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Abstract 

Atmospheric aerosols are tiny particles or droplets suspended in the air. Aerosols 

with diameters less than 2.5 microns are fine particulate matter, or PM2.5. Human exposure 

to fine particulate matter has been associated with higher mortality, stroke, lung cancer and 

cardiovascular diseases. Organic aerosol (OA) contributes significantly to fine particulate 

matter mass globally. Intermediate-volatility organic compounds (IVOCs) are a group of 

organic compounds that has effective saturation concentration (C*) at 298K between 103 and 

106 μg/m3 (roughly equivalent to C12 to C22 n-alkanes). They are important precursors to 

secondary organic aerosol (SOA) formation. 

To investigate the contribution of IVOCs to ambient SOA formation, it is crucial to 

correctly model them with emission, volatility distribution and chemical composition from 

direct measurements. Traditional emission inventories such as the National Emission 

Inventory only account for gas-phase organic emissions of volatile organic compounds 

(VOCs). There are large gaps in IVOCs and semi-volatile organic compounds (SVOCs) 

between traditional emission profiles and recent experiment results. Also, despite recent 

efforts to include IVOCs and SVOCs in inventories, most of the model assumptions are 

overly simplistic and scaled based on limited experimental data. For example, if they are 

included, IVOCs are often represented using a single surrogate species. No emission profiles 

or simulations have been developed to incorporate the most recent experimental data that 

measured comprehensive organic species in a wide range of volatility spectrum.  

This thesis consists of three main parts: compiling comprehensive organic emission 

profiles; implementing SOA parameterization in a chemical transport model (CTM) and run 

simulations; and developing a positive matrix factorization (PMF) technique to resolve the 

IVOC chemical composition from traditional gas chromatography-mass spectrometry (GC-
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MS) data.  

Organic emission data on gasoline and diesel vehicles and aircraft emissions from 

previously published papers are compiled to create comprehensive emission profiles for use 

in CTMs. The organic emissions from all three source categories show tri-modal volatility 

distributions, and the volatility distributions are consistent across sources using the same fuel 

type. The traditional profiles dramatically underestimate IVOCs and SVOCs, which are 

important classes of SOA precursors. Accounting for IVOCs in gasoline exhaust almost 

doubles the predicted SOA production compared to the traditional profile. For gas-turbine 

and diesel sources, IVOCs and SVOC vapors combining contribute factors of 13 (gas-

turbine) and 44 (diesel) more SOA than VOCs alone.  

We developed a new parameterization to model the SOA formation from mobile 

source IVOC emissions designed for implementation in CTMs. The parameterization has six 

lumped IVOC species: two aromatics and four aliphatics, to account for the volatility and 

chemical composition of the IVOC emissions. Simulation results show that mobile sources 

contribute 2.7 µg m-3 of IVOCs at Pasadena site, which is 43% of measured concentrations 

of hydrocarbon IVOCs. They also contribute ~1 µg m-3 in daily peak SOA concentration, a 

67% increase compared to the base case without IVOC emissions. Therefore, it is crucial to 

include mobile-source IVOC emissions in simulations. Results from the exploratory model 

runs suggest that additional 12% to 26.8% of non-mobile organic emissions are likely 

IVOCs. 

We also developed a PMF-based technique to resolve the chemical composition of 

IVOCs in traditional GC-MS data. Evaluation on multiple datasets shows this technique can 

recover much of the chemical information compared to more sophisticated instruments. 

Source apportionment analysis on tunnel samples shows major contributions from diesel-
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source IVOCs. PMF analysis on ambient samples in Pasadena, California shows more than 

70% IVOCs are oxygenates indicating complex atmospheric oxidation. SOA modeling of 

gasoline vehicle emissions shows an 80% SOA yield increase under low-NOx conditions, 

highlights the need to include the IVOC aromatics in resolved chemical composition and 

CTM studies.  

This thesis presents systematic efforts to better understand IVOCs and incorporate 

them into the model, from emission to chemical composition and SOA formation. To include 

IVOCs in CTM simulations, we compiled model-ready emission profiles for mobile-sources 

from direct measurements. To simulate the SOA formation from IVOCs and account for 

chemical composition, we developed a PMF technique to extract necessary information from 

traditional GC-MS data. And to evaluate the contribution of IVOCs to ambient OA, we 

implemented SOA parameterization and perform CTM simulations. This pipeline could be 

reused in the future study of other sources with IVOC emissions. 
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Chapter 1: Introduction 

1.1 Motivation 

Atmospheric aerosol are tiny particles or droplets suspended in the air. Aerosol with 

diameter less than 2.5 microns are classified as fine particulate matter, or PM2.5. Human 

exposure to PM2.5 has been associated with increased mortality, stroke, lung cancer and 

cardiovascular diseases (Apte et al., 2018; Burnett et al., 2018; Di et al., 2017) and influences 

climate (Kanakidou et al., 2005). Increases of 10 μg per cubic meter in PM2.5 were associated 

with increases in all-cause mortality of 7.3%, and the adverse effect is still present with 

exposure to PM2.5 of less than 12 μg per cubic meter (Di et al., 2017). 

Organic aerosol (OA) contributes significantly (20-90%) to submicron atmospheric 

fine particulate matter mass globally (De Gouw and Jimenez, 2009; Jimenez et al., 2009; 

Kanakidou et al., 2005). Organic aerosol is classified as primary OA (POA), which is directly 

emitted by sources, such as from fossil fuel combustion, biomass burning, and other sources, 

and secondary OA (SOA), which is formed in the atmosphere through photo-oxidation gas-

phase organics. A series of studies have shown that SOA accounts for a large fraction of the 

OA burden, even in urban areas (Hallquist et al., 2009; Jimenez et al., 2009; Zhang et al., 

2007). Both POA and SOA concentrations depend on the gas-particle partitioning of a 

complex mixture of organics that span a wide range of volatility, including low-volatility 

organic compounds (LVOCs), semi-volatile organic compounds (SVOCs), intermediate-

volatility organic compounds (IVOCs) and volatile organic compounds (VOCs) (Donahue 

et al., 2006; Goldstein and Galbally, 2007; Robinson et al., 2007).  

A major challenge has been the underestimation of SOA in many chemical transport 

model (CTM) studies (Ensberg et al., 2014; Hodzic et al., 2010; Robinson et al., 2007). For 

example, simulation on OA formation during the 2010 CalNex campaign (Baker et al., 2015) 
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shows traditional VOC SOA precursors only explain 7% of the organic carbon at Pasadena, 

whereas aerosol mass spectrometer (AMS) measurements suggest 63% of organic carbon 

are secondary organic carbon (Hayes et al., 2013). Another simulation study (Woody et al., 

2016) shows the modelled SOA concentrations were approximately 4 to 5.4 times lower than 

the AMS oxygenated organic aerosol (OOA), with the largest underestimation in the early 

afternoon peak. Robinson et al. (2007) proposed that potential contribution from IVOCs and 

SVOCs to SOA formation, and such SOA precursors need to be directly incorporated into 

CTM studies (Dzepina et al., 2009; Hodzic et al., 2010). This thesis examines the role that 

IVOCs potentially play in SOA formation.  

IVOCs are important precursors to secondary organic aerosol (SOA) formation in 

chamber studies (Jathar et al., 2013; Presto et al., 2010; Tkacik et al., 2012; Zhao et al., 

2018), oxidation reactor studies (Shah et al., 2020; Tkacik et al., 2014) and simulation studies 

(Hodzic et al., 2010; Jathar et al., 2014; Lu et al., 2019; Ma et al., 2017; Murphy et al., 2017; 

Pye and Pouliot, 2012; Robinson et al., 2007). They are organic compounds that have 

effective saturation concentration (C*) at 298K between 103 and 106 μg/m3 (roughly 

equivalent to C12 to C22 n-alkanes) (Presto et al., 2012), are ubiquitous in the ambient 

atmosphere (Hunter et al., 2017; Zhao et al., 2014) and are emitted from anthropogenic and 

biogenic emission sources, such as mobile emissions (Drozd et al., 2019; Lu et al., 2018; Qi 

et al., 2019; Schauer et al., 1999; Zhao et al., 2015), coal combustion (Cai et al., 2019), 

biomass burning (Hatch et al., 2018), and volatile chemical products (VCPs) (Khare and 

Gentner, 2018; McDonald et al., 2018). Detailed emission profiles on volatility distribution 

and chemical composition of IVOCs is critical to accurately simulate atmospheric SOA and 

PM2.5 concentrations. 

Traditional emissions inventories such as the National Emission Inventory (NEI) 
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only account for gas-phase organic emissions of VOCs and POA as non-volatile particulate 

matter. Robinson et al. (2007) and Shrivastava et al. (2008) argued that this is an overly 

simplistic representation of organic emissions. Primary IVOCs and SVOCs have not been 

routinely implemented in models because of lack of the mass and chemical composition 

(Shrivastava et al., 2008). Mobile sources contribute about one-third of the anthropogenic 

organic emissions in the 2014 EPA NEI; they are an important source of POA and SOA 

precursor gases especially in urban environments (Gentner et al., 2012, 2017; McDonald et 

al., 2013). Recent studies have reported IVOCs, SVOCs and LVOCs emissions and gas-

particle partitioning on POA emissions from mobile sources (Gordon et al., 2013; May et 

al., 2014; Presto et al., 2011; Zhao et al., 2015, 2016). Therefore, compiling comprehensive 

profiles for organic emissions including non-volatile organics (NV), LVOCs, SVOCs, 

IVOCs, VOCs for important sources are needed. 

Previous studies have incorporated IVOCs in the chemical transport models (CTMs) 

with volatility basis set and aging mechanism (Hodzic et al., 2010; Koo et al., 2014; Murphy 

et al., 2017; Robinson et al., 2007; Shrivastava et al., 2008). For example, Robinson et al. 

(2007) shows oxidation of the SVOC and IVOC vapors produces a considerable amount of 

regional SOA, and improve the predicted SOA fraction and urban-to-regional OA ratios for 

four large cities. Murphy et al. (2017) shows semi-volatile POA and extra SOA precursors 

have improved the model performance on OA diurnal patterns compared with measurement 

data at four different sites.  

Although accounting for IVOCs improves model performance, current approaches 

are likely overly simplistic and based on very limited experiment data (Hodzic and Jimenez, 

2011; Pye and Seinfeld, 2010). For example, Hodzic and Jimenez (2011) proposed a simple 

anthropogenic emission surrogate emitted at the rate of 0.08 g per g of CO as SOA precursor 



4 

 

(including VOCs, IVOCs and SVOCs), Pye and Seinfeld (2010) used 66 times naphthalene 

as total IVOCs surrogate, and Woody et al. (2016) assumed 7.5 × POA based on previous 

estimations (Hodzic et al., 2010; Koo et al., 2014), applied to all emission source categories. 

While it may work for some emission sources, this approach did not account for differences 

in IVOC chemical composition, as well as its effect on SOA yield (Pye and Pouliot, 2012; 

Yee et al., 2013). A more sophisticated CTM implementation including IVOCs that account 

for variations by source class, volatility distribution and chemical composition is needed. 

Another challenge is the need for chemical information on IVOC emissions. This is 

important to simulate the SOA formation because the SOA yield depends on IVOC volatility 

and molecular structure (Chacon-Madrid et al., 2010; Loza et al., 2014; Presto et al., 2010). 

Because of the exponential increase in isomers as carbon number increase, the vast majority 

of the IVOC/SVOC mass cannot be resolved at the molecular level using traditional gas 

chromatography-based (GC) techniques (Goldstein and Galbally, 2007). More than 80% of 

the measured IVOC mass is often left as unresolved complex mixture (UCM) (Presto et al., 

2011; Zhao et al., 2014, 2015, 2016). In recent works, researchers have used limited mass 

spectral information to crudely classify the bulk UCM into one or two different chemical 

classes (Zhao et al., 2015, 2016). Alternatively, researchers used instruments such as 2D GC-

MS or soft-ionization (GC-VUV-MS) to provide more insight into the UCM composition 

(Drozd et al., 2019; Hatch et al., 2018), but it comes at the cost of more sophisticated (i.e. 

expensive) instruments and more detailed analysis. A fast yet interpretable technique on 

traditional GC-MS data would be valuable to recover the chemical information in large 

amounts of traditional GC-MS data at a fraction of or no cost.  

 

 

1.2 Objectives of Dissertation. 
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The objectives of this thesis are to improve the understanding of IVOCs and the tools 

to simulate the contribution of IVOCs to SOA formation in urban environments, with respect 

to compiling comprehensive source emission profiles, resolve the chemical composition of 

GC-MS measured IVOCs and simulate their contribution to organic aerosol formation at 

regional scales.  

The first objective of the thesis is to develop model-ready comprehensive emission 

profiles for mobiles sources. We intend to do this by synthesizing recently measured VOC, 

IVOC, SVOC, LVOC and NVOC emission data. We intend to compare new profiles to the 

traditional SPECIATE profiles for similar sources. Finally, we intend to model the SOA 

yield of mobile sources exhaust using the new profiles, and compare the results with other 

estimating approaches.  

The second objective is to develop a model-ready parameterization of SOA formation 

from IVOCs and to implement it in CTM simulations. Given the importance of molecular 

structure and volatility in SOA formation, we intend to develop a parameterization that 

efficiently (i.e. minimum number of species) accounts for these factors. We intend to include 

IVOCs using comprehensive emission profiles into CTM simulations and explore the SOA 

formation from mobile and non-mobile sources through difference cases. Proper chemical 

mechanism mapping needs to be developed to properly synthesize IVOC profiles into SOA-

relevant model species. 

The third objective is to develop a technique to resolve the chemical composition of 

IVOC UCMs measured by traditional GC-MS. We intend to evaluate the new technique by 

comparing resolved chemical composition with results from more sophisticated instruments. 

We intend to gain more insight in source apportionment using this analysis on tunnel and 

ambient IVOC datasets. Resolved chemical composition of IVOC UCMs could also provide 
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key information in SOA formation simulation described in the second objective.  

All three objective represent the complete steps needed in incorporating IVOCs from 

direct measurements into CTM simulations for SOA formation studies.  

 

1.3 Outline of Dissertation 

 

Each chapter in this thesis corresponds to one objective mentioned above. Below, we 

provide a brief overview for each chapter. 

In chapter 2, we complied all data including VOCs, IVOCs, SVOCs, LVOCs and 

NVOCs from previously published papers on gasoline and diesel vehicles and aircraft 

emissions (Gordon et al., 2013; May et al., 2014; Presto et al., 2011; Zhao et al., 2015, 2016) 

into comprehensive emission profiles in volatility basis set from nonvolatile to C* = 1011 

μg/m3 at 298K. Comparing new profiles to traditional SPECIATE profiles, we highlight the 

needs to includes IVOCs and SVOCs into comprehensive emission profiles, and also show 

the consistency in VOC composition. Different sets of IVOC parameterization (Gentner et 

al., 2012; Jathar et al., 2014; Murphy et al., 2017; Pye and Seinfeld, 2010; Robinson et al., 

2007) are compared to our new profiles in a SOA formation box-model to highlight the need 

to use emission profiles compiled from measurement data in CTM studies. 

In chapter 3, we developed a parameterization that has six lumped precursor species 

to account for both volatility and molecular structure (aromatic versus aliphatic). The IVOC 

emissions are added to the model scaled from non-methane organic gas (NMOG) according 

to the comprehensive emission profiles obtained in the first part of this thesis. The CTM 

simulations includes four cases to explore the contributions of both mobile and non-mobile 

sources to ambient IVOC level, as well as OA formation in Southern California during the 

CalNex campaign. Modeled ambient IVOC level is compared the literature value reported 
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in Zhao et al. (2014). Model OA outputs are evaluated using aerosol mass spectrometer 

(AMS) and filter measurements from CalNex campaign. All profiles used in this part have 

been released in SPECIATE 5.0. 

In chapter 4, we developed a new positive matrix factorization (PMF) technique to 

resolve the IVOC chemical composition measured by traditional GC-MS. Evaluations on 

mobile sources and biomass burning datasets shows that resolved chemical composition is 

consistent with results reported using more sophisticated instruments on similar datasets 

(Drozd et al., 2019; Hatch et al., 2017). Most PMF resolved factors show strong correlation 

(r > 0.9) with the mass spectra of reference compounds in the NIST database. The technique 

is then used to analyze the compositional trend in various datasets. We also conducted source 

apportionment analysis on tunnel and ambient samples, showing large contribution from 

diesel vehicle hydrocarbon IVOCs and highly oxygenated IVOCs, respectively.  

In chapter 5, we summarize the key findings and scientific contributions in this thesis 

and provide future work directions. 
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Chapter 2: Comprehensive organic emission profiles for gasoline, 

diesel, and gas-turbine engines including intermediate and semi-

volatile organic compound emissions * 

Abstract 

Emissions from mobile sources are important contributors to both primary and secondary 

organic aerosols (POA and SOA) in urban environments. We compiled recently published 

data to create comprehensive model-ready organic emission profiles for on- and off-road 

gasoline, gas-turbine, and diesel engines. The profiles span the entire volatility range, 

including volatile organic compounds (VOCs, effective saturation concentration C*=107-

1011 µg/m3), intermediate-volatile organic compounds (IVOCs, C*=103-106 µg/m3), semi-

volatile organic compounds (SVOCs, C*=1-102 µg/m3), low-volatile organic compounds 

(LVOCs, C*≤0.1 µg/m3) and non-volatile organic compounds (NVOCs). Although our 

profiles are comprehensive, this paper focuses on the IVOC and SVOC fractions to improve 

predictions of SOA formation. Organic emissions from all three source categories feature 

tri-modal volatility distributions (‘by-product’ mode, ‘fuel’ mode, and ‘lubricant oil’ mode). 

Despite wide variations in emission factors for total organics, the mass fractions of IVOCs 

and SVOCs are relatively consistent across sources using the same fuel type; for example, 

contributing 4.5% (2.4-9.6% as 10th to 90th percentile) and 1.1% (0.4-3.6%) for a diverse 

fleet of light duty gasoline vehicles tested over the cold-start unified cycle, respectively. This 

consistency indicates that limited number of profiles are needed to construct emissions 



14 

 

inventories. We define five distinct profiles: (i) cold-start and off-road gasoline, (ii) hot-

operation gasoline, (iii) gas turbine, (iv) traditional diesel and (v) diesel-particulate-filter 

equipped diesel. These profiles are designed to be directly implemented into chemical 

transport models and inventories. We compare emissions to unburned fuel; gasoline and gas-

turbine emissions are enriched in IVOCs relative to unburned fuel. The new profiles predict 

that IVOCs and SVOC vapor contribute significantly to SOA production. We compare our 

new profiles to traditional source profiles and various scaling approach used previously to 

estimate IVOC emissions. These comparisons reveal large errors in these different 

approaches ranging from failure to account for IVOC emissions (traditional source profiles) 

to assuming source-invariant scaling ratios (most IVOC scaling approaches).  

 

2.1 Introduction 

Atmospheric particulate matter imposes health risks (Di et al., 2017) and influences 

climate (Kanakidou et al., 2005). Organic aerosol (OA) contributes 20-90% of submicron 

atmospheric fine particulate matter mass (Jimenez et al., 2009). OA is commonly classified 

as primary OA (POA), which is directly emitted by sources, or secondary OA (SOA), which 

is formed in the atmosphere through photo-oxidation gas-phase organics. Both POA and 

SOA concentrations depend on the gas-particle partitioning of a complex mixture of organics 

that span a broad range of volatility (Hallquist et al., 2009; Kroll and Seinfeld, 2008). Mobile 

sources contribute about one-third of the anthropogenic organic emissions in the 2014 EPA 

National Emission Inventory (NEI); they are an important source of POA and SOA precursor 

gases especially in urban environments (Gentner et al., 2017; USEPA-OAQPS, 2015). 

Traditional emissions inventories such as the NEI account for emissions of gas-phase 

volatile organic compounds (VOCs, typically smaller than C12) and non-volatile particulate 
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matter (PM). These emissions are speciated for use in chemical transport models using 

source-specific emission profiles. Robinson et al. (2007) and Shrivastava et al. (2008) argued 

that this is an overly simplistic representation of organic emissions.  

First, multiple studies have demonstrated that a large fraction of POA is semi-volatile 

with dynamic gas-particle partitioning while traditional inventories and models treat it as 

non-volatile (Fujitani et al., 2012; Kuwayama et al., 2015; Li et al., 2016; May et al., 2013b, 

2013a, 2013c; Robinson et al., 2007). Semi-volatile POA concentrations depend on the gas-

particle partitioning of the emissions, which is determined by their volatility distribution and 

atmospheric conditions. In addition, source tests are often conducted at unrealistically high 

OA loading, which biases POA emission factor compared to more dilute, atmospheric 

conditions (Fujitani et al., 2012; Lipsky and Robinson, 2006). Second, most traditional 

inventories do not account for emissions of lower volatility organic gases, including 

intermediate-volatile organic compounds (IVOCs, effective saturation concentration 

C*=103-106 µg/m3) and semi-volatile organic compounds (SVOCs, C*=1-102 µg/m3). 

Laboratory experiments indicate that IVOCs and SVOCs form SOA efficiently (Chan et al., 

2009; Presto et al., 2010), but quantifying their emissions requires sorbents which are not 

routinely used for source testing (Kishan et al., 2008). Neglecting SOA production from 

IVOCs and SVOCs can lead to substantial underprediction of atmospheric SOA production 

(Hodzic et al., 2010; Woody et al., 2016). The net effect of these two issues is to cause 

chemical transport models to overestimate POA emissions and underestimate SOA 

production, leading to errors in the predicted OA composition and concentrations (Baker et 

al., 2015; Ensberg et al., 2014; Woody et al., 2016). Accounting for these two issues 

improves model-measurement agreement (Jathar et al., 2017; Murphy et al., 2017; Woody 

et al., 2016). 
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IVOC and SVOC emissions have not been routinely implemented in models because 

of lack of the mass and chemical composition of total IVOCs and SVOCs (Shrivastava et 

al., 2008). Although many studies report emissions of individual IVOC and SVOC species 

(typically polycyclic aromatic hydrocarbon or n-alkanes) (Schauer et al., 1999a, 1999b, 

2002; Siegl et al., 1999; Zielinska et al., 1996), the vast majority of the IVOC/SVOC mass 

cannot be resolved at the molecular level using traditional gas chromatography based 

techniques (Goldstein and Galbally, 2007; Zhao et al., 2014). 

Recent studies have reported comprehensive IVOC, SVOC and/or low-volatile 

organic compound (LVOC, C*≤0.1 µg/m3) emissions and gas-particle partitioning on POA 

emissions from mobile sources (May et al., 2014; Presto et al., 2011; Zhao et al., 2015, 2016). 

Zhao et al. (2015, 2016) characterized the total emissions and chemical composition of 

IVOCs and SVOCs from a fleet of on- and off-road gasoline and diesel sources. Cross et al. 

(2013, 2015) reported total IVOC and/or SVOC emission from an aircraft and diesel engine. 

Presto et al. (2011) and Drozd et al. (2012) reported IVOC and SVOC emissions for two gas-

turbine engines. Gentner et al. (2012) and Isaacman et al. (2012a) report molecular and mass 

spectrum information for IVOC and SVOC in liquid fuel and quartz filter samples. May et 

al. (2013a, 2013b), Kuwayama et al. (2015), and Li et al. (2016) also investigated the gas-

particle partitioning of on-road vehicle POA in dynamometer and tunnel studies. However, 

only limited comparisons have been made between source categories and the data have not 

been compiled into model ready profiles. 

In this paper, we report comprehensive organic emission profiles for mobile sources 

by integrating recently published data of organic emissions based on their volatility, 

including IVOCs and SVOCs, to improve model predictions of SOA formation. We compare 

our new profiles to traditional source profiles and unburned fuel, focusing on the volatility 
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distribution and SOA precursors. We then use the new profiles to evaluate different scaling 

approaches previously used to incorporate IVOC emissions into inventories and models. 

Finally, we present box model calculations of SOA formation to demonstrate the importance 

to implement the new profiles in SOA modelling. 

 

2.2 Methods  

2.2.1 Datasets 

This paper combines previously published measurement data of organic emissions 

(Gordon et al., 2013; May et al., 2014; Presto et al., 2011; Zhao et al., 2015, 2016) from 

gasoline, gas-turbine and diesel engines to create comprehensive model-ready source 

profiles. All tests used the same procedures to characterize IVOC and SVOC emissions to 

create a self-consistent dataset for low-volatile organics, but slightly different sampling 

media (Tedlar bags and/or canisters) and level of speciation were used to characterize VOC 

emissions. In the results and discussion sections, we compare these data to other recently 

published measurements made using different techniques.  

We present two types of data: (i) emission factors of total organics and (ii) speciation 

profiles. We present total organic emissions factors for all tested engines: 64 gasoline 

vehicles, 5 diesel trucks, 6 off-road gasoline engines, 1 off-road diesel engine and 1 gas-

turbine engine. We define total organic emissions as the sum of non-methane organic gases 

(NMOG) measured by flame ionization detection plus 1.2 times organic carbon (OC) 

measured using thermal optical analysis of quartz filter sample (the factor of 1.2 is the 

organic-mass-to-organic-carbon ratio, which accounts for the contribution of non-

carbonaceous species in the organic (Turpin and Lim, 2001)). We define the NMOG as THC 

(measured with FID) minus CH4 plus carbonyls. We define POA as organics collected by a 
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bare quartz filter analyzed by thermal-optical analysis. We converted measured pollutant 

concentrations to fuel-based emission factors (EF, mg/kg-fuel) using the carbon-mass-

balance approach and the measured mass fraction of carbon in fuel (0.82 for gasoline, 0.86 

for jet fuel and 0.85 for diesel) (May et al., 2014; Presto et al., 2011). 

We derive speciation profiles from gas-chromatography-based analyses of filter, 

adsorbent tubes and Tedlar bag/canister samples. Details on the analytical procedures are 

described by Zhao et al. (2015, 2016). The speciation profiles are based the subset of tests 

with complete data (all three media): VOCs, IVOCs, SVOCs, and LVOCs. This included 29 

gasoline vehicles, 4 diesel trucks, 3 off-road gasoline engines, 1 off-road diesel engine and 

1 gas-turbine engine (Table S1). A detailed description of experimental set-up, sampling and 

chemical analysis is provided in the original articles (Gordon et al., 2013; May et al., 2014; 

Presto et al., 2011; Zhao et al., 2015, 2016). Only a brief description is provided here. 

Emissions samples were collected from diluted exhaust. Gasoline and diesel source 

emissions were collected from a constant volume sampler (CVS) that diluted the exhaust 

with ambient air treated by high-efficient particulate air (HEPA) filters (Gordon et al., 2013; 

May et al., 2014). Gas-turbine engine exhaust was sampled from a rake inlet installed 1-m 

downstream of the engine exit plane (Presto et al., 2011). Sources were tested using standard 

test cycles (Gordon et al., 2013; May et al., 2014; Presto et al., 2011). On-road gasoline 

vehicles were tested on both cold-start and hot-start unified cycles. On-road diesel vehicles 

were tested in both lower-speed (creep and idle) and high-speed operation modes. Gas-

turbine engine was operated on 4% and 85% engine thrust. Off-road engines were operated 

on certification cycles. 

A suite of complementary sampling media was employed to characterize emissions 

across the entire volatility range. Tedlar bags (for gasoline and diesel sources) or canisters 
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(for gas-turbine source) were collected and analyzed by GC-FID and GC-MS to determine 

CH4 and VOC hydrocarbon emissions up to C12 compounds (May et al., 2014; Presto et al., 

2011). Carbonyls (up to C6) were sampled using 2,4-dinitrophenylhydrazine (DNPH) 

impregnated cartridges and analyzed by high-performance liquid chromatography (HPLC) 

(May et al., 2014). Quartz filters followed by two Tenax TA adsorbent tubes collected low-

volatility organics that were analyzed by GC/MS equipped with a thermal desorption and 

injection system (Gerstel) (Zhao et al., 2015, 2016). The filter samples were also analyzed 

using a Thermal/Optical Carbon Analyzer for total organic carbon (OC) (May et al., 2014). 

The adsorbent tubes collect IVOCs and some SVOCs; SVOCs and even lower volatility 

organics were collected on quartz filters (Zhao et al., 2015, 2016). Except for the gas-turbine 

engine tests, total hydrocarbon (THC) emissions were determined by FID analysis of Tedlar 

bag samples (Gordon et al., 2013; May et al., 2014). 

All adsorbent tubes and quartz filters were analyzed following the same procedure. 

Total (speciated and unspeciated) mass of IVOCs, SVOCs and LVOCs was determined by 

Zhao et al. (2015, 2016). The analysis quantified 57 individual IVOCs, which together 

contributed less than 10% of the total IVOC mass. The residual IVOCs, SVOCs and LVOCs 

commonly appear as an unresolved complex mixture (UCM); they were quantified into 29 

lumped group (C12 – C38) based on the retention time of n-alkanes (each group corresponds 

to the mass that elutes between two sequential n-alkanes). Each IVOC lumped group (C12 – 

C22) was further subdivided into two chemical classes (unspeciated branched and cyclic 

compounds) based on their mass spectra. NVOCs are determined as the difference between 

the thermal optical analysis (1.2*OC) and the GC/MS analysis (IVOC+SVOC+LVOC) of 

the quartz filter samples.  

Different levels of speciation were performed on the canister or Tedlar bag samples, 
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depending on source category. The Tedlar bag samples of gasoline exhaust were analyzed 

for 192 individual VOCs and 10 IVOCs; gas turbine exhaust was analyzed for 81 individual 

VOCs and 5 IVOCs; diesel exhaust was analyzed for 47 individual VOCs, 2 IVOCs and 11 

Kovats lumped groups in the VOC range (organics with a GC retention time between nth and 

n+1th n-alkanes). Given the different levels of VOC characterization, we supplemented our 

gas-turbine and diesel VOC data with existing speciation profiles (SPECIATE profiles 

#4674 and #5565). The method for combining the VOC data is described in Supporting 

Information. 

 

2.2.2 Mapping organics into volatility basis sets 

Gas-phase organic emissions must be speciated for use in chemical mechanisms such 

as SAPRC (Carter, 2010) or Carbon Bond (CB). These mechanisms typically group 

individual VOCs into a set of lumped compounds based on reactivity or other chemical 

properties. We compared gas-phase organic emissions using the lumping specified by the 

SAPRC mechanism; we also compare gas- and particle-phase emissions using the volatility 

basis set (VBS). The VBS framework lumps organics into logarithmically spaced bins of 

saturation concentrations (C*) at 298K. It is designed for representing the emissions and 

atmospheric evolution of lower volatility organics (C12 and larger) in chemical transport 

models (Donahue et al., 2006). It is also useful visualizing and comparing emissions data 

across the entire volatility space; the VBS is not intended to replace chemical mechanisms 

used to represent VOCs in models. Figure S1 shows the overall processes of mapping 

speciated and unspeciated compounds data collected on sampling medias to volatility basis 

set (VBS).  

To map emissions into the VBS, we assigned C* values to individual compounds and 



21 

 

lumped groups of unspeciated organics. For each speciated compound (i.e. individual VOCs 

and IVOCs), C* values are calculated as, 

𝐶𝑖
∗ =

𝑀𝑖106𝜁𝑖𝑝𝐿,𝑖
0

760𝑅𝑇
 (1)  

where 𝑀𝑖 is the molecular weight (g/mol), 𝜁𝑖 is the activity coefficient of compound 

i in the condensed phase (assumed to be 1), and 𝑝𝐿,𝑖
0  is the liquid vapor pressure (Torr) of 

compound i, R is the ideal gas constant (8.206×10-5 m3 atm mol-1 K-1), T is temperature (K). 

𝑝𝐿,𝑖
0  values are from EPA Suite data at 298K (USEPA, 2012). Although experimental and/or 

predicted vapor pressure values are uncertain (Komkoua Mbienda et al., 2013), the factor of 

10 spacing of the volatility bins in the VBS reduces the chance of misclassification errors.  

For unspeciated organics, C* values were assigned to lumped groups using the 

retention time of n-alkanes as reference species. In the VOC range, Kovats groups are 

assigned the mean of log C* value of the two n-alkanes in each group (Presto et al., 2012). 

For IVOCs, SVOCs and LVOCs, the C* value of the n-alkane in each bin is used to represent 

the UCM that elutes around that n-alkane. IVOCs, SVOCs and LVOCs correspond to the 

retention time range of C12 to C22, C23 to C32, and C33 to C36 n-alkanes, respectively. Although 

calibrating C* using n-alkanes can overestimate the volatility of PAHs and aromatic 

oxygenates (Presto et al., 2012), these compounds are expected to contribute only a small 

fraction of the total low-volatile organics. In addition, the VBS volatility bins are a factor of 

10 apart, which reduces the chance of misclassification errors. 

After assigning C* values, we compile all species into the VBS volatility distribution. 

Each volatility bin of C* = 10n
 µg/m3 cover the volatility range from C* = 0.3×10n µg/m3 to 

C* = 3×10n µg/m3 in a logarithmic space with n varying from -2 to 11. 

One challenge is that the Tedlar bags/canister samples were collected in parallel to 
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the filter/adsorbent tubes, which creates concerns about double counting. We assessed this 

issue by comparing volatility of organics measured by both approaches. Three IVOC species 

were measured in both the Tedlar bags and adsorbent samples: n-pentyl-benzene 

(C*=2.8×106 µg/m3), n-dodecane (C*=1.9×106 µg/m3) and naphthalene (C*=1.1×106 

µg/m3). Figure S2 (a-c) compares the emissions of these species measured using the two 

approaches (Supporting Information). For the most volatile of these species, n-pentyl-

benzene, the Tedlar bag measured, on average, 5.2 times more than the adsorbent tubes. Both 

approaches measured essentially the same amount of n-dodecane (ratio of 0.85 and R2 of 

0.9. For naphthalene (the least volatile of these species), the adsorbent tubes measured about 

5 times more than the Tedlar bag, which we attribute to wall losses in the bag (Wang et al., 

1996). 

The comparisons indicate that the filter/adsorbent tube sampling train quantitatively 

collects all organics less volatile than n-dodecane (C* =1.9×106 µg/m3) while the 

bag/canister quantitatively collects all more volatile organics. N-dodecane falls within the 

106 µg/m3 volatility bin. The upper bound of this bin is 3 x 106 µg/m3, which is close to the 

C* of n-dodecane. We therefore use 3 x 106 µg/m3 as the boundary between the adsorbent 

tube and Tedlar bag samples. To avoid double counting, we discarded all organics measured 

using the bag/canister/cartridge that are less volatile than 3×106 µg/m3 and discarded all 

species measured in the adsorbent tube more volatile than 3×106 µg/m3. Therefore, emissions 

in the C*= 107 to 1011 µg/m3 bins are based on the bag/canister/cartridge data and that the 

emissions in the C*= 10-1 to 106 µg/m3 bins are based on the filter and adsorbent tube data. 

NVOCs are assigned to a non-volatile bin. The adsorbent tubes may underestimate the 

speciated emissions in C* between 1.9×106 (n-dodecane) and 3×106 µg/m3; however, they 

still measured, on average, 3.3 times organics in this range to the Tedlar bags (Figure S2d).  
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A final issue is whether our sampling and analytical methods capture and recover all 

emitted organics. We evaluated this by comparing the sum of total characterized organics 

(integrated organics from bag, adsorbent tube and filter measurements) to our estimate of 

total organics by bulk measurements (NMOG+1.2*OC). The sum of the characterized 

organics includes the VOCs, IVOCs, SVOCs, LVOCs determined from the GC-based 

analysis of the bags/canister, cartridges, adsorbent tubes and filters. This includes both 

individual species and lumped groups of unspeciated material. 

