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Abstract

The greatest potential for humanoid robots is that they will someday be able to robustly

traverse and perform meaningful work in a world designed by and for human beings.

Thus, humanoids, and legged platforms more generally, offer the practical potential to

bring elements of automation off the factory floor and aspects of artificial intelligence

into the physical world. However, in practice, legged systems remain quite brittle when

operating in unstructured terrains. The primary issue continues to be that it is difficult

to carefully deliberate about how to make progress towards a goal while maintaining

balance over the time scales necessary to remain dynamically stable. Therefore, this

work presents a novel framework for planning and controlling in closed-loop the behavior

of legged robots moving fluidly through unstructured terrains. Specifically, the framework

we put forth unifies the commonly disparate components of footstep planning, motion

planning, and feedback control that we show can be used to robustly plan the motions

of humanoid robots moving through a variety of complex terrains.

Planning and controlling the motion of humanoid robots is complicated by the fact

that they make and break contact with the environment. These discrete interruptions to

the continuous dynamics mean that legged systems have hybrid dynamics. This presents

an issue because conventional techniques for robotic motion planning and control are de-

signed to work for systems with continuous dynamics. Therefore, in this work we establish

a way to explicitly handle hybrid transitions within a trajectory optimization framework

that has conventionally only been applied to continuous systems. More specifically, we

solve a nonlinear trajectory optimization problem, wherein we assume a quadratic cost

with nonlinear constraints imposed by the system’s dynamics. To solve this problem,
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we approximate the nonlinear constraints by computing the linearization of the system’s

hybrid dynamics. We show how to use tools from nonlinear analysis and control to

compute analytically these approximations, despite the discontinuous nature of the tra-

jectories about which the linearizations are computed. We follow a method very much

inspired by existing approaches based on the sequential linear quadratic regulator to op-

timize over several hybrid steps at once. This allows us to reformulate planning footsteps

and dynamically-feasible trajectories as well as deriving closed-loop controllers as a single

trajectory optimization problem.

Posing our humanoid planning and control problem as a trajectory optimization for-

mulation implicitly implies that we are solving for a locally optimal solution to the prob-

lem. Therefore, to ensure good resultant behavior and quick run time (reduce iterations

to convergence), there must be a good way to introduce an initial stable nominal tra-

jectory, or rather a seed, to the optimization. To this end, we create an intuitive means

for generating such seeds that uses implicitly the ”natural dynamics” of a given system.

Our energy management technique ensures step-generation over newly-perceived terrain

is dynamically feasible. The method additionally assures the system energy necessary to

for future stepping.

Lastly, this work brings together both the unified planning and control approach

and the energy-based seed generating algorithm to define the main contribution of this

work: a unified planning architecture that is able to adapt to new complex, unstructured

terrain online. As a legged system advances over new terrain, the energy method quickly

determines footholds for newly-perceived terrain, seeding the unified planner for once-

per-step online optimization. By introducing this energy management technique as the

seed to our unified approach, we create a framework that allows a robot to safely adapt

to rough terrain in real-time while respecting the natural dynamics of the system.

We present several walking models, each scaling up in complexity to demonstrate how

this architecture can be applied to a family of different systems. In addition to analytical

results and simulated demonstrations, we developed a hardware platform on which we

validated our results.
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Chapter 1

Introduction

While traversing complex terrains, legged animals are constantly making decisions about

how and where to place their feet while simultaneously maintaining their balance. To

achieve human-like performance in complex terrains, this work supports the belief that

walking robots need need to reason over a similarly complex decision making process

to that employed by humans while actively maintaining their dynamic stability. To

this end, this work develops a framework that enables legged robots to plan and then

execute complex locomotive behaviors that can be rapidly adapted online to adjust for

unexpected task or environmental scenarios. More specifically, this work develops an

optimal motion planning framework that produces safe, natural-looking, and adaptive

locomotive behaviors for several humanoid walking models as well as on a hardware

system. The basis for this framework is an algorithmic approach that simultaneously

decides in real-time where to place the legged systems’ feet over a sequence of steps

while determining how to dynamically coordinate its body to place its feet at the desired

locations. In addition, we use a variant of differential dynamic programming to also

simultaneously derive feedback controllers that stabilize the systems with respect to online

disturbances.

The vast majority of conventional approaches to motion planning and control for

humanoid robots moving through unstructured terrains make the assumption that the

robot’s motion over individual steps as well as the control thereof can be planned in
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CHAPTER 1. INTRODUCTION

hierarchical stages: first footsteps, then motion, and finally control. However, in practice

such disjoint approaches are often brittle in their application as unplanned motions,

physical properties of the environment, dynamic obstacles, etc. often cause catastrophic

failures. For example, consider a humanoid robot walking over uneven terrain. Imagine

that the robot slightly slips as it is putting one of its feet on the ground, inducing a

relatively large disturbance relative to some nominal gait. In this scenario, a conventional

planning stack would first need to reason about how to execute a recovery motion by

locating desired areas in the environment where the robot could brace itself or place

its feet. Then, a motion planning routine would need to be executed to determine how

to coordinate the robot’s internal degrees-of-freedom to place its hands and/or feet at

the desired locations. Finally, some low-level controller would need to be prescribed to

stabilize the system during the online execution of this planned motion.

The issue with prior approaches is that they tend to either decouple kinematic and

dynamic feasibility in treating footstep planning and motion planning separately; or they

try to heuristically incorporate notions of dynamic feasibility into footstep planning. Each

of these approaches can lead to sub-optimal behaviors and in the worst case total failure.

In our approach, we explicitly consider the dynamic stability of the system when selecting

where to place feet. In particular, we combine footstep planning, motion planning, and

controller specification into a single algorithmic step.

More specifically, this work develops a novel approach for composing all three levels

of planning and control (footsteps, motion, and feedback) concurrently by way of online

quadratic programming. Our optimization decision points become where to place our feet,

while indirectly solving the motion planning and control problems. We use ideas from

nonlinear control theory to effectively discretize walking motions due to their inherently

rhythmic nature. We then use the discretized dynamics within a differential dynamic

programming (DDP) framework that requires a linearization of these dynamics. We

show how to compute these linearized expressions, even though the nonlinear dynamics

have this discontinuity, given knowledge of a discrete impact map. This map may be

either specified analytically or learned through experimentation (e.g., on hardware). We

2



CHAPTER 1. INTRODUCTION

show how to embed terrain information into the framework to plan explicit motions for

humanoid robots through contact over several step sequences.

Next, we present an informed energy-based template that allows our system to gen-

erate safe initial trajectories to be fed into the trajectory optimization pipeline as new

terrain is perceived online. Using ideas from capture point theory, this method begins

with determining whether the system has enough energy to carry itself over a specific

foot impact. Through this energy-centric approach, we select trajectories that respect

the natural “stability” of the system, even before considering the specific aspects of feed-

back control. By selecting initial trajectories using this method, we are indeed trying to

select the best trajectories for both planning AND control, since the system should be

easier to control if the actions are already aligned with natural dynamics of system. The

energy technique becomes the building block to seed our unified trajectory optimization

framework.

The resulting approach plans aggressive trajectories that avoid obstacles and safely

adapts nominal walking motions to environments with significant mobility challenges.

Finally, we bring all of these concepts together into one unifying architecture and demon-

strate these techniques on various models and verify this technique on hardware.

1.1 High Level System Overview

The framework that we develop in this work unifies foot-step planning, motion planning,

and feedback control by employing the closed-loop overall system’s architecture shown in

Fig. 1.1. The architecture is built around the classic “sense, plan, and act” paradigm.

We realize this structure in three parallel processes.

Sense. The first process perceives the environment and builds a local terrain map

using a vision system that is attached to the robot/robot model.

Plan. Second, the robot must determine how to physically traverse the terrain. A

terrain cost generator is used to translate the terrain map into data structure that the

robot can reasonably interpret within its planning framework. Because we are moving

3



CHAPTER 1. INTRODUCTION

Figure 1.1: Unified Planning Architecture for a legged robot. This work focuses on foot-
step selection, motion planning and feedback controller design, all three simultaneously
and in real-time.

dynamically over the terrain and may encounter cases where we are only able to see a

short distance in front of us we need an approach that is highly agile and intuitive in

design Therefore we need to plan where to step, how to move in between steps, and how

to control the movement in real-time. By simultaneously planning these three elements in

a model predictive control architecture, our unified planning construct enables real-time

adaptation to terrain.

Act.

Finally, we execute the controller from the “plan.” As we execute, we are already

planning the next step.

1.2 Contributions

In this work, we have three contributions that are novel to the legged locomotion com-

munity:

1. We linearize our trajectory once-per-step at the moment in which the foot impacts

the ground, thus embedding “where the foot comes down” into the linearized dy-
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CHAPTER 1. INTRODUCTION

namics. By choosing to linearize at that specific point, we get foothold placement

as a decisive byproduct of trajectory optimization.

2. This work derives two boundaries that are fundamental to walking: the first sep-

arates walking from falling while the second subdivides walking into slowing down

and speeding up. We demonstrate how energy-centric foot placement can permit

a passive system to move over rough terrain, rather than rejecting terrain through

feedback.

3. We extend our energy technique to active systems in order to seed our trajectory

optimization framework online. We then validate these methods through an imple-

mentation on hardware.

1.3 Organization of the Thesis

This thesis begins with a survey of the literature regarding robot walking and control

in Chap. 2. We introduce hybrid dynamics and other important concepts in Chap. 3.

We additionally use this chapter to derive all of the dynamic models used within this

work. Chapters 4-6 contain the core of the contribution. We first introduce a novel

method of unifying foothold selection, motion planning and feedback control into a single

architecture. This work considers these three elements classically coupled and deliberately

plans them simultaneously to generate bio-mimetic humanoid locomotive behaviors. We

then recommend a technique of creating footstep and motion planning over rough terrain

using a method of energy management. And then combine the two ideas to form an

energy-based seed for the unified framework. We then show results for these methods in

simulation and on hardware in Chap. 7. Lastly, we will present the conclusion, future

work, and open problems in Chap. 8.
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Chapter 2

Literature Survey

This work draws on a vast body of prior work on humanoid planning and control. We

review relevant literature to provide context for the contributions presented throughout

the rest of this document.

2.1 Hierarchical Planning and Control

Conventionally, motion planning approaches for legged systems break the problem down

into three sub-problems: 1) The system surveys the terrain to identify candidate locations

for places to place its feet, possibly over a sequence of several steps; 2) Then, a motion

planning algorithm must determine how to generate dynamically-feasible paths between

these locations; and, 3) Finally, a feedback controller is used to stabilize the system

around the planned trajectories.

2.1.1 Footstep Selection

Footstep selection involves where and when to step, as shown in Fig. 2.1. Search-based

methods are the most common approach found in the literature for solving the footstep

location problem for legged robots. [1]–[7]. These inherently discrete methods first de-

termine an initial set of footstep locations at its initial position, then determine footstep

locations at the terminal position, and subsequently solve for number of intermittent

locations to link them.
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CHAPTER 2. LITERATURE SURVEY

Figure 2.1: Hierarchical Planning. There are three classic levels of planning. a) The
first action that occurs is footstep planning, which involves selection of where to place
the feet. b) This is followed by motion planning, or determining the dynamic motion to
transition between footholds. c) Finally, the trajectories must be stabilized along those
trajectories to ensure disturbances are rejected and proper foothold selection occurs.

Search-based planners then typically find locally-optimal foothold positions by search-

ing the reachable space, typically defined using the quasi-static stability margin of the

system within a support polygon (centered within the vicinity of the nominal step). Fur-

thermore, many previous works on footstep planning focus on systems that maintain

kinematic stability, which self-limits the possible foothold locations, thereby limiting the

types of terrain they can actually traverse. Six-legged and wheeled lunar rover ATH-

LETE [8], for instance, used a graph search to determine feasible and secure footholds,
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and then, through inverse kinematics, chooses the leg positioning required to connect

them [9]. Similarly implemented on the humanoid HRP-2 and quadraped Little Dog,

[10] conducted a blind search of the kinematically-reachable area using A* to select the

terrain of lowest cost and then used inverse kinematics to assign motion.

Researchers have extended footstep planning into dynamic motion using the idea of

zero moment point (ZMP) [11] walking to humanoids such as ASIMO [12] and HOAP-

2 [13]. ZMP is a point in which the dynamic reaction force with the ground does not

produce a moment in the horizontal direction [14]. Stable walking is guaranteed by

keeping the ZMP within the sole of the foot when in the single support phase or within

the support polygon for double leg support [15]. Although ZMP walking provides more

dynamic freedom than quasi-static walking, the selection of gaits are still limited. For

example, ZMP considers a constant COM height linear inverted pendulum (discussed in

Chap. 3), which allows researchers to use many forms of very fast and efficient linear

tools, yet considerably constricts the possible motion of the system.

Other dynamic approaches [16], [17] utilize offline generation of a library of motion

primitives that link states via optimized trajectories. Then, online, efficient search tools

can select the foothold positions that correspond to motion within their primitive library.

Though efficient in real-time planning, the size of the library grows exponentially with

the size of the state space and they can be difficult to adapt in complex terrains due to

a lack of generalizability.

Once the footstep plan culminates, the hierarchical approaches proceed on to the

motion-planning and controller derivation problems.

2.1.2 Motion Planning

Motion planning involves solving how to step at these foothold locations, as indicated

in Fig. 2.1. A number of continuous footstep and motion planning approaches have

recently been formulated as trajectory optimization problems [4], [18]–[20]. This is done

by using a direct collocation technique where the points on the state and control trajectory

along with other parameters form the decision variables. The main advantage of this
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class of approaches is that the dynamics of the system can be directly incorporated into

the motion planning portion of the approach. Prior related approaches [21] work in

near-real-time, but require global maps of the environment to be known ahead of time

(analytical solutions to the Jacobians of the constraints were prepared and provided to

the solver). In the formulation of this work, the terrain is unstructured and and therefore

this methodology is not sufficient for online planning as new terrain information is gained.

Additionally, these first two stages of planning can happen in reverse. ATHLETE,

for instance, uses a two-stage search strategy to determine footstep locations and strate-

gies, both remaining hierarchical [9], [22]. 1) if the terrain is permissive and the system

presumed stable, the planner chooses the body motion motion using a fixed gait before

later planning the exact footfalls and desired motion to keep the COM stable [23]. 2) If

terrain is irregular or steep and contact stability is important, the system first chooses

footfalls before choosing the required quasi-static motion to complete the steps.

It is important to note that motion planning is either developed using reduced order

dynamic models (ROMs) (e.g. planning for system COM, using model simplifications such

as inverted pendulum, etc.) or full-body dynamic models (complete joint planning). Few

footstep and motion planners incorporate full-body models, which complicates feedback

control.

2.1.3 Feedback Control

As the final part of the hierarchy shown in Fig. 2.1, the motion plan is then sent to the

controller for stabilization of the robot motion. If the motion planner considered only a

ROM, an additional layer of control must also now be considered. First, a high level con-

troller commands motions of specific body parts (e.g. hands, foots, and body) in cartesian

space. Next, a low level controller inputs the workspace motion and outputs joint level

controllers that control angular position, velocity, and torque. Atlas, for instance, used

this hierarchical control structure in the DARPA Robotics Challenge [24]–[26].

Skipping the two-step approach, some modern approaches consider the joint level con-

trol requirements directly in their motion planning. [27], [28] add joint level state and
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control constraints to their planner by combining control barrier functions and control

Lyapunov functions to the severely underactuated robot RABBIT [29]. This approach

allows the system to adjust motion and control foot placement in real-time, while respect-

ing the lower level control and state constraints. In another example, [30] pre-computed

a library of controllers about individual gaits for ATRIAS [31], enabling the robot robot

to react to disturbances in way that is tailored to that specific stepping motion.

Either way of parsing the controller, these robots require whole body control in order

to dynamically stabilize under uncertainty. We use the latter approach, where a full order

dynamic model is passed to the motion planner for optimization. We believe this yields

the strongest controller, where control is tuned to the full motion of the step rather than

compensating for error in the ROM.

2.2 Combining Footstep Selection, Motion Planning,

and Feedback Control

This hierarchical approach creates a loose coupling between planning footholds and the

underlying policy that executes the motion to carry out the footsteps. A dynamic motion

policy might underperform given a conservative footstep planner, while execution might

completely fail given an aggressive planner. Therefore, prior works have combined some

elements of footstep selection, motion planning and feedback control.

