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Abstract 

The abstractness of concepts is sometimes defined indirectly as lacking concreteness; this view provides little insight into 

their cognitive or neural basis. Multivariate pattern analytic (MVPA) techniques applied to fMRI data were used to 

characterize the neural representations of 28 individual abstract concepts. A classifier trained on the concepts’ neural 

signatures reliably decoded their neural representations in an independent subset of data for each participant. There was 

considerable commonality of the neural representations across participants as indicated by accurate classification of each 

participant’s concepts based on the neural signatures obtained in other participants. Group-level factor analysis revealed 3 

semantic dimensions underlying the 28 concepts, suggesting a brain-based ontology for this set of abstract concepts. The 3 

dimensions corresponded to 1. the degree a concept was Verbally Represented; 2. whether a concept was External (or 

Internal) to the individual, and 3. whether the concept contained Social Content. Further exploration of the Verbal 

Representation dimension suggests that the degree a concept is verbally represented can be construed as a point on a 

continuum between language faculties and perceptual faculties. A predictive model, based on independent behavioral 

ratings of the 28 concepts along the 3 factor dimensions, provided converging evidence for the interpretations. 
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Introduction 

The human ability to formalize planetary orbit, argue what 

is ethical or just, or communicate about the feelings of 

others hinges on our ability to speak of concepts that do not 

explicitly take a physical form, or, abstract concepts. 

However, the neural characterization of abstract concepts 

such as ethics and justice remains relatively unexplained. A 

concept can be defined, in neural terms, as a systematic, 

distributed pattern of activation across a network of cortical 

regions that occurs when a person thinks about that concept. 

Unlike concrete concepts, there are no explicit cortical 

systems or theories for explicitly measuring the embodied 

instantiation of abstract information. According to the now 

well-documented embodiment hypothesis, the 

representation of many concepts is rooted in how their 

referents are perceived and interacted with. This view has 

provided a valuable theoretical basis for understanding the 

neural instantiation of concrete concepts (Barsalou 1999). 

However, there is much less clarity concerning the neural 

representation of abstract concepts (Binder 2005). 

A meta-analysis of fMRI studies examining concrete 

and abstract concepts revealed that areas responsible for 

language processing (namely, left inferior gyrus) reliably 

activate more for abstract concepts relative to concrete 

concepts (Wang et al. 2010). In addition, a number of 

studies have shown that several other cortical areas related 

to executive functioning, motion, and emotion processing 

were also involved in the processing of abstract concepts 

(Pecher et al. 2011; Vigliocco et al. 2014). These varied 

cortical activation findings suggest that abstract concept 

representations rely on the integration of multiple neural 

systems associated with a variety of cognitive functions. 

The aperceptual nature of abstract concepts also 

raises the question of the commonality of their neural 

representations across individuals. Whereas the neural 

commonality of concrete concepts across people (e.g. Just 

et al., 2010) could be based on common perceptual 

properties, it is unclear what the common basis might be for 

more abstract concepts. The concept of justice, for example, 

is likely to be related to a wider variety of experiences than 

a concept such as apple, suggesting that the neural 

activation pattern associated with the concept could vary 

substantially across individuals. Previous research has 

shown that concrete concepts can be decoded across 

individuals from their neural signature; this commonality of 

representation can be characterized by lower-dimensional 

semantic primitives such as eating and shelter (Just et al. 

2010; Coutanche and Thompson-Schill 2015). This method 

of decoding concepts from neural signatures and 
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characterizing their commonality across participants has 

been applied to perceptually less grounded categories of 

concepts such as physics concepts (Mason and Just 2016) 

and emotion concepts (Kassam et al. 2013). However, 

although physics terms and emotions concepts are less 

concrete than apple or hammer, according to an embodied 

view of concept representation, they are still related to 

proprioception and emotional content. Thus, the 

commonality of the neural representation of abstract 

concepts across participants remains unknown.  

The goal of the current study was to determine the 

neural and semantic ontology of individual abstract 

concepts. Although at least one previous study used MVPA 

to decode taxonomic categories and domains of abstract 

concepts such law and music (Anderson et al. 2014), there 

has been no attempt to predict the neural representation of 

individual abstract concepts nor to uncover the semantic 

organization of abstract concepts in a neurally-based 

ontology. The current study assessed the neural activation 

patterns of 28 abstract concepts by applying multivariate 

pattern analytic techniques (MVPA) including factor 

analysis to fMRI data. First, the identifiability and 

commonality of the concepts’ neural signatures was 

assessed within and across participants using a pattern 

classifier. Second, a dimension-reduction technique (factor 

analysis) was used to derive a lower-dimensional semantic 

structure of the concept representations. These 

interpretations of the resulting semantic dimensions were 

then tested by obtaining independent ratings of the 

concepts along each of the dimensions as we interpreted 

them, and then using the ratings to predict the concepts’ 

activation patterns. These findings provide a brain-based 

account of the way abstract concepts are neurally 

represented. 

