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ACKNOWLEDGMENTS iii



Ploskas, Aida Khajavirad, Nick Austin, Sreekanth Rajagopalan, Yash Puranik, Zach Wil-

son, Ben Sauk, Marissa Engle, Tong Zhang, Chenglin Zheng, Yang Yang, Yi Zhang, Brad

Johnson, Yijia Sun, Christian Hubbs, Kaiwen Ma, Owais Sarwar and Anatoliy Kuznetsov. I

enjoyed the extremely friendly atmosphere of this group. Mustafa, Nikos and Aida helped

me during the early stages of my Ph.D. I thank Mustafa for answering some of the ques-

tions that I had about BARON at the beginning of my Ph.D. I am grateful to Nikos for

helping me with several computer issues and for the interesting conversations that we

used to have in the third floor office. I thank Aida for her guidance when I was starting to

review the vast literature on convexification. Nick, Sree, Yash and Zach were senior Ph.D.

students when I joined the group. I appreciate the very useful feedback that they always

gave me at my group meeting presentations. Ben, Marissa and Tong are part of my Ph.D.

class. During our first year, we took several courses together, and as the years passed, we

had plenty of interesting discussions, both on scientific and philosophical matters. Yi vis-

ited the group when I was in my third year. We had many fruitful discussions and I had

the pleasure to collaborate with him on one of his papers. Brad, Yijia, Christian, Kaiwen,

Owais and Anatoliy joined the group as Ph.D. students after I did. I want to thank them

for making my time in the third floor office very enjoyable.

I am grateful for having been part of a very collaborative PSE group and a great Depart-

ment of Chemical Engineering. In particular, I am thankful to the following students, visi-

tors and post-docs with whom I have interacted over the last five years at CMU: Cristiana

Lara, Braulio Brunaud, Christopher Hanselman, Zixi Zhao, Qi Chen, Yixin Ye, Joyce Yu,

David Thierry, Akang Wang, Dana McGuffin, Charles Sharkey, Rajarshi Sengupta, Michael

Davidson, David Bernal, Can Li, Saif Rahaman, Natalie Isenberg, Hector Perez, Vibhav

Dabadghao, Aliakbar Izadkhah, John Villaraga, Christina Schenk, Cornelius Masuku, Jan

Kronqvist, Maria Paz Ochoa, Albania Villaroel, Kai Liu, Michael Short, Victor Anselmo

and Ana Somoza.

ACKNOWLEDGMENTS iv



Last but not the least, I want to express my deepest gratitude to my parents, Sarkis

and Rose, for their unconditional love and support, and my siblings, Daniel, Carolina

and Gabriel, for being my best friends. I am specially thankful to my parents because

they always placed a very strong emphasis on education, raising my siblings and me in

a multilingual home and exposing us to an environment that sparked our intellectual cu-

riosity from an early age. My parents are an excellent example of the great success that the

Lebanese diaspora has had all over the world. This thesis is dedicated to them.

ACKNOWLEDGMENTS v



Abstract

Over the last three decades rapid advances in computer technology coupled with new the-

oretical developments have led to significant progress in deterministic global optimization.

While this progress has been considerable, this remains a relatively underdeveloped area,

as there exists many classes of problems that global optimization algorithms are unable to

solve to global optimality.

In this thesis, we present computational methodologies aimed at improving the perfor-

mance of branch-and-bound-based global optimization algorithms. To this end, we pro-

pose novel relaxation and domain partitioning strategies for various classes of nonconvex

nonlinear programs (NLPs) and mixed-integer nonlinear programs (MINLPs).

In the first part of this thesis, we consider nonconvex optimization problems containing

convex-transformable functions. We introduce a new class of cutting planes derived by

exploiting convex-transformability of intermediate expressions of factorable programs.

In the second part of this thesis, we turn our attention to nonconvex mixed-integer

quadratic programs (MIQPs). We present a family of convex quadratic relaxations derived

by convexifying nonconvex quadratic functions through uniform diagonal perturbations

of the quadratic matrix. We investigate the theoretical properties of these quadratic relax-

ations and show that they are equivalent to some particular semidefinite programs. We

also introduce novel branching variable selection strategies which can be used in conjunc-

tion with the proposed quadratic relaxations.

In the third part of this thesis, we consider a related class of convex quadratic relaxations.

In particular, we propose a new class of quadratically constrained programming (QCP) re-

laxations derived via convex quadratic cuts obtained from non-uniform diagonal pertur-
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bations of the quadratic matrix. We show that these relaxations are an outer-approximation

of a semi-infinite convex program which under certain conditions is equivalent to a well-

known semidefinite program relaxation.

To demonstrate the computational benefits of the ideas investigated in this thesis, we

implement the proposed relaxation and domain partitioning strategies into the state-of-the

art global optimization solver BARON. We test our implementation by conducting exten-

sive computational studies on a variety of nonconvex problems. Results demonstrate that,

for many test problems, the proposed techniques lead to order-of-magnitude speedups,

resulting in a new version of BARON which outperforms other widely used global opti-

mization solvers.
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Chapter 1

Introduction

1.1 Motivation

We consider optimization problems of the form:

min f(x)
s.t. g(x) ≤ 0

x ∈ X ⊆ Rn−nd × Znd
(1.1)

where f : X → R and g : X → Rm are factorable functions which may be nonconvex. The

formulation in (1.1) subsumes many classes of nonconvex nonlinear programs (NLPs) and

mixed-integer nonlinear programs (MINLPs) which arise in variety of applications such

as synthesis of process networks [35], pooling and blending in refinery operations [65],

product design in mechanical engineering [44], molecular conformation [69], protein fold-

ing [67], molecular design of refrigerants [78], optimization of metabolic networks [70],

facility location and quadratic assignment [25, 49, 51, 55], and max-cut problems [33]. Due

to the nonconvexities in f and g and the presence of discrete variables, problem (1.1) may

exhibit multiple local optima and can be very challenging to solve to global optimality.

State-of-the-art deterministic global optimization solvers rely on branch-and-bound al-

gorithms in order to solve problems of the form (1.1) to global optimality. These algorithms

were initially devised to solve discrete optimization problems [27, 50], and were subse-

quently adapted for solving more general problems involving both discrete and continu-

ous variables [30]. The branch-and-bound procedure generates lower and upper bounds

on the global solution of (1.1) over successively refined partitions of the search space. The
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lower bounds are obtained by solving relaxations of (1.1), whereas the upper bounds are

determined via local search or heuristics. This procedure stops when the difference be-

tween the best upper and lower bounds is within a user-defined tolerance ε > 0. If

the lower bounding and partitioning schemes satisfy certain conditions, the branch-and-

bound algorithm is guaranteed to converge to the global optimum within ε-accuracy [38].

We illustrate the key ideas behind this algorithm through the following example.

Example 1.1. Consider the following nonconvex optimization problem:

µ = min
x∈R

f(x) = 2.3x4 − 4.5x2 + 0.5e1.5x

s.t. x ∈ [−1.4, 1.0]
(1.2)

It is simple to show that a convex relaxation for (1.2) is given by:

µLBD
i = min

x∈R
ri(x) = 2.3x4 − 4.5((xi + x̄i)x− xix̄i) + 0.5e1.5x

s.t. x ∈ [xi, x̄i]
(1.3)

where the index i represents the i-th node of the branch-and-bound tree, and xi and x̄i

respectively denote the lower and upper bounds corresponding to this node.

We start the branch-and-bound algorithm at the root-node by setting i = 1, x1 = −1.4

and x̄1 = 1.0 in (1.3). The solution of the resulting relaxation is attained at x∗ = −0.6,

which leads to the root-node lower bound µLBD
1 = −6.9. We then apply a local search

method to (1.2) by using the relaxation solution as a starting point. This results in the root-

node upper bound µUBD
1 = −2.1. Clearly, µ ∈ [−6.9,−2.1]. The root-node lower and upper

bounding steps are illustrated in Figure 1.1a.

Next, we partition the problem domain by branching on the middle point of the interval

[−1.4, 1.0]. We create one node where i = 2 and x ∈ [x2, x̄2] = [−1.4,−0.2], and another

node where i = 3 and x ∈ [x3, x̄3] = [−0.2, 1.0]. At each of these nodes we solve a re-

laxation of the form (1.3), obtaining the lower bounds µLBD
2 = −3.6 and µLBD

3 = −1.5 (see

Figure 1.1b). Since µLBD
3 > µUBD

1 , we have that f(x) > µ, ∀x ∈ [−0.2, 1.0]. As a result, we

fathom node 3 and conclude that µ ∈ [−3.6,−2.1].
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We can further partition the problem domain by branching on the middle point of the

interval [−1.4,−0.2]. This leads to one node where i = 4 and x ∈ [x4, x̄4] = [−1.4,−0.8],

and another node where i = 5 and x ∈ [x5, x̄5] = [−0.8,−0.2]. By solving the relaxations

of the form (1.3) corresponding to these nodes we obtain the lower bounds µLBD
4 = −2.5

and µLBD
5 = −1.8 (see Figure 1.1c). Since µLBD

5 > µUBD
1 , we have that f(x) > µ, ∀x ∈

[−0.8,−0.2]. Hence, we proceed to fathom node 5. As this is an illustrative example,

we stop this algorithm at node 4 and conclude that µ ∈ [−2.5,−2.1]. The search tree

corresponding to this example is shown in Figure 1.1d.

The performance of branch-and-bound algorithms is heavily influenced by several fac-

tors including: (i) the quality of the bounds obtained during the lower and upper bounding

steps, (ii) the efficiency of the domain reduction methods used throughout the search, and

(iii) the strategies employed to partition the problem domain [91].

The quality of the upper bounds is determined by the type of local search and heuris-

tic methods used to find feasible solutions, whereas the quality of the lower bounds de-

pends on the tightness of the relaxations constructed throughout the branch-and-bound

tree. Tight relaxations lead to tight bounds, and often speed up the convergence of branch-

and-bound algorithms.

As their name suggests, domain reduction methods aim to reduce the size of the search

space by excluding regions that do not contain optimal solutions. This reduction is achieved

by tightening variable bounds through the application of feasibility-based and optimality-

based techniques [75], and the exploitation of the first-order optimality conditions of the

original problem [73, 97]. Although these strategies are not required to ensure convergence

to the global optimum, they typically lead to significant improvements in the efficiency of

branch-and-bound algorithms.

Domain partitioning strategies involve the splitting of the search space by selecting a

branching variable and a branching point. These strategies have a very significant impact
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on the structure and size of the search tree and can considerably affect the performance of

branch-and-bound algorithms [92].
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Figure 1.1: Branch and bound procedure for Example 1.1.

Given the challenging nature of the problems that typically arise in global optimiza-

tion, over the past three decades there has been very active research in the development

of novel bounding schemes, domain reduction methods and partitioning strategies for
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branch-and-bound algorithms. Many of these new developments have been incorporated

into efficient branch-and-bound-based software packages which are capable of solving

a variety of nonconvex problems to global optimality. Some examples of these solvers

are ANTIGONE [64], BARON [77], COUENNE [12], CPLEX [41], GUROBI [36], LIN-

DOGLOBAL [54] and SCIP [13].

Even though the aforementioned advances have had a very positive impact in numer-

ous scientific and engineering applications, there currently exist many classes of problems

which global optimization solvers are unable to solve to global optimality.

1.2 Outline of the thesis

In this thesis, we push the state-of-the-art in deterministic global optimization by introduc-

ing novel relaxation and partitioning strategies for various classes of nonconvex NLPs and

MINLPs. Throughout the thesis, we make important theoretical and algorithmic contri-

butions, and demonstrate the computational benefits of the proposed strategies by devel-

oping efficient implementations which are integrated into the global optimization solver

BARON.

We start in Chapter 2 by considering nonconvex optimization problems which contain

convex-transformable functions. We first present algorithms for identification of convex-

transformable functions in general nonconvex problems. We then introduce a new class

of cutting planes based on recently developed relaxations for convex-transformable func-

tions. We integrate our recognition and cutting plane generation algorithms into BARON,

and test our implementation by conducting numerical experiments on various classes of

nonconvex problems. Results indicate that the proposed cutting planes considerably ac-

celerate the convergence speed of the branch-and-bound algorithm.

In Chapter 3, we turn our attention to nonconvex quadratic programs (QPs) and mixed-
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integer quadratic programs (MIQPs). In particular, we present a family of convex quadratic

relaxations which are derived by convexifying nonconvex quadratic functions through

perturbations of the quadratic matrix. We investigate the theoretical properties of these

quadratic relaxations and show that they are equivalent to some particular semidefinite

programs. We also introduce novel branching variable selection strategies which are mo-

tivated by the proposed quadratic relaxations. The new relaxation and branching tech-

niques are implemented in BARON, and tested by conducting numerical experiments on

a large collection of problems. Our numerical results show that the proposed implemen-

tation leads to a very significant improvement in the performance of BARON, resulting in

order-of-magnitude speedups for many test problems.

Motivated by these results, in Chapter 4, we consider a related class of convex quadratic

relaxations. In particular, we propose a new class of quadratically constrained program-

ming (QCP) relaxations which are derived via convex quadratic cuts. To construct these

quadratic cuts, we solve a separation problem involving a linear matrix inequality with

a special structure that allows the use of specialized solution algorithms. We show that

our relaxations are an outer-approximation of a semi-infinite convex program which un-

der certain conditions is equivalent to a well-known semidefinite program relaxation. We

implement these new relaxations in BARON and demonstrate their benefits by conducting

an extensive computational study.

We conclude in Chapter 5 by summarizing the main contributions of this thesis and

suggesting directions for future work.
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Chapter 2

Global optimization of nonconvex problems

with convex-transformable intermediates

2.1 Introduction

In this chapter, we consider the global optimization of nonconvex NLPs and MINLPs of

the form:

min f(x)
s.t. g(x) ≤ 0

x ∈ X ⊆ Znd × Rn−nd
(2.1)

where f : X → R, g : X → Rm, and the objective function and/or constraints con-

tain convex-transformable functions. A continuous real-valued function φ defined over a

convex set C ⊆ Rn is said to be convex-transformable (resp. concave-transformable) or

G-convex (resp. G-concave) if there exists a continuous real-valued increasing function G

defined on the range of φ, such that G(φ(x)) is convex (resp. concave) over C [7]. Prob-

lems containing convex-transformable functions arise in a wide variety of scientific and

engineering applications, including the synthesis of process networks [35], pooling and

blending in refinery operations [65], molecular design of refrigerants [78], product design

in mechanical engineering [44], and optimization of metabolic networks [70].

One of the most popular approaches for constructing convex relaxations of nonconvex

optimization problems, including problems containing convex-transformable functions,

is based on factorable programming techniques [60, 86, 92]. Given a factorable function,
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these techniques proceed by introducing intermediate variables and constraints in an iter-

ative manner, until each intermediate expression can be outer-approximated by its convex

and/or concave envelopes. By applying this procedure to all factorable functions appear-

ing in a given nonconvex optimization problem, it is possible to construct a convex relax-

ation, whose solution provides a valid bound on the optimal objective function value of the

original problem. Due to their simplicity, factorable programming techniques have been

successfully implemented in most global optimization packages. An important drawback

of these techniques is the fact that they often result in large relaxation gaps.

With the aim of obtaining tighter relaxations of nonconvex optimization problems, con-

siderable attention has been devoted in recent years to the problem of constructing the

convex and concave envelopes of a nonconvex function. While significant advances have

been made in this area, there are only a few cases in which it is possible to obtain closed-

form expressions for the envelopes, or alternatively, develop a computationally efficient

algorithm for generating facets of the envelopes. These instances involve functions with

polyhedral envelopes, and several classes of low-dimensional functions with nonpolyhe-

dral envelopes. For details on some of these convexification results, we refer the reader

to [2, 9, 10, 42, 46, 47, 61, 62, 74, 80, 88, 89, 90]

An alternative method for strengthening factorable relaxations of nonconvex optimiza-

tion problems is based on the use of functional transformations. A particular example

of this approach is the use of power and exponential transformations to convexify signo-

mial terms [52, 56, 57, 58]. A more general transformation scheme for constructing outer-

approximations of nonconvex functions was recently proposed by Khajavirad et al. [45].

This technique exploits convex transformability of component functions of factorable pro-

grams, and it differs from other methods in that it is applicable to various classes of func-

tional forms including signomials, products and ratios of convex and/or concave func-

tions, and logarithmically-concave functions. As illustrated in [45], this transformation
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method often leads to relaxations which are considerably tighter than those obtained by

standard approaches.

Motivated by the potential of these new relaxations to enhance the performance of

global solvers, in this chapter, we introduce a new class of cutting planes for convex-

transformable functions, and describe its implementation into the branch-and-bound global

solver BARON. The proposed implementation involves a recognition tool which can be

used to identify convex-transformable functions in general nonconvex problems, includ-

ing those present in intermediate expressions of factorable functions. Our cutting plane

generation scheme is based on the construction of supporting hyperplanes to these new

convex relaxations, which are then used at each node of the branch-and-bound tree to

tighten BARON’s polyhedral relaxations. By integrating the proposed cutting plane gener-

ation strategy at every node of the branch-and-bound tree, we are able to exploit BARON’s

bound tightening capabilities to obtain tight bounds for relaxation construction, as well

as use the generated cutting planes for range reduction. We test our implementation by

conducting extensive numerical experiments on a large collection of NLPs and MINLPs

selected from publicly available test sets. Results demonstrate that the generated cutting

planes accelerate the convergence speed of the branch-and-bound algorithm, by signif-

icantly reducing computational time, number of nodes in the search tree, and required

memory.

The remainder of this chapter is organized as follows. In §2.2 we review relaxation

construction techniques for convex-transformable functions. In §2.3, we describe our im-

plementation and provide details on how the proposed cutting plane generation scheme

is integrated into a branch-and-bound-global solver. In §2.4, we present the results of an

extensive computational study analyzing the effect of the proposed cutting planes on the

performance of the branch-and-bound algorithm. Finally, in §2.5 we provide conclusions

from this work.
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2.2 Relaxations of convex-transformable functions

In this section, we review relaxation construction techniques for various classes of G-

convex functions. We start by illustrating how convex-transformability of nonconvex func-

tions can be exploited for the construction of outer-estimators. Let φ be a G-convex func-

tion defined over the convex set C ⊆ Rn, where G is a transforming function defined over

the range of φ, which we will denote by Iφ. Then, it can be shown that a convex underes-

timator for φ is given by (see Section 3 in [45] for details)

φ̃G(x) = Ḡ−1(G(φ(x))) (2.2)

where Ḡ is an overestimator for G over Iφ. Now, suppose that G is a convex function, and

denote by φ and φ̄, lower and upper bounds on φ over C, respectively. Then, by using the

concave envelope of G over Iφ, it is easy to verify that in this case (2.2) is equivalent to

φ̃G(x) =
(
G(φ(x))−G(φ)

)( φ̄− φ
G(φ̄)−G(φ)

)
+ φ (2.3)

As an example, consider the univariate nonconvex function φ(x) = −(x3 + x) defined

over C = [−0.5, 0.5], and the transforming the functionG(t) = exp(3t) defined on the range

of φ over C. It is simple to check that the composite function G(φ(x)) is convex, which in

turn implies that φ is convex-transformable. In addition, by employing (2.3), the following

convex underestimator for φ over C can be obtained

φ̃G(x) = 0.196 exp(−3(x3 + x))− 0.655 (2.4)

Note that for a given convex-transformable function the choice of the transforming func-

tion is not unique, i.e., there may exist many transforming functions for which G(φ(x)) is

convex, and which obviously can be used to derive underestimators of the form (2.3).

Therefore, an important question that arises in this context is how we can choose G in or-

der to obtain the tightest possible underestimator in (2.3). This question was addressed

in [45]; in particular, the authors showed that the tightest relaxation of the form (2.3) is
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obtained when G is equal to a least convexifying transformation for φ. Given a G∗-convex

function φ, G∗ is considered to be a least convexifying transformation for φ, if for every G

for which φ is G-convex, GG∗−1 is a convex function. For details on how to construct a

least convexifying transformation for a given convex-transformable function, we refer the

reader to [7, 45].

Now, we revisit the example considered above. In this case, it can be shown that a

least convexifying transformation for φ is given by G∗(t) = exp(9t/8). By substituting G∗

in (2.3), we obtain the following convex underestimator for φ

φ̃G
∗
(x) = 0.820 exp(−1.125(x3 + x))− 1.031 (2.5)

The underestimators given in (2.4) and (2.5) are compared in Figure 2.1. As seen in the

figure, φ̃G
∗

is considerably tighter than φ̃G. Note that the univariate nonconvex function

φ considered in this example has a nonpolyhedral convex envelope over C = [−0.5, 0.5]

given by

convCφ(x) =

{
φ(x), if − 0.5 ≤ x ≤ w,
φ(x̄) + φ′(w)(x− 0.5), if w ≤ x ≤ 0.5.

(2.6)

where w is a point satisfying φ(w) = φ(0.5) +φ′(w)(w− 0.5) (see Figure 2.1). Since, by def-

inition, the convex envelope of a function is its tightest possible convex underestimator, it

is obvious that for this example convCφ(x) dominates φ̃G and φ̃G
∗
. However, as mentioned

earlier, for general nonconvex functions the characterization of the envelopes is a very

difficult problem. Therefore, in cases in which the envelopes are not available the trans-

formation outer-estimators discussed here can be used for tightening convex relaxations

constructed through factorable programming techniques.

Analogous results for G-concave functions can be obtained in a similar manner. The

transformation scheme outlined above was employed in [45] to derive underestimators

(resp. overestimators) for various classes of G-convex (resp. G-concave) functions. In the

following subsections, we summarize these results.

2. GLOBAL OPTIMIZATION OF NONCONVEX PROBLEMS WITH CONVEX-TRANSFORMABLE
INTERMEDIATES

11



2.2 RELAXATIONS OF CONVEX-TRANSFORMABLE FUNCTIONS

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

x

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

φ

w

Figure 2.1: Comparison of underestimators for φ(x) = −(x3 + x) over C = [−0.5, 0.5]. The
function φ is plotted in solid black, the transformation underestimators φ̃G and φ̃G

∗
in

dotted red and dashed green, respectively, and the convex envelope of φ in dotted blue.

2.2.1 Signomials

In this subsection, we consider signomial functions defined over a subset of the nonnega-

tive orthant. We start by reviewing conditions under which a signomial function is convex-

transformable (resp. concave-transformable), and present its least convexifying (resp. con-

cavifying) transformation, which is then used to construct a convex underestimator (resp.

concave overestimator).

Proposition 2.1. (Proposition 10 in [45]) Consider the function φ =
∏
i∈I x

αi
i , αi ∈ R \ {0},

∀i ∈ I = {1, . . . , n} defined over a subset of the nonnegative orthant. The function φ is G-convex

if and only if αi < 0 for all i ∈ I \ {j} and
∑

i∈I\{j} |αi| < αj <
∑

i∈I\{j} |αi|+ 1. Moreover, a

least convexifying transformation for φ is given by

G∗(t) = t
1∑

i∈I αi (2.7)
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Proposition 2.2. (Proposition 11 in [45]) Consider the function φ =
∏
i∈I x

αi
i , αi ∈ R \ {0},

∀i ∈ I = {1, . . . , n} defined over a subset of the nonnegative orthant. The function φ is G-concave

if and only if one of the following holds:

(i) αi > 0 for all i ∈ I and
∑

i∈I αi > 1,

(ii) αj < 0 for some j ∈ I such that
∑

i∈I\{j} αi < |αj |.

Moreover, a least concavifying transformation for φ is given by (2.7) when condition (i) is met and
by

G∗(t) = −t
1∑

i∈I αi (2.8)

when condition (ii) is met.

Now, we derive underestimators and overestimators for the signomial function φ over

a subset C of the nonnegative orthant. Denote by φ and φ̄ the lower and upper bounds on

φ over C, respectively, and let ξ =
∑

i∈I αi. By Proposition 2.1 and (2.3), the following is a

convex underestimator for φ:

φ̃G(x) =
(
φ

1
ξ − φ

1
ξ

) φ̄− φ

φ̄
1
ξ − φ

1
ξ

+ φ (2.9)

Using a similar argument, it follows from Proposition 2.2 that a concave overestimator

for φ is also given by (2.9). Next, we illustrate the above relaxation construction technique

through an example.

Consider the function φ(x) = x1.1
1 x0.3

2 , x1 ∈ [1, 5], x2 ∈ [0.5, 10]. We first construct

a concave overestimator using factorable programming techniques. Let x3 = x1.1
1 , and

x4 = x0.3
2 . Then, by overestimating x3 with its concave envelope, and using the McCormick

envelopes for the bilinear term x3x4, we obtain the following overestimator for φ(x)

φ̃S(x) = min{5.87x0.3
2 + 0.99x1 − 4.95, x0.3

2 + 2.43x1 − 2.43} (2.10)

By proposition 2.2, the function φ is concave-transformable with G∗ = t1/1.4. Then, by

using (2.9), the following overestimator for φ can be constructed
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φ̃G
∗
(x) = 2.21

(
x1.1

1 x0.3
2

)1/1.4 − 1.09 (2.11)

We compare both overestimators in Figure 2.2 at different cross-sections of the domain.

As observed in the figure, the transformation overestimator is tighter in the center of the

box, whereas the factorable overestimator dominates near the boundaries of the domain.

This example illustrates that transformation outer-estimators may not globally dominate

standard factorable outer-estimators. In fact, as shown in [45], the total relaxation gap of

the transformation method may become larger than that of the standard factorable ap-

proach for signomials in higher dimensions and/or with larger exponents. With the aim

of reducing this undesirable increase in the relaxation gaps, in [45], the authors proposed

a recursive transformation and relaxation (RT) scheme for overestimating signomials con-

taining three or more terms. This approach combines factorable and transformation relax-

ations in order to obtain tighter overestimators. We illustrate the benefits of this method

through the following example.

Consider the function φ(x) = x0.5
1 x0.6

2 x0.8
3 defined over C = [0, 6] × [0.2, 4] × [1.1, 3]. A

factorable decomposition of φ is given by

x4 = x0.5
1 x5 = x0.6

2 x6 = x0.8
1 x7 = x4x5 x8 = x7x6 (2.12)

By using the concave envelopes of bilinear terms x4x5 and x7x6, the following factorable

overestimator for φ is obtained:

φ̃S = min


0.92x0.5

1 + 5.90x0.6
2 − 2.25,

5.53x0.5
1 ,

0.41x0.5
1 + 2.64x0.6

2 + 5.63x0.8
3 − 7.08,

2.48x0.5
1 + 5.63x0.8

3 − 6.07

 (2.13)

According to Proposition 2.2, the function φ is concave-transformable, with G∗(t) =

t1/1.9. Then, from (2.9), we obtain the following overestimator for φ:

φ̃G(x) = 3.44
(
x0.5

1 x0.6
2 x0.8

3

)1/1.9 (2.14)
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Figure 2.2: Comparison of overestimators for φ(x) = x1.1
1 x0.3

2 over [1, 5]× [0.5, 10]. We plot
the function φ in solid black, the factorable overestimator φ̃S in dotted blue, and the

transformation overestimator and φ̃G
∗

in dashed green.

To assess the tightness of these two overestimators, we calculate the total relaxation gap

associated with each approach as

δMtot =

∫
C

(
φ̃M (x)− φ(x)

)
dx (2.15)

where M indicates the method that is used to overestimate φ. By the previous relation we

have that δStot = 63.9, and δGtot = 120.6, indicating that for this example the transformation

scheme given by (2.9) introduces a significantly larger relaxation gap than the factorable

method.

Next, we overestimate φ via the RT scheme. We start by overestimating the relation x7 =

x0.5
1 x0.6

2 using the transformation approach. Clearly, the signomial term x0.5
1 x0.6

2 satisfies

part (i) of Proposition 2.2, with G∗(t) = t1/1.1. Thus, from (2.9) we obtain

x7 ≤ 1.17
(
x0.5

1 x0.6
2

)1/1.1 (2.16)
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Now, by combining the previous relation with the concave envelope of the bilinear term

x7x6, we obtain the following RT overestimator for φ

φ̃RT = min

{
2.82

(
x0.5

1 x0.6
2

)1/1.1,
1.26

(
x0.5

1 x0.6
2

)1/1.1
+ 5.63x0.8

3 − 6.07

}
(2.17)

From (2.15) we have that δRTtot = 44.9, which corresponds to a 30% reduction in the total

relaxation gap introduced by the factorable overestimator. For additional details on the RT

approach, we direct the reader to Section 4.2 in [45].

2.2.2 Products and ratios of convex and/or concave functions

In the following, we present relaxations for products and ratios of convex and/or concave

functions. In Propositions 2.3 and 2.4 we provide overestimators for concave-transformable

products and ratios, whereas in Proposition 2.5 we consider convex-transformable prod-

ucts. These relaxations were derived in [45] by combining the results of Propositions 2.1

and 2.2 with composition rules for convex-transformable functions.

Proposition 2.3. (Proposition 16 in [45]) Consider φ =
∏
i∈I φ

αi
i over a box, where αi > 0 for

all i ∈ I and
∑

i∈I αi > 1. Let φi be concave and nonnegative for all i ∈ I . Then, φ is G-concave

with G(t) = t1/ξ, where ξ =
∑

i∈I αi. Furthermore, a concave overestimator for φ is given by:

φ̃G(x) =
(
φ

1
ξ − φ

1
ξ

) φ̄− φ

φ̄
1
ξ − φ

1
ξ

+ φ (2.18)

where φ and φ̄ denote a lower and an upper bound on φ, respectively.

