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1. Executive Summary 
In the summer of 2020, CAMPI (the Computer-Aided Metadata Generation for Photo archives Initiative) assessed 

the use of computer vision (CV) in assisting in the arduous task of processing digital photograph collections. The 

prototype built to find duplicates and tag photos depicting similar scenes in Carnegie Mellon University Archives’ 

General Photograph Collection was successful, proving such an interface would be both feasible and useful for 

cultural heritage institutions with large visual collections.  

We found that computer vision by itself, or even with non-expert human guidance, would actively impede the 

public use of a photo archive. Mistakes, failures to understand and surface important or salient features of a 

collection, and a lack of moral judgement would ultimately cause more harm than good. When computer vision is 

tightly integrated with a digital archival collection management system, however, expert archivists and editors can 

strategically leverage machine learning models without making the collection beholden to them. The result yields a 

faster, more extensive, and more integrative approach to photo processing than is commonly available. 

Expert-in-the-loop machine learning for back-end cultural heritage collection processing is an underexplored niche, 

and our prototype offers a unique and impactful next step in this area. With sufficient resources, we believe an 

interface of this sort could and should be implemented as a standard processing layer in digital asset management 

systems.  

Key Findings 

● Supporting a fully-featured Digital Asset Management System (DAMS) that connects collection-
level metadata to individual photographs and allows easy browsing of existing images and 
metadata is a crucial prerequisite to any computer-vision-related project in this domain. 

● While generic automated image description performs poorly in the context of historical photo 
archives, combining generic visual search with existing collections metadata can greatly speed 
the item-level description work carried out by archivists and metadata experts. 

● There is a field-wide need for specialized computer vision training sets based on historical, non-
born-digital photograph collections. Interfaces such as this prototype can play an essential role 
in developing those human-tagged datasets that will power advances in both machine learning 
research as well as discovery and access in libraries, archives, and museums. 

● User interface design for computer-vision-assisted metadata generation systems is just as 
important, if not more so, than creating ever-more advanced machine learning algorithms.
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2. Background and Motivation 
Archives have long struggled with the need to provide detailed description of large, diverse, multi-format 
collections. This descriptive work is often resource-intensive and frequently impracticable. The development of the 
“more product, less process” (MPLP) model for processing collections attempted to address this by focusing on 
aggregate description of archival materials.1 Archives have made similar efforts in regards to digitizing collections 
at scale. These attempts—including those made by Carnegie Mellon—have focused on providing access to a large 
amount of digitized material with minimal description, focusing instead on tools like OCR for access to text-heavy 
items. 

Unfortunately, these models for addressing the resource imbalance inherent in archives are poorly suited to image 
collections. Image collections, by their nature, require item-level description for effective access in an online 
environment and our existing forms of automation are incapable of extracting descriptive information from 
digitized photographic archives.2 

This problem is growing, commensurate with the size of photographic archives. Older photographic collections, 
which were typically the focus of early digital archive projects, are limited in size and scope by format. While fewer 
early photographs survive due to the realities of time, fewer photographs were taken to begin with due to 
technological limitations. As the cost of photography has lessened over time, particularly with the advent of digital 
photography, the size of photographic collections is ballooning at a rapid pace. Documentation of an event or 
performance was once limited to a handful of photographs. If negatives are available, it might run to 36 images. 
With digital photography, archives now receive hundreds of images from an individual event.  

As collections grow, so does the need to develop ways to automate not only the description of photographic 
archives, but also their appraisal and preservation. The size of yearly photographic transfers from campus 
marketing departments can now stretch into thousands of images and terabytes of data. This rate of growth is not 
sustainable for many archives, who do not have the budget to maintain that much data in perpetuity. There is also 
no need for most archives to maintain photographic collections of this size and scope. These transfers are full of 
repetitive images and near duplicates. They cover events and activities to an extent not needed for documentary 
purposes. However, appraisal of these transfers must either be done blindly, with no actual assessment of the 
quality of the photographs maintained, done manually, which is labor-intensive and likely not sustainable, or not 
done at all. 

Recent efforts in computer vision for content tagging of digitized visual collections have focused on trying to get 
computer vision systems to automatically tag large collections at the item level. These projects may take one of 
two paths, each being sides of the same coin. For example, UCLA has experimented with generating and evaluating 
tags for portions of its historical photo archives assigned by generic computer vision models or services offered by 
Google, Amazon, Clarifai and the like.3 Others have developed customized CV models to automatically classify very 
large troves of images into a handful of domain-specific categories, such as the Library of Congress’ recent work 

 
1 Mark Greene and Dennis Meissner, “More Product, Less Process: Revamping Traditional Archival Processing,” The American 
Archivist, August 24, 2007, https://doi.org/10.17723/aarc.68.2.c741823776k65863. 

2 It is possible to extract descriptive metadata from “born-digital” photographs, but it is often incomplete or non-existent.  

3 Joshua Gomez et al., “Experimenting with a Machine Generated Annotations Pipeline,” The Code4Lib Journal, no. 48 (May 11, 
2020), https://journal.code4lib.org/articles/15209. 
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with their digitized newspaper collections to segment and classify different types of images in scans of newsprint 
pages.4 

As an alternative (or complement) to classifying images into discrete categories with computer vision systems, 
libraries, museums, and archives have also used computer vision to good effect in sorting images of their 
collections by visual similarity to aid user discovery. The Barnes Foundation has integrated several types of visual 
similarity search into their online collection interface, putting computational notions of visual similarity into 
conversation with Albert Barnes’ idiosyncratic organization of his art collection into visually-connected ensembles.5 
Likewise, a team of CMU and University of Pittsburgh researchers developed an experimental interface for 
navigating the collections of the National Gallery of Art based on visual similarity as well, allowing the user to hop 
from one artwork to its nearest visually-similar neighbors in a way very different from how a visitor would walk 
through galleries organized into distinct periods and cultures.6 

Digitized visual collections, particularly photo archives, present challenges that aren’t fully addressed by either of 
these approaches. The effort needed to create fully (or near-fully) automated tagging is only feasible and 
justifiable for large collections where the categories to be tagged appear frequently enough for there to be enough 
training data (such as differentiating between photographs, maps, and charts in the Library of Congress newspaper 
collection). However, archival photo collections frequently need layers of domain-specific vocabularies that may 
not exist in generic, pre-trained computer vision offerings, and important, but highly-specific labels whose 
occurrence in that collection is so low that it is impractical to try to train a custom model.  

Using computer vision to power discovery based on visual similarity offers a compelling interface for users to 
visually “surf” a collection that lacks rich textual metadata, but this too has drawbacks. Without some effort to add 
textual metadata to these digitized visual collections, it remains impossible to use a controlled vocabulary term 
found in a different, non-visual collection and retrieve relevant materials from the untagged photo archive. Relying 
wholly on visual search would prevent the photo archive from integrating into the larger collections data 
ecosystem of that repository. And a visual-only approach also presents manifest accessibility issues to users who 
rely on screen-readers to interpret textual metadata. 

But what if we took a hybrid approach, leveraging visual search not solely for public discovery, but as a prosthesis 
for archivists and metadata editors to more quickly find relevant and related photographs when creating content? 
What combinations of computer vision technology and user interface could center collection-specific expertise 
while streamlining the task of encoding that expertise into textual metadata? 

3. CMU Archives General Photograph Collection 
The General Photograph Collection (GPC) is a massive treasure trove of images that document the history of 
Carnegie Mellon University. Comprising roughly one million images, nearly every aspect of campus life since the 
founding of the university in 1900 can be found in the collection – from commencements, sporting events, and 

 
4 Benjamin Charles Germain Lee et al., “The Newspaper Navigator Dataset: Extracting And Analyzing Visual Content from 16 Million 
Historic Newspaper Pages in Chronicling America,” ArXiv:2005.01583 [Cs], May 4, 2020, http://arxiv.org/abs/2005.01583. 

5 Shelley Bernstein, “Computer Vision so Good.,” Barnes Foundation Medium Blog (blog), August 23, 2017, 
https://medium.com/barnes-foundation/computer-vision-so-good-3f4162a35d3f. 