 
Materials and Methods 

 
Participants 

 
Ten right-handed adults (7 Females; age range from 20 to 

38, M = 25.9) from the Carnegie Mellon community 

participated in a 30 minute-scanning session. Informed 

consent was obtained from all 10 participants in accordance 

with the Carnegie Mellon Institutional Review Board. Data 

from 1 participant was excluded due to the participant 

falling asleep during the scan.  

 

Experimental Paradigm 

 

Stimuli were 28 words referring to abstract concepts 

distributed among 7 categories. Although the category 

labels were never mentioned nor presented to participants, 

they are listed here in parentheses for expository purposes, 
preceding the actual stimuli: (mathematics): subtraction, 

equality, probability, and multiplication; (scientific): gravity, 

force, heat, and acceleration; (social): gossip, intimidation, 

forgiveness, and compliment; (emotion): happiness, sadness, 

anger, and pride; (law): contract, ethics, crime, and 

exoneration; (metaphysics): causality, consciousness, truth, 

and necessity; (religiosity): deity, spirituality, sacrilege, and 

faith. Focusing on the neural representations of individual 

concepts provides higher resolution of semantic content 

than examination on a categorical level. The 

representations of individual concepts contain information 

about item-level elements of meaning rather than 

superordinate representational structures. The set of 28 

stimuli was presented six times, to enable averaging out 

effects of noise in the fMRI signal and to provide separate 

datasets for training and testing the machine learning 

classifier in its cross-validation protocol. On each trial, 

participants were presented with the stimulus concept for 3 

sec, and were asked to think about the properties they 

associate with the given concept. Participants were 

instructed to think of the individual concept and the various 

components of its meaning, referring back to the properties 

of the concept they had generated. This instruction has 

previously been used to enable participants to evoke 

semantically rich representations of concepts that are 

consistent across multiple presentations (Just et al. 2010, 

2017; Mason and Just 2016; Bauer and Just 2017).  

Following this 3 sec period, participants were 

instructed to clear their mind over the course of 7 sec while 

watching a blue ellipse shrink to nonexistence, to allow the 

hemodynamic response to approach baseline before the 

next concept appeared. A shrinking ellipse was presented 

during the inter-stimulus interval to provide a fixation target 

and to convey the progress through the 7s interval.  There 

was a total of 6 presentation blocks of the same 28 stimulus 

concepts (using different random permutation orders in the 

different presentations) in the scanning session, distributed 

between 3 runs (2 blocks per run) to allow participants a 

brief rest between runs. A 17-second “X” was presented at 

the beginning of each block (2 per run) to use as a baseline 

measure of neural activity. 

Prior to the scan, participants were instructed to write 

down 3 properties for each of the 28 abstract concepts. 

Possible properties were synonyms, definitions, or 

experiences associated with the concept intended to guide 

participants to mentally evoke a consistent representation 

for each concept. Participants were instructed to write 

properties that came to mind quickly and naturally. 

Participants briefly practiced the experimental paradigm in 

a mock MRI scanner while receiving head-motion feedback 

to minimize movement.  

 

fMRI Parameterization and Image Processing 

 

Functional images were acquired on a Siemens Verio 3.0T 

scanner and a 32-channel phased-array head coil (Siemens 

Medical Solutions, Erlangen, Germany) at the Scientific 

Imaging and Brain Research facility (SIBR) at Carnegie 

Mellon. Scans were acquired using a gradient-echo echo-

planar imagining pulse sequence (TR = 1000ms, TE = 25ms, 

and a 60⁰ flip angle); each volume contained 20 5-mm thick 

AC-PC aligned slices (1-mm gap between slices). The 

acquisition matrix was 64 x 64 with 3.125 x 3.125 x 5-mm 

voxels. SPM8 (http://www.fil.ion.ucl.ac.uk/spm/) was used 

to correct for head motion and normalize to the Montreal 

Neurological Institute template (Collins et al. 1994). The 

percent signal change (PSC) relative to the fixation 

condition was computed at each gray matter voxel for each 

stimulus presentation (the PSC data was converted to z-

scores). To isolate the neural instantiation of concept 

representations, voxel activation levels were averaged 

over the four brain images acquired within a 4 sec window 

http://www.fil.ion.ucl.ac.uk/spm/
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(at a TR of 1000) offset 5 sec from the stimulus onset (i.e. 

images 5 to 8). Mean PSCs were normalized across voxels 

for each trial (MPSC). Previous studies have reported that 

the use of these four images yields the highest classification 

accuracies obtained by a classifier that attempts to relate 

the activation pattern to the concept (Just et al. 2010; Mason 

and Just 2016; Bauer and Just 2017). Additionally, using 

these four images allows for the comparison with previously 

collected concept-level fMRI data.  

