Study Building

The case study building, the Intelligent Workplace (IW, shown in Figure 8.1), is a one-level 6001790

m2 office building in Pittsburgh, PA, USA. It was built in 1997 on the roof of an existing building.

The building has about 15 regular occupants and a 30-person conference room. The major heating

system of IW is a novel water-based radiant heating system called “Mullion” system. It integrates

hot water pipes with window mullions, as shown in Figure 8.2.

The general configurations and the baseline rule-based control strategy of the system are shown1795

in Figure 8.3. With a constant hot water flow rate, the Mullion system adjusts its supply hot water

temperature to respond to different indoor heating demands. A proportional-integral-derivative

(PID) feedback controller (PID1) calculates the Mullion supply water temperature setpoint (SP2)

based on the error between the IW average indoor air temperature (T1) and its setpoint (SP1).

Then, another PID controller (PID2) adjusts the open state of a mixture valve based on the error1800
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Figure 8.3: The Existing Control Principle of the Heating System in IW

between the Mullion supply water temperature (T2) and its setpoint (SP2). The open state of

the mixture valve determines the mixture ratio between the hot water from the campus and the

recirculation water, so the Mullion supply water temperature (T2) can be changed. Besides, the

control logic shuts off the flow of the hot water from the campus when the outdoor air temperature

is below 10 ◦C.1805

Since the hot water is from a district heating system of the campus, the facility manager of IW

uses the system’s heating demand as the energy metric, which is calculated by:

QMull = Cp_m(T2− T3), (8.1)

where Cp is the specific heat of water at constant pressure, _m is the mass flow rate of the supply water

of the Mullion system. Note that this equation does not consider the system transient behaviors so

its output may not be accurate when there is a sudden change in the system operation (e.g., when

the supply water temperature suddenly increases). This may cause a large variability in the heating

demand data.1810
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8.2 Control Objectives and Control Variable

This case study aims to develop a control policy to reduce the Mullion system heating demand and

maintain an acceptable overall thermal comfort quality. In the RL training, the thermal comfort

metric is the calculated predicted percentage of dissatisfied (PPD) based on Fanger’s model (Fanger,

1970). Even though PPD may not represent the actual thermal comfort profile of the IW occupants,1815

it is still used for the training because of the unavailability of the thermal comfort data. In the

deployment, the overall thermal comfort quality is obtained based on the real-time feedback from

the IW occupants.

The control variable is the Mullion system supply water temperature setpoint, which is SP2 as

shown in Figure 8.3.1820

8.3 Deployment Procedure

An overview of the deployment procedure is illustrated in Figure 8.4, which includes four steps:

1. Building energy modeling: A EnergyPlus model is first created. As a building built over 20

years ago, IW does not have a design-stage BEM available for use.

2. Model calibration: The BEM built in the previous step is calibrated using the observed data1825

from the actual system operation. This is to ensure the BEM can accurately model the thermal

and energy behaviors of the IW system.

3. RL training via the proposed control framework: The calibrated BEM is used to train an RL

agent off-line to develop an energy-efficient control policy for the target system.

4. Deployment: The trained RL control policy is deployed in the building automation system to1830

generate control signals for the target HVAC system in real-time.

8.3.1 Building Energy Modeling

The IW building envelope, thermal zones and the heating system are modeled in EnergyPlus. How-

ever, the Mullion system cannot be directly modeled because of its uniqueness. As a workaround,“low
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Figure 8.4: Deployment Procedure of the IW Case Study

Figure 8.5: Mullion System Modeling in EnergyPlus

temperature radiant” object of EnergyPlus is selected to model this system. However, it should be1835

noted that the ”low temperature radiant” object is designed for modeling the radiant surfaces with

heavy thermal mass, such as concrete underfloor heating.

The Mullion system modeled in EnergyPlus is schematically shown in Figure 8.5. The top

and bottom surfaces of the external walls are modeled as the “low temperature radiant” objects of

EnergyPlus (named “Mullion radiant surface” in the later sections). Figure 8.6 shows the cross-1840

section of the Mullion radiant surface, where the internal source is an abstraction of the hot water

pipes in EnergyPlus simulation. The location of the Mullion radiant surfaces (in this case, the top

and the bottom of the external wall) will not affect simulation results because EnergyPlus (and most

other BEM simulation engines) assumes well-mixed air and 1-D heat conduction across envelopes.

As a workaround for the Mullion system modeling, the characteristics of the Mullion radiant1845

surface is significantly different from the actual Mullion system. The modeling parameters related

to the Mullion radiant surface (such as the radiant surface area and insulation R-value) cannot
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Figure 8.6: Cross-section of the Mullion Radiant Surface in the EnergyPlus Model

be determined directly. These parameters will be found in the calibration section to ensure the

simulated thermal behaviors match the actual observation.

8.3.2 Model Calibration1850

The EnergyPlus model is calibrated in this section to ensure the model can accurately predict the

thermal and energy behaviors of the actual system. More specifically, the calibration objective is to

minimize the gap between the simulated and observed Mullion heating demand and average indoor

air temperature.

Calibration Parameter Types and Calibration Methods The EnergyPlus model consists of1855

two types of parameters to be calibrated, including dynamic schedules and static properties:

• The dynamic schedules, such as occupancy schedules and plug-load schedules, are manually

calibrated based on the author’s observations on the occupancy pattern of IW. Since IW is a

small office/classroom building with only 15 regular occupants, manual calibration is sufficient

in this case.1860

• The static properties of the model, such as infiltration rate and wall insulation level, are

automatically calibrated using Bayesian calibration (i.e., a statistical method for computer

model calibration).

This section mainly presents the process of Bayesian calibration for the static properties.

Selection of the Static Calibration Parameters The EnergyPlus model consists of a large1865

number of static properties. Initially, 12 calibration parameters are manually selected based on
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Table 8.1: Selected Four Calibration Parameters for the IW EnergyPlus
Model

Parameter Range

Insulation (Polyisocyanates) thickness of
the Mullion radiant surfaces†

1 mm to 5 mm

Total area of the Mullion radiant surfaces†
6.7% to 26.7% of
the external wall

Internal mass area∗ 200 to 1000 m2/zone
Infiltration rate 0.01 to 0.30 ACH

Note:†The Mullion system is modeled as the “low temperature radiant”
surfaces in the EnergyPlus model. *Internal mass is modeled in the En-
ergyPlus model as 5 cm thick concrete.

the authors’ judgment on their effects on the modeling accuracy. They include: (1) insulation

thickness of the pitched roof, (2) insulation thickness of the flat roof, (3) insulation thickness of the

external wall, (4) infiltration rate, (5) U-value of the external window, (6) solar heat gain coefficient

(SHGC) of the external window, (7) heat conductivity of the innermost layer of the Mullion radiant1870

surface, (8) insulation thickness of the Mullion radiant surface, (9) total area of the Mullion radiant

surfaces, (10) air mixing rate across the zones, (11) electric equipment power density, (12) internal

mass area. Then, we further screen out 4 calibration parameters out of the 12 using sensitivity

analysis (Morris method Morris (1991)) and manual trial-and-error tests. The selected calibration

parameters are listed in Table 8.1 with their calibration ranges. The ranges are determined based1875

on experience. Note that the four selected calibration parameters are not entirely determined based

on the sensitivity analysis. With the sensitivity analysis results as a reference, a number of manual

experiments are also conducted.

