
O P T I M I Z AT I O N A L G O R I T H M S F O R V E H I C L E R O U T I N G A N D
PA C K I N G P R O B L E M S

Submitted in partial fulfillment of the requirements for

the degree of

doctor of philosophy

in

Chemical Engineering

akang wang

B.S., Chemical Engineering, Tianjin University, Tianjin, China
B.A., Finance, Nankai University, Tianjin, China

Carnegie Mellon University
Pittsburgh, PA

May, 2020

Copyright © 2020 Akang Wang

All rights reserved.

To my parents.

A C K N O W L E D G M E N T S

The past five years at Carnegie Mellon University (CMU) have been the most intellectually

stimulating experience for me to date. This was made possible by support and company

of many people.

First and foremost, I would like to thank my thesis advisor, Prof. Chrysan-

thos E. Gounaris, for his guidance and support throughout my time at CMU. Besides

strong technical skills, I’m also amazed by his persistence, attention to details, and high

standards in research. I greatly appreciate that he has always treated me as an equal

researcher and given me enough room to explore research topics. It was a great honor to

work with him.

I would like to acknowledge my thesis committee members—Prof. Ignacio E. Grossmann,

Prof. Nikolaos V. Sahinidis, Prof. Willem-Jan Van Hoeve, Prof. Alexandre Jacquillat, and

Dr. Jeffrey E. Arbogast—for providing resourceful feedback on my thesis. Their comments

definitely help to improve my work.

I acknowledge financial support from Air Liquide and Braskem throughout the Center

of Advanced Process Decision-making. I’m also grateful to James C. Meade Graduate

Fellowship and H. William and Ruth Hamilton Prengle Graduate Fellowship at CMU.

I had a wonderful experience in collaborating with several colleagues: Christo-

pher L. Hanselman, Anirudh Subramanyam, Steffen J. Bakker, Jeffrey E. Arbogast,

Gildas Bonnier, Zachary Wilson, Nicholas Ferro, Rita A. Majewski, Yuhao He, Vic-

tor Anselmo Silva, and Aliakbar Izadkhah. I learned insightful research ideas and valuable

practical perspectives from academic and industrial collaborators. I was very fortunate to

work with three master students: Aditya Pasari, Xiandong Li and Tushar Rathi.

I’m greatly indebted to former and current Gounaris group members. In particular,

Anirudh Subramanyam, Nikolaos H. Lappas and Christopher L. Hanselman taught me

C++ coding skills during my junior years. I also benefit significantly from discussions with

other group mates: Natalie Isenberg, Hua Wang, Aliakbar Izadkhah, Xiangyu Yin, and

William Strahl. One of the best moments during my time at CMU was having whiteboard

discussions with them about classes, research, and beyond. Additionally, I’m very thankful

to our lab managers, Nikolaos H. Lappas and Natalie Isenberg, for their immediate and

effective technical support.

iv

During my life in Pittsburgh, I had a great time hanging out with many interesting

people: David Paul Molina Thierry, Saif Kazi, Rajarshi Sengupta, Eyan Peter Noronha,

Carlos Jose Nohra Khouri, Connor Brem, Charles Sharkey, Dana McGuffin, Benjamin Sauk,

Burcu Karagoz, Christina Schenk, Michael Radetic, Hector David Perez Parra, and

David Bernal. I also had unforgettable memories with the Chinese community in the

Chemical Engineering Department. In particular, I want to thank Wei Wan, Zixi Zhao,

Yijia Sun, and Zicheng Cai for hosting festival parities; I had fun playing poker games

with Yajun Wang, Yuhan Wen; I enjoyed Karaoke with Xiaoxiao Yu and Yun-Ru Huang.

A few non-academic friends I made at CMU are worth mentioning. Auntie Hsiao Wu,

Uncle Tony Chen, and Uncle Tsu Huang provided me with authentic Chinese meals during

the past a few years, which enriched my campus life a lot; Cindy and Mark Vicker held

great conversations with me during the AIChE receptions; Janet Latini, Laura Shaheen,

and Allyson Danley are always there with big smiles and ready to help. They are sincerely

nice people; it was a great pleasure to know them.

Above all, I would like to thank my family in China, especially my parents, Mr. Shuip-

ing Wang and Mrs. Hui’e Luo. Except for giving me love and support, they have instilled in

me two core values: responsibility and principle. Without these, none of my past experiences

could have been possible.

I coined the following sentence.

The best way to learn a topic is to discuss; the second best way is to write it in LATEX.

I have spent the past five years discussing research problems with colleagues, now it is

time to formalize my thoughts and write them down.

Akang Wang

Pittsburgh, PA

May 4, 2020

v

A B S T R A C T

Many optimization problems can be formulated as monolithic mathematical models

(e.g., mixed-integer linear programs), which are ready to be solved by the state-of-the-art

optimization solvers. However, by exploiting the problem structures, one may design

specialized solution approaches that can manage to efficiently solve problems of a much

larger size. In this thesis, we develop tailored branch-and-bound algorithms for solving

complex problems that arise in supply chain logistics as well as object packing.

The primary focus of this thesis is on the mathematical modeling and algorithmic

development for addressing vehicle routing problems. We consider the following four

settings: (i) continuous-time inventory routing, which integrates inventory management,

vehicle routing, and delivery-scheduling decisions; (ii) full truckload pickup and delivery,

which entails full truckload shipments between distribution centers and delivery locations;

(iii) marginal cost estimation, which seeks for the average routing cost of serving an

individual customer in a stochastic supply chain system; (iv) routing under uncertainty,

which incorporates customer demand and/or travel time uncertainty while designing

delivery routes.

The second part of the thesis is focused on global optimization with application to

cutting and packing problems. In particular, we are interested in two variants of packing

problems: shape nesting and circle packing. The former entails irregular polygons while

the latter involves circles. The goal is to identify a feasible configuration for these objects to

be packed in a container such that no overlap exists among these objects and the material

waste is minimized. Modeling both problems is simple, however, solving the resulting

mathematical models is extremely challenging due to the presence of non-overlapping

constraints.

For each of the aforementioned problems, we explore its intrinsic structure and propose

a specialized algorithm. Through extensive computational studies on benchmark instances,

we demonstrate the effectiveness and efficiency of our proposed methods.

vi

P U B L I C AT I O N S

The following papers related to the work presented in this thesis have been published,

submitted, or are in preparation to be submitted in peer-reviewed journals:

1. A. Wang, C. L. Hanselman, and C. E. Gounaris, 2018. A customized branch-and-

bound approach for irregular shape nesting. Journal of Global Optimization, 71(4),

pp.935-955.

2. A. Wang and C. E. Gounaris, 2019. On tackling reverse convex constraints

for non-overlapping of circles. Under Review. E-print available at http://www.

optimization-online.org/DB_HTML/2019/12/7531.html.

3. A. Wang, J. E. Arbogast, G. Bonnier, Z. Wilson, and C. E. Gounaris, 2020. Estimation

of marginal cost to serve individual customers. Under Review. E-print available at

http://www.optimization-online.org/DB_HTML/2020/01/7573.html.

4. A. Wang, X. Li, J. E. Arbogast, G. Bonnier, and C. E. Gounaris, 2020. A novel branch-

and-cut algorithm for continuous-time inventory routing. Under Review.

5. A. Wang, A. Subramanyam, and C. E. Gounaris, 2020. A branch-price-and-cut algo-

rithm for robust vehicle routing under uncertainty. In Preparation.

6. A. Wang, N. Ferro, R. Majewski, Y. He, and C. E. Gounaris, 2020. Mixed-integer

linear optimization for full truckload pickup and delivery. Under Review.

The following papers that will not be presented in this thesis have been published,

submitted, or are in preparation in peer-reviewed journals:

1. A. Subramanyam, A. Wang, and C. E. Gounaris, 2018. A scenario decomposition algo-

rithm for strategic time window assignment vehicle routing problems. Transportation

Research Part B: Methodological, 117, pp.296-317.

2. S. Bakker, A. Wang, and C. E. Gounaris, 2019. Vehicle routing with endogenous

learning: Application to offshore plug and abandonment campaign planning. Under

Review.

vii

http://www.optimization-online.org/DB_HTML/2019/12/7531.html
http://www.optimization-online.org/DB_HTML/2019/12/7531.html
http://www.optimization-online.org/DB_HTML/2020/01/7573.html

3. V. A. Silva, A. Wang, V. J. M. Ferreira Filho, and C. E. Gounaris, 2020. Routing and

scheduling of platform supply vessels in offshore oil and gas logistics. In Preparation.

viii

C O N T E N T S

1 introduction 1

1.1 Vehicle Routing Problems . 1

1.1.1 Problem Description . 1

1.1.2 Solution Approaches . 2

1.1.3 Challenges . 4

1.2 Packing Problems . 4

1.2.1 Problem Description . 4

1.2.2 Solution Approaches . 5

1.2.3 Challenges . 6

1.3 Aims and outline of the thesis . 6

2 a novel branch-and-cut algorithm for continuous-time inven-

tory routing 8

2.1 Introduction . 8

2.2 Problem Definition . 12

2.3 Mathematical Modeling . 13

2.4 Tightening Techniques . 18

2.4.1 Tightening of Time Windows . 18

2.4.2 Variable Elimination . 18

2.4.3 Minimal # Visits . 19

2.4.4 Rounded Capacity Inequalities . 19

2.5 Computational Studies . 20

2.5.1 Benchmark instances . 21

2.5.2 Computational results on literature data 22

2.5.3 Computational results on roadef instances 25

2.6 Conclusions . 29

3 mixed-integer linear optimization for full truckload pickup and

delivery 31

3.1 Introduction . 31

3.2 Problem Definition . 33

ix

contents

3.3 Mathematical Modeling . 33

3.4 Computational Studies . 37

3.4.1 Model Performance . 37

3.4.2 Evaluating the pre-loading policy . 39

3.5 Conclusions . 41

4 estimation of marginal cost to serve individual customers 42

4.1 Introduction . 42

4.2 Problem Definition . 47

4.3 Proposed Framework . 48

4.3.1 Marginal Cost Estimation . 48

4.3.2 Bounding the Sample Size . 50

4.3.3 A General Framework . 51

4.4 Solving Routing Problems . 53

4.4.1 Set Partitioning Model . 54

4.4.2 Branch-Price-and-Cut Algorithm . 55

4.5 Computational Studies . 63

4.5.1 Evaluation of BPC Implementation Performance 63

4.5.2 Marginal Cost Analysis . 67

4.6 Conclusions . 72

5 a branch-price-and-cut algorithm for robust vehicle routing

problems under uncertainty 75

5.1 Introduction . 75

5.2 Problem Definition . 80

5.3 Uncertainty Sets . 81

5.3.1 Cardinality-constrained sets . 81

5.3.2 Budget sets . 82

5.3.3 Factor models . 83

5.3.4 Ellipsoidal sets . 83

5.3.5 Discrete sets . 83

5.4 Polyhedral Studies . 84

5.5 Branch-Price-and-Cut . 87

5.5.1 Set Partitioning Model . 87

5.5.2 A Branch-Price-and-Cut Algorithm 88

5.5.3 Pricing Subproblems . 89

x

contents

5.6 Solution Approaches . 91

5.6.1 Robust Pricing Approach . 92

5.6.2 Robust Cutting-Plane Approach . 95

5.6.3 Comparison . 102

5.7 Computational Studies . 104

5.7.1 Computational Results on RCVRP Instances 104

5.7.2 Computational Results on RVRPTW Instances 109

5.8 Conclusions . 113

5.9 Appendix: Detailed Tables of Results . 114

6 a customized branch-and-bound approach for irregular shape

nesting 121

6.1 Introduction . 121

6.2 Mathematical Modeling . 125

6.2.1 Nonconvex QCP Model . 125

6.2.2 Customized Model Relaxation . 127

6.3 The New Algorithm . 131

6.3.1 Feasibility Checking . 133

6.3.2 Branching Rule Selection . 135

6.3.3 Feasibility-based Node Tightening . 136

6.3.4 Tighter Variable Bounds . 138

6.3.5 Symmetry Breaking Constraints . 138

6.4 Computational Studies . 139

6.4.1 Instances . 139

6.4.2 Fixed Orientation Case . 140

6.4.3 Free Rotation Case . 143

6.5 Conclusions . 145

6.6 Appendix: Nomenclature . 146

7 on tackling reverse convex constraints for non-overlapping of

circles 148

7.1 Introduction . 148

7.2 Problem Definition . 152

7.3 Solution Approach . 152

7.3.1 Customized Model Relaxation . 152

7.3.2 The Branch-and-Bound Algorithm . 154

xi

contents

7.4 Strengthening Techniques . 156

7.4.1 Intersection Cuts . 156

7.4.2 Feasibility-based Tightening . 163

7.4.3 Implementation Details . 165

7.5 Computational Studies . 166

7.5.1 Circle Packing . 167

7.5.2 Computational Results . 169

7.6 Conclusions . 173

8 conclusions and future work 175

8.1 Contributions . 175

8.2 Future Directions . 179

bibliography 182

xii

L I S T O F TA B L E S

Table 1.1 Comparison between arc-based and route-based modeling frameworks 3

Table 2.1 Comparison among LBS20 and our proposed algorithms on 90

benchmark instances . 24

Table 2.2 Detailed results for LBS20 and our Branch-and-Cut algorithm on 4

benchmark instances . 25

Table 2.3 Detailed results for our Branch-and-Cut algorithm on 45 clustered

instances . 26

Table 2.4 Detailed results for our Branch-and-Cut algorithm on 45 random

instances . 27

Table 2.5 Computational results for our Branch-and-Cut algorithm on 63

roadef instances . 28

Table 2.6 Detailed results for our Branch-and-Cut algorithm on 63 roadef

instances . 30

Table 3.1 Computational results for our MILP formulation on 66 real-life

instances . 38

Table 3.2 Computational results for evaluating the pre-loading policy 41

Table 4.1 Computational results for our BPC algorithm on 25-, 40-, and 70-

customer random instances . 66

Table 4.2 Computational results for our BPC algorithm on 25-, 40-, and 70-

customer CGL instances . 66

Table 4.3 Marginal cost estimation under three customer location cases . . . 71

Table 4.4 Marginal cost estimation under three customer demand levels . . . 73

Table 5.1 Closed-form expressions, time and storage complexities for com-

puting the worst-case load of a vehicle route 100

Table 5.2 Applicability of BPC algorithms to different uncertainty sets 103

Table 5.3 Computational results for BPC algorithms on 90 RCVRP (QG) in-

stances . 107

Table 5.4 Computational results for BPC algorithms on 90 RCVRP (QB) in-

stances . 108

xiii

list of tables

Table 5.5 Computational results for the BPC algorithm on 90 RCVRP

(QF/QE/QD) instances . 109

Table 5.6 Computational results for BPC algorithms on 90 RVRPTW (QG)

instances . 111

Table 5.7 Computational results for BPC algorithms on 56 RVRPTW (TG)

instances . 112

Table 5.8 Computational results for BPC algorithms on 56 RVRPTW (QG ×
TG) instances . 113

Table 5.9 Detailed results for our BPC algorithm on RCVRP instances (A) . . 115

Table 5.10 Detailed results for our BPC algorithm on RCVRP instances (B) . . 116

Table 5.11 Detailed results for our BPC algorithm on RCVRP instances (E, F

and M) . 117

Table 5.12 Detailed results for our BPC algorithm on RCVRP instances (P) . . 118

Table 5.13 Detailed results for our BPC algorithm on RVRPTW instances (C1,

R1 and RC1) . 119

Table 5.14 Detailed results for our BPC algorithm on RVRPTW instances (C2,

R2 and RC2) . 120

Table 6.1 Parameters used in the new algorithm. 140

Table 6.2 Comparison between QP-Nest and the new algorithm for the case

of fixed orientation, using a naive solution as incumbent. 141

Table 6.3 Comparison between QP-Nest and the new algorithm for the case

of fixed orientation, using an optimal solution as incumbent. 142

Table 6.4 Comparison between QP-Nest and the new algorithm for the case

of free rotation, using a naive solution as incumbent. 143

Table 6.5 Comparison between QP-Nest and the new algorithm for the case of

free rotation, using an optimal fixed-orientation solution as incumbent.144

Table 7.1 Effect of strengthened intersection cuts and feasibility-based tight-

ening on solving instances of packing circles into a circle 171

Table 7.2 Effect of strengthened intersection cuts and feasibility-based tight-

ening on solving instances of packing circles into a rectangle 171

Table 7.3 Computational results for global solvers on solving instances of

packing circles into a circle . 172

Table 7.4 Computational results for global solvers on solving instances of

packing circles into a rectangle . 172

xiv

L I S T O F F I G U R E S

Figure 2.1 Log-scaled performance profiles across all benchmark instances. The

left graph compares the performance in clustered instances, while

the right graph compares the performance on random instances.

For each curve, the value at t = 0 gives the fraction of benchmark

instances for which it is fastest, while the limiting value at t→ ∞

gives the fraction of instances which it could solve within the time

limit of 10 hours. 28

Figure 4.1 A scenario-sampling framework . 52

Figure 4.2 The Branch-Price-and-Cut algorithm. 56

Figure 4.3 Example progress of the average marginal cost, as the sample size

N increases . 69

Figure 4.4 Effect of a customer’s proximity to the depot facilities on the

marginal routing cost. The proximity is defined as the length of the

direct round-trip route from the depot that is closest to the target

customer. 70

Figure 4.5 Effect of a customer’s demand level on the marginal routing cost . 72

Figure 6.1 Approximation of a polygon’s area via a set of inscribed circles. . . 125

Figure 6.2 Identifying the largest circle within the area where two polygons

overlap. 127

Figure 6.3 The QP-Nest approach. 128

Figure 6.4 The trigonometric constraint and its dynamically tightened relaxation.130

Figure 6.5 The non-overlapping constraint and its dynamically tightened re-

laxation. 132

Figure 6.6 A customized BB algorithm for solving the Nesting Problem. . . . 134

Figure 6.7 Feasibility-based tightening (special case when Fpm̄qn̄ = R2) 137

Figure 6.8 Feasibility-based tightening (general case when Fpm̄qn̄ ⊂ R2). 137

Figure 6.9 Polygon shapes used in our benchmark study. 140

Figure 6.10 A naive solution. 141

Figure 6.11 Optimal solutions for representative six-polygon (left) and seven-

polygon (right) instances under fixed orientation. 142

xv

list of figures

Figure 6.12 Optimal solutions for several five-polygon instances under free

rotation. 144

Figure 7.1 The non-overlapping constraint and its dynamically tightened re-

laxation (adapted from Chapter 6). 155

Figure 7.2 Generation of intersection cuts . 159

Figure 7.3 Valid convex sets Sij for generating intersection cuts 161

Figure 7.4 Strengthened intersection cuts . 161

Figure 7.5 Feasibility-based tightening . 164

Figure 7.6 Two variants of circle packing problems 167

Figure 7.7 Performance profiles across all benchmark instances of each prob-

lem variant. In both graphs, “This work” refers to the performance

of our proposed algorithm using strengthened intersection cuts and

feasibility-based tightening (BB+SIC+FBT). For each curve, the value

at t = 0 provides the fraction of benchmark instances for which the

corresponding solver/algorithm is fastest, while the limiting value

at t → ∞ provides the fraction of instances that could be solved

within the time limit of 1 hour. 174

xvi

1
I N T R O D U C T I O N

1.1 vehicle routing problems

1.1.1 Problem Description

We borrow from [167] the following definition of the family of vehicle routing problems.

Given a set of transportation requests and a fleet of vehicles, the goal is to

determine a set of vehicle routes to perform all (or some) transportation requests

with the given vehicle fleet at minimum cost; in particular, it is to decide which

vehicle handles which requests in which sequence so that all vehicle routes can

be feasibly executed.

In this type of problem, subsumed under the term vehicle routing problem (VRP), trans-

portation requests usually denote the service of moving goods from distribution centers

to customers (or vise versa, from suppliers to collection centers), which is performed

by a fleet of vehicles that are initially located at one or more depots; the feasibility of

vehicle routes are defined by operational constraints such as vehicle capacity restrictions,

customer-visiting time windows, route duration limits, just to name a few; the cost can be

monetary, distance, time, or otherwise.

The simplest VRP is the capacitated vehicle routing problem (CVRP), in which given a

distribution center, a fleet of homogeneous vehicles, and a group of customers with known

demands to be served, one aims to identify the minimum-cost routes for vehicles to

traverse, such that customer demands are satisfied and vehicle capacity constraints are

respected. There are numerous VRP variants, each of which is featured by one or more

practical considerations such as heterogeneous fleets, time windows, multiple depots,

multiple trips, multiple periods, among others [171]. Except for operational efficiency

and economy, other factors are also considered as performance metrics. The service

quality, e.g., driver consistency [85], can help businesses to differentiate themselves from

1

1.1 vehicle routing problems

their competitors and is thus receiving more and more attention when designing routes.

Due to the negative environmental impact from greenhouse gas emission by vehicles,

some literature considered the objective of VRPs to be not necessarily economic but

environmental or a mixture of both [69]. In recent years, the trend of integrating routing

designs with other operational decisions, e.g., inventory and production management [53],

has been observed. To sum up, the VRP is a “rich” family of transportation problems with

various practically relevant attributes.

The VRP has a broad range of industrial applications. Since the seminal work [61]

introduced the VRP as a real-world application concerning the delivery of gasoline to gas

stations, many real-life problems spanning various industries, such as liquified natural

gas transportation [87], waste collection [105], drone delivery [137], maritime surveil-

lance [70], offshore wind farm maintenance [97], meal delivery [175], among others, have

been modeled and tackled from a VRP perspective. Furthermore, though vehicle routing

decisions are fundamentally operational, they are often linked with other decisions taken

at a strategic or tactical level over a longer planning horizon, such as the fleet sizing and

composition [93], facility location [151], to just name a few. We can claim that the VRP is

one of the key components of supply chain logistics in practice.

1.1.2 Solution Approaches

The VRP is a generalization of the well-known traveling salesman problem (TSP) [14]. Since

the TSP itself is NP-hard, so is the VRP. In another word, no polynomial-time algorithms

exist for addressing the VRP. Since the seminal work [61], lots of efforts have been devoted

to the development of heuristic and exact solution algorithms.

– Heuristic algorithms. For the past a few decades, a wide variety of constructive

and improvement heuristics have been proposed, culminating in recent years with

the development of powerful metaheuristics capable of computing within a few

seconds solutions whose value usually lies within less than one percent of the

best known values. The constructive heuristics (e.g, the savings algorithm [50])

are usually employed to provide a starting solution to an improvement heuristic

while classic improvement heuristics usually perform intra-route and inter-route

moves efficiently. There are mainly two types of metaheuristics: (i) neighborhood-

centered methods (e.g., tabu search and variable neighbor search), which generally

proceed by iteratively exploring the neighborhoods of a single incumbent solution;

(ii) population-based strategies (e.g., ant colony and genetic algorithms), which evolve

2

1.1 vehicle routing problems

Table 1.1: Comparison between arc-based and route-based modeling frameworks

Arc-based modeling Route-based modeling

variables polynomial exponential
Feature easy to enforce addition con-

straints
tight LP relaxations

Algorithm branch-and-cut branch-price-and-cut

a set of solutions by generating one of several “new” solutions out of combinations

of existing ones. We refer readers to [112] for a succinct survey on this topic.

– Exact algorithms. The traditional wisdom of modeling VRPs is through defining

the selection of an arc between two nodes as a binary variable, yielding an arc-based

formulation (e.g., two-index vehicle flow model [111]). The resulting mathematical

model is an mixed-integer linear program (MILP) with polynomially many variables,

hence it is solved by the branch-and-cut method. Recently, the route-based modeling

idea (e.g., set partitioning model [28]) is becoming more appealing due to its tight

linear programming (LP) relaxation. Specifically, it treats the choice of a feasible

route as a binary variable. Due to the existence of exponentially many feasible routes,

the new modeling framework yields an MILP with a huge number of variables.

This necessitates the branch-price-and-cut algorithm, in which the LP relaxations at

every node in the branch-and-bound tree are solved via column generation while

cutting planes are added to strengthen the relaxations. We refer readers to [57]

for a comprehensive review on the branch-price-and-cut algorithm. Both modeling

frameworks have their strengths and weaknesses, as Table 1.1 shows. The arc-based

framework is more adaptive in terms of enforcing additional operational constraints

while the route-based one induces mathematical models with tighter LP relaxations

and is thus usually computationally more efficient. We remark that the latter can be

considered as a result from the Dantzig-Wolfe decomposition of the former.

Heuristic algorithms are usually effective, efficient, and scalable in a sense that they can

provide high quality feasible solutions efficiently even for practical problems of a large size.

By contrast, exact algorithms possess the unique value of being able to quantify the quality

of returned feasible solutions and to provide guarantee of optimality. The work of [169] has

demonstrated the state-of-the-art branch-price-and-cut algorithms could optimally solve

CVRP instances of up to 400 customers within hours, while the heuristics proposed in [89]

3

1.2 packing problems

could identify solutions of the same quality within seconds, albeit without awareness of

their optimality.

1.1.3 Challenges

Though the VRP is one of the most well-studied combinatorial problems in the literature,

there is still considerable research and practical relevance for continuation of exploring

this topic. We identify the following three challenges that will arise when developing exact

solution approaches for addressing VRPs.

• From a practical perspective, many real-life logistics problems have increasingly

complex operational constraints that need to be incorporated while designing routes.

Modeling these practical considerations is becoming burdensome.

• Mathematical models for VRPs are notoriously difficult to solve. Though significant

advances have been made to improve the commercial solvers’ capability of tackling

these MILPs, the deployment of customized solution algorithms is still essential for

the success of tackling VRPs. For branch-and-cut algorithms, developing problem-

specific strengthening techniques is still badly needed; for branch-price-and-cut

algorithms, the most critical issue is how to efficiently solve pricing subproblems in

the column generation step.

• The information necessary to formulate the relevant routing problems is not always

known with precision due to the presence of uncertainty affecting the parameters of

the problem. For example, the work of [78] has identified three types of uncertainty

sources that are commonly found in VRP applications: customer demands, travel/ser-

vice times, and customer orders. The big challenge is how to model routing problems

when uncertainty intrinsically exists and how to solve the resulting mathematical

models.

1.2 packing problems

1.2.1 Problem Description

The packing problem is a class of optimization problems that involve attempting to pack

objects together into one or more containers. The goal is to either pack a single container as

densely as possible or pack all objects using as few containers as possible. In the literature,

4

1.2 packing problems

this problem is also known as the cutting and packing problem, since carving out desired

shapes from the raw material is analogous to packing them within the equivalent container.

The most well-known packing example is the bin packing problem, where items of different

volumes must be packed into a finite number of bins each with a fixed given volume in a

way that minimizes the number of bins used. A popular two-dimensional packing problem

is the strip-packing problem, which aims to cut standard-sized pieces of stock material, such

as paper rolls or sheet metal, into rectangles of specified sizes while minimizing material

wasted. The objects to be packed are not necessarily standardized like rectangles but can

be irregular polygons, giving rise to the nesting problem [81]. This problem is a rather

general two-dimensional cutting and packing problem where the shapes to be packed can

be different to each other, irregular and non-convex, and may possibly contain holes. The

shapes, which are usually represented (approximated to arbitrary precision) by polygons,

are to be packed in a stock that comes in the form of a fixed-width rectangular sheet,

whose length is to be minimized. Furthermore, one may be interesting in packing circles

rather than polygons. The circle packing problem is an archetypal family of problems that

comes in many variants, such as packing identical circles into a rectangular container with

the objective of minimizing the container’s area [90], or identifying the minimal radius

of a circle within which other circles can simultaneously be placed [149], among others.

Readers are referred to [173] for a topology of cutting and packing problems.

The family of packing problems has numerous industrial applications. For example,

obtaining tight nesting solutions is of great practical importance when cutting metal parts

for automobiles, airframes and other machinery, as well as cutting leather and fabrics for

apparel and upholstery applications. Related circle packing applications include container

loading, cyclinder packing and wireless communication network layout, to name but a

few [46].

1.2.2 Solution Approaches

The packing problem is generally NP-hard. For example, the nesting problem generalizes

the two-dimensional bin packing problem [30] that is NP-hard; the work of [63] showed

that the circle packing problem is NP-hard. Stated differently, no polynomial-time algo-

rithms exist for solving the packing problem. In the literature, the vast majority of efforts

have been channeled into the development of heuristic algorithms. For example, numer-

ous metaheuristics (e.g., genetic algorithm [45], tabu search [115, 116]) were proposed to

solve bin packing problems; genetic algorithms [41], GRASP [10], and tabu search [44]

5

1.3 aims and outline of the thesis

were presented for the nesting problem. By contrast, the research on exact algorithms

for addressing packing problems is scarce, in particular for those that cannot be simply

modeled as monolithic MILPs. For example, the only exact approach for addressing the

nesting problem is from [100], which entails solving non-convex quadratically constrained

programs iteratively.

1.2.3 Challenges

To solve the packing problem exactly will raise concerns from both modeling and algorith-

mic perspectives.

• From a modeling perspective, enforcing no overlap between two objects is generally

non-trivial, especially for irregular shapes, e.g., polygons.

• Introducing non-overlapping constraints often induces a non-convex feasible region,

as a result, the mathematical model becomes a global optimization problem that is

notoriously challenging to solve.

1.3 aims and outline of the thesis

The overarching aim of this thesis is to develop mathematical models and solution al-

gorithms for vehicle routing problems as well as packing problems so as to push the

boundaries of their tractability. To that end, we exploit the problem structures and present

customized solution approaches that are either comparable or superior to the state-of-the-

art methods in terms of computational performance.

The remainder of this thesis is organized as follows. In Chapter 2, we present a novel

arc-based MILP to model the inventory routing problem occurring in industrial gas

distribution. To solve the resulting formulation more efficiently, we propose a tailored

branch-and-cut algorithm that incorporates problem-specific strengthening inequalities. In

Chapter 3, we are interested in the full truckload pickup and delivery problem faced by

the petrochemical company Braskem. This problem has several routing and scheduling

attributes of practical relevance, such as multiple pickup points, optional orders, loading

dock capacity restrictions, among others. We formulate it as an arc-based MILP that

demonstrates satisfactory performance in solving real-life instances. In Chapter 4, we focus

on a strategic problem faced by the industrial gas company Air Liquide. This problem

is to quantify the expected marginal cost of serving individual customers in a stochastic

6

1.3 aims and outline of the thesis

supply chain system. It often arises when the distributor wants to estimate the customer

lifetime value, in order to distinguish profitable customers. We propose a scenario-sampling

approach that combines classic probability theory with exact vehicle routing techniques and

thus provides statistical insurance for the estimation accuracy. To solve the routing problem

of our interest, we develop a customized branch-price-and-cut algorithm. In Chapter 5, we

turn our attention to VRPs under demand/travel time uncertainty, which is ubiquitous in

supply chain and logistics. We model this problem from a robust optimization perspective

and present a novel approach that embeds robust cutting planes into a branch-price-and-

cut algorithm. The unique feature of our proposed approach is that it can handle various,

general types of uncertainty sets. Chapter 6 and Chapter 7 are concerned with exact

solution algorithms for addressing shape nesting and circle packing problems, respectively.

Optimizing these problems is relevant when carving out desirable shapes from stock

materials, such as aluminum rolls or leather sheets. We enforce no overlap among objects

via circle-circle non-overlapping constraints. From a geometric perspective, we present

a convexification strategy for these non-overlapping constraints. Furthermore, reverse

convexity-based and feasibility-based tightening techniques are proposed and embedded

into a customized branch-and-bound algorithm. Chapter 8 summarizes the contributions

of this work in addition to proposing several future research directions.

7

2
A N O V E L B R A N C H - A N D - C U T A L G O R I T H M F O R

C O N T I N U O U S - T I M E I N V E N T O RY R O U T I N G

This chapter is focused on the continuous-time inventory routing problem. Inventory man-

agement, vehicle routing, and delivery-scheduling decisions are simultaneously considered

in the context of inventory routing. The continuous-time feature requires that the distribu-

tor has to both monitor inventory levels at customers and make product replenishment

decisions in continuous time, so as to ensure that stock levels are maintained within the

desired intervals at any moment of the planning horizon. In this chapter, we develop a

compact mixed-integer linear programming formulation to model the continuous-time

inventory routing problem. To expedite the solution process, we propose various tightening

techniques, including the adaption of well-known rounded capacity inequalities, among

others. We implement a branch-and-cut algorithm to solve the model optimally. Through

extensive computational studies on a suite of 90 benchmark instances from the literature,

we show that our branch-and-cut algorithm significantly outperforms the state-of-the-art

approach. The computational studies on 63 real-life instances demonstrate our algorithm’s

practical value of solving instances with up to 20 customers.

2.1 introduction

The Inventory Routing Problem (IRP) integrates inventory management, vehicle routing,

and delivery-scheduling decisions. The IRP arises in the context of vendor-managed in-

ventory [174], where a supplier monitors inventory levels at customers and makes the

replenishment decisions for products delivered to customers. This is often a win-win

strategy for both suppliers and customers: suppliers can coordinate shipment made to

customers so as to save distribution costs, while customers can benefit from avoiding efforts

for explicit inventory control. The integration of inventory control and delivery planning

is being practiced in industry. For example, the industrial gas company Air Liquide has

8

2.1 introduction

pointed out that its business model is transitioning from customer-managed inventory to

vendor-managed inventory, which necessitates inventory routing optimization techniques.

The ROADEF/EURO challenge 2016 [8] was even dedicated to a real-life inventory routing

project in Air Liquide. Hence, developing optimization techniques for inventory routing is

of great interest for both academic research and industrial applications.

There are many IRP variants and they can be categorized based on different criteria.

The first one is the inventory replenishment policy. Replenishment policies define pre-

established rules to be imposed on the quantity delivered to a customer in each visit.

There are two common policies: order-up-to-level policy and maximum-level policy. The

order-up-to-level policy is to fill the inventory to the tank capacity whenever a customer is

replenished [17], while the maximum-level policy allows for flexible replenishment and

only requires that tank capacities are respected [22, 64]. Clearly, the maximum-level policy

provides more flexibility for replenishment decisions and is thus more preferable from

the cost-saving perspective. The second criterion is the objective function. Traditionally,

the objective of an IRP is to minimize the total cost, including inventory cost and routing

cost [17, 22, 64]. Recently, some research effort [2, 16, 27, 88, 104, 153, 158] has been

focused on minimizing the so-called “logistic ratio”, which is the ratio of the total cost to

the amount of product distributed. In a short planning horizon, it is not incentivized to

deliver more product than necessary because the objective is to reduce the distribution cost.

However, the logistic ratio is considered to be a better metric of evaluating distribution

policies in the long term. In fact, it is a common industrial practice that distributors assess

the efficiency of a distribution policy through measures that consider both the distribution

cost and the amount of product distributed. Unfortunately, choosing the ratio function

as an objective results in a fractional programming model [140], which is usually much

harder to solve. Interested readers are referred to the work of [52] for a comprehensive

review on the IRP and its variants.

A new perspective to categorize the IRP is whether to discretize the planning horizon.

The discrete-time IRP first discretizes a given time horizon into multiple time periods

and then assumes that customers receive their deliveries at the beginning of each period

and can use them to fulfill their demands in that period [64]. This assumption simply

considers both vehicle routing and inventory replenishment to be instantaneous. In this

case, one only needs to enforce inventory constraints at the beginning/end of each time

period. In contrast, the continuous-time IRP (CIRP) explicitly accounts for the time of

distributing product by vehicles and manages inventory in continuous time. In particular,

it requires that inventory constraints are satisfied at any time point within the planning

9

2.1 introduction

horizon [108]. In such a case, vehicle departure/arrival times at customers cannot be

neglected but should be properly accounted for, in order to monitor inventory levels

continuously. Clearly, in the case of CIRP, vehicle routing is intertwined with inventory

management in a much more complicated way, and thus the CIRP is significantly more

challenging than the discrete-time IRP.

The IRP is notoriously hard because three types of decisions have to be made simul-

taneously: (i) when to serve a given customer, (ii) how much to deliver to a customer

when the latter is served, and (iii) how to combine customers into vehicle routes. In the

literature, the discrete-time IRP has been extensively studied. The work of [51] considered

the multi-vehicle IRP with and without consistency requirements, and applied an adaptive

large neighborhood search scheme in which some subproblems are solved exactly as

mixed-integer linear programs. The first exact algorithm for IRP is from the work of [17]

in which the authors considered a single-vehicle IRP and proposed a branch-and-cut

approach that could solve, to optimality, benchmark instances with up to 50 customers and

3 time periods. The work of [54] and [55] extended the branch-and-cut approach from [17]

to the multi-vehicle IRP and enhanced it with new valid inequalities. Their algorithm

obtained improved upper and lower bounds for many IRP instances. One of the most

successful exact approaches for solving the discrete-time IRP was presented in [64], where

the authors proposed a sophisticated branch-price-and-cut algorithm, solving benchmark

instances with up to 50 customers and up to 5 vehicles optimally. In the recent work [22],

single-period tightening cuts called “disjoint route inequalities” were proposed and incor-

porated into a branch-and-cut algorithm. The computational results show that the new

branch-and-cut algorithm returns gaps that are significantly smaller than the algorithms

in [55] and [64].

The CIRP, notwithstanding its significance, has received very little attention in the

literature. The work of [67] considered the IRP with driver rest constraints and decomposed

it into an upper-level routing problem and a lower-level continuous-time scheduling

problem. An iterative approach based on the upper and lower levels was then presented

to identify the optimal routing and scheduling design. The work of [76] focused on the

supply-driven cyclic CIRP in which inventory is held in containers that act as both a storage

container and a movable transport unit, in the application of biogas transportation. The

authors proposed a tour-based formulation that could optimally solve instances of up to 7

customers. Another approach was put forth in the work of [108]. The authors first proved

that when the CIRP instance data includes only rational numbers, there exists a sufficiently

fine time discretization such that both routing and inventory replenishment decisions

10

2.1 introduction

made in the optimal solution will always happen at discretizated time points. Based on

this theory, the authors then proposed a dynamic discretization discovery algorithm: (i) the

planning horizon is first discretized with different resolutions; (ii) for each discretization,

after rounding up and down the adjusted travel times, two mixed-integer linear programs

are formulated to produce an upper bound and a lower bound, respectively; (iii) if the

difference between the best upper and lower bounds is below a pre-specified tolerance,

then the optimality of a CIRP is achieved. The novelty in the dynamic discretization

discovery approach is that it discovers exactly which times are needed to obtain an

optimal, continuous-time solution by solving a sequence of relatively easy mixed-integer

linear programs. The authors generated 90 benchmark instances with up to 15 customers

and conducted extensive computational studies on them. Their computational results show

that the dynamic discretization discovery approach could solve 26 of them to optimality.

In this chapter, we consider the CIRP defined in [108]: (i) the maximum-level inventory

replenishment policy is adopted; (ii) the objective is to minimize the total routing cost;

(iii) inventory levels are monitored and controlled continuously. As a result, the CIRP

has several complicated characteristics. First, the planning horizon becomes a single but

relatively long time period and thus vehicles are now allowed to perform multiple trips.

Second, a customer’s total product consumption across the whole planning horizon may

exceed the tank capacity, then split delivery to a customer and thus multiple visits at

this customer will happen. Last, both vehicle routing designs and delivery-scheduling

decisions are now constraining the inventory control space, since they are all taken into

account explicitly in time. Though the branch-price-and-cut approach proposed by [64] was

quite successful in solving the discrete-time IRP, it cannot be easily extended to the CIRP

due to complications from having to model features like continuous arrival/departure

time, multiple vehicle trips, multiple customer visits, among others. Furthermore, even

formulating the CIRP as a mixed-integer linear program and solving it via a branch-and-

cut approach are not a straightforward extension from the discrete-time case. In this work,

we duplicate nodes and arcs to represent routing features like multiple visits at a customer

and multiple trips by a vehicle, respectively. We model the vehicle arrival/departure

times at customers as continuous variables and manage stock levels in continuous time.

Based on these novel modeling ideas, we then propose a compact mixed-integer linear

programming (MILP) formulation for solving the CIRP. We also adapt the well-known

rounded capacity inequalities (RCI) to strengthen linear programming (LP) relaxations. Our

branch-and-cut algorithm is also enhanced with other tightening techniques, such as

variable elimination.

11

2.2 problem definition

The distinct contributions of our work can be summarized as follows.

• We propose a novel mixed-integer linear programming formulation to model the

continuous-time inventory routing problem. This formulation incorporates several

ingenious modeling ideas to handle the multi-trip, multi-visit features as well as

continuous-time inventory management.

• We propose various types of tightening techniques to strengthen the linear pro-

gramming relaxations. In particular, we adapt rounded capacity inequalities into

our model and develop protocols to dynamically separate and add them during the

branch-and-cut process.

• We conduct extensive computational studies on 90 benchmark instances from the

literature and the computational results show that our branch-and-cut algorithm

significantly outperforms the state-of-the-art approach. In particular, our algorithm

could solve 56 of them to optimality within a reasonable amount of time and return a

small residual gap for the remaining ones, while the state-of-the-art algorithm could

only solve 26 out of 90 to guaranteed optimality.

• We further evaluate our algorithm on newly generated benchmark instances that

are inspired by the real-life data from ROADEF/EURO Challenge 2016. Out of 63

benchmark instances, our branch-and-cut algorithm solved 56 of them to optimality,

including a few 20-customer instances. This further demonstrates our proposed

algorithm’s efficiency.

The remainder of the chapter is organized as follows. A formal problem definition is

given in Section 7.2. In Section 3.3, we present a novel mixed-integer linear programming

formulation to model the CIRP. We then propose several tightening techniques that can

expedite the solution process in Section 2.4. Section 7.5 presents detailed computational

results on the performance of our branch-and-cut algorithm. Finally, we conclude our

work in Section 7.6.

2.2 problem definition

The continuous-time inventory routing problem is defined on a directed graph G = (V, E)

where V := {0} ∪Vc denotes the set of nodes that itself is composed of a set of customers

Vc := {1, 2, ..., n} and the depot 0, and E := {(i, j) : i ∈ V, j ∈ V \ {i}} is the set of arcs.

The planning horizon is H ∈ R>0. Customer i ∈ Vc consumes product at a constant rate

12

2.3 mathematical modeling

ri ∈ R≥0. Associated with customer i ∈ Vc are the initial product inventory level I0
i ∈ R≥0

at the beginning of the planning horizon, the minimum inventory level IH
i ∈ R≥0 at the

end of the planning horizon, and the inventory lower/upper bound I l
i /Iu

i ∈ R≥0 during

the planning horizon. Without loss of generality, we assume that each customer has to

be visited at least once, e.g., IH
i + ri H − I0

i > 0 for i ∈ Vc. We assume that the depot

has unlimited supply of product. A fleet of K identical vehicles of capacity Q ∈ R>0,

initially located at the depot, will be used to deliver product to customers so that inventory

levels at customers are maintained within the desired intervals. Vehicles are allowed to

perform multiple trips and customers are allowed to be visited multiple times during

the planning horizon. We allow a vehicle to wait at a customer’s location and to make

multiple deliveries. Loading at the depot and unloading at customers are considered to

be instantaneous. Associated with arc (i, j) ∈ E are the travel time tij ∈ R≥0, travel cost

cij ∈ R≥0 by a vehicle. Assume that both the travel time and travel cost matrices satisfy the

triangle inequality. We do not allow multiple vehicles to visit a customer at the same time.

Hence, when a vehicle is waiting at a customer for another delivery, no vehicle is allowed

to visit this customer but other vehicles can wait until the customer becomes available.

No inventory cost at the depot or customers but travel cost is considered. The objective

is to identify the minimum-cost routing plan and schedule such that (i) the inventory

constraints are satisfied; (ii) the vehicle capacity is respected in each trip; (iii) every used

vehicle has to return to the depot by the end of the planning horizon.

2.3 mathematical modeling

In this section, we present a mathematical formulation for the CIRP. Modeling the CIRP is

not a straightforward task and we are facing the following challenges: (i) the first one is

how to handle multiple visits at a customer in the continuous-time setting; (ii) another

layer of complexity emanates from the possibility that a vehicle might wait at a customer’s

location and make several deliveries; (iii) the third one comes from multiple use of a

vehicle; (iv) the last challenge is how to monitor and manage inventory levels continuously.

In what follows, we will discuss how to tackle these challenges.

Before we discuss how to model the CIRP, we first introduce some notations. During

the planning horizon, every customer consumes product at a fixed rate and the total

consumption by a customer may exceed the vehicle capacity Q. In such a case, split

delivery will happen and vehicles have to deliver product to this customer several times.

We assume that customer i ∈ Vc can be visited at most ni times during the planning

13

2.3 mathematical modeling

horizon. Note that this has a motivation in practice. On the one hand, each customer is not

willing to be visited too frequently during the planning horizon; on the other hand, the

distributor usually sets a minimal amount of product delivery at every customer and hence

the amount can be utilized to compute a valid value for ni. Define Ni := {1, 2, ..., ni} to be

the set of visit numbers to i ∈ Vc, and we also define N0 := {1} for convenience. The CIRP

can be represented on a network where each node is represented by a pair (i, α), where

i ∈ V indicates either the depot or a customer and α ∈ Ni indicates the visit number to i.

Let (i, α, j, β) represent the arc from node (i, α) to node (j, β) in the network. The similar

idea of duplicating nodes to represent multiple visits at a customer was also employed in

the work of [7] where the authors considered a maritime inventory routing problem and

created several copies to denote the visit number of a port by a ship. In order to handle

multiple trips by a vehicle, we propose a concept called “mode” to indicate arc copies.

Let D := {0, 1} denote the set of two modes. A vehicle traverses an arc from (i, α) to (j, β)

directly in mode “0”, while in mode “1” a vehicle starts from (i, α), makes a detour to the

depot (0, 1) for replenishment, and then goes to the node (j, β) for delivery. One can also

create duplicate nodes of the depot to keep track of the number of trips performed by a

vehicle, however, two issues will arise: (i) the maximum number of trips that a vehicle

is allowed to perform has to be imposed; (ii) in order to keep track of arrival/departure

times for each vehicle, a vehicle-index based model is resulted. These burdens are avoided

when using our proposed concept “mode”. A similar idea was also applied in the work

of [102], in which the authors duplicated the arcs so as to represent the detour trip to

the depot while solving the multi-trip vehicle routing problem. Let Ad represent the set of

valid arcs in mode d ∈ D. Clearly, A0 := {(i, α, j, β) : i ∈ V, α ∈ Ni, j ∈ V \ {i}, β ∈ Nj}
and A1 := {(i, α, j, β) : i ∈ Vc, α ∈ Ni, j ∈ Vc \ {i}, β ∈ Nj} ∪ {(i, α, j, β) : i = j ∈ Vc, α ∈
Ni, β ∈ Nj : β > α}. Note that in mode “1”, arc (i, α, i, β) with α < β is valid. This

represents a case where a vehicle leaves customer i, returns to the depot for replenishment,

and then visits customer i for delivery again. Let δ+d (j, β) := {(i, α) : (i, α, j, β) ∈ Ad}
and δ−d (j, β) := {(i, α) : (j, β, i, α) ∈ Ad} denote the set of nodes in the network that are

connected with node (j, β) by in-coming and out-going arcs in mode d ∈ D, respectively.

Objective Function. The objective is to minimize the total travel cost. The cost of traversing

an arc from node (i, α) to node (j, β) by a vehicle in mode d is denoted by cd
ij. Clearly,

c0
ij = cij since it is simply a direct traversal from node (i, α) to node (j, β), while c1

ij =

ci0 + c0j because the vehicle makes a detour to the depot (0, 1) in mode “1”. Let xd
iαjβ be a

14

2.3 mathematical modeling

binary variable that is equal to 1 if the arc from (i, α) to (j, β) is traversed in mode d and 0

otherwise. The objective function is thus defined as follows:

∑
d∈D

∑
(i,α,j,β)∈Ad

cd
ijx

d
iαjβ. (2.1)

Degree Constraints. Let yjβ be a binary variable that is equal to 1 if node (j, β) is visited

during the planning horizon and 0 otherwise. If a visit is made to node (j, β), there must

be an arc entering this node and an arc leaving it, as shown by (2.4) and (2.5).

xd
iαjβ ∈ {0, 1} ∀(i, α, j, β) ∈ Ad, ∀d ∈ D (2.2)

yjβ ∈ {0, 1} ∀β ∈ Nj, ∀j ∈ Vc (2.3)

∑
d∈D

∑
(i,α)∈δ+d (j,β)

xd
iαjβ = yjβ ∀β ∈ Nj, ∀j ∈ Vc (2.4)

∑
d∈D

∑
(i,α)∈δ−d (j,β)

xd
jβiα = yjβ ∀β ∈ Nj, ∀j ∈ Vc (2.5)

Fleet Size Constraint. There is no detour that starts from the depot, hence the number of

used vehicles is computed as the number of arcs that leave the depot node (0, 1). The fleet

of K vehicles are initially located at the depot. Therefore, the number of used vehicles is

bounded from above by K, as the constraint (2.6) shows.

∑
(j,β)∈δ−0 (0,1)

x0
01jβ ≤ K (2.6)

Time Constraints. We now define parameters [wl
jβ, wu

jβ] for node (j, β), j ∈ Vc to indicate

the time window during which a vehicle will possibly arrive at this node. One can

immediately come up with a valid time window, e.g., [wl
jβ, wu

jβ] = [t0j, H − tj0], the earliest

arrival time and the latest departure time. Let non-negative variables ajβ and djβ denote

the arrival and departure time at node (j, β) if it is visited, respectively. Let ãiαjβ be a

non-negative variable that represents the arrival time from node (i, α) to node (j, β) if

this arc is traversed in any mode and 0 otherwise. Equations (2.7) - (2.9) enforce that any

vehicle can only leave the depot after time 0 and has to return back to the depot by the

end of the time horizon H. Constraints (2.10) build the relationship between ajβ and ãiαjβ,

ajβ and djβ. Since the unloading process is instantaneous, thus the departure from node

(j, β) can even happen immediately after the arrival. The time for traversing an arc from

node (i, α) to node (j, β) by a vehicle in mode d is denoted by Td
ij. Clearly, T0

ij := tij and

15

2.3 mathematical modeling

T1
ij := ti0 + t0j. Constraints (2.11) relate the departure time at node (i, α) to the arrival time

at some node (j, β) when a vehicle travels from (i, α) to (j, β) in mode 0 or 1.

wl
jβx0

01jβ ≤ ã01jβ ≤ wu
jβx0

01jβ ∀(j, β) ∈ δ−0 (0, 1) (2.7)

0 ≤ ãiα01 ≤ Hx0
iα01 ∀(i, α) ∈ δ+0 (0, 1) (2.8)

0 ≤ ãiαjβ ≤ wu
jβ ∑

d∈D:(i,α,j,β)∈Ad

xd
iαjβ ∀(i, α, j, β) ∈ ∪d∈D Ad : i, j ∈ Vc (2.9)

∑
(i,α)∈∪d∈Dδ+d (j,β)

ãiαjβ = ajβ ≤ djβ ∀β ∈ Nj, ∀j ∈ Vc (2.10)

diα + ∑
d∈D

∑
(j,β)∈δ−d (i,α)

Td
ijx

d
iαjβ ≤ ∑

(j,β)∈δ−0 (i,α)

ãiαjβ ∀α ∈ Ni, ∀i ∈ Vc (2.11)

Non-overlapping Visit. When node (i, α + 1) is visited (e.g., yiα+1 = 1), that is, customer

i is visited at the (α + 1)-th time, then this customer must have been visited before (e.g.,

yiα = 1), as indicated by (2.12). Constraints (2.13) require that the recent arrival must

happen after the previous departure since a customer is not allowed to be visited by more

than one vehicle at the same time.

yiα+1 ≤ yiα ∀α ∈ Ni \ {ni}, ∀i ∈ Vc (2.12)

diα ≤ aiα+1 + (H − ti0) (yiα − yiα+1) ∀α ∈ Ni \ {ni}, ∀i ∈ Vc (2.13)

Loading an Unloading Constraints. To model the loading and unloading constraints, we

define the following continuous variables: fiαjβ denotes the amount of product that a

vehicle transports from node (i, α) to node (j, β) in mode 0; liα represents the amount

of product that a vehicle, after finishing its current trip, reloads at the depot before

immediately coming to node (i, α); qiα is the amount of product delivered to customer i at

the α-th visit. We remark that qiα might be larger than Iu
i − I l

i , since vehicles are allowed to

wait at a customer’s location and to make multiple deliveries. Equations (2.14) require that

the quantity on a vehicle that travels from node (i, α) to the depot is zero. Constraints (2.15)

and (2.16) require that the vehicle capacity is respected. Constraints (2.17) impose upper

limits on the unloading quantities. Equations (2.18) are the flow conservation constraints

16

2.3 mathematical modeling

at node (j, β), ensuring that the amount of product that flows into node (j, β) minus the

delivery is equal to the amount that flows out.

fiα01 = 0 ∀(i, α) ∈ δ+0 (0, 1) (2.14)

0 ≤ fiαjβ ≤ Qx0
iαjβ ∀(i, α, j, β) ∈ A0 : j ∈ Vc (2.15)

0 ≤ ljβ ≤ Q ∑
(i,α)∈δ+1 (j,β)

x1
iαjβ ∀β ∈ Nj, ∀j ∈ Vc (2.16)

0 ≤ qjβ ≤ Qyjβ ∀β ∈ Nj, ∀j ∈ Vc (2.17)

∑
(i,α)∈δ+0 (j,β)

fiαjβ + ljβ − qjβ = ∑
(i,α)∈δ−0 (j,β)

f jβiα ∀β ∈ Nj, ∀j ∈ Vc (2.18)

Inventory Constraints. The inventory constraints are considered for each customer. They

ensure that inventory levels fall within the corresponding desired levels at any moment

of the planning horizon. In order to achieve this, we only need to guarantee that at the

moment aiα a vehicle is arriving at customer i ∈ Vc, the inventory level is above the

minimum level I l
i and that at the moment diα a vehicle is departing from customer i, the

inventory level is below the maximum level Iu
i , as indicated by constraints (2.19) and (2.20).

Note that during the time [aiα, diα], the vehicle is waiting at the customer i and can perform

multiple deliveries at zero cost, thus inventory limits I l
i and Iu

i will never be overridden.

At the end of the planning horizon, the inventory level at customer i ∈ Vc should be above

the minimum inventory level IH
i , as shown by (2.21).

I0
i yiα + ∑

α′∈Ni :α′<α

qiα′ − riaiα ≥ I l
i yiα ∀α ∈ Ni, ∀i ∈ Vc (2.19)

I0
i yiα + ∑

α′∈Ni :α′≤α

qiα′ − ridiα ≤ Iu
i yiα + ∑

α′∈Ni :α′<α

Q (yiα′ − yiα) ∀α ∈ Ni, ∀i ∈ Vc (2.20)

I0
i + ∑

α∈Ni

qiα − ri H ≥ IH
i ∀i ∈ Vc (2.21)

The CIRP is to minimize the objective (2.1) subject to constraints (3.2) - (2.21). We remark

that this is a compact MILP formulation for the CIRP and that this formulation can handle

complex routing/scheduling features such as multiple customer visits, multiple trips by a

vehicle and continuous-time inventory management.

17

2.4 tightening techniques

2.4 tightening techniques

In this section, we derive various tightening inequalities to strengthen the LP relaxations of

our proposed model. In particular, we tighten time windows of any visit to a customer and

use them to eliminate variables from our proposed MILP formulation. We then consider

the minimum quantity of product delivered to a customer and propose capacity constraints

as strengthening cuts.

2.4.1 Tightening of Time Windows

We can tighten the time window [wl
jβ, wu

jβ] by taking advantage of inventory constraints.

For example, the latest time point at which node (j, β) can be visited is when the inventory

level at customer j, after the previous (β− 1) full truckload deliveries, is going to reach the

minimum required level I l
j , e.g., (I0

j + Q(β− 1)− I l
j)/rj. The node (j, β) cannot be visited

too early so that after (nj − β) full truckload deliveries, the final inventory level is still

above IH
i at the end of the planning horizon. Hence, we obtain the following:

wl
jβ = max

{
t0j, H −

Iu
j + Q(nj − β)− IH

j

rj

}
,

wu
jβ = min

{
H − tj0,

I0
j + Q(β− 1)− I l

j

rj

}
.

The valid time windows we derive, e.g., [wl
jβ, wu

jβ], are usually not tight, such that applying

the data preprocessing procedure proposed in [101] to further tighten time windows and

to eliminate variables does not make an effect. Thus, we do not include this procedure.

2.4.2 Variable Elimination

Given node (i, α) and node (j, β), whenever wl
iα + Td

ij > wu
jβ, then xd

iαjβ = 0. This represents

a case where a vehicle that leaves node (i, α) even at its earliest cannot arrive at node (j, β)

by the end of the visit time window.

18

2.4 tightening techniques

2.4.3 Minimal # Visits

Define θi := IH
j + rjH − I0

j for customer i ∈ Vc. The distributor has to ship at least θi

unit of product to customer i ∈ Vc during the time horizon, so as to guarantee that the

the inventory level is above IH
i at the end of the planning horizon. We denote by mi the

minimum number of visits at customer i that have to be performed. Clearly, mi =
⌈
θi/Q

⌉
since at most a full truckload Q can be delivered to customer i in each visit. Hence,

constraints (2.22) are valid. Since we know that node (i, α) will be visited in every feasible

solution, we can enforce valid lower bounds for arrival time variables aiα, as shown by

constraints (2.23).

yiα = 1 ∀α ∈ Ni : α ≤ mi, ∀i ∈ Vc (2.22)

aiα ≥ wl
iα ∀α ∈ Ni : α ≤ mi, ∀i ∈ Vc (2.23)

2.4.4 Rounded Capacity Inequalities

The rounded capacity inequalities [110] are well-known strengthening inequalities that have

demonstrated great success in the expedition of solving routing models. We adapt them

into the context of CIRP, as shown by constraints (2.24).

∑
j∈S

∑
β∈Nj

 ∑
(i,α)∈δ+0 (j,β):i/∈S

x0
iαjβ + ∑

(i,α)∈δ+1 (j,β)

x1
iαjβ

 ≥ r(S) ∀S ⊆ Vc (2.24)

Given a set of customers S ⊆ Vc, let θ(S) denote ∑i∈S θi. The left hand side of (2.24)

denotes the number of vehicles that are going to deliver product to customers in the set

S. Note that the second term of the left hand side accounts for multiple use of a vehicle.

The right hand side, r(S), denotes the minimum number of vehicles required to serve

the customers in S. That is, r(S) is the optimal value to the bin-packing problem with item

fragmentation [122] (BPPIF) with bin capacity Q, item sizes given by the minimum demands

of the customers in S, and each item fragmented into at most ni pieces. Calculating

r(S) exactly is as hard as the BPPIF and is therefore strongly NP-hard. However, the

formulation remains valid if one replaces r(S) on the right hand side with the obvious

lower bound k(S) := dθ(S)/Qe, which yields the so-called rounded capacity inequalities. We

remark that capacity constraints (2.24) are also used in the vehicle routing problem with split

delivery [31, 38].

19

2.5 computational studies

In order to separate RCI, we first construct the support graph Ḡ = (V, E) that corre-

sponds to the LP fractional solution at a given branch-and-bound node. In particular, we

loop through all positive x̄d
iαjβ values for (i, α, j, β) ∈ Ad, d ∈ D and we then increment the

weight of arc (i, j) ∈ E by x̄d
iαjβ if d = 0 and increment the weights of both arc (i, 0) ∈ E and

arc (0, j) ∈ E by x̄d
iαjβ if d = 1. We emphasize that the resulting graph Ḡ is not the support

graph that corresponds to the classic capacitated vehicle routing problem because the degree

of each customer node is not necessarily exactly 2. Hence, the commonly used CVRPSEP

package [120] is not applicable here. We apply three heuristics to separate RCI. As [121]

suggested, we first identify all connected components in the graph Ḡ as candidates. The

second heuristics is to separate the so-called fractional capacity inequalities via the max-flow

algorithm. If both heuristics fail, we then resort to the tabu search method proposed by [21]

to identify violated RCI. Readers are referred to [21] for implementation details.

A special case of RCI is when S = Vc, as shown by constraint (2.25). We notice that

adding this constraint generally expedites the branch-and-cut algorithm, thus in our

implementation, we always append this one to our proposed model before the branch-and-

cut search starts.

∑
j∈Vc

∑
β∈Nj

x0
01jβ + ∑

(i,α)∈δ+1 (j,β)

x1
iαjβ

 ≥ ⌈ θ(Vc)

Q

⌉
(2.25)

In our model, since customer nodes are optionally visited (e.g., yiα ∈ {0, 1}), we then

incorporate logical inequalities and generalized subtour elimination constraints proposed in

the work of [73] as strengthening cuts. However, our computational studies show that

these inequalities are not effective and thus we decide not to include them. Finally, we

propose the following branch-and-cut algorithms: a polynomial-size mixed-integer linear

program (2.1) - (2.23) and (2.25), is given to an MILP solver and RCI (2.24) are dynamically

separated and added into the model at each branch-and-bound node.

2.5 computational studies

In this section, we test our branch-and-cut algorithm on CIRP benchmark instances

and compare it against the state-of-the-art approach from [108]. Our algorithm was im-

plemented in C++ and the mixed-integer linear program was solved using the Gurobi

Optimizer 9.0 through the C application programming interface. User cuts were imple-

mented via the Gurobi callback function. Branching was performed in priority on variables

yiα, and then on xd
iαjβ variables. Unless otherwise mentioned, all Gurobi settings were kept

20

2.5 computational studies

being default, except that the relative optimality gap tolerance was set to be 0 and that

the absolute optimality gap tolerance was set properly based on different datesets. The

experiments were run on an Intel Xeon CPU E5-2689 v4 server running at 3.10 GHz. The

128 GB of available RAM was shared among 10 copies of the algorithm running in parallel

on the server. Each instance was solved by one copy of the algorithm using a single thread.

2.5.1 Benchmark instances

We consider two CIRP datasets for testing our algorithm. The first one comes from the

work of [108], in which the authors generated two types of CIRP instances: clustered (C)

and random (R).1 There are 45 instances for each type, with the number of customers

ranging from 5 to 15 and the number of vehicle ranging from 3 to 15. All instances can be

found at https://github.com/felipelagos/cirplib. As [108] did, the travel costs and

travel times are taken to be the Euclidean distance and then rounded to two decimal places.

The triangle inequality still holds after rounding.

To evaluate the performance of our algorithm on solving real-life CIRP data, we generate

the second dataset that is inspired by ROADEF/EURO Challenge 2016 [8]. In particular,

we obtain the ROADEF/EURO Challenge 2016 dataset (version 1.1) from https://www.

roadef.org/challenge/2016/en/instances.php and apply the following procedure: (i)

a heterogeneous fleet is reduced to a homogeneous one; (ii) driver-trailer scheduling is

neglected; (iii) the product consumption rate is considered to be constant throughout

the planning horizon; (iv) the objective is to minimize the travel cost, rather than the

logistic ratio. We remark that incorporating all the aforementioned features into our

model is doable but it will result in a gigantic formulation that could not be solved

within a reasonable amount of time, hence we decide not to do so in this chapter. The

ROADEF/EURO Challenge 2016 dataset is a excerpt of real problems and it includes 9

medium-size instances, with the number of customers ranging from 53 to 89. For each

instance, we choose the first 5, 7, 10, 12, 15, 17 and 20 customers, respectively, and create

a new instance. The number of vehicles ranges from 1 to 6. In total, we generate a suite

of 63 roadef (RF) instances, each with a name “RF-X-nY” representing a Y-customer

instance adapted from the Xth original instance. All the generated instances can be found

at gounaris.cheme.cmu.edu/dataset/cirp.

1 The authors of [109] consider a special case of the CIRP: the CIRP with only out-and-back routes (i.e., a vehicle
route starts at the depot visits a single customer and returns to the depot). One can simply fix x0

iαjβ = 0

for (i, α, j, β) ∈ A0 : i, j ∈ Vc in our proposed model, resulting in a valid formulation for the CIRP with
out-and-back routes. For the sake of brevity, we do not consider these instances.

21

https://github.com/felipelagos/cirplib
https://www.roadef.org/challenge/2016/en/instances.php
https://www.roadef.org/challenge/2016/en/instances.php
gounaris.cheme.cmu.edu/dataset/cirp

2.5 computational studies

For each instance from both datasets, the number of visits to customer i ∈ Vc is limited

to 2 plus the minimal number of visits at customer i, i.e., ni := 2 + mi, since we did not

notice any improvement in the total travel cost when we increase this number. We remark

that the choice of ni might be still limiting in a sense that when increasing their values,

one may identify a feasible solution with a smaller objective value than that of the optimal

solution in the case of our chosen ni values.

2.5.2 Computational results on literature data

We first test our branch-and-cut algorithm (denoted by “Branch-and-Cut”) on the first

dataset (clustered and random instances) and compare its performance with that from

the work of [108] (denoted by LBS20). To analyze the effect of adding RCI on the solution

process, we consider a variant of our algorithm in which RCI are disabled. In this case, no

user cuts are added to the model and hence we denote it by “Gurobi (default)”. In our

implementation, the absolute optimality gap tolerance was set to be 0.0099. Considering

that the travel costs are rounded to two decimal places, the objective value of a feasible

solution has at most two decimal places and thus the absolute optimality gap tolerance

is indeed valid. In the Branch-and-Cut algorithm, all Gurobi-generated cuts were disable

because we observed that using these general-purpose cuts increased overall computation

times.

We impose a time limit of 10 hours for each instance and compare our computational

results with those from LBS20 in Table 2.1. Columns “# cust.” and “# inst.” report the

number of customers in a instance and the number of instances of such an input size,

respectively. The column “# opt.” reports the number of instances that were solved to

optimality within the time limit, while columns “# feas.” and “# no feas.” denote the

number of instances for which a feasible solution was and was not identified by the time the

algorithm terminated due to time limit, respectively. For those solved instances, we report

the average solution time (rounded to the nearest integer, in seconds) in column “Avg. t(s)”.

For those unsolved instances but with feasible solutions identified, we report the average

residual gap (a residual gap is defined as (UB - LB) / UB) in column “Avg. gap (%)”.

Note that in Table 2.1, we do not report the solution time for LBS20, because their adopted

approach was to solve many (around 40) parametric MILP formulations, each with a time

limit of 2 hours of CPU time, and the authors did not report the total solution time.

Out of 90 CIRP instances, LBS20 solved 26 of them to optimality and returned average

residual gaps of 1.6%− 17.7%, while our Branch-and-Cut algorithm solved 56 instances

22

2.5 computational studies

to optimality within the time limit of 10 hour and did not successfully generate feasible

solutions for 3 instances, leaving the remaining 31 instances an average residual gap

below 2.0%. In particular, our algorithm solved all 5- and 7-customer instances, half of

10-customer instances, one third of 12-customer instances, and a few 15-customer instances

to optimality. We remark that for each of those 3 instances to which our Branch-and-Cut

algorithm did not identify a feasible solution, our algorithm did find one when the time

limit increases. Based on these observations, we claim that our Branch-and-Cut approach

significantly outperforms the approach from LBS20. We remark that the CIRP is extremely

challenging, considering that the discrete-time IRP instances with up to 50 customers have

been solved optimally while even the CIRP of 15 customers is almost intractable.

We present detailed results on clustered (C) instances and random (R) instances, re-

spectively, for the Branch-and-Cut algorithm in Table 2.3 and Table 2.4. In these tables, if

an instance could be solved to optimality within 10 hours, then “Opt [UB]” reports the

corresponding optimal objective value, while “t (s) [LB]” reports the time (rounded to the

nearest integer, in seconds) to solve the instance to optimality. Otherwise, the columns

respectively report in brackets the best upper and lower bounds found within the time

limit. We also report the average number of visits across all customers in the returned best

known solution to each instance in column “Avg. # visits” and the number of RCI that

have been dynamically added in column “# RCI”. If our algorithm could not identify a

feasible solution, then the entries for “Opt [UB]” and “Avg. # visits” are left blank. The

average number of visits to every customer ranges from 1.2 to 2.2, which is far from the

maximum number of allowable visits, ni, that ranges from 3 to 5. This indicates that our

choice of the number of allowable visits is not restrictive.

To have a closer look at the solution quality, we consider four instances of which the

detailed computational results were presented in the appendix of LBS20. We report the

instance name (Inst.) and the final upper bound (UB), root node lower bound2 (Root LB),

root node gap3 (Root gap (%)), final lower bound (LB), residual gap (Gap %), and solution

time (t (s)) for this instance in Table 2.2. The instance name with “C” (“R”) as an initial

belongs to clustered (random) instances, and the number after the initial denotes the

number of customers in this instance. Our Branch-and-Cut algorithm solved the first three

instances with up to 10 customers efficiently and returned either equivalently good or

better solutions. For the 15-customer instance “C15U2Q2”, the feasible solution returned

by our algorithm is also better than the one from LBS20 and the residual gap generated

is smaller. Another observation is, in our proposed algorithm, the root node gap is quite

2 The “root node lower bound” denotes the root node relaxation value before branching.
3 The “root node gap” is defined as (UB - Root LB) / UB.

23

2.5 computational studies

Ta
bl

e
2
.1

:C
om

pa
ri

so
n

am
on

g
L
B
S
2
0

an
d

ou
r

pr
op

os
ed

al
go

ri
th

m
s

on
90

be
nc

hm
ar

k
in

st
an

ce
s

#
cu

st
.#

in
st

.
L
B
S
2
0

G
ur

ob
i(

de
fa

ul
t)

Br
an

ch
-a

nd
-C

ut

#
op

t.
#

fe
as

.
A

vg
.

ga
p

(%
)

#
op

t.
#

fe
as

.
#

no
fe

as
.

A
vg

.t
(s

)
A

vg
.

ga
p

(%
)

#
op

t.
#

fe
as

.
#

no
fe

as
.

A
vg

.t
(s

)
A

vg
.

ga
p

(%
)

cl
us

te
re

d
5

9
7

2
1

.5
5

9
0

0
1
8

–
9

0
0

2
–

7
9

3
6

1
.9

2
6

3
0

1
,2

7
8

3
.7

9
9

0
0

4
,4

3
9

–
1
0

9
1

8
1

.9
0

2
7

0
1
1
,4

4
9

3
.9

2
3

6
0

8
,0

6
6

1
.0

0

1
2

9
1

8
3

.2
6

0
9

0
–

4
.1

1
2

7
0

3
7

0
.9

1

1
5

9
1

8
8

.5
5

0
3

6
–

7
.0

5
1

7
1

3
0
7

1
.0

3

ra
nd

om
5

9
5

4
2

.9
3

9
0

0
3

–
9

0
0

1
–

7
9

5
4

3
.2

7
9

0
0

7
9
1

–
9

0
0

2
2

–
1
0

9
3

6
4

.1
0

5
4

0
1
,6

8
1

1
.8

5
7

2
0

1
0
4

1
.9

9

1
2

9
0

9
8

.9
3

1
8

0
9
2
6

4
.7

7
5

4
0

4
,0

5
1

1
.5

9

1
5

9
0

9
1
7

.6
7

0
8

1
–

5
.9

0
2

5
2

1
4

,5
9
9

0
.8

2

To
ta

l
9
0

2
6

6
4

4
1

4
2

7
5
6

3
1

3

24

2.5 computational studies

small for some instances, e.g., R5U2Q2 and C15U2Q2. Again, this analysis demonstrates

the effectiveness and efficiency of our Branch-and-Cut algorithm over the approach from

LBS20.

Table 2.2: Detailed results for LBS20 and our Branch-and-Cut algorithm on 4 benchmark instances

Inst. # cust. LBS20 Branch-and-Cut

UB LB
Gap
(%) UB Root

LB
Root

gap (%) LB
Gap
(%) t (s)

R5U2Q2 5 36.59 36.42 0.46 36.51 36.42 0.25 36.51 0.00 1

R10U1Q2 10 64.02 64.02 0.00 64.02 58.56 8.53 64.02 0.00 6

R10U2Q2 10 87.92 82.71 5.93 82.92 75.54 8.90 82.92 0.00 269

C15U2Q2 15 97.00 93.98 3.11 95.25 92.64 2.74 93.98 1.33 36,000

We now revisit Table 2.1 for evaluating the effect of RCI on the branch-and-bound

process. Compared with the Gurobi (default) version, the Branch-and-Cut algorithm

with RCI enabled as strengthening inequalities solved 15 more benchmark instances to

optimality within the time limit of 10 hours, including a few 15-customer instances. Both

the solution time for each solved instance and the residual gaps for unsolved instances were

decreased when enabling RCI. The total number of RCI that were identified and introduced

as tightening inequalities is hundreds for small-size CIRP instances and thousands for

large-size ones (see Table 2.3 and Table 2.4). In order to better demonstrate the effectiveness

of RCI, we present the performance profile [66] in Figure 7.7. We can claim that RCI are

very effectual in the expedition of the branch-and-cut search.

2.5.3 Computational results on roadef instances

We now turn our attention to the second dataset (roadef instances) and evaluate our

Branch-and-Cut algorithm’s performance on solving real-life CIRP instances. In our im-

plementation, the absolute optimality gap tolerance was set to be 0.099, since in these

instances all entries of the travel cost matrix have one decimal place.

We impose a time limit of 10 hour for each instance and present a synopsis of our

computational results in Table 2.5. All column names have the same meanings as described

in Section 2.5.2. Out of 63 roadef instances, our Branch-and-Cut algorithm solved 56

of them to optimality and returned an average residual gap of 0.43%− 1.83% for the

remaining 7 instances. In particular, our algorithm solved all 5-, 7-, 10- and 17-customer

instances, almost all 12- and 15-customer instances, about half of 20-customer instances.

25

2.5 computational studies

Table 2.3: Detailed results for our Branch-and-Cut algorithm on 45 clustered instances

Inst.
Opt
[UB]

t (s)
[LB]

Avg. #
visits

#
RCI

Inst.
Opt
[UB]

t (s)
[LB]

Avg. #
visits

#
RCI

C5U1Q1 37.85 1 1.4 2 C10U2Q3 [56.10] [54.87] 1.7 417

C5U1Q2 30.61 2 1.4 21 C10U3Q1 104.37 6,807 2.1 101

C5U1Q3 28.24 1 1.2 7 C10U3Q2 [83.36] [83.21] 1.9 281

C5U2Q1 50.09 1 1.8 8 C10U3Q3 [65.62] [64.85] 1.7 183

C5U2Q2 38.28 2 1.6 6 C12U1Q1 85.07 13 1.4 49

C5U2Q3 30.61 3 1.4 17 C12U1Q2 [69.28] [68.82] 1.7 369

C5U3Q1 57.74 10 2.2 24 C12U1Q3 [57.07] [56.51] 1.5 348

C5U3Q2 43.36 1 1.8 10 C12U2Q1 [104.58] [104.11] 2.0 2,905

C5U3Q3 36.16 1 1.8 10 C12U2Q2 [80.01] [79.28] 1.8 655

C7U1Q1 52.14 1,708 1.7 57 C12U2Q3 [69.49] [68.83] 1.6 285

C7U1Q2 42.99 9,195 1.7 170 C12U3Q1 124.43 61 2.1 61

C7U1Q3 31.17 26 1.4 56 C12U3Q2 [101.91] [101.05] 2.1 9,581

C7U2Q1 59.75 1 1.9 14 C12U3Q3 [80.19] [78.94] 1.8 428

C7U2Q2 50.48 21,254 2.0 138 C15U1Q1 99.78 307 1.5 398

C7U2Q3 42.18 51 1.6 70 C15U1Q2 [77.32] [76.59] 1.5 699

C7U3Q1 78.08 2 2.1 16 C15U1Q3 [64.48] [63.90] 1.4 1,075

C7U3Q2 59.44 11 1.6 24 C15U2Q1 [122.45] [122.06] 1.9 7,476

C7U3Q3 50.18 8,194 1.7 102 C15U2Q2 [95.25] [93.98] 1.7 698

C10U1Q1 70.97 13 1.4 63 C15U2Q3 [78.64] [76.59] 1.7 5,301

C10U1Q2 [55.62] [54.85] 1.6 221 C15U3Q1 [147.06] [147.02] 2.1 806

C10U1Q3 [45.24] [45.22] 1.5 151 C15U3Q2 [116.43] 15,242

C10U2Q1 86.02 17,377 1.8 133 C15U3Q3 [94.67] [93.62] 1.9 823

C10U2Q2 [65.91] [65.24] 1.8 438

26

2.5 computational studies

Table 2.4: Detailed results for our Branch-and-Cut algorithm on 45 random instances

Inst.
Opt
[UB]

t (s)
[LB]

Avg. #
visits

#
RCI

Inst.
Opt
[UB]

t (s)
[LB]

Avg. #
visits

#
RCI

R5U1Q1 36.42 1 1.4 2 R10U2Q3 64.02 9 1.5 45

R5U1Q2 29.06 1 1.2 3 R10U3Q1 116.04 48 2.2 56

R5U1Q3 28.45 1 1.2 12 R10U3Q2 [93.93] [92.17] 2.0 203

R5U2Q1 41.42 1 1.8 7 R10U3Q3 82.92 204 1.8 142

R5U2Q2 36.51 1 1.6 8 R12U1Q1 [101.88] [99.90] 1.8 280

R5U2Q3 30.90 1 1.4 9 R12U1Q2 75.45 27 1.4 90

R5U3Q1 45.31 1 2.0 10 R12U1Q3 66.09 11,251 1.3 320

R5U3Q2 39.44 3 2.0 8 R12U2Q1 [118.75] [118.48] 1.9 187

R5U3Q3 33.54 4 1.6 15 R12U2Q2 98.18 1,598 1.8 682

R7U1Q1 63.03 1 1.7 8 R12U2Q3 76.27 7,006 1.5 210

R7U1Q2 43.93 2 1.1 19 R12U3Q1 139.88 373 2.1 163

R7U1Q3 40.43 157 1.6 79 R12U3Q2 [109.65] [107.61] 2.1 1,376

R7U2Q1 69.37 1 1.7 6 R12U3Q3 [95.74] [93.52] 1.7 1,216

R7U2Q2 60.12 1 1.7 22 R15U1Q1 [119.52] [117.52] 1.7 82,070

R7U2Q3 43.93 3 1.4 25 R15U1Q2 87.67 21,065 1.5 820

R7U3Q1 81.58 8 2.1 30 R15U1Q3 75.25 8,133 1.3 470

R7U3Q2 67.06 4 2.0 23 R15U2Q1 [139.63] [138.72] 1.9 19,291

R7U3Q3 57.47 19 1.9 36 R15U2Q2 [114.43] 76,645

R10U1Q1 [87.72] [85.88] 1.8 210 R15U2Q3 [89.45] [88.75] 1.6 507

R10U1Q2 64.02 6 1.5 42 R15U3Q1 [162.61] [161.98] 2.1 1,836

R10U1Q3 54.35 182 1.3 114 R15U3Q2 [128.52] [127.75] 1.9 2,345

R10U2Q1 99.48 7 1.8 60 R15U3Q3 [111.07] 45,783

R10U2Q2 82.92 269 1.8 102

27

2.5 computational studies

100 101 102 103
Time factor (t)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ob

ab
ilit

y
fo
r a

n
al
go

rit
hm

 th
at
 it
s p

er
fo
rm

an
ce
 ra

tio

 is
 w
ith

in
 a
 fa

ct
or
 t
of
 th

e
be

st
 p
os
sib

le
 ra

tio

Branch-and-Cut
Gurobi (default)

(a) Clustered

100 101 102 103

Time factor (t)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Branch-and-Cut
Gurobi (default)

(b) Random

Figure 2.1: Log-scaled performance profiles across all benchmark instances. The left graph com-
pares the performance in clustered instances, while the right graph compares the
performance on random instances. For each curve, the value at t = 0 gives the fraction
of benchmark instances for which it is fastest, while the limiting value at t→ ∞ gives
the fraction of instances which it could solve within the time limit of 10 hours.

This indicates that our proposed algorithm is able to solve real-life instances of up to

20 customers within a reasonable amount of time. The solution time generally increases

with the problem size, ranging from hundreds of seconds to quite a few hours. Another

observation is that in the returned solutions, every customer is visited several times (about

3 times) during the planning horizon. For the sake of completeness, we report detailed

results in Table 2.6.

Table 2.5: Computational results for our Branch-and-Cut algorithm on 63 roadef instances

cust. # inst. # opt. # feas. Avg. t (s) Avg. gap
(%)

Avg. #
visits

5 9 9 0 149 – 2.7
7 9 9 0 1,579 – 2.8
10 9 9 0 2,314 – 3.0
12 9 8 1 7,978 1.83 3.0
15 9 8 1 6,557 0.43 2.8
17 9 9 0 13,728 – 2.8
20 9 4 5 9,995 0.87 2.7

Total 63 56 7

28

2.6 conclusions

2.6 conclusions

In this chapter, we consider the continuous-time inventory routing problem. This problem

often arises in the context of vendor-managed inventory where the distributor monitors the

product usage and manages the tank inventory level in continuous time so as to meet the

service commitments. We propose a novel mixed-integer linear programming formulation

which incorporates several ingenious modeling ideas to handle multi-trip and multi-visit

features as well as continuous-time inventory management. To expedite the solution

process, we propose various types of tightening techniques, including the adaption of well-

known rounded capacities inequalities, among others. We conduct extensive computational

studies on 90 benchmark instances from the literature. The computational results show

that our branch-and-cut algorithm performs significantly better than the state-of-the-

art approach from the work of [108]. In particular, we close 30 previously open CIRP

benchmark instances and return an average gap below 2.0% for unsolved instances. We also

conduct detailed analysis on the effect of strengthening inequalities. Further computational

studies on real-life data show that our proposed algorithm could solve CIRP instances of

up to 20 customer.

29

2.6 conclusions

Ta
bl

e
2
.6

:D
et

ai
le

d
re

su
lt

s
fo

r
ou

r
Br

an
ch

-a
nd

-C
ut

al
go

ri
th

m
on

63
r
o
a
d
e
f

in
st

an
ce

s

In
st

.
O

pt
[U

B]
t

(s
)

[L
B]

In
st

.
O

pt
[U

B]
t

(s
)

[L
B]

In
st

.
O

pt
[U

B]
t

(s
)

[L
B]

R
F-

3
-n

5
1
,0

4
3
.7

1
R

F-
6

-n
1
0

1
,9

9
8
.9

4
5
0

R
F-

9
-n

1
5

2
,0

0
0
.7

3
,0

6
2

R
F-

4
-n

5
1
,0

4
3
.7

1
R

F-
7

-n
1
0

1
,6

5
2
.4

4
,8

0
8

R
F-

1
0
-n

1
5

2
,5

2
0
.0

1
1
,3

1
1

R
F-

5
-n

5
5
6
6
.1

1
R

F-
8

-n
1
0

1
,8

3
7
.5

1
0
,9

5
3

R
F-

1
1

-n
1
5

2
,5

2
0
.0

3
3
1

R
F-

6
-n

5
5
7
2

.4
1

R
F-

9
-n

1
0

1
,6

3
1
.1

3
1
9

R
F-

3
-n

1
7

4
,8

8
8
.1

1
6
,5

5
0

R
F-

7
-n

5
4
9
2

.0
9

R
F-

1
0
-n

1
0

1
,8

6
9
.6

2
6
6

R
F-

4
-n

1
7

4
,6

0
3
.2

1
,6

5
0

R
F-

8
-n

5
5
2
4

.7
8
4

R
F-

1
1
-n

1
0

1
,8

6
9
.6

6
0

R
F-

5
-n

1
7

2
,3

0
6
.1

3
5
,6

0
7

R
F-

9
-n

5
4
8
0

.6
1
,1

8
6

R
F-

3
-n

1
2

3
,8

0
4
.5

3
,6

4
3

R
F-

6
-n

1
7

2
,4

2
1
.9

4
,2

9
6

R
F-

1
0
-n

5
1
,3

2
3
.9

4
5

R
F-

4
-n

1
2

3
,7

5
7
.6

1
,4

5
0

R
F-

7
-n

1
7

2
,0

9
4
.0

6
,2

1
2

R
F-

1
1
-n

5
1
,3

2
3
.9

1
8

R
F-

5
-n

1
2

2
,0

3
4
.9

3
3
,5

4
6

R
F-

8
-n

1
7

2
,3

6
6
.1

2
0
,1

4
6

R
F-

3
-n

7
2
,6

1
8
.7

2
3

R
F-

6
-n

1
2

[2
,1

9
7
.8

]
[2

,1
5
7
.6

]
R

F-
9

-n
1
7

2
,0

5
0
.8

2
,9

8
0

R
F-

4
-n

7
2
,6

1
8
.7

6
2

R
F-

7
-n

1
2

1
,7

6
0
.7

1
1
,6

8
0

R
F-

1
0
-n

1
7

3
,1

4
5
.8

9
,2

2
1

R
F-

5
-n

7
9
2
7
.3

7
R

F-
8
-n

1
2

1
,9

4
5
.8

7
,0

5
6

R
F-

1
1
-n

1
7

3
,1

7
3
.7

2
6
,8

8
9

R
F-

6
-n

7
1
,0

0
7
.1

2
,0

9
7

R
F-

9
-n

1
2

1
,7

3
9
.4

7
4
8

R
F-

3
-n

2
0

5
,5

1
8
.8

6
,0

5
7

R
F-

7
-n

7
7
3
9
.8

1
6
1

R
F-

1
0
-n

1
2

1
,9

9
6
.5

5
8
0

R
F-

4
-n

2
0

7
,4

1
0
.2

1
8
,7

1
7

R
F-

8
-n

7
7
8
1
.5

4
,9

4
6

R
F-

1
1
-n

1
2

1
,9

9
6
.5

5
,1

2
1

R
F-

5
-n

2
0

[2
,3

2
6
.2

]
[2

,3
1
3
.9

]
R

F-
9
-n

7
7
3
1
.7

3
,9

7
5

R
F-

3
-n

1
5

4
,5

5
2
.8

8
3
6

R
F-

6
-n

2
0

2
,4

3
6
.9

8
,5

0
5

R
F-

1
0
-n

7
1
,3

6
8
.9

4
2

R
F-

4
-n

1
5

4
,0

2
7
.8

4
1
1

R
F-

7
-n

2
0

2
,3

0
6
.4

6
,7

0
1

R
F-

1
1
-n

7
1
,3

7
0
.4

2
,8

9
6

R
F-

5
-n

1
5

[2
,2

8
0
.9

]
[2

,2
7
1
.0

]
R

F-
8
-n

2
0

[2
,5

9
8
.9

]
[2

,5
8
0
.6

]
R

F-
3
-n

1
0

3
,0

8
6
.3

1
4
0

R
F-

6
-n

1
5

2
,3

9
2
.8

2
1
,0

9
9

R
F-

9
-n

2
0

[2
,2

8
6
.6

]
[2

,2
6
5
.9

]
R

F-
4
-n

1
0

2
,9

1
3
.4

1
3
4

R
F-

7
-n

1
5

2
,0

5
2
.6

1
1
,6

1
2

R
F-

1
0
-n

2
0

[3
,4

0
1
.4

]
[3

,3
3
5
.1

]
R

F-
5
-n

1
0

1
,8

7
9
.8

3
,6

9
6

R
F-

8
-n

1
5

2
,3

1
4
.2

3
,7

9
6

R
F-

1
1
-n

2
0

[3
,4

3
3
.8

]
[3

,4
2
4
.2

]

30

3
M I X E D - I N T E G E R L I N E A R O P T I M I Z AT I O N F O R F U L L T R U C K L O A D

P I C K U P A N D D E L I V E RY

This chapter is focused on solving the full truckload pickup and delivery problem. This

problem often arises when the carriers are required to perform full truckload shipments

between distribution centers and delivery locations. In this chapter, we propose a novel

mixed-integer linear programming formulation to model the full truckload pickup and

delivery problem. We first evaluate this model using industrial data and the computational

results demonstrate that our proposed model could efficiently solve real-life instances. We

then embed this mathematical formulation into a simulation engine and conduct extensive

computational studies to quantify the economic effect of the pre-loading policy.

3.1 introduction

Supply chain logistics is central to the competitiveness of many businesses, and thus

receives lots of attention for optimization. The most classic setting is the vehicle routing

problem (VRP) [167] where, given a distribution center, a fleet of vehicles and a group

of customers to be served, one aims to identify the minimum-cost routes for vehicles to

traverse, such that customer demands are satisfied and relevant operational constraints,

e.g., vehicle capacities and time windows, among others, are respected. In this chapter,

we consider a VRP variant, called the full truckload pickup and delivery problem (FTPDP), in

which the most typical feature is that all orders are consolidated to full truckloads and

thus we do not deal with vehicle capacity constraints and cross-docking options. This

problem has numerous applications especially in the trucking industry [18], where the

carriers are required to move truckloads of goods between specified distribution centers

and delivery locations, using a fleet of tractor trailers available to them. Therefore, studying

this problem is of considerable practical importance.

31

3.1 introduction

The VRP with full truckloads has been addressed by both heuristic and exact approaches

in the literature. The work of [86] presented savings based algorithms for time constrained

pickup and delivery of full truckloads. The authors of [84] considered the FTPDP with

trucks being synchronized on pickup or delivery locations based on unitary loading and

unloading resources. They proposed an adaptive neighborhood search method and evaluated

their heuristic approach using real-life instances. [154] proposed a mathematical modeling

approach enhanced by variable neighbor decomposition search to address an interesting FTPDP

application arising in the biomass supply chain. A prominent contribution for exactly

solving the VRP with full truckloads comes from [18], in which the authors presented a

mixed-integer linear programming (MILP) formulation with exponentially many route-based

variables and solved it via the advanced branch-and-price approach. Their computational

studies on randomly generated instances demonstrate that the proposed approach could

optimally solve problems with up to 100 consignments.

In this chapter, we focus on a variation to the FTPDP that is faced by the petrochemical

company Braskem. The FTPDP of our interest has the following characteristics: (i) a truck

may visit several places for pickup before going to a delivery location; (ii) orders are

optionally served; (iii) scheduling decisions have to made at each pickup location due

to the loading dock capacity restrictions. In this chapter, we aim to develop an exact

mathematical approach for addressing this problem. The distinct contributions of our work

can be summarized as follows.

• We propose a novel MILP formulation to model the FTPDP, which is featured by

full truckload shipments, multiple pickup points, optional orders, and loading dock

capacity restrictions.

• We test our proposed model using real-life operational data and the computational

results demonstrate the effectiveness and efficiency of our proposed approach. In

particular, our MILP model could solve practical problems of up to 52 consignments

to optimality within hundreds of seconds.

• We embed the mathematical formulation into a simulation engine so as to evaluate

the economic effect of allowing for pre-loading trucks. Our computational studies

show that adopting the pre-loading policy could save up to 2% of the operational

cost in the application setting of our interest.

The remainder of the chapter is organized as follows. In Section 7.2, we give a formal

problem definition. In Section 3.3, we propose a novel MILP formulation. Section 7.5

presents computational results. Finally, we conclude our work in Section 7.6.

32

3.2 problem definition

3.2 problem definition

The FTPDP of our interest is defined as follows. Let P be a set of plants and C be a set

of clients. We denote by Vc := {1, 2, ..., n} a set of orders. A heterogeneous fleet of trucks,

initially located at the depot 0, will be routed to serve orders. Every truck can leave the

depot no earlier than WL to perform a route and has to return no later than WU . Let H

be a set of truck types. For type h ∈ H, we denote by Nh, fh, γh the number of available

trucks, the fixed cost for a truck1, and the overtime pay of rate if a truck travels after time

W, respectively. Let Chij and Thij, respectively, denote the travel cost and time from i to j,

where i, j ∈ {0} ∪ P ∪ C, by a truck of type h ∈ H. Serving an order i ∈ Vc decomposes

into two steps: a truck first visits a set of specified plants Pi ⊆ P in some sequence for

picking up at each plant p ∈ Pi a fractional truckload of product (pickup time αhip) as a

full truckload shipment, and then goes to a designated client ci ∈ C for delivering the

full truckload of product (delivery time βhi). If order i is not served, a bid cost ∆i will be

incurred. Let Hi ⊆ H denote the set of truck types that are compatible with order i 2. For

plant p ∈ P, we denote by Tp a set of non-overlapping time slots during which trucks

will be loaded. Let wpl denote the starting point of time slot l ∈ Tp. Plant p starts to load

trucks only at wpl’s while the number of trucks that can be loaded simultaneously during

the slot l cannot exceed Qpl . A truck is allowed to wait if it arrives before the next time

slot starts while the task of loading a truck will always be finished by the end of this time

slot (e.g., pickup times are always shorter than time slot durations). The total operational

cost consists of fixed costs, overtime costs, travel costs, and bid costs. The objective is to

identify cost-effective routes and schedules such that the relevant physical constraints are

respected and the total cost is minimized.

3.3 mathematical modeling

We model the above problem in a directed graph G := (V, A) where V := {0} ∪ Vc

denotes the set of nodes, consisting of the depot and shipping orders, and A :=

{(i, j) ∈ V ×V : i 6= j} denotes the set of arcs. We associate with node i ∈ Vc a set of

modes Mi := {1, 2, ..., |Pi|!}3 that indexes all possible plant-visiting sequences for serving

1 In this chapter, a fixed cost is always incurred regardless of the use of a truck, since it consists of truck
depreciation/maintenance cost and driver regular pay.

2 A truck of type h ∈ H is compatible with order i if: (i) every pickup plant p ∈ Pi could load trucks of type h;
(ii) client ci could be served by trucks of type h.

3 In our application, |Pi| ≤ 3 for i ∈ Vc.

33

3.3 mathematical modeling

order i. Let Sim denote the corresponding sequence in mode m ∈ Mi. For example, if

Pi = {p1, p2}, then Mi := {1, 2} , Si1 :=
〈

p1, p2, ci〉 and Si2 :=
〈

p2, p1, ci〉. Let vim denote

the first element of Sim. For convenience, we define M0 := {1} and S01 :=
〈
c0〉, where

c0 = 0. Traversing arc (i, j) ∈ A in mode m ∈ Mj by a truck of type h denotes that this

truck travels from ci to vjm and is ready to serve order j in sequence Sjm. Let cm
hij and

tm
hij, respectively, denote the traversal cost and time on arc (i, j) in mode m by a truck of

type h. By definition, cm
hij = Chcivjm and tm

hij = βhi + Thcivjm
4. For notation convenience, let

δ+ (j) := {i ∈ V : (i, j) ∈ A} and δ− (j) := {i ∈ V : (j, i) ∈ A} denote the set of nodes in

the graph that are connected with node j by in-coming and out-going arcs, respectively.

Degree Constraints. Let zi be a binary variable indicating whether order i ∈ Vc is served.

Let xm
hij be a binary variable that is equal to 1 if arc (i, j) ∈ A is traversed by a truck of

type h ∈ H in mode m ∈ Mj. Constraints (3.3) simply enforce the balance between the

in-coming degree and out-going degree at each node i ∈ Vc for every truck type while

constraints (3.4) relate xm
hij to zi.

zi ∈ {0, 1} ∀i ∈ Vc (3.1)

xm
hij ∈ {0, 1} ∀m ∈ Mj, ∀ (i, j) ∈ A, ∀h ∈ H (3.2)

∑
j∈δ+(i)

∑
m∈Mi

xm
hji = ∑

j∈δ−(i)
∑

m∈Mj

xm
hij ∀h ∈ H, ∀i ∈ Vc (3.3)

∑
h∈H

∑
j∈δ−(i)

∑
m∈Mj

xm
hij = zi ∀i ∈ Vc (3.4)

Fleet Size Constraints. The fleet is initially located at the depot 0. There are Nh available

trucks of type h ∈ H, thus the number of used trucks is bounded from above by its

availability, as constraints (3.5) show.

∑
j∈δ−(0)

∑
m∈Mj

xm
h0j ≤ Nh ∀h ∈ H (3.5)

Loading Dock Capacity Constraints. Let a binary variable uipl be 1 if order i ∈ Vc is

assigned to the time slot l ∈ Tp of plant p ∈ Pi and 0 otherwise. If order i is served, then

exactly one time slot will be chosen at every designated plant p ∈ Pi, as shown by (3.7).

4 Without loss of generality, we incorporate delivery times into the travel times along the arcs for convenience.

34

3.3 mathematical modeling

Constraints (3.8) impose that at each time slot of plant p, the total number of trucks that

are being loaded simultaneously should not exceed its loading dock capacity.

uipl ∈ {0, 1} ∀l ∈ Tp, ∀p ∈ Pi, ∀i ∈ Vc (3.6)

∑
l∈Tp

uipl = zi ∀p ∈ Pi, ∀i ∈ Vc (3.7)

∑
i∈Vc :p∈Pi

uipl ≤ Qpl ∀l ∈ Tp, ∀p ∈ P (3.8)

Plant Scheduling Constraints. Let am
ip be a non-negative variable that is equal to the

loading start time at plant p if order i is served in mode m and 0 otherwise. This is

properly enforced by constraints (3.9) - (3.11). Constraints (3.12) build the consistency

between am
ip and the assigned time slot of order i, wpl .

0 ≤ am
ip ∀p ∈ Pi ∪

{
ci
}

, ∀m ∈ Mi, ∀i ∈ Vc (3.9)

am
iv + ∑

h∈H
∑

j∈δ+(i)
(αhiv + Thvv′) xm

hji ≤ am
iv′ ∀

(
v, v′

)
∈ Sim, ∀m ∈ Mi, ∀i ∈ Vc (3.10)

am
ici ≤ ∑

h∈H
∑

j∈δ+(i)
WUxm

hji ∀m ∈ Mi, ∀i ∈ Vc (3.11)

∑
m∈Mi

am
ip = ∑

l∈Tp

wpluipl ∀p ∈ Pi, ∀i ∈ Vc (3.12)

Travel Time Constraints. Let ãij be a non-negative variable that represents the loading

start time at node j if a truck traverses arc (i, j) ∈ A and 0 otherwise, as shown by

constraints (3.13) and (3.14). Constraints (3.15) build the relationship between ãji and am
ivim .

Constraints (3.16) relate the arrival time at location ci to the arrival time at some node j

when a truck traverses arc (i, j).

0 ≤ ãij ≤ ∑
h∈H

∑
m∈Mj

WUxm
hij ∀ (i, j) ∈ A (3.13)

∑
h∈H

∑
m∈Mj

(
WL + tm

h0j

)
xm

h0j ≤ ã0j ∀j ∈ δ−(0) (3.14)

∑
m∈Mi

am
ivim = ∑

j∈δ+(i)
ãji ∀i ∈ Vc (3.15)

∑
m∈Mi

am
ici + ∑

h∈H
∑

j∈δ−(i)
∑

m∈Mj

tm
hijx

m
hij ≤ ∑

j∈δ−(i)
ãij ∀i ∈ Vc (3.16)

35

3.3 mathematical modeling

Truck-order Compatibility Constraints. If a truck type h is not compatible with order

i ∈ Vc, we forbid all relevant arcs from use, as shown by (3.17).

∑
j∈δ+(i)

∑
m∈Mi

xm
hji + ∑

j∈δ−(i)
∑

m∈Mj

xm
hij = 0 ∀h ∈ H \ Hi, ∀i ∈ Vc (3.17)

Symmetry-breaking Constraints. If order i is identical to order i′ of a higher index (i.e.,

i < i′), then we can enforce the following symmetry-breaking constraints (3.18) - (3.20).

zi ≥ zi′ (3.18)

∑
h∈H

∑
m∈Mi′

xm
hii′ = 0 (3.19)

∑
j∈δ+(i)

ãji ≥ ∑
j∈δ+(i′)

ãji′ (3.20)

Computing Overtime. Let yih denote the amount of overtime for a truck of type h that

finishes its trip immediately after serving order i ∈ Vc. Since only work hour after W is

counted as overtime, yih is bounded from above by WU −W, as constraints (3.21) indicate.

Constraints (3.22) properly computes the amount of overtime for the truck with i ∈ Vc

being its last serving order on a returning trip.

0 ≤ yih ≤
(

WU −W
)

∑
m∈M0

xm
hi0 ∀h ∈ H, ∀i ∈ Vc (3.21)

∑
h∈H

yih ≥ ãi0 − ∑
h∈H

∑
m∈M0

Wxm
hi0 ∀i ∈ Vc (3.22)

Objective Function. The objective is to minimize the total travel cost that consists of fixed

costs, overtime costs, travel costs and bid costs. Let θm
hj := ∑(v,v′)∈Sjm

Chvv′ denote the total

cost for traversing sequence Sjm by a truck of type h. We define θm
hj := 0 whenever Sjm only

contains a single location. The objective function is thus defined as follows:

∑
h∈H

Nh fh + ∑
i∈Vc

∑
h∈H

γhyih + ∑
h∈H

∑
(i,j)∈A

∑
m∈Mj

(
cm

hij + θm
hj

)
xm

hij + ∑
i∈Vc

∆i (1− zi) (3.23)

The FTPDP is to minimize the objective (3.23) while decision variables are subject to

constraints (3.1) - (3.22). We remark that this is a compact MILP formulation for the FTPDP

and that this formulation can handle complex routing and scheduling features such as a

heterogeneous fleet, full truckload shipments, multiple pickup points, optional orders and

loading dock capacity restrictions.

36

3.4 computational studies

3.4 computational studies

In this section, we test our proposed MILP formulation on FTPDP benchmark instances.

Our algorithm was implemented in C++ and the mixed-integer linear program was

solved using the Gurobi Optimizer 9.0 through the C application programming inter-

face. All Gurobi settings were kept being default. The experiments were run on an

Intel(R) Xeon(R) Gold 5215 CPU @ 2.50GHz. The 128 GB of available RAM was shared

among 5 copies of the algorithm running in parallel on the server. Each instance was

solved by one copy of the algorithm using a single thread.

We utilize the real-life data from the petrochemical company Braskem to generate

benchmark instances. In particular, we consider the 3-month (in total 66 work days)

operational data at a chosen region. A heterogeneous fleet, consisting of 3 types of trucks,

is dedicated to serve orders on a daily basis. For each work day, orders that need to be

served are known in advance and have a “today” due date. The number of orders ranges

from 7 to 52 across 66 days, and there are on average 27.2 orders per day. We have in total

66 FTPDP benchmarks, numbered from 1 to 66 for convenience.

3.4.1 Model Performance

We first evaluate the computational performance of our proposed MILP formulation on

solving real-life benchmarks. We impose a time limit of 3, 600 seconds for each considered

instance and present the computational results in Table 3.1. Columns “Inst.” and “# orders”

denote the instance name and the number of orders in this instance, respectively. The

column “t (sec) [Gap]” reports the solution time (rounded to the nearest integer) if this

instance was solved to optimality within the time limit; otherwise, it reports the residual

gap (defined as (UB− LB) /UB) in bracket. We also report in column “Served (%)” the

percentage of orders that are served in the returned best known solution. Our proposed

MILP model solved all 66 benchmarks to optimality with the solution time ranging from 1

second to 1, 793 seconds. We can claim that the formulation we proposed in Section 3.3

could efficiently solve practical FTPDP instances. A noticeable observation is that the

percentage of served orders is only 47.5% on average. Next we aim to increase this number

by allowing for pre-loading trucks, with the goal of reducing the total operational cost.

37

3.4 computational studies

Ta
bl

e
3

.1
:C

om
pu

ta
ti

on
al

re
su

lt
s

fo
r

ou
r

M
IL

P
fo

rm
ul

at
io

n
on

66
re

al
-l

if
e

in
st

an
ce

s

In
st

.
#

or
de

rs
t

(s
)

[G
ap

]
Se

rv
ed

(%
)

In
st

.
#

or
de

rs
t

(s
)

[G
ap

]
Se

rv
ed

(%
)

In
st

.
#

or
de

rs
t

(s
)

[G
ap

]
Se

rv
ed

(%
)

1
3
2

7
5
3

.1
2
3

1
5

1
6
6
.7

4
5

2
6

2
4
6
.2

2
2
8

2
5
0

.0
2
4

1
6

2
6
2
.5

4
6

1
2

1
6
6
.7

3
1
4

1
6
4

.3
2
5

2
8

1
3
9
.3

4
7

1
9

1
5
2
.6

4
1
2

1
9
1

.7
2
6

2
3

4
5
6
.5

4
8

2
5

3
9

4
8
.0

5
1
8

1
6
1

.1
2
7

2
3

2
1

5
2
.2

4
9

3
4

1
2
9

3
8
.2

6
2
2

1
5
9

.1
2
8

2
6

2
4
2
.3

5
0

2
0

1
6
0
.0

7
3
7

9
1
2

4
5

.9
2
9

2
2

4
5
4
.5

5
1

3
0

1
8
3

4
6
.7

8
2
2

2
7

5
4

.5
3
0

4
3

1
,7

9
3

4
1

.9
5
2

2
4

3
5

5
4
.2

9
1
8

1
5
5

.6
3
1

5
2

3
8

2
8
.8

5
3

2
7

3
5
5
.6

1
0

3
2

2
4

4
6

.9
3
2

3
9

3
6
1

3
5
.9

5
4

1
8

1
6
1
.1

1
1

2
0

7
8

7
0

.0
3
3

2
3

4
4
7
.8

5
5

7
1

1
0
0
.0

1
2

2
7

1
2
8

4
4

.4
3
4

3
0

1
0
2

5
0
.0

5
6

2
1

3
4
7
.6

1
3

1
9

8
5
7

.9
3
5

2
9

7
5
1
.7

5
7

3
5

1
7
7

3
7
.1

1
4

1
5

6
8
0

.0
3
6

3
4

2
3
2
.4

5
8

2
8

1
8
3

5
0
.0

1
5

3
0

4
4
3

.3
3
7

3
9

9
3
0
.8

5
9

2
3

8
6

5
2
.2

1
6

1
4

5
9
2

.9
3
8

1
6

2
2

6
2
.5

6
0

2
7

4
3

4
0
.7

1
7

3
8

3
3
8

4
2

.1
3
9

2
4

2
4
1
.7

6
1

3
4

1
7
7

5
5
.9

1
8

2
2

1
0

6
3

.6
4
0

3
2

4
6
3

4
0
.6

6
2

3
6

1
3

4
1
.7

1
9

2
2

2
5
9

.1
4
1

4
6

1
,0

9
1

4
1

.3
6
3

3
1

5
6
2

4
5
.2

2
0

3
8

1
5

3
9

.5
4
2

4
7

4
3

3
8
.3

6
4

3
3

9
1

4
2
.4

2
1

4
1

2
3
6

3
4

.1
4
3

3
8

3
4
7

3
6
.8

6
5

2
4

1
4

5
4
.2

2
2

1
8

1
5
0

.0
4
4

3
6

1
2

3
8
.9

6
6

3
8

5
5
8

4
4
.7

38

3.4 computational studies

3.4.2 Evaluating the pre-loading policy

In the FTPDP application of our interest, a set of orders that will be served tomorrow,

denoted by Vt, is usually known a few days ahead. We now allow for pre-loading trucks

with orders i ∈ Vt on their returning trip to the depot and call this a “pre-loading policy”.

Specifically, a truck is allowed to perform all pickups at the designated plants p ∈ Pi for an

order i ∈ Vt on its returning trip “today” and will be scheduled to deliver a full truckload

of product to the client ci “tomorrow” right after it leaves the depot. In this section, we

aim to quantify the economic effect of adopting the pre-loading policy. To achieve this, we

first define three types of orders: pre-loaded orders Vp, optional orders Vo, and tomorrow

orders Vt.

– Pre-loaded orders were picked up the day before, but have not yet been delivered;

they will be delivered “today”, right after trucks leave the depot.

– Optional orders have a “today” due date; they are ready to be picked up and

delivered; if not picked up and delivered, they will be outsourced for a cost (“bid”).

– Tomorrow orders have a “tomorrow” due date; they can be picked up right before a

truck returns to the depot to end its shift; if so, they will become “pre-loaded” orders

once we roll the horizon

To accommodate the above three types of orders into the MILP formulation proposed in

Section 3.3, we make the following modifications.

• For order i ∈ Vp, we define Pi := ∅, Mi := {1} and Si1 :=
〈
ci〉. We impose con-

straints (3.24) to ensure that order i ∈ Vp will always be the first served order by a

truck of type hi, which has picked up this order the day before.

∑
m∈Mi

xm
hi0i = 1 ∀i ∈ Vp (3.24)

• For order i ∈ Vt, we change its client to be the depot (i.e., ci := 0) and we fix the

delivery time to be 0 (i.e., βhi := 0). Constraints (3.25) enforce that order i will always

be the last served order on a returning trip by some truck.

∑
h∈H

∑
m∈M0

xm
hi0 = zi ∀i ∈ Vt (3.25)

39

3.4 computational studies

• To encapsulate both pre-loaded orders and tomorrow orders, we redefine Vc :=

Vp ∪Vo ∪Vt.

• The last term of the objective (3.23) is modified to be ∑
i∈Vo

∆i (1− zi) − α ∑
i∈Vt

∆izi,

where α ≥ 0 is a hyper-parameter that will be tuned. Deducting the term α ∑
i∈Vt

∆izi

from the objective is to incentivize the action of picking up tomorrow orders.

The resulting MILP formulation is to minimize the objective (3.23) with decision variables

being subject to constraints (3.1) - (3.22), (3.24) and (3.25).

We now quantify the economic effect of adopting the pre-loading policy by choosing

α ∈ {0, 0.25, 0.50, 0.75, 1}. When α = 0, the pre-loading policy is not allowed; we call this

the base case. For each work day, a subset of today’s orders are pre-loaded orders Vp and

the remaining ones are optional orders Vo; orders from the next day become tomorrow

orders Vt. In total, we can generate 66 instances. Note that Vp := ∅ for the first instance

and Vt := ∅ for the last instance.

We impose a time limit of 3, 600 seconds for each instance and present the consolidated

results in Table 3.2. The column “# inst.” denotes the number of instances. We report in

columns “# opt.”, “Avg. t (sec)” and “Avg. gap (%)” the number of instances that were

solved to optimality, the geometric mean solution time (rounded to the nearest integer) for

those solved instances, and the average residual gap for those unsolved ones, respectively.

We report in column “Served (%)” the percentage of served orders over 3 months. The

column “Cost” reports the accumulative cost (excluding the incentivizing term) for 3

months. The cost is normalized with respect to the base case.

From Table 3.2, the vast majority of benchmark instances were solved to optimality

while a small gap was returned to the unsolved ones. Hence, we can claim that allowing

for pre-loading trucks does not complicate the solution of our proposed MILP formulation.

When α increases, the percentage of served orders first increases and then decreases; the

decrease was caused by the fact that optional orders are less likely to be served when the

pickup of tomorrow orders is heavily incentivized (e.g., α is large). Correspondingly, the

total cost first decreases and then increases. Choosing α = 0.25 helps to save 2% of the

total cost. Comparing with α = 0.25, the order serving rate is higher but the cost saving is

surprisingly lower when α = 0.50, which was owing to the distinct bid costs for different

orders. From the above analysis, we can claim that adopting the pre-loading policy can

help to increase the percentage of served orders and hence reduce the operational cost.

40

3.5 conclusions

Table 3.2: Computational results for evaluating the pre-loading policy

α # inst. # opt. Avg. t
(sec)

Avg. gap
(%)

Served
(%) Cost

0 66 66 9 – 47.5 1.00

0.25 66 64 10 2.6 50.5 0.98

0.50 66 63 12 1.9 51.2 0.99

0.75 66 65 8 4.5 41.5 1.05

1 66 66 4 – 38.1 1.07

3.5 conclusions

In this chapter, we study the full truckload pickup and delivery problem that is featured by

a heterogeneous fleet, optional orders, multiple pickup points and loading dock capacity

constraints. We propose a novel mixed-integer linear programming formulation to model

this problem. The computational studies on 66 real-life benchmark instances demonstrate

the effectiveness of our proposed model. We further incorporate the pre-loading policy

into the proposed model and demonstrate the economic benefit of allowing for pre-loading

trucks.

41

4
E S T I M AT I O N O F M A R G I N A L C O S T T O S E RV E I N D I V I D UA L

C U S T O M E R S

In this chapter, we proposes a scenario-sampling framework to estimate the expected

incremental routing cost required so as to incorporate a target customer into the stochastic

supply chain network. The cost estimate is shown to converge to its true value with

statistical guarantee as the number of samples increases, while the Hoeffding’s inequality

can be utilized to determine a sufficient sample size for a desired estimation accuracy.

Inspired from a real-life setting arising in distribution of industrial gases, we sample

instances of multi-depot vehicle routing problems with inter-depot routes, and we use

these as scenarios towards a demonstration of the marginal cost estimation framework and

towards a detailed study to elucidate the quality of our estimates. In order to solve such

rich routing problems exactly, we also develop a tailored branch-price-and-cut algorithm,

which is shown to be able to solve to optimality instances of up to 70 customers within

reasonable time, significantly outperforming the previous state-of-the-art exact method.

4.1 introduction

Supply chain logistics contribute a significant portion of total cost for many businesses,

and thus receive a lot of effort for optimization. In the literature, lots of attention has

been paid to optimize supply chain systems in strategic, tactical and operational levels,

usually with the objective of obtaining designs that are the most economical in the long

run. The most classic example is the one where, given a distribution center, a fleet of

vehicles and a group of customers to be served, we aim to identify the minimum-cost

routes for vehicles to traverse, such that customer demands are satisfied and relevant

system constraints, e.g., vehicle capacities, time windows, and route duration limits, among

others, are respected. A wide variety of vehicle routing problems have been addressed in

the literature by both exact and heuristic approaches [167]. However, little effort has to-date

42

4.1 introduction

been devoted to understanding the marginal cost of serving an individual customer, i.e.,

the incremental cost of delivering to an extra customer on top of the current supply chain

design. This problem is of great significance in the following business situations: (i) the

distributor wants to estimate the customer lifetime value, in order to distinguish profitable

customers; (ii) the distributor wants to understand the expected marginal cost of serving a

new customer for pricing purposes. We highlight that our focus in this chapter is on cost

estimation, which can be informative in the context of selecting customer portfolios and/or

designing updates to the distribution network; we do not consider cost allocation of past

operations, which is often sought for purposes of fair accounting.

Estimating the incremental distribution cost of serving a specific customer is challenging,

mainly because of the following two reasons. First, the extra cost emanates from the change

in routing due to the additional service that must be performed, and thus, identifying

the marginal cost in a deterministic setting usually entails solving two NP-hard vehicle

routing problems (one accounting for the customer in question, and one not involving

that customer). Second, the supply chain network of interest is intrinsically stochastic.

For example, not all potential customers request a visit on the same day. Furthermore,

the amount of goods to be delivered to customers usually varies on a daily basis. Hence,

on different days the distributor might face completely different delivery challenges,

as it aims to implement least-cost routing plans that often possess little geographical

similarity. In this setting, the addition of a new customer may on certain days be “almost

free” because the new customer “fits well” with otherwise optimal routes, but may be

completely cost-prohibitive on other days when, for example, the new customer is far away

from the existing customers or when the demand of the new customer cannot be served

as “balance load” of existing routes. This leads to the situation where cost allocation to a

specific customer in a long term becomes much more perplexing, having to account for

such intrinsic stochasticity.

Cost estimation in a stochastic supply chain system is an interesting problem and

was approached in the literature mainly from a machine learning perspective. The work

of [72] studied approximations to the average travel distance of vehicle routing problems

with varying numbers of customers, demands and locations. The authors proposed six

approximations with the total number of customers, the customer dispersion area, the

average distance between customers and the depot, and the number of vehicles being input

variables, and then utilized linear regression to estimate parameters. In [168], the authors

focused on analyzing the effect of the geographical dispersion of potential customers on

the expected routing cost of the distribution system and derived four estimates using

43

4.1 introduction

continuous distance approximation [59]. The work of [107] considered the prediction of the

cost to serve new customers in the industrial gas business and addressed this problem by

first applying a supervised learning technique to group customers based on their features

and then utilizing a linear regression model to forecast the distribution cost. A similar

approach was adopted in the work of [162]. The authors first identified seven important

customer features including neighborhood density, latitude and longitude, among others,

and then utilized those to build a predictive model. The work of [129] considered the

inventory routing cost allocation problem in a deterministic setting from a cooperative

game theory perspective and proposed four cost allocation mechanisms to determine a

cost-to-serve for customers.

In this chapter, we propose a novel scenario-sampling approach that aims to rigorously

account for the intrinsic stochasticity in the supply chain system. The basic idea is that

the expected value of a given function can be approximated by a sample average estimate

derived from random samples. This approach has been widely used for histogram con-

struction [48], function estimation [80], and stochastic optimization [106], among many

other settings. In particular, the work of [106] studied a stochastic optimization problem

with its objective being an expected function. The authors proposed to approximate the

expected objective by its corresponding sample average function and then showed that,

with probability approaching one exponentially fast with increase of the sample size, an

optimal solution of the sample average approximation problem provides an exact optimal

solution of the “true” problem. In our context, the objective is to identify the expected

marginal cost of serving an extra customer in a stochastic supply chain network. Our

scenario-sampling framework first generates representative daily delivery scenarios that

can simulate the stochasticity in customer presence and demands, and it then quantifies

the incremental cost of delivering to the target customer in each such deterministic sce-

nario. The sample average is then returned as an estimate of the expected marginal cost.

We estimate the number of required scenarios that need to be sampled by utilizing the

Hoeffding’s inequality [92], which statistically guarantees that we identify a good estimate

of the true marginal routing cost. We highlight that, in contrast with previous works on

distribution cost estimation which are mainly based on machine learning principles and

lack statistical guarantees [72, 107, 162, 168], our approach combines classic probability

theory with exact vehicle routing techniques and thus provides statistical insurances for

the estimation accuracy.

In order to quantify the extra cost of serving a specific customer in each sampled sce-

nario, we need to solve routing problems. The routing application we face is a distribution

44

4.1 introduction

problem arising in the industrial gas business where trucks can be replenished at inter-

mediate production plants and each truck usually performs several trips during a day

shift. This setting can be mapped to the multi-depot vehicle routing problem with inter-depot

routes (MDVRPI) [58]. In our context, we define a trip to be a sequence of nodes with

“depots” only being its starting and ending nodes, and we define a route to be a feasible

combination of trips assigned to a vehicle. The MDVRPI is a variant of the multi-depot

vehicle routing problem in which vehicles are allowed to be replenished at intermediate

depots along their routes, while the route duration limit is respected. This problem was

formally defined in the work of [58], in which the authors encountered a real-life applica-

tion of the MDVRPI in a grocery distribution problem. Other important applications arise

in municipal service, especially in waste collection problems [12, 43, 105], where vehicles

have to renew their capacities by uploading the waste at one of the treatment plants and

return to the depot only when the work shift is over. Interested readers are referred to the

recent work of [150] for a comprehensive review on routing problems with intermediate

stops and their applications.

In the literature, the scientific research on solving the MDVRPI is dominated by heuristic

methods [43, 58, 164]. In the work of [58], the authors proposed a three-phase methodology:

(i) adaptive memory and tabu search are applied to generate a set of routes; (ii) an integer

program based on the set-partitioning formulation is executed to determine a minimum-

cost routing design; (iii) a post-optimization phase is performed in an attempt to improve

the solution. The authors of [164] renamed the MDVRPI to be the vehicle routing problem

with intermediate replenishment facilities to emphasize the use of a single central station for

the fleet, and they proposed a three-step meta-heuristic algorithm in which tabu search

and variable neighborhood search are combined to improve the solution quality after

the construction heuristic and a guided local search, combined with a customer removal

and reinsertion procedure, is applied to produce the final solution. Their approach was

tested on the set of 12 benchmark instances used in [58] and generated 6 new best known

solutions. Finally, in [43], the authors considered a waste collection vehicle routing problem

with time windows and proposed an adaptive large neighborhood search method.

To the best of our knowledge, the only exact approach for solving the MDVRPI is

a branch-and-price algorithm proposed in [127]. The authors modeled the MDVRPI

as a set covering formulation in which variables are routes corresponding to feasible

combinations of trips, and they proposed two pricing subproblems to generate routes. The

first one generates routes directly by solving an elementary shortest path problem with resource

constraints (ESPPRC), while the second one first enumerates all non-dominated trips by

45

4.1 introduction

solving an ESPPRC and then combines trips into routes by exploiting the relationship

between the sets of trips and routes. Their computational studies showed that the second

pricing mechanism performs better and their branch-and-price algorithm could solve

MDVRPI benchmark instances involving up to 50 customers to optimality.

Whereas satisfactory for instances of the demonstrated sizes, the enumeration step

becomes too prohibitive to execute when the number of customers grows larger, and

hence, in this chapter we adopt the first pricing mechanism, which we evolve with several

modifications. Furthermore, we develop a branch-price-and-cut (BPC) algorithm for exactly

solving the MDVRPI. Our BPC algorithm has the following distinctive features from the

work of [127]: (i) we enforce only partial elementarity and solve a shortest path problem with

resource constraints (SPPRC) to generate routes with negative reduced costs, given the fact

that the ESPPRC is strongly NP-hard, while the relaxed one is still NP-hard but in a weak

sense [68, 138]; (ii) we enhance it with several state-of-the-art pricing techniques, including

ng-routes, variable fixing and routing enumeration; and (iii) we incorporate rounded

capacity inequalities and limited-memory subset row cuts as strengthening constraints.

Finally, we remark that the MDVRPI generalizes another well-studied problem, namely

the multi-trip vehicle routing problem (MTVRP).1 The MTVRP extends the classical vehicle

routing problem inasmuch as each vehicle is allowed to perform several trips, subject to

route duration constraints. Clearly, the MDVRPI reduces to the MTVRP when the number

of depots is equal to one, and consequently, our proposed BPC algorithm can also be

applied to solve the MTVRP as well as a number of its variants.

In summary, the distinct contributions of our work are as follows.

• We propose a scenario-sampling framework to estimate the expected marginal cost

of serving individual customers. Specifically, we obtain independent scenarios by

sampling customer demands from their distribution and consider the sample average

as an estimate of the cost. We prove that our proposed framework provides statistical

guarantee of the estimation accuracy, provided that a sufficiently large–informed by

Hoeffding’s inequality–sample size has been obtained.

• We model the MDVRPI as a set partitioning formulation and propose a branch-price-

and-cut algorithm that incorporates several state-of-the-art techniques, including

ng-routes, variable fixing, route enumeration, and limited-memory subset row cuts,

among others.

1 In the literature, the MTVRP is also named as the vehicle routing problem with multiple use of vehicles and it
has been well studied by both heuristic and exact approaches. Interested readers are referred to [47] for a
comprehensive review on the MTVRP and its variants.

46

4.2 problem definition

• We conduct computational studies to show that our branch-price-and-cut algorithm

significantly outperforms the state-of-the-art exact approach for the MDVRPI. In par-

ticular, our algorithm proves optimality for all previously open MDVRPI benchmark

instances involving up to 40 customers. We further push the envelope by extend-

ing the literature benchmarks with 70-customer instances and solving to proven

optimality the vast majority of those as well.

• We demonstrate the scenario-sampling framework and the quality of its cost es-

timates, utilizing thousands of MDVRPI instance samples in each case, and we

elucidate the effect on the marginal routing cost of factors such as customer locations

and demand levels.

The remainder of this chapter is organized as follows. In Section 7.2, we provide a

formal problem definition. In Section 4.3, we propose our scenario-sampling framework

and prove its validity through the lens of probability theory. In Section 4.4, we discuss the

implementation details of our proposed BPC algorithm. Section 7.5 presents computational

results on the BPC algorithm’s performance as well as a detailed analysis of the marginal

cost estimation framework. Finally, we conclude our work with some remarks in Section 7.6.

4.2 problem definition

Consider a supply chain network where n customers with stochastic demands might

be served on a daily basis. Let ξ ∈ Rn
≥0 denote the corresponding demand vector and

we assume that ξ is drawn from some given probability distribution, e.g., ξ ∼ Ξ. We

emphasize that a customer’s demand can be zero on a given day, which indicates that this

customer does not request a visit. Now, let us assume that the distributor wants to serve

an “additional” customer2 whose demand, denoted by ϑ ∈ R>0, is also stochastic and is

drawn from some given probability distribution, e.g., ϑ ∼ Θ. We further assume that ξ

and ϑ are independent and that, for any (ξ, ϑ) ∼ Ξ×Θ, the resulting routing problem is

always feasible; that is, there always exists a feasible routing plan that can be implemented,

such that customer demands are satisfied and applicable system constraints are respected.

The distributor aims to figure out how much marginal cost will be incurred on average

when serving the additional customer with demand ϑ. In other words, the objective is to

quantify the expected incremental cost of incorporating the additional customer into the

current supply chain network, while all other customer demands are stochastic. We do not

2 This customer may be either an existing or a prospective one.

47

4.3 proposed framework

describe the specific routing setting here, since our proposed framework is generic and

remains valid irrespective of this aspect. A detailed definition of the routing problem of

interest to us is deferred to Section 4.4.

4.3 proposed framework

In this section, we first properly define the marginal cost and then present our scenario-

sampling framework to estimate it. We also prove the validity of this framework using

probabilistic arguments, as well as we present a detailed procedure for its deployment.

4.3.1 Marginal Cost Estimation

Consider a scenario (ξ, ϑ) ∼ Ξ × Θ. The marginal cost under this specific scenario is

defined as

MC (ξ, ϑ) :=
VRP (ξ, ϑ)− VRP(ξ, 0)

ϑ
. (4.1)

Here, for a given supply chain network with customer demands fixed to be ξ, VRP(ξ, 0)

and VRP (ξ, ϑ) denote the optimal routing costs before and after serving an extra customer

with demand ϑ, respectively. Note that the marginal cost in our definition is normalized by

ϑ, representing the incurred incremental cost per unit of extra demand served.3 Also note

that, with the above definition, we make no assumption regarding the sign of the marginal

cost. In fact, although in the vast majority of settings the marginal cost is non-negative,

i.e., one cannot save costs by performing more service, it is conceivable that, due to some

special contract activation or some other synergy between the extra customer with the rest

of customers to be served, the marginal cost attains a negative value.

In any case, it is important to emphasize that the optimal routing costs in the numerator

of equation (4.1) have to be computed from exact approaches to appropriately formulated

vehicle routing problems. Despite being much cheaper to compute via efficient (meta-

)heuristic algorithms, heuristic solutions cannot be used in the definition of the marginal

cost, since their lack of optimality guarantee might result in a comparison between optimal

and suboptimal costs, causing MC (ξ, ϑ) to attain a misleading value.

The goal of this chapter is to estimate Eξ,ϑ [MC (ξ, ϑ)] numerically, which can be very

challenging to compute exactly. First, there is no closed-form formula for MC (ξ, ϑ) for a

given (ξ, ϑ), since it entails solving two NP-hard routing problems, in general. Second,

3 A sampled ϑ value is always strictly positive, since a zero demand would be meaningless in this context.

48

4.3 proposed framework

(ξ, ϑ) is a high-dimensional vector, and thus, computing Eξ,ϑ [MC (ξ, ϑ)] exactly would

entail high-dimensional integration, which is impractical.

Let (ξ1, ϑ1), (ξ2, ϑ2), . . . , (ξN , ϑN) be an independent and identically distributed random

sample of N realizations of the demand vector (ξ, ϑ) ∼ Ξ×Θ. For each sample
(
ξ i, ϑi),

we first solve two NP-hard vehicle routing problems exactly to obtain VRP
(
ξ i, 0

)
and

VRP
(
ξ i, ϑi) and then compute the specific sample’s marginal cost, MC

(
ξ i, ϑi), using equa-

tion (4.1). We consider the average of MC
(
ξ i, ϑi) over N samples as our estimate of the

expected marginal cost. The sample average estimate, 1
N ∑N

i=1 MC
(
ξ i, ϑi), coincides with

the true value, Eξ,ϑ [MC (ξ, ϑ)], with very high probability, when the sample size N is large

enough. See Proposition 4.1.

Proposition 4.1. Given any δ > 0,

lim
N→+∞

Prob

(∣∣∣∣∣ 1
N

N

∑
i=1

MC
(

ξ i, ϑi
)
−Eξ,ϑ [MC (ξ, ϑ)]

∣∣∣∣∣ > δ

)
= 0. (4.2)

Proof. Since (ξ1, ϑ1), (ξ2, ϑ2), . . . , (ξN , ϑN) are independent and identically distributed,

and since MC (ξ, ϑ) is a function of (ξ, ϑ), then MC
(
ξ1, ϑ1) , MC

(
ξ2, ϑ2) , . . . , MC

(
ξN , ϑN) are

also independent and identically distributed. By the weak law of large numbers, the average

of independent and identically distributed random variables converges in probability to

the expectation; that is,

1
N

N

∑
i=1

MC
(

ξ i, ϑi
) p→ Eξ,ϑ [MC (ξ, ϑ)] , when N → +∞.

The above implies that (4.2) holds for any specified margin δ > 0, no matter how small.

We remark that, since all N samples are randomly chosen, the sample average converges

to the true value in a probabilistic sense, but not in a deterministic one. Whereas the

convergence within a permissible deviation, δ, is only guaranteed to occur when the

sample size N approaches infinity, in practice one has to settle with using finitely many

samples. In the following section, we seek to determine a finite sample size that would be

deemed sufficient to yield an estimate of high quality.

49

4.3 proposed framework

4.3.2 Bounding the Sample Size

The immediate question after Proposition 4.1 is how fast is the convergence, namely how

fast does the probability defined in equation (4.2) decrease with the increase in sample

size N. We address this question in Proposition 4.2.

Before we present it, we introduce two quantities, MC and MC, to denote valid lower and

upper bounds for MC(ξ, ϑ), respectively; that is, MC (ξ, ϑ) ∈ [MC, MC], for any (ξ, ϑ) ∼ Ξ×Θ.

The boundedness of MC(ξ, ϑ) is ensured by the following two observations: (i) VRP (ξ, ϑ)

and VRP (ξ, 0) are both finite, due to the feasibility assumption from Section 7.2; and (ii) in

practice, ϑ is bounded from below by some positive value, since the target customer has to

order some minimum amount of product each time it requires service.

We remark that the tightest bounds for MC (ξ, ϑ) correspond to the solution of the

following optimization problems:

min/max
(ξ,ϑ)∼Ξ×Θ

MC (ξ, ϑ) (4.3)

However, since MC (ξ, ϑ) does not assume an a-priori known form, solving (4.3) is generally

intractable. Fortunately, one can usually deduce practically-relevant, valid bounds for

MC (ξ, ϑ). As we pointed out earlier, in the vast majority of applications, the marginal cost

is always non-negative. In that case, one can choose MC = 0 as a safe lower bound. On the

other hand, a safe upper bound MC can be the normalized cost of performing as many

dedicated round-trips as necessary to deliver the least allowable amount of product to

the target customer. In this calculation, penalties could also be incorporated for the use of

more-than-available vehicles, to reflect overtime and/or outsourcing costs usually incurred

in such situations.

Assume now MC and MC can be deduced for the routing problem of interest. Proposi-

tion 4.2 applies.

Proposition 4.2. Given any δ > 0, then

Prob

(∣∣∣∣∣ 1
N

N

∑
i=1

MC
(

ξ i, ϑi
)
−Eξ,ϑ [MC (ξ, ϑ)]

∣∣∣∣∣ > δ

)
≤ 2 exp

(
− 2Nδ2

(MC− MC)
2

)
. (4.4)

50

4.3 proposed framework

Proof. Since MC
(
ξ i, ϑi) are independent random variables such that MC

(
ξ i, ϑi) ∈ [MC, MC],

for all i = 1, 2, . . . , n, applying Hoeffding’s inequality [92] yields

Prob

(∣∣∣∣∣ 1
N

N

∑
i=1

MC
(

ξ i, ϑi
)
− 1

N

N

∑
i=1

Eξ i ,ϑi

[
MC
(

ξ i, ϑi
)]∣∣∣∣∣ > δ

)
≤ 2 exp

(
− 2N2δ2

∑N
i=1 (MC− MC)

2

)
,

noting that the right hand side can be simplified by a factor of N. Furthermore, since

MC
(
ξ i, ϑi) are also identically distributed, we have that

Eξ i ,ϑi

[
MC
(

ξ i, ϑi
)]

= Eξ,ϑ [MC (ξ, ϑ)] for all i = 1, 2, . . . , n.

Hence, the above inequality results into (4.4), which completes the proof.

Proposition 4.2 shows us that, as the sample size N increases, the probability that our

estimate deviates from the true value more than some permissible value, δ, decreases.

In fact, the probability that the sample average estimate approaches the “true” value of

Eξ,ϑ [MC (ξ, ϑ)] increases exponentially fast with the sample size N.

Proposition 4.2 also implies a way to derive the sample size for a desired accuracy. Let

us choose a probability threshold, α ∈ (0, 1), and use (4.4) to deduce the sample size N

necessary for the probability to be at most α. By requiring that the right-hand side of (4.4)

be less than or equal to α, we obtain that

N ≥ (MC− MC)
2

2δ2 ln
(

2
α

)
. (4.5)

A key observation from (4.5) is that the sufficient sample size depends logarithmically on

the probability threshold α, causing N to increase only mildly as α decreases. In contrast,

we observe that the sample size should grow polynomially as a stricter permissible

deviation δ is required.

4.3.3 A General Framework

Our scenario-sampling framework works as follows. We first choose a desired permissible

deviation, δ > 0, and a probability threshold, α ∈ (0, 1). Then, we deduce valid values for

MC and MC, and using inequality (4.5), we identify a bound on the sample size, denoted by

51

4.3 proposed framework

Input demand distribu-
tions ξ ∼ Ξ, ϑ ∼ Θ,

and select α and δ values

Deduce MC and MC, and
compute sufficient N

Generate samples
(ξ i, ϑi), i = 1, 2, . . . , N

Compute MC
(
ξ i, ϑi) for

each sample i by solving
two routing problems

Return the sample aver-
age as the final estimate

Figure 4.1: A scenario-sampling framework

N. We then sample N scenarios, each having customer demands (ξ, ϑ) from the demand

distribution Ξ×Θ.4

For each deterministic scenario, we solve two routing problems exactly to obtain

VRP (ξ, 0) and VRP (ξ, ϑ), and then calculate the marginal cost MC (ξ, ϑ) using the for-

mula (4.1). We finally compute the sample average 1
N ∑N

i=1 MC
(
ξ i, ϑi) as the estimate of the

true value Eξ,ϑ [MC (ξ, ϑ)]. The overall framework is illustrated in Fig. 4.1.

Our proposed framework possesses a number of notable features. Firstly, the estimated

value will always converge to the true marginal cost with probabilistic guarantee. Secondly,

the framework only assumes that the customer demand distributions Ξ and Θ are given,

but it does not require that they belong to any particular probability distribution family,

4 We remark that a perfect description of the demand distribution Ξ is seldom available in practice, but
distributors often keep historical delivery data for each customer. This data can be used to extract the
distribution using many well-known parametric and non-parametric approaches. In this chapter, we do not
explore these techniques but refer interested readers to [170] for details.

52

4.4 solving routing problems

such as Guassian or any other distribution commonly used in similar contexts. Finally,

the framework is generic in terms of the type of routing problems one faces, and its

validity does not depend on the type of algorithm one uses to obtain provably optimal

cost evaluations.

4.4 solving routing problems

We now turn our attention to discussing the exact approach for solving the routing

problems of interest. In this chapter, we focus on the multi-depot vehicle routing problem

with inter-depot routes, which extends the multi-depot vehicle routing problem inasmuch as

the vehicles are allowed to stop at intermediate depots for replenishment. The examined

problem was first introduced in the work of [58]. Note that, in the work of [164], the authors

proposed an alternative name, the vehicle routing problem with intermediate replenishment

facilities, to emphasize both the replenishment role of the intermediate facilities and the

use of a single central station for the fleet of vehicles. We follow the work of [58] and use

MDVRPI to denote the routing problem of our interest.

Before presenting the exact algorithm, we first formally define the MDVRPI. Let a

directed graph G = (V, A), where V := Vc ∪ Vd denotes the set of nodes, consisting of

customers Vc := {1, 2, . . . , n} and depot facilities Vd := {n + 1, n + 2, . . . , n + m}, and

A := {(i, j) : i ∈ Vd, j ∈ Vc} ∪ {(i, j) : i ∈ Vc, j ∈ V \ {i}} denotes the set of arcs. Let cij ∈
R≥0 and tij ∈ R≥0 represent the cost and time, respectively, for a vehicle to traverse arc

(i, j) ∈ A. We assume that the depot facilities have an unlimited supply of goods. A

homogeneous fleet of K vehicles of capacity Q ∈ R>0 is available, with the exact allocation

of these vehicles to the depots to be determined by the optimizer. Each customer i ∈ Vc

is associated with a demand qi ∈ R>0 and a service duration si ∈ R≥0, while a vehicle

docking time τi ∈ R≥0 applies at each depot i ∈ Vd.5 In the MDVRPI, a feasible vehicle

route starts from and ends at the same depot, but vehicles are allowed to stop at any depot

to replenish and continue with another trip. The vehicle capacity Q has to be respected

during each trip, while the total duration of the route cannot exceed a predefined limit

T ∈ R≥0. The objective is to identify the minimum-cost set of routes for the fleet of

available vehicles to traverse so that each customer is visited exactly once with its demand

served, while vehicle capacities and route duration limits are respected.

5 Without loss of generality, customer service durations and depot docking times can be suitably incorporated
into the travel times along the arcs; moving forward, we always do so for convenience.

53

4.4 solving routing problems

4.4.1 Set Partitioning Model

A sequence of vertices {i1, i2, . . . , ip} visited by a vehicle is called a feasible route, if i1 =

ip ∈ Vd, (il , il+1) ∈ A for 1 ≤ l ≤ p− 1, and the following conditions are satisfied: (i) each

customer vertex is visited at most once (elementary); (ii) the vehicle capacity Q is respected

in each trip; (iii) the total route duration does not exceed T. Let R denote the set of all

feasible routes and let cr denote the cost of traversing route r ∈ R by a vehicle. Let the

parameter δir denote the number of times customer i ∈ Vc is covered in route r ∈ R. Let λr

be a binary variable indicating whether route r ∈ R is selected in the optimal solution. The

MDVRPI can be formulated as the following set partitioning model (5.8)–(5.11).

minimize
λr

∑
r∈R

crλr (4.6)

subject to ∑
r∈R

δirλr = 1 ∀i ∈ Vc (4.7)

∑
r∈R

λr ≤ K (4.8)

λr ∈ {0, 1} ∀r ∈ R (4.9)

The objective function (5.8) is to minimize the total cost for selected routes. The degree

constraints (5.9) guarantee that every customer is served exactly once, while the fleet size

constraint (4.8) enforces that at most K vehicles are used. Finally, constraints (5.11) enforce

binarity of variables.

It is well-known that one can relax the feasible space of the above set partitioning model

by including non-elementary vehicle routes in R without sacrificing optimality. In our

implementation, we replace R with the set of so-called ng-routes, Rng ⊇ R, which are not

necessarily elementary [26]. Since there exist exponentially many ng-feasible routes, the

formulation (5.8)–(5.11) is a mixed-integer linear programming model with a very large

number of binary variables. As a result, the linear programming (LP) relaxations at each

node of the branch-and-bound tree are of large sizes such that they have to be tackled via

an efficient column generation method. Valid inequalities are dynamically separated and

added so as to strengthen the LP relaxations, yielding a branch-price-and-cut algorithm to

solve the set-partitioning model. Details on this algorithm are presented below.

54

4.4 solving routing problems

4.4.2 Branch-Price-and-Cut Algorithm

In the BPC algorithm, the LP relaxations at every node in the branch-and-bound tree are

solved via column generation, while cutting planes are added to strengthen the relaxations.

Our implementation incorporates several elements of the algorithm described in the work

of [131], including ng-routes [26], variable fixing [98], route enumeration [25], and limited-

memory subset row cuts [133], among other features. In what follows, we highlight only

the most important of these ingredients; for more details, we refer readers to the works of

[130], [131], and [147].

We first replace the binarity constraints (5.11) in the set partitioning model by non-

negativity constraints and obtain its LP relaxation, which is usually referred to as the

master problem. The master problem has a very large number of variables, as exponentially

(to number of customers) many feasible routes are typically available. Generating all of

these routes to explicitly define the master problem is obviously impractical, thus we

resort to column generation. Given the premise that most of the variables will be non-basic,

and assuming non-zero values in the optimal solution, only a subset of variables need

to be considered in practice when solving the problem. Column generation leverages

this idea and aims to generate only the variables that have the potential to improve the

objective function, i.e., variables with negative reduced costs. In our context, columns

correspond to ng-feasible routes, and we will use these terms interchangeably. We first

consider a restricted master problem (RMP) defined by a subset of ng-routes R̃ng ⊆ Rng.

After optimizing the RMP, columns with negative reduced costs will be appended to R̃ng

and the resulting RMP will be reoptimized. This procedure iterates until no such column

exists. In that case, we say that column generation converges and the master problem has

achieved optimality. If at that point the solution to the master problem is fractional, we

separate and add valid inequalities, or resort to branching. The overall BPC algorithm is

illustrated in Fig. 6.6.

4.4.2.1 Initialization

To start the algorithm, we utilize single-customer routes to build R̃ng, which are used to

define the initial RMP. We highlight that, by constructing R̃ng in this way, the initial RMP

is not necessarily guaranteed to be feasible, e.g., due to the fleet size constraint (4.8). If that

is the case, we can seek for a feasible RMP via the “feasibility-recovery” step [71], which

will be discussed in Section 4.4.2.5.

55

4.4 solving routing problems

Input data

Construct initial
RMP, set UB =
+∞, LB = −∞

UB− LB ≤
εopt?

Update LB Stop

Pick a node

Solve RMP

Is RMP
feasible?

Recover feasibility

Any
column?

Add column(s)

Is solution
integral?

Update UB,
prune node

Any cut? Add cut(s)

Branch

N

Y

N

Y

N

Y

N

Y

Y

N

Figure 4.2: The Branch-Price-and-Cut algorithm.

56

4.4 solving routing problems

4.4.2.2 Solving Pricing Subproblems

After the RMP is solved, we need to check whether it is necessary to enlarge R̃ng to include

some neglected ng-feasible routes so as to improve the objective value of the RMP. This

entails identifying columns with negative reduced costs, which is achieved by solving

pricing subproblems. Since vehicle routes in Rng can be categorized by their start depots, we

consider to solve a pricing subproblem for each depot i ∈ Vd. Without loss of generality,

let vertex n + 1 denote the depot of interest.

In our context, the pricing subproblem can be modeled as a shortest path problem with

resource constraints (SPPRC) [138]. The SPPRC can be defined on a directed graph G =

(V, Ā), where G is obtained by inserting into G two copies of the chosen depot, 0 and

n + m + 1, to represent a virtual start depot and a virtual destination depot, respectively,

and by adding edges (0, n+ 1) and (i, n+m+ 1) for i ∈ Vc. Clearly, in such a configuration,

a feasible route always starts from vertex 0 and ends at n + m + 1, the chosen depot vertex

n + 1 being the immediate vertex after the starting node, and all depot vertices i ∈ Vd

used as intermediate replenishment facilities. Associated with each arc (i, j) ∈ Ā are the

cost c̄ij, travel time tij and demand qj. Note that qj = 0, if vertex j corresponds to a depot.

The cost c̄ij is obtained by properly modifying cij in order to account for the contribution

from current dual values to constraints (5.9) and (4.8). We associate each vertex i ∈ V

with the load limit Q and the route duration limit T. While arc (i, j) ∈ Ā is traversed

by a path, denoted by P, time resource tij and capacity resource qj are consumed. A

resource’s accumulated consumption until a vertex visited along a path should not exceed

its limit. We highlight that, if vertex j represents some intermediate depot facility, then

the load of path P is reset to 0 to effectuate the replenishment process. The goal is to

determine the minimum-cost path among all paths that start from the vertex 0 and end at

the vertex n + m + 1, such that all resource constraints are respected.

exact pricing : It is well-known that the SPPRC is NP-hard [68]. The most suc-

cessful solution approach is a dynamic programming method called the labeling algo-

rithm, which has a pseudo-polynomial time complexity [138]. The labeling algorithm

works as follows. We associate an ng-feasible partial path P with a label, L(P) =

(c̄(P), v(P), d(P), t(P), Π(P), pred(P)), which stores the reduced cost, end vertex, load,

duration, a set of forbidden vertices, and a pointer to its predecessor label. For a given

pair (i, t′) with i ∈ V and integer t′ such that 0 ≤ t′ ≤ T, we define a bucket B(i, t′). A

label L(P) is stored in bucket B(v(P), t(P)). We remark that, if any entry of the travel time

matrix tij is not integral, we then enforce an extra resource constraint in the SPPRC. In

57

4.4 solving routing problems

particular, we associate arc (i, j) ∈ Ā and vertex i ∈ V with the integral travel time btijc
and route duration limit bTc, respectively. We then use the integral travel time duration as

our “reference” resource to store labels.

The labeling algorithm is initialized by storing a label (0, 0, 0, 0, ∅, null) in bucket B(0, 0).

From bucket B(0, 0), we use dynamic programming to fill other buckets, starting with lower

values of t′. For each integer t′ with 0 ≤ t′ ≤ T, the algorithm goes through i ∈ V and, for

each neighbor j such that (i, j) ∈ Ā, evaluates the extension of the walk represented by

B(i, t′) to j. Given a label L(P) from bucket B(v(P), t(P)), we now attempt to extend it to

vertex j ∈ V \Π(P) with (v(P), j) ∈ Ā. We first check whether this is a feasible extension,

i.e., whether the resource consumption constraints are respected at vertex j. If that is the

case, we obtain a new ng-feasible label and store it in bucket B(j, t(P) + tv(P)j). As we have

discussed above, the load will be reset to 0, if vertex j denotes a depot.

The set of forbidden vertices should be updated in a similar way as the work of [26],

but with some modifications due to the existence of intermediate depot vertices. In our

implementation, we associate each customer vertex j ∈ Vc with an ng-set NG(j) composed

of 8 nearest customer neighbors. When extending a label L(P) to a vertex j ∈ V \Π(P),

its successor’s forbidden set is updated to be (Π(P) ∩ NG(j)) ∪ {j}, if vertex j denotes a

customer; otherwise, the successor maintains the same forbidden set as the label itself. The

idea behind this is that enforcing forbidden sets and thus ng-routes is to seek for partial

elementarity of routes generated in the SPPRC. Since the elementarity of a given route

is not affected by the existence of depot vertices, those vertices should be excluded from

forbidden sets. When no more label extensions can be made, we collect all columns stored

in buckets B(n + m + 1, t′) with 0 < t′ ≤ T and return all those with negative reduced

costs.

To accelerate the labeling algorithm, it is crucial to check for dominance relationships so

as to avoid some unnecessary label extensions. More specifically, before storing a new ng-

feasible label, we first check whether it dominates or is dominated by existing labels stored

in buckets. We say that a label L(P1) dominates another label L(P2) if, for any feasible path

58

4.4 solving routing problems

extended from P2, we can always find a feasible path extension from P1 and this extended

path is not more costly. Sufficient conditions for this are given by (5.18)–(5.20).

c̄(P1) ≤ c̄(P2), (4.10)

v(P1) = v(P2), (4.11)

d(P1) ≤ d(P2), (4.12)

t(P1) ≤ t(P2), (4.13)

Π(P1) ⊆ Π(P2). (4.14)

A newly generated label L(P) is saved only if it is not dominated, and existing labels

that are dominated by L(P) will be removed. In our implementation, the dominance

rule is only tested between a label L(P) and labels stored in buckets B(v(P), t′) with

max{0, t(P)− 10} ≤ t′ ≤ t(P).

We solve a pricing subproblem for each depot i ∈ Vd and append into R̃ng the up to 20

columns with the most negative reduced costs. Let c̄min denote the minimum cost among

the returned columns. Clearly, c̄min is the minimum reduced cost of all ng-feasible routes.

variable fixing : Let z∗ denote the current RMP optimal value. It is well-known

that one can obtain a valid lower bound, zLB := z∗ + min{K, |Vc|}c̄min, also known as the

Lagrangian bound [119]. We emphasize that the fleet size bound K is updated, whenever

branching on the fleet size is executed (see later for details on branching rules). Besides

pruning branch-and-bound nodes, we also use Lagrangian bounds for variable fixing.

Let us define the primal-dual gap, zgap := UB− zLB. One can easily show that a column

with a reduced cost larger than zgap + c̄min will not be part of any feasible solution better

than the incumbent [147]; thus, such columns can be excluded from consideration. In our

context, we employ a technique called arc fixing [98]. Specifically, given arc (i, j) ∈ Ā,

if every feasible column traversing this arc has a reduced cost larger than zgap + c̄min,

then this arc can be omitted from consideration. To reach such a conclusion and omit

an arc, we need to apply the labeling algorithm we discussed above in a backward

fashion. The backward labeling algorithm works in a similar way as the regular (forward)

labeling, but with the following minor modifications: (i) it is initialized by storing the first

label {0, n + m + 1, Q, T, ∅, null} and starts with higher values of t′ for label extension;

(ii) the inequality conditions (5.21) and (5.22) in the dominance check are reversed; (iii)

the dominance relationship is tested between a label L(P) and labels stored in buckets

B(v(P), t′) with t(P) ≤ t′ ≤ min{t(P) + 10, T}.

59

4.4 solving routing problems

We separately perform a full run of both forward and backward labeling. The minimum

reduced cost of a column passing by an arc (i, j) ∈ Ā, denoted by C̄ij, can be obtained by

concatenating the labels in B(i, t′) from the forward run with the labels in B(j, t′+ tij) from

the backward run for 0 ≤ t′ ≤ T. If C̄ij is larger than zgap + c̄min, then one can eliminate

the arc (i, j) from Ā. Since arc fixing is typically effective when zgap becomes small, we

begin to fix arcs by reduced costs after the initial convergence of column generation and

when zgap/UB is below 5%. Thereafter, arc fixing is performed only if zgap decreases by at

least 10% since the last call.

route enumeration : As [25] suggested, one can enumerate all elementary columns

with reduced costs less than zgap + c̄min, since only these columns may contribute to a

solution better than the incumbent. We adopt the idea from the work of [56] and attempt

to enumerate all possible routes when the primal-dual gap becomes small. In particular,

after each call of variable fixing, if the primal-dual gap is below 1%, we then attempt

to enumerate all columns that have the potential to improve the objective function. In

order to enumerate elementary routes using the forward labeling algorithm we discussed

above, NG(i) is defined to be the customer set Vc. As a result, Π(P) is simply the set of

visited customer vertices along path P. Furthermore, as suggested by [131], the dominance

rule should be updated in the following way. First, the condition (5.20) is modified to

Π(P1) = Π(P2). Second, we define for each label L(P) an extra member c(P) to indicate

the original accumulated travel cost along path P, and then, the condition (5.18) is revised

to be c(P1) ≤ c(P2).

The route enumeration procedure can be accelerated by using the so-called completion

bound [56], which can be computed for free from the variable fixing step. For the sake of

brevity, we refer readers to the work of [130, 131] for details.

The enumeration procedure is interrupted when the number of labels exceeds 1.0×
106, or when the number of enumerated routes exceeds 1.0 × 105. After a successful

enumeration, generated columns are not immediately appended to R̃ng but saved in a pool.

At this point, one can also erase non-elementary columns from R̃ng. Finally, once the total

number of columns from R̃ng and the pool is less than 1.0× 104, we append integrality

constraints (5.11) to the RMP and solve the resulting integer program. Otherwise, in the

coming iterations, we can simply inspect columns saved in the pool and return at most

150 of them with negative reduced costs.

60

4.4 solving routing problems

heuristic pricing : The column generation procedure can be further accelerated by

using a fast heuristic pricing methods called “bucket pruning,” which was introduced in

the work of [77]. Simply put, this method relaxes the dominance check by only considering

the condition (5.18). The trade-off to this efficiency is that non-dominated labels may be

dropped, though it is expected that those would be less likely to lead to optimal solutions.

In our implementation, we opted to first apply the heuristic labeling algorithm to generate

columns with negative reduced costs, and to resort to the exact algorithm only if the

heuristic method fails to identify any column. In particular, in each iteration, we return

the up to 30 columns with the most negative reduced costs from heuristic pricing.

4.4.2.3 Cutting Planes

When column generation converges, the master problem achieves its optimality. If the

current LP optimal solution is not integral, we try to identify strengthening inequalities

to exclude the fractional solution from the relaxed feasible space. We consider two types

of valid inequalities, namely Rounded Capacity Inequalities (RCI) [110] and Subset Row

Cuts (SRC) [99].

The separation routine for RCI is synopsized as follows. Let G∗ = (V, A) be a support

graph corresponding to the current solution to an RMP. We first shrink the set of depot

vertices, Vd, to be a single vertex, which results in a support graph for the classic capacitated

vehicle routing problem. We then apply a tabu search algorithm inspired from [21] to

identify violated RCI. In the context of a branch-price-and-cut algorithm, RCI are so called

“robust” cuts [15] because their corresponding dual values can be properly accommodated

into the modified arc cost in the SPPRC; thus, adding RCI into the set partitioning model

as strengthening inequalities will not complicate the solution of pricing subproblems.

With regards to SRC, it is well-known that they usually help to close the primal-dual gap

significantly; however, these are known to be “non-robust” cuts, since their dual values

cannot be easily combined into the arc cost in the SPPRC, changing the pricing subproblem

structure. In essence, each additional SRC makes pricing harder. To mitigate the negative

effect of SRC on solving SPPRC subproblems, we adopt a variant of SRC, called limited-arc-

memory subset row cuts (lm-SRC), which was proposed in the work of [133]. The lm-SRC

are still non-robust cuts but have much less impact on solving pricing problems [131]. We

use the procedure proposed in the work of [132] to separate lm-SRC. In particular, for

every i ∈ Vc, we define N(i) ⊆ Vc as the set containing the 15 other customers closest to i

and then test the violation of all SRC obtained by applying multipliers to all base sets S

with cardinalities 3, 4 and 5, and for each i and j in S, j ∈ N(i). After violated SRC are

61

4.4 solving routing problems

identified, we add their corresponding limited-arc-memory version. To accommodate the

use of lm-SRC, the labeling algorithm is modified in the following aspects: (i) we define a

state for each active cut; (ii) the contributions from dual values to lm-SRC are taken into

consideration when computing the reduced cost for a new label; (iii) the condition (5.18)

in the dominance check is updated to account for the dual values to lm-SRC. Readers are

referred to [132, 147] for implementation details.

We now discuss our overall cut separation protocol. At the root node, we first attempt

to identify violated RCI and resort to lm-SRC only if no RCI is found or if “tailing-off”

is detected for RCI. We define tailing-off when the node primal-dual gap zgap has not

improved by at least 0.1% during the past 3 iterations. In all other nodes of the branch-and-

bound tree, both RCI and lm-SRC are separated in every round. If the tailing-off condition

is satisfied, we stop the cut separation and perform branching. Since, as discussed, the

lm-SRC have a negative effect on our ability to keep solving SPPRC subproblems, we add

into the set partitioning model only the 5 most violated lm-SRCs per round and add at

most 300 lm-SRCs in total. We also remove non-active lm-SRC from the model before each

cut separation round. After route enumeration at a given node is completed, all lm-SRC

are lifted to their SRC counterparts, since we no longer need to solve the SPPRC.

4.4.2.4 Branching Strategy

When the optimal solution to the master problem is not integral and no violated cuts can

be identified, or if we have decided to stop adding cuts due to the tailing-off issue, we then

perform branching. We first attempt to branch on the number of used vehicles, since from

our experience it often has a more profound impact on the branch-and-bound node lower

bound; if this is not applicable, then branching on edges performed by choosing the edge

with value closest to 0.5. Readers are referred to [71] and [146] for details. We emphasize

that the branching rules we adopt do not change the pricing structure and, thus, do not

add complexity when solving the SPPRC.

4.4.2.5 Other implementation details

feasibility-recovery : When the RMP becomes infeasible (e.g., due to branching

or because the initial RMP itself is infeasible), we resort to the feasibility-recovery step as

suggested by [71], which corresponds to the Phase I step in the classic simplex algorithm.

In particular, we introduce a dummy variable into the RMP with its coefficient at each

constraint being the right-hand side and its objective coefficient being UB + ε, where

ε > 0 (we used ε = 0.1). Clearly, the modified linear program becomes feasible. The

62

4.5 computational studies

resulting linear program is then solved and its dual values are used to generate new

columns with negative reduced costs so as to recover the RMP feasibility. When column

generation converges, i.e., the LP optimality is achieved, and assuming the dummy variable

attains a value of zero, the primal feasibility of the RMP is recovered; otherwise, if the

dummy variable attains a non-zero value, the LP optimal value must be UB + ε (due to

complementary slackness), resulting in the node being pruned by bound in the branch-

and-bound tree.

primal heuristics : Whenever the RMP is solved, we apply a simple rounding

heuristic in an attempt to find better feasible solutions than the incumbent. In our imple-

mentation, elementary columns with their current corresponding LP optimal values above

0.5 are collected and we check whether the routing plan composed of these columns is

feasible. If this leads to a feasible solution with an objective value better than the incumbent,

we then update the upper bound UB.

4.5 computational studies

Our algorithm was implemented in C++ and all subordinate linear and mixed-integer

linear programs were solved using the IBM ILOG CPLEX Optimizer 12.9.0 through the C

application programming interface, with all settings being default except that the relative

optimality gap tolerance was set to the value of 0. In the branch-price-and-cut algorithm,

the absolute optimality gap tolerance was set to εopt = 1.0× 10−4, and the best-bound node

selection strategy was chosen. All computations were performed on an Intel Xeon CPU E5-

2689 v4 server running at 3.10 GHz. A total of 128GB of available RAM was shared among

10 copies of the algorithm running in parallel on the server. In Section 4.5.1, each instance

was solved by one copy of the algorithm using a single thread. The results presented in

Section 4.5.2 were obtained with OpenMP by using up to 10 threads in parallel.

4.5.1 Evaluation of BPC Implementation Performance

We first evaluate the performance of our BPC algorithm on solving MDVRPI benchmark

instances and compare our algorithm with the state-of-the-art branch-and-price algorithm

proposed in the work of [127]. The differences between these two algorithms can be

synopsized as follows:

63

4.5 computational studies

1. our BPC algorithm models each pricing subproblem as an SPPRC and generates

routes with negative reduced costs in a single stage; in contrast, the branch-and-price

algorithm considers a two-phase approach where trips between each pair of depots

are first constructed and then routes with negatived reduced costs are obtained by

combining these trips;

2. our BPC approach incorporates certain state-of-the-art pricing techniques, such as

ng-routes, variable fixing, route enumeration, among others;

3. we add valid inequalities to strengthen the LP relaxations at each node of the

branch-and-bound tree.

We consider the instances from the work of [58] and we adapt them in the same way as

done in [127]. There are 12 random (a1-l1) and 10 CGL (a2-j2) instances. In these instances,

which are available at http://chairelogistique.hec.ca/data/mdvrpi/, the number of

depots ranges from 3 to 7. For each instance, we consider the first 25, 40 and 70 customers

with the total number of vehicles limited to 4, 6 and 10, respectively. Note that datasets a1,

d1, and a2 from [58] were not adapted to 70-customer instances because they only feature

48 customers.

In each instance, the vehicle capacity Q and the route duration limit T is set to be 50 and

450, respectively, as done in [127]. Also following that work, the travel time is calculated

from the coordinates and we do not round these values. Thus, each entry of the travel time

matrix is a double-precision non-negative number. As discussed earlier, in order to use

our labeling algorithm in such setting, we need to round down all entries of the matrix

and to define an extra resource as the “reference” to store labels in an SPPRC.

Finally, as it is common practice in the VRP literature using BPC algorithms (see, e.g.,

[77, 131, 133, 135, 147, 169]), tight initial upper bounds are provided so that the various

pricing techniques like variable fixing and route enumeration are activated in the early

stage of the algorithm. Since we did not have at hand sophisticated heuristics for solving

the MDVPRI, we consider the following two strategies to mitigate this. The first strategy

is to guess an initial upper bound via utilizing the BPC root node lower bound (denoted

by RootLB) as a reference and to adjust it if necessary. In particular, we choose the initial

upper bound to be RootLB× α with α being 1.01; if the resulting mathematical model is

deemed infeasible by our BPC algorithm, we then increase α by 0.005 and iterate. The

second strategy is to use as the initial upper bound the optimal (or best known) value

of each instance modified upwards by an offset of 1.0× 10−2. Note that, since we do not

round the travel costs, and since 1.0× 10−2 is larger than the branch-and-bound absolute

64

http://chairelogistique.hec.ca/data/mdvrpi/

4.5 computational studies

optimality gap tolerance εopt, our BPC algorithm always has to locate by itself a feasible

solution with a value better than the initial upper bound provided. For convenience, we

call the former and the latter an iterative strategy and a BKS strategy, respectively.

Our computational results are presented in Tables 4.1 and 4.2. In the instance name field,

“X” is a placeholder for the number of customers. For our three different values of “X”,

the columns “Opt [UB]” then report the corresponding optimal objective values, while the

columns “t (sec) [LB]” provide the time to solve the instance to optimality; if an instance

could not be solved within the allotted time limit of 2 hours, these columns report (in

brackets) the best upper and lower bounds (rounded to 3 decimal places) found within

this time limit. If an instance was solved to optimality by both aforementioned strategies,

we then report two solution times that are separated by “/” in the column “t (sec) [LB]”;

otherwise, we only report the computational results under the BKS strategy.

Focusing first on the 25- and 40-customer instances, the tables show that our BPC

algorithm solved all 44 instances to optimality in both strategies, with the solution time

ranging from 4 to 1, 733 seconds. The performance of our iterative strategy significantly

improves upon the current state-of-the-art exact approach from [127], which could only

solve 23 instances to proven optimality within a time limit of 10 hours, noting however that,

according to www.cpubenchmark.net/singleThread.html, our computer’s computational

speed was approximately double that of the machine used in [127]. When utilizing best

known solutions as prior information for determining initial upper bounds, the BKS

strategy solved these benchmark instances on average 2.7 times faster than the iterative

strategy. Focusing on the larger, 70-customer instances, the iterative strategy solved 5 out

of a total of 19 to optimality with an average solution time of 4, 149 seconds, while the

BKS strategy could solve to optimality 17 instances with an average solution time of 2, 201

seconds, leaving an average residual gap of 0.90% to the remaining 2 instances at the time

limit of 2 hours. The disparity strengthens the belief that BPC algorithms’ performance is

sensitive to the initial upper bound [135].

Overall, our computational results demonstrate that, with tight upper bounds provided,

our BPC algorithm is able to routinely solve to provable optimality MDVRPI instances

with up to 40 customers within a mere couple of minutes, while it can solve most MDVRPI

instances involving up to 70 customers within 2 hours. We report our optimal and best

known solutions to all these benchmark instances in the following link: http://gounaris.

cheme.cmu.edu/bks/mdvrpi/.

65

www.cpubenchmark.net/singleThread.html
http://gounaris.cheme.cmu.edu/bks/mdvrpi/
http://gounaris.cheme.cmu.edu/bks/mdvrpi/

4.5 computational studies

Table 4.1: Computational results for our BPC algorithm on 25-, 40-, and 70-customer random

instances

Instances X = 25 X = 40 X = 70

Opt [UB] t (sec) [LB] Opt [UB] t (sec) [LB] Opt [UB] t (sec) [LB]

a1-X-50-450 693.810 9 / 4 998.431 35 / 22 – –
b1-X-50-450 731.414

∗
29 / 5 1,059.370 61 / 27 1,559.669

∗
4,968

c1-X-50-450 855.831
∗

71 / 23 1,148.669
∗

87 / 23 1,692.074
∗

1,951

d1-X-50-450 763.303
∗

41 / 12 1,056.868
∗

283 / 74 – –
e1-X-50-450 803.715 13 / 5 1,236.620 111 / 32 1,806.888

∗
4,888 / 937

f1-X-50-450 551.828 24 / 13 854.108
∗

563 / 85 1,365.147
∗

4,760

g1-X-50-450 654.016 74 / 15 1,034.936
∗

1,130 / 191 1,405.974
∗

4,979

h1-X-50-450 558.646 74 / 21 875.552 179 / 76 [1,380.122] [1,364.404]
i1-X-50-450 823.775

∗
17 / 14 1,222.845 389 / 54 1,804.683

∗
609

j1-X-50-450 777.701
∗

289 / 79 904.281
∗

244 / 109 1,330.820
∗

3,177

k1-X-50-450 868.604
∗

14 / 10 1,255.505
∗

912 /164 1,803.937
∗

2,042

l1-X-50-450 818.280 12 / 9 1,085.320 295 / 62 1,643.854
∗

1,129

∗Instances solved to optimality for the first time are indicated with an asterisk.

Table 4.2: Computational results for our BPC algorithm on 25-, 40-, and 70-customer CGL instances

Instances X = 25 X = 40 X = 70

Opt [UB] t (sec) [LB] Opt [UB] t (sec) [LB] Opt [UB] t (sec) [LB]

a2-X-50-450 725.157
∗

55 / 13 1,010.607 287 / 87 – –
b2-X-50-450 912.429 72 / 21 1,238.944 295 / 42 1,636.112

∗
403

c2-X-50-450 683.188 65 / 15 1,159.053
∗

308 / 38 1,859.551
∗

3,981

d2-X-50-450 876.113 60 / 17 1,199.848
∗

186 / 36 [1,864.038] [1,851.572]
e2-X-50-450 699.363

∗
15 / 5 1,087.712

∗
248 / 54 1,801.178

∗
3,014 / 1,959

f2-X-50-450 781.176 13 / 8 1,046.454
∗

138 / 43 1,617.750
∗

983

g2-X-50-450 793.633
∗

30 / 19 1,035.008 208 / 44 1,521.121
∗

2,399 / 702

h2-X-50-450 716.220 58 / 15 940.924 406 / 114 1,528.441
∗

5,451 / 793

i2-X-50-450 910.505 45 / 10 1,171.579
∗

225 / 74 1,696.617
∗

2,381

j2-X-50-450 609.378 26 / 20 887.270
∗

1,733 / 279 1,488.898
∗

4,990 / 1,656

∗Instances solved to optimality for the first time are indicated with an asterisk.

66

4.5 computational studies

4.5.2 Marginal Cost Analysis

The previous section demonstrated the effectiveness of our BPC implementation in terms

of its ability to solve MDVRPI instances. Being equipped with this state-of-the-art code, we

now turn our focus to utilizing the latter as the VRP solver in our framework to estimate

the marginal cost to serve individual customers. Since there is no available benchmark

instance in the literature for this setting, we generated those as follows. We consider

the first five random instances we used in Section 4.5.1, namely instances a1-25-50-450

through e1-25-50-450, each having 25 customers, and in every instance we inserted a

26th customer as our target customer to perform the marginal cost analysis. The target

customer’s coordinates, fixed service time and nominal demand are chosen to be the

rounded average (rounded to the nearest integer) of the 25 original customers, respectively.

The stochastic customer demands are designed in the following way. Firstly, since not

all 25 original customers generally request a visit on the same day, we assign each of

them a probability to indicate how likely the customer is to request an order on any given

day. In particular, we assign 75%, 50% and 25% to the first 6, intermediate 12 and last 7

customers, respectively. The target customer always requests an order on any given day,

and is thus given a probability of 100%. Secondly, for any customer i who requests an

order, we consider the demand from the instance data as its nominal value, denoted by q̄i,

and assume that the stochastic demand qi is an integer value that always falls into the set

Ji :=
[⌈

0.7q̄i
⌉
,
⌊
1.3q̄i

⌋]⋂
N. Let pij denote the probability that qi takes a specific value j

from this set. We set pij to be proportional to the probability density function of a normal

distribution with mean q̄i and standard deviation 0.1q̄i, evaluated at qi, and normalized

such that ∑j∈Ji
pij = 1. We highlight that, although the demand distribution Ξ×Θ was

designed in the way described above so as to allow us to easily implement the sampling

process in our computational studies, our proposed scenario-sampling framework is

generally valid for any given demand distribution. Furthermore, in order to ensure that

every possibly sampled routing scenario remained feasible, the fleet size was set to be

unlimited.

We now discuss how to conduct scenario-sampling from the given demand distribution

and how to perform the marginal cost calculation. When generating a scenario, we first

draw from a Bernoulli distribution with the order-requesting frequency as the parameter,

to decide whether a given customer requests an order or not. If it does, we then determine

the customer’s demand in this scenario by sampling from its distribution. After this process

is repeated for each customer, a routing scenario with customers having fixed demands has

67

4.5 computational studies

been defined. In order to computing the marginal cost of serving the target customer in

this scenario, we utilize our BPC algorithm to solve to optimality two MDVRPI instances,

one with and another one without the target customer, and then apply the formula (4.1).

The average marginal cost across all sampled scenarios is returned as the estimate. We

emphasize that, since each scenario can can be solved independently, we utilize OpenMP

to parallelize our code using up to 10 threads in the following experiments and report the

CPU wall time.

4.5.2.1 Marginal Cost Estimation

In our context, MC = 0 is a valid lower bound to the marginal cost, since serving an

additional customer never reduces the routing cost. Let C denote the cost for the direct

round-trip route from the depot that is closest to the target customer. The value MC = C/{
min
ϑ∈Θ

ϑ

}
is a safe upper bound. The probability threshold is chosen to be α = 5%, while the

permissible deviation is chosen as δ = 2%× (MC− MC). Consequently, from equation (4.5),

the minimum number of samples that is required for the specified accuracy is N = 4, 612.

Fig. 4.3 shows the progress of the marginal cost average, as the sample size increases,

for the benchmark instance d1-25-50-450, which is selected here as a representative of all

instances.

There are several noteworthy observations. Firstly, the marginal cost average initially

fluctuates strongly, but then gradually stabilizes around the value of 0.501, which em-

pirically confirms the conclusion made in Proposition 4.1, i.e., that the sample average
1
N ∑N

i=1 MC
(
ξ i, ϑi) converges to a constant value (specifically, the value Eξ,ϑ [MC (ξ, ϑ)]) when

the sample size N is large enough. The claim that the estimate is of high quality is further

strengthened by the fact that the chosen value of the permissible deviation (δ = 0.020 in

this example) ended up being nearly negligible when compared to this estimate. Secondly,

the stabilized estimate was produced relatively early in the execution of the algorithm,

but many additional scenarios had to be sampled until the probability of a sufficiently

accurate estimate was lowered below the required threshold to warrant stopping the

process (pre-computed sample size N). We remark that, from a practical point of view, one

can keep track of the progress of the marginal cost average and terminate the algorithm

when the sample average satisfactorily stabilizes, which might occur significantly before

N samples have been collected and processed.

68

4.5 computational studies

0 500 1000 1500 2000 2500 3000 3500 4000 4500
N

0.35

0.40

0.45

0.50

0.55

0.60

0.65

Av
er

ag
e

m
ar

gi
na

l c
os

t

Figure 4.3: Example progress of the average marginal cost, as the sample size N increases

4.5.2.2 Customer Locations

We now investigate the effect of a customer’s location on the marginal cost of serving

this customer. Generally speaking, when a customer is located at a place far away from

the depot facilities, or far away from the other customers, a vehicle has to drive a longer

distance for deliveries to this customer, which causes more routing costs. In order to

quantify this effect in the context of a stochastic supply chain network, we consider two

additional locations for the target customer in each of the five proposed instances: (i) the

first location, dubbed “Central,” having coordinates at the rounded (to the nearest integer)

average of the depots’ coordinates, and (ii) the second location, dubbed “Remote,” having

coordinates (max
i

xi, max
i

yi), where (xi, yi) represent the i-th customer’s coordinates in

this instance. Along with the original placement of the target customer, a total of three

customer locations are considered. We shall again choose α = 5% and δ = 2%× (MC− MC)

for our estimation parameters, while we shall again generate 4, 612 representative scenarios

and compute the average marginal cost.

Table 4.3 shows the computational results for our five instances under the three customer

location cases. The column “δ” denotes the applicable value of the permissible deviation

parameter, as determined for the each specific instance, while the column “MC” reports the

marginal cost estimate. The relative estimation error is reported in the column “δ/MC (%)”.

69

4.5 computational studies

100 101 102

Proximity

0

1

2

3

4

5

6

7

M
ar

gi
na

l c
os

t e
st

im
at

e

a1-25-50-450
b1-25-50-450
c1-25-50-450
d1-25-50-450
e1-25-50-450

Figure 4.4: Effect of a customer’s proximity to the depot facilities on the marginal routing cost. The
proximity is defined as the length of the direct round-trip route from the depot that is
closest to the target customer.

Finally, we also report the total CPU wall time for running each instance in the column “t

(sec)”.

The entries in this table reveal that, when the target customer is located further away

from the depot facilities, the marginal cost of serving this customer increases, as also

plotted in Fig. 4.4 for all five benchmark datasets. Notably, we can claim in each case that

the probability that the expected marginal cost deviates from the returned estimate by at

most the corresponding relative estimation error is above 1− α = 95%. In particular, this

demonstrates a satisfactory estimation accuracy, since the average (among all instances)

deviation turns out to be merely 4.5% of the respective estimates. Finally, we remark that

the computational time in these experiments ranges from approximately 1, 200 to 2, 500

seconds, which is quite short considering that a total of 9, 224 MDVRPI instances have to

be solved to proven optimality in each case.

4.5.2.3 Demand Levels

In this section, we consider the effect of a customer’s demand level on the marginal routing

cost. Let q̄ denote the nominal demand of the target customer in each of the five proposed

instances, and let us now also consider two additional demand levels, namely q̄± 5. The

70

4.5 computational studies

Ta
bl

e
4
.3

:M
ar

gi
na

lc
os

t
es

ti
m

at
io

n
un

de
r

th
re

e
cu

st
om

er
lo

ca
ti

on
ca

se
s

In
st

an
ce

s
C

en
tr

al
O

ri
gi

na
l

R
em

ot
e

δ
M
C

δ/
M
C

(%
)

t
(s

ec
)

δ
M
C

δ/
M
C

(%
)

t
(s

ec
)

δ
M
C

δ/
M
C

(%
)

t
(s

ec
)

a1
-2

5
-5

0
-4

5
0

0
.0

0
1

0
.0

4
4

2
.3

1
,5

6
6

0
.0

3
0

0
.7

7
7

3
.9

1
,8

8
3

0
.1

7
9

2
.4

5
1

7
.3

1
,7

0
7

b1
-2

5
-5

0
-4

5
0

4
×

10
−

4
0
.0

1
1

3
.8

1
,4

3
1

0
.0

3
7

0
.9

5
3

3
.9

1
,2

2
1

0
.3

4
7

6
.9

2
4

5
.0

1
,4

2
5

c1
-2

5
-5

0
-4

5
0

5
×

10
−

4
0
.0

1
8

2
.6

1
,8

1
1

0
.0

2
7

0
.7

6
4

3
.5

1
,4

1
7

0
.2

7
6

4
.4

1
8

6
.2

1
,4

6
3

d1
-2

5
-5

0
-4

5
0

0
.0

0
1

0
.0

4
2

2
.4

2
,0

9
9

0
.0

2
0

0
.5

0
1

4
.0

2
,5

0
9

0
.2

3
7

4
.4

3
5

5
.3

2
,2

7
7

e1
-2

5
-5

0
-4

5
0

0
.0

0
2

0
.0

2
9

6
.9

1
,2

6
6

0
.0

2
6

0
.5

6
9

4
.6

1
,6

6
8

0
.4

2
3

6
.5

1
0

6
.5

1
,3

2
4

71

4.6 conclusions

8 10 12 14 16 18 20
Target customer demand

0.4

0.6

0.8

1.0

1.2

M
ar

gi
na

l c
os

t e
st

im
at

e

a1-25-50-450
b1-25-50-450
c1-25-50-450
d1-25-50-450
e1-25-50-450

Figure 4.5: Effect of a customer’s demand level on the marginal routing cost

three demands are classified, based on their values, as “Low,” “Medium,” and “High.”

The customer demand distribution is created in the same way as before. Again, α = 5%

and δ = 2%× (MC− MC). Table 4.4 shows the relevant computational results. As expected,

when the customer demand increases, the marginal routing cost decreases, as also plotted

in Fig. 4.5. The actual deviation is on average within 4.1% of the marginal cost estimate,

which is considered acceptable from a practical point of view. Again, the computational

times are deemed quite affordable.

4.6 conclusions

We considered the problem of estimating the marginal routing cost of serving an extra

customer on top of a given distribution network. In this context, the main challenge stems

from the intrinsic stochasticity in customer demands, and to counteract this, we proposed a

systematic scenario-sampling framework that can rigorously quantify the marginal routing

cost. In particular, we used probability theory to demonstrate that the estimate returned by

our framework will converge to the true value with sufficient increase of the sample size.

For purposes of practicality, we proposed to utilize the well-known Hoeffding’s inequality

to bound the sample size for a desired accuracy.

72

4.6 conclusions

Ta
bl

e
4

.4
:M

ar
gi

na
lc

os
t

es
ti

m
at

io
n

un
de

r
th

re
e

cu
st

om
er

de
m

an
d

le
ve

ls

In
st

an
ce

s
Lo

w
M

ed
iu

m
H

ig
h

δ
M
C

δ/
M
C

(%
)

t
(s

ec
)

δ
M
C

δ/
M
C

(%
)

t
(s

ec
)

δ
M
C

δ/
M
C

(%
)

t
(s

ec
)

a1
-2

5
-5

0
-4

5
0

0
.0

5
0

1
.2

1
5

4
.1

1
,6

2
3

0
.0

3
0

0
.7

7
7

3
.9

1
,8

8
3

0
.0

2
3

0
.5

8
9

3
.9

1
,3

5
4

b1
-2

5
-5

0
-4

5
0

0
.0

5
3

1
.1

9
2

4
.4

1
,2

2
4

0
.0

3
7

0
.9

5
3

3
.9

1
,2

2
1

0
.0

2
6

0
.7

5
5

3
.4

1
,4

8
2

c1
-2

5
-5

0
-4

5
0

0
.0

4
4

1
.1

9
1

3
.7

1
,8

1
0

0
.0

2
7

0
.7

6
4

3
.5

1
,4

1
7

0
.0

2
1

0
.5

9
8

3
.5

1
,2

0
9

d1
-2

5
-5

0
-4

5
0

0
.0

3
2

0
.7

2
2

4
.4

2
,4

3
7

0
.0

2
0

0
.5

0
1

4
.0

2
,5

0
9

0
.0

1
6

0
.3

9
1

4
.1

1
,9

4
8

e1
-2

5
-5

0
-4

5
0

0
.0

4
8

0
.8

9
4

5
.4

1
,0

1
6

0
.0

2
6

0
.5

6
9

4
.6

1
,6

6
8

0
.0

2
0

0
.4

2
1

4
.8

1
,2

9
8

73

4.6 conclusions

In our computational studies, considering each scenario entailed solving two NP-hard

multi-depot vehicle routing problems with inter-depot routes. To this end, we develop a tai-

lored branch-price-and-cut algorithm that incorporates several state-of-the-art techniques,

including ng-routes, route enumeration, and limited-memory subset row cuts, among

others. Our implementation was shown to perform significantly better than the previous

state-of-the-art exact approach on solving MDVRPI benchmark instances. Specifically,

within a time limit of 2 hours, our algorithm was able to close all 21 MDVRPI benchmark

instances involving up to 40 customers that remained opened in the literature, while it

was additionally able to solve 17 out of a total of 19 newly-defined benchmark instances

with 70 customers.

Utilizing our branch-price-and-cut code, we conducted extensive computational studies

to demonstrate the deployment of our proposed framework for estimating the incremental

routing cost, elucidating the accuracy of our estimates as well as quantifying the effect

of two important factors, namely customer location and demand, on the marginal cost

estimate.

74

5
A B R A N C H - P R I C E - A N D - C U T A L G O R I T H M F O R R O B U S T V E H I C L E

R O U T I N G P R O B L E M S U N D E R U N C E RTA I N T Y

In this chapter, we focus on solving vehicle routing problems under uncertainty from a

robust optimization perspective. Given postulated uncertainty sets for customer demands

and vehicle travel times, one aims to identify a set of cost-effective routes for vehicles

to traverse such that along these routes vehicle capacity constraints and customer time

window constraints are respected under any anticipated demand and travel time real-

ization, respectively. To tackle this problem, we propose a novel approach that combines

cutting-plane techniques with the advanced deterministic branch-price-and-cut algorithm.

In particular, we apply a deterministic pricing procedure to dynamically generate vehicle

routes and then utilize robust rounded capacity inequalities and infeasible path elimination

constraints to guarantee robust feasibility of routing designs against demand and travel

time uncertainty. We conduct extensive computational studies on benchmark instances

and compare our approach against the existing research efforts of adapting branch-price-

and-cut algorithms for addressing robust vehicle routing problems under uncertainty. Our

computational studies demonstrate that our proposed approach is not only comparable

to against the state-of-the-art approaches but also able to efficiently handle a variety of

commonly used uncertainty sets.

5.1 introduction

The vehicle routing problem (VRP) is one of the most highly studied combinatorial opti-

mization problems in the area of supply chain and logistics. The classic setting is the

one where, given a distribution center, a fleet of vehicles and a group of customers to

be served, one aims to identify a set of minimum-cost routes for vehicles to traverse,

such that customer demands are satisfied and relevant system constraints, e.g., vehicle

capacities, time windows, and route duration limits, among others, are respected. For the

75

5.1 introduction

past a few decades, lots of research efforts have been dedicated to the development of

exact and heuristic approaches for solving VRPs [167]. The majority of these studies have

been conducted under the assumption that all the information necessary to formulate

the relevant routing problems is known and readily available. In practical applications,

this assumption is usually not verified due to the presence of uncertainty affecting the

parameters of the problem. For example, vehicle travel times can vary due to unexpected

events such as bad weather, vehicle breakdown or traffic congestion. Making routing

decisions while ignoring parameter variability can potentially cause either cost-prohibitive

routing designs or failure to satisfy service commitments. Hence, it is of great importance

for the distributor to take uncertainty into account at the route planning stage.

The work of [78] identified three types of uncertainty sources that are commonly found

in VRP applications: customer demands, travel/service times, and customer orders. The

customer demand uncertainty indicates a situation where the amount of product either

delivered or picked up at customers are random. The travel/service times are subject

to change due to unpredicted events, e.g., weather conditions, and hence they are often

not known with precision at the moment the distributor is designing routes. Customer

order uncertainty often arises when the distributor may receive unanticipated orders from

customers and at the same time he has to take these orders into consideration before routes

are to be committed [161]. In this chapter, we focus on customer demand and vehicle travel

time uncertainty, since they are the most popular ones in practical applications.

Most contributions for tackling VRPs with uncertainty in demands and travel times come

from the stochastic programming [40] paradigm. It assumes that customer demands/vehicle

travel times are random variables that follow a given probability distribution. The work

of [78] surveyed existing research efforts using this paradigm and classified them into

three main modeling frameworks. The most common one is to model the routing problem

under uncertainty as a two-stage optimization problem: routing decisions are made a

priori in the first stage, and then in the second stage uncertainty is gradually revealed

and recourse actions are taken so as to fulfill service commitments that otherwise will

not be delivered upon due to the presence of uncertainty, hence it is usually called a

priori optimization approach. The second framework is a re-optimization approach. Its key

feature is that routing decisions are made dynamically in order to benefit from the fact

that the information related to uncertainty parameters is revealed over time. The third one

is a chance-constrained approach which ensures that the feasibility of a routing design is

achieved above a prespecified probability threshold. We refer interested readers to [78] for

a comprehensive discussion on this topic.

76

5.1 introduction

The stochastic programming paradigm is a natural mindset when dealing with un-

certainty, but it suffers from two main shortcomings: (i) information availability, that is,

the probability distribution of uncertain parameters is usually either not available or not

known precisely at the decision-making moment; (ii) tractability, that is, when uncertain

parameters are random continuous (discrete) variables, the resulting mathematical model

usually entails both optimization and numerical integration (many scenarios), and is thus

prohibitive to solve. In contrast, robust optimization (RO) [33] can be a promising approach

for the treatment of uncertainty in VRP applications. This approach only assumes that

uncertain parameters are random variables falling into a postulated set and it seeks for the

optimal routing design that is immunized against all anticipated parameter realizations

from that set. Usually, this uncertainty set can be constructed with probabilistic confidence

using historical data. Additionally, computational tractability is often preserved when

compared with its deterministic counterpart [33]. Consequently, the aforementioned two

issues are now circumvented. In this chapter, we opt for the RO paradigm to a priori

design cost-effective routes that are immunized against infeasibility caused by variability

in customer demands and vehicle travel times. For convenience, we refer to the routing

problems of our interest as robust vehicle routing problems.

In recent years, there has been a steadily growing interest in both formulating and

solving robust VRPs. The work of [163] considered a RO approach for the capacitated

vehicle routing problem (CVRP) with uncertainty in demand and anticipated that each

customer’s demand can attain its maximum value simultaneously, leading to a overly

conservative formulation. A distinguished work is [82], in which the authors considered

the robust CVRP with customer demands being supported on a generic polyhedron and

they derived and compared robust counterparts of several deterministic CVRP formulations.

The computational studies show that embedding their proposed robust rounded capacity

inequalities into the classic vehicle flow formulation [110] is the most effective method to

address robust VRPs under demand uncertainty. To deal with travel time uncertainty, the

work of [5] applied the classic dualization technique for RO, yielding a large formulation

that is hard to solve for instances of more than 20 customers. Prominent contributions have

been made by [6], in which the authors proposed two novel techniques to handle travel

time variability: column-and-constraint generation [176] and cutting-plane. The former method

initially only considers a subset of anticipated scenarios and then gradually selects and

introduces some neglected extreme scenarios via appending both variables and constraints.

This process iterates until the returned routing design is robust feasible with respect to

all anticipated scenarios. The cutting-plane method ensures the immunity of a routing

77

5.1 introduction

solution by dynamically separating and enforcing infeasible path elimination constraints. The

computational studies in [6] show that these two techniques have comparable performance

in terms of solving robust VRPs with time windows. The column-and-constraint generation

approach was also employed in the work of [7] for the treatment of travel time uncertainty

in a maritime inventory routing application.

All the aforementioned works[5–7, 82, 163] are utilizing the popular arc-based formulation,

which includes polynomially many binary variables and is thus solved by the branch-

and-cut method. In the realm of deterministic problems, the route-based formulation is

becoming more and more popular due to its tight linear programming (LP) relaxation.

This formulation has exponentially many binary variables, each of them representing the

selection of a feasible vehicle route. The resulting LP relaxation at each branch-and-bound

node is thus solved by column generation [119], which simply starts with a subset of feasible

vehicle routes and entails the solution of pricing subproblems to dynamically introduce

neglected feasible routes with the potential of reducing the objective value. The pricing

subproblem is commonly modeled as a shortest path problem with resource constraints (SPPRC)

and can be solved efficiently via dynamic programming. Strengthening constraints are usually

incorporated to tighten the LP relaxation, hence the solution approach for route-based

formulations is referred to as a branch-price-and-cut (BPC) method. For the past decade,

considerable progress has been made in the development of BPC algorithms [57]. To

date, the BPC algorithm has emerged as the state-of-the-art exact approach for addressing

deterministic VRPs [167]. In this chapter, we aim to explore the possibilities of extending

the BPC framework to solve robust VRPs.

Whereas lots of literature has been devoted on how to address deterministic VRPs

via BPC algorithms, there have been only a few works combining RO with BPC to

tackle VRPs under uncertainty. To the best of our knowledge, the first attempt was made

in [113]. The authors focused on the robust VRP with deadlines under demand and

travel time uncertainty and proposed a novel approach that is able to directly encapsulate

demand/travel time variability into pricing subproblems. This approach was recently

revisited and improved by [126] for solving the robust VRP with time windows under

demand/travel time uncertainty. In both works, the pricing subproblem is formulated as a

robust shortest path problem with resource constraints (RSPPRC) [11], for generating routes that

are robust feasible with respect to demand/travel time variability. The authors of the above

works demonstrated that the resulting RSPPRC could be efficiently solved when uncertain

parameters are supported on the commonly used cardinality-constrained uncertainty set [37].

To handle robust VRPs with demand uncertainty, another approach was proposed in [136]

78

5.1 introduction

and [118], where the authors transformed a RSPPRC into polynomially many deterministic

SPPRCs, avoiding the burden of solving the RSPPRC directly. The former work showed

that the transformation could be achieved for two popular polyhedral uncertainty sets

from the RO literature.

Though the above two approaches from the literature seem quite promising, they exploit

the structures of uncertainty sets and hence can not be generalized to many commonly

used uncertainty sets (e.g., ellipsoidal sets) from the RO literature. Therefore, it is of

great necessity to develop a new approach that can work for solving robust VRPs under

various, general types of uncertainty sets. [82] and [6] proposed the cutting-plane idea to

enforce robust feasibility and embedded it into a branch-and-cut framework for addressing

robust VRPs with uncertainty in demands and travel times, respectively. The authors have

demonstrated their success in handling several classes of uncertainty sets. The work of [65]

integrated the cutting-plane idea into a BPC framework for solving the chanced-constrained

vehicle routing problem with stochastic demands. This motivates us to develop a generic

approach of combining cutting-plane techniques with the deterministic BPC algorithm, so

as to address robust VRPs under a variety of uncertainty sets.

The distinct contributions of our work can be summarized as follows.

• We consider robust VRPs with uncertainty in customer demands and vehicle travel

times. We consider five popular classes of uncertainty sets: cardinality-constrained

sets, budget sets, factor models, ellipsoids, and discrete sets. We perform polyhedral

studies on the cardinality-constrained set and the factor model, and reduce each set

to its equivalent discrete set.

• We propose a novel BPC algorithm to address robust VRPs under demand and

travel time uncertainty. Our algorithm embeds cutting-plane techniques into the

deterministic BPC framework. In particular, we utilize a deterministic pricing engine

to generate partially robust feasible routes and then dynamically enforce robust

rounded capacity inequalities and infeasible path elimination constraints as necessary

constraints to ensure the immunity of a routing design against infeasibility caused

by variability in demands and travel times, respectively. To that end, we demonstrate

that separating these inequalities can be done efficiently for the aforementioned

uncertainty sets.

• We synopsize the existing methods from the literature that have demonstrated

success in extending BPC algorithms to the solution of robust VRPs. We then make a

detailed comparison between the literature approach and our cutting-plane approach

79

5.2 problem definition

in the following aspects: uncertainty sources, uncertainty sets, the time complexity

of pricing subproblems and the tightness of LP relaxations, so as to demonstrate the

applicability and limitations of each approach.

• We conduct comprehensive computational studies to evaluate our proposed algo-

rithm on solving robust VRPs under the aforementioned uncertainty sets. Through

computational experiments, we show that the robust cutting-plane algorithm is versa-

tile for the uncertainty sets of our interest. We compare its performance against those

from the literature and demonstrate that our proposed algorithm’s effectiveness and

efficiency over the state-of-the-art approaches.

The remainder of the chapter is organized as follows. In Section 7.2, we give a formal

problem definition. The uncertainty sets of our interest are presented in Section 5.3. In

Section 5.4, we study several polyhedral uncertainty sets from a geometric perspective and

then reduce them to their equivalent discrete sets. A brief overview of the BPC algorithm

for solving deterministic VRPs is given in Section 5.5. In Section 5.6, we summarize the

existing approaches from the literature and propose a new one for the adaption of BPC

algorithms to address robust VRPs. Section 7.5 presents computational results on the BPC

algorithm’s performance. Finally, we conclude our work in Section 7.6.

5.2 problem definition

The robust vehicle routing problem with time windows (RVRPTW) is defined on a directed

graph G = (V, A), where V := Vc ∪ {0, n + 1} denotes the set of nodes that is itself

composed of a set of customers Vc := {1, 2, ..., n}, the origin depot 0 and the destination

depot n + 1, and A := {(i, j) ∈ V ×V : i 6= j, i 6= n + 1, j 6= 0} \ {(0, n + 1)} is the set of

arcs. We consider a fleet of K identical vehicles of capacity Q ∈ R>0, initially located

at the origin depot. Every used vehicle can only leave the origin depot after time 0 and

has to return to the destination depot by time H. For convenience, we associate a time

window [ei, li] where ei = 0 and li = H with node i ∈ {0, n + 1}. Customer i ∈ Vc has

a demand qi ∈ R>0 that has to be delivered during a given time window indicated by

[ei, li]. A vehicle is allowed to wait if it arrives at customer i before ei, while arriving after

li is prohibited. Service at customer i ∈ Vc must start during the corresponding time

window and takes time of si ∈ R≥0. Let cij ∈ R≥0 and tij ∈ R≥0 represent the cost and

time for traversing arc (i, j) ∈ A by a vehicle, respectively. In this work, we consider the

demand vector q and/or the travel time vector t are uncertain and can independently take

any value from postulated uncertainty sets Q and T , respectively. A feasible vehicle route

80

5.3 uncertainty sets

r =
(
0, v1, v2, ..., vp, n + 1

)
starts from the origin depot and ends at the destination depot

such that:

(C1) each customer is visited at most once (i.e., an elementary route);

(C2) the vehicle capacity constraint is respected under any customer demand realization

q ∈ Q, that is,
p
∑

i=1
qvi ≤ Q for all q ∈ Q;

(C3) the time window constraints are satisfied under any travel time realization t ∈ T ,

that is, ai(t) ≤ li for all i ∈ {v1, v2, ..., vp, n + 1} and for all t ∈ T , where ai(t) denotes

the earliest service start time at node i under scenario t.

We call (C2) and (C3) robust capacity feasibility and robust time window feasibility conditions,

respectively. The objective is to determine the cost-effective feasible routes for vehicles to

traverse such that each customer is visited exactly once and no more than K vehicles are

used.

The considered problem is reduced to (i) a vehicle routing problem with time win-

dows (VRPTW) if |Q| = 1 and |T | = 1; (ii) a robust capacitated vehicle routing prob-

lem (RCVRP) if time window constraints are neglected.

5.3 uncertainty sets

In this section, we review uncertainty sets that are commonly used in the RO literature to

model demand and travel time uncertainty in VRP applications. In particular, we consider

five demand uncertainty sets and two travel time time uncertainty sets. These sets can

be categorized into five groups: cardinality-constraint sets, budget sets, factor models,

ellipsoidal sets and discrete sets.

5.3.1 Cardinality-constrained sets

The first and foremost set for modeling demand uncertainty is the cardinality-constrained

set, as shown in equation (5.1).

QG :=

{
q ∈ Rn : qi = q0

i + q̂iξi, ξi ∈ [0, 1] , ∀i ∈ Vc, ∑
i∈Vc

ξi ≤ Γq

}
(5.1)

Here, q0 ∈ Rn
>0, q̂ ∈ Rn

≥0 and Γq ∈ N are parameters that need to be specified by the

modeler. This uncertainty set stipulates that customer demand qi can deviate upward from

81

5.3 uncertainty sets

its nominal value q0
i by up to q̂i and that the number of positive deviations is bounded

from above by Γq. This uncertainty set was originally proposed in [37] and is also popularly

referred to as a “budgeted” or “gamma” uncertainty set. This set has been widely used to

model customer demand uncertainty in many VRP applications [62, 96, 113, 126, 136, 159].

The cardinality-constrained set is also often used to model travel time uncertainty, as

shown in equation (5.2).

TG :=

t ∈ R|A| : tij = t0
ij + t̂ijξij, ξij ∈ [0, 1] , ∀(i, j) ∈ A, ∑

(i,j)∈A
ξij ≤ Γt

 (5.2)

Here, t0 ∈ R
|A|
≥0 , t̂ ∈ R

|A|
≥0 and Γt ∈N are parameters that need to be specified by the user.

This set stipulates that the time tij for traversing arc (i, j) ∈ A can deviate upward from

the nominal value t0
ij by up to t̂ij, and the number of deviations is bounded from above by

Γt. This set has been widely used to model travel time uncertainty in VRPs [5–7, 42, 96,

113, 126].

5.3.2 Budget sets

Consider the demand uncertainty set of the following form (5.3).

QB :=

{
q ∈

[
q, q
]

: ∑
i∈Bl

qi ≤ bl , ∀l ∈ {1, 2, ..., L}
}

(5.3)

Here, q ∈ Rn
>0, q ∈ Rn

>0, Bl ⊆ Vc and bl ∈ R>0 for l ∈ {1, 2, ..., L} are parameters given by

the modeler such that (i) the customer subsets Bl are pairwise disjoint, i.e., Bl ∩ Bl′ = ∅

for all l 6= l′; (ii) bl ≤ ∑i∈Bl
q̄i for l ∈ {1, 2, ..., L}; (iii) QB 6= ∅. This uncertainty set (5.3)

stipulates that customer demand qi can deviate within an interval [q
i
, qi] and that the total

demand in every customer set Bl is bounded from above by bl . This uncertainty set was

originally proposed in the work of [82] to model demand uncertainty and then it was used

in [83, 136, 159].

82

5.3 uncertainty sets

5.3.3 Factor models

Consider the demand uncertainty set of the following form (5.4).

QF :=

{
q ∈ Rn : q = q0 + Ψξ, ξ ∈ [−1, 1]F ,

∣∣∣∣∣ F

∑
f=1

ξ f

∣∣∣∣∣ ≤ βF

}
(5.4)

Here, q0 ∈ Rn
≥0, F ∈ N, Ψ ∈ Rn×F

≥0 and β ∈ [0, 1] are parameters that need to be specified

by the modeler. This uncertainty set (5.4) stipulates that the customer demand vector q

is distributed around a nominal demand vector q0, subject to an additive disturbance of

Ψξ. This disturbance is a linear combination of independent factors ξ1, ξ2, ..., ξF that reside

in the F-dimensional hypercube. This set was originally proposed in the work of [82] to

model demand uncertainty and then it was used in [83, 159].

5.3.4 Ellipsoidal sets

Consider the demand uncertainty set of the following form (5.5).

QE :=
{

q ∈ Rn : q = q0 + Σ1/2ξ, ξTξ ≤ 1
}

, (5.5)

where Σ1/2 denotes the square root of matrix Σ. Here, q0 ∈ Rn
≥0 and Σ ∈ Sn

≥0 are parameters

that need to be specified by the modeler, and Sn
≥0 denotes the positive semi-definite cone.

This uncertainty set (5.5) stipulates that the customer demand vector q can only attain

values in an ellipsoid centered at the nominal demand vector q0. This uncertainty set was

originally proposed by [159] to model customer demand uncertainty in the context of

routing a heterogeneous fleet. We emphasize that QE is not a polyhedral set but represents

a feasible region dictated by nonlinear constraints. To see this, one can reformulate (5.5)

when Σ is not singular and obtain

QE :=
{

q ∈ Rn :
(
q− q0)> Σ−1 (q− q0) ≤ 1

}
.

5.3.5 Discrete sets

Consider the demand uncertainty set of the following form (5.6).

QD := conv
({

qd : d = 1, 2, ..., Dq
})

, (5.6)

83

5.4 polyhedral studies

where conv(·) denotes the convex hull of a finite set of points. Here, q1, q2, ..., qDq ∈ Rn
≥0 are

Dq ∈N distinct realizations of the uncertain customer demands that need to be specified

by the modeler. This uncertainty set (5.6) stipulates that the uncertain customer demand

vector can take any value from the convex hull of Dq a priori specified demand vectors. This

set was originally proposed in the work of [159] to model uncertain customer demands in

the context of routing a heterogeneous fleet.

We can define a discrete support for the travel time vector t, as shown by (5.7).

TD := conv
({

td : d = 1, 2, ..., Dt
})

. (5.7)

Here, t1, t2, ..., tDt ∈ R
|A|
≥0 are Dt ∈N distinct realizations of the uncertain travel times that

need to be specified by the modeler. The uncertainty set (5.7) was originally proposed

in [155].

5.4 polyhedral studies

In this section, we study the extreme points of polyhedral sets QG and QF and then

reduce each set to its equivalent discrete set QD. We do not consider the polyhedral set

QB because the resulting discrete set will be of an exponential size. Before proceeding, we

first present Observation 5.1, 5.2 and Definition 5.1.

Observation 5.1. If the demand uncertainty set Q is compact and convex, then Q can be replaced

by Ext(Q), where Ext(Q) denotes the set of extreme points of Q.

Proof. Clearly, Ext(Q) ⊆ Q. We only need to show that, for route r =
(
0, v1, v2, ..., vp, n + 1

)
,

if
p
∑

i=1
qvi ≤ Q for all q ∈ Ext(Q), then

p
∑

i=1
q′vi
≤ Q for all q′ ∈ Q. This is clearly true, owing

to the fact that each inequality from the latter can be obtained as a consequence of a convex

combination of the former.

Observation 5.1 simply implies that the demand uncertainty set Q can be reduced to

the set of its extreme points, Ext(Q). Note that if Q is a polytope, Ext(Q) is a finite set.

Furthermore, if Q has a favorable structure, one may be able to pinpoint Ext (Q).

Definition 5.1. A demand scenario q dominates another one q′ if

p

∑
i=1

qvi ≥
p

∑
i=1

q′vi
for any route r =

(
0, v1, v2, ..., vp, n + 1

)
.

84

5.4 polyhedral studies

The immediate implication from Definition 5.1 is that if the vehicle capacity constraint

along a route r is respected under demand scenario q, then it is also respected under any

scenarios dominated by q. It is obvious that the sufficient and necessary condition for this

dominance relationship to happen is q ≥ q′.

Observation 5.2. If the demand uncertainty set Q is compact and convex, then Q can be replaced

by Ext(Q), where Ext(Q) denotes the set of extreme points of Q that are not dominated by others

from Q.

Proof. Combining Observation 5.1 with Definition 5.1, we can claim this observation is

valid.

One can replace the travel time uncertainty set T by the set of its extreme points, Ext (T),
and define the similar dominance relationship between t and t′. For the sake of interest, we

skip this part. Now we perform polyhedral studies on QG and QF, and identify Ext(QG)

and Ext(QF).

Proposition 5.1. Ext(QG) is QD with at most (n
Γq) scenarios.

Proof. For the cardinality-constrained set QG, the demand vector q is resulted from an

affine mapping of ξ, that is, q = q0 +diag (q̂1, q̂2, ..., q̂n) ξ, where diag (·) denotes a diagonal

matrix. In order to locate the extreme points of QG, we consider the following polyhedral

set

ΞG :=

{
ξ ∈ Rn : 0 ≤ ξi ≤ 1, ∀i ∈ {1, 2, ..., n} ,

n

∑
i=1

ξi ≤ Γq

}
.

In what follows, we aim to identify all the extreme points of the set ΞG via polyhedral

theory1. Among them, we neglect those points which will result in dominated demand

scenarios, using the observation that q ≥ q′ whenever ξ ≥ ξ ′ since q̂1, q̂2, ..., q̂n are all

non-negative.

The set ΞG is defined by n pairs of variable-bounding inequalities and an extra budget

constraint. It is obvious that the coefficient vectors for any n inequalities are linearly

independent. Let ξ∗ denote an extreme point of ΞG. We can claim that the budget constraint

must be active at the extreme points of our interest. Otherwise, one can always increase

some elements of ξ∗ that are currently binding at their lower bounds until the budget

constraint becomes active. As a result, we have (i) for all but one i ∈ {1, 2, ..., n}, one

direction of the bounding inequalities −1 ≤ ξi ≤ 1 is chosen to be active at ξ∗ (e.g.,

1 For a polyhedral set X :=
{

x ∈ Rn : a>i x ≤ bi ∀i ∈ I
}

, a point x∗ ∈ X is an extreme point if and only if

among all inequalities that are active at x∗ (i.e., a>i x∗ = bi), there are n linearly independent a′is.

85

5.4 polyhedral studies

either ξ∗i = −1 or ξ∗i = 1); (ii)
n
∑

i=1
ξ∗i = Γq. This yields an extreme point ξ∗ with its Γq

elements being 1 and others being 0. Considering all permutations, we have (n
Γq) unique

extreme points ξ∗, each of them having Γq 1′s and (n− Γq) 0′s as its elements. Let Ext (ΞG)

denote the set of extreme points. Hence, the polytope QG can be reduced to the subset

of its extreme points, each of them resulting from an affine mapping of an extreme point

ξ ∈ Ext (ΞG)
2. Therefore, we can conclude that Ext (QG) is a discrete set QD with at most

(n
Γq) demand scenarios.

Proposition 5.2. Ext(QF) is QD with at most (F
κ∗+1) scenarios, where κ∗ = (F− bβFc − 1)/2

if F− bβFc is an odd number and κ∗ = (F− bβFc − 2)/2 otherwise.

Proof. It is easy to show that Ext(QF) is a singleton when β ∈ {0, 1}. Now we consider

β ∈ (0, 1). In the definition of QF, the demand vector q is resulted from an affine mapping

of ξ, that is, q = q0 + Ψξ. In order to locate the extreme points of QF, we consider the

following polyhedral set

ΞF :=

{
ξ ∈ RF : −1 ≤ ξ f ≤ 1 ∀ f ∈ {1, 2, ..., F} ,−βF ≤

F

∑
f=1

ξ f ≤ βF

}
.

In what follows, we aim to identify all the extreme points of the set ΞF as we did for ΞG.

Among them, we disregard those points which will result in dominated demand scenarios,

using the observation that q ≥ q′ whenever ξ ≥ ξ ′ since every entry of the matrix Ψ is

non-negative.

The set ΞF is defined by F + 1 pairs of linear inequalities: F pairs of variable-bounding

inequalities and one pair of summation-bounding constraints. It is obvious that the

coefficient vectors for any F pairs of inequalities are linearly independent. Since only

non-dominated demand scenarios are of interest, we just need to focus on the budget

constraint,
F
∑

f=1
ξ f ≤ βF. Furthermore, we can claim that the budget constraint must be

active at the extreme points of our interest. Otherwise, one can always increase some

elements of ξ∗ that are currently binding at their lower bounds until the budget constraint

becomes active. Let ξ∗ denote an extreme point of ΞF, hence we have (i) for all but one

f ∈ {1, 2, ..., F}, one direction of the bounding inequalities −1 ≤ ξ f ≤ 1 is chosen to be

active at ξ∗ (e.g., either ξ∗f = −1 or ξ∗f = 1); (ii)
F
∑

f=1
ξ∗f = βF. Let ξ∗f ′ be the element that is

not chosen to be binding at bounds and let κ denote the number of ξ∗f
′s which are fixed at

their lower bounds. We consider the following two cases:

2 Each extreme point of QG must correspond to at least one extreme point of ΞG.

86

5.5 branch-price-and-cut

• If F− bβFc is an odd number, then ξ∗f ′ = βF− bβFc and other κ + bβFc elements of

ξ∗ are at their upper bounds;

• If F − bβFc is an even number, then ξ∗f ′ = βF − bβFc − 1 and other κ + bβFc+ 1

elements of ξ∗ are at their upper bounds.

Correspondingly, κ = (F− bβFc − 1) /2 in the former case, and κ = (F− bβFc − 2) /2 in

the latter. Consider all permutations, we have at most (F
κ∗+1) extreme points ξ∗, where

κ∗ denotes the value of κ in the applicable case. Let Ext (ΞF) denote the set of identified

extreme points. Hence, the polytope QF can be reduced to the subset of its extreme

points, each of them resulting from an affine mapping of an extreme point ξ ∈ Ext (ΞF)
3.

Therefore, we can conclude that Ext(QF) is a discrete set QD with at most (F
κ∗+1) demand

scenarios.

Proposition 5.1 implies that, in theory, QG can be reduced to an equivalent discrete

set. However, the resulting set has a size that increases polynomially with the number of

customers n, such that the reduction procedure will become impractical very quickly when

n increases. In contrast, Proposition 5.2 indicates that the equivalent discrete set for QF has

a size that does not depend on n but on the number of factors F. Hence, if F is small, the

equivalent set QD will be of a manageable size. This implies that, one can convert a robust

VRP with the demand uncertainty set QF to the one with an equivalent discrete set QD.

5.5 branch-price-and-cut

Before we present the solution approaches to the RVRPTW, we first discuss the state-of-

the-art exact algorithm for solving its deterministic counterpart, VRPTW. The BPC method

has been gradually accepted as the most efficient exact approach for solving the VRPTW

and its variants. In this section, we only highlight the most important ingredients of the

BPC algorithm and refer readers to [131, 135] for details.

5.5.1 Set Partitioning Model

Let R denote the set of feasible routes for a VRPTW and let cr denote the cost of traversing

route r ∈ R by a vehicle. Let the parameter δir denote the number of times customer i ∈ Vc

is covered in route r ∈ R. Let λr be a binary variable indicating whether route r ∈ R

3 Each extreme point of QF must correspond to at least one extreme point of ΞF.

87

5.5 branch-price-and-cut

is selected in the optimal solution. The VRPTW can be formulated as the following set

partitioning model (5.8) - (5.11).

min
λr

∑
r∈R

crλr (5.8)

s.t. ∑
r∈R

δirλr = 1 ∀i ∈ Vc (5.9)

∑
r∈R

λr ≤ K (5.10)

λr ∈ {0, 1} ∀r ∈ R (5.11)

The objective function (5.8) is to minimize the total cost for selected routes. The degree

constraints (5.9) guarantee that every customer is served exactly once and the fleet size

constraint (5.10) enforces that at most K vehicles are used. Constraints (5.11) are simply to

enforce binarity of variables. We emphasize that both capacity feasibility and time window

feasibility are ensured via the definition of “feasible routes”.

It is well-known that one can relax the feasible space of the above set partitioning model

by including non-elementary vehicle routes (i.e., relaxing condition C1) in R without

sacrificing optimality. In particular, we replace R with the set of so-called ng-routes that

are not necessarily elementary [26]. In the reminder of our chapter, we use R to denote

the set of ng-feasible routes. Since there exists exponentially many ng-feasible routes,

the formulation (5.8) - (5.11) is a mixed-integer linear programming model with a huge

number of binary variables. To address this issue, the LP relaxation of an exponential size

at each node of the branch-and-bound tree will be tackled via column generation [119]. Valid

inequalities are dynamically separated and added so as to strengthen the LP relaxations,

thus the set-partitioning model is solved via the branch-price-and-cut algorithm.

5.5.2 A Branch-Price-and-Cut Algorithm

In the BPC algorithm, the LP relaxations at every node in the branch-and-bound tree

are solved via column generation, while cutting planes are added to strengthen the

relaxations. We first replace the binarity constraints (5.11) in the set partitioning model

by non-negativity constraints and obtain the LP relaxation, which is usually called a

master problem. The master problem has a huge number of variables as exponentially many

feasible routes are typically available. Generating all of these routes to explicitly define

the master problem is obviously impractical, thus we resort to column generation. In our

88

5.5 branch-price-and-cut

context, columns denote ng-feasible routes and we will use them interchangeably. We first

consider a restricted master problem (RMP) defined by a subset of ng-routes R̄ ⊆ R. After

optimizing the RMP, columns with negative reduced costs will be appended to R̄ and

the resulting RMP is reoptimized. This procedure iterates until no such columns exist. In

that case, we say that column generation converges and the master problem has achieved

its optimality. If the solution to the master problem is fractional, we then turn to valid

inequalities or branching. In particular, rounded capacity inequalities [110] and limited-memory

subset row cuts [99, 131, 133] are often considered to tighten the LP relaxations; branching

on the number of used vehicles is usually prioritized over branching on edges [71, 146].

Readers are referred to Chapter 4 for a flowchart representation of the BPC algorithm.

5.5.3 Pricing Subproblems

After the RMP is solved, we need to check whether it is necessary to enlarge R̄ by including

some neglected ng-feasible routes that may potentially improve the RMP’s objective value.

This entails identifying columns with negative reduced costs, which is achieved by solving

a pricing subproblem.

In our context, the pricing subproblem can be modeled as a shortest path problem with

resource constraints (SPPRC) [138]. The SPPRC is defined on a directed graph G = (V, A).

We associate demand qi, capacity Q and time window [ei, li] with vertex i ∈ V. Note that

qi = 0 if vertex i denotes a depot. Associated with arc (i, j) ∈ A are the cost c̄ij, travel

time tij. The cost c̄ij is obtained by properly modifying cij in order to account for the

contribution from current dual values to constraints (5.9) and (5.10). While arc (i, j) ∈ A is

traversed by a path, time resource
(
si + tij

)
and capacity resource qj are consumed. The

resource accumulated consumption until a vertex visited along a path should not exceed

its limit. The goal is to determine the minimum-cost path among all paths that start from

the vertex 0 and end at the vertex n + 1 such that resource constraints are respected.

It is well-known that the SPPRC is weakly NP-hard [68]. The most successful solution

approach is a dynamic programming method called the labeling algorithm, which has a pseudo-

polynomial time complexity [138]. The labeling algorithm works as follows. We associate

an ng-feasible partial path P with a label L(P) := (pred(P), c̄(P), v(P), Π(P), d(P), a(P))

that stores a pointer to its predecessor label, reduced cost, end vertex, a set of forbidden

vertices, total vehicle load and earliest time to start servicing. We initialize the labeling

algorithm by storing the first label (null, 0, 0, ∅, 0, 0) into a pool. Choosing a label L(P)

89

5.5 branch-price-and-cut

from the pool, we attempt to extend it to vertex j ∈ V \ Π(P) with (v(P), j) ∈ A for

generating a new label P′, using the following extension procedure:

pred(P′)← L(P), (5.12)

c̄(P′)← c̄(P) + c̄v(P)j, (5.13)

v(P′)← j, (5.14)

Π(P′)← {Π(P) ∩ NG(j)} ∪ {j}, (5.15)

d(P′)← d(P) + qj, (5.16)

a(P′)← max
{

ej, a(P) + sv(P) + tv(P)j

}
, (5.17)

where NG(j) ⊆ Vc denote the ng-set for node j. Usually, the ng-set is chosen to be the set

of nearest neighbors as [26] suggested. Before storing label L(P′) to the pool, we check

whether this is a feasible extension, namely, whether the resource consumption constraints

are respected, i.e., d(P′) ≤ Q and a(P′) ≤ lj. If that is the case, we then obtain a new

ng-feasible label and store it in the pool. When no more label extension can be made, we

collect all paths that end at vertex n + 1 and return those with negative reduced costs.

To accelerate the labeling algorithm, it is crucial to utilize the dominance relationship to

avoid some label extensions. Before storing a new ng-feasible label, we first check whether

it dominates or is dominated by existing labels stored in the pool. We say that label L(P1)

dominates another label L(P2) if for any feasible path extended from P2, we can always

find a feasible path extension from P1 and this extended path is not more costly. Sufficient

conditions for this are given by (5.18) - (5.20).

c̄(P1) ≤ c̄(P2), (5.18)

v(P1) = v(P2), (5.19)

Π(P1) ⊆ Π(P2), (5.20)

d(P1) ≤ d(P2), (5.21)

a(P1) ≤ a(P2). (5.22)

A newly generated ng-feasible label L(P) is saved only if it is not dominated, and ex-

isting labels that are dominated by L(P) will be removed from the pool. Since checking

dominance relationship is computationally expensive, we do not perform it too aggres-

sively. Usually, labels of proximity in resource consumption levels are saved into a bucket

and dominance check is only applied among labels residing in the same or neighboring

buckets[131, 147].

90

5.6 solution approaches

Whenever a pricing subproblem is solved exactly, one can always obtain a Lagrangian

dual bound [119]. As [25, 56] suggested, when the primal-dual gap becomes small, one

can enumerate all elementary columns with reduced costs less than the primal-dual gap,

since only these columns may contribute to a solution better than the incumbent. This step

is called route enumeration. It works in a similar fashion as the aforementioned labeling

algorithm except that: (i) the extension rule (5.15) is updated to be Π(P′)← Π(P) ∪ {j},
so as to produce elementary routes; (ii) sufficient conditions (5.18) and (5.20) are replaced

by (5.23) and (5.24), respectively.

c(P1) ≤ c(P2), (5.23)

Π(P1) = Π(P2), (5.24)

where c(P) denote the actual monetary cost for traversing path P.

In order to expedite the labeling algorithm, various advanced pricing techniques such as

heuristic pricing [77], bidirectional labeling [142], and variable fixing [98], among others,

have been proposed. If strengthening inequalities are incorporated to the RMP, then proper

modifications have to be made when solving the SPPRC [131]. To further expedite the BPC

algorithm, primal heuristics [148], stabilized column generation [134], dynamic ng-set [143],

and strong branching [147] are also considered. We refer readers to [135] for details.

5.6 solution approaches

In this section, we first review existing approaches in the literature for adapting the BPC

algorithm to solve robust VRPs under uncertainty; we then propose a new approach

that can tackle these problems under various types of uncertainty sets we discussed

in Section 5.3. These approaches can be categorized into two groups: a robust pricing

approach and a robust cutting-plane approach. The robust pricing approach aims to ensure

robust feasibility of routing designs in pricing subproblems, while the robust cutting-plane

approach seeks for robust feasibility via dynamically enforcing necessary constraints in

master problems. Clearly, robust feasibility of a solution is warranted from two intrinsically

different perspectives. For notation convenience, let R denote the set of robust ng-feasible

routes with respect to any realization (q, t) ∈ Q × T . That is, for route r ∈ R, robust

feasibility conditions (C2) and (C3) are satisfied.

91

5.6 solution approaches

5.6.1 Robust Pricing Approach

The robust pricing approach is based on the set partitioning model (5.8) - (5.11) but with a

set of robust ng-feasible routes R, rather than the set of deterministic ng-feasible routes

R. Therefore, the BPC algorithm remains the same except that, in order to dynamically

introduce robust ng-feasible routes, the resulting pricing subproblem becomes a robust

shortest path problem with resource constraints. Since robust feasibility of optimal routes

is ensured when these routes were generated in pricing subproblems, we call this a

robust pricing approach. We review two methods proposed in the literature that have

demonstrated success in solving the RSPPRC with a few uncertainty sets from Section 5.3.

5.6.1.1 Direct Pricing

As [11] pointed out, the RSPPRC under resource uncertainty is strongly NP-hard for

arbitrary uncertainty sets. In this section, we first focus on cardinality-constrained un-

certainty sets QG and TG. To tackle the RVRPTW in which the uncertain demand vector

q and uncertain travel time vector t fall into respective cardinality-constrained sets QG

and TG, the authors of [126] proposed a modified labeling algorithm to directly solve the

resulting RSPPRC. Hence, we call this a direct pricing method. Their proposed labeling

procedure is similar to its deterministic counterpart we discussed in Section 5.5.3 but with

the following modifications. First, for a given path P, the labeling notation is redefined as

L(P) := (pred(P), c̄(P), v(P), Π(P), d0(P), d1(P), ..., dΓq(P), a0(P), a1(P), ..., aΓt(P)), where

the first four terms keep their same meanings as before while dγ(P) for γ ∈ {0, 1, ..., Γq}
denotes the the maximum total vehicle load along path P when up to γ customers’ de-

mands attain their maximum values, and aγ(P) for γ ∈
{

0, 1, ..., Γt} denotes the worst-case

earliest time to start servicing node i, considering that up to γ travel times attain their

maximum values. Second, when extending path P to node j for creating a new path P′,

the extension procedures (5.16) - (5.17) are replaced by (5.25) - (5.28).

d0(P′)← d0(P) + qj, (5.25)

dγ(P′)← max{dγ(P) + qj, dγ−1(P) + qj + q̂j} ∀γ ∈ {1, 2, ..., Γq} ,

(5.26)

a0(P′)← max
{

ej, a0(P) + sv(P) + tv(P)j

}
, (5.27)

aγ(P′)← max
{

ej, max
{

aγ(P), aγ−1(P) + t̂v(P)j

}
+ sv(P) + tv(P)j

}
∀γ ∈

{
1, 2, ..., Γt} .

(5.28)

92

5.6 solution approaches

Hence, the resulting label P′ can be accepted as a feasible extension only if dΓq(P′) ≤ Q

and aΓt(P′) ≤ lj. Last, sufficient conditions (5.21) and (5.22) for checking dominance should

be replaced by conditions (5.29) and (5.30), respectively.

dγ(P1) ≤ dγ(P2) ∀γ ∈ {0, 1, ..., Γq}, (5.29)

aγ(P1) ≤ aγ(P2) ∀γ ∈ {0, 1, ..., Γt}. (5.30)

The direct pricing method could effectively solve the RSPPRC due to the following

observation: for demand uncertainty set QG (travel time uncertainty set TG), one can

efficiently compute the maximum vehicle load (worst-case earliest service start time) along

a path by introducing Γq (Γt) extra relevant resources into a deterministic SPPRC and

keeping track of their consumption. In particular, every path-extending operation can

be achieved in O(Γq + Γt) time. The immediate implication from dominance rules (5.29)

and (5.30) is that when compared with the deterministic case, path P1 is “less likely” to

dominate path P2 due to more restrictive sufficient conditions. As a result, more labels will

be kept and processed in the modified labeling algorithm, causing an increase in its time

complexity.

One can simply apply the direct pricing idea when the demand/travel time vector falls

into the discrete support QD/TD. Correspondingly, the pricing subproblem entails the

enforcement of
(

Dq + Dt) resource constraints. Similarly, the path-extending operation

could be achieved in O
(

Dq + Dt) time. Meanwhile, as we have pointed out, we will expect

a time complexity increase of the modified labeling algorithm. This implies that for a

discrete set QD that consists of a large number of scenarios, solving the corresponding

RSPPRC via a direct pricing method will become prohibitive.

5.6.1.2 Transformed Pricing

In this section, we consider that the travel time vector t is constant (i.e., |T | = 1) and that

the customer demand vector q can take any value from a non-empty knapsack set, QK,

given by (5.31).

QK :=

{
q ∈

[
q, q
]

: ∑
i∈Vc

aliqi ≤ bl , ∀l ∈ {1, 2, ..., L}
}

, (5.31)

where ali ≥ 0 for i ∈ Vc and l ∈ {1, 2, ..., L}. Note that this knapsack set is a more

generalized uncertainty set and can be reduced to (i) QG when q = q0, q = q0 + q̂, L =

1, ali = 1/q̂i, and bl = Γq + ∑i∈Vc
q0

i /q̂i; (ii) QB when ali = 1 if i ∈ Bl and 0 otherwise.

93

5.6 solution approaches

The work of [136] was focused on solving a robust VRP with knapsack uncertainty of

form (5.31) via the BPC approach and the authors presented the following Proposition 5.3.

Proposition 5.3. If Q = QK and |T | = 1, then solving the RSPPRC is equivalent to solving at

most
L
∑

l=0
(L

l)(
n

L−l) deterministic SPPRCs.

Proof. For an elementary route r ∈ R, robust capacity feasibility condition (C2) is satisfied,

as shown by (5.32).

max
q∈QK

∑
i∈Vc

δirqi ≤ Q (5.32)

Plugging in set QK and replacing q by q + η, where 0 ≤ η ≤ q− q, we expand the left

hand side of inequality (5.32) into an LP problem (5.33).

max
η≥0

∑
i∈Vc

δir

(
q

i
+ ηi

)
s.t. ηi ≤ qi − q

i
∀i ∈ Vc

∑
i∈Vc

aliηi ≤ bl − ∑
i∈Vc

aliqi
∀l ∈ {1, 2, ..., L}

(5.33)

Since QK is a nonempty and bounded set, strong duality holds for problem (5.33). We

introduce dual variables z ∈ Rn
≥0 and θ ∈ RL

≥0 and obtain its LP dual, denote by (5.34).

min
z≥0,θ≥0

∑
i∈Vc

δirq
i
+ ∑

i∈Vc

(
qi − q

i

)
zi +

L

∑
l=1

(
bl − ∑

i∈Vc

aliqi

)
θl

s.t. zi +
L

∑
l=1

aliθl ≥ δir ∀i ∈ Vc

(5.34)

Reformulating problem (5.34) by eliminating zi and considering δir ∈ {0, 1}, ali ≥ 0, we

obtain an equivalent problem (5.35).

min
θ≥0

{
∑

i∈Vc

(
q

i
+
(

qi − q
i

)
max

{
0, 1−

L

∑
l=1

aliθl

})
δir +

L

∑
l=1

(
bl − ∑

i∈Vc

aliqi

)
θl

}
(5.35)

Let f (θ; r) denote the objective function of problem (5.35). A key observation is that f (θ; r)

is a piece-wise linear function on domain RL
≥0; thus f (θ; r) achieves its minimum at some

breaking point θ′ ∈ RL
≥0. Let Θ ⊆ RL

≥0 denote the set of breaking points, each of which

94

5.6 solution approaches

can be identified as a solution to a subsystem of L linearly independent equations among

the following L + n equations:

θl = 0 ∀l ∈ {1, 2, ..., L} ,

1−
L

∑
l=1

aliθl = 0 ∀i ∈ Vc.

Note that |Θ| ≤
L
∑

l=0
(L

l)(
n

L−l). For θ ∈ Θ, let Rθ denote a set of routes such that for any route

r ∈ Rθ : (i) ng-feasibility is satisfied 4; (ii) time window constraints are respected along this

route; (iii) f (θ; r) ≤ Q 5. Then one can easily show R = ∪θ∈ΘRθ .

Proposition 5.3 indicates that solving a RSPPRC can be transformed into solving polyno-

mially many deterministic SPPRCs 6. Hence, we call this a transformed pricing method. We

make a few remarks here. First, the resulting SPPRC has roughly the same time complexity

as the one we discussed in Section 5.5.3, since condition (iii) for the definition of Rθ is

enforced exactly like a capacity constraint. Second, the number of transformed SPPRCs

increases polynomially but not mildly with the number of customers n. If the demand

vector q is supported on a general knapsack support QK, solving the RSPPRC via the

transformed approach will still be impractical when n increases. Third, for uncertainty

sets of our interest, if QK = QG, |Θ| ≤ n7; if QK = QB, |Θ| ≤ 2L. This indicates that the

RSPPRC under QG/QB is weakly NP-hard and that one can efficiently solve the relevant

RSPPRC via the transformed pricing method, as [118, 136] did.

5.6.2 Robust Cutting-Plane Approach

Another perspective to ensure robust feasibility of routing designs is through cutting

planes. Let Q̃ ⊆ Q and T̃ ⊆ T denote finite sets, respectively. Let R̃ denote the set of

4 Relaxing the elementary condition (C1) is again permitted due to degree constraints (5.9).
5 f (θ; r) ≤ Q can be properly mapped as a capacity constraint in the resulting SPPRC defined by θ. In particular,

a demand of
(

q
i
+
(

qi − q
i

)
max

{
0, 1−

L
∑

l=1
aliθl

})
is assigned to customer i ∈ Vc and the vehicle capacity

becomes Q−
L
∑

l=1

(
bl − ∑

i∈Vc

aliqi

)
θl .

6 The number of deterministic SPPRCs that have to be solved might be reduced, e.g., one can deduce that
Rθ′ = ∅ for some θ′ ∈ Θ. Readers are referred to [136] for details.

7 This bound can be further tightened to be
⌈
(n− Γq) /2

⌉
+ 1, see [114]

95

5.6 solution approaches

ng-feasible routes with respected to any realization (q, t) ∈ Q̃ × T̃ . That is, for route

r =
{

0, v1, v2, ..., vp, n + 1
}
∈ R̃:

p

∑
i=1

qvi ≤ Q for all q ∈ Q̃,

ai(t) ≤ li for all i ∈ {v1, v2, ..., vp, n + 1} and for all t ∈ T̃ ,

where ai(t) denotes the earliest service start time at node i under scenario t. Based on

this definition, we have two observations: (i) R ⊆ R̃, that is, all robust feasible routes

are included within R̃; (ii) since capacity feasibility and time window feasibility are only

ensured against a subset of anticipated scenarios, robust feasibility conditions (C2) and (C3)

are not guaranteed yet. In order to forbid the selection of routes r ∈ R̃ \ R in the optimal

solution, we rely on the enforcement of necessary constraints in the master problem. In

particular, we utilize robust rounded capacity inequalities (robust RCI) and infeasible path

elimination constraints (IPEC) to ensure robust capacity feasibility and robust time window

feasibility, respectively. Since the number of necessary constraints is exponentially many,

these constraints are separated and introduced dynamically at every branch-and-bound

node. Hence, we call this a robust cutting-plane approach. We emphasize that adding these

necessary constraints to a RMP will not complicate the solution of pricing subproblems

because their corresponding dual values can be properly accommodated into the modified

arc cost in the SPPRC. Furthermore, these dual values will progressively guide the pricing

engine to generate robust feasible routes. To summarize, our BPC algorithm starts with

a subset of vehicle routes (not necessarily robust feasible) and iteratively introduces

some neglected routes via solving the deterministic SPPRC under finitely many resource

constraints, each corresponding to an element from Q̃ or T̃ ; when column generation

converges, IPEC and robust RCI are separated and added to prohibit accepting solutions

that are not robust feasible. Next, we will discuss two key steps: (i) the choice of Q̃ and T̃ ;

(ii) separating IPEC and robust RCI.

5.6.2.1 Choosing Q̃ and T̃

Since both Q and T are compact and convex sets, we can replace them by Ext (Q) and

Ext (T), respectively. Thus, our goal is to choose Q̃ ⊆ Ext (Q)8 and T̃ ⊆ Ext (T). When Q̃
and T̃ contain more scenarios, routes generated in pricing subproblems are “more likely”

to be robust feasible, and consequently less effort will be made to separate necessary

8 One may be only interested in Q̃ ⊆ Ext (Q). However, given an extreme point q ∈ Ext (Q), it is generally not
convenient to determine whether q is dominated by any other scenarios from Ext (Q) or not.

96

5.6 solution approaches

constraints; however, pricing subproblems correspondingly become computationally more

expensive since the time complexity of an SPPRC generally increases with the number of

resource constraints that are enforced. Next, we encapsulate a proper number of selected

demand and travel time scenarios (denoted by NSq and NSt) into Q̃ and T̃ , respectively,

so as to balance the efforts of solving pricing subproblems and separating necessary

constraints.

• QG. We use the k-means clustering method to partition the customer set Vc into NSq

clusters based on their coordinates. Customers from each cluster are sorted by their

worst-case demands in descending order. Assign ξi = 1 to the first Γq customers

from a selected cluster and ξi = 0 to other customers, yielding a demand scenario q∗.

This scenario denotes the case where only the demands for Γq geographically close

customers achieve their maximum upward deviations and other demands are kept

nominal. Clearly, q∗ ∈ Ext (QE). Let Q̃ be a set of such demand scenarios.

• QB. We sort customers from each partitioned set Bl by their worst-case demands

in descending order. We fix the demands for higher-ranking and lower-ranking

customers at their upper and lower bounds, respectively, and allow exactly one

customer demand to take a value within its bounds, such that the the budget

constraint is active. This yields a scenario q∗. One can easily show that q∗ ∈ Ext (QB).

Taking the reverse direction, we fix the demands for lower-ranking and higher-

ranking customers at their upper and lower bounds, respectively. Considering all

possible combinations among different customer subsets Bl , we have in total 2L

scenarios. We sort them, in descending order, by the number of customer demands

that have achieved their upper bounds. Let Q̃ be a set of the first NSq scenarios.

• QF. In the proof of Proposition 5.2, we have identified the set Ext (QF). We sort the

elements from Ext (QF) by total customer demands in descending order. Let Q̃ be

the set of the first NSq scenarios.

• QE. We consider the following optimization problem: the objective is to maximize a

weighted sum of customer demands qi that is subject to q ∈ QE ∩
{

q ∈ Rn : q ≥ q0}.

We choose the corresponding weight for qi to be 1/q0
i . Optimizing this problem will

yield a extreme demand vector q∗ that dominates q0. Let Q̃ be a singleton with q∗.

Hence, NSq = 1.

• QD. We first eliminate from QD any scenarios that are either dominated or not

extreme points (e.g., check each one via solving a linear program) and then sort the

97

5.6 solution approaches

remaining scenarios by the total customer demands in descending order. Let Q̃ be a

set of the first NSq scenarios. Clearly, Q̃ ⊆ Ext (QD).

• TG. We assign ξ0j = 1 to the first Γt minimum-cost arcs (0, j) ∈ A such that t0
0j + t̂0j >

ej, and assign ξij = 0 to the remaining arcs, yielding a travel time vector t∗. This

represents the case where the travel times for some out-going arcs from the depot

achieve their maximum upward deviations and others are kept nominal. Clearly,

t∗ ∈ Ext (TG). Let T be a singleton with t∗. Hence, NSt = 1.

• TD. We first eliminate from TD any scenarios that are either dominated9 or not

extreme points and then sort the remaining scenarios by the total arc traversal time

in descending order. Let T̃ be a set of the first NSt scenarios. Clearly, T̃ ⊆ Ext (TD).

We can now empirically adjust the time complexity of pricing subproblems by simply

controlling NSq and NSt, the number of resource constraints that have to be enforced in the

pricing step.

5.6.2.2 Robust Rounded Capacity Inequalities

For notional convenience, we introduce arc-based variable xij for (i, j) ∈ A and relate it to

route-based variables λr, as shown by (5.36).

xij = ∑
r∈R̃

τijrλr ∀(i, j) ∈ A (5.36)

To ensure robust feasibility of selected routes against demand uncertainty, the authors

of [82, 159] proposed to enforce robust RCI (as shown by (5.37)) in a branch-and-cut

framework.

∑
i/∈S

∑
j∈S

xij ≥
⌈

1
Q

max
q∈Q ∑

i∈S
qi

⌉
∀S ⊆ Vc (5.37)

In this work, we adopt the same idea but enforce it in the context of BPC. The robust

RCI for robust vehicle routing are natural extensions of classic RCI for deterministic

VRPs, hence their validity is obvious. We now focus on the separation routine. When x̄ij

variables are integral, one can simply loop through all vehicle routes and check whether

robust capacity feasibility is satisfied or not. In contrast, the exact separation of robust

RCI at a fractional solution x̄ is a NP-complete problem, since separating its deterministic

9 We use the fact that t dominates t′ if t ≥ t′.

98

5.6 solution approaches

counterpart itself is NP-complete [20]. Hence, solving the separation problem exactly is

computationally prohibitive and we resort to heuristic methods.

The work of [82] proposed a tabu search algorithm to identify violated robust RCI when

Q = QB,QF. The authors of [159] extended this to all demand uncertainty sets presented

in Section 5.3. In this work, we adopt the separation routine from [159]. In particular, the

separation procedure starts with a randomly selected customer S ⊆ Vc and then iteratively

perturbs this set through a sequence of operations in which individual customers are

added or removed. In each iteration, the separation algorithm greedily chooses a customer

whose inclusion or removal maximizes the slack of the robust RCI (5.37). Computing

this slack requires the computation of the right hand side which, in turn, requires the

efficient evaluation of the worst-case load over the current candidate set of customers S,

i.e., max
q∈Q

∑
i∈S

qi. Generally speaking, maximizing a linear objective over a convex set has

a polynomial time complexity [34]. Fortunately, for those convex uncertainty sets of our

interest, this problem can be optimized analytically in roughly linear time by exploiting

the structure of a given uncertainty set. Furthermore, since the set S is resulted from

perturbing another set S′ by adding or removing a single customer, we can then apply

a quick incremental or decremental update on the worst-case load for S′ and obtain the

counterpart for S, which is more efficient than computing it from scratch. Table 5.1 presents

the closed-form expressions, time and storage complexities for computing the worst-case

load of a given customer set S under each of aforementioned demand uncertainty sets

in Section 5.3. Our algorithm also maintains a tabu lists of customers that have recently

been added or removed to avoid cycling and to escape local optima. Readers are referred

to [159] for more implementation details.

We remark that when the travel time vector t is deterministic, i.e., |T | = 1, sufficient

conditions (5.19) and (5.21) - (5.24) for claiming dominance of path P1 over path P2 during

route enumeration is still valid10. Their certification comes from the fact that if P1 dominates

P2, then both paths cover exactly the same customer set (i.e., condition (5.24)) and hence

the vehicle loads are equal under any demand realization q ∈ Q. After route enumeration,

only those robust feasible routes will be kept for consideration.

5.6.2.3 Infeasible Path Elimination Constraints

In applications of routing with time windows, infeasible path elimination constraints [101]

are often introduced to forbid routes along which time window conditions are overridden.

10 This was also pointed out in [135], in which capacity inequalities were enforced as necessary constraints when
solving the VRPTW via a BPC algorithm.

99

5.6 solution approaches

Ta
bl

e
5
.1

:C
lo

se
d-

fo
rm

ex
pr

es
si

on
s,

ti
m

e
an

d
st

or
ag

e
co

m
pl

ex
it

ie
s

fo
r

co
m

pu
ti

ng
th

e
w

or
st

-c
as

e
lo

ad
of

a
ve

hi
cl

e
ro

ut
e

Q
C

lo
se

d-
fo

rm
ex

pr
es

si
on

fo
r

m
ax

q∈
Q

∑ i∈
S

q i
U

pd
at

e

Ti
m

e
St

or
ag

e

Q
G

∑ i∈
S

q0 i
+

m
in
{|

S|
,Γ

q }
∑ l=

1
q̂ g

l,

w
he

re
g 1

,.
..,

g |
S|

re
pr

es
en

ts
an

or
d

er
in

g
of

th
e

cu
st

om
er

s
in

S
su

ch
th

at
q̂ g

1
≥

...
≥

q̂ g
|S
|

O
(l

og
|S
|)

O
(n
)

Q
B

∑ i∈
S

q̄ i
−

L ∑ l=
1

m
ax

{ 0,
∑

i∈
S∩

B l

(q̄ i
−

q i) −(b l
−

∑ i∈
B l

q i)}
O

(1
)

O
(L
)

Q
F

∑ i∈
S

q0 i
−

m
in

{ F ∑ f=
1

∑ i∈
S

Ψ
if
−

λ
+

β
F
|λ
|:

λ
∈
{ 0,

∑ i∈
S

Ψ
if

l+
,

∑ i∈
S

Ψ
if

l−

}} ,

w
he

re
f 1

,.
..,

f F
re

pr
es

en
ts

an
or

de
ri

ng
of

th
e

fa
ct

or
s

su
ch

th
at

∑ i∈
S

Ψ
if

1
≥

...
≥

∑ i∈
S

Ψ
if

F
,

an
d

l+
=
d(

1
+

β
)F

/
2e

,l
−
=

m
ax
{1

,d
(1
−

β
)F

/
2e
}

O
(F

lo
g

F)
O

(F
)

Q
E

∑ i∈
S

q0 i
+

∥ ∥ ∥ ∥∑ i∈
S

Σ
1/

2
i

∥ ∥ ∥ ∥ 2
w

he
re

Σ
1/

2
i

de
no

te
s

th
e

ith
co

lu
m

n
of

Σ
1/

2
an

d
||
·|
| 2

de
no

te
s

th
e

l 2
-n

or
m

of
a

ve
ct

or

O
(n
)

O
(n
)

Q
D

m
ax
{ ∑ i∈

S
qd i

:d
∈
{1

,2
,.

..,
D

q }
}

O
(D

q)
O

(D
q)

100

5.6 solution approaches

Let a sequence of vertices P =
(
v1, v2, ..., vp

)
denote an elementary path, and let AP ⊆ A

denote the set of arcs that are traversed by path P. Note that path P does not necessarily

start or end at a depot. Let P denote the set of paths that are deemed infeasible with

respect to time window constraints. One can simply forbid these paths via enforcing IPEC

given by (5.38).

∑
(i,j)∈AP

xij ≤ |AP| − 1 ∀P ∈ P (5.38)

It is well-known that one can lift IPEC to tournament inequalities [19], due to degree

constraints (5.9). In particular, we replace the subscript of the summation with (i, j) ∈
tr.cl.(P), where tr.cl.(P) denotes the transitive closure of path P. This so-called tournament

form of the inequality is stronger than the version presented above, hence we always do so

in the remainder of this chapter. To tackle a RVRPTW, the work of [6] applied IPEC in the

branch-and-cut framework to forbid those routes along which time window constraints

are violated. In this work, we adopt the same idea but enforce them in the BPC framework.

Separating IPEC at an integral solution x̄ is trivial. Suppose we are given a fractional

solution x̄, it can be shown that there are polynomially many paths P for which inequali-

ties (5.38) are violated [19]. These paths can be easily detected by a simple enumeration

procedure. In particular, the algorithm starts with choosing i ∈ V as a root node and then

runs a depth-first search for extending paths. If a violated tournament inequality is found

for some path P′, we then check whether time window feasibility is respected (i.e., P′ ∈ P)

under any travel time realization t ∈ TG. This can be achieved in O
(
Γt) time, using proper

data structures similar to the ones in Section 5.6.1.1. In our implementation, we use the

enumeration procedure to identify all violated infeasible paths and only forbid those if

they are minimal infeasible11.

One can simply extend the above separation routine to the case of a discrete support

TD. Using proper data structures, checking the time window feasibility along a path takes

O(Dt) time. We emphasize that if travel times are variable, sufficient conditions (5.19)

and (5.21) - (5.24) for claiming dominance are no longer certified 12, since they cannot

suffice the dominance relationship between P1 and P2 for some realization t ∈ T \ T̃ . Thus,

route enumeration is turned off in this case.

11 An infeasible path P =
(
v1, v2, ..., vp

)
is said to be minimal infeasible if the truncated subpaths defined by

AP \ {(v1, v2)} and AP \
{
(vp−1, vp)

}
are feasible [101].

12 Our previous work [160] also pointed it out in a similar situation where path inequalities were dynamically
enforced as necessary constraints in the context of solving the VRPTW variant via a BPC algorithm.

101

5.6 solution approaches

5.6.3 Comparison

We have discussed two distinct perspectives for adapting the BPC algorithm to solve

robust VRPs under demand and travel time uncertainty. The robust pricing perspective

guarantees robust feasibility of routing designs in pricing subproblems, while the robust

cutting-plane perspective seeks for robust feasibility via dynamically enforcing necessary

constraints in master problems. To solve the resulting pricing subproblem in the former, we

have synopsized two existing methods from the literature: a directing pricing method and

a transformed pricing method. To apply cutting planes dynamically in the latter, we have

discussed efficient separation routines. In this section, we compare these two perspectives

in the following aspects.

• Uncertainty sources. Both perspectives can deal with robust VRPs with uncertainty

in demands and travel times. Note that for both uncertainty sources, ensuring robust

feasibility of a routing design can be decomposed into ensuring that of every single

route. Stated differently, if every vehicle route in the returned solution is robust

feasible, so is the whole routing design. However, for other types of uncertainty

sources such as customer order uncertainty we discussed in Section 7.1, one may not

be able to encapsulate the robust feasibility condition into pricing subproblems but

have to enforce it explicitly in master problems (e.g., see [161]). In such a case, the

robust cutting-plane perspective might become the only choice.

• Uncertainty sets. Compared with the robust pricing perspective, the robust cutting-

plane perspective is applicable to more general, various types of uncertainty supports.

We present in Table 5.2 the applicability of three BPC algorithms to different un-

certainty sets. A check mark “3” indicates that a specific approach is applicable to

the corresponding uncertainty set, while a cross mark “7” denotes the case where

this approach is not fit. To the best of our knowledge, our robust cutting-plane

perspective can handle all popular classes of uncertainty sets listed in Table 5.2, while

the robust pricing perspective has limited applicability. Specifically, the transformed

pricing method only works for two types of demand uncertainty sets while the direct

pricing method is limited to three types of demand uncertainty sets. The work of [65]

has showed that the RSPPRC with an ellipsoidal support QE for demand uncertainty

is strongly NP-hard, hence the robust pricing approach is not suitable. As we have

pointed out, the direct pricing method will quickly become computationally pro-

hibitive in practice when the budget size Γq/Γt in QG/TG or the number of scenarios

Dq/Dt in QD/TD increases.

102

5.6 solution approaches

Table 5.2: Applicability of BPC algorithms to different uncertainty sets

Approaches Q T

QG QB QF QE QD TG TD

Direct Pricing 3 3 7 3 3 3

Transformed Pricing 3 3 7

Robust Cutting-plane 3 3 3 3 3 3 3

• Time complexity of pricing subproblems. The robust pricing perspective always

has to solve the RSPPRC as pricing subproblems via either a direct or transformed

method. The former solves the RSPPRC directly in each pricing iteration, while the

latter transformed the RSPPRC into polynomially many deterministic SPPRCs. In

either case, the RSPPRC has a larger time complexity than the deterministic SPPRC.

In contrast, the robust cutting-plane perspective always solves a deterministic SPPRC

of a controlled time complexity. Specifically, one can choose a proper number of

demand/travel time scenarios to define the SPPRC so as to generate partially robust

feasible routes.

• Tightness of LP relaxations. One can also apply robust RCI and IPEC as strengthening

constraints in the robust pricing perspective, then both perspectives are using exactly

the same formulation (i.e., the backbone set partitioning model (5.8) - (5.11) + robust

RCI + IPEC) except that they are based on two different route sets, R and R̃.

Given that R ⊆ R̃, the LP relaxation in the robust pricing perspective is always

stronger. This implies that the robust pricing approach might solve a robust VRP

more effectively on the condition that the RSPPRC could be solved efficiently.

To summarize, our robust cutting-plane algorithm only entails the solution of deter-

ministic pricing subproblems to generate vehicle routes and relies on the enforcement of

necessary constraints in master problems to ensure robust feasibility of routing designs.

Compared with the robust pricing algorithm, our proposed approach has the following

two distinctive features:

• Versatility: it can deal with the parameter variability related to customer demands,

vehicle travel times, and even customer orders13; furthermore, it works for solving

robust VRPs with various types of uncertainty supports in, as shown in Table 5.2.

13 The workf of [161] has demonstrated this in a branch-and-cut framework, hence we can deduce its applicability
in the context of BPC.

103

5.7 computational studies

• Flexibility: pricing subproblems that have to be solved are adjustable; in particular,

one can enforce a desired number of scenarios in pricing subproblems so as to

balance the efforts of generating routes (i.e., pricing step) and separating cutting

planes (i.e., cut generation step). This feature becomes crucial in the following case:

if the resulting RSPPRC is strongly NP-hard (e.g., QE), the robust pricing method

will not be practically viable.

5.7 computational studies

In this section, we test our proposed BPC algorithm on RCVRP and RVRPTW benchmark

instances and compare it against the existing methods from the literature. Our algorithm

relies on a deterministic BPC engine to generate vehicle routes and a cut generation

routine to enforce necessary constraints. In particular, we utilize VRPSolver 0.3 [135]

as our BPC engine via its Julia interface, in which all subordinate linear and mixed-

integer linear programs were solved using the IBM ILOG CPLEX Optimizer 12.9.0. The

separation routines for IPEC and robust RCI were implemented in C++ and compiled

into a C library for use in Julia. The VRPSolver provides a callback function for users to

separate and add necessary constraints. The experiments were run on an Intel Xeon E5-

2689 v4 server running at 3.10 GHz. The 128 GB of available RAM was shared among 10

copies of the algorithm running in parallel on the server. Each instance was solved by

one copy of the algorithm using a single thread. We compare our proposed algorithm

against the direct pricing approach from [126] (denoted by MMVAGM19) and the transformed

pricing approach from [136] (denoted by PPSV18) for solving RVRPTW and RCVRP

benchmark instances, respectively. The authors of [126] ran their experiments on an Intel

Xeon E5-2680 2.70 GHz, while [136] did it on an Intel Core i7-3770 3.40 GHz. According to

https://www.cpubenchmark.net/singleThread.html, our machine runs as 1.5 times fast

as the former and as 2.1 times fast as the latter.

5.7.1 Computational Results on RCVRP Instances

In this section, we evaluate our proposed algorithm on solving RCVRP instances under

demand uncertainty. We adapt the classic CVRP benchmark instances for generating

RCVRP instances in which the customer demands are supported on aforementioned

demand uncertainty sets in Section 5.3. We consider five classes of CVRP instances: A, B, E,

F, M, and P. These benchmark instances are available at http://vrp.galgos.inf.puc-rio.

104

https://www.cpubenchmark.net/singleThread.html
http://vrp.galgos.inf.puc-rio.br/index.php/en/
http://vrp.galgos.inf.puc-rio.br/index.php/en/

5.7 computational studies

br/index.php/en/. To be consistent with the literature, when Q ∈ {QB,QF}, we consider

26 instances from class A, 23 instances from B, 11 instances from E, 3 instances respectively

from F and M, and 24 instances from P, as [82] did; while Q = QG, we consider one extra

instance from class A and two extra instances from E, discarding one instance from P

and two large-size instances from F and M, as [136] did. In the case of Q ∈ {QE,QD},
no benchmarks are available in the literature, and we then choose the same set of CVRP

benchmarks as Q = QF to generate RCVRP instances. For each uncertainty set, there

are in total 90 benchmarks. The number of customers ranges from 13 to 150. Following

the convention in the literature, every entry of the travel cost matrix is calculated from

coordinates and then rounded to the nearest integer. The customer demands specified

in the benchmark are taken to be their nominal values q0. For each deterministic CVRP

instance, we construct the following five types of uncertainty sets if applicable. As [82] did,

we partition the customer set Vc into four geographic quadrants, NE, NW, SW, and SE,

based on the coordinates in the benchmark instance.

(a) Cardinality-constrained set

QG :=

{
q ∈ Rn : qi = q0

i + αq0
i ξi, ξi ∈ [0, 1] , ∀i ∈ Vc, ∑

i∈Vc

ξi ≤ Γq

}
.

This set stipulates that each customer’s demand can deviate upward from the

nominal value by at most α · 100%, but the total number of customer demands that

can simultaneously deviate is bounded from above by Γq. As [136] did, we choose α =

0.3, Γq =
⌊
0.75n/K

⌋
and modify the vehicle capacity to be Q =

⌊
0.3Cmax + 0.7Cmin

⌋
,

where Cmax and Cmin values are available in the appendices of [136].

(b) Budget sets (originally proposed in [82])

QB :=

{
q ∈

[
(1− α)q0, (1 + α)q0] : ∑

i∈Ω
qi ≤ (1 + αβ) ∑

i∈Ω
q0

i , ∀Ω ∈ {NE, NW, SW, SE}
}

.

This set stipulates that each customer’s demand can deviate from the nominal value

by at most α · 100%, but the cumulative demand of each quadrant may not exceed its

nominal value by αβ · 100%. As [82] did, we choose α = 0.1, β = 0.5 and increase the

vehicle capacity by 20%.

105

http://vrp.galgos.inf.puc-rio.br/index.php/en/
http://vrp.galgos.inf.puc-rio.br/index.php/en/

5.7 computational studies

(c) Factor models (originally proposed in [82])

QF :=

{
q ∈ Rn : q = q0 + Ψξ, ξ ∈ [−1, 1]4 ,

∣∣∣∣∣ 4

∑
f=1

ξ f

∣∣∣∣∣ ≤ 4β

}
.

This set models the customer demand qi as a linear combination of 4 factors that can

be interpreted as quadrant demands with the weights reflecting the relative proximity

of customer i to the quadrant. Specifically, we set Ψi f = αq0
i ψi f / ∑4

f ′=1 ψi f ′ , where

ψi f denotes the inverse distance between customer i and the centroid of quadrant

f ∈ {1, 2, 3, 4}. As [82] did, we choose α = 0.1, β = 0.5 and increase the vehicle

capacity by 20%.

Using the reduction procedure described in the proof of Proposition 5.2, one can

represent Ext (QF) as a discrete set with only 4 demand scenarios. In particular,

each scenario corresponds to the case where (ξ1, ξ2, ξ3, ξ4) is one permutation of

(1, 1, 1,−1). Since the size of Ext (QF) is small, we choose Q̃ = Ext (QF). As a result,

routes generated from pricing subproblems will be all robust feasible, i.e., R̃ = R.

(d) Ellipsoidal sets (originally proposed in [159])

QE :=
{

q ∈ Rn : q = q0 + Σ1/2ξ, ξTξ ≤ 1
}

.

We define Σ = (1− β)ΨΨ> + βdiag
(
αq0

1, αq0
2, ..., αq0

n
)
, where Ψ is the factor loading

matrix defined above while diag (·) denotes a diagonal matrix. When β ∈ (0, 1),

QE represents a general n-dimensional ellipsoidal set centered at q0. We choose

α = 0.1, β = 0.5 and increase the vehicle capacity by 10%.

(e) Discrete sets (originally proposed in [159])

QD := conv
({

q0} ∪ {qd : d = 1, 2, ..., nint (βn)
})

.

Here, nint (βn) denotes the nearest integer to βn. The points qd are generated

by uniformly sampling nint (βn) points from the n-dimensional hyper-rectangle[
(1− α)q0, (1 + α)q0]. Thus, QD approximates the customer demand vector as inde-

pendent, uniformly distributed random variables. We choose α = 0.1, β = 0.2 and

increase the vehicle capacity by 10%.

To be consistent with the literature[82, 83, 136], the number of used vehicles is fixed to be

the fleet size K whenQ ∈ {QG,QB,QF}. That is, we enforce equality for constraint (5.10) in

106

5.7 computational studies

such cases. In what follows, we present synopsized computational results of our proposed

BPC algorithm for addressing RCVRP instances. The detailed results are presented in

Section 5.9 of the appendices.

5.7.1.1 QG

For each RCVRP instance, the customer demand vector is supported on the cardinality-

constrained set QG. For a fair comparison, we obtain from [136] the heuristic solution

cost to each benchmark and use it as an initial upper bound in our BPC algorithm. In the

experiments, NSq was chosen to be the fleet size K. We impose a time limit of 2 hours for

each instance and report in Table 5.3 the consolidated results of our robust cutting-plane

algorithm and its comparison against the transformed pricing method from PPSV18. The

column “Class” denotes the instance class while the “# inst.” denotes the number of

instances from this class. We report in columns “# opt.”, “Avg. t (sec)” and “Avg. gap (%)”

the number of instances that were solved to optimality, the geometric mean solution time

(rounded to the nearest integer) for those solved instances, and the average residual gap

for those instances for which the algorithm was terminated due to time limit but with valid

lower and upper bounds identified, respectively. Out of 90 RCVRP instances, our robust

cutting-plane algorithm solved 37 of them to optimality, returning an average residual

gap of 2.44%− 4.81% to the remaining ones; the transformed pricing approach performed

significantly better than ours, optimally solving all except three instances. We remark that

the superior performance of PPSV18 is expected, since their approach could transform the

RSPPRC into a small number (around 20 on average) of deterministic SPPRCs and thus

efficiently generate robust feasible routes in pricing subproblems.

Table 5.3: Computational results for BPC algorithms on 90 RCVRP (QG) instances

Class # inst. PPSV18 This work

opt. Avg. t
(sec)

Avg. gap
(%)

opt. Avg. t
(sec)

Avg. gap
(%)

A 27 27 19 – 11 262 4.79

B 23 20 70 1.65 5 278 4.81

E 13 13 28 – 7 11 4.03

F 2 2 223 – 2 101 –
M 2 2 108 – 0 – 2.44

P 23 23 11 – 12 53 3.05

Total 90 87 37

107

5.7 computational studies

5.7.1.2 QB

For each RCVRP instance, the customer demand vector is supported on the budget set QB.

For a fair comparison, we obtain from [136] the heuristic solution cost to each benchmark

and use it as an initial upper bound in our BPC algorithm. In our experiments, NSq is

chosen to be 2. We impose a time limit of 2 hours for each instance and report in Table 5.4

the consolidated results of our robust cutting-plane algorithm and its comparison against

the transformed pricing method from PPSV18. Out of 90 benchmarks, our robust cutting-

plane approach could solve 80 of them to optimality within an average solution time

less than 80 seconds, leaving the remaining 10 instances with an average residual gap of

1.48%− 4.81%. The transformed pricing approach performed slightly better, solving 89

instance to optimality. Compared with the branch-and-cut algorithm from [82, 83], our

BPC algorithm solved 37 more instances to optimality, which results from the fact that the

route-based formulation (e.g., the set partitioning model) has a tighter LP relaxation than

the arc-based formulation used in [82, 83].

Table 5.4: Computational results for BPC algorithms on 90 RCVRP (QB) instances

Class # inst. PPSV18 This work

opt. Avg. t
(sec)

Avg. gap
(%)

opt. Avg. t
(sec)

Avg. gap
(%)

A 26 26 3 – 23 50 1.48

B 23 23 6 – 20 75 2.06

E 11 11 11 – 10 38 0.76

F 3 2 833 0.89 2 36 4.81

M 3 3 154 – 1 32 1.72

P 24 24 1 – 24 14 –

Total 90 89 80

5.7.1.3 QF,QE and QD

Now we consider demand uncertainty sets QF,QE and QD. When Q = QF, we obtain

from [83] the heuristic solution cost to each instance and use it as an initial upper bound in

the BPC algorithm; while Q ∈ {QE,QD}, we run the heuristics code from [159] with a time

limit of 2 seconds and utilize the returned heuristic solution value as an initial upper bound.

For each RCVRP instance, we choose NSq = 4, 1, 6 when Q = QF,QE,QD, respectively. We

imposed a time limit of 2 hours for each instance and report the consolidated computational

results in Table 5.5.

108

5.7 computational studies

Among three cases, our robust cutting-plane algorithm performs the best when Q = QF,

solving 85 out of 90 instances to optimality. As we mentioned above, every generated route

is guaranteed to be robust feasible since we enforce Q̃ = Ext (QF) when defining pricing

subproblems. As a consequence, the LP relaxation of the set partitioning model is tighter

and our algorithm could solve RCVRP instances more efficiently in this case. As expected,

the BPC framework outperforms the branch-and-cut implementation from [82, 83], solving

33 more instances to optimality. Our proposed algorithm performs roughly the same on

solving RCVRP instances when Q = QE and Q = QD. The number of solved instances is

around 75 and the average residual gap is 1%− 6%.

Table 5.5: Computational results for the BPC algorithm on 90 RCVRP (QF/QE/QD) instances

Class # inst. QF QE QD

opt. Avg. t
(sec)

Avg.
gap (%)

opt. Avg. t
(sec)

Avg.
gap (%)

opt. Avg. t
(sec)

Avg.
gap (%)

A 26 26 11 – 23 53 3.23 23 71 3.01

B 23 21 19 1.58 16 46 2.97 15 52 3.70

E 11 11 21 – 9 39 6.22 9 38 3.00

F 3 2 68 1.47 2 18 5.29 2 74 5.16

M 3 1 1,573 1.46 2 1,508 3.44 0 – 3.14

P 24 24 6 – 24 11 – 23 20 1.01

Total 90 85 76 72

Through the above experiments on RCVRP instances, we make a few remarks: (i) the

approach of embedding robust RCI into a deterministic BPC algorithm to address the

RCVRP is versatile and efficient for various types of demand uncertainty sets. (ii) the

transformed pricing approach demonstrated superior performance than ours for RCVRP

instances in which demands are supported on QG and QB; (iii) embedding capacity

inequalities into a BPC framework yields better performance than the case of branch-and-

cut.

5.7.2 Computational Results on RVRPTW Instances

We now evaluate our proposed algorithm on solving RVRPTW instances under demand

and/or travel time uncertainty. We follow the same procedure from [126] to adapt Solomon

instances [156] for generating RVRPTW instances in which the customer demands and

vehicle travel times are supported on the cardinality-constrained sets QG and TG, respec-

109

5.7 computational studies

tively. The Solomon instances include 100 customers and are classified according to the

spatial distribution of customers: classes “C1” and “C2” denote a clustered distribution,

“R1” and “R2” denote a random distribution, while “RC1” and “RC2” denote a mixture of

both distributions. In addition, instances from C2, R2, and RC2 have wider time windows

and larger vehicle capacities than the other classes. The Solomon instances are available

at http://neo.lcc.uma.es/vrp/. We apply the convention that travel times and costs are

calculated from coordinates and then truncated with one decimal place. The customer

demands specified in the benchmark and the calculated travel times are taken to be their

nominal values q0 and t0, respectively. The maximum allowable deviation in cardinality-

constrained sets (5.1) and (5.2) is q̂i = trunc
(
αq × q0

i

)
and t̂ij = 0.1× trunc

(
αt × 10× t0

ij

)
,

respectively. Thus, each customer’s demand can deviate upward from its nominal value

by about αq · 100% and that each arc traversal time can deviate upward from its nominal

value by about αt · 100%. In our experiments, we choose αq = αt = 0.1, Γq = Γt = 5, as

used in [126].

For each RVRPTW instance, we consider three cases: with only demand uncertainty,

with only travel time uncertainty, and with both demand and travel time uncertainty. Since

we did not have at hand sophisticated heuristics for solving the RVRPTW, we chose to use

as the initial upper bound the best known value of each instance modified upwards by an

offset of 0.1. Correspondingly, our BPC algorithm always has to locate by itself a feasible

solution with a value better than the initial upper bound provided. As [133] pointed out, for

VRPTW instances from classes C2, R2, and RC2, capacity constraints are not really binding.

Therefore, to ease the solution of the pricing subproblem, we do not include these constraint

(i.e., Q̃ = ∅) but enforce them in master problems through capacity inequalities whenever

needed. As we have mentioned, route enumeration has to be deactivated whenever travel

time uncertainty exists. In what follows, we present synopsized computational results for

RVRPTW instances. The detailed results are presented in Section 5.9 of the appendices.

5.7.2.1 QG

For each RVRPTW instance, the customer demand vector is supported on cardinality-

constrained set QG and the travel times take their nominal values. In our experiments,

NSq was chosen to be 10. We impose a time limit of 1 hour for each RVRPTW instance

and report in Table 5.6 the consolidated results of our proposed robust cutting-plane

algorithm and its comparison against the direct pricing approach from MMVAGM1914. The

column names have the same meanings as before, except that the additional column “# no

14 The computational results for MMVAGM19 comes from the appendices of that paper.

110

http://neo.lcc.uma.es/vrp/

5.7 computational studies

LB” denotes the number of instances15 for which no lower bounds were reported in the

appendices of MMVAGM19. Out of 56 instances, our proposed algorithm solved 51 of them to

optimality within the time limit of 1 hour while MMVAGM19 solved 34 instances. A noticeable

observation is that no valid lower bounds were identified for 7 benchmarks in MMVAGM19.

We deem that this was caused by the following: if MMVAGM19 considered to compute the

Lagrangian dual value as a valid lower bound, then the reason is that pricing subproblems

were never solved exactly in MMVAGM19 for these instances; otherwise, it is owing to the

fact that column generation never converged even once before their algorithm terminated.

In either case, it implies that solving pricing subproblems exactly via the direct pricing

approach is computationally prohibitive for these instances. This confirms our claim in

Section 5.6.1.1 that solving the resulting RSPPRC directly has an increased time complexity

and might become problematic. Compared with the direct pricing method, our robust

cutting-plane algorithm also performs better in terms of both the average solution time

and the average residual gap.

Table 5.6: Computational results for BPC algorithms on 90 RVRPTW (QG) instances

Class # inst. MMVAGM19 This work

opt. # no
LB

Avg. t
(sec)

Avg. gap
(%)

opt. Avg. t
(sec)

Avg. gap
(%)

C1 9 3 0 881 9.94 5 158 2.32

R1 12 9 0 62 2.30 12 18 –
RC1 8 6 0 94 4.67 8 62 –
C2 8 7 1 196 – 8 18 –
R2 11 4 4 598 1.28 10 96 5.36

RC2 8 5 2 283 1.62 8 37 –

Total 56 34 7 51

5.7.2.2 TG

For each RVRPTW instance, the travel time vector is supported on cardinality-constrained

set TG and the customer demands take their nominal values. In our experiments, we choose

NSt = 1. We impose a time limit of 1 hour for each instance and report the consolidated

results and its comparison against the direct pricing approach from MMVAGM19 in Table 5.7.

The direct pricing approach solved 5 more instances than our proposed algorithm within

the time limit. When we have a closer look, an interesting observation is that MMVAGM19

15 Hence, these instances are not taken into account when reporting “Avg. gap (%)”.

111

5.7 computational studies

solved more instances from classes C1, R1 and RC1 while our algorithm performed better

for instances from classes C2, R2 and RC2. Instances from the former classes have tight time

windows and hence there only exists a relatively small number of robust feasible routes in

the RSPPRC, such that the direct pricing method turns out to be computationally cheap;

instances from the latter classes have wide time windows and hence small perturbations

on the travel time vector will not deprive most routes of their feasibility, such that solving

the SPPRC defined by T̃ rather than the RSPPRC defined by T to generate routes bears

less burden. Another observation is that the direct pricing approach again had difficulty in

identifying valid lower bounds for quite a few instances.

Table 5.7: Computational results for BPC algorithms on 56 RVRPTW (TG) instances

Class # inst. MMVAGM19 This work

opt. # no
LB

Avg. t
(sec)

Avg. gap
(%)

opt. Avg. t
(sec)

Avg. gap
(%)

C1 9 8 0 154 2.55 8 67 0.34

R1 12 10 0 156 2.37 3 57 1.29

RC1 8 7 0 148 5.16 0 – 2.04

C2 8 6 1 796 1.29 8 1,093 –
R2 11 4 4 482 2.24 8 165 4.95

RC2 8 5 2 241 1.44 8 134 –

Total 56 40 7 35

5.7.2.3 QG × TG

For each RVRPTW instance, the demand vector and travel time vector are supported

on cardinality-constrained set QG and TG, respectively. We choose NSq = 10, NSt = 1.

We impose a time limit of 1 hour for each instance and report in Table 5.8 the consol-

idated results of our algorithm and its comparison against the direct pricing approach

from MMVAGM19. Both algorithms demonstrate a comparable performance, solving about 30

out of 56 benchmark instances to optimality. Again, our robust cutting-plane algorithm

performed better for instances with wide time windows, while the direct pricing method

did better for instances with tight time windows. Identifying valid lower bounds for some

instances was still challenging for the latter method.

Through the above experiments on RVRPTW instances, we show that our approach

of enforcing IPEC as necessary constraints in a BPC framework to address the RVRPTW

demonstrates a comparable performance to the direct pricing method from MMVAGM19.

112

5.8 conclusions

Table 5.8: Computational results for BPC algorithms on 56 RVRPTW (QG × TG) instances

Class # inst. MMVAGM19 This work

opt. # no
LB

Avg. t
(sec)

Avg. gap
(%)

opt. Avg. t
(sec)

Avg. gap
(%)

C1 9 3 0 1,860 9.73 3 969 2.02

R1 12 10 0 180 2.31 3 74 1.29

RC1 8 5 0 126 4.38 0 – 2.13

C2 8 5 1 850 1.65 8 1,076 –
R2 11 4 4 621 4.39 8 173 6.75

RC2 8 5 2 343 1.44 8 133 –

Total 56 32 7 30

5.8 conclusions

This work is focused on the robust vehicle routing problem under demand/travel time

uncertainty. Customer demands and vehicle travel times are assumed to be random

variables that can take any values from their respective uncertainty sets. In this chapter, we

consider five popular classes of uncertainty sets: cardinality-constrained sets, budget sets,

factor models, ellipsoidal sets and discrete sets. One aims to a priori identify a set of cost-

effective routes for vehicles to traverse such that along these routes capacity constraints and

time window conditions are satisfied under any realization of uncertain parameters. We

explore BPC algorithms to address this problem. In particular, we synposize the literature

approaches as the robust pricing perspective, that is, ensuring fully robust feasibility of

returned routes when they were generated in pricing subproblems. We propose a novel BPC

algorithm that combines the cutting-plane techniques and the deterministic BPC advances.

In particular, our proposed approach utilizes a deterministic pricing engine to generate

partially robust feasible routes and enforces IPEC and robust RCI as necessary constraints to

ensure robust feasibility of routing designs. We conduct extensive computational studies on

RCVRP and RVRPTW instances with various classes of uncertainty sets. The computational

results demonstrate the versatility, flexibility, and efficiency of our robust cutting-plane

approach.

113

5.9 appendix : detailed tables of results

5.9 appendix : detailed tables of results

We presents detailed computational results for RCVRP and RVRPTW instances in Table 5.9 -

5.12 and Table 5.13 - 5.14, respectively. As a reference, we also present the computational

results for solving deterministic CVRP and VRPTW instances (with the optimal value

provided as an upper bound for each instance) via the VRPSolver. In each table, the

column “Instance” denotes the instance name; the column “Opt [UB]” then reports the

corresponding optimal objective value, while the column “t (sec) [LB]” provides the time

to solve the instance to optimality; if an instance could not be solved within the allotted

time limit, these columns report (in brackets) the best upper and lower bounds found

within this time limit. Instances that were not solved to optimality in the literature but

solved in this work for the first time are indicated with an asterisk (*).

114

5.9 appendix : detailed tables of results

Ta
bl

e
5
.9

:D
et

ai
le

d
re

su
lt

s
fo

r
ou

r
BP

C
al

go
ri

th
m

on
R

C
V

R
P

in
st

an
ce

s
(A

)

In
st

an
ce

{ q0}
Q

G
Q

B
Q

F
Q

E
Q

D

O
pt

[U
B]

t
(s

ec
)

[L
B]

O
pt

[U
B]

t
(s

ec
)

[L
B]

O
pt

[U
B]

t
(s

ec
)

[L
B]

O
pt

[U
B]

t
(s

ec
)

[L
B]

O
pt

[U
B]

t
(s

ec
)

[L
B]

O
pt

[U
B]

t
(s

ec
)

[L
B]

A
-n

3
2
-k

5
7
8
4

2
8
5
7

1
1
9

7
4
8

2
7
4
8

2
7
5
5

4
7
5
5

5

A
-n

3
3
-k

5
6
6
1

2
6
7
5

3
0

6
4
2

1
3

6
3
1

2
6
5
2

2
6
5
2

1
4

A
-n

3
3
-k

6
7
4
2

2
7
5
8

2
1
5

7
1
7

3
7
1
0

2
7
3
3

2
7
3
0

3

A
-n

3
4
-k

5
7
7
8

5
7
7
6

4
,2

2
6

7
1
5

3
7
0
2

2
7
4
7

5
6

7
4
3

2
5
2

A
-n

3
6
-k

5
7
9
9

3
[8

2
3
]

[8
0
6
]

7
5
5

3
7
6
6

8
7
8
3

1
3

7
6
9

4

A
-n

3
7
-k

5
6
6
9

2
7
0
6

2
9
2

6
5
0

4
6
4
8

3
6
6
7

5
6
6
5

2
8

A
-n

3
7
-k

6
9
4
9

4
[9

4
8
]

[9
0
5
]

8
9
2

1
4

8
9
2

6
9
0
7

2
9
0
7

6

A
-n

3
8
-k

5
7
3
0

4
7
1
4

2
2

7
0
4

1
1

6
9
3

3
7
0
9

3
7
0
9

5

A
-n

3
9
-k

5
8
2
2

4
[8

1
8
]

[7
8
9
]

7
7
7

4
8

7
7
2

5
8
0
6

3
2

8
0
3

6
2

A
-n

3
9
-k

6
8
3
1

3
8
5
0

2
3
0

7
8
7

2
7
8
6

2
8
1
3

1
3

8
0
9

1
4

A
-n

4
4
-k

6
9
3
7

2
9
3
0

5
9

9
0
9

3
0
2

8
9
2

2
9
2
8

3
1

9
1
9

1
6

A
-n

4
5
-k

6
9
4
4

2
9
1
8

2
7
8

8
9
6

8
8
9
1

4
9
2
3

1
1

9
2
1

1
0

A
-n

4
5
-k

7
1

,1
4
6

5
[1

,1
6
3
]

[1
,1

2
1
]

–
–

–
–

–
–

–
–

A
-n

4
6
-k

7
9
1
4

2
9
8
8

3
,3

5
3

8
8
8

3
1

8
8
3

7
9
0
6

1
3
7

9
0
2

5
5

A
-n

4
8
-k

7
1

,0
7
3

3
[1

,1
2
9
]

[1
,0

6
7
]

1
,0

3
3

2
9
3

1
,0

3
3
*

4
1

1
,0

6
0

1
,0

1
4

1
,0

4
2

1
9
4

A
-n

5
3
-k

7
1

,0
1
0

5
[1

,0
1
9
]

[9
8
3
]

9
7
4

2
8
7

9
6
7

6
5

9
8
7

1
9

9
8
4

1
1

A
-n

5
4
-k

7
1

,1
6
7

8
[1

,1
6
9
]

[1
,1

1
0
]

1
,1

0
6

7
3
8

1
,0

9
7
*

4
2

1
,1

4
5

3
,3

5
8

1
,1

4
4

1
,2

2
8

A
-n

5
5
-k

9
1

,0
7
3

2
1

,1
0
7

1
,4

9
4

1
,0

3
0

3
9

1
,0

0
7

4
1

,0
5
5

3
9

1
,0

5
5

1
5
7

A
-n

6
0
-k

9
1

,3
5
4

1
0

[1
,4

0
8
]

[1
,3

1
1
]

[1
,2

8
0
]

[1
,2

6
2
]

1
,2

6
4
*

4
2

1
,2

9
2

1
5
0

1
,2

9
0

3
4
5

A
-n

6
1
-k

9
1

,0
3
4

7
[1

,0
2
2
]

[9
8
4
]

9
8
3

4
1
9

9
7
4
*

1
9

1
,0

1
0

1
3
3

1
,0

0
3

1
1
8

A
-n

6
2
-k

8
1

,2
8
8

1
6

[1
,3

3
9
]

[1
,2

6
0
]

[1
,2

1
7
]

[1
,1

9
7
]

1
,2

0
1
*

6
7

1
,2

4
5

3
,1

2
8

1
,2

3
2

6
,0

5
8

A
-n

6
3
-k

9
1

,6
1
6

1
7

[1
,6

2
0
]

[1
,5

0
1
]

1
,5

0
5

4
,7

5
4

1
,4

9
8
*

1
9
3

1
,5

7
1

3
,3

4
3

[1
,5

7
5
]

[1
,5

3
3
]

A
-n

6
3
-k

1
0

1
,3

1
4

1
0

[1
,3

4
8
]

[1
,2

8
1
]

1
,2

3
3

5
8
6

1
,2

2
2
*

1
9

1
,2

5
7

4
8
2

1
,2

4
9

1
,6

1
1

A
-n

6
4
-k

9
1

,4
0
1

1
8

[1
,4

1
7
]

[1
,3

3
8
]

1
,3

2
5

1
,0

1
7

1
,3

1
4
*

9
7

[1
,3

8
5
]

[1
,3

4
3
]

[1
,3

8
0
]

[1
,3

3
5
]

A
-n

6
5
-k

9
1

,1
7
4

6
[1

,1
8
4
]

[1
,1

2
0
]

1
,1

0
6

1
8
8

1
,0

9
4

5
1

,1
6
4

1
,5

8
2

1
,1

4
4

3
,5

7
2

A
-n

6
9
-k

9
1

,1
5
9

1
0

[1
,1

7
7
]

[1
,1

3
6
]

1
,1

0
9

9
5
3

1
,0

9
6
*

1
8

[1
,1

4
9
]

[1
,1

1
4
]

1
,1

2
2

5
,2

9
5

A
-n

8
0
-k

1
0

1
,7

6
3

1
6

[1
,8

0
3
]

[1
,7

0
2
]

[1
,6

6
2
]

[1
,6

3
9
]

1
,6

4
4
*

1
,2

5
3

[1
,7

4
3
]

[1
,6

8
0
]

[1
,7

1
5
]

[1
,6

6
2
]

#
op

t.
2
7

1
1

2
3

2
6

2
3

2
3

115

5.9 appendix : detailed tables of results

Ta
bl

e
5
.1

0
:D

et
ai

le
d

re
su

lt
s

fo
r

ou
r

BP
C

al
go

ri
th

m
on

R
C

V
R

P
in

st
an

ce
s

(B
)

In
st

an
ce

{ q0}
Q

G
Q

B
Q

F
Q

E
Q

D

O
pt

[U
B]

t
(s

ec
)

[L
B]

O
pt

[U
B]

t
(s

ec
)

[L
B]

O
pt

[U
B]

t
(s

ec
)

[L
B]

O
pt

[U
B]

t
(s

ec
)

[L
B]

O
pt

[U
B]

t
(s

ec
)

[L
B]

O
pt

[U
B]

t
(s

ec
)

[L
B]

B-
n3

1
-k

5
6
7
2

3
6
9
4

5
,8

4
2

6
5
1

2
6
5
1

2
6
0
4

2
6
0
2

4

B-
n3

4
-k

5
7
8
8

6
7
8
9

1
,5

6
5

7
6
8

1
,0

9
5

7
4
8

1
0

7
8
2

2
6
4

7
6
9

1
5
1

B-
n3

5
-k

5
9
5
5

5
[9

8
6
]

[9
5
2
]

8
8
3

4
8
8
3

3
[9

4
6
]

[9
2
1
]

9
2
1

2
5
4

B-
n3

8
-k

6
8
0
5

4
8
2
3

3
3

7
2
9

4
7
2
9

3
7
0
5

6
9

6
8
8

3

B-
n3

9
-k

5
5
4
9

4
5
6
1

7
6

5
3
2

2
3

5
2
9

1
7

5
3
4

9
5
3
4

4
2

B-
n4

1
-k

6
8
2
9

3
[8

3
8
]

[7
9
7
]

7
9
6

4
5
6

7
9
1

2
6

8
0
0

4
8
0
1

1
0

B-
n4

3
-k

6
7
4
2

8
[7

7
9
]

[7
3
4
]

6
8
1

1
6
7

6
8
0

3
4

6
8
3

2
6
8
3

2
2

B-
n4

4
-k

7
9
0
9

5
[9

4
3
]

[9
1
2
]

8
3
5

1
0

8
3
5

1
0

8
5
6

9
8
5
5

9
5

B-
n4

5
-k

5
7
5
1

7
[7

3
9
]

[7
1
7
]

7
0
1

4
2
1

6
8
0

1
3

7
0
8

1
6

7
0
2

3
7

B-
n4

5
-k

6
6
7
8

6
[6

6
8
]

[6
3
1
]

6
6
0

1
1

6
5
7

9
6
7
0

2
5

6
6
8

2
,2

7
1

B-
n5

0
-k

7
7
4
1

1
0

7
5
8

7
4

6
7
9

3
6
9
9

8
7
3
2

1
,0

2
1

7
1
7

8
8

B-
n5

0
-k

8
1
,3

1
2

1
7

[1
,3

3
0
]

[1
,2

8
6
]

[1
,2

2
4
]

[1
,2

0
8
]

[1
,2

1
7
]

[1
,2

0
2
]

[1
,2

5
1
]

[1
,2

1
5
]

[1
,2

2
6
]

[1
,2

0
6
]

B-
n5

1
-k

7
1
,0

3
2

1
5

[1
,0

2
7
]

[9
4
4
]

9
6
1

2
3
8

9
2
8

6
[9

9
9
]

[9
8
8
]

[9
9
6
]

[9
7
3
]

B-
n5

2
-k

7
7
4
7

4
[7

7
5
]

[7
5
0
]

6
7
5

3
0

6
7
0

1
4

6
6
7

1
1

6
6
2

1
5

B-
n5

6
-k

7
7
0
7

4
[7

4
0
]

[7
3
0
]

6
2
3

8
6
2
3

2
7

6
1
4

8
6
1
2

1
1

B-
n5

7
-k

7
1
,1

5
3

1
2

[1
,1

3
2
]

[1
,0

5
4
]

1
,0

5
5

7
7
8

1
,0

5
2
*

6
2

[1
,1

3
6
]

[1
,0

9
4
]

[1
,1

2
6
]

[1
,0

7
1
]

B-
n5

7
-k

9
1
,5

9
8

5
[1

,6
5
6
]

[1
,5

9
4
]

1
,5

4
0

2
2

1
,5

3
9

2
2

[1
,5

2
0
]

[1
,4

8
8
]

[1
,4

9
0
]

[1
,4

7
4
]

B-
n6

3
-k

1
0

1
,4

9
6

8
[1

,5
8
8
]

[1
,4

7
1
]

1
,4

0
7

6
,8

0
9

1
,4

0
5
*

3
9
2

[1
,5

0
7
]

[1
,4

5
9
]

[1
,4

9
7
]

[1
,4

3
1
]

B-
n6

4
-k

9
8
6
1

6
[8

6
5
]

[8
3
9
]

8
0
3

6
6

8
0
3

3
0

8
0
5

1
9

8
0
4

4
1

B-
n6

6
-k

9
1
,3

1
6

2
1

[1
,3

1
9
]

[1
,2

0
9
]

[1
,2

5
1
]

[1
,2

1
7
]

1
,2

1
0

3
3

1
,2

6
9

2
,5

7
1

[1
,2

6
6
]

[1
,2

1
5
]

B-
n6

7
-k

1
0

1
,0

3
2

1
1

[1
,0

8
6
]

[1
,0

4
8
]

1
,0

0
7

7
,0

3
0

1
,0

0
1
*

2
4
8

1
,0

1
2

1
,1

2
9

1
,0

0
1

2
,6

5
8

B-
n6

8
-k

9
1
,2

7
2

4
0

[1
,2

9
8
]

[1
,2

4
7
]

[1
,2

0
5
]

[1
,1

7
9
]

[1
,1

9
7
]

[1
,1

7
4
]

[1
,2

5
5
]

[1
,1

9
0
]

[1
,2

4
5
]

[1
,1

6
7
]

B-
n7

8
-k

1
0

1
,2

2
1

1
0

[1
,2

6
1
]

[1
,1

6
1
]

1
,1

3
1

1
,6

9
7

1
,1

3
0
*

8
1

1
,1

6
2

6
,2

5
6

[1
,2

0
0
]

[1
,1

4
0
]

#
op

t.
2
3

5
2
0

2
1

1
6

1
5

116

5.9 appendix : detailed tables of results

Ta
bl

e
5
.1

1
:D

et
ai

le
d

re
su

lt
s

fo
r

ou
r

BP
C

al
go

ri
th

m
on

R
C

V
R

P
in

st
an

ce
s

(E
,F

an
d

M
)

In
st

an
ce

{ q0}
Q

G
Q

B
Q

F
Q

E
Q

D

O
pt

[U
B]

t
(s

ec
)

[L
B]

O
pt

[U
B]

t
(s

ec
)

[L
B]

O
pt

[U
B]

t
(s

ec
)

[L
B]

O
pt

[U
B]

t
(s

ec
)

[L
B]

O
pt

[U
B]

t
(s

ec
)

[L
B]

O
pt

[U
B]

t
(s

ec
)

[L
B]

E-
n1

3
-k

4
2
4
7

1
2
7
7

2
–

–
–

–
–

–
–

–
E-

n2
2
-k

4
3
7
5

1
3
7
3

1
3
7
3

2
3
7
3

1
3
7
3

1
3
7
3

2

E-
n2

3
-k

3
5
6
9

2
5
7
0

2
5
6
3

2
5
4
4

2
5
6
4

2
5
6
9

2

E-
n3

0
-k

3
5
3
4

1
0

4
9
5

6
4
7
5

3
4
9
2

7
4
9
5

3
4
9
5

4

E-
n3

1
-k

7
3
7
9

2
3
7
9

1
1

–
–

–
–

–
–

–
–

E-
n3

3
-k

4
8
3
5

2
8
3
6

3
4
3

8
1
4

1
2
5

8
1
4

4
2

8
2
8

5
6

8
2
1

9

E-
n5

1
-k

5
5
2
1

2
5
1
9

1
0
1

5
1
6

2
8

5
1
6

2
4

5
1
9

5
5
1
8

2
7

E-
n7

6
-k

7
6
8
2

2
7

[6
9
9
]

[6
8
1
]

6
6
1

9
0

6
6
1
*

2
8
3

6
6
5

2
9
4

6
6
1

7
6

E-
n7

6
-k

8
7
3
5

1
9

[7
3
6
]

[7
1
5
]

7
0
9

3
1
4

7
0
0
*

2
6

7
2
1

5
1
1

7
1
4

1
9
9

E-
n7

6
-k

1
0

8
3
0

1
5

[8
3
0
]

[7
9
6
]

7
9
6

1
,5

8
0

7
8
2

*
1
0

8
0
9

2
0
2

8
0
7

4
1
0

E-
n7

6
-k

1
4

1
,0

2
1

7
[1

,0
2
2
]

[9
6
3
]

9
5
2

4
1

9
5
2
*

2
9

9
8
7

3
,1

9
8

9
8
2

7
,0

8
2

E-
n1

0
1
-k

8
8
1
5

6
1

[8
2
6
]

[8
0
2
]

[7
8
9
]

[7
8
3
]

7
8
3
*

1
3
9

[8
5
8
]

[7
9
0
]

[8
0
8
]

[7
8
4
]

E-
n1

0
1
-k

1
4

1
,0

6
7

3
1

[1
,1

2
1
]

[1
,0

5
4
]

1
,0

1
1

8
6

1
,0

0
9
*

7
7

[1
,0

8
5
]

[1
,0

3
6
]

[1
,0

5
7
]

[1
,0

2
5
]

F-
n4

5
-k

4
7
2
4

1
0

7
3
6

6
5

7
1
8

3
7

7
1
4

1
2
1

7
2
1

9
7
2
1

7
1

F-
n7

2
-k

4
2
3
7

2
4

2
3
6

1
5
6

2
3
2

3
5

2
3
2

3
8

2
3
5

3
5

2
3
4

7
7

F-
n1

3
5
-k

7
1

,1
6
2

3
,0

5
8

–
–

[1
,1

2
2
]

[1
,0

6
8
]

[1
,0

8
6
]

[1
,0

7
0
]

[1
,1

7
1
]

[1
,1

0
9
]

[1
,1

6
2
]

[1
,1

0
2
]

M
-n

1
0
1
-

k1
0

8
2
0

4
[9

1
8
]

[9
0
7
]

8
0
9

3
2

8
0
4

1
,5

7
3

8
1
1

5
8
5

[8
2
7
]

[7
9
5
]

M
-n

1
2
1
-k

7
1

,0
3
4

4
4

[1
,0

3
0
]

[9
9
2
]

[9
9
4
]

[9
8
0
]

[9
8
7
]

[9
8
0
]

1
,0

0
4

3
,8

9
2

[9
9
9
]

[9
8
4
]

M
-n

1
5
1
-

k1
2

1
,0

1
5

1
1
9

–
–

[9
8
7
]

[9
6
7
]

[9
9
1
]

[9
6
9
]

[1
,0

1
8
]

[9
8
3
]

[1
,0

1
0
]

[9
6
9
]

#
op

t.
1
9

9
1
3

1
4

1
3

1
1

117

5.9 appendix : detailed tables of results

Ta
bl

e
5
.1

2
:D

et
ai

le
d

re
su

lt
s

fo
r

ou
r

BP
C

al
go

ri
th

m
on

R
C

V
R

P
in

st
an

ce
s

(P
)

In
st

an
ce

{ q0}
Q

G
Q

B
Q

F
Q

E
Q

D

O
pt

[U
B]

t
(s

ec
)

[L
B]

O
pt

[U
B]

t
(s

ec
)

[L
B]

O
pt

[U
B]

t
(s

ec
)

[L
B]

O
pt

[U
B]

t
(s

ec
)

[L
B]

O
pt

[U
B]

t
(s

ec
)

[L
B]

O
pt

[U
B]

t
(s

ec
)

[L
B]

P-
n1

6
-k

8
4
5
0

1
–

–
4
3
9

1
4
3
9

1
4
5
0

2
4
4
8

2

P-
n1

9
-k

2
2
1
2

2
1
9
5

1
1
9
5

2
1
9
5

1
1
9
5

1
1
9
5

1

P-
n2

0
-k

2
2
1
6

2
2
0
8

2
2
0
8

1
2
0
8

1
2
0
9

1
2
0
9

1

P-
n2

1
-k

2
2
1
1

1
2
0
8

2
2
0
8

2
2
0
8

1
2
1
1

2
2
1
1

1

P-
n2

2
-k

2
2
1
6

2
2
1
3

2
2
1
3

2
2
1
3

2
2
1
6

2
2
1
5

2

P-
n2

2
-k

8
6
0
3

1
6
0
1

2
5
3
7

1
5
5
7

1
5
9
2

2
5
8
7

2

P-
n2

3
-k

8
5
2
9

1
5
2
7

4
5
0
4

2
5
0
3

*
1

5
2
4

2
5
2
4

2

P-
n4

0
-k

5
4
5
8

2
4
6
8

1
4

4
4
7

3
4
4
7

2
4
5
6

3
4
5
5

1
3

P-
n4

5
-k

5
5
1
0

3
5
1
2

3
8

5
0
1

4
1

4
9
4

3
5
0
3

3
5
0
3

9

P-
n5

0
-k

7
5
5
4

3
5
6
3

2
5
8

5
3
9

9
5
3
7

*
4

5
4
6

4
0

5
4
1

1
1
4

P-
n5

0
-k

8
6
3
1

4
[6

1
4
]

[5
9
1
]

5
9
2

6
5
8
8
*

6
6
0
5

5
6
0
5

1
3

P-
n5

0
-k

1
0

6
9
6

2
6
9
5

1
,0

9
3

6
5
6

2
6
5
6

*
2

6
7
6

1
0

6
7
0

7

P-
n5

1
-k

1
0

7
4
1

2
7
3
6

1
5
4

7
0
7

2
9

6
9
8

*
2

7
2
2

3
7
2
1

1
0

P-
n5

5
-k

7
5
6
8

4
5
8
3

2
,0

8
3

5
4
9

5
1

5
4
4

1
4

5
5
0

8
9

5
4
2

1
1

P-
n5

5
-k

8
5
8
8

9
[6

2
4
]

[6
0
4
]

5
7
2

1
2
6

5
6
8
*

4
5
7
0

2
4

5
7
0

6
8
2

P-
n5

5
-k

1
0

6
9
4

3
[7

1
8
]

[6
9
1
]

6
7
0

1
8
5

6
5
7
*

8
6
6
9

8
6
6
9

5
1

P-
n5

5
-k

1
5

9
8
9

2
[9

4
5
]

[9
0
8
]

8
8
9

4
8
7
7
*

2
9
3
0

1
1

9
2
3

5

P-
n6

0
-k

1
0

7
4
4

2
[7

5
5
]

[7
2
7
]

7
1
2

2
3

7
0
5
*

6
7
2
6

2
6

7
2
6

2
4
6

P-
n6

0
-k

1
5

9
6
8

2
[1

,0
2
0
]

[9
6
8
]

9
3
1

1
1

9
1
6
*

3
9
5
0

9
9
4
9

5
0

P-
n6

5
-k

1
0

7
9
2

4
[8

0
9
]

[7
8
0
]

7
6
5

1
0
5

7
6
1
*

1
3

7
8
1

1
,1

4
6

7
6
6

1
1
1

P-
n7

0
-k

1
0

8
2
7

1
0

[8
2
4
]

[7
9
4
]

7
8
5

2
0

7
8
3
*

6
8
0
9

3
8
7

8
0
1

1
,0

3
8

P-
n7

6
-k

4
5
9
3

2
8

[5
9
0
]

[5
8
5
]

5
9
0

3
8
4

5
9
0

3
2
1

5
9
0

3
8

[5
9
5
]

[5
8
9
]

P-
n7

6
-k

5
6
2
7

3
3

[6
2
1
]

[6
1
2
]

6
1
6

9
7
0

6
1
5
*

1
,4

6
2

6
2
1

5
0

6
1
6

2
1
9

P-
n1

0
1
-k

4
6
8
1

1
4
4

[6
8
1
]

[6
7
7
]

6
7
3

8
5
2

6
7
3

6
,3

4
7

6
7
3

7
7

6
7
3

3
,9

3
2

#
op

t.
2
4

1
2

2
4

2
4

2
4

2
3

118

5.9 appendix : detailed tables of results

Table 5.13: Detailed results for our BPC algorithm on RVRPTW instances (C1, R1 and RC1)

Instance
{

q0}× {t0} QG ×
{

t0} {
q0}× TG QG × TG

Opt
[UB]

t (sec)
[LB]

Opt
[UB]

t (sec)
[LB]

Opt
[UB]

t (sec)
[LB]

Opt
[UB]

t (sec)
[LB]

C101 827.3 2 981.3 15 848.0 5 994.5 366

C102 827.3 4 975.2* 280 846.2 207 976.6* 3,248

C103 826.3 9 [972.6] [950.8] 838.8 161 [974.5] [952.1]
C104 822.9 13 [953.3] [934.4] [834.0] [831.2] [961.2] [933.7]
C105 827.3 3 981.3 218 848.0 27 [984.2] [977.7]
C106 827.3 3 981.3 45 848.0 132 984.1 765

C107 827.3 3 981.3* 2,423 842.8 18 [982.9] [969.7]
C108 827.3 4 [974.7] [948.9] 842.8 136 [973.9] [949.0]
C109 827.3 5 [966.1] [943.0] 842.8 315 [966.1] [943.0]
R101 1,637.7 2 1,637.7 3 1,692.1 9 1,692.1 19

R102 1,466.6 2 1,466.6 3 1,505.3 17 1,505.3 16

R103 1,208.7 4 1,208.7 6 1,235.3 1,230 1,235.3 1,363

R104 971.5 27 975.8* 165 [999.5] [981.6] [999.5] [982.9]
R105 1,355.3 3 1,355.3 4 [1,391.7] [1,368.9] [1,391.7] [1,365.9]
R106 1,234.6 5 1,234.6 7 [1,265.5] [1,244.0] [1,265.5] [1,244.0]
R107 1,064.6 13 1,064.6 18 [1,081.3] [1,074.4] [1,082.3] [1,071.4]
R108 932.1 41 938.6* 124 [951.8] [934.9] [953.7] [938.0]
R109 1,146.9 13 1,147.2 19 [1,169.2] [1,161.9] [1,169.4] [1,166.0]
R110 1,068.0 12 1,068.0 15 [1,097.0] [1,076.8] [1,097.0] [1,076.7]
R111 1,048.7 33 1,048.7 44 [1,071.0] [1,065.8] [1,070.9] [1,064.5]
R112 948.6 62 950.9* 164 [961.4] [950.3] [961.3] [951.5]

RC101 1,619.8 4 1,619.8 6 [1,674.8] [1,651.4] [1,677.5] [1,651.1]
RC102 1,457.4 20 1,472.7 32 [1,500.9] [1,476.2] [1,512.6] [1,493.5]
RC103 1,258.0 22 1,264.6 32 [1,331.0] [1,265.7] [1,341.3] [1,273.5]
RC104 1,132.3 48 1,156.7* 2,371 [1,154.4] [1,138.6] [1,179.7] [1,155.6]
RC105 1,513.7 16 1,513.7 16 [1,563.0] [1,545.2] [1,565.4] [1,546.2]
RC106 1,372.7 35 1,388.8 69 [1,400.4] [1,377.8] [1,413.0] [1,391.7]
RC107 1,207.8 14 1,236.7 63 [1,244.0] [1,214.8] [1,279.7] [1,242.4]
RC108 1,114.2 51 1,155.0* 228 [1,141.4] [1,119.8] [1,161.2] [1,143.9]

opt. 29 25 11 6

119

5.9 appendix : detailed tables of results

Table 5.14: Detailed results for our BPC algorithm on RVRPTW instances (C2, R2 and RC2)

Instance
{

q0}× {t0} QG ×
{

t0} {
q0}× TG QG × TG

Opt
[UB]

t (sec)
[LB]

Opt
[UB]

t (sec)
[LB]

Opt
[UB]

t (sec)
[LB]

Opt
[UB]

t (sec)
[LB]

C201 589.1 9 589.1 10 605.4 488 605.4 557

C202 589.1 15 589.1 20 605.2 1,990 605.2* 1,832

C203 588.7 35 588.7 24 597.7* 1,130 597.7* 1,069

C204 588.1 40 588.1* 43 594.0* 536 594.0* 510

C205 586.4 14 586.4 12 598.9 965 598.9 910

C206 586.0 14 586.0 16 598.9 1,414 598.9 1,688

C207 585.8 20 585.8 17 598.3 1,074 598.3 1,097

C208 585.8 14 585.8 15 598.3 2,369 598.3 1,923

R201 1,143.2 11 1,143.2 12 1,143.2 11 1,143.2 12

R202 1,029.6 80 1,029.6 93 1,032.6 174 1,032.6 204

R203 870.8 87 870.8 70 873.3 113 873.3 120

R204 731.3 195 731.3* 180 731.3* 203 731.3* 219

R205 949.8 87 949.8 86 949.8 406 949.8 365

R206 875.9 137 875.9* 149 875.9* 137 875.9* 149

R207 794.0 96 794.0* 114 794.1* 149 794.1* 151

R208 701.0 3,296 [737.4] [697.9] [741.7] [698.4] [772.2] [698.3]
R209 854.8 129 854.8* 134 858.4* 1,460 858.4* 1,513

R210 900.5 168 900.5* 159 [931.7] [907.6] [913.2] [906.1]
R211 746.7 146 746.7* 149 [799.1] [747.8] [830.2] [747.9]

RC201 1,261.8 8 1,261.8 10 1,263.0 21 1,263.0 21

RC202 1,092.3 21 1,092.3 15 1,095.6 37 1,095.6 29

RC203 923.7 28 923.7 28 933.0 387 933.0 524

RC204 783.5 66 783.5* 67 787.5* 520 787.5* 491

RC205 1,154.0 17 1,154.0 15 1,154.0 36 1,154.0 33

RC206 1,051.1 55 1,051.1 53 1,051.1 92 1,051.1 95

RC207 962.9 83 962.9* 112 963.3* 375 963.3* 341

RC208 776.1 80 776.1* 140 778.4* 558 778.4* 580

opt. 27 26 24 24

120

6
A C U S T O M I Z E D B R A N C H - A N D - B O U N D A P P R O A C H F O R

I R R E G U L A R S H A P E N E S T I N G

In this chapter, we study the Nesting Problem, which aims to determine a configuration of

a set of irregular shapes within a rectangular sheet of material of fixed width, such that no

overlap among the shapes exists, and such that the length of the sheet is minimized. When

both translation and rotation of the shapes are allowed, the problem can be formulated

as a nonconvex quadratically constrained programming model that approximates each

shape by a set of inscribed circles and enforces that circle pairs stemming from different

shapes do not overlap. However, despite many recent advances in today’s global optimiza-

tion solvers, solving this nonconvex model to guaranteed optimality remains extremely

challenging even for the state-of-the-art codes. In this chapter, we propose a customized

branch-and-bound approach to address the Nesting Problem to guaranteed optimality. Our

approach utilizes a novel branching scheme to deal with the reverse convex quadratic con-

straints in the quadratic model and incorporates a number of problem-specific algorithmic

tweaks. Our computational studies on a suite of 64 benchmark instances demonstrate the

customized algorithm’s effectiveness and competitiveness over the use of general-purpose

global optimization solvers, including for the first time the ability to find global optimal

nestings featuring five polygons under free rotation.

6.1 introduction

“Nesting” refers to the task of finding a packing of two-dimensional shapes that minimizes

the amount of material needed to carve them out of a stock. This minimization of waste can

be of utmost economic importance in certain large industrial sectors, wherein a minuscule

reduction in the amount of stock material used would result in significant monetary

savings across the whole industry. For example, obtaining tight nesting solutions is of

great practical importance when cutting metal parts for automobiles, airframes and other

121

6.1 introduction

machinery, as well as cutting leather and fabrics for apparel and upholstery applications.

In commercial settings, a human “nester” usually refines a packing solution by hand from

the starting point of a computationally-identified solution [123], thereby necessitating the

development of automated solutions.

This chapter focuses on the Irregular Strip Packing Problem, also simply known as the

Nesting Problem, which is is a rather general two-dimensional cutting and packing prob-

lem [173] where the shapes to be packed can be different to each other, irregular and

nonconvex, and may possibly contain holes. The shapes, which are usually represented

(approximated to arbitrary precision) by polygons, are to be packed in a stock that comes

in the form of a fixed-width rectangular sheet, whose length is to be minimized. This

problem has been studied extensively, with most of the focus being on the development of

heuristics to obtain large-scale packings [10, 41, 44, 94]. However, while heuristic methods

are practically valuable for the generation of good solutions, they can not rigorously

quantify the quality of packings produced and therefore lack any guarantees of optimality.

Additionally, heuristic methods often rely on the exact solution of smaller-scale prob-

lems as part of their search strategy, motivating the need to develop good exact solution

strategies.

The key differences among exact, mathematical optimization-based approaches are the

means by which the “non-overlapping” of shapes is satisfied. A traditional method for

constraining shapes to not overlap involves constructing a “no-fit” polygon per each pair of

shapes in the problem [35]. The no-fit polygon approach simplifies the task of algebraically

encoding overlap between two shapes into the relatively easy task of identifying if a point

lies in the interior of a polygon. In this way, one can enforce constraints that require a

predefined point on a shape to lie outside the no-fit polygons of each of the other shapes.

These no-fit polygons can be precomputed inputs to the optimization model, but are

only applicable in the case of polygons with fixed orientation (i.e., no rotation allowed).

Furthermore, many approaches leveraging the no-fit polygon concept also require the

shapes to be convex. In [60], the convexity of the polygons was exploited to formulate a

linear programming (LP) model for solving the fixed-orientation version of the Nesting

Problem. The algorithm identifies valid constraints that require the horizontal and vertical

placement of polygons to shift so as to eliminate an identified overlap.

When nonconvex polygons are considered (still with no rotation), the no-fit polygon may

also become nonconvex and the non-overlapping constraints may no longer be expressed

in a simple linear form. An approach to handle the nonconvexity of the no-fit polygon was

presented in [81], where the authors dynamically select which edges of the nonconvex

122

6.1 introduction

no-fit polygon to enforce at a local configuration; however, the authors couple this idea with

heuristic methods to guide the placement of shapes, resulting in an inexact, metaheuristic

algorithm. [9] build upon this approach by providing a rigorous branch-and-bound (BB)

procedure to dynamically search over the sets of no-fit polygon edges. While the authors

demonstrated provably optimal packing solutions for up to 12 polygons (5 of which

nonconvex), the tractability of their algorithm was found to decrease dramatically with the

number of nonconvex polygons considered in the placement.

In [74], the authors adapt the prior approaches by utilizing binary variables to explicitly

model the disjunctions between nonconvex parts of the no-fit polygon. This idea results

in model formulations that are directly representable as mixed-integer linear programs.

At the time, the authors were only able to solve instances with up to 7 pieces (5 of which

nonconvex). Consequently, they focused on utilizing their mathematical optimization for-

mulation in the context of a heuristic algorithm for solving the related Multiple Containment

Problem. [49] later improved upon this approach by representing pieces as combinations of

convex polygons and formulating similar mixed-integer programming models.

When considering instances with the freedom to rotate the polygons to be nested, an

additional level of nonlinearity is introduced and a geometric idea other than the no-fit

polygon must be considered. In [123], the authors adapted their previous translation-only

approach to work for continuous rotation by using a BB tree to search through the space of

feasible rotations and by repeatedly solving relaxed translation-only problems. However,

their algorithm was only practical for packings of 2 or 3 polygons unless further restrictions

on angles of rotation were applied. Another idea is to approximate each polygon by a

collection of circles, which can then be constrained to not overlap with sets of circles

from other polygons. The key feature of such “circle-covering” approaches is the fact that

each of the constraints to enforce no overlap between two circles can be readily written

with rotation of the parent polygons taken into account. The computational downside,

however, is that these non-overlapping constraints are reverse convex quadratic [91] and

therefore require use of advanced global optimization (GO) techniques. [144] compare

several approaches for statically approximating the polygons via different circle-covering

schemes. However, since their schemes over-approximate the true region of the polygons,

this method constitutes an inexact, heuristic approach to the Nesting Problem that provides

good, feasible packings but no rigorous bound on the best possible one. Furthermore,

the authors observe that the tractability of the problem decreases dramatically as more

accurate approximations are required. The current state-of-the-art framework for exact

polygon nesting under free rotation comes from [100], in an algorithm called QP-Nest. This

123

6.1 introduction

approach uses inscribed circles to under-approximate the true region of the polygons and

attempts to dynamically improve the quality of the approximation by introducing new

circles where needed, managing also in this way the trade-off between approximation

accuracy and numerical tractability. The QP-Nest algorithm was able to globally solve a

Nesting Problem instance with four polygons by employing general-purpose GO solvers.

A more detailed description of this algorithm is provided later in this chapter.

This work also addresses the Nesting Problem with both nonconvex shapes and free

rotation but proposes a tailored algorithm that takes advantage of the specific structure

of the circle-covering approach. More specifically, the contributions of this work can be

summarized as follows:

• We develop an exact approach to solve the Nesting Problem to global optimality that

does not rely on the use of general-purpose global optimization solvers.

• We identify a generic approach to dynamically satisfy reverse convex quadratic

constraints commonly found in optimization models within the field of cutting and

packing.

• We conduct a comprehensive computational study that illustrates the competitiveness

of our approach compared to the previous state-of-the-art.

• We present, for the first time in the open literature, provably optimal solutions for

Nesting Problem instances featuring five polygons under free rotation.

The final point above, i.e., the fact that no proven optimal solutions existed to-date for

nesting more than four polygons with arbitrary rotation, alludes to the immense difficulty

of solving problems of this nature to global optimality. It should be however highlighted

that, while exact optimization methods may not be practical for solving industrially-

relevant instances (potentially containing an excess of one hundred pieces) at present, the

global solution of small instances is a capability utilized by many heuristic methods. To

that end, a marginal improvement in the tractability (specifically, the number of polygons

that can be accommodated) in an exact approach could provide sizable benefits in the

ability of heuristic methods to explore better local solutions when constructing large-scale

nestings.

The remainder of this chapter is organized as follows. In Section 6.2, we present the

standard quadratically constrained programming (QCP) formulation that models the

Nesting Problem, and we discuss how a suitable linear relaxation of the latter can be

used as the basis of our BB-based algorithm. Implementation details of the algorithm

124

6.2 mathematical modeling

Figure 6.1: Approximation of a polygon’s area via a set of inscribed circles.

itself, including several model tightening procedures, are presented in Section 6.3. Finally,

Section 6.4 presents results on the algorithm’s computational performance as well as a

comprehensive comparison with the QP-Nest approach utilizing four different state-of-the-

art GO solvers. For convenience, a table synopsizing notation is provided at the end of the

manuscript.

6.2 mathematical modeling

Let P = {1, 2, 3...} denote a set of polygons. For each polygon p ∈ P, let Ip denote the set

of vertices, and let
(
xpi, ypi

)
denote the nominal coordinates of each vertex i ∈ Ip. Since

we allow for arbitrary rotation and translation, let θp, hp, and vp denote the rotational

angle, horizontal translation, and vertical translation for polygon p ∈ P, respectively. Here,

the rotational angle is defined with respect to point (0, 0), the origin of the coordinate

system. We also use cp and sp to represent the cosine and sine of θp, respectively. Clearly,

after being rotated by θp and translated by hp and vp, a vertex
(
xpi, ypi

)
will lie at new

coordinates
(
cpxpi − spypi + hp, spxpi + cpypi + vp

)
. The rectangular sheet has a fixed width

of W and the objective is to minimize its length L such that all polygons can be placed

within it in a way that no two polygons overlap.

6.2.1 Nonconvex QCP Model

Every polygon p ∈ P is approximated by a set of inscribed circles, which we denote as Cp

(Fig. 6.1). For each circle m ∈ Cp, let
(
xpm, ypm

)
denote the coordinates of its center, and

let Rpm denote its radius. Given such circle sets for each polygon p ∈ P, the following

nonconvex QCP formulation can be defined.

125

6.2 mathematical modeling

min
cp,sp,hp,vp,L

L (6.1)

s.t. c2
p + s2

p = 1 ∀p ∈ P (6.2)

0 ≤ cpxpi − spypi + hp ≤ L ∀i ∈ Ip, ∀p ∈ P (6.3)

0 ≤ spxpi + cpypi + vp ≤W ∀i ∈ Ip, ∀p ∈ P (6.4)[(
cpxpm − spypm + hp

)
−
(
cqxqn − sqyqn + hq

)]2
+[(

spxpm + cpypm + vp
)
−
(
sqxqn + cqyqn + vq

)]2 ≥(
Rpm + Rqn

)2 ∀ (m, n) ∈ Cp × Cq,

∀ (p, q) ∈ {P× P : q > p}
(6.5)

− 1 ≤ cp, sp ≤ 1 ∀p ∈ P (6.6)

In the above formulation, the objective function (6.1) aims to minimize the length of

the sheet. The rotational angle is implicitly encoded by its cosine and sine values, which

are suitably defined through the trigonometric constraints (6.2). Constraints (6.3) and (6.4)

ensure that all vertices of the polygon (and hence, the totality of the polygons) will lie

within the sheet.1 Constraints (6.5) guarantee that there is no overlap between a circle

m ∈ Cp and a circle n ∈ Cq by imposing that their centers are sufficiently far in terms of

Euclidean distance. Finally, constraints (6.6) define the applicable bounds for variables cp

and sp. Note that the nonconvexity of this model stems from constraints (6.2) and (6.5).

We highlight that, although constraints (6.5) dictate that any circle inscribed in polygon

p will not overlap with any circle inscribed in polygon q, the model does not prohibit

the penetration of uncovered parts of polygon p into q. Therefore, this model technically

constitutes a relaxation of the full Nesting Problem, and its optimal value is merely a lower

bound for the latter. The approximation error can however be improved by considering

additional circles in the sets Cp that increase the coverage areas of the polygons.

Based on this principle, [100] proposed the QP-Nest approach to address the full problem.

The circle sets
{

Cp
}

p∈P are initialized by inscribing Ninit circles per polygon via a circle-

covering procedure. After solving the resulting QCP (6.1)–(6.6) to global optimality, a

penetration-computing procedure is applied to check whether there exists any penetration of

one polygon into another. If some degree of overlap is identified between two polygons p

1 In fact, one needs only impose these constraints for the vertices that constitute the convex hull of polygon
p ∈ P.

126

6.2 mathematical modeling

Figure 6.2: Identifying the largest circle within the area where two polygons overlap.

and q, a suitable circle within the overlap area will be generated via a circle-adding procedure

and appended to the circle sets Cp and Cq (Fig. 6.2). The QCP model is then resolved and

the process is iterated until no significant (above tolerance) penetration is found. At that

point, the problem is considered to have been solved to global optimality. The overall

QP-Nest algorithm is illustrated in Fig. 6.3.

6.2.2 Customized Model Relaxation

Although the QP-Nest approach is straightforward to implement, the resulting iterations of

the QCP model quickly grow to the point where they become very hard to solve by even

the most advanced of GO solvers. To that end, we develop in this chapter a customized

BB-based solver that can develop tighter approximations using smaller circle libraries and

that can search through the space of feasible solutions more effectively. Unlike a traditional,

general-purpose solver, which must generically handle each nonconvex constraint by

relaxing it individually into its convex relaxation and tighten that relaxation via branching

on the domains of the problem’s native variables, our customized approach recognizes the

physical meaning of these constraints and proposes branching on domains of variables

that are not explicitly defined in the model. Before we describe the algorithm in detail, we

present a suitably parameterized LP relaxation of the QCP model and the main principles

for tightening that relaxation.

First, we illustrate our strategy for relaxing the trigonometric constraints (6.2). Let[
θL

p , θU
p

]
denote the feasible interval of θp (originally equal to [0, 2π)). In the space of(

cp, sp
)
, the corresponding constraint (6.2) requires that all feasible points project ex-

actly on the circumference of a unit circle (Fig. 6.4a). This constraint can be initially

dropped from consideration, resulting in a convex relaxation defined by the box bounds

[−1,+1] (Fig. 6.4b). Feasibility of the nonconvex constraint can then be gradually enforced

127

6.2 mathematical modeling

Input
polygons

Inscribe initial
sets of circles

Solve QP (6.1)–(6.6)
to global optimality

Do polygons
overlap?

Find circles in
the overlap area

Augment set of
constraints (6.5)

Stop

N

Y

Figure 6.3: The QP-Nest approach.

by branching on the implicit θp variable domain and tightening the relaxation in the(
cp, sp

)
space, as follows.

Let K denote a solution of the relaxed problem with coordinates
(

c∗p, s∗p
)

such that it

violates the original constraint. Using this solution as a guide, one may dissect the [0, 2π)

interval into three parts (each representing an angle of 2π/3 radians) and define a set of

three linear constraints (corresponding to two tangent lines and one secant) to form the

convex relaxation of the original trigonometric constraint in each of the three resulting

subdomains. If properly oriented with respect to K (Fig. 6.4c), it can be guaranteed that

this parent solution is excluded in all of the three subdomains. In subsequent violations of

the trigonometric constraint, one could further dissect the applicable θp interval into two

parts. If the solution K is used as the guide to define the branching point, one can again

guarantee that this parent solution is excluded from both resulting subdomains, defining

a proper branching strategy to be employed in the course of a BB search process. More

specifically, we propose a domain split that aims to produce a BB tree that is as balanced

as possible. Let N be the point with coordinates
(

cos
(

θL
p+θU

p
2 + π

)
, sin

(
θL

p+θU
p

2 + π

))
,

and let θ∗p denote the angle in radians between the positive cp-axis and the point at which

the unit circle intersects with the ray that starts at N and passes through K. The resulting

128

6.2 mathematical modeling

proposed split is then
[
θL

p , θ∗p

]
∪
[
θ∗p, θU

p

]
(Fig. 6.4d). Note that our branching scheme works

also in the case when K resides outside the trigonometric circle.

With regards to relaxing the non-overlapping constraints (6.5), we follow a sim-

ilar feasible space dissection strategy. Let us first define for convenience auxil-

iary variables ∆xpmqn :=
(
cpxpm − spypm + hp

)
−
(
cqxqn − sqyqn + hq

)
and ∆ypmqn :=(

spxpm + cpypm + vp
)
−
(
sqxqn + cqyqn + vq

)
for each circle pair for which we have de-

cided to enforce the corresponding non-overlapping constraint. The latter can now be

written as:

∆x2
pmqn + ∆y2

pmqn ≥
(

Rpm + Rqn
)2

Let CCpmqn denote the circle that is centered at the origin, (0, 0), and has a radius

of
(

Rpm + Rqn
)
. Furthermore, let φpmqn be the angle between the positive ∆xpmqn-axis

and the point given by the coordinates
(
∆xpmqn, ∆ypmqn

)
, and let [φL

pmqn, φU
pmqn] represent

its feasible interval (originally equal to [0, 2π)). In the
(
∆xpmqn, ∆ypmqn

)
space, the non-

overlapping constraint (6.5) requires that all feasible points project either outside or exactly

on the circumference of circle CCpmqn (Fig. 7.1a). Dropping at first the constraint from

consideration results in a convex relaxation that is defined by the full space (Fig. 7.1b).

Feasibility of the nonconvex constraint can be then be gradually enforced by branching on

the implicit φpmqn variable domain and tightening the relaxation in the
(
∆xpmqn, ∆ypmqn

)
space, as follows.

Let K denote a solution of the relaxed problem with coordinates
(

∆x∗pmqn, ∆y∗pmqn

)
such that it violates the original constraint. Using this solution as a guide, one may

dissect the [0, 2π) interval into three parts (each representing an arc of angle 2π/3 ra-

dians) and define a set of three linear constraints (corresponding to one secant and

two boundary lines) to form the convex relaxation of the original non-overlapping con-

straint in each of the three resulting subdomains. If properly oriented with respect to

K (Fig. 7.1c), it can be guaranteed that this parent solution is excluded in all of the three

subdomains. In subsequent violations of the same constraint, one could further dissect

the applicable φpmqn interval into two parts. If the solution K is used as the guide to

define the branching point, one can again guarantee that this parent solution is excluded

from both resulting subdomains, defining a proper branching strategy to be employed

in the course of a BB search process. More specifically, let N be the point with coor-

dinates
((

Rpm + Rqn
)

cos
(

φL
pmqn+φU

pmqn
2 + π

)
,
(

Rpm + Rqn
)

sin
(

φL
pmqn+φU

pmqn
2 + π

))
, and let

φ∗pmqn denote the angle in radians between the positive ∆xpmqn-axis and the point at which

129

6.2 mathematical modeling

cp

sp

(a) Full feasible space

K cp

sp

(b) Convex relaxation of
feasible space

K cp

sp

(c) Initial tightening via 3

branches

N

K

cp

sp

(d) Subsequent tightening via
2 branches

Figure 6.4: The trigonometric constraint and its dynamically tightened relaxation.

130

6.3 the new algorithm

the circle CCpmqn intersects the ray that starts at N and passes through K. The resulting

proposed split is then
[
φL

pmqn, θ∗pmqn

]
∪
[
φ∗pmqn, φU

pmqn

]
(Fig. 7.1d).

min
cp,sp,hp,vp,L

L (6.7)

s.t. α̂pkcp + β̂pksp ≥ γ̂pk ∀k ∈ {1, 2, 3} , ∀p ∈ P̂

(6.8)

0 ≤ cpxpi − spypi + hp ≤ L ∀i ∈ Ip, ∀p ∈ P (6.9)

0 ≤ spxpi + cpypi + vp ≤W ∀i ∈ Ip, ∀p ∈ P (6.10)

αpmqnk
[(

cpxm − spym + hp
)
−
(
cqxn − sqyn + hq

)]
+

βpmqnk
[(

spxm + cpym + vp
)
−
(
sqxn + cqyn + vq

)]
≥

γpmqnk ∀k ∈ {1, 2, 3} ,

∀ (m, n) ∈ C2
pq,

∀ (p, q) ∈ {P× P : q > p}
(6.11)

− 1 ≤ cp, sp ≤ 1 ∀p ∈ P (6.12)

Given the above relaxation strategies, equations (6.7)–(6.12) constitute a relaxed LP

formulation to be solved at each node of our BB search process. In this model, the set

P̂ ⊆ P is the subset of polygons whose rotational angle interval has been branched at

least once, while the set C2
pq ⊆ Cp × Cq denotes the set of circle pairs for which the

corresponding φpmqn interval has been branched at least once. All sets P̂ and C2
pq begin as

empty sets and will be dynamically expanded and updated as the algorithm proceeds.

The parameters α̂pk, β̂pk, γ̂pk, αpmqnk, βpmqnk and γpmqnk are suitably chosen in each case to

define the linear inequalities that relax the original trigonometric and non-overlapping

constraints discussed above.

6.3 the new algorithm

In this section, we discuss the details of our newly proposed algorithm for addressing the

Nesting Problem to guaranteed optimality. As already discussed, the algorithm implements

a BB search process that solves at each node LP relaxations of the type (6.7)–(6.12). The

overall algorithm is illustrated in Fig. 6.6.

131

6.3 the new algorithm

∆xpmqn

∆ypmqn

(a) Full feasible space

K ∆xpmqn

∆ypmqn

(b) Convex relaxation of feasible
space

K ∆xpmqn

∆ypmqn

(c) Initial tightening via 3 branches

K

N

∆xpmqn

∆ypmqn

(d) Subsequent tightening via 2

branches

Figure 6.5: The non-overlapping constraint and its dynamically tightened relaxation.

132

6.3 the new algorithm

In our algorithm, a circle library
{

Cp
}

p∈P with Nlib initially inscribed circles per polygon

is provided in the beginning, but unlike the QP-Nest approach, these circles will not be

immediately considered in the context of the non-overlapping constraints (6.11). Instead,

these circles will be stored in a repository of circles from which to dynamically separate

and add such constraints when violated. We should highlight that the violation of non-

overlapping constraints is checked repeatedly at every BB node. Hence, querying an

off-line computed repository, as opposed to executing the circle-adding procedure each

time, has the potential to amount to significant computational benefit. There is also a

provision for the circle library to be expanded with new circles in order to improve the

approximation in areas of polygon overlap that are not covered by the circles currently

in the library. In fact, this ability to gradually incorporate more circles and improve the

linear relaxations of the nonconvex constraints within the context of a single BB tree is a

key feature of our approach, relieving us from having to resolve problems as in QP-Nest.

We remark that, at the root node, the LP relaxation model only includes constraints (6.9),

(6.10), and (6.12). Consequently, it does not include any linear relaxation of trigonometric

or non-overlapping constraints, since no branching has yet occurred towards enforcing

their feasibility.

6.3.1 Feasibility Checking

After solving an LP relaxation (6.7)–(6.12), we check whether its optimal solution is a

feasible configuration for the Nesting Problem. A feasible configuration has to be insured

against two conditions: (i) all rotational angles are correctly defined, that is, trigonometric

constraints (6.2) are satisfied; (ii) there is no overlap among polygons. For the former

condition, we utilize a parameter εθ to denote what resolution of a rotational angle would

be satisfactory to achieve. Consequently, we can declare that a trigonometric constraint

is satisfied at a given
(

c∗p, s∗p
)

when the quantity
√

c∗2
p + s∗2

p − 1 is bounded from above

by εmax
θ = 1

cos(εθ
2)
− 1 and from below by εmin

θ = 1− cos
(εθ

2

)
. For the latter condition,

we first check whether all circle pairs covered by the circle library
{

Cp
}

p∈P satisfy a

penetration tolerance εφ at their applicable
(

∆x∗pmqn, ∆y∗pmqn

)
. Assuming this is the case,

the penetration-computing procedure proposed in [100] is then applied to check the

solution also for possible overlaps not covered by the circle library. We highlight that

assessing possible violations against the static library of circles is a step that is significantly

faster computationally than the more expensive penetration-computing algorithm. To that

end, our strategy ensures that invocation of the latter is only reserved for those cases when

133

6.3 the new algorithm

Input
polygons

Build a circle library

UB− LB ≤ εopt?Update LB Stop

Pick a node

Solve
LP (6.7)–(6.12)

Is LP feasible?Prune node

Nonconvex
constraints
satisfied?

Polygons overlap?

Find circles in
the overlap area

Branch

Update UB

Add circles
to library

Attempt
feasibility-based

tightening
Solution cut off?

N

Y

N

Y

Y

Y

N

N

N

Y

Figure 6.6: A customized BB algorithm for solving the Nesting Problem.

134

6.3 the new algorithm

it is absolutely necessary. If both feasibility conditions are met, then a feasible configuration

has been obtained; the solution can be considered as a possible new incumbent solution

and the node is fathomed. Otherwise, the node must either be tightened or branched upon

in order to eliminate the current solution.

6.3.2 Branching Rule Selection

As discussed earlier, our BB algorithm utilizes two types of branching rules, one aimed at

enforcing the feasibility of the trigonometric constraints and one aimed at doing so for the

non-overlapping constraints. In order to properly decide which of these two heterogeneous

rules to implement each time branching is to be performed, we first provide a suitable

way to normalize the violations of trigonometric constraints. More specifically, let Rch
p

denote the radius of a circle with the same area as the convex hull of polygon p. From

a geometric point of view, the shortest distance between
(

c∗p, s∗p
)

and the corresponding

trigonometric circle’s circumference, i.e.,
∣∣∣√c∗2

p + s∗2
p − 1

∣∣∣, indicates the extent to which

the polygon p ∈ P is allowed to contract or expand as a result of the relaxation imposed

on its rotational angle. Hence, the quantity Vθ
p = Rch

p

∣∣∣√c∗2
p + s∗2

p − 1
∣∣∣ can be used as a

suitable metric to express a trigonometric constraint’s violation in terms of magnitude of

polygon overlap. This quantity is directly comparable with the extent to which two circles

are overlapping, namely Vφ
pmqn = Rpm + Rqn −

√
∆x∗2

pmqn + ∆y∗2
pmqn.

Let p̂ ∈ P be the polygon with the highest trigonometric constraint violation, and

let (m̄, n̄) ∈ Cp̄ × Cq̄, where (p̄, q̄) ∈ {P× P : q̄ > p̄}, be the circle pair with the highest

non-overlapping constraint violation. We choose to branch based on the former if Vθ
p̂ >

τno-ovVφ
p̄m̄q̄n̄, while we branch on the latter otherwise. Here, τno-ov < 1 is a weighting factor

to prioritize branching on trigonometric constraints before branching on non-overlapping

ones, which our computational experience has determined as beneficial to do. Furthermore,

since branching into two subdomains will produce fewer child nodes in the BB tree than

the initial branching into three subdomains, the violations of currently unbranched non-

overlapping constraints are further discounted by some factor τunbr < 1.

135

6.3 the new algorithm

6.3.3 Feasibility-based Node Tightening

Feasibility-based tightening of each BB node can be performed by utilizing the geometric

interpretation of the non-overlapping constraints. Consider constraints (6.11) for some

(m, n) ∈ C2
pq, where (p, q) ∈ {P× P : q > p}, conveniently rewritten as

αpmqnk∆xpmqn + βpmqnk∆ypmqn ≥ γpmqnk ∀ k ∈ {1, 2, 3} . (6.13)

For any given (m̄, n̄) ∈ Cp × Cq, ∆xpmqn and ∆ypmqn can be expressed in terms of ∆xpm̄qn̄

and ∆ypm̄qn̄ via relationships

∆xpmqn = ∆xpm̄qn̄ +
(
cp∆xpmm̄ − sp∆ypmm̄

)
−
(
cq∆xqnn̄ − sq∆yqnn̄

)
∆ypmqn = ∆ypm̄qn̄ +

(
sp∆xpmm̄ + cp∆ypmm̄

)
−
(
sq∆xqnn̄ + cq∆yqnn̄

)
,

where: ∆xpmm̄ := xpm − xpm̄, ∆ypmm̄ := ypm − ypm̄, ∆xqnn̄ := xqn − xqn̄, ∆yqnn̄ := yqn − yqn̄.

Combining these with (6.13), we have

αpmqnk∆xpm̄qn̄ + βpmqnk∆ypm̄qn̄ ≥ RHSk
(
θp, θq

)
∀ k ∈ {1, 2, 3} ,

where: RHSk
(
θp, θq

)
:= γpmqnk − αpmqnk

[(
cp∆xpmm̄ − sp∆ypmm̄

)
−
(
cq∆xqnn̄ − sq∆yqnn̄

)]
− βpmqnk

[(
sp∆xpmm̄ + cp∆ypmm̄

)
−
(
sq∆xqnn̄ + cq∆yqnn̄

)]
.

The end result is a set of valid constraints (6.14), which are implied by (6.13), but which

can be further tightened as we shall show below.

αpmqnk∆xpm̄qn̄ + βpmqnk∆ypm̄qn̄ ≥ max
θp∈[θL

p ,θU
p],

θq∈[θL
q ,θU

q]

RHSk
(
θp, θq

)
∀ k ∈ {1, 2, 3} (6.14)

Let Fpmqn denote the feasible
(
∆xpmqn, ∆ypmqn

)
space constrained by (6.13) (Fig. 6.7a), and

let F̄pmqn denote the feasible
(
∆xpm̄qn̄, ∆ypm̄qn̄

)
space constrained by (6.14) (Fig. 6.7b). Note

how the above substitution amounts to projecting Fpmqn onto the
(
∆xpm̄qn̄, ∆ypm̄qn̄

)
plane,

forming F̄pmqn. Since any point inside the circle CCpm̄qn̄ is essentially infeasible, F̄pmqn

can be further tightened as Fig. 6.7c demonstrates. Clearly, the tightened space is not

implied by constraints (6.13). For cases where the feasible space Fpm̄qn̄ is already partially

constrained (e.g., due to a previous branching decision associated with circle CCpm̄qn̄), then

136

6.3 the new algorithm

∆xpmqn

∆ypmqn

(a) Feasible space Fpmqn

F̄pmqn

∆xpm̄qn̄

∆ypm̄qn̄

(b) Projection of Fpmqn onto
Fpm̄qn̄

∆xpm̄qn̄

∆ypm̄qn̄

(c) Feasible space Fpm̄qn̄ after
tightening

Figure 6.7: Feasibility-based tightening (special case when Fpm̄qn̄ = R2)
.

∆xpmqn

∆ypmqn

(a) Feasible space Fpqmn

F̄pmqn ∩ Fpm̄qn̄

∆xpm̄qn̄

∆ypm̄qn̄

(b) Projection of Fpmqn onto
Fpm̄qn̄

∆xpm̄qn̄

∆ypm̄qn̄

(c) Feasible space Fpm̄qn̄ after
tightening

Figure 6.8: Feasibility-based tightening (general case when Fpm̄qn̄ ⊂ R2).

F̄pmqn shall be intersected with the currently applicable space Fpm̄qn̄ (Fig. 6.8b), and it is

this intersection that may be further tightened (Fig. 6.8c).

We apply the above projection and tightening procedure every time an LP relaxation is

solved. More specifically, we focus on the up to Nfbt polygon pairs (p, q) ∈ {P× P : q > p}
that overlap the most, identify the pair of circles (m̄, n̄) ∈ Cp × Cq that are responsible

for these violations, and attempt to tighten the feasible spaces Fpm̄qn̄ using information

from any relevant space Fpmqn. If the resulting linear cuts are strong enough to cut off the

relaxed solution, these cuts are immediately added to the model (augmenting the set C2
pq,

if necessary) and the latter is resolved. It is important to note, however, that even if these

cuts do not strengthen the LP relaxation, they may prove useful in tightening the model

at some later point during the course of the BB search. To take advantage of this fact, we

save the linear cuts to node-specific libraries of previously identified cuts. Future node

137

6.3 the new algorithm

solutions are first checked for possible violations against these libraries before applying

the full feasibility-based tightening process.

Finally, we remark that feasibility-based tightening can also be applied as soon as a

branching step based on an implicit angle φpmqn is taken, in order to strengthen the newly-

formed children nodes. More specifically, the restricted feasible space Fpmqn in the child

node’s domain that resulted from application of the branching disjunction can be projected

so as to tighten any applicable spaces Fpm̄qn̄.

6.3.4 Tighter Variable Bounds

Consider the largest circle that can be inscribed in the convex hull of a polygon p ∈ P,

and let Rch,in
p denote its radius. Furthermore, assume (without loss of generality) that the

coordinates of the polygon’s vertices have been adjusted such that this circle is centered at

(0, 0). Since the polygon’s convex hull must also lie within the boundaries of the sheet, the

following bounds apply for the translation variables.

Rch,in
p ≤hp ≤ LBKS − Rch,in

p ∀ p ∈ P (6.15)

Rch,in
p ≤vp ≤W − Rch,in

p ∀ p ∈ P (6.16)

Here, LBKS denotes the “best-known solution” (best upper bound) that we may possess

(e.g., by employing a heuristic algorithm) for the instance in question. Note that, each time

a better incumbent is found during the BB process, the upper bound of hp is updated

according to the new (smaller) LBKS value. From this perspective, constraints (6.15) can be

viewed as globally-valid, optimality-based cuts.

6.3.5 Symmetry Breaking Constraints

As [100] and [145] have pointed out, several types of symmetry apply in the context of the

Nesting Problem. To that end, we utilize appropriate symmetry-breaking constraints in

our implementation.

(i) Polygon rotational symmetry: For a polygon p ∈ P with a rotationally symmetric

angle, Θp, relative to its center (e.g., for a perfect square, Θp = π/4), one may break

symmetry by imposing θp ≤ Θp.2

2 For compatibility with constraints (6.15) and (6.16), the symmetry center must also be moved to point (0, 0).

138

6.4 computational studies

(ii) Identical polygons: When two polygons p and q, such that q > p, are identical, then

hp ≤ hq can be added into the model to break this symmetry.3

(iii) Sheet orientation: This symmetry arises due to the fact that an equivalent packing

solution can always be obtained when rotating the entire configuration by 180

degrees. Hence, in all instances one can enforce θp? ≤ π, where p? ∈ P is a specific

polygon that one chooses for purposes of defining this constraint.

6.4 computational studies

We now test our customized BB approach and compare its performance with the QP-Nest

approach. Our algorithm was implemented in C++ and the LP relaxation models were

solved via CPLEX Optimization Studio 12.7.1 through the C application programming

interface. All applicable algorithm tuning parameters are listed in Table 6.1. The QP-Nest

approach was initialized with Ninit = 3 circles per polygon,4 and solved within the GAMS

25.0.2 environment utilizing several state-of-the-art general purpose GO solvers, namely

BARON 17.10.16 [166], GloMIQO 2.3 [124], LINDOGlobal 11.0, and SCIP 5.0 [3]. For a

fair comparison, applicable strengthening techniques such as symmetry-breaking and

tighter variable bounds were also incorporated into the QP-Nest implementation. All

computational experiments were conducted on an single thread of an Intel Xeon CPU E5-

2687Wv3 @ 3.10GHz with 32GB of RAM.

6.4.1 Instances

In order to generate our suite of benchmark testing instances, we use the data from the

well-studied instance SHAPES2 [128], which features a total of seven different polygons

shown in Fig. 6.9. Using all possible combinations of these polygons, we generated a total

of 64 nesting instances, namely 35 four-polygon, 21 five-polygon, 7 six-polygon, and 1

seven-polygon instances. According to the dataset, the fixed width of the rectangular sheet

is W = 15.5

3 We prefer to use hp + vp ≤ hq + vq, because it is likely to break symmetry in more instances.
4 In the original implementation of [100], the values 5 and 13 were proposed for parameter Ninit. However, in

most instances used in this study, we found that using 5 or more circles per each and every polygon leads to
initial QCP models that cannot be solved within the time limit, i.e., the GO solvers could not even complete
the first (and also easiest) iteration. In contrast, using the setting Ninit = 3 and allowing the circle sets to grow
more judiciously as overlaps are identified led to much better performance of the QP-Nest approach.

5 For the sake of better numerical stability, in our implementations the width was normalized down to the value
of 1, and all coordinates were scaled correspondingly.

139

6.4 computational studies

Table 6.1: Parameters used in the new algorithm.

Symbol Parameter Value

εθ Resolution of rotational angle 2π
360

εφ Tolerance for circle penetration checking 10−3

εopt Optimality tolerance 10−3

Nlib Number of inscribed circles per polygon initially in library 30

Nfbt Maximum number of circle pairs for which feasibility-based 6

tightening is attempted

τno-ov Weighting factor for violation of a non-overlapping constraint 0.1

τunbr Weighting factor for violation of an unbranched non-overlapping 0.3

constraint

Figure 6.9: Polygon shapes used in our benchmark study.

6.4.2 Fixed Orientation Case

Before we attempt to solve for nestings under free rotation, we first analyze our algorithm

in the case where the orientation of the polygons is fixed at their nominal values (as

shown in Fig. 6.9). In this setting, variables cp and sp are fixed for all p ∈ P, and hence, no

violation of the trigonometric constraints occurs. Solving the problem exclusively focuses

on enforcing the non-overlapping restrictions. For our custom BB algorithm, we adopted

the best-bound-first search node selection strategy. Both the new algorithm and the QP-Nest

approach were provided with an initial upper bound. Given the wide variety of possible

heuristics that could be available to obtain such an initial incumbent solution, we utilize

the following two options: (i) a naive solution, wherein polygons are lined-up left to right

(Fig. 6.10), and (ii) the optimal solution itself. Note how these two cases constitute the

two extremes in terms of the performance of a heuristic scheme that one may employ in

a real setting, and hence, the results obtained in this manner bound the performance of

140

6.4 computational studies

the nesting algorithms with respect to the effect of the quality of the initial incumbent

provided.

Figure 6.10: A naive solution.

Table 6.2 presents the computational results for when QP-Nest and our custom BB

approach are initialized with the naive incumbent. The table presents the number of test

instances of a given input size (# inst.), and the average number of nonconvex polygons

in those instances. For those instances that were solved to provable optimality within

the chosen time limit of 2 hours, we present the average solution time, while for those

instances that were not, we present the average residual gap, defined as (UB− LB) /UB at

the time limit. With respect to the results of QP-Nest, each instance is solved independently

with each of the four GO solvers we consider in this study, and we adopt the best of those

runs as the one to account for in the table (instance-wise “best-of-four”). Consequently,

this column is to be interpreted as an upper bound on the performance of QP-Nest.

Table 6.2: Comparison between QP-Nest and the new algorithm for the case of fixed orientation,
using a naive solution as incumbent.

poly-
gons

#
inst.

Avg. # of
noncon-

vex
polygons

“Best-of-Four” QP-Nest Approach New BB-based Approach

opt. Avg. t
(sec)

Avg.
gap (%)

opt. Avg. t
(sec)

Avg.
gap (%)

4 35 1.7 35 309 – 35 4 –

5 21 2.1 12 1,517 67.9 21 94 –

6 7 2.6 1 2,155 70.5 7 591 –

7 1 3.0 0 – 76.0 0 – 0.2

Table 6.2 reveals that, when the naive solution is passed as an initial upper bound, our

custom BB approach can solve all test instances to optimality except the seven-polygon

141

6.4 computational studies

 L=6.65 L=7.39

Figure 6.11: Optimal solutions for representative six-polygon (left) and seven-polygon (right) in-
stances under fixed orientation.

problem, which features a residual gap of 0.2%. At the same time, the QP-Nest approach

could only solve 16 out of 21 five-polygon instances and only 1 out of 7 six-polygon

instances, with approximately 70% residual gap for the unsolved instances. The solution

time of our approach was also much less than that for the QP-Nest approach. Table 6.3

presents the numerical results when the optimal solution is provided as the initial solution.

Under this setup, both approaches demonstrate improved performance over the case

with a naive initialization. More specifically, the new BB algorithm can now solve all test

instances (including the seven-polygon one) to global optimality within less computation

time. In contrast, the QP-Nest approach could not solve any additional instances compared

to the naive incumbent case. It is noteworthy, however, that the average residual gap

for the QP-Nest approach decreases dramatically, which is to be attributed to the better

upper bound involved in the calculation of residual gaps. Figure 6.11 presents the optimal

solutions for a representative six-polygon and the seven-polygon nesting instances.

Table 6.3: Comparison between QP-Nest and the new algorithm for the case of fixed orientation,
using an optimal solution as incumbent.

poly-
gons

#
inst.

Avg. # of
noncon-

vex
polygons

“Best-of-Four” QP-Nest Approach New BB-based Approach

opt. Avg. t
(sec)

Avg.
gap (%)

opt. Avg. t
(sec)

Avg.
gap (%)

4 35 1.7 35 116 – 35 2 –

5 21 2.1 16 1,587 1.6 21 55 –

6 7 2.6 1 1,398 3.1 7 406 –

7 1 3.0 0 – 6.6 1 4,176 –

142

6.4 computational studies

6.4.3 Free Rotation Case

Here, we consider the general case where the polygons are allowed to rotate arbitrarily in

the interest of achieving better nesting configurations. These experiments were conducted

with a increased time limit of 10 hours. All algorithmic parameters were kept the same as

in the fixed-orientation case, with only exception being the node selection strategy for our

BB-based algorithm, which was changed to depth-first search in order to alleviate memory

limitations arising from large lists of unprocessed nodes during the search. With regards

to choosing an initial upper bound, we again utilize the naive initial incumbent solutions

as an example of a poor heuristic. However, since no optimal solutions were available for

these (never before solved) instances, we utilize the optimal solutions we obtained for

the case of fixed orientation (see Table 6.3) as a representative set of high-quality initial

solutions.

From an overall numerical tractability perspective, we observe that solving for nestings

with free rotation is significantly more challenging compared to the case when the polygon

orientation is fixed. As Tables 6.4 and 6.5 show, our customized BB approach could solve

all four-polygon instances and approximately half of the five-polygon ones when the good

incumbent was passed initially. In contrast, the QP-Nest approach could only solve about

two-thirds of the four-polygon problems and none of the five-polygon ones. Figure 6.12

presents a handful of optimal five-polygon nestings under arbitrary rotation. We highlight

that this is the first time in the open literature that these solutions are obtained.

Table 6.4: Comparison between QP-Nest and the new algorithm for the case of free rotation, using
a naive solution as incumbent.

poly-
gons

#
inst.

Avg. # of
noncon-

vex
polygons

“Best-of-Four” QP-Nest Approach New BB-based Approach

opt. Avg. t
(sec)

Avg.
gap (%)

opt. Avg. t
(sec)

Avg.
gap (%)

4 35 1.7 22 6,565 71.2 34 1,646 58.3

5 21 2.1 0 – 80.1 2 18,938 54.3

6 7 2.6 0 – 94.6 0 – 66.9

7 1 3.0 0 – ? 0 – 61.5

? = GO solvers could not complete the first iteration of the QP-Nest approach.

143

6.4 computational studies

Table 6.5: Comparison between QP-Nest and the new algorithm for the case of free rotation, using
an optimal fixed-orientation solution as incumbent.

poly-
gons

#
inst.

Avg. # of
noncon-

vex
polygons

“Best-of-Four” QP-Nest Approach New BB-based Approach

opt. Avg. t
(sec)

Avg.
gap (%)

opt. Avg. t
(sec)

Avg.
gap (%)

4 35 1.7 23 6,764 13.0 35 287 –

5 21 2.1 0 – 26.9 10 17,058 41.6

6 7 2.6 0 – 71.9 0 – 54.8

7 1 3.0 0 – ? 0 – 52.6

? = GO solvers could not complete the first iteration of the QP-Nest approach.

 L=4.67 L=4.78 L=4.83 L=4.95 L=5.00

 L=5.00 L=5.00 L=5.00 L=5.01 L=5.48

Figure 6.12: Optimal solutions for several five-polygon instances under free rotation.

144

6.5 conclusions

6.5 conclusions

Nesting irregular shapes within rectangular sheets while allowing both translation and free

rotation is an industrially important, yet notoriously hard, problem for which little effort

has been devoted on how to solve to provable optimality. To the best of our knowledge,

the QP-Nest approach proposed in [100] was the only exact method that could obtain

global optimal solutions for certain instances up to four polygons. This performance was

confirmed also via the computational study we conducted in this work, where we used

the latest available versions of four different global optimization solvers as the basis for

the QP-Nest method.

Our new approach adopts the circle-covering idea, but instead of solving quadratically

constrained programming nesting model approximations iteratively, it proposes to tackle

the full problem in a single branch and bound search, using a customized linear relaxation

and a novel branching scheme. We also propose several model tightening techniques,

which can be readily incorporated in the dynamic process of the search. Many of the

proposed ideas can in fact have wider applicability, beyond the context of shape nesting,

when addressing optimization models that feature reverse convex quadratic constraints.

Our computational studies on a suite of 64 benchmark instances demonstrated the com-

petitiveness of the new approach. Meanwhile, for the first time in the open literature,

five-polygon nestings under free rotation were solved to global optimality.

145

6.6 appendix : nomenclature

6.6 appendix : nomenclature

Indices

p, q polygon

i, j vertex

m, n circle

Sets

P set of polygons to nest

Ip set of vertices of polygon p

Cp set of circles inscribed in polygon p

P̂ subset of polygons whose rotational angle interval has been branched

C2
pq set of circle pairs between polygon p and polygon q that have been

branched

Fpmqn feasible space of relaxed non-overlapping constraints for circle m in

polygon p and circle n in polygon q

Continuous Variables

hp horizontal translation of polygon p

vp vertical translation of polygon p

θp rotation of polygon p

cp cosine of θp

sp sine of θp

L length of sheet on which shapes are nested

(∆xpmqn, ∆ypmqn) displacement between circle m in polygon p and circle n in polygon q

φpmqn angle between center of circle m in polygon p and circle n in polygon q

146

6.6 appendix : nomenclature

Parameters

(xpi, ypi) nominal coordinates of vertex i on polygon p

(xpm, ypm) nominal coordinates of center of circle m inscribed in polygon p

Rpm radius of circle m inscribed in polygon p

W width of sheet on which shapes are nested

LBKS sheet length of best known nesting solution

Ninit number of circles initially inscribed per polygon

Nlib number of circles initially present in a library of inscribed circles

per polygon

(θL
p , θU

p) lower and upper bounds on the rotation of polygon p

(φL
pmqn, φU

pmqn) lower and upper bounds on the angle between center of circle m

in polygon p and circle n in polygon q

α̂pk, β̂pk, γ̂pk coefficients to define relaxed trigonometric constraint k for

polygon p

αpmqnk, βpmqnk, γpmqnk coefficients to define relaxed non-overlapping constraint k for

circle m in polygon p and circle n in polygon q

εθ resolution of rotational angles

εφ tolerance on shape penetration

147

7
O N TA C K L I N G R E V E R S E C O N V E X C O N S T R A I N T S F O R

N O N - O V E R L A P P I N G O F C I R C L E S

In this chapter, we study the circle-circle non-overlapping constraints, a form of reverse con-

vex constraints that often arise in optimization models for cutting and packing applications.

The feasible region induced by the intersection of circle-circle non-overlapping constraints

is highly non-convex, and standard approaches to construct convex relaxations for spatial

branch-and-bound global optimization of such models typically yield unsatisfactory loose

relaxations. Consequently, solving such non-convex models to guaranteed optimality re-

mains extremely challenging even for the state-of-the-art codes. In this chapter, we apply a

purpose-built branching scheme on non-overlapping constraints and utilize strengthened

intersection cuts and various feasibility-based tightening techniques to further tighten

the model relaxation. We embed these techniques into a branch-and-bound code and test

them on two variants of circle packing problems. Our computational studies on a suite

of 75 benchmark instances yielded, for the first time in the open literature, a total of 54

provably optimal solutions, and it was demonstrated to be competitive over the use of the

state-of-the-art general-purpose global optimization solvers.

7.1 introduction

The circle-circle non-overlapping constraint is imposed to guarantee that two circles do

not overlap, which can be achieved by requiring that their centers are sufficiently far in

terms of Euclidean distance. In particular, the constraint has the mathematical form

(
ai − aj

)2
+
(
bi − bj

)2 ≥
(
ri + rj

)2 , (7.1)

where (ai, bi) and
(
aj, bj

)
represent the coordinates of the centers of two circles i and j,

while ri and rj denote their corresponding radii, respectively.

148

7.1 introduction

Studying this type of constraint has both theoretical and practical interest. From a

theoretical perspective, mathematical models with non-overlapping constraints usually

have a highly non-convex solution space whose convexification towards a tight relaxation

still poses a tremendous challenge for the global optimization community; solving these

models to guaranteed optimality remains extremely hard, even for the state-of-the-art

solvers. From a practical point of view, circle-circle non-overlapping constraints often

appear in many models for cutting and packing applications, and efforts to solve them

more efficiently can add significant value to industry.

The first and foremost, archetypal family of problems of interest are the circle packing

problems. These come in many variants, such as packing identical circles into a rectangular

container with the objective of minimizing the container’s area [90], or identifying the

minimal radius of a circle within which other circles can simultaneously be placed [149],

among others. Related applications include container loading, cyclinder packing and

wireless communication network layout, to name but a few [46]. Another related cutting

and packing application is the irregular shape nesting problem, in which one seeks

a feasible configuration for a given set of irregular shapes within a rectangular sheet

of a fixed width such that no overlap among these shapes exists and the sheet length

is minimized. This problem often appears when carving out of metal rolls parts for

automobiles, airplanes and other machinery, as well as when cutting leather and fabrics

for apparel and upholstery applications. The work of [100] proposed to enforce no overlap

between any two irregular shapes by imposing that circles inscribed within one shape

do not overlap with circles inscribed within another one, resulting in an optimization

model with non-convex quadratic constraints. Using this approach, the authors obtained

for the first time optimal nesting solutions to a four polygon problem, using off-the-shelf

global optimization solvers to tackle the non-convex quadratically constrained models.

Focusing on the circle-inscribing approach for nesting problems, Chapter 6 proposed a

novel branching scheme on circle-circle non-overlapping constraints and demonstrated the

ability to find global optimal nestings to benchmark instances with five polygons, as well

as solutions to instances with up to seven polygons under fixed rotation. Both the circle

packing problem and the irregular shape nesting problem have been studied extensively,

with most of the focus being on the development of heuristics to obtain large-scale packings

[10, 117]. While heuristic methods are practically valuable for the generation of feasible

solutions, they cannot rigorously quantify the optimality gap, and therefore provide no

guarantees regarding how much value is left on the table by the packings produced.

149

7.1 introduction

Arguably, the exact solution of optimization models with non-overlapping constraints is of

great practical importance.

Mathematical models with circle-circle non-overlapping constraints fall into the quadrat-

ically constrained quadratic programming (QCQP) class, which is currently a very active

research area in global optimization. Generally speaking, there are two approaches for

convexifying QCQPs, namely semi-definite programming (SDP) relaxation and multi-term

polyhedral relaxation with reformulation-linearization techniques [29]. The polyhedral

approach calls for approximating the convex hull of the non-convex feasible solution

space via linear inequalities, while the SDP method is to characterize the convex hull

via semi-definite cones. Interested readers are referred to [13] for details. Although the

SDP relaxation is usually tighter than the polyhedral one, optimizing an SDP problem

is generally computationally less efficient than a linear one. Therefore, general-purpose

global solvers [125, 166, 172] commonly rely on polyhedral relaxations to address QCQPs.

Despite many recent advances in global optimization solvers, however, optimizing models

with non-overlapping constraints is still incredibly challenging. Our computational studies

on circle packing instances (Section 7.5) also show that general-purpose global solvers

could only solve instances of up to 10 circles to guaranteed optimality.

At the same time, there exist only a handful of attempts in the open literature to address

such models in a customized approach. The work of [103] considered the problem of

packing a fixed number of identical circles into a given square with the objective of

maximizing the circle radius. The authors conducted a theoretical comparison of several

convexification techniques on non-overlapping constraints, including polyhedral and

semi-definite relaxations, and assessed their strength theoretically. They pessimistically

concluded that the current state-of-the-art bounding techniques are only effective for small-

size circle packing problems. In addition, the work of [141] proposed to approximate the

quadratic function in the left-hand side of a non-overlapping constraint via piecewise linear

functions. This approach necessitates the introduction of binary variables to represent the

latter, resulting in a mixed-integer linear programming model, and thus might become

impractical as the approximation accuracy increases.

This chapter presents an extension of the branching strategy on non-overlapping con-

straints previously developed in Chapter 6. The main idea is rooted in the geometric inter-

pretation of a circle-circle non-overlapping constraint. More specifically, the constraint (7.1)

dictates that any feasible point in the transformed variable space
(
ai − aj

)
–
(
bi − bj

)
should

lie outside (or exactly on) the circumference of the circle that has a center with coordinates

(0, 0) and has a radius of ri + rj. Unlike a traditional, general-purpose spatial branch-and-

150

7.1 introduction

bound based solver, which must generically handle each non-convex constraint by relaxing

it individually into its convex relaxation and tighten that relaxation via branching on the

domains of the problem’s variables, our perspective is to split the feasible, non-convex

domain imposed by non-overlapping constraints and enforce feasibility in a more direct

fashion.

More specifically, we will follow an approach that branches on the domain of constraint,

rather than the domain of variables. Additionally, we observe that the non-overlapping

constraint imposes a reverse convex region [91]. It is well-known that reverse convex

constraints can induce intersection cuts [23, 91], which are also called concavity cuts [95]

in the global optimization community. These cuts are computationally cheap to generate,

and they can be utilized to strengthen the model relaxation. In order to further tighten

the model relaxation, we also propose three feasibility-based tightening techniques. The

distinct contributions of our work can be summarized as follows.

• We develop a customized branch-and-bound (BB) approach for solving problems

with circle-circle non-overlapping constraints.

• We generalize the intersection cut formula from the seminal paper of [23] to more

generic cases with arbitrary variable bounds, and we apply a strengthened version

of these cuts to tighten the BB node relaxations.

• We propose three types of feasibility-based tightening techniques to further

strengthen the BB node relaxations.

• We conduct a comprehensive computational study based on two popular variants of

the circle packing problem to demonstrate that our approach achieves superior per-

formance over the use of various state-of-the-art general-purpose global optimization

solvers.

The remainder of the chapter is organized as follows. In Section 7.2, we provide a

concise description of an optimization model with non-convexities that stem from the

presence of non-overlapping constraints. In Section 7.3, we discuss how to construct a

suitable linear relaxation of such a model that we can use as the basis of our BB algorithm,

followed by a presentation of the complete algorithmic procedure. In Section 7.4, we discuss

strengthening techniques, including strengthened intersection cuts and feasibility-based

tightening. Section 7.5 presents results on the algorithm’s computational performance as

well as a comprehensive comparison against the use of five different state-of-the-art global

optimization solvers. Finally, we conclude our chapter with some remarks in Section 7.6.

151

7.2 problem definition

7.2 problem definition

In this work, we focus on the following problem (7.2).

minimize
x∈Rn

c>x

subject to fk(x) ≤ 0 ∀k ∈ K

x2
i + x2

j ≥ r2
ij ∀ (i, j) ∈ M

xL ≤ x ≤ xU ,

(7.2)

where fk(x) : Rn 7→ R denotes a convex function, for each applicable index k ∈ K, while

x2
i + x2

j ≥ r2
ij represents a circle-circle non-overlapping constraint, for each applicable

ordered pair (i, j) ∈ M.1 Without loss of generality, we also assume −∞ ≤ xL
i ≤ xU

i ≤ +∞,

for all i ∈ {1, 2, ..., n}. Since non-overlapping constraints induce a non-convex solution

space, problem (7.2) is a global optimization problem. In this work, we aim to develop

exact, custom-built methods for solving this problem to provable global optimality.

7.3 solution approach

Our approach is based on the construction of a branch-and-bound tree where linear

programming (LP) relaxations are solved at each node. Specifically, the convex domain

defined by fk(x) ≤ 0 in (7.2) is outer-approximated by linear inequalities. The main

challenge arises from the non-convexities introduced by the non-overlapping constraints,

x2
i + x2

j ≥ r2
ij, which we address in the remainder of this section.

7.3.1 Customized Model Relaxation

Here, we shall discuss how a suitable linear relaxation is constructed as the basis of the

BB search algorithm. First, we adopt the branching scheme from our previous work in

Chapter 6, applied on a non-overlapping constraint from the set (i, j) ∈ M. Let x̄ represent

the current optimal solution of the LP relaxation at some BB node, and let Dij denote a

disk that is centered at the origin (0, 0) and has a radius of rij. Furthermore, let θij be the

angle between the positive xi-axis and the point given by the coordinates
(
x̄i, x̄j

)
, and let[

θL
ij, θU

ij

]
represent its feasible interval, which is originally equal to [0, 2π).

1 For ease of exposition, we simplify the notation of equation (7.1), as follows: xi ← ai − aj, xj ← bi − bj and
rij ← ri + rj.

152

7.3 solution approach

In the xi–xj space, the non-overlapping constraint requires that all feasible points project

either outside or exactly on the circumference of disk Dij (Fig. 7.1a). Initially, dropping

this constraint from consideration results in a convex relaxation that is defined by the

full space (Fig. 7.1b). Feasibility of the non-convex constraint can be then be gradually

enforced by branching on the implicit domain of variable θij variable, and by tightening

the relaxation in the xi–xj space, as follows.

Let X denote a solution of the relaxed problem with coordinates
(
x̄i, x̄j

)
such that it vio-

lates the original constraint. Using this solution as a guide, we can split the circumference

of Dij into three parts (each representing an arc of angle 2π/3 radians), and we can define

a set of three linear constraints (corresponding to one secant and two boundary lines) to

form the convex relaxation of the original non-overlapping constraint in each of the three

resulting subdomains. As long as they are properly oriented with respect to X (Fig. 7.1c),

it can be guaranteed that all of the three subdomains exclude the parent solution.

In subsequent violations of the same constraint (i, j) ∈ M, one could further dissect the

applicable θij interval into two parts. Again, as long as the solution X is used as the guide

to define the branching point, one can guarantee that this parent solution is excluded

from both resulting subdomains, defining a proper branching strategy to be employed in

the course of the BB search process. In particular, one can analytically identify a point N

on the circumference of disk Dij such that the Euclidean distances between X and two

resulting secant lines are equal, in the hope of producing a more balanced BB tree. Let θ∗ij
denote the angle in radians between the positive xi-axis and the point N, then the resulting

proposed split is
[
θL

ij, θ∗ij

]
and

[
θ∗ij, θU

ij

]
(Fig. 7.1d).

Given the above relaxation strategy, Eqs.(7.3)–(7.7) constitute a relaxed LP formulation

to be solved at each node of our BB search process.

minimize
x∈Rn

c>x (7.3)

subject to fk(x̃) +∇ fk(x̃)>(x− x̃) ≤ 0 ∀x̃ ∈ Hk, ∀k ∈ K (7.4)

αijlxi + βijlxj ≥ γijl ∀l ∈ {1, 2, 3}, ∀(i, j) ∈ M̃ (7.5)

φ>t x ≥ ξt ∀t ∈ T (7.6)

xL ≤ x ≤ xU (7.7)

In the above formulation, constraints (7.4) constitute outer-approximation inequalities for

fk(x) ≤ 0, k ∈ K,2 where x̃ constitute the points of linearization. The parameters αijl , βijl

and γijl in constraints (7.5) are suitably chosen in each case to define the linear inequalities

2 If fk(x) is an affine function, outer-approximation is not needed.

153

7.3 solution approach

that relax the original non-overlapping constraints discussed above, while and the set

M̃ ⊆ M denotes the set of circle pairs for which the corresponding θij interval has been

branched at least once. Constraints (7.6) generically denote strengthening cuts that we

shall discuss in Section 7.4, while variable bounds are provided in constraints (7.7).

Note how, after a branch is applied, the parent node relaxation is tightened by adding

elements to the set M̃, when a new circle pair is branched upon for the first time, or

by updating the coefficients α/β/γ, when the circle pair is branched upon further. The

relaxation is also tightened by appending and/or updating the set of strengthening cuts T ,

while the outer-approximation sets Hk are also expanded as appropriate (see details later).

7.3.2 The Branch-and-Bound Algorithm

We shall now focus on the implementation of the customized BB algorithm. At the root

node, the set Hk is initialized with points wxL + (1− w) xU , where w ∈ {0.25, 0.5, 0.75},
while the sets M̃ and T begin as empty sets. All of them will be dynamically expanded

and updated as the algorithm proceeds.

After solving the LP relaxation (7.3)–(7.7) at each node, we check whether each of the

convex constraints (set K) as well as each of the non-overlapping constraints (setM) are

satisfied within some predefined tolerance ε (we use ε = 10−5) at the current LP solution

x̄.3 We first focus on the convex constraints, and if fk(x̄) > ε for some k ∈ K, we add

an outer-approximation cut by setting Hk ← Hk ∪ {x̄}. Note that, at each iteration, we

only add such cuts for the (up to) 5 most violated convex constraints k. If any outer-

approximation cuts are added, we resolve the LP relaxation; otherwise, we proceed with

checking the feasibility of the non-overlapping constraints, as follows. For each non-

overlapping constraint x2
i + x2

i ≥ r2
ij, (i, j) ∈ M, we define Vij := rij −

√
x̄2

i + x̄2
j , and we

consider this constraint to be violated, if Vij > ε. If no violated non-overlapping constraints

exist, then a feasible solution x̄ has been obtained; this solution is considered as a possible

new incumbent, and the node is fathomed. However, if at least one non-overlapping

constraint is violated, the node must be either tightened or branched, eliminating the

current LP solution in either case.

Deferring the discussion of tightening techniques to Section 7.4, we now focus on our

branching strategy, namely how we choose which implicit θij variable (element of set

M :
{

Vij > ε
}

) to branch upon. Recalling that further branching of a previously branched

3 For simplicity of presentation, we use here a common tolerance ε for all constraints in problem (7.2), but we
remark that in principle one may use a set of constraint-specific feasibility tolerances that are appropriately
scaled for each constraint.

154

7.3 solution approach

xi

xj

(a) Full feasible space

X xi

xj

(b) Convex relaxation of full feasible
space

X xi

xj

(c) Initial tightening via three branches

X

N

xi

xj

(d) Subsequent tightening via two
branches

Figure 7.1: The non-overlapping constraint and its dynamically tightened relaxation (adapted from
Chapter 6).

155

7.4 strengthening techniques

θij variable produces fewer child nodes in the BB tree than the initial branching (two versus

three subdomains), the violation of currently unbranched non-overlapping constraints is

first discounted by a factor of τunbr (we use τunbr = 0.7); that is, Vij ←
(
1− τunbr)Vij, for all

(i, j) ∈ M\ M̃. We then choose to branch on the implicit θij variable that corresponds to

the highest violation after such modifications. Note that, according to the earlier discussion,

the branching is implemented either as updating existing left-hand side coefficients or by

adding new constraints, depending on whether (i, j) ∈ M̃ or not.

7.4 strengthening techniques

We consider two types of relaxation strengthening techniques, namely intersection cuts and

feasibility-based tightening. Even though intersection cuts [23] are well-known for their use

in integer programming, their applicability goes much beyond that area, being generic

tools to deal with non-convexities that may stem from either integrality or continuous

nonlinear constraints. However, to the best of our knowledge, only a few works in the

literature to date have attempted to apply these techniques in the context of continuous

nonlinear optimization. In this work, we propose to utilize strengthened intersection cuts to

tighten our LP relaxations. Additionally, various feasibility-based tightening techniques

are also introduced.

7.4.1 Intersection Cuts

The idea of intersection cuts was originally proposed in [23] to construct valid cuts for integer

programming. It has gradually received more and more attention in other areas such as

reverse convex programming [91], bilevel optimization [75], polynomial programming [39],

and factorable MINLP [152], among others. To the best of our knowledge, the literature

always considers the case where variables are bounded from below by zero, while the

more general case where variables are bounded from below and/or above by arbitrary

values has been ignored. The challenge comes from the fact that, at the LP optimal solution,

some non-basic variable might be at its upper bound, or some non-basic variable might be

at its lower bound yet that bound not being 0. In such cases, the intersection cut formula

from the seminal paper [23] is not immediately valid. Whereas this can be easily dealt

with by explicitly adding to the model variable-bounding constraints (thus forcing all

non-basic variables at an optimal LP solution to be slack variables), it is generally much

more common and useful for solvers to separate variable bounds from other constraints

156

7.4 strengthening techniques

and to handle them separately. To this end, we present in Section 7.4.1.1 a complete

derivation of intersection cuts for more general cases where variable bounds might be

arbitrary numbers. Afterwards, in Section 7.4.1.3, we consider a strengthening method to

further tighten these cuts.

7.4.1.1 Generating Intersection Cuts

Consider the following problem:

minimize
x∈Rn

c>x

subject to x ∈ P ∩Q,
(7.8)

where P :=
{

x ∈ Rn : Ax ≤ b, xL ≤ x ≤ xU},4 with A ∈ Rm×n and b ∈ Rm,

while Q represents a “complicating” set. In this work, we consider Q :={
x ∈ Rn : x2

i + x2
j ≥ r2

ij, ∀(i, j) ∈ M
}

. Initially, we relax the feasible region by only con-

sidering x ∈ P , and we introduce slack variables s ∈ Rm
≥0 to obtain a linear program in

standard form.

Let t := (x, s) denote all variables, for convenience. Assume that the linear program is

feasible and that its objective function is bounded; then, it can be solved via the simplex

algorithm. Let t̄ = (x̄, s̄) represent the current LP optimal solution. Without loss of

generality, we assume that x̄ /∈ Q, since otherwise problem (7.8) has been solved. For the

time being, assume that we are given a convex set S whose interior contains x̄ but no

feasible point; that is, x̄ ∈ int(S) and int(S) ∩ (P ∩Q) = ∅. In the following, we shall

discuss how to generate a valid intersection cut to eliminate x̄ using S for the case where

structural variables x might be bounded from below and/or above.

Let I represent the index set of structural variables x. Let B and N denote the index sets

associated with the basic and non-basic variables, respectively. Furthermore, let N L denote

the set of non-basic variables that are currently at their lower bounds and NU := N \N L

represent the set of non-basic variables at their upper bounds. Note that both structural

and slack variables might be non-basic. We focus on the structural variables x and add a

4 Structural variables x are not necessarily bounded, i.e., −∞ ≤ xL
i ≤ xU

i ≤ +∞, ∀ i ∈ {1, 2, ..., n}.

157

7.4 strengthening techniques

trivial relation for each non-basic variable xj, j ∈ I ∩N . The modified simplex tableau is

demonstrated in (7.9).

xi = x̄i − ∑
j∈N L

āij(tj − tL
j) + ∑

j∈NU

āij(tU
j − tj) ∀i ∈ I ∩ B

xj = x̄j −(−1)(xj − xL
j) ∀j ∈ I ∩N L

xj = x̄j +(−1)(xU
j − xj) ∀j ∈ I ∩NU

(7.9)

For convenience, tableau (7.9) can also be represented in vector form, where āj are suitably

defined vectors:
x = x̄− ∑

j∈N L

āj(tj − tL
j) + ∑

j∈NU

āj(tU
j − tj). (7.10)

Associated with the simplex tableau (7.10) is a conic relaxation of P , called the LP-cone,

whose apex is x̄ and whose facets are defined by n hyperplanes that form the basis of x̄.

Thus, the LP-cone has n extreme rays, each formed by an extreme direction rj emanating

from the apex x̄, where rj = −āj if j ∈ N L, or rj = āj if j ∈ NU . Following the extreme ray

x̄ + λjrj (where λj ≥ 0), we seek its intersecting point with the boundary of the set S .5

More specifically, for each extreme ray x̄ + λjrj, j ∈ N , we seek to solve

λ∗j := maximize
λj≥0

{
λj : x̄ + λjrj ∈ S

}
. (7.11)

Since x̄ ∈ int(S), problem (7.11) is always feasible (e.g., λj = 0 is a feasible solution). If rj

is a recessive direction of S (i.e., rj ∈ rec(S), where rec(S) denotes the recession cone of

S), there is no intersection point between the extreme ray x̄ + λjrj and the boundary of

the set S . Thus, in this case, the objective in (7.11) is unbounded from above and we set

λ∗j = +∞. Otherwise, we obtain a unique solution λ∗j and the intersection point is x̄ + λ∗j rj.

Let N 1 :=
{

j ∈ N : rj ∈ rec(S)
}

and N 2 := N \N 1 for convenience. The intersection

cut that cuts off x̄ is defined to be the halfspace whose boundary contains each intersection

point x̄ + λ∗j rj, j ∈ N 2 and which is parallel to each extreme direction rj, j ∈ N 1 (Fig. 7.2).

The validity of intersection cuts is intuitive from a geometric perspective. Thus, we skip its

proof and instead focus to the derivation of the intersection cut formula.

Proposition 7.1. The intersection cut can be represented in non-basic space (e.g., using non-basic

variables tj) as follows:

∑
j∈N L

tj − tL
j

λ∗j
+ ∑

j∈NU

tU
j − tj

λ∗j
≥ 1. (7.12)

5 We assume that S is a closed set.

158

7.4 strengthening techniques

x̄

P

S

Figure 7.2: Generation of intersection cuts

Proof. We only need to prove that this halfspace passes through all intersection points

x̄ + λ∗j rj, j ∈ N 2 and that it is parallel to extreme directions rj, j ∈ N 1. We consider the

following two cases.

• If j ∈ N 2, the intersection point x̄ + λ∗j rj is obtained via moving from x̄ along the

direction rj by a distance of λ∗j . If j ∈ N 2 ∩ N L, in the non-basic space we have

tj = tL
j + λ∗j · 1, and the other non-basic variables tj′ (j′ ∈ N \ {j}) will remain at

their lower or upper bounds at this intersection point. Therefore,

∑
j′∈N L

tj′ − tL
j′

λ∗j′
+ ∑

j′∈NU

tU
j′ − tj′

λ∗j′
=

tL
j + λ∗j − tL

j

λ∗j
= 1.

In other words, the intersection cut passes through the intersection point x̄ + λ∗j rj.

This also applies in the case j ∈ N 2 ∩NU .

• If j ∈ N 1, we only need to prove that the intersection cut is parallel to rj. Moving

along the direction rj from the point x̄, if j ∈ N 1 ∩N L, we have tj = tL
j + λ · 1 (where

λ ≥ 0), and the other non-basic variables tj′ (j′ ∈ N \ {j}) will remain unchanged.

Therefore,

∑
j′∈N L

tj′ − tL
j′

λ∗j′
+ ∑

j′∈NU

tU
j′ − tj′

λ∗j′
=

tL
j + λ− tL

j

λ∗j
=

λ

+∞
= 0.

The parallel relationship is proved. This also applies in the case j ∈ N 1 ∩NU .

As mentioned by [23], λ∗j should be approximated from below for numerical validity.

Readers are referred to [23] for further details, with the observation however that the

159

7.4 strengthening techniques

intersection cut formula (7.12) is more generic than the one presented in [23], reducing to

the latter when structural variables x are only bounded from below by zero.

Note that, given a mathematical model, one has to identify a suitable set S to derive

valid intersection cuts. We highlight that such a convex set S generally exists, if some

constraint in the model imposes a reverse convex region. In fact, from problem (7.11), one

can infer that deeper cuts will be produced from larger sets S whose boundary intersects

with extreme rays at intersections points further away from the apex, x̄.

7.4.1.2 Generating Intersection Cuts for Non-overlapping Constraints

In our context, we can easily identify a valid sets S for generating intersection cuts.

Considering the fact that the non-overlapping constraint x2
i + x2

j ≥ r2
ij represents a reverse

convex region [91], we can define Sij := {x ∈ Rn : x2
i + x2

j ≤ r2
ij} (Fig. 7.3a) such

that x̄ ∈ int(Sij). Furthermore, recalling that enlarging the set whenever possible leads to

stronger cuts, we can enlarge Sij using the following formula (Fig. 7.3b) when θU
ij − θL

ij < 2π:

Sij ← Sij ∪

x ∈ Rn

∣∣∣∣∣∣∣
cos(θ)xi + sin(θ)xj ≤ rij, ∀θ ∈ {θL

ij, θU
ij }

cos(
θL

ij + θU
ij

2
)xi + sin(

θL
ij + θU

ij

2
)xj ≤ rij cos(

θU
ij − θL

ij

2
)

 . (7.13)

The enlarged set Sij remains convex and does not contain any feasible solution in its

interior; therefore, intersection cuts generated from Sij will be valid. We highlight that

enlarging the convex set and generating stronger intersection cuts becomes possible due

to the chosen scheme to branch upon non-overlapping constraints.

In our implementation, we define Sij for every (i, j) ∈ M. When θU
ij − θL

ij < 2π, we

use the enlarged version (7.13). We use these sets to generate intersection cuts for which

the corresponding non-overlapping constraint is violated, but only the best 5 cuts with

Euclidean distances from x̄ larger than tolerance δ = 10−2 are added to the model.

Furthermore, whenever θL
ij or θU

ij is updated due to branching or tightening, we always

enlarge the set Sij and attempt to compute new λ∗j values from (7.12) towards strengthening

the related intersection cuts that have already been generated.

7.4.1.3 Strengthening Intersection Cuts

Fig. 7.4 demonstrates a simple case where the intersection cut (blue solid line) generated

from Section 7.4.1.1 can be further tightened. The generated intersection cut passes through

an intersection point and is parallel to the extreme direction rj (since rj ∈ rec(S)). In this

case, we can identify another cut ÎC (red solid line), which also passes through the same

160

7.4 strengthening techniques

Sij

xi

xj

(a) θU
ij − θL

ij = 2π

Sij

xi

xj

(b) θU
ij − θL

ij < 2π

Figure 7.3: Valid convex sets Sij for generating intersection cuts

rj
r̂x̄

P

S

Figure 7.4: Strengthened intersection cuts

intersection point, but which is parallel to some other recessive direction r̂ ∈ rec(S).
Apparently, ÎC is a valid cut that dominates IC.

The validity of ÎC deduces from the fact that, by convexity of S , any point satisfying

IC but not ÎC lies within the interior of S and is thus outside P ∩Q. The stronger cut ÎC

can be regarded as a halfspace that passes through the existing intersection point and a

new one residing at the negative part of the extreme ray x̄ + λrj (where λ ≥ 0). In order

to maintain the validity of the new intersection cut, as the work of [39] suggested, one

has to guarantee that r̂ := (x̄ + λ∗j′r
j′)− (x̄ + λjrj), the direction from the new intersection

point, (x̄ + λjrj), to every intersection point, (x̄ + λ∗j′r
j′), is a recessive direction of S (i.e.,

r̂ ∈ rec(S)) for every j′ ∈ N 2. It is clear from (7.12) that increasing λ∗j while λ∗j ≤ 0 leads

161

7.4 strengthening techniques

to a stronger cut. Thus, for each extreme direction rj, j ∈ N 1, we define the following

problem:
λ∗j := maximize

λj≤0

{
λj : λ∗j′r

j′ − λjrj ∈ rec(S), ∀j′ ∈ N 2
}

. (7.14)

If problem (7.14) is infeasible, we set λ∗j = −∞;6 otherwise, a unique solution λ∗j is obtained,

resulting in a new intersection point (x̄ + λ∗j rj). With this, we arrive at Proposition 7.2.

Proposition 7.2. The intersection cut defined by (7.12) and using λ∗j from (7.11), for j ∈ N 2, and

λ∗j from (7.14), for j ∈ N 1, is valid.

Given a convex set S , the problem (7.14) is in general hard to solve because no closed-

form formula for rec(S) is available. However, in our context, the recession cone rec(Sij)

can be easily identified. More specifically, we distinguish three cases:

(i) when θU
ij − θL

ij > π, the projection of Sij onto the xi–xj space is a bounded area, and

hence its recession cone is

rec(Sij) =
{

x ∈ Rn : xi = 0, xj = 0
}

,

projecting to a singleton on the xi–xj space;

(ii) when θU
ij − θL

ij = π, the recession cone becomes7

rec(Sij) =
{

x ∈ Rn : xi = −λ sin(θL
ij), xj = λ cos(θL

ij), ∀λ ≥ 0
}

,

projecting to a ray on the xi–xj space;

(iii) when θU
ij − θL

ij < π, it is easy to show8 that

rec(Sij) = rec(
{

x ∈ Rn : cos(θ)xi + sin(θ)xj ≤ rij, ∀θ ∈ {θL
ij, θU

ij }
}
)

=
{

x ∈ Rn : cos(θ)xi + sin(θ)xj ≤ 0, ∀θ ∈
{

θL
ij, θU

ij

}}
.

(7.15)

We remark that, when case (i) applies, the problem (7.14) is almost always infeasible,

due to insufficient degrees of freedom. Furthermore, case (ii) is unlikely to be relevant in

the context of double-precision arithmetic, due to inability to detect that θU
ij − θL

ij equals π

exactly, and hence, we did not consider this case in our implementation. It is only under

6 This is equivalent to setting λ∗j = +∞.
7 This deduces from directly substituting θU

ij ← θL
ij + π in (7.13).

8 The recession cone of a polyhedral setW := {x ∈ Rn : Ax ≤ b} is rec(W) = {x ∈ Rn : Ax ≤ 0}.

162

7.4 strengthening techniques

case (iii) that the closed-form formula (7.15) can be plugged into (7.14) and a value for λ∗j
be analytically identified for every j ∈ N 1. Therefore, in our implementation, we generate

intersection cuts using Proposition 7.1 in cases (i) and (ii), and we attempt to generate a

strengthened version of such cuts using Proposition 7.2 only in case (iii).

7.4.2 Feasibility-based Tightening

Feasibility-based tightening is a common technique in global optimization to reduce

variable bounds, and it is usually implemented via interval arithmetic [139]. In our context,

since explicit structural variable domains are not branched upon, the interval arithmetic

technique would not tighten variable bounds effectively. Considering that our strategy is

to branch on the feasible intervals of implicit variables θij, our feasibility-based tightening

approach will instead focus on reducing the domains for these variables.

From a geometric perspective, the non-overlapping constraint, x2
i + x2

j ≥ r2
ij, requires the

solution’s projection on the xi–xj space to lie either outside or exactly on the circumference

of disk Dij (Fig. 7.1a). Let FRij denote the feasible region of the xi–xj space. At the root node

of the BB tree, we have FRij = conv
({

(xi, xj) : xL
i ≤ xi ≤ xU

i , xL
j ≤ xj ≤ xU

j

}
\ int(Dij)

)
,

and this region gradually reduces due to branching or tightening. We emphasize that

the feasible spaces FRij, (i, j) ∈ M are not explicitly enforced in the relaxation model,

(7.3)–(7.7), because they are generally implied by other constraints. We also note that FRij

is always a bounded polyhedron,9 and that this region might correspond to a reduced

interval
[
θL

ij, θU
ij

]
for the implied variable θij. To that end, in our implementation, we attach

our description of FRij to the BB node as important information to be used for tightening

the θij intervals, as follows.

Assume that the projection of the current LP solution x̄ lies in the interior of Dij, i.e.,

X ∈ FRij ∩ int(Dij). Whenever FRij is reduced due to some tightening technique, we

can revisit the geometric meaning of the non-overlapping constraint and obtain FRij ←
conv

(
FRij \ int(Dij)

)
(Fig. 7.5). From that, we can infer possibly tighter

[
θL

ij, θU
ij

]
bounds,

and whenever the latter are indeed tightened, we first update the relaxations for its

corresponding non-overlapping constraint and then check whether X is cut off by the

halfspace formed by the new secant line. Next, we discuss three opportunities to reducing

FRij.

9 We assume that valid lower and upper bounds for xi, i ∈ {1, 2, ...n} can be extracted or deduced.

163

7.4 strengthening techniques

Dij

FRij

X

xi

xj

(a) Initial feasible region

Dij

FRij

X

xi

xj

(b) Tightened feasible region

Figure 7.5: Feasibility-based tightening

7.4.2.1 Generating Concave Envelopes

Let us begin by defining h(xi, xj) := x2
i + x2

j , where (xi, xj) ∈ FRij. We seek the concave

envelope, i.e., the tightest possible over-estimator, of h(xi, xj) over its domain FRij, which we

shall denote as concFRij h(xi, xj). It is clear that the function h(xi, xj) has a vertex polyhedral

concave envelope over the bounded polyhedral domain FRij [165]; therefore, its concave

envelope coincides with the concave envelope of its restriction to the vertices of FRij and

consists of finitely many hyperplanes. 10

As a result, we obtain the following constraints that are valid for our relaxation:

concFRij h(xi, xj) ≥ r2
ij. (7.16)

We remark that constraints (7.16) are not directly added to the relaxation

model, (7.3)–(7.7), rather used to reduce FRij. More specifically, FRij ← FRij ∩{
(xi, xj) : concFRij h(xi, xj) ≥ r2

ij

}
. If FRij is indeed reduced in this manner, we then at-

tempt to apply feasibility-based tightening as described in the preamble of this section

to further tighten FRij. Note that this process can be applied recursively, since a smaller

polytope FRij will induce a tighter over-estimator for h(xi, xj), which might in turn further

reduce FRij.

10 From our computational experience, the number of vertices of FRij is usually small (around 10), and thus
identifying its concave envelope via enumeration is computationally efficient. Regardless, if the number of
vertices of FRij is large, one can always properly relax the domain FRij and obtain a new bounded polyhedron
that contains FRij and has a small number of vertices.

164

7.4 strengthening techniques

7.4.2.2 Calculating Minkowski Sums

Another typical feasibility-based tightening technique in global optimization is bound

propagation [139]. Adapting this idea into our context, we propose to apply domain propaga-

tion. For example, in the context of packing three circles i, j and k, one usually seeks to

enforce non-overlapping constraints in a pairwise sense. In this case, any feasible point

(ai − aj, bi − bj) satisfying the non-overlapping constraint (ai − aj)
2 + (bi − bj)

2 ≥ (ri + rj)
2

must correspond to a point (ai − ak, bi − bk) in the domain FRik as well as to a point

(ak − aj, bk − bj) in the domain FRkj. This results from the simple observation that

(ai − aj, bi − bj) = (ai − ak, bi − bk) + (ak − aj, bk − bj). (7.17)

Consequently, one can calculate the Minkowski sum of FRik and FRkj to tighten FRij; that

is, FRij ← FRij ∩
(

FRik ⊕ FRkj
)
. If FRij is indeed reduced, the feasibility-based tightening

FRij ← conv
(

FRij \ int(Dij)
)

will be considered. Note that the Minkowski sum of two

polytopes with n1 and n2 vertices, respectively, can be computed in O(n1 + n2) time [36];

thus, the proposed procedure is computationally efficient.

7.4.2.3 Solving LPs

We can also refine feasible region FRij by using the projection of the feasible region of

the relaxation model, (7.3)–(7.7), onto the xi–xj space. Considering that computing the

exact projection is not practical, we choose to outer-approximate it via linear inequalities

defined in the xi–xj space. More specifically, one can solve an LP with the objective of

minimizing some linear function, e.g., µxi + νxj, and with constraints (7.4)–(7.7), where µ

and ν are properly chosen coefficients. Let σ be its optimal value, thus µxi + νxj ≥ σ is a

valid inequality to characterize the projection area and can be used to refine FRij; that is,

FRij ← FRij ∩
{
(xi, xj) : µxi + νxj ≥ σ

}
. If FRij is successfully reduced in this manner, we

then apply feasibility-based tightening as before.

In our context, we apply the above process for two separate objective functions, namely

those that are parallel to the two linear boundaries of FRij that neighbor the secant line.

These were specifically chosen due to their potential to immediately tighten the secant line,

which might thus help to eliminate the current LP solution, x̄.

7.4.3 Implementation Details

We note the following details about our implementation.

165

7.5 computational studies

• With regards to the protocol via which we employ the various tightening techniques,

we note the following. We first apply intersection cuts, followed by calculating

Mikowski sums, and finally by solving LPs. Tightening from concave envelopes is

swiftly applied as soon as FRij is tightened during the latter two steps, and whenever

x̄ is cut off, we skip the subsequent routines and turn our attention to resolving the

LP relaxation (7.3)–(7.7).

• Since the intersection cuts are formulated in non-basic space, and since we do not

have access to non-basic slack variables when enforcing a constraint in the LP solver,

we first convert it to the structural space. After this step, we apply some presolve

reductions to mitigate numerical difficulties [4]. In particular, we first scale the

coefficients in a cut such that their largest absolute value is 1.0, and we then perform

proper reductions on small coefficients (e.g., less than 10−4) while maintaining the

cut’s validity.

• In order to alleviate tapering off from using intersection cuts, we stop the separation

if the gap is decreased by less than 0.01% a total of 3 times.

• Outer-approximation and intersection cuts are removed from the LP model (7.3)–

(7.7), if they are not active for the past 50 LP-solving rounds. We note that removed

intersection cuts are still stored in the cut pool and will be strengthened when the

corresponding convex sets are enlarged, in the hope that they might be added back

to the set T if violated at some future point.

• Whenever FRij is reduced at some BB node, we recursively call this routine to further

reduce the feasible region, and this continues until the reduction in area of FRij is

less than 1%. Moreover, whenever the area of FRij is reduced by at least 5%, we

attempt to apply domain propagation to tighten relevant domains. However, since

solving LPs can add up to the overall computational time, we only consider the 10

pairs (i, j) ∈ M with the largest violation values, Vij.

7.5 computational studies

In this section, we test our customized branch-and-bound approach and compare its per-

formance against the state-of-the-art general purpose global optimization solvers, namely

ANTIGONE 1.1 [125], BARON 19.7.13 [166], COUENNE 0.5 [32], LINDOGLOBAL 12.0

and SCIP 6.0 [3]. Our algorithm was implemented in C++ and the LP relaxation models

166

7.5 computational studies

R

(a) Packing circles into a circle

L

W

(b) Packing circles into a rectangle

Figure 7.6: Two variants of circle packing problems

were solved via CPLEX Optimization Studio 12.8.0 through the C application programming

interface. Global solvers were called within the GAMS 28.2.0 environment. The absolute

optimality tolerance was set to be 10−4. All computational experiments were conducted

on a single thread of an Intel Xeon CPU E5-2689 v4 @ 3.10GHz with 32GB of RAM.

7.5.1 Circle Packing

7.5.1.1 Problem Definitions

Let C = {1, 2, 3...} denote a set of circles. For each circle i ∈ C, let ri denote its radius.

Without loss of generality, we assume a circle ordering such that ri ≥ rj, when i < j, for all

i, j ∈ C. We aim to identify a feasible configuration of these circles within (i) a larger circle,

and (ii) a sheet of fixed width W, such that no circles overlap and the size of the circle

(radius R) or the sheet (length L) is minimized. Following literature practice, we refer to

these settings as packing circles into a circle and packing circles into a rectangle, respectively.

167

7.5 computational studies

7.5.1.2 Mathematical Modeling

Let (ai, bi) denote the final coordinates for the center of circle i ∈ C. Assuming that the

center of the containing circle is fixed to the point (0, 0), the problem of packing circles

into a circle can be formulated as the non-convex model (7.18)–(7.20).

minimize
ai ,bi ,R

R (7.18)

subject to
√

a2
i + b2

i ≤ R− ri ∀i ∈ C (7.19)

(ai − aj)
2 + (bi − bj)

2 ≥ (ri + rj)
2 ∀(i, j) ∈ C × C : i < j (7.20)

Constraints (7.19), which are convex, enforce that all circles lie within the circular con-

tainer,11 while the reverse convex constraints (7.20) guarantee that there is no overlap

among circles. Additionally, as also pointed out in [149], two types of symmetry-breaking

constraints can be added to the above model:

i. Identical circles: When two circles i and j, i < j, are identical (i.e., ri = rj), then

ai ≤ aj breaks this symmetry. 12

ii. Rotational symmetry and reflection: Rotational symmetry arises due to the fact that

an equivalent packing solution can always be obtained via rotating the entire config-

uration by any angle; hence, one can enforce that a1 ≤ 0 and b1 = 0. Furthermore,

the reflection of a feasible configuration through the horizontal axis results in an

equivalent solution; hence, one can further impose b2 ≥ 0.

The mathematical formulation for packing circles into a rectangle is similar. Assuming

that the bottom left corner of the rectangle is fixed to the point (0, 0), the model (7.21) –

(7.24) applies.

minimize
ai ,bi ,L

L (7.21)

subject to ri ≤ ai ≤ L− ri ∀i ∈ C (7.22)

ri ≤ bi ≤W − ri ∀i ∈ C (7.23)

(ai − aj)
2 + (bi − bj)

2 ≥ (ri + rj)
2 ∀(i, j) ∈ C × C : i < j (7.24)

11 When using the solver SCIP, we instead pass a2
i + b2

i ≤ (R− ri)
2, since this version can be recognized as a

second order cone constraint [172].
12 In our customized approach, instead of adding this constraint, we tighten

[
θL

ij, θU
ij

]
= [π/2, 3π/2] at the root

node.

168

7.5 computational studies

In this case, applicable constraints to break symmetry from reflection are: (i) a1 ≤ L/2,

and (ii) b1 ≤W/2.

7.5.1.3 Benchmark Instances

In order to evaluate the performance of our approach, we consider instances of packing

circles into a circle from [1]. Each instance is defined by two numbers, p and N, and the

size of circles to be packed in every instance is defined by ri = ip, where i = 1, 2, ...N. We

consider N ∈ {5, 6, ..., 11} and p ∈ {1, 1/2,−1/2,−2/3,−1/5}; thus, in total we have 35

instances of difference sizes.

For packing circles into a rectangle, we generate a suite of instances using data from the

thirty-circle example in [157]. We consider N ∈ {6, 7, ..., 10}, and using the first N circles

in each case, we generate all possible packing instances with N − 1 circles. Therefore, we

generate a total of 40 instances, namely 6 five-circle, 7 six-circle, 8 seven-circle, 9 eight-circle

and 10 nine-circle instances. The rectangle width W is chosen to be 9.5, as per the literature

reference [157].

7.5.2 Computational Results

The goals of our computational study are to (i) assess the effect of strengthened intersection

cuts and feasibility-based tightening on the BB tree, and (ii) conduct a comprehensive

comparison between our proposed algorithm and state-of-the-art global solvers. These two

goals are covered in Sections 7.5.2.1 and 7.5.2.2, respectively. To ensure a fair comparison,

all algorithms (including the global solvers) were initialized with heuristic solutions, which

were obtained after running BARON heuristics with a time limit of 1 hour.

7.5.2.1 Effect of Node Relaxation Tightening

We first analyze the effect of using strengthened intersection cuts on the branch-and-bound

algorithm. We then enable our feasibility-based tightening techniques and assess the

additional tractability gains from doing so. Overall, we consider three versions of our

algorithm: (i) the rudimentary branch-and-bound algorithm (denoted by “BB”); (ii) “BB”

enhanced with strengthened intersection cuts (denoted by “BB+SIC”); (iii) “BB+SIC”

enhanced with feasibility-based tightening (denoted by “BB+SIC+FBT”). For each version,

we adopt the best-bound first search node selection strategy during the branch-and-bound

process.

169

7.5 computational studies

Tables 7.1 and 7.2 present the computational results for packing circles into a circle and

a rectangle, respectively. The first two columns in these tables list the input size (number

of circles) and the number of instances of a given input size, for a respective total of 35

and 40 instances, as described above. The tables also present the number of instances

that were solved to provable optimality within a given time limit of 1 hour, as well as the

geometric means of solution time and number of branch-and-bound nodes explored; for

the remaining instances for which optimality could not be proven, we present the average

residual gap, defined as (UB− LB)/UB, at the time limit.

Table 7.1 shows that BB could solve 20 out of 35 instances optimally, while both BB+SIC

and BB+SIC+FBT solved 23 and 26 of them to optimality, respectively, including one of

the largest instances featuring the packing of eleven circles. Putting aside the fact that it

allowed us to solve three more instances within the allotted time limit, the addition of

strengthened intersection cuts resulted in a noticeable improvement in average solution

times, number of nodes explored and residual gaps (when applicable). The BB+SIC+FBT

version performed even better in terms of these metrics, especially for instances of larger

input size, such as instances with ten or eleven circles.

Turning our attention to Table 7.2, we observe that all three variants can easily address

instances featuring up to seven circles. The BB+SIC improved upon the baseline approach

in terms of being able to prove optimality within the allotted time limit for a number of the

eight-circle instances, with the BB+SIC+FBT approach solving the majority of them while

also demonstrating a noticeable reduction in the average solution time to do so. Instances

with nine circles remained elusive to all methods, with a significant average residual gap

above 15%.

Considering all instances across both datasets, we conclude that the utilization of both

strengthened intersection cuts and feasibility-based tightening has an overall positive

impact on performance of the algorithm. Therefore, we adopt approach BB+SIC+FBT in

the remainder of our computational studies.

7.5.2.2 Comparison with Global Optimization Solvers

In order to evaluate the competitiveness of our proposed approach against general-purpose

global optimization solvers, we solve every benchmark instance independently with each

of five state-of-the-art solvers, namely ANTIGONE, BARON, COUENNE, LINDOGLOBAL

and SCIP, imposing the same time limit of 1 hour. The results are presented in Tables 7.3

and Table 7.4, using similar format as before.