 

Voxel Stability 

 

The analysis focused on the most stable voxels, those whose 

activation levels were systematically modulated by the set 

of 28 abstract concepts each time the set was presented. 

Voxel stability is a criterion for feature selection that selects 

voxels in the training set that respond consistently across 

repetitions of the concepts across blocks. It has been 

established as a method of feature selection for 

discriminating concept representations (Just et al. 2010, 

2017; Kassam et al. 2013; Wang et al. 2013; Mason and Just 

2016; Bauer and Just 2017; Yang et al. 2017). A voxel’s 

stability was computed as the mean pairwise correlation of 

its 28 MPSC activation levels (for the 28 abstract concepts) 

across all pairwise combinations of the presentations blocks 

in the training data. Thus, a voxel with high stability is one 

that has a stable tuning curve over the set of stimuli. Stable 

voxels were used as features in classification and factor 

analyses. The stable voxels selected in the training data for 

classification are then used to select the voxels in the test 

set. The 120 most stable voxels in the whole brain were used 

as features for classification. This approximate number of 

voxels has been shown to reliably capture meaningful 

information in the neural representation of individual 

concepts (Just et al. 2010; Mason and Just 2016). To ensure 

the analysis was not particularly sensitive to variations in the 

number of features, the classification analysis was repeated 

varying the number of stable voxels used from 20 to 10,000 

(in 20 voxel increments); the peak classification accuracy 

occurred between 120 and 180 stable voxels. The mean 

classification accuracy gradually decreased with the 

inclusion of additional stable voxels beyond 180. To be 

consistent with previous studies, 120 stable voxels were 

chosen to be used as features. 

 
Discriminative Classification  

 
Within Participant Classification 

A Gaussian Naïve Bayes (GNB) classifier was trained to 

decode the 28 concepts in each participant’s data. The 

classifier was trained on the activation data from 4 of the 6 

presentations and was tested on the mean of the 2 left-out 

images. This cross-validation procedure was followed in 15 

(6 choose 2) folds. The features used by the algorithm 

consisted of the activation levels of the 120 most stable 

voxels in the training set from anywhere in the whole brain. 

The classifier’s normalized rank accuracy was used to 

assess decoding accuracy (i.e. the mean over folds of the 

normalized rank of the correct response in a probability-

ranked list of all 28 alternatives, where chance level is 0.5). 

Above-chance performance at p < 0.001 was achieved for 

concept-level predictions for all participants, as 

determined using a 10,000-iteration permutation test on 

each participant separately (mean cutoff for p < 0.001 = 0.60; 

SD = 0.004). 

 
Between Participants Classification 

A GNB classifier was trained on the neural signatures from 

8 of the 9 participants and tested on the left out participant’s 

data. The alignment across participants was accomplished 

by selecting the voxels with the highest stability across 

participants (i.e. having a similar pattern of activation 

responses to the 28 stimuli). To compute the cross-

participant stability in the between-participant 

classification, the MPSC data was first averaged across 

presentations for each participant and then the mean 

pairwise correlation of a voxel’s 28 MPSC activation levels 

(for the 28 abstract concepts) was computed between all 

pairs of the 8 participants in the training data. The 120 most 

stable voxels (i.e. those with the highest mean pairwise 

correlations) from the whole brain across the 8 participants 

were selected as features for the training set. Predictions 

were cross-validated across participants and the mean rank 

accuracy was computed across the resulting 9 folds. Above-

chance performance at p < 0.01 is 0.57 for concept-level 

predictions as determined using a 10,000-iteration 

permutation test. 

 

Factor Analysis Procedure 

 

To explore the semantic structure underlying the 

representations of the 28 abstract concepts, a two-level 

factor analysis was computed; a factor analysis was first 

applied to the data of individual participants while the 

second factor analysis used the factor scores from the first 

level as input (using a procedure described in detail in Just 

et al. 2014). This procedure was implemented using a 

principal factor analytic algorithm, including varimax 

rotation, in MATLAB (Version 6.5; The MathWorks, Natick, 

MA). 

The data from all 9 participants were analyzed to 

determine whether interpretable factors could be extracted. 

Stability was averaged across the 9 participants for each 

voxel (voxels with negative stability were set to 0). The 

locations of the 800 most stable voxels were first used to 

indicate the major participating cortical regions [as defined 

using Automated Anatomical Labeling (AAL; Tzourio-

Mazoyer et al. 2002)] to be included in the factor analysis. 

Then, the input to the first-level factor analysis (performed 

within each participant) consisted of the mean activation 

levels of the most stable voxels for each of the concepts in 

each of the contributing AAL regions. The total number of 

voxels used in this factor analysis was 410, similar to the 

number used in previous studies (Kassam et al. 2013), with 

the number per AAL-defined ROI based on the numerosity 

of the ROI’s stable voxels: 40 voxels from left inferior frontal 

gyrus (LIFG); 30 voxels from left posterior cingulate cortex; 

60 voxels from frontal cortex bilaterally; 60 voxels from 

occipital cortex bilaterally; 60 voxels from temporal cortex 

bilaterally; and 160 voxels from parietal cortex bilaterally. 

This first-level factor analysis was run on all 9 participants 

individually, extracting 7 factors for each subject, resulting 

in a total of 63 vectors of factor scores. The number of factors 

to be extracted was informed by previous studies (Mason 

and Just 2016); modifications from the initial 
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parameterization resulted in only minor differences in 

results.  

The goal of the first-level factor analysis, applied to 

individual participants, was to partition the set of input 

stable voxels into subsets that each systematically but 

differentially responded to the abstract concepts, 

specifying 7 factors. This analysis produced factor scores 

for the 28 concepts, for each of the 7 factors, for each of the 

9 participants. Each of the 9 participants’ 7 sets of factor 

scores were concatenated and used as input into the second, 

group-level factor analysis (a total of 63 sets of 28 factor 

scores) to further reduce dimensionality to 5 dimensions 

and to seek consistency across participants. A voxel was 

determined to belong to a factor if its factor loading 

exceeded a cutoff 0.4 (a typical value for a factor loading 

threshold): this threshold was also informed by previous 

work using this procedure (Just et al. 2010; Just et al., 2014; 

Mason and Just, 2016).  

To evaluate the robustness of the results to the number 

of voxels used, factor scores from each of the 5 second-

order factors were correlated across the different voxel set 

sizes used in the factor analysis (i.e. 205 voxels, versus the 

original number of 410, and 615 voxels). The mean 

correlation between the factor scores from the 410 voxel set 

(original parameterization) and 615 voxels factor analyses 

was 0.94 (with all correlations exceeding 0.9). Thus the 

outcomes are not sensitive to an increase in the numbers of 

voxels used in the factor analysis. The correlations between 

the factor scores from the 410 voxel set size (original 

parameterization) and the 205 voxel set were somewhat 

lower: most of the correlations fell to ~0.85 with one of the 

correlations (corresponding to an Externality/Internality 

semantic dimension) falling to 0.64. Although the same 5 

factors are present when using only 205 voxels, the factor 

scores are not as similar to the 410 set size. The set of 410 

stable voxels was thus used for the factor analysis. 

 

Predictive Modeling Procedure 

 

The goal of the predictive modeling procedure was to 

assess whether the activation pattern of a concept that was 

left out of the modeling could be predicted, based on the 

mapping between the behavioral ratings and the activation 

patterns of all of the other concepts. Accurate predictions 

would provide converging evidence for the factor 

interpretations (on which the ratings were based). That is, 

the correlation between the behavioral ratings of the 

concepts along the dimensions as we interpreted them and 

the concepts’ factor scores are a test of the interpretation of 

the factors from the factor analysis. To obtain converging 

evidence for the factor interpretations, an independent 

group of participants was asked to rate each stimulus 

concept on a scale from 1-7 with respect to its salience to the 

dimensions as they have been interpreted here (e.g. the 

degree to which a concept, such as faith, was verbally 

versus perceptually based). These ratings were then used 

in a multiple regression model to predict the activation 

patterns of concepts for which the model had no activation 

data (Mitchel et al. 2008). Activation predictions for each 

concept were made within each participant, by developing 

a separate regression model for each participant to 

separately predict each concept, basing the model and the 

weights it derives on the data from the 27 concepts other 

than the 28th target concept. The resulting model weights 

were then applied to the dimension ratings and character 

length of the target concept (Just et al. 2010). These models 

made predictions of activation values in factor locations 

obtained from factor analyses that were based on all but the 

participant in question. The mean prediction accuracies for 

the 28 concepts were then averaged across participants. A 

prediction’s accuracy was assessed by computing the 

Euclidean distance between the activation pattern 

predicted by the model and the observed activation data, 

relative to the distance to the representations of the other 27 

concepts. The normalized rank of the distance between the 

predicted and test images (among the 28 distances) was the 

measure of prediction accuracy. Significance was 

computed using a permutation test. The results of the 

predicted images with correct labels were compared 

against the distribution of rank accuracies of predicted 

images with random labels for 100,000 random 

permutations. 

 

Results 

 
Systematicity and Commonality of Abstract Concepts 

 
Within-Participant Classification 

The mean normalized rank accuracy of the classification of 

the 28 concepts, first computed for each participant and 

then averaged over participants, was 0.82, p < 0.001 (where 

chance is 0.5). The mean classification accuracy for each of 

the 9 participants individually was also reliably above 

chance (range = 0.76 to 0.94, p < 0.001). These results 

indicate that these abstract concepts have distinctive neural 

signatures that can be characterized by the multivoxel 

activation pattern captured by the classifier. Although 

previous studies have shown that abstract domains such as 

law and music can be decoded from neural signatures 

(Anderson, Murphy and Poesio 2014), this finding reveals 

that individual abstract concepts can be decoded from their 

neural signatures.  

To measure the peripheral visual effects of stimulus 

presentation on decoding accuracy, within-participant 

classification was computed excluding occipital cortex: 

mean normalized rank accuracy of the 28 concepts across 

participants was 0.80, p < 0.001. The minimal difference 

between the inclusion and exclusion of occipital cortex 

suggests there is little to no influence of low-level visual 

features on decoding accuracy.  

 
Representational Similarity between Activation 

Patterns for Individual Concepts 

To explore the similarities among the neural 

representations of the 28 individual abstract concepts, 

representational distance matrices (RDM) were generated 

using the activation patterns for the 120 most stable voxels 

for each participant separately. The resulting concept-by-

concept RDMs of activation patterns were then averaged 

across participants. The resulting mean RDM contained 2 

clusters of similar concepts. One cluster was related to 

mathematics and scientific concepts (top left box of Figure 

1), including concepts such as subtraction and acceleration. 

A second cluster indicates similarity of activation patterns 

among the remaining 5 categories relating to social, 
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emotions, law, metaphysics, and religiosity (bottom right box 

of Figure 1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Representational similarity between neural activation 

(blue colors indicate higher similarity) for individual concepts. 

Dotted lines indicate category separation.  

 
Commonality of neural representations across 

participants 

In addition to establishing that the neural representations of 

abstract concepts were systematic and decodable within 

each participant, a between-participant classification was 

performed to determine whether these abstract concept 

representations were similar across participants. When the 

classifier was trained on the data of all but one participant, 

the mean rank accuracy for the test data from the left-out 

participant was 0.74, p < 0.01, indicating that the neural 

signatures had a substantial amount of commonality across 

participants. All 28 individual concepts were reliably 

classifiable between participants with a range of 0.58 to 0.94 

(p < 0.01). Thus these highly abstract concepts are neurally 

represented as activation patterns that are highly common 

across participants.  

 

Factor Analysis for Uncovering Underlying Neuro-Semantic 

Dimensions 

 

A two-level factor analysis (first applied to individual 

participants, then to the pooled data) was used to uncover 

the dimensions underlying the activation evoked by the 

abstract concepts. Four of the five resulting second-level 

(common) factors that accounted for the most variance were 

interpretable, using two criteria: (i) the ordering of the 28 

concepts by their factor scores for a given factor, 

particularly the concepts near the two extremes of the 

ordering; (ii) the locations of voxels with high loadings on 

the factor. These 4 factors were interpreted as 

corresponding to Verbal Representation, 

Externality/Internality (to oneself), Social Content, and 

Word Length. These 4 factors accounted for a total of 33.2% 

of variance in the group-level factor analyses: Verbal 

Representation accounted for 10%; Externality/Internality 

accounted for 7.9%; Social Content accounted for 6.9%; and 

Word Length accounted for 8.4%. 

 
Verbal Representation Factor 

This dimension is interpreted as the degree to which a 

concept is represented in verbal as opposed to perceptual 

terms (Barsalou 2003). The interpretation of this factor and 

the others is tested below. This dimension was present for 

every participant and accounted for the most or second 

most variance in first-order factor analyses. Concepts with 

large positive factor scores for this factor included 

compliment, faith, and ethics while concepts with large 

negative scores for this factor included gravity, force, and 

acceleration as shown in Table 1.  

The main cortical regions containing voxels with high 

loadings on this factor consisted of LIFG, left anterior 

supramarginal gyrus (LSMG), and left lateral occipital 

complex (LLOC; highlighted in red in Figure 2). These 

regions are consistent with a previous meta-analysis 

examining contrasts between concrete and abstract 

concepts (Wang et al. 2010). In Wang et al. (2010), GLM 

contrasts revealed that the areas around LSMG and LLOC 

activated more for concrete concepts and less for abstract 

concepts while LIFG activated more for abstract and less for 

concrete concepts. Even though the 28 concepts in the 

present study were all designed to be abstract, the 

distribution of factor scores along this dimension indicates 

that some of these concepts, such as force and acceleration 

have more perceptual content than others (such as faith and 

ethics). The Neurosynth meta-analytic database provides 

converging evidence for the interpretation of the functional 

role of LIFG (verbal processing), LSMG (somatosensation), 

and LLOC (object processing) (http://neurosynth.org; 

Yarkoni et al. 2011). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2. Locations of the voxel clusters with the highest factor 

loadings for each of the 4 interpretable factors. Voxels were 

thresholded to have a minimum cluster size of 15 and mean 

correlations above 0.2 (in either positive or negative direction) 

between their activation values and their factor loadings. Cluster 

centroid XYZ coordinates for: Verbal Representation: LIFG (-53.8   

22.2    13.4), LSMG (-58.0   -34.1   35.1), and LLOC (-54.3   -62.0   -

9.1); Social Content: LPCC (-5.8    -54.0   29.7); Externalization: 

RSMG (42.9    -41.6   47.4); and Word Length: left occipital pole (-

13.0   -96.8   -6.6).
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Table 1. Six concepts with the highest and lowest factor scores for each interpretable factor.  

 

 

 

 
Verbal Representation Externality/Internality Social Content Word Length  

compliment (1.78) causality (2.41) pride (2.11) acceleration (1.65) 

faith (1.39) sacrilege (1.83) gossip (1.99) exoneration (1.53) 

ethics (1.25) probability (1.16) equality (1.23) spirituality (1.52) 

truth (1.21) deity (1.01) forgiveness (1.23) multiplication (1.51) 

spirituality (1.01) gravity (0.84) intimidation (1.05) causality (1.02) 

necessity (0.89) equality (0.79) gravity (0.8) sacrilege (0.98) 

subtraction (-0.69) pride (-0.94) compliment (-1.16) pride (-1.04) 

causality (-0.87) anger (-1.19) deity (-1.28) faith (-1.14) 

heat (-1.74) consciousness (-1.38) spirituality (-1.5) happiness (-1.16) 

acceleration (-1.98) acceleration (-1.51) multiplication (-1.5) anger (-1.2) 

force (-2.11) sadness (-1.72) necessity (-1.52) crime (-1.49) 

gravity (-2.12) spirituality (-1.99) heat (-1.77) heat (-2.02) 

 

Note: Factor scores shown in parentheses 

 

 

 

 

Externality/Internality Factor  

The second interpretable factor corresponds to the degree 

to which a concept is experienced as an external versus 

internal state or event. An event that is external is one that 

requires the representation of the world outside oneself and 

the relative non-involvement of one’s own state. An internal 

event is one that involves the representation of the self. The 

main cortical region containing voxels loading on this factor 

was right supramarginal gyrus (RSMG; see Figure 2). This 

region has been shown to be related to emotional 

egocentricity, that is, “the tendency to project one’s own 

mental state onto others” (Silani et al. 2013). At one extreme 

of the dimension lie concepts that are external to the self 

(e.g. causality, sacrilege, and deity). At the other extreme lie 

concepts corresponding to events that are internal to the 

participant, such as spirituality and sadness (Table 1). 

Neurosynth failed to suggest any consistent functional role 

for the Externality dimension’s associated voxel cluster 

locations. The current interpretation is largely based on the 

ordering of the concepts by their factor scores on this 

dimension. 

 
Social Content Factor   

A third factor was interpreted to correspond to social 

content, as it pertains to personal experience. The concepts 

at one extreme of the dimension included pride, gossip, and 

equality while the concepts at the other extreme included 

heat, necessity, and multiplication (Table 1). The main 

cortical region containing voxels with high loadings for this 

factor was left posterior cingulate cortex (LPCC; Figure 2), 

which is associated with the contextualization of one’s self in 

space and emotions (Maddock et al. 2003; Bird et al. 2015; 

Guterstam et al. 2015). The main cortical region containing 

voxels with high loadings for this factor was the left 

posterior cingulate cortex (LPCC; Figure 2), Neurosynth 

suggests the LPCC is involved in the processing of episodic 

and autobiographical memories (http://neurosynth.org; 

Yarkoni et al., 2011). In the context of this study, the LPCC 

may be involved in the retrieval of memories of previous 

social interactions. 

 
Word Length Factor 

This fourth factor characterizes concepts based on their 

word length. The concepts that lie on the two extremes of 

this factor clearly represent the longest and shortest words 

in the set of concepts. Concepts at one extreme for this 

factor included acceleration, exoneration, and spirituality 

while concepts at the other extreme included heat, crime, 

and anger (happiness lying on the “short-word” extreme 

was an exception). The only cortical region that loaded on 

this factor was the left occipital pole (Figure 2). This finding 

regarding word-length provides a face validity check for 

the factor analysis methods and interpretations. 

 
Testing the Factor Interpretations Using Behavioral 

Ratings and a Predictive Model 

Ten participants who were not in the fMRI study rated the 

salience of the 3 semantic factor interpretations to each of 

the 28 concepts. For example, they rated on a 1-7 scale how 

verbal (as opposed to perceptually instantiable) items like 

gravity and ethics were. The correlation between the mean 

ratings and the factor scores were 0.63 for Verbal 

Representation, 0.59 for Externality, and 0.55 for Social 

Content (all significant at p < 0.01), as shown in Figure 3). To 

determine agreement among raters, intraclass correlation 

was computed for the 3 rated dimensions across 

participants; ICC was 0.88 for verbal representation, 0.93 for 

Externality, and 0.97 for Social Content (all significant at p < 

0.01).  
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Figure 3. Scatter plot of factor scores for each of the 3 semantic 

dimensions versus the mean behavioral ratings of the 28 concepts, 

and their correlations.  