6 Matthew D. Lincoln et al., “National Neighbors: Distant Viewing the National Gallery of Art’s Collection of Collections,” November 
2019, https://nga-neighbors.library.cmu.edu. 
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faculty portraits, to classroom candids, buggy races, and the fence. The collection also provides rich visual evidence 
of all the remarkable changes the university has undergone over the past twelve decades. 

The collection consists of photographic prints, negatives, glass plate negatives, digital images on CDs, and 172GB of 
born-digital files. The vast majority of the photographs were taken by university staff photographers, who continue 
to take photos of life at CMU to this day. 

As the most popular collection in the University Archives, photographs from the GPC are used frequently by faculty 
and students in their research and publications. Marketing, advancement and the University alumni offices also 
use images from the collection to promote the university and celebrate the achievements of students, faculty and 
schools. 

Until recently, the bulk of the collection consisted of photographic prints obtained from a variety of sources. Later 
transfers from Carnegie Mellon’s office of Marketing and Communications have focused on negatives and born-
digital photographs. As explained in more detail below, these accessions have maintained the original order 
developed by campus photographers and arranged chronologically and described at the “job” level, using the job 
codes and descriptive information collected by the photographers. 

3.1. Digitization Efforts 

To date, a little over 20,000 images have been digitized by the University Archives, equaling roughly 633 GB of TIFF 
files. Digitization is primarily driven by requests. Without a formal system or DAMS in place to manage the digitized 
images, there is some duplication.7 The organization of the digital files was inherited from the physical media and 
separated by the format of the original image. 

3.2. Why this collection? 

The GPC was a good collection for this project because: 

1. ~20,000 digitized images provided a significant, but not overwhelming amount of material to 
work with in a prototype project 

2. Pre-existing metadata provided at least some hierarchy to the photographs 

3. It is the most used collection in the University Archives 

4. Managing the digitized images posed several challenges to the archivists 

CMU Archives have been unable to provide broad public access to the collection in the past due to limitations of 
our current DAMS.8 When originally acquired, the DAMS was designed primarily for textual documents and did not 
support JPEGs. Because of this selection, we have not prioritized digitization and description of photographs for 
ingest into that system. This generated a substantial backlog of photographs that had been digitized in response to 

 
7 Duplication occurred for several reasons: 1) Both a print and a negative of the same image could have been digitized. 2) For a 
period of time there were no formal workflows in place for digitization and file naming. 3) Before digitization was a thing, archivists 
would create copy negatives of images and both the dupes and the original would be digitized. 

8 Knowvation by PTFS. http://www.ptfs.com/knowvation 
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reference requests, exhibitions, and other projects, but never described at the item level or stored anywhere other 
than a shared network drive. 

3.3. Collection Contents 

In general, the photographs and their digitized surrogates are organized by format. For the purposes of this 
project, we decided to focus on three groupings: photographic prints, 35mm negatives, and born digital images 
that were being stored on a portion of the University Archives server. 

3.3.1. Photographic Prints 

There are roughly 35 linear feet (or 35 banker boxes) of photographic prints in the collection. These prints were 
obtained from a variety of sources and span from 1900 through roughly 2006. Many of these prints came to the 
archives with no additional metadata, and most have no date information attached. This portion of the collection 
was processed and arranged by subject terms such as “Athletics”, “Buildings”, “Campus Views”, “People”, “Student 
Activities”, and “University Offices and Programs”. Larger topical terms such as “Buildings” are organized into 
further subgroups for specific buildings. New accruals were frequently interfiled over time. Copy prints made from 
the collection for display or preservation were also interfiled. 

As prints were digitized, the digital surrogates were organized into the same topical terms and subgroups on the 
server. The arrangement and subject terms of the photographic prints informed the project Directories. 

3.3.2. 35mm Negatives 

One of the largest groupings of the collection is the estimated five-hundred-thousand 35mm negatives. The 
negatives, which span from 1959 to 2007, are organized chronologically by the date they were taken and 
inventoried with a job code number that corresponds to a log book that was maintained by the staff 
photographers. Each entry in the log book contains the date the photograph was taken, a very brief description of 
the subject, and a job code or unique identifier, for each shoot, which could have between 24-36 images. 

As negatives were digitized, scans are organized in chronological order by the year. The job codes and frame 
numbers became the filename. For the project, images were grouped by the year and then by the job code, which 
included the brief subject descriptions from the log books. 

3.3.3. Born Digital 

Beginning in the early 2000s university staff photographers began to shift to a digital workflow. While the vast 
majority of the born digital images are on CDs, 172GB have been copied to the server. ISO images were created for 
each CD, and then individual photographs were extracted. The born digital images are organized by year and then 
by the job code. For the project, we only used TIFF files. All JPG images were excluded. Born digital images were 
grouped in the directories along with the photographic prints. 
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4. Tasks, Methods, and Results 
After brainstorming many possibilities that included both back-end metadata generation cases as well as potential 
new discovery interfaces for public users, we scoped our project to examine computer-vision and UI interventions 
to address three interlinked problems specifically facing our archivists and metadata editors on the back-end 
during metadata creation and editing: 

1. Visual similarity search to aid archivists when fulfilling research requests or trying to locate 
materials 

2. Duplicate or close-match detection to reduce repeated metadata generation and remove noise 
from the eventual public discovery interface 

3. Leveraging similarity search to streamline tagging photos from a controlled vocabulary of 
concepts, events, and locations customized to the GPC 

We tackled these problems in order, as each depended on the one prior: identifying close matches requires an 
effective way to measure image similarity; and streamlining metadata creation would benefit from having already 
identified sets of closely-matched photographs that could all inherit the same metadata with one click. 

While we were pursuing these tasks, we also experimented with Google’s Cloud Vision API which offers automated 
image description, face detection, and object and text recognition within photographs. 

4.1. Visual Search 

How do we find relevant images when we don't know what terms to search for, or if photos may not even have 
any metadata attached? Visual search, or reverse image search, takes an image as a search query, and returns 
other images from the collection that share similar visual attributes. 

4.1.1. Methodology 

While there are many ways to implement reverse image search, any system must do two things: 

1. Digest every image in the collection into a set of computationally-tractable “features” (sometimes 
also referred to as “descriptors”) In practice, this is usually a long list of numbers describing 
positions in a multidimensional space. 

2. Use some metric of similarity to retrieve images whose computed features are close to the 
features of a selected seed photo in that multidimensional space. 

Computer vision projects in cultural heritage have used a variety of methods to create features and then calculate 
the similarity/dissimilarity of images based on those features. Early methods used customized feature generation 
algorithms that would generate a dictionary of patches of pixels with similar visual traits (e.g. one common “patch” 
that might appear in many different pictures in a collection might be a set of pixels showing a curved edge 
between a dark and a light section of an image). Having generated a dictionary of visual words, systems can then 
use algorithms for text-based information retrieval to retrieve similar “documents” (images). Researchers have 
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used patch-based image descriptor systems with great success particularly in images of graphic arts such as 
woodblock prints.9 

Rather than continue to try to explicitly define ever-more complex dictionaries of visual words, more recent image 
search systems have relied on convolutional neural networks to generate their own complex features based on the 
multilayered interactions between different transformations of an image.10 Existing models such as InceptionV311 
and ResNet1812 are pre-trained on large sets of labeled photographs such as ImageNet.13 These models, with or 
without fine-tuning, are an effective foundation for clustering and searching through cultural heritage image 
collections, such as clustering images extracted from historical newspapers.14 Most relevant to the General 
Photograph Collection, CMU researchers in partnership with the Carnegie Museum of Art successfully used 
features from InceptionV3 to effectively cluster and sort images from the Teenie Harris Archive, another photo 
archive of predominantly black and white 20th-century negatives.15 

We used the second-to-last pooled layer of the InceptionV3 trained neural network as the feature source for our 
system. For each image, this produced an array of 512 numbers, allowing us to treat the entire collection of images 
as a set of points in 512-dimensional space. (Figure 1) 

 
9 Giles Bergel et al., “Content-Based Image Recognition on Printed Broadside Ballads: The Bodleian Libraries’ Imagematch Tool,” 
2013, http://library.ifla.org/id/eprint/209; Carl G. Stahmer, “Digital Analytical Bibliography: Ballad Sheet Forensics, Preservation, and 
the Digital Archive,” Huntington Library Quarterly 79, no. 2 (June 28, 2016): 263–78, https://doi.org/10.1353/hlq.2016.0011. 

