
Joltik : Enabling Energy-Efficient

“Future-Proof” Analytics on

Low-Power Wide-Area Networks

Submitted in partial fulfillment of the requirements for

the degree of

Master of Science

in

Information Networking

Mingran Yang

B.S., Electronic and Information Science and Technology, Fudan University

Carnegie Mellon University
Pittsburgh, PA

May, 2020

c© Mingran Yang, 2020
All Rights Reserved

Acknowledgements

First and foremost, I would like to thank my thesis advisor Prof. Vyas Sekar for

his dedicated help and guidance over the past two years. Vyas is the person who

taught me the core idea of research, and also the person who motivated me to do

networking research (finally leads me towards the path of pursuing a Ph.D.). More

importantly, Vyas always encouraged me to be confident and speak up, which will

truly benefit me for long. I am very grateful for the opportunity to do research at

Vyas’s group.

Next, I would like to thank Prof. Swarun Kumar, Dr. Zaoxing (Alan) Liu, Junbo

Zhang and Akshay Gadre for their collaborations on the Joltik project. I am deeply

impressed by their insightful ideas and I learned a lot from working together with all

of them. Thank Swarun and Alan for mentoring me, and thank Junbo and Akshay

for being so helpful along the project.

Then, I would like to acknowledge the funding support for this work. This work

was supported in part by the CONIX Research Center, one of six centers in JUMP,

a Semiconductor Research Corporation (SRC) program sponsored by DARPA, the

Kavčić-Moura Endowment Fund, and a seed grant from the Scott Institute

I woud also like to thank Prof. Justine Sherry and Prof. Peter Steenkiste. “15-

641 Computer Networks” is one of my favourite courses at CMU and this course

sparked my interest in the area of networking. Also, being TA for Justine and Peter

is truly a valuable experience.

I would like to thank Vyas’s research group for their help, advice and feedback:

thank you Zaoxing Liu, Yucheng Yin, Zinan Lin, Sekar Kulandaivel, Tianlong Yu,

Guyue Liu, Soo-Jin Moon, Antonis Manousis, Daehyeok Kim, Rahul Sharma and

ii

Hun Namkung.

I want to thank my friends in Cylab: Tian Li, Yucheng Yin, Zaoxing Liu and

Weizhao Tang. I am very grateful for your help and support, and I will always

miss the time we hangout together. I also want to thank Miao Yu for helping me

understand concepts in computer security.

I want to thank all of the faculties and staff at the Information Networking

Institute. I really treasured my experience at INI, both inside and outside of the

classroom.

I also want to thank all my friends for being together with me along the journey.

A special thank you to Weichao Duan for his support and companion along the way.

Finally, I would like to thank my family for their unconditional love. Thank you

my father Bin Yang and my mother Zhiwen Yan, for always taking care of me, and

for supporting each decision that I made.

iii

Abstract

Wireless sensors have enabled a number of key applications. Despite many ad-

vances in sensing, computation and wireless technologies, simultaneously achieving

energy-efficiency, fidelity, and generality across many (possibly unforeseen) metrics,

has remained elusive. To this end, this paper presents Joltik , a framework enabling

general and energy efficient analytics for low power wireless sensors. Joltik is built

upon recent theoretical advances in universal sketching, which can enable a Joltik

sensor node to report a compact summary of observed data to enable a large class of

statistical summaries. We address key system design and implementation challenges

with respect to communication, memory and computation bottlenecks that arise in

practically realizing the potential benefits of universal sketching in the low-power

regime.

We present a proof-of-concept evaluation of Joltik in LoRaWAN NUCLEO-L476RG

boards and sensors and conduct experiments in a local testbed. Across a range of real-

istic datasets, Joltik provides significant reduction in energy cost compared to trans-

mitting raw data and outperforms many natural alternatives (e.g., sub-sampling,

custom sketches, compressed sensing) in terms of energy-accuracy tradeoffs.

iv

Table of Contents

Acknowledgements ii

Abstract iv

List of Tables viii

List of Figures ix

1 Introduction 1

2 Background 7

2.1 Motivating Scenario . 7

2.2 Strawman Solutions and Limitations 9

2.3 Related Work . 10

2.3.1 Low-Power IoT . 10

2.3.2 Aggregation in Sensor Networks 11

2.3.3 Sketching for Data Analytics 11

2.4 Background on Universal Sketching 12

3 Joltik System Overview 14

3.1 Joltik Workflow . 14

3.2 System Challenges . 16

4 Detailed Design 18

4.1 Reducing Memory Footprint . 18

4.1.1 Problem . 18

4.1.2 Strawman Solutions . 19

v

4.1.3 Our Approach: “Inverted Pyramid” Structure 20

4.1.4 Impact on Accuracy . 21

4.2 Reducing Communication Footprint 22

4.2.1 Why Reducing Communication Footprint 22

4.2.2 Lossless Encoding of Sketch Structure 23

4.2.3 Efficiently Transmitting Heavy-hitter Heap Data 25

4.2.4 Impact on Accuracy . 26

4.3 Reducing Computation Overhead . 26

4.3.1 Problem . 26

4.3.2 Our Approach . 26

4.3.3 Computational Benefits . 28

4.3.4 Impact on Accuracy . 28

4.4 End-to-end Deployment . 29

4.4.1 Configure Sketch-related Parameter 29

4.4.2 Lifetime Estimation . 30

4.4.3 Error Bound . 30

4.4.4 Energy and Accuracy Trade-off 30

5 Implementation 32

5.1 Joltik Sensor Node . 32

5.2 Joltik Base Station . 33

6 Evaluation 35

6.1 Evaluation Setup . 36

6.1.1 Real-world Testbed . 36

6.1.2 Datasets . 36

6.1.3 Baselines . 37

6.2 End-to-end System Performance . 37

6.2.1 Energy-Accuracy Trade-off . 37

6.2.2 Generality . 40

6.3 Evaluating Joltik ’s Optimizations . 41

6.3.1 Memory Footprint . 41

vi

6.3.2 Communication Overhead . 42

6.3.3 Computation Overhead . 43

7 Conclusions and Future Work 44

Bibliography 46

vii

List of Tables

Table 2.1 Metrics relevant to a solar farm 8

Table 2.2 Joltik compared to prior work 9

Table 4.1 Joltik deployment example . 31

Table 6.1 Joltik compression methods comparison 42

viii

List of Figures

Figure 1.1 Joltik generates future-proof analytics 2

Figure 1.2 Joltik system performance compared to baselines 3

Figure 2.1 Motivating example for Joltik 8

Figure 3.1 Native universal sketching workflow 15

Figure 3.2 Joltik system workflow . 15

Figure 4.1 Starman solutions for reducing memory footprint 19

Figure 4.2 “Inverted Pyramid” structure 21

Figure 4.3 Data packet in Joltik system 23

Figure 4.4 Example of sketch counter . 24

Figure 4.5 Percentage of counters . 24

Figure 4.6 Joltik compression mechanism 25

Figure 4.7 Joltik heavy-hitters heap example 25

Figure 4.8 Joltik optimized counter update mechanism 27

Figure 5.1 Hardware Components of Joltik 33

Figure 6.1 Sensor locations in building . 36

Figure 6.2 Evaluation on energy-accuracy trade-off (Indoor Solar dataset) 38

Figure 6.3 Evaluation on energy-accuracy trade-off (Lora Farm dataset) . 39

Figure 6.4 Evaluation on generality . 40

Figure 6.5 Evaluation on reducing memory footprint 42

Figure 6.6 Evaluation on reducing computation overhead 43

ix

1

Introduction

Over the past several years, we have seen a significant interest towards developing

the technology of wireless sensors. With this technology development, low-power

Wide-Area Networks (LP-WANs) that span a large city or rural area are increas-

ingly deployed for many real-world applications. For instance, these sensor networks

can be used to do environmental monitoring or animal tracking [64]. Among all

these applications, sensors are sensing various metrics of interest and send aggregate

reports. Constrained by the environment or the sensor itself, these sensor networks

typically operate over extended range (miles) on stringent battery constraints (e.g.,

ten-year battery life).

Even though modern sensing chips can energy-efficiently sense the environment

at high sampling rates, storage and communication constraints restrict the devices

to send the occasional point sample or short summary statistics (e.g., a mean value).

More importantly, the exact list of statistics needed must be agreed upon a priori,

given the raw data is too large to store in the sensing devices.

Yet, this requirement of choosing the required statistics up front is problematic,

as we show in the following motivating scenario. As a solar farm, you have deployed

1

Figure 1.1: Joltik leverages universal sketches to generate future-proof general ana-
lytics for LP-WANs.

multiple solar sensors which periodically send amount of energy generated every

few minutes. After deployment, however, new regulations or workload demands may

require the operator to detect new types of anomalies or outages (e.g., weather events

that might lead to blackouts) that require new kinds of statistical estimates over the

raw data.

Unfortunately, today we do not have good methods to efficiently and accurately

compute a broad spectrum of summary statistics. If the sensors cannot be repro-

grammed in the field, the operators need to commit to a small set of metrics at

design time and cannot support future requirements. Even if the sensor platforms

are reprogrammable in the field, at any given time we may only be able to enable a

small subset due to computation/energy constraints. Thus, there will be blind spots

for metrics that are currently disabled.

Ideally, we want a solution that enables downstream sensor data analytics that:

(1) is general to support many applications and future-proof to support possibly

unforeseen statistics for future requirements; (2) computed with high fidelity (e.g., at

2

Figure 1.2: Joltik provides better energy-accuracy trade-off for “future-proof analyt-
ics” vs. prior approaches.

most 5% error); and (3) does not sacrifice client energy efficiency (i.e., support multi-

year deployments on a single battery charge). At first glance, this seems impossible

— barring sending raw data (which is energy inefficient due to the communication

costs), it seems challenging to support a large spectrum of data analytics tasks on

sensor data, let alone unforeseen requirements.