Figure S3 indicates good mass closure for the on-road gasoline and diesel vehicle 

tests. The two estimated results agree within ±10% for more than 90% of non-DPF-equipped 

diesel engine tests (DPF = diesel particulate filter). For all LDGV (light-duty gasoline 

vehicle) tests, total characterized organics are 82 ± 21% of the total organics by bulk 

measurements. We suspect that most of the missing organics from the LDGV tests could be 

VOCs since the VOC analysis only quantified a list of targeted compounds (Zhao et al., 

2017). There was relatively poor mass closure for the off-road engine and DPF-equipped 

diesel tests. For the off-road engine emissions, the sum of total characterized organics was 

less than 50% of the bulk measurement. Comparisons with literature data (Gabele, 1997; 

Volckens et al., 2008) suggests that our speciated VOC groups to NMOG ratios are low 

(Figure S4). The cause of this bias is not known, but we attribute it to measurement error. 

We used a linear regression to the literature results to rescale our VOC data for off-road 

engines (see SI). For DPF-equipped diesel vehicles, the sum of speciated organics is up to 7 

times the bulk measurement of total organics. The DPF-equipped diesel emission are quite 

low and this discrepancy is likely due to uncertainty in background corrections (Zhao et al., 

2015). 

Traditionally, there are three standard ways to treat these residual emissions -- the 
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difference between sum of characterized emissions and the total/bulk emissions (frequently 

called unknown or UNK): (1) assume it is inert and therefore ignored in models, (2) 

renormalizing the residual emissions to the known composition which assumes that the 

composition of the unspeciated material is the same as the speciated mass, or (3) by assigning 

a custom profile to the residual mass based on a representative list of compounds (Carter, 

2015). The standard default profile for (3) was derived from the all-profile-average carbon 

number > 6, molecular weight > 120 compounds in SPECIATE database (Adelman et al. 

2005). Therefore, it lacks comprehensive IVOCs and SVOCs data.  

In the following discussion, we normalize the residual/uncharacterized organics to 

the known composition, assuming that the residual unknown organics have the same 

volatility and chemical characteristics as the total characterized organics. Since there was 

not an independent measurement of NMOG during the gas-turbine engine tests (Presto et al., 

2011), we assume the supplemented speciated VOCs plus the sorbent and filter data is the 

total emitted organics.  

 

2.2.3 Box model for SOA yield calculation 

The overall SOA yield of gas-phase emissions (mass of SOA produced/mass of 

NMOG emissions) can be calculated as 

𝑦𝑆𝑂𝐴 = ∑ 𝑓𝑔𝑎𝑠,𝑖 × 𝑌𝑖𝑖  (2) 

where fgas, i is the mass fraction of SOA precursor i in NMOG; and Yi is the SOA 

mass yield of compound i at OA= 10 µg/m3 (a typical urban OA level).  

SOA mass yields for each VOCs are based on SAPRC groups and are taken from 

CMAQ 5.1 (USEPA, 2016a). The complete VOC composition for the new source profiles 

are listed in the Table S3. SOA mass yields for IVOCs are calculated using the mechanism 
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of Zhao et. al (2015). The gas-phase SVOCs are assumed to have a SOA mass yield of 1 

(Presto et al., 2010). Equation (2) omits the OH reaction rates and therefore represents the 

ultimate SOA yield from NMOG emissions. The relative contribution of IVOCs and VOCs 

to SOA varies with time because IVOCs generally react faster with OH than VOCs (Zhao et 

al., 2016). Therefore, the ultimate yield approach (equation 2) provides a lower bound 

estimate of the contribution of IVOCs to SOA. 

 

2.3 Results and discussion 

Figure 2.1 shows the volatility distribution of the total characterized organic 

emissions for a typical gasoline (Figure 2.1a) and diesel (Figure 2.1b) test classified by 

collection media. It underscores the importance of using adsorbents (in addition to filters and 

Tedlar bags) to comprehensively characterize all of the organic emissions. The Tenax 

adsorbent tubes collect almost all of the IVOCs (> 90% for gasoline and > 97% for diesel), 

with the balance being collected by the quartz filter, presumably as adsorption artifact (Zhao 

et al., 2015, 2016). The Tenax adsorbent collects 5.2% and 54.8% of the total organic 

emissions from the gasoline and diesel engines, respectively. Since the vast majority of 

source testing does not employ adsorbents, IVOCs are not quantitatively accounted for in 

most emission profiles (Pye and Pouliot, 2012). In comparison to the adsorbent samples, the 

bag/canister collected only 12.9% and 4.0% of IVOCs for gasoline and diesel sources, 

respectively. We have discarded this component to avoid double counting, as discussed in 

the methods section.  
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Figure 2.1 Volatility distribution of organic emissions for a typical (a) gasoline (b) diesel vehicle. The 

emissions are classified by sampling media (line 1: Tedlar bag, line 2: bare quartz filter followed by two 

Tenax tubes). The red dashed line indicates the particle fraction assuming the emissions form a quasi-

ideal solution at a COA of 10 µg m-3 and temperature of 298K. 

Figure 2.1 also shows the particle fraction (Xp) calculated assuming all organics form 

a quasi-ideal solution to illustrate gas-particle partitioning at typical atmospheric conditions 

(T=298K, OA=10 µg m-3). At these conditions, IVOCs exist essentially exclusively in the 

gas-phase, while SVOCs exist in both phases. To illustrate the changes in gas-particle 
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partitioning of IVOCs and SVOCs across a wide range of atmospheric conditions, Figure S5 

shows equilibrium particle fraction (Xp) for T between 273K – 320K and OA concentration 

from 1 – 10 μg m-3. IVOCs are essentially exclusively in the gas-phase (>99%) except at 

very low temperature (T = 273K) and high OA loading (OA = 10 μg m-3) conditions when 

about 6% of the lowest bin (C* = 103 μg m-3) partitions to particle-phase. In contrast, SVOCs 

are always present in both gas- and particle- phases, in both hot and dilute (T = 320K and 

OA = 1 μg/m3) or cold and high OA loading (T = 273K and OA = 10 μg m-3) conditions. 

Figure 2.1 indicates there is also substantial breakthrough of SVOCs from the quartz 

filter during mobile source certification testing (e.g. 2007 CFR 86), which requires 

maintaining a filter temperature of 47°C. In our experiments, these SVOCs are collected by 

the downstream Tenax tubes. This breakthrough is denoted by the white bars in the SVOC 

range in Figure 2.1; the SVOC breakthrough corresponds to, on average, 37% of the total 

SVOC emissions from gasoline vehicles, 52% for non-DPF diesel and 89% for DPF-diesel 

(Zhao et al., 2015, 2016). Therefore, quantitatively accounting for all gas-phase SVOCs 

requires using adsorbents. This is needed to improve predictions of POA concentrations and 

SOA production.  

We compared the sum of NVOCs, LVOCs and SVOCs to the quartz filter POA 

measurements. A linear regression of the on-road gasoline vehicle data yields a slope of 1.4 

(Figure S6a), which indicates that the quartz-filter-based POA emission factors should be 

multiplied by 1.4 to account for missing gas-phase SVOC emissions. This factor would be 

larger if the quartz filter did not collect some IVOC vapors as adsorption artifact (Figure 

2.1). For off-road gasoline sources, a linear regression yields a slope of 1.1 (Figure S6b), 

indicating a larger fraction of the SVOC are collected on quartz filters compared to on-road 

gasoline vehicles. This is presumably due to shifts in gas-particle partitioning towards the 
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particle-phase at the high OA concentrations in the off-road source tests. For diesel sources, 

a linear regression yields a slope of 0.9 (Figure S6c). This lower ratio is due to that filter 

measured POA also includes positive adsorption artifact from IVOCs, which more than 

offsets the gas-phase SVOC breakthrough (Figure 2.1b).  

 

2.3.1 Emission factors 

Figure 2.2 (a) compares the total organics emission factors (NMOG+1.2*OC) for on- 

and off-road gasoline vehicles, including LDGV, two-stroke small off-road engines (SORE-

2S), and four-stroke small off-road engines (SORE-4S); gas-turbine engines; and on- and 

off-road diesel sources, including DPF-equipped engines. We subdivided the LDGV data 

based on emissions certification standard: pre-LEV (U.S. Tier0), LEV (California Low 

Emission Vehicle), and ULEV (California Ultra-Low Emission Vehicle).  

Although there is source-to-source variability within a given source category (e.g. 

pre-LEV gasoline or DPF-equipped diesel), there are distinct trends in total organic 

emissions. Gasoline small off road engines (SORE) have the highest emissions, with SORE-

2S having, on average, one order of magnitude higher emissions than SORE-4S (Gordon et 

al., 2013). This is due to less stringent regulations for off-road engine emissions (Cao et al., 

2016a), and the unburnt fuel mixing in exhaust due to the two-stoke design in SORE-2S. 

The LDGV emissions decrease with tightening emission standards (Gentner et al., 2017; 

May et al., 2014). For example, relative to the median Pre-LEV, there is a 78% reduction in 

total organic emissions to the median LEV and 90% to the median ULEV. Although not 

shown here, total organic emission factors are dramatically higher during cold-start than 

during hot-stabilized operations after the catalytic converter has reached its operating 

temperature (Saliba et al., 2017).  
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Figure 2.2 (a) Emission factors for total organics (NMOG+1.2*OC) for different source categories. The 

number in parentheses indicates number of unique sources tested in each category. Mass fraction of (b) 

IVOCs and (c) SVOCs in total organics for each source category. This figure only shows cold-start and 

off-road gasoline engine emissions. Box-whisker plot represents range of emission for each category: 25th 

-75th percentiles and 10th-90th percentiles. 

Gas-turbine engine emissions show strong load dependence; idle (4% thrust) 

emission is comparable to pre-LEV vehicles, and about an order of magnitude higher than 

high loads (85% thrust) emission. Diesel emissions show strong dependence on both after-

treatment devices and test cycle. DPF-equipped diesel vehicles have the lowest emission 

factors among all tested engine types. Lower emission factors are measured for high speed 

transient operations (e.g. UDDS cycle) compared to idle/low speed operations. The trends in 
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gas-turbine and diesel emissions are qualitatively consistent with Cross et al. (2013, 2015) 

who showed similar load-dependent trend of decreasing THC or IVOC emission factors of 

gas-turbine and diesel engines with higher loads.  

As expected, Figure 2.2 (a) indicates there is source-to-source variation in total 

organic emission for a given category (e.g. pre-LEV or ULEV). This variability reflects the 

effects of difference of engine design, engine calibration, after-treatment system, vehicle 

age, and maintenance history on emissions. However, the previously described trends in total 

organic emission among the different source categories are clear even with this variability.  

 

2.3.2 Volatility and chemical composition distributions 

Figure 2.3 shows the median volatility distributions of the emissions for three 

different source categories: gasoline (cold-start), gas-turbine and non-DPF diesel. For gas-

turbine engine category, we plot the idle load (4% thrust) emission.  

Figure 2.3 indicates that the organic emissions from all three source categories have 

tri-modal volatility distributions. The dominant mode is the middle one, with a peak at 

C*=108 µg m-3 for gasoline sources, C*=106 µg m-3 for gas-turbine sources, and C*=105 µg 

m-3 for diesel sources. For each source category, this mode has a similar volatility 

distribution and chemical composition as unburned fuel (Figure S7). We therefore call it the 

‘fuel mode’.  

The fuel mode contributes 72.6% (66.5-77.6% as 10th to 90th percentile, same 

hereafter) of the total organic emissions in gasoline engine exhaust, 63.1% (48.9-84.4%) in 

diesel engine exhaust, and 37.5-38.5% in gas-turbine source emissions. The widely varying 

contribution of this mode to diesel emissions is due, in part, to after-treatment and duty-cycle 

effects. For example, low-speed operation (creep and idle) test results show higher mass 
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fractions in the fuel mode, 79.7% (62.2-83.0%), compared to high speed operations. The size 

of the fuel mode to DPF diesel vehicles is highly variable, 54.2% (29.3-79.9%), which is 

likely due in part to higher uncertainty associated with measuring very low emission rates.  

 

Figure 2.3 Median volatility distribution of organic emissions for (a) cold-start on-road gasoline, (b) gas-

turbine (idle) and (c) on-road non-DPF diesel engines. The color shading indicates composition. Shaded 

area indicated by dashed indicate distribution for unburned fuel; dots indicate traditional source profiles 

from EPA SPECIATE database. The y-axis has a broken scale to amplify the least volatile emissions. 

Figure 2.3 highlights how the changes in fuel composition create systematic 



32 

 

differences in volatility distribution of the emissions among the three source categories. 

Specifically, the ‘fuel’ mode of the exhaust shifts towards lower volatility from gasoline to 

diesel sources mirroring the trend in fuel volatility. Although the chemical composition of 

the fuel mode is also similar to that of unburned fuel (Figure S7), there are some important 

differences indicating that combustion and removal efficiencies vary by compound class, 

which are discussed in section 2.3.4.  

Emissions from each source have a low-volatility mode, comprised of SVOCs and 

even less-volatile organics. For all three source categories, this low-volatility mode peaks at 

a C* = 10 µg m-3, which is in the middle of the SVOC range. Therefore, some of the organics 

in the low-volatility mode partition into the particle phase in the atmosphere to form POA, 

while the rest exist as vapors. The volatility distribution of this mode is similar to that of 

lubricating oil (May et al., 2013a, 2013b; Worton et al., 2014); we therefore refer to the low-

volatility mode as the ‘oil mode’. For diesel, the low-volatility and fuel modes blend 

together. The oil mode contributes 1.4% (0.6-4.2%) of the total organic emissions for 

gasoline sources, 4.2-12.1% for the gas-turbine source, and 5.9% (3.1-17.7%) for diesel 

sources.  

The size of the LDGV ‘oil mode’ varies with certification standard, with median 

values of 0.8% in Pre-LEV, 1.4% in LEV and 2.2% in ULEV. This trend indicates that 

improvements in after-treatment technology more effectively remove NMOG emission 

compared to POA emissions. The wide range of SVOC emissions from gas-turbine and 

diesel sources reflects the effects of changes in engine load/after-treatment: at 85% engine 

load, 12.1% of gas-turbine emissions are in the ‘oil mode’ versus only 4.2% at 4% load. 

DPF-equipped vehicles show 14.8% (10.1-30.6%) of the emissions for on high-speed cycles 

versus a much lower fraction 2.1% (1.7-5.7%) at low speed operations.  
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The third mode is the most volatile one, peaking at a C* = 1010 or 1011 µg m-3. It 

contributes 25.9% (21.1–31.0%) of the total organics in gasoline emissions, 26.9% (9.4-

40.6%) in diesel sources emissions, and 50.5-57.3% in gas-turbine engine emissions. It is 

comprised of the smallest compounds, such as C2-C5 alkanes, alkenes and carbonyls, 

produced from the incomplete combustion and breakdown of fuel molecules (May et al., 

2014). It also contains other compounds such benzene in the C* = 109 µg m-3. We therefore 

call it the ‘combustion by-product’ mode. The composition of this mode varies modestly by 

source class.  

The majority of the IVOC emissions are found in the lower volatility end of the fuel 

mode. For gasoline sources, IVOCs are in the lowest volatility tail of this mode. For the 

LDGV tested using cold-start unified cycle, IVOCs contribute 4.5% (2.4%-9.6%) of the total 

organic emissions. This includes both heavily controlled and low emitting ULEV and less 

controlled and higher emitting pre-LEVs. IVOCs contribute a similar fraction to the organic 

emissions from largely uncontrolled and high emitting SOREs (Figure 2.2). However, 

IVOCs contribute a larger fraction, 18.1% (5.8 – 31.1%) for organic emissions from LDGV 

operated over the hot-start unified cycle (Zhao et al., 2016). This suggests that catalytic 

converters may be less effective at removing lower volatility organics such as IVOCs, which 

is also consistent with the trends in SVOC data discussed above. However, only four vehicles 

were tested using the hot-start unified cycle and the IVOC faction varied widely. More 

research is needed to understand the effects of hot-operations and duty cycle in general on 

IVOC emissions. 

For sources operating on less volatility fuels, IVOCs contribute a larger fraction of 

the emissions. For example, they contribute 20-27% of gas-turbine engine emissions at idle 

and 85% loads. This is somewhat larger than data from Cross et al. (2013) who reported 10-
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20% of NMHC emissions are IVOCs at idle load. The difference could be due to multiple 

factors, including differences in collection techniques (cryogenic versus adsorbent) and/or 

differences in fuel composition (Corporan et al., 2009). Diesel sources emit the highest 

fraction of IVOCs, with median value of 51.3% (28.7-61.5%). Non-DPF diesel emissions 

have a more consistent IVOC fraction of 57.1% (46.3-66.4%) than DPF-diesel emissions 

(40.1%; 17.2-55.5%). Finally, the contribution of IVOCs qualitatively mirror the fuel 

composition: 1% of unburned gasoline is comprised of IVOCs, ~50% for JP-8, and ~70% 

for diesel (Corporan et al., 2009; Gentner et al., 2012; May et al., 2014). 

Figure 2.2 (c) indicates that the contribution of SVOCs also differs by source type. 

For gasoline engines, SVOCs contribute 1.1% (0.4-3.6%) of the total organic emission. This 

variability is, in part, associated with the effects of tightening emissions certification 

standards as discussed above. For gas-turbines, SVOCs contribute 3.6-4.6% of total organic 

emissions. For diesel source, SVOCs contribute 4.6% (2.3-16.1%) of the total organic 

emission; the wide range reflects effects of duty cycle and after-treatment as discussed 

above. There are no SVOCs in unburned gasoline and jet fuel, and less than 2% for diesel 

fuel. The SVOCs in the emissions are likely predominantly from lubricating oil (Worton et 

al., 2014).  

Given that the total organic emissions vary by more than five orders of magnitude 

(Figure 2.2a), the volatility distribution (and emissions profiles) are relatively consistent 

across sources using the same fuel type (Figure 2.3). As discussed previously, for a given 

fuel type, after-treatment technology (e.g. LDGV emission certification standard) and test 

cycle can also influence the volatility distribution, but their influence is much less than that 

of fuel. We therefore use the median distributions to represent the properties of the aggregate 

emissions from a large number of sources with a given source category. There is always 
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source-to-source variability, but for inventories we need to define representative profiles for 

distinct categories (we use medians as opposed to averages to reduce the influence of 

outliers).  

An important question is the number of distinct source categories. To investigate this 

question, Figure 2.4 compares the volatility distributions of different sources in a 2-

dimensional space of IVOC versus SVOC mass fractions. These are important SOA 

precursors so this framework highlights differences in SOA formation potential. There are 

three distinct clusters in Figure 2.4, one for each fuel type (gasoline, diesel and jet). 

Therefore, these source categories require different profiles. For example, the on-road (cold-

start) and off-road gasoline sources emissions cluster, with a median mass IVOC and SVOC 

fractions of 4.5% and 1.1%, respectively, indicating similar volatility distributions between 

on- and off-road gasoline sources. Figure 2.4 also suggests two additional categories, but 

these distinctions are not as strong given the variability of the data. First, hot-start LDGV 

emissions have much higher IVOC and SVOC fractions than cold-start emissions (18.1% 

versus 4.5%, 4.7% versus 1.1%). This implies a roughly 4-time higher SOA yield for hot-

start on-road gasoline emissions. Therefore, separate profiles should be used to represent 

cold-start and hot-operation emissions when constructing emission inventories for gasoline 

vehicles. Second, DPF and non-DPF equipped diesel sources also show significant different 

volatility distributions, especially in SVOC mass fraction (12.2% versus 3.8%). To account 

for these differences, we present five emission profiles in Table S3: gasoline (cold-start and 

off-road), gasoline (hot-start), diesel (non-DPF), diesel (DPF) and gas-turbine engines. 

Interestingly, the SVOC and IVOC mass fractions are strongly positive-correlated across all 

sources with an exponential fit between SVOC and IVOC mass fraction of f SVOC = 0.100 f 

IVOC 0.700. One could certainly define additional source categories to, for example, account 
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for trends in SVOC fraction with emission certification of LDGVs, but it is not clear that 

those difference are large enough to improve model performance versus using an aggregate 

profile to represent all gasoline vehicles. 

 

Figure 2.4 Two-dimensional visualization of volatility distributions (x axis: IVOC mass fraction, y axis: 

SVOC mass fraction) of all tested sources. Dashed circles indicate clusters by fuel type: Blue cluster: 

gasoline (cold-start), navy: gas-turbine, red: non-DPF diesel source. 

2.3.3 New versus traditional source profiles 

Figure 2.3 also compares our new comprehensive source profiles to traditional 

profiles used to construct the emission inventory to simulate air quality in the Los Angeles 

region during the 2010 CALNEX campaign (Baker et al., 2015). Our new profiles are the 

median value of the measured emission for gasoline (separate for cold-start and hot-

operations), gas turbine, non-DPF and DPF-diesel sources; they are listed in Table S3 

(Supporting Information). The traditional profiles are from the EPA SPECIATE database 
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(USEPA, 2016b) -- profile #4674 for diesel, #8750a for gasoline, and #5565 for gas turbine 

sources with the POA fraction (NVOC) calculated using MOVES (USEPA, 2014) . 

There is good agreement between our new and traditional profiles in the VOC range, 

with both having similar chemical compositions and volatility distributions containing both 

by-product and fuel modes (Figure 2.3). For example, Figure 2.5 demonstrates the strong 

agreement for SARPC-lumped VOC groups between the new and traditional profiles for all 

three source categories with more than 90% of the SAPRC groups for the gasoline sources 

agree within a factor of two. We recommend using our new profiles for VOC composition 

because they have enhanced VOC speciation from combining the existing SPECIATE 

profiles with our new experimental data. 

However, the traditional profiles dramatically underestimate IVOCs and SVOCs, 

which are important classes of SOA precursors. As illustrated in Figure 2.1, this is a 

consequence of the limitations of traditional source characterization techniques to 

quantitatively collect and analyze IVOCs. For example, the traditional LDGV emission 

profile only attributes 0.2% of the total organics to IVOCs versus 4.6% in our new cold-start 

profile. The traditional gas-turbine engine emission profile attributes 13% of the organics to 

IVOCs versus 27% IVOCs in our new profile. For diesels vehicle emissions, the traditional 

profile attributes 10% of total organic emission to IVOCs versus 54.2% of organics for non-

DPF diesel in our new profile. The traditional diesel source profile does contain about 20% 

unknown organics (UNK), part of which are likely IVOCs, as the collection and chemical 

analysis efficiency decrease towards lower volatility bins such as 103 and 104 µg/m3 (Figure 

2.3). However, most UNK is not represented as IVOCs in models, as discussed in section 

2.2.2.  
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Figure 2.5 Scatter plot of VOC groups in SAPRC mechanism in the new profiles and in SPECIATE 

database for (a) on-road gasoline, cold-start (b) gas-turbine (c) non-DPF diesel sources, demonstrating 

consistency between traditional and new profiles in VOC speciation  

2.3.4 Exhaust versus unburned fuel and IVOC enrichment factors 

Figure 2.3 highlights the large contribution of unburned fuel to the exhaust, but 

careful examination of the data reveals that the combustion process and/or removal 
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efficiency by the after-treatment device are compound dependent. For example, gasoline and 

gas-turbine emission are both enriched in IVOCs compared to fuel (e.g. C*= 106 µg/m3 for 

gasoline, and C*= 104 µg/m3 for gas-turbine). The difference suggests higher combustion 

efficiency of more volatile fuel components.  

Figure S8 compares the chemical composition of the exhaust to unburned fuel. 

Overall, straight and branched alkanes (speciated and unspeciated) contribute a smaller 

fraction to the exhaust than in the fuel with the median mass fractions decreasing from 46.6% 

(fuel) to 34.3% (exhaust) for gasoline sources, 50.0% to 9.8% for gas-turbine source, and 

30.3% to 11.2% for diesel sources. In comparison the fraction of aromatic and cyclic 

compounds (speciated and unspeciated) are consistent between fuel and exhaust; for 

example, 37.2% (exhaust) versus 36.1% (exhaust) for gasoline source and 58.7% to 60.2% 

for diesel source. This comparison implies higher combustion efficiencies of n-/b- alkanes 

than cyclic/aromatic compounds in internal combustion engines, which could partly be 

explained by the flash points of different hydrocarbons. The mass fraction of alkenes, 

alkynes and carbonyls increase, indicating they are important product of incomplete 

combustion. For example, they increase from 3.5% (fuel) to 28.6% (exhaust) for gasoline 

sources, and 0% to 54.5% and 24% for gas-turbine and diesel sources, respectively. Gasoline 

emission have the highest single-ring aromatics fraction (~30%), compared to 5.5% in gas-

turbine and 17% in diesel emissions. This mirrors fuel composition -- unburned gasoline fuel 

had the highest aromatic content (26.7%) of the fuels tested here.  

We are especially interested in the enrichment or depletion of SOA precursors in the 

exhaust compared to fuel, including IVOCs and single ring aromatics. To quantify 

enrichment, we normalized SOA precursors in both the fuel and exhaust to C8 to C10 n-

alkanes, a tracer for the unburned fuel. As shown in Figure S7 and S9, some SOA precursors 



40 

 

are enriched, and others depleted relative to fuel. Benzene and total IVOCs in gasoline and 

toluene and C8 aromatics in diesel exhaust are enriched by more than a factor of two relative 

to unburned fuel. Enrichment of single-ring aromatics are likely due to pyrolysis of larger 

aromatic molecules (Akihama et al., 2002; Brezinsky, 1986). In contrast, total IVOCs 

(normalized to the C8 to C10 n-alkanes) are depleted in diesel exhaust compared to fuel 

(enrichment factors less than 1).  

Figure 2.6 shows box-whisker plots of the total IVOC enrichment factors. Sources 

using more volatile fuel have higher IVOC enrichment factors. For example, relative to C8-

10 n-alkanes, gasoline engine exhaust has a median total IVOC enrichment factor of 8.5 

versus modest depletion (enrichment factor <1) in diesel source exhaust with gas turbine 

exhaust in between. There are several possible explanations for this trend. IVOCs may be 

less efficiently combusted in the engines. Recent research also shows that less IVOCs are 

removed by catalytic converters compared to VOCs (Pereira et al., 2017). Figure S10 plot 

the IVOC enrichment factors of Pre-LEV, LEV and ULEV vehicles exhaust. Due to the 

different removal efficiency between IVOCs and VOCs, median ULEV vehicles show even 

higher (>10) IVOC enrichment factor. Lubricating oil decomposition products may also 

contribute to the IVOC emissions (May et al., 2013a; Worton et al., 2014). Finally, the IVOC 

fraction in fuel may be underestimated due to limitations in techniques used commonly to 

characterize fuel composition (Gentner et al., 2012).  

 

2.4 Implications for OA formation 

An important goal of this work is to develop emission profiles required to improve 

model predictions of SOA formation. Simulation of ambient OA concentrations requires 

accurate representation of both emissions and SOA yields for SVOCs and IVOCs. Given the 
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lack of IVOC data in traditional source profiles (Figure 2.3), previous modelling studies have 

used different scaling approaches, most commonly based on POA (Koo et al., 2014; Murphy 

et al., 2017; Robinson et al., 2007; Woody et al., 2016) but also using NMOG (Jathar et al., 

2014, 2017) and naphthalene (Pye and Seinfeld, 2010). Finally, Gentner et al. (2012) used 

unburnt fuel surrogate to estimate IVOC emissions. These estimates are then combined with 

SOA yield data.  

 

Figure 2.6 IVOC mass enrichment factors as a function of IVOC content in fuel, 𝐑𝐄𝐧𝐫𝐢𝐜𝐡𝐦𝐞𝐧𝐭,𝐢 =

(𝒎𝒊
𝒆𝒙𝒉𝒂𝒖𝒔𝒕/𝒎𝑪𝟖−𝟏𝟎

𝒆𝒙𝒉𝒂𝒖𝒔𝒕)/(𝒎𝒊
𝒇𝒖𝒆𝒍

/𝒎𝑪𝟖−𝟏𝟎

𝒇𝒖𝒆𝒍
). The box-whisker plots indicate variability in ratio within a given 

source class: 25th -75th percentiles and 10th-90th percentiles. 

In this section, we use our new data to evaluate these different scaling approaches for 

estimating IVOC emissions to better understand their strengths and limitations for simulating 

ambient OA concentrations. Table 2.1 lists the different approaches we evaluated: (1) New 

– new profiles developed in this paper; (2) Trad – traditional profiles (SPECIATE #8750a 

for gasoline, #5565 for gas-turbine and #4674 for diesel sources emissions); (3) ROB: 
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traditional profiles + 1.5 × POA as IVOCs (Robinson et al., 2007); (4) MUR: traditional 

profiles + 9.656 × POA as IVOCs (Murphy et al., 2017); (5) PYE: traditional profiles + 66 

× Naphthalene as IVOCs (Pye and Seinfeld, 2010); (6) GEN: using unburnt fuel composition 

as surrogate (Gentner et al., 2012); (7) JAT: 20% of NMOG of gasoline emission and 25% 

of diesel emissions are IVOCs (Jathar et al., 2014). 

Table 2.1 List of different estimates of IVOC emissions and SOA yield for mobile sources shown in Figure 

2.7. 

Label IVOC Emissions 
IVOC SOA yield 

(at OA = 10 μg/m3) 
Reference 

New Direct measurements 0.22 - 0.30 
This work, Zhao et al. 

(2015, 2016) 

Trad N/A N/A EPA SPECIATE 

ROB 1.5 × POA 0.15a 
Robinson et al. (2007), 

Koo et al. (2014) 

MUR 9.656 × POA N/A Murphy et al. (2017) 

PYE 66 × Naphthalene 0.22 
Pye and Seinfeld 

(2010) 

GEN 
Unburned fuel (1% of NMOG for 

gasoline, 62% for diesel) 
0.034 - 0.20 Gentner et al. (2012) 

JAT 

Inverting chamber measurements 

(25% of NMOG for gasoline, 20% of 

NMOG for diesel) 

0.22 - 0.35 Jathar et al. (2014) 

a From Koo et al. (2014) 

 

Figure 2.7 compares our new data to the six previous estimates. Figure 2.7(a) shows 

the mass fraction of different classes of SOA precursors (VOC, IVOC and SVOC) in the 

NMOG emissions. Figure 2.7(b) shows the overall SOA yields of the total NMOG emissions 

for the different models (SOA mass/mass of NMOG emissions).  
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Figure 2.7 Comparison of (a) mass fraction of SOA precursors in total NMOG emissions and (b) 

calculated total SOA yields of NMOG emissions from mobile sources based on the different estimation 

approaches listed in Table 2.1. Star denotes no estimate available. 

As shown in Figure 2.7(a), all estimates have similar VOC SOA precursor mass 

fractions, but widely divergent amounts of IVOCs. Our new profiles (1) and estimates (6) 

and (7) have modestly lower VOC SOA precursors, due to the inclusion of IVOCs and gas-
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phase SVOC within NMOG emissions, while approaches (3) – (5) add additional IVOCs to 

the existing NMOG emissions. Since FID-based NMOG is a measure of all non-methane 

organic gases, we think IVOCs and gas-phase SVOCs are largely accounted for in existing 

NMOG emission factors for the types of sources measured here (see discussion of mass 

closure between bulk measurements and speciated measurements in section 2.2.2 and Figure 

S3). However, traditional source profiles do not correctly attribute these emissions to 

IVOCs/SVOCs in all sources. 

The most common approach to incorporate IVOCs in models has been to scale POA 

emissions as defined by the organic mass collected on a quartz filter. The scaling ratios (e.g. 

IVOC-to-POA) were estimated from very limited data (a single or small number of sources) 

and the same ratio has typically been applied to all source categories. Our data indicate that 

scaling with POA is not a robust approach because IVOC-to-POA ratios vary by source 

category. For example, the average IVOC-to-POA ratios for gasoline engines exhaust are 

6.2 ± 4.4 (cold-start) versus 12 ± 7 (non-DPF equipped) and 31 (DPF-equipped) for diesel 

exhaust (Zhao et al., 2015, 2016). In addition, these values are much larger than the widely 

used scaling factor of IVOC-to-POA of 1.5 (ROB in Figure 2.7) (Robinson et al., 2007), 

which grossly underestimates the IVOC emissions from the types of internal combustion 

engines considered here. While the IVOC-to-POA ratio of 9.6 by Murphy et al. (2017) (MUR 

in Figure 2.7) overestimates IVOC emissions from gasoline and gas-turbine sources, but 

underestimates it from diesel sources.  

However, even if one uses source specific IVOC-to-POA scaling factors, we do not 

think that scaling POA provides a robust estimate of IVOC emissions from internal 

combustion engines. POA emissions are dominated by lubricant oil (Worton et al., 2014) 

while IVOC emissions appear to mainly arise from unburned fuel (Figure 2.2). In addition, 
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quartz filter measurements are subject to sampling artifacts and partitioning biases (May et 

al., 2013a, 2013b, 2013c). As a result, IVOC-to-POA ratios vary not only by source type 

(e.g. gasoline versus diesel) but also operating conditions (Zhao et al., 2015).  

Zhao et al. (2015, 2016) reported stronger correlations between IVOC and total 

NMOG emissions than with POA over a range of operating conditions (R2 = 0.96 vs 0.90 

for gasoline and R2 = 0.99 vs 0.91 for diesel sources, Figure S11). This is not surprising 

given that both NMOG and IVOC emissions arise from fuel and are controlled by similar 

processes. This suggests that IVOC emissions should be estimated using source specific 

scaling factors of NMOG not POA.  

Jathar et al. (2014, 2017) estimated IVOC emissions by scaling NMOG. They also 

used different ratios for gasoline and diesel sources. However, they did not directly measure 

IVOCs. Instead they inferred IVOC-to-NMOG ratios using a combination of unspeciated 

emissions and inverse modelling of SOA production measured in a smog chamber. Using 

this approach, they attributed 25% of NMOG emission from gasoline engine and 20% from 

diesel engines to IVOCs. These values are very different than those reported here, which are 

based on direct measurements. A detail on the ratios of Jathar et al. (2014) is that they were 

derived to be used in combination with their empirically derived SOA yields. When used 

together they explain SOA yield production measured in smog chamber experiments with 

dilute exhaust. Therefore, one cannot simply replace IVOC-to-NMOG of Jathar et al. (2014) 

with the ones reported here without also using different SOA yields. 

Pye and Seinfeld (2010) estimated IVOC emissions by scaling naphthalene using the 

same IVOC-to-naphthalene ratio for all sources. Our data indicate that naphthalene is not a 

good indicator of IVOCs, due to the large variation in fuel aromatic content. For example, 

there is four times more naphthalene in gasoline engine exhaust (0.4%) and fuel (0.13%) 
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compared to diesel engine exhaust (0.1%) and fuel (0.04%). Therefore, the approach of Pye 

and Seinfeld (2010) generates much higher estimates of IVOC emissions from gasoline than 

diesel sources, which is opposite of the actual emissions data (Figure 2.2). In principle, this 

problem can be overcome with source specific IVOC-to-naphthalene ratios, but even with 

source-specific ratios, individual organics are likely a less robust scaler for IVOCs than total 

NMOG because fuel composition (e.g. aromatic content) varies by location and season.  

A final approach to estimate IVOC emissions is to use unburned fuel as a surrogate 

for the SOA production of exhaust. Gentner et al. (2012) used this approach to estimate the 

IVOC fraction, as well as the SOA yield of gasoline and diesel engine exhaust. This approach 

works for diesel, but not for gasoline given the enrichment of IVOCs in the exhaust (Figure 

2.6).  

In Figure 2.7(b), we combine the different emissions estimates with SOA yield data 

to calculate the SOA yield of the NMOG emissions for each source category, assuming 

complete oxidation of all precursors. Our new profiles predict that IVOCs and SVOC vapors 

contribute substantially to SOA production, especially for sources using lower-volatility 

fuels (e.g. diesel). For gasoline sources, we predict that IVOCs and SVOCs contribute as 

much SOA as traditional VOC precursors (mainly single-ring aromatics). Accounting for 

IVOCs in gasoline exhaust almost doubles the predicted SOA production compared to the 

traditional profile. For gas-turbine and diesel sources, IVOCs and SVOC vapors combining 

contribute factors of 13 and 44 more SOA than VOCs, respectively.  

