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Abstract

Controlled school choice policies aim to provide families a choice as to which school

their child will attend while maintaining diversity in schools. These policies are of-

ten implemented in the form of minimum and maximum quotas on student types

(that can be based on race, ethnicity or socioeconomic factors). When these quotas

are interpreted as hard bounds, standard fairness and non-wastefulness properties are

compromised, imposing a cost on student welfare. By interpreting the minimum quota

as a flexible guideline (a ”soft” bound), I employ a mixed interpretation of these quotas

to formulate a modified version of the student-optimal deferred acceptance algorithm

that guarantees fairness. Furthermore, I show that both this and a purely soft inter-

pretation of the diversity bounds can be used to formulate e↵ective mechanisms that

ensure fairness, even in settings with notionally hard bounds.

1 Introduction

School choice policies aimed at providing families a choice with regards to which school

their child will attend are becoming increasingly widespread in the United States. Con-

trolled school choice aims to provide families with the same choice while maintaining diver-

sity (racial, ethnic or otherwise) in schools. These policies often take the form of minimum

and maximum quotas for di↵erent student types at schools. For example, a�rmative action

policies are a special case of controlled school choice, ones which give traditionally under-

represented groups priority over others at the schools of their choice.

There are numerous other examples of controlled school choice in the United States.

These include the policies of Kansas City and St. Louis, Missouri, where controlled school
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choice is implemented due to court orders enforcing desegregation. The city of White Plains

(New York) voluntarily implements its controlled school choice program, with the White

Plains Board of Education’s racial and ethnic balance policy playing a part in elementary

and middle school admissions. Historically, Boston Public Schools’ controlled school choice

program was employed due to laws preventing racial imbalance, though at present it is

voluntarily used to achieve diversity across ethnic and socioeconomic lines.

Controlled school choice is not limited to racial or ethnic diversity. Chicago Public

Schools promote diversity by categorizing students according to their socioeconomic status;

students are divided into four tiers based on their family income and a certain number

of seats is allocated to each tier. New York City’s EdOpt programs control for student

ability and are required to admit students of di↵erent ability ranges. The EdOpt schools use

students’ scores on the English Language Arts exam as a measure of student ability. This

flexible interpretation of diversity emphasizes the relevance of controlled school choice and

the importance of studying such policies.

The question then arises of how to implement controlled school choice while minimizing

the adverse e↵ects to students. An idea central to student welfare under school choice is that

of fairness. A definition of fairness that is consistent with the literature on the subject is the

removal of justifiable envy. Justifiable envy exists when there is a student and school that

are not matched together such that the student prefers the school to her assignment and has

priority over another student at that school. Another important notion of student welfare

is that of non-wastefulness, which captures the idea that no student should be denied an

empty seat at any school. From the perspective of a policy maker (such as a school district),

fairness and non-wastefulness are highly desirable.

Abdulkadiroğlu and Sönmez (2003) consider a version of controlled schooled choice with

type-specific quotas and propose the student-proposing deferred acceptance algorithm as a

mechanism for controlled school choice. They go on to show that this algorithm removes

justifiable envy, but only among students of the same type e.g. if gender is being controlled

for, justifiable envy is removed between all male students, though a male student may still

justifiably envy a female student. Their work exemplifies the welfare costs in terms of fairness

that are introduced by these diversity quotas.

Ehlers et al. (2011) build on the approach introduced by Abdulkadiroğlu and Sönmez

(2003) and show that when diversity quotas are ”hard bounds” (that cannot be violated),

then there may be no fair assignments. They go on to provide an alternative interpretation

of diversity constraints as ”soft bounds”, which are to be used more as guidelines and not
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binding. They define a version of the student-proposing deferred acceptance algorithm,

the DAASB, which results in a fair and non-wasteful assignment. However, the attractive

fairness and non-wastefulness properties are achieved at the cost of weakening the diversity

constraints; in fact, the soft bounds approach still allows schools to be segregated.

In cases when the diversity constraints are strictly enforced, guaranteeing that these

constraints are met comes at the cost of fairness. As shown by Ehlers et al. (2011), fairness

can be guaranteed by weakening the interpretation of the bounds on student types. Their

DAASB does not ensure that the given diversity requirements are upheld, but can it still be a

useful mechanism? If a view is taken in which fairness is indispensable, can useful mechanisms

be constructed that respect the constraints in most cases? By using a laxer interpretation

of the bounds, mechanisms can be designed to guarantee fairness while providing a high

possibility of respecting constraints (without guaranteeing that they are not violated). The

idea of fair mechanisms that are e↵ective at meeting constraints encompasses the motivation

behind this study.

In this paper, I adopt a mixed bounds approach (where minimum quotas are soft bounds

and maximum quotas are hard bounds) as a compromise between diversity and student

welfare. I define a version of the student-proposing deferred acceptance algorithm, the

DAASFHC, under this framework and show that it always results in a fair assignment for

students (Proposition 1). This approach eliminates the loss of fairness associated with hard

bounds while imposing stronger diversity restrictions than those in a soft bounds approach.

However, this comes at the cost of non-wastefulness and the possibility of some students

being unassigned (Proposition 3). Since the DAASFHC and DAASB are closely related, I

provide a comparison between the two and find that the DAASB assignment is always weakly

preferred to the DAASFHC assignment by students (Proposition 4). I also provide conditions

under which the outcomes of the DAASB and DAASFHC are the same (Proposition 5).

Finally, I use computer simulations to test the e�cacy of the DAASB and the DAASFHC at

meeting the given diversity constraints, and quantify the costs to student welfare at which

the DAASFHC provides improved e↵ectiveness over the DAASB.

1.1 Review of Related Literature

Abdulkadiroğlu (2005) studies the college admissions problem with a�rmative action. His

results show that when college preferences are substitutable, there is no stable mechanism

that makes truthful revelation of preferences a dominant strategy for every student. He goes

on to show that truthful preference revelation is a dominant strategy for every student under
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student-proposing deferred acceptance algorithm when college preferences are responsive over

sets of students that meet the type-specific quotas.

Kojima (2012) considers a school choice model with two types of students (majority and

minority) in which a�rmative action is implemented in the form of maximum quotas for

majority students and proceeds to show that such policies might actually be detrimental to

minority students - the supposed beneficiaries in this setting. Hafalir, Yenmez and Yildirim

(2011) build on Kojima’s results and propose the implementation of minority reserves (as

opposed majority quotas) where minority students are given higher priority (than majority

students) until they fill the minority reserves. They adapt both the student-proposing de-

ferred acceptance algorithm and the top trading cycles algorithm to this setting and find that

minorities, on average, are better o↵ under minority reserves than under majority quotas.

Fragiadakis et al. (2012) revisit the problem of controlled school choice with both min-

imum and maximum quotas. They treat strategy-proofness as a necessary property of any

assignment mechanism and propose variants of the student-proposing deferred acceptance

algorithm that preserve strategy-proofness using relaxed definitions of fairness and non-

wastefulness.