To this end, this thesis presents Joltik , a framework that can enable general and

energy-efficient analytics for low power wireless sensors. Joltik builds on recent the-

oretical advances in universal sketching [10, 62, 61, 11]. At a high-level, sketching or

streaming algorithms estimate (approximately) specific properties of a data stream,

with provable memory-accuracy tradeoffs [3, 18, 15, 42, 39]. Unlike previous sketches

that support a narrow metric of interest (e.g. heavy hitters [18, 15, 42], quantiles [1]),

universal sketches can simultaneously support many (and possibly unforeseen) esti-

mation tasks [10, 38]. Thus, they can serve as the fundamental basis for general

“future-proof” sensor data summarization.

Realizing these potential benefits, however, raises significant practical challenges

3

in low-power sensor platforms. To see why, it is useful to understand the universal

sketching algorithm at high level (see Chapter 2.4 for details). Given a stream of

sensed inputs, each one of n unique values, the sketch iteratively subsamples the

incoming stream log n times into smaller sub-streams using log n hash functions. For

each of the log n sub-streams, we maintain a hashed counter array storing per-key

counts (with some potential loss of information) in a data structure called a Count

Sketch [15], which can be conceptually viewed as a counting Bloom filter with a

custom counter update strategy.

Our contribution in designing and implementing Joltik is in identifying and ad-

dressing practical system bottlenecks of realizing the benefits of universal sketching

in a low-power sensing context. Specifically, we identify three key bottlenecks. First,

these devices have limited memory (few hundred kilobytes) to store the sketch data

structures, and as such the native implementations of universal sketch are infeasible.

Second, even though sketches are much smaller than transmitting raw data, this

footprint is still too high especially in a lossy LP-WAN setting, and consumes over

90% of battery-life for LP-WAN sensors [19]. Third, the compute footprint is also

high as it entails computing numerous hashes and counter updates on low-power

devices.

To tackle the above challenges, we have three key system design ideas:

(1) Efficient Storage (Chapter 4.1): We design optimizations to ensure that

the sketch data structure is compact (i.e., a few KBs) for low-power sensors.

Instead of retaining the same number of counters per-layer in the universal

sketch, our approach carefully provisions a smaller number of counters at lower

layers resulting in significant memory savings.

(2) Reducing Communication Cost (Chapter 4.2): We design a custom com-

pression scheme that relies on the natural structure of the sketch data structure

4

– i.e. only a small fraction of counters in the sketch are large, while the rest

are small. Thus, we dynamically resize sketch counters prior to transmission

to reduce communication cost.

(3) Reducing Computation Cost (Chapter 4.3): We refactor the counter

update computation based on the insight that the only update which really

matters for an element is the one to its final layer where an element would

have been added. Thus, by only making updates to the final layer, we can

halve the effective compute footprint of the sketching data structure.

Our end-to-end goal is to maximize sensor battery-life for a desired level of system

accuracy and given the computation/memory constraints (Chapter 4.4). Building on

the above design optimizations, we show how sensor operators can tune Joltik ’s sketch

parameters to suit application-specific accuracy requirements, while accounting for

the energy costs and resource constraints.

We implement Joltik in LoRaWAN NUCLEO-L476RG boards and sensors and

conduct proof-of-concept experiments in a LoRaWAN testbed spanning a university

building. We further emulate a variety of sensor deployment scenarios using pub-

licly available datasets for solar energy measurement, temperature, pressure and soil

moisture. We demonstrate Joltik ’s performance against a variety of baselines includ-

ing compressed sensing, subsampling, specialized sketches, varied data compression

strategies and sending raw data. Our evaluation demonstrates that: (1) Given an

energy budget, Joltik achieves significant better accuracy when compared to all base-

lines (see Figure 1.2); (2) Joltik reduces storage requirements by 5ˆ compared to

traditional universal sketches without loss in accuracy; and (3) Joltik can measure

multiple sensor statistics at the same time without extra energy cost.

Contributions: In summary, this thesis makes the following contributions:

• A novel architecture for enabling general, energy-efficient, and high fidelity

5

sensor analytics by observing an opportunity to leverage universal sketching

(Chapter 3);

• A practical low-CPU, low memory footprint and low power realization of uni-

versal sketches on commodity sensor platforms (Chapter 4);

• An end-to-end system realization of Joltik on a real-world LoRaWAN testbed

(Chapter 5) and demonstrating the benefits compared to alternatives (Chap-

ter 6);

Thesis outline: Chapter 1 briefly introduces the existing problem in LP-WANs and

discusses our contributions in solving this problem. Chapter 2 gives a motivation

scenario and highlights the limitations of current approaches, and finally discusses

the theoretical foundations underlying Joltik . Chapter 3 gives an overview on the

Joltik system and analyzes the system challenges. Chapter 4 describes three design

ideas in detail and introduces end-to-end system deployment. Chapter 5 introduces

system implementation. In Chapter 6, we provide the evaluation result of Joltik

system. The conclusions and future work are discussed in Chapter 7.

6

2

Background

We start a motivation scenario to show the design goal of Joltik system. Then we

highlight the limitations of current approaches. We also introduce the related work

and briefly discuss the theoretical foundations underlying Joltik .

2.1 Motivating Scenario

Let us look at an example of a solar farm to understand the Joltik ’s motivation (Fig-

ure 2.1). Many companies are already moving towards low-power wireless platforms

for monitoring solar power production. These meters are typically used to either send

monthly energy generated [53] (i.e. total energy use) or detect day-night cycles, and

therefore operate solely on battery power to function independent of the grid [33].

In addition, we may have other analytics tasks of interest; say detection of an

anomaly or volatility of the voltage generated. This might be facilitated for example,

by calculating the entropy of the drawn current. More generally, there may be

multiple kinds of statistical summaries of interest computed over the raw sensor

stream for various analytics tasks. Table 2.1 shows a subset of possible statistics for

this application setting, with a caveat that this list is by no means exhaustive.

7

Figure 2.1: A motivating example: A solar farm may need general analytics for
various applications.

Solar Sensor Metric Definition
Energy Generated L1-norm (L1)

ř

fi
Power usage α-Heavy Hitters fi ě α

ř

fi
Voltage Volatility L2-Norm (L2)

ř

f 2
i

Anomaly Detection Entropy ´
ř fi

L1
log fi

L1

Weather Event Change fc ě α
ř

fc
Voltage Range Tail Detection Quantiles
Power Outages Zero-draw Time f0 ě α

ř

fi

Table 2.1: Metrics relevant to a solar farm

Today, it is challenging if not impossible to support such “general” analytics. The

operators have to decide at deployment time which set of analytics tasks need to be

supported. Since the low-power clients cannot compute all possible set of statistics,

we may not be able to support a wide spectrum of downstream tasks.

Even if field reprogrammability were feasible, the operators still have to make

some unfortunate runtime trade-offs. Since the sensors have only finite computation,

storage and power resources, we may not be able to simultaneously run all possible

services and some of these tasks will suffer from fundamental “blind spots”.

Now, consider the scenario where a new type of analytical capability emerges, say

to study voltage range of malfunctioning sensors or investigate the effect of weather

8

Approach Energy Accuracy Generality

Sub-sampling [24, 26] X ˆ X
Compression [48, 35] ˆ X X
Sparse Recovery [43] X X ˆ

Data-centric Aggregation [59, 44] X X ˆ

Joltik X X X

Table 2.2: In contrast to prior work, Joltik guarantees energy-efficiency, accuracy
and generality.

events. It is expensive to physically visit and reconfigure the clients manually. While

over-the-air (OTA) updates [34] may address this partially for high-end platforms,

many clients cannot support this capability due to the large power draw. Thus, this

new capability will require essentially a significant overhaul of the already deployed

infrastructure.

The above case study demonstrates the need for an approach which can pro-

vide accurate, general, and possibly future-proof analytics for wide array of metrics

without constant manual intervention.

2.2 Strawman Solutions and Limitations

In this context we explore several strawman solutions and highlight their limitations

when doing sensor analytics tasks.

Sub-Sampling [24, 26]: The company may circumvent computation limitation

by allowing the sensors to select some k applications out of pool of all applications and

then leverage spatial and temporal correlation over the sparse samples to estimate all

metrics. Yet, this will still lead to lower fidelity and blind spots in measuring these

metrics. Further, this approach will need the pool a priori which is not conducive

to unknown applications.

Compression [48, 35]: Using lossless compression on raw data cannot be

supported by these low power clients for two reasons. First, the clients transmits

much less frequently than it senses and hence the small storage resources cannot

9

support high sampling rate. Second, many compression algorithms are computa-

tionally intensive affecting the power budget of the low power clients. If it uses lossy

compression, it will sacrifice accuracy of the raw data which will also increase the

error in estimating the metrics.

Sparse Recovery [43]: This class of approaches can operate efficiently at

clients (e.g., compressive sensing is linear) without sacrificing accuracy like the above

approaches. However, it makes assumptions about the sparsity of data which may

not be true. Further, this assumption can miss out on the tail of the distribution

which may affect its efficacy for many relevant metrics as we will see.

Sketching [3, 18, 15, 42] Summarizing the sensed data streams using sketching

algorithms for specific functions would enable high fidelity data-independent esti-

mates of a metric (such as count-min sketches[18] for heavy hitters). They typically

rely on using hash functions to identify the frequency of various events. These hash

functions are customized to store only the necessary details to compute a function.

However, this approach still remains agnostic to possibly new functions that can

typically be determined very easily on raw data but cannot be computed due to the

hash-based compression. Furthermore, this approach is also not future-proof as the

sketches cannot support other metrics of interest.

2.3 Related Work

The related work of this thesis mainly falls into the following three categories: low-

power IoT, aggregation in sensor networks and sketching for data analytics.

2.3.1 Low-Power IoT

There has been much work done in Low-Power Wide-Area Networking (LP-WANs)

for synchronization [2, 46], association [36, 22], optimizing power [4, 19], improving

scalability [47, 20, 23], and client power adaptation [65]. Recent trends [32, 28]

10

demonstrate moving complex functions off the low-power client to the more powerful

base stations. Joltik complements prior work by developing a novel approach to

retrieve general data analytics from resource-starved low-power IoT clients.