170

7.5 computational studies

Ta
bl

e
7
.1

:E
ff

ec
t

of
st

re
ng

th
en

ed
in

te
rs

ec
ti

on
cu

ts
an

d
fe

as
ib

ili
ty

-b
as

ed
ti

gh
te

ni
ng

on
so

lv
in

g
in

st
an

ce
s

of
pa

ck
in

g
ci

rc
le

s
in

to
a

ci
rc

le

#
ci

rc
le

s
#

in
st

.
BB

BB
+

SI
C

BB
+

SI
C

+
FB

T

#
so

lv
ed

Ti
m

e
(s

ec
)

#
no

de
s

G
ap (%

)
#

so
lv

ed
Ti

m
e

(s
ec

)
#

no
de

s
G

ap (%
)

#
so

lv
ed

Ti
m

e
(s

ec
)

#
no

de
s

G
ap (%

)

5
5

5
0

.3
9
0
3

–
5

0
.3

4
0
8

–
5

0
.2

1
7

–
6

5
5

3
.6

9
,3

8
8

–
5

2
.3

2
,6

5
7

–
5

0
.6

5
6

–
7

5
5

2
3

4
5
,1

7
5

–
5

1
3

1
1

,0
7
7

–
5

2
.0

2
1
3

–
8

5
3

1
4
9

1
8
3
,6

3
8

5
.4

4
6
8

5
2

,7
3
1

5
.2

4
1
7

2
,6

2
2

3
.1

9
5

1
1
2
2

2
0
2
,2

9
3

6
.7

2
2
4
9

1
6
0

,1
7
4

5
.3

4
2
2
3

2
2

,5
3
6

1
2

.1
1
0

5
1

2
2
2

3
2
3
,4

0
8

1
0

.0
1

1
9
4

1
1
8

,7
9
1

7
.7

2
1
2
0

1
1

,9
0
1

9
.2

1
1

5
0

–
–

1
2
.0

1
2
,4

8
9

7
6
2

,5
6
6

1
0

.6
1

9
6
7

1
5
8

,4
0
3

9
.9

Ta
bl

e
7
.2

:E
ff

ec
t

of
st

re
ng

th
en

ed
in

te
rs

ec
ti

on
cu

ts
an

d
fe

as
ib

ili
ty

-b
as

ed
ti

gh
te

ni
ng

on
so

lv
in

g
in

st
an

ce
s

of
pa

ck
in

g
ci

rc
le

s
in

to
a

re
ct

an
gl

e

#
ci

rc
le

s
#

in
st

.
BB

BB
+

SI
C

BB
+

SI
C

+
FB

T

#
so

lv
ed

Ti
m

e
(s

ec
)

#
no

de
s

G
ap (%

)
#

so
lv

ed
Ti

m
e

(s
ec

)
#

no
de

s
G

ap (%
)

#
so

lv
ed

Ti
m

e
(s

ec
)

#
no

de
s

G
ap (%

)

5
6

6
0

.1
1
4
3

–
6

0
.1

9
5

–
6

0
.1

2
8

–
6

7
7

0
.2

8
7
4

–
7

0
.2

2
5
2

–
7

0
.2

6
9

–
7

8
8

2
.6

2
1
,0

4
9

–
8

3
.5

3
,6

3
6

–
8

2
.7

6
9
3

–
8

9
0

–
–

1
0
.8

3
3
,0

5
2

7
7
0

,1
7
0

5
.1

7
1
,2

6
4

1
2
6

,8
2
2

9
.6

9
1
0

0
–

–
2
3
.6

0
–

–
1
5
.9

0
–

–
1
6
.5

171

7.5 computational studies

Ta
bl

e
7
.3

:C
om

pu
ta

ti
on

al
re

su
lt

s
fo

r
gl

ob
al

so
lv

er
s

on
so

lv
in

g
in

st
an

ce
s

of
pa

ck
in

g
ci

rc
le

s
in

to
a

ci
rc

le

#
ci

rc
le

s
#

in
st

.
A

N
TI

G
O

N
E

BA
R

O
N

C
O

U
EN

N
E

LI
N

D
O

G
LO

BA
L

SC
IP

#
so

lv
ed

Ti
m

e
(s

ec
)

G
ap (%

)
#

so
lv

ed
Ti

m
e

(s
ec

)
G

ap (%
)

#
so

lv
ed

Ti
m

e
(s

ec
)

G
ap (%

)
#

so
lv

ed
Ti

m
e

(s
ec

)
G

ap (%
)

#
so

lv
ed

Ti
m

e
(s

ec
)

G
ap (%

)

5
5

5
0

.3
–

5
0

.2
–

5
0
.6

–
5

0
.3

–
5

6
.5

–
6

5
4

0
.5

3
.8

5
1

.0
–

5
3
3

–
5

2
.0

–
4

3
4

4
.2

7
5

3
0

.1
5

.3
5

1
4

–
5

8
9
6

–
5

1
8

–
3

7
.0

4
.9

8
5

1
5
5

1
2
.5

4
5
0
1

2
5

.5
1

1
2
7

1
0

.9
4

6
2
7

2
6

.5
1

2
7
0

7
.9

9
5

0
–

1
4
.6

1
1

,7
4
1

2
6
.4

0
–

1
6
.6

1
2

,3
5
1

2
7
.9

0
–

9
.5

1
0

5
0

–
1
7
.4

0
–

2
3
.0

0
–

2
0
.6

0
–

3
0
.4

0
–

1
2
.3

1
1

5
0

–
2
0
.4

0
–

3
3
.8

0
–

2
4
.3

0
–

3
8
.8

0
–

1
3
.5

Ta
bl

e
7
.4

:C
om

pu
ta

ti
on

al
re

su
lt

s
fo

r
gl

ob
al

so
lv

er
s

on
so

lv
in

g
in

st
an

ce
s

of
pa

ck
in

g
ci

rc
le

s
in

to
a

re
ct

an
gl

e

#
ci

rc
le

s
#

in
st

.
A

N
TI

G
O

N
E

BA
R

O
N

C
O

U
EN

N
E

LI
N

D
O

G
LO

BA
L

SC
IP

#
so

lv
ed

Ti
m

e
(s

ec
)

G
ap (%

)
#

so
lv

ed
Ti

m
e

(s
ec

)
G

ap (%
)

#
so

lv
ed

Ti
m

e
(s

ec
)

G
ap (%

)
#

so
lv

ed
Ti

m
e

(s
ec

)
G

ap (%
)

#
so

lv
ed

Ti
m

e
(s

ec
)

G
ap (%

)

5
6

6
2

.6
–

6
0

.2
–

6
1
1

–
6

9
.0

–
6

1
4

–
6

7
7

1
3

–
7

0
.5

–
6

8
3

1
1

.7
7

1
1
4

–
7

2
5
6

–
7

8
8

1
1
4

–
8

6
.7

–
8

8
6
6

–
7

1
,4

1
5

4
.7

6
6
3
3

1
.2

8
9

0
–

7
.2

8
1

,0
3
3

3
5

.5
0

–
2
2
.0

0
–

3
3
.6

0
–

9
.0

9
1
0

0
–

2
2
.3

0
–

4
4

.2
0

–
3
2
.4

0
–

4
6
.4

0
–

1
8
.8

172

7.6 conclusions

Considering all five global solvers, BARON performs the best in terms of number

of solved instances and solution time. The smallest average residual gaps for unsolved

instances were obtained by SCIP, though possibly this does not result from tight relaxations

constructed at its branch-and-bound nodes, rather results from aggressive branching. This

is corroborated by the observation that the number of branch-and-bound nodes in SCIP

runs was extremely larger than other solvers. Processing a large branch-and-bound tree

takes more time, which might explain why SCIP could only solve fewer instances to

guaranteed optimality within the time limit, performing generally worse than other four

global solvers.

More specifically, for the problem of packing circles in a circle, BARON was able to prove

optimality in 20 out of 35 instances, with the largest solvable input size being a single

nine-circle instance. In contrast, our proposed algorithm (Table 7.1) could in addition solve

a handful of nine-circle, ten-circle and eleven-circle instances, pushing the state-of-the-art

in terms of what is considered solvable for this class of packing problems. Furthermore, the

solution time of our approach is generally much less than that of the global optimization

solvers. Turning our attention to the application of packing circles into a rectangle, BARON

again performs the best among the five general-purpose global solvers, being able to solve

to confirmed optimality 29 out of 40 instances. While our algorithm (Table 7.2) solved

28 instances with comparable solution time, it achieved a much smaller average residual

gaps for the remaining instances. Notably, across both problem datasets, our proposed

approach was able to close the gap in a total of 6 instances for which none of the global

optimization solvers was able to prove optimality. The competitiveness of our approach

against these solvers can also be inferred from rigorous performance profiles [66], which

we present in Fig. 7.7.

7.6 conclusions

In this chapter, we focused on a class of reverse convex constraints called circle-circle

non-overlapping constraints, which are popular in many cutting and packing optimization

models. Adapting a custom-built branch-and-bound algorithm that we had previously

developed to address irregular shape nesting problems in Chapter 6, we proposed strength-

ened intersection cuts and various feasibility-based tightening techniques to expedite the

search based on direct branching upon the set of non-overlapping constraints. To this

end, we first generalized the intersection cut formula from the seminal paper of [23] to

more generic cases where variables can be bounded by arbitrary values, and used the

173

7.6 conclusions

100 101 102 103
Time factor (t)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Pr
ob

ab
ilit
y
fo
r a

n
al
go

rit
hm

 th
at
 it
s p

er
fo
rm

an
ce
 ra

tio

 is
 w
ith

in
 a
 fa

ct
or
 t
of
 th

e
be

st
 p
os
sib

le
 ra

tio
ANTIGONE
BARON
COUENNE
LINDOGLOBAL
SCIP
This work

(a) Packing circles into a circle

100 101 102 103

Time factor (t)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
ANTIGONE
BARON
COUENNE
LINDOGLOBAL
SCIP
This work

(b) Packing circles into a rectangle

Figure 7.7: Performance profiles across all benchmark instances of each problem variant. In both
graphs, “This work” refers to the performance of our proposed algorithm using strength-
ened intersection cuts and feasibility-based tightening (BB+SIC+FBT). For each curve,
the value at t = 0 provides the fraction of benchmark instances for which the corre-
sponding solver/algorithm is fastest, while the limiting value at t → ∞ provides the
fraction of instances that could be solved within the time limit of 1 hour.

fact that a non-overlapping constraint represents a reverse convex domain to incorporate

such intersection cuts into our relaxations. In addition, we proposed feasibility-based

tightening techniques that differ from the ones commonly used in global optimization,

in the sense that we sought to reduce the feasible domain enforced by non-overlapping

constraints directly, rather than rely on domain reduction from variable bounds. Our

extensive computational studies on 75 circle packing instances elucidated the effectiveness

of tightening the relaxations in terms of speeding up the branch-and-bound process, and

showcased that the purposed-build search approach performs favorably as compared to

using state-of-the-art, yet general-purpose global optimization solvers.

174

8
C O N C L U S I O N S A N D F U T U R E W O R K

In this thesis, we focus on mathematical modeling and algorithmic development for

addressing both vehicle routing problems and packing problems. We presented novel

mixed-integer linear formulations to model several routing problems of considerable

practical relevance; we formulated the problem of packing circles/irregular shapes as a non-

convex quadractically constrained quadratic program. To solve the resulting mathematical

models, we have proposed solution algorithms that are tailored for each of them. In the

following sections, we summarize the key contributions of our work and then present

several directions for future research.

8.1 contributions

In Chapter 2, we studied the continuous-time inventory routing problem. Inventory man-

agement, vehicle routing, and delivery-scheduling decisions are simultaneously considered

in the context of inventory routing. The continuous-time feature requires that the distribu-

tor has to both monitor inventory levels at customers and make product replenishment

decisions in continuous time, so as to ensure that stock levels are maintained within the

desired intervals at any moment of the planning horizon.

• We proposed a novel mixed-integer linear programming formulation to model the

continuous-time inventory routing problem. This formulation incorporates several

ingenious modeling ideas to handle the multi-trip, multi-visit features as well as

continuous-time inventory management.

• We proposed various types of tightening techniques to strengthen the linear pro-

gramming relaxations. In particular, we adapted rounded capacity inequalities into

our model and developed protocols to dynamically separate and add them during

the branch-and-cut process.

175

8.1 contributions

• We conducted extensive computational studies on 90 benchmark instances from the

literature and the computational results show that our branch-and-cut algorithm

significantly outperforms the state-of-the-art approach. In particular, our algorithm

could solve 56 of them to optimality within a reasonable amount of time and return a

small residual gap for the remaining ones, while the state-of-the-art algorithm could

only solve 26 out of 90 to guaranteed optimality.

• We further evaluated our algorithm on newly generated benchmark instances that

are inspired by the real-life data from ROADEF/EURO Challenge 2016. Out of 63

benchmark instances, our branch-and-cut algorithm solved 56 of them to optimality,

including a few 20-customer instances. This further demonstrates our proposed

algorithm’s efficiency.

In Chapter 3, we focused on the full truckload pickup and delivery problem (FTPDP)

that is featured by a heterogeneous fleet, optional orders, multiple pickup points and

loading dock capacity constraints.

• We proposed a novel mixed-integer linear programming formulation to model

the FTPDP, which is featured by full truckload shipments, multiple pickup points,

optional orders, and loading dock capacity restrictions.

• We tested our proposed model using real-life operational data and the computational

results demonstrated the effectiveness and efficiency of our proposed approach. In

particular, our MILP model could solve practical problems of up to 52 consignments

to optimality within hundreds of seconds.

• We embedded the mathematical formulation into a simulation engine so as to

evaluate the economic effect of allowing for pre-loading trucks. Our computational

studies showed that adopting the pre-loading policy could save up to 2% of the

operational cost in the application setting of our interest.

In Chapter 4, we considered the problem of estimating the marginal routing cost of

serving an extra customer on top of a given distribution network. In this context, the main

challenge stems from the intrinsic stochasticity in customer demands.

• We proposed a scenario-sampling framework to estimate the expected marginal cost

of serving individual customers. Specifically, we obtained independent scenarios

by sampling customer demands from their distribution and considered the sample

average as an estimate of the cost. We proved that our proposed framework provides

176

8.1 contributions

statistical guarantee of the estimation accuracy, provided that a sufficiently large–

informed by Hoeffding’s inequality–sample size has been obtained.

• We modeled the multi-depot vehicle routing problem with inter-depot routes (MD-

VRPI) as a set partitioning formulation and proposed a branch-price-and-cut al-

gorithm that incorporates several state-of-the-art techniques, including ng-routes,

variable fixing, route enumeration, and limited-memory subset row cuts, among

others.

• We conducted computational studies to show that our branch-price-and-cut algo-

rithm significantly outperforms the state-of-the-art exact approach for the MDVRPI.

In particular, our algorithm proved optimality for all previously open MDVRPI

benchmark instances involving up to 40 customers. We further pushed the envelope

by extending the literature benchmarks with 70-customer instances and solving to

proven optimality the vast majority of those as well.

• We demonstrated the scenario-sampling framework and the quality of its cost es-

timates, utilizing thousands of MDVRPI instance samples in each case, and we

elucidated the effect on the marginal routing cost of factors such as customer loca-

tions and demand levels.

In Chapter 5, we were interested in solving vehicle routing problems under uncertainty

from a robust optimization perspective. Given postulated uncertainty sets for customer

demands and vehicle travel times, one aims to identify a set of cost-effective routes for

vehicles to traverse such that along these routes vehicle capacity constraints and customer

time window constraints are respected under any anticipated demand and travel time

realization, respectively.

• We considered robust VRPs with uncertainty in customer demands and vehicle travel

times. We considered five popular classes of uncertainty sets: cardinality-constrained

sets, budget sets, factor models, ellipsoids, and discrete sets. We performed polyhe-

dral studies on the cardinality-constrained set and the factor model, and reduce each

set to its equivalent discrete set.

• We proposed a novel BPC algorithm to address robust VRPs under demand and

travel time uncertainty. Our algorithm embedded cutting-plane techniques into the

deterministic BPC framework. In particular, we utilized a deterministic pricing engine

to generate partially robust feasible routes and then dynamically enforced robust

rounded capacity inequalities and infeasible path elimination constraints as necessary

177

8.1 contributions

constraints to ensure the immunity of a routing design against infeasibility caused by

variability in demands and travel times, respectively. To that end, we demonstrated

that separating these inequalities can be done efficiently for the aforementioned

uncertainty sets.

• We synopsized the existing methods from the literature that have demonstrated

success in extending BPC algorithms to the solution of robust VRPs. We then made a

detailed comparison between the literature approach and our cutting-plane approach

in the following aspects: uncertainty sources, uncertainty sets, the time complexity

of pricing subproblems and the tightness of LP relaxations, so as to demonstrate the

applicability and limitations of each approach.

• We conducted comprehensive computational studies to evaluate our proposed algo-

rithm on solving robust VRPs under the aforementioned uncertainty sets. Through

computational experiments, we showed that the robust cutting-plane algorithm is

versatile for the uncertainty sets of our interest. We compared its performance against

those from the literature and demonstrate that our proposed algorithm’s effectiveness

and efficiency over the state-of-the-art approaches.

In Chapter 6, we studied the nesting problem, which aims to determine a configuration

of a set of irregular shapes within a rectangular sheet of material of fixed width, such that

no overlap among the shapes exists, and such that the length of the sheet is minimized.

• We developed an exact approach to solve the nesting problem to global optimality

that does not rely on the use of general-purpose global optimization solvers.

• We identified a generic approach to dynamically satisfy reverse convex quadratic

constraints commonly found in optimization models within the field of cutting and

packing.

• We conducted a comprehensive computational study that illustrates the competitive-

ness of our approach compared to the previous state-of-the-art.

• We presented, for the first time in the open literature, provably optimal solutions for

nesting problem instances featuring five polygons under free rotation.

In Chapter 7, we studied the circle-circle non-overlapping constraints, a form of reverse

convex constraints that often arise in optimization models for cutting and packing appli-

cations. The feasible region induced by the intersection of circle-circle non-overlapping

constraints is highly non-convex, and standard approaches to construct convex relaxations

178

8.2 future directions

for spatial branch-and-bound global optimization of such models typically yield unsatis-

factory loose relaxations. Consequently, solving such non-convex models to guaranteed

optimality remains extremely challenging even for the state-of-the-art codes.

• We developed a customized branch-and-bound approach for solving problems with

circle-circle non-overlapping constraints.

• We generalized the intersection cut formula from the seminal paper of [23] to more

generic cases with arbitrary variable bounds, and we applied a strengthened version

of these cuts to tighten the BB node relaxations.

• We proposed three types of feasibility-based tightening techniques to further

strengthen the BB node relaxations.

• We conducted a comprehensive computational study based on two popular variants

of the circle packing problem to demonstrate that our approach achieves superior per-

formance over the use of various state-of-the-art general-purpose global optimization

solvers.

8.2 future directions

In this section, we propose a few research directions that might be worth exploring

from either a practical or theoretical perspective. In Chapter 2, we presented a compact

mathematical model to exactly solve the continuous-time inventory routing problem. Two

main research directions can be pursued in the future.

• The problem definition of inventory routing problems we were concerned in Chap-

ter 2 was adopted from [108]; it lacks several additional realistic features such

as a heterogeneous fleet, time windows, driver-trailer scheduling constraints, and

the–commonly used in practice–logistic ratio objective. It would be interesting to in-

vestigate how to model these practical considerations in a way that is not detrimental

to computational tractability.

• From a practical perspective, the exact approach is not efficient to generate fea-

sible solutions of high quality; hence, the development of heuristic approaches

(e.g., matheuristics [88, 158]) is a right direction. For example, we can consider

decisions to be made in a hierarchical way: a routing design is first fixed and then

the optimal replenishment decisions (e.g., customer-visiting times and delivery quan-

179

8.2 future directions

tities) are identified via solving a linear program. Perturb the set of routes and iterate

this process until a time limit is reached.

In the FTPDP, we allow for pre-loading trucks. Regarding this, two research directions

are worth pursuing.

• We introduced a hyper-parameter α into the objective function so as to incentivize

the pre-loading action. To increase the robustness of our chosen parameter, it would

be more beneficial to develop a policy function that maps the order information into

a more informed parameter value.

• Another perspective to allow for pre-loading trucks is to consider the practical

application as a multi-period FTPDP, in which pre-loaded orders are specified for

the first period and no pre-loading action is considered for the last period while

the pre-loading decisions for other periods are to be made by the optimizer. The

immediate advantage is that the hyper-parameter disappears while the objective is

to minimize the actual monetary cost in a multi-period routing context.

Applying the branch-price-and-cut approach for addressing routing problems under

uncertainty can be extended in several directions.

• For travel time uncertainty sets, we have considered two polyhedral sets: cardinality-

constrained sets and discrete sets. One may attempt to extend the branch price-and-

cut framework to solve routing problems with the travel time vector being supported

on other polyhedral sets or ellipsoidal sets.

• Though various types of uncertainty sets were considered to model customer de-

mands and vehicle travel times in Chapter 5, we did not discuss which set should be

chosen when historical data is given. This direction is worth exploring.

• In this thesis, we have considered demand and travel time variability. In practice,

customer order uncertainty also often arises in routing applications. The work of [161]

considered customer order uncertainty in a multi-period vehicle routing problem and

presented a branch-and-cut approach. We can extend the branch-price-cut framework

to address such more involved, multi-period settings.

• In Chapter 5, the aim was to design a priori robust feasible routes; hence it was

a single-stage optimization problem and no recourse decisions were to be made.

If we model the vehicle routing problem under uncertainty as a two-stage robust

optimization problem (i.e., a tentative delivery schedule is a “here-and-now” decision

180

8.2 future directions

while recourse actions, e.g., detouring to the depot, are treated as “wait-and-see”

decisions after uncertain parameters materialize), an interesting question is how to

adapt a branch-price-and-cut framework to solve such an adjustable robust vehicle

routing problem.

• Robust optimization is one of the most popular frameworks to address optimization

under uncertainty. Recently, distributionally robust optimization has received lots

of attention. The work of [79] considered the distributionally robust chance-constrained

vehicle routing problem. An interesting research direction is how to apply the branch-

price-and-cut approach for addressing this problem.

The global optimization research is mainly focused on deriving tight relaxations. Two

research avenues can be pursued for solving mathematical models with reverse convex

constraints.

• Given a reverse convex constraint, we generated intersection cuts from the simplicial

cone. As the work of [24] has pointed out, one may choose other polyhedra to derive

valid intersection cuts. It would be interesting to investigate alternative polyhedra

for deriving valid cuts that are stronger than the standard intersection cuts.

• Another research opportunity is to embed intersection cuts for reverse convex con-

straints into a convex-relaxation based, spatial branch-and-bound algorithm, and to

quantify the computational benefit in the global optimization of generic non-convex

problems, as the prevalence of reverse convex terms in the latter increases.

181

B I B L I O G R A P H Y

[1] http://www.packomania.com/. accessed on January 8, 2019.

[2] N. Absi, D. Cattaruzza, D. Feillet, M. Ogier, and F. Semet. “A heuristic branch-

cut-and-price algorithm for the ROADEF/EURO challenge on Inventory Routing.”

Transportation Science (2020).

[3] T. Achterberg. “SCIP: solving constraint integer programs.” Mathematical Program-

ming Computation 1.1 (2009), pp. 1–41.

[4] T. Achterberg, R. E. Bixby, Z. Gu, E. Rothberg, and D. Weninger. “Presolve reduc-

tions in mixed integer programming.” INFORMS Journal on Computing (2019).

[5] A. Agra et al. “Layered formulation for the robust vehicle routing problem with

time windows.” In: International Symposium on Combinatorial Optimization. Springer.

2012, pp. 249–260.

[6] A. Agra et al. “The robust vehicle routing problem with time windows.” Computers

& operations research 40.3 (2013), pp. 856–866.

[7] A. Agra, M. Christiansen, L. M. Hvattum, and F. Rodrigues. “Robust optimiza-

tion for a maritime inventory routing problem.” Transportation Science 52.3 (2018),

pp. 509–525.

[8] E. Air Liquide. ROADEF. Inventory Routing Problem description for ROADEF/EURO

2016 Challenge.

[9] R Alvarez-Valdes, A Martinez, and J. Tamarit. “A branch & bound algorithm for

cutting and packing irregularly shaped pieces.” International Journal of Production

Economics 145.2 (2013), pp. 463–477.

[10] R. Alvarez-Valdés, F. Parreño, and J. M. Tamarit. “Reactive GRASP for the strip-

packing problem.” Computers & Operations Research 35.4 (2008), pp. 1065–1083.

[11] A. Alves Pessoa, L. Di Puglia Pugliese, F. Guerriero, and M. Poss. “Robust con-

strained shortest path problems under budgeted uncertainty.” Networks 66.2 (2015),

pp. 98–111.

182

http://www.packomania.com/

bibliography

[12] E. Angelelli and M. G. Speranza. “The periodic vehicle routing problem with

intermediate facilities.” European journal of Operational research 137.2 (2002), pp. 233–

247.

[13] K. M. Anstreicher. “On convex relaxations for quadratically constrained quadratic

programming.” Mathematical programming 136.2 (2012), pp. 233–251.

[14] D. L. Applegate, R. E. Bixby, V. Chvatal, and W. J. Cook. The traveling salesman

problem: a computational study. Princeton university press, 2006.

[15] M. P. de Aragao and E. Uchoa. “Integer program reformulation for robust branch-

and-cut-and-price algorithms.” In: Mathematical Program in Rio: a Conference in

Honour of Nelson Maculan. Citeseer. 2003, pp. 56–61.

[16] C. Archetti, G. Desaulniers, and M. G. Speranza. “Minimizing the logistic ratio in

the inventory routing problem.” EURO Journal on Transportation and Logistics 6.4

(2017), pp. 289–306.

[17] C. Archetti, L. Bertazzi, G. Laporte, and M. G. Speranza. “A branch-and-cut algo-

rithm for a vendor-managed inventory-routing problem.” Transportation science 41.3

(2007), pp. 382–391.

[18] S. Arunapuram, K. Mathur, and D. Solow. “Vehicle routing and scheduling with

full truckloads.” Transportation Science 37.2 (2003), pp. 170–182.

[19] N. Ascheuer, M. Fischetti, and M. Grötschel. “Solving the asymmetric travelling

salesman problem with time windows by branch-and-cut.” Mathematical Program-

ming 90.3 (2001), pp. 475–506.

[20] P. Augerat et al. Computational results with a branch and cut code for the capacitated

vehicle routing problem. IMAG, 1995.

[21] P. Augerat, J.-M. Belenguer, E. Benavent, A. Corbéran, and D. Naddef. “Separating

capacity constraints in the CVRP using tabu search.” European Journal of Operational

Research 106.2-3 (1998), pp. 546–557.

[22] P. Avella, M. Boccia, and L. A. Wolsey. “Single-period cutting planes for inventory

routing problems.” Transportation Science 52.3 (2017), pp. 497–508.

[23] E. Balas. “Intersection cuts — a new type of cutting planes for integer program-

ming.” Operations Research 19.1 (1971), pp. 19–39.

[24] E. Balas and F. Margot. “Generalized intersection cuts and a new cut generating

paradigm.” Mathematical Programming 137.1-2 (2013), pp. 19–35.

183

bibliography

[25] R. Baldacci, N. Christofides, and A. Mingozzi. “An exact algorithm for the vehicle

routing problem based on the set partitioning formulation with additional cuts.”

Mathematical Programming 115.2 (2008), pp. 351–385.

[26] R. Baldacci, A. Mingozzi, and R. Roberti. “New route relaxation and pricing

strategies for the vehicle routing problem.” Operations research 59.5 (2011), pp. 1269–

1283.

[27] R. Baldacci, A. Lim, E. Traversi, and R. Wolfler Calvo. “Optimal solution of vehicle

routing problems with fractional objective function.” Transportation Science (2020).

[28] M. L. Balinski and R. E. Quandt. “On an integer program for a delivery problem.”

Operations research 12.2 (1964), pp. 300–304.

[29] X. Bao, N. V. Sahinidis, and M. Tawarmalani. “Multiterm polyhedral relaxations for

nonconvex, quadratically constrained quadratic programs.” Optimization Methods &

Software 24.4-5 (2009), pp. 485–504.

[30] L. Baumgartner, V. Schmid, and C. Blum. “Solving the two-dimensional bin packing

problem with a probabilistic multi-start heuristic.” In: International Conference on

Learning and Intelligent Optimization. Springer. 2011, pp. 76–90.

[31] J.-M. Belenguer, M. Martinez, and E Mota. “A lower bound for the split delivery

vehicle routing problem.” Operations research 48.5 (2000), pp. 801–810.

[32] P. Belotti, J. Lee, L. Liberti, F. Margot, and A. Wächter. “Branching and bounds

tighteningtechniques for non-convex MINLP.” Optimization Methods & Software

24.4-5 (2009), pp. 597–634.

[33] A. Ben-Tal, L. El Ghaoui, and A. Nemirovski. Robust optimization. Vol. 28. Princeton

University Press, 2009.

[34] A. Ben-Tal and A. Nemirovski. Lectures on modern convex optimization: analysis,

algorithms, and engineering applications. Vol. 2. Siam, 2001.

[35] J. A. Bennell and J. F. Oliveira. “The geometry of nesting problems: A tutorial.”

European journal of operational research 184.2 (2008), pp. 397–415.

[36] M. d. Berg, O. Cheong, M. v. Kreveld, and M. Overmars. Computational geometry:

algorithms and applications. Springer-Verlag TELOS, 2008.

[37] D. Bertsimas and M. Sim. “The price of robustness.” Operations research 52.1 (2004),

pp. 35–53.

[38] N. Bianchessi and S. Irnich. “Branch-and-cut for the split delivery vehicle routing

problem with time windows.” Transportation Science 53.2 (2019), pp. 442–462.

184

bibliography

[39] D. Bienstock, C. Chen, and G. Munoz. “Outer-product-free sets for polynomial

optimization and oracle-based cuts.” arXiv preprint arXiv:1610.04604 (2016).

[40] J. R. Birge and F. Louveaux. Introduction to stochastic programming. Springer Science

& Business Media, 2011.

[41] A. Bortfeldt. “A genetic algorithm for the two-dimensional strip packing prob-

lem with rectangular pieces.” European Journal of Operational Research 172.3 (2006),

pp. 814–837.

[42] S. Braaten, O. Gjønnes, L. M. Hvattum, and G. Tirado. “Heuristics for the robust

vehicle routing problem with time windows.” Expert Systems with Applications 77

(2017), pp. 136–147.

[43] K. Buhrkal, A. Larsen, and S. Ropke. “The waste collection vehicle routing problem

with time windows in a city logistics context.” Procedia-Social and Behavioral Sciences

39 (2012), pp. 241–254.

[44] E. Burke, R. Hellier, G. Kendall, and G. Whitwell. “A new bottom-left-fill heuristic

algorithm for the two-dimensional irregular packing problem.” Operations Research

54.3 (2006), pp. 587–601.

[45] E. K. Burke, M. R. Hyde, and G. Kendall. “Evolving bin packing heuristics with

genetic programming.” In: Parallel Problem Solving from Nature-PPSN IX. Springer,

2006, pp. 860–869.

[46] I. Castillo, F. J. Kampas, and J. D. Pintér. “Solving circle packing problems by global

optimization: numerical results and industrial applications.” European Journal of

Operational Research 191.3 (2008), pp. 786–802.

[47] D. Cattaruzza, N. Absi, and D. Feillet. “Vehicle routing problems with multiple

trips.” 4OR 14.3 (2016), pp. 223–259.

[48] S. Chaudhuri, R. Motwani, and V. Narasayya. “Random sampling for histogram

construction: How much is enough?” ACM SIGMOD Record 27.2 (1998), pp. 436–

447.

[49] L. H. Cherri et al. “Robust mixed-integer linear programming models for the

irregular strip packing problem.” European Journal of Operational Research 253.3

(2016), pp. 570–583.

[50] G. Clarke and J. W. Wright. “Scheduling of vehicles from a central depot to a

number of delivery points.” Operations research 12.4 (1964), pp. 568–581.

185

bibliography

[51] L. C. Coelho, J.-F. Cordeau, and G. Laporte. “Consistency in multi-vehicle inventory-

routing.” Transportation Research Part C: Emerging Technologies 24 (2012), pp. 270–

287.

[52] L. C. Coelho, J.-F. Cordeau, and G. Laporte. “Thirty years of inventory routing.”

Transportation Science 48.1 (2013), pp. 1–19.

[53] L. C. Coelho, J.-F. Cordeau, and G. Laporte. “Thirty years of inventory routing.”

Transportation Science 48.1 (2014), pp. 1–19.

[54] L. C. Coelho and G. Laporte. “The exact solution of several classes of inventory-

routing problems.” Computers & Operations Research 40.2 (2013), pp. 558–565.

[55] L. C. Coelho and G. Laporte. “Improved solutions for inventory-routing problems

through valid inequalities and input ordering.” International Journal of Production

Economics 155 (2014), pp. 391–397.

[56] C. Contardo and R. Martinelli. “A new exact algorithm for the multi-depot vehicle

routing problem under capacity and route length constraints.” Discrete Optimization

12 (2014), pp. 129–146.

[57] L. Costa, C. Contardo, and G. Desaulniers. “Exact branch-price-and-cut algorithms

for vehicle routing.” Transportation Science 53.4 (2019), pp. 946–985.

[58] B. Crevier, J.-F. Cordeau, and G. Laporte. “The multi-depot vehicle routing prob-

lem with inter-depot routes.” European Journal of Operational Research 176.2 (2007),

pp. 756–773.

[59] C. F. Daganzo. “The distance traveled to visit N points with a maximum of C stops

per vehicle: An analytic model and an application.” Transportation science 18.4 (1984),

pp. 331–350.

[60] K. L. Daniels and V. Milenkovic. “Multiple Translational Containment: Approximate

and Exact Algorithms.” In: SODA. Vol. 95. Citeseer. 1995, pp. 205–214.

[61] G. B. Dantzig and J. H. Ramser. “The truck dispatching problem.” Management

science 6.1 (1959), pp. 80–91.

[62] J. De La Vega, P. Munari, and R. Morabito. “Robust optimization for the vehicle

routing problem with multiple deliverymen.” Central European Journal of Operations

Research (2017), pp. 1–32.

[63] E. D. Demaine, S. P. Fekete, and R. J. Lang. “Circle packing for origami design is

hard.” arXiv preprint arXiv:1008.1224 (2010).

186

bibliography

[64] G. Desaulniers, J. G. Rakke, and L. C. Coelho. “A branch-price-and-cut algorithm

for the inventory-routing problem.” Transportation Science 50.3 (2015), pp. 1060–1076.

[65] T. Dinh, R. Fukasawa, and J. Luedtke. “Exact algorithms for the chance-constrained

vehicle routing problem.” Mathematical Programming 172.1-2 (2018), pp. 105–138.

[66] E. D. Dolan and J. J. Moré. “Benchmarking optimization software with performance

profiles.” Mathematical programming 91.2 (2002), pp. 201–213.

[67] Y. Dong, C. T. Maravelias, J. M. Pinto, and A. Sundaramoorthy. “Solution methods

for vehicle-based inventory routing problems.” Computers & Chemical Engineering

101 (2017), pp. 259–278.

[68] M. Dror. “Note on the complexity of the shortest path models for column generation

in VRPTW.” Operations Research 42.5 (1994), pp. 977–978.

[69] S. Erdoğan and E. Miller-Hooks. “A green vehicle routing problem.” Transportation

Research Part E: Logistics and Transportation Review 48.1 (2012), pp. 100–114.

[70] M. F. Fauske, C. Mannino, and P. Ventura. “Generalized Periodic Vehicle Routing

and Maritime Surveillance.” Transportation Science 54.1 (2020), pp. 164–183.

[71] D. Feillet. “A tutorial on column generation and branch-and-price for vehicle

routing problems.” 4or 8.4 (2010), pp. 407–424.

[72] M. A. Figliozzi. “Planning approximations to the average length of vehicle routing

problems with varying customer demands and routing constraints.” Transportation

Research Record 2089.1 (2008), pp. 1–8.

[73] M. Fischetti, J. J. S. Gonzalez, and P. Toth. “Solving the orienteering problem

through branch-and-cut.” INFORMS Journal on Computing 10.2 (1998), pp. 133–148.

[74] M. Fischetti and I. Luzzi. “Mixed-integer programming models for nesting prob-

lems.” Journal of Heuristics 15.3 (2009), pp. 201–226.

[75] M. Fischetti, I. Ljubić, M. Monaci, and M. Sinnl. “On the use of intersection cuts for

bilevel optimization.” Mathematical Programming 172.1-2 (2018), pp. 77–103.

[76] J. E. Fokkema, M. J. Land, L. C. Coelho, H. Wortmann, and G. B. Huitema. “A

continuous-time supply-driven inventory-constrained routing problem.” Omega 92

(2020), p. 102151.

[77] R. Fukasawa et al. “Robust branch-and-cut-and-price for the capacitated vehicle

routing problem.” Mathematical programming 106.3 (2006), pp. 491–511.

187

bibliography

[78] M. Gendreau, O. Jabali, and W. Rei. “Chapter 8: Stochastic vehicle routing prob-

lems.” In: Vehicle Routing: Problems, Methods, and Applications, Second Edition. SIAM,

2014, pp. 213–239.

[79] S. Ghosal and W. Wiesemann. “The distributionally robust chance constrained

vehicle routing problem.” Operations Research (2020).

[80] P. B. Gibbons and S. Tirthapura. “Estimating simple functions on the union of data

streams.” In: Proceedings of the thirteenth annual ACM symposium on Parallel algorithms

and architectures. ACM. 2001, pp. 281–291.

[81] A. M. Gomes and J. F. Oliveira. “Solving irregular strip packing problems by

hybridising simulated annealing and linear programming.” European Journal of

Operational Research 171.3 (2006), pp. 811–829.

[82] C. E. Gounaris, W. Wiesemann, and C. A. Floudas. “The robust capacitated vehi-

cle routing problem under demand uncertainty.” Operations Research 61.3 (2013),

pp. 677–693.

[83] C. E. Gounaris, P. P. Repoussis, C. D. Tarantilis, W. Wiesemann, and C. A. Floudas.

“An adaptive memory programming framework for the robust capacitated vehicle

routing problem.” Transportation Science 50.4 (2014), pp. 1239–1260.

[84] A. Grimault, N. Bostel, and F. Lehuédé. “An adaptive large neighborhood search

for the full truckload pickup and delivery problem with resource synchronization.”

Computers & Operations Research 88 (2017), pp. 1–14.

[85] C. Groër, B. Golden, and E. Wasil. “The consistent vehicle routing problem.”

Manufacturing & service operations management 11.4 (2009), pp. 630–643.

[86] M. Gronalt, R. F. Hartl, and M. Reimann. “New savings based algorithms for time

constrained pickup and delivery of full truckloads.” European Journal of Operational

Research 151.3 (2003), pp. 520–535.

[87] R. Grønhaug, M. Christiansen, G. Desaulniers, and J. Desrosiers. “A branch-and-

price method for a liquefied natural gas inventory routing problem.” Transportation

Science 44.3 (2010), pp. 400–415.

[88] Y. He, C. Artigues, C. Briand, N. Jozefowiez, and S. U. Ngueveu. “A Matheuristic

with Fixed-Sequence Reoptimization for a Real-Life Inventory Routing Problem.”

Transportation Science (2020).

188

bibliography

[89] K. Helsgaun. “An extension of the Lin-Kernighan-Helsgaun TSP solver for con-

strained traveling salesman and vehicle routing problems.” Roskilde: Roskilde Uni-

versity (2017).

[90] M. Hifi and R. M’hallah. “A literature review on circle and sphere packing problems:

Models and methodologies.” Advances in Operations Research 2009 (2009).

[91] R. J. Hillestad and S. E. Jacobsen. “Reverse convex programming.” Applied Mathe-

matics and Optimization 6.1 (1980), pp. 63–78.

[92] W. Hoeffding. “Probability inequalities for sums of bounded random variables.” In:

The Collected Works of Wassily Hoeffding. Springer, 1994, pp. 409–426.

[93] A. Hoff, H. Andersson, M. Christiansen, G. Hasle, and A. Løkketangen. “Indus-

trial aspects and literature survey: Fleet composition and routing.” Computers &

Operations Research 37.12 (2010), pp. 2041–2061.

[94] E. Hopper and B. C. Turton. “A review of the application of meta-heuristic al-

gorithms to 2D strip packing problems.” Artificial Intelligence Review 16.4 (2001),

pp. 257–300.

[95] R. Horst and H. Tuy. Global optimization: Deterministic approaches. Springer Science

& Business Media, 2013.

[96] C Hu, J Lu, X Liu, and G Zhang. “Robust vehicle routing problem with hard

time windows under demand and travel time uncertainty.” Computers & Operations

Research 94 (2018), pp. 139–153.

[97] C. A. Irawan, D. Ouelhadj, D. Jones, M. Stålhane, and I. B. Sperstad. “Optimisation

of maintenance routing and scheduling for offshore wind farms.” European Journal

of Operational Research 256.1 (2017), pp. 76–89.

[98] S. Irnich, G. Desaulniers, J. Desrosiers, and A. Hadjar. “Path-reduced costs for

eliminating arcs in routing and scheduling.” INFORMS Journal on Computing 22.2

(2010), pp. 297–313.

[99] M. Jepsen, B. Petersen, S. Spoorendonk, and D. Pisinger. “Subset-row inequalities

applied to the vehicle-routing problem with time windows.” Operations Research

56.2 (2008), pp. 497–511.

[100] D. R. Jones. “A fully general, exact algorithm for nesting irregular shapes.” Journal

of Global Optimization 59.2-3 (2014), pp. 367–404.

189

bibliography

[101] B. Kallehauge, N. Boland, and O. B. Madsen. “Path inequalities for the vehicle

routing problem with time windows.” Networks: An International Journal 49.4 (2007),

pp. 273–293.

[102] I Karaoğlan. “A branch-and-cut algorithm for the vehicle routing problem with

multiple use of vehicles.” Int’l J. of Lean Thinking 6.1 (2015).

[103] A. Khajavirad. “Packing circles in a square: a theoretical comparison of various

convexification techniques” (2017).

[104] A. Kheiri. “Heuristic Sequence Selection for Inventory Routing Problem.” Trans-

portation Science (2020).

[105] B.-I. Kim, S. Kim, and S. Sahoo. “Waste collection vehicle routing problem with

time windows.” Computers & Operations Research 33.12 (2006), pp. 3624–3642.

[106] A. J. Kleywegt, A. Shapiro, and T. Homem-de Mello. “The sample average approxi-

mation method for stochastic discrete optimization.” SIAM Journal on Optimization

12.2 (2002), pp. 479–502.

[107] E. R. Kone and M. H. Karwan. “Combining a new data classification technique

and regression analysis to predict the Cost-To-Serve new customers.” Computers &

Industrial Engineering 61.1 (2011), pp. 184–197.

[108] F. Lagos, N. Boland, and M. Savelsbergh. “The Continuous-Time Inventory-Routing

Problem.” Transportation Science (2020).

[109] F. A. Lagos Gonzalez. “Exact Algorithms For Routing Problems.” PhD thesis.

Georgia Institute of Technology, 2019.

[110] G. Laporte and Y. Nobert. “A branch and bound algorithm for the capacitated

vehicle routing problem.” Operations-Research-Spektrum 5.2 (1983), pp. 77–85.

[111] G. Laporte, Y. Nobert, and M. Desrochers. “Optimal routing under capacity and

distance restrictions.” Operations research 33.5 (1985), pp. 1050–1073.

[112] G. Laporte, S. Ropke, and T. Vidal. “Chapter 4: Heuristics for the vehicle routing

problem.” In: Vehicle Routing: Problems, Methods, and Applications, Second Edition.

SIAM, 2014, pp. 87–116.

[113] C. Lee, K. Lee, and S. Park. “Robust vehicle routing problem with deadlines and

travel time/demand uncertainty.” Journal of the Operational Research Society 63.9

(2012), pp. 1294–1306.

[114] T. Lee and C. Kwon. “A short note on the robust combinatorial optimization

problems with cardinality constrained uncertainty.” 4OR 12.4 (2014), pp. 373–378.

190

bibliography

[115] A. Lodi, S. Martello, and D. Vigo. “Heuristic and metaheuristic approaches for a

class of two-dimensional bin packing problems.” INFORMS Journal on Computing

11.4 (1999), pp. 345–357.

[116] A. Lodi, S. Martello, and D. Vigo. “Heuristic algorithms for the three-dimensional

bin packing problem.” European Journal of Operational Research 141.2 (2002), pp. 410–

420.

[117] C. O. López and J. E. Beasley. “A heuristic for the circle packing problem with a

variety of containers.” European Journal of Operational Research 214.3 (2011), pp. 512–

525.

[118] D. Lu and F. Gzara. “The robust vehicle routing problem with time windows:

Solution by branch and price and cut.” European Journal of Operational Research 275.3

(2019), pp. 925–938.

[119] M. E. Lübbecke and J. Desrosiers. “Selected topics in column generation.” Operations

research 53.6 (2005), pp. 1007–1023.

[120] J. Lysgaard. “CVRPSEP: A package of separation routines for the capacitated vehicle

routing problem” (2003).

[121] J. Lysgaard, A. N. Letchford, and R. W. Eglese. “A new branch-and-cut algorithm

for the capacitated vehicle routing problem.” Mathematical Programming 100.2 (2004),

pp. 423–445.

[122] N. Menakerman and R. Rom. “Bin packing with item fragmentation.” In: Workshop

on Algorithms and Data Structures. Springer. 2001, pp. 313–324.

[123] V. J. Milenkovic. “Rotational polygon containment and minimum enclosure using

only robust 2D constructions.” Computational Geometry 13.1 (1999), pp. 3–19.

[124] R. Misener and C. A. Floudas. “GloMIQO: Global mixed-integer quadratic opti-

mizer.” Journal of Global Optimization 57.1 (2013), pp. 3–50.

[125] R. Misener and C. A. Floudas. “ANTIGONE: algorithms for continuous/integer

global optimization of nonlinear equations.” Journal of Global Optimization 59.2-3

(2014), pp. 503–526.

[126] P. Munari et al. “The robust vehicle routing problem with time windows: compact

formulation and branch-price-and-cut method.” Transportation Science (2019).

[127] I. Muter, J.-F. Cordeau, and G. Laporte. “A branch-and-price algorithm for the

multidepot vehicle routing problem with interdepot routes.” Transportation Science

48.3 (2014), pp. 425–441.

191

bibliography

[128] J. F. Oliveira, A. M. Gomes, and J. S. Ferreira. “TOPOS–A new constructive algorithm

for nesting problems.” OR-Spektrum 22.2 (2000), pp. 263–284.

[129] O. Ö. Özener, Ö. Ergun, and M. Savelsbergh. “Allocating cost of service to customers

in inventory routing.” Operations Research 61.1 (2013), pp. 112–125.

[130] D Pecin. “Exact algorithms for the capacitated vehicle routing problem.” Unpublished

doctoral dissertation, Pontifícia Universidade Católica do Rio de Janiero, Rio de Janiero,

Brazil (2014).

[131] D. Pecin, A. Pessoa, M. Poggi, and E. Uchoa. “Improved branch-cut-and-price

for capacitated vehicle routing.” Mathematical Programming Computation 9.1 (2017),

pp. 61–100.

[132] D. Pecin, A. Pessoa, M. Poggi, E. Uchoa, and H. Santos. “Limited memory rank-1

cuts for vehicle routing problems.” Operations Research Letters 45.3 (2017), pp. 206–

209.

[133] D. Pecin, C. Contardo, G. Desaulniers, and E. Uchoa. “New enhancements for

the exact solution of the vehicle routing problem with time windows.” INFORMS

Journal on Computing 29.3 (2017), pp. 489–502.

[134] A. Pessoa, R. Sadykov, E. Uchoa, and F. Vanderbeck. “Automation and combina-

tion of linear-programming based stabilization techniques in column generation.”

INFORMS Journal on Computing 30.2 (2018), pp. 339–360.

[135] A. Pessoa, R. Sadykov, E. Uchoa, and F. Vanderbeck. “A Generic Exact Solver

for Vehicle Routing and Related Problems.” In: International Conference on Integer

Programming and Combinatorial Optimization. Springer. 2019, pp. 354–369.

[136] A. A. Pessoa, M. Poss, R. Sadykov, and F. Vanderbeck. “Branch-and-cut-and-price

for the robust capacitated vehicle routing problem with knapsack uncertainty”

(2018).

[137] S. Poikonen, X. Wang, and B. Golden. “The vehicle routing problem with drones:

Extended models and connections.” Networks 70.1 (2017), pp. 34–43.

[138] L. D. P. Pugliese and F. Guerriero. “A survey of resource constrained shortest path

problems: Exact solution approaches.” Networks 62.3 (2013), pp. 183–200.

[139] Y. Puranik and N. V. Sahinidis. “Domain reduction techniques for global NLP and

MINLP optimization.” Constraints 22.3 (2017), pp. 338–376.

[140] T. Radzik. “Fractional combinatorial optimization.” Handbook of combinatorial opti-

mization (2013), pp. 1311–1355.

192

bibliography

[141] S. Rebennack. “Computing tight bounds via piecewise linear functions through the

example of circle cutting problems.” Mathematical Methods of Operations Research

84.1 (2016), pp. 3–57.

[142] G. Righini and M. Salani. “Symmetry helps: Bounded bi-directional dynamic

programming for the elementary shortest path problem with resource constraints.”

Discrete Optimization 3.3 (2006), pp. 255–273.

[143] R. Roberti and A. Mingozzi. “Dynamic ng-path relaxation for the delivery man

problem.” Transportation Science 48.3 (2014), pp. 413–424.

[144] P. Rocha, R. Rodrigues, A. M. Gomes, F. M. Toledo, and M. Andretta. “Circle

covering representation for nesting problems with continuous rotations.” IFAC

Proceedings Volumes 47.3 (2014), pp. 5235–5240.

[145] M. O. Rodrigues, L. H. Cherri, and L. R. Mundim. “MIP models for the irregu-

lar strip packing problem: new symmetry breaking constraints.” In: ITM Web of

Conferences. Vol. 14. EDP Sciences. 2017, p. 00005.

[146] S. Røpke. “Branching decisions in branch-and-cut-and-price algorithms for vehicle

routing problems.” Presentation in Column Generation (2012).

[147] R. Sadykov, E. Uchoa, and A. Pessoa. “A bucket graph based labeling algorithm

with application to vehicle routing.” Cadernos do LOGIS 7 (2017).

[148] R. Sadykov, F. Vanderbeck, A. Pessoa, I. Tahiri, and E. Uchoa. “Primal heuristics for

branch and price: The assets of diving methods.” INFORMS Journal on Computing

31.2 (2019), pp. 251–267.

[149] G. Scheithauer. Introduction to Cutting and Packing Optimization: Problems, Modeling

Approaches, Solution Methods. Vol. 263. Springer, 2017.

[150] M. Schiffer, M. Schneider, G. Walther, and G. Laporte. “Vehicle Routing and

Location Routing with Intermediate Stops: A Review.” Transportation Science (2019).

[151] M. Schneider and M. Drexl. “A survey of the standard location-routing problem.”

Annals of Operations Research 259.1-2 (2017), pp. 389–414.

[152] F. Serrano. “Intersection cuts for factorable MINLP.” In: International Conference on

Integer Programming and Combinatorial Optimization. Springer. 2019, pp. 385–398.

[153] T. Singh, J. E. Arbogast, and N. Neagu. “An incremental approach using local-

search heuristic for inventory routing problem in industrial gases.” Computers &

Chemical Engineering 80 (2015), pp. 199–210.

193

bibliography

[154] R. Soares, A. Marques, P. Amorim, and J. Rasinmäki. “Multiple vehicle synchronisa-

tion in a full truck-load pickup and delivery problem: A case-study in the biomass

supply chain.” European Journal of Operational Research 277.1 (2019), pp. 174–194.

[155] E. Solano-Charris, C. Prins, and A. C. Santos. “Local search based metaheuristics for

the robust vehicle routing problem with discrete scenarios.” Applied Soft Computing

32 (2015), pp. 518–531.

[156] M. M. Solomon. “Algorithms for the vehicle routing and scheduling problems with

time window constraints.” Operations research 35.2 (1987), pp. 254–265.

[157] Y. G. Stoyan and G. Yas’ kov. “A mathematical model and a solution method for the

problem of placing various-sized circles into a strip.” European Journal of Operational

Research 156.3 (2004), pp. 590–600.

[158] Z. Su, Z. Lü, Z. Wang, Y. Qi, and U. Benlic. “A Matheuristic Algorithm for the

Inventory Routing Problem.” Transportation Science (2020).

[159] A. Subramanyam, P. P. Repoussis, and C. E. Gounaris. “Robust optimization of a

broad class of heterogeneous vehicle routing problems under demand uncertainty.”

INFORMS Journal on Computing (2020).

[160] A. Subramanyam, A. Wang, and C. E. Gounaris. “A scenario decomposition algo-

rithm for strategic time window assignment vehicle routing problems.” Transporta-

tion Research Part B: Methodological 117 (2018), pp. 296–317.

[161] A. Subramanyam, F. Mufalli, J. M. Pinto, and C. E. Gounaris. “Robust multi-period

vehicle routing under customer order uncertainty.” Optimization Online (2017).

[162] L. Sun, M. H. Karwan, B. Gemici-Ozkan, and J. M. Pinto. “Estimating the long-term

cost to serve new customers in joint distribution.” Computers & Industrial Engineering

80 (2015), pp. 1–11.

[163] I. Sungur, F. Ordónez, and M. Dessouky. “A robust optimization approach for the

capacitated vehicle routing problem with demand uncertainty.” IIE Transactions

40.5 (2008), pp. 509–523.

[164] C. D. Tarantilis, E. E. Zachariadis, and C. T. Kiranoudis. “A hybrid guided local

search for the vehicle-routing problem with intermediate replenishment facilities.”

INFORMS Journal on Computing 20.1 (2008), pp. 154–168.

[165] F. Tardella. “On the existence of polyhedral convex envelopes.” In: Frontiers in global

optimization. Springer, 2004, pp. 563–573.

194

bibliography

[166] M. Tawarmalani and N. V. Sahinidis. “A polyhedral branch-and-cut approach to

global optimization.” Mathematical programming 103.2 (2005), pp. 225–249.

[167] P. Toth and D. Vigo. Vehicle routing: problems, methods, and applications. SIAM, 2014.

[168] M. Turkensteen and A. Klose. “Demand dispersion and logistics costs in one-to-

many distribution systems.” European Journal of Operational Research 223.2 (2012),

pp. 499–507.

[169] E. Uchoa et al. “New benchmark instances for the capacitated vehicle routing

problem.” European Journal of Operational Research 257.3 (2017), pp. 845–858.

[170] A. W. Van der Vaart. Asymptotic statistics. Vol. 3. Cambridge university press, 2000.

[171] T. Vidal, G. Laporte, and P. Matl. “A concise guide to existing and emerging vehicle

routing problem variants.” European Journal of Operational Research (2019).

[172] S. Vigerske and A. Gleixner. “SCIP: Global optimization of mixed-integer nonlinear

programs in a branch-and-cut framework.” Optimization Methods and Software 33.3

(2018), pp. 563–593.

[173] G. Wäscher, H. Haußner, and H. Schumann. “An improved typology of cutting and

packing problems.” European journal of operational research 183.3 (2007), pp. 1109–

1130.

[174] Y. Yao, P. T. Evers, and M. E. Dresner. “Supply chain integration in vendor-managed

inventory.” Decision support systems 43.2 (2007), pp. 663–674.

[175] B. Yildiz and M. Savelsbergh. “Provably high-quality solutions for the meal delivery

routing problem.” Transportation Science 53.5 (2019), pp. 1372–1388.

[176] B. Zeng and L. Zhao. “Solving two-stage robust optimization problems using a

column-and-constraint generation method.” Operations Research Letters 41.5 (2013),

pp. 457–461.

195

	Dedication
	Acknowledgments
	Abstract
	Publications
	Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 Vehicle Routing Problems
	1.1.1 Problem Description
	1.1.2 Solution Approaches
	1.1.3 Challenges

	1.2 Packing Problems
	1.2.1 Problem Description
	1.2.2 Solution Approaches
	1.2.3 Challenges

	1.3 Aims and outline of the thesis

	2 A Novel Branch-and-Cut Algorithm for Continuous-time Inventory Routing
	2.1 Introduction
	2.2 Problem Definition
	2.3 Mathematical Modeling
	2.4 Tightening Techniques
	2.4.1 Tightening of Time Windows
	2.4.2 Variable Elimination
	2.4.3 Minimal # Visits
	2.4.4 Rounded Capacity Inequalities

	2.5 Computational Studies
	2.5.1 Benchmark instances
	2.5.2 Computational results on literature data
	2.5.3 Computational results on roadef instances

	2.6 Conclusions

	3 Mixed-Integer Linear Optimization for Full Truckload Pickup and Delivery
	3.1 Introduction
	3.2 Problem Definition
	3.3 Mathematical Modeling
	3.4 Computational Studies
	3.4.1 Model Performance
	3.4.2 Evaluating the pre-loading policy

	3.5 Conclusions

	4 Estimation of Marginal Cost to Serve Individual Customers
	4.1 Introduction
	4.2 Problem Definition
	4.3 Proposed Framework
	4.3.1 Marginal Cost Estimation
	4.3.2 Bounding the Sample Size
	4.3.3 A General Framework

	4.4 Solving Routing Problems
	4.4.1 Set Partitioning Model
	4.4.2 Branch-Price-and-Cut Algorithm

	4.5 Computational Studies
	4.5.1 Evaluation of BPC Implementation Performance
	4.5.2 Marginal Cost Analysis

	4.6 Conclusions

	5 A Branch-Price-and-Cut Algorithm for Robust Vehicle Routing Problems under Uncertainty
	5.1 Introduction
	5.2 Problem Definition
	5.3 Uncertainty Sets
	5.3.1 Cardinality-constrained sets
	5.3.2 Budget sets
	5.3.3 Factor models
	5.3.4 Ellipsoidal sets
	5.3.5 Discrete sets

	5.4 Polyhedral Studies
	5.5 Branch-Price-and-Cut
	5.5.1 Set Partitioning Model
	5.5.2 A Branch-Price-and-Cut Algorithm
	5.5.3 Pricing Subproblems

	5.6 Solution Approaches
	5.6.1 Robust Pricing Approach
	5.6.2 Robust Cutting-Plane Approach
	5.6.3 Comparison

	5.7 Computational Studies
	5.7.1 Computational Results on RCVRP Instances
	5.7.2 Computational Results on RVRPTW Instances

	5.8 Conclusions
	5.9 Appendix: Detailed Tables of Results

	6 A Customized Branch-and-Bound Approach for Irregular Shape Nesting
	6.1 Introduction
	6.2 Mathematical Modeling
	6.2.1 Nonconvex QCP Model
	6.2.2 Customized Model Relaxation

	6.3 The New Algorithm
	6.3.1 Feasibility Checking
	6.3.2 Branching Rule Selection
	6.3.3 Feasibility-based Node Tightening
	6.3.4 Tighter Variable Bounds
	6.3.5 Symmetry Breaking Constraints

	6.4 Computational Studies
	6.4.1 Instances
	6.4.2 Fixed Orientation Case
	6.4.3 Free Rotation Case

	6.5 Conclusions
	6.6 Appendix: Nomenclature

	7 On Tackling Reverse Convex Constraints for Non-overlapping of Circles
	7.1 Introduction
	7.2 Problem Definition
	7.3 Solution Approach
	7.3.1 Customized Model Relaxation
	7.3.2 The Branch-and-Bound Algorithm

	7.4 Strengthening Techniques
	7.4.1 Intersection Cuts
	7.4.2 Feasibility-based Tightening
	7.4.3 Implementation Details

	7.5 Computational Studies
	7.5.1 Circle Packing
	7.5.2 Computational Results

	7.6 Conclusions

	8 Conclusions and Future Work
	8.1 Contributions
	8.2 Future Directions

	 Bibliography

