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Abstract: Workpiece location is critical to efficiently plan actions downstream in manufacturing
processes. In labor-intensive heavy industries, like construction and shipbuilding, multiple
stakeholders interact, stack and move workpieces in the absence of any system to log such
actions. While track-by-detection approaches rely on sensing technologies such as Radio Frequency
Identification (RFID) and Global Positioning System (GPS), cluttered environments and stacks of
workpieces pose several limitations to their adaptation. These challenges limit the usage of such
technology to presenting the last known position of a workpiece with no further guidance on a search
strategy. In this work we show that a multi-hypothesis tracking approach that models human
reasoning can provide a search strategy based on available observations of a workpiece. We show
that inventory tracking problems under uncertainty can be approached like probabilistic inference
approaches in localization to detect, estimate and update the belief of the workpiece locations.
We present a practical Internet-of-Things (IoT) framework for information collection over which we
build our reasoning. We also present the ability of our system to accommodate additional constraints
to prune search locations. Finally, in our experiments we show that our approach can provide
a significant reduction against the conventional search for missing workpieces, of up to 80% in
workpieces to visit and 60% in distance traveled. In our experiments we highlight the critical nature
of identifying stacking events and inferring locations using reasoning to aid searches even when
direct observation of a workpiece is not available.

Keywords: inventory management; industry 4.0; construction 4.0; IoT; smart manufacturing;
construction technology; probability; graphs

1. Introduction

Information of the state of various materials and processes within the shop-floor is critical to
improve process efficiency in any manufacturing environment. This is reflected in the framework
prescribed by the fourth industrial revolution, Industry 4.0, which is rooted in IoT (Internet of Things),
which vastly expands the scope of available information for a process [1–3]. Information on the location
of raw materials, process states or the state of any component that plays a part in the shop-floor is
necessary to build a Digital Twin (DT) or a Cyber Physical System (CPS) [4,5] that presents a snapshot
or model of the current state of the entire process pipeline. Availability of such DT or CPS of the
shop-floor can help bridge the gap between the expected state of elements that workers plan tasks on,
as well as the actual state [6,7] that is affected by various other agents and actors within the system.
In the absence of such a system and given that any worker cannot manually monitor and account
for the effect of every other actor, uncertainty creeps into process plans, creating unnecessary delays.
Manufacturing industries that have adopted the Industry 4.0 framework have shown significant
improvements in efficiency, and the manufacturing sector overall has since shown a healthy 6% annual
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growth rate [8]. However, heavy manufacturing industries, like construction and shipbuilding, face
several challenges in adopting Industry 4.0 concepts [9] and show only a 2% growth, trailing far behind
the industry average.

Construction and shipbuilding industries, though considered to be a part of the manufacturing
industry sector, present very different work environments compared to the rest of the industry [10,11].
One significant difference here is that tasks move around the product, whereas products move around
tasks in most of the manufacturing industries like those involved in mass-manufacturing. This makes
it difficult to adopt sensing and automation technology that was matured within the manufacturing
industry sector, as the fundamental process structure is incompatible. This is particularly evident in
the inventory tracking front, which is necessary to build a CPS of the project.

Besides the lack of a CPS, nearly 50–60% of the entire project cost in these industries is spent on
raw materials [12] that are consumed directly or after further processing. Since materials are consumed
while the workspace is evolving, it limits available storage options. This makes it impractical to build
structured storage solutions on-site for all the raw materials and leads to workpieces being stacked
on by multiple stakeholders in the project. Long storage times, handling by multiple stakeholders
and accidental displacement combined with the lack of an effortless information collection solution to
log any displacements leads to poor pull times in these environments [4,8,13–15]. Since workpiece
displacement and movement decisions are not centralized and occur locally at worker’s discretion,
we focus on collecting information from their point of view and extracting the effect of such
displacement decisions downstream through a reasoning model. The purpose of our proposed
system is to reduce effort and time spent in searching for workpieces without adding any additional
cognitive burden on the movers during workpiece displacements, accidental or otherwise.

The remainder of this article is divided into four sections. Section 2 discusses current work in
literature that directly tackle the inventory tracking problem and those that deal with probabilistic and
reasoning-based methods in the field of robotics from which we draw concepts. Section 3 describes the
motivation and design of various components of our proposed approach, focusing on the contributions
over our previous work [15]. Section 4 covers the setup, design and results for the experiments
conducted to validate our approach. Finally, Section 5 discusses the conclusion, limits, and future
work for our system.

2. Related Work

The prevalence of the inventory tracking problem in the shipbuilding and construction industries
and the reasons for it are well-documented in the literature. A review of current shop-floor practices
and cost of lost inventory to the entire process pipeline has been highlighted in [8,10,13,16]. A field
review of a construction site by [4] highlighted the limitations in manual logging of inventory in
terms of time spent on searching for lost inventory. They further showed that with an automated
information collection system, processes showed significant reductions in completion time. Apart from
documenting the problem and its causes, there are several suggested solutions for an information
collection system to maintain up-to-date information on inventory movement [17,18] using techniques
and sensors similar to those used in warehousing and mass-manufacturing industries. To our
knowledge, previous work addressing the problem of inventory tracking in the construction and
shipbuilding industries focused on modes of information collection. While these methods suggest
solutions that are based on a track-by-detection approach, they break down in the absence of detection,
which is common in cluttered and stacked environments. Our proposed approach explicitly relays
ambiguities and borrows from a wider stream of research areas that deal with uncertainties, such as
robotics and probabilistic modeling. While information collection is an integral part of our proposed
approach, we expand on available information to provide suggestions in the absence of direct
detection a workpiece. In our approach, apart from information collection, we employ a probabilistic
multi-hypothesis approach to provide suggestions on workpiece location.
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Information collection: Information collection is described as one of the building blocks of the
Industry 4.0 paradigm. The need for such a system in industries operating in unstructured
environments has been identified as one of the essential steps towards improving process efficiency
and faster pull times [1,2,5,10,17]. While the need is well established, current research thrust, to our
knowledge, is focused on improvements to and adaptation of current Radio Frequency Identification
(RFID) technology [16,18–20]. With the warehousing industry pushing for RFID to be a standard
mode of information collection, implementation costs have been reduced, making it more attractive
for adoption by the construction and shipbuilding industries [21]. Since placing, logging, and pulling
inventory are the primary purposes of warehouse workers, time spent in making sure inventory
locations get registered through RFIDs is well justified. However, in the construction and shipbuilding
industries, to further reduce burden to human workers, the authors of [22,23] explored an autonomous
information collection system using drones with RFID and vision sensors to detect RFID and barcodes
or Augmented Reality (AR) tags. Apart from detection based on AR tags and barcodes, recently,
computer-vision based information collection methods have been explored as an alternate. Work
by [24–26] explored the idea of using current state-of-the-art detection methods in computer vision to
track specific events involving heavy machinery, equipment and personnel to actionable information
so as to improve safety and track heavy equipment movement throughout work sites.

While the objective of our system of improving inventory pull times without adding additional
cognitive burden to workers is similar to the methods described here, the final information presented is
based on tracking-by-detection. However, unstructured environments where workpieces are cluttered
and stacked pose several challenges to detection by RFID and vision-based systems. While RFID
does not need line-of-sight for detection, the penetration limits of the interrogation signal in passive
RFID-based detection make for poor information collection [5,27]. While active RFID-based detection
provides better detection, they pose several cost and implementation challenges for stacks of heavy and
abrasive workpieces that are common in workspaces. These challenges make detection quite difficult
in these environments, limiting the usefulness of a tracking-by-detection approach. In our approach,
we further expand on available information to identify multiple case scenarios as hypotheses and
propagate and prune them to provide actionable information to guide search for missing inventory.