Kamada and Kojima (2010) study a related model of entry-level medical markets with

regional caps (that restrict the number of doctors that can be assigned to hospitals in a

region); their results are in a similar vein to those of Ehlers et al. (2011) where they show

that strongly stable assignments may not exist and propose the flexible deferred acceptance

algorithm which finds a stable and non-wasteful assignment1.

This paper proceeds as follows. Section 2 introduces the controlled school choice model.

Section 3 provides a general form of the student-proposing deferred acceptance algorithm,

along with two results from literature that provide conditions on the choice functions un-

der which the student-proposing deferred acceptance algorithm produces a fair assignment

and is strategy-proof. Section 4 considers the mixed bounds approach to controlled school

choice and presents the theoretical results as well as results from the simulations. Section 5

concludes.
1The notions of strong stability and stability correspond to ”fairness across types” and ”fairness for

same types” (as proposed in Ehlers et al., 2011) respectively, and the flexible deferred acceptance algorithm
possesses properties similar to those of the DAASB.
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2 Controlled School Choice

In this paper, I consider the model studied by Ehlers et al. (2011).

1. A finite set of students S = {s1, s2, . . . , sn},

2. A finite set of schools C = {c1, c2, . . . , cm},

3. A capacity vector q = (qc1 , qc2 , . . . , qcm) where qc is the capacity of (or number of seats

in) school c,

4. A students’ preference profile �S= (�s1 ,�s2 , . . . ,�sn) where �s is a strict preference

relation over C [ {s} for each student s 2 S,

5. A schools’ priority order profile �C= (�c1 ,�c2 , . . . ,�cm) where �c is a strict priority

ranking over S for each school c 2 C,

6. A type space T = {t1, t2, . . . , tk},

7. A mapping ⌧ : S 7�! T where ⌧(s) is the type of student s,

8. For each school c, the type-specific diversity constraint vectors qT
c
= (qt1

c
, qt2

c
, . . . , qtk

c
)

and qTc = (qt1c , q
t2
c , . . . , q

tk
c ) such that qt

c
 qtc  qc for all t 2 T and

P
t2T qt

c
 qc 

P
t2T qtc; q

t
c
and qtc are the minimum and maximum quota respectively for students of

type t at school c.

The minimum quota qt
c
is the least number of seats that school c must allocate to students

of type t, and is referred to as the floor or lower bound for type t at school c; similarly,

the maximum quota qtc is the greatest number of seats that c can allocate to students of

type t and is referred to as the ceiling or upper bound for type t at c. In this paper, the

following two interpretations of the floors and ceilings are employed. A diversity constraint

is hard if it cannot be violated under any circumstances. A diversity constraint is soft if it

can be violated and is used as a guideline to modify school priorities. The manner of this

modification is specified as follows: if a diversity constraint at c is met by students of type

t but not of type t0, then all students of type t0 are given a higher priority ranking than all

students of type t by c.

An assignment is a mapping µ : (C [ S) 7�! (C [ S) such that:

(i) µ(s) 2 C [ {s} for all s 2 S
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(ii) |µ(c)|  qc and µ(c) ✓ S

(iii) µ(s) = c if and only if s 2 µ(c)

Less formally, an assignment matches each student to at most one school, and each school is

matched to a subset of students such that the number of students it is matched to does not

exceed its capacity. Moreover, if a student is matched to a school, then it must be in the

subset that the same school is matched with and vice versa. If a student s is not matched

with a school under µ, then µ(s) = s and the student is said to be unassigned under µ.

For the purposes of this study, I assume that every student prefers to be assigned to any

school, rather than being unassigned. This assumption can be formalized as for any s 2 S,

c �s s for all c 2 C. A consequence of this assumption is that individual rationality

is never violated under this framework; that is, no student is assigned to a school that is

unacceptable to her. This is crucial as fairness requires that individual rationality not be

violated for any student.

Given two assignments µ1 and µ2, a student s weakly prefers µ1 to µ2 if either µ1(s) �s

µ2(s) or µ1(s) = µ2(s). Notationally, if s weakly prefers µ1 to µ2, then µ1 ⌫s µ2. Given a

subset Ŝ ✓ S, if µ1 ⌫s µ2 for all s 2 Ŝ, then µ1 ⌫Ŝ µ2. Finally, µ1 Pareto dominates µ2 if

µ1 ⌫S µ2. An assignment µ is Pareto optimal for students, or simply student-optimal,

in a set of assignments if it is not Pareto dominated by any assignment in that set.

3 General Deferred Acceptance in School Choice

In this section, I introduce a general form of the Deferred Acceptance Algorithm (DAA)

in the context of school choice. I then provide two results from literature that provide

conditions under which the DAA is fair and group strategy-proof.

A convenient way of adapting the classic DAA introduced by Gale and Shapley (1962) to

many-to-one matching problems and, in particular, school choice problems is by specifying

a choice function for schools. A choice function for a school c is a mapping Chc : 2S 7�! 2S

such that Chc(S 0) ✓ S 0 for all subsets S 0 ✓ S. Given choice functions Chc for all schools

c 2 C, the general form of the student-proposing DAA is as follows:

General Deferred Acceptance Algorithm

Step 1: Start with the assignment µ0 such that every student is unassigned under µ0. Let

Sc,1 be the set of students that have school c as their first choice; they apply to c at the first
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step of the algorithm. School c tentatively admits the students in Chc(Sc,1) and rejects the

rest. Define the assignment µ1 by µ1(c) = Chc(Sc,1).

Step k: Start with the assignment µk�1 from step k � 1. If no students were rejected

at step k�1, then stop. Else, all students that were rejected in step k�1 apply to their next

choice school. Let Sc,k denote the set of students that were either tentatively admitted to c

in step k � 1 or that apply to school c at step k. School c tentatively admits those students

in Chc(Sc,k) and rejects the rest. Define the assignment µk by µk(c) = Chc(Sc,k).

If the algorithm terminates at step k, then the resulting DAA assignment is µ = µk�1.

If the choice functions are well-defined then this formulation is particularly useful due

to results from literature that confirm the fairness and strategy-proof characteristics of the

DAA, provided these choice functions satisfy certain conditions. Before these results are

presented however, it is beneficial to introduce notions of fairness and strategy-proofness.

A student s and school c form a blocking pair (s, c) if s /2 µ(c), c �s µ(s) and s 2
Chc(µ(c)[{s}). Less formally, (s, c) is a blocking pair if s prefers c to her assignment under

µ and c prefers to give a seat to s (either by giving s an empty seat or by replacing a student

in µ(c) with s). If (s, c) constitutes a blocking pair, then there is justifiable envy. An

assignment µ is fair if there are no blocking pairs or equivalently, if it removes justifiable

envy.

