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Abstract

In many common brain diseases, including traumatic brain injury, stroke, and

hydrocephalus, intracranial pressure (ICP) can rise and lead to malperfusion of brain

cells and ischemia. Furthermore, the brain’s ability to regulate cerebral blood flow

despite changes in cerebral perfusion pressure (CPP) can be impaired. Measuring

and controlling ICP to maintain a stable oxygen supply to the brain is therefore of

high clinical importance. Current devices for ICP measurements are highly invasive

and require lumbar puncture or the placement of a catheter into the brain through

craniotomy.

This thesis offers alternative methods to measure ICP using non-invasive, diffuse

optical devices to gain information about cerebral blood flow and hemoglobin con-

centration changes in the brain. We propose to use a non-parametric transfer func-

tion approach applied to oxygenated hemoglobin concentration changes in the brain

to estimate fluctuations of ICP. Additionally, the cardiac pulse shape of cerebral

blood flow was found to be associated with quantitative ICP. A machine learning ap-

proach is proposed that uses descriptive morphological features of the cardiac pulse

to estimate the underlying ICP. We were able to show that the proposed methods per-

form well in non-human primates under controlled manipulations of ICP and arterial

blood pressure.

The non-invasive ICP assessment further allows for cerebral autoregulation assess-

ment, which otherwise often requires invasive ICP recordings. In order to demon-

strate this, we performed a non-human primate study where we were able to show
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that impaired cerebral autoregulation is largely driven by CPP, which is a function

of blood pressure and ICP, further highlighting the need for non-invasive ICP mea-

surements. The discussed methods have the potential to create a lasting impact on

ICP acquisition, not only for intensive clinical care, but also for currently inacces-

sible research on healthy volunteers. Lastly, a clinical translation to the pediatric

intensive care is discussed and preliminary results of translation to human subjects

are presented. The methods developed in this thesis have the potential to eliminate

the need of invasive ICP sensors and therefore may help clinical decision making for

treatment guidance in a variety of diseases.
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Chapter 1

Introduction

According to the Centers for Disease Control and Prevention, approximately 2.87 million trau-

matic brain injury (TBI) related emergency department visits, hospitalizations, and deaths were

reported in the United States in 2014 alone [1]. The American Heart Association in conjunction

with the Centers for Disease Control and Prevention report that 795,000 people experience a

stroke in the United States every year [2]. Approximately one million Americans are affected by

hydrocephalus, across all age groups and socioeconomic backgrounds [3]. Furthermore, hydro-

cephalus is the most common reason for brain surgery in children [3]. These are only three of

the most common brain injuries in which information about intracranial pressure (ICP) and the

brain’s ability to regulate blood flow, known as cerebral or cerebrovascular autoregulation (CA),

is helpful to improve patient outcome.

Measurement methods of CA often require the knowledge of arterial blood pressure (ABP) and

ICP [4], increasing the importance for ICP measurements further. However, current standards

for measuring ICP are highly invasive and require either a lumbar puncture or the placement
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of a catheter or a pressure transducer inside the skull [5]. This high degree of invasiveness is

the reason why measurements of ICP in less severe cases are not applied and data from healthy

volunteers for research applications is not available. Opinions about the use of CA and ICP to

improve patient outcome vary, likely due to the lack of standardized treatment across hospitals

and countries, but also due to missing healthy volunteer reference studies.

From this deficit arises a clinical need for non-invasive ICP measurement methods for clinical

use and research alike. Furthermore, the need for healthy subject reference measurements of

CA under varying hydrocephalus, TBI, and stroke like conditions is needed, to confirm or re-

ject hypotheses made by clinical research based on patient data. Many groups have attempted

to measure ICP non-invasively [5, 6], but currently available methods are lacking the simplicity

of use, bedside compatibility or temporal resolution to find their way into daily routines in the

clinic [6].

In this thesis a leap towards non-invasive ICP measurements is made by using diffuse optical de-

vices that utilize non-ionizing near-infrared light to illuminate the human tissue and derive vital

information like blood flow, blood volume, blood- and tissue-oxygenation and more. Modelling

the hemodynamics in the brain by means of machine-learning will allow me to build the connec-

tion between vital hemodynamic signals and underlying ICP. Furthermore, it is shown how com-

mon CA evaluation techniques perform in the controlled environment of a healthy non-human

primate model under hydrocephalus like conditions to address the need of healthy volunteer ref-

erence measurements.

First, an outline of the physiology of blood and cerebrospinal fluid circulation in the brain

2



(Chapter 1.1) is given, to establish an argumentation basis on which physiological implications

of later non-invasive ICP measurement techniques will rely. The need in severe brain diseases

to measure ICP is shown and an understanding for the reader for current clinical practice and

arguably healthy parameters that are targets in modern treatment practice, specifically for trau-

matic brain injury, hydrocephalus and stroke is given in Chapter 1.1.5. With such diseases in

mind, invasive and non-invasive ICP monitors are discussed in Chapter 1.1.6. For the second

goal of this thesis, the evaluation of cerebral autoregulation, a detailed description of which is

given in Chapter 1.2. This includes an outline of common measurement methods and the classi-

fication of measurement methods used in this manuscript.

To understand the methodology and sensitivity of near-infrared spectroscopy and diffuse cor-

relation spectroscopy, a detailed introduction into diffuse optics is given in Chapter 2. This

includes a brief description of the conditions and assumptions necessary to allow the derivation

of hemoglobin concentrations (Chapter 2.3) and cerebral blood flow (Chapter 2.4) in turbid me-

dia like human tissue.

Chapter 3 will discuss our work to create non-invasive ICP measurement algorithms on the basis

of diffuse optical devices. The measurement of fluctuations, or relative changes in ICP are dis-

cussed in Chapter 3.1, where a transfer function fitting was applied to the hemodynamic response

in oxygenated hemoglobin concentrations to ICP oscillations, and show that a good agreement

between invasively measured and estimated ICP exists. Furthermore, an outline of the experi-

mental and computational procedures necessary to estimate baseline ICP values, or the ICP offset

to fluctuations, is given in section 3.2. Here, diffuse correlation spectroscopy was used to mea-

sure the cardiac pulsation in cerebral blood flow, which undergoes morphological alternations as
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a result of increased impedance inside the skull due to ICP changes. A regression forest based

machine learning approach is used to relate the shape of these cardiac pulsations to ICP.

To aid the need for unified cerebral autoregulation standards, which might improve patient out-

come in numerous cerebral diseases, the application of common autoregulation evaluation tech-

niques in the controlled environment of healthy non-human primates undergoing anesthesia in-

duced cerebrovascular autoregulation impairment is described. The results in Chapter 4 highlight

the necessity to measure ICP and emphasize that arterial blood pressure might not be a good sole

indicator of intact brain perfusion control.

Chapter 5 attempts to translate the achievements from Chapters 3 and 4 into the clinical envi-

ronment of pediatric intensive care. For this ongoing project an explanation of the setup and

process of data collection is given and preliminary results that show a correlation of invasive ICP

fluctuations and hemoglobin concentration based estimates is given.

The studies presented in this thesis will aid not only the large population of severely injured pa-

tients but will further open up the field of ICP measurements to healthy volunteer studies, which

in turn will help us to better understand brain physiology and the effects of cerebral autoregula-

tion on brain health and patient outcome. The key contribution of this thesis is the development

of computational tools and their verification in animal models for non-invasive ICP assessment.
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1.1 Cerebral Fluid Dynamics

To understand the dynamics of cerebral blood flow (CBF) and its interplay with cerebrospinal

fluid (CSF) production, absorption and its dynamics, we need to understand the balance of vol-

umes in the skull and their relationship to pressure changes. A popular model for this balance is

the Monro-Kellie doctrine or hypothesis. Then we can understand the role of ICP and ABP on

the oxygen delivery to the brain and their importance in the CBF autoregulatory system.

1.1.1 Cerebrospinal Fluid Anatomy and Physiology

To grasp the mechanical connections between CA and ICP, the anatomy and physiology of CSF

production and uptake should be discussed. As shown in Figure 1.1, CSF is produced in the

brain’s ventricles predominantly by the choroid plexus inside the lateral ventricles. The CSF

flows further into the 3rd, via the interventricular foramina, and 4th ventricle, via the cerebral

aqueduct, to then be distributed into the spinal cord and the subarachnoid space (SAS) through

the central, median and two lateral apertures. The CSF flow is always outward inside the ven-

tricles but can be multidirectional in the SAS. CSF is suspected to act in this space as a support

and shock protection. It reduces the effective weight of the brain through buoyancy, regulates

ICP, and performes other minor tasks. Its role in transport of hormones and clearance of proteins

and waste products is still widely debated. The fluid is then reabsorbed in the arachnoid villi and

transported off through the superior sagittal veins.

This so called ”third circulation” is a traditional model introduced by Harvey Cushing in 1923

[8]. While this model is to date widely accepted, many groups have started to present alternative
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Figure 1.1: The brain tissue is shown in a beige color, the arterial vessels releasing the cere-
brospinal fluid (CSF) are colored in red while the CSF itself is colored in blue. Arrows indicate
the direction of CSF flow: The CSF is produced predominantly in the choroid plexus, circles
the brain through the subarachnoid space and reabsorbed by the sagittal sinus. Figure taken
from wikipedia.org [7].
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models [9–11]. Especially the advent of microscopic observations and the discovery of addi-

tional components like aquaporin has sparked new debates [9]. Although it now seems true that

Cushing’s model is a vast simplification of the fluid circulation in the brain, the magnitude of

other CSF influencing components needs to be quantified before the old model can be proven

wrong or insufficient by modern research. This view is shared with recent review articles on

CSF circulation and the Monro-Kellie Doctrine [9, 11]. Thus, the simplified model by Cushing

will be the basis of argumentation in this thesis for deriving conclusions on ICP changes and CA

activity.

1.1.2 Monro Kellie Doctrine

Named after studies of the Edinburgh physicians Alexander Monro (1783) [12] and his student

George Kellie (1824) [13], who first described the skull as a rigid structure with fixed volume,

it was Harvey Cushing who founded the modern version of the Monro-Kellie Doctrine in 1923

[8]. The Monro-Kellie Doctrine states that the volume inside the skull is constant, and if one

of the major compartments (blood, CSF, or brain tissue) changes, the remaining two have to

compensate or ICP will rise. Ever since, the general idea has not been changed, but adjustments

have been made. One such adjustment is that blood volume changes play a larger role in the

volume and pressure regulation in the brain due to their faster and larger response compared

to CSF production and uptake [11]. Under the adapted theories, the most influential volumes

are the venous blood compartment, the arterial blood compartment, the CSF compartment and

the brain tissue (see Figure 1.2A). Additional volumes can be added in case of tumor growths,

brain swelling, or edema. In case of hydrocephalus for example, an excessive amount of CSF is
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Figure 1.2: The compartments of the largest volumes in the brain, i.e. blood, CSF, and the
brain, are shown. The pressure gauge on the right-hand side of every figure indicates the ICP
in the brain, where a low pressure is healthy, and a high pressure is experienced upon pressure
regulation failure. The top graph shows a healthy brain under no injuries or diseases. CSF
and venous blood are reduced in the following disease states due to a significant change in the
balance of volumes or due to additional volumes.

produced. If this additional fluid is not exhausting the compensatory capabilities of venous and

arterial blood reduction, the ICP stays normal (Figure 1.2B). If the additional fluid overwhelms

the autoregulatory system, ICP will rise (Figure 1.2C). This is also true for other diseases in

which a new volume is introduced, or the skull is fractured and deformed (see Figures 1.2D-E).

1.1.3 Intracranial Pressure

Intracranial Pressure (ICP) is the pressure inside the human skull and largely determined by the

volume balance described by the Monro-Kellie doctrine. A normal ICP in adults is expected to be
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approximately 10 - 15 mmHg, with occasional short-term increases due to coughing or sneezing

[14, 15]. Longer term (≥ 5 min in children [16] and ≥ 15 min in adults [17]) increases above

20mmHg are considered pathological [14, 18] and have been correlated to worse patient outcome

after disease [19, 20]. The normal ICP value is lower for children (3 - 7mmHg) and infants (1.5

- 6 mmHg), depending on age [15]. A threshold for a significantly malignant elevation of ICP

is not agreed upon, with values reported between 15mmHg and 35mmHg [21], and yet there is

sufficient evidence that ICP > 20mmHg in pediatric care that correlates with poor outcome [20].

Changes in ICP can occur throughout our daily life, including coughing, sneezing, and posture

changes. In a standing up motion, ICP can temporarily drop significantly and even measure

negative values without signs of discomfort [22]. There is however an number of diseases in

which ICP is permanently increased, including hydrocephalus [23], traumatic brain injury [24,

25], idiopathic intracranial hypertension [26], stroke [27, 28], and others. Countermeasures have

to be put into place to avoid secondary injuries such as hypoxia and ischemia. The most relevant

injuries for work in this thesis are further discussed in Chapter 1.1.5.

Signs of elevated intracranial pressure include but are not limited to:

• strong headache,
• vomiting,
• blurred vision and vision loss,
• behavioral changes and low alertness,
• nausea,
• tinnitus,
• weakness or problems with moving or talking,
• depression,

and is often confirmed by radiology through magnetic resonance imaging (MRI) or computed

tomography (CT) to observe enlarged cerebral ventricles filled with CSF or other signs of volume
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increases such as tumors or blood pooling [29, 30]. Measurements of ICP are highly invasive,

they often require craniotomy or placement of a spinal tap, and are therefore only performed

under certain circumstances in which the benefit outweighs the surgical risk. In 1960 Lundberg

was the first to report an organized measurement of ICP in patients of various cerebral injuries.

He found three distinct spontaneous fluctuations in ICP, which are today known as the Lundberg

A , B and C waves, describing plateau waves of 5 - 20 minutes, 0.5 - 2 minutes, and every 10

seconds, respectively. The A waves have been associated to cerebral compliance and impending

herniation, while C waves are associated to coronary-pulmonary coupling, and thus might mostly

reflect respiration [31]. The origin of Lundberg B waves on the other hand is still subject to

debate. B waves were observed in healthy subjects, ventilated patients and during sleep [31].

With a delay of a few decades, ICP monitoring became a part of the standard care for severe TBI

when it was added to the guidelines for brain trauma in 1995 [32]. More information on the risks

and methodology of ICP measurements is presented in Chapter 1.1.6.

1.1.4 Cerebral Perfusion Pressure

The human brain resides inside an enclosed environment formed by the skull, encasing it in a

unique pressure environment in which blood perfusion is not only determined by ABP, but also

by ICP. More specifically, ICP modulates the venous sinus pressure that determines the blood

return to the heart. The pressure gradient from arterial to venous pressure is the driving force for

blood flow. Similarly in the skull, venous sinus pressure is approximately equal to ICP, which

leads to the clinically used simplification that cerebral perfusion pressure (CPP), which drives the

blood flow in the brain, can be estimated as the pressure difference between mean ABP (MAP)
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and mean ICP (ICP in Equation 1.1) [33]

CPP = MAP− ICP. (1.1)

Given a MAP for adults of 70 to 100 mmHg and a typical ICP of 10-15 mmHg, a typical CPP

value in adults is anywhere between 55 and 90 mmHg. Children and infants have age dependent

smaller MAP and ICP. Typical CPP values for infants can therefore be as low as 30 - 40 mmHg,

while older children can reach adult values (≥ 12 years of age) [34].

CPP raises particular interest in the context of CA (see Chapter 1.2). Here it is often used to

relate other CA evaluation methods to the current state of the patient. The Lassen’s curve for

example shows CBF as a function of CPP, which in a healthy subject shows a clear plateau of

largely unchanged CBF despite changes in CPP as CA is intact. The pressure reactivity index, a

moving correlation between MAP and ICP, can be used to find an optimal CPP value for ideal CA

activity in TBI patients that can be used as a target in patient treatment [35] (see Chapter 1.2.3).

Because CPP relies on measurements of ICP, it is not readily available in clinics and bound

to similar restriction as ICP measurements. CPP is a combination of equal weights between

MAP and mean ICP. MAP is about one magnitude larger and therefore the dominant influence.

For practical reasons in case of unavailable ICP information, autoregulatory assessments are

sometimes only related to MAP, missing the influence of ICP. The relevance of this will be

discussed in Chapter 4.
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1.1.5 Clinical Significance

Measurements of ICP can make a significant difference in the long-term outcome of patients

under many diseases, including TBI, hydrocephalus, and stroke. In severe cases, interventions to

regulate ICP are necessary and can be performed, depending on the disease or injury, in invasive

and non-invasive ways. In all the below diseases, radio-graphic evidence in combination with

a minimum Glasgow Coma Scale (GCS) value of often ≤ 8 are used to indicate the need for

ICP measurements [16, 17]. These strict limitations are set in place to ensure that the risk of

measurement is lower than the potential benefit this additional monitoring methods can give.

This emphasizes the importance and the potential impact that a less invasive ICP sensor can have

on modern medicine. It should be noted that measurement and regulation of ICP are often, but

not always, part of the same intervention, due to the common use of intraventricular catheters,

which can both drain CSF and measure ICP through the same craniotomy. The implications for

ICP measurements in the most relevant ICP alternating diseases is given below.

1.1.5.1 Traumatic Brain Injury

Traumatic brain injury (TBI) is defined as a severe injury of the head, often caused by impacts

such as bumps, blows or jolts to the head or in the form of a penetrating head injury. Mild im-

pacts can lead to a temporary change of mental state or consciousness. TBI with severe injuries

leads to an extended period of unconsciousness or amnesia after the injury [1]. Injuries are most

often caused by falls (approx. 50 %). Other causes are being struck by or against objects, motor-

vehicle crashes and intentional self-harm. TBI is a major cause of death in the United States,

where in 2014 alone an average of 155 people died from TBI related injuries every day [1]. Sur-
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vivors can face impairments related to thinking and memory, movement, vision or hearing, and

emotion, such as depression or personality change.

After initial critical or surgical care to address the individual’s acute injuries, severe TBI patients

are often moved to the intensive care unit to recover. In some cases, it is necessary to regu-

late ICP and CPP, to maintain a stable blood perfusion of the brain, as CA can be impaired or

exhausted due to tissue swelling, fractures or excessive CSF piling, leading to dilation of the

lateral ventricles. First studies suggest that TBI treatment based on individualized CPP or ICP

treatment is correlated with favorable outcome, and that it performs better than literature-based

thresholds [36]. Current treatment guidelines for TBI have suggestions to maintain CPP above

60 - 70 mmHg in adults [17] and above 40 - 50 mmHg in children [16].

1.1.5.2 Hydrocephalus

Hydrocephalus is defined as an abnormal accumulation of CSF in the cavities of the brain [3].

Hydrocephalus can be congenital, i.e. one can be born with it through genetic defect or fetal

development disorder, or one can acquire it at a later age. It is further differentiated into commu-

nicating hydrocephalus and non-communicating hydrocephalus. Communicating hydrocephalus

is an obstruction of the CSF after it has exited the ventricles. It is called communicating due to its

ability to exchange fluid between the cerebral ventricles. A non-communicating hydrocephalus,

also called obstructive hydrocephalus, occurs when an obstruction of the inter ventricular path-

ways is given, preventing CSF to flow from the ventricles outward, for example due to aqueductal

stenosis [37]. Two further categories are hydrocephalus ex-vacuo and normal pressure hydro-

cephalus (NPH). Hydrocephalus ex-vacuo describes CSF accumulations in areas where the brain
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tissue has shrunk, often by TBI or stroke, but also as a result of age or Alzheimer’s disease, to

fill the space. NPH is a disease of abnormal CSF increase as an effect to subarachnoid hemor-

rhage, head trauma, infection, tumor or surgery complications or idiopathic, causing a blockade

to CSF-draining pathways. NPH shows no signs of increased ICP and is estimated to affect ap-

proximately 375,000 elderly Americans [38].

All hydrocephalus categories, with the exception of NPH, can show increases in ICP that can, if

untreated, lead to typical ICP elevation symptoms and further to ischemia and death. A standard

procedure to reduce ICP is to drain CSF by implanting a shunt that drains the fluid from the

ventricles in the brain into the abdomen. Another option is an endoscopic third ventriculostomy,

where a surgeon punctures the membrane in the floor of the third ventricle to create an additional

pathway for CSF flow. One last option is the ablation of parts of the choroid plexus to reduce the

CSF production rate. [39]

It is apparent that knowledge of ICP in hydrocephalus is fundamental to regulate blood perfusion

of the brain and adjust temporary as well as permanent surgical interventions to regulate CSF

flow and CPP.

1.1.5.3 Other Diseases with Intracranial Pressure Changes

ICP can be increased to malignant levels through diseases such as ischemic and hemorrhagic

stroke, inflammatory diseases such as meningitis or, if no further reason can be found, idiopathic

intracranial hypertension, formerly known as pseudotumor ceribri. The name pseudotumor cere-

bri was chosen due to its similar symptoms to a brain tumor, yet it is defined as an increase in

ICP without known causality.
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Ischemic strokes are often resolved by reopening the pathway for blood flow after an occlusion.

While lesion and infarct regions stop spreading after the intervention, an early neurological de-

terioration can occur within 24-48 hours following the acute ischemic stroke. This neurological

deterioration is associated with poor outcome [40]. Early studies show that the neurological de-

generation is caused by an increase in ICP after stroke [27, 41].

Intracerebral hemorrhage describes the growth of a hematoma inside the brain that can, given a

certain volume, elevate ICP. In this case, standard ICP lowering interventions, such as hyperven-

tilation and an upright posture, as well as surgical intervention, are needed [42].

Meningitis describes the inflammation of the meninges, which are the three membranes covering

the central nervous system, including the spinal cord. It is usually caused by a viral infection,

but bacterial and fungal causes are possible. While an inflammation based lesion can easily be

associated with increased ICP, many more pathways for ICP increases triggered by meningitis

have been identified in the past, including hydrocephalus, loss of CA, and impairment of the

blood brain barrier [42]. A detailed overview for these causalities is beyond the scope of this

work but can be found elsewhere [42].

1.1.6 Measurement of Intracranial Pressure

The number and severity of diseases influencing ICP show that a vast number of patients is af-

fected by injuries that lend themselves to measurements of ICP, to observe treatment development

and to make treatment decisions. While this can have benefits for patient outcome, measurement

methods are often invasive and therefore only used with caution. Detailed information on ICP
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measurement is offered in this section.

While the concept of ICP was known since at least Cushing’s report on the Monro-Kellie doc-

trine in 1923 [8], the first reported measurement of ICP was done by Guillaume and Janny in

1951 [43]. Back then, a U-tube was used and connected to a ventricular catheter to determine

ICP by observing a halt in the CSF outflow at the point of too large backpressure. A more com-

mon name in conjunction with the first clinical ICP measurements is Nils Lundberg, who in 1960

established a routine to measure ICP in neurosurgical practice [44], using a ventricular catheter,

a string gauge pressure transducer and an ink-writing potentiometer recorder, and soon after re-

ported on first clinical results in TBI [45], in which ICP monitoring is a standard procedure since

1995 [32].

Today’s ICP monitors record pressure either as standalone pressure transducers or in combination

with an external ventricular drain (EVD) from the brain, or alternatively measure the pressure

from a remote location in the spinal cord through lumbar puncture. First approaches have been

reported that try to measure ICP non-invasively, using a variety of devices such as ultrasound

sonography, computed tomography, near-infrared spectroscopy, diffuse correlation spectroscopy

and many others. Despite the variety of non-invasive alternatives, the gold standard as of today

is still invasive. This is likely due to the signal quality and resolution of invasive devices, that

are unmatched by alternative devices that further lack in accuracy, ease of use, or bedside com-

patibility. A comprehensive overview of invasive and non-invasive ICP measurement devices is

listed below, to grasp the far and wide of this competitive field.
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1.1.6.1 Invasive Measurements

Measuring intracranial pressure invasively is to this day the gold standard, but advances in the

measurement method have been made since the early days of Lundberg’s ICP measurements in

the 1960s. The most common measurement today is still the placement of a ventricular catheter

into the lateral ventricle of the brain, as it allows to drain and measure ICP through one single

craniotomy. The intraparenchymal pressure transducer is likely number two. ICP can also be

measured epidurally and subdurally, directly from the head (see Figure 1.3a). If CSF is com-

municating between the ventricles, lumbar puncture can be used to measure ICP (Figure 1.3b).

Recently, telemetric, implantable devices have made it to the market, that allow continuous mea-

surements of ICP for days without a direct connection of the head to a device via electric or fiber

optic cable or an EVD. One example is shown in Figure 1.3c.

Intracranial ICP Monitoring The most commonly used ICP monitor is a pressure transducer

that is attached to a catheter leading into one of the ventricles through a burr hole (see Figure

1.4) [48]. This EVD based design additionally allows for CSF draining and administration of

medicine, such as antibiotics, intrathecally, i.e. into the CSF [48]. Due to the incompressible

nature of CSF, that consists mainly of water, the pressure transducer reading through EVDs are

very accurate and can be of high sampling rates and resolution. An external calibration and re-

calibration of EVDs already in place count towards further benefits of this method, which can

further avoid baseline drifts [31]. The major draw backs however are the risk of infection (in

approx. 11% cases), post-operative hemorrhages (5.7%), the formation of edema, and bacterial

colonization of the catheter, but reported likelihoods vary [31, 48].
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a)

b) c)

Figure 1.3: Illustration a) various invasive types of invasive ICP monitors for the head are
shown in a cross-section of the head, showing the degree of invasive intervention necessary.
b) shows the position of the human body preferred for lumbar puncture. ICP can be measured
by placement of a spinal tap. In illustration c) the Raumedic Neurovent P-tel is shown, an
implantable, telemetric ICP monitor with pressure sensor and transmitter (right) and the radio
frequency power supply and receiver (left). Illustration a,b taken from [46], photography in c
taken from [47].
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Figure 1.4: The external ventricular drain (EVD) for is connected to a drainage bag. The height
of the measuring cylinder determines the ICP at which CSF is drained. The drain can be blocked
of via a stopcock to measure the pressure inside the EVD via a pressure transducer. Draining
and ICP measuring are exclusive.
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Intraparenchymal pressure sensing devices can have a variety of mechanisms. Fiber optic based

devices shine light on a movable mirror. The mirror is moved due to applied pressure and the

reflected light intensity change can be used to measure this displacement and translate it into a

pressure value. Strain gauges such as piezo-elements return a resistance changes in an electric

circuit, depending on the applied mechanical stress originating from ICP, which can be measured

and correlated to ICP values. A third method is to use a small balloon at the distal end of

the device, in which air pressure can be measured [48]. Parenchymal probes bear a lower risk

of infection and offer easier placement, which puts them at a slight advantage over catheters,

but suffer from baseline drifts and can only be calibrated before placement into the brain [31].

Additionally, parenchymal probes measure a local ICP, due to pressure gradients across the brain

tissue, while EVDs measure the global ICP inside the ventricles.

Epidural and subdural pressure transducers are rarely used, as they have proven to be unreliable

in clinics [31, 48].

Lumbar Puncture Manometry If CSF is communicating, i.e. if the flow of CSF from the

ventricle outward is not obstructed, ICP can be measured in the spinal cord via lumbar puncture.

Once the spinal tap is placed and CSF can flow out into the catheter, the measurement technique

is similar to the EVD in that an external pressure transducer can be used. The lumbar drainage is

superior to the EVD in reduced invasiveness and simplicity of application. However, it is limited

by communicating CSF and the posture of the patient [49].

Given an unobstructed flow, lumbar puncture derived ICP and EVD measured ICP correlate very

well for baselines, while cardiac pulsatile information shows a much lower amplitude at a longer
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delay from diastolic minimum to systolic maximum in the spinal cord ICP. [49]

Implantable Devices All the above methods are tethered methods in the sense that the pa-

tient is connected externally to a recording device. For long-term and outpatient monitoring,

untethered implantable devices are available, that send the information about ICP wirelessly to a

receiver unit, which can be useful in the long-term observation of hydrocephalus patients and to

monitor shunt-failure [31].