Datasets for Bayesian Calibration The case study focuses on the control for heating seasons.

Hence, the calibration is conducted using the three-month observed data from Jan 1st, 2017 to Mar1880

31th, 2017. The calibrated model is then evaluated using the one-month observed data from Nov

1st, 2017 to Nov 30th, 2017. The time resolution of all the datasets is 5 minute. Table 8.2 shows

the items contained in the datasets.

Implementation of Bayesian Calibration The case study adopts the method proposed by

Chong and Menberg (2018) for Bayesian calibration. This section briefly describes the theoretical1885

basis of Bayesian calibration and the implementation details can be found in their original paper.
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Table 8.2: Items in the Datasets for Bayesian Calibration of the IW EnergyPlus Model

Item Type

Outdoor air temperature (◦C)

Inputs to the
EnergyPlus model

Outdoor air relative humidity (%)
Direct solar radiation (W/m2)
Diffuse solar radiation (W/m2)

Wind speed (m/s)
Wind direction (degree from North)

Mullion supply water temperature (T2) (◦C)
Mullion supply water mass flow rate (kg/s)

Average indoor air temperature (◦C) Calibration
objectivesMullion system heating demand (kW)

The statistical formulation of Bayesian calibration is

y(x) = ζ(x) + ϵ(x) = η(x, t∗) + δ(x) + ϵ(x), (8.2a)

s.t. δ(x) = 0, (8.2b)

where y, ζ, η are the observed/true/simulated building performance behavior (i.e., calibration objec-

tives such as HVAC energy consumption) respectively, x is the observable input parameter (i.e., the

parameters that can be observed but cannot be manipulated such as weather conditions), t is the

calibration parameter with the unknown true value t∗ (i.e., the manipulable BEM parameters such1890

as infiltration rate), δ is a discrepancy term to correct any model inadequacy, ϵ is the observation

error. Note that in Equation (8.2b), δ(x) is forced to be zero because we assume the BEM can

adequately model the target heating system.

If we assume the distribution of ϵ is Gaussian, we can write the posterior distribution of t given

y as follows based on Bayes’ theorem:

P (t|y) ∝ L
(
y|η(t)

)
× P (t) (8.3)

where P represents a probability distribution and L represents the likelihood function. Markov chain

Monte Carlo (MCMC) sampling is then used to numerically obtain the posterior distribution P (t|y)1895

in Equation (8.3). The modes of the distribution are regarded as the calibrated parameter values

that are fed back into the EnergyPlus model.

The computation time of Bayesian calibration increases exponentially with the size of the cali-
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bration dataset, i.e., the number of data entries of y(x) and η(x, t). To adapt Bayesian calibration

for sub-hourly resolution data, we adopt the method proposed in Chong et al. (2017) to down-sample1900

the original calibration dataset to a smaller one.

One limitation of Chong and Menberg (2018)’s method is that it is designed for single-objective

calibration. However, the EnergyPlus model needs to be calibrated for both heating demand and

indoor air temperature. Hence, a convex combination method (Zhang et al., 2018b) is proposed to

combine multiple building performance metrics into one. As a result, the y and η in Equation (8.2)

are obtained by the convex combination of two building performance metrics, i.e.,y = µ1y1 + µ2y2,

η = µ1η1 + µ2η2,

(8.4a)

s.t. µ1 + µ2 = 1, (8.4b)

µ1, µ2 ≥ 0, (8.4c)

where µ1 and µ2 are the convex combination weights, y1 and y2 are the observed average indoor air

temperature and observed Mullion system heating demand, and η1 and η2 are the simulated average

indoor air temperature and simulated Mullion system heating demand. Different combinations of

µ1 and µ2 are tested.1905

Calibration Results Table 8.3 shows the modeling errors on both calibration dataset and eval-

uation dataset. The evaluation dataset is an unseen dataset that is different in time period from

the calibration dataset. In the table, we use normalized mean bias error (NMBE) and coefficient

of variation of the root mean square error (CVRMSE) as the modeling error metrics. They are

recommended error metrics in ASHRAE Guideline 14 (ASHRAE, 2014). As a reference, ASHRAE1910

Guideline 14 recommends the hourly NMBE and CVRMSE of a whole building energy model should

be less than 10% and 30% respectively.

The table shows that, after calibration, the average indoor air temperature achieves less than

5% errors in both calibration and evaluation datasets. The hourly CVRMSE of the heating demand

is higher than 30% but the daily CVRMSE is still relatively small. Figure 8.7 shows the hourly1915

and 5-min comparison between the observed and simulated heating demand using the evaluation

dataset. It can be seen that, even though the calibrated EnergyPlus model can capture the overall

trend of the heating demand, it fails to do so for some extremes (e.g., the sudden jumps and falls
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Table 8.3: Modeling Errors after Bayesian Calibration of the IW EnergyPlus Model (IAT: indoor
air temperature)

Objective Metric Calibration Dataset
Calibration Evaluation

Average
IAT (C)

5-min NMBE
5-min CVRMSE

0.52%
4.82%

-1.01%
2.65%

Heating
Demand
(kWh)

Hourly NMBE
Hourly CVRMSE
Daily CVRMSE

0.43%
35.93%
10.46%

-1.66%
59.91%
12.95%

of the heating demand). As the time interval of the data increases, the simulated data can better

match the observations. The phenomenon can be probably explained by the following two reasons.1920

Firstly, the observed heating demand has over-estimated variability because it is calculated using

a steady-state specific heat equation without considering the system transient behaviors; secondly,

the current simulation engine of EnergyPlus cannot adequately model the Mullion system.

8.3.3 RL Training

As stated in section 8.2, the control objectives are to reduce the heating demand consumption and1925

maintain an acceptable indoor thermal comfort level. In the training, we use PPD as the metric for

indoor thermal comfort.

State Design The state follows the structure defined in Equation (2.19) and each ob consists of

the 15 items as shown in Table 8.4.

Note that all the observation items can be easily accessed through the building automation1930

system (BAS) of IW, except IW average PPD which will be replaced by the occupants’ real-time

thermal comfort feedback during the deployment.

Action Design The action space is the Mullion system supply water temperature setpoint (◦C).

