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ABSTRACT

In this thesis we study the problem of exact completion for 𝑚 × 𝑛 sized

matrix of rank 𝑟 and the problem of low-rank estimation with the adaptive

sampling method. We introduce a relation of the exact completion problem

with the sparsest vector of column and row spaces. Using this relation, we

propose matrix completion algorithms that exactly recovers the target ma-

trix. These algorithms are superior to previous works in two important ways.

First, our algorithms exactly recovers 𝜇0-coherent column space matrices by

probability at least 1 − 𝜖 using much smaller observations complexity than

- 𝒪(𝜇0𝑟𝑛log 𝑟𝜖)—the state of art. Specifically, many of the previous adap-

tive sampling methods require to observe the entire matrix when the column

space is highly coherent. However, we show that our method is still able to

recover this type of matrices by observing a small fraction of entries under

many scenarios. Second, we propose an exact completion algorithm, which

requires minimal pre-information as either row or column space is not being

highly coherent. We provide an extension of these algorithms that is robust

to sparse random noise. Besides, we propose an additional low-rank estima-

tion algorithm that is robust to any small noise by adaptively studying the

shape of column space. At the end of the thesis, we provide experimental

results that illustrate the strength of the algorithms proposed here.

This thesis have been written mainly based on the paper [12].
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Chapter 1

Introduction

In this thesis, we illustrate how adaptivity helps us to reach theoretical lower

bounds concerning observation count in the matrix completion problem. In

modern data analysis, it has been presented that in many scenarios, adap-

tive sensing and sampling can work more efficiently than passive methods

[10, 27]. Our main objective is to further optimize adaptive sampling by

minimizing the number of observations needed to recover the target matrix

entirely. We show how to recover the entire low-rank matrix by observing

information-theoretically least number of entries in various settings.

Low-rank matrix completion plays a significant role in many real-world ap-

plications, including camera motion inferring, multi-class learning, posi-

tioning of sensors, and gene expression analysis [2, 15]. In gene expression

analysis, the target matrix represents expression levels for various genes

across several conditions. Measuring gene expression, however, is expen-

sive, and we would like to estimate the target matrix with a few observa-

tions as possible. Here, we provide an algorithm that can be used for matrix
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completion from limited data. Roughly speaking, to find each unknown ex-

pression level, we are supposed to do multiple measurements. Each of the

additional measurements has its extra cost. Naturally, we aim to solve the

entire problem using the least possible measurement cost.

Krishnamurthy and Singh ([15], [16]) illustrated how adaptive sampling re-

duces observation complexity compared to passive sampling. These results

were two of the earliest algorithms that were robust against coherent row

space. Like many other results in the literature, these algorithms also heav-

ily rely on the incoherence of the column space. At first, authors showed

for an 𝑛 × 𝑛 sized, rank 𝑟 matrix, with column space coherence of 𝜇0, can

be exactly recovered using just 𝒪(𝑛𝜇0𝑟1.5 log 𝑟) observations ([15]), then

this result optimized to 𝒪(𝑛𝜇0𝑟 log2 𝑟) in the later work ([16]). Recently,

[2] further improved previous results by proposing algorithm that performs

𝒪(𝑛𝜇0𝑟 log 𝑟) observations to accomplish the task.

The main goal of this work is to give a new approach to the exact recov-

ery problem using the sparsest vector of column and row spaces instead

of coherence. Finding sparsest vector has been in the focus of the research

attention for a long time ([20], [22], [7]). However, to the best of our knowl-

edge, it is the first time applied to active matrix completion problem.

In this particular work, we approach the exact completion problem in vari-

ous given pre-information settings. Our first algorithm requires the precise

value of the rank and no other information. Our second algorithm does not

request any information except knowing that either column or row space

10



is not highly coherent. For comparison, as we discuss in the next sec-

tions, previous adaptive sampling recovery algorithms require the value of

𝑛𝑟𝜇0polylog
𝑟
𝜖 , which implicitly requests estimation or exact value of 𝑟 and

𝜇0.

1.1 Main Results

In light of the above discussion, we state the main contributions of this work.

∙ Relation of the sparsest vector of the column and row space and the

problem of exact recovery has been studied in detail. An exact com-

pletion algorithm is proposed with respect to these vectors. Moreover,

using the relation of the sparsest vector to coherence number, we show

that the proposed method exactly recovers the underlying low-rank ma-

trix using less observation than the state of the art.

∙ We provide efficient algorithms that require minimal information as

ERR (rank), ERRE (either row or column space is not coherent).

Moreover, we show the observation complexity of these algorithms

is upper bounded by 𝒪(𝑛𝑟𝜇0 log 𝑟
𝜖). (the expression for observation

complexity is provided in the next sections after all the necessary defi-

nitions are given).

∙ To the best of our knowledge, all previous adaptive sampling methods

need to observe entire matrix if the underlying matrix has a highly

coherent column space. In the algorithm EREI we show that having

incoherent row space can be a backup and we can still recover these
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matrices using a small fraction of entries even it has highly coherent

column space.

∙ We extend our exact recovery method to make it robust to sparse ran-

dom noise in columns similar to [2]. Besides, we provide a low-rank

estimation method that is robust to any small noise, relying on the

adaptive estimation of the angle between the underlying subspace and

estimated subspace.

1.2 Related Work

The power of adaptive sampling had been illustrated even earlier than [15].

[10, 19, 1, 25] showed that under certain hypothesis, adaptive sampling out-

performs all passive schemes.

Exact recovery and matrix completion has been studied extensively under

passive schemes as well. Nuclear norm minimization is one of the most pop-

ular methods [9]. [4] and [23] showed that Ω((𝑚+𝑛)𝑟max(𝜇20, 𝜇
2
1) log

2 𝑛2)

observations are enough to recover an 𝑚× 𝑛 matrix of rank 𝑟 using nuclear

norm minimization, where 𝜇0 and 𝜇1 correspond to column and row space

coherence parameters. Using the same technique, [5] showed that under the

uniform sampling setting we need at least Ω(𝑚𝑟𝜇0 log 𝑛) observations to re-

cover the matrix exactly. This result implies the near optimality of nuclear

norm minimization. Another work using nuclear norm minimization is due

to [6], in which they show how to recover coherent 𝑛 × 𝑛 sized matrix of

rank 𝑟 using just 𝒪(𝑛𝑟 log2 𝑟) observations.
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[14] showed how to use a nuclear norm minimization approach to approx-

imate noisy low-rank matrices under some global information conditions.

This work assumes that 𝜇0 (coherence of column space) is below a given

threshold. This result has a similar flavor to ours in that it works even when

there is less initial knowledge about the target matrix. Later, this result was

extended to a point where without any assumption on 𝜇0 the target matrix

could be approximated. However, the reconstruction error of approximation

becomes worse in this case [18]. There are other approaches for noisy ma-

trix completion which they mainly focus on parameters that describe how

much information an observation reveals [13, 21].

1.3 Preliminaries

Let M denote the underlying 𝑚 × 𝑛 sized rank-𝑟 matrix that we target to

recover. For any positive integer 𝑛, let [𝑛] represent the set {1, 2, ..., 𝑛}.

For any vector 𝑥 = (𝑥1, 𝑥2, ..., 𝑥𝑛) of size 𝑛, ‖𝑥‖𝑝 will denote the 𝐿𝑝 norm

of it. We call 𝑥𝑖 the 𝑖’th coordinate of 𝑥. For any, Ω ⊂ [𝑛] let 𝑥Ω denote

the induced subvector of 𝑥 from coordinates Ω. For instance, for the vector

𝑥 = (1, 2, 4, 8, 9) and Ω = {1, 3}, 𝑥Ω represents the vector (1, 4). For

any R ⊂ [𝑚], MR: stands for an |R| × 𝑛 sized submatrix of M that rows

are restricted by R. We define M:C in a similar way for restriction with

respect to columns. Intuitively, MR:C defined for |R|× |C| sized submatrix

of M with rows restricted to R and columns restriced to C. Moreover,

for the special case M𝑖: stands for 𝑖-th row and M:𝑗 stands for the 𝑗’th

column. Similarly, M𝑖:C will represent the restriction of the row 𝑖 by 𝐶 and
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MR:𝑗 represents restriction of the column 𝑗 by R. 𝜃(𝑢, 𝑣) stands the angle

between vectors 𝑢 and 𝑣. Moreover, 𝜃(𝑢,V) = min{𝜃(𝑢, 𝑣)|𝑣 ∈ V} and

𝜃(U,V) = max{𝜃(𝑢,V)|𝑢 ∈ U} for subspaces U and V. The projection

operator to subspace U will be represented by 𝒫U.

1.4 Problem Setup

One of the critical factors in the matrix completion problem is due to the

coherence parameter of the target matrix [11, 3]. We define the coherence

of an 𝑟-dimensional subspace U of R𝑛 in the following way:

𝜇(U) =
𝑛

𝑟
max
1≤𝑗≤𝑛

||𝒫U𝑒𝑗||2,

where 𝑒𝑗 denotes the j-th standard basis element and 𝒫U represents the or-

thogonal projection operator onto the subspace U. It is easy to see that if

𝑒𝑗 ∈ U for some 𝑗 ∈ [𝑛], then the coherence will attain its maximum value:

𝜇(U) = 𝑛
𝑟 . We can see that if U is equally distant from each standard basis

vectors, then 𝜇(U) will be close to 1, and additionally, it is lower bounded

by 1.

We want to present an algorithm due to [15] here before providing our main

results in the next section. Authors proposed an adaptive algorithm that

can recover 𝑛 × 𝑛 sized rank-𝑟 matrices using 𝒪(𝑛𝜇0𝑟1.5 log 𝑟) observa-

tions, which was indeed better than known state of the art 𝒪(𝑛𝜇0𝑟2 log2 𝑛)

for passive algorithms ([23]). The algorithm studies column space by de-

ciding whether the partially observed column is linearly independent with
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previously fully observed columns. Authors show observing𝒪(𝜇0𝑟1.5 log 𝑟
𝜖)

observations for each column is enough to make the decision for linear inde-

pendence with probability 1− 𝜖. The algorithm below describes the details

of the proposed algorithm.

KS2013: Exact recovery [15].
Input: 𝑑 = 𝒪(𝜇0𝑟

1.5 log 𝑟
𝜖
)

Initialize: 𝑘 = 0, ̂︀U0 = ∅
1: Draw uniformly random entries Ω ⊂ [𝑚] of size 𝑑
2: for 𝑖 from 1 to 𝑛 do
3: if ‖MΩ:𝑖 − 𝒫̂︀Uk

Ω
MΩ:𝑖‖ > 0

4: Fully observe M:𝑖

5: ̂︀U𝑘+1 ← ̂︀U𝑘 ∪M:i,
6: Orthogonalize ̂︀U𝑘+1

7: 𝑘 = 𝑘 + 1
8: otherwise:
9: 𝑘 = 𝑘 + 1 ̂︁M:𝑖 = ̂︀U𝑘 ̂︀U𝑘+

Ω
̂︁MΩ:𝑖

Output: ̂︁M
Later, authors improved the observation complexity to 𝒪(𝑛𝜇0𝑟 log2 𝑟𝜖) in a

proceeding work ([16]). Then, another improvement due to [2] further re-

duced this complexity to𝒪(𝑛𝜇0𝑟 log 𝑟
𝜖)-current state of the art using similar

setting and algorithm.
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Chapter 2

Exact Completion Problem

In this chapter, we provide theoretical results for the exact completion prob-

lem for𝑚×𝑛 sized rank-𝑟 matrices. We first start with defining the sparsity-

number and study its properties. Then, in the following sections, we provide

exact recovery algorithms under different pre-information using the idea of

sparsity-number. The first algorithm uses the precise value of the rank as the

only pre-information. The second algorithm assumes that either row or col-

umn space sparsity number is not low (which this algorithm can be treated

as a rank estimation algorithm as well). Finally, the third algorithm will as-

sume that we have an estimation of rank and sparsity numbers of coherence

numbers.

2.1 Exact Recovery with sparsity-number

In this section, we define the sparsity-number and discuss its properties.

Sparsity-number of vectors is directly related to ℓ0 norm and for matrices

and subspaces it is directly related to ℓ0 semi-norm of basis columns. Formal
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definitions for each case after defining nonsparsity-number below:

Definition 1. We represent nonsparsity-number of a vector 𝑥 ∈ R𝑚 by 𝜓(𝑥)

and define as 𝜓(𝑥) = ‖𝑥‖0. Moreover, we extend the definition to matrices

and subspaces in the following way: for M ∈ R𝑚×𝑛 of rank 𝑟 and subspace

U ⊆ R𝑚 of dimension 𝑟 we have

𝜓(M) = min{𝜓(𝑥)|𝑥 = M𝑧 and 𝑧 /∈ null(M)}

𝜓(U) = min{𝜓(𝑥)|𝑥 ∈ U and 𝑥 ̸= 0}

Then sparsity-number is just completion of the nonsparsity-number:

Definition 2. Sparsity-number is denoted by 𝜓 and for vector 𝑥 ∈ R𝑚, for

matrix M ∈ R𝑚×𝑛 and for subspace U ⊆ R𝑚 it is defined as:

𝜓(𝑥) = 𝑚− 𝜓(𝑥)

𝜓(M) = 𝑚− 𝜓(M)

𝜓(U) = 𝑚− 𝜓(U)

The space sparsity-number for matrices provides a novel and easy way to

analyze adaptive matrix completion algorithms. In many adaptive matrix

completion methods, a crucial step is to decide whether a column is (or is

not) contained in a given subspace. Ideally, we would like to make this deci-

sion as soon as possible before observing the entire column vector. Here, we

show that sparsity-number helps us to decide whether a partially observed

vector can be contained in a given subspace or not.

18



Optimal Observation for Each Column Before proceeding to more advanced

algorithms, we target to answer one fundamental question. What is the spe-

cific number of entries in KS2013 to observe in a column that allows us

to deterministically decide whether it is independent or dependent on pre-

vious columns? The following lemma helps us to answer this fundamental

question.

Lemma 1. Let U be a subspace of R𝑚 and 𝑥1, 𝑥2, ..., 𝑥𝑛 be any set of vectors

selected from U. Then the linear dependence of 𝑥1Ω, 𝑥
2
Ω, ..., 𝑥

𝑛
Ω implies linear

dependence of 𝑥1, 𝑥2, ..., 𝑥𝑛, for any Ω ⊂ [𝑚] such that |Ω| > 𝜓(U).

Proof. By the hypothesis of linear dependence, there are coefficients 𝛼1, ..., 𝛼𝑛,

not all zero, such that

𝛼1𝑥
1
Ω + ...+ 𝛼𝑛𝑥

𝑛
Ω = 0.

To show linear dependence of 𝑥1, . . . , 𝑥𝑛 we prove the following equation

also satisfies

𝛼1𝑥
1 + ...+ 𝛼𝑛𝑥

𝑛 = 0

Assume by contradiction 𝑦 =
∑︀𝑘

𝑖=1 𝛼𝑖𝑥𝑖 is a nonzero vector. But, we have

𝑦Ω =
𝑘∑︁
𝑖=1

𝛼𝑖𝑥𝑖Ω = 0

which implies 𝜓(U) ≥ |Ω| from the definition of space sparsity number.

However, |Ω| > 𝜓(U) from the hypothesis of the lemma which concludes a
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contradiction. Therefore, the assumption the vector 𝑦 being nonzero vector

cannot be true, then the following satisfies :

𝑦 =
𝑘∑︁
𝑖=1

𝛼𝑖𝑥𝑖 = 0

In the following example we show that the statement of the lemma 1 is

tight. Specifically, we show that there is a matrix which linear dependence

in 𝜓(U) many coordinates does not imply linear dependence of vectors.

M =

⎡⎢⎢⎢⎣
1 2 5

1 2 4

1 0 4

1 0 4

⎤⎥⎥⎥⎦
First observation here is columns of M is linearly independent. Then, the

next observation is that 𝑒1 = (1, 0, 0, 0) is contained in the column space.

Therefore, the space sparsity number of the column space of M is at least

equal to 3. Using the fact that space sparsity number is less then 4 we

conclude that column space sparsity number is exactly equal to 3. Lets

check the submatirx MΩ: where Ω = {2, 3, 4}:

MΩ: =

⎡⎣1 2 4

1 0 4

1 0 4

⎤⎦
Columns of MΩ: is linearly dependent (first and third column), however

columns of M is not. Then, it follows that there is an example that when

‖Ω‖ = 𝜓(U) but the hypothesis of the lemma 1 not satisfied. Therefore, the
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statement of the lemma 1 is tight.

Following lemma shows the trivial reverse statement of the lemma 1.

Lemma 2. Let U be a subspace of R𝑚 and 𝑥1, 𝑥2, ..., 𝑥𝑛 be any set of vectors

from U. Then the linear dependence of 𝑥1, 𝑥2, ..., 𝑥𝑛 implies linear depen-

dence of 𝑥1Ω, 𝑥
2
Ω, ..., 𝑥

𝑛
Ω, for any Ω ⊂ [𝑚].

Proof. The proof of the statement is straightforward observation of the fact

that

𝛼1𝑥
1 + ...+ 𝛼𝑛𝑥

𝑛 = 0

implies

𝛼1𝑥
1
Ω + ...+ 𝛼𝑛𝑥

𝑛
Ω = 0Ω = 0

Merging the idea of the algorithm KS2013 with the lemma 1 we get an ex-

act completion algorithm. More concretely, setting 𝑑 = 𝜓(M)+1 is enough

to ensure the underlying matrix will be recovered always as it is enough to

decide whether partially observed column is contained in the subspace or

not. Details of the algorithm ERCS (Exact recovery with column sparsity)

is provided below.

Under the condition that the column space U of the underlying matrix sat-

isfies 𝑟 − 1 = 𝜓(U), the observation complexity of the algorithm ERCS

becomes𝑚×𝑟+(𝑛−𝑟)×𝑟 = (𝑚+𝑛−𝑟)𝑟 which is the degree of freedom

of the set of 𝑚 × 𝑛 sized rank-𝑟 matrices. Therefore, under this condition

ERCS is absolutely optimal as its sample complexity is equal to degree of
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freedom of rank-𝑟 matrices. We talk about this case further after technical

details of the algorithm.

ERCS: Exact recovery with column sparsity
Input: 𝑑 = 𝜓(U) + 1

Initialize: 𝑘 = 0, ̂︀U0 = ∅
1: Draw uniformly random entries Ω ⊂ [𝑚] of size 𝑑
2: Observe entire MΩ:

3: for 𝑖 from 1 to 𝑛 do
4: if ‖MΩ:𝑖 − 𝒫𝒰ΩMΩ:𝑖‖ > 0
5: Fully observe M:𝑖

6: ̂︀U𝑘+1 ← ̂︀U𝑘 ∪M:i

7: Orthogonalize ̂︀U𝑘+1

8: 𝑘 = 𝑘 + 1
9: otherwise:

10: ̂︁M:𝑖 = ̂︀U𝑘 ̂︀U𝑘+

Ω:
̂︁MΩ:𝑖

Output: Underlying matrix ̂︁M
Theorem 1. Let U represent the column space of the 𝑚×𝑛 sized matrix M

of rank 𝑟. Then, ERCS exactly recovers M by

𝑚× 𝑟 + (𝑛− 𝑟)(𝜓(U) + 1)

observations.

