
Reducing Performance Overhead of

Direct Access NVM Storage

Redundancy

Submitted in partial fulfillment of the requirements for
the degree of

Doctor of Philosophy
in

Department of Electrical and Computer Engineering

Rajat Kateja

B.Tech., Mathematics and Computing, Indian Institute of Technology Guwahati

Carnegie Mellon University
Pittsburgh, PA

May, 2020

c© Rajat Kateja, 2020
All Rights Reserved

Dedicated to my mother, Alpana Kateja.

Acknowledgments

It is always about the people. Reflecting on my graduate school experience,
I value the people that made it all possible much more than the knowledge and
skills I acquired.

In one of our first meetings, Greg asked me to think about how NVM devices
are different from decades old battery-backed DRAM systems, a question that
haunts me to this day. Over the years, Greg asked many such challenging
questions and helped me develop a taste for novel research problems. In
addition to research, he has also shaped my writing and presentation styles.
Early on in my PhD, Greg’s overnight (magic-like) transformations to paper
intros left me wondering if I actually did the awesome work that the intros
described. Over time, I picked up some writing skills, and although I am still
working on improving my exposition, I am happy that my graphs now have
Greg-approved thick-enough lines and big-enough fonts. Unfortunately, even
with impeccable fonts, I faced one too many paper rejections, but his support
helped me look beyond them. Through all the ups and downs, Greg has let me
be in the driver’s seat, be it in choosing paper deadlines or in choosing a career
path. He helped me think through my decisions by going over the pros and
cons of various options (sometimes spread across multiple meetings), but he
never forced a particular decision. Although being the final decision maker was
sometimes overwhelming, I am glad to have had that freedom. Thanks, Greg,
for a wonderful graduate school experience.

The process of getting Andy and Nathan involved in my projects contributed
significantly towards strengthening the motivation for this dissertation. Brain-
storming sessions with them, along with Greg, were critical in finalizing the
designs of Vilamb and Tvarak. Andy kept me on track by setting long term
as well as weekly goals; this helped me make consistent progress and develop a
work routine with a healthy work life balance that I still follow. Andy has also
been incredibly helpful with his candid feedback on my writing, research, and
job search. I thank Nathan for his patience as I learnt the ropes of computer
architecture research, trade secrets of writing an architecture-y paper, and
sometimes even basic computer architecture concepts. Nathan has also been
generous with his time to discuss my career trajectory and helped me think
through the decision of an industry vs academic job.

I thank Kim and Vijay for their time and effort as part of my thesis committee.
The seeds of this dissertation were sown across multiple conversations, one of
which was with Kim at FAST 2017. Thanks, Kim, for the many insightful
discussions over the years. Although I haven’t had the fortune of meeting Vijay
in person yet, I have benefitted from his advice on Twitter, and thoroughly
enjoyed the storage research from his group and interactions with his students.
I look forward to meeting and learning more from him.

In addition to my committee members, I have received valuable guidance
from my internship mentors and other faculty at CMU. Anirudh, Sriram, and

iv

Bikash helped me get started with NVM research at Microsoft, and Anirudh
has continued to be a mentor throughout my PhD. Working with Niket and
Mustafa at Google helped me understand the many practical challenges with
NVM deployments, one of which this dissertation tries to address. I thank Phil
for the amazing courses and for ever so often making time to guide me in my
research, Michael Kozuch for his regular check-ins and feedback on my research,
Saugata for his kind presence and mentorship throughout my PhD, Vyas for his
career advice, Rashmi for the technical discussions, Ram for his technical and
career guidance, and Garth, Majd, and George for the rewarding conversations.

The PDL, ECE, and CyLab staff—Karen, Chad, Mitch, Jason, Charlene,
Joan, Bill, Nathan Snizaski, Brittany, Brigette, and Ivan—made my life easier
and enabled me to focus on my work. Karen has helped me with almost every
administrative aspect in the last five years, be it conference travels, expense
reimbursements, reserving conference rooms, finding the right shirt size, or the
awesome food in PDL group meetings. Chad, Mitch, and Jason have debugged
numerous operational issues to help set up and start my experiments, and
waived max-duration time-outs to ensure that they finish as well. Charlene’s
passion for life is something I hope to emulate. Joan’s help and patience with
posters makes me wonder how I would ever make a poster after leaving CMU.
Of course, thanks to all the PDL staff for their herculean efforts towards the
PDL retreats and visit days. These have been defining events year-after-year
for me, and I’ll dearly miss the PDL retreats.

I thank VMware and the companies of the PDL consortium—Alibaba,
Amazon, Datrium, Facebook, Google, Hewlett Packard Enterprise, Hitachi,
IBM Research, Intel, Micron, Microsoft Research, NetApp, Oracle, Salesforce,
Samsung, Seagate, and Two Sigma—for funding this research. I thank my
thesis committee—Greg Ganger (chair), Andy Pavlo, Nathan Beckmann, Kim-
berly Keeton, and Vijay Chidambaram—for supporting me through the PhD
milestones.

My family has been pivotal in helping me reach this stage of my career.
Thank you for the innumerable ways in which you have made this possible, right
from teaching me physics and scolding me for my math to taking care of all
my needs so that I can focus on my studies and trusting my career choices. In
particular, I am indebted to my mother for her unshakable belief in me. For
always putting me (and the family) before herself, I dedicate this dissertation
to her.

I have had the fortune of having an amazing group of friends. Sahu, Joshi,
Sachin, Garg, and Gupta have continued to spark joy in my life well beyond
our undergrad. Meeting Joshi in Seattle was the highlight of my first year in
graduate school, and trips with Sahu, Joshi, and Sachin provided much needed
break over the years. Abhilasha was a constant presence and support during the
bulk of my PhD; thank you for exploring Pittsburgh with me, for often being
the only person I talked to in a day, and for being my best friend (at CMU).
Ankur, Samarth, and Mansi made the last phase of my graduate school much

v

more enjoyable with all the shared meals and movie nights. Thanks Ankur for
the existential memes and never-ending topics, Samarth for the music, uno, and
squash, and Mansi for the banana cakes and for bringing a positive balance to
our cynical group discussions. I am glad that I met and got to spend time with
Sruti, Vignesh, Amit, Ankush Desai, Sandeep, Sanghamitra, Raj, Rajshekhar,
Dhivya, and Prashasti. Thank you Sruti for entertaining my drop-by visits to
your desk (sometimes multiple in a day), Vignesh for the last minute help with
my papers and for the regular check-ins about our research progress (or the lack
thereof), Amit for easing my transition to CMU with our daily lunches, and
Ankush for sharing your experiences and insights into graduate school during
and after our Microsoft internship.

A special shout out to Madhuri for improving my overall well-being. Thank
you for entertaining my stories (and giving me many new ones), for the silly puns
and jokes, for breaking my over-thought life algorithms with unexpected inputs,
for putting me back in touch with my priorities, and for the most happening
summer of my life so far.

I thank my awesome PDL and CyLab colleagues—Aaron, Abutalib, Akarsh,
Alexey, Andrew, Angela, Ankush Jain, Anuj, Cui, Dana, Hongyi, Jack, Janos,
Jason, Jinliang, Kevin, Lianghong, Lin, Mahmood, Michael Kuchnik, Nandita,
Niranjini, Pardis, Pratik, Rahul, Sara, Saurabh, Sindhoora, Soo-Jin, Thomas,
Tian, Vivek, and Yixin—for their friendly presence. I have thoroughly enjoyed
Aaron’s dry humor that made CIC 2220 more lively and the deadline night-outs
more bearable, learnings from Soo-Jin’s approach to life and career, Saurabh’s
contagious passion for storage research, Jinliang’s kind and supporting words
during my job search, Niranjini’s research and grocery/cooking advice, and
exchanging notes with Angela about myriad things as we stepped through
graduate school in lockstep.

Lastly, I would like to thank a whole bunch of content creators and characters
for providing me on-demand entertainment. Thank you, Biswa Kalyan Rath,
Kenny Sebastian, Rahul Dua, Rahul Subramanian, Anshu Mor, Aakash Mehta,
Abhishek Upamanyu, Sahil Khattar, Sucharita Tyagi, Anupama Chopra, Aaron
Marino, Jeff Cavaliere, Michael Scott, Walter White, Jesse Pinkman, and many
others that I am currently forgetting.

vi

Abstract

Non-volatile memory (NVM) based storage is poised for mainstream deploy-
ment. DIMM form-factor NVM devices reside on the memory bus and offer
DRAM-like access granularities and latencies along with non-volatility. NVM’s
Direct Access (DAX) interface enables applications to map persistent data into
their address space and access it with load and store instructions, eliminating
system software overheads.

Production deployment of DAX NVM storage would require that the storage
system offer resilience against firmware-bug-induced data corruption, akin to
conventional storage systems. Protection against firmware-bug-induced data
corruptions requires the storage system to maintain system-level redundancy,
which we refer to as system-redundancy. With DAX interfacing, the lack of
interposed system software makes it challenging to identify data reads and
writes that should trigger system-redundancy verification and updates, respec-
tively. Further, the DAX granularities (e.g., 64-byte cache-lines) are incongruent
with typical system-redundancy granularities (e.g., 4K pages), leading to high
performance overhead in maintaining system-redundancy.

This dissertation demonstrates that DAX NVM storage systems can effi-
ciently maintain system-redundancy by relaxing the data coverage guarantees or
by leveraging a hardware offload. We support the thesis with two case studies:
Vilamb and Tvarak. The Vilamb library maintains system-redundancy asyn-
chronously, avoiding critical path interpositioning and amortizes the overhead
of system-redundancy updates across multiple writes to a page. As a result,
Vilamb provides 3–5× the throughput of the state-of-the-art software solution
at high operation rates. For applications that need system-redundancy with
high performance, and can tolerate some delaying of data redundancy, Vilamb
provides a tunable knob between performance and time-to-coverage. Even
with the delayed coverage, Vilamb increases the mean time to data loss due to
firmware-induced corruptions by up to two orders of magnitude in comparison
to maintaining no system-redundancy.

Tvarak is a software-managed hardware offload to efficiently maintain system-
redundancy for direct-access (DAX) NVM storage. Tvarak reconciles the mis-
match between DAX granularities and typical system-redundancy granularities
by introducing cache-line granular checksums (only) for DAX-mapped data.
Tvarak also uses caching to reduce the number of extra NVM accesses for
maintaining and verifying system-redundancy. Applications’ data access locality
leads to reuse of system-redundancy that Tvarak leverages with a small dedi-
cated on-controller cache and configurable LLC partitions. Simulation-based
evaluation demonstrates Tvarak’s efficiency. For example, Tvarak reduces Redis
set-only performance by only 3%.

vii

Contents

1 Introduction 1

1.1 Thesis statement . 2

1.2 Contributions . 3

1.3 Outline . 3

2 Background 5

2.1 NVM Storage . 5

2.2 DAX NVM Storage Management . 6

2.3 Redundancy for Firmware Bug Resilience 7

2.3.1 Firmware-bug-induced data corruption 7

2.3.2 System-checksums for detection . 8

2.3.3 Parity for recovery . 10

2.3.4 System-Redundancy for DAX NVM 10

2.4 Solutions for DAX NVM System-Redundancy 10

3 Vilamb: Low overhead asynchronous redundancy for direct-access NVM
storage 13

3.1 Vilamb Design and Implementation . 14

3.1.1 Asynchronous System-Redundancy 14

3.1.2 Repurposing Dirty Bits . 15

3.1.3 Failure Coverage . 15

3.1.4 Implementation . 17

3.2 Evaluation . 19

3.2.1 Key Evaluation Takeaways . 20

3.2.2 YCSB with Redis . 20

3.2.3 PMDK Key-Value Stores . 22

3.2.4 NVM Transaction Microbenchmarks 23

3.2.5 Fio Microbenchmarks . 24

3.2.6 Cost of Checking/Clearing Dirty Bits 25

3.2.7 Battery Capacity Requirements . 26

3.2.8 Reliability Analysis . 27

3.3 Conclusion . 28

viii

4 Tvarak: Software-managed hardware offload for redundancy in direct-
access NVM storage 29
4.1 Tvarak Design . 30

4.1.1 Tvarak’s Goals and Non-Goals . 30
4.1.2 Naive System-Redundancy Controller Design 30
4.1.3 Efficient Checksum Verification . 32
4.1.4 Efficient Checksum and Parity Updates 33
4.1.5 Putting it all together with Tvarak 34

4.2 Evaluation . 36
4.2.1 Key Evaluation Takeaways . 38
4.2.2 Redis . 38
4.2.3 Key-value Data Structures . 40
4.2.4 N-Store . 40
4.2.5 Fio Microbenchmarks . 42
4.2.6 Stream Microbenchmarks . 43
4.2.7 Comparison with Vilamb . 44
4.2.8 Impact of Tvarak’s Design Choices 44
4.2.9 Sensitivity Analysis . 45

4.3 Conclusion . 47

5 Conclusion and Future Directions 48
5.1 Future Directions . 49

5.1.1 Automated tuning of Tvarak’s LLC partition sizes 49
5.1.2 Study of firmware-bug-induced failures in NVM storage 49
5.1.3 Extending Vilamb and Tvarak for cross machine DAX NVM storage

replication . 49

A Other Related Research of the Author 50

ix

List of Figures

2.1 Lost Write Bug Example. 8
2.2 Misdirect Write Bug Example. 9

3.1 Vilamb Delayed Checksum Computation Example 14
3.2 Vilamb’s Implementation . 17
3.3 Vilamb Evaluation: YCSB with Redis . 20
3.4 Vilamb Evaluation: PMDK Key-Value Stores 22
3.5 Vilamb Evaluation: PMDK Key-Value Stores 23
3.6 Vilamb Evaluation: NVM Transaction Latencies 24
3.7 Vilamb Evaluation: NVM Overwrite Throughput 25
3.8 Vilamb Evaluation: Fio Microbenchmarks 26
3.9 Vilamb Evaluation: Cost of Checking/Clearing Dirty Bits 27

4.1 System-redundancy Layout . 31
4.2 Tvarak Naive System-Redundancy Controller Design 32
4.3 Tvarak Efficient Checksum Verification . 33
4.4 Tvarak Efficient Checksum and Parity Updates 34
4.5 Tvarak’s Components . 35
4.6 Tvarak Evaluation: Redis . 39
4.7 Tvarak Evaluation: PMDK key-value stores 41
4.8 Tvarak Evaluation: N-Store . 41
4.9 Tvarak Evaluation: Fio Microbenchmarks 42
4.10 Tvarak Evaluation: Fio Microbenchmarks 43
4.11 Tvarak Evaluation: Comparison with Vilamb 44
4.12 Tvarak Evaluation: Impact of Tvarak’s Design Choices 45
4.13 Tvarak Evaluation: Sensitivity Study . 46

x

List of Tables

2.1 Solutions for DAX NVM storage system-redundancy and their trade-offs. . 11

4.1 Tvarak Evaluation: applications and their workloads. 36
4.2 Tvarak Evaluation: Simulation Parameters 37

xi

Chapter 1

Introduction

Non-volatile memory (NVM) changes the way performance-sensitive applications interact
with persistent data. NVM storage combines DRAM-like access latencies and granularities
with disk-like durability [1, 15, 19, 56, 79]. Direct access (DAX) to NVM data exposes
raw NVM performance to applications. Applications using DAX map NVM files into their
address spaces and access data with load and store instructions, eliminating system software
overheads associated with conventional storage interfaces.

Production storage demands more than just non-volatility and performance. A number of
features that empower and simplify storage management efforts are also expected. Whereas
some features extend to DAX NVM storage trivially, e.g., background scrubbing and
defragmentation, others with data access inter-dependencies do not. Notably, redundancy
mechanisms for fault tolerance fit poorly.

Production storage systems need to protect data from various failures. In addition to
fail-stop failures like machine or device crashes, storage systems also need to protect data
from silent corruption due to firmware bugs. Storage device firmware is prone to bugs
because of its complexity, and these bugs can cause data corruption. Such corruption-
inducing firmware bugs fall into two broad categories: lost write bugs and misdirected read
or write bugs [11, 12, 43, 74, 90]. Lost write bugs cause the firmware to acknowledge a
write without ever updating the data on the device media. Misdirected read or write bugs
cause the firmware to read or write the data from the wrong location on the device media.
Firmware-bug-induced corruptions go unnoticed even in the presence of device-level ECC,
because the device-level ECC is read/written as an atom with its data during each media
access performed by the firmware.

Protection against firmware-bug-induced corruption commonly relies on system-level
redundancy, i.e., system-checksums for detection and parity for recovery. System-checksums
are data checksums that the storage system computes and verifies at a layer “above” the
device firmware (e.g., the file system), using separate I/O requests than for the corresponding
data [11, 74, 105]. Using separate I/O requests for the data and the block containing its
system-checksum (together with system-checksums for other data) reduces the likelihood of
an undetected firmware-bug-induced corruption. This is because a bug is unlikely to affect
both in a consistent manner. Thus, the storage system can detect a firmware-bug-induced
corruption because of a mismatch between the data and its system-checksum. It can

1

then trigger recovery using the parity [51, 63, 68, 114]. In this paper, we use the term
system-redundancy to refer to the combination of system-checksums and parity.

Production NVM-based storage systems will need system-redundancy mechanisms for
the same reasons as conventional storage. NVM device firmware involves increasingly
complex functionality, akin to that of other storage devices, making it susceptible to both
lost write and misdirected read/write bugs. However, maintaining system-redundancy
for DAX NVM storage, without forfeiting its performance benefits, is challenging for two
reasons. First, accesses via load and store instructions bypass system software, removing
the straightforward ability to detect and act on data changes (e.g., to update system-
redundancy). Second, NVM’s cache-line granular writes increase the overhead of updating
system-redundancy (e.g., system-checksums) that is usually computed over sizeable data
regions (e.g., pages) for effectiveness and space efficiency.

The state-of-the-art solutions for DAX NVM system-redundancy are transactional
libraries that maintain system-checksums and parity [89, 109, 112]. To address the challenge
of system software bypass, these libraries require applications to inform the library about all
their data accesses. Although this enables the libraries to mediate and act on all application
data accesses, it imposes a restrictive programming model. Furthermore, these solutions
incur a high overhead even with optimized designs and implementations [109]. This is
because library-based solutions struggle to synchronously update system-redundancy at
high application write throughput rates.

1.1 Thesis statement

This dissertation describes our work on efficient implementation of system-redundancy
mechanisms to protect DAX NVM storage from firmware-bug-induced data corruptions. In
particular, we make the following thesis statement:

Direct access NVM storage can be fortified with conventional redundancy mechanisms
for protection against firmware-bug-induced data corruptions at low performance overheads
by relaxing the data coverage guarantees or by leveraging a hardware offload for system-
redundancy computation and verification.

To support this thesis, we detail two case studies for improving the performance of DAX
NVM storage redundancy:

• Vilamb: Low overhead asynchronous redundancy for direct-access NVM
storage (Chapter 3). Vilamb [50] provides efficient asynchronous system-redundancy
for DAX NVM storage. The Vilamb user-space library maintains system-redundancy
with low overhead by delaying and amortizing the system-redundancy update over-
head across multiple data writes. To do so, Vilamb repurposes page table dirty bits
to identify pages with outdated system-redundancy. As a result, Vilamb provides
3–5× the throughput of the state-of-the-art software solution, Pangolin [109], at high
operation rates. For applications that need system-redundancy with high performance,
and can tolerate some delaying of data redundancy, Vilamb provides a tunable knob
between performance and quicker system-redundancy. Even with the delayed coverage,

2

Vilamb increases the mean time to data loss due to firmware-induced corruptions by
up to two orders of magnitude in comparison to maintaining no system-redundancy.