The discrete action space includes the following actions:
{
turn-off heating, 20◦C, 25◦C, ..., 65◦C

}
.
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Figure 8.7: Hourly and 5-min Comparison between the Simulated (after Bayesian Calibration) and
Observed Heating Demand in the Evaluation Dataset
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Table 8.4: Observation Vector in the State for the RL Training of the IW Case Study

No. Item obmin obmax

1 Day of the week 0 6
2 Hour of the day 0 23
3 Outdoor air temperature (◦C) -13 26
4 Outdoor air relative humidity (%) 0 100
5 Wind speed (m/s) 0 11
6 Wind direction (degree from north) 0 360
7 Diffuse solar radiation (W/m2) 0 378
8 Direct solar radiation (W/m2) 0 1000
9 IW steam heat exchanger enable setpoint (◦C)∗ -30 30

10 IW average PPD 0 100
11 Mullion system supply water temperature setpoint (◦C) 20 65
12 IW average indoor air temperature (IAT, ◦C) 18 25
13 IAT setpoint (◦C) 18 25
14 IW occupancy mode flag⋄ 0 1
15 IW average heating demand since last observation (kW) 0 85

Note: *The outdoor air temperature setpoint below which the IW steam heat exchanger
will be enabled. ⋄The scheduled occupancy mode flag (the flag is 1 for the period 7:00
AM - 7:00 PM of weekdays and 8:00 AM - 6:00 PM of weekends).

Reward Design The reward function is defined in Equation (8.5), that is:

Rt = −


[
τ ∗

(
[PPDt − 0.1]+ ∗ ρ

)2
+ β ∗QMull,t

]1
0
|Occpt=1[

τ ∗ [SPthres,t − T1t]
+ ∗ λ+ β ∗QMull,t

]1
0
|Occpt=0,

(8.5)

where subscript t is a control time step, QMull is the average Mullion system heating demand since1935

the last control time step (kW), T1 is the average indoor air temperature, Occp is the occupancy

mode flag, and τ, β, ρ, λ, SPthres are tunable hyperparameters to control the relative weight between

the heating demand and indoor thermal comfort.

Hyperparameters The RL training hyperparameters are summarized in Table 8.5. Note that the

hyperparameters in the table are not sufficiently tuned. An RL agent is trained using the calibrated1940

IW EnergyPlus model with Pittsburgh TMY3 weather data, and one simulation episode lasts from

Jan 1st to Mar 31th.
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Table 8.5: RL Training Hyperparameters for the IW Case Study

Item Value Item Value

Neural network width⋄ 512 A3C local agent number 16
Neural network depth⋄ 4 Reward discount factor 0.99
Nonlinear activation⋄ ReLu Entropy weight (κ)* 1.0,0.1,0.01,0.001

Optimizer RMSProp κ decay steps* [2M, 4M, 6M]
RMSProp decay rate 0.9 Value loss weight 0.5
RMSProp momentum 0.0 RL total interaction times 10 millions
RMSProp epsilon 1e−10 Learning batch size 5
Learning rate 0.0001 State history window 3

Gradient clip method By the L2-norm τ in the reward 1.0
Gradient clip threshold 5.0 β in the reward 2.5
Simulation time step+ 5 min ρ in the reward 10
Control time step+ 15 min λ in the reward 5.0

Note: * The RL training uses an entropy term to encourage the exploration level of an RL agent.
κ is a staircase decayed constant to control the entropy, and the decay happens at the 2M, 4M
and 6M interaction time steps, e.g., from step 0 to 2M (non-inclusive), κ = 1.0, from step 2M to
4M, κ = 0.1, etc; ⋄The neural network is the shared fully connected feed-forward neural network
in Figure 2.3. +The control time step is sparser than the simulation time step because the slow-
response Mullion system needs long time to respond to a new control action.

Table 8.6: IW Case Study: Simulated Performance of the Selected RL Control
Policy

Total heating
Demand (kWh)

PPD
Mean(%)

PPD
Std(%)

Baseline Rule-based Control 43709 9.46 5.59
RL Control Policy 37131 11.71 3.76

Simulated Control Performance The trained RL control policy is then evaluated in an Ener-

gyPlus simulator with AMY2017 weather data. One simulation episode is Jan 1st-Mar 31th of 2017.

The results are shown in Table 8.6. In the simulator, the selected RL agent saves 15% heating de-1945

mand but the mean PPD is increased (with decreased standard deviation) compared to the baseline

control.

8.3.4 Deployment

The trained RL control policy is deployed in the IW system to control the Mullion supply water

temperature setpoint. The deployment experiment lasts for 78 days, from Feb 6th to Apr 24th of1950

2018. The deployment architecture is shown in Figure 8.8. The trained RL agent obtains sensory
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Figure 8.8: Deployment Architecture of the RL Control Policy in the Intelligent Workplace

information from the system’s BAS and a web-based database, and writes control actions back to the

system through BACnet protocol. In the deployment, the state design is the same as the training,

except the PPD is replaced by the real-time thermal comfort feedback from the IW occupants.

Details of the implementation setup and the thermal preference feedback system can be found in1955

Zhang and Lam (2018).
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8.4 Normalized Energy Efficiency Analysis

8.4.1 Method Description

The energy consumption of the Mullion system is influenced by multiple factors, such as control

strategy, outdoor air temperature, solar radiation, indoor air temperature, etc. Hence, to evaluate1960

the energy saving of the RL control policy compared to the old rule-based control, all energy-

influencing factors should be constant. This can be easily realized in computer simulations but is

difficult in real-world implementations.

This study proposes a data-driven approach to perform a normalized energy saving evaluation

of a new control strategy using real-world operation data. The approach is similar to the Weather1965

Normalized Energy analysis method in ENERGY STAR (ENERGY STAR, 2017; Kissock et al.,

1998), but it is extended to include multiple energy-influencing factors, non-linear input-output

relationships and stochasticity. The workflow of this approach is shown in Figure 8.9, which is

divided into two parts, model fitting and sampling:

• Model fitting: This part fits a Gaussian process (GP) (Rasmussen and Williams, 2006) model

using the historical data in the old rule-based control period. This GP model is treated as a

baseline daily heating demand model. The GP model’s form is:

GP (x) = N (µ, σ), (8.6)

where x is the independent variables, µ and σ are the mean and standard deviation of the1970

daily heating demand.

The GP model fitting follows a standard machine learning process, including cross-validation

for feature selection and model testing. If the testing accuracy (based on the mean of the

prediction of the GP model) passes a predefined threshold (i.e., R2 ≥ 0.9), the GP model can

be used for the sampling part.1975

• Sampling: This part uses the fitted GP model to create a sampling distribution of the baseline

total heating demand at the new control period. Each sample of the baseline total heating
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Figure 8.9: Workflow of the Normalized Energy Saving Performance Evaluation Approach
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demand (Ebasetotal) is generated using the following equation:

Ebasetotal,j =

m∑
i

(
Ebasedaily,i ∼ GP (xi)

)
,

j ∈ {1, 2, ..., n},

(8.7)

where Ebasedaily is the baseline daily heating demand at the new control period sampled from

the fitted GP model, i represents a day in the new control period of m days, j represents a

sample of the n baseline samples.

