
Carnegie Mellon University

Dietrich College of Humanities and Social Sciences

Dissertation

Submitted in Partial Fulfillment of the Requirements

For the Degree of Doctor of Philosophy

Title: Networks, Point Processes, and Networks of Point Processes

Presented by: Neil A. Spencer

Accepted by: Department of Statistics and Machine Learning Department

Readers:

Professor Robert Kass, Advisor

Professor Cosma Rohilla Shalizi, Advisor

Professor Brian Junker

Professor Jared S. Murray

Approved by the Committee on Graduate Degrees:

Richard Scheines, Dean Date

Carnegie Mellon University

Networks, Point Processes, and Networks of

Point Processes

A Dissertation Submitted to the Graduate School

in Partial Fulfillment of the Requirements for the degree

Doctor of Philosophy

in

Statistics and Machine Learning

by

Neil A. Spencer

Department of Statistics and Machine Learning Department
Carnegie Mellon University

Pittsburgh, PA 15213

August 2020

c

c© by Neil A. Spencer, 2020

All Rights Reserved.

ii

To my family

iii

Acknowledgements

This dissertation would not have been possible without the support of many friends, family, and colleagues.

First of all, I would like to thank the members of my dissertation committee: Rob Kass, Cosma Shalizi,

Brian Junker, and Jared Murray. My PhD followed a bit of a non-standard route in that I worked closely

with each of you on four different projects to form my dissertation. While this set-up was challenging for

me to balance at times, it was worth it for the chance to receive mentorship and guidance from each of you.

Your unique styles complemented each other well—it was a pleasure to get to work and learn so much from

all of you. The fact that we could make it work is a testament to your patience and kindness as advisors and

colleagues. Thank you so much. Along the same vein, I also owe a great deal of thanks to Jay Kadane for

his support and guidance during our work together along with the Allegheny County Office of the Medical

Examiner. I learned a lot about collaboration through our work.

I am thankful for the support and encouragement from the members of three groups I participated on

campus: Networkshop, Neurostats, and CSAFE. It was a pleasure to get such insightful, critical, and honest

feedback on a regular basis, as well as get to hear about all of your interesting work. It helped shape

my growth as a researcher and presenter, as well as steer me toward promising research directions. Most

importantly, it was also a lot of fun!

Thank you to the fellow members of my cohort: Alden, Daren, Ilmun, Jaehyeok, Kayla, Octavio, Xiao

Hui, YJ, and Zongge. Your support, camaraderie, and shared meals over the past five years helped make

the process of working on a PhD to be manageable and enjoyable experience. Moreover, I would also like

to thank all of my fellow PhD students, as well as the faculty and staff in the statistics department and

machine learning department, for helping to foster a fun and comfortable environment in which to work and

learn. Many of the IM sports games, parties, and game nights were highlights of my past five years. Special

shoutout to Brendan and Xiao Hui for being such great conference travel buddies multiple times.

During this global pandemic, I feel like I can’t write an acknowledgment section without expressing

extreme gratitude to my lockdown bubble of Ben, Ciaran, and Kayla. You all—along with spike ball and

Twisters—helped keep me sane over the last several months. I’ll miss it!

v

It is also important that I acknowledge my undergraduate advisors—Franklin and Pritam—for your

continued support you’ve provided over the years. I am eternally grateful for your introducing me to research

and your ongoing encouragement. Also, to Sean Jewell and Creagh Briercliffe, it has been a pleasure to

continue to keep in touch after UBC. Continuing to share advice about our various PhD experiences helped

me to navigate both my PhD and what to do afterwards.

Finally, special thanks to both my family and Emily. Much of what I have accomplished I owe to your

unwavering love, support, and encouragement throughout this entire process. I love you all.

The work in this dissertation was completed with financial support from a doctoral fellowship from the

Natural Science and Engineering Research Council of Canada, as well as grant support from IES (US Dept

of ED) Award 305D150045, the National Institute of Mental Health grant R01MH064537, and the Center for

Statistics and Applications in Forensic Evidence (CSAFE) through Cooperative Agreement 70NANB15H176

between NIST and Iowa State University, which includes activities carried out at Carnegie Mellon University,

University of California Irvine, and University of Virginia.

vi

Abstract

I consider two classes of statistical models: networks and point processes. These random structures are often

used in situations where traditional statistical assumptions do not hold (e.g. the data are not independent

or identically distributed), meaning extra care must be taken to develop and extend statistical theory and

tools to these settings. This dissertation consists of four separate projects (Chapters 2–5) each tackling a

different problem pertaining to the point processes, network models, or their interface.

Chapter 2 develops a new hierarchical Bayesian point process model for an application in forensic science.

Chapter 3 develops a new point process-based framework for latent position network models—as well as

supporting theory—to fill an important gap in the existing sparse network literature. Chapter 4 develops an

efficient Monte Carlo algorithm for Bayesian inference of large latent position network models, and Chapter 5

develops an efficient Monte Carlo algorithm for Bayesian inference of high-dimensional point process models

that are useful for analyzing networks of neural spike trains.

vii

Contents

List of Tables xiii

List of Figures xv

1 Introduction 1

1.1 Background . 2

1.1.1 Latent Variable Network Models and Graphons . 2

1.1.2 Point Processes and Marked Point Processes . 4

2 A Bayesian Hierarchical Model for Evaluating Forensic Footwear Evidence 9

2.1 Introduction . 9

2.2 Preliminaries . 11

2.2.1 Random Match Probabilities . 11

2.2.2 JESA . 14

2.2.3 Existing Models for the Distribution of Accidentals . 17

2.2.4 Random Vectors of Dependent Probability Measures 18

2.3 Model . 19

2.3.1 Parameterization of Λs . 20

2.3.2 Model Summary and Prior . 23

2.4 Computation . 24

2.4.1 Computing the Posterior for Θ . 26

2.4.2 Computing Marginal Densities via Importance Sampling 26

2.5 Comparisons to Competitors and Summary of Fit . 27

2.5.1 Comparison to Competitors . 27

2.5.2 Summary of Inferred Model Parameters . 30

2.6 Discussion . 31

2.7 Additional Details . 33

ix

2.7.1 Discretization and Kernel Choice . 33

2.7.2 Additional Related Work . 34

2.7.3 Details of Parameterization of w . 35

2.7.4 Details of Marginalization of εs . 35

2.7.5 Details of MCMC Proposal Steps . 37

2.7.6 Importance Sampling Strategy . 39

3 Projective, Sparse, and Learnable Latent Position Network Models 47

3.1 Introduction . 47

3.2 Background . 49

3.2.1 Sparsity . 49

3.2.2 Projectivity . 50

3.2.3 Latent Position Network Models . 51

3.2.4 Exchangeable Latent Position Network Models . 51

3.2.5 Poisson Random Connection Model . 52

3.3 New Framework . 53

3.3.1 Sparse Latent Position Model . 54

3.3.2 Rectangular Latent Position Model . 56

3.4 Learnability . 56

3.4.1 Preliminaries . 56

3.4.2 Related Work on Learnability . 57

3.4.3 Learnability Results . 59

3.5 Comparisons and Remarks . 63

3.5.1 Sparse Graphon-based Latent Position Models . 63

3.5.2 Comparison with the Graphex Framework . 64

3.5.3 Remarks . 66

3.6 Proofs . 67

3.6.1 Intermediary Results . 67

3.6.2 Projectivity Proofs . 74

3.6.3 Sparsity Proofs . 75

3.6.4 Learnability Proofs . 77

3.6.5 Towards a Negative Learnability Result . 90

4 Faster MCMC for Gaussian Latent Position Network Models 93

4.1 Introduction . 93

x

4.2 Preliminaries . 96

4.2.1 Latent Position Network Models . 96

4.2.2 Bayesian Inference for LPMs . 98

4.2.3 Hamiltonian Monte Carlo . 101

4.3 New Sampling Methodology . 104

4.3.1 Split Hamiltonian Monte Carlo . 104

4.3.2 Firefly Sampling of Non-Edges . 107

4.3.3 Bayesian Inference of the Parameters of the Link Function 109

4.4 Empirical Studies . 111

4.4.1 Measuring relative efficiency of MCMC Algorithm for LPMs 112

4.4.2 Study 1: Synthetic Data . 114

4.4.3 Study 2: Network of Information-sharing in a School District 120

4.5 Concluding Remarks . 126

4.6 Additional Details . 128

4.6.1 Computational Details of Experiments . 128

4.6.2 Full Conditional Distributions . 128

4.6.3 Additional Figures and Tables . 132

5 Bayesian Inference for Neural Spike Train Models via the Spike and Slab Zigzag Process135

5.1 Introduction . 136

5.2 Background . 137

5.2.1 Notation . 138

5.2.2 Spike Trains as Logistic Regression . 139

5.2.3 The Zigzag Process . 142

5.3 A Zigzag Process for Neural Spike Trains . 146

5.3.1 Defining the Zigzag Bounce Rate . 146

5.3.2 Spike-and-slab prior . 148

5.3.3 Bounce Time Simulation . 152

5.4 Efficiency Analysis . 157

5.4.1 How to Analyze Efficiency? . 158

5.4.2 Synthetic Experiments . 159

5.5 Conclusion and Future Work . 165

Bibliography 167

xi

List of Tables

2.1 The mean predictive performance (measured by (2.30)) of our model, five variants on our

model, and three competitor models. The best performing result is bolded for each split. . . . 30

3.1 Values of αKn and βKn for different choices of link function K(x) 63

4.1 A summary of the model and data configurations for Empirical Study 2 121

xiii

List of Figures

2.1 (a)-(d) represent objects pertaining to the same shoe from the JESA database. (a) is a

photograph of a latent crime scene print, (b) a photo of the shoe’s sole, (c) is a raw image of a

test impression, and (d) is the contact surface obtained from standardizing the test impression.

The superimposed blue points in (d) correspond to accidental locations. 10

2.2 (a) depicts the accidental locations (blue) and contact surface (orange) for eight synthetic

draws from the population ACy corresponding to the crime scene print y shown in Figure 2.1a.

(b) depicts the contact surface Cy (orange) and accidental locations xy (blue). (c) illustrates

the close correspondence between xy (blue) and xs (red) given by the accidental locations

from the rectangle enclosed shoe in (a). 14

2.3 (a),(b),(c) are standardized test impressions from the JESA database, (d) is the mean test

impression across the entire JESA database. 15

2.4 (a) is a histogram summarizing the number of accidentals on each shoe in JESA. (b) illustrates

the locations of these accidentals with points. 16

2.5 (a) provides a list of the possible shapes the contact surface can take around an atom,

accompanied by the index in φ ∈ [0, 1]32 to which it corresponds. (b) zooms in on an example

shoe’s contact surface (zoomed region outlined in black) to demonstrate the φsa value of two

example locations. 21

2.6 (a) illustrates the tiered cake parametrization of κh. Each uniquely colored tier is proportional

to the corresponding exp phi , with the dotted lines depicting how the cake is sliced that form

each κhi . (b) demonstrates the posterior fit of κh and κv using symmetrically arranged

boxplots. (c) depicts the posterior mean of k(i, j) = κhi κ
v
j centered (0, 0). The decay in

the h direction controlled by κh, and the decay in the vertical direction (v) controlled by κv,

with the hue changing according to a logarithmic scale. 23

xv

2.7 Comparison of the performance of four models: the contact model (red) the kernel density

estimate (green), our model (blue) and the uniform model (purple) on 50 held out shoes across

four data splits. The solid lines depict the metric given in (2.29) for each of 50 shoes (sorted

by our model’s performance). The dotted lines depict the mean for each model. 29

2.8 Posterior distribution boxplots of the parameters of the 32 possible shapes (listed in

Figure 2.5). Boxplot color indicates with the amount of contact surface present in each,

with vertical lines partitioning the levels. 31

2.9 Panels w, Shoe A, Shoe B, and Shoe C demonstrate the posterior predictive distribution of

accidental locations for four contact surfaces. Panel w is synthetic (entirely contact surface).

Shoe A corresponds to the shoe shown in Figure 1. Shoes B and C are other contact surfaces

from JESA. 32

2.10 (a) displays the 20000 gridpoints a ∈ A, colored white if we fix wa = 0, orange otherwise.

The black lines partition A into the coarser 10 × 10 grid associated with wE , each nonzero

grid region contains a blue number indicating the index in wE to which it corresponds. (b)

summarized the posterior distribution of wE as a square corresponding to each entry in wE .

As per the legend, the color of the square indicates its posterior mean and the size of the

square indicates is posterior standard deviation. 36

2.11 Trace plots demonstrating the Markov chain for the estimated held-out predictive performance

per accidental corresponding to shoes 1 through 25 of Data Split 1. The shoes are ordered

sequentially by the mean predictive performance, and the results pertain to our full model. . 43

2.12 A companion to Figure 2.11. Trace plots demonstrating the Markov chain for the estimated

held-out predictive performance per accidental corresponding to shoes 26 through 50 of Data

Split 1. The shoes are ordered sequentially by the mean predictive performance, and the

results pertain to our full model. 44

2.13 The contact surfaces and overlaid accidentals of two example shoes (a) and (b) from the JESA

database. In both of these cases, some of the accidentals do not occur on the contact surface 45

3.1 An example of a point process and observation windows which generate a sequence of sparse

latent position graphs . 55

xvi

4.1 A depiction of the relationship between the number of nodes in the synthetically generated

networks (τ = 0.2, 0.8, γ2 = 0.2, 1.0) for Empirical Study 1 and the relative efficiency

(compared to Metropolis within Gibbs) of the five posterior computation algorithms. For

each algorithm, relative efficiency (y axis) is quantified as the median across 500 dyads in the

synthetic network of the relative Markov chain efficiency compared to Metropolis within Gibbs.

For readability, the results from the analogous FlyMC algorithms are presented separately as

Figure 4.2, using the same colors (but dashed instead of solid lines). 117

4.2 A depiction of the relationship between the number of nodes in the synthetically generated

networks (τ = 0.2, 0.8, γ2 = 0.2, 1.0) for Empirical Study 1 and the relative efficiency

(compared to Metropolis within Gibbs) of the five FlyMC posterior computation algorithms.

This figure is a companion to Figure 4.1, presenting the same metric.The solid black baseline

is included for easy comparison to Metropolis within Gibbs. 118

4.3 Boxplots summarizing the distribution of relative efficiency of Split HMC + FlyMC and

standard Split HMC relative to Metropolis within Gibbs across 500 dyads in each network. . 119

4.4 Boxplots depicting the relative efficiency (in terms of effective sample size per second) of

split Hamiltonian Monte Carlo (both with and without FlyMC) compared to Metropolis

within Gibbs. The six different data/model configuration described above are considered.

For each configuration, the relative speed-up in effective sample size per second is provided

for computing the posterior log probability of a random subset of 500 dyads in the network.

Note that the x-axis is provided on the log scale. 123

4.5 The left panel depicts point estimates of the nodes’ latent positions in the one year, all schools

model. The right panel depicts point estimates of the nodes’ latent positions in the one year,

all schools, covariate a model. Both sets of point estimates are obtained via 2-dimensional

multi-dimensional scaling on the corresponding posterior expectation of the matrix of squared

latent distances. In both plots, each node’s shape/color combination is assigned according to

the individuals’s school. Uncertainty contours of the latent positions are depicted for three

individuals at different schools (one from school 1, one from school 4, one from school 14—the

contours are colored according to school). Finally, the information-sharing relationships are

included as edges. 124

xvii

4.6 Four panels depicting the tuned step size parameters used for Metropolis within Gibbs,

Metropolis within Gibbs + FlyMC, split HMC, and split HMC + FlyMC algorithms used

to fit the 16 different networks considered in Study 1 (Section 4.4.2). Each panel displays

the step size parameter (δ for Metropolis methods and ε for HMC methods) used for the 50,

100, 200, and 500 node networks generated using the parameter values featured in the panel

heading. Point color, point shape, line color, and line shape are used to distinguish between

the four algorithms. 133

4.7 Four panels depicting the marginal joint posterior of τ and γ2 for the 16 different networks

considered in Study 1 (Section 4.4.2). Each panel displays draws from the joint posterior for

the 50, 100, 200, and 500 node networks generated using the parameter values featured in the

panel heading. The draws for the networks of different sizes are differentiated by color, with a

black point used to indicate the true value of τ and γ2 used to generate each synthetic network.134

5.1 (a) depicts all recorded spike times for five neurons—labeled 1 through 5—over a 1500

millisecond time interval. Vertical bars are used to show the time of each spike. (b) depicts the

spike counts binned at 2 millisecond intervals for the first 150 milliseconds of the same spike

trains shown in (a). For each neuron, a bin is colored black if a spike occurs in its interval,

white otherwise. Dotted lines delineating the first 150 milliseconds are shown in both (a) and

(b) to facilitate comparison. 138

5.2 An illustration of the piece-wise linear trajectory of a zigzag process with a two-dimensional

position variable β. Arrowheads indicate the direction of each piece-wise linear component as

it progresses along with τ . 143

5.3 (a) depicts the canonical parametrization of the spike-and-slab prior π0 as defined in (5.19).

The continuous density component (the slab) of π0 is is shown in orange. The discrete point

mass at 0 (the spike) in blue. (b) depicts the reparametrized prior π̃0 on the variable β̃.

Following (a), the portion of the density corresponding to the slab component is shown in

orange, and the uniform distribution encoding the original spike component is shown in blue. 149

xviii

5.4 Boxplots depicting how the efficiency (in terms of effective sample size per second) of our

zigzag process-based posterior inference algorithm compares to that of the Polya-Gamma

augmentation algorithm of Linderman et al. (2016) for doing posterior inference on the

regression coefficients as the number of neurons N increases. Each boxplot corresponds to a

different synthetically generated dataset. The datasets differ in the numbers of neurons N

considered, numbers of time bins T reported, and logistic regression intercept b of the model

used to generated the synthetic data. Each boxplot is constructed using the ratio of effective

sample sizes per second of both algorithms for inferring each coefficient in the regression. Note

that the vertical axis is on a logarithmic scale, with the horizontal line at 1 showing the value

at which the two algorithms are considered equally efficient. 161

5.5 Boxplots depicting how the efficiency (in terms of effective sample size per second) of our

zigzag process-based posterior inference algorithm compares to that of the Polya-Gamma

augmentation algorithm of Linderman et al. (2016) for doing posterior inference on the

regression coefficients as the value of the regression intercept b decreases. Each boxplot

corresponds to a different synthetically generated dataset. The datasets differ in the numbers

of neurons N considered, numbers of time bins T reported, and logistic regression intercept

b of the model used to generated the synthetic data. Each boxplot is constructed using the

ratio of effective sample sizes per second of both algorithms for inferring each coefficient in

the regression. Note that the vertical axis is on a logarithmic scale, with the horizontal line

at 1 showing the value at which the two algorithms are considered equally efficient. 162

5.6 Boxplots depicting how the efficiency (in terms of effective sample size per second) of our

zigzag process-based posterior inference algorithm compares to that of the Polya-Gamma

augmentation algorithm of Linderman et al. (2016) for doing posterior inference on the

regression coefficients as the number of observed time bins T increases. Each boxplot

corresponds to a different synthetically generated dataset. The datasets differ in the numbers

of neurons N considered, numbers of time bins T reported, and logistic regression intercept

b of the model used to generated the synthetic data. Each boxplot is constructed using the

ratio of effective sample sizes per second of both algorithms for inferring each coefficient in

the regression. Note that the vertical axis is on a logarithmic scale, with the horizontal line

at 1 showing the value at which the two algorithms are considered equally efficient. 163

5.7 A companion plot for Figure 5.4 reporting the runtime (in seconds) it took to compute the

zigzag trajectory exploring the posterior associated with each of the synthetic spike train. Note

that for each posterior, the algorithm was run to generate a trajectory of length τ = 5000

reported at regular intervals to obtain a chain of length 50000. 164

xix

5.8 A companion plot for Figure 5.6 reporting the runtime (in seconds) it took to compute the

zigzag trajectory exploring the posterior associated with each of the synthetic spike train. Note

that for each posterior, the algorithm was run to generate a trajectory of length τ = 5000

reported at regular intervals to obtain a chain of length 50000. 165

xx

Chapter 1

Introduction

For the past five years, I have been working on problems related to two classes of statistical models: networks

and point processes. These random structures are often used in situations where traditional statistical

assumptions do not hold (e.g. the data are not independent or identically distributed), meaning extra care

must be taken to develop and extend statistical theory and tools to these settings. This dissertation consists

of four separate projects (Chapters 2–5) each tackling a different problem pertaining to the point processes,

network models, or their interface.

Chapter 2 develops a new hierarchical Bayesian point process model for an application in forensic science.

Chapter 3 develops a new point process-based framework for latent position network models—as well as

supporting theory—to fill an important gap in the existing sparse network literature. Chapter 4 develops an

efficient Monte Carlo algorithm for Bayesian inference of large latent position network models, and Chapter 5

develops an efficient Monte Carlo algorithm for Bayesian inference of high-dimensional point process models

that are useful for analyzing networks of neural spike trains.

Each chapter in this dissertation represents a self-contained project that has been submitted for

publication or is in preparation for submission. As such, I have made an effort to include all relevant notation,

terminology, and background information within-chapter for the benefit of the reader—each chapter can be

read independently without relying on other chapters. Unfortunately, this independence comes at the cost

of a few minor notation clashes across chapters. However, confusion can be minimized by focusing on each

chapter individually.

Although I intend for the chapters are intended to be standalone, the following short background section

may be useful to a reader looking to orient themselves on some basics of network models and point processes

prior to tackling a specific chapter. Moreover, Section 1.1.2 contains some additional background regarding

marked temporal Hawkes process—the model underlying the spike train GLM—that is not included in

Chapter 5.

1

1.1 Background

1.1.1 Latent Variable Network Models and Graphons

Networks are a tool for modeling relational information between entities, such as ties between friends. Usually

these take the form of binary matrix A with entry Aij indicating the presence of a link between entities i

and j (1 ≤ i ≤ j ≤ n). It can be useful to mathematically formalize networks as stochastic graphs, treating

the ties Aij as random edges between n nodes.

Chapters 3 and 4 of this dissertation (and to a lesser degree, Chapter 5) focus on a specific family of

stochastic graph models called latent variable network models. These models explain heterogeneities in

connection patterns between nodes using node-level latent variables. I primarily focus on a sub-class of this

family called the latent position model, with the stochastic block model earning the occasional mention as

well.

Latent position models (LPM)(Hoff et al., 2002) are characterized by each node of the network possessing

a latent position Zi in a metric space (S, ρ). The edges are modeled as drawn independently according to

P(Aij = 1 | Zi, Zj) = K(ρ(Zi, Zj)), (1.1)

with K : R+ → [0, 1] known as the link probability function. Typically, K assumed to be decreasing,

S is assumed to be a low-dimensional Euclidean space, and the Zi are treated as random effects drawn

independently from a multivariate Gaussian on S. The Euclidean space provides an intuitive way to visualize

the network, and the decreasing K ensures connection transitivity–friends of friends are more likely to be

friends because nodes due to the triangle inequality.

Similar to LPMs, stochastic block models (SBM) (Holland et al., 1983) are characterized by each node

having a latent block membership Zi ∈ {1, . . . ,M}, with edges drawn independently according to

P(Aij = 1 | Zi, Zj) = PZi,Zj , (1.2)

with P ∈ [0, 1]M×M . The matrix P is usually assumed to be larger along the diagonal, leading to edges

being more likely within communities than between between. Typically, block memberships are treated as

random effects, drawn from a categorical distribution over {1, . . . ,M}. Performing inference on the block

memberships is essentially model-based clustering on the graph nodes.

The similarity in how LPMs and SBMs are formulated is not purely coincidental. They both fall within

a more general class of latent variable network models called graphon∗ models Diaconis and Janson (2008).

Graphons characterize jointly exchangeable random graphs (graph distributions invariant to vertex index

∗Graphon is a portmanteau of graph and function

2

permutations (Orbanz and Roy, 2015)), as shown by the Aldous-Hoover theorem (Aldous, 1981). The

graphon set-up involves each node possessing a latent variable Zi in S drawn iidly from a distribution f .

Conditionally on Zi, Zj and a function w : S2 → [0, 1] (called the graphon), each edge is drawn independently

according to

P(Aij = 1 | Zi, Zj) = w(Zi, Zj). (1.3)

It is clear that both the SBM and LPM correspond to certain classes of w. Many other popular latent variable

network models in the literature also fall within the graphon framework, such as the mixed membership

stochastic block model (Airoldi et al., 2008), the random dot product model (Athreya et al., 2017), and

hierarchical random graphs (Clauset et al., 2008). Graphons provide a common lens for considering all of

these models, as well as a natural nonparametric framework for assigning priors on jointly exchangeable

graphs (Lloyd et al., 2012).

Some of the future work described in Chapter 5 relies on a more general statement Aldous-Hoover for

exchangeable real-valued arrays W . These arrays can be viewed as weighted graphs with the Wij ∈ R

corresponding to edge weights. They are characterized as follows.

As before, each node possesses latent variable Zi ∈ S distributed according to f . Furthermore, for each

pair of indices (i, j), generate a random variable Uij ∈ R according to a distribution q. Now, the weighted

edges Wij are given by

Wij = w(Zi, Zj , Uij), (1.4)

where w : S2 ×R→ [0, 1]. The result in (1.3) can be recovered from this more general result by choosing w

and q to define the appropriate Bernoulli distribution. The SBM and LPM can be extended to this setting

(Aicher et al., 2014; Sewell and Chen, 2016).

Though the exchangeability assumption and the resultant graphon framework are intuitively appealing,

the framework has its drawbacks. Exchangeability has the unfortunate side effect of forcing the resultant

network models to be dense— the expected number of edges in the model must grows quadratically with the

number of nodes (Orbanz and Roy, 2015). Many real-world networks exhibit sparse edge scaling behaviour

(the expected number of edges grows sub-quadratically) (Newman, 2010). Consequently, exchangeable

models are mis-specified in these contexts, necessitating alternatives to the exchangeability. Developing and

analyzing network models which are able to accommodate different levels of sparsity is an active research area

(e.g. Caron and Fox (2014); Borgs et al. (2014)). I contribute to this literature in Chapter 3 by developing

and analyzing a new framework which generalizes the latent position network model to accommodate for

sparsity. The approach relies heavily on point processes, in particular the Poisson process.

3

1.1.2 Point Processes and Marked Point Processes

A point process (Daley and Vere-Jones, 2007) is characterized by a random counting measure X on a well-

behaved† space S equipped with σ-field S. However, it is usually sufficient to think of X as the random

countable collection of points induced by the atoms in this counting measure. I usually take this view,

treating a point process X as a random collection of points on S, with both the number of points and their

locations randomly distributed. Occasionally, I do treat X as a random measure, using X(A) to denote the

value of the random measure X on A ∈ S.

Certain popular choices for the space S have received special attention in the literature. When S is the

positive real line R+, X is commonly referred to as a temporal point process (Brillinger et al., 2002), with

the points in the process forming a well-ordered collection of arrival times (e.g. the points could represent

times at which a neuron in the brain fires, or random points at which the parameters of an algorithm are

updated). When S ⊆ Rd, X is commonly referred to as a spatial point process (Baddeley et al., 2007); the

points can be thought of as d-dimensional locations in space (e.g. the locations of scrapes on a shoe sole).

Note that the space S need not correspond to physical time or physical space. The latent space for a LPM

in Chapters 3 and 4 is an example of an abstract space for a spatial Poisson process. The zigzag process in

Chapter 5 is an example of temporal Poisson process with an abstract time dimension.

In some instances, each point xi ∈ X is also associated with a mark mi. Often, these marks are discrete

m ∈ {1, . . . ,M} indicating the membership of the point to one of M distinct groups. Data of this form are

common when working with groups neural spike trains: continuous time series recording firing times of M

distinct neurons in the brain. Instead of treating the group of points as M distinct point processes, all points

can jointly modeled as a single process known as a marked point process (Daley and Vere-Jones, 2007, Chapter

6). Though marked point processes are seemingly distinct, they can set within the traditional point process

framework by augmenting the original space S with the mark space {1, . . . ,M} as S∗ = S×{1, . . . ,M} with

S∗ induced through the product σ-field. For instance, a marked temporal point process is simply a point

process on S = R+ × {1, . . . ,M}.

For my dissertation, I intend to mainly focus on two families of S: spatial point processes for Chapters 2

and 3, and temporal point processes (both marked and unmarked) for Chapter 5. For spatial point processes

and unmarked temporal point processes, I focus on a special class of point process called the Poisson process

(Kingman, 1993). For the marked temporal point processes, I focus on mutually-exciting Hawkes processes

(Hawkes, 1971; Laub et al., 2015). I describe them both here, starting with the Poisson process.

A Poisson process (PP) on (S,S) is one of the simplest point processes on S, assigning a Poisson

distributed number of points to each of the subsets of S in S, resulting in a random configuration of points

over S. A PP is parameterized by a measure Λ on S called the rate measure. When Λ can be normalized to

†Specifically, a locally compact second countable Hausdorff space

4

define a density λ over S, a realization X of PP(Λ) can be generated according to the following procedure:

N ∼ Poisson(Λ(S)), (1.5)

X = (x1, . . . , xN) such that (1.6)

xi ∼iid λ. (1.7)

There are a few properties of the PP which are especially important to note. Conditional on N , the

points (x1, . . . , xN) are independently and identically distributed. This separates the inference of Λ into

two separate components: inferring Λ(S) from the number of points, and inferring λ from their locations.

A second property is that, for A ∩ B = ∅, X(A) and X(B) are each independent and Poisson distributed.

Furthermore, the restrictions of X to A and B are each independent point processes. This property allows

the above generative approach to be extended to cases in which Λ is only σ-finite by partitioning S into

S1, S2, . . . such that each Λ(Si) < ∞, then combining independent Poisson processes PP(ΛISi). Here, the

PP(ΛISi) are generated by restricting Λ to each Si. This σ-finite case is important, as it is required to define

infinite graphs for Chapter 3.

Chapter 5 makes use of two additional convenient properties—superposition and thinning—for generating

PPs. The superposition principle indicates that the sum of two independent Poisson processes over S is

itself a Poisson process over S. Specifically, if X1 ∼ PP(Λ1) and X2 ∼ PP(Λ2) are independent over S, then

X1 +X2 ∼ PP(Λ1 + Λ2). By induction, this results extends immediately to the sum of multiple PPs.

The Poisson thinning principle states that if each point in a PP is independently subsampled, the result is

still a PP with a rate that depends on the specific subsampling probabilities. Specifically, if the points xi ∈ X

in a Poisson process X ∼ PP(Λ1) are randomly discarded such that a point xi ∈ S is kept with probability

π(xi) (π : S → [0, 1]) then the resultant thinned process X ′ is also a Poisson process—X ′ ∼ PP (π × Λ1).

The independence properties of the PP make it one of simplest and most tractable families of point

processes. However, it sometimes beneficial to relax these independence assumptions. In particular, treating

Λ as also being random measure allows one to model over-dispersion in the number of points observed, while

also introducing global dependence between the locations of all points. The resultant marginal distribution

over X is referred to as a Cox process, or a doubly-stochastic Poisson process (Cox and Isham, 1980). Cox

processes are particularly useful for spatial modeling when there are replicated observations in the data, or

for hierarchically modeling several dependent spatial point processes as I do in Chapter 2.

In other cases, the global dependence induced by the Cox processes is not enough to capture the

dependencies in the data. In temporal modeling, one often wants the dependence to be local rather than

global; the dependence between two times periods should depend on the time elapsed between them. For

instance, it is known that the firing of a neuron in the brain can trigger (or inhibit) its firing again within a

nearby time interval, causing strong dependence between a neuron’s activity at nearby time points. A neuron

5

may trigger or inhibition other neurons as well, enforcing local dependence between points with different

marks. I consider such a problem in Chapter 5.

This local-in-time dependence between points can be directly modeled by including it in the generative

process– this is the case in Hawkes process (HP) (Laub et al., 2015), in which a point at one time point

can inhibit or trigger points in the following time period. In Chapter 5, I consider a special class of marked

Hawkes processes referred to as mutually exciting Hawkes processes (MEHP), which capture dependencies

between marks in time.

The following is the set-up of a MEHP. It is a marked temporal point process on S = [0, T]×{1, . . . ,M}

for which [0, T] is the time space and 1, . . . ,m are the possible values of marks. The MEHP is parametrized

by two functions: the background rate λ : S × {1, . . . ,M} → R+ which controls the baseline rate at which

each mark occurs, and the triggering rate η : [0, T] × {1, . . . ,M}2, which controls how the probability of a

point and its mark at a current time points is influenced by the history of the process (the points (mi, ti) ∈ X

such that ti < t). The following expression defines the rate of points with mark m at time t ∈ [0, T]:

fm(t) = φ(λ(t,m) +
∑
i:ti<t

η(t− ti,mi,m)). (1.8)

Here, φ is a link function. In a standard (linear) MEHP, φ is defined as the rectifier φ(x) = min(0, x) to

prevent the rate from falling below zero in the presence of inhibition (η < 0). In Chapter 5, I consider models

for which φ is defined as a non-negative nonlinear function, such as the exponential or sigmoid function (we

rely on the sigmoid function in Chapter 5). This approach results in a nonlinear Hawkes process (Brémaud

and Massoulié, 1996).

It is common in the literature to model the triggering function η as following a parametric form, such as

η(t,mi,mj) = βijg(t; θ) where β ∈ Rm×m and g is a class of smooth functions parametrized by θ ∈ Rd (e.g.

g(t; θ) = exp (−θt)). I make such an assumption in Chapter 5, modeling each η as a linear combination of

known basis functions, therefore making estimation of η equivalent to that of estimating β.

When modeling non-linear Hawkes processes with exponential or sigmoid link functions, it is common

practice to bin the observations into counts over small time increments. Inferring the parameters of the

baseline λ(t,m) and triggering β in this setting is equivalent to learning a log-linear model (Kass et al., 2011;

Truccolo et al., 2005). This approach, sometimes referred to as a log-linear MEHP, is more computationally

tractable than the non-discrete case; it permits out-of-the-box software implementations of generalized linear

models to be used to the fit the models.

However, care must be taken when inferring β to ensure that the resultant model is stable — the excitation

level should not routinely result in the number of points exploding (Chen et al., 2018). Two ways to greatly

reduce the risk of estimating an unstable model is to assume sparsity in the parameters of η (requiring that

most marks do not influence each other), and placing Bayesian priors on the parameter values to place little

6

prior probability on models which are unstable. Such additional structure can complicate inference. We

address this problem in Chapter 5.

7

Chapter 2

A Bayesian Hierarchical Model for

Evaluating Forensic Footwear

Evidence

2.1 Introduction

Forensic footwear analysis encompasses a suite of techniques used to analyze latent shoeprints as part of

forensic investigations. A principal goal of these investigations is to link a suspect’s shoe to a crime scene

print, providing evidence to place the suspect at the scene of the crime. Figure 2.1a provides an example of

a latent crime scene shoeprint.

As described by Bodziak (2017), the procedure for determining the source of a latent print typically

consists of two stages. First, the examiner inspects the tread of the latent print to identify class characteristics

(brand, model, and size) of the source shoe. This identification can be carried out manually, or automated

using tread matching algorithms (e.g. Srihari and Tang (2014); Richetelli et al. (2017a); Kong et al. (2017)).

Manufacturers routinely produce thousands of shoes of the same make and model, meaning that class

characteristics alone are often insufficient for determining a print’s source. For this reason examiners regularly

turn to a second stage of analysis: the inspection of accidentals. Accidentals, also known as randomly

acquired characteristics, are the post-manufacturing cuts, scrapes, holes, and debris that accumulate on a

shoe sole. Examiners are trained to identify accidentals on a shoe by inspecting both the shoe’s sole and

test impressions— high quality prints created using the shoe in a controlled laboratory setting. Figure 2.1b,

Figure 2.1c, and Figure 2.1d depict a shoe sole, test impression, and accidentals locations, respectively.

9

These images all correspond to the same shoe obtained from the JESA database (Yekutieli et al., 2012) (we

describe the JESA database in §2.2.2).

(a) (b) (c) (d)

Figure 2.1: (a)-(d) represent objects pertaining to the same shoe from the JESA database. (a) is a
photograph of a latent crime scene print, (b) a photo of the shoe’s sole, (c) is a raw image of a test impression,
and (d) is the contact surface obtained from standardizing the test impression. The superimposed blue points
in (d) correspond to accidental locations.

In theory, if both the class characteristics and the accidentals of a suspect’s shoe coincide exactly with

those detected from the crime scene print, then the suspect’s shoe is almost certainly the source of the print.

In practice, the comparison is less clear-cut. Latent crime scene prints are typically of low quality, making

it difficult to pick out all of the individual accidentals. Furthermore, accidental locations are known to vary

slightly from test print to test print due to variability in the impression-taking process (Shor et al., 2017),

so there is some uncertainty on their exact locations on the source shoe. As a result, accidental comparisons

typically involve comparing a subset of approximate accidental locations on the test impression to those

detected on the crime scene print. This uncertainty leaves the possibility of a false positive due to chance,

especially for partial prints and tread patterns on which accidentals are very likely to occur in certain regions.

To account for the possibility of a false positive, shoeprint analysts are encouraged to provide a measure of

the uncertainty of the match when testifying in court (Edwards and Gotsonis, 2009). One popular summary

for communicating this uncertainty is the random match probability (RMP) (Thompson and Newman, 2015).

The RMP is the probability that a randomly sampled shoe would produce a print matching the observed

features at the crime scene. For instance, if 15 out of 10000 relevant shoes were consistent with the crime

scene print, the RMP would be 0.0015.

The standard approach for evaluating RMPs decomposes into three terms: the evidence given by the

class characteristics, the evidence based on general wear, and accidental-based evidence (Evett et al., 1998;

Skerrett et al., 2011). In this work, we focus on accidental-based evidence, inspired by the recent report on

10

forensic science by The President’s Council for Advisors on Science (PCAST, 2016) that criticized existing

work in the area.

We address the concerns of PCAST (2016) by developing and estimating the parameters of a model

for the distribution of accidental configurations on a shoe. Specifically, we model the spatial distribution

of accidentals on a shoe sole as a point process, treating the sole’s tread pattern as a covariate. We fit

and evaluate our model using the JESA database (Yekutieli et al., 2012), a ground truth dataset of 386

accidental-annotated shoeprints compiled by the Israeli Police Department’s Division of Forensic Science.

The JESA database is one of the largest existing databases of its kind (Speir et al., 2016), consisting of shoes

with a variety of tread patterns.

We define our model within a hierarchical Bayesian framework, pooling information across JESA to infer

general trends spanning a broad variety of shoes. Our model is a finite resolution version of the normalized

compound random measure framework of Griffin and Leisen (2017), modified to incorporate spatial covariates

and dependency of the intensity across space. We develop the computational tools to fit our model, evaluate

it, and demonstrate that it outperforms existing approaches by a wide margin.

The remainder of this chapter is organized as follows. In Section 2.2, we review the literature related to

random match probabilities, formalize the link between evaluating random match probabilities and modeling

spatial distributions of accidentals, describe the JESA database of annotated shoeprints collected by Yekutieli

et al. (2012), and review the relevant literature pertaining to vectors of dependent probability measures. In

Section 2.3, we provide the details of our hierarchical Bayesian model for spatial configurations of accidentals.

In Section 2.4, we propose a Markov chain Monte Carlo algorithm for inferring the parameters of the model,

and an importance sampling algorithm for evaluating marginal likelihoods. In Section 2.5, we showcase the

results of fitting our model to the JESA dataset and compare its performance to other candidate models.

Section 2.6 contains some concluding remarks.

2.2 Preliminaries

2.2.1 Random Match Probabilities

A theory to evaluate RMPs for footwear evidence was laid out in Evett et al. (1998) in the context of

evaluating likelihood ratios. The framework is equally applicable to evaluating raw RMPs. Let y denote a

crime scene print and A denote the relevant population of plausible sources of the crime scene print. For

instance, A could be all shoes belonging to residents of a particular city or town. As per Evett et al. (1998),

the random match probability for footwear evidence is given by

RMP = p(y ≡ s | s ∼ A) (2.1)

11

where y ≡ s indicates that shoe s exhibits features consistent with those of the print y, and s ∼ A is

shorthand for s being chosen uniformly at random from all shoes in the set A. Further discussion of random

match probabilities with examples from forensic science is available in Srihari and Su (2011).

Following the classical two step process of forensic footwear analysis, Evett et al. (1998) suggested that

the RMP be calculated using the factorization RMP = rmpM rmpU . Here, rmpM denotes the probability

that a randomly chosen shoe in A has class characteristics matching the latent crime scene print, and rmpU

denotes the probability that the shoe is also consistent with the wear patterns and accidentals, given that it

matches on the class characteristics. Skerrett et al. (2011) refined this representation by further decomposing

rmpU into rmpW and rmpV , corresponding to separate conditional probabilities of matching on general wear

and accidentals, respectively.

Let yM , yW , and yV denote the class characteristics, general wear, and accidentals observed on the latent

print y with sM , sW , sV denoting the same features as observed on a shoe s ∈ A. The factorization proposed

by Skerrett et al. (2011) can be formally expressed as

RMP = rmpM · rmpW · rmpV , (2.2)

rmpM = p(yM ≡ sM | s ∼ A), (2.3)

rmpW = p(yW ≡ sW | s ∼ {s′ ∈ A : yM ≡ s′M}), (2.4)

rmpV = p(yV ≡ sV | s ∼ {s′ ∈ A : yM ≡ s′M , yW ≡ s′W }), (2.5)

where yM ≡ sM denotes the class characteristics of s being consistent with those of y, and yW ≡ sW and

yV ≡ sV defined similarly. Implicit in this decomposition is the assumption that y ≡ s is characterized

by yM ≡ sM , yW ≡ sW , and yV ≡ sV , a reasonable choice given that these features form the basis of

forensic footwear analysis (Bodziak, 2017). Strategies for evaluating rmpM and rmpW based on relevant

databases (e.g. Evett et al. (1998); Champod et al. (2004) for rmpM and Fruchtenicht et al. (2002); Facey

et al. (1992); Bodziak et al. (2012) for rmpW) were discussed in Skerrett et al. (2011). However, evaluating

the accidental-based component rmpV was left as a subject for future work. In this work, we focus on the

remaining accidental-based component. We begin by making two simplifying assumptions.

First, we follow Petraco et al. (2010) in assuming that the evidence present in a configuration of accidentals

on a crime scene print yV is characterized by the locations (e.g. the blue points shown in Figure 2.1d). We

omit secondary characteristics such as shape or size of the accidental as they are difficult to reliably glean

from latent prints. We use xs to denote the accidental locations on shoe s and xy to denote the locations

detected on print y. Employing a standardized coordinate system (details provided in §2.2.2), we have

xs ∈ ([0, 100] × [0, 200])Ns , xy ∈ ([0, 100] × [0, 200])Ny where Ns denotes the number of accidentals on shoe

s and Ny denotes the number detectable on print y. We use xsn = (xsn,1, x
s
n,2) to denote the nth row of xs.

12

Because examiners are adept at recovering yM and yW from a shoeprint y, our second assumption is that

a shoe’s class characteristics and wear are characterized by its contact surface. A shoe’s contact surface refers

to the portion of its sole that typically touches the ground when worn — the part responsible for leaving

prints. An example contact surface is provided in Figure 2.1d. We provide a more detailed definition of

contact surface in §2.2.2. Letting Cs denote the contact surface of shoe s, this assumption can be formalized

as s, s′ ∈ A, Cs = Cs′ if and only if sM ≡ s′M and sW ≡ s′W .

After characterizing yV using accidental locations and yW , wM using the contact surface, we can now re-

express the accidental-based random match probability in (2.5) in a form that is more tractable for statistical

inference. The relation yV ≡ sV reduces to a comparison of the point clouds xy and xs (denoted xy ≡ xs).

The set {s′ ∈ A : yM ≡ s′M , yW ≡ s′W } reduces to the set of relevant shoes with the given contact surface

(i.e. ACy = {s′ ∈ A : Cs′ = Cy}, where Cy denotes the contact surface as determined from y). Thus, the

accidental-based random match probability given in (2.5) reduces to

rmpV = p(xy ≡ xs | s ∼ ACy). (2.6)

In theory, computing rmpV using (2.6) is straightforward. One would simply inspect all shoes in A with

contact surface Cy to determine the ratio that also have accidentals consistent with xy. Even if A were not

completely accessible, a large random sample would suffice to provide a sufficiently accurate approximation.

Figure 2.2 illustrates this strategy for a small example.

In practice, the computation of rmpV is complicated by two issues:

1. In many cases, no shoes in ACy (other than the suspect’s shoe) are accessible by the examiner.

Examiners are left to rely on previous experience and limited data (e.g. a small convenience sample

from A or a related database) to make inferences regarding the conditional distribution of xs|s ∼ ACy .

Historically, these inferences have been based on heuristics that lack empirical support (PCAST, 2016).

2. Determining if xy ≡ xs is complicated by three phenomena: (i) a shoe’s detected accidental locations

are known to vary slightly each time it is printed (Shor et al., 2017), meaning that the locations in

xy may only approximate those in xs, (ii) some accidentals do not reliably show up on crime scene

prints (Richetelli et al., 2017b), meaning that the accidentals in xy could be a thinned version of xs,

and (iii) test impressions may not be obtained until long after the crime was committed, leaving the

opportunity for new accidentals to arise (Wyatt et al., 2005) or existing accidentals to change (Sheets

et al., 2013) in the meantime.

We concentrate on issue 1 in this work, developing a more principled approach to inferring the distribution

xs|s ∼ ACy using the JESA database. Issue 2 is beyond the scope of this work, as determining an appropriate

definition of xy ≡ xs would require much richer data than is currently available in the literature. However,

13

(a) (b) (c)

Figure 2.2: (a) depicts the accidental locations (blue) and contact surface (orange) for eight synthetic
draws from the population ACy corresponding to the crime scene print y shown in Figure 2.1a. (b) depicts
the contact surface Cy (orange) and accidental locations xy (blue). (c) illustrates the close correspondence
between xy (blue) and xs (red) given by the accidental locations from the rectangle enclosed shoe in (a).

given a definition of xy ≡ xs, our model can compute the RMP via Monte Carlo. Figure 2.2 demonstrates

this process with Figure 2.2a depicting the samples drawn from the distribution xs|s ∼ ACy .

2.2.2 JESA

The Jerusalem Shoeprint Accidentals Database (JESA) is one of a series of datasets created by the Israel

Police Department’s Division of Forensic Science. It pertains to 386 men’s shoes collected as evidence

through casework. A full description of the database is available in Yekutieli et al. (2012). For each shoe,

there are two data structures relevant to our work – the standardized shoeprint image (contact surface) and

the accidentals.

Standardized Shoeprint Image

Test impressions for each shoe were obtained by applying orange powder to their soles, pressing them onto

clear films, then digitally photographing the residual orange impressions on the films. An example impression

image is shown as Figure 2.1c.

For consistency across shoes, each image was standardized onto a 200 by 100 grid. Standardization

involved translating, aligning, and scaling the images so the prints were centered, pointed upwards, and of

the same length. The axes for the alignment were designated through point-and-click software by trained

14

examiners. All left shoes were mirrored to appear as right shoes. Alignment of the images facilitates the

pooling of information across shoes, even if they differ in size or chirality (i.e. left shoe or right shoe).

After standardization, the images were smoothed and de-noised to isolate the contact surface— the areas

of the shoe sole that typically touch the ground. The smoothing was performed to preserve the shoe’s

tread pattern and general wear while filtering out small breaks due to accidentals or imperfections in the

impression. These contact surfaces take the form of 200 by 100 binary arrays, with each bit defining contact

or non-contact of a region of the shoe. Figure 2.1d illustrates the positive values of contact surface for the

shoe in Figure 2.1b. The superimposed points are the locations of accidentals.

Additional example contact surfaces are shown in Figures 2.3a, 2.3b, and 2.3c, demonstrating the variety

of tread patterns in the JESA database. No two contact surfaces in the JESA database are exactly alike,

although those that correspond to the same brand of shoe are similar (differences in wear patterns, as well

as variation in test impressions, account for the differences).

(a) (b) (c) (d)

Figure 2.3: (a),(b),(c) are standardized test impressions from the JESA database, (d) is the mean test
impression across the entire JESA database.

Figure 2.3d depicts the average contact surface across the entire database. It shows that it is far more

common for regions of the shoe corresponding the heel and toes to be part of the contact surface than

regions corresponding to the shoe arch. This discrepancy drives home the importance of conditioning on

contact surface when evaluating accidental-based RMPs; shoes with arches that do make contact with the

ground (the minority) would likely have different accidental distributions than those that do not. We use

C = {0, 1}100×200
to denote the space of values that a contact surface can take, and Cs ∈ C to denote the

contact surface of shoe s.

15

Accidentals

For each shoe, examiners identified accidentals by inspecting the shoeprint image and the shoe sole itself. The

locations of the centroids of the accidentals were recorded using a computerized system. These locations

were stored as real numbers in [0, 100] × [0, 200] corresponding to the standardized space of the contact

surface. The region [0, 1] × [0, 1] corresponds to the bottom left hand corner of the standardized grid, and

[99, 100]× [199, 200] corresponds to the top right. Figure 2.1d gives an example of the locations accidentals

as points on the shoeprint image.

The number of accidentals, and their locations, varies from shoe to shoe. Figure 2.4a provides a histogram

of the number of accidentals on each shoe. The distribution is heavily skewed to the right– the median number

of accidentals is 20, whereas the mean is 33, and the maximum is 268.

0

25

50

75

100

0 100 200

Number of Accidentals

N
u
m

b
er

of
S
h
o
es

(a) (b)

Figure 2.4: (a) is a histogram summarizing the number of accidentals on each shoe in JESA. (b) illustrates
the locations of these accidentals with points.

Figure 2.4b aggregates the coordinates of all accidentals recorded in the JESA database. Its similarity to

that of Figure 2.3d is consistent with the intuition that accidentals should appear more frequently in areas

of the shoe which are part of the contact surface. However, not all accidental locations fall on the sole with

contact surface. Of the accidentals in JESA, about 12 percent of them occur in grid points without contact.

Therefore, a robust model should be able to assign probability to situations in which accidentals do not

occur directly on the contact surface. Examples of shoes in JESA for which accidentals occur away from

the contact surface are available as Figures 2.13a and 2.13b. Following Damary et al. (2018), we exclude

rift-type accidentals from our analysis because they occur only on specific type of shoe tread, making their

spatial distribution markedly different than the more frequently occurring types of accidentals (e.g. hole or

scratch).

16

2.2.3 Existing Models for the Distribution of Accidentals

Going forward, we use the shorthand xs|Cs to refer the distribution of accidental locations xs on a shoe s

with contact surface Cs, with Cs = Cy referring to the distribution required to compute the RMP (2.6). For

easy comparison of existing models in the literature with the approach we develop, we use a unified notation.

We begin by treating each xs|Cs as a draw from a 2-dimensional spatial point process (Daley and

Vere-Jones, 2007) over the standardized space [0, 100] × [0, 200]. For our model, we make three additional

assumptions regarding the structure of these point processes: (1) the individual accidentals (xsn)n=1...Ns are

exchangeable, (2) the marginal distribution of each xsn is independent of the total number of accidentals Ns,

and (3) the distribution of xs depends on s only through the contact surface Cs. The first two assumptions

are common in the literature, whereas the third is unique to our model because we are first to incorporate

the contact surface.

Following assumptions (1) and (2), (xsn)n=1...Ns can be treated as independent draws from a random

probability measure Λs on [0, 100] × [0, 200]. The literature has mostly focused on universal models for

Λs, assuming a fixed Λ that is common to all shoes s ∈ A. Stone (2006) proposed a uniform model for

Λ, i.e. Λ ∝ 1. This assumption has been criticized for its lack of empirical support, as noted by PCAST

(2016). Yekutieli et al. (2012) instead inferred Λ using a kernel density estimator on the accidentals in JESA

(Section 2.2.2). Speir et al. (2016) applied a similar histogram estimator to a different database, yielding

comparable results.

Because estimating a single Λ does not allow for conditioning on class characteristics or wear, these

approaches implicitly assume that a shoe’s accidental locations are independent of its contact surface.

Evidence against this assumption was provided by Damary et al. (2018); their analysis of multiple replicates

of three different tread patterns appearing in the JESA database revealed that different tread patterns tend

to yield different accidental distributions. Therefore, having distinct Λs that depend on Cs seems more

appropriate, serving as the motivation for our assumption (3) above.

We encode assumption (3) in our model by explicitly treating each Λs as a draw from a distribution GCs .

As the notation suggests, GCs = GCs′ if Cs = Cs′ , but the distributions of Λs and Λs′ can differ otherwise.

Other works have followed a similar line of thought by restricting analysis to a single type of shoe at a time

(Adair et al., 2007; Petraco et al., 2010; Wilson, 2012). In each of those studies, several replicates of the exact

same pair of shoes were worn independently for a period of time, after which their accidental locations were

annotated, analyzed, and compared. This allowed for the identification of common trends for one specific

type of shoe. Though such data is ideal for modeling GCs , the approach cannot be practically scaled to

all types of shoes. Collecting multiple annotated observations for all given tread patterns is prohibitively

expensive. In addition, the project would have to continue in perpetuity, continually updating the database

to account for the ever-growing list of footwear styles and brands.

17

For this reason, we propose a more general and scalable approach in our modeling of Λs. Instead of

developing independent models GCs for each unique contact surface, we propose a Bayesian hierarchical

model to pool information across many contact surfaces at once. Let C denote the space of possible contact

surfaces. Our goal is to infer the entire family of distributions G = (GC)C∈C as a single model, treating

a shoe’s contact surface C as a covariate. This joint modeling approach helps to leverage the information

available in heterogeneous databases — in our case the JESA database — to identify the relationship between

the contact surface and accidental locations and to capture commonalities that span across many shoe types.

Let J denote a set of available shoes (e.g. JESA) used to infer G. Then (Λs)s∈J is a vector of dependent

random probability measures, with the dependence between them induced by a hierarchical model on G.

We now review existing approaches for modeling vectors of dependent probability measures, limiting our

discussion to that which is most relevant to our model. We defer discussion of additional related work to

Section 2.7.2.

2.2.4 Random Vectors of Dependent Probability Measures

Over the years, there has been a broad interest in modeling dependent probability measures, especially via

nonparametric Bayes (Hjort et al., 2010; Foti and Williamson, 2015). The approach we use to model (Λs)s∈J

in this work is not fully nonparametric, but it is a finite-resolution approximation of one. Thus, it is natural

to frame our review within the nonparametric Bayesian literature.

The canonical Bayesian nonparametric approach to modeling a measure µ on a space Ω is to treat it as

a random draw from some subclass of measures on Ω. Completely random measures (Kingman, 1967) are

an especially tractable subclass of random measures that are composed of a (possibly countably infinite)

collection of weighted atoms in Ω. We use (θi)i=1,...,∞ ∈ Ω∞ to denote the locations of the atoms of the

completely random measure µ, and (wi)i=1,...,∞ ∈ R∞+ to denote the corresponding (non-negative) atom

weights. The defining feature of a completely random measure is that, for any disjoint subsets Ω1,Ω2 ⊂ Ω,

µ(Ω1) is independent of µ(Ω2) (complete randomness). An accessible review of completely random measures

as they pertain to statistical modeling is available in Jordan (2010).

For our purposes, we are interested in atomic measures that do not necessarily satisfy the complete

randomness assumption. In particular, we are interested in atomic random probability measures — random

measures µ consisting of atoms such that µ(Ω) = 1. Any finite atomic random measure can be converted to

a probability measure via normalization. For instance, a normalized completely random measure takes the

form

µ̄(·) =

∑∞
i=1 wiδθi(·)∑∞

i=1 wi
. (2.7)

18

where wi, θi are defined analogously to above. The strength of atomic probability measures is that they can

be convolved with probability kernels to define mixture models for densities (e.g. Escobar and West (1995),

Rasmussen (2000)). Each atom acts as its own mixture component, providing a framework that is flexible

and computationally tractable.

Rather than a single normalized random measure, we are concerned with a vector of dependent random

probability measures (Λs)s∈J that can capture commonalities across all shoes in JESA. Particularly relevant

to our work is the recently proposed normalized compound random measure framework (NCoRM) of Griffin

and Leisen (2017), which formulates the vector of random probability measures µ1, . . . , µK on Ω as

µk(·) =

∑∞
i=1m

k
iwiδθi(·)∑∞

i=1m
k
iwi

(2.8)

where (θi, wi)i=1,...,∞ are drawn as in a single completely random measure and (mk
i)i=1,...,∞ are iid random

“score” variables for k = 1, . . . ,K, following a distribution ρ, that up-weight or down-weight the shared set

of atoms defined by the (θi, wi) for each of the µk’s. The distribution of the scores controls the strength of

the dependence, with much of the exposition in Griffin and Leisen (2017) devoted to gamma distributions

due to their computational tractability. We use the idea of scoring in normalized atomic random measures

to develop our model. However, modifications must be made.

The NCoRM approach as described in Griffin and Leisen (2017) was developed for exchangeable vectors of

random probability measures. However, exchangeability does not hold when each measure has an associated

covariate (as we have in the contact surfaces Cs). For this reason, we generalize the idea of “scoring” from

NCoRMs to the non-exchangeable setting, allowing us to incorporate covariate information. It is worth

noting that Griffin et al. (2018) also generalizes the NCoRM framework to a non-exchangeable regression

framework, but differently than we do here.

2.3 Model

Recall that for a given shoe s ∈ J, we have assumed each accidental location xsn is drawn independently

from a probability measure Λs on [0, 100] × [0, 200] where Λs itself is randomly drawn from a distribution

GCs that depends on the contact surface Cs ∈ C. Because it is impractical to independently model GC for

all possible C ∈ C, we develop a hierarchical model to jointly infer all entries of G, treating each C ∈ C as a

high-dimensional spatial covariate.

Before specifying how we model the family of distributions G, it is useful to first address the limited

precision of the data. As per §2.2.2, the contact surface variables C ∈ C are defined on a discrete 200 by 100

19

equally-spaced grid over [0, 100]× [0, 200]. We use A to denote the set of entries in this grid:

A = {(a1, a2) : a1 ∈ {1, . . . , 100}, a2 ∈ {1, . . . , 200}} (2.9)

with gridpoint (a1, a2) ∈ A corresponding to the area (a1 − 1, a1] × (a2 − 1, a2] in [0, 100] × [0, 200]. We

restrict our model for Λs to have the same resolution as A by discretizing Λs to be a piece-wise constant over

each gridpoint in A. This reduced resolution provides computational advantages, simplifies interpretation,

and guards against overfitting. Further discussion of the discretization is available in Section 2.7.1.

After discretization, each Λs can be characterized by the values it takes at the grid points in A, and each

GC ∈ G can be characterized by the multivariate distribution it assigns to those grid points. This provides

a natural representation for parametrizing our model — we view G as a family of distributions over the

20000-dimensional simplex indexed by C, with each GCs characterized by the joint distribution it defines

over the vector of values in the probability measure Λs|Cs. It is most straightforward to describe G in terms

of the generative process it assigns to a generic Λs|Cs, as we do below.

2.3.1 Parameterization of Λs

We model each measure Λs ∼ GCs as the convolution of a normalized random atomic measure µs with a

two dimensional piece-wise constant probability kernel k. We define µs to consist of 20000 atoms at fixed

locations — one for each gridpoint in A. To model the weights of each of these atoms, we generalize the

NCoRM scoring technique of Griffin and Leisen (2017) to incorporate the covariate information in Cs, and

to allow for spatial dependence between atom weights.

For each a ∈ A, we define the distribution of µs|Cs as

µs(a) =
wam

s
a∑

b∈A wbm
s
b

=
waε

s
aφ

s
a∑

b∈A wbε
s
bφb

. (2.10)

Here, (wa)a∈A are parameters common to allG, and (ms
a)a∈A are random shoe-specific location-specific scores

applied to the weights of the atoms. The scores further decompose into two components: ms
a = εsaφ

s
a, with εa

representing “traditional” scores as in NCoRM (assumed to be independent for all shoes and all locations),

and φsa representing contact-dependent scores — variables that depend on the nearby configuration of Cs.

We model the traditional scores as independent draws from ρq = Gamma(q, 1). The contact-dependent

scores φsb are treated as parameters, defined as follows.

20

Let φ ∈ [0, 1]32. For all a ∈ A, s ∈ J define

φsa = φrsa where (2.11)

rsa = 1 +

1∑
i=−1

1∑
j=−1

23+i+2jCsa+(i,j)I(||(i, j)||2 ≤ 1). (2.12)

By this formulation, φsa takes one of 25 = 32 values depending on the value of the contact surface at the

gridpoints surrounding a. For instance, if a is completely surrounded by contact surface, i.e.

Ca+(−1,0) = Ca+(0,−1) = Ca = Ca+(1,0) = Ca+(0,1) = 1, (2.13)

then φsa = φ32. Similarly, if a is in an area devoid of contact surface, i.e.

Ca+(−1,0) = Ca+(0,−1) = Ca = Ca+(1,0) = Ca+(0,1) = 0, (2.14)

then φsa = φ1. A demonstration of the possible configurations is provided in Figure 2.5a along with an

depiction of rsa for two a ∈ A in Figure 2.5b.

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32

(a)

22

15

(b)

Figure 2.5: (a) provides a list of the possible shapes the contact surface can take around an atom,
accompanied by the index in φ ∈ [0, 1]32 to which it corresponds. (b) zooms in on an example shoe’s
contact surface (zoomed region outlined in black) to demonstrate the φsa value of two example locations.

Before specifying the functional form for the kernel k (which smooths the atom weights), let us first

interpret of the various components that define the atoms weights for µs in the context of the shoe sole and

21

accidentals.

The weights are the normalized product of three components:

1. φ, which specifies the impact of a gridpoint’s surrounding contact surface on the relative likelihood of

accidental occurrence,

2. w, which specifies the impact of the position of a gridpoint’s spatial coordinates on the relative likelihood

of accidental occurrence, and

3. ρq (parameterized by q), which specifies the variability across shoes of each gridpoint’s relative

probability of accidental occurrence, controlling for position and contact surface.

Essentially, the parameters φ and w control the mean of µs, whereas its variance depends on the εsa scores —

distributed according to ρq. These choices are in-line with a common belief in forensic footwear analysis —

that the locations of accidentals tend to follow a spatially inhomogeneous distribution across the shoe sole

(captured by w), and that some areas are more likely to be affected than others depending on their contact

with the ground (captured by φ). We model each of φ, w, and q as global parameters, assuming they take

the same value for all shoes JESA.

The random shoe-specific errors εs capture deviations from this common trend. The coefficient of variation

of ρq — given by q−1/2 — indicates the strength of the deviations. The smaller the value of q, the larger

the variation of µs around its mean.

Finally, we convolve all atoms in all µs with a kernel k to obtain Λs. The kernel is parameterized to

smooth the weights across nearby atoms. Recognizing that the smoothing should be local, we define the

kernel k to have finite support, symmetrically redistributing the mass over a window extending three grid

points from a in all four axis-aligned directions. Figure 2.6a illustrates the shape of the probability kernel.

We refer to this parameterization as the tiered cake representation due to the resultant kernel resembling a

tiered cake with pα controlling the size of each tier.

We parameterize k as a function k : {−3, . . . , 3}2 → [0, 1] such that

k(i, j) = κh1+|i|κ
v
1+|j|. (2.15)

Here, κh, κv ∈ [0, 1]4 define independent symmetric kernels in the horizontal and vertical directions, and k

is their composition. To ensure that κh and κv are unimodal probability kernels, we further re-parameterize

them as

καi =

∑4
j=i exp(pαj)/(2j − 1)∑4

j=1 exp(pαj)
, (2.16)

22

κh4 κh3 κh2 κh1 κh2 κh3 κh4
kernel cross-section

ke
rn

el
va

lu
e

∝ exp(ph4)

∝ exp(ph3)

∝ exp(ph2)

∝ exp(ph1)

(a)

h v

-3-2-1 0 1 2 3 -3-2-1 0 1 2 3

0.00

0.25

0.50

0.75

Separation from mode

K
er

n
el

H
ei

gh
t

(b)

-2

0

2

-2 0 2

h

v

1e-05
1e-04
1e-03
1e-02
1e-01

kernel

(c)

Figure 2.6: (a) illustrates the tiered cake parametrization of κh. Each uniquely colored tier is proportional
to the corresponding exp phi , with the dotted lines depicting how the cake is sliced that form each κhi . (b)
demonstrates the posterior fit of κh and κv using symmetrically arranged boxplots. (c) depicts the posterior
mean of k(i, j) = κhi κ

v
j centered (0, 0). The decay in the h direction controlled by κh, and the decay in the

vertical direction (v) controlled by κv, with the hue changing according to a logarithmic scale.

for i = 1, . . . , 4, α = v, h, and each pα ∈ R4. Note that our fitted results (Figure 2.6b) indicate that

extending the window for three grid points appears to be excessive, but parameterizing three allowed for

such a discovery. Going forward, we will often suppress the pα parameterization to make the presentation

more concise, instead relying on the κα representation.

2.3.2 Model Summary and Prior

Having parametrized G, we now formulate the full hierarchical Bayesian model. Let Θ denote the

concatenation of the global parameters φ, w, q, ph, and pv. Our prior distribution on Θ is the composition of

independent priors on its entries. Letting MVN(0, 4I4) denote 4-dimensional isotropic Gaussian distribution

with variance 4, and MVLN(0,Σ) denote a multivariate log normal distribution with mean parameter 0 and

precision matrix Σ, the following provides a bird’s eye view of the model via the generative process of the

23

JESA data given (Cs, Ns)s∈J:

Step 1: Generate global parameters:

q ∼ Gamma(2, 2), wE ∼ MVLN(0,Σ),

φ ∼ unif([0, 1]32), ph, pv ∼ MVN(0, 4I4).

Step 2: Generate the densities Λs ∼ GCs for s ∈ J:

For a ∈ A :

εja ∼ Gamma(q, 1),

Λs(a) =
∑

−3≤i,j≤3

κh1+|i|κ
v
1+|j|

wa+(i,j)ε
s
a+(i,j)φ

s
a+(i,j)∑

a′∈A′ wa′ε
s
a′φ

s
a′

.

Step 3: Generate the accidental Locations xs for s ∈ J.

For n = 1, . . . , Ns : generate xsn ∼ Λs.

Our prior on w in Step 1 uses a coarsened representation, the details of which are provided in Section 2.7.3.

The vector wE denotes the subvector of unique values after the coarsening. The scales for all of the priors

were chosen based on the range of possible behaviors we expected in the model. For example, the variances

of 4 for ph and pv were chosen to strike a balance: too small of a variance concentrates the kernel around

its geometric decaying mean, and too large of a variance places most of the prior density kernels that are

essentially step functions. For φ ∈ [0, 1]32, the upper bound on the uniforms is arbitrary — the likelihood in

(2.18) is invariant to scalings of φ due to the normalization of µs. The rate of ρq is fixed at 1 for the same

reason.

2.4 Computation

There are two key computational challenges associated with our model.

1. How do we efficiently compute the posterior of Θ?

2. How do we efficiently compute the density of an observed set of accidentals xs given Cs?

Task 1 (addressed in §2.4.1) arises when fitting our model to the JESA data, and task 2 (addressed in §2.4.2)

arises when evaluating models. Before describing our strategies for addressing these tasks, we develop a trick

to compute the likelihood of xs ∈ ([0, 100]× [0, 200])Ns given Cs for a given Θ.

24

The raw likelihood takes the form

p(xs|Cs; Θ) =

∫ Ns∏
n=1

Λ(xsn)GCs(dΛ) (2.17)

=

∫ Ns∏
n=1

∑
−3≤i,j≤3

κh1+|i|κ
v
1+|j|

wxsn+(i,j)ε
s
xsn+(i,j)φ

s
xsn+(i,j)∑

a∈A waε
s
aφ

s
a

dρ(εs). (2.18)

In a slight abuse of notation, we have overloaded xsn to also denote the atom a ∈ A to which the real-valued

xsn ∈ [0, 100]× [0, 200] is associated. At first glance, the |A|-dimensional integral over the εs variable in (2.18)

appears to be computationally intractable. It has no closed form, and is too high dimensional to efficiently

compute using quadrature or generic Monte Carlo algorithms. To overcome this problem, we introduce

auxiliary variables.

For each accidental location xsn on shoe s ∈ J, we define Zsn by

P(Zsn = xsn + (i, j) | κh, κv) = k(i, j) = κh1+|i|κ
v
1+|j|, (2.19)

with κv, κh being the kernel parameters as defined in (2.15), and each xsn ∈ A. We use the shorthand Zs to

refer to the collection (Zsn)1≤n≤Ns and use Csa to denote the number of times each a ∈ A occurs in Zs. We

also introduce the auxiliary variables

us ∼ Gamma

(
Ns,

∑
a∈A

waε
s
aφ

s
a

)
, (2.20)

with Gamma(α, β) denoting a gamma distribution with shape α and rate β. We can now analytically

marginalize the εs variables to obtain

p(xs|Cs; Θ) =

∫ ∞
0

uNs−1

Γ(Ns)
E

(
1

Γ(q)|A|

∏
a∈A

Γ(q + Csa) (waφ
s
a)
Ca

(uswaφsa + 1)
q+Csa

)
dus, (2.21)

where Γ(·) denotes the gamma function and E denotes an expectation taken with respect to the distribution

of Zs as given in (2.19). By swapping (2.18) for (2.21), we have exchanged a |A|-dimensional integral over εs

for a more tractable one dimensional integral. The full derivation of moving from (2.18) to (2.21) is provided

in Section 2.7.4.

This new expression for the marginal likelihood (2.21) enables us to address challenges (1) and (2)

using Monte Carlo algorithms, relying on Markov chain Monte Carlo (MCMC) and importance sampling,

respectively. For background information regarding MCMC and importance sampling, we refer the reader

to Brooks et al. (2011) and Tokdar and Kass (2010).

25

2.4.1 Computing the Posterior for Θ

We consider an augmented version of the posterior that instantiates the auxiliary variables Z = (Zs)s∈J and

U = (us)s∈J. We use L(Θ, Z, U) to denote the augmented likelihood

L (Θ, Z, U) =
1

Γ(q)|J||A|

∏
s∈J

uNs−1

Γ(Ns)

∏
a∈A

Γ(q + Csa) (waφ
s
a)
Csa

(uswaφsa + 1)
q+Csa

Ns∏
n=1

k(∆s
n), (2.22)

where ∆s
n and Csa are defined as in (2.21). Our target is the posterior distribution Θ, U , Z, with density

p(Θ, U, Z|(xs, Cs)s∈J) satisfying:

p(Θ, U, Z|(xs, Cs)s∈J) ∝ L (Θ, Z, U) p(Θ). (2.23)

Our MCMC algorithm consists of sequential updates of the parameters — akin to Metropolis within

Gibbs — with most of the components being updated according to slice sampling (Neal, 2003; Murray et al.,

2010). The updates are repeatedly performed in the following sequence:

• Each auxiliary variable (us)s∈J is updated one-by-one using slice sampling. These updates can be

performed in parallel.

• The entire vector w is updated jointly using elliptical slice sampling.

• Each entry in (ψi)i=1,...,32 is updated one-by-one using slice sampling.

• The parameter q is updated using a slice sampler.

• Each entry in ph then pv is updated one-by-one using slice sampling.

• Each auxiliary variable (zsn) is updated one-by-one by Gibbs sampling.

The details and conditional distributions for these updates are available in the Section 2.7.5. This

algorithm provides a sequence of draws of Θ from its posterior that can be used to approximate posterior

expectations. Notably, we can use these to approximate the posterior marginal probability of a configuration

of accidentals (Task 2) as we now detail in §2.4.2.

2.4.2 Computing Marginal Densities via Importance Sampling

A natural metric for assessing the performance of our model is to split J into a training set T and test set

T ′, then evaluate the held out density of the accidental locations on each shoe in T ′ (given T). Doing this

requires computing

p(xτ | Cτ , T) = EΘ (p(xτ |Cτ ,Θ) | (xs, Cs)s∈T) (2.24)

26

for each τ ∈ T ′, where p(· | Cτ , T) denotes the posterior density. Here, EΘ(·|(xs, Cs)s∈T) denotes the expected

value under the posterior of Θ given the contact surfaces and accidentals in T . Note that the nested integrals

in the expression in (2.24) can be separated into an outer integral and an inner integral. The outer integral

is the posterior expectation over the global parameters Θ and can be approximated using MCMC draws

as described above. The inner integral — computed for each posterior draw — is over the local auxiliary

variables uτ and Zτ as shown in (2.21).

We approximate this integral using importance sampling. Specifically, given a draw of Θ, we define an

importance distribution given by

u | Θ, Ns, Cτ ∼ Gamma

(
Ns, q

∑
a∈A

waφ
τ
a

)
(2.25)

P(Zn = xτn + a | Θ, xτn) =
wa+xτn

φτa+xτn
k(a)∑

b∈B wb+xτnφ
τ
b+xτn

k(b)
(2.26)

where B = {−3, . . . , 3}2 and a ∈ B for all n ∈ {1, . . . , Ns}. After drawing M > 0 importance samples

u1, . . . , uM ∈ R+ by (2.25) and Z1, . . . , ZM ∈ ANτ by (2.26), the inner integral can be approximated as

p (xτ |Cτ ,Θ) =

∏Nτ
n=1

(∑
b∈B wb+xτnφ

τ
b+xτn

k(b)
)

Γ(q)|A|
(
q
∑
a∈A waφ

τ
a

)Nτ M∑
m=1

exp (umq
∑
a∈A waφ

τ
a)∏

a∈A
(umwaφτa+1)q+C

m
a

Γ(Cma +q)

,

where CMa denotes the number of times a ∈ A occurs as an entry in ZM .

Thus, using one importance sample (M = 1) for each MCMC draw Θ` = (φ`, w`, q`, (ph)`, (pv)`) yields

the approximation

p(xτ | Cτ , T) ≈
L∑
`=1

∏Nτ
n=1

(∑
b∈B wb+xτn(φ`)τb+xτnk

`(b)
)

LΓ(q`)|A|
(
q`
∑
a∈A wa(φ`)τa

)Nτ exp (u`q`
∑
a∈A w

`
a(φ`)τa)∏

a∈A
(u`w`a(φ`)τa+1)q

`+C`a

Γ(C`a+q`)

, (2.27)

where L is the total number of MCMC draws and the (u`, Z`)1≤`≤L are each drawn according to the

respective importance distribution for Θ`. Detailed derivations and discussion of this strategy are available

the Section 2.7.6.

2.5 Comparisons to Competitors and Summary of Fit

2.5.1 Comparison to Competitors

To demonstrate that efficacy of our model, we compare its performance to three competitor models. The first

two models we consider – the uniform model of Stone (2006) and the kernel density estimator of Yekutieli

27

et al. (2012) – rely on fitting a single fixed density Λ for all shoes. Recall from §2.2.3 that the kernel density

estimator does not make use of contact surface information when estimating Λ, and that the uniform model

does not rely on any data at all.

For this reason, we introduce a third competitor called the contact model. In the contact model, each

GCs is defined as a point mass at ΛCs with

ΛCs(a) ∝ exp(αrsa). (2.28)

Here, α ∈ R32 are shared amongst all of G, similar to φ with rsa following the same set-up as defined as in

(2.12). The parameters α are straightforward to infer using maximum likelihood (fixing α1 = 1 to obtain

identifiability).

We fit our model and the three competitor models to four test/train splits of the JESA data, with each

training set consisting of 336 randomly selected shoes. The remaining 50 serve as the test set. For our model,

the posterior was computed by running the MCMC algorithm outlined in Section 2.4.1 for 30000 full sweeps

and discarding the first 10000 iterations as warm-up.

Let T denote a training set and T ′ denote the test set. As a metric of performance, we used our importance

sampling technique to evaluate the held-out density of the accidental locations xτ on each shoe τ ∈ T ′ given

T . Figure 2.7 depicts the held-out likelihood per accidental on each held-out shoe for each of the four models

fit to each of the four splits. Specifically,

20000× p(xτ | Cτ , T)1/Nτ (2.29)

is reported for each τ ∈ T ′. The scaling by 20000 is performed for readability of the y-axis (it is equivalent to

transforming A to the unit square) and the Nτ th root is taken to facilitate comparison of average performance

on shoes with different numbers of accidentals. This metric is equivalent to comparing the per-accidental

average log loss of each shoe. The held-out shoes were sorted according to our model’s performance for each

of the four splits. Note that for the uniform model, only those atoms in A were given positive density, hence

the constant density of 1.743 rather than 1.

It is evident from Figure 2.7 that the two models that account for contact surface (our model and the

simple contact surface model (2.28)) vastly outperform the two that do not. Notably, the kernel density

estimator assigns 0 density to a shoe in splits 3 and 4, showing an alarming lack of robustness. The

performance of our model and the contact model tend to track together across shoes, suggesting that the

incorporation of the contact surface is the major driver of both models’ success.

We also checked whether the other components of the model (w, κ, and ε) contribute positively to the

model’s performance. We fit an additional five variants of our model to the training data and summarized

28

Data Split 3 Data Split 4

Data Split 1 Data Split 2

0 10 20 30 40 50 0 10 20 30 40 50

0

5

10

0

5

10

Shoe Index (Sorted by Our Model’s Performance)H
el

d
ou

t
P

ro
b
ab

il
it

y
p

er
A

cc
id

en
ta

l
on

S
h
o
e

Model

Contact

KDE

Ours

Uniform

Figure 2.7: Comparison of the performance of four models: the contact model (red) the kernel density
estimate (green), our model (blue) and the uniform model (purple) on 50 held out shoes across four data splits.
The solid lines depict the metric given in (2.29) for each of 50 shoes (sorted by our model’s performance).
The dotted lines depict the mean for each model.

their results in Table 2.1, along with the performance of the four original competitors. The variant models

are defined as follows. “Without scores” refers to our model with all εsa variables are fixed at one, “without

kernel” refers to our model but without k smoothing, “without scores and kernel” excludes both εsa and k,

“without w” fixes wE = 1, and “without φ” fixes all φ at 1. Posterior computation for all variant models

were performed using appropriate analogs of the MCMC algorithm given in §2.4.1.

For each model and test set T ′, Table 2.1 reports the geometric mean of (2.29) across all held-out shoes,

i.e.

20000×

(∏
τ∈T ′

p(xτ | Cτ , T)1/Nτ

)1/|T ′|

. (2.30)

This metric is equivalent to the mean per-accidental log loss across shoes.

Table 2.1 demonstrates that our full model outperforms all competitors and variants on Splits 1, 3, and

4, being edged out only by “without w” on Split 2. Nearly all variants perform close to comparably to the

full model; the notable exception is “without φ”. It performs far worse, highlighting the importance of the

contact surface. The persisting decrease in performance of the other variants across splits indicates that

each component provides a small gain, and is worth keeping in the model.

Note that the superior performance of “without w” in Split 2 is explained by the presence of an atypical

shoe in the test set. It possesses only two accidentals, both of which are located at the left side of the heel.

29

Method Split 1 Split 2 Split 3 Split 4

Existing
Models

Uniform (Stone, 2006) 1.743 1.743 1.743 1.743
KDE (Yekutieli et al., 2012) 2.266 2.182 0.000 0.000

Other Models Contact 3.954 3.823 4.106 3.995

Our Model
and variants

Full 4.060 3.832 4.272 4.144
without scores 4.052 3.831 4.260 4.131
without kernel 4.041 3.794 4.244 4.081
without scores and kernel 4.039 3.791 4.238 4.072
without w 3.981 3.860 4.131 4.070
without φ 2.217 2.124 2.187 2.144

Table 2.1: The mean predictive performance (measured by (2.30)) of our model, five variants on our model,
and three competitor models. The best performing result is bolded for each split.

As illustrated in Figure 2.9(w), w is small towards the heel, especially on the lefthand side. Consequently,

including w leads to far lower predictive posterior probability for this particular shoe. Excluding this shoe

from the test set 2 results in the full model regaining its spot as the top performer.

2.5.2 Summary of Inferred Model Parameters

To investigate our fitted model, we consider the posterior of Θ from Split 1 in §2.5.1. Components of the

posterior distribution are summarized in Figures 2.6, 2.8, and 2.9.

Figure 2.6 summarizes the posterior fit for the kernel k. Figure 2.6a uses boxplots to demonstrate the

posterior distribution of both κh and κv, arranged symmetrically to facilitate visualization of the kernel. For

both h and v, the kernel’s mass is mostly concentrated on its mode and immediate neighbours. The smoothing

is also more diffuse in the horizontal direction that the vertical direction, suggesting that the accidental

distributions are smoother in the horizontal direction that vertical direction. Figure 2.6c demonstrates the

composition of the vertical and horizontal kernel into the bivariate kernel.

Figure 2.8 displays the marginal posterior distributions of each φ1, . . . , φ32 using boxplots. Here, the

larger the associated posterior value, the more likely an accidental is to occur nearby contact surface taking

on the shape. There is a stark difference in accidental proclivity between gridpoints surrounded mostly by

contact surface (shapes 32, 31, 30, 28, 24, 16 as depicted in Figure 2.5a) and those with little contact surface

present (shapes 1, 2, 3, 5, 9, 17). This difference supports the intuition among shoeprint examiners that

regions which rarely make contact with the ground are typically less likely to accumulate accidentals. Also

notable is the discrepancy between different shapes containing the same amount of contact surface. For

example, accidentals appear to be nearly to twice as likely to be associated with gridpoints exhibiting shape

31 than those exhibiting shape 24, even though both shapes consist of 4 of 5 possible contact components.

This inference suggests the shape of the contact surface — and not just the amount of contact surface —

30

0.00

0.25

0.50

0.75

1.00

1 2 3 17 9 5 4 1821 6 11101913 7 25 8 202314262212292715242830163132

Index of Contact Surface Parameter

P
os

te
ri

or
D

is
tr

ib
u
ti

on

Number of Contact Squares 0 1 2 3 4 5

Figure 2.8: Posterior distribution boxplots of the parameters of the 32 possible shapes (listed in Figure 2.5).
Boxplot color indicates with the amount of contact surface present in each, with vertical lines partitioning
the levels.

also plays a role in a region’s likelihood of being marked with an accidental. However, we caution against

over-interpreting such differences due to φ being just one component of the larger model.

Figure 2.9 illustrates the posterior predictive distribution of an accidental for four separate contact

surfaces. The first panel is synthetic, consisting entirely of contact surface to demonstrate w. The inward

facing side of the toe tends to exhibit more accidentals than the in outward facing portion, and the front of

the heel tends to exhibit more accidentals than the rear of the heel. A depiction of the fit and uncertainty

of the raw w parameter is available as Figure 2.10b.

The second through fourth panels of Figure 2.9 (Shoe A, Shoe B, Shoe C) demonstrate the posterior mean

of Λs for three example contact surfaces in JESA. The difference in the magnitude of the density between

Shoe B and Shoe C demonstrates that the density associated with a particular location is heavily contingent

on the total amount of contact surface present for the shoe; because shoe C demonstrates relatively little

contact surface, the density is much higher in locations where contact surface is present.

2.6 Discussion

In this work, we made progress on a problem put forth by the President’s Council of Advisors in Science and

Technology (PCAST, 2016). Namely, we formalized the problem of modeling accidental distributions for

random match probabilities, developed a modeling framework for the spatial distribution of accidentals on

shoe soles, fit our hierarchical Bayesian model to real data within a Bayesian nonparametric setting to pool

information across a variety of shoes, and demonstrated that our model vastly outperforms existing models

in the literature on a held-out data task.

31

w Shoe A Shoe B Shoe C

0 25 50 75 100 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100

0

50

100

150

200

h

v

0e+00 3e-04 6e-04 9e-04
Posterior Density

(a)

Figure 2.9: Panels w, Shoe A, Shoe B, and Shoe C demonstrate the posterior predictive distribution
of accidental locations for four contact surfaces. Panel w is synthetic (entirely contact surface). Shoe A
corresponds to the shoe shown in Figure 1. Shoes B and C are other contact surfaces from JESA.

A key takeaway from this endeavor was the importance of explicitly incorporating the contact surface

when modeling accidental distributions. We were the first to do so, and it resulted in a major improvement

over the traditional models. We took care to develop our model hierarchically, allowing for the pooling

information across shoes of different types to capture commonalities in how the contact surface influences

accidental distributions. As data sources grow and new data collection efforts are undertaken (CSAFE,

2019), we anticipate the opportunity for more sophisticated models to better capture the relationship between

contact surface and accidentals.

Along these lines, a natural extension of our model would be to allow the w, φ, and q parameters to

differ across shoes according to a nonparametric mixture model. Another possibility would be to extend the

model to a spatiotemporal setting, using the temporal data being collected by CSAFE (2019) to model how

accidentals accumulate over time.

A possible limitation of our model stems from treating the contact surface parameter φ and spatial

location parameter w separately. It is plausible that a shoe’s intensity would involve dependence between

the contact surface and the spatial location. For instance, accidentals could be more likely to occur in high

32

contact areas when on the toe, but more likely to occur in low contact areas when on the heel. In such

instances, a model including an interaction effect would outperform our current model.

Another issue we briefly touched on without addressing was the open problem of formally defining when

two impressions “match ” (xs ≡ xy). Given a similarity metric defining when xs ≡ xy, our model is tailored

to computing the RMP. Draws from the posterior distribution of xs|Cs can serve as a surrogate for sampling

from ACy in (2.6), providing a straightforward Monte Carlo strategy for evaluating the RMP. It is worth

noting that although our exposition focused on RMPs, our approach is equally applicable to calculating

other related summaries of uncertainty, such as likelihood ratios or Bayes factors (Evett et al., 1998).

Finally, we would like to highlight uses of our model outside of direct evaluation of random match

probabilities. Recently, the National Institute for Standards in Technology has started development of a

multipurpose software tool for forensic footwear examiners (Herman, 2016). One of the tools in development

is ShoeGuli, a program for developing synthetic footwear impressions complete with accidentals. As our

framework results in an accurate generative model, it is a natural choice for simulating accidental patterns.

2.7 Additional Details

2.7.1 Discretization and Kernel Choice

Recall from §2.2.2 that the contact surface variables are defined on a discrete 100 by 200 equally-spaced

grid over [0, 100] × [0, 200]. For practicality, we restrict our model for Λs to match the resolution of this

grid, discretizing our kernel k to be piece-wise constant over each gridpoint. Theoretically, such a choice

restricts the model’s flexibility at resolutions smaller than that of the grid. However, we do not expect these

resolutions to be relevant to RMP calculations — any such effect will be dominated by the noise in the

observed accidental locations for crime scene prints. Attempting to model any structure at such a resolution

would amount to overfitting.

In addition to preventing overfitting and facilitating interpretation, the discretized kernel provides

computational and modeling advantages.

Computationally, the discretization eliminates the need to keeping track of each real valued accidental

locations xsn ∈ [0, 100] × [0, 200]. Instead, we need only store the discrete gridpoint values in A =

{1, . . . , 100} × {1, . . . , 200}. Similarly, we can directly store a Λs as a vector of real values and sampling

accidental locations from it is equivalent to simply drawing from a multinomial. The grid A also provides a

natural resolution with which to visualize Λs. In addition to these computational conveniences, discretization

also provides computational speed-ups of the Bayesian inference procedure.

The speed-up is best illustrated by comparing to the standard unimodal symmetric kernel choice in

Bayesian nonparametrics — the Gaussian density. If we were to replace the k in the model with a bivariate

33

Gaussian density, every kernel function would have positive density over the entire [0, 100]× [0, 200] spatial

domain. Consequently, each auxiliary variable Zsn could take on any of |A| values instead of the 49 associated

with our discrete kernel. Exploring the large space of possible Zsn would lead to additional computational

burden for both our MCMC and importance sampling algorithms. Eventually we would need to evaluate

|A| Gaussian densities for each data point.

Moreover, the Gaussian densities would need to be truncated at values outside the [0, 100] × [0, 200],

requiring the computation of normalization constants for any gridpoints close enough to the boundary. If

the goal was to infer the bandwidth of the kernel as part of the MCMC procedure, these normalization

constants would need to be repeatedly recalculated for each updated bandwidth.

From a modeling perspective, the discrete kernel model also makes more sense than the Gaussian kernel

in the context of our data. For many shoes in JESA (e.g. shown in Figure 2.3c), the contact surface drops

off steeply and remains zero for large portions of the space, leaving no opportunity for accidentals in these

regions. The discrete kernel can accommodate this behavior; its redistribution of the density is restricted to

be very local, preventing it from directing density toward these impossible regions. In contrast, the smooth

decay of a Gaussian kernel forces it to assign at least some density from each kernel to the entire space,

regardless of the contact surface in that area. To limit the density wastage around these steep drop-offs,

inference of the Gaussian kernel would promote a very small bandwidth, thus limiting the amount of possible

smoothing. Our discrete kernel is better equipped to deal with such a problem, its flexible parameterization

allows it to distribute most of the density over nearby gridpoints.

2.7.2 Additional Related Work

The NCoRM framework represents one of many models for collections dependent probability distributions

that use normalized random measures. The prototypical normalized completely random measure is the

Dirichlet process (Ferguson, 1973) which serves as a building block for much of the literature. Within the

spatial statistics literature, Dirichlet process mixture models were first applied by Gelfand et al. (2005)

in the context of modeling random functions in space. They have also been applied to model intensities

for spatial point processes (e.g. Kottas and Sansó (2007); Taddy (2010); Jewell et al. (2015)). Popular

approaches for modeling vectors of dependent probability distributions include the dependent Dirichlet

process (MacEachern, 2000), the hierarchical Dirichlet process (Teh et al., 2005), and the nested Dirichlet

process (Rodriguez et al., 2008). Non-Dirichlet process-based techniques include (Chen et al., 2013; Foti and

Williamson, 2012; Lijoi et al., 2014).

Much of the literature pertaining to vectors of probability measures assumes that the vectors are

exchangeable, with the dependent Dirichlet process (MacEachern, 2000) and the kernel stick-breaking process

(Dunson and Park, 2008) comprising two notable exceptions. Other recent work pertaining to the modeling

34

vectors of non-exchangeable probability distributions was surveyed in Foti and Williamson (2015). However,

we found that the existing literature lacked the tools to incorporate our desired dependence structure for

the shoes in JESA, which prompted us to extend the NCoRM framework.

Contrasting with completely random measure-based techniques, another frequently used tool for modeling

spatial point processes is the log-Gaussian Cox process (Møller et al., 1998; Adams et al., 2009). The log-

Gaussian Cox process is able to capture more sophisticated spatial dependencies by explicitly modeling the

log intensity as a draw from a Gaussian process, with the kernel of this process prescribing the spatial

correlation structure. We draw on this work by using a log-Gaussian prior on wE (a finite resolution log-

Gaussian process).

2.7.3 Details of Parameterization of w

Because inferring 20000 unique entries w represents a large computational burden, it is helpful to reduce

its dimension by parametrizing it as piece-wise constant over a coarser region. We define these regions,

illustrated in Figure 2.10a, using two criteria. First, we reduce of the resolution from the original 200× 100

grid to a 20× 10 grid of unique values, with each new region now corresponding to 100 of the original grid

points. Second, it is evident from Figures 2.3d and 2.4b that a sizable proportion of A — specifically the

gridpoints at the sides and extremities of the bounding box — have no practical probability of being marked

by an accidental. We choose to force their respective wa’s to be 0 in the prior, essentially omitting them

from analysis.

After this restriction, we use the remaining grid regions that have at least one positive atom to define our

138 distinct regions. We use wE ∈ R138
+ to denote the vector of unique values assigned to each of these regions,

assigning it a lognormal prior. The prior mean for log(wE) is fixed at 0. The precision Σ is fixed such that

each diagonal entry is 1. Off-diagonal entires are 0 for non-adjacent regions, 0.2 otherwise. The full mapping

between the entries in A and the indices of wE is displayed in Figure 2.10a with the nonzero gridpoints

depicted as orange pixels. Throughout the chapter, A refers to the subset of {1, . . . , 100}×{1, . . . , 200} that

correspond to the nonzero gridpoints.

2.7.4 Details of Marginalization of εs

Recall that Γ(·) denotes the gamma function. Let ∆s
n ∈ {−3, 3}2 be shorthand for Zsn − xsn, and let

ζs =
{
Zs : ∆s

n ∈ {−3, 3}2, n ∈ {1, . . . , Ns}
}

(2.31)

35

2 3 4 51 6

7 8 9 10 11 12 13

14 15 16 17 18 19 20

21 22 23 24 25 26 27 28

29 30 31 32 33 34 35 36

37 38 39 40 41 42 43 44

45 46 47 48 49 50 51

53 54 55 56 57 58 5952

60 61 62 63 64 65 66 67

68 69 70 71 72 73 74 75 76

77 78 79 80 81 82 83 84 85

86 87 88 89 90 91 92 93 94

95 96 97 98 99 100101102103

104105106107108109110111112

113114115116117118119120121

122123124125126127128

129130131132133134

135136137138

50

100

150

0 25 50 75

h

v

(a)

50

100

150

0 25 50 75

h

v

0.5

1.0

1.5

2.0

Posterior
Mean

Posterior
Standard
Deviation

1

2

3

4

(b)

Figure 2.10: (a) displays the 20000 gridpoints a ∈ A, colored white if we fix wa = 0, orange otherwise. The
black lines partition A into the coarser 10× 10 grid associated with wE , each nonzero grid region contains a
blue number indicating the index in wE to which it corresponds. (b) summarized the posterior distribution
of wE as a square corresponding to each entry in wE . As per the legend, the color of the square indicates
its posterior mean and the size of the square indicates is posterior standard deviation.

denote the set of possible values for Zs. After introducing Zs, the marginal density can be re-expressed as

p(xs|Cs; Θ) =
∑
Zs∈ζs

(∫ Ns∏
n=1

k(∆s
n)

wZsnε
s
Zsn
φsZsn∑

a∈A waε
s
aφ

s
a

dρ(εs)

)
(2.32)

=
∑
Zs∈ζs

(
Ns∏
n=1

k(∆s
n)

∫ ∏
a∈A (waε

s
aφ

s
a)
Csa(∑

a∈A waε
s
aφ

s
a

)Ns dρ(εs)

)
. (2.33)

Let Ga(·|α, β) denote the probability density function of a Gamma distribution with shape α and rate

β. Recall that

us ∼ Gamma

(
ns,
∑
a∈A

waε
s
aφ

s
a

)
. (2.34)

36

Incorporating the density of us into (2.32) allows to analytically marginalize the εsa ∼ Gamma(q, 1) to derive

a simpler expression for rmpV (xs|Cs; Θ).

∑
Zs∈ζs

(
Ns∏
n=1

k(∆s
n)

∫ ∏
a∈A (waε

s
aφ

s
a)
Csa(∑

a∈A waε
s
aφ

s
a

)Ns dρ(εs)

)

=
∑
Zs∈ζs

(
Ns∏
n=1

k(∆s
n)

∫ ∏
a∈A (waε

s
aφ

s
a)
Csa(∑

a∈A waε
s
aφ

s
a

)Ns ∫ Ga

(
us | ns,

∑
a∈A

waε
s
aφ

s
a

)
dusdρ(εs)

)

=
∑
Zs∈ζs

(
Ns∏
n=1

k(∆s
n)

∫ ∫
Ga

(
us | ns,

∑
a∈A

waε
s
aφ

s
a

) ∏
a∈AGa (εsa|q, 1) (waε

s
aφ

s
a)
Csa(∑

a∈A waε
s
aφ

s
a

)Ns dεsdus

)

=
∑
Zs∈ζs

(
Ns∏
n=1

k(∆s
n)

∫ ∫ ∏
a∈A (waε

s
aφ

s
a)
Csa(∑

a∈A waε
s
aφ

s
a

)Ns Ga

(
us | ns,

∑
a∈A

waε
s
aφ

s
a

) ∏
a∈A

Ga (εsa|q, 1) dεsdus

)

=
∑
Zs∈ζs

(
Ns∏
n=1

k(∆s
n)

∫ ∫ ∏
a∈A

(waε
s
aφ

s
a)
Csa

Γ(q)(εsa)1−q
(us)Ns−1

Γ(Ns)
exp

(
−
∑
a∈A

(waφ
s
aus + 1)εsa

)
dεsdus

)

=
∑
Zs∈ζs

(
Ns∏
n=1

k(∆s
n)

∫
(us)Ns−1

Γ(Ns)

∏
a∈A

(waφ
s
a)
Csa

Γ(q)

(∫ ∞
0

(εsa)
Csa+q−1

exp (−(waφ
s
aus + 1)εsa)dεsa

)
dus

)

=
∑
Zs∈ζs

(
Ns∏
n=1

k(∆s
n)

∫
(us)Ns−1

Γ(Ns)

∏
a∈A

(waφ
s
a)
Csa

Γ(q)

Γ(Ns + q)

(waφsau
s + 1)

q+Csa
dus

)

=
1

Γ(q)|A|

∫ ∞
0

uNs−1

Γ(Ns)

∑
Zs∈ζs

(
Ns∏
n=1

k(∆s
n)
∏
a∈A

Γ(q + Csa) (waφ
s
a)
Ca

(uswaφsa + 1)
q+Csa

)
dus

=
1

Γ(q)|A|

∫ ∞
0

uNs−1

Γ(Ns)
EZs

(∏
a∈A

Γ(q + Csa) (waφ
s
a)
Ca

(uswaφsa + 1)
q+Csa

)
dus

where EZs denotes the expectation with respect to the distribution of Zs given by (2.19).

2.7.5 Details of MCMC Proposal Steps

MCMC update for Zsn

Let Zs−n denote (Zsi)i 6=n and Csa,−n denote Csa−I(Zsn = a). We update each Zsn using a Gibbs step, sampling

from the conditional distribution of Zsn | xs, Cs, Zs−n, us, φ, w, q, k given by

P(Zsn = z) ∝ (q + Csz,−n)
wzφ

s
z

uswzφsz + 1
k(xsn − z). (2.35)

MCMC update for q

Let Di =
∑
s∈J
∑
a∈A I(Csa = i) for non-negative integers i, and let D = (Di)0≤i≤B where B is equal to

the largest value of i for which Di > 0. We update q using a slice sampler on the condition distribution of

37

q | Z,U, φ, w, (Cs)s∈J,D with density proportional to

p(q) ∝
q exp (−2q)

∏B
i=0 Γ(q + i)Di(∏

s∈J
∏
a∈A (uswaφsa + 1)

)q . (2.36)

We use the stepping out method as described by Neal (2003), with a step width of 0.2. Note that the

computation of
(∏

s∈J
∏
a∈A (uswaφ

s
a + 1)

)
can be recycled as the stepping out algorithm runs, and that

the equality Γ(q + i+ 1) = (q + i)Γ(q + i) can be exploited to speed-up the calculation of
∏B
i=0 Γ(q + i)Di .

MCMC update for us

We update each us using a slice sampler for the conditional distribution of us | Zs, φ, w, q, (Cs)s∈J with

density proportional to

p(u) ∝ uNs−1∏
a∈A (uwaφsa + 1)

q+Csa
. (2.37)

Our slice sampler uses the stepping out method as described by Neal (2003), with a step width given by

20
√
Ns(|A|q)−1.

MCMC update for φi

Let φ−i = (φj)j 6=i, A
s
φi

= {a ∈ A : φsa = φi}, and Aφi = (Asφi)s∈J. We update each φi (i = 1, . . . , 32) using

a slice sampler for the conditional distribution of φi | φ−i, Z, w, q, Aφi with density proportional to

p(φi) ∝ φ
∑
s∈J |A

s
φi
|

i

∏
s∈J

∏
a∈Asφi

1

(uswaφi + 1)
q+Csa

. (2.38)

Our slice sampler uses the stepping out method as described by Neal (2003), with a step width given by

0.01.

MCMC update for ph and pv

Let ph−i = (phj)j 6=i, p
v
−i = (pvj)j 6=i,

∆h
i =

∑
s∈J

Ns∑
n=1

I(|Zsn,1 − xsn,1| = i), (2.39)

∆v
i =

∑
s∈J

Ns∑
n=1

I(|Zsn,2 − xsn,2| = i). (2.40)

38

We update each phi (i = 1, . . . , 4) using a slice sampler for the conditional distribution of phi | ph−i, Z, x with

density proportional to

p(phi) ∝ exp

(
−(phi)2

8

)∏4
`=i

(∑4
j=` exp (phj)/(2j − 1)

)∆h
`

(∑4
j=1 exp (phj)

)∑
s∈JNs

. (2.41)

We update each pvi (i = 1, . . . , 4) using a slice sampler for the conditional distribution of pvi | pv−i, Z, x with

density proportional to

p(pvi) ∝ exp

(
−(pvi)

2

8

)∏4
`=i

(∑4
j=` exp (pvj)/(2j − 1)

)∆v
`

(∑4
j=1 exp (pvj)

)∑
s∈JNs

. (2.42)

Our slice samplers use the stepping out method as described by Neal (2003), with a step width of 1.

MCMC update for w

For w, we depart from slice sampling and instead use elliptical slice sampling (Murray et al., 2010), leveraging

the Gaussian prior on log(w) to sample from the conditional distribution of w | φ,Z,w, q with

Let φ−i = (φj)j 6=i, A
s
φi

= {a ∈ A : φsa = φi}, and Aφi = (Asφi)s∈J. We update each φi (i = 1, . . . , 32)

using a slice sampler for the conditional distribution of φi | φ−i, Z, w, q, Aφi with density proportional to

p(w) ∝ N(log(w),Σ)
∏
s∈J

∏
a∈A

w
Csa
a

(uswaφsa + 1)
q+Csa

. (2.43)

2.7.6 Importance Sampling Strategy

Details of Importance Distribution

The goal of our importance sampling strategy is to approximate the quantity given in (2.24). For convenience,

we replicate this expression below, swapping in the index τ instead of s to denote that it is a held-out shoe.

p(xτ | Cτ , T) = EΘ (p(xτ |Cτ ,Θ) | (xs, Cs)s∈T) .

This expression can be viewed as the composition of two integrals, an outer integral over the posterior

distribution of Θ and an inner integral over the local auxiliary variables Zτ and uτ .

The outer integral is with respect to the posterior density (2.23). Running the MCMC strategy outlined

in §2.4.1 with training data T (i.e. (xs, Cs)s∈T) produces a chain of L draws (Θ`)`=1,...,L. We can use this

39

chain to approximate the posterior density given in (2.23), thus approximating the outer integral as

p(xτ | Cτ , T) = L−1
L∑
`=1

(
p(xτ |Cτ ,Θ) | Θ`.

)
.

For each draw in the Markov chain, we can then approximate the inner integral p(xτ |Cτ ,Θ) in the sum

by importance sampling. Recall that the inner integral is given by

p(xτ |Cτ ,Θ`) =

∫ ∞
0

uNτ−1

Γ(Nτ)
E

(
1

Γ(q`)|A|

∏
a∈A

Γ(q` + Cτa)
(
w`a(φ`)τa

)Cτa
(uτw`a(φ`)τa + 1)

q`+Cτa

)
duτ

=

∫ ∞
0

∑
Zτ∈ζτ

uNτ−1

Γ(Nτ)

∏Nτ
n=1 k(∆τ

n)

Γ(q`)|A|

∏
a∈A

Γ(q` + Cτa)
(
w`a(φ`)τa

)Cτa
(uτw`a(φ`)τa + 1)

q`+Cτa
duτ

=

∫ ∞
0

∑
Zτ∈ζτ

r(uτ , Zτ)duτ .

Here, Cτa denotes the number of times each a ∈ A occurs in Zτ , ∆τ
n ∈ {−3, 3}2 is shorthand for Zτn − xτn,

and

ζτ =
{
Zτ : ∆τ

n ∈ {−3, 3}2, n ∈ {1, . . . , Nτ}
}
. (2.44)

The above integral and sum of r(uτ , Zτ) cannot be evaluated analytically.

Instead, we use importance sampling to evaluate it for each ` ∈ 1, . . . , L, treating the integral and sum of

r(uτ , Zτ) as an expectation of a function of uτ , Zτ . Implicitly, r(uτ , Zτ) acts as the product of density and a

function of which we are taking the expectation. In practice, there is no need to make a distinction between

what serves as the density and what serves as the function — the product is our target. By drawing values

of Zτ and uτ from an easy-to-sample-from importance distribution and applying the correct importance

weights to our draws, we can target this expectation using a Monte Carlo strategy.

In deriving a good importance distribution, we target three properties: cheaply generated random

variates, tractable importance weights, and — most importantly — an importance distribution that serves

as a good surrogate for the target expectation. Such a surrogate distributes its density in similar places

as target integrand to achieve a low variance estimator. Motivated by these properties, we now derive the

importance distributions for uτ and Zτ .

Before our marginalization of the ε terms, the distribution of the auxiliary variable uτ was independent

of Zτ , given by

uτ ∼ Gamma

(
Nτ ,

∑
a∈A

w`a(ε`)τa(φ`)τa

)
. (2.45)

40

Marginalizing ε introduced additional dependence the two, making their joint distribution unwieldy. For our

importance distribution, we opt for independence by replacing each of the (ε`)τa terms in the original gamma

distribution with their expected value E((ε`)τa|q`) = q`. This leads to the importance distribution

uτ ∼ Gamma

(
Ns, q

`
∑
a∈A

w`a(φ`)τa

)
, (2.46)

as given in (2.25) within the main text.

For each Zτn, we could use the distribution given by (2.19). However, we can do better. Noting that a

factor
(
w`a(φ`)τa

)
occurs in (2.21) for each Zτn = a, we incorporate these terms in our distribution as well,

letting

P(Zτn = xτn + a) =
wa+xτn

φτa+xτn
k(a)∑

b∈B wb+xτnφ
τ
b+xτn

k(b)

serve as our importance distribution. This approach is especially helpful when accidentals occur in areas with

sparse contact surface. The φ information in prevents the distribution from overdrawing unlikely gridpoints

surrounded by little contact surface.

The resultant full importance distribution has a hybrid density/mass function given by

h(uτ , Zτ) =
(uτ)Ns−1

Γ(Ns)

exp
(
−uτq

∑
a∈A w

`
a(φ`)τa

)(
q
∑
a∈A w

`
a(φ`)τa

)Nτ Ns∏
n=1

wτZτnφ
τ
Zτn
k(∆τ

n)∑
b∈ζτn

wbφτbk(b− xτn)
.

To derive the contribution of each generated sample, we divide the integrand r(uτ , Zτ) by the importance

density h(uτ , Zτ). The result is

w(uτ , Zτ) =
r(uτ , Zτ)

h(uτ , Zτ)
(2.47)

=

∏Nτ
n=1

(∑
b∈ζτn

wellb (φ`)τbk
`(b− x`n)

)
Γ(q`)|A|

(
q`
∑
a∈A w

`
a(φ`)τa

)Nτ exp (u`q`
∑
a∈A w

`
a(φ`)τa)∏

a∈A
(u`w`a(φ`)τa+1)q

`+C`a

Γ(C`a+q`)

. (2.48)

Thus, using one importance sample (M = 1) for each MCMC draw Θ` = (φ`, w`, q`, (ph)`, (pv)`) yields

the approximation

p(xτ | Cτ , T) ≈
L∑
`=1

∏Nτ
n=1

(∑
b∈B wb+xτn(φ`)τb+xτnk

`(b)
)

LΓ(q`)|A|
(
q`
∑
a∈A wa(φ`)τa

)Nτ exp (u`q`
∑
a∈A w

`
a(φ`)τa)∏

a∈A
(u`w`a(φ`)τa+1)q

`+C`a

Γ(C`a+q`)

. (2.49)

where L is the total number of MCMC draws.

41

lllustration and Discussion of Chain Mixing

The reliability of the Monte Carlo approximation described in Section 2.4 depends on the mixing of the

Markov chain. Here, we demonstrate the mixing of the chain for the targeted quantities by highlighting on

the trace plots (Figures 2.11 and 2.12) of the held-out probability estimates shown in Figure 2.7 (specifically,

those listed for “Our model” for Split 1). Such quantities (the posterior probability of held-out data under

our fitted model) are the target of our model.

Recall that the quantities shown in Figure 2.7 (and summarized in Table 2.1) were obtained by the

following process. The Markov chain strategy outlined in §2.4.1 was run for 30000 iterations, after which

the first 10000 iterations were discarded as warm-up. For each shoe τ = 1, . . . , 50, the importance sampling

estimates

p̂(xτ | Cτ ,Θ`) = w(uτ , Zτ) (2.50)

were computed (by (2.48)) using one importance sample for each of 20000 remaining chain iterations (` =

1, . . . , 20000). The metric given by (2.29) was then calculated for each p̂(xτ | Cτ ,Θ`). To obtain the

summaries shown in Figure 2.7, the mean was taken of each chain. Here, we examine the contents of each

of the 50 chains before averaging.

Figures 2.11 and 2.12 demonstrate trace plots for each of the 50 held-out shoes over the 20000 iterations

of the Markov chain. The chains are presented in order of mean per-shoe performance — the same sequence

they appear on the x-axis in Figure 2.7 (Data Split 1). By inspection, almost every chain mixed very well.

The notable exception is the chain for held-out shoe 2, having an effective sample size of 19.3 (all others

exceed 35). The slower mixing of this case is not necessarily surprising — this chain appears to be more

diffuse than the others, indicating that the probability evaluation is especially uncertain.

Nonetheless, an effective sample size of 19.3 still provides a reasonable estimate of the mean of the chain.

If it is essential to have more accurate estimates of less robust functions (such as more extreme quantiles),

the chain would have to be run for a longer number of iterations.

42

Test shoe 21 Test shoe 22 Test shoe 23 Test shoe 24 Test shoe 25

Test shoe 16 Test shoe 17 Test shoe 18 Test shoe 19 Test shoe 20

Test shoe 11 Test shoe 12 Test shoe 13 Test shoe 14 Test shoe 15

Test shoe 6 Test shoe 7 Test shoe 8 Test shoe 9 Test shoe 10

Test shoe 1 Test shoe 2 Test shoe 3 Test shoe 4 Test shoe 5

0 750015000 0 750015000 0 750015000 0 750015000 0 750015000

1.5

2.0

2.5

3.0

3.5

4.0

1.5

2.0

2.5

3.0

3.5

4.0

1.5

2.0

2.5

3.0

3.5

4.0

1.5

2.0

2.5

3.0

3.5

4.0

1.5

2.0

2.5

3.0

3.5

4.0

Chain index `

p
re

d
ic

ti
ve

p
er

fo
rm

an
ce

(b
y

2.
29

)
fo

r
ea

ch
p̂
(x
τ
|C

τ
,Θ

`
)

Figure 2.11: Trace plots demonstrating the Markov chain for the estimated held-out predictive performance
per accidental corresponding to shoes 1 through 25 of Data Split 1. The shoes are ordered sequentially by
the mean predictive performance, and the results pertain to our full model.

43

Test shoe 46 Test shoe 47 Test shoe 48 Test shoe 49 Test shoe 50

Test shoe 41 Test shoe 42 Test shoe 43 Test shoe 44 Test shoe 45

Test shoe 36 Test shoe 37 Test shoe 38 Test shoe 39 Test shoe 40

Test shoe 31 Test shoe 32 Test shoe 33 Test shoe 34 Test shoe 35

Test shoe 26 Test shoe 27 Test shoe 28 Test shoe 29 Test shoe 30

0 750015000 0 750015000 0 750015000 0 750015000 0 750015000

5.0

7.5

10.0

5.0

7.5

10.0

5.0

7.5

10.0

5.0

7.5

10.0

5.0

7.5

10.0

Chain index `

p
re

d
ic

ti
ve

p
er

fo
rm

an
ce

(b
y

2.
29

)
fo

r
ea

ch
p̂
(x
τ
|C

τ
,Θ

`
)

Figure 2.12: A companion to Figure 2.11. Trace plots demonstrating the Markov chain for the estimated
held-out predictive performance per accidental corresponding to shoes 26 through 50 of Data Split 1. The
shoes are ordered sequentially by the mean predictive performance, and the results pertain to our full model.

44

(a) (b)

Figure 2.13: The contact surfaces and overlaid accidentals of two example shoes (a) and (b) from the JESA
database. In both of these cases, some of the accidentals do not occur on the contact surface

45

Chapter 3

Projective, Sparse, and Learnable

Latent Position Network Models

3.1 Introduction

Network data consist of relational information between entities, such as friendships between people or

interactions between cell proteins. Often, these data take the form of binary measurements on dyads,

indicating the presence or absence of a relationship between entities. Such network data can be modeled

as a stochastic graph, with each individual dyad being a random edge. Stochastic graph models have been

an active area of research for over fifty years across physics, sociology, mathematics, statistics, computer

science, and other disciplines (Newman, 2003).

Many leading stochastic graph models assume that the inhomogeneity in connection patterns across

nodes is explained by node-level latent variables. The most tractable version of this assumption is that the

dyads are conditionally independent given the latent variables. In this article, we focus on a subclass of

these conditionally independent dyad models—the distance-based latent position network model (LPM) of

Hoff et al. (2002).

In LPMs, each node is assumed to have a latent position in a continuous space. The edges follow

independent Bernoulli distributions with probabilities given by a decreasing function of the distance between

the nodes’ latent positions. By the triangle inequality, LPMs exhibit edge transitivity; friends of friends are

more likely to be friends. When the latent space is assumed to be R2 or R3, the inferred latent positions can

provide an embedding with which to visualize and interpret the network.

Recently, there has been an effort to classify stochastic graph models into general unified frameworks. One

notable success story has been that of the graphon for exchangeable networks (Diaconis and Janson, 2008).

47

The graphon characterizes all stochastic graphs invariant under isomorphism as latent variable models.

LPMs can be placed within the graphon framework by assuming the latent positions are random effects

drawn independently from the same (possibly unknown) probability distribution. However, graphons can be

inappropriate for some modeling tasks, due to their asymptotic properties.

The typical asymptotic regime for statistical theory of network models considers the number of nodes

growing to infinity in a single graph. Implicitly, this approach requires that the network model define a

distribution over a sequence of increasingly sized graphs. There are several natural questions to ask about

this sequence. Prominent questions include:

1. At what rate does the number of edges in these graphs grow?

2. Is the model’s behavior consistent across networks of different sizes?

3. Can one eventually learn the model’s parameters as the graph grows?

For all non-trivial∗ models falling within the graphon framework, the answer to question 1 is identical;

the expected number of edges grows quadratically with the number of nodes (Orbanz and Roy, 2015). Such

sequences of graphs—in which the average degree grows linearly—are called dense. In contrast, many real-

world networks are thought to have sub-linear average degree growth. This property is known as sparsity

(Newman, 2010, Chapter 6.9)).

For sparse graphs, graphon models are unsuitable. Accordingly, recent years have seen an effort to develop

sparse graph models that preserve the advantages of graphons. In particular, the sparse graphon framework

(Bollobás et al., 2007; Borgs et al., 2014) and the graphex framework (Caron and Fox, 2014; Veitch and

Roy, 2015; Borgs et al., 2016) both provide straightforward ways to modify network models from the dense

regime to accommodate sparsity.

In this article, we add to the sparse graph literature by formulating a new sparse LPM. We target three

criteria: sparsity (§3.2.1), projectivity (§3.2.2) and learnablity (§3.4.1). Projectivity of a model ensures

consistency of the distributions it assigns to graphs of different sizes, and learnability ensures consistent

estimation of the latent positions as the number of nodes grows.

As we outline in Section 3.5, the existing methods for sparsifying graphons of Borgs et al. (2014) and

Veitch and Roy (2015) do not satisfy these criteria; they either violate projectivity or make it difficult to

establish learnability. We thus take a more specialized approach to develop our sparse LPMs, turning to

non-exchangeable network models for inspiration. Specifically, our new LPM framework extends the Poisson

random connection model (Meester and Roy, 1996)—a specialized LPM framework in which the nodes’

latent positions are generated according to a Poisson process. We modify the observation window approach

∗The only exception is an empty graph, for which all edges are absent with probability one.

48

proposed by Krioukov and Ostilli (2013) to allow our LPMs to exhibit arbitrary levels of sparsity without

sacrificing projectivity.

To obtain learnability results for our LPM framework, we develop and modify a combination of results

related to low rank matrix estimation (Davenport et al., 2014), the Davis-Kahan Theorem (Yu et al.,

2014), and eigenvalue concentration in random Euclidean distance matrices. The strategy culminates in

a concentration inequality for a restricted maximum likelihood estimator of the latent positions that applies

to wide a variety of LPMs, providing a straightforward sufficient conditions for LPM learnability.

The remainder of this article is organized as follows. Section 3.2 defines sparsity (§3.2.1) and projectivity

(§3.2.2) for graph sequences. It also defines the LPM, establishing sparsity and projectivity results for its

exchangeable (§3.2.4) and random connection model (§3.2.5) formulations. Section 3.3 describes our new

framework for modeling projective sparse LPMs, and includes results that demonstrate that the resultant

graph sequences are projective and sparse. Section 3.4 defines learnability of latent position models, and

provides conditions under which sparse latent position models are learnable. Finally, Section 3.5 elaborates

on the connections between our approach, sparse graphon-based LPMs, and the graphex framework. It also

includes a discussion of the limitations of our work. All proofs are deferred to Section 3.6.

3.2 Background

3.2.1 Sparsity

Let (Y n)n=1,...,∞ be a sequence of increasingly sized (n × n) random adjacency matrices associated with a

sequence of increasingly sized simple undirected random graphs (on n nodes). Here, each entry Y nij indicates

the presence of an edge between nodes i and j for a graph on n nodes.

We say the sequence of stochastic graph models defined by (Y n)n=1,...,∞ is sparse in expectation if

lim
n→∞

E

(∑n
i=1

∑n
j=1 Y

n
ij

n2

)
= 0. (3.1)

In other words, a sequence of graphs is sparse in expectation if the expected number of edges scales sub-

quadratically in the number of nodes.

Recall that a node’s degree is defined as the number of nodes to which it is adjacent. Sparsity in

expectation is equivalent to the expected average node degree growing sub-linearly. If instead the average

degree grows linearly, we say the graph is dense in expectation.

49

In this article, we are also interested in distinguishing between degrees of sparsity. We say that a graph

is e(n)-sparse in expectation if

lim
n→∞

E

(∑n
i=1

∑n
j=1 Yij

e(n)

)
= C (3.2)

for some constant C ∈ R+. That is, the number of edges scales Θ(e(n)). A dense graph could also be called

n2-sparse in expectation.

Note that sparsity and e(n)-sparsity are asymptotic properties of graphs, defined for increasing sequences

of graphs but not for finite realizations. These definitions differ from the informal use of “sparse graph” to

refer to a single graph with few edges. It also differs from the definition of sparsity for weighted graphs used

in Rastelli (2018). In practice, we typically observe a single finite realization of a graph, but the notion of

sparsity remains useful because many network models naturally define a sequence of networks.

3.2.2 Projectivity

Let (Pn)n=1...∞ denote the probability distributions corresponding to a growing sequence of random

adjacency matrices (Y n)n=1,...,∞ for a sequence of graphs. We say that the sequence (Pn)n=1...∞ is projective

if, for any n1 < n2, the distribution over adjacency matrices induced by Pn1 is equivalent to the distribution

over n1×n1 sub-matrices induced by the leading n1 rows and columns of an adjacency matrix following Pn2 .

That is, (Pn)n=1,...,∞ is projective if for any y ∈ {0, 1}n1×n1 ,

Pn1(Y n1 = y) = Pn2(Y n2 ∈ X), (3.3)

where X =
{
x ∈ {0, 1}n2×n2 : xij = yij if 1 ≤ i, j ≤ n1

}
.

Projectivity ensures a notion of consistency between networks of different sizes, provided that they are

generated from the same model class. This property is particularly useful for problems of superpopulation

inference (D’Amour and Airoldi, 2016), such as testing whether separate networks were drawn from the

same population, predicting the values of dyads associated with a new node, or shrinking together estimates

from separate networks in a hierarchical model. Such problems require that parameter inferences be

comparable across differently sized graphs. Without projectivity, it is unclear how to make comparisons

without additional assumptions.

Projectivity has thus received considerable attention recently in the networks literature (Snijders, 2010;

Shalizi and Rinaldo, 2013; Crane and Dempsey, 2016; Schweinberger et al., 2017; Kartun-Giles et al., 2018).

Our definition of projectivity departs from others in the literature in that it depends on a specific ordering

of the nodes. Other definitions require consistency under subsampling of any n1 nodes, not just the first n1

nodes. The two definitions coincide when exchangeability is assumed, but differ otherwise.

50

3.2.3 Latent Position Network Models

The notion that entities in networks possess latent positions has a long history in the social science literature.

The idea of a “social space” that influences the social interactions of individuals traces back to at least the

seventeenth century (Sorokin, 1927, p. 3). A thorough history of the notions of social space and social

distance as they pertain to social networks is provided in McFarland and Brown (1973).

In the statistical network modeling literature, assigning continuous latent positions to nodes dates back

to the 1970s, in which multi-dimensional scaling was used to summarize similarities between nodes in the

data (Wasserman and Faust, 1994, p. 385). However, it was not until Hoff et al. (2002) that the modern

notion of latent continuous positions were used to define a probabilistic model for stochastic graphs in the

statistics literature. In this article, we focus on this probabilistic formulation, with our definition of latent

position models (LPMs) following that of the distance model of Hoff et al. (2002).

Consider a binary graph on n nodes. The LPM is characterized by each node i of the network possessing

a latent position Zi in a metric space (S, ρ). Conditional on these latent positions, the edges are drawn as

independent Bernoulli random variables following

P(Yij = 1|Zi, Zj) = K(ρ(Zi, Zj)). (3.4)

Here, K : R+ → [0, 1] is known as the link probability function; it captures the dependency of edge

probabilities on the latent inter-node distances. For the majority of this article, we assume K is independent

of n (§3.5.1 is an exception). Furthermore, we focus on link probability functions that smoothly decrease

with distance and are integrable on the real line, such as expit(−ρ2), exp (−ρ2) and (1 + ρ2)−1. Though

the general formulation of the LPM in Hoff et al. (2002) allows for dyad-specific covariates to influence

connectivity, our exposition assumes that no such covariates are available. We have done this for purposes

of clarity; our framework does not specifically exclude them.

3.2.4 Exchangeable Latent Position Network Models

Originally, Hoff et al. (2002) proposed modeling the nodes’ latent positions as independent and identically

distributed random effects drawn from a distribution f of known parametric form. This approach remains

popular in practice today, with S assumed to be a low-dimensional Euclidean space Rd and f typically

assumed to be multivariate Gaussian or a mixture of multivariate Gaussians (Handcock et al., 2007). We

refer to this class of models as exchangeable LPMs because they assume the nodes are infinitely exchangeable.

Exchangeable latent position network models are projective, but must be dense in expectation.

Proposition 1. Exchangeable latent position network models define a projective sequence of models.

Proof. Provided in §3.6.2.

51

Proposition 2. Exchangeable latent position network models define dense in expectation graph sequences.

Proof. Provided in §3.6.3.

Consequently, LPMs with exchangeable latent positions cannot be sparse. To develop sparse LPMs, we

must consider alternative assumptions.

3.2.5 Poisson Random Connection Model

Instead of the latent positions being generated independently from a distribution over S, we can treat them

as drawn according to a point process over S. This approach—known as the random connection model—has

been well-studied in the context of percolation theory (Meester and Roy, 1996). Most of this focus has been

on random geometric graph (Penrose, 2003), a version of a LPMs for which K is an indicator function of the

distance (i.e. K(ρ(Zi, Zj)) ∝ I(ρ(Zi, Zj) < ε)). Here, we instead study the random connection model as a

statistical model, focusing the case where K is a smoothly decaying and integrable function.

In particular, we consider the Poisson random connection model (Gilbert, 1961; Penrose, 1991), for

which the point process is assumed to be a homogeneous Poisson process (Kingman, 1993) over S ⊆ Rd.

Because Poisson random connection models on finite-measure S are equivalent to exchangeable LPMs, the

interesting cases occur when S has infinite measure, such as Rd. In these cases, the expected number of

points is almost-surely infinite, resulting in an infinite number of nodes.

These infinite graphs can be converted into a growing sequence of finite graphs via the following procedure.

Let G denote an infinite graph generated according to a Poisson random connection model on S. Let

S1 ⊂ S2 ⊂ · · · ⊂ Sn ⊂ · · · ⊂ S (3.5)

denote a nested sequence of finitely-sized observation windows in S. For each Si, define Gi to be the subgraph

of G induced by keeping only those nodes with latent positions in Si. Because these positions form a Poisson

process, each Gi consists of a Poisson distributed number of nodes with mean given by the size of Si. Each

Gi is thus almost-surely finite, and the sequence of graphs (Gi)i=1,...∞ contains a stochastically increasing

number of nodes.

For many choices of S, such as Rd, this approach straightforwardly extends to a continuum of graphs

by considering a continuum of nested observation windows of (St)t∈R+
. In such cases, the number of nodes

follows a continuous-time stochastic process, stochastically increasing in t.

As far as we are aware, the above approach was first proposed by Krioukov and Ostilli (2013) in the

context of defining a growing sequence of geometric random graphs. Their exposition concentrated on a

one-dimensional example with S = R+ and observation windows given by St = [0, t]. For this example, one

would expect to observe n nodes if t = n, with the total number of nodes for a given t being random. As

52

noted by Krioukov and Ostilli (2013), the formulation can altered to ensure that n nodes are observed by

treating n as fixed and treating the window size tn as the random quantity. Here, tn it equal to the smallest

window width such that [0, tn] contains exactly n points. These two viewpoints (random window size and

random number of nodes) are complementary for analyzing the same underlying process.

Under the appropriate conditions, the one-dimensional Poisson random connection model results in

networks which are n-sparse in expectation. We formalize this notion as Proposition 3. The finite window

approach approach also defines a projective sequence of models, as stated in Proposition 4.

Proposition 3. For a Poisson random connection model on R+ with an integrable link probability function,

the graph sequence resulting from the finite window approach is n-sparse in expectation.

Proof. Provided in §3.6.3

Proposition 4. Consider a Poisson random connection model on R+ with link probability function K.

Then, the graph sequence resulting from the finite window approach is projective.

Proof. Provided in §3.6.2.

These results indicate that the Poisson random connection model restricted to observation windows is

capable of defining a sparse graph sequences, but only for a specific sparsity level if the link probability

function is integrable. For our new framework, we extend this observation window approach to higher

dimensional S. By including an auxiliary dimension, we achieve all rates between n-sparsity and n2-sparsity

(density) in expectation.

3.3 New Framework

When working in a one-dimensional Euclidean latent space S = R+, the observation window approach for

the Poisson random connection model is straightforward—the width of the window grows linearly with t,

with nodes arriving as the window grows. As shown in Proposition 3, this process results in graph sequences

which are n-sparse in expectation whenever K is integrable. However, extending to d dimensions (Rd)

provides freedom in defining how the window grows; different dimensions of the window can be grown at

different rates.

We exploit this extra flexibility to develop our new sparse LPM model. Specifically, through the inclusion

of an auxiliary dimension—an additional latent space coordinate which influences when a node becomes

visible without influencing its connection probabilities—we can control the level of sparsity of the graph by

trading off how quickly we grow the window in the auxiliary dimension versus the others.

In this section, we formalize this auxiliary dimension approach, showing that it allows us to develop a

new LPM framework for which the level of sparsity can be controlled while maintaining projectivity. Our

53

exposition consists of two parts: first, we present the framework in the context of a general S. Then, we

concentrate on a special subclass with S = Rd for which it is possible to prove projectivity, sparsity, and

establish learnability results. We refer to this special class as rectangular LPMs.

3.3.1 Sparse Latent Position Model

Our new LPM’s definition follows closely with that of the Poisson random connection model restricted to

finite windows: the positions in the latent space are given by a homogeneous Poisson point process, and the

link probability function K is independent of the number of nodes. The main departure from the random

connection model is formulating K such that it depends on the inter-node distance in just a subset of the

dimensions—specifically all but the auxiliary dimension. The following is a set of ingredients to formulate a

sparse LPM.

• Position Space: A measurable metric space (S,S, ρ) equipped with a Lebesgue measure `1.

• Auxiliary Dimension: The measure space (R+, B, `2) where B is Borel and `2 is Lebesgue.

• Product Space: The product measure space (S∗,S∗, λ) on (S ×R+,S ×B), equipped with λ = `1× `2,

the coupling of `1 and `2.

• Continuum of observation windows: A function H : R+ → S∗ such that t1 < t2 ⇒ H(t1) ⊂ H(t2) and

|H(t)| = t.

• Link probability function: A function K : R+ → [0, 1].

Jointly, we say the triple ((S,S, ρ), H,K) defines a stochastic graph sequence called a sparse LPM. The

position space plays the role of the latent space as in traditional LPMs, with the link probability function

K controlling the probability of an edge given the corresponding latent distance. The auxiliary dimension

plays no role in connection probabilities. Instead, a node’s auxiliary coordinate—in conjunction with its

latent position and the continuum of observation windows—determines when it appears.

Specifically, a node with position (Z, r) is observable at time t ∈ R+ if and only if (Z, r) ∈ H(t).

Here, time need not correspond to physical time; it is merely an index for a continuum of graphs as in the

case for the Poisson random connection model. We refer to ti—defined as the smallest t ∈ R+ for which

(Zi, ri) ∈ H(t)—as the arrival time of the ith node where (Zi, ri) are the corresponding latent position and

auxiliary value for node i.

Considered jointly, the coordinates defined by the latent positions and auxiliary positions assigned to

nodes can be viewed as a point process over S×R+. As in the Poisson random connection model, we assume

this point process is a unit-rate Poisson. The continuum of observation windows H(t) controls the portion

54

(a) A realization of a point process on
the product space. Square observation
windows H(t) for t = 4, 8, 16 are
depicted in green, red, and purple,
respectively. The points are coloured
according to the first observation win-
dow for which they are observable.

(b) Latent position graphs corresponding to
the three observation windows depicted in
Figure 1(a). The link probability function used is
a decreasing function of distance in the position
dimension.

Figure 3.1: An example of a point process and observation windows which generate a sequence of sparse
latent position graphs

of the point process which is observed at time t. Since the size of H is increasing in t, this model defines a

growing sequence of graphs with the number of nodes growing stochastically in t as follows.

• Generate a unit-rate Poisson process Ψ on (S∗,S∗).

• Each point (Z, r) ∈ S × R+ in the process corresponds to a node with latent position Z and auxiliary

coordinate r.

• For a dyad on nodes with latent positions Zi and Zj , include an edge with probability K(ρ(Zi, Zj)).

• At time t the subgraph induced by by restricting Ψ to H(t) is visible.

A graph of size n can be obtained from the above framework by choosing any tn such that |Ψ∩H(tn)| = n.

Each tn < tn+1 with probability one (by Lemma 3.3.3). Thus, the above generative process is well-defined

for any n, and the nodes are well-ordered by their arrival times.

Due to its flexibility, the above framework defines a broad class of LPMs. For instance, the exchangeable

LPM can be viewed as a special case of the above framework in which the observation window grows only

in the auxiliary dimension. However, the full generality of this framework makes it difficult to establish

general sparsity and learnability results. For this reason, we have chosen to focus on a subclass to derive our

sparsity, projectivity, and learnability proofs. We refer to this class as rectangular LPMs. We have chosen

this class because it allows us to emphasize the key insights in the proofs without having to do too much

extra bookkeeping.

55

3.3.2 Rectangular Latent Position Model

For rectangular LPMs, we impose further criteria on the basic sparse LPM. The latent space is assumed to

be Euclidean (S = Rd). The continuum of observation windows H(t) are defined by the nested regions

H(t) = [−g(t), g(t)]
d ×

[
0,

t

(2g(t))d

]
(3.6)

where g(t) = tp/d for 0 ≤ p ≤ 1 controls the rate at which the observation window grows for the latent

position coordinates. The growth rate in the auxiliary dimension is chosen to be 2−dt1−p to ensure that the

volume of H(t) is t. We further assume that

∫ ∞
0

ud−1K(u)du <∞ (3.7)

to ensure that the average distance between a node and its neighbors remains bounded as n grows. We now

demonstrate the projectivity and sparsity of rectangular LPMs as Theorems 3.1 and 3.2.

Theorem 3.1. Rectangular sparse latent position network models define a projective sequence of models.

Proof. Provided in §3.6.2

Theorem 3.2. A d-dimensional rectangular latent space model is n2−p-sparse in expectation, where g(n) =

np/d.

Proof. Provided in §3.6.3

By specifying the appropriate value of p for a rectangular LPM, it is thus possible to obtain any polynomial

level of sparsity within n-sparse and n2-sparse (dense) in expectation. Other intermediate rates of sparsity

such as n log(n) can also be obtained considering non-polynomial g(n). We now investigate for which levels

of sparsity it is possible to do reliable statistical inference of the latent positions.

3.4 Learnability

3.4.1 Preliminaries

Recall that the edge probabilities in a LPM are controlled by two things: the link probability function K

and the latent positions Z ∈ Sn. In this section, we consider the problem of consistently estimating the

latent positions for a LPM using the observed adjacency matrix. We focus on the case where both K and

S = Rd are known, relying on assumptions that are compatible with rectangular LPMs.

In the process of establishing our consistent estimation results for Z, we also establish consistency results

for two other quantities: the squared latent distance matrix DZ ∈ Rn×n defined by DZ
ij = ||Zi−Zj ||2 and the

56

link probability matrix PZ ∈ [0, 1]n×n defined by PZij = K((DZ
ij)

1/2). These results are also of independent

interest because—like Z—the distance matrix and link probability matrix also characterize a LPM when K

is known.

We use the following notation and terminology to communicate our results. Let ||·||F denote the Frobenius

norm of a matrix,
p→ denote convergence in probability, Od denote the space of orthogonal matrices on Rd×d,

and Qnd ⊂ Rn×d denote the set of all n× d matrices with identical rows.

We say that a LPM has learnable latent positions if there exists an estimator Ẑ(Y n) such that

lim
n→∞

inf
O∈Od,Q∈Qnd

||Ẑ(Y n)O −Q− Z||2F
n

p→ 0. (3.8)

That is, a LPM has learnable positions if there exists an estimator Ẑ(Y n) of the latent positions such that

the average distance between Ẑ(Y n) and the true latent positions converges to 0. The infimum over the

transformations induced by O ∈ Od and Q ∈ Qnd is included to account for the fact that the likelihood of a

LPM is invariant to isometric translations (captured by Q) and rotations/reflections (captured by O) of the

latent positions (Shalizi and Asta, 2017).

We say that a LPM has learnable squared distances if there exists an estimator Ẑ(Y n) such that

lim
n→∞

||DẐ(Y n) −DZ ||2F
n2

p→ 0. (3.9)

That is, a LPM has learnable squared distances if the average squared difference between the estimator for

the matrix of squared distances induced by Ẑ(Y n) and the true matrix of squared distances DZ converges

to 0. Unlike the latent positions, DZ is uniquely identified by the likelihood; there is no need to account for

rotations, reflections, or translations.

Finally, we say a LPM that is e(n)-sparse in expectation has learnable link probabilities if there exists an

estimator Ẑ(Y n) such that

lim
n→∞

||P Ẑ(Y n) − PZ ||2F
e(n)

p→ 0. (3.10)

Note that a scaling factor of e(n) is used instead of the more intuitive n2 to account for the sparsity. Otherwise

the link probability matrix for a sparse graph could be trivially estimated because n−2||PZ ||2F
p→ 0.

3.4.2 Related Work on Learnability

Before presenting our results, we summarize some of the existing work on learnability of LPMs in the

literature. Choi and Wolfe (2011) considered the problem of estimating LPMs from a classical statistical

learning theory perspective. They established bounds on the growth function and shattering number for

57

LPMs with link function given by K(δ) = (1+exp δ)−1. However, we have found that their inequalities were

not sharp enough to be helpful for proving learnability for sparse LPMs.

Shalizi and Asta (2017) provide regularity conditions under which LPMs have learnable positions on

general spaces S, assuming that the link probability function K is known and possesses certain regularity

properties. Specifically, they require that the absolute value of the logit of the link probability function is

slowly growing, which does not necessarily hold in our setting.

Our learnability results more closely resemble those of Ma and Ma (2017), who consider a latent variable

network model of the form logit(P(Aij = 1)) = αi + αj + βXij + ZTi Zj , originally due to Hoff (2005).

Here, αi denote node-specific effects, Xij denote observed dyadic covariates and β denotes a corresponding

linear coefficient. If there are no covariates and αi = ||Zi||2/2, their approach defines a LPM with K(δ) =

expit(−δ2). Ma and Ma (2017) provide algorithms and regularity conditions for consistent estimation of

both the logit-transformed probability matrix and ZTZ under this model, using results from Davenport

et al. (2014). Here, we use similar concentration arguments to establish Lemmas 3.2.1 and 3.2.2, but our

results differ in that we consider a more general class of link functions, and also establish learnability of

latent positions via an application of the Davis-Kahan theorem.

Our learnability of latent positions result (Lemma 3.2.3) resembles that of Sussman et al. (2014), who

establish that the latent positions for dot-product network models can be consistently estimated. The dot

product model—a latent variable model which is closely related to the LPM—has a link probability function

defined by K(Zi, Zj) = Zi · Zj with Zj , Zj ∈ S. The latent space S ⊂ Rd is defined such that all link

probabilities must fall with [0, 1]. Our proof technique follows a similar argument as the one used to prove

their Proposition 4.3.

It should be noted that learnability of the link probability matrix for the sparse LPM could be established

by applying results from Universal Singular Value Thresholding (Chatterjee, 2015; Xu, 2017). However, it is

unclear how to extend such estimators to establish learnability of the latent positions; estimated probability

matrices from universal singular value thresholding do not necessarily translate to a valid set of latent

positions for a given link function.

Other related work includes Arias-Castro et al. (2018), which considers the problem of estimating latent

distances between nodes when the functional form of the link probability function is unknown. They show

that, if the link probability function is non-increasing and zero outside of a bounded interval, the lengths of

the shortest paths between nodes can be used to consistently rank the distances between the nodes. Diaz

et al. (2018) and Rocha et al. (2017) also propose estimators in similar settings with more specialized link

functions. None of these approaches are appropriate for our case—we are interested in recovering the latent

positions under the assumption K is known with positive support on the entire real line.

58

3.4.3 Learnability Results

Our learnability results assume the following criteria for a LPM:

1. The link probability function K is known, monotonically decreasing, differentiable, and upper bounded

by 1− ε for some ε > 0.

2. The latent space S ⊆ Rd.

3. There exists a known differentiable function G(n) such that

I(||Zn|| ≤ G(n))
p→ 1. (3.11)

We refer to the above conditions as regularity criteria and refer to any LPM that meets them as regular.

Note that criterion 3 implies that the sequence of latent positions is tight (Kallenberg, 2002, p. 66). The

class of regular LPMs contains several popular LPMs. Notably, both rectangular and exchangeable LPMs

due to Hoff et al. (2002) are regular, as shown in Lemmas 3.3.8 and Lemma 3.3.9.

Our approach for establishing learnability of Z involves proposing a particular estimator for Z which

meets the learnability requirement as n grows. Our proposed estimator is a restricted maximum likelihood

estimator for Z, provided by the following equation:

Ẑ(Y n) = argmaxz:||zi||≤G(n)∀i∈1:nL(z : Y n) (3.12)

where L(z : Y n) denotes the log likelihood of latent positions z = (z1, . . . zn) ∈ Rn×d for a n× n adjacency

matrix Y n. We use DẐ(Y n) and P Ẑ(Y n) to denote the corresponding estimates of the squared distance matrix

and link probability matrix. Note that the log likelihood L(z : Y n) is given by

L(z : Y n) =

n∑
i=1

n∑
j=1

Y nij log (K(||zi − zj ||)) + (1− Y nij) log (1−K(||zi − zj ||)) . (3.13)

To establish consistency, we first provide a concentration inequality for the maximum likelihood estimate

of Z in Lemma 3.2.3. En route to deriving Lemma 3.2.3, we also derive inequalities for the associated squared

distance matrix DZ ∈ Rn×n defined by DZ
ij = ||Zi − Zj ||2F (Lemma 3.2.2) and the link probability matrix

PZ ∈ [0, 1]n×n defined by PZij = K((DZ
ij)

1/2) (Lemma 3.2.1). We combine these results in Theorem 3.3 to

provide conditions under which it is possible to consistently estimate Z, DZ , and PZ .

59

Our results are sensitive to the particular choices of link probability function K and upper bounding

function G. For this reason, we introduce the following notation to communicate our results.

αKn = sup
0≤x≤2G(n)

|K ′(x)|
|x|K(x)ε

, (3.14)

βKn = sup
0≤x≤2G(n)

x2K(x)

K ′(x)2
, (3.15)

where K ′(x) denotes the derivative of K(x) and ε is given by the criteria on K imposed by regularity criterion

1.

Lemma 3.2.1. Consider a sequence adjacency matrices Y n generated by a regular LPM with ||Zn|| ≤ G(n)

for all n. Let P Ẑ(Y n) denote the estimated link probability matrix obtained via Ẑ(Y n) from (3.12). Then,

P
(
||P Ẑ(Y n) − PZ ||2F ≥ 8eαKn G(n)2n1.5(d+ 2)

)
≤ C

n2
(3.16)

for some constant C > 0.

Proof. Provided in §3.6.4.

Lemma 3.2.2. Consider a sequence adjacency matrices Y n generated by a regular LPM with ||Zn|| ≤ G(n)

for all n. Let DẐ(Y n) denote the matrix of estimated squared distances obtained via Ẑ(Y n) from (3.12).

Then,

P
(
||DẐ(Y n) −DZ ||2F ≥ 128eαKn β

K
n G(n)2n1.5(d+ 2)

)
≤ C

n2
(3.17)

for some constant C > 0.

Proof. Provided in §3.6.4.

Establishing concentration of the estimated latent positions is complicated by the need to account for

the minimization over all possible rotations, translations, and reflections. The following matrix, known as

the double-centering matrix, is a useful tool to account for translations:

Cn = In −
1

n
1n1Tn (3.18)

Here, In denotes the n-dimensional identity matrix and 1n denotes n× 1 matrix consisting of ones.

60

Lemma 3.2.3. Consider a sequence adjacency matrices Y n generated by a regular LPM with ||Zn|| ≤ G(n)

for all n. Furthermore, let λ1 ≥ · · · ≥ λd denote the d nonzero eigenvalues of CnZZTCn. Then,

P

 inf
O∈Od
Q∈Qnd

||Ẑ(Y n)O − Z −Q||2F ≥
(λ1 − λd)2

(4d)−1λ1
+

512e(d+ 2)
(
d+ 8λ1

λd

)
λd

nG(n)2 (αKn β
K
n n

0.5)
−1

 ≤ C

n2
(3.19)

for some constant C > 0, where Od denotes the space of orthogonal matrices on Rd×d, Qnd ⊂ Rn×d is

composed of matrices with n identical d-dimensional rows, and Ẑ(Y n) is obtained via (3.12).

Proof. Provided in §3.6.4.

These three concentration results can be translated into sufficiency conditions for learnability. We

summarize these in Theorem 3.3.

Theorem 3.3. A regular LPM that is e(n)-sparse in expectation has:

1. learnable link probabilities if αKn e(n)−1n1.5G(n)2 → 0 as n grows.

2. learnable squared distances if βKn α
K
n n
−0.5G(n)2 → 0 as n grows.

3. learnable latent positions if n−1(λ1 − λd)2λ−1
1 → 0 and

βKn α
K
n n

0.5G(n)2λ1λ
−2
d → 0 as n grows.

Proof. Provided in §3.6.4.

It may seem counter-intuitive that the conditions for learnability of Z, PZ and DZ differ, even though

their estimators are all derived from the same quantity. For example, if βKn grows quickly enough, the

LPM may have learnable link probabilities but not squared distances. This disparity can be understood by

considering the metrics implied by each form learnability.

Suppose that δij = ||Zi−Zj || is very large. Then mis-estimating δij by a constant c > 0 (i.e. δ̂ij = δij+c)

contributes (2δijc+c
2)2 to the error in ||DẐ−DZ ||2F . This contribution to the error is sizable, and can hinder

convergence if made too often. However, the influence of the same mistake on ||P Ẑ−PZ ||2F is minor; because

the probability K(δ) is already small for large δ, (K(δ + c)−K(δ))2 does not contribute much to the error.

For small distances, the opposite may be true; a small mistake in estimated distance may lead to a large

mistake in estimated probability. Thus, learnability of squared distances penalizes mistakes differently than

learnability of link probabilities. However, there are typically far more large distances than small distances,

meaning that the distance metric imposed by learnability of link probabilities is typically less stringent than

for learnability of squared distances.

Theorem 3.3 can be used to establish Corollary 1, a learnability result for rectangular LPMs.

61

Corollary 1. Consider a d-dimensional rectangular LPM with g(n) = np/d and link probability function

K(δ) = (C + δ2)−a for some C > 0, where a > max({d/2, 1}) and 0 ≤ p ≤ 1. Such a network has learnable

1. link probabilities if 2p < (1 + 2/d)
−1

,

2. distances if 2p < d (2a+ 6)
−1

,

3. latent positions if 2p < d (2a+ 4)
−1

.

Thus, for any b ∈ (1.5, 2], it is possible to construct a LPM that is projective, nb-sparse in expectation, and

has learnable latent positions, distances, and link probabilities.

Proof. Provided in §3.6.4.

Corollary 1, combined with the projectivity of rectangular LPMs, guarantees the existence of a LPM

that is projective, learnable, and sparse for any sparsity level that is denser than n3/2-sparse in expectation.

Thus, we have shown that we have met our desiderata for LPMs laid out in the introduction.

Perhaps surprisingly, our result in Corollary 1 depends upon the dimension of the latent space. The higher

the dimension, the richer the levels of learnable sparsity. Moreover, the learnability results in Theorem 3.3

only apply to rectangular LPMs with link functions that decay polynomially. The βKn term is too large

for the exponential-style decays that are commonly considered in practice (Hoff et al., 2002; Rastelli et al.,

2016). We elaborate on these points in §3.5.3.

In contrast, it is possible to prove learnability of exchangeable LPMs with exponentially decaying K.

Corollary 2 guarantees learnability of the exchangeable LPM for two exponential-style link functions. As

far as we are aware, these are the first result learnability results for the latent positions for the original

exchangeable LPM.

Corollary 2. Consider a LPM on S = Rd with the latent positions distributed according a isotropic Gaussian

random vector with variance σ2. Suppose that the link probability function is given by either

K(δ) = (1 + exp (δ2))−1 or K(δ) = τe−δ
2

. (3.20)

for τ ∈ (0, 1). Such a network has learnable link probabilities, distances, and latent positions provided that

σ2 < 1/4.

Proof. Provided in §3.6.4.

Notably, the set of link functions in Corollary 2 does not include the traditional expit link function that

was suggested in the original paper LPM by Hoff et al. (2002). The expit class of link functions implies a

value αkn—defined as in (3.14)—that is unbounded (see Table 3.1 for a summary of the αkn and βKn values

62

for various link functions), meaning that Lemma 3.3 cannot be applied to prove learnability for this class

of LPMs. This does not necessarily mean that expit LPMs are not learnable, just that determining their

learnability remains an open problem. Note however, that some classes of sparse LPMs (such as the example

considered in Theorem 3.4 (§3.6.5)) are provably unlearnable. We elaborate on this point in §3.5.3.

The results in Theorem 3.3 can also be used to obtain learnability results for more specialized LPMs such

as sparse graphon-based LPMs. We provide such a result in §3.5.1 when comparing sparse graphons with

our approach.

K(x) = K ′(x) = |K′(x)|
|x|K(x)ε = x2|K(x)|

K′(x)2 = αKn ∼ βKn ∼
1

1+ex
−ex

(1+ex)2
ex

εx(1+ex)
(1+ex)3x2

e2x ∞ Θ(eG(n)G(n)2)

1
1+ex2

−2xex
2

(1+ex2)2
2ex

2

ε(1+ex2)

(1+ex
2
)3

4e2x2
Θ(1) Θ(eG(n)2)

τe−x
2 −2xτe−x

2

2 ex
2

4τ Θ(1) Θ(eG(n)2)
1

(c+x2)a
−2ax

(c+x2)a+1
2a
c+x2

(c+x2)a+2

4a2 Θ(1) Θ(G(n)2a+4)

Table 3.1: Values of αKn and βKn for different choices of link function K(x)

3.5 Comparisons and Remarks

It would seem that existing tools for constructing sparse graph models, such as the sparse graphon framework

(Bollobás et al., 2007; Borgs et al., 2014) or the graphex framework (Caron and Fox, 2014; Veitch and Roy,

2015; Borgs et al., 2014) could be used to develop sparse latent position models. Unfortunately, these

approaches introduce sparsity in ways that produce undesirable side effects for LPMs. We now describe

both the sparse graphon framework (§3.5.1) and the graphex framework (§3.5.2), emphasizing how they

result sparse LPMs which fail to meet our desiderata of projectivity and learnability. Finally, we make some

concluding remarks on the results we have derived this article (§3.5.3).

3.5.1 Sparse Graphon-based Latent Position Models

Borgs et al. (2014) proposed a modification of graphon models to allow sparse graph sequences. Exchangeable

LPMs are within the graphon family, so it is straightforward to specialize their approach to define sparse

graphon-based LPMs.

As in exchangeable latent space models, the latent positions for a sparse graphon-based LPM are each

drawn from a common distribution f , independently of each other the number of nodes n. However,

the link probability function P(Yij = 1|Zi, Zj) = Kn(ρ(Zi, Zj)) can depend on n. Specifically, Kn(x) =

min({snK(x), 1}) where K : R+ → R+ and (sn)1...∞ is a non-increasing sequence. These models express

sparse graph sequences, with the sequence (sn)1...∞ controlling the sparsity of the resultant graph sequence.

63

Proposition 5. Sparse graphon-based latent space models define a n2sn-sparse in expectation graph sequence.

Proof. Proof provided in §3.6.3.

However, the resultant sparse graph sequences are no longer projective.

Proposition 6. Sparse-graphon latent space models do not define a projective sequence of models if

(sn)n=1...∞ is not constant.

Proof. Proof provided in §3.6.2.

The learnability results in Theorem 3.3 can also be applied to sparse-graphon based LPMs.

Corollary 3. Consider the following sparse graphon-based version of the exchangeable LPM. Let S = Rd with

the latent positions distributed according a isotropic Gaussian random vector with any variance σ2 < 1/4.

Suppose that the link probability function is given by either

Kn(δ) = n−p(1 + exp (δ2))−1 or Kn(δ) = τn−pe−δ
2

(3.21)

for τ ∈ (0, 1), 0 ≤ p ≤ 1. Such a network has learnable link probabilities, squared distances, and latent

positions if p < 1/2 − 2σ2(1 + c) for c > 0. Given an appropriate σ2, this LPM can be both nb-sparse and

for b ∈ (1.5, 2].

Proof. Proof provided in §3.6.4

Thus, sparse graphon-based LPMs can achieve learnability under the same rate or sparsity as we derived

for rectangular LPMs in Corollary 1. However, this formulation allows for link probability functions with

lighter tails, and holds for all dimensions d. Thus, there may be a trade-off between projectivity and

learnability under light-tailedness of the link probability function.

It is also worth noting that the sparse graph representation of Bollobás et al. (2007) is more general than

the sparse graphon representation described above. It allows for latent variables assigned defined through

a point process rather than generated independently from the same distribution. For LPMs, this set-up

equates to the traditional random connection model (§3.2.5).

3.5.2 Comparison with the Graphex Framework

Beyond the random connection model (Meester and Roy, 1996), there has been a recent renewed interest in

using point processes to define networks. This was primarily spurned by the developments in Caron (2012)

and Caron and Fox (2014) in which they propose a new graph framework—based on point processes—for

infinitely exchangeable and sparse networks. This approach was generalized as the graphex framework in

64

Veitch and Roy (2015). Other variants and extensions of this work include Borgs et al. (2016); Herlau et al.

(2016); Palla et al. (2016); Todeschini et al. (2016).

In the graphex framework, a graph is defined by a homogeneous Poisson process on an augmented space

R+ × R+, with the points representing nodes. The two instances of R+ play the roles of the parameter

space and the auxiliary space. The parameter space determines the connectivity of nodes through a function

W : R2
+ → [0, 1]. Connectivity is independent of the auxiliary dimension R+ that determines the order in

which the nodes are observed. Clearly, our sparse LPM set-up shares many similarities with the graphex

framework. Both assign latent variables to nodes according to a homogeneous Poisson process defined on a

space composed of a parameter space to influence connectivity and an auxiliary space to influence order of

node arrival. The graphex is defined in terms of a one-dimensional parameter space, but it can be equivalently

expressed as a multi-dimensional parameter space as we do for the sparse LPM. The link probability function

K for the sparse LPM depends solely on the distance between points, but it would be straightforward to

extend to the more general set-up for W as in the graphex. However, it would take additional work to

determine the sparsity levels and learnability properties of such graphs.

The major difference between our framework and the graphex framework is how a finite subgraph is

observed. To observe a finite graphex-based graph, one restricts the point process to a window R+ × [0, ν].

Here, the restriction is limited to the auxiliary space, with the parameter space remaining unrestricted. This

alone is not enough to lead to a finite graph, as a unit rate Poisson process on R+× [0, ν] still has an infinite

number of points almost-surely. To compensate, an additional criterion for node visibility is included. A

node is visible only if it has at least one neighbor. For some choices of W , this results in a finite number of

visible nodes for a finite ν. Veitch and Roy (2015) show that the expected number of nodes nν and edges eν

are given by

E (nν) = ν

∫ ∞
0

1− exp

(
−ν
∫
R+

W (x, y)dy

)
dx, (3.22)

E (eν) =
1

2
ν2

∫ ∞
0

∫ ∞
0

W (x, y)dxdy (3.23)

respectively. Thus, the degree of sparsity in the graph is controlled through the definition of W . Clearly,

for a finite-node restriction to be defined, the two dimensional integral over W in (3.23) must be finite.

Otherwise, the number of nodes is infinite for any ν.

A sparse graphex-based LPM cannot be implemented in the naive manner because, if W is solely a

function of distance between nodes, the two dimensional integral (3.23) is infinite. One modification to

prevent this to modify W to have bounded support, e.g. W (x, y) = K(|x − y|)I(0 ≤ x, y ≤ C). However,

this framework is equivalent to the graphon framework and results in dense graphs (Veitch and Roy, 2015).

It does not define a sparse LPM.

65

Alternatively, we could relax the graphex such that latent positions are generated according to an

inhomogeneous point process over the parameter sparse. This can be done though the definition of W .

For instance, consider

W (x, y) = K (| exp (x)− exp (y)|) . (3.24)

with K being the link probability function as defined in the traditional LPM. In this set-up, W can be

viewed as the composition of two operations. First, an exponential transformation is applied to the latent

positions resulting in an inhomogeneous rate function given by f(x) = 1/(1 + x). Then, we proceed as if it

were a traditional LPM in this new space, connecting the nodes according to K on their transformed latent

positions. Finally, the isolated nodes are discarded. This approach defines a sparse and projective latent

space model, with the level of sparsity controlled by K. Though (3.22) and (3.23) provide a means with

which to calculate the sparsity level, these expressions do not yield analytic solutions for most K. As a

result, the graphex framework is far more difficult to work with when defining sparse LPMs; they lack the

straightforward control over the level of sparsity provided by the growth function g(t) in rectangular LPMs.

Furthermore, it is difficult to apply the tools derived in Theorem 3.3 to establish learnability for graphex-

based LPMs. The difficulty stems from the fact that regularity requires a probably bound on the distance

between the first n nodes observed and the origin. Because of the irregular sampling scheme in which

isolated nodes are discarded, it is difficult to establish such a bound for the graphex. Furthermore, any such

bound is usually large due to the fact the latent positions at any n are generated according to an improper

distribution. For this reason, whether or not such graphex-based LPMs are learnable is an open problem.

3.5.3 Remarks

We have established a new framework for sparse and projective latent position models that enables

straightforward control the level of sparsity. The sparsity is a result of assuming the latent positions of

nodes are a realization of a Poisson point process on an augmented space, and that the growing sequence of

graphs is obtained by restricting observable nodes to those with positions in a growing sequence of nested

observation windows.

The notion of projectivity we consider here is slightly weaker than the one usually considered in the

literature (e.g. Shalizi and Rinaldo (2013)). Our definition requires consistency under marginalization of the

most recently arrived node, rather than consistency under marginalization of any node. We do not consider

this to be a major limitation—if the entire sequence of graphs were observed, the order of the nodes would

be apparent.

In practice, only a single network of finite size is available when conducting inference. However, in

these cases the order of nodes is not required—we make no use of it when defining the maximum likelihood

66

estimator. A finite observation from our new sparse LPM is equivalent to finite observation from an equivalent

exchangeable LPM with f given by the shape of H(nt). This follows from Lemma 3.3.1 which indicates

that the distribution of latent positions can be viewed as iid after conditioning on the number of nodes

and randomly permuting the ordering. This means that the analysis and inference tools developed for

exchangeable LPMs extend immediately to our approach when analyzing a single, finite network. From this

viewpoint, we have merely proposed a different asymptotic regime for studying the same classes of models

available under the exchangeability assumption.

Theorem 3.3 provides some consistency results under this asymptotic regime. However, the rates of

learnability we achieved are upper bounds—the inequalities in Lemmas 3.2.1-3.2.3 are not necessarily tight.

They are derived to hold even for the worse-case regular LPMs regardless of how the latent positions are

generated. We demonstrate in Theorem 3.4 (§3.6.5) that there are some classes regular LPMs for which it is

impossible to learn the latent positions. This class of models includes any regular LPMs with G(n) = np/d

and K exponentially decreasing. In these cases, it is possible for the LPM to result in graphs which are

disconnected with probability trending to one by clustering the latent positions at two extreme points of the

space.

Though the regularity criteria technically allow for such instances by placing no assumptions on the

distribution of Z besides bounded norms, these clusters arise with vanishing probability when the latent

positions are assumed to follow a homogeneous Poisson process such as in rectangular LPMs. For this

reason, a future research direction to explore is to establish better learnability rates for rectangular LPMs

by tightening the bounds Lemmas 3.2.1-3.2.3 through assumption on the distribution of the latent positions.

3.6 Proofs

3.6.1 Intermediary Results

The following are useful lemmas toward establishing the main results in this article.

Lemma 3.3.1. Restriction Theorem in Kingman (1993, p. 17) Let Λ be a Poisson process with mean measure

µ on S, and let S1 be a measurable subset of S. Then the random countable set

Λ1 = Λ ∩ S1 (3.25)

can be regarded as a Poisson process on S with mean measure

µ1(A) = µ(A ∩ S1) (3.26)

or as a Poisson process on S1 possessing a mean measure that is the restriction of µ to S1.

67

Lemma 3.3.2. For a rectangular LPM, the number of nodes which are visible at time t is Poisson distributed

with mean t.

Proof. According to Lemma 3.3.1, the latent positions of nodes visible at time t follow a unit-rate Poisson

process over H(t). Therefore, the number of nodes is Poisson distributed with expectation equal to the

volume of H(t), which is t.

Lemma 3.3.3. Let tn denote the arrival time of the nth node in a sparse LPM. Then, tn ∼ Gamma(n, 1)

if H(t) has volume t.

Proof. Let nt = |Ψ ∩ H(t)| where Ψ denotes the unit rate Poisson process of latent positions. Then, it is

straightforward to verify that nt follows a one-dimensional homogeneous Poisson process on the positive real

line. Note that tn can be equivalently expressed as

tn = inf {t ≥ 0 : |Ψ ∩H(t)| = n} . (3.27)

That is, tn is the index of the smallest observation window containing n nodes for all positive integers n.

Under this perspective, tn can be viewed as a stopping time of nt. It is well-known that t1, the first arrival

time of a unit-rate Poisson process, follows an exponential distribution with rate 1. Then, by the strong

Markov property of Poisson processes tn − tn−1 is identical in distribution to t1. Thus, tn is equivalent to

the sum of n independent exponential distributions, meaning it follows Gamma(n, 1).

Lemma 3.3.4. Consider a sparse rectangular LPM. Let z denote the latent position of a node chosen

uniformly at random of the nodes visible at time t. Then z follows a uniform distribution over [−g(t), g(t)]d.

Proof. If a node is visible at time t, its latent position and auxiliary coordinate pair (z, r) are a point in

a unit-rate Poisson process restricted H(t). By Lemma 3.3.1, this point process is a Poisson process with

unit rate over the restricted space. Thus, if a node is visible at time (z, r), it is uniformly distributed over

H(t) = [−g(t), g(t)]d × [0, t/(2g(t))d]. Marginalizing r provides the result.

Lemma 3.3.5. Let K be a decreasing non-negative function such that

0 <

∫ ∞
0

rd−1K(r)dr <∞, (3.28)

for d ∈ Z+. Then,

0 <

∫
y∈[−B,B]d

K(||x− y||)dy <∞ (3.29)

for any B ∈ R+.

68

Proof. Note that for all decreasing positive functions K, the function

R(x) =

∫
y∈[−B,B]d

K(||y − x||)dy (3.30)

is maximized when x is at the origin. Thus, for all x ∈ Rd,

∫
y∈[−B,B]d

K(||y − x||)dy ≤
∫
y∈[−B,B]d

K(||y||)dy (3.31)

≤
∫
y∈Rd:||y||<B

K(||y||)dy (3.32)

∝
∫ B

0

rd−1K(r)dr (3.33)

<∞. (3.34)

The positivity follows from K being non-negative.

Lemma 3.3.6. Consider a rectangular LPM, with ti denoting the arrival time of the ith node. Let π denote

permutation chosen uniformly at random from all permutations on {1, . . . , n− 1}. Then, conditional on

tn = T , each tπ(i)’s marginal distribution is uniform on [0, T] for i = 1, . . . , n− 1. Consequently, the latent

position Zπ(i) of node π(i) is uniformly distributed on [−g(T), g(T)]d.

Proof. Let (wi)i=1,...,n denote the inter-arrival of times of the nodes. That is, w1 = t1 and wi = ti− ti−1. As

argued in the proof of Lemma 3.3.3, each wi is exponentially distributed. Thus, the density of t1, . . . , tn−1

given tn = T satisfies:

f(t1, . . . , tn−1|tn = T) ∝ I(0 ≤ t1 ≤ t2 ≤ · · · ≤ tn−1 ≤ tn) (3.35)

which is the same density as the order statistics of a uniform distribution on [0, T]. Thus, a randomly chosen

waiting time tπ(i) is uniformly distributed on [0, T]. Let rπ(i) denote the auxiliary coordinate of node π(i).

It follows that P((Zπ(i), rπ(i)) ∈ [−g(a), g(a)]d × [0, a/g(a)d]) = a/T for all 0 ≤ a ≤ T . It follows that Zπ(i)

is uniformly distributed on [−g(T), g(T)]d.

Lemma 3.3.7. Consider a rectangular sparse LPM model restricted to H(tn) such that n nodes are visible.

Let {Z1, . . . , Zn} denote the latent positions of these nodes. Let δ(n) = maxi=1,...n ||Zi|| denote the largest

Euclidean distance between a visible node’s latent position and the origin. Then,

P(δ(n) >
√
dg(n+

√
n log(n))) ≤ log(n)−1 (3.36)

69

indicating that

lim
n→∞

P(δ(n) >
√
dg(n+

√
n log(n)))→ 0. (3.37)

Consequently,

lim
n→∞

P(δ(n) > 2
√
dg(n))→ 0. (3.38)

Proof. Let Zij denote the jth latent coordinate of node i. By construction, ||Zij || ≤ g(tn) for any i ≤ n, j ≤ d.

Thus, δ(n) ≤
√
dg(tn). By Lemma 3.3.3, know that tn ∼ Gamma(n, 1). By Chebyshev inequality,

P(|tn − n| >
√
n log(n)) ≤ log(n)−1 (3.39)

⇒ P(tn > n+
√
n log(n)) ≤ log(n)−1 (3.40)

⇒ P(g(tn) > g(n+
√
n log(n))) ≤ log(n)−1 (3.41)

⇒ P(d−1/2δ(n) > g(n+
√
n log(n))) ≤ log(n)−1 (3.42)

⇒ P(δ(n) >
√
dg(n+

√
n log(n))) ≤ log(n)−1 (3.43)

The result in (3.37) follows from taking the limit, and the result in (3.38) follows from g(n+
√
n log(n)) ≤

2g(n) for all non-decreasing g(n) = np/d and n ≥ 1.

Lemma 3.3.8. Rectangular LPMs are regular with G(n) = 2
√
dnp/d.

Proof. Criteria 1 and 2 of a regular LPM hold by definition of a rectangular LPM. Lemma 3.3.7 guarantees

that satisfaction of criterion 3.

Lemma 3.3.9. Consider a LPM on S = Rd, with the latent position vectors independently and identically

distributed according to an isotropic Gaussian with σ2. If the link probability function is upper bounded by

1− ε, then the LPM is regular with G(n) =
√

2σ2(1 + c) log(n) for any c > 0.

Proof. Criteria 1 and 2 for regularity hold trivially. Thus, it is sufficient to prove criteria 3 for the prescribed

G(n). Let Z1, . . . , Zn denote the latent positions. Then ||Zi||2/σ2 follows a χ2 distribution with parameter

d. We can apply the concentration inequality on χ2 random variables implied by Laurent and Massart (2000,

Lemma 1), to conclude, for any t > 0

P
(
||Zi|| > σ

√
d+ 2t+ 2

√
dt

)
≤ exp (−t) (3.44)

⇒ P
(
||Zi|| >

√
2σ(u+

√
d)
)
≤ exp (−u2) (3.45)

70

for any u > 0. Applying the union bound results in

P
(

max
1≤i≤n

||Zi|| >
√

2σ(u+
√
d)

)
≤ n exp (−u2) (3.46)

As long as u2 ≥ (1 + c) log(n), for c > 0, the above probability goes to 0. Note that
√

2σ2(1 + c) log(n)

dominates
√

2dσ2 as n grows. Thus, G(n) =
√

2σ2(1 + c) log(n) yields the desired result for c > 0.

Lemma 3.3.10. Symmetrization Lemma

Let

Ω =
{
X ∈ Rn×d : ||Xi|| ≤ G(n)∀i ∈ [n]

}
(3.47)

for G(n) ∈ R+. Let L(x : Y n) denote the log likelihood of the latent positions x ∈ Ω as defined in (3.13) for

a link function K. Let L̄(x) = L(x : Y n)− L(0 : Y n) and E(L̄(x)) denote its expectation. Then, for h ≥ 1,

E
(

sup
x∈Ω
|L̄(x)− E(L̄(x))|h

)

≤ 2hE

sup
x∈Ω

∣∣∣∣∣∣
n∑
j=1

n∑
i=1

Rij

(
Y nij log

(
K(δxij)

K(0)

)
+ (1− Y nij) log

(
1−K(δxij)

1−K(0)

))∣∣∣∣∣∣
h
 (3.48)

where R denotes an array of independent Rademacher random variables and δxij = ||xi − xj ||.

Proof. This proof follows the same argument of that of Ledoux and Talagrand (1991, Lemma 6.3). Let

L̄ij(x) denote the contribution of Y nij to the standardized log likelihood. Thus,

L̄(x) =

n∑
i=1

n∑
j=1

L̄ij(x) and (3.49)

L̄(x)− E(L̄(x)) =

n∑
i=1

n∑
j=1

`ij(x) (3.50)

where each `ij(x) = L̄ij(x) − E(L̄ij(x)) is a zero mean random variable. For each i, j, let `′ij(x) denote

a random variable that is independently drawn from the distribution of `ij(x). Then, `ij(x) − `′ij(x) is a

symmetric zero mean random variable with the same distribution as Rij(`ij(x)− `′ij(x)). Moreover, we can

view supx∈Ω |f(x)| as defining a norm on the Banach space of functions f : Ω→ R. These facts, along with

the convexity of exponentiating by h, imply the following.

71

E
(

sup
x∈Ω

∣∣L̄(x)− E(L̄(x))
∣∣h) (3.51)

= E

sup
x∈Ω

∣∣∣∣∣
n∑

i=1

n∑
j=1

`ij(x)

∣∣∣∣∣
h
 (3.52)

≤ E

sup
x∈Ω

∣∣∣∣∣
n∑

i=1

n∑
j=1

`ij(x)− `′ij(x)

∣∣∣∣∣
h
 (cf. (Ledoux and Talagrand, 1991, Equation 2.5)) (3.53)

= E

sup
x∈Ω

∣∣∣∣∣
n∑

i=1

n∑
j=1

Rij

(
`ij(x)− `′ij(x)

)∣∣∣∣∣
h
 (3.54)

= E

∣∣∣∣∣sup
x∈Ω

n∑
i=1

n∑
j=1

Rij

(
L̄ij(x)− L̄′ij(x)

)∣∣∣∣∣
h
 (3.55)

≤ E

(sup
x∈Ω

∣∣∣∣∣
n∑

i=1

n∑
j=1

RijL̄ij(x)

∣∣∣∣∣+ sup
x∈Ω

∣∣∣∣∣
n∑

i=1

n∑
j=1

RijL̄
′
ij(x)

∣∣∣∣∣
)h
 (3.56)

≤ E

1

2
sup
x∈Ω

∣∣∣∣∣2
n∑

i=1

n∑
j=1

RijL̄ij(x)

∣∣∣∣∣
h

+
1

2
sup
x∈Ω

∣∣∣∣∣2
n∑

i=1

n∑
j=1

RijL̄
′
ij(x)

∣∣∣∣∣
h
 (3.57)

by convexity of exponentiating by h (3.58)

=
1

2
E

sup
x∈Ω

∣∣∣∣∣2
n∑

i=1

n∑
j=1

RijL̄ij(x)

∣∣∣∣∣
h
+

1

2
E

sup
x∈Ω

∣∣∣∣∣2
n∑

i=1

n∑
j=1

RijL̄
′
ij(x)

∣∣∣∣∣
h
 (3.59)

= 2hE

sup
x∈Ω

∣∣∣∣∣
n∑

i=1

n∑
j=1

RijL̄ij(x)

∣∣∣∣∣
h
 . (3.60)

The result follows from the definitions of the L̄ij .

Lemma 3.3.11. Contraction Theorem (Ledoux and Talagrand, 1991, Theorem 4.12).

Let F : R+ → R+ be convex and increasing. Let φi : R→ R for i ≤ N satisfy φi(0) = 0 and |φi(s)−φi(t)| ≤

|s− t| for all s, t ∈ R. Then, for any bounded subset Ω ⊂ R,

E

(
F

(
1

2
sup
t∈ΩN

∣∣∣∣∣
N∑
i=1

Riφi(ti)

∣∣∣∣∣
))
≤ E

(
F

(
sup
t∈ΩN

∣∣∣∣∣
N∑
i=1

Riti

∣∣∣∣∣
))

(3.61)

where R1, . . . , RN denote independent Rademacher random variables.

Corollary 4. Let R denote an n × n array of independent Rademacher random variables, K : R+ →

[0, 1− ε] denote a link function that satisfies the regularity criteria in §3.4.3 (i.e. monotonically decreasing,

differentiable function that is upper bounded by 1− ε for some ε), and

Ω =
{
X ∈ Rn×d : ||Xi|| ≤ G(n) for all i ∈ [n]

}
(3.62)

72

with G(n) ∈ R+, and Y n ∈ {0, 1}n×n. Define αKn as in (3.14). That is,

αKn = sup
0≤x≤2G(n)

|K ′(x)|
|x|K(x)ε

. (3.63)

Then,

E

sup
x∈Ω

∣∣∣∣∣∣
n∑
j=1

n∑
i=1

Rij

(
Y nij log

(
K(δxij)

K(0)

)
+ (1− Y nij) log

(
1−K(δxij)

1−K(0)

))∣∣∣∣∣∣
h
 (3.64)

≤ (2αKn)hE

sup
x∈Ω


∣∣∣∣∣∣
n∑
j=1

n∑
i=1

Rij ||xi − xj ||2
∣∣∣∣∣∣
h

 (3.65)

for h ≥ 1, where δxij = ||xi − xj ||.

Proof. We can apply Lemma 3.3.11 to obtain this result as follows.

For all x ∈ Ω, i, j ∈ [n], we know by the triangle inequality that ||xi − xj ||2 ≤ 4G(n)2. Moreover,

K(2G(n)) ≤ K(||xi−xj ||) ≤ 1− ε because K is regular. A Taylor expansion of log(K(
√
·)) around 0 reveals

that

log(K(
√
u))− log(K(

√
0)) (3.66)

=
uK ′(

√
w)

2
√
wK(

√
w)

for some w ∈ [0, 4G(n)2] (3.67)

=
uK ′(v)

2vK(v)
for some v ∈ [0, 2G(n)]. (3.68)

Taking the supremum over possible values of v, it follows that∣∣∣∣∣ log(K(
√
u))− log(K(

√
0))

αKn

∣∣∣∣∣ ≤ u. (3.69)

Similarly, a Taylor expansion of log(1−K(
√
·)) around 0 yields

log(1−K(
√
u))− log(1−K(

√
0)) (3.70)

=
−uK ′(

√
w)

2v(1−K(
√
w))

for some w ∈ [0, 4G(n)2] (3.71)

=
−uK ′(v)

2v(1−K(v))
for some v ∈ [0, 2G(n)]. (3.72)

73

Similarly, taking the supremum over possible values of v yields∣∣∣∣∣ log(1−K(
√
u))− log(1−K(

√
0))

αKn

∣∣∣∣∣ ≤ u. (3.73)

Together, we have

∣∣∣∣∣∣
Y nij log

(
K(u)
K(0)

)
+ (1− Y nij) log

(
1−K(u)
1−K(0)

)
αKn

∣∣∣∣∣∣ ≤ u. (3.74)

Moreover, for any i, j, the function on the lefthand side is 0 at u = 0. Thus, the function meets the criteria

required of the φ functions in Lemma 3.3.11 and the result follows from convexity of exponentiating by h.

Lemma 3.3.12. Let Σ, Σ̂ ∈ Rn×n be symmetric, with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn and λ̂1 ≥ · · · ≥ λ̂n,

respectively. Furthermore, assume there is a d ≤ n such that λd > λd+1 = · · ·λn = 0. Let V, V̂ ∈ Rn×d have

orthonormal columns satisfying ΣVj = λj and Σ̂Vj = λ̂j for j ∈ {1, . . . , d}. Then, there exists an orthogonal

matrix O ∈ Rd×d such that

||V̂ O − V ||F ≤
23/2||Σ̂− Σ||F

λd
. (3.75)

Proof. This is a special case of the Davis-Kahan Theorem (Yu et al., 2014, Theorem 2).

3.6.2 Projectivity Proofs

Proof of Proposition 1

Proof. Let Y n1 and Y n2 denote random graphs with n1 and n2 nodes (n1 < n2) generated according to an

exchangeable LPM, and let Pn1 and Pn2 be their corresponding distributions. Let Zji denote the random

latent position of node i in Y j for j = n1, n2. By definition, Zn1
i and Zn2

i are iid draws from the same

distribution f on S. Thus, the (Zji)i=1...n1
have identical distributions for each j. As a result, K(ρ(Zn1

i1
, Zn1

i1
))

has the same distribution as K(ρ(Zn1
i2
, Zn1

i2
)) for any 1 ≤ i1, i2 ≤ n1. Because the distributions for each dyad

coincide, the distributions over adjacency matrices coincide.

Proof of Proposition 4

Proof. Let Y n1 and Y n2 denote random graphs distributed with n1 and n2 nodes (n1 < n2) obtained by

the finite window approach on the Poisson random connection model on R+, and let Pn1 and Pn2 be their

corresponding distributions. Let Zji denote the random latent position of node i in Y j for j = n1, n2. For

both cases, the random variables Zj1 − 0, Zj2 − Z
j
1 , . . . , Zjn1

− Zjn1−1 are iid exponential random variables,

74

by the interval theorem for point processes (Kingman, 1993, p. 39). Thus, the (Zji)i=1...n1 have identical

distributions for each j. The rest follows identically as for Proposition 1.

Proof of Theorem 3.1

Proof. Let Y n1 and Y n2 denote random graphs distributed with n1 and n2 nodes (n1 < n2) obtained

from a rectangular LPM on Rd+. Let Pn1 and Pn2 be their corresponding distributions. Let tji , denote the

arrival time for the ith node in Y j for j = n1, n2. Following, Lemma 3.3.3, both tn1
i and tn2

i are equally

distributed. Therefore, Zn1
i and Zn2

i must also be equally distributed. The rest follows as in the proofs for

Proposition 1.

Proof of Proposition 6

Proof. Suppose (sn)n=1...∞ is not constant. Then there is an n2 > n1 ≥ 2 such that sn 6= sn2
. Let Y n1 and

Y n2 denote random graphs with n1 and n2 nodes. Notice that the marginal distribution of Y n12 in a graph

with n nodes is given by

Pn(Y12 = 1) = E (P(Y n12 = 1|Z1, Z2)) (3.76)

= E (snK (ρ(Z1, Z2))) (3.77)

= snE (K (ρ(Z1, Z2))) . (3.78)

Clearly, Pn1(Y12 = 1) 6= Pn2(Y12 = 1) because sn1
6= sn2

and Z1, Z2 ∼ f independently of k. Thus the model

cannot be projective.

3.6.3 Sparsity Proofs

Proof of Proposition 2

Proof. Let n be the number of nodes in the latent position network model. Then the expected number of

edges
∑n
i=1

∑n
j=1 Yij is given by

E

(∑n
i=1

∑n
j=1 Yij

n2

)
=

1

n2

n∑
i=1

n∑
j=1

E(E(Yij |Zi, Zj)) (3.79)

=
1

n2

n∑
i=1

n∑
j=1

EK(ρ(Zi, Zj)) (3.80)

= EK(ρ(Zi, Zj)) (3.81)

75

where EK(ρ(Zi, Zj)) is constant due to Zi being independent and identically distributed. Thus, as long as

the network is not empty, it is dense.

Proof of Proposition 3

Proof. A special case of Theorem 3.2 with d = 1 and g(t) = t.

Proof of Theorem 3.2

Proof. Let π be a permutation on (1, . . . , n) chosen uniformly at random from the set of permutations on

(1, . . . , n). Then,

n∑
i=1

n∑
j=1

Yij =

n∑
i=1

n∑
j=1

Yπ(i)π(j). (3.82)

Let Ω = [−g(tn+1), g(tn+1)]d. By Lemma 3.3.6,

E(Yπ(i)π(j)|tn+1) =

∫
z,z′∈Ω

K(||z − z′||) 1

2dg(tn+1)d
dz′

1

2dg(tn+1)d
dz (3.83)

≤ 1

4dg(tn+1)2d

∫
z∈Ω

Cdz (3.84)

∝ 1

2dg(tn+1)d
(3.85)

for some C ∈ R+ by Lemma 3.3.5. Thus,

E

g(n)d

n2

n∑
i=1

n∑
j=1

Yij | tn+1

 = E

g(n)d

n2

n∑
i=1

n∑
j=1

Yπ(i)π(j) | tn+1

 (3.86)

= g(n)dE(Yπ(i)π(j)|tn+1) (3.87)

∝ g(n)d

g(tn+1)d
. (3.88)

76

We can analytically integrate over possible tn+1 because tn+1 follows Gamma(n + 1, 1), as given by

Lemma 3.3.3.

E

g(n)d

n2

n∑
i=1

n∑
j=1

Yij

 = E

E

g(n)d

n2

n∑
i=1

n∑
j=1

Yij | tn+1

 (3.89)

∝ E
(

g(n)d

g(tn+1)d

)
(3.90)

= np
∫ ∞

0

t−p
1

Γ(n+ 1)
tn exp (−t)dt (3.91)

= np
Γ(n− p+ 1)

Γ(n+ 1)
(3.92)

which converges to one as n goes to infinity.

Proof of Proposition 5

Proof. Let n be the number of nodes in the LPM. Then the expected number of edges
∑n
i=1

∑n
j=1 Yij is

given by

E

 n∑
i=1

n∑
j=1

Yij

 =

n∑
i=1

n∑
j=1

E(E(Yij |Zi, Zj)) (3.93)

=

n∑
i=1

n∑
j=1

EKn(ρ(Zi, Zj)) (3.94)

=

n∑
i=1

n∑
j=1

snEK(ρ(Zi, Zj)) (3.95)

= n2snEK(ρ(Zi, Zj)) (3.96)

where EK(ρ(Zi, Zj)) is constant due to Zi being independent and identically distributed.

3.6.4 Learnability Proofs

Proof of Lemma 3.2.1

Much of the argument provided here can be viewed specialization of the results established in Davenport

et al. (2014, Theorem 6). For clarity, we include the entirety of the argument, illustrating our non-standard

choices for many of the components, as well as some small differences such as using a restricted maximum

likelihood estimator.

77

The notation for our proofs is simplified by working with the following standardized version of the

likelihood

L̄(z : Y n) = L(z : Y n)− L(z = 0 : Y n) (3.97)

=

n∑
i=1

n∑
j=1

Y nij log

(
K(δzij)

K(0)

)
+ (1− Y nij) log

(
1−K(δzij)

1−K(0)

)
(3.98)

where δzij = ||zi − zj ||. Note that the standardized likelihood and non-standardized version of the likelihood

are maximized by the same value of z for a given Y n. Going forward, we use the shorthand L̄(z); Y n is

implied.

In order to establish concentration of ||P ẑ(Y n) − P z||2F , we first establish concentration of related

quantities. Specifically, Lemma 3.3.13 establishes concentration of KL(P ẑ(Y
n), P z). Here, KL(P,Q) denotes

the Kullback-Leibler divergence (Cover and Thomas, 2006) between two link probability matrices P and Q.

It is a non-negative and given by

KL(P,Q) =

n∑
i=1

n∑
j=1

log

(
Pij
Qij

)
+ (1− Pij) log

(
1− Pij
1−Qij

)
. (3.99)

Lemma 3.3.13. Consider a sequence of adjacency matrices Y n generated by a LPM meeting the regularity

criteria provided in §3.4.3. Further assume that the true latent positions are within

Ω =
{
X ∈ Rn×d : ||Xi|| ≤ G(n)

}
(3.100)

where Xi denotes the ith row of X. Let P Ẑ(Y n) denote the estimated link probability matrix obtained via

Ẑ(Y n) from (3.12). Then,

P
(

KL(P ẑ(Y
n), P z) ≥ 16eαKn G(n)2n1.5(d+ 2)

)
≤ C

n2
(3.101)

for some C > 0.

Proof. Note that for any z0 ∈ Ω, we have

L̄(z0)− L̄(z) = E(L̄(z0)− L̄(z)) + L̄(z0)− E(L̄(z0))− (L̄(z)− E(L̄(z))) (3.102)

≤ E(L̄(z0)− L̄(z)) + |L̄(z0)− E(L̄(z0))|+ |(L̄(z)− E(L̄(z)))| (3.103)

≤ E(L̄(z0)− L̄(z)) + 2 sup
x∈Ω
|(L̄(x)− E(L̄(x)))| (3.104)

≤ −KL(P z0 , P z) + 2 sup
x∈Ω
|(L̄(x)− E(L̄(x)))|. (3.105)

78

Let z0 = Ẑ(Y n) denote the maximum likelihood estimator given in (3.12). Then, because L̄(z0)− L̄(z) ≥ 0,

KL(P ẑ(Y
n), P z) ≤ 2 sup

x∈Ω
|(L̄(x)− E(L̄(x)))|. (3.106)

So we can upper bound KL(P ẑ(Yn), P z) by bounding

sup
x∈Ω
|(L̄(x)− E(L̄(x)))|.

Let h be an arbitrary positive integer (we will later let it be 2 log(n)). Applying the Markov inequality for

supx∈Ω |(L̄(x)− E(L̄(x)))|h yields:

P
(

sup
x∈Ω
|(L̄(x)− E(L̄(x)))|h > c(n)h

)
≤

E(supx∈Ω |(L̄(x)− E(L̄(x)))|h)

c(n)h
(3.107)

for a positive function c : N→ R+. To bound the expectation, we use a symmetrization argument (provided

as Lemma 3.3.10 in §3.6.1) followed by a contraction argument (stated as Corollary 4 in §3.6.1).

E
(

sup
x∈Ω
|(L̄(x)− E(L̄(x)))|h

)
(3.108)

≤ 2hE

sup
x∈Ω

∣∣∣∣∣∣
n∑
j=1

n∑
i=1

Rij

(
Y nij log

(
K(δzij)

K(0)

)
+ (1− Y nij) log

(
1−K(δzij)

1−K(0)

))∣∣∣∣∣∣
h
 (3.109)

by Lemma 3.3.10 (3.110)

≤ (4αKn)hE

sup
x∈Ω


∣∣∣∣∣∣
n∑
j=1

n∑
i=1

Rij ||xi − xj ||2
∣∣∣∣∣∣
h

 by Corollary 4. (3.111)

= (4αKn)hE
(

sup
x∈Ω
|〈R,Dx〉|h

)
(3.112)

where R = (Rij) is a matrix of independent Rademacher random variables, Dx denotes the matrix of squared

distances implied by x, and αKn is defined as in (3.14).

79

Let || · ||o denote the operator norm and || · ||∗ denote the nuclear norm. To bound E
(
supx∈Ω〈R,Dx〉h

)
,

we make use of the fact that |〈A,B〉| ≤ ||A||o||B||∗. Then,

E
(

sup
x∈Ω
|〈R,Dx〉|h

)
≤ E

(
sup

Ω
||R||ho ||Dx||h∗

)
(3.113)

= E(||R||ho) sup
x∈Ω
||Dx||h∗ (3.114)

≤ Cnh/2 sup
x∈Ω
||Dx||h∗ (3.115)

where E(||R||ho) was bounded using Seginer (2000, Theorem 1.1) and C > 0 is a constant provided that

h ≤ 2 log(n).

Recall that the rank of a squared distance matrix Dx is at most d + 2 where d is the dimension of the

positions x. Moreover, each of the eigenvalues of Dx must be upper bounded by the product of maximum

distance in Dx and n (where n is the number of points). For x ∈ Ω, the maximum entry in Dx is at most

4G(n)2. Thus, supx∈Ω ||Dx||∗ ≤ (d+ 2)4nG(n)2. Therefore,

E
(

sup
x∈Ω
|〈E,Dx〉|h

)
≤ Cn3h/2(2G(n))2h(d+ 2)h. (3.116)

Combining the above results yields

P
(

KL(P ẑ(Yn), P z) ≥ c(n)
)
≤ 24hCn3h/2(αKn)hG(n)2h(d+ 2)h

c(n)h
. (3.117)

Let c(n) = 24C0α
K
n G(n)2(d+ 2)n3/2 for some constant C0. Then, by letting h = 2 log(n), we get

P
(

KL(P ẑ(Yn), P z) ≥ c(n)
)
≤ CC−h0 (3.118)

= CC
−2 log(n)
0 (3.119)

=
C

n2 log(C0)
(3.120)

The result follows from letting C0 = e.

We can now leverage Lemma 3.3.13 into Corollary 5, a concentration bound on the squared Hellinger

distance d2
H(P ẑ(Y

n), P z). Here, d2
H(P,Q) denotes the squared Hellinger distance between two link probability

matrices P and Q given by

d2
H(P,Q) =

n∑
i=1

n∑
j=1

(
√
Pij −

√
Qij)

2 + (
√

1− Pij −
√

1−Qij)2. (3.121)

80

Corollary 5. Consider a sequence adjacency matrices Y n generated by a LPM meeting the criteria provided

in Section 3.4.3. Further assume that the true latent positions are within

Ω =
{
X ∈ Rn×d : ||Xi|| ≤ G(n)

}
. (3.122)

Let P Ẑ(Y n) denote the estimated link probability matrix obtained via Ẑ(Y n) from (3.12). Then,

P
(
d2
H(P ẑ(Y

n), P z) ≥ 16eαKn G(n)2n1.5(d+ 2)
)
≤ C

n2
(3.123)

Proof. (3.123) Follows from Lemma 3.3.13 and the fact that Kullback-Leibler divergence upper bounds the

squared Hellinger distance (Gibbs and Su, 2002).

Finally, the Frobenius norm ||P − Q||2F between P and Q is upper bounded by the squared Hellinger

distance.

We can thus proceed with our proof of Lemma 3.2.1.

Proof. The result follows from Corollary 5 because the squared Hellinger distance between two link

probability matrices upper bounds the squared Frobenius norm between them. This follows from the fact

that u ≤
√
u for all u ∈ [0, 1].

Note that, rather than immediately upper bounding ||P −Q||2F by KL(P,Q), we introduce d2
H(P,Q) in

Corollary 5 due to its utility in proving Lemma 3.2.2.

Proof of Lemma 3.2.2

Proof. Let d̂ij and dij denote the (i, j)th entry of DẐ(Y n) and DZ respectively. Then, d2
H(P Ẑ(Y n), PZ) =

n∑
i=1

n∑
j=1

(
K(
√
dij)

1/2 −K(

√
d̂ij)

1/2

)2

+

(
(1−K(

√
dij))

1/2 − (1−K(

√
d̂ij))

1/2

)2

(3.124)

81

can be lower-bounded as follows. Let K ′(t) denote the derivative of K with respect to t. By Taylor expansion

of
√
K(
√
t) around t = dij ,

√
K(

√
d̂ij) =

√
K(
√
dij) +

K ′(
√
θ1)(d̂ij − dij)

4
√
θ1

√
K(
√
θ1)

for some θ1 ∈ [0, 4G(n)2] (3.125)

=

√
K(
√
dij) +

K ′(v)(d̂ij − dij)
4v
√
K(v)

for some v ∈ [0, 2G(n)] (3.126)√
1−K(

√
d̂ij) =

√
1−K(

√
dij)−

K ′(
√
θ2)(d̂ij − dij)

4
√
θ2

√
1−K(

√
θ2)

for some θ2 ∈ [0, 4G(n)2] (3.127)

=

√
1−K(

√
dij)−

K ′(v)(d̂ij − dij)
4v
√

1−K(v)
for some v ∈ [0, 2G(n)]. (3.128)

Combining these results with (3.124) yields

d2
H(P Ẑ(Y n), PZ) ≥

n∑
i=1

n∑
j=1

1

8
inf

θ∈[0,2G(n)]

K ′(θ)2

θ2

(d̂ij − dij)2(
K(θ)−1/2 + (1−K(θ))−1/2

)−2 (3.129)

≥
n∑
i=1

n∑
j=1

1

8
inf

θ∈[0,2G(n)]

K ′(θ)2

θ2K(θ)(1−K(θ))
(d̂ij − dij)2 (3.130)

≥
n∑
i=1

n∑
j=1

1

8βKn
(d̂ij − dij)2 (3.131)

=
1

8βKn
||DẐ(Y n) −DZ ||2F (3.132)

where βKn is defined as in (3.15). Combining this inequality with Corollary 5 yields

P
(
d2
H(Pẑ, Pz) ≥ 16eαKn G(n)2n1.5(d+ 2)

)
≤ C

n2
(3.133)

⇒ P
(

1

8βKn
||DẐ(Y n) −DZ ||2F ≥ 16eαKn G(n)2n1.5(d+ 2)

)
≤ C

n2
(3.134)

⇒ P
(
||DẐ(Y n) −DZ ||2F ≥ 128eβKn α

K
n G(n)2n1.5(d+ 2)

)
≤ C

n2
. (3.135)

Proof of Lemma 3.2.3

Before proceeding with the details of our proof of Lemma 3.2.3, it is useful to first introduce some notation

and summarize our general strategy. Our proof involves translating our concentration inequality for the

latent squared distances (provided as Lemma 3.2.2) to an analogous one for the latent positions. To do this,

we combine classical multidimensional scaling (Borg and Groenen, 2005, Chapter 12) with the Davis-Kahan

theorem (Lemma 3.3.12).

82

Classical multi-dimensional scaling recovers a set of positions Z ∈ Rn×d corresponding to a squared

distance matrix D ∈ Rn×n. It does so by eigendecomposing the double centered distance matrix −0.5CnDCn
with Cn defined in (3.18). Here,

Z = V Λ1/2 (3.136)

is used to denote the recovered positions with Λ ∈ Rd×d denoting a diagonal matrix consisting of the

d nonzero eigenvalues of −0.5CnDCn and V ∈ Rn×d denoting a matrix with columns comprised of the

corresponding eigenvectors. This technique is guaranteed to recover Z exactly (up to translations, rotations

and reflections).

Multidimensional scaling of both DZ and DẐ(Y n) recovers the versions of the true latent positions and

maximum likelihood estimates

Z = V Λ1/2 (3.137)

Ẑ(Y n) = V̂ Λ̂1/2. (3.138)

We resolve the identifiability issues (stemming from translations, rotations, and reflections) of these values

in our result by minimizing over O ∈ Op (rotations and reflections) and Q ∈ Qnd (translations). We

avoid explicitly minimizing over translations on our proof. The versions of Z and Ẑ(Y n) obtained from

multi-dimensional scaling end up being sufficient and

inf
O∈Od
Q∈Qnd

||Ẑ(Y n)O − Z −Q||2F ≤ inf
O∈Od

||V̂ Λ̂1/2O − V Λ1/2||2F . (3.139)

In addition to using the Davis-Kahan theorem to establish concentration of the eigenvectors V̂ , we apply

Weyl’s inequality (Horn and Johnson, 1990) to guarantee concentration of the eigenvalues Λ̂ to Λ.

A few properties of orthonormal matrices are useful in our proof. By definition, the columns of V̂ and V

have norm 1. Multiplying a matrix by does not modify its Frobenius norm. Multiplying a matrix by O, V ,

or V̂ does not increase a matrix’s Frobenius norm due to the columns being orthonormal.

We can now proceed with the formal proof. Let Z = V Λ1/2 and Ẑ(Y n) = V̂ Λ̂1/2 be obtained from

multidimensional scaling on DẐ(Y n) and DZ . Recall that the diagonal entries in Λ are arranged such that

λ1 ≥ λ2 ≥ · · · ≥ λd > 0 with the same decreasing structure for λ̂ (but allowing for λ̂d = 0). Let O ∈ Op
denote a generic orthogonal matrix. Then,

83

||ẐO − Z||F

= ||V̂ Λ̂1/2O − V Λ1/2||F

≤ ||V̂ Λ̂1/2O − V̂ Λ1/2O||F + ||V̂ Λ1/2O − V Λ1/2||F

= ||V̂ (Λ̂1/2 − Λ1/2)O||F + ||V̂ Λ1/2O − V Λ1/2||F

= ||Λ̂1/2 − Λ1/2||F + ||V̂ Λ1/2O − V Λ1/2||F

= ||Λ̂1/2 − Λ1/2||F + ||V̂
(

Λ1/2 − λ1/2
1 Id

)
O − V

(
Λ1/2 − λ1/2

1 Id
)

+ λ
1/2
1 V̂ O − λ1/2

1 V ||F

≤ ||Λ̂1/2 − Λ1/2||F + ||V̂
(

Λ1/2 − λ1/2
1 Id

)
O||F + ||V

(
Λ1/2 − λ1/2

1 Id
)
||F + ||λ1/2

1 V̂ O − λ1/2
1 V ||F

≤ ||Λ̂1/2 − Λ1/2||F + ||Λ1/2 − λ1/2
1 Id||F + ||Λ1/2 − λ1/2

1 Id||F + λ
1/2
1 ||V̂ O − V ||F

= ||Λ̂1/2 − Λ1/2||F + 2||Λ1/2 − λ1/2
1 Id||F + λ

1/2
1 ||V̂ O − V ||F

=

√√√√ d∑
i=1

(
λ̂

1/2
i − λ1/2

i

)2

+ 2

√√√√ d∑
i=1

(
λ

1/2
i − λ1/2

1

)2

+ λ
1/2
1 ||V̂ O − V ||F

=

√√√√ d∑
i=1

(
λ̂i − λi

λ
1/2
i + λ̂

1/2
i

)2

+ 2

√√√√ d∑
i=1

(
λi − λ1

λ
1/2
1 + λ

1/2
i

)2

+ λ
1/2
1 ||V̂ O − V ||F

≤ λ−1/2
d ||Λ̂− Λ||F + 2λ

−1/2
1 ||Λ− λ1Id||F + λ

1/2
1 ||V̂ O − V ||F

≤ λ−1/2
d ||Λ̂− Λ||F + 2λ

−1/2
1

√
d− 1|λ1 − λd|+ λ

1/2
1 ||V̂ O − V ||F .

(3.140)

Therefore,

inf
O∈Od

||ẐO − Z||F ≤ λ−1/2
d ||Λ̂− Λ||F + 2λ

−1/2
1

√
d− 1|λ1 − λd|+ inf

O∈Od
λ

1/2
1 ||V̂ O − V ||F . (3.141)

To bound (3.141), we must establish concentration for the three separate terms on the right hand side.

We begin with the first term. By Weyl’s inequality (Horn and Johnson, 1990),

|λ̂i − λi| ≤ ||V̂ Λ̂V̂ T − V ΛV T ||F (3.142)

for all 1 ≤ i ≤ d. Furthermore, centering a matrix cannot increase its Frobenius norm. Therefore,

||V̂ Λ̂V̂ T − V ΛV T ||F = ||Cn(DẐ(Y n) −DZ)Cn||F (3.143)

≤ ||DẐ(Y n) −DZ ||F (3.144)

84

meaning that

λ
−1/2
d ||Λ̂− Λ||F ≤

√
dλ
−1/2
d ||DẐ(Y n) −DZ ||F . (3.145)

This allows us to use Lemma 3.2.2 to bound the first term. Furthermore, we can similarly bound the third

component by employing Davis-Kahan. By Lemma 3.3.12,

inf
O∈Od

||V̂ O − V ||F ≤ 23/2 ||V̂ Λ̂V̂ T − V ΛV T ||F
λd

(3.146)

≤ 23/2 ||DẐ(Y n) −DZ ||F
λd

. (3.147)

Finally, we have

inf
O∈Od

||ẐO − Z||F ≤ 2

√
d− 1

λ1
|λ1 − λd|+

(√
d

λd
+ 23/2

√
λ1

λd

)
||DẐ(Y n) −DZ ||F (3.148)

implying that

inf
O∈Od
Q∈Qnd

||Ẑ(Y n)O − Z −Q||2F ≤ inf
O∈Od

||ẐO − Z||2F (3.149)

≤ 4d
(λ1 − λd)2

λ1
+ 4

(
d

λd
+ 8

λ1

λ2
d

)
||DẐ(Y n) −DZ ||2F . (3.150)

The result then follows from applying Lemma 3.2.2 to bound ||DẐ(Y n) −DZ ||2F .

Proof of Theorem 3.3

Proof. We first consider the learnability of the link probabilities. Let δn = αKn G(n)n1.5e(n)−1 and suppose

that δn → 0. Then,

P
(
||P ẑ(Y n) − P z||2F

e(n)
> δn

)
≤ P

(
||P ẑ(Y n) − P z||2F

e(n)
> δne(n) | sup

1≤i≤n
||zi|| ≤ G(n)

)
(3.151)

+ P(sup
1≤i≤n

||zi|| ≥ G(n)) (3.152)

≤ C

n2
+ P

(
sup

1≤i≤n
||zi|| ≥ G(n)

)
(3.153)

(3.154)

85

by Lemma 3.2.1. By the third regularity assumption, this expression converges to 0 in probability. Thus,

||P ẑ(Y n) − P z||2F
e(n)

p→ 0 (3.155)

because δn = o(1). The proof follows the same reasoning for squared distances and latent positions, simply

swapping out Lemma 3.2.1 for Lemma 3.2.2 and Lemma 3.2.3, respectively.

Proof of Corollary 1

Proof. The results follow from Theorem 3.3, and the following observations. Because g(n) = np/d and K

is integrable by Lemma 3.3.5, Theorem 3.2 imples that e(n) = n2−p. Lemma 3.3.14 implies that λ1, λd =

Θ(n1+2p/d) by (3.157) and |λ1−λd| = op(n
2p/d log(n)) by (3.156). Table 3.1 shows that for K(x) = (c+x2)−a,

αKn ∼ Θ(1) and βKn ∼ Θ(G(n)2a+4). Recall that G(n) = Θ(np/d) by Lemma 3.3.8. Thus, βKn = Θ(n
p
d (2a+4)).

Inserting these values into Theorem 3.3 provides the results in points (1) through (3).

Letting d grow large while simultaneously setting a to be the smaller integer larger than d/2 allows for

learnability of all three targets for values of p that are arbitrarily close to 0.5. Thus, we can have learnability

arbitrarily close to e(n) = n1.5.

The proof above relied on the following Lemma 3.3.14 to bound the eigenvalues λ1, . . . , λd. This lemma

and its proof were inspired by the work of Sussman et al. (2014, Proposition 4.3).

Lemma 3.3.14. Let λi denote the ith largest eigenvalue of CnZZTCn, where CnZ ∈ Rn×d is the centered

matrix of n latent positions associated with a rectangular LPM generated with g(n) = np/d. Let G(n) =

2
√
dnp/d. Then, if p < d and i ≤ d,

P
(
|λ1 − λd| > 4d2δ

)
≤ 4d2 exp

(
−2δ2

G(n)4

)
+ 8d2 exp

(
−2δ

G(n)

)
, (3.156)

for large enough n and

λi
ng(n)2

p→ C (3.157)

for all i = 1, . . . d and some constant C > 0.

Proof. Recall that both ZTCnCnZ and CnZZTCn have the same d non-zero eigenvalues λ1, . . . , λd.

Furthermore,

||ZTCnCnZ − E(ZTCnCnZ)||F ≤ ||ZTZ − E(ZTZ)||F +
||ZT 1nZ − E(ZT 1nZ)||F

n
(3.158)

86

where 1n ∈ Rn×n denotes a matrix filled with ones. Suppose tn+1 is known, and π is a random permutation

on 1, . . . , n. Then, each Zπ(i) is uniformly distributed on [−g(tn+1), g(tn+1)]d by Lemma 3.3.4. Thus, after

randomly permuting the row indices in Z, they can be treated as independent samples from this distribution.

Going forward, in a slight abuse of notation, we assume that the rows of Z have been randomly permuted,

meaning each row can be treated as an iid uniform sample on [−g(tn+1), g(tn+1)]d.

Therefore, (ZTZ)ij =
∑n
k=1 ZkiZkj is the sum of n iid random variables, and each summand’s absolute

value is upper bounded by ng(tn+1)2. The Hoeffding bound (Hoeffding, 1963) provides us with the following

concentration result.

P(|(ZTZ)ij − E((ZTZ)ij)| > δ) ≤ 2 exp

(
−2δ2

g(tn+1)4

)
. (3.159)

Combining this with a union bound provides

P(||(ZTZ)− E((ZTZ))||F > d2δ) ≤ 2d2 exp

(
−2δ2

g(tn+1)4

)
. (3.160)

Furthermore, (ZT 1nZ)ij = (
∑n
k=1 Zki)(

∑n
k=1 Zkj) with both factors in this product being identically

distributed. Moreover, the entries in either summand is bounded in absolute value according to |Zkj | ≤

g(tn+1). Therefore, applying the Hoeffding bound to each entry in ZTZ yields

P(|(ZT 1nZ)ij − E((ZT 1nZ)ij)| > δ) ≤ 2P(|(
n∑
k=1

Zki)− E(

n∑
k=1

Zki))| >
√
δ) (3.161)

≤ 4 exp

(
−2δ

g(tn+1)

)
, (3.162)

achieved through a union bound on the two summands differing from their means by
√
δ. Another union

bound over all matrix entries results in

P
(
||ZT 1nZ − E(ZT 1nZ)||F > d2δ

)
≤ 4d2 exp

(
−2δ

g(tn+1)

)
. (3.163)

Combining Equations (3.158), (3.160), and (3.163) yields

P
(
||ZTCnCnZ − E(ZTCnCnZ)||F > 2d2δ

)
≤ 2d2 exp

(
−2δ2

g(tn+1)4

)
+ 4d2 exp

(
−2δ

g(tn+1)

)
. (3.164)

To translate this into a result for the eigenvalues, we can apply Weyl’s inequality (Horn and Johnson, 1990)

to obtain

P
(
|λi(ZTCnCnZ)− λi(E(ZTCnCnZ))| > 2d2δ

)
≤ 2d2 exp

(
−2δ2

g(tn+1)4

)
+ 4d2 exp

(
−2δ

g(tn+1)

)
(3.165)

87

for 1 ≤ i ≤ d. We can analytically determine the values of λi by noting that

E(ZTCnCnZ)ii =
(n− 1)g(tn+1)2

12
(3.166)

E(ZTCnCnZ)i 6=j = 0, (3.167)

which indicates that

λi(E(ZTCnCnZ)) =
(n− 1)g(tn+1)2

12
(3.168)

for i ≤ d, 0 otherwise. Substituting these values into (3.169) we obtain

P
(∣∣∣∣λi(ZTCnCnZ)− (n− 1)g(tn+1)2

12

∣∣∣∣ > 2d2δ

)
≤ 2d2 exp

(
−2δ2

g(tn+1)4

)
+ 4d2 exp

(
−2δ

g(tn+1)

)
(3.169)

for 1 ≤ i ≤ d.

We can use this result to bound |λ1 − λd|.

P
(
|λ1 − λd| > 4d2δ

)
(3.170)

≤ P
(∣∣∣∣λ1 −

(n− 1)g(tn+1)2

12

∣∣∣∣+

∣∣∣∣λd − (n− 1)g(tn+1)2

12

∣∣∣∣ > 4d2δ

)
(3.171)

≤ P
(∣∣∣∣λ1 −

(n− 1)g(tn+1)2

12

∣∣∣∣ > 2d2δ

)
+ P

(∣∣∣∣λd − (n− 1)g(tn+1)2

12

∣∣∣∣ > 2d2δ

)
(3.172)

≤ 4d2 exp

(
−2δ2

g(tn+1)4

)
+ 8d2 exp

(
−2δ

g(tn+1)

)
(3.173)

by (3.169). Furthermore, because tn+1 follows Gamma(n+ 1, 1) (Lemma 3.3.3), g(tn+1) < g(n+
√
n) with

probability tending to 1 (See proof of Lemma 3.3.7) allowing us to swap G(n) in for g(tn+1) to obtain the

bound provided in (3.156). For p ∈ (0, 1), substituting δ = ng(tn)3/2 into (3.169) yields the result in (3.157).

For p = 0, δ =
√
n does.

Proof of Corollary 2

Proof. Note that this LPM is regular with G(n) =
√

2σ2(1 + c) log(n) for any c > 0 by Lemma 3.3.9, and

e(n) = n2. Furthermore, the d leading eigenvalues λ1, . . . λd of CnZZTCn are Θp(nσ
2) and |λ1−λd| = Θ(1) by

Lemma 3.3.15. Consulting Table 3.1, we see that for both link functions αKn = Θ(1) and βKn = Θ(eG(n)2) =

Θ(n2σ2(1+c)). Thus, applying Theorem 3.3 indicates that we have learnable latent positions and distances

provided that 2σ2(1 + c) < 1/2.

As for Corollary 1, we needed a lemma (in this case, Lemma 3.3.15) to control behaviour of the eigenvalues

λ1 and λd of CnZZTCn.

88

Lemma 3.3.15. Let λi denote the ith largest eigenvalue of CnZZTCn, where Z ∈ Rn×d has independent

Gaussian entries with variance σ2. Then,

λi
nσ2

p→ 1, and |λi − λd| = Θ(1) (3.174)

for i ≤ d.

Proof. The proof proceeds very similarly as for Lemma 3.3.14. Recall that both ZTCnCnZ and CnZZTCn
have the same d non-zero eigenvalues λ1, . . . , λd. Furthermore,

||ZTCnCnZ − E(ZTCnCnZ)||F ≤ ||ZTZ − E(ZTZ)||F +
||ZT 1nZ − E(ZT 1nZ)||F

n
(3.175)

where 1n ∈ Rn×n denotes a matrix filled with ones. Note that

||ZTZ − E(ZTZ)||F ≤
d∑
i=1

d∑
j=1

|ZTZij − E(ZTZ)ij | (3.176)

Applying Ravikumar et al. (2011, Lemma 1) and the union bound yields

P
(
||ZTZ − E(ZTZ)||F > d2δ

)
≤ 4d2 exp

(
−nδ2

3200σ2

)
. (3.177)

Furthermore, note that (ZT 1nZ)ij/n = (
∑n
k=1 Zki/

√
n)(
∑n
k=1 Zkj/

√
n) can be viewed as the product of

two Gaussian distributed random variables with variance σ2. This means that (ZT 1nZ)/n can be viewed as

uuT where u is a d-dimensional Gaussian vector with variance σ2. Again applying Ravikumar et al. (2011,

Lemma 1) and the union bound yields

P(||(ZT 1nZ)ij − E((ZT 1nZ)ij)||F > d2δ) ≤ 4d2 exp

(
−nδ2

3200σ2

)
. (3.178)

Combing Equations (3.175), (3.177), and (3.178) yields

P
(
||ZTCnCnZ − E(ZTCnCnZ)||F > 2d2δ

)
≤ 8d2 exp

(
−nδ2

3200σ2

)
. (3.179)

To translate this into a result for the eigenvalues, we can apply Weyl’s inequality (Horn and Johnson, 1990).

This results in

P(|λi(ZTCnCnZ)− λi(E(ZTCnCnZ))| > 2d2δ) ≤ 8d2 exp

(
−nδ2

3200σ2

)
(3.180)

89

for 1 ≤ i ≤ d. We can analytically determine the values of λi by noting that

E(ZTCnCnZ)ii = (n− 1)σ2 (3.181)

E(ZTCnCnZ)i 6=j = 0, (3.182)

which indicates that

λi(E(ZTCnCnZ) = (n− 1)σ2 (3.183)

for i ≤ d, 0 otherwise. Moreover, using the triangle inequality, a union bound, and (3.180), we see that

P(|λ1(ZTCnCnZ)− λd(ZTCnCnZ)| > 2d2δ) (3.184)

≤ P(|λ1(ZTCnCnZ)− (n− 1)σ2| > 2d2δ) + P(|λd(ZTCnCnZ)− (n− 1)σ2| > 2d2δ) (3.185)

≤ 16d2 exp

(
−nδ2

3200σ2

)
. (3.186)

The results follow from letting δ = 1 for (3.180) and (3.186), respectively.

Proof of Corollary 3

Proof. The proof set-up is almost identical to that of Corollary 3.6.4, with the sole departure being that βKn

is also scaled by the inverse of sparsity term s(n)−1 = np resulting in βKn = Θ(n2σ2(1+c)+p) requiring that

2p < 1− 4σ2(1 + c). By choosing a small value of σ2, we can have p get arbitrarily close to 1/2.

3.6.5 Towards a Negative Learnability Result

In this section, we establish conditions under which regular LPMs are not learnable.

Theorem 3.4. Consider a regular LPM. Let n denote the number of nodes. Suppose

lim
n→∞

n2K

(
G(n)

1 + c

)
→ 0. (3.187)

for some c > 0, then this class of LPMs do not have learnable latent positions.

Proof. Recall LeCam’s theorem (Tsybakov, 2008), in the form it is used to determine minimax estimation

rates:

90

Lemma 3.4.1. Let P be a set of distributions parameterized by θ ∈ Θ. Let Θ̂ denote the class of possible

estimators for θ ∈ Θ. For any pair Pθ1 , Pθ2 ∈ P,

inf
θ̂∈Θ̂

sup
θ∈Θ

EPθ (d(θ̂, θ)) ≥ ∆

8
exp (−KL(Pθ1 , Pθ2)), (3.188)

where ∆ = d(θ1, θ2) for some distance d(·, ·), and KL denotes the Kullback-Leibler divergence (Cover and

Thomas, 2006).

Let Θ be the set of possible latent positions and P be the distributions over graphs implied by a regular

LPM with link probability function K. Without loss of generality, consider the latent space to be S = R1.

We require that the latent positions Z1, . . . , Zn ∈ R be such |Zi| ≤ G(n) for some differentiable and non-

decreasing function G(n). Suppose G(n) = (1 + c)g(n) for some non-decreasing differentiable function g,

and let c > 0 be a small constant.

To get a decent lower bound for this setting via LeCam, we choose two candidate sets of positions θ1, θ2 ∈

Θ corresponding to probability models that do not differ much in KL-divergence, but have embeddings

differing by a non-shrinking amount in n. To accomplish this, we exploit the fact that the larger the distance

between two nodes, the smaller the change in the connection probability (and thus the KL divergence) due

to a small perturbation in the distance.

Consider θn1 ∈ Rn according to θn1 = (0, g(n), 0, g(n), . . .). That is, every odd-indexed latent position

is 0, and every even-indexed latent position is g(n). Similarly, define θn1 ∈ Rn according to θn1 =

(0, G(n), 0, G(n), . . .). Let the distance metric on Θ2 follow from the definition of learnable latent positions.

That is,

d(θn1 , θ
n
2) = inf

O∈O1,Q∈Qn1

||θn1T −Q− θn2 ||2F
n

(3.189)

=
c

2
. (3.190)

Here, O1 and Qn1 capture all possible isometric transformations. Notice that this distance is constant in n.

However,

KL(Pθn2 , θ
n
1) ≤ n2

2
K(g(n)) log

(
K(g(n))

K((1 + c)g(n))

)
(3.191)

→ 0 (3.192)

as n goes to infinity due to the assumption in (3.187). Thus, by Lemma 3.4.1, this class of LPMs is not

learnable.

91

Chapter 4

Faster MCMC for Gaussian Latent

Position Network Models

4.1 Introduction

Network data—measurements of relationships across sets of entities—are becoming increasingly common

across science and industry, largely due to technological advances in data collection and storage. Common

sources of network data include social networks (Carrington et al., 2005), citation networks (Ji and Jin,

2016), gene regulatory networks (Hecker et al., 2009), disease transmission networks (Newman, 2002), neural

connectomes (Chen et al., 2016), transportation networks (Xie and Levinson, 2009), and food webs (Chiu

and Westveld, 2011). A broad range of statistical tools based on stochastic graphs (Goldenberg et al., 2010;

Crane, 2018) are available for probabilistically modeling networks, ranging from the simple Erdős-Renyi

model (Erdős and Rényi, 1960) to sophisticated latent variable models (e.g. Airoldi et al. (2008); Clauset

et al. (2008); Fosdick et al. (2018); Dabbs et al. (2020)). Latent variable models can be defined to capture

common network properties such as community structure, hierarchical structure, and degree heterogeneity.

In latent variable models—like most network models that model edges as random variables—the

computational complexity of evaluating the likelihood is quadratic in the number of nodes. These models

are thus computationally costly to fit to large networks, especially if one wishes to quantify uncertainty

in a Bayesian modeling and inference framework (Gelman et al., 2013). For instance, traditional Markov

chain Monte Carlo algorithms (Gamerman and Lopes, 2006) (e.g. Gibbs sampling, random walk Metropolis,

or Metropolis within Gibbs) can require tens of thousands of likelihood evaluations to accurately quantify

expectations and uncertainties. This computational burden is even larger when the chains are slow-mixing,

which is often the case for Bayesian hierarchical models.

93

In this work, we develop a faster Markov chain Monte Carlo algorithm for a class of latent variable network

models called the latent position network model (LPM). LPMs—originally proposed by Hoff et al. (2002)—

have been applied to a variety of statistical problems, including modeling network interventions (Sweet et al.,

2013), clustering entities (Handcock et al., 2007), modeling social influence (Sweet and Adhikari, 2020),

controlling for causal confounders (Shalizi and McFowland III, 2016), and defining priors on unobserved

graphs (Linderman et al., 2016). Each node in a LPM possesses a real-valued latent variable (its position),

with each edge treated as an independent Bernoulli random draw depending on the participating nodes’

latent positions. These probabilities are modeled as a decreasing function of the nodes’ latent distance, thus

promoting homophily and triadic closure (e.g. a friend of a friend is more likely to be a friend) across the

network. Edge probabilities may also depend on covariates, such as whether the entities share a common

observed trait.

The principal task in fitting a LPM is to infer the latent positions (and thus the latent distances between

pairs of nodes), as well as the parameters of the link function (e.g. the effect of any covariates). In

a Bayesian modeling and inference framework, the posterior distribution of these parameters quantifies

uncertainty in the corresponding estimates. Evaluating and summarizing the posterior distribution requires

intensive computation—its normalization constant is defined by an integral that lacks closed form and is

thus intractable to evaluate exactly.

The standard tool for computing posterior summaries has been Markov chain Monte Carlo (MCMC)

via Metropolis within Gibbs (Handcock et al., 2007; Raftery et al., 2012). This technique avoids the

need to calculate the normalization constant of the posterior, and can approximate posterior expectations

arbitrarily well if the chain is long enough. However, accurate inference via Metropolis within Gibbs can

be computationally infeasible for large networks. This infeasibility is largely due to two phenomena: (1)

The random walk step size required to obtain high acceptance rates shrinks as the number of nodes grows,

resulting in slowly mixing chains with strong autocorrelation, and (2) the computational complexity of

performing a full sweep of position updates is quadratic in the number of nodes, so each iteration for a large

network is expensive to compute. We address these challenges in this chapter through the development of a

more efficient MCMC algorithm.

We are not the first to recognize these problems, nor are we the first to propose solutions. In recent years,

multiple approaches for approximating the likelihood have been proposed to successfully scale up Bayesian

inference of LPMs to large networks. Raftery et al. (2012) proposed a case-control based approach, sub-

sampling the non-edge dyads to approximate each acceptance ratio in Metropolis within Gibbs. Rastelli et al.

(2018) proposed a discrete-grid approximation of the latent positions, simplifying each likelihood evaluation.

Salter-Townshend and Murphy (2013) proposed the use of variational inference as an alternative to MCMC.

Though each of these approaches speeds up posterior inference, the improvements come at the cost of biasing

the results with the likelihood approximations. As such, these methods do not have the same asymptotic

94

guarantees as the traditional Metropolis within Gibbs approach. Regardless of how long the chain is run, a

bias persists. In this respect, our work differs previous approaches; our faster MCMC algorithm is exact.

The main tool we use to accomplish this task is Hamiltonian Monte Carlo (HMC). HMC (Duane et al.,

1987; Neal, 2011; Betancourt, 2017) and its variants (Girolami and Calderhead, 2011; Hoffman and Gelman,

2014; Betancourt, 2016) are a class of MCMC algorithms that leverage Hamiltonian dynamics to construct

efficient gradient-informed proposals for differentiable posterior distributions. A properly tuned HMC

proposal produces large moves in a chain whilst maintaining high Metropolis-Hastings acceptance rates.

As such, HMC is often much more efficient than traditional random walk-based methods, especially for

high-dimensional distributions with strong correlations amongst the variables.

Over the past few years, the use of HMC algorithms for Bayesian inference has been democratized in

the open source software Stan (Carpenter et al., 2017). Stan implements a specialized tuning and sampling

strategy for HMC that is robust across a broad class of Bayesian models. Built-in diagnostic tools make

it easy to identify and address mixing problems within the Markov chain. Nevertheless, Stan’s robustness

depends on making some sacrifices (e.g. all variables must be updated simultaneously, and discrete latent

variables must be marginalized). Usually, this rigidity is worthwhile; the limited scope of Stan’s algorithm

still covers a wide range of models, and can be a relatively small price to pay for the ease of implementation

and built-in mixing diagnostics. However, this is not the case for large LPMs; MCMC for large LPMs often

stretches one’s computational resources to their limit. We thus need all tools at our disposal (including

sampling discrete random variables and block updates of variables) to optimize our inference strategy.

The specialized HMC-based sampling strategy we present in this chapter is specifically intended for

Gaussian LPMs (Rastelli et al., 2016), a class of LPMs for which the link probability function decays

like a half-Gaussian probability density function. This class of LPMs was originally studied because they

are easy to work with analytically. We show here that the Gaussian-inspired link function also provides

computational advantages—the log posterior can be split into Gaussian and non-Gaussian components,

thus facilitating efficient integration of HMC via split HMC (Shahbaba et al., 2014). Moreover, we further

increase the efficiency for sparse networks by developing an exact dyad subsampling scheme based on Firefly

Monte Carlo (FlyMC (Maclaurin and Adams, 2015)). This scheme allows us to subsample that non-edge

dyads, decreasing the complexity of the non-Gaussian component of the posterior while maintaining an exact

MCMC strategy. To ensure a complete LPM fitting algorithm, we also including Markov chain updates for

the parameters of the link function, and show that the FlyMC approach can simplify inferring the sparsity

parameters. Our approach is compatible with inferring the effect of categorical covariates on the link, as

well as incorporating prior dependence between latent positions in the network (e.g. as in longitudinal latent

position models (Kim et al., 2018)).

The remainder of the chapter is organized as follows. Section establishes notation and provides the

necessary background information pertaining to LPMs, Gaussian LPMs and Hamiltonian Monte Carlo.

95

Section 4.3 outlines the ingredients of our new computation methodology for Gaussian LPMs: split

Hamiltonian Monte Carlo and firefly Monte Carlo, then combines them with updates to the link function

parameters to define a new Markov chain Monte Carlo strategy. Section 4.4 describes a metric for assessing

the efficiency Monte Carlo algorithms for LPMs, then presents two empirical studies to demonstrate the

superiority of our algorithm. Study 1 uses synthetically-generated examples to demonstrate the superior

performance of our method compared to a variety of existing approaches in the literature such as Metropolis

within Gibbs, elliptical slice sampling, Stan, and the No-U-turn sampler. Study 2 demonstrates the extent

to which our algorithms outperform Metropolis within Gibbs for fitting information-sharing models amongst

teachers and staff in a school district. Section 4.5 contains some concluding remarks.

4.2 Preliminaries

The following notation will be used throughout the chapter. We use R to denote the set of real numbers, R+

to denote the set of non-negative real numbers, N to denote the set of natural numbers, and [n] to denote

the set {1, . . . , n} of natural numbers less than or equal to n. For a set S, we use Sd to denote the collection

of all d-length vectors with entries from S and Sn×d to denote collection of possible n × d matrices with

entries from S. For two sets S1, S2, S1 × S2 denotes their Cartesian product.

For a vector z ∈ Rd, zi denotes its ith entry and ‖z‖ denote its Euclidean norm. For a matrix B ∈ Rn×d,

Bi· denotes its ith row, B·i denotes its ith column, Bij denote its (i, j)th entry, BT ∈ Rd×n denotes its

transpose, ‖B‖ denotes its Frobenius norm, and B−1 denotes its inverse. We use In to denote the n × n

identity matrix.

We represent networks among n entities as undirected binary graphs on n nodes. We use A ∈ {0, 1}n×n

to denote the adjacency matrix of the graph, with Aij = 1 indicating the presence of an edge between nodes

i and j, and Aij = 0 indicating its absence. Our focus is on undirected graphs, so Aij = Aji for all dyads

(i, j) ∈ [n]2. For simplicity, we use A to refer to both a graph and its adjacency matrix interchangeably,

using [n] index the nodes according to the order of their rows in the adjacency matrix. We use the shorthand

EA ⊆ [n]2 to denote the set of edges associated with A, and {(i, j) /∈ EA} to denote the set of possible edges

absent from EA. The combinatorial Laplacian of A is denoted as LA ∈ Rn×n. Specifically, LA = DA − A

where DA is a diagonal matrix of the node degrees DA
ii =

∑n
j=1Aij .

4.2.1 Latent Position Network Models

In a distance-based latent position network model (LPM) of (Hoff et al., 2002), each node i ∈ [n] is modeled

as having a d-dimensional latent position zi ∈ Rd for some positive integer d (typically chosen to be 2 or 3 in

practice to facilitate visualization). It is convenient (for notation and computation) to arrange these latent

96

positions in a matrix Z ∈ Rn×d, where Zi· = zi. The edges Aij are modeled as being generated according to

P(Aij = 1|Z) = K(‖zi − zj‖, xij) (4.1)

where ‖zi−zj‖ denotes the distance between nodes i and j, xij represents any relevant edge-specific covariates

for nodes i and j, and K is the link function—a non-increasing function from the product of R+ × X to

[0, 1]. Here, X denotes the range of possible values of the covariate xij for each dyad (i, j) ∈ [n]2.

In this work, we focus on the case where each covariate xij is categorical, taking on of C ∈ N distinct

values (without loss of generality, we use X = [C] to encode the categories of such variables). Categorical

covariates are common in applied problems. For example, the school district information-sharing network

(Spillane et al., 2018; Sweet and Adhikari, 2020) considered in Section 4.4.3 involves a binary covariate

(C = 2) indicating whether or not each pair of individuals work in the same school (xij = 1 if individuals

i and j work at the same school, and xij = 2 otherwise). Similarly, the classroom example of Hoff et al.

(2002) involves a covariate indicating whether or not pupils are of the same sex. We use x ∈ [C]n×n to refer

to the collection of all (xij)i∈[n],j∈[n]. If no covariates are present for a model, then x simply collapses to a

n × n matrix of ones. Extending the techniques we describe here to accommodate real-valued covariates is

a potential avenue for future work.

In their original version of the LPM, Hoff et al. (2002) proposed modeling K as a logistic function of the

latent distance and the covariate according to

K(‖zi − zj‖, xij) = (1 + exp (α+ βxij + ‖zi − zj‖))−1. (4.2)

Here, the parameters α ∈ R and β ∈ RC control the total number of edges and the effect of the covariates,

respectively. Recently, Rastelli et al. (2016) proposed an alternative form for K inspired by the functional

form of the Gaussian probability density function—aptly named the Gaussian Latent Position Model

(GLPM). Their original exposition did not consider covariates, taking the form

K(‖zi − zj‖) = τ exp

(
− 1

2γ2
‖zi − zj‖2

)
. (4.3)

Here, the parameter τ ∈ [0, 1] controls the number of edges (i.e. sparsity level) in the network and γ2 > 0

controls the decay of the link probabilities. Thus far, two advantages of GLPMs over logistic LPMs have

been identified in the literature. The Gaussian-like choice of K yields closed-form expressions for various

network statistics of GLPMs (such as the average degree of a node and its neighbors) making them easier to

theoretically analyze than logistic LPMs (Rastelli et al., 2016). Moreover, the lighter tails of the Gaussian

link function are conducive to proving consistency of the maximum likelihood estimator of the latent positions

(Spencer and Shalizi, 2019).

97

In this chapter, we identify and explore yet another advantage of GLPMs—the Gaussian shape of

K facilitates faster posterior inference techniques. Our work considers an extension of the GLPM to

accommodate categorical covariates. Specifically, we consider

K(‖zi − zj‖, xij) = τxij exp

(
− 1

2γ2
‖zi − zj‖2

)
, (4.4)

with parameters τ ∈ [0, 1]C and γ2 > 0. Here, the effect of the covariate is encoded in the vector τ ,

allowing for subnetworks corresponding to some levels of the covariate categories to be far sparser than

others. This single covariate formulation can be extended without loss of generality to multiple discrete

covariates, with or without interactions, by a suitable mapping of the joint range space of covariates into

[C]. For notational conciseness, we occasionally omit the dependence of K on xij . Together, the Gaussian

shape and factorizability of K can be exploited to speed up Bayesian inference.

4.2.2 Bayesian Inference for LPMs

Fitting a LPM to a graph A can be separated into two interdependent tasks: (1) inferring the latent positions

Z ∈ Rn×d of the nodes, and (2) inferring the parameters of the link function K (e.g. τ , γ2 for the Gaussian

link). Depending on the modeling objective of the problem at hand, either (1) or (2) could be the primary

inferential target. For instance, Z is primary inferential target when controlling for causal confounders

(Shalizi and McFowland III, 2016), but τ is the primary target when estimating the effect of a covariate

on edge probabilities. Regardless, both inference tasks are typically carried out simultaneously in a Monte

Carlo single algorithm; independent priors are placed on both the parameters and the latent positions, and

their posterior distribution is approximated with samples draw according to Markov chain Monte Carlo.

To simplify exposition, we will present our strategies for the two inference tasks (inferring Z and inferring

K) separately in Sections 4.3.1 and 4.3.3. Here, we review existing computational strategies from the

literature for inferring the latent positions Z conditional on K. All discussion of inference of the parameters

of K for the GLPM is deferred until Section 4.3.3.

Given the full functional form of the link function K (as well as any covariates x it depends on), Bayesian

inference of the latent positions Z depends on two additional inputs: an observed network (encoded by

an adjacency matrix A ∈ {0, 1}n×n), and a prior on Z ∈ Rn×d. The standard prior choice for Z in the

literature has been an independent isotropic d-dimensional Gaussian on each row (i.e. latent position) of Z

(usually d = 2 is used for visualization purposes). Here, we generalize this prior to Z·k ∼ N(0,Ω−1)—defined

independently for each k ∈ [d]. That is, the nodes’ positions are independent across dimensions, but can

be dependent within a dimension. Without loss of generality, any Gaussian prior exhibiting dependence of

98

a nodes’ position across dimensions can be transformed into an equivalent prior with independence across

dimensions via a rotation∗.

This more general set-up for the prior allows for known structural information—such as feature-informed

node clustering or temporal dependence—to be included as non-zero entries in the precision matrix Ω ∈ Rn×n.

Other priors, such as a mixture of Multivariate Gaussians (Handcock et al., 2007; Krivitsky et al., 2009),

are beyond the scope of this work, but would involve a straightforward extension of the methods presented

here.

Given the prior Z·k ∼ N(0,Ω−1) for k ∈ [d], the posterior distribution on Z is given by

P(Z|A) ∝
∏

(i,j)∈EA

K(‖zi − zj‖)
∏

(i,j)/∈EA

(1−K(‖zi − zj‖)) exp

(
−1

2

d∑
k=1

ZT·kΩZ·k

)
. (4.5)

The normalization constant for this density is a (n × d)-dimensional integral that cannot be computed

analytically. Instead, we must rely on approximate methods for calculating expectations with respect to the

posterior. Here, we discuss two related Monte Carlo strategies already proposed in the LPM literature, and

use their short-comings to motivate our new Hamiltonian Monte Carlo strategy.

In their seminal LPM paper, Hoff et al. (2002) proposed for the posterior computation of P(Z|A) to

be carried out via Markov chain Monte Carlo (MCMC). They obtained a Markov Chain Z1, Z2, . . . , ZT

with stationary distribution P(Z|A) by repeatedly applying a random walk Metropolis update to all latent

positions Z simultaneously. As is the case for most MCMC algorithms, ensuring an adequate Metropolis-

Hastings acceptance rate requires that the standard deviations of these random walk updates be appropriately

tuned using a series of short pilot runs. However, these joint random walk proposals are known to be

inefficient when the posterior is high-dimensional (e.g. for networks with many nodes) because the random

walk standard deviation required to obtain reasonable acceptance rates is simply too small to explore the

space efficiently. For example, when fitting GLPMs to synthetically generated 500 node networks (C = 1,

τ = 0.5, γ2 = 0.5), we found that random walk standard deviations below 0.01 are typically required to

obtain reasonable acceptance rates.

In an effort to alleviate this slow mixing, the subsequent LPM literature (e.g. (Handcock et al., 2007;

Raftery et al., 2012)) use a Metropolis within Gibbs strategy for updating the latent positions instead. In

Metropolis within Gibbs, the latent positions (zi)i∈[n] are updated one at a time in sequence according to

a random walk via a symmetric kernel q centered at its current position (e.g. a scaled isotropic Gaussian

or multivariate uniform). This approach is still widely-used today (e.g. Fosdick et al. (2018); Aliverti and

Durante (2019); Sweet and Adhikari (2020)); it is also implemented in the popular R package latentnet

(Krivitsky and Handcock, 2008).

∗In this sense, the dimensions of Z behave like principal components in principal component analysis

99

A sweep of the Metropolis within Gibbs algorithm can be summarized as follows. For each i ∈ [n],

1. Propose z′i ∼ qδ(zi, z′i).

2. Accept this proposal with probability equal to

P(Z ′|A)

P(Z|A)
=

exp
(∑d

k=1 Z
T
·kΩZ·k)

)
exp

(∑d
k=1(Z ′·k)TΩZ ′·k)

) ∏
j:(i,j)∈EA

K(‖z′i − zj‖)
K(‖zi − zj‖)

∏
j:(i,j)/∈EA

1−K(‖z′i − zj‖)
1−K(‖zi − zj‖)

(4.6)

Otherwise reject and keep zi.

Above, the matrix Z ′ in (4.6) is constructed such that Z ′i = z′i and Z ′j = Zj for all other i 6= j. The notation

z′i ∼ qδ(zi, z′i) denotes drawing z′i from a symmetric distribution centered at zi with δ > 0 denoting a tuning

parameter for the width, or step size of the proposal. Computing (4.6) involves only the prior for zi and the

(at most n) likelihood terms corresponding to dyads containing i—all other terms are equivalent for Z and

Z ′. For a fully observed network A, each full sweep updating Z thus requires O(n2) computations.

Like for random walk Metropolis, it is standard practice to tune δ using preliminary tuning runs to achieve

a desired acceptance rate†. The required value of δ typically shrinks as n grows, meaning that chains must

be run much longer to achieve mixing when fitting larger networks. For example, Figure 4.6 demonstrates

the decreasing relationship between the number of nodes and the tuned Metropolis within Gibbs step size δ

for the variety of different synthetic networks considered in Section 4.4.2.

For large enough n, approximating the posterior using Metropolis within Gibbs thus also becomes

intractable (Raftery et al., 2012)—the step-size is too small to efficiently explore the space given the

complexity of computing the Metropolis-Hastings acceptance ratios. There have been multiple recent

proposals that approximate the LPM likelihood (Raftery et al., 2012; Rastelli et al., 2018) to alleviate

the computational burden of the accept-reject step. But as noted in the introduction, these approximations

introduce non-vanishing bias in the subsequent inference.

Our goal in this work is to avoid such bias completely by developing an MCMC algorithm that outperforms

Metropolis within Gibbs without sacrificing exactness of the sampler. To do so, we rely on a Monte Carlo

algorithm known as Hamiltonian Monte Carlo (HMC). Recently, HMC has gained traction in the literature for

fitting LPMs within large hierarchical models (e.g. Salter-Townshend and McCormick (2017) as implemented

in Stan and Linderman et al. (2016) directly). However, we are the first (to our knowledge) to both develop a

HMC algorithm that is specifically tooled for inference in LPMs, as well as the first to quantify their superior

performance to other algorithms in the literature.

†Empirically, we have found that for LPMs, a Metropolis within Gibbs acceptance rate somewhere between 20 and 30 percent
gives optimal results—this is consistent with related optimal scaling theory (Roberts et al., 2001)

100

4.2.3 Hamiltonian Monte Carlo

Hamiltonian Monte Carlo (HMC) is an auxiliary variable MCMC algorithm that uses the gradient of the log

posterior to inform an efficient Markov proposal kernel. Inspired by Hamiltonian dynamics, HMC augments

the posterior distribution with a “momentum” variable for each target parameter, framing the task of

proposing the next state of the Markov chain as that of simulating Hamiltonian motion of an object along

a high-dimensional surface.

An HMC chain consists of a sequence of snapshots of the object sliding along a high-dimensional surface

(without friction). The object’s momentum is randomly refreshed each time a snapshot is taken, thus

resulting in a sequence of stochastic draws. By using the negative log posterior as the energy function to

inform its Hamiltonian motion, HMC provides larger step sizes that nevertheless maintain high Metropolis-

Hastings acceptance rates. Moreover, these ratios have closed forms due to the properties of Hamiltonian

dynamics (namely reversibility and volume preservation). The algorithm is thus efficient for exploring high-

dimensional posteriors.

We now provide a description of HMC, placing emphasis on the components relevant to the development

of our algorithm for the LPM. For more detailed reviews of the theory and practice of MCMC, Neal (2011)

or Betancourt (2017) are fantastic references.

Consider a target density p(Z) that is differentiable with respect to its real-valued parameters Z ∈ Rd.

HMC targets an augmented‡ version of this density p(Z,U) = p(Z)q(U) where U ∈ Rd is a vector of auxiliary

momentum variables—each corresponding to an entry in Z. Let q(U) be a zero mean multivariate Gaussian

density with covariance matrix M ∈ Rd×d, and let H(Z,U) = − log(p(Z)) − log(q(U)). This function

H(Z,U) plays the role of energy in the Hamiltonian dynamics of HMC, with the covariance M (sometimes

referred to as the Mass matrix (Neal, 2011) or Euclidean metric (Betancourt, 2017)) controlling the effect

of the momentum on the dynamics.

Hamiltonian motion over H(Z,U) is governed by the following differential equations:

dZi
dt

=
∂H(Z,U)

∂Ui
= (M−1U)i (4.7)

dUi
dt

=
−∂H(Z,U)

∂Zi
=
∂ log(p(Z))

∂Zi
. (4.8)

Here, (M−1U)i denotes the ith coordinate in the vector M−1U , and t represents the artificial “time” for

which the Hamiltonian trajectory is computed. That is, the derivatives of Z and U with respect to t reflect

the rate of change in these quantities along Hamiltonian trajectory. Starting at an initial state (Z0, U0),

HMC generates a Markov chain of snapshots (Zj , U j)j∈N with stationary distribution p(Z,U) by iterating

between simulating Hamiltonian motion for a fixed amount of time T > 0, then refreshing the momentum

‡Note that because the density p(Z,U) admits p(Z) as a marginal, discarding the U ’s from a Markov chain targeting p(Z,U)
yields draws from p(Z).

101

according to its conditional distribution. The value of T is typically specified by the user to control the

length of time between momentum updates.

Given (Zj , U j), the next draw (Zj+1, U j+1) is obtained using the following steps

1. Gibbs update the momentum variables via Gibbs U j
′ ∼ MVN(0,M).

2. Simulate Hamiltonian motion (Zj , U j
′
)→ (Zj

′′
, U j

′′
) for T time units.

3. Accept the move (Zj+1, U j+1) = (Zj
′′
,−U j′′) with probability

min

(
p(Zj

′′
, U j

′′
)

p(Zj′ , U j′)
, 1

)
. (4.9)

Otherwise reject the move, letting (Zj+1, U j+1) = (Zj , U j
′
).

The negation of U j
′′

in Step 3 ensures the proposal is reversible§.

The performance of HMC as described above depends on two parameters chosen by the user: the mass

matrix M and the amount of time T between momentum updates. Before discussing strategies for choosing

these parameters, we must first address how to simulate Hamiltonian motion.

If the Hamiltonian motion in Step 2 above were to be simulated exactly, the Metropolis-Hastings

correction in Step 3 would be unnecessary because the ratio is exactly one (Neal, 2011). This property

is guaranteed by the conservation of energy in Hamiltonian motion—Step 2 simply moves along a density

contour of the augmented distribution. Unfortunately, exact simulation of the Hamiltonian motion is not

possible for most posterior densities that arise in Bayesian inference—there is no known analytic way to

move along the contours.

In practice, simulation of the trajectory of Hamiltonian motion is typically carried out using approximate

numerical integrators of the differential equations, the most popular of which is the leapfrog integrator (Neal,

2011) (sometimes referred to as the Stormer-Verlet integrator: e.g. (Chao et al., 2015)). The leapfrog

integrator discretizes the Hamiltonian motion via alternating linear updates of U and Z until the trajectory

of length T has been simulated. The following steps are iterated L ∈ N times:

U ← U − ε

2

∂H

∂Z
(Z,U) (4.10)

Z ← Z + εM−1U (4.11)

U ← U − ε

2

∂H

∂Z
(Z,U) (4.12)

Together, the user-specified parameters ε > 0 (sometimes called the step-size) and L ∈ N (the number of

steps) define leapfrog trajectory of length T = Lε. Smaller values of ε provide more accurate approximations

§In practice, the marginal distribution of Z (and not the joint distribution of Z,U) is the target of HMC, so this negation
step can be omitted because it is immediately changed by subsequent Gibbs update of U (Neal, 2011).

102

of the Hamiltonian motion (and thus the higher the Metropolis-Hastings acceptance rate), but also require

correspondingly larger values of L—and thus more computation—to simulate a given trajectory length T .

It is thus important to strike a balance between the two to obtain adequately high acceptance rates for

reasonably correlated draws without wasting computational resources.

Choosing the user-specified parameters M and T for HMC via leapfrog amounts to choosing three

parameters: the mass matrix M , the step size ε and the number of steps L. The original time parameter

T = Lε is a byproduct of the choices of ε and L.

Like tuning the step-size for traditional Metropolis algorithms, standard practice for choosing ε and L

is to conduct a series of preliminary tuning runs with various levels of the parameters, converging toward

values that maximize the chain’s efficiency. Similarly, the matrix M can also be chosen according to these

tuning runs. A theoretically motivated heuristic (Betancourt, 2017) is to set M equal to an estimator of

the precision matrix of the posterior, estimated from the empirical posterior covariance in the preliminary

chains. In practice, the true precision matrix may be dense (and thus expensive to compute), meaning that

a diagonal approximation (Carpenter et al., 2017) or a low-rank approximation (Bales et al., 2019) of the

precision may also be a suitable choice. The former is implemented in the software package Stan.

Unfortunately, efficiently tuning all three of L, ε, and M can itself be a computationally burdensome

because the three parameters are interdependent (the optimal choice of ε relies particularly heavily on the

choice of M). Indeed, under the standard settings, it is typical for Stan to devote more time to adapting L,

ε and M than running the final Markov chain. When the computational problem is already straining the

computational budget at hand—such as in the case of large LPMs—these tuning costs can be prohibitive.

We thus seek a simpler, more easily tunable algorithm that is specialized to large LPMs.

Before proceeding, it is worth noting that strategies exist for which L, ε and M are not necessarily held

constant through all regions of the posterior. For instance, sophisticated algorithms exist for selecting L (e.g.

the No-U-Turn sampler (NUTS (Hoffman and Gelman, 2014))), or M (e.g. Riemannian HMC Girolami and

Calderhead (2011)) adaptively depending on the current state of the chain. However, these algorithms can

be incredibly computationally intensive, as they can require many additional density, gradient, or Hessian

evaluations. This is evident when we compare Stan and NUTS to our strategy in Section 4.4.2.

In the sequel, we derive an alternative HMC integration strategy that exploits the function form of the

GLPM posterior for efficient exploration without costly tuning runs for L and M . Moreover, it locally adapts

M to the link function parameter γ—providing a natural locally-adaptive choice of M that does not require

computation of expensive Hessian calculations in Girolami and Calderhead (2011).

103

4.3 New Sampling Methodology

Our new MCMC algorithm for the GLPM is composed of three novel components: a split Hamiltonian

Monte Carlo (Shahbaba et al., 2014) integrator to update the latent positions (Section 4.3.1), a Firefly

Monte Carlo (FlyMC (Maclaurin and Adams, 2015)) auxiliary variable scheme to sub-sample non-edge dyads

(Section 4.3.2), and Gibbs sampling strategies to update the parameters τ and γ2 of the link probability

function K (Section 4.3.3). We present each of these contributions in sequence.

4.3.1 Split Hamiltonian Monte Carlo

Though it is certainly the most popular for HMC, the leapfrog integrator is just one of many options for

integrating Hamiltonian dynamics (e.g. Leimkuhler and Reich (2004); Chao et al. (2015); Mannseth et al.

(2016)). Here, we consider an alternative called split Hamiltonian Monte Carlo (Shahbaba et al., 2014). Split

HMC is a variant on the leapfrog strategy that efficiently integrates Hamiltonian’s equations by leveraging a

Gaussian component of the posterior. It works best when the Gaussian component is a good approximation

of the posterior. As an added bonus, split HMC provides a natural and effective choice for the mass matrix

M .

Note that the standard leapfrog update described in Section 4.2.3 is equivalent to decomposing the energy

into three terms:

H(Z,U) = −1

2
log(p(Z))− log(q(U))− 1

2
log(p(Z)). (4.13)

then cycling through isolated updates according (4.7) and (4.8) for each of the components individually.

This “split” of the energy ensures that only one of Z or U is being updated at any given time, causing each

isolated operation to be straightforward. In split Hamiltonian Monte Carlo, we consider a different split of

the energy function, decomposing it to exploit partial analytic solutions of Hamiltonian equations.

Hamilton’s equations usually lack an analytic solution, but one of a few notable exceptions occurs when

the energy is defined as the negative logarithm of a multivariate Gaussian density (Pakman and Paninski,

2014) (other exceptions include the univariate exponential and uniform distributions (Bloem-Reddy and

Cunningham, 2016)). For the Gaussian case, the motion and momentum updates can be simulated exactly

along an ellipse (i.e. a contour of the Multivariate Gaussian distribution). Alone, this fact would have limited

utility for Bayesian computation; exact algorithms for inference involving Gaussian posteriors are readily

available. As part of an energy splitting strategy, however, these analytic solutions can be remarkably useful.

The split Hamiltonian integrator (Shahbaba et al., 2014) alternates between joint position momentum

updates based on the analytical solution of the Gaussian component of the posterior and updates to the

104

momentum to correct for the remaining portion of the posterior. When the exact part is a good approximation

for the entire posterior, this allows for a coarser ε to maintain a high acceptance rate.

To make things more concrete, we now present the decomposition of the GLPM posterior into its Gaussian

and non-Gaussian components. Specifically, the likelihood of the edges, the prior density, and the momentum

forming the Gaussian component, and the likelihood of non-edges forms the remainder.

Recall the LPM posterior’s functional form as provided in (4.5). Treating the τ and γ2 as known, (4.5)

takes the form

P(Z|A, τ, γ2) =
∏

{i,j}∈EA

τxij exp

(
−1

2

d∑
`=1

ZT·`

(
Ω +

1

γ2
LA
)
Z·`

) ∏
(i,j)/∈EA

(
1− τxij exp

(
−‖zi − zj‖

2

2γ2

))
(4.14)

where LA denotes the Laplacian of A. This posterior can thus be decomposed into two components

P(Z|A, τ, γ2) = P1(Z|A, τ, γ2)P0(Z|A, τ, γ2) where

P1(Z|A, τ, γ2) =

 ∏
{i,j}∈EA

τxij

 exp

(
−1

2

d∑
`=1

ZT·`

(
Ω +

1

γ2
LA
)
Z·`

)
(4.15)

corresponds to the contribution of the prior and likelihood of the observed edges and

P0(Z|A, τ, γ2) =
∏

ij /∈EA

(
1− τxij exp

(
− 1

2γ2
‖zi − zj‖2

))
(4.16)

corresponds to the contribution to the likelihood of the non-edges.

Using the shorthand

Σ =

(
Ω +

1

γ2
LA
)
, (4.17)

we can now split the corresponding energy as

H(Z,U) =

[
−1

2
log(P0(Z|A, τ, γ2))

]
+

[
1

2

d∑
`=1

(
ZT·`ΣZ·` + UT·`M

−1U·`
)]
−
[

1

2
log(P0(Z|A, τ, γ2))

]
, (4.18)

ignoring additive constants. The center term in this split is Gaussian.

In the above, we have departed from the typical notation in our definition of the mass matrix M

and momentum variables U . In standard presentations of HMC (including our presentation of HMC is

Section 4.2.3), the target parameters and momentum variables are naturally represented as vectors. For a

LPM, the parameters Z are more suitably represented a n×d matrix. We have thus chosen to also represent

105

the momentum variables U as a n × d matrix. Since there are n × d momentum variables, the standard

notation/definition of the mass matrix would require that M ∈ Rnd×nd. We have opted to instead define the

full mass matrix block diagonally, using d repetitions of the same matrix M ∈ Rn×n. This choice facilitates

the more compact representation in (4.18) without altering the validity of the algorithm.

On top of being notationally and computationally convenient, the use of an identical mass matrix across

all dimensions is justified by symmetry in the target posterior—the marginal distribution of each column of

Z is the same (Shortreed et al., 2006).

The above decomposition thus suggests a natural choice of M . Recall from Section 4.2.3 that the precision

matrix of the posterior is an efficient choice for M . Accordingly, we suggest that Σ is a reasonable choice

for M , as it should be a good approximation of the posterior precision matrix provided that P0 is a good

approximation of the full posterior. Moreover, the choice M = Σ is also particularly amenable to simulating

the split HMC trajectories because it leads to arithmetic cancellations that simplify computation. Finally,

the mass matrix M depends on the parameter γ2—when combined with a Monte Carlo strategy for inferring

γ2 (such as the we present in Section 4.3.3), setting M = Σ allows for the mass matrix to evolve adaptively

with the state of γ2 in the chain.

The following is a complete recipe for split HMC for LPMs, using the block diagonal mass matrix we have

just defined. Note that the intermediate variable V ∈ Rn×d introduced in Step 2 is a change of variable for

efficiently parametrizing the contour of the multivariate Gaussian, and Step 4 inverts the change of variable

to recover U . For more details on the exact simulation of HMC for Multivariate Gaussians, see Pakman and

Paninski (2014).

Suppose that A denotes an observed adjacency matrix, τ ∈ [0, 1]C and γ2 > 0 denote the values of

the parameters of the Gaussian link function, and ε > 0, L ∈ N and Σ (as defined in (4.17)) denote the

user-specified tuning parameters for split HMC. Given (Zj , U j), the next split HMC draw (Zj+1, U j+1) is

obtained via the following steps:

1. Gibbs update the momentum variables via Gibbs U j
′ ∼ MVN(0,Σ).

2. Define intermediate variables V j
′

= Σ−1U j
′

and Zj
′′

= Zj .

3. Integrate Hamiltonian motion (Zj , U j
′
)→ (Zj

′′
, U j

′′
) for T = Lε time units

by iterating the following updates L times:

V j
′
← V j

′
+
ε

2
Σ−1 ∂ log(P0(Z|A, τ, γ2))

∂Z
(Zj

′′
) (4.19)

(Zj
′′
, V j

′
)←

(
sin(ε)V j

′
+ cos(ε)Zj

′′
, cos(ε)V j

′
− sin(ε)Zj

′′
)

(4.20)

V j
′
← V j

′
+
ε

2
Σ−1 ∂ log(P0(Z|A, τ, γ2))

∂Z
(Zj

′′
) (4.21)

106

4. Let U j
′′

= ΣV j
′
.

5. Accept the move (Zj+1, U j+1) = (Zj
′′
,−U j′′) with probability

min

(
P(Zj

′′ |A, τ, γ2)

P(Zj |A, τ, γ2)
exp

(
1

2

d∑
`=1

(U ′·` − U ′′·`)
T

Σ−1 (U ′·` − U ′′·`)

)
, 1

)
. (4.22)

Otherwise, the move is rejected and (Zj+1, U j+1) = (Zj , U j
′
).

In Step 2 above, the gradient functions return n× d matrices defined by

(
∂ log(P0(Z|A, τ, γ2))

∂Z
(Z)

)
ik

=
∂ log(P0(Z|A, τ, γ2))

∂Zik
(4.23)

=
∑

j:ij /∈EA

(Zik − Zjk)

γ2

τxij exp
(
−‖zi−zj‖

2

2γ2

)
1− τxij exp

(
−‖zi−zj‖

2

2γ2

) . (4.24)

Computing the gradients in (4.24) and the acceptance ratio in Steps 2 and 4 represent the main

computational bottlenecks of our split HMC algorithm for LPMs, as they both require an operation be

performed for each non-edge. Note that large sparse networks possess many non-edges. For such networks,

it is especially important that we compute the gradients as efficiently as possible because the optimal value of

L may be large. Motivated by this computational bottleneck, we now develop an exact subsampling strategy

to reduce the number of non-edges that must be considered for each gradient computation.

4.3.2 Firefly Sampling of Non-Edges

Recall from Section 4.3.1 that the obstacle preventing exact simulation of the Hamiltonian motion is the

presence of the non-edge terms in the likelihood. Moreover, the computational bottleneck for running the

proposed split HMC algorithm is the density and gradient operations that involved the non-edges. Thus,

it could be beneficial to eliminate some of non-edge terms of the model likelihood at each iteration of split

HMC. Here, we propose such a strategy.

Consider the following data augmentation scheme inspired by the Firefly Monte Carlo (FlyMC (Maclaurin

and Adams, 2015)). For each i, j ∈ [n]2, we define auxiliary independent binary random variables θij such

that P(θij = 1|τxij) = τxij . Using these auxiliary variables, we can re-express the edge probabilities as

P(Aij = 1|θij = 1, τxij , γ
2) = exp

(
− 1

2γ2
‖zi − zj‖2

)
(4.25)

P(Aij = 1|θij = 0, τxij , γ
2) = 0, (4.26)

107

while maintaining the same marginal likelihood. Now,

P(θij = 0|Aij = 0, Z, τxij , γ
2) =

1− τxij
1− τxij exp

(
− 1

2γ2 ‖zi − zj‖2
) , (4.27)

P(θij = 0|Aij = 1, Z, τxij , γ
2) = 0. (4.28)

Note that for all (i, j) ∈ EA, θij = 1 must hold. Thus,

P(Z|A, θ, τ, γ2) = P1(Z|A, τ, γ2)
∏

ij:θij=1,Aij=0

(
1− exp

(
− 1

2γ2
‖zi − zj‖2

))
, (4.29)

meaning that

P∗0(Z|A, θ, τ, γ2) =
∏

ij:θij=1,Aij=0

(
1− exp

(
− 1

2γ2
‖zi − zj‖2

))
(4.30)

can replace P0(Z|A, τ, γ2) in Split HMC once the θ variables are instantiated. If many of the θij are 0,

computing P0(Z|A, τ, γ2)—and its gradients—is far cheaper than computing the marginal P0(Z|A, τ, γ2)

analogs. Thus, combining the above with split HMC can represent a major computational improvement,

provided that we can instantiate and update the θij values efficiently.

To do so, we propose a Metropolis-Hastings step using proposal q(θij = 1) = τij . Let MH(θij = 0 →

θij = 1) denote the Metropolis-Hastings ratio associated with a proposed move from θij = 0 to θij = 1,

and let MH(θij = 1→ θij = 0) denote the Metropolis-Hastings ratio associated with a proposed move from

θij = 1 to θij = 0. The values of these ratios are given by

MH(θij = 0→ θij = 1) =

(
1− exp

(
− 1

2γ2
ij

‖zi − zj‖2
))

, (4.31)

MH(θij = 1→ θij = 0) =
1

1− exp
(
− 1

2γ2
ij
‖zi − zj‖2

) > 1. (4.32)

Thus, out of the four possible moves 0 → 0, 0 → 1, 1 → 0, 1 → 1, the accept reject step need only be

performed for 0 → 1. Therefore, this strategy is more computationally efficient than updating each θij

according to its full conditional using a Gibbs update.

Going forward, we refer to the parameter augmentation and update strategy described above as FlyMC.

The reduction in computational cost of evaluating the posterior density and gradients under FlyMC is most

prevalent when most of the θij are 0. Because the P(θij = 0|τxij) = 1− τxij , the computational gains from

FlyMC are thus largest when τxij is small. On the other hand, when τxij are relatively large (close to 1),

most values of the θij will be one, meaning the computational improvements in evaluating the gradient may

108

not justify the computational expense of instantiating and updating the θ variables. In the extreme case of

τxij = 1, no subsampling will occur at all, so FlyMC should not be included.

For sparse networks, however, τxij may be very small for some values of xij , leading to substantial

computational gains. In addition to providing a computational speed-up, the new FlyMC posterior facilitates

the inference of τ via Gibbs steps. We now discuss MCMC updates for τ and γ2 in Section 4.3.3.

4.3.3 Bayesian Inference of the Parameters of the Link Function

Thus far, our posterior computation strategy for Z has held τ and γ2—the parameters of the link function—

at fixed values. In most applications, τ and γ2 are unknown—they need to be inferred along with Z. As we

noted in Section 4.2.2, τ may even be the primary inferential target when the main scientific question involves

measuring the effect of a covariate. For these reasons, it is important that our posterior computation strategy

be able to compute the full joint posterior of τ , γ2, and Z. Here, we describe efficient Gibbs updates for

both τ (Section 4.3.3) and γ2 (Section 4.3.3) that can be alternated with our split HMC + FlyMC strategy

(Sections 4.3.1 and 4.3.2) for updating Z to define a complete MCMC algorithm.

Before proceeding, it is worth making a couple of notes. The updates we describe here apply to specific

families of priors on τ and γ2: independent Beta priors being used for each entry in τ and an inverse

Gamma prior γ2. Moreover, the update for τ is only applicable in conjunction with the FlyMC strategy

outlined in Section 4.3.2. If FlyMC is not used (and thus the θ are not available), we recommend a simple

random walk Metropolis-Hastings update for τ instead. Finally, our update strategy for γ2 depends on

a re-parameterization of the model that shifts direct inference of γ2 in the link function to inference of a

constant multiple on the variance Ω of the latent positions Z. This facilitates a conversion to a centered

parameterization (Papaspiliopoulos et al., 2007) of Z, allowing a Gibbs update where one was previously

intractable. This Gibbs update of γ2 is applicable whether or not FlyMC is used.

Updating τ given Z, θ, γ2

Suppose that each of the C entries in the vector τ are assigned independent priors such that τc ∼ Beta(αc, βc)

for c ∈ [C], α, β ∈ RC+. Then, if the FlyMC strategy outlined in Section 4.3.2 is used, each τc can be Gibbs

updated according to its conditional posterior distribution given the FlyMC variables θ and the covariates x.

Indeed, this posterior distribution is actually conjugate to the Beta prior because inferring τc|θ, x for c ∈ [C]

is equivalent to inferring the probability parameter of a sequence of Bernoulli trials (specifically the θij for

which xij = c). Thus,

τc | θ, x ∼ Beta(αc + Θ1
c , βc + Θ0

c) (4.33)

109

for each c ∈ [C], where Θ0,Θ1 ∈ ({0} ∪ N)C are defined according to

Θ0
c = |

{
{i, j} ∈ [n]2 : θij = 1 and xij = c

}
| (4.34)

Θ1
c = |

{
{i, j} ∈ [n]2 : θij = 0 and xij = c

}
|. (4.35)

This update can be efficiently updated by keeping track of the values of Θ0 and Θ1 when performing the

FlyMC updates.

Updating γ2 given Z, τ , θ

Suppose we place an InverseGamma(a, b) prior on γ2, where a, b > 0. Then, the posterior density of

γ2|A,Z, θ, τ, x is proportional to

p(γ2 | A,Z, θ, τ, x) = IG(γ2|a, b) exp

(
− 1

2γ2

d∑
`=1

ZT·`L
AZ·`

) ∏
ij:θij=1,Aij=0

(
1− exp

(
− 1

2γ2
‖zi − zj‖2

))
(4.36)

where IG(γ2|a, b) denotes the probability density function of the InverseGamma(a, b) distribution evaluated

at γ2. This density provides no closed-form Gibbs update and is expensive to evaluate so working directly

with it would be cumbersome as part of an MCMC strategy.

However, we can remedy this situation via a re-parameterization. Recall that Z has a Gaussian prior

defined by Z·` ∼ N(0,Ω) for ` ∈ [d]. Thus, the re-parameterized random variable Z∗ = γ−1Z has a

conditionally multivariate Gaussian prior defined by Z∗·`|γ2 ∼ N(0, γ−1Ω) for ` ∈ [d]. The conditional

distribution of γ2 given A,Z∗, θ, τ, x is given by

p(γ2 | A,Z∗, θ, τ, x) = IG(γ2|a, b) exp

(
−γ

2

2

d∑
`=1

(Z∗·`)
T

Ω−1Z∗·`

)
(4.37)

= IG

(
γ2|a+

nd

2
, b+

1

2

d∑
`=1

(Z∗·`)
T

Ω−1Z∗·`

)
. (4.38)

Therefore, by conditioning on Z∗ instead of Z, the posterior dependence of γ2 on θ and A have been

removed—it depends solely on Z∗. Moreover, the prior on γ2 is now conjugate, and can be updated via a

simple Gibbs update.

Fortunately, this re-parameterization and the corresponding Gibbs update can be easily incorporated

with the updates of Z, θ, and τ described in Sections 4.3.1, Section 4.3.2, and Section 4.3.3, respectively.

Doing so requires just a small re-tooling of the model/notation. Instead of viewing the Gaussian LPM as

having latent positions Z with prior Z·` ∼ N(0,Ω) and a two parameter link function defined in (4.4), we

110

can re-express the Gaussian LPM with Z∗ taking the role of the latent positions, γ2 being a hyperparameter

of their prior Z∗·` ∼ N(0, γ−1Ω), and the edges generated according to a one parameter link function defined

by

K(‖z∗i − z∗j ‖, xij) = τxij exp

(
−1

2
‖z∗i − z∗j ‖2

)
. (4.39)

Because the updates of Z (Section 4.3.1), θ (Section 4.3.2), and τ (Section 4.3.3) treated γ2 as fixed,

they are equally applicable after this re-parametrization—we just fix the γ2 in the link function at 1, and

have Z∗ play the role of Z (with a new hyperparameter γ2 on the prior). After performing MCMC sampling

this re-parametrized setting, one can recover the original parameterization of Z by simply undoing the

change-of-variable transformation.

Thus, we have now defined a full MCMC strategy for posterior computation of Z, τ, γ2 that also introduces

and updates auxiliary FlyMC variables θ. Each sweep of the chain iterates through a split HMC update of Z,

a Metropolis update of each θ, a Gibbs update for each entry in τ , and a Gibbs update of γ2. Alternatively, if

FlyMC is not incorporated, posterior computation of Z, τ , and γ2 can be performed by alternating the split

HMC update of Z, a Metropolis update of each entry in τ , then a Gibbs update of γ2. For completeness, the

functional form of the posterior being computed in both the split HMC and split HMC +FlyMC algorithms

is outlined in Section 4.6.2.

4.4 Empirical Studies

To explore and understand the relative strengths and weaknesses of our new posterior inference algorithm

for GLPMs, we conduct two empirical studies. Study 1 (Section 4.4.2) consists of a “bake-off” between

various inference algorithms, comparing the efficiency of our method to that of plausible competitors from

in literature. These comparisons span a variety of synthetically generated networks of different sizes and

sparsity levels. Study 2 (Section 4.4.3) is a real data example, demonstrating efficiency of split HMC and split

HMC + FlyMC compared to traditional Metropolis within Gibbs for modeling information-sharing among

elementary school teachers and staff in a school district. It considers multiple model set-ups, including the

use of use categorical covariates and longitudinal network data. Details of the computational software and

hardware used to run the experiments is provided in Section 4.6.1.

Before delving into Studies 1 and 2, Section 4.4.1 motivates and describes our metric for comparing the

relative efficiency of various Monte Carlo algorithms for LPMs.

111

4.4.1 Measuring relative efficiency of MCMC Algorithm for LPMs

There are two principal criteria by which to judge the efficiency of a Markov chain for approximating a

posterior distribution.

1. How efficiently does the MCMC sequence approximate the posterior expectation of a desired function

of the parameters?

2. What is the computational expense of generating this chain?

Simple metrics exist for gauging each of these criteria, which we describe below.

For criterion 1, it is well-known that that mean estimates stemming from a geometrically ergodic (Roberts

et al., 1997) Markov chain are subject to a Markov chain central limit theorem (CLT) (Tierney, 1994).

Analogous to the standard (independent samples) central limit theorem, for which the variance of the

estimator is inversely proportional to the raw sample size, the variance in the Markov chain CLT is inversely

proportional to the Effective sample size (Kass et al., 1998; Ripley, 2009).

Letting θ1, θ2, . . . , θN denote N draws from a Markov chain and f denote an arbitrary function, the

effective sample size ESSf for estimating the expectation of f(θ) is defined as

ESSf (θ1, . . . , θN) =
N

1 + 2
∑∞
t=1 ρt,f

(4.40)

where

ρt,f =

∫
f(θi+t)f(θi)p(θi)dθi∫

f(θi)2p(θi)dθi
(4.41)

denotes the t-lag autocorrelation of the function f(θ) in the Markov chain.

The effective sample size thus takes into account all possible lags of autocorrelations, recognizing that

highly autocorrelated chains represent fewer bits of independent information than an uncorrelated analog.

In practice, estimating the effective sample size of a chain is done by estimating the autocorrelations. For

our purposes, we use the effective sample size estimator implemented in the R package coda (Plummer et al.,

2006).

We should note that we have not formally proved that our proposed HMC + FlyMC algorithm (as

well the other algorithms considered here) produces a geometrically ergodic Markov chain (see Mangoubi

and Smith (2017); Livingstone et al. (2019); Mangoubi and Smith (2019) for recent progress on related

problems). However, the effective sample size remains an intuitive metric for the efficiency of a Markov

chain approximation, due to its penalization of autocorrelations. Moreover, conservative confidence intervals

based on the effective sample size can still be constructed even when geometric ergodicity does not necessarily

hold Rosenthal (2017). For this reason, we feel it is still a suitable metric to use when comparing chains.

112

To assess criterion 2 (the computational expense of generating a chain), we simply measure the runtime¶ of

the algorithm. Although there is opportunity for parallelization in some of the algorithms (e.g. simultaneous

updating of FlyMC variables), we do not take advantage of such opportunities—all our implementations

perform the various steps in series.

Overall, both criterion 1 and criterion 2 should be considered simultaneously when judging the efficiency

of a Markov chain—a fast MCMC algorithm is not necessarily accurate, and an accurate MCMC algorithm

is not necessarily fast. The most popular metric for combining these criteria is the effective sample size per

second (Gamerman and Lopes, 2006), defined by

ESS per second =
ESSf (θ1, . . . , θN)

time (in seconds) taken to compute the chain θ1, . . . , θN
, (4.42)

sometimes referred to as Markov chain efficiency (de Valpine, 2018). This metric provides a straightforward

way to compare the performance of two MCMC algorithms. If one MCMC algorithm produces twice as many

effective samples per second as another, that means it is twice as efficient, obtaining an equally accurate

approximation of a desired posterior expectation in roughly half the time. This begs the question—what

posterior expectation do we desire?

Typically, the posterior mean of the various parameters is the natural choice (Carpenter et al., 2017).

However, for the LPM, the posterior mean of each latent positions is inappropriate. Due to the invariance

of the likelihood under isometric transformations (e.g. rotations and reflections (Shortreed et al., 2006)), all

latent positions are guaranteed to have posterior mean of 0. If our target were the posterior means of the

positions, MCMC would be unnecessary.

A reasonable target should instead be well-identified in the model, such as the probabilities of edges

between the nodes. These values depend both on the latent positions and the parameters of the link function.

However, there are n(n−1)/2 such probabilities in total. For large networks, computing the effective sample

size for all of them is computationally burdensome. Moreover, many of these expected probabilities will be

very close to 0 in sparse networks, creating numerical underflow problems in practice.

To avoid having to compute the Markov efficiency for all n(n − 1)/2 unique pairs in [n]2, we instead

consider a uniformly random subset of 500 dyads (sampled without replacement) for each of our empirical

studies in Sections 4.4.2 and 4.4.3. Subsampling drastically reduces the amount of computation required

while still providing a summary of how well the chain is mixing for all nodes. To avoid the underflow problems

associated with estimating the raw probabilities, we calculate the effective sample size of estimating the log

¶None of the algorithms we consider here are memory-intensive. If any were, it might also make sense to report the memory
requirements.

113

probabilities instead. That is, for a given i, j ∈ [n]2, we consider

f(Z, γ, τ,X) = log(τxij)−
‖zi − zj‖2

2
. (4.43)

as the function for which we calculate the posterior expectation. These functions are much more numerically

tractable than the raw probabilities, whilst preserving strong ties with other quantities of interest (i.e. the

distance between nodes and the density parameter τ).

Finally, we can now bring all of this together to define an interpretable quantity for reporting the relative

efficiency of MCMC algorithms. Metropolis within Gibbs is currently the most popular MCMC algorithm

for posterior computation of LPMs, making it the natural choice for the baseline against which to compare

other algorithms in our empirical studies (Sections 4.4.2 and 4.4.3). Accordingly, we report each algorithm’s

efficiency relative to Metropolis within Gibbs for each subsampled dyad. That is, for a chain θ1, . . . , θN , we

calculate

ESSf (θ1, . . . , θN)

ESSf (θ1
m, . . . , θ

N
m)
× time (in seconds) taken to compute the chain θ1

m, . . . , θ
N
m

time (in seconds) taken to compute the chain θ1, . . . , θN
(4.44)

for each dyad, where θ1
m, . . . , θ

N
m denotes draws according to a well-tuned Metropolis within Gibbs algorithm

exploring the same posterior.

4.4.2 Study 1: Synthetic Data

In this empirical study, we investigate the efficiency of split HMC (Section 4.3.1) and split HMC + FlyMC

(Sections 4.3.1 and 4.3.2) compared to nine other exact MCMC algorithms from the literature. We are

particularly interested in efficiently fitting LPMs to the large, sparse networks that have become increasingly

common in modern applications, so we have tooled the study’s design to showcase how the algorithms

perform as the networks become larger and more sparse.

Our investigation involves fitting Gaussian LPMs to 16 different synthetically generated networks. These

networks—stochastically generated according to a GLPMs with pre-specified values of τ , γ2, and Ω—

demonstrate a variety of different sizes and sparsity. Specifically, they represent a full factorial design

on the combinations of settings of the parameters τ ∈ {0.2, 0.8}, γ2 ∈ {0.2, 1.0}, and the number of nodes

n ∈ {50, 100, 200, 500}. To generate each of these 2 × 2 × 4 = 16 networks, the latent positions of the

nodes are drawn independently from a two-dimensional isotropic Gaussian (i.e. Ω = In) prior, and the edges

were generated according to the link function with the designated τ, γ parameters. We do not include any

observed covariates in this study (i.e. C = 1 for τ ∈ [0, 1]).

Integrating the link probability function K in (4.4) with respect to the isotropic Gaussian prior on Z

indicates that the expected probability of an edge between any two nodes i and j in the synthetically

114

generated networks is given by

E(Aij) = τ
(
1 + 2γ−2

)−1
. (4.45)

Thus, the parameter configurations described above exhibit a range of sparsity levels: For the τ = 0.2, γ2 =

0.2 networks, roughly 3 percent of dyads have edges, 10 percent of dyads have edges in the τ = 0.2, γ2 = 1.0

networks, 13 percent of dyads have edges in the τ = 0.8, γ2 = 0.2 networks, and 40 percent of dyads have

edges in the τ = 0.8, γ2 = 1.0 networks. Though the τ = 0.8, γ2 = 0.2 and τ = 0.2, γ2 = 1.0 configurations

correspond to similar edge counts (and thus sparsity levels), sparsity driven by small τ has a different

structure than sparsity driven by γ2, so it is worthwhile investigating both.

For each of the 16 synthetically generated networks, we use (4.44) from Section 4.4.1 to compare the

relative performance of 11 different MCMC algorithms. These algorithms primarily vary along two criteria:

the proposal used to update Z, and whether or not FlyMC (Section 4.3.2) is used to subsample the non-

edges. We consider five different strategies for updating Z: Metropolis within Gibbs (Section 4.2.2), elliptical

slice sampling (Murray et al., 2010), elliptical slice sampling within Gibbs (Hahn et al., 2019), split HMC

(Section 4.3.1) with T ≈ 2, and an alternative implementation of Split HMC that uses NUTS (Hoffman and

Gelman, 2014) to adaptively choose the integration time T . For each of these five strategies for updating

Z, we consider both a standard implementation and FlyMC implementation, amounting to ten different

algorithms. Finally, we include HMC as implemented Stan (version 2.18.2 (Carpenter et al., 2017)) as an

additional competitor algorithm, bringing the total number of algorithms to 11. Because Stan does not

support discrete latent variables, a FlyMC version of Stan is not possible.

We included these algorithms for the following reasons: Metropolis within Gibbs is a baseline, as

mentioned above. Both of the elliptical slice sampling algorithms were included as competitors because

they represent alternative ways to exploit a Gaussian component in the posterior. The NUTS version of

Split HMC was included to investigate whether extra computation cost of adaptively setting the integration

time in HMC is worth it for LPMs. Stan was included to ensure our methods represented a worthwhile

improvement over out-of-the-box general software.

In addition to inferring Z, all 11 algorithms are tooled to infer τ and γ2 as well, using a standard uniform

prior on τ an inverse gamma (IG(1,1)) prior on γ2. In Stan, all parameters (Z, γ2, and τ) are updated as part

of a single HMC update. For the five FlyMC algorithms, we alternate between updates of Z as prescribed

above, updates of the FlyMC variables θ according to the Metropolis strategy outlined in Section 4.3.2,

updates of τ according to the Gibbs strategy outlined in Section 4.3.3, and an update of γ2 to the Gibbs

strategy outlined in Section 4.3.3. For the five remaining standard algorithms, we alternate between updates

of Z as prescribed above, τ using a random walk Metropolis algorithm, and γ2 to the Gibbs strategy outlined

in Section 4.3.3.

115

Where appropriate, we tuned the parameters of the algorithms to promote efficient computation. Stan

has a sophisticated (and computationally intensive) tuning strategy for choosing its step size ε along with a

mass matrix M . For details, see Carpenter et al. (2017). For all of the non-Stan algorithms, we used a light

tuning strategy based on a sequence of short (100 iteration) preliminary runs to iteratively select reasonable

values for the parameters. For the updates of Z, the Metropolis and Metropolis + FlyMC step sizes were

chosen to target an acceptance rate in the range [0.2, 0.3]. For the split HMC and split HMC + FlyMC

algorithms, the value of ε was determined by targeting an acceptance rate within [0.8, 0.85]. The value of

L was chosen simultaneously to ensure T = Lε ≈ 2. We have found through a wide array of preliminary

experiments that these values tend to give results that are close to optimal without taking too much tuning

time. For the NUTS algorithms, the value of ε chosen for the analogous split HMC algorithm was used.

The elliptical slice algorithms have no tuning parameters. The step-size for the Metropolis τ updates was

also chosen based on short preliminary runs, targeting an acceptance rate in the range [0.2, 0.3]. The step

sizes used to update Z for split HMC, split HMC + FlyMC, Metropolis within Gibbs, and Metropolis within

Gibbs + FlyMC are provided in Figure 4.6 in Section 4.6.3.

For each of the 16 synthetic networks, we performed a single run of each algorithm for 10000 iterations

(aside from Stan which we ran for just 2000 iterations due to its much longer runtime‖). Each algorithm

was initialized identically, using the maximum likelihood estimate of Z and the true values of τ and γ2 as

starting points. Figures 4.1 and 4.2 illustrate the relative efficiency of the eleven MCMC algorithms used to

compute the posterior for the 16 different networks, with Figure 4.1 showing the standard implementations

and Figure 4.2 showing the FlyMC implementations. For each posterior inference algorithm applied to

each network, we calculated the Markov chain efficiency described in Section 4.4.1 for a random subset of

500 dyads in the network. To facilitate comparison between algorithms and parameter settings, we then

determined the ratio in (4.44) for each algorithm and dyad to compare it to the Metropolis within Gibbs

baseline. Figures 4.1 and 4.2 report the medians (across all edges) of these ratios for each algorithm and

parameter setting. They are ordered according to the number of nodes to demonstrate how the relatively

efficiency changes as the number of nodes increases.

The results shown in Figure 4.1 and Figure 4.2 demonstrate several phenomena. The first thing to note

is that Split HMC and and Split HMC + FlyMC are the standout performers across all networks considered.

Split HMC clearly outperforms Metropolis within Gibbs for all networks, and Split HMC + FlyMC clearly

outperforms Metropolis within Gibbs for all networks except the 50 and 100 node networks in the sparsest

regime. Notably, both implementations of Split HMC with T ≈ 2 outperform their NUTS counterparts and

Stan, demonstrating that the extra computational cost of these strategies adaptively updating L may be

unwarranted for LPMs.

‖The use effective sample size per second as our metric means that Stan is not penalized for running for fewer iterations

116

τ = 0.8, γ2 = 0.2 τ = 0.8, γ2 = 1.0

τ = 0.2, γ2 = 0.2 τ = 0.2, γ2 = 1.0

50 100 200 500 50 100 200 500

0.01

0.10

1.00

10.00

100.00

0.01

0.10

1.00

10.00

100.00

Number of Nodes

M
ed

ia
n

E
ff

ec
ti

v
e

sa
m

p
le

si
ze

p
er

se
co

n
d

(r
el

at
iv

e
to

M
et

ro
p

ol
is

w
it

h
in

G
ib

b
s)

split HMC NUTS
Metropolis
within Gibbs

elliptical slice
within Gibbs

elliptical slice stan

Figure 4.1: A depiction of the relationship between the number of nodes in the synthetically generated
networks (τ = 0.2, 0.8, γ2 = 0.2, 1.0) for Empirical Study 1 and the relative efficiency (compared to Metropolis
within Gibbs) of the five posterior computation algorithms. For each algorithm, relative efficiency (y axis)
is quantified as the median across 500 dyads in the synthetic network of the relative Markov chain efficiency
compared to Metropolis within Gibbs. For readability, the results from the analogous FlyMC algorithms are
presented separately as Figure 4.2, using the same colors (but dashed instead of solid lines).

All methods based on elliptical slice sampling perform poorly, demonstrating that HMC is a better method

for exploiting the near-Gaussianity of the posterior than elliptical slice sampling. Indeed, the elliptical

slice sampling algorithms performed worse than Metropolis within Gibbs. The poor performance of the

elliptical slice within Gibbs algorithms was due to its runtime—the conditional means and variances of each

latent position at each iteration are very expensive to compute. The joint update elliptical slice algorithms

performed poorly for the opposite reason. They had much faster runtimes, but the corresponding chains

mixed very slowly because the draws exhibited very high autocorrelation.

It is also worth noting that the dominance of the Split HMC methods are more pronounced for larger

networks— Split HMC and Split HMC + FlyMC are on the order of 50 to 100 times more efficient than

Metropolis within Gibbs for 500 node networks. For the denser τ = 0.8 networks, standard Split HMC

performs remarkably well, showing a distinct upward trend, indicating that its dominance over Metropolis

within Gibbs would be even more pronounced for larger networks. For the sparser τ = 0.2 networks, Split

HMC + FlyMC demonstrates a similar upward trend. The tuned values of ε and δ shown in Figure 4.6 in

117

τ = 0.8, γ2 = 0.2 τ = 0.8, γ2 = 1.0

τ = 0.2, γ2 = 0.2 τ = 0.2, γ2 = 1.0

50 100 200 500 50 100 200 500

0.01

0.10

1.00

10.00

100.00

0.01

0.10

1.00

10.00

100.00

Number of Nodes

M
ed

ia
n

E
ff

ec
ti

v
e

sa
m

p
le

si
ze

p
er

se
co

n
d

(r
el

at
iv

e
to

M
et

ro
p

ol
is

w
it

h
in

G
ib

b
s)

split HMC
+ FlyMC

NUTS
+ FlyMC

Metropolis
within Gibbs
+ FlyMC

elliptical slice
within Gibbs
+ FlyMC

elliptical slice
+ FlyMC

Figure 4.2: A depiction of the relationship between the number of nodes in the synthetically generated
networks (τ = 0.2, 0.8, γ2 = 0.2, 1.0) for Empirical Study 1 and the relative efficiency (compared to Metropolis
within Gibbs) of the five FlyMC posterior computation algorithms. This figure is a companion to Figure 4.1,
presenting the same metric.The solid black baseline is included for easy comparison to Metropolis within
Gibbs.

Section 4.6.3 demonstrate that split HMC is more robust to large network sizes: while the tuned step sizes

for the Metropolis within Gibbs decay as the number of nodes increases, the tuned values of ε for split HMC

remain more stable.

To facilitate comparison between the FlyMC and standard implementations of split HMC, we have also

included Figure 4.3. Instead of just reporting the median, it summarizes the entire distribution of (4.44)

across the 500 sampled dyads. From the side-by-side boxplots, we can see that standard split HMC clearly

outperforms split HMC + FlyMC for the τ = 0.8 networks of all sizes. For the τ = 0.2 networks, the

comparison is less clear cut. For the very sparse network τ = 0.2, γ2 = 0.2, standard split HMC outperforms

the FlyMC version for the smaller networks, but FlyMC edges it out for the 500 node network. It is worth

noting that in this very sparse regime for smaller networks, the extreme lack of edges can lead to ambiguity in

whether the extreme sparsity is driven by small τ , small γ2, or both. The joint posteriors of τ, γ2 for different

synthetic networks shown in Figure 4.7 demonstrates this phenomenon—there is a remarkable amount of

uncertainty in the posterior of τ for the smaller sparse networks.

118

τ = 0.8, γ2 = 0.2 τ = 0.8, γ2 = 1.0

τ = 0.2, γ2 = 0.2 τ = 0.2, γ2 = 1.0

50 100 200 500 50 100 200 500

0.1

1.0

10.0

100.0

0.1

1.0

10.0

100.0

Number of Nodes

E
ff

ec
ti

ve
sa

m
p
le

si
ze

p
er

se
co

n
d

(r
el

at
iv

e
to

M
et

ro
p

ol
is

-w
it

h
in

-G
ib

b
s)

split HMC split HMC + FlyMC

Figure 4.3: Boxplots summarizing the distribution of relative efficiency of Split HMC + FlyMC and
standard Split HMC relative to Metropolis within Gibbs across 500 dyads in each network.

We have noticed that the FlyMC updates of τ and θ tend to mix slowly in these uncertain situations, thus

leading to slow exploration of the joint distribution of (τ, γ2). Unencumbered by slow-mixing θ variables,

standard FlyMC tends to perform better in these under-identified settings, suggesting that FlyMC should

only be used when the τ variable is better identified. This seems to be the case in the τ = 0.2, γ2 = 1.0

networks, where the FlyMC clearly outperforms the standard version.

The full distribution of the relative efficiencies highlights another observation—although the split HMC

algorithms tend to outperform Metropolis within Gibbs for the vast majority of dyads, there is often a small

minority of dyads for which Metropolis within Gibbs performs better (seen as the lower tails of the boxplots

sometimes extending below 1). A thorough investigation into these dyads revealed no apparent pattern for

which dyads tend to perform relatively poorly in a given network, suggesting that the primary explanation

is simply the high-dimensionality of the posterior—with so many dimensions along which to mix, there will

often be a small minority that mix more slowly. Regardless, the underperformance is not drastic for the large

networks in which we are interested—split HMC still performs at the same order of magnitude as Metropolis

within Gibbs.

From this empirical study, we have demonstrated that split HMC and split HMC + FlyMC tend to

outperform competitors in the literature on synthetically generated data. For denser networks, or networks

119

for which τ and γ2 are poorly identified (i.e. smaller sparse networks), standard split HMC tends to be the

better choice. For larger sparse networks, split HMC + FlyMC seems to be the top performer. In all cases,

using these strategies will perform far better than simple Metropolis within Gibbs.

However, there is no guarantee that good performance on these synthetically generated networks (i.e.

perfectly specified models) will necessarily translate to good performance on the approximately specified

models that occur in real data applications. For this reason, we now turn to Study 2, where we use our

algorithms to fit LPMs to real data with categorical covariates and structured priors.

4.4.3 Study 2: Network of Information-sharing in a School District

To demonstrate the efficacy of our split Hamiltonian Monte Carlo strategies applied to real data, we now

showcase several applications of LPMs to information-sharing networks of teachers and staff in a school

district. These applications involve several model/network configurations commonly encountered in practice:

networks with categorical covariates that encode known group memberships of the nodes, longitudinally-

observed networks with models enforcing serial dependence of the latent positions, and combinations of the

two. The data we use in these applications were collected as part of the Distributed Leadership Studies

at Northwestern University, a comprehensive program of research involving several longitudinal studies

of workplace and social interactions among school staff and school systems. For more details about this

particular dataset, see Spillane and Hopkins (2013); Spillane et al. (2018).

The networks we use pertain to Auburn Park, a pseudonym for a mid-sized suburban school district in

the Midwestern United States. In five separate years, elementary school teachers and staff within this district

were surveyed about who in the district they went to for advice, as well as the school in which they worked

and other relevant covariates (e.g. what subjects they taught). Over these years, 661 distinct individuals

responded to this advice-seeking survey in at least one year. 129 of them were present for all five surveys

(some left or entered the district during the survey years).

For the purposes of this empirical study, we have compiled the survey responses into a series of five

undirected information-sharing networks—one for each year of data. These undirected information-sharing

relationships were obtained by symmetrizing the information in the advice-seeking survey. That is, for each

network, an edge is present between two individuals if either of them reported going to the other for advice

in that year. In addition to the edge information, we have are covariates indicating which individuals worked

in the same school in each year (covariate a), and whether or not they had shared information in the previous

survey year (covariate b).

From this sequence of networks, we have extracted four different subnetworks:

• One school, one year : the information-sharing network of 32 teachers and staff working within the

same school (school ID 4) in the first survey year.

120

Model
Number
of Schools

Number
of Years

Number
of Nodes

Number
of Edges

Covariate

one year
one school

1 1 32 150 No covariate

one year,
all schools

14 1 326 1363 No covariate

one year,
all schools
covariate a

14 1 326 1363
Indicator for whether or not
individuals work at the same
school

all years,
one school
covariate b

1 5 14 per year 79
Indicator for whether or not
individuals shared info in the
previous year

all years,
all schools
covariate b

14 5 129 per year 1038
Indicator for whether or not
individuals shared info in the
previous year

all years,
all schools
a, b

14 5 129 per year 1038

Indicator for whether or not
individuals work at the same
school and
Indicator for whether or not
individuals shared info in the
previous year

Table 4.1: A summary of the model and data configurations for Empirical Study 2

• All schools, one year : the information-sharing network of 326 teachers and staff across all fourteen

schools in the district in the first survey year.

• One school, all years: a series of five information-sharing networks of fourteen teacher and staff working

within the same school (school ID 4). Each network corresponds to a different survey year.

• All schools, all years: a series of five information-sharing networks of 129 teachers and staff working

across all fourteen schools in the district. Each network corresponds to a different survey year.

Using these subnetworks, we fit six different models (one model for each of the one school, one year and

one school, all years networks, and two models for each of the all schools, one year and all schools, all years

networks). These models represent six separate settings with which to assess the performance of standard

split HMC and split HMC with FlyMC. The specifics of how these four datasets were constructed, as well as

the details of the six models we fit to them, are provided below (for quick reference, a summary is available

in Table 4.1). For each model fit, the efficiency of Split HMC and Split HMC with FlyMC are reported in

Figure 4.4, relative to the baseline Metropolis within Gibbs.

The one school, one year network corresponds to all information shared within a specific school in the

district (shown as school ID 4 in Figure 4.5) in survey year one. We chose this particular school due because

it contains a large number of teachers and staff who were interviewed in all five years. To this network, we fit

121

one model—a Gaussian LPM with no covariates, an independent two-dimensional isotropic Gaussian priors

for each zi, a uniform prior on τ , and an inverse gamma (IG(1,1)) prior on γ2.

The all schools, one year network represents all information shared across all schools in the district

(both between and within-schools) in survey year one. To this network, we fit two separate LPMs: one

without covariates, and another in which the binary covariate a is used to indicate whether or not the two

individuals were working in the same school that year. For both model configurations, we used independent

two-dimensional isotropic Gaussian priors for each zi, a bivariate uniform prior on τ , and an inverse gamma

(IG(1,1)) prior on γ2.

For the one school, all years network, we considered the same school (school ID 4) as in the one school,

one year network. However, we included only those 14 teachers and staff that were surveyed in that school

in all five survey years—any individuals that missed at least one survey year or changed schools during

the study were excluded. As a result, this data consists of a series of five networks on the same 14 nodes

across the five survey years. We fit one model to these five years data—a single longitudinal latent position

model (Kim et al., 2018). Doing so is straightforward within our LPM framework; we pooled the five distinct

fourteen node networks into a single 70 node network, then treated any of the impossible “across year” dyads

(e.g. a year 1 node cannot share information with a year 3 node) as unobserved, omitting them from the

likelihood. We model the temporal dependence in the network in two ways. First, we place an autoregressive

prior on each nodes’ sequence of two-dimensional latent positions—a Gaussian prior where subsequent years

are autocorrelated at a 0.95 level. Second, we use the binary covariate b to allow the model to account for

“persistent edges”. That is, b indicates whether or not the edge being considered was present in the previous

year. As before, we place independent uniform priors on each value of τ ∈ [0, 1]2, and an inverse gamma

(IG(1,1)) prior on γ2.

Finally, the all schools, all years is sequence of five networks similar to the one school, all years network

but with all schools in the district considered. Like for the one school, all years network, this network includes

only those that were surveyed in all five years. However, we do keep those who changed schools within the

district (updating their covariates year-to-year). For this data, we fit two separate models for all schools, all

years. They are analogous to the two models considered for all schools, one year but they also incorporate

longitudinal dependence as in the one school, all years model. That is, both all schools, all years models

involve a two-dimensional Gaussian prior to enforce 0.95 serial correlation among an individuals’s latent

position in adjacent survey years. The two models differ in how their covariates are structured. One model,

analogous to the “no covariate” model for all schools, one year, uses just the binary covariate b to indicate

whether the edge was present in the previous year (as in the one school, all years model). The second model,

analogous to the covariate model for all schools, one year, incorporates the covariate information from both

a and b: xij takes on four separate values. The values depend on whether or not the teachers/staff work in

the same school (a) and whether or not the edge was present in the previous survey year (b).

122

Note that we chose and structured the datasets and models above to ensure simplicity; they allow us to

consider different LPM set-ups in the study without having to account for irregularly missing data or any

potential artifacts thereof.

For all six models, we employed the same preliminary run tuning strategy as in Study 1 (Section 4.4.2) to

choose ε for the split HMC algorithms (with T ≈ 2), as well as the random-walk step size for each parameter

in the Metropolis within Gibbs and the update of τ in standard split HMC. Each Metropolis within Gibbs

chain was run for 20000 iterations, and each standard HMC and HMC + FlyMC chain was run for 10000

iterations. For each algorithm and model, the distribution of relative speed-up (as measured by (4.44)) is

summarized using a boxplot for 500 randomly selected dyads in Figure 4.4 (all 496 unique dyads for the one

year one school network are shown).

all years,
all schools

+ covariate

all years,
all schools

all years,
one school

one year,
all schools

+ covariate

one year,
all schools

one year,
one school

1 10 100 1000 10000

Effective sample size per second speed-up
(relative to Metropolis-within-Gibbs)

E
x
p

er
im

en
t

(D
at

a
an

d
M

o
d
el

)

split HMC

split HMC
+ FlyMC

Figure 4.4: Boxplots depicting the relative efficiency (in terms of effective sample size per second) of split
Hamiltonian Monte Carlo (both with and without FlyMC) compared to Metropolis within Gibbs. The
six different data/model configuration described above are considered. For each configuration, the relative
speed-up in effective sample size per second is provided for computing the posterior log probability of a
random subset of 500 dyads in the network. Note that the x-axis is provided on the log scale.

In each of the six settings, both the standard and FlyMC versions of split HMC vastly outperform

Metropolis within Gibbs, even more so than in Study 1. The speed-up is most pronounced in the all years,

all schools with covariates a and b setting, where both algorithms are almost 1000 times more efficient than

Metropolis within Gibbs. For the most part, the two HMC algorithms (with and without FlyMC) perform

comparably across the different model/data settings. The most noticeable difference occurs in the two models

123

fit to the one year, all schools network. Without the covariate a, standard split HMC performs better. When

a is included, the FlyMC version is the better performer. This disparity between the two models provides a

good case study for when FlyMC is most useful, so we will now dig deeper into how the inclusion/exclusion

of the covariate affects the model fits and Monte Carlo algorithms.

Figure 4.5 summarizes the fits of the two separate models on the one year, all schools network. For

both models, the nodes are arranged according to point estimates of their latent positions. These point

estimates were obtained by computing the expectation of the matrix of squared distances between the latent

positions, then using multi-dimensional scaling to extract the optimal two-dimensional embedding based on

these distances. Contours of the posterior distribution for three nodes at different schools are included to

demonstrate the uncertainty in the corresponding posteriors. These contours were obtained by applying a

Procrustes transformation to all of the posterior samples to best align them with the point estimates of the

latent positions.

no covariate with covariate a

-2 -1 0 1 2 -2 -1 0 1 2

-2

-1

0

1

2

Latent Dimension 1 (Z·1)

L
at

en
t

D
im

en
si

on
2

(Z
·2

)

School ID

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Figure 4.5: The left panel depicts point estimates of the nodes’ latent positions in the one year, all schools
model. The right panel depicts point estimates of the nodes’ latent positions in the one year, all schools,
covariate a model. Both sets of point estimates are obtained via 2-dimensional multi-dimensional scaling on
the corresponding posterior expectation of the matrix of squared latent distances. In both plots, each node’s
shape/color combination is assigned according to the individuals’s school. Uncertainty contours of the latent
positions are depicted for three individuals at different schools (one from school 1, one from school 4, one
from school 14—the contours are colored according to school). Finally, the information-sharing relationships
are included as edges.

124

Figure 4.5 demonstrates that information-sharing tends to be mostly concentrated within schools. The

school information is unavailable in the no covariate model, but the LPM still manages to capture the

strength of this effect using the latent positions. Their estimated values effectively act as a proxy for the

held-out covariate information, clustering the individuals in space according to the schools at which they

work. The posterior expectation of γ2 for this model is thus quite small (a posterior expected value of

approximately 0.15) ensuring the link probability function decays rapidly to capture the rarity of edges

between clusters. With most nodes’ latent positions tending to be close to others within the same school,

the value of τ in this model effectively captures the rate of within-school ties—its posterior expected value

in the model is approximately 0.43. The few between-school ties that are present in the network determine

the relative positioning of the different school clusters in the posterior fit.

Explicitly including the school covariate a in the model leads to a much different fit of the latent positions.

Because the estimated value of τ directly captures the large disparity between the within-school edge density

and between-school edge density (τ has a posterior mean of 0.86 for within-school ties versus 0.01 for between-

school ties), the latent positions are free to capture any residual structure in the network. The corresponding

posterior shown in Figure 4.5 is diffuse and unstructured—the uncertainty contours for the three nodes covers

most of the nodes’ estimated latent positions. This suggests that the majority of the network’s structure is

captured by the covariate. Accordingly, the posterior expected value of γ2 in this setting is approximately

1.19—much larger than the no covariate setting—showing that the edge probabilities decay more gradually

with latent distance.

The superior performance of the FlyMC algorithm in the covariate a setting is due to its ability exploit the

sparsity (modeled by τ) between schools. The corresponding θ variables drastically downsample the number

of dyads involved in each likelihood and gradient calculation, speeding up computation. This illustrates that

FlyMC is especially useful when applied to dyads for which the value of τxij is expected to be small.

Shifting focus to the all years, all schools models, an inspection of their fits reveals that the models

with and without a differ in a similar way to the one year models. For the model without covariate a,

the posterior means of the τ variables are 0.27 (when the previous year is a non-edge) and 0.96 (when the

previous year is an edge). The posterior mean of γ2 is 0.18, reflecting the same tight separation of the latent

positions into within-school clusters. For model with covariate a, the posterior means of the τ variables are

0.01 (for a between-school dyads when the previous year is a non-edge), 0.74 (for a within-school dyad when

the previous year was a non-edge), 0.32 (for a between-school edge when the previous year was an edge),

and 0.86 (for a within-school edge when the previous year was an edge). Again, the τ variable captures

most of the structure in the network. The posterior mean of γ2 is 1.09. For both of these longitudinal

models, the particularly strong performance of the split HMC algorithms compared to Metropolis within

Gibbs can be attributed to two factors: the size of the network, and the extra structure imposed by the

temporal autocorrelation in latent positions. The joint gradient-informed update of all nodes in split HMC

125

is particularly well-suited to account for the autocorrelation in the prior, where the uninformed random walk

update of Metropolis within Gibbs is not.

Surprisingly, despite the small value of the between-schools τ for the model with covariate a, we do not

see much of a disparity between the performance of the standard and FlyMC implementations of split HMC

when fitting the all years, all schools, covariates a, b model. This is due partially to the slower mixing of the

τ variables in the FlyMC implementations than in the standard implementation—although they facilitate a

closed-form Gibbs update, the auxiliary θ variables can also lead to extra autocorrelation in the chains for τ

as they slowly evolve. Another contributor to the smaller disparity is a larger gap between tuned values of

ε. Our approach for tuning ε and L yielded ε = 0.31, L = 7 for the standard implementation, and ε = 0.14

and L = 15 for the FlyMC implementation. In the corresponding one year models, the gap was not as

large— ε = 0.22, L = 10 for the standard implementation compared to ε = 0.14 and L = 15 for the FlyMC

implementation.

4.5 Concluding Remarks

In this chapter, we proposed a new algorithm based on a split HMC for inferring the latent positions in

Gaussian LPMs, as well as strategies for updating the parameters of the link function (4.4). Moreover, we

described an auxiliary FlyMC algorithm for subsampling the non-edge dyads while keeping the Monte Carlo

algorithm exact. We conducted two empirical studies to investigate the performance of the split HMC and

split HMC + FlyMC approaches: one on synthetic data (Section 4.4.2) and one on real data concerning

information-sharing among teachers and staff (Section 4.4.3).

Our synthetic data study demonstrated that when split HMC and split HMC + FlyMC are tuned to have

an acceptance rate of around 0.8-0.85 (for T ≈ 2), these algorithms vastly outperform similarly well-tuned

competitors in the literature, especially for large networks. The competitors we considered included standard

algorithms such as Metropolis within Gibbs and elliptical slice sampling, as well as more sophisticated HMC

algorithms such as the NUTS and Stan that adaptively set T . Across the board, our implementations of split

HMC and split HMC + FlyMC outperformed all competitors, even the more sophisticated HMC algorithms.

Of the two new algorithms proposed in this chapter, standard split HMC seemed to be the better performer

for denser networks, as well as smaller sparse networks for which the link function parameters were poorly

identified. Split HMC + FlyMC performs best on large, sparse networks that contain sufficient information

to identify the link function parameters. Given these results, we would expect split HMC + FlyMC to

perform especially well in settings for which τ is very small, such as the sparse graphon version of GLPMs

(Borgs et al., 2014; Spencer and Shalizi, 2019).

At first, we were surprised by the extent to which the HMC integration time T at approximately 2

outperformed the adaptive strategies for setting T used in NUTS and Stan. Adaptive strategies have been

126

shown to outperform fixed integration strategies across a variety of models and perform at least comparably

for others (Hoffman and Gelman, 2014; Betancourt, 2016). However, the relatively poor performance of

these algorithms on LPMs is less surprising when one considers the criteria used by Stan and NUTS to

choose T . Both algorithms are configured to optimize the mixing of the latent positions. However, as we

discussed in Section 4.4.1, the latent positions themselves are under-identified in the posterior—the edge

probabilities or latent distances are more appropriate targets. This insight suggests a potential avenue of

future research—perhaps an adaptation of the NUTS criterion that optimizes the mixing of user-specified

functions of the parameters would be a worthwhile extension.

The real data studies involving covariates in Section 4.4.3 demonstrated FlyMC also performs well when τ

is allowed to vary by a categorical covariate, taking on small values for just some categories of the covariate.

Another potential avenue of future research would be to consider a hybrid of standard split HMC and

split HMC + FlyMC. FlyMC would be applied to a subset of the dyads, such as those possessing covariate

categories for which τ is expected to be small. This would for FlyMC to be exploited where it is most effective,

while limiting any potential mixing problems due to the introduction of additional auxiliary variables.

In Study 2, we also considered the application of our algorithm to fit Gaussian LPMs for longitudinal

networks. Of the variety of different ways to configure longitudinal LPMs (Kim et al., 2018), we used a

simple model structure that used a structured Gaussian prior to promote serial dependence of the nodes’

latent positions across time points, as well as covariates to promote persistent edges across time points.

For these models, our split HMC algorithm performed particularly well because gradient-informed proposals

naturally accommodate the extra structure in the prior. Therefore, we anticