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ABSTRACT 
 

This study extended cross-language semantic decoding (based on a concept’s fMRI signature) to 
the decoding of sentences across three different languages (English, Portuguese and Mandarin). A 
classifier was trained on either the mapping between words and activation patterns in one 
language or the mappings in two languages (using an equivalent amount of training data), and then 
tested on its ability to decode the semantic content of a third language. The model trained on two 
languages was reliably more accurate than a classifier trained on one language for all three pairs 
of languages. This two-language advantage was selective to abstract concept domains such as 
social interactions and mental activity. Representational Similarity Analyses (RSA) of the inter-
sentence neural similarities resulted in similar clustering of sentences in all the three languages, 
indicating a shared neural concept space among languages. These findings identify semantic 
domains that are common across these three languages versus those that are more language or 
culture-specific.. 
 

 

1.  Introduction  
 
Does the particular language we speak influence the way 

we represent concepts in our brains? This question has 
fascinated linguists, cognitive psychologists, neuroscientists and 
laymen for decades (Lucy 1997). Some researchers have argued 
that concept representation and cognitive processes are largely 
uninfluenced by language (e.g. Strømnes, 1974; Wierzbicka, 
1992), while others have proposed that concept development is 
shaped by each language (e.g. Berman and Slobin, 2013; 
Johansson and Salminen, 1996). With the advent of cross-
language/cross-cultural functional neuroimaging studies, the 
majority of concept domains have been shown to be represented 
in similar brain regions across languages and cultures (Enfield, 
2015; Han & Northoff, 2008), although the neural encoding of a 
few perceptual and social domains (e.g. time representation, 
Boroditsky, 2001; historical and autobiographical events, Wang 
& Conway, 2004) may be influenced by language or culture 
(Boroditsky 2001; Levinson et al. 2002; Ozgen and Davies 2002; 
Cook et al. 2006; Athanasopoulos and Kasai 2008).  

A recent eye-tracking study found that speakers of three 
orthographically distinct languages (Chinese, English and 
Finnish) manifested a great amount of reading behavior 
similarities (Liversedge et al. 2016), consistent with a 
commonality in concept representation in text reading despite 
graphemic and linguistic variation across languages.  

The commonality has also been supported by several fMRI 
cross-language decoding studies: between Portuguese and 
English (Buchweitz et al., 2012; Yang et al., 2016), Dutch and 
English (Correia et al. 2014), and Mandarin and English (Zinszer 
et al. 2012). These studies demonstrated that similar concepts 
(referred to by translation equivalent words) induce similar 
neural activation patterns in speakers of different languages. 
Therefore, a machine learning algorithm can be trained to 
associate concepts with the neural activation patterns evoked by 
words or sentences in one language (the training language), and 
it can then recognize the neural activation pattern of the 
translation equivalent words in another language (the test 
language).  

Previous demonstrations of commonality across different 
languages compared reading behaviors across three different 
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languages, and cross-language neural decoding between a pair 
of languages. A missing link in developing a comprehensive 
theory of meta-language concept representation lies in cross-
language neural decoding studies in three different languages. 
Investigating neural decoding across three languages is not a 
mere quantitative increase; it enables a scientific advance. Any 
pair of languages will have some degree of commonality, 
demonstrated when a classifier trained on the mapping between 
concepts and neural representations in one language can decode 
the concepts from their neural representations in another 
language. By contrast, training a classifier on two languages 
permits a test for the presence of language-specific mappings 
between concepts and neural representations. If such language-
specific mappings exist, then there should be an advantage in 
training a classifier on two languages. A classifier trained on data 
from two languages has more opportunities to develop a 
mapping for items in the test language that are not universal but 
do occur in some other languages. The greater the number of 
training languages, the more likely that such non-universal items 
will occur in the classifier’s training. 

This study thus investigates whether a classifier trained on 
data from two languages will more accurately decode a third 
language than a classifier trained on an equivalent amount of 
data from only one language. If such a two-language advantage 
should emerge, it should further be possible to determine which 
semantic domains benefit most from the two-language training. 

Furthermore, we asked these questions as they pertain to 
the neural representations of concepts as they occur in 
sentences rather than concepts in isolation. Sentences convey 
multi-concept complex messages that can describe an event or a 
status. These messages convey semantic information that 
transcends single word-level concepts. This study asked such 
questions of sentences in three languages, English, Portuguese 
and Mandarin, as they were read by native speakers of each 
language. 

The commonalities in neural representations across 
different participants have been investigated in several previous 
multivariate pattern analyses (MVPA) of fMRI studies, such as 
comparing L1 and L2 representations in late bilinguals (Hsu, 
Jacobs, & Conrad, 2015); cross-language decoding at the single 
word level (Correia, et al. ,2014; Zinszer, Anderson, Kang, 
Wheatly, & Raizada, 2015), and sentence thematic information 
encoding in English (Frankland & Greene, 2014). This approach 
enables a comparison across people and languages of a brain 
activation pattern consisting of the activation levels of a set of 
voxels that are topographically distributed across multiple brain 
regions. 

In the current study, a classifier was trained on the 
mapping between sentences and their activation patterns in one 
set of data, and then tested on an independent set of data. Three 
situations were compared: a classifier was trained on the 
mapping in two languages and then it was tested on a third 
language; a classifier was trained on the mapping in one 
language and then it was tested on another language; a classifier 
was trained on the mapping in one language and then it was 
tested on the same language. The amount of training data was 
equated in the three cases. These three situations and the 
languages involved are shown in Table 1.  

1.1  Hypotheses 
 
Four hypotheses were tested. First, classifiers trained on 

two languages (e.g. English and Portuguese) should generalize 
better to (classify sentences more accurately in) a third language 

(e.g. Mandarin) than classifiers trained on either one of the two 
training languages alone (e.g. English) when the amount of 
training data is equated. Furthermore, the classification 
accuracy resulting from training a classifier on two other 
languages should be more similar to the within-language 
accuracy than the accuracy resulting from training a classifier on 
only one other language. 

Second, we hypothesize that any such two-language 
advantage (i.e. the accuracy boost from training on two 
languages compared to training on one language) will be greater 
for concept domains that are more language- or culture-specific 
than concept domains that are language- or culture-general, 
because the latter won’t derive additional benefit from a 
mapping in a second training language. For example, words 
naming social interactions such as marriage may be more 
culture-specific than words naming physical objects such as 
apple; so the decoding of a concept like marriage may show more 
of a two-language advantage than the decoding of a concept like 
apple. Third, the meta-language neural commonality should not 
be affected by the distances between the superficial structures 
of the languages. For instance, the meta-language concept 
representations may not be more different between English and 
Mandarin than between English and Portuguese despite only the 
latter two being Indo-European. Fourth, the within-language 
inter-sentence neural similarity pattern, as computed by 
representational similarity analysis (RSA), should show 
commonalities across all three languages, indicating that the 
semantic space and semantic relationships among sentences is 
similar across languages.  

 
2.  Materials and Methods  

2.1  Participants 

 
Three groups of participants were recruited for this study: 

7 right-handed English monolingual speakers (5 females, mean 
age=25.0 years (sd=5.1)); 7 right-handed native Portuguese 
speakers (4 Portuguese monolinguals and 3 Portuguese-English 
bilingual speakers, 3 females, mean age=25.1 years (sd=3.8)); 
and 7 right-handed native Mandarin speakers (all Mandarin-
English bilinguals, 5 females, mean age=23.9 years (sd=2.6)). A 
previous study (Yang et al., 2017) showed that the neural 
representations of bilinguals and monolinguals reading 
sentences in their native language have comparable decoding 
accuracies. All participants signed informed consent approved 
by the Carnegie Mellon University Institutional Review Board 
(IRB protocol HS14-474). They reported normal or corrected-to-
normal vision and no history of traumatic head injuries. All the 
participants read the stimulus sentences in their native 
languages.  

2.2  Stimulus materials  

 
Sixty English sentences, part of a larger set from a study 

with English monolingual speakers (Glasgow, Roos, Haufler, 
Chevillet, & Wolmetz, 2016; Wang et al., 2017) were translated 
into Portuguese and Mandarin (e.g. The mayor negotiated with 

the mob/O prefeito negociou com a multidão/市长和暴徒谈判) 

by native speakers. These sentence stimuli obey the SVO 
(subject-verb-object) order and have a mean length of 3.2 
content words. The original English sentences were constructed 
systematically to establish a stimulus set for evaluating models 
of neural decoding of sentences (Glasgow, Roos, Haufler, 
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Table 1.  Language combinations in Two-to-One Mappings, One-to-One Mappings, and Within-Language Mappings. 

 
 

Training Language Test Language 

Two-to-One Mappings 

English & Portuguese  Mandarin 

English & Mandarin  Portuguese  

Portuguese & Mandarin English  

One-to-One Mappings 

English  Portuguese  

Portuguese  English  

English  Mandarin 

Mandarin  English  

Portuguese  Mandarin 

Mandarin Portuguese 

Within-Language Mappings 

English  English  

Portuguese  Portuguese  

Mandarin Mandarin 
 
 
Chevillet, & Wolmetz, 2016). A complete set of the translation 
equivalents of the 60 sentences appears in Table S.1 of the 
Supplemental Materials.  

An independent group of Portuguese-English and 
Mandarin-English bilinguals (none of whom were participants in 
the fMRI testing) agreed on the translation equivalencies of the 
sentences in the two languages. To further confirm the 
translation equivalence of the sentences, the Portuguese and 
Mandarin sentences were translated back to English by an 
independent group of bilinguals, and the resulting English 
sentences were judged for their semantic equivalency to the 
original English sentences by an English monolingual speaker. 
This process was repeated until the back-translated English 
sentences were all judged to be semantically equivalent to the 
original English sentences. 

2.3  Experimental Paradigm 
 

The participants read the 60 sentences in their native 
language while fMRI scans were acquired. The sentences were 
presented in a white font against a black background. Each 
sentence was divided into phrases at natural phrase boundary 
in the respective language (e.g. The family, was, happy/ A família, 

estava, feliz/这家人,挺,快乐). Each phrase was presented one at 

a time, left justified, in a moving window format, with a speed 
that is comparable to the natural reading speed of native 
speakers in the respective language (Just and Carpenter 1980, 
1987). The adjectives in noun phrases remained on the screen 
together with the nouns they modified, until the nouns 
disappeared. Participants were instructed to read each phrase 
silently and think about the meaning, and integrate it to the 
conception of the whole sentence as it unfolded. At the end of the 
sentence, a blank interval padded out the total presentation 
duration to 5 sec. A schematic depiction of the presentation of 
one sentence in each of the three languages is shown in Figure 1.  

During the blank interval at the end of each sentence, 
participants were instructed to continue thinking about the 
sentence, integrating the meaning of all the words. After each 

blank interval, an X appeared at the center of the screen for 7 s 
during which participants were instructed to fixate and clear 
their minds. Each one hour fMRI session included four 
presentation blocks of the 60 sentences presented in different 
random orders. There were also 16 occurrences of 17-second 
fixation periods, distributed across the entire session, to provide 
a baseline measure of activation. 

2.4  fMRI acquisition and processing  

Functional images were acquired on a Siemens Verio 3.0T 
scanner at the Scientific Imaging & Brain Research Center (SIBR) 
of Carnegie Mellon University (gradient echo EPI pulse 
sequence; TR = 1000 ms, TE = 30 ms, and a 60º flip angle). 
Twenty 5-mm thick AC-PC aligned slices were imaged (1-mm 
gap between slices). The acquisition matrix was 64 x 64 with 
3.125 x 3.125 x 5-mm voxels.  