After sampling for n times using Equation (8.7), a set of n values (i.e., {Ebasetotal,1, Ebasetotal,2, ...,

Ebasetotal,n}) is obtained representing the sampling distribution of the baseline total heating1980

demand at the new control period. Thus, a distribution function can be approximated, and it

can be compared with the observed total heating demand at the new control period to create a

statistically solid energy saving conclusion.

8.4.2 Results

The above method is applied to the IW case study. The GP baseline model is built based on the data1985

of 357 days in the old rule-based control period. The baseline model has the inputs (x in Equation

(8.6)) including outdoor air temperature, global solar radiation, and indoor air temperature, which

are selected by a 10-fold cross validation process. The GP baseline model is used to generate 10000

samples of the daily heating demand over the RL control deployment period (Feb 6th-Apr 24th,

2019). Figure 8.10 shows 50 random examples of the 10000 samples. Each sample represent a1990

possible profile of the daily heating demand if the old rule-based control had still been used over the

RL control deployment period.

The total heating demand of the 10000 samples is calculated based on Equation (8.7), so a sam-

pling distribution is generated for the baseline total heating demand over the RL control deployment

period. The baseline samples of the total heating demand are shown in Figure 8.11. It can be seen1995

that the samples are generally shaped like a normal distribution but noises exist. Kernel Density

Estimation (KDE) is then applied with Gaussian kernel to generate an approximated probability

density function (PDF). The PDF represents the distribution of the baseline total heating demand.

To make the energy comparison statistically solid, we select the baseline heating demand at around

the 5th percentile of the PDF, which is 28940 kWh at the 4.99th percentile as shown in Figure 8.11.2000

This indicates that the baseline heating demand can be higher than this value with more than 95%
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Figure 8.10: Baseline Daily Heating Demand Samples generated from the GP Model (50 out of
10000 samples are shown)

Table 8.7: Comparison between the Observed Total Heating Demand of the RL Control Policy and
the GP Baseline Total Heating Demand at the 4.99th Percentile

DRL Observed GP Baseline Save

24103 kWh 28940 kWh 16.7%

probability. By comparing this value with the observed total heating demand, it is concluded that

the DRL control has achieved 16.7% heating demand reduction compared to the rule-based control,

as summarized in Table 8.7.

168



CHAPTER 8. DEPLOYMENT CASE STUDY 8.5. SUMMARY AND DISCUSSION

Figure 8.11: Baseline Total Heating Demand Samples and the Estimated Probability Density Func-
tion (PDF) Generated by Kernel Density Estimation (KDE) (The shaded area shows the lowest
4.99% of the distribution)

8.5 Summary and Discussion2005

This chapter presents a case study of implementing and deploying the proposed control framework

in an actual radiant heating system. The case study consists of four steps, including EnergyPlus

modeling, model calibration, RL training, and deployment. A normalized energy saving analysis

method is also proposed to fairly evaluate the energy saving potential of the RL control policy

using the 78-day real-life deployment data. It is found that, compared to the old rule-based control2010

strategy, the RL control policy has saved 16.7% heating demand.

EnergyPlus model calibration is an important step for the real-life deployment. An EnergyPlus

model must accurately predict the actual system’s thermal and energy behaviors. In this case study,

both dynamic schedules and static properties of the model are calibrated. After calibration, the

calibrated EnergyPlus model can accurately predict the 5-min average indoor air temperature with2015

less than 5% error, and can predict the daily heating demand with around 10% error.

The calibrated EnergyPlus model with TMY3 weather data is then used as a simulator to train

an RL agent offline. The simulated control performance shows that, compared to the rule-based

control, the RL control policy saves 15% heating demand with a similar level of thermal comfort.
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However, the hyperparameters, such as the neural network architecture, reward function design, the2020

length of the history in the state, etc., are not extensively tuned. More tuning experiments may

further improve the control performance.

The trained control policy is then deployed in the actual heating system through the building

automation system. The deployment experiment lasts from Feb 6th-Apr 24th of 2018. A baseline

heating demand distribution is generated by using a data-driven normalized energy saving analysis2025

method. By comparing with the generated baseline, the RL control policy has saved 16.7% heating

demand with more than 95% possibility.

An interesting finding is that, the calibrated EnergyPlus model has a relatively large modeling

error for the heating demand, but the control policy trained via this model still shows obvious energy

saving in the real-life deployment experiment. This means the trained control policy has some levels2030

of versatility to tolerate differences between the simulator and the reality. This result can be related

to the previous simulation experiments where the trained control policies have demonstrated the

tolerance for the variations of weather conditions and internal load schedules. It is necessary to

further investigate the versatility of an RL-trained control policy in future work.

The successful real-life implementation case study partially proves the practical feasibility and2035

effectiveness of the control framework. It also demonstrates a potential practical implementation

process, including BEM modeling, model calibration, RL training, and deployment. However, the

deployment period of the case study is still relatively short compared to the lifecycle of a build-

ing. A long-term deployment may require a method or framework to adapt to changing building

characteristics, which is not considered in this case study.2040
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Chapter 9

Usage Guidelines for the Control

Framework

This chapter presents the usage guidelines for the control framework based on the results of the

simulation experiments and the deployment case study.2045

9.1 For Offline Training

Avoid misuse Artificial intelligence is not magic. It is invented by humans, designed by humans,

and used by humans. Hence, any artificial intelligence technologies, including the one used in

this control framework, must be properly used with the understanding of their working principles.

Misuse of the control framework may lead to unexpected results, such as limited energy efficiency2050

improvements and violated operational constraints. Common misuse behaviors include:

• Improper design of the state, action and reward in the control framework;

• Improper selection of the hyperparameters, such as the neural network model and learning

rate.

The guidelines are only served as a basic starting point. Advanced users should further study the2055

detailed theoretical backgrounds of this control framework (see Chapter 2) to understand the working
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principles.

Non-guaranteed optimal control solution This control framework cannot guarantee that the

control solution is optimal, so it is cannot be called “optimal control”. Even though the derived

control policy may provide significant energy efficiency improvements, it may be just one of many2060

sub-optimal solutions. It is highly possible that, with other more advanced algorithms, an even

better control policy may be found.