Probabilistic tracking: Probabilistic approaches to meter ambiguities in detections and robot states
have been successful in research as well as practical applications in the field of robotics. For example,
in particle filters [28], a popular method to track objects in images, multiple hypotheses as particles are
populated to span possible locations in the hypothesis space. The weight or confidence in each of these
particles is updated based on its fit to incoming observations. These approaches employ a Bayesian
inference-based approach to make sequential observations while updating their estimate of state, given
some model of the environment to correlate observations. While these approaches have been quite
popular in the areas of robot localization [29,30] and computer vision, to our knowledge, there has been
little work exploring such techniques that provide actionable information while preserving ambiguity
for inventory tracking applications. In our work we show that these concepts can be customized for
the purposes of inventory tracking by providing a model for identifying stacking events that could
occur, from observations of workers interacting with workpieces.
Multi-hypothesis tracking: Multi-hypothesis tracking approaches [31] gained popularity in the early
1990’s as a solution for data-association problems that involved ambiguities in detections and sensor
readings. These methods required maintaining multiple hypotheses, as tracklets, where a graph of
each hypothesis is spawned, updated, and pruned, so as to avoid strict pairwise data associations over
time until ambiguities could be resolved from further observations. In recent years, improvements
in sensor and detection algorithm accuracy have shifted focus away from these approaches [32].
However, they present an ideal framework to incorporate complex higher-order information into
tracking when detection cannot be guaranteed due to occlusions and stacking, as is the case for
inventory in unstructured storage environments.
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Reasoning-based inference: Reasoning-based methods aim to model relations between events and
actions and try to extract deeper inferences such as intent. Such methods aim to build causal relations
between observed events through grammar defined as first order logic [33] or as probabilistic causal
graphs [34]. These methods infer useful outcomes from observations through first order logic or event
outcome maps that are solicited from human knowledge. Most algorithms expand this knowledge by
further discovering patterns from observed events and outcomes. While these methods have been
popular in cognitive science and artificial intelligence, to our knowledge, there is little work exploring
their usage in industrial applications such as inventory tracking. Recently, work by [35] has shown
that these methods can be adapted for use in real-world object tracking applications to determine
the location or state of occluded pedestrians, expanding the scope of track-by-detection algorithms.
Work by [36] has also shown that such methods can be used to predict intent and upcoming actions
in scenarios if expert knowledge that models the behavior of the world is available. Such algorithms
that build on causal grammar provide promising results to infer the hidden states of objects that are
not otherwise visible, conditioned on the context set by the immediate environment. Since one of the
challenges in inventory tracking is occlusion or lack of direct observation, we employ similar reasoning,
to expand the hypothesis for workpiece location even when direct observations of a workpiece are
not available.

3. Proposed Approach

Our proposed approach aims to reason possible locations of workpieces as an effect of events that
have taken place leading up to losing track of the workpiece locations. The reasoning model described
in our approach mirrors the reasoning a human worker would follow to build a search strategy when
given enough observations and time. For example, as shown in Figure 1a, given a snapshot of the
state of workpieces in the workspace at any time t, one cannot do better than a random guess on
the location of the missing workpiece 6. However, given its last-known-position in the workspace
at t − 1 (Figure 1b) and further events in time (Figure 1c,d), the search strategy propagates based
on the worker’s knowledge of the physical world and workpiece movement. In our approach we
try to model this behavior of building a search strategy for missing workpieces based on observed
events involving the workpiece. To accomplish this, we need two critical components as shown in
Figure 1: an information collection system (Section 3.1) to present the observable workpiece scene across
time; and a reasoning model (Section 3.2), similar to that of a worker, to infer possible locations and
propagation of stacks.

This work expands on our previous work described in [15] and focuses on addressing its limitation
to prune search locations and extract more critical events from movers (Section 3.5). We also present
methods to provide tighter search locations through knowledge insertion (Section 3.2), if available.
While our previous work gives a detailed visual description of stack propagation and the concurrent
operations in the event and dependency graphs, in this article we limit the discussion to strengthening
our proposed approach by providing underlying probabilistic principles and additional contributions
of this work. In the interest of completeness, algorithms for building and evolving each graph are
described in Appendix A1.

The remainder of this section covers the components involved in the proposed approach.
The system is built following a modular design that allows for each component to be swapped
out or configured independently as the environment demands. Section 3.1 describes the hardware
and IoT-driven architecture used for information collection. Section 3.2 describes the underlying
formulation based on discrete Bayesian inference, commonly employed in Markov localization
methods [29], which is used to build probabilistic relations between workpieces. We show how
observations are correlated to a model, based on expert knowledge of workpiece movement and
stacking, to calculate weights for said relations.
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(a) All workpieces are likely search locations for
workpiece 6.

(b) Workpieces 14 and 12 would be initial search
locations based on further temporal information.

(c) Workpiece 12’s new location is still a likely
search location.

(d) The movement and interaction of workpiece 12 affect
the search for workpiece 6

Figure 1. A scene representing a worker’s reasoning to decide on search locations given temporal
location information. (a)With just the current snapshot of the workspace, search for a workpiece
defaults to chance for any worker. (b) Information on events leading up to the disappearance of
workpiece 6, however, immediately introduces priority search locations of workpieces 12 and 14
based on simple reasoning of proximity. (c) The search strategy evolves along with the movement
of workpieces as the initial suspected stack location, workpiece 12, is moved (d) This process can be
chained with further changes in workpieces based on workers’ reasoning for the propagation of stacks.

3.1. Information Collection

The objective of the information collection module is to present the scene of observable workpieces
through workers and fixed cameras at any time (Figure 1). This module presents the observable scene
of the workspace across time for the reasoning module to build the beliefs for missing workpieces.
In our system, we use wired USB-cameras to capture and transfer images to Raspberry-Pis attached
to workers’ helmets (Figure 2) and machinery such as forklifts, collectively referred to as movers.
As multiple movers move around the workspace to interact and displace workpieces, this module
publishes images from their view at 30 frames per second (FPS). These images represent the raw
data from which workpieces tagged with Augmented Reality (AR) markers (Figure 3) and events are
identified by the detection and reasoning modules, respectively.

AR marker setup: Static AR markers of known pose (translation and rotation) with respect to
a predefined workspace origin are placed in expected storage locations. When observed, these
AR markers provide the pose of the observer with respect to the workspace. While static AR markers
localize the observer with respect to the workspace, workpieces tagged with AR markers localize
the workpieces with respect to the observer. If the observer’s location is known, the location of the
observed workpiece is calculated through chained transforms between workpiece and observer and
observer and workspace. Locations for the placement of static AR markers can be determined based on
the field of view of fixed cameras placed throughout the workspace monitoring likely storage locations.
(Figure 4). While we use AR markers as the mode of detection for our work, any mode of detection
that provides location and identity (ID) of the workpiece can be used in its place. The focus of our
work is on inferring locations of stacked workpieces when a direct observation of workpieces, through
any mode of detection, is unavailable.
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IoT architecture: The objective of the observation module in our approach is to collect information
from the viewpoint of movers and from static cameras covering common inventory storage areas.
While publishing images through a Robotic Operating System (ROS) [37] network in smaller spaces
with strong Wi-Fi, as described in [15], is a solution that provides live updates on inventory movement,
this breaks down in larger work sites that have weak or no Wi-Fi signals. A system that can scale
and guarantee that observations are not lost despite weak communication channels vastly expands its
application and reduces the implementation burden on the environment, making it more attractive for
industries to adopt.

(a) hardhat with camera. (b) Power and data access underneath the
hardhat.

(c) Raspberry-Pi 3B+ and battery stored inside
the hardhat.

Figure 2. Cameras attached to a worker’s gear to observe the immediate environment. (a) A worker’s
helmet fitted with USB cameras to provide the field of view of the worker to our system. (b) Easy access
to power switches, charging ports and an SD card slot allows for quick access and charging when the
hardhat is not in use. (c) Internally, the hardhat houses the battery and Raspberry-Pi. This allows each
mover to behave as an IoT device for information collection.