The data were corrected for head motion and normalized 
to the Montreal Neurological Institute (MNI) template using 
SPM8 (http://www.fil.ion.ucl.ac.uk/spm/). For each 
presentation of a sentence, the percent signal change (PSC) was 
computed at each voxel, relative to the mean baseline activation 
level of the voxel measured during fixation periods. The MPSC 
(mean PSC) for each voxel for each sentence in each presentation 
was computed as the mean of five PSC images, collected from 7 
seconds to 11 seconds post sentence onset (TR=1 sec). This 
temporal window was found to be the most decodable window 
as determined by a previous study (Wang et al. 2017). The MPSC 
images were then normalized to a mean of 0 and variance of 1 
across voxels for each sentence. Because each sentence in each 
language was presented 4 times, four MPSC images of each 
sentence of each language were obtained.  
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Fig. 1. The presentation paradigm of one sample sentence in Portuguese, English and Mandarin. The presentation duration of 
each phrase was determined by a regression model based on previous eye movement studies of text reading. The duration 
was specified as 300 ms × number of words+ 16 ms× number of letters in each content word for Portuguese and English, and 
300 ms× number of words + 8 ms ×number of strokes in each content character for Mandarin 

 
 
2.5  Defining activation regions common across languages  

 
First, within each language, the voxels that had the most 

reliable tuning curves across the 60 sentences were identified by 
computing stability scores for each voxel in each participant. 
Occipital lobe voxels were excluded from the analysis to 
decrease the possible effects of low-level visual features of the 
printed sentences. The stability score of a voxel was defined as 
the average of the six pairwise correlations of the voxel’s 60 
MPSC activation levels (for the 60 sentences) between the six 
possible pairings of two of the four presentations. Then the 
distributions of stability scores across different languages and 
participants were examined to select a threshold such that 
roughly similar numbers of voxels in the 250 range were above 
this threshold in all three languages. Then, voxels that had 
stability scores higher than this threshold (0.08 on a normalized 
MPSC image) were identified in each participant. Finally, the 
stable voxels that were common (in MNI space) across 
individual participants of each language group were identified, 
resulting in 246 voxel locations in the Portuguese dataset, 260 in 
the English and 268 in the Mandarin.  These shared stable voxels 
were clustered by the SPM function spm_clusters, to obtain 
language-specific clusters, as shown in Figure 2A. A set of 
language-general clusters was formed by combining the three 
language-specific clusters, as shown in Figure 2B. (The three 
averaged and clustered language-specific stability maps were 
averaged and thresholded to obtain a roughly similar total 
numbers of voxels (250) as there were in each of the three 
languages.) 

The irregularly-shaped language-general clusters were 
grown into the smallest cuboids that fully enclosed each cluster, 
to regularize the volumes under consideration. The language-
general clusters (black voxels) and the boundaries of the grown 
cuboids (red contours) are shown on a glass brain in Figure 2C. 
 
2.6  Gaussian Naïve Bayes Classifications of Two-to-One Mapping 
and One-to-One Mapping  

 
A discriminative Gaussian Naïve Bayesian (GNB) classifier 

was trained on the mapping between the neural activation 
patterns of the 60 sentences and the sentence labels. The 
training data were obtained from either a single language (e.g. 
Portuguese) or two languages (e.g. English and Portuguese). The 
classifier was then tested on the neural activation patterns of the 
sentences obtained in another language (e.g. Mandarin). We will 
refer to training on activation patterns in a single language to 
classify activation patterns in another as a One-to-One Mapping 
and training on activation patterns from two languages to 
classify activation patterns in a third language as a Two-to-One 
Mapping. For the three languages examined here, there are six 
possible One-to-One Mappings and three possible Two-to-One 
Mappings, as shown in Table 1. In addition, a within-language 
between-participant classification was conducted in each 
language (using the same amount of training and test data as in 
the other mappings), to provide an estimate of the upper bound 
of classification accuracy that cross-language classifications can 
be expected to reach. 
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Fig. 2. (A) Language-specific clusters of stable voxels that were common across 
participants. English clusters in green (left), Mandarin clusters in blue (middle), and 
Portuguese clusters in pink (right); (B) Language-general clusters formed by combining 
the language specific clusters; (C) The smallest cuboids (red outlines) that contain each 
language-general cluster, shown on a glass brain. 

 
 

The number of training participants and training scans 
were equated between Two-to-One, One-to-One and within-
language classifications to make the classification accuracies 
comparable. To equate the training participants, three 
participants from each one of the two training languages were 
selected in each fold of the Two-to-One Mappings (sampling all 
possible combinations of three participants from the two 
languages across folds), and six participants from the training 
language were selected for One-to-One Mappings and within-
language mappings for each training iteration. Each training 
iteration contained six nested classification folds. In each 
classification fold, two out of the four scans of the 60 sentences 
from each training participant were used to train the classifier 
and the mean of two scans of the test participant was used to test 
classifier. The scans of the same sentence were assigned the 
same sentence label, resulting in 60 sentence labels in each 
language. The three types of classifications all attempted to 
identify each of the 60 test sentences from its MPSC activation 
pattern in the cuboids described above. 

The classifier’s features that characterized each sentence 
were the mean activation levels of the representative voxels in 

the 15 language-general cuboids. The representative voxels in 
each classification fold were the 15% of the voxels in each 
language-general cuboid with the highest stability. The 
activation levels of these selected voxels within a cuboid were 
averaged to obtain the activation level characterizing the cuboid 
for each sentence of each individual participant. These activation 
levels were then concatenated as a vector (one vector for each 
sentence) and served as the features to train the classifier. In the 
training phase, two scans of each sentence per training 
participant were used. Thus, there were 12 example activation 
vectors (2 scans times 6 participants) on which the classifier was 
trained to learn the activation pattern evoked by each sentence. 

The test data for the classifier for each sentence was the 
mean of the activation patterns in the language-general clusters 
of two test scans of the test subject from the test language. The 
classifier placed each test sentence into a rank ordered list of the 
60 sentence labels, ordered by the classifier’s probability 
ranking. Classification accuracy for each sentence was computed 
as the normalized rank of the target sentence among all the 60 
sentence candidates. 
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This normalized rank is defined as rank accuracy and was 
implemented as:  

 
Rank accuracy

=
(𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝑠 −  𝑡ℎ𝑒 𝑟𝑎𝑛𝑘 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑡𝑎𝑟𝑔𝑒𝑡)

(𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝑠 − 1) 
 

 
For each participant, the rank accuracies were averaged 

across all sentences in all classification folds and all training 
iterations. To compare the classification accuracies across 
different conditions (e.g. Two-to-One vs. One-to-One mappings), 
ANOVAs were used.  