Roth and Sotomayor (1990) provide a result that guarantees not only the existence of a

fair assignment, but also that the student-proposing DAA results in a student-optimal fair

assignment. The idea of substitutability of schools’ choice functions is central to this result.

A choice function Chc satisfies substitutability if for any subset S̃ ✓ S and s, s0 2 S̃ with

s 6= s0, if s 2 Chc(S̃), then s 2 Chc(S̃\{s0}). Roth and Sotomayor’s result, applied to the

problem of school choice, can now be presented as below.

Theorem 1 (Roth and Sotomayor, 1990, Theorem 6.8). If every school’s choice function

satisfies substitutability (and if preferences are strict), then the student-proposing DAA results

in a student-optimal fair assignment.

The next result relates to the group strategy-proof property. Recall that a mechanism

is a mapping from the space of student preference profiles to the set of assignments. A

mechanism F is group strategy-proof if for any group of students Ŝ ✓ S and for any student

preference profile �S, there is no �̃Ŝ such that F ((�̃Ŝ,�S\Ŝ)) ⌫Ŝ F (�S) i.e. no group of

students can modify or misreport their preferences so as to make every student in the group
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better o↵. Hatfield and Kojima (2009) show that if the schools’ choice functions satisfy

substitutability and the law of aggregate demand, then the student-proposing DAA is group

strategy-proof. A choice function Chc satisfies the law of aggregate demand if for any

S 00 ✓ S 0 ✓ S, |Chc(S 00)|  |Chc(S 0)|. The result is formalized as follows.

Theorem 2 (Hatfield and Kojima, 2009, Theorem 1). If every school’s choice function

satisfies substitutability and the law of aggregate demand, then the student-proposing DAA

is group strategy-proof.

These preliminary results provide the basis for the approach adopted ahead in this paper,

which is to construct choice functions that incorporate the diversity restrictions under consid-

eration. In the next section, I consider controlled school choice with a mixed interpretation

of the diversity constraints - ceilings are hard bounds and floors are soft bounds.

4 School Choice with Soft Floors and Hard Ceilings

Ehlers et al. (2011) show that there may be no fair assignments in a controlled school

choice problem where minimum quotas are imposed as hard bounds. To circumvent this

obstacle, I interpret the minimum quotas as soft bounds: constraints that are not binding

and used as guidelines to modify school priorities. In the same paper, Ehlers et al. (2011)

consider controlled school choice problems in which both minimum and maximum quotas are

soft bounds to eliminate existence issues of fair assignments. However, such an interpretation

allows schools to be segregated (since soft bounds can be violated). This is an unattractive

proposition, since the idea behind the diversity quotas is to prevent segregation. Therefore, I

interpret the ceilings as hard bounds. I adopt this mixed approach as a compromise between

fairness and diversity.

In this section, I define the Deferred Acceptance Algorithm with Soft Floors and

Hard Ceilings (DAASFHC) by defining choice functions consistent with the interpreta-

tion of the diversity constraints. I then establish the fairness and group strategy-proofness

properties of the DAASFHC. I also provide a negative result which shows that the DAASFHC

may leave some students unassigned. Section 4.1 reviews the DAASB introduced in Ehlers

et al. (2011) and Section 4.2 compares the DAASFHC to the DAASB in terms of Pareto

dominance relations between the two.

In context of this mixed interpretation of diversity constraints, relevant properties of

assignments are defined as follows. Given a controlled school choice problem, an assignment

8



µ is feasible if, for all schools c 2 C, |µ(c)|  qc and |µt(c)|  qtc for all t 2 T (that is, µ

does not violate the capacity and the ceiling for any type at any school). An assignment µ

respects constraints if it is feasible and if |µt(c)| � qt
c
for all t 2 T and c 2 C. In cases

where schools are legally required to meet the imposed diversity restrictions, assignments

that respect constraints become particularly relevant.

Two notions of non-wastefulness are considered: an assignment µ is non-wasteful if

c �s µ(s) for some student s and school c implies |µ(c)| = qc, and is constrained non-

wasteful if for some student s and school c, c �s µ(s) and |µ(c)| < qc imply |µ⌧(s)(c)| =
q⌧(s)c . Less formally, if a student prefers some school over the one she is assigned to, non-

wastefulness means that her preferred school must have filled its capacity while constrained

non-wastefulness means that if her preferred school has empty seats, then it must have filled

its ceiling for students of her type.

Under soft floors and hard ceilings, given an assignment µ, a student s justifiably claims

an empty seat at school c if s can be enrolled at c without violating either the capacity

constraint of c or the ceiling for students of type ⌧(s) at c. Formally, s justifiably claims

an empty seat at c if c �s µ(s), |µ(c)| < qc and |µ⌧(s)(c)| < q⌧(s). A student s justifiably

envies another student s0 if c �s µ(s), µ(s0) = c, µ⌧(s)(c)  q⌧(s)c and either (1) or (2) where:

(1) ⌧(s) = ⌧(s0) and s �c s0

(2) ⌧(s) 6= ⌧(s0) and either (a) or (b):

(a) |µ⌧(s)(c)| < q⌧(s)
c

and |µ⌧(s0)(c)| � q⌧(s
0)

c

(b) Either |µt(c)| < qt
c
or |µt(c)| � qt

c
for all t 2 {⌧(s), ⌧(s0)}, and s �c s0

Therefore, an assignment µ removes justifiable envy under soft floors and hard ceil-

ings if for any student s and school c such that c �s µ(s) with ⌧(s) = t if both |µt(c)| � qt
c

and s0 �c s for all s0 2 µt(c) and either

(i) |µt(c)| = qtc, or

(ii) qt
c
 |µt(c)| < qtc and s0 �c s for all s0 2 µ(c) such that q⌧(s

0)
c

< |µ⌧(s0)(c)|  q⌧(s
0)

c

An assignment is fair if it removes justifiable envy under soft floors and hard ceilings.

With these definitions in hand, the school’s choice function can be formulated to account

for the soft floors and hard ceilings. The choice function is defined in the following manner:

given a subset of students S 0 ✓ S and a school c 2 C, let Chc(S 0, qc, (qtc)t2T ) be the subset
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S 00 ✓ S 0 that includes the highest ranked students, according to �c, in S 0 such that there

are no more than qc students in total and qtc students of type t in S 00. Further, define:

Ch(1)
c (S 0) = Chc(S

0, qc, (q
t
c
)t2T )), and

Ch(2)
c (S 0) = Chc(S

0\Ch(1)
c (S 0), qc � |Ch(1)

c (S 0)|, (qtc � qt
c
)t2T ))

Less formally, Ch(1)
c (S 0) is the set of students with highest priorities in S 0 such that the floor

is not exceeded for any student type. Ch(2)
c (S 0) is the subset of students remaining in S 0

(i.e. in S 0\Ch(1)
c (S 0)) that have the highest priorities up to the ceiling of their types. Finally,

define the choice function under soft floors and hard ceilings as:

Chc(S
0) = Ch(1)

c (S 0) [ Ch(2)
c (S 0)

It is worth noting that the notion of fairness as the absence of blocking pairs is equivalent

to the removal of justifiable envy as defined in this section.

