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Abstract

In contrast to the classic assumption of i.i.d.shocks, most eco-

nomic activities in reality are connected and their influences prop-

agate to others through economic networks in an uneven way.

This dissertation studies how the connections among economic

entities affect each individual firm, industry and city in the pro-

duction network, and how the difference in production networks

affects the performance of the system as a whole.

The first chapter, "A tale of many cities: industrial net-
works and urban productivity," examines how changes in urban

industrial network structures explain the growth rates of labor

productivity in cities. I formulate a multi-sector general equilib-

rium model with input-output (I-O) networks of firms within a

city and trade across cities. A key input to this framework is an

entropy-style city network entropy index. It serves as a concise

summary of urban industrial structures and describes the con-

centration level of inputs for an average firm in a given city. The

major theoretical result is that the improvement of urban indus-

trial structures, indicated by an increase in city network entropy,

leads to an increase in the urban labor productivity growth rate.

This is because changes in city network entropy are results of

both city-specific technological shocks and the evolution of the

nationwide input-output structure. When these two forces align

in a way that increases city network entropy, production activi-

ties in a city become better organized, and its labor productivity

grows faster. In MSA-level data from BEA, I verify the theory by

showing that changes in network entropy are positively correlated

with a city’s productivity growth. In two sets of counterfactuals,

I demonstrate how the interaction between technology changes

and urban industrial networks determine urban labor productiv-

ity. First, I find that the presence of urban industrial networks

explains 54.7% of the variance in changes in urban labor pro-

ductivity caused by local sectoral shocks. Second, I demonstrate

that the variance in city network entropy can explain 45.3% of
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the variance in growth rates of urban labor productivity caused

by shifts in the national I-O structure.

The second chapter, "Industrial Productivity and Urban Hu-
man Capital Spillovers," demonstrates that human capital spillovers

in urban industrial networks are important factors to explain the

productivity variance in industries across cities. I propose a novel

human capital network index to measure the level of spillovers

from skilled workforce to the urban environment of an indus-

try. For a target industry, the index achieves high values not

only when the city has a large quantity of educated workers, but

also when local human capital is concentrated on industries that

are economically close to the target industry. The investigation

of human capital spillovers’ impact on industries also requires

the knowledge of city-specific industrial productivity. Therefore I

build a general equilibrium model with multiple industries within

cities and competitive trade among firms across cities. Then I cal-

ibrate the model with the U.S. data to acquire city-specific indus-

trial productivity. With the calibrated industrial productivity and

human capital network index data, empirical analysis are done

to verify the existence and extent of human capital spillovers in

cities.

The empirical results show that there are three factors that de-

cide the influence of urban human capital spillover on the produc-

tivity of an industry: 1) the general quantity of educated workforce

in the city, 2) the concentration of human capital in an industry’s

input-output network, 3) the ability of an industry to absorb the

spillover. While the majority of sectors benefit from a more edu-

cated urban environment, certain industries experience negative

human capital spillover from the rest of the city.

The third chapter, "Credit Risks in Production Network," ex-

plores the empirical evidence that traces credit risk propagation

in a inter-sectoral input-output (IO) network. The major find-

ing is that after ranking the supplier-industries for a specific tar-

get industry based on the weight of input shares from IO tables,
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the average probability for firms in an industry to default, get

delisted and go bankrupt has higher and more significant cor-

relations with more important supplier-industries than with less

important supplier industries. This relationship is robust to con-

trols and both linear and nonlinear specifications of the model.

Results suggest that credit conditions are related to production

network links and may be consistent with a theory in which there

is direct propagation possibly via supplier trade credit or other

financial links.
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Chapter 1

A Tale of Many Cities: Industrial
Networks and Urban Productivity

Introduction

Why do cities have different rates of labor productivity growth? Back in

2001, Springdale, AR and Flint, MI were both manufacturing towns with the

employment sizes of approximately 200,000. What made GDP per worker

grow by 71% in Springdale, AR between 2001 and 2016 but only by 25% in

Flint, MI? Answers to these questions are essential to understand the wide

economic inequality across regions in the U.S. However, the majority of ur-

ban development theories that focus on urban agglomeration and city sizes

have trouble explaining why cities with similar sizes, such as Springdale

and Flint, have divergent economic paths.

Therefore this paper seeks a new answer to this question, and explores

the relationship between the labor productivity of cities and urban indus-

trial network structures. A city is more than the sum of its parts. The way

a city’s industrial activities are organized and inter-connected matters for

its performance, so I propose a concise and tractable framework to describe

city industrial network structures and to study their connections to urban

labor productivity.

To model cities with inter-connected industries in an open economy,

I build a multi-sector, multi-city general equilibrium model that features

Leontief input-output (I-O) network production in every firm, as in Ace-
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moglu et al. (2012a), as well as open trade and Bertrand price competition

among firms across different cities, as in Eaton and Kortum (2002). This

framework generates a Shannon’s entropy style city network entropy index

as an observable summary of the urban industrial structure. City network

entropy describes the concentration level of input linkages for an average

firm in a city. Firms with a few very important inputs have higher values

of entropy than firms that rely equally on a large number of inputs. A city

has higher aggregate city network entropy if a larger share of its firms is

in sectors with high industry-level input linkage concentration. Figure 1.1

illustrates the difference between the high and the low level of city network

entropy measures.

The main theoretical result of this model is that the improvement of ur-

ban industrial structures, indicated by an increase in city network entropy,

leads to an increase in urban labor productivity growth rate. The intuition

behind this lies in the fact that firms grow faster if they can improve tech-

nology to utilize a larger share of more productive inputs. In any production

process, it is often the case that some inputs are relatively more productive

than others. Because we cannot directly measure the productivity of each

input, observing firms in an industry putting more weight on a particular

input, namely increasing industry-level entropy, suggests that they have

been able to shift the production process toward a more productive input.

If a city has a larger share of this type of more productive firms, namely a

higher city network entropy, its economic activities are better structured,

the city thus has more potential for labor productivity growth.

In addition, the other crucial theoretical insight is that when economies

trade, the foundational theorem of Hulten (1978) breaks down. The con-

tribution of an industry’s TFP to the aggregate city productivity is not only

determined by its share in city level GDP, but also by its position in the

urban industrial network, which is described by the city network entropy

measure.

With this model, I then identify the two major forces that drive the

changes in urban industrial network structures: local technology shocks

in TFP and innovations in the national I-O network. On the one hand,

local technology breakthroughs in individual sectors increase the competi-
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Figure 1.1: Examples of Networks with Different Levels of Entropy
Node sizes in these graphs represent the output shares of sectors. Edge thickness represents the weights on
inputs. Graph 1.1a shows the situation of lowest city network entropy with uniform edges among sectors with
equal shares. Graph 1.1b shows the situation that all industries have equal output shares and only high weights
on one input edge. This generates a high city network entropy value. Graph 1.1c shows a city that has high
output shares on 3 industries with high industry-level entropy. Therefore this graph has a city entropy value
between that of Graph 1.1a and Graph 1.1c.

(a) Low Entropy (b) High Entropy (c) Intermediate Entropy

tiveness of local industries in national trade. As a result, productive firms

have bigger export markets than their counterparts in other cities, and in-

creasingly larger local output shares. However, not every local technology

breakthrough improves the local economy equally. If the nationwide I-O

structure shifts in a way that makes locally productive industries less im-

portant nationally, a local productivity increase will have less impact on

the local economy. For example, if a town becomes very efficient at mak-

ing calculators, while the rest of the businesses in the country all replace

calculators with computers in their production process, the local growth

of the calculator industry will only have a limited positive influence on the

city’s aggregate productivity. This paper shows that only when local tech-

nology changes and national I-O structural innovations are aligned in a

way that improves urban industrial structures will the labor productivity of

cities grow faster. This improvement of urban industrial structures can be

captured by an increase in the city network entropy measure.

To test the theoretical results empirically, I use data on 372 American

Metropolitan Statistical Areas (MSAs) to show that, in the period of 2001

to 2016, increases in city network entropy are indeed strong predictors

of higher local productivity growth rates. The positive correlation between

them is statistically significant and robust to various controls and different

time horizon specifications. Nevertheless, the lack of valid instrument pro-
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hibits the paper from providing vigorous causal inference for this statistical

correlation.

In counterfactuals, first the model is calibrated with the same data as the

empirical analysis. Then I demonstrate that the impact of local technolog-

ical shocks and national I-O shocks on city productivity varies with urban

industrial network structures. The first set of counterfactuals show that

due to the existence of urban production networks, not every local indus-

try’s technological improvement contributes the same to the productivity

growth of cities. Local technological improvements in industries with high

entropy values boost the city productivity proportionally more than local

technological improvements in industries with low entropy values. In par-

ticular, I find that 54.7% of the variance in labor productivity’s elasticity to

local sectoral shocks can be explained by the presence of urban industrial

networks for Flint and Springdale. The second set of counterfactuals illus-

trate that with different industrial network structures, shifts in the national

I-O structure can have opposite impacts on the labor productivity of cities.

Assume the importance of an industry rises in the national I-O structure.

If a city has a large number of firms highly dependent on this industry’s

inputs, its aggregate productivity gets a boost whereas in a case that a city

has a large number of firms that use only a small amount of inputs from this

industry, such change dampens the urban aggregate productivity. In sim-

ulations, the variance in city network entropy measures can explain 45.28%

of the variance in the growth rates of urban labor productivity caused by

shifts in the national I-O structure.

The contribution of this paper is twofold. On the theoretical side, it is

the first to show the interaction among production networks in an open

economy. It demonstrates how shapes of industrial networks can summa-

rize the effects of technological changes on the productivity of cities. That

is, when regional productivity innovations interact with the national I-O

network in a way that increases network entropy, they improve a city’s

economic structures and its overall productivity. This new observation pro-

vides the potential for further work in endogenous city industrial network

formation. Also, it is the first to show how Hulten’s theorem breaks down

in an open economy with competitive trade. On the quantitative side, this
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paper puts forward a tractable and computationally straightforward method

to account for the impact of national and regional technological changes on

urban productivity growth through industrial networks.

The remainder of the paper is organized as follows. After a brief dis-

cussion of related literature, Section 1.1 presents a multi-city multi-sector

model of city production with trade and derives the city network entropy

measure. Section 1.2 further discusses the interpretation of city network

entropy and its relationship with technological changes. Section 1.3 takes

the model to data and verifies the positive correlation between city network

entropy and urban labor productivity growth empirically. In Section 1.4,

I demonstrate how to calibrate the model and the simulations predict the

impact of different types of technological changes on urban productivity

through production network. Section 1.5 concludes.

Related literature

A large number of papers in the urban literature use agglomeration effects

to show that city size determines productivity (Duranton and Puga, 2004).

These theories are excellent at justifying the status quo of the continued

exceptional performance of behemoth cities, but only provide limited ex-

planations to why some average cities develop into big metropolises while

others gradually decline and disappear. Also, traditional urban develop-

ment models usually only use abstract aggregate city specific parameters

to describe the heterogeneity of cities (Desmet and Rossi-Hansberg, 2013;

Redding and Sturm, 2008; Au and Henderson, 2006). These aggregate pa-

rameters are relatively hard to track and need complex algorithms to solve

for. In addition, changes in these city-specific parameters are often modeled

as ’aggregate shocks’ in residuals, which are hard to interpret economically.

My paper develops a novel network measure to explain the heterogeneity in

cities in terms of urban industrial structures. It is empirically easy to track.

More importantly, I show that explaining the uniqueness of cities in terms

of differences in urban industrial structures is economically meaningful–

it improves the understanding of how technological changes affect regional

economies differently.

The industrial network framework used in this paper is an extension of
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the multi-sector model with I-O linkages from Acemoglu et al. (2012a). Their

paper puts multi-sector production with inter-sectoral intermediate inputs

into a competitive general equilibrium to demonstrate how sectoral idiosyn-

cratic shocks can lead to aggregate fluctuations through input-output link-

ages. While their paper discusses the behavior of a single closed network,

my work studies multiple networks connected through inter-city trade. Also,

they focus on the origins of aggregation fluctuation, whereas this paper

mainly investigates the aggregate productivity changes caused by changes

in the network.

The city level network entropy measure used in this paper is closely re-

lated to the network measures that Herskovic (2018) developed for financial

market analysis. He shows that portfolio risks are correlated with portfolio

sensitivity to input-output network sparsity and network concentration of

the aggregate economy. My work is more focused on interactions among

multiple city networks, and how various types of network changes can in-

fluence the economic system differently.

The general equilibrium framework used in this paper is also closely

related to the international trade literature. Eaton and Kortum (2002) ex-

plains how comparative advantage affects the performance of cities through

competitive markets. Although in their paper each city has a continuum of

firms and each firm competes in its own nation-wide market, their model

can only generate differences in city performance from abstract city-level

productivity parameters, due to the lack of intra-city network structures.

By combining their framework with city-level input-output network struc-

tures, this paper is capable of explaining differences in city growth with

more observable city characteristics and more concrete reasoning. Arko-

lakis et al. (2015) proposed a systematic method of analyzing trade models

and their work provided important tools for this paper to combine the model

of Eaton and Kortum (2002) with network analysis.

In addition, Caliendo and Parro (2015) and Caliendo et al. (2017) used

a similar framework, combining Eaton and Kortum (2002) and Acemoglu

et al. (2012a), to investigate welfare effects of trade and estimate regional

and sectoral productivity changes. While they focus on comparing welfare

changes of the map as a whole through changes of different types of fun-
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damentals, my work focuses on the change in the production network itself

and its impact on the productivity growth of individual cities. Also, the

model at the firm level in this paper is different from those previously used

in a way that is essential for the derivation of the network entropy measure.

1.1 Model

This section introduces a general equilibrium model that features a map of

numerous cities and has production networks of firms in cities, and trade

networks among firms across different cities. Each city has a discrete set

of sectors. Similarly to the set up in Eaton and Kortum (2002), each sector

has a continuum of firms and firms in different cities trade competitively

on national markets. In order to show that firms are inter-connected with

each other through an input-output network, the model also has the novel

feature that each firm takes other industries’ inputs into its own production

process. When describing any input-output and trade related variables, this

paper always puts characteristics of suppliers, i.e., the origins, as super-

scripts and characteristics of buyers, i.e., the destinations, as subscripts to

distinguish these two.

1.1.1 Firms’ Problem

Consider a discrete set of cities C = {1, ... C} that each one of them has a set

of industries N = {1, ... n}. In each industry or sector, there is a continuum

Ω of firms that each produces one variety of goods that can be used either

for final consumption or as intermediate inputs to the production of other

industries on national markets. Here Ω is normalized to 1 for every industry.

Note that it is possible not every variety is actually produced in a specific

city. An industry in a city varies exogenously in its firms’ productivity for

each good ω ∈ Ω. The output of a firm producing variety ω in industry i of

city c, i.e. qi,c(ω), is assumed to have the following Cobb-Douglas form:

qi,c(ω) = Ai,c(ω) (li,c(ω))r (Ii,c(ω))1−r , (1.1)
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where log Ii,c(ω) =
∑
j∈ N

dji

∫
Ω

log qji,c(ω
′)dω′. (1.2)

li,c(ω) is the quantity of labor input and r is the share of labor input. To

simplify the presentation, I set r the same for every firm in the baseline

model presented in this section. Ii,c(ω) is the collection of intermediate in-

puts that the producer of ω in industry i of city c needs from a national

market. Specifically, qji,c(ω
′) represents the amount of variety ω′ in industry

j that the producer of ω in {i, c} wants to buy.

In Equation (1.2), dji indicates the share of expense on good j in the total

intermediate input expenditure of any firm in industry i. Therefore dji ∈ [0, 1].

It shows the relative importance of different intermediate inputs in industry

i’s production process. Let D represent the matrix where Dji = dji , then every

column of D sums to 1. Note that D is the nationwide I-O matrix that doesn’t

vary from city to city. This assumption is reasonable considering the fact

that standardized modern industrial production varies little from location

to location in the basic formula within a country, i.e. cars produced both in

Detroit and San Antonio need the similar ratio of rubber for tires and steel

for car bodies.
Ai,c(ω) in Equation (1.1) is the productivity of variety ω. Assume it is

a random variable drawn from the following city-industry specific Frechet
distribution:

Pr(Ai,c(ω) ≤ A) = exp
{
−Ti,cA−θ

}
, (1.3)

where θ > 1 governs the distribution of productivity across goods within

an industry of a city. Ti,c > 0 is a measure of the aggregate productivity

of industry i in city c. A larger Ti,c indicates a higher probability of larger

values of Ai,c.

To simplify the setup, here I assume all firms in the same city c pay wage

wc to every unit of labor they hire. Therefore the total amount of disposable

expenditure that people working in city c receive is Ec = wc
∑

i∈N

∫
Ω
li,c(ω)dω.

The price of variety ω of good j in city c is determined by the Bertrand

price competition on the national market, just as in Eaton and Kortum

(2002). Namely firms only purchase inputs from the producers anywhere

offering the lowest price. Therefore the price of variety ω of j that firms in
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{i, c} actually end up paying for is:

pji,c(ω) = min
c′∈C

pj,c
′

i,c (ω), (1.4)

where pj,c
′

i,c (ω) is the price any firm in {i, c} needs to pay to variety ω’s pro-

ducer in {j, c′}. In the case of pj,c
′

i,c (ω) > pji,c(ω), there is no trade between {i, c}
and {j, c′} on variety ω. pj,c

′

i,c (ω) is a product between the out-of-factory price

of good ω in {j, c′} and an iceberg trade cost τ c′c between the two locations,

i.e. pj,c
′

i,c (ω) = pj,c′(ω)τ c
′
c . Here τ c′c ∈ [1,+∞), τ cc = 1. I use T to represent the n×n

trade costs matrix where Tc′,c = τ c
′
c . Suppose the market of each industry

in each city is perfectly competitive, the out-of-factory price of a good at its

origin is simply its marginal cost. By solving the cost minimization problem

of firms, the out-of-factory price of a good can be written as :

pi,c(ω) =
wrc p̃

1−r
i,c

Ai,c(ω)(1− r)1−rrr
, (1.5)

where p̃i,c is the intermediate input price index for any firm in {i, c} with

the functional form of log p̃i,c =
∑

j∈N d
j
i

∫
Ω

log pji,c(ω)dω − dji log dji . The detailed

derivation process of marginal cost and the price index p̃i,c is in the ap-

pendix. Now we can rewrite the price of any variety of good j in city c as:

pji,c(ω) = min
c′∈C

wrc′ p̃
1−r
j,c′

Aj,c′(ω)(1− r)1−rrr
τ c
′

c . (1.6)

From the above expression, we can see that pji,c(ω) = pji′,c(ω) ∀i, i′ ∈ N. In

other words, the purchasing price of a good in a city is the same for ev-

ery local firm. Therefore, as an abuse of notation, I simplify this actual

purchase price of good j for any i in city c as pjc(ω).

With this set up, when facing a wage wc and a set of intermediate input

prices {pji,c(ω)}, a firm’s objective is to choose the quantity of labor input

li,c(ω) and a set of intermediate inputs {qji,c(ω)} for production and eventually

to maximize its profit.
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1.1.2 Households’ Problem

In this world, a representative household chooses the city that offers the

highest utility to live in. If the household lives in location c, it maximizes its

utility by choosing the amount of different goods across the entire span of

industry to consume, but at the same time it suffers from the disutility of

living in a congested city. The households’ utility maximization problem in

location c can be presented in the form:

max
ci,c,i∈N

η

(∑
i∈N

1

n

∫
Ω

log ci,c(ω)dω

)
− (1− η) logLc + log uc, (1.7)

s.t.
∑
i∈N

∫
Ω

ci,c(ω)pic(ω)dω = Ec. (1.8)

Here
1

n
is the preference weight of products from a sector, and it equals

the number of industries in N. To simplify the presentation, preference

weights for all industries are set as the same here. Choosing heterogeneous

preference weights will not alter the major conclusions in this paper. Lc is

city c’s population size and −(1 − η) logLc represents the disutility from the

crowdedness of the city. η ∈ [0, 1] measures the relative importance between

consumption and disutility. uc is the city-specific preference that cannot be

explained by the wage and consumption patterns of the household.

As mentioned in the previous subsection, Ec is the wage income of the

city residents. Households living in the city c provide all their labor Lc for

the local production, i.e. Lc =
∑

i∈N

∫
Ω
li,c(ω)dω =

∑
i∈N Li,c. Therefore, the

household income has this simple form of Ec = wcLc.

The CES preference yields a Cobb-Douglas style consumption price index

pi,c such that log pi,c =
∫

Ω
log pic(ω)dω for industry i in city c. Correspondingly, I

can write the consumption index of industry i in city c as Ci,c where logCi,c =∫
Ω

log ci,c(ω)dω.

1.1.3 General Equilibrium Conditions

Given a set of D, T, {uc} and {Ti,c}, the general equilibrium is a set of goods

prices {pi,c}, wages {wc} and population sizes {Li,c} that:
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• maximize firms’ profits in every city and every industry;

• maximize households’ welfare in every city;
• clear the labor market in each city:

Ec =
∑
i∈N

Ei,c = wc
∑
i∈N

Li,c = wcLc; (1.9)

• clear goods markets in each city and each industry, which means the

total revenue of an industry in a city is equal to the income earned

from trade:∫
Ω

qi,c(ω)pic(ω)dω =
∑
j∈N

∑
c′∈C

∫
Ω

(qi,cj,c′(ω) + ci,cc′ (ω))pic(ω)dω, (1.10)

where ci,cc′ represents the total amount of consumption goods in city c′

that comes from industry i in city c;

• balance trade in each city, which means the total expenditure is equal

to the income earned from trade, i.e.∑
i∈N

∫
Ω

qi,c(ω)pic(ω)dω =
∑
i∈N

∑
c′∈C

∑
j∈N

∫
Ω

(qj,c
′

i,c (ω) + cj,c(ω))pji,c(ω)dω; (1.11)

• and equalize welfare across cities, such that in equilibrium nobody
wants to move, i.e.

wηcL
η−1
c uc
Pc

=
wηc′L

η−1
c′ uc′

Pc′
, ∀c, c′ ∈ C, (1.12)

where Pc =
(
n
∏

i∈N pi,c
) 1

n is city c’s consumption price index.

1.1.4 Trade Shares and Output Shares

The following couple of lemmas provide expressions for trade shares and

output shares in equilibrium of this model and they are indispensable tools

for further analysis. These results extend the insights of Arkolakis et al.

(2015) and Burres (1994) about spacial equilibrium into an economy with

input-output production networks among firms.
Lemma 1. In equilibrium, the share of goods needed from industry j in c′ in
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the total consumption of city c is:

πj,c
′

c =
Tj,c′

(
wrc′ p̃

1−r
j,c′ τc′,c

)−θ
Φjc

,

where Φj
c =

∑
c′∈C Tj,c′

(
wrc′ p̃

1−r
j,c′ τc′,c

)−θ.
This expression of trade share πj,c

′
c shows that if firms in {j, c′} become

more productive, namely, when Tj,c′ is higher, the export shares of their

goods to every city in city c’s aggregate output increase as well. The proof of

Lemma 1 is in the appendix.

This expression of trade shares πj,c
′

c offers a way to rewrite the values

of local sales. Let yi,c represent the total output from {i, c} and yc be the

total output of city c. First order conditions of firms’ problem show that the

demand of {i, c} for good j is a constant share of the output of {i, c}, i.e.

dji (1−r)qi,cpic. First order conditions of households’ problem indicate that the

consumption demand of city c’s household for good j is
Ec
n

. Let xj,c′c denote

the sales that industry j in city c receive from city c′, then the decomposition

of xj,c′c into final consumption and industrial inputs can be written as:

xj,c
′

c =
∑
i∈N

(
cj,c
′

i,c + qj,c
′

i,c

)
pj,c

′

i,c

=

(
Ec
n

+
∑
i∈N

dji (1− r)yi,c

)
πj,c

′

c . (1.13)

Substituting the above expression back to the market clearing condition
(1.10), I can rewrite the output for an exporting {i, c} as:

yi,c =
∑
c′∈C

rEc′
n

+
∑
j∈N

dij(1− r)yj,c′

πj,c
′

c

yi,c =
∑
c′∈C

r∑j∈N yj,c′

n
+
∑
j∈N

dij(1− r)yj,c′

πj,c
′

c

li,cwc =
∑
c′∈C

Ti,c
Φic′

(
wrc p̃

1−r
i,c τ

c
c′
)−θr∑j∈N lj,c′wc′

n
+
∑
j∈N

dij(1− r)lj,c′wc′


li,cwc = Ti,c

(
wrc p̃

1−r
i,c

)−θ ∑
c′∈C

(τ cc′)
−θ

Φic′

r∑j∈N lj,c′wc′

n
+
∑
j∈N

dij(1− r)lj,c′wc′

 , (1.14)
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where Φj
c =

∑
c′∈C Tj,c′

(
wrc′ p̃

1−r
j,c′ τc′,c

)−θ. This set of equations from the balance

of trade forms the basis for the results in Lemma 2.

The following lemma shows that the share of different industries in a city

is a function of the nationwide input-output structure D, and the relative

competitiveness of its industries in the national market. Again, the formal

proof of Lemma 2 is in the appendix.