 

A generative model using the independent ratings 

(and word length) was developed to predict the activation 

of “new” concepts (i.e. concepts left out of the modeling) in 

the locations corresponding to the factor-associated 

clusters, based on their association with each of the factors. 

The mean behavioral ratings served as model weights in a 

regression model, where the independent variables were 

the four factors (3 semantic factors and Word Length). To 

eliminate contamination between the training data that 

determined the locations and the data on which the model 

was tested, the 2-level factor analysis was computed on only 

8 participants and the model was tested on the remaining 

participant. In all 9 iterations of the modeling, the 4 

interpretable second-order factors were identified by 

correlating the factor scores from the 5 second-level factors 

from the 9-participant factor analysis with each of the 5 

second-level factors from the 8-participant factor model. In 

all iterations, the 4 factors were present with correlations of 

0.9 or greater. In each of the 9 iterations of the predictive 

model, each factor was associated with a set of voxel 

clusters, and each cluster was characterized by an 

enclosing cuboid. The 6 most stable voxels were selected 

from each cuboid of each factor. The mean number of 

cuboids identified across all 9 iterations are as follows: 

Verbal Representation contributed a mean of 13.22 (SD = 

1.48) cuboids; Externality/Internality contributed a mean of 

7.89 (SD = 2.71) cuboids; Social Content contributed a mean 

of 5.89 (SD = 1.17) cuboids; and Word Length contributed a 

mean of 2.56 (SD = 1.33) cuboids.  

Model predictions were made by leaving out one of 

the 28 concepts, predicting the activation for that concept 

using the behavioral ratings (and word length), and 

computing the Euclidean distance between the predicted 

activation pattern generated by the model and the 

observed (test) mean activation data. The normalized rank 

of the distance between the predicted and test images 

(among all inter-item distances) was used as a measure of 

prediction accuracy. This leave-one-out procedure was 

repeated for all 28 concepts. The mean normalized rank 

accuracy of the predictions across concepts was 0.78 (SD = 

0.09; where chance = 0.5). Mean rank accuracies for all 

participants were significantly above chance (p < 0.001) as 

determined using a 100,000-iteration permutation test. 

Although the factor analysis and its interpretation are 

exploratory, the correlations between the factor scores and 

the behavioral ratings, as well as the predictive modeling, 

provide a clear empirical test of the factor interpretations. 

  

Further Exploration of the Verbal Representation Dimension 

 

Previous studies have suggested that the relationship 

between abstractness and activation levels differs for the 

three regions in the Verbal Representation factor (i.e. LIFG, 

LSMG, and LLOC; Wang et al. 2013). Correlations between 

the second-level factor scores from this dimension and the 

MPSC activation levels were computed for each voxel in 

these 3 subregions for each participant separately. The 

correlations values were then averaged over the 

participants within each voxel. LIFG activated more for 

concepts that are more verbally represented (r = 0.38, p < 

0.05) whereas LSMG and LLOC activated more for concepts 

that are more perceptually represented (r = 0.46, p < 0.05), 

as shown in Figure 4. These results suggest that the 

abstractness of a concept corresponds to the degree to 

which it is represented in verbal terms, which can be 

thought of as a point along a verbal-perceptual continuum. 

To further investigate whether one of the variables 

underlying the Verbal Representation factor is concreteness, 

the 28 concepts’ factor scores for this dimension were 

compared with their concreteness ratings from Brysbaert et 

al. (2014), resulting in a substantial correlation (r = -0.47, p 

< 0.05). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4. Correlation between the Verbal Representation factor 

scores and MPSC activation. As concepts become more verbally 

represented they recruit more language based faculties (LIFG) and 

show less activation in regions associated with the visual 

representation of concepts (LSMG and LLOC). Positive correlations 

shown in green; negative correlations in red. 

 

Discussion 

 
The human ability to think about abstract entities plays a 

central role in scientific and intellectual progress. The 

ability to deeply understand the nature of the world around 

us (including the socio-political world) depends on the 
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repeated application of this ability over millennia. Despite 

the intuitive consensus of which concepts are abstract, it 

was not known what neurally characterizes an abstract 

concept, beyond its preferential recruitment of left frontal 

language-based areas (Binder 2005; Wang et al. 2010).  

The primary results of this study can be summarized as 

follows: first, there is enough consistent and common 

information in the neural signatures of abstract concepts to 

reliably identify a set of 28 such concepts within and across 

participants. Second, the neural representations of these 

concepts are underpinned primarily by 3 semantically 

interpretable dimensions (Verbal Representation, 

Externality/Internality, and Social Content). Third, the 

abstractness of a concept is defined not only by the absence 

of concreteness but also in terms of its verbal 

characterization. This study provides new insight into the 

neural systems and underlying implicit semantic structures 

that are used to represent abstract concepts. 