The Raumedic Neurovent P-tel (Helmbrechts, Germany) is a telemetric version of the intra-

parenchymal micro-transducer. The implantable part is rested on top of the skull and held in

place by the closed scalp above it. A 4 cm long needle with a piezo-element based pressure

sensor is inserted into the brain tissue. A micro-chip in the circular top (see Figure 1.3c) converts

the resistance change into a pressure value. The device is powered by the external antenna that

generates an alternating electric field at radio frequencies, which allows both powering of the

pressure sensor and data transmission [47].

A different approach for telemetric ICP monitoring is offered by the OSAKA telesensor (Nagano

Keiki Seisakusyo Co. Ltd., Tokyo, Japan), which is placed inside the ventricular shunt for pa-

tients with hydrocephalus [31]. The device can not only measure ICP accurately but also detect

shunt failure and be calibrated with respect to puncture pressure on the shunt valve [31].

These telemetric implantable ICP sensors can help patients that need long-term ICP monitoring

but are not suitable for acute measurements or short-term measurements in the intensive care,

which limits the number of applicable diseases to varieties of hydrocephalus discussed in Chap-

ter 1.1.5.2 [31].
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1.1.6.2 Non-Invasive Measurements

The surgical and long term infectious risks of invasive ICP monitoring prevents the application

to be used in healthy volunteers and less severe disease states. Therefore, a lack of reference data

for clinical studies exists. This clinical need founded a competitive research field, with the goal

to increase the access to ICP monitoring, to minimize risk of complications in clinical intensive

care routines, and to improve the understanding of pressure and fluid dynamics in the brain.

The approaches can roughly be divided into measurement of displacements or deformations,

measurement of the hemodynamic system, and others. This section will give an overview of

selected approaches for non-invasive ICP monitoring. It should be noted that none of the methods

mentioned below are regular contestants in clinical settings at this point in time. Aside from

the methods discussed here, further approaches can be found in numerous sources elsewhere

[25, 48, 50–53].

Displacement Measurements In 1990 Reid et al. suggested that ICP can be measured by mea-

suring the displacement of the tympanic membrane. The perilymphatic pressure in the cochlea is

linked to ICP because of CSF communication across the cochlear aqueduct into the SAS, given

that the aqueduct is patent, meaning CSF can flow through it [54]. The ICP is strong enough to

cause a measurable displacement of the tympanic membrane from its resting position that can

be linked to ICP. Displacement is measured through an air displacement sensor that seals the

ear and measures volume changes (in nanolitre) [54] or as a piezo disc displacement [55]. A

high ICP causes an inward motion and a negative volume change, while low ICP causes outward

motion. The method relies on a baseline measurement and can only detect ICP elevation but no
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quantitative pressure values [56]. Furthermore, histological studies have shown that the aqueduct

is not always open to the SAS, especially in the elderly [54].

The optical nerve sheath diameter can be measured by means of ultrasound imaging, MRI or

CT. Due to the connection of the optical nerve sheath to the SAS and the dura mater around the

brain, changes in CSF pressure affect the nerve sheath and lead to diameter changes [57, 58].

Until recently, a widening of the sheath was used to evaluate whether ICP is elevated, but it did

not allow for quantitative information. Robba et al. have since shown that a linear regression

can be used to calculate ICP from the measured diameter. However, the study was performed on

a very small cohort of 10 pediatric patients and further clinical testing was needed [59]. Even

without quantitative numbers of ICP, this method has the benefit of requiring no extra device, as

standard clinical imaging tools such as ultrasound sonography are readily available and able to

image the sheath diameter fast and cost effectively. It should be mentioned that a widening in the

optical nerve sheath diameter is not only caused by ICP increases, but can also be a consequence

of other diseases such as inflammation and tumor, and thus requires further examination [48].

Hemodynamic Measurements Because of the closed skull environment, it is a quick thought

to measure the blood flow and volume changes that occur as the blood enters and flows through

the brain. A change in ICP will naturally influence the way CBF progresses through thin blood

vessels. Many models and theories have been proposed to quantify this change and relate it

back to ICP. One of the earliest was the pulsatility index (PI) derived from transcranial Doppler

sonography (TCD), which measures cerebral blood flow velocity (CBFV) in the middle cerebral

artery. The PI is the difference between systolic and diastolic CBFV, normalized by the average
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CBFV across one cardiac cycle [48]. While PI can be measured easily with ultrasound devices

available in clinics, it shows conflicting results, with reports about poor [48, 60, 61], moderate

[59], and good [62] correlations with ICP. The largest drawback seems to be the variation a PI

can have across subjects. A PI of 1 has been associated with ICP of a few mmHg to highly el-

evated pressures of 40 mmHg [48]. This unreliability makes translation into the clinical routine

impossible.

Another way to use the pulsatile information from TCD is to calculate the critical closing pres-

sure (CrCP), which is the pressure threshold at which the arterioles in the brain collapse and

CBF ceases. The CrCP value can be approximated in many ways, including frequency domain

analysis and lumped parameter modelling, yet the most intuitive way is by plotting CBF over

ABP for a cardiac pulse, especially capturing the systolic and diastolic extremes. Extrapolating

this curve to a CBF of 0, i.e. the x-axis intersection, will yield an approximation of the CrCP

as the blood pressure where CBF = 0. It should be noted that this linear simplification is not

necessarily reporting the true CrCP, but is a good and fast to calculate approximation. Reports

of correlations between ICP and CrCP have shown a good correlation [63]. It has recently been

shown that CrCP can also be measured with optical methods such as diffuse correlation spec-

troscopy [64, 65], with first results shown towards ICP prediction [66]. A potential drawback of

this ICP estimation approach is, aside from a current lack of clinical trials, that CBF or CBFV

have to be measured in alignment with pulsatile ABP.

Many groups have tried to model the hemodynamics in the brain to extract ICP. The first com-

prehensive model goes back to 1988, when Ursino described the fluid and pressure dynamics in

a lumped parameter model [67]. While the goal of Ursino’s publication was not to measure ICP
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non-invasively, it has been the basis for many reports on ICP estimations using derivatives of the

Ursino-model. One direct successor to the model was presented by Lee et al., who suggested a

simplification and remodeling for direct ICP estimation [68], but clinical studies are needed to

confirm this theoretical model in the field. Fanelli et al. recently showed how measurements of

TCD derived CBFV and ABP pulse waves in a lumped parameter model can be used to estimate

ICP [69]. Good ICP estimation was shown, though the cohort of 12 pediatric and young adult

patients undergoing invasive ICP monitoring is small and further clinical studies are needed.

Swoboda et al. compared the ABP wave form at the carotid artery, which leads into the head and

is influenced by the cranial pressure environment, with a peripheral artery (e.g. the finger) [70].

They hypothesized that the waveform in the carotid artery deforms due to pressure reflection as

the wave experiences an impedance change upon entering the skull. How different the waveform

is, can be determined by comparison to a systemic ABP waveform. A mathematical model of

the blood flow in the brain is then used to calculate ICP based on the waveform distortion. While

this device has been patented [70], a clinical study using this method has not been published to

the best of my knowledge.

It was suggested before that changes in total hemoglobin concentrations, which are correlated

with cerebral blood volume (CBV) in the brain, are correlated with ICP oscillations [71]. Yet

there was no report to my knowledge on the direct translation of hemoglobin changes to ICP

changes. The feasibility of this approach is discussed in great detail in Chapter 3.

It has also been suggested that the CBF waveform, measured inside the skull with TCD or dif-

fuse correlation spectroscopy, changes its shape due to an impedance change in the brain, caused

through ICP changes. Preliminary data has been reported by us and others [72], and a detailed
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description of how to use these waveforms can be found in Chapter 3.

1.2 Cerebral Autoregulation

The measurement of ICP in clinical care can not only be used by itself, but also to derive in-

formation about cerebral autoregulation. Here it is mostly CPP that generates high correlations

between common assessment techniques of CA and patient outcome.

To maintain stable blood flow despite changes in either ABP, induced for example by exercise, or

ICP, induced by posture changes, the arteries and arterioles of the brain can dilate and constrict

[33]. The vessel diameter change then allows to regulate CBF, keeping it approximately equal

despite CPP changes. This mechanism is known as cerebral autoregulation (CA), or cerebrovas-

cular autoregulation, and its dependence on pressure has been described as early as the 1950s

by Lassen et al. [73]. Lassen showed that CBF has a plateau at which it is no longer changing

despite changes in ABP. His observation was later revised to CBF be a function of CPP (see

Figure 1.7).

The ability to regulate blood flow locally in the brain can be exceeded or impaired in many dis-

eases, including TBI [74, 75], hydrocephalus [76], and stroke [77]. The clinical need to evaluate

and maintain CA is obvious but reliable information is rare. In this section, the mechanics and

functionality behind CA are described, including the anatomy and pressure balances that control

it. A short description of diseases with known CA impairment is given, followed by a com-

prehensive overview of assessment methods. This is to understand what makes CA evaluation

challenging and what puts the CA community in dispute over the different evaluation techniques
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and the value of CA assessment in general for guidance of therapeutic decisions.

1.2.1 Mechanism of Cerebral Autoregulation

The blood supply to the brain is achieved through the internal carotid arteries and the vertebral

arteries coming from the aorta. The internal carotid arteries connect together in the circle of

Willis with the anterior and posterior communicating arteries and the anterior and posterior cere-

bral arteries. The circle of Willis further connects to all major arteries in the brain, as seen in

Figure 1.5, including the middle cerebral arteries supplying the brain. In extension by the Basi-

lar artery, additional blood is supplied from the aorta through the vertebral arteries. A complex

network of interconnected arteries is thus responsible for the blood supply to the brain, which

allows for compensation if one of the supplying arteries is blocked [4]. Figure 1.5 shows the

ideal configuration of arteries, but it is worth noting that the circle of Willis is highly variable.

A study from Papantchev et al. [78] showed that 58.6% of their test subjects had a variability,

with the most common being a hypo- or aplasia of the left posterior communicating artery, thus

not completing the circle of Willis. The role of this variability is suspected to have a significant

influence on perfusion control, which might contribute to the inter-subject variability. The major

arteries then, much like systemic arteries, branch out into more and smaller arteries, arterioles

and finally into complex networks of capillaries. Here, oxygen and nutrients are transported out

of the blood stream and metabolic products enter. The blood vessels then merge again to venules

and larger veins that drain into the cerebral venous sinus (see Figure 1.1) and back to the heart.

Arteries, veins, and capillaries have vastly different compositions of elastin fibers, collagen

fibers, smooth muscles, and others, as depicted in Figure 1.6. The veins in the brain hold the
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Figure 1.5: The circle of Willis, located at the base of the brain, connects all major arteries in
the brain and supplies the entirety of the brain with oxygenated blood. Image taken from [79].
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Figure 1.6: Arteries (red) show a thicker layer of smooth muscle elastin fibers, while veins
(blue) are thinner walled and show valves that stop blood flow from flowing backward, thus
aiding blood return to the heart. This valve does not exist in cerebral venules and veins. Image
taken from [81].

majority of the blood volume [80] and are therefore the most significant contributor to CBV

control in the brain, which can have influences on ICP control via the Monro-Kellie doctrine

(Chapter 1.1.2). While this allows global control of CBV, local adjustments in CBF are driven

by thick walled arterioles, which have a large layer of smooth muscle cells that can dilate and

contract the blood vessel to change its diameter. Smooth muscles are a part of all types of blood

vessels, with exception of the capillaries and small venules, but they are the most prominent

component in arterioles [82], which can therefore change their cross-sectional area significantly

and modulate the resistance to blood flow. How influential a diameter change is to CBF, is shown
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by the Hagen-Poiseuille flow equation

Q =
∆P
R

, (1.2)

R =
128µL
πD4 , (1.3)

where Q is the flow through a rigid pipe, ∆P is the pressure gradient across the pipe and R the re-

sistance to flow. R is dependent on the length of the pipe L, the viscosity of the fluid (here blood)

µ , and on the 4th power of the diameter of the vessel D [82]. This equation assumes a rigid ves-

sel, a Newtonian fluid with laminar flow and a constant viscosity, all of which are not necessarily

true in cerebral blood vessels, as it is a simplified model after all. Yet, the assumptions are good

enough to be used in model designs and to understand that even a small diameter change of the

vessel wall can have a large effect on local blood flow. Therefore, a fine control of CBF in the

brain is possible. The complexity and inter-connectivity of the cerebral vascular system, with

many individually regulating arteries and arterioles, makes measurement and modelling of CBF

and CA challenging and contributes to the reason why blood flow control in the brain is not yet

fully understood [82].

The dependency of Q (here CBF) to the pressure gradient ∆P (CPP) is linear in this simplified

model and it is apparent that a drop in ABP, leading to a drop in CPP, will reduce CBF. In this

case, the CA mechanisms will expand blood vessels to reduce the resistance to flow. In a pas-

sive system, a reduced pressure inside blood vessels would lower flow. Because the regulatory

mechanism can only react to a sudden ABP change with a certain delay time, a typical bi-phasic

reaction between ABP changes and CBF recovery is seen [82]. In case of an ICP change, the

pressure on the venous sinus is increased, decreasing the pressure gradient for CBF that is CPP.
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The reaction then is opposite of the reaction for ABP increases. The recovery time in either

case can be measured and describes the principle of dynamic CA assessment (see Chapter 1.2.3).

Blood vessels have a maximum dilation and constriction limit, which defines the CPP range in

which CBF can be controlled.

The regulation of CBF described above is activated by multiple control mechanisms that operate

individually or in conjunction with each other. They are categorized in control of vascular tone,

capillary tone, neurogenic control, and the effects of blood gas level.

1.2.1.1 Control of Vascular Tone

The control of arterioles can be separated into local factors, neuronal factors, and hormonal

factors. The local factors are arguably the most important factors, as they drive the CA response.

One example of a local response is hypoxia, which leads to vasodilation, triggered by the release

of Adenosine [83]. Numerous other metabolites [84] are suspected to have a combined effect on

vasodilation, such that a metabolic increase or a decrease in CBF would cause an accumulation

of metabolites and a vasodilation to increase CBF. Potentially best understood today is the role

of nitric oxide (NO) [85], which is created in the endothelial cells through nitric oxide synthase

enzymes and diffuses into the smooth muscle cells. Here it engages a chain reaction that leads

to the uptake of Ca2+ and the opening of calcium-activated K+ channel, ultimately leading to

vasodilation [4]. One trigger for the release of NO is believed to be the change in shear-stress on

the endothelial cells upon CBF changes [86]. NO is also produced in other processes, including

neuronal activity [87], and autonomic nitrergic nerves that use NO as neurotransmitter to control
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vascular tone [85, 88].

1.2.1.2 Control of Capillary Tone

Recent publications have pointed out the role of pericytes, an isolated contractile cell located

in the brain on the capillaries, in the blood flow control. While capillaries do not have smooth

muscles, the pericytes allow for blood flow control through constriction of the capillaries itself

[89]. It has also been reported that the pericyte dilation is faster then arteriolar dilation, especially

as a reaction to neuronal activation [90]. The magnitude of their contribution with regards to CA,

as opposed to hemodynamic responses to neuronal activation, is still up for debate.

1.2.1.3 Neurogenic Control

While there is a significant amount of research done on neurogenic control of blood flow regula-

tion, most of it has been done with regards to neuro-vascular coupling as a response to neuronal

stimulation [4]. In general, the sympathetic nervous system, the part of the autonomic nervous

system that is responsible for alertness and reaction, plays a larger role in autoregulation as it

can adjust vascular tone as described above and shift the upper limit of autoregulation [4]. It

is however suspected that the sympathetic nervous systems role in CA is only significant under

extreme conditions such as disease [91]. More research towards CA rather than neuro-vascular

coupling is needed to confirm or deny these early research results.
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1.2.1.4 Effects of Blood Gas Levels

It has been known that changes in arterial blood gas level, namely the partial pressure in oxygen

(PaO2) and carbon-dioxide (PaCO2), modulate vasomotor tone [91]. CO2 influences vasomotor

tone by changing the pH, which affects NO synthesis [92]. Further research is necessary to de-

termine if CA as a response to pressure changes and the response to CO2 and O2 are considered

the same or if they are independent mechanisms [93]. For this, conflicting results can be found,

showing that CA is modulated by CO2 [94, 95], while others found them to be uncorrelated

[96].As of today, the following relationships of CA assessments and blood gas level have been

reported:

Hypocapnia has been shown to reduce overall blood flow, with little changes to lower limit of

autoregulation (LLA) and no change to its upper limit of autoregulation (ULA), with respect to

CPP [97]. It has been shown however, that the response time or autoregulatory reactivity im-

proves [98].

Hypercapnia increases blood flow, and narrows the autoregulation limits (LLA and ULA) with

respect to CPP, making it more likely to exceed CA capabilities [97, 98]. It was further reported

that the reactivity of CA worsens [93]. Many reports on Hypercapnia are in general agreement

with these, and can be found elsewhere [4].

Hypoxia is known to reduce autoregulatory reactivity, alongside of a decrease in CBF if CO2 is

unchanged, i.e. isocapnic hypoxia [99, 100]. In hypocapnic hypoxia CA is improved, measured

by the rate of recovery to normal flow after a blood pressure challenge, as compared to isocapnia

[98, 101] and even as compared to normoxia [98], showing that the effect of CO2 is stronger

than O2.
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Hyperoxia in isocapnic conditions shows no signs of CA improvement [98].

1.2.2 Clinical Significance

It is clear from the previous chapter, that many influencing mechanisms make evaluation and

interpretation of CA challenging. Yet a clinical need for reliable measurements and a need for

further research to better understand cerebral blood perfusion control is given.

Cerebral autoregulation is impaired in many diseases, implying that spontaneous changes in CPP

can have an effect on brain perfusion. This can for example lead to subsequent ischemia after

TBI or stroke. To prevent subsequent injuries the perfusion of the brain is regulated by clinicians

through manipulation of ABP and ICP, thus CPP is maintained in a literature-based range to

improve CBF. Current treatment guidelines for TBI for example suggest to maintain CPP above

60 - 70 mmHg in adults [17] and above 40 - 50 mmHg in children [16]. An alternative method,

that has shown to improve patient outcome in TBI, is to evaluate the CA impairment through

measurement of pressure reactivity, an assessment technique of CA (see Chapter 1.2.3.3), and

adjust CPP accordingly [74, 102, 103]. Despite preliminary data suggesting positive effects on

patient outcome, the evaluation of CA in TBI is not yet a clinical standard. Similar observations

can be made for other diseases, in which early clinical studies show that CA is impaired but

clinical adaptation is slow. This Chapter will give an overview of the most common diseases that

impair CA and have been studied in relation to it.
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1.2.2.1 Traumatic Brain Injury

TBI, as described in Chapter 1.1.5.1, is a severe injury, often including fractures and lesions, to

the brain after impact. CA impairment in TBI has been reported by numerous groups, reviewed

in detail [4, 104], using numerous evaluation methods further described in Chapter 1.2.3. The

conclusions suggest that a lack of gold standard in CA assessment makes comparison of different

studies complicated and variations in CA assessment methods and data processing occasionally

leads to conflicting results [104]. Nonetheless, evidence that impaired autoregulation is associ-

ated with worse outcome, as measured by the Glasgow Outcome Score [105], has been presented

by many groups for both adults [106–109] and children [74, 110, 111]. It has been reported by

Steiner et al. that autoregulation can be used to determine an optimal CPP value at which au-

toregulation is most active, known as CPPopt (see Chapter 1.2.3.3) [112, 113]. Additional clinical

studies are needed to support this finding, which is why a minimum CPP value is recommended

by the Brain Trauma Foundation [17], but not yet a CA guided, individualized value.

1.2.2.2 Hydrocephalus

Hydrocephalus, as described in Chapter 1.1.5.2, is not widely studied in the field of CA. While

hydrocephalus with elevated ICP has an effect on CPP and can lead to reduction of CBF, it was

found that even NPH shows a significant reduction in CBF in the white matter as measured by

MRI [114]. It was further identified that NPH results in an increase of resistance to flow, which

was correlated with intact CA, while hydrocephalus with atrophy shows disturbed CA in the

middle cerebral artery territory [115]. Further research is needed to draw firm conclusions on

hydrocephalus induced CA impairment. It is worth mentioning that hydrocephalus can lead to
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secondary diseases which can induce dysautoregulation, such as ischemia which is discussed in

the next section.

1.2.2.3 Stroke and Hemorrhage

Stroke is typically divided into ischemic and hemorrhagic, where the former is much more com-

mon and caused by a blockage of an artery, starving the brain from oxygenated blood. The latter

on the other hand describes a rupture of a blood vessel inside the brain, leading to blood pooling.

While the stroke death rate is reducing today due to fast intervention and restoration of normal

blood flow, a high level of disability is still associated with stroke [4]. The time to re-perfusion

of brain tissue and the size and location of the infarct region vary strongly across patients, which

can make comparison on CA reports in stroke complex.

In acute ischemic stroke it has been shown that dynamic autoregulation is impaired, as measured

by the phase information of a transfer function between ABP and CBFV and the autoregulation

index (see Chapter 1.2.3), while the CPP range of CA activity remains the same [77, 116]. While

these early results suggested a global impairment for all stroke types, it is known that CA is im-

paired differently in different sub-categories of ischemic stroke, varying both with location of the

occlusion [117], and the vessel size affected [118]. It was found that stroke severity is influencing

CA impairment, where transient ischemic attacks do not show signs of dynamic CA impairment

[119]. Aries et al. reviewed stroke literature and came to the conclusion that CA is impaired in

even minor strokes and that the impairment worsens in the first 5 days after acute stroke, fol-

lowed by a recovery over the next 3 months [120]. Worsening and spread of dysautoregulation to

the contralateral side over the first days post-stroke was later confirmed by Reinhard et al. [121],
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associating it further to poor outcome.

In hemorrhagic stroke dynamic CA was found to be impaired as well, with the largest cohort of

studies targeting subarachnoid hemorrhage (SAH). Here it was found that early impairment of

CA in SAH is indicative of delayed cerebral ischemia, manifested as unilateral CA failure after

3 days or a bilateral failure seen after 1 to 2 days [122, 123]. Autoregulation is also indicative of

delayed cerebral ischemia if seen in combination with vasospasm, i.e. the sudden contraction of

arteries, while vasospasm alone is not [124].

It is apparent that autoregulation in stroke has been studied in greater detail than in other fields

and more conclusive diagnostic value has been assigned to it. The large variety of CA evaluation

methods and the mix of stroke sub-categories makes comparison challenging and gives rise to

occasionally conflicting results [4, 123].

1.2.2.4 Other Conditions and Diseases on Cerebral Autoregulation

The list of diseases and conditions that affect cerebral autoregulation or are suspected to impair

it is long. A selected few diseases not already mentioned above, with known effects on CA are

listed below:

• Diabetes has been reported to impaired CA in both type 1 [125] and type 2 [126] dia-

betes, though type 1 diabetes only shows impairment during diabetic ketoacidosis, with a

reducing effect over time, hypothesized to be caused by vasogenic cerebral edema.

• Alzheimer’s disease is a degenerative disease of the brain, which has conflicting results

about CA impairment, with strong reports claiming intact [127] and impaired [128] CA

alike. A conclusion can only be drawn if further clinical studies are conducted.
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• Stenosis describes an abnormal narrowing of a vessel, resulting in an increased resistance

to flow, typically seen at the division point of the carotid artery into internal and external

carotid artery, caused by plaque build-up [4]. The loss of CA in otherwise asymptotic

carotid stenosis has been shown [129], and CA recovery after stenting was reported [130].

Untreated stenosis is a high risk factor for ischemic stroke as plaque can travel upstream

and block cerebral arteries, cutting off blood supply and causing subsequent CA impair-

ment.

• Obstructive sleep apnoea syndrome is caused by an obstruction of the upper airway

and a subsequent pause in breathing, lasting tens of seconds. It has been shown that this

syndrome impairs CA and that it is correlated with the severity of the disease [131, 132].

• Orthostatic hypertension is one of many conditions related to impaired CA as a response

to global challenges. Orthostatic hypertension describes a low pressure response to posture

changes. Impairment in patients was confirmed through a head-up-tilt challenge [133]. CA

impairment was also found in people with postural tachycardia syndrome, for both static

and dynamic autoregulation [134].

1.2.2.5 Anesthetics and Other Drugs

CA is not only impaired in disease or injury, but can also be affected by pharmaceutical products.

Due to surgery and intensive care needs, the effect of CA on anesthesia is of special clinical

interest.

Inhaled and intravenous anesthetic effects on cerebral physiology are very different with respect

to CBF and CBV, which can be translated to their effect on vasodilation and cardiac output
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modulations in a dose related manner, and on cerebral metabolic rates [135]. Isoflurane and

desflurane, as examples for volatile anesthetics, have a dilatory vascular effect, which leads to

an increase in CBF and CBV [135], while at the same time reducing ABP significantly, and

thus cardiac output [136]. This forced dilation in cerebral vasculature is presumably the reason

why CA is no longer able to control blood flow. Intravenous anesthetics like Propofol [137],

and especially opioids such as fentanyl, generally have smaller effects on cardiac output and

do not cause vasodilation or -constriction [136], which will largely maintain CA ability. These

findings are confirmed by studies with respect to intra-operative maintenance of CA and cerebral

perfusion [138].

1.2.3 Assessment of Cerebral Autoregulation

CA can be evaluated by perturbation of the regulatory system and measurement of the response

time and magnitude, for which a variety of signals can be measured, and perturbations can be

performed. A perturbation here can either be an active change in conditions such as underlying

ABP or a naturally occurring drift or response to environmental inputs [4]. Invasive and non-

invasive ways to evaluate CA impairment has been shown, which is commonly separated into

two groups: static and dynamic CA [139]. Static CA, or sometimes steady-state CA, refers to

autoregulatory responses to steady-state changes in ABP or ICP, giving information about the

range of CPP in which CA is active. Dynamic CA refers to rapid changes, typically in ABP,

where the response time in blood flow recovery is indicative of CA. While the two are related,

differences [140] and similarities [141] between the two approaches have been reported. Aside

from the classic groups, a third group of pseudo-dynamic autoregulation can be defined. This
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group uses moving correlations to describe the current state of CA but is often reported with a

CPP dependent trend line. It is thus put in between static and dynamic CA.

1.2.3.1 Static Autoregulation

Static autoregulation is described by Lassen’s curve [73, 142], which is constructed by plotting

steady state (baseline) CBF vs. CPP. This curve shows a characteristic shape of monotonically

increasing CBF with CPP, and a distinct CBF plateau in a range of CPP where autoregulation

is intact and vessel constriction can compensate for increased pressure (see Figure 1.7). For

this method both ABP and ICP need to be measured such that CPP can be calculated. CBF

can be measured non-invasively with either transcranial Doppler sonography (TCD) or diffuse

correlation spectroscopy (DCS). Alternatively, under the assumption that ICP remains constant

or changes negligibly, Lassen’s curve has been reported based on MAP vs. CBF, e.g. in stroke

[143]. If autoregulation is impaired, the lower limit of autoregulation (LLA) and upper limit of

autoregulation (ULA), defined as specific CPPs at which Lassen’s curve changes from plateau to

slope and vice versa, can shift and narrow the plateau. Alternatively, upon complete loss of CA,

the plateau can be lost entirely, assuming that blood vasoconstriction or dilation is impossible.

1.2.3.2 Dynamic Autoregulation

Dynamic autoregulation is described based on transient changes in CBF in response to pres-

sure changes and allows for the measurement of a degree of impairment. Numerous assessment

methods have been proposed and the most notable will be explained below.
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Figure 1.7: Lassen’s curve shows the relation between CPP and CBF. A plateau of constant
blood flow despite changes in CPP is expected if autoregulation is intact. Blood vessel diameter
are shown in red on top and indicate the vascular reaction to the CPP change.