The DAASFHC is simply defined by applying the choice function under soft floors and

hard ceilings to the general DAA provided in Section 2. The next results confirm that the

DAASFHC is fair, constrained non-wasteful and group strategy-proof.

Proposition 1. The DAASFHC results in a fair assignment that is student-optimal among

all such assignments.

Proof. By Theorem 1, it su�ces to show that Chc satisfies substitutability. Consider some

S̃ ✓ S and some s 2 Chc(S̃). For any s0 2 S̃\{s}, note that s 2 Chc(S̃) implies s 2
Chc(S̃)\{s0}. Consider some s 2 Chc(S̃)\{s0}; either s0 /2 Chc(S̃) or s0 2 Chc(S̃).

If s0 /2 Chc(S̃), then Chc(S̃)\{s0} = Chc(S̃\{s0}) and s 2 Chc(S̃\{s0}). If s0 2 Chc(S̃),

then either s0 �c s or s �c s0. If s0 �c s, then the ranking of s according to �c in S\{s0} is

either improved from or remains the same as in S̃ and hence, s 2 Chc(S̃\{s0}). If s �c s0,

then the ranking of s according to �c in S̃\{s0} is the same as in S̃ and s 2 Chc(S̃\{s0}).
Therefore, Chc(S̃)\{s0} ✓ Chc(S̃\{s0}) and s 2 Chc(S̃\{s0}), which implies that Chc

satisfies substitutability. Hence, the DAASFHC assignment is fair and student-optimal.

Corollary 1. The DAASFHC assignment is constrained non-wasteful.

Proof. Let µ be the DAASFHC assignment for a controlled school choice problem. By way

of contradiction, suppose µ is not constrained non-wasteful; then there exist a student s and
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school c such that c �s µ(s), |µ(c)| < qc and |µ⌧(s)(c)| < q⌧(s)c . By definition of the choice

function, Chc(µ(c) [ {s}) = µ(c) [ {s} ) s 2 Chc(µ(c) [ {s}). Hence, (s, c) is a blocking

pair by definition. This contradicts the fairness of µ (Proposition 1).

Proposition 2. The DAASFHC is group-strategy proof.

Proof. Since Chc satisfies substitutability (Proposition 1), by Theorem 2 it su�ces to show

that Chc satisfies the law of aggregate demand.

Let Cht
c(S̃) = Chc(S̃) \ St i.e. Cht

c(S̃) is the subset of all students with type t in

Chc(S̃). For any S 00 ✓ S 0 ✓ S, if Chc(S 00) = qc, then Chc(S 0) = qc. If Chc(S 00) < qc, then

either |Chc(S 0)| = |Chc(S 00)| (if S 0 = S 00 or |Cht
c(S

00)| = q̄tc 8t 2 {⌧(s) : s 2 S 0 \ S 00}), or
|Chc(S 0)| > |Chc(S 00)| (if |S 00| < |S 0| and |Cht

c(S
00)| < q̄tc for at least one t 2 {⌧(s) : s 2

S 0 \ S 00}). Therefore, Chc satisfies the law of aggregate demand.

Though the DAASFHC possesses the desired fairness property, there is a trade-o↵ in

terms of non-wastefulness. The next result shows, by means of an example, that some

students may be unassigned under the DAASFHC.

Proposition 3. The DAASFHC assignment may not be non-wasteful.

Proof. This result can be shown by the following example. Consider the controlled school

choice problem: C = {c1, c2}, S = {s1, s2, s3, s4, s5, s6}, T = {t1, t2}. Each school has a

capacity of 3, qc1 = qc2 = 3; the floors are given by qT
c1

= qT
c2

= (0, 0) while the ceilings are

qTc1 = (2, 3) and qTc2 = (3, 3). Student types are given by ⌧(s1) = ⌧(s2) = ⌧(s3) = t1 and

⌧(s4) = ⌧(s5) = ⌧(s6) = t2. Student preferences are: c1 �si c2 for i 2 {1, 2, 3}, and c2 �si c1

for i 2 {4, 5, 6}. School priorities are given by:

�c1 : s1 �c1 s2 �c1 s3 �c1 s4 �c1 s5 �c1 s6

�c2 : s6 �c2 s5 �c2 s4 �c2 s3 �c2 s2 �c2 s1

The DAASFHC assignment is:

µ(c1) = {s1, s2}, µ(c2) = {s4, s5, s6}

Here, student s3 is unassigned under µ while school c1 has an empty seat ) µ is not non-

wasteful.

Corollary 2. Students may be unassigned under the DAASFHC assignment.
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The observation that some students might be unassigned, even though schools have empty

seats to accommodate them, is particularly concerning. From a policy perspective, it would

be di�cult to justify promoting diversity at the cost of leaving some students out of the

public school system. While other options (such as private schools or homeschooling) are

available, they may not be accessible to all students (for example, private schools might be

too expensive and parents may be unable to facilitate homeschooling due to occupational

commitments or tutor costs). Furthermore, since the DAASFHC assignment is the student-

optimal fair assignment, any students unassigned under the DAASFHC will be unassigned

under any fair assignment. This possibility of unassigned students is a major drawback of

the soft floors and hard ceilings framework - a solution requires a relaxation in either the

notion of fairness or the diversity constraints.

4.1 Review of Controlled School Choice with Soft Bounds

This approach, introduced by Ehlers et al. (2011), involves interpreting both the mini-

mum and maximum quotas in a controlled school choice problem as soft bounds. Such an

interpretation means that neither minimum nor maximum quotas are binding constraints,

but both are used as guidelines that modify school priorities to accurately reflect the com-

munity’s diversity in schools. To provide a basis for comparison between the DAASB and

the DAASFHC, definitions of relevant properties under soft bounds are considered as they

are defined in Ehlers et al. (2011).