10 A. Harley, “3D Visualization of a Convolutional Neural Network,” accessed November 22, 2019, 
https://www.cs.ryerson.ca/~aharley/vis/ provides an intuitive demonstration of how this feature generation works. 

11 Christian Szegedy et al., “Rethinking the Inception Architecture for Computer Vision,” ArXiv:1512.00567 [Cs], December 11, 2015, 
http://arxiv.org/abs/1512.00567 

12 Kaiming He et al., “Deep Residual Learning for Image Recognition,” ArXiv:1512.03385 [Cs], December 10, 2015, 
http://arxiv.org/abs/1512.03385. 

13 Jia Deng et al., “ImageNet: A Large-Scale Hierarchical Image Database,” IEEE Computer Vision and Pattern Recognition (CVPR), 
2009, http://www.image-net.org/papers/imagenet_cvpr09.pdf. 

14 Lee et al. 

15 Zaria Howard, “Finding Patterns in the Content of Teenie Harris’s Photos (with Convolutional Neural Networks and Agglomerative 
Clustering),” April 8, 2017, https://zariahoward.github.io/TeenieHarris/ObjectDetection.html; for other machine learning 
experiments with this collection, see Dominique Luster et al., “Teenie Week of Play,” January 4, 2019, 
https://github.com/cmoa/teenie-week-of-play. 
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Figure 1: A visualization of the photographs from this collection in the 512-dimesional feature space produced by the InceptionV3 
neural network. Points have been projected into two dimensional space using UMAP. Photos are colored based on automated k-
means clustering16, and we have manually labeled a handful solely to give a general sense of how the feature space corresponds 
to different visual content & attributes of the photos—these categories and exact clusters are not part of our actual prototype. 

 

Generating the image features from a pre-trained model is computationally-inexpensive compared to having to 
train / fine-tune the model itself, so we could create the features for all of our collection without needing 

 
16 We arbitrarily split the data into 12 groups here only to give a general impression of how the feature space generated by the 
InceptionV3 network does effectively cluster similar photos closer together. This is only done for the purposes of illustration; the 
actual similarity search only relied on distance between points, not on the automated clustering shown in this visualization. 
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specialized hardware. Feature generation only needs to be run once per image per model. It took under 1.5 hours 
to compute all the features for our ~21,000 images using a standard server with 8 conventional CPU cores. 

We then used a fast implementation of an approximate nearest neighbor search algorithm to create an index of 
this feature space that we could efficiently query.17 The resulting system takes a seed photo id and the number of 
neighbors requested (n), and returns back n photo ids from the index. With a back-end system set up, we 
programmed a browsing interface faceted by the existing job and directory metadata associated with the 
photographs. (Figure 2) Editors could then use this browsing interface to select a seed photo for a visual similarity 
search. (Figure 3) 

 

 

 

Figure 2. Faceted browsing interface showing photographs from an official CMU photographer job for the 1969 commencement 
ceremony 

 
17 Erik Bernhardsson, Annoy, C++ (2013; repr., Spotify, 2020), https://github.com/spotify/annoy. Approximate nearest neighbor 
search is a core data science task: how to accurately and quickly approximate the distance from one item in a very large collection 
to its closest neighbors when each item is described by a very large number of variables/dimensions, making it prohibitively 
expensive to pre-calculate every single pairwise distance between items. A key adjustable parameter in the Annoy implementation 
is the number of “trees” that the index-building algorithm should construct. The greater the number of trees, the more accurate 
the index is in approximating the actual distance between points, but the more memory-intensive (and slower) the index 
generation is (TODO ref tagging section where index building time becomes important). In our use case, with 512 dimensions and 
around 21,000 photographs, we found useful results with as low as 20 trees, and efficient results with as high as 50 trees. We used 
cosine distance as the metric. 



 12 

 
 

Figure 3. Similarity results interface, with the original seed photo followed by its nearest neighbors ranked by cosine distance from 
the seed photograph 

 

 

 

Figure 4. A montage of the resulting photographs from this search. Similarity search proved particularly effective at clustering 
buildings together—all these shots show different views of the College of Fine Arts, with many of the images coming from different 
parts of the collection outside the original job. 
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4.1.2. Results 

While this initial visual search step was only a precursor to determine how suitable the image embeddings from 
InceptionV3 would be for the later duplicate detection and tagging tasks, our archivists almost immediately began 
using the basic search interface to answer real-world requests during the early weeks of the summer. In one case 
while looking for images of campus computing centers across the history of the institution, they used later images 
of computing centers that could already be found via textual metadata in order to locate earlier images that had 
not yet had textual metadata assigned to them, and were thus undiscoverable through the traditional browsing 
interface. They also used the interface to find relevant images to promote a summer webinar hosted by the School 
of Computer Science advancement department, and on multiple occasions used the visual search to pull up 
closely-related photos in order to identify preferred options for publications and reference inquiries. 

4.2. Duplicate / Close Match Detection 

As described above, the General Photograph Collection contains several types of closely-matching sets of photos, 
from exactly-duplicated files due to copies made on the digitization file server, to different digitization of the same 
photograph (including copy-negatives), and finally, sets of distinct photos that are virtually visually identical, such 
as long strings of shots taken in rapid succession by a photographer such as during a portrait session. 

An ideal computational solution would cluster photographs based on the visual features extracted as described in 
the previous section. Rather than providing just one version of clusters for editors to either approve or reject, we 
needed to produce clusters with fuzzy boundaries that would allow editors to decide whether “borderline” 
photographs ought to be included in one match set or in another, particularly when the photos to be matched had 
more visual variation, such as with serial shots from a portrait sitting. 

4.2.1. Methodology 

To do this, we implemented a multi-step solution based on using the DBSCAN algorithm to find sets of images 
densely clustered in the visual feature space.18  

1. The first pass used a low distance cutoff that produced smaller, more tightly-grouped sets of 
photos that looked more strictly similar to each other.

 
18 Martin Ester, Hans-Peter Kriegel, and Xiaowei Xu, “A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases 
with Noise,” in Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining (Portland: AAAI Press, 
1996), 226–31, https://www.aaai.org/Papers/KDD/1996/KDD96-037.pdf as implemented by the Python package scikit-learn: Fabian 
Pedregosa et al., “Scikit-Learn: Machine Learning in Python,” Journal of Machine Learning Research 12, no. 85 (2011): 2825–30, 
http://jmlr.org/papers/v12/pedregosa11a.html. 
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Figure 5. 
 

2. The second pass had a slightly looser cutoff, which created a larger, more generalized set of 
clusters. 

 

  
Figure 6. 
 

3. We used the results from the first pass to produce the core photos of each of the candidate 
match sets that would be presented to the editors. To each of these candidate sets, we then 
added all of the photos from all the second-pass clusters that any of the core photos belonged to. 

 

 

Clusters formed by the first 
pass of dbscan

Not close enough to a 
dense neighborhood to be 
added to any cluster

Clusters formed by the 
second pass of dbscan

Still too isolated to fall into 
any similarity cluster
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Figure 7. 

 

4. As editors explicitly approve photos in a set, the system removes those photos from any other yet-
to-be-reviewed set if they had been added during the second clustering pass, ensuring that each 
photo only ends up in one close match set, if any. 
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Figure 8. 

 

We had to experiment with the cutoff distance on DBSCAN to ensure that we collected enough potential matches 
to capture most of the duplicate/near-duplicate photos in the collection, without casting such a wide net that 
editors would need to wade through approving or rejecting a huge number of candidate sets.19 

 
19 In our particular collection, we found a comfortable balance running a first pass with the maximum distance between samples 
set to 0.03, and the second pass at 0.055 
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4.2.2. Results 

 
Figure 9. 

 

This process produced 1,757 initial candidate close match sets, of which editors approved 1,491 (with the 
remainder either explicitly rejected, or made redundant in the process of approving others.) The vast majority of 
these sets contained between 2-4 photographs, while a much smaller number had a dozen or more images. Editors 
focused their attention starting with the largest groups first. By the time they got to the sets with only 2-3 
photographs (about half of the total number of sets), they felt comfortable automatically accepting the remainder 
of the sets without needing to manually review them. 