Proposition 2.4. (Proposition 17 in [45]) Consider φ =
∏
i∈I φ

αi
i over a box, where αj < 0 for

some j ∈ I and
∑

i∈I\{j} αi < |αj |. Let φi be positive and concave for i ∈ I \ {j}, and let φj be

positive and convex. Then, φ is G-concave with G(t) = −t1/ξ, ξ =
∑

i∈I αi, and its associated

overestimator φ̃G is given by (2.18).
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Proposition 2.5. (Proposition 18 in [45]) Consider φ =
∏
i∈I φ

αi
i over a box, where αi < 0

for all i ∈ I \ {j} and
∑

i∈I\{j} |αi| < αj <
∑

i∈I\{j} |αi| + 1. Let φi be positive and concave

for i ∈ I \ {j}, and let φj be nonnegative and convex. Then, φ is G-convex with G(t) = t1/ξ,

ξ =
∑

i∈I αi, and its associated underestimator φ̃G is given by (2.18).

2.2.3 Log-concave functions

Now, we turn out attention to a particular class of logarithmically concave functions.

Recall, that a real-valued function φ is logarithmically concave or log-concave, if it is

positive over its domain, and log φ is concave [20]. For example, consider the function

φ(x) = (x1 +x2)0.5(2x1 + 5x2)0.7, defined over C = [1, 5]× [0.5, 2]. Obviously, φ(x) > 0, and

log φ(x) is concave for all x ∈ C, which implies that φ is log-concave. Moreover, by Proposi-

tion 2.3, φ(x) is alsoG-concave and can be overestimated using (2.18). As another example,

consider the function φ(x) = x2
1 exp(x2), defined over C = [0.5, 10] × [−5, 5]. In this case,

it is clear that φ(x) is also log-concave, since φ(x) is positive and log φ(x) is concave for

all x ∈ C. However, this function does not satisfy any of the propositions discussed in the

previous subsections, and cannot be overestimated by the transformation techniques out-

lined above. The following proposition, which is a minor modification of a result derived

in [45], extends the transformation method discussed in the previous subsections to the

class of log-concave functions considered in this example.

Proposition 2.6. (Extension of Proposition 19 in [45]) Consider the function

φ(x) =
f(x)a exp(g0(x))

k0 + k1
∑

i∈I exp(gi(x))
, α, k0, k1 > 0 (2.19)

over a convex set C ⊂ Rn. Let f(x) be concave and positive, g0(x) be concave, and gi(x), i ∈ I be

convex over C. Then, φ is log-concave. Further, a concave overestimator of φ over C is given by:

φ̃G(x) =

(
log φ− log φ

) (
φ̄− φ

)
log
(
φ̄/φ

) + φ (2.20)
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where φ and φ̄ are a lower and an upper bound on φ, respectively.

For examples illustrating the benefits of the relaxations presented in Propositions 2.3–

2.6, we refer the reader to [45].

2.3 Implementation in a branch-and-bound algorithm

For some functional forms, the transformation outer-estimators discussed in the previous

section have a more complex structure than widely used factorable outer-estimators. Di-

rect incorporation of these complex relaxations may reduce performance of global solvers

that solve nonlinear convex relaxations to obtain lower bounds. However, as we detail in

this section, this is not an issue for global solvers that construct polyhedral relaxations in

the lower bounding step. In this case, it suffices to generate supporting hyperplanes for the

transformation outer-estimators, which can then be used as valid inequalities to tighten an

existing polyhedral relaxation.

In order to examine the impact of the G-convexity relaxations presented in §2.2 on the

performance of branch-and-bound algorithms, we have incorporated these relaxations

into the global solver BARON. Our implementation consists of recognition algorithms for

identifying several classes of convex-transformable functions, and a cutting plane gener-

ation strategy, which constructs cuts for convex-transformable functions at every node of

the branch-and-bound tree. The following subsections provide a detailed description of

our implementation.

2.3.1 Identification of convex-transformable functions in general nonconvex

problems

In this section, we introduce a set of recognition routines for the identification of convex-

transformable functions in general nonconvex problems. We start by listing the various
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classes of convex transformable functions which are recognized by our implementation.

This list has been compiled after carrying out an extensive survey of nonconvex problems

appearing in a wide variety of scientific and engineering applications.

1. Signomial functions of the form

φ(x) =
∏
i∈I

xαii , αi ∈ R \ {0}, ∀i ∈ I = {1, . . . , n} (2.21)

over a subset of the nonnegative orthant. In particular, we consider signomials sat-

isfying Proposition 2.1, and part (i) of Proposition 2.2. Concave-transformable sig-

nomials satisfying part (ii) of Proposition 2.2 are ignored here, since the factorable

overestimator constructed by BARON in this case globally dominates the transfor-

mation overestimator given by (2.9) (see Proposition 12 in [45] for details).

2. Products and ratios of the form

φ(x) = (f(x))α(g(x))β, x ∈ H, α, β ∈ R (2.22)

where H ⊆ Rn denotes a box and f and g are convex and/or concave functions de-

fined overH. In particular, we consider the following cases:

(a) f(x) = 1, α = 0, g(x) = a0 +
∑n

i=1 aix
2
i , β = −p, where ai > 0, ∀i ∈ {0, 1, . . . , n},

and p > 0.

(b) f(x) = a0 +
∑n

i=1 aixi, g(x) = b0 +
∑n

i=1 bixi.

(c) f(x) = a0 +
∑n

i=1 aixi, g(x) = b0 + b1 log (
∑n

i=1 cixi), where b1 > 0.
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(d) f(x) = a0 + a1 log (
∑n

i=1 cixi), g(x) = b0 + b1 log (
∑n

i=1 dixi), where a1, b1 > 0.

(e) f(x) = a0 +
∑n

i=1 aixi, g(x) = b0 +
∑n

i=1

(
bi/xi + cixi + dix

2
i + eix

3
i + fix

4
i

)
,

where g is a concave function.

(f) f(x) = a0 +
∑n

i=1 aixi, g(x) = b0 +
∑n

i=1 bix
p
i , where bi > 0, ∀i ∈ {1, . . . , n}, and

0 < p < 1.

(g) f(x) = a0 +
∑n

i=1 aixi, g(x) = b0 + b1 exp (
∑n

i=1 cixi), where b1 < 0.

Note that G-convexity or G-concavity of the functions listed above is determined by

the values of the exponents α and β and the convexity and/or concavity properties

of the functions f and g.

3. Log-concave functions of the form

φ(x) =
f(x)α exp(g0(x))

k0 + k1
∑

i∈I exp gi(x)
, x ∈ H, α, k0, k1 > 0, (2.23)

where H ⊆ Rn denotes a box, f(x) is concave and positive, g0(x) is concave, and

gi(x), i ∈ I is convex overH. In particular, we consider the following cases:

(a) f(x) = 1, g0(x) = 0, k0, k1 > 0, I = {1}, g1(x) = a0 +
∑n

i=1 aixi.

(b) f(x) = a0 +
∑n

i=1 aixi, g0(x) = b0 +
∑n

i=1 bixi, k0 = k1 = 1, I = ∅.
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(c) f(x) = log (a0 +
∑n

i=1 aixi), g0(x) = b0 +
∑n

i=1 bixi, k0 = k1 = 1, I = ∅.

(d) f(x) = a0 +
∑n

i=1 aixi, g0(x) = b0 + b1/(c0 +
∑n

i=1 cixi)
p, k0 = k1 = 1, I = ∅,

where p > 0, and b1 < 0.

(e) f(x) = a0 +
∑n

i=1 aixi, g0(x) = b0 +
∑n

i=1 bixi, k0 = k1 = 1, I = {1, 2},

g1(x) = c0 +
∑n

i=1 cixi, g2(x) = d0 +
∑n

i=1 dixi.

Remark 1. In our implementation, we ignore G-convex and G-concave functions that are

convex or concave, since BARON is equipped with a powerful module that exploits con-

vexity or concavity properties of such functions for relaxation construction [48]. For ex-

ample, consider the function φ(x1) = x1 log(x1), x1 > 0. Clearly, this function belongs to

Class 2(c) above, with n = 1, a0 = b0 = 0, a1 = b1 = c1 = 1, and α = β = 1. It is simple to

check that φ satisfies the conditions given by Proposition 2.3, and thus isG-concave. How-

ever, φ is also convex, and it is, as a result, ignored by our implementation. As another

example, consider the function φ(x1) = (a0 + a1x1)(b0 + b1x1), where (a0 + a1x1) ≥ 0 and

(b0 + b1x1) ≥ 0. This function belongs to Class 2(b) above, with n = 1, and α = β = 1.

It is easy to verify that φ also satisfies the conditions given by Proposition 2.3, and thus is

G-concave. However, φ is convex when a1b1 ≥ 0, and concave when a1b1 ≤ 0. Therefore,

we also ignore this function in our implementation.

Remark 2. We exclude from the above listG-convex (resp. G-concave) functions for which

the convex (resp. concave) envelopes are available and implemented in BARON. For ex-

ample, consider the function φ(x) = x1.5
1 x2.4

2 x1.1
3 , x1, x2, x3 ≥ 0, which belongs to Class

1 above. It is simple to check that φ satisfies part (i) of Proposition 2.2, and thus is G-

concave. However, φ is also component-wise convex, and as shown in [88], the factorable
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relaxation method provides the concave envelope for component-wise convex signomials

defined over a box in the nonnegative orthant. We ignore this function in our implementa-

tion since its envelope is already implemented in BARON. As another example, consider

the function φ(x) = xα1 expx2, x1 > 0, x2 ∈ R, α ∈ (0, 1). Clearly, this function belongs

to Class 3(b) above, with n = 2, a0 = b0 = a2 = b1 = 0, and a1 = b2 = 1. Obviously, φ

satisfies Proposition 2.6, and thus is G-concave. However, φ has a nonpolyhedral concave

envelope (see Theorem 2 in [47] for details), which is implemented BARON. As a result,

this function is also ignored by our implementation.

Next, we briefly review the factorable reformulation algorithm implemented in BARON,

which relies on the introduction of intermediate variables and constraints in order to de-

compose each factorable expression appearing in the original problem (see Algorithm 1 for

details). As an example of this reformulation, consider the following factorable function

over the positive orthant:

f(x) = (1 + x1/x2)−0.7(x1 + x2x3)0.8 + x2 + x3 (2.24)

This function does not contain any convex-transformable subexpressions. However, by

applying Algorithm 1, the intermediate variables x4 = x1/x2 and x5 = x2x3 are intro-

duced to obtain a factorable reformulation of f . Now, if we consider the function f in the

augmented relaxation space R5, it is clear that the subexpression (1 + x4)−0.7(x1 + x5)0.8

corresponds to a function of Class 2(b), which is G-convex by Proposition 2.5.

Now, we turn our attention to our recognition routines, which are presented in Al-

gorithms 2–4. Given a factorable reformulation of an optimization problem, in Algo-

rithm 2 we scan each bilinear term of the form xk = xixj , and subsequently proceed

by reconstructing intermediate expressions in order to identify different types of convex-

transformable functions. By employing Algorithm 2, we are able to recognize all classes of

convex transformable functions listed at the beginning of this section, with the exception
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of signomial functions involving three or more variables, and convex-transformable func-

tions that are reciprocals of other nonlinear functions. To identify such functions, we use

Algorithms 3 and 4.

Algorithm 3 relies on a set of subroutines implemented in BARON for the identifica-

tion of multilinear functions (see Section 3.1 in [9] for details). Given a list of functions

ML = {Lk(x) =
∑

i∈Ik ci
∏
j∈Tki xj , k ∈ K} identified by BARON’s multilinear mod-

ule, Algorithm 3 starts by decomposing each function Lk(x) into multilinear terms of the

form
∏
j∈Tki xj . Subsequently, each multilinear term containing three or more variables is

analyzed in order to determine if it corresponds to a signomial function of Class 1. In Al-

gorithm 4, we start by scanning all the monomial expressions of the form xi = xpj . For each

monomial relation with p = −1, we proceed by reconstructing intermediate expressions

in order to determine if they correspond to functions of Classes 2(a) or 3(a). For example,

consider the following function over the positive orthant:

f(x) = x0.6
1 x0.7

2 x0.8
3 + (1 + x1)−1.1

(
x2 +

x3

x1

)1.5

+
1√

1 + x2
1 + 2x2

2

(2.25)

During the execution of Algorithm 1, the following intermediate variables are intro-

duced to obtain a factorable reformulation of f :

x4 = x0.6
1 x8 = x6x7 x12 = x2 + x11 x16 = x2

2

x5 = x0.7
2 x9 = 1 + x1 x13 = x1.5

12 x17 = 1 + x15 + 2x16

x6 = x4x5 x10 = x−1.1
9 x14 = x10x13 x18 = x0.5

17

x7 = x0.8
3 x11 = x3/x1 x15 = x2

1 x19 = x−1
18

(2.26)

Our recognition routines identify the following functions:

φ1 = x0.6
1 x0.7

2 φ4 = (1 + x1)−1.1(x2 + x11)1.5

φ2 = x6x
0.8
3 φ5 = 1/

√
1 + x2

1 + 2x2
2

φ3 = x0.6
1 x0.7

2 x0.8
3

(2.27)

where φ1, φ2, φ3 are G-concave by Proposition 2.2, φ4 is G-convex by Proposition 2.5, and

φ5 is G-concave by Proposition 2.4. The functions φ1, φ2, and φ4 are recognized by Algo-

rithm 2 by checking the bilinear terms x4x5, x6x7, and x10x13. The signomial function φ3
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Algorithm 1 Standard factorable reformulation in BARON
1: Given a collection of nonlinear factorable functions F = {fi(x), i ∈ Q}.
2: Initialize the number of intermediate variables j = 0, the list of intermediate relations
I = ∅, and the lists of indices of intermediate monomial, power, logarithmic, linear
and bilinear variables,M = ∅, P = ∅, G = ∅, L = ∅, B = ∅, respectively.

3: For each function fi(x) ∈ F :
4: If fi(x) is a univariate function (i.e., monomial, power, or logarithm) then
5: update j ← j + 1 and add the univariate relation yj = fi(x) to I
6: If fi(x) is a univariate monomial function then
7: add j toM
8: Else If fi(x) is a univariate power function then
9: add j to P

10: Else If fi(x) is a univariate logarithmic function then
11: add j to G
12: End If
13: Else If fi(x) = g(x)/h(x) then
14: update j ← j + 3 and introduce the variables yj−2, yj−1, and yj
15: let yj−2 = g(x) and yj−1 = h(x); add h(x) and g(x) to F
16: add the bilinear relation yj−2 = yj−1yj to I
17: add j to B
18: Else If fi(x) =

∏l
k=1 gk(x) then

19: For k = 1 to l
20: update j ← j + 1, let yj = gk(x), and add gk(x) to F
21: End For
22: update j ← j + 1 and add the bilinear relation yj = yj−lyj−l+1 to I
23: add j to B
24: For k = 3 to l
25: update j ← j + 1 and add the bilinear relation yj = yj−1yj−l+1 to I
26: add j to B
27: End For
28: Else If fi(x) =

∑l
k=1 akgk(x) then

29: For k = 1 to l
30: update j ← j + 1, let yj = gk(x), and add gk(x) to F
31: End For
32: update j ← j + 1 and add the linear relation yj =

∑l
k=1 akyj−k to I

33: add j to L
34: Else If fi(x) = h(g(x)) then
35: update j ← j + 2 and introduce the variables yj−1, and yj
36: let yj−1 = g(x) and yj = h(yj−1); add g(x) and h(yj−1) to F
37: End If
38: End For
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Algorithm 2 Identification of convex-transformable products and ratios in general non-
convex problems

1: Given a factorable reformulation of an optimization problem obtained by applying
Algorithm 1, a list of intermediate relations I, and the lists of indices of original O,
monomialM, power P , logarithmic G, linear L and bilinear B variables.

2: Initialize the list of convex-transformable functions J = ∅.
3: For each bilinear expression xk = xixj ∈ I:
4: If k > max{i, j} then
5: If xi corresponds to a monomial relation xi = xp1l1 ∈ I then
6: set α1 ← p1 and i1 ← l1
7: Else
8: set α1 ← 1 and i1 ← i
9: End If

10: If xj corresponds to a monomial relation xj = xp2l2 ∈ I then
11: set α2 ← p2 and i2 ← l2
12: Else
13: set α2 ← 1 and i2 ← j
14: End If
15: Let φk(x) = f(x)α1g(x)α2 , where {xi1 = f(x), xi2 = g(x)} ∈ I
16: If (i1 ∈ L and i2 ∈ O) or (i1 ∈ O and i2 ∈ L) or (i1 ∈ L and i2 ∈ L) then
17: If φk(x) corresponds to any of the functions of Classes 2(b)–(g) then
18: add φk(x) to J ; cycle
19: End If
20: Else If (i1 ∈ G and i2 ∈ O) or (i1 ∈ O and i2 ∈ G) or (i1 ∈ G and i2 ∈ L)

or (i1 ∈ L and i2 ∈ G) or (i1 ∈ G and i2 ∈ G) then
21: If φk(x) corresponds to any of the functions of Classes 2(c)–(d) then
22: add φk(x) to J ; cycle
23: End If
24: Else If (i1 ∈ P and i2 ∈ O) or (i1 ∈ O and i2 ∈ P) or (i1 ∈ P and i2 ∈ L)

or (i1 ∈ L and i2 ∈ P) then
25: If φk(x) corresponds to any of the functions of Classes 3(b), (d)–(e) then
26: add φk(x) to J ; cycle
27: End If
28: Else If (i1 ∈ G and i2 ∈ P) or (i1 ∈ P and i2 ∈ G) then
29: If φk(x) corresponds to a function of Class 3(c) then
30: add φk(x) to J ; cycle
31: End If
32: End If
33: Let φk(xi1 , xi2) = xα1

i1
xα2
i2

34: If φk(xi1 , xi2), corresponds to a signomial function of Class 1 then
35: add φk(xi1 , xi2) to J
36: End If
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Algorithm 2 Identification of convex-transformable products and ratios in general non-
convex problems (cont.)
37: Else If i > max{k, j} then
38: If xk corresponds to a monomial relation xk = xp1l1 ∈ I then
39: set α1 ← p1 and i1 ← l1
40: Else
41: set α1 ← 1 and i1 ← k
42: End If
43: If xj corresponds to a monomial relation xj = xp2l2 ∈ I then
44: set α2 ← −p2 and i1 ← l2
45: Else
46: set α2 ← −1 and i1 ← j
47: End If
48: Let φk(x) = f(x)α1g(x)α2 , where {xi1 = f(x), xi2 = g(x)} ∈ I
49: If (i1 ∈ L and i2 ∈ O) or (i1 ∈ O and i2 ∈ L) or (i1 ∈ L and i2 ∈ L) then
50: If φk(x) corresponds to a function of Class 2(b) then
51: add φk(x) to J ; cycle
52: End If
53: End If
54: Let φk(xi1 , xi2) = xα1

i1
xα2
i2

55: If φk(xi1 , xi2) = xα1
i1
xα2
i2

, corresponds to a signomial function of Class 1 then
56: add φk(xi1 , xi2) to J
57: End If
58: End If
59: End For

is identified by Algorithm 3 from the analysis of the multilinear term x4x5x7, while the

function φ5 is recognized by Algorithm 4, as it appears in a monomial relation.

2.3.2 Cut generation

The recognition routines described in the previous section are executed before the start of

the branch-and-bound search. Once all convex-transformable expressions of interest have

been identified, we employ a cut generation algorithm in order to construct supporting hy-

perplanes to the transformation outer-estimators of all G-convex and G-concave interme-

diates. These cuts are generated at each node of the branch-and-bound tree, and utilized to
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Algorithm 3 Identification of convex-transformable signomials involving three or more
variables

1: Given a factorable reformulation of an optimization problem obtained by applying
Algorithm 1, a set of multilinear functionsML = {Lk(x) =

∑
i∈Ik ci

∏
j∈Tki xj , k ∈ K}

identified by BARON’s multilinear module, a list of intermediate expressions I, and a
list for storing convex-transformable functions J .

2: Initialize auxiliary arrays α and d
3: For each function Lk(x) ∈ML:
4: For each i ∈ Ik:
5: If |Tki| ≥ 3 then
6: Initialize auxiliary variable m = 0
7: For each j ∈ Tki:
8: update m← m+ 1
9: If xj corresponds to a monomial relation xj = xpl ∈ I then

10: set α(m)← p and d(m)← l
11: Else
12: set α(m)← 1 and d(m)← j
13: End If
14: End For
15: Construct the function φk(x) =

∏m
p=1 x

α(p)
d(p)

16: If φk(x) corresponds to a signomial function of Class 1 then
17: add φk(x) to J
18: End If
19: End If
20: End For
21: End For

tighten the polyhedral relaxations constructed by BARON. Note that by executing our cut-

ting plane generation algorithm at each node of the branch-and-bound tree, we can fully

exploit BARON’s bound tightening capabilities, and use tight bounds for relaxation con-

struction, which clearly has a significant impact on the quality of the resulting relaxations.

Another advantage of integrating our cutting plane generation scheme at each node of the

branch-and-bound tree, is the fact that our cutting planes can be used for feasibility- and

optimality-based bound range reduction (see [76, 93] for details).

Before providing a detailed description of our cutting plane generation strategy, we

briefly review BARON’s polyhedral relaxation constructor. At a given node in the branch-

2. GLOBAL OPTIMIZATION OF NONCONVEX PROBLEMS WITH CONVEX-TRANSFORMABLE
INTERMEDIATES

27



2.3 IMPLEMENTATION IN A BRANCH-AND-BOUND ALGORITHM

Algorithm 4 Identification of convex-transformable functions that are reciprocals of other
nonlinear functions

1: Given a factorable reformulation of an optimization problem obtained by applying
Algorithm 1, a list of intermediate relations I, the lists of indices of monomialM and
linear L variables, and a list for storing convex-transformable functions J .

2: For each monomial expression of the form xi = xp1j ∈ I
3: If p1 = −1 then
4: If j ∈ L then
5: Construct the function φi(x) = f(x)p1 , where {xj = f(x) ∈ I}
6: If φi(x) corresponds to a function of Classes 2(a) or 3(a) then
7: add φi(x) to J
8: End If
9: Else If j ∈M then

10: If xj corresponds to a monomial relation xj = xp2k ∈ I then
11: Construct the function φi(x) = g(x)p1p2 , where {xk = g(x) ∈ I}
12: If φi(x) corresponds to a function of Class 2(a) then
13: add φi(x) to J
14: End If
15: End If
16: End If
17: End If
18: End For

and-bound tree, BARON first constructs an initial linear-programming based relaxation

by outer-approximating all convex functions appearing in the factorable decomposition of

the original problem with subgradient inequalities (see [93] for details). This relaxation is

then solved, and subsequently refined, by adding various classes of cutting planes in an

iterative fashion. These cutting planes are added to the current relaxation only if they are

violated by the previous relaxation solution.

Our cutting plane generation scheme is integrated within BARON’s polyhedral relax-

ation constructor. Note that the cutting planes generated by our algorithm are not in-

cluded in the initial polyhedral outer-approximation constructed at a given node, and are

only used in the subsequent rounds of cut generation. At a given round of cut generation,

we scan all convex-transformable expressions identified during recognition. Suppose that

each of these expressions is stored in list J , and has the form yj = φj(x), j ∈ J , where yj
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is an intermediate variable introduced during the execution of Algorithm 1, and φj(x) is a

G-convex or G-concave function appearing in the original problem, or in its factorable re-

formulation. Moreover, let (x∗, y∗j ) be the projection of the current relaxation solution onto

the (x, yj) space. If φj is G-convex (resp. G-concave), then, we construct a convex underes-

timator (resp. concave overestimator) φ̃Gj employing the transformation scheme outlined

in §2.2. Next, we generate a cutting plane corresponding to the supporting hyperplane of

φ̃Gj at the relaxation solution. If this cutting plane violates the relaxation solution, then,

we compare the transformation relaxation φ̃Gj with a standard factorable relaxation φ̃Sj of

φj . If φ̃Gj is tighter than φ̃Sj at x = x∗, then, we calculate the Euclidean distance d between

the generated cutting plane and the relaxation solution. If d is greater than a predefined

threshold, then, the generated cutting plane is added to the current relaxation. The entire

cutting plane generation strategy is described in Algorithm 5.

Remark 3. During cut generation, we employ the RT scheme discussed in §2.2.1 to con-

struct overestimators for signomials involving three or more variables and satisfying part

(i) of Proposition 2.2. For all other signomial functions of Class 1, we use relation (2.9) to

construct the corresponding transformation outer-estimators.

Remark 4. For functions φ(x) = (f(x))α(g(x))β of Class 2(e), we verify concavity of g(x) =

b0 +
∑n

i=1

(
bi/xi + cixi + dix

2
i + eix

3
i + fix

4
i

)
, x ∈ H, by bounding the eigenvalues of its

Hessian ∇2g(x) over H. Note that ∇2g(x) is a diagonal matrix with diagonal elements

λi(xi) = 2bi/x
3
i +2di+6eixi+12fix

2
i , i ∈ I = {1, . . . , n}. We perform an initial concavity as-

sessment during the execution of the recognition subroutines. Assume thatH = [x1, x̄1]×

· · · × [xn, x̄n]. We calculate λmax
i = maxxi∈[xi,x̄i]

{λi(xi)} and λmin
i = minxi∈[xi,x̄i]

{λi(xi)},

for all i ∈ I . If λmin
i > 0, for some i ∈ I , then, g is nonconcave over H, and we do not

include φ in the list of convex-transformable functions. On the other hand, if λmax
i ≤ 0,

for all i ∈ I , then, we mark g as concave, and do not check its concavity in subsequent
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nodes of the branch-and-bound tree. If we cannot prove or disprove concavity of g during

recognition, then, g is marked for later check in the branch-and-bound tree, as its concav-

ity properties may change due to range reduction or branching operations. If g becomes

concave at a given node of the branch-and-bound tree, then, we generate cutting planes

for φ according to Algorithm 5.

Remark 5. For univariate functions of Class 3(a), and Class 3(b) with α = 1, we use

the corresponding convex and concave envelopes for cut generation. Recall that a uni-

variate function φ(x) defined over an interval [x, x̄] is said to be convexoconcave (con-

cavoconvex), if for some x̂ ∈ [x, x̄], φ(x) is convex (concave) over [x, x̂], and concave

(convex) over [x̂, x̄] [91]. First, consider the univariate function of Class 3(a) φ(x1) =

1/ (k0 + k1 exp(a0 + a1x1)), k0, k1 > 0, x1 ∈ [x1, x̄1]. It is easy to verify that φ is convex-

oconcave when a1 < 0, and concavoconvex when a1 > 0. Now, consider the univariate

function of Class 3(b) φ(x1) = (a0 + a1x1) exp(b0 + b1x1), x1 ∈ [x1, x̄1]. In this case, it is also

simple to check that φ is convexoconcave when a1 < 0, and concavoconvex when a1 > 0.

Denote by convCφ the convex envelope of φ over C = [x1, x̄1]. It is simple to show that the

convex envelope of φ is given by

convCφ(x1) =

{
φ(x1), if x1 ≤ x1 ≤ w1,
φ(x̄1) + φ′(w1)(x− x̄1), if w1 ≤ x1 ≤ x̄1.

(2.28)

when φ is convexoconcave, and by

convCφ(x1) =

{
φ(x1) + φ′(w2)(x− x1), if x1 ≤ x1 ≤ w2,
φ(x1), if w2 ≤ x1 ≤ x̄1.

(2.29)

when φ is concavoconvex, wherew1 andw2 are points satisfying φ(w1) = φ(x̄1)+φ′(w1)(w1−

x̄1) and φ(w2) = φ(x1) + φ′(w2)(w2 − x1), respectively (see Figure 2.3). Analogous expres-

sions can be obtained for the concave envelopes of φ in a similar manner.

2. GLOBAL OPTIMIZATION OF NONCONVEX PROBLEMS WITH CONVEX-TRANSFORMABLE
INTERMEDIATES

30



2.3 IMPLEMENTATION IN A BRANCH-AND-BOUND ALGORITHM

Algorithm 5 Cutting plane generation strategy for convex-transformable functions at each
node of the branch-and-bound tree

1: Given the relaxation solution, nJ convex-transformable functions stored in list J , and
a parameter θ > 0.

2: For each function yj = φj(x) in J
3: Let (x∗, y∗j ) be the projection of the current relaxation solution onto the (x, yj) space
4: If φj is a G-convex then
5: Construct a convex underestimator φ̃Gj using the techniques of §2.2

6: Generate a cutting plane of the form yj ≥ φ̃Gj (x∗) +∇φ̃Gj (x∗)
T

(x− x∗)
7: If y∗j < φ̃Gj (x∗) then
8: Construct a convex underestimator φ̃Sj using the factorable approach
9: If φ̃Gj (x∗) > φ̃Sj (x∗) then

10: Let d be the Euclidean distance between the hyperplane
φ̃Gj (x∗) +∇φ̃Gj (x∗)

T
(x− x∗)− yj = 0 and the point (x∗, y∗j ).

11: If d > θ then
12: add the cut to the relaxation
13: End If
14: End If
15: End If
16: Else If φj is a G-concave then
17: Construct a concave overestimator φ̃Gj using the techniques of §2.2

18: Generate a cutting plane of the form yj ≤ φ̃Gj (x∗) +∇φ̃Gj (x∗)
T

(x− x∗)
19: If y∗j > φ̃Gj (x∗) then
20: Construct a concave overestimator φ̃Sj using the factorable approach
21: If φ̃Gj (x∗) < φ̃Sj (x∗) then
22: Let d be the Euclidean distance between the hyperplane

φ̃Gj (x∗) +∇φ̃Gj (x∗)
T

(x− x∗)− yj = 0 and the point (x∗, y∗j ).
23: If d > θ then
24: add the cut to the relaxation
25: End If
26: End If
27: End If
28: End If
29: End For

Remark 6. With the aim of avoiding poorly scaled relaxations, we check the cutting planes

generated during the execution of Algorithm 5 to ensure that they are properly scaled.