Figure 2.7(b) also compares the SOA yields of NMOG emissions for all the different 

approaches (2) – (7). The differences in effective yields are primarily due to differences in 

IVOC/SVOC emissions. Traditional profiles and ROB underpredicts SOA production from 

all three source categories because they underestimate IVOC emissions. As discussed in 
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section 2.3.4, IVOCs are enriched in gasoline emissions compared to unburned fuel, 

therefore GEN underpredicts the SOA yield of gasoline emissions. However, fuel 

composition provides a reasonable estimate for SOA production from diesel emissions, 

except for the lack of SVOCs potentially produced from the usage of lubricant oil. The 

approaches of PYE and JAT overpredict the overall SOA production from gasoline 

emissions, due to their overestimation of IVOC emissions, but both underestimate the overall 

SOA production for diesel emissions.  

To conclude, none of the previous modelling approaches provide a robust estimate 

of the IVOC fraction in the exhaust for all three source categories. Figure 2.7(a) and (b) show 

that traditional profiles either completely omit IVOCs or incorrectly lumped them to VOC 

chemical mechanism groups, which greatly underestimate the overall SOA formation 

potential. Approaches (3) – (5) apply scaling factors to certain species, such as POA and 

naphthalene, but these factors vary by source and fuel composition, which may lead to 

significant bias for different sources. Using unburnt fuel composition as a surrogate in 

estimation (6) only works for sources that use lower volatility fuel, such as diesel.  

In addition to better representing gas-phase SOA precursor emissions, the new 

profiles also account for the semi-volatile character of POA. Partitioning calculations predict 

that 40% to 50% of traditionally defined POA mass evaporates at typical atmospheric 

conditions (T=298K and OA=10 µg/m) (May et al., 2013b, 2013a). 

 

2.5 Recommendations and future research needs 

Figure 2.7 highlights the importance of including IVOC and SVOC emissions in 

models and inventories to improve predictions of SOA formation. This paper facilities this 

by providing model-ready profiles that include direct measurements of IVOCs and SVOCs. 
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They are designed to be applied to existing inventories of POA and NMOG emissions. These 

profiles (Table S3) are normalized to total organic emissions (VOC, IVOC, SVOC, LVOC 

plus NVOC), and therefore should be applied to the sum of gas- and particle-phase organic 

emissions. Since current emission inventories report gas- (NMOG or VOC) and particle-

phase (PM or POA) emissions separately, the comprehensive profile can be separated into 

two parts: gas-phase (VOC and IVOC) and particle-phase (SVOC and less volatile 

components) profiles. These sub-profiles would be renormalized and then applied to the 

existing NMOG or POA emissions. With this approach, one needs to correct the POA data 

for missing SVOC vapors not collected during vehicle certification testing (the factor of 1.4 

for LDGV discussed at the beginning of section 2.3).  

Our new profiles intentionally do not define the phase state of the emissions. Phase 

state is not a property of the emissions, but determined by the combination of the volatility 

distribution of the emissions and atmospheric conditions because gas-particle partitioning 

depends on the concentration of organic aerosol and temperature. The profiles specify the 

volatility distribution of the emissions, which can then be used to calculate the gas-particle 

partitioning (phase state) for any atmospheric condition (Robinson et al., 2010). This 

approach is critical to correctly predict POA concentrations for sources that have substantial 

SVOC emissions, such as the sources tested here and biomass smoke (May et al., 2013c).  

The three types of sources considered here account for 98.2% of the mobile source 

emissions in the 2014 US EPA National Emission Inventory. For other liquid-fuel internal 

combustion engine sources, we recommend interpolating based on fuel composition and 

applying the IVOC enrichment factor estimated from fuel volatility (Figure 2.6). For sources 

profiles that only contain speciated VOCs and unknown residual, we recommend not 

normalizing to known species, as this will likely misattribute low volatility organics to 
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VOCs.  

The emission profiles described here (except for gas turbines) are based on 

experiments conducted using sources recruited from the California in-use fleet, at typical 

California summertime temperatures (10-25 °C) and using California commercial 

summertime fuels. Therefore, the data are most directly relevant to California summertime 

conditions. Ambient temperature can have a large influence on emissions. For example, 

George et al. (2015) measured about 10 times higher non-methane hydrocarbon (NMHC) 

emission rates during testing at -7 ℃ versus 24 ℃. The VOC composition also changed with 

temperature with the fraction of C9+ aromatics almost doubling at low temperature. These 

data suggest that winter emissions may have higher content of larger aromatics (C9+ 

aromatics) and IVOCs, due to incomplete combustion or lower efficiency of catalytic 

converter. Our profiles therefore likely represent lower bounds to winter vehicle emission in 

terms of aromatics and IVOC contents. As discussed in section 2.3.2, unburned fuel is an 

important contributor to the emissions. Therefore, variations in fuel composition by, for 

example, season and/or location will influence the composition of the emissions. From an 

SOA formation perspective, we are most interested in changes in fuel IVOC and aromatic 

content. Figure S12 compares our new VOC profiles with data from China (Cao et al., 2016; 

Yao et al., 2015). There is good agreement for many compounds, but not all. 

Future research needs: 

1) IVOC and SVOC emissions data from vehicles operated over a wider range of 

conditions. Comprehensive emissions data are needed for a wider range of fuel 

compositions, test cycles (hot operations), and seasons (especially winter). However, given 

their major contribution to SOA formation, we recommend using our new profiles even for 

studies outside of California if the only other option is to use traditional profiles that don’t 
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include IVOC and SVOC data.  

2) IVOC and SVOC emissions data for non-mobile sources. Recent research has 

demonstrated that IVOCs and SVOCs are important contributors to biomass burning, oil 

sands, oil production, and volatile chemical product emissions (de Gouw et al., 2011; Hatch 

et al., 2017; Hunter et al., 2017; Liggio et al., 2016). More comprehensive, model-ready 

profiles that account for the full spectrum of organic emissions are needed for these and other 

source categories (McDonald et al., 2018).  

3) Inclusion of IVOCs in air quality models and inventories. Our new profiles are 

designed to directly incorporate IVOCs into models and inventory. Since they are based on 

direct measurements, they do not have the large uncertainties associated with the previously 

developed scaling approaches. 

4) Improved chemical composition of IVOCs and SVOCs. Although we have 

quantified the total IVOC emissions, the majority of these emissions were not resolved at 

the molecular level. Since the SOA yield of compounds depend on both molecular structure 

and volatility (Tkacik et al., 2012; Ziemann, 2011), future studies are needed to more fully 

speciate IVOCs and SVOCs in order to identify the class of compounds that needed for 

photo-oxidation experiments (Chan et al., 2013; Cross et al., 2015; Isaacman et al., 2012b). 

5) Measurements and source apportionment of atmospheric IVOCs / SVOCs. 

Ambient measurements of IVOCs / SVOCs are needed to identify other important sources 

of atmospheric IVOCs / SVOCs. This will help future studies to prioritize which sources to 

characterize.  
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Chapter 3: Simulation of organic aerosol formation during the 

CalNex study: updated mobile emissions and secondary organic 

aerosol parameterization for intermediate volatility organic 

compounds * 

Abstract 

We describe simulations using an updated version of the Community Multiscale Air Quality 

model version 5.3 (CMAQ v5.3) to investigate the contribution of intermediate volatile 

organic compounds (IVOCs) to secondary organic aerosol formation (SOA) in Southern 

California during the CalNex study. We first derive a model-ready parameterization for SOA 

formation from IVOC emissions from mobile sources. To account for SOA formation from 

both diesel and gasoline sources, the parameterization has six lumped precursor species that 

resolve both volatility and molecular structure (aromatic versus aliphatic). We also 

implement new mobile-source emission profiles that quantify all IVOCs based on direct 

measurements. The profiles have been released in SPECIATE 5.0. By incorporating both 

comprehensive mobile-source emissions profiles for SVOCs and IVOCs and experimentally 

constrained SOA yields, this CMAQ configuration best represents the contribution of mobile 

sources to urban and regional ambient OA. In the Los Angeles region, gasoline sources emit 

4 times more non-methane organic gases (NMOG) than diesel sources, but diesel emits 

roughly 3 times more IVOCs on an absolute basis. The revised model predicts all mobile 
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sources (including on- and off-road gasoline, aircraft and on- and off-road diesel) contribute 

~1 μg m-3 to the daily peak SOA concentration in Pasadena. This represents a ~70% increase 

in predicted daily peak SOA formation compared to the base version of CMAQ. Therefore, 

IVOCs in mobile-source emissions contribute almost as much SOA as traditional precursors 

such as single-ring aromatics. However, accounting for these emissions in CMAQ does not 

reproduce measurements of either ambient SOA or IVOCs. To investigate the potential 

contribution of other IVOC sources, we performed two exploratory simulations with varying 

amounts of IVOC emissions from non-mobile sources. To close the mass balance of primary 

hydrocarbon IVOCs, IVOCs would need to account for 12% of NMOG emissions from non-

mobile sources (or equivalently 30.7 Ton day-1 in the Los Angeles-Pasadena region), a value 

that is well within the reported range of IVOC content from volatile chemical products. To 

close the SOA mass balance and also explain the mildly oxygenated IVOCs in Pasadena, an 

additional 14.8% of non-mobile source NMOG emissions would need to be IVOCs 

(assuming SOA yields from the mobile IVOCs applies to non-mobile IVOCs). However, an 

IVOC-to-NMOG ratio of 26.8% (or equivalently 68.5 Ton day-1 in Los Angeles-Pasadena 

region) for non-mobile sources is likely unrealistically high. Our results highlight the 

important contribution of IVOCs to SOA production in Los Angeles region, but underscore 

that other uncertainties must be addressed (multigenerational aging, aqueous chemistry, and 

vapor wall losses) to close the SOA mass balance. This research also highlights the 

effectiveness of regulations to reduce mobile-source emissions, which have in turn increased 

the relative importance of other sources, such as volatile chemical products. 

 

3.1 Introduction 

Exposure to fine particulate matter (PM2.5 and PM1) has been associated with 
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increased mortality, lung cancer and cardiovascular diseases (Apte et al., 2018; Di et al., 

2017). Organic aerosol (OA) is a major component of ambient fine particulate matter 

(Jimenez et al., 2009; Zhang et al., 2015). The majority of OA, even in most urban areas, is 

secondary organic aerosol (SOA), formed from the atmospheric oxidation of gas-phase 

species. Over the past several decades, primary emissions have been greatly reduced in the 

United States, which has led to significant improvement in air quality, especially in the Los 

Angeles basin in California (Warneke et al., 2012; Zhang et al., 2018). However, SOA 

remains an important component of fine particulate matter, but its sources are uncertain 

(Ensberg et al., 2014; McDonald et al., 2018). 

Intermediate volatility organic compounds (IVOCs) are an important class of SOA 

precursors (Chan et al., 2009; Liggio et al., 2016; Presto et al., 2009; Zhao et al., 2014). 

IVOCs, for example, C12 to C17 n-alkanes and polycyclic aromatic hydrocarbons, are 

efficient SOA precursors (Chan et al., 2009; Presto et al., 2010a). In addition, chamber 

experiments using unburnt fuel and diluted exhaust have demonstrated the importance of 

IVOCs to SOA production from mobile-source emissions (Gordon et al., 2014; Jathar et al., 

2013; Miracolo et al., 2011; Platt et al., 2017). 

Despite this evidence, IVOCs are not routinely or consistently accounted for in 

chemical transport models. A major challenge has been the lack of emissions data due to a 

combination of sampling challenges and the fact that the vast majority of IVOC emissions 

have not been speciated on a molecular basis. In addition, chemical mechanisms (e.g. 

SAPRC, Carbon Bond, etc.) often do not explicitly account for IVOCs, instead lumping them 

with VOCs or non-reactive gases (Lu et al. 2018). Several recent studies report total 

(speciated and unspeciated) IVOC emissions from a variety of mobile sources, including on- 

and off-road gasoline, diesel, aircraft and vessel engines (Cross et al., 2013; Huang et al., 
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2018; Kroll et al., 2014; Pereira et al., 2018; Presto et al., 2011; Qi et al., 2019; Wang et al., 

2012; Zhao et al., 2015, 2016). While these studies have not been able speciate all of the 

IVOCs emissions at the molecular level, some provide insight into the molecular structure 

of the unspeciated IVOCs (Drozd et al., 2019; Hatch et al., 2017; Hunter et al., 2017; Worton 

et al., 2014; Zhao et al., 2015, 2016). For example, IVOCs in diesel exhaust are primarily 

comprised of aliphatic compounds while IVOCs in gasoline exhaust are primarily aromatics 

with higher OH reaction rates and SOA yields. Zhao et al. (2015, 2017) used these new 

emissions data to explain the SOA formation in smog chamber experiments with diluted 

vehicle emissions. The SOA mechanism proposed by Zhao et al. (2015, 2017) accounts for 

all of the IVOC emissions. It represents them using 79 different “compounds”, some of 

which are individual species and others are lumped groups assigned based on gas-

chromatography and mass spectrometry data. However, this model is too computationally 

expensive for implementation in current operational CTM. 

Because of the high levels of both ozone and PM exposure in the Los Angeles basin 

over the last several decades, extensive ambient measurement campaigns have explored the 

sources of poor air quality in the region, including the CalNex campaign in 2010 (Ryerson 

et al., 2013). During the CalNex campaign, average OA at the Pasadena supersite was 7 μg 

m-3, of which SOA, defined as the sum of semi-volatile and low-volatile oxygenated OA 

(SV-OOA and LV-OOA) factors from AMS analysis, contributed 66% to total OA mass 

(Hayes et al., 2013). Zhao et al. (2014) measured the ambient IVOC concentration at the 

Pasadena site, and estimated that photo-oxidation of IVOCs contributed up to 57% of SV-

OOA during CalNex. 

A number of chemical transport model (CTM) studies have examined SOA formation 

in the LA basin during the CalNex campaign (Baker et al., 2015; Fast et al., 2014; Jathar et 
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al., 2017; Murphy et al., 2017; Woody et al., 2016). However, these studies used very 

different assumption for IVOC emissions and their SOA yields. IVOC emissions are 

commonly estimated by applying a scaling factor to some other species (generally POA). 

These scaling factors have been based on little experimental data and the typically the same 

factor is applied to all sources. For example, Fast et al. (2014) assumed additional SOA 

precursor (IVOC and/or SVOC; semivolatile organic compounds) mass of 6.5 × POA and 

Woody et al. (2016) assumed 7.5 × POA based on previous estimations (Hodzic et al., 2010; 

Koo et al., 2014), applied to all emission source categories. Jathar et al. (2017) assumed 

mobile IVOC emission as 25% of diesel NMOG emissions and 20% of gasoline NMOG 

emissions. Finally, Baker et al. (2015) did not explicitly account for IVOCs, but increased 

the SOA yields from VOCs by a factor of four compared to the base version of the 

Community Multiscale Air Quality (CMAQ) model. Despite these efforts, these studies still 

underpredicted the measured OA by a factor of 2 to 6 (Hayes et al., 2013). Murphy et al. 

(2017) largely closed the OA mass balance by defining a new lumped SOA precursor called 

potential combustion volatile organic compounds (pcVOC) with emissions equal to 9.6 × 

POA and an SOA yield of 1. However, all the above-mentioned models used scaling factors 

that are not based on actual emission data. They also only use a single IVOC surrogate, which 

does not account for differences in IVOC chemical composition. Lu et al. (2018) showed 

that a single scaling factor does not represent the magnitude of actual IVOC emissions across 

all mobile sources. Finally, none of these models account for the effects of differences in 

molecular structure in IVOC emissions on SOA yield. 

Mobile sources are major sources of NMOG emissions, and therefore important 

sources of SOA precursors in urban environments (Gentner et al., 2017). Historically, mobile 

sources have been the dominant source of NMOG in many urban areas, but their contribution 
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has been reduced due to increasingly stringent emission regulations. The 2014 EPA National 

Emission Inventory (NEI) estimates that mobile sources contribute 32% of the anthropogenic 

VOC emissions nationally (and 43% in Los Angeles county). In Los Angeles county, on- 

and off-road gasoline and diesel sources account for more than 96% of mobile-source 

emissions. 

Lu et al. (2018) recently compiled mobile-source emission data, including on- and 

off-road gasoline, aircraft and diesel engines, to create updated model-ready emission 

profiles that include explicit treatment of IVOCs. They found that mobile source NMOG 

emissions can be explained by trimodal distributions of by-product, fuel and oil modes. 

IVOC emissions originate from fuel components and similar distributions are observed 

across sources that use the same fuel (Cross et al., 2015; Lu et al., 2018; Presto et al., 2011). 

This applies to both low emitting heavily controlled sources (e.g. LEV-II certified gasoline 

vehicle) and uncontrolled high emitting sources (e.g. two stroke gasoline off-road sources) 

(Lu et al., 2018). Therefore, in this work, mobile IVOC emissions are modelled and grouped 

based on fuel type. 

In this paper, we use an updated version of CMAQ v5.3 (US EPA Office of Research 

and Development, 2019) to investigate the sources and contribution of SVOCs and IVOCs 

to SOA formation in the Los Angeles region during the CalNex campaign. We updated 

CMAQ v5.3 with a new set of mobile-source NMOG and SVOC emission profiles that 

include 6 classes of IVOCs and a new parameterization of SOA formation from IVOC 

precursors designed for implementation into chemical transport models. The new emission 

profiles are based on direct measurement of IVOCs from on- and off-road mobile sources 

(Gordon et al., 2013; Lu et al., 2018; May et al., 2014; Presto et al., 2011; Zhao et al., 2015, 

2016). These profiles (100VBS to 103VBS) are now available in SPECATE 5.0 (US EPA, 
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2019). The new SOA parameterization is derived from a comprehensive parameterization 

that explains the SOA formation from dilute mobile-source exhaust in smog chamber studies 

(Zhao et al., 2015, 2017). We evaluate the resulting model, now the most up-to-date 

representation of mobile-source organic compound emissions, using data collected during 

the CalNex campaign, including direct measurements of ambient IVOCs. Finally, we explore 

the potential contribution of non-mobile sources to IVOC and OA concentrations. 

 

3.2 Parameterizing SOA formation from mobile-source IVOCs 

Mobile sources are comprised of a complex mixture of on- and off-road sources, 

including gasoline, aircraft and diesel engines. However, they are predominantly gasoline- 

and diesel-powered, with a small fraction of aircraft emissions. In this work we apply the 

source profiles of Lu et al. (2018) to estimate the amount and composition of the IVOC 

emissions for different mobile sources. The IVOCs are normalized to total NMOG 

emissions, which only includes the organics in volatility range from C* = 103 to 1011 µg m-

3. Table 3.1 summarizes the IVOC-to-NMOG ratios for different mobile sources. The ratios 

(and associated emission profiles) vary widely depending on the underlying fuel. For 

gasoline, aircraft to diesel sources, IVOCs comprise 4.6%, 28.5% and 55.5% of the NMOG 

emissions, respectively. IVOC emissions from gasoline source include high fractions of 

aromatics (Drozd et al., 2019; Zhao et al., 2016). 

We developed a simplified parameterization to simulate first-generation SOA 

formation from IVOCs under high-NOx conditions. By first-generation we mean the amount 

of SOA that forms within a couple of hours in a smog chamber experiment with dilute 

exhaust at typical atmospheric oxidant levels. The parameterization is derived from the 

model of Zhao et al. (2015, 2016), which explicitly accounts for 79 different classes of 
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IVOCs. The chemistry and transport associated with 79 additional species in the gas and 

particle phases would be too computationally expensive in a CTM which normally has about 

50 or less organic aerosol species. Our aim is to develop a model for IVOC SOA production 

that can be used in off-the-shelf regulatory and routine chemical transport modelling 

applications. For other applications, a more-explicit approach with multiple thousands of 

species may be more powerful for modelling reaction pathways (Ying and Li, 2011). From 

the IVOC measurement perspective, lumping similar IVOCs together based on their 

volatility and functionality is also more interpretable and compatible to data provide by most 

instruments. 

Table 3.1 Mass fractions (g per g-NMOG) of IVOCs in mobile NMOG emission profiles used in CMAQ 

simulations. 

Group 
Volatility 

(C* at 298K, µg m-3) 

Source 

Gasoline Aircraft Diesel 

Non-aromatics 

IVOCP6-ALK 106 0.006 0.207 0.159 

IVOCP5-ALK 105 0.002 0.048 0.187 

IVOCP4-ALK 104 0.003 0.020 0.149 

IVOCP3-ALK 103 0.003 0.009 0.054 

Aromatics 
IVOCP6-ARO 106 0.025 n/a 0.002 

IVOCP5-ARO 105 0.006 n/a 0.004 

Total  0.046 0.285 0.555 

 

The Zhao et al. (2015, 2016) model accounts for 57 individual IVOCs and 22 lumped 

IVOCs. The 22 lumped IVOCs are comprised of unspeciated IVOCs grouped based on gas 

chromatography (GC) retention time and an assigned chemical class based on its mass 

spectra. This model explains the SOA formation from dilute exhaust of gasoline and diesel 

vehicles measured in chamber experiments (Zhao et al., 2015, 2017). Our simplified SOA 

parameterization accounts for the key differences in chemical composition of the IVOC 
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emissions from different mobile sources. This is important because the composition of the 

IVOC emissions varies by source class (e.g. gasoline versus diesel) and SOA yield depends 

on both molecular weight (volatility) and chemical structure (aromatics versus alkanes) 

(Chan et al., 2009; Jathar et al., 2013; Lim and Ziemann, 2005, 2009; Presto et al., 2010a). 

For example, diesels emit more lower volatility IVOCs than gasoline engines, but diesel 

IVOC emissions are mainly comprised of aliphatic compounds versus aromatics for 

gasoline. These differences matter because, for a given chemical class, SOA yields generally 

increase with increasing molecular weight, which increases the effective SOA yield of diesel 

exhaust relative to gasoline exhaust. However, for a given carbon number, the SOA yield for 

hydrocarbon IVOCs generally follows aromatics > cyclic > linear > branched alkanes (Lim 

and Ziemann, 2009; Tkacik et al., 2012), thus gasoline IVOC yields increase when their 

structure is considered. Finally, aromatic IVOCs have higher OH reaction rates than alkanes 

(Chan et al., 2009; Zhao et al., 2017). In this study, we only account for IVOC-OH reactions 

because mobile-source IVOCs are mostly alkanes or aromatics, which will react slower with 

O3. NO3 oxidation can be important in night-time SOA formation (Fry et al., 2014; Hoyle et 

al., 2011), and these will be important to consider in the future, but experimental studies on 

SOA formation from anthropogenic IVOC reactions with NO3 radical are limited at this time.  

To illustrate the complexity of the IVOC mechanisms of Zhao et al. (2015, 2016), Figure 3.1 

plots the SOA yield (expressed as SOA mass divided by mass of precursor) as a function of 

volatility for the 79 different IVOCs in the model at a typical atmospheric OA concentration 

of 10 μg m-3. This model likely provides a conservative estimate for SOA yields of lower 

volatility IVOCs, as C18-22 n-alkanes are assumed to have the same SOA yields as C17 n-

alkanes. The scatter in the data highlights the complex relationship between molecular 

structure and SOA yield. 
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Figure 3.1 Scatter plot of first-generation mass-based SOA yields versus volatility (log C*, μg / m3) in the 

detailed parameterization (dots are colored by OH reaction rates) 

Our goal is to derive a semi-empirical SOA parameterization with the minimum 

number of surrogate species that reproduces the mechanism of Zhao et al. (2015, 2016). The 

simplified parameterization must account for the differences in SOA formation from IVOC 

emissions from different mobile source categories (gasoline, diesel and aircraft). We 

developed the simplified parameterization using the volatility basis set (VBS) framework of 

Donahue et al. (2006) following the approach of Presto et al. (2010b). The parameterization 

accounts for all IVOC emissions, which are lumped into surrogates based on gas-

chromatography-retention-time (related to volatility) and mass spectral (composition 

information) data (Lu et al. 2018). Like the work of Zhao et al. (2015, 2016), the 

parameterization accounts for all IVOC mass, not just the mass that can be speciated at the 

molecular level (Lu et al. 2018). Briefly, to simulate SOA formation, each lumped IVOC 

group reacts with OH to form a set of semi-volatile products in Eq. (1): 

𝐼𝑉𝑂𝐶𝑖 + 𝑂𝐻 →  𝛼𝑖,1𝑃𝐶∗ =0.1 + 𝛼𝑖,2𝑃𝐶∗ =1 + 𝛼𝑖,3𝑃𝐶∗ =10 + 𝛼𝑖,4𝑃𝐶∗ =100  for group i = 1 to 6 (1) 

where 𝛼𝑖,1 to 𝛼𝑖,4 are mass-based stoichiometric coefficients for IVOCi distributing the 
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reaction products across a second volatility basis set from 0.1 to 100 ug/m3 (Presto et al., 

2010b). For each lumped IVOC species there are 5 unknowns: four stoichiometric 

coefficients (𝛼𝑖,1 to 𝛼𝑖,4) and the OH reaction rate kOH, i. These coefficients and reaction rates 

are derived by fitting the mechanism of Zhao et al. (2015, 2016). All SOA parameters are 

set at fixed temperature of 298 K. Details of the fitting procedure are in the SI. 

We initially tried using four lumped-IVOC-species distributed across the volatility basis set 

(C* = 103 to 106 ug/m3) to account for the influence of precursor volatility based on gas-

chromatography retention time but not molecular structure on SOA yield. However, that 

model poorly reproduced the SOA formation from gasoline vehicle emissions, especially at 

shorter time scales (Figure S1). The problem is that IVOCs in diesel exhaust are dominated 

by aliphatic compounds while IVOCs in gasoline exhaust are dominated by aromatics 

(Drozd et al., 2019; Zhao et al., 2016); as previously discussed, aromatics compounds have 

different OH reaction rates and SOA yields (Figure 3.1) (Lim and Ziemann, 2009; Tkacik et 

al., 2012). 

We therefore defined two additional lumped IVOC species with C* = 105 and 106 µg 

m-3 to account for the aromatic IVOCs in gasoline engine exhaust (Table 3.1). The IVOCs 

in these two bins were split based on mass spectral data (Zhao et al., 2015, 2016). Mobile-

source IVOC emissions in the lower volatility bins of C* = 103 and 104 µg m-3 are primarily 

alkanes from unburnt fuel or lubricant oil (Lu et al., 2018; Worton et al., 2014); therefore, 

the simplified mechanism only includes one lumped aliphatic IVOC species in each of those 

bins. IVOC emissions are assigned to these surrogate species using the source profiles listed 

in Table 3.1. 

To illustrate the performance of the new parameterization, Figure 3.2 (a) compares 

the predicted SOA using our six-IVOC-group parameterization to the original mechanism of 
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Zhao et al. (2015, 2016). It shows that the two models agree with an absolute error for the 

mass-based SOA yield of less than 0.01 for all mobile sources at an OA concentration of 5 

µg m-3. Across a wide range of atmospherically relevant concentrations (OA of 1 to 50 µg 

m-3), Figure 3.2 (b) shows that the relative error is less than 6% between our new 

parameterization and the original mechanisms of Zhao et al. (2015, 2016).  

 

  
 

Figure 3.2 (a) Comparison of predicted SOA formation per unit mass mobile IVOC emission of new 

parameterizations and model of Zhao et al. (2015, 2016) at OA = 5 µg m-3, average [OH] = 3 × 106 cm-3. 

(b) Relative error in SOA formed between new and Zhao et al. (2015, 2016) parameterization (Solid line 

is the relative error at OA = 5 µg m-3, shaded area corresponds to OA from 1 to 50 µg m-3). 

The yields derived by the fitting make physical sense. The yields increase with 

decreasing volatility (Table 3.2). The fitting procedure assigns higher yields and faster 

reaction to the lumped aromatics compared to aliphatics in the same volatility bin (Drozd et 

al., 2019; Zhao et al., 2016). This explains the higher SOA production in the first 10 hours 

from gasoline exhaust compared to aircraft and diesel IVOC emissions. It also predicts that 

diesel IVOC emissions have the overall highest SOA yield due to their high fraction of lower 

volatility compounds compared to emission from gasoline engines and aircraft (Lu et al., 

2018; Zhao et al., 2015). 
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Table 3.2 Properties and stoichiometric mass-based product yields for 6-group IVOC-SOA 

parameterization  

Group 
C* (µg m-

3, at 298K) 

MW 

(g/mol) 

kOH × 1011  

(cm-1 

molec-1 s-1) 

αi 

(C* = 0.1 to 100 µg m-3 at 298K) 

Yield at 

10 µg m-

3 

Hvap  

(kJ 

mol-1) 0.1 1 10 100 

IVOCP6-

ALK 
106 184.4 1.55 0.009 0.045 0.118 0.470 0.15 19 

IVOCP5-

ALK 
105 219.4 1.89 0.051 0.061 0.394 0.494 0.35 30 

IVOCP4-

ALK 
104 254.9 2.25 0.068 0.083 0.523 0.239 0.43 41 

IVOCP3-

ALK 
103 296.6 2.65 0.067 0.086 0.544 0.198 0.43 52 

IVOCP6-

ARO 
106 162.3 3.05 0.022 0.109 0.251 0.005 0.25 19 

IVOCP5-

ARO 
105 197.3 7.56 0.143 0.021 0.329 0.358 0.36 30 

 

Table 3.2 lists the set of kOH and αi for the simplified six-IVOC-group 

parameterization for mobile-source emissions. Molecular weights (MW) are determined as 

the average MW of n-alkanes or speciated aromatics in each volatility bin. The IVOC MWs 

are used to convert mass-based SOA yields to molar units and calculate parameters needed 

to simulate dry deposition processes. Enthalpies of vaporization (Hvap) are determined using 

the fitted parameterization in Ranjan et al. (2012). In this work, we implement this six-

lumped-IVOC-group parameterization to model the IVOC SOA formation in CMAQ v5.3. 

The first-generation products represented in equation (1) undergo multigenerational aging 

following the mechanism of Murphy et al. (2017) described in section 3.3.4. 

 

3.3 CMAQ model  
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To evaluate the contribution of mobile source IVOC emissions to ambient SOA, we 

implemented our new six-lumped-IVOC-group SOA parameterization and emissions 

profiles into CMAQ v5.3. We used the model to simulate the air quality in California from 

1 May to 30 June 2010, which includes the entire CalNex campaign (May and July 2010). 

Except as noted below, the simulations described here have essentially the same modelling 

domain and input parameters as previous modelling studies on CalNex (Baker et al., 2015; 

Murphy et al., 2017; Woody et al., 2016). We have extended this previous work by updating 

the emissions and SOA formation from IVOCs. 

 

3.3.1 Model configuration 

The model domain covered California and Nevada with a 4 km (325×225) grid 

resolution and 35 vertical layers. The input meteorology and NEI emission inventory are 

very similar to those used by Baker et al. (2015), Woody et al. (2016) and Murphy et al. 

(2017) and are identical to Qin et al. (2019). Meteorological inputs were generated using the 

Weather Research and Forecasting Model (WRF) Advanced Research WRF core version 

3.8.1 (Skamarock et al., 2008) with one additional model layer at the surface compared to 

previous studies (i.e. the lowest layer of approximately 40 m depth has been split into two 

20 m deep layers to better resolve surface gradients). The emissions inputs are based on the 

2011 NEI version 2 with mobile, wildfire, and electric generating point source emissions 

calculated for 2010. Mobile on-road and non-road emissions are calculated by MOVES 

2014a, except that on-road emissions for California are estimated by EMFAC and allocated 

using MOVES 2014a. Biogenic emissions are calculated online with BEIS v3.61 and 

improved land use cover from BELD4 (Bash et al., 2016). Sea-spray aerosols are calculated 

online and incorporate dynamic prediction of particle population size and standard deviation. 
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Wind-blown dust emissions are neglected and should not impact comparisons with the data 

collected by the AMS, which detects non-refractory particulate compounds. Moreover, 

previous studies (Cazorla et al., 2013) found little evidence of dust impacts during CalNex 

using both in-situ aircraft measurements and inference from AERONET retrievals. Gas-

phase chemistry is simulated with the SAPRC07T chemical mechanism (Carter, 2010; 

Hutzell et al., 2012; Xie et al., 2013). Aerosols are simulated using the Aero-7 module 

(CMAQ-AE7) with monoterpene photo-oxidation updates (Xu et al., 2018) and organic 

water uptake (Pye et al., 2017). Boundary conditions were generated from a 12 km 

continental U.S. simulation of April to June 2010. We use the first 14 days of the simulation 

as a spin-up to minimize the influence of initial conditions. 

Previous studies (Baker et al., 2015; Woody et al., 2016) have extensively evaluated 

different versions of CMAQ using CalNex data. These evaluations show good to excellent 

performance for many pollutants, with a notable exception of organic aerosols and SOA – 

the focus of this paper. We evaluated our model predictions with measurements of gas-phase 

pollutants such as CO, O3 and NOx, as they are typical indicators for model performance. 

Consistent with the previous applications of CMAQ to CalNex (Baker et al., 2015; Murphy 

et al., 2017; Woody et al., 2016), Figure S2(a) shows very good agreement between modelled 

and measured CO diurnal patterns in Pasadena, and the normalized mean bias (NMB) is 

4.2%. Figure S3 compares the O3, NO and NO2 diurnal patterns with measurements in 

Pasadena, where the NMB is 10.7%, -6.7% and 5.4%, respectively. Figure S4 compares the 

CO, O3 and NO diurnal patterns for three other sites: Bakersfield, Sacramento and Cool. The 

model NMB is within ±25% for all comparisons, except for O3 and NO in Bakersfield. Thus, 

we can conclude that the CMAQ model perform reasonably well at all four sites for 

traditional gas-phase pollutants.  
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3.3.2 POA emissions 

CMAQ v5.3 treats POA emissions as semi-volatile with variable gas-particle 

partitioning and multigenerational aging (Figure S5). The POA model, similar to the 1.5-

VBS of Koo et al. (2014), contains five pairs of hydrocarbon-like vapor/particle species (1 

LVOC, 3 SVOCs, and 1 IVOC) distributed across a volatility basis set with C* from 10-1 to 

103 µg m-3, with O:C increasing slightly with decreasing volatility. POA emissions are then 

assigned to each of these species using the source-specific volatility profiles in Table 3.3 and 

CMAQ calculates gas-particle partitioning assuming equilibrium partitioning and treating 

the entire organic phase as a single, pseudo-ideal solution. For non-mobile sources, POA 

emissions are distributed into all five bins with C* from 10-1 to 103 µg m-3 while the mobile 

source POA profiles only map to the 10-1 to 102 µg m-3bins.  

Table 3.3 POA volatility distributions and filter artifact scaling factors 

Source 
Volatility, C* (µg m-3, at 298K) Filter artifact 

scaling factor ≤ 10-1 1 10 102 

Gasoline 0.16 0.08 0.37 0.39 1.4 

Diesel 0.21 0.11 0.33 0.36 1 

Gas-turbine 0.15 0.26 0.38 0.21 1 

 

Comprehensive emissions profiles for semi-volatile POA include both SVOCs and 

lower volatility organics (Lu et al., 2018). In the base version of CMAQ v5.3, the volatility 

profile of Robinson et al. (2007) is used to represent all combustion sources. Here, we update 

the volatility distributions for mobile POA using the new mobile-source emission profiles in 

Lu et al. (2018). The profiles (8873VBS, 8992VBS to 8996VBS) are available in SPECIATE 

5.0 (US EPA, 2019). For non-mobile combustion sources, we use the biomass burning POA 
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volatility distribution from May et al. (2013b) for wood-burning sources, the cooking POA 

volatility distribution from Woody et al. (2016) for cooking sources, and the diesel POA 

volatility distribution from May et al. (2013a) as a surrogate for all other combustion sources. 

According to our emission inventory, mobile, wood-burning and cooking sources combined 

emit more than 80% of total POA in LA region during the modelled period, where other 

combustion sources only emit 16.4% of the POA. We acknowledge that the diesel POA 

surrogate is modestly more volatile than biomass burning POA profiles. Thus, using diesel 

POA volatility as the surrogate for other combustion sources will possibly increase the 

regional SOA formation compared to if a different profile was used, but the potential bias is 

small. Table 3.3 summarizes the volatility distributions and scaling factors used in this work. 