• Tvarak: Software-managed hardware offload for redundancy in direct-
access NVM storage (Chapter 4). For DAX NVM applications with strong cover-
age requirements, Tvarak [49] efficiently implements synchronous system-redundancy
with synchronous system-checksums and parity updates and system-checksum-verified
reads. Software-only implementations of system-redundancy force a choice between
reduced or delayed data protection and significant performance penalties. Offloading
the update and verification of system-redundancy to Tvarak, a hardware controller
co-located with the last-level cache, enables efficient protection of data from bugs in
the memory controller and in NVM DIMM firmware. Simulation-based evaluation
with seven data-intensive applications shows that Tvarak is efficient. For example,
Tvarak reduces Redis set-only performance by only 3%.

1.2 Contributions

This dissertation makes the following key contributions.

Vilamb:
• It identifies asynchronous system-redundancy as an important addition to the toolbox

of DAX NVM system-redundancy solutions.

• It describes Vilamb’s efficient asynchronous system-redundancy design that improves
performance for applications that can tolerate delayed coverage.

• It quantifies Vilamb’s efficacy, cost, and reliability via extensive evaluation with eight
macro- and micro-benchmarks.

Tvarak:
• It motivates the need for architectural support for DAX NVM storage system-

redundancy, highlighting the limitations of software-only approaches.

• It proposes Tvarak, a low-overhead, software-managed hardware offload for DAX
NVM storage redundancy. It describes the challenges for efficient hardware DAX NVM
system-redundancy and how Tvarak overcomes these challenges with a straightforward,
effective design.

• It reports on extensive evaluation of Tvarak’s runtime, energy, and memory access
overheads for seven applications, each under multiple workloads, showing its efficiency.

1.3 Outline

The remainder of this dissertation is organized as follows. Chapter 2 describes the back-
ground and motivation for this dissertation. It details the two broad classes of firmware

3

bugs, presents system-redundancy as the protection mechanism, and describes the trade-offs
across various DAX NVM system-redundancy solutions. Chapter 3 describes the design,
implementation, and evaluation of Vilamb. Chapter 4 describes the design of Tvarak and
its evaluation using the ZSim simulator [86]. Chapter 5 concludes this dissertation and
presents some future research directions.

4

Chapter 2

Background

This section describes NVM storage and direct access interfacing, management features
expected of production storage and implications of direct access on these features, redun-
dancy mechanisms for protection against firmware-bug-induced corruptions, and the related
work on supporting those features for DAX NVM storage.

2.1 NVM Storage

Non-volatile memory (NVM) refers to a class of memory technologies that have DRAM-like
access latency and granularity but are also durable like disks. Various NVM technologies
are already available or expected to be available soon [1, 19, 38, 56, 79]. NVM devices have
orders of magnitude lower latency and higher bandwidth than conventional storage devices.
This improved device performance benefits applications even with an unmodified storage
stack, but more so with NVM-optimized storage stacks [8, 9, 22, 27, 44, 52, 103, 104].

The easiest way to incorporate NVM into systems is to export it to applications via
existing file system interfaces. Doing so allows legacy applications to use NVM without
modification. The downside is the performance overhead of system calls, data copying, and
inefficient general-purpose system software code.

The DAX interface to NVM eliminates system software overheads, enabling applications
to leverage raw NVM performance [27, 44, 49, 50, 57, 59, 62, 73, 81, 89, 96, 105, 109, 112].
With DAX, applications map NVM pages into their address spaces and access persistent
data via load and store instructions. File systems that map a NVM file into the application
address space (bypassing the page cache) on a mmap system call are referred to as DAX
file systems and said to support DAX-mmap [27, 59, 105]. DAX is widely used for adding
persistence to conventionally volatile in-memory DBMSs [57, 62, 73, 81, 112] and is poised
as a “killer use-case” for NVM.

DAX-mmap helps applications realize NVM performance benefits, but requires careful
reasoning to ensure data consistency. Volatile processor caches can write-back data in
arbitrary order, forcing applications to use cache-line flushes and memory fences for
durability and ordering. Transactional NVM access libraries ease this burden by exposing
simple transactional APIs to applications and ensuring consistency on their behalf [14, 21,

5

36, 39, 97]. Alternatively, the system can be equipped with enough battery to allow flushing
of cached writes to NVM before a power failure [66, 70, 113]; our work assumes this option.

2.2 DAX NVM Storage Management

Administrators rely on and expect a variety of storage management features to avoid data
loss [31, 74, 87, 111], data theft [13, 46, 84, 102], reduce cost [23, 55, 75, 92, 115], and handle
failures [31, 41, 51, 68, 69]. As NVM storage matures for use in production environments,
it will be expected to provide these features as well.

We categorize storage management features into four groups based on their inter-
relationships with foreground data accesses (application reads and/or writes):
• Background scan/reorganization features, like scrubbing and defragmentation, occur

independently of reads and writes.

• Space efficiency features, like compression, deduplication, and tiering, track data
accesses to estimate data temperature; they can potentially impact read operations
(e.g., when reading compressed data), but are unlikely to impact write operations
because they operate on cold data.

• Data redundancy features like block checksums and cross-component redundancy are
inter-dependent on writes; they may impact reads depending on how they are used
(e.g., if reads require a checksum verification).

• Security features like encryption are directly involved in servicing of reads and writes.

Software bypass for direct access NVM storage has different implications for different
categories of management features. For example, software bypass has no effect on purely
background operations like scrubbing and defragmentation, because they do not depend on
or impact any data accesses.

Space efficiency features track data access recency, but the loss of this information
does not affect their correctness—only performance (e.g., if a hot page is compressed).
Consequently, supporting them for direct access NVM is not overly complex. NVM storage
systems can use page table accessed bits to track data accesses and not be concerned with
occasionally losing this information (e.g., due to a power failure).

Data redundancy and security features have a strong dependency on write accesses—not
knowing about data updates impacts their correctness. Data security features are also
tightly coupled with read accesses (e.g., decryption) whereas data redundancy features may
or may not be coupled with data reads (e.g., whether reads are verified). Given the tight
coupling between security features and data accesses (both reads and writes), data security
features demand hardware support. Introducing software encryption/decryption in the
data path would annihilate the performance benefits of DAX NVM storage. Recent works
have proposed memory-controller/-module support for NVM encryption [16, 60, 61, 106].

Data redundancy features will also benefit from hardware support, but can also be
efficiently implemented in software if redundancy updates and verification can be moved out
of the critical path. For example, if redundancy is verified only via background scrubbing,
it would not longer impact application reads. However, state-of-the-art software-based

6

approaches for redundancy rely on interposing on writes [89, 109, 112] in the critical path
and introduce significant performance and programming limitations.

2.3 Redundancy for Firmware Bug Resilience

Production storage systems employ multiple redundancy mechanisms to address a variety of
faults [31, 41, 51, 54, 65, 68, 69, 105, 110, 111]. In this work, we focus on redundancy mech-
anisms used to detect and recover from firmware-bug-induced data corruption (specifically,
system-checksums and parity).

2.3.1 Firmware-bug-induced data corruption

Large-scale studies of deployed storage systems show that device firmware bugs sometimes
lead to data loss or corruption [11, 12, 43, 74, 90]. Device firmware, like any software, is
prone to bugs because of its complex responsibilities (e.g., address translation, dynamic
re-mapping, wear leveling, block caching, request scheduling) that have increased both
in number and complexity over time. Research has even proposed embedding the entire
file system functionality [47] and application-specific functionalities [2, 18, 82, 83, 100] in
device firmware. Increasing firmware complexity increases the propensity for bugs, some of
which can trigger data loss or corruption.

Corruption-inducing firmware-bugs can be categorized into two broad categories: lost
write bugs and misdirected read/write bugs. A lost write bug causes the firmware to
acknowledge a write without ever updating the media with the write request’s content. An
example scenario that can lead to a lost write is if a write-back firmware cache “forgets”
that a cached block is dirty. Fig. 2.1(a) illustrates a lost write bug. It first shows (second
stage in the time-line) a correct bug-free write to the block stored in the blue media location.
It then shows a second write to the same block, but this one suffers from a lost write
bug—the firmware acknowledges the write but never updates the blue media location. The
subsequent read of the blue block returns the old data to the application.

A misdirected write or misdirected read bug causes the firmware to store data at or read
data from an incorrect media location, respectively. Fig. 2.2(a) illustrates a misdirected
write bug. As before, the first write to the block stored in the blue location is performed
correctly by the firmware. For this example, the second write request shown is for the block
stored in the green location. The second write request encounters a misdirected write bug
wherein the data is incorrectly written to the blue media location. Notice that a misdirected
write bug not only fails to update the intended block, but also corrupts (incorrectly replaces)
the data of the block it incorrectly updates. In the example, the subsequent read to the
block mapped to the blue location returns this corrupted data.

Although almost all storage devices maintain error-correcting codes (ECCs) to detect
corruption due to random bit flips [24, 42, 94, 108], these ECCs cannot detect firmware-
bug-induced corruption [11, 74]. Device-level ECCs are stored together with the data and
computed and verified inline by the same firmware during the corresponding data access. So,
in the case of a lost write, the firmware loses the ECC update along with the corresponding

7

Firmware

Media

write
ack ack

write
read

Time Initial Device
State

Bug-Free Write Lost Write Read returns
Old Data

(a) The problem: device responds to read of block that experienced the lost write with incorrect
(old) data.

Firmware

Media

Time Initial Device
State

Bug-Free Write w/
System-Checksum

Lost Write w/
System-Checksum

System-Checksum
Mismatch on Read

write
ack

write
csum

ack
write

ack ack read

write
csum read

csum

(b) The fix: having the higher-level system update and verify system-checksums when writing
or reading data, in separate requests to the device, enables detection of a lost write because of
mismatch between the data and the system-checksum.

Figure 2.1: Lost write bug example: Both sub-figures show a time-line for a storage device
with three media locations. The device is shown in an initial state, and then upon completion
of higher-level system’s write or read to data (first, a successful write, then a ”lost write”, then
a read) mapped to the same media location. Fig. 2.1(a) shows how the higher-level system can
consume incorrect (old) data if it trusts the device to never lose an acknowledged write. Fig. 2.1(b)
shows how the higher-level system can detect a lost write with system-checksums.

data update, because the data and ECC are written together on the media as one operation.
Similarly, misdirected writes modify the ECC to match the incorrectly updated data and
misdirected reads retrieve the ECC corresponding to the incorrectly read data.

2.3.2 System-checksums for detection

Production storage systems maintain per-page system-checksums to detect firmware-bug-
induced data corruption. System-checksums are updated and verified at a layer above the
firmware, such as the file system, stored in checksum pages (each containing checksums for
multiple pages) separate from the data, and read and written using I/O requests separate
from the corresponding data I/O requests [31, 54, 65, 105, 110, 111]. Separating the
storage and accesses for data from corresponding system-checksums enables detection of
firmware-bug-induced corruption, because such bugs are unlikely to affect both the data

8

Firmware

Media

write
ack ack

write
read

Time Initial Device
State

Bug-Free Write Misdirected Write Read returns
Corrupted Data

(a) The problem: device responds to read with the incorrectly updated data from the blue location.
Notice that the green location also has incorrect (old) after the misdirected write.

Firmware

Media

Time Initial Device
State

Bug-Free Write w/
System-Checksum

Misdirected Write w/
System-Checksum

System-Checksum
Mismatch on Read

write
ack

write
csum

ack
write

ack ack read

write
csum read

csum

(b) The fix: having the higher-level system update and verify system-checksums when writing or
reading data, in separate requests to the device, enables enables detection of a misdirected write
because of mismatch between the data and the system-checksum.

Figure 2.2: Misdirected write bug example: Similar construction to Fig. 2.1, but with the
second operation being a write intended for the green location that is misdirected by the firmware
to the blue location.

and its system-checksum access. Even in an unlikely scenario that a bug that affect both
the accesses, it is even more unlikely that the bug affects both in a consistent fashion (e.g.,
losing both or misdirecting both to another corresponding data and system-checksum pair)
is even lower.

Fig. 2.1(b) demonstrates how system-checksums enable detection of lost writes. Although
the second write to the blue block is lost, the write to the checksum block (stored in the
orange location) is not. Thus, upon the data read in the example, which is paired with a
corresponding system-checksum read and verification, the lost write is detected.

Fig. 2.2(b) illustrates how system-checksums enable detection of misdirected writes. A
misdirected write firmware bug is extremely unlikely to affect both the data write to the
green block and the corresponding system-checksum write to the orange block in a consistent
manner. To do so, the firmware would have to incorrectly write the system-checksum
to a location (block and the offset within the block) that stores the checksum for the
exact block to which it misdirected the data write. In the illustration, the read of the
blue block data, followed by its system-checksum read, results in a verification failure.
Similarly, system-checksums also trigger a verification failure in case of a misdirected read

9

bug, because a bug is unlikely to affect the both the data its system-checksum read.

2.3.3 Parity for recovery

To recover from a detected page corruption, storage systems store parity pages [41, 51, 63,
68, 69, 114]. Although parity across arbitrarily selected pages suffices for recovery from
firmware-bug-induced corruption, storage systems often implement cross-device parity that
enables recovery from device failures as well.

2.3.4 System-Redundancy for DAX NVM

NVM storage systems will be prone to firmware-bug-induced data corruption and re-
quire corresponding redundancy mechanisms, akin to conventional storage systems. NVM
firmware is susceptible to corruption-inducing bugs, because it is non-trivial and its com-
plexity can only be expected to increase over time. NVM firmware already provides for
address translation, bad block management, wear leveling, request scheduling, and other
conventional firmware responsibilities [77, 78, 79, 88]. Looking forward, its complexity
will only increase as more NVM-specific functionality is embedded into the firmware (e.g.,
reducing NVM writes and wear [17, 29, 61, 106, 116]) and as the push towards near-data
computation [2, 4, 5, 18, 28, 35, 47, 82, 83, 100, 107] continues. Prior experience with
firmwares of such complexity demonstrate that they inevitably suffer from bugs that lead
to lost or misdirected reads and writes. Consequently, production NVM storage systems
will need firmware-bug resiliency mechanisms.

Maintaining system-redundancy for DAX NVM is challenging for two reasons: (i) hard-
ware controlled data movement, and (ii) cache-line granular writes.

Hardware Controlled Data Movement: Applications’ data writes to DAX NVM
bypass system software. This lack of software control makes it challenging for the storage
software to identify updated NVM pages for which it needs to update system-redundancy.

Cache-line Granular Writes: Incongruence in the size of DAX writes and the size
of pages over which system-redundancy is usually maintained increases the overhead of
maintaining system-redundancy. Most storage systems maintain system-redundancy over
sizeable blocks (e.g., 4K page checksums) for space efficiency. Cache-line granular writes
require reading (at least) an entire page to update the system-redundancy. Whereas
RAID systems solve a similar “small write” problem by reading the data before updating
it [68], a DAX NVM storage system software cannot use this solution. As discussed above,
direct access to NVM bypasses system software, prohibiting the use of pre-write values for
incremental system-redundancy updates.

2.4 Solutions for DAX NVM System-Redundancy

Existing proposals for maintaining system-checksums and parity in NVM storage systems
compromise on performance, coverage, and/or programming flexibility for DAX-mapped
data. Table 2.1 presents the design choices of prior proposals as well as Vilamb and Tvarak.

10

NVM Storage
Redundancy

Design

Checksum
Granularity

Redundancy
Update for
DAX data

Redundancy
Verification for
DAX data

Performance
Overhead

Programming
Model

Specialized
Hardware
Requirement

Nova-Fortis [105],
Plexistore [71]

Page No updates No verification None FS Interface None

Mojim [112],
HotPot [89]

Page1
On application
data flush

Scrubbing High
Transactional
Library Interface

None

Pangolin [109] Object
On application
data flush

On NVM to
DRAM copy

Moderate/High
Transactional
Library Interface

None

Vilamb Page Periodically Scrubbing Configurable No Restriction None

Tvarak Page
On LLC to
NVM write

On NVM to
LLC read

Low No Restriction
Specialized
Controller

Table 2.1: Solutions for DAX NVM storage system-redundancy and their trade-offs.

Two recent fault-tolerant NVM file systems, Nova-Fortis [105] and Plexistore [71], update
and check system-redundancy during explicit file system calls but do not update or verify
redundancy while data is DAX mapped.

Pangolin [109] is a user-space library that maintains DAX NVM system-redundancy
synchronously by requiring applications to explicitly inform it about their data updates;
applications piggyback these notifications on Pangolin’s transactional interface. Pangolin
offers strong coverage (immediate system-redundancy updates and verification) and does
not require any specialized hardware resources (because it is a software-based solution).
Pangolin addresses the mismatch of fine-grained DAX updates with large checksum ranges
by requiring explicit object definitions and maintaining per-object checksums instead of
per-page checksums. Pangolin also introduces micro-buffering, i.e., buffering objects that
an application writes to in DRAM and updating the NVM only on transaction commits.
This buffering also enables Pangolin to use data diffs to make system-redundancy updates
more efficient.

Pangolin is well-tuned, including several overhead-reducing mechanisms, making it
the state-of-the-art for an in-line software-only solution. Yet, Pangolin incurs significant
performance overhead (up to 80%) in many cases. Fundamentally, Pangolin’s synchronous
system-redundancy update design requires updating system-redundancy at the same rate at
which an object is being modified; this becomes costly for the high update rates enabled by
NVM. Furthermore, Pangolin only works for applications that can be and are modified to use
its object-based transactional interface. Applications that manage NVM data themselves
using other data models, such as NVM-optimized databases [8], may not easily fit to
Pangolin’s interface. Pangolin’s per-object checksums also incur higher space overhead for
small data objects.

Mojim [112] and HotPot [89] are also library based solutions similar to Pangolin. They
were developed for remote replication in DAX NVM but their design can be extended to
include system-redundancy. Their interposing based design imposes the same programming
restrictions as Pangolin because applications need to inform them about all application
writes. Furthermore, their page granular system-checksums incur a even higher overhead

1 The original Mojim and HotPot designs do not include checksums, only replication. Here we extrapolate
their design to include checksums.

11

because of the fine-grained applications writes (Section 2.3.4).
Vilamb [50] is a software library that embraces an asynchronous approach to updating

system-redundancy for updated data. Like other asynchronous redundancy-update ap-
proaches, it identifies and completes required system-redundancy updates in the background.
Vilamb does not impose any programming model restrictions and does not require any
specialized hardware resources. However, Vilamb reduces the data coverage guarantees
by delaying system-redundancy updates. Specifically, recently modified pages may not be
covered when a firmware bug affects them. Vilamb is a good option for applications that
desire high performance and/or are not a good fit for Pangolin-like API and view partial
system-redundancy coverage is as better than none.

Tvarak [49] is a hardware controller co-located with the last-level cache (LLC) that
the file system can offload system-redundancy maintenance work onto. Tvarak is able to
identify data updates by the virtue of being interposed in the data path. Tvarak offers
synchronous system-redundancy updates and verification, does not restrict applications to
any specific library/API, and is low-overhead.

12

Chapter 3

Vilamb: Low overhead asynchronous
redundancy for direct-access NVM
storage

This chapter describes Vilamb1 [50], a user-space library for efficient asynchronous DAX
NVM system-redundancy. Vilamb moves system-redundancy updates out of the critical
path and delays them to amortize the overhead over multiple data updates. Delaying the
system-redundancy updates creates a configurable trade-off between performance and the
delay before updated data is covered.

Vilamb repurposes page table dirty bits to efficiently identify of data updates. Vilamb
marks pages with updated system-redundancy as clean and identifies pages with invalidate
system-redundancy by checking their dirty bit. We implement a kernel module that Vilamb
uses for batched fetching and clearing for dirty bits. Vilamb ensures atomic and consistent
system-redundancy updates for all dirty pages by using shadow copies of dirty bits and
leveraging batteries that are common in production environments [26, 32, 45, 48, 53, 67,
98, 99].