2.2.1 Combined Footstep Selection and Motion Planning

A novel approach to deconflict the hierarchical aggressiveness is through the passing of

certificates [32] that correspond to a level of agreement between the footstep plan and the

capabilities of the motion planners. These algorithms then use a local, gradient-based

search across the certificates to determine where to place feet in real-time. Utilizing the

trajectory optimization software CHOMP [33], the method was successfully implemented

on Little Dog in real-time during the DARPA Learning Locomotion project, yet this

architecture still assumes a priori terrain knowledge and cost and prior computation
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candidate actions.

Recently a number of approaches [4], [19], [20] have combined footstep selection and

motion planning into trajectory optimization formulations by directly incorporating the

dynamics into the footstep planning. [21] showed the approach can work in near-real-

time, but require a map of the environment to develop a phase-based parameterization

using analytical representations of the holonomic constraints imposed by the environment.

While these methods can yield both foothold and motion plans, they still do not consider

the amount of feedback control effort it takes to control around the motion plan.

Other planning methods [34], [35] discount discrete impulses at contact, assuming

the contact forces are exactly the forces required to maintain the foot in contact by

interacting with the environment through inelastic impacts and Coulomb friction. This

allows the planner to discount the hybrid nature of walking and consider only continuous

phases, allowing run-time speedups by direct sequential quadratic programming solvers

such as SNOPT [36] that require smooth functions. Although their methods require that

the dynamics remain continuous when passing through contact, we will show how we can

preserve the discontinuous nature of contact through our unified method.

2.2.2 Combined Planning and Control

Differential Dynamic Programming (DDP) [37] is a class of approaches that natively

produces not only the trajectory, but also the controller to track them. These methods

create a value function consisting of quadratic approximations of a cost-to-go function

and dynamics around a trajectory. A minimization of the value function is then used to

make incremental updates to the control during iterative several forward and backward

passes, in order to solve for locally-optimal trajectories and the controllers to stabilize

them.

To incorporate environmental information into their numerical optimization, prior

works demonstrated the ability to plan with pure-state and state constraints using DDP

variants [6], [38]–[41]. This is done by incorporating the quadratically-weighted linearized

state-input constraints into their cost function by using Lagrange multipliers [42], [43].
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In all of these methods, undesirable states are modelled as barrier-like constraints, i.e.

they are explicitly avoided. By modeling the hybrid legged robot as a switched system,

[44] extended hard-constrained DDP to legged locomotion, but additionally solves for

switching time parameters, a step unnecessary in our formulation. Current optimization-

based methods [20], [41] directly use the terrain height map as a constraint on the state

with the use of Lagrange multipliers.

Closely related to DDP is the iterative linear quadratic regulator (iLQR) [45], [46],

which has presented promising results in terms of solving planning problems in real-

time [47]. Instead of making quadratic approximations about the dynamics, the approx-

imations are linear creating a computationally simpler algorithm at the cost of a slightly

degraded local approximation. In fact, [45] showed that the DDP second order approxi-

mations of the dynamics were computationally expensive and potentially inaccurate. In

a series of reasonably complex control problems, they showed that iLQR turned out to be

more efficient by a factor of 10, recently enabling real-time applications for more complex

systems [47].

Our work in [48] is most closely related to [41], where they use a DDP variant called

Sequential Linear Quadratic (SLQ) programming in order to directly solve for the op-

timal time of contact tc for a series of steps. Their method overcomes the hurdle of tc

changing between iterations, which plagues most of the methods above since DDP han-

dles continuous phases as a time-varying tracking problem. Our method also solves for

tc, yet indirectly. Though, their approach segments each swing phase into many pieces

while our method projects the entire step onto a lower dimensional surface for optimiza-

tion. This work uses an SLQ formulation as the basis for our planner, in which we are

able to simultaneously solve for foothold locations, dynamically feasible trajectories, and

controllers that stabilize around that trajectory as shown in Fig. 2.2.

In this work, we differentiate these iterative variants as follows:

• DDP: value function consists of 2nd order (quadratic) approximation of both cost

function and dynamics

• SLQ: value function consists of 2nd order approximation of cost function but 1st
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Figure 2.2: Simultaneous Planning. All three levels of planning are combined into one
process. In this work, feedback controllers are adjusted such that the footholds conform
to the terrain using dynamically feasible trajectories. This planning process occurs once
per footstep, using a receding planning horizon under model predictive control.

order (linear) approximation of dynamics

• iLQR: value function consists of 1st order approximation of both cost function and

dynamics

2.3 Generating an Initial Guess to Seed the Planner

DDP is fundamentally a local optimization method, so the quality of the optimized plan

depends very directly on the quality of the chosen seed. Many works [47], [49]–[51] start

a DDP algorithm with the requirement to initiate with a feasible trajectory, but do not

offer methods as to how to generate the seed. This can be challenging over uneven terrain

and varying terrain heights for foot contact.

Additionally, the seed for one hybrid step must end at the beginning of the next

hybrid step. Considering an underactuated walking system with no ankle torque, many
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of the interim steps are likely to result in falling over if footsteps are not carefully stitched

together. Therefore, creating such an initial trajectory (consisting of several new steps)

creates another layer of planning that we refer to as seeding.

There are two common means to generate initial seeds for optimal motion planning

algorithms such as DDP and iLQR. The first is to use the aforementioned search-based,

feasible planning method to sample the state space. The second would be to utilize

a constraint to limit the seed to a kinematic search area that we know fits within the

dynamic construct. We approach the latter using a method of energy management based

on the idea of capture point [52]. Energy and capture point are intrinsically linked, and

together provide useful insight for generating walking motion.

2.3.1 Energy Management

There is a long history of energy-based analysis using passive dynamic walking systems.

One of the greatest strides in biped walking came forth in the early 1990s when McGeer

introduced the passive kneed walker [53], [54], a system of two interacting pendula using

gravity as a means of compelling forward motion. The system balanced energy through

an interplay of ground contacts (kinetic energy lost) and traveling down a slope (potential

energy gained), starting a trend of passive walking analysis [55]–[62]. This demonstrated

that there is grace, efficiency and robustness to simplicity and balance, and that walking

does not always require control. In a similar way, this work takes a step back to the

passive nonlinear inverted pendulum (NIP) model walking down a hill, and then later

applies the concept to that of controlled walking systems walking over various terrain.

2.3.2 Capture Point

Based on the dynamics of a linear inverted pendulum (LIP), capture point (CP) [52] was

developed as a means of controlling a force disturbance. A CP is a terrain location that

the robot can step in order to come to a complete stop. Although the idea of of CP can

apply to all forms of dynamic walking, researchers have used the concept primarily around

the simplified dynamics model of the LIP during ZMP walking. The dynamic equivalent
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of static walking, ZMP walking maintains the ZMP within the support polygon, but

allows the floor projected COM to deviate during a gait. For a known COM trajectory,

the CP is very fast to calculate and therefore very useful in push recovery [52], [63]–[69],

i.e. step on CP to cease movement. We use notion of CP in a related way to prior works,

but in a unique way that enables us to intelligently create multi-step seeds to be passed

off to our unified planning framework discussed in Chap. 4.
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Chapter 3

Hybrid Dynamic Walking Models

For over thirty years robotics researchers have used simple simple, reduced-order walk-

ing models that exemplify the salient features of biological walking but are much more

tractable to study [20], [54], [55], [70]–[72] than biologically-inspired designs that are true

to the motion of living creatures. In this chapter we introduce the basic assumptions as

well as specific walking models we use throughout the remainder of this work.

3.1 Hybrid Dynamics

For bipedal models with point feet, we assume there are two phases in a nominal step of

a walking gait. In the first, the robot pivots about a single supporting leg while its other

swings forward toward its next position on the ground. In the second phase the robot is

in double support, wherein both of the robot’s feet are in contact with the ground at the

same time, as shown in Fig. 3.1. This phase serves as the transition of the previous stance

leg becoming the new swing leg, and vice-versa. When both phases are complete (e.g. left

foot was swing for the last phase but is now stance for the upcoming phase, and vice

versa for the right foot), a step is complete and the cycle continues.

In this work, the double support phase is considered to be instantaneous, occurring

at the time the leg in swing impacts the ground. Analytically, we assume that this in-

stantaneous transfer of support defines a discrete mapping M from the state immediately
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Figure 3.1: Two Phases of a walking system. (a) Single support or swing phase. (b)
Double support phase. NOTE: A third aerial phase is not included in this work as we do
not consider running.

before collision q−
[n] to the state immediately after collision q+

[n]

q+
[n] = M

(
q−

[n]

)
, (3.1)

where n represents the discrete step number. The form of state q used within this work

is defined in Sect. 3.1.1. The impact map M represents the change in the system’s state

through the collision with the ground. In this work, we use the conservation of angular

momentum [73] to define M .

The swing phase consists of continuous dynamics f (q(t), τ (t)) swinging from post-

collision state q+
[n] until the time of the next collision tc of the new swing foot

q (tc) = q+
[n] +

∫ tc

0

f (q(t), τ (t)) dt

= q−
[n+1], (3.2)

where state q and control τ are explicitly dependent upon time. This pre-collision state

q−
[n+1] marks the next step as shown in Fig. 3.2. Combining (3.1) and (3.2), yields the
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Figure 3.2: Hybrid Dynamics. This image shows a step consisting of two phases. (a) Con-
tinuous motion with dynamics f that propagate the state space q(t) during the swing
phase. (b) A discrete mapping M at impact carries the state from a precollision-state q−

to a post-collision state q+. The pivot point changes to the the stance foot.

hybrid dynamics

q−
[n+1] = M

(
q−

[n]

)
+

∫ tc

0

f (q(t), τ (t)) dt. (3.3)

In addition, similarly to [52], [72], [74]–[77], we make the following assumptions:

1. Only one leg is in contact with the ground at a time (no double support phase).
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2. Ground impact is inelastic and the system does not rebound/bounce upon impact.

3. The stance foot does not slip and acts as an uncontrolled pin joint (some of the

referenced papers use friction models and/or ankle control).

3.1.1 Hybrid Swing Phase - Continuous Dynamics

During swing a planar walking system, this work uses the standard robot manipulator

equations of motion

M(Θ)Θ̈ + C(Θ, Θ̇)Θ̇ + g(Θ) = τ . (3.4)

For an S degree of freedom (S-DOF) system, Θ =

[
θ1 . . . θS

]T

represents the vector

of joint angles and Θ̇ and Θ̈ represent the first and second time derivatives, respectively.

τ =

[
τ1 . . . τS

]T
represents a S × 1 vector of joint torques. Within this work, it is

always assumed that the stance ankle is unactuated, therefore τ1 = 0. M(Θ) is the

S × S inertia matrix, C(Θ, Θ̇) is the S × S coriolis matrix, and g(Θ) is the S × 1

gravity-compensation vector. The values of M,C,g can be systematically derived from

the Euler-Lagrange equations in a recursive set of equations shown in [78], [79] using only

the Denavit-Hartenberg (DH) parameters [80] and the mass properties. For each S-link

walking system used within this work, the DH parameters and mass properties will be

provided.

For the planar manipulator shown in Fig. 3.2, we additionally need to keep track

of translational motion, which is captured as translation x and height z of the stance

foot which remains constant during the phase. Although the translational movement x, z

does not affect the continuous dynamics, it is necessary in our full hybrid mapping as

well as tracking the swing foot position relative to the terrain. The robot can now be
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fully represented by the (2S + 2)× 1 state space vector q

q =



Θ

Θ̇

x

z


.

Therefore, the continuous dynamics f are

f (q, τ ) = q̇ =



Θ̇

M(Θ)−1
(
τ −C(Θ, Θ̇)Θ̇− g(Θ)

)
0

0


. (3.5)

3.1.2 Hybrid Collision Map - Discrete Dynamics

When the swing foot eventually touches the ground, signaling the transition to double

support, there is a discontinuous jump in the state q due to the impulse the swing foot

experiences when contacting the environment. At this instant the swing foot becomes

the stance foot, and vice versa, as shown in Fig. 3.3.

We use an S × S configuration matrix Qq that relates the pre-collision configuration

to the post-collision configuration

Θ+ = Qq

(
Θ−) . (3.6)

The world coordinates of the end effector (swing foot) at touchdown can be determined

by the configuration of the joints and the stance foot global coordinates x−, z−. We

assume there to be a pin joint at this touchdown location, which becomes the new stance

foot reference for the succeeding continuous phase

x
z


+

= Qxz

(
q−) . (3.7)
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Figure 3.3: Configuration Change at Impact. (a) Pre-Impact Configuration q− (b) Post-
Impact Configuration q+

Finally, we need to determine the relationship between the pre- and post-collision joint

velocities, Θ̇
−

and Θ̇
+

, respectively. The double support phase is assumed instantaneous

as mentioned in Sect. 3.1, which means that the internal joint configuration does not

change during collision and the external forces from the ground must be impulsive in

nature. Since the only external force on the biped is the impact force at the foot, the

angular momentum about the touchdown foot is conserved throughout impact. The

angular momentum L is determined by summing its center of mass (COM) momentum

and the momentum of the inertia about that COM.

Ls =
s∑

a=1

ra ×mava + jsθ̇a (3.8)

where ra = rcoma − rTD, and

va =
a−1∑
b=1

lb
(

b∑
d=1

θ̇d

)
− cos

(∑b
d=1 θd

)
− sin

(∑b
d=1 θd

)
0


+ lca

(
a∑

d=1

θ̇d

)
− cos (

∑a
d=1 θd)

− sin (
∑a

d=1 θd)

0

 .
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Figure 3.4: Angular Momentum about Impact Foot. (a) Pre-Impact Configuration q−.

All terms are written in terms of Θ−, Θ̇
−

, x−, and z−. (b) Post-Impact Configuration q+.

All terms are written in terms of Θ+, Θ̇
+

, x+, and z+.

The vector rcom represents the position of the center of mass (COM) of link a and vector

rTD represents the position vector of the end effector at touchdown in the stance foot

frame. The vectors for the ath “point mass” are shown in Fig. 3.4. The link lengths li

and length to the link COM lci are scalar distances in the link frame. The link moment

of inertia about its COM for planar rotations is annotated by scalar js.

The link angular momentum Ls in (3.8) can be represented by the linear relationship

Ls =Qq̇sΘ̇,

where the 1×S vector Qq̇s contains the configuration and mass terms for the sth link.

22



CHAPTER 3. HYBRID DYNAMIC WALKING MODELS

The set of all link momenta can be represented by the S × 1 vector L


L1

...

LS

 =


Qq̇1

...

Qq̇S



θ̇1

...

θ̇S


L =Qq̇ (Θ) Θ̇,

where Qq̇ is the S × S configuration matrix for the system of S links about the impact

point. The pre- and post-collision angular momenta about the impact point can be

written as L− and L+, respectively.

For an inelastic collision, the force at touchdown is the only external force on the

system. Since the touchdown force is a vector through the pivot point, it has no bearing

on angular momentum about that point.

Therefore for a rigid body, we can determine that the angular momentum about that

new pivot is preserved through collision. We can then use this equivalence to solve for

the post collision-velocity Θ̇
+

L+ =L−

Qq̇+

(
Θ+
)
Θ̇

+
=Qq̇−

(
Θ−) Θ̇

−

Θ̇
+

=
[(
Qq̇+

(
Θ+
))−1Qq̇−

(
Θ−)] Θ̇

−
(3.9)

Combining (3.6) and (3.9) makes it possible to rewrite the post-collision velocity in

terms of the pre-collision states only

Θ̇
+

=
[(
Qq̇+

(
Θ−))−1Qq̇−

(
Θ−)] Θ̇

−

=Q−1
q̇+Qq̇−Θ̇

−
(3.10)

At impact, the pre-collision states q− can be transitioned to post-collision states q+
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using (3.6), (3.10), and (3.7)



Θ

Θ̇

x

z



+

=


Qq

Q−1
q̇+Qq̇−Θ̇

Qxz


−

(3.11)

q+ =M
(
q−) . (3.12)

3.2 Planar Walking Systems

This work considers several different models for dynamic walking. This section breaks

out three models, each increasing in complexity. The first considers a passive centroidal

system with rigid, massless legs. The second adds masses to the legs, creating the re-

quirement to actively swing a massive leg during the continuous swing phase. The final

model, which we use on our hardware, adds knees and a torso to the model, creating a

more comprehensive biped.