The same POA emissions were used for all model runs.  

A challenge is that most existing POA emission factors used to inform inventories 

such as NEI are based on filter measurements, which do not quantitatively collect all SVOCs. 

For example, filters collect only a portion of SVOC vapors. Estimating this error is complex 

because there are competing biases. First, source testing is often performed at low levels of 

dilution which creates high concentrations (relative to the more dilute atmosphere) that shifts 

gas-particle partitioning of SVOCs to the particle phase. In these situations, filters collect a 

larger fraction of SVOCs than more dilute conditions (of course, at high enough 

concentrations, filters will also collect some IVOC vapors). Second, during mobile source 

testing, filters are commonly collected at elevated temperatures (e.g. 47 ºC) to avoid water 

condensation, which shifts gas-particle partitioning towards the gas phase, reducing the 

fraction of SVOCs collected by a filter. Finally, filters collect some vapors as sampling 

artifacts, which depends on many factors, including filter material, filter face velocity, and 

filter pre-treatment (Subramanian et al., 2004). Therefore, the fraction of SVOCs collected 
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by filters depends on these competing effects, which are difficult to quantify. As expected, 

data from Zhao et al. (2015, 2016) and Lu et al. (2018) indicate that the fraction of SVOC 

collected depends on the OA concentration inside the sampling system. 

To estimate potential biases in the amount of SVOC vapors in the filter-based POA 

emission factor measurements, we compared the mass of lower volatility organics (SVOC + 

LVOC + NV) collected on filters and Tenax tubes versus the mass collected on filters 

(regular POA measurement) (Lu et al., 2018). The two estimates for diesel and gas-turbine 

tests were within 10%, which is within experimental uncertainty. Therefore, we did not add 

any SVOC mass to these emissions. For gasoline sources, the data indicate an average bias 

of 40%, which means that lower volatility organics were only partially collected by the filter. 

This is consistent with the relatively low particle emissions of gasoline sources, which create 

lower concentration conditions inside of the dilution sampler and therefore gas-particle 

partitioning shifted more to the vapor phase. We therefore applied a filter artifact correction 

factor of 1.4 to gasoline POA emissions, as shown in Table 3.3. We add these SVOC vapors 

to address the bias in emissions measurements and to best estimate the potential local / 

regional SOA formation from mobile source SVOCs. 

 

3.3.3 IVOC emissions 

An important difference from previous implementations of CMAQ to simulate the 

CalNex campaign (Baker et al., 2015; Murphy et al., 2017; Woody et al., 2016) is the new 

mobile IVOC emission data and the application of the new six-lumped-IVOC-species SOA 

parameterization. Mobile sources contribute more than 40% of anthropogenic NMOG 

emissions in the South Coast Air Basin in the CalNex emission inventory (Baker et al., 

2015). Given the consistency of the speciation and IVOC-to-NMOG ratio for sources using 
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same type of fuel (Lu et al., 2018), we assign mobile-source emissions profiles based on fuel 

type (gasoline, diesel, or jet fuel). NMOG emissions from all on- and off-road gasoline 

sources are represented using the same average gasoline exhaust profile (SPECIATE Profile 

#100VBS). NMOG emissions from all on-road, off-road diesel sources (including rail) are 

represented using the same average non-DPF diesel exhaust profile (SPECIATE Profile 

#103VBS). Studies have noted there can be significant differences in IVOC emissions 

between DPF-equipped and non-DPF vehicles (Dunmore et al., 2015; Lu et al., 2018; Platt 

et al., 2017). However, the total NMOG emission from diesel sources in southern California 

in 2010 were dominated (> 99%) by non-DPF vehicles (due to a combination of the fleet 

composition and the fact that non-DPF vehicles have much lower emission factors). 

Therefore, we use the IVOC emission profile for non-DPF vehicle for all diesel sources. 

Although only limited data are available for off-road diesel engine emissions (Qi et al., 

2019), it suggests the emissions are similar to on-road diesel vehicles. NMOG emissions for 

all jet-fuelled sources are represented using the same gas-turbine exhaust profile (SPECIATE 

Profile #102VBS). The IVOC components of these profiles are summarized in Table 3.1 and 

complete profiles are given in SPECIATE 5.0 (US EPA, 2019). Total IVOC emissions are 

determined using the IVOC-to-NMOG ratios, which are more consistent across source types 

than IVOC-to-POA ratios (Lu et al., 2018). 

For this work, IVOC emissions are added to existing NMOG emissions. This was 

done to keep the VOC emissions across the different models runs constant in order to better 

isolate the contribution of IVOCs to SOA. In addition, OH oxidation of IVOCs is assumed 

to regenerate OH radicals and thus have minimal impact on the oxidant budget and the 

production of O3. However, Lu et al. (2018) argued that existing NMOG inventories largely 

include IVOCs, just that they are misattributed to VOCs. Therefore, future work should 
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proportionally reduce the VOC emissions to keep the overall NMOG emissions (VOC + 

IVOC) constant. This assumption minimally effects the OA model evaluation, because the 

base version of CMAQ predicts that traditional VOCs only contribute 7% of measured OA 

at Pasadena during the CalNex campaign (Baker et al., 2015).  

SOA is produced from IVOC oxidation using the parameterization described in 

section 3.2. The SOA mass is determined by CMAQ based on the gas-particle partitioning 

of the SVOC products created from IVOC oxidation. CMAQ v5.3 calculates partitioning 

assuming thermodynamic equilibrium and that all organics form a single pseudo-ideal 

solution. The SVOC products also undergo multigenerational aging following the approach 

of Murphy et al. (2017) (see section 3.3.4).  

 

3.3.4 Multi-generational aging and gas-particle partitioning 

The semivolatile POA emissions and semivolatile products formed from oxidation 

of SOA precursors undergo multigenerational aging as described in Murphy et al. (2017). 

Figure S5 shows the schematic diagram for modelling OH oxidation first-generation and 

multigenerational aging. Briefly, the approach simulates the reaction of L/S/IVOC vapors 

with hydroxyl radical and distributes the product mass to a second set of five vapor-particle 

pairs of species at moderate O:C values. The stoichiometric ratios used to distribute the 

product mass were derived to match the SOA enhancement predicted by a full 2D-VBS 

simulation of the functionalization and fragmentation of SVOCs during three days of 

atmospheric oxidation. This model, unlike that of Koo et al. (2014), does transfer some of 

the aged products to higher volatility bins, and thus reduces SOA over multiple generations 

of OH reaction. The probability for fragmentation increases as a function of O:C in 

agreement with theory (Donahue et al., 2011). Although the competing effects of 
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fragmentation and functionalization at long timescales are represented in this model, the 

simplified framework is likely limited when trying to capture the full complexity of 

multigenerational aging. For this work, no changes were made to the chemical properties 

(e.g. carbon number, O:C, etc.) or reaction stoichiometry of the multigenerational aging 

mechanism of Murphy et al. (2017). Because IVOC products likely have lower carbon 

numbers than products of primary SVOC oxidation, our approach may represent an upper 

bound on the potential for IVOC SOA aging to further enhance particle mass downwind of 

sources. 

 

3.3.5 Simulation cases 

To systematically explore the effects of adding IVOC emissions from mobile and 

non-mobile sectors, we performed four simulation cases, summarized in Table 3.4. All cases 

use the same emission inputs as described earlier with differences in IVOC emissions. In the 

base case (Case 1), mobile SOA is only formed through the oxidation of traditional VOC 

emissions and SVOCs from evaporated semivolatile POA. 

Table 3.4 Total anthropogenic organic emissions (Ton day-1) in Los Angeles Basin region in four CMAQ 

simulation cases 

Case Name 
Inventory 

POA 

POA after 

scaling 

Inventory 

NMOG 

Mobile 

IVOCs 

Non-mobile 

IVOCs 

1 Base 26.4 28.9 450.2 0 0 

2 Mobile IVOC 26.4 28.9 450.2 27.6 0 

3 Low non-mobile IVOC 26.4 28.9 450.2 27.6 30.7 

4 High non-mobile IVOC 26.4 28.9 450.2 27.6 68.5 

 

Figure 3.3 (a) compares the anthropogenic NMOG emissions in the Los Angeles 

Basin region for the four simulation cases (geographical boundaries are defined by 
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simulation grid cells shown in Figure S6). In the base case (Case 1), mobile sources 

contribute 43% of anthropogenic NMOG emissions, of which gasoline sources contribute 

35%, diesel sources 8% and aircraft less than 1%. Non-mobile sources contribute the 

remainder of the anthropogenic NMOG emissions (57%), of which VCP usage contributes 

39%, followed by 17% from other sources. The emission inventory contains minimal 

cooking and biomass burning NMOG emissions during CalNex (1.5%). 

Cases 2 to 4 incrementally add mobile IVOC emissions to the model. Table 3.4 shows 

that Case 2 adds on average 27.6 Ton day-1 mobile source IVOC emissions, which is our 

best estimate of the mobile source IVOC emission based on the compilation of measurement 

data and source profiles in Lu et al. (2018) as described in section 3.3.3. The difference in 

SOA concentrations between Case 2 and Case 1 is the SOA contribution from mobile emitted 

IVOCs. In Case 3 and 4, we incrementally add IVOC emissions from non-mobile sources to 

the inventory to explore the contribution of non-mobile sources of IVOCs as discussed in 

section 3.4.2. 

 

3.4 CMAQ simulation results 

To evaluate model performance, we compared predictions to measured data from the 

CalNex campaign at Pasadena, CA, as well as the organic carbon (OC) measured at 

Chemical Speciation Network (CSN) sites in California. The CalNex campaign 

characterized atmospheric composition at two sites in southern California, Pasadena, and 

Bakersfield, from 15 May to 29 June 2010 (Ryerson et al., 2013). We focus on the Pasadena 

site, which is located 18 km northeast and generally downwind of downtown Los Angeles, 

because there were direct measurements of IVOCs (Zhao et al., 2014). We also evaluate 

model predictions at the Pasadena site for OA, BC, CO, select speciated VOCs and Planetary 
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Boundary Layer (PBL) height.  

 
 

Figure 3.3 (a) Modelled NMOG and IVOC emissions by source for the four simulation cases. (b) 

Measured and modelled IVOC mass concentrations at Pasadena, CA during CalNex for the four 

simulation cases. Measured data in (b) from Zhao et al. (2014). 

3.4.1 Base case and mobile IVOC case 

3.4.1.1 IVOC mass concentrations 

Figure 3.3 (b) compares the model-predicted and measured campaign-average IVOC 

mass concentration at the Pasadena site. Zhao et al. (2014) reported data for two classes of 

IVOCs differentiated based on mass spectral signature: hydrocarbon IVOCs and mildly 

oxygenated IVOCs. Zhao et al. (2014) attributes hydrocarbon IVOCs to primary emissions; 
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the mildly oxygenated IVOC could either be primary emissions or formed via atmospheric 

oxidation. The CalNex campaign-averaged measured hydrocarbon IVOCs at the Pasadena 

site was 6.3 µg m-3; the measured mildly oxygenated IVOC concentration was 4.2 µg m-3. 

The analytical techniques of Zhao et al. (2014) are not optimized for measuring oxygenated 

organics; therefore, their data provide a lower bound estimate of the total and oxygenated 

IVOCs.  

The base case (Case 1) predicts essentially no IVOC concentrations as they are not 

explicitly included in the base inventory or model (though could be implicitly included as 

misclassified VOC species). Case 2 (mobile IVOC case) predicts 2.7 µg m-3 of IVOCs at the 

Pasadena site, which corresponds to 43% of measured hydrocarbon IVOCs. This indicates 

that mobile sources are an important source of IVOCs in the LA region, but that more than 

half of the hydrocarbon IVOCs measured in Pasadena are likely emitted by non-mobile 

sources. In addition to hydrocarbon IVOCs, Zhao et al. (2014) measured 4.2 µg m-3 of mildly 

oxygenated IVOCs, which are also not explained by mobile-source emissions. 

While the comparison in Figure 3.3 (b) suggests that non-mobile sources may be 

important contributors to ambient IVOC concentrations, there are a number of potential 

uncertainties, including (1) uncertainty in mobile source activity, (2) uncertainty in mobile 

source NMOG emission factors, and (3) uncertainty in mobile source IVOC-to-NMOG 

emission ratios. The first potential uncertainty is mobile-source activities. BC and CO are 

commonly used as indicators of gasoline and diesel sources activity. The mobile-source CO 

emission inventory used here (EMFAC) agrees with another fuel-based CO inventory (Kim 

et al., 2016), both of which reproduce the observed weekly patterns. This suggests the 

mobile-source CO emission inventory in LA basin during CalNex is correctly modelled. 

While the model performs well for CO (Figure S2), it overestimates BC concentrations by a 
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factor of 2. These comparisons suggest that gasoline activity (the major of source of CO) is 

modelled correctly, but there may be a potential over-estimation of either diesel activity 

and/or the diesel BC emission factor (the major source of BC). If the diesel activity is 

overestimated, then diesel IVOC are likely overestimated, which only strengthens our 

conclusion that there are important non-mobile sources of IVOCs. 

The second potential uncertainty is mobile-source NMOG emission factors. 

Comparisons in May et al. (2014) suggest that the EMFAC emission factors (which are used 

to create the mobile-source emission inventory for these simulations) are robust, except for 

LEV-2 vehicles. During the 2010 CalNex period, EMFAC estimates LEV-2 vehicles 

(considering model year after 2004) only emit 8.5% of total gasoline NMOG emissions in 

California and therefore are not major contributors in mobile emissions. Therefore this 

uncertainty also does not appear to alter our conclusion that there are important non-mobile 

sources of IVOCs. 

The final potential uncertainty is the IVOC-to-NMOG ratios. Zhao et al. (2016) and 

Lu et al. (2018) show that IVOC-to-NMOG ratios of cold-start UC (unified cycle) emissions 

from gasoline sources are consistent across a large number of vehicles spanning a range of 

emission certification standards. Although IVOC emissions from hot-running gasoline 

vehicle exhaust are enriched by as much as a factor of 4 compared to the cold-start UC cycle 

(Lu et al., 2018; Zhao et al., 2016), EMFAC2017 estimates that running exhaust only 

contributes 34% of total gasoline summertime NMOG emissions in CA in 2010. A simple 

weighted average of 66% emission using cold-start UC emission profile and 34% of emission 

using hot-running emission profile increases the IVOC-to-NMOG fraction for gasoline 

vehicles by a factor of 2, from 4.5% to 9.1%. The IVOC-to-NMOG ratio for diesel sources 

is already high (55%) and thus it cannot be increased as much as the gasoline emissions (less 
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than a factor of 2). Therefore, the largest uncertainty in modelled mobile IVOCs is the 

gasoline source IVOC-to-NMOG ratio, which could be underestimated by as much as a 

factor of two. This means that the overall uncertainty in modelled mobile IVOC emissions 

is less than a factor of 2. Increasing the gasoline IVOC emissions to better account for hot-

running operations would explain a larger fraction of the measured hydrocarbon IVOCs 

concentrations, but it seems unlikely that it would close the mass balance given that gasoline 

vehicles contribute less than half of the mobile IVOCs. Therefore, even acknowledging the 

existing uncertainty we still conclude that non-mobile sources are likely important 

contributors to ambient IVOC concentrations in Pasadena.  

Jathar et al. (2017) also updated CMAQ with mobile-source IVOC emissions 

estimates. They assumed that IVOCs contribute 25% and 20% of the NMOG emissions from 

gasoline and diesel source, respectively. However, these ratios are not based on direct 

measurements, but instead inferred from SOA closure studies for chamber experiments. The 

model of Jathar et al. (2017) predicted mobile sources contribute 3.9 μg m-3 of IVOCs, which 

is about factor of 1.5 higher than the IVOC concentrations predicted here (and about 65% of 

measured ambient hydrocarbon IVOC concentrations). The better closure is due the very 

high IVOC-to-NMOG ratio assumed for gasoline vehicles, which is not supported by direct 

measurements (Drozd et al., 2019; Zhao et al., 2016). 

 

3.4.1.2 Primary VOC/IVOC diurnal patterns 

Figure 3.4 compares the measured and modelled campaign-average diurnal patterns 

of important anthropogenic VOCs (benzene, toluene, m-/p-/o- xylenes) and hydrocarbon 

IVOCs. Measured concentrations of benzene, toluene and hydrocarbon IVOCs are highest 

in the early afternoon (12pm - 2pm, in Figure 3.4 a, b and d). This has been attributed to the 
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transport of morning emissions from downtown Los Angeles to Pasadena (Borbon et al., 

2013). Measured xylene concentrations show a slight decrease in daytime, which is 

attributed to their relatively high OH reaction rate and thus faster oxidation during the 

daytime (de Gouw et al., 2018). 

 

  

  

Figure 3.4 Comparison of measured (boxplot, solid box denotes 25th to 75th percentiles and whiskers 

denote 10th to 90th percentiles) and modelled (line, shaded area denotes 25th to 75th percentiles) diurnal 

patterns in Pasadena, CA during CalNex for species: (a) benzene, kOH = 1.22 × 10 -12 cm3 molec-1 s-1 (b) 

toluene, kOH = 5.63 × 10 -12 cm3 molec-1 s-1 (c) xylene, kOH = 1.36 - 1.87 × 10 -11 cm3 molec-1 s-1 and (d) 

hydrocarbon IVOCs (blue: Case 2, red: Case 3), kOH = 1.55 – 7.56 × 10 -11 cm3 molec-1 s-1. Measured data 

from Borbon et al. (2013). 

Figure 3.4 indicates that the model reproduces the measured benzene diurnal pattern 

but not the toluene, xylene and hydrocarbon IVOC diurnal patterns. Figure 3.4 (b and c) 

shows that during night-time the model overpredicts toluene and xylene concentrations by a 
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factor of 2 and 1.4, respectively. Modelled hydrocarbon IVOCs mass concentration (Case 2) 

are underestimated throughout the day (Figure 3.4 d and Figure 3.3 b). 

Figure 3.4 also shows modelled species concentrations peak around 6 AM and then 

steadily decrease from 6 AM to 4 PM, in contrast to the early-afternoon peaks (12 PM to 2 

PM) in the measured data. A potential explanation for this difference is that the model is 

incorrectly simulating the PBL height. On average, the measured PBL height ranges from 

~200 m at night to ~900 m at noon (Figure S7), while modelled PBL height ranges from ~60 

m at night and up to 1500 m at noon. However, changing the predicted PBL height would 

degrade model performance for some species which are already predicted well (Figure S3 

and S4). Another possible explanation is that additional unknown sources of IVOCs have 

large NMOG emissions that peaks at noon, for example some type of evaporative emissions. 

Additional research is needed to resolve the discrepancy between model and measured 

diurnal profiles shown in Figure 3.4. 

 

3.4.1.3 OA mass concentrations and diurnal patterns 

Figure 3.5(a) plots the AMS-observed and CMAQ-modelled hourly-averaged PM1-

OA time series at the Pasadena site during CalNex. We consider the Pearson’s correlation 

coefficient (r) and root-mean-square error (RMSE) as the evaluation metrics between 

measured and model OA time series. The definitions of r and RMSE are shown in Eq. (S1) 

and (S2): 
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Figure 3.5 (a) PM1-OA component hourly-averaged time series of measured data and model output in 

Pasadena, CA during CalNex campaign. (b, c) Diurnal pattern of measured and modelled SOA and POA 

mass concentration in Pasadena, CA during CalNex. Measured data from Hayes et al. (2013). 

Our base model (Case 1) significantly underpredicts the OA concentration, often by 

more than a factor of 3, over the entire time period. Case 1 has a large RMSE = 5.3 μg m-3, 

which is comparable to the average measured OA (6.9 μg m3), and moderate positive 

correlation (r = 0.69). To understand the source of this discrepancy, Figure 3.5 (b) and (c) 

compare the modelled average diurnal patterns for SOA and POA to PMF factors derived 

from Aerosol Mass Spectrometer data for OOA (SV-OOA plus LV-OOA) and POA (HOA 

plus COA) (Hayes et al., 2013). The observed OOA factor in Figure 3.5(b) has a strong peak 

in the early afternoon, similar to the OH radical concentration (de Gouw et al., 2018) and 

photo-chemical age (Hayes et al., 2015). 

Figure 3.5(c) shows that the model correctly predicts average POA concentrations 
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(modelled: 1.73 µg m-3 vs measured: 2.01 µg m-3). It also reasonably reproduces the observed 

POA diurnal pattern. This applies to all four cases and suggests that our inventory (Table 

3.3) has a reasonable representation for the POA emissions, volatility distributions, and 

correction for filter artifacts for gasoline sources. The mobile volatility profile predicts that 

a bit more than half of the semivolatile POA evaporates; therefore, if it treated POA as non-

volatile then the model would have overpredicted the observed POA concentrations by about 

a factor of two. 

Figure 3.5(b) shows that Case 1 produces very little SOA, similar to previous CMAQ 

simulations (Baker et al., 2015; Woody et al., 2016). In this study, we emphasize the peak in 

the diurnal SOA concentration because this enhancement is reflective of the strength of 

prompt SOA formation in both the observations and the model. In Case 1, the predicted peak 

SOA concentration is 1.65 µg m-3 at the Pasadena site, which is 5 times lower than the AMS-

observed value (8.63 µg m-3). Both modelled LV-OOA and SV-OOA are much lower than 

AMS-observed factors. 

Figure 3.2 indicates that mobile-source IVOC emissions contribute significantly to 

SOA formation, especially to the day-time SOA formation due to their high SOA yield and 

OH reaction rates. In Case 2, the addition of mobile IVOC emissions increases the peak SOA 

concentration by 60%, from 1.65 to 2.75 µg m-3 and daytime SOA increase (peak SOA – 

night-time SOA) by 110% from 0.82 to 1.73 µg m-3. The increase in night-time SOA from 

IVOC oxidation was about a factor of 4 smaller than the daytime increase. Adding mobile-

source IVOC improves model performance, but Case 2 still only explained 32% of AMS-

observed daytime peak SOA.  

Our comparison demonstrates that mobile-source IVOC emissions need to be 

explicitly included in models and inventories. However, they do not close the mass balance 
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for hydrocarbon IVOCs or SOA in Pasadena. In the next section, we explore the potential 

contribution of IVOC emissions from non-mobile sources (McDonald et al., 2018). 

 

3.4.2 Non-mobile IVOC emissions 

3.4.2.1 IVOC mass concentrations and diurnal pattern 

Motivated by recent research on volatile chemical products (VCPs) (Khare and 

Gentner, 2018; McDonald et al., 2018), we also investigated potential IVOC emission from 

non-mobile source. For example, McDonald et al. (2018) estimated that 19.6% of total gas-

phase VCP emissions are IVOCs. Khare and Gentner (2018) reported that the IVOC content 

in 12 commercially available VCPs range from 0 to 95%. However, many of these IVOCs 

in VCPs are heavily oxygenated. 

Cases 3 and 4 explore different levels of IVOC emission for non-mobile sources. The 

IVOC-to-NMOG ratios are not based on independent laboratory data, but are set to close the 

gap between modelled and measured hydrocarbon IVOC concentration (Case 3) and SOA 

concentration (Case 4) at Pasadena, CA (Hayes et al., 2013; Zhao et al., 2014). Since there 

are limited data on non-mobile IVOC emissions, they are assumed to have the same 

properties as alkane-like IVOCs (IVOCP6-ALK to IVOCP3-ALK) with a uniform volatility 

distribution. Table 3.4 shows that Case 3 and 4 add an average 30.7 and 68.5 Ton day-1 non-

mobile IVOC emissions scaled from NMOG emissions as described in section 3.3.4. 

For the low non-mobile-IVOC case (Case 3), we added IVOC emissions to the 

inventory equivalent to 12% non-mobile NMOG emission. The scaling coefficient was 

determined to roughly match the campaign-average hydrocarbon IVOC mass concentrations 

measured in Pasadena, CA (Zhao et al., 2014). The only difference between Cases 2 and 3 

are the additional non-mobile hydrocarbon IVOC emissions. 
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For the high non-mobile-IVOC case (Case 4), we added non-mobile IVOC emissions 

equivalent to 26.8% of non-mobile NMOG emissions. This value was chosen to roughly 

close the mildly-oxygenated IVOC and SOA mass balance. It is obviously a very high 

estimate, but only somewhat higher than the 20% estimates of total VCP emissions in 

McDonald et al. (2018). The only difference between cases (4) and (3) is the additional non-

mobile IVOC emissions equivalent to 14.8% of non-mobile NMOG. 

Figure 3.3 (b) shows in Case 3, the model predicts 4.9 µg m-3 of non-mobile 

hydrocarbon IVOC and 7.7 µg m-3 of total hydrocarbon IVOC, which is only somewhat 

higher than the measured value (6.3 µg m-3). Case 4 predicts additional 6.3 µg m-3 of 

oxygenated IVOC from non-mobile sources and 14.0 µg m-3 total IVOC (hydrocarbon + 

oxygenated), which exceeds the measured total IVOC (10.5 µg m-3) by 30%. Given this 

overprediction and the fact that mildly-oxygenated IVOCs can also be formed through 

secondary chemistry, these results suggest that the IVOC-to-NMOG ratio for non-mobile 

sources is between Case 3 (12%) and Case 4 (26.8%). In addition, recent research suggests 

that up to a factor of 3 scale-up may be needed for VCP NMOG emissions (McDonald et al., 

2018), which would drive down the IVOC-to-NMOG ratios to 4 - 9%. 

 

3.4.2.2 OA time series and diurnal patterns 

Adding non-mobile IVOC emissions increased the predicted afternoon peak SOA 

concentration to 5.0 and 8.6 µg m-3 for Cases 3 and 4, respectively. This highlights the 

potentially large contribution of non-mobile IVOC emissions to SOA formation. Figure 

3.5(a) also shows that in Case 4, the modelled OA time series largely explains the observed 

SOA (RMSE = 2.5 μg m-3, r = 0.85), including explaining the observed peak values in the 

middle of the day. Since increasing OA concentrations also shifts the gas-particle 
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partitioning of SVOCs to the particle phase (Donahue et al., 2006), there are also minor shifts 

in POA partitioning from Case 1 to Case 4, but these changes are small and do not 

substantively alter the model-measurement POA comparison shown in Figure 3.5(c). 

Adding non-mobile IVOC emissions also improves the model predictions of SOA 

contribution to OA in Pasadena. Hayes et al. (2013) apportioned 66% of the OA to OOA 

(SV-OOA plus LV-OOA) in Pasadena during CalNex campaign. Hersey et al. (2011) 

apportioned an even higher fraction of 77% OA to OOA in Pasadena in 2009. As a 

comparison, if no IVOCs are included in the model, Case 1 only predicts SOA only 

contributes 47% of the total OA. With additional mobile and non-mobile IVOC emissions, 

our model predicts 67% OA as SOA in Case 3, and 74% in Case 4. 

Although Case 4 largely reproduces the measured OA, we do not think that missing 

IVOC emissions is the only contributor to the poor performance of the base model. The 

assumption of Case 4 that IVOC contribute 26.8% of non-mobile NMOG is likely too high, 

and it overpredicts the total measured IVOC concentrations. Other important uncertainties 

include (1) effect of vapor wall loss on SOA yield (Zhang et al., 2014), (2) PBL modelling, 

and (3) multigenerational SOA aging and (4) SVOC emission uncertainties. First, SOA 

yields for VOCs and IVOCs need to be corrected (typically increased) for vapor wall-losses 

(Akherati et al., 2018). Second, CMAQ likely overpredicts the afternoon PBL height in 

Pasadena, as discussed in section 3.4.1. Correcting this will likely increase SOA formation 

and concentrations, reducing the amount of IVOC emissions needed to reach SOA mass 

closure. Finally, the effects of multigenerational aging on secondary products of SOA 

precursor oxidation is uncertain. We have represented this phenomenon with model 

parameters designed for aging of SVOC emissions (Murphy et al., 2017), but the ratio of 

functionalization versus fragmentation could be different for products of IVOC oxidation 
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due to differences in carbon number and functionality. Figure 3.5(c) shows that simulated 

POA reproduces the measured concentrations, so we believe that the uncertainty in SVOC 

emissions are relatively small. We also acknowledge the model uncertainty in the oxidation 

and aging of SVOCs, and this can lead to the substantial changes in OA prediction. 

Despite all of these potential uncertainties, the exploratory simulations (Cases 3 and 

4) indicate non-mobile IVOC emissions are likely an important source of SOA precursors, 

but its contributions should be between Case 3 and 4 (12% and 26.8% of non-mobile 

NMOG). The lower value will close the hydrocarbon IVOC but not the SOA mass balance. 

Correcting the likely underestimate of VCP emissions (McDonald et al., 2018) in current 

inventories will drive down the needed non-mobile IVOC emissions to 4% to 9% of NMOG 

emissions. 

 

3.4.3 Regional SOA formation 

IVOCs also contribute to regional SOA formation. This is shown in Figure 3.6 (a, b), 

which presents maps of campaign-average NMOG emissions and modelled SOA 

concentrations. Primary NMOG emissions are concentrated in the densely populated urban 

areas such as Los Angeles, but due to the transport of SOA precursors, especially IVOCs, 

Figure 3.6(b) shows that SOA concentrations are spread over a much large spatial domain 

than the emissions. This is expected given the SOA production requires time for atmospheric 

oxidation. 
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Figure 3.6 (a) Campaign-average NMOG emissions (Ton day-1) in emission inventory. (b) Modelled 

campaign-averaged SOA concentration in Case 4. (c) Location of CSN sites use for model evaluation. (d) 

Comparison of modelled OA to measured OA (OC*1.8) at CSN sites in California. 

To evaluate the spatial performance of the model, we compared model predictions of 

regional OA to CSN data at seven sites in California shown in Figure 3.6(c). Three of the 

sites are in southern California (LA, Riverside and El Cajon) while the others are central or 

northern California. Figure 3.6(d) shows the comparison between modelled OA and CSN 

data (OC*1.8 to account for non-carbonaceous components of the organic aerosol collected 

on the filters) for all seven sites from Case 1 to Case 4. Table 3.5 summarizes the evaluation 

metrics for all cases in site-aggregated comparisons. 
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Table 3.5 Model OA performance metrics at all CSN sites (1.8*OC) for this study 

Case Fractional Bias Fractional Error 

1 Baseline -0.59 0.67 

2 Mobile IVOC -0.52 0.62 

3 Low Non-mobile IVOC -0.33 0.49 

4 High Non-mobile IVOC -0.10 0.42 

 

Case 1 grossly underestimated the OA at all sites except for Sacramento, with an 

fractional bias (FB, definition in SI) of -0.59 and fractional error (FE, definition in SI) of 

0.67, of which much of the measured OA are SOA (Docherty et al., 2008; Hayes et al., 2013). 

Case 2 and Case 3 reduce the fractional bias to -0.52 and -0.33, respectively, and the 

fractional error to 0.62 to 0.49. Of the four cases considered here, Figure 3.6(d) shows that 

Case 3 predicted the OA concentrations at three of the southern California CSN sites, but 

underpredicts at other sites such as Fresno, San Jose and Bakersfield. Case 4 overpredicts 

the OA concentrations at the southern California CSN sites (coincident with the highest 

average SOA concentrations), but still underpredicts in Bakersfield, San Jose and Fresno. 

However, this case has the best overall metrics (FB = -0.10 and FE = 0.42). 

Figure 3.6(b) shows that the amount of SOA formed from additional IVOC emissions 

is much less in northern and central California compared to southern California. This could 

be due to the different meteorological conditions, or source variations, and/or inaccuracies 

in the multigenerational aging model. More research is needed to better understand the 

competition between functionalization and fragmentation of organic gases at long 

atmospheric timescales. Case 3 and Case 4 were estimated to roughly explain the measured 

hydrocarbon IVOC and SOA concentration in Pasadena, but measured data of source-

specific IVOC-to-NMOG fractions are needed to correctly model the non-mobile emissions.  
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3.5 Conclusions 

This paper presents new mobile-source emission profiles that explicitly account for 

IVOC emissions and a new SOA parameterization for mobile source IVOCs designed for 

implementation in chemical transport models. We implemented these new profiles and 

parameterization to investigate the contribution of mobile sources and IVOC emissions to 

SOA formation in California during the CalNex campaign. We have focused on mobile-

source emissions because of the availability of data, but the same basic approach can be 

applied to other sectors of organic combustion in the future, such as wildfires, agricultural 

fires, and meat cooking, as additional data become available. The main findings are: 

We developed a new parameterization to model SOA formation from mobile source IVOC 

emissions designed for implementation into CTMs. Explaining the SOA formation from both 

gasoline and diesel vehicles requires accounting for both the volatility and the chemical 

composition of the IVOC emissions. Our parameterization has six lumped IVOC species: 

two aromatic and four aliphatic.  

We developed new source profiles for IVOC emissions from mobile sources that are 

available in SPECIATE 5.0 to facilitate their use in emissions inventory preparation and 

future CTM simulations. Applying these profiles to the existing EPA inventories predicts 

that mobile sources contribute 2.7 µg m-3 of IVOCs at Pasadena site during CalNex, which 

is 43% of measured concentrations of hydrocarbon IVOCs. 

Mobile source IVOC emissions are predicted to contribute ~1 µg m-3 daily-peak SOA 

concentration, a 67% increase compared to the base case without IVOC emissions. 

Therefore, mobile-source IVOC emissions need to be included in CTM simulations. 

However, mobile-source emissions alone don’t explain the measured IVOC or SOA 

concentrations. The growing importance of non-mobile sources underscores the 
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effectiveness of the decades-long regulatory effort to reduce mobile-source emissions. 

Results from exploratory model runs suggests that between 12% of 26.8% (or 30.7 to 68.5 

Ton day-1 in Los Angeles – Pasadena region) of non-mobile NMOG emissions are likely 

IVOCs.  

Future research needs: 

VCPs are likely a major source of IVOC and future research is needed to constrain 

their emissions using ambient observations, bottom-up emission inventory methods and 

computational models (McDonald et al., 2018; Qin et al., 2019). Measurements of both the 

volatility distribution and chemical composition of VCP emissions are needed. Modelling 

the SOA formation from these new IVOCs will likely require extension of existing chemical 

mechanisms to better represent more oxygenated IVOCs. 

More measurements of ambient IVOC concentrations across a range of field sites are 

needed to better evaluate model performance. Given the lack of data, regional evaluations of 

ambient IVOC and OA predictions still have large uncertainty. 

Improved understanding is needed on the effects of multigenerational aging on SOA 

formed from IVOC emissions (and other precursors). The impacts of polluted plumes on 

downwind receptors depends on the nature of aging processes and whether they result in the 

addition or reduction of particulate mass (e.g. fragmentation processes may enhance 

volatilization of OA downwind of sources). 
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Chapter 4: Analysis of the Unresolved Complex Mixture of 

Intermediate Volatile Organic Compounds in Gas 

Chromatograph-Mass Spectrum Data using Positive Matrix 

Factorization  

Abstract  

We present a new approach based on Positive Matrix Factorization (PMF) to better 

characterize the unresolved complex mixture (UCMs) in gas chromatograph-mass spectrum 

(GC-MS) data. The UCM is a complex mixture of typically higher molecular weight 

compounds that co-elute during traditional one-dimensional (1-D) GC analysis of sorbent 

tube and filter samples and therefore cannot be speciated at the molecular level. The goal of 

this work is to recover information on the chemical composition of the intermediate volatility 

organic compounds (IVOC) UCM for use in source apportionment and for simulation of 

secondary organic aerosol formation. To demonstrate the technique, we applied it to a range 

of emissions and ambient samples. We identified the chemical character of the PMF factors 

by comparison with reference compounds in the NIST mass spectral database. The PMF 

technique can recover more detailed information measured by more sophisticated 

instrumentation. PMF-decomposed mobile source samples (gasoline, diesel and aircraft) 

show the effects of emissions control technologies, fuel composition and engine load on 

IVOC composition. For example, gasoline vehicle sources show increasing fraction of 

alkanes and oxygenates and decreasing fraction of single-ring aromatics (SRAs) from small 

off-road engine (SORE) to newer on-road vehicles. IVOC emission from biomass burning 

show very different composition than mobile sources, with a large fraction (>50%) of IVOC 

oxygenates. We also performed source apportionment analysis combining PMF technique 
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with chemical mass balance model (CMB) on samples collected in a highway tunnel; even 

though diesel vehicles only used 20% of the fuel consumption in the tunnel they contributed 

around 70% of mobile source IVOCs. PMF analysis on ambient samples in Pasadena, CA 

show very high fractions (>70%) of oxygenates, where minor hydrocarbon IVOC peak in 

early afternoon suggesting contributions from unknown local evaporative IVOC emission 

sources. SOA modelling on mobile sources emissions show an 80% increase of SOA yield 

of gasoline vehicle emissions under low-NOx conditions, highlighting the importance of 

IVOC chemical information in chemical transport models. This technique can be applied to 

both archival and future GC-MS data analysis. 