(a) (b)

Figure 3. Workpieces tagged with AR markers used for experiments at the shipyard. (a) Real-world
workpieces within the shipyard viewed by a worker. (b) Test environment where the workpieces were
moved by workers to evaluate our system under real-world mover behavior.
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(a) Map of the lab with fixed camera locations and monitored sites (blue). Areas where movers create impromptu stacks
are highlighted in red. The terminal provides search locations for a queried workpiece.

(b) Camera view from the six fixed cameras.

Figure 4. Workspace scene setup in the lab. (a) Map of our lab with highlighted fixed camera and
inventory storage locations. Areas being monitored by the fixed cameras are highlighted in blue
whereas areas that are not constantly monitored but represent space where movers could make
impromptu stacks are highlighted in red. (b) Images of storage locations containing workpieces (grey)
and static markers (white) as viewed by the fixed cameras.

In this work we use an Internet-of-Things (IoT) framework (Figure 5) where the movers and static
cameras, with synchronized clocks, push timestamped images onto a remote database. Images from
the database can then be pulled and processed by the detection and inference modules, through any
terminal that can access the database to estimate possible locations for each workpiece. To make sure
that data is not lost when movers are in areas with weak connections, images are stored locally with
their timestamps and mover-identifier until a connection can be established (Figure 6). While this
system may not be able to provide live updates, the system can run through all observations by the
end of the day, when data from all movers are uploaded to a database. This way, data from all movers
can be accumulated and processed in offline mode to provide a belief on the location of workpieces for
workers on the next day. At the same time, if a strong wireless network for data transfer does exist,
updates can be made immediately, and the system can be set to function in an online mode.
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Figure 5. Scalable IoT-type architecture for information collection. Each mover pushes their observed
images onto a database when a connection is available. This architecture allows for images from
observers across vast work areas to pool their data, allowing for workpieces to be tracked across the
entire scope of the work site.

Figure 6. Offline information collection setup when Wi-Fi is unavailable. For each mover wearing the
hardhat as an IoT device, observations as images are transferred to the database immediately when the
Wi-Fi signals are strong. However, when a mover is out of range or under poor Wi-Fi coverage, data
are locally stored and pushed to the database when a connection can be established. This makes sure
that all observations are available at the end of the day when all hardhats are within Wi-Fi range.

3.2. Reasoning Observations

Once observable information is available through the information collection module, possible
locations of missing workpieces need to be hypothesized from available information. This is
accomplished in the reasoning module that identifies stacking events and builds and evolves such
hypotheses for the locations of missing workpieces. Similar approaches to build and evolve hypotheses
as beliefs have been successfully employed in localization problems in robotics under ambiguous
sensor observations. In this section we give a brief description of the underlying probabilistic concepts
and our approach to utilize them for our case.

Theoretical background: Like tracking-by-detection, single-hypothesis approaches in robotic and
workpiece localization problems aim to provide a single best-fit solution based on observed data
and their correlation to an available model, like geometry [38–40]. In cases where a single best-fit
cannot be determined due to ambiguity, probabilistic localization approaches preserve ambiguities
and maintain multiple relevant hypotheses as distributions and update them as more observations
are received [29,41]. In such approaches, a belief of the state of the current system, representative of
uncertainty, is maintained. The posterior probability distributions for such hypotheses are calculated
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based on prior knowledge, observation or sensor characteristics and a model of the object using Bayes
rules as described in Equation (1):

P(Xi|obs, M) ∼ P(obs|Xi, M)P(Xi|M), (1)

where P(Xi|obs, M) represents the posterior on the object being in some state Xi given sensor
observation obs and some model M of the environment that allows us to calculate the likelihood
of the observation P(obs|Xi) and prior P(Xi). In workpiece localization problems, this model could be
geometric information of the workpiece that can provide a fit to observed sensor data. For a series of
observations over time, like workpiece locations observed by multiple movers, Equation (1) can be
described, using the Bayes rule, at any time-step t as:

P(Xi|obs0 . . . obst) =
P(obst|Xi, obs0 . . . obst−1)P(Xi|obs0 . . . obst−1)

P(obst|obs0 . . . obst−1)
. (2)

Equation (2) is further simplified with the Markov assumption:

P(obst|Xi, obs0 . . . obst−1) = P(obst|Xi), (3)

which states that older measurements can be ignored once they have been used to update the
prior P(Xi|obs0 . . . obst−1). This also assumes that all observations are independent of each other.
Representing P(Xi|obs0 . . . obst) as Bel(Xt

i ) and assuming initial conditions as prior P(Xi) at time t = 0
Equation (2) can be rewritten as:

Bel(Xt
i ) = ηP(obst|Xi)Bel(Xt−1

i ), (4)

where η is a normalization factor.

Equation (4) provides the basis to update and maintain multiple hypotheses on the state of
the object Xi, as Bel(Xt

i ) at any time t when a sequence of observations have been made. This is
assuming that we have knowledge of a model M that can relate observations to the state of the object.
For workpiece or robot localization problems, M is a measurement model that correlates sensor
measurements, such as touch, point-clouds or images, with geometric information of the object to
compute a fit [30,42].

Now, in our case, since the objective is to search for workpieces that are out of line-of-sight,
such geometric correlation models to compute fit are not applicable. Even sensors that do not require
a line-of-sight, like RFID, cannot penetrate stacks to read the sensor tags to provide a mode of
measurement to work with. Due to these constraints, we propose a reasoning model that represents
domain knowledge of human workers to reason possible locations based on available line-of-sight
observations. With such a model we might be able to observe events leading up to a workpiece’s
occlusion and estimate its possible position. The need to preserve ambiguity here is critical, as for
a stacked workpiece, true location will remain latent until it is within line-of-sight to be detected.

As discussed earlier, to have a system that can update beliefs using Equation (4) given an
observation of a workpiece k at time t, we need to:

• Measure the fit for it getting stacked with every other workpiece;
• Compute the likelihood of it getting stacked with every other workpiece given the fit;
• Maintain and update the belief of the position of all workpieces given stack likelihoods.

In our work, we represent Xi as the position of workpiece i. The fit for any workpiece k to get
stacked with i at any time t is calculated using a graph that monitors linger as fit. For any workpiece
k, the probability that k is stacked under i at position Xi at time t representative of stack likelihood,
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Pk(Xi), is calculated from the fit through the event graph. The belief of the system at any time t,
Bel(Xt

i ), is maintained by the dependency graph Gt
dependency at a given time t.

Graph-Based Reasoning Model

We propose a graph-based reasoning model to identify stacking events and propagate its effect
in beliefs as described in Equation (4). The entire system consists of three un-directed graphs and
one directed graph to observe the workspace, identify the possibility of stacking events between
workpieces and infer possible locations at which a missing workpiece might be (Figure 7).

Figure 7. Linger, event and dependency graphs to calculate stack fit, stack likelihood and overall belief
of the positions of workpieces within a workspace, respectively. M represents the reasoning model
based on human knowledge of the behavior of stacks and its propagation based on available detections
of a workpiece.

3.3. Linger Graph

To infer possible stacked locations for a missing workpiece, events that could cause stacking need
to be identified. A simple trigger to realize that such a stacking event has taken place is the loss of
line-of-sight for a workpiece. When a workpiece disappears, it can be reasoned as an effect of a stacking
event. It can also be reasoned, without loss of generality, that if a workpiece disappears, it could only
have been stacked with workpieces within a limited neighborhood. To pick such candidates that are
within the neighborhood, we need to, at all times, maintain a fit of such possible candidates. This fit of
likely candidates is maintained by a linger graph, which weighs candidate workpieces as suspects based
on the duration of their lingering near the missing workpiece (Figure 8). Each observed workpiece
is represented as a node and the edge weight between any two nodes represents the linger measure.
Linger weights are clipped between zero and a max value Lmax. The weights are updated for each new
observation in time through Equation (6).