Since both diversity constraints are soft, any assignment that respects the capacity of

every school is feasible under soft bounds. Further note that non-wastefulness as defined

in this paper is equivalent to non-wastefulness under soft bounds. The most significant

di↵erence between controlled school choice under soft bounds and under soft floors and

hard ceilings is in the definition of fairness. An assignment is fair under soft bounds if

it removes justifiable envy under soft bounds; an assignment removes justifiable envy

under soft bounds if for any student s and school c such that c �s µ(s) with ⌧(s) = t

both |µt(c)| � qt
c
and s0 �c s for all s0 2 µt(c) and either

(1) |µt(c)| � qtc and s0 �c s for all s0 2 µ(c) such that |µ⌧(s0)(c)| > q⌧(s
0)

c , or

(2) qt
c
 |µt(c)| < qtc, |µt0(c)| > qt

0
c for all t0 2 T\{t}, and s0 �c s for all s0 2 µ(c) such that

q⌧(s
0)

c
< |µ⌧(s0)(c)|  q⌧(s

0)
c

The choice function under soft bounds accounts for the di↵erence in interpretation of the

ceilings between the two contexts. Consider Chc(S 0, qc, (qtc)t2T ) as defined previously, and
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define:

Ch(3)
c (S 0) = Chc(S

0\(Ch(1)
c (S 0) [ Ch(2)

c (S 0)), qc � |Ch(1)
c (S 0) [ Ch(2)

c (S 0)|, (qc � qtc)t2T ))

If Ch(1)
c (S 0) and Ch(2)

c (S 0) are defined as under soft floors and hard ceilings, then the choice

function under soft bounds is defined as:

ChSB
c (S 0) = Ch(1)

c (S 0) [ Ch(2)
c (S 0) [ Ch(3)

c (S 0)

) ChSB
c (S 0) = Chc(S

0) [ Ch(3)
c (S 0)

where Chc is the choice function under soft floors and hard ceilings. The DAASB is defined

by applying ChSB
c to the general DAA from Section 2. Ehlers et al. show that the DAASB

results in an assignment that is fair under soft bounds, non-wasteful under soft bounds

and student-optimal among such assignments (Theorem 4), and that the DAASB is group

strategy-proof (Theorem 5).

The non-wastefulness of the DAASB serves to emphasize the trade-o↵ between diversity

and fairness/non-wastefulness properties. One would also expect the DAASB to improve

student welfare vis-a-vis the DAASFHC; the similarities between the two algorithms allow

for a natural comparison of them. The next section formalizes two results that relate the

DAASB and DAASFHC in a Pareto dominance sense.

4.2 Theoretical Comparison of DAASFHC and DAASB

As noted previously, the DAASB supplies a solution to the non-wastefulness concerns

associated with the DAASFHC. In particular, if the number of students is less than or

equal to the total number of seats (across all schools), then non-wastefulness of the DAASB

guarantees that every student will be assigned to a school. Intuitively, since the DAASB

operates under weaker constraints than the DAASFHC, the DAASB would be expected to

provide an improvement of student welfare over the DAASFHC - this is illustrated by the

following proposition.

Proposition 4. For any controlled school choice problem, the DAASB assignment Pareto

dominates the DAASFHC assignment.

Proof. This follows from Theorem 4 in Ehlers et al. (2011). Given a controlled school choice

problem, let µ be the assignment resulting from the DAASFHC, and µ̂ the assignment re-

sulting from the DAASB. Since µ is feasible as defined, µ is feasible under soft bounds.

13



Consider the following cases:

Case 1: µ is non-wasteful. Note that µ is non-wasteful under soft bounds. Further note

that since µ is fair as defined and non-wasteful under soft bounds, µ is also fair under soft

bounds. Theorem 4 from Ehlers et al. directly applies and hence, by the Pareto optimality

of µ̂, µ̂(s) ⌫s µ(s) for all s 2 S.

Case 2: µ is not non-wasteful. There exist a student s and school c such that c �s µ(s)

and |µ(c)| < qc. Define the improvement algorithm as follows:

Step 1: Start with the assignment µ. Define C̃ = {c 2 C : |µ(c)| < qc}; choose a school

c 2 C̃ and define S̃c = {s 2 S : c �s µ(s)}. All students in S̃c apply to c. c first admits the

highest ranked students in S̃c, according to �c, until the ceilings are filled and then up to

capacity, or until S̃c is exhausted. Call the resulting assignment µ̃1.

Step k: Define C̃ = {c 2 C : |µ̃k�1(c)| < qc}; choose a school c 2 C̃ and define S̃c =

{s 2 S : c �s µ̃k�1(s)}. If either |C̃| = 0, or |S̃c| = 0 for all c 2 C̃, then stop. Else, all

students in S̃c apply to c. c admits the highest ranked students in S̃c, according to �c, until

first the floors, then the ceilings are filled and then up to capacity, or until S̃c is exhausted.

Call the resulting assignment µ̃k.

Since the improvement algorithm improves the assignment of at least one student at each

step, it ends in finite time.

Let µ̃ be the assignment resulting from applying the improvement algorithm to µ. From

the stopping condition, it is clear that µ̃ is non-wasteful under soft bounds. Furthermore,

since the algorithm improves the match of at least one student, we have µ̃(s) ⌫s µ(s) for all

s 2 S. The next step in the proof involves showing that µ̃ is fair under soft bounds.

Consider a student s and a school c such that c �s µ̃(s), and let ⌧(s) = t. For any student

s0 2 µ̃t(c), s0 was matched with c under either the DA algorithm with soft floors and hard

ceilings or the improvement algorithm, both of which imply that s0 �c s. Also note that the

algorithm, by definition, implies that |µ̃t(c)| � qt
c
. Now, consider the following subcases:

Subcase 2a: |µ̃t(c)| � qtc. Consider s
0 2 µ̃(c) such that |µ̃⌧(s0)(c)| > q⌧(s

0)
c ; from the feasibil-

ity of µ, it must be that some students were admitted to c under the improvement algorithm.
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The students admitted to c under the improvement algorithm must have decreasing priori-

ties according to the order in which they were admitted. It must be that the last student of

type ⌧(s0) had higher priority than s since the ceiling for type ⌧(s0) had already been filled.

Therefore, we have s0 �c s for all s0 2 µ̃(c) such that |µ̃⌧(s0)(c)| > q⌧(s
0

c .

Subcase 2b: qt
c
 |µ̃t(c)| < qtc. In this case, we must have |µ̃t0(c)|  qt

0
c for all t0 2 T\{t}.

By way of contradiction, suppose there is a type t0 such that |µ̃t0(c)| > qt
0
c . Since µ is feasible,

there must be at least one student of type t0 that was matched with c under the improvement

algorithm. Consider the step (say step k) of the improvement algorithm at which the last

student of type t0 was matched with c. Since s was not matched to c at step k, it must have

been the case that |µ̃t
k(c)| = qtc. Since |µ̃t(c)| < qtc, some students of type t in c must have

been matched with some other school at some subsequent step. After this step, students

of type t could have been admitted to c without violating the ceiling for type t. However,

since s is not matched with c and type t students do not fill their ceiling at the end of the

algorithm, we have a contradiction.

Now, consider a type t0 such that qt
0

c
< |µ̃t0(c)|  qt

0
c . Let s0 be the student with lowest

priority in µ̃t0(c). If s0 2 µt0(c) and |µt0(c)| > qt
0

c
, then s0 �c s since µ is fair.