 
2.7  The semantic domain analyses of the two-language advantage  

 
To determine whether any accuracy difference between 

Two-to-One vs. One-to-One mappings was related to specific 
types of semantic properties, the rank accuracies for each 
sentence in a given test language were compared between the 
two types of mappings (e.g. Portuguese and English to classify 
Mandarin vs Portuguese only to classify Mandarin). This 
resulted in 60 sentence-wise accuracy differences in 6 contrast 
pairs (e.g. training on Portuguese and English to classify 
Mandarin minus training on Portuguese to classify Mandarin, 
training on Portuguese and English to classify Mandarin minus 
training on English to classify Mandarin, and so on). The 6 
contrast pairs were averaged to obtain the overall sentence 
accuracy differences between Two-to-One and One-to-One 
mappings.  

These 60 sentence accuracy differences were then 
regressed against a set of word-level Neurally Plausible 
Semantic Features (NPSFs) to determine which NPSFs 
benefitted most from the advantage of the Two-to-One Mapping 
over the One-to-One Mapping. (The sentence-level NPSFs were 
computed by summing up the NPSFs of all component words of 
the sentence). The NPSFs are both interpretable (e.g. shelter, 
tools, eating/drinking, and emotion) and have a neural signature 
(as described in Yang et al., 2016). They were coded as binary 
semantic features at a word level and designed to characterize 
semantic concepts that are neurally plausible across languages 
(e.g. doctor was coded as Animate and Person in all three 
languages; computer was coded as Manmade and Technology in 
all three languages, etc. (See Table S.2 for a list of the NPSFs and 
the coding of some sample concepts). The NPSFs corresponding 
to each concept in the sentences were coded by two English 
native speakers in English, and were normed and checked by 
native speakers of Mandarin and Portuguese to make sure that 
the coding was correct for each of these languages. For each 
sentence, the NPSF codes of all the individual content words in 
each sentence were added and treated as the independent 
variables that characterize the set of concepts in a sentence. A 
similar set of neurally plausible features has been proposed by 
other researchers (Binder et al., 2016), and these features were 
also demonstrated to be useful in sentence classification in 
English (Anderson et al., 2016).  

 
2.8  Representational Similarity Analysis of the Sentence 
Semantics  

 
The neural activation patterns displayed by the voxels 

used in the classification were also used to conduct a 
Representational Similarity Analysis (RSA) of the sentence 
semantics (Haxby et al. 2001; Nili et al. 2014; Guntupalli et al. 
2016) within each of the three languages (English, Portuguese, 

Mandarin). Inter-sentence similarities were computed as the 
cosine similarity between the neural activation patterns of the 
selected voxels from each participant. Then the individual RSA 
matrices were averaged into a mean RSA matrix for each 
language. This resulted in three 60 x 60 RSA symmetrical 
matrices for the three languages (symmetrical because the 
similarity between sentence i and j is the same as the similarity 
between sentence j and i, and the entries on the diagonal are 
between identical sentences). To determine if the set of inter-
sentence neural similarities was similar across pairs of 
languages, the set of inter-sentence similarities within each 
language was correlated with each of the other two languages 
(removing the redundant and self-similar entries). 

3.  Results  

 
3.1  Advantage of the Two Languages-to-One Mapping over One-
to-One Mapping  

 
The Two languages-to-One mappings (training on two 

languages and testing on the third language) produced a 
significantly higher mean classification accuracy (.668) than the 
One-to-One mappings (training on one language and testing on 
another) (.624) (F(1,61)=19.4, p<0.001). These means were 
obtained by averaging over all possible combinations of training 
and test languages, so the mean for the Two languages-to-One 
mappings, for example, is averaged over three cases, where 
either English, Portuguese, or Mandarin is the test language and 
the other two are the training languages. The mean sentence 
classification accuracies for each such case (averaged across test 
participants, training iterations and classification folds) are 
summarized in Table 2. It is notable that the two-language 
advantage is apparent in the test of all three languages. 

All the cross-language and within-language classification 
accuracies (regardless of the number of training languages) 
were significantly above chance level. (The critical value for p = 
0.05 level accuracy is 0.56, estimated by a 5000-iteration 
random permutation test). The mean classification accuracies 
were slightly higher when English was one of the two training 
languages or the only training language than in the other cases 
(.65 vs .63, F(1,61)=7.77, p < .05) 

The mean within-language cross-participant classification 
accuracy of .669 using the same amount of training data 
indicates the upper bound that cross-language classification 
should be able to reach. The Two-to-One Mappings reached this 
upper bound (i.e. the Two-to-One classification accuracies are 
almost equal to the within-language classification accuracies) in 
all cases while the One-to-One Mapping classification accuracies 
were significantly lower than this ceiling (F(1,61)=20.63, p < 
0.001).  

There was a small but reliable classification accuracy 
advantage when English was a training language, attributable to 
all the English participants having had prior experience in 
performing similar semantic tasks in fMRI studies, facilitating 
their adjustment to the fMRI environment and their engagement 
with the task. One measure of the English speakers’ expertise as 
fMRI participants was their lower amount of head motion (mean 
overall displacement) than the other two groups, reliably so with 
respect to the Portuguese participants (t(12)=2.87, p<0.014) 
and marginally so with respect to the Mandarin participants 
(t(12)=2.06, p<0.062). The lower amount of head motion would 
have resulted in less noise in the data of the English participants 
and hence greater classification accuracy.
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Table 2. Classification accuracy of Two-to-One, One-to-One, and Within-Language mappings. (Standard deviations across test 
participants indicated in parentheses). 
 