Proof. We start by showing ERCS recovers M exactly and later we focus

on observation count. To prove correctness of exact recovery we use math-

ematical induction as follow:

𝐻𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠 : after 𝑖-th iteration ERCS already correctly recovered first 𝑖

columns.

𝐵𝑎𝑠𝑒 𝑐𝑎𝑠𝑒 : 𝑖 = 1 is trivial as if at least one of the observed entries is

nonzero we completely observe the column, which guarantees correctness.
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On the other hand, if it happens all of 𝜓(U) + 1 entries are zero, then the

first column is indeed completely zero because the definition of the space

sparsity number implies there can be at most 𝜓(U) many zero coordinates

in a nonzero vector in the column space.

𝐻𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠 𝑝𝑟𝑜𝑜𝑓 : Let assume after step 𝑖−1, ERCS recovered first 𝑖−1

columns correctly and we want to show the algorithm exactly recovers 𝑖-th

column too.

From the design of the algorithm MΩ:𝑖 is already observed. Then, if in the

line 4, ERCS decides the column is linearly independent with previous

columns, as in the next line we completely observe the column there is no

chance that the algorithm can do mistake under this case. Therefore, the

only remaining case is, if in the line 4 the algorithm decides the column 𝑖 is

linearly dependent.

From the statement of lemma 1, if a set of vectors from a subspace U are

linearly dependent on a given subset of coordinates, then they are indeed

linearly dependent. We conclude that the algorithm’s decision is correct and

by just back projection method, the algorithm recovers remaining entries of

the partially observed column. Therefore, column 𝑖 also recovered correctly

and we are done with the proof of induction hypothesis.

Our next goal is to show the observation complexity is 𝑚 × 𝑟 + (𝑛 −

𝑟)(𝜓(U)+1). From the lemma 1, we conclude that whenever current column

is indeed linearly independent with previous columns, the ERCS also de-
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cides it is linearly independent. Moreover, from the lemma 10, we conclude

that if the current column is linearly dependent with previous columns, then

in this case ERCS decides it is linearly dependent. As there are 𝑟 many

linearly independent columns in the underlying matrix M, the algorithm

decides independence exactly 𝑟 times and in each of them it does complete

observations. However, in remaining 𝑛 − 𝑟 columns, number of observa-

tions is exactly 𝜓(U) + 1. As a conclusion, number of total observations is:

𝑟𝑚+ (𝑛− 𝑟)(𝜓(U) + 1)

Corollary 1. ERCS still performs correctly under the case 𝑑 set to be any

number larger than 𝜓(U) + 1. The only difference is that the updated ob-

servation complexity will be 𝑚× 𝑟 + (𝑛− 𝑟)𝑑

Proof. The proof is exactly proceeds as proof of the theorem. The key point

is to notice, lemma 1 and lemma 2 are still satisfying.

Notice that both of algorithms KS2013 and ERCS have two stages of

observations.

𝑖 : Select subset of rows and observe them completely.

𝑖𝑖 : Detect linearly independent columns and observe them completely.

The discussion for tightness of the lemma 1 above implies that ERCS is

optimal deterministic two stage observation algorithm. Moreover, in the
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corollary above we discussed for any 𝑑 ≥ 𝜓(U) + 1 the algorithm ERCS

algorithm would still perform correctly. Therefore, having constant factor

approximation of the space sparsity number of the column space would lead

asymptotically optimal algorithm:

̂︀𝑑 ≤ 𝐾𝜓(U) =⇒ ̂︀𝑑+ 1 ≤ 𝐾(𝜓(U) + 1)

=⇒ (𝑛− 𝑟)(̂︀𝑑+ 1) ≤ (𝑛− 𝑟)𝐾(𝜓(U) + 1)

adding 𝑚𝑟 to both side leads to

𝑟𝑚+ (𝑛− 𝑟)(̂︀𝑑+ 1) ≤ 𝑟𝑚+ (𝑛− 𝑟)𝐾(𝜓(U) + 1)

≤ 𝐾𝑟𝑚+𝐾(𝑛− 𝑟)(𝜓(U) + 1)

= 𝐾
(︀
𝑟𝑚+ (𝑛− 𝑟)(𝜓(U) + 1)

)︀
Notice that 𝑟𝑚+(𝑛−𝑟)(̂︀𝑑+1) is the observation complexity we have once

we have ̂︀𝑑 as 𝐾-approximation of 𝜓(U) and 𝑟𝑚 + (𝑛 − 𝑟)(𝜓(U) + 1) is

the complexity for optimal two stage as we discussed here. All together, the

inequality above implies constanct approximation to space sparsity number

gives as constant approximation to optimal solution.

In the following lemma we study possible values of the sparsity number:

Lemma 3. For the column space U of 𝑚 × 𝑛 sized matrix M with rank-𝑟,

the following inequality is satisfied

𝑟 − 1 ≤ 𝜓(U) ≤ 𝑚− 1.
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Proof. 𝜓(U) < 𝑚 is straightforward because any nonzero vector in R𝑚 has

at most𝑚−1 coordinates equal to zero. Then, it follows from the definition

of the space sparsity number, 𝜓(U) ≤ 𝑚− 1.

In the rest of the proof we prove 𝑟 − 1 ≤ 𝜓(M). M having rank 𝑟 implies

that we can choose 𝑟 rows from it that are the basis for the row space of it.

Technically, we may find 𝑅 ⊂ [𝑚] such that |𝑅| = 𝑟 and M𝑅: is rank 𝑟.

Similarly, we can find 𝐶 ⊂ [𝑛] such that |𝐶| = 𝑟 and M𝑅:𝐶 is an 𝑟×𝑟-sized

matrix of rank 𝑟. It follows that there exists 𝛼 ∈ R𝑟 such that

M𝑅:𝐶𝛼 = 𝑒1 =
(︀
1, 0, . . . , 0

)︀
.

Consequently, M:𝐶𝛼 ̸= 0 but has zero components in 𝑟 − 1 of the indices

given by 𝑅. Thus , we have:

𝜓(M:𝐶) ≥ 𝑟 − 1

which together with upper bound concludes the statement of the lemma.

It is easy to construct examples to show both sides of the inequality is tight

(i.e. equality satisfied). For any matrix that 𝑒1 =
(︀
1, 0, 0, . . . , 0

)︀
is con-

tained in the column space, 𝜓(U) = 𝑚 − 1 is trivially correct. Moreover,

column space of the general rank-𝑟 matrices creasted as M = XY where

X ∈ R𝑚×𝑟 and X𝑖,𝑗 ∼ 𝒩 (0, 1), Y ∈ R𝑟×𝑛 and Y𝑖,𝑗 ∼ 𝒩 (0, 1) left side of

the inequality is tight (i.e. 𝑟 − 1 = 𝜓(U)).
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2.1.1 Heterogeneous Observation Cost Exact Recovery

In this section, we discuss the completion problem where entries of the ma-

trix has non uniform cost to observe. We study two types of heterogeneous

cost model:

∙ Each column has its own/different observation cost and entries of the

same column has the same cost.

∙ Each entry of the matrix has different cost.

Uniform Cost Across Columns

Problem: For any fixed 𝑗, the cost of observing M𝑖:𝑗 is equal to 𝜒𝑗 for any

1 ≤ 𝑖 ≤ 𝑚, and 𝜒1, 𝜒2, . . . , 𝜒𝑛 are arbitrary positive numbers and we target

to recover the matrix M as cheap as possible.

Solution: We propose a slight modification of the ERCS to solve opti-

mally among the two staged methods as we discussed before. Lets remind

that in the algorithm we show that selecting any 𝑑 = 𝜓(U) + 1 many rows

is enough to guarantee exact recovery deterministically. In the next stage,

we iteratively go through columns one by one starting with the first column,

and if we detect a column is linearly independent with previous ones, we

completely observe it. If not, we recover it using the pre-determined sub-

space.

To adapt the solution for this problem, we just need to change the order of

the columns we start to check. Basically, instead of starting with the first
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column, we should start with the cheapest one. If we decide its not con-

tained in the current subspace, we completely observe all entries and if it is

contained then we just recover with the current subspace. Then, we move

to second cheapest column and so on so forth with the increasing order of

cost.

Correctness: We can see that the proof of the correctness of ERCS is in-

dependent of the order of the columns. Therefore, selecting columns with

increasing order of the cost would not change the correctness of the algo-

rithm.

Optimality: The set of two stage algorithm can be parametrized by two

numbers. First one is - 𝑑- the number of rows fully observed and the second

is the subset of indices of columns to observe fully. We analyse the optimal

algorithm for three cases of values of 𝑑:

1. 𝑑 ≤ 𝜓(U). It is obvious that optimal algorithm cannot have 𝑑 ≤ 𝜓(U),

because from the discussion for tightness of the lemma 1 and optimality of

ERCS, there are matrices that selection of 𝑑 = 𝜓(U) rows is not enough to

guarantee the existence of 𝑟 linearly independent rows.

2. 𝑑 = 𝜓(U)+1 It is a well known fact that the set of column basises are ma-

troids and Greedy algorithms gives the optimal solution for matroids [26].

Note that the algorithm designed above is efficient way of giving greedy so-

lution.

3. 𝑑 > 𝜓(U) + 1. Lets assume that the optimal algorithm takes 𝑑 > 𝑑 rows
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in the first phases and columns: 𝑖1, 𝑖2, . . . , 𝑖𝑟. We first note that, 𝑟 = 𝑟, it is

because if 𝑟 < 𝑟 then selected columns are not enough to learn the column

space and if 𝑟 > 𝑟 we can pick subset of these columns that is basis for

column space and selecting this basis has less cost which contradicts to op-

timality. Therefore, 𝑟 = 𝑟 for optimal case. Moreover, we can use the same

subset selection argument to pick 𝜓(U) + 1 sized subset of rows then select

the same set of columns and it will be cheaper. Therefore, for optimality we

should select exactly 𝑑 = 𝜓(U) + 1 rows.

Exact recovery with full heterogeneity: For any given 𝑖, 𝑗, the cost of

observing the entry M𝑖:𝑗 is equal to 𝜒𝑖𝑗 and 𝜒11, 𝜒12, . . . , 𝜒𝑚𝑛 are arbitrary

positive numbers and similar to the previous problem we target to recover

the matrix M as cheap as possible.

ERHC: Exact recovery with heterogeneous cost
Input: 𝑑 = 𝜓(U) + 1 here U is the column space of the underlying matrix
Initialize: ̂︁M set to 𝑚× 𝑛 sized null matrix, ̂︀U0 = ∅, 𝑘 = 0

1: for 𝑖 from 1 to 𝑚, do
2: 𝜒𝑖 =

∑︀𝑛
𝑗=1 𝜒𝑖𝑗

3: Sort 𝜒𝑖s with increasing order and select first 𝑑 and denote their index set by−𝑅
4: Observe entire M𝑅:

5: for 𝑖 from 1 to 𝑚, do
6: 𝜒𝑖 =

∑︀
𝑗∈[𝑛]∖𝑅 𝜒𝑖𝑗

7: Sort 𝜒𝑖s with increasing order and lets denote {𝑖1, 𝑖2, . . . , 𝑖𝑛} as 𝜒𝑖1 ≤ 𝜒𝑖2 ≤ . . . ≤ 𝜒𝑖𝑛

8: for ℎ from 1 to 𝑚, do
9: If ‖M𝑅:𝑖ℎ − 𝒫̂︀U𝑘

𝑅
M𝑅:𝑖ℎ‖2 > 0

10: Fully observe M:𝑖ℎ add it to the basis ̂︀U𝑘

11: Orthogonalize ̂︀U𝑘

12: 𝑘 = 𝑘 + 1
13: Otherwise: ̂︁M:𝑖ℎ =

̂︀U𝑘 ̂︀U𝑘+

𝑅:
̂︁M𝑅:𝑖ℎ

14: return ̂︁M
Output: Underlying matrix ̂︁M
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Solution: We describe the solution in the algorithm ERHC:

Correctness: We can see the correctness of ERHC is due to the correct-

ness of ERCS as selecting cheapest 𝜓(U) + 1 is special case of selecting

any 𝜓(U) + 1 many columns and iteration order over the columns doesn’t

matter similarly for this case too.

Optimality: Unlike to the previous case, greedy algorithm doesn’t give us

the cheapest combination of columns and rows. Following example pro-

vides a matrix and entry costs that shows that greedy algorithm is not opti-

mal.

M =

⎡⎢⎢⎢⎣
1 1 2 3

1 2 3 4

1 3 4 5

1 4 5 6

⎤⎥⎥⎥⎦ 𝜒 =

⎡⎢⎢⎢⎣
1 1 4 1

1 5 3 4

4 3 4 4

1 4 4 8

⎤⎥⎥⎥⎦
The greedy algorithm for this case observes rows 𝑅 = {1, 2} and columns

𝐶 = {1, 2} which has overall cost of:

(1 + 1 + 4 + 1) + (1 + 5 + 3 + 4) + (4 + 1) + (3 + 4) = 32

However, observing 𝑅 = {1, 3} and columns 𝐶 = {1, 3} would give us

overall cost of:

(1 + 1 + 4 + 1) + (4 + 3 + 4 + 4) + (1 + 1) + (3 + 4) = 31

which is cheaper than greedy algorithm.

However, with the same cost matrix, there are other matrices that shares

the same column space as M (therefore the same column space sparsity
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number) but greedy algorithm is still optimal. For the same cost matrix with

a slightly modified underlying matrix, we can give an example:

M =

⎡⎢⎢⎢⎣
1 1 2 2

1 2 2 3

1 3 2 4

1 4 2 5

⎤⎥⎥⎥⎦ 𝜒 =

⎡⎢⎢⎢⎣
1 1 4 1

1 5 3 4

4 3 4 4

1 4 4 8

⎤⎥⎥⎥⎦
This gives us the conclusion, with just information of the observation cost

matrix and column space sparsity number, we cannot pick theoretical opti-

mal set of rows and columns that is guaranteed carrying all of information

of the underlying matrix.

2-Optimality: Even though greedy algorithm cannot return the optimal set

of rows and columns, here we show that the overall cost of the cost oof the

algorithm is at most twice expensive than optimal.

We denote the row set and column set parameter of optimal 2-stage algo-

rithm 𝑅̃ and 𝐶 and cost of it by 𝜎𝑂𝑃𝑇 . Then, we can decompose optimal

soluton into its parts as following:

𝜎𝑂𝑃𝑇 = 𝜒(M𝑅̃:) + 𝜒(M:𝐶)− 𝜒(M𝑅̃:𝐶)

Trivially, both of the following inequalities satisfied

𝜒(M𝑅̃:𝐶) ≤ 𝜒(M:𝐶)

𝜒(M𝑅̃:𝐶) ≤ 𝜒(M𝑅̃:)
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which these inequalities implies that

𝜎𝑂𝑃𝑇 ≥ max(𝜒(M:𝐶), 𝜒(M𝑅̃:)).

Now lets decompose cost of greedy algorithm to its pieces:

𝜎𝐺 = 𝜒(M𝑅:) + 𝜒(M:𝐶)− 𝜒(M𝑅:𝐶)

Note that the greedy algorithm doesn’t necessarily selects cheapest basis

columns, however selected columns minimizes the overall cost after rows

selected. Therefore, we conclude that if we denote the set of cheapest

columns by 𝐶𝐵, then the following inequality satisfied:

𝜎𝐺 = 𝜒(M𝑅:) + 𝜒(M:𝐶)− 𝜒(M𝑅:𝐶) ≤ 𝜒(M𝑅:) + 𝜒(M:𝐶𝐵)− 𝜒(M𝑅:𝐶𝐶)

≤ 2 max
(︀
𝜒(M𝑅:), 𝜒(M:𝐶𝐵)

)︀
As we discussed before in order to have guarantee that we will be able to

have full information to detect linearly independent columns we need to

observe at least 𝜓(U) + 1 many rows.

Moreover, as greedy algorithm observe exactly 𝜓(U) + 1 many rows by

choosing cheapest columns we are guaranteed to have:

𝜒(M𝑅:) ≤ 𝜒(M𝑅̃:)

Similarly as 𝐶𝐵 represents the set of cheapest columns, we have:

𝜒(M:𝐶𝐵) ≤ 𝜒(M:𝐶)
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which together implies

max
(︀
𝜒(M𝑅:), 𝜒(M:𝐶𝐵)

)︀
≤ max

(︀
𝜒(M𝑅̃:), 𝜒(M:𝐶)

)︀
.

Putting all inequalities together we conclude:

𝜎𝐺 ≤ 2 max
(︀
𝜒(M𝑅:), 𝜒(M:𝐶𝐵)

)︀
≤ 2 max

(︀
𝜒(M𝑅̃:), 𝜒(M:𝐶)

)︀
≤ 2𝜎𝑂𝑃𝑇

Therefore, we conclude that greedy algorithm gives us 2-optimal algorithm.

Tightness: In the following example, we see that greedy algorithm cannot

guarantee better than 2-optimality:

𝜒 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜖
100

𝜖
100

𝜖
100

𝜖
100 10− 𝜖 10− 𝜖

𝜖
100

𝜖
100

𝜖
100

𝜖
100 10− 𝜖 10− 𝜖

10 10 𝜖
100

𝜖
100

𝜖
100

𝜖
100

10 10 𝜖
100

𝜖
100

𝜖
100

𝜖
100

𝜖
100

𝜖
100 10 10 10− 𝜖 10− 𝜖

𝜖
100

𝜖
100 10 10 10− 𝜖 10− 𝜖

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
It is clear that optimal choice is 𝐶 = {1, 2} and 𝑅 = {3, 4} which gives the

cost of :

𝜎𝑂𝑃𝑇 = 10 + 10 + 10 + 10 + 16× 𝜖

100
= 40 +

𝜖

6.25

However, greedy algortihm will pick 𝑅 = {1, 2} in the first stage which has

overall cost of
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(10− 𝜖) + (10− 𝜖) + (10− 𝜖) + (10− 𝜖) + 8× 𝜖

100
= 40− 4𝜖+

𝜖

12.5

Then in the next stage it choose columns 𝐶 = {5, 6} which also has cost of

(10− 𝜖) + (10− 𝜖) + (10− 𝜖) + (10− 𝜖) + 4× 𝜖

100
= 40− 4𝜖+

𝜖

25

which all together cumulative cost is

(40− 4𝜖) +
𝜖

12.5
+ (40− 4𝜖) +

𝜖

25
= 80− 8𝜖+

3

25
𝜖.

To find the fraction of this cost to optimal cost we get

𝜎𝐺
𝜎𝑂𝑃𝑇

=
80− 8𝜖+ 2𝜖

25

40 + 𝜖
6.25

≈ 2− 𝜖

5
.

Therefore for any number smaller than 2, we can choose an 𝜖 which ratio of

the cost of greedy algorithm to optimal set is larger than that number. This

implies that, 2-optimality of the algorithm ERHC is tight.
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2.2 Fixed Rank Case

Here, we provide an algorithm that exactly recovers a target matrix under

the active setting. As we discussed before, one of the strengths of the results

of [15, 16, 2] is that the algorithm is its robustness to highly coherent row

space compared to previous results as [23]. However, we notice that these

algorithms are independent of row space and treat any row space equally.