Further, advances in energy-harvesting technologies have enabled intermittently

powered devices [40, 54] which sense the environment periodically based on avail-

able energy. However, as intermittent sensors are essentially sub-sampling sensed

data from the environment, they sacrifice accuracy due to missing out on important

information when sleeping.

2.3.2 Aggregation in Sensor Networks

Retrieving information from large number of IoT clients or sensor nodes has been

widely studied. While some approaches, such as compressed sensing [7, 43, 8, 60,

30, 25], leverage the sparsity of information to retrieve the data, other approaches

use machine learning [58, 49] or statistical sampling [26, 57] to retrieve informa-

tion from large number of sensors in a network. There is also a rich literature on

lossless compression [56], such as dictionary based [48, 41] and predictive coding

based [35, 29]. However, these solutions have the caveat of providing relatively

modest compression without affecting the accuracy of statistics. The last approach

for aggregation [31, 45, 5, 6, 50, 44, 59] in wireless sensor networks exploits the spatio-

temporal correlations to minimize the information required to calculate specialized

metrics. As shown in Table 2.2, Joltik complements these solutions by providing a

generalized analytics framework that does not rely on assumptions about the sensed

data.

2.3.3 Sketching for Data Analytics

Sketching algorithms for aggregate statistics have been explored in various contexts,

including stream data processing [3, 42, 17, 9], database [15, 18, 15] and network

11

telemetry [66, 38, 37, 63]. In contrast, Joltik presents the first system to leverage

the universal sketching paradigm for generalized aggregation in wireless low-power

clients and making them storage, computation and energy efficient.

2.4 Background on Universal Sketching

The above discussion suggests that an ideal approach should enable high-fidelity

estimates of relevant metrics without making any assumptions on the distribution of

data and is energy-efficient. In this regard, recent advances in the theory of universal

sketching [10, 12] appear promising.

At a high level, a universal sketch maintains a single sketch structure that can

enable estimation for every function drawn from a broad class of functions instead

of keeping one individual sketch per estimation task. More specifically, this class of

estimation tasks can be represented in the following form: G-sum=
ř

gpfiq, where

fi is the frequency of the ith unique element. Fortunately, many natural statistical

summarizations of interest fall within this family as seen in Table 2.1. The theory

results show that if g is monotonic and upper bounded by Opf 2
i q, a single universal

sketch can compute these G-sum functions. (A detailed analysis is outside our scope

and we refer readers to the relevant references [10, 62, 12, 38].)

However, a conceptual understanding of the computation/memory structure of

the sketch is relevant for us in order to use it in the Joltik context. Structurally, a

universal sketch maintains multiple layers of “heavy hitter” sketches; i.e., items that

have high frequencies.1 Each sketch applies independent hash function hj (returns

0 or 1) to the input data stream to subsample at every layer (from the previous

layer). This enables them to give equal weightage to both most frequent as well

as the tail of the histogram distribution. These layers then track the heavy hitters

1 Preciously, universal sketch requires to track L2-heavy hitters, defined as items whose frequencies
are larger than some α fraction of L2 for 0ă α ă1, where L2 “

a

ř

f2i .

12

to identify the key contributors to the G-sum functions. As depicted in Figure 3.1,

the intuition here is that the layered structure of universal sketch is designed for

sampling representative elements with diverse frequencies and these elements can be

used to estimate G-sum with bounded errors. If only one layer of heavy hitter sketch

is used, we can only find frequent elements, lacking representatives from less frequent

elements.

During the offline phase, we use the heavy-hitters at each layer and process the

sketch iteratively from the bottom layer to the top. The top-layer can then be used

to compute the desired statistic. Prior work has shown that this aggregation can

be performed to be an unbiased estimator of G-sum [52, 38]. This enables universal

sketches to provide general analytics for all G-sum functions at the base station

without knowing them a priori.

Revisiting our solar farm scenario, this can be a good fit for the applications as

shown in Table 2.1. The low-power sensor computes a universal sketch over sensed

samples and report it to the base station significantly reducing the amount of data

to be transmitted. The base station can then compute the metric of interest (e.g.,

energy generated) using the reconstruction algorithm.

While this is a promising starting point, there are practical challenges that arise

due to the storage and energy (i.e., from computation and communication) con-

straints in a LP-WAN context. Our contribution in Joltik is to identify and address

these problems as we discuss next.

13

3

Joltik System Overview

Joltik is a sensor analytics framework that simultaneously achieves generality to sup-

port a large range of metrics of interest, fidelity in estimating these diverse statistics,

and energy-efficiency for optimized client battery life. Joltik achieves these three

design goals at the same time by leveraging universal sketching algorithm (as in-

troduced in Chapter 2.4). Yet, deploying universal sketching algorithm directly on

resource-constrained sensor devices introduces additional technical challenges. In

this chapter, we first introduce the workflow of Joltik system (Chapter 3.1), then

discuss the system challenges (Chapter 3.2).

3.1 Joltik Workflow

Joltik system contains two main components, namely Joltik client (sensor node) and

Joltik base station. The entire system operates as follows:

(1) Configuration: A Joltik client is configured only once during its operation

to configure the behavior of the sketch during its life time. This decision

is taken based on the battery-life and accuracy requirements for a particular

14

Figure 3.1: Native universal sketch workflow (e.g.,[38]).

Figure 3.2: Joltik system workflow.

client. Based on the energy profile of the client, Joltik is configured to perform

under a budget of total energy E and available memory M . This allows Joltik

to provide an ε-additive error guarantee for all supported metric estimations

based on the sketch size.

(2) Sensing and Computing: Every collected data sample from the sensor will

be fed into the universal sketch on board using the embedded MCU. Instead

15

of storing the raw samples, Joltik only keeps a universal sketch for each mea-

surement interval.

(3) Communication to base station: Joltik devices send the computed (and

possibly compressed) sketch over the wireless medium infrequently; e.g., once

per hour or per day. The base station uses this sketch to estimate various

metrics needed for downstream analytics.

3.2 System Challenges

Figure 3.1 shows how native universal sketching works, and Figure 3.2 shows the

workflow of Joltik . These two figures together address the three key bottlenecks

(computation, storage and communication) in prior universal sketching implementa-

tions to enable accurate general analytics for low-power clients. In order to achieve

the benefits of universal sketching in practice for low-power clients, Joltik addresses

the following challenges as depicted in the figures:

• Acheiving high fidelity with smaller memory footprint: A canonical

universal sketch [38] requires several hundreds of KBs or even a few MBs to

obtain highly accurate results. However, low-power clients have an embedded

MCU with limited on-chip memory (e.g., NUCLEO-L476RG LoRaWAN board

has 128KB SRAM). Given this tight memory budget, we need a compact uni-

versal sketch but still provide high accuracy. We describe our approach to

reduce the memory footprint in Chapter 4.1.

• Optimizing communication with the base station: Wireless commu-

nication is the first-order energy consumer in wireless sensor platforms. By

transmitting the sketch data structure instead of raw data, we already reduce

the communication cost to some extent. But every bit matters for low-power

16

wireless transmission. In Chapter 4.2, we present our approach to dynamically

reduce the sketch counter sizes without affecting the accuracy of the estimated

metrics.

• Reducing energy footprint of sketch update: Low-power MCUs have

limited computation resources (e.g., Cortex-M3 CPU with 32MHz). Universal

sketching implemented as-is requires multiple hash computations (e.g., 5-10

hashes) for each collected sample, inducing compute overhead and additional

energy consumption. In Chapter 4.3, we identify a simple-yet-effective oppor-

tunity to halve the compute requirement without affecting accuracy.

In this chapter we introduce the workflow of Joltik and also the system design

challenges. We will then dive into the detailed system design in the following chapter.

17

4

Detailed Design

In this chapter, we discuss our contributions in tackling the three challenges discussed

in Chapter 3.2 (reducing the overall energy footprint and making universal sketches

feasible on low-power sensor platforms, as shown in Figure 3.2). We also discuss how

a sensor deployment can practically configure various Joltik system parameters to

get the best accuracy-lifetime tradeoffs.

4.1 Reducing Memory Footprint

4.1.1 Problem

Recall that the universal sketching algorithm maintains multiple “L2 heavy hitter”

instances for subsampled streams, and each instance needs a separate heap data

structure to record the top heavy hitters for that particular substream. Prior work on

universal monitoring (UnivMon) [38] presents a canonical realization of this approach

by implementing several equal-sized count sketch [15] components.

If we leverage this native universal sketching implementation directly and try

to reduce the memory size, we would need to reduce the memory footprint of each

count sketch uniformly. By default, UnivMon allocates 600 KB memory for a 12-layer

18

(a) Native Universal Sketching (b) Strawman 1: reduce layers

(c) Strawman 2: reduce rows (c) Strawman 3: reduce columns

Figure 4.1: Starman solutions for reducing memory footprint.

sketch, with each count sketch taking 50KB memory. Reducing this size to 60KB

for sensor deployment would mean that each count sketch only gets 5KB, causing

massive hash collisions and significantly larger errors.

4.1.2 Strawman Solutions

Given that the memory reduction in native universal sketching algorithm causes

significant errors, we can consider several other possible methods (Figure 4.1):

• Strawman solution 1: reduce layers. First, We can try to reduce the

number of layers instead of smaller sketches per layer. However, the structure of

universal sketch with Oplog nq layers (for n unique elements) is key to maintain

its generality and fidelity for supported statistics. Reducing the number of

19

layers will affect the algorithm’s capabilities to detect less frequent elements

and, in turn, the accuracy.

• Strawman solution 2: reduce rows. A second approach could be to reduce

the number of rows of hash functions in each sketch. However, reducing the

number of rows will affect the confidence interval of obtaining accurate results

reducing the quality of results, leading to irrelevant failed results frequently

(e.g., 1 failure out of 5 trials).