 

 
Training Language(s) 

 

Test Language 

 

Classification 
Accuracy 

 

Mean 

Two-to-One Mappings 

English & Portuguese  Mandarin 0.67  (0.03) 

.668 English & Mandarin  Portuguese  0.67  (0.05) 

Portuguese & Mandarin English  0.66  (0.04) 

One-to-One Mappings 

English  Portuguese  
0.63  (0.05) 

.624 

Portuguese  English  0.63  (0.02) 

English  Mandarin 0.65  (0.03) 

Mandarin  English  0.63  (0.03) 

Portuguese  Mandarin 0.61  (0.04) 

Mandarin  Portuguese  0.60  (0.03) 

Within-Language 
Mappings 

English  English  0.66 (0.04) 

.669 Portuguese  Portuguese  0.67 (0.06) 

Mandarin  Mandarin  
0.67 (0.08) 

 
 
3.2  Relating the two-language advantage to semantic features  

 
The regression of the sentence-wise accuracy differences 

between the Two-to-One and One-to-One mappings against 
NPSFs showed that 5 NPSFs reliably benefitted from the 
classifier having been trained on two languages. The NPSFs that 
reliably benefitted (at p < 0.05, significance level determined by 
a permutation test of randomizing the NPSF labels 1000 times) 
from the Two-to-One mapping are Abstraction (as coded in 
words like wealthy, happy, like, negotiation), Person (as coded in 
words like mob, artist, banker, author), Communication (as 
coded in words like listen, negotiation, shout), Social (as coded 
in words like couple, soccer, famous), and Knowledge (coded in 
words like author, engineer, negotiate). The NPSFs that did not 
benefit from Two-to-One mapping include Man-made (coded in 
words like glass, desk, dime, car), Setting (coded in words like 
school, theater, field), Natural (coded in words like dog, horse), 
and Visual Perception (coded in words like big, shiny), etc. This 
outcome indicates that the decoding of abstract and social 
concepts benefits most from training a classifier on two 
languages, and suggests that it is these types of concepts that are 
somewhat differently neurally represented in different 
languages. 

 
3.3  Assessing the neural similarity of inter-sentence relations 
across languages  

 
To compare the concept representation spaces across 

languages, Representational Similarity Analyses (RSA) were first 
conducted on the sentences within each language (as shown in 
Supplementary Figures S.1, S.2, and S.3), and then the inter-
sentence similarity measures were compared across languages. 
Two large clusters of sentences emerged in all three languages, 
together involving 35 of the 60 sentences. One large cluster 
contains 16 sentences describing Event in an Environmental 
Scene, shown as a red region of highly correlated sentences in 

the upper left of each array in Figure 3. The other large cluster 
contains 19 sentences Social Interaction, shown as a red region 
of highly correlated sentences in the lower right of each array in 
Figure 3. The emergence of the same two sentence clusters in the 
three panels of Figure 3 illustrates that the inter-language neural 
similarities for all three pairs of languages are similar to each 
other.  

The correlations between the three pairs of 60 x 60 RSA 
matrices were all reliable (p < 0.001), showing a great amount of 
cross-language similarity. These correlations were: English-
Portuguese .63; English-Mandarin .60; Mandarin- 
Portuguese .59. The correlation between the English and 
Portuguese matrices was slightly higher than the correlation 
between Portuguese and Mandarin matrices (p=0.04), 
indicating that the neural semantic space is more similar 
between Portuguese and English than between Portuguese and 
Mandarin.  While the cross-language classifications illustrate the 
first-order similarity between the neural representations of 
sentences across languages, the RSA’s illustrate the second-
order similarity of the inter-sentence neural similarities across 
languages.  

4.  Discussion  

 
4.1  Main implications 

 
The main contribution of the current study is its 

comparison of pairwise neural commonality across languages 
versus commonality across three languages. Previous cross-
language decoding studies (Buchweitz et al., 2012; Zinszer et al., 
2012, 2016; Yang et al., 2016) have indicated that neural concept 
representation and processing have a great deal of commonality 
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Fig. 3. Two common cross-language clusters emerged from the matrices of the pairwise correlations between the RSA 
matrices in each language. Left panel: correlation matrix between English RSA and Portuguese RSA matrices; middle 
panel: correlation matrix between Mandarin RSA and Portuguese RSA matrices; right panel: correlation matrix between 
Mandarin RSA and English RSA matrices. The top left submatrix constitutes the cluster of sentences describing events 
in an environmental scene; the bottom right submatrix constitutes the cluster of sentences describing social 
interactions. 

 
 
across pairs of different languages: similar brain locations are 
activated in the processing of similar concepts, and the patterns 
of neural activation levels evoked by equivalent concepts within 
these common brain locations are similar. This study extended 
this meta-language commonality to three languages, affording 
the opportunity to assess the specificity of pairwise neural 
commonalities across languages. The results clearly show that 
there is reliably more to the cross-language neural commonality 
than what a pairwise comparison reveals.  

The main finding was that the classification accuracy was 
reliably higher when the classifier was trained on two languages 
compared to having been trained on one language, even when 
the amount of training data was equated. Furthermore, the 
accuracy of the classifier trained on two languages matched the 
accuracy level of the within-language classification (which 
defines an upper bound on cross-language classification 
accuracy). It is possible that if the stimulus sentences contained 
more culture-specific information than those in the current 
study, even a Two-to-One mapping would fail to capture all of 
the within-language mapping between meaning and activation 
pattern, while still producing a higher accuracy than a One-to-
One mapping.  

The advantage of the classifier trained on two languages 
stems from the inclusion of the neural mappings that are 
common only to its second training language and the test 
language, thus enlarging the training domain, as illustrated by 
the region shown in black in Figure 4. The results of the study 
show that language-specific overlap mappings exist and that 
they differ from language to language. There is reliably more to 
the cross-language neural commonality than can be found with 
a pairwise comparison between languages.  

 
 
 

4.2  What types of information does a second training language 
contribute? 

 
The finding of a two-language advantage raises the 

question of what types of concepts compose the regions of pair-
wise only overlap between languages (illustrated by the region 
shown in black in Figure 4). A second new finding of this study 
was that the sentences whose accuracy benefitted most from the 
classifier having been trained on two languages were those that 
contained concepts that are more abstract and were related to 
social and mental activities e.g. happy, negotiation, artist (coded 
with NPSFs like Abstract, Communication, Mental action or 
State). 