This phenomenon arises a natural question, whether there is an algorithm

which enjoys properties of row space to optimize these algorithms further.

For example, we can see the following matrices having the same rank 𝑟 = 2

and column space coherence 𝜇0 = 2. The only difference is due to the co-

herence of row space, which is 3 for A and near to 1 for matrix B. Similarly,

row space sparsity-number is 1 for the matrix A and 4 for the matrix B.

A =

⎡⎢⎢⎢⎣
1 2 2 2 2 2

0 2 2 2 2 2

0 2 2 2 2 2

0 2 2 2 2 2

⎤⎥⎥⎥⎦ B =

⎡⎢⎢⎢⎣
1 0 1 2 3 4

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

⎤⎥⎥⎥⎦

As previous methods are mainly based on the value of the size of the matrix,

𝑟, and 𝜇0, these methods treat both these matrices equally. Indeed the first

column of the matrix A is crucial to study the column space. That’s why

we don’t want to take the risk of missing the necessary information on this

column. That’s why we end up observing many entries in each column to

make sure we will not miss this column. However, it is entirely different for
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the matrix B; any missed column can be replaced by any other one in the

study of the column space. That’s why it should give us the flexibility of

observing less number of entries in each column.

In the following algorithm, we propose a method that exactly recovers the

𝑚× 𝑛 sized rank 𝑟 underlying matrix, using just exact information of rank

𝑟. The idea of the algorithm is to find 𝑟-many linearly independent rows

and columns and recover the remaining entries based on them. Finding the

linearly independent columns is rely on simple linear algebra fact that if

columns of M𝑅:𝐶 are linearly independent, then so are columns of M:𝐶 .

The statement is valid for rows as well symmetrically. Then, all we need to

do is to wait for detecting 𝑟 many independent columns and rows. Indeed

the algorithm does not require an estimate or exact information of coherence

as opposed to KS2013, [2, 16] (coherence is crucial to compute 𝑑 in input

phase). The improvement for observation complexity can be observed in

the following theorem and corollary.

ERR: Exact recovery for rank 𝑟 matrices.
Input: Rank of the target matrix - 𝑟
Initialize: 𝑅 = ∅, 𝐶 = ∅, ̂︀𝑟 = 0

1: while ̂︀𝑟 < 𝑟 do
2: for 𝑗 from 1 to 𝑛 do
3: Uniformly pick an unobserved entry 𝑖 from M:𝑗

4: ̂︀𝑅 = 𝑅 ∪ {𝑖}, ̂︀𝐶 = 𝐶 ∪ {𝑗}
5: If M ̂︀𝑅: ̂︀𝐶 is nonsingular
6: Fully observe M:𝑗 and M𝑖:

7: Set: 𝑅 = ̂︀𝑅 , 𝐶 = ̂︀𝐶 , ̂︀𝑟 = ̂︀𝑟 + 1
8: Orthogonalize column vectors in 𝐶 and assign to ̂︀U
9: for each column 𝑗 ∈ [𝑛] ∖ 𝐶 do

10: ̂︁M:𝑗 = ̂︀Û︀U+
𝑅:
̂︁M𝑅:𝑗

Output: ̂︁M
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Theorem 2. Let 𝑟 be the rank of underlying 𝑚 × 𝑛 sized matrix M with

column space U and row space V. Then, ERR exactly recovers the under-

lying matrix M with probability at least 1− 𝜖 using number of observations

at most:

(𝑚+ 𝑛− 𝑟)𝑟 +min
(︁
2
𝑚𝑛

𝜓(U)
log (

𝑟

𝜖
),

2𝑚
𝜓(U)(𝑟 + 2 + log 1

𝜖 )

𝜓(V)
𝑛
)︁
.

Corollary 2. Observation complexity of ERR studied for three different

case below:

∙ if𝜓(V) = 𝒪(1) satisfies, then observation complexity is upper bounded

by (𝑚+ 𝑛− 𝑟)𝑟+2 𝑚𝑛
𝜓(U) log (

𝑟
𝜖) = (𝑚+ 𝑛− 𝑟)𝑟+𝒪

(︀
𝑛𝑟𝜇0 log (

𝑟
𝜖)
)︀
. (

this bound matches with [2], however in many cases it is much smaller

as discussed in the next section)

∙ if 𝜓(V) = Θ(𝑟) satisfies, then observation count is upper bounded by

(𝑚+𝑛−𝑟)𝑟+𝒪
(︁ 2𝑚

𝜓(U) (𝑟+2+log 1
𝜖 )

𝑟 𝑛
)︁
= (𝑚+𝑛−𝑟)𝑟+𝒪

(︀
𝑛𝜇0(𝑟+log 1

𝜖 )
)︀
.

Selecting 𝜖 = 1
2𝒪(𝑟) gives the bound of: 𝑚𝑟 +𝒪(𝑛𝜇0𝑟)

∙ if 𝜓(V) = Θ(𝑛) satisfies, then observation count is upper bounded by

(𝑚+𝑛− 𝑟)𝑟+𝒪
(︀2𝑚(𝑟+2+log 1

𝜖 )

𝜓(U)
)︀
= (𝑚+𝑛− 𝑟)𝑟+𝒪

(︀
𝜇0𝑟(𝑟+log 1

𝜖 )
)︀

Selecting 𝜖 = 1
2𝒪(𝑟) gives bound: 𝒪((𝑚+ 𝑛− 𝑟)𝑟)

Note that, for the last case, observation complexity is bounded by 𝒪((𝑚 +

𝑛− 𝑟)𝑟), which is absolute lower bound for any algorithm.

We split the statement of the theorem above into two and prove each of them
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separately. First, we show that observation complexity is upper bounded by

(𝑚+ 𝑛− 𝑟)𝑟 + 2
𝑚𝑛

𝜓(U)
log (

𝑟

𝜖
).

Then, later we show that the observation complexity is bounded by

(𝑚+ 𝑛− 𝑟)𝑟 +
2𝑚
𝜓(U)(𝑟 + 2 + log 1

𝜖 )

𝜓(V)

and the statement of theorem follows from these two results.

2.2.1 Matrices with low row space sparsity-number

In this section, we prove that the observation complexity of the algorithm

ERR is always upper bounded by

(𝑚+ 𝑛− 𝑟)𝑟 + 2
𝑚𝑛

𝜓(U)
log (

𝑟

𝜖
)

Proof. The proof is consisting following steps:

∙ step 1. Give terminology will be used throughout the proof. Identifying

type of observations to two classes : informative and non-informative.

∙ step 2. Provide a bound to number of informative observations.

∙ step 3. In remaining steps, we try to give bound to non-informative

observations. We start by giving upper bound to the unsuccessful ob-

servations in line 5.

∙ step 4. We model the execution of ERR with a stochastic process and

design another process which terminates faster than this.
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∙ step 5. We relate the problem to basic combinatorial counting problem

and analyse

∙ step 6. Conclude that total number of observations is

(𝑚+ 𝑛− 𝑟)𝑟 + 2
𝑚𝑛

𝜓(U)
log (

𝑟

𝜖
).

Step 1: For ease of readability we denote 𝜓(U) by 𝑘 during the proof. Lets

start a process in the beginning of the algorithm for each column. We call

process of the column M:𝑗 dies in one of the following cases happens:

a. M:𝑗 is fully observed in line 6 in some intermediate step of ERR

b. M:𝑗 is contained in the column space of the already fully observed

columns in underlying matrix M (i.e. columns in 𝐶).

c. Algorithm already learns entire column space : ̂︀𝑟 = 𝑟

If a column/process is not dead then we call it is active. We call an observa-

tion is informative if it is observed at line 6 (i.e. it contributes to the studied

column/row space learned by ERR and uninformative if it observed at line

3. Obviously some entries are observed both at line 3 and 6, so they count

in both non-informative and informative observations.

Step 2: We can simply observe that the number of informative observations

is exactly 𝑚𝑟 + 𝑛𝑟 − 𝑟2. Because, at the end of the algorithm set of in-

formative observations is just set of 𝑟 many linearly independent columns

(we have 𝑚𝑟 observations here) and 𝑟 many linearly independent rows (we

have 𝑛𝑟 observations here). By observing that entries in 𝑟× 𝑟 sub-matrix is
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counted twice, we conclude that overall observations is just : 𝑚𝑟 + 𝑛𝑟− 𝑟2

Step 3: In order to give upper bound to the number of non-informative ob-

servations, we see it is enough to bound the number of phases the algorithm

ERR passes through. Specifically, if the number of phases is bounded by

𝑇 then overall number of non-informative observations is bounded by 𝑇𝑛2.

In order to give upper bound to 𝑇 , we first explore the probability of an de-

tecting independence of an observation in line 3 for an active column:

Lemma 4. The probability of detecting independence of an active column

in the 𝑗’th phase of the algorithm ERR is lower bounded by 𝑘
𝑚−𝑗

Proof. In an intermediate step of ERR we have |𝐶| = |𝑅| = ̂︀𝑟 and 𝑀𝑅:𝐶

is ̂︀𝑟 × ̂︀𝑟 matrix of rank ̂︀𝑟. Then, for any 𝑖 ∈ [𝑛], M𝑅:𝑖 is in the column

space of M𝑅:𝐶 as the matrix is full rank and therefore its column space is

entire R̂︀𝑟. Then there exists unique coefficients 𝛼1, 𝛼2, ..., 𝛼̂︀𝑟 for columns

𝐶 = {𝑐1, ..., 𝑐̂︀𝑟} that following equality satisfied.

𝛼1M𝑅:𝑐1 + . . .+ 𝛼̂︀𝑟M𝑅:𝑐̂︀𝑟 = M𝑅:𝑖

=⇒ 𝛼1M𝑅:𝑐1 + . . .+ 𝛼̂︀𝑟M𝑅:𝑐̂︀𝑟 −M𝑅:𝑖 = 0

Now, let observe the vector

𝑦 = 𝛼1M:𝑐1 + 𝛼2M:𝑐2 + ...+ 𝛼̂︀𝑟M:𝑐̂︀𝑟 −M:𝑖

We know that 𝑦 ̸= 0 because we know column 𝑖 is linearly independent with
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previous observed columns - M:𝑐1,M:𝑐2, ...,M:𝑐̂︀𝑟 . Moreover for any row in-

dex 𝑎 ∈ 𝑅, 𝑦𝑎 = 0 because 𝑦𝑅 = 0 from the definition of 𝛼𝑗’s. As 𝑦 is in the

column space of 𝑀 it has at most 𝑚− 𝑘-many zero coordinates. Moreover,

for any 𝑎 /∈ 𝑅 but M𝑖𝑎:𝑖 observed in line 6 𝑦𝑖𝑎 = 0 should satisfy, because

otherwise in one of previous iterations we would already decide M:𝑖 is lin-

early independent and we would add index 𝑖 to 𝐶, but here we know 𝑖 /∈ 𝐶.

Basically we conclude that all known coordinates of 𝑦 is 0 and number of

known coordinates is represented by 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑. We know at least 𝑘 many

coordinates of 𝑦 is nonzero and we already have 𝑚 − 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 many co-

ordinates of 𝑦 is zero, then with probability at least: 𝑘
𝑚−𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 uniformly

selected next observation will be zero. Being nonzero of 𝑦𝑎 implies non-

singularity of the matrix ̂︁M ̂︀𝑅: ̂︀𝐶 where ̂︀𝑅 = 𝑅 ∪ {𝑎} and ̂︀𝐶 = 𝐶 ∪ {𝑖}. It

is because if this matrix was not invertible then there would be coefficients

𝛽1, ..., 𝛽𝑟′+1 (not all of them are zero) such that

𝛽1M ̂︀𝑅:𝑐1 + ...+ 𝛽̂︀𝑟M ̂︀𝑅:𝑐̂︀𝑟 + 𝛽̂︀𝑟+1M ̂︀𝑅:𝑖 = 0.

From lemma 2, linear independence of M𝑅:𝑐1,M𝑅:𝑐̂︀𝑟 implies linear indepen-

dence of M ̂︀𝑅:𝑐1,M ̂︀𝑅:𝑐̂︀𝑟 . which concludes 𝛽̂︀𝑟+1 is nonzero, so we can simply

assume it is −1. Then

𝛽1M ̂︀𝑅:𝑐1 + ...+ 𝛽̂︀𝑟M ̂︀𝑅:𝑐̂︀𝑟 = M ̂︀𝑅:𝑖
=⇒ 𝛽1M𝑅:𝑐1 + ...+ 𝛽̂︀𝑟M𝑅:𝑐̂︀𝑟 = M𝑅:𝑖
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Due to uniqueness of 𝛼𝑗’s above, we can tell that

𝛼1 = 𝛽1 𝛼2 = 𝛽2 . . . 𝛼̂︀𝑟 = 𝛽̂︀𝑟 𝛼̂︀𝑟 = 𝛽̂︀𝑟
Then the vector 𝑦 ̂︀𝑅 = 𝛼1M ̂︀𝑅:𝑐1 + . . .+𝛼̂︀𝑟M ̂︀𝑅:𝑐̂︀𝑟−M ̂︀𝑅:𝑖 = 0 is a zero vector.

However it is a contradiction because if 𝑦 ̂︀𝑅 is zero vector then 𝑦𝑎 = 0 due to

𝑎 ∈ ̂︀𝑅 which we already know 𝑦𝑎 ̸= 0.

Therefore, being nonzero of 𝑦𝑎 implies non-singularity of M ̂︀𝑅: ̂︀𝐶 which is

equivalent to the detection of the independence of column M:𝑖 due to lemma

2. As a conclusion, probability of detection of independence of an active

column is at least 𝑘
𝑚−𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 and considering the fact that 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 ≥ 𝑗 it

follows that 𝑘
𝑚−𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 >

𝑘
𝑚−𝑗 and it give the final conclusion of the desired

probability is lower bounded by: 𝑘
𝑚−𝑗 . As desired.

Step 4 : We can model execution of ERR as following stochastic process:

𝑆0 = 𝑋0,1 +𝑋0,2 + ...+𝑋0,𝑛

where each of the𝑋0,𝑗 corresponds to the indicator variable of the activeness

of the column M:𝑗. Obviously, initially at least 𝑟 of these random variables

are equal to 1. We define 𝑆1 similarly:

𝑆1 = 𝑋1,1 +𝑋1,2 + ...+𝑋1,𝑛

and for any j that 𝑋0,𝑗 = 1 satisfied, at this phase 𝑋1,𝑗 will be equal to 0

with probability at least 𝑘
𝑚−0 from lemma 4. For remaining 𝑗’s that𝑋0,𝑗 = 0

42



satisfied then 𝑋1,𝑗 = 0 also to be satisfied. For the next step 𝑆2 defined as:

𝑆2 = 𝑆1 +𝑋2,1 +𝑋2,2 + ...+𝑋2,𝑛2

where again for any 𝑗 that𝑋0,𝑗 = 1 satisfied, at this phase𝑋1,𝑗 will be equal

to 0 with probability at least 𝑘
𝑚−1 from lemma 4. Remaining 𝑗’s will stay as

𝑋2,𝑗 to be equal to 0. In general

𝑆𝑖𝑡𝑒𝑟 = 𝑋𝑖𝑡𝑒𝑟,1 +𝑋𝑖𝑡𝑒𝑟,2 + ...+𝑋𝑖𝑡𝑒𝑟,𝑛2

where again for any j that 𝑋𝑖𝑡𝑒𝑟−1,𝑗 = 1 satisfied, at this phase 𝑋𝑖𝑡𝑒𝑟,𝑗 will be

equal to 0 with probability at least 𝑘
𝑚−(𝑖𝑡𝑒𝑟−1) from lemma 4. The termination

of algorithm is equivalent to the point 𝑆𝑝 = 0 in this model. One can see

termination of this process is upper bounded by termination of the following

process :

𝑆 ′0 = 𝑋 ′0,1 +𝑋 ′0,2 + ...+𝑋 ′0,𝑟

where each of the 𝑋 ′0,𝑗 is set to be equal to 1. we define 𝑆 ′1 in a similar way:

𝑆 ′1 = 𝑋 ′1,1 +𝑋 ′1,2 + ...+𝑋 ′1,𝑟

where each of 𝑋 ′1,𝑗 is equal to 0 with probability 𝑘
𝑚 . Then:

𝑆 ′2 = 𝑋 ′2,1 +𝑋 ′2,2 + ...+𝑋 ′2,𝑟.

Similarly𝑋 ′2,𝑗 is set to be 0 if𝑋 ′1,𝑗 = 0 and𝑋 ′2,𝑗 is equal to 0 with probability
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𝑘
𝑚−1 otherwise. In general:

𝑆 ′𝑖𝑡𝑒𝑟 = 𝑋 ′𝑖𝑡𝑒𝑟,1 +𝑋 ′𝑖𝑡𝑒𝑟,2 + ...+𝑋 ′𝑖𝑡𝑒𝑟,𝑟

again 𝑋 ′𝑖𝑡𝑒𝑟,𝑗 = 0 if 𝑋 ′𝑖𝑡𝑒𝑟−1,𝑗 = 0 and, 𝑋 ′𝑖𝑡𝑒𝑟,𝑗 = 0 with probability 𝑘
𝑚−(𝑖𝑡𝑒𝑟−1)

otherwise.

Step 5: Here we use a combinatorial argument to bound number of obser-

vation in each column.

Lemma 5. Let 𝑋 ′ be a process that is zero initially: 𝑋 ′0 = 1 and remaining

entries defined as

𝑋 ′𝑖+1 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎧⎪⎨⎪⎩
0 with probability 𝑘

𝑚−𝑖

1 otherwise
if 𝑋 ′𝑖 = 1

0 if 𝑋 ′𝑖 = 0

Then expected point that 𝑋 ′ to switch to 0 is 𝑚+1
𝑘+1 .

Proof. Lets denote the switch time with 𝑠𝑡 and write the expression for it:

E[𝑠𝑡] =
∑︁

𝑖𝑃 (𝑠𝑡 = 𝑖)

= 1
𝑘

𝑚
+ 2

𝑘

𝑚− 1

(︁
1− 𝑘

𝑚

)︁
+ 3

𝑘

𝑚− 2

(︁
1− 𝑘

𝑚

)︁(︁
1− 𝑘

𝑚− 1

)︁
+ . . .

We claim that this sum is equal to the expected position of the first 1 in a

random binary string with 𝑘 many 1 and 𝑚− 𝑘 many 0. To observe truth of

the claim we notice followings:
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∙ First 1 being in the first position is obviously 𝑘
𝑚 as there are 𝑘 many 1’s

out of 𝑚 many characters.

∙ The probability of the first 1 being in the second place is (1− 𝑘
𝑚)

𝑘
𝑚−1 .

The first entry being zero has probability: 1− 𝑘
𝑚 and the second entry

being one is 𝑘
𝑚−1

∙ The probability of the first 1 being in the 𝑖-th place is

(︁
1− 𝑘

𝑚

)︁(︁
1− 𝑘

𝑚− 1

)︁
. . .

(︁
1− 𝑘

𝑚− (𝑖− 1)

)︁(︁ 𝑘

𝑚− (𝑖− 1)

)︁
.