Lemma 2. Let νc = [ν1,c, ν2,c, ..., νn,c]
′ be the vector of industry output shares in

city c where νi,c =
yi,c∑
i∈N yi,c

. Then the industry output share vector of any city

can be written as:

νc = (I − (1− r)πcc ·D)−1 · ( r
n
πcc ·+Xc), (1.15)

where Xc is the vector of the export market’s relative size for each industry in
c, such that each coordinate is in the form:

Xi,c =

∑
c′∈C\c

(
r
∑
j∈N yj,c′

n
+
∑
j∈N d

i
j(1− r)yj,c′

)
πi,cc′

yi,c
.

I is an n × n identity matrix and πcc is the n × n diagonal matrix that the ith
element on the diagonal is πi,cc .

Lemma 2 indicates that output share νi,c is increasing in πi,cc and Xi,c.

As shown in Lemma 1, πi,c′c is increasing in Ti,c ∀c′ ∈ C. Therefore, νi,c is

increasing in Ti,c whereas νj,c is decreasing in Ti,c for any j ∈ N \ i.

When there is no trade across cities, namely πcc = I and Xi,c = 0. The ex-

pression of νc reduces to νc =
r

n
(I − (1− r) ·D)−1 ·I, the same as in Acemoglu

et al. (2012a) and Burres (1994). This makes the industry structure of each

city the same. However, when cities are open to trade, their output share

distributions are influenced by both the levels of local productivity {Ti,c},
as well as the national input-output network D. Therefore, one important

insight from this model is that competitive trade is one of the major reasons

for cities in a country to have heterogeneous industrial compositions.
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1.1.5 Industrial Network and Urban Productivity

Following the above results of output shares νc and trade shares {πi,c′c }, this

section derives the expression of city-level productivity, i.e. gross output

per worker, in the form of model fundamentals and studies its composition.

Theorem 1. Let gc be the gross output per worker of city c. Assume log Tc =
[log T1,c, log T2,c, ..., log Tn,c]

′, and log pc = [log p1,c, log p2,c, ..., log pn,c]
′. In equilib-

rium the expected log labor productivity of a city log gc can be written as:

log gc =
1

r
ν′c ·m(log Tc)︸ ︷︷ ︸

Industry Component

+
∑
i∈N

νi,c
∑
j∈N

dji log dji︸ ︷︷ ︸
city network entropy NETTc

+
1

r

[
(I − πcc

−1)′νc +
r

n
1 + πcc

−1Xc

]′
· log Pc︸ ︷︷ ︸

Price Component

+const.

(1.16)

where NE
c =

∑
i∈N νi,c

∑
j∈N d

j
i log dji is the city network entropy measure of c

and m is a nonlinear increasing function of log Tc.

m(log Tc) in the first component of city-level productivity is independent

from the input-output relationship in a city. The curviture of m depends

on the competitiveness of city c in inter-city trade. When there is no trade

across cities, m(log Tc) goes to linear, i.e. log Tc. The formal proof is in the

appendix.

Theorem 1 points out that the aggregate city-level labor productivity can

be decomposed into three factors: (1) a weighted sum of the productivity

of individual industries, (2) a urban industrial structure component in the

form of city network entropy NEc, and (3) the price effects determined by

the competition on the national market. In the absence of intra-city pro-

duction network, NEc vanishes from the equation of Theorem 1 while the

price component and the industry component stay. Therefore, NEc repre-

sents the synergy created by the production coordination among firms in a

city. While it is an endogenous component in the system, it captures move-

ments in {Ti,c} through {νi,c} as well as movements in D. Section 1.2 will

elaborate on the interpretation of NEc.
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1.1.6 The Breakdown of Hulten’s Theorem

One crucial implication of Theorem 1 is that the foundational theorem of

Hulten (1978) breaks down in an open economy setting.

Hulten’s theorem states that technological changes in one sector can

only affect the aggregate productivity growth to the extent that is propor-

tional to this sector’s output share. In other words, in a closed economy

where firms do not take inputs from other industries, an industry with an

increasing level of productivity can only boost its’ output to the extent that

its local buyers and consumers can absorb. Hulten’s theorem can be pre-

sented in the closed economy version of this model. According to Theorem

1’s decomposition, when dji goes to 0 for j 6= i and dii goes to 1, changes in

Ti,c only affect the output per work through the industry component and

its influence is restricted to its output share νi,c, which is invariant for a

given D. More detailed mathematical analysis of cities in autarky is in the

appendix.

However Hulten’s theorem fails to hold in the open economy setting of the

model. In an open economy, local industries are not confined by the local

urban economic size and structure anymore. On the contrary, increasingly

productive firms gain an increasing amount of customers across all cities

from trade. Thanks to the increasing size of the export market, these firms

produce disproportionately more than their original share of the output. As

a result, from the channel of inter-city comparative advantage, productivity

shocks of more productive industries in an open economy have a dispro-

portionately higher impact on the local economy.

In math, this simply indicates that changes in Ti,c also move the industry

output shares νc in the industry component of Theorem 1’s decomposition.

When output shares change in a city, workers switch sectors they work for.

If more workers end up in more productive sectors in the economy, the la-

bor productivity of the city grows faster whereas if more workers move to

less productive sectors, the city level labor productivity growth slows down.

This effect of industrial restructuring caused by Ti,c is incorporated in the

city network entropy part of Theorem 1. In a word, we cannot consider ag-

gregate productivity shocks as a simple linear summation of sectoral shocks

anymore. Urban industrial structures also determine the influence of sec-
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toral shocks on the aggregate economy.

1.2 Network Entropy

The second component in the decomposition of Theorem 1, i.e.

NEc =
∑
i∈N

νi,c ·
∑
j∈N

dji log dji︸ ︷︷ ︸
industry-level entropy NEi

, (1.17)

is defined as city network entropy. City network entropy describes the con-

centration of input linkages of an average firm in a city. It is the weighted

average of industry-level input entropy where the weights are local output

shares. The input-output relationships of an urban production network can

be represented as a graph where each industry is a node, output shares are

node sizes, and the input flow between any pair of industries is an arc con-

necting two nodes. Weights on arcs indicate the importance of different

inputs to a sector. Under this setup, city network entropy measures the

inequality in input weight distribution. In other words, the stronger input

linkages with a few sectors that firms have, the higher city network entropy

is. Figure 1.1 illustrates three examples of urban industrial structures with

different levels of city network entropy.

To further understand the connection between network entropy mea-

sures and the productivity of industries, I decompose the city network en-

tropy NEc into a weighted sum of industry-level network entropy measures

NEi =
∑

j∈N d
j
i log dji . Figure 1.2 illustrates the difference between high and

low industry-level entropy measures in an example with two inputs. Be-

cause industry j has a very high concentration of input demand from one of

the inputs, it has a high value of NEj, whereas industry i equally distributes

input needs on two types of inputs, so it has a low NEi. Note that due to

the logarithm function insde NEi, it is always non-positive and is bounded

by [− log n, 0]. Therefore, a high industry-level entropy means the absolute

value of NEi is closer to 0. If an industry only relies on itself for capital

inputs, then the value of industry-level network entropy goes to 0. This is

the opposite to the definition of Shannon’s entropy. The composition of NEc
indicates that a city has higher aggregate city network entropy if a larger
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share of its firms is in sectors with high industry-level entropy.

Figure 1.2: Understanding Industry-Level Entropy Measure
Industry j highly concentrates input usage on machinery, so firms in j have a higher industry-level entropy of
than firms in i.

Industry i

MachineryCleaning 
Service Machinery

Cleaning
Service

Industry j

𝑵𝑵𝑬𝑬𝒊𝒊 = −𝟎𝟎.𝟑𝟑𝟎𝟎 𝑵𝑵𝑬𝑬𝒋𝒋 = −𝟎𝟎.𝟏𝟏𝟏𝟏

One core claim of this paper is that a higher value of industry-level en-

tropy NEi indicates a more efficient and productive production process for

an industry. Mathematically, this is because under Cobb-Douglas technol-

ogy, higher concentration of input weights in the vector {d1
i , ...d

n
i } makes the

marginal production cost of firms in industry i lower. Equation (1.6) shows

that the marginal cost of production of a firm in {i, c} has this form:

MCi,c =
wrc p̃

1−r
i,c

Ai,c(ω)(1− r)1−rrr
=

wrc(
∏

j∈N p
dji
j,c)

1−r

Ai,c(ω)(1− r)1−rrr
· 1∏

j∈N d
j
i

dji︸ ︷︷ ︸
exp(NEi)

.

Without considering the price effect in the denominator wrc p̃
1−r
i,c , an increase

in NEi means a decline in marginal cost of every unit of the output so firms

can produce more with the same amount of expense. In the appendix, I

demonstrate in a two-industry example that the output per worker for firms

in {i, c} are also increasing in NEi.

The economic intuition behind this is that: firms that are better at adopt-

ing more productive types of inputs grow faster. Every industry has rela-

tively less productive input varieties with limited values of marginal prod-

uct, such as cleaning service or security service, as well as relatively more

productive input varieties with high values of the marginal product, such

as computers for Microsoft or the automated production lines for Ford or

GE. However, data limitations prevent us from measuring the productivity
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of each input directly. What can be observed is that firms in an industry

change their input structures. Over time, observing firms in an industry

putting more weights on a particular set of inputs indicates that firms in

this industry have been able to shift their production process towards a

set of more productive inputs. In other words, this industry becomes more

productive.

I must point out that the above economic intuition of the connection be-

tween the industry-level productivity and its input entropy is only valid if

different input categories have different levels of marginal product or con-

tributions to the production process, and all industries have some varieties

of inputs with low levels of marginal product in their production. In other

words, if dji has equal values for every j while the domain size N changes,

NEi will vary as well. In this case the above theory of "more productive in-

puts" is invalid. However, this paper only considers the situation of a fixed

domain size NEi. Also, in reality it is never the case that every dollar of

different input categories contribute the same to the production process.

Nearly all firms need some indispensable inputs such as utility services,

cleaning services or security services, to keep the business going. However,

these inputs are usually not the most productive elements of the business.

As a city, higher output weights on high entropy industries render a

larger value of NEc. Because a higher value of NEc indicates that a larger

part of the city produces relatively more efficiently, it is not hard to see why

Theorem 1 indicates a positive correlation between NEc and log output per

worker in a city.

1.2.1 Technological Changes in Urban Industrial Networks

After having a basic understanding of the city network entropy measure, a

natural question to ask is that what causes changes in city network entropy,

which is an endogenous object in the model. This section will demonstrate

how two exogenous forces, namely local technological shocks in {Ti,c}, and

innovations in the national input-output network D, can affect industrial

network structures of cities, thus shifting urban labor productivity.
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Local Technological Changes

First, let’s consider a local technological breakthrough in industry i in city c,

expressed as an increase in Ti,c. In this case, Lemmas 1 and 2 indicate that

the output share of industry i in city c, namely νi,c, goes up while shares

of other industries decrease. The change of network entropy can go either

way. If industry i is a comparatively more productive industry, then it has a

higher-than-average industry-level entropy NEi. Therefore, an increase in

the share of i increases the city network entropy measure NEc and boosts

the aggregate city productivity. However, if industry i is less productive

than the average, namely it has a lower-than-average industry-level entropy

NEi, an increase in i’s output share only drags down NEc and dampens the

magnitude of city-level productivity growth.

Figure 1.3: Effect of Local Technological Changes in NEc
The ith column of D represents the input shares into industry i. Local technological breakthrough in Ti,c even-
tually increases the output share of i νi,c and decreses the output shares νj,c for j 6== i.

Output Shares νc =[0.1, 0.9]
City Network NEc =-0.656

Output Shares νc =[0.9, 0.1]
City Network Entropy NEc =-0.361

Output Shares νc =[0.5, 0.5]
City Network Entropy NEc=-0.509

𝑫 =
𝟎. 𝟏 𝟎. 𝟓
𝟎. 𝟗 𝟎. 𝟓

In the example given by Figure 1.3, industry 1 has higher entropy than

industry 2, which indicates that industry 1 is more efficient in the produc-

tion process. Although increases in T1,c and T2,c both boost the value of the

industry component in Equation (1.16), their effects on NEc are different.

Increase in T2,c pulls up the output share of industry 2 and shifts more la-

bor in the city to a sector that is less efficient and lowers the entropy of the

city as a whole. Therefore, the entropy measure decreases from −0.509 to

−0.656. This indicates that the city gets structurally less efficient in produc-

tion. Similarly, an increase in T1,c boosts the entropy measure from −0.509
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to −0.361. As a result, a technological breakthrough in industry 1 makes the

city grow faster than a technological breakthrough in industry 2.

The above analysis implies that due to the existence of intra-city pro-
duction networks, not every local industry’s technological improvement con-
tributes the same to the city productivity growth. Local technological improve-
ments in industries with high NEi boost the city productivity more than local
technological improvements in industries with low NEi.

It is straightforward to understand that a changing Ti,c represents shifts

of relative competitiveness of city c in industry i products’ production and

changes in city c’s share in product i’s national market, but how can one

show the change of relative competitiveness of one industry to another in-

dustry in the economy?

Nationwide Input-Output Structure Changes

The second type of technological change considered here is the nationwide

rise in the importance of industry i. Because products from different indus-

tries are not entirely substitutable, if a nationwide technology breakthrough

in industry i is represented in the form of an increase in Ti,c for all cities

c ∈ C, it can only affect the market sizes of other industries through very

limited price competition within the sector i. Instead, I define a nationwide

technological breakthrough as the situation that businesses need indus-

try i’s products more than any other industry j’s products for reasons other

than price concerns. In math this means the ith row of D increases whereas

the jth row of D decreases. An example of such nationwide rising impor-

tance of an industry is that an increasing number of retail shops today start

to use the Internet for business while keeping their brick and mortar stores.

This change in input type is not only for the reason that an increasing online

presence can save business costs, but also for the sake that a substantial

amount of t customers shift to the Internet and businesses have to adapt to

such changes.

According to the output share formulation in Lemma 2, increase in the

ith row in D brings up the the output share of industry i in every city, i.e.

νi,c ∀ c ∈ C. This is a consequence of the rising total market size of industry i

in the whole country’s economy. Such nationwide technological changes in
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D affect city network entropy measures in a way different from local produc-

tivity adjustments. An increase in dij boosts the entropy levels of industries

that originally use a large proportion of i’s inputs and suppresses the en-

tropy levels of sectors that use little input from i. In other words, if dij is very

small,
∑

i∈N d
i
j log dij decreases as dij moves up, whereas for industry i with

very high dij originally,
∑

i∈N d
i
j log dij gets even higher if dij rises. The economic

intuition behind is that firms that know how to efficiently incorporate sector

i’s inputs into their production process benefit comparatively more from a

technology breakthrough of industry i. Therefore if a city happens to host

Figure 1.4: Effect of National I-O Structure Change in D

The ith row of D represents the input shares from industry i to every other industry. Nationwide technological
breakthrough in industry 3 means the 3rd row of D increases. Graphs on the top rows are the results of city c.
Graphs on the bottom rows are the results for city c′. The rising importance of industry 3 boosts the entropy for
city c, who more heavily rely industry 3’s inputs originally, but lowers the entropy of city c′, who doesn’t not need
much of industry 3’s inputs originally.

Output Shares νc=[0.1, 0.8, 0.1]
City Network Entropy NEc=-0.684

Output Shares νc’ =[0.8, 0.1, 0.1]
City Network Entropy NEc’ =-0.684

Output Shares νc =[0.1, 0.8, 0.1]
City Network Entropy NEc =-0.492

Output Shares νc’ =[0.8, 0.1, 0.1]
City Network Entropy NEc’ =-0.697

Rising Importance of 
Industry 3 𝑫 =

𝟎. 𝟎𝟓 𝟎. 𝟎𝟓 𝟎. 𝟐𝟖
𝟎. 𝟕𝟓 𝟎. 𝟎𝟓 𝟎. 𝟐𝟖
𝟎. 𝟐 𝟎. 𝟗 𝟎. 𝟒𝟒

𝑫 =
𝟎. 𝟏 𝟎. 𝟏 𝟎. 𝟑𝟑
𝟎. 𝟖 𝟎. 𝟏 𝟎. 𝟑𝟑
𝟎. 𝟏 𝟎. 𝟖 𝟎. 𝟑𝟒

a large share of firms that depend heavily on industry i, its productivity

will benefit from the industry-wide technological breakthrough of industry

i indirectly through the local production network. On the other hand, for

cities that are dominated by industries with very small input demands from

industry i, the growth of their aggregate productivity will suffer from their

’suboptimal’ network structures.

Figure 1.4 gives an example of two cities with different emphasis on their

economic structures. City c in the top row has a very big industry 2, and

80% of its output is from that sector. City c′ in the bottom row has an em-

phasis on industry 1 where 80% of its output comes from. When industry

3’s relative importance in the economy rises, the third row of D increases.
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As a result, industry 2 and 3’s industry-level entropy measures increase

whereas industry 1’s industry-level entropy declines. According to the anal-

ysis above, this implies that industry 1’s most important inputs, i.e. the

ones from industry 2, have declining marginal products relative to other

inputs, therefore the production efficiency of industry 1 declines. As a re-

sult, the productivity of the bottom row city c′ suffers from the nationwide

structural change with a decrease of network entropy from −0.684 to −0.697,

while the productivity of the top row city c benefits from it, with an increase

in city network entropy from −0.684 to −0.492.

The takeaway here is that a nationwide I-O structure change affects the
productivity of cities differently. Assume the importance of industry i in-
creases, i.e. values of the ith row in D increases. If a city has a large
number of firms highly dependent on i’s inputs, its aggregate productivity
gets a boost. If a city has a large number of firms that use a small amount of
i’s inputs, such change dampens its aggregate productivity.

1.3 Empirical Evidence

The previous sections demonstrate how in theory changes in the network

structure of cities are signaled by changes in city network entropy mea-

sures, affect growth of urban labor productivity. In this section, I use data

from 372 MSAs across the U.S. between 2001 and 2016 to verify this rela-

tionship empirically.

1.3.1 Data

To construct the city network entropy measures, I use the direct use tables

from the I-O accounts data1 provided by Bureau of Economic Analysis (BEA)

for the matrix D. Because the focus of this paper is on domestic private

sectors of the economy, industries related to government activities are taken

out. After removing other components not related to intermediate inputs,

such as employee compensation, tax and operating surplus, these I-O tables

are normalized such that each column sums to 1.
1The full name of the table is: Industry-by-Commodity Total Requirements, After Re-

definitions.
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Based on these I-O data, Figure 1.5 shows industry-level entropy mea-

sures calculated by Equation (1.17) from 2001 to 2016 for 13 industries that

cover the whole private sector in the U.S. These 13 industries are defined

by 2-digit North American Industry Classification System (NAICS) codes.

In theory, the entropy interpretation and the model conclusion are not af-

fected by how fine the industry definitions are or the number of industry

categories included in the industry space. However, the regional industrial

output data used later in this section has coarser industrial classifications

than I-O tables. In order to match the output data with I-O tables and to

minimize the appearance of 0 in output weight vectors νc in the counterfac-

tual section, only 13 industries are used in the analysis. The analysis in the

Figure 1.5: National I-O Network Entropy by Industries, 2001-2016

2.0 1.8 1.6 1.4
Industry Level Entropy NEi

Utilities
Retail trade
Art/Accom/Food
Transportation
Edu/Health
Other services
Wholesale trade
Agri/Mining
Professional
Information
Construction
Manufacturing
F.I.R.E2001

2016

High NEi means NEi is closer to 0. The industries are ranked from high to low based on
the industry-level entropy measure in 2001. According to the graph, F.I.R.E and manu-
facturing always have the highest NEi values while utilities always have the lowest NEi.
F.I.R.E. refers to finance, insurance, real estate, rental services. Professional refers to pro-
fessional and business services, which include legal, accounting, scientific, technical and
computer services, as well as business management.

previous section points out that a high industry-level NEi is an indicator

of relatively high industry-wise productivity. Therefore according to Figure

1.5, in 2016 the top four sectors with the most efficient input structures

in the U.S. economy are manufacturing, F.I.R.E2, construction, and pro-

fessional and business services3. The network structure theory proposed
2F.I.R.E. refers to finance, insurance, real estate, rental and leasing
3Professional and business services include: legal services, computer systems design

and related services, miscellaneous professional, scientific, and technical services, man-
agement of companies and enterprises, administrative and support services, waste man-
agement and remediation services.
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in the previous sections implies that cities with increasing output shares

in these sectors are more likely to enjoy faster city aggregate productivity

growth. In general, the industry-level entropy measures are relatively sta-

ble in the period. Exceptions are professional and business services, which

has risen substantially. Also the entropy level of information and F.I.R.E

has dropped in the same period of time. This signals improving produc-

tivity in the professional and business services sector, but the opposite in

information and finance. In the appendix, Figure 24 shows the changes of

industry-level network entropy for 13 industries from 1997 to 2016. To-

gether with Figure 1.5, these two graphs imply that while some industries’

entropy ranking changed dramatically in this period, the general entropy

ranking for majority of industries are largely stable.

One potential problem is that the empirical relationship between indus-

try productivity levels and entropy values can become weaker if the industry

classification level used gets finer. Figures 25 and 26 in the appendix ex-

hibit the ranks and changes over time of industry-level entropy measures

under a finer definition of industries with 66 categories 4. Under this 66

category classification, Figure 1.6 shows the input entropy changes for 3

digits industries within only the manufacturing sector between 2001 and

2016. We can see that the range of entropy values within finer classifica-

tion of the manufacturing sector is even bigger than that of the 13 industry

classification. These graphs together show that network entropy differences

persist no matter how fine the industrial classification level is.

The other concern is that high industry entropy levels are just the con-

sequence of strong self-supply effect. If industries that mainly supply to

themselves are considered as structurally optimal, then it undermines the

importance of an urban industrial network. In fact, not all high entropy

industries are the biggest suppliers of themselves. The data from these 13

industry I-O tables shows that the top suppliers of construction and retail

trade are not themselves but these sectors still possess relatively high levels

of network entropy. Also, this self-supply phenomenon diminishes with a

finer definition of industries. For example, although the two-digit manufac-

4The 66 industry categories are based on the finer total requirement input-output tables
for 71 industries provided by BEA. After excluding the government sectors, 66 industries
are left to cover the full span of the private sector.
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Figure 1.6: Industry Network Entropy for Manufacturing, 2001-2016

2.50 2.25 2.00 1.75 1.50 1.25
Industry Level Entropy NEi

Furniture and related products
Printing and related support activities
Machinery
Electrical equipment, appliances, and components
Plastics and rubber products
Miscellaneous manufacturing
Apparel and leather and allied products
Motor vehicles, bodies and trailers, and parts
Primary metals
Nonmetallic mineral products
Fabricated metal products
Paper products
Food and beverage and tobacco products
Textile mills and textile product mills
Wood products
Other transportation equipment
Computer and electronic products
Chemical products
Petroleum and coal products

2001
2016

High NEi means NEi is closer to 0. The industries are ranked from high to low based
on their 2001 industry-level entropy. All industries are in the manufacturing sector and
belong to the total requirement tables for 71 indutries from BEA.

turing sector is the largest supplier of itself, quite a few three-digit man-

ufacturing industries, such as 324 petroleum and coal products and 325

chemical products, are not the largest suppliers of themselves. Meanwhile,

these finer sub-sectors of manufacturing still have relatively high entropy

levels. Therefore, the fact that certain sectors are the biggest suppliers of

themselves under a coarser definition of industries should not erode the

value of network entropy in explaining the urban economic structures.

Figure 1.7: Output Share Distribution of Flint vs. Springdale, 01-16

0% 5% 10% 15% 20% 25% 30% 35% 40%
Flint output share
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NEc,01-16: Flint=0.009, Springdale=0.095
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Now let’s come back to Flint, MI and Springdale, AR. Figure 1.7 shows

the output share distributions of Flint and Springdale in 2001 and 2016. It

is obvious that in 2001 both cities were typical manufacturing towns with

around 30% of their outputs in the manufacturing sector. In 2016, the share

of the manufacturing industry in both towns went down substantially. On

the one hand, Springdale managed to build a new pillar for its economy–

the financial sector. Also, professional and business services went through

a fast expansion in Springdale. Both these industries were among the top 5

industries with the highest industry-level entropy. Especially, professional

and business services had one of the largest rises of industry-level entropy

in the national I-O table. Therefore, the city network entropy of Springdale

has risen sharply. According to my theory, this indicates that Springdale

managed to reshape its industrial structure to include more highly pro-

ductive firms. As a result, the labor productivity in Springdale grew fast.

On the other hand, Flint did not manage to build a new focus for its econ-

omy. The sectors with the largest rises in output shares were education and

health care, as well as information. However, on the national I-O table, ed-

ucation and health care were not among the ones with high industry-level

entropy. Also, the information sector has experienced the largest decline

in industry-level entropy nationally. Therefore, the city network entropy of

Flint only rose about 10% of the magnitude in Springdale. This indicates

that Flint failed to restructure its economy to be in align with productive

sectors in the U.S. and it didn’t build a new core industry to compete on

the national market. Consequently it grew comparatively slower. As shown

here, all the above analysis can be summarized by the observable changes

in city network entropy. Therefore city network entropy is a very effective

tool to tell the story of changes in urban industrial structures.