 

4.1 Introduction  

Gas chromatography-mass spectrometry (GC-MS) analysis is commonly used to 

characterize atmospheric organics, including volatile organic compounds (VOCs) (Chow et 

al., 2007; May et al., 2014; Yao et al., 2015), intermediate-volatile organic compounds 

(IVOCs) (Presto et al., 2011; Zhao et al., 2014, 2015, 2016) and organic aerosol (OA) 

(Kreisberg et al., 2014; Williams et al., 2006; Zhao et al., 2013). A challenge is the 

exponential increase in structural isomers as the carbon number increases (Goldstein and 

Galbally, 2007). This means that majority of lower volatility organics cannot be 

characterized at the molecular level by traditional one-dimensional GC-MS techniques. 

Instead these organics frequently appear as a large hump of co-eluting compounds in the 

chromatogram, commonly referred to as unresolved complex mixture (UCM) (Presto et al., 

2011).  

The UCM is a prominent feature in 1D GC-MS chromatograms of sorbent (VOCs, 

IVOCs and SVOCs) and filter (SVOCs and lower volatility organics) samples. It frequently 
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contributes more than 80% of the mass on these types of samples (Presto et al., 2011; Zhao 

et al., 2014, 2015, 2016). The lack of chemical information complicates including lower 

volatility organics such as SVOCs and IVOCs in atmospheric chemistry models used for 

source apportionment analysis and the simulation of secondary organic aerosol formation 

(Lu et al., 2019; Pye and Pouliot, 2012).  

This work focuses on IVOCs, which are ubiquitous in emissions from mobile sources 

(Drozd et al., 2019; Lu et al., 2018; Qi et al., 2019; Schauer et al., 1999; Zhao et al., 2015), 

coal combustion (Cai et al., 2019), biomass burning (Hatch et al., 2018), volatile chemical 

products (Khare and Gentner, 2018; McDonald et al., 2018), biogenics (Hunter et al., 2017). 

They are also an important component of the organic budget in the ambient urban 

atmosphere (Zhao et al., 2014). IVOCs are organic compounds that have an effective 

saturation concentration (C*) at 298K between 103 and 106 ug/m3 (roughly equivalent to C12 

to C22 n-alkanes) (Presto et al., 2012), and have been identified as important precursors to 

secondary organic aerosol (SOA) formation (Hayes et al., 2015; Hodzic et al., 2010; Jathar 

et al., 2013; Presto et al., 2009; Pye and Seinfeld, 2010; Shah et al., 2020; Tkacik et al., 2014). 

SOA is a major component of fine particulate matter, which adversely affects human health 

(Apte et al., 2018; Di et al., 2017).  

SOA formation depends on the volatility and molecular structure of the precursor 

compounds (Lim and Ziemann, 2009a; Loza et al., 2014; Presto et al., 2010; Pye and Pouliot, 

2012). Therefore, accurate simulation of SOA in atmospheric chemistry models likely 

requires additional chemical information on the IVOC UCM (Lu et al., 2019). Most existing 

parameterization for SOA formation from IVOCs either only has single specie surrogate or 

only rely on volatility (Akherati et al., 2018; Hayes et al., 2015; Hodzic et al., 2010; Murphy 

and Pandis, 2009; Robinson et al., 2007).  
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Researchers have used different approaches to characterize the chemical composition 

of IVOC UCM. The simplest approach is to use some basic mass spectral information to 

crudely classify the bulk IVOC UCM into one or two different chemical classes (Zhao et al., 

2015, 2016). Researchers have also used more advanced analytic techniques to characterize 

the UCM composition (Drozd et al., 2019; Hatch et al., 2018), such as soft-ionization (GC-

VUV-MS) or 2D-GC. For example, Drozd et al. (2019) used 2D-GC for gasoline vehicle 

IVOC emissions measurements, where IVOCs are classified into 3 categories (aliphatic, 

single ring aromatics and PAHs). Hatch et al. (2018) used 2D-GC to quantify the 

IVOC/SVOC emissions on biomass burning smokes. Sheu et al. (2018) and Khare et al. 

(2019) describe advances in chemically speciated measurements of trace gas-phase organics, 

but these approaches have been applied on relatively few samples. There is a need to provide 

more information from traditional GC-MS results.  

 Positive matrix factorization (PMF) has been widely used in aerosol chemistry 

community for source apportionment of PM2.5 mass and organic aerosols (Lee and Seung, 

2001; Pedregosa et al., 2011). PMF decomposes a data matrix to two lower-rank non-

negative matrixes, whose product approximate the original matrix, and minimize the residual 

(Paatero and Tapper, 1994).  

There have been a few applications of PMF technique to GC-MS data of particle 

phase organics (Fortenberry et al., 2018; Gao et al., 2018; Zhang et al., 2014, 2016). Zhang 

et al. (2014) used PMF to resolve the chemical composition of ambient OA and compared 

to aerosol mass spectrometer (AMS) source apportionment. Others have applied to GC-MS 

results from biomass burning aerosols and catalytic lignin depolymerization measurements 

(Fortenberry et al., 2018; Gao et al., 2018).  

In this work, we apply a PMF technique to analyze the GC-MS data of gas-phase 
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sorbent samples of emissions and ambient IVOCs. Our main goal is to better resolve the 

chemical composition of the IVOC UCM by decomposing its mass spectra signal to different 

chemical classes. To interpret the chemical character of each PMF factor, we compare them 

to reference mass spectra in the NIST database, rather than attributing factors to sources 

categories from AMS analysis (Zhang et al., 2016). To illustrate application of the technique, 

we use it in conjunction with a chemical mass balance (CMB) regression model to estimate 

IVOC sources in a highway tunnel. We also analyze ambient samples collected in Pasadena 

CA during the CalNex campaign. We conclude with a discussion of the importance of having 

improved chemical resolution of IVOC UCM on SOA modeling. 

 

4.2 Methods  

4.2.1 Datasets 

The GC-MS datasets analyzed using PMF were compiled from published works on 

mobile source emissions (Presto et al., 2011; Zhao et al., 2015, 2016), biomass burning 

emissions (Hennigan et al., 2011), highway tunnel measurements (Tkacik et al., 2014), and 

ambient samples (Zhao et al., 2014). Detailed information on sample collection can be found 

in the original papers, here we only briefly describe the experimental design and analytic 

procedures to provide context for the PMF decomposition of GC-MS data.  

All samples are collected on Tenax TA adsorbent tubes, which were then analyzed 

by the same thermal desorption system (Gerstel, Baltimore, MD) coupled with gas 

chromatography/mass spectrometry (Agilent 6890 GC/5975 MS) using a capillary GC 

column (Agilent HP- 5MS, 30 m × 0.25 mm). There were minor differences in the 

temperature protocol used for some samples. We selected the data between C12 to C22 n-

alkanes retention times as the IVOC volatility range (Zhao et al., 2015).  
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4.2.1.1 Mobile sources emissions 

The mobile source dataset included 55 samples from gasoline vehicles / engines, 

including small off-road engines (SORE), not LEV-certificated vehicles (pre-LEV), low 

emission vehicles (LEV) and ultra-low emission vehicles (ULEV), 15 from diesel vehicles, 

including diesel particulate filter (DPF) equipped and non-DPF vehicles and 2 from aircraft. 

All samples were from dilute exhaust. For vehicle and engine tests, samples were collected 

from a constant volume sampler (CVS). The aircraft samples were collected using a 

sampling rake install approximately 1 meter downstream of a CFM-56 turbofan engine.  

Information of vehicle type, certification and test cycle is listed in Table 4.1. We 

examined the data to determine the effects of certification standard, aftertreatment devices 

and / or test cycle on mobile sources IVOC composition. The IVOC emissions data from the 

mobile source experiments have been previously reported (Presto et al., 2011; Zhao et al., 

2015, 2016). Diesel vehicles were tested using the hot-start Urban Dynamometer Driving 

Schedule (UDDS) and select modes of low-speed (creep and idle) and high-speed (high-

cruise) operations of the Heavy Heavy-Duty Diesel Truck (HHDDT) driving schedule. We 

grouped the results from UDDS and high-cruise cycles together as higher-speed (HS) cycles 

(Zhao et al., 2015).  

We use 1:1 gas and diesel split to make sure that the model is resolving the factors 

from different sources more equally. Another reason is to create a more balanced mixture of 

single-ring aromatics (SRA), polycyclic aromatic hydrocarbon (PAH) and aliphatic IVOCs 

as training data. We trained the PMF model with a fraction of samples (15 gasoline, 12 non-

DPF diesel, 3 DPF-diesel and 2 aircraft) emission samples and 1 dynamic blank. The training 

samples are only selected based on fuel type. The model is then evaluated and applied to all 

samples.  
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Table 4.1 Mobile sources emissions 

Source type Certification Test cycle  No. of samples in dataset 

Gasoline 

SORE 

Unified cycle  

(Cold UC) 

3 

Pre-LEV 10 

LEV 13 

ULEV 23 

All  Hot-running 6 

Diesel 

Non-DPF  
Idle 4 

Higher-speed 7 

DPF  
Idle  1 

Higher-speed 3 

Aircraft 
 4% Load  1 

 85% Load 1 

Total   82 

 

4.2.1.2 Biomass burning smoke 

The biomass burning emission samples are from the experiments conducted during 

the FLAME 2 campaign at the Fire Science Lab (FSL) in Missoula MT (Hennigan et al., 

2011). The experiments were designed to simulate open burning of 11 different important 

wildland fuels (14 total experiments). During each experiment burn, a small mass (0.3–1.0 

kg) of fuel was burned to completion, filling the FSL 3000m3 combustion chamber with 

smoke from the entire burn event. After the smoke was well mixed, sorbent samples were 

collected for analysis. Table S1 lists the fuel for all samples. The IVOC emissions from the 

biomass burning experiments has not been previously reported. 

 

4.2.1.3 Highway tunnel  

To examine the sources of highway tunnel IVOCs, we analyzed the samples collected 

in Fort Pitt Tunnel locate on Interstate-376 in Pittsburgh PA (Tkacik et al., 2014) during a 

two-week period in May 2013. Separate samples of tunnel air were collected during morning 

rush hour, middle of the day and evening rush hours. Limited data on the IVOC samples 

collected in the tunnel have been published (Tkacik et al., 2014). 
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4.2.1.4 Pasadena CA during CalNex campaign 

We analyzed ambient samples collected in Pasadena CA during the CalNex 

campaign in May and June 2010 (Zhao et al., 2014). The goal is to understand the relative 

contribution of hydrocarbon and oxygenated compounds as a function of weekday/weekend 

pattern or time of the day. Six sets of composite samples were collected to characterize 

average weekday and weekend profiles. In each set, 8 samples were collected at different 

times of the day to characterize average diurnal profiles, totaling 48 samples in the dataset. 

Data from the Pasadena IVOC samples have been published (Zhao et al., 2014). 

 

4.2.2 Positive Matrix Factorization (PMF) 

We used the PMF algorithm implemented in the open source software package scikit-

learn (Pedregosa et al., 2011). The PMF algorithm performs decomposition of a data matrix 

X to two lower-rank non-negative matrixes W and H, and to minimize the Frobenius norm 

of the residual matrix E (Paatero and Tapper, 1994; Pedregosa et al., 2011). For this analysis 

the original matrix (dimension: K × N × M) is the GC-MS data, where K = number of 

samples, N = number of scans (retention time) in IVOC range per sample, and M = the m/z 

values in a scan, usually from m/z = 36 to m/z = 360. This 3-d matrix is then transformed to 

a 2-d matrix X (dimension: KN × M). Figure S1 shows the schematic plot of overall process 

of GC-MS data dimension reduction using PMF. The matrix W is the ‘scan matrix’ or 

‘abundance matrix’ because it has the dimension of scan number (or equivalently retention 

time). More specifically, every row of W denotes a scan, and the values in this row denotes 

the abundance of each factor. And H now become the ‘factor matrix’, each row of H denotes 

a factor, and the values in this row denotes the abundance of the mass fragments (m/z) in this 

factor.  

This paper focus on PMF solutions with 10 to 20 factors, examining the solution for 
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both factor resolution and interpretability. There are no ‘gold standard’ to determine the best 

number of PMF factors, and often more detailed analysis and interpretation are needed 

(Ulbrich et al., 2009). Too few factors (P < 10) leads to lower resolution and contributions 

from co-eluted species, and too many factor (P > 20) often lead to duplicate factors or split 

factors (factors that split the compound mass spectra to two or more parts). To address this 

issue, we used two criteria: (1) reconstruction error and (2) max correlation efficient (r) 

between factors. Generally, reconstruction error decrease as no. of factors increase, but the 

max correlation increase. Our goal is to lower the error and keep the max r below certain 

threshold (for example, r < 0.7).  

 

4.3 Results and Discussion 

In this section, we report results from the PMF analysis on four emission datasets 

(gasoline, diesel, aircraft, and biomass burning smoke) and two ambient datasets (highway 

tunnel and Pasadena CA). We also compare the PMF-resolved IVOC composition to 

published literature results using more sophisticated instruments whenever available.  

 

4.3.1 PMF decomposition of IVOC emissions 

Figure 4.1 illustrates the PMF analysis using data from a non-DPF vehicle. Figure 

4.1(a) shows the raw GC-MS data (similar figures gasoline, biomass burning and ambient 

GC-MS data are shown in Figure S2). The raw data are a 2-D matrix of scan number 

(retention time) and m/z ratios.  

The feature patterns of the data matrix vary by source type. For example, in the 

mobile source dataset, the detected mass fragments shift to longer retention time and higher 

m/z from gasoline to aircraft and diesel. The gasoline vehicle sample (Figure S2a) shows 
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more mass fragments between m/z = 110 and 135 at shorter retention times, which are likely 

alkylated single ring aromatics. Whereas, both aircraft (Figure S2b) and diesel vehicle 

(Figure 4.1a) samples have clusters of fragments with m/z difference of 14 (CH2), linearly 

increasing with retention time. They are likely alkanes, where the largest fragment m/z equals 

to the MW of the compound itself (molecular ions) (Isaacman et al., 2012; Worton et al., 

2014). Biomass burning (Figure S2c) has high signal in the smaller retention time range with 

different m/z patterns than gasoline vehicle, indicating potential different IVOC chemical 

composition. Ambient data (Figure S2d) shows signal over a wide span of retention time, 

but with less obvious patterns.  

Figure 4.1(b) shows the raw TIC signal of a non-DPF diesel vehicle exhaust (solid 

line), which is the sum of all m/z fragments at each scan. Scan number is approximately 

linearly correlated with retention time (Figure S4). The large hump UCM is unclear in this 

representation of the data. Figure S5 shows the chromatogrram for a gasoline vehicle sample.  

Figure 4.1(b) shows the PMF decomposed data matrix as a function of retention time 

(stacked area plot, plotting each column of the abundance matrix W and stack over the 

previous column). The inset in Figure 4.1(b) shows that reconstructed TIC reproduces the 

raw data with a correlation coefficient (r) = 0.99.  

Each factor was linked to specific class of compounds based on comparisons with 

reference spectra in the NIST webbook. We select the reference compounds semi-

empirically by locating the peaks in the original chromatogram and search in the NIST 

database using ChemStation, or proposing possible surrogate based on existing knowledge. 

We refer to the PMF factors by the most abundant ion. Figure 4.1(c) shows an example of 

this process for the PMF resolved factor (m/z = 57). The inset of Figure 4.1(c) shows very 

good agreement (r = 0.997) between m/z = 57 factor and NIST reference mass spectra of n-
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Dodecane. Therefore we attribute this factor to n-alkanes. Detailed comparison of the mass 

spectra between all of the PMF factors in the mobile source solution are shown in Figure S6.  

 

Figure 4.1 (a) Raw GC-MS data and (b) TIC signal from non-DPF diesel vehicle exhaust (inset: scatter 

plot of raw and PMF reconstructed TIC signal, r = 0.990) (c) Example of resolved factor for n- alkanes 

(inset: scatter plot of PMF resolved factor versus reference compound mass spectra, r = 0.999), other 

factors shown in Figure S3 (d) PMF resolved non-DPF diesel vehicle exhaust decomposed into 12 PMF 

factors  

Integrating over the retention time bins, we get the resolved chemical composition 

profile in 10 PMF factors (excluding internal standards) and 11 carbon number bins. Figure 

4.1(d) shows the PMF decomposed chemical composition as a function of volatility bins.  

Figure S7 show the reconstruction error and max r as a function of number of factors 

in mobile source emission dataset, so we choose P = 12 to achieve best overall performance 

and interpretability. Table 4.2 lists the 12 PMF factors derived from the best solution for the 
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mobile sources identified based on their peak m/z.  

Table 4.2 PMF resolved factors in mobile IVOC emissions dataset 

No. Peak m/z Group Reference Compound Formula 

1 57 n- and b-alkanes n-Dodecane  C12H26 

2 55 Cyclic alkanes Cyclopentane, 1-methyl-2-(4-

methylpentyl)-, trans-  

C12H24 

3 55 Cyclic alkanes Cyclopentane, 1-methyl-2-(4-

methylpentyl)-, trans-  

C12H24 

4 119  Single-ring aromatics  Benzene, 1,2,4,5-tetramethyl-  C10H14 

5 128 PAH Naphthalene C10H8 

6 142 PAH Naphthalene, 1-methyl- C11H10 

7 102 Oxygenates Phenyl maleic anhydride  C10H6O3 

8 105 Oxygenates Benzoic acid  C7H6O2 

9 184 Unclassified 2,5-Cyclohexadiene-1,4-dione, 2-

phenyl-  

C12H8O2 

10 198 Unclassified 2-Methyl-5-phenyl-1,4,cyclohediene-

1,4-dione  

C13H10O2 

11 66 Internal standards n-Dodecane-D26  C12D26 

12 136 Internal standards Naphthalene-D8  C10D8 

 

Figure S6 shows the scatter plots of the mass spectra of all PMF resolved factors and 

their reference compounds in NIST database. All factors except m/z = 55 and m/z = 119 show 

strong agreement (r > 0.99) with the proposed reference compounds. The m/z = 55 and 119 

factors appear associated with a more complicated mix of compounds. We believe that m/z 

= 55 factor is primarily cyclic alkanes while the m/z = 119 factor is primarily alkylated SRAs. 

These two classes of species have many isomers, and the factors are mixture of these 

compounds. Figure S8 show a few examples of IVOC cyclic alkanes and SRAs. These 

compounds show repeating mass fragments that are 14 apart. For example, SRAs show peak 

m/z = 91, 105, 119, 133 and cyclic alkanes show peak m/z = 41, 55, 69, which are also the 

peaks in our PMF resolved factors. Cyclic alkanes (m/z = 55) and SRAs (m/z = 119) 

contributes the majority of the emissions from diesel and gasoline emissions, respectively, 

consistent with analysis of Zhao et al. (2015, 2016) and Gentner et al. (2012).  
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Table 4.2 also includes two unclassified factors (m/z = 184 and 198). They are only 

found prominent in DPF-vehicle emission samples. DPF-vehicles are very low-emitting 

vehicles, so they are possibly from experiment artifact (Tenax reaction by-product). In this 

work, we listed the associated reference compounds, but group them as ‘unclassified’ to 

address the uncertainty here.  

We used the same PMF technique to analyze the biomass smoke samples (which 

were fit seperately from mobile source). For biomass smoke, the best-fit PMF solution had 

13 factors (Table 4.3). Figure S9 plots the two criteria: (1) reconstruction error and (2) max 

r between factors versus the number of factors; the 13-factor solution show lowest error and 

max r < 0.6. PMF factors that are internal standard, siloxane and solvent are not from actual 

emission, they are either spiked onto the samples as internal standards or possible artifacts 

(Coggon et al., 2018; McDonald et al., 2018), and are ignored in the subsequent anaysis.  

Table 4.3 PMF resolved factors in biomass burning IVOC emissions 

No.  Peak m/z Group Reference compound Formula 

1 57 Alkanes n-Dodecane C12H26 

2 128 PAH Naphthalene C10H8 

3 141 PAH 1H-Indene, 1-ethylidene- C11H10 

4 152 PAH Acenaphthylene C12H8 

5 155 PAH Naphthalene, 1,6,7-trimethyl- C13H14 

6 95 Oxygenates (aliphatic) 
Bicyclo[2.2.1]heptan-2-one, 1,7,7- 

trimethyl-, (1S)- 
C10H16O 

7 137 Oxygenates (aromatic) Phenol, 4-ethyl-2-methoxy- C9H12O2 

8 138 Oxygenates (aromatic) Phenol, 2-methoxy-4-methyl- C8H10O2 

9 150 Oxygenates (aromatic) 2-Methoxy-4-vinylphenol C9H10O2 

10 120 Furan Benzofuran, 2,3-dihydro- C8H8O 

11 122 N-containing Hydrazine, 1-methyl-1-phenyl- C7H10N2 

12 66 Internal standard n-Dodecane-D26  C12D26 

13 40 Solvent n/a n/a 

14 91 Solvent Toluene C7H8 

15 91 Solvent Toluene C7H8 

16 73 Siloxane n/a C10H30O5Si5 

17 73 Siloxane n/a C10H30O5Si5 
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Figure S10 shows the mass spectra scatter plots of resolved factor versus reference 

compounds from the NIST webbook. All factors show strong agreement (r > 0.9) with 

reference mass spectra, except m/z = 95 (r = 0.60) and m/z = 122 (r = 0.85). Each of these 

could be from a mixture of similar compounds, and not represented by a single reference 

compound.  

 

4.3.2 Mobile Source IVOC Emissions 

Figure 4.2 summarizes the PMF analysis results of mobile source IVOC emissions. 

Figure 4.2(a) shows the previously reported emissions factors of total IVOCs (Lu et al., 2018; 

Presto et al., 2011; Tkacik et al., 2014; Zhao et al., 2015, 2016). We mulitplied the previously 

quantified IVOC emission profiles with PMF resolved chemical composition by each n-

alkane bin. Figure 4.2(b) shows the overall PMF resolved chemical composition. 

 

Figure 4.2 (a) IVOC emission factors (b) PMF-resolved IVOC chemical composition in tested vehicles / 

engines / aircraft by certification, test cycle and load  

The PMF technique enables more detailed analysis on IVOC chemical composition, 
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as more than 80% of mass were only attributed to two bulk UCM groups in previous work 

(Presto et al., 2011; Zhao et al., 2015, 2016). With the PMF technique, we can attribute 

measured IVOC mass in every retention time bin to 10+ chemically resolved factors along 

with their reference compounds.  

In Figure 4.2, we categorized the resolved PMF factors into 6 lumped groups listed 

in Table 4.2: (1) n- and b-alkanes (2) cyclic alkanes (3) single-ring aromatics (SRAs), (4) 

PAHs, (5) oxygenates and (6) internal deuterated standards. These groups are based on 

molecular structure of the reference compounds and to account for the effects of molecular 

structure on SOA yield.  

Figure 4.2 shows striking differences in PMF resolved chemical composition 

between diesel- and gasoline-fueled sources. Gasoline-fueled source emissions show largest 

contribution (40% to 70%) from aromatics (SRAs and PAHs), whereas diesel-fueled source 

emissions are dominated (>80%) by alkanes (n-/b- and cyclic alkanes). Figure 4.3 (a to d) 

show PMF SRAs and PAHs dominates the smaller C12 to C14 bins in emission from gasoline-

fueled sources, but diesel-fueled source emissions show large contribution from PMF cyclic 

alkanes similar to the unburnt fuel chemical composition (Gentner et al., 2012). Previously, 

large fraction of UCMs are classified as unspeciated cyclic compounds and its molecular 

structure are informed from overall mass spectra (Zhao et al., 2015, 2016). Therefore, this 

technique provides more insights into the IVOC chemical information, and enables more 

detailed PMF compositional analysis on certification standard and test cycle effects.  
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Figure 4.3 PMF-resolved IVOC composition as a function of volatility (a, b) gasoline sources: SORE, 

and ULEV, (c, d) diesel mobile sources: Non-DPF diesel vehicles and DPF diesel vehicles tested at high 

speed cycle, (e, f) aircraft sources: emissions at 4% and 85% load 

Figure 4.2 also shows the test cycle effect on the PMF resolved chemical composition. 

For example, IVOC EFs tested on creep and idle cycle are about a factor of 5 to 20 higher 

than high speed cycle for both DPF-equipped and non-DPF vehicles. No significant PMF 

compositional difference is observed for non-DPF vehicle emissions, but large increase 

(>50%) in oxygenates are found for DPF vehicles tested under high-speed cycle. Emissions 

from hot cycles are similar in compsoition as ULEV tested on cold unified cycle (UC). This 

indicates that cycle effect is not as important for newer gasoline vehicles. Test cycles also 
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matter for aircraft. At idle, the exhaust chemical composition is similar to jet fuel as 

dominated by alkanes (70%) and aromatics (17%)(Drozd et al., 2012), except for about 10% 

emissions assigned to an oxygenated factor. At high load, more than 60% of measured 

IVOCs are oxygenated compounds. Figure 4.3 (e, f) suggest the idle exhaust volatility 

distribution is very similar to that of jet fuel (Presto et al., 2011), but 85% load results show 

more spiky volatility distribution. These trends are consistent with data from Cross et al. 

(2013)  

Figure 4.2 shows that there are systematic trends in the PMF resolved compostion 

within gasoline vehicle emissions. Starting from SORE to pre-LEV, LEV and ULEV, there’s 

a decreasing trend of the fraction of PMF SRAs (49% down to 23%) matched by an increase 

in the contribution of other factors (n- and b-alkanes (4% up to 10%), cyclic alkanes (23% 

up to 37%) and oxygenates (6% up to 14%)). The fraction of PAH remains at about 20%. 

We suspect that IVOC SRAs are relatively smaller compounds, they are easier to be depleted 

by higer combustion efficiency or catalytically removed in the engine exhaust aftertreatment.  

The data for gasoline vehicle emissions are consistent with results from 2D-GC 

analysis (Drozd et al., 2019). Drozd et al. (2019) reported an average fraction of 30% 

aliphatic compounds, 30% of SRA-IVOC and 35% of PAH for IVOC emission from ULEV. 

Our PMF resolved profile for ULEV shows 47% alkanes, 26% SRAs, 17% PAHs, which has 

more alkanes (+17%) and less PAHs (-18%) comparing to the 2D-GC results. We only 

included napthalene-related compounds (m/z = 128 and 142) in the PMF PAH group, 

therefore the fraction is actually comparable (20% versus 17%). Drozd et al. (2019) also 

identified clusters of larger PAHs in 2D-GC plots, where our PMF solution might misclassify 

them into cyclic alkanes (m/z = 55). Figure 4.2 also shows the decreasing trend of SRAs with 

newer vehicles, and as the additional cyclic alkanes might be Gen-IVOCs identified in 2D-
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GC results. Despite this modest difference, we conclude that this demonstrate the overall 

effectiveness of this PMF-based analysis technique.  

Figure S11 shows IVOC volatiltity distributions of the mobile source emissions. As 

the engine and emission control technology advances with stricter regulations (from Pre-

LEV to ULEV), the fraction of lower volatility IVOCs gradually increases. Hot-cycle on-

road vehicle test results show the lowest volatility distribution. Similar trend in volatility 

distribution is found in off-road diesel emission tests under different operation modes as well 

(Qi et al., 2019). But as the IVOC emission factor is decreasing dramatically, so the total 

SOA burden is certainly falling with newer vehicles. 

Figure 4.2a shows that IVOC emission factors from diesel vehicles also vary by 

nearly three orders of magnitude (104 to 107 ug/kg fuel) with diesel particulate filter (DPF) 

equipped vehicles emitting a factor of 5 to 20 times lower than non-DPF vehicles.  

Figure 4.2b indicates distinct PMF resolved chemical composition between DPF-

equipped and non-DPF diesel vehicles. DPF-equipped vehicle emissions show 10% to 50% 

oxygenated IVOCs versus 3.3% for non-DPF. This trend is consistent with data from Alam 

et al. (2019). Figure 4.2 (b) and 4.3 show that IVOC oxygenates contribute more than 50% 

from C12 to C16 retention time bins in DPF-equipped vehicle emission, whereas more than 

80% of mass are alkanes in non-DPF vehicle emission, consistent with results from Zhao et 

al. (2015). For non-DPF diesel vehicles, the emission volatility distribution and PMF 

resolved chemical composition is similar to diesel fuel (Zhao et al., 2015), but DPF vehicle 

emissions feature high fraction of oxygenates which could be from combustion or 

aftertreatment by-production. 

The PMF analysis also shows how the composition of the IVOC emission varies 

systematically with fuel composition. The non-DPF diesel vehicle was tested with three 
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different fuels (low, medium and high aromatics). The PMF results in Figure S12 shows the 

SRA factors changing from 22%, 10% and 3% in IVOC emissions, for these fuel (May et 

al., 2014). This is expected and in turn validate the chemical composition information 

extracted by PMF technique. 

 

4.3.3 IVOC emissions from biomass burning  

We categorized the biomass burning PMF resolved factors into 5 groups: alkanes, 

PAHs, oxygenates (aliphatic and aromatic) and N-containing compounds, in a similar 

fashion as Hatch et al. (2017). Previously, we were unable to analyze the biomass burning 

IVOC data measured by 1D GC-MS due to highly complex UCM mass spectra, including 

artifacts such as siloxane, solvent and internal standards . 

The PMF factors cover most of the groups in Hatch et al. (2017), only except terpenes, 

which is usually less than 5% of the IVOC mass fraction.  

Figure 4.4 and Figure S13 compares the PMF results for the 11 different wildland 

fuels. There is substantial variation, on average about 26% alkanes, 27% PAHs, 7% furans, 

19% oxygenates and 21% N-containing compounds. This shows only roughly half of the 

detected compounds (53%) are hydrocarbons, in contrast to more than 80% in most mobile 

sources. Figure S14 shows that biomass burning smoke is dominated by C12 IVOCs. PAHs 

and N-containing aromatics are the dominant chemical groups (> 80%) in the C12 to C14 

retention time bins, whereas alkanes contribute more than 80% in lower volatility bins (C15 

to C22). Due to the partial elution of oxygenated compounds in the non-polar GC column we 

used for this analysis, we likely underestimate the mass of oxygenates in our samples (Zhao 

et al., 2014). 

There are no clear trends in IVOC composition with either emission rate or fuel type, 
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even multiple experiments with same fuel give different compositions. This likely reflects 

the poorly controlled nature of biomass combustion. The IVOC EFs are in the range of 0.1 

to 1 µg / kg fuel, which is about 2 times lower than the 2D-GC measured EF (0.27 to 1.8 µg 

/ kg fuel) reported in Hatch et al. (2017). It is likely due to the partial elution of oxygenates 

(Zhao et al., 2014). Compared to the results of Hatch et al. (2017) , our results show 

somewhat lower oxygenates (19% vs 50% to 75%) but higher alkanes (26% vs 10% to 25%), 

PAHs (27% vs 10% to 20%) and N-containing compounds (21% vs less than 10%). The 

fractions of furans (5% to 15%) are similar. One Possible explanation is that Hatch et al. 

(2017) compiled organics measured by four instruments, of which some oxygenates were 

not measured by GC-MS.  

 

Figure 4.4 IVOC EFs and PMF decomposed composition in biomass burning smoke samples (n=14) 

Figure S15 shows the correlation coefficient (r) between IVOC EFs and other 

pollutants. The r of IVOC-to-OC and IVOC-to-CO is 0.56 and 0.64, and r of IVOC to CO2 

and modified combustion efficiency (MCE) is -0.37 and -0.55, respectively. This analysis 

indicates that OC and CO are reasonable estimators for biomass burning IVOCs. This is 

expected, as in biomass burning smoke, the IVOCs are from incomplete combustion, 

whereas in vehicle emissions, they could be from unburnt fuel, incomplete combustion or 

oil components (Gentner et al., 2012; Lu et al., 2018; Worton et al., 2014).  
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4.3.4 Source apportionment IVOCs measured in a highway tunnel  

We also applied PMF analysis to highway tunnel samples to estimate the relative 

contribution of gasoline and diesel vehicles to IVOC emissions. This was done using a two-

step process. First, we ran PMF analysis on tunnel samples concatenated with vehicle 

emission samples (similar to Figure S2) to resolve chemical composition into a consistent 

set of factors. Second, we perform source apportionment analysis by chemical mass balance 

(CMB) regression method to apportion the PMF factors to sources, 

𝑇𝑖 =  𝛽1 × 𝐺 + 𝛽2 × 𝐷  

where 𝑇𝑖  is the PMF factor profile from ith tunnel sample, G and D are the PMF 

resolved profiles for gasoline and diesel vehicle emissions and β1 and β2 are the relative 

contributions of gasoline and diesel vehicles, respectively. All factor profiles are 44-

dimension vectors (11 carbon number bins times 4 PMF factors), and the sum of all 

components in each vector are normalized to 1. We only include hydrocarbon PMF factors 

(alkanes, SRAs and PAHs) in the CMB calculation. This assumes that the PMF factor with 

oxygenates is from the background air. We want to calculate the ratio of 𝛽2: 𝛽1, which is the 

diesel-to-gasoline ratio in IVOC emissions. Because each tunnel sample was taken at 

different times with varying fleet composition ( 𝛽1  and 𝛽2 ). We ran the CMB model 

separately for each sample using the sample PMF factor source profiles. 

We choose a 15-factor PMF solution, because it best approximates the solution in 

mobile sources dataset with max r < 0.5. Table S2 lists all the resolved factors, peak m/z, and 

their reference compounds. Similarly to mobile sources, PMF factors are grouped into 6 

groups: n- and b-alkanes, cyclic alkanes, SRAs, PAHs and oxygenates and 2 other groups 

for internal standard and unclassified compounds. Previously, we were unable to resolve the 
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tunnel IVOC chemical composition measured by 1D GC-MS due to the UCMs of both 

hydrocarbon and oxygenated compounds. 

Figure 4.2 shows that both IVOC EFs and PMF resolved composition from tunnel 

data fall between the data from gasoline and diesel vehicle source profiles. This is expected 

as tunnel IVOC concentrations are dominated by emissions from these two sources. The 

tunnel sample has a higher fraction of oxygenated compared to the vehicle samples (except 

for DPF-diesel), indicating more contribution from oxidation products in ambient 

background. 

Figure 4.5(a) shows the PMF factors from a typical tunnel sample. There is a strong 

signal of the SRA PMF factor in C12 to C14 n-alkane bins and high fraction of PMF cyclic 

alkanes factor in C17 to C22 n-alkane bins, indicating substantial contributions from both 

gasoline and diesel vehicular IVOCs.  

Figure 4.5(b) shows the scatter plot between CMB fitted mixture PMF profile 

(gasoline + diesel) and GC-MS measured tunnel PMF profile. The R2 of the linear regression 

ranges from 0.73 to 0.88 for all tunnel samples, indicating that the CMB model explain more 

than 80% of the variation in the primary IVOC PM factors in the tunnel samples. The average 

ratio of diesel-to-gasoline IVOCs (𝛽2: 𝛽1) for all samples is 2.1 (ranging from 1.4 to 2.6). 