The first entry being zero has probability: 1 − 𝑘
𝑚 , the second entry

being zero has probability 1 − 𝑘
𝑚−1 and so on so forth. Finally out of

remaining 𝑚− 𝑖+ 1 entries the next one being 1 is equal to 𝑘
𝑚−(𝑖−1) .

Then expected position of the first 1 is equal to

1
𝑘

𝑚
+ 2

𝑘

𝑚− 1

(︁
1− 𝑘

𝑚

)︁
+ 3

𝑘

𝑚− 2

(︁
1− 𝑘

𝑚

)︁(︁
1− 𝑘

𝑚− 1

)︁
+ . . .

which is equal to E[𝑠𝑡]. Lets find the position of the first 1 by double count-

ing. A word with 𝑘 number of 1 and𝑚−𝑘 number of 0 can be represented as

𝑎01𝑎11𝑎2...1𝑎𝑘 where 𝑎𝑖 represents number of zeros between two 1’s. Now,

lets find number of first 1 in the 𝑘 + 1 sized set of following words

𝑎01𝑎11𝑎2...1𝑎𝑘,

𝑎11𝑎2, ..., 𝑎𝑘1𝑎0,

...

𝑎𝑘1𝑎0, ..., 𝑎𝑘1𝑎0
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Expected number of first 1 here is simply

𝑎0 + 1

𝑘 + 1
+
𝑎1 + 1

𝑘 + 1
+ . . .+

𝑎𝑘 + 1

𝑘 + 1
=
𝑎0 + 𝑎1 + ...+ 𝑎𝑘 + 𝑘 + 1

𝑘 + 1
=
𝑚+ 1

𝑘 + 1
.

So, we can divide set of all words with 𝑘 many 1’s and 𝑚− 𝑘 many 0’s into

𝑘 + 1-sized sets. For each group the average position of the first 1 will be
𝑚+1
𝑘+1 . Therefore, in overall the average position of the first 1 is 𝑚+1

𝑘+1 .

A simple followup of this lemma is to notice:

E[𝑠𝑡] =
𝑚+ 1

𝑘 + 1
<
𝑚

𝑘

due to 𝑚 > 𝑘. Then, we can use the Markov inequality to get:

𝑃
(︁
𝑠𝑡 > 2

𝑚

𝑘

)︁
<

1

2
.

Moreover, from the combinatorial counting argument we can imply that the

probability of 𝑠𝑡 > 𝑎 will be given as

𝑃 (𝑠𝑡 > 𝑎) =

(︀
𝑚−𝑎
𝑘

)︀(︀
𝑚
𝑘

)︀
using the previous inequality we can observe that:

𝑃
(︁
𝑠𝑡 >

2𝑚

𝑘

)︁
=

(︀
𝑚−2𝑚/𝑘

𝑘

)︀(︀
𝑚
𝑘

)︀ <
1

2

Considering the fact

𝑓(𝑥) =

(︀
𝑥−2𝑚/𝑘

𝑘

)︀(︀
𝑥
𝑘

)︀
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is an increasing function and

𝑃
(︁
𝑠𝑡 >

𝛼𝑚

𝑘

)︁
=

(︀
𝑚−2𝑚/𝑘

𝑘

)︀(︀
𝑚
𝑘

)︀ (︀
𝑚−4𝑚/𝑘

𝑘

)︀(︀
𝑚−2𝑚/𝑘

𝑘

)︀ · · · (︀
𝑚−2𝛼𝑚/𝑘

𝑘

)︀(︀
𝑚−2(𝛼−1)𝑚/𝑘

𝑘

)︀ < (
1

2
)𝛼

For a given 𝜖, if we set 𝛼 = log 1
𝜖 we conclude that with probability at least

1− 𝜖 the following inequality satisfied:

𝑠𝑡 > 2
𝑚

𝑘
log

1

𝜖
.

Step 6: So, we can tell

𝑃
(︁
𝑋 ′ ≥ 2 log (

1

𝜖
)
𝑚

𝑘

)︁
≤ 𝜖.

Which means for a given 𝑗, with probability more than 1−𝜖,𝑋 ′𝑖,𝑗 will switch

to zero before 2 log(1𝜖 )
𝑚
𝑘 for any 𝑗 ∈ [𝑟]. Using union bound argument, after

2 log(1𝜖 )
𝑚
𝑘 iteration with probability more than 1 − 𝜖𝑟, for any 𝑖 ∈ [𝑟], 𝑋 ′𝑖,𝑗

will switch to zero.

Therefore, the process 𝑆 will stop before 2 log 𝑟
𝜖
𝑚
𝑘 iteration with probability

1 − 𝜖. Remind that, termination time of 𝑆 corresponds to the value of 𝑇

and number of total red points is bounded by 𝑇𝑛. Then number of total red

observations is bounded by:

2
𝑚𝑛

𝑘
log

𝑟

𝜖
.

Finaly, total number of observations is equal to the number of red observa-
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tions plus number of blue observations which gives the bound:

(𝑚+ 𝑛− 𝑟)𝑟 + 2
𝑚𝑛

𝑘
log

𝑟

𝜖
.

To translate this result to coherence number rather than space sparsity num-

ber, we use the following lemma:

Lemma 6. Let U be an 𝑟-dimensional subspace of R𝑚. Then the below

relation between 𝜓(U) and 𝜇(𝑈) holds:

𝜇(𝑈) ≥ 𝑚

𝑟

1

𝜓(U)
.

Proof. We again denote 𝜓(U) with 𝑘 for ease of reading. By the definition

of the space sparsity number, we see that there exists a vector 𝑣 ∈ 𝑈 and 𝑘

different indices 𝑖1, 𝑖2, ..., 𝑖𝑘 such that the only nonzero components of 𝑣 are

𝑣𝑖1, 𝑣𝑖2, ..., 𝑣𝑖𝑘 . Up to scaling, we may assume that 𝑣 is a unit vector. This is

equivalent to

𝑣𝑖1
2 + ...+ 𝑣𝑖𝑘

2 = 1

Therefore, we observe that there is an index 𝑖𝑎 satisfies 𝑣𝑖𝑎
2 ≥ 1

𝑘 . If this was

not the case, then for all 𝑗 with 1 ≤ 𝑗 ≤ 𝑘, 𝑣𝑖𝑗
2 < 1

𝑘 should satisfy, and this

implies

1 = 𝑣𝑖1
2 + ...+ 𝑣𝑖𝑘

2 < 𝑘
1

𝑘
= 1

and this is a contradiction. Using these facts, we can see that
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||𝑃𝑈𝑒𝑖𝑎||2 ≥ ||𝑣 · 𝑒𝑖𝑎||2 = |𝑣 · 𝑒𝑖𝑎|2 = 𝑣𝑖𝑎
2 ≥ 1

𝑘

where 𝑒𝑖𝑎 is 𝑖𝑎’th standard basis of R𝑚. The first inequality follows from

the fact that the length of projection of any vector to the subspace U is

always greater or equal than the length of the projection onto a vector of

that subspace. Thus, we have

𝜇(𝑈) =
𝑚

𝑟
max
1≤𝑗≤𝑚

||𝑃𝑈𝑒𝑗||2 ≥
𝑚

𝑟
||𝑃𝑈𝑒𝑖𝑎||2 ≥

𝑚

𝑟

1

𝑘
=
𝑚

𝑟

1

𝜓(U)

Comparison of Sparsity Number with Coherence: In the lemma 6 we

show that

𝜇(U) ≥ 𝑚

𝑟

1

𝜓(U)
.

and in the theorem above we prove that the observation complexity of ERR

is upper bounded by (𝑚 + 𝑛 − 𝑟)𝑟 + 2 𝑚𝑛
𝜓(U) log

𝑟
𝜖 where U is column space

of the matrix M. Lets denote the fraction

𝛾 =
𝑚

𝜓(U)
1

𝜇(U)𝑟

then lemma 6 is equivalent to 𝛾 ≤ 1. Lets transfer observation complexity

of ERR with respect to 𝜇(U) using 𝛾. Then the observation complexity is

(𝑚+ 𝑛− 𝑟)𝑟 + 2𝛾𝜇(U)𝑟 log 𝑟/𝜖
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and using the fact that 𝛾 ≤ 1 this number is smaller than bound due to [2]:

(𝑚+ 𝑛− 𝑟) + 2𝜇(U)𝑟 log 𝑟/𝜖

In many cases 𝛾 can be very small. For any matrix that has high value of-

𝜓(U) or low value of 𝜇(U), 𝛾 is guaranteed to be very small. Specifically, if

𝜓(U) is Θ(𝑚) or 𝜇(U) is Θ𝑚
𝑟 then 𝛾 is𝒪(1𝑟). Proofs for each case provided

below:

𝜓(U) is Θ(𝑚): Assigning 𝜓(U) being Θ(𝑚) in the definition of 𝛾, we con-

clude that 𝛾 is Θ( 1
𝜇(𝑈)𝑟). Remember from the definition of the coherence,

𝜇(U) ≥ 1 for any subspace, which gives the final conclusion of 𝛾 is 𝒪(1𝑟).

𝜇(U) is Θ𝑚
𝑟 : Assigning 𝜇(U) being Θ(𝑚𝑟 ) in the definition of 𝛾, we con-

clude that 𝛾 is Θ( 1
𝜓(U)). Moreover, remember that from lemma 3, we know

that 𝜓(U) is Ω(𝑟) which gives final conclusion of 𝒪(1𝑟).

2.2.2 Matrices with high row space sparsity-number

In this section, we show that the observation complexity of the algorithm

ERR is upper bounded by

(𝑚+ 𝑛− 𝑟)𝑟 +
2𝑚
𝜓(U)

(︀
𝑟 + 2 + log 1

𝜖

)︀
𝜓(V)

𝑛

Proof. We use the same terminology as previous theorem and 𝑘 and 𝑡 stands

for 𝜓(U) and 𝜓(V) correspondingly. So, if a column is not in the column
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space of 𝐶 then we call it active.

From lemma 4, we know that at any step if a column is still active, then prob-

ability of its detection is at least 𝑘
𝑚 where 𝑘 is the space non-sparsity number

for column space. Let’s just focus on active observations, and estimate the

number of required active observations to detect 𝑟-th linearly independent

column. We can see that, under the condition of each observation being ac-

tive observation and the probability of detection being exactly 𝑘
𝑚 the process

of the detection of 𝑟-th independent column can be modelled as negative bi-

nomial distribution.

Lets remind the formula of the probability mass function negative binomial

distribution as getting 𝑎-th success in the 𝑎+ 𝑏’th step while success proba-

bility being 𝑝 :

𝑓(𝑎, 𝑏, 𝑝) =

(︂
𝑎+ 𝑏− 1

𝑎

)︂
𝑝𝑎(1− 𝑝)𝑏

For this problem, we are interested to find the probability for finding 𝑟-th

success at 𝑁 -th trial which corresponds to :

𝑓(𝑟,𝑁 − 𝑟, 𝑘
𝑚
) =

(︂
𝑁 − 1

𝑟

)︂(︁ 𝑘
𝑚

)︁𝑟(︁
1− 𝑘

𝑚

)︁𝑁−𝑟−1
As the number of observations is the focus of this theorem, we fix param-

eters 𝑘,𝑚, 𝑟 and investigate the behaviour of the function while 𝑁 being

variable. Intuitively, we use the following notation:

𝜏𝑘,𝑚,𝑟(𝑁) = 𝑓(𝑟,𝑁 − 𝑟, 𝑘
𝑚
)
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In lemma 7 and 8 we investigate properties of this function to have better

understanding of failure probability of ERR:

Lemma 7. 𝜏𝑘,𝑚,𝑟(𝑁) is a decreasing function after N being larger than

(2𝑚𝑘 + 1)𝑟. Specifically, we can give the following bound for the decreasing

rate:

1− 𝑘

𝑚
<
𝜏𝑘,𝑚,𝑟(𝑁 + 1)

𝜏𝑘,𝑚,𝑟(𝑁)
< 1− 𝑘

2𝑚

Proof. To show the decreasing we analyse the fraction :

𝜏𝑘,𝑚,𝑟(𝑁 + 1)

𝜏𝑘,𝑚,𝑟(𝑁)
=

(︀
𝑁
𝑟

)︀(︁
𝑘
𝑚

)︁𝑟(︁
1− 𝑘

𝑚

)︁𝑁−𝑟
(︀
𝑁−1
𝑟

)︀(︁
𝑘
𝑚

)︁𝑟(︁
1− 𝑘

𝑚

)︁𝑁−𝑟−1

=

𝑁 !
𝑟!(𝑁−𝑟)!

(︁
𝑘
𝑚

)︁𝑟(︁
1− 𝑘

𝑚

)︁𝑁−𝑟
(𝑁−1)!

𝑟!(𝑁−1−𝑟)!

(︁
𝑘
𝑚

)︁𝑟(︁
1− 𝑘

𝑚

)︁𝑁−𝑟−1
=

𝑁

𝑁 − 𝑟
(1− 𝑘

𝑚
)

So, we get following recursive formula:

𝜏𝑘,𝑚,𝑟(𝑁 + 1) =
𝑁

𝑁 − 𝑟

(︁
1− 𝑘

𝑚

)︁
𝜏𝑘,𝑚,𝑟(𝑁).

Left side of the the target inequality is easy to prove as 𝑁
𝑁−𝑟 > 1 implies

𝜏𝑘,𝑚,𝑟(𝑁 + 1)

𝜏𝑘,𝑚,𝑟(𝑁)
> 1− 𝑘

𝑚
.

Then, we only need to prove the right side of the inequality. Lets make
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the following observations

𝑁

𝑁 − 𝑟
= 1 +

𝑟

𝑁 − 𝑟

and from the hypothesis of the lemma we have

𝑁 >
(︁2𝑚
𝑘

+ 1
)︁
𝑟 =⇒ 𝑁 − 𝑟 > 2𝑚

𝑘
𝑟 =⇒ 𝑟

𝑁 − 𝑟
<

𝑘

2𝑚
.

Now, we are ready to prove rigth side:

𝜏𝑘,𝑚,𝑟(𝑁 + 1)

𝜏𝑘,𝑚,𝑟(𝑁)
=

𝑁

𝑁 − 𝑟

(︁
1− 𝑘

𝑚

)︁
=

(︁
1 +

𝑟

𝑁 − 𝑟

)︁(︁
1− 𝑘

𝑚

)︁
<

(︁
1 +

𝑘

2𝑚

)︁(︁
1− 𝑘

𝑚

)︁
= 1− 𝑘

2𝑚
− 𝑘2

2𝑚2

< 1− 𝑘

2𝑚
.

Therefore:

1− 𝑘

𝑚
<
𝜏𝑘,𝑚,𝑟(𝑁 + 1)

𝜏𝑘,𝑚,𝑟(𝑁)
< 1− 𝑘

2𝑚
.

Note that we can claim decreasing of 𝜏𝑘,𝑚,𝑟 just follows from the right side

of the inequality.

To explore more properties of the function 𝜏𝑘,𝑚,𝑟 we prove the following

lemma.
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Lemma 8. Lets assume 𝑛 is a positive integer. Then 𝜏𝑘,𝑚,𝑟 satisfies the

following inequality

𝜏𝑘,𝑚,𝑟

(︁2𝑚
𝑘

(𝑟 + 1) + 𝑛
)︁
≤ 1

𝑛
.

Proof. It is clear that 𝜏𝑘,𝑚,𝑟
(︁
2𝑚
𝑘 (𝑟 + 1)

)︁
< 1 as it is value of a probability

mass function. In lemma 7 we proved that the functions 𝜏𝑘,𝑚,𝑟 is decreasing

after 2𝑚
𝑘 (𝑟+1). Therefore, for any positive integer 𝑛 the following inequal-

ities satisfied:

𝜏𝑘,𝑚,𝑟

(︁2𝑚
𝑘

(𝑟 + 1) + 𝑛
)︁
< 𝜏𝑘,𝑚,𝑟

(︁2𝑚
𝑘

(𝑟 + 1) + 𝑛− 1
)︁

𝜏𝑘,𝑚,𝑟

(︁2𝑚
𝑘

(𝑟 + 1) + 𝑛
)︁
< 𝜏𝑘,𝑚,𝑟

(︁2𝑚
𝑘

(𝑟 + 1) + 𝑛− 2
)︁

...

𝜏𝑘,𝑚,𝑟

(︁2𝑚
𝑘

(𝑟 + 1) + 𝑛
)︁
< 𝜏𝑘,𝑚,𝑟

(︁2𝑚
𝑘

(𝑟 + 1)
)︁

By summing all these inequalities we conclude:

𝑛𝜏𝑘,𝑚,𝑟

(︁2𝑚
𝑘

(𝑟 + 1) + 𝑛
)︁
<

𝑛∑︁
𝑖=1

𝜏𝑘,𝑚,𝑟

(︁2𝑚
𝑘

(𝑟 + 1) + 𝑖
)︁

To bound the second term, we can use:
𝑛∑︁
𝑖=1

𝜏𝑘,𝑚,𝑟

(︁2𝑚
𝑘

(𝑟 + 1) + 𝑖
)︁
≤

∞∑︁
𝑖=𝑟

𝜏𝑘,𝑚,𝑟(𝑖) = 1

and dividing left and rigth side of the inequality above concludes:

𝑛𝜏𝑘,𝑚,𝑟

(︁2𝑚
𝑘

(𝑟 + 1) + 𝑛
)︁
< 1.
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To apply the lemma above for 𝑛 = 2𝑚
𝑘 we get,

𝜏𝑘,𝑚,𝑟

(︁2𝑚
𝑘

(𝑟 + 1) +
2𝑚

𝑘

)︁
<

𝑘

2𝑚

Using right side of the lemma 7 we notice :

𝜏𝑘,𝑚,𝑟

(︁2𝑚
𝑘

(𝑟 + 1) +
2𝑚

𝑘
+ 𝑖

)︁
<

𝑘

2𝑚

(︁
1− 𝑘

2𝑚

)︁𝑖
for any positive integer 𝑖. Picking 𝑖 = 2𝑚

𝑘 log 1
𝜖 follows as :

𝜏𝑘,𝑚,𝑟

(︁2𝑚
𝑘

(𝑟 + 1) +
2𝑚

𝑘
+

2𝑚

𝑘
log

1

𝜖

)︁
<

𝑘

2𝑚

(︁
1− 𝑘

2𝑚

)︁ 2𝑚
𝑘 log 1

𝜖

<
𝑘

2𝑚
𝑒− log 1

𝜖 =
𝑘

2𝑚
𝜖

second inequality here is application of the (1− 1
𝛼)

𝛼 < 1
𝑒 for 𝛼 > 0. There-

fore we currently have :

𝜏𝑘,𝑚,𝑟

(︁2𝑚
𝑘

(𝑟 + 1) +
2𝑚

𝑘
+

2𝑚

𝑘
log

1

𝜖

)︁
<

𝑘

2𝑚
𝜖

and we target to bound :

∞∑︁
𝑖=0

𝜏𝑘,𝑚,𝑟

(︁2𝑚
𝑘

(𝑟 + 1) +
2𝑚

𝑘
+

2𝑚

𝑘
log

1

𝜖
+ 𝑖

)︁
.