1.3.2 Regression Analysis

In addition to the anecdotal evidence of Flint and Springdale, regression

analysis is also presented in this section to support this theory of indus-

trial structure and urban productivity in data. Due to the lack of valid

controls to build a proper causal inference strategy, all the regressions in

this section are only aimed at empirically verifying the correlation between
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city network entropy and urban productivity. I use employment and output

data for MSAs at 2-digit NAICS level provided by BEA to construct city labor

productivity measures.

The decomposition of log output per worker in Theorem 1 is used as the

basic formulation of this empirical exercise, i.e.

%∆Productivityc = ∆NEc + controls+ εc. (1.18)

From the point of view of a single city, firms take both the price levels Pc
and local productivity levels Tc as given. Therefore, the industry and price

components of Theorem 1 are exogenous and can move either in the same

or opposite direction as the network components NEc. As a result they

are either captured by the controls or embedded in the residual term εc.

In other words these two components are not likely to affect the statistical

significance of the elasticity of labor productivity to the city network entropy.

1.3.3 Baseline Results

In the basic formulation, percentage changes of GDP per worker are used

as the measure of city productivity changes according to the expression of

productivity in Theorem 1. Basic controls include city-level employment

size, year and location fixed effects. I run regressions in the form of Equa-

tion (1.18) for productivity and network entropy measures in 1-year, 3-year,

8-year and 15-year time span. Results are presented in the first 3 columns

of Table 1.1 and they show that the coefficients of growth in NEc are pos-

itive and statistically significant at 1% significance level across different

time spans. The adjusted R2 of 1-year and 3-year specifications are rel-

atively low whereas the 8-year regression has a higher R2 of 0.125. This

implies that this network model of cities has a lower degree of correlation

in the short term. It is consistent with the nature of industrial structural

changes. Namely, improvements in production technology, either locally

or nationally, have a greater impact over the long term. Also, the 15-year

model has low R2. This may be caused by the financial crisis and economic

recessions in this period of time. Both network entropy and output per
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worker data are likely to move nonlinearly, so linear trend estimates may

not fit well here. In addition, as the time span of growth increases, the

magnitude of the coefficient for ∆NEc increases as well.

1.3.4 Robustness Check

This significantly positive correlation between city network entropy changes

and urban productivity changes is robust to various model specifications

as well. The rest of the columns from Tables 1.1 and 1.2 contain results

from three types of robustness checks: additional controls, alternative time

spans of the growth period and alternative dependent variables.

The first type of additional controls is designed to check whether the

effect of industrial network structures on urban productivity is dominated

by shares of the largest industries in cities. Because the largest sectors

in cities are often the most productive ones as well, it is possible that the

aggregate city productivity is entirely driven by the size of the largest in-

dustry and how the rest of the economy is organized has little influence

on the aggregate urban labor productivity. To eliminate such possibility, I

add the share of the largest industry in a city as a control variable in the

regression and the results are reported in the 5th and 6th columns of Ta-

ble 1.1. Based on Figure 1.8, F.I.R.E and manufacturing (31G) were most

frequently shown leading industries of cities in data, so share changes of

these two industries and fixed effects of the leading industries’ categories

are also considered as controls. Results of these experiments are in Table

4 of the appendix. In general, adding any one of these controls for leading

industries does not take away the statistical significance of the change in

entropy measure in the regression. Therefore, the network effects are not

dominated by the shares of the largest industries in city economy.

The second type of additional controls is designed to examine whether

the share of the tradable sector in a city’s economy affects the relationship

between its network entropy and productivity. I calculate the tradable pro-

portion of a city’s economy by multiplying the shares of traded goods share

in each industry category calculated by Delgado et al. (2014) with local out-

put weights. Then changes of tradable sector shares of cities are added

as controls in regression showed in the 5th to 10th columns of Table 1.1.
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Figure 1.8: Largest Industries in 372 MSAs
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Because the coefficients of changes in network entropy are all statistically

significant and positive, effects of network entropy on productivity survive

the influence by the size of the tradable sectors.

Next, to verify that the network effect on productivity is robust through-

out the business cycle and the recent financial crisis, regression results

with additional controls in the time span of 2001-2008 and 2009-2016 are

presented separately in the 7th and 8th columns of Table 1.1. The data from

before the financial crisis and after the crisis are pooled together for the re-

gression in the 9th column. The results show that although the magnitude

of elasticity of productivity to network entropy varies before and after the

financial crisis, the coefficients of NEc g are always significant and positive.

In addition, I construct an alternative definition to the dependent vari-

able and repeat all the regressions in Table 1.1. The outcomes are presented

in Table 1.2. The alternative defintion of the dependent variable is a mea-

sure of ’productivity growth residual’. To calculate the residuals, first a

simulated Bartik instrument of city productivity is constructed from multi-

plying the vector of national average industry output levels with the vector

of city-specific output shares i.e.
∑

i∈S νi,cḡi where ḡi is a national average

output per worker of industry i. The ’productivity growth residual’ is ob-

tained by subtracting the changes of a city-specific Bartik instrument from

the city level log GDP per worker, i.e. %∆gc −%∆
∑

i∈S νi,cḡi.
The idea behind this alternative dependent variable is that in the ab-

sence of intermediate input networks, the log productivity decomposition in
Theorem 1 reduces to

log gc =
1

r
ν′c · log Tc +

1

r
ν′c · log Pc + const.
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In this situation, the sectoral output share vector νc is a function of lo-
cal preference weights and inter-city trade costs. Because in a competitive
market local shocks cannot affect the market price vector Pc, local techno-
logical changes only affect city output through changes in Tc and νc from
the industry component. If assume shocks to Ti,c are independent across
industries and cities, then changes in output per worker of city c can be
decomposed as

%∆output/worker = %∆νc + %∆Tc.

While we can observe changes in νc, %∆Tc is unobserved and can be con-

sider as the residual of %∆output/worker − %∆νc. If the network effect of

city production does not exist, the part of changes in output per worker

that cannot be explained by variations in νc should be independent from

the network entropy measure NEc.

Table 1.2 represents a positive and statistically significant correlation

between city productivity residual changes and network entropy changes as

well, although the magnitude of coefficients declines under the alternative

dependent variables.

1.4 Counterfactuals

In this section, I first calibrate the multi-sector network model to replicate

the current employment and wage distribution across American cities. Then

with the calibrated model, simulation are carried out to illustrate how the

network entropy measure captures the impact of different types of techno-

logical changes on city labor productivity.

1.4.1 Calibration

The following lemma provides a basis for the calibration.
Lemma 3. If the set of D and T, {uc} and productivity levels {Ti,c} satisfies
certain regularity conditions, there exists a unique solution of {wc}, {pi,c},{Li,c}
that solves:

Li,cwc = Ti,c
(
wrc p̃

1−r
i,c

)−θ ∑
c′∈C

(τ cc′)
−θ

Φic′

r∑j∈S lj,c′wc′

n
+
∑
j∈N

dij(1− r)Lj,c′wc′

 (1.19)
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pi,c = Φjc

−1

θ ·
exp

{
θ

γ

}
(1− r)1−rrr

(1.20)

wηcL
η−1
c uc
Pc

=
wηc′L

η−1
c′ uc′

Pc′
, ∀c, c′ ∈ C, (1.21)

where Φj
c =

∑
c′∈C Tj,c′

(
wrc′ p̃

1−r
j,c′ τ

c′
c

)−θ
and Pc =

(
n
∏

i∈N pi,c
) 1

n .

Equation (1.19) is derived from goods market clearing conditions in Equa-

tion (1.14). The derivation of Equation (1.20) is in the appendix. The equal-

ization of welfare across city gives the last set of Equation (1.21). The equi-

librium definition set of Equation (1.19) to (1.21) shows that there exists

solutions of technology parameters {Ti,c} and utility preference residuals

{ui,c} given information of employment {Li,c}, wage {wc}, trade cost T, I-O

network data D, proper values for productivity parameter θ and labor share

r. Although in the absence of trade flow data solutions for {Ti,c} and {ui,c},
all simulations in this section are calculated with percentage changes in

productivity, so the absolute values of {Ti,c} and {ui,c} will not affect the

results.

I use 2016 employment, wage data of MSAs and national input-output

data from BEA to calibrate the model. The iceberg cost matrix T is estimated

by the fast marching algorithm and structural estimation process described

by Allen and Arkolakis (2014), from U.S. highway, rail and navigable water

networks data (NDC, 1999; CTA, 2003; NHPN, 2005). Only cities that can

be identified in the trade cost estimation, are considered in the calibration.

Therefore the number of cities in the calibration is reduced to 303, slightly

lower than the number of cities in the empirical exercises5. The labor share

r is set to 0.388 for the baseline calibration to match the average labor share

across industries in the U.S. in 2016.

The lack of trade flow data among industries and cities prevents me from

estimating the comparative advantage parameter θ by using ratios of trade

flows, as in Eaton and Kortum (2002). Therefore, I take several estimated

values of θ from Eaton and Kortum (2002) and Caliendo and Parro (2015)

for the calibration exercise. Figure 1.9 shows the city-specific preference

5Because the iceberg trade cost matrix estimation does not include data from Alaska
and Hawaii, there is no MSA from these two states in the counterfactuals. However, 4
MSAs from these states are included in the empirical regressions in the previous section.
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calibrated with the aggregate elasticity of 4.55 from Caliendo and Parro

(2015) as θ. Different choices of θ do not affect the relative rankings of

preference estimates.

Figure 1.9: City Specific Preference uc in 2016 of 303 MSAs, with θ=4.55

1.4.2 Counterfactuals

With the calibrated model, I can test how cities with different network struc-

tures react to technological changes differently. The analysis in Section 1.2

shows that there are two types of technological changes that can affect city

labor productivity through urban industrial networks, namely local tech-

nological changes in {Ti,c} and national I-O relationship changes in D. I

will discuss the counterfactual results of these two types of technological

changes respectively in this section.

Local Technological Changes

To test the conclusion that not every local technology breakthrough im-

proves local economy equally, I increase Ti,c 10 times for a single industry

i in a single city, and record changes in GDP per worker of all cities. This

exercise is repeated for both Springdale and Flint, and every one of their

13 industries. Furthermore, to quantify the role of production networks

in this process, I turn the network off in every city on the map by raising

the labor share r to 1 and redo the experiments of increasing Ti,c. Another

way of turning off the production network is to reduce the I-O matrix D to
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an identity matrix. In this case production functions become decreasing-

return-to-scale and a firm’s marginal cost is a function of the output. This

dramatically increases the difficulty to solve for the market clearing con-

ditions in Equation (1.19). Therefore, only one way for shut downing the

production network is used here.

As in most geography models, wage and employment are underidentified

without proper normalization. Therefore, in the simulation, the total size

of employment is fixed at the 2016 level, and the wage of Midland, TX is

normalized to 16. Output per worker changes at city-level can be obtained

from the new wage and labor distribution. Figure 1.10 shows the results of

these experiments7.

Figure 1.10: Effect of Local Technological Changes on NEc
Each bar represents the percentage change in city level GDP/worker due to a 10-fold increase in Ti,c for the
corresponding industry on the y axis. Solid bars are GDP/worker growth rates with city production networks,
while hollow bars are GDP/worker growth rates without city production networks.
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GDP/Worker Growth Rate Predictions in Counterfactuals
 Industrial Network explains 54.7% of the wage elasticity to Tc shocks

The figures show that in the presence of city production networks, local

technological breakthroughs in high entropy industries, such as profes-

sional and business services, F.I.R.E. as well as manufacturing, augment

levels of city output per worker way more than their counterparts in models

without city production networks. Whereas increases in Ti,c for low entropy

6In the original data, the wage of Midland TX is the median of 303 cities. Therefore
calculating the relative distance of other cities’ wage to Midland TX is a good way to under-
stand the dispersion of wages in the country.

7Shocks of Flint’s transportation and utilities sectors have the minimum impact in the
results. This is caused by the 0 employment in these sectors in BEA’s original dataset.In
simulations, I add one worker to these two industries to guarantee the convergence of the
model. I took MSAs with more than 2 missing industries out of the sample in counterfac-
tuals.
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industries, such as utilities and retail trade, lead to smaller increases in

city labor productivity in models with production network than in models

without production network. Due to variations in the industry and price

components of the productivity decomposition equation in Theorem 1, these

cities have slightly different growth results with respect to local technologi-

cal shocks in other sectors. In general, the existence of city production net-

works increases the variance of city productivity caused by different types

of local technological shocks for 54.7% in these two cities.

Nationwide I-O Structure Changes

The next set of counterfactuals demonstrate the second type of technolog-

ical changes – the rising importance of a specific industry nationwide. To

depict such changes in the national I-O structure, I add 0.2 to every ele-

ment of the ith row of the I-O matrix D. Note that 0.2 is chosen arbitrarily.

Although the magnitude of changes in D is likely exaggerated, these coun-

terfactuals are aimed at showing the impact of nationwide I-O structure

shifts more clearly. Smaller changes have effects with the same signs on

urban labor productivity. The values of all the other rows decrease, but

the relative proportions of them are kept the same. As discussed in Section

1.2.1, if the rise of industry i increases the industry-level entropy of most

firms in a city, the aggregate productivity of the location will grow faster. On

the contrary, if the rise of industry i decreases the industry-level entropy of

most firms in a city, the city grows slower.

Figure 1.11: Changes of GDP/Worker Caused by the Increased Importance of the Utility Sector
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Figure 1.12: Changes of GDP/Worker by the Increased Importance of Professional and Business services

Figures 1.11 and 1.12 contrast the impact of two very different indus-

tries. If the utility sector rises, the majority of cities experience a decline in

their aggregate productivity (Figure 1.11), whereas in the case of a growing

professional and business services sector, the productivity of most cities

grows (Figure 15). These outcomes indicate, for most firms in the coun-

try, that the output from the utility sector currently counts for small input

shares and is not among the most productive ingredients in the production

process. Therefore, when the importance of the utility sector rises, network

entropy indices drop and most cities grow slower. On the contrary, most

firms either are in the professional and business services sector themselves

or rely on relatively large shares of inputs from the professional and busi-

ness services sector. Therefore, when the importance of the professional

and business service sector rises, the productivity of most cities benefit

from this change. Figures 13 to 23 in the appendix and Table 1.3 summa-

rizes the impact from other types of nationwide I-O network changes. These

exercises demonstrate my analysis that there are relatively more produc-

tive input varieties and less productive ones in most production processes

under this framework.
Although the impact of various nationwide I-O structure changes on

cities can be dramatically different, it turns out the city network entropy
measure can capture directions of urban productivity shifts reasonably well.
I construct R2 out of the following formulation from all 13 counterfactual
exercises:

%∆GDP/worker = α+ β∆NEc + City F ixedEffect+ ExperimentF ixedEffect.
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Table 1.3: The Impact of Rising Importance of Industries on Labor Produc-
tivity of U.S. Cities
Sector of Rising Importance Agri/Mining Utilities Construction Manufacturing Wholesale trade Retail trade

No. of cities growing 12 36 196 229 237 245
No. of cities declining 290 266 106 73 65 57

Sector of Rising Importance Transportation Information Edu/Health Art/Accom/Food Other services F.I.R.E Professional

No. of cities growing 242 221 218 259 212 191 257
No. of cities declining 60 81 84 43 90 111 45

The rising importance of industry i is indicated by adding 0.2 to each element of the ith
row of the I-O matrix D. Every simulation has 303 MSAs. The Baseline city always has
normalized growth rate of 0.

The result shows that the variance of city network entropy alone explains

45.28% of the variance in the growth rate of urban labor productivity. Also,

β is positive and statistically significant.

1.5 Conclusion

In this paper, I build a multi-sector multi-city model with inter-sector in-

termediate input networks and inter-city trade to show that a city network

entropy measure can describe changes in city industrial structures. Also,

changes in city industrial network structures can be caused by both local

productivity shocks and innovations in the national input-output struc-

ture. When these two types of forces move in a way that increases the city

network entropy measure, a city organizes its production better and conse-

quently improves its labor productivity. This feature exists in models either

with or without trade component. In the presence of trade, the interaction

between network structures and sectoral productivity breaks down Hulten’s

theorem.

With the national I-O matrices, city and industry-specific output and

employment data from BEA, I generate empirical evidence to support the

significant relationship between changes in city network entropy and urban

productivity growth implied by the model. In counterfactuals, I demon-

strate how local sectoral technology progress and nationwide I-O structure

changes can affect city productivity differently for cities with different net-

work structures. Specifically, the existence of city production networks ac-

counts for 54.7% of the variance of the labor productivity’s elasticity to local

technological shocks in the two sample cities. Also, the variance in city net-
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work entropy can explain 45.28% of the variance in the growth rate of urban

labor productivity caused by shifts in the national I-O structure.
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Appendices
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.1 Proofs

Proof of Lemma 1. Because pi,cj,c′ =
wrc p̃

1−r
i,c

Ai,c(1− r)1−rrr
τ cc′, I can derive the proba-

bility distribution of pi,cj,c′, i.e. the sales price of {i, c} to any {j, c′} :

Gi,c
j,c′(p) = Pr

{
pi,cj,c′(ω) ≤ p

}
= Pr

{
wrc p̃

1−r
i,c

Ai,c(ω)(1− r)1−rrr
τ cc′ ≤ p

}

= Pr

{
Ai,c(ω) ≥

wrc p̃
1−r
i,c

(1− r)1−rrrp
τ cc′

}

= 1− exp

−Ti,c
(

wrc p̃
1−r
i,c

(1− r)1−rrrp
τ cc′

)−θ . (22)

According to Equation (1.6), the probability distribution of good j’s pur-
chase price for any i in city c is:

Gji,c(p) = Pr

{
min
c′∈C

P j,c
′

i,c (ω) ≤ p
}

= 1−
∏
c′∈C

(
Pr
{
P j,c

′

i,c (ω) ≥ p
})

= 1−
∏
c′∈C

(
1−Gj,c

′

i,c (p)
)

= 1−
∏
c′∈C

exp

−Tj,c′
(

wrc′ p̃
1−r
j,c′

p(1− r)1−rrr
τc′,c

)−θ
= 1− exp

−pθ ∑
c′∈C

Tj,c′

(
wrc′ p̃

1−r
j,c′

(1− r)1−rrr
τc′,c

)−θ
= 1− exp

{
−pθΦ̃jc

}
,

where Φ̃j
c =

∑
c′∈C Tj,c′

(
wr

c′ p̃
1−r
j,c′

(1−r)1−rrr
τc′,c

)−θ
. Because the value of Gj

i,c(p) is the

same for every i in the same city, I simplify the notation to Gj
c(p).

With all these calculations now I can define πj,c
′

i,c , the probability that a
specific city c’ becomes the provider of good j for all industries in city c, as:

πj,c
′

i,c = Pr

{
pj,c

′

i,c (ω) ≤ min
k∈C\c′

pj,ki,c (ω)

}

40



=

∫ ∞
0

Pr

{
min
k∈C\c′

pj,ki,c ≥ p
}
dGj,c

′

i,c (p)

=

∫ ∞
0

∏
k∈C\c′

(1−Gj,ki,c (p))dGj,c
′

i,c (p)

=

∫ ∞
0

∏
k∈C\c′

exp

−Tj,k
(

wrkp̃
1−r
j,k

p(1− r)1−rrr
τk,c

)−θ dGj,c
′

i,c (p)

=

∫ ∞
0

∏
c′∈C

exp

−Tj,c′
(

wrc′ p̃
1−r
j,c′

p(1− r)1−rrr
τc′,c

)−θ ·
−Tj,c′θ( wrc′ p̃

1−r
j,c′

(1− r)1−rrr
τc′,c

)−θ pθ−1dp

= Tj,c′

(
wrc′ p̃

1−r
j,c′

(1− r)1−rrr
τc′,c

)−θ ∫ ∞
0

exp
{
−pθΦ̃jc

}
· θpθ−1dp

=

Tj,c′

(
wr
c′ p̃

1−r
j,c′

(1−r)1−rrr τc′,c

)−θ
Φ̃jc

(
−exp

{
−pθΦ̃jc

} ∣∣∞
0

)

=

Tj,c′

(
wr
c′ p̃

1−r
j,c′

(1−r)1−rrr τc′,c

)−θ
Φ̃jc

.

Again, because the value of πj,c
′

i,c does not depend on i, I can define the

probability of {j, c′} become the supplier of good j in city c as:

πj,c
′

c = πj,c
′

i,c =

Tj,c′

(
wr

c′ p̃
1−r
j,c′

(1−r)1−rrr
τc′,c

)−θ
Φ̃j
c

.

We can see that the probability for any {j, c′} becomes an exporter does not

depend on the specific price it charges.

By the law of large numbers, πj,c
′

i,c can be viewed as the fraction of good
j from city c’ sold to industry i in city c. Next I am going to prove that πj,c

′

i,c

is also the fraction of expenditure on intermediate inputs that industry i
in city spend on good j specifically from city c’. The idea is that any city
winning the bid for exporting product j to industry i in c has exactly the
same price distribution.

Pr

{
pj,c

′

i,c (ω) ≤ ρ
∣∣pj,c′i,c (ω) ≤ min

k∈C\c′
pj,ki,c (ω)

}
=

∫ ρ
0
Pr
{

mink∈C\c′ p
j,k
i,c (ω) ≥ p

}
dGj,c

′

i,c (p)

Pr
{
pj,c

′

i,c ≤ mink∈C\c′ p
j,k
i,c

}
=

1

πj,c
′

i,c

∫ ρ

0

∏
k∈C\c′

(1−Gj,ki,c (p))dGj,c
′

i,c (p)
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=
1

πj,c
′

i,c

Tj,c′

(
wr
c′ p̃

1−r
j,c′

(1−r)1−rrr τc′,c

)−θ
Φ̃jc

(
−exp

{
−pθΦ̃jc

} ∣∣ρ
0

)

=
1

πj,c
′

i,c

Tj,c′

(
wr
c′ p̃

1−r
j,c′

(1−r)1−rrr τc′,c

)−θ
Φ̃jc

(
1− exp

{
−ρθΦ̃jc

})
= 1− exp

{
−ρθΦ̃jc

}
= Gjc(ρ).

The expression of this price distribution is independent from the origin city

c′. The importer will need to pay statistically the same price to any exporter

that happens to offer the lowest price bid. Therefore the fraction of goods

j that industry i in c bought from c′, πj,c
′

i,c is also the fraction of expenditure

that city c spending on good j specifically from city c′.

Derivation of Equation (1.20). The industry level price in city c for indus-
try i is:

log pi,c =

∫
Ω

log pic(ω)dω

log pi,c =

∫
Ω

log pic(ω)dGic(p)

log pi,c =

∫ ∞
0

log p
d
(

1− exp
{
−pθΦ̃ic

})
dp

dp

log pi,c =

∫ ∞
0

log p
d
(

1− exp
{
− exp(θ log p+ log Φ̃ic)

})
d log p

d log p

log pi,c =

∫ ∞
−∞

t
d
(

1− exp
{
− exp(θt+ log Φ̃ic)

})
dt

dt.

1 − exp
{
− exp(θt+ log Φ̃i

c)
}

is the CDF of t with gumbel distribution, i.e. t ∼

Gumbel(− log Φ̃i
c,

θ
,

1

θ
), so the right hand side is simply the mean of t, − log Φ̃i

c,

θ
−

γ

θ
, where γ is the Euler’s constant. Then I can further write the price index

as:

log pi,c = − log Φ̃i
c

θ
− γ

θ

pi,c = Φi
c

−
1

θ exp

{
θ

γ

}
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pi,c =

∑
c′∈C

Ti,c′

(
wrc′ p̃

1−r
i,c′

(1− r)1−rrr
τc′,c

)−θ
−

1

θ
exp

{
θ

γ

}
.

Therefore, if pi,c is deterministic conditional on all the parameters and thus

p̃i,c is also deterministic.

Derivation of Equation (1.5). The lagrangian of firms’ cost minimization
problem is:

L = wcli.c(ω) +
∑
j∈N

∫
Ω

pjc(ω)qji,c(ω
′)dω′ + λ

[
log qi,c(ω)− log

(
Ai,cli.c(ω)rIi,c(ω)1−r)]

where log Ii,c(ω) =
∑
j∈ N

dji

∫
Ω

log qji,c(ω
′)dω′.

FOC w.r.t. qji,c(ω) gives:

pjc(ω)qji,c(ω) = dji · λ(1− r)

log qji,c(ω) = log dji + log (λ(1− r))− log pjc(ω) (23)∫
Ω

log qji,c(ω)dω = log dji + log (λ(1− r))−
∫

Ω

log pjc(ω)dω∑
j∈ N

dji

∫
Ω

log qji,c(ω)dω =
∑
j∈ N

dji log dji −
∑
j∈ N

dji

∫
Ω

log pjc(ω)dω + log (λ(1− r))

log Ii,c = log (λ(1− r))− log p̃i,c

Ii,c(ω) = λ(1− r)p̃−1
i,c . (24)

FOC w.r.t. li.c(ω) gives:

li.c(ω) = λrwc
−1.