If s0 2 µt0(c) and |µt0(c)| = qt
0

c
, then at least one type t0 student must be matched to c

under the improvement algorithm; this contradicts the fairness of µ since that student has

higher priority than s0 and prefers c to his or her match under µ. Finally, if s0 /2 µt0(c), then

s0 must be matched with c under the improvement algorithm. If type t students do not fill

their ceiling at the step when s0 is admitted to c, then s0 �c s. If type t students do fill

their ceiling at that step, then some of them must be subsequently matched away at some

later step(s). Since s is not matched with c, and type t students do not fill their ceiling,

we get a contradiction. Therefore, s0 �c s for all s0 2 µ̃(c) such that q⌧(s
0)

c
< |µ̃⌧(s0)(c)|  q⌧(s

0)
c .

Therefore, µ̃ is non-wasteful and fair under soft bounds. Since µ̂ is Pareto e�cient among

all such assignments, we have µ̂(s) ⌫s µ̃(s) for all s 2 S, which implies µ̂(s) ⌫s µ(s) for all

s 2 S i.e. µ̂ is weakly preferred to µ by all s 2 S.

The next result provides a basis for comparison between the DAASB and DAASFHC in

terms of how e↵ective these algorithms are at respecting constraints.

Proposition 5. For a controlled school choice problem, the DAASB and the DAASFHC

result in the same assignment if and only if the DAASB assignment respects the ceilings for

each type in every school.
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Proof. Suppose the DAASB results in an assignment µ that respects ceilings (i.e. µt(c)  qtc
for all t 2 T and c 2 C). Since µ respects ceilings and is fair under soft bounds, by definition

µ is fair under soft floors and hard ceilings. Now, suppose µ̂ is the assignment resulting from

the DAASFHC. By the student optimality of µ̂ (Proposition 1), µ̂(s) ⌫s µ(s) for all s 2 S.

However, µ(s) ⌫s µ̂(s) by Proposition 4. Hence, each student is indi↵erent between µ and

µ̂. Since preferences are strict, µ(s) = µ̂(s) for all s 2 S.

Conversely, suppose the DAASB results in an assignment that violates the ceiling for

at least one type in at least one school. By definition, the DAASFHC cannot violate any

ceilings ) the DAASB and DAASFHC assignments cannot be the same.

Ehlers et al. (2011) provide a result to show that the DAASB assignment Pareto dom-

inates assignments that respect constraints and are strongly fair across types. This result

also holds for the DAASFHC and is included as a supplement in Appendix A.

4.3 Simulations

The advantages of the DAASB over the DAASFHC (Pareto dominance, non-wastefulness)

are not wholly unexpected due to the stronger restrictions imposed in the DAASFHC. How-

ever, one would expect the DAASFHC to be better at respecting constraints for the very

same reason. To reiterate, the motivation behind the formulation of the DAASFHC was to

maintain fairness while maximizing the likelihood of meeting diversity requirements. An im-

mediate consequence of Proposition 5 is that whenever the DAASB respects constraints, the

DAASFHC too will respect constraints. Qualitatively, the DAASFHC is, at the very least,

as good at respecting constraints as the DAASB - the question is of whether the DAASFHC

is actually better for this purpose than the DAASB and if so, how much better it is.

I use computer simulations (in the spirit of Hafalir, Yenmez and Yildirim, 2011) to not

only answer the question posed above, but also as an attempt to quantify the di↵erences

in student welfare between the DAASFHC and the DAASB. The methodology applied is to

simulate controlled choice models, apply both the DAASFHC and DAASB, and then compare

the resulting assignments by verifying whether they meet the diversity quotas along with

quantifying the welfare costs to students.

For simplicity, the number of students is fixed at 2000 while the number of schools is fixed

at 20 with each school having a maximum capacity of 100 seats. The diversity constraints are

centered about the type-distribution of the student population and are set in the following

manner: if pt% of the student body is of type t, then for any school c the floor for type t
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is max{(pt � 10), 0}% and the ceiling is min{(pt + 10), qc}% of the school’s capacity. The

proportions by type of students are randomly determined. Student preferences as well as

school priorities are strict and random; these are derived by defining utility functions for

both students and schools. For a student si and school cj, the utility functions are defined

as follows:

Usi(cj) = ↵X(cj) + (1� ↵)Xsi(cj)

Ucj(si) = �X(si) + (1� �)Xcj(si)

where ↵, � 2 [0, 1]; ↵ and � are the correlation parameters for student preferences and school

priorities respectively. X denotes random variables that are drawn from a standard uniform

distribution (i.e. U [0, 1]). I assume that these randomly generated utility functions are

representative of student preferences as well as school priorities i.e. c �s c0 if and only if

Us(c) > Us(c0), and s �c s0 if and only if Uc(s) > Uc(s0).

Models are simulated for five di↵ering levels of the school priority correlation parameter

� (0, 0.25, 0.5, 0.75 and 1), while the student preference correlation parameter ↵ is varied

from 0 to 1 in steps of 0.1. To capture the type-dependence of the two algorithms, I also vary

the number of types from two to seven. The intention behind these parameter choices is to

capture the behavior of these mechanisms over a wide variety of settings2, which allows for

a more insightful comparison between their relative e↵ectiveness’ at respecting constraints.

Both the mechanisms under consideration ensure fairness but do not guarantee an assign-

ment that respects constraints. However, provided they are likely to do so, these algorithms

can still be useful even when schools are required to respect constraints. For each algorithm,

I use the percentage of simulations in which the resulting assignment respects constraints as

an estimate of how likely that algorithm is to respect constraints. The results are graphically

presented in Figure 1.

The results do not di↵er significantly for di↵ering correlation levels of the school priorities

and therefore the aggregated results for all school priority correlation levels are presented3.

As expected, the DAASFHC performs better than the DAASB at respecting constraints -

the improvement is marginal in models with two or three types but becomes increasingly

stark for models with four or more types. For the DAASB, an almost stepwise decrease

in this likelihood estimate is observed with an increase in the number of types (especially

2The simulated results are robust to changes in the number of students and schools; variations in these
parameters as well as the school capacities and the width of the bounds do not qualitatively a↵ect the results.

3Figures for each level of school priority correlation are provided in Appendix B.

17



Figure 1: Percentage of simulations in which the DAASB and DAASFHC respect constraints.

(a) DAASB

(b) DAASFHC

for higher levels of correlation between student preferences); it undergoes a considerable

decrease in e↵ectiveness from respecting constraints in over 90% of problems with two types

to less than 50% of problems with seven types. In contrast, the DAASFHC does not appear

to be sensitive to the number of student types and consistently produces assignments that

respect constraints - for any class of the simulated school choice problems, the DAASFHC
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assignment respects constraints in at least 96% of them. Based solely on these results, the

DAASFHC appears a much more powerful mechanism when it comes to meeting diversity

constraints. However, any judgments without taking the welfare costs of the DAASFHC into

account would be incomplete; the next results aim at quantifying the di↵erences in student

welfare between the DAASFHC and the DAASB.