To apply right side of lemma 7, 𝑖 times we conclude :

55



𝜏𝑘,𝑚,𝑟

(︁2𝑚
𝑘

(𝑟 + 1) +
2𝑚

𝑘
+

2𝑚

𝑘
log

1

𝜖
+ 𝑖

)︁
<

𝜏𝑘,𝑚,𝑟

(︁2𝑚
𝑘

(𝑟 + 1) +
2𝑚

𝑘
+

2𝑚

𝑘
log

1

𝜖

)︁(︁
1− 𝑘

2𝑚

)︁𝑖
Therefore the summation above can be upper bounded as:

∞∑︁
𝑖=0

𝜏𝑘,𝑚,𝑟

(︁2𝑚
𝑘

(𝑟 + 1) +
2𝑚

𝑘
+

2𝑚

𝑘
log

1

𝜖
+ 𝑖

)︁
<

<
∞∑︁
𝑖=0

𝜏𝑘,𝑚,𝑟

(︁2𝑚
𝑘

(𝑟 + 1) +
2𝑚

𝑘
+

2𝑚

𝑘
log

1

𝜖

)︁(︁
1− 𝑘

2𝑚

)︁𝑖

= 𝜏𝑘,𝑚,𝑟

(︁2𝑚
𝑘

(𝑟 + 1) +
2𝑚

𝑘
+

2𝑚

𝑘
log

1

𝜖

)︁ ∞∑︁
𝑖=0

(︁
1− 𝑘

2𝑚

)︁𝑖
= 𝜏𝑘,𝑚,𝑟

(︁2𝑚
𝑘

(𝑟 + 1) +
2𝑚

𝑘
+

2𝑚

𝑘
log

1

𝜖

)︁2𝑚
𝑘

< 𝜖
𝑘

2𝑚

2𝑚

𝑘
= 𝜖.

Therefore, we can conclude that the probability of ERR terminating after
2𝑚
𝑘

(︀
𝑟 + 2 + log 1

𝜖

)︀
is smaller than 𝜖.

At this point we have number upper bound for number of active observations

in order to have 1− 𝜖 probability of termination. However, we need to give

the bound with respect to number of overall observations. Following lemma

will help us for that purpose

Lemma 9. At every phase of the algorith-ERR, if there is at least one

active observation, then there is at least 𝑡 many active observations.
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Proof. The first step is to observe that, any column in 𝐶 is already inactive

as they are already in temporary column space. The second observation is

any column that is linear combination of columns in C also already inac-

tive. We prove the lemma by assuming the hypothesis of the lemma is not

correct and we will deduce contradiction from that. Therefore, we assume

that there is a step that the number of active columns is less than 𝑡, under

the condition not all columns are inactive.

Number of active columns being smaller than 𝑡 implies that the number of

inactive columns is larger than 𝑛 − 𝑡. Which implies there is a subset of

columns- Ω′ that satisfies |Ω′| > 𝑛 − 𝑡 and M:Ω′ has rank of at most 𝑟 − 1

(as there are still some active columns).

We know that the rank of M being 𝑟 implies there is at least one set of

𝑟 many linearly independent rows. Lets denote one of these sets by 𝑅 =

{𝑗1, 𝑗2, ..., 𝑗𝑟} and naturally, the set of row vectors M𝑗1:,M𝑗2:, ...,M𝑗𝑟: are

linearly dependent.

Returning back to the argument 𝑀:Ω′ having a rank of at most 𝑟 − 1, im-

plies the rank of 𝑀𝑅:Ω′ is also at most 𝑟 − 1. Therefore, there is a linear

dependence relation among the vectors M𝑗1:Ω′, M𝑗2:Ω′, . . . ,M𝑗𝑟:Ω′. As

we already have Ω′ > 𝑛 − 𝑡 then using lemma 1 we conclude that there is

linear dependence relation among M𝑗1:,M𝑗2:, ...,M𝑗𝑟: which is a contradic-

tion. Therefore, if there is one active column we can conclude there is at

least 𝑡 many active columns.
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Rest of the proof is simple counting argument. We know that if we have
2𝑚
𝑘

(︀
𝑟+2+ log 1

𝜖

)︀
many observations then with probability larger than 1− 𝜖

our algorithm succeeds. Moreover, from the lemma above, as at each phase

we have at least 𝜓(V) many observations,

2𝑚
𝑘

(︀
𝑟 + 2 + log 1

𝜖

)︀
𝑡

many phase is enough to have desired number of active observations. Note

that, at each step we have at most n many observation, which concludes the

statement
2𝑚
𝑘

(︀
𝑟 + 2 + log 1

𝜖

)︀
𝑡

𝑛

many observation is enough to guarantee with probability 1− 𝜖

Proof of corollary 2

Proof. Case : 𝜓(V) = 𝒪(1). From the theorem 2 the observation complex-

ity is upper bounded by

(𝑚+ 𝑛− 𝑟)𝑟 +min
(︁
2
𝑚𝑛

𝜓(U)
log (

𝑟

𝜖
),

2𝑚
𝜓(U)(𝑟 + 2 + log 1

𝜖 )

𝜓(V)
𝑛
)︁

therefore it is upper bounded by

(𝑚+ 𝑛− 𝑟)𝑟 + 2
𝑚𝑛

𝜓(U)
log (

𝑟

𝜖
).

Moreover, in lemma 6 we show that

𝜇(U) ≥ 𝑚

𝑟

1

𝜓(U)
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which upper bounds the last quantity by

(𝑚+ 𝑛− 𝑟)𝑟 +𝒪
(︀
𝑛𝑟𝜇0 log (

𝑟

𝜖
)
)︀
.

Case 𝜓(V) = Θ(𝑟):For this case we are choosing the second term in the

min operator of the theorem 2. We already know that 𝑚
𝜓(U) can be upper

bounded by 𝜇(U)𝑟 and plugging it together with 𝜓(V) = Θ(𝑟) gives us

upper bound of

(𝑚+ 𝑛− 𝑟)𝑟 +𝒪
(︀
𝑛𝜇0(𝑟 + log

1

𝜖
)
)︀
.

Moreover, if 𝜖 = 1
2𝒪(𝑟) then log 1

𝜖 is𝒪(𝑟), therefore right summand is bounded

by𝒪(𝑛𝜇0𝑟). Considering the fact 𝜇0 ≥ 1 always, then overall expression is

upper bounded by 𝑚𝑟 +𝒪(𝑛𝜇0𝑟)

Case 𝜓(V) = Θ(𝑛): This case is just similar too previous case with the

difference of plugging 𝜓(V) = Θ(𝑛) gives us the bound of

(𝑚+ 𝑛− 𝑟)𝑟 +𝒪
(︀
𝜇0𝑟(𝑟 + log

1

𝜖
)
)︀
.

Using the similar bound to 𝜖 makes the right summand to be 𝒪(𝜇0𝑟2).

Moreover from the definition of coherence we have 𝜇0 ≤ 𝑚
𝑟 which up-

per bounds this term by 𝒪(𝑚𝑟) therefore overall sum is upper bounded by

𝒪((𝑚+ 𝑛− 𝑟)𝑟).
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2.3 Exact Recovery While Rank Estimation

In this section, we solve the exact completion problem in a slightly different

setup. ERR assumes that we know the exact rank of the underlying matrix.

However, here we assume that we don’t have this information. Therefore we

don’t know precisely at which point the process of searching a new indepen-

dent row/column should stop. In what follows, we show that if at a given

state new independent column/row not detected for long enough time, then

it means that it is likely no more one exists. We formalize this statement in

the following theorem.

ERRE: Exact recovery while rank estimation.
Input: 𝑇 -delay parameter at the end of algorithm
Initialize: 𝑅 = ∅, 𝐶 = ∅, ̂︀𝑟 = 0, 𝑑𝑒𝑙𝑎𝑦 = 0

1: while 𝑑𝑒𝑙𝑎𝑦 < 𝑇 do
2: 𝑑𝑒𝑙𝑎𝑦 = 𝑑𝑒𝑙𝑎𝑦 + 1
3: for 𝑗 from 1 to 𝑛 do
4: Uniformly pick an unobserved entry 𝑖 from M:𝑗

5: ̂︀𝑅 = 𝑅 ∪ {𝑖}, ̂︀𝐶 = 𝐶 ∪ {𝑗}
6: If M ̂︀𝑅: ̂︀𝐶 is nonsingular :
7: Fully observe M:𝑗 and M𝑖:

8: Set 𝑅 = ̂︀𝑅 , 𝐶 = ̂︀𝐶 , ̂︀𝑟 = ̂︀𝑟 + 1, 𝑑𝑒𝑙𝑎𝑦 = 0
9: Orthogonalize column vectors in 𝐶 and assign to U

10: for each column 𝑗 ∈ [𝑛] ∖ 𝐶 do
11: ̂︁M:𝑗 = ̂︀Û︀U+

𝑅:
̂︁M𝑅:𝑗

Output: ̂︁M, ̂︀𝑟
Theorem 3. Let 𝑟 be the rank of underlying 𝑚 × 𝑛 sized matrix M that

has column space U and row space V. Then, the algorithm ERRE exactly

recovers the underlying matrix M while estimating rank with probability at

least 1− (𝜖+ 𝑒−𝑇
𝜓(U)𝜓(V)

𝑚 ) using number of observations at most:

(𝑚+ 𝑛− 𝑟)𝑟 + 𝑇𝑛+min
(︁
2
𝑚𝑛

𝜓(U)
log (

𝑟

𝜖
),

2𝑚
𝜓(U)(𝑟 + 2 + log 1

𝜖 )

𝜓(V)
𝑛)
)︁
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Corollary 3. Lets assume that either𝜓(U) or𝜓(V) is big enough i.e. 𝜓(U)𝜓(V) ≥

𝑚. For a given 𝜖 set 𝑇 = log 1
𝜖 , then ERRE recovers underlying matrix

with probability 1− 2𝜖 using just

(𝑚+ 𝑛− 𝑟)𝑟 + 𝑛 log
1

𝜖
+min

(︁
2
𝑚𝑛

𝜓(U)
log (

𝑟

𝜖
),

2𝑚
𝜓(U)(𝑟 + 2 + log 1

𝜖 )

𝜓(V)
𝑛
)︁

We refer to the analysis of corollary 2 to understand this expression better.

Proof. We again use 𝑘 and 𝑡 for 𝜓(U) and 𝜓(V) correspondingly and use

all the terminology from the previous proofs. Then, we start by proving

that under the scenario there is still active column, then with probability

1 − 𝑒−𝑇
𝑘𝑡
𝑚 , it will be detected in 𝑇 phases. We prove the following key

lemma in order to accomplish the proof of the theorem.

Lemma 10. Lets assume the underlying matrix M has row space non-

sparsity number 𝑘 and column space non-sparsity number 𝑡. Then, if at an

intermediate step of ERRE still column space not recovered completely,

then with probability 1 − 𝑒−𝑇
𝑘𝑡
𝑚 new independent column will be detected

within 𝑇 phases.

Proof. For every active column observation, the probability of detecting in-

dependence is at least 1 − 𝑘
𝑚 from the lemma 4. From the lemma 9 , if

there is one active column, then there is at least 𝑡 many active column in

that phase. Therefore, the probability of detection of an active column is at

least (︁
1− 𝑘

𝑚

)︁𝑡
.
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Then, we conclude that after 𝑇 many phase, detection probability is at least

(︁
1− 𝑘

𝑚

)︁𝑡𝑇
.

Using the inequality 1 + 𝑥 ≤ 𝑒𝑥 for ∀𝑥 ∈ R the quantity above can be

bounded by: (︁
1− 𝑘

𝑚

)︁𝑡𝑇
< 𝑒−𝑇

𝑘𝑡
𝑚 .

Now, we show that with probability at least 1 − 𝑒−𝑇 𝑘𝑡
𝑚 , estimated rank ̂︀𝑟 is

equal to 𝑟. We have :𝑃 (𝑟 = ̂︀𝑟) = 1−
(︀
𝑃 (𝑟 < ̂︀𝑟) + 𝑃 (𝑟 > ̂︀𝑟))︀

𝑃 (𝑟 < ̂︀𝑟) = 0 trivially satisfied, ̂︀𝑟 represents number of detected linearly

independent columns of M which is always bounded by 𝑟. Now, all we

need to do is to bound 𝑃 (𝑟 < ̂︀𝑟). We denote the event of existence of active

column by 𝐴𝐶𝐸. Then, trivially:

𝑃 (̂︀𝑟 < 𝑟) = 𝑃
(︀̂︀𝑟 < 𝑟 and𝐴𝐶𝐸

)︀
Moreover, we can write

𝑃
(︀̂︀𝑟 < 𝑟 and𝐴𝐶𝐸

)︀
=

𝑟−1∑︁
𝑖=0

𝑃
(︀̂︀𝑟 = 𝑖 and𝐴𝐶𝐸

)︀
= 𝑃

(︀
𝐴𝐶𝐸 | ̂︀𝑟 = 𝑖

)︀
𝑃 (̂︀𝑟 = 𝑖)

To finish the proof we just need to observe following equality / inequality :

𝑃 (̂︀𝑟 < 𝑟) =
𝑟−1∑︁
𝑖=0

𝑃
(︀̂︀𝑟 = 𝑖 ∧ 𝐴𝐶𝐸

)︀
=

𝑟−1∑︁
𝑖=0

𝑃
(︀
𝐴𝐶𝐸|̂︀𝑟 = 𝑖

)︀
𝑃 (̂︀𝑟 = 𝑖)
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From the lemma above, we can imply that

𝑃
(︀
𝐴𝐶𝐸|̂︀𝑟 = 𝑖

)︀
≤ 𝑒−𝑇

𝑘𝑡
𝑚

and as probability of 𝑃 (̂︀𝑟 = 𝑟) ̸= 0, we conclude 𝑃 (̂︀𝑟 < 𝑟) < 1. Equiva-

lently,
𝑟−1∑︁
𝑖=0

𝑃
(︀̂︀𝑟 = 𝑖

)︀
< 1

which all together these two inequalities concludes

𝑃 (̂︀𝑟 < 𝑟) =
𝑟−1∑︁
𝑖=0

𝑃
(︀
𝐴𝐶𝐸|̂︀𝑟 = 𝑖

)︀
𝑃 (̂︀𝑟 = 𝑖) ≤ 𝑒−𝑇

𝑘𝑡
𝑚

𝑟−1∑︁
𝑖=0

𝑃 (̂︀𝑟 = 𝑖) ≤ 𝑒−𝑇
𝑘𝑡
𝑚

To finalize the proof, we divide the algorithm ERRE into two parts. First

part, is the detection point of the last independent column by algorithm, and

second part is waiting T many rounds to check if there is any independent

column left. Moreover, ERRE would fail generating correct matrix only

if failure in the second part happens (there is still independent column not

detected, but checking tells us that there is no left) i.e. ̂︀𝑟 < 𝑟 which we

just show 𝑃 (̂︀𝑟 < 𝑟) < 𝑒−𝑇
𝑘𝑡
𝑚 . This concludes that with probability at least

1− 𝑒−𝑇 𝑘𝑡
𝑚 recovered matrix is correct.

Therefore, with probability 1 − 𝑒−𝑇 𝑘𝑡
𝑚 the first part of the algorithm is just

equivalent to the algorithm ERR, which with probability more than 1 − 𝜖

observation complexity is bounded by

(𝑚+ 𝑛− 𝑟)𝑟 +min
(︁
2
𝑚𝑛

𝑘
log (

4𝑟

𝜖
),

2𝑚
𝑘 (𝑟 + 2 + log 1

𝜖 )

𝑡
𝑛
)︁
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using the union bound we conclude that with probability at least 1 − 𝜖 +

𝑒−𝑇
𝑘𝑡
𝑚 , the algorithm recovers underlying matrix correctly and observation

complexity is bounded by

(𝑚+ 𝑛− 𝑟)𝑟 + 𝑇𝑛+min
(︁
2
𝑚𝑛

𝑘
log (

4𝑟

𝜖
),

2𝑚
𝑘 (𝑟 + 2 + log 1

𝜖 )

𝑡
𝑛
)︁

Proof of Corollary 3

Proof. First observe the following inequalitys:

𝑘𝑡 ≥ 𝑚 =⇒ 𝑘𝑡

𝑚
≥ 1 =⇒ 𝑒

𝑘𝑡
𝑚 ≥ 𝑒 =⇒ 𝑒−

𝑘𝑡
𝑚 ≤ 1

𝑒

The rest of the proof is just straightforward application of the theorem. Set-

ting 𝑇 = log 1
𝜖 to the statement of theorem tells with probability at least

1− (𝜖+ 𝑒−
𝑘𝑡
𝑚 log 1

𝜖 ) using

(𝑚+ 𝑛− 𝑟)𝑟 + 𝑛 log
1

𝜖
+min

(︁
2
𝑚𝑛

𝑘
log (

4𝑟

𝜖
),

2𝑚
𝑘 (𝑟 + 2 + log 1

𝜖 )

𝑡
𝑛
)︁

observations. Considering the fact that 𝑒−
𝑘𝑡
𝑚 ≤ 1

𝑒 we conclude that

𝑒−
𝑘𝑡
𝑚 log 1

𝜖 ≤
(︁1
𝑒

)︁log 1
𝜖

= 𝑒− log 1
𝜖 = 𝑒log 𝜖 = 𝜖

Which concludes that with probability at least 1 − 2𝜖 the observation com-

plexity is bounded by

(𝑚+ 𝑛− 𝑟)𝑟 + 𝑛 log
1

𝜖
+min

(︁
2
𝑚𝑛

𝑘
log (

4𝑟

𝜖
),

2𝑚
𝑘 (𝑟 + 2 + log 1

𝜖 )

𝑡
𝑛
)︁
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2.4 Exact Recovery with Estimated Information

In this section, we approach the exact completion problem under the sce-

nario we have estimated pre-information, using ideas from previous sec-

tions. This setting is similar to KS2013, [2] and [16] that estimated values

of rank 𝑟 and 𝜇0 - coherence of column space got used. Methods proposed

in these papers work efficiently under the condition row spaces are highly

coherent. An in-depth analysis of these methods tells us that these algo-

rithms designed for the highest value of row space coherence, and they also

work perfectly well for remaining cases. In the following algorithm, we

somehow extend these algorithms to a method that can enjoy the properties

of row space; meanwhile, performing similarly good for highly coherent

row space matrices.

Note that the algorithm below designed and analyzed under the condition

that estimated r, 𝜓(U), and 𝜓(V) provided. However, under the condition

just estimated 𝑟 and 𝜇0 provided, we can set 𝜓(V) to be equal to 1 and use

the inequality 𝜇0𝑟 > 𝑚
𝑘 to transfer the information of 𝜇0 to 𝜓(U). Then the

algorithm below will perform as good as [2] with observation complexity of

𝑚𝑟 +𝒪(𝑛𝑟𝜇0 log 𝑟
𝜖).