For applications that can tolerate delayed data coverage, Vilamb offers an efficient
alternative to synchronous software based redundancy without requiring specialized hard-
ware. Extensive evaluation with eight macro- and micro-benchmarks demonstrate Vilamb’s
efficacy. Vilamb with a 1 second delay between system-redundancy updates reduces single-
threaded Redis’ YCSB throughput by only 1.6–17%, compared to 13–18% for Pangolin.
Increasing the delay to 10 seconds further reduces Vilamb’s overhead to 0.1–6%. Vilamb
offers 3–5× higher throughput than Pangolin at high insert rates for all five of Intel’s
persistent memory development kit (PMDK) key-value stores. By protecting data that
belongs to clean stripes from firmware-bug-induced corruptions, Vilamb increases the mean
time to data loss (MTTDL) over maintaining no system-redundancy. For example, Vilamb
with a 1 second system-redundancy update period increases Redis’ MTTDL by 15× and
74× over No-Redundancy for a write-heavy and ready-heavy YCSB workload, respectively.
Detailed timing breakdowns with fio microbenchmarks and battery cost analysis confirm

1Vilamb means delay in Hindi.

13

Cache-Line Writes

DAX NVM Page

Checksum: Up-to-date(✓)
or Outdated(x)?

Initial
State

✓

Vilamb Computes
Checksum

x x x ✓

Time

Figure 3.1: Delayed Checksum Computation Example: By computing per-page system-
checksums asynchronously, Vilamb amortizes the computation overhead over multiple cache-line
writes to the same NVM page.

Vilamb’s design decisions.

3.1 Vilamb Design and Implementation

This section begins by describing Vilamb’s design elements: delayed system-redundancy
updates and repurposing of dirty bits. It then describes the effect of Vilamb’s design on
resilience against different failures and ends with Vilamb’s implementation details.

3.1.1 Asynchronous System-Redundancy

Vilamb asynchronously maintains per-page system-checksums and cross-page parity for
DAX NVM storage. A background thread periodically updates system-redundancy for
pages which have been written to since Vilamb last updated their system-redundancy.
By delaying system-redundancy updates, Vilamb amortizes the overhead over multiple
cache-line writes to the same DAX NVM page.

Fig. 3.1 illustrates how Vilamb reduces work for per-page system-checksums (cross-page
parity is not shown in the example, but is updated at the same time as the system-checksum).
The figure shows a DAX NVM page and its system-checksum; the system-checksum can
either be up-to-date (3) or outdated (x). In the initial state, the system-checksum is
up-to-date with the data. The first write to the page makes the system-checksum stale.
Instead of updating the checksum immediately, Vilamb delays the update until after two
more writes. By delaying the update Vilamb performs a single checksum (and parity, not
shown in the example) computation, instead of three.

Vilamb scrubs the data using a separate background thread to detect data corruption.
Upon mismatch between the page data and system-checksum for a clean page, Vilamb
raises an error and halts the program. The OS can recover corrupted pages using the parity
pages, with potential re-mapping to different physical pages [105, 109].

14

3.1.2 Repurposing Dirty Bits

The conventional use-case of dirty bits is irrelevant for DAX NVM pages, making them
available for repurposing. The dirty bit is conventionally used to identify updated, or
“dirtied”, in-memory pages that the storage system needs to write back to persistent storage.
In case of DAX NVM storage, the file system maps NVM-resident files into application
address spaces using the virtual memory system [27, 59]. Consequently, even though each
mapped page has a corresponding dirty bit, the conventional semantic of these dirty bits is
irrelevant because the pages already reside in persistent NVM storage.

Vilamb repurposes dirty bits to identify pages that have been written to since Vilamb
last updated their system-redundancy. When a file is first DAX mapped, its pages’ dirty
bits are clear and system-redundancy is up-to-date (potentially updated during initialization
for newly created files). A page write, which causes its system-redundancy to become stale,
sets the page’s dirty bit. In each successive invocation, Vilamb’s background thread updates
the system-redundancy for pages with their dirty bit set and then clears the corresponding
dirty bits again.

Shadow Dirty Bits: Vilamb carefully orchestrates the non-atomic two-step process
of updating a page’s system-redundancy and clearing its dirty bit; performing these steps
without any safeguard is incorrect. Clearing the dirty bit after updating the system-
redundancy is incorrect because an interleaved application access can invalidate the system-
redundancy. Reversing the order is not safe either. A system-checksum verification (e.g.,
in a scrubbing thread) after the dirty bit is cleared, but before the system-checksum is
updated, would cause a spurious mismatch between the data and its system-checksum.
Vilamb makes a persistent shadow copy of the dirty bit before clearing it, and clears this
shadow copy only after completing the redundancy update. If either of the dirty bit or its
shadow copy is set for a page, Vilamb knows that the page’s redundancy is outdated.

Impact of Huge Pages: Huge pages are detrimental to Vilamb’s performance. For each
dirty page, Vilamb needs to read the entire page to compute its system-checksum and read
other pages in its stripe to compute their cross-page parity. With huge pages, the amount
of data that Vilamb has to read increases, increasing Vilamb’s overhead for maintaining
system-redundancy. If and when huge pages become more prevalent, Vilamb would need
alternative mechanisms to track updated data. Potential options include architectural
modifications to maintain multiple finer-granularity dirty bits per-huge-page, or tracking
data writes using a Pangolin-like scheme that requires application modifications [109]. We
leave this exploration for future work.

3.1.3 Failure Coverage

Vilamb’s asynchronous approach to system-redundancy introduces a tunable window of
vulnerability. Pages that an application writes to remain susceptible to corruption until
Vilamb updates their system-redundancy. We describe the implication of this window of
vulnerability for different kinds of failures below.

Page Corruption: System-redundancy’s primary goal is to protect data from firmware-
bug-induced corruption. Additionally, system-redundancy also protects from random bit flip

15

induced corruptions, though on-device ECC is already expected to address those. Vilamb’s
delayed system-checksums would detect corruption to all but recently written (dirty) pages.
We illustrate this with an example lost write bug triggered in three different scenarios.

Consider a firmware that uses an on-device write-back cache and that suffers from a
bug wherein the firmware (infrequently) “forgets” to destage some data from the cache to
the device media.

• For the first scenario, consider an application write that is evicted from the CPU
caches to the NVM device, is stored in the on-device write-back cache, and then lost
by the firmware before Vilamb updates the corresponding page’s system-checksum.
This would lead to a silent corruption because Vilamb would use the incorrect (old)
data to compute the system-checksum.

• For the second scenario, consider that Vilamb updates the page’s system-checksum
before the firmware bug is triggered (i.e., while the data is in the CPU caches or in
the on-device cache). Vilamb would update the system-checksum correctly in this
scenario and detect the subsequent corruption because of a data-system-checksum
mismatch at a later point.

• For the third scenario, imagine the bug affects a clean page while the firmware is
performing wear leveling. Vilamb would be able to detect this data loss in its scrubbing
thread.

Among the pages that Vilamb detects as corrupted, Vilamb can recover those that
belong to stripes with all clean pages (and hence, an up-to-date parity). Any dirty page in
a stripe invalidates the parity. Thus, even if the corrupted page is itself clean, Vilamb can
recover it only if all other pages in its stripe are also clean.

Power Failures: Vilamb avoids any inconsistencies between data and its system-
redundancy by ensuring that the system-redundancy is made up-to-date if there is a power
failure. To that end, Vilamb leverages battery backups that are common in production
environments [26, 32, 33, 45, 48, 53, 98]. Conventional storage systems use batteries to
flush DRAM to a persistent medium upon a power failure [26, 33, 45, 48]. NVM does not
need batteries to make its contents persistent because they are already persistent. Vilamb
instead leverages the battery backup to update system-redundancy upon a power failure,
ensuring that no pages are left uncovered. Given that batteries are and will continue to
be used to address other issues as well, e.g., brief power losses and spikes [67], Vilamb can
exploit them for updating system-redundancy.

NVM DIMM Failures or Machine Failures: Vilamb’s system-redundancy is not
intended for protection against DIMM or machine failures; the storage system can protect
against these using remote replication [89, 112]. Being a machine-local fault-tolerance
mechanism, system-redundancy, independent of its implementation, is ineffective against
machine failures. For DIMM failures, Vilamb’s asynchronous system-redundancy design
makes it unable to reconstruct the fraction of the pages in the failed DIMM that belonged
to a stripe with outdated system-redundancy. Although the storage system could still
recover a large fraction of the data (Section 3.2.8), it would need other redundancy to
recover the remaining data.

16

Virtual Memory System FS DAX mmap()

Vilamb Userspace Library
(per-page checksums, and cross-page parity)

Application (e.g., Redis)

Check/clear
dirty bits

Vilamb Kernel Module
(read/reset dirty bits)

User
Space

File Data

Nature and frequency
of system-redundancy

Checksums and Parity
Meta Checksum

Kernel
Space

NVM

Figure 3.2: Vilamb’s Implementation: The user space library performs the system-checksum
and parity computations with a period that is set by the application. The kernel module checks
and clears the dirty bits when requested by the user space library.

3.1.4 Implementation

We implement Vilamb as a user-space library. The library exposes an API that applications
can use to configure the nature of system-redundancy (e.g., type of checksum and number
of pages in a stripe) and its update frequency. The library uses a periodic background
thread that checks and clears the dirty bits using new system calls that we implement,
and performs the system-redundancy updates for the dirty pages. Our implementation
uses a stripe size of five pages by default, with four consecutive data pages and one parity
page. The stripes are statically determined at the time of initialization. Fig. 3.2 shows the
components of our implementation.

New System Calls: We implement two new system calls, getDirtyBits and clearDirtyBits,
to check and clear the dirty bits for pages in a memory range, respectively. getDirtyBits re-
turns a bitvector that has the dirty bits for pages in the input memory range. clearDirtyBits
accepts a dirty bitvector as its parameter in addition to a memory range. It clears the
dirty bit for a page in the memory range only if the corresponding bit is set in the input
dirty bitvector. Since Vilamb is unaware of pages dirtied in between the checking and
clearing and will not update their system-redundancy, it uses this input dirty bitvector
for clearDirtyBits to clear the dirty bits only for pages that were dirty when initially
checked.

Batched Checking and Clearing: Vilamb checks and clears dirty bits for multiple
NVM pages (e.g., 512 in our experiments) as a batch for efficiency. Both checking and
clearing of dirty bits require a system call and traversing the hierarchical page table; clearing

17

Algorithm 1: System-Redundancy Update Thread
Parameter : Batch Size, B pages
Parameter : Number of Pages in File, N
Parameter : Number of Pages in a Parity Group, P

1 for i← 0 to N increment by B do
2 dirtyBitvector ← checkDirtyBits(i, i + B);
3 dirtyBitvectorCopy ← dirtyBitvector;
4 currentBatchStartingPage ← i;
5 memoryFence;
6 clearDirtyBits(i, i + B, dirtyBitvector);
7 for j ← i to i + B increment by P do
8 for k ← j to j + P increment by 1 do
9 updateParity ← False;

10 if bitIsSet(dirtyBitvector, k − i) then
11 updateParity ← True;
12 computePageChecksum(k);

13 end

14 end
15 if updateParity then
16 computeParity(j, j + P);
17 end

18 end
19 memoryFence;
20 dirtyBitvectorCopy ← 0;

21 end
22 computeMetaChecksum();

dirty bits further requires invalidating the corresponding TLB entries. Each of these is a
costly operation, as evinced by prior research [6], and demonstrated by our experiments
(Section 3.2.6). Batching allows pages to share the system call, fractions of the page table
walk, and the TLB invalidation. We found that batching reduced the amount of time spent
in checking and clearing dirty bits by up to two orders of magnitude.

Algorithm: Algorithm 1 details the steps that Vilamb’s background thread performs
on each invocation. Vilamb loops over all the N pages in a given DAX NVM file in
increments of B pages; B being the batch size for which Vilamb checks the dirty bits using
a single system call (Line 2). Vilamb stores a persistent shadow copy of the dirty bits
(Line 3) and then clears them (Line 6). Vilamb updates the system-checksum of each dirty
page (Line 12), and the parity of a group of P pages if either of them is dirty (Line 16).
Vilamb stores the system-checksums and parity separately from the data (Fig. 3.2) and then
clears the shadow copy of the dirty bits (Line 20). Vilamb then updates a meta-checksum
(checksum of the page system-checksums) after every iteration (Line 22 and Fig. 3.2).

As a performance optimization, instead of storing a shadow copy of the dirty bit for each
page, we use a single dirty bitvector of size B along with the current batch’s starting page
number (Line 3 and Line 4). Together, the starting page number and the dirty bitvector
copy suffice to store shadow copies of the dirty bits for pages in the current batch; pages not
in the current batch do not need a shadow copy of their dirty bits because their dirty bits
are not being cleared. Having a single dirty bitvector improves performance by reducing
cache pollution.

18

Vilamb’s system-redundancy verification thread (i.e., the scrubbing thread) computes
and verifies the checksum only for pages that are clean, i.e., they have neither their dirty
bit nor their shadown dirty bit set. If the system-checksum verification succeeds, the thread
moves to the next page. In case of a system-checksum mismatch, the scrubbing thread
re-checks whether the page is clean. This second check is to ensure that the page was not
modified after the first check but before the system-checksum verification. If the second
check also indicates that the page is clean, the scrubbing thread raises a signal to halt the
application. The file system can then recover the page, if it belongs to a clean stripe (we
have not implemented recovery).

Leveraging Hardware Support: Our implementation of Vilamb leverages hardware-
support whenever possible. We use CRC-32C checksums and employ the crc32q instruction
when available. Similarly, we use SIMD instructions for computing the parity whenever
possible (e.g., by operating on 256-byte words in our experiments). We never flush cache-
lines for persistence because we assume battery-backed servers. We do, however, use
fences to ensure ordering between updates. For example, the fence at Line 5 ensures that
the shadow copy of the dirty bits and current batch’s starting page number writes are
completed before the dirty bits are cleared. Similarly, the fence at Line 19 ensures that
system-redundancy is written before the dirty bits’ shadow copy is cleared. We extend the
same performance benefits (e.g., no cache-line flushes and SIMD parity computations) to
the alternatives that we compare Vilamb with in our evaluation.

3.2 Evaluation

This section evaluates Vilamb and compares it to No-Redundancy and Pangolin, using eight
macro- and micro-benchmarks. No-Redundancy serves as the baseline, providing the best
performance but not implementing any system-redundancy. Pangolin is a state-of-the-art
userspace library that updates system-redundancy when applications commit their data
writes to NVM.

We obtained Pangolin’s code from the authors and run it with system-checksum and
parity updates enabled but system-checksum verification disabled (referred to as Pangolin-
MLPC in the Pangolin paper [109]). We run Vilamb also with system-checksum and parity
updates enabled and scrubbing (for background system-checksum verification) disabled.
As shown in the evaluation of Pangolin [109], and confirmed by our experiments, system-
checksum verification via scrubbing at reasonable frequencies incurs negligible overhead.
Pangolin can also verify system-checksums on object reads, which Vilamb cannot, but doing
so reduces throughput by up to 50% for large objects [109].

Unless mentioned otherwise, Vilamb uses a 512-page batch size for checking/clearing
dirty bits. To accurately quantify Vilamb’s overheads, we pin it to the same core(s) as the
application. For single threaded applications such as Redis, this means that the application
and Vilamb run on the same logical core (i.e., same hyper-thread). Each data point in our
results is an average of three runs with root mean square error bars. We use a dual-socket
Intel Xeon Silver 4114 machine with Linux 4.4.0 kernel with 4K pages for our experiments.
The system has 192 GB DRAM, from which we use 64 GB as emulated NVM [72].

19

Pangolin
Vilamb System-Redundancy Thread Period (sec)

1 5 10 No-Redundancy

YCSB-A YCSB-B YCSB-C
YCSB Workload

0

20

40

Th
ro

ug
hp

ut
 (K

-o
ps

/s
ec

)

(a) Throughput

YCSB-A YCSB-B YCSB-C
YCSB Workload

0.0

0.2

0.4

Av
er

ag
e

La
te

nc
y

(m
s)

(b) Average Latency

YCSB-A YCSB-B YCSB-C
YCSB Workload

0

1

2

3

4

99
th

 %
-il

e
La

te
nc

y
(m

s)

(c) Tail Latency

Figure 3.3: YCSB with Redis: Throughput and read latency of YCSB workloads with Redis.

3.2.1 Key Evaluation Takeaways

Key takeaways from our evaluation include:

• Vilamb is low-overhead. For example, Vilamb with a 10 second system-redundancy
update period reduces Redis’ YCSB throughput by only 0.1–6% in comparison to
No-Redundancy.

• Vilamb significantly outperforms Pangolin. For example, Vilamb has 3–5× higher
insert throughput than Pangolin for five PMDK key-value stores. Even for low
throughput applications like single threaded Redis serving YCSB, Vilamb has up to
18% higher throughput than Pangolin.

• Vilamb significantly increases the MTTDL. For example, Vilamb increases the MTTDL
for PMDK key-value stores by up to two orders of magnitude.

• Vilamb offers a tradeoff between performance and time-to-coverage. For example,
decreasing the delay between system-redundancy updates from 5 second to 1 second
increases Redis’ YCSB-A MTTDL by 3× but decreases the throughput by 10%.

• Vilamb’s battery requirements are low. Across all of our workloads, the cost of
batteries that Vilamb requires never exceeds $10.

3.2.2 YCSB with Redis

Redis [80] is a widely used open-source NoSQL DBMS. We modify it to use a DAX NVM
file for its data heap. Our implementation uses the libpmemobj library [37] from the Intel
persistent memory development kit (PMDK) [39] for No-Redundancy.

Modifying Redis to use Vilamb and Pangolin: For Vilamb, we added 10 lines of
initialization and cleanup code in one file. The initialization code registers Redis’ NVM heap
with Vilamb and sets the system-redundancy update delay. To use Pangolin’s transactional
API (which is similar to but different than libpmemobj), we changed 346 lines of code
across 10 files in Redis. Whereas most of these changes were to the transactional interface
(e.g., using pgl tx begin), we also had to modify Redis to invoke Pangolin before reading

20

data from an object (using pgl get). Doing so enables Pangolin to determine whether the
object is in NVM or in DRAM and provide Redis with the correct pointer.

Experimental Setup: We use three core YCSB workloads: YCSB-A (50:50 reads:updates),
YCSB-B (95:5 reads:updates), and YCSB-C (read-only). We initialize the DBMS with
1M (1× 220) key-value pairs for a NVM footprint of 10 GB and run the workloads for five
minutes. The YCSB workload generator uses 20 threads and runs on a different socket
than Redis.

Results: Fig. 3.3 presents throughput and read latencies. Vilamb reduces the through-
put, in comparison to No-Redundancy, by 0.1–6% for a system-redundancy update period
of 10 second and by 1.6–17% for a period of 1 second. Increasing the delay for system-
redundancy updates improves Vilamb’s performance because it performs fewer system-
redundancy updates and hogs less CPU. With aggressive system-redundancy updates every
second, Vilamb increases the tail latency for YCSB-A because it stalls Redis while updating
system-redundancy on the same core. This effect can be mitigated if Vilamb and Redis
were to run on separate cores.

Pangolin’s throughput is 13–18% lower than No-Redundancy, with a higher overhead for
more read-heavy workloads. In addition to the overhead of updating system-redundancy,
Pangolin incurs overhead because of two other factors, both related to its micro-buffering
design. First, on every object read, Pangolin probes a cuckoo hash table to check whether
the latest copy of the object is in a DRAM micro-buffer or in NVM. Second, when Redis adds
an object to a transaction, Pangolin copies the entire object to DRAM for micro-buffering,
rather than just the modified data ranges.