Dt+1
ij = ||Xrecent

i , Xrecent
j || (5)

Et+1
L(ij) = Et

L(ij) + f (Dt+1
ij ); 0 ≤ Et+1

L(ij) ≤ Lmax, (6)

where:
Dt

ij Euclidean distance between workpiece i and j at time t.
Xrecent

i Vector representing the most recent available position (xyz) of workpiece i.
Et

L(ij) Edge weight between workpieces i and j as nodes in the linger graph at time t.

f (.) A function, R =⇒ R, mapping the distance to positive or negative weights based on a
proximity threshold (Figure 8).

Lmax Upper limit clip value for linger weight to avoid numerical overflow.
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Figure 8. Calculating pairwise fit for events between workpieces. (a) A representation of cases
where linger weights are (top) increased when workpieces are within proximity and (bottom) when
workpieces are out of proximity. (b) Examples of f (x) to increase and decrease weights based
on proximity.

As workpieces tend to stay in positions for long periods of time in unstructured environments,
one limitation with accumulating linger weights for edges between workpieces is that all workpieces
within proximity, given enough time, reach Lmax. While the time it takes for each pair of workpieces to
reach Lmax is dependent on the distance Di,j between them, with larger periods of time, the effect of
Di,j is lost in the system described in our previous work [15]. This has effects downstream in the rest
of the system wherein all workpieces within a neighborhood of a missing workpiece become equally
likely stack locations. Further, if they get moved and stacked to other locations, those locations too
receive equal weights, which ignores common-sense reasoning that workpieces closest to the missing
workpiece should be first in the totem pole for search locations. In this work, we maintain and build on
the initial condition of Di,j by introducing its effect onto the value of Lmax and replacing Equation (6)
with Equation (7):

Et+1
L(ij) = Et

L(ij) + f (Dt+1
ij ); 0 ≤ Et+1

L(ij) ≤ l(Dt+1
ij )Lmax, (7)

where l(.) is any loss function within range [1, 0] that is inversely proportional to Dij. In this way,
the system can maintain finer discrimination between workpieces, even within proximity. The effect of
using l(.) as a factor in calculating linger weights against that of [15] is shown in Figure 9.

Apart from being able to model reasoning-based inventory tracking, the pairwise update nature
of the graph-based structure allows for simple knowledge insertion as required by the environment.
There are several conditions in workpiece movement considered as common knowledge amongst
movers that could help in pruning search locations. For example, in shipyards, when two workpieces
belong to different projects, even though they might be placed near each other, it is highly unlikely that
they would be stacked together by any mover. Another restriction might be certain areas where the
workpieces might be very unlikely to be present. Such domain knowledge that might seem obvious
to movers can be incorporated into our system by adding appropriate weights to Equation (8) to the
edges in the linger graph (Appendix A) that directly affect the fit of observations:

Et+1
L(ij) = Et

L(ij) + kij f (Dt+1
ij ); 0 ≤ Et+1

L(ij) ≤ l(Dt+1
ij )Lmax, (8)

where kij is based on the constraints dictated by the environment. If there are no such constraints, wij
can be set to 1.0. A value close to 0.0, on the other hand, would transfer the unlikeliness of workpieces
i and j getting stacked into the system.
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Figure 9. Previous method (a) cannot differentiate workpieces within proximity after a certain period
of time, making them all equally likely stack positions for a missing workpiece. Proposed approach
(b) can differentiate most likely stack location even amongst workpieces within a neighborhood.

While such additional constraints on workpiece movement were not utilized in our experiments,
our proposed system makes it possible to add such common-sense or domain knowledge information
without any functional restrictions.

3.4. Event Graph

While the linger graph maintains a measure for each workpiece as a candidate for stacking, it does
not identify or react to a stacking event. Identifications and measurements of stacking events are
stored and tracked by the event graph in our system. The edges in this graph represent the confidence
of the system that a stacking event has taken place between the workpieces involved. Since when
a workpiece is visible, it cannot be stacked, non-zero edge weights exist only between workpieces
where at least one of them is occluded or missing. Edge weights are calculated based on the linger
measure between any two workpieces as described by Equation (9). In this respect, the edges in the
event graph represent the pairwise stack likelihood between workpieces. As described in [15] and in
Appendix A.2, a cumulative distribution function over an exponential distribution is used as h(.):

Et+1
E(ij) =

h(Et+1
L(ij)) if both i, j are visible

h(max(Et+1
L(ij), Et

L(ij))) otherwise
(9)

where:
Et

E(ij) Edge weight between workpieces i and j as nodes in the Event graph at time t.

h(.) A squashing function that maps linger weights within a [0,1] interval.

3.5. Dependency Graph

While the event graph measures pairwise stack likelihood between workpieces, the effect of such
events needs to be cumulated to maintain a belief of all possible locations of all the workpieces in
a workspace. This update step is similar to the belief update procedure described in Equation (4),
where each new observation has an effect on the system’s current belief. Unlike event and linger
graphs, where the effect of a new observation of a workpiece is limited to its immediate spatial
neighborhoods, the dependency graph maintains and updates all possible hypotheses involving the
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workpiece. As a result, for any new observation of a workpiece, all nodes reachable from it in the
dependency graph are affected.

Since the dependency graph represents the belief, as an initial condition, all visible workpieces
are assumed to be independently placed with no stacks and hence no edges. As more observations and
stack events are identified, edges in the dependency graph are populated adding direct edges based
on piece-wise events and indirect edges based on all connected nodes to the workpieces involved in
the event. While the steps involved in updating the dependency graph are described in detail in our
previous work [15], there, the order of stack formation was not considered, resulting in excess edges
that can further be pruned.

In this work, stack order is also tracked in the memory of the system as a separate directed graph.
This information on the order of stacking allows us to further limit search locations compared to the
previous system without losing any feasible locations. By preserving the order of stacking through
a directional graph, indirect stack relations are added to the dependency graph based on the ancestors
of a node, as opposed to all reachable members (Appendix A.3). We highlight the benefit of pruning
with a simple scene shown in Figure 10. Here, since workpiece 1 is no longer visible, the dependency
graph pulls possible events that could have taken place. This creates edges E2,1 and E3,1, as workpieces
2 and 3 were nearby. At the same time, in the ordered graph that tracks stack order, workpieces 2 and
3 are identified as the ancestors of workpiece 1, as it could be stacked under either one.

Figure 10. When workpiece 1 becomes occluded near workpieces 2 and 3, stack order sets workpieces
2 and 3 as possible parent nodes for workpiece 1. This represents the case where workpiece 1 could be
stacked under 2 or 3.

Now, if workpiece 2 moves nearer to workpiece 4 (Figure 11), no new edges are formed as there are
no visibility changes or events to update the belief of the system. However, the linger graph gets updated
constantly for every new observation. This creates a strong fit for a stacking event between workpieces
2 and 4. There are no changes in the edges of the stack order graph either, as no new stacks have been
recognized by the system. Up to this point, the belief of our system is identical to that described in [15].

However, when workpiece 2 gets stacked under workpiece 4 (Figure 12), the visibility of workpiece
2 changes to occluded, triggering an event. The event graph queries the linger graph to find the
workpieces that have non-zero fit values with workpiece 2 to build edges that represent the likelihood
of stacking. This creates edge E2,4 in the event and dependency graphs. Note that an edge is also
formed between workpieces 2 and 3 in the previous method though there is no reason to believe
that workpiece 2 could be stacked with 3. This is because edges are based on reachable nodes from
workpiece 2 in an un-directed graph in our previous approach. However, if the order of stacking
is stored in a directed graph, we can populate the required indirect relations between workpieces
by replacing all reachable nodes with all ancestors of workpiece 2. This avoids unnecessary edge
formation between workpieces 2 and 3. While in this scenario our approach prunes off just a single
edge, as more events are observed, using stack order can avoid all further connections between
workpiece 2 and all stack relations that workpiece 3 might encounter.
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Figure 11. The dependency graph state in our current approach and previous approach is exactly the
same up to this scene.