Before proceeding further, the notion of strict Pareto dominance or simply, strict

dominance of assignments is needed. An assignment µ1 strictly dominates µ2 if every

student weakly prefers µ1 (i.e. µ1 Pareto dominates µ2) and at least one student strictly

prefers µ1 to µ2 (µ1(s) �s µ2(s) for at least one s 2 S). From Propositions 4 and 5, the

DAASB strictly dominates the DAASFHC whenever they result in di↵erent assignments.

Therefore, it must be that some students are strictly better o↵ under the DAASB in cases

when the DAASB does not respect constraints, but the DAASFHC does. To provide some

quantification of this welfare cost, Figure 2 shows the median (along with the first and third

quartiles) percentage of students that strictly prefer the DAASB to the DAASFHC when

the DAASB does not respect constraints, but the DAASFHC does.

Figure 2: Median percentage of students that strictly prefer the DAASB to the DAASFHC
when they result in di↵erent assignments. The first and third quartiles are represented by the

lower and upper bars, respectively.

The results are characterized by an interquartile range that appears to be increasing as

well as shifting upwards in the number of types. A slight increase in the median percentage of

students that are strictly better o↵ under the DAASB is also observed with an increase in the
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number of types. However, these statistics are not particularly troublesome - ensuring that

the diversity constraints are met may justify incurring these welfare costs, given their small

magnitude. But what of the worst case scenario? This question is worth some consideration,

and a cursory look at the extremal cases provides some telling results; over half of the

students could strictly prefer the DAASB. Table 1 provides a compilation of the maximum

number of students that strictly prefer the DAASB over the DAASFHC for each considered

number of types.

Table 1: Maximum percentage of students that are strictly better o↵ under the DAASB.

Number of Types Percentage of Students
2 8.95
3 45.20
4 39.90
5 52.40
6 47.30
7 35.55

The DAASFHC performs strongly when it comes to respecting constraints, at some

cost to student welfare (with the DAASB as the reference point). These observations are

a consequence of imposing a hard ceiling rather than a soft one, but how exactly does

the hard ceiling provide this diversity improvement? A possible explanation of how the

DAASFHC enforces diversity bounds is that it could simply be leaving unmatched some

of those students that would cause ceiling violations in the DAASB. Figure 3 shows the

percentage of simulations in which at least one student is unassigned under the DAASFHC

assignment when it respects constraints and the DAASB does not.

For models with two types, the DAASFHC never leaves students unassigned, even when

the DAASB fails to respect constraints. However, the fraction of simulations in which stu-

dents are left unassigned for models with more than two types is considerable, especially

given the increasing trend with respect to the correlation of student preferences. Again, the

DAASFHC outcomes display a large degree of independence from the number of student

types, with results for only models with two types deviating significantly. It can be inferred

that the DAASFHC does indeed leave students unassigned to enforce a high likelihood of

respecting constraints. Exceptionally, this result is also the only one that displays significant

variation with changes in the school priority correlation. Figure 4 depicts the changes in

this statistic for the five levels of school priority correlation; these results also do not vary
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Figure 3: Percentage of simulations in which students are unassigned under the DAASFHC
when it respects constraints and the DAASB does not.

qualitatively with a change in the number of types, emphasizing the apparent lack of sensi-

tivity of the DAASFHC outcomes to changes in the same. The same results for models with

di↵erent numbers of types can be found in Appendix B.

Figure 4: Percentage of simulations of models in which students are unassigned under the
DAASFHC when it respects constraints and the DAASB does not. Di↵erent series represent

di↵erent levels of school priority correlation.
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While even one unassigned student is undesirable, it is nonetheless important to gauge

the magnitude of this particular problem. Figure 5 provides the median along with the first

and third quartiles of the percentage of students that are unassigned under the DAASFHC,

conditional on at least one student being unassigned.

Figure 5: Median percentage of students that are unassigned under the DAASFHC (given that
at least one student is unassigned under the same). The first and third quartiles are represented

by the lower and upper bars, respectively.

As was the case with the statistics for the fraction of students that were strictly better o↵

under the DAASB, each of the first quartile, median and third quartile shows a slight increase

with an increase in the number of types. Though the magnitudes are not very large, even one

unassigned student poses a problem; in fact, this wastefulness is the greatest drawback of the

DAASFHC, which means an understanding of the worst case outcome is imperative. Table

2 presents the maximum percentage of unassigned students for each considered number of

types.

In the maximum, 6.55% of the students were unassigned under the DAASFHC, empha-

sizing its wastefulness in being unable to allocate students to schools and consequentially

leaving seats empty. As mentioned previously, the implications of having unassigned stu-

dents are serious - on one hand, leaving students unassigned is unacceptable. On the other,

accommodating these students by allocating empty seats at schools to them would require

sacrificing the fairness of the DAASFHC assignment as well as violating the diversity con-

straints, essentially defeating the purpose of the DAASFHC as an assignment mechanism.
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Table 2: Maximum percentage of students that are unassigned under the DAASFHC.

Number of Types Percentage of Students
2 0.25
3 3.00
4 4.00
5 5.00
6 6.00
7 6.55

5 Conclusion

This study serves as an illustration of the trade-o↵s between diversity, fairness and non-

wastefulness that are inherent in controlled school choice. By imposing controlled choice

constraints as hard bounds, one can ensure that these diversity requirements are met at the

cost of losing fairness and adversely a↵ecting student welfare. Since school choice programs

are implemented to improve the well-being of students, I take a view that fairness is a

necessity and should not be compromised for the sake of diversity (rather than the other

way around). My aim is to develop solutions that possess the desired fairness property while

providing a high likelihood of meeting the diversity constraints.

Preserving fairness requires a weaker interpretation of the bounds on student types,

and I examine two mechanisms that make use of soft bounds to guarantee fairness. The

DAASB proposed by Ehlers et al. (2011) ensures both non-wastefulness and fairness by

interpreting both upper and lower bounds as soft bounds. In addition, the DAASB is e↵ective

at respecting diversity constraints when the number of student types is small, but as this

number increases, the DAASB exhibits a considerable decrease in e↵ectiveness. Nevertheless,

it is important to note that the DAASB still respects constraints more often than not, and

can be a practical solution to controlled school choice problems of this mold.

As an alternative, I consider a mixed bounds approach with soft floors and hard ceilings.

The mechanism obtained under this framework, the DAASFHC, also guarantees the fairness

property. Furthermore, my results suggest that this approach is more powerful than the

DAASB when it comes to meeting diversity requirements and it maintains its e↵ectiveness

independent of the number of student types. However, these positives come at the expense

of non-wastefulness. While the weaker notion of constrained non-wastefulness is satisfied,

the loss of non-wastefulness still has detrimental e↵ects on student welfare. In particular,
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the possibility of unassigned students is an unattractive trait, especially from a policy per-

spective. However, if unassigned students can be absorbed into other parts of the school

choice system, then the DAASFHC is feasible as an assignment mechanism.