Poorly scaled cuts are not added to an existing relaxation. To perform this check, we follow
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Figure 2.3: Convex envelopes for (a) φ(x1) = 1/ (k0 + k1 exp(a0 + a1x1)), k0, k1 > 0,
a1 < 0, and (b) φ(x1) = (a0 + a1x1) exp(b0 + b1x1), a1 > 0. The function φ is shown in solid

black, and its convex envelope in dotted blue.

a strategy similar to that described in [48]. Namely, we examine each of the cut coefficients

and check if their absolute values lie between sufficiently small and large constants. We

also perform this check for the absolute values of the ratios between the different cut coef-

ficients. For details on the techniques used within BARON to check the safety of a given

cut, we refer the reader to Section 2.4 in [48].

2.4 Computational results

In this section, we present the results of an extensive computational study that we have

conducted in order to investigate the impact of the proposed implementation on the per-

formance of the branch-and-bound global solver BARON. For our numerical experiments,

we consider a large number of nonconvex problems compiled from the GlobalLib [32],

PrinceLib [72], MINLPLib [26], AIMMSLib [40], and NRCLib [8] collections.

In our experiments, all problems are solved in minimization form, with relative/abso-
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2.4 COMPUTATIONAL RESULTS

lute tolerances of 10-6 and a time limit of 500 seconds. We allow up to 4 rounds of cutting

plane generation at a given node in the branch-and-bound tree, and set the deep cut mea-

sure θ to 10-3 (see Algorithm 5). For other algorithmic parameters, we employ the default

settings of the GAMS/BARON distribution [77]. All experiments are performed under

GAMS 24.6.1 on a 64-bit Intel Xeon X5650 2.66Ghz processor running CentOS release 7.

2.4.1 The test set

We consider a test set of 262 nonconvex optimization problems containing a variety of

convex transformable functions that are recognized by our implementation. The main

characteristics of the selected models are provided in Table 2.1, which includes the num-

ber of problems selected from each test library, along with information on the the mini-

mum, maximum, and average number of constraints (m), variables (n), nonzero elements

in the constraints and objective (nz), and nonlinear elements in the constraints and objec-

tive (nnz).

In Table 2.2, we provide statistics on the different classes of convex-transformable func-

tions appearing in the test problems. For each collection, we indicate the number and in

parentheses the percentage, of problems containing each of the three classes of functions

described in §2.3.1. As observed from Table 2.2, functions of Class 2 appear with the high-

est frequency in the test problems.

2.4.2 Impact of the proposed cutting planes on the performance of BARON

We solve the test problems described in the previous subsection using BARON 17.2, with

and without the cutting planes for convex-transformable functions (CTF cutting planes).

We denote the former algorithm by BARONctf, and the latter by BARONdef. To examine

both strategies, and since the proposed recognition and cut generation routines are ex-

tremely fast, we first exclude from the test set all problems for which BARONctf did not
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Table 2.1: Size statistics for the test set.

Test library GlobalLib PrinceLib MINLPLib AIMMSLib NRCLib

Number of
problems

46 56 113 15 32

m
Min 1 1 1 1 63
Max 10399 11162 4981 1449 1242
Average 734 561 731 240 646
n
Min 3 3 3 3 65
Max 15637 10805 2721 2549 1517
Average 1152 732 486 289 765
nz
Min 3 3 3 3 170
Max 54591 34729 11685 8697 3866
Average 4967 2463 1904 1084 1965
nnz
Min 2 2 2 2 84
Max 31256 30002 2262 7260 1608
Average 2386 1506 153 714 829

add any CTF cutting planes during the branch-and-bound search (157 instances). In addi-

tion, we remove all trivial problems from the test set (19 instances). In the context of this

comparison, a problem is regarded as trivial if it can be globally solved by both algorithms

in less than half second. After eliminating all of these problems from the original test set,

we obtain a new test set consisting of 86 problems which are used for the computational

analysis of this section.

We first assess the performance of the two algorithms in terms of the computational

time taken to solve the test problems to global optimality. For this comparison, which is

presented in Figure 2.4, we use the performance profiles described in [28], and employ as

the performance metric the ratio of the time that an algorithm takes to solve a problem

versus the best time of all algorithms. As can be seen from the figure, BARONctf clearly
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Table 2.2: Classes of convex-transformable functions appearing in the test problems.

Test library GlobalLib PrinceLib MINLPLib AIMMSLib NRCLib

Number of
problems

46 56 113 15 32

Class 1:
Signomial
functions

6 (13%) 10 (18%) 14 (12%) 3 (20%) 0 (0%)

Class 2:
Products and
ratios of convex
and/or concave
functions

31 (67%) 43 (77%) 99 (88%) 13 (87%) 32 (100%)

Class 3:
Log-concave
functions

13 (28%) 9 (16%) 7 (6%) 1 (7%) 0 (0%)

outperforms BARONdef, demonstrating that the generated cutting planes significantly

enhance the performance of the global solver.

Next, we examine the impact of the CTF cutting planes by considering the total num-

ber of nodes in the branch-and-bound tree, and the maximum number of nodes stored in

memory. This analysis, which is shown in Figures 2.5 and 2.6, only considers nontrivial

problems for which at least one of the two algorithms proves global optimality within the

time limit of 500 seconds (34 instances). Here, we also employ performance profiles, but

use performance measures based on the total number of nodes and required memory. As

observed in the figures, for most problems, the proposed CTF cutting planes also result

in a significant reduction in the total number of iterations and memory required to prove

optimality. In our experiments we observed that there are a few instances for which the

new cuts lead to a increase in the number of nodes in the tree. This behavior could be

attributed to the fact that for a given instance the introduced cuts may affect branching

decisions, resulting in a completely different branch-and-bound tree.
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Figure 2.4: Impact of the proposed implementation on the computational time for 86
nontrivial test problems for which BARONctf adds cutting planes for
convex-transformable functions during the branch-and-bound search.

For the 34 instances considered in the above comparison, the addition of our cutting

planes leads to average reductions of 19% in the CPU time, 18% in the total number of

nodes in the branch-and-bound tree, and 11% in the maximum number of nodes in mem-

ory. Moreover, the proposed implementation increases by 6% the number of problems that

can be solved to global optimality within 500 seconds.

Finally, we analyze the best lower bounds obtained during the branch-and-bound search

for nontrivial problems that neither of the two algorithms are able to solve to global op-

timality within the time limit (52 instances). The results of this analysis are presented in

Figure 2.7. As seen in the figure, for most of the problems considered in this comparison,

the CTF cutting planes have little effect on the best lower bounds.
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Figure 2.5: Impact of the proposed cutting planes on the total number of nodes for 34
nontrivial problems that are solved to global optimality by at least one of the two

algorithms.
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Figure 2.6: Impact of the proposed cutting planes on the memory requirements for 34
nontrivial problems that are solved to global optimality by at least one of the two

algorithms.
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Figure 2.7: Impact of the proposed implementation on the best lower bounds obtained
during the branch-and-bound search for 52 nontrivial problems that neither of the two

algorithms are able to solve to global optimality within the time limit.

2.5 Conclusions

In this chapter, we examined the effect of integratingG-convexity relaxations into a branch-

and-bound global optimization solver. We presented algorithms for the recognition of

convex-transformable functions in general nonconvex problems, and introduced a cut-

ting plane generation scheme based on the construction of supporting hyperplanes to G-

convexity relaxations. The proposed implementation was integrated within the branch-

and-reduce global solver BARON. To assess the benefits of our approach, we tested our

implementation on a large number of nonconvex problems selected from a variety of test

libraries. Our computational analysis shows that, for our test problems, the generated cut-

ting planes accelerate the convergence speed of the branch-and-bound algorithm, leading

to a nearly 20% reduction in the average computational time and total number of nodes in

the search tree, and enabling BARON to solve more problems to global optimality.
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Chapter 3

Spectral relaxations and branching strategies

for global optimization of mixed-integer

quadratic programs

3.1 Introduction

We address the global optimization of nonconvex QPs and MIQPs of the form:

min
x∈Rn

xTQx+ qTx

s.t. Ax = b
Cx ≤ d
l ≤ x ≤ u
xi ∈ Z, ∀i ∈ J ⊆ {1, . . . , n}

(3.1)

where Q ∈ Rn×n is a symmetric matrix which may be indefinite, q ∈ Rn, A ∈ Rm×n,

b ∈ Rm, C ∈ Rp×n, and d ∈ Rp. We assume that lower and upper bounds are finite,

i.e., −∞ < li < ui < ∞, ∀i ∈ {1, . . . , n}. For the sake of brevity, we use the notation

X = {x ∈ Rn | Ax = b, Cx ≤ d, l ≤ x ≤ u} in the rest of this chapter. Note also

that even though we allow (3.1) to include constraints of the form Cx ≤ d, we do not use

information from these inequalities in order to convexify this problem.

QPs and MIQPs of the form (3.1) arise in a wide variety of scientific and engineering

applications including facility location and quadratic assignment [25, 49, 51, 55], molecu-

lar conformation [69] and max-cut problems [33]. Given their practical importance, these

classes of problems have been studied extensively in the literature and are known to be
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very challenging to solve to global optimality.

State-of-the-art global optimization solvers rely on spatial branch-and-bound algorithms

to solve problems of the form (3.1) to global optimality. The efficiency of these algo-

rithms primarily depends on the quality of the relaxations constructed during the bound-

ing step. Commonly used relaxations for bounding nonconvex QPs and MIQPs can be

broadly classified into three groups. The first group consists of polyhedral relaxations.

These relaxations are typically derived via factorable programming methods [60, 86, 92]

and reformulation-linearization techniques (RLT) [81, 82, 83, 84, 85]. Both of these ap-

proaches involve the introduction of auxiliary variables and additional constraints leading

to relaxations which are formulated in a higher dimensional space. The second group

is given by semidefinite programming (SDP) relaxations. These relaxations are also con-

structed in a lifted space by introducing a symmetric matrix of new variables of the form

X = xxT . This nonconvex expression is subsequently relaxed by requiring the matrix

X − xxT to be positive semidefinite. This approach has received significant attention in

recent years [5, 11, 21, 23, 71, 87]. The third group involves convex quadratic relaxations.

These relaxations can be derived through different approaches including separable pro-

gramming procedures [68], d.c. programming techniques [95], and quadratic convex re-

formulation methods [14, 15, 16, 17].

In this chapter, we investigate a family of relaxations which falls under the third group.

In particular, we consider convex quadratic relaxations which are derived by convexi-

fying the objective function of (3.1) through diagonal and nondiagonal perturbations of

the quadratic matrix Q. We revisit a very well-known technique which uses the smallest

eigenvalue of the matrix Q to convexify nonconvex quadratic functions of the form xTQx.

Through numerical experiments, we show that, despite its simplicity, this technique leads

to convex quadratic relaxations which in many cases are significantly tighter than the poly-

hedral relaxations that are typically used by state-of-the-art global optimization solvers.
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Motivated by these promising results, we refine this approach in several directions and

make several theoretical and algorithmic contributions.

Our first contribution is a novel convex quadratic relaxation for problems of the form (3.1)

which is derived by using information from both the matrixQ and the equality constraints

Ax = b. Under this approach, the quadratic function xTQx is convexified by constructing

a perturbation of the matrix Q obtained by solving a generalized eigenvalue problem in-

volving both the Q and the A matrices. We show that the resulting relaxation is at least as

tight as the relaxation constructed by using the smallest eigenvalue of the matrix Q.

In our second contribution, we consider another convex quadratic relaxation in which

the quadratic function xTQx is convexified by using the smallest eigenvalue of the matrix

ZTQZ, where Z is a basis for the nullspace of the matrix A. We devise a relatively simple

procedure which allows us to approximate the bound given by this relaxation without hav-

ing to compute the basis Z. Moreover, we show that the relaxations obtained through this

technique are at least as tight as the other two quadratic relaxations mentioned above. Un-

like the factorable, RLT, and SDP relaxations, which are typically used for bounding prob-

lems of the form (3.1), the quadratic relaxations considered in this chapter are constructed

in the space of the original problem variables. Additionally, they are very inexpensive to

solve.

In our third contribution, we prove that the aforementioned quadratic relaxations are

equivalent to some particular SDP relaxations. These results facilitate the theoretical com-

parisons with other relaxations that have been proposed in the literature. In particular, we

show that the convexification using the smallest eigenvenvalue of ZTQZ leads to the best

relaxation in the class of relaxations considered in this chapter.

Our fourth contribution addresses the question of how to improve the proposed quadratic

relaxations with branching. We introduce a novel eigenvalue-based branching variable

selection strategy for nonconvex binary quadratic programs. This strategy involves an
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effective approximation of the impact of branching decisions on the quality of the corre-

sponding relaxations.

In order to investigate the impact of the proposed techniques on the performance of

branch-and-bound algorithms, we develop an implementation which integrates the relax-

ations and branching strategies considered in this chapter into the state-of-the-art global

optimization solver BARON [76]. The new quadratic relaxations are incorporated into

BARON’s portfolio of relaxations and are invoked according to a new dynamic relaxation

selection rule which switches between different classes of relaxations based on their rela-

tive strength. We test our implementation by conducting extensive numerical experiments

on a large collection of problems. Results demonstrate that the proposed implementa-

tion leads to a very significant improvement in the performance of BARON. Moreover, for

many of the test problems, our implementation results in a new version of BARON which

outperforms other state-of-the-art optimization solvers including CPLEX and GUROBI.

The remainder of this chapter is organized as follows. In §3.2 we review various relax-

ation approaches which have been considered in the literature for bounding nonconvex

QPs and MIQPs. Then, in §3.3 we present the convex quadratic relaxations considered

in this chapter and investigate their theoretical properties. In §3.4 we introduce novel

eigenvalue-based branching strategies. This is followed by a description of our computa-

tional implementation in §3.5. In §3.6, we present the results of an extensive computational

study which includes a comparison between different classes of relaxations, an analysis of

the impact of the proposed implementation on the performance of BARON, and a com-

parison between several state-of-the-art global optimization solvers. Finally, §3.7 presents

conclusions from this work.
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Notation

We denote by N, Z, R the set of natural, integer, and real numbers, respectively. The set of

nonnegative real numbers is denoted by R≥0. We use 1 ∈ Rn to denote a vector of ones.

The i-th element of a vector x ∈ Rn is denoted by xi. Given a vector d ∈ Rn, the notation

diag(d) is used for the diagonal matrix whose diagonal entries are given by the elements

of d. The unit vector in the i-th direction is denoted by ei. We denote by In the n × n

identity matrix. For a matrix A ∈ Rm×n, we use Ai·, A·j and Aij , to denote its i-th row,

j-th column and (i, j)-th entry, respectively. Let Sn denote the set of n× n real, symmetric

matrices. Given a matrix M ∈ Sn, we use λi to represent its i-th eigenvalue and vi for

the corresponding eigenvector. For M ∈ Sn, the notation M < 0 and M � 0, indicates

that M is positive semidefinite and positive definite, respectively. Let M,N ∈ Sn with

N � 0. We use λmin(M) to represent the smallest eigenvalue ofM . Similarly, we denote by

λmin(M,N) the smallest generalized eigenvalue of the problem Mv = λNv, where v ∈ Rn.

The inner product between matricesM,P ∈ Sn is denoted by 〈M,P 〉 =
∑n

i=1

∑n
j=1MijPij .

3.2 Current relaxations for nonconvex QPs and MIQPs

In this section, we review various types of relaxations that have been proposed in the

literature for bounding problems of the form (3.1).

3.2.1 Polyhedral relaxations

We start this section by reviewing one of the simplest polyhedral relaxations which can be

constructed for problems of the form (3.1). The procedure used to derive this relaxation

consists of two steps. In the first step, we introduce the new variablesXij = xixj in order to

obtain a reformulation of (3.1) in a higher-dimensional space. In the second step, we relax

the integrality conditions and convexify the bilinear terms xixj by using their McCormick
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envelopes [2, 60]. This results in the following linear relaxation of (3.1):

min
x∈X ,X

n∑
i=1

n∑
j=1

QijXij +
n∑
i=1

qixi (3.2a)

s.t. Xij ≥ lixj + ljxi − lilj , i = 1, . . . , n, j = i, . . . , n (3.2b)
Xij ≥ uixj + ujxi − uiuj , i = 1, . . . , n, j = i, . . . , n (3.2c)
Xij ≤ lixj + ujxi − liuj , i = 1, . . . , n, j = i, . . . , n (3.2d)
Xij ≤ uixj + ljxi − uilj , i = 1, . . . , n, j = i, . . . , n (3.2e)
Xij = Xji, i = 1, . . . , n, j = (i+ 1), . . . , n (3.2f)

where (3.2b)–(3.2e) are the so-called McCormick inequalities. This relaxation is often referred

to as the McCormick relaxation of (3.1). Due to their simplicity, McCormick relaxations

have been implemented in most global optimization packages. However, an important

drawback of these relaxations is the fact that they often lead to relatively weak bounds.

As a result, McCormick relaxations are typically tightened by adding various classes of

valid inequalities such as RLT-based cuts [98, 99], facets of the envelopes of edge-concave

and multilinear subexpressions [9, 10, 63, 66], SDP-based cuts [29, 79] and mixed-integer

cuts [19].

Another popular approach for obtaining a polyhedral relaxation for (3.1) relies on the

reformulation linearization techniques (RLT) [83]. To apply these techniques to (3.1), we

start by defining the following bound factors:

(xi − li) ≥ 0, (ui − xi) ≥ 0, i = 1, . . . , n (3.3)

and the constraint factors: (
dk −

n∑
i=1

Ckixi

)
≥ 0, k = 1, . . . , p (3.4)

The RLT procedure also involves two steps. The first step, also known as the reformula-

tion phase, consists in constructing a problem equivalent to (3.1) by adding redundant non-

linear constraints. These additional constraints are obtained by multiplying each equation
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in (3.1) by each variable xj , and by taking all the possible pairwise products involving

the bound and constraint factors. The second step, also known as the linearization phase,

involves the relaxation of the integrality conditions and linearization of all the nonlinear

terms xixj by introducing the new variables Xij . The application of this procedure to (3.1)

leads to the following linear relaxation:

min
x∈X ,X

n∑
i=1

n∑
j=1

QijXij +
n∑
i=1

qixi

s.t. Eqs. (3.2b)− (3.2f)
n∑
i=1

AkiXij = bkxj , k = 1, . . . ,m, j = 1, . . . n

n∑
i=1

CkiXij − lj
n∑
i=1

Ckixi − dkxj ≤ −ljdk, k = 1, . . . , p, j = 1, . . . n

−
n∑
i=1

CkiXij + uj

n∑
i=1

Ckixi + dkxj ≤ ujdk, k = 1, . . . , p, j = 1, . . . n,

−
n∑
i=1

n∑
j=1

CkiCljXij +

n∑
i=1

(dlCki + dkCli)xi ≤ dkdl, k, l = 1, . . . , p

(3.5)

This relaxation is often referred to as the first-level RLT relaxation of (3.1). For the case in

which (3.1) is a box-constrained problem, the first-level RLT relaxation (3.5) is equivalent

to the McCormick relaxation (3.2).

The RLT procedure can be used to construct an n-level hierarchy of relaxations for (3.1),

where at each level of the hierarchy the resulting relaxation is at least as tight as the relax-

ation corresponding to the previous level. However, this relaxation strengthening comes

at a heavy computational price, since the number of variables and constraints increases

quickly, which makes the resulting relaxations very expensive to solve. In this chapter,

we limit our attention to the first-level RLT relaxations. For additional details on the RLT

approach, we refer the reader to [81, 82, 83, 84, 85].
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3.2.2 SDP relaxations

To derive one of the simplest SDP relaxations for (3.1), we first reformulate this problem

by introducing a symmetric matrix of new variables X = xxT . Then, we relax this non-

convex equation to a semidefinite constraint and drop the integrality conditions to obtain

the following SDP relaxation:

min
x∈X ,X

〈Q,X〉+ qTx (3.6a)

s.t. X − xxT < 0 (3.6b)

This relaxation is often referred to as the Shor relaxation of (3.1) [87]. The Shor relaxation

can be strengthened by including additional valid constraints. This can be achieved, for

instance, by adding the McCormick inequalities corresponding to the diagonal elements

of the matrix X , which results in the following SDP relaxation:

min
x∈X ,X

〈Q,X〉+ qTx (3.7a)

s.t. X − xxT < 0 (3.7b)

Xii ≥ 2lixi − l2i , i = 1, . . . , n (3.7c)

Xii ≥ 2uixi − u2
i , i = 1, . . . , n (3.7d)

Xii ≤ uixi + lixi − uili, i = 1, . . . , n (3.7e)

It is easy to verify that (3.7c) and (3.7d) are implied byX−xxT < 0 and hence redundant

in this formulation.

The relaxation (3.7) can be further tightened by including constraints derived fromAx =

b. For example, we can construct the following SDP relaxation by considering a lifting of

the valid equalities
∑n

j=1Akjxixj = bkxi, k = 1, . . . ,m, i = 1, . . . , n, into the space of

(x,X):

min
x∈X ,X

〈Q,X〉+ qTx (3.8a)
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s.t. Eqs. (3.7b)− (3.7e) (3.8b)
n∑
j=1

AkjXij = bkxi, k = 1, . . . ,m, i = 1, . . . , n (3.8c)

Another alternative involves the addition of a single constraint derived by lifting the

valid equality (Ax − b)T (Ax − b) = 0 into the space of (x,X). This leads to the following

SDP relaxation:

min
x∈X ,X

〈Q,X〉+ qTx (3.9a)

s.t. Eqs. (3.7b)− (3.7e) (3.9b)

〈ATA,X〉 − 2(AT b)Tx+ bT b = 0 (3.9c)

Note that the SDPs (3.8) and (3.9) are equivalent (see Proposition 5 in [31] for details). An

SDP relaxation even tighter than (3.9) can be constructed by including all of the McCormick

inequalities instead of only considering those corresponding to the diagonal elements of

the matrix X . The resulting relaxation is given by:

min
x∈X ,X

〈Q,X〉+ qTx (3.10a)

s.t. Eqs. (3.7b), (3.2b)− (3.2e) (3.10b)

〈ATA,X〉 − 2(AT b)Tx+ bT b = 0 (3.10c)

As shown in [5], when all of the constraints (3.2b)-(3.2e) are considered, this relaxation

can become very expensive to solve. For a detailed discussion on SDP relaxations, we refer

the reader to [5, 11, 21, 23, 71, 87].

3.2.3 Convex quadratic relaxations

In the following, we briefly discuss some convex quadratic relaxations which have been

proposed in the literature for problems of the form (3.1).
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3.2.3.1 Separable programming relaxation

A well-known procedure for deriving a convex quadratic relaxation of (3.1) was proposed

by Pardalos et al. [68]. This method consists of two steps. In the first step, we use the

eigendecomposition of Q to express this matrix as Q =
∑n

i=1 λiv
ivi

T , and introduce the

new variables yi = vi
T
x, i = 1, . . . , n. This results in the following reformulation of (3.1):

min
x∈X ,y

∑
i:λi>0

λiy
2
i +

∑
i:λi<0

λiy
2
i + qTx

s.t. yi = vi
T
x, i = 1, . . . , n

Li ≤ yi ≤ Ui, i = 1, . . . , n
xi ∈ Z, ∀i ∈ J

(3.11)

where Li and Ui denote lower and upper bounds on yi, respectively. Note that this trans-

formation leads to a reformulated problem with a separable objective function. In the

second step, we relax the integrality conditions in (3.11) and use the concave envelope of

y2
i over [Li, Ui] to derive the following relaxation:

min
x∈X ,y

∑
i:λi>0

λiy
2
i +

∑
i:λi<0

λi ((Li + Ui)yi − LiUi) + qTx

s.t. yi = vi
T
x, i = 1, . . . , n

Li ≤ yi ≤ Ui, i = 1, . . . , n

(3.12)

Under this approach the bounds on the yi variables are obtained through the solution of

the following linear programs:

Li = min
x∈X

vi
T
x, Ui = max

x∈X
vi
T
x, i = 1, . . . , n (3.13)

3.2.3.2 D.C. programming relaxations

Let C ⊆ Rn be a convex set and f : C → R a nonconvex function. Then, we say that f is

a d.c. function if it can be expressed as the difference of two convex functions [95]. It is

simple to show that the objective function of (3.1) is a d.c. function (see chapter 3 in [39]

for details). In order to construct a generic d.c. programming relaxation for (3.1), we can

proceed as follows. First, we decompose the objective function as f(x) = xTQx + qTx =
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g(x) − h(x), where g(x) and h(x) are both convex quadratic functions. Second, we drop

the integrality conditions and substitute h(x) with a concave overestimator over X , which

we denote by h̄X (x). This leads to the following relaxation:

min
x∈X

g(x)− h̄X (x) (3.14)

Clearly, given a nonconvex quadratic function, a d.c. decomposition is not unique [95].

Therefore, the quality of the relaxation (3.14) depends to a very large extent on the choice

of the functions g and h, as well as the tightness of the concave overestimator of h. A

particular type of relaxation which can be derived through d.c. programming techniques

is the classical αBB relaxation [4], which for (3.1) takes the form:

min
x∈X

xTQx+ qTx−
∑n

i=1 αi(xi − li)(ui − xi) (3.15)

where ai, i = 1, . . . , n, are nonnegative parameters chosen such that the objective function

of (3.15) is convex over X . Another example of a d.c. programming relaxation for (3.1) is

the one proposed by Bomze and Locatelli [18]:

min
x∈X

gx0,B(x)− concXhx0,B(x) (3.16)

where gx0,B(x) = (x − x0)T (Q + B)(x − x0), hx0,B(x) = xTBx − qTx + xT0 (Q + B)x0 −

2xT0 (Q + B)x, x0 ∈ Rn, B ∈ Sn such that Q + B < 0 and B < 0, and concXhx0,B(x) de-

notes the concave envelope of hx0,B(x) over X . The matrix B, which can be fully dense,

is referred to as a difference of convex decomposition (d.c.d.) of Q. Let B1 and B2 be two

d.c.d.s. of Q. Then, B1 is said to dominate B2 if B2 − B1 < 0. If no other d.c.d. of Q domi-

natesB1, thenB1 is said to be an undominated d.c.d. ofQ. Bomze and Locatelli [18] showed

that: (i) the bound given by (3.16) is independent of x0, and (ii) the tightest relaxation of

the form (3.16) is obtained when B is an undominated d.c.d. of Q. Unfortunately, the pro-

cedure for constructing an undominated d.c.d. of Q involves the solution of a sequence of

semidefinite programs. Moreover, even though concXhx0,B(x) is polyhedral and its facets

can be obtained from the solution of a particular a linear program, this linear program
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can be very expensive to solve because its size grows exponentially with the number of

variables n.

3.2.3.3 Relaxations based on quadratic convex reformulations

These relaxations are constructed in the context of the Quadratic Convex Reformulation

(QCR) methods. To illustrate these techniques, we consider the case in which all the vari-

ables of (3.1) are binary:

min
x∈{0,1}n

xTQx+ qTx

s.t. Ax = b, Cx ≤ d
(3.17)

In the interest of brevity, we use the notation XB = {x ∈ {0, 1}n | Ax = b, Cx ≤ d} in

the remainder of this section.

The QCR approaches involve two steps. The first step consists in reformulating (3.17)

into an equivalent binary quadratic program whose continuous relaxation is convex. This

is achieved by perturbing the quadratic matrix Q. In the second step, the reformulated

problem is solved using a branch-and-bound algorithm. At each node of the branch-and-

bound tree, the lower bound is obtained by solving the continuous relaxation of the re-

formulated problem, which is a convex quadratic program. Note that the quadratic relax-

ations solved throughout the branch-and-bound tree only differ from one another on the

binary variables that are fixed.

One of the earliest references to these methods is found in a paper by Hammer and

Rubin [37], in which the following reformulation for (3.17) is proposed:

min
x∈XB

xTQλx+ qTλ x (3.18)

whereQλ = Q−min(0, λmin(Q))In and qλ = q+min(0, λmin(Q))1. It is simple to check that

Qλ < 0, and that the objective functions of (3.17) and (3.18) are equivalent ∀x ∈ {0, 1}n.

In recent years, Hammer and Rubin’s approach was refined by Billionnet and Elloumi [14]

who considered the following reformulation of (3.17):
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min
x∈XB

xTQdux+ qTdux (3.19)

where Qdu = Q + diag(du), qdu = q − du, and du ∈ Rn. The perturbation parameter

du is determined in a way such that Qdu < 0 and the bound given by the continuous

relaxation of (3.19) is as tight as possible. This is achieved by solving the SDP (3.7) and

setting the entries of du to the optimal values of the dual variables associated with the

constraints (3.7e).

In a subsequent paper, Billionnet et al. [17] used information from the equality con-

straints to improve the bound given by the continuous relaxation of (3.19). In particular,

they considered the following reformulation of (3.17):

min
x∈XB

xTQdq ,Θqx+ qTdq ,Θqx (3.20)

where Qdq ,Θq = Q + diag(dq) + 1
2(ΘT

q A + ATΘT
q ), qdq ,Θq = q − dq − ΘT

q b, dq ∈ Rn and

Θq ∈ Rm×n. Similarly to (3.19), the perturbation parameters dq and Θq are chosen such

that Qdq ,Θq < 0 and the bound of the continuous relaxation of (3.20) is maximized. This is

done by solving the SDP (3.8), and setting the entries of dq and Θq to the optimal values

of the dual variables associated with the constraints (3.7e) and (3.8c), respectively. Note

that the continuous relaxations of (3.19) and (3.20) provide the same bounds as the SDP

relaxations (3.7) and (3.8), respectively.