Figure 12. Since the previous approach only used un-directed graphs and ignored stack order to build
dependencies, an edge representing the possibility of workpiece 2 being stacked with 3 is spawned
though it is an unnecessary search location. Using stack order, this can be avoided in our approach
by limiting indirect edges to all ancestors and sibling nodes, as workpiece 3 is not an ancestor of 2.
Since workpiece 4 is still an ancestor of 1, and since workpiece 1 could possibly be under 4, this indirect
edge (blue) as a search location is still valid.

Inference from Local hardhat Observations

One of the critical limitations with the system described in our previous work [15] is that for
any observation of a workpiece to even be considered as an event, the location of the workpiece with
respect to the workspace needs to be known. Since the observation is processed based on the possibility
of its effect on other workpieces present within the workspace, lack of location information leads to
that observation being discarded. However, this also means that other relevant information that was
available within this observation is discarded. To highlight our reference to other relevant information,
consider the case shown in (Figure 13) where a worker whose position is unknown stacks workpieces
12 and 13, with workpiece 23 ending up on top of the stack. Since the worker’s position with respect
to the workspace is unknown, and the position of the workpieces observed by the worker is also
unknown. When workpiece 23 is finally observed by a mover whose world position is established,
then it gets registered in the graphs as a single workpiece.

In the above case, there is enough evidence observed from the worker to realize that workpieces 13
and 12 were stacked under workpiece 23, though we cannot establish where any of the workpieces
were at that time of stacking (Figure 13). The critical information that needs to be preserved is that
events that related workpieces 13 and 12 with 23 were observed locally by the mover. This information
is useful even if we cannot establish where such a stack was formed. As shown in Figure 14, later when
workpiece 23 is observed, with available evidence, we can hypothesize that workpieces 13 and 12
could still be stacked with 23 given no information to contradict it. In such cases, the last-seen positions
of the locally observed workpieces are unknown but their likely positions as being stacked under other
observed workpieces is presented as search locations.
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The situation depicted by Figure 13 is quite common when multiple movers make decisions to
move, stack or split stacks based on their immediate requirements. While it may not be possible to
predict what decisions are made and why, it is possible to record and reason the effect of such decisions
from the viewpoint of the mover even if the mover’s location cannot be determined.

Figure 13. Extracting critical information from local observations. (a) When a mover observes
workpieces and stacks them while his/her position is unknown, dependencies between workpieces
is locally extracted. (b) Since the positions of the worker and the workpieces are unknown,
this information is not reflected in the dependency graph for the workspace.

One way to extract and use local observations is to run multiple instances of the system under
different scopes. A primary dependency graph, Gdependency, covers the scope of the workspace and is
run as discussed in the previous sections. Whenever a mover, say m1, observes workpieces whose
position cannot be determined with respect to the workspace, a temporary graph Gm1

dependency is spawned.
This graph extracts dependencies within the field of view of m1 assuming the camera origin to be
the local workspace origin (Figure 13). If interactions were observed, creating edges in Gm1

dependency,
then these edges, their weights and their associated nodes representing workpieces, are added to
Gdependency without any location information. In this way, local knowledge of stacks observed by any
mover gets transferred. Since these workpieces cannot be categorized as visible or occluded, they exist
in an unknown-location state within the system. However, the edges hold critical stacking information
as possible location of workpieces. This can be utilized in case any of the locally observed workpieces
later become visible, as shown in Figure 14.

Figure 14. Transferring locally observed stack information. When a mover observes the stacked
workpieces when his/her own position with respect to the workspace is known, workpiece 23, the only
visible member of the stack, is registered in the dependency graph. Additionally, since the earlier
local dependency graph by the mover established that workpieces 12 and 13 were associated with 23,
this information gets transferred to the workspace though they were never directly observed within
the workspace.

One challenge that needs to be addressed here is that since we cannot determine the pose or
position of the mover, all observations are mapped into the same local coordinate system spanned
by the mover’s camera. This leads to workpieces located at different positions in the workspace
being mapped to overlapped positions within the view of the mover’s camera coordinate system.
To overcome this issue, the graph Gmk

dependency of any mover gets reset whenever there are no workpieces
within view. All dependencies as edges are transferred to the primary dependency graph Gdependency
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before clearing the local graph nodes and edges. This makes sure that when a worker moves away from
or changes their view, a new instance for local observations are spawned for the new local workspace.

Since movers make a variety of impromptu decisions to grab and stack workpieces, extracting such
decisions and their effect is critical to build a tight belief on the location of workpieces. While it may not
be possible to densely populate a workspace with fixed cameras to capture all events, using hardhats
to extract events through the viewpoint of movers provides far more coverage of all critical events
right at the source. The critical nature of extracting such local stack events from moves is highlighted
in our experiments in the next section.

4. Experiments

As discussed earlier, the purpose of our proposed system is to reduce effort and time spent in
searching for workpieces without adding any additional cognitive burden on the movers during
workpiece displacements, accidental or otherwise. One way to evaluate the system would be to
compare inventory pull costs with our proposed approach against current industry practices.

However, in our literature review, we could not find standard databases or test procedures
to measure the performance of generic inventory tracking systems. Apart from lack of databases,
standard simulation environments and tools to model complex workpiece movements and actor
interactions, such as an Actor Based Model (ABM) environment, while of interest, are still in early
stages of development [43,44]. Previous work investigating poor pull times [4,8,10] in the construction
industry have compared the cost of pulling inventory when their position is known against cases
where they have been misplaced without any information to guide a search. Since such observations
have been the basis to investigate and show that excessive pull costs are the result of a lack of efficient
inventory tracking systems, we use a similar approach to evaluate our proposed system within the
confines of our lab (Figure 4). To show that such a system can be deployed in a real-world environment,
we have also conducted simple experiments in a shipyard at Tsuneishi under real-world conditions
such as lighting, workpieces and untrained movers (Figure 3). The following sections discuss the
results of experiments conducted both in our lab and at the shipyard.

4.1. In-Lab Experiments

In order to evaluate our system, we designed a workspace in our lab similar to unstructured
storage spots used in the construction or shipbuilding industries for convenient and impromptu storage
of workpieces. Our workspace setup consists of six fixed cameras, connected to four battery-powered
Raspberry Pis, which monitor areas representing storage locations within the workspace. Note that
while such storage locations are marked for monitoring by fixed cameras, there are no explicit rules or
policies to drive incoming and outgoing inventory. This setup represents a workspace within which
workpieces are stacked and displaced independently by movers wearing camera-mounted hardhats
(Figure 2). As discussed in Section 3.5, the hardhats capture critical events involving workpieces that
might have taken place away from the view of the fixed cameras but within the field of view of the
mover. While the span of our experimental space might be much smaller than a typical environment in
a construction or shipbuilding environment, with 25 different stacks populated throughout the space,
search for a missing workpiece, given no further information, requires a lot of effort (Table 1).