• Strawman solution 3: reduce columns. The third approach to reduce

memory could be to reduce the number of columns in each sketch. However,

reducing the number of columns will lead to more hash collisions in each layer,

resulting in inaccurate heavy hitter estimation in each layer, and finally cause

an overall accuracy degradation.

4.1.3 Our Approach: “Inverted Pyramid” Structure

Our approach to reduce memory footprint is by designing an “Inverted Pyramid”

data structure, as shown in Figure 4.2. The main insight here is that the upper layers

contribute significantly more to any G-sum function than the lower layers. In a sensor

deployment, we argue that we can still enable high fidelity estimates by significantly

reducing the size of lower layer sketches for two reasons: (1) The lower layer sketches

are responsible for identifying the sizes of small “heavy hitters” (i.e., elements appear

less frequently in the whole data but are relatively frequent in that particular layer)

from lower-layer substreams. The errors from those infrequent elements have smaller

influence on the final statistic than the more frequent elements. (2) The lower layers

need to handle much smaller number of samples. Since the actual errors in estimating

the heavy hitters are proportional to data samples, reducing the sizes of lower-layer

sketches will not yield significantly higher errors than upper layers.

20

(a) Native Universal Sketching (b) Joltik: “Inverted Pyramid”

Figure 4.2: Our approach to reduce memory footprint: “Inverted Pyramid” struc-
ture.

With this insight, we maintain larger (i.e., higher fidelity) sketches for upper

layers and smaller sketches for lower layers, as an “inverted pyramid” structure. We

gradually reduce the number of columns in each sketch as we move to lower layers.

Optimally tuning the relative sizes of each layer will be workload dependent. In

practice, we choose this reduction to geometrically smaller number of columns at

each layer. Our empirical evaluation in Chapter 6 of the above demonstrates that

ratio of 1/2 provides a good energy-accuracy tradeoff. Thus, every layer is allocated

1/2 the number of columns as the previous layer.

4.1.4 Impact on Accuracy

To understand why our inverted pyramid memory allocation can preserve high accu-

racy in practice while significantly reducing the memory size, we analyze this strategy

based on the accuracy bound of the Count Sketch [15] stated in Theorem 1 below:

Theorem 1 ([15]). For δ ą 0, let fi be the actual frequency and f̃i be the estimated

frequency of element i in the dataset. The Count Sketch algorithm estimates f̃i “

fi˘ εL2 using Oplog 1
δ
¨ 1
ε2
q space with 1-δ probability, where L2 is the L2 norm of the

vector with all element frequencies.

21

Given Theorem 1, our mechanism does allocate smaller space for lower layers,

leading to larger ε additive errors in the worst case. For instance, if we decrease

the sketch size by 2ˆ, then the ε error will increase by Op
?

2q. However, this worst

case error bound increase will not convert to a larger error in practice as real-world

sensor datasets are naturally skewed. Intuitively, this is because even though ε error

increases as memory reduces, this is mitigated by a simultaneous reduction in the

value of L2 that is multiplied with ε in the overall error bound in Theorem 1. Indeed,

L2 always decreases in lower layers because the subsampling will reduce the data size

and “filter out” large heavy hitters in the lower layers with high probability. Across

all of our tested sensor datasets, the decreasing rate of L2 is much higher than ε’s

increasing rate, leading to minimal overall impact on accuracy.

4.2 Reducing Communication Footprint

4.2.1 Why Reducing Communication Footprint

Energy is a key constraint in wireless sensor deployment, and typically the communi-

cation component dominates the energy costs. For instance, on our experimentation

platform with a NUCLEO-L476RG as MCU and SX1276 LoRa Transceiver as ra-

dio transceiver, our measurements show that 4, 560, 000 computation cycles can be

performed for the same energy usage as transmitting a single byte. Thus, to extend

sensor lifetime given limited battery resources, we need to minimize the amount of

data we need to transmit as much as possible.

We do note that by using sketching and the memory optimizations above, we

have already achieved significant reduction in communication costs vs. sending raw

data. Suppose a sensor operates at a sampling rate of 10 Hz, transmitting all raw

data would result in 3.5 MB data to be communicated every day. Using even an

unoptimized universal sketch requires only 300 KB per day; a 12ˆ reduction in

energy consumption. Furthermore, our memory optimization (Chapter 4.1) provides

22

Data packet

Joltik Client Joltik Base Station

Figure 4.3: The transmitted data packet in Joltik system.

a further 5ˆ reduction by using only a 60KB data structure. That said, even with

these techniques in place, we want to explore further opportunities for reducing the

amount of data to be transmitted due to the large asymmetry in the energy cost of

computation vs. communication.

Recall that each layer of a sketch structure consists of two parts: a count sketch

and a heavy hitter heap. (As shown in Figure 4.3) Next, we describe how we can

effectively reduce the communication footprint of transmitting these two data struc-

tures from the sensor to the base station.

4.2.2 Lossless Encoding of Sketch Structure

When transmitting a sketch structure, it is important to use only lossless compression

techniques, as the base station would need the exact sketch information from the

sensor to calculate the application metrics accurately.

Joltik ’s compression of count sketches derives from a simple yet important obser-

vation that, in a certain count sketch, only a small portion of counters tend to have

23

Figure 4.4: An example of sketch counter (4 rows ˆ 5 columns).

Figure 4.5: Percentage of counters with different required bit size: we test 30 runs
on each of the four datasets with a sampling rate of 10 Hz, a data collection time of
one day and a sketch structure of 60 KB in memory.

large values (Figure 4.4 shows a sketch counter example, and Figure 4.5 shows the

percentage of required bit size). This indicates that one can compress a sketch by

assigning different bit sizes to each counter.

Specifically, Joltik assigns two extra bits to indicate 4 levels of counter lengths,

namely 4, 8, 12 and 16, and use corresponding number of bits to represent a certain

counter (as shown in Figure 4.6). For example, 112 needs more than 4 bits, thus

will be represented as 0101110000 (10 bits), where the first two bits indicate that

counter length is 8-bit. Inevitably, for counter values which need more than 12 bits,

24

Figure 4.6: Joltik uses two bits to indicate counter length and represents each counter
with corresponding number of bits.

Key Value

910 35552

804 34409

983 29374

905 19395

827 18890

… …

Transmit Reconstruct

Figure 4.7: An example of Joltik ’s heavy-hitters heap.

this method incurs extra costs. However, it is very unlikely for a well-conditioned

count sketch to have a large number of such values, as this indicates that the count

sketch is already near-saturated and would result in a very low accuracy.

While Joltik ’s compression scheme appears very simple, we show in Chapter 6

that it outperforms several of the most prevalent lossless compression schemes. We

also note that under Joltik ’s compression scheme, compressing a single counter re-

quires only about 1{105 energy of transmitting it, which is worthwhile to perform.

4.2.3 Efficiently Transmitting Heavy-hitter Heap Data

As in original universal sketching algorithms, Joltik also maintains a heap in each

layer, structured with key-value pairs, so that it is aware of the top heavy hitters

(as shown in Figure 4.7). Yet, we note that it is sufficient to reconstruct a heap

25

without heap values, as long as the corresponding count sketch and heap keys are

successfully recovered, since the heap values are just estimates yielded by the count

sketch. Thus, Joltik only transmits heap keys when sending data, and leaves the task

of reconstructing a complete heap to base stations. This discarding process does no

harm to our sketching algorithm and will not influence its accuracy.

4.2.4 Impact on Accuracy

By construction, both of these optimizations are lossless. Thus, by design they have

no impact on the accuracy of the sketch-based estimates.

4.3 Reducing Computation Overhead

In addition to reducing the memory and communication footprints, Joltik designs

a new updating strategy for universal sketch to reduce computation overhead in

micro-controllers.

4.3.1 Problem

The universal sketch algorithm processes each element using a series of operations,

such as hash computation, arithmetic calculations, counter updates, and heap up-

dates. These computations incur high CPU overhead on the sensor data processing,

and bring extra energy cost and large processing latency. A recent study [37] demon-

strates that the top two CPU performance bottlenecks in the universal sketch are

(a) hash computations and (b) counter updates.

4.3.2 Our Approach

To further optimize the energy and reduce processing delay, we introduce a new

counter updating strategy that can accelerate the computation by 2ˆ without de-

creasing accuracy. At a high-level, our approach (as shown in Figure 4.8) is to

26

Figure 4.8: (a) Original update (update count sketch and heap in each layer) vs. (b)
Optimized update (only update count sketch in last possible layer, then update heap
in last layer and all previous layers). In this figure, “X” means updating, “ˆ” means
not updating.

perform only a subset of updates to the layered Count Sketch instances and we

analyze that the reduced updates will not affect the final accuracy.

Specifically, we change the updating strategy in the following two aspects:

(1) In prior universal sketch implementations [38] (Figure 4.8(a)), one must update

the top several layers if an element has been sub-sampled in consecutive Layers

1 to i by hashes that return 0 or 1. In this case, in total i layers of Count

Sketches have been updated. Instead, Joltik chooses to only update the lowest

sampled layer for every element. For example in Figure 4.8(b), we will only

update Layer i.

(2) When reporting the heavy hitters from all layers, we will use the heavy hitters

captured in the lower layers to update all its upper layers. For instance, if

Layer i’s heap has heavy hitters a, b, we will need to insert a and b to Layers

i´ 1 to 1. For the rest of the layers, we will update their previous upper layers

as Layer i.

27

Intuitively, tracking elements on their last layers and using them to update all

their upper lows seems contradicting on the idea of saving memory from lower uppers

in Chapter 4.1. For the heavy hitters that were previously tracked in upper layers, we

now need to report them from smaller-sized lower layers, resulting in worse accuracy

guarantees. However as we will show later in the section, combining this technique

with the memory reduction in Chapter 4.1 does not affect the actual accuracy given

the natural skewness of the data.

4.3.3 Computational Benefits

Recall that the probability that a certain element is preserved from layer i to layer

i` 1 is 1
2

(as a hash returns 0 or 1), we can prove that the universal sketch updates

two layers of sketches on average for each element. Denote one hash computation as

H and one counter update as C, and assume each count sketch instance has 5 rows

of counters. Thus, in [38], the per-element computation is 21H ` 10C as 1 hash is

needed for deciding which layers to update, 20 hashes and 10 counter updates are

required to operate two Count Sketch instances. Compared with [38], our approach

only needs 11H ` 5C computation as we only update one sketch at a time, reducing

the cost by approximately 2ˆ.

4.3.4 Impact on Accuracy

Viewed in isolation, the above approach does not result in any accuracy loss as only

updating the last layer will provide the same accuracy guarantee for every item. That

said, we do acknowledge that combining it with the memory reduction (as shown in

Chapter 4.1) can result in worst-case errors since the counter fidelity at lower layers

is lower. In practice, however, the actual added errors are negligible due to two

reasons: (1) Based on the sub-sampling probability, very few heavy hitters will be

preserved in bottom layers. (2) Even if a heavy hitter is indeed selected to update a

28

very bottom layer, the error will still be reasonable as our approach further reduces

the L2 norm of the data processed through that layer (see Chapter 4.1).

4.4 End-to-end Deployment

In this section, we describe how Joltik ’s optimizations on computation, communica-

tion and storage are integrated to achieve end-to-end improvements in the energy vs.

accuracy trade-off. Specifically, we show how both total energy and system accuracy

can be determined from Joltik ’s sketch structure size, so that it can be tuned to meet

application-specific requirements.

4.4.1 Configure Sketch-related Parameter

Consider the perspective of sensor network operators who want to benefit from de-

ploying Joltik . The user provides as input parameters that describe their sensor

network deployment, following which Joltik suggests a menu of candidate configura-

tions that trade-off battery-life and accuracy. The users can then choose a configu-

ration that they think best suitable for their application. Specifically, Joltik needs

the following parameters from the user: (1) Data collection rate Rcl : describes how

frequently individual sensors should collect data and (2) Period of transmission T :

decides how frequently Joltik client should transmit.

Joltik then tunes the following sketch size Ss in Joltik (in Bytes) to identify

suitable alternative configuration options that trade off between client battery life

and estimation accuracy. We measure battery life across these instances by assuming

a total energy budget of Eb, which is determined by the sensor’s battery capacity.1

1 Note we express energy consumption, including Eb, with the unit of mA*s in our analysis, since
we use a fixed voltage of 3V across all operations.

29

4.4.2 Lifetime Estimation

We show how lifetime can be represented based on the above three variables. Specif-

ically, we first compute the energy consumption per day Eday , and then calculate an

expected lifetime.

For a low-power client, its battery is usually modeled based on its processing cost

and its transmission cost, as in [19]. Based on this battery model, we note that Eday

consists of four main energy costs (all on a per-day scale), all of which depend on

input and sketch parameters [19]: (1) The processing cost per sample (proportional

to Rcl, the number of samples per day); (2) The compression cost (proportional to

Ss{T); (3) The sleep cost (decreases linearly with Rc1); (4) The transmission cost

(proportional to Ss)

Following a similar analysis in [19], we can define Eday as a function fp.q of Rcl,

Ss and T :

Eday “ fpRcl, Ss, T q

Thus, an expected lifetime can be estimated as:

Lifetime “ Eb{Eday “ Eb{fpRcl, Ss, T q

4.4.3 Error Bound

Following the analysis in [13] and [15], we know that universal sketch requires space

that is Oplog n ¨ logp1{δq ¨ 1{ε2q to process n unique elements, where ε is the addi-

tive error in L2 norm of the frequency vector, and it further influences accuracy.

Specifically, that means Ss should be proportional to 1{ε2.

4.4.4 Energy and Accuracy Trade-off

Using the above methodology, Ss links lifetime and error bound together with its

different impacts: for lifetime, coarsely we have Lifetime91{pkSs ` bq, where k and

b are constants; while for accuracy, coarsely we have Error91{
?
Ss. This gives two

30

important takeaways for a potential user: (1) When it is necessary to transmit fre-

quently (hence T is small) due to application requirements, one can potentially use

less memory with acceptably small loss in accuracy, but beyond a certain point the

accuracy will be significantly reduced due to smaller memory; (2) When a larger

transmission period is acceptable, one can transmit less frequently and apply larger

sketch structure to push towards a smaller ε, hence improving accuracy while main-

taining a reasonable lifetime.

In practice, we envision suggesting several candidate configurations so that users

can flexibly explore a suitable trade-off between lifetime and accuracy. Table 4.1

shows three sample configuration examples in our experiments to illustrate this en-

ergy and accuracy trade-off. Here, Eb set to a typical value of 3000 ˚ 3600 mA*s

based on an AA battery.

Rcl T Ss Lifetime Accuracy
8 Hz 2 days 30 KB 4665 days 95.5%
8 Hz 2 days 50 KB 3264 days 96.3%
8 Hz 2 days 70 KB 2594 days 96.7%

Table 4.1: Joltik deployment example

31

5

Implementation

We implement Joltik in C using mbed compiler at both client and the base sta-

tion. We use commodity off-the-shelf sensors and RF boards to sense at the clients

and communicate to the base station. In this chapter, we introduce the hardware

components of Joltik system and our real-world testbed.

5.1 Joltik Sensor Node

The Joltik sensor node consists of three parts — sensor board, microcontroller (MCU)

and transceiver:

• Sensor Board: We use the X-NUCLEO-IKS01A2 (Figure 5.1(b)), a motion

MEMS and environmental sensor expansion board for the STM32 Nucleo.

This board integrates the motion MEMS accelerometer, gyroscope, magne-

tometer and environmental sensors for humidity, temperature and pressure on

one board. We use the LPS22HB MEMS pressure sensor on board to collect

pressure dataset on campus.

• MCU: We use the NUCLEO-L476RG board (Figure 5.1(a)), which contains

32

Figure 5.1: Hardware Components of Joltik : (a) Microcontroller (NUCLEO-
L476RG); (b) Sensor Board (X-NUCLEO-IKS01A2); (c) Transceiver (SX1276 Long
Range Transceiver).

a STM32L476RGT6U MCU in LQFP64 package. This MCU runs Joltik to

generate sketch summaries, and assembles LoRaWAN packets.

• RF Frontend: We use the SX1276 LoRa Transceiver (Figure 5.1(c)) to com-

municate with the base station. In our experiments, we set this transceiver to

operate at 915MHz, operating at SF 10 and 125 KHz bandwidth.

5.2 Joltik Base Station

Joltik base station consists of two parts — the MCU and a LoRa RF transceiver:

• MCU: We use the same MCU board as the client. This MCU receives LoRa

packets from sensor nodes. Application metrics could either be calculated at

this MCU (case 1), or at the cloud (case 2). In case 1, the MCU rebuilds sketch

summaries, and run universal sketching offline algorithm to generate results

on application metrics. In case 2, the MCU is connected to a computer or

network, and uses serial communication to transmit all received LoRa packets

33

to the cloud. In our experiments as described in Chapter 6, we use the MCU

to directly calculate the application metrics (case 1).

• RF Frontend: We use the same RF board as the client for LoRa communica-

tion. Traditionally a base station is equipped with much larger bandwidth to

receive multiple packets simultaneously. However, we overcome this problem

by requiring our clients to transmit across fixed time-slots enabling isolation.

34

6

Evaluation

In this chapter, we first evaluate Joltik on a proof-of-concept deployment using four

real-world datasets (as introduced in Chapter 6.1). Across these sensor datasets,

we compare Joltik with other alternatives in Chapter 6.2. Then, we compare the

performance of Joltik with the native universal sketching algorithm, and the results

are shown in Chapter 6.3.1.

Our major findings are as follows:

• Joltik achieves significantly better accuracy (97.9%) compared to sub-sampling

(70.1%), native universal sketching (82.3%) and compressed sensing (34.9%)

using the same amount of 60 KB memory across datasets and across evaluation

tasks.

• Joltik reduces the power consumption of the sensor nodes by 96% compared to

transmitting raw data while maintaining high accuracy (ą 95%) on the tested

tasks.

• Joltik supports a range of analytics tasks without extra power consumption on

the sensor nodes.

35

Figure 6.1: Sensor locations in building.

6.1 Evaluation Setup

6.1.1 Real-world Testbed

We build a real-world proof-of-concept testbed in a campus building with ten pressure

sensors and one base station (as shown in Figure 6.1). Using this real-world testbed,

we collect pressure data for weeks using 1Hz sensor sampling rate (we call this “Joltik

dataset” in the following context). We also study the performance of Joltik by

emulating three varieties of sensor deployments with three other large real-world

datasets.

Note that when configuring Joltik , we follow the guidelines in Chapter 4.4 and

balance the energy and accuracy trade-off. In addition, when comparing with other

schemes such as compressed sensing or customized sketch, we use the same energy

budget across them.

6.1.2 Datasets

In addition to our own dataset, we also consider three real-world datasets from

previous work:

(1) Indoor Solar [55]: 2 years of joint high accuracy power and ambient condition

36

traces at 6 diverse indoor locations for energy harvesting systems.

(2) SensorScope [27]: Environmental data from past SensorScope deployments

[51]. In our experiments, we use the global current value to test system perfor-

mance.

(3) LoRa Farm [14]: Soil moisture and temperature measurements from an un-

derground sensor network on a farm site in Western Australia. In our experi-

ments, we use the water content value to test system performance.

6.1.3 Baselines

Across experiments, we compare Joltik system with 3 baselines:

(1) sub-sampling: downsamples raw samples with a defined ratio and transmits

sub-sampled data.

(2) customized sketches: designed specifically for a single application function.

(3) CoSaMP: one of the widely used compressed sensing algorithms [43].

6.2 End-to-end System Performance

We evaluate Joltik on the following performance metrics: accuracy, device power

consumption and multi-task handling using same energy budget.

6.2.1 Energy-Accuracy Trade-off

To evaluate energy-accuracy tradeoff of Joltik , we choose 4 analytic tasks as moti-

vated by our solar farm example: Heavy Hitter (HH), Cardinality, Entropy Estima-

tion (Entropy), and L2 norm (L2). For heavy hitters, we detect the top 100 most

frequent values in a day and estimate their mean relative errors. We report rela-

tive error = s´sreal
sreal

, where sreal is the ground truth of a task and s is the measured

37

Figure 6.2: Joltik energy-accuracy trade-off tested using Indoor Solar dataset: Joltik
provides better battery lifes while providing better accuracy.

value. We run the experiments on the LoRa Farm and Indoor Solar datasets 30

times (note that sampling across hash layers is probabilistic) and report the median

and the standard deviation of the measure error.

To estimate the power consumption of Joltik , we leverage prior current models of

our board [19], and report the device total power consumption (including sampling,

processing and transmitting) for one day. We then leverage this to estimate the

battery life of the client by using a standard AA battery as the energy source. Across

all experiments, Joltik and customized sketch transmit result once per day. Sub-

sampling, lossless compression and transmit raw transmit result every 15 min.

Result: As depicted in Figure 6.2 and Figure 6.3, Joltik achieves significantly better

accuracy in all tested tasks, sampling frequencies and datasets over the baselines .

We also notice as we increase the subsampling factor from 10 to 1000, sensors lose

more and more information, leading to higher error rates. This is particularly large

for tasks that focus on tail distributions such as cardinality. While CoSaMP works

38

Figure 6.3: Joltik energy-accuracy trade-off tested using LoRa Farm dataset: Joltik
provides better battery lifes while providing better accuracy.

for sparser datasets, the compressed sensing approach fails miserably on dense data,

achieving only about 30% accuracy. While one would assume customized sketch to

outperform Joltik in terms of accuracy, remember that when we constrain the system

to have equal energy consumption, each of the customized sketches get 1
4

of the total

energy used by Joltik . Thus, Joltik outperforms customized sketch method.

Joltik is also significantly more energy-efficient over baseline approaches of trans-

mitting raw data (24.6x) and lossless compression (16.4x). This is due to the fact

that lossless compression can only compress the raw data by 1.5ˆ. This means that if

the low power sensor operates on a typical AA battery, these approaches would pro-

vide an insufficient battery life of 80 days and 135 days, respectively. In comparison,

Joltik can allow the client to provide high fidelity analytics for 5.5 years.

At first glance, sub-sampling and customized sketch seem pretty energy-efficient.

However, we can see that they achieve so by sacrificing accuracy. Thus, it is neces-

sary to understand how these algorithms trade-off energy for accuracy. Our results

39

AppSet1 AppSet2 AppSet3 AppSet4
Application Sets

0

5

10

15

Er
ro

r R
at

e
(%

)

Joltik Error Rate

Cardinality
Entropy
L2 Norm
Heavy Hitters

AppSet1 AppSet2 AppSet3 AppSet4
Application Sets

-15

-10

-5

0

5

10

15

Er
ro

r G
ap

 (%
)

Joltik & Customized Error Gap

Figure 6.4: Generality and Multi-task Handling. Left: Error rate of Joltik estimating
four application sets using same energy budget. Right: Error gap between Joltik
and customized sketch estimating four application sets using same energy budget.
positive values imply Joltik is worse and vice versa). Both experiments use Joltik
dataset with 1Hz sensor sampling rate.

in Figure 6.2 and Figure 6.3 clearly demonstrates that Joltik has a better energy

consumption and accuracy trade-off over these approaches across applications. This

result highlights the ability of Joltik to achieve energy-efficiency and high-fidelity at

the same time.

6.2.2 Generality

To evaluate generality, we deploy both Joltik and customized sketches to do four dif-

ferent sets of estimation tasks: AppSet1 = {Cardinality}, AppSet2 = {Cardinality,

Entropy}, AppSet3 = {Cardinality, Entropy, L2} and AppSet4 = {Cardinality, En-

tropy, L2, HH}. For all the estimation task sets, Joltik and customized sketches are

allocated the same energy budget (5 years of battery lifetime using a typical 9,720

As capacity AA battery). For the customized sketch, we use Hyperloglog [21] for

cardinality, entropy estimation algorithm [16] for entropy, Count Sketch [15] for L2,

and Count-Min Sketch [18] for HH. When doing multiple estimation tasks using cus-

40

tomized sketches, we divide the power budget uniformly across different customized

sketches.

Result: Figure 6.4 shows that running multiple tasks on Joltik using the same energy

budget will not incur accuracy deduction in individual tasks, since the universal

sketch maintained in the sensor preserves information for all of these tasks. In

various machine learning and data analytics scenarios that need a variety of features

from sensed data, Joltik can be an energy-efficient and accurate alternative to the

approach of simply sending all raw data. We also show the “error gap” between Joltik

and customized sketches (error result of Joltik - error result of customized sketches.

i.e., positive values imply Joltik is worse and vice versa). As expected, when more

tasks are needed, Joltik will perform significantly better than customized sketches

in terms of accuracy. This is due to the consequently decreasing power budget for

individual tasks.

6.3 Evaluating Joltik ’s Optimizations

In this section, we compare the performance of Joltik vs. native universal sketching

in terms of memory footprint, computation-efficiency and communication overhead

with the original universal sketching algorithm. We will show how Joltik solves the

three system challenges and why Joltik is more feasible for low-power wireless sensors

compared to the original universal sketching algorithm.

6.3.1 Memory Footprint

We evaluate our approach described in Chapter 4.1 by deploying both Joltik and the

canonical universal sketching algorithm [38] to perform 2 analytics tasks (HH and

L2-norm). We vary the amount of memory for both tested approaches to study the

impact on accuracy.

Result: As depicted in Figure 6.5, Joltik achieves low-error estimation for both

41

Figure 6.5: Evaluation on memory optimization. Error rates of Joltik and the orig-
inal universal sketching on Joltik Dataset with 1Hz sensor sampling rate. For all
experiments, the feasible region is within 5% error rate and 100KB sensor memory
limit.

heavy hitters and L2-norm at significantly smaller sketch sizes. A key thing to

notice is that for memory sizes smaller than 100 KB (typical on a low-power client),

only Joltik can provide high accuracy for most supported tasks.

6.3.2 Communication Overhead

Compression Compression Energy
Methods Rate (mAs)

Reduce bitsize
3.835 5479.7

per counter (Joltik)
Huffman 3.575 5868.4

LZW 3.57 5960.2
Delta Encoding 3.415 6136.8

No Compression (Native
1 20616.1

Universal Sketching)

Table 6.1: Joltik compression methods comparison

We evaluate Joltik ’s approach for reducing the communication overhead by com-

paring the power consumption of Joltik ’s scheme with other state-of-the-art com-

pression schemes such as Huffman encoding, LZW, Delta Encoding and the native

universal sketch.

42

Figure 6.6: Evaluation on computation optimization, showing the percentage of
sketch processing power out of total sensor power.

Result: Our results in Table 6.1 demonstrate a 3.76ˆ reduction on power consump-

tion over the native universal sketching algorithm without losing any information at

the base station. It also performs comparably to many of the prior encoding schemes

in terms of compression ratio.

6.3.3 Computation Overhead

Finally, we evaluate the impact of Joltik ’s computation optimization of reducing the

number of hashes per element. Since our approach does not affect the accuracy of

the output metric, we focus on the reduction in power consumption as a function

of sensor sampling frequency. Figure 6.6 shows increasing benefits for sensors that

sample significantly more demonstrating a 2ˆ reduction in the sketch processing

power. (At lower sampling frequency, transmission costs dominate.)

43

7

Conclusions and Future Work

This thesis presents Joltik , a framework for doing analytics tasks on low-power IoT

clients. Compared to existing approaches, Joltik could simultaneously achieves gen-

erality to support a large range of metrics of interest, fidelity in estimating these

diverse statistics, and energy-efficiency for optimized client battery life. Joltik en-

ables this by observing an opportunity to leverage universal sketching algorithm.

To make the algorithm compatible with low-power clients, we optimize the native

universal sketching for storage, computation and communication. To evaluate the

performance of the proposed Joltik system, we present an end-to-end system realiza-

tion of Joltik on a real-world LoRaWAN testbed. And a detailed testbed evaluation

of Joltik demonstrates 96% reduced power consumption compared to transmitting

raw data, 97.9% accuracy in computing valuable statistics on client data within a

storage space of 60 kB.

We believe Joltik presents an interesting opportunity in developing sketches for

low-power IoT clients that are particularly amenable to highly data-intensive ma-

chine learning algorithms including deep learning. This will allow the vast compute

resources at the edge and cloud to leverage rich sensed information for various appli-

44

cations, while maintaining the energy-efficiency of individual sensors. For the future

work, making Joltik system more resistant to packet loss during wireless transmis-

sions could be a very interesting direction.

45

Bibliography

[1] P. K. Agarwal, G. Cormode, Z. Huang, J. M. Phillips, Z. Wei, and K. Yi, “Merge-
able summaries,” ACM Transactions on Database Systems (TODS), vol. 38,
no. 4, pp. 1–28, 2013.

[2] A. Ali and W. Hamouda, “On the cell search and initial synchronization for NB-
IoT LTE systems,” IEEE Communications Letters, vol. 21, no. 8, pp. 1843–1846,
2017.

[3] N. Alon, Y. Matias, and M. Szegedy, “The space complexity of approximating
the frequency moments,” in Proc. of ACM STOC, 1996.

[4] P. Andres-Maldonado, P. Ameigeiras, J. Prados-Garzon, J. Navarro-Ortiz, and
J. M. Lopez-Soler, “Narrowband IoT data transmission procedures for massive
machine-type communications,” IEEE Network, vol. 31, no. 6, pp. 8–15, 2017.

[5] T. Arici, B. Gedik, Y. Altunbasak, and L. Liu, “PINCO: a pipelined in-network
compression scheme for data collection in wireless sensor networks,” Proceed-
ings. 12th International Conference on Computer Communications and Net-
works (IEEE Cat. No.03EX712).