The reason for this differential benefit may be that abstract 
and socially-related concept domains (particularly of the type of 
abstract concepts sampled by the stimulus sentences) have a 
greater degree of cultural or language-specific influence that is 
reflected in the neural representations. Training a classifier on 
two languages includes neural mappings of such concepts in two 
languages, increasing the probability that one of them will 
provide a good match to the neural representations in the test 
language. Thus the region of overlap between only the second 
training language and the test language, shown in black in Figure 
4, may contain disproportionately many abstract concepts. (Of 
course, if the comparison was between the accuracy of training 
a classifier on both languages versus only on training language 
2, then the pairwise-only additional overlap would be the region 
with diagonal stripes, and that region, like the black one would 
presumably also be composed of disproportionately-many 
sentences containing abstract concepts). 

Although abstract concepts may have made a large 
contribution to the two-language advantage, it is difficult to 
specify the content of an abstract concept, which probably varies 
by type of abstract concept. Abstract concepts are often defined 
by what they are not, namely they do not have a concrete, 
perceptible referent. At the core of an abstract concept is a 
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Fig. 4. Illustration of the concept-to-neural mapping domains among the three languages. The additional 
information provided by a Two-to-One mapping compared to One-to-One mapping is shown in black. 

 
 
definition in terms of other concepts. In this sense, an abstract 
concept is one that is composed of the meanings of other 
concepts. Some abstract concepts pertain to human traits and 
social interactions. Some abstract concepts pertain to affect and 
emotion. Some abstract concepts are part of a formalized 
system, such as abstract scientific concepts. Although the 
stimulus materials do not lend themselves to a definitive 
conclusion about the content of the abstract concept 
representations in this study that underpinned the two-
language advantage, a few tentative inferences can be made. 

The results do not support the hypothesis that affective 
components of the neural representations played a substantial 
role in the advantage of training a classifier on two languages. 
The affective components of some words may have been 
language specific (for example, dog, could evoke more positive 
affect in cultures in which dogs are domesticated and negative 
affect in cultures where dogs are scavengers). However, none of 
the NPSF’s related to affect showed a reliable two-language 
advantage.  

The stimulus sentences contained few scientific concepts, 
which are typically abstract but nevertheless precise and 
presumably common across cultures. It is possible that the 
neural representations of sentences describing scientific 
concepts would not show a benefit of a classifier being trained 
on two languages, because all of the relevant information would 
be contained in the neural representations of the concepts in any 
single training language (all other things being equal). The 
critical variable may not be whether a concept is abstract but 
whether there is room for variation in its meaning across 
languages.  

Although we have been assuming that the mappings 
between sentences and their neural representations are based 
primarily on the semantic content of the sentences, it is possible 
to consider whether lower levels of information about the 
sentence (such as its articulatory or syntactic properties) may 
also have been involved in the mapping between neural 
representations and sentences in a way that contributes to 
classification accuracy. The situation is different for the 12 

different mappings shown in Table 2, because the relevance of 
such lower level information depends on the similarity between 
languages in such lower level features. The most relevant cases 
arise in the variation among the six One-to-One mappings. The 
similarity between English and Portuguese in such features is 
greater than between Mandarin and English or between 
Mandarin and Portuguese. The classification accuracies in Table 
2 for the One-to-One mappings bear no relation to the 
similarities between languages. The mean accuracy for the four 
One-to-One mappings involving Mandarin (.62) is very similar to 
the mean accuracy for two One-to-One mappings between 
English and Portuguese (.63). Thus it seems unlikely that low 
level features contributed to the mapping where it was possible 
for them to have done so, namely between English and 
Portuguese. Given that lower level features did not contribute to 
the accuracy in the One-to-One mappings, it seems very unlikely 
that contributed to the Two-to-One mappings. If they happened 
to play a role in the within-language mappings, that would only 
have made it more difficult for the Two-to-One mappings to 
achieve comparable accuracies, which they nevertheless did. 

 
4.3  Inter-sentence neural similarity  

 
The similarity in the neural activation patterns across 

languages is further indicated by RSA analyses, which showed 
significant correlations between within-language inter-sentence 
similarities across all three pairs of languages. The between-
language correlations of inter-sentence similarities produced 
two large clusters of sentences. The emergence of common 
clusters in all pairs of languages that described events in 
environmental scenes or that described social interactions 
indicates that these two types of sentences evoke distinct neural 
representations that are similarly related to each other in all 
three languages.  

The findings above implying that abstract and social 
concepts are neurally represented somewhat differently across 
languages is consistent with the RSA findings of similar 
clustering of sentences describing social interactions across 
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languages (coded by NPSFs like Communication, Person, and 
Knowledge).  Even though the sentences describing social 
interactions were clustered in the RSA, their mean degree of 
between-language correlation (.61) was reliably lower than for 
the events in environmental scenes cluster (.82),  (p < 0.001).  This 
outcome is in accordance with the above two-language 
advantage results: the neural representations of sentences 
describing social interactions are more language specific than 
sentences describing events in environmental scenes.  

 
4.4  Limitations of the study 

 
Comparisons of neural representations of concepts across 

languages are always influenced by the choice of participants. 
Some participants in this study were bilingual (all Mandarin 
participants and 3 Portuguese participants) and the remainder 
were monolingual. Several previous studies found no differences 
between bilingual and monolingual speakers in their neural 
representations of concepts they were reading in their L1 
(Buchweitz and Prat, 2013; Correia et al., 2014; Kovelman et al., 
2007; Yang et al., 2016). Specifically, Yang et al. (2016) 
demonstrated almost identical within-language classification 
accuracies for 8 Portuguese-English bilinguals and 7 Portuguese 
monolingual participants when they were reading Portuguese 
sentences. This finding indicates that being bilingual seems not 
to affect the neural representations evoked by L1 in this 
paradigm. 

A second caveat in any cross-language comparison 
concerns the incomplete equivalence of translation-equivalent 
words and sentences (Panou 2013). Minor lexical differences in 
the translation equivalent sentences may also have contributed 
to the two-language advantage. For example, there is no exact 
equivalent of dime in Portuguese, which was translated as ten 
cents. Another possibility is that the neural representation for 
the identical referent could be different in two languages if it 
were viewed differently in different cultures, such as the word 
pork evoking a different response in cultures in which it is a 
forbidden food. Because languages are never identical, their 
neural representations cannot be identical, and the challenge 
becomes to identify the sources of systematic differences. 