Experiment design: Evaluation of our proposed approach was conducted through a sequence of three
staggered experiment phases set up to emulate workpiece population, stacking and displacement in
an unstructured storage environment (Figure 4). During the experiment, workpiece 66 was displaced
across the workspace by the movers. The performance of our system was based on the number of
locations and distance a mover covers to find workpiece 66 using its suggested search locations. In the
first phase of the experiment, the workspace was populated with 25 workpieces by two independent
movers. Locations of the workpieces were predetermined for the repeatability of experiments and
ground truth evaluation of our system. For the system, observations older than two seconds are
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considered occluded. The value for Lmax, described in earlier sections, was set to 100. The function
l(.) to limit Lmax (Figure 9), discussed in Section 3.3, was defined as a linear hinge-loss function that
decreases from 1.0 to 0.0 for distances, Dij, ranging from 0.0 to 0.5 m. The separation penalty γ

that penalizes indirect stacking relations to dampen the effect of indirect stack events, was set to 0.5.
A value of 1.0 for γ translates to all events, no matter how indirect, to have equal significance during a
search. On the other extreme, a value of 0.0 for γ translates to no event being considered for search,
reducing the system to present the last-seen position as the only search location. The effect and need
for γ is explained in detail in [15]. Experiments were conducted under the same values for common
parameters between the current and previous approach.
Phase 1: Since the goal of our proposed approach is to passively collect and present workpiece location
information to the rest of the movers, observed positions of workpieces were plotted on a map and
checked against the ground truth location of each workpiece. Figure 15 shows the plot of all workpieces
that were observed by our system. This experimental evaluation serves to qualify the information
collection using AR markers for our system. While this experiment is simple with no stacking of
workpieces, a lookup map of workpiece locations provides a CPS of the current state of the workpieces
within the workspace. With such a system, workpiece placement decisions made by individual movers
get conveyed to the rest of the workforce without adding any burden to the mover. While AR markers
detection is used as the mode of information collection in our system, any other mode of detection that
provides the workpiece ID and its location can be used as an alternative. This experiment, at the least,
qualifies the sanity of the information collection module of our system.
Phase 2: For the second phase of the experiment, more workpieces were introduced into the
workspace wherein stacks were created to store new workpieces under limited storage space. This is
a common mode of storage in unstructured environments, which presents challenges for direct
visual searching due to clutter and lack of line-of-sight to the workpiece. As discussed earlier,
such stacking also introduces challenges for the RFID-based mode of detection, as the interrogation
signal cannot penetrate thick stacks. Apart from penetration issues, passive RFID tags, when closely
stacked, introduce noise and are difficult to untangle by the reader [27]. In such stacked scenarios,
our vision-based information collection system faces the same challenges and cannot extract any
more information once a workpiece is occluded. The inference module of our system, described in
Section 3.2, however, can hypothesize the positions of workpieces that are out of line-of-sight based on
previously identified relevant events (Figure 16). While our proposed approach presents the possible
location of any workpiece, visible or occluded, based on surrounding events, one could argue that a
system that presents the last known position of a workpiece would produce the same results, provided
the stack itself is not moved or disturbed. This condition was further perturbed in the next phase of
our experiment.
Phase 3: The third and final phase of our experiment covered the cases that are most challenging and
highlights the advantages of our approach. This phase of the experiment represents cases where a mover
stacks multiple stacks together and displaces the whole stack to other locations either accidentally or
intentionally. Either way, such decisions of repeated stacking and displacement are not logged or taken
account of in current workspaces to inform the rest of the workforce of the updated position of all the
members of the stack [4]. Moreover, while making such impromptu decisions, the movers themselves are
not aware of all the members of the stack they just displaced and cannot afford the time to make note of
such information at every event. Such gaps in knowledge make it quite difficult for the worker searching
for one of the members of the stack when it is no longer at its last seen position, rendering the workpiece
lost as far as the shop-floor is concerned. With no further information to guide his/her search, a worker
usually resorts to exhaustive time-consuming searches or just re-manufactures the workpiece. This scenario
(Figure 17) is reproduced in our experimental workspace by:

• Having a mover remove the stack containing workpieces 66 and 79.
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• Stacking workpieces 33 and 35 on top of this stack, away from fixed camera view in areas
highlighted in red on the map (Figure 4).

• Placing the new stack, with workpiece 35 at the top of the stack, on top of another stack within
the workspace.

Table 1. Cost of search in terms of number of workpieces to be visited and distance covered to find
workpiece 66 displaced to various locations P1–P6. Least number of workpieces to be visited and the
least distance covered during the search are highlighted in green.

Search Strategy

Status of Workpiece 66

Average (P1–P6)
Metric Visible

Stacked and Hidden out of View in Location

P1 P2 P3 P4 P5 P6

Last-seen location of
workpiece 66 in known

Attempts 1 1 7 12 16 19.5 23.5 13.2

Distance 0 m 0 m 2.5 m 6.5 m 10.5 m 14.0 m 20.0 m 8.9 m

Previous method [15]
Attempts 1 2.5 7 12 16 19.5 23.5 13.4

Distance 0 m 0 m 2.5 m 6.5 m 10.5 m 14.0 m 20.0 m 8.9 m

Proposed approach
Attempts 1 1 3 3 3 3 3 2.6

Distance 0 m 0 m 2.5 m 5.0 m 4.5 m 6.6 m 2.5 m 3.5 m

Figure 15. Map of the workspace with observed workpieces after the first phase of the experiment.
Expected (green) and observed (yellow) positions by our system plotted on a map. This information
collection makes locations of workpieces available to the entire workforce and allows for fast pull times
without need for manual logging.

(a) Plot of all workpieces observed by the system. A yellow marker represents a visible
workpiece whereas a grey marker, for workpiece 66, represents the last-seen position.

Figure 16. Cont.
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(b) Suggested search locations given by our system for workpiece 66

Figure 16. Snapshot of the workspace and belief of our system after the second phase of the experiment.
(a) Current location of all workpieces plotted by our system. Locations of recently observed workpieces
(within a duration of 3.0 seconds) are highlighted in yellow, whereas workpieces that are deemed
missing or occluded are highlighted in grey. (b) A query for the missing workpiece, workpiece 66,
produces a plot of likely locations and their probabilities in finding workpiece 66 stacked under there.
Workpiece 79 gets the highest confidence due to its proximity to 66, making it the first location to search.

Figure 17. Events, viewed by the hardhat camera of a mover, during the third and final phase of the
experiment. The view at location P1 shows a mover picking up the stack with workpieces 79 and 66.
The view at a random location (red) away from monitored areas shows the mover stacking workpieces
33 and 35 on the existing stack. The view at location P5 shows the mover placing the new stack with
workpieces 66, 79, 33 and 35 on top of workpiece 77.

These actions are repeated multiple times by movers to lose workpiece 66 throughout all storage
locations, P1–P6, within our workspace. The entire experiment was conducted across a span of two
weeks in total to present a case as close to the real world as possible where movers interact with
workpieces over a longer duration of time.

Evaluation criteria: Once the third phase of the experiment was completed by a mover, the entire
workspace was reset to its original state defined in the first phase of the experiment. Table 2 shows the
suggested workpieces to look under, as search locations, for every location P1–P6 that workpiece 66
was displaced to. Table 1 shows the cost, in workpiece visits and steps, that would be incurred under
four different cases where a worker is given:

• Last-seen information: This represents the case when a worker is aware of the original location
where workpiece 66 was placed in the first phase of the experiment but has no information of
further events that have taken place.
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• Information using previous system [15]: This provides search locations based on events observed
by fixed cameras monitoring storage locations. Local events observed by the workers away from
fixed camera view are still lost.

• Information from our proposed approach: In this case the worker solicits our system to provide
search locations for workpiece 66.

Table 2. Totem pole and confidence of search locations for each experiment where workpiece 66 is
moved to each of the six locations P1 to P6. The true location of workpiece 66 is highlighted in green.
The locations are listed in the order of search locations along with their probability values as suggested
by our system for each displacement.

Order of Search Locations for Workpiece 66 after Being Stacked and Displaced

P1 P2 P3 P4 P5 P6

Order Prob. Order Prob. Order Prob. Order Prob. Order Prob. Order Prob.