These match sets encompassed 5,853 photographs, around 28% of the collection. This would have a huge impact 
on the tagging task described in the next section, as all the photos in a match set could automatically inherit a tag 
applied to any of its sibling photos without an editor needing to manually tag each one. Of the more than 43,000 
tagging decisions made, a little over 1 in 5 were able to be automatically distributed across a set, saving our editors 
more than 9,000 decisions. 

Our archivists were very pleased at how quickly they could use the system to locate and review potential duplicate 
images, particularly when it found close matches across different containers in the collection, as happened when 
negatives were copied or in some cases due to duplicate/near-duplicate files created during the digitization 
workflow. As with many systems where multiple editors must make decisions on tasks and review work already 
done, our testers wished for an easier way to navigate between candidate sets and review decisions already made, 
which would make it easier to go back and fix mistakes. Our alpha interface did not make it intuitive for editors to 
see that a set contained photos that had been made redundant because they were already accepted into another 
set. A more complete UI would make these automated data updates more visible and more easily auditable. 

On a more fundamental processing consideration, our clustering solution and user interface did not make it 
possible for an editor to arbitrarily re-assign photos to another group, or to split one of the first-round groups into 
more granular sets of matches. We erred on the side of creating more granular sets of photos for our editors to 
review, so this use case did not arise much in practice. However, it is a good example of the kinds of more complex 
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data manipulation features that have nothing to do with computer vision per se, but which are essential for a fully-
formed collection management system. 

4.3. Similarity-Driven Tagging 

The ultimate goal of our prototype was to leverage these new visual similarity capabilities with the existing archival 
structure and description to rapidly streamline how editors created item-level metadata in the form of content 
tagging. Editors would select a tag to work on and then identify a starting seed photograph by searching through 
the existing metadata for a representative picture of, say, “Football players”, then use visual similarity results 
based on that photograph to identify other photos across the collection that needed the same tag. 

4.3.1. Methodology 

Our initial prototype interface borrowed from the user interface of ReCAPTCHA. The interface would serve up a 
continually-refreshing stack of visually-similar photographs, and editors could quickly approve or reject photos for 
a given tag, their decisions stored to the server on the fly as it returned more and more similar photos to judge. 
However, it was quickly apparent that this initial interface relied too heavily on computer vision alone, and didn’t 
offer enough flexibility to move outside of the single prescribed workflow. 

A better solution looked to the significant amount of collection-level archival description. Because the majority of 
the images in the GPC are organized based on the official CMU photographer “job” session in which they were 
taken, it is quite likely that a photograph of “Football players” will be in a job with many other photographs of 
football players taken during the same event. It didn’t make sense to tag just one photograph surfaced by visual 
search and not take the opportunity to assess the other photos in the same job before moving on to the next 
photograph that might be in a completely different section of the collection. Therefore, we expanded the workflow 
to use the visual similarity search only as a first step that would help editors prioritize entire jobs or directories to 
review and tag at once. 
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Figure 10. Tagging workflow 

1. Editors select a tag to work on 

2. Editors use the browse interface to select an initial seed photograph 

 

 
Figure 11. 

1. Select tag 2. Select seed 
photo

4. Select 
visually-similar result

5. View folder the photo 
belongs to

Photographs not yet 
accepted/rejected for 

this tag
3. Database

Create ephemeral 
ANN index on this 

subset

Stack of 100 nearest 
neighbors

6. Editor makes 
judgements

7. Are there any 
remaining relevant 

photos in the 
stack?

Retrieve more 
using original 
seed photo, or 

pick a new photo?

no

New photo

Same seed

Remove judged 
photos from stack

Commit decisions 

to DB

yes

Editor action
System action

FILTER 
query



 20 

 

3. The system queries for all photographs that haven’t yet been reviewed for that tag, meaning they 
have neither been explicitly approved or rejected by an editor. Because the Annoy implementation 
of approximate-nearest-neighbor indexing doesn’t allow searching arbitrary subsets of a fully-built 
index, the system must create an ephemeral Annoy index on this subset of photographs.20 From this 
focused index, the system returns data on 100 of the nearest neighbors to the seed photograph. 

4. The interface shows a grid with the first 9 images from this stack, and the editor may select one of 
the visually similar photos to view details on the photo, and see if it has an associated job. 

 

 

 
Figure 12. 

 

5. The editor then opens up an overlay showing all the photos in the associated job or directory: 

 
20 This generation took five to six seconds on 21,000 photos with 512 features, and in practice only needed to be called every few 
minutes. This was acceptable for prototyping, but an ideal system would be able to search arbitrary subsets of a single pre-built 
ANN index. This is not a feature that the Annoy implementation of ANN will support (https://github.com/spotify/annoy/issues/263) 
so a future system would need to find or implement a different ANN library that has this functionality. One promising option is 
using ElasticSearch to power all GET queries on the database, and using the Elastiknn plugin (http://elastiknn.klibisz.com/) to run 
ANN-ordered queries against any data in the database. We would like to acknowledge David McClure for bringing this approach to 
our attention. 
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Figure 13. 
 

 

6. Now the editor may rapidly assess all the photos in that directory, adding or rejecting a tag 
attribution with a click. As the editor makes decisions, they are logged live on the server, and any 
photos that get decided on are also removed from the initial stack of 100 nearest neighbors 
downloaded from the server.  
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Figure 14. 
 

7. After tagging a job, the editor can then return to the remaining stack of visually-similar photographs 
to find a new entrypoint into the collection and a new job/directory to tag, repeating the process. If 
they have exhausted this set of photos, they can either query the server with the same seed 
photograph to find a new set of unreviewed neighbors, or select a new seed photo to drive the 
process. 

 

This approach combined the best of both worlds: computed visual similarity could easily make connections across 
the collection without being constrained by existing archival structure, while that same extant structure and its 
minimal job-level textual metadata supplied essential non-visual context. This workflow often captured many 
photographs that were visually different from the original seed, but that still needed the tag. This reduced the total 
number of different seed photographs the editor would need to cycle through to find most of the photos that need 
the tag, and also made it faster for them to eliminate groups of photos that were visually similar (e.g. field hockey 
instead of football) rather than needing to spike them one by one as the visual similarity search offered them up. 
Therefore, one visually-similar result could guide the editor to rapidly assess several dozen photographs before 
going back to the pool of visually-similar candidates.  
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The computer vision intervention here remained minimal, still relying only on the initial set of precomputed 
features. One could envision a more “intelligent” CV system that would adapt as it received new feedback on 
images, tailoring the returned results to incrementally look less like rejected photos and more like accepted 
photos. However, in practice, we found that when editors needed to switch seed photos, it was because they 
needed to purposefully shift the search to a very different part of the visual feature space. For example, when 
looking for pictures of classes in session, editors would at some point need to shift from looking at photos of bright 
rooms with chalkboards, to instead find photos of dark, dramatically-lt auditoriums. These images have divergent 
feature vectors, so when we experimented with weighting the visual search towards already-accepted 
photographs, switching to a new seed photo returned unexpected results that didn’t fulfill editors’ expectations, 
and so we quickly removed that functionality.21 

4.3.2. Results 

One simple measure of success for this task is what percentage of photos were matched to a keyword that didn’t 
already appear in their existing job or directory description? In other words, what discoverability did we gain by 
tagging that didn’t already exist in the collection-level descriptions? 

 
Figure 15. 

Editors worked through 17 different tags, ranging from highly generic concepts to CMU-specific events and 
locations. In total, editors added at least one of these tags to 7,773 photographs. Figure 15 shows the total number 

 
21 A more nuanced system of continual fine-tuning neural networks might address parts of this problem, but it would need to 
result in significant gains to offset the increased complexity. See for example Benoit Seguin et al., “Visual Link Retrieval in a 
Database of Paintings,” in Computer Vision – ECCV 2016 Workshops, ed. Gang Hua and Hervé Jégou, vol. 9913 (Cham: Springer 
International Publishing, 2016), 753–67, https://doi.org/10.1007/978-3-319-46604-0_52. 
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of photos assigned to each tag, and the proportion of photos for each tag that didn’t already have some part of the 
tag text in their existing collection-level metadata. Photos near the top almost never had their tag text in existing 
data, while photos near the bottom often or always did. 