We demonstrate the performance of the algorithm in an example matrix be-

low after providing the technical details. The idea of the algorithm is very

similar to ERR with the only difference here, instead of observing just one

entry from each column each time through many steps, we observe just large

amount once and to show it also works with the same probability.
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EREI: Exact recovery with estimated information
Input: 𝑟, 𝜓(U), 𝜓(V)
Initialize: 𝑅 = ∅, 𝑘 = 0, ̂︀U0 = ∅, 𝑑 = min

(︁
2 𝑚
𝜓(U) log (

𝑟
𝜖
),

2𝑚
𝜓(U (𝑟+2+log 1

𝜖
)

𝜓(V)

)︁
1: Draw uniformly random entries Ω ⊂ [𝑚] of size 𝑑
2: for 𝑖 from 1 to 𝑛 do
3: if ‖MΩ:𝑖 − 𝒫̂︀Uk

Ω
MΩ:𝑖‖ > 0

4: Fully observe M:𝑖 , ̂︀U𝑘+1 ← ̂︀U𝑘 ∪M:i and orthogonalize ̂︀U𝑘+1, 𝑘 = 𝑘 + 1
5: Select a row 𝑎 ∈ Ω ∖𝑅 that, ̂︀Uk+1

R∪{a} is rank 𝑘 + 1 then 𝑅← 𝑅 ∪ {𝑎}
6: Draw uniformly random entries Δ ⊂ [𝑚] ∖𝑅 of size 𝑑 and Ω = Δ ∪𝑅
7: Observe entire M𝑅:

8: for 𝑖 from 1 to 𝑛 do
9: if M:𝑖 not fully observed then : ̂︁M:𝑖 = ̂︀U𝑘 ̂︀U𝑘+

𝑅:
̂︁M𝑅:𝑖

Output: ̂︁M
We show the execution of the algorithm for 𝑑 = 2 and 𝑟 = 1 below. ×

stands for entries that is observed randomly, × stands for deterministically

observed and × stands for recovered entries. Note that Ω1 = {1, 5},Ω2 =

{2, 5},Ω3 = {1, 3} and after 3-rd iteration 𝑅 becomes {3} therefore, in

fourth column M3:4 observed deterministically, besides together random ob-

servations Ω4 = {5, 6}. After all of the iterations completed, we observe the

entire M3:, and in the next step, we recover remaining entries.⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
0 0 0 0
1 3 2 3
0 0 0 0
0 0 0 0
2 6 4 6

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
0 0 0 0
1 3 2 3
0 0 0 0
0 0 0 0
2 6 4 6

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
0 0 0 0
1 3 2 3
0 0 0 0
0 0 0 0
2 6 4 6

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
0 0 0 0
1 3 2 3
0 0 0 0
0 0 0 0
2 6 4 6

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
0 0 0 0
1 3 2 3
0 0 0 0
0 0 0 0
2 6 4 6

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
0 0 0 0
1 3 2 3
0 0 0 0
0 0 0 0
2 6 4 6

⎤⎥⎥⎥⎥⎥⎥⎥⎦
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Theorem 4. Let 𝑟 be the rank of underlying 𝑚 × 𝑛 sized matrix M with

column space U and row space V. Then, with probability 1 − 𝜖 the algo-

rithm EREI exactly recovers the underlying matrix M using number of

observations at most

(𝑚+ 𝑛− 𝑟)𝑟 +min
(︁
2
𝑚𝑛

𝜓(U)
log (

𝑟

𝜖
),

2𝑚
𝜓(U)(𝑟 + 2 + log 1

𝜖 )

𝜓(V)
𝑛
)︁

Proof for low row space sparsity-number : 𝑑 = 2 𝑚
𝜓(U) log (

𝑟
𝜖)

Proof. We first start with the case that if minimum of these two quantities

is 2𝑚𝑘 log (𝑟𝜖). As the matrix has rank 𝑟, there exists at least one set of lin-

early independent columns with 𝑟 columns. We select the set of linear inde-

pendent columns−𝐶 that has lexicographically smallest indices. We show

sampling 2𝑚𝑘 log (1𝜖 ) entries from each column will give us the probability

of at least 1− 𝑟𝜖 correctly recovery.

From the Step 5 of proof of the theorem 3 we can see sampling 2𝑚𝑘 log (1𝜖 )

entries from an active column, would give guarantee of probability of at

least 1 − 𝜖 detection of independence. As 𝐶 is lexicographically smallest,

each column is active on the time entries sampled from it, and each of 𝑟

columns will succeed with probability at least 1− 𝜖. Therefore, using union

bound, with probability 1 − 𝑟𝜖 all of the columns in C will succeed, which

guarantees the exact recovery.

Replacing 𝜖 by 𝜖
𝑟 will conclude the result that sampling 2𝑚𝑘 log (𝑟𝜖) from each

column will guarantees the correctness of the algorithm with probability at

least 1− 𝜖.
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Proof for high row space sparsity-number : 𝑑 =
2𝑚
𝜓(U) (𝑟+2+log 1

𝜖 )

𝜓(V)

Proof. From the follow up of lemma 4, we conclude that in a process of 𝑘
𝑚

probability success and 1− 𝑘
𝑚 probability of failure, having 2𝑚

𝑘

(︀
𝑟+2+log 1

𝜖

)︀
trial is enough to guarantee getting 𝑟 many success with probability 1− 𝜖.

Failure probability of the algorithm EREI is equal to failing finding 𝑟 lin-

early independent columns. Consider following equation:

P
(︀
EREI𝑓𝑎𝑖𝑙𝑠

)︀
= P

(︁
EREI𝑓𝑎𝑖𝑙𝑠 and TNAO ≥ 2𝑚

𝑘

(︀
𝑟 + 2 + log

1

𝜖

)︀)︁
+ P

(︁
EREI𝑓𝑎𝑖𝑙𝑠 and TNAO <

2𝑚

𝑘

(︀
𝑟 + 2 + log

1

𝜖

)︀)︁
where we denote TNAO as total number of active observations. Recall that

we call an observation active, if it is active in the execution time (the column

is still not contained in the current column space). Intuitively we represent

NAO by number of active observations executed by the algorithm EREI in

the given specific time.

From lemma 9, if there exists an active column, then there exists at least

𝑡 many active columns. Therefore, failure of the algorithm is equivalent to

existence of an active column when algorithm terminates. Moreover each of

our observations in those columns were active observations and considering

the fact that we observed
2𝑚
𝑘

(︀
𝑟+2+log 1

𝜖

)︀
𝑡 many entries in each of them, total

number of active observations is at least

𝑡
2𝑚
𝑘

(︀
𝑟 + 2 + log 1

𝜖

)︀
𝑡

=
2𝑚

𝑘

(︁
𝑟 + 2 + log

1

𝜖

)︁
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Therefore P
(︁

NAO < 2𝑚
𝑘

(︀
𝑟 + 2 + log 1

𝜖

)︀
|EREI𝑓𝑎𝑖𝑙𝑠

)︁
= 0 and using

Bayesian rule we conclude

P
(︁
EREI𝑓𝑎𝑖𝑙𝑠 and TNAO ≤ 2𝑚

𝑘

(︀
𝑟 + 2 + log

1

𝜖

)︀)︁
= 0

Then, following equation simplly satisfied:

P
(︀
EREI𝑓𝑎𝑖𝑙𝑠

)︀
= 𝑃

(︁
EREI𝑓𝑎𝑖𝑙𝑠 and TNAO ≥ 2𝑚

𝑘

(︀
𝑟 + 2 + log

1

𝜖

)︀)︁
We can observe the following inequality as EREI may tamporarily fail at

the point that the number of active observations is 2𝑚
𝑘

(︀
𝑟+2+log 1

𝜖

)︀
but it can

succeed finding remaining independent columns later during the execution:

P
(︁
EREI currently fail when NAO =

2𝑚

𝑘

(︀
𝑟 + 2 + log

1

𝜖

)︀)︁
≥

P
(︁
EREI𝑓𝑎𝑖𝑙𝑠 and TNAO ≥ 2𝑚

𝑘

(︀
𝑟 + 2 + log

1

𝜖

)︀)︁
Therefore we conclude that:

P
(︀
EREI𝑓𝑎𝑖𝑙𝑠

)︀
≤ P

(︁
EREI currently fail when NAO =

2𝑚

𝑘

(︀
𝑟 + 2 + log

1

𝜖

)︀)︁
Remember the fact that at each active observation probability of EREI de-

tecting linear independence of is larger or equal than 𝑘
𝑚 . From the previ-

ous discussion if the probability is exactly equal to 𝑘
𝑚 then still not finding

𝑟 linearly independent column at 2𝑚
𝑘

(︀
𝑟 + 2 + log 1

𝜖

)︀
observations is less

than 𝜖. Therefore, EREI not detecting r linearly independent column after
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2𝑚
𝑘

(︀
𝑟 + 2 + log 1

𝜖

)︀
observations is smaller than 𝜖, which is equivalent to

P
(︀
EREI𝑓𝑎𝑖𝑙𝑠

)︀
≤ 𝜖

as desired.

Straightforward conclusion of the theorem 4 is as following:

Corollary 4. Lets assume that we have estimated values of rank 𝑟, column

space coherence number 𝜇0 and estimated row space sparsity-number is

𝜓(V). Then, if 𝜓(V) is 𝒪(1) then observation complexity is buounded by

(𝑚+𝑛−𝑟)𝑟+𝒪(𝑛𝑟𝜇0 log 𝑟
𝜖) and if 𝜓(V) is𝒪(𝑛) then with probabiliy 1

2𝒪(𝑟)

the bound is 𝒪((𝑚 + 𝑛 − 𝑟)𝑟) which is theoretical lower bound for exact

completion problem.

Proof. Proof of this corollary is the same as the proof of the corollary 3.
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Chapter 3

Noisy Matrix Completion

In this chapter, we analyze the completion problem with the condition that

entries of the underlying matrix can be noisy. Similar to [2], we focus on

two types of noise model: sparse random noise and bounded noise. First,

we assume that several columns of the matrix are completely noisy, and we

target to recover clean entries using as little as possible observations. We

show how to extend exact completion algorithms proposed here to handle

this type of noise. Second, we assume that each entry of the underlying

matrix can contain some small noise.

3.1 Random Noise

In this section, we discuss how to extend exact completion algorithms pro-

posed in here to the case that some of the columns have random noise that is

coming from the non-degenerate distribution 𝒰 . Here, we extend the algo-

rithm EREI to make it robust to this type of noise. As it is discussed in [2],

if a column is an entirely random noise, then it should be linearly dependent
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with the rest of the columns. It is trivial to notice that a non-degenerate ran-

dom noise will not be in a predefined subspace as much as the subspace is

not full-dimensional.

Therefore, intuitively to clean noisy columns, we should detect columns

that without them the rank of the matrix decrements. Surprisingly, this phe-

nomenon can be related to space sparsity-number. Given that sparsity-

number of row space is higher than one, none of the columns of the under-

lying matrix satisfies this condition.

We propose a method that whenever the underlying matrix having coherent

row space (or low value of 𝜓(V)). However, it is given that the column

space is recoverable, we run EREI with 𝑑 = 2 𝑚
𝜓(U) log (

𝑟
𝜖) and at the end,

all of the columns that their deletion causes rank decrement are detected as

noise. For matrices that have highly incoherent row space or high value of

nonsparsity-number, we approach little differently because noise can im-

mensely effect 𝜓(V). However, this quantity can be affected at most by the

number of noisy columns which is proved in one of the following lemmas.

Therefore, it is safe to condition if the number of noisy columns: 𝜉 < 𝜓(V)
2 ,

we can safely use the same method as EREI however, here 𝑑 will be twice

larger 𝑑 than noise-free case: 𝑑 = 4𝑚
𝜓(U𝜓(V)(𝑟 + 2 + log 1

𝜖 ). However, if the

number of noisy columns-𝜉 get closer to 𝜓(V), using 𝑑 = 2 𝑚
𝜓(U) log (

𝑟
𝜖)

is more safe as much as no further information provided. We detect noise

columns similar to the previous case. The advantage of this method is due

to the efficiency of the exact completion method.
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EEREI: Extended Exact recovery with estimated information
Input: 𝑟, 𝜓(U), 𝜓(V)
Initialize: 𝑘 = 0, ̂︀U0 = ∅, 𝑑 = 2 𝑚

𝜓(U) log (
𝑟
𝜖
), 𝑅 = ∅

1: if 𝜉 ≤ 𝜓(V)
2

2: 𝑑 = min
(︁
2 𝑚
𝜓(U) log (

𝑟
𝜖
),

4𝑚
𝜓(U) (𝑟+2+log 1

𝜖
)

𝜓(V)

)︁
3: Draw uniformly random entries Ω ⊂ [𝑚] of size 𝑑
4: for 𝑖 from 1 to 𝑛 do
5: if ‖MΩ:𝑖 − 𝒫̂︀Uk

Ω
MΩ:𝑖‖ > 0

6: Fully observe M:𝑖

7: ̂︀U𝑘+1 ← ̂︀U𝑘 ∪M:i, Orthogonalize ̂︀U𝑘+1, 𝑘 = 𝑘 + 1
8: Select a row 𝑎 ∈ Ω ∖𝑅 that, ̂︀Uk+1

R∪{a} is rank 𝑘 + 1 then 𝑅← 𝑅 ∪ {𝑎}
9: Draw uniformly random entries Δ ⊂ [𝑚] ∖𝑅 of size 𝑑 and Ω = Δ ∪𝑅

10: Observe unobserved entries in M𝑅:

11: for 𝑖 from 1 to 𝑛 do
12: if M:𝑖 not fully observed : ̂︁M:𝑖 = ̂︀U𝑘 ̂︀U𝑘+

𝑅:
̂︁M𝑅:𝑖

13: Detect all the columns that their deletion decrements rank and collect them in Σ

Output: Noisy Columns - Σ, recovered underlying matrix ̂︁M:[𝑛]∖Σ

The proof of the algorithm EEREI correctly detects noisy columns is the

same as the proof provided in [2], therefore we don’t see necessity to pro-

vide it here. Moreover, the correct recovery of the remaining entries is the

same as the proof of EREI with only difference, if 𝜉 ≤ 𝜓(V)
2 happens and

2 𝑚
𝜓(U) log (

𝑟
𝜖) >

4𝑚
𝜓(U) (𝑟+2+log 1

𝜖 )

𝜓(V) . However, the crucial step here will be to no-

tice number of active columns will be at least 𝜓(V)2 and at each active column

we are doing
4𝑚
𝜓(U) (𝑟+2+log 1

𝜖 )

𝜓(V) many observations which gives overall

4𝑚
𝜓(U)(𝑟 + 2 + log 1

𝜖 )

𝜓(V)
× 𝜓(V)

2
= 2

𝑚

𝜓(U)
(𝑟 + 2 + log

1

𝜖
)

active observations, which is the required number of active observations in

order to detect 𝑟 complete column space with probability 1− 𝜖.
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Lemma 11. Lets assume that for a given𝑚×𝑛 sized rank−𝑟 matrix ̃︁M, the

nonsparsity-number of it row space ̃︀V is equal to one: 𝜓(̃︀V) = 1. Then there

is a column−𝑐, that deletion of it decrements the rank: rank(̃︁M:[𝑛]∖{𝑐}) =

𝑟 − 1.

Proof. From the definition of nonsparsity-number, we notice that, it is al-

ways positive and moreover, only case that it is equal to 1 is if some of the

standard basis vector 𝑒𝑖 is contained in the space. Then lets assume that

the row space contains 𝑒𝑖0, then we claim that the deletion of the column 𝑖0

decrements the rank.

Lets assume that rank(̃︁M:[𝑛]∖{𝑖0}) = 𝑟. Moreover, lets denote the ̃︁M0 by

the matrix that is 𝑖0-th column replaced by zero vector. It is trivial to see

that that rank(̃︁M:[𝑛]∖{𝑖0}) = rank(̃︁M0). Therefore rank(̃︁M0) = 𝑟 satisfies.

Moreover, row space of ̃︁M0 is subset of row space of ̃︁M, however, as both

of them has the same rank 𝑟, these space are the same. But, this is a con-

tradiction to the fact that, 𝑒𝑖0 is contained in the row space of ̃︁M but not in

the row space of ̃︁M0 (due to the fact that, entire row space has 0 in its 𝑖0-th

coordinate). Then, our assumption is wrong, rank(̃︁M:[𝑛]∖{𝑖0}) cannot be 𝑟

and only other possible option is 𝑟 − 1. Therefore rank(̃︁M:[𝑛]∖{𝑐}) = 𝑟 − 1

satisfies.

Lemma 12. Lets assume that for a given𝑚×𝑛 sized rank−𝑟 matrix ̃︁M with

row space ̃︀V, several columns are deleted and number of deleted columns is

smaller than the non-sparsity number of row space. Then, rank of the matrix
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is preserved, and its non-sparsity number is decreased by at most 𝑎−where

𝑎 stands for the number of columns those are deleted.

Proof. The proof is just inductively application of following claims:

∙ Deletion of one column, can reduce nonsparsity-number of the row

space at most by 1.

∙ if 𝜓(̃︀V) > 1, deletion of a column cannot decrement the rank.

First we prove the first claim: Lets assume for contradiction that, there is a

column 𝑐 that its deletion causes drop of row space nonsparsity-number by

at least 2, i.e. 𝜓(̃︀V)− 𝜓(V′) ≥ 2, where V′ is the row space of ̃︁M:[𝑛]∖{𝑐}.

Remind the definition: 𝜓(V′) = min{𝜓(𝑥)|𝑥 ∈ V′ and 𝑥 ̸= 0}. Lets pick

the nonzero vector 𝑥0 ∈ V′ which satisfies the minimality in this definition.

As V′ is restriction of ̃︀V to the index set [𝑛] ∖ {𝑐}, there is a vector 𝑦 ∈ V

such that 𝑦[𝑛]∖{𝑐} = 𝑥0. Therefore

‖𝑦‖0 ≤ ‖𝑥0‖0 + 1 = 𝜓(V′) + 1.

Considering the inequality

𝜓(̃︀V) ≤ ‖𝑦‖0 ≤ ‖𝑥0‖0 + 1 = 𝜓(V′) + 1

which implies 𝜓(̃︀V) − 𝜓(V′) ≤ 1 and this contradicts to the assumption.

Therefore, first claim indeed always satisfied.

Now, we prove the second claim: This is a simple statement, once we notice

that if deletion of the column 𝑐 results decrement in the rank of the matrix,
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then 𝑒𝑐 (i.e. 𝑐−th standard vector) is contained in the row space of ̃︁M. The

proof is simple as following:

Lets assume that without lost of generality columns that has the index set

ℬ = {𝑐1, 𝑐2, . . . , 𝑐𝑟−1, 𝑐} is a basis for column space. Note that, 𝑐 should be

part of any basis, because without column−𝑐 the column space has dimen-

sion 𝑟 − 1. Moreover, we know that for any 𝑖 /∈ ℬ, the column ̃︁M:𝑖 can be

written as linear combination of columns {𝑐1, 𝑐2, . . . , 𝑐𝑟−1} as:

̃︁M:𝑖 =
𝑟−1∑︁
𝑗=1

𝛼𝑗̃︁M:𝑐𝑗 for scalar 𝛼′𝑗𝑠.