79 0.47 79 0.36 79 0.36 79 0.33 79 0.35 79 0.35

70 0.33 70 0.25 70 0.23 70 0.25 70 0.24 70 0.23

71 0.10 35 0.15 35 0.16 35 0.16 35 0.17 35 0.17

67 0.09 71 0.08 55 0.09 71 0.09 71 0.09 71 0.08

62 0.07 71 0.08 47 0.08 77 0.09 65 0.08

67 0.06 67 0.06 67 0.06 67 0.06 67 0.07

As mentioned earlier, the objective of the proposed approach is to reduce the effort and cost of
searching for workpieces that have been displaced by multiple stakeholders within the workspace.
The evaluation criteria for inventory pull are based on the number of workpieces a worker would
have to visit and the distance covered in such visits before finding workpiece 66. Since workpiece 66 is
not directly visible, the complete search space spans the location of every other workpiece within our
workspace. When a totem pole of locations to visit is available, the number of workpieces a worker
would have to visit is based on the position of the true location within this list. When no totem pole
exists, all workpieces within a location are considered equally likely. In this case, the expected number
of workpieces one would have to visit can be shown to be (N + 1)/2, where N is the number of
equally likely choices available. If workpiece 66 was not found in a location, a worker moves on to
the next location based on the suggested search location or optimal search path for continued search.
Distance covered is based on the distance a worker has to travel from location P1, as that is the last
seen position for workpiece 66 and would be the first location a worker would start the search from.
Our system was evaluated against our previous approach and search based on optimal search paths to
cover all locations. The optimal path based on distance to visit all workpiece locations in the case of
our workspace is to sequentially move from P1 to P6.

Discussion: As seen from Table 1, the average number of workpieces to be visited by our proposed
approach was 80% lower than manual uninformed searches and the previous approach. The average
distance covered by a worker in searching for workpiece 66 was also lower by 60%. One critical
observation to emphasize here is that the search cost of our proposed approach is not affected by
workpieces that never interacted with it. While a manual search cost is directly influenced by the
number of storage locations between workpiece 66’s last seen position and final position, our objective
is to limit the search based only on events of interaction involving workpiece 66. This can be seen
in the snapshot, as shown in Figure 18, of the event graph edge weights overlaid on the stack order
graph and the dependency graph within our system that has captured the chain of events involving
workpiece 66 when it was displaced to location P5. This highlights every possible workpiece that
workpiece 66 might be stacked under along the way when it was moved to P5.
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Capturing all possible interactions of the workpiece makes the search strategy of the proposed
system independent of workpieces that could not have interacted with the missing workpiece. In the
absence of this information, the search space for a missing workpiece expands to all locations within
the workspace, requiring much more effort and time to search. While the objective of our previous
approach in [15] is the same, as shown in Table 1, failure to capture events defaults the cost to manual
uninformed search. Since the previous approach could not account for events taking place locally
within the field of view of movers, critical information that could have helped in the search was
discarded. The significance of such local observations from the point of view of movers that cause
stacking events is highlighted in the experiments conducted in the lab.

(a) Pairwise weights for events plotted on the graph monitoring stack
order after workpiece 66 was displaced to P5.

(b) Dependency graph with edge weights calculated with a separation
penalty γ = 0.5, representing confidence in workpiece 66 being
stacked with every other workpiece based on its reachable ancestor and
sibling nodes.

Figure 18. Underlying graphs in our system calculating beliefs after displacement of workpiece 66
during the experiment. (a) A snapshot of the event weights and stack order of events that workpiece
66 could have encountered, as a directed graph, in the experiment run that displaced workpiece 66 to
location P5. (b) The workpieces and their corresponding probability as search locations for the missing
workpiece 66. Note that since workpiece 33’s location is unknown, it is not suggested as a search
location. Additionally, workpieces 57, 45 and 90 are not considered, as there are no reasonable events
connecting them to the directed graph either as an ancestor or a sibling.

4.2. Real-World Evaluation

To test the system within a real-world environment outside of our lab, we conducted multiple
experiments at the Tsuneishi shipyard. The goal of these experiments was to gauge the ability of our
proposed system to collect local events and build the expected dependencies between workpieces
from the view of movers using realistic workpieces, and under operation of workers who have never
used the system (Figure 3). Since the objective here is to see if we can extract critical events and
dependencies between workpieces, event weights are not highlighted as no search is being conducted
and have no bearing in this exercise.

In this experimental space, we were able evaluate our system under real-world conditions with
poor lighting, sparse Wi-Fi and mover behavior. Our setup consisted of one hardhat camera and four
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fixed cameras, two of which were hardwired into the main computer, and two others connected to
battery-powered Raspberry-Pis (Figure 19).

Figure 19. Experimental setup and layout of testing space in the shipyard environment.

The experiment was broken down into three sub-experiments. The first portion of the experiment
was to introduce workpieces within the staging area and perform a stacking operation under
observation of the hardhat but before entering the fixed camera views. This was done by:

• Having the first mover bring workpieces 11, 12 and 13 into the staging area.
• Stacking them all together and forming the stack (11, 12, 13).
• Moving the stack (11, 12, 13) into view of Camera 1.

The result of this sub-experiment would have connections between workpieces 11, 12 and 13
because they were stacked together within view of the mover’s hardhat camera. Workpieces 11 and
12 will not have absolute locations and will be marked as so (pink node) in the graph. However,
since workpiece 13 is directly visible, its position is known and marked as visible (yellow node).
Figure 20 shows the expected dependency graph, showing that the stack relation between workpieces
matches the actual relation as a graph produced by our system.

Figure 20. Workpiece relations, as a graph, for the first experiment. The expected relation between
workpieces from the scripted experiment (left) matches the relational graph published by our
system (right).

Another mover was then asked to perform the second sub-experiment, where they combined two
separate stacks within view of a fixed camera. This was done by:

• Having a new mover place workpieces 14 and 15 into the staging area.
• Stacking workpiece 15 on top of 14, forming the stack (14, 15).
• Moving the stack (14, 15) into the view of Camera 1, and placing it on top of the previous

stack (11, 12, 13).
• Another mover comes and moves the whole stack (11, 12, 13, 14, 15) into the staging area.
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The resulting graph for this sub-experiment would be an interconnection between all of the workpieces
because the two stacks were joined into one (Figure 21).

Figure 21. Workpiece relations for the second experiment. Expected fully connected relation between
workpieces (left) and the relational graph published by our system (right), which was able to infer the
same relation.

This new worker who came into the last sub-experiment was then asked to continue by:

• Shuffling the stack (11, 12, 13, 14, 15), removing workpiece 11 during the process.
• Splitting the remaining shuffled stack (12, 13, 14, 15) into stacks (12, 14) and (13, 15).
• Placing workpiece 11 in view of Camera 1.
• Placing the stack (12, 14) in view of Camera 0.
• Placing the stack (13, 15) in view of Camera 4.

The graph corresponding to this sequence of events shows that workpieces 11, 14 and 15 can all
be seen and that their absolute locations are known. Workpieces 12 and 13 are not on the top of their
stacks so they are not seen. The difference between workpieces 12 and 13 is that workpiece 12 was seen
during the shuffling and re-stacking in the staging area, while workpiece 13 was never seen. Since the
system cannot determine the order of shuffling or the members for the split stacks, workpiece 12 and
13 could be under any of the three visible workpieces 15, 11 and 14 (Figure 22).

Figure 22. Workpiece relation for the third stage of the experiment. Expected relation between
workpieces after the stack was shuffled and split (left), which matches the output of our system (right).

Discussion: While the above experiments are much shorter and simpler than the experiments
conducted in our lab, they serve to highlight the robustness and practicality of our proposed approach
for industrial applications. The workers that participated in the experiments required no specific
training or modifications to their regular behavior to utilize the system successfully. These experiments
show that our proposed system can extract critical events regarding workpiece movement and stacking
without adding any additional burden to the workers.