Highly generalized terms like “Portrait” or “Students” rarely showed up in the job descriptions of the applicable 
photographs. For example, most faculty portrait jobs were labeled with just the name of the faculty member (e.g. 
“Zerner, Clarence”), and pictures of students in a classroom frequently referred instead to the particular instructor, 
department, or college (e.g. “Alan Perlis, department of math/ Speaker in Skibo”) rather than specifically denoting 
it was a picture of a class.  

On the other hand, other tags were already well-represented in their existing archival descriptions. Nearly all the 
pictures of football players were in jobs that had the term “football”, much like almost all the pictures of the iconic 
annual CMU buggy race were in jobs with the term “buggy”. However, jobs whose descriptive metadata overlaps 
with one appropriate tag may not contain other appropriate info. For example, while football players are easily 
found in jobs labeled “football”, many photographs of the CMU “Kiltie” Band, as well as images of cheerleaders, 
are also found in these same sets of photographs. But they aren’t represented at all in the job-level description. So 
even when tagging like this introduces metadata redundancy in some areas, it greatly increases description recall.  

Crucially, it also empowered editors to add to a descriptive vocabulary that goes above and beyond the 
terminology used by the original CMU photographer, an opportunity to make explicitly discoverable content or 
concepts that were otherwise silenced or omitted by the original descriptions that the official photographers used. 

This is a very rough measure, of course, which does not take into account synonymous terms (e.g. “course” instead 
of “class”) that users might well try when searching through existing metadata. A more complete evaluation of a 
beta system would also need to compare how effective this CV-assisted tagging interface would be to one in which 
editors could only use the existing job/directory metadata to browse for and tag images. As our library had yet to 
implement any management system for these photographs, we had no baseline against which to measure this. 

Editors had generally positive feedback for the system. One of our editors likened the responsive, interactive 
interface to a game, finding it much more enjoyable than paging through image after image to enter information 
into a spreadsheet. But quite a few improvements would be needed for a production system. Editors desired more 
ad hoc affordances to add a tag to a group of photos outside of this workflow. For example, when using the 
faceted browsing interface to select a seed photo, editors reported often finding a job whose photos all needed to 
be tagged, but the system workflow required them to pick a seed photo, wait for the ANN index to be built, and 
then click through to the job overlay pane to tag the job. An ideal interface would have a path to allow that tagging 
action on the browse page itself, without ever needing to enter the CV-enabled portion of the workflow. This 
workflow also broke down when the only context photographs had was a very large directory with 200+ 
photographs. There, it was not feasible to go through the entire subset and make tagging decisions. An improved 
interface might calculate the cosine distance of all the photos in that directory to the selected photo, ordering the 
large directory by visual similarity to help editors surface the best matches to be tagged. Finally, the UI we arrived 
at worked best on a full-width desktop/laptop display. While such an expert system would likely not need to be 
functional on a small phone screen, more responsive styling of the interface would better accommodate screens of 
different sizes and browser zoom levels. 

To gather additional feedback on the system, we recruited two editors from the library to test out the tagging 
interface and provide us with some observations about their experience. The testers were given an hour long 
training session and asked to spend roughly 4-5 hours tagging images. They were also asked to keep track of what 
tags they worked on and to document how many times they had to select a new seed image and what search 
terms they used to find relevant images. 
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The testers' initial overall impressions centered on how great it was to browse the collection. Both of them often 
work closely with the archives but have never been able to browse the GPC collection so freely. Knowing how large 
the GPC is, they also thought tagging was a good way to help users narrow down what they were looking for. 

Feedback highlighted the need for additional training or documentation that could be referenced as the testers 
gained more familiarity with the system. Primarily, testers struggled with one key step in the tagging workflow, 
they were not clicking on the job code to see related images (steps 5 and 6 outlined in section 4.3.1). This meant 
that they were spending more time finding relevant images, which led to some time constraint concerns on their 
behalf. 

 Additionally, the system testers found that some of the tagging terms were too broad. For example they felt the 
tag “student activities” was too conceptual and could potentially encompass a good deal. In their experience, 
other broad terms often resulted in lots of images which took more time to parse through. Testers also thought it 
would be helpful if they could add or alter tags. However, they would not recommend allowing just anyone to add, 
revise or delete tags. They also wanted to be able to add tags ad hoc, when they came across images of people 
they could identify. 

4.4. Google Computer Vision Labeling 

Tangent to our three core tasks, we also wanted to evaluate whether any of the services offered by Google’s Cloud 
Vision API (GCV-API) could help to enhance discovery or metadata generation for the GPC.22 

GCV-API is a paid service that runs an image through a proprietary computer vision system and returns a variety of 
data. Pricing per image is based on which of the services you request. For this project, we requested the following 
features for each of our photographs: 

1. Labels 

2. Object localization 

3. Text recognition 

4. Face recognition 

Because GCV-API’s image labeling service is meant to be highly generic, it was not surprising to see that most of 
their labels were useless for our context. For example, the most frequently-applied tags were: 

  

 
22 https://cloud.google.com/vision/ In our case we used the Vision API which uses a pre-trained model. Google Cloud Vision also 
has a product called AutoML Vision which would allow you to train a custom model on their servers with your own tagging 
vocabulary by supplying training data. 
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Black-and-white 16,094 

Monochrome 13,645 

Photography 12,821 

Monochrome photography 9,781 

Photograph 5,978 

Black 5,145 

Style 5,072 

Snapshot 4,939 

Room 4,899 

White 4,698 

 

Obviously, none of these is helpful in the context of an historical photo archive! To be fair, less-frequently 
appearing labels did include some more specific topical terms, including “students”, “teaching”, “theater”, 
“football”, etc. However both precision and recall on these relevant tags were generally unacceptable. For 
example, “american football” only captured 48 of the 198 football player pictures identified by our editors using 
our CV-enabled interface, and mislabeled 2 photographs that were actually of track and field. Based on the 
performance of many of these tags, we wouldn’t recommend relying on GCV for any kind of automated collection 
description in an archival context, not even when including some kind of human review of the results. 

That said, these labels were not without some use. GCV’s “laboratory” tag missed many laboratory pics and 
erroneously included many art studio images. However, it did locate photographs of a chemistry lab that had no 
metadata at all and had been missed by an editor during the first few rounds of seed photographs using our own 
CV-enabled interface. If there is any utility to these highly-generic labels, it may be only on the back-end of 
metadata generation systems, where editors can use them as a last resort when searching for photographs to tag 
with a useful, domain-specific vocabulary. 

Face detection was also relatively successful although we did not have a use case for detected faces to evaluate 
during the span of this prototype project. A future use case would be using facial recognition software to help 
group together photographs of the same face across the collection, potentially allowing archivists to gather many 
photos of an unidentified individual and then update all of them when they eventually do make an identification. 
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A major drawback of GCV-API’s label, object, and face detection is that it only returns a maximum of 10 of each 
annotation per photograph. For example, a photograph of a choir with 32 clearly visible faces only returns 10 
annotations from GCV-API. For future projects, we would instead recommend open source face detection software 
such as OpenCV.23 

More successful was Google’s text detection, which identified text in 7,561 of the GPC photographs. While 
imperfect, it performed surprisingly well on some difficult photographs where text has out of focus, rotated, or 
curved. Notably for university-based institutional archives, it correctly recognized Greek characters off of the sides 
of fraternity buildings, parade flags, and apparel.

 
23 https://opencv.org/  
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5. Discussion 

5.1. Implications for Photo Archives Management and Description 

As archivists, we were largely thrilled with the outcomes of the CAMPI project and can see clear ways to integrate 
such a tool into our regular work—particularly when conducting regular photo reference. Based on our testing, we 
also believe that there are broad applications in archival practice for tools that implement similar technologies. 

5.1.1. Availability of a DAMS 

Even without computer vision, the CAMPI project offered a drastically improved method of interacting with our 
photograph collections. Prior to CAMPI, these digitized photographs were only available via a standard file server. 
Visually browsing images within a job or directory was extremely time consuming and slow as we primarily relied 
on preview images of large TIFFs provided by the file explorer. So even creating the most basic faceted browse 
interface during the first week of interface development revealed a host of unmet needs: 

● The ability to quickly browse photographs without needing to download full-sized TIFF files 
across a network connection.24 

● The ability to filter results based on both the filesystem directory hierarchy as well as the archival 
collection hierarchy 

● The ability to quickly rotate and zoom images within the browser, and save that rotation 
metadata to the server. 