Control performance is scenario-dependent This control framework cannot guarantee a good

control performance, i.e., HVAC energy efficiency improvement and operational constraints fulfill-

ment. The control performance can be dramatically different for different scenarios, including dif-2065

ferent types of HVAC systems, different climates and other unlisted different characteristics of an

HVAC system. In some scenarios, the control framework may deliver significant energy savings

while fulfilling operational constraints; but in some other scenarios, energy savings may be limited

and operational constraints may be violated. Hence, users must conduct simulation experiments (as

demonstrated in Chapters 4, 5, 6 and 7) to obtain the potential control performance of a scenario.2070

Application Scope of the Control Framework This control framework is designed to use a

whole building energy model (BEM) to develop HVAC supervisory control strategies. Thus, it is a

suitable choice when users have an existing BEM and hope to extend its usage. It is also suitable if

the target HVAC system has complicated configurations and dynamics, such as a multi-zone VAV

system or the Mullion radiant heating system shown in Chapter 8. Traditional optimal control2075

methods (such as MPC) are not practical for such cases because they usually require a low-order

model for the complicated high-order system dynamics.

The control framework is not suitable for simple HVAC systems, or the systems whose dynamics

can be well identified by low-order models. For such systems, model-based control methods (such

as MPC) is a better choice because they usually have optimality guarantee. In contrast, the control2080

framework cannot guarantee any optimal solutions.

Computational Cost of the Offline Training The computations are mainly for the following

two tasks:

• EnergyPlus simulations: One instance of EnergyPlus simulation can only be performed on
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one CPU. Its computation cannot be paralleled on multiple CPUs. However, this control2085

framework uses A3C, which will fire multiple instances of EnergyPlus simulation. Therefore,

multiple CPUs will still improve the overall computing speed of the offline training, but GPUs

will not help.

• Gradient descent optimization: This task can be highly paralleled, so GPUs will significantly

improve the computing speed of this task.2090

The actual computational time varies significantly on different experiment scenarios and different

computers. As a rough reference, it takes 4-6 hours for an RL agent to complete 2.5M interaction

steps (with 16 parallel local RL agent workers) on a high-end desktop computer without using any

GPUs (the computer has a 10-core Intel Xeon W-2155 CPU with 4.5GHz turbo frequency, 32GB

memory, 7200rpm SATA hard drive). Note that some scenarios may require larger interaction steps,2095

so the computational time will also be longer.

Design the reward function The reward function is crucial for reinforcement learning (RL). It

determines the learning objective of an RL agent and can significantly affect the learning convergence

performance. In designing the reward function,

1. Avoid prior knowledge if possible. Users should first design a reward function with the min-

imum prior knowledge included. Prior knowledge means the knowledge that an RL agent

possesses before it interacts with the environment (i.e., HVAC simulator). For example, “give

a high reward value if the agent turns off the heating when the room is not occupied” is a

reward function with strong prior knowledge. It contains specific instructions that come from

a user’s experience. This reward function may limit the exploration ability of an RL agent,

and hence lead to sub-optimal solutions. A minimum-prior-knowledge reward function should

be an objective description of the state, for example, “give a high reward value if the heat-

ing energy consumption is low and occupants (if any) feel comfortable”. More formally, the
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minimum-prior-knowledge reward function should be:

Rt = 1.0− [β ∗ Penergy + τ1 ∗ Pconstraint,1 + τ2 ∗ Pconstraint,2 + ...+ τn ∗ Pconstraint,n]
1
0 ,

where,

Penergy = Normalized energy metric at the control time step t,

Pconstraint,i = [ActualObservationt,i − Setpointt,i]
+
, (For positive setpoint error constraints)

Pconstraint,i = [Setpointt,i −ActualObservationt,i]
+
, (For negative setpoint error constraints)

Pconstraint,i = OtherFunctions, (For other non-setpoint constraints)

(9.1)

where β and τ are tunable hyperparameters that control the relative weight of different penal-2100

ties.

This reward function simply penalizes the state with high energy consumption and high set-

point notmet (and other non-setpoint constraint violations such as shortcycling). It does not

include any specific instructions but only a description of the state.

2. Balance among different control objectives. From the optimization point of view, the rein-2105

forcement learning algorithm solves a single objective optimization problem. However, most

HVAC control problems have multiple objectives, such as minimizing energy consumption and

fulfilling operational constraints. Hence, multiple objectives must be combined into a single

reward function, as shown in Equation (9.1) which combines the energy minimization goal with

other constraint-violation penalties. The relative weights of different optimization objectives2110

are controlled by β and τ . If β is large and τ is small, the final control solution may have low

energy consumption but large constraint violations, and vice versa.

The values of β and τ cannot be determined beforehand. This is because, firstly, the effects of

the two hyperparameters differ in different scenarios. Secondly, it depends on users’ preference

to select a pro-energy-saving or pro-constraint-fulfillment combination of the hyperparameters.2115

Users must conduct parametric experiments for the values of β and τ , and determine the most

appropriate selection based on the resulting control performance.

3. Avoid too complicated operational constraints. As discussed before, the control framework uses

a single reward function to combine multiple control objectives. This design may lead to an

over-complicated reward function that jeopardizes the reinforcement learning training process.2120

An example is shown in the experiments of Chapter 7 where the reward function of a chilled

water system includes three different operational constraints. The control performance of the
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experiments is poor because the RL agents fail to fulfill the three constraints simultaneously.

A practical solution is to have a rule-based “safety control logic” to accommodate action-based

operational constraints (e.g., shortcycling constraint), so the reward function can be simpler.2125

This safety control logic will block “unsafe” control actions that are selected by an RL agent.

For example, for the chilled water system of Chapter 7, a safety control logic can block the

shortcycling control actions, so the shortcycling constraint can be removed from the reward

function.

4. Add prior knowledge to the reward function if convergence is poor. In some scenarios, a2130

simple minimum-prior-knowledge reward function may lead to poor convergence performance.

For example, a reward function based on Equation (9.1) leads to a poor convergence for a slow-

response radiant heating system (Zhang et al., 2019). The cause of the problems is multifold

and theoretical solutions are still under study. Practically, adding prior knowledge to the

reward function could improve convergence performance. Intuitively. this is because the prior2135

knowledge reduces the exploration space of an RL agent. However, it should be noted that

the prior knowledge may also lead to suboptimal control solutions.

It is scenario-dependent about adding the right prior knowledge to the reward function. It

requires a deep understanding of the dynamics of an HVAC system. A good example is shown

in Chapter 6, where the heuristic functions are added to encourage low-setpoint control actions2140

and PMV increase during occupied hours. The heuristic functions are obtained based on a

thorough analysis of the system dynamics and trial-and-error experiments.

Design the state The state is a stack of current and historical observation vectors. Users need to

make two decisions: 1) the items in the observation vector; 2) the length of the history in the state.

1. For the items in the observation vector2145

As a general rule, the observation vector (ob) should include sufficient sensory information to

determine a control action to maximize the cumulative future reward value (R). Users can view

it as a feature selection problem for fitting a regression model f : ob → R. For example, weather

conditions must be included in ob because they affect HVAC energy consumption and hence affect

the reward value.2150

Usually, the observation vector should include the following items:

• Time information, such as day type (weekdays or weekends) and hour of a day. Most HVAC
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systems have time-related operational patterns, so time information has indirect effects on

the reward value. Users should decide the specific types of time information based on the

knowledge for the target HVAC system.2155

• Weather conditions, such as outdoor air temperature and solar radiation. Weather conditions

affect a building’s heating/cooling loads and HVAC equipment efficiency. Users should decide

the specific types of weather conditions based on the characteristics of the target HVAC system.