3.2.1 Nonlinear Inverted Pendulum (NIP) Model

The simplest of these models is a point mass with mass-less legs. Many prior works have

investigated this system given the assumption that they are able to maintain the COM

at a constant height z [52], [81] (i.e. ż = z̈ = 0). In this case, the system’s dynamics in

each swing phase become linear, resulting in the well known LIP model for walking as

per Fig. 3.5. Though relatively simple, the LIP model has been enormously successful in

prior works on bipedal walking [12], [82]–[89]. A key assumption for the LIP model are

that impact is smooth and continuous, creating no discrete events or hybrid dynamics.

The NIP model handles walking motion instead with a rigid stance leg, shown in

Fig. 3.5. Although still a simple system, the stiff leg creates an arcing motion and

complicates the dynamics such that they are no longer linear. Note, the system COM

is no longer restricted to the transverse plane (ż 6= 0). The swing leg impacts the
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Figure 3.5: Simple Walking Models with Massless Legs. a) The legs of the LIP model
provide exactly the vertical force (F = mg) necessary to maintain the system COM at a
constant height z. The leg positioning and force control are assumed to be a problem for
a lower level controller to regulate. The system smoothly moves through elastic contact
with the ground, providing completely linear dynamics. b) The rigid system pivots about
the stance foot, moving the COM along an arc with nonlinear dynamics f . At the moment
of contact, the system loses energy through a discontinuous, inelastic collision M . This
system has hybrid dynamics.

ground with a non-conservative impact, wherein kinetic energy is lost from the system

and an instantaneous change in pivot point occurs as discussed in Sect. 3.1.2. This work

considers a passive NIP system with massless legs (see Fig. 3.6) walking downhill whose

DH parameters and mass properties are given in Table 3.1.

Table 3.1: Denavit-Hartenberg Parameters and Mass Properties for Nonlinear Inverted
Pendulum Walker with Massless Legs

Link ai αi di θi mi lci ji Description
1 l 0 0 θ1 m l 0 stance
2 l 0 0 θ2 0 0 0 swing
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Figure 3.6: Biped Walker using the Nonlinear Inverted Pendulum Model. Passive system
with point mass at the hip and a pin joint at the stance foot.

The dynamics can be given by (3.4) and

M(q) =

ml2 0

0 0

 (3.13)

C (q, q̇) = 0 (3.14)

g (q) =

mgl sin(θ1)

0

 , (3.15)
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and τ2 = 0. Following (3.11), the impact map can be given by

Qq =

θ1 + θ2 − π

−θ2


−

(3.16)

Qq̇+ =

ml2 0

0 0

 (3.17)

Qq̇− =

ml2 cos θ2 0

0 0


−

(3.18)

Qxz =

x− l (sin θ1 + sin(θ1 + θ2))

z + l (cos θ1 + cos(θ1 + θ2))


−

. (3.19)

We assume that the swing leg is massless and therefore its velocity θ̇2 does not appear

in the formulation of (3.13)-(3.18). This leads to a simplified form of the continuous and

discrete dynamics given by

f(t) =



θ̇1(t)

g
l

sin (θ1(t))

0

0


(3.20)

q+ = M(q−)

θ1

θ2

θ̇1

x

z



+

=




1 1 0

0 −1 0

0 0 cos θ2


− 

θ1

θ2

θ̇1


−

+


−π

0

0


− sin θ1 − sin(θ1 + θ2)

cos θ1 + cos(θ1 + θ2)


−

l +

x
z


−


. (3.21)

Since the swing leg is considered massless and can be placed arbitrarily, the inter-leg an-

gle θ2 does not appear in the continuous dynamics (3.20), yet its pre-impact configuration

does appear in the impact map (3.21). Therefore, θ̇2 and θ̈2 are excluded from the hybrid
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Figure 3.7: Biped Walker using the Compass Gait Walker Model. Point Masses at the
hip and knees, with a pin joint at the stance foot.

dynamics in (3.20) and (3.21).

3.2.2 Compass Gait Walker (CGW) Model

The Compass Gait Walking model (CGW) is closely related to the NIP model [71], [90].

Kinematically, the CGW is the same as the NIP, however the main difference is that the

CGW assumes there are masses at the knees of the system as shown in Fig. 3.7. In

this model, the continuous dynamics and footstep placement depend explicitely on the

motion of the swing leg. The DH parameters are given in Table 3.2.

Table 3.2: Denavit-Hartenberg Parameters and Mass Properties for Compass Gait Walker

Link ai αi di θi mi lci ji Description

1 lcalf 0 0 θ1 m1
lcalfm1+lthighmH

m1+mH
(lcalf + lthigh − lc1)2mH stance leg

+lthigh +mH +(lc1 − lcalf )2m1

2 lthigh 0 0 θ2 m2 lthigh 0 swing leg
+lcalf
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The dynamics for the CGW system, in the form (3.4), are defined by

M(q) =

2 (c1 + c2) (1 + cos θ2) + c3 c1 + (c1 + c2) cos(θ2)

c1 + (c1 + c2) cos(θ2) c1

 (3.22)

C (q, q̇) =

− (c1 + c2) sin θ2θ̇2 − (c1 + c2)
(
θ̇1 + θ̇2

)
(c1 + c2) sin θ2θ̇2 0

 (3.23)

g (q) =

c4 sin(θ1) + c5 sin(θ1 + θ2)

c5 sin(θ1 + θ2)

 , (3.24)

with constant parameters: c1 = m2l
2
thigh, c2 = m2lcalf lthigh, c3 = m2l

2
calf+

(lcm1+lcmH+ltmH)2

m1+mH
,

c4 = −g (m1lc + (m2 +mH) (lc + lt)), and c5 = −gm2lthigh. The impact map, in the form

(3.12), is given by

Qq =

θ1 + θ2 − π

−θ2


−

(3.25)

Qq̇+ =

 c6 + c7 cos θ2 c6

c6 + c8 + c9 cos θ2 c6 + c7 cos θ2


−

(3.26)

Qq̇− =

 c10 0

c10 − c2 + c11 cos θ2 −c2


−

(3.27)

Qxz =

x− (lthigh + lcalf ) (sin θ1 + sin(θ1 + θ2))

z + (lthigh + lcalf ) (cos θ1 + cos(θ1 + θ2))


−

(3.28)

with constant parameters: c6 =
m2

1l
2
thigh

m1+mH
, c7 = m1lthigh (lcalf + lthigh), c8 = m1m2l2c

m1+mH
+

(m1 +mH) (lcalf + lthigh)
2, c9 = 2m1lthigh (lthigh + lcalf ), c10 = −m1lthigh(m1lcalf+mH lcalf+mH lthigh)

m1+mH
,

and c11 = − (lcalf + lthigh) (lcalf (m1 +m2 +mH) +mH lthigh).

29



CHAPTER 3. HYBRID DYNAMIC WALKING MODELS

Figure 3.8: Biped Walker using the 5-Link Model. Each of the 5 links has a moment
of inertia ji about its center of mass mi, located at length lci from the proximal joint.
Torque is available at the hips and knees, and the system has a pin joint at the stance
foot.

3.2.3 5-Link Model

The final model we consider in this work is the 5-link biped. This system is representative

of a humanoid as it has bending knees and a torso, as shown in Fig. 3.8. We assume that

the system is symmetric DH parameters defined in Table 3.3. In this work, we create the

Table 3.3: Denavit-Hartenberg Parameters and Mass Properties for 5-Link Walker

Link ai αi di θi mi lci ji Description
1 lcalf 0 0 θ1 mcalf lcalf − lccalf jcalf stance calf
2 lthigh 0 0 θ2 mthigh lthigh − lcthigh jthigh stance thigh
3 0 0 0 θ3 mhip lchip jhip torso
4 lthigh 0 0 θ4 mthigh lcthigh jthigh swing thigh
5 lcalf 0 0 θ5 mcalf lccalf jcalf swing calf

matrices M,C,g symbolically for online computation of the continuous dynamics f and

the configuration matrices Qq,Qq̇+,Qq̇−,Qxz necessary to generate the discrete impact

map M .
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In this chapter, we developed three bipedal models of increasing complexity, which

will be utilized in the subsequent chapters. Understanding the interaction between the

continuous and discrete elements of the hybrid dynamics is essential to grasp the next

chapter where we develop the unified architecture.

31



Chapter 4

Unified Planning for Legged Systems

in Real-Time

The unified planning and control framework presented in this work draws inspiration

from the hybrid systems, nonlinear analysis, and nonlinear control communities. We add

control to the discrete and continuous layers of the hybrid system derived in Chap. 3.

Then we project it onto a lower dimensional manifold for optimization by a trajectory

optimization framework. We will show how the unified method is able to simultaneously

place footholds, shape trajectories, and tune feedback controllers.

4.1 Hybrid Control

We assume a hybrid system that can handle once-per-step control parameter updates. In

this work, we separate them into two categories, as shown in Fig. 4.1:

• uI: discrete actions such as impulses that occur during the instantaneous state

transition of contact. Examples of impulsive control include forces created by an

instantaneous toe push-off.

• uK: parameters that are used to control the trajectory of the continuous phase such

as feedback gains or the coefficients of a polynomial representing the trajectory

shape
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Figure 4.1: Sample Control Actions during Hybrid Dynamics. (a) The collision is mapped
from some state before impact q− to a post-collision state q+ by discrete impact function
M . An instantaneous control action such as an impulse or movement of a massless
limb could be present. (b) The swing phase represents continuous dynamics q̇(t) =
f ( q(t), τ (t) ) integrated until the time of collision t−c[n+1].

We now add control uI to our impact map from (3.1). This transition will consist

of both non-conservative energy loss due to collision with the ground and the applied

impulses to generate the post-collision state

q+ = M(q−,uI). (4.1)

Likewise, we modify the continuous controller from (3.5) to handle once-per-step pa-

rameter tuning. Instead of using a time-varying control like τ (t), we use time-independent

parameters uK from the continuous controller that define τ (t)

q̇ =f (q(t),uK) . (4.2)

One such example of time-independent parameters uK are the PD gains for joint control
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of a single step. For example, if an outer loop changed the target joint angles, it would be

ideal if the outer loop could also tune the inner-loop gains to optimize the inner response.

Control u[n] is the vector of m once-per-step control parameters for a given step n

u[n] =

uI

uK

 . (4.3)

Now, using (4.1), (4.2), and (4.3), the controlled hybrid map (variant of (3.3)) is now

q−
[n+1] = M

(
q−

[n],u[n]

)
+

∫ t−
c[n+1]

t+
c[n]

f
(
q(t),u[n]

)
dt, (4.4)

where t+c[n] represents the time of collision n marked by post-collision state q+
[n]; and t−c[n+1]

represents the time of collision n+1 marked with pre-collision state q−
[n+1]. It is important

to understand that the control u[n] is not time dependent, but rather step n dependent,

an important distinction that necessarily differentiates our unified framework from other

works.

4.1.1 Projected Mapping

For a walking system, (4.4) will repeat itself at every successful step. In dynamical

systems, a return map, or Poincaré map [91], is a useful tool for analyzing the behavior

of such systems. We will demonstrate how to create such a mapping, and we will explore

its particular usefulness for a walking system in Sect. 4.1.3.

We mark the intersection of contact with the ground as a section that is destined to

repeat through the same cycle. This surface of section s.o.s. [92] is a lower-dimensional

subspace x that captures the entire properties of the orbit itself. For instance, consider

a 2D pendulum with state q =

[
θ θ̇

]T

that could be sliced at θ = 0 whenever θ̇ > 0.

When the state space is projected onto this slice, θ disappears and only θ̇ is relevant.

Additionally, only θ̇ and the definition of the section (θ = 0) are necessary to reconstruct

the full state space. Analytically, we define this projection as D, with inverse D−1, that
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Figure 4.2: Mapping of Projected Hybrid Dynamics. This projection slices the surface of
section s.o.s. (a) immediately before impact: (b) dimensionality reduction D, (c) impact
mapping M of contact, (d) continuous dynamics f of the swing phase, and (e) inverse
dimensionality D−1 to arrive back at the mapping at a new fixed state x[n+1] (f).

we assume is defined uniformly

x = D(q) (4.5)

q = D−1(x).

We define the mapping P from one s.o.s. x[n] to the next x[n+1] as

x[n+1] = P
(
x[n],u[n]

)
. (4.6)

We will utilize Fig. 4.2 to explain how the mapping (4.6) fits the hybrid model. This

work defines the return map at the time immediately before contact t−c for the nth step.

35



CHAPTER 4. UNIFIED PLANNING FOR LEGGED SYSTEMS IN REAL-TIME

a) The reduced state x[n] and once-per-step control actions u[n] are defined on the

surface.

b) The mapping completes a dimensionality increase D−1 to reinstate the full system

state space q−
[n] at time t−cn . Additionally, the control action u[n] is deconstructed

into its discrete impulses uI[n] and continuous parameters uK[n]
as per (4.3).

c) At contact, discrete mapping M represents the combination of the inelastic collision

with the ground and discrete control actions uI[n] to generate the post-collision

state q+
[n].

d) From post-impact, the dynamics f of the swing phase are integrated until next

contact with the ground at q−
[n+1]. The swing phase utilizes the continuous control

parameters uK[n]
to fully define its feedback controller for the entirety of the nth step.

e) The system is then reduced back onto its surface of section by the discrete projection

function D.

f) We end at x[n+1], back on the s.o.s.

We describe this projection mapping analytically by

P
(
x[n],u[n]

)
=D

[
q
(

t−c[n+1],x[n],u[n]

)]
=D

[
q+

[n] +

∫ t−
c[n+1]

t+
c[n]

f
(
q(t),u[n]

)
dt

]

=D

[
M
(
D−1

(
x[n]

)
,u[n]

)
+

∫ t−
c[n+1]

t+
c[n]

f
(
q
(
t,x[n],u[n]

)
,u[n]

)
dt

]
. (4.7)

We must note that (4.7) is not a closed-form solution of the hybrid dynamics, but rather

involves an integration until next contact, determined by

φ
(
q
(
t−c[n+1],x[n],u[n]

))
= 0, (4.8)

where φ is a constraint denoting collision of the foot with the terrain surface. For a

walking system, (4.7) is equivalent to propagating the dynamics forward until the swing
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foot comes in contact with the terrain map (4.8) at t−c[n+1].

4.1.2 Linearization of the Projected Dynamics

In Sect. 4.1, we derived the projected dynamics P (4.6), which where shown to represent

a discrete slice of a trajectory known as a s.o.s. In the following section, we will then

derive a discrete-time feedback controller to “regulate the system on the s.o.s..”

We first compute the linearization of (4.6) by computing a first order Taylor Series

expansion about fixed point
(
x∗

[n],u
∗
[n]

)

x[n+1] = x∗
[n+1] + A∗

[n]

(
x[n] − x∗

[n]

)
+ B∗

[n]

(
u[n] − u∗

[n]

)
x̄[n+1] = A∗

[n]x̄[n] + B∗
[n]ū[n] (4.9)

where

A∗
[n] =

∂P
(
x∗

[n],u
∗
[n]

)
∂x[n]

, B∗
[n] =

∂P
(
x∗

[n],u
∗
[n]

)
∂u[n]

.

While some passive biped walking systems (e.g. rimless wheel, CGW) can demonstrate

an unforced natural response that is stable [75] when moving downhill, the majority of

systems require active control. Introducing the idea of active control on a finite-horizon

s.o.s. to optimize walking for a legged system is a novel contribution in this work.

Computing the linearized dynamics as defined on the s.o.s. (A∗
[n],B

∗
[n]) consist of de-

riving the full linearization of (4.7), which can be given as

∂P

∂x[n]

=
∂D

∂q

∂M

∂q

[
f(q(t))

∂t−c[n+1]

∂x[n]

+
∂q(t)

∂x[n]

]∣∣∣∣∣
ι

(4.10)

∂P

∂u[n]

=
∂D

∂q

[
∂M

∂q

[
f(q(t))

∂t−c[n+1]

∂u[n]

+
∂q(t)

∂u[n]

]
+

∂M

∂u[n]

]∣∣∣∣∣
ι

(4.11)

and evaluated at t = t−c[n+1], time of next φ contact. Full derivation, method for solving,

and definition of “ι” are shown in App. B.
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Figure 4.3: Projection of Hybrid Dynamics onto a Lower Dimensional Manifold. Hybrid
dynamics of a periodic orbit fully represented as two points of discrete dynamics where
x[n+1] = P(x[n],u[n]). Control u[n] represents all parameters that can be changed once-
per-step, such as instantaneous actions and feedback gains.