 

Systematicity and Commonality of Abstract Concepts 

 

Given the absence of common perceptual content related to 

abstract concepts, there was reason to anticipate substantial 

individual differences in the representations of such 

concepts. Nevertheless, the between-participant 

classification was reliably accurate, indicating considerable 

non-perceptual commonality in the meaning 

representations. The variation among the concepts in their 

across-participant classification accuracy provides hints at 

what makes an abstract concept representation less or more 

common. Concepts such as anger and multiplication were 

less well predicted than others across participants 

(although still reliably so), and these concepts tended to be 

highly instantiable. By contrast, concepts such as necessity, 

which are highly verbally represented, were extremely 

well predicted across participants. Thus a post-hoc 

hypothesis is that across-participant commonality is greater 

for more verbally-based concepts and somewhat lower for 

more instantiable concepts which may be instantiated 

differently across participants. 

 

Semantic Primitives associated with the Neural 

Representation of Abstract Concepts 

 

The three semantic dimensions underlying the 

representation of abstract concepts are Verbal 

Representation, Externality, and Social Content. That is, we 

propose that abstract concepts are represented based on: 

their meaning across a wider variety of contexts than 

concrete concepts (Crutch and Warrington 2005; 2010; 

Hoffman et al. 2016); their reliance on using the self as a 

reference point; and their use of social contexts as a 

reference point.  It is useful to highlight that these 

representations of abstract concepts were based on neural 

activation patterns. It is possible to assess semantic 

representations of abstract concepts based on different 

types of data, such as cooccurence properties in large 

corpora or behaviorally measured semantic features (Wang 

et al. 2017). The dimensions identified in this study provide 

a neurally-driven foundation for understanding the 

semantic underpinning of abstract concepts.  

The factor analysis procedure identifies regions 

reflecting the organization of the 28 concepts along various 

dimensions. However, none of the factor locations included 

the anterior temporal lobe (ATL), which has been shown to 

activate to both concrete and abstract words (Jefferies et al. 

2009; Hoffman 2016) and has also been shown to be 

involved in the integration of low-level perceptual features 

of visual objects (Coutanche and Thompson-Schill 2015). A 

GLM contrast of the 28 abstract concepts vs. fixation 

revealed activation in the superior portion of the ATL, 

indicating that ATL may serve a similar function for all 28 

abstract concepts.   

One of the strengths of the approach that was used 

here is the quantitative assessment of the fit of the 

interpretation of each dimension to the activation data. 

Although the interpretations fit the data well, as with any 

theoretical proposal, alternative interpretations can be 

generated and quantitatively assessed.   

 

Degree of abstractness as a point on a gradient between 

language and percepts 

 

The Verbal Representation factor organizes conceptual 

representations based on the dissociation of activity in 

neural structures associated with verbal processing (LIFG) 

and spatial/object processing (Figure 4; Grill-Spector et al. 

2001). LIFG has been reliably shown to be involved in 

verbal processing (Yarkoni et al., 2011; Hoffman et al., 2016). 

It is incomplete to say that the abstract concepts evoke less 

activation in regions associated with perceptual processing; 

rather, abstract concepts both evoke less activation in 

regions associated with perceptual processing and evoke 

more activation in regions strongly associated with verbal 

processing. This dissociation in neural patterning suggests 

that the degree of abstractness of a concept is a point on a 

continuum between language systems and perceptual 

processing systems. This result provides a neural 

realization for the intuitive idea that abstractness is not a 

binary construct but rather a gradient-like translation of a 

concept into a more verbal encoding. 

This point raises an interesting theoretical question 

regarding the role of neural language systems, particularly 

LIFG, in the verbal representation of abstract concepts. 

LIFG has been implicated in the integration of semantic 

relationships among different contexts. Abstract concept 

representations require an integration of meaning from a 

greater variety of contexts relative to concrete concepts 

(Crutch and Warrington 2005, 2010; Hoffman 2016; Hayes 

and Kraemer 2017). Thus, LIFG may become more activated 

for the concept ethics than gravity because ethics requires 

integration across more semantically variable contexts. The 

activation in LSMG (and LLOC), by contrast, is related to the 

instantiability of a concept (Figure 4). The critical finding 

here is that the degree of perceptual involvement varies 

systematically across abstract concepts.  

 

Conclusion 

 

The lack of a perceptual grounding makes abstract 

concepts difficult to characterize in semantic and 

psychological terms, but a neural framework provides a 

good beginning to the answer. What neurally defines the 

abstractness of a concept is its place on a continuum 

between perceptible experience and a purely verbal entity. 

This continuum emerges even among a set consisting 
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entirely of abstract concepts. Moreover, the present study 

suggests that abstract concepts rely on semantic features 

which are also not necessarily perceptually grounded, such 

as our ability to construe abstract concepts relative to 

ourselves, or to use social contexts as a reference. 
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