Rate of Regulation The potentially most visual way to describe how fast CBF is recovering,

therefore how well the system is regulating, is by means of rate of regulation (RoR) introduced by

Aaslid et al. [144], which also is the first documented evaluation of dynamic CA in humans. They

introduced a step function like deflation of thigh cuffs after a 2-minute inflation time, causing a

pooling of blood in the upper body and a rush of blood into the legs upon release. CBFV was

measured from the middle cerebral artery while ABP was monitored in the arm. The cuff release

led to a drop in ABP and CBF. The recovery time of CBFV back to baseline was measured and
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the RoR calculated as shown in equation 1.4. RoR is defined as

RoR =
∆CVR/∆T

∆ABP
,

∆ABP =
ABP
ABP0

,

∆CVR =
CVR
CVR0

,

CVR =
ABP

CBFV
, ‘

(1.4)

with CVR being cerebrovascular resistance to flow, CVR0 and ABP0 denoting the baseline val-

ues of CVR and ABP respectively and ∆CVR/∆T showing the rate of progression of ∆CVR

over the time window of recovery ∆T (between 1 to 3.5 seconds). A better autoregulation is

thus shown by a faster RoR, with a normal rate of 0.2/s, where hypocapnic volunteers showed

an average rate of 0.38/s and hypercapnic volunteers showed 0.11/s. This measurement however

is not without deficits, which include the vulnerability to noise and artifacts, it requires precise

measurements, and not every patient or volunteer is compliant with a 2-minute thigh occlusion

[4].

Autoregulation Index To overcome some of those challenges Tiecks et al. developed a model

based on quantification of the RoR, which was divided in to 10 degrees of impairment, named

Autoregulation Index (ARI) [141]. The ARI describes the CBF recovery time to an ABP drop,

induced by rapid deflation of thigh cuffs after arterial occlusion, much like the RoR. The model’s

step response, similar to a second order control system, was solved specifically for its parameters

of gain and damping factors, for which 10 arbitrary states were assigned. The ARI of a subject’s
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Figure 1.8: The autoregulation index (ARI) is a measurement of dynamic autoregulation. It
is calculated by measuring the CBF response after an ABP step down induced by thigh cuff
release. The response is fitted to a theoretical model and grouped into 10 categories from
no response (0), over normal response (4-6) towards overcompensation (9), as marked in the
image. This illustration was taken from [141].

autoregulatory system was then determined by root-mean-squared error fit to the 10 different

model predictions (see Figure 1.8). ARIs between 0 and 9 is assigned to the response, where 0

is no response in CBF (no recovery), 4 to 6 is normal, and 9 is an overshoot above the previous

normal as seen in Figure 1.8. The fitting allows to overcome the limitations of noisy data, yet

the ARI relies on cuff inflations around the thighs and precise measurements used TCD for the

middle cerebral artery, and is therefore limited in its application.

1.2.3.2.1 Cross-Spectral Analysis The benefit over ARI is, that it can express the CA re-

sponse in greater detail than a single index can, avoiding the risk of missing details at the cost of

increased complexity. When impulse and step-function responses can be measured in the time

domain it is only natural to also observe them in the frequency domain. The first reported fre-
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quency analysis was done by Gillert et al. [145], even though they only looked at coherence

of ABP and CBFV. Analysis of gain, phase and coherence in combination is today’s standard

transfer function assessment and was first reported by Zhang et al. [146], as shown in Figure

1.9. Sections of resting state time domain data in a moving window is converted into frequency

domain by means of Fourier transform. The power spectrum is then calculated for CBFV and

ABP individually. From here, cross spectral analysis can be done to calculate gain, phase and

coherence between the two signals.

Sxx( f ) = E[X( f )X∗( f )]

Syy( f ) = E[Y ( f )Y ∗( f )]

Sxy( f ) = E[X( f )Y ∗( f )]

(1.5)

The power spectrum S is given as the expectation value (E) of the multiplication of the frequency

( f ) dependent spectra of input signals X and Y , here used as X = ABP and Y = CBFV, as seen in

equation 1.5. From here the transfer (H( f )) function can be calculated as

H( f ) =
Sxy( f )

Sxx
, (1.6)

which allows the calculation of phase Φ( f ) and gain |H( f )| as

|H( f )|=
√

HR( f )2 +HI( f )2,

Φ( f ) = arctan
(

HI( f )
HR( f )

)
.

(1.7)
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Here HI and HR denote the imaginary and real parts of the complex frequency domain signal,

respectively. Finally, the magnitude squared coherence (MSC(f)) is calculated as

MSC( f ) =
|Sxy|2

SxxSyy
. (1.8)

A typical result for this analysis is shown in Figure 1.9, which shows how the autoregulation

response is similar to a high-pass filter, with low gain and large phase lead at (<0.07 Hz) then

rising to large gain and minimal phase lead at high frequencies (>0.2 Hz). Special attention is

given to 0.1 Hz, which tends to show high spectral power in both signals, making it a robust

analysis, with a phase shift increase in hypocapnia (improved CA) and a significant decrease

in hypercapnia (decreased CA) [147]. After significant differences have been found in the way

transfer function analysis has been applied to evaluate CA by numerous different groups, espe-

cially in relation to data processing, and acquisition [148], the Cerebral Autoregulation Network

(CARNet) published a white paper to give recommendations on how to perform transfer function

analysis and improve comparability across research groups in 2016 [149], making it likely the

best documented and standardized approach to CA evaluations.

Direct Phase Lag Measurements Some groups performed frequency domain dynamic CA

analysis in a way different from transfer function analysis. If the phase information is most valu-

able for CA assessment, as determined above, one can directly induce oscillations into ABP via

paced breathing or modulation of the positive end-expiratory pressure (PEEP) in the lungs for

animals connected to a ventilator. Then, phase delays between relevant physiological parame-

ters can be calculated. Fraser et al. [150] induced oscillations in a swine model by changing

45



Figure 1.9: Group averaged transfer function between changes in ABP and changes in CBFV
shown as solid lines, with standard error plotted as dotted lines. The signal segments of 1
second yield a frequency range of 0 to 0.5 Hz for Gain (A), Phase (B), and Coherence (C). This
illustration was taken from [146]
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Figure 1.10: Pressure reactivity is shown as the phase delay between ABP and ICP for oscilla-
tions of PEEP in swine. If CA is intact (above LLA shown as circles) a frequency dependent
phase delay is observed. This is not the case for not autoregulating measurements (below LLA
shown in filled dots). This illustration was taken from [150].

PEEP, which has a strong effect on MAP, and measuring the pressure reactivity (see also Chap-

ter 1.2.3.3). Inducing PEEP oscillations at various frequencies, they found a significantly larger

phase delay to ICP for low frequencies (< 0.03Hz) in autoregulating subjects as compared to

dysautoregulation as measured by Lassen’s curve (see Figure 1.10).

Similarly, Kainerstofer et al. [151] showed that a cutoff frequency ( fc = 0.03 Hz) can be found

above which the CA response decreases. They performed a paced breathing task in human volun-

teers, measuring hemodynamic signals using Near-Infrared Spectroscopy (NIRS). Both groups

reported independently that below fc, CA can be evaluated via the phase difference of ABP and

ICP [150] or modeled by a high-pass filter applied to the Grubb’s exponent [152] that relates

CBF and CBV [151].

Other Dynamic Autoregulation Measurements This active research field has seen many ap-

proaches that are summarized elsewhere [153–155]. These methods include attempts to evaluate
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CA through multivariate transfer functions that include CO2 and O2 inputs [156], non-linear ap-

proaches [156, 157], non-stationary approaches [158], and many more that will exceed the scope

of this thesis.

1.2.3.3 Pseudo Dynamic Autoregulation

The third category describes approaches that rely on windows of moving correlations between

two signals. These approaches are similar to dynamic autoregulation, in that they measure a de-

gree of impairment at any given time. However, they are also often reported as a function of CPP,

describing a range of intact autoregulation to help find an optimal CPP for treatment guidance.

This makes them similar to static CA as well, putting this category in between the two previous

sections.

The first correlation based CA assessment has been introduced by Czosnyka et al. [159], which

relates ABP and ICP dynamics. For this, a moving Pearson’s correlation of ICP and ABP during

naturally occurring changes of pressures, is calculated. This method is known as the pressure

reactivity index (PRx), and the CA assessment as a comparison of ABP and ICP is commonly

referred to as pressure reactivity. If PRx is low (<0.3) or negative, the autoregulatory system is

intact, while high correlations show impairment. PRx assumes that a change in ABP will lead to

vasoconstriction or -dilation and that this effect is significant enough to change ICP as the blood

volume in the brain is changed. An increase in ABP for example leads to vasoconstriction. The

smaller volume of blood resulting from the constriction then reduces ICP, making ABP and ICP

negatively correlated. If CA is impaired and vascular diameter change is no longer possible, the

system becomes passive and ICP will rise as ABP rises, due to increased CBV, making the PRx
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Figure 1.11: Average PRx for one example subject plotted as a function of CPP. Error bars
showing the 95% confidence interval. The minimum of the curve shows highest pressure reac-
tivity and is termed optimal perfusion pressure. This illustration was taken from [112].

value positive. This method has been used to determine the optimal CPP (CPPopt, see Figure

1.11), which is where PRx is smallest, in order to optimize CA intactness and patient outcome

[112].

Additionally, Steinmeier et al. performed cross-correlation of ABP and CBFV as well as be-

tween ABP and ICP, observing larger time delays in intact CA larger than in impaired [160].

Many less invasive alternatives to the PRx have been proposed, using the same strategy of moving

Pearson correlation. The Systolic index (Sx) and mean index (Mx) use systolic and mean ABP,

respectively, to correlate it to CBFV [94] with good relation to CA impairment while being non-

invasive in nature. In some cases Mx is calculated as the correlation between CPP and CBFV and
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is distinguished from Mx calculated from just ABP as Mxa [161]. The total hemoglobin reactiv-

ity index (THx) was calculated as a moving correlation between total hemoglobin concentration

measured with NIRS and ABP, and showed good agreement with PRx [162]. Even more options

have been proposed using cerebral oximetry index (COx) as a correlation of NIRS-derived tis-

sue oxygenation and ABP [163]. The list continues further but the idea of correlation between

pressure input and hemodynamic output persists.

1.3 Conclusion

ICP is an important metric for patient treatment, in case of both pressure maintenance and CA

evaluation, for numerous cerebral diseases and injuries. Current measurement methods of ICP

are often invasive and bear a risk when used in clinics. To counter this issue, non-invasive

alternatives for ICP measurements are presented in this thesis. CA assessments rely on ICP

as well. Modern CA evaluation methods are to this day verified by pressure reactivity or CPP

measurements. Results for outcome correlation and CA impairment in various diseases are not

cohesive and further research in clinical trials is needed. It is hypothesized that a large number

of discrepancies are rooted in data relying on hospitalized patients with many different disease

states and conditions and a lack of good control groups from healthy volunteers. All these needs

are addressed with the development of an animal model with controlled CA impairment. Non-

invasive measurements will be introduced using diffuse optical methods. To understand the

physical and mathematical background, an extensive introduction into the light based diagnostics

of the human body is given.
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Chapter 2

Optical Imaging for Cerebral Applications

Light in its various forms has been a natural choice as a diagnostic tool for a variety of medical

applications. Starting at the use of red coloring of tissue in the case of inflammation and rashes,

or yellow colored eyes indicating liver disease, over microscopic applications and the advent of

histology, to the application of X-rays (highly energetic light) in computer tomographic (CT)

scanners to reconstruct 3D models of tissue structures inside the body, all use the diagnostic

power of light. In this thesis the non-ionizing spectrum of visible to near-infrared light is used

to measure hemodynamic changes and thus blood transport and oxygenation through the body.

One of the earliest success stories of this field is pulse-oximetry, which uses two wavelength of

light to measure the cardiac pulse driven changes in arterial blood, which can be used to calculate

the percentage of oxygenated hemoglobin in arteries and consequently give information about

sufficient oxygen supply to the tissue [164, 165]. Today, this device is a standard equipment in

every hospital and ambulance.

This chapter shows how light can be used to measure tissue oxygenation and blood flow in
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centimeters deep organs such as the brain in a non-invasive and non-ionizing way. For this rea-

son, description of light, its properties and nomenclature, and the theory of diffuse light travel in

highly scattering media such as human tissue is described first. The role of the diffusion equation,

describing the movement of light in turbid media mathematically, is shown.It builds the basis for

devices used in this thesis for the non-invasive estimation of ICP and assessment of CA. Two

diffuse optical devices are used, near-infrared spectroscopy (NIRS) and diffuse correlation spec-

troscopy (DCS), which are measuring hemoglobin concentration and blood flow in biological

tissue, respectively. If not otherwise marked, all mathematical descriptions are taken from Bigio

and Fantini’s ”Quantitative Biomedical Optics” (2016) [166] for nomenclature consistency.

2.1 Introduction to Biomedical Optics

Light is the common term for electromagnetic radiation, which is defined by an electric field

(E) that is linked to a magnetic field (H) through Maxwell’s equations. In that, the field vectors

for E and H are orthogonal to each other and to the angle of propagation of the light wave.

The square of the electric field magnitude and the square of the magnetic field magnitude are

both proportional to the energy density (and thus intensity) associated with optical radiation

[166]. The energy associated with light is dependent on the oscillation frequency, or inversely

the period of oscillation, which is commonly described as the wavelength in nanometer (nm).

This is expressed through the following equation

E = h f =
hc
λ
, (2.1)
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where the energy (E) is dependent on the oscillation frequency of the wave ( f ) and Planck’s

constant (h = 6.63×10−34 Js). Here,

f =
c
λ
, (2.2)

with c describing the speed of light (assuming vacuum approx. 3×108 m/s) and λ is the wave-

length of the light. The typical wavelengths range for the visible spectrum is 400 nm (blue) to

750 nm (red), which corresponds to an oscillation frequency of about 750 THz to 400 THz,

yielding a quantum energy of 3.1 eV to 1.65 eV, respectively. In this thesis, longer wavelengths

will be used, going up to 850 nm and entering a range of the optical spectrum that is known as

”near-infrared”. These higher wavelengths have a lower frequency, thus a lower energy and a

lower potential to harm tissue through ionization or heat accumulation.

In classical physics, a wave can be characterized by its frequency and amplitude. This, however,

is not necessarily true in the quantum world. If the power of the light source is reduced very

low, light detectors will not be able to detect continuous waves any longer. Instead, the light

would reach the detector in small quantized packages known as photons. Photons have particle

like characteristics and represent the smallest amount of energy at a given wavelength that can

represent light [166]. The energy of one photon is described by equation 2.1. Because fractional

photons cannot exist, the energy level for N photons is equivalent to N · hf . When the number

of photons detected becomes significantly large, i.e.
√

N � N, where
√

N is a noise estimate,

the measured light characteristics starts to lean towards the classical physics regime [166]. The

noise in this case is a detection variability from measurement-to-measurement known in the field

as shot noise, following a Poisson distribution. It can be thought of as flipping a coin in sets of

10 flips. You are not guaranteed to receive 5 heads in every set. Likewise, you are not guaranteed
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to measure the same amount of photons in a given time window, creating a measurement noise

originating from the particle property of light.

2.1.1 Optical Nomenclature

To discuss the interaction of light with tissue and appreciate the functionality of modern optical

devices to measure medical and biological information, the following nomenclature is defined.

Intensity describes the amount of optical energy delivered per unit time, and per unit area, on a

surface. The unit is W/m2. It should be noted that the name ”intensity” in the field of biomedical

optics is often used to describe the power (P) of light, neglecting the spatial aspect. This is likely

attributed to the fact that a high number of approaches and models assume point sources for light

generation. The physically correct definition is:

I(t) =
P(t)

A
, (2.3)

where A is the illuminated surface area.

The fluence rate Φ is a highly relevant metric in biomedical optics as it describes the optical

energy per unit time, per unit area, incident from any direction. The direction is of particular

concern in turbid media such as biological tissue, as opposed to surface illumination, for which

the intensity is the equivalent. Fluence rate is defined as

Φ(r, t) =
∫

4π

L(r, t,Ω̂)dΩ, (2.4)
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with r indicating the point of interest, t indicating the point in time, Ω̂ the direction of propagation

and L being the radiance.

Radiance is the light traveling through a medium per unit area along the direction Ω̂. It is

dependent on the power (P), area (A), direction (Ω̂), and defined as

L(Ω̂) =
d2P

dΩdAΩ̂ · n̂
(2.5)

where n̂ denotes the unit vector. Radiance can be thought of as directionally diverging intensity,

giving it increased relevance in biomedical optics. By accounting for light divergence and the

area of interest, it can for example be used to calculate the coupling efficiency of light from a

light source into an optical fiber [166].

2.1.2 Optical Properties of Tissue

In a given volume inside a medium, the number of photons can be changed as photons can be

emitted by a light source, delivered into, reflected out of, and transmitted through the volume or

finally be absorbed. For biological tissue, these effects are due to interaction of the photon with

the molecules and larger structures in the volume, or the lack thereof in the case of transmittance.

Absorption of light describes the process of absorbing the electromagnetic wave energy by elec-

trons in the atomic structure of the medium with the same or similar energy level. The absorbed

additional energy lifts the electron to an elevated energetic state. From here, the energy can be

dissipated as heat through vibration, in which case the photon is ”permanently lost”.

Scattering is governed mostly by two different processes. If the scattering particle diameter
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d� λ , the particle’s charge effectively acts like a dipole. The oscillating electric field of light is

causing the particle to oscillate at the same frequency, which in turn becomes a radiating dipole.

The radiated energy is an electromagnetic wave with the same frequency, or in other words the

same wavelength of light. This is known as Rayleigh-scattering [167].

The main scattering events observed in biological tissue originate from refraction index mis-

matches of different tissues, organs, organelles, membranes and many more where d ≥ λ , and

not the Rayleigh-scattering mentioned above [166]. Similar to light scattering of water in clouds,

with water droplet diameters of a few µm, the µm to mm sized structures in biological tissue

cause refraction based scattering known as Mie-scattering [167]. The heterogeneous distribution

of water droplets and air in the clouds equals the heterogeneity of different small structures in

the human tissue with different refractive indices. The origin of Mie- and Rayleigh-scattering

and their mathematical derivation from Maxwell’s equation of electromagnetic wave scattering

with dielectric spheres is beyond the scope of this introduction, but can be found elsewhere [167].

The main characteristics necessary to describe the light tissue interaction are the refractive in-

dex, the absorption and scattering coefficient, and in the case of diffuse light tissue spectroscopy

especially, the reduced scattering coefficient, which are defined here:

Index of refraction is a ratio of the speed of light in a medium compared to vacuum. The

speed of light in vacuum is c = 299,792,458m/s ≈ 3× 10−8 m/s, at a defined refractive index

of n = 1. For water the refractive index is n = 1.3, reducing the speed of light to cn=1.3 = c/n≈

2.3×10−8 m/s, and in glass n = 1.5, leading to cn=1.5 ≈ 2×10−8 m/s. The effect of refraction

is the change of propagation direction when light passes through a boundary of two media with
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different refractive indices. If the light comes from a lower to a higher n, i.e. from a faster to

a slower medium, the light bends towards the normal of the boundary area and vice versa. This

effect can be attributed to the different arrival times of the electromagnetic wave front sides at

the boundary, making refraction dependent on the incident angle, and eliminating the effect for

light orthogonal to the boundary area.

The absorption coefficient (µa) describes the medium specific probability for a photon to be

absorbed in a given unit distance. A typical value for perfused brain and muscle tissue is about

0.1cm−1. The average distance a photon can travel before being absorbed is called the absorption

mean free path and is defined as

mfpa =
1
µa

. (2.6)

The absorption coefficient of a macro scale medium is dependent on the concentration and com-

bination of molecules that it is made of. By isolating molecules, the molar extinction coefficients

for many materials have been empirically determined. Using this knowledge, we can calculate

µa as

µa(λ ) = ∑
i

Ciεi(λ ), (2.7)

where Ci and εi are the concentration (in M) and molar extinction coefficient (in cm−1M−1)

for the ith component of the medium, respectively. Note that ε is dependent on wavelength λ ,

making µa wavelength dependent, too.

The scattering coefficient (µs) is the equivalent to the absorption coefficient for light scat-

tering events, thus it describes the likelihood of a photon to be scattered within a unit length in
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turbid medium such as biological tissue. A typical value for µs in tissue is 100 cm−1. Also sim-

ilar to mfpa, a scattering mean free path mfps can be calculated as the inverse of µs, describing

the average distance a photon can travel before being scattered. For biological tissue µs � µa

in the range of red to near-infrared light (650-850 nm), which are the wavelengths used in all

following devices.

A reduced scattering coefficient is defined to accommodate the fact that biological tissue

under Mie-scattering is highly forward scattering, meaning the direction of propagation is largely

preserved despite multiple scattering events. The change in propagation direction is described

by the anisotropy factor g, which is defined as

g≡ 〈cosθ〉= 2π

∫
π

0
cosθ p(θ) sinθdθ , (2.8)

where θ is the angular change of direction in a simplified case of unpolarized light and isotropic

scattering particles. p(θ) describes the phase function, an angle dependent probability of photon

scattering from a defined input to a defined output direction. The value of g is set between -1

and 1, where -1 shows full backward scattering, 0 represents isotropic scattering from very small

particles while 1 defines perfect forward scattering from large particles. In the case of bulk tissue,

an average forward scattering of g = 0.75 to 0.98 can be found [168]. Because the measurement

of g in tissue is challenging, a widely accepted value of g = 0.9 is assumed, which corresponds

to an average scattering angle of 26◦, leaving the most likely direction to be largely forward.

Because it takes many scattering events for a photon to truly change direction, the reduced scat-
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tering coefficient (µ ′s) was introduced:

µ
′
s = µs(1−g) . (2.9)

With g = 0.9 and µs = 100cm−1, it follows that µ ′s = 10 cm−1. This parameter is of special

interest in the field of diffuse optics, discussed in Chapter 2.2.1.

2.2 Diffuse Optics and Tissue Interaction

When biological tissue is illuminated, light will interact with structures inside of it. Possible

interactions are illustrated in Figure 2.1, which shows events of emittance (a), surface reflection

(b), scattering (c), diffuse reflectance (d) as light exits the tissue after multiple scattering events

at a different location, absorption (e), and transmission (f). For the use of light according to

applications in this thesis, the most important interactions are scattering, eventually leading to

diffuse reflectance, and absorption.

2.2.1 Diffuse Light

As mentioned before, the dominant interaction of light in tissue is scattering, with scattering

events being a thousand fold more likely than absorption, as determined by µs� µa. Scattering

can be approximated as isotropic under consideration of the anisotropy factor, yielding µ ′s. The

inverse (1/µ ′s) is the distance after which isotropy, i.e. scattering in all directions with equal like-

lihood, can be assumed, meaning its original direction can not be determined. It is often referred

to as the photon’s ”memory loss”. Note that in reality, the photon has scattered approximately
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Figure 2.1: The square shows a tissue cross-section that is simplified as a homogeneous
medium. a) is light emittance b) shows surface reflection, c) shows scattering inside the medium
while d) shows diffuse reflectance, e) shows absorption of light in the medium, and f) is light
transmittance. Every direction change inside the medium is a scattering event while the direc-
tion change when entering and leaving the medium is caused by refraction.

10 times, yet under the assumption of isotropy it is treated as one scattering event. This distance

therefore, marks the boundary for diffuse optics, as opposed to ray optics in which the direction

of propagation is well known and can be determined at any point in time or space.

To understand how one can derive spectroscopic measurements in this random environment, the

propagation of light in diffuse medium needs to be determined. Only then a projection to medi-

cally relevant parameters is possible.

The Boltzmann transport equation, also known as the radiative transfer equation, is a heuristic

model that looks at light as photons and considers the diffusion of photons into and out of a unit

volume, the collision of photons with absorbers or scatterers, and the emittance of photons at

sources inside the volume as described by

∂u(r,Ω̂, t)
∂ t

=

(
∂u(r,Ω̂, t)

∂ t

)
Di f f

+

(
∂u(r,Ω̂, t)

∂ t

)
Coll

+

(
∂u(r,Ω̂, t)

∂ t

)
Sources

. (2.10)

60



Here, u(r,Ω̂, t) is known as the angular energy density and is defined as u(r,Ω̂, t) = L(r,Ω̂, t)/cn,

with cn as the speed of light in the medium and L, the radiance described in equation 2.5. Writing

the Boltzmann equation out will lead to a still very complex system that is dependent on incident

Ω̂ and scattering angle Ω̂′:

∂u(r,Ω̂, t)
∂ t

=
(
−cnΩ̂ ·∇u(r,Ω̂, t

)
Di f f

+

(
−cn(µa +µs)u(r,Ω̂, t)+ cnµs

∫
4π

u(r,Ω̂′, t)p(Ω̂′,Ω̂)dΩ
′
)

Coll

+
(
q(r,Ω̂′, t)

)
Sources ,

(2.11)

where q(r,Ω̂′, t) describes the energy emitted by a light source per unit time, per unit volume and

per unit solid angle about time t, position r and direction Ω̂. This still rather complex equation

can be further simplified by applying boundary conditions and assumptions about the nature of

light propagation in biological tissue, to simplify the expression.

While the derivation is beyond the scope of this thesis, the procedure to simplify the Boltzmann

equation starts by expanding the angular dependency of the energy density, scattering phase

function and source terms into discrete sets on the basis of spherical harmonics to minimize

the complexity of integro-differential equations [166]. From here an infinite set of equations

arises that can be significantly shortened for sufficient approximations under the assumptions of

µa << µs, and that the light source and distance (r) are sufficiently far apart (r > 1/µs) [166].

At this point a simplified Boltzmann equation has been derived that is known as the P1 approx-

imation as it only uses spherical harmonics of the 0th and 1st order [169]. In case of biological

tissue spectroscopy, the equation is further simplified by enforcing more restrictions. These are
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strong isotropic scattering, which is given under the assumption that µ ′s� µa, isotropic source

to reduce further angular dependencies for potential light emittance in the medium, and slow op-

tical signals meaning that the time scale for transient changes in radiant energy density or light

emittance is long compared to the time of absorption and scattering events [170, 171].

Given these assumptions we gain the diffusion equation, which allows the development of nu-

merous diffuse optical devices used in medical applications.

∂U(r, t)
∂ t

= ∇ · [D∇U(r, t)]− cnµaU(r, t)+S0(r, t) (2.12)

The change in radiant energy density U(r, t) = Φ(r, t)/cn can also be expressed using the photon

number density:

∂Φ(r, t)
∂ t

= ∇ · [D∇Φ(r, t)]− cnµaΦ(r, t)+ cnS0(r, t). (2.13)

Considering the three terms on the right, the change in number of photons in a given volume

around a given position at a given time is equal to the photon diffusion in and out of the medium

described by the diffusion coefficient D minus the photons absorbed, plus the photons emitted.

The diffusion coefficient D is defined as

D =
cn

3(µ ′s +µa)
, (2.14)

and it is clear that it is highly dependent on µ ′s.

The photon transport in diffuse versus non-scattering medium is demonstrated in Figure 2.2. The

light travels in a circular pattern around the source, due to the isotropic assumption in biological
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Figure 2.2: Light propagation of an incident light source on the surface of a medium is shown
in red color. a) shows how light propagates in highly scattering medium such as optical tissue
(red). The light detected in a second optical fiber at a distance r has propagated along the
mean photon path (blue banana). b) shows the light propagation in a non-scattering medium for
comparison.

tissue. Light propagation from the source to the detector can be described by a probability density

function (Figure 2.2).

2.3 Near-infrared Spectroscopy

Near-infrared spectroscopy (NIRS) in general refers to the measurement of the interaction of

electromagnetic waves with matter in the regime of near-infrared (NIR) light, from about 750 -

1400 nm (spectroscopy). The first use of a NIRS device was presumably done by Jöbsis et al.

in 1977 [172]. Since then, the field has progressed significantly. The work in this thesis will

concentrate on the medical application of NIRS for the measurement of absorption changes due

to changes in hemoglobin concentration in biological tissue, which will give further informa-

tion about tissue oxygenation and blood volume changes. The development of light modulation

leading to the ability to not only measure changes but absolute concentrations of chromophores
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inside biological tissue will further be discussed.

2.3.1 Light Absorption in Non-Scattering Medium

Scattering events are occurring at biological structures in the µm to mm scale. The main ab-

sorbers in biological tissue are water, melanin, lipids and hemoglobin. While water, melanin and

lipids are fairly constant over time, hemoglobin concentrations can change with blood volume.