4.1.3 Nonlinear Analysis of the Projected Dynamics

The hybrid dynamics are projected onto a lower dimensional surface P , as shown in

Fig 4.3. This section will demonstrate how to simultaneously adjust states and the once-

per-step controller on the s.o.s., which will be shown to have some added benefit for a

walking system.

This section is used to construct a controller to stabilize the system of the form

x̄[n+1] =
(
A∗

[n] −B∗
[n]K

fb
[n]

)
x̄[n]. (4.12)

We will show how the iLQR update adjusts the old feedback controller Kfb
[n]old to a new

controller Kfb
[n]new (denoted by the subscript old and new, respectively), thus changing

the linearization fixed point from
(
x∗

[n],u
∗
[n]old

)
to
(
x∗

[n],u
∗
[n]new

)
. Classically, a first-order

iLQR algorithm would update the controller with u∗
[n]new = u∗

[n]old + Kfb-inc
[n] x̄[n]. Such an
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update to (4.12) looks like

x̄[n+1] = A∗
[n]x̄[n] + B∗

[n]

(
u[n] − u∗

[n]new

)
using ū[n] = u[n] − ū∗

[n]

= A∗
[n]x̄[n] + B∗

[n]

(
u[n] − u∗

[n]old −Kfb-inc
[n] x̄[n]

)
using u∗

[n]new = u∗
[n]old + Kfb-inc

[n]

= A∗
[n]x̄[n] −B∗

[n]

((
Kfb

[n]old + Kfb-inc
[n]

)
x̄[n]

)
using u[n] − u∗

[n]old = −Kfb
[n]oldx̄[n]

=
[
A∗

[n] −B∗
[n]

(
Kfb

[n]old + Kfb-inc
[n]

)]
x̄[n]

=
[
A∗

[n] −B∗
[n]K

fb
[n]new

]
x̄[n] using Kfb

[n]new = Kfb
[n]old + Kfb-inc

[n] .

(4.13)

(4.13) should make it clear that the first-order iLQR algorithm is updating, not replacing,

the old feedback gains with a feedback increment to optimally stabilize the system about

the original fixed point x∗
[n+1].

We demonstrated the first-order incremental update to the gain matrix K in (4.13),

but our system is built using a second order version of finite-horizon SLQ Regulator as

derived in App. A. One key difference for our 2nd order derivation also adds a feedforward

increment uff-inc such that

u∗
[n]new =u∗

[n]old + uff-inc
[n] + Kfb-inc

[n] x̄[n]. (4.14)

When we add (4.14) to our system, an additional term B∗
[n]u

ff-inc
[n] shows up

x̄[n+1] = A∗
[n]x̄[n] + B∗

[n]

(
u[n] − u∗

[n]new

)
= A∗

[n]x̄[n] + B∗
[n]

(
u[n] − u∗

[n]old − uff-inc
[n] −Kfb-inc

[n] x̄[n]

)
using (4.14)

=
[
A∗

[n] −B∗
[n]

(
Kfb

[n]old + Kfb-inc
[n]

)]
x̄[n] −B∗

[n]u
ff-inc
[n] using (4.13). (4.15)

The addition of this new term −B∗
[n]u

ff-inc
[n] is important to the context of walking
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because it moves the fixed point. Assuming x̄[n] = 0, (4.15) becomes

x̄∗
[n+1]old = −B∗

[n]u
ff-inc
[n]

x[n+1] − x∗
[n+1]old = −B∗

[n]u
ff-inc
[n]

x[n+1] = x∗
[n+1]old −B∗

[n]u
ff-inc
[n] . (4.16)

By establishing that the fixed point is moving in (4.16), we can define the state space

adjustment x∗−inc
[n+1] caused by the feedforward increment as

x∗−inc
[n+1] = −B∗

[n]u
ff-inc
[n] (4.17)

and arrive at

x∗
[n+1]new = x∗

[n+1]old −B∗
[n]u

ff-inc
[n]

= x∗
[n+1]old + x∗−inc

[n+1] . (4.18)

By joining (4.18) and the relationship Kfb
[n]new = Kfb

[n]old+Kfb-inc
[n] into (4.15), we arrive at

an expression with both a feedforward and feedback term around the new, SLQ-modified

fixed point
(
x∗

[n],u
∗
[n]new

)

x̄[n+1]new =
(
A∗

[n] −B∗
[n]K

fb
[n]new

)
x̄[n]. (4.19)

(4.16)-(4.19) provide some very important insight into what the feedforward control

increment creates an adjustment to the target fixed point x∗
[n+1]old on the s.o.s. In the

context of the walking robot, uff-inc
[n] is directly altering where the robot steps while Kfb-inc

[n]

provides the additional stability required in order to stabilize around the new target step

location x∗
[n+1]new as shown in Fig. 4.4. Additionally, since each controller is tuned to the

nth step, we iterate forward and backwards until the control increments disappear below

a set tolerance and x∗
[n+1]new = x∗

[n+1]old and the planned foothold stops moving.
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Figure 4.4: SLQ Adjusting the Footstep Location on the Terrain. The feedforward control
increment uff−inc

[n] derived from SLQ adjusts the target footstep location on the terrain,

re-positioning the target from x∗
[n+1]old to x∗

[n+1]new. The feedback increment Kfb−inc
[n] helps

stabilize the motion around this newly-created trajectory.

Fig. 4.5 depicts a simple hybrid system being mapped within an MPC framework.

In the outer loop, footsteps are optimized using the second order SLQ method discussed

above. Inside the discrete step, the entire process from (4.7) occurs. On the SLQ forward

pass, the entire hybrid dynamics are simulated forward. During the SLQ backward pass,

the control u∗
[n] and targets for state x∗

[n+1] are updated per (4.14)-(4.18). To account for

discretization error, the feedforward element is iteratively adjusted using a line search

to ensure selection of the optimal solution. The entire process repeats until convergence

of
∥∥∥uff-inc

[n]

∥∥∥ (and thus
∥∥∥x∗−inc

[n+1]

∥∥∥) below an acceptable tolerance.

4.2 Nonlinear Planning and Control in Unstructured

Terrain

We intend to generate continuous maps that approximate the local terrain. Then we

assign terrain costs based on those maps. Subsequently, the terrain costs will be incor-

porated into the planning framework to help simultaneously plan footsteps and derive
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Figure 4.5: Hybrid Dynamics with discrete controllable parameters u[n] tuned by an SLQ
controller operating under an MPC architecture. Discrete actions uI represent impulses
or other such instantaneous actions occurring at impact map M . Parameters uK are used
to control the continuous phase f , initiated after impact mapping. Projection mapping
D and its respective inverse D−1 encountered leaving and entering the mapping. The
entire discrete step n can be denoted by discrete projection mapping P . While N steps
are planned by SLQ controller, only a single step is shown for clarity.

controlled motion plans.

To produce a set of appropriate footholds, a footstep selection planner first needs

terrain cost information regarding desirability of the nominal stepping locations X∗ (as

shown in Fig. 1.1). A terrain cost point cloud could be generated for a landscape from

some terrain-perception based on desirability of footstep locations. Local approximations

of continuous cost functions should created using subsets of this data. Data is selected in

the region of footstep impact and footstep adjustments will be made based on the local

gradient as shown in Fig. 4.6. The creation of a terrain cost map based on environmental

information gathered is dependent upon the robot and task, which is beyond the scope of

this work. However, We assume that the terrain perception model operates fast enough

in generating terrain cost maps so as to not create a planning bottleneck for the system.

We fit a polynomial p[n](x) to a point cloud in the local vicinity of x∗
[n]. Fig. 4.6 shows

second order polynomials generated using data at ±20% of the nominal step size, but size

of the region will be dependent upon the task and quality of the data. Polynomials must
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Figure 4.6: Local 2nd order terrain cost polynomials overlaid onto 1D terrain cost point
cloud shown with a receding horizon.

be at least second order such that the terrain cost does not disappear at the Hessian of

the SLQ value function (see App. A).

4.2.1 Sequential Linear Quadratic Regulator Between Poincare

Maps

Next, we give more details upon how we combine both the discrete linearization of the

hybrid dynamics (4.9) and the terrain cost into a single SLQ optimization that will derive

an optimal feedback controller, design the motion in between contacts, while simultane-

ously planning feasible foothold locations over the terrain map. In (4.9), the system

is linearized about an initial sequence of trajectories and we showed how to implement

control increments in Sect. 4.1.3. This section will show how to solve for new control

increments using discrete SLQ.

Discrete SLQ addresses the problem

min
u(·)

{
Φ̄(x[N]) +

N−1∑
n=0

L̄[n]

(
x[n],u[n]

)}

subject to: x[n+1] = P(x[n],u[n]) x[0] = x0, (4.20)

Φ(x[N]) =
1

2
xT

[N]Q[N]x[N] + xT
[N]q[N] + q[N] (4.21)

L[n](x[n],u[n]) =
1

2

x[n]

u[n]


T Q[n] PT

[n]

P[n] R[n]


x[n]

u[n]

+

x[n]

u[n]


T q[n]

r[n]

+

q[n]

r[n]

 (4.22)
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where P(x[n],u[n]) represents the Poincare map defined in (4.7). A quadratic terrain cost

term is added to the original final and running costs of (4.20):

Φ̄[N](x[N]) =Φ[N](x[N]) + p[N](x[N]) (4.23)

L̄[n](x[n],u[n]) =L[n](x[n],u[n]) + p[n](x[n]) (4.24)

If the terrain polynomial was less than quadratic, the terrain cost would disappear in

the second order derivatives of the cost function, which are found within of the control

updates, shown below. The main idea that underlies SLQ is to minimize a running cost-

to-go function [45], [93]. The SLQ derivation we employ in this work is shown in App. A,

but are summarized here:

g[n] =
(
L̄∗
u + s[n+1]B[n]

)T
(4.25)

G[n] =
(
L̄∗
xu + AT

[n]S[n+1]B[n]

)T
(4.26)

H[n] =
(
L̄∗
uu + BT

[n]S[n+1]B[n]

)T
(4.27)

uff-inc
[n] =−H−1

[n] g[n] (4.28)

Kfb-inc
[n] =−H−1

[n] G[n] (4.29)

S[n] =L̄∗
xx + AT

[n]S[n+1]A[n] +
(
Kfb-inc

[n]

)T
G[n] +

((
Kfb-inc

[n]

)T
HT

[n] + GT
[n]

)
Kfb-inc

[n] (4.30)

s[n] =L̄∗
x + s[n+1]A[n] +

(
uff-inc

[n]

)T
G[n] +

((
uff-inc

[n]

)T
HT

[n] + gT
[n]

)
Kff-inc

[n] . (4.31)

Derivatives and seconds derivatives in (4.25)-(4.30) are addressed with subscripts in a

manner as follows: Φ̄∗
u and L̄∗

xx represent the control derivative of the endpoint cost and

state Hessian of the running cost, respectively, evaluated around a linearization of the

nominal trajectory.

The SLQ algorithm is summarized as follows:

1. Nominal Seed: Initiate with a feasible nominal seed U∗ =

[
u∗

[0] . . . u∗
[N−1]

]
from initial state x0 using (4.7) to derive an initial nominal trajectory X∗ =[
x∗

[0] . . . x∗
[n]

]
.
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2. Gradient of Seed: Compute the derivatives A∗
[n],B

∗
[n] of the linearization around

the fixed point set (X∗,U∗) as per (4.9)-(4.11).

3. Nominal Cost: Compute initial cost J per (4.21)-(4.22) for (X∗,U∗).

4. Backwards Riccati: Solve backwards for the feedforward uff-inc
[n] and feedback Kfb-inc

[n]

control increments using (4.28)-(4.29). In this step (4.31)-(4.31) are stepped back-

wards from N to 1. The Ricatti-scheme is initialized with S[N] = Φ̄∗
xx, s[N] = Φ̄∗

x.

(4.25)-(4.27) are intermediate solutions.

5. Line Search: Using feedback control increment policy (4.14) that includes coef-

ficient α to vary the amount of feedforward control is added to the system. This

process accounts for discrepancies within the linearization and the fact that we are

adjusting both x∗
[n+1] and u∗

[n] simultaneously.

Policy Update: u∗
[n]new = u∗

[n]old + αuff-inc
[n] + Kfb-inc

[n] x̄[n]

Forward simulate (4.7): With full control increment (α = 1). Lower α towards α =

0 and repeat until a minimum cost Jα is reached. Note: at α = 0, x̄∗
[n+1] = x̄∗

[n] = 0

and x*-inc
[n] = 0.

6. Select new policy at min(Jα). U∗ ← U∗
min(Jα)

7. Repeat steps (1-5) until
∣∣∣∣∣∣u[ff-inc]

[n]

∣∣∣∣∣∣ < tol

This is the planning framework referenced within Fig. 1.1. Steps (1-6) must occur

once-per-step for a legged system for an N step horizon. For our legged system, discrete

point “n” represents a footstep and the entire projected hybrid step (4.7) is linearized

per (4.9). Thus, N = 10 represents a 10-step look-ahead optimization. The size of the

horizon can be driven by either computational or vision limits. In Chap. 7, we will discuss

the time it takes to complete this process on hardware. Note, our algorithm gains extra

speed (discussed in Chap. 7) by combining steps (1-2) into a single analytical solution

and integrating both at once.

For legged locomotion, we found that heavy weighting of the final cost Φ[N] (relative to

intermediate costs L[n]) is very important, allowing dynamic motion of the intermediate
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Figure 4.7: Schematic diagram for a legged robot navigating rough terrain, shown with
a mirrored terrain cost. Nominal foothold positions are iteratively adjusted toward at-
tainable areas of lower terrain cost by a method of gradient descent. Overall multi-step
cost outweighs local cost, evident when Step 4 slightly ascends the slope to assist with
the steeper Step 5 descent. The initial model is that of a 2-link compass gait walker over
flat terrain.

N-1 steps while fixing the final step.

All three steps of planning and control (footsteps, motion, and feedback) are created

concurrently by way of online quadratic programming on the s.o.s., an informed dis-

cretization of walking motion by using, and imposing soft penalties on foothold locations

directly into our cost function, shown in Fig. 4.7, to push foothold positions toward more

suitable terrain. The results shown in Sect. 7.1 support our the claims that our method

provides a number of explicit benefits compared to the state-of-the-art: (i) We use a

method that does not require solving for time of contact for each incremental control

adjustment [41], but instead solves for the gradient of the hybrid step directly. (ii) By

discretizing SLQ over the projected dynamics (4.7), our method is able to tune the con-

trollers for both the discrete (4.1) and continuous (4.2) dynamics of the hybrid system
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at once. (iii) These projected control updates (4.3) change the nature of the nominal

gait, simultaneously adjusting footstep locations and the motion plan, to conform to the

terrain map.

While our work has elements similar to existing works, we establish that our method

distinguishes itself analytically from similar SLQ approaches in two specific ways:

• We solve for the gradient of time of contact tc with respect to state ∂tc
∂x

and control

∂tc
∂u

to be used in determining the optimal controller. tc is represented in this work

as the moment in which the foot of a walking system comes in contact with the

ground. A fundamental problem with hybrid dynamics is that every small con-

trol adjustment comes with a change to tc, which [41] solve for as an additional

optimization parameter. We use a method that does not require solving for tc for

each incremental control adjustment, but instead solves for the gradient of the hy-

brid step directly. We embed these partial derivatives into our SLQ formulation

such that our control solution automatically considers ∆tc for every control adjust-

ment ∆u. This eliminates the need to solve for additional parameters such as time

of contact.

• Rather than discretizing a continuous nominal trajectory into S locally linear seg-

ments followed by a discrete event, we discretize the entire hybrid step into one

single movement. We do this by embedding a local continuous controller whose

parameters u (gains, etc.) are tuned by the SLQ planner. This approach enables

a simple PD controller to govern highly dynamic walking motions. For a finite

N -step horizon, this method of linearization transforms a backwards Ricatti con-

trol updates from NS to N segments. Our method becomes an N -step foothold

optimization against the terrain cost map, combining both foothold selection and

motion planning into a unified approach. [94] similarly tuned continuous control pa-

rameters (spring constant, etc.), but for LQR control of an infinite time horizon gait

transition and not SLQ control for finite time horizon footstep planning as we did.

[95] did similar tuning using a deadbeat control approach for footstep placement of

a spring-loaded inverted pendulum model, but this system allows “instantaneous
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joint angle placement of massless legs” and lacks the complexity of a variable in-

ertia during the continuous spring phase that we consider with the Compass Gait

Walker.