Third, it is possible in principle that the small amount of 
variation in the stimulus sentence lengths could have affected 
the neural representations, and the classifier could have used 
any such correlation to contribute to accuracy. However, the 
classification analyses excluded occipital lobe voxels to decrease 
the possible effects of visual properties features of the printed 
sentences, such as their lengths. To eliminate the possibility that 
sentence length played a role, the classification within English 
was repeated, but with sentence length regressed out (i.e. the 
classification was done on the residuals of the sentence length 
regression analysis). The resulting classification accuracy was 
almost identical (.661 vs. .662) to the analysis without the 
correction for sentence length. Given the absence of a length 
effect on classification accuracy within a language, where it 
would be expected to be largest, this additional result indicates 
that sentence length information did not contribute to 
classification accuracy in any of the analyses and particularly not 
to the Two-to-One advantage. 

Finally, the sample size of participants, stimulus materials, 
and languages in the current study is relatively small. A larger 
sample in all three respects would further illuminate the cross-
language commonality issue. It would be particularly interesting 
to systematically vary the types of sentence structures and 

content to assess the impact on the cross-language 
commonalities, using our approach. 

 
4.5  Conclusion  

 
The human brain provides a common neural platform for 

representing sentences in all languages, resulting in a great deal 
of commonality in such representations across languages. At the 
same time, each language and culture can introduce nuances in 
the meaning and hence neural representation of concepts that 
superficially seem similar. Examining the mappings between 
concepts and neural representations in multiple languages has 
the potential for revealing the existence of such language 
specificities and the semantic domains in which they tend to 
occur. Identifying both the universals as well as the language 
specificities is necessary for characterizing the full range of 
mappings between brain and language. 
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Supplemental Materials 

Table S.1. The 60 translation equivalent stimulus sentences in English, Portuguese and Mandarin   

ID English Portuguese  Mandarin  

1 The family was happy. A família estava feliz.  这家人挺快乐 

2 The politician visited the family. O político visitou a família. 政客拜访了这家人 

3 The family played at the beach. A família brincou na praia. 这家人在海滩玩 

4 The parents bought the magazine. Os pais compraram a revista. 父母买了那本杂志 

5 The child broke the glass in the restaurant. A criança quebrou o copo no restaurante. 孩子在餐馆打碎了玻璃杯 

6 The parents shouted at the child. Os pais gritaram com a criança. 父母对着孩子嚷 

7 The happy couple visited the embassy. O casal feliz visitou a embaixada. 
那对幸福的夫妻拜访了大使

馆 

8 The wealthy couple left the theater. O casal rico saiu do teatro. 那对有钱的夫妻离开了剧院 

9 The parents visited the school. Os pais visitaram a escola. 父母参观了学校 

10 The happy child found the dime. 
A criança feliz encontrou a moeda de dez 

centavos. 

那个快乐的小孩发现了一枚

十分硬币 

11 The child gave the flower to the artist. A criança deu a flor para o artista. 孩子给了艺术家一朵花 

12 The soldier crossed the field. O soldado atravessou o campo. 士兵穿越了田野 

13 The commander listened to the soldier. O comandante ouviu o soldado. 指挥官聆听士兵 

14 The horse walked through the green field. O cavalo atravessou o campo verde. 
那匹马穿过了那片绿色的田

野 

15 The girl saw a horse in the park. A garota viu um cavalo no parque. 女孩在公园里看见一匹马 

16 The engineer walked in the peaceful park. O engenheiro caminhou no parque tranquilo. 工程师在平静的公园里走着 

17 The flower was yellow. A flor era amarela. 花是黄色的 

18 The yellow bird flew over the field. O pássaro amarelo sobrevoou o campo. 黄色的鸟飞越田野 

19 The old doctor walked through the hospital. O velho médico andou pelo hospital. 年老的医生穿过医院 

20 The wealthy author walked into the office. O autor rico entrou no escritório. 富有的作家走进了办公室 

21 The dog broke the television. O cachorro quebrou a televisão. 狗打坏了电视 

22 The street was empty at night. A rua estava vazia à noite. 街道晚上空无一人 

23 The street was dark. A rua estava escura. 街道很昏暗 

24 The banker watched the peaceful protest. O banqueiro assistiu ao protesto pacífico. 银行家观看了和平抗议活动 

25 The voter went to the protest. O eleitor foi ao protesto. 那个选民去了抗议 

26 The protest was loud. O protesto foi barulhento. 抗议声音很大 

27 The politician watched the trial. O político assistiu ao julgamento. 政治家观看了审判 

28 The reporter spoke to the loud mob. O repórter falou com a multidão barulhenta. 记者和吵闹的暴民谈话 

29 The mayor negotiated with the mob. O prefeito negociou com a multidão. 市长和暴民谈判 

30 The mob was dangerous. A multidão era perigosa. 暴民很危险 

31 The wealthy politician liked coffee. O político rico gostava de café. 
那个富有的政治家很喜欢咖

啡 

32 The young author spoke to the editor. O autor jovem falou com o editor. 年轻的作家和编辑谈话 

33 The scientist spoke to the student. O cientista falou com o estudante. 科学家和学生谈话 

34 The scientist watched the duck. O cientista observou o pato. 科学家观察鸭子 

35 The witness went to the trial. A testemunha foi ao julgamento. 证人去了审判 

36 The witness spoke to the lawyer. A testemunha falou com o advogado. 证人和律师谈话 



37 The witness shouted during the trial. A testemunha gritou durante o julgamento. 证人在审判中叫嚷 

38 The jury watched the witness. O júri observou a testemunha. 陪审团观察证人 

39 The victim feared the criminal. A vítima temia o criminoso. 被害人恐惧罪犯 

40 The engineer gave a book to the student. O engenheiro deu um livro para o estudante. 工程师给了学生一本书 

41 The magazine was in the car. A revista estava no carro. 杂志在车里 

42 The diplomat negotiated at the embassy. O diplomata negociou na embaixada. 外交官在使馆交涉 

43 The diplomat shouted at the soldier. O diplomata gritou com o soldado. 外交官对士兵嚷 

44 The mayor listened to the voter. O prefeito ouviu o eleitor. 市长聆听选民 

45 The famous diplomat left the hospital. O diplomata famoso deixou o hospital. 
那个著名的外交官离开了医

院 

46 The patient survived. O paciente sobreviveu. 病人活下来了 

47 The tired patient slept in the dark hospital. O paciente cansado dormiu no hospital escuro. 
疲惫的病人在昏暗的医院里

睡 

48 The author kicked the desk. O autor chutou a mesa. 作家踢了书桌 

49 The tourist went to the restaurant. O turista foi ao restaurante. 游客去了餐馆 

50 The woman left the restaurant after the storm. 
A mulher saiu do restaurante depois da 

tempestade. 