Therefore, although diesel vehicles only used 20% of fuel (Tkacik et al., 2014), they are 

estimated to contribute around 70% of the primary IVOCs in tunnel samples.  
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Figure 4.5 (a) Volatility distribution and primary PMF factors in a typical tunnel emission sample (b) 

Scatter plot of mixture of gasoline and diesel profiles versus tunnel profile 

 

4.3.5 IVOC composition in ambient samples in Pasadena, CA  

To investigate the sources of ambient IVOCs, we performed PMF analysis on 

ambient samples collected in Pasadena, CA during the CalNex campaign. The PMF model 

is trained with ambient samples concatenated with vehicle emission samples (similar to 

Figure S2). We used 16 mobile source samples (4151 scans per sample) and 48 ambient 

samples (1336 scans per sample), which is to keep similar number of mass spectra scans in 

both datasets. The concatenation of sources emissions and ambient samples is to 

simultaneously resolve hydrocarbon and oxygenated IVOC factors for source apportionment 

analysis. A 17-factor PMF solution was most interpretable, including similar hydrocarbon 

factors as in mobile-source, and extra oxygenate factors. Table S3 lists the resolved factors, 

peak m/z, and reference compounds. Previously, IVOC UCMs were only attributed to two 

subgroups (Zhao et al., 2014). We grouped the PMF factors into 6 subgroups: alkanes, SRAs, 

PAHs, oxygenates, acids, internal standards, and unidentified. Ten out of 17 resolved factors 

are oxygenates. Table S3 shows all oxygenated factors have more than 2 oxygen atoms.  

Figure 4.6(a) shows the PMF resolved chemical composition of a typical ambient 
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sample. Measured IVOCs mass is dominated by oxygenated factors in the C13 and C15 bins, 

3 times more than hydrocarbon factors. The hydrocarbon PMF factors decreases from C12 to 

C22 (Zhao et al., 2014), which suggests that diesel emissions may not be the dominant 

hydrocarbon IVOC sources in Pasadena, CA (Ensberg et al., 2014; Lu et al., 2019; 

McDonald et al., 2018; Zhao et al., 2014). We observed much higher fraction of oxygenate 

factor from C17 to C22 bins than in mobile-source emissions samples. The reference 

compounds of resolved oxygenated factors are all oxygenates with one or more rings (Table 

S3), indicating complex atmospheric oxidation products originated from primary SRA or 

PAH emissions.  

 

 

Figure 4.6 (a) Volatility distribution of PMF factors of typical ambient sample (b) Average chemical 

composition diurnal pattern (c) Average weekday-weekend hydrocarbon IVOC concentrations. We 

removed the benzoic acid factors and unidentified group, as it could be the Tenax reaction by-product 

(Zhao et al., 2014). 

On average, oxygenated PMF factor contributes 75% measured IVOC mass, with 

only around 25% are hydrocarbon factors (alkanes, SRAs and PAHs). This likely 

overestimate the IVOC oxygenates, because some identified oxygenate factor could also be 

reaction byproduct with Tenax. Detailed bottom-up analysis is needed to examine the factors 

to determine if they are artifacts or actual sampled pollutants. Since PMF analysis on mobile-
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source emissions and highway tunnel samples are dominated (more than 80% and 70%, 

respectively) by hydrocarbon factors, we expect some primary emissions of oxygenated 

species in ambient (Khare and Gentner, 2018; McDonald et al., 2018; Qin et al., 2019; Shah 

et al., 2020) (for example, volatile chemical products, VCPs) and secondary species formed 

from atmospheric oxidation (Lu et al., 2019). Figure S16 shows the diurnal pattern of IVOC 

mass concentration. Despite the dilution effect by planetary boundary layer (PBL) (Lu et al., 

2019), the hydrocarbon PMF factors slightly increased at 1:30pm (Zhao et al., 2014), but the 

oxygenated factors decreased. Therefore, oxygenated factors are likely the combination of 

primary emission and secondary oxidation product, but dominated by the latter. 

Figure 4.6(b) shows hydrocarbon IVOCs has minor peak (+3%) in composition only 

in the middle of the day at 1:30 pm (Zhao et al., 2014). This leads us to two hypotheses, 

which are: (1) regional transport of hydrocarbon IVOCs emitted in the morning rush hour or 

(2) fresh local evaporative IVOC emissions around noon. But transported hydrocarbon 

IVOCs would have been most oxidized if they reach Pasadena around 1:30 pm. Also, due to 

the strong photo-oxidation around noon, we would expect more oxygenated than 

hydrocarbon factors (Hayes et al., 2013). Therefore, the most likely explanation is that there 

should be some unknown evaporative sources peaked at noon with more (>50%) 

hydrocarbon than oxygenates emissions (Lu et al., 2019). This does not contradict with the 

assertion that most IVOCs are oxygenated and secondary, but only to propose unknown 

sources to explain the early-afternoon peak of hydrocarbon IVOCs.  

Figure 4.6(c) shows that the weekday-to-weekend pattern of hydrocarbon IVOCs. 

There have been a series of studies on the mobile-source contribution to SOA formation in 

Los Angeles area (Ensberg et al., 2014; Gentner et al., 2012; Jathar et al., 2017; Lu et al., 

2019). Diesel vehicle emissions were once hypothesized as important sources, our PMF 
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results show higher alkane factors (+0.8 µg/m3) on weekdays compared to weekends. 

Considering the less than half diesel vehicle activities on weekends (Bahreini et al., 2012), 

we can estimate the weekday diesel-related IVOCs are 1.6 to 2 µg/m3. Recent simulation 

study also shows that mobile sources only explain about 40% of measured hydrocarbon 

IVOCs (Lu et al., 2019), of which diesel-related sources contribution is around 2 µg / m3 

(Zhao et al., 2014). Therefore, our PMF-based analysis shows similar diesel-related 

contribution as the bottom-up chemical transport model simulation. We conclude there 

should be important non-mobile sources of hydrocarbon IVOC emissions, without weekday-

weekend pattern. Figure S17 shows that there is no significant weekday-to-weekend pattern 

in PMF resolved total IVOC chemical composition(Zhao et al., 2014). 

 

4.4 Implications and future work 

Knowing the chemical composition and molecular structure of IVOCs are cruicial to 

model their SOA formation in simulations, because the SOA yield depends on volatility and 

molecular structure (Chacon-Madrid et al., 2010; Loza et al., 2014; Presto et al., 2010). SOA 

yields increase with lower volatility IVOCs (Presto et al., 2010), but for a given carbon 

number, the SOA yield for hydrocarbon IVOCs generally follows aromatics > cyclic > linear > 

branched alkanes (Lim and Ziemann, 2009b; Loza et al., 2014; Tkacik et al., 2012). 

Aromatics have higher SOA yield under low-NOx conditions (Chan et al., 2009; Ng et al., 

2007). To date, most modelling studies have not incorporated IVOC chemical composition 

in simulations.  

We will explore the importance of these factors with the PMF resolved composition. 

The SOA yield for each PMF group is assigned using the surrogate listed in Table 4.2. 

Namely, n-alkanes and PAHs have corresponding SOA yield data for their reference 
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compounds (Chan et al., 2009; Presto et al., 2010). For cyclic alkane factor, we use alkyl-

cycloalkanes as the reference compound, and chamber results on C12 alkanes show their SOA 

yield is similar to n-alkanes under high-NOx conditions (Loza et al., 2014; Yee et al., 2013). 

For SRA factor, we use the SOA yield for tri-methyl benzene for C12 bin, because Drozd et 

al. (2019) shows most SRAs in gasoline vehicle emissions have two or more branches. 

Oxygenate factors are modelled using aldehydes as surrogate, and their SOA yield are 

assumed as 1/3 of n-alkanes (Chacon-Madrid et al., 2010; Chacon-Madrid and Donahue, 

2011). Chamber experiment results of alkanes, SRAs, PAHs under low-NOx conditions are 

also used to inform the SOA parameterization (Chen et al., 2016; Li et al., 2016; Yee et al., 

2013). Detailed information can be found in the Table S4. 

Figure 4.7 indicates that the predicted the mass-based SOA yield increase 

significantly (+80%) in gasoline vehicle emissions from 0.17 to 0.3 between high- and low-

NOx cases. The SOA precursors in gasoline vehicle exhaust are dominated by SRAs and 

PAHs (Section 3.2), whose SOA yields are strongly NOx dependent. Therefore, the 

difference in predicted SOA yield between high- and low-NOx conditions due to the SRAs 

and PAHs highlights the need to include IVOC-aromatic groups in chemical transport model 

studies (Akherati et al., 2018; Lu et al., 2019). 

A second question is whether the compositional differences between different classes 

of gasoline vehicles shown in Figure 4.2 affect SOA formation. Figure S18 show less than 

± 20% changes on SOA yield within subclasses in gasoline vehicle sources. This is much 

less than the three orders of magnitude variation in IVOC EFs.. This supports that a single 

profile can be used to represent SOA formation from gasoline vehicle IVOC emissions (Lu 

et al., 2018).  
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Figure 4.7 Comparison of modelled SOA yield for moibile sources under high- and low-NOx conditions 

Figure 4.7 also shows the mass-based SOA yield from diesel vehicle IVOC emissions. 

Under both high- and low- NOx conditions, the SOA yield of non-DPF diesel vehicle 

emissions range is around 0.3, because of its lower volatility distribution that is dominated 

by alkanes. The SOA yield of alkanes is less sensitive to NOx conditions than aromatics 

(Loza et al., 2014). Due to much higher oxygenates fraction (lower SOA yield), we predict 

that the for DPF diesel is lower than for non-DPF diesel.  

To summarize, we proposed a PMF-based technique to resolve the chemical 

composition of the IVOC UCM measured in traditional 1-D GC-MS. Prominent PMF factors 

can be automatically found and mass spectra comparison to reference compounds in NIST 

show high confidence (r > 0.9) for most factors. The results can provide similar level of 

speciation information that is in more sophisticated 2D-GC results. Therefore, it can be 

applied to both archival and future GC-MS data analysis.  

The key of PMF technique is the underlying structure in UCM mass spectra. In nature, 

the mass spectra detected by GC-MS are linear separable, and the good thing is the individual 

components are often distinct enough (thinking of alkanes, PAHs and oxygenates). Because 

of the strong fragmentation induced by electron ionization, the mass fragments provide 

unique signal (including peak m/z and -CH2 patterns) for recovery of molecular information. 



132 

 

We also admit that PMF works the best for mixture of intrinsically different components. 

Koss et al. (2020) showed that PMF is not suitable for chamber experiment data analysis, 

which is a dynamic and evolving system, of which the mass spectra are slowing changing 

and not distinct enough for separation.  

The PMF-based technique that show promising results. But some resolved factors, 

usually 2 to 3, are less correlated (r < 0.9) to the reference compounds in NIST database, for 

example, m/z = 55 (cyclic alkane) and m/z = 119 (SRAs) factors. These factors are likely 

mixture of multiple compounds and have less clean mass spectra. Therefore, we recommend 

future research on how to speciate such factors into more detailed factors. There are two 

possible directions to address this issue: (1) split the entire data matrix into multiple slides 

according to retention time, and run PMF separately on these sub-matrixes. But this may 

lead to different number of factors for each sub-matrix; or (2) apply regularization term or 

sparsity constrain on the PMF algorithm, such that mixture factors are penalized more than 

regular factors, so as to get cleaner mass spectra solutions. 
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Chapter 5: Conclusions 

5.1 Summary of scientific findings 

The research in this thesis presents three key improvements to IVOC related studies: 

(1) It provides comprehensive model-ready mobile-source profiles for others to use; (2) It 

provides an SOA parameterization to represent hydrocarbon IVOCs in CTMs; and (3) It 

provides a technique to analyze GC-MS data to get necessary chemical information. More 

key results and conclusions are summarized below. 

IVOC is an important component in organic emissions for mobile sources, ranging 

from around 4% for gasoline vehicles to more than 50% for diesel vehicles. Volatility 

distributions of all mobile-source organic emissions show tri-modal volatility distributions, 

which are defined as ‘by-product’, ‘unburnt fuel’ and ‘lubricant oil’ modes. Despite the large 

variation in total organic emission factors, their volatility distributions are largely consistent 

across sources using the same fuel type. The main difference in gasoline IVOC emissions is 

due to cycle effect (cold UC vs hot-running), whereas the top factor is the after-treatment 

device (DPF vs non-DPF) for diesel vehicle emissions and load dependency for gas-turbine 

source.  

IVOC is the dominant contributor to predicted SOA formation from mobile source 

emissions. We underscored the importance of including IVOCs in models and inventories 

due to their high SOA formation potential using the box model. Large gaps in IVOCs and 

SVOCs are found between traditional and new profiles based on direct measurements. Using 

new comprehensive emission profiles, the box model almost doubles the predicted SOA 

compared to the traditional profile for gasoline vehicle exhaust. For gas-turbine and diesel 

sources, IVOCs and SVOC vapors combining contribute factors of 13 and 44 more SOA 

than VOCs, respectively. Our new profiles are compiled into model-ready formats and 
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available in SPECIATE 5.0. 

To simulate the SOA formation from IVOCs in CTMs, we developed a new 

parameterization from mobile source IVOC emissions designed for implementation in 

CTMs. The parameterization has six lumped IVOC species: two aromatics and four 

aliphatics, to account for both the volatility and chemical composition of the IVOC 

emissions. IVOC emissions can be assigned to these classes using GC-MS data. The relative 

error between the simplified mechanisms is less than 6% compared to the complete 

mechanism (Zhao et al., 2015, 2016).  

Simulations show that mobile source IVOCs contribute considerably to ambient 

IVOCs and SOA formation. We performed CTM simulations with new mobile-source 

organic emission profiles. Results show mobile sources contribute 2.7 µg m-3 of IVOCs at 

Pasadena site during CalNex, which is around 40% of measured concentrations of 

hydrocarbon IVOCs. They are also predicted to contribute around 1 µg m-3 daily peak SOA 

concentration, a 67% increase compared to the base case. Therefore, it is crucial to include 

mobile-source IVOC emissions in simulations. To reach the IVOC or SOA mass closure 

with measurement data, results from exploratory model runs suggest that additional 12% to 

26.8% of non-mobile NMOG emissions are likely IVOCs. 

Chemical composition information is crucial to predicting the atmospheric properties 

of IVOCs, including SOA yields. We developed a PMF-based technique to resolve the 

chemical composition of IVOC UCMs in traditional GC-MS data. This technique can extract 

the important groups of compounds in IVOC UCMs, and most resolved factors show very 

similar spectra (r > 0.9) to the associated reference compounds in the NIST database. This 

technique can be applied to a wide range of emission samples, including mobile sources and 

biomass burning samples. It can also be combined with the CMB model to perform source 
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apportionment analysis. Analysis of tunnel samples shows, although diesel vehicles only 

used 20% of the fuel, they contributed around 70% of mobile-source IVOCs in the tunnel. 

PMF analysis on ambient samples in Pasadena, CA shows up to 70% measured IVOC are 

oxygenated indicating complex atmospheric oxidation.  

This thesis presents systematic efforts to better incorporate IVOCs from direct 

measurements into CTM simulations. We compiled model-ready emission profiles for 

mobile sources that include IVOCs and SVOCs from direct measurements (chapter 2). We 

proposed an SOA parameterization to model the SOA formation from IVOCs, and perform 

CTM simulations which highlight the contribution of mobile-source and potentially non-

mobile source IVOCs (chapter 3). We developed a PMF-based technique to resolve the 

chemical composition of IVOC UCMs in traditional GC-MS data, and can be applied to a 

wide range of emission sources (chapter 4).  

 

5.2 Recommendations for data integration into CTMs  

To incorporate new emission data from other sources into CTMs, we recommend the 

following procedure as shown in Fig 5.1.  

 

Figure 5.1 Recommended procedure for new emission data integration into models 

First, understand the emission sources and sampling media of the measurements. To 

build a comprehensive emission profile, we need to collect all phases (gas, semi-volatile and 
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particle) of organic emissions. In this work, organic emissions were sampled onto Tedlar 

bag, adsorbent tubes and quartz filters. This set of sampling media collects the majority of 

organic emissions compared to traditional approaches (chapter 2). Because there is a 

potential overlap between data from multiple sampling media, for example, Tedlar bag and 

adsorbent tubes both collect IVOCs, but our results show that IVOCs less volatile than n-

dodecane are better captured by adsorbent tubes. Therefore, a line must be drawn to combine 

the quality data on both media and avoid double counting. Also, a good quality check is to 

make sure that the data is of similar quality with previous measurements, for example, 

measured VOC data agrees with previous profiles, and the sum of measured organics from 

different media approximately reach the mass closure with bulk measurements, for example, 

total hydrocarbon (THC) and OC measurements. 

Second, quantify the chemical composition of measured IVOCs. For some more 

advanced instruments, high-resolution chemical information is readily available. But for 

traditional 1-D GC-MS, the PMF-based technique in chapter 4 may be used to determine the 

important factors from GC-MS data. Meanwhile, the retention time of n-alkanes is used as 

the approximation of volatility. This is important because chemical information could be 

vastly different in a lot of non-mobile sources compared to mobile sources. SOA production 

yields are dependent on the molecular structure of the primary organic vapor precursor.  

Third, determine the chemical transport model species for IVOCs and compile the 

data into model-ready profiles. Following the chemical information analysis, for example, if 

measured IVOCs are dominated by hydrocarbons, then the six lumped IVOC species 

described in chapter 3 can be reused. If not, new IVOC model species and SOA 

parameterization may be needed. This may be especially important for IVOCs found in 

volatile chemical products (VCPs) which are often highly oxygenated. Because there is often 
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computation cost associated with new model species, classifying IVOCs into a few groups 

that propagate important chemical information (e.g. volatility and functionality) shows lower 

cost compared to molecular level speciation. Next, implement the IVOC SOA mechanism 

with new model species (if needed) in your air quality CTM and RCM. An existing chemical 

mechanism will need to be modified to include the SOA yields corresponding to the IVOC 

model species. For emissions inputs, employing one of the two options in the following 

paragraph will generate files ready for use by a CTM. A short-term alternative, for testing 

and impact study purposes only, would be to skip reprocessing emissions and instead scale 

new IVOC emissions to the emissions of, for example, NMOG when reading into your air 

quality CTM. The Community Multiscale Air Quality (CMAQ) model is equipped with 

online chemical scaling for just this purpose. Tracking the IVOC and product model species 

could give you the full information on their effects on certain processes and better motivate 

the inclusion of these species in emissions databases like SPECIATE. 

For users of the SPECIATE emissions profile database and the SMOKE emissions 

processing software, there is a choice at this point for where to include the new IVOC 

speciation information medium- and long-term. In order to disseminate the new profile to a 

large community, it is recommended to submit the new profile to the SPECIATE team for 

inclusion in the database. Once the profile is approved and included, the SPECIATE Team 

will then be in the position to update the Speciation Tool software to propagate the new 

model species from the SPECIATE Database to SMOKE. Alternatively, you may use the 

Speciation Tool to directly create a mapping from NMOG to the new IVOC species and 

apply it to the Source Classification Codes (SCCs) that correspond to the source you have 

investigated. This approach would be quicker to implement (no iteration with SPECIATE 

Team) but would not be available for the wider community to use. For either choice, you 
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would rerun your emissions processing software (e.g. SMOKE) to generate new emissions 

inputs for your air quality CTM. 

 

5.3 Recommendations for reduced complexity models (RCMs)  

Reduced complexity models (RCMs) (Heo et al., 2016b, 2016a; Muller et al., 2011; 

Tessum et al., 2017) are a group of models that use primary emission data, for example, SO2, 

NH3 and VOCs, to infer their contribution to ambient PM concentration and related social 

and health costs. These models usually have much simpler representations of the physical 

and chemical mechanisms compared to state-of-the-art CTMs. For example, AP2 (Muller et 

al., 2011) utilized a source–receptor matrix framework to map VOC emissions to ambient 

PM2.5 concentrations. But currently, all RCMs do not account for IVOCs in their model 

representation, therefore no social cost is assigned to PM2.5 contribution from IVOC 

emissions.  

Given the major contribution of IVOCs from mobile sources, we recommend adding 

a model species ‘IVOC’ into RCMs and its related social cost is associated with emission 

quantity and SOA yield. The emission quantity of IVOCs can be calculated from inventory 

NMOG or VOC using model-ready emission profiles. For example, on-road diesel vehicles 

show a higher than 50% IVOC-to-NMOG ratio, where gasoline vehicles have around 4% 

IVOC-to-NMOG ratio, which is more than a factor of 10 difference. Meanwhile, the SOA 

yield of IVOCs from all mobile sources range from 0.15 to 0.3, a good approximation could 

be an SOA yield between 0.2 and 0.25, so the related uncertainty on SOA yield is much 

smaller than emission quantity. Since current RCMs only apply one SOA yield for all VOCs 

(Gilmore et al., 2019), the number of IVOC species in RCMs should reduce from 6 to 1 

compared to our CTM implementation.  
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5.4 Future work 

IVOCs account for around 4% to more than 50% of the NMOG emissions for mobile 

sources. Simulations show that IVOC precursors can contribute up to 70% SOA formation 

in the southern California region. The PMF-based technique is able to recover most of the 

IVOC chemical composition in traditional GC-MS, which is largely consistent with results 

from more sophisticated instruments. Based on our findings in this thesis, we propose a few 

future work directions. 

More vehicle IVOC emissions data are needed across the country, and from different 

regions of the world with a wide range of fuel compositions, test cycles (hot operations), and 

seasons (especially winter). Also, IVOCs are important components of NMOG emissions in 

biomass burning, oil sands, and volatile chemical product emissions (de Gouw et al., 2011; 

Hatch et al., 2017; Hunter et al., 2017; Liggio et al., 2016; McDonald et al., 2018). Model-

ready comprehensive profiles that account for all organic emissions are needed for these 

non-mobile source categories. We incorporated mobile-source IVOCs into a CTM model 

(CMAQ v5.3) based on the new profiles documented in SPECIATE 5.0 and we expect this 

to become regular practices in CTM simulations. But protocols and test methods are still 

needed so that data can be gathered to fully characterize each sector in inventories. 

Non-mobile sources are likely a major source of hydrocarbon and oxygenated IVOC 

and future research is needed to constrain their emissions on the volatility distribution and 

chemical composition. Modeling the SOA formation from these IVOCs will likely require 

an extension of existing chemical mechanisms, for example, new model species such as 

‘oxygenated IVOCs’. Also, measurements of ambient IVOC across a range of field sites are 

needed to better constrain the model parameters. Multigenerational aging on SOA formed 
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from IVOC emissions still has a large uncertainty, which also has a large effect on downwind 

receptors. 

Our PMF-based technique has shown promising results in a wide range of datasets. 

But some resolved factors, are less correlated (r < 0.9) to the reference compounds in the 

NIST database, for example, cyclic alkane and SRA factors. These factors are likely mixtures 

of multiple compounds and have less clean mass spectra. Therefore, we recommend future 

research on how to speciate such factors into more detailed factors. There are two possible 

ways to address this issue: (1) split the entire data matrix into multiple slides according to 

retention time, and run PMF separately on these sub-matrixes. But this may lead to different 

no. of factors for each sub-matrix; or (2) apply regularization term or sparsity constrain on 

the PMF algorithm, such that mixture factors are penalized more than regular factors, so as 

to get better mass spectra solutions.  
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Appendix A: Supporting information for Chapter 2 

A.1. Comparison of three individual compounds measured using GC/MS analysis of 

Tedlar bag versus Tenax adsorbent samples 

Figure S2(a) shows that, the most volatile of these species, n-pentyl-benzene, the 

Tedlar bags measurement averaged 5.2 times the adsorbent tubes. We attribute this 

difference to incomplete collection of this relatively volatile species by the adsorbent tubes 

or incomplete recovery of thermal desorption method. Figure S2(b) show essentially the 

same amount of n-dodecane was measured using both approaches, a linear regression yields 

a slope of 0.85 and R2 of 0.9. As for naphthalene (the least volatile of these species), Figure 

S2(c) show the adsorbent tubes measured about 5 times more than the Tedlar bag, which we 

attribute to wall losses in the bag. 54 

 

A.2. Supplementing gas-turbine and diesel VOC speciation with traditional emission 

profiles 

Given the different levels of VOC characterization, we supplemented our gas-turbine 

and diesel VOC data with existing speciation profiles (SPECIATE profiles 4674 and 5565).  

For gas turbine exhaust, 86 individual VOCs were identified, which can be classified as 21 

SAPRC groups. Meanwhile, SPECIATE profile 5565 includes 81 individual species, 

which can be lumped into 27 groups (not including IVOCs in the profile). Of the two 

grouping results, 17 groups are identified in both profiles, and 10 groups are unique only in 

profile 5565.  

We then complement our VOC results with 10 unique groups as additional 31.9% of 

VOC mass (all carbonyls, 31.9% of total VOC mass in profile 5565). 



149 

 

For diesel exhaust, 57 individual VOCs and 11 Kovats lumped groups were identified, 

which can be classified as 25 SAPRC groups. SPECIATE profile 4674 includes 144 

individual species, which can be lumped into 34 groups (not including IVOCs in the 

profile). Of the two grouping results, 22 groups are identified in both profiles, and 12 

groups are unique only in profile 4674.  

We then complement our VOC results with 12 unique groups as additional 10.8% of 

VOC mass (10.8% of total VOC mass in profile 4674). 

 

A.3. Preparing NMOG and POA emission profiles from VBS version 

The VBS version in Table S3(a) is designed to be applied to total organic emissions 

(NMOG + 1.2×OC). The VOC composition profiles in Table S3(b-f) is designed to be 

applied to VOC emissions. In most emission inventories, where NMOG and POA are 

provided separately, we recommend partition the VBS profiles into gas- and particle-phase 

sub-profiles for NMOG and POA emissions respectively, and then apply the VOC profiles 

in Table S3(b-f) to speciate VOC emissions.  
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A.4. Table S1 to S7  

Table S1 Summary of all tested engines, fuels and test cycles with complete characterization data 

Source 

type 
Category 

Class / 

Model 

Number 

of 

engines 

Number 

of tests 

Model 

year 
Fuel 

Test cycle / 

Thrust 

G
as

o
li

n
e 

LDGVs 

(on-road) 

Pre-LEV 10 10 
1987-

1999 

Commercial 

summertime 

California 

gasoline 

Cold-start unified 

cycle (UC) / Hot-

start 

LEV 9 10 
1991-

2009 

ULEV 10 12 
2003-

2012 

SOREs 

(off-road) 

SORE-

2S 
2 3 

2002, 

2005 CARB SORE 

certification cycle SORE-

4S 
2 3 

2004, 

2005 

G
as

-

tu
rb

in
e 

KC-135 

Stratotanker 

CFM56-

2B1 
1 2 / 

Commercial 

JP-8 
4% and 85% 

D
ie

se
l 

HDDVs 

(on-road) 

DPF-

equipped 
2 8 

2007, 

2010 
Three different 

ULSD fuels 

with varying 

aromatic 

content (9- 

28%) 

Urban 

Dynamometer 

Driving Schedule 

(UDDS) / Creep 

and idle / High-

speed cruise 
Non-

DPF 
1 10 2006 

MDDV 

(on-road) 

Non-

DPF 
1 1 2005 Commercial 

California 

ultra-low 

sulfur diesel 

(ULSD) 

Cold-start UC 

TRU 

(off-road) 

Non-

DPF 
1 2 1998 

CARB 

procedures for 

engine 

certification 
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Table S2 Effect of temperature on gas/particle partitioning at equilibrium 

Log (C*, T = 

298K) 

C* (ug/m3) Particle-phase fraction (Xp) ∆Hvap 

(kJ / 

mol) T = 298K T = 273K T = 320K T = 298K T = 273K 
T=320

K 

Nonvolatile n/a n/a n/a 1.00 1.00 1.00 n/a 

-1 1.00E-01 3.14E-03 1.34E+00 0.99 1.00 0.88 96 

0 1.00E+00 4.72E-02 9.85E+00 0.91 1.00 0.50 85 

1 1.00E+01 7.08E-01 7.26E+01 0.50 0.93 0.12 74 

2 1.00E+02 1.06E+01 5.35E+02 0.09 0.48 0.02 63 

3 1.00E+03 1.60E+02 3.94E+03 0.01 0.06 0.00 52 

4 1.00E+04 2.40E+03 2.91E+04 0.00 0.00 0.00 41 

5 1.00E+05 3.60E+04 2.14E+05 0.00 0.00 0.00 30 

6 1.00E+06 5.41E+05 1.58E+06 0.00 0.00 0.00 19 
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Table S3a VBS distribution of complete profiles 

 
Gasoline 

(cold-

start) 

Gasoline 

(hot 

operation) 

Gas-

turbine 

Diesel 

(non-

DPF) 

Diesel 

(DPF) 

NV 0.002 0.006 0.001 0.006 0.006 

log C* = -1 0.000 0.012 0.005 0.004 0.001 

log C* = 0 0.001 0.004 0.011 0.005 0.001 

log C* = 1 0.005 0.024 0.016 0.016 0.083 

log C* = 2 0.005 0.019 0.009 0.018 0.038 

log C* = 3 0.003 0.019 0.009 0.052 0.032 

log C* = 4 0.003 0.022 0.020 0.134 0.080 

log C* = 5 0.008 0.035 0.046 0.178 0.176 

log C* = 6 0.031 0.105 0.198 0.177 0.168 

log C* = 7 0.084 0.072 0.035 0.088 0.073 

log C* = 8 0.293 0.242 0.078 0.050 0.024 

log C* = 9 0.302 0.273 0.133 0.098 0.267 

log C* = 10 0.117 0.077 0.209 0.116 0.038 

log C* = 11 0.145 0.089 0.230 0.057 0.014 
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Table S3b VOC emission composition for gasoline source (cold-start) 

CAS Name Mass fraction 

50-00-0 formaldehyde 0.098448714 

75-07-0 acetaldehyde 0.079453169 

74-85-1 ethene 0.077569019 

108-88-3 toluene 0.06013721 

115-07-1 propene 0.039523976 

78-78-4 2-methyl-butane 0.038157017 

71-43-2 benzene 0.036696589 

540-84-1 2,2,4-trimethyl-pentane 0.03316184 

74-84-0 ethane 0.028506629 

108-38-3 m-xylene 0.027485361 

107-83-5 2-methyl-pentane 0.021537976 

74-86-2 ethyne 0.018596122 

95-63-6 1,2,4-trimethyl-benzene 0.017161219 

67-64-1 acetone 0.015787522 

95-47-6 o-xylene 0.0155095 

110-54-3 n-hexane 0.014871602 

565-59-3 2,3-dimethyl-pentane 0.014521667 

106-42-3 p-xylene 0.014017881 

109-66-0 n-pentane 0.01400488 

96-14-0 3-methyl-pentane 0.013934972 

115-11-7 2-methyl-propene 0.01357629 

100-52-7 benzaldehyde 0.013233636 

96-37-7 methylcyclo-pentane 0.011870355 

100-41-4 ethyl-benzene 0.011868345 

589-34-4 3-methyl-hexane 0.010887573 

620-14-4 1-methyl-3-ethyl-benzene 0.010858917 

591-76-4 2-methyl-hexane 0.010740291 

74-98-6 propane 0.009575236 

108-08-7 2,4-dimethyl-pentane 0.009478111 

107-02-8 acrolein 0.008345552 

142-82-5 n-heptane 0.007876648 

565-75-3 2,3,4-trimethyl-pentane 0.007770152 

79-29-8 2,3-dimethyl-butane 0.007424302 

106-98-9 1-butene 0.006543969 

106-97-8 n-butane 0.006108686 

108-67-8 1,3,5-trimethyl-benzene 0.005792158 

78-85-3 methacrolein 0.005491469 

106-99-0 1,3-butadiene 0.005412884 

589-43-5 2,4-dimethyl-hexane 0.005381599 

622-96-8 1-methyl-4-ethyl-benzene 0.005206562 

123-38-6 propanal 0.005191645 
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589-81-1 3-methyl-heptane 0.00513135 

3522-94-9 2,2,5-trimethyl-hexane 0.005041825 

592-27-8 2-methyl-heptane 0.004587965 

611-14-3 1-methyl-2-ethyl-benzene 0.004358071 

592-13-2 2,5-dimethyl-hexane 0.004256891 

108-87-2 methylcyclo-hexane 0.004101934 

111-65-9 n-octane 0.00406272 

110-82-7 cyclo-hexane 0.003913606 

526-73-8 1,2,3-trimethyl-benzene 0.003840964 

624-64-6 trans-2-butene 0.003525753 

871-83-0 2-methyl-nonane 0.00324077 

584-94-1 2,3-dimethyl-hexane 0.003084652 

75-83-2 2,2-dimethyl-butane 0.003026964 

590-18-1 cis-2-butene 0.002915496 

2216-34-4 4-methyl-octane 0.002711622 

513-35-9 2-methyl-2-butene 0.002711362 

78-93-3 methylethyl-ketone 0.002552226 

1759-58-6 trans-1,3-dimethyl-cyclopentane 0.00245383 

934-74-7 1,3-dimethyl-5-ethyl-benzene 0.00241612 

2216-33-3 3-methyl-octane 0.002381883 

563-46-2 2-methyl-1-butene 0.002269309 

103-65-1 n-propyl-benzene 0.002160127 

4170-30-3 crotonaldehyde 0.002111139 

123-72-8 butanal 0.00199658 

287-92-3 cyclo-pentane 0.001916573 

463-49-0 1,2-propadiene 0.001861323 

589-53-7 4-methyl-heptane 0.001768663 

496-11-7 2,3-dihydro-indene 0.001724763 

100-42-5 styrene 0.00169368 

646-04-8 trans-2-pentene 0.001657373 

111-84-2 n-nonane 0.001633027 

617-78-7 3-ethylpentane 0.00159796 

638-04-0 cis-1,3-dimethyl-cyclohexane 0.001556882 

74-99-7 1-propyne 0.001490404 

2532-58-3 cis-1,3-dimethyl-cyclopentane 0.001481396 

1074-43-7 1-methyl-3-n-propyl-benzene 0.00144506 

66-25-1 hexanal 0.001348987 

110-83-8 cyclo-hexene 0.001348008 

926-82-9 3,5-dimethyl-heptane 0.001306079 

124-18-5 n-decane 0.001261442 

75-28-5 methyl-propane 0.001100569 

109-67-1 1-pentene 0.001087023 

2815-58-9 1,2,4-trimethyl-cyclopentane 0.001064466 

922-62-3 3-methyl-cis-2-pentene 0.00105455 
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1758-88-9 1,4-dimethyl-2-ethyl-benzene 0.001052893 