4.3 Summary of Unified Framework

In this chapter, we proposed an iterative optimization method that involves real-time

planning over a receding horizon to address the problem of dynamic footstep planning

for legged systems. Our main technical contribution was a closed-loop implementation of

footstep planning and motion control in the context of control effort, facilitated by two

supporting techniques. First, the projected hybrid dynamics allow for coupling of the dis-

crete and continuous control actions, considering all motion until impact as a single event

and pushes the hybrid control actions toward a common goal. By following the method

in Section B.3, we end up with both accurate gradients and very fast computations. The

method is well-suited for SLQ and Riccati-like optimization techniques. Second, the ter-

rain was treated as a cost map based on desirability of foothold positions. By using soft

constraints, we allow the hybrid system to choose its terrain while balancing control effort

through an optimization scheme utilizing gradient descent.

48



Chapter 5

Energy Management Through

Footstep Selection

While the unified framework in Chap. 4 can adjust foothold positions, so far we have

no demonstrated way to generate the initial stable nominal trajectory, the basis for all

iterative planning adjustments. As discussed in Chap. 2, many works initialize their

system with a known map of the terrain and a kinematically-feasible seed. We consider

the terrain map must be generated online, and therefore all planning must be done online,

to include determining an initial path over rough terrain. Creating a dynamically feasible

plan over rough terrain is not trivial and this chapter discusses how a passive system can

select foothold positions by managing its system energy.

We introduce a method that uses foot contacts to steer the body COM along energy

profiles over rough terrain. We use a simplified model to illustrate how leg placement

affects system energy and movement. This work derives two boundaries that are funda-

mental to walking: the first separates walking from falling while the second subdivides

walking into slowing down and speeding up.

It is the authors’ understanding that the following contributions are new to dynamic

walking over rough terrain. We demonstrate how energy-centric foot placement can

permit a passive system to move over rough terrain, rather than rejecting terrain through

feedback. Through an analysis of the post-impact energy, we show that the reachable
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Figure 5.1: Walking Region for a Passive System. The space of kinematically-feasible
footstep regions can be divided by the curve of capture into regions that either promote
dynamic walking or falling backwards. A simple nonlinear inverted pendulum is used to
express this method.

foothold positions can be divided into regions that permit walking or cause falling, shown

in Fig. 5.1. Step placement is not simply determining whether the system will fall or not,

but also where it can step to ensure future steps have enough energy to succeed. It will

then be shown that the walking region can be further subdivided into sectors that either

assist, maintain, or hinder walking. It will be shown that knowledge of these sectors are

imperative to the accumulation or dissipation of energy, even if the terrain map is not

perfect.

5.1 Curve of Capture

Pratt [52] introduced the idea of capture point (CP) to the LIP model. The core use was

foot placement as a means of push recovery. Other works extended the idea of CP to

the NIP [76], [96] as a target for foot placement to cease body motion. Instead of just

a theoretical means of stopping motion, the CP can be defined as a boundary between

walking and falling backwards as shown in Fig. 5.2. This work uses the idea of CP as a
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Figure 5.2: Stepping Relative to Capture Point xcp. (a) Overstepping the CP results in
falling backwards. (b) Stepping directly onto a CP results in the NIP stopping at the
unstable equilibrium point. (c) Stepping before the CP results in a walking behavior.

boundary for successful walking over uneven terrain.

Computing the NIP CP is relatively straight forward, but there is no analytical solu-

tion. It begins with an understanding that capture occurs when the post-collision energy

is equal to the max potential energy of the system (E+ = Umax). This is possible because

of the dissipation of energy through the impact map M while accounting for a change of

foot height ∆z. The local change between foot origin translation position and height in

the global frame x, z is described by (3.19) as

∆x = x+ − x− = −l
(
sin (θ−1 + θ−2 ) + sin θ−1

)
∆z = z+

o − z−o = l
(
cos θ−1 + cos (θ−1 + θ−2 )

)
(5.1)

Assuming we know the energy of a step E−, we need to determine foot placement to

dissipate all of the kinetic energy at the unstable equilibrium point θ+ = 0. The Kinetic

51



CHAPTER 5. ENERGY MANAGEMENT THROUGH FOOTSTEP SELECTION

and Potential energy, T and U , respectively, can be written as

T =
ml2

2
θ̇2

1 (5.2)

U = mgl cos θ1 (5.3)

Using (5.2),(5.3) and (3.21), we can determine the post-collision energy relationship in

terms of pre-collision components

∆E =
(
T + + U+

)
−
(
T − + U−)

mgl − E− =− ml2

2

(
θ̇−
)2

sin2 θ− −mgl
(
cos (θ−1 + θ−2 ) + cos θ−1

)
. (5.4)

Since the system is passive, we can compute the impact velocity as a function of pre-

collision system energy E−

θ̇−1 = −
√

2

ml2
(
E− +mgl cos θ−1

)
. (5.5)

Substituting (5.5) into (5.4) yields an expression that is dependent only upon pre-collision

configuration

mgl − E− =−
(
E− −mgl cos θ−1

)
sin2 θ−1 −mgl

(
cos (θ−1 + θ−2 ) + cos θ−1

)
. (5.6)

By substituting (5.1) into (5.6)

mgl (1 +mgl∆z)− E− =
(
mgl cos θ−1 − E−) sin2 θ−, (5.7)

it becomes clear that there is a matching body position for a given toe height ∆z, assuming

only walking configurations (−π
2
< θ− < π

2
and E− > E+). Since (5.7) does not have

a closed-form solution, this work uses a least-square polynomial regression of sampled

points in the space to determine the relationship between energy and configuration that
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Figure 5.3: Curve of Capture

reaches the CP, whose coefficients are shown in Appendix C.

∆xcp = Rcp

(
E−,∆z

)
. (5.8)

The shape of the regression is shown in Fig. 5.3. As energy increases, the biped can step

higher and further prior to reaching the CP.

This curve provides a very intuitive meaning: everything to the left of the curve results

in a walking behavior and everything to the right results in falling backwards as seen in

Fig. 5.4. As a robot is walking and looking for a safe place to step that ensures forward

motion, this curve creates the boundary for dynamically-safe walking behavior.
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Figure 5.4: Energy Variation with Step Location. (a) Stepping on terrain in the void
beyond the curve of capture means the system does not have the energy to reach the
vertical position and results in falling backwards. (b) Stepping onto the curve of capture
is the exact energy required to stop at the unstable equilibrium point. Stepping anywhere
below this curve results in walking. (c) Stepping between the dissipate region results
in walking, but a loss in energy. (d) Stepping directly onto the curve of equal energy
means the kinetic energy lost through impact is equal to the potential energy gained.
(e) Stepping below, into the accumulate region results in speeding up, where subsequent
steps have more local energy than the previous step.

5.2 Curve of Equal Energy

Another important step location for a passive system is the location where local energy

is conserved. Consider a biped walking down a slope. The system gains potential energy

by walking down the slope, but loses kinetic energy at impact. Short steps result in a

quick-stepping behavior that increases energy (E+ > E−). Stepping too far, but not yet

to the CP, results in the system losing energy (E+ < E−), but still takes a step. There is

a specific step length that corresponds to a steady-state gait (vn+1 = vn) or (E+ = E−)

(equivalent to a fixed point on a return map). By setting ∆E = 0, we arrive at the

expression

mgl∆z =
(
mgl cos θ− − E−) sin2 θ−. (5.9)
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Figure 5.5: Curve of Equal Energy

Similar to (5.7), this work uses a least-square polynomial regression to determine the

relationship between energy and configuration that reaches the equal energy, whose co-

efficients are shown in Appendix C.

∆x∆E=0 = R∆E=0

(
E−,∆z

)
. (5.10)

The shape of the regression is shown in Fig. 5.5.

This curve denotes an important concept: step to the left to speed up or to the right

to slow down. If the robot must speed up to overcome an approaching obstacle, it can

accumulate energy by taking several steps to the left of the curve. Likewise, if moving

too fast, step to the right of the curve to dissipate energy.

The regions separated by the curve of capture and curve of equal energy can be

depicted by the phase portrait [97] of a simple pendulum (see Fig. 5.6). Stepping directly

onto the curve of equal energy (d) results in maintaining the same energy level in the
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Figure 5.6: Phase Portrait with Step Location. These red paths represent what happens
when stepping into the regions shown in Fig. 5.4 with mgl = 10. Contours represent
energy levels. (a) Overstepping the curve of capture results in oscillation (falling back-
wards). (b) Stepping onto the curve of capture takes the system up the homoclinic orbit
to the separatrix. (c) Losing energy with a long step, but still walking. (d) Stepping
onto curve of equal energy returns to same rotation orbit. Post-collision energy matches
pre-collision energy. (e) Gaining energy with a short step.

traveling orbit. Stepping short/long result in energy increase/decrease ((e)/(c)). Stepping

on the curve of capture (b) puts the system directly onto the homoclinic orbit which takes

it to the unstable equilibrium point (separatrix). Stepping past the curve of capture (a)

results in an pendulum-like behavior (a walker falling backwards).
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5.3 Summary of Energy Method

In this chapter, we separated the kinematically-feasible step region into areas of dynamic

relavance using a curve of capture and curve of equal energy, defined in Sections 5.1

and 5.2. In Chap. 7, we will present results for these methods using a passive nonlinear

inverted pendulum (NIP) model walking over very rough terrain. Next, in Chap. 6, we

will demonstrate how this method can be used as a seed for the unified framework.
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Chapter 6

Seeding Unified Planning through

Energy Management

This work combines the previous two seemingly-disparate ideas from Chap. 4 and Chap. 5

into one single unified framework. For an underactuated system with mass in the swing

leg, we identify the region in which footsteps can be safely placed to ensure walking

continues over rough terrain using a controlled version of the curve of capture. As the

robot moves forward and new terrain is perceived, we use this placement strategy to

identify new foothold positions that satisfy both physical and dynamic constraints. This

strategy is stitched into the fabric of the unified framework in the form of an initial guess

for the iterative methods to optimize as shown in Fig. 6.1. Specifically, this work fills in

the missing element of the unified framework, allowing the system to dynamically adapt

a system’s behavior when unexpected events occur.

6.1 Energy Technique applied to system with mas-

sive legs

In Chap. 5, we generated a method for guaranteeing safe walking by selecting footholds

behind the curve of capture. This technique was so far constructed only for a passive NIP

walking model, yet it does not yet account for a system whose swing leg has mass and
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Figure 6.1: Creating a Seed for Newly Perceived Terrain. The first 5 steps are the results
of the previous unified optimization. The sensor detects new terrain and an initial plan
for the newly perceived terrain is created. The two plans are stitched together to form
the seed for the next receding horizon optimization. This process occurs at least once
per physical robot step.

inertia such as the CGW and 5-link models. If the swing mass and inertia are minimal

relative to the body such as in the robot Cassie [98], the LIP and NIP ROMs have proven

to be acceptable [99] since legs can be placed very quickly. But for most bipedal systems,

the swing leg movement has great effect on the COM trajectory and timing for foot

placement. Therefore, we have to take into account the mass and inertia of the swing

leg, as well as the control strategy being used to swing the leg.

We will model the trajectory of the system COM as it is affected by the control

strategy. First, we establish the coordinate system for the system COM, which can be

determined by its kinematics at any given moment as shown in Fig. 6.2. Our COM ROM

has two key differences than that of the NIP: i) The legs are no longer constant when
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Figure 6.2: Biped Reduced Order Model. The system becomes the same as the NIP
model but with variable length legs.

the internal joints are moving. As the configuration changes, the COM position moves

relative to the stance foot pivot. ii) The system has a variable moment of inertia about

its COM. Depending upon how the legs are positioned, the moment of inertia about

the COM changes. When the internal joints stop moving legs stop moving, the system

becomes a rigid body with a constant moment of inertia rotating about the stance foot.

A hybrid step occurs in 3 phases with an additional phase to achieve the CP, as shown

in Fig. 6.3:

a) Swing leg moves according to policy U toward desired step length xdstep. COM leg

lengths vary according to kinematics.

b) System becomes rigid and rotates about the stance foot as a NIP model.

c) System impacts the ground with inelastic impact and swing foot becomes new pivot.

d) Swing leg moves according to policy U toward some nominal step length. If it has

too little energy, the system falls backward. If it has just enough energy, it achieves

capture as a rigid system. If it has too much energy, the system resumes walking.
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Figure 6.3: Hybrid Sequence for Biped Reduced Order Model to Achieve Capture Point.
a) Massive swing leg moves according to policy U b) The system moves as a rigid system,
like a NIP. c) Impact MAP M . d) Massive swing leg moves according to policy U to
achieve capture

6.1.1 Energy Method applied to CGW model

Consider the CGW (see Fig. 3.7) with a strategy for PD control about its inter-leg angle

as well as gravity compensation and Coriolis canceling about its hip

θ̈d2 = −Kp2

(
θ2 − θd2

)
−Kd2 θ̇2. (6.1)

Derived from (3.4), (3.22), (3.23), and (3.24), we have

τ2 = ml2thighθ̈
d
2 +m(lcalf + lthigh)lthigh sin(θ1 − θ2)θ̇1θ̇2 +mlcalfg sin(θ2). (6.2)

Together, (6.1) and (6.2) make up an example policy U discussed in phases a-d above.
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Figure 6.4: Curve of Capture for CGW given policy U.

Similar to (5.7) and (5.9), this work uses a least-square polynomial regression to

determine the relationship between energy and configuration that reaches the capture

point, whose coefficients are shown in Appendix C.

∆x∆cp = R∆cp

(
E[n−1],∆z

)
. (6.3)

The shape of the mesh from the regression is shown in Fig. 6.4.

As we built this model, it became very apparent the significance of mass distribution

within the system. Since the system has no massive torso to bend, all energy must be

then generated from the swing leg. If the swing leg has a high COM (lc2 << a2), then the

leg is unlikely to produce sufficient torque to swing the heavier hip mass over the CP. On

the other hand, if the COM is low on the leg (lc2 ≈ a2), then with sufficient hip torque

the leg can more easily propel the system forward. Therefore, by moving the COM lower

on the legs, we can expand the curve of capture.
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6.1.2 Energy Method applied to 5-link walker model

For more complex systems such as the 5-link walker, similar regressions can be built,

but they require additional inputs to designate the length of the legs before and after

collision as indicated in Fig. 6.5. In this figure, the swing leg impacts with a length

less than lcalf + lthigh. It can be seen that by bending the knee forward, the CG moves

forward and when the swing leg becomes the new pivot, the after-impact moment arm is

shortened. As the CP moves to the right, the biped can therefore walk using step areas

that would have previously been impossible with a straight leg at impact.
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Figure 6.5: Effect of Bent Knee on Capture Point. Once the system joints stops swinging,
the system can be reduced to a system of a point mass and two legs of varying length. In
this example, we look at what happens to the CP by varying the length of the swing leg
before touchdown. a) Swing leg straight. Baseline for comparison. b) Bending the swing
leg forward while retaining the same step length pushes the CP to the right. c) Bending
the swing leg backwards while retaining the same step length has only a mild affect on
the CP.

6.2 Unified Planning Architecture - Revisited

In this section, we show how the energy management can be used to seed the unified

planning construct from Chap. 4. To illustrate the seeding process, we will now describe

the seeding process shwon in Fig. 6.6. For known terrain, we begin with a plan (1). For

terrain that is newly perceived (no step plan yet exists), we create footstep plans (2) using

the energy technique from Chap. 5. (1) and (2) are combined into a sequence of N steps,
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in which each step is linearized along the projected hybrid dynamics from Chap. 4 to form

the discrete seed (3) necessary to initialize the trajectory optimization. These N steps

become the N discrete segments of the SLQ optimization scheme. Through a series of

forward and backward passes, the scheme converges upon a locally-optimal solution which

becomes the N step plan (4). The first step of the plan (6) is passed to the controller for

execution. The remaining N−1 steps of the plan (5) are returned to the seeding process,

now known as “previously-optimized steps.”

This seeding process is demonstrated on hardware, with results shown in Chap. 7.
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Figure 6.6: Unified Planning Construct Seeding Process. Hybrid trajectories over known
terrain (1) are joined with on-line trajectory planning for newly perceived terrain (2).
The trajectory is then discretized into N hybrid steps to form the “seed” (3) for a once-
per-step optimization scheme. This iterative optimization adjusts foothold placements
to conform to a terrain cost map, while simultaneously updating the low level feedback
controllers and their corresponding motion plans for all steps on the planning horizon.
The optimized plan (4) is separated into N − 1 steps to become a starting point (5) for
the next seed and the piece to presently execute. The walking system executes the first
step of the plan (6), while the remaining steps are sent back to become part of the seed
for the next round of planning.