For the write-heavy workload YCSB-A, Pangolin outperforms Vilamb with a system-
redundancy update period of 1 second. This is because Pangolin’s micro-buffering design
enables it to perform system-checksum and parity updates using the diff of the updated
data. Pangolin uses the new data in the DRAM micro-buffer and the old data in the NVM
to compute the data diff. In contrast, Vilamb has to read the entire page to update the
system-checksum, and also read other pages in the stripe to update the parity. With 5 and
10 second system-redundancy update periods, Vilamb outperforms Pangolin by 5–7%.

For read-heavy workloads YCSB-B and YCSB-C, Vilamb reduces the throughput
marginally (e.g., less than 2% for YCSB-C) whereas Pangolin reduces the throughput
by 18%. This is because even though the number of system-redundancy updates reduce,
Pangolin continues to incur the additional overheads described above. For example, Pangolin
has to check whether the data is in DRAM or NVM for object reads.

Pangolin’s moderate overhead (up to 18%) compared to No-Redundancy and Vilamb
is an artifact of Redis’ inefficiencies. In particular, Redis’ single-threaded design causes
it to have low performance (tens of thousands of operations per second) that does not
fully expose the system-redundancy update overheads. In the next section, we show that
multi-threaded key-value stores that perform millions of operations per second benefit
significantly from Vilamb’s asynchronous approach.

21

Pangolin
Vilamb System-Redundancy Thread Period (sec)

1 5 10 No-Redundancy

CTree BTree RBTree RTree HashMap
Data Structure

0

200

400

Th
ro

ug
hp

ut
(K

-o
ps

/s
ec

)

(a) Insert Throughput

CTree BTree RBTree RTree HashMap
Data Structure

0

200

Th
ro

ug
hp

ut
(K

-o
ps

/s
ec

)

(b) Remove Throughput

Figure 3.4: PMDK Key-Value Stores: Throughput for insert-only, remove-only benchmarks
with different PMDK key-value stores.

3.2.3 PMDK Key-Value Stores

Intel persistent memory development kit (PMDK) [39] implements NVM-optimized key-
value stores and includes performance benchmarks.

Experimental Setup: Similar to Pangolin [109], we use insert-only, and remove-
only benchmarks for five key-value stores: Crit-Bit Tree (CTree), BTree, Red-Black Tree
(RBTree), Range Tree (RTree) and chaining hashmap (HashMap). We first re-create the
experiment and results from Pangolin [109] with a single-thread that performs 5 million
operations. We then use multiple threads (1 to 32) with 100,000 operations per thread.

We modify the PMDK benchmark for multi-threaded benchmarking. In the original
implementation, the threads synchronize using a coarse-grained lock; each thread holds a
lock over the entire data structure for the entire duration of its transaction. Not surprisingly,
the coarse-grained lock leads to poor scaling. We modified the implementation such that
each thread maintains and operates on its own instance of the data structure. All the
threads share the same NVM pool, but do not synchronize their changes because they
operate on different data. Our modifications enabled close to linear scaling for the baseline
case of No-Redundancy.

Results: Figs. 3.4(a) and 3.4(b) show the throughput for the insert-only and remove-
only workloads when using a single thread for the key-value store. Pangolin’s overheads
are similar to those reported in their paper [109]. Vilamb’s performance improves with
increasing delay in system-redundancy updates. Of the five key-value stores, both Pangolin
and Vilamb have the highest overhead in comparison to No-Redundancy for RTree because
RTree’s insertion touches the largest amount of data. For the remove-only workload,
Pangolin outperforms Vilamb with 1 second system-redundancy update period because
removing objects touches only a small amount of data and Pangolin can efficiently update
system-redundancy using the diffs for small data.

Figs. 3.5(a) to 3.5(e) show the insert-only throughput for the five key-value stores with
increasing number of threads. Increasing the number of threads updates NVM data more
aggressively and generates more system-redundancy updates. This causes Pangolin to have
up to 80% lower throughput than No-Redundancy. Across the the five key-value store,
Vilamb has 3–5× higher throughput than Pangolin when using 32 threads.

22

Pangolin Vilamb: 1 sec period No-Redundancy

1 2 4 8 16 32
Threads

0.0

0.5

1.0

1.5

2.0
Th

ro
ug

hp
ut

(M
-o

ps
/s

ec
)

(a) CTree Insert

1 2 4 8 16 32
Threads

0

2

4

6

Th
ro

ug
hp

ut
(M

-o
ps

/s
ec

)

(b) BTree Insert

1 2 4 8 16 32
Threads

0

1

2

Th
ro

ug
hp

ut
(M

-o
ps

/s
ec

)

(c) RBTree Insert

1 2 4 8 16 32
Threads

0.0

0.5

1.0

1.5

2.0

Th
ro

ug
hp

ut
(M

-o
ps

/s
ec

)

(d) RTree Insert

1 2 4 8 16 32
Threads

0

1

2

3

Th
ro

ug
hp

ut
(M

-o
ps

/s
ec

)

(e) HashMap Insert

Figure 3.5: PMDK Key-Value Stores: Throughput for insert-only, remove-only benchmarks
with different PMDK key-value stores.

3.2.4 NVM Transaction Microbenchmarks

Pangolin [109] used micro-benchmarks to measure the latency of transactional operations
(allocation, overwrite, and deallocation), and to measure the scalability of overwriting NVM
regions with multiple threads.

Experimental Setup: We perform each transactional operation (allocation, overwrite,
deallocation) 1 million times for different sized objects in a single thread and report the
average latency. We use an NVM file of 10 GB for this. For scalability, we increase the
number of threads with each thread overwriting 64-byte and 4 KB regions 200,000 times.

Results: Fig. 3.6 shows the latency for performing the transactional operations using a
single thread. For 64-byte objects, Pangolin incurs 23%, 44%, and 30% higher latency than
No-Redundancy for allocation, overwrite, and deallocation, respectively. In contrast, Vilamb
with a system-redundancy update period of 1 second increases the corresponding latencies
by only 9%, 5%, and 3%; increasing the system-redundancy update period further reduces
Vilamb’s latencies. Increasing the object sizes increases the latency for all configurations,
because more data is touched (except for deallocation, in which only metadata is updated).
However, even for 4 KB objects, Vilamb with a system-redundancy update period of
1 second has 13%–31% lower latencies than than Pangolin.

Fig. 3.7 shows the throughput for overwriting 64-byte and 4 KB regions with an
increasing number of threads. Vilamb scales close to No-Redundancy, with only up to
25% lower throughput. In contrast, Pangolin has up to 77% lower throughput. Pangolin’s
experiments with real NVM (in contrast to our DRAM-based emulation) showed that
No-Redundancy performance does not scale well beyond 8 threads because of NVM’s

23

Pangolin
Vilamb System-Redundancy Thread Period (sec)

1 5 10 No-Redundancy

64 256 1024 4096
Data Size (bytes)

0

2

4

Av
er

ag
e

La
te

nc
y

(u
s)

(a) Allocation

64 256 1024 4096
Data Size (bytes)

0

2

4

6

8

Av
er

ag
e

La
te

nc
y

(u
s)

(b) Overwrite

64 256 1024 4096
Data Size (bytes)

0.00

0.25

0.50

0.75

1.00

Av
er

ag
e

La
te

nc
y

(u
s)

(c) Deallocation

Figure 3.6: NVM Transaction Latencies: Latencies for transactional allocation, overwriting,
and deallocation.

limited bandwidth [109]. However, even with 8 threads Vilamb’s throughput is double
of Pangolin’s. As NVM performance improves and gets closer to DRAM performance,
the benefits of Vilamb’s asynchronous system-redundancy maintenance will become more
pronounced. We also evaluated overwriting with other intermediate data sizes (256 and
1024 bytes) and obtained similar trends.

3.2.5 Fio Microbenchmarks

This section evaluates Vilamb’s performance using fio [10] microbenchmarks. We cannot
evaluate Pangolin using fio because fio’s NVM engine [30] does not use object based
transactions. Rather, fio treats the entire DAX-mapped file as a raw sequence of bytes.
This illustrates Pangolin’s programming model restriction. Applications that manage
DAX-mapped data themselves, either as raw data as in fio microbenchmarks or in more
complex fashion like NVM databases [8], can benefit from Pangolin only if they can be and
are modified to use its APIs.

Experimental Setup: Fio’s libpmem engine reads/writes DAX NVM files at a cache-
line granularity. We use write-only and read-only workloads with a 16 GB file and
three access patterns: uniform random, sequential, and Zipf. The workloads perform
reads/writes equal to the file size. The random and sequential workloads choose previously
unread/unwritten cache-lines, consequently reading/writing each cache-line in the entire
file exactly once. We use a single thread and pin it to a logical core along with Vilamb.
Experiments with the read-only workloads quantify the overhead of Vilamb’s dirty bit
checking, because that is the only work Vilamb has to perform for read-only workloads.

Results: Fig. 3.8 shows the throughput for the two workloads with three access
patterns each. For write-only workloads, Vilamb reduces throughput by 0.5–56% with
higher overheads for more frequent system-redundancy updates. Vilamb’s overheads are
highest for the random workload and lowest for the sequential workload; sequential workloads
offer the best opportunity to reduce computations, because successive cache-line writes
belong to the same page. Even for random workloads, the overhead is only 10% with a
system-redundancy update delay of 60 seconds. Vilamb reduces the throughput by only

24

Pangolin Vilamb: 1 sec period No-Redundancy

1 2 4 8 16 32
Number of Threads

0

5

10

Th
ro

ug
hp

ut
 (M

-o
ps

/s
ec

)

(a) 64 Byte Writes

1 2 4 8 16 32
Number of Threads

0.0
0.5
1.0
1.5
2.0

Th
ro

ug
hp

ut
 (M

-o
ps

/s
ec

)

(b) 4096 Byte Writes

Figure 3.7: NVM Overwrite Throughput

up to 3% for read-only workloads, demonstrating the efficacy of its checking of dirty bits.
Vilamb’s througput is higher than No-Redundancy for the read-only sequential workload
with an update period of more than 10 seconds; this is an artifact of the experimental setup.
While checking for dirty bits, Vilamb populates the page table entries and reduces the
number of soft page faults. The performance benefit of reduced soft page faults outweigh
the overhead of checking the dirty bits infrequently (i.e., with a period of more than 10
seconds). This anamoulous inversion of performance can be resolved by pre-populating the
page table entries for No-Redundancy as well.

3.2.6 Cost of Checking/Clearing Dirty Bits

To better understand the cost of checking and clearing dirty bits, we break down the cost
into its constituent components: (i) system call, (ii) page table walk to desired page table
entries, (iii) reading/resetting the dirty bits, and (iv) TLB invalidation after clearing dirty
bits. We also demonstrate the benefits of batching multiple pages when checking and
clearing the dirty bits.

Experimental Setup: We use the write-only fio workload with 64-byte writes and a
uniform random access pattern. We configure Vilamb to check/clear the dirty bits every
second. We measure the average amount of time spent in each of the components for a
single invocation of Vilamb’s background thread. We vary the batch size to demonstrate
the impact of batching.

Results: Fig. 3.9(a) presents the time spent in various components of checking and
clearing dirty bits. The batch size is set to 512 pages for this experiment. Doubling the
file size, and consequently the total number of pages, roughly doubles the amount of time
spent in each of the components. This is because the number of system calls, page walks,
and reads of the dirty bits are all directly proportional to the total number of pages. The
number of pages for which the dirty bit is cleared and the number of TLB invalidations
depend on the workload’s access pattern. For the uniform random access workload, these
are also directly proportional to the total number of pages.

25

Vilamb System-Redundancy Thread Period (sec)
1 10 30 60 No-Redundancy

Random Zipf Sequential
Access Pattern

0

50

100

150

200

250

Ba
nd

wi
dt

h
(M

B/
s)

(a) Write Only Workload

Random Zipf Sequential
Access Pattern

0

50

100

150

200

250

300

Ba
nd

wi
dt

h
(M

B/
s)

(b) Read Only Workload

Figure 3.8: Fio Microbenchmarks: Throughputs for write-only and read-only workloads with
different access patterns.

Fig. 3.9(b) presents the impact of batch size for a 16 GB file. As the batch size increases,
the time spent in checking/clearing dirty bits decreases with diminishing marginal returns.
This decrease is because the number of system calls reduce and larger fractions of the page
table walks are shared between the pages in the same batch. The benefits are diminishing
with increasing batch size, because of the fixed cost of reading all the dirty bits and resetting
the ones that are found to be set.

3.2.7 Battery Capacity Requirements

This section analyzes the cost of batteries required for Vilamb to update the system-
redundancy after a power failure for various workloads. We consider two kinds of batteries:
ultra-capacitors that cost $2.85/KJ [66, 99], and lithium-ion batteries that cost $0.02/KJ [67,
99]. Conventionally, datacenters use lithium-ion batteries; modern datacenters additionally
use ultra-capacitors because of their higher energy efficiency and density [99]. We consider
servers with 500W [99] power usage.

For Redis with the write-heavy workload YCSB-A, one iteration of Vilamb’s system-
redundancy updates takes 143 ms when performed every second and 562 ms when performed
every 10 seconds. These correspond to less than 1 KJ of energy required, i.e. the cost
would be less than $2.85 when using ultra-capacitors and less than $0.02 when using the
conventional lithium-ion batteries. This is the case for all PMDK key-value stores except
RTree as well. For RTree, because of its sparse and large writes, Vilamb can require up to 5
seconds to update the system-redundancy upon a power failure, requiring 2.5 KJ of energy.
This corresponds to $7.2 in ultra-capacitor cost or $0.05 lithium-ion battery cost. For fio,
even with the adversarial random write workload with a system-redundancy update period
of every 60 seconds, Vilamb requires only 4.5 seconds after a power failure. This translates
to 2.25 KJ of required energy and $6.4 in ultra-capacitor cost or $0.04 in lithium-ion
battery cost. The battery requirement, and the associated cost, can be further reduced by

26

Clearing Dirty Bits Checking Dirty Bits
Clearing Dirty Bits: Invalidate TLBs
Clearing Dirty Bits: Reset Bits
Clearing Dirty Bits: Page Walks
Clearing Dirty Bits: System Calls

Checking Dirty Bits: Read Bits
Checking Dirty Bits: Page Walks
Checking Dirty Bits: System Calls
Iterate over File

1 2 4 8 16
File Size (GB)

0

10

20

30

40

50

La
te

nc
y

(m
s)

(a) Breakdown of Time Spent

64 128 256 512 1K 2K
Pages in Batch

0

25

50

75

100

125

La
te

nc
y

(m
s)

(b) Impact of Batch Size

Figure 3.9: Cost of Checking/Clearing Dirty Bits: 3.9(a) shows the time spent in each
component of checking/clearing dirty bits for a batch size of 512 pages and increasing file sizes.
3.9(b) shows that increasing the batch size reduces the time spent in checking/clearing dirty bits
with diminishing returns.

limiting the number of pages that can be dirty (i.e., with outdated system-redundancy)
using Viyojit’s [48] design.

3.2.8 Reliability Analysis

We now evaluate the increase in mean time to data loss (MTTDL) over No-Redundancy
when using Vilamb. For No-Redundancy, a single page corruption causes data loss.
MTTDLNo−Redundancy = MTTFPage

P
, where P is the number of pages in the system.

A page corruption affects data protected with Vilamb in different ways. If the corruption
affects a page that is dirty, Vilamb would checksum the corruption, leading to a silent
data corruption. If the corruption affects a page that is itself clean but belongs to a stripe
with a dirty page (hence, an outdated parity), Vilamb cannot recover the page, causing a
data loss. For a corruption that affects a page that is itself clean and belongs to a stripe
with all clean pages, Vilamb can recover the page. In summary, if the corruption affects a
page in a vulnerable stripe, i.e., a stripe with even one dirty page, it would lead to data
loss. MTTDLV ilamb = MTTFPage

V×N
, where V is the number of vulnerable stripes, and N is

the number of pages in a stripe. Vilamb increases the MTTDL by P
V×N

in comparison to
No-Redundancy.

We use the above to compute the increase in the MTTDL with Vilamb over No-
Redundancy for the various applications and workloads described in Section 3.2. Workload
access patterns, i.e., the rate and locality of their data updates determine the number of
vulnerable stripes. We emperically measure the average number of vulnerable stripes for

27

the various workloads and use that to compute the increase in MTTDL. For Redis, Vilamb
with a system-redundancy update period of 1 second increases the MTTDL by 15× for the
write-heavy workload YCSB-A and 74× for the ready-heavy workload YCSB-B. Increasing
the delay reduces the MTTDL, because a larger fraction of data remains dirty (e.g., 21×
and 13× for YCSB-B with 5 second and 10 second period, respectively). For PMDK’s
key-value stores, Vilamb increases the MTTDL by up to two orders of magnitude (e.g.,
112× for RBTree insert-only workload with 32 threads).

3.3 Conclusion

Vilamb provides low-overhead system-redundancy for DAX NVM data by embracing an
asynchronous approach. In doing so, Vilamb creates a tunable trade-off between performance
and time-to-coverage. For example, decreasing the system-redundancy update delay from
5 seconds to 1 second reduces Vilamb’s throughput for Redis with YCSB-A workload by
10% but also increases the MTTDL by 3×. Vilamb’s asynchronous approach amortizes
the performance overhead of updating system-redundancy over multiple data writes. As a
result, Vilamb outperforms the state-of-the-art synchronous system-redundancy solution,
Pangolin, by up to 5×. Although Vilamb’s delayed data coverage design is not suited for all
applications, it adds a high throughput option to the suite of DAX NVM system-redundancy
options available to applications.

28

Chapter 4

Tvarak: Software-managed hardware
offload for redundancy in
direct-access NVM storage

This chapter proposes Tvarak [49]1, a software-managed hardware offload that efficiently
maintains system-redundancy for direct access (DAX) NVM data. Tvarak resides with
the last-level cache (LLC) controllers and coordinates with the file system to provide DAX
data coverage without application involvement. The file system informs Tvarak when
it DAX-maps a file. Tvarak verifies each DAX NVM cache-line read and updates the
system-redundancy for each DAX NVM cache-line write-back.

Tvarak’s design relies on two key elements to achieve efficient system-redundancy
verification and updates. First, Tvarak reconciles the mismatch between DAX granularities
(typically 64-byte cache-lines) and typical 4KB system-checksum block sizes by introducing
cache-line granular system-checksums (only) while data is DAX-mapped. Tvarak accesses
these cache-line granular system-checksums, which are themselves packed into cache-line-
sized units, via separate NVM accesses. Maintaining these checksums only for DAX-mapped
data limits the resulting space overhead. Second, Tvarak uses caching to reduce the number
of extra NVM accesses for system-redundancy information. Applications’ data access locality
leads to reuse of system-checksum and parity cache-lines; Tvarak leverages this reuse with a
small dedicated on-controller cache and configurable LLC partitions for system-redundancy
information.

Simulation-based evaluation with seven applications, each with multiple workloads,
demonstrates Tvarak’s promise of efficient synchronous DAX NVM storage system-redundancy.
For Redis, Tvarak incurs only a 3% slowdown for maintaining system-redundancy with
a set-only workload, in contrast to 50% slowdown with Pangolin-like software approach,
without compromising on coverage or checks. For other applications and workloads, the
results consistently show that Tvarak efficiently updates and verifies system-checksums and
parity, especially in comparison to software-based synchronous alternatives. The efficiency
benefits are seen in both application runtimes and energy.

1Tvarak means accelerator in Hindi.

29

4.1 Tvarak Design

Tvarak is a hardware controller that is co-located with the last-level cache (LLC) bank
controllers. It coordinates with the file system to protect DAX-mapped data from firmware-
bug-induced corruptions. We first outline the goals of Tvarak. We then start by describing a
naive system-redundancy controller, and improve its design to reduce its overheads, leading
to Tvarak. We end with Tvarak’s architecture, area overheads, and walk through examples.

4.1.1 Tvarak’s Goals and Non-Goals

Tvarak intends to enable the following for DAX-mapped NVM data: (i) detection of
firmware-bug induced data corruption, and (ii) recovery from such corruptions. To this end,
the file system and Tvarak maintain per-page system-checksums and cross-DIMM parity
with page striping, as shown in Fig. 4.1. Note that a RAID-4 or RAID-5 like geometry (as
shown in Fig. 4.1) precludes a cache-line granular interleaving across the NVM DIMMs.
This is because a cache-line granular interleaving would require certain cache-lines in pages
(e.g., every fourth cache-line in case of 4 NVM DIMMs) to be reserved for parity, breaking
the contiguity or application’s virtual address space. Instead, a page-granular interleaving
enables the OS to map contiguous virtual pages to data pages (bypassing the parity pages)
and retain the contiguity of application’s virtual address space. This restriction is not
unique to Tvarak and required for any scheme that implements a RAID-4 or RAID-5 like
geometry.

Tvarak’s system-redundancy mechanisms co-exist with other complementary file system
redundancy mechanisms that each serve a different purpose. These complementary mecha-
nisms do not protect against firmware-bug-induced corruptions, and Tvarak does not intend
to protect against the failures that these mechanisms cover. Examples of such complemen-
tary redundancy mechanisms include remote replication for machine failures [31, 41, 51, 69],
snapshots for user errors [33, 85, 105, 111], and inline sanity checks for file system bugs [54].

Although not Tvarak’s primary intent, Tvarak also aids in protecting data from random
bit flips and in recovery from DIMM failures. Tvarak can detect random bit flips because it
maintains a checksum over the data. This coverage is in concert with device-level cache-line
granular ECCs [24, 42, 94] that are designed for detecting and recovering from random
bit flips. Tvarak’s cross-DIMM parity also enables recovery from DIMM failures. The
file system and Tvarak ensure that recovery from a DIMM failure does not use corrupted
data/parity from other DIMMs. To that end, the system-checksum for a page is stored in the
same DIMM as the page, and the file system verifies a page’s data with its system-checksum
before using it.

4.1.2 Naive System-Redundancy Controller Design

Fig. 4.2 illustrates a basic system-redundancy controller design that satisfies the requirements
for detecting firmware-bug-induced corruptions, as described in Section 2.3. We will improve
this naive design to build up to Tvarak. The naive controller resides above the device
firmware in the data path (with the LLC bank controllers). The file system informs the

30

System-
ChecksumsData Data Data Parity

System-
ChecksumsData Data Data

System-
ChecksumsData Data Data

System-
ChecksumsData Data Data

Parity

Parity

Parity

N
V

M
 D

IM
M

s

Parity Stripe

Figure 4.1: Tvarak coordinates with the file system to maintain per-page system-checksums and
cross-DIMM parity akin to RAID-5 with page striping.

controller about physical page ranges of a file when it DAX-maps the file, along with the
corresponding system-checksum pages and the parity scheme. For each cache-line write-back
from the LLC and cache-line read into the LLC, the controller performs an address range
matching. The controller does not do anything for cache-lines that do not belong to a
DAX-mapped region, as illustrated in the leftmost access in Fig. 4.2. The file system
continues to maintain the system-redundancy for such data [71, 105].

For DAX-mapped cache-lines, the controller updates and verifies system-redundancy
using separate accesses from the corresponding data. The request in the center of Fig. 4.2
shows a DAX cache-line read. To verify the read, the controller reads the entire page (shown
with black arrows), computes the page’s checksum, reads the page’s system-checksum
(shown in olive) and verifies that the two match. The rightmost request in Fig. 4.2 shows
a cache-line write. The controller reads the old data in the cache-line, the old system-
checksum, and the old parity (illustrated using black, olive and pink, respectively). It then
computes the data diff using the old and the new data and uses that to compute the new
system-checksum and parity values2. It then writes the new data, new system-checksum,
and the new parity to NVM. The cross-DIMM parity design and the use of data diffs to
update parity is similar to recently proposed RAIM-5b [114].

Note that we assume that the NVM servers are equipped with backup power to flush
CPU caches in case of a power failure. This guarantees that the controller can complete
the system-checksum and parity writes for a data write in case of a power failure, even
if the controller caches this information, as we will describe later. The backup power
could either be from top-of-the-rack batteries with OS/BIOS support to flush caches, or
ADR-like support for caches with cache-controller managed flushing. Both of these designs
are common in production systems [3, 26, 33, 48, 66, 70, 113]. Backup power also eliminates
the need for durability-induced cache-line flushes and improves performance [66, 113] at a
low cost (e.g., $2 for a 16 MB LLC [66]). We extend this assumption, and its performance
benefits, to the all the designs we compare Tvarak to in Section 4.2.

2We assume that the controller implements incremental system-checksums that can be updated using
the data diffs, e.g., CRC.

31

write
ack ack

write

NVM DIMMs

LLC Bank

DAX-mapped?
Verify system-csum

NO YES

read

read

data

Compute system-csum
and parity

YES

write ack

read or
write

data
or ack read write

NAIVE

System-ChecksumsData Parity

Figure 4.2: Naive System-Redundancy Controller Design: The system-redundancy con-
troller operates only on DAX-mapped data. For DAX-mapped cache-line reads, the controller
reads the entire page to compute the checksum, reads the system-checksum, and verifies that the
two match. For cache-line writes, it reads the old data, system-checksum, and parity, computes
the data diff, uses that to compute the new system-checksum and parity, and writes them back.

4.1.3 Efficient Checksum Verification

Verifying system-checksums in naive design incurs a high overhead because it has to read the
entire page, as shown in Fig. 4.2. For typical granularities of 4KB checksum pages and and
64B cache-lines, the naive design reads 65× more cache-lines (64 cache-line in a page and one
for the checksum). The read amplification would be even higher with huge pages. Although
a smaller checksum granularity would reduce the checksum verification overhead, doing
so would require dedicating more of the expensive NVM storage for redundant data. For
example, per-cache-line checksums would require 64× more space than per-page checksums
for 4KB pages with 64 byte cache-lines. Instead, the trend in storage system designs is to
move towards larger, rather than smaller, checksum granularities [58, 93, 101].

We introduce DAX-CL-checksums to reconcile the performance overhead of page-granular
checksum verification with the space overhead of cache-line-granular checksums. Adding
DAX-CL-checksums to the naive controller results in the design shown in Fig. 4.3. As the
name suggests, DAX-CL-checksums are cache-line-granular checksums that the controller
maintains only when data is DAX-mapped. The read request in the middle of Fig. 4.3
illustrates that using DAX-CL-checksums reduces the read amplification to only 2× from
65× for the naive design—the controller only needs to read the DAX-CL-checksum in
addition to the data to verify the read. The additional space required for DAX-CL-checksums
is a small frction (e.g., 1

64
th of the DAX-mapped data size, assuming 64 byte cache-lines) and

temporary in nature—it is required only for the fraction of NVM that an application has
DAX-mapped and is freed after the application unmaps the NVM data. This is in contrast
to the dedicated space overhead of maintaining fine-grained object-granular checksums for
all NVM data at all times [109]. DAX-CL-checksums make the controller performance
independent of the architecture’s page size. This makes the controller suitable to use with
huge pages, unlike Vilamb which incurs higher overhead with huge pages (Section 3.1.2).

The controller accesses DAX-CL-checksums separately from the corresponding data to
ensure that the it continues to provide protection from firmware-bug-induced corruptions.
For DAX-mapped cache-line writes, the controller updates the corresponding DAX-CL-

32

write
ack ack

write

NVM DIMMs

LLC Bank

DAX-mapped?
Verify system-csum

NO YES

read

read

data

Compute system-csum
and parity

YES

write ack

read write

Naive
+ DAX-CL-Csums

System-ChecksumsData Parity DAX-CL-Checksums

read/write data/ack

Figure 4.3: Efficient Checksum Verification: DAX-CL-checksums eliminate the need to
read the entire page for DAX cache-line read verification. Instead, the controller only reads the
cache-line and its corresponding DAX-CL-checksum.

checksum as well, using a similar process as that for system-checksums and parity (rightmost
request in Fig. 4.3).

Managing DAX-CL-checksums is simple because the controller uses them only while
data is DAX-mapped. In particular, when recovering from any failure or crash, the file
system verifies data integrity using system-checksums rather than DAX-CL-checksums.
Thus the controller need not maintain the DAX-CL-checksums persistently. When the file
system DAX-maps a file, the controller requests a buffer space for DAX-CL-checksums. The
file system can allocate this buffer space in either NVM or in DRAM; our implementation
stores DAX-CL-checksums in NVM. The file system reclaims this space when it unmaps a
file. Unlike page system-checksums, DAX-CL-checksums need not be stored on the same
DIMM as its corresponding data because they are not used to verify data during recovery
from a DIMM failure.

4.1.4 Efficient Checksum and Parity Updates

The rightmost request in Fig. 4.3 shows that the controller incurs 4 NVM reads and
writes for each cache-line write to update the system-redundancy. To reduce these NVM
accesses, we note that system-redundancy information is cache-friendly. Checksums are
typically small and multiple checksums fit in one cache-line. In our implementation of 4
byte CRC-32C checksums, one 64 byte cache-line holds 16 checksums. DAX-CL-checksums
for consecutive cache-lines and system-checksums for consecutive physical pages in a DIMM
belong to the same cache-line. Access locality in data leads to reuse of DAX-CL-checksum
and system-checksum cache-lines. Similarly, accesses to logically consecutive pages lead to
reuse of parity cache-lines because they belong to the same RAID stripe.

Fig. 4.4 shows a design that caches the system-redundancy data, i.e., system-checksums,
DAX-CL-checksums, and parity, in a small on-controller cache. The controller does not
cache the corresponding NVM data because the LLC already does that. The controller also
uses a partition of the LLC to increase its cache space for system-redundancy information
(not shown in the figure). Using a reserved LLC partition for caching system-redundancy
information limits the interference with application data. The controller can insert up to 3
system-redundancy cache-lines (checksum, DAX-CL-checksum, and parity) per data cache-

33

write
ack ack

write

NVM DIMMs

LLC Bank

DAX-mapped?
Verify system-csum

NO YES

read

read

data

Compute system-csum
and parity

YES

write ack

read/write data/ack read write

System-ChecksumsData Parity DAX-CL-Checksums

On-Controller Cache

get data
diff

Naive
+ DAX-CL-Csums
+ Cache Redundancy
+ Data Diffs in LLC

Figure 4.4: Efficient Checksum and Parity Updates: The controller caches system-
redundancy cache-lines in an on-controller cache and a LLC partition (not shown). It also
uses a LLC partition to store data diffs, eliminating the need to read the old data from NVM
upon cache-line write-backs.

line write-back. If the controller were to share the entire LLC for caching system-redundancy
information, each of these system-redundancy cache-lines could force out application data.
Reserving a partition for system-redundancy information eliminates this possibility because
the system-redundancy controller can only evict a system-redundancy cache-line when
inserting a new one.

We further eliminate the need for the controller to fetch the old data from NVM to
compute the data diff. Cache-lines in the LLC become dirty when they are evicted from
the L2. Since the LLC already contains the soon-to-be-old data value, the controller uses it
to compute the data diff and stores this diff in a LLC partition. This enables the controller
to directly use this data diff upon a LLC cache-line write-back (shown as maroon arrows
from the controller to the LLC in the rightmost request in Fig. 4.4). Upon an eviction from
the LLC data diff partition (e.g., to insert a new data diff), the controller writes back the
corresponding data without evicting it from the LLC, and marks the data cache-line as
clean in the LLC. This ensures that the future eviction of the data cache-line would not
require the controller to read the old data either, while allowing for reuse of the data in the
LLC.

The LLC partitions (for caching system-redundancy and storing data diffs) are completely
decoupled from the application data partitions. The LLC bank controllers do not lookup
application data in system-redundancy and data diff partitions, and the system-redundancy
controller does not look up system-redundancy or data diff cache-lines in application data
partitions. Our design of storing the data diff in the LLC assumes inclusive caches. We
evaluate the impact of exclusive caching in Section 4.2.8.

4.1.5 Putting it all together with Tvarak

Fig. 4.5 shows Tvarak’s components that implement the functionality of a system-redundancy
controller with all the optimizations described above (DAX-CL-checksums, system-redundancy
caching and storing data diffs in LLC). One Tvarak controller resides with each LLC cache
bank. Each Tvarak controller consists of comparators for address range matching and
adders for checksum and parity computations. Tvarak includes a small on-controller cache

34

Core

L1 $
L2 $

LLC

Core
L1 $
L2 $

$-Ctrl

$-Bank

DRAM DIMMs

TVARAK

Adder

On-Controller
Cache

Comparator

LLC $-Bank

Data Diffs

Redundancy

$-Ctrl

$-Bank

TVA
R

A
K

Memory Controller

NVM DIMMs

TVA
R

A
K

Figure 4.5: Tvarak resides with the LLC bank controllers. It includes comparators to identify
cache-lines that belong to DAX-mapped pages and adders to compute checksums and parity. It
includes a small on-controller system-redundancy cache that is backed by a LLC partition. Tvarak
also stores the data diffs to compute checksums and parity.

for system-redundancy data and uses a LLC way-partitions for caching system-redundancy
data. The on-controller cache and LLC way-partition form an inclusive cache hierarchy.
The controllers use MESI coherence protocol for sharing the system-redundancy cache-lines
between their private caches. Tvarak also uses a separate LLC way-partition of storing
data diffs.

Area Overhead: The on-controller cache dominates Tvarak’s area overhead because
its other components (comparators and adders) only require small logic units. In our
evaluation with 2MB LLC cache banks, each Tvarak controller consists of a 4KB cache.
This implies that Tvarak’s dedicated area is only 0.2% of the LLC. Tvarak’s design of
caching system-redundancy in an LLC partition instead of using its own large cache keeps
Tvarak’s dedicated area overheads low, without compromising on performance (Section 4.2).

DAX-mapped Cache-Line Accesses with Tvarak: For a DAX-mapped cache-line
read, Tvarak computes the corresponding DAX-CL-checksum address and looks it up in
the on-controller cache. Upon a miss, it looks up the DAX-CL-checksum in the LLC
system-redundancy partition. If it misses in the LLC partition as well, Tvarak reads
the DAX-CL-checksum from NVM and caches it. Tvarak reads the data cache-line from
NVM, computes its checksum, and verifies it with the DAX-CL-checksum. If the checksum
verification succeeds, Tvarak hands over the data to the bank controller. In case of an error,
Tvarak raises an interrupt that traps into the OS; the file system then initiates a recovery
using the cross-DIMM parity.

On a DAX-mapped cache-line write, Tvarak computes the corresponding system-
checksum, DAX-CL-checksum, and parity addresses and reads them following the same

35

Redis Set-only and get-only with 1–6 parallel instances
N-Store Read heavy, balanced, and write-heavy YCSB workloads
C-Tree Insert-only, and 100:0, 50:50, & 0:100 updates:reads with 12 parallel instances
B-Tree Insert-only, and 100:0, 50:50, & 0:100 updates:reads with 12 parallel instances

RB-Tree Insert-only, and 100:0, 50:50, & 0:100 updates:reads with 12 parallel instances
Fio Sequential and random reads and writes with 12 threads

Stream 4 memory bandwidth intensive kernels with 12 threads

Table 4.1: Tvarak Evaluation: applications and their workloads.

process as above. Tvarak retrieves the data diff from the LLC bank partition and uses
that to compute the new system-checksum, DAX-CL-checksum, and parity. Tvarak stores
the updated system-redundancy information in the on-controller cache, and writes-back
the data cache-line to NVM. Tvarak can safely cache the updated system-redundancy
information because it assumes that servers are equipped with backup power to flush caches
to persistence in case of a power failure (Section 4.1.2).

Tvarak fills an important gap in NVM storage system-redundancy with simple archi-
tectural changes. Integrating NVM devices into servers already requires changing the
on-chip memory controller to support the new DDR-T protocol [40]. Hence, we believe that
Tvarak can be easily integrated in storage server chips, especially given its low-overhead
and energy-efficient design, as we show next.

4.2 Evaluation

We evaluate Tvarak with 7 applications and with multiple workloads for each application.
Table 4.1 describes our applications and their workloads. Redis [81], Intel PMDK’s [39] tree-
based key-value stores (C-Tree, B-Tree, and RB-Tree), and N-Store [8] are NVM applications
with complex access patterns. We also use fio [10] to generate synthetic sequential and
random access patterns, and stream [91] for sequential access memory-bandwidth intensive
microbenchmarks.

We compare Tvarak with three alternatives: No-Redundancy, TxB-Object-Csums, and
TxB-Page-Csums. No-Redundancy implements no system-redundancy mechanisms. TxB-
Object-Csums and TxB-Page-Csums are software-only system-redundancy approaches; TxB-
Object-Csums is based on Pangolin [109] and TxB-Page-Csums is based on Mojim [112] and
HotPot [89]3. Both TxB-Object-Csums and TxB-Page-Csums update system-checksums and
parity when applications inform the interposing library after completing a write, which is
typically at a transaction boundary (TxB). TxB-Object-Csums maintains system-checksums
at an object granularity, whereas TxB-Page-Csums maintains system-checksums at a page
granularity. TxB-Object-Csums does not need to read the entire page to compute the
system-checksum after a write, however, TxB-Object-Csums has higher space overhead
because of the object-granular checksums. Unlike Pangolin, TxB-Object-Csums does not

3 The original Mojim and HotPot designs do not include checksums, but can be extended to include
them.

36

Cores
12 cores, x86-64 ISA, 2.27 GHz,
Westmere-like OOO [86]

L1-D caches
32KB, 8-way set-associative, 4 cycle latency,
LRU replacement, 15/33 pJ per hit/miss [64]

L1-I caches
32KB, 4-way set-associative, 3 cycle latency,
LRU replacement, 15/33 pJ per hit/miss [64]

L2 caches
256KB, 8-way set-associative, 7 cycle latency,
LRU replacement, 46/94 pJ per hit/miss [64]

L3 cache

24MB (12 2MB banks), 16-way set-associative,
27 cycle latency, shared and inclusive,
MESI coherence, 64B lines
LRU replacement, 240/500 pJ per hit/miss [64]

DRAM 6 DDR DIMMs, 15ns reads/writes

NVM
4 DDR DIMMs, 60ns reads, 150ns writes [56]
1.6/9 nJ per read/write [56]

Tvarak

4KB on-controller cache with 1 cycle latency, 15/33 pJ per hit/miss
2 cycle latency for address range matching
1 cycle per checksum/parity computation and verification,
2 ways (out of 16) reserved for caching redundancy information,
1 way (out of 16) for storing data diffs.

Table 4.2: Tvarak Evaluation: Simulation Parameters

copy data between NVM and DRAM. Consequently, TxB-Object-Csums avoids the data
copying overhead of Pangolin (demonstrated in Section 3.2) and does not verify data reads
(which can also incur up to 50% overhead [109]). However, because data is updated in place,
TxB-Object-Csums also loses the ability to update parity using a data diff. TxB-Page-
Csums also does not verify data reads and updates parity by recomputing it as opposed to
using a data diff.

Tvarak updates system-checksums and parity upon every write-back from the LLC to
the NVM, and verifies system-checksums upon every read from the NVM to the LLC. As
mentioned in Section 4.1.2, we assume battery-backed CPU caches, so none of the designs
flush cache-lines for durability.

Methodology: We use ZSim [86] to simulate a system similar to Intel Westmere
processors [86]. Table 4.2 details our simulation parameters. We simulate 12 OOO cores,
each with 32KB private L1 and 256KB private L2 caches. The cores share a 24MB last-level
cache (LLC) with 12 banks of 2MB each. The simulated system consists of 6 DRAM
DIMMs and 4 NVM DIMMs. For NVM DIMMs, we use the latency and energy parameters
derived by Lee et al. [56] (60/150 ns read/write latency, 1.6/9 nJ per read/write). We
use a fixed-work methodology and perform the same amount of application work for each

37

design: No-Redundancy, Tvarak, TxB-Object-Csums, and TxB-Page-Csums. Unless stated
otherwise, we present the average of three runs for each data point with root mean square
error bars.

4.2.1 Key Evaluation Takeaways

We highlight the key takeaways from our results before describing each application’s results
in detail.

• Tvarak provides efficient system-redundancy updates for application data writes,
e.g., with only 1.5% overhead over No-Redundancy for an insert-only workload with
tree-based key-value stores (C-Tree, B-Tree, RB-Tree).

• Tvarak verifies all application data reads, unlike most existing solutions, and does so
efficiently. For example, in comparison to No-Redundancy, Tvarak slows down Redis
get-only workload by only 3%.

• Tvarak benefits from application data access locality because it improves cache
usage for system-redundancy information. For example, for synthetic fio benchmarks,
Tvarak has negligible overheads with sequential accesses, but 2% overhead for random
reads and 33% for random writes, compared to No-Redundancy.

• Tvarak outperforms existing software-only system-redundancy mechanisms. For
example, for NStore workloads, TxB-Object-Csums is 33–53% slower than Tvarak,
and TxB-Page-Csums is 180–390% slower than Tvarak.

• Tvarak’s efficiency comes without an increase in (dedicated) space requirements.
TxB-Object-Csums outperforms TxB-Page-Csums but at the cost of higher space
overhead for per-object checksums. Tvarak instead uses DAX-CL-checksums that
improve performance without demanding dedicated storage.

4.2.2 Redis

Redis is a widely used single-threaded in-memory key-value store that uses a hashtable as its
primary data structure [80]. We modify Redis (v3.1) to use a persistent memory heap using
Intel PMDK’s libpmemobj library [39], building upon an open-source implementation [81].
We vary the number of Redis instances, each of which operate independently. We use the
redis-benchmark utility to spawn 100 clients that together generate 1 million requests per
Redis instance. We use set-only and get-only workloads. We show the results only for 6
Redis instances for ease of presentation; the trends are the same for 1–6 Redis instances
that we evaluated.

Fig. 4.6(a) shows the runtime for Redis set-only and get-only workloads. In comparison
to No-Redundancy, Tvarak increases the runtime by only 3% for both the workloads.
In contrast, TxB-Object-Csums typically increases the runtime by 50% and TxB-Page-
Csums by 200% over No-Redundancy for the set-only workload. For get-only workloads,
TxB-Object-Csums and TxB-Page-Csums increase the runtime by a maximum of 5% and

38

No-Redundancy Tvarak TxB-Object-Csums TxB-Page-Csums

Set Only Get Only
Workload w/ 6 Redis Instances

0

10

20

30

40

Ru
nt

im
e

(s
ec

on
ds

)

(a) Redis: Runtime

Set Only Get Only
Workload w/ 6 Redis Instances

0

10

20

30

40

50

En
er

gy
 (n

J)

85

(b) Redis: Energy

Redundancy Data On-Tvarak Cache LLC L2 L1

Set Only Get Only
Workload w/ 6 Redis Instances

0

100

200

300

400

500

NV
M

 A
cc

es
se

s (
x

10
6)

2418

(c) Redis: NVM Accesses

Set Only Get Only
Workload w/ 6 Redis Instances

0

50

100

150

200

Ca
ch

e
Ac

ce
ss

es
 (x

 1
09)

257

(d) Redis: Cache Accesses

Figure 4.6: Redis: Runtime, energy, and NVM and cache accesses for Redis. We divide NVM
accesses into data and system-redundancy information accesses, and cache accesses into L1, L2,
LLC, and on-Tvarak cache.

39

28% over No-Redundancy, respectively. This increase for TxB-Object-Csums and TxB-
Page-Csums, despite them not verifying any application data reads, is because Redis uses
libpmemobj transactions for get requests as well and these transactions lead to persistent
metadata writes (e.g., to set the transaction state as started or committed). Redis uses
transactions for get requests because it uses an incremental hashing design wherein it
rehashes its hashtable incrementally upon each request. The incremental rehashing can
lead to writes for get requests also. We do not change Redis’ behavior to eliminate these
transactions to suit our get-only workload, which wouldn’t actually trigger a rehashing.

Figs. 4.6(b) to 4.6(d) show the energy, NVM accesses and cache accesses. The energy
results are similar to that for runtime. For the set-only workload, Tvarak performs more
NVM accesses than TxB-Object-Csums because Tvarak does not cache the data or system-
redundancy information in the L1 and L2 caches; TxB-Object-Csums instead performs more
cache accesses. Even though TxB-Page-Csums can and does use the caches (demonstrated
by TxB-Page-Csums’s more than 2.5× more cache accesses than No-Redundancy), it also
requires more NVM accesses because it needs to read the entire page to compute the page-
granular system-checksums. For get-only workloads, Tvarak performs more NVM accesses
than both TxB-Object-Csums and TxB-Page-Csums because it verifies the application data
reads with DAX-CL-checksums.

4.2.3 Key-value Data Structures

We use three persistent memory key-value data structures, namely C-Tree, B-Tree, and
RB-Tree, from Intel PMDK [39]. We use PMDK’s pmembench utility to generate insert-only,
update-only, balanced (50:50 updates:reads), and read-only workloads. We stress the NVM
usage by using 12 instances of each data-structure; each instance is driven by a single
threaded workload generator. Having 12 independent instances of single-threaded workloads
allows us to remove locks from the data-structures and increase the workload throughput.
We show the results for insert-only and balanced workloads; the trends are the same for
other workloads.

Fig. 4.7 show the runtime and energy for the different workloads and data-structures.
For the insert-only workload, Tvarak increases the runtime by a maximum of 1.5% (for
RB-Tree) over No-Redundancy while updating the system-redundancy for all inserted
tuples. In contrast, TxB-Object-Csums and TxB-Page-Csums increase the runtime by
43% and 171% over No-Redundancy, respectively. For the balanced workload, Tvarak
updates the system-redundancy for tuple updates and also verifies tuple reads with DAX-
CL-checksums with only 5% increase in runtime over No-Redundancy for C-Tree and B-Tree.
TxB-Object-Csums incurs a 20% increase in runtime over No-Redundancy for just updating
the system-redundancy upon tuple updates; TxB-Page-Csums performs even worse.

4.2.4 N-Store

N-Store is a NVM-optimized relational DBMS. We use update-heavy (90:10 updates:reads),
balanced (50:50 updates:reads) and read-heavy (10:90 updates:reads) YCSB workloads with
high skew (90% of transactions go to 10% of tuples) [8]. We use 4 client threads to drive

40

No-Redundancy Tvarak TxB-Object-Csums TxB-Page-Csums

C
Insert Only

B RB C
Balanced

B RB

Workload: Tree Data Structure

0

250

500

750

1000

1250

1500

Ru
nt

im
e

(m
s)

1696 3197

(a) KV-Structures: Runtime

C
Insert Only

B RB C
Balanced

B RB

Workload: Tree Data Structure

0

200

400

600

800

1000

En
er

gy
 (n

J)

1484

(b) KV-Structures: Energy

Figure 4.7: Key-Value Data Structures: Runtime and energy for various PMDK key-value
stores.

No-Redundancy Tvarak TxB-Object-Csums TxB-Page-Csums

Update
Heavy

Balanced Read
Heavy

Workload

0

10

20

30

40

50

Ru
nt

im
e

(s
ec

on
ds

)

102

(a) N-Store: Runtime

Update
Heavy

Balanced Read
Heavy

Workload

0

1000

2000

3000

4000

5000

En
er

gy
 (n

J)

15482 5722

(b) N-Store: Energy

Figure 4.8: N-Store: Runtime and energy for different YCSB access patterns with N-Store
database.

41

No-Redundancy Tvarak TxB-Object-Csums TxB-Page-Csums

Sequential
Write

Random
Write

Sequential
Read

Random
Read

Workload

0

200

400

600

800

1000

Ru
nt

im
e

(m
s)

2930

(a) Fio: Runtime

Sequential
Write

Random
Write

Sequential
Read

Random
Read

Workload

0

200

400

600

800

1000

En
er

gy
 (n

J)

1487

(b) Fio: Energy

Figure 4.9: Fio Microbenchmarks: Runtime and energy for sequential and random access
patterns with fio microbenchmarks.

the workload and perform a total of 800,000 transactions. For N-Store, we present results
from a single run with no error bars.

Fig. 4.8 shows the runtime and energy. Tvarak increases the runtime by 27% and 41%
over No-Redundancy for the read-heavy and update-heavy workloads, respectively. Tvarak’s
overheads are higher with N-Store than with Redis or key-value structures, because N-Store
uses a linked list based write-ahead log that leads to a random write access pattern for
update transactions. Each update transaction allocates and writes to a linked list node.
Because the linked list layout is not sequential in NVM, Tvarak incurs cache-misses for
the system-redundancy information and performs more NVM accesses. The random write
access pattern also affects TxB-Object-Csums and TxB-Page-Csums, with a 70%–117%
and 264%–600% longer runtime than No-Redundancy, respectively. This is because TxB-
Object-Csums and TxB-Page-Csums also incur misses for system-redundancy information
in the L1, L2 and LLC caches and have to perform more NVM accesses for random writes.

4.2.5 Fio Microbenchmarks

Fio is a file system benchmarking tool that supports multiple access patterns [10]. We
use fio’s libpmem engine that accesses DAX-mapped NVM file data using load and store
instructions. We use sequential and random read and write workloads with a 64B access
granularity. We use 12 concurrent threads with each thread performing 32MB worth of
accesses (reads or writes). Each thread accesses data from a non-overlapping 512MB region,
and no cache-line is accessed twice.

Fig. 4.9 show the results for fio. As discussed above in the context of N-Store, random
access patterns in the application hurt Tvarak because of poor reuse for system-redundancy
cache-lines with random accesses. This trend is visible for fio as well—whereas Tvarak has

42

No-Redundancy Tvarak TxB-Object-Csums TxB-Page-Csums

Copy Scale Add Triad
Workload

0

100

200

300

400

500

600

Ru
nt

im
e

(m
s)

1154 1154 1156 1156

(a) Stream: Runtime

Copy Scale Add Triad
Workload

0

100

200

300

En
er

gy
 (n

J)

(b) Stream: Energy

Figure 4.10: Stream Microbenchmarks: Runtime and energy for four memory intensive
stream microbenchmark kernel.

essentially the same runtime as No-Redundancy for sequential accesses, Tvarak increases
the runtime by 2% and 33% over No-Redundancy for random reads and writes, respectively.
However, Tvarak still outperforms TxB-Object-Csums and TxB-Page-Csums for the write
workloads. For read workloads, TxB-Object-Csums and TxB-Page-Csums have no impact
because they do not verify application data reads. For the random write workload, Tvarak
incurs a higher energy overhead than TxB-Object-Csums. This is because the energy
required for additional NVM accesses that Tvarak generates exceed that required for the
additional cache accesses that TxB-Object-Csums generates.

4.2.6 Stream Microbenchmarks

Stream is a memory bandwidth stress tool [91] that is part of the HPC Challenge suite [34].
Stream comprises of four sequential access kernels: (i) Copy data from one array to another,
(ii) Scale elements from one array by a constant factor and write them in a second array,
(iii) Add elements from two arrays and write them in a third array, and (iv) Triad which is
a combination of Add and Scale: it scales the elements from one array, adds them to the
corresponding elements from the second array, and stores the values in a third array. We
modify stream to store and access data in persistent memory. We use 12 concurrent threads
that operate on non-overlapping regions of the arrays. Each array has a size of 128MB.

Fig. 4.10 shows the results for the four kernels. The trends are similar to the preceding
results. Tvarak, TxB-Object-Csums, and TxB-Page-Csums increase the runtime by 6%–
21%, 700%–1200%, and 1800%–3200% over No-Redundancy, respectively. The absolute
values of the overheads are higher for all the designs because the baseline No-Redundancy
already saturates the NVM bandwidth, unlike the real-world applications considered above
that consume the data in more complex fashions. The impact of computation complexity is
evident across the four microbenchmarks: copy is the simplest kernel, followed by scale,

43

No-Redundancy Tvarak Vilamb TxB-Object-Csums TxB-Page-Csums

Set Only Get Only
Workload w/ 6 Redis Instances

0

10

20

30

40
Ru

nt
im

e
(s

ec
on

ds
)

(a) Redis: Runtime

Set Only Get Only
Workload w/ 6 Redis Instances

0

100

200

300

400

500

NV
M

 A
cc

es
se

s (
x

10
6)

893 2418

(b) Redis: NVM Accesses

Figure 4.11: Comparison with Vilamb: Runtime and NVM accesses for Redis workloads
with Vilamb in addition to No-Redundancy, Tvarak, TxB-Object-Csums, and TxB-Page-Csums.

add, and triad. Consequently, the overheads for all the designs are highest for the copy
kernel and lowest for the triad kernel.

4.2.7 Comparison with Vilamb

This section compares Tvarak and Vilamb with the Redis set-only and get-only benchmarks
described in Section 4.2.2. We run Vilamb with a system-redundancy update period of
1 second and scrubbing disabled. Tvarak provides synchronous system-redundancy updates
and verification.

Fig. 4.11(a) presents the runtime for Redis with Vilamb in addition to the previously
reported No-Redundancy, Tvarak, TxB-Object-Csums, and TxB-Page-Csums. Vilamb
with a 1 second system-redundancy update period is 22% slower than No-Redundancy,
in contrast to only 3% slower Tvarak and 50% slower TxB-Object-Csums. Fig. 4.11(b)
presents the number of NVM accesses performed by each of the mechanisms. As expected,
Vilamb has more NVM accesses than Tvarak. However, Vilamb also has more NVM
accesses than TxB-Object-Csums. This is because TxB-Object-Csums uses object granular
checksums and can update checksums by just reading the object. In contrast, Vilamb has
to read an entire page every time it updates a checksum. Despite the increase in NVM
accesses, Vilamb performs better than TxB-Object-Csums because it computes two orders
of magnitude fewer checksums than TxB-Object-Csums. For the get-only workload, Vilamb
has negligible overhead.

4.2.8 Impact of Tvarak’s Design Choices

We break down the impact of Tvarak’s design choices, namely, using DAX-CL-checksum,
caching system-redundancy information, and storing data diffs in LLC. We present the

44

Baseline
Naive
 + DAX-CL-Csums

 + Redundancy-Caching
 + Data Diffs in LLC (= Tvarak)

Redis
Set Only

C-Tree
Insert Only

NStore
Balanced

Fio Random
Write

Stream
Triad

Application Workload

0.0

0.5

1.0

1.5

2.0
No

rm
al

ize
d

Ru
nt

im
e

(L
ow

er
 is

 b
et

te
r)

2 3 4 25 2

Figure 4.12: Impact of Tvarak’s Design Choices: We evaluate the impact of Tvarak’s
design optimizations with one workload for each application. We present the results for the naive
design and then add optimizations: DAX-CL-checksums, system-redundancy caching, and data
diffs in LLC. With all the optimizations enabled, we get Tvarak.

results for one workload from each of the above applications: set-only workload with 6
instances for Redis, insert-only workload for C-Tree, balanced workload for N-Store, random
write workload for fio, and triad kernel for stream.

Fig. 4.12 shows the performance for the naive design, and then adds individual design
elements, i.e., DAX-CL-checksums, system-redundancy caching, and storing data diffs in
LLC. With all the design elements, we get the complete Tvarak design. For Redis, C-Tree
and stream’s triad kernel, all of Tvarak’s design choices improve performance. This is the
case for B-Tree, RB-Tree, other stream kernels, and fio sequential access workloads as well
(not shown in the figure).

For N-Store and fio random write workload, system-redundancy caching and storing data
diffs in the LLC hurt performance. This is because taking away cache space from application
data creates more NVM accesses than that saved by caching the system-redundancy data
and storing the data diffs in LLC for N-Store and fio random writes—their random access
patterns lead to poor reuse of system-redundancy cache-lines.

This evaluation highlights the importance of right-sizing LLC partitions that Tvarak
uses to cache system-redundancy information and to store data diffs. We now evaluate the
application performance sensitivity to these parameters.

4.2.9 Sensitivity Analysis

We evaluate the sensitivity of Tvarak to the size of LLC partitions that it can use for
caching system-redundancy information and storing data diffs. We present the results

45

Baseline
Tvarak-1

Tvarak-2
Tvarak-4

Tvarak-6
Tvarak-8

Redis
Set Only

C-Tree
Insert Only

NStore
Balanced

Fio Random
Write

Stream
Triad

Application Workload

0.0

0.5

1.0

1.5

2.0

No
rm

al
ize

d
Ru

nt
im

e
(L

ow
er

 is
 b

et
te

r)

(a) Sensitivity to number of ways for caching system-
redundancy information.

Redis
Set Only

C-Tree
Insert Only

NStore
Balanced

Fio Random
Write

Stream
Triad

Application Workload

0.0

0.5

1.0

1.5

2.0

No
rm

al
ize

d
Ru

nt
im

e
(L

ow
er

 is
 b

et
te

r)

(b) Sensitivity to number of ways for storing data
diffs.

Figure 4.13: Impact of changing the number of LLC ways (out of 16) that Tvarak can use for
caching system-redundancy data and for storing data diffs.

for one workload from each of the set of applications, namely, set-only workload with 6
instances for Redis, insert-only workload for C-Tree, balanced workload for N-Store, random
write workload for fio, and triad kernel for stream.

Fig. 4.13(a) shows the impact of changing the number of LLC ways (out of 16) that
Tvarak can use for caching system-redundancy information. Redis and C-Tree are largely
unaffected by the system-redundancy partition size, with Redis benefitting marginally
from reserving 2 ways instead of 1. Stream and fio, being synthetic memory stressing
microbenchmarks, demonstrate that dedicating a larger partition for system-redundancy
caching improves Tvarak’s performance because of the increased cache space. N-Store is
cache-sensitive and taking away the cache from application data for system-redundancy
hurts its performance.

Fig. 4.13(b) shows the sensitivity of Tvarak to the number of ways reserved for storing
data diffs. As with the sensitivity to system-redundancy information partition size, changing
the data diff partition size has negligible impact on Redis and C-Tree. For N-Store, increasing
the number of ways reserved for storing data diffs hurts performance because N-Store is
cache-sensitive. Stream and fio show an interesting pattern: increasing the number of data
diff ways from 1 to 4 hurts performance, but increasing it to 6 or 8 improves performance
(although the performance remains worse than reserving just 1 way). This is because
dedicating more ways for storing data diffs has two contradicting effects. It reduces the
number of write-backs due to data diff evictions, but it also causes more write-backs because
of the reduced cache space for application data. Their combined effect dictates the overall
performance.

46

4.3 Conclusion

Tvarak efficiently maintains synchronous system-redundancy for DAX NVM storage, ad-
dressing controller and firmware imperfections expected to arise with NVM as they have with
other storage technologies. As a hardware offload, managed by the storage software, Tvarak
does so with minimal overhead and much more efficiently that software-only approaches.

47

Chapter 5

Conclusion and Future Directions

This dissertation demonstrates that direct access NVM storage can be fortitifed with
redundancy mechanisms to protect against firmware-bug-induced data corruptions at low
overhead by delaying the system-redundancy updates or by leveraging a hardware offload.
To that end, it presents two case study systems.

First, we present the design and implementation of Vilamb, a userspace library that main-
tains system-redundancy asynchronously. Vilamb repurposes the dirty bits to identify pages
with stale system-redundancy. Vilamb’s background thread periodically updates system-
redundancy for such pages. In doing so, it amortizes the overhead of system-checksum and
parity computation across multiple writes to a page. Vilamb’s asynchronous approach leads
to 3–5× higher throughput than a state-of-the-art synchronous software-based approach,
Pangolin, for multi-threaded PMDK key-value insertion workloads. Vilamb’s asynchronous
approach creates a trade-off between performance and time-to-coverage. For example,
with a system-redundancy update period of 1 second, Redis with YCSB-A incurs a 17%
throughput reduction in comparison to maintaining no system-redundancy. Increasing the
delay between system-redundancy updates to 5 seconds leads to only a 9% throughput
reduction. However, this increase in delay also reduces the mean time to data loss by a
third. Vilamb is suitable for applications that desire performance but are willing to accept
slightly reduced coverage.

Second, we present Tvarak, a software-managed hardware offload for system-redundancy
maintenance. Tvarak is a hardware controller co-located with last-level cache banks. Its
interpositioning in the data path allows it to identify and act upon NVM accesses and
maintain system-redundancy synchronously. Tvarak implements simple techniques such as
temporarily maintained cache-line granular checksums, and caching of system-redundancy
to reduce NVM accesses leading to and efficient design. Tvarak is able to synchronously
update and verify system-redundancy for Redis with only a 3% slowdown compared
to maintaining no system-redundancy. Tvarak significantly outperforms software-based
synchronous system-redundancy techniques. For example, TxB-Object-Csums, based on
Pangolin, is up to 53% slower than Tvarak for the N-Store database.

48

5.1 Future Directions

This section describes some future research directions based on the work presented in this
dissertation. All the research directions discussed below, as well as NVM research in general,
would also benefit from identifying key real-world applications that would leverage direct
access. Despite the excitement in the storage community, there are currently only a few
commercial applications that leverage direct access to NVM (e.g., SAP HANA database [7]).
As NVM storage matures and more applications emerge, future research would be able to
use more realistic applications and benchmarks.

5.1.1 Automated tuning of Tvarak’s LLC partition sizes

As described in Section 4.2.8, reserving even a small partition of the last-level cache
for caching system-redundancy and storing data diffs can have adverse impact on some
cache-sensitive applications. Automatically tuning the cache partition sizes at runtime,
particularly with multiple co-running applications, is a challenging problem that warrants
more research. The problem would be even more difficult with long-running applications
that exhibit varying access patterns. Potential solutions could include set duelling [76], i.e.,
choosing between two potential choices at runtime by continuous profiling (if the search
space can be a-priori reduced to a couple of choices), communicating applications’ access
characteristics to Tvarak via better hardware-software co-design [95], or runtime profiling
and tweaking by the operating system.

5.1.2 Study of firmware-bug-induced failures in NVM storage

This dissertation is motivated by the existence of corruption inducing firmware bugs in
storage devices. The presence of such bugs was uncovered and proven by large-scale studies
of deployed storage systems with hard disks and solid state drives. Although there is no
reason to expect that such bugs would not exist for NVM devices, a large-scale study (both
in terms of number and duration) of deployed NVM storage devices would further support
the motivation and can provide interesting insights. This would also enable failure injection
studies to compare the recovery of various solutions (Pangolin, Vilamb, and Tvarak) based
on the statistical properties of NVM device firmware bugs. It can also potentially spawn
new research directions if the nature of bugs differs between NVM devices and conventional
storage devices.

5.1.3 Extending Vilamb and Tvarak for cross machine DAX NVM
storage replication

Mojim [112] and HotPot [89] implement cross-machine replication for DAX NVM. How-
ever, they are both interposing library based solutions and thus have the corresponding
performance overhead and programming restrictions. It would be interesting to explore if
Vilamb and Tvarak can provide more efficient cross-machine replication.

49

Appendix A

Other Related Research of the
Author

Research conducted as part of this dissertation also includes Viyojit [48], a solution to
address the challenge of battery scaling in battery-backed DRAM servers. Battery-backed
DRAM servers are widely used to emulate NVM by treating the DRAM as durable storage
and using the battery to flush out data from DRAM onto a truly durable medium (e.g.,
SSD) upon a power failure.

Provisioning battery backup for high capacity battery-backed DRAM servers is chal-
lenging. Whereas DRAM capacities have experienced excellent scaling over time, battery
capacities have scaled poorly. The stunted growth of battery capacities leads to (volumet-
rically) large and unwieldy batteries that pose challenges in terms of their cooling cost,
packaging, availability, and maintainability.

Viyojit decouples the battery capacity from the DRAM capacity by leveraging a skew
common in application access patterns. Typically, applications update only a small fraction
of their dataset. Our analysis of workload traces from four Microsoft datacenter applications
show that for the majority of workloads, the fraction of data written in any one hour period
is less than 15% of the total data.

Viyojit leverages applications’ write skew to provision a smaller battery capacity that
can only support writing back a fraction of the total DRAM capacity. To ensure that no
data is lost upon a power failure, Viyojit bounds the number of dirty pages in DRAM based
on the provisioned (smaller) battery capacity. Viyojit write-protects the battery-backed
pages allocated to an application. Whenever Viyojit makes a page writable (and hence a
page that it would need to write back upon a power failure), it checks the number of such
pages in DRAM. If required to enforce the bound, Viyojit writes back existing dirty pages
before making a new page writable. For efficiency, Viyojit tracks the update frequency of
pages, keeps the frequently updated pages in a dirty state, and proactively writes back
infrequently updated pages.

We implement Viyojit as a userspace library and evaluate it using Redis. We demonstrate
that Viyojit can reduce the battery capacity to 11% of the original capacity with only
7–25% reduction in Redis’ YCSB throughput.

50

Bibliography

[1] Intel Optane/Micron 3d-XPoint Memory. http://www.intel.com/content/www/

us/en/architecture-and-technology/non-volatile-memory.html.

[2] I. F. Adams, J. Keys, and M. P. Mesnier. Respecting the block interface – compu-
tational storage using virtual objects. In 11th USENIX Workshop on Hot Topics
in Storage and File Systems (HotStorage 19), Renton, WA, July 2019. USENIX
Association.

[3] AGIGARAM Non-Volatile System. http://www.agigatech.com/agigaram.php.

[4] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi. A Scalable Processing-in-memory
Accelerator for Parallel Graph Processing. In Proceedings of the 42Nd Annual
International Symposium on Computer Architecture, ISCA ’15, pages 105–117, New
York, NY, USA, 2015. ACM.

[5] J. Ahn, S. Yoo, O. Mutlu, and K. Choi. PIM-enabled Instructions: A Low-overhead,
Locality-aware Processing-in-memory Architecture. In Proceedings of the 42Nd Annual
International Symposium on Computer Architecture, ISCA ’15, pages 336–348, New
York, NY, USA, 2015. ACM.

[6] N. Amit. Optimizing the TLB Shootdown Algorithm with Page Access Tracking. In
Proceedings of the 2017 USENIX Conference on Usenix Annual Technical Conference,
USENIX ATC ’17, pages 27–39, Berkeley, CA, USA, 2017. USENIX Association.

[7] M. Andrei, C. Lemke, G. Radestock, R. Schulze, C. Thiel, R. Blanco, A. Meghlan,
M. Sharique, S. Seifert, S. Vishnoi, D. Booss, T. Peh, I. Schreter, W. Thesing,
M. Wagle, and T. Willhalm. SAP HANA Adoption of Non-volatile Memory. Proc.
VLDB Endow., 10(12):1754–1765, Aug. 2017.

[8] J. Arulraj, A. Pavlo, and S. R. Dulloor. Let’s Talk About Storage & Recovery
Methods for Non-Volatile Memory Database Systems. In Proceedings of the 2015
ACM SIGMOD International Conference on Management of Data, SIGMOD ’15,
pages 707–722, New York, NY, USA, 2015. ACM.

[9] J. Arulraj, M. Perron, and A. Pavlo. Write-behind Logging. Proc. VLDB Endow.,
10(4):337–348, Nov. 2016.

[10] J. Axboe. Fio-flexible I/O tester. URL https://github.com/axboe/fio, 2014.

[11] L. N. Bairavasundaram, A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, G. R. Goodson,
and B. Schroeder. An Analysis of Data Corruption in the Storage Stack. Trans.

51

http://www.intel.com/content/www/us/en/architecture-and-technology/non-volatile-memory.html
http://www.intel.com/content/www/us/en/architecture-and-technology/non-volatile-memory.html
http://www.agigatech.com/agigaram.php

Storage, 4(3):8:1–8:28, Nov. 2008.

[12] M. Baker, M. Shah, D. S. H. Rosenthal, M. Roussopoulos, P. Maniatis, T. Giuli,
and P. Bungale. A Fresh Look at the Reliability of Long-term Digital Storage. In
Proceedings of the 1st ACM SIGOPS/EuroSys European Conference on Computer
Systems 2006, EuroSys ’06, pages 221–234, New York, NY, USA, 2006. ACM.

[13] M. Blaze. A Cryptographic File System for UNIX. In Proceedings of the 1st ACM
Conference on Computer and Communications Security, CCS ’93, pages 9–16, New
York, NY, USA, 1993. ACM.

[14] B. Bridge. NVM support for C applications, 2015. Available at http://www.snia.

org/sites/default/files/BillBridgeNVMSummit2015Slides.pdf.

[15] P. M. Chen, W. T. Ng, S. Chandra, C. Aycock, G. Rajamani, and D. Lowell. The
Rio File Cache: Surviving Operating System Crashes. In Proceedings of the Seventh
International Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS VII, pages 74–83, New York, NY, USA, 1996. ACM.

[16] S. Chhabra and Y. Solihin. i-NVMM: A Secure Non-volatile Main Memory System with
Incremental Encryption. In Proceedings of the 38th Annual International Symposium
on Computer Architecture, ISCA ’11, pages 177–188, New York, NY, USA, 2011.
ACM.

[17] S. Cho and H. Lee. Flip-N-Write: A simple deterministic technique to improve
PRAM write performance, energy and endurance. In 2009 42nd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), pages 347–357, Dec 2009.

[18] S. Cho, C. Park, H. Oh, S. Kim, Y. Yi, and G. R. Ganger. Active Disk Meets Flash:
A Case for Intelligent SSDs. In Proceedings of the 27th International ACM Conference
on International Conference on Supercomputing, ICS ’13, pages 91–102, New York,
NY, USA, 2013. ACM.

[19] L. Chua. Memristor-the missing circuit element. Circuit Theory, IEEE Transactions
on, 18(5):507–519, Sep 1971.

[20] Peloton Database Management Systems. http://pelotondb.org.

[21] J. Coburn, A. M. Caulfield, A. Akel, L. M. Grupp, R. K. Gupta, R. Jhala, and
S. Swanson. NV-Heaps: Making Persistent Objects Fast and Safe with Next-generation,
Non-volatile Memories. In Proceedings of the Sixteenth International Conference on
Architectural Support for Programming Languages and Operating Systems, ASPLOS
XVI, pages 105–118, New York, NY, USA, 2011. ACM.

[22] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee, D. Burger, and D. Coetzee.
Better I/O Through Byte-addressable, Persistent Memory. In Proceedings of the
ACM SIGOPS 22Nd Symposium on Operating Systems Principles, SOSP ’09, pages
133–146, New York, NY, USA, 2009. ACM.

[23] B. Debnath and and. ChunkStash: Speeding up Inline Storage Deduplication using
Flash Memory. USENIX, June 2010.

[24] T. J. Dell. A white paper on the benefits of chipkill-correct ecc for pc server main

52

http://www.snia.org/sites/default/files/BillBridgeNVMSummit2015Slides.pdf
http://www.snia.org/sites/default/files/BillBridgeNVMSummit2015Slides.pdf
http://pelotondb.org

memory. IBM Microelectronics Division, 11:1–23, 1997.

[25] M. Dong and H. Chen. Soft Updates Made Simple and Fast on Non-volatile Memory.
In 2017 USENIX Annual Technical Conference (USENIX ATC 17), pages 719–731,
Santa Clara, CA, 2017. USENIX Association.

[26] A. Dragojević, D. Narayanan, E. B. Nightingale, M. Renzelmann, A. Shamis,
A. Badam, and M. Castro. No Compromises: Distributed Transactions with Con-
sistency, Availability, and Performance. In Proceedings of the 25th Symposium on
Operating Systems Principles, SOSP ’15, pages 54–70, New York, NY, USA, 2015.
ACM.

[27] S. R. Dulloor, S. Kumar, A. Keshavamurthy, P. Lantz, D. Reddy, R. Sankaran, and
J. Jackson. System Software for Persistent Memory. In Proceedings of the Ninth
European Conference on Computer Systems, EuroSys ’14, pages 15:1–15:15, New
York, NY, USA, 2014. ACM.

[28] A. Farmahini-Farahani, J. H. Ahn, K. Morrow, and N. S. Kim. NDA: Near-DRAM
acceleration architecture leveraging commodity DRAM devices and standard memory
modules. In 2015 IEEE 21st International Symposium on High Performance Computer
Architecture (HPCA), pages 283–295, Feb 2015.

[29] A. P. Ferreira, M. Zhou, S. Bock, B. Childers, R. Melhem, and D. Mossé. Increasing
PCM Main Memory Lifetime. In Proceedings of the Conference on Design, Automation
and Test in Europe, DATE ’10, pages 914–919, 3001 Leuven, Belgium, Belgium, 2010.
European Design and Automation Association.

[30] Running FIO with pmem engines. https://pmem.io/2018/06/25/fio-tutorial.

html.

[31] S. Ghemawat, H. Gobioff, and S.-T. Leung. The google file system. In Proceedings of
the Nineteenth ACM Symposium on Operating Systems Principles, SOSP ’03, pages
29–43, New York, NY, USA, 2003. ACM.

[32] S. Govindan, A. Sivasubramaniam, and B. Urgaonkar. Benefits and Limitations
of Tapping into Stored Energy for Datacenters. In Proceedings of the 38th Annual
International Symposium on Computer Architecture, ISCA ’11, pages 341–352, New
York, NY, USA, 2011. ACM.

[33] D. Hitz, J. Lau, and M. Malcolm. File system design for an nfs file server appliance.
In Proceedings of the USENIX Winter 1994 Technical Conference on USENIX Win-
ter 1994 Technical Conference, WTEC’94, pages 19–19, Berkeley, CA, USA, 1994.
USENIX Association.

[34] HPC Challenge Benchmark. https://icl.utk.edu/hpcc/.

[35] K. Hsieh, S. Khan, N. Vijaykumar, K. K. Chang, A. Boroumand, S. Ghose, and
O. Mutlu. Accelerating pointer chasing in 3d-stacked memory: Challenges, mecha-
nisms, evaluation. In 2016 IEEE 34th International Conference on Computer Design
(ICCD), pages 25–32, Oct 2016.

[36] Q. Hu, J. Ren, A. Badam, J. Shu, and T. Moscibroda. Log-structured Non-volatile

53

https://pmem.io/2018/06/25/fio-tutorial.html
https://pmem.io/2018/06/25/fio-tutorial.html
https://icl.utk.edu/hpcc/

Main Memory. In Proceedings of the 2017 USENIX Conference on Usenix Annual
Technical Conference, USENIX ATC ’17, pages 703–717, Berkeley, CA, USA, 2017.
USENIX Association.

[37] PMDK’s libpmemobj Library. https://pmem.io/pmdk/libpmemobj/.

[38] Intel and Micron Produce Breakthrough Memory Tehc-
nology. https://newsroom.intel.com/news-releases/

intel-and-micron-produce-breakthrough-memory-technology/.

[39] PMDK: Intel Persistent Memory Development Kit. http://pmem.io.

[40] J. Izraelevitz, J. Yang, L. Zhang, J. Kim, X. Liu, A. Memaripour, Y. J. Soh, Z. Wang,
Y. Xu, S. R. Dulloor, J. Zhao, and S. Swanson. Basic Performance Measurements of
the Intel Optane DC Persistent Memory Module. CoRR, abs/1903.05714, 2019.

[41] M. Ji, A. C. Veitch, and J. Wilkes. Seneca: remote mirroring done write. In USENIX
Annual Technical Conference, General Track, ATC’03, pages 253–268, 2003.

[42] X. Jian and R. Kumar. Adaptive Reliability Chipkill Correct (ARCC). In 2013 IEEE
19th International Symposium on High Performance Computer Architecture (HPCA),
pages 270–281, Feb 2013.

[43] W. Jiang, C. Hu, Y. Zhou, and A. Kanevsky. Are Disks the Dominant Contrib-
utor for Storage Failures?: A Comprehensive Study of Storage Subsystem Failure
Characteristics. Trans. Storage, 4(3):7:1–7:25, Nov. 2008.

[44] R. Kadekodi, S. K. Lee, S. Kashyap, T. Kim, A. Kolli, and V. Chidambaram. SplitFS:
Reducing Software Overhead in File Systems for Persistent Memory. In Proceedings
of the 27th ACM Symposium on Operating Systems Principles, SOSP 19, page 494508,
New York, NY, USA, 2019. Association for Computing Machinery.

[45] A. Kalia, M. Kaminsky, and D. G. Andersen. FaSST: Fast, Scalable and Simple
Distributed Transactions with Two-sided (RDMA) Datagram RPCs. In Proceedings
of the 12th USENIX Conference on Operating Systems Design and Implementation,
OSDI’16, pages 185–201, Berkeley, CA, USA, 2016. USENIX Association.

[46] M. Kallahalla, E. Riedel, R. Swaminathan, Q. Wang, and K. Fu. Plutus: Scalable
Secure File Sharing on Untrusted Storage. In Proceedings of the 2Nd USENIX
Conference on File and Storage Technologies, FAST ’03, pages 29–42, Berkeley, CA,
USA, 2003. USENIX Association.

[47] S. Kannan, A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, Y. Wang, J. Xu, and
G. Palani. Designing a True Direct-access File System with DevFS. In Proceedings
of the 16th USENIX Conference on File and Storage Technologies, FAST’18, pages
241–255, Berkeley, CA, USA, 2018. USENIX Association.

[48] R. Kateja, A. Badam, S. Govindan, B. Sharma, and G. Ganger. Viyojit: Decoupling
Battery and DRAM Capacities for Battery-Backed DRAM. In Proceedings of the
44th Annual International Symposium on Computer Architecture, ISCA ’17, pages
613–626, New York, NY, USA, 2017. ACM.

[49] R. Kateja, N. Beckmann, and G. R. Ganger. Tvarak: Software-Managed Hardware

54

https://pmem.io/pmdk/libpmemobj/
https://newsroom.intel.com/news-releases/intel-and-micron-produce-breakthrough-memory-technology/
https://newsroom.intel.com/news-releases/intel-and-micron-produce-breakthrough-memory-technology/
http://pmem.io

Offload for Redundancy in Direct-Access NVM Storage. In Proceedings of the 47th
Annual International Symposium on Computer Architecture, ISCA ’20. ACM, 2020.

[50] R. Kateja, A. Pavlo, and G. Ganger. Vilamb: Low Overhead Asynchronous Redun-
dancy for Direct Access NVM. Parallel Data Lab Technical Report CMU-PDL-20-101.
https://www.pdl.cmu.edu/PDL-FTP/NVM/CMU-PDL-20-101.pdf.

[51] K. Keeton, C. Santos, D. Beyer, J. Chase, and J. Wilkes. Designing for Disasters.
In Proceedings of the 3rd USENIX Conference on File and Storage Technologies,
FAST’04, pages 5–5, Berkeley, CA, USA, 2004. USENIX Association.

[52] H. Kimura. FOEDUS: OLTP Engine for a Thousand Cores and NVRAM. In
Proceedings of the 2015 ACM SIGMOD International Conference on Management of
Data, SIGMOD ’15, pages 691–706, New York, NY, USA, 2015. ACM.

[53] V. Kontorinis, L. E. Zhang, B. Aksanli, J. Sampson, H. Homayoun, E. Pettis, D. M.
Tullsen, and T. S. Rosing. Managing Distributed Ups Energy for Effective Power
Capping in Data Centers. In Proceedings of the 39th Annual International Symposium
on Computer Architecture, ISCA ’12, pages 488–499, Washington, DC, USA, 2012.
IEEE Computer Society.