For example, wind direction may not affect the energy consumption of a primary chilled water

system, so it should not be included in the observation vector.2160

• HVAC energy metric, such as electric demand and heating/cooling demand. It is included in

the observation vector because it may affect the reward value directly.

• Sensory information related to operational constraints. It should be included because it may

directly affect the reward value. The specific items should be decided based on the design of

a reward function. For example, if a reward function includes an operational constraint for2165

indoor air temperature, the observation vector should include indoor air temperature and its

setpoint.

All the items in the observation vector must be normalized to the range 0-1. Min-max normal-

ization is recommended for this control framework.

2. For the length of the history in the state2170

The length of the history in the state can be determined using Algorithm 1. However, the

algorithm contains a hyperparameter dcorThres. dcorThres ranges from 0 to 1, and a larger

dcorThres means the state will include a longer history of the observation vectors. This thesis

simply uses 0.5 for dcorThres.

However, if computing power allows, the value of dcorThres should be tuned. Figure 9.1 shows2175

the results of a dcorThres tuning experiment. This experiment is based on the VAVCooling-

Pittsburgh-Lightweight scenario. The tested dcorThres values are 0.8, 0.7, 0.6, 0.5, 0.4 and 0,3,

which lead to the length of the history n = 1 (10 minutes), 9 (1.5 hours), 22 (3.7 hours), 35 (5.8

hours), 51 (8.5 hours), 73 (12.1 hours) respectively. The figure shows that the different lengths of

the history do not result in dramatically different control performance in the training, Perturbed32180

and Perturbed4 simulators. However, a longer history leads to better energy efficiency improve-

ments in the Perturbed1 and Perturbed2 simulators. This means that a long history can improve
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Figure 9.1: Control Performance for Different Values of dcorThres in the VAVCooling-Pittsburgh-
Lightweight Scenario with the ReLu64-2 Neural Network Model (Note: the results are from the
best-performing learning rate)

the resulting control policy’s versatility to tolerate the variations in indoor air temperature setpoint.

However, a longer history makes the state more complicated, which may jeopardize the convergence

of the training. Users should conduct a tuning experiment to determine the most suitable value for2185

dcorThres.

Select the action variable Currently, this control framework only supports a single control

variable with a discrete action space. Hence, one should select a control variable that has a signifi-

cant effect on the operation of an HVAC system, such as air-handling-unit supply air temperature

setpoint. The control variable can be determined via analyzing the system operation principles,2190

literature review or simulation experiments.

Select the neural network model A more complex neural network model does not necessarily

lead to better control performance (e.g., more energy savings). This is because complex neural

network models are more difficult to optimize through gradient descent. However, an over-simplified

neural network model (e.g., a linear model) may also lead to poor control performance.2195

If computing power is sufficient, users should tune from a linear model to a narrow and shallow

nonlinear model and finally to a wide and narrow nonlinear model. It is usually not necessary to

use deep neural network models.
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If there is a lack of computing power, ReLu 64-2 can be a default choice.

Select the learning rate The convergence of reinforcement learning is sensitive to its learning2200

rate. Unfortunately, no default learning rate works for all scenarios. Users should tune from a small

learning rate (e.g., 5e-6) to larger learning rates until a good convergence is achieved.

Select the control and simulation time step The time step size should neither be too small

or too large. A small time step gives an RL agent the flexibility to respond to changes, but it may

harm the training convergence if the target HVAC system has a slow response. Also, a small time2205

step increases the computational time of EnergyPlus simulations. A large time step benefits the

training convergence and saves the computational time of EnergyPlus simulations, but an RL agent

loses the control flexibility.

It is recommended to use 10 minutes for both control and simulation time step. For some slow-

response HVAC systems, the control time step size can be longer than the simulation time step size2210

by using action-repeat (i.e., repeat the same control action for multiple simulation time steps).

Assess the convergence of the RL training The convergence of the training is reflected in

the cumulative reward that an agent receives in one simulation episode of the training simulator

(RtrainCumulative). Users should plot the training evaluation history which shows RtrainCumulative at

different RL interaction steps. The training evaluation history can be obtained by setting checkpoints2215

during the training (e.g., every 50K interaction steps), which pause the training and use the current

trained control policy to control the training simulator to record RtrainCumulative. If the general

trend of RtrainCumulative is increasing and then stable, this means the training converges.

Figure 9.2 shows an example of the training evaluation history of different RL agents with

different neural network models. It can be seen that some curves are fluctuating without increasing2220

(e.g., the curve for ReLu 256-8), and some are increasing with settlements at high levels (e.g., the

curve for ReLu 256-2). This figure clearly shows which agents converge and which do not.

Terminate the training and select an appropriate control policy Different problems (i.e.,

different HVAC systems, different climates, different reward functions, etc.) have different training

behaviors. Hence, it cannot be determined beforehand that whether or not an RL agent could2225

converge and how many interaction steps are needed for the convergence. Besides, since multiple

178



CHAPTER 9. USAGE GUIDELINES 9.1. FOR OFFLINE TRAINING

Figure 9.2: Example of the Training Evaluation History
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Figure 9.3: A Procedure to Terminate the Training and Select a Control Policy (assuming the
checkpoints are at every 50K interaction steps)

control objectives are formulated into a single reward function, a control policy with the maximum

cumulative reward may not achieve a balanced control performance. For example, it may have low

energy consumption but excessive setpoint notmet time.

Figure 9.3 shows a procedure to terminate the training and select an appropriate control policy.2230

In this procedure, checkpoints are set at every 50K interaction steps. The checkpoints pause the

training and use the current control policy to control the training simulator for one episode. Then,

users should plot the training evaluation history to assess the convergence. If the training converges,

the training control performance will be compared with its baseline. If users are satisfied with the

control performance, then the training will be terminated and the control policy is selected. If the2235

training does not converge or the control performance is not satisfactory, the training continues till

it reaches the maximum interaction step.

Tune the hyperparameters It cannot be guaranteed that the reinforcement learning converges

for all control problems. In addition, a reinforcement learning agent may converge to a locally optimal

solution that fails to achieve expected control performance. Hyperparameter tuning is necessary for2240
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these cases.

Theoretically, all hyperparameters could affect results. One should start with the choices of the

hyperparameters listed in this thesis (Tables 4.5, 6.4 and 7.6). If the reinforcement learning still

does not converge or the control performance is poor, the following hyperparameters can be tuned:

• Reward function. Redesign the reward function to provide an RL agent with a clear reward-2245

ing/penalizing signal.