66



Chapter 7

Results

7.1 Unified Results over Flat Terrain

In this section, we complete an example of a Compass Gait Walker (CGW) walking

over a terrain map. While simplified walking models [72], [95] could greatly reduce the

computation time while fairly approximating the system dynamics, the assumption of

massless legs oversimplifies most humanoid robots. Thus, our system has masses at

the hip and knees with continuous PD-controlled torque in the hip and discrete toe-off

impulses. We feel this combination properly demonstrates the use of SLQ feedforward

control and feedback gains to optimally mix the discrete and continuous control efforts in

a way to bring a controlled hybrid system to a locally-optimal and dynamically-feasible

path.

The system begins passively walking down a slope, but adds control effort to minimize

the objective function (4.20) while maintaining dynamic stability. Given a nominal gait

pattern, the nonlinear hybrid controller iteratively modifies individual step sizes to secure

foothold positions in areas of lower terrain cost for a 10-step sequence. The gradient of

the local cost polynomial p[n] pushes the foothold location away from undesirable areas

as shown in Fig. 7.2. The step sizes adjust as the individual costs are driven toward a

local minima as shown in Fig. 7.3. The dynamics are preserved as the system modifies

its stride length.
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Figure 7.1: Compass Gait Walker with hip torque and toe-off impulses. Parameters:
m = 5kg, M = 10kg, lthigh = lcalf = 0.5m. Slope of terrain at stance foot: β = 3◦. Front
toe impulse uI1 occurs at t−c time instantaneously before touchdown (remove energy from
system) and rear toe impulse uI2 occurs at t+c time instantaneously after touchdown (add
energy to system). Together, these impulses form the control actions to the discrete

collision map M (4.1). Hip torque τ(t) =
[
kp1 kp2 kd1 kd2

] [
θ̄1 θ̄2

˙̄θ1
˙̄θ2

]T
offers

continuous control throughout the step. Together, these form the admissible once-per-

step control actions un =
[
uI1 uI2 kp1 kp2 kd1 kd2

]T
shown in (4.3) and used in (4.6).

For gradient computation, the analytical integration of (B.9)-(B.11) to generate the

state and control gradients of the projected hybrid dynamics is on the computational

complexity order of that of Forward Difference methods, but with better accuracy than

Central Difference schemes when spacing hi is well-tuned for each state xi. Additionally,

with the use of symbolic computations of the terms in (B.9)-(B.11), common terms are

not computed more than once, lending to faster overall speed. Our analytical method is

7.4× and 14.0× faster than the Forward and Central Difference algorithms, respectively,

to compute the hybrid gradients. See Table 7.1 for the comparison of a CGW taking one

step. The times referenced were calculated in MATLAB over an average of 10,000 runs

on a computer with a 3.1 GHz Intel Core i7 processor and 16GB 2133 MHz ram.
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Figure 7.2: Foothold optimization conforming to terrain cost map using gradient descent
of local polynomials. Optimized results are shown after 4 iterations of SLQ. The controller
modifies the step size to dynamically conform to the terrain, regaining the passive gait
by Step 10.

Table 7.1: Computational Complexity, Accuracy, and Time for Numerical Differentiation
Schemes Compared with the Analytical Integration Method Shown in B.3

∇ Method A∗ B∗ Accuracy Comp Time
Central Diff 2n(n− 1) 2nm O(h2) 12.99 ms
Forward Diff n2 n(m+ 1) O(h) 6.85 ms
Analytically (n− 1)2 (n− 1)m < O(h2) 0.93 ms
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Figure 7.3: SLQ Iterations for a 10 Step Sequence. (a) Footstep cost converging in 4
iterations of SLQ. In area of highest terrain cost (matching terrain in Fig. 7.2), local step
cost increases slightly before dropping off drastically in iteration 4. (b) State deviations
from nominal scaled by max deviation. This figure shows several shorter steps before a
long step over a region of high local cost. Full state recovery happens at step 10. (c)
Energy deviation from nominal. We see an increase in the KE of the system as it plans
to take a bigger step.
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7.2 Energy Management Results over Rough Terrain

This test consists of accumulating energy to cross a gap in the terrain (see Fig. 7.4).

Initially, the reference gap curve of capture is well below the lip of the far side of the gap.

For 7 steps, the robot places its foot to the left of the curve of equal energy, adding local

energy to the system. At each step, the gap curve of capture expands, pushing upward.

By step 9, the gap curve of capture pushed over the far side of the gap, ensuring the

system could safely step. Depicted by the transition from q−
9 to q+

10 in the corresponding

phase portrait, the system lost 4.5J of energy crossing the gap, indicating that the capture

point energy was approximately 14.5J . The system did not have enough energy to cross

the gap in the first 8 steps. Here is a video link of these results.
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Figure 7.4: Using Energy Control for Gap Crossing. Emin = mgl = 10J . For step (1),
the robot starts with energy = 10.5J at steady state. During steps (2)-(8), the robot
steps to the left of the curve of equality to accumulate energy. As the robot accumulates
energy, the curve of capture across the gap incrementally pushes up. At step (9), the
biped has just enough energy to cross the gap (E+ = 10.05J). For steps (10)-(11), the
biped returns to step locations that result in the nominal walking energy.

7.3 Unified Planning Hardware Validation

7.3.1 The Robot

In order to validate this optimization scheme, We built a 5-link legged robot, shown in

Fig. 3.8. We use Hebi actuators for internal joint activation, with X8-3 modules at the

knees and X5-4 modules at the hips. The heavier X8-3 modules give us the desired
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characteristic of a massive swing leg. The system is mounted to a boom in order to

restrict motion to the plane, yet the robot is free to rotate about the joint connecting the

robot. In order to allow the robot to move more freely under its own weight, the mass

of the boom is offset by a counterbalance. We feel this system is true to the 5-link biped

model shown in Fig. 7.5.

The DH parameters and mass properties for our biped are defined in Table 7.2. All

units are standard SI. The corresponding link teardown is shown in Fig. 7.6.

Table 7.2: Denavit-Hartenberg Parameters and Mass Properties for 5-Link Robot

Link ai αi di θi mi lci ji Description
1 0.299 0 0 θ1 0.256 0.157 0.10 stance calf
2 0.279 0 0 θ2 0.822 0.064 0.22 stance thigh
3 0 0 0 θ3 2.865 0.085 0.40 torso
4 0.279 0 0 θ4 0.822 0.215 0.22 swing thigh
5 0.299 0 0 θ5 0.256 0.142 0.10 swing calf

Robot actuation occurs via a combination of position and torque control. We com-

mand torque control at the hips with PD gains tunable by our algorithm. We commands

positions at the knees using a low level controller to regulate swing foot clearance along

the terrain. Step size and swing leg step length are also tunable by our algorithm.

Our state measurements consist of the following: i) We used the IMU, gyroscope, and

position/velocity feedback resident on every Hebi module. ii) The feet contain sensors

developed by the CMU Biorobotics Lab to detect when feet were in contact with the

ground. iii) We combined the Realsense cameras D435 and T265 for vision, but had

difficulty filtering the information due to the discrete impulses at contact. In the end,

the vision measurements are simulated as the robot advances to emulate building a map

in real-time using EKF SLAM. All instrumentation is on-board the robot as there is no

augmented instrumentation on the boom or additional indoor positioning system. Our

controller runs an Extended Kalman Filter (EKF) to obtain state feedback.

Our robot planning and control architecture is shown in Fig. 7.7. Three parallel

processes are present and all messages pass via a Robot Operating System (ROS) network.

i) Using vision measurements, the terrain map is built using an EKF SLAM algorithm.
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Figure 7.5: 5-Link Biped Robot.
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Figure 7.6: Robot Link Teardown. Note, cameras not shown in this image.
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Figure 7.7: Robot Planning and Control Architecture. All boxes represent parallel pro-
cesses and arrows represent messages passed over Robot Operating System (ROS) net-
work.

ii) The SLQ planner adjusts foothold positions, creates the motion plans, and tunes the

controller. iii) Using robot measurements, The controller determines the current state

and executes the plan using the prescribed controller.

7.3.2 Hardware Verification

For the hardware configuration, Fv is added to (3.4) to represent the viscous friction

within the joints

M(Θ)Θ̈ + C(Θ, Θ̇)Θ̇ + FvΘ̇ + g(Θ) = τ ,

where Fv is a diagonal S × S matrix.

To demonstrate the planning and execution cycle, we built a 2D course for our robot

to navigate, shown in Fig. 7.8. We added two boxes along the path that the robot would

require stepping onto or over. We placed the boxes outside of the robot’s initial vision,

such that the robot could not begin planning for them until it began walking and observed

them. At first, the robot begins walking at a repetitive gait over flat terrain. During

the 4th step (a), the robot senses the an obstacle and updates the terrain map. At the

beginning of the 5th step (b), the planner ingests the newest terrain map, loaded with the
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Figure 7.8: Robot Steps Sequence Over Obstacles. The robot steps are shown over the
terrain truth in this figure, but planning occurred over a map derived from EKF SLAM.
The robot begins by walking over with some nominal gait over the flat terrain. a) On
step 4, the robot observes an obstacle, including it in the terrain map. b) On step 5, the
robot loads the most recent terrain map, containing the obstacle and begins to plan a
sequence for the obstacle. Additionally, the robot senses additional obstacle information
and updates the terrain map. c) On step 6, the robot begins to execute the obstacle plan
by taking more aggressive steps to gain energy into the system. The system meanwhile
continues to refine the plan and adds the second obstacle to the terrain map. d) On
step 9, the robot executes a step up onto the obstacle, then across and down. A video
demonstrating these results is available at this link.

obstacle. The energy technique is used to seed the initial step up onto the obstacle and

then the iterative optimization begins. The planner adjusts the gait by planning more

aggressive stepping to add energy to the system. Meanwhile the robot is sensing the

gap. During the 6th step (b), the robot begins its first execution of the plan, using the

controller designed for this particular step. The step is far more aggressive than previous

steps and the knee is bent at impact. This bent knee actually acts as a lift-off during the

subsequent steps 7. By the 9th step (d), the robot has enough information and energy

to step up and over the obstacles.

The robot walks with an apparent bifurcation by observing Fig 7.8 without context.

In order to restrict the robot to a plane, we attached the robot to a boom, thus creating

an arc on which the robot walks, shown in Fig. 7.9. We defined the terrain by the center-

line of the arc. Therefore, the outer leg travels farther when the inner leg is the stance

leg and pivot.

We instructed the robot to use a knee-backward bend during normal flat walking as
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Figure 7.9: Robot Restricted to a Plane, following an Arc. The robot follows an arc, in
which the center-line represents the terrain in 2D. The obstacles from Fig. 7.8 can be
seen in the image. The robot is resting on a stand that is removed when walking. Also
shown is the safety mechanism that that provides no support, but catches the robot if it
falls.

we found it far more stable during testing. Yet when applying this technique to terrain,

we found that the foot can rarely clear the obstacles fast enough. Therefore, we told the

robot to use a forward knee-bend when walking up and down terrain as it was easier to

swing the knee forward while lifting the trailing foot over obstacles, especially corners.

This knee-bending can be seen in Fig. 7.8.

For terrain cost, we assigned high cost to stepping near corners for a few reason.

Firstly, corners are hard to clear when stepping up terrain. Secondly, the robot could

slip off of a high corner. And finally, our uncertainty as to exactly where we were on the

map was high, so corners were deemed as dangerous.

Additionally, we assigned higher cost to changing heights. Therefore, it could be

cheaper to step over an obstacle than to step upon it, but this also means clearing

staying away from the corners. Also, it is hard to execute a plan to step over an obstacle,

when we might not have been able to see the other side of the obstacle two steps back in

the “sense” phase.

We encountered position error (see Fig. 7.10) from a few sources. First and foremost,

we lacked absolute position sensing. We relied solely on the information from the onboard
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Figure 7.10: Robot Position Error.

sensors, such as accelerometers and gyros. Many of the measurements went wild at

discrete impact, thus we had to rely more on kinematic information and internal joint

angles to determine how far we stepped. Second, the difference between inner and outer

steps due to walking along an arc created. Since we measured from the center-line of the

arc, the outside leg (shown in stance in Fig. 7.10) always stepped further than expected.

Third, our camera was not a true camera. We used a true [center-line] map and created

our 2D terrain using a projection of the camera. Therefore, positioning could not be

corrected for using our EKF SLAM algorithm.

Finally, the following shows our representation on our projection mapping:

u[n] =



Kp3

Kp4

Kd3

Kd4


(7.1)

x[n] =


lstep

lswing

E[n]

 . (7.2)

The controls are PD controls over the hips. Since the hips did most of the nonconservative
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work for a step, we gave hip control to the trajectory optimization framework. Conversely,

we used an internal algorithm for knee control as it was easier for foot clearance of

obstacles. Additionally, the calves were of low mass and inertia, therefore the system

would not have gained much by utilizing them.

While the system did not have control over the knee torques, it did have control over

the swing leg length at touchdown. lswing represents the target length for the swing leg on

it’s next contact, shown in Fig. 7.11. Since we already specified the direction of the knee

bending (negative or positive), the algorithm could only tweek the length from 0.1-1.0 of

normal length. Additionally, the robot had control over the length of the step lstep, which

corresponds to the direct distance between feet rather than the transverse distance along

the terrain. We specified the stance leg should be straight at next impact, as well as the

hip should bisect the feet. By combining lswing and lstep, the algorithm had the rest of

the control of the configuration. This configuration is shown in Fig. 7.11. Additionally,

since we used PD control on all joints, the internal configuration should ideally not be

moving at impact, and all velocity is that about the stance foot. Therefore, we applied

a relationship between the potential energy of the configuration and the kinetic energy

earned from rotating about the stance foot, giving the robot total energy E[n] as its final

state.
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Figure 7.11: Projection Mapping for 5-Link Robot. Using the estimated terrain, the entire
configuration can be defined for the configuration using lstep and lswing. This assumes we
know the swing knee bend direction, the stance knee if fixed straight, and the hip bisects
the feet.
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Conclusion and Future Work

8.1 Conclusion

By discretizing the system dynamics over a single step and imposing soft penalties on

footstep locations directly into the cost function, this work demonstrates how footstep

location, the motion plan, and feedback control can all be implicitly planned using a

single approach based on SLQ (see Fig 1.1). One of the main reasons we think that prior

employments similar to this are so brittle is that they treat this contact as if it doesn’t

exist or as a separate event isolated from the system dynamics. For this reason, our

unified algorithm combines the continuous dynamics of a step and discrete impact into

one hybrid event. Through a linearization of our trajectory once-per-step at the moment

of foot contact, our trajectory optimization places the foot along the terrain. We then

project it onto a lower dimensional s.o.s. for optimization. Energy-based methods give

rise to regions for safe-stepping, offering a simple way to seed initial trajectories for

seemingly complex dynamical systems. The method was verified with several dynamic

models and validated on robotic hardware.

8.2 Future Work

The most clear direction would be to explore different parameterizations of the optimiza-

tion space. One possible method would be to utilize the coefficients ci of polynomial
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trajectories, i.e. x(t) = cnx(t)n + . . .+ c1x(t) + c0, where the parameters ci are controlled

by the SLQ optimization. By tuning ci for each step, the shape of the trajectories could

be modified. Another possible parameterization would be to explore transverse lineariza-

tion [100], where an exponentially-stabilizing controller is built specifically to pull the

system along a moving s.o.s. transverse to the course of motion. While this method

has been used for stabilizing multi-DOF underactuated walking systems [101], it should

prove beneficial to bake the linearization into the dynamic controller of the continuous

dynamics, resulting tailored region of attraction for each step.

Another way forward would be to confine the foothold position behind the curve

of capture (see Chap. 5) by the use of constrained optimization. The curve could be

established as a state constraint on the s.o.s. (see Chap. 4), containing the foothold

positions safely within the walking region.

This method could be applied to other systems with hybrid dynamics outside of

robotics and engineering. Examples include biological systems in which neurons have

different thresholds for firing, or switched systems theory.