In more recent papers, the QCR approach has been extended beyond the binary case to

some particular classes of general integer and mixed-integer quadratic programs [15, 16].

In these extensions, the general integer variables are replaced with their binary expan-

sions and the perturbation parameters are determined by solving the semidefinite pro-

grams (3.9) and (3.10). For a detailed discussion on QCR methods, we refer the reader

to [14, 15, 16, 17].
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3.3 Spectral relaxations for nonconvex QPs and MIQPs

In the following, we present a family of convex quadratic relaxations for problems of the

form (3.1), and investigate their theoretical properties. Before providing a detailed deriva-

tion of these relaxations, we state two results which we will repeatedly use throughout

this section. First, we recall that the minimum eigenvalue of a matrix M and the mini-

mum generalized eigenvalue of a pair of matrices (M,N), with M,N ∈ Sn, N � 0, can be

expressed in terms of the Rayleigh quotient as [34]:

λmin(M) = min
x 6=0

xTMx

xTx
and λmin(M,N) = min

x 6=0

xTMx

xTNx
. (3.21)

Second, we provide a particularly useful formulation for the dual of a certain SDP.

Proposition 3.1. Consider the following SDP

min
x∈X ,X

〈Q̂,X〉+ q̂Tx (3.22a)

s.t. X − xxT < 0 (3.22b)

〈Ĉi, X〉+ ĉix+ d̂i = 0, i = 1, . . . , q1 (3.22c)
〈C̄i, X〉+ c̄ix+ d̄i ≤ 0, i = 1, . . . , q2 (3.22d)

for some Q̂, Ĉi, C̄i ∈ Sn, q̂, ĉi, c̄i ∈ Rn and d̂i, d̄i ∈ R. The dual of (3.22) is given by

max
α∈Rq1 ,β∈Rq2≥0:Q̂α,β<0

{
min
x∈X

xT Q̂α,βx+ q̂Tα,βx+ d̂α,β
}
.

where Q̂α,β = Q̂+
q1∑
i=1

αiĈi +
q2∑
i=1

βiC̄i, q̂α,β = q̂ +
q1∑
i=1

αiĉi +
q2∑
i=1

βic̄i, and d̂α,β =
q1∑
i=1

αid̂i +

q2∑
i=1

βid̄i.

Proof. By dualizing the constraints (3.22c) using the multipliers αi ∈ R, for i = 1, . . . , q1,

and the constraints (3.22d) using the multipliers βi ∈ R≥0, for i = 1, . . . , q2, we have that

the Lagrangian dual of the SDP (3.22) is given by:
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max
α∈Rq1 ,β∈Rq2≥0

min
x∈X

〈Q̂α,β, X〉+ q̂Tα,βx+ d̂α,β

s.t. X − xxT < 0

 (3.23)

Since the variables x have finite lower and upper bounds, the set X is bounded. Hence,

in order for the inner minimization to be bounded below, we need to choose α and β such

that Q̂α,β < 0. This restriction on α and β implies that the optimal solution of the inner

minimization problem satisfies X = xxT . The claim follows after substituting X = xxT .

3.3.1 Eigenvalue relaxation

A very well-known technique for deriving convex quadratic relaxations for (3.1) starts by

considering the following reformulation of (3.1):

min
x∈X

xTQx+ qTx+ αe
n∑
i=1

x2
i − αe

n∑
i=1

x2
i

s.t. xi ∈ Z, ∀i ∈ J
(3.24)

where αe is a nonnegative scalar. By dropping the integrality conditions from (3.24) and

using the concave envelope of x2
i over [li, ui], we obtain the following relaxation:

min
x∈X

xTQx+ qTx+ αe
n∑
i=1

x2
i − αe

n∑
i=1

((li + ui)xi − liui) (3.25)

which can be equivalently written as:

min
x∈X

xTQαex+ qTαex+ kαe (3.26)

where Qαe = Q+ αeIn, qαe = q − αe(l + u), and kαe = αel
Tu.

In order to ensure that (3.26) is a convex relaxation of (3.1), it is sufficient to choose

αe ≥ −min(0, λmin(Q)), since this renders the matrix Qαe positive semidefinite. Moreover,

it is simple to check that αe = −min(0, λmin(Q)) provides the tightest convex relaxation

of the form (3.26) for which Qαe < 0. We refer to this convex relaxation as the eigenvalue

relaxation of (3.1).
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Two interesting observations can be made on (3.26) when αe ≥ −min(0, λmin(Q)). First,

the derivation of (3.26) can be seen as an application of the d.c. programming technique

reviewed in §3.2.3.2, whereby the objective function of (3.1) is expressed as the differ-

ence of the convex quadratic functions g(x) = xTQx + qTx + αe
∑n

i=1 x
2
i and h(x) =

αe
∑n

i=1 x
2
i . Second, (3.26) is equivalent to the αBB relaxation discussed in §3.2.3.2 if we

set αi = αe, ∀i = 1, . . . n, in (3.15).

Note also that if all the variables in (3.1) are binary andαe = −min(0, λmin(Q)), then (3.26)

is equivalent to the continuous relaxation of the convex binary quadratic program (3.18),

which was considered by Hammer and Rubin [37].

Even though the eigenvalue relaxation is relatively simple to construct, in many cases

it can be significantly tighter than the polyhedral relaxations commonly used in state-of-

the-art global optimization solvers (see §3.6.2). Motivated by this observation, we further

investigate the theoretical properties of this relaxation. In particular, we show that the

eigenvalue relaxation is equivalent to the following SDP:

min
x∈X ,X

〈Q,X〉+ qTx (3.27a)

s.t. X − xxT < 0 (3.27b)

〈In, X〉 − (l + u)Tx+ lTu ≤ 0 (3.27c)

The SDP in (3.27) can be obtained from (3.7) by aggregating the constraints in (3.7e) and

dropping the redundant inequalities (3.7c) and (3.7d). However, unlike the SDP (3.7), the

optimal objective of SDP (3.27) can be obtained by solving the QP (3.26).

Proposition 3.2. Suppose that the matrix Q is indefinite. Let αe = −λmin(Q) in (3.26). Denote

by µEIG and µSDP EIG the optimal objective function values in (3.26) and (3.27), respectively. Then,

µEIG = µSDP EIG.

Proof. The proof of this proposition relies on strong duality holding for (3.27). We start by

showing that (3.27) admits a strictly feasible solution. Let x̄ ∈ Rn be a vector such that

3. SPECTRAL RELAXATIONS AND BRANCHING STRATEGIES FOR GLOBAL OPTIMIZATION OF
MIXED-INTEGER QUADRATIC PROGRAMS

54



3.3 SPECTRAL RELAXATIONS FOR NONCONVEX QPS AND MIQPS

Ax̄ = b, Cx̄ < d, and l < x̄ < u. Recall that the concave envelope of x2
i over [li, ui] is given

by (li + ui)xi − liui. Since li < x̄i < ui,∀i = 1, . . . , n, it follows that (li + ui)xi − liui − x̄2
i >

0, ∀i = 1, . . . , n. Define ε := (l1 + u1)x1 − l1u1 − x̄2
1. Clearly, there exists δ ∈ R such that

0 < δ < ε. Let X̄ ∈ Sn be the matrix satisfying:

X̄11 = (l1 + u1)x̄1 − l1u1 − δ
X̄ii = (li + ui)x̄i − liui, i = 2, . . . , n
X̄ij = X̄ji = x̄ix̄j , i = 1, . . . , n, j = (i+ 1), . . . , n

(3.28)

Then, it is simple to check that (3.27c) is strictly satisfied by (x̄, X̄). Define X̂ := X̄−x̄x̄T .

From this definition, it follows that X̂ ∈ Sn is a diagonal matrix with entries given by:

X̂11 = (l1 + u1)x̄1 − l1u1 − x̄2
1 − δ

X̂ii = (li + ui)x̄i − liui − x̄2
i , i = 2, . . . , n

(3.29)

It is clear that X̂ii > 0, ∀i = 1, . . . , n. It follows that the matrix X̂ is positive definite

and (x̄, X̄) is a strictly feasible solution to (3.27). Therefore, Slater’s condition is satisfied

by (3.27), which implies that strong duality holds and the optimal value of the dual prob-

lem is attained.

Now, we consider the dual of (3.27). By Proposition 3.1, this dual is given by:

max
αe∈R≥0:Qαe<0

{
min
x∈X

xTQαex+ qTαex+ kαe
}

(3.30)

where αe is the multiplier for the constraint (3.27c), Qαe = Q + αeIn, qαe = q − αe(l + u),

and kαe = αel
Tu. Since the matrix Q is indefinite, it is clear that the matrix Qαe < 0 for

αe ≥ −λmin(Q). Then, it is simple to check that the maximum of (3.30) is attained for

αe = −λmin(Q), which implies that µSDP EIG = µEIG.

3.3.2 Generalized eigenvalue relaxation

In this section, we propose a new type of quadratic relaxation for (3.1) which improves the

bounds given by the eigenvalue relaxation by incorporating information from the equality

constraints. We start by considering the following reformulation of (3.1):
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min
x∈X

xTQx+ qTx+ αg
n∑
i=1

x2
i − αg

n∑
i=1

x2
i + αg‖Ax− b‖2

s.t. xi ∈ Z, ∀i ∈ J
(3.31)

where αg is a nonnegative scalar. As done in §3.3.1, we can obtain a quadratic relaxation

of (3.1) by dropping the integrality conditions from (3.31) and using the concave envelope

of x2
i over [li, ui]:

min
x∈X

xTQx+ qTx+ αg
n∑
i=1

x2
i − αg

n∑
i=1

((li + ui)xi − liui) + αg‖Ax− b‖2 (3.32)

This relaxation can be equivalently written as:

min
x∈X

xTQαgx+ qTαgx+ kαg (3.33)

where Qαg = Q+ αg(In +ATA), qαg = q − αg(l + u+ 2AT b), and kαg = αg(l
Tu+ bT b).

In the following proposition, we provide a condition for choosing αg which ensures that

the above problem is a convex relaxation of (3.1).

Proposition 3.3. Let αg ≥ −min(0, λmin(Q, In + ATA)) in (3.33). Then, (3.33) is a convex

quadratic program.

Proof. To establish the convexity of (3.33), it suffices to verify that Qαg = Q+αg(In+ATA)

is positive semidefinite. From the definition of the Rayleigh quotient for the generalized

eigenvalue pair (Q, In +ATA) in (3.21) we obtain:

λmin(Q, In +ATA) ≤ xTQx

xT (In +ATA)x
, ∀x 6= 0 (3.34)

which using the positive definiteness of (In +ATA) can be equivalently written as:

xTQαgx ≥
(
αg + λmin(Q, In +ATA)

)
xT
(
In +ATA

)
x, ∀x 6= 0. (3.35)

It is readily verified that Qαg < 0 for αg ≥ −min(0, λmin(Q, In +ATA)).

From Proposition 3.3, it follows that αg = −min(0, λmin(Q, In + ATA)) provides the

tightest convex relaxation of the form (3.33) for which Qαg < 0. We refer to this convex
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relaxation as the generalized eigenvalue relaxation of (3.1). Next, we show that this relaxation

is at least as tight as the eigenvalue relaxation.

Proposition 3.4. Suppose thatαe = −min(0, λmin(Q)) in (3.26) andαg = −min(0, λmin(Q, In+

ATA)) in (3.33). Denote by µEIG and µGEIG the optimal objective function values in (3.26)

and (3.33), respectively. Then, µGEIG ≥ µEIG.

Proof. To prove that µGEIG ≥ µEIG, it suffices to show that αg ≤ αe. We will use the defini-

tion of the Rayleigh quotient in (3.21). We consider the following cases:

(i) λmin(Q) ≥ 0. This implies that xTQx ≥ 0, ∀x ∈ Rn \ {0}. Moreover, it is clear that

xT (In + ATA)x > 0, ∀x ∈ Rn \ {0}. Then, from (3.21) it follows that λmin(Q, In +

ATA) ≥ 0. Hence, αe = αg = 0, which implies that µGEIG = µEIG.

(ii) λmin(Q) < 0. This implies that ∃x ∈ Rn such that xTQx < 0. From (3.21), it

follows that λmin(Q, In + ATA) < 0. Then, it is clear that αe = −λmin(Q) and

αg = −λmin(Q, In + ATA). Define the set D = {x ∈ Rn : x 6= 0, xTQx < 0}. Clearly,

D is nonempty. It is easy to verify that the minimum in (3.21) occurs for x ∈ D.

Combining this observation with xT (I +ATA)x ≥ xTx, we obtain

xTQx

xT (In +ATA)x
≥ xTQx

xTx
, ∀x ∈ D. (3.36)

This proves that λmin(Q, In + ATA) ≥ λmin(Q), which implies that αg ≤ αe, and

µGEIG ≥ µEIG.

Note the idea of using information from the equality constraints to convexify objec-

tive functions containing nonconvex quadratic terms has been considered before in the

literature. In particular, this idea has been exploited in the context of the QCR methods

discussed in §3.2.3.3.
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Even though our approach also relies on the use of information from the equality con-

straints to convexify the objective function of (3.1), it differs from the QCR techniques

considered in [14, 15, 16, 17] in three important ways. First, our technique does not seek

the development of a reformulation of the original problem but instead the construction

of cheap quadratic relaxations which can be incorporated into a branch-and-bound frame-

work. Second, under our approach, at a given node of the branch-and-bound tree, we

update the perturbation parameters used to construct these quadratic relaxations. This is

done by solving the eigenvalue or generalized eigenvalue problems involving the subma-

trices ofQ and In+ATA obtained after eliminating the rows and columns corresponding to

the variables that have been fixed. This update results in tighter bounds, and as shown in

§3.6.3–3.6.5, it can have a very significant impact on the performance of branch-and-bound

algorithms, especially in the binary case, in which our relaxations can be used in conjunc-

tion with the branching strategy introduced in §3.4. By contrast, in the QCR methods, the

perturbation parameters used to convexify the problem are calculated only once, prior to

the initialization of the branch-and-bound tree, and are not updated during the execution

of the branch-and-bound algorithm. Third, in our method, the perturbation parameters

can be obtained by solving an eigenvalue or generalized eigenvalue problem, which is

often inexpensive. Under the QCR approaches, calculating the perturbation parameters

involves the solution of an SDP, which is more computationally expensive.

Observe also that, unlike our approach, the separable programming and d.c. program-

ming techniques described in §3.2.3.1 and §3.2.3.2 do not incorporate information from the

equality constraints to improve the bound of the resulting relaxations.

We next show that the generalized eigenvalue relaxation is equivalent to the following

SDP:

min
x∈X ,X

〈Q,X〉+ qTx (3.37a)
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s.t. X − xxT < 0 (3.37b)

〈In, X〉 − (l + u)Tx+ lTu+ 〈ATA,X〉 −
(
2AT b

)T
x+ bT b ≤ 0 (3.37c)

The SDP in (3.37) can be obtained from (3.9) by aggregating the constraints in (3.7e)

and (3.9c), and dropping the redundant inequalities (3.7c) and (3.7d). However, unlike the

SDP (3.9), the optimal objective of SDP (3.37) can be obtained by solving the QP (3.33).

Proposition 3.5. Suppose that the matrixQ is indefinite. Assume that αg = −λmin(Q, In+ATA)

in (3.33). Denote by µGEIG and µSDP GEIG the optimal objective function values in (3.33) and (3.37),

respectively. Then, µGEIG = µSDP GEIG.

Proof. We will rely on strong duality holding for (3.37) and follow the same line of argu-

ments used in the proof of Proposition of 3.2. We start by showing that (3.37) admits a

strictly feasible solution. Let x̄ ∈ Rn be a vector such that Ax̄ = b, Cx̄ < d, and l < x̄ < u.

Recall that the concave envelope of x2
i over [li, ui] is given by (li + ui)xi − liui. Since

li < x̄i < ui, ∀i = 1, . . . , n, it follows that (li + ui)xi − liui − x̄2
i > 0,∀i = 1, . . . , n. Define

ε := (l1 + u1)x1 − l1u1 − x̄2
1. Clearly, there exists δ ∈ R such that 0 < δ < ε. Let X̄ ∈ Sn be

the matrix satisfying:

X̄11 =
(l1 + u1)x̄1 − l1u1 + Φ11x̄

2
1 − δ

1 + Φ11

X̄ii =
(li + ui)x̄i − liui + Φiix̄

2
i

1 + Φii
, i = 2, . . . , n,

X̄ij = X̄ji = x̄ix̄j , i = 1, . . . , n, j = i+ 1, . . . , n

(3.38)

where Φii denotes the i-th diagonal element of ATA. Then, it is simple to check that (3.37c)

is strictly satisfied by (x̄, X̄). Define X̂ := X̄ − x̄x̄T . It is clear that X̂ is diagonal with

entries:

X̂11 =
(l1 + u1)x̄1 − l1u1 − x̄2

1 − δ
1 + Φ11

X̂ii =
(li + ui)x̄i − liui − x̄2

i

1 + Φii
, i = 2, . . . , n,

(3.39)

It is easy to verify that X̂ii > 0, ∀i = 1, . . . , n. It follows that X̂ is positive definite

and (x̄, X̄) is a strictly feasible solution to (3.37). Therefore, Slater’s condition is satisfied
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by (3.37), which implies that strong duality holds and the optimal value of the dual prob-

lem is attained.

Now, we consider the dual of (3.37). By Proposition 3.1, this dual is given by:

max
αg∈R≥0:Qαg<0

{
min
x∈X

xTQαgx+ qTαgx+ kαg
}

(3.40)

where αg is the multiplier for the constraint (3.37c), Qαg = Q + αg(In + ATA), qαg =

q − αg(l + u+ 2AT b), and kαg = αg(l
Tu+ bT b).

Since Q is indefinite, Proposition 3.3 implies that Qαg < 0 for αg ≥ −λmin(Q, In +ATA).

Then, it is easy to verify that the maximum of (3.40) is attained when αg = −λmin(Q, I +

ATA), which implies that µSDP GEIG = µGEIG.

3.3.3 Eigenvalue relaxation in the nullspace of the equality constraints

In this section, we consider another convex quadratic relaxation of (3.1) which also in-

corporates information from the equality constraints in order to convexify the objective

function. This relaxation can be formulated as:

min
x∈X

xTQαzx+ qTαzx+ kαz (3.41)

where Qαz = Q+αzIn, qαz = q−αz(l+u), kαz = αzl
Tu, and αz is a nonnegative scalar. As

discussed in §3.3.1, we must select a suitable αz in order to ensure that (3.41) is a convex

relaxation of (3.1). As indicated previously, one such αz can be determined by using the

smallest eigenvalue of the matrix Q. However, as we show in the next proposition, there

exists another method for constructing such αz which makes use of the nullspace of the

equality constraints of (3.1).

Proposition 3.6. Denote by Z an orthonormal basis for the nullspace of the matrix A. Let αz ≥

−min(0, λmin(ZTQZ)) in (3.41). Then, (3.41) is a convex quadratic program when restricted to

the nullspace of the matrix A.
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Proof. Let H = {x ∈ Rn | Ax = b}, and denote by r the rank of A. It is clear than any

point satisfying Ax = b can be expressed as x = xh + Zxz , where xh ∈ H, xz ∈ Rn−r, and

Z ∈ Rn×n−r. By using this transformation, we can write (3.41) as:

min
xz

(xh + Zxz)
TQαz (xh + Zxz) + qTαz (xh + Zxz) + kαz

s.t. C (xh + Zxz) ≤ d
l ≤ (xh + Zxz) ≤ u.

(3.42)

It is easily verified that (3.42) is convex for all αz ≥ −min(0, λmin(ZTQZ)).

From Proposition 3.6, it follows that the tightest relaxation of the form (3.41) is obtained

by setting αz = −min(0, λmin(ZTQZ)). We refer to this convex relaxation of (3.1) as the

eigenvalue relaxation in the nullspace of A. In the following proposition, we show that this

relaxation is at least as tight as the generalized eigenvalue relaxation.

Proposition 3.7. Assume that αg = −min(0, λmin(Q, In + ATA)) in (3.33) and let αz =

−min(0, λmin(ZTQZ)) in (3.41). Let µGEIG and µEIGZ denote the optimal objective function val-

ues in (3.33) and (3.41), respectively. Then, µEIGZ ≥ µGEIG.

Proof. To prove that µEIGZ ≥ µGEIG, it suffices to show that αz ≤ αg. Similar to (3.21), the

smallest eigenvalue of ZTQZ can be expressed as:

λmin(ZTQZ) = min
x 6=0,Ax=0

xTQx

xTx
= min

x 6=0,Ax=0

xTQx

xT (In +ATA)x
(3.43)

where for the second equality we used the fact that the minimization is over vectors x that

lie in the null space ofA. The restriction of vectors x to the null space ofA also implies that

λmin(ZTQZ) ≥ λmin(Q, In +ATA). This is easily seen by noting that the Rayleigh quotient

expression for the generalized eigenvalue of the pair (Q, In+ATA) in (3.21) is over a larger

domain. Hence, αz ≤ αg, and µEIGZ ≥ µGEIG.

From Proposition 3.7, it follows that the eigenvalue relaxation in the nullspace of A can

be potentially tighter than the generalized eigenvalue relaxation. However, an important
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drawback of this relaxation is the fact that it requires the computation of a basis Z for

the nullspace of A, which can be computationally expensive. Therefore, an important

question that arises in this context is whether we can obtain a good approximation of

λmin(ZTQZ) without having to explicitly compute the basis Z. This question is addressed

by the following proposition.

Proposition 3.8. Let δ be a real scalar. Then, the following hold:

(a) If the matrix Q is indefinite, λmin(Q, In + δATA) is a strictly increasing function of δ for

δ ≥ 1.

(b) limδ→∞ λmin(Q, In + δATA) = min(0, λmin(ZTQZ)).

Proof. We start with the proof of (a). Let δ1, δ2 ∈ R be two scalars such that δ2 > δ1 ≥ 1.

Define the set D = {x ∈ Rn : x 6= 0, xTQx < 0}. Since the matrix Q is indefinite by

assumption, it is clear that D 6= ∅. From the definition of the set D, it is easy to check that

the following inequality holds:

xTQx

xT (In + δ2ATA)x
>

xTQx

xT (In + δ1ATA)x
, ∀x ∈ D (3.44)

Using the definition of the Rayleigh quotient in (3.21), D 6= ∅ and (3.44), it is simple to

verify that λmin(Q, In + δ2A
TA) > λmin(Q, In + δ1A

TA) which proves (a).

To prove (b), consider the Rayleigh quotient definition in (3.21) for the pair (Q, In +

δATA). Let x = y+z, where y, z ∈ Rn are orthogonal vectors which belong to the row space

and nullspace of the matrix A, respectively. Then, by using this transformation in (3.21),

we have:

lim
δ→∞

λmin(Q, In + δATA) = lim
δ→∞

min
(y+z)6=0

(y + z)TQ(y + z)

(y + z)T (y + z) + δyTATAy
. (3.45)

To determine the limit in (3.45), we consider the following cases:
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(i) y 6= 0. In this case, we obtain:

min
(y+z) 6=0

lim
δ→∞

(y + z)TQ(y + z)

(y + z)T (y + z) + δyTATAy
= 0. (3.46)

(ii) y = 0. In this case, (3.45) reduces to:

lim
δ→∞

min
z 6=0

zTQz

zT z
= lim

δ→∞
min

z 6=0,Az=0

zTQz

zT z
= λmin(ZTQZ). (3.47)

Then, it follows that limδ→∞ λmin(Q, In + δATA) = min(0, λmin(ZTQZ)).

Proposition 3.8 has very important consequences since it suggests we can approximate

the bound given by the eigenvalue relaxation in the nullspace ofA by solving the following

quadratic program for a sufficiently large value of δ:

min
x∈X

xTQx+ qTx+ α(δ)(xTx− (l + u)Tx+ lTu) + α(δ) · δ · ‖Ax− b‖2 (3.48)

where α(δ) = −λmin(Q, In + δATA). Note that, for δ = 1, (3.48) corresponds to the gener-

alized eigenvalue relaxation introduced in §3.3.2.

Since λmin(Q, In + δATA) is a strictly increasing function of δ for δ ≥ 1, Proposition 3.8

implies that as δ is increased, α(δ) will converge to either 0 or −λmin(ZTQZ). The case in

which α(δ) converges to 0 is particularly interesting since it indicates that λmin(ZTQZ) ≥ 0,

and the continuous relaxation of (3.1) is convex when restricted to the nullspace ofA. Note

that λmin(Q) < 0 does not necessarily imply that λmin(ZTQZ) < 0, and as a result, the

continuous relaxation of (3.1) may be convex when restricted to the nullspace of A, even if

it is nonconvex in the space of the original problem variables.

Observe that the quadratic term α(δ) · δ · ‖Ax− b‖2 vanishes for any solution x feasible

in (3.48). This term is included in the objective function of (3.48) to ensure that the matrix

Q + α(δ)(In + δATA) is positive semidefinite. However, this term need not be included

for (3.48) to be convex. In fact, Proposition 3.6 implies that (3.48) is a convex quadratic pro-

gram for α(δ) ≥ −min(0, λmin(ZTQZ)). From the definition of α(δ) and Proposition 3.8, it
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follows that α(δ) ≥ −min(0, λmin(ZTQZ)) holds for any δ ≥ 1. As a result, the quadratic

term α(δ)·δ·‖Ax−b‖2 can be dropped from the objective function of (3.48), which simplifies

this relaxation to:

min
x∈X

xTQx+ qTx+ α(δ)(xTx− (l + u)Tx+ lTu) (3.49)

This simplification has two significant practical advantages. First, it allows us to pre-

serve the sparsity pattern defined by the quadratic matrix Q of the original problem (3.1).

Second, it prevents the relaxation from becoming ill-conditioned since δ does not figure in

the objective function of (3.49) and is only used to determine α(δ). Note that we can use

a relatively simple iterative procedure in order to determine a value of δ which leads to a

good approximation of the bound provided by the eigenvalue relaxation in the nullspace

of A. We detail such procedure in §3.5.

By considering a quadratic relaxation of the form (3.49), there is no need to project onto

the nullspace of A. This is particularly advantageous in the context of the branching vari-

able selection rules that we introduce in §3.4, since the branching decisions are easier to

interpret in the space of the original problem variables.

We finish this section by showing that the eigenvalue relaxation in the null space of A is

equivalent to the following SDP:

min
x∈X ,X

〈Q,X〉+ qTx (3.50a)

s.t. X − xxT < 0 (3.50b)

〈In, X〉 − (l + u)Tx+ lTu ≤ 0 (3.50c)

〈ATA,X〉 −
(
2AT b

)T
x+ bT b = 0 (3.50d)

The SDP in (3.50) can be obtained from (3.9) by aggregating the constraints in (3.7e), and

dropping the redundant inequalities (3.7c) and (3.7d). However, unlike the SDP (3.9), the

optimal objective of SDP (3.50) can be obtained by solving the QP (3.41).
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Proposition 3.9. Suppose that the matrix ZTQZ is indefinite. Assume that αz = −λmin(ZTQZ)

in (3.41). Denote by µEIGZ and µSDP EIGZ the optimal objective function values in (3.41) and (3.50),

respectively. Then, µEIGZ = µSDP EIGZ.

Proof. Note that unlike the SDPs (3.27) and (3.37), (3.50) does not admit a strictly feasi-

ble solution. To illustrate this, we note that, for any point x satisfying Ax = b, the con-

straint (3.50d) can be equivalently written as follows:

〈ATA,X〉 −
(
2AT b

)T
x+ bT b+ 〈ATA, xxT 〉 − 〈ATA, xxT 〉 = 0 (3.51a)

=⇒ 〈ATA,X − xxT 〉+ (Ax− b)T (Ax− b) = 0 (3.51b)

=⇒ 〈ATA,X − xxT 〉 = 0 (3.51c)

which implies that X−xxT cannot be positive definite for the pairs (x,X) that are feasible

in (3.50). It follows that we cannot apply the strong duality theorem to (3.50). As a result,

the proof of this proposition relies on different arguments from those used in the proofs of

Propositions 3.2 and 3.5. We proceed in two steps:

(i) We show that the dual problem of (3.50) is equivalent to (3.41). By weak duality

of (3.50), this implies that µSDP EIGZ ≥ µEIGZ.

(ii) We construct a feasible solution for (3.50) which attains the same objective function

value as an optimal solution of (3.41). This completes the proof by showing that

µSDP EIGZ ≤ µEIGZ.

To prove (i), we use Proposition 3.1 to write the dual of (3.50) as:

max
αz∈R≥0,βz∈R:Qαz,βz<0

{
min
x∈X

xTQαz ,βzx+ qTαz ,βzx+ kαz ,βz
}

(3.52)

where αz and βz are multipliers for (3.50c) and (3.50d), respectively, Qαz ,βz = Q + αzIn +

βzA
TA, qαz ,βz = q − αz(l + u) − 2βzA

T b, and kαz ,βz = αzl
Tu + βzb

T b. Let δz = βz/αz . By

substituting βz = δzαz in (3.52), the dual becomes:
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max
αz∈R≥0,δz∈R:Qαz,δz<0

{
min
x∈X

xTQαz ,δzx+ qTαz ,δzx+ kαz ,δz
}

(3.53)

where Qαz ,δz = Q+αz(In + δzA
TA), qαz ,δz = q−αz(l+u+ 2δzA

T b), and kαz ,δz = αz(l
Tu+

δzb
T b). Note that the quadratic term αzδz‖Ax− b‖2 vanishes for any x feasible in the inner

minimization problem. As a result, (3.53) can be posed as:

max
αz∈R≥0,δz∈R:Qαz,δz<0

{
min
x∈X

xT (Q+ αzIn)x+ (q − αz(l + u))Tx+ αzl
Tu

}
(3.54)

Since ZTQZ is indefinite,Q is indefinite as well. From Proposition 3.3, it follows that, for

a given value of δz , Qαz ,δz < 0 when αz ≥ −λmin(Q, In + δzA
TA). Then, by using the fact

that λmin(ZTQZ) < 0 and Proposition 3.8, it is easy to verify that the maximum of (3.54)

is attained when αz = − limδz→∞ λmin(Q, In + δzA
TA) = −λmin(ZTQZ). This implies

that the dual of (3.50) is equivalent to (3.41), and by weak duality of (3.50), it follows that

µSDP EIGZ ≥ µEIGZ.