[6] S. J. Baek, G. d. Veciana, and X. Su, “Minimizing Energy Consumption
in Large-scale Sensor Networks Through Distributed Data Compression and
Hierarchical Aggregation,” IEEE J.Sel. A. Commun., vol. 22, no. 6, pp.
1130–1140, Sep. 2006. [Online]. Available: https://doi.org/10.1109/JSAC.2004.
830934. [Accessed 2020-03-25].

[7] W. Bajwa, J. Haupt, A. Sayeed, and R. Nowak, “Compressive wireless sensing,”
in Proceedings of the 5th international conference on Information processing in
sensor networks. ACM, 2006, pp. 134–142.

[8] R. G. Baraniuk, V. Cevher, M. F. Duarte, and C. Hegde, “Model-
Based Compressive Sensing,” IEEE Transactions on Information Theory,
vol. 56, no. 4, p. 1982–2001, Apr 2010. [Online]. Available: http:
//dx.doi.org/10.1109/TIT.2010.2040894. [Accessed 2020-03-25].

46

https://doi.org/10.1109/JSAC.2004.830934
https://doi.org/10.1109/JSAC.2004.830934
http://dx.doi.org/10.1109/TIT.2010.2040894
http://dx.doi.org/10.1109/TIT.2010.2040894

[9] V. Braverman, S. R. Chestnut, D. P. Woodruff, and L. F. Yang, “Streaming
space complexity of nearly all functions of one variable on frequency vectors,”
in Proc. of PODS, 2016.

[10] V. Braverman and R. Ostrovsky, “Zero-one frequency laws,” in Proceedings of
the forty-second ACM symposium on Theory of computing, 2010, pp. 281–290.

[11] V. Braverman, S. R. Chestnut, D. P. Woodruff, and L. F. Yang, “Streaming
space complexity of nearly all functions of one variable on frequency vectors,”
in Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Prin-
ciples of Database Systems, PODS 2016, San Francisco, CA, USA, June 26 -
July 01, 2016, 2016, pp. 261–276.

[12] V. Braverman, R. Krauthgamer, and L. F. Yang, “Universal streaming of subset
norms,” CoRR, vol. abs/1812.00241, 2018.

[13] V. Braverman and R. Ostrovsky, “Zero-one frequency laws,” in Proceedings
of the Forty-Second ACM Symposium on Theory of Computing, ser. STOC
’10. New York, NY, USA: Association for Computing Machinery, 2010,
p. 281–290. [Online]. Available: https://doi.org/10.1145/1806689.1806729.
[Accessed 2020-03-25].

[14] R. Cardell-Oliver, C. Hübner, M. Leopold, and J. Beringer, “Dataset: LoRa
Underground Farm Sensor Network,” in Proceedings of the 2nd Workshop on
Data Acquisition To Analysis. ACM, 2019, pp. 26–28.

[15] M. Charikar, K. Chen, and M. Farach-Colton, “Finding frequent items in data
streams,” in Proc. of ICALP, 2002.

[16] P. Clifford and I. Cosma, “A simple sketching algorithm for entropy estimation
over streaming data,” in Artificial Intelligence and Statistics, 2013, pp. 196–206.

[17] G. Cormode and M. Garofalakis, “Sketching probabilistic data streams,” in
Proc. of ACM SIGMOD, 2007.

[18] G. Cormode and S. Muthukrishnan, “An Improved Data Stream Summary: The
Count-Min Sketch and Its Applications,” J. Algorithms, 2005.

[19] A. Dongare, R. Narayanan, A. Gadre, A. Luong, A. Balanuta, S. Kumar, B. Ian-
nucci, and A. Rowe, “Charm: exploiting geographical diversity through coher-
ent combining in low-power wide-area networks,” in 2018 17th ACM/IEEE In-
ternational Conference on Information Processing in Sensor Networks (IPSN).
IEEE, 2018, pp. 60–71.

47

https://doi.org/10.1145/1806689.1806729

[20] R. Eletreby, D. Zhang, S. Kumar, and O. Yağan, “Empowering low-power wide
area networks in urban settings,” in Proceedings of the Conference of the ACM
Special Interest Group on Data Communication. ACM, 2017, pp. 309–321.

[21] P. Flajolet, É. Fusy, O. Gandouet, and F. Meunier, “Hyperloglog: the analysis
of a near-optimal cardinality estimation algorithm,” 2007.

[22] A. Gadre, R. Narayanan, A. Luong, A. Rowe, B. Iannucci, and S. Kumar,
“Frequency Configuration for Low-Power Wide-Area Networks in a Heartbeat,”
in USENIX NSDI, 2020.

[23] A. Gadre, F. Yi, A. Rowe, B. Iannucci, and S. Kumar, “Quick (and Dirty)
Aggregate Queries on Low-Power WANs,” in ACM/IEEE IPSN, 2020.

[24] S. Gandhi, S. Suri, and E. Welzl, “Catching elephants with mice: sparse sam-
pling for monitoring sensor networks,” ACM Transactions on Sensor Networks
(TOSN), vol. 6, no. 1, pp. 1–27, 2010.

[25] A. C. Gilbert, M. J. Strauss, J. A. Tropp, and R. Vershynin, “One Sketch
for All: Fast Algorithms for Compressed Sensing,” in Proceedings of the
Thirty-ninth Annual ACM Symposium on Theory of Computing, ser. STOC
’07. New York, NY, USA: ACM, 2007, pp. 237–246. [Online]. Available:
http://doi.acm.org/10.1145/1250790.1250824. [Accessed 2020-03-25].

[26] A. Gilbert and P. Indyk, “Sparse recovery using sparse matrices,” Proceedings
of the IEEE, vol. 98, no. 6, pp. 937–947, 2010.

[27] Guillermo Barrenetxea, “Sensorscope Data,” https://doi.org/10.5281/zenodo.
2654726, 2019, [Accessed 2020-03-25].

[28] M. Hessar, A. Najafi, V. Iyer, and S. Gollakota, “TinySDR: Low-Power SDR
Platform for Over-the-Air Programmable IoT Testbeds,” in USENIX NSDI,
2020.

[29] F. Huang and Y. Liang, “Towards Energy Optimization in Environmental Wire-
less Sensor Networks for Lossless and Reliable Data Gathering,” 2007 IEEE
Internatonal Conference on Mobile Adhoc and Sensor Systems, 2007.

[30] P. Indyk and M. Ruzic, “Near-Optimal Sparse Recovery in the L1
Norm,” in Proceedings of the 2008 49th Annual IEEE Symposium on
Foundations of Computer Science, ser. FOCS ’08. Washington, DC,
USA: IEEE Computer Society, 2008, pp. 199–207. [Online]. Available:
https://doi.org/10.1109/FOCS.2008.82. [Accessed 2020-03-25].

48

http://doi.acm.org/10.1145/1250790.1250824
https://doi.org/10.5281/zenodo.2654726
https://doi.org/10.5281/zenodo.2654726
https://doi.org/10.1109/FOCS.2008.82

[31] C. Intanagonwiwat, R. Govindan, and D. Estrin, “Directed Diffusion: A
Scalable and Robust Communication Paradigm for Sensor Networks,” in
Proceedings of the 6th Annual International Conference on Mobile Computing
and Networking, ser. MobiCom ’00. New York, NY, USA: ACM, 2000,
pp. 56–67. [Online]. Available: http://doi.acm.org/10.1145/345910.345920.
[Accessed 2020-03-25].

[32] M. Khazraee, Y. Guddeti, S. Crow, A. C. Snoeren, K. Levchenko, D. Bharadia,
and A. Schulman, “SparSDR: Sparsity-proportional Backhaul and Compute for
SDRs,” in Proceedings of the 17th Annual International Conference on Mobile
Systems, Applications, and Services. ACM, 2019, pp. 391–403.

[33] N. Klugman, J. Adkins, S. Berkouwer, K. Abrokwah, I. Bobashev, P. Pannuto,
M. Podolsky, A. Susenot, R. Thatte, C. Wolfram, J. Taneja, and P. Dutta,
“Hardware, apps, and surveys at scale: Insights from measuring grid reliability
in accra, ghana,” in ACM SIGCAS Conference on Computing and Sustainable
Societies, ser. COMPASS’19, July 2019.

[34] L. Labs, “Firmware-over-the-air (fota) with lora,” https://www.link-labs.com/
blog/firmware-over-the-air-fota-with-lora, 2017, [Accessed 2020-03-25].

[35] Y. Liang and W. Peng, “Minimizing Energy Consumptions in Wireless Sensor
Networks via Two-modal Transmission,” SIGCOMM Comput. Commun.
Rev., vol. 40, no. 1, pp. 12–18, Jan. 2010. [Online]. Available: http:
//doi.acm.org/10.1145/1672308.1672311. [Accessed 2020-03-25].

[36] X. Lin, A. Adhikary, and Y.-P. E. Wang, “Random access preamble design and
detection for 3GPP narrowband IoT systems,” IEEE Wireless Communications
Letters, vol. 5, no. 6, pp. 640–643, 2016.

[37] Z. Liu, R. Ben-Basat, G. Einziger, Y. Kassner, V. Braverman, R. Friedman,
and V. Sekar, “Nitrosketch: Robust and general sketch-based monitoring in
software switches,” in Proceedings of the ACM Special Interest Group on Data
Communication. ACM, 2019, pp. 334–350.

[38] Z. Liu, A. Manousis, G. Vorsanger, V. Sekar, and V. Braverman, “One sketch
to rule them all: Rethinking network flow monitoring with univmon,” in Proc.
of ACM SIGCOMM, 2016.

[39] Y. Lu, A. Montanari, B. Prabhakar, S. Dharmapurikar, and A. Kabbani,
“Counter Braids: A Novel Counter Architecture for Per-FlowMeasurement,”
in Proc. of ACM SIGMETRICS, 2008.

49

http://doi.acm.org/10.1145/345910.345920
https://www.link-labs.com/blog/firmware-over-the-air-fota-with-lora
https://www.link-labs.com/blog/firmware-over-the-air-fota-with-lora
http://doi.acm.org/10.1145/1672308.1672311
http://doi.acm.org/10.1145/1672308.1672311

[40] B. Lucia, V. Balaji, A. Colin, K. Maeng, and E. Ruppel, “Intermittent com-
puting: Challenges and opportunities,” in 2nd Summit on Advances in Pro-
gramming Languages (SNAPL 2017). Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 2017.

[41] F. Marcelloni and M. Vecchio, “Enabling energy-efficient and lossy-aware data
compression in wireless sensor networks by multi-objective evolutionary opti-
mization,” Information Sciences, vol. 180, no. 10, p. 1924–1941, 2010.

[42] A. Metwally, D. Agrawal, and A. E. Abbadi, “Efficient computation of frequent
and top-k elements in data streams,” in Proc. of ICDT, 2005.

[43] D. Needell and J. A. Tropp, “CoSaMP: Iterative signal recovery from incomplete
and inaccurate samples,” Applied and computational harmonic analysis, vol. 26,
no. 3, pp. 301–321, 2009.

[44] S. Pattem, B. Krishnamachari, and R. Govindan, “The Impact of Spatial
Correlation on Routing with Compression in Wireless Sensor Networks,” ACM
Trans. Sen. Netw., vol. 4, no. 4, pp. 24:1–24:33, Sep. 2008. [Online]. Available:
http://doi.acm.org/10.1145/1387663.1387670. [Accessed 2020-03-25].

[45] D. Petrovic, R. Shah, K. Ramchandran, and J. Rabaey, “Data funneling: routing
with aggregation and compression for wireless sensor networks,” Proceedings
of the First IEEE International Workshop on Sensor Network Protocols and
Applications, 2003.

[46] C. G. Ramirez, A. Sergeyev, A. Dyussenova, and B. Iannucci, “LongShoT: long-
range synchronization of time,” in Proceedings of the 18th International Confer-
ence on Information Processing in Sensor Networks. ACM, 2019, pp. 289–300.

[47] R. Ratasuk, B. Vejlgaard, N. Mangalvedhe, and A. Ghosh, “NB-IoT system for
M2M communication,” in 2016 IEEE wireless communications and networking
conference. IEEE, 2016, pp. 1–5.

[48] C. M. Sadler and M. Martonosi, “Data Compression Algorithms for Energy-
constrained Devices in Delay Tolerant Networks,” in Proceedings of the 4th
International Conference on Embedded Networked Sensor Systems, ser. SenSys
’06. New York, NY, USA: ACM, 2006, pp. 265–278. [Online]. Available:
http://doi.acm.org/10.1145/1182807.1182834. [Accessed 2020-03-25].

[49] L. Sanchez, L. Muñoz, J. A. Galache, P. Sotres, J. R. Santana, V. Gutierrez,
R. Ramdhany, A. Gluhak, S. Krco, E. Theodoridis et al., “SmartSantander:

50

http://doi.acm.org/10.1145/1387663.1387670
http://doi.acm.org/10.1145/1182807.1182834

IoT experimentation over a smart city testbed,” Computer Networks, vol. 61,
pp. 217–238, 2014.

[50] A. Scaglione and S. Servetto, “On the Interdependence of Routing
and Data Compression in Multi-hop Sensor Networks,” Wirel. Netw.,
vol. 11, no. 1-2, pp. 149–160, Jan. 2005. [Online]. Available: http:
//dx.doi.org/10.1007/s11276-004-4752-y. [Accessed 2020-03-25].

[51] T. Schmid, H. Dubois-Ferrière, and M. Vetterli, “SensorScope: Experiences
with a Wireless Building Monitoring Sensor Network,” Workshop on Real-
World Wireless Sensor Networks (REALWSN’05), 2005. [Online]. Available:
http://infoscience.epfl.ch/record/51001. [Accessed 2020-03-25].

[52] R. Schweller, A. Gupta, E. Parsons, and Y. Chen, “Reversible sketches for
efficient and accurate change detection over network data streams,” in Proc. of
ACM IMC, 2004.

[53] Semtech, “Smart Electricity Metering using LoRa,” https://www.semtech.com/
lora/lora-applications/smart-electricity-metering, 2020, [Accessed 2020-05-07].

[54] F. K. Shaikh and S. Zeadally, “Energy harvesting in wireless sensor networks:
A comprehensive review,” Renewable and Sustainable Energy Reviews, vol. 55,
pp. 1041–1054, 2016.

[55] L. Sigrist, A. Gomez, and L. Thiele, “Dataset: Tracing Indoor Solar Harvesting,”
in Proceedings of the 2nd Workshop on Data Acquisition To Analysis. ACM,
2019, pp. 47–50.

[56] T. Srisooksai, K. Keamarungsi, P. Lamsrichan, and K. Araki, “Practical
Data Compression in Wireless Sensor Networks: A Survey,” J. Netw.
Comput. Appl., vol. 35, no. 1, pp. 37–59, Jan. 2012. [Online]. Available:
http://dx.doi.org/10.1016/j.jnca.2011.03.001. [Accessed 2020-03-25].

[57] A. Stein and C. Ettema, “An overview of spatial sampling procedures and ex-
perimental design of spatial studies for ecosystem comparisons,” Agriculture,
Ecosystems & Environment, vol. 94, no. 1, pp. 31–47, 2003.

[58] J. M. Talavera, L. E. Tobón, J. A. Gómez, M. A. Culman, J. M. Aranda, D. T.
Parra, L. A. Quiroz, A. Hoyos, and L. E. Garreta, “Review of IoT applica-
tions in agro-industrial and environmental fields,” Computers and Electronics
in Agriculture, vol. 142, pp. 283–297, 2017.

51

http://dx.doi.org/10.1007/s11276-004-4752-y
http://dx.doi.org/10.1007/s11276-004-4752-y
http://infoscience.epfl.ch/record/51001
https://www.semtech.com/lora/lora-applications/smart-electricity-metering
https://www.semtech.com/lora/lora-applications/smart-electricity-metering
http://dx.doi.org/10.1016/j.jnca.2011.03.001

[59] C. Tang, C. Raghavendra, and V. Prasanna, “Power Aware Coding for Spatio-
Temporally Correlated Wireless Sensor Data,” 2004 IEEE International Con-
ference on Mobile Ad-hoc and Sensor Systems (IEEE Cat. No.04EX975).

[60] J. A. Tropp and A. C. Gilbert, “Signal Recovery From Random
Measurements Via Orthogonal Matching Pursuit,” IEEE Trans. Inf.
Theor., vol. 53, no. 12, pp. 4655–4666, Dec. 2007. [Online]. Available:
https://doi.org/10.1109/TIT.2007.909108. [Accessed 2020-03-25].

[61] R. O. V. Braverman, “Generalizing the layering method of indyk and woodruff:
Recursive sketches for frequency-based vectors on streams,” in Approximation,
Randomization, and Combinatorial Optimization. Algorithms and Techniques.
Springer, 2013, pp. 58–70.

[62] R. O. V. Braverman and A. Roytman, “Zero-one laws for sliding windows and
universal sketches,” in Proc. of APPROX/RANDOM, 2015.

[63] T. Yang, J. Jiang, P. Liu, Q. Huang, J. Gong, Y. Zhou, R. Miao, X. Li, and
S. Uhlig, “Elastic sketch: Adaptive and fast network-wide measurements,” in
Proc. of ACM SIGCOMM, 2018.

[64] J. Yick, B. Mukherjee, and D. Ghosal, “Wireless sensor network survey,” Com-
puter networks, vol. 52, no. 12, pp. 2292–2330, 2008.

[65] C. Yu, L. Yu, Y. Wu, Y. He, and Q. Lu, “Uplink scheduling and link adaptation
for narrowband Internet of Things systems,” IEEE Access, vol. 5, pp. 1724–1734,
2017.

[66] M. Yu, L. Jose, and R. Miao, “Software defined traffic measurement with opens-
ketch,” in Proc. of USENIX NSDI, 2013.

52

https://doi.org/10.1109/TIT.2007.909108

	Acknowledgements
	Abstract
	List of Tables
	List of Figures
	1 Introduction
	2 Background
	2.1 Motivating Scenario
	2.2 Strawman Solutions and Limitations
	2.3 Related Work
	2.3.1 Low-Power IoT
	2.3.2 Aggregation in Sensor Networks
	2.3.3 Sketching for Data Analytics

	2.4 Background on Universal Sketching

	3 Joltik System Overview
	3.1 Joltik Workflow
	3.2 System Challenges

	4 Detailed Design
	4.1 Reducing Memory Footprint
	4.1.1 Problem
	4.1.2 Strawman Solutions
	4.1.3 Our Approach: ``Inverted Pyramid'' Structure
	4.1.4 Impact on Accuracy

	4.2 Reducing Communication Footprint
	4.2.1 Why Reducing Communication Footprint
	4.2.2 Lossless Encoding of Sketch Structure
	4.2.3 Efficiently Transmitting Heavy-hitter Heap Data
	4.2.4 Impact on Accuracy

	4.3 Reducing Computation Overhead
	4.3.1 Problem
	4.3.2 Our Approach
	4.3.3 Computational Benefits
	4.3.4 Impact on Accuracy

	4.4 End-to-end Deployment
	4.4.1 Configure Sketch-related Parameter
	4.4.2 Lifetime Estimation
	4.4.3 Error Bound
	4.4.4 Energy and Accuracy Trade-off

	5 Implementation
	5.1 Joltik Sensor Node
	5.2 Joltik Base Station

	6 Evaluation
	6.1 Evaluation Setup
	6.1.1 Real-world Testbed
	6.1.2 Datasets
	6.1.3 Baselines

	6.2 End-to-end System Performance
	6.2.1 Energy-Accuracy Trade-off
	6.2.2 Generality

	6.3 Evaluating Joltik's Optimizations
	6.3.1 Memory Footprint
	6.3.2 Communication Overhead
	6.3.3 Computation Overhead

	7 Conclusions and Future Work
	Bibliography