Furthermore, oxygenated hemoglobin (HbO) and deoxygenated hemoglobin (Hb) concentrations

can change independently, which influences the tissue oxygen saturation of hemoglobin, for ex-

ample, caused by blood flow changes. The main focus of this work is therefore on hemoglobin

related changes in optical signals.

In non scattering medium (see Figure 2.2b), the absorption coefficient of a medium inside a

cuvette with known width r can be described by the Beer-Lambert’s law, which states that

I = I0e−µar, (2.15)

where the intensity I measured on one side of the cuvette is dependent on the input light intensity

(I0) from the opposite side of the cuvette, and falls off exponentially over the distance r. Solving

equation 2.15 for µa, it can be seen that

µa =−
1
r

log
I
I0
, (2.16)

and the concentration can be calculated using Equation 2.7 as C = µa/ε . The travel path for

non-scattering medium is given by the source detector distance. For scattering media, the Beer
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Lambert’s law does not hold since the photon path is no longer describable by a straight line. A

solution to the diffusion equation needs to be applied in order to calculate changes in µa.

2.3.2 Modified Beer-Lambert’s Law

To calculate absorption coefficient changes in a highly scattering medium, one can use what is

commonly called the ”modified Beer-Lambert’s law”. Despite its name, it is not a derivation of

Beer-Lambert’s law, but instead is derived from the diffusion equation [173].

Under the assumption of continuous wave light, where the light source emittance is constant

over time, the derivative over time on the left side of Equation 2.13 is obsolete. One can further

assume that position r = 0 houses the light source and that S0(r) = PCW δ (r), where PCW is the

power of the continuous wave light and δ is the Dirac delta function, a mathematical description

of a point source. This yields the following solution to the diffusion equation for continuous

wave (CW) light

ΦCW (r) = PCW
3(µ ′s +µa)

4π

e−r
√

3µa(µ ′s+µa)

r
, (2.17)

which shows the CW fluence rate ΦCW (r) with distance r from the point source. Note that this

equation is only valid for r > 1/µ ′s as per diffusion approximation, making the infinite fluence

rate at r = 0 due to the Dirac delta a nonissue. Equation 2.17 is dependent on knowledge of

the exact light power PCW induced into the medium and it needs knowledge of both µa and µ ′s.

Given that currently only absorption coefficient changes (∆µa) over time (t) are of interest, it

can further be assumed that µa = µa0 +∆µa(t), leading to ΦCW (r, t) = ΦCW0(r) + ∆ΦCW (r, t).

Further simplifying the equation by assuming that µ ′s(t) = µ ′s0, with no change over time, and
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considering µ ′s � µs one can replace (µ ′s + µa) ≈ µ ′s. Under these additional conditions, the

fluence rate change over time can be calculated as

∆ΦCW (r, t)≈−PCW

[
3µ ′s0

]3/2

8π
√

µa0
e−r
√

3µa0µs0∆µa(t), (2.18)

under the condition that ∆µa(t)� µa0 and hence ∆ΦCW (r, t)� ΦCW0(r). This solution to the

diffusion equation for small fluence rate changes over time can then be expanded to relative

changes of fluence rate by taking the ratio between equation 2.18 and equation 2.17. With µ ′s +

µa ≈ µ ′s0 it follows

∆ΦCW

ΦCW0
(r, t)≈−r

√
3µ ′s0

2
√

µa0
∆µa(t). (2.19)

Solving equation 2.19 for ∆µa(t) yields what is known as the modified Beer-Lambert’s law

∆µa(t) =−
1

rDPF
∆ΦCW (t)

ΦCW0
(2.20)

where the differential pathlength factor DPF =

√
3µ ′s0

2
√

µa0
[173]. For practical application in chapters

3 and following, ∆ΦCW (t) = ΦCW (t)−ΦCW0, where ΦCW0 = ΦCW (t = 0) is the measured inten-

sity at time point 0 at a given distance, rather than the fluence rate of the source itself. Thus, it is

also apparent that ∆µa(t = 0) = 0.

The similarity of equations 2.16 and 2.20 is apparent when considering that I = Φ in the case of

a surface area illumination and that log
(

∆I
I0

)
≈ ∆I

I0
for small changes in intensity. The additional

factor of DPF accounts for the scattering part, as derived above, and symbolizes the modifica-

tion to the Beer-Lambert’s law. The approaches shown in Chapter 3.1 and 5 rely on hemoglobin
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concentration changes derived using the modified Beer-Lambert’s law.

2.3.3 Multi-Distance Approach

The modified Beer-Lambert’s law can be used to calculate changes in absorption coefficient

(∆µa). To measure absolute values of µa and µ ′s, absorption and scattering events need to be dis-

tinguished. To achieve this, multiple variations of NIRS have been proposed, including time do-

main NIRS which exploits a pulsed laser and measures the photon counts arriving at the detector

over time, yielding information about time of flight and thus scattering events inside the medium

where as the light intensity corresponds to absorption [174, 175]. Similarly, a frequency domain

(FD) method was proposed by Fantini et al. to disentangle scattering and absorption events by

using sinusoidally oscillating light powers to gain information about absorption changes from

the amplitudes (ΦAC) and scattering from the phase delay (θ ) of the oscillation compared to

the input signal (see Figure 2.3a) [176]. This measurement is performed at a minimum of 2

source-detector separations, though for improved SNR a standard of 4 source-detector pairs has

been established in the field, as demonstrated in Figure 2.3b. The name multi-distance approach

refers to these source detector pairs and was chosen to distinguish it from other methods of FD-

NIRS, such as a multiple-frequencies FD-NIRS, as used in diffuse optical spectroscopic imaging

(DOSI) [177, 178].

Note that in Figure 2.3b the average photon path increases in depth as the source detector sepa-

ration increases. This effect for semi-infinite medium, i.e. medium that has one optical boundary

on which source and detectors are placed (say skin) and is otherwise ”infinite” with respect to the

effective photon mean free path (mfpe f f = 1/(µe f f )), scales with the square root of the source
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detector separation:

〈z〉r =
1
2

√
r

µe f f
, (2.21)

with

µe f f =
√

3µa(µ ′s +µa). (2.22)

Here 〈z〉r is the mean photon-visitation depth, with dependency on the source detector separation

(r) [166]. This means a higher depth sensitivity can be reached by increasing the source detector

separation at a cost of reduced photon counts due to the exponential light intensity decay over

distance as has been seen in chapter 2.3.2 and will be discussed below.

The modulation frequency that is chosen for FD-NIRS needs to be fast enough to generate a

measurable phase shift within typical source detector separations of about 3cm. It also needs to

be slow enough to not cross the full oscillation mark, at which point it is not possible anymore

to distinguish between e.g. π and 3π . Given optical properties for tissue (µ ′s = 10 cm−1,µa =

0.1 cm−1,n = 1.3) and a target phase shift of θ ≈ 1rad ≈ 57◦ for a 3 cm source detector sepa-

ration yields a modulation frequency of ω ≈ 130 MHz. The devices used for research described

in this thesis are using an ω = 100MHz light modulation frequency. Starting with the general

diffusion equation (Equation 2.13) a point source is placed at r = 0, which emits a sinusoidally

modulated light at angular frequency ω . The source term of the diffusion equation can then be

written as S0(r,ω, t) = PFD(ω)δ (r)e−iωt . As the time dependency of this signal is fully de-

scribed by the oscillation term e−iωt , and thus the time derivative becomes a multiplication with
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Figure 2.3: a) shows the power modulation of the incident light (red) and the measured light
(blue). The properties of frequency domain light are determined by the offset (DC), the ampli-
tude (AC) and the phase delay between input and output (θ ). In b) a 4 source-detector-distances
NIRS example is shown, with 4 sources and 1 detector. The average light path is shown in blue.
The graphs in part c) show the linear decrease of ln(ΦAC) over distance and the linear increase
of θ .
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−iω , the solution to the diffusion equation becomes

ΦFD(r,ω) = PFD(ω)
3(µ ′s +µa)

4π

e−r
√

3(µ ′s+µs)(µa− iω
cn )

r
. (2.23)

The frequency domain fluence rate ΦFD(r,ω) is dependent on the amplitude PFD [179]. Note that

ΦFD(r,0) = ΦCW (r) from Equation 2.17, which simultaneously represents the DC component

as the offset of the fluence rate modulation, as shown in Figure 2.3a.

From here, calculating the oscillation amplitude AC, and phase position θ is possible and yields

ΦAC(r,ω) = |ΦFD(r,ω)|= PFD(ω)
3(µ ′s +µa)

4π

e
−r
√

3µa(µ ′s+µa)
2

√√
1+
(

ω

cnµa

)2
+1

r
, (2.24)

θ(r,ω) = Arg [ΦFD(r,ω)] = r

√
3µa (µ ′s +µa)

2

√√√√√1+
(

ω

cnµa

)2

−1, (2.25)

with phase θ(r,ω) given in radians.

While the relation between phase (θ ) and modulation frequency (ω) under given conditions

of absorption and scattering is non-linear, especially if ω/2π ≈ 180− 500MHz, in the special

range of (ω � cnµa) linearity can be assumed [166]. With this condition in place, phase differ-

ences (θ(r,ω)) and the logarithm of the exponentially decaying amplitude scaled by the distance

(ln [rΦAC(r,ω)]) are linearly changing as a function of source-detector separation (r). When fit-

ting a line to the amplitudes and phase information over distance, a slope change can be observed

with changing optical properties. Specifically, an increase in µa will lead to a faster decay of the

amplitude signal, and to a decrease of the phase delay, thus the positive slope becomes smaller.
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Similarly for increases in µ ′s the amplitude will decay quicker, thus larger negative slope, and the

phase angle slope will increase. The amplitude slope (SAC) and phase angle slope (Sθ ) can be

calculated as partial derivatives over the source detector distance [180–182]:

SAC =
d
dr

ln [rΦAC(r,ω)] =−
√

3µa (µ ′s +µa)

2

√√√√√1+
(

ω

cnµa

)2

+1, (2.26)

Sθ =
d
dr

θ(r,w) =

√
3µa (µ ′s +µa)

2

√√√√√1+
(

ω

cnµa

)2

−1. (2.27)

When measuring with FD-NIRS at multiple distances, one can create the linear plots in Fig-

ure 2.3c for any given point in time. Note that as of now an infinite medium was assumed.

When implying a more realistic model of semi-infinite medium, using a border to place source

and detector components targeted into an optically semi-infinite medium, the linearity assump-

tion of ln [rΦAC(r,ω)] no longer holds. It can be regained by an approximation that yields

ln
[
r2ΦAC(r,ω)

]
. Derivations of this approximation can be found elsewhere (e.g. Bigio and

Fantini, Chapter 12.6, [166]). Equations 2.26 and 2.27 can now be used in conjunction to solve

for the absolute values of µa and µ ′s. Here, µa and µ ′s are dependent on the slopes that one can

measure, in addition to known constants of modulation frequency (here: ω = 110MHz) and the

speed of light in the medium (here: cn = 3×1010/1.3cm/s)

µa =
ω

2cn

(
Sθ

SAC
− sAC

Sθ

)
, (2.28)

µ
′
s =−

2cn

3ω
SACsθ −µa. (2.29)
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Figure 2.4: The spectrum shows the molar extinction coefficients for oxygenated hemoglobin
(HbO, red) and deoxygenated hemoglobin (Hb, blue). The black dashed lines mark the wave-
lengths used in the NIRS system described below, the blue dashed line are wavelengths used in
DCS. The data was collected by Scott Prahl from multiple sources and presented in [183]

2.3.4 Hemoglobin Concentration Calculation

Regardless of the calculation of ∆µa(λ ) or µa(λ ), the corresponding hemoglobin concentration

∆HbO and ∆Hb, or HbO and Hb, can be calculated using equation 2.7, given the molar extinction

coefficients. Latter are listed in Figure 2.4 for oxygenated (red) and deoxygenated, or reduced,

(blue) hemoglobin. Given that in the optical window between 600 and 900 nm absorption of

lipids, water and melanin is significantly smaller than hemoglobin, and that they are largely

static compared to the blood circulation, it is sufficient to only consider these two chromophores

in the applications discussed in this thesis. From

µa(λ ) =CHbOεHbO(λ )+CHbεHb(λ ), (2.30)
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one can see that two unknown concentrations (CHbo and CHb), two literature based extinction

coefficients (εHbO(λ ) and εHb(λ )) and one measured value µa(λ ) are given, making this an under

defined system. To overcome this shortage, measuring at two wavelength, here λ1 = 690nm and

λ2 = 830nm, creates a solvable equation system. The wavelength (black dashed lines in Figure

2.4) lie on either side of the isosbestic point, i.e. the point of equal molar extinction coefficient at

approx. 800nm, making the shorter wavelength weighted towards Hb and the longer wavelength

weighted towards HbO. While the choice of wavelength is mathematically speaking irrelevant

(with the exception of the isosbestic points), it has been shown in practice to improve signal

quality to chose wavelength on either side.

Using these two wavelength, the following system follows:

µa(λ1) =CHbOεHbO(λ1)+CHbεHb(λ1),

µa(λ2) =CHbOεHbO(λ2)+CHbεHb(λ2),

(2.31)

which, solved for chromophore concentration, yields the following system:

CHbO =
εHb(λ2)µa(λ1)− εHb(λ1)µa(λ2)

εHbO(λ1)εHb(λ2)− εHbO(λ2)εHb(λ1)
,

CHb =
εHbO(λ1)µa(λ2)− εHbO(λ2)µa(λ1)

εHbO(λ1)εHb(λ2)− εHbO(λ2)εHb(λ1)
.

(2.32)

Note that µa can be exchanged for ∆µa, which then calculates ∆HbO and ∆Hb instead. Molar

extinction coefficients are unaffected by this change.
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2.4 Diffuse Correlation Spectroscopy

While NIRS can be used to measure hemoglobin concentrations and subsequently tissue satu-

ration of oxygenated hemoglobin (StO2) and CBV, it is also desirable to measure blood flow

in many medical settings. A diffuse optical method was developed named Diffuse Correlation

Spectroscopy (DCS) that can estimate the flow of red blood cells in human tissue [184–186]. The

general idea is that the human tissue has a portion of static scattering structures and a portion of

moving scattering objects. The latter ones are predominantly red blood cells. Blood flow can be

estimated by measuring the movement of red blood cells in the tissue. DCS uses auto-correlation

of light intensity speckles created inside the tissue due to constructive and destructive interfer-

ence of a highly monochromatic laser light source. The speckle pattern inside the tissue changes

faster with faster red blood cell movement, and thus loses auto-correlation at an earlier delay

times. The method has been shown to correlate well with Doppler ultrasound and other blood

flow measurement methods [185].

2.4.1 Electric Field Auto-Correlation

First, the electric field auto-correlation of light in turbid media has to be described, from which

a diffusion equation expression can be derived that will allow the relation of measurements of

light intensity to movement of light scattering particles.

The light electric field temporal auto-correlation at position r, time t, and for propagation along
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Ω̂ can be expressed as

GT
1 (r,Ω̂,τ) = 〈E(r,Ω̂, t)E∗(r,Ω̂, t + τ)〉, (2.33)

where E(r,Ω̂, t) is the total light electric field, ∗ denotes the complex conjugate and 〈〉 denotes

the time or ensemble average. Here, τ is the delay time in the auto-correlation, which in the case

of micro-vasculature blood flow typically has a range of µs to ms. Equation 2.33 obeys a cor-

relation diffusion equation that is analogous to the Boltzmann transport equation (see Equation

2.10) [187, 188]. This naturally lends itself to apply similar simplifications and boundary condi-

tions as in chapter 2.2.1, leading to the diffusion equation (2.12), such as the P1 approximation

and µ ′s� µa. One can calculate the angle independent electric field auto-correlation by

G1(r, t) =
∫

4π

GT
1 (rΩ̂,τ)dΩ, (2.34)

which yields the correlation diffusion equation [184]

∇ · [D∇G1(r,τ)]−
[

cnµa +
1
3

cnµ
′
sk

2
0〈∆r2(τ)〉

]
G1(r,τ) =−S0(r). (2.35)

Here, k0 is the wave number 2π

λ
, S0(r) is an isotropic light source and 〈∆r2(τ)〉 is the average

scatterer displacement. A commonly used displacement approximation is the Brownian diffusion

[184]:

〈∆r2(τ)〉= 6DBτ, (2.36)
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with DB as the Brownian diffusion coefficient. Under the assumption of a semi-infinite medium

and isotropic scattering, equation 2.35 yields

G1(ρ,τ) =
3µ ′s
4π

[
eKr1

r1
− eKr2

r2

]
, (2.37)

where,

K =
√

3µaµ ′s +µ ′2s k2
0α〈∆r2(τ)〉,

r1 =

√
ρ2 +

1
µ ′s

,

r2 =

√
ρ2 +

(
1
µ ′s

+2zb

)2

,

zb =

√
2(1+Re f f )

3µ ′s(1−Re f f )
.

(2.38)

Re f f is the effective reflection coefficient, which can be approximated as Re f f ≈ −1.44n−2 +

0.71n−1 +0.668+0.00636n [189], where for this work n = nin/nout is the refractive index ratio

between inside (≈ 1.33 for tissue) and outside (1 for air) the medium. ρ is the source-detector

distance and α is the ratio of moving scatters to static scatterers, which is therefore related to the

hematocrit, i.e. the volume percentage of red blood cells in blood.

2.4.2 Intensity Auto-Correlation

To measure with DCS, speckle fluctuations of highly monochromatic light, characterized by long

coherence lengths, will be observed. Under these conditions, light creates a speckle pattern inside

the highly scattering tissue. This is due to constructive and destructive interference of the light

with itself as it is scattered in different directions inside the tissue, creating spots, or speckles, of
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Figure 2.5: Long coherence length laser light (highly monochromatic) is send into tissue with
moving scatterers, depicted by moving red circles in a). The shift in moving particles causes
speckle pattern change, recorded as light intensity fluctuations in b). Using a moving correlation
window, an intensity auto-correlation plot can be calculated as seen in c). Higher flow leads
to stronger fluctuations in light intensity and a faster decorrelation (black), whereas low flow
maintains a high correlation over a longer lag time τ , for example during arm occlusion (blue).

high and low light intensity. Observing changes in speckle patterns has previously been used to

measure flow on surfaces of scattering medium, using a technique called laser speckle contrast

imaging [190]. Here, the image of a speckle pattern is taken with a given exposure time of

the camera. Non-moving scatterers will create a very sharp speckle pattern while regions of

high flow of scatterers will appear blurry due to their movement and constantly changing speckle

creation. Laser speckle contrast imaging can only measure superficial flow on skin or the exposed

organs [191]. Similarly to the degree of blurriness of the image correlating to blood flow, one

can observe flow driven speckle changes in DCS as a loss of intensity auto-correlations. Instead

of using a camera to observe a large field of view superficially, source and detector fibers are

placed on the surface of the medium. DCS is therefore as sensitive to deeper layers of tissue as

previously described NIRS methods, in that it follows the probability density function of light
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propagation described in Figure 2.2.

To observe a single speckle in deeper tissue using DCS, single-mode fibers are used whose fiber

core diameter is small enough to not allow multiple simultaneous modes of light propagating at

once. Thus, the detectors needed for DCS are single photon counting modules. The conceptual

idea of measuring light intensity fluctuations over time to determine the movement of scattering

particles by auto-correlation of said intensity is schematically demonstrated in Figure 2.5.

When photon intensities is measured at sampling rates of > 1MHz and an auto-correlation of the

input intensity for moving windows of milliseconds length (e.g. ≈ 50ms) over delay times of

1 µs > τ > 10ms is calculated, normalized intensity auto-correlation curves, defined as g2(τ),

are gained (Figure 2.5c). Given that the normalized intensity auto-correlation

g2(τ) =
〈I(t)I(t + τ)〉
〈I(t)〉2

, (2.39)

is related to the normalized electric field auto-correlation

g1(τ) =
〈E∗(t)E(τ + t)〉
〈|E(t)|2〉

, (2.40)

by I(t) = |E(t)|2, one can be converted into the other. The Siegert relation [192]

g2(τ) = 1+β |g1(τ)|2 (2.41)

is thus used to extract g1(τ) from the measurable g2(τ). Here β is a constant determined by the

collection optics. By the use of single-mode fibers, a value of β ≈ 0.5 is expected. It can be ap-

78



proximated by extrapolating g1(0) from the measurement. Note that g1(τ) = G1(ρ,τ)/G1(ρ,0),

where G1(ρ,0) is assuming no scatterer displacement, which reduces the complex K term to

K =
√

3µaµ ′s.

Under assumptions of µa, µ ′s, n, and a known ρ , a mathematical model described in equations

2.37 and 2.38 can be fitted to the measurement results. The fitting parameter that is alternated

in a least mean-square-error fit, is the mean-displacement α〈∆r2(τ)〉. Note that the α-term is

still present, meaning that the number of moving scatterers and the degree of displacement are

entangled. The outcome of the fitting procedure is therefore a scaled diffusion coefficient αDb,

with units of s/cm2. While αDb is not an absolute measure of blood flow or blood flow velocity,

it has been shown to be highly correlated and to scale with absolute blood flow measured by var-

ious modalities for brain blood flow measurements, including transcranial Doppler Ultrasound

[193] and ASL-MRI [194–196].

Instruments used for research presented in this thesis are based on lasers using either 785 nm

or 850nm, as indicated in Figure 2.4. Note that DCS only needs one wavelength while NIRS

requires two. NIRS and DCS are often operated in conjunction with each other, which is why the

850 nm wavelength is preferred. This is because an optical short pass filter can be used to block

DCS light from entering the NIRS sensors, given that DCS operates at light powers of > 30mW,

while NIRS light sources emit less than 5 mW.
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Chapter 3

Non-Invasive Measurement of Intracranial

Pressure

The need for non-invasive ICP monitors is discussed in Chapter 1.1.5, and methods for ICP

measurements are shown in Chapter 1.1.6. Here I will propose two methods to measure ICP

with non-invasive instruments based on near-infrared light. An estimation of relative changes, or

fluctuations in ICP is performed using changes in HbO over time, measured with NIRS. Estima-

tions of absolute ICP values, or ICP offsets, are done based on CBF measurements with DCS.

An overview of the two approaches is given in Figure 3.1. The performance for one example

measurement for the combination of both approaches is briefly described in Chapter 3.3.
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I

Figure 3.1: Schematic overview of the research approach for the development of a non-invasive
intracranial pressure sensor on the basis of diffuse optics.

3.1 Estimation of Intracranial Pressure Fluctuations

Near-infrared spectroscopy (NIRS) (see Chapter 2.3) has been tested clinically [71, 197], but

extrapolation of NIRS-based signals into ICP measurements were limited by the lack of a gen-

eral data analysis strategy. To this end, we introduce an experimental model where ICP baseline

changes and oscillations were induced incrementally through fluid infusion in non-human pri-

mates (NHP), a situation comparable to hydrocephalus. We demonstrate that NIRS and ICP

are related in this setting, and we build a transfer function approach to translate HbO changes

measured non-invasively with NIRS into ICP changes. Finally, we extrapolate to a clinical pic-

ture incorporating ICP, CPP, and CA as a fuller indication of vascular changes which may be

associated with diagnostic and prognostic indicators [198–203].
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Figure 3.2: Experimental setup, showing the placement of the ICP sensor in the brain matter,
the ventricular catheter and the NIRS probe. Hemodynamic responses from NIRS, here changes
in oxygenated hemoglobin (∆HbO), were used to estimate a transfer function to calculate esti-
mates of non-invasive ICPNIRS changes.

3.1.1 Materials and Methods

Changes in ICP were induced via changes in fluid volume in non-human primates (NHP), mim-

icking a form of hydrocephalus. ICP was altered actively by fluid injection via an intraventricular

catheter and monitored with a traditional intraparenchymal ICP sensor, while hemoglobin con-

centration changes were measured non-invasively at the scalp with NIRS. The proposed approach

is illustrated in Figure 3.2. The NIRS-based hemodynamic response was used to fit a transfer

function that translates changes in oxygenated hemoglobin concentration into changes in ICP.

We will refer to the estimated ICP as ICPNIRS, to invasively measured intraparenchymal ICP as

ICPip, and the conceptual idea of pressure as ICP.

3.1.1.1 Animal Model and Intraparenchymal Pressure Probe Placement

Seven healthy male rhesus macaques (Macaca mulatta) with an average age of 8.3 ± 1.7 years

and an average weight of 10.5 ± 2.5kg were used in these experiments. All procedures were

approved by the Institutional Animal Care and Use Committee of the University of Pittsburgh

and complied with guidelines set forth in the National Institute of Health’s Guide for the Care

and Use of Laboratory Animals. The facilities at the University of Pittsburgh are accredited
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by the Association for Assessment and Accreditation of Laboratory Animal Care International

(AAALAC) and in compliance with the Standards for Humane Care and Use of Laboratory

Animals of the Office of Laboratory Animal Welfare (OLAW D16-00118). Furthermore, this

manuscript is in compliance with the Animal Research: Reporting In Vivo Experiments (AR-

RIVE) guidelines. All NHPs were initially sedated using 20mg/kg of Ketamine, 1mg/kg Di-

azepam, and 0.04mg/kg Atropine in the home cage. In the surgery room, animals were intubated

and maintained under anesthesia using 1-3% Isoflurane. After placing the A-line into the carotid

artery for Arterial Blood Pressure (ABP) measurements, animals were ventilated and given a

paralytic, vecuronium bromide (0.1mg/kg/hr). Data streams of ICPip and ABP were recorded

at 100 Hz using an MPR1 Datalogger from Raumedic. In order to monitor ICPip with the tradi-

tional intraparenchymal probe and to manipulate pressure via intraventricular fluid infusion, the

skull was exposed and two small craniotomies were made to place the ICPip sensor (Precision

Pressure Catheter, Raumedic Helmbrechts, Germany) into the brain frontal lobe parenchyma and

a catheter in the lateral ventricle for fluid injection (Lumbar Catheter, Medtronic, Minneapolis

MN). The holes were then sealed with bone wax to reduce the possibility of cerebrospinal fluid

leakage.

The intraventricular catheter was connected to a saline reservoir. Changing the height of the

reservoir relative to the animal’s head induced a pressure change through gravitational force. Al-

ternatively, in three animals ICP was changed by connecting the ventricular catheter to a syringe

pump which applied mechanical force. While the gravitational system maintained a more stable

elevated ICP baseline, the syringe pump allowed for fluid volume control and faster changes. An

overview of the induced ICP changes and each system used to change ICP is given in Figure
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3.3. The baseline of ICP was changed from normal pressure (about 3-10 mmHg) in increments

of 3 mmHg until reaching 15 mmHg, at which point pressure was increased in increments of

10 mmHg to a total height of 40 mmHg, which is considered severely elevated. At each base-

line value, ICP oscillations were induced by rotating the reservoir or oscillating the piston in the

syringe pump. The oscillations were set to five different frequencies distributed between 0.009

Hz and 0.059 Hz. These frequencies were chosen to fall before and after previously published

autoregulatory cutoff frequencies [150, 151]. The order of ICP oscillation frequency was ran-

domized once and then held the same in all experiments (see Figure 3.3). Due to the shorter

duration of faster frequencies, the highest frequency was induced for eight periods, while all oth-

ers were induced for four periods. This ensured enough signal length for later processing steps,

including the elimination of noise and extraneous signals such as respiration that were unrelated

to our primary goals. Each experiment lasted for a period of 10 to 15 hours.

3.1.1.2 Near Infrared Spectroscopy for Extracranial ICP Measurements

Cerebral hemoglobin concentration changes were measured with a multi-distance, frequency do-

main NIRS system, the OxiplexTS (ISS Inc., Champaign, IL, USA). Two wavelengths were used

to illuminate the tissue, 690 nm and 830 nm. Source detector distances were set to 0.75 cm, 1.33

cm, 1.66 cm and 2 cm. The optical fibers were placed directly on the exposed skull to avoid

contamination of the signal by blood circulation in the muscle and skin tissue. In all animals,

the probes were placed over the visual cortex just anterior to the occipital pole, maximizing the

distance from the point of fluid injection. Data were acquired at 5 Hz, sufficient to capture slow

physiological waves and heart and respiration rates.
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Figure 3.3: Induced ICPip changes are shown over time for the seven NHP. For the first four
animals a gravitational system was used to influence ICP, for the last three a syringe pump
forced the fluid through the ventricular catheter to increase the ICP. NHP 5 shows a lack of
stable baseline increases, which is why for NHP 6 and 7 a second catheter was placed to allow
for stable ICPip baseline while ICPip was oscillated using the syringe.
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For calculating hemodynamic changes over time, the modified Beer-Lambert law (see Chapter

2.3.2) was used based on the second longest source-detector separation (1.66 cm). The modified

Beer-Lambert law translates light attenuation from two wavelengths into hemoglobin concentra-

tion changes [173]. Temporal changes in oxygenated (∆HbO), deoxygenated (∆Hb), and total

(∆HbT = ∆HbO + ∆Hb) hemoglobin concentration were used for the calculations described be-

low.