[54] H. Kumar, Y. Patel, R. Kesavan, and S. Makam. High-performance Metadata Integrity
Protection in the WAFL Copy-on-write File System. In Proceedings of the 15th Usenix
Conference on File and Storage Technologies, FAST’17, pages 197–211, Berkeley, CA,
USA, 2017. USENIX Association.

[55] Y. Kwon, H. Fingler, T. Hunt, S. Peter, E. Witchel, and T. Anderson. Strata: A
Cross Media File System. In Proceedings of the 26th Symposium on Operating Systems
Principles, SOSP ’17, pages 460–477, New York, NY, USA, 2017. ACM.

[56] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger. Architecting Phase Change Memory
As a Scalable Dram Alternative. In Proceedings of the 36th Annual International
Symposium on Computer Architecture, ISCA ’09, pages 2–13, New York, NY, USA,
2009. ACM.

[57] S. K. Lee, J. Mohan, S. Kashyap, T. Kim, and V. Chidambaram. Recipe: Converting
concurrent dram indexes to persistent-memory indexes. In Proceedings of the 27th
ACM Symposium on Operating Systems Principles, SOSP 19, page 462477, New York,
NY, USA, 2019. Association for Computing Machinery.

[58] LWN: Linux and 4K disk sectors. https://web.archive.org/web/20131005191108/
http://lwn.net/Articles/322777/.

[59] Supporting filesystems in persistent memory. https://lwn.net/Articles/610174/.

[60] S. Liu, A. Kolli, J. Ren, and S. Khan. Crash Consistency in Encrypted Non-volatile
Main Memory Systems. In 2018 IEEE International Symposium on High Performance
Computer Architecture (HPCA), pages 310–323, Feb 2018.

[61] S. Liu, K. Seemakhupt, G. Pekhimenko, A. Kolli, and S. Khan. Janus: Optimizing
Memory and Storage Support for Non-volatile Memory Systems. In Proceedings of the
46th International Symposium on Computer Architecture, ISCA ’19, pages 143–156,

55

https://www.pdl.cmu.edu/PDL-FTP/NVM/CMU-PDL-20-101.pdf
https://web.archive.org/web/20131005191108/http://lwn.net/Articles/322777/
https://web.archive.org/web/20131005191108/http://lwn.net/Articles/322777/
https://lwn.net/Articles/610174/

New York, NY, USA, 2019. ACM.

[62] V. J. Marathe, M. Seltzer, S. Byan, and T. Harris. Persistent Memcached: Bringing
Legacy Code to Byte-addressable Persistent Memory. In Proceedings of the 9th
USENIX Conference on Hot Topics in Storage and File Systems, HotStorage’17, pages
4–4, Berkeley, CA, USA, 2017. USENIX Association.

[63] P. J. Meaney, L. A. Lastras-Montanõ, V. K. Papazova, E. Stephens, J. S. Johnson,
L. C. Alves, J. A. O’Connor, and W. J. Clarke. Ibm zenterprise redundant array of
independent memory subsystem. IBM J. Res. Dev., 56(1):43–53, Jan. 2012.

[64] N. Muralimanohar, R. Balasubramonian, and N. Jouppi. Optimizing NUCA Organi-
zations and Wiring Alternatives for Large Caches with CACTI 6.0. In 40th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO 2007), pages
3–14, Dec 2007.

[65] S. Narayan, J. A. Chandy, S. Lang, P. Carns, and R. Ross. Uncovering Errors: The
Cost of Detecting Silent Data Corruption. In Proceedings of the 4th Annual Workshop
on Petascale Data Storage, PDSW ’09, pages 37–41, New York, NY, USA, 2009.
ACM.

[66] D. Narayanan and O. Hodson. Whole-system Persistence. In Proceedings of the
Seventeenth International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS XVII, pages 401–410, New York, NY,
USA, 2012. ACM.

[67] D. S. Palasamudram, R. K. Sitaraman, B. Urgaonkar, and R. Urgaonkar. Using
Batteries to Reduce the Power Costs of Internet-scale Distributed Networks. In
Proceedings of the Third ACM Symposium on Cloud Computing, SoCC ’12, pages
11:1–11:14, New York, NY, USA, 2012. ACM.

[68] D. A. Patterson, G. Gibson, and R. H. Katz. A Case for Redundant Arrays of
Inexpensive Disks (RAID). In Proceedings of the 1988 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’88, pages 109–116, New York, NY,
USA, 1988. ACM.

[69] R. H. Patterson, S. Manley, M. Federwisch, D. Hitz, S. Kleiman, and S. Owara.
SnapMirror: File-System-Based Asynchronous Mirroring for Disaster Recovery. In
Proceedings of the 1st USENIX Conference on File and Storage Technologies, FAST
’02, Berkeley, CA, USA, 2002. USENIX Association.

[70] Deprecating the PCOMMIT instruction. https://software.intel.com/en-us/

blogs/2016/09/12/deprecate-pcommit-instruction.

[71] Plexistore keynote presentation at NVMW 2018. http://nvmw.ucsd.edu/

nvmw18-program/unzip/current/nvmw2018-paper97-presentations-slides.

pptx.

[72] Persistent Memory Emulation. http://pmem.io/2016/02/22/pm-emulation.html.

[73] Persistent Memory Storage Engine. https://github.com/pmem/pmse.

[74] V. Prabhakaran, L. N. Bairavasundaram, N. Agrawal, H. S. Gunawi, A. C. Arpaci-

56

https://software.intel.com/en-us/blogs/2016/09/12/deprecate-pcommit-instruction
https://software.intel.com/en-us/blogs/2016/09/12/deprecate-pcommit-instruction
http://nvmw.ucsd.edu/nvmw18-program/unzip/current/nvmw2018-paper97-presentations-slides.pptx
http://nvmw.ucsd.edu/nvmw18-program/unzip/current/nvmw2018-paper97-presentations-slides.pptx
http://nvmw.ucsd.edu/nvmw18-program/unzip/current/nvmw2018-paper97-presentations-slides.pptx
http://pmem.io/2016/02/22/pm-emulation.html
https://github.com/pmem/pmse

Dusseau, and R. H. Arpaci-Dusseau. IRON File Systems. In Proceedings of the
Twentieth ACM Symposium on Operating Systems Principles, SOSP ’05, pages 206–
220, New York, NY, USA, 2005. ACM.

[75] S. Quinlan and S. Dorward. Venti: A New Approach to Archival Data Storage. In
Proceedings of the 1st USENIX Conference on File and Storage Technologies, FAST
’02, Berkeley, CA, USA, 2002. USENIX Association.

[76] M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely, and J. Emer. Adaptive Insertion
Policies for High Performance Caching. In Proceedings of the 34th Annual International
Symposium on Computer Architecture, ISCA ’07, pages 381–391, New York, NY,
USA, 2007. ACM.

[77] M. K. Qureshi, J. Karidis, M. Franceschini, V. Srinivasan, L. Lastras, and B. Abali.
Enhancing Lifetime and Security of PCM-based Main Memory with Start-gap Wear
Leveling. In Proceedings of the 42Nd Annual IEEE/ACM International Symposium
on Microarchitecture, MICRO 42, pages 14–23, New York, NY, USA, 2009. ACM.

[78] M. K. Qureshi, A. Seznec, L. A. Lastras, and M. M. Franceschini. Practical and
secure PCM systems by online detection of malicious write streams. In 2011 IEEE
17th International Symposium on High Performance Computer Architecture, pages
478–489, Feb 2011.

[79] M. K. Qureshi, V. Srinivasan, and J. A. Rivers. Scalable High Performance Main
Memory System Using Phase-change Memory Technology. In Proceedings of the 36th
Annual International Symposium on Computer Architecture, ISCA ’09, pages 24–33,
New York, NY, USA, 2009. ACM.

[80] Redis: in-memory key value store. http://redis.io/.

[81] Redis PMEM: Redis, enhanced to use PMDK’s libpmemobj. https://github.com/
pmem/redis.

[82] E. Riedel, C. Faloutsos, G. A. Gibson, and D. Nagle. Active Disks for Large-Scale
Data Processing. Computer, 34(6):68–74, June 2001.

[83] E. Riedel, G. A. Gibson, and C. Faloutsos. Active Storage for Large-Scale Data
Mining and Multimedia. In Proceedings of the 24rd International Conference on Very
Large Data Bases, VLDB ’98, pages 62–73, San Francisco, CA, USA, 1998. Morgan
Kaufmann Publishers Inc.

[84] E. Riedel, M. Kallahalla, and R. Swaminathan. A Framework for Evaluating Storage
System Security. In Proceedings of the 1st USENIX Conference on File and Storage
Technologies, FAST’02, pages 2–2, Berkeley, CA, USA, 2002. USENIX Association.

[85] O. Rodeh, J. Bacik, and C. Mason. BTRFS: The Linux B-Tree Filesystem. Trans.
Storage, 9(3):9:1–9:32, Aug. 2013.

[86] D. Sanchez and C. Kozyrakis. ZSim: Fast and Accurate Microarchitectural Simulation
of Thousand-core Systems. In Proceedings of the 40th Annual International Symposium
on Computer Architecture, ISCA ’13, pages 475–486, New York, NY, USA, 2013.
ACM.

57

http://redis.io/
https://github.com/pmem/redis
https://github.com/pmem/redis

[87] B. Schroeder, S. Damouras, and P. Gill. Understanding Latent Sector Errors and
How to Protect Against Them. ACM Trans. Storage, 6(3):9:1–9:23, Sept. 2010.

[88] N. H. Seong, D. H. Woo, and H.-H. S. Lee. Security Refresh: Prevent Malicious Wear-
out and Increase Durability for Phase-change Memory with Dynamically Randomized
Address Mapping. In Proceedings of the 37th Annual International Symposium on
Computer Architecture, ISCA ’10, pages 383–394, New York, NY, USA, 2010. ACM.

[89] Y. Shan, S.-Y. Tsai, and Y. Zhang. Distributed Shared Persistent Memory. In
Proceedings of the 2017 Symposium on Cloud Computing, SoCC ’17, pages 323–337,
New York, NY, USA, 2017. ACM.

[90] G. Sivathanu, C. P. Wright, and E. Zadok. Ensuring data integrity in storage:
Techniques and applications. In Proceedings of the 2005 ACM Workshop on Storage
Security and Survivability, StorageSS ’05, pages 26–36, New York, NY, USA, 2005.
ACM.

[91] Stream Memory Bandwidth Benchmark. http://www.cs.virginia.edu/stream/.

[92] L. Tang, Q. Huang, W. Lloyd, S. Kumar, and K. Li. RIPQ: Advanced Photo Caching
on Flash for Facebook. In Proceedings of the 13th USENIX Conference on File and
Storage Technologies, FAST’15, pages 373–386, Berkeley, CA, USA, 2015. USENIX
Association.

[93] 4K Sector Disk Drives: Transitioning to the Future with Advanced Format Tech-
nologies. https://storage.toshiba.com/docs/services-support-documents/

toshiba_4kwhitepaper.pdf.

[94] A. N. Udipi, N. Muralimanohar, R. Balsubramonian, A. Davis, and N. P. Jouppi. LOT-
ECC: Localized and tiered reliability mechanisms for commodity memory systems.
In 2012 39th Annual International Symposium on Computer Architecture (ISCA),
pages 285–296, June 2012.

[95] N. Vijaykumar, A. Jain, D. Majumdar, K. Hsieh, G. Pekhimenko, E. Ebrahimi,
N. Hajinazar, P. B. Gibbons, and O. Mutlu. A case for richer cross-layer abstractions:
Bridging the semantic gap with expressive memory. In Proceedings of the 45th Annual
International Symposium on Computer Architecture, ISCA 18, page 207220. IEEE
Press, 2018.

[96] H. Volos, S. Nalli, S. Panneerselvam, V. Varadarajan, P. Saxena, and M. M. Swift.
Aerie: Flexible file-system interfaces to storage-class memory. In Proceedings of the
Ninth European Conference on Computer Systems, EuroSys ’14, pages 14:1–14:14,
New York, NY, USA, 2014. ACM.

[97] H. Volos, A. J. Tack, and M. M. Swift. Mnemosyne: Lightweight Persistent Memory.
In Proceedings of the Sixteenth International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS XVI, pages 91–104, New
York, NY, USA, 2011. ACM.

[98] D. Wang, S. Govindan, A. Sivasubramaniam, A. Kansal, J. Liu, and B. Khessib.
Underprovisioning Backup Power Infrastructure for Datacenters. In Proceedings of the

58

http://www.cs.virginia.edu/stream/
https://storage.toshiba.com/docs/services-support-documents/toshiba_4kwhitepaper.pdf
https://storage.toshiba.com/docs/services-support-documents/toshiba_4kwhitepaper.pdf

19th International Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS ’14, pages 177–192, New York, NY, USA, 2014.
ACM.

[99] D. Wang, C. Ren, A. Sivasubramaniam, B. Urgaonkar, and H. Fathy. Energy Storage
in Datacenters: What, Where, and How Much? In Proceedings of the 12th ACM
SIGMETRICS/PERFORMANCE Joint International Conference on Measurement
and Modeling of Computer Systems, SIGMETRICS ’12, pages 187–198, New York,
NY, USA, 2012. ACM.

[100] J. Wang, D. Park, Y. Papakonstantinou, and S. Swanson. Ssd in-storage computing
for search engines. IEEE Transactions on Computers, pages 1–1, 2016.

[101] Transition to Advanced Format 4K Sector Hard Drives. https://www.seagate.com/
tech-insights/advanced-format-4k-sector-hard-drives-master-ti/.

[102] C. P. Wright, M. C. Martino, and E. Zadok. Ncryptfs: A secure and convenient
cryptographic file system. In USENIX Annual Technical Conference, General Track,
ATC’03, pages 197–210, 2003.

[103] X. Wu and A. L. N. Reddy. SCMFS: A File System for Storage Class Memory.
In Proceedings of 2011 International Conference for High Performance Computing,
Networking, Storage and Analysis, SC ’11, pages 39:1–39:11, New York, NY, USA,
2011. ACM.

[104] J. Xu and S. Swanson. NOVA: A Log-structured File System for Hybrid Volatile/Non-
volatile Main Memories. In 14th USENIX Conference on File and Storage Technologies
(FAST 16), pages 323–338, Santa Clara, CA, 2016. USENIX Association.

[105] J. Xu, L. Zhang, A. Memaripour, A. Gangadharaiah, A. Borase, T. B. Da Silva,
S. Swanson, and A. Rudoff. NOVA-Fortis: A Fault-Tolerant Non-Volatile Main
Memory File System. In Proceedings of the 26th Symposium on Operating Systems
Principles, SOSP ’17, pages 478–496, New York, NY, USA, 2017. ACM.

[106] V. Young, P. J. Nair, and M. K. Qureshi. DEUCE: Write-Efficient Encryption for
Non-Volatile Memories. In Proceedings of the Twentieth International Conference on
Architectural Support for Programming Languages and Operating Systems, ASPLOS
’15, pages 33–44, New York, NY, USA, 2015. ACM.

[107] D. Zhang, N. Jayasena, A. Lyashevsky, J. L. Greathouse, L. Xu, and M. Ignatowski.
TOP-PIM: Throughput-oriented Programmable Processing in Memory. In Proceedings
of the 23rd International Symposium on High-performance Parallel and Distributed
Computing, HPDC ’14, pages 85–98, New York, NY, USA, 2014. ACM.

[108] D. Zhang, V. Sridharan, and X. Jian. Exploring and optimizing chipkill-correct for
persistent memory based on high-density nvrams. In 2018 51st Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), pages 710–723. IEEE, 2018.

[109] L. Zhang and S. Swanson. Pangolin: A Fault-Tolerant Persistent Memory Program-
ming Library. In 2019 USENIX Annual Technical Conference (USENIX ATC 19),
Renton, WA, 2019. USENIX Association.

59

https://www.seagate.com/tech-insights/advanced-format-4k-sector-hard-drives-master-ti/
https://www.seagate.com/tech-insights/advanced-format-4k-sector-hard-drives-master-ti/

[110] Y. Zhang, D. S. Myers, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau. Zettabyte
reliability with flexible end-to-end data integrity. In 2013 IEEE 29th Symposium on
Mass Storage Systems and Technologies (MSST), pages 1–14, May 2013.

[111] Y. Zhang, A. Rajimwale, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau. End-to-
end Data Integrity for File Systems: A ZFS Case Study. In Proceedings of the 8th
USENIX Conference on File and Storage Technologies, FAST’10, pages 3–3, Berkeley,
CA, USA, 2010. USENIX Association.

[112] Y. Zhang, J. Yang, A. Memaripour, and S. Swanson. Mojim: A Reliable and
Highly-Available Non-Volatile Memory System. In Proceedings of the Twentieth
International Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’15, pages 3–18, New York, NY, USA, 2015. ACM.

[113] J. Zhao, S. Li, D. H. Yoon, Y. Xie, and N. P. Jouppi. Kiln: Closing the Performance
Gap Between Systems with and Without Persistence Support. In Proceedings of the
46th Annual IEEE/ACM International Symposium on Microarchitecture, MICRO-46,
pages 421–432, New York, NY, USA, 2013. ACM.

[114] R. Zheng and M. C. Huang. Redundant memory array architecture for efficient
selective protection. In Proceedings of the 44th Annual International Symposium on
Computer Architecture, ISCA ’17, pages 214–227, New York, NY, USA, 2017. ACM.

[115] B. Zhu, K. Li, and H. Patterson. Avoiding the Disk Bottleneck in the Data Domain
Deduplication File System. In Proceedings of the 6th USENIX Conference on File and
Storage Technologies, FAST’08, pages 18:1–18:14, Berkeley, CA, USA, 2008. USENIX
Association.

[116] P. Zuo, Y. Hua, M. Zhao, W. Zhou, and Y. Guo. Improving the Performance
and Endurance of Encrypted Non-volatile Main Memory Through Deduplicating
Writes. In Proceedings of the 51st Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO-51, pages 442–454, Piscataway, NJ, USA, 2018. IEEE
Press.

60

	Introduction
	Thesis statement
	Contributions
	Outline

	Background
	NVM Storage
	DAX NVM Storage Management
	Redundancy for Firmware Bug Resilience
	Firmware-bug-induced data corruption
	System-checksums for detection
	Parity for recovery
	System-Redundancy for DAX NVM

	Solutions for DAX NVM System-Redundancy

	Vilamb: Low overhead asynchronous redundancy for direct-access NVM storage
	Vilamb Design and Implementation
	Asynchronous System-Redundancy
	Repurposing Dirty Bits
	Failure Coverage
	Implementation

	Evaluation
	Key Evaluation Takeaways
	YCSB with Redis
	PMDK Key-Value Stores
	NVM Transaction Microbenchmarks
	Fio Microbenchmarks
	Cost of Checking/Clearing Dirty Bits
	Battery Capacity Requirements
	Reliability Analysis

	Conclusion

	Tvarak: Software-managed hardware offload for redundancy in direct-access NVM storage
	Tvarak Design
	Tvarak's Goals and Non-Goals
	Naive System-Redundancy Controller Design
	Efficient Checksum Verification
	Efficient Checksum and Parity Updates
	Putting it all together with Tvarak

	Evaluation
	Key Evaluation Takeaways
	Redis
	Key-value Data Structures
	N-Store
	Fio Microbenchmarks
	Stream Microbenchmarks
	Comparison with Vilamb
	Impact of Tvarak's Design Choices
	Sensitivity Analysis

	Conclusion

	Conclusion and Future Directions
	Future Directions
	Automated tuning of Tvarak's LLC partition sizes
	Study of firmware-bug-induced failures in NVM storage
	Extending Vilamb and Tvarak for cross machine DAX NVM storage replication

	Other Related Research of the Author