• Gradient-clip threshold. This value limits the magnitude of the gradients during the gradient

descent optimization of reinforcement learning. Reducing this value may lead to a more stable

convergence (but an RL agent may have less chances to jump out of local optimal regions).

• Learning batch size. This is the n of Equation (2.13). Increasing this value leads to a more2250

accurate estimation for the “true” state-values (see section 2.3.3), but it also increases the

computation time.

• Optimizer. Different optimizers, such as Adam, RMSProp, AdaMax, etc., have different char-

acteristics. Users should refer to the manual of an optimizer to select a suitable one.
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Figure 9.4: Deploy a Trained RL Agent to Substitute an Original Rule-Based Control (RBC)

9.2 For Control Policy Deployment2255

Calibrate the training simulator This control framework assumes that an “accurate” simula-

tor is accessible for the reinforcement learning training. “Accurate” means the training simulator

accurately represents an actual building’s behaviors, including operation schedules, energy consump-

tion, thermal response, etc. Hence, the training simulator must be calibrated using actual building

operation data.2260

Deploy the trained RL agent as a static function After the RL training is finished, the

trained RL agent becomes a static function, i.e., f : St → At. This means that, at each control time

step, the trained RL agent uses the current state to calculate the current control action. Hence, the

deployment of the RL agent has no difference from a rule-based control logic. As shown in Figure

9.4, the trained RL agent substitutes the original rule-based control logic to provide values for the2265

target setpoint.

Access the sensory data for the observation vector from HVAC systems During the

design of the state, users should ensure all the items in the observation vector are accessible in the

target HVAC system. Also, users should note resolution differences between actual sensory data

and the corresponding data in the training simulator. For example, some indoor air temperature2270

sensors give only integer values (the resolution is 1 ◦C) but EnergyPlus uses 32-bit floating-point

for all continuous values. The effect of the data resolution difference is not studied by this control

framework.
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Check the validity of the sensory data for the observation vector A trained RL agent

can only run with valid state inputs. It cannot check the validity of its inputs. Thus, invalid state2275

inputs may cause the trained RL agent to crash or give invalid control actions.

During the deployment, users should also deploy a computational program to automatically check

the validity of the input to an RL agent. Some invalid conditions include:

• Data is out of its normal range, such as a negative value for solar radiation.

• Data is not a number.2280

• Other invalid conditions, such as suspiciously low indoor air temperature.

If any invalidity occurs, the trained RL agent should be terminated, and original rule-based control

logic should be turned on.

It is also recommended to deploy a safety logic to block any invalid control actions given by a

trained RL agent.2285
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10.1 Summary of Findings

Whole building energy model (BEM) is a physics-based modeling method to predict a building’s

thermal and energy performance. It has been widely used by building designers for design decision2290

support, but has seldom been used for HVAC control. This study presents a reinforcement learning

(RL) method to use a whole building energy model to develop HVAC supervisory-level control

strategies. The derived control strategies can potentially improve the energy efficiency of HVAC

systems compared to widely-used rule-based control.

The reinforcement learning method is first evaluated through computer simulations. The simu-2295

lation experiments include four common HVAC systems, including a multi-zone variable-air-volume

(VAV) system for cooling (VAVCooling), a multi-zone VAV system for heating (VAVHeating), a slow

response radiant heating system (RadiantHeating) and a multi-chiller chilled water system (Chilled-

Water). These systems have complex configurations and operational constraints, so their dynamics

is highly complicated. For each system, multiple simulation experiment scenarios are created with2300

different climate zones and different building thermal mass levels. The control performance of an

RL control policy, including its energy saving compared to rule-based control and operational con-

straints fulfillment, is first evaluated using the training simulator. The control performance is then

evaluated using different perturbed simulators for versatility evaluation. Each perturbed simulator

is different from the training simulator in weather conditions, occupancy/plug-load schedules and2305

indoor air temperature setpoint schedules. It is found that:

• The control framework can successfully use BEMs to generate control policies to achieve obvi-

ous energy savings (10% to over 30%) and less-than-baseline operational constraint violations

in VAVCooling, VAVHeating, and RadiantHeating for all the climate zones and building ther-

mal mass levels. The results support the first hypothesis of the thesis, which states that the2310

control framework can use a BEM to develop a control strategy to improve HVAC energy

efficiency.

• ChilledWater is an outlier since the control policies from the control framework have caused a

significant amount of operational constraint violations, including the shortcycling and too-low

partial load ratio of the chillers. Nevertheless, the control policies have achieved lower-than-2315

baseline supply water temperature setpoint notmet time and a small amount of energy savings

(less than 5%).
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• The trained control policies from the control framework can still provide significant energy

efficiency improvements after the variations in weather conditions (i.e., from typical weather

data to actual meteorological year weather data) and occupancy/plug-load schedules (i.e., from2320

deterministic schedules to stochastic schedules). This demonstrates a certain level of versatility

of the trained control policies.

• For the VAV systems, the trained control policies cannot tolerate the variations in indoor

air temperature setpoint. This indicates that an accurate profile of indoor air temperature

setpoint must be obtained when creating a training simulator.2325

• System types have the most significant effects on the amount of energy savings. For the same

HVAC system type, the control framework is robust for the different climates and different

building thermal mass levels.

The reward function design is found to be crucial for the convergence and the control performance

of the proposed control framework. A reinforcement learning agent should receive a clear signal to2330

reward or penalize a state/action pair. A reward function with the minimum prior knowledge is

designed for the VAV systems, where the reward value is only proportional to the system energy

consumption and the level of operational constraint fulfillment at current time steps. This design

leads to effective RL training that delivers significant energy efficiency improvements. However,

for the radiant heating system with a delayed response and an ambiguous energy metric, specially-2335

designed heuristics is necessary to help an RL agent to learn. With the simple heuristics shown

in the thesis, the trained RL control policies have also achieved significant improvements for the

energy efficiency of the radiant heating system. A limitation of the control framework is that, the

reward function simply combines multiple control objectives (e.g., energy saving) and constraints

(e.g., thermal comfort, a chiller’s cycling time) into a single value output. This may make the2340

reward function over-complicated for some cases, and hence leads to poor control performance. This

is shown in the experiments of ChilledWater, where the reward function simply combines three

stringent operational constraints into a single output. The trained control policies have led to a

significant amount of operational constraint violations and a limited amount of energy savings.

The simulation experiments also study the effects of the neural network model complexity on2345

the control performance. It is found that, there is no obvious relationship between a neural network

model and the control performance. In some experiment scenarios like VAVCooling and RadiantHe-

ating, the different neural network models, from a simple linear model to a “deep and wide” nonlinear

model, have achieved similar control performance; in some experiment scenarios like VAVHeating
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and ChilledWater, the different neural network models have different control performance, but there2350

is not a unified relationship between the neural network model complexity and the control perfor-

mance. This means that, the deep and wide neural network models do not show any consistent

advantages in the control performance compared to the simple neural network models, so the sec-

ond hypothesis of the thesis is not supported. In general, the experiment results also show that the

complex neural network models are more difficult to converge than the simple neural network mod-2355

els. However, the simplest is not always the best. The linear model shows poor control performance

in VAVHeating, which is attributed to its insufficient representational capacity. The results indicate

that, the neural network model architecture is an important hyperparameter that needs to be tuned

for different experiment scenarios.