● The ability to add a warning flag to a photograph if it should not be put online due to sensitive or 
offensive content 

● The ability to rotate photographs and save that rotation metadata to the server 

The CAMPI interface allowed archivists to quickly view and select images from a large group. Not only was the 
system much faster and responsive than the file server, it allowed archivists to view images next to one another. 
When weighing images for use in media, exhibitions, or promotions it is often necessary to closely compare 
individual images to assess a best fit. Similarly, when providing broader access to photographs, it is helpful to be 
able to choose the best image out of a set of near duplicates. 

5.1.2. Appraisal and De-Duplication of Born Digital Photography 

We found CAMPI’s ability to help us identify and weed near-duplicates from born digital photography transfers to 
be particularly powerful. The size of born-digital photographic archives is a known problem for archives, both in 
regards to storage infrastructure and description. Multiple archives have chosen to randomly sample born digital 

 
24 A workflow made even more arduous by the remote work enforced by the onset of the COVID-19 pandemic shortly before this 
project began. 
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photographic transfers as a method of appraisal.25 Random sampling, while a long accepted method of archival 
appraisal, has obvious drawbacks.26 Random sampling of a photographic collection can miss photographs of key 
individuals and cannot assess the quality of specific images. Depending on how the sampling is scoped, a random 
sample might also lead to disproportionate inclusions of photos of little use, while discarding high value images. 

For example, a high level assessment of recent born digital transfers at the CMU archives demonstrate a high 
proportion of faculty portraits and event photography of press conferences, speeches, etc. In these cases, we 
might only need a very small number of these photographs in our permanent collection. On the other hand, we 
have found comparatively little documentation of campus life and traditions. When these images are present, we 
are likely to want to maintain all of them as part of the collection. 

CAMPI allowed us to undertake appraisal of these items quickly and knowledgeably. We could quickly select one or 
two representative images from a set of portraits, ensuring we had a usable photo, rather than one with eyes 
closed, etc. Similar appraisal can be done with a file system, but CAMPI allowed us to immediately target transfers 
with high rates of duplication while ignoring more diverse sets of images.  

5.1.3. Computer Vision for Access and Reference 

Although CAMPI’s initial scope of work was strictly limited to behind-the-scenes appraisal and descriptive work, 
there are clear potential applications for use in access and reference. During the testing period, archivists already 
utilized CAMPI when answering photo reference questions, and can easily see a similar tool or interface easily 
being incorporated into reference workflows. Of even greater interest is the idea of letting users have access to a 
similar tool. Interfaces leveraging similarity searching and computer vision tagging are not foolproof, but they 
allow users different ways of interacting with a collection.  

Carnegie Mellon’s marketing department has shared during interviews that they are often tasked with searching 
for broad categories of images, such as “happy students laughing” that do not receive helpful tagging or metadata. 
They are also interested in diversifying the images that are being used in order to increase interest across various 
marketing pieces.27 Both the similarity search—which could allow them to select a known photo as a seed to 
identify similar images—and the Google Vision tags—which, among other features, attempt to identify mood—
could be beneficial for them. 

Casual users, who are primarily interested in more serendipitous use of the collection might also enjoy these more 
novel ways of browsing. Google Vision tags might be of particularly interest here, particularly if more problematic 
tags can be suppressed. For example, the Google Vision “necktie” tag was largely accurate and can serve as a way 
to quickly target images with individuals in them, and provide a way of observing changing fashions on campus.  

 
25 Kristen Yarmey et al., “From 0 to 400 GB: Confronting the Challenges of Born-Digital Campus Photographs,” presented at the 
Society of American Archivists Annual Meeting (Atlanta, 2016), https://www.slideshare.net/kristenyt/from-0-to-400-gb-confronting-
the-challenges-of-borndigital-photographs. 

26 Eleanor McKay, “Random Sampling Techniques: A Method of Reducing Large, Homogeneous Series in Congressional Papers,” 
The American Archivist 41, no. 3 (July 1978): 281–89, https://doi.org/10.17723/aarc.41.3.t756k0723551txg3; Frank Boles, “Sampling 
in Archives: An Essay Illustrating the Value of Mathematically Based Sampling and the Usage of Techniques Other Than Simple 
Random Sampling within an Archives; or, Coping with 10,000 Feet of Invoices before Retirement,” The American Archivist 44, no. 2 
(April 1981): 125–30, https://doi.org/10.17723/aarc.44.2.a5458p2p62873437 

27 Specific marketing use cases were developed in 2019 during stake-holder interviews for the development of a new archival 
repository system. 
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5.1.4. Implications for Tag-Based Description 

Vocabularies and Tag Selection 

One of the clearest pain points was one of the areas fully under the control of the archivists: that of defining tags 
to apply to these photographs. The selection of initial tags was based largely on terms already used within the 
collection. This led to the use of terms like “student activities” which proved to be overly broad in this context and 
failed to leverage the opportunities provided by the system. Visual similarity did not help much with broad, 
conceptual tags as the context of the picture was more important than the composition of the frame. 

We found that tags focused on specific actions, activities, and identifiable items were a much better fit for the 
capabilities of the system. This limitation might mean that archives using CAMPI for metadata work still need to 
apply additional subject terms prior to ingest into a repository system. 

Non-Specialist Description 

Systems such as CAMPI may also allow archivists to better leverage non-specialist labor. By having students focus 
on a single tag across the collection, rather than focusing on a single image that needs multiple tags, we can better 
provide the specific training and context they need to complete their work.  

However, testers of CAMPI pointed out that the choice of tags is very important. Broad conceptual tags caused 
issues and required an understanding of the structure of the collection, the history of the university, and some 
fundamental understanding of the role of metadata in description and access. One of the testers, who is also a 
CMU alum, pointed out that having editors that are knowledgeable of Carnegie Mellon University’s history and 
traditions would be advantageous. For example, images of now demolished buildings, former faculty members, 
and specific schools or programs that no longer exist, might not be easily identifiable to non-specialists without 
doing research. If a system like this were to be used by students or interns, training and full description of each 
assigned tag could be necessary. 

5.1.5. Syncing Description 

Because of the size of our collection—and the fact that it is still undergoing active digitization—tag based 
description is an iterative, and ongoing process. We also plan to use a secondary DAMS—Islandora 8—as our 
system of record for public access to our digital collections. Descriptive and deduplication work done in a 
production-ready CAMPI-like system would therefore need to be periodically or simultaneously synchronized. 

While running these processes on a large initial ingest of photographs is straightforward enough, there would 
clearly be challenges with ongoing implementation as new photographs are added and additional tags are applied 
to existing photographs that are already accessible via a secondary system. Full implementation of a CAMPI-like 
system at scale would require additional workflow development and concerted work to keep data normalized and 
consistent across systems. See Appendix 1 for a high-level overview of the information architecture that would be 
needed for such a system. 

5.2. Implications for User Interface Design 

Because our archivists lacked a pre-existing browsing interface, it is difficult to untangle the effects of simply being 
able to tag photos in a browsable interface from the effects of a computer vision intervention. That said, it is clear 
that image duplication detection, similarity, and clustering are broadly useful when tightly integrated with an 
interface that affords their use as a human-driven archival prosthesis. 
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Our interface relies on a combination of faceted browsing, text search, model-driven suggestion, and grid displays 
of photographs. This is a time-tested approach to browsing and editing images, and continued to prove successful 
in this case. Editors found the interface incredibly useful and largely intuitive, though additional features would 
have further improved their interactions with the computer vision model, including: 

● More feature-complete faceting, such as progressive filters that update the number of images 
with a given feature as represented in the currently displayed set; scrolling / sorting within each 
facet; and universal search. 

● Easier and more ubiquitous entry points into various features, such as quick navigation between 
candidate sets and revision decisions for duplicate images; access to the tag-similar-photos 
feature from any arbitrary photo; the ability to edit the tag list from anywhere; and the ability to 
tag groups of photos currently visible on the screen without requiring entry into the CV 
workflow. 