Moreover, considering the fact that, ̃︁M:ℬ has rank equal to 𝑟, we can find the

set of rows 𝑅 = {𝑅1, 𝑅2, . . . , 𝑅𝑟}, that M𝑅:ℬ also has rank 𝑟. Considering

the fact that, ̃︁M𝑅:ℬ is 𝑟×𝑟 sized matrix, then its row space contains the stan-

dard basis vector: (0, 0, . . . , 0, 1). This follows that there is a linear com-

bination of rows 𝑅 = {𝑅1, 𝑅2, . . . , 𝑅𝑟} with some scalars 𝛽1, 𝛽2, . . . , 𝛽𝑟

that

𝛽1̃︁M𝑅1:ℬ + 𝛽2̃︁M𝑅2:ℬ + . . .+ 𝛽𝑟̃︁M𝑅𝑟:ℬ = (0, 0, . . . , 0, 1).

For a given 𝑖 /∈ ℬ lets check the 𝑖−th coordinate of the vector

𝛽1̃︁M𝑅1:𝑖 + 𝛽2̃︁M𝑅2:𝑖 + . . .+ 𝛽𝑟̃︁M𝑅𝑟:𝑖.

Remember that ̃︁M:𝑖 =
∑︀𝑟−1

𝑗=1 𝛼𝑗
̃︁M:𝑐𝑗 as 𝑖 /∈ ℬ, therefore the sum above can
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be written as:

𝛽1̃︁M𝑅1:𝑖 + 𝛽2̃︁M𝑅2:𝑖 + . . .+ 𝛽𝑟̃︁M𝑅𝑟:𝑖

= 𝛽1

𝑟−1∑︁
𝑗=1

𝛼𝑗̃︁M:𝑐𝑗 + 𝛽2

𝑟−1∑︁
𝑗=1

𝛼𝑗̃︁M:𝑐𝑗 + . . .+ 𝛽𝑟

𝑟−1∑︁
𝑗=1

𝛼𝑗̃︁M:𝑐𝑗

= 𝛼1

𝑟∑︁
𝑖=1

𝛽𝑖̃︁M:𝑐1 + 𝛼2

𝑟∑︁
𝑖=1

𝛽𝑖̃︁M:𝑐2 + . . .+ 𝛼𝑟−1

𝑟∑︁
𝑖=1

𝛽𝑖̃︁M:𝑐𝑟−1

= 𝛼1 × 0 + 𝛼2 × 0 + . . .+ 𝛼𝑟−1 × 0 = 0

and this concludes that

𝛽1̃︁M𝑅1: + 𝛽2̃︁M𝑅2: + . . .+ 𝛽𝑟̃︁M𝑅𝑟: = (0, 0, . . . , 0, 1, 0, . . . , 0)

Therefore 𝑒𝑐 is in the row space, and this implies that 𝜓(̃︀V) = 1. There-

fore,if 𝜓(̃︀V) > 1 then deletion of a column cannot decrement rank.

Number of Observations: The number of observations is simply 𝜉 many

additional observed columns and rows, compared to the algorithm EREI

with the slight difference if 𝜉 < 𝜓(V)
2 then

(𝑚+ 𝑛− 𝑟)𝑟 +min
(︁
2
𝑚𝑛

𝜓(U)
log (

𝑟

𝜖
),

4𝑚
𝜓(U)(𝑟 + 2 + log 1

𝜖 )

𝜓(V)
𝑛
)︁
+ 𝜉(𝑚+ 𝑛)

and if 𝜉 > 𝜓(V)
2

(𝑚+ 𝑛− 𝑟)𝑟 + 2
𝑚𝑛

𝜓(U)
log (

𝑟

𝜖
) + 𝜉(𝑚+ 𝑛)
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Recall for properties of non-degenerate subspace: Lets remind the char-

acteristics of non-degenerate random vectors provided in [2]:

Let E𝑠 ∈ R𝑚×𝑠 be matrix consisting of corrupted vectors drawn from any

non-degenerate distribution. Let U𝑘 ∈ R𝑚×𝑘 be any fixed matrix with rank

𝑘. Then with probability 1, we have

∙ rank(E𝑠) = 𝑠 for any 𝑠 ≤ 𝑚

∙ rank(E𝑠, 𝑥) = 𝑠+1 holds for 𝑥 ∈ U𝑘 ⊂ Rm uniformly and 𝑠 ≤ 𝑚−𝑘,

where 𝑥 can be depend or independent on E𝑠

∙ rank(E𝑠,U𝑘) = 𝑠+ 𝑘 given that 𝑠+ 𝑘 ≤ 𝑚

∙ The marginal of non-degenerate distribution is non-degenerate
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3.2 Bounded Deterministic Noise

In this section, we propose an algorithm that gives a low-rank estimation to

a matrix with small noise additional to a low-rank structure. Specifically,

we assume that the observed matrix M is created by adding small noise to

the underlying low-rank matrix L.

M = L+ 𝜁 such that ‖L:𝑖‖2 = 1 𝑎𝑛𝑑 ‖𝜁:𝑖‖2 ≤ 𝜖 ∀𝑖 ∈ [𝑛]

The main novelty of the algorithm provided here is to decide the number

of entries to be observed adaptively depending on the angle between esti-

mated column space and actual column space. This approach to observation

complexity opens further space for future improvements. In lemma 25 we

show that the angle between estimated space and actual space cannot be too

much different using similar argument to [2], and the angle between them

is upper bounded by 3𝜋2
√
𝑘𝜖, which gives the worst observation complexity

for LREBN with 𝑑 = 𝒪(𝜇(U)𝑟 log2 1
𝛿 + 𝑚𝑘𝜖 log 1

𝛿 ) which improves the

previous rate 𝒪(𝜇(U)𝑟 log2 1
𝛿 +𝑚𝑘𝜖 log2 1

𝛿 ), especially when 𝜖 is relatively

big that the term 𝑚𝑘𝜖 is dominating over 𝜇(U)𝑟 log2 1
𝜖 .

Moreover, there are many cases that estimated angle is much smaller than
√
𝑘𝜖. especially, when the basis vectors of the matrix L are far enough by

each other (the angles between them is big enough) this quantity can be as

small as 𝑘𝜖, which in this case observation complexity for a given column

would be 𝑑 = 72𝜇(U)𝑟 log2 1
𝛿 + 8𝑚𝑘2𝜖2 log 𝑟

𝛿 which is further smaller.

79



LREBN: Low-rank estimation for bounded noise.
Input: 𝑑 = 72𝜇(U)𝑟 log2 1

𝛿

Initialize: 𝑘 = 0, ̃︀U0 = ∅, 𝜃(̃︀U0,U0) = 0

1: Draw uniformly random entries Ω ⊂ [𝑚] of size 𝑑
2: for 𝑖 from 1 to 𝑛 do
3: if ‖MΩ:𝑖 − 𝒫̂︀Uk

Ω
MΩ:𝑖‖ > (1 + 𝜖)

(︁√︁
3𝑑
2𝑚
𝜃(U𝑘, ̃︀U𝑘) +

√︁
3𝑑𝑘𝜖
2𝑚

)︁
4: Fully observe M:𝑖

5: ̃︀U𝑘+1 ← ̃︀U𝑘 ∪M:i, Orthogonalize ̂︀U𝑘+1

6: Estimate 𝜃(U𝑘, ̃︀U𝑘) the upper bound for 𝜃(U𝑘, ̃︀U𝑘)

7: 𝑑 = 72𝜇(U)𝑟 log2 1
𝛿
+ 8𝑚𝜃(̃︀U𝑘,U𝑘)2 log 𝑟

𝛿
and set 𝑘 = 𝑘 + 1

8: Draw uniformly random entries Ω ⊂ [𝑚] of size 𝑑
9: otherwise: ̃︁M:𝑖 = ̂︀U𝑘 ̂︀U𝑘+

Ω
̃︁MΩ:𝑖

Output: ̃︁M
To estimate the upper bound 𝜃(U𝑘, ̃︀U𝑘) for 𝜃(U𝑘, ̃︀U𝑘) we use the idea due

to [17]:

𝜃(̃︀U𝑘,U𝑘) =
𝜋

2

𝜃(𝑢𝑘, ̃︀𝑢𝑘)
𝜃(̃︀𝑢𝑘, ̃︀U𝑘−1)− 𝜃(̃︀U𝑘−1,U𝑘−1)

+ 𝜃(̃︀U𝑘−1,U𝑘−1)

Theorem 5. Given the L be an 𝑚 × 𝑛 sized underlying rank-𝑟 matrix

where each column has ℓ2 norm of 1. Moreover, M is a full rank ma-

trix where each column is created by adding at most ℓ2 norm−𝜖 noise to

the corresponding column of L. Then the algorithm LREBN estimates

underlying matrix with ℓ2 norm of error is Θ(𝑚𝑑
√
𝑘𝜖) by sampling 𝑑 =

72𝜇(U)𝑟 log2 1
𝛿 + 8𝑚𝜃(̃︀U𝑘,U𝑘)2 log 𝑟

𝛿 entries in each column

Proof. The proof consists the following steps:

∙ step 1. Show that estimated matrix ̃︁M has rank of at most 𝑟.

∙ step 2. Decompose the error of recovered matrix

∙ step 3. Bound each of the terms in decomposition.
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Step 1:

Lemma 13. Let assume that M is can be decomposed as rank 𝑟 matrix L

with additional small noise in each column that, its ℓ2 norm is bounded by

𝜖. Then, at the end of the termination of the algorithm LREBN, estimated

subspace ̃︀U𝑘 has dimension at most 𝑟.

Proof. We prove that in the execution of the algorithm, we show if a col-

umn M:𝑡 has been detected as new column that cannot be contained in pre-

selected ̃︀U𝑘, then L:𝑡 is indeed cannot be contained in the U𝑘. To use trian-

gle inequality, we notice

𝜃(L:𝑡,U
𝑘) ≥ 𝜃(L:𝑡, ̃︀U𝑘)− 𝜃(̃︀U𝑘,U𝑘)

Using the lemma 20 we can notice that following inequalities are get satis-

fied:

‖MΩ𝑡 − 𝒫̃︀U𝑘
Ω
MΩ:𝑡‖ ≤

√︂
3𝑑

2𝑚

(︁
‖M:𝑡 − 𝒫̃︀U𝑘M:𝑡‖

)︁
≤

√︂
3𝑑

2𝑚

(︁
‖M:𝑡 − L:𝑡‖+ ‖L:𝑡 − 𝒫̃︀U𝑘L:𝑡‖

)︁
+ ‖𝒫̃︀U𝑘(L:𝑡 −M:𝑡)‖

≤
√︂

3𝑑

2𝑚

(︁
𝜖+ 𝜃(L:𝑡, ̃︀U𝑘) + 𝜖

)︁
From the design of the algorithm

‖MΩ𝑡 − 𝒫̃︀U𝑘
Ω
MΩ:𝑡‖ > (1 + 𝜖)

(︁√︂ 3𝑑

2𝑚
𝜃(U𝑘, ̃︀U𝑘) +

√︂
3𝑑𝑘𝜖

2𝑚

)︁
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and using this inequality above, we conclude that√︂
3𝑑

2𝑚
𝜃(U𝑘, ̃︀U𝑘) +

√︂
3𝑑𝑘𝜖

2𝑚
<

√︂
3𝑑

2𝑚

(︁
𝜖+ 𝜃(L:𝑡, ̃︀U𝑘) + 𝜖

)︁
which follows that

𝜃(U𝑘, ̃︀U𝑘) +
√
𝑘𝜖 <

(︁
𝜖+ 𝜃(L:𝑡, ̃︀U𝑘) + 𝜖

)︁
considering the fact that 𝜖 < 1

4 we conclude that

𝜃(L:𝑡, ̃︀U𝑘) ≥ 𝜃(L:𝑡, ̃︀U𝑘) + 2𝜖−
√
𝑘𝜖 > 𝜃(U𝑘, ̃︀U𝑘)

therefore we conclude that 𝜃(U𝑘, ̃︀U𝑘) < 𝜃(L:𝑡, ̃︀U𝑘) and it follows that

𝜃(L:𝑡,U
𝑘) > 0. Moreover, one can see that after every time this inequality

get satisfied, dimension of U𝑘 increases by one, and considering the fact

that U𝑘’s are subspace of column space of L, its dimension cannot increase

more than 𝑟 times.

Step 2:

In this section we are formulating an upper bound to recovery error. Note

that, if the algorithm decides completely observe the column, then ℓ2 norm

of the error is upper bounded by 𝜖. Then, all we need to do is to give upper

bound to columns those recovered by estimated subspace.

‖̃︁M:𝑡 − L:𝑡‖ = ‖̃︀U𝑘 ̃︀U𝑘+

Ω:MΩ𝑡 − L:𝑡‖
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≤ ‖̃︀U𝑘 ̃︀U𝑘+

Ω:MΩ𝑡 − ̃︀U𝑘 ̃︀U𝑘+

Ω:LΩ:𝑡‖

+ ‖̃︀U𝑘 ̃︀U𝑘+

Ω LΩ:𝑡 − ̃︀U𝑘 ̃︀U𝑘+L:𝑡‖+ ‖̃︀U𝑘 ̃︀U𝑘+L:𝑡 − L:𝑡‖

≤ ‖̃︀U𝑘 ̃︀U𝑘+

Ω: (MΩ𝑡 − LΩ:𝑡)‖

+ ‖̃︀U𝑘 ̃︀U𝑘+

Ω LΩ:𝑡 − ̃︀U𝑘 ̃︀U𝑘+L:𝑡‖+ sin 𝜃(L:𝑡, ̃︀U𝑘)

≤ ‖̃︀U𝑘 ̃︀U𝑘+

Ω: ‖‖(MΩ𝑡 − LΩ:𝑡)‖

+ ‖̃︀U𝑘 ̃︀U𝑘+

Ω LΩ:𝑡 − ̃︀U𝑘 ̃︀U𝑘+L:𝑡‖+ 𝜃(L:𝑡, ̃︀U𝑘)

Step 3:

Then all we need to do is to give an upper bound to the final expression. Lets

start with the second term here: L:𝑡 = ̃︀U𝑘𝑣 + 𝑒 where ̃︀U𝑘𝑣 = ̃︀U𝑘 ̃︀U𝑘+L:𝑡

and note ‖𝑒‖ = sin 𝜃(L:𝑡, ̃︀U𝑘) ≤ 𝜃(L:𝑡, ̃︀U𝑘). Therefore:

̃︀U𝑘 ̃︀U𝑘+

Ω LΩ:𝑡 − ̃︀U𝑘 ̃︀U𝑘+L:𝑡 = ̃︀U𝑘 ̃︀U𝑘+

Ω (̃︀U𝑘𝑣 + 𝑒)− ̃︀U𝑘𝑣 = ̃︀U𝑘 ̃︀U𝑘+

Ω 𝑒

Hence we conclude that:

‖̃︁M:𝑡 − L:𝑡‖ ≤ ‖̃︀U𝑘 ̃︀U𝑘+

Ω: ‖‖(MΩ𝑡 − LΩ:𝑡)‖

+ ‖̃︀U𝑘 ̃︀U𝑘+

Ω 𝑒Ω‖+ 𝜃(L:𝑡, ̃︀U𝑘)

≤ ‖̃︀U𝑘 ̃︀U𝑘+

Ω: ‖‖(MΩ𝑡 − LΩ:𝑡)‖

+ ‖̃︀U𝑘 ̃︀U𝑘+

Ω ‖𝜃(L:𝑡, ̃︀U𝑘) + 𝜃(L:𝑡, ̃︀U𝑘).
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To give upper bound to this expression, we notice

‖̃︀U𝑘 ̃︀U𝑘+

Ω:𝑡‖ ≤
𝜎1(̃︀U𝑘)

𝜎𝑘(̃︀U𝑘
Ω:)
≤ Θ(

𝑚

𝑑
)

given the condition that 𝑑 ≥ 4𝜇(̃︀U𝑘)𝑘 log 𝑘
𝛿 from the lemma 21. From

lemma 17 we know that 𝜇(̃︀U𝑘) ≤ 2𝜇(U𝑘)+2𝑚𝑘 𝜃(
̃︀U𝑘,U𝑘)2 and from lemma

15 we notice that 𝑘𝜇(̃︀U𝑘) ≤ 𝑟𝜇(U). Then all together these facts concludes

the selected

𝑑 = 72𝜇(U)𝑟 log2
1

𝛿
+ 8𝑚𝜃(̃︀U𝑘,U𝑘)2 log

𝑟

𝛿

≥ 8𝜇(U)𝑟 log
𝑟

𝛿
+ 8𝑚𝜃(̃︀U𝑘,U𝑘)2 log

𝑟

𝛿

satisfies 𝑑 ≥ 4𝜇(̃︀U𝑘)𝑘 log 𝑘
𝛿 (it is assumed that 𝛿 ≤ 1

𝑟1/8
). Therefore, we

can bound ‖̃︀U𝑘 ̃︀U𝑘+

Ω:𝑡‖ above by Θ(𝑚𝑑 ).