Next, we prove (ii). Let x̂ denote the optimal solution of (3.41). Define X̂ = x̂x̂T +

γZv(Zv)T , where γ = (l+u)T x̂−lTu−x̂T x̂, and v denotes the eigenvector corresponding to

the smallest eigenvalue of the matrix ZTQZ. We first show that (x̂, X̂) is feasible in (3.50).

By definition, x̂ ∈ X . Consider (3.50b). Recall that the concave envelope of x2
i over [li, ui]

is given by (li + ui)xi − liui. As a result, it is clear that each term (li + ui)x̂i − liui − x̂2
i is

nonnegative, which in turn implies that γ ≥ 0. Moreover, since the matrix Zv(Zv)T < 0, it

follows that X̂ − x̂x̂T < 0.

Consider (3.50c) and (3.50d). Substituting (x̂, X̂) into (3.50c), we obtain:

〈In, x̂x̂T + γZv(Zv)T 〉 − (l + u)T x̂+ lTu

= x̂T x̂+ γvTZTZv − (l + u)T x̂+ lTu = x̂T x̂+ γ − (l + u)T x̂+ lTu = 0.

Similarly, substituting (x̂, X̂) into (3.50d) yields:

〈ATA, x̂x̂T + γZv(Zv)T 〉 −
(
2AT b

)T
x̂+ bT b

= x̂TATAx̂−
(
2AT b

)T
x̂+ bT b+ γvTZTATAZv = (Ax̂− b)T (Ax̂− b) = 0.
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Let f(x,X) be the objective function of (3.50). The value of f at (x̂, X̂) is:

f(x̂, X̂) = 〈Q, x̂x̂T + γZv(Zv)T 〉+ qT x̂

= x̂TQx̂+ γvTZTQZv + qT x̂

= x̂TQx̂− γαz + qT x̂

= x̂T (Q+ αzIn)x̂+ (q − αz(l + u))T x̂+ αzl
Tu = µEIGZ

(3.55)

where we have relied on the fact that vTZTQZv = −αz = λmin(ZTQZ). Since (x̂, X̂)

is feasible in (3.50), from (3.55) it follows that µSDP EIGZ ≤ µEIGZ. Hence, µSDP EIGZ =

µEIGZ.

3.3.4 Further insights into the proposed quadratic relaxations

The quadratic relaxations introduced in this chapter can be derived through the following

four-step recipe:

(R1) identify a (possibly empty) set J of quadratic functions of the form fj(x) = xTSjx+

sTj x + ηj , where Sj ∈ Sn, sj ∈ Rn, ηj ∈ R, such that fj(x) = 0 for x ∈ Ω := {x ∈

Rn |Ax = b};

(R2) construct an initial relaxation for (3.1) as

min
x∈X

xTQx+ qTx+ α(xTx− (l + u)Tx+ lTu) +
∑

j∈J βjfj(x) (3.56)

where α ∈ R≥0, βj ∈ R, such that Q+ αIn +
∑

j∈J βjSj < 0;

(R3) find α∗, β∗ such that the bound given by the relaxation (3.56) is maximized

(α∗, β∗) = arg max
α∈R≥0,β∈R|J |:Qα,β<0

{
min
x∈X

xTQαx+ qTαx+ kα
}

(3.57)

where Qα = Q+αIn, Qα,β = Qα +
∑

j∈J βjSj , qα = q−α(l+ u), kα = αlTu, and β is

the |J |-dimensional vector whose entries are the parameters βj ;

(R4) obtain the relaxation
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min
x∈X

xTQα∗x+ qTα∗x+ kα∗ . (3.58)

Observe that the parameters βj are not present in the objective function of the inner

minimization problem in (3.57) and the objective function in (3.58) since fj(x) = 0 for

x ∈ X ⊂ Ω (due to (R1)). The three spectral relaxations presented in §3.3.1–3.3.3 can be

identified with (3.57) by noting that:

• J = ∅, α∗ = −min(0, λmin(Q)) for the eigenvalue relaxation (3.26);

• J = {1}, f1(x) =
∑m

i=1(Ai·x−bi)2, α∗ = −min(0, λmin(Q, In+ATA)), β∗1 = α∗ for the

generalized eigenvalue relaxation (3.33). Note that in this case a further restriction

that β1 = α is imposed in (3.57); and

• J = {1}, f1(x) =
∑m

i=1(Ai·x − bi)2, α∗ = −min(0, λmin(ZTQZ)) and β∗1 = +∞ for

the eigenvalue relaxation on the nullspace of A (3.41).

From Propositions 3.4 and 3.7 we know that the lower bound obtained from the eigen-

value relaxation in the nullspace of A (3.41) is at least as large as those provided by the

other spectral relaxations. Further, the computation of α∗ can be done efficiently.

The recipe (R1)-(R4) is preferable from a computational standpoint since the resulting

relaxation is a quadratic program inheriting the sparsity of the problem. However, the

step (R1) allows for other choice for the functions fj(x) that have been considered in the

literature (see Faye and Roupin [31]). Some examples for the functions satisfying (R1)

are [31]: (xj(Ai·x− bi)), ((Aj·x− bj)(Ai·x− bi)),
(
xTATj·Ai·x− bjbi

)
. This naturally raises

the question: Can we improve on the bound provided by (3.41) when restricted to the class of re-

laxations in (3.57)? In the rest of the section, we show that we cannot improve on the bound

provided by the eigenvalue relaxation on the nullspace of A (3.41). Thus, establishing

that (3.41) is the best among the class of relaxations in (3.57).

We begin by recalling the properties of functions satisfying (R1).
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Proposition 3.10. Let f(x) = xTSx + sTx + η be a quadratic function. Then, f(x) = 0 for all

x ∈ Ω := {x ∈ Rn |Ax = b} if and only if S = ATW T +WA, s = AT ν − 2Wb, η = −bT ν for

some W ∈ Rn×m and ν ∈ Rm.

Proof. This follows from Theorem 1 in [31].

Following Proposition 3.10, we assume without loss of generality that Sj = ATW T
j +

WjA for some Wj ∈ Rn×m in the rest of this section.

We will compare the relaxations in the class (3.57) with the eigenvalue relaxation in the

nullspace of A (3.41) through the respective SDP formulations. To this end, consider the

SDP:

min
x∈X ,X

〈Q,X〉+ qTx (3.59a)

s.t. X − xxT < 0 (3.59b)

〈In, X〉 − (l + u)Tx+ lTu ≤ 0 (3.59c)

〈Sj , X〉+ sTj x+ ηj = 0, j ∈ J . (3.59d)

The next proposition shows that SDP (3.59) is the dual of (3.57).

Proposition 3.11. Let J 6= ∅ be a set of quadratic functions satisfying (R1). The dual of the

SDP (3.59) is given by (3.57).

Proof. By dualizing the constraints (3.59c) and (3.59d) with the multipliers α ∈ R≥0 and

βj ∈ R, j ∈ J , respectively, we can use Proposition 3.1 to obtain the claim.

The next result shows that the feasible set of the SDP (3.50) is in general a subset of the

feasible set of the SDP (3.59). Further, we provide conditions on the choice of quadratic

functions in J so that equality holds.

Proposition 3.12. Let FSDP EIGZ and FSDP EIGJ denote the feasible regions of the SDPs in (3.50)

and (3.59), respectively. Then, the following holds:
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(i) FSDP EIGZ ⊆ FSDP EIGJ.

(ii) If ∃ωj , j ∈ J such that
∑

j∈J ωjWj = AT then FSDP EIGZ = FSDP EIGJ.

Proof. We start by proving (i). Recall from (3.51) that any (x̄, X̄) ∈ FSDP EIGZ satisfies

〈ATA, X̄− x̄x̄T 〉 = 0. Hence, X̄ takes the form X̄ = x̄x̄T +ZV ZT for all (x̄, X̄) ∈ FSDP EIGZ,

where Z ∈ Rn×n−r is a basis for the null space of A and V ∈ Sn−r. For any (x̄, X̄) ∈

FSDP EIGZ it follows that for all j ∈ J :

〈Sj , X̄〉+ sTj x̄+ ηj (3.60a)

= 〈Sj , X̄ − x̄x̄T 〉+ x̄TSj x̄+ sTj x̄+ ηj (3.60b)

= 〈Sj , X̄ − x̄x̄T 〉 = 〈ATW T
j +WjA,ZV Z

T 〉 = 0 (3.60c)

where (3.60b) follows from adding and subtracting x̄TSj x̄, the first equality in (3.60c) fol-

lows from (R1), the second equality in (3.60c) from Proposition 3.10 and the final equality

due to Z being a basis for the nullspace of A. Thus (x̄, X̄) ∈ FSDP EIGJ proving the claim in

(i).

Consider the claim in (ii). Suppose that there exist ωj , j ∈ J such that the condition in

(ii) holds. We perform a linear combination of the inequalities in (3.59d) using ωj to obtain

for any (x̄, X̄) ∈ FSDP EIGJ:

0 =
∑
j∈J

ωj
(
〈Sj , X̄〉+ sTj x̄+ ηj

)
(3.61a)

=
∑
j∈J

ωj
(
〈Sj , X̄ − x̄x̄T 〉+ x̄TSj x̄+ sTj x̄+ ηj

)
(3.61b)

=
∑
j∈J

ωj〈Sj , X̄ − x̄x̄T 〉 = 2〈ATA, X̄ − x̄x̄T 〉 (3.61c)

where (3.61b) follows from adding and subtracting x̄TSj x̄, the first equality in (3.61c) fol-

lows from (R1), the second equality in (3.61c) from Proposition 3.10 and the condition in

(ii). Thus (x̄, X̄) ∈ FSDP EIGZ proving the claim in (ii).
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Note that Faye and Roupin [31] proved the equivalence between the SDP (3.50) and

a similar SDP where (3.50d) is replaced by the constraints derived by lifting quadratic

functions of the form xj(Ai·x − bi) = 0, i = 1, . . . ,m, j = 1, . . . , n into the space of (x,X).

Proposition 3.12 considerably expands the set of quadratic functions for which the feasible

set of the resulting SDP is equal to FSDP EIGZ (claim in (ii)). It is easy to verify that all of

the examples of quadratic functions satisfying (R1) described in Faye and Roupin [31] do

satisfy the condition in (ii). Further, the claim in (i) shows that there exist no quadratic

functions satisfying (R1) for which the resulting SDP can have a smaller feasible region

than the SDP (3.50). This brings us to the main result on the claim that the relaxation (3.41)

is indeed the best among the class of relaxations in (3.57).

Theorem 3.1. Suppose that ZTQZ is indefinite and that the set J is chosen such that (R1) holds.

Assume that αz = −λmin(ZTQZ) in (3.41). Denote by µEIGZ and µEIGJ the optimal objective

function values in (3.41) and (3.57), respectively. Then, µEIGJ ≤ µEIGZ.

Proof. Let µSDP EIGZ and µSDP EIGJ denote the optimal objective values of the SDPs in (3.50)

and (3.59), respectively. By Proposition 3.9 we have that µEIGZ = µSDP EIGZ. By Proposi-

tion (3.12)(i) we have that µSDP EIGJ ≤ µSDP EIGZ. By Proposition 3.11 and weak duality we

have that µEIGJ ≤ µSDP EIGJ. Hence, µEIGJ ≤ µEIGZ, proving the claim.

We finish this section by providing a theoretical comparison between the spectral relax-

ations studied in §3.3.1–3.3.3 and some SDP relaxations described in §3.2.2.

Theorem 3.2. Assume that the matrix ZTQZ is indefinite. Suppose that αe = −λmin(Q)

in (3.26), αg = −λmin(Q, In + ATA) in (3.33), and αz = −λmin(ZTQZ) in (3.41). Denote by

µEIG, µGEIG, µEIGZ, µSDP d, µSDP dax, and µSDP da the optimal objective function values of (3.26),

(3.33), (3.41), (3.7), (3.8), and (3.9), respectively. Then, the following holds:
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(i) µSDP d ≥ µEIG.

(ii) µSDP dax = µSDP da ≥ µEIGZ ≥ µGEIG ≥ µEIG.

Proof. We start by proving (i). Denote by µSDP EIG the optimal objective function value

in (3.27). By Proposition 3.2, we have that µEIG = µSDP EIG. Hence, we can prove (ii)

by comparing the SDPs (3.7) and (3.27). The constraints (3.7c) and (3.7d) are implied

by (3.7b), and as a result, can be droped from (3.7). Therefore, (3.7) and (3.27) only dif-

fer in the constraints (3.7e) and (3.27c). It is simple to verify that the inequality (3.27c)

can be obtained by aggregating the McCormick inequalities (3.7e), which implies that

µSDP d ≥ µSDP EIG = µEIG.

Now, we prove (ii). As stated in §3.2.3.1, the relationship µSDP dax = µSDP da follows from

a result given in [31]. To show that µSDP da ≥ µEIGZ, we follow the same line of arguments

used for proving (i). Let µSDP EIGZ be the optimal objective function value in (3.50). Propo-

sition 3.9 implies that µEIGZ = µSDP EIGZ. Therefore, to prove (ii), we can simply compare

the SDPs (3.9) and (3.50). The constraints (3.7c) and (3.7d) are also redundant in (3.9), and

can be dropped from this formulation as well. Similar to the previous case, (3.9) and (3.50)

only differ in the constraints (3.7e) and (3.50c). As stated above, the inequality (3.50c) is

implied by the inequalities (3.7e). Hence, µSDP da ≥ µSDP EIGZ = µEIGZ. The inequalities

µGEIG ≥ µEIG and µEIGZ ≥ µGEIG, follow from Propositions 3.4 and 3.7, respectively. This

completes the proof of the claim in (ii).

3.4 Spectral branching for nonconvex binary QPs

In this section, we introduce new eigenvalue-based branching variable selection strate-

gies for nonconvex binary QPs. These strategies are inspired by the strong branching rule

which was initially proposed for mixed-integer linear programs [6], and can be used along

with the quadratic relaxations discussed in §3.3.1–3.3.3. For simplicity, we only describe
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our branching strategies for the eigenvalue relaxation, which rely on the smallest eigen-

value ofQ and its associated eigenvector. The branching rules for the quadratic relaxations

described in §3.3.2 and 3.3.3 are similar, but they make use of the smallest generalized

eigenvalue of the pair (Q, I + δATA) and its corresponding eigenvector.

We first introduce some notation. LetF be the set of indices of the variables that are fixed

at the current node. Denote by B = {1, . . . , n}\F the set of branching candidates. Let Q̄ be

the R|B|×|B| sub-matrix of Q obtained by eliminating the rows and columns corresponding

to the variables in F . Define the bijection σ : B → {1, . . . , |B|}, which maps i ∈ B to the

σ(i)-th row and σ(i)-th column of Q̄.

Assume that we branch on variable xi, i ∈ B by creating two nodes, one where xi = 0

and another where xi = 1. At these descendant nodes, the eigenvalue relaxation is con-

structed by considering the smallest eigenvalue of the submatrix obtained by eliminating

the σ(i)-th row and σ(i)-th column of Q̄. We denote this submatrix by Q̂. In this context,

a potentially good branching rule may consist in branching on the variable which leads

to the largest increase in the smallest eigenvalue of Q̂. Note that, at a given node of the

branch-and-bound tree, this rule requires the solution of |B| eigenvalue problems, each one

involving a submatrix of Q̄ obtained by eliminating the row and column corresponding to

a particular index i ∈ B. We call this rule spectral branching with complete enumeration. The

index corresponding to this branching rule, denoted as iexact ∈ C, can be mathematically

expressed as:

iexact = arg max
i∈B

λmin

(
Pσ(i)Q̄P

T
σ(i)

)
(3.62)

where Pσ(i) is a (|B|−1)×|B|matrix obtained by removing the σ(i)-th row from the |B|×|B|

identity matrix. Note that Q̂ = Pσ(i)Q̄P
T
σ(i) results in a matrix where the σ(i)-th row and

σ(i)-th column of Q̄ are removed.

The computational complexity of complete enumeration is Ω(|B|3). We are not aware of
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any efficient approach for obtaining iexact that avoids complete enumeration. We instead

rely on a lower bound for λmin(·) that will be obtained without computing an eigenvalue

and is computationally inexpensive. Gershgorin’s Circle Theorem (GCT) [34] provides

such a lower bound estimate. The GCT states that: every eigenvalue of a t × t matrix T lies

in one of the circles Ck(T ) = {λ : |λ − Tkk| ≤
∑

l 6=k |Tkl|} for k = 1, . . . , t. A lower bound

estimate for the smallest eigenvalue of the matrix T based on the GCT, denoted as λGCT
min (T )

is:

λGCT
min (T ) = min

k∈{1,...,t}

Tkk −∑
l 6=k
|Tkl|

 (3.63)

Using the GCT-based lower bound estimate we can then define a branching variable

index as:

iGCT = arg max
i∈B

λGCT
min

(
Pσ(i)Q̄P

T
σ(i)

)
. (3.64)

Note that the index iGCT can be determined without having to compute the matrix

Pσ(i)Q̄P
T
σ(i). This approach has a computational complexity of O(|B|2) and is computa-

tionally inexpensive compared to complete enumeration.

The choice of iGCT can be viewed as a pessimistic estimate since it is obtained by max-

imizing the worst-case bound for the smallest eigenvalue. Instead, we employ a different

approach to determine the branching variable. Let v be the eigenvector corresponding to

the smallest eigenvalue of Q̄. Then, we select as a branching variable, denoted by iapprox,

the one which corresponds to the entry of v with the largest absolute value, i.e.

iapprox = arg max
i∈B
|vσ(i)| (3.65)

where vσ(i) denotes the σ(i)-th component of v. We call this rule approximate spectral branch-

ing. The computational complexity of this rule is O(|B|).

To appreciate the intuition behind this choice, we recall the proof for the GCT. From the

definition of the eigenvalue, we have
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Q̄v = λmin(Q̄)v

=⇒
∑
j∈B

Q̄σ(iapprox)σ(j)vσ(j) = λmin(Q̄)vσ(iapprox)

=⇒ λmin(Q̄)−Qσ(iapprox)σ(iapprox) =
∑
j∈B,

j 6=iapprox

Q̄σ(iapprox)σ(j)

vσ(j)

vσ(iapprox)

=⇒ |λmin(Q̄)−Qσ(iapprox)σ(iapprox)| ≤
∑
j∈B,

j 6=iapprox

|Q̄σ(iapprox)σ(j)|

=⇒ λmin(Q̄) ∈ Cσ(iapprox)(Q̄)

where the first implication follows from the σ(iapprox)-th row of the equality, the second

implication is obtained by rearranging and dividing by vσ(iapprox) and the inequality follows

from |vσ(j)/vσ(iapprox)| ≤ 1 by definition of iapprox. In essence, iapprox identifies the particular

Gershgorin circle that bounds the smallest eigenvalue λmin(Q̄). Thus, the choice of iapprox

as the branching variable can be interpreted as eliminating the particular Gershgorin circle

to which λmin(Q̄) belongs. In that sense, this can be viewed as an optimistic estimate.

To illustrate the effectiveness of iGCT and iapprox in mimicking iexact, we performed some

numerical experiments. We generated matrices Q of sizes n ∈ {50, 100} and densities

ρ ∈ {0.25, 0.50, 1.00}, and computed iexact by complete enumeration. Denote by iworst the

index corresponding to the worst choice of branching variable, i.e.:

iworst = arg min
i∈B

λmin

(
Pσ(i)QP

T
σ(i)

)
(3.66)

Then, the effectiveness of ix is measured using the metric:

% gap =
λmin

(
Pσ(ix)QP

T
σ(ix)

)
− λmin

(
Pσ(iexact)QP

T
σ(iexact)

)
λmin

(
Pσ(iworst)QP

T
σ(iworst)

)
− λmin

(
Pσ(iexact)QP

T
σ(iexact)

) × 100 (3.67)

where x ∈ {approx,GCT}. A smaller value of % gap for ix represents a better approxima-

tion of iexact. To obtain a statistic of the effectiveness of these approaches, we generated 100

different instances ofQ for each matrix size and density. Figure 3.1 shows cumulative plots

of the percentage of instances for which the % gap is below a certain value. It is evident
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from the plots that the approximate spectral branching strategy is a better choice than the

GCT-based branching rule.
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Figure 3.1: Cumulative plots comparing the effectiveness of the approximate spectral
branching and the GCT-based branching strategies.

3.5 Implementation of the proposed relaxation and branching strate-

gies into BARON

By default, BARON’s portfolio of relaxations consists of linear programming (LP), nonlin-

ear programming (NLP) and mixed-integer linear programming (MILP) relaxations [48,

59, 92]. In our implementation, we have expanded this portfolio by adding a new class

of convex QP relaxations. These relaxations are constructed whenever the original model

supplied to BARON is of the form (3.1). We take advantage of BARON’s convexity de-

tector (see [48] for details) in order to determine the type of QP relaxation that will be

constructed at a given node in the branch-and-bound tree. If the current node is convex,

our QP relaxation is the continuous relaxation of (3.1) subject to the variable bounds of the

current node. On the other hand, if the current node is nonconvex, we construct one of the

QP relaxations introduced in §3.3.1–3.3.3. The relaxation (3.49) is selected by default if the
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original problem contains equality constraints. Otherwise, our QP relaxation constructor

automatically switches to the eigenvalue relaxation (3.26).

To solve the eigenvalue and generalized eigenvalue problems that arise during the con-

struction of the relaxations discussed in §3.3.1–3.3.3, we use the subroutines included in

the linear algebra library LAPACK [3]. When constructing these quadratic relaxations, we

only consider the variables that have not been fixed at the current node. We use CPLEX as

a subsolver for the new QP relaxations. The relaxation solution returned by the QP sub-

solver is used at the current node only if it satisfies the KKT conditions. This KKT test is

similar to the optimality checks that BARON performs on the solutions returned by the LP

and NLP subsolvers (see [48] for details).

Another important component of our implementation is the approximate spectral branch-

ing rule described in §3.4. This strategy is activated whenever the original problem sup-

plied to BARON is a nonconvex binary QP. When this strategy is disabled, BARON uses

reliability branching [1] to select among binary branching variables.

Finding δ

As stated in §3.3.3, when constructing the quadratic relaxation (3.49), we use a sufficiently

large value of δ in order to obtain a good approximation of the bound provided by the

eigenvalue relaxation in the nullspace of A. We use an iterative procedure to determine

such value of δ. We start by setting δ = 1 and computing λmin(Q, In + δATA). Then, in

each iteration of this procedure, we increase δ by a factor of σ and we use the resulting

δ to compute a new value of λmin(Q, In + δATA). The procedure terminates when either

the relative change in λmin(Q, In + δATA) is within a tolerance relTol or the number of

iterations reaches maxIter. In our numerical experiments, we set σ = 10, maxIter = 5,

and relTol = 10−3. This iterative procedure is executed at the root node only, and the value

of δ determined during its execution is used throughout the entire branch-and-bound tree.
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Dynamic relaxation selection strategy

We have implemented a dynamic relaxation selection strategy which is used for problems

of the form (3.1) and switches between polyhedral and quadratic relaxations based on

their relative strength. This dynamic strategy is motivated by two key observations. First,

the strength of a given relaxation may depend on particular characteristics of the problem

under consideration. Second, a particular type of relaxation may become stronger than

other classes of relaxations as we move down the branch-and-bound tree.

In the context of this strategy, we dynamically adjust the frequencies at which we solve

the different types of relaxations during the branch-and-bound search. Denote by ωlp ∈

[1, ω̄lp] and ωqp ∈ [1, ω̄qp] the frequencies with which we solve the LP and QP relaxations,

respectively. Let flp and fqp be the optimal objective function values of the LP and QP

relaxations, respectively. At the beginning of the global search, we set ωlp = 1 and ωqp =

1, which indicates that both the LP and QP relaxations will be solved at every node of

the branch-and-bound tree. At nodes where both LP and QP relaxations are solved, we

compare their corresponding objective function values. If fqp − flp ≥ absTol, we increase

ωqp by setting ωqp = max (1, ωqp/σqp), and decrease ωlp by setting ωlp = min (ω̄lp, ωlp · σlp).

Conversely, if fqp − flp < absTol, we increase ωlp by setting ωlp = max (1, ωlp/σlp), and

decrease ωqp by setting ωqp = min (ω̄qp, ωqp · σqp). In our numerical experiments, we set

σlp = 10, σqp = 2, ω̄lp = 1000, ω̄qp = 10, and absTol = 10−3.

Even though BARON’s portfolio of relaxations also includes MILP relaxations, in our

dynamic relaxation selection strategy, we only compare the bounds given by the LP and

QP relaxations. Since MILP relaxations can be computationally expensive, BARON uses

a heuristic to decide if an MILP relaxation will be solved at the current node [59]. In our

implementation, this heuristic is invoked only if at the current node the QP relaxation is

weaker than the LP relaxation. Otherwise, the MILP relaxation is skipped altogether.
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3.6 Computational results

In this section, we present the results of an extensive computational study conducted to

investigate the impact of the techniques proposed in this chapter on the performance of

branch-and-bound algorithms. We start by describing the test set used for the numeri-

cal experiments in §3.6.1. Then, in §3.6.2, we provide a numerical comparison between

the spectral relaxations introduced in §3.3.1–3.3.3 and some of the relaxations reviewed

in §3.2. In §3.6.3, we analyze the impact of the implementation described in §3.5 on the

performance of the global optimization solver BARON. This is followed by a comparison

between several state-of-the-art global optimization solvers in §3.6.4. Finally in §3.6.5, we

compare BARON and the QCR approach discussed in §3.2.3.3.

Throughout this section, all experiments are conducted under GAMS 30.1.0 on a 64-bit

Intel Xeon X5650 2.66GHz processor with a single-thread. We solve all problems in min-

imization form. For the experiments described in §3.6.2, the linear and convex quadratic

programs are solved using CPLEX 12.10, whereas the SDPs are solved using MOSEK 9.1.9.

For the experiments considered in §3.6.3–3.6.5, we consider the following global optimiza-

tion solvers: ANTIGONE 1.1, BARON 19.12, COUENNE 0.5, CPLEX 12.10, GUROBI 9.0,

LINDOGLOBAL 12.0 and SCIP 6.0. When dealing with nonconvex problems, we: (i) run

all solvers with relative/absolute tolerances of 10-6 and a time limit of 500 seconds, and

(ii) set the CPLEX option optimalitytarget to 3 and the GUROBI option nonconvex

to 2 in order to ensure that these two solvers search for a globally optimal solution. For

other algorithmic parameters, we use default settings. The computational times reported

in our experiments do not include the time required by GAMS to generate problems and

interface with solvers; only times taken by the solvers are reported.
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3.6.1 The test set

We consider a test set consisting of 960 Cardinality Binary Quadratic Programs (CBQPs), 30

Quadratic Semi-Assignment Problems (QSAPs), 246 Box-Constrained Quadratic Programs

(BoxQPs), and 315 Equality Integer Quadratic Programs (EIQPs). In the following, we

describe each of these four collections in detail.

3.6.1.1 Cardinality Binary Quadratic Programs

The CBQP instances are of the form:

min
x

xTQx+ qTx

s.t.
n∑
i=1

xi = κ

xi ∈ {0, 1}, i = 1, . . . , n

(3.68)

where Q ∈ Sn is an indefinite matrix, q ∈ Rn and κ ∈ {1, . . . , n}. For our experiments, we

use the 960 CBQP instances generated by Lima and Grossmann [53]. These problems were

constructed for κ ∈ {n/5, n/1.25}, and matricesQwith sizes n ∈ {50, 75, 100, 200, 300, 400}

and densities ρ ∈ {0.10, 0.50, 0.75, 1.00}. The nonzero entries of Q and q are randomly

generated from uniform distributions defined over the intervals [−100, 100], [−1,−1], [0, 1],

and [0, 100].

3.6.1.2 Quadratic Semi-Assignment Problems

The QSAP instances are of the form:

min
x

n1−1∑
i=1

n1∑
j+1=1

n2∑
k=1

n2∑
l=1

Qikjlxikxjl +
n1∑
i=1

n2∑
k=1

qikxik

s.t.
n2∑
k=1

xik = 1, i = 1, . . . , n1

xik ∈ {0, 1}, i = 1, . . . , n1, k = 1, . . . , n2

(3.69)

where n1 > n2. For our experiments, we constructed 30 QSAP instances for which the

number of total variables ranges from 15 to 280, and the coefficients Qikjl and qik are ran-
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domly generated in [−50, 50] according to a uniform distribution.