3.1.1.3 Signal Processing

The 100 Hz ICPip data were down-sampled by first applying a low-pass filter to prevent aliasing

and then selecting every 20th data point, resulting in a 5 Hz data-sampling rate, matching the

optical data. Based on simultaneously placed markers during the recording, the pressure and

hemodynamic data were aligned and truncated to be equal length. Using a narrow band-pass

filter around the induced frequencies, a single frequency signal was approximated and extracted.

Given the nature of the narrow band-pass, potential baseline drifts and artifacts were removed

in this process and no further preparations of the signals were needed. The single frequency

segment was then treated as an independent measurement (see Figure 3.4). To account for small

variations in the frequency content from the intended frequency values shown in Table 3.1, the

actual induced frequencies were extracted from the ICPip data through auto-correlation. Nar-

row band pass filtering around the induced frequencies was derived from the Parks-McClellan

algorithm[204] for optimal finite response (FIR) filter design (‘firpm’, MATLAB, The Math-

Works Inc., Natick, MA, USA). The high filter order of N ≥ 2000 was estimated by the Parks-
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Figure 3.4: Example ICPip data from one animal. The raw data (top graph) was filtered around
the induced frequencies. The period at which each frequency was induced was then treated as
an independent measurement available for data fitting.

Table 3.1: Defined order and number of full rounds of each induced frequency.

Order Frequency [Hz] # of Oscillations
1 0.025 4
1 0.059 8
1 0.017 4
1 0.033 4
1 0.009 4
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McCellan algorithm (‘firpmord’, MATLAB, The MathWorks Inc., Natick, MA, USA). High

order filters were used to remove all signals except the induced frequency content from ICPip

oscillation.

Using the Hilbert transform, the magnitude and phase information of the filtered signal were cal-

culated. A measurement was discarded as unstable if the standard deviation of the phase differ-

ence between ∆HbO and ∆Hb exceeded 30◦, corresponding to unstable physiological responses

to ICP oscillations. Furthermore, a measurement was discarded if the magnitude of ∆HbO at the

induced frequencies did not exceed the noise level. Noise was defined as the magnitude of the

same frequency at a time where no ICP oscillations were induced.

3.1.1.4 Transfer Function Analysis

Based on the extracted frequency content described above, a leave-one-out cross-validation was

performed to estimate a generalized transfer function while avoiding over-fitting [205]. Each of

the five different frequencies induced during one baseline level of ICP was considered a separate

input to the transfer function estimation. This method increased the amount of data sets available

for cross-validation. The total amount of 38 measurements times 5 frequencies produced 190

data sets. After applying the signal quality criteria, 33 of these measurements were excluded,

leaving 157 remaining data sets available for cross-validation.

Through L-curve analysis, the balance between precision and generalization was set at four poles

and two zeros for the discrete-time, frequency domain transfer function. Under these conditions

the ”fest” function (MATLAB, The MathWorks Inc., Natick, MA, USA) was used for data fitting.
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This algorithm optimizes the numerator and denominator of the transfer function based on a

non-linear least-squares algorithm [206]. The numerator and denominator of the fitted transfer

function of the leave-one-out cross-validation were averaged. This averaged transfer function

was then applied to low-pass filtered hemoglobin concentration measurements. Specifically, the

estimated transfer function was then applied to low pass filtered data, cutting off at 0.1 Hz,

with a lower filter order of N = 3. All filters were applied using MATLABs ”filtfilt” function

(MATLAB, The MathWorks Inc., Natick, MA, USA), which guaranties a zero-phase delay by

applying the filter in both forward and backward direction. The final validation was therefore

based on partially unknown data with a much wider frequency range than the narrow band filtered

data used for finding the transfer function.

3.1.2 Results

We measured cerebral hemodynamic changes non-invasively with NIRS in seven anesthetized

non-human primates in which we were able to manipulate and measure ICP directly. In order

to ensure good contact of the probe with the animal, data fidelity was checked by observing

expected natural hemodynamic changes in the NIRS data (i.e., respiration and heartbeat oscilla-

tions), and later confirmed in the form of a fast Fourier transform (FFT). We observed heart rate

and respiration frequencies in the FFTs of all animals used. A spectrogram of a representative

measurement illustrating the frequency content over time can be found in Figure 3.5. Baseline

step increases in ICP were recorded for each trial by the conventional intraparenchymal pressure

probe, as well as ABP, CPP, ∆HbO, and ∆Hb. Figure 3.6 shows ICP oscillations had a notable

effect on the hemodynamics, but did not induce oscillations in ABP. The data in this graph has
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Figure 3.5: The top two graphs illustrate the spectral power color-coded as a function of fre-
quency (y-axis) and time (x-axis). The left plots show ∆HbO while the right plots show ICPip.
The drift in heart rate can be observed in the top graphs while the middle graphs show respira-
tion rate and the lower graphs are zoomed in to frequencies below 0.1 Hz. Here, the expected
spectral power increases in certain time frames for pre-defined frequencies (according to in-
duced ICP oscillations) are highlighted by white boxes. The oscillations induced in ICPip can
also be found in ∆HbO.
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been low-pass filtered to eliminate respiration and heart-rate influences on the signal. We first

evaluated whether the magnitudes of HbO alone as measured by extracranial NIRS were con-

sistent with the changes in ICP observed via the invasive parenchymal probe. Using the narrow

band pass filtered data, the magnitudes of the induced oscillations were extracted by means of

the Hilbert transform. Figure 3.7 shows the relationship between HbO magnitudes and ICPip

magnitudes, where each dot corresponds to one of the 157 single frequency data sets. The red

curve represents a linear fit, while the dashed black line indicates a function with the slope of 1.

The magnitudes of ICPip obtained from the conventional intraparenchymal probe did not trans-

late directly into HbO (Figure 3.7). In addition, the phase difference between HbO and ICPip

was slightly larger than 180◦, indicating the need for a more complex transfer function translat-

ing ∆HbO into ICPNIRS. Signal to noise ratio (SNR) was defined as magnitudes of oscillation

divided by the magnitudes of periods in which these oscillations were not induced into ICP. It

thus yields a metric to understand which signal was influenced by ICP oscillations. High SNR

was observed for ICPip, CPP, and hemodynamic measurements of ∆HbO, ∆Hb and ∆HbT, as

illustrated in Figure 3.8. We next measured the SNR at two different ICP baselines (Figure 3.8).

Using an unpaired Student’s t-test, no significant differences were found between SNR at 10

mmHg and 40 mmHg for ABP (p = 0.21). Thus, responses remained at or below the level of the

noise, leaving the SNR below 1. All other signals showed a significant increase in SNR (p <

0.05) when treating all frequencies of one signal as a single group. Frequency dependent trends

in the magnitude were observed at low ICP baseline values but reduced at highly elevated ICP,

suggesting a loss of frequency dependent magnitude changes.

In order to account for frequency dependent and ICP baseline dependent changes in HbO, we fit
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Figure 3.6: This representative measurement shows parts of the protocol. The top graph illus-
trates the baseline changes in ICPip with sinusoidal induced oscillations highlighted in grey.
A close up of the induced oscillation indicated by the red background is shown on the right.
Oscillations in ICP did not translate into ABP oscillations, shown in the second graph from the
top. CPP, ∆HbO, and ∆Hb showed oscillations corresponding to the ICPip change induced.
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Figure 3.7: Linear relationship between oscillation magnitudes in ∆HbO and invasively mea-
sured ∆ ICPip. The linear fit is shown as a function in the top left. Note that the x-axis is shown
in logarithmic scale to improve visibility of low magnitude data points. A unity line is shown
for reference to indicate an ideal fit.

a transfer function to the hemodynamic data. The transfer function found, H(z), is given by

H (z) =
−0.22z+0.22

z4−1.9z3 +0.22z2 +1.33z−0.65
. (3.1)

During the fitting, one of the zeros in the numerator was fitted to 0, such that the resulting

transfer function is based on 1 zero and 4 poles. The outcome is visualized in the bode plot in

Figure 3.9. The error bars represent the standard deviation over all cross-correlation subsets and

show an increase in gain over frequency. Similarly, the phase difference changes over frequency,

confirming a frequency dependence for the translation of HbO to ICPip. After applying the

transfer function to low-pass filtered ∆ HbO data of low filter order, the estimated, non-invasive

∆ICPNIRS is plotted in Figure 3.10A. Since the transfer function was applied to low-pass filtered

data rather than narrow band pass filtered data, the test signal has a higher frequency content

than the data used to fit the transfer function. The top graph in Figure 3.10A shows time traces of
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Figure 3.8: The signal to noise ratio (SNR) was calculated as the ratio of frequency specific
amplitudes. The amplitude during ICP oscillation is considered the signal, while amplitude of
the same frequency without induced ICP oscillation is considered noise. The dashed line shows
the noise level at SNR = 1. Error bars show the standard deviation at every given frequency.
Top: Healthy baseline ICP. Bottom: Highly elevated baseline ICP. A single asterisk indicates
significantly different (p < 0.05) average SNR calculated by a paired t-test across frequencies
within one signal type. The pound sign indicates significantly higher SNR in high ICP baseline
(p < 0.05) as indicated by two-sample t-test when treating all frequencies of a signal as one
group.
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24
STD

Figure 3.9: Bode plot of the found transfer function. The error bars show the standard deviation
over all subsets of the cross-validation algorithm used to fit the transfer functions. The mean of
all coefficients of all transfer functions is calculated and its gain (top) and phase delay (bottom)
from ∆HbO to ∆ ICPip is shown above.

ICPip (red line) and our calculated NIRS based ICPNIRS (grey line). The time traces qualitatively

match well in terms of amplitude as well as phase delay (r2=0.86). The lower graph of Fig-

ure 3.10A represents a similar measurement at the same ICP baseline of 40 mmHg in a different

animal. The transfer function result is underestimated but the dynamic trends nonetheless show

high correlation (r2 = 0.57). The over- and under-estimations are also evident in a magnitude

comparison in Figure 3.10C. When comparing the magnitude differences to Figure 3.7, a clear

improvement can be observed, as the linear fit (red line) now lies closer to the unity line (dashed

line). The linear fit still lies below the unity line, indicating a tendency overall to underestimate

the ICPip magnitudes.

Aside from the magnitude similarity, the minimization of phase lags between ICPNIRS and in-

vasively measured ICP (ICPip) is indicative of a good transfer function. Figure 3.10B shows

the average phase delay between ∆HbO and ∆ ICPip in red. Phase differences evolve around
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Figure 3.10: A) Comparison of invasive, parenchymal probe (dotted red line) and non-invasive
NIRS (solid grey line) ICP measurements. Top: Representative example of animal 4 at a base-
line of 40 mmHg. Bottom: Underestimation in animal 5 at a baseline of 40mmHg. Pearson
correlation is shown in the top left of both graphs. B) Phase difference between invasively
measured ICP and estimated NIRS-based ICPNIRS is shown as black error bars. The error bar
indicates the standard deviation and the cross indicates the mean phase difference over all 157
single-frequency data sets. Similarly, the red line indicates the phase difference between inva-
sive ICPip and measured ∆HbO. C) Comparison of magnitudes after transfer function analysis.
The red line indicates a linear fit to the magnitudes. The right sided, downward shift compared
to the ideal unity line indicates a tendency for underestimation of the oscillation magnitudes.
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180◦. Applying the transfer function then allows for a phase delay evolving around 0◦ between

∆ ICPNIRS and ∆ ICPip shown in black.

3.1.3 Discussion

We developed an approach to estimate changes in ICP non-invasively using hemodynamic changes

as measured with NIRS. Using a non-human primate model to induce ICP changes by means

of fluid insertion, we showed that the magnitude and time lag of ICPNIRS changes can be re-

constructed based on a transfer function approach and thus accurately estimate ICPip changes

detected by a conventional invasive probe.

During induced ICP oscillation, we observed that ∆Hb and ∆HbO are out of phase (close to 180◦)

with each other, which is consistent with blood flow and blood volume changes [180].The ICP

changes induced in this study are expected to elicit a global effect across the brain. The change

in ICP leads to a subsequent change in CPP under the assumption that ABP is uncorrelated.

Confirmation of the assumed lack of ABP correlation is expressed in Figure 3.8, in which the

SNR of the induced frequencies is close to 1 for ABP. If CPP decreases as a result of an ICP

increase, it is thus expected that brain oxygenation and ∆HbO decrease. Taken together, our data

therefore suggests that blood flow plays a role in ICP induced changes. Our work is consistent

with a previous study demonstrating the capacity of NIRS to capture fluid injections into the

brain related to ICP [207], yet we expended on this observation extensively in performing the

frequency dependent analysis that resulted in the transfer function demonstrated here.

One of the novel aspects to this study is that we induced changes in ICP rather than ABP. The up-

per image in Figure 3.8 shows average SNR of presumably auto-regulated measurements, while
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the lower image shows a highly elevated ICP baseline, at which auto-regulation can be assumed

to be impaired. Autoregulation is typically quantified under the assumption that ABP changes

are the cause of ICP changes. Very sparse information can be found about changes in ICP with-

out ABP changes that influence the autoregulatory capability of the brain or cerebral blood flow

directly. Our initial analysis showed hemoglobin concentration changes in the absence of signif-

icant reaction in ABP for oscillations in ICP with periods of up to 2 minutes. Our blood pressure

measurements were obtained from the carotid artery, a systemic location external to the brain,

due to the inability to access cerebral, local ABP. Autoregulation derived from carotid blood

pressure alone might therefore lead to false conclusions about autoregulation impairment since

hemoglobin concentrations significantly oscillate with ICP. This limitation underscores the need

for the extrapolation to CPP, which will be possible by measuring ∆ ICPNIRS using NIRS and the

algorithm described here in conjunction with arterial blood pressure measurements.

While oscillations in ICP do not lead to ABP oscillations, we observed that long-term baseline

changes in ICP do lead to transient increases in ABP baseline. This is seen as a systemic regula-

tory effect wherein the body alters ABP to ensure sufficient perfusion to the brain. Theoretically,

the increase in ABP should stabilize CPP, which in turn ensures a steady cerebral blood flow.

Whether this effect is due to the much higher amplitude of the ICP baseline compared to os-

cillation amplitudes, or to the extended period of ICP elevation, or to the long-term anesthesia

remains unknown. We hypothesize that a long duration of ICP elevation triggers an ABP increase

while short duration oscillations induced in ICP do not trigger an ABP response, as observed in

the time traces and SNR plots above (Figure 3.6, Figure 3.8, Figure 3.10A).

The following assumptions need to be valid for using the transfer function to estimate ICP: a)
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A reaction in cerebral hemodynamics to ICP changes must occur, b) other influences on the sig-

nal, such as blood pressure elevation or hemorrhage, are excluded, and c) a linear relationship

between the pressure changes and the hemodynamic changes exists. The three conditions are

addressed as follows:

1. We have shown that ∆HbO and ∆Hb react to induced ICP changes. The magnitudes were

dependent on the ICP baseline, making low-pressure cases less reliable for ICPNIRS esti-

mation. Nonetheless, we found a reaction to pressure changes even at the very low baseline

level.

2. During the experiment, no leakage of cerebrospinal fluid (CSF) or blood was observed.

Furthermore, the blood pressure increase as a reaction to ICP changes was observed only

during long-term baseline changes and not during short periods of induced sinusoidal

changes. However, the effects of anesthesia through isoflurane are uncertain. Future work

with an anesthetic known to have fewer potential effects on cerebral autoregulation and

hemodynamics will help to clarify this concern.

3. Given the small magnitude of changes in ICPip and ∆HbO, we assume local linearity. The

linearity of cerebral autoregulation and the hemodynamic response are discussed in the

literature, and examples can be found for non-linear methods to quantify autoregulation

impairment [157, 208], with an overview of non-linear models given by Payne et al.[4].

However, linear models are more common and the high correlation between ∆HbO and

ICPip shown in Figure 3.7 encourages this assumption.

According to Lassen’s curve [73] the lower limit of autoregulation can be reached and exceeded

if ICP increases, resulting in a decrease of CPP. This implies that the highest ICP baselines we
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induced may fall outside the autoregulated range. The reason for autoregulatory impairment can

be twofold. On one hand, high ICP can exceed the vasodilation limit of arterioles. On the other

hand, fast inflow of saline through the catheter could exceed the fluid uptake rate of the brain.

In either case, autoregulation would influence the capabilities of using simple, linear methods

like transfer functions to estimate ICP from hemoglobin concentrations. Despite the autoregu-

latory behavior, we see large oscillations in ∆HbO. Application of the transfer function shows

suitable, yet noisier oscillations compared to the invasive measurements. Additional methods to

determine the cerebral autoregulation impairment of individual subjects might further improve

ICPNIRS estimation. Active autoregulation could be the cause for the trend toward underesti-

mation of magnitudes seen in Figure 3.10C. Furthermore, the transfer function approach can be

extended to include ABP and cerebral blood flow measurements. As maintaining blood flow is

the goal of cerebral autoregulation, it has great potential to improve the prediction quality. Blood

flow measurements could be added by Diffuse Correlation Spectroscopy (DCS) or transcranial

Doppler ultrasound. DCS is also a non-invasive method which measures microvascular blood

flow and is based on near-infrared light [184].

We demonstrated the feasibility of estimating time traces of ICP changes based on ∆HbO. How-

ever, we were only able to report relative changes. In order to quantify the ICP baseline, addi-

tional information is needed. With estimation of the ICP offset, the transfer function approach

could be used to generate trends over time. Further quantitative ICP estimation of baseline values

may be possible based on more sophisticated machine learning tools.
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3.1.4 Conclusion

Non-invasive methods to estimate ICP are needed to improve treatment of TBI, hydrocephalus,

stroke, and other diseases. Here, we introduced a method that allows for non-invasive, real time

measurements of ICP. We have demonstrated that induced fluid pressure oscillations in CSF in-

fluence cerebral hemodynamics, which we have measured with NIRS. Fitting a transfer function

to the measured changes yielded a mathematical tool to track ICP changes by changes in HbO

over long periods of time. We have presented that a reliable fit is possible for both magnitude and

phase alignment compared with an invasive reference measurement. While our transfer function

approach makes substantial progress toward accurate non-invasive measurements of ICP through

NIRS, further refinements of the experimental setup and the data analysis will be necessary to

improve its applicability across physiological and experimental conditions. Important next steps

include the estimation of ICP baseline through non-invasive measurements and the translation to

human from nonhuman primates. Once this approach is more refined, the use of NIRS has high

potential for clinical translation as a long-term bed-side instrument to observe trends in ICP as

well as a short-term instrument to observe ICP reactions and recovery. Due to its non-invasive

nature, NIRS-based ICPNIRS monitoring may be equally useful for low-risk patients that do not

qualify for invasive measurements as well as in research settings on healthy subjects.

3.2 Quantification of Intracranial Pressure Baseline

Previously, hemodynamic changes measured non-invasively with diffuse optical devices have

been correlated to ICP or CPP [207] and first attempts to predict ICP from these measurements
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of hemoglobin concentrations and CBF have been presented (see Chapter 3.1). Using diffuse

optical devices such as near-infrared spectroscopy (NIRS) [209, 210] and diffuse correlation

spectroscopy (DCS) [184] has the benefit of simplicity of use, given that only one probe needs

to be placed on the head that can measure for hours without causing discomfort or risk to the

patient. Furthermore, these devices can be portable and potentially low cost. Another significant

advantage of diffuse optical methods, such as DCS, which measures changes in cerebral blood

flow, is the sensitivity to the microvasculature, allowing for localized measurements as compared

to global measurements using TCD.

Here we expand the idea of using hemodynamic changes to measure ICP and demonstrate that

absolute values of ICP extraction are possible. We take advantage of changes in the cardiac

pulse waveform with ICP as well as hemodynamics. Specifically, we utilize ICP pulse shape

changes when the ICP baseline increases [211, 212]. A similar idea has recently been proposed

by Fischer and colleagues, who demonstrated a proof-of-concept of estimating ICP in infants

and adults based on pulsatile CBF measurements and a recurrent neural network using a hold-

out validation [72]. The pulse typically shows three distinct peaks, namely the percussion peak

translated from the systolic pulse in the pulsatile arterial blood pressure (ABP), the tidal peak

created as a rebound of the percussion peak (a result of intracranial compliance), and the di-

crotic peak from the closure of the aortic valve (see Figure 3.11c). As ICP rises, the intracranial

compliance changes and so does the ICP waveform, with the tidal wave increasing in height

relative to the percussion wave. Here we use DCS in a non-human primate model in which ICP

was experimentally manipulated to measure the cardiac pulsation of cerebral blood flow, which

also shows the three descriptive peaks. Using a set of physically relevant features and advanced
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machine learning algorithms, we correlated the morphological changes in the CBF waveform

to underlying ICP baselines. This approach permitted a highly accurate estimate of ICP from

non-invasive cerebral blood flow sensing [200, 201, 203, 213].

3.2.1 Materials and Methods

To train a machine-learning algorithm to identify level of ICP from cardiac pulse waveforms,

cerebral blood flow changes were recorded with DCS in combination with an electrocardiogram

(EKG) in five non-human primates (NHP) under different ICP values.

3.2.1.1 Diffuse Correlation Spectroscopy

Diffuse Correlation Spectroscopy (DCS) was used to measure cerebral blood flow. The work-

ing principle of DCS has been described previously (see Chapter 2.4). A single long-coherence

length laser at λ = 850 nm wavelength (DL852-050-SO, CrystaLaser, Reno, NV, USA) was used

for illumination trough a 200 µm-diameter multimode fiber. The source-detector distance was

2 cm and photon counts were recorded at 2 MHz through four few-mode fibers (5.8 µm core

diameter) leading into a four-channel photon counting module (SPCM-AQ4C, Excelitas Tech-

nologies, Vaudreuil-Dorion, Quebec, Canada). Using software correlation, the photon intensity

was auto-correlated and all four channels were averaged. The intensity auto-correlation was then

converted to electric-field auto-correlation and fitted to the solution of the diffusion equation

[186]. Using this technique, we achieved a sampling rate of 50 Hz, which was fast enough to

resolve the cardiac pulsation. CBF was extracted as an expression of the Brownian motion diffu-

sion coefficient αDB (in cm2/s) and here described as a percentage change from the baseline, as
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∆CBF. A synchronization pulse was sent to the auxiliary port of the DCS at any time the 3-lead

EKG registered a QRS complex in the signal. The EKG used was an in-house amplifier circuit

that allowed the detection of a cardiac pulse when the electrical signal of the EKG exceeded a

threshold manually set for each subject at the beginning of the experiment. This threshold was set

to be exceeded during the R-peak in the QRS complex of the EKG. The thresholding approach

of the EKG signal allowed for precise recording of the onset times of a cardiac pulse.

3.2.1.2 Experimental Design

All procedures were approved by the Institutional Animal Care and Use Committee of the Uni-

versity of Pittsburgh and complied with guidelines set forth in the National Institute of Health’s

Guide for the Care and Use of Laboratory Animals (2011). The measurements were conducted

on five NHPs (Macaca mulatta, N = 5, f/m: 0/5, 8.2 ± 1.5years, 10.2 ± 2kg). All animals were

initially sedated using 20 mg/kg of Ketamine independently or in combination with 1mg/kg Di-

azepam and 0.04mg/kg Atropine. After placing an arterial line in the external carotid artery, the

animals were ventilated and maintained under anesthesia using a combination of 10-25 µg/kg/hr

Fentanyl administered intravenously and a minimal amount of Isoflurane gas (< 1%). At the

same time 0.1mg/kg/hr of Vecuronium Bromide paralytic was given. Each animal was held

with its head facing forward in a stereotaxic apparatus and its stomach on the table. The source

and detector fibers of the DCS system were placed directly on the exposed skull of the animals

to reduce the influence of skin and muscle layers of the tissue. The fibers were placed laterally

on the right hemisphere near anterior-posterior zero in stereotaxic coordinates (Figure 3.11a).

For ICP monitoring and pressure manipulation, two small craniotomies were made. One permit-

105



Figure 3.11: Experimental setup and data analysis. (a) shows the experimental setup with the
placement of optical fibers and pressure sensor as well as the catheter on the exposed skull of
the monkey. The traces at the right show an example of changes in cerebral blood flow (∆CBF)
and ICP. The dashed line marks the maximum of the QRS complex in the EKG recording. (b)
shows how the saline reservoir connected to the lateral ventricle influences ICP. The left two
pulses show ICP pulsation shape changes, the right two curves show similar changed in blood
flow pulsation. (c) shows which morphologically relevant features were extracted from the
cartoon version of an ideal ∆CBF pulse.
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ted access to the lateral ventricle for a catheter (Lumbar catheter, Medtronic, Minneapolis MN)

and the other led into the brain parenchyma for placement of the ICP sensor (Precision Pres-

sure Catheter, Raumedic Helmbrechts, Germany). ABP was measured from the A-line and ICP

from the invasive sensor at 100 Hz by a MPR1 Datalogger (Raumedic Helmbrechts, Germany).

Alignment markers were sent from a central voltage source to the pressure MPR1 Datalogger

and the DCS. The ventricular catheter was connected to an open saline reservoir that was lifted

relative to the animal’s head height to induce fluid pressure changes (Figure 3.11b). By main-

taining a constant height, the pressure of the saline column translated to the cerebral ventricle

and ICP was altered. Due to CSF absorption in the brain, the catheter was held open to allow for

constant saline flow, which permitted maintenance of an ICP baseline level. The first measure-

ment for every subject was performed at the opening ICP. The ICP was then leveled to 9mmHg

for a second measurement, if the initial ICP was at or below this level. From there, the ICP was

gradually raised to approximately 12mmHg, 15mmHg, 20mmHg, and 30mmHg. In three of the

five subjects, the ICP was returned to a level of 9mmHg between elevated levels (12-30mmHg),

to distinguish ICP-induced influences on the hemodynamic signal from those associated with the

passage of time during the experiment. Every ICP level was held for approximately 90 minutes

while ICP and ∆CBF were recorded throughout this time period.

3.2.1.3 Signal Processing

General signal processing was performed using Matlab R2019a (The MathWorks Inc., Natick,

MA, USA). All recorded signals were aligned with digital markers sent to the DCS and MPR1

Datalogger. EKG markers were used to measure the pulse onsets. Over the course of several
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hours, laser instabilities were observed as seen in fluctuating y-axis intersection of the intensity

auto-correlation curve, known as β . The presence of a laser instability was determined by any

β value, averaged over 10 seconds, that showed a deviation greater than 0.01 from the median.