8.3 Open Problems

We demonstrated that the unified planning framework can alter a gait through the use

of trajectory optimization, but we did not address the stability of the controller. We

think the best way forward is using sum-of-squares (SOS) programming to determine the

basins of attraction for the control sequence. Using SOS analysis, we would determine

that the mouth of one stable control funnel leads into the pre-image of the next funnel in

a method similar to the LQR trees developed in [102], [103]. A “funnel” in this context is

a feedback policy that collapses a large set of initial conditions into a smaller set of final

conditions as shown in Fig. 8.1. If this is true for all N steps for the control sequence,

the system can be determined as stable for some calculable deviation around the nominal

trajectory. Since we use a quadratic form for the cost-to-go function shown in App. A,

we propose that the SLQ value function is our Lyapunov candidate.
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Figure 8.1: Controller Basin of Attraction. For a finite-horizon problem with
N individually-tailored controllers, the system is stable if state x[n] starts within the
mouth of a control funnel that leads to the mouth of the next funnel. The shape of the
funnel comes from the Lyapunov function.

[104], [105] showed that SOS programming can work in real-time and also [106] demon-

strated that LQR trees can be computed online. Therefore, it should be feasible to com-

pute the funnels around the finite-horizon nominal step sequence in real-time. Since we

only truly need to re-plan when the state approaches the boundary of the current con-

troller, we could use this information to alter our MPC horizon by embedding SOS into

our planner.

Another important aspect to analyze is the effect of the discretization on the stability

of the system. The most direct comparison is to that of is that to classically-applied SLQ

as shown in Fig. 8.2. This discretization disparity becomes a direct trade-off between

control authority and computational speed. On the upper end, the hybrid trajectory is

discretized into dozens if not hundreds of segments S. In our unified architecture, we

are solving fewer discrete points, giving us fewer decision variables about how to apply

control over a particular window of time.

Having less control decisions could offer problems controlling higher order humanoid

systems over very complex terrain. Therefore, we propose that the discretization is
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Figure 8.2: Sequential Linear Quadratic Discretization Comparison. a) When classically-
applied, the continuous phase is finely discretized. Combined with the discrete impact
map, there are a total of S segments per step. Over the course of N steps, there are
NS segments over which trajectory optimization and control updates must occur. b) Dur-
ing our unified planning approach, we linearize the entire hybrid dynamics at once, leading
to a single segment per step. The trajectory optimization occurs at only N segments.

analyzed in more detail. Begin with classically-applied SLQ in which the segments are

very finely applied to generate a baseline for performance. Slowly increase the size of

those segments until we only have one segment per the unified architecture. We must

determine at what point, if any, control authority is lost or terrain becomes impassible.

Additionally, the unified architecture offers footstep placement as a byproduct of the

linearization. It must also be quantified as to how this linearization actually assists

walking over rough terrain.
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Appendix A

Planning with a Sequential Linear

Quadratic Regulator

In this Appendix, we derive the SLQ used within this work.

A.0.1 Problem Definition

Minimize J [x(·),u(·)] = αNΦ(x[n]) +
N−1∑
n=0

αkL(x[n],u[n])

Subject to x[n+1] = P (x[n],u[n]) n ∈ {0, 1, . . . , N − 1}

x[n] = x(t[n]) n ∈ {0, 1, . . . , N}

n discrete time index

x[n] system state at segment n

u[n] control input at segment n

P (x[n],u[n]) state transition equation

α discount factor/decay rate 0 ≤ α ≤ 1
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APPENDIX A. PLANNING WITH A SEQUENTIAL LINEAR QUADRATIC
REGULATOR

For finite horizon case, discount factor α is usually set to 1

J = Φ(x[n]) +
N−1∑
n=0

L(x[n],u[n])

The optimal control policy µ? minimizes the cost function and gives optimal cost J?

µ? = arg min
u
J [x(·),u(·)]

A.0.2 Equations of Motion

Initial stable control policy µ(n,x) gives us control input trajectory x̄[n] and nominal

state-trajectory ū[n]. We will linearize about every state-action pair (x∗
[n],u

∗
[n]).

x̄[n] , x[n] − x∗
[n] state increment

ū[n] , u[n] − u∗
[n] control input increment

Approximate P (x[n],u[n]) by its first order Taylor expansion about fixed point (x∗
[n],u

∗
[n]).

x[n+1] = P (x[n],u[n])

≈ P (x∗
[n],u

∗
[n]) +

∂P(x∗
[n],u

∗
[n])

∂x
x̄[n] +

∂P(x∗
[n],u

∗
[n])

∂u
ū[n]
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By setting x∗
[n+1] = P(x∗

[n],u
∗
[n]), we obtain

x̄[n+1] ≈
∂P(x∗

[n],u
∗
[n])

∂x
x̄[n] +

∂P(x∗
[n],u

∗
[n])

∂u
ū[n]

≈ A[n]x̄[n] + B[n]ū[n]

A[n] =
∂P(x∗

[n],u
∗
[n])

∂x
(Nx ×Nx) matrix

B[n] =
∂P(x∗

[n],u
∗
[n])

∂u
(Nx ×Nu) matrix

A.0.3 Cost Function

J =Φ(x[N]) +
N−1∑
n=0

L[n](x[n],u[n])

=(x[N] − xd
[N])

TQ[N](x[N] − xd
[N]) + p[N](x[N])

+
N−1∑
n=0

{(x[n] − xd
[n])

TQ[n](x[n] − xd
[n]) + p[n](x[n]) + (u[n] − ud

[n])
TR[n](u[n] − ud

[n])}

Approximate J by its second order Taylor expansion.

c(x, u) ≈c(xa, ua) +
∂c(xa, ua)

∂x
δx+

∂c(xa, ua)

∂u
δu

+
1

2

(
∂2c(xa, ua)

∂x2
(δx)2 +

∂2c(xa, ua)

∂u2
(δu)2 + 2

∂

∂u

(
∂c(xa, ua)

∂x
δx

)
δu

)

For n = N:

Φ(x[N]) =(x[N] − xd
[N])

TQ[N](x[N] − xd
[N]) + p[N](x[N])

≈Φ∗ + Φ∗
x(x[N] − x∗

[N]) +
1

2
(x[N] − x∗

[N])
TΦ∗

xx(x[N] − x∗
[N])

≈Φ∗ + Φ∗
xx̄[N] +

1

2
x̄T

[N]Φ
∗
xxx̄[N]
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Φ∗ =Φ(x[N])

∣∣∣∣
x∗
[N]
,0

(1× 1) scalar

Φ∗
x =

∂Φ(x[N])

∂x

∣∣∣∣
x∗
[N]
,0

(1×Nx) vector

Φ∗
xx =

∂2Φ(x[N])

∂x2

∣∣∣∣
x∗
[N]
,0

(Nx ×Nx) matrix

∀n ∈ {0, . . . , N − 1}:

L(x[n],u[n]) =(x[n] − xd
[n])

TQ[n](x[n] − xd
[n]) + h(x[n]) + (u[n] − ud

[n])
TR[n](u[n] − ud

[n])

≈L∗ + (x[n] − x∗
[n])

TL∗
xu(u[n] − u∗

[n])

+ L∗
x(x[n] − x∗

[n]) +
1

2
(x[n] − x∗

[n])
TL∗

xx(x[n] − x∗
[n])

+ L∗
u(u[n] − u∗

[n]) +
1

2
(u[n] − u∗

[n])
TL∗

uu(u[n] − u∗
[n])

≈L∗ + L∗
xx̄[n] + L∗

uū[n] +
1

2
x̄T

[n]L
∗
xx

+
1

2
ūT[n]L

∗
uuū[n] +

1

2
x̄T

[n]L
∗
xuū[n] +

1

2
ūT

[n]L
∗
uxx̄[n]
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L∗ =L(x[n],u[n])

∣∣∣∣
x∗
[n]
,u∗

[n]

(1× 1) scalar

L∗
x =

∂L(x[n],u[n])

∂x

∣∣∣∣
x∗
[n]
,u∗

[n]

(1×Nx) vector

L∗
u =

∂L(x[n],u[n])

∂u

∣∣∣∣
x∗
[n]
,u∗

[n]

(1×Nu) vector

L∗
xx =

∂2L(x[n],u[n])

∂x2

∣∣∣∣
x∗
[n]
,u∗

[n]

(Nx ×Nx) matrix

L∗
uu =

∂2L(x[n],u[n])

∂u2

∣∣∣∣
x∗
[n]
,u∗

[n]

(Nu ×Nu) matrix

L∗
xu =

∂

∂u

(
∂L(x[n],u[n])

∂x

)∣∣∣∣
x∗
[n]
,u∗

[n]

(Nx ×Nu) matrix

L∗
ux =

∂

∂x

(
∂L(x[n],u[n])

∂u

)∣∣∣∣
x∗
[n]
,u∗

[n]

= (L∗
xu)T (Nu ×Nx) matrix

J ≈Φ∗ + Φ∗
xx̄[n] +

1

2
x̄T

[n]Φ
∗
xxx̄[n]

+
N−1∑
n=0

1

2

x̄[n]

ū[n]


T L∗

xx L∗
ux

L∗
xu L∗

uu


x̄[n]

ū[n]

+

[
L∗

x L∗
u

]x̄[n]

ū[n]

+ L∗



A.0.4 Value Function

Quadratic Value function of state deviation x̄[n+1]. Recall x̄[n+1] ≈ A[n]x̄[n] + B[n]ū[n].
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V ∗
[n+1](x̄[n+1]) =

1

2
δ
(
xT

[n+1]S[n+1] + s[n+1]

)
x̄[n+1] + s[n+1]

V ∗
[n+1](A[n]x̄[n] + B[n]ū[n]) =

1

2
[A[n]x̄[n] + B[n]ū[n]]

TS[n+1][A[n]x̄[n] + B[n]ū[n]]

+ s[n+1][A[n]x̄[n] + B[n]ū[n]] + s[n+1]

=
1

2
[x̄T[n]A

T
[n] + ūT

[n]B
T
[n]]S[n+1][A[n]x̄[n] + B[n]ū[n]]

+ s[n+1][A[n]x̄[n] + B[n]ū[n]] + s[n+1]

=
1

2
x̄T[n]A

T
[n]S[n+1]A[n]x̄[n] +

1

2
x̄T

[n]A
T
[n]S[n+1]B[n]ū[n]

+
1

2
ūT[n]B

T
[n]S[n+1]A[n]x̄[n] +

1

2
ūT

[n]B
T
[n]S[n+1]B[n]ū[n]

+ s[n+1]A[n]x̄[n] + s[n+1]B[n]ū[n] + s[n+1]

Bellman Equation for Value Function at previous time step n

V ∗
[n](x̄[n]) =

1

2

(
x̄T[n]S[n] + s[n]

)
x̄[n] + s[n]

= min
u[n]

[
L[n](x[n],u[n]) + V ∗

[n+1](x̄[n+1])
]
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Substituting Running Cost L[n] and Value Function at n+ 1

V ∗
[n](x̄[n]) = min

u[n]

L∗ + L∗
xx̄[n] + L∗

uū[n]

+
1

2
x̄T[n]L

∗
xxx̄[n] +

1

2
ūT[n]L

∗
uuū[n] +

1

2
x̄T[n]L

∗
xuū[n] +

1

2
ūT[n]L

∗
uxx̄[n]

+
1

2
x̄T[n]A

T
[n]S[n+1]A[n]x̄[n] +

1

2
x̄T[n]A

T
[n]S[n+1]B[n]ū[n]

+
1

2
ūT[n]B

T
[n]S[n+1]A[n]x̄[n] +

1

2
ūT[n]B

T
[n]S[n+1]B[n]ū[n]

+ s[n+1]A[n]x̄[n] + s[n+1]B[n]ū[n] + s[n+1]

= min
u[n]

L∗ + s[n+1]

+
(
L∗

x + s[n+1]A[n]

)
x̄[n]

+
1

2
x̄T[n]

(
L∗

xx + AT
[n]S[n+1]A[n]

)
x̄[n]

+
(
L∗

u + s[n+1]B[n] + x̄T[n]

(
L∗

xu + AT
[n]S[n+1]B[n]

))
ū[n]

+
1

2
ūT[n]

(
L∗

uu + BT
[n]S[n+1]B[n]

)
ū[n]

= min
u[n]

L∗ + s[n+1]

+
(
L∗

x + s[n+1]A[n]

)
x̄[n]

+
1

2
x̄T[n]

(
L∗

xx + AT
[n]S[n+1]A[n]

)
x̄[n]

+
(
gT

[n] + x̄T
[n]G

T
[n]

)
ū[n]

+
1

2
ūT[n]H

T
[n]ū[n]

g[n] =
(
L∗

u + s[n+1]B[n]

)T
(Nu × 1) vector

G[n] =
(
L∗

xu + AT
[n]S[n+1]B[n]

)T
(Nu ×Nx) matrix

H[n] =
(
L∗

uu + BT
[n]S[n+1]B[n]

)T
(Nu ×Nu) matrix

Finding optimal control when value function gradient wrt control goes to 0
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min
ū[n]

[(
gT

[n] + x̄T
[n]G

T
[n]

)
ū[n] +

1

2
ūT[n]H

T
[n]ū[n]

]
0 =

(
gT

[n] + x̄T
[n]G

T
[n]

)
+ ūT[n]H

T
[n]

ūT[n]H
T
[n] = −

(
gT

[n] + x̄T
[n]G

T
[n]

)
H[n]ū[n] = −

(
g[n] + G[n]x̄[n]

)
ū[n] = −H−1

[n]

(
g[n] + G[n]x̄[n]

)
= −H−1

[n] g[n] −H−1
[n] G[n]x̄[n]

= uff-inc
[n] + Kfb-inc

[n] x̄[n]

uff-inc
[n] = −H−1

[n] g[n] feedforward increment: (Nu × 1) vector

Kfb-inc
[n] = −H−1

[n] G[n] feedback increment: (Nu ×Nx) matrix

The optimal update policy is now

u∗
[n]new = u∗

[n]old + uff-inc
[n] + Kfb-inc

[n] x̄[n]
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Substituting Running Cost L[n] and Value Function at n+ 1

V ∗
[n](x̄[n]) = min

u[n]

L∗ + s[n+1]

+
(
L∗

x + s[n+1]A[n]

)
x̄[n]

+
1

2
x̄T[n]

(
L∗

xx + AT
[n]S[n+1]A[n]

)
x̄[n]

+
(
gT

[n] + x̄T
[n]G

T
[n]

)
(uff-inc

[n] + Kfb-inc
[n] x̄[n])

+
1

2
(uff-inc

[n] + Kfb-inc
[n] x̄[n])

THT
[n](u

ff-inc
[n] + Kfb-inc

[n] x̄[n])

= min
u[n]

L∗ + s[n+1]

+
(
L∗

x + s[n+1]A[n]

)
x̄[n]

+
1

2
x̄T[n]

(
L∗

xx + AT
[n]S[n+1]A[n]

)
x̄[n]

+
(
gT

[n] + x̄T
[n]G

T
[n]

)
(uff-inc

[n] + Kfb-inc
[n] x̄[n])

+
1

2

(
(uff-inc

[n] )T + x̄T
[n](K

fb-inc
[n] )T

)
HT

[n](u
ff-inc
[n] + Kfb-inc

[n] x̄[n])

= min
u[n]

L∗ + s[n+1] +

(
gT

[n] +
1

2
(uff-inc

[n] )THT
[n]

)
uff-inc

[n]

+
(
L∗

x + s[n+1]A[n] + (uff-inc
[n] )TG[n] +

(
gT

[n] + (uff-inc
[n] )THT

[n]

)
Kfb-inc

[n]

)
x̄[n]

+
1

2
x̄T[n]

(
L∗

xx + AT
[n]S[n+1]A[n] + (Kfb-inc

[n] )TG[n] +
(
(Kfb-inc

[n] )THT
[n] + GT

[n]

)
Kfb-inc

[n]

)
x̄[n]

Evaluate S, s, and s through backwards Riccati functions

S[n] = L∗
xx + AT

[n]S[n+1]A[n] + (Kfb-inc
[n] )TG[n] +

(
(Kfb-inc

[n] )THT
[n] + GT

[n]

)
Kfb-inc

[n]

s[n] = L∗
x + s[n+1]A[n] + (uff-inc

[n] )TG[n] +
(
gT

[n] + (uff-inc
[n] )THT

[n]

)
Kfb-inc

[n]

s[n] = L∗ + s[n+1] +

(
gT

[n] +
1

2
(uff-inc

[n] )THT
[n]

)
uff-inc

[n]
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Initialize with terminal conditions

S[N] = Φ∗
xx (Nx ×Nx) matrix

s[N] = Φ∗
x (1×Nx) vector

s[N] = Φ∗ (1× 1) scalar
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A.1 SLQ with Inequality Constraints

When there is an inequality constraint, we have two possible strategies in choosing a

control input: applying the optimal unconstrained control (works exactly as above, except

that we have to check if it’s valid), or applying an optimal control that takes the system

exactly to the boundary, which we consider now. In the forward rollout, we will simply

apply the control strategy that leads to the best allowed final state. (Note that there

will always be at least one allowed final state, namely the one computed to end on the

boundary.)