3.6.1.3 Box-Constrained Quadratic Programs

The BoxQP instances are of the form:

min
x

xTQx+ qTx

s.t. 0 ≤ xi ≤ 1, i = 1, . . . , n
(3.70)

where Q ∈ Sn is an indefinite matrix and q ∈ Rn. For our experiments, we consider an

expanded version of the set of the BoxQP instances generated in [22, 24, 96]. The original

collection consists of: 54 instances with 20 ≤ n ≤ 60 and 0.2 ≤ ρ ≤ 1.0 generated in [96],

36 instances with 70 ≤ n ≤ 100 and 0.25 ≤ ρ ≤ 0.75 generated in [24], and 9 instances with

n = 125 and 0.25 ≤ ρ ≤ 0.75 generated in [22].

For our experiments, we constructed 15 additional instances with 70 ≤ n ≤ 125 and

ρ = 1.00, and 132 additional instances with 150 ≤ n ≤ 400 and 0.25 ≤ ρ ≤ 1.0, obtaining

an expaded collection with 246 instances. For the additional 147 instances, as well as for

the 99 instances considered in [22, 24, 96], the nonzero entries of Q and q are integers

randomly generated in [−50, 50] according to a uniform distribution.

3.6.1.4 Equality Integer Quadratic Programs

The EIQP instances are of the form:

min
x

xTQx+ qTx

s.t. A1·x = b1
0 ≤ xi ≤ ui, i = 1, . . . , n
xi ∈ N, i = 1, . . . , n

(3.71)

where Q ∈ Sn is an indefinite matrix, q ∈ Rn, A1 ∈ R1×n and b1 ∈ R. For our experiments,

we consider an expanded version of the set of randomly generated EIQP instances used

in [16]. The original collection consists of three classes of instances generated as follows:
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• EIQP1: The entries of Q and q are uniformly distributed integers in the interval

[−100, 100], the entries of A1 are uniformly distributed integers in [1, 50], b1 = 15 ·∑n
i=1A1i, and ui = 30, i = 1, . . . , n.

• EIQP2: the entries of Q and q are generated as described for EIQP1, the entries of A1

are uniformly distributed integers in [1, 100], b1 = 20 ·
∑n

i=1A1i, and ui = 50, i =

1, . . . , n.

• EIQP3: the entries of Q and q are generated as described for EIQP1, the entries of A1

and b1 as described for EIQP2, and ui = 70, i = 1, . . . , n.

In [16], 5 different instances were generated for each of these three classes and for each

value of n ∈ {20, 30, 40}, obtaining a total of 45 instances. For our experiments, we con-

structed 90 additional instances of each class by considering values of n ranging from 60

to 400. This leads to an expanded collection consisting of 315 instances.

3.6.2 Comparison between relaxations

In this section, we present a comparison between the spectral relaxations introduced in

§3.3.1–3.3.3, the convex quadratic relaxation (3.12), the first-level RLT relaxation (3.5), and

the SDP relaxations (3.7) and (3.9). We construct performance profiles based on the root-

node relaxation gap defined as:

GAP =

(
fUBD − fLBD

max(|fLBD|, 10−3)

)
× 100 (3.72)

where fLBD is the root-node relaxation lower bound, and fUBD is the best upper bound

available for a given instance. The following notation is used to refer to the different relax-

ations:

• EIG: Eigenvalue relaxation (3.26).

• GEIG: Generalized eigenvalue relaxation (3.33).
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• EIGNS: Eigenvalue relaxation in the nullspace of A (3.41).

• EIGDC: Quadratic relaxation (3.12) based on the eigdecomposition of Q.

• RLT: First-level RLT relaxation (3.5).

• SDPd: SDP relaxation (3.7).

• SDPda: SDP relaxation (3.9).

The performance profiles are presented in Figures 3.2a–3.2d. These profiles show the

percentage of models for which the gap defined in (3.72) is below a certain threshold. As

seen in the figures, the SDP relaxations give the tightest bounds, followed by the spec-

tral relaxations. For these instances, both the RLT relaxation (3.5) and the quadratic relax-

ation (3.12) provide relatively weak bounds. Note that for the CBQP instances, the spectral

relaxations provide very similar bounds. In the case of the QSAP and EIQP problems, the

difference between the bounds given by spectral relaxations is more significant.

We also compare these root-node relaxations in terms of their solution times. To that

end, in Figures 3.3a–3.3d, we present the geometric means of the CPU times required to

solve the different classes of relaxations. For the quadratic relaxation based on the eigde-

composition of Q, the CPU time includes the time required to solve the convex QP (3.12)

and the time taken by the bounding LPs (3.13). We group the instances based on their size.

As the figures indicate, the spectral relaxations are relatively inexpensive regardless of the

characteristics of the problem. As the size of the problem increases, the RLT relaxations

become more expensive to solve, and in some cases, these RLT relaxations are orders of

magnitude more expensive than the other relaxations. Note that the separable program-

ming procedure described in §3.2.3.1 does not only lead to relatively weak bounds, but it is

also computationally expensive since it requires the solution of 2n linear programs. Even

though for most of the problems considered in the experiments the SDP relaxations can

be solved within 10 seconds, they are between one and two orders of magnitude more ex-

pensive than the spectral relaxations. These results indicate that the quadratic relaxations
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Figure 3.2: Comparison between the root-node relaxations gaps.

introduced in this chapter do not only provide relatively strong bounds, but they are also

very cheap to solve.

3.6.3 Impact of the implementation on BARON’s performance

In this section, we demonstrate the benefits the proposed relaxation and branching tech-

niques on the performance of the global optimization solver BARON. In our experiments,

we consider the following versions of BARON 19.12:

• BARONnoqp: BARON without the spectral relaxations and without the spectral
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Figure 3.3: Geometric means of the CPU times required to solve the root-node relaxations.

branching rule.

• BARONnosb: BARON with the spectral relaxations but without the spectral branch-

ing rule.

• BARONqp1: BARON with the spectral relaxations and the approximate spectral

branching rule.

As mentioned previously, the spectral branching rule introduced in § 3.4 is only used for

the binary instances. In order to analyze the impact of our implementation, we start by

comparing the different versions of BARON through performance profiles. For instances

which can be solved to global optimality within the time limit of 500 seconds, we use

performance profiles based on CPU times. In this case, for a given solver, we plot the per-
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centage of models that can be solved within a certain amount of time. For problems for

which global optimality cannot be proven within the time limit, we employ performance

profiles based on the optimality gaps at termination. These gaps are determined according

to (3.72) by using the best lower and upper bounds reported by the solver under consid-

eration. In this case, for a given solver, we plot the percentage of models for which the

remaining gap is below a given threshold.

The performance profiles are presented in Figures 3.4a–3.4d. As seen in the figures, our

implementation leads to very significant improvements in the performance of BARON.

Clearly, for the CBQP and QSAP instances, both the spectral relaxations and the spec-

tral branching strategy result in a version of BARON which is able to solve many more

problems to global optimality. In addition, in cases in which global optimality cannot be

proven within the time limit, BARONqp1 terminates with much smaller relaxation gaps

than BARONnoqp.

Next, we provide a more detailed comparison between BARONqp1 and BARONnoqp.

To this end, we eliminate from the test set all the problems that can be solved trivially by

both solvers (146 instances). A problem is regarded as trivial if it can be solved by both

solvers in less than one second. After eliminating all of these problems from the original

test set, we obtain a new test set consisting of 1405 instances.

We first consider the nontrivial problems that are solved to global optimality by at least

one of the two the versions of the solver (412 instances). For this analysis, we compare

the performance of the two solvers by considering the ratios between their computational

times. In this comparison, we say that the two solvers perform similarly if their CPU

times are within 10% of each other. The results are presented in Figure 3.5a. As the fig-

ure indicates, BARONqp1 is significantly faster than BARONnoqp. For nearly 50% of the

problems considered in this comparison, BARONqp1 is at least one of magnitude faster

than BARONnoqp
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Figure 3.4: Comparison between the different versions of BARON.

Now, we consider the nontrivial problems that neither of the two solvers are able to

solve to global optimality within the time limit (993 instances). In this case, we analyze

the performance of these solvers by comparing the gaps reported at termination. For the

purposes of this comparison, we say that two solvers obtain similar gaps if their remaining

gaps are within 10% of each other. The results are presented in Figure 3.5b. As seen in the

figure, for more than 90% considered in this comparison, BARONqp1 reports significantly

termination gaps than BARONnoqp.
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Figure 3.5: One-to-one comparison between BARONqp1 and BARONnoqp.

3.6.4 Comparison between global optimization solvers

In this section, we provide a comparison between different state-of-the-art global optimiza-

tion solvers using the same type of performance profiles considered in the previous sec-

tion. These profiles are shown in Figures 3.6a–3.6d. As seen in these figures, BARONqp1

performs well in comparison to other solvers. For both the CBQP and QSAP instances,

BARONqp1 is faster than the other solvers and is able to solve many more problems to

global optimality. For the QSAP and BoxQP instances, BARONqp1 also terminates with

significantly smaller gaps than the other solvers in cases in which global optimality cannot

be proven within the time limit. Note that many of the BoxQP and EIQP instances are very

challenging and cannot be globally solved within the time limit by solvers considered in

this analysis.

Next, we provide a detailed analysis involving BARONqp1, CPLEX and GUROBI. For

this analysis, we use the same type of bar plots employed in Figure 3.5. We start by pre-

senting a one-to-one comparison between BARONqp1 and CPLEX. To this end, we elim-

inate from the test set all the problems that can be solved trivially by both solvers (124

instances), obtaining a new test set with 1427 instances. In Figure 3.7a, we consider the
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Figure 3.6: Comparison between global optimization solvers.

nontrivial problems that are solved to global optimality by at least one of the two solvers

(445 instances), whereas in Figure 3.7b, we consider nontrivial problems that neither of the

two solvers are able to solve to global optimality within the time limit (982 instances). As

both figures show, BARONqp1 performs significantly better than CPLEX. For 80% of the

instances considered in Figure 3.7a, BARONqp1 is at least twice as fast as CPLEX. Simi-

larly, for 90% of the instances considered in Figure 3.7b, the termination gaps reported by

BARONqp1 are at least twice as small as those obtained by CPLEX.

Now, we present a similar one-to-one comparison between BARONqp1 and GUROBI.
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Figure 3.7: One-to-one comparison between BARONqp1 and CPLEX.

Once again, we eliminate from the test set all the problems that can be solved trivially by

both solvers (185 instances), resulting in a new test set with 1366 instances. In Figure 3.8a,

we consider the nontrivial problems that are solved to global optimality by at least one of

the two solvers (380 instances), whereas in Figure 3.8b, we consider nontrivial problems

that neither of the two solvers are able to solve to global optimality within the time limit

(986 instances). For more than 60% of the instances considered in Figure 3.8a, BARONqp1

is at least twice as fast as GUROBI, whereas for most of the problems considered in Fig-

ure 3.8b, the two solvers report similar termination gaps.
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Figure 3.8: One-to-one comparison between BARONqp1 and GUROBI.
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3.6.5 Comparison with the QCR method

In this section, we provide a numerical comparison between the relaxation and branching

strategies proposed in this chapter, and the QCR approach reviewed in §3.2.3.3. To this

end, we consider the 990 binary CBQP and QSAP instances described in §3.6.1.

To apply the QCR method, we proceed in two steps. In the first step, for each test

problem, we solve the SDP relaxation (3.8) with MOSEK and use its dual solution to con-

struct a reformulated convex binary quadratic program of the form (3.20). As mentioned

in §3.2.3.3, the reformulated problems are equivalent to the original problems when all

variables are binary.

In the second step, we solve the reformulated problems using a customized version of

BARON, which denote by BARONqcr. This version of BARON only differs from the de-

fault one in two aspects. First, BARONqcr is devised in a way such that, at a given node of

the branch-and-bound tree, the lower bound is obtained by solving the continuous relax-

ation of the reformulated problem, which is a convex QP. To this end, in the lower bound-

ing routines of BARONqcr, we have disabled the LP, NLP, MILP and recently introduced

spectral relaxations. Second, in BARONqcr we have also turned off the spectral branching

rule and replaced it with the reliability branching strategy described in [59]. Recall that,

under the QCR approach, the perturbation parameters used to derive the reformulated

problem are not updated during the execution of the branch-and-bound algorithm. As a

result, the QP relaxations that are constructed at different nodes of the branch-and-bound

tree of BARONqcr only differ from one another in the variables that are fixed. We solve all

of these convex QP relaxations by using CPLEX.

In our experiments, we run BARONqcr with the same relative/absolute tolerances and

time limit used for BARONqp1. For all of the considered instances, the amount of time

required to solve the SDP relaxation involved in the first step of the QCR method was much
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smaller than the CPU time corresponding to BARONqcr. As a result, when comparing

BARONqp1 and BARONqcr, we ignore the time required to solve these SDPs.

We first compare BARONqp1 and BARONqcr in terms of the lower bounds reported at

the root-node. In this case, we say that a given solver obtains a better lower bound if the

relative lower bound difference is greater than 10−3. For cases in which the magnitude of

the lower bound is below one, we use absolute differences. The results are presented in

Table 3.1. In this table, for each test library, we provide the number, and in parentheses the

percentage, of problems for which a given solver reports better root-node lower bounds.

As the results in this table indicate, BARONqcr obtains better root-node lower bounds for

most of the instances considered in this comparison.

Note that at the root node of the branch-and-bound tree, the lower bound obtained by

BARONqcr is given by the continuous relaxation of (3.20), and as a result, it is equal to

the bound provided by the SDP relaxation (3.8). On the other hand, for many of the

problems considered in this comparison, the eigenvalue relaxation in the nullspace of A

is tighter than the polyhedral relaxations implemented in BARONqp1. Hence, in these

cases, BARONqp1 relies on this quadratic relaxation to obtain lower bounds. As shown in

Theorem 3.2, the SDP relaxation (3.8) is at least as tight as the eigenvalue relaxation in the

nullspace of A. Therefore, it is not surprising that, for many of the problems considered in

Table 3.1, BARONqcr provides tighter root-node bounds than BARONqp1.

Table 3.1: Root-node lower bounds given by BARONqp1 and BARONqcr.

Test library BARONqp1 better BARONqcr better

CBQP 141 (15%) 819 (85%)
QSAP 2 (7%) 28 (93%)

Now, we analyze how the branch-and-bound algorithms of BARONqp1 and BARON-

qcr perform relative to each other. For this analysis, we use the same type of bar plots
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3.6 COMPUTATIONAL RESULTS

employed in previous sections. We start by eliminating from the test set all the problems

that can be solved trivially by both solvers (11 instances), obtaining a new test set with

979 instances. In Figure 3.9a, we consider the nontrivial problems that are solved to global

optimality by at least one of the two solvers (442 instances), whereas in Figure 3.9b, we

consider nontrivial problems that neither of the two solvers are able to solve to global op-

timality within the time limit (537 instances). As both figures show, BARONqp1 performs

significantly better than BARONqcr. For nearly 70% of the instances considered in Fig-

ure 3.9a, BARONqp1 is at least an order of magnitude faster than BARONqcr. Similarly,

for more than 80% of the instances considered in Figure 3.9b, the termination gaps reported

by BARONqp1 are smaller than those obtained by BARONqcr.

Even though BARONqcr reports tighter root-node lower bounds than BARONqp1 for

most of the instances considered in this comparison, during the branch-and-bound search,

the lower bounds obtained by BARONqp1 improve much more quickly than those pro-

vided by BARONqcr. This is due to the fact that, in BARONqp1, we update the pertur-

bation parameters used to construct the quadratic relaxations as we branch. In addition,

BARONqp1 makes use of the approximate spectral rule introduced in §3.4, which as shown

in §3.6.3, also has a significant impact on the performance of this solver.
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Figure 3.9: One-to-one comparison between BARONqp1 and BARONqcr.
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3.7 CONCLUSIONS

3.7 Conclusions

In this chapter, we introduced a family of convex quadratic relaxations for nonconvex QPs

and MIQPs. We studied the theoretical properties of these relaxations and showed that

they are equivalent to some particular SDPs. We also devised a novel branching vari-

able selection strategy which involves an approximation of the impact of the branching

decisions on the quality of these relaxations. To assess the benefits of our approach, we in-

corporated the proposed relaxation and branching techniques into the global optimization

solver BARON, and tested our implementation on a large collection of problems. Results

demonstrated that, for our test problems, our implementation leads to a very significant

improvement in the performance of BARON, enabling it to solve many more problems to

global optimality.
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Chapter 4

SDP-quality bounds via convex quadratic

relaxations for global

optimization of mixed-integer quadratic

programs

We address the global optimization of problems of the form:

min
x∈Rn

xTQx+ qTx

s.t. Ax = b
xi ∈ Si, ∀i ∈ [n] := {1, . . . , n}

(4.1)

where Q ∈ Rn×n is a symmetric matrix which may be indefinite, q ∈ Rn, A ∈ Rm×n and

b ∈ Rm. For each i ∈ [n], we assume that Si is a bounded set given by the union of finitely

many closed intervals in R. Throughout this chapter, we also assume that A has rank m

and use Z ∈ Rn×m to denote an orthonormal basis for the nullspace of A.

The formulation in (4.1) subsumes many classes of problems including nonconvex QPs

and MIQPs which typically arise in applications including facility location and quadratic

assignment [49], molecular conformation [69] and max-cut problems [33]. These problems

have received considerable attention in recent years and can be very challenging to solve

to global optimality.

State-of-the-art global optimization solvers rely on branch-and-bound algorithms in or-

der to solve nonconvex problems of the form (4.1). The efficiency of these algorithms
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depends to a large extent on the tightness and the computational cost of the relaxations

solved during the lower bounding step. Commonly used relaxations for (4.1) include the

polyhedral, semi-definite programming (SDP) and convex quadratic relaxations reviewed

in §3.2.

In Chapter 3, we derived convex quadratic relaxations of (4.1) by convexifing the ob-

jective function through uniform diagonal perturbations of Q. These perturbations were

constructed by solving eigenvalue and generalized eigenvalue problems involving Q and

A. Through numerical experiments, we demonstrated that these relaxations are not only

inexpensive to solve, but can also provide very tight bounds, significantly improving the

performance of branch-and-bound algorithms.

Motivated by these results, in this chapter, we consider a related class of convex quadratic

relaxations. In particular, we investigate quadratically constrained programming (QCP)

relaxations for (4.1). These relaxations are derived via convex quadratic cuts obtained

from nonuniform diagonal perturbations of Q. We show that these relaxations: (i) are at

least as tight as the spectral relaxations introduced in 3.3.1–3.3.3, and (ii) provide a very

good approximation of the bounds given by certain SDP relaxations of (4.1).

The idea of using convex quadratic inequalities to approximate the bounds of certain

SDP relaxations of (4.1) has been investigated before in the literature. Saxena et al. [79]

considered the SDP relaxation of 4.1 obtained after adding the RLT inequalities and pro-

posed a procedure to project the feasible region of this relaxation onto the space of original

variables. This projection relies on convex quadratic cuts derived from an SDP separation

program which is solved by applying a sub-gradient-based algorithm. Even though the

relaxations generated through this approach are nearly as tight as the original SDP formu-

lation, the separation problem used to derive the quadratic cuts can be very expensive to

solve.

Dong [29] used a different SDP relaxation for (4.1) which only includes the diagonal
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RLT inequalities and showed this SDP is equivalent to a particular semi-infinite program.

This semi-infinite formulation served as a motivation to construct convex QCP relaxations

for (4.1) via convex quadratic cuts derived from a semidefinite separation problem with a

special structure. To ensure that the solution of the separation problem is finitely attained,

Dong [29] proposed a regularized version of this semidefinite program, and demonstrated

that it can solved very efficiently through a specialized coordinate descent algorithm. Our

work is partially inspired by the ideas proposed by Dong [29]. We refine his approach in

several directions and make various theoretical and algorithmic contributions.

Our first contribution is a new class of convex QCP relaxations for (4.1) constructed

by using information from both Q and the constraints Ax = b. These relaxations are de-

rived from a semi-infinite program that generalizes the semi-infinite formulation proposed

in [29]. Under our approach, we use the matrix ATA in order to modify the semidefinite

constraint of the separation problem solved in [29]. This modification allows us to con-

struct convex QCP relaxations which are at least as tight as those considered in [29].

In our second contribution, we provide conditions under which our semi-infinite for-

mulation is equivalent to a well-known SDP relaxation of (4.1). Moreover, we show that

this SDP is the best relaxation in the class of SDP relaxations considered in this chapter.

In our third contribution, we present a new analysis of the separation problem used to

derive our quadratic cuts. In particular, we provide results on the finite attainment of this

SDP by using its dual formulation. These results also apply to the separation problem

in [29], which is a special case of ours.

Motivated by this analysis, in our fourth contribution, we propose a new regularization

approach for the semidefinite separation problem and modify the coordinate descent algo-

rithm introduced in [29] accordingly. Through numerical experiments, we show that the

quadratic cuts derived from our regularized separation problem provide a much better ap-

proximation of certain SDP bounds than the quadratic cuts obtained from the regularized
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separation problem proposed in [29].

In order to assess the computational benefits of the proposed techniques, we implement

the new quadratic relaxations in the global optimization solver BARON. These relaxations

are incorporated into BARON’s portfolio of relaxations and invoked according to a dy-

namic relaxation selection strategy introduced in 3.5. For binary quadratic programs, our

implementation also relies on a spectral branching strategy also developed in 3.4. We

test our implementation on a large set of problems. Numerical results show that the new

quadratic relaxations lead to a significant improvement in the performance of BARON,

resulting in a new version of this solver which outperforms other state-of-the-art solvers

such as CPLEX and GUROBI for many of our test problems.

The remainder of this chapter is organized as follows. In §4.1 we introduce the relax-

ations considered in this chapter and investigate their theoretical properties. In §4.2, we

provide a new analysis on the finite attainment of the semidefinite separation problem and

present our regularization approach. In §4.3 we introduce the version of coordinate min-

imization algorithm used to solve our regularized separation problem. This is followed

by a description of our implementation in §4.4. In §4.5, we present an extensive com-

putational study which investigates the effectiveness of our regularization approach, the

impact of the proposed relaxations on the performance of BARON, and the performance

of several state-of-the-art global optimization solvers on our test problems. Finally, in §4.6,

we present conclusions from this work.

Throughout this chapter, we use the same notation presented at the beginning of Chap-

ter 3.
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4.1 CONSTRUCTION AND THEORETICAL ANALYSIS OF CONVEX QUADRATIC RELAXATIONS

4.1 Construction and theoretical analysis of convex quadratic re-

laxations

4.1.1 A family of semi-infinite programming relaxations

We start by considering the following reformulation of (4.1):

min
x,y,v

v + qTx

s.t. v ≥ xT (Q+ diag(d))x− dT y + α‖Ax− b‖2
Ax = b
(xi, yi) ∈ Ci, ∀i ∈ [n]

 (4.2)

where y ∈ Rn, v ∈ R, d ∈ Rn is a vector used to perturb the diagonal entries of Q, α ∈ R≥0,

and Ci := {(xi, yi) ∈ R2 : xi ∈ Si, yi = x2
i }. Define Li := min{s ∈ R : s ∈ Si} and

Ui := max{s ∈ R : s ∈ Si}. It is simple to show that the convex hull of Ci is given by (see

Proposition 1 in [29]):

conv(Ci) = {(xi, yi) ∈ R2 : Li ≤ xi ≤ Ui, li(xi) ≤ yi ≤ ui(xi)} (4.3)

where li(·) is the tightest convex extension of x2
i when xi is restricted to Si (see [90] for

convex extensions) and ui(·) is the concave envelope of x2
i over [Li, Ui]. By replacing Ci

with conv(Ci) in (4.2), we obtain the following relaxation of (4.1):

min
(x,y)∈F ,v

v + qTx

s.t. v ≥ xT (Q+ diag(d))x− dT y + α‖Ax− b‖2

}
(4.4)

where F = {x, y ∈ Rn : Ax = b, (xi, yi) ∈ conv(Ci), ∀i ∈ [n]}. Let Dα := {d ∈ Rn :

Q + diag(d) + αATA < 0}. Clearly, (4.4) is a convex problem for any vector d ∈ Dα. By

considering all such vectors, we obtain the following semi-infinite convex program (SICP):

min
(x,y)∈F ,v

v + qTx (4.5a)

s.t. v ≥ xT (Q+ diag(d))x− dT y + α‖Ax− b‖2, ∀d ∈ Dα (4.5b)

Since any solution feasible in (4.2), is feasible in (4.5) as well, this SICP is also a relaxation

of (4.1). To illustrate this, let (x̄, ȳ, v̄) be a solution feasible to (4.2). For each i ∈ [n], we
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4.1 CONSTRUCTION AND THEORETICAL ANALYSIS OF CONVEX QUADRATIC RELAXATIONS

have (x̄i, ȳi) ∈ Ci ⊆ conv(Ci). Moreover, since ȳi = x̄2
i , ∀i ∈ [n], and Ax̄ = b, we have

v̄ = x̄T (Q+ diag(d)) x̄− dT ȳ + α‖Ax̄− b‖2 = x̄TQx̄.

Observe that the quadratic term α‖Ax− b‖2 in (4.5b) vanishes for any x feasible in (4.5),

and is included in (4.5b) to ensure that Q + diag(d) + αATA is positive semidefinite. The

next proposition shows that this term need not be included for (4.5) to be convex.

Proposition 4.1. The following simplified version of the SICP (4.5):

min
(x,y)∈F ,v

v + qTx (4.6a)

s.t. v ≥ xT (Q+ diag(d))x− dT y, ∀d ∈ Dα (4.6b)

is a convex optimization problem.

Proof. This proof relies on the projection of the feasible set of (4.6) onto the nullspace of

A. Let H = {x ∈ Rn : Ax = b}. Clearly, any point satisfying Ax = b can be expressed

as x = x̂ + Zxz , where x̂ ∈ H and xz ∈ Rn−m. By using this transformation, (4.6) can be

equivalently written as:

min
xz ,y,v

v + qT (x̂+ Zxz) (4.7a)

s.t. v ≥ (x̂+ Zxz)
T (Q+ diag(d)) (x̂+ Zxz)− dT y, ∀d ∈ Dα (4.7b)

Li ≤ x̂i + eTi Zxz ≤ Ui, ∀i ∈ [n] (4.7c)

li
(
x̂i + eTi Zxz

)
≤ yi ≤ ui

(
x̂i + eTi Zxz

)
, ∀i ∈ [n] (4.7d)

To prove that (4.7) is convex, it suffices to show that ZT (Q+ diag(d))Z is positive

semidefinite. By definition, any vector d ∈ Dα satisfies:

wT
(
Q+ diag(d) + αATA

)
w ≥ 0, ∀w ∈ Rn (4.8)

Let w = Zwz , where wz ∈ Rn−m. For this choice of w, (4.8) becomes

wTz Z
T (Q+ diag(d))Zwz ≥ 0, wz ∈ Rn−m (4.9)
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4.1 CONSTRUCTION AND THEORETICAL ANALYSIS OF CONVEX QUADRATIC RELAXATIONS

Clearly, (4.9) holds for all vectors wz ∈ Rn−m. Hence, ZT (Q+ diag(d))Z is positive

semidefinite for any d ∈ Dα. This completes the proof.

By setting α = 0 in (4.6), we obtain the following SICP relaxation of (4.1) which was

considered in [29]:

min
(x,y)∈F ,v

v + qTx (4.10a)

s.t. v ≥ xT (Q+ diag(d))x− dT y, ∀d ∈ D (4.10b)

where D := D0 = {d ∈ Rn : Q + diag(d) < 0}. The formulation in (4.10) served as

a motivation in [29] to develop an algorithm to construct convex relaxations for (4.1) by

using a finite number of quadratic cuts of the form (4.10b). As we demonstrate in §4.1.4, a

similar algorithm can be devised based on the SICP (4.5).

Note that, in (4.6), the set Dα is parameterized by the scalar α. An interesting question

that arises in this context is how we can choose α to obtain the tightest relaxation in (4.6).

This question is addressed by the following proposition.

Proposition 4.2. Let α1 and α2 be real scalars such that 0 ≤ α1 ≤ α2. Denote by µSICPda1 and

µSICPda2 the optimal objective function values in the SICP (4.6) for α1 and α2, respectively. Define

D∞ := {d ∈ Rn : ZT (Q+ diag(d))Z < 0}. Then, the following holds:

(i) µSICPda2 ≥ µSICPda1.

(ii) The tightest relaxation of form (4.6) is obtained when α→∞.

(iii) limα→∞Dα = D∞.

Proof. We start with the proof of (i). DenoteDα1 andDα2 the sets of diagonal perturbations

parametrized by α1 and α2, respectively. To prove the claim in (i), it suffices to show that

Dα1 ⊆ Dα2 . Let d̄ ∈ Dα1 . By definition, d̄ satisfies:
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wT
(
Q+ diag(d̄) + α1A

TA
)
w ≥ 0, ∀w ∈ Rn (4.11)

As ATA < 0 and α2 − α1 ≥ 0, we have that (α2 − α1)wTATAw ≥ 0, ∀w ∈ Rn. This

condition combined with (4.11) implies

wT
(
Q+ diag(d̄) + α2A

TA
)
w ≥ 0, ∀w ∈ Rn (4.12)

It follows that d̄ ∈ Dα2 . Hence, Dα1 ⊆ Dα2 , which completes the proof of (i). The claim

in (ii) follows directly from (i). To prove (iii), we need to show that for any d̄ ∈ D∞ the

following condition holds:

lim
α→∞

wT
(
Q+ diag(d̄) + αATA

)
w ≥ 0, ∀w ∈ Rn (4.13)

Clearly, any w ∈ Rn can be written as w = wA + Zwz , where wA ∈ range(AT ) and

wz ∈ Rn−m. Suppose that wA 6= 0. Then, wTATAw = wTAA
TAwA > 0, and it is easy to

show that (4.13) holds in the limit as α→∞. Now assume that wA = 0. Since AZ = 0, the

left-hand side of (4.13) reduces to wTz ZT
(
Q+ diag(d̄)

)
Zwz , which is nonnegative because

d̄ ∈ D∞. This proves the claim in (iii).