527-53-7 1,2,3,5-tetramethyl-benzene 0.001039611 

822-50-4 trans-1,2-dimethyl-cyclopentane 0.001029538 

2613-66-3 cis-1-methyl-3-ethyl-cyclopentane 0.001013644 

874-41-9 1,3-dimethyl-4-ethyl-benzene 0.00096792 

627-20-3 cis-2-pentene 0.00090946 

934-80-5 1,2-dimethyl-4-ethyl-benzene 0.000905253 

933-98-2 1,2-dimethyl-3-ethyl-benzene 0.000897434 

625-65-0 2,4-dimethyl-2-pentene 0.000872819 

2207-03-6 trans-1,3-dimethyl-cyclohexane 0.000839409 

583-48-2 3,4-dimethyl-hexane 0.000825466 

142-29-0 cyclo-pentene 0.000816028 

95-93-2 1,2,4,5-tetramethyl-benzene 0.000715707 

563-45-1 3-methyl-1-butene 0.000696766 

590-35-2 2,2-dimethyl-pentane 0.000651296 

1074-55-1 1-methyl-4-n-propyl-benzene 0.000619922 

141-93-5 1,3-diethyl-benzene 0.000607649 

562-49-2 3,3-dimethyl-pentane 0.000602954 

1069-53-0 2,3,5-trimethyl-hexane 0.000578116 

20291-95-6 2,2,5-trimethyl-heptane 0.000577085 

4032-94-4 2,4-dimethyl-octane 0.000566084 

2207-04-7 trans-1,4-dimethyl-cyclohexane 0.000556876 

527-84-4 1-methyl-2-(1-methylethyl) benzene 0.000526823 

98-82-8 (1-methylethyl) benzene 0.000516953 

1074-17-5 1-methyl-2-n-propyl-benzene 0.000516353 

2815-57-8 (1a,2a,3b)-1,2,3-trimethyl-cyclopentane 0.000504966 

2613-65-2 trans-1-methyl-3-ethyl-cyclopentane 0.000501094 

78-79-5 2-methyl-1,3-butadiene 0.000499289 

590-19-2 1,2-butadiene 0.000490403 

2870-04-4 1,3-dimethyl-2-ethyl-benzene 0.000481461 

1072-05-5 2,6-dimethyl-heptane 0.000476217 

14720-74-2 2,2,4-trimethyl-heptane 0.000467016 

824-63-5 2-methyl-indan 0.000439344 

1074-92-6 1-(1,1-dimethylethyl)-2-methyl-benzene 0.000426956 

592-41-6 1-hexene 0.000423546 

13269-52-8 trans-3-hexene 0.000422622 

2213-23-2 2,4-dimethyl-heptane 0.000422147 

105-05-5 1,4-diethyl-benzene 0.000390783 

1120-21-4 n-undecane 0.000378441 

110-62-3 pentanal 0.000376131 

4050-45-7 trans-2-hexene 0.000355995 

14686-14-7 trans-3-heptene 0.00035565 

7642-04-8 cis-2-octene 0.000344011 

1678-91-7 ethyl-cyclohexane 0.000318917 
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2207-01-4 cis-1,2-dimethyl-cyclohexane 0.000271176 

1839-63-0 1,3,5-trimethyl-cyclohexane 0.000268792 

15869-87-1 2,2-dimethyl-octane 0.000237057 

7146-60-3 2,3-dimethyl-octane 0.000234718 

563-78-0 2,3-dimethyl-1-butene 0.000231376 

535-77-3 1-methyl-3-(1-methylethyl) benzene 0.000228013 

4110-44-5 3,3-dimethyl-octane 0.000224977 

538-93-2 (2-methyl-propyl) benzene 0.00022236 

625-27-4 2-methyl-2-pentene 0.000221064 

463-82-1 2,2-dimethyl-propane 0.000208707 

760-20-3 3-methyl-1-pentene 0.000207391 

16747-30-1 2,4,4-trimethyl-hexane 0.000207128 

15869-89-3 2,5-dimethyl-octane 0.000200048 

692-24-0 2-methyl-trans-3-hexene 0.000199602 

3074-71-3 2,3-dimethyl-heptane 0.000180652 

124-11-8 1-nonene 0.000168512 

1640-89-7 ethylcyclo-pentane 0.000161199 

2738-19-4 2-methyl-2-hexene 0.000156125 

111-66-0 1-octene 0.000154377 

7688-21-3 cis-2-hexene 0.000152575 

674-76-0 4-methyl-trans-2-pentene 0.000147646 

689-97-4 1-buten-3-yne 0.000137369 

590-73-8 2,2-dimethyl-hexane 0.000125526 

763-29-1 2-methyl-1-pentene 0.000124347 

6443-92-1 cis-2-heptene 0.000120364 

691-37-2 4-methyl-1-pentene 0.000116634 

16747-26-5 2,2,4-trimethyl-hexane 0.000114231 

135-98-8 (1-methyl-propyl) benzene 0.000111651 

14850-23-8 trans-4-octene 0.000110369 

1120-62-3 3-methyl-cyclopentene 0.000104472 

6236-88-0 1-methyl-4-ethyl-cyclohexane 0.000103236 

107-00-6 1-butyne 9.25532E-05 

135-01-3 1,2-diethyl-benzene 8.68528E-05 

592-76-7 1-heptene 8.66527E-05 

560-21-4 2,3,3-trimethyl-pentane 8.65911E-05 

464-06-2 2,2,3-trimethyl-butane 8.47673E-05 

558-37-2 3,3-dimethyl-1-butene 8.42842E-05 

616-12-6 3-methyl-trans-2-pentene 8.00602E-05 

693-89-0 1-methyl-cyclopentene 7.4531E-05 

99-87-6 1-methyl-4-(1-methylethyl) benzene 7.35496E-05 

2051-30-1 2,6-dimethyl-octane 7.15307E-05 

107-40-4 2,4,4-trimethyl-2-pentene 6.86095E-05 

16021-20-8 1-ethyl-2-n-propyl-benzene 6.08539E-05 

2004-70-8 trans-1,3-pentadiene 5.97573E-05 
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13389-42-9 trans-2-octene 5.96843E-05 

14686-13-6 trans-2-heptene 5.89585E-05 

10574-37-5 2,3-dimethyl-2-pentene 5.72033E-05 

563-16-6 3,3-dimethyl-hexane 5.69252E-05 

107-39-1 2,4,4-trimethyl-1-pentene 5.63071E-05 

2213-32-3 2,4-dimethyl-1-pentene 4.90584E-05 

3683-22-5 4-methyl-trans-2-hexene 4.52079E-05 

7385-78-6 3,4-dimethyl-1-pentene 4.14052E-05 

460-12-8 1,3-butadiyne 4.12311E-05 

10574-36-4 3-methyl-cis-2-hexene 3.21055E-05 

7642-09-3 cis-3-hexene 2.42751E-05 

3221-61-2 2-methyl-octane 2.02113E-05 

3899-36-3 3-methyl-trans-3-hexene 1.90901E-05 

816-79-5 3-ethyl-2-pentene 1.61224E-05 

3404-61-3 3-methyl-1-hexene 8.47651E-06 

503-17-3 2-butyne 5.77414E-06 

1634-04-4 methyl-tert-butyl-ether 0 

637-92-3 1-ethyl-tert-butyl-ether 0 

691-38-3 4-methyl-cis-2-pentene 0 
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Table S3c VOC emission composition for gasoline source (hot operation) 

CAS Name Mass fraction 

71-43-2 benzene 0.08835029 

108-88-3 toluene 0.073388053 

107-83-5 2-methyl-pentane 0.064165863 

74-85-1 ethene 0.054665319 

75-28-5 methyl-propane 0.051135102 

108-38-3 m-xylene 0.042019507 

74-84-0 ethane 0.039221797 

50-00-0 formaldehyde 0.035221052 

115-07-1 propene 0.033526361 

96-14-0 3-methyl-pentane 0.032662285 

95-63-6 1,2,4-trimethyl-benzene 0.030130967 

95-47-6 o-xylene 0.026465306 

1839-63-0 1,3,5-trimethyl-cyclohexane 0.02437512 

111-65-9 n-octane 0.023831474 

106-42-3 p-xylene 0.021570907 

16747-30-1 2,4,4-trimethyl-hexane 0.020658974 

2532-58-3 cis-1,3-dimethyl-cyclopentane 0.020123322 

592-41-6 1-hexene 0.020014748 

589-81-1 3-methyl-heptane 0.018470098 

527-53-7 1,2,3,5-tetramethyl-benzene 0.018378861 

824-63-5 2-methyl-indan 0.0181645 

287-92-3 cyclo-pentane 0.016316706 

565-75-3 2,3,4-trimethyl-pentane 0.015032351 

100-52-7 benzaldehyde 0.013300528 

75-07-0 acetaldehyde 0.012849327 

142-82-5 n-heptane 0.012457509 

108-08-7 2,4-dimethyl-pentane 0.011178691 

464-06-2 2,2,3-trimethyl-butane 0.01066526 

7642-04-8 cis-2-octene 0.010612309 

590-73-8 2,2-dimethyl-hexane 0.009991342 

2213-23-2 2,4-dimethyl-heptane 0.009658211 

2613-66-3 cis-1-methyl-3-ethyl-cyclopentane 0.008147075 

589-53-7 4-methyl-heptane 0.007966429 

2613-65-2 trans-1-methyl-3-ethyl-cyclopentane 0.007891499 

96-37-7 methylcyclo-pentane 0.0078344 

3404-61-3 3-methyl-1-hexene 0.007194667 

74-86-2 ethyne 0.006985866 

1758-88-9 1,4-dimethyl-2-ethyl-benzene 0.006709835 

496-11-7 2,3-dihydro-indene 0.006578582 

99-87-6 1-methyl-4-(1-methylethyl) benzene 0.006186673 

926-82-9 3,5-dimethyl-heptane 0.005925649 
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535-77-3 1-methyl-3-(1-methylethyl) benzene 0.005883676 

540-84-1 2,2,4-trimethyl-pentane 0.005783134 

4032-94-4 2,4-dimethyl-octane 0.004813196 

1074-17-5 1-methyl-2-n-propyl-benzene 0.004213845 

141-93-5 1,3-diethyl-benzene 0.004128507 

1678-91-7 ethyl-cyclohexane 0.003027222 

67-64-1 acetone 0.002802591 

2815-57-8 (1a,2a,3b)-1,2,3-trimethyl-cyclopentane 0.002568004 

463-49-0 1,2-propadiene 0.002566361 

15869-89-3 2,5-dimethyl-octane 0.002522685 

100-42-5 styrene 0.001948572 

616-12-6 3-methyl-trans-2-pentene 0.001735617 

106-99-0 1,3-butadiene 0.001282624 

6236-88-0 1-methyl-4-ethyl-cyclohexane 0.001263392 

16021-20-8 1-ethyl-2-n-propyl-benzene 0.001216907 

1120-21-4 n-undecane 0.000986545 

933-98-2 1,2-dimethyl-3-ethyl-benzene 0.000663197 

1074-43-7 1-methyl-3-n-propyl-benzene 0.000452997 

135-98-8 (1-methyl-propyl) benzene 0.000395385 

620-14-4 1-methyl-3-ethyl-benzene 0.000374894 

110-83-8 cyclo-hexene 0.000327168 

591-76-4 2-methyl-hexane 0.000309917 

590-35-2 2,2-dimethyl-pentane 0.000257643 

66-25-1 hexanal 0.000166723 

98-82-8 (1-methylethyl) benzene 0.000140577 

2738-19-4 2-methyl-2-hexene 0.000107625 

624-64-6 trans-2-butene 2.15507E-05 

123-72-8 butanal 1.66303E-05 

538-93-2 (2-methyl-propyl) benzene 0 

1074-92-6 1-(1,1-dimethylethyl)-2-methyl-benzene 0 

526-73-8 1,2,3-trimethyl-benzene 0 

95-93-2 1,2,4,5-tetramethyl-benzene 0 

2815-58-9 1,2,4-trimethyl-cyclopentane 0 

590-19-2 1,2-butadiene 0 

135-01-3 1,2-diethyl-benzene 0 

934-80-5 1,2-dimethyl-4-ethyl-benzene 0 

108-67-8 1,3,5-trimethyl-benzene 0 

460-12-8 1,3-butadiyne 0 

2870-04-4 1,3-dimethyl-2-ethyl-benzene 0 

874-41-9 1,3-dimethyl-4-ethyl-benzene 0 

934-74-7 1,3-dimethyl-5-ethyl-benzene 0 

105-05-5 1,4-diethyl-benzene 0 

689-97-4 1-buten-3-yne 0 

106-98-9 1-butene 0 
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107-00-6 1-butyne 0 

637-92-3 1-ethyl-tert-butyl-ether 0 

592-76-7 1-heptene 0 

527-84-4 1-methyl-2-(1-methylethyl) benzene 0 

611-14-3 1-methyl-2-ethyl-benzene 0 

622-96-8 1-methyl-4-ethyl-benzene 0 

1074-55-1 1-methyl-4-n-propyl-benzene 0 

693-89-0 1-methyl-cyclopentene 0 

124-11-8 1-nonene 0 

111-66-0 1-octene 0 

109-67-1 1-pentene 0 

74-99-7 1-propyne 0 

14720-74-2 2,2,4-trimethyl-heptane 0 

16747-26-5 2,2,4-trimethyl-hexane 0 

20291-95-6 2,2,5-trimethyl-heptane 0 

3522-94-9 2,2,5-trimethyl-hexane 0 

75-83-2 2,2-dimethyl-butane 0 

15869-87-1 2,2-dimethyl-octane 0 

463-82-1 2,2-dimethyl-propane 0 

560-21-4 2,3,3-trimethyl-pentane 0 

1069-53-0 2,3,5-trimethyl-hexane 0 

563-78-0 2,3-dimethyl-1-butene 0 

10574-37-5 2,3-dimethyl-2-pentene 0 

79-29-8 2,3-dimethyl-butane 0 

3074-71-3 2,3-dimethyl-heptane 0 

584-94-1 2,3-dimethyl-hexane 0 

7146-60-3 2,3-dimethyl-octane 0 

565-59-3 2,3-dimethyl-pentane 0 

107-39-1 2,4,4-trimethyl-1-pentene 0 

107-40-4 2,4,4-trimethyl-2-pentene 0 

2213-32-3 2,4-dimethyl-1-pentene 0 

625-65-0 2,4-dimethyl-2-pentene 0 

589-43-5 2,4-dimethyl-hexane 0 

592-13-2 2,5-dimethyl-hexane 0 

1072-05-5 2,6-dimethyl-heptane 0 

2051-30-1 2,6-dimethyl-octane 0 

503-17-3 2-butyne 0 

78-79-5 2-methyl-1,3-butadiene 0 

563-46-2 2-methyl-1-butene 0 

763-29-1 2-methyl-1-pentene 0 

513-35-9 2-methyl-2-butene 0 

625-27-4 2-methyl-2-pentene 0 

78-78-4 2-methyl-butane 0 

592-27-8 2-methyl-heptane 0 
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871-83-0 2-methyl-nonane 0 

3221-61-2 2-methyl-octane 0 

115-11-7 2-methyl-propene 0 

692-24-0 2-methyl-trans-3-hexene 0 

558-37-2 3,3-dimethyl-1-butene 0 

563-16-6 3,3-dimethyl-hexane 0 

4110-44-5 3,3-dimethyl-octane 0 

562-49-2 3,3-dimethyl-pentane 0 

7385-78-6 3,4-dimethyl-1-pentene 0 

583-48-2 3,4-dimethyl-hexane 0 

816-79-5 3-ethyl-2-pentene 0 

617-78-7 3-ethylpentane 0 

563-45-1 3-methyl-1-butene 0 

760-20-3 3-methyl-1-pentene 0 

10574-36-4 3-methyl-cis-2-hexene 0 

922-62-3 3-methyl-cis-2-pentene 0 

1120-62-3 3-methyl-cyclopentene 0 

589-34-4 3-methyl-hexane 0 

2216-33-3 3-methyl-octane 0 

3899-36-3 3-methyl-trans-3-hexene 0 

691-37-2 4-methyl-1-pentene 0 

691-38-3 4-methyl-cis-2-pentene 0 

2216-34-4 4-methyl-octane 0 

3683-22-5 4-methyl-trans-2-hexene 0 

674-76-0 4-methyl-trans-2-pentene 0 

107-02-8 acrolein 0 

2207-01-4 cis-1,2-dimethyl-cyclohexane 0 

638-04-0 cis-1,3-dimethyl-cyclohexane 0 

590-18-1 cis-2-butene 0 

6443-92-1 cis-2-heptene 0 

7688-21-3 cis-2-hexene 0 

627-20-3 cis-2-pentene 0 

7642-09-3 cis-3-hexene 0 

4170-30-3 crotonaldehyde 0 

110-82-7 cyclo-hexane 0 

142-29-0 cyclo-pentene 0 

100-41-4 ethyl-benzene 0 

1640-89-7 ethylcyclo-pentane 0 

78-85-3 methacrolein 0 

108-87-2 methylcyclo-hexane 0 

78-93-3 methylethyl-ketone 0 

1634-04-4 methyl-tert-butyl-ether 0 

106-97-8 n-butane 0 

124-18-5 n-decane 0 
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110-54-3 n-hexane 0 

111-84-2 n-nonane 0 

109-66-0 n-pentane 0 

103-65-1 n-propyl-benzene 0 

110-62-3 pentanal 0 

123-38-6 propanal 0 

74-98-6 propane 0 

822-50-4 trans-1,2-dimethyl-cyclopentane 0 

2207-03-6 trans-1,3-dimethyl-cyclohexane 0 

1759-58-6 trans-1,3-dimethyl-cyclopentane 0 

2004-70-8 trans-1,3-pentadiene 0 

2207-04-7 trans-1,4-dimethyl-cyclohexane 0 

14686-13-6 trans-2-heptene 0 

4050-45-7 trans-2-hexene 0 

13389-42-9 trans-2-octene 0 

646-04-8 trans-2-pentene 0 

14686-14-7 trans-3-heptene 0 

13269-52-8 trans-3-hexene 0 

14850-23-8 trans-4-octene 0 
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Table S3d VOC emission composition for gas-turbine engine (idle)  

CAS Name Mass fraction 

74-86-2 ethyne 0.339280582 

50-00-0 Formaldehyde 0.093587659 

115-07-1 Propene 0.082621687 

112-31-2 Decanal 0.044421827 

75-07-0 Acetaldehyde 0.032478187 

71-43-2 benzene 0.027532651 

106-99-0 1,3-butadiene 0.027330903 

106-98-9 1-butene 0.023094197 

107-02-8 Acrolein (2-propenal) 0.018618698 

107-22-2 Glyoxal 0.01380627 

67-56-1 Methyl alcohol (methanol) 0.013722642 

74-84-0 Ethane 0.013706988 

78-98-8 Methylglyoxal 0.011426665 

142-29-0 Cyclo-pentene 0.011333483 

1120-21-4 n-undecane 0.011119868 

109-67-1 1-pentene 0.01082318 

108-88-3 toluene 0.010051791 

592-41-6 1-hexene 0.00962456 

74-85-1 Ethene 0.009173594 

74-99-7 1-Propyne 0.008580218 

115-11-7 Iso-butene 0.008509013 

4170-30-3 Crotonaldehyde 0.007853457 

592-76-7 1-heptene 0.007298526 

624-64-6 Trans-2-butene 0.007239188 

78-79-5 2-methyl-1,3-butadiene 0.006645812 

110-82-7 cyclo-hexane 0.006159244 

107-83-5 2-methyl-pentane 0.005957496 

526-73-8 1,2,3-trimethyl-benzene 0.005577735 

105-05-5 1,4-diethyl-benzene 0.005542133 

123-38-6 Propionaldehyde 0.00552707 

108-95-2 Phenol (carbolic acid) 0.005519467 

75-28-5 Iso-butane 0.005067432 

95-63-6 1,2,4-trimethyl-benzene 0.004972492 

135-98-8 Sec-butylbenzene 0.004675804 

74-98-6 Propane 0.004438453 

111-84-2 n-nonane 0.004284175 

78-78-4 Iso-pentane 0.004034957 

563-46-2 2-methyl-1-butene 0.003595859 

100-52-7 Benzaldehyde 0.003573209 

563-45-1 3-methyl-1-butene 0.003500919 

25339-56-4 Heptene 0.003329926 
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78-85-3 2-methyl-2-propenal 0.003261503 

691-37-2 4-methyl-1-pentene 0.003227966 

95-93-2 1,2,4,5-tetramethyl-benzene 0.003227966 

108-38-3 m-xylene 0.003133026 

106-97-8 n-Butane 0.002943145 

589-34-4 3-methyl-hexane 0.002907543 

67-64-1 Acetone 0.002805349 

103-65-1 n-propyl-benzene 0.001970009 

620-14-4 3-ethyl-toluene 0.001875068 

124-11-8 1-nonene 0.001870233 

646-04-8 Trans-2-pentene 0.001863201 

110-62-3 Valeraldehyde 0.00186263 

110-54-3 n-hexane 0.001827598 

110-83-8 cyclo-hexene 0.001720791 

108-67-8 1,3,5-trimethyl-benzene 0.001708923 

108-87-2 1-methyl-cyclohexane 0.001708923 

611-14-3 2-ethyl-toluene 0.001495308 

287-92-3 Cyclo-pentane 0.001495308 

96-14-0 3-methyl-pentane 0.00148344 

109-66-0 n-Pentane 0.001424103 

872-05-9 1-decene 0.001406476 

590-18-1 Cis-2-butene 0.0013885 

96-37-7 1-methyl-cyclopentane 0.001329162 

135-01-3 1,2-diethyl-benzene 0.00129356 

763-29-1 2-methyl-1-pentene 0.001257957 

141-93-5 1,3-diethyl-benzene 0.001210487 

4050-45-7 Trans-2-hexene 0.001127415 

104-51-8 1-butyl-benzene 0.001008739 

627-20-3 Cis-2-pentene 0.000996872 

100-42-5 styrene 0.000973137 

496-11-7 indane 0.000937534 

622-96-8 4-ethyl-toluene 0.000913799 

123-72-8 Butyraldehyde or butanal 0.000904706 

111-65-9 n-octane 0.000890064 

10574-37-5 2,3-dimethyl-2-pentene 0.000890064 

7642-09-3 Cis-3-hexene 0.000854462 

592-27-8 2-methyl-heptane 0.000842594 

591-76-4 2-methyl-hexane 0.000795124 

590-19-2 1,2-butadiene 0.000759521 

592-48-3 Trans-1,3-hexadiene 0.000747654 

80-56-8 a-pinene 0.000735786 

7688-21-3 Cis-2-hexene 0.000723919 

513-35-9 2-methyl-2-butene 0.000712051 

111-66-0 1-octene 0.000700184 
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142-82-5 n-heptane 0.000700184 

589-81-1 3-methyl-heptane 0.000676449 

589-53-7 4-methyl-heptane 0.000664581 

565-75-3 2,3,4-trimethyl-pentane 0.000628979 

95-47-6 o-xylene 0.000617111 

591-49-1 1-methyl-cyclohexene 0.000617111 

98-82-8 iso-propyl-benzene 0.000569641 

106-42-3 p-xylene 0.000569641 

100-41-4 ethyl-benzene 0.000462833 

75-19-4 Cyclo-propane 0.000344158 

79-29-8 2,3-dimethyl-butane 0.000332291 

124-18-5 n-decane 0.000296688 

625-27-4 2-methyl-2-pentene 0.000249218 

590-86-3 Isovaleraldehyde 0.000243282 

75-83-2 2,2-dimethyl-butane 0.000178013 
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Table S3e VOC emission composition for diesel source (non-DPF)   

CAS Name Mass fraction 

50-00-0 formaldehyde 0.190515683 

74-85-1 ethene 0.131286669 
 

UNK 0.088762269 

75-07-0 acetaldehyde 0.085135263 

763-29-1 2-methyl-1-pentene 0.070828265 

115-07-1 propene 0.048637884 

96-37-7 Methylcyclopentane 0.044640885 

78-85-3 methacrolein 0.029117448 

67-64-1 acetone 0.025364537 

74-86-2 ethyne 0.022825338 

107-02-8 acrolein 0.021514473 

100-52-7 benzaldehyde 0.012106658 

106-98-9 1-butene 0.011809058 

1120-21-4 n-undecane 0.011300307 

71-43-2 benzene 0.011096203 

123-38-6 propanal 0.010664552 

124-18-5 n-decane 0.010074798 

106-99-0 1,3-butadiene 0.008732024 

109-66-0 N-pentane 0.007825628 

110-54-3 N-hexane 0.007666122 

107-22-2 Glyoxal 0.007393502 

123-72-8 butanal 0.006838604 

108-88-3 toluene 0.006799629 

540-84-1 2,2,4-trimethylpentane 0.006541924 

108-38-3 m-xylene 0.00628432 

108-08-7 2,4-dimethylpentane 0.006077602 

115-11-7 2-methyl-propene 0.005897392 

111-84-2 n-nonane 0.005078584 

109-67-1 1-pentene 0.005069993 

592-76-7 1-heptene 0.003802851 

696-29-7 Isopropylcyclohexane 0.003760477 

2216-33-3 3-methyloctane 0.00353982 

100-41-4 ethyl-benzene 0.003265949 

589-34-4 3-methylhexane 0.003252282 

142-82-5 N-heptane 0.00312251 

110-82-7 Cyclohexane 0.003000046 

513-35-9 2-methyl-2-butene 0.002915484 

108-87-2 Methylcyclohexane 0.002868535 

78-93-3 methylethyl-ketone 0.002835303 

616-12-6 3-methyl-trans-2-pentene 0.002762539 

95-47-6 o-xylene 0.002742249 
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111-65-9 n-octane 0.002302202 

105-05-5 1,4-diethylbenzene (para) 0.002264525 

624-64-6 trans-2-butene 0.002072279 

611-14-3 1-Methyl-2-ethylbenzene 0.001955146 

565-59-3 2,3-dimethylpentane 0.001948398 

591-76-4 2-methylhexane 0.00176243 

527-53-7 1,2,3,5-tetramethylbenzene 0.001720505 

141-93-5 1,3-diethylbenzene (meta) 0.001705933 

79-29-8 2,3-dimethylbutane 0.001685282 

110-62-3 pentanal 0.001603763 

463-49-0 1,2-propadiene 0.001572021 

25155-15-1 Isopropyltoluene 0.001557047 

592-27-8 2-methylheptane 0.001546028 

78-79-5 Isoprene (2-methyl-1,3-butadiene) 0.001529748 

142-29-0 Cyclopentene 0.001511457 

3522-94-9 2,2,5-trimethylhexane 0.001421593 

563-46-2 2-methyl-1-butene 0.001415324 

590-18-1 cis-2-butene 0.001401075 

589-81-1 3-methylheptane 0.001353489 

110-83-8 Cyclohexene 0.001273925 

28729-54-6 Propyltoluene 0.001252591 

526-73-8 1,2,3-trimethylbenzene 0.001240402 

563-45-1 3-methyl-1-butene 0.001190237 

620-14-4 1-Methyl-3-ethylbenzene (3-Ethyltoluene) 0.001164947 

75-83-2 2,2-dimethylbutane 0.001065483 

108-67-8 1,3,5-trimethylbenzene 0.001045319 

74-84-0 ethane 0.000990347 

622-96-8 1-Methyl-4-ethylbenzene (4-ethyltoluene) 0.000984128 

107-83-5 2-methylpentane (isohexane) 0.000980939 

287-92-3 Cyclopentane 0.00096242 

4050-45-7 Trans-2-hexene 0.000908185 

80-56-8 Alpha-pinene 0.000874869 

95-93-2 1,2,4,5-tetramethylbenzene 0.000825046 

565-75-3 2,3,4-trimethylpentane 0.000805802 

78-78-4 2-methyl-butane 0.000791653 

767-58-8 1-Methylindan 0.000705877 

496-11-7 Indan 0.000700212 

66-25-1 hexanal 0.000697103 

103-65-1 N-propylbenzene 0.000639453 

100-42-5 styrene 0.000552381 

95-63-6 1,2,4-trimethylbenzene & t-butylbenzene 0.000523508 

104-51-8 N-butylbenzene 0.000523049 

7688-21-3 Cis-2-hexene 0.000518564 

589-53-7 4-methylheptane 0.000445284 
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824-63-5 2-methylindan 0.000428208 

592-48-3 1,3-hexadiene (trans) 0.000371216 

98-82-8 Isopropylbenzene (cumene) 0.000313981 

625-27-4 2-methyl-2-pentene 0.000309001 

138-86-3 Dl-limonene (dipentene) 0.000297207 

922-62-3 3-methyl-cis-2-pentene 0.000227492 

584-94-1 2,3-dimethylhexane 0.00016783 

10574-37-5 2,3-dimethyl-2-pentene 5.8815E-05 

10061-02-6 Trans-1,3-dichloropropene 5.39753E-05 

127-91-3 Beta-pinene 1.62063E-05 

1072-05-5; 2040-96-2 2,6-dimethylheptane, propylcyclopentane 1.24439E-05 

106-97-8 n-butane 0 

4170-30-3 crotonaldehyde 0 

590-19-2 1,2-butadiene 0 

627-20-3 cis-2-pentene 0 

646-04-8 trans-2-pentene 0 

74-98-6 propane 0 

74-99-7 1-propyne 0 

75-28-5 methyl-propane 0 

107-00-6 1-butyne 0 

463-82-1 2,2-dimethyl-propane 0 

503-17-3 2-butyne 0 

689-97-4 1-buten-3-yne 0 
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Table S3f VOC emission composition for diesel source (DPF)   

CAS Name Mass fraction 
 

UNK 0.244298674 

75-07-0 acetaldehyde 0.225707262 

78-85-3 methacrolein 0.118274705 

74-85-1 ethene 0.086046842 

78-93-3 methylethyl-ketone 0.056155762 

74-98-6 propane 0.052065601 

67-64-1 acetone 0.039655278 

50-00-0 formaldehyde 0.032694644 

74-84-0 ethane 0.030199727 

115-11-7 2-methyl-propene 0.01927645 

123-38-6 propanal 0.017448155 

124-18-5 n-decane 0.012309522 

71-43-2 benzene 0.01148514 

115-07-1 propene 0.008937853 

4170-30-3 crotonaldehyde 0.007600155 

1120-21-4 n-undecane 0.006662249 

123-72-8 butanal 0.005667583 

66-25-1 hexanal 0.005301555 

108-88-3 toluene 0.003167642 

106-99-0 1,3-butadiene 0.002427048 

100-52-7 benzaldehyde 0.002201009 

78-78-4 2-methyl-butane 0.002120476 

75-28-5 methyl-propane 0.002033569 

106-97-8 n-butane 0.001762 

111-84-2 n-nonane 0.001524398 

108-38-3 m-xylene 0.000779215 

106-98-9 1-butene 0.000759658 

111-65-9 n-octane 0.000754035 

100-41-4 ethyl-benzene 0.000678447 

74-86-2 ethyne 0.000677368 

95-47-6 o-xylene 0.000512759 

463-49-0 1,2-propadiene 0.000334792 

110-62-3 pentanal 0.00014345 

109-67-1 1-pentene 0.000127798 

624-64-6 trans-2-butene 0.000106502 

107-02-8 acrolein 0.000102675 

590-19-2 1,2-butadiene 0 

689-97-4 1-buten-3-yne 0 

107-00-6 1-butyne 0 

74-99-7 1-propyne 0 

463-82-1 2,2-dimethyl-propane 0 
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503-17-3 2-butyne 0 

563-46-2 2-methyl-1-butene 0 

563-45-1 3-methyl-1-butene 0 

590-18-1 cis-2-butene 0 

627-20-3 cis-2-pentene 0 

100-42-5 styrene 0 

646-04-8 trans-2-pentene 0 
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Table S4 Speciated IVOCs and their OH reaction rate constants (cm3 molec-1 s-1) and SOA yields at 

the OA concentration of 9 µg/m3 from Zhao et al. (2016) 

Compound 

code 

Compound name OH reaction 

rate 

SOA yield 

1 Dodecane 1.32E-11 0.08 

2 Tridecane 1.51E-11 0.21 

3 Tetradecane 1.68E-11 0.28 

4 Pentadecane 1.82E-11 0.34 

5 Hexadecaen 1.96E-11 0.38 

6 Heptadecane 2.10E-11 0.42 

7 Octadecane 2.24E-11 0.42 

8 Nonadecane 2.38E-11 0.42 

9 Eicosane 2.52E-11 0.42 

10 Heneicosane 2.67E-11 0.42 

11 Docosane 2.81E-11 0.42 

12 2,6,10-Trimethylundecane 1.70E-11 0.04 

13 2,6,10-Trimethyldodecane 1.87E-11 0.08 

14 2,6,10-Trimethyltridecane 2.01E-11 0.21 

15 2,6,10-Trimethylpentadecane 2.30E-11 0.34 

16 Pristane 2.44E-11 0.34 

17 Phytane 2.61E-11 0.38 

18 Hexylclohexane 1.76E-11 0.08 

19 Heptylcyclohexane 1.91E-11 0.21 

20 Octylcyclohexane 2.05E-11 0.28 

21 Nonylcyclohexane 2.19E-11 0.34 

22 Decylcyclohexane 2.33E-11 0.38 

23 Undecylcyclohexane 2.47E-11 0.42 

24 Dodecylcyclohexane 2.61E-11 0.42 

25 Tridecylcyclohexane 2.75E-11 0.42 

26 Tetradecylcyclohexane 2.89E-11 0.42 

27 Pentadecylcyclohexane 3.04E-11 0.42 

28 Hexadecylcyclohexane 3.18E-11 0.42 

29 Heptadecylcyclohexane 3.32E-11 0.42 

30 Naphthalene 2.30E-11 0.21 

31 2-methylnaphthalene 4.86E-11 0.30 

32 1-methylnaphthalene 4.09E-11 0.25 

33 C2-naphthalene 6.00E-11 0.31 

34 C3-naphthalene 8.00E-11 0.31 

35 C4-naphthalene 8.00E-11 0.31 

36 Acenaphthylene 1.24E-10 0.31 

37 Acenaphthene 8.00E-11 0.31 
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38 Fluorene 1.60E-11 0.31 

39 C1-Fluorene 8.00E-11 0.31 

40 Phenanthrene 3.20E-11 0.31 

41 Anthracene 1.78E-10 0.31 

42 C1-Phenanthrene/anthracene 5.89E-11 0.31 

43 C2-Phenanthrene/anthracene 8.00E-11 0.31 

44 Fluoranthene 3.30E-11 0.31 

45 Pyrene 5.60E-11 0.31 

46 C1-Fluoranthene/pyrene 1.31E-10 0.31 

47 Pentylbenzene 1.01E-11 0.04 

48 Hexylbenzene 1.15E-11 0.08 

49 Heptylbenzene 1.30E-11 0.21 

50 Octylbenzene 1.44E-11 0.28 

51 Nonylbenzene 1.58E-11 0.34 

52 Decylbenzene 1.72E-11 0.38 

53 Undecylbenzene 1.86E-11 0.42 

54 Dodecylbenzene 2.00E-11 0.42 

55 Tridecylbenzene 2.14E-11 0.42 

56 Tetradecylbenzene 2.29E-11 0.42 

57 Pentadecylbenzene 2.43E-11 0.42 
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Table S5a Surrogate compounds (n-alkanes) for OH reaction rate constants (cm3 molec-1 s-1) and SOA 

yields of unspeciated IVOC bins under the IVOC-cyclic case from Zhao et al. (2016) 

Bin# 
OH rate 

constant 

Surrogate compounds for SOA yields 

Unspeciated b-

alkanes 

Unspeciated cyclic 

compounds (IVOC-

cyclic) 

B12 C12 C10 C12 

B13 C13 C11 C13 

B14 C14 C12 C14 

B15 C15 C13 C15 

B16 C16 C14 C16 

B17 C17 C15 C17 

B18 C18 C16 C18 

B19 C19 C17 C19 

B20 C20 C18 C20 

B21 C21 C19 C21 

B22 C22 C20 C22 

 

 

Table S5b Surrogate compounds (n-alkanes and naphthalenes) for OH reaction rate constants (cm3 

molec-1 s-1) and SOA yields of unspeciated cyclic compounds in each IVOC bin under the IVOC-

aromatics case from Zhao et al. (2016) 

Bin# OH rate constant 
Unspeciated cyclic 

compounds (IVOC-aromatic) 

B12 Naphthalene Naphthalene 

B13 C1-naphthalene 2-Methylnaphthalene 

B14 C2-naphthalene 1,2-Dimethylnaphthalene 

B15 C3-naphthalene C15 

B16 C4-naphthalene C16 

B17 C17 C17 

B18 C18 C18 

B19 C19 C19 

B20 C20 C20 

B21 C21 C21 

B22 C22 C22 
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Table S6 Comparison of different estimates of IVOC fraction and overall SOA yield of NMOG emissions 

 

IVOC mass fraction SOA yield 

Gasoline 
Gas-

turbine 
Diesel Gasoline 

Gas-

turbine 
Diesel 

This work 4.6% 27.9% 54.3% 0.041 0.086 0.190 

Traditional / / / 0.022 0.008 0.009 

ROB 1.2% 6.1% 8.0% 0.023 0.018 0.021 

MUR 7.5% 39.5% 51.7% N/A N/A N/A 

PYE 19.9% 22.3% 6.9% 0.065 0.057 0.024 

GEN 1% N/A 62% 0.023 N/A 0.154 

JAT 25% N/A 20% 0.071 N/A 0.077 
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Table S7a Volatility distributions for gasoline fuelled sources 