● Additional methods to sort arbitrary sets of photos based on visual features, e.g. different 
distance measures, different clustering methods, etc. 

● Ways to split, combine, or re-assign groups of images, such as duplicate photo sets, tag groups, 
etc. 

In addition to ways to improve the faceted grid interface, the CV intervention welcomes additional varieties of 
interfaces into a photograph collection. For mobile browser editing, for example, one might create a swipe-style 
interface, where a photo is shown and swiped in one direction or another to convey inclusion in a given set.28 To 
deal with the problem of single tag groups occupying multiple territories in the 512-dimensional feature space, one 
might design a browser that where editors can view a visualization of the entire feature space (as with the UMAP 
visualization in Figure 1, above), allowing them to lasso sets of photographs that belong in particular tags.29 

5.3. Implications for Computer Vision Research in Photo Archives: Shortfalls and Future Research 
Opportunities 

We used only the visual features from an “off-the-shelf” model pre-trained on a generic modern photograph 
dataset in this prototype. This was a relatively good fit for trying to tag the content of a digitized collection of 
photographs, however there are crucial disconnects between the content of the GPC and that of ImageNet, the 
key training data for InceptionV3, as well as a disconnect between the intentions of our editors to tag both 
depicted objects as well as more amorphous concepts, whereas ImageNet was constructed solely for object 
identification.  

Both collections of images are quite different, and the use of the former to guide exploration or tagging of the 
latter introduces the potential to reinforce biases built into the original model. Additionally, there is the concern of 
inheriting issues of dubious consent, legality, and morality when relying on the common image training datasets.30 

 
28 “Gamification” of data entry tasks is particularly apt for mobile devices. The New York Public Library’s “Building Inspector” project 
is a key example of mobile-first design for crowdsourced data entry: http://buildinginspector.nypl.org/about. 

29 Related efforts for this kind of interface include Douglas Duhaime and Peter Leonard, “PixPlot,” Yale DHLab, 2017, 
https://dhlab.yale.edu/projects/pixplot/. 
30 Several of these and related issues are discussed in Vinay Uday Prabhu and Abeba Birhane’s “Large image datasets: A pyrrhic 
win for computer vision?”, 2020, https://arxiv.org/abs/2006.16923. 
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Addressing these issues is far beyond the scope of this experimental prototype, but until such concerns are 
resolved, it would behoove archivists adopting these sorts of tools to be keenly aware of biases inherent in the 
models, and do whatever possible to offset those biases through intentional intervention. Indeed, the benefit of 
the human-in-the-loop process we recommend is that those points of intervention are possible, when explicitly 
planned for. 

There are a variety of practical steps that the cultural heritage and computer vision communities could take to 
produce models tailored for historical photo archives. ImageNet is primarily a dataset of color photographs, and 
therefore InceptionV3 relies in part on color to produce the features that it does. Black and white photographs—
the majority of this historical photo archive—leave the neural network with less information than it was trained to 
expect, and so may result in less-than-ideal clustering. Models specifically trained not to rely on color for object 
detection, and/or trained on already-tagged images from similar historical photo archives, would create a very 
useful starting model for future computer vision tasks using collections of a similar vintage. InceptionV3 also 
expects born-digital photographs, whereas photo media in the GPC run the gamut from born-digital to digitized 
gelatin silver prints, chromogenic color prints, 35mm negatives and 120mm film. Other archives may contain 
examples of even more kinds of photographic processes, from daguerreotypes and albumen prints to early glass 
negatives—all of which have varied visual properties that diverge from an image produced by a modern digital 
camera. 

Notably, Golan Levin at CMU has reported unexpected improvements in first running black and white photographs 
through a neural network that attempts to predict the real colors of the subject of a black and white image, and 
then using InceptionV3 features extracted from those colorized derivatives to support visual search and similarity 
clustering of their original black and white counterparts.31 This can be done without requiring any new model 
retraining (the most computationally-intensive of neural network tasks) but does not address the underlying biases 
in the expectations of models like InceptionV3. 

A notable proportion of our images did not have their orientation corrected during digitization Adjusting the 
convolutional neural network to include orientation-invariant layers32 would assist in clustering images that were 
visually-similar despite being rotated. Alternatively, using models to detect proper image orientation could help 
streamline the tidying of images digitized under inconsistent workflows.33 As with overall image clustering, existing 
solutions to predicting correct orientation on general modern image collections taken from the internet may fall 
prey to a bias towards color images, relying on encoded assumptions such as bright/blue skies generally appearing 
at the true “top” sides of images, and dark/gray roads appearing at the true “bottom” sides.34 

 
31 Matthew Lincoln, correspondence with Golan Levin, November 2019. On using adversarial networks to colorize images, see 
Phillip Isola et al., “Image-To-Image Translation With Conditional Adversarial Networks,” 2017, 1125–34, 
https://openaccess.thecvf.com/content_cvpr_2017/html/Isola_Image-To-Image_Translation_With_CVPR_2017_paper.html. 

32 Xin Zhang et al., “Rotation Invariant Local Binary Convolution Neural Networks,” 2017, 1210–19, 
https://openaccess.thecvf.com/content_ICCV_2017_workshops/w18/html/Zhang_Rotation_Invariant_Local_ICCV_2017_paper.html. 
33 Philipp Fischer, Alexey Dosovitskiy, and Thomas Brox, “Image Orientation Estimation with Convolutional Networks,” in Pattern 
Recognition, ed. Juergen Gall, Peter Gehler, and Bastian Leibe, Lecture Notes in Computer Science (Cham: Springer International 
Publishing, 2015), 368–78, https://doi.org/10.1007/978-3-319-24947-6_30 present a neural-network based approach. 

34 These assumptions are clear in earlier orientation prediction models that used patch-based features relying on summary color 
and edge detection metrics: Yongmei Michelle Wang and Hongjiang Zhang, “Detecting Image Orientation Based on Low-Level 
Visual Content,” Computer Vision and Image Understanding 93, no. 3 (March 1, 2004): 328–46, 
https://doi.org/10.1016/j.cviu.2003.10.006, see especially section 3.3. 
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Several other hypothetical computer-vision tasks that came up during the project included classifying the physical 
source of a digitized image (e.g. scan from a negative versus scan from a print) when original digitization metadata 
is missing, as well as attempting to predict the date of the photograph based on visual properties and/or content. 

However, our experience with this prototype suggests that the most widely-applicable challenges for applying 
computer vision in photo archives have less to do with basic computer vision research, and more to do with how to 
design systems where computer vision systems exchange data with traditional collections management systems as 
ongoing, everyday operations, rather than as a one-way ETL (extract -> transform -> load) process in special 
projects.35 Data for digitized archival collections is rarely, if ever, produced in one synchronous project. Collection 
accession, description, and item-level digitization happen iteratively, often years (if not decades) apart. 

Certain types of bulk, one-off computer vision projects may be useful for large collections where it is feasible and 
worth the time to train a custom model to carry out classification of a handful of relevant tags in a large collection 
(discriminating between photographs, maps, and charts in scans of printed publications, for example). However 
this approach is a poor fit for collections where domain-specific vocabularies mean some important will tags 
appear rarely, or for relatively small collections that aren’t large enough to provide the data needed 
independently-trained computer vision model, much less warrant the time and expense involved. Additionally, 
institutional photo archives like the GPC accrue new photographs on a regular basis, so any pipeline would need to 
be designed to accommodate the continual addition of new objects. 

A system that instead integrates comparatively simple and general-purpose visual similarity ranking with faceting 
on existing collection metadata could instead provide a powerful utility for archivists and metadata editors to more 
adroitly organize and describe collections at the item level that would otherwise be prohibitive.36 Indeed, more 
attention in general to improving the responsiveness and flexibility of the back-end interfaces for digitized archival 
collections management would be a major boon to archivists and metadata editors.37 

 
35 Ryan Cordell raises this issue briefly in “Machine Learning + Libraries,” LC Labs Reports (Washington, D.C: Library of Congress, 
July 22, 2020), https://labs.loc.gov/static/labs/work/reports/Cordell-LOC-ML-report.pdf, section 4.5 

36 A general-purpose clustering system for digital textual collections is proposed by Benjamin Schmidt, “Stable Random Projection: 
Lightweight, General-Purpose Dimensionality Reduction for Digitized Libraries,” Journal of Cultural Analytics, 2018, 
https://doi.org/10.22148/16.025. 