If an instability was detected in a measurement, we removed all points in time where β deviated

more than half a standard deviation from the median. Unrelated to β , some DCS pulses did not

follow the canonical cardiac waveform shape, likely due to motion artifacts. These motion arti-

facts can be caused by human intervention for periodically filling the saline reservoir, watering

the eyes of the NHP that were held open for visual stimulation of the brain in a parallel exper-

iment, or maintenance of the anesthesia and paralytic solution syringe pumps. To exclude such

pulses, we used a z-score rejection. The z-scored ∆CBF over all pulses within a measurement (a

period of approximately similar ICP for 90 minutes) was calculated at each time point. Individ-

ual pulses that showed a z-score > 3 from the mean of the individual ICP baseline for individual

subjects were rejected. After rejection of data, 120 consecutive pulses were averaged to improve

the signal-to-noise ratio (SNR). In our NHPs, 120 cardiac pulses corresponded to approximately

60 seconds of data, given a typical heart rate of 120 beats per minute. The invasively measured

ICP was averaged over the time of these pulses to function as the ground truth for training of the

machine learning approach. The average window was then shifted by 10% of the window length,

or 12 pulses, and the procedure was repeated for the entire sequence of ICP data at each ICP

level. This approach balanced between the need to average data to reduce measurement noise

and preserve a large amount of training data for the machine learning algorithm. The averaged

pulses were then normalized to establish a consistent range across animals. The normalization

was performed in both the x- and y-direction, i.e. the blood flow change across a pulse was set to
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be between 0 (diastolic) and 1 (systolic), and the length of a pulse was set to be 151 data points

wide from diastolic to diastolic point in time by means of spline interpolation. This normaliza-

tion also removed the effect of heart rate changes that can be independent of ICP changes. To

improve the SNR further, an adaptive filter was applied to the averaged pulses. Here we used a

Kalman filter adaptation, which was applied consecutively to all averaged pulses. Such filtering

allowed for the generation of an ideal pulse over time as an average of all previous pulses. Each

pulse was compared to the ideal pulse, the difference was calculated, and the pulse was then cor-

rected based on the error. Empirically determined constants defining the trust in the ideal pulse

and the measurement determined the strength of correction, weighted by the calculated error.

The ideal conception was then updated by adding the new measurement to the ideal conception

calculation. As the waveform changed with increasing ICP, so did the Kalman filter. The adap-

tive filter permitted reduction of the noise while maintaining the cardiac pulse morphology and

the ICP based changes thereof. Given the sparsity of recorded pulses above 30mmHg of ICP, the

prediction was only performed for ICP values between 0 and 30mmHg. The above procedures

resulted in a total of 14,121 averaged pulses across all five animals.

3.2.1.4 Feature Extraction

After normalization and filtering, morphological features were extracted. In Figure 3.11b the

morphological differences for both ICP and ∆CBF for low (bottom) and high (top) ICP are

shown. To describe the subtle differences in the waveforms, the features shown in Figure 3.11c

were extracted using the peak finding algorithms provided by the matlab function “findpeaks”.

To describe the individual waves within a cardiac pulse, peak height (pk), prominence (p) and
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Table 3.2: Morphological features extracted from cardiac pulsation in ∆CBF

Individual peak analysis Peak to peak differences Full pulse analysis
P1pk P3pk d(P1−P2)pk Area under the curve (AUC)
P1pos P3pos d(P2−P3)pk Mean arterial pressure (MAP)
P1w P3w d(P1−P2)pos
P1p P3p d(P2−P3)pos
P2pk d(P1−P2)w
P2pos d(P2−P3)w
P2w d(P1−P2)p
P2p d(P2−P3)p

full width at half maximum (w) were extracted. In addition, the time point of the peak relative to

the prior diastolic minimum (pos), as well as the area under the curve were calculated. Further

information was gained by calculating the differences between waves. A complete list of all

features is shown in Table 3.2. P1, P2 and P3 refer to the percussion, tidal and dicrotic peaks

of the pulse wave, respectively. The peak to peak differences were denoted as d(P1−P2) and

d(P2−P3) and were calculated for all four single peak features. In some cases, a feature was not

detectable, e.g. when the percussion and tidal peaks (P1 and P2) merged to a single peak (P1) at

high ICP. In that case the dicrotic peak (normally P3) became the second detected peak P2) and

no P3could be found. In such cases, all undetected features were set to 0, but still used in the

machine learning algorithm as the lack of a peak could be a strong indicator of elevated ICP. An

additional feature added to the algorithm was the averaged mean arterial pressure (MAP) over the

time span of the 120 averaged pulses. This was done to avoid misinterpretation of elevated MAP

for elevated ICP. Combining the 22 features created a feature set that could be used to describe

the individual averaged pulse. A feature set was calculated for every averaged cardiac pulse,

creating a matrix including physiologically relatable information to use for supervised machine

learning.
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3.2.1.5 Machine Learning

To allow for training and testing of the machine learning approach, the data were first separated

into training and testing data sets. The testing set, consisting of randomly sampled 20% of all

available feature sets, was held out from the training process (performed on 80% of the data) and

used in the final cross-validation. The training set was then used to build a regression forest us-

ing the python toolbox scikit-learn [214]. The functionality and working principle of regression

forests and random decision forests in general has been explained in detail elsewhere [215, 216].

The regression forest chosen here was a bagged ensemble of 1000 individual decision tree re-

gressors. Each decision in the decision tree was binary and described by a threshold across a

single feature chosen to yield the highest information gain. Bagging describes that each individ-

ual decision tree in the ensemble was trained on a small subset of the available training data set.

This reduces the risk of overfitting to the training set. Therefore, we chose to only include a ran-

domly sampled fraction of one third of the training set in each tree. The number was chosen by

empirical evaluation. No restrictions were given on the features available to every node or tree,

such that all features could be used at any time. The maximum depth of each tree was set to 15.

An increased tree depth can yield better results but risks overfitting. In a decision tree regressor,

the tree depth is exponentially proportional to the resolution at which ICP can be estimated – a

depth of 1 can distinguish 2 ICP levels, while a depth of 3 can distinguish 8. The parameters

of ensemble size and tree depth as well as bagging quantity were chosen empirically to achieve

a high precision and minimize overfitting. After training the regression forest with the training

data set and the corresponding invasively measured ICP as the ground truth, the testing data set

was used. A prediction of non-invasive ICP based on the feature sets of each individual pulse
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was generated and the correlation to the invasively measured ICP was determined.

3.2.2 Results

We successfully induced ICP baseline changes in 5 NHPs and recorded pulsatile ∆CBF through-

out the experiment for multiple hours to generate a data set large enough for machine learning

application.

3.2.2.1 Data Acquisition

For every NHP, data were collected in sets of approximately 90 minutes per ICP baseline, with the

total amount of data collected for animals varying between 9.1 and 16.6 hours. At the beginning

of every set, the ICP was adjusted. The individual measurement sets were combined in post

processing. Changes in ICP translated into both changes in ABP and ∆CBF. This was especially

apparent when lowering the ICP from an elevated state back down to 9mmHg (Figure 3.11a).

By measuring ABP, ICP, and ∆CBF at high sampling rates, we were able to observe individual

cardiac pulses and their characteristic peaks and valleys (Figure 3.12b).

3.2.2.2 Waveform Extraction

The morphological details in the ∆CBF pulsatile signal needed were apparent by comparing the

pulses of low and elevated ICP baselines. Comparing pulses at ICP baseline below 10mmHg,

which is considered normal pressure, with pulses during ICP baselines above 20mmHg, which is

pathologically high, showed subtle but distinct differences (Figure 3.13). Overall, a higher ICP

led to a broadening and rightward shift of the cardiac pulse compared to the previous diastolic
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Figure 3.12: Example recording of data in one subject. (a) shows a full measurement from one
subject, low-pass filtered (cut off frequency at 0.008 Hz) to emphasize the baseline. Dashed
line indicates where figure (b) is located. In (b), a close-up of data at the dashed line is shown
to see individual pulses. The pulses were filtered by a moving average of 0.1 seconds.

minimum. The strength of this effect differed between subjects (rows in Figure 3.13, with NHPs

2 and 4 exhibiting the least apparent changes but nonetheless subtle morphological shifts. ICP

and ABP waveforms were in good agreement with the non-invasively measured ∆CBF waveform.

ICP, measured through a parenchymal pressure transducer, and ABP, measured in the carotid

artery through an A-line, must be measured invasively, leaving ∆CBF as the only non-invasive

measurement we performed that was able to show these subtle changes.

3.2.2.3 Regression Forest Learner

We were only able to collect a small amount of data in one animal beyond 30 mmHg (Figure

3.14a). Therefore, the training and testing of the regression forest was only performed for data

below 30 mmHg. The held-out testing data was closely matched (r2 = 0.91) between the inva-
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Figure 3.13: Averaged cardiac pulses of all five NHP for ∆CBF, ICP and ABP. The solid black
line in each graph shows all pulses below 10mmHg for the specific NHP. The red dashed line
shows pulse averages of ICP baselines above 20mmHg. The shaded area shows the standard
deviation over all averaged pulses at each time point. The pulses were normalized in height by
division of maximum, thus showing a per unit (p.u.) magnitude, and spline interpolated in time
to be of the same length.
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sively measured ( ICPinv) and estimated ( ICPest) pressure, as seen in Figure 3.14c. The shaded

area shows the confidence interval of the prediction calculated using the Jackknife algorithm de-

scribed by Wager et al. [217]. The dashed lines show an area of ±2 mmHg around the ideal

match shown as the solid line. A mean squared error of 3.3 mmHg was calculated for this test.

A good match between estimated and invasively measured ICP can be seen, especially around

10 mmHg, which is also the area with the most available data (shown in 3.14a). Further evi-

dence for a good fit is given by the Bland-Altman plot that shows how 95% of all data points are

within 3.7 mmHg of the invasive reference measurement (Figure 3.14d). We found that the area

under the curve (AUC) of the cardiac pulse and the MAP baseline value (not pulsatile shape)

were the most important features in our data (Figure 3.14b). This suggests that a measurement

of MAP, for instance by blood pressure cuffs or photoplethysmography, is essential for a precise

prediction of ICP. In fact, when removing MAP as a feature to the regression forest, to generate

a single device approach only using information from DCS, the r2 value dropped to 0.82 (data

not shown). The area under the curve was the second most important feature for predicting ICP,

which is confirmed by the wave broadening (Figure 3.13). The time delay to the dicrotic wave,

the third peak in the cardiac pulse, was the third strongest indicator of ICP. This feature is inter-

esting as it might not be present in some averaged waveforms. Therefore, the lack of a dicrotic

wave can offer valuable information to the fitting algorithm. To simulate a continuous prediction,

we ran all available waveforms for a single subject through the predictor and plotted estimates

against invasive measurements. Figure 3.14e shows this example measurement, of which ran-

domly selected 80% of the pulses were also used in the training set and only 20% held out from

training representing new data points. The graphical representation over time shows good agree-

115



ment between the estimated (gray colored graph) and the invasive measurement (black colored

graph) and the mean square error (MSE) between the two was calculated to be 3.2 mmHg and is

thus comparable to the test performed with only held out data (Figure 3.14c).
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Figure 3.14 (previous page): Results of the regression forest machine learning approach. (a)
shows the distribution of the available data. The dashed line marks the maximum ICP level
that was fitted for at 30mmHg. (b) shows the distribution of features used in the regression
forest as a percentage of all chosen features in all decision criteria generated. The standard
deviation across individual trees is shown as error bars. Nomenclature is according to Table
3.2. (c) shows the performance of the regression forest by plotting estimated ICP (ICPest) over
invasively measured ground truth ( ICPinv). The solid line shows the ideal fit, while the dashed
lines mark an area of 2mmHg around the ideal fit. The shaded area shows the confidence
interval. (d) graphs the difference between ICPest and ICPinv over ICPinv in a Bland-Altman
plot. The dashed lines span a region of 95% of the distribution, corresponding to a standard
deviation of 1.96. The histogram on the right of this graph shows the distribution of data points
in number of samples. (e) shows a continuous estimate of ICP for NHP 3. The gray line shows
the estimated ICP, and the black line the invasively measured ICP. An r2 = 0.92 and a mean
squared error MSE = 3.2mmHg were achieved.

3.2.3 Discussion

In this work, we demonstrate that changes in baseline ICP influence the shape of the cardiac

pulsation observed in the ICP and ∆CBF waveforms. This effect allowed us to estimate ICP

using a machine learning approach with ∆CBF data obtained from DCS. In our testing in five

macaque monkeys in which we induced ICP changes with a catheter placed in the lateral ventri-

cle, we achieved a very high similarity between estimates of ICP and the invasive measurements

(r2 = 0.91, cross-validated), with an estimation error of MSE = 3.3mmHg and a 95% similarity

to the invasive data within a 3.7mmHg range. The results therefore indicate the possibility of

reliable estimation of ICP in absolute numbers solely based on non-invasive measurements of

MAP and ∆CBF. The addition of EKG, another non-invasive measurement, allowed for precise

waveform alignment and averaging and is highly recommended in this setup, but not essential if

a hypothetical clinical application would not permit its use. The invasively measured ICP was

used as a validation reference, but it was not free of measurement error, due to placement lo-

cation in the brain tissue and inherent device limitations, such that differences between the two
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can partially be explained by the limitations of the reference measurement itself. The benefit of

a feature-based machine learning approach like the regression forest lies in the information we

receive about the importance for every physiological feature, i.e. how often a feature allowed for

the most significant split of ICP values. This information can be used to improve the algorithm

in the future or reject features to enhance performance for real-time applications. We found that

MAP and area under the curve of the ∆CBF waveform were the most important features, while

features that can potentially be removed without reducing the prediction performance were the

derivative features showing differences in peak height, prominence, full width at half maximum

and position between adjacent peaks. Some groups have tried to predict CPP rather than ICP

[51, 218]. Under the assumption that CPP = MAP – ICP, we would be able to calculate ICP

from the estimated CPP through a non-invasive measurement of MAP. We tried fitting to CPP

directly by replacing the ground truth of invasively measured ICP with invasively measured CPP

and found that CPP prediction yielded r2 = 0.98. While this can be considered a good fit, de-

riving ICP from here, by subtracting the measured MAP value from the estimated CPP value,

showed worse performance, typically overestimating the true ICP with a wider spread of ICP

values and yielding r2 = 0.76 (data not shown). This is likely due to the assumptions used to

calculate the reference CPP values. Describing CPP as the difference between MAP and ICP is

an approximation often used in the clinic, and yet it neglects the effect of vessel wall tension and

assumes that venous sinus pressure is always equal to ICP. Furthermore, the MAP feature was

used in over 90% of all decisions, which intuitively makes sense given that normal MAP values

are approximately one magnitude larger than normal ICP values but overrules the sensitivity to

ICP influences on CPP. We therefore chose the direct ICP estimation over the CPP estimation.
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Despite the good performance of ICP estimation with our approach, a set of limitations apply:

Generalization and Inter-Subject Variability

1. The ability of the brain to autoregulate blood flow under differing pressure conditions can

vary among individuals and is one of many ways the five animals in this study differ from

each other.

2. Despite our best efforts at maintaining inter-experimental similarity, some subject variation

can be explained by slight variations in the probe placement for DCS as well as the ICP

sensor and the ventricular catheter.

3. While our approach outperforms current non-invasive alternatives, estimates of ICP in

this study were performed on held out data of the same NHP used for training. Further

testing on additional NHPs (not used to train the algorithm) and testing on human subjects

is needed to make a direct comparison and draw firm conclusions about the potential of

clinical use.

Experimental Setup

1. In our study, changes in ICP were induced with an open saline reservoir connected via

a catheter to the lateral ventricle. These changes induced a hydrocephalus-like state in

which ICP was altered, but it is unclear how this type of manipulation of ICP will relate to

situations involving brain swelling or hemorrhage. Future work will be necessary to test

the generality of our ICP prediction in other disease states to make application in traumatic

brain injury and stroke possible.
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2. The distribution of blood vessels and therefore blood flow as well as intracranial pressure

was assumed to be equal throughout the brain. This might limit the application in certain

clinical settings like local edema or hemorrhage. However, finding and comparing dif-

ferences in healthy vs. impaired brain regions can be a strength of this system as well,

allowing for localized ICP measurements.

3. Under the assumption that morphological waveform changes are a result of brain impedance

changes due to elevated pressure, one must consider that the impedance to flow can be

changed by other mechanisms as well, including cerebral autoregulation which influences

the vasomotor tone. Influences of autoregulation are not considered artifacts in this study

but rather a potential contributor to the signal.

4. Autoregulatory impairment and vasomotor tone can be influenced by anesthesia, which

is a limitation of the study design. The isoflurane gas anesthetic, which is suspected to

negatively influence autoregulation [138], was kept at a minimum through the inclusion

of fentanyl. Nonetheless, the use of anesthesia may influence the generalizability of our

results to measurements of ICP in awake individuals or those under different anesthesia

regimes.

Signal Processing

1. To train a regression forest, a large data set of features must be generated. This procedure

can, depending on the complexity of features and amount of training data, accumulate to

many hours of processing time. Once a regression forest is trained however, the application

can be done in real-time, given that regression forests perform simple comparisons at each
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node in each tree, which require minimal computational power.

2. The accuracy of the regression forest prediction is dependent on the training data set size.

Figure 3.14c shows an increasingly larger confidence interval with increasing ICP, which

is an effect of fewer training data points at larger ICP values (as seen in the distribution in

Figure 3.14a).

Our work compares favorably to other non-invasive ICP monitors using TCD. Cardim and col-

leagues reported confidence intervals between 4.2 to 59.6mmHg when comparing a large number

of TCD-based approaches, with an overall confidence interval around 12mmHg [219]. In the re-

view by Rosenberg et al. a large portion of the discussed ICP monitoring devices used CT or

Ultrasound to measure the diameter of the optical nerve sheath [6]. They only make a binary

decision between elevated and normal ICP, with a cut-off pressure at 20mmHg. Reported sensi-

tivity for TCD ranges from 74% to 95%, with a specificity of 74-100% for 7 independent studies

identifying ICP > 20mmHg. CT approaches show similar results as they rely on the same phys-

iological response to elevated ICP. Using our approach, a sensitivity of 88% was achieved, with

a specificity of 97%, placing the DCS-based ICP estimation at the top half of the reported clas-

sification results, while having the additional advantage of allowing continuous predictions as

opposed to binary decisions. This implies that our approach can potentially be used to iden-

tify cases of elevated ICP prior to EVD placement, currently estimated by enlarged ventricles in

magnetic resonance imaging (MRI) or computer tomography (CT) in TBI patients.
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3.2.4 Conclusion

We have demonstrated the potential of DCS to be used as a non-invasive monitor of ICP by

interpreting the waveform shape of cardiac pulsation of ∆CBF. The performance of our machine

learning approach relied on incorporating non-invasive measurements like EKG, for better pulse

averaging, and MAP, for excluding events of elevated MAP. The regression forest reached an

r2 = 0.92 (cross-validated) with a mean squared error of 3.3mmHg. In the future, a transition

to human application in clinical settings is needed to test the performance of a DCS-based ICP

monitor against clinically relevant invasive monitors in disease states that result in altered ICP

for reasons different from the fluid pressure elevation method used here. In addition, increasing

the number of subjects will be essential in future work to account for inter-subject variability and

improve the generalization of the approach. Nonetheless, our method opens the door for ICP

monitors in patients with less severe injuries or diseases as well as healthy patients for research

purposes.

3.3 Combination of Intracranial Pressure Fluctuation and Base-

line Prediction

The approaches for ICP estimation described in chapters 3.1 and 3.2 show good performance for

the estimation of ICP fluctuations and offsets, respectively. The Transfer function approach based

on measurements of ∆HbO have a temporal resolution of 5Hz given the sampling rate of the

NIRS device, with a potential to be increased in the future. The major drawback of this approach

is the missing offset estimation. Sometimes, knowing that a change in ICP occurred is sufficient,
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for example in bedside monitoring in the hospital after shunt surgery. Often enough, the initial

diagnosis needs to measure the actual ICP offset. To overcome this shortcoming a machine

learning based estimation of ICP was developed, using the pulsatile shape of ∆CBF measured

with DCS. A good performance in predicting ICP offsets is shown, but the major drawback of

this technique is the temporal resolution and sensitivity to small changes in ICP. Thus, the final

product for ICP estimation with both high temporal resolution and sensitivity as well as offset

estimation will be the combination of both approaches. A proof of concept (Figure 3.15) shows

the potential of this combination. All ICP data for one NHP was combined into one data set.

∆CBF was calculated using the transfer function approach derived from ∆HbO. The quantitative

ICP offsets were calculated by averaging cardiac pulsations in ∆CBF, extracting morphological

features, and passing the features through the regression forest. The center time point of the

averaging period was used to align the estimated baseline ICPest and the estimated ∆ICPNIRS. The

ICPest signal, being sparse compared to the 5 Hz ∆ICPNIRS signal, was interpolated by repetition

of the previous value. The two signals were then added to yield a combined estimate. It is

worth mentioning that both devices are non-invasive, bedside compatible instruments operating

with near-infrared light. They can be combined into a single, small probe (see Chapter 5) and

continuously monitor for many hours. The clinical impact of this device can be high, but research

for pressure dynamics and cerebral autoregulation can benefit as well through the availability of

healthy volunteer studies. Future work will show the feasibility of the combined instrument in

human studies. A first look at clinical translation is presented in Chapter 5.
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a

b

Figure 3.15: Proof of concept for a non-invasive ICP monitor for one example animal. a) shows
ICP measurements for a full experiment with multiple ICP offsets and ICP fluctuations at every
offset. Invasive ICP (red) is the ground truth and properly followed by offset estimation using
∆CBF pulse data measured with DCS and converted by the trained regression forest into ICP
offset estimations (blue). NIRS based ICP fluctuations estimations regain temporal resolution
(green). b) shows a magnified section marked with a blue box in a).
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Chapter 4

Quantification of Cerebral Autoregulation

Impairment

The measurement of ICP in a non-invasive fashion, as described in the previous chapter, has the

potential for a substantial clinical impact. It is not only because of the access to ICP alone, but

because it allows for reliable measurements of cerebral autoregulation (CA) as well. The gen-

eral concept, common measurement methods, and common classification of CA measurement

methods have been introduced in Chapter 1.2. Despite many decades of research and a large

variety of measurement methods, a consensus on the effectiveness and use of CA measurements

to guide clinical treatment has not yet been reached. We believe that common challenges in CA

assessment are the comparison to Lassen’s curve as a point of reference and the unavailability

of ICP measurements in healthy volunteers due to the highly invasive acquisition. These chal-

lenges necessitate clinical studies to rely on data from patients with severe injuries and diseases

that might affect the autoregulatory system in unpredictable ways and make comparisons across

127



institutions with varying guidelines for treatment challenging. We set out to overcome these

challenges of current CA studies and to create a basis for CA assessments by showing the effects

of ABP and ICP perturbations in healthy non-human primates (NHP) with controlled CA impair-

ment by means of isoflurane anesthesia. Inhaled and intravenous anesthetic effects on cerebral

physiology can differ strongly, which can be translated to their effect on vasodilation and car-

diac output modulations in a dose related manner, as well as cerebral metabolic rates [135], as

discussed in Chapter 1.2.2.5. Isoflurane and fentanyl anesthetics are ideal candidates to compare

effects of CA and the effects of regulatory vasodilation on CBF maintenance. With this work, we

will show how anesthetics can be used to manipulate CA in non-human primates and how this

generates a healthy subject basis for CA studies. We will show the agreement of measurement

methods of Lassen’s curve [73] (Chapter 1.2.3.1), Fraser’s phase delays [150] (Chapter 1.2.3.2),

and Czosnyka’s pressure reactivity index [159] (Chapter 1.2.3.3), under conditions of ABP and

ICP oscillations, and we will show the importance of CPP measurements as compared to ABP

measurements alone.

4.1 Materials and Methods

We compared measurements of autoregulation in a NHP model during intact and impaired au-

toregulation, induced both by elevated ICP and change of anesthesia between isoflurane and fen-

tanyl. Isoflurane is used to impair CA due to its vasodilation and blood pressure reduction effects

(see Chapter 1.2.2.5), while fentanyl is not known to have significant effects on the vaso-motor

tone and maintains CA.
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4.1.1 Diffuse Correlation Spectroscopy

In order to measure CBF we used a custom-built diffuse correlation spectroscopy (DCS) system.

Details about the specifics and DCS operation can be found in Chapter 2.4. Optical fibers were

placed on the exposed skull, one fiber delivering long-coherence length laser light (785nm or

850nm wavelength). The returning light was captured by 4 bundled single-mode or few-mode

detector fibers 2 cm away from the source light. Software correlation was used to measure tem-

poral changes in speckle patterns in the perfused brain tissue. The fit to the theoretical solution

to the diffusion equation yielded the diffusion coefficient term αDB, which we here refer to as

CBF and the relative change is named ∆CBF = CBF−CBF0.

4.1.2 Experimental Setup

All procedures were approved by the Institutional Animal Care and Use Committee of the Uni-

versity of Pittsburgh and complied with guidelines set forth in the National Institute of Health’s

Guide for the Care and Use of Laboratory Animals (2011). The facilities at the University of

Pittsburgh are accredited by the Association for Assessment and Accreditation of Laboratory An-

imal Care International (AAALAC) and in compliance with the Standards for Humane Care and

Use of Laboratory Animals of the Office of Laboratory Animal Welfare (OLAW D16-00118).

Furthermore, this manuscript is in compliance with the Animal Research: Reporting In Vivo

Experiments (ARRIVE) guidelines. Measurements were taken on a group of 12 NHPs (Macaca

mulatta, f/m: 0/12, 8.1 ± 1.7 years, 9.9 ± 2.5kg). The cohort of animals used in this study

is partially overlapping with NHP used for research in Chapter 3. Therefore, protocols of ani-

mal preparation and anesthesia were identical. For this study, 7 animal were anesthetized with
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1-3% of isoflurane, while 5 animals received a combination of intravenously administered 10-

25 µg/kg/hr of fentanyl and a minimal amount of isoflurane gas (< 1 %). Anesthesia levels were

adjusted throughout the experiment to ensure sufficient anesthetic depth as indicated by either

a rise in ABP for isoflurane anesthesia, or a spike in heart rate after a toe-pinch test in fentanyl

anesthetized NHPs. All monitoring devices, including intraparenchymal ICP, invasive ABP, and

NIRS, as well as the intraventricular catheter were placed and recorded identical to the setup

described in Chapters 3.1 and 3.2 (Figure 4.1a).

4.1.3 Experimental Design

Similar to experiments in Chapter 3, ICP was oscillated at frequencies of 0.025Hz, 0.059Hz,

0.017Hz, 0.033Hz, and 0.009Hz using the saline reservoir connected to the ventricular catheter.

These frequencies were chosen to be around the autoregulatory cut-off frequency [150, 151].

Similarly to above experiments, the ICP baseline was changes from normal pressure (approxi-

mately 3-9 mmHg) to highly elevated pressure (40mmHg). In addition to ICP, PEEP was os-

cillated using a programmable ventilator (EMV+, 731 Series, ZOLL Medical Corporation, MA,

USA) in 6 non-human primates (NFentanyl = 5, NIsoflurane = 1) as shown in Figure 4.1c. The

PEEP value was set to 6cmH2O (8.1mmHg) and oscillated at the same frequencies as ICP with

a magnitude of 4cmH2O (5.4mmHg). ABP oscillations were performed on every ICP baseline

after the ICP oscillations in the same order of frequencies.
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Figure 4.1: Experimental Setup. (a) shows the location of DCS, catheter and ICP sensor relative
to the NHP’s head. These positions were maintained across all NHPs. (b) The saline reservoir
connected to the ventricle catheter was raised and lowered relative to the NHP’s head to allow
for ICP manipulation. (c) Change in positive end-expiratory pressure (PEEP), the pressure
remaining in the lungs after exhalation, through active programming of the ventilator influences
systemic mean ABP (MAP).
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4.1.4 Signal Processing

To examine the effects of anesthesia and CPP on CA, we assessed it in terms of static CA using

Lassen’s curve, dynamic CA using phase differences between ICP and ABP, and pseudo-dynamic

CA using PRx. For all CA calculations the signals of ABP, ICP and CBF were first aligned based

on markers set during the experiment. Mean ABP was calculated using the clinical standard of

2/3 diastolic ABP plus 1/3 systolic ABP. CPP was then calculated as mean ABP - ICP. All signals

were down sampled to 5Hz.

4.1.4.1 Static Autoregulation

Lassen’s curve was calculated to see the full range of CPP values and the influence on the reg-

ulation of CBF. All data were averaged in bins of 10 seconds to remove effects of respiration

and cardiac pulsation. The CBF data was cleaned from artifacts by z-score rejection (z > 0.5)

on an individual NHP basis, only if signs of artifacts were detected. The artifacts in question

come from laser instabilities that were not foreseen and were later removed by identification of

the β value, which is defined as the intensity auto-correlation at a zero-delay time, subtracted by

1. A measurement was said to have artifacts if at any time point in β value was smaller than the

median (approx. 0.1) by 0.01. In stable measurements, the β value is not expected to change

significantly from its median given the low-pass filter applied thorough the averaging described

above. When laser stability was lost, β started fluctuating significantly and the time point was

identified as unstable by its z-score. Afterwards, all CBF data points were cleaned further by

rejecting any averaged 10 second window of CBF outside a z-score range of 2, rejecting further

artifacts from room light, motion, and remainder of laser instability. Data rejection was done on
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a per animal basis. CBF data was then averaged according to the underlying CPP in 180 bins of

1mmHg width to calculate an average CBF as a function of CPP. For Lassen’s curve, CBF curves

were mean subtracted and mean divided for each NHP before group averaging of isoflurane and

fentanyl anesthesia.

4.1.4.2 Dynamic Autoregulation

Induced oscillations in ABP and ICP were used to calculate the phase difference between ABP

and ICP, to allow a frequency domain measurement of dynamic autoregulation. To extract the

phase information, narrow bandpass filters were generated using the Parks-McClellan finite im-

pulse response filter generation algorithm in Matlab R2019a (“firpmord” and “firpm”, The Math-

Works Inc., Natick, MA, USA). This filter generates a pass band of 0.03Hz to either side of the

induced frequencies such that the extracted signal is almost a perfect single frequency sinusoid.

The Hilbert transform was applied to this signal, generating an envelope of the sinusoid and

containing information of both magnitude and phase of the induced oscillations. Phase infor-

mation was calculated independently for both ICP and ABP. Subtracting ICP phase from ABP

phase yielded phase delay, which has previously been reported by Fraser et al. to be indicative

of autoregulation. We performed this calculation independent of the origin of oscillation (fluid

induction vs. PEEP) and averaged the phase delays according to their anesthesia protocol.

4.1.4.3 Pseudo-Dynamic Autoregulation

The PRx value was calculated based on the Pearson correlation coefficient of moving averaged

ICP and ABP time traces. Signals were down sampled to 0.1Hz by averaging 10 second periods
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of data. The Pearson correlation between down sampled ICP and ABP was calculated over 5-

minute-long periods. The same windows were used to calculate an average CPP. PRx values were

sorted in 150 groups of CPP values between 0 and 180mmHg. Before averaging the PRx values,

the Fisher’s Z transformation was applied to account for cosine shaped Pearson correlations. The

normal distributed Z values were then averaged, and the inverse transformation applied. This

algorithm was applied to the two groups of different anesthesia protocols separately.

4.2 Results

From a total of 12 NHPs, we recorded CBF, ABP and ICP during varying pressure conditions

in ICP and ABP. We collected a total of 45.6 hours of data in 7 isoflurane-anesthetized NHPs

and a total of 60.5 hours in 5 fentanyl-anesthetized (with < 1% isoflurane) NHPs. During these

measurements we successfully elevated ICP by fluid induction in the ventricles and were able to

observe the reaction in ABP and CBF (Figure 4.2).

4.2.1 Static Autoregulation

Static autoregulation was assessed by Lassen’s curve (Figure 4.3). Fentanyl-anesthetized NHPs

show a plateau of ∆CBF between 60mmHg and 100mmHg, indicating intact CA. Sloped ar-

eas below and above the plateau, called lower (LLA) and upper (ULA) limit of autoregulation,

showing CA impairment. On the other hand, isoflurane showed data dominantly below LLA,

indicated by the slope and constantly low CPP in these NHPs. The histograms of CPP values

show a wider spread in fentanyl than in isoflurane anesthesia, with overall higher values. The
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Figure 4.2: A representative measurement of one NHP under fentanyl anesthesia. The left side
shows the entire time trace of measurements from this NHP. Clear steps in ICP show on the top
graph. ABP follows the ICP baseline trend in the second graph from the top, keeping CPP in
the third graph largely stable. ∆CBF changes in the bottom graph show immediate reactions
to baseline changes and recovery. The right-hand side shows a zoomed in frame around the
minutes 300 to 317 (grey box on the left). Here it can be seen that ICP oscillations (until 310
minutes) as well as ABP oscillations (after 310 minutes) were translated into CPP and ∆CBF.
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average CPP value and standard deviation for isoflurane were 48.4 ± 14.7mmHg as compared

to fentanyl with 85 ± 22.5mmHg. We observed that CPP and ABP distributions were signif-

icantly different from each other while ICP values were similar (Figure 4.3). Given that the

data were not normal distributed, we performed a Mann-Whitney U-test that evaluated if the two

groups came from continuous distributions with different medians (‘ranksum’, Matlab R2019a,

The MathWorks Inc., Natick, MA, USA). While the CPP distributions were significantly differ-

ent from each other (p < 0.05), the histograms of ABP show a larger overlap region (p < 0.05).

ICP for the same data were found to not be significantly different (p > 0.05, see middle Figure

4.3). Isoflurane levels were distinctly different between the isoflurane and fentanyl groups, as

they show no overlap (see bottom Figure 4.3). The isoflurane levels reported here are the volume

percentages of inhaled air supplied to the ventilator and were documented every 15 minutes.

Thus, the histogram is shown as the number of measurements rather than data points, where

every measurement corresponds to a baseline level of ICP and incorporates 45 – 90 minutes of

data.
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Figure 4.3 (previous page): Lassen’s curve shows the relationship of ∆CBF over CPP (top).
Here the red line indicates isoflurane anesthesia and the blue line represents the group with
mainly fentanyl anesthesia. Shaded areas show the standard deviation across all NHPs in this
group. The 3 middle graphs show histograms of averaged data point available to create the top
graph for (from the top) CPP, ABP, and ICP. A statistical significance test between fentanyl
and isoflurane groups was performed (Mann-Whitney U-test) that test the hypothesis that both
groups are from distributions with equal medians. Test results are denoted with p-values, where
p < 0.05 is considered statistically significant. The bottom graph shows the distribution of
isoflurane percentage for the anesthetic groups with the number of measurements (of approx.
one hour length each).
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Figure 4.4: Pressure Reactivity (PRx) values are plotted as averages according to underlying
CPP vales. The red line indicates the averaged response of isoflurane anesthetized NHPs, while
blue is the average of fentanyl. Shaded areas show the standard deviation. The dashed line
marks a correlation of 0.

4.2.2 Pseudo-Dynamic Autoregulation

Anesthesia dependent differences in the values of PRx were found (see Figure 4.4). The isoflurane-

anesthetized NHPs had a PRx averaging well above the zero-line at a broad range of CPPs, in-

dicating CA impairment. Fentanyl-anesthetized NHPs had a largely negative trend within the

Lassen’s curve plateau of 60mmHg to 100mmHg, indicating intact CA.
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Figure 4.5: The delay lag between ABP and ICP during oscillations in ABP (left) and ICP
(right) are shown. Red markers with a central X symbol show isoflurane anesthesia group
averages with error bars spanning the standard deviation. Blue markers with a central O symbol
show the fentanyl group.

4.2.3 Dynamic Autoregulation

The phase delay between ABP and ICP was calculated during oscillation of ICP (based on fluid

induction) and ABP (based on PEEP). ABP oscillations show that fentanyl anesthetized NHPs

have a phase lag of approx. 180◦ (see left side of Figure 4.5), which has also been reported by

Fraser et al. [150]. After the cutoff frequency of CA around 0.033Hz [150, 151], the phase

difference reduced to 90◦. Isoflurane maintained a phase difference below 90◦, indicating au-

toregulatory dysfunction. In addition to ABP, we also oscillated ICP. A decrease in phase differ-

ence from the very first frequency of 0.009Hz in the fentanyl group shows a different behavior

compared to ABP oscillations. Isoflurane oscillations are mostly below but close to 0◦, showing

that CA might be compromised.
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4.3 Discussion

Our results show that measurements of static, dynamic, and pseudo-dynamic autoregulation un-

der anesthesia induced autoregulation impairment are in general agreement, that CPP is a better

comparison value of CA than ABP or ICP alone, and that ABP and ICP oscillations result in

different yet comparable frequency responses of pressure reactivity. These findings are further

discussed below.

To measure the impairment of CA, the autoregulatory system first needs to be perturbed. Height

change in a saline reservoir connected to the lateral ventricle and manipulation of PEEP can

be used to activate autoregulatory reactions. We showed that oscillations in ∆CBF occur as a

reaction to ICP and ABP oscillations (see Figure 4.2). A change in ∆CBF is acceptable if an

appropriate compensation is seen in a timely manner. However, for high ICP elevations that lead

to very low CPP, the LLA of the Lassen’s curve (Figure 4.3) can be exceeded and CA becomes

impaired, meaning that ∆CBF is no longer recovering from CPP changes and the NHP is at a

higher risk for oxygen starvation of the brain.

Dividing the field into static, pseudo-dynamic and dynamic CA allowed us to capture a range

of CA measurement algorithms proposed in previous years. To control for a presumable ground

truth of CA impairment in the NHPs, we have used two different protocols of anesthesia, namely

higher percentage of isoflurane gas anesthetics (> 1.5%) for CA impairment and very low isoflu-

rane (< 1%) in combination with predominantly fentanyl anesthesia, administered intravenously,

for intact CA.

The ranges of CPP (Figure 4.3) between the two groups are significantly different (p < 0.05) and

show little overlap. This is likely an effect of the anesthetic itself as isoflurane has been shown to
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suppress ABP at higher dosage [136]. The wider range of CPP in the fentanyl group allowed for

a full reconstruction of Lassen’s curve. The reconstructed Lassen’s curve follows the literature

based canonical shape and clearly shows the plateau of intact autoregulation where ∆CBF was

not changing. The isoflurane group with the reduced CPP had most of the data beyond the LLA,

showing a dependency of ∆CBF and CPP and autoregulatory impairment. This observation was

confirmed by the PRx value (Figure 4.4), in which low correlation values indicate intact CA. Our

results indicate that autoregulation is intact when using fentanyl, with PRx values below 0, while

isoflurane impairs autoregulation with values of PRx above 0, often showing PRx > 0.3. This

further indicates that the isoflurane group had impaired autoregulation. Furthermore, the phase

difference between ABP and ICP during pressure oscillations shows that dynamic autoregula-

tion is impaired in isoflurane measurements for both ICP and ABP oscillations, as indicated by

a smaller phase lag, and intact in fentanyl anesthesia, given the almost 180◦ phase difference.

Given that all three CA approaches indicate the same trends, and that they are in accordance with

the original publications and the anesthesia comparison in patients undergoing elective surgery

given by Tiecks et al. [141], we are confident that CA manipulation was successful.

The results, however, differ from the original publications significantly in that they were per-

formed on healthy NHPs, not hospitalized patients. More importantly, the driving force for CPP

changes in this study is a change in ICP, not ABP. These two changes combined give weight

to the hypothesis that it is not only ABP that drives CA activity, but more likely CPP. In this

case, ICP plays an important role in the regulation of brain perfusion and has strong implica-

tions on treatment of patients at risk of elevated ICP, as it happens in traumatic brain injury or

hydrocephalus. This hypothesis is further strengthened by the similar reactions to oscillations
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at different frequencies in ICP and the frequency dependent response in case of intact CA dur-

ing fentanyl anesthesia. Yet another indicating factor is the distribution of ICP and ABP values

across the two anesthetic groups. While the CPP and ABP histograms show a significant dif-

ference, ICP histograms for the same data set show very similar distributions (as determined by

Mann-Whitney U test in Figure 4.3). Furthermore, the overlap region of CPP values is smaller

than the overlap in ABP. This shows that it is not the individual ABP or ICP value but their com-

bination (CPP = mean ABP – ICP) that should be considered when measuring CA impairment.

Limitations to this approach apply:

• We presented the data as a group average across animals, which permitted us to pool the

data to have the highest power to measure CA. In the future, investigation into individual-

izable CA measurements is necessary.

• We used stereotaxic coordinate to place our measurement probe and cannula in an equiv-

alent location across all NHPs. However, slight variations are possible. This especially

applies to the placement of the pressure probe into the parenchyma as its location was de-

termined through measurement of distances on the skull, and the DCS probe to measure

∆CBF, which was placed relative to the pressure probe and needed to be fitted to the skull’s

shape.

• The rate of anesthetic administered for both fentanyl and isoflurane varied across NHPs,

due to differences in weight and metabolism, and sometimes had to be adjusted during the

experiment. Therefore, the degree of CA impairment between NHPs within a group might

vary slightly.

• ABP was measured in the carotid artery and assumed to be systemic in this work. The
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ABP inside the skull might vary from this assumption. Similarly, ICP was assumed to be

global across the cranium. This assumption is not necessarily valid in clinical applications

as pressure distributions can potentially vary with lesions, fractions, or tumors.

• While the results above were recorded on healthy NHPs, and similarity to human anatomy

and physiology is high, direct comparison to healthy human subject might still show dif-

ferences in auto-regulatory abilities. Without reliable non-invasive assessment of ICP, this

limitation cannot be easily overcome.

4.4 Conclusion

The information presented here shows that isoflurane strongly impairs CA, in both dynamic

and static measurement approaches, while fentanyl anesthesia allows for adequate pressure and

cerebrovascular flow regulation. The impairment applies to both ICP and ABP perturbations of

the vascular system, suggesting that it is the CPP value that sets CA in motion. This is further

supported by observations that ABP and ICP distributions can be similar while CPP distributions

between fentanyl- and isoflurane- anesthetized NHPs are significantly different. This implies

that clinicians might have to regulate CPP in patients with hydrocephalus, stroke and traumatic

brain injury, instead of relying on ABP or ICP alone.
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Chapter 5

Clinical Translation

The results in Chapters 3 and 4, acquired in non-human primate studies, show the potential of

non-invasive ICP and CA sensing using diffuse optical methods. The methods developed in

NHPs were translated into the clinic as a next step. For this, a clinical collaboration with the

Children’s Hospital of UPMC of Pittsburgh was created. Patients in the pediatric intensive care

unit were recruited, with an age range of 1 through 17 years. Inclusion criteria were informed

consent of their parents or legal guardians, and the availability of ICP measurements through an

EVD or a parenchymal pressure sensor. This study was approved by the University of Pittsburgh

Institutional Review Board (IRB#: PRO16030693) and the Carnegie Mellon University Insti-

tutional Review Board (IRB#: STUDY2018 00000121). To translate the mathematical models

developed in NHPs, NIRS and DCS data from pediatric patients during resting and routine EVD

shunting was recorded. The transfer function developed for NHPs was applied to the patient data

as a proof of concept for non-invasive ICP estimation in humans. In the following chapter I will

explain the preparations necessary to translate the feasibility studies in previous chapters into the
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clinic, show preliminary results, and give a direction for future work.

5.1 Clinical Setup

A dedicated set of NIRS and DCS devices was arranged on a mobile cart to increase ease of use

and mobility in the hospital (see Figure 5.1c), while being able to quickly deploy the instrument

and remove it from the patient room in case of emergencies. A large green power switch on the

front of the cart allowed medical staff and operators to quickly shut off the power to all lasers

and detectors, while data acquisition would continue through battery power until safely stopped

by the operator. Recorded data could then be saved onto hard drives from the laptop’s battery

power alone. For additional safety, appropriate laser hazard signs were made visible and eye pro-

tective glasses, filtering red and near-infrared light, were handed out to the patient. Throughout

the measurement, regular check-ups on the laser safety, probe position and signal quality were

performed approx. every 15 minutes by visual inspection from outside the room.

The probe that was placed on the patient’s head was custom designed to incorporate NIRS and

DCS fibers as co-localized as possible (Figure 5.1a). The design utilized prisms to reflect light

in a 90◦ angle onto the skin, and the diffuse reflected light back into the detector fibers. This

created a smooth surface of the top of the probe, that was used to attach the probe to the patient’s

forehead using medical adhesive wrap. The angled light guidance increased coupling efficiency

to the skin, compared to a straight fiber setup in the non-human primate studies (Chapters 3, 4).

It further reduced the ambient light leaking into the fiber tips and reduced the strain on the fibers

itself, making it significantly more comfortable to wear for extended periods of time. NIRS and
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Figure 5.1: The devices used in the clinical setup are shown. a) shows the setup of a custom
made probe design that incorporates NIRS and DCS. Light is reflected through a prism onto
the skin at a 90◦ angle. b) shows a schedule for a typical measurement of pediatric care with
occasional ICP checks in which ICP is measured through the EVD. In c) a picture of the cart is
shown that allows easy and flexible transport of the device to the patient. From top to bottom it
shows the user input device table, the DCS shelf, the NIRS shelf, the computer unit shelf, and
the drawer for supplies like disinfectant and probe fixtures.

DCS data were aligned by a voltage signal sent to auxiliary channels in both devices simulta-

neously from a manually activated voltage source. Measurements of ICP, ABP, EKG and other

clinically relevant vital signs were recorded by the hospital information system and extracted

manually after the measurements for the patient had been concluded.

5.2 Measurement Protocol

After informed consent was received, the device was brought into the patient’s room and placed

most often behind the bed to allow for maximum accessibility of the patient by medical staff.

This also allowed the optical fibers to run to the top of the bed and away from the patient. The

147



probe was cleaned with disinfecting alcohol wipes and dried before it was placed on the forehead

of the patient, approx. 1cm above the eyebrow and away from the inter-hemispheric fissure, with

variations based on the patient’s condition. The measurement then followed a general scheme

(Figure 5.1b), in which vital signs, ∆CBF as well as HbO and Hb were recorded. Regularly,

medical staff perform a measurement of ICP (”ICP check”) by closing the EVD and stop the

CSF drainage that reduces ICP, measure the fluid pressure inside the ventricular catheter through

a pressure transducer installed in the catheter (see Figure 1.4). CSF is predominantly water and

as such in-compressible, therefore the fluid pressure in the catheter is equal to the pressure inside

the head. The ICP measurement at typically 120Hz sampling rate would last for 1-5 minutes, at

which point the system was set back to CSF drainage. After 1 hour of consecutive measurement,

the recordings was stopped and restarted to give time for medical routines and patient care.

Consecutive hours of recording were possible given that most patients were in the bed or the

small perimeter of their rooms due to the EVD and ICP sensor placements.

Measurements of ICP using a parenchymal pressure transducer probe is a second possibility

and allows for constant ICP monitoring as opposed to the small true ICP measurement during

shunt closure in the EVD. While this measurement method has so far been an exception, patients

with both EVD and parenchymal pressure probe are comparably often available in the pediatric

intensive care and would yield more reliable data.

At the beginning of every new measurement, a set of markers were sent to DCS and NIRS for

alignment to each other and the hospital information system, from which a time was taken and

written into the measurement protocol for alignment to an additional time marker.

The study protocol allowed us to measure for multiple consecutive measurements for a total
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duration of 7 days. As of today, measurements on 5 patients have been conducted, with an age

ranging between 17 month and approximately 12 years, where 2 patients had hydrocephalus, and

3 TBI. A total of approx. 14 hours of data was collected. Due to the early stage of this study,

and ongoing improvement iterations on the setup and protocols, only preliminary results can be

shown.

For a proof of concept, the estimation of ICP fluctuation based on a fitted non-parametric transfer

function to an example data set is presented. Note that this transfer function has been fitted on the

basis of non-human primate data and perfect compatibility cannot be guaranteed. For application

of the ICP offset estimation and CA, more data collection is required.

5.3 Signal Processing

Before further data transport outside the hospital, data was deidentified by removing all links to

the patients name, room number and other personal information. The hospital data was received

as an extensible markup language (XML) file, that categorized data in 2 minute bins. A python

script was developed to translate the XML structure into a more convenient, matlab compatible

”.mat” file. Special care was given to the variety of devices that are dynamically installed and

removed from the recording in the clinical daily practice. Therefore, the code was written to

dynamically create variables and ensure perfect time alignment.

Based on the time and alignment markers, as well as measurement duration, sections of clinical

data were extracted to match the time frames of optical recordings. For EVD based ICP measure-

ments, ICP readings were only possible when the shunt was closed. Hemoglobin concentration
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changes were calculated based on the modified Beer-Lambert law (Chapter 2.3.2). Signals of

∆ICP, ∆Hb, and ∆HbO were calculated by mean subtraction, down sampled to 5Hz, and low-pass

filtered using a 0.1Hz cut-off frequency as described in 3.1.1.4. The transfer-function derived

for non-human primates (Equation 3.1) was applied to ∆HbO.

5.4 Preliminary Results

A general observation for measurements on awake patients is the amount of movement artifacts

that renders a large portion of the data unusable. Furthermore, it was observed that patients

would occasionally lift and move the probe. This often causes the detectors, faced with high

light levels from room light, to perform a security shut-off in the NIRS system.

From the data sets of good and stable hemodynamic signals, visual inspection of correlations

between ∆HbO and ∆Hb are generally negative, which hints towards good hemodynamic data

quality, as compared to positive correlations that might indicate movement artifacts (Figure 5.2).

Due to short term measurements of ICP in patients with EVDs, only little data is available in

which continuous ICP signals are available. The example in Figure 5.2 shows an ICP measure-

ment in patient 4. This data set was chosen due to the long duration of consecutive shunt closure

in the EVD, allowing for a five-minute ICP measurement. As seen previously in NHPs, oppos-

ing trends can be observed between ∆ICP and ∆HbO. Therefore, the transfer function yields a

good approximation, with an explained variance r2 = 62% between the invasively measured ICP

(∆ICPiv) and the estimated ICP (∆ICPNIRS).
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Figure 5.2: A 4 minute example measurement from one patient is shown in the top figure for
∆ICPiv (black), ∆HbO (red), ∆Hb (blue). The bold line shows the low-pass filtered trends of the
high-frequency signal shown in thin lines. The bottom figure shows the same ∆ICPiv (black),
compared to ∆ICPNIRS (green), estimated based on the transfer function derived for non-human
primates in Chapter 3.1.
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5.5 Discussion

Preliminary results show a proof of concept for the measurement of ICP fluctuations in pediatric

TBI and hydrocephalus patients. The similarity to measurements in NHPs is given even though

ICP was not actively manipulated as it was in NHPs, which further indicates a strong link be-

tween ICP and HbO changes. Therefore, the data shown in the example (Figure 5.2) is surely a

good example and yet not all sections in which ICP was measured can show similarly high cor-

relations. Despite the encouraging results, a human based transfer function should be re-fitted,

to account for different dynamic influences and further improve performance of the estimation.

Potential differences that influence the transfer function fit are vessel wall tension, impedance to

flow inside the skull and skull structure, the significance of voluntary breathing compared to the

use of ventilators, and the influence of anesthesia.

The measurement of absolute values, or the offset of ICP, requires the measurement CBF and

precise averaging of pulses as described in Chapter 3.2.1.3. Therefore, more data with improved

SNR and better alignment precision to the hospital information system is needed. How well the

NHP based machine-learning approach will perform is unknown, yet it is most likely, that a new

regression forest has to be trained to gain results comparable to the ones shown in Chapter 3.2.2.

For the future, data acquisition needs to continue and special attention has to be directed towards

motion artifact reduction. Furthermore, a solid basis for data alignment needs to be determined.

Ideally, a voltage signal can be sent to the bedside monitor or be received from it and recorded

in the optical acquisition boards. This will grant access to the clinical EKG measurements. The

EKG signal, with its very sharp QRS complex, is the ideal candidate to determine onset times

for pulse wave averaging needed to improve SNR and determine ICP offsets.
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Chapter 6

Summary

In this work, I have described the mathematical tools and models necessary to use NIRS and

DCS for non-invasive ICP estimation. After giving a detailed introduction into the pressure dy-

namics (Chapter 1.1) and mechanisms of CA (Chapter 1.2), with a special focus on emphasizing

the challenges in today’s diagnostic approaches and their influence on therapeutic decisions, I

laid out the basics for measurements of ∆CBF, HbO and Hb, using non-ionizing, near-infrared

light (Chapter 2.3, 2.4).

In Chapter 3.1, I have reported on the mathematical approach to measure fluctuations in ICP by

fitting a non-parametric transfer function to translate oscillations in ∆HbO into ∆ICP. In that, I

have developed the modelling approach, worked on a design for in-vivo testing and collected

data from NHPs under varying conditions of ICP elevation. Good agreement between invasively

measured and estimated fluctuations in ICP was shown, with correlations of up to r2 = 0.86 for

continuous measurements and an overall correlation of oscillation magnitude heights of r2 = 0.84

and a phase delay close to 0.
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To measure offsets in ICP, or in other words absolute values, I reported on the use of shape

changes of the cardiac pulsation in ∆CBF, measured with DCS, to be linked to ICP changes in

Chapter 3.2. Here, I have collected evidence for the theory of shape changes in cardiac pulsation

of ICP and how similar effects of impedance changes in the brain also influence ∆CBF. I devel-

oped the computational model using a regression forest training, extracted characteristic features

describing the shape of the cardiac pulsation, and tested the approach in-vivo in NHP. For 20%

of held out data from the regression forest training, an overall correlation of invasively measured

and non-invasive estimation of r2 = 0.91 was achieved, with 95% of all data within an error range

of 3.7mmHg and a comparable ability to distinguish normal from elevated ICP at a 20mmHg

threshold to other proposed non-invasive measurement techniques.

The developed non-invasive ICP measurement techniques can not only be employed to mea-

sure ICP for its own sake but also to measure the brain’s ability to regulate pressure and blood

flow in the brain. In fact, elevated ICP and CA impairment are often seen in the same types of

diseases like TBI or ischemic stroke. Unfortunately, there is no universally agreed on measure-

ment technique for CA. I therefore attempted to identify a model of known CA impairment for

future work on non-invasive CA measurement techniques. In Chapter 4, I described how chang-

ing anesthesia between groups of NHP, in which changes in ICP and ABP were introduced,

allowed for shedding some light onto the importance of ICP in CA assessment. This further

allowed the comparison of different CA measurement techniques introduced in Chapter 1.2. It

was found that static and dynamic autoregulation assessments in NHP under fentanyl anesthesia

were intact, while they were impaired in isoflurane gas anesthesia.
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Finally, I elaborated on the early stage of clinical translation for this work in the pediatric

intensive care unit in the Children’s Hospital of UPMC of Pittsburgh in Chapter 5, in which I

show first success in translating ∆HbO fluctuations into ∆ICP changes with a good correlation of

r2 = 0.62. Further data collection and adjustments of the models developed in Chapters 3 and 4

are necessary to conclude a final test of feasibility and evaluate the clinical impact.

Collectively, these studies demonstrate that (1) diffuse optical devices are sensitive to ICP

changes, (2) these changes can be translated into physical ICP values by means of signal pro-

cessing and machine learning, (3) measurements of cerebral autoregulation should be driven by

CPP, not ABP alone, (4) volatile gas anesthesia like isoflurane impairs the ability to regulate

blood flow and that both static and dynamic methods agree over this impairment.

The major contribution of this thesis is the introduction of non-invasive, bedside compatible mea-

surement of ICP with the potential for use in severe injuries, mild symptoms of elevated ICP, and

healthy volunteers alike. I believe that the techniques developed in this thesis have the potential

to lessen the burden of many patients that undergo potentially unnecessary surgery to allow for

ICP measurements, and I hope that this work can help to describe the pressure and blood flow

regulation in the brain, and improve clinical care and patient outcome. I strongly believe that

these points should be motivation enough to carry this work forward, and I see a large potential

for clinical application.