The ratio of the above two equations gives:

Ii,c(ω)

li.c(ω)
=

(1− r)wc
rp̃i,c

Ii,c(ω) =
(1− r)wc
rp̃i,c

li.c(ω) (25)

li.c(ω) =
rp̃i,c

(1− r)wc
Ii,c(ω). (26)

Substitute Equation (25) and Equation (26) back to the production function
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qi,c = Ai,cli.c(ω)rI1−r
i,c , I get:

li.c(ω) =

(
(1− r)wc
rp̃i,c

)r−1
qi,c
Ai,c

Ii,c(ω) =

(
(1− r)wc
rp̃i,c

)r
qi,c
Ai,c

.

Now I can write out the total cost and marginal cost of production:

TCi,c = wcli.c(ω) +
∑
j∈N

∫
Ω

pjc(ω)qji,c(ω
′)dω′

= wc

(
(1− r)wc
rp̃i,c

)r−1
qi,c
Ai,c

+ p̃i,cIi,c(ω)

= wc

(
(1− r)wc
rp̃i,c

)r−1
qi,c
Ai,c

+ p̃i,c

(
(1− r)wc
rp̃i,c

)r
qi,c
Ai,c

=
qi,cw

r
c p̃

1−r
i,c

Ai,c(1− r)1−rrr
.

MCi,c =
∂TCi,c
∂qi,c

=
wrc p̃

1−r
i,c

Ai,c(1− r)1−rrr
.

Proof of Lemma 2. Let Y c = [y1,c, y2,c, ..., yn,c]
′ be the output vector of city c.

In equilibrium, the labor market clearing conditions implies that
∑

c∈C yi,c =
Ec
r

. Because yi,c =
∑

c′∈C x
i,c
c′ , Equation (1.13) shows the relationship among

yi,c as:

yi,c =
∑
c′∈C

xi,cc′

=
∑
c′∈C

∑
j∈N

(
dij(1− r)yjc′ +

rEc′

n

)
πi,cc′

τc,c′

=
∑
c′∈C

∑
j∈N

(
dij(1− r)yj,c′ +

r
∑
j∈N yj,c′

n

)
πi,cc′

τc,c′

If I separate the intra-city trade component from inter-city trade compo-
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nents, I can rewrite the above equation into:

yi,c = πi,cc

(∑
j∈N

dij(1− r)yj,c +
r
∑

j∈N yj,c

n

)
+
∑
c′∈C\c

∑
j∈N

(
dij(1− r)yj,c′ +

r
∑

j∈N yj,c′

n

)
πi,cc′

τc,c′

yi,c = πi,cc

(∑
j∈N

dij(1− r)yj,c +
r
∑

i∈N yj,c

n

)
+ Export

In vector form:

Yc = (1− r)πcc ·D · Yc +
r

n
Y ′c · 1 · πcc +Xc

νc = (1− r)πcc ·D · νc +
r

n
πcc +Xc

νc = (I − (1− r)πcc ·D)−1 · ( r
n
πcc ·+Xc)

Proof of Theorem 1. According, city-wide labor market clearing conditions,
Li,c = νi,cLc. Also, the F.O.C. of firms’ problem gives the expression for out-

put of city c as yi,c =
1

r
wcLi,c. Therefore, I can use wage to represent GPD

per worker in this model as: gc =
yi,c
Li,c

=
wc
r

. According to the local market’s

competitive pricing mechanism in Equation (1.5), I can rewrite wage in city

c as wc = (1− r)
1− r
r pi,c(ω)

1

r p̃

r − 1

r
i,c Ai,c(ω)

1

r . Now I can rewrite gc as a function
of good prices and productivity:

gc(ω) =
wc
r

gc(ω) = (1− r)
1− r
r pi,c(ω)

1

r p̃

r − 1

r
i,c Ai,c(ω)

1

r

log gc(ω) =
1− r
r

log(1− r) +
1

r
logAi,c(ω) +

r − 1

r
log p̃i,c +

1

r
log pi,c(ω). (27)

There is a chance for any firm to be not competitive enough such that it

does not produce at all. For these firms log output per worker is negative

infinity thus meaningless in the analysis. Therefore, the measure of indus-

trial productivity, i.e. expected log GDP per worker for industry i in city c, is

only calculated for firms that are producing. It is not hard to prove that any

firm that is competitive enough to export must be the local supplier of its
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own city as well. Therefore, the out-ot-factory prices of producing firms fol-

low the sales price distribution of its own city and industry. In other words,

pi,c(ω) has the same price distribution as importing prices pic(ω). Therefore

in expectation E (log pi,c(ω)) = log pi,c

Because Ai,c follows a Frechet distribution, logAi,c follows a Gumbel dis-

tribution, i.e.logAi,c ∼ Gumbel(
log Ti,c
θ

,
1

θ
) and E (logAi,c) =

log Ti,c
θ

+
γ

θ
, where

γ is the Euler’s constant. Here I call the CDF and PDF of logAi,c(ω) as

F (logAi,c(ω)) and f (logAi,c(ω)). Assume the market price for variety ω in

{i, c} is p, then ω only produces when it has productivity Ai,c(ω) higher than

certain threshold A∗i,c(p) From the derivation of Gi,c
j,c′ in Equation (22) I can

see that A∗i,c(p) =
wrc p̃

1−r
i,c

(1− r)1−rrrp
. Therefore the conditional expectation of log

TFP of a surviving firm can be expressed as EA
(
logAi,c| logAi,c > A∗i,c(p)

)
=∫∞

A∗i,c

xf(x)

1− F (A∗i,c)
dx. Also, the conditional expectation of log TFP on all the sur-

viving firms in {i, c} is Ep
(
EA
(
logAi,c| logAi,c > A∗i,c(p)

))
=
∫∞

0

∫∞
A∗i,c

xf(x)

1− F (A∗i,c)
dxdGi

c(p).

It is not hard to notice that for a fixed p, EA
(
logAi,c| logAi,c > A∗i,c(p)

)
=∫∞

A∗i,c

xf(x)

1− F (A∗i,c)
dx is an increasing function of log Ti,c. When there are a large

number of industries and locations, technology change in {i, c} has little

impact of national market input price and local labor wages, thus little in-

fluence on A∗i,c. However, an increase in log Ti,c shifts the distribution of

logAi,c to the right, therefore the conditional mean increases. Because this

is true for any value of p, it is also true to Ep
(
EA
(
logAi,c| logAi,c > A∗i,c(p)

))
.

As a result, here I can use an increasing function m(log Ti,c) to represent

Ep
(
EA
(
logAi,c| logAi,c > A∗i,c(p)

))
.

With the above analysis, I can generate city level productivity measure

by integrating over the variety space Ω, logAi,c =
log Ti,c
θ

+ θγ, where γ is the

Euler’s constant. and log pi,c has probability of πcc to match its own import
price of pic. Therefore the expected log productivity of city c can be rewritten
as:

log gc =
1− r
r

log(1− r) +
1

r
m(log Ti,c) +

r − 1

r
log p̃i,c +

log pic
r

log gc =
1− r
r

log(1− r) +
1

r

∑
i∈N

νim(log Ti,c) +
r − 1

r

∑
i∈N

νi

∑
j∈ N

dji log pjc − d
j
i log dji

+
∑
i∈N

νi
log pic
r
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log gc =
1− r
r

log(1− r) +
1

r

∑
i∈N

νim(log Ti,c) +
1

r

∑
i∈N

νi − (1− r)
∑
j∈ N

dijνj

 log pic +
1− r
r

∑
i∈N

νi
∑
j∈ N

dji log dji

log gc =
1

r
ν′c ·m(log Tc) +

1

r
[(I − (1− r)D)νc)]

′ · log Pc +
1− r
r

NEc + const

log gc =
1

r
ν′c ·m(log Tc) +

1− r
r

NEc +
1

r

[
(I − πcc

−1)′ν +
r

n
1 + πcc

−1Xc)νc)
]′
· log Pc + const

where NEc =
∑

i∈N νi
∑

j∈ N d
j
i log dji is the city network entropy.

Derivation of E (logAi,c). Because the CDF of Ai,c is P (Ai,c ≤ a) = exp
{
−Ti,ca−θ

}
,

I have:

P (logAi,c ≤ b) = expP
(
Ai,c ≤ eb

)
= exp

{
−Ti,cexp {b}−θ

}
= exp {−exp {log Ti,c} exp {−θb}}

= exp {−exp {log Ti,c − θb}}

= e−e
−θ

b− log Ti,c
θ


.

This CDF shows that logAi,c ∼ Gumbel(
log Ti,c
θ

,
1

θ
). Therefore, E (logAi,c) =

log Ti,c
θ

+
γ

θ
, where γ is the Euler’s constant.

Proof of Lemma 3. First, I want to show that for every wc, the equation

system p̃1−σ
j,c′ = D ·

∑
i∈N

∑
c∈C aij (wγc τc,c′)

1−σ ·
(
p̃1−σ
i,c

)1−γ has a solution of p̃i,c.

By definition τc,c′ ∈ [1,+∞)∀c, c′ ∈ C, and aij ∈ [0, 1] ,∀i, j ∈ N. With nor-

malization wc ∈ (0,+∞) ,∀c ∈ C. Therefore, the coefficient array of the sys-

tem Daij (wγc τc,c′)
1−σ is bounded by [0,+∞). Proposition 1 in Allen et al. (2018)

shows that for a given set of wc there exists a unique combination of λ > 0

and a set of p̃1−σ
i,c that solves p̃1−σ

j,c′ = λ ·
∑

i∈N

∑
c∈CDaij (wγc τc,c′)

1−σ ·
(
p̃1−σ
i,c

)1−γ for

all i ∈ N and c ∈ C and
∑

i,c p̃
1−σ
i,c = B for some arbitrary normalization B.

Now if I renormalize the solution p̃1−σ
i,c to p̂i,c = λ1−γ p̃1−σ

i,c , then p̂i,c is always the

unique solution of the system p̂j,c′ = ·
∑

i∈N

∑
c∈CDaij (wγc τc,c′)

1−σ · (p̂i,c)1−γ.

Because for every wc there exists a unique solution of p̃i,c solve the sys-

tem, that means for every wγc there exists a unique wγc p̃
1−γ
i,c that solves the

system as well.
Next I want to show by the implicit function theorem the solution to the

system wγc p̃
1−γ
i,c is a continuous mapping of wc over the normalized space

of wc. Let Kij,cc′ represent the coefficient array Daijτ
1−σ
c,c′ , X̂c = w

γ(1−σ)
c and
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Ŷi,c =
(
wγc p̃

1−γ
i,c

)1−σ
. Then the equation system for p̃i,c can be rewritten as

Fj,c′(X̂c, Ŷj,c) =
Ŷj,c′

X̂c′
−
∑
c∈C

Kij,cc′ Ŷi,c = 0

The Jacobian of F is in the form of:

JY =



∂F1,1

∂Ŷ
...

∂F1,C

∂Ŷ

∂F2,1

∂Ŷ
...

∂F2,C

∂Ŷ
... ...

...
∂Fn,1

∂Ŷ
...

∂Fn,C

∂Ŷ



where every
∂Fj,c′

∂Ŷ
is a C × n matrix with the following form:

∂Fj,c′

∂Ŷi,c
= −Kij,cc′ for i 6= j or c 6= c′

∂Fj,c′

∂Ŷj,c′
=

1

X̂c′
−Kjj,c′c′ otherwise.

the parameter matrix K with the form:

K =



−K11,11 ... −Kn1,11 −K11,12 ... −Kn1,12 ... −K11,1C ... −Kn1,1C

...
. . .

...
...

. . .
... ...

...
. . .

...
−K11,C1 ... −Kn1,C1 −K11,C2 ... −Kn1,C2 ... −K11,CC ... −Kn1,CC

−K12,11 ... −Kn2,11 −K12,12 ... −Kn2,12 ... −K12,1C ... −Kn2,1C

...
. . .

...
...

. . .
... ...

...
. . .

...
−K12,C1 ... −Kn2,C1 −K12,C2 ... −Kn2,C2 ... −K12,CC ... −Kn2,CC

...
...

...
... ...

...
...

...
...

...
... ...

...
...

−K1S,11 ... −KnS,11 −K1S,12 ... −KnS,12 ... −K1S,1C ... −KnS,1C

...
. . .

...
...

. . .
... ...

...
. . .

...
−K1S,C1 ... −KnS,C1 −K1S,C2 ... −KnS,C2 ... −K1S,CC ... −KnS,CC


represents the random trade barrier and productivity information that are

exogenous to the model. It is reasonable to assume that in the status of na-

ture K has measure 0 to make det(JY ) = 0 for the given normalized space of

wc. Because every X̂c has a corresponding solution of F , by implicit function
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theorem for almost all the given K I can find a function f that is continuous

on every X̂c that satisfies Ŷi,c = f(X̂c) and F
(
X̂c, f(X̂c)

)
= 0. In other words,

With some simple monotone transformation, I can show that there exists a

continuous function g such that wγc p̃
1−γ
i,c = g(wc) and F (wc, g(wc)) = 0.

.2 Special Cases of Theorem 1, Cities in Aur-

tarky

This section discusses special cases of Theorem 1 and show how an open

economy production model with trade breaks down Hulten’s Theorem.

When there is no trade across cities, every firm on the map produces,

and they only buy and sell to local producers and consumers. This indi-

cates that industrial output share of a city is only affected by the nation-

wide input-output structure and preference shares in consumption, which

is set to
1

n
here. The technological parameters in the industry component

of Theorem 1 become linear, i,e. m(log Ti,c) =
log Ti,c
θ

+
γ

θ
. Also, without trade

the input price for the same type of product is its output price. Therefore I

can rewrite the expression of log output per worker into:

log gc =
1− r
r

log(1− r) +
1

r

(
log Ti,c
θ

+
γ

θ

)
+
r − 1

r
log p̃i,c +

log pic
r

log gc =
1− r
r

log(1− r) +
1

r

∑
i∈N

νi

(
log Ti,c
θ

+
γ

θ

)
+
r − 1

r

∑
i∈N

νi

∑
j∈ N

dji log pjc − d
j
i log dji

+
∑
i∈N

νi
log pic
r

log gc =
1− r
r

log(1− r) +
1

r

∑
i∈N

νi

(
log Ti,c
θ

+
γ

θ

)
+

1

r

∑
i∈N

νi − (1− r)
∑
j∈ N

dijνj

 log pic

+
1− r
r

∑
i∈N

νi
∑
j∈ N

dji log dji

log gc =
1

r
ν′c · log Tc +

1

r
[(I − (1− r)D)νc)]

′ · log Pc +
1− r
r

NEc + const

log gc =
1

r
ν′c · log Tc +

1− r
r

NEc +
1

n
1 · log Pc + cons.

In this situation, the elasticity of output per worker gc to technological

level Tc is
d log gc
d log Tc

= νc, simply the output share of sectors. Without trade,
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the result in Lemma 2 is reduced to

νc =
r

n
(I − (1− r) ·D)−1 · 1.

In other words, sectoral output shares νc solely depend on the input-output

network structure D. This result exactly matches the foundational theorem

of Hulten (1978).

However, the classic Hulten’s theorem breaks down in an open economy

setting. According to Lemma 2, when there is inter-city trade sectoral out-

put shares of a city νc are affected by not only the network structure D, but

also the competitiveness of industries in the local market πcc and the rela-

tive size of the export market Xc. While network structure determines the

proportion of the economy that is related to the production of a sector, com-

parative advantage of firms in trade determines the size of the economy that

an industry have access to. In a closed economy, an industry with increas-

ing productivity can only increase its’ output to an extent that its local buyer

and consumers can absorb. In contrast, an open economy makes local in-

dustries not confined by the local economic size and structure, and gives

increasingly productive firms an increasing amount of customers across

the country. As a result, productivity shocks of more productive indus-

tries in an open economy have a disproportionately higher impact on the

local economy. I cannot consider aggregate productivity shocks as a simple

linear summation of sectoral shocks anymore.

.3 Two-Industry Example for City Network En-

tropy

This section presents a 2-industry city model to help the understanding

of why high level of industry input entropy NEi indicates a higher level of

production technology or productivity.

Lemma 4. Assume in a two-industry city the total population is 1, and the
production technology Ai,c = 1 for either industry is also 1. The total budget,
or total cost, of industry 1 and industry 2 together are fixed at B. Let li is the
labor size of industry i, then the log output per worker of industry i can be
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expressed as:

log
q1

l1
= (1− r)NE1 − (1− r)

(
d1

1 log p1 + d2
1 log p2

)
+ const;

log
q2

l2
= (1− r)NE2 − (1− r)

(
d1

2 log p1 + d2
2 log p2

)
+ const;

where const = (1− r) log(1− r).

Proof. Because labor is paid by an uniform wage and labor cost counts

for a constant share of r in the output of both industries, l1 and l2 also

equal to the output shares of two industries here. Because the labor cost

also counts for a constant share of r in the budgets of both industries, the

ratio of budget for these two industries are also their population ratio, i.e.
B1

B2

=
rB1

rB2

=
l1w

l2w
=
l1
12

. In other words, the budget of industry 1 and 2 are l1B

and l2B respectively.

Let’s first look at industry 1. The first order conditions of the production

optimization indicates that the value of intermediate input 1 has a constant

share d1
1 in the industry 1’s budget, i,e. q1

1p1 = (1−r)d1
1B1 = (1−r)d1

1l1B. There-

fore I can rewrite the quantity demanded from input 1 as q1
1 =

d1
1(1− r)l1B

p1

.

Similarly, q2
1 =

d2
1(1− r)l1B

p2

. Next I can substitute these expressions back to

the log form of the production function to get:

log q1 = log

(
lr1

(
q1

1
d11q2

1
d21
)1−r

)
log q1 = r log l1 + (1− r)

(
d1

1 log q1
1 + d2

1 log q2
1

)
log q1 = r log l1 + (1− r)

(
d1

1 log
d1

1(1− r)l1B
p1

+ d2
1 log

d2
1(1− r)l1B

p2

)
log q1 = r log l1 + (1− r)

(
d1

1 log d1
1 + d2

1 log d2
1 − d1

1 log p1 − d2
1 log p2 + log(1− r)l1B

)
log q1 = (1− r)NE1 − (1− r)

(
d1

1 log p1 + d2
1 log p2

)
+ log l1 + (1− r) logB + (1− r) log(1− r)

log q1 = (1− r)NE1 − (1− r)
(
d1

1 log p1 + d2
1 log p2

)
+ log l1 + const

log
q1

l1
= (1− r)NE1 − (1− r)

(
d1

1 log p1 + d2
1 log p2

)
+ const.

The exact the same analysis process can be applied to industry 2 as well.

This lemma shows that the productivity of industry i in terms of output
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per worker is affected by two factors: its input structure in the form of NEi
and a substitution effect of price component. To focus on how NEi affects

productivity, let’s turn off the substitution effect of price first.

.3.1 Without Substitution Effect of Price

In Lemma 4, prices are constant. Now consider a even more restrictive case

where I hold p1 = p2, and Lemma 4 reduces to:

log
qi
li

= (1− r)NEi + const, for i ∈ [1, 2].

The above expression shows without considering the substitution effect of

price, the absolute quantity of an industry’s output per worker increases

in its industry level entropy NEi. In other words, if the intermediate input

share vector of industry 1 goes from (0.5, 0.5) to (0.1, 0.9), every worker in

industry 1 can produce more.

.3.2 Substitution Effect of Price

Next let’s consider the more general case that p1 6= p2. It is not necessarily

true that output per worker of industry 1 increases in NE1 anymore. In fact

when NEi increases, if d1
1 log

p1

p2

declines at a bigger magnitude industry 1’s

output may even decline in this case. Therefore I need to discuss what form

of price normalization is reasonable here. In other words, how do I measure

the wealth level of the economy when there is relative price?

In this two sector economy, the substitution effect of price works exactly

the opposite ways on the production process of two different industries.

For example, if
p1

p2

> 1, when the unit input efficiency of input 1 rises,

industry 1’s output increases where as the industry 2’s output decreases.

Also, if
p1

pc
6= 1, the output of these two industries are valued differently in

the economy. Therefore, merely considering the substitution effect of price

on a single industry is not sufficient.

Because this paper focuses on the behavior of city level production, I

consider the substitution effect of price on city level average wage in the

following analysis.
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Lemma 5. Assume in a two-industry city the total population is 1, and the
production technology Ai,c = 1 for either industry. The budget, or total cost, of
industry 1 and industry 2 together are fixed at B. Let l1 and l2 be the shares
of the population working for two industries,then the log total wage can be
written as:

logw = (1− r)l1NE1 + l2NE2 +
log P

2
+ log rB,

where log P = (log p1, log p2)′.

Proof. In this model, workers in these two industries are paid the same
wage, so w =

rq1p1

l1
=
rq2p2

l2
. Lemma 1 shows that in an autarky state, output

share of a city sole depends on the input-output share matrix. Therefore, l1
and l2 are endogenous to changes in the input-output matrix. In addition,
because the budget ratio of two industries are always the same as the ratio
of their output in the city, here I use B to represent a city level budget. The
budget of industry 1 and 2 are l1B and l2B respectively. With these revisions,
log wage, as a measure of total wealth in the economy, can be written as:

logw = l1 log
rq1p1

l1
+ l2 log

rq2p2

l2

logw = log r + l1
(
r log l1 + (1− r)

(
NE1 − d1

1 log p1 − d2
1 log p2 + log l1B

)
+ logp1 − log l1

)
+ l2

(
r log l2 + (1− r)

(
NE2 − d1

2 log p1 − d2
2 log p2 + log l2B

)
+ log p2 − log l2

)
logw = (1− r)(l1NE1 + l2NE2) + (l1 log p1 + l2 log p2)

− (1− r)
(
l1d

1
1p1 + l1d2

1p2 + l2d
1
2p2 + l2d

2
2p2)

)
+ logB + log r

logw = (1− r)Ns + L · log P− (1− r)D · L log P + logB + log r,

where L = (l1, l2)′, log P = (log p1, log p2)′ and D is the input output matrix of

this city. According to lemma 1, in an autarky economy, L · log P− (1− r)D ·

L log P =
log P·

2
=

log(p1p2)

2
. Therefore, log wage can be further simplified as:

logw = (1− r)N s +
log P·

2
+ log rB.

This expression of log wage indicates that if I normalize p1p2 to a con-

stant, the substitution effect of prices from different sectors cancel out and

the wage level of a city is only positively affected by its network entropy.
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Because wage is always share r of the total output. The total output of the

city also increases in network entropy. Because
log P·

2
is also the expression

of the consumer consumption price index in the city, it is also reasonable

to measure wage and output increase relatively to the people’s cost of living

in the city.

.4 Additional Table
Table 4: 8 year GDP/worker Growth with Leading Industries as control

variable name base line 2 ind share top ind top ind share

Intercept 24.367∗∗∗ 19.103∗∗∗ 22.657∗∗∗ 35.093∗∗∗

(0.0) (0.0) (0.0) (0.0)
NEc growth 1.621∗∗∗ 2.019∗∗∗ 1.652∗∗∗ 0.967∗∗∗

(0.0) (0.0) (0.0) (0.0)
employment -0.0 -0.0 -0.0 0.0

(0.3025) (0.2327) (0.2574) (0.6978)
year −0.012∗∗∗ −0.009∗∗∗ −0.011∗∗∗ −0.017∗∗∗

(0.0) (0.0) (0.0) (0.0)
31G share change 0.001

(0.8488)
FIRE share change −0.024∗∗∗

(0.0)
top industry share −0.938∗∗∗

(0.0)
city FE Yes Yes Yes Yes
top ind FE Yes

adjusted R2 0.58 0.595 0.597 0.632
Observation 2970 2970 2970 2970

Dependent variable: GDP per worker growth residual
Standard errors in the parentheses are culstering with respect to city and year
***p<0.01, **0.01≤p<0.05, *0.05≤p<0.1
31G refers to the manufacturing sector. FIRE refers to finance, insurance, real estate and rental services.
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.5 Additional Figures

Figure 13: Changes of GDP/Worker Caused by the Increased Importance of the Agriculture/Mining Sector
in the Network

Figure 14: Changes of GDP/Worker Caused by the Increased Importance of the Construction Sector in the
Network
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Figure 15: Changes of GDP/Worker Caused by the Increased Importance of the Manufacturing Sector in
the Network

Figure 16: Changes of GDP/Worker Caused by the Increased Importance of the Wholesale Trade Sector in
the Network
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Figure 17: Changes of GDP/Worker Caused by the Increased Importance of the Retail Trade Sector in the
Network

Figure 18: Changes of GDP/Worker Caused by the Increased Importance of the Transportation/Warehouse
Sector in the Network
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Figure 19: Changes of GDP/Worker Caused by the Increased Importance of the Information Sector in the
Network

Figure 20: Changes of GDP/Worker Caused by the Increased Importance of the Edudca-
tion/Healthcare/Social Assistant Sector in the Network
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Figure 21: Changes of GDP/Worker Caused by the Increased Importance of the
Art/Entertainment/Accommodation/Food Sector in the Network

Figure 22: Changes of GDP/Worker Caused by the Increased Importance of the Other Services Sector in the
Network
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Figure 23: Changes of GDP/Worker Caused by the Increased Importance of the F.I.R.E Sector in the Network

Figure 24: Changes of Industry Level Entropy of 13 industries, 1997-2016
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Chapter 2

Industrial Productivity and Urban
Human Capital Spillovers

Introduction

Why do productivity of industries vary significantly across cities? In Alfred

Marshall’s theory of industry agglomeration, he identified the three aspects

of the urban space that affect productivity: 1. the closeness of goods in the

supply chain; 2. the pooling of labor; 3. the knowledge spillover or human

capital externalities (Marshall, 1920). This paper focuses on the last factor,

the impact of urban human capital spillovers. Human capital spillovers

refer to the simple idea that when employees interact more frequently with

other skilled and educated workers in cities, information and knowledge

spillover from workers to workers. As a result, skilled labor learn faster and

their firms become more productive. In this paper, I develop a systematic

and innovative way to measure the human capital spillovers occurred in the

production networks of cities and quantify their impact on productivity of

various industries.