Observe that a direct consequence of Proposition 4.2(i) is that, for any α > 0, the bound

provided by (4.6) is at least as large as that given by (4.10).

4.1.2 Relationship between the semi-infinite and semidefinite formulations

In [29], it was shown that the semi-infinite program (4.10) is equivalent to the following

SDP relaxation of (4.1) (see Section 2 in [29] for details):

min
(x,y)∈F ,X

〈Q,X〉+ qTx (4.14a)

s.t. X − xxT < 0 (4.14b)
Xii = yi, ∀i ∈ [n] (4.14c)
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Motivated by this result, in this section we investigate the relationship between the

SICP (4.6) and the following SDP relaxation of (4.1):

min
(x,y)∈F ,X

〈Q,X〉+ qTx (4.15a)

s.t. X − xxT < 0 (4.15b)
Xii = yi, ∀i ∈ [n] (4.15c)

〈ATA,X〉 − 2(AT b)Tx+ bT b = 0 (4.15d)

We start by showing that, for any α > 0, the optimal solution of the SICP (4.6) is bounded

by the optimal solutions of the SDPs (4.14) and (4.15).

Proposition 4.3. Assume that α > 0 in (4.6). Denote by µSICPda, µSDPd and µSDPda the opti-

mal objective function values in (4.6), (4.14) and (4.15), respectively. Then, µSDPd ≤ µSICPda ≤

µSDPda.

Proof. We start by proving that µSDPd ≤ µSICPda. Since α > 0, Proposition 4.2(i) implies

that µSICPd ≤ µSICPda. By Theorem 1 in [29] we have that µSICPd = µSDPd. Hence, µSDPd ≤

µSICPda. To prove that µSICPda ≤ µSDPda, it suffices to show that for any (x̄, ȳ, X̄) feasible

in (4.15) and d̄ ∈ Dα, the following condition holds:

〈Q, X̄〉 ≥ x̄T (Q+ diag(d̄))x̄− d̄T ȳ. (4.16)

To this end, consider the following inequality:

〈Q+ diag(d̄) + αATA, X̄ − x̄x̄T 〉 ≥ 0 (4.17)

which is valid by the feasibility of x̄ and X̄ in (4.15) and the self-duality of the positive

semi-definite cone. This inequality can be equivalently written as:

〈Q, X̄〉 ≥ x̄T (Q+ diag(d̄))x̄−
n∑
i=1

diX̄ii − α〈ATA, X̄〉+ αx̄TATAx̄. (4.18)

From the feasibility of (x̄, ȳ, X̄) in (4.15), it follows that X̄ii = ȳi, ∀i ∈ [n], and 〈ATA, X̄〉 =

2bTAx̄− bT b. Then, the inequality in (4.18) becomes:
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〈Q, X̄〉 ≥ x̄T (Q+ diag(d̄))x̄− d̄T ȳ + α(Ax̄− b)T (Ax̄− b) (4.19)

Since Ax̄− b = 0, (4.19) is equivalent to (4.16), which completes the proof.

Now, we consider the case in which α→∞ in the SICP (4.6). By Proposition 4.2(iii), the

resulting SICP can be written as:

min
(x,y)∈F ,v

v + qTx (4.20a)

s.t. v ≥ xT (Q+ diag(d))x− dT y, ∀d ∈ D∞ (4.20b)

Proposition 4.2(ii) implies that (4.20) is the tightest relaxation of the form (4.6) that can

be constructed for (4.1). Moreover, from Proposition 4.3, we know that (4.15) provides an

upper bound on the optimal solution of (4.20). Therefore, an important question is the

existence of conditions under which these two relaxations are equivalent. This question is

addressed by the following theorem.

Theorem 4.1. Let µSDPda and µSICPda∞ denote the optimal objective function values in (4.15)

and (4.20), respectively. Define X := {x ∈ Rn : Ax = b, Li < xi < Ui, ∀i ∈ [n]}. Assume that

the following conditions hold:

(i) ∃x(1), x(2) ∈ Rn such that Ax(1) = Ax(2) = b and x(1)
i 6= x

(2)
i , ∀ i ∈ [n].

(ii) ∃ x̃ ∈ X such that li(x̃i) = x̃2
i and li(x̃i) < ui(x̃i), ∀i ∈ [n].

Then, µSDPda = µSICPda∞.

Proof. In [29], the equivalence between (4.10) and (4.14) was established by applying the

strong duality theorem to this SDP. Unlike (4.14), the SDP (4.15) does not admit a strictly

feasible solution. To illustrate this, note that for any x satisfying Ax = b, (4.15d) can be

equivalently written as:
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〈ATA,X〉 −
(
2AT b

)T
x+ bT b+ 〈ATA, xxT 〉 − 〈ATA, xxT 〉 = 0 (4.21a)

=⇒ 〈ATA,X − xxT 〉 = 0. (4.21b)

From the satisfaction of the positive semidefinite constraint in (4.15b), self-duality of the

positive semidefinite cone and (4.21b), it follows that for any feasible point (x̄, ȳ, X̄) to the

SDP in (4.15) we have

X̄ = x̄x̄T + ZX̄zZ
T , where X̄z ∈ Sn−m. (4.22)

This implies that the maximum rank of X̄ cannot exceed n−m+ 1, and as a result, there

exists no feasible point for which (4.15b) is strictly satisfied. It follows that the strong du-

ality theorem does not apply to (4.15). Therefore, in this proof, we will rely on an auxiliary

SDP given by:

min
xz ,y,Xz

〈
Q,ZXzZ

T
〉

+ (2Qx̂+ q)T (Zxz) + x̂TQx̂+ qT x̂ (4.23a)

s.t. Xz − xzxTz < 0 (4.23b)

x̂2
i + 2x̂i

(
eTi Zxz

)
+ eTi ZXzZ

T ei = yi, ∀i ∈ [n] (4.23c)

Li ≤ x̂i + eTi Zxz ≤ Ui, ∀i ∈ [n] (4.23d)

li
(
x̂i + eTi Zxz

)
≤ yi ≤ ui

(
x̂i + eTi Zxz

)
, ∀i ∈ [n] (4.23e)

where xz ∈ Rn−m and Xz ∈ Sn−m, and x̂ satisfies Ax̂ = b. Denote by µSDPdaz and µDSDPdaz,

the optimal objective function values of the SDP (4.23) and its dual, respectively. To prove

µSDPda = µSICPda∞, we proceed in three steps:

(a) We show that the SDPs (4.15) and (4.23) are equivalent. This implies that µSDPda =

µSDPdaz.

(b) We demonstrate that, under assumptions (i) and (ii), there exists a strictly feasible so-

lution for the SDP (4.23). This allows us to apply the strong duality theorem to (4.23)

establishing that µSDPdaz = µDSDPdaz.
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(c) We prove that the dual of the SDP (4.23) provides a lower bound on the optimal solu-

tion of the SICP (4.20), i.e., µSICPda∞ ≥ µDSDPdaz = µSDPdaz = µSDPda. This result com-

bined with Proposition 4.3 completes the proof by showing that µSDPda = µSICPda∞.

We start with the proof of (a). We show that given a feasible point for (4.15) we can con-

struct a feasible point for (4.23) with equal objective and the vice-versa. Suppose (x̄, ȳ, X̄)

is feasible to (4.15). From (4.22), we have that ∃ X̄z ∈ Sn−m such that X̄ = x̄x̄T + ZX̄zZ
T

and X̄z < 0. Then it is readily verified that x̂ = x̄, xz = 0, y = ȳ, and Xz = X̄z is feasible

to (4.23). Further, the objective values of the two SDPs are also identical. Now, assume

that (x̆z, y̆, X̆z) is feasible to (4.23). Then it is easy to check that x = x̂ + Zx̆z , y = y̆, and

X = x̂x̂T + x̂(Zx̆z)
T + (Zx̆z)x̂

T + ZX̆zZ
T is feasible to (4.15) with equal objective. This

proves the claim in (a).

Next, we prove (b). Define the scalar δ as:

δ := min
i∈[n]

ui(x̃i)− li(x̃i)
eTi ZZ

T ei
. (4.24)

From assumption (i), it follows that eTi Z 6= 0, ∀i ∈ [n]. Moreover, assumption (ii)

implies that ui(x̃i) − li(x̃i) > 0, ∀i ∈ [n]. Hence, 0 < δ < ∞. Let x̂ = x̃, x̄z = 0,

ȳi = x̃2
i + εeTi ZZ

T ei, i ∈ [n], and X̄z = εIn−m, where 0 < ε < δ. It is simple to check

that this choice is feasible in the SDP (4.23), and further, the inequalities (4.23b), (4.23d)

and (4.23e) are satisfied strictly. Thus, Slater’s constraint qualification holds for (4.23) and

we have that µSDPdaz = µDSDPdaz.

Now we prove (c). Let di ∈ R, i ∈ [n], be the multipliers associated with the con-

straints (4.23c). Then, the dual of (4.23) can be written as:

max
d∈Rn



min
xz ,y,Xz

〈Qd,Z , Xz〉+ qTd,x̂(Zxz) + kd,x̂ − dT y

s.t. Xz − xzxTz < 0

Li ≤ x̂i + eTi Zxz ≤ Ui, ∀i ∈ [n]

li
(
x̂i + eTi Zxz

)
≤ yi ≤ ui

(
x̂i + eTi Zxz

)
, ∀i ∈ [n]


(4.25)
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where Qd,Z = ZTQdZ, Qd = Q + diag(d), qd,x̂ = 2Qdx̂ + q, and kd,x̂ = x̂TQdx̂ + qT x̂. For

the minimization problem in (4.25) to be bounded below, we need to choose d such that

Qd,Z < 0. This restriction on d implies that Xz = xzx
T
z holds at any optimal solution to the

inner minimization problem. As a result, the dual in (4.25) can be simplified as:

max
d∈D∞


min
xz ,y

(x̂+ Zxz)
T Qd (x̂+ Zzx) + qT (x̂+ Zxz)− dT y

s.t. Li ≤ x̂i + eTi Zxz ≤ Ui, ∀i ∈ [n]

li
(
x̂i + eTi Zxz

)
≤ yi ≤ ui

(
x̂i + eTi Zxz

)
, ∀i ∈ [n].

 (4.26)

Since strong duality holds for (4.23) and its dual (4.26), both problems attain their opti-

mal objective functions values. This implies that ∃ d∗ ∈ D∞ such that:

µDSDPdaz = min
xz ,y,v

v + qT (x̂+ Zxz)

s.t. v ≥ (x̂+ Zxz)
T (Q+ diag(d∗)) (x̂+ Zxz)− d∗T y

Li ≤ x̂i + eTi Zxz ≤ Ui, ∀i ∈ [n]

li
(
x̂i + eTi Zxz

)
≤ yi ≤ ui

(
x̂i + eTi Zxz

)
, ∀i ∈ [n]


(4.27)

It is easy to show that (4.27) is a relaxation of (4.20). To illustrate this, note that by re-

placing x and D∞ in (4.20) with x̂ + Zxz and {d∗}, respectively, we obtain (4.27). Hence,

µSICPda∞ ≥ µDSDPdaz. Combining this condition with the results of (a), (b) and Proposi-

tion 4.3, we obtain µSICPda∞ = µSDPda, which completes the proof.

Observe that if assumption (i) in Theorem 4.1 does not hold, then there must exist a

set J ⊆ [n] such that xi is fixed for i ∈ J . In this case, the corresponding variables can

be eliminated to obtain a reduced problem. Note also that the satisfaction of assumption

(ii) in Theorem 4.1 depends on the form of the functions li(xi) and ui(xi). It is easy to

show that ui(x) = (Li + Ui)xi − LiUi. On the other hand, the choice of li(xi) depends on

the form of the set Si. If, for a given i ∈ [n], li(xi) = ui(xi), then assumption (ii) fails to

hold. This occurs, for example, when xi is binary, i.e., Si = {0, 1}, because in this case

li(xi) = ui(xi) = xi.
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4.1.3 Further insights into the semidefinite relaxation

Observe that the SDP relaxation (4.15) can be derived from (4.14) by adding the valid

equality (Ax − b)T (Ax − b) = 0 and lifting it into the space of (x,X). Clearly, we can

construct other SDP relaxations for (4.1) by including other classes of constraints derived

from Ax = b. In general, we can apply the following procedure:

(R1) identify a (possibly empty) set J of quadratic functions of the form fj(x) = xTCjx+

cTj x + γj , where Cj ∈ Sn, cj ∈ Rn, γj ∈ R, such that fj(x) = 0 for x ∈ Ω := {x ∈

Rn |Ax = b};

(R2) construct an SDP relaxation for (4.1) as

min
(x,y)∈F ,X

〈Q,X〉+ qTx (4.28a)

s.t. X − xxT < 0 (4.28b)
Xii = yi, ∀i ∈ [n] (4.28c)

〈Cj , X〉+ cTj x+ γj = 0, ∀j ∈ J (4.28d)

where the constraints (4.28d) are obtained by lifting the valid equalities xTCjx+cTj x+

γj = 0, ∀j ∈ J into the space of (x,X).

Note that this procedure is similar to the recipe introduced in §3.3.4. As stated in §3.3.4,

there are different types of functions fj(x) that satisfy the condition in (R1). As a result, a

natural question in this context is whether we can improve on the bound given by (4.15)

when restricted to the class of relaxations in (4.28). We address this question in the remain-

der of this section by demonstrating that (4.15) is the best relaxation among the class of

relaxations in (4.28).

We start by showing that the feasible set of (4.28) is contained within that of (4.15), and

provide conditions on the choice of quadratic functions inJ for the two sets to be identical.

4. SDP-QUALITY BOUNDS VIA CONVEX QUADRATIC RELAXATIONS FOR GLOBAL
OPTIMIZATION OF MIXED-INTEGER QUADRATIC PROGRAMS

108



4.1 CONSTRUCTION AND THEORETICAL ANALYSIS OF CONVEX QUADRATIC RELAXATIONS

Proposition 4.4. LetFSDPda andFSDPdaJ denote the feasible regions of the SDPs in (4.15) and (4.28),

respectively. Then, the following holds:

(i) FSDPda ⊆ FSDPdaJ.

(ii) If ∃ωj , j ∈ J such that
∑

j∈J ωjWj = AT then FSDPda = FSDPdaJ.

Proof. In this proof we will follow the same line of arguments used in the proof of Proposi-

tion 3.12. We first prove (i). From (4.22), any (x̄, ȳ, X̄) ∈ FSDPda satisfies X̄ = x̄x̄T +ZX̄zZ
T ,

where X̄z ∈ Sn−m. For any (x̄, ȳ, X̄) ∈ FSDPda and ∀j ∈ J :

〈Cj , X̄〉+ cTj x̄+ γj (4.29a)

= 〈Cj , X̄ − x̄x̄T 〉+ x̄TCj x̄+ cTj x̄+ γj (4.29b)

= 〈Cj , X̄ − x̄x̄T 〉 = 〈ATW T
j +WjA,ZX̄zZ

T 〉 = 0 (4.29c)

where (4.29b) follows from adding and subtracting x̄TCj x̄, the first equality in (4.29c) fol-

lows from (R1), the second equality in (4.29c) from Proposition 3.10 and the final equality

from the fact that Z is a basis for the nullspace of A. Thus (x̄, X̄) ∈ FSDPdaJ proving the

claim in (i). Now, we prove the claim in (ii). Assume that there exist ωj , j ∈ J such that

the condition in (ii) holds. By performing a linear combination of the inequalities in (4.28d)

using ωj , we obtain that for any (x̄, ȳ, X̄) ∈ FSDPdaJ:

0 =
∑
j∈J

ωj
(
〈Cj , X̄〉+ cTj x̄+ γj

)
(4.30a)

=
∑
j∈J

ωj
(
〈Cj , X̄ − x̄x̄T 〉+ x̄TCj x̄+ cTj x̄+ γj

)
(4.30b)

=
∑
j∈J

ωj〈Cj , X̄ − x̄x̄T 〉 = 2〈ATA, X̄ − x̄x̄T 〉 (4.30c)

where (4.30b) follows from adding and subtracting x̄TCj x̄, the first equality in (4.30c) fol-

lows from (R1), the second equality in (4.30c) from Proposition 3.10 and the condition in

(ii). Thus (x̄, X̄, ȳ) ∈ FSDPda proving the claim in (ii).
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Now, we are ready to prove the main result of this section.

Theorem 4.2. Suppose that J is chosen such that (R1) holds. Denote by µSICPda∞, µSDPda and

µSDPdaJ the optimal objective function values in (4.20), (4.15) and (4.28), respectively. Then,

(i) µSDPdaJ ≤ µSDPda

(ii) If the assumptions in Theorem 4.1 hold, then µSDPdaJ ≤ µSICPda∞.

Proof. The claim in (i) follows from Proposition 4.4. If the assumptions in Theorem 4.1

hold, then µSDPda = µSICPda∞ and the claim in (ii) follows from (i).

4.1.4 Cutting Surface Algorithm

By replacing Dα in (4.6b) with a set D(k)
α of finite dimension, we devise an iterative cutting

surface algorithm which allows us to derive convex QCP relaxations for (4.1). At the k-th

iteration of this algorithm, the following relaxation is solved:

min
(x,y)∈F ,v

v + qTx (4.31a)

s.t. v ≥ xT (Q+ diag(d))x− dT y, ∀d ∈ D(k)
α (4.31b)

This iterative approach is described in Algorithm 6. Note that at each iteration of this al-

gorithm, a separation problem is solved in order to construct a new quadratic cut of the

form (4.31b). Observe also that the parameter α is fixed during this algorithm. Proposi-

tion 4.2 suggests that we should select a large value of α in order to improve the bound

given by (4.31). We describe a procedure to determine such a value of α in §4.4.

Another interesting observation about Algorithm 6 is that the parameter α only appears

in the separation problem (see §4.2 for details), since the term α‖Ax − b‖2 is not included
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Algorithm 6 A cutting surface procedure to derive QCP relaxations for (4.1)
1: Input: Q, q, A, b, and algebraic expressions for l(·) and u(·).
2: Output: A lower bound µQCPda on the optimal solution of (4.1).
3: If m = 0 then
4: Set α = 0
5: Else
6: Choose a positive value of α according to the procedure described in §4.4.
7: End If
8: Set D(1)

α = {d(1)}, where d(1) ∈ Rn is a perturbation for which (4.31) is convex.
9: Solve (4.31). Let (x̄, ȳ, v̄) be an optimal solution to this relaxation.

10: Set µQCPda = v̄ + qT x̄.
11: For k = 2 to MaxNC
12: Solve a separation problem to find a new perturbation d(k).
13: If the convex quadratic cut (4.31b) with d = d(k) violates (x̄, ȳ, v̄) then
14: D(k+1)

α ← D(k)
α ∪ {d(k)}

15: Solve (4.31). Let (x̄, ȳ, v̄) be an optimal solution to this relaxation.
16: Set µQCPda = v̄ + qT x̄.
17: Else
18: Terminate
19: End If
20: End For

in (4.31b). This is particularly advantageous because it allows us to preserve the spar-

sity pattern of Q in the quadratic constraints (4.31b). In addition, by dropping this term

from (4.31b), we prevent the relaxation from becoming ill-conditioned for large values of

α.

To construct the first relaxation of Algorithm 6, we need to specify an initial perturbation

d(1). For simplicity, we set d(1) = µ1, where µ ∈ R≥0. For this choice of d(1), (4.31) becomes:

min
(x,y)∈F ,v

v + qTx (4.32a)

s.t. v ≥ xT (Q+ µIn)x− µ1T y (4.32b)

In order to select µ, we consider two cases depending on the value of m:

(i) m = 0. In this case (4.1) is an unconstrained optimization problem. We run Algo-

rithm 6 only ifQ is indefinite and set µ = −λmin(Q). It is easy to verify that this choice
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of µ renders Q+ µIn positive semidefinite, thus ensuring the convexity of (4.32).

(ii) m > 0. In this case (4.1) contains at least one equality constraint. We run Algorithm 6

only if ZTQZ is indefinite and set µ = −λmin(ZTQZ). It is simple to check that,

for this choice of µ, (4.32) is a convex problem. To this end, note that the projection

of (4.32) onto the nullspace of A can be obtained from (4.7) by considering a single

quadratic constraint in (4.7b) and setting d = µ1. The resulting problem is convex

when ZT (Q+ µIn)Z < 0. It is easy to verify that our choice of µ satisfies this condi-

tion.

Since (4.32) contains a single quadratic constraint and µ ≥ 0, we can eliminate the vari-

ables y and v, and rewrite this QCP as the following quadratic program:

min
x∈X

xT (Q+ µIn)x+ qTx− µ
n∑
i=1

ui(xi) (4.33)

By setting µ = −λmin(Q) and µ = −λmin(ZTQZ) in (4.33), we obtain the eigenvalue

relaxation and the eigenvalue relaxation in the nullspace of A, respectively. These relax-

ations were introduced in §3.3.1 and 3.3.3, respectively. Note that in (ii), we could use the

same initial perturbation as in (i). However, as shown in Proposition 3.7, the perturbation

given in (ii) can lead to a tighter initial bound.

4.2 Analysis and regularization of the separation problem

We start this section by presenting the separation problem solved in Algorithm 6. Let

(x̄, ȳ, v̄) be an optimal solution to the relaxation (4.31). Then, in order to construct a

quadratic inequality of the form (4.31b) that is maximally violated by (x̄, ȳ, v̄), we can solve

the following optimization problem:

sup
d∈Dα

n∑
i=1

(
x̄2
i − ȳi

)
di (4.34)
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Note that this SDP is parametrized by the value of α determined at the beginning of

Algorithm 6. Observe also that the separation problem considered in [29] is a particular

instance of (4.34), obtained by setting α = 0 in (4.34). For the remainder of this section, we

will cast (4.34) as:

inf
d∈Dα

ηTd (4.35)

where ηi := ȳi − x̄2
i , ∀i ∈ [n]. As shown in [29], the attainment of the infimum in (4.35) is

not guaranteed, and in fact, may depend on the problem data. We illustrate this behavior

through the following example.

Example 4.1. Let Q =
[

0 2
2 −1

]
, A = [ 0 1 ], and α = 1 in (4.35). Consider the following cases:

(i) x̄ = ȳ = [ 0.5 0.5 ]T . In this case, the infimum in (4.35) is attained for d∗1 = d∗2 = 2.

(ii) x̄ = ȳ = [ 0.4 0 ]T . In this case, the infimum in (4.35) cannot be attained since it occurs as

d1 → 0 and d2 →∞.

To further analyze the attainment of (4.35), we construct the dual of this SDP. Let Y ∈ Sn

be the matrix of dual variables associated with the semidefinite constraint Q + diag(d) +

αATA < 0. Then, the dual of (4.35) is:

sup
Y <0

− 〈Q+ αATA, Y 〉 (4.36a)

s.t. Yii = ηi, ∀i ∈ [n] (4.36b)

Let P := {i ∈ [n] : ȳi = x̄2
i }. From (4.36b), it follows that Yii = 0, ∀i ∈ P . Hence, if

P 6= ∅, (4.36) does not admit a strictly feasible solution and, as a result, strong duality may

not hold for the primal-dual pair (4.35),(4.36). Note that in Example (4.1), we have P = ∅

for (i), and P = {2} for (ii).

Observe that in the separation step of Algorithm 6, we do not need to solve (4.35) to

optimality, but rather derive quadratic cuts that can be used to tighten a relaxation of
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the form (4.31). As a result, we can replace (4.35) with a regularized separation problem

constructed in a way such that its optimum is always attained. One option is to regular-

ize (4.35) as discussed in [29]. To this end, we can add to the objective function of (4.35)

the term λ
∑n

i=1 [di]+, where λ =
∑n

i=1(ȳi − x̄2
i ), and [di]+ is equal to di if di > 0, and 0

otherwise. This leads to the following regularized separation problem:

inf
d∈Dα

ηTd+ λ
n∑
i=1

[di]+ (4.37)

It is simple to show that the infimum in (4.37) is always attained (see Proposition 3 in [29]

for details). Note that the parameter λ is always positive unless the current relaxation is

exact.

In this chapter, we propose an alternative regularization for (4.35). We modify this prob-

lem by adding to the objective function the quadratic term ρdTd, where ρ is a positive

scalar. The resulting regularized separation problem is given by:

inf
d∈Dα

ηTd+ ρdTd (4.38)

As we show in the following proposition, this regularization also gives rise to a separa-

tion problem for which the optimum is always attained.

Proposition 4.5. Let ρ > 0 in (4.38). Then, the optimal solution to the semidefinite program (4.38)

is always attained at some finite point.

Proof. This proof relies on strong duality holding for (4.38) and its dual. Denote by Y ∈ Sn

the matrix of dual variables associated with the semidefinite constraint Q + diag(d) +

αATA < 0. Then, the dual of (4.38) is:

sup
Y <0

− 〈Q+ αATA, Y 〉 − 1

4ρ

n∑
i=1

(Yii − ηi)2 (4.39)

Now, let d̄ = µ1 and Ȳ = In, where µ > −min(0, λmin(Q + αATA)). Clearly, d̄ and Ȳ

are strictly feasible in (4.38) and (4.39), respectively. Hence, strong duality holds, and both

SDPs attain their optimal solutions.
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4.3 Solution of the regularized separation problem

In this section, we described the algorithm that we use to solve the regularized separa-

tion problem proposed in §4.2. This algorithm is a modification of the coordinate descent

method introduced in [29]. To solve (4.38), our algorithm operates on the following penal-

ized log-det problem:

inf
d

f(d;σ) := G(d)− σlog-det
(
Q+ diag(d) + αATA

)
s.t. Q+ diag(d) + αATA � 0

(4.40)

where G(d) =
∑n

i=1 gi(di), gi(di) = ηidi + ρd2
i , ∀i ∈ [n], and σ is a positive penalty param-

eter. The optimality condition for (4.40) can be expressed as:

∇f(d;σ) = 0, Q+ diag(d) + αATA � 0 (4.41)

where the gradient of f(d;σ) has the form:

∇f(d;σ) = ∇G(d)− σdiag
([
Q+ diag(d) + αATA

]−1
)

(4.42)

with∇G(d)i = ηi + 2ρdi, ∀i ∈ [n]. At each iteration of this algorithm, we update a feasible

vector d̄ and an inverse matrix V :=
[
Q+ diag(d̄) + αATA

]−1. Based on the optimality

condition (4.41), we perform coordinate minimization by choosing an index i which corre-

sponds to the entry of∇f(d̄;σ) with the largest magnitude:

i = arg max
j=1,...,n

{∣∣∣∇f(d̄;σ)j

∣∣∣} (4.43)

This choice of i leads to the following one-dimensional minimization problem:

∆d∗i ∈ argmin
∆di

{
f(d̄+ ∆diei;σ) : Q+ diag(d̄+ ∆diei) + αATA � 0

}
(4.44)

As we show in the next proposition, it is possible to find a closed-form expression for

the optimal solution of (4.44).

Proposition 4.6. The optimal solution to the one-dimensional problem (4.44) is:

∆d∗i = −(φi + τi) +
√

(φi − τi)2 + κ (4.45)
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where φi = 1/(2Vii), τi = (ηi + 2ρd̄i)/(4ρ) and κ = σ/(2ρ).

Proof. At the optimal solution of (4.44) the following holds:

∂f(d̄+ ∆diei;σ)

∂∆di
= ηi + 2ρ(d̄i + ∆di)−

σVii
1 + ∆diVii

= 0 (4.46)

By solving for ∆di in (4.46), we obtain the roots ∆d∗i
(±) = −(φi + τi) ±

√
(φi − τi)2 + κ.

It is easy to show that ∆d∗i
(+) is the only one of these two solutions that is feasible in (4.44).

By applying Lemma 1 from [29], we have:

Q+ diag(d̄+ ∆diei) + αATA � 0 ⇐⇒ ∆di > −1/Vii (4.47)

Therefore, for ∆d∗i
(+) to be feasible in (4.44) we must have z +

√
z2 + κ > 0, where

z = (φi − τi). It is simple to check that this condition is always satisfied. To this end, note

that κ > 0. This implies z +
√
z2 + κ > z + |z| ≥ 0, ∀z ∈ R. Using a similar analysis, we

can show that ∆d∗i
(−) is infeasible in (4.44).

After solving the one-dimensional problem (4.44), we update d̄ as:

d̄← d̄+ ∆d∗i ei (4.48)

and update V using the Sherman-Morrison formula:

V ← V − ∆d∗iV·iV·i
T

1 + ∆d∗iVii
(4.49)

In our numerical experiments, we noticed that, for very small values of ρ, some of the

entries of d̄ become very large after performing the update in (4.48). This is not surprising

because: (i) for very small values of ρ, the regularized separation problem (4.38) exhibits

a similar behavior to the original separation problem (4.35), and (ii) as discussed in 4.2,

the finite attainment of (4.35) is not guaranteed. To address this issue, we propose an

adaptive strategy in order to adjust the value of ρ used in (4.38). At a given iteration of
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our algorithm, after performing the update in (4.48), we determine the entry of d̄ with the

largest magnitude, i.e.:

d̄max = max
j=1,...,n

{∣∣d̄j∣∣} (4.50)

If d̄max is at least an order of magnitude larger than the smallest eigenvalue ofQ+αATA,

we increase ρ by multiplying it by a factor ρupd, and restart the coordinate descend algo-

rithm with this new value of ρ. In practice, this adaptive strategy only requires a few

restarts before finding a suitable value of ρ. For the first run of our algorithm, we set

ρ = ρinit.