37 TODO there’s some code4lib work on this I need to track down and cite 
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6. Conclusion 
As archivists reckon with accessioning in the age of digital abundance, they will need sophisticated tools to 
augment their processing of incoming materials, capable of increasing speed and efficiency without sacrificing care 
and accuracy. CAMPI, our expert-in-the-loop machine learning prototype, offers clear evidence that computer 
vision in tandem with user interface design and attentive use of existing archival structure could play this integral 
role in the next generation of digital asset management systems. 

Reaching this goal will require care, intention, and considerable resources. Several inviting dangers will need to be 
avoided. Tagging and de-duplication would cost less, for example, were it entirely automated, or reliant on student 
assistants or crowd labor. It would take less effort and technological complexity to keep the CV-augmented 
processing system entirely separate from sprawling and difficult-to-manage digital asset management systems. 
Using pre-trained image models would significantly reduce needs for technical capacity and expertise.  

But falling into any of these traps would be a mistake. We found that expert guidance is essential for common 
archival needs, especially given how ill-trained current models are for the context of cultural heritage. Because 
that guidance must happen continuously as new materials arrive, and often requires revision as understanding of 
our history changes, such a toolset must be able to integrate with an institution’s existing digital asset 
management system. 

Several aspects of the common pre-trained image models we used proved inappropriate for our collections: they 
were trained on color images where ours were primarily black & white; they identified objects more relevant to e-
commerce than to archival collections, and so forth. One fundamental next step for our community would be to 
create models explicitly generated from richly tagged historical photo archives. Such model training must be done 
critically and regularly, in order to keep the system from accidentally nudging experts into reinforcing biases from 
existing archival collections.  

Despite these challenges, we believe computer vision interfaces will play an essential role in collecting materials 
for the next generation of galleries, libraries, archives, and museums. 
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Appendix 1. High-Level System Architecture 
This appendix provides a high-level, implementation-agnostic architecture for a computer vision system similar 
with capabilities similar to the ones we developed for the CAMPI prototype. Because the GPC photographs were 
not managed in a DAMS at the time of this project, we recreated a read-only system for storing the item- and 
collection- level data in one monolithic Django application that also managed the computer vision operations, 
search APIs, and tagging workflows. This included recreating the archival description hierarchy from a one-time 
EAD export from the CMU Archives’ ArchivesSpace instance. While this was suitable for an exploratory prototype, 
a real computer-vision-aided metadata generation pipeline would need to interlink with production systems that 
manage both item-level and collection-level metadata, rather than become yet another source of truth to rapidly 
go out of sync as collections grow and metadata is enriched. 

This architecture tries to focus on functional requirements, rather than define which requirements are fulfilled by 
which applications within a realized system. Some products may fulfill multiple requirements—for example, the 
DAMS Islandroa integrates an IIIF server as well as storing item-level metadata and controlled 
taxonomies/vocabularies. Many archival description management systems, such as ArchivesSpace, also integrate 
controlled vocabulary management systems alongside hierarchical collection descriptions. Similarly, certain 
databases may implement approximate nearest neighbor search in high-dimensional spaces, obviating the need 
for a separate feature / index storage and similarity estimator at the application layer. 
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A1.1 Core collections information infrastructure 

● IIIF server 

○ The IIIF Image API38 provides images in the variety of formats needed for this workflow, 
at different resolutions and geometries (such as square thumbnails), as well as on-the-
fly cropping to show regions of photos such as CV-recognized faces or objects. 

● Archival collections management system (ACMS) that is the source of truth for collection-level 
description and other inherited organizational hierarchies 

○ Describes the physical / intellectual organization of the originating photo archive, 
including hierarchies between different collections/series/sub-collections 

● Digital asset management system (DAMS) that supports Item-level source of truth 

○ Source-of-truth system for individual photographs 

○ Must maintain canonical identifiers for images and resolvable links to IIIF server 

○ Should store item-level descriptive metadata including tags from a controlled vocabulary 

○ Should mirror/harvest/map collection-level information hierarchies from the ACMS so 
that individual items can inherit the proper collection-level attributes 

○ May have ability to create collections of duplicate/near-duplicate photographs, and/or 
mark images to be hidden from discovery interface 

● Controlled Vocabulary Management System 

○ Source-of-truth system for vocabularies of people / agents, locations, objects, and 
conceptual entities that may be depicted by photographs in the collection 

A1.2. Computer Vision Pipeline Infrastructure 

● CV feature generation system 

○ Must compute, store, and manage features generated for each image in the collection 

○ May generate multiple feature sets per photo, using a variety of different CV 
implementations, e.g. from different types of convolutional neural networks. 

○ This system has a high one-time load for batch generating the initial features.  

● CV feature store 

○ Once features are generated by the CV system that actually runs computer vision 
models, the CV feature store must be able to serve arbitrary subsets of these 
precomputed features to the similarity indexing system. 

 
38 https://iiif.io/api/image/  
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● CV similarity indexing store and search system 

○ Computes, stores, and manages search indices based on generated features 

○ Provides an API to get the nearest visual neighbors of a specific photograph from the 
entire collection, or from a subset of the collection 

● CV-Aided Tagging System and store 

○ Mirrors/imports/accesses from the source-of-truth systems: 

■ Current image metadata state from the DAMS 

■ Collection organizational hierarchy from the DAMS/ACMS (to support faceting 
based on existing metadata) 

■ Allowed vocabularies for use in tagging from the VMS 

○ Tracks decisions made by users in order to support workflow tasks such as reviewing 
and correcting proposed close match decisions or tagging decisions 

○ Record e.g. if an editor has affirmatively marked a photo as not needing a particular 
vocabulary tag, in order to exclude it from future suggestions 

○ Posts final approved image metadata state to DAMS / item-level source-of-truth 
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Appendix 2. CAMPI Implementation Details 
The back- and front-end code for our prototype is available at https://github.com/cmu-lib/campi  

Prioritizing rapid development over computational performance, we built our prototype as a monolithic Django 
REST Framework application using PostgreSQL as the database backend.  

We selected Django because we had extensive experience with the framework, and because by staying within the 
Python ecosystem it was simple for us to directly build PyTorch, ScikitLearn, and Annoy into the application to 
power image feature creation from InceptionV3, near-duplicate clustering, and similarity search. We selected 
PostgreSQL also because of our experience with it, as well as the breadth of features that reduced the amount of 
outside services we needed to build to support the prototype, including the PGSQL-specific ArrayField for 
efficiently storing image embeddings, and its simple built-in full-text-search capabilities to ease the search of text 
detected in images by the GCV-API. 

Granular documentation of all the models in our Django application can be found in the code repository, however 
the basic setup of the modules needed to handle both the functions of our (as yet) non-existent DAMS for tracking 
item-level metadata and inheriting hierarchical structure from our ArchivesSpace instance described in A1.1, as 
well as implementing the actual computer vision processes and the functionality for tracking editorial decisions 
described in A1.2: 

1. photograph - Models describing individual photographs as well as annotations on those 
photographs. 

2. collection - Models describing different organizational hierarchies for photographs, such as 
"jobs" defined in the GPC's original organization, and directories in which original TIFFs were 
stored during digitization. 

3. cv - Models describing computer vision models and methods for calculating image features, 
approximate-nearest-neighbor search indices and methods for retrieving nearest neighbors, 
and close match detection algorithms and the match sets of photographs that they create. 

4. tagging - Models for a domain-specific-vocabulary and a tagging decision workflow 

5. gcv - Models and management commands for making image annotation requests to Google 
Cloud Vision API, storing the raw responses, and parsing raw responses into structured 
annotations on photographs. 

For the front-end, we built a Vue-based single-page application that made calls to the API provided by Django. We 
opted for a single-page-app rather than using Django’s built-in templating system because both the close match 
review interface as well as the image tagging interface required complex and fluid interactivity between multiple 
components without forcing an entire page reload. 

During the duration of this project, we served the images themselves from a temporary IIPImage server, as we only 
required use of the IIFImage API and did not need a fuller solution that also handled IIIF Manifests or annotations. 