The major contribution of this paper is creating a human capital network

index to measure two aspects of the urban human capital environment for

different industries: the quantity of skilled labor in the city, as well as the

allocation of these talents within the urban production network. For a target

industry, the index achieves high values not only when the city has a large

quantity of educated workers, but also when this human capital is concen-
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trated on industries that are "economically closer" to the target industry. To

measure economic distances, this paper proposes a novel betweenness cen-

trality measure. It is based on the assumption that the economic distance

between any pair of industries for knowledge and information to travel back

and forth is proportional to the frequency of business transactions between

them.

After creating the index, in order o quantify the spillovers from the ur-

ban human capital environment to industrial productivity, the next step

is to measure the productivity of firms in different locations. The lack of

physical capital input information for industries other than manufacturing,

makes it impractical to directly measure TFP values of firms in every indus-

try. Therefore, this paper adopts a general equilibrium model with multiple

industries within cities and competitive trade among firms across cities. The

equilibrium conditions of this model render a closed form relationship be-

tween industry-location-specific TFP, local wage and labor allocation. Based

on this relationship, I acquire industry-location-specific TFP values by cal-

ibrating the model to the U.S. economy with MSA-industry specific data

from Bureau of Economic Analysis (BEA), trade flow data from Commodity

Flow Survey (CFS) and individual-level labor market data from American

Community Survey (ACS)1.

Then regression analysis verifies that there is a significant correlation

between human capital levels in the urban production environment and the

productivity for most of industries. These results are robust to different

specifications of human capital network measures, time specifications as

well as various levels of industrial classifications.

These empirical results contribute two new economic insights. First, not

only the aggregate quantity of human capital in cities, but also their al-

locations in the production network determines the magnitude of human

capital spillovers among industries. Second, the ability of business to ab-

sorb urban human capital spillovers on productivity varies from industry to

industry. While majority of sectors benefit from a more educated urban en-

vironment, certain industries experience negative human capital spillover

from the rest of the city. Examples of such negative-spillover industries

1Indiviual-level ACS data used in this paper is acquired through Integrated Public Use
Microdata Series (IPUMS)
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are farming, forestry and fishing, mining, transportation and warehousing

as well as some subcategories of manufacturing. A possible explanation

here is that the large presence of human-capital-intensive sectors in town

may lure away talents from industries with low intensity of human capital

usage, and consequently reduces the quality of human capital in these in-

dustries. These results provide the evidence for the theory that cities with

high human capital level are more prone to specialize in certain industries.

The remainder of the paper is organized as follows. After a brief dis-

cussion of related literature, Section 2.1 sets up a multi-city multi-sector

environment of city production and explains the construction of the human

capital network index as a novel measure of human capital spillovers in

a single city. Section 2.2 further complete the general equilibrium model

with labor and trade setup to provide theoretical support to calibrate city-

industry specific productivity or TFP. To take the theory to data, first Section

2.3 elaborates on the details of the calibration strategy for industry-location-

specific productivity based on the model in Section 2.2. Then in Section 2.4,

empirical analysis combines the calibrated TFP values and human capital

network index in the data, and sheds light on the differential impact of hu-

man capital spillovers on various industries in cities. Section 2.5 concludes.

The Appendix contains all the proofs.

Related literature This paper is deeply rooted in Alfred Marshall’s (Mar-

shall, 1920) theory of agglomeration of economies. Since his time, the

knowledge externalities or human capital spillovers, as one of the three

aspects of urban agglomeration, has been extensively studied. Ellison et al.

(2010) showed that industries that are more likely to coexist in the same re-

gions tend to have both have stronger input-output connections and higher

level of knowledge sharing, as measured by pattern citations. Moretti (2004a)

empirically proved the existence of positive human capital spillovers from

other industries to firms in the manufacturing sector in the same cities.

Specifically, he adopted a network view of industries in the urban environ-

ment and found that this impact of human capital spillovers on manufac-

turing productivity declines as the economic distance between two indus-

tries increases.These papers empirically show that the locations of human
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capital in the urban input-output production network matters for the hu-

man capital spillover that manufacturing firms receive. My paper further

explore the network view of the economy and extends the study of human

capital spillovers beyond manufacturing. This helps us to acquire a more

complete understanding of the wide variation in the relationship between

different industries and knowledge spillovers in cities. The approach to

empirically measure network effect is also influenced by Acemoglu et al.

(2012a).

The empirical method used to construct the human capital network in-

dex is an extension of recent applications graph theory in social science

works. Newman (2005) originally proposed the concept of betweeness cen-

trality to describe the influence a node has over the spread of information

through the network. Blöchl et al. (2011) adapted this betweeness central-

ity for vertex analysis in input-output networks. In the context of produc-

tion network, high betweeness nodes are the ones where shocks linger the

longest while propagating through the economy. Human capital spillovers

in nature are resonating propagation of knowledge among different indus-

tries. In other words information bounces back and forward frequently

among nodes, stead of passing through only once. Therefore, simple in-

degree counting cannot capture the intensity of this random-walk-style be-

havior of knowledge. As a result, I further modify the betweeness centrality

developed by these two papers to account for the economic distance between

any pair of industries that is meaningful for human capital spillovers.

In order to calibrate industry-city-specific TFP, I construct the multi-

sector trade model with Bertrand price competition that is heavily influ-

enced by Eaton and Kortum (2002). Allen and Arkolakis (2014) and Arko-

lakis et al. (2015) provide methods to identify and estimate this type of

general equilibrium models. However, their methods rely on trade flow data

among different locations. Due to the lack trade flow data among cities, I

adapt their estimation process into calibration with parameter values taken

from Caliendo and Parro (2015) and Caliendo et al. (2017).
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2.1 Human Capital in Production Networks

This section reveals the construction of human capital index in a multi-city

and multi-industry environment that measures the human capital spillover

level in a single city. Consider a set of city C = {1, ..., C} on the map. Each

city has a set of industries N = {1, ..., N} in it. In each industry or sector,

there is a continuum of firms of measure Ω.

2.1.1 Environment

Each firm produces a distinct final good ω ∈ Ω for household consumption.

A typical firm here uses Cobb-Douglas technology to combine four elements

to produce a unit of good: 1) physical capital, 2) unskilled labor, 3) skilled

labor and 4) firm’s specific technology or TFP. Therefore, the production

function of variety producer ω ∈ Ω in industry i of city c has the following

expression:

qi,c(ω) = Ai,c (Hi,c) · li,c(ω)αi,chi,c(ω)βi,cki,c(ω)1−αi,c−βi,c . (2.1)

qi,c(ω) is the output level of this firm while ki,c(ω) refers to the amount

of capital input. li,c(ω) is the total amount of labor input from workers

without college degrees, whereas hi,c(ω) is the total amount of labor input

from workers with college degrees or more education. The rest of the paper

refers li,c(ω) as unskilled labor and hi,c(ω) as skilled labor. The total amount

of skilled and unskilled labor in the whole industry i in city c are represented

as Li,c =
∫
ω∈Ω

li,c(ω)dω and Hi,c =
∫
ω∈Ω

hi,c(ω)dω respectively. αi,c and βi,c are

the shares of input values in the output. Here I assume constant return to

scale to simplify the estimation process later on. Ai,c is a random variable

that represents firm-specific TFP and is discussed below.

The main focus of this paper is the allocation of human capital, namely

the allocation of skilled labor hi,c(ω) and Hi,c. This is because the key as-

sumption here is that human capital not only directly contribute to the

production process of their employers but also spread out knowledge and

information to whomever they are in contact with during the production

process, and eventually indirectly affect the technology and productivity
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of other firms that have business relationship with their employers in the

same geographic location. To exemplify this idea, I propose a human capital

index Hi,c to measure of human capital density in the same city c as firms in

industry i, but do not directly work for industry i. Also, the density function

of Ai,c is affected by the value of Hi,c. Specifically, assume Ai,c (Hi,c) follows

a Frechet distribution, as in Eaton and Kortum (2002), i.e.

Pr(Ai,c ≤ A) = exp
{
−Ti,c (Hi,c)A

−θ} , (2.2)

where θ > 1 governs the distribution of productivity across goods within

an industry of a city. Ti,c > 0 is a measure of the aggregate productivity of

industry i in city c. In this paper Ti,c is called as the fundamental produc-

tivity. A larger fundamental productivity Ti,c indicates a higher probability

of larger realization of the random variable Ai,c. Assume Ti,c is a function of

the human capital spillovers in the city, then it has the following form:

Ti,c = Ti + Tc + θiHi,c + εi,c; (2.3)

where Hi is the human capital network index of industry i in city c and

it is discussed in detail below. εi,c is the idiosyncratic productivity shock

to technology in industry i of city. Assume εi,c is normally distributed with

finite variance and mean 0. θi represents the ability of industry i to absorb

the human capital spillover in a city.

2.1.2 Human Capital Network Index

The human capital network index Hi,c is designed to measure the quality of

human capital in industry i’s local environment in city c. It is based on the

observation of Moretti (2004a) about the relationship "economic distance"

and human capital spillovers. Namely, as the "economic distance" between

two industries decreases, the externality of business partner’s human cap-

ital on firms’ productivity gets stronger. Therefore Hi,c is given the following

functional form:

Hi,c =
∑

j∈N\{i}

Dji ·Hi,c, (2.4)
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where Hi,c represents the total amount of skilled labor in industry i in city

c, and Dji measures the "economical distance" between industry j and in-

dustry i. Two industries are considered "economically close" if they have

frequent business contact and a large amount of input-output transactions.

As a result, Dji is bigger and the human capital level of one industry will

have bigger indirectly effect on the other one. I use D to denote the matrix

of economic distance where the value at coordinate {j, i} is Dji. In order to

systematically measure economic distance in data, the following concept of

betweenness is adopted to calculate D.

2.1.3 Betweenness

The frequent exchange of goods, ideas and capital among firms makes eco-

nomic relationships often be described as networks. Among various types

of economic networks, this paper focuses on the most frequently studied

input-output networks (Acemoglu et al., 2012a). A densely connected input-

output network can be described as a direct graph. In such a graph each

industry is a node and each arc represents an input-output relationship

between a pair of nodes. One economic activity is defined as the movement

of resource from one node to another node through the direct arc between

these two. In one period, an infinite number of economic activities can

happen in an input-output graph. A normalized input-output matrix is a

summary of all the arch weights of such a graph. Let M denote this matrix,

then entry mji represents the probability for one unit of output in industry j

ends up in industry i after one economic activity. In other words, Each row

of M has the sum of 1. Because each row of the normalized input-output

matrix can also be interpreted as the probability of one unit resource tran-

siting from the source industry to a certain target industry, M can also be

called a transition matrix.

Human capital spillovers in nature are resonating propagations of knowl-

edge and information that move back and forward among workers in the

production process, whereas the input-output matrix M only describes the

one-time transition probability of economic activities in the network. There-

fore, input-output matrix M itself is not the best choice to evaluate the

importance of human capital spillovers properly. The graph theory con-
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cept of betweenness centrality measures the frequency that a node or an

arch been visited in this type of resonating propagation process (Jackson,

2010). Therefore, this paper considers betweenness centrality as a better

way to evaluate the importance of arches in the spillover process. Tradition-

ally betweenness centrality measures the influence a node over the spread

of information through the network. The following method of calculating

betweenness for an arch is modified from Blöchl et al. (2011)’s method of

counting vertex centrality in input-output networks and Newman (2005)’ s

random walk betweenness measure.

Let M−h represent a new transition matrix by deleting the h-th row and

column of the normalized input-output matrix M . If a unit of input travels

from the source node industry s and eventually ends up in the target in-

dustry h 6= s, the probability of being at node j 6= s after r steps should be

{(M−h)r}sj, namely the value at the coordinates {s, j} of the matrix (M−h)
r.

Also, the probability of this unit input using the edge {j, i} immediately af-

ter r steps is {(M−h)r}sj ·mji. Therefore, I can write the number of times for a

unit of input to pass through edge j, i on its way traveling from source node

industry s to the target industry h as:

Bsh
ji =

∞∑
r=1

{(M−h)r}sj ·mji

= mji

∞∑
r=1

{(M−h)r}sj

= mji

{
(I −M−h)−1}

sj
,

where I is an identity matrix. With the above definition of Bsh
ji , in this paper

the betweenness measure of the input-output edge {j, i} is defined as the

average number of times that a unit of good passing through edge {j, i},
regardless of direction, across all source-target pairs:

Dj, i =

∑
s∈N

∑
h∈N\{s}B

sh
ji +Bsh

ij

2N(N − 1)
. (2.5)

It is worth to notice that Dj, i and Di, j have the same value under this def-

inition. Dj, i has a domain of [0,+∞). Bigger the value of Dj, i is, more
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frequently this edge is used by any unit of goods in the production network.

A betweenness measure Dj, i tells how important the input-output relation-

ship between j, i in the resonating knowledge spillover process is relative

to all other input-output pairs in the matrix D. In contrast, in the original

input-output M , it is only meaningful to compare Mj, i with other elements

on the jth row. In other words the matrix of {Dj, i} is a more comprehensive

measure of economic distance that can be compared across the entire econ-

omy. Therefore the economic distance matrix D is defined as {Dj, i}. Note

that a "shorter" economic distance in this paper is actually represented by

a bigger value in the matrix D.

With this definition of betweenness, the human capital network index

Hi,c =
∑

j∈N\{i}Dji ·Hj can be interpreted as a measure of frequency for hu-

man capital traveling in the input-output environment of industry i in city c.

Because the value of {Dj, i} can be compared with any other value through-

out the whole matrix of D, Hi,c can be used to compare the intensity of

human capital environment for any pair of industries in any two locations.

2.1.4 Illustrative Example

To help readers to understand the feature of the betweenness measure and

the human capital index newly defined in this paper, this section presents

an illustrative example.
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Figure 2.1: Input-Output Network with 7 Industries

Figure 2.1 visualizes a simple normalized input-output network with

seven industries. In this graph, each direct arch, namely an arch with

direction and an arrowhead, represents an input-output relationship from

a source industry to a target industry. The number on the arch represents
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the probability for one unit of goods from the source industry goes to the

target industry. The lack of arch between two nodes indicates an input-

output relationship of weight zero. For simplicity, equal probabilities are

assigned to all the arches coming from the same source. As a result, this

graph is fully symmetric.
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Figure 2.2: Betweenness Measure

Figure 2.2 shows the betweenness measure for this network calculated

from Equation (2.5). The values on arches between the pairs {0, 1} and {5, 6}
are higher than arches between the pairs {3, 4} and {2, 3}. This indicates

that resources in this network are more frequently to travel repeatedly on

arches between between the pairs {0, 1} and {5, 6} than the arches in the

middle. If we consider knowledge or ideas as a kind of resource that can

be spread out among workers along supply chains back and forth, then

the more frequently knowledge or information repeatedly visits an arch, the

more likely it spills over to the production process of the source or target

nodes. Under this assumption, the above betweenness measure is very good

for the purpose of measuring knowledge spillover.

Table 2.1: Human Capital Network Index for the Example Graph

Nodes 0 1 2 3 4 5 6
HC Index 1.1242 1.1242 1.618 1.0513 1.618 1.1242 1.1242

Assuming in every industry there is a measure 1 of human capital, then

table 2.1 presents the results for human capital network index calculated

based on Equation (2.4). Industry 4 and 2 have the highest human capital

index value of 1.62, while industry 3 has the lowest human capital index

value of 1.12. This indicates that there is stronger presence of human cap-

ital spillover in the urban environment of industry 4 and 2 than that of
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industry 3. Intuitively this makes sense because according to the transition

matrix, any random walk of information or knowledge would spend a lot of

time within the fully connected subgraph on both sides but rarely passes

through the central node 3. Note that in this example, the amount of hu-

man capital in each industry is the same, so the difference of human capital

environment for industries is entirely caused by the different ways that they

are connected in the network.

2.2 General Equilibrium Model

After establishing the method of measuring human capital spillovers, the

next step is to measure the productivity values of every industry in every

city in order to study the relationship of these two. This section presents

the rest of the general equilibrium model, the definition of the equilibrium

and important properties of the model to provide a framework to calibrate

the location-industry-specific productivity of firms.

2.2.1 Firms’ Problem

With the production function shown in Equation (2.1), the objective of a firm

is to maximize its profit by choosing the amount of skilled and unskilled

labor inputs as well as capital inputs, after paying for all the production

costs, i.e.

max
li,c(ω),hi,c(ω),ki,c(ω)

pi,c(ω)qi,c(ω)− li,c(ω)WL
c − hi,c(ω)WH

c − ki,c(ω)r. (2.6)

WH
c and WL

c are the city-wide wages for two different types of labor. I Assume

firms get capital from a friction-less national market at an universal interest

rate of r. pi,c(ω) is the output price on the national market for good ω from

industry i in city c.

2.2.2 Households’ Problem

In every city c, a representative household provides a total amount of Lc =∑
i∈N Li,c unskilled labor and Hc =

∑
i∈NHi,c skilled labor to local firms to
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earn wages WL
c and WH

c . Also, the household get interest payment of the

amount Kc from the capital market. Assume the interest revenue for city c is

from a pool of national capital income and is proportionally to its population

size. then Kc can be written as:

Kc =
∑
c∈C

∑
i∈N

∫
Ω

ki,c(ω)rdω · Hc + Lc∑
c′∈CHc′ + Lc′

.

The household spend their wages and capital income on all variety of goods

to maximize the following utility function.

max
ci,c(ω),i∈N

∏
i∈N

Cai
i,c (2.7)

s.t.
∑
i∈N

∫
Ω

ci,c(ω)pi,c(ω)dω = WH
c Hc +WL

c Lc +Kc. (2.8)

where, Ci,c =

∫
Ω

ci,c (ω)

σ − 1

σ dω


σ

σ − 1
. (2.9)

Here ai is the value share of industry i’s output in the final consumption.

ci,c(ω) is the local consumption amount of variety ω in industry i and pi,c(ω)

is its price.

The price of variety ω of good j in city c is determined by Bertrand compe-

tition on the national market, just as in Eaton and Kortum (2002). Namely

consumers in {i, c} only purchase goods from the producer offering the low-

est price. Therefore the price of variety ω of industry j that consumers in

city c actually end up paying for is:

pjc(ω) = min
c′∈C

pj,c
′

c (ω), (2.10)

where pj,c
′

c (ω) is the price consumers in city c need to pay to variety ω’s

producer in {j, c′}. In the case of pj,c′c (ω) > pjc(ω), there is no trade between

consumers in {c} and firms from {j, c′} on variety ω. pj,c
′

c (ω) is a product

between the out-of-factory price of good ω in {j, c′} and an iceberg trade cost

of τ c′c , i.e. pj,c
′

i,c (ω) = pj,c′(ω)τ c
′
c . Here τ c

′
c ∈ [1,+∞), τ cc = 1. I use T to represent

the n×n trade costs matrix. The {c′, c} coordinate of T has value τ c′c . Suppose
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the market of each industry in each city is perfectly competitive, the out-of-

factory price of a good at its origin is simply its marginal cost. By solving

the cost minimization problem of firms, the out-of-factory price of a good

can be written as :

pi,c(ω) =
WL
c
αi,cWH

c
βi,cr1−αi,c−βi,c

Ai,c (Hi,c)α
αi,c

i,c β
βi,c
i,c (1− αi,c − βi,c)1−αi,c−βi,c

. (2.11)

The detailed derivation process of the marginal cost is in the appendix. Now

the price of any variety of good j in city c can be rewritten as:

pjc(ω) = min
c′∈C

WL
c
αi,c′WH

c
βi,c′r1−αi,c′−βi,c′

Ai,c′ (Hi,c′ , ω)α
αi,c′

i,c′ β
βi,c′

i,c′ (1− αi,c′ − βi,c′)1−αi,c′−βi,c′
τ c
′

c . (2.12)

Note that pi,c(ω) is the out-of-factory price from the source city c whereas

pjc(ω) is the final consumption price that consumers in the destination city

c pay. Also, if firm ω in {i, c} is actually competitive enough to sell to any

location in the country, it will first become the supplier of its own city,

because it doesn’t have to pay a transportation cost in the local competition.

Therefore the local sales price pjc(ω) = pi,c(ω) for any firm in {i, c} that is

producing.

2.2.3 General Equilibrium Conditions

Given a set of T, {Li,c} , {Ti,c} , {αi,c} and {βi,c}, the general equilibrium of this

model is a set of {WL
c }, {WH

c }, r and {pi,c} such that
• maximize firms’ profits in every city and every industry;

• maximize households’ welfare in every city;

• clear the labor market in each city;

• clear the capital market nationally;

• clear goods markets in each city and each industry, which means the

total income of an industry in a city is equal to the income earned from

trade, i.e. ∫
Ω

qi,c(ω)pic(ω)dω =
∑
j∈N

∑
c′∈C

∫
Ω

cj,cc′ (ω)pjc′(ω)dω; (2.13)
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where cj,cc′ represents the total amount of consumption goods in city c′

that comes from industry j in city c;

• balance trade in each city, which means the total expenditure is equal

to the income earned from trade, i.e.∑
i∈N

∫
Ω

qi,c(ω)pic(ω)dω =
∑
i∈N

∑
c∈C

∫
Ω

ci,c(ω)pic(ω)dω. (2.14)

2.2.4 Trade Shares

Following Arkolakis et al. (2015), this model generates an expression of

trade shares. Knowing trade shares is essential to find the closed form

expression for calculating the fundamental productivity of industries. The

following lemma represents the trade share expression. This expression

deviates from Arkolakis et al. (2015) by having two different types of wage

inputs.

Lemma 6. In equilibrium, the share of goods sold from c′ in the consumption
of j in city c is

πj,c
′

c =

Tj,c′ (Hj,c′)

(
WL
c′
αj,c′WH

c′
βj,c′r1−αj,c′−βj,c′

α
αj,c′

j,c′ β
βj,c′

j,c′ (1− αj,c′ − βj,c′)1−αj,c′−βj,c′
τ c
′
c

)−θ
Φj
c

.

where Φj
c =

∑
c′∈C Tj,c′ (Hj,c′)

(
WL
c′
αj,c′WH

c′
βj,c′r1−αj,c′−βj,c′

α
αj,c′

j,c′ β
βj,c′

j,c′ (1− αj,c′ − βj,c′)1−αj,c′−βj,c′
τ c
′
c

)−θ
.

The proof of Lemma 6 is in the appendix. Knowing trade shares πj,c
′

c

provides a way to rewrite values of the local sales. Let yi,c represent the total

output from {i, c} and yc be the total output of city c. First order conditions

of the households’ problem indicate that the consumption demand of city

c’s household for good j is aj
(
WH
c Hc +WL

c Lc +Kc

)
. Denote the trade flow

from industry j in city c′ to city c as xj,c′c , then the trade flow can expressed

in the following form:

xj,c
′

c = aj
(
WH
c Hc +WL

c Lc +Kc

)
πj,c

′

c . (2.15)

Substituting the above expression back to the market clearing condition
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(2.13), I can rewrite the output expression for industry {i, c} as:

yj,c′ = aj
∑
c∈C

(
WH
c Hc +WL

c Lc +Kc

)
πj,c

′

c

yj,c′ = aj
∑
c∈C

(∑
i∈N

(αi,c + βi,c)yi,c +Kc

)
πj,c

′

c

yj,c′ = aj
∑
c∈C

(∑
i∈N

(αi,c + βi,c)yi,c +Kc

)∑
c′∈C

Tj,c′ (Hj,c′)

(
WL
c′
αj,c′WH

c′
βj,c′r1−αj,c′−βj,c′

α
αj,c′

j,c′ β
βj,c′

j,c′ (1− αj,c′ − βj,c′)1−αj,c′−βj,c′
τ c
′
c

)−θ
Φj
c

,

(2.16)

where Kc =
(∑

c∈C (1− αi,c − βi,c) yi,c
)
·
(

Lc +Hc∑
c′∈C Lc′ +Hc′

)
. Equation (2.16) pro-

vides a method to extract the value of fundamental productivity Tj,c′ (Hj,c′).

As long as all other parameters and variables in the equations are known,

values of Tj,c′ (Hj,c′) are identified by solving a nonlinear equation system.

2.3 Calibration

This sections provides details of calibration to acquire the industry-location-

specific fundamental productivity values Tj,c′ (Hj,c′). According to Equation

(2.16), if knowing wage WL
c and WH

c , labor input shares αi,c and βi,c, ice berg

trade costs T, and comparative advantage parameter θ, we can solve for

fundamental technology Ti,c for every location and every industry.