那个女人在暴风雨后离开了

餐馆 

51 The restaurant was loud at night. O restaurante estava barulhento à noite. 餐馆晚上很热闹 

52 The artist liked chicken. O artista gostava de frango. 艺术家喜欢鸡肉 

53 The diplomat was wealthy. O diplomata era rico. 外交官很富有 

54 The mayor dropped the glass. O prefeito derrubou o copo. 市长掉了玻璃杯 

55 The injured horse slept at night. O cavalo machucado dormiu à noite. 受伤的马晚上睡了 

56 The young girl played soccer. A jovem garota jogou futebol. 这个年轻的女孩踢足球 

57 The girl saw the small bird. A garota viu o passarinho. 女孩看见那只小鸟 

58 The tourist found a bird in the theater. O turista encontrou um pássaro no teatro. 游客在剧院发现一只鸟 

59 The school was famous. A escola era famosa. 这学校很有名 

60 The magazine was yellow. A revista era amarela. 那本杂志是黄颜色的 

 

  



Table S.2. Definitions of Neurally Plausible Semantic Features (NPSF) and examples of words coded  

Category * Feature  Definition Examples 

Perceptual and 

Affective 

Characteristics 

of an Entity 

Man-made objects or settings made by humans bicycle, desk, newspaper, church 

Natural objects or activities occurring in nature flower, flood, island 

Inanimate non-living object ball, coffee, window 

Visual perception visual perceptual properties big, blue, empty, new, shiny 

Size Physical volume or size big, heavy, long, small 

Color self-explanatory black, blue, green, red, white 

Temperature related to temperature sun, summer, winter, cold, hot 

Positive valence self-explanatory celebrate, laugh, vacation, happy 

Negative valence self-explanatory 
destroy, fear, terrorist, dangerous, 

sick 

High intensity high affective arousal celebrate, shout, hurricane, angry 

Animate Beings 

Person a human being boy, doctor, farmer, pilot, voter 

Animal an animal or anatomy of animals bird, dog, duck, feather, horse 

Human-group more than one human being team, couple, family, mob, council 

Time and Space 

Settings place or temporal settings lake, church, park, night, hotel 

Unenclosed an environment without shelter or enclosure beach, lake, field, island, street 

Location actions or events that imply spatial settings meeting, visit, stay, live 

Shelter 
being enclosed, indoors is a salient feature; 

opposite of unenclosed 
car, hotel, school, hospital, store 

Change of location self-explanatory approach, hike, throw, car, run 

Event self-explanatory dinner, protest, trial, vacation 

Time-related related to a time period or timing morning, night, spring, summer, end 

Human Activity 

Type 

Violence/conflict involving aggression and those who commit it army, guard, soldier, terrorist 

Health related to improving or threatening health 
medicine, doctor, patient, victim, 

hospital 

Eating/drinking self-explanatory drink, eat, dinner, corn, restaurant 

Communication medium of communication 
listen, speak, newspaper, author, 

reporter 

Sports 
related to recreation or competitive physical 

activities 
play, soccer, baseball, bicycle, team 

Technology related to technology or technical skills 
computer, television, engineer, 

scientist 

Money related to financial activities or economics buy, cash, banker, expensive, wealthy 

Arts and literature 
objects, actions or professions related to 

humanities, arts, literature 
actor, author, artist, theatre, draw 

Social norms related to law and authority structure trial, criminal, lawyer, court, prison 

Governance related to civics, politics, dominance debate, protest, army, mayor, embassy 

Intellectual 
requiring, gaining, or providing knowledge or 

expertise 
plan, read, computer, engineer, school 

Social Action or 

State 

Transfer of 

possession 

transaction (giving/receiving); change of 

ownership 
give, steal, take, buy 

Social interaction interaction between two or more subjects interview, negotiate, party, lonely 

Social support providing social support is a salient feature help, family, minister, parent 

Physical Action 

or State 

Physical action self-explanatory kick, throw, play, walk, march 

Change of 

physical state 
self-explanatory destroy, fix, grow, break 

Physical impact 
two subjects or objects coming in contact with 

each other 
break, destroy, drop, kick 



Mental Action or 

State 

Mental action 
requiring cognitive processes; occurring 

internally 
liked, plan, want, teacher, clever 

Perceptual action self-explanatory listen, watch, read, witness 

Emotion Emotional state or action fear, laugh, like, happy 

Abstractness Abstract 
detached from sensory or motor properties; low 

imageability 
plan, want, clever 

Part of Speech Attribute adjectives aggressive, blue, shiny, sick 

 

* The grouping into categories is intended to facilitate description and is not used in the modeling. 

 

 

  



 

 

Figure S.1. Representational Similarity Matrix of neural representations of English sentences whose similarities formed 

clusters, sorted by the row similarities. Two clusters emerged: one describing Event in an environmental scene (in the 

upper left corner), and the other describing Social Interactions (in the lower right corner) 

  



 

Figure S.2. Representational Similarity Matrix of neural representations of Portuguese sentences whose similarities 

formed clusters, sorted by the row similarities. Two clusters emerged: one describing Event in an environmental scene (in 

the upper left corner), and the other describing Social Interactions (in the lower right corner) 

  



 

 

 

Figure S.3. Representational Similarity Matrix of neural representations of Mandarin  sentences whose similarities 

formed clusters, sorted by the row similarities. Two clusters emerged: one describing Event in an environmental scene (in 

the upper left corner), and the other describing Social Interactions (in the lower right corner) 

 

 

 