155



156



Glossary

Acronym Meaning

ABP Arterial Blood Pressure

ARI Autoregulation Index

c Speed of light in vacuum

cn Speed of light in medium

CA Cerebral Autoregulation

CBF Cerebral Blood Flow

CBFV Cerebral Blood Flow Velocity

CBV Cerebral Blood Volume

CPP Cerebral Perfusion Pressure

CPPopt Optimal Cerebral Perfusion Pressure

CrCP Critical Closing Pressure

CSF Cerebro-Spinal Fluid

CT Computer Tomography

CVR Cerebro-Vascular Resistance to flow

DCS Diffuse Correlation Spectroscopy
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ε Molar extinction coefficient

EVD External Ventricular Drain

g Light anisotropy factor

GCS Glasgow Coma Scale

Hb, ∆Hb Deoxygenated hemoglobin concentration

HbO, ∆HbO Oxygenated hemoglobin concentration

HbT, ∆HbT Total hemoglobin concentration

ICP, ∆ICP Intracranial Pressure

L Fluence

λ Wavelength

LLA Lower Limit of Autoregulation

MAP Mean Arterial Blood Pressure

mfpa Absorption Mean Free Path

mfps Scattering Mean Free Path

MRI Magnetic Resonance Imaging

MSC Magnitude Squared Coherence

µa Absorption coefficient

µe f f Effective light extinction coefficient

µs Scattering coefficient

µ ′s Reduced Scattering coefficient

n Refractive index

NHP Non-Human Primate
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NIRS Near-Infrared Spectroscopy

NPH Normal Pressure Hydrocephalus

Ω̂ Direction of wave front propagation

ω oscillation frequency

P Light Power

PaCO2 Partial Pressure of Carbon-Dioxide in Blood

PaO2 Partial Pressure of Oxygen in Blood

Φ Fluence rate

PI Pulsatility Index

PRx Pressure Reactivity Index

ρ Source detector distance

RoR Rate of Regulation

SAH Subarachnoid Hemorrhage

SAS Subarachnoid Space

SNR Signal to Noise Ratio

StO2 Oxygen Saturation of hemoglobin in tissue

TBI Traumatic Brain Injury

TCD Transcranial Doppler sonography

ULA Upper Limit of Autoregulation
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Buchan, M. Lauritzen, and D. Attwell, “Capillary pericytes regulate cerebral blood flow
in health and disease,” Nature, vol. 508, no. 1, pp. 55–60, 2014. [Online]. Available:
http://dx.doi.org/10.1038/nature13165

[91] M. Ter Laan, J. M. Van Dijk, J. W. Elting, M. J. Staal, and A. R. Absalom,
“Sympathetic regulation of cerebral blood flow in humans: A review,” British
Journal of Anaesthesia, vol. 111, no. 3, pp. 361–367, 2013. [Online]. Available:
http://dx.doi.org/10.1093/bja/aet122

[92] J. M. Murkin, “Cerebral autoregulation: The role of CO2 in metabolic homeostasis,” Sem-
inars in Cardiothoracic and Vascular Anesthesia, vol. 11, no. 4, pp. 269–273, 2007.

[93] E. Carrera, L. K. Lee, S. Giannopoulos, and R. S. Marshall, “Cerebrovascular
reactivity and cerebral autoregulation in normal subjects,” Journal of the Neurological
Sciences, vol. 285, no. 1-2, pp. 191–194, 2009. [Online]. Available: http:
//dx.doi.org/10.1016/j.jns.2009.06.041

[94] S. K. Piechnik, X. Yang, M. Czosnyka, P. Smielewski, S. H. Fletcher, A. L. Jones, and
J. D. Pickard, “The continuous assessment of cerebrovascular reactivity: A validation of
the method in healthy volunteers,” Anesthesia and Analgesia, vol. 89, no. 4, pp. 944–949,
1999.

[95] R. B. Panerai, S. T. Deverson, P. Mahony, P. Hayes, and D. H. Evans, “Effect of CO2
on dynamic cerebral autoregulation measurement,” Physiological Measurement, vol. 20,
no. 3, pp. 265–275, 1999.

[96] P. N. Ainslie, L. Celi, K. McGrattan, K. Peebles, and S. Ogoh, “Dynamic cerebral au-
toregulation and baroreflex sensitivity during modest and severe step changes in arterial
PCO2,” Brain Research, vol. 1230, pp. 115–124, 2008.

[97] L. Meng and A. W. Gelb, “Regulation of Cerebral Autoregulation by Carbon
Dioxide,” Anesthesiology, vol. 122, no. 1, pp. 196–205, 1 2015. [Online].
Available: http://content.wkhealth.com/linkback/openurl?sid=WKPTLP:landingpage&
an=00000542-201501000-00033

[98] S. Ogoh, H. Nakahara, P. N. Ainslie, and T. Miyamoto, “The effect of oxygen on dynamic

169

http://dx.doi.org/10.1038/nature13165
http://dx.doi.org/10.1093/bja/aet122
http://dx.doi.org/10.1016/j.jns.2009.06.041
http://dx.doi.org/10.1016/j.jns.2009.06.041
http://content.wkhealth.com/linkback/openurl?sid=WKPTLP:landingpage&an=00000542-201501000-00033
http://content.wkhealth.com/linkback/openurl?sid=WKPTLP:landingpage&an=00000542-201501000-00033


cerebral autoregulation: Critical role of hypocapnia,” Journal of Applied Physiology, vol.
108, no. 3, pp. 538–543, 2010.

[99] D. M. Bailey, K. A. Evans, P. E. James, J. Mceneny, I. S. Young, L. Fall, M. Gutowski,
E. Kewley, J. M. Mccord, K. Møller, and P. N. Ainslie, “Altered free radical metabolism
in acute mountain sickness: Implications for dynamic cerebral autoregulation and blood-
brain barrier function,” Journal of Physiology, vol. 587, no. 1, pp. 73–85, 2009.

[100] H. Katsukawa, Y. Ogawa, K. Aoki, R. Yanagida, and K. Iwasaki, “[Acute mild hypoxia
impairment of dynamic cerebral autoregulation assessed by spectral analysis and thigh-
cuff deflation].” Nihon eiseigaku zasshi. Japanese journal of hygiene, vol. 67, no. 4, pp.
508–513, 2012.

[101] J. S. Querido, P. N. Ainslie, G. E. Foster, W. R. Henderson, J. R. Halliwill, N. T. Ayas, and
A. W. Sheel, “Dynamic cerebral autoregulation during and following acute hypoxia: Role
of carbon dioxide,” Journal of Applied Physiology, vol. 114, no. 9, pp. 1183–1190, 2013.

[102] M. Balestreri, M. Czosnyka, L. A. Steiner, M. Hiler, E. A. Schmidt, B. Matta, D. Menon,
P. Hutchinson, and J. D. Pickard, “Association between outcome, cerebral pressure reac-
tivity and slow ICP waves following head injury,” Acta Neurochirurgica, Supplementum,
no. 95, pp. 25–28, 2005.

[103] M. Balestreri, M. Czosnyka, L. A. Steiner, E. Schmidt, P. Smielewski, B. Matta, J. D.
Pickard, C. S. Robertson, L. T. Dunn, and I. R. Chambers, “Intracranial hypertension:
What additional information can be derived from ICP waveform after head injury?” Acta
Neurochirurgica, vol. 146, no. 2, pp. 131–141, 2004.

[104] M. Czosnyka, C. Miller, P. Le Roux, D. K. Menon, P. Vespa, G. Citerio, M. K. Bader,
G. M. Brophy, M. N. Diringer, N. Stocchetti, W. Videtta, R. Armonda, N. Badjatia, J. Boe-
sel, R. Chesnut, S. Chou, J. Claassen, M. De Georgia, A. Figaji, J. Fugate, R. Helbok,
D. Horowitz, P. Hutchinson, M. Kumar, M. McNett, A. Naidech, M. Oddo, D. W. Olson,
K. O’Phelan, J. Provencio, C. Puppo, R. Riker, C. Robertson, J. M. Schmidt, and F. Tac-
cone, “Monitoring of Cerebral Autoregulation,” Neurocritical Care, vol. 21, no. 2, pp.
95–102, 2014.

[105] B. Jennett and M. Bond, “Assessment of outcome after severe brain damage.” Lancet
(London, England), vol. 1, no. 7905, pp. 480–484, 3 1975.

[106] E. Sorrentino, J. Diedler, M. Kasprowicz, K. P. Budohoski, C. Haubrich, P. Smielewski,
J. G. Outtrim, A. Manktelow, P. J. Hutchinson, J. D. Pickard, D. K. Menon, and M. Czos-
nyka, “Critical thresholds for cerebrovascular reactivity after traumatic brain injury,” Neu-
rocritical Care, vol. 16, no. 2, pp. 258–266, 2012.

[107] M. Jaeger, M. U. Schuhmann, M. Soehle, and J. Meixensberger, “Continuous assessment
of cerebrovascular autoregulation after traumatic brain injury using brain tissue oxygen
pressure reactivity,” Critical Care Medicine, vol. 34, no. 6, pp. 1783–1788, 6 2006.

[108] J. M. Lam, J. N. Hsiang, and W. S. Poon, “Monitoring of autoregulation using laser
Doppler flowmetry in patients with head injury,” Journal of Neurosurgery, vol. 86, no. 3,
pp. 438–445, 3 1997. [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/9046300

170

http://www.ncbi.nlm.nih.gov/pubmed/9046300


[109] R. B. Panerai, V. Kerins, L. Fan, P. M. Yeoman, T. Hope, and D. H. Evans, “Association
between dynamic cerebral autoregulation and mortality in severe head injury,” British
Journal of Neurosurgery, vol. 18, no. 5, pp. 471–479, 2004. [Online]. Available:
https://doi.org/10.1080/02688690400012343

[110] M. S. Vavilala, N. Tontisirin, Y. Udomphorn, W. Armstead, J. J. Zimmerman, R. Ches-
nut, and A. M. Lam, “Hemispheric differences in cerebral autoregulation in children with
moderate and severe traumatic brain injury,” Neurocritical Care, vol. 9, no. 1, pp. 45–54,
2008.

[111] M. S. Vavilala, S. Muangman, N. Tontisirin, D. Fisk, C. Roscigno, P. Mitchell, C. Kirk-
ness, J. J. Zimmerman, R. Chesnut, and A. M. Lam, “Impaired cerebral autoregulation
and 6-month outcome in children with severe traumatic brain injury: Preliminary find-
ings,” Developmental Neuroscience, vol. 28, no. 4-5, pp. 348–353, 2006.

[112] L. a. Steiner, M. Czosnyka, S. K. Piechnik, P. Smielewski, D. Chatfield, D. K. Menon,
J. D. Pickard, L. a. Steiner, M. Czosnyka, M. Czosnyka, S. K. Piechnik, S. K. Piechnik,
P. Smielewski, P. Smielewski, D. Chatfield, D. Chatfield, D. K. Menon, D. K. Menon,
J. D. Pickard, and J. D. Pickard, “Continuous monitoring of cerebrovascular pressure
reactivity allows determination of optimal cerebral perfusion pressure in patients with
traumatic brain injury.” Critical care medicine, vol. 30, no. 4, pp. 733–8, 2002. [Online].
Available: http://www.ncbi.nlm.nih.gov/pubmed/11940737

[113] C. Zweifel, A. Lavinio, L. A. Steiner, D. Radolovich, P. Smielewski, I. Timofeev,
M. Hiler, M. Balestreri, P. J. Kirkpatrick, J. D. Pickard, P. Hutchinson, and M. Czosnyka,
“Continuous monitoring of cerebrovascular pressure reactivity in patients with head
injury,” Neurosurgical Focus, vol. 25, no. 4, p. E2, 2008. [Online]. Available:
http://thejns.org/doi/10.3171/FOC.2008.25.10.E2

[114] S. Momjian, B. K. Owler, Z. Czosnyka, M. Czosnyka, A. Pena, and J. D. Pickard, “Pat-
tern of white matter regional cerebral blood flow and autoregulation in normal pressure
hydrocephalus,” Brain, vol. 127, no. 5, pp. 965–972, 2004.

[115] Z. H. Czosnyka, M. Czosnyka, P. C. Whitfield, T. Donovan, J. D. Pickard, T. H. Milhorat,
W. R. Selman, F. Gjerris, and M. Juhler, “Cerebral autoregulation among patients with
symptoms of hydrocephalus,” Neurosurgery, vol. 50, no. 3, pp. 526–533, 2002.

[116] S. L. Dawson, M. J. Blake, R. B. Panerai, and J. F. Potter, “Dynamic but not static cerebral
autoregulation is impaired in acute ischaemic stroke,” Cerebrovascular Diseases, vol. 10,
no. 2, pp. 126–132, 2000.

[117] N. P. Saeed, R. B. Panerai, M. A. Horsfield, and T. G. Robinson, “Does stroke subtype and
measurement technique influence estimation of cerebral autoregulation in acute ischaemic
stroke?” Cerebrovascular Diseases, vol. 35, no. 3, pp. 257–261, 2013.

[118] Z. N. Guo, J. Liu, Y. Xing, S. Yan, C. Lv, H. Jin, and Y. Yang, “Dynamic cerebral au-
toregulation is heterogeneous in different subtypes of acute ischemic stroke,” PLoS ONE,
vol. 9, no. 3, pp. 1–6, 2014.

[119] E. R. Atkins, F. G. Brodie, S. E. Rafelt, R. B. Panerai, and T. G. Robinson, “Dynamic
cerebral autoregulation is compromised acutely following mild ischaemic stroke but not

171

https://doi.org/10.1080/02688690400012343
http://www.ncbi.nlm.nih.gov/pubmed/11940737
http://thejns.org/doi/10.3171/FOC.2008.25.10.E2


transient ischaemic attack,” Cerebrovascular Diseases, vol. 29, no. 3, pp. 228–235, 2010.

[120] M. J. Aries, J. W. Elting, J. De Keyser, B. P. Kremer, and P. C. Vroomen, “Cerebral
autoregulation in stroke: A review of transcranial doppler studies,” Stroke, vol. 41, no. 11,
pp. 2697–2704, 2010.

[121] M. Reinhard, S. Rutsch, J. Lambeck, C. Wihler, M. Czosnyka, C. Weiller, and A. Hetzel,
“Dynamic cerebral autoregulation associates with infarct size and outcome after ischemic
stroke,” Acta Neurologica Scandinavica, vol. 125, no. 3, pp. 156–162, 2012.

[122] K. P. Budohoski, M. Czosnyka, P. J. Kirkpatrick, M. Reinhard, G. V. Varsos, M. Kasprow-
icz, M. Za̧bek, J. D. Pickard, and P. Smielewski, “Bilateral Failure of Cerebral Autoregula-
tion is Related to Unfavorable Outcome After Subarachnoid Hemorrhage,” Neurocritical
Care, vol. 22, no. 1, pp. 65–73, 2015.

[123] K. P. Budohoski, M. Czosnyka, and P. J. Kirkpatrick, “The role of monitoring cerebral
autoregulation after subarachnoid hemorrhage,” Neurosurgery, vol. 62, no. 1, pp. 180–
184, 2015.

[124] J. M. Lam, P. Smielewski, M. Czosnyka, J. D. Pickard, and P. J. Kirkpatrick, “Predicting
delayed ischemic deficits after aneurysmal subarachnoid hemorrhage using a transient
hyperemic response test of cerebral autoregulation,” Neurosurgery, vol. 47, no. 4, pp.
819–826, 2000.

[125] L. Ma, J. S. Roberts, C. Pihoker, T. L. Richards, D. W. Shaw, K. I. Marro, and M. S.
Vavilala, “Transcranial doppler-based assessment of cerebral autoregulation in critically
Ill children during diabetic ketoacidosis treatment,” Pediatric Critical Care Medicine,
vol. 15, no. 8, pp. 742–749, 2014.

[126] L. C. Vianna, S. H. Deo, A. K. Jensen, S. W. Holwerda, M. C. Zimmerman, and P. J. Fadel,
“Impaired dynamic cerebral autoregulation at rest and during isometric exercise in type 2
diabetes patients,” American Journal of Physiology - Heart and Circulatory Physiology,
vol. 308, no. 7, pp. 681–687, 2015.

[127] J. A. Claassen and R. Zhang, “Cerebral autoregulation in Alzheimer’s disease,” Journal of
Cerebral Blood Flow and Metabolism, vol. 31, no. 7, pp. 1572–1577, 2011.

[128] A. Abeelen, J. Lagro, A. Beek, and J. Claassen, “Impaired Cerebral Autoregulation and
Vasomotor Reactivity in Sporadic Alzheimer’s Disease,” Current Alzheimer Research,
vol. 11, no. 1, pp. 11–17, 2014.

[129] M. Reinhard, T. Müller, M. Roth, B. Guschlbauer, J. Timmer, and A. Hetzel, “Bilateral se-
vere carotid artery stenosis or occlusion - Cerebral autoregulation dynamics and collateral
flow patterns,” Acta Neurochirurgica, vol. 145, no. 12, pp. 1053–1060, 2003.

[130] M. Reinhard, M. Roth, T. Müller, B. Guschlbauer, J. Timmer, M. Czosnyka, and A. Hetzel,
“Effect of carotid endarterectomy or stenting on impairment of dynamic cerebral autoreg-
ulation,” Stroke, vol. 35, no. 6, pp. 1381–1387, 2004.

[131] F. Urbano, F. Roux, J. Schindler, and V. Mohsenin, “Impaired cerebral autoregulation in
obstructive sleep apnea,” Journal of Applied Physiology, vol. 105, no. 6, pp. 1852–1857,
2008.

172



[132] N. Nasr, A. P. L. Traon, M. Czosnyka, M. Tiberge, E. Schmidt, and V. Larrue, “Cerebral
autoregulation in patients with obstructive sleep apnea syndrome during wakefulness,”
European Journal of Neurology, vol. 16, no. 3, pp. 386–391, 2009.

[133] E. Khandelwal, A. K. Jaryal, and K. K. Deepak, “Cardiovascular autonomic functions &
cerebral autoregulation in patients with orthostatic hypotension.” The Indian journal of
medical research, vol. 134, no. 4, pp. 463–469, 10 2011.

[134] A. J. Ocon, M. S. Medow, I. Taneja, D. Clarke, and J. M. Stewart, “Decreased upright
cerebral blood flow and cerebral autoregulation in normocapnic postural tachycardia syn-
drome,” American Journal of Physiology - Heart and Circulatory Physiology, vol. 297,
no. 2, pp. 664–673, 2009.

[135] P. M. Patel and J. C. Drummond, Cerebral Physiology and the Effects of
Anesthetic Drugs, eighth edi ed. Elsevier Inc., 2010. [Online]. Available: http:
//dx.doi.org/10.1016/B978-0-7020-5283-5.00017-5

[136] M. K. Loushin, “The effects of anesthetic agents on cardiac function,” Handbook of Car-
diac Anatomy, Physiology, and Devices, pp. 171–180, 2005.

[137] S. Strebel, A. M. Lam, B. Matta, T. S. Mayberg, R. Aaslid, and D. W. Newell,
“Dynamic and Static Cerebral Autoregulation during Isoflurane, Desflurane, and Propofol
Anesthesia,” Anesthesiology, vol. 83, no. 7, pp. 66–76, 1995. [Online]. Available:
http://anesthesiology.pubs.asahq.org/article.aspx?articleid=1951112

[138] A. Dagal and A. M. Lam, “Cerebral autoregulation and anesthesia,” Current Opinion in
Anaesthesiology, vol. 22, no. 5, pp. 547–552, 2009.

[139] W. M. Armstead, “Cerebral Blood Flow Autoregulation and Dysautoregulation,”
Anesthesiol Clin., vol. 34, no. 3, pp. 465–477, 2016. [Online]. Available: http:
//doi.org/10.1016/j.anclin.2016.04.002

[140] D. L. de Jong, T. Tarumi, J. Liu, R. Zhang, and J. A. Claassen, “Lack of linear correlation
between dynamic and steady-state cerebral autoregulation,” Journal of Physiology, vol.
595, no. 16, pp. 5623–5636, 2017.

[141] F. P. Tiecks, A. M. Lam, R. Aaslid, and D. W. Newell, “Comparison of Static and
Dynamic Cerebral Autoregulation Measurements,” Stroke, vol. 26, no. 6, pp. 1014 LP –
1019, 6 1995. [Online]. Available: http://stroke.ahajournals.org/cgi/doi/10.1161/01.STR.
26.6.1014http://stroke.ahajournals.org/content/26/6/1014.abstract

[142] T. Numan, A. R. Bain, R. L. Hoiland, J. D. Smirl, N. C. Lewis, and P. N.
Ainslie, “Static autoregulation in humans: a review and reanalysis,” Medical
engineering & physics, vol. 36, no. 11, pp. 1487–1495, 2014. [Online]. Available:
http://dx.doi.org/10.1016/j.medengphy.2014.08.001

[143] L. Xiong, X. Liu, T. Shang, P. Smielewski, J. Donnelly, Z.-n. N. Guo, Y. Yang, T. Leung,
M. Czosnyka, R. Zhang, J. Liu, K. S. Wong, K. Sing, L. Vol, L. Xiong, X. Liu, T. Shang,
P. Smielewski, J. Donnelly, Z.-n. N. Guo, Y. Yang, T. Leung, M. Czosnyka, R. Zhang,
J. Liu, and K. S. Wong, “Impaired cerebral autoregulation: Measurement and application
to stroke,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 88, no. 6, pp. 520–

173

http://dx.doi.org/10.1016/B978-0-7020-5283-5.00017-5
http://dx.doi.org/10.1016/B978-0-7020-5283-5.00017-5
http://anesthesiology.pubs.asahq.org/article.aspx?articleid=1951112
http://doi.org/10.1016/j.anclin.2016.04.002
http://doi.org/10.1016/j.anclin.2016.04.002
http://stroke.ahajournals.org/cgi/doi/10.1161/01.STR.26.6.1014 http://stroke.ahajournals.org/content/26/6/1014.abstract
http://stroke.ahajournals.org/cgi/doi/10.1161/01.STR.26.6.1014 http://stroke.ahajournals.org/content/26/6/1014.abstract
http://dx.doi.org/10.1016/j.medengphy.2014.08.001


531, 2017.

[144] R. Aaslid, K. F. Lindegaard, W. Sorteberg, and H. Nornes, “Cerebral autoregulation dy-
namics in humans,” Stroke, vol. 20, no. 1, pp. 45–52, 1989.

[145] C. A. Giller, “The Frequency-Dependent Behavior of Cerebral Autoregula-
tion,” Neurosurgery, vol. 27, no. 3, pp. 362–368, 1990. [Online]. Avail-
able: https://doi.org/10.1227/00006123-199009000-00004https://academic.oup.com/
neurosurgery/article-abstract/27/3/362/2753586?redirectedFrom=fulltext

[146] R. Zhang, J. H. Zuckerman, C. A. Giller, and B. D. Levine, “Transfer function analysis of
dynamic cerebral autoregulation in humans,” American Journal of Physiology-Heart and
Circulatory Physiology, vol. 274, no. 1, pp. H233–H241, 1 1998. [Online]. Available:
https://www.physiology.org/doi/10.1152/ajpheart.1998.274.1.H233

[147] A. A. Birch, M. J. Dirnhuber, R. Hartley-Davies, F. Iannotti, and G. Neil-Dwyer, “Assess-
ment of Autoregulation by Means of Periodic Changes in Blood Pressure,” Stroke, vol. 26,
no. 5, pp. 834–837, 1995.

[148] A. S. Meel-van den Abeelen, D. M. Simpson, L. J. Y. Wang, C. H. Slump, R. Zhang,
T. Tarumi, C. A. Rickards, S. Payne, G. D. Mitsis, K. Kostoglou, V. Marmarelis, D. Shin,
Y.-c. C. Tzeng, P. N. Ainslie, E. Gommer, M. Müller, A. C. Dorado, P. Smielewski,
B. Yelicich, C. Puppo, X. Liu, M. Czosnyka, C.-y. Y. Wang, V. Novak, R. B. Panerai, and
J. A. H. R. Claassen, “Between-centre variability in transfer function analysis, a widely
used method for linear quantification of the dynamic pressure-flow relation: The CARNet
study,” Medical Engineering and Physics, vol. 36, no. 5, pp. 620–627, 2014. [Online].
Available: http://dx.doi.org/10.1016/j.medengphy.2014.02.002

[149] J. A. Claassen, A. S. Meel-van den Abeelen, D. M. Simpson, R. B. Panerai,
and international Cerebral Autoregulation Research Network (CARNet), “Transfer
function analysis of dynamic cerebral autoregulation: A white paper from the
International Cerebral Autoregulation Research Network.” Journal of cerebral blood
flow and metabolism : official journal of the International Society of Cerebral
Blood Flow and Metabolism, vol. 36, no. 4, pp. 665–80, 2016. [Online]. Available:
http://www.ncbi.nlm.nih.gov/pubmed/26782760

[150] C. D. Fraser, K. M. Brady, C. J. Rhee, R. B. Easley, K. Kibler, P. Smielewski,
M. Czosnyka, D. W. Kaczka, D. B. Andropoulos, C. Rusin, C. D. F. Iii, K. M. Brady,
C. J. Rhee, R. B. Easley, K. Kibler, P. Smielewski, M. Czosnyka, D. W. Kaczka,
D. B. Andropoulos, and C. Rusin, “The frequency response of cerebral autoregulation.”
Journal of applied physiology (Bethesda, Md. : 1985), vol. 115, no. May 2013, pp. 52–6,
2013. [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/23681909

[151] J. M. Kainerstorfer, A. Sassaroli, K. T. Tgavalekos, and S. Fantini, “Cerebral
autoregulation in the microvasculature measured with near-infrared spectroscopy,”
Journal of Cerebral Blood Flow & Metabolism, vol. 35, no. 6, pp. 959–966, 2015.
[Online]. Available: http://www.nature.com/doifinder/10.1038/jcbfm.2015.5

[152] R. L. Grubb, “Effects of increased intracranial pressure on cerebral blood volume, blood
flow, and oxygen utilization in monkeys,” Journal of neurosurgery, vol. 43, no. 4, pp.

174

https://doi.org/10.1227/00006123-199009000-00004 https://academic.oup.com/neurosurgery/article-abstract/27/3/362/2753586?redirectedFrom=fulltext
https://doi.org/10.1227/00006123-199009000-00004 https://academic.oup.com/neurosurgery/article-abstract/27/3/362/2753586?redirectedFrom=fulltext
https://www.physiology.org/doi/10.1152/ajpheart.1998.274.1.H233
http://dx.doi.org/10.1016/j.medengphy.2014.02.002
http://www.ncbi.nlm.nih.gov/pubmed/26782760
http://www.ncbi.nlm.nih.gov/pubmed/23681909
http://www.nature.com/doifinder/10.1038/jcbfm.2015.5


385–398, 1975.

[153] W. Xu, P. Gerety, T. Aleman, J. Swanson, and J. Taylor, “Noninvasive methods
of detecting increased intracranial pressure,” Child’s Nervous System, vol. 32,
no. 8, pp. 1371–1386, 8 2016. [Online]. Available: http://link.springer.com/10.1007/
s00381-016-3143-x

[154] M. Harary, R. G. Dolmans, and W. B. Gormley, “Intracranial pressure monitoring—review
and avenues for development,” Sensors (Switzerland), vol. 18, no. 2, pp. 3–7, 2018.

[155] S. Fantini, A. Sassaroli, K. T. Tgavalekos, and J. Kornbluth, “Cerebral blood flow
and autoregulation: current measurement techniques and prospects for noninvasive
optical methods,” Neurophotonics, vol. 3, no. 3, p. 31411, 2016. [Online].
Available: http://neurophotonics.spiedigitallibrary.org/article.aspx?doi=10.1117/1.NPh.3.
3.031411http://dx.doi.org/10.1117/1.NPh.3.3.031411

[156] J.-p. P. A. H. Jantzen, “Prevention and treatment of intracranial hypertension,” Best Prac-
tice and Research: Clinical Anaesthesiology, vol. 21, no. 4, pp. 517–538, 2007.

[157] R. B. Panerai, S. L. Dawson, and J. F. Potter, “Linear and nonlinear analysis of human dy-
namic cerebral autoregulation,” American Journal of Physiology - Heart and Circulatory
Physiology, vol. 277, no. 3 Pt 2, pp. H1089–H1099, 1999.

[158] R. B. Panerai, “Nonstationarity of dynamic cerebral autoregulation,” Medical
Engineering and Physics, vol. 36, no. 5, pp. 576–584, 2014. [Online]. Available:
http://dx.doi.org/10.1016/j.medengphy.2013.09.004

[159] M. Czosnyka, P. Smielewski, P. Kirkpatrick, R. J. Laing, D. Menon, and J. D. Pickard,
“Continuous assessment of the cerebral vasomotor reactivity in head injury.” Neuro-
surgery, vol. 41, no. 1, pp. 11–19, 7 1997.

[160] R. Steinmeier, R. P. Hofmann, C. Bauhuf, U. Hübner, and R. Fahlbusch, “Continuous cere-
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