To conclude, the purpose of this work was to show that sacrificing fairness is not necessary

in the implementation of this variant of controlled school choice. Both the DAASB and

the DAASFHC are easily implementable mechanisms, and can be useful even in settings

with notionally hard bounds due to their e↵ectiveness at respecting constraints. In these

mechanisms, school districts have viable alternatives that can preserve student welfare while

enabling them to achieve their diversity objectives.
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Appendix A

Ehlers et al. (2011) define a stronger notion of fairness under hard bounds by defining

weakly justifiable envy. Under an assignment µ, a student s weakly justifiably envies (or

simply weakly envies) a student s0 at school c if:

(a) c �s µ(s) i.e. s prefers the school c that s0 is assigned to over her own.

(b) s �µ(s0) s0 i.e. s has higher priority than s0 at the school c

(c) s can be admitted to c without violating any of the diversity constraints, by removing

s0 from c.

An assignment is strongly fair across types if no student weakly envies another. Ehlers

et al. show that the DAASB assignment Pareto dominates any assignment that respects

constraints and is strongly fair across types. The same result holds for the DAASFHC.

Proposition 6. The DAASFHC assignment Pareto dominates any assignment that respects

constraints and is strongly fair across types.

Proof. Given a controlled school choice problem, let µ̂ be the assignment resulting from the

DA algorithm with soft floors and hard ceilings. Consider any assignment µ that respects

constraints and is strongly fair across types. We have the following cases:

Case 1: µ is constrained non-wasteful (under soft floors and hard ceilings). Along with

strong fairness across types, constrained non-wastefulness implies that µ is fair under soft

floors and hard ceilings (by definition). By the Pareto e�ciency of µ̂, µ̂ Pareto dominates µ.

Case 2: µ is not constrained non-wasteful. In this case, apply the following constrained

improvement algorithm to µ:

Step 1: Start with the assignment µ. Define C̃ = {c 2 C : |µ(c)| < qc}. For each school

c 2 C̃, define the set of students S̃c = {s 2 S : c �s µ(s), |µ⌧(s)(c)| < q⌧(s)c }. Choose a school

c such that |S̃c| > 0. All students in S̃c apply to c. c admits students the students of highest

ranking, according to �c, until either the ceilings are filled, capacity is reached, or until S̃c

is exhausted. Call the resulting assignment µ1.

Step k: Start with the assignment µk�1. Define C̃ = {c 2 C : |µk�1(c)| < qc}. For
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each school c 2 C̃, define the set of students S̃c = {s 2 S : c �s µk�1(s), |µ⌧(s)
k�1(c)| < q⌧(s)c }.

If either |C̃| = 0 or |S̃c| = 0 for all c 2 C, then stop. Otherwise, choose a school c such

that |S̃c| > 0. All students in S̃c apply to c. c admits students the students of highest

ranking, according to �c, until either the ceilings are filled, capacity is reached, or until S̃c

is exhausted. Call the resulting assignment µk.

Since the algorithm improves the match of at least one student at every step, it ends

in finite time.

Let µ̃ be the assignment resulting from the application of the constrained improvement

algorithm to µ. Note that µ̃ is constrained non-wasteful. Furthermore, since µ respects

constraints, for each school c we must have qt
c
 |µ̃t(c)|  qtc for all t 2 T . Consider a

student s with ⌧(s) = t and school c such that c �s µ̃(s). If |µ̃t(c)| = qtc then note that

any student s0 of type t in c was admitted to c either under µ, in which case s0 �c s, or

under the constrained improvement algorithm, which again means s0 �c s. Otherwise, if

µ̃t < qtc, consider any student s0 2 µ̃(c). If s0 was admitted to c under µ, then by the strong

fairness across types of µ we have s0 �c s. Else, if s0 was admitted to c under the constrained

improvement algorithm, by definition of the algorithm it must be that s0 �c s. Therefore,

by definition, µ̃ is fair under soft floors and hard ceilings.

Since the constrained improvement algorithm only improves students’ assignments, µ̃

Pareto dominates µ. Furthermore, since µ̃ is constrained non-wasteful and fair under soft

floors and hard ceilings, by theorem 1 µ̂ Pareto dominates µ̃. Therefore, µ̂ Pareto dominates

µ.
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Appendix B

Supplementary Figures:

Figure 6: Percentage of simulations in which the DAASB and DAASFHC respect constraints for
school priority correlation of 0.

(a) DAASB

(b) DAASFHC
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Figure 7: Percentage of simulations in which the DAASB and DAASFHC respect constraints for
school priority correlation of 0.25.

(a) DAASB

(b) DAASFHC
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Figure 8: Percentage of simulations in which the DAASB and DAASFHC respect constraints for
school priority correlation of 0.5.

(a) DAASB

(b) DAASFHC
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Figure 9: Percentage of simulations in which the DAASB and DAASFHC respect constraints for
school priority correlation of 0.75.

(a) DAASB

(b) DAASFHC
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Figure 10: Percentage of simulations in which the DAASB and DAASFHC respect constraints
for school priority correlation of 1.

(a) DAASB

(b) DAASFHC
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Figure 11: Percentage of simulations in which students are unassigned under the DAASFHC
when it respects constraints and the DAASB does not. School priority correlation is 0.

Figure 12: Percentage of simulations in which students are unassigned under the DAASFHC
when it respects constraints and the DAASB does not. School priority correlation is 0.25.
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Figure 13: Percentage of simulations in which students are unassigned under the DAASFHC
when it respects constraints and the DAASB does not. School priority correlation is 0.5.

Figure 14: Percentage of simulations in which students are unassigned under the DAASFHC
when it respects constraints and the DAASB does not. School priority correlation is 0.75.
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Figure 15: Percentage of simulations in which students are unassigned under the DAASFHC
when it respects constraints and the DAASB does not. School priority correlation is 1.

Figure 16: Percentage of simulations of models with 3 types in which students are unassigned
under the DAASFHC when it respects constraints and the DAASB does not. Di↵erent series

represent di↵erent levels of school priority correlation.
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Figure 17: Percentage of simulations of models with 4 types in which students are unassigned
under the DAASFHC when it respects constraints and the DAASB does not. Di↵erent series

represent di↵erent levels of school priority correlation.

Figure 18: Percentage of simulations of models with 5 types in which students are unassigned
under the DAASFHC when it respects constraints and the DAASB does not. Di↵erent series

represent di↵erent levels of school priority correlation.
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Figure 19: Percentage of simulations of models with 6 types in which students are unassigned
under the DAASFHC when it respects constraints and the DAASB does not. Di↵erent series

represent di↵erent levels of school priority correlation.

Figure 20: Percentage of simulations of models with 7 types in which students are unassigned
under the DAASFHC when it respects constraints and the DAASB does not. Di↵erent series

represent di↵erent levels of school priority correlation.
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