5. Conclusions and Future Work

Current proposed solutions for inventory tracking in unstructured environments focus on
conditioning and preparing the environment to adapt to mature track-by-detection technologies
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like RFID. However, the gap between industries with unstructured storage environments and the
technology for such adaptation is still challenging. In this work we proposed alternatives to the
track-by-detection approach to improve over current practices of searching for lost workpieces without
guidance. From experiments, we have shown that even with a simple mode of detection that has severe
limitations with occlusions from stacking, reasoning events leading up to occlusion can significantly
help narrow search locations. We have also shown that the proposed graph-based tiered approach of
reasoning allows for easy additional knowledge insertion, if available, to further prune search locations.
For application in adverse environments with sparse Wi-Fi, we have proposed an IoT architecture that
enables the system to collect and process information in both offline and online modes of operation.

While the proposed approach expands information collection over our previous approach to
better estimate workpiece locations, the entire system is still dependent on observations and detection
to build its belief. As shown in the experiments, extracting events is extremely critical, and missing
an event would default the system to unguided search thereafter. Currently, our approach uses a
single mode of information collection relying on AR markers and vision. However, the system can be
further expanded if it can assimilate observations from multiple modes of detection spanning RFID,
GPS, vision etc. since they also relay similar position and identity information.

With regards to the reasoning algorithm, currently, observation of a completely empty space
that was previously suspected to be the location of a missing workpiece has no effect on the system’s
belief. By contrast, in the real world, when a worker visits a location that has no workpieces in
it, this information does have an effect on the belief for every other workpiece that was previously
suspected to be present there. In our current algorithm, while we can detect the presence of a workpiece
with absolute certainty, we are not able to infer or translate the effect of absence of a workpiece at a
location. We are currently exploring methods to identify and differentiate an obscured workspace in
an image against an empty location that has no workpieces present.

Another observation on the behavior of the system is that while it acts as an information sink,
uncertainty or entropy of proposed search locations will tend to increase with more observed events
involving a workpiece. Since the system actively maintains multiple hypotheses on the location of a
missing workpiece, unless the workpiece is later directly observed, the system cannot inherently take
action to prune the search locations. A further expansion of this approach would be to include humans
in the loop to guide stacking actions or reduce entropy by actively asking workers to observe certain
stacks to resolve uncertainty in the position of workpieces. Such a system could produce actionable
information even before searching. A system that can communicate the current state of information
gain and suggest actions to tighten its current confidence could maintain and provide tighter search
suggestions. We are currently investigating these areas to expand the capabilities of our system.

Author Contributions: Conceptualization, M.R. and K.S.; funding acquisition, K.S.; supervision, K.S.;
methodology, M.R.; software, M.R.; validation, M.R. and K.B.; investigation, M.R. and K.B.; data curation,
M.R. and K.B.; writing-original draft, M.R. and K.B.; writing-review and editing, all authors. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was supported by funding from Tsuneishi Shipbuilding Co., Ltd.

Acknowledgments: The authors thank Nishi Nobuaki, Shohei Okada, Satoshi Yamauchi and Hirotaka Inoue
from Tsuneishi for their valuable inputs, and Austin Hsu and Spencer Persaud, from Carnegie Mellon University,
for their time and assistance.

Conflicts of Interest: The authors declare no conflicts of interest.



Logistics 2020, 4, 16 25 of 29

Appendix A. Algorithms

Appendix A.1. Linger Graph

Algorithm A1: Building linger graph Glinger

Init: X = {}, Xvisible = {}, Xmissing = {}, Xunknown = {}
while True do

for xi ∈ X do
if δti > tmin then

Xvisible ← Xvisible − xi ;
Xmissing ← Xmissing ∪ xi ;

else
Xvisible ← Xvisible ∪ xi;
Xmissing ← Xmissing − xi;
Xunknown ← Xunknown − xi;

end
for xi in observation do

X ← X ∪ xi;
di,j ← ||xi, xj||2 ∀j ∈ X; i 6= j;
wi,j ← e−λddi,j ; λ > 0;
li,j ← f (di,j) ;
w(EL(i,j))← w(EL(i,j)) + 2(wi,j)− 1 (to erode or increase event potential);
w(EL(i,j))← ki,jw(EL(i,j)) ;
w(EL(i,j))← min(w(EL(i,j)), li,j(Lmax)) ;
w(EL(i,j))← max(w(EL(i,j)), 0) ;

end
end

end

where:
δti Elapsed time since last observation for workpiece i
tmin User-defined time threshold to set the state of a workpiece as missing. This is set to two seconds in

our experiments.
λd Rate parameter for an exponential distribution to decide weight decay within a workpiece’s

neighborhood (user-set parameter). Smaller values of λd have wider neighborhoods with softer
weights, translating to a slower rate of increase in the linger counter within the neighborhood.
Higher values have smaller neighborhoods with sharp weights within, translating to a sharp
increase in the linger counter when workpieces are within the tight neighborhood. λd > 0

wi,j Weight attributed to the proximity factor modeled as an exponential decay for lower values at
larger distances between workpieces.

ki,j Weight representing domain knowledge on the likeliness of workpieces i and j getting stacked.
Defaults to 1.0 if no bias is known.

EL(i,j) Edge in linger graph monitoring fit with every incoming observation. The longer is a workpiece
observed within proximity, the higher the value. The edge weight is clipped as 0 ≤ w(EL(ij)) ≤
lij(Lmax) to keep the value bounded while being able to differentiate fit between workpieces
within proximity.

w(Ei,j) Weight for edge Ei,j
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Appendix A.2. Event Graph

Algorithm A2: Building event graph Gevent

while True do
for xi in observation do

if xj ∈ Xvisible then
w(EE(i,j))← (1− e−λl w(EL(i,j))) ;

else
w(EE(i,j))← max(w(EE(i,j)), (1− e−λl w(EL(i,j)))) (Preserves occurred stack event.);

end
end

end

where:
EE(i,j) Edge in the event graph representing the likelihood of i and j getting stacked.
λl Rate parameter to convert linger value EL(i,j) to a probabilistic estimate through an exponential

cumulative distribution function. Smaller values for λl translate to a slower rate of increase in the
event likelihood whereas a higher value produces a higher rate of increase. Note that the rate at
which the event likelihood reaches 1.0 can be controlled with both Lmax and λl .

Appendix A.3. Dependency Graph

Algorithm A3: Building dependency graph Gdependency

Init: X, Xvisible, Xmissing f rom Gevent, Xdependent = {}, Gorder = {}
for xk ∈ Xdependent do

if xk ∈ Xvisible then
ED(k,i) ← ∅ ∀ xi ∈ Xvisible;
EO(k,i) ← ∅ ∀ xi ∈ Xvisible;

else

end
end
for xi ∈ Xmissing do

Xdependent ← Xdependent ∪ xi;
EO(j,i) ← EE(i,j) ∀j 3 w(EE(i,j)) > 0 ;
ED(i,j) ← −log(w(EE(i,j))) ∀j 3 w(EE(i,j)) > 0; xj /∈ Xunknown;

ED(i,k) ← γd(Gdependency ,i,k)(Pathmin(Gdependency, i, k)) ∀ k ∈ {A(Gorder, i), S(Gorder, i)};
end
for Gmi

dependency ∈ Gmover
dependency do

for xi ∈ Gmi
dependency do

Xunknown ← xi ∪ Xunknown;
end
E(Gdependency)← E(Gdependency) ∪ E(Gmi

dependency);

end
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where:
Pathmin Shortest path (based on edge weights) between nodes i and k in Gdependency.
d(G, i, k) Distance in terms of node separation between i and k in graph G.
γ Separation penalty factor.
A(G, i) Ancestors of node i in directed graph G.
S(G, i) Siblings of node i in directed graph G.
E(G) Edges in graph G.
Gmover

dependency Local dependency graph built for mover’s field of view.
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