The control framework is also implemented and deployed for an actual radiant heating system2360

in real-life. The radiant heating system has a unique design and serves a 600 m2 office building

located in Pittsburgh, PA, USA. A four-step deployment procedure is presented, including building

energy modeling, model calibration, offline RL training, and deployment. As shown in the simulation

experiments, model calibration is an important step to ensure a training simulator can accurately

predict an actual system’s thermal and energy behaviors. In this case study, the calibrated BEM2365

can accurately predict the 5-min indoor air temperature with less 5% error, and predict the daily

heating demand with around 10% error. Then, the control framework is used to train an RL control

policy. The trained control policy was deployed in the actual system for 78 days in 2018 spring.

A data-driven normalized energy saving analysis shows that, the control policy has saved 16.7%

heating demand compared to the original rule-based control. This case study partially demon-2370

strates the practical feasibility and effectiveness of the control framework, and presents a practical

implementation and evaluation procedure.

Based on the simulation and implementation results, the usage guidelines are provided. The

guidelines are separated into two parts, including the part for the offline training to develop control

policies, and the part for the deployment of the control policies. The usage guidelines are served2375

as a starting point for general users to properly use this control framework. Advanced users should

further understand the principles of reinforcement learning and HVAC system dynamics to make

better use of this framework.

It is worth mentioning that the thesis has no intentions to compare the proposed control frame-

work with the more commonly used control method MPC. This is because the two methods have2380

different application scopes. The control framework is designed to use BEMs for HVAC energy-
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efficient control. BEM is a complicated high-order simulation program, so MPC cannot be directly

applied for it. The control framework uses BEM-assisted reinforcement learning to generate a con-

trol policy that is more energy-efficient than a rule-based control strategy. However, the control

policy may not be the optimal one. In contrast, MPC is an optimal control method with optimality2385

guarantee. However, it is designed for the systems whose dynamics can be identified by low-order

models. Thus, the two methods are suitable for different control problems.
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10.2 Limitations

Since RL for HVAC control, especially the BEM-assisted method, is still a developing topic, this

thesis is served as an exploring study on this topic. Therefore, the experiments cover a wide range2390

of different scenarios but lack sufficient in-depth studies on some specific problems. The major

limitations of the study are summarized below:

• The hyperparameters of reinforcement learning, such as the neural network architecture, learn-

ing rate, the length of the history in the state, etc., have not been adequately tuned. Thus, the

control performance results shown in the thesis may not be the best ones. Some poor control2395

performance results may be significantly improved by extensive hyperparameter tuning.

• Only “one-shot” experiment has been conducted for each experiment scenario, so the statis-

tical significance of the results cannot be determined. Thus, the results obtained from the

experiments may not be generalized to the conditions beyond the experiment settings.

• The thesis contains only empirical results with limited theoretical investigations. This is partly2400

because the experiment environments are over-complicated so the number of influencing factors

is very high. The complicated experiment environments are designed according to the general

objective of the thesis, which is to develop a control method for complicated HVAC systems.

• The thesis does not compare different RL algorithms. Since RL is still under development,

there are new algorithms published every month. Some algorithms may be more suitable2405

and efficient for HVAC control than others. For example, the RL algorithm in this thesis,

A3C, is not sample-efficient and it needs multiple paralleled “local RL workers” to collect a

large number of samples for learning. Recent research has developed more sample-efficient RL

algorithms, such as Hester and Stone (2013) who uses a random forest model to approximate

system dynamics, Schulman et al. (2015) who uses importance sampling to guide the gradient2410

descent update, and Buckman et al. (2018) who combines model-based and model-free RL

approaches to increase the RL sample efficiency.

• The control framework is trying to fit multi-objective optimization problems (e.g., minimize

energy consumption and operational constraint violations) into a single objective optimization

method, i.e., all control objectives are formulated in a single reward function through “weighted2415

sum”. This design may make the reward function design over-complicated, which harms the

convergence of RL. Besides, additional hyperparameter tuning is necessary to balance different
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control objectives in the reward function. There are multiple “native” multi-objective reinforce-

ment learning approaches in the literature, such as W-learning approach, ranking approach,

geometric approach, etc. (Liu et al., 2015). They are worth studying in the future.2420

• The control method assumes a single reinforcement learning agent, so the control action space

contains only one control variable. This limits its application for the control of multiple

setpoints, such as controlling multiple zone air temperature setpoints or coordinating the

operation of multiple systems. Further energy efficiency improvements are expected if an

RL-trained control policy could handle multiple control variables simultaneously.2425
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10.3 Future Work

As an exploring study on the topic of BEM-assisted RL for HVAC control, this thesis opens some

questions that need to be answered in the future.

Firstly, the control framework still requires extensive hyperparameter tuning for a new scenario.

Hyperparameter tuning is computationally expensive, which may potentially limit the practical fea-2430

sibility of the control framework. Larger-Scale simulation experiments are hence necessary to derive

a guideline for the selection of key hyperparameters. The future experiments should also include

Monte Carlo analysis to provide statistical confidence for the results. In addition, an automatic

hyperparameter tuning software tool should be developed to minimize manual work.

The future work of this thesis should also include a thorough study on the versatility of a trained2435

RL control policy. The versatility study should consider the effects of different types of variations in

HVAC dynamic operational conditions, such as low and high occupancy density patterns, extreme

and mild weather conditions, etc. In addition, the versatility study should consider potential mod-

eling errors in HVAC static properties, such as equipment efficiencies, building thermal properties,

etc. This work could help to create a practical guidelines for building energy modeling, including2440

the modeling assumptions and the model calibration error thresholds. Besides, methods to improve

the versatility of an RL control policy should be explored.

It is also necessary to study the adaptability of an RL control policy to continuously changing

building characteristics. Buildings are dynamic objects. A building’s thermal and energy behaviors

may change as time goes by. For example, the usage pattern of a building can be significantly changed2445

after a new tenant moves in. A control policy generated by the control framework is not adaptive

since it is used as a static function. Future work should develop a method to allow a pre-trained RL

control policy to adapt to changing building characteristics in a fast and safe manner.

The thesis has not conducted any theoretical investigations on the results. In the future, theoret-

ical studies should be conducted based on simpler experiment environments, such as a single room2450

with a heater or cooler. Questions such as “how versatile is a trained control policy” or “how to

interpret a trained control policy” can be more definitely answered. The results from the theoretical

studies can help the design of the control framework for more complicated systems.
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