Now, only remaining term in the error bound above is 𝜃(L:𝑡, ̃︀U𝑘), and we

use the following inequality to compare it with quantities provided as input:

‖𝒫̃︀U𝑘M:𝑡 − L:𝑡‖ ≥ sin 𝜃(𝒫̃︀U𝑘M:𝑡,L:𝑡)

≥
𝜃(𝒫̃︀U𝑘M:𝑡,L:𝑡)

2

≥ 𝜃(̃︀U𝑘,L:𝑡)

2

and to relate the term ‖𝒫̃︀U𝑘M:𝑡 − L:𝑡‖ with observed entries we again use

the inequality 20 and the fact that
(︀
1 + 2 log 1

𝛿

)︀2 ≤ 6 log2 1
𝛿 once 𝛿 < 0.1,

lemma 15 and lemma 18
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‖MΩ:𝑡 − 𝒫̃︀U𝑘MΩ:𝑡‖ ≥

≥

√︃
1

𝑚

(︁𝑑
2
− 3𝑘𝜇(̃︀U𝑘)𝛽

2

)︁
‖M:𝑡 − 𝒫̃︀U𝑘M:𝑡‖

≥

√︃
1

𝑚

(︁𝑑
2
− 3𝑘𝜇(̃︀U𝑘)𝛽

2

)︁(︁
‖L:𝑡 − 𝒫̃︀U𝑘MΩ:𝑡‖ − ‖L:𝑡 −M:𝑡‖

)︁

≥

√︃
1

𝑚

(︁𝑑
2
− 3𝑘𝜇(̃︀U𝑘)𝛽

2

)︁(︁
‖𝒫̃︀U𝑘M:𝑡 − L:𝑡‖ − 𝜖

)︁

≥

√︃
1

𝑚

(︁𝑑
2
− 3𝑘𝜇(̃︀U𝑘)𝛽

2

)︁(︁𝜃(̃︀U𝑘,L:𝑡)

2
− 𝜖

)︁
≥

√︂
1

𝑚

(︁𝑑
2
− 9𝑘𝜇(̃︀U𝑘) log2

1

𝛿

)︁(︁𝜃(̃︀U𝑘,L:𝑡)

2
− 𝜖

)︁
≥

√︂
1

𝑚

(︁𝑑
2
− 18𝑘𝜇(U𝑘) log2

1

𝛿
− 18𝑚𝜃(̃︀U𝑘,U𝑘)2 log2

1

𝛿

)︁(︁𝜃(̃︀U𝑘,L:𝑡)

2
− 𝜖

)︁
≥

√︂
𝑑

2𝑚
− 18𝑘

𝑚
𝜇(U𝑘) log2

1

𝛿
− 18𝜃(̃︀U𝑘,U𝑘)2 log2

1

𝛿

(︁𝜃(̃︀U𝑘,L:𝑡)

2
− 𝜖

)︁
≥

√︂
𝑑

2𝑚
− 18𝑟

𝑚
𝜇(U) log2

1

𝛿
− 18𝜃(̃︀U𝑘,U𝑘)2 log2

1

𝛿

(︁𝜃(̃︀U𝑘,L:𝑡)

2
− 𝜖

)︁
≥

√︂
𝑑

4𝑚

(︁𝜃(̃︀U𝑘,L:𝑡)

2
− 𝜖

)︁
From here, we conclude that:
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𝜃(̃︀U𝑘,L:𝑡) ≤ 4

√︂
𝑚

𝑑
‖MΩ:𝑡 − 𝒫̃︀U𝑘MΩ:𝑡‖+ 2𝜖

≤ 4

√︂
𝑚

𝑑
(1 + 𝜖)

(︁√︂ 3𝑑

2𝑚
𝜃(U𝑘, ̃︀U𝑘) +

√︂
3𝑑𝑘𝜖

2𝑚
+ 2𝜖

)︁
≤ (1 + 𝜖)

(︁√
24𝜃(U𝑘, ̃︀U𝑘) +

√
8𝑘𝜖

)︁
Finally, returning back to the recovery error:

‖̃︁M:𝑡 − L:𝑡‖ ≤ ‖̃︀U𝑘 ̃︀U𝑘+

Ω: ‖‖(MΩ𝑡 − LΩ:𝑡)‖+ ‖̃︀U𝑘 ̃︀U𝑘+

Ω ‖𝜃(L:𝑡, ̃︀U𝑘) + 𝜃(L:𝑡, ̃︀U𝑘)

≤ 𝑚

𝑑
𝜖+

(︁𝑚
𝑑
+ 1

)︁(︁√
24𝜃(U𝑘, ̃︀U𝑘) +

√
8𝑘𝜖

)︁
(1 + 𝜖)

Then all we need to do is to give upper bound to 𝜃(̃︀U𝑘,U𝑘). In the proof

below, we use similar argument to [17]. Lets assume U𝑘 = {𝑢1, 𝑢2, . . . , 𝑢𝑘}

and ̃︀U𝑘 = {̃︀𝑢1, ̃︀𝑢2, . . . , ̃︀𝑢𝑘} where each of ‖𝑢𝑖 − ̃︀𝑢𝑖‖ ≤ 𝜖 satisfied. Then

using triangle inequality, lemma 19 and lemma 14

𝜃(̃︀U𝑘,U𝑘) ≤ 𝜃(̃︀U𝑘, ̂︀U) + 𝜃(̂︀U,U𝑘)

≤ 𝜋

2

𝜃(𝑢𝑘, ̃︀𝑢𝑘)
𝜃(̃︀𝑢𝑘,U𝑘−1)

+ 𝜃(̃︀U𝑘−1,U𝑘−1)

≤ 𝜋

2

𝜃(𝑢𝑘, ̃︀𝑢𝑘)
𝜃(̃︀𝑢𝑘, ̃︀U𝑘−1)− 𝜃(̃︀U𝑘−1,U𝑘−1)

+ 𝜃(̃︀U𝑘−1,U𝑘−1)

≤ 𝜋

2

𝜃(𝑢𝑘, ̃︀𝑢𝑘)√
𝑘𝜖+ 𝜃(̃︀U𝑘−1,U𝑘−1)− 𝜃(̃︀U𝑘−1,U𝑘−1)

+ 𝜃(̃︀U𝑘−1,U𝑘−1)

≤ 𝜋

2

𝜖√
𝑘𝜖

+ 𝜃(̃︀U𝑘−1,U𝑘−1)
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and using lemma 16, we can conclude that 𝜃(̃︀U𝑘,U𝑘) ≤ 3𝜋
2

√
𝑘𝜖, which

gives the final bound to ‖̃︁M:𝑡 − L:𝑡‖ to be Θ(𝑚𝑑
√
𝑘𝜖).

Lemma 14. Given that

‖MΩ𝑡 − 𝒫̃︀U𝑘−1
Ω

MΩ:𝑡‖ ≥ (1 + 𝜖)
(︁√︂ 3𝑑

2𝑚
𝜃(̃︀U𝑘−1,U𝑘−1) +

√︂
3𝑑𝑘𝜖

2𝑚

)︁
satisfies. Then following also satisfies:

𝜃(̃︀𝑢𝑘, ̃︀U𝑘−1) ≥ 𝜃(̃︀U𝑘−1,U𝑘−1) +
√
𝑘𝜖

Proof. Note that simple triangle inequality implies ‖M:𝑡‖ ≤ 1 + 𝜖

𝜃(̃︀𝑢𝑘, ̃︀U𝑘−1) = 𝜃(M:𝑡, ̃︀U𝑘−1) ≥ sin 𝜃(M:𝑡, ̃︀U𝑘−1)

≥ M:𝑡

1 + 𝜖
sin 𝜃(M:𝑡, ̃︀U𝑘−1)

=
1

1 + 𝜖
‖M:𝑡 − 𝒫̃︀U𝑘−1M:𝑡‖

≥ 1

1 + 𝜖

√︂
2𝑚

3𝑑
‖MΩ𝑡 − 𝒫̃︀U𝑘−1

Ω
MΩ:𝑡‖

Using, the fact that

‖MΩ𝑡 − 𝒫̃︀U𝑘−1
Ω

MΩ:𝑡‖ ≥ (1 + 𝜖)
(︁√︂ 3𝑑

2𝑚
𝜃(̃︀U𝑘−1,U𝑘−1) +

√︂
3𝑑𝑘𝜖

2𝑚

)︁
we conclude

𝜃(̃︀𝑢𝑘, ̃︀U𝑘−1) ≥
√
𝑘𝜖+ 𝜃(̃︀U𝑘−1,U𝑘−1).
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Lemma 15. Let U𝑘 be a 𝑘-dimensional subspace of U which is subspace of

R𝑚 with dimension 𝑟. Then following inequality satisfied:

𝑘𝜇(U𝑘) ≤ 𝑟𝜇(U)

Proof.

𝑘𝜇(U𝑘) = 𝑘
𝑚

𝑘
max
1≤𝑗≤𝑚

‖𝒫U𝑘𝑒𝑖‖2 = 𝑟
𝑚

𝑟
max
1≤𝑗≤𝑚

‖𝒫U𝑘𝑒𝑖‖2

≤ 𝑟
𝑚

𝑟
max
1≤𝑗≤𝑚

‖𝒫U𝑒𝑖‖2

= 𝑟𝜇(U)

and the inequality due to U𝑘 ⊆ U

Lemma 16. Let assume that 𝑎0 = 0 and 𝑎𝑘 ≤ 𝑎𝑘−1 +
𝜋
2

√︀
𝜖
𝑘 . Then it follows

that 𝑎𝑘 ≤ 3𝜋
2

√
𝑘𝜖

Proof. Its trivial to notice that 𝑎1 ≤ 𝜋
2

√
𝜖 ≤ 3𝜋2

√
𝜖. Lets assume by induc-

tion for a given 𝑘 any index 𝑖 ≤ 𝑘 satisfies 𝑎𝑖 ≤ 3𝜋2
√
𝑖𝜖 and then we will

prove that 𝑎𝑘+1 ≤ 3𝜋2
√︀
(𝑘 + 1)𝜖. We prove it by contradiction, by assuming

𝑎𝑘+1 > 3𝜋2
√︀

(𝑘 + 1)𝜖 and conclude to a contradiction.

𝑎𝑘+1 > 3
𝜋

2

√︀
(𝑘 + 1)𝜖

−𝑎𝑘 ≥ −3
𝜋

2

√
𝑘𝜖

Therefore, 𝑎𝑘+1−𝑎𝑘 ≥ 3𝜋2
√
𝜖
(︁√

𝑘 + 1−
√
𝑘
)︁
= 3𝜋2

√
𝜖 1√

𝑘+
√
𝑘+1
≥ 3𝜋2

√
𝜖 1
3
√
𝑘
=

𝜋
2

√︀
𝜖
𝑘 which contradicts to the statement of the lemma. Therefore, assump-

tion cannot be satisfied which follows 𝑎𝑘+1 ≤ 3𝜋2
√︀

(𝑘 + 1)𝜖
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Lemma 17. Let ̃︀U𝑘 and U𝑘 be as defined above then, coherence number of

these spaces satisfies the following inequality:

𝜇(̃︀U𝑘) ≤ 2𝜇(U𝑘) + 2
𝑚

𝑘
𝜃(̃︀U𝑘,U𝑘)2

Proof. In order to achieve the goal of comparing 𝜇(̃︀U𝑘) and 𝜇(U𝑘), we

first need to understand how projection to standard vectors to U𝑘 differ than

projection of them to ̃︀U𝑘:

‖𝒫̃︀U𝑘𝑒𝑖‖ ≤ ‖𝒫U𝑘𝑒𝑖‖+ ‖𝒫̃︀U𝑘𝑒𝑖 − 𝒫U𝑘𝑒𝑖‖ ≤ ‖𝒫U𝑘𝑒𝑖‖+ ‖𝒫̃︀U𝑘 − 𝒫U𝑘‖‖𝑒𝑖‖

= ‖𝒫U𝑘𝑒𝑖‖+ sin 𝜃(̃︀U𝑘,U𝑘)

≤ ‖𝒫U𝑘𝑒𝑖‖+ 𝜃(̃︀U𝑘,U𝑘)

Therefore:

𝜇(̃︀U𝑘) =
𝑚

𝑘
max
1≤𝑗≤𝑛

‖𝒫̃︀U𝑘𝑒𝑖‖2 ≤
𝑚

𝑘

(︁
2max
1≤𝑗≤𝑛

‖𝒫U𝑘𝑒𝑖‖2 + 2𝜃(̃︀U𝑘,U𝑘)2
)︁

= 2𝜇(U𝑘) + 2
𝑚

𝑘
𝜃(̃︀U𝑘,U𝑘)2

Lemma 18. Lets assume the setting as discussed in the proof above. Then,

𝑑

4𝑚
>

18𝑟

𝑚
𝜇(U) log2

1

𝛿
+ 18𝜃(̃︀U𝑘,U𝑘)2 log2

1

𝛿

Proof. Remind 𝑑 = 72𝜇(U)𝑟 log2 1
𝛿 + 8𝑚𝜃(̃︀U𝑘,U𝑘)2 log 𝑟

𝛿 and it implies
𝑑
4𝑚 = 18𝜇(U)𝑟 log2 1

𝛿 + 2𝑚𝜃(̃︀U𝑘,U𝑘)2 log 𝑟
𝛿 . Then all we need to show is

2𝑚 log 𝑟
𝛿 > 18 log2 1

𝛿 and this is correct due to 𝑚 ≥ 𝑑 ≥ 9 log 1
𝛿
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Lemma 19 ([17]). Let subspaces𝑈 , 𝑉 , and ̃︀𝑉 defined as𝑈 = 𝑠𝑝𝑎𝑛{𝑎1, . . . , 𝑎𝑘−1},

𝑉 = 𝑠𝑝𝑎𝑛{𝑎1, . . . , 𝑎𝑘−1, 𝑏} and ̃︀𝑉 = 𝑠𝑝𝑎𝑛{𝑎1, . . . , 𝑎𝑘−1, 𝑏̃}. Then follow-

ing inequality satisfied:

𝜃(𝑉, ̃︀𝑉 ) ≤ 𝜋

2

𝜃(𝑏̃, 𝑏)

𝜃(𝑏̃, 𝑈)

Lemma 20 ([16]). Let ̃︀U𝑘 be a 𝑘-dimensional subspace of R𝑚, and set

𝑑 = max(83𝑘𝜇(
̃︀U𝑘) log 2𝑘

𝛿 , 4𝜇𝒫̃︀U𝑘 log
1
𝛿 ). Given that Ω stands for uniformly

selected subset of [𝑚] then following inequality get satisfied:

𝑑(1− 𝛼)− 𝑘𝜇(̃︀U𝑘) 𝛽
1−𝜁

𝑚
‖𝑦−𝒫̃︀U𝑘𝑦‖ ≤ ‖𝑦Ω−𝒫̃︀U𝑘

Ω
𝑦Ω‖ ≤ (1+𝛼)

𝑑

𝑚
‖𝑦−𝒫̃︀U𝑘𝑦‖

where 𝛼 =

√︂
2
𝜇(𝒫̃︀U𝑘⊥𝑦)

𝑑
log

1

𝛿
+ 2

𝜇(𝒫̃︀U𝑘⊥𝑦)

3𝑑
log

1

𝛿
, 𝛽 = (1 + 2 log

1

𝛿
)2

𝜁 =

√︃
8𝑘𝜇(̃︀U𝑘⊥)

3𝑑
log

2𝑟

𝛿
we use 𝛼 < 1/2 and 𝛾 < 1/3 similar to [16]

Lemma 21 ([8]). Consider a finite sequence {X𝑘} ∈ R𝑛×𝑛 independent

random, Hermitian matrices those satisfies:

0 ≤ 𝜆min(X𝑘) ≤ 𝜆max(X𝑘) ≤ 𝐿.

Let Y =
∑︀
𝑘

X𝑘 and 𝜇𝑟 be the 𝑟-th largest eigenvalue of E[Y] ( 𝜇𝑟 =

𝜆𝑟(E[Y])), then for any 𝜖 ∈ [0, 1) following inequality satisfied:

Pr(𝜆𝑟(Y) ≥ (1− 𝜖)𝜇𝑟) ≥ 1− 𝑟
(︁ 𝑒−𝜖

(1− 𝜖)1−𝜖
)︁𝜇𝑟

𝐿 ≥ 1− 𝑟𝑒
𝜇𝑟𝜖

2

2𝐿
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Chapter 4

Experimental Results

4.1 Design of Experiments

Exact Completion Designs: To generate 𝑚 × 𝑛 sized underlying low-

rank matrix M, we created 𝑚 × 𝑟 and 𝑟 × 𝑛 sized matrices X,Y, where

X𝑖,𝑗,Y𝑖,𝑗 ∼ 𝒩 (0, 1) and we set M = XY.

To design an 𝑚 × 𝑛 sized rank 𝑟 with space nonsparsity number equal

to 1, we generate 𝑚 × 𝑟 − 1 and 𝑟 − 1 × 𝑛 sized matrices X,Y, where

𝑋𝑖,𝑗, 𝑌𝑖,𝑗 ∼ 𝒩 (0, 1). Multiplication of these matrices would gives us a rank

𝑟 − 1 matrix. As the column space of M is column space of Y. Given

that 𝑌𝑖,𝑗 ∼ 𝒩 (0, 1) implies that coherence of column space of Y is small.

Therefore, M has small column space coherence number. Then we generate

random a vector in R𝑛, and replace it with one of the rows: row−𝑖.

We can guarantee that the resulting matrix will contain 𝑖-th standard basis

vector 𝑒𝑖 in the column space. To observe this phenomenon, lets analyse

the restriction of the matrix M to the first 𝑟 columns and all the rows but
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row 𝑖. As this is a submatrix of rank 𝑟 − 1 matrix (initial M) this matrix

also has rank at most 𝑟 − 1. Therefore, we have non-trivial coefficients

𝛼1, 𝛼2, . . . , 𝛼𝑟, that makes linear combination of columns of submatrix to

be equal to zero vector. Therefore,

𝛼1M:1 + 𝛼1M:2 + . . .+ 𝛼𝑟M:𝑟 = 𝑤𝑒𝑖

for some 𝑤. Then all we need to show is 𝑤 ̸= 0, however it is straight-

forward because 𝑤 = 𝛼1𝑢1 + 𝛼2𝑢2 + . . . + 𝛼𝑟𝑢𝑟 which is nonzero be-

cause 𝑢 is random. In conclusion, 𝑒𝑖 is contained in the column space of

M and therefore from the definition of coherence of the columns space of

the matrix is equal to 𝑚
𝑟 which is also maximum value. Moreover, it has

nonsparsity-number to be equal to 1 as 𝑒𝑖 is in column space.

Note that, we might change the process above and generate several random

vectors and replace them with some rows of the matrix, we would get matrix

which has nonsparsity-number to be equal to 𝑎.

1. generate 𝑎 many random vector 𝑢 ∈ R𝑛

2. randomly select subset of [𝑚] that has size 𝑎

3. replace selected rows with randomly generated vectors.

We test our method for fixed 𝑟 = 5 and 𝑟 = 10 with 𝑛 varying over

{1000, 2000, . . . , 12000}. Similarly, we fixed 𝑛 = 3000 and varied 𝑟 over

{1, 2, . . . , 12}. Moreover, we classified matrices into four types for coher-

ence/incoherence of the column and row space.
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Low Rank Estimation Designs: We use the Hoopokins-155 dataset for

low-rank estimation algorithms.

4.2 Exact Completion Experiments

We tested all of our exact completion algorithms-ERR,ERRE and EREI

for synthetically generated low-rank matrices. From tables below, we can

get the comparison of the performance of our algorithms to previous meth-

ods ([2, 15, 16, 24]). We refer to Supplementary Material regarding gener-

ation method of coherent/incoherent, row/column subspace matrices.

Table 4.1: Experiments for rank 5 matrices
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Table 4.2: Experiments for rank 10 matrices

Table 4.3: Experiments for rank 3000× 3000 sized matrices
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4.3 Low-Rank Estimation Experiments

Experiments for real data: We tested the low-rank estimation method using

adaptive sampling with respect to the angle between estimated and under-

lying subspace. Experiments run on Hopkins 155 dataset. Hopkins dataset

contains 155 images, and each of them represents two or three motion ob-

jects. The trajectory of motion of each object lies in a low-rank subspace.

We reshape 3-dimensional tensor data to 2-dimensional matrix. Almost all

reshaped matrices are smaller than the size 500 × 50. As the constants

are high in the algorithm LREBN and works of previous authors together

with the multiplicative term of log(1/𝜖), applying for these numbers here

concludes observing the entire column. Therefore, instead of sampling pre-

cisely these numbers, we use other numbers that generated using a similar

idea. If a newly added independent column has a high angle with the esti-

mated subspace, then we don’t increase the number of samples for the next

columns. Otherwise, we increase the value of the d-observation count pa-

rameter. We compare this method to the method that no matter what is the

angle, we always increase 𝑑 once a new independent column detected. 𝜖

set to 0.0003, and the ℓ2 norm of the column normalized using ℓ2 norm of

observed entries. We run each of the experiments 20 times and take the

average of them to compute corresponding error and sample size. On the

left side, we see plots for ℓ∞-norm of estimation error in a given column.

In the right, we see the number of observations used during the execution.

Each row below corresponds to different images. Computing average error

over columns and average sample sizes conclude that the adaptive method
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roughly gives 8 − 12% benefit on reducing observation complexity. How-

ever, the average ℓ∞ norm of error doesn’t change significantly.

Table 4.4: Experiments for one of Hopkins 155 dataset
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Table 4.5: Experiments for one of Hopkins 155 dataset
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Table 4.6: Experiments for one of Hopkins 155 dataset
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