Test ID Vehicle name Certification Cycle Non-volatile -1 

1027837 LEV1-1 Tier I Cold UC 0.001628419 0 

1027852 LEV2-4 ULEV; Tier II Cold UC 0.002325422 0 

1027863 LEV2-13 LEV II, ULEV; Tier II, Bin 5 Cold UC 0.004138927 0 

1027867 LEV2-9 LEV II, ULEV; Tier II, Bin 5 Cold UC 0.001656056 0 

1027872 PreLEV-14 Pre-LEV Cold UC 0.000708387 0.000787 

1027905 LEV2-19 LEV II, ULEV; Tier II, Bin 5 Cold UC 0.001915585 0 

1027907 LEV2-20 LEV II, ULEV Cold UC 0.001813142 0.000245 

1027918 LEV1-6 LEV I, NLEV Cold UC 0.002281633 0.005443 

1027921 PreLEV-11 Pre-LEV Cold UC 0.002133104 0.000104 

1027970 LEV1-26 LEV I, ULEV Cold UC 0.003518602 4.58E-05 

1027971 LEV2-4 ULEV; Tier II Cold UC 0.003787772 0 

1027973 LEV2-11 LEV II, ULEV; Tier II, Bin 5 Cold UC 0.001053403 0.00069 

1028021 LEV2-18 Tier II Cold UC 0.002258575 4.29E-05 

1028023 LEV1-25 LEV I; Tier I Cold UC 0.00277297 0.008253 

1028027 LEV1-16 LEV I, TLEV Cold UC 0.003218517 0 

1028029 PreLEV-10 Pre-LEV Cold UC 0.001051418 4.44E-06 

1028075 LEV1-19 LEV I Cold UC 0.001941466 2.17E-05 

1032302 LEV1-2 LEV Cold UC 0.000993942 0.000414 

1032304 LEV1-2 LEV Cold UC 0.000500407 9E-05 

1032309 LEV2-6 LEV II, ULEV Cold UC 0.001493257 0.000152 

1032320 PreLEV-5 LEV Cold UC 0.000885352 0.00067 

1032321 LEV2-6 LEV II, ULEV Cold UC 0.001249077 0.000747 

1032342 LEV2-5 ULEV Cold UC 0.003335295 0.004184 

1032347 LEV1-3 LEV Arterial 0.003122842 0.007244 

1032348 LEV1-3 LEV Freeway 0.011303132 0.020941 

1032360 LEV2-3 LEV2O Hot UC 0.008903379 0.014291 

1032383 LEV2-24 ULEV Cold UC 0.003249821 0.005709 

1032388 LEV1-21 LEV Cold UC 0.001186722 0.002211 

1032392 PreLEV-4 Tier I Cold UC 0.001315303 0.001075 

1032393 LEV1-4 TLEV Cold UC 0.000567566 0.000498 

1032426 PreLEV-3 Tier I Hot UC 0.001230972 0.000103 

1032442 PreLEV-1 Tier I Cold UC 0.002268793 0.002457 

1032443 PreLEV-9 Tier I Cold UC 0.001052782 0.000825 

1032444 PreLEV-2 Tier I Cold UC 0.000959409 0.001283 

1032445 PreLEV-15 Tier I Cold UC 0.001434841 0.001888 

1032472 LEV1-24 LEV Cold UC 0.001130255 0.002817 

1032431 SORE4S-1.2 
  

0.001218536 0.001301 

1032439 SORE2S-2.2 
  

0.001762609 0.007281 

1032463 SORE4S-2.1 
  

0.001698994 0.002875 

1032464 SORE4S-2.2 
  

0.001675373 0.002932 
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Table S7a (continued)  

Test ID 0 1 2 3 4 5 6 7 

1027837 0.000323 0.002944 0.005377 0.001712 0.003248 0.011497 0.037531 0.104545 

1027852 0.002154 0.018577 0.016471 0.004856 0.004855 0.007981 0.034545 0.026406 

1027863 0.002059 0.020102 0.025805 0.014092 0.009346 0.015124 0.072661 0.136798 

1027867 0.001144 0.009333 0.014395 0.004733 0.003162 0.006208 0.024719 0.055051 

1027872 0.000547 0.001262 0.000992 0.001052 0.002026 0.00508 0.015499 0.060464 

1027905 0.001928 0.009183 0.007127 0.003566 0.006513 0.011937 0.033422 0.065096 

1027907 0.002202 0.008442 0.007634 0.005056 0.004139 0.00876 0.033258 0.10387 

1027918 0.005037 0.008673 0.005217 0.004624 0.007128 0.017738 0.033897 0.074425 

1027921 0.001009 0.004854 0.004903 0.004712 0.005758 0.015503 0.045199 0.072506 

1027970 0.001379 0.009273 0.009004 0.009164 0.007557 0.019935 0.078973 0.096416 

1027971 0.000683 0.004511 0.006934 0.00984 0.00639 0.016603 0.100723 0.056252 

1027973 0.000973 0.003034 0.002568 0.002241 0.001569 0.004328 0.025113 0.060636 

1028021 0.001129 0.010055 0.009557 0.004414 0.004681 0.013209 0.043779 0.111393 

1028023 0.010196 0.012405 0.005649 0.010066 0.00732 0.013078 0.039685 0.062458 

1028027 0.000683 0.004618 0.004213 0.003812 0.005072 0.020003 0.085388 0.093764 

1028029 9E-05 0.000484 0.000538 0.001074 0.001543 0.006798 0.029907 0.089178 

1028075 0.000525 0.003122 0.003288 0.003549 0.003659 0.013296 0.047212 0.077817 

1032302 0.000542 0.006032 0.007643 0.00239 0.002171 0.003539 0.015498 0.078918 

1032304 0.000264 0.002146 0.001426 0.001312 0.001164 0.002141 0.010703 0.075779 

1032309 0.000647 0.007958 0.009179 0.003252 0.003505 0.007166 0.025574 0.073904 

1032320 0.000437 0.002815 0.00221 0.001464 0.002012 0.004501 0.019943 0.081247 

1032321 0.000433 0.002297 0.002416 0.00231 0.002779 0.006516 0.030544 0.089589 

1032342 0.002252 0.013368 0.019293 0.009241 0.009666 0.018333 0.051944 0.08621 

1032347 0.002524 0.009238 0.007937 0.00857 0.011585 0.020323 0.052688 0.199558 

1032348 0.011669 0.035094 0.02725 0.030449 0.044967 0.083473 0.180894 0.069113 

1032360 0.005492 0.037132 0.041905 0.027046 0.029663 0.044119 0.14279 0.052725 

1032383 0.004186 0.025524 0.022233 0.019081 0.011316 0.015063 0.021881 0.096476 

1032388 0.002505 0.006881 0.003423 0.002716 0.003314 0.005267 0.019326 0.08805 

1032392 0.000967 0.003451 0.00234 0.001734 0.002699 0.006559 0.031763 0.092602 

1032393 0.000491 0.003322 0.003686 0.002318 0.003307 0.003538 0.004669 0.065855 

1032426 0.000339 0.001797 0.002026 0.002473 0.002595 0.006758 0.031254 0.065145 

1032442 0.003369 0.029259 0.023495 0.001884 0.002318 0.005132 0.019348 0.075035 

1032443 0.000608 0.003395 0.002389 0.001635 0.002562 0.006163 0.022914 0.146022 

1032444 0.000691 0.001462 0.001165 0.001215 0.002343 0.007587 0.021155 0.089774 

1032445 0.00102 0.001871 0.002208 0.002224 0.003293 0.00979 0.032893 0.092111 

1032472 0.001419 0.003065 0.002944 0.00298 0.00258 0.005224 0.022443 0.095154 

1032431 0.001211 0.001783 0.004071 0.00537 0.004547 0.005433 0.023152 0.05715 

1032439 0.007017 0.01152 0.005256 0.003402 0.002973 0.003877 0.026467 0.091827 

1032463 0.002501 0.003993 0.002745 0.003359 0.004706 0.00634 0.038827 0.078075 

1032464 0.002619 0.004044 0.002603 0.00337 0.004228 0.005964 0.038678 0.071393 
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Table S7a (continued)  

Test ID 8 9 10 11 Total emission factor 

(VOC+IVOC+SVOC+LVOC+NV, 

mg/kg fuel) 

1027837 0.34316 0.28323 0.08974 0.115066 1197.045677 

1027852 0.266282 0.30345 0.124656 0.187441 249.7791584 

1027863 0.250371 0.206057 0.101977 0.141469 270.9979288 

1027867 0.180129 0.389159 0.211024 0.099286 273.52397 

1027872 0.388894 0.291441 0.079671 0.151577 6711.277796 

1027905 0.265269 0.303474 0.128182 0.162386 257.9684118 

1027907 0.333345 0.324761 0.130977 0.035496 391.1795365 

1027918 0.258073 0.312597 0.118381 0.146488 7924.924112 

1027921 0.231865 0.311065 0.137789 0.162599 2869.336247 

1027970 0.276639 0.27757 0.110068 0.100458 422.2442435 

1027971 0.244361 0.264108 0.117562 0.168246 374.2027651 

1027973 0.294357 0.396121 0.059604 0.147712 3214.576957 

1028021 0.294816 0.281955 0.150127 0.072583 482.9393712 

1028023 0.306084 0.278146 0.122877 0.12101 1496.489328 

1028027 0.269157 0.271891 0.124836 0.113344 1204.859468 

1028029 0.299053 0.299552 0.10369 0.167036 4388.747026 

1028075 0.293955 0.337219 0.106244 0.108151 869.3988182 

1032302 0.293231 0.333571 0.112677 0.142381 1174.716757 

1032304 0.303732 0.336229 0.116018 0.148495 1406.205838 

1032309 0.277483 0.287782 0.121697 0.180207 571.2164043 

1032320 0.281398 0.308193 0.141464 0.152761 2358.84952 

1032321 0.299682 0.248253 0.134226 0.17896 709.7481613 

1032342 0.291062 0.267085 0.0993 0.124727 438.4555372 

1032347 0.234783 0.283334 0.087205 0.071888 54.68838036 

1032348 0.190808 0.18471 0.054251 0.055079 90.35410772 

1032360 0.214585 0.224929 0.063389 0.093031 100.9442248 

1032383 0.243624 0.228635 0.159952 0.14307 429.8286328 

1032388 0.300516 0.305276 0.106157 0.153171 931.1555508 

1032392 0.304724 0.311941 0.103541 0.135288 6008.179735 

1032393 0.246726 0.283774 0.270103 0.111146 875.3871449 

1032426 0.294838 0.397397 0.080388 0.113656 2547.087082 

1032442 0.271856 0.304769 0.0988 0.16001 9133.157736 

1032443 0.335941 0.252885 0.106407 0.117201 4691.830657 

1032444 0.291986 0.317343 0.132332 0.130705 28711.63898 

1032445 0.283502 0.296956 0.111203 0.159607 13220.45075 

1032472 0.300784 0.302598 0.101893 0.15497 1207.253523 

1032431 0.208683 0.206668 0.159461 0.319952 1406.457345 

1032439 0.316433 0.388595 0.089783 0.043807 119452.2234 

1032463 0.22666 0.244437 0.141158 0.242625 20740.43167 

1032464 0.213187 0.233717 0.162212 0.253379 20569.97937 
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Table S7b Volatility distributions for gas-turbine sources 

Test Non-volatile -1 0 1 2 3 4 

4% load 0.001095331 0.005212 0.01101 0.016255 0.008797 0.008586 0.019535 

85% load 0.056450185 0.018476 0.010983 0.015643 0.018957 0.029844 0.033446 

 

Test 5 6 7 8 9 10 11 

4% load 0.046212 0.198147 0.034958 0.077688 0.132911 0.209386 0.230207 

85% load 0.041386 0.090459 0.075209 0.104446 0.192397 0.233367 0.078934 

 

Test Total emission factor (VOC+IVOC+SVOC+LVOC+NV, mg/kg fuel) 

4% load 13256.32 

85% load 1527.866 
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Table S7c Volatility distributions for diesel fuelled sources 

Test ID Vehicle ID After-treatment Cycle Non-volatile -1 0 

1406 2 DOC + DPF + SCR UDDS2 0.005801 0.000613 0.000634 

1411 2 DOC + DPF + SCR UDDS2 0.006944 0.001028 0.001649 

1413 2 DOC + DPF + SCR UDDS2 0.007211 0.000938 0.002588 

1417 2 DOC + DPF + SCR UDDS2 0.006018 0.000782 0.00216 

1418 2 DOC + DPF + SCR UDDS2 0.007364 0.000517 0.001258 

1419 2 DOC + DPF + SCR CREEP3IDLE30 0.004615 4.11E-05 0.00011 

1420 2 DOC + DPF + SCR CREEP3IDLE30 0.003694 3.29E-05 8.77E-05 

1433 3 none UDDS2 0.004937 0.002134 0.004639 

1434 3 none CREEP3IDLE30 0.00656 0.009365 0.008272 

1435 3 none HHDDT50MPH3 0.005528 0.00345 0.004304 

1437 3 none HHDDT50MPH3 0.005755 0.00437 0.005641 

1439 3 none CREEP3IDLE30 0.007763 0.006893 0.005651 

1440 3 none HHDDT50MPH3 0.006238 0.003458 0.004088 

1441 3 none UDDS2 0.00602 0.001939 0.003127 

1443 3 none CREEP3IDLE30 0.006069 0.006864 0.005242 

1444 3 none HHDDT50MPH3 0.005908 0.031092 0.023742 

1444 3 none HHDDT50MPH3 0.005304 0.003951 0.005458 

1445 3 none UDDS2 0.005167 0.003739 0.004674 

1450 1 DOC + DPF CREEP3IDLE30 0.003968 0.0009 0.002451 

1458 1 DOC + DPF UDDS2 0.002597 4.57E-05 0.000292 

1461 1 DOC + DPF UDDS2 0.003984 7.01E-05 0.000449 

1028019 4 DOC Cold UC 0.007056 0.001106 0.001385 

1032421 TRU 
  

0.028815 0.014355 0.012146 

1032422 TRU 
  

0.029073 0.014483 0.012255 
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Table S7c (continued) 

Test ID 1 2 3 4 5 6 7 

1406 0.366219 0.053298 0.007734 0.034229 0.067908 0.049448 0.000992 

1411 0.060297 0.039716 0.037491 0.145914 0.23054 0.177791 0 

1413 0.083815 0.08338 0.060841 0.151389 0.20374 0.134456 0 

1417 0.069943 0.06958 0.050771 0.126332 0.170018 0.112202 0.122283 

1418 0.133927 0.083349 0.030334 0.129965 0.203995 0.153017 0.003642 

1419 0.008404 0.007449 0.00582 0.010152 0.166264 0.263216 0.218311 

1420 0.006727 0.005963 0.004659 0.008126 0.13309 0.210697 0.333359 

1433 0.016277 0.016332 0.036272 0.097038 0.180442 0.140537 0.095736 

1434 0.020784 0.016623 0.03459 0.118383 0.222157 0.225791 0.141066 

1435 0.014379 0.021784 0.045987 0.109787 0.164098 0.189053 0.091453 

1437 0.015757 0.024377 0.054381 0.125271 0.177799 0.167892 0.076834 

1439 0.015639 0.017937 0.043336 0.146241 0.294659 0.245904 0.080887 

1440 0.012701 0.027651 0.065049 0.145708 0.215587 0.149584 0.072404 

1441 0.010992 0.013605 0.036833 0.109185 0.204153 0.222186 0.085503 

1443 0.014108 0.010857 0.055441 0.177694 0.184439 0.152206 0.136111 

1444 0.063899 0.049175 0.063885 0.140315 0.121249 0.097444 0.070029 

1444 0.016801 0.017265 0.073553 0.161551 0.1396 0.112191 0.080628 

1445 0.013915 0.012387 0.050601 0.14333 0.148054 0.14 0.075854 

1450 0.034124 0.024783 0.024084 0.06434 0.095491 0.150673 0.117575 

1458 0.071106 0.014493 0.021468 0.046728 0.046789 0.058802 0.300269 

1461 0.109078 0.022232 0.032932 0.071681 0.071774 0.090203 0.006995 

1028019 0.008945 0.010469 0.037017 0.153741 0.253882 0.239092 0.127579 

1032421 0.046923 0.035994 0.058055 0.127522 0.125312 0.300075 0.104096 

1032422 0.047342 0.036315 0.058573 0.128662 0.126431 0.302755 0.099736 
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Table S7c (continued) 

Test ID 8 9 10 11 Total emission factor 

(VOC+IVOC+SVOC+LVOC+NV, 

mg/kg fuel) 

1406 0 0.390368 0.021057 0.001698 237.1973 

1411 0.01198 0.255576 0.01905 0.012024 52.68983 

1413 0.012035 0.23001 0.021805 0.007791 34.73976 

1417 0.002007 0.21249 0.024177 0.031235 41.48411 

1418 0 0.224097 0.017742 0.010793 49.61973 

1419 0.134201 0.043589 0.045877 0.091952 2428.335 

1420 0.117621 0.044799 0.051355 0.079791 3025.363 

1433 0.047577 0.121348 0.164126 0.072607 1322.425 

1434 0.053682 0.028171 0.046438 0.068119 5212.944 

1435 0.051711 0.121276 0.122168 0.055021 1373.43 

1437 0.048252 0.115709 0.121795 0.056166 1326.31 

1439 0.041579 0.020232 0.02386 0.04942 7502.684 

1440 0.029003 0.098878 0.116968 0.052682 1409.18 

1441 0.024244 0.098442 0.118912 0.06486 1598.323 

1443 0.055645 0.042362 0.053132 0.09983 6161.867 

1444 0.053739 0.104065 0.116308 0.05915 1359.754 

1444 0.061872 0.119814 0.133911 0.068102 1178.912 

1445 0.07357 0.12173 0.131934 0.075044 1320.863 

1450 0.029513 0.113557 0.040251 0.298289 317.1129 

1458 0.04175 0.337552 0.046607 0.0115 95.6635 

1461 0.033801 0.466079 0.088769 0.001954 62.61919 

1028019 0.093705 0.061635 0.003747 0.00064 1161.057 

1032421 0.048841 0.025755 0.030854 0.041258 1236.639 

1032422 0.049695 0.025582 0.026655 0.042442 1225.69 
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A.5. Figure S1 to S12 

Figure S1 Schematic diagram of mapping speciated and unspeciated compounds data to volatility basis 

set (VBS), Cn* denotes the C* value for n-alkanes as surrogate. 
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Figure S2 Comparison of (a) n-dodecane (b) naphthalene (c) n-pentyl-benzene (d) sum of all C12 

compounds results measured using GC/MS analysis of Tedlar bag versus Tenax adsorbent samples 

(everything elutes in the C12 carbon number bin), demonstrating the consistency of two technique in 

n-dodecane measurement 
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Figure S3 Ratio of total characterized organics integrated from all techniques to total organics by bulk 

measurement (NMOG+1.2*OC), indicating mass closure for on-road non-DPF diesel source and partial 

mass closure (0.83) for on-road gasoline sources  
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Figure S4 Scatter plot of SOA-forming SAPRC groups (ALK4, ALK5, ARO1, ARO2, BENZ, TOLU, 

PXYL, MXYL, OXYL, B124) mass fraction in NMOG emission versus literature value for (a) SORE-2S 

(b) SORE-4S, indicating the need to factorize VOC mass in off-road measurement results by 2 
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Figure S5 Effect of temperature and OA loading on gas/particle partitioning at equilibrium 
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Figure S6 Scatter plot of sum of SVOC to NV mass versus filter-based POA measurements (A: On-road 

gasoline, cold-start B: off-road gasoline, C: non-DPF and DPF diesel) 
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Figure S7 Scatter plot of exhaust components versus fuel (VOCs and IVOCs) normalized by C8-10 n-

alkanes for (a) Gasoline (b) Diesel sources, demonstrating the overall consistency of chemical 

composition between exhaust and fuel 
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Figure S8 Comparison of median chemical composition between fuel and exhaust for gasoline, gas-

turbine and diesel sources, indicating the compositional changes after combustion  
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Figure S9 Enrichment factors of exhaust and fuel components (VOCs and IVOCs) normalized by C8-10 

n-alkanes (a) Gasoline (cold-start) (b) non-DPF diesel, demonstrating the enrichment for certain 

compounds (VOCs and/or IVOCs) in difference sources 
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Figure S10 IVOC enrichment factors of Pre-LEV, LEV and ULEV exhaust 
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Figure S11 Comparison of the ratios and coefficients of determination, R2 between (a) IVOC and NMOG 

and (b) IVOC and POA for tested gasoline and diesel sources  
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Figure S12 Scatter plots of mass fractions of speciated VOCs in new VOC emission profiles versus: on-

road gasoline (left) and on-road diesel (right) vehicle VOC emissions in China  
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Appendix B: Supporting information for Chapter 3  

B.1 Parameter fitting for SOA formation from lumped IVOC species  

The loss term is defined as squared error between two surfaces: 𝑚𝑆𝑂𝐴,𝑠𝑖𝑚𝑝(𝑂𝐴, 𝑡) and 𝑚𝑆𝑂𝐴,79(𝑂𝐴, 𝑡): 

𝐿𝑜𝑠𝑠 =  Σ𝑂𝐴=1
10 Σ𝑡=1

48 (𝑚𝑆𝑂𝐴,𝑠𝑖𝑚𝑝(𝑂𝐴, 𝑡) − 𝑚𝑆𝑂𝐴,79(𝑂𝐴, 𝑡))2     (1) 

which minimizes the squared distances between two surfaces in (OA concentration, time) space. Due to very 

high non-linearity in Eq. (1), the optimization is decoupled into step 1: ‘kOH fitting’ and step 2: ‘SOA yield 

fitting’.  

Step 1: Relax the constrain on SOA yield to fit kOH, Eq. (2) can be rewritten as, 

𝑚𝑆𝑂𝐴,𝑠𝑖𝑚𝑝(𝑡) =  ∑ 𝑚𝑗  γ𝑗𝑓(𝑘𝑂𝐻,𝑗 , 𝑡)𝑗 = ∑ 𝑚𝑗 γ𝑗(1 − e−𝑘𝑂𝐻,𝑗[𝑂𝐻]Δ𝑡)𝑗     (2) 

where γ𝑗 is the free variable representing SOA yield of surrogate j at given OA concentration, [OH] is assuming 

to be 3×106 cm-3. Solving Eq. (2) with 2 unknowns: 𝑘𝑂𝐻,𝑗 and γ𝑗, 𝑘𝑂𝐻,𝑗 is the fitted OH reaction rate for the 

new lumped IVOC group. 

Step 2: After solving for 𝑘𝑂𝐻,𝑗, we now eliminate the non-linearity in the time term of Eq. (2) by replacing 

unknown 𝑓(𝑘𝑂𝐻,𝑗 , 𝑡) with calculated reacted fraction 𝑟𝑗,𝑡 =  1 − e−𝑘𝑂𝐻,𝑗[𝑂𝐻]Δ𝑡 from fitted 𝑘𝑂𝐻,𝑗 . Therefore, we 

can minimize the loss in Eq. (1) for each reduced IVOC groups,  

𝐿𝑜𝑠𝑠 =  Σ𝑂𝐴=1
10 Σ𝑡=1

48 (∑ 𝑚𝑆𝑂𝐴,𝑖𝑖∈𝑗 (𝑂𝐴, 𝑡) − ∑ 𝑚𝐼𝑉𝑂𝐶,𝑖𝑖∈𝑗 [𝛼𝑗,1𝜉𝑂𝐴,𝐶∗ =0.1 + 𝛼𝑗,2𝜉𝑂𝐴,𝐶∗ =1 + 𝛼𝑗,3𝜉𝑂𝐴,𝐶∗ =10 +

𝛼𝑗,4𝜉𝑂𝐴,𝐶∗ =100]𝑟𝑗,𝑡)2          (3) 

where 𝛼𝑗,1 to 𝛼𝑗,4 are the fitted SOA parameterization for reduced IVOC group j. Minimization of the loss 

between 𝑚𝑆𝑂𝐴,𝑠𝑖𝑚𝑝,𝑗(𝑂𝐴, 𝑡) to ∑ 𝑚𝑆𝑂𝐴,𝑖𝑖∈𝑗 (𝑂𝐴, 𝑡) is performed with the surface fitting toolbox in MATLAB. 

 

 

B.2 Equations 

r =
Cov (𝑂𝐴𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑, 𝑂𝐴𝑚𝑜𝑑𝑒𝑙)

Var(𝑂𝐴𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑) Var(𝑂𝐴𝑚𝑜𝑑𝑒𝑙)
         (S1) 

RMSE =  √∑ (𝑂𝐴𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑−𝑂𝐴𝑚𝑜𝑑𝑒𝑙)2𝑁
𝑖=1

𝑁
       (S2) 

,where OA is the series of hourly-average value from measurements and model, and S1 and S2 are 

taking the statistics over hourly values. 

 

Fractional bias = 
1

𝑁
∑

𝑃−𝑀
𝑃+𝑀

2

𝑁
𝑖=1          (S3) 

Fractional error = 
1

𝑁
∑

|𝑃−𝑀|
𝑃+𝑀

2

𝑁
𝑖=1         (S4) 

,where P is the predicted value, M is the measured value, and N is the sample size. 

 



197 

 

B.3 Figure S1 to S7 

 

  

Figure S1 (a) Comparison of predicted SOA formation per unit mass mobile IVOC emission using 

original and four-lumped-species parameterizations at OA = 5 µg m-3, average [OH] = 3 × 106 cm-3 (b) 

Relative error in SOA formed between original and four-lumped-species parameterizations (Solid line 

is the relative error at OA = 5 µg m-3, shaded area corresponds to OA = 1 to 50 µg m-3) 

 

  

Figure S2 Comparison of measured (boxplot, solid box denotes 25th to 75th percentiles and whiskers 

denote 10th to 90th percentiles) and modelled (line, shaded area denotes 25th to 75th percentiles) diurnal 

patterns in Pasadena, CA during CalNex for species: (a) CO (b) BC 
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Figure S3 Comparison of measured (boxplot, solid box denotes 25th to 75th percentiles and whiskers 

denote 10th to 90th percentiles) and modelled (line, from Case 1 to Case 4) diurnal patterns in Pasadena, 

CA during CalNex for species: (a) Ozone (b) NO and (c) NO2  

 

 

Figure S4 Comparison of measured (boxplot, solid box denotes 25th to 75th percentiles and whiskers 

denote 10th to 90th percentiles) and modelled (line, shaded area denotes 25th to 75th percentiles) diurnal 

patterns during CalNex and CARES for species: CO, O3 and NO in (a-c) Bakersfield, (d-f) Sacramento 

and (g-i) Cool  
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Figure S5 Schematic of stoichiometry for OH oxidation first-generation and multigenerational aging. 

Species are segregated into primary IVOC species (row 1, blue), substantially oxygenated LVOC and 

SVOC species (row 2, green) and hydrocarbon-like or mildly oxygenated species (row 3, orange). Species 

in row 2 are closely aligned with SOA while species in row 3 are aligned with POA. Particle species are 

in equilibrium with associated vapor-phase species. Oxidation only occurs in the gas-phase. a) First-

generation oxidation of primary IVOCs. All six species in Row 1 form products across the four OOA 

species in row 2 from LV-OOA-N1 to SV-OOA-P2. b) Multigenerational oxidation of oxygenated 

LVOCs and SVOCs. These reactions do not produce hydrocarbon-like species. Oxidation of all five 

vapor-phase species in Row 2 can produce mass in all five bins; thus functionalization and fragmentation 

pathways are represented. c) Multigenerational oxidation of hydrocarbon-like LVOCs, SVOCs, and 

IVOCs. These reactions may produce oxygenated or hydrocarbon-like species. Oxidation of all five 

vapor-phase species in Row 3 may produce mass in all ten vapor-phase species in Rows 2 and 3; thus 

functionalization and fragmentation are possible. Oxidation of species in row 2 is more likely to lead to 

fragmentation than is oxidation of species in row 3. Gas and particle emissions are applied to species in 

Rows 1 and 3. 
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Figure S6 (a) Los Angeles region in this study as defined by simulation grid cells (30 × 30 grid cell with 

4 km resolution, equivalent to 120 km × 120 km)  

 

Figure S7 Comparison of ceilometer measured (h1) and modelled PBL height diurnal patterns at 

Pasadena during CalNex (line denotes median value) 
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B.4 Table S1 

Table S1 Nomenclature of species in Figure S5 and CMAQ v5.3 

Species Name in Figure S5 Species Name in CMAQv5.3 

(Gas/Particle) 

LV-OOA-N2 VLVOO1/ALVOO1 

LV-OOA-N1 VLVOO2/ALVOO2 

SV-OOA-P0 VSVOO1/ASVOO1 

SV-OOA-P1 VSVOO2/ASVOO2 

SV-OOA-P2 VSVOO3/ASVOO3 

LV-HOA-N1 VLVPO1/ALVPO1 

SV-HOA-P0 VSVPO1/ASVPO1 

SV-HOA-P1 VSVPO2/ASVPO2 

SV-HOA-P2 VSVPO3/ASVOO3 

SV-HOA-P3 VIVPO1/AIVPO1 
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Appendix C: Supporting information for Chapter 4 

C.1 Detailed description of GC-MS data pre-processing for PMF 

(1) Read raw TIC, mass spectrum and retention times from .AIA files.  

Using gcmstools, create a data object from raw .AIA file, export three matrixes 

(data.TIC, data.intensity and data.times) from each object. data.TIC is an 1D Numpy array 

of the total ion chromatogram (TIC) intensity values. data.intensity is an 2D Numpy array 

of raw MS intensity data. And data.times is a 1D Numpy array of the elution time points. 

 

(2) Select IVOC range data from all (data.TIC, data.intensity and data.times) matrixes.  

All samples were analyzed using the same TD-GC-MS setup, so the retention times 

for IVOC compounds are very close for all datasets. IVOCs are classified into 11 retention 

time bins ranging from C12 n-alkane to C22 n-alkanes. The starting retention time is the mean 

between C11 and C12 n-alkane, and the cut-off retention time is the mean between C22 and 

C23 n-alkane. Therefore, we plot the data.times to identify the IVOC starting and end scan 

numbers. We subset the original data.intensity matrixes based on scan numbers to get 

data_ivoc matrixes.  

 

(3) Normalize data_ivoc matrixes to get data_ivoc_norm matrixes.  

The absolute emission of IVOCs may vary several orders of magnitude, therefore, 

we focus on the relative contributions from all chemical species. To make every sample 

equally important in the following PMF analysis, data_ivoc_norm is computed by dividing 

data_ivoc by the sum of all elements in data_ivoc. 

 

(4) Concatenate all data_ivoc_norm matrixes into dataset_ivoc_norm matrixes.  
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For all selected samples in a dataset, we concatenate the data_ivoc_norm matrixes 

along the rows to get a very long 2D matrixes dataset_ivoc_norm. The sum of all elements 

in dataset_ivoc_norm equals to the number of selected samples in the dataset. 
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C.2 Table S1 to S3 

Table S1 List of biomass fuel used in biomass burning dataset 

Sample no. Fuel 

1 Lodgepole Pine 

2 Lodgepole Pine 

3 Wire Grass 

4 Saw Grass 

5 Turkey Oak 

6 Gallberry 

7 Sage 

8 AK Duff 

9 Sage 

10 White Spruce 

11 Ponderosa Pine 

12 Chamise 

13 Lodgepole Pine 

14 Pocosin 

 

 

  



205 

 

Table S2 PMF resolved factors in tunnel samples dataset  

no. Peak m/z Group Reference compound Formula 

1 57 n- and b-alkane n-Dodecane C12H26 

2 55 Cyclic alkane 
Cyclopentane, 1-methyl-2-(4-

methylpentyl)-, trans- 
C12H24 

3 55 Cyclic alkane 
Cyclopentane, 1-methyl-2-(4-

methylpentyl)-, trans- 
C12H24 

4 83 Cyclic alkane Cyclohexane, undecyl- C17H34 

5 119 Single-ring aromatics  Benzene, 1,2,4,5-tetramethyl-  C10H14 

6 128 PAH Naphthalene  C10H8 

7 142 PAH Naphthalene, 1-methyl-  C11H10 

8 178 PAH Phenanthrene C14H10 

9 202 PAH Pyrene C16H10 

10 102 Oxygenate Phenyl maleic anhydride C10H6O3 

11 105 Oxygenate Benzoic acid C7H6O2 

12 122 Oxygenate Benzoic acid 

13 66 Internal standard n-Dodecane-D26 C12D26 

14 136 Internal standard Naphthalene-D8 C10D8 

15 40 Other n/a n/a 
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Table S3 PMF resolved factors in ambient samples dataset 

no. Peak m/z Group Reference compound Formula 

1 55 Alkane 
Cyclopentane, 1-methyl-2-(4-

methylpentyl)-, trans- 
C12H24 

2 57 Alkane n-Dodecane C12H26 

3 119  Single-ring aromatics  Benzene, 1,2,4,5-tetramethyl-  C10H14 

4 128 PAH Naphthalene  C10H8 

5 142 PAH Naphthalene, 1-methyl-  C11H10 

6 91 Oxygenate Benzeneacetic acid, 4-tetradecyl ester C22H36O2 

7 102 Oxygenate Phenylmaleic anhydride C10H6O3 

8 102 Oxygenate Phenylmaleic anhydride C10H6O3 

9 104 Oxygenate 1,2-Benzenedicarboxylic acid C8H6O4 

11 105 Oxygenate Benzoic acid C7H6O2 

12 120 Oxygenate Salicylic acid C7H6O3 

13 121 Oxygenate Benzoic acid, 3-hydroxy- C7H6O3 

14 122 Oxygenate Benzoic acid C7H6O2 

10 222 Oxygenate Methanone, 2-benzofuranylphenyl- C15H10O2 

15 223 Oxygenate 1,3-Propanedione, 1,3-diphenyl- C15H12O2 

16 66 Internal standard n-Dodecane-D26 C12D26 

17 191 Other n/a n/a 
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C.3 Figure S1 to S18 

 

Figure S1 Schematics plot of the overall process of PMF dimension reduction 
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Figure S2 Visualization of example GC-MS data matrix in the IVOC range  
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Figure S3 Mass spectra of PMF resolved factors and reference compounds in mobile sources dataset  
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Figure S4 Scan number and retention time relation for mobile-source dataset (dashed line: selected 

IVOC scan number range based on retention time)  
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Figure S5 (a) Example of gasoline vehicle exhaust raw TIC signal and (b) PMF resolved gasoline vehicle 

exhaust decomposed into 12 PMF factors 

  



213 

 

 

Figure S6 Reconstruction error and max r as a function of PMF factors for mobile source emission 

dataset 
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Figure S7 Scatter plots of PMF resolved factors and reference compounds mass spectra in mobile sources 

dataset 
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Figure S8 Examples of mass spectra for cyclic alkanes and single-ring aromatics from NIST database 
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Figure S9 Reconstruction error and max r as a function of PMF factors for biomass burning dataset  
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Figure S10 Scatter plots of PMF resolved factors and reference compounds mass spectra in biomass 

burning dataset   
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Figure S11 Volatility distribution of IVOCs for all certification classes / test cycle of gasoline vehicles  

 

 

Figure S12 PMF decomposed composition of non-DPF diesel vehicle emissions operated on different fuel  
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Figure S13 Example of PMF decomposed chemical composition of biomass burning emissions  
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Figure S14 PMF resolved chemical composition of all samples in biomass burning dataset 

 

 

Figure S15 Correlation coefficient (r) between quantified IVOC EFs and all other measured pollutants 
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Figure S16 Diurnal pattern of PMF decomposed total IVOC mass concentration  

 

 

Figure S17 Weekdays vs weekend ambient IVOCs chemical composition for all samples from CalNex 
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Figure S18 Mass-based SOA yield for gasoline and diesel vehicles IVOC emissions under (a) high- and 

(b) low-NOx conditions  

 

 

 

 

 