Now, assume we have some constraint function c(x[n],u[n]) ≤ 0. Define

Cx =
∂c(x[n],u[n])

∂x

∣∣∣∣
x∗
[n]
,u∗

[n]

(1×Nx) vector

Cu =
∂c(x[n],u[n])

∂u

∣∣∣∣
x∗
[n]
,u∗

[n]

(1×Nu) vector

The necessary condition for ū[n] to be a constrained local minimum of the value

function is:

0 =
(
gT

[n] + x̄T
[n]G

T
[n]

)
+ ūT[n]H

T
[n]+λCT

u

H[n]ū[n] = −
(
g[n] + G[n]x̄[n]+λCT

u

)
ū[n] = −H−1

[n]

(
g[n] + G[n]x̄[n]+λCT

u

)
Linearly approximating the constraint, the condition of ending on the boundary tells

us:

0 = c(x[n] + x̄[n],u[n] + ū[n])

0 = c(x[n],u[n]) + Cxx̄[n] + Cuū[n]

Cuū[n] = −c(x[n],u[n])−Cxx̄[n]
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Since Cu isn’t invertible (or even square) in general, we’ll just left-multiply the local

minimum condition by Cu, allowing us to solve for λ:

ū[n] = −H−1
[n]

(
g[n] + G[n]x̄[n] + λCT

u

)
Cuū[n] = −CuH

−1
[n]

(
g[n] + G[n]x̄[n] + λCT

u

)
−c(x[n],u[n])−Cxx̄[n] = −CuH

−1
[n]

(
g[n] + G[n]x̄[n] + λCT

u

)
CuH

−1
[n] C

T
uλ = −CuH

−1
[n]

(
g[n] + G[n]x̄[n]

)
+ c(x[n],u[n]) + Cxx̄[n]

λ =
1

CuH
−1
[n] C

T
u

(
−CuH

−1
[n]

(
g[n] + G[n]x̄[n]

)
+ c(x[n],u[n]) + Cxx̄[n]

)
=
−CuH

−1
[n] G[n] + Cx

CuH
−1
[n] C

T
u

x̄[n] +
−CuH

−1
[n] g[n] + c(x[n],u[n])

CuH
−1
[n] C

T
u

Now, plugging this in to our expression for ū[n] and splitting out the terms containing

x̄[n], we can extract the feedforward control and the feedback matrix:

ū[n] = −H−1
[n] G[n]x̄[n] −H−1

[n] g[n]−H−1
[n] C

T
uλ

=

(
−H−1

[n] g[n]+
−H−1

[n] C
T
u (−CuH

−1
[n] g[n] + c(x[n],u[n]))

CuH
−1
[n] C

T
u

)

+

(
−H−1

[n] G[n]+
−H−1

[n] C
T
u (−CuH

−1
[n] G[n] + Cx)

CuH
−1
[n] C

T
u

)
x̄[n]

This gives constrained feedforward and feedback increments of:

uff-inc
[n] = −H−1

[n] g[n]+
−H−1

[n] C
T
u (−CuH

−1
[n] g[n] + c(x[n],u[n]))

CuH
−1
[n] C

T
u

ff increment: (Nu × 1) vector

Kfb-inc
[n] = −H−1

[n] G[n]+
−H−1

[n] C
T
u (−CuH

−1
[n] G[n] + Cx)

CuH
−1
[n] C

T
u

fb increment: (Nu ×Nx) matrix

The optimal update policy is now

u∗
[n]new = u∗

[n]old + uff-inc
[n] + Kfb-inc

[n] x̄[n]
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A.2 Doing Simultaneous Methods Differently

This idea of SLQ planning can be applied to a legged robot, a system with inherently

hybrid dynamics. The nominal gait of a legged system can be naturally modeled as a

hybrid-dynamical system wherein a sequence of continuous swing phases are punctuated

by discrete impact events. DDP and SLQ can be used to conform a nominal gait to

the environment, adjusting both continuous control torques and discrete impulses alike.

While traditional SLQ planners fight the battle of coarse vs. fine discretization, this

work takes a novel approach at coarse trajectory discretization. Instead of linearizing

along the entire step trajectory, the entire hybrid step is linearized into a single discrete

action. While this approach may seem counter-intuitive to achieving stable controllers,

the underlying method achieves highly dynamic movements for a system with narrowly-

stable margins. By optimizing over control parameters that affect step location, motion,

and control simultaneously, we turn SLQ into a tool that selects the “best achievable”

sequence of foothold positions to traverse terrain in the context of how easy it is to control

the system online (see Fig. 4.7).

A.3 Differences from other DDP Planners

This idea of SLQ planning can be applied to a legged robot, a system with inherently

hybrid dynamics. The nominal gait of a legged system is can be naturally modeled as a

hybrid-dynamical system wherein a sequence of continuous swing phases are punctuated

by discrete impact events. SLQ can be used to conform a nominal gait to the environment,

adjusting both continuous control torques and discrete impulses alike. While our work

has elements similar to many existing works, it has the following distinctions from other

DDP-variant planners:

(i) We solve for the gradient of time of contact tc with respect to state ∂tc
∂x

and control

∂tc
∂u

to be used in determining the optimal controller. The time of contact is herein

defined as the transition between the continuous phase ending and the discrete phase

beginning, represented in this work as the moment in which the foot of a walking system
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comes in contact with the ground. A fundamental problem with hybrid dynamics is that

every small control adjustment comes with a change to tc, which can be solved for as an

additional optimization parameter [41]. We use a method that does not require solving for

tc for each incremental control adjustment, but instead solves for the the gradient of the

hybrid step directly. We embed these partial derivatives into our SLQ formulation such

that our control solution automatically considers ∆tc for every control adjustment ∆u.

This eliminates the need to solve for additional parameters such as time of contact.

(ii) Rather than discretizing a continuous nominal trajectory into S locally linear seg-

ments followed by a discrete event, we discretize the entire hybrid step into one single

movement. We do this by embedding a local continuous controller whose parameters u

(gains, etc.) are tuned by the SLQ planner. This approach enables a simple PD controller

to govern highly dynamic walking motions. For a finite N -step horizon, this method of

linearization transforms a backwards Ricatti control updates from NS segments into N

iterations, faster by a factor of S, shown in Fig. ??. Our method becomes an N -step

foothold optimization against the terrain cost map, combining both foothold selection

and motion planning into a unified approach. In their work, [94] similarly tuned contin-

uous control parameters (spring constant, etc.), but used an LQR controller for infinite

time horizon gait transition and not an SLQ controller for finite time horizon footstep

planning as we did. [95] did similar tuning using a deadbeat control approach for footstep

placement of a spring-loaded inverted pendulum (SLIP) model, but this system allows

“instantaneous joint angle placement of massless legs” and lacks the complexity of a vari-

able inertia during the continuous spring phase that we consider with the Compass Gait

Walker.

(iii) Our method solves for the gradients of the hybrid step using a numerical inte-

gration of the exact analytical gradient’s time derivative using an ODE solver. For all

practical purposes, this method yields the numerical equivalent to the exact solution for

a system where the analytical solution is unknown, and the numerical approximation er-

ror should be at or better than that of any numerical gradient method (finite difference,

automatic differentiation, etc.). Not only is this method more accurate, but it is faster
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than conventional differentiation methods, as shown in Chap. 7.
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Projected Hybrid Dynamic Gradient

In this appendix, the control gradient (4.11) for the projected hybrid dynamics referenced

in (4.7) is derived. Although this derivation is specific to (4.7), the same method can

be used generically to generate gradients for more complex hybrid systems. To keep the

derivation compact, |ι is used to represent the equation evaluation point |t=t−
c[n+1]

. Parallel

derivation can be done with respect to state gradient, whose results are shown in Section

B.3.

B.1 Projected linearization with respect to changes

in u[n]

We begin by applying the chain rule to the gradient of (4.9)

∂P
(
x[n],u[n]

)
∂u[n]

=
∂

∂u[n]

D
(
q
(
t−c[n+1],x[n],u[n]

))
=
∂D

∂q

[
f (q(t))

∂t−c[n+1]

∂u[n]

+
∂q(t)

∂u[n]

]∣∣∣∣∣
ι

. (B.1)
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Expanding ∂q(t)
∂u[n]

∣∣∣
ι

from (B.1)

∂q(t)

∂u[n]

∣∣∣∣
ι

=
∂

∂u[n]

[
M
(
q
(

t−c[n],x[n]

)
,u[n]

)
+

∫ t

t+
c[n]

f
(
q(τ),u[n]

)
dτ

]∣∣∣∣∣
ι

=
∂M

∂u[n]

+

[
∂

∂u[n]

∫ t

t+
c[n]

f
(
q(τ),u[n]

)
dτ

]∣∣∣∣∣
ι

. (B.2)

When applying the Leibniz integral rule to the integral in (B.2)

∂

∂u[n]

∫ t

t+
c[n]

f
(
q(τ),u[n]

)
dτ

∣∣∣∣∣
ι

=

[
f
(
q(t),u[n]

) ∂t

∂u[n]

− f
(
q(t+c[n]),u[n]

) ∂t+c[n]

∂u[n]

+

∫ t

t+
c[n]

[
∂f (q(τ))

∂q

(
∂q(τ)

∂τ

∂τ

∂u[n]

+
∂q(τ)

∂u[n]

+
∂q(τ)

∂x[n]

∂x[n]

∂u[n]

)
+

∂f (q(τ))

∂u[n]

dτ

]]∣∣∣∣
ι

=

[
0− 0 +

∫ t

t+
c[n]

[
∂f (q(τ))

∂q

(
0 +

∂q(τ)

∂u[n]

+ 0

)
+
∂f (q(τ))

∂u[n]

dτ

]]∣∣∣∣∣
ι

=

[∫ t

t+
c[n]

∂f (q(τ))

∂q

∂q(τ)

∂u[n]

+
∂f (q(τ))

∂u[n]

dτ

]∣∣∣∣∣
ι

, (B.3)

in which most of the expanded derivatives go to zero as seen in (B.3). Substituting (B.3)

into (B.2) yields

∂q(t)

∂u[n]

∣∣∣∣
ι

=

[
∂M

∂u[n]

+

∫ t

t+
c[n]

∂f (q(τ))

∂q

∂q(τ)

∂u[n]

dτ +
∂f (q(τ))

∂u[n]

]∣∣∣∣∣
ι

. (B.4)

The second fundamental theorem of Calculus states

d

dt

∂q(t)

∂u[n]

=
d

dt

∫ t

t+
c[n]

∂f (q(τ))

∂q

∂q(τ)

∂u[n]

+
∂f (q(τ))

∂u[n]

dτ

=
∂f
(
q(t),u[n]

)
∂q

∂q(t)

∂u[n]

+
∂f
(
q(t),u[n]

)
∂u[n]

. (B.5)

Forward integration of the form ẏ = Ay with initial conditions
∂q(t+

c[n]
)

∂u[n]
= ∂M

∂u[n]
of the

form y(0) = c0.
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B.2 Solve for collision gradients

The goal in this section is to find the unknown term
∂t−
c[n+1]

∂u[n]
from equation (B.1). Set

function φ to represent the end of integration

φ
(
q
(
t−c[n+1],x[n],u[n]

))
= 0. (B.6)

Taking gradient of φ with respect to u[n],

∂

∂u[n]

φ
(
q
(
t−c[n+1],x[n],u[n]

))
= 0

0 =

[
∂φ

∂q

(
∂q(t)

∂u[n]

+
∂q(t)

∂x[n]

∂x[n]

∂u[n]

+
∂q(t)

∂t

∂t−c[n+1]

∂u[n]

)]∣∣∣∣∣
ι

=

[
∂φ

∂q
f(q(t))

∂t−c[n+1]

∂u[n]

+
∂φ

∂q

∂q(t)

∂u[n]

]∣∣∣∣∣
ι

(B.7)

and rearranging (B.7) reveals (B.8)

∂t−c[n+1]

∂u[n]

= −

[(
∂φ

∂q
f(q(t))

)−1(
∂φ

∂q

∂q(t)

∂u[n]

)]
ι

. (B.8)

B.3 Linearization of the Nonlinear Projected Dy-

namics

This linearization method solves for the gradients of the projected dynamics using a

numerical integration of the exact analytical gradient’s time derivative using an ODE

solver. By doing so, this method yields the numerical equivalent to the exact solution for

a system where the analytical solution is unknown, yielding a faster and more accurate

result than numerical gradient methods (finite difference, automatic differentiation, etc.),

as shown empirically in Chapter 7.

The sequence to solve for ∂P
∂x[n]

and ∂P
∂u[n]

can be solved in parallel using a single forward
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integration of the dynamics, linearized about the pair (x∗
[n],u

∗
[n]). We begin by integrating

q̇ = f(q(t)) (B.9)

d

dt

∂q(t)

∂x[n]

=
∂f (q(t))

∂q

∂q(t)

∂x[n]

(B.10)

d

dt

∂q(t)

∂u[n]

=
∂f
(
q(t),u[n]

)
∂q

∂q(t)

∂u[n]

+
∂f (q(t))

∂u[n]

(B.11)

from initial conditions M
(
D−1

(
x[n]

))
, ∂M
∂q

∂D−1

∂x[n]
and ∂M

∂u[n]
, respectively, until the next time

of impact t−c[n+1] to reveal f(q(t)), ∂q(t)
∂x[n]

, and ∂q(t)
∂u[n]

, evaluated at t−c[n+1]. Second, solve

ξ = −

[(
∂φ

∂q
f(q(t))

)−1
∂φ

∂q

]
ι

(B.12)

∂t−c[n+1]

∂x[n]

= ξ
∂q(t)

∂x[n]

∣∣∣∣
ι

∂t−c[n+1]

∂u[n]

= ξ
∂q(t)

∂u[n]

∣∣∣∣
ι

. (B.13)

Finally, solve (B.14) and (B.15) for the gradients with respect to state and control

∂P

∂x[n]

=
∂D

∂q

∂M

∂q

[
f(q(t))

∂t−c[n+1]

∂x[n]

+
∂q(t)

∂x[n]

]∣∣∣∣∣
ι

(B.14)

∂P

∂u[n]

=
∂D

∂q

[
∂M

∂q

[
f(q(t))

∂t−c[n+1]

∂u[n]

+
∂q(t)

∂u[n]

]
+

∂M

∂u[n]

]∣∣∣∣∣
ι

. (B.15)

Eqns. (B.11),(B.13),(B.15) yield the control gradient. A parallel set of derivations can

be completed to yield the state gradient, whose results are listed in (B.10),(B.13),(B.14)

above.
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Appendix C

Regression for Curve of Capture

and Curve of Equal Energy

This section contains the regression data to reconstruct the curve of capture and curve

of equal energy. The regression data below matches the results from Figures 5.3, 5.5, and

6.4. The input regression data is normalized by its mean µ and standard deviation σ as

follows.

E−
∗ =

E− − µE
σE

∆z−∗ =
∆z− − µ∆z

σ∆z

, (C.1)

where E−
∗ and ∆z∗ represent the normalized input data. The respective mean and stan-

dard deviation data are located in Tables C.1-C.3. The normalized data can be taken to

their respective power and multiplied by the coefficients of regression from the tables.

∆x =
O∑

m=0

O∑
n=0

cm,n
(
E−

∗
)m

(∆z∗)
n (C.2)

Where O represents the order of the system as listed in Sections 5.1, 5.2 and 6.1. Using

(C.2) and information from Tables C.1, C.2 and C.3, the ∆x footstep positions for (5.8),

(5.10) and (6.3) can be recreated very quickly. The regression code is available at this

link.
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APPENDIX C. REGRESSION FOR CURVE OF CAPTURE AND CURVE OF
EQUAL ENERGY

Table C.1: Coefficients for Curve of Capture Polynomial for Nonlinear Inverted Pendulum

Table C.2: Coefficients for Curve of Equal Energy Polynomial for Nonlinear Inverted
Pendulum

Table C.3: Coefficients for Curve of Capture Polynomial for Compass Gait Walker
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