The calibration is limited to the U.S. data in 2016. I use industry-level

GDP in 381 Metropolitan Statistical Areas (MSAs) in 2016 for yi,c. The

data is provided by Bureau of Economic Analysis (BEA). In total 20 indus-

tries by NAICS classification are considered in the baseline calibration and

they cover the entire span of private sectors in the U.S. BEA also provides

industry-MSA-level labor income and employment data. Ratios between la-

bor income and GDP are used as the capital input shares 1 − αi,c − βi,c. I

obtain skilled labor input shares αi for each MSA in the sample from 2016’s

American Community Survey (ACS). Specifically in this paper, skilled labor

is defined as the population 25 years old and over, with associate’s degree,
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bachelor’s degree, graduate or professional degree, while population in the

same age range with less education is categorized as unskilled labor. First,

with ACS data I compute the labor income ratios between two education

groups in each city, i.e.
αi,c
βi,c

. Then the capital input ratios obtained previ-

ously help to back out the values of βi,c and αi,c respectively. ACS samples

also provide ratios of employment between two education groups. Apply-

ing the sample ratios on the regional employment data from BEA generates

estimates of two types of employment, i.e. Lc and Hc. After knowing in-

put shares and employment shares of different types of labors and the total

employment and income values, I can calculate local wages WL
c and WH

c as

well.

The iceberg trade cost matrix T is estimated by the same method as in

Allen and Arkolakis (2014). First, I used fast marching method (FMM) and

U.S. highway, rail and navigable water networks data (NDC, 1999; CTA,

2003; NHPN, 2005) to estimate the instantaneous trade costs for any point

on the map. Then I use the Commodity Flow Survey (CFS) data of trade

shares in different states to estimate trade costs between any two points on

the map. Due to the lack of trade follow data among cities. The iceberg trade

cost is estimated by state level trade flows from 2012 CFS. Then I calculate

centers of each MSA on the map and simulate the trade cost matrix among

cities through the estimated trade cost function. Because the I use the

aggregate trade flows without industry breakdown for the estimation, the

trade cost matrix is the same for every industry.

The lack of trade flow data among industries and cities makes it im-

possible to estimate the comparative advantage parameter θ with the same

method as in Eaton and Kortum (2002), by using ratios of trade flows.

Therefore, I take several estimated values of θ from Eaton and Kortum

(2002) and Caliendo and Parro (2015) for the calibration exercise. Addi-

tional results from different choices of θ is in the appendix. Also, the interest

rate r is set to 0.5% to match the Fed rate in 2016.

Only cities with complete employment and wage data, and which also can

be identified in the trade cost estimation, are considered in the calibration.

Therefore the number of cities in the calibration is reduced to 303. Putting

all these values back to equation 2.16, I get a set of unique solution for

78



Tj,c′ (Hj,c′). They are the model estimates of the fundamental productivity for

each industry in each city in 2016.

2.4 Empirical Evidence for Human Capital Spillovers

To verify the existence of human capital spillover on industrial productivity

in cities, it is also necessary to construct the human capital network index

Hi,c. The economic distance matrix D is calculated from the total require-

ment tables from the input-output accounts 2 provided by BEA. The human

capital quantity values Hi,c are imputed from the skilled worker wage, city-

level total labor income and skilled human capital input shares.

2.4.1 Baseline Model

With the definition of fundamental productivity {Ti,c} in Equation (2.3) and

the calibrated values of {Ti,c} from the general equilibrium model, regres-

sions with the following formula can be used to check the relationship be-

tween city human capital spillover and productivity of industries:

Ti,c = b0 + θi(Hi,c · Ii) + city FE + industry FE + εi,c. (2.17)

Here Ii is an industry dummy matrix. θi here can be interpreted as the

ability of industry i to absorb the human capital spillovers in any city. City

and industry fixed effects cannot eliminate all the confounders in the re-

gression. Therefore strictly speaking these correlations cannot be directly

interpreted as casual relationships. However they provide supportive evi-

dence for the impact of human capital spillovers on productivity.

The first column of Table 2.2 reports the estimates of θi from this baseline

model.

The results show that the human capital network index has significant

correlations with industry-level TFP in 19 out of 20 sectors at 1% level in

the data. Among all the significant θi values, 15 industries have positive

θi. This indicates that most of business are more productive in cities with

2The full name of the table is: Industry-by-Commodity Total Requirements, After Re-
definitions.
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Table 2.2: The Effect of City Human Capital Spillovers on Industrial Productivity
for 20 Industries

values of θi by industry baseline, 2016 alternative Hi,c 2016 1 alternative Hi,c 2016 2 2005-2016

Farm −0.149∗∗∗ −0.014∗∗∗ −0.073∗∗∗ −0.007∗∗∗

(0.019) (0.001) (0.006) (0.001)
Forestry Fishing −0.285∗∗∗ −0.053∗∗∗ -0.168 −0.025∗∗∗

(0.059) (0.005) (0.053) (0.005)
Mining −0.26∗∗∗ −0.033∗∗∗ -0.16 -0.007

(0.064) (0.006) (0.051) (0.005)
Utilities -0.042 -0.002 -0.011 0.012

(0.043) (0.006) (0.041) (0.004)
Construction 0.214∗∗∗ 0.023∗∗∗ 0.223∗∗∗ 0.022∗∗∗

(0.023) (0.003) (0.023) (0.002)
Manufacturing 0.024 -0.002 0.028∗∗∗ 0.001

(0.008) (0.001) (0.007) (0.001)
Wholesale Trade 0.117∗∗∗ 0.013∗∗∗ 0.153∗∗∗ 0.023∗∗∗

(0.022) (0.003) (0.022) (0.002)
Retail Trade 0.04∗∗∗ 0.002∗∗∗ 0.001∗∗∗ −0.0∗∗∗

(0.004) (0.001) (0.0) (0.0)
Transportation Warehousing −0.121∗ -0.004 -0.028 0.007

(0.047) (0.004) (0.032) (0.003)
Information 0.352∗∗∗ 0.028∗∗∗ 0.263∗∗∗ 0.028∗∗∗

(0.02) (0.002) (0.011) (0.001)
Finance, Insurance 0.45∗∗∗ 0.016∗∗∗ 0.488∗∗∗ 0.026∗∗∗

(0.026) (0.002) (0.026) (0.002)
Real Estate 1.439∗∗∗ 0.178∗∗∗ 1.461∗∗∗ 0.108∗∗∗

(0.089) (0.012) (0.083) (0.007)
Professional Service 0.65∗∗∗ 0.039∗∗∗ 0.65∗∗∗ 0.046∗∗∗

(0.024) (0.003) (0.023) (0.002)
Management 0.351∗∗∗ -0.003 0.318∗∗∗ 0.028∗∗∗

(0.079) (0.008) (0.044) (0.003)
Admin Waste Mngmnt 6.878∗∗∗ 0.419∗∗∗ 5.379∗∗∗ 0.305∗∗∗

(0.387) (0.054) (0.329) (0.04)
Education Service 0.137∗∗∗ 0.015∗∗∗ 0.151∗∗∗ 0.018∗∗∗

(0.009) (0.001) (0.009) (0.001)
Health Care Social Assistant 0.238∗∗∗ 0.015∗∗∗ 0.183∗∗∗ 0.002

(0.011) (0.002) (0.008) (0.001)
Art Entertianment Recreation 0.695∗∗∗ 0.056∗∗∗ 0.695∗∗∗ 0.062∗∗∗

(0.069) (0.008) (0.066) (0.006)
Accommondation Food Service 0.32∗∗∗ -0.002 0.244∗∗∗ -0.001

(0.033) (0.004) (0.022) (0.003)
Other Services 0.263∗∗∗ 0.0 0.226∗∗∗ −0.003∗

(0.02) (0.002) (0.019) (0.001)

Year Fixed Effects Yes
City Fixed Effects Yes Yes Yes Yes
Industry Fixed Effects Yes Yes Yes Yes

R2 0.326 0.303 0.281 0.268
Observations 6969 6969 6969 83628

Dependent variable: fundamental productivity Ti,c by Industry and MSA.
θi measures the effect of urban human capital spillovers on the TFP of industries in the city.
A bigger θi implies a stronger correlation between TFP and human capital spillovers.
Standard errors in the parentheses are culstering with respect to city and year
***p<0.001, **0.001≤p<0.005, *0.005≤p<0.01
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higher human capital network index Hi,c. Due to the way the human capital

network index is constructed, Hi,c can have higher values for two reasons.

Firstly, there may be a larger stock of skilled labor in the overall city, i.e.

Hi,c values are bigger in general. Secondly, skilled workers are more con-

centrated in industries that do more frequent transactions with industry i,

i.e. Hj,c values are bigger for industry j with higher Di,j values. Under either

case, higher values of Hi,c indicate higher levels of human capital in the ur-

ban environment that industries reside in. Therefore positive θi shows that

most industries benefit from being in an urban environment with skilled

workers.

Four industries, including farming, forestry and fishing, mining, as well

as transportation and warehousing, have significantly negative θi. This in-

dicates that higher human capital levels in the urban environment are asso-

ciated with lower producty in these industries. This is reasonable because

these industries in general have smaller demand of highly educated work-

ers in their production process. More productive workers in these industries

are more easily drawn by other business in a high human capital environ-

ment. In other words, even if some college educated labor work for these

industries, on average their quality may be lower than their counterparts

in other human-capital-intensive industries. Because the model considers

only two skill-levels, it cannot tell the different qualities of workers within

the same education group. As a result, the type of ’crowd-out’ effect is

picked up by negative θi.

One potential concern for this explanation of negative θi is that these in-

dustries may be so concentrated in specific locations that their productivity

is determined by natural geographical conditions instead of their relative

positions in urban human capital networks. For example, farming, forestry

and fishing can only be more prosperous if there are such natural resources

nearby. They may not be affected by the quality of human capital in their

suppliers or customers. There are two treatments of the empirical exer-

cise can solve this issue. First, all the regressions in Table 2.2 include city

fixed effects in the regression. Therefore the location specific attributes are

controlled. values of θi are only meant to explain the variation in indus-

trial productivity from city-level average by the variation in human capital
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network index from its city-level average. Second, the sample used in re-

gressions only includes cities with wage, labor and GDP data in the full

spans of 20 industries and all rural area are excluded in the analysis, there-

fore the fundamental economic structures of these cities are not so different

to an extent they are completely deprived of certain sectors.

2.4.2 Robustness Checks

In this section, additional regressions are carried out to check the robust-

ness of the results.

The previous section elaborates on the argument that there can be two

potential sources for higher Hi,c values, either higher total quantity of hu-

man capital in the city, or better allocations of human capital in the city

that is specifically beneficial to industry i. A reasonable concern is that

if the quantity aspect of human capital spillovers dominates the allocation

aspect of human capital spillovers, then the network structure of human

capital allocation will have trivial impact on productivity. Then instead of

a complicated human capital network index, simple aggregate measures of

human capital are sufficient to account for the spillovers.

To eliminate this concern, I use alternative definitions of Hi,c to run the

same regression as in Equation (2.17). The first alternative is to use the

skilled labor input shares αi,c to replace Hi,c in the calculation of Hi,c. In

the second alternative construction, the educated labor shares
Li,c

Li,c +Hi,c

are used to replace Hi,c in Hi,c. The second and the third columns of Table

2.2 show the results. For most industries, the magnitude and significance

level of θi decline while R2 values for the entire regressions decrease as well.

However, the majority of θi values are still statistically significant. This

indicates that while the aggregate quantity of skilled labor does explain part

of the urban human capital spillovers, the allocations of these educated

workers in the production network also matter significantly.

To show that this relationship between urban human capital spillovers

and industrial productivity is robust over time. I expand the calibration

of fundamental productivity Ti,c to BEA and ACS data in the time period

from 2005 to 2016. Because CFS data is not available at yearly basis, only
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Table 2.3: Effect of City Human Capital Spillover on Industrial Productivity
for 15 Manufacturing Subsectors Only

values of θi by industry baseline, 2016 alternative Hi,c 2016 1 alternative Hi,c 2016 2

Food, Beverage & Tobacco 0.403∗∗∗ 0.042∗∗∗ 0.04∗∗∗

(0.076) (0.006) (0.006)
Textile, Apparel & Leather 0.42∗ 0.07 0.078∗∗∗

(0.172) (0.023) (0.022)
Wood & Paper 0.313∗∗∗ 0.044∗∗∗ 0.061∗∗∗

(0.06) (0.011) (0.01)
Printing 0.356 -0.006 0.074

(0.234) (0.026) (0.025)
Petroleum & Coal -1.059 -0.001 −0.071∗∗∗

(0.374) (0.018) (0.017)
Chemical 0.365∗∗∗ 0.028∗∗∗ 0.028∗∗∗

(0.045) (0.005) (0.005)
Plastics & Rubber 0.14 0.045 0.038

(0.238) (0.015) (0.014)
Nonmetallic Mineral 0.127 0.112∗∗∗ 0.139∗∗∗

(0.284) (0.027) (0.026)
Machinary 0.47∗∗∗ 0.077∗∗∗ 0.074∗∗∗

(0.099) (0.005) (0.004)
Primary & Fabricated Metal 0.345∗∗∗ 0.141∗∗∗ 0.123∗∗∗

(0.076) (0.01) (0.009)
Computer & Electronics 0.231∗∗∗ 0.043∗∗∗ 0.052∗∗∗

(0.048) (0.006) (0.006)
Electrical Equipment 0.301∗ 0.045∗∗∗ 0.04∗∗∗

(0.137) (0.011) (0.011)
Transportation Equipment 0.295∗∗∗ 0.048∗∗∗ 0.042∗∗∗

(0.026) (0.003) (0.002)
Furniture 0.515 0.103∗∗∗ 0.125∗∗∗

(0.304) (0.031) (0.029)
Miscellaneous Manufacturing 0.401∗ 0.031 0.056

(0.183) (0.02) (0.018)

City Fixed Effects Yes Yes Yes
Industry Fixed Effects Yes Yes Yes

R2 0.356 0.211 0.189
Observations 4545 4545 4545

Dependent variable: GDP per worker by Industry and MSA.
θi measures the effect of urban human capital spillover on the TFP of industries in the city.
A bigger θi implies a stronger correlation between TFP and human capital spillovers.
Standard errors in the parentheses are culstering with respect to city and year
***p<0.001, **0.001≤p<0.005, *0.005≤p<0.01
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2012 CFS data is used in these additional calibrations. Therefore these TFP

estimates are less reliable. With the new estimates, I run the regression

in Equation (2.17) with additional year fixed effects. The results show that

in spite of slight decline in the magnitude of θi estimates and R2 values,

the majority of θi estimates remain significant and keep the same signs the

baseline results.

In the baseline result, the only industry with insignificant θi is manufac-

turing. This seems to contradict the results of Moretti (2004a). However,

due to the wide variety of business under the umbrella named manufactur-

ing, it is very likely that while high-end manufacturing business can indeed

benefit greatly from an more educated urban environment, some other man-

ufacturing business may experience similar "crowd-out" effect as the ones

mentioned previously. Therefore, I break down the manufacturing sector to

15 finer NAICS categories, and redo the calibrations and regressions with

only manufacturing data. Because BEA has only employment and wage

breakdowns for 20 industries at MSA level, I have to impute employment

and wage values for these new classifications only relying on ACS 5% sam-

ples. As a results more industries in more MSAs end up with 0 employment

and output. When solving the general equilibrium model, I put 1 worker in

all these 0 employment cells. I used state average wages and input ratios

for these industry-city combinations as well. Therefore the results are less

reliable and not directly comparable to results in Table 2.2. There results

are presented in Table 2.3.

According to the baseline results in first column of Table 2.3, 10 out 15

manufacturing sectors have significant θi. Also the variation among values

of θi for different industries is big. This can explain why θi values for manu-

facturing in Table 2.2 are mostly not significant. The 2nd and 3rd columns

of Table 2.3 repeat the experiments with alternative Hi,c definitions. Simi-

lar to Table 2.2 results, the magnitude and significance level of coefficient

estimates, as well as overall R2 in these two columns decrease.
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2.5 Conclusion

This paper explores the relationship between human capital spillovers in

cities and regional difference of industrial productivity in the U.S. To mea-

sure the human capital spillover faced by a specific industry in the city, I

develop a novel human capital network index. It is a weighted average of

skilled labor force level of all other industries in the same city where the

weights are modified betweenness measures between the target industry

and source industry. The index is high for an industry not only when the

general level of human capital level in the city is high but also when human

capital is more concentrated in economically closer nodes in town for an

industry. Therefore this index evaluates both the quantity and the alloca-

tion of human capital in a city for this specific industry. To measure the

industrial productivity in different locations, I build a general equilibrium

model with multi-sector production in cities and competitive trade across

cities and then calibrated the model with MSA level data in the U.S.

With both the measure of urban human capital spillovers and industrial

productivity, this paper conduct empirical regressions to show that there

are three factors that decide the influence of urban human capital spillover

on the productivity of an industry: 1) the general quantity of educated work-

force in the city, 2) the concentration of human capital in an industry’s

input-output network 3) the ability of an industry to absorb the spillovers.

Specifically, the ability of business to absorb urban human capital spillovers

on productivity varies from industry to industry. While majority of sectors

benefit from a more educated urban environment, certain industries, such

as farming, forestry and fishing, mining, transportation and warehousing

as well as some subcategories of manufacturing, experience negative hu-

man capital spillover from the rest of the city. A possible explanation here

is that the large presence of human-capital-intensive sectors in town may

lure away talents from industries with low intensity of human capital us-

age and decrease the human capital quality in these industries. This result

provides evidence that cities with high human capital level are more prone

to specialize in certain industries.

This work provides evidence to show how fundamental productivity of in-

dustries are influenced by human capital allocation in different geographic
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locations. In turn, Yu (2018) shows that the structure of firms’ produc-

tivity in an urban industrial network affect labor allocation across sectors

and cities. Together these two works lay the foundation for analyzing the

endogenous evolution of urban industrial structures and human capital mi-

gration. Future work in this direction will shed more light on the dynamics

of geographic equality in the U.S. economy.
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Derivation of Equation (2.11). The industry level price in city c for indus-

try i is:

log pi,c =

∫
Ω

log pic(ω)dω

log pi,c =

∫
Ω

log pic(ω)dGi
c(p)

log pi,c =

∫ ∞
0

log p
d
(

1− exp
{
−pθΦ̃i

c

})
dp

dp

log pi,c =

∫ ∞
0

log p
d
(

1− exp
{
− exp(θ log p+ log Φ̃i

c)
})

d log p
d log p

log pi,c =

∫ ∞
−∞

t
d
(

1− exp
{
− exp(θt+ log Φ̃i

c)
})

dt
dt

1 − exp
{
− exp(θt+ log Φ̃i

c)
}

is the CDF of t with gumbel distribution, i.e. t ∼

Gumbel(− log Φ̃i
c,

θ
,

1

θ
), so the right hand side is simply the mean of t, − log Φ̃i

c,

θ
−

γ

θ
, where γ is the Euler’s constant. Then I can further write the price index

as:

log pi,c = − log Φ̃i
c

θ
− γ

θ

pi,c = Φi
c

−
1

θ exp

{
θ

γ

}
pi,c =

WL
c
αi,cWH

c
βi,cr1−αi,c−βi,c

Ai,c (Hi,c)α
αi,c

i,c β
βi,c
i,c (1− αi,c − βi,c)1−αi,c−βi,c

.

Therefore, if pi,c is deterministic conditional on all the parameters and

thus p̃i,c is also deterministic.

Proof of Lemma 6. Because pi,cj,c′(ω) =
WL
c
αi,cWH

c
βi,cr1−αi,c−βi,c

Ai,c (Hi,c, ω)α
αi,c

i,c β
βi,c
i,c (1− αi,c − βi,c)1−αi,c−βi,c

τ cc′,

we can derive the probability distribution of pi,cj,c′, i.e. the sales price of {i, c}
to any {j, c′} :

Gi,c
j,c′(p) = Pr

{
pi,cj,c′(ω) ≤ p

}
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= Pr

{
WL
c
αi,cWH

c
βi,cr1−αi,c−βi,c

Ai,c (Hi,c, ω)α
αi,c

i,c β
βi,c
i,c (1− αi,c − βi,c)1−αi,c−βi,c

τ cc′ ≤ p

}

= Pr

{
Ai,c (Hi,c, ω) ≥ WL

c
αi,cWH

c
βi,cr1−αi,c−βi,c

α
αi,c

i,c β
βi,c
i,c (1− αi,c − βi,c)1−αi,c−βi,cp

τ cc′

}

= 1− exp

−Ti,c (Hi,c)

(
WL
c
αi,cWH

c
βi,cr1−αi,c−βi,c

α
αi,c

i,c β
βi,c
i,c (1− αi,c − βi,c)1−αi,c−βi,cp

τ cc′

)−θ . (18)

From Equation (2.12), the probability distribution of good j’s purchase

price for any i in city c is:

Gj
i,c(p) = Pr

{
min
c′∈C

P j,c′

i,c (ω) ≤ p

}
= 1−

∏
c′∈C

(
Pr
{
P j,c′

i,c (ω) ≥ p
})

= 1−
∏
c′∈C

(
1−Gj,c′

i,c (p)
)

= 1−
∏
c′∈C

exp

−Tj,c′ (Hj,c′)

(
WL
c′
αj,c′WH

c′
βj,c′r1−αj,c′−βj,c′

α
αj,c′

j,c′ β
βj,c′

j,c′ (1− αj,c′ − βj,c′)1−αj,c′−βj,c′p
τ c
′

c

)−θ
= 1− exp

−pθ∑
c′∈C

Tj,c′ (Hj,c′)

(
WL
c′
αj,c′WH

c′
βj,c′r1−αj,c′−βj,c′

α
αj,c′

j,c′ β
βj,c′

j,c′ (1− αj,c′ − βj,c′)1−αj,c′−βj,c′
τ c
′

c

)−θ
= 1− exp

{
−pθΦj

c

}
,

where Φj
c =

∑
c′∈C Tj,c′ (Hj,c′)

(
WL
c′
αj,c′WH

c′
βj,c′r1−αj,c′−βj,c′

α
αj,c′

j,c′ β
βj,c′

j,c′ (1− αj,c′ − βj,c′)1−αj,c′−βj,c′
τ c
′
c

)−θ
. Because

the value of Gj
i,c(p) is the same for every i in the same city, I simplify the no-

tation to Gj
c(p). With all these calculations now we can define πj,c

′

i,c , the prob-

ability that a specific city c’ becomes the provider of good j for all industries

in city c, as:

πj,c
′

i,c = Pr

{
pj,c

′

i,c (ω) ≤ min
k∈C\c′

pj,ki,c (ω)

}
=

∫ ∞
0

Pr

{
min
k∈C\c′

pj,ki,c ≥ p

}
dGj,c′

i,c (p)
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=

∫ ∞
0

∏
k∈C\c′

(1−Gj,k
i,c (p))dGj,c′

i,c (p)

=

∫ ∞
0

∏
k∈C\c′

exp

−Tj,k (Hj,k)

(
WL
k
αj,kWH

k
βj,kr1−αj,k−βj,k

α
αj,k

j,k β
βj,k
j,k (1− αj,k − βj,k)1−αj,k−βj,kp

τ kc

)−θ dGj,c′

i,c (p)

=

∫ ∞
0

exp{Φj
c} ·

−Tj,c′θ( WL
c′
αj,c′WH

c′
βj,c′r1−αj,c′−βj,c′

α
αj,c′

j,c′ β
βj,c′

j,c′ (1− αj,c′ − βj,c′)1−αj,c′−βj,c′
τ c
′

c

)−θ pθ−1dp

= Tj,c′ (Hj,c′)

(
WL
c′
αj,c′WH

c′
βj,c′r1−αj,c′−βj,c′

α
αj,c′

j,c′ β
βj,c′

j,c′ (1− αj,c′ − βj,c′)1−αj,c′−βj,c′
τ c
′

c

)−θ ∫ ∞
0

exp
{
−pθΦj

c

}
· θpθ−1dp

=

Tj,c′ (Hj,c′)

(
WL
c′
αj,c′WH

c′
βj,c′r1−αj,c′−βj,c′

α
αj,c′

j,c′ β
βj,c′

j,c′ (1− αj,c′ − βj,c′)1−αj,c′−βj,c′
τ c
′
c

)−θ
Φj
c

(
−exp

{
−pθΦj

c

} ∣∣∞
0

)

=

Tj,c′ (Hj,c′)

(
WL
c′
αj,c′WH

c′
βj,c′r1−αj,c′−βj,c′

α
αj,c′

j,c′ β
βj,c′

j,c′ (1− αj,c′ − βj,c′)1−αj,c′−βj,c′
τ c
′
c

)−θ
Φj
c

.

Again, because the value of πj,c
′

i,c does not depend on i, we can define the

probability of {j, c′} become the supplier of good j in city c as:

πj,c
′

c =

Tj,c′ (Hj,c′)

(
WL
c′
αj,c′WH

c′
βj,c′r1−αj,c′−βj,c′

α
αj,c′

j,c′ β
βj,c′

j,c′ (1− αj,c′ − βj,c′)1−αj,c′−βj,c′
τ c
′
c

)−θ
Φj
c

.

We can see that the probability for any {j, c′} becomes an exporter does not

depend on the specific price it charges.