Once (4.40) has been solved within a given precision, we update the penalty parameter

σ according to the following condition:

σ ← max{σmin, σupdσ} if
‖∇f(d̄;σ)‖2
‖η‖2

≤ εupd (4.51)

where ∇f(d̄;σ) is used as a measure of optimality. We check the relative improvement in

the objective function of (4.38) every ωcheckn iterations, and terminate our algorithm if this

relative improvement is smaller than εcheck.

Our coordinate minimization strategy is summarized in Algorithm 7. Note that if Q +

αATA is positive semidefinite, then ZTQZ is also positive semidefinite and (4.1) is con-

vex when restricted to the nullspace of A. In this case, it suffices to solve the continuous

relaxation of (4.1) in order to obtain a lower bound. As a result, the separation procedure

outlined in Algorithm 7 is only used if Q+ αATA is indefinite. We start Algorithm 7 with

an initial perturbation d̂ = −1.5λmin(Q + αATA)1. We set MaxIter = 500n, σmin = 10−5,

σupd = 0.8, εupd = 0.03, ωcheck = 10 and εcheck = 10−4. We initialize ρinit as:

ρinit = 10−4 104blog10(δmax)c

max{1, bQmax/100cQmax}
(4.52)

where Qmax and δmax are given by:

Qmax = max
i=1,...,n, j=i,...,n

{|Qij |} , δmax = max
i=1,...,n

{Ui − Li} (4.53)
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and set ρupd = 10. The initial value of σinit is determined as:

σinit = median

{∣∣∣∣∣ηi + 2ρd̂i
Vii

∣∣∣∣∣
}n
i=1

(4.54)

Algorithm 7 Barrier coordinate minimization algorithm used to solve the smooth regular-
ized separation problem (4.38)

1: Input: Q, A, α, and an optimal solution (x̄, ȳ, v̄) to (4.31).
2: Output: A vector d̄ that solves (4.38).
3: Set ρ = ρinit, where ρinit is determined using (4.52).
4: Set d̄ = d̂, where d̂ = 1.5µ1 and µ = −λmin(Q+ αATA).
5: Set σ = σinit, where σinit is calculated according to (4.54).
6: Calculate V =

[
Q+ diag(d̄) + αATA

]−1 and set k = 0.
7: while (k < MaxIter)
8: Update k ← k + 1.
9: Determine an index i according to (4.43) and calculate ∆d∗i using (4.45).

10: Update d̄ according to (4.48) and determine d̄max using (4.50).
11: If (d̄max > 10µ) then
12: Update ρ← ρupdρ and goto 4.
13: End If
14: Update V according to (4.49).
15: Adjust σ according to (4.51).
16: If (k mod (ωcheckn) = 0) then
17: Terminate if the improvement in the objective of (4.38) is smaller than εcheck.
18: End If
19: End while

Even though Algorithm 7 is a variant of the barrier coordinate minimization algorithm

introduced in [29], there are two key differences between these two algorithms. First, un-

like the algorithm presented in [29], Algorithm 7 does not rely on nonsmooth optimization

techniques because the objective function of our regularized separation problem (4.38) is

smooth. Second, the regularization parameter λ used in (4.37) is fixed throughout the exe-

cution of the algorithm proposed in [29]. By contrast, in Algorithm 7, we adaptively adjust

the regularization parameter ρ used in (4.38). As we demonstrate in §4.5.2, because of

this adaptive strategy, the quadratic cuts derived by solving (4.38) with our algorithm lead

to significantly tighter relaxations than the quadratic cuts obtained through the solution
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of (4.37) with the algorithm proposed in [29].

4.4 Implementation in a branch-and-bound algorithm

As discussed in §3.5, BARON’s portfolio of relaxations consists of LP, QP, NLP and MILP

relaxations. As part of our implementation, we have expanded this portfolio by adding the

convex relaxations described in §4.1.4. These new relaxations are only used if the original

model supplied to BARON is of the form (4.1).

At the root node of the branch-and-bound tree, we solve convex QCP relaxations of

the form (4.31) by running Algorithm 6. In each iteration of this algorithm, we generate

quadratic cuts of the form (4.31b) by solving the regularized separation problem (4.38) with

Algorithm 7. In our implementation, we set MaxNC = 21. As indicated in §4.1.4, for m >

0, the initial perturbation used in Algorithm 6 is set as d(1) = µ1, where µ = −λmin(ZTQZ).

Recall that in §3.3.3, we showed that it is possible to approximate λmin(ZTQZ) without

having to explicit compute the basis Z. In particular, we proved that:

lim
α→∞

λmin(Q, In + αATA) = min(0, λmin(ZTQZ)) (4.55)

Using this result, we set µ = µ(α) := −λmin(Q, In + αATA). From (4.55), it follows

that, for a sufficiently large value of α, µ(α) will converge to 0 if (4.1) is convex when

restricted to the nullspace of A, or −λmin(ZTQZ) otherwise. To find such value of α, we

follow the iterative procedure presented in §3.5. This is the same value of α that we use in

Algorithm 6.

At nodes other than the root-node, we solve QP relaxations of the form:

min
(x,y)∈F

xT (Q+ diag(d))x+ qTx− dT y (4.56)

where d ∈ Dα. We proceed as follows:

(i) We solve an initial relaxation of the form (4.56) by setting d = dparent, where dparent is
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a diagonal perturbation originating from the parent node. Let (x̄, ȳ) be the optimal

solution of this initial QP relaxation and denote by µ̄QP its optimal objective function

value.

(ii) We use this relaxation solution to construct a new perturbation dnew by solving the

regularized separation problem (4.38) with Algorithm 7.

(iii) If µ̄QP < x̄T (Q+ diag(dnew)) x̄− (dnew)T ȳ, we solve a second quadratic relaxation of

the form (4.56) by setting d = dnew. Let (x̂, ŷ) be an optimal solution of this relaxation

and denote by µ̂QP its optimal objective function value. If µ̂QP ≥ µ̄QP (resp. µ̂QP <

µ̄QP), we use the bound µ̂QP (resp. µ̄QP) and pass dnew (resp. dparent) to the descendant

nodes of the current node.

For the descendant nodes of the root-node, we set dparent = droot, with droot being a

surrogate perturbation vector determined as:

droot =
1∑NC
i=1 νi

NC∑
i=1

νid
(i), (4.57)

where NC is the number of quadratic cuts generated during the execution of Algorithm 6

at the root-node, d(i) are the diagonal perturbations, and νi are the optimal Lagrange mul-

tipliers associated with the quadratic constraints of the last root node relaxation of the

form (4.31).

The decision to solve QP relaxations instead of QCP relaxations at nodes other than the

root node is motivated by two key observations. First, the convex QCP relaxations of the

form (4.31) are at least an order of magnitude more expensive than the QP relaxations of the

form (4.56). Second, often a single quadratic cut of the form (4.31b) leads to a significant

bound improvement. As a result, there is little gain in running Algorithm 7 more than

once. Since the first QP relaxation constructed at the descendant nodes always uses a

diagonal perturbation originating from the parent node, the monotonicity of the bounds
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generated during the branch-and-bound search is guaranteed.

To solve the eigenvalue and generalized eigenvalue problems that arise during the con-

struction of the relaxations discussed above, we use the subroutines included in the linear

algebra library LAPACK [3]. At a given node of the branch-and-bound tree, we only con-

sider the variables that have not been fixed in order to construct our relaxations. We solve

the convex QCP relaxations with IPOPT and the convex QP relaxations with CPLEX. The

relaxation solutions returned by these solvers are used at a given node only if they sat-

isfy the KKT conditions. At nodes at which (4.1) is convex, we do not use the relaxations

described in this section, and solve instead a continuous relaxation of (4.1) subject to the

variable bounds of the current node.

When all the variables in (4.1) are binary, we have that li(xi) = ui(xi) = xi, ∀i ∈ [n], and

we can eliminate the y variables from (4.31) and (4.56). For continuous and general integer

variables, we use li(xi) = x2
i , i ∈ [n]. For general integer variables, this choice of li(xi) does

not lead to the convex hull of Ci, but it allows us to construct a convex outer-approximation

for this set.

Our implementation relies on the dynamic relaxation selection strategy proposed in 3.5

to adjust the frequencies at which we solve polyhedral and quadratic relaxations during

the branch-and-bound search. Moreover, if (4.1) is a binary quadratic program, we use the

spectral braching variable selection rule introduced in 3.4. The QP relaxations (4.56) are

only used during the branch-and-bound search if, at the root-node, Algorithm 6 gives a

tighter bound than BARON’s LP relaxation. Otherwise, we disable these QP relaxations

and utilize the spectral relaxations proposed in §3.3.1–3.3.3.
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4.5 Computational results

In this section, we investigate the impact of the relaxations proposed in §4.1.4 on the perfor-

mance of branch-and-bound algorithms. We start by introducing the test set used for the

numerical experiments in §4.5.1. Then, in §4.5.2, we show the effectiveness of the regular-

ization approach discussed in §4.2. In §4.5.3, we demonstrate the benefits of the implemen-

tation described in §4.4 on the performance of BARON. This is followed by a comparison

between several state-of-the-art global optimization solvers in §4.5.4.

Our experiments are conducted under GAMS 30.1.0 on a 64-bit Intel Xeon X5650 2.66GHz

processor with a single-thread. For the experiments described in §4.5.2, we solve the QP

relaxations with CPLEX 12.10, the QCP relaxations with IPOPT 3.12 and the SDP relax-

ations with MOSEK 9.1.9. For the experiments considered in §4.5.3–4.5.4, we consider the

following global optimization solvers: ANTIGONE 1.1, BARON 19.12, COUENNE 0.5,

CPLEX 12.10, GUROBI 9.0, LINDOGLOBAL 12.0 and SCIP 6.0. In this case we: (i) run all

solvers with relative/absolute tolerances of 10-6 and a time limit of 500 seconds, and (ii)

set the CPLEX option optimalitytarget to 3 and the GUROBI option nonconvex to

2 to ensure that these two solvers search for a globally optimal solution. We use default

settings for other algorithmic parameters.

4.5.1 The test set

For our experiments, we consider a large collection of nonconvex problems of the form (4.1)

consisting of the 1551 CBQP, QSAP, BoxQP and EIQP instances described in §3.6.1.

4.5.2 Experiments with root-node relaxations

In this section, we provide a numerical comparison between two versions of Algorithm 6

which differ in the separation procedure used to derive the convex quadratic cuts of the
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form (4.31b). We use the following notation for the relaxations considered in this compar-

ison:

(i) EIG: Eigenvalue relaxation (3.26).

(ii) EIGNS: Eigenvalue relaxation in the nullspace of A (3.41).

(iii) SDPd: SDP relaxation (4.14).

(iv) SDPda: SDP relaxation (4.15).

(v) QCPnsreg: QCP relaxation (4.31), where the quadratic cuts (4.31b) are obtained by

solving (4.37) with algorithm proposed in [29].

(vi) QCPsreg: QCP relaxation (4.31), where the quadratic cuts (4.31b) are obtained by

solving the our separation problem (4.38) with Algorithm 7.

In our experiments, we run the two versions of Algorithm 6 by setting the maximum

number of iterations MaxNC to 21. We first compare these relaxations by selecting one

instance from each of the four test libraries mentioned in §4.5.1. The results of this compar-

ison are presented in Figures 4.1a–4.1d. In these figures, we plot the lower bounds of the

QCP relaxations against the number of iterations, and use a dashed vertical line to indicate

the iteration number at which each version of Algorithm 6 terminates. We use horizontal

lines to represent the lower bounds provided by the spectral and SDP relaxations. As

seen in the figures, the quadratic cuts derived by solving (4.38) with Algorithm 7 lead to

significantly tighter QCP relaxations than the quadratic cuts obtained through the solu-

tion of (4.37) with the algorithm proposed in [29]. Note that under our approach, a few

quadratic cuts are sufficient in order to obtain a good approximation of the lower bounds

given by the SDP relaxations.
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(c) Selected BoxQP instance.

1 3 5 7 9 11 13 15 17 19 21
Number of iterations

3.60×107

3.55×107

3.50×107

3.45×107

3.40×107

3.35×107

Re
la

xa
tio

n 
bo

un
d

EIGNS SDPd QCPnsreg QCPsreg

(d) Selected EIQP instance.

Figure 4.1: Comparison between the two versions of the cutting surface algorithm for
selected test problems.

Now, we compare the two versions of Algorithm 6 by considering all the instances con-

tained in each of the test libraries. To this end, we construct performance profiles based on

the following root-node relaxation gap:

Root gap =

(
µSDP − µQCP

µSDP − µQP

)
× 100 (4.58)

where µQCP is the lower bound given by the last QCP relaxation solved in a given version

of Algorithm 6, and µQP and µSDP denote the lower bounds provided by the correspond-

ing spectral and SDP relaxations. A smaller gap represents a better approximation of the

corresponding SDP bound.

The performance profiles are presented in Figures 4.2a–4.2d. These profiles show the
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percentage of models for which the gap defined in (4.58) is below a certain threshold.

Clearly, the QCP relaxations constructed via our separation procedure provide signifi-

cantly smaller gaps than the QCP relaxations derived with the separation algorithm pro-

posed in [29].
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(a) 960 CBQP instances.
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(b) 30 QSAP instances.
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(c) 246 BoxQP instances.
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(d) 315 EIQP instances.

Figure 4.2: Comparison between the two versions of the cutting surface algorithm for all
test problems.

4.5.3 Impact of the implementation on BARON’s performance

In this section, we demonstrate the benefits the relaxations introduced in this chapter on

the performance of the global optimization solver BARON. In our experiments, we com-

pare the following versions of BARON 19.12:
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(i) BARONqp1: Version of BARON for which we disable the quadratic relaxations pro-

posed in this chapter. This is the version of BARON which makes use of the spectral

relaxations introduced in Chapter 3.

(ii) BARONqp2: Version of BARON which uses the quadratic relaxations proposed in

this chapter as described in §4.4.

In this comparison, we exclude from the test set all problems for which the new quadratic

relaxations are not activated by BARONqp2 during the branch-and-bound search (367 in-

stances). We also eliminate problems that can be solved trivially by both solvers (62 in-

stances). A problem is regarded as trivial if it can be solved by both solvers in less than

one second. After eliminating all of these problems from the original test set, we obtain a

new test set consisting of 1122 instances.

We first consider the nontrivial problems that are solved to global optimality by at least

one of the two the versions of the solver (259 instances). For this analysis, we compare

the performance of the two solvers by considering the following metrics: (i) CPU time,

(ii) total number of nodes in the branch-and-bound tree (iterations), and (iii) maximum

number of nodes stored in memory (memory). In this comparison, we say that the two

solvers perform similarly if any of these metrics are within 10% of each other. The results

are presented in Figures 4.3a–4.3c. As the figures indicate, for nearly 90% of the problems

considered in this comparison, our implementation leads to a significant reduction in CPU

time, number of iterations, and memory requirements.

Now, we consider the nontrivial problems that neither of the two solvers are able to

solve to global optimality within the time limit (863 instances). In this case, we analyze

the performance of these solvers by comparing the relative gaps reported at termination.

These gaps are determined according to (3.72) by using the best lower and upper bounds

reported by the solver under consideration. In this comparison, we say that two solvers
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obtain similar gaps if their relative gaps are within 10% of each other. The results are pre-

sented in Figure 4.3d. As seen in the figure, for more than 90% of the problems considered

in this comparison, BARONqp2 reports significantly smaller gaps than BARONqp1.
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(d) Relative gaps (863 nontrivial instances).

Figure 4.3: One-to-one comparison between BARONqp1 and BARONqp2.

We finish this section by providing a more detailed analysis of the results presented

in Figures 4.3a–4.3d. To this end, we calculate the shifted geometric means for each of the

metrics considered in these figures. We use a shift factor of 1 for the CPU times and relative

gaps, and a shift factor of 10 for the total number of nodes and maximum number of nodes

stored in memory. The results are presented in Table 4.1. As seen in the table, BARONqp2

significantly outperforms BARONqp1 for each of the considered metrics.

4. SDP-QUALITY BOUNDS VIA CONVEX QUADRATIC RELAXATIONS FOR GLOBAL
OPTIMIZATION OF MIXED-INTEGER QUADRATIC PROGRAMS

127



4.5 COMPUTATIONAL RESULTS

Table 4.1: Shifted geometric means for BARONqp1 and BARONqp2.

Solver
CPU Time

(259 instances)
Iterations

(259 instances)
Memory

(259 instances)
Relative gaps

(863 instances)

BARONqp1 14.0 926.1 25.9 11.8
BARONqp2 9.9 391.7 13.5 8.7

Improvement (%) 29.6 57.7 47.7 25.7

4.5.4 Comparison between global optimization solvers

We start this section by comparing several state-of-the-art global optimization solvers us-

ing the same type of performance profiles employed in §3.6.4. These profiles are shown in

Figures 4.4a–4.4d. As seen in these figures, BARONqp2 performs well relative to the other

solvers. For the CBQP and QSAP instances, BARONqp2 is faster than the other solvers

and solves many more problems to global optimality. For problems for which global opti-

mality cannot be proven within the time limit, BARONqp2 terminates with smaller gaps

than the other solvers.

Next, we provide a more detailed analysis involving BARONqp2, CPLEX and GUROBI.

We use the same type of bar plots employed in §4.5.3. We start by presenting a one-to-

one comparison between BARONqp2 and CPLEX. To this end, we eliminate from the test

set all the problems that can be solved trivially by both solvers (124 instances), obtain-

ing a new test set with 1427 instances. In Figure 4.5a, we consider the nontrivial prob-

lems that are solved to global optimality by at least one of the two solvers (453 instances),

whereas in Figure 4.5b, we consider nontrivial problems that neither of the two solvers can

solve to global optimality within the time limit (974 instances). As both figures indicate,

BARONqp2 performs significantly better than CPLEX. For nearly 90% of the instances

considered in Figure 4.5a, BARONqp2 is at least 1.1 times faster than CPLEX, whereas for

more than 98% of the instances considered in Figure 4.5b, BARONqp2 reports significantly
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(b) 30 QSAP instances.
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(c) 246 BoxQP instances.
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(d) 315 EIQP instances.

Figure 4.4: Comparison between global optimization solvers.

smaller gaps than CPLEX.

Finally, we present a one-to-one comparison between BARONqp2 and GUROBI. Once

again, we eliminate from the test set all the problems that can be solved trivially by both

solvers (183 instances), which leads to a new test set with 1368 instances. In Figure 4.6a,

we consider the nontrivial problems that are solved to global optimality by at least one of

the two solvers (391 instances), whereas in Figure 4.6b, we consider nontrivial problems

that neither of the two solvers are able to solve to global optimality within the time limit

(977 instances). For more than 80% of the instances considered in Figure 4.6a, BARONqp2
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Figure 4.5: One-to-one comparison between BARONqp2 and CPLEX.

is at least 1.1 faster than GUROBI, whereas for nearly 90% of the instances considered in

Figure 4.6b, BARONqp2 terminates with considerably smaller gaps than GUROBI.
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Figure 4.6: One-to-one comparison between BARONqp2 and GUROBI.

4.6 Conclusions

In this chapter, we introduced a family of convex quadratic relaxations for nonconvex

MIQPs which are constructed via convex quadratic cuts. In order to derive these quadratic

cuts, we proposed a smooth regularized separation problem which is solved by using a
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variant of a coordinate minimization algorithm recently introduced in [29]. Moreover, we

studied the theoretical properties of the resulting relaxations and provided conditions un-

der which they are equivalent to certain SDPs. To assess the benefits of our approach,

we incorporated the proposed relaxation techniques into the global optimization solver

BARON, and tested our implementation on a large collection of problems. Results demon-

strated that, for our test problems, our implementation leads to a very significant improve-

ment in the performance of BARON.
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Chapter 5

Conclusions and future work

In this chapter, we summarize the main contributions of this thesis and provide directions

for future work.

5.1 Key contributions

In the following, we highlight the major contributions of this thesis:

Global optimization of problems with convex-transformable intermediates

• We proposed algorithms for the recognition of convex-transformable functions in

general nonconvex problems.

• We introduced a new class of cutting planes based on recently developed relaxations

for convex-transformable functions.

• We integrated the proposed recognition and cutting plane generation algorithms into

the global solver BARON. We demonstrated the computational benefits of this imple-

mentation by conducting numerical experiments on a large collection of nonconvex

problems involving convex-transformable functions.

Spectral relaxations and branching strategies for global optimization of MIQPs

• We introduced a family of convex quadratic relaxations for nonconvex QPs and

MIQPs. We demonstrated that these relaxations can be constructed through pertur-
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bations of the quadratic matrix and used information from the equality constraints

in order to improve the resulting bounds.

• We investigated the theoretical properties of the proposed relaxations and proved

that they are equivalent to certain SDPs.

• We devised novel eigenvalue-based variable selection branching strategies which

can be used with nonconvex binary quadratic programs. These strategies are in-

spired by strong branching and involve an effective approximation of the impact of

branching decisions on the quality of the corresponding relaxations.

• We integrated the proposed relaxation and branching strategies into the global solver

BARON. We demonstrated the computational benefits of this implementation by

conducting an extensive computational study on a variety of nonconvex QPs and

MIQPs.

SDP-approximating convex quadratic relaxations for global optimization of MIQPs

• We proposed a new class of convex QCP relaxations for nonconvex QPs and MIQPs.

These relaxations are constructed via convex quadratic cuts which can be obtained

from a semidefinite separation problem with a special structure that allows the use

of specialized solution algorithms.

• We showed that the proposed relaxations are an outer-approximation of a semi-

infinite convex program which generalizes a semi-infinite formulation that had been

previously considered in the literature. Moreover, we proved that under certain con-

ditions our semi-infinite formulation is equivalent to a well-known semidefinite pro-

gram relaxation.

• We devised a novel regularization approach for the above-mentioned separation

problem and showed its benefits through numerical experiments.

• We implemented the proposed relaxations in the global solver BARON. We investi-
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gated the impact of this implementation by performing an extensive computational

study on a variety of nonconvex QPs and MIQPs.

5.2 Future work

In the following, we outline directions for future work:

Global optimization of problems with convex-transformable intermediates

• Future research might investigate the impact of the implementation described in

Chapter 2 in the context of solving applications concerning convex-transformable

functions. An important application in economics involves the construction of math-

ematical models which describe the relationship between product attributes and

consumer choices. These models rely on parameters that are typically determined

from data thorugh maximum likelihood estimation methods [94]. In some cases,

the resulting parameter estimation problems are nonconvex and involve concave-

transformable expressions which fall into the class of functions discussed in §2.2.3.

An interesting question is whether the cutting planes proposed in Chapter 2 can lead

to tighter relaxations for these classes of nonconvex problems and enable global op-

timization solvers to solve practically relevant instances to global optimality.

Spectral relaxations and branching strategies for global optimization of MIQPs

• Future work might extend the convexification techniques proposed in Chapter 3

to more general classes of problems such as nonconvex quadratically-constrained

quadratic programs (QCQPs). Given a nonconvex QCQP, each nonconvex quadratic

constraint can be relaxed in the same way in which the objective function was relaxed

in Chapter 3, leading to a convex QCQP relaxation. A key question in this context is
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how tight the resulting QCPQP relaxations would be in comparison with the polyhe-

dral and SDP relaxations which are typically used for bounding nonconvex QCQPs.

• Another important issue is related to the scalability of the methods used for solving

the eigenvalue and generalized eigenvalue problems that arise during the construc-

tion of the relaxations proposed in Chapter 3. The implementation described in §3.5

makes use of LAPACK subroutines in order to solve these problems. In the numer-

ical experiments described in §3.6, we considered problems containing up to 400

variables. For these instances, the LAPACK subroutines are very efficient. However,

these subroutines rely on direct eigenvalue methods which may not scale well as the

corresponding matrices increase in size. As a result, an implementation capable of

handling larger problems might have to make use of iterative procedures such as

Krylov Subspace eigenvalue methods.

SDP-approximating convex quadratic relaxations for global optimization of MIQPs

• The convex QCP relaxations proposed in Chapter 4 can be cast as linearly-constrained

problems where the objective is given by the maximum of a set of convex quadratic

functions. An interesting question in this context is whether it is possible to solve this

formulation through specialized first-order algorithms such as the ones used in [43]

for solving the Constrained Lasso problem.

• Future research might also investigate whether it is possible to construct convex

quadratic relaxations which approximate the bounds given by SDP relaxations dif-

ferent from those considered in Chapter 4. An approximation of this type might also

rely on convex quadratic cuts which are derived from a semidefinite separation prob-

lem. In order for these relaxations to be useful in a branch-and-bound setting, it is

crucial to design algorithms capable of solving this separation problem efficiently.
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[28] E. D. Dolan and J. J. Moré. Benchmarking optimization software with performance

profiles. Mathematical Programming, 91:201–213, 2002.

[29] H. Dong. Relaxing nonconvex quadratic functions by multiple adaptive diagonal

perturbations. SIAM Journal on Optimization, 26:1962–1985, 2016.

[30] J. E. Falk and R. M. Soland. An algorithm for separable nonconvex programming

problem. Management science, 15:550–569, 1969.

[31] A. Faye and F. Roupin. Partial lagrangian relaxation for general quadratic program-

ming. 4OR, 5:75–88, 2007.

[32] GLOBAL Library. http://www.gamsworld.org/global/globallib.htm.

[33] M. X. Goemans and D. P. Williamson. Improved approximation algorithms for max-

imum cut and satisfiability problems using semidefinite programming. Journal of

ACM, 42:1115–1145, 1995.

[34] G. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins University Press,

third edition, 1996.

[35] I. E. Grossmann. Mixed-integer programming approach for the synthesis of inte-

grated process flowsheets. Computers & Chemical Engineering, 9:463–482, 1985.

[36] Gurobi Optimization. GUROBI Optimizer Reference Manual Version 9.0, 2020. Available

at https://www.gurobi.com/wp-content/plugins/hd_documentations/

documentation/9.0/refman.pdf.

BIBLIOGRAPHY 139



BIBLIOGRAPHY

[37] P. L. Hammer and A. A. Rubin. Some remarks on quadratic programming with 0-1

variables. RAIRO-Operations Research, 4:67–79, 1970.

[38] R. Horst and H. Tuy. Global optimization: Deterministic approaches. Springer Verlag,

Berlin, 1996.

[39] R. Horst and H. Tuy. Global Optimization: Deterministic Approaches. Springer Verlag,

Berlin, Third edition, 1996.

[40] M. Hunting. AIMMS Library, 2016. Personal Communication.

[41] IBM ILOG. CPLEX 12.7 User’s Manual, 2016. Available at http://www.ibm.com/

support/knowledgecenter/SSSA5P_12.7.0/ilog.odms.studio.help/

pdf/usrcplex.pdf.

[42] M. Jach, D. Michaels, and R. Weismantel. The convex envelope of (n − 1)-convex

functions. SIAM Journal on Optimization, 19:1451–1466, 2008.

[43] G. M. James, C. Paulson, and P. Rusmevichientong. The Constrained Lasso. Technical

report, University of Southern California, 2012.

[44] A. Khajavirad and J. J. Michalek. A deterministic lagrangian-based global optimiza-

tion approach for quasiseparable nonconvex mixed-integer nonlinear programs. Jour-

nal of Mechanical Design, 131:051009, 2009.

[45] A. Khajavirad, J. J. Michalek, and N. V. Sahinidis. Relaxations of factorable functions

with convex-transformable intermediates. Mathematical Programming, 144:107–140,

2014.

[46] A. Khajavirad and N. V. Sahinidis. Convex envelopes of products of convex and

component-wise concave functions. Journal of Global Optimization, 52:391–409, 2011.

BIBLIOGRAPHY 140



BIBLIOGRAPHY

[47] A. Khajavirad and N. V. Sahinidis. Convex envelopes generated from finitely many

compact convex sets. Mathematical Programming, 137:371–408, 2013.

[48] A. Khajavirad and N. V. Sahinidis. A hybrid LP/NLP paradigm for global optimiza-

tion relaxations. Mathematical Programming Computation, 10:383–421, 2018.

[49] T. C. Koopmans and M. Beckmann. Assignment problems and the location of eco-

nomic activities. Econometrica: Journal of the Econometric Society, 25:53–76, 1957.

[50] A. H. Land and A. G. Doig. An automatic method for solving discrete programming

problems. Econometrica, 28:497–520, 1960.

[51] E. L. Lawler. The quadratic assignment problem. Management science, 9:586–599, 1963.

[52] H. Li, J. Tsai, and C. A. Floudas. Convex underestimation for posynomial functions

of positive variables. Optimization Letters, 2:333–340, 2008.

[53] R. M. Lima and I. E. Grossmann. On the solution of nonconvex cardinality boolean

quadratic programming problems: a computational study. Computational Optimization

and Applications, 66:1–37, 2017.

[54] Y. Lin and L. Schrage. The global solver in the LINDO API. Optimization Methods and

Software, 24:657–668, 2009.

[55] E. M. Loiola, N. M. M. de Abreu, P.O. Boaventura-Netto, P. Hahn, and T. Querido. A

survey for the quadratic assignment problem. European Journal of Operational Research,

176:657–690, 2007.

[56] H. Lu, H. Li, C. E. Gounaris, and C. A. Floudas. Convex relaxation for solving posyn-

omial programs. Journal of Global Optimization, 46:147–154, 2010.

[57] A. Lundell, J. Westerlund, and T. Westerlund. Some transformation techniques with

applications in global optimization. Journal of Global Optimization, 43:391–405, 2009.

BIBLIOGRAPHY 141



BIBLIOGRAPHY

[58] A. Lundell and T. Westerlund. Convex underestimation strategies for signomial func-

tions. Optimization Methods and Software, 24:505–522, 2009.
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