By the law of large numbers, πj,c
′

i,c can be viewed as the fraction of good

j from city c’ sold to industry i in city c. Next I am going to prove that πj,c
′

i,c

is also the fraction of expenditure on intermediate inputs that industry i

in city spend on good j specifically from city c’. The idea is that any city

winning the bid for exporting product j to industry i in c has exactly the

same price distribution.

Pr

{
pj,c

′

i,c (ω) ≤ ρ
∣∣pj,c′i,c (ω) ≤ min

k∈C\c′
pj,ki,c (ω)

}
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=

∫ ρ
0
Pr
{

mink∈C\c′ p
j,k
i,c (ω) ≥ p

}
dGj,c′

i,c (p)

Pr
{
pj,c

′

i,c ≤ mink∈C\c′ p
j,k
i,c

}
=

1

πj,c
′

i,c

∫ ρ

0

∏
k∈C\c′

(1−Gj,k
i,c (p))dGj,c′

i,c (p)

=
1

πj,c
′

i,c

Tj,c′ (Hj,c′)

(
WL
c′
αj,c′WH

c′
βj,c′r1−αj,c′−βj,c′

α
αj,c′

j,c′ β
βj,c′

j,c′ (1− αj,c′ − βj,c′)1−αj,c′−βj,c′
τ c
′
c

)−θ
Φj
c

(
−exp

{
−pθΦj

c

} ∣∣ρ
0

)

=
1

πj,c
′

i,c

Tj,c′ (Hj,c′)

(
WL
c′
αj,c′WH

c′
βj,c′r1−αj,c′−βj,c′

α
αj,c′

j,c′ β
βj,c′

j,c′ (1− αj,c′ − βj,c′)1−αj,c′−βj,c′
τ c
′
c

)−θ
Φj
c

(
1− exp

{
−ρθΦj

c

})
= 1− exp

{
−ρθΦj

c

}
= Gj

c(ρ).

The expression of this price distribution is independent from the origin city

c′. The importer will need to pay statistically the same price to any exporter

that happens to offer the lowest price bid. Therefore the fraction of goods

j that industry i in c bought from c′, πj,c
′

i,c is also the fraction of expenditure

that city c spending on goods j specifically from city c′.
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Chapter 3

Credit Risks in Production
Network

Introduction

In recently years, the theory that idiosyncratic credit risks can propagate or

spill over through a network of firms and result in macroeconomic down-

turn has been frequently discussed. While many researches focus on mod-

eling financial contagion in banking networks in theory and simulating pos-

sible results, very little valid empirical evidence is presented for financial

contagion in the production network. In data, how can we trace credit risk

propagation in an observable production network? What new insight do

empirical measures of relationship between credit risk and network struc-

ture bring to us about the exact mechanism of financial risk propagation in

production networks?

To answer these questions, this paper investigates the empirical evidence

of credit risk contagion specifically in an inter-sectoral input-output (IO)

production network. The logic behind our empirical strategy is simple. If

financial stress does propagate through the production network, we should

observe stronger credit risk spillovers between industries that are economi-

cally close than the spillovers between two industries that are economically

distant. The measure of economic distance in this paper is defined as the

strength of supplier-customer relationships and is numerically described by

weights between nodes in the IO tables. Supplier industries that provide in-
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puts counting for a larger share of the production cost are considered to be

economically closer to the customer industries. Credit risks are measured

by the probability for public firms to acquire default ratings, get delisted or

go bankrupt.

Consistent with our theory, the empirical results show that the corre-

lation of credit risks between customer industries and supplier industries

declines as the economic distance between the two sides increases. This

relationship is robust to both linear and nonlinear specifications of models.

Also, the results are robust after adding conventional accounting variables

for bankruptcy and default predictions as controls. Another finding is that

industrial average credit risks have a higher level of comovement than in-

dustrial average accounting variables across sectors. Due to the absence

of additional instruments, we cannot rule out unobserved confoundess or

provide a robust causal inference to determine the direction of contagion.

Nevertheless, these results are the first to record the credit risks contagion

in a production network in data. They provide the potential for new insights

into the financial contagion process.

To explain the cause of these observed correlations between economic

distance and risk contagion, we conjecture that the trade credit interde-

pendency among firms along the supply chains is the main mechanism for

credit risk spillovers through a production network. Trade credit is the sin-

gle most important source for short-term finance for firms (Petersen and

Rajan, 1997). Also, nonpayment of trade credits is among the top causes

for firm bankruptcy according to Boissay (2006). Besides, trade credit is

not diversified for lenders as customers of firms usually concentrate in very

specific sectors of the economy. Due to all these characteristics of trade

credits, when sectoral productivity or demand shock hits, if a large number

of downstream buyers in a specific sector experience high level of financial

stress and are incapable of paying their debt back at the same time, their

suppliers, who also tend to concentrate in a few sectors, will suddenly be-

come insolvent as well. In addition, we think this type of financial contagion

upstream is likely to influence major suppliers that are economically closer

to customers way more significant than minor suppliers that are econom-

ically more distant. The reason is twofold. Firstly, buyers have stronger
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incentive to borrow from major suppliers with whom the transactions cover

a larger amount of production cost. Secondly, buyers usually maintain

longer and more stable business relationship with major suppliers. As a

result, major suppliers have more information about their customers and

thus are more likely to lend them. Both of these reasons can lead to inter-

sectoral contagion of credit risks.

The remainder of the paper is organized as follows. After a brief discus-

sion of related literature, Section 3.1 puts forward the baseline regression

model and Section 3.2 describes the data used in the empirical analysis.

Section 3.3 presents all the empirical results that show the inter-sectoral

credit risk comovement in a network and interpret the results. In Section

3.4, we present our conjecture abour the mechanism that drives the em-

pirical results for network spillover of credit risks from the previous part.

Finally, section 3.5 concludes.

Related literature This paper is a novel application of network analysis

on the study of credit risks and financial contagion. The idea that idiosyn-

cratic shocks can propagate through networks and eventually create aggre-

gate fluctuations has been extensively explored by many economists both

theoretically and empirically. Acemoglu et al. (2012b) first built a theoretical

framework for input-output production network analysis in the macroeco-

nomic system. Later many work, such as Herskovic (2018) and Acemoglu

et al. (2015), further extended these frameworks to the analysis of financial

markets. This paper applied their views of production network contagion

specifically to the topic of credit risks. The regression method used in this

paper to detect spillover in a network is first used in Moretti (2004b) to

study the network spillovers of human capital in cities.

As to credit risks literature, on the one hand, there are a large number of

empirical studies that focus on bankruptcy and default predictions through

regressions, such as Chava and Jarrow (2004), Das et al. (2007), Duffie

et al. (2007) as well as Campbell et al. (2008). Their common assumptions

are either firm-level risks are independent to each other or they have limited

dependency described by conditional probability. The key difference of our

work compared to these paper is that we use an observable input-output
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network to measure the correlation of risks. On the other hand, many the-

ory works try to depict the exact process and mechanism for the financial

contagion to happen inside a network of firms and banks and how macroe-

conomic cycles can be created in the process. Among them, studies such as

Allen and Gale (2000) focus on the risk propagation through banks whereas

other research, including Kiyotaki and Moore (1998), Boissay (2006) and

Gatti et al. (2010) also pay attention trade credit in their analysis. This

paper tries to bridge these two genres of credit risks literature, and pro-

vide robust empirical evidence to support the theory framework of financial

contagion in credit networks.

In addition, classic theories about incentive and information asymmetry

behind trade credit, such as Smith (1987) and Petersen and Rajan (1997),

have inspired our conjecture of how trade credit assists risk spillovers in

the production network in this paper.

3.1 Econometric Model

The central assumption behind all the empirical analysis of this paper is

that if financial distress and credit risks do spillover and propagate through

the input-output network, then industries with closer economic distance

should have higher levels of correlations of default probabilities than indus-

tries with longer economic distance. Let Di,k,t denote the occurrence of a

high credit risk event of firm i in industry k in year t, then we can summa-

rize this assumption into the following equation:

Di,k,t = β0 + β1DS
1
k,t + β2DS

2
k,t + ...+ βnDS

n
k,t + controlsi,k,t + εi,k,t, (3.1)

where DSnk,t is the probability of high credit risk events, such as bankruptcy

or default, of the nth largest supplier for firms in industry k in year t. To

avoid endogeneity and identification issues frequently mentioned in the dis-

cussion of peer effects, such as Angrist (2014) and Manski (1993), we ex-

clude a firm’s own industry from its supplier default rate variables DSnk,t. In

this case, none of the peers from the same industry as the target firm on

the left hand side ends up on the right hand side of the regression. In ad-
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dition, because DSnk,t have the same values for firms in the same industries

at a specific time, these variables are essentially a way to dissect year and

industry fixed effects. Therefore dummies for year and industry fixed effects

are not included in regressions anymore.

We also incorporate a selection of firm-level accounting variables com-

mon in empirical bankruptcy and default prediction literature as controls

for time-varying, city and firm specific shocks, i.e. controlsi,k,t in the equa-

tion. LASSO regressions help us to pick five of the most significant variables

from the ones used in Campbell et al. (2008) and Chava and Jarrow (2004)

for this paper. They are return on assets (ROA), total liabilities on assets

(TL), the current to total liabilities ratio (SHORT), interest coverage ratio

(ICR) and cash flow ratio (LIQ). Following the treatment of previous papers,

these variables are winsorized, standardized and a subset of them are also

logarithmized. εi,k,t is the residual time-varying, city and firm specific id-

iosyncratic shock that cannot be explained by these controls.

Following our assumption, the key to identification of the network ef-

fect is that as n increases, the economic distance between two industries

increases, therefore we should observe the significance level and the mag-

nitude of βn both decline. This idea of using credit risk spillovers declining

with economic distance to verify the network effect of financial stress is in-

spired by Moretti (2004b)’s work of measuring human capital spillovers in

production networks. Similar to his paper, we adopt input-output tables

as a measure of economic distance. Specifically, the economic distance be-

tween a firm and its suppliers is in proportion to the value of inputs that

each supplier’s industry provides to the firm’s own industry.

Also, these regressions are designed to extract correlations between group

averages, between R2, instead of the standard R2, is a better measurement

here. More specifically, if the production network structure indeed affects

the strength of industry-wise credit risk correlations, we should observe a

significant level of the R2 between values, instead of the standard R2, in

these regressions.

As to the threat to the identification strategy, while plenty of confounders

that both move the default risks of supplier industries and customers, they

do not directly impact the economic distance measures by IO tables. Input-
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output relationships recorded in the U.S. IO tables are relatively stable in

the last 15 years so economic distance can be considered as exogenous to

business cycles and economic shocks. Therefore as long as βn has an de-

clining order as n increases, the existence of network effect can be verified.

However, the caveat of this method lies in its incapability to support any

causal interpretation of the network effect that can be captured by it. In

other words, the empirical results cannot directly make any statement on

the direction of credit risks contagion in the network, whether it is from

customer industries to supplier industries or the other way around.

3.2 Data

To test the above theory, we used public firm data of credit risks and ac-

counting information, as well as industry level data of input-output rela-

tionships between 1971 and 2016 in the empirical analysis.

Events that represent high levels of credit risks and financial distress,

such as default and bankruptcy, occur at a low frequency. Therefore, in

order to capture as many such events as possible, this paper uses three

types of events, namely default, delisting and bankruptcy, to construct the

credit risk flags D for public firms. In a given year, D flag is 1 for a firm

if within 12 months after its 10K statement release dates, any one of the

three types of events happens. Otherwise D flag has value 0. Notice that

when D flag is 1 for a firm in a specific year, there can still be up to a

one-year lag between the 10K statement release date and the date that an

actual D event happens. Among these three types of events, the default

category consists of firms getting Moody’s S&P credit rating of D in the

Compustat database. Delisting events refer to firms being delisted from

stock exchanges under the codes of 400 (liquidations) or 500 (dropped) in

the database of Center for Research in Security Prices (CRSP). There are

multiple sources of bankruptcy events. The first one is the chapter 7 and 11

bankruptcy data set cleaned and used by Chava and Jarrow (2004), Chava

(2014) and Alanis et al. (2018). This data set covers bankruptcy events for

public firms from 1964 to 2014. The second is from Bankruptcydata.com,

which covers bankruptcy events up to 2018. Due to the limit of D flags’
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source data, only public firms are included in the analysis.

Figure 3.1: Occurrence of Bankruptcy/Default/Delisting Events, 1997-
2016
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There is a time lag between D = 1 and an actual D event happens. For example, in 2007
D = 2.13%. It means the probability for an average firm to go bankrupt or default or delist
within next 12 months is 2.13%

The industrial network data used here are input-output tables by 71

industries provided by Bureau of Economic Analysis (BEA). Industries here

are defined by the first 3 digit of North American Industry Classification

System (NAICS) codes. BEA only offers these tables in the period of 1997 to

2016, so we limit the analysis to only these years. We exclude government

sectors, the banking sector 1 and utility sector 2 from the analysis because

their financing and credit mechanism are different and we want to focus

on private sectors. Besides, the warehousing and storage industry3is free

from any default, delisting or bankruptcy event observed during the data

period, thus being removed as well. Eventually 66 private industries are

left in the data set. The IO tables are normalized to only include these

industries. Figure 3.1 shows the average annual probability for any one of

the three types of D events to happen during this period of time for firms

in these 53 industries. We can see that D flags peak twice around 2001 for

the recession following the bust of the dot-com bubble, as well as the great

recession in 2008.
1NAICS code: 523 524 525
2NAICS code: 22
3NAICS code 493
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Input-Output tables provide us meanings to measure the economic dis-

tance between any two industries, but among many types of IO tables,

which ones to choose? This paper specifically focuses on ranking the major

customers and suppliers of a specific industry in the network, so only two

types of IO tables are used here. We use the total requirements tables to

find the most important suppliers for an industry.4 For a pair of source and

target industries, a number X in a total requirements table means that X

dollars of direct and indirect inputs are required from the source industry

to produce one dollar of output in the target industry. Therefore the top

Kth most important suppliers for an industry in this study are defined as

the source industries with the largest K weights for the same target indus-

try in the total requirements tables. We extract information of the most

important customers for an industry from the use tables.5 These tables

show the total value of direct intermediate inputs used by each industry

to produce its output. The top Kth most important customers for an in-

dustry are defined as the target industries with the largest K weights for

the same source industry in the use tables. However, it is challenging to

rank customer-industries merely based on use tables. Many firms produce

multiple products across multiple industries while their NAICS codes are

only associated with their primary products. The total requirement tables

provide a convenient way to identify and rank supplier-industries because

it counts for the value of inputs both from primary product producers and

secondary product producers to one dollar of output of the target indus-

try. In other words,these tables reflect the relationships between industries

more accurately.6 However, no such normalized table exists to show the

direct and indirect domestic customer decomposition of sellers. The use

and domestic supply tables provided by BEA are before industry redefini-

tion, so many entries have value 0. More importantly they do not reallocate

outputs. Therefore it is difficult for the normalized version of these tables

to accurately identify and rank customer-industries for target firms. There-

fore, the baseline analysis will focus on the network relationships derived
4The full name of the tables are: Industry-by-Commodity Total Requirements, After

Redefinitions.
5The full name of the tables are: The Use of Commodities by Industries.
6The total use tables (after redefinition) reallocate the production of secondary products

from the producing industry to the industry for which the product is primary.
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from the total requirement table whereas the results from the use tables

are included in the robustness check. In this paper, we consider major

suppliers and customers to an industry to have closer economic distance

to the target industry, whereas minor suppliers and customers have longer

economic distance to it.

The firm-level accounting variables that are used as controls are also

from Compustat. Tables 3.1 and 3.2 show the summary statistics of these

accounting variables before any manipulation for all public firms in the

dataset and only firms with D = 1 respectively.

Table 3.1: Summary Statistics of Accounting Variables of All Firms

Variables count mean std min 25% 50% 75% max

ROA 178083 -0.524 67.881 -25884.808 -0.063 0.029 0.073 2369.429
TL 178083 1.41 73.012 0.001 0.363 0.529 0.699 25968.974

SHORT 178083 0.568 0.271 0.001 0.344 0.55 0.804 2.233
ICR 178083 613.252 10866.695 0.0 23.956 59.033 154.427 2066413
LIQ 178083 0.997 3.358 0.0 0.092 0.296 0.853 498

Table 3.2: Summary Statistics of Accounting Variables of Firms with D flags

Variables count mean std min 25% 50% 75% max

ROA 4744 -0.777 4.567 -249 -0.707 -0.263 -0.066 11.566
TL 4744 2.416 91.827 0.017 0.589 0.835 1.119 6324

SHORT 4744 0.644 0.307 0.001 0.366 0.71 0.943 1
ICR 4744 226.124 2711.568 0.001 8.991 23.386 58.432 147715
LIQ 4744 0.488 1.756 0.0 0.035 0.117 0.409 81.146

D = 1 refers to an occurrence of a default, delisting or bankruptcy event for a firm.

Accounting Variable Definitions: ROA =
Net Income

Assets
, TL =

Total Liabilities

Assets
, SHORT =

Current Liabilities

Total Liabilities
, ICR =

Revenue

Interest Expenses
, LIQ =

Cash

CurrentLiabilities
.

To guarantee the consistency and comparability of the results, only firms

with all the five chosen accounting variables during the data period are kept

in the analysis. Eventually we used the data of 12590 firms. Figure 3.2 is

the annual firm count in the data period.
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Figure 3.2: Number of Firms in the Dataset, 1997-2016
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Only public firms with all the accounting information in COMPUSTAT are included in the
analysis.

3.3 Empirical Results

Baseline Results

The regression results for the baseline linear model in Equation (3.1) from

Section 3.1 is presented in Table 3.3.

Regressions 0 to 4 show that among the top five supplier-industries of a

firm, βn, the coefficient of DSnk,t, decreases as n increases. This indicates that

the correlations between the firm’s credit risk and its suppliers’ declines as

the supplier-industries provide less and less inputs into the target firm’s

production process. Also, starting from the 6th largest suppliers, the coef-

ficient of credit risks turns statistically insignificant. This declining rank of

βn is consistent in all 5 regressions so this result is stable to change of spec-

ifications. Although there are many unobserved the macro economic factors

that can affect both Di,k,t and DSnk,t at the same time, they are unlikely to

affect the ranking of βn. These results are supportive evidence for the ex-

istence of the contagion of credit risks in the production network. This is

the first piece of empirical evidence that shows that sectoral linkages create

contagion that can be observed at a macro level.

In addition, according to the between R2 values of regressions 0 to 4
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Table 3.3: Linear Correlations of Credit Risks in the Industrial Network

Variables 0 1 2 3 4 5 6 7 8 9 10

Ds1 0.441∗∗∗ 0.336∗∗∗ 0.271∗∗∗ 0.24∗∗∗ 0.23∗∗∗ 0.386∗∗∗ 0.296∗∗∗ 0.236∗∗∗ 0.21∗∗∗ 0.202∗∗∗

(0.076) (0.066) (0.058) (0.053) (0.055) (0.073) (0.066) (0.058) (0.054) (0.055)
Ds2 0.407∗∗∗ 0.319∗∗∗ 0.249∗∗∗ 0.214∗∗∗ 0.199∗∗∗ 0.358∗∗∗ 0.283∗∗∗ 0.218∗∗∗ 0.188∗∗∗ 0.176∗∗∗

(0.088) (0.079) (0.071) (0.073) (0.067) (0.075) (0.066) (0.06) (0.062) (0.057)
Ds3 0.243∗∗∗ 0.22∗∗∗ 0.201∗∗∗ 0.195∗∗∗ 0.208∗∗∗ 0.187∗∗∗ 0.171∗∗∗ 0.166∗∗∗

(0.055) (0.051) (0.047) (0.048) (0.051) (0.048) (0.043) (0.044)
Ds4 0.178∗∗∗ 0.146∗∗∗ 0.135∗∗∗ 0.164∗∗∗ 0.137∗∗∗ 0.129∗∗∗

(0.028) (0.024) (0.026) (0.028) (0.023) (0.026)
Ds5 0.126∗∗∗ 0.119∗∗∗ 0.107∗∗∗ 0.102∗∗∗

(0.026) (0.024) (0.025) (0.023)
Ds6 0.051 0.039

(0.038) (0.033)
ROA −0.029∗∗∗ −0.026∗∗∗ −0.026∗∗∗ −0.026∗∗∗ −0.026∗∗∗ −0.026∗∗∗

(0.004) (0.004) (0.003) (0.003) (0.003) (0.003)
SHORT 0.004∗∗∗ 0.004∗∗∗ 0.004∗∗∗ 0.004∗∗∗ 0.004∗∗∗ 0.004∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
logICR 0.003∗∗∗ 0.002∗ 0.002∗ 0.002∗ 0.002∗ 0.002∗

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
logLIQ −0.004∗ −0.003∗ −0.003∗ −0.003∗ −0.003∗ −0.003∗

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
logTL 0.011∗∗∗ 0.011∗∗∗ 0.011∗∗∗ 0.011∗∗∗ 0.011∗∗∗ 0.011∗∗∗

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

R2 between 0.445 0.45 0.445 0.444 0.444 0.097 0.453 0.456 0.452 0.451 0.45
nobs 93306 93306 93306 93306 93306 94688 93306 93306 93306 93306 93306

Dependent variables are D flags for default, delisting and bankruptcy events.
Dsn represents the average default probability of the nth largest supplier industry of the target firm.
Controls include return on assets (ROA), total liabilities on assets (TL), the current to total liabilities ratio (SHORT),

interest coverage ratio (ICR) and cash flow ratio (LIQ).
Standard errors in the parentheses are clustered with respect to industry and year.
***p<0.01, **0.01≤p<0.05, *0.05≤p<0.1

in Table 3.3, the D rates of supplier-industries alone explain around 46%

of the variation of average industry level D rates of the target industries.

These high between R2 values indicate that the average probability of de-

fault, delisting or bankruptcy events in industries have very significant and

observable comovement with each other.

In Table 3.3, regressions 6 to 10 demonstrate that after controlling for

the accounting information of individual firms, such pattern of declining

coefficients are still robust. All these financial variables are standardized

at industry levels so they only represents firm-level idiosyncratic shocks.

Therefore they are incapable of explaining the group difference of frequency

of D events among different industries. The low between R2 value of re-

gression 5, which only includes accounting variables as regressors, verifies

this.
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Robustness Checks

Additional robustness checks are also done to verify the results. First, to

understand the relative magnitude of these between R2 values in Table 3.3,

we use accounting variables of the top sixth largest supplier-industries,

instead of the industry-level D rates, as regressors to run the same regres-

sions, i.e.

Di,k,t = β0 + β1V arS
1
k,t + β2V arS

2
k,t + ...+ βnV arS

n
k,t;

where V arS can be one of the five accounting variables from supplier-

industries, including return on assets (ROA), total liabilities on assets (TL),

the current to total liabilities ratio (SHORT), interest coverage ratio (ICR)

and cash flow ratio (LIQ).

Table 3.4 shows the results. The between R2 of these regressions are

significantly lower than the ones in Table 3.1. This indicates that comove-

ments of D rates among industries in the production network are much

stronger than the comovement between D rates of the target industries and

other accounting variables of the supplier-industries.

Why can D flags of suppliers’ industries capture the movements of D

flags in the target industries much better than the more detailed accounting

information of suppliers? One plausible explanation for such phenomenon

is that at any point of time events such as default, delisting and bankruptcy

have very skewed distributions, whereas accounting variables, especially af-

ter winsorization and standardization, often are normally distributed. Due

to the limited sample size, these accounting variables have difficulty to effec-

tively capture information needed to predict rare events with low frequency

of occurrence among operating firms. This is a typical issue for imbalanced

dataset classification problem(Chawla, 2009). However, default, delisting

and bankruptcy events of different industries have similarly skewed distri-

butions thus observations of these events are more likely to be correlated if

they are indeed connected through the production network.

Next, to compare our results with analysis in conventional empirical

credit risk literature with accounting variables, we also run regressions of a
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Table 3.4: Credit Risks v.s. Alternative Accounting Variables in the Production
Network

Variables ROA logTL SHORT logICR logLIQ ROA logTL SHORT logICR logLIQ

Ds1 -0.015 0.022∗ 0.015 0.015 -0.013 -0.012 0.016 0.017 0.015 -0.009
(0.01) (0.013) (0.016) (0.022) (0.019) (0.009) (0.011) (0.015) (0.019) (0.017)

Ds2 -0.017 0.018∗ -0.011 -0.01 −0.023∗ -0.011 0.019∗∗ -0.011 -0.012 −0.023∗∗

(0.011) (0.011) (0.017) (0.02) (0.013) (0.01) (0.01) (0.015) (0.017) (0.011)
Ds3 −0.024∗∗∗ 0.033∗∗∗ −0.021∗ −0.025∗∗∗ −0.021∗∗∗ −0.02∗∗∗ 0.025∗∗∗ -0.016 −0.019∗∗ −0.018∗∗∗

(0.007) (0.01) (0.013) (0.009) (0.007) (0.007) (0.009) (0.012) (0.008) (0.006)
Ds4 −0.025∗∗∗ 0.027∗∗∗ -0.01 −0.029∗∗∗ −0.018∗∗ −0.022∗∗∗ 0.023∗∗∗ -0.008 −0.027∗∗∗ −0.017∗∗∗

(0.006) (0.007) (0.008) (0.009) (0.008) (0.006) (0.006) (0.007) (0.007) (0.006)
Ds5 −0.034∗∗∗ 0.04∗∗∗ -0.013 −0.039∗∗∗ −0.028∗∗ −0.028∗∗∗ 0.034∗∗∗ -0.011 −0.033∗∗∗ −0.025∗∗

(0.007) (0.01) (0.012) (0.013) (0.014) (0.006) (0.008) (0.011) (0.011) (0.011)
Ds6 −0.027∗∗∗ 0.018∗∗ 0.001 -0.016 −0.021∗∗∗ −0.023∗∗∗ 0.015∗∗ 0.0 -0.015 −0.022∗∗∗

(0.007) (0.008) (0.01) (0.011) (0.008) (0.007) (0.008) (0.008) (0.01) (0.006)
ROA −0.027∗∗∗ −0.029∗∗∗ −0.028∗∗∗ −0.028∗∗∗

(0.004) (0.004) (0.003) (0.003)
SHORT 0.004∗∗∗ 0.004∗∗∗ 0.003∗∗ 0.003∗∗

(0.001) (0.001) (0.001) (0.001)
logICR 0.003∗∗ 0.001 0.004∗∗∗ 0.004∗∗∗

(0.001) (0.001) (0.001) (0.001)
logLIQ -0.003 −0.005∗∗ −0.004∗ -0.002

(0.002) (0.002) (0.002) (0.002)
logTL 0.012∗∗∗ 0.009∗∗∗ 0.011∗∗∗ 0.012∗∗∗

(0.002) (0.002) (0.002) (0.002)

R2 between 0.255 0.253 0.044 0.046 0.113 0.285 0.285 0.125 0.13 0.191
nobs 94540 94540 94540 94540 94540 94540 94540 94540 94540 94540

Dependent variables are column names.
Column names are the chosen accounting variables from suppliers as regressors.
sn represents the industry average of the column accounting variable for the nth largest supplier-industry of a firm.
Controls include return on assets (ROA), total liabilities on assets (TL), the current to total liabilities ratio (SHORT),
interest coverage ratio (ICR) and cash flow ratio (LIQ).
Standard errors in the parentheses are clustered with respect to industry and year.
***p<0.01, **0.01≤p<0.05, *0.05≤p<0.1

logistic version of the model, i.e.

Di,k,t =
1

1 + exp{β0 + β1DS1
k,t + β2DS2

k,t + ...+ βnDSnk,t + controlsi,k,t + εi,k,t}
.

The results are presented in Table 3.5. The coefficients for DS1
k,t to DS4

k,t

are consistently significant across all regressions and declining as n in-

creases. Starting from DS5
k,t, the coefficients turn to insignificant. Therefore,

the evidence of network spillover persists in these nonlinear regressions, al-

though the results are slightly less significant.

Finally, a natural question to ask here is that if such network relation-

ship can be observed with customer-industries of target firms, can it also

exist with major customer-industries of firms? In other words can we ob-

serve declining coefficients for this following regression:

Di,k,t = α0 + α1DC
1
k,t + α2DC

2
k,t + ...+ αnDC

n
k,t + controlsi,k,t + εi,k,t; (3.2)
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Table 3.5: Logistic Regressions of Credit Risks in the Industrial Network

Variables 0 1 2 3 4 5 6 7 8

Ds1 7.543∗∗∗ 7.291∗∗∗ 7.232∗∗∗ 7.245∗∗∗ 6.988∗∗∗ 6.696∗∗∗ 6.615∗∗∗ 6.623∗∗∗

(0.529) (0.534) (0.535) (0.535) (0.57) (0.575) (0.577) (0.578)
Ds2 2.19∗∗∗ 2.168∗∗∗ 2.161∗∗∗ 2.167∗∗∗ 2.499∗∗∗ 2.474∗∗∗ 2.464∗∗∗ 2.468∗∗∗

(0.302) (0.306) (0.307) (0.306) (0.322) (0.327) (0.328) (0.328)
Ds3 1.521∗∗∗ 1.532∗∗∗ 1.529∗∗∗ 1.569∗∗∗ 1.581∗∗∗ 1.58∗∗∗

(0.267) (0.267) (0.267) (0.295) (0.295) (0.295)
Ds4 0.433∗ 0.429∗ 0.526∗∗ 0.524∗∗

(0.238) (0.238) (0.252) (0.252)
Ds5 -0.164 -0.098

(0.178) (0.184)
Intercept −3.746∗∗∗ −3.787∗∗∗ −3.8∗∗∗ −3.793∗∗∗ −3.836∗∗∗ −4.161∗∗∗ −4.202∗∗∗ −4.218∗∗∗ −4.214∗∗∗

(0.029) (0.03) (0.031) (0.032) (0.024) (0.034) (0.035) (0.036) (0.037)
ROA −0.611∗∗∗ −0.599∗∗∗ −0.598∗∗∗ −0.597∗∗∗ −0.597∗∗∗

(0.017) (0.017) (0.017) (0.017) (0.017)
SHORT -0.006 0.002 0.002 0.002 0.002

(0.019) (0.019) (0.019) (0.019) (0.019)
logICR 0.015 0.011 0.011 0.01 0.01

(0.019) (0.019) (0.019) (0.019) (0.019)
logLIQ −0.186∗∗∗ −0.169∗∗∗ −0.167∗∗∗ −0.167∗∗∗ −0.167∗∗∗

(0.02) (0.02) (0.02) (0.02) (0.02)
logTL 0.104∗∗∗ 0.126∗∗∗ 0.129∗∗∗ 0.129∗∗∗ 0.129∗∗∗

(0.021) (0.021) (0.021) (0.021) (0.021)

Pseudo R2 0.009 0.01 0.01 0.01 0.102 0.109 0.11 0.11 0.11
nobs 94731 94731 94731 94731 94731 94731 94731 94731 94731

Dependent variables are D flags for default, delisting and bankruptcy events.
Column names are the chosen accounting variables from suppliers as regressors.
sn represents the industry average of the column accounting variable for the nth largest supplier-industry of a firm.
Controls include return on assets (ROA), total liabilities on assets (TL), the current to total liabilities ratio (SHORT),

interest coverage ratio (ICR) and cash flow ratio (LIQ).
Standard errors in the parentheses are clustered with respect to industry and year.
***p<0.01, **0.01≤p<0.05, *0.05≤p<0.1

where DCn
k,t is the default, bankruptcy and delisting probability of the nth

largest cusotmer for firms in industry k in year t. Similar to the interpre-

tation of βn, the theory in Section 3.1 implies that the values of αn should

decline as n increases.

The challenging part of this regression is to pick and rank customer-

industries in data. As discussed in th Section 3.2, it is difficult for the

normalized version of IO tables from BEA to accurately identify and rank

customer-industries for firms. Namely, more often than not public firms

produce goods across multiple industries but use tables do not reclassify

these productions. Under this concern, regression results from Equation

(3.2) are expected to be weak. Table 3.6 shows the results of Equation (3.2)

and it follows the same format as Table 3.3. Indeed, the declining coeffi-

cients are not observed in these results. Also R2 between values are less

significant. The reduction of observation numbers in this table compared
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to Table 3.3 is caused by the larger amount of 0’s in the use IO tables. Bet-

ter metric to measure economic distances between firms and their major

customers can potentially solve this problem.

Table 3.6: Linear Correlations of Credit Risks with Customers in the Pro-
duction Network

Variables 0 1 2 3 4 5 6 7 8 9 10

Dc1 0.393∗∗∗ 0.274∗∗ 0.211∗∗ 0.153∗∗ 0.099∗∗ 0.342∗∗∗ 0.238∗∗ 0.184∗∗ 0.132∗∗ 0.084∗∗

(0.145) (0.111) (0.096) (0.073) (0.049) (0.123) (0.094) (0.08) (0.061) (0.04)
Dc2 0.085∗ 0.061 0.052 0.041 0.031 0.08∗ 0.058∗ 0.051∗ 0.04∗ 0.032∗

(0.05) (0.038) (0.034) (0.027) (0.021) (0.042) (0.031) (0.028) (0.022) (0.017)
Dc3 0.287∗∗∗ 0.233∗∗∗ 0.178∗∗∗ 0.127∗∗∗ 0.254∗∗∗ 0.208∗∗∗ 0.158∗∗∗ 0.113∗∗∗

(0.068) (0.049) (0.042) (0.025) (0.061) (0.046) (0.041) (0.027)
Dc4 0.161∗∗∗ 0.118∗∗ 0.08∗ 0.138∗∗∗ 0.1∗∗ 0.067∗

(0.06) (0.053) (0.046) (0.052) (0.045) (0.038)
Dc5 0.23∗∗∗ 0.207∗∗∗ 0.206∗∗∗ 0.186∗∗∗

(0.058) (0.049) (0.053) (0.045)
Dc6 0.243∗∗∗ 0.216∗∗∗

(0.048) (0.042)
ROA −0.029∗∗∗ −0.026∗∗∗ −0.026∗∗∗ −0.025∗∗∗ −0.025∗∗∗ −0.025∗∗∗

(0.003) (0.003) (0.003) (0.003) (0.003) (0.003)
SHORT 0.003∗∗∗ 0.004∗∗∗ 0.004∗∗∗ 0.004∗∗∗ 0.004∗∗∗ 0.004∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
logICR 0.003∗∗ 0.002∗ 0.002∗ 0.002∗ 0.002∗ 0.002∗

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
logLIQ −0.004∗ −0.004∗ −0.004∗ −0.004∗ −0.004∗ −0.004∗

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
logTL 0.011∗∗∗ 0.011∗∗∗ 0.011∗∗∗ 0.011∗∗∗ 0.011∗∗∗ 0.011∗∗∗

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

R2 between 0.303 0.362 0.37 0.395 0.421 0.099 0.337 0.386 0.391 0.414 0.434
nobs 88433 88433 88433 88433 88433 94203 88433 88433 88433 88433 88433

Dependent variables are D flags for default, delisting and bankruptcy events.
Dcn represents the average default probability of the nth largest customer industry of the target firm.
Controls include return on assets (ROA), total liabilities on assets (TL), the current to total liabilities ratio (SHORT),

interest coverage ratio (ICR) and cash flow ratio (LIQ).
Standard errors in the parentheses are clustered with respect to industry and year.
***p<0.01, **0.01≤p<0.05, *0.05≤p<0.1

In addition, to make sure the regression results are robust to different

sources of bankruptcy events that are used to construct D flags for firm,

regressions in Table 3.3 are duplicated for individual bankruptcy database

separately. The declining significance levels and magnitudes of DSn’s coef-

ficients are also observed in each set of these regressions.

3.4 Mechanism Discussion

The previous section presents robust evidence of credit risk spillovers in the

production network. Namely, as the contribution of one industry’s inputs

in the production process of another industry increases, the probability for
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high financial stress events, including default, delisting and bankruptcy, of

these two industries have a higher level of correlation. Then what can ex-

plain this type of credit risk contagion propagating thorough the production

network?

Firms are inter-connected with each other not only through the demand

and supply of real goods and services in the production process, but also

through direct borrowing and lending in the form of trade credits. There-

fore there can be two potential channels to cause the observed credit risk

contagions contagion. One possible explanation is that demand and supply

shocks of real goods and services may pass down the supply chain and put

pressure on the profitability of suppliers or customers in the network. Fi-

nancial distress of major suppliers or customers may harm firms ability to

either make or sell goods for profit. Consequently, sudden drops in profit

may push firms towards insolvency and eventually bankruptcy, default or

delisting. If this is the main mechanism that is behind the network corre-

lations observed in the previous section, we should observe the accounting

variables measuring profitability of firms in the target industry correlated

with the frequency of observing D flags in supplier and customer industries.

More importantly, as the economic distance between supplier and customer

firms gets shorter, such correlation should get stronger.

Table 3.4 shows that D rates of supplier industries can only explain

25% of the variance in return on assets(ROA), which is the main measure of

profitability, of the target industries, whereas D rates of suppliers industries

can explain up to 44.5% of the variance in D. Moreover, neither the mag-

nitude nor the significance of coefficients for DS1 to DS6 follows a declining

order. These results show that financial distress of supplier industries has

relatively weak explanatory power to the changes in profitability of target

industries. Table 3.7 shows extra regression results between accounting

variables and D flags. Column 1 to 5 show that accounting variables of

supplier industries also have relatively low explanatory power to the vari-

ance in D flags of the target industries. However according to column 6 to

10, they do explain the variance in accounting variables of the target firms

better. There is also an absence of the declining order for both the mag-

nitude and the significance of coefficients in every one of the regression in

107



Table 3.7: Linear Correlations of Credit Risks in the Industrial Network

Variables D D D D D ROA SHORT logICR logLIQ logTL

ROAs1 −0.022∗∗ 0.13∗∗

(0.009) (0.056)
ROAs2 −0.018∗∗∗ 0.201∗∗∗

(0.007) (0.053)
ROAs3 −0.026∗∗∗ 0.204∗∗∗

(0.006) (0.035)
ROAs4 −0.017∗∗∗ 0.111∗∗∗

(0.004) (0.037)
ROAs5 −0.015∗∗∗ 0.083∗∗∗

(0.004) (0.026)
SHORTs1 0.022 0.255∗∗∗

(0.015) (0.066)
SHORTs2 -0.007 0.034

(0.009) (0.067)
SHORTs3 −0.021∗∗ 0.109∗∗∗

(0.009) (0.03)
SHORTs4 −0.016∗∗∗ 0.081∗∗∗

(0.003) (0.019)
SHORTs5 −0.011∗∗∗ 0.06∗∗∗

(0.004) (0.01)
logICRs1 0.005 0.189∗∗

(0.018) (0.083)
logICRs2 -0.007 0.092

(0.012) (0.065)
logICRs3 −0.023∗∗∗ 0.157∗∗∗

(0.008) (0.041)
logICRs4 −0.026∗∗∗ 0.027

(0.005) (0.025)
logICRs5 −0.027∗∗∗ 0.057

(0.006) (0.044)
logLIQs1 -0.008 0.228∗∗∗

(0.014) (0.076)
logLIQs2 −0.022∗ 0.109∗∗∗

(0.013) (0.027)
logLIQs3 −0.021∗∗∗ 0.103∗∗∗

(0.008) (0.036)
logLIQs4 −0.013∗ 0.096∗∗∗

(0.007) (0.028)
logLIQs5 -0.001 0.089∗∗∗

(0.007) (0.02)
logTLs1 0.016∗ 0.221∗∗∗

(0.009) (0.044)
logTLs2 0.024∗∗∗ 0.098

(0.008) (0.077)
logTLs3 0.031∗∗∗ 0.168∗∗∗

(0.007) (0.039)
logTLs4 0.022∗∗∗ 0.07∗∗

(0.005) (0.033)
logTLs5 0.022∗∗∗ 0.056∗

(0.008) (0.03)

R2 between 0.206 0.073 0.075 0.059 0.22 0.469 0.023 -0.008 0.088 0.431
nobs 88421 88421 88421 88421 88421 94203 94203 94203 94203 94203

Dependent variables are column names. They are all attributes of target firms.
Controls include return on assets (ROA), total liabilities on assets (TL), the current to total liabilities ratio (SHORT),

interest coverage ratio (ICR) and cash flow ratio (LIQ).
Standard errors in the parentheses are clustered with respect to industry and year.
***p<0.01, **0.01≤p<0.05, *0.05≤p<0.1

Table 3.7. This implies the comovements among accounting variables, as

well as between these accounting variables and D flags, are more likely to
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be caused by other confounders in the macroeconomic environment other

than the production network structure. The financial risks passing down

through real goods and services transactions are not likely to be the main

reason for the network correlation of financial distress we observed in the

previous section.

Another potential answer for this network correlation lies in the heavy

usage of trade credit in the production process. According to Petersen and

Rajan (1997) and Boissay (2006), trade credit is the single most important

source for firms to acquire short-term external finance. Moreover, large

public firms that are typically presented in the COMPUSTAT dataset rely

more heavily on trade credit than smaller private firms (Petersen and Rajan,

1997). When the financial stress of the downstream industries increases,

the likelihood for their suppliers not being able to recollect accounts receiv-

able and suddenly go insolvent increases as well. Therefore, high probability

for customers to default, delist or go bankrupt indicates for higher risk for

the suppliers to got through similar events as well.

In addition, we conjecture that firms are likely to rely more heavily on

trade credit from the major suppliers than from less important suppliers.

On the one hand, if a specific type of inputs counts for a very significant

share of the production cost, it is more likely for the value of cash flow

and the frequency of transactions with these suppliers to be much higher.

Therefore, firms have more incentive borrow from these major suppliers

that cover a larger amount of cost on their balance sheet than from smaller

suppliers who provide miscellaneous minor parts through infrequent trans-

actions for the production process. On the other hand, firms usually estab-

lish longer-term and more stable business relationships with their major

suppliers. As a result, major suppliers have more information about the

operation conditions of these business and have bigger control over the

contracts. It is not surprising that they are more willing to lend a bigger

share of trade credits to these customers. With this line of reasoning, firms’

financial soundness is more integrated with their major suppliers than the

minor ones. Therefore, we should observe a higher level of credit risk con-

tagion from buyers to their major suppliers than to the minor ones. The

regression results are consistent with this theory. However, more detailed
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firm level trade credit data that can be matched with bankruptcy, default

and delisting events is indeed to verify this theory empirically. We will leave

that for future work.

3.5 Conclusion

In this paper, we present the first empirical evidence that industry level

credit risk is correlated in proportion to their linkages in the production

network. specifically, if ranking the supplier-industries for a specific target

industry based on the weights of input shares from IO tables, the credit

risks for firms in an industry, measured by the average probability to de-

fault, delist and go bankrupt, has higher and more significant correlations

with credit risks of more important supplier-industries than with less im-

portant supplier-industries. This relationship is robust to extra controls as

well as both linear and nonlinear specifications of the regression models.

As to the cause for this type of financial contagion through the pro-

duction network, our conjecture is that the credit risks of firms can pass

to suppliers and customers either through the demand and supply of real

good and services in the production process or through the heavy usage

of trade credit. On the one hand, once customer or supplier industries

default, firms may experience to either make or sell their products and con-

sequently hurt their profit. Decline in profit reduce the ability for firms to

pay back their debt. However empirical results provide weak support to this

hypothesis that links firms’ profitability to upstream or downstream firms’

financial stress. On the other hand, once customers default or go bankrupt,

accounts payables of the supplier firms will get written off and net worth of

suppliers will shrink and therefore the chance for insolvency for upstream

firms increase. Moreover, we argue that firms have incentive to rely more

on trade credit when purchasing major inputs that counts for a larger share

of production costs than buying minor categories of inputs. Therefore, the

credit risk contagion should be higher for major supplier-industries than

for minors ones. More firm level data of credit credit is indeed to verify the

second hypothesis.

One important direction of future research is to use more detailed firm-
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level trade credit data to empirically verify the above theory of the specific

way how trade credit creates contagion in the network. Also, a richer the-

oretical framework will be very helpful for simulating the propagation of

financial stress caused by sectoral production shocks and demand shocks.
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Fisher. Vertex centralities in input-output networks reveal the structure

of modern economies. Physical Review E, 83(4):046127, 2011.

Frederic Boissay. Credit chains and the propagation of financial distress.

2006.

David Burres. Homeomorphism between leontief and cobb-douglas input-

output models. Economics Letters, 44(1-2):49–53, 1994.

Lorenzo Caliendo and Fernando Parro. Estimates of the trade and welfare

effects of nafta. The Review of Economic Studies, 82(1):1–44, 2015.

Lorenzo Caliendo, Fernando Parro, Esteban Rossi-Hansberg, and Pierre-

Daniel Sarte. The impact of regional and sectoral productivity changes on

the us economy. The Review of Economic Studies, 2017.

John Y Campbell, Jens Hilscher, and Jan Szilagyi. In search of distress

risk. The Journal of Finance, 63(6):2899–2939, 2008.

Sudheer Chava. Environmental externalities and cost of capital. Manage-
ment Science, 60(9):2223–2247, 2014.

Sudheer Chava and Robert A Jarrow. Bankruptcy prediction with industry

effects. Review of Finance, 8(4):537–569, 2004.

Nitesh V Chawla. Data mining for imbalanced datasets: An overview.

In Data mining and knowledge discovery handbook, pages 875–886.

Springer, 2009.

CTA. Railroad network. Center for Tranportation Analysis, 2003.

Sanjiv R Das, Darrell Duffie, Nikunj Kapadia, and Leandro Saita. Common

failings: How corporate defaults are correlated. The Journal of Finance,

62(1):93–117, 2007.

Mercedes Delgado, Richard Bryden, and Samantha Zyontz. Categoriza-

tion of traded and local industries in the us economy. Technical report,

Mimeo. Available online at: http://www. clustermapping. us/[Accessed

May 2015], 2014.

Klaus Desmet and Esteban Rossi-Hansberg. Urban accounting and welfare.

The American Economic Review, 103(6):2296–2327, 2013.

113



Darrell Duffie, Leandro Saita, and Ke Wang. Multi-period corporate default

prediction with stochastic covariates. Journal of Financial Economics, 83

(3):635–665, 2007.

Gilles Duranton and Diego Puga. Micro-foundations of urban agglomeration

economies. In Handbook of regional and urban economics, volume 4, pages

2063–2117. Elsevier, 2004.

Jonathan Eaton and Samuel Kortum. Technology, geography, and trade.

Econometrica, 70(5):1741–1779, 2002.

Glenn Ellison, Edward L Glaeser, and William R Kerr. What causes indus-

try agglomeration? evidence from coagglomeration patterns. American
Economic Review, 100(3):1195–1213, 2010.

Domenico Delli Gatti, Mauro Gallegati, Bruce Greenwald, Alberto Russo,

and Joseph E Stiglitz. The financial accelerator in an evolving credit net-

work. Journal of Economic Dynamics and Control, 34(9):1627–1650, 2010.

Bernard Herskovic. Networks in production: Asset pricing implications. The
Journal of Finance, 73(4):1785–1818, 2018.

Charles R Hulten. Growth accounting with intermediate inputs. The Review
of Economic Studies, 45(3):511–518, 1978.

Matthew O Jackson. Social and economic networks. Princeton university

press, 2010. pg. 39.

Nobuhiro Kiyotaki and John Moore. Credit chains. unpublished paper (Lon-
don School of Economics), 1998.

Charles F Manski. Identification of endogenous social effects: The reflection

problem. The review of economic studies, 60(3):531–542, 1993.

Alfred Marshall. Principles of economics, 8-(edition, 1920.

Enrico Moretti. Workers’ education, spillovers, and productivity: Evidence

from plant-level production functions. The American Economic Review, 94

(3):pp. 656–690, 2004a. ISSN 00028282.

Enrico Moretti. Workers’ education, spillovers, and productivity: Evidence

from plant-level production functions. The American Economic Review, 94

(3):pp. 656–690, 2004b. ISSN 00028282.

114



NDC. U.s. waterway data. Navigation Data Center, 1999.

Mark EJ Newman. A measure of betweenness centrality based on random

walks. Social networks, 27(1):39–54, 2005.

NHPN. National highway planning network. Federal Highway Administra-
tion, 2005.

Mitchell A Petersen and Raghuram G Rajan. Trade credit: theories and

evidence. The review of financial studies, 10(3):661–691, 1997.

Stephen J Redding and Daniel M Sturm. The costs of remoteness: Evidence

from german division and reunification. The American Economic Review,

98(5):1766–1797, 2008.

Janet Kiholm Smith. Trade credit and informational asymmetry. The journal
of finance, 42(4):863–872, 1987.

Wenting Yu. A tale of many cities: Industrial networks and urban produc-

tivity. Available at SSRN 3298568, 2018.

115


	Dissertation Yu, Wenting.pdf
	DISSERTATION
	Titled
	Presented by
	Accepted by
	Approved by The Dean



	Yu Dissertation.pdf
	A Tale of Many Cities: Industrial Networks and Urban Productivity
	Introduction
	Model
	Firms' Problem
	Households' Problem
	General Equilibrium Conditions
	Trade Shares and Output Shares
	Industrial Network and Urban Productivity
	The Breakdown of Hulten's Theorem

	Network Entropy
	Technological Changes in Urban Industrial Networks

	Empirical Evidence
	Data
	Regression Analysis
	Baseline Results
	Robustness Check

	Counterfactuals
	Calibration
	Counterfactuals

	Conclusion

	Appendices
	Proofs
	 Special Cases of Theorem 1, Cities in Aurtarky
	Two-Industry Example for City Network Entropy
	Without Substitution Effect of Price
	Substitution Effect of Price

	Additional Table
	Additional Figures

	Industrial Productivity and Urban Human Capital Spillovers
	Introduction
	Human Capital in Production Networks
	Environment
	Human Capital Network Index
	Betweenness
	Illustrative Example

	General Equilibrium Model
	Firms' Problem
	Households' Problem
	General Equilibrium Conditions
	Trade Shares

	Calibration
	Empirical Evidence for Human Capital Spillovers
	Baseline Model
	Robustness Checks

	Conclusion

	Appendices
	Credit Risks in Production Network
	Introduction
	Econometric Model
	Data
	Empirical Results
	Mechanism Discussion
	Conclusion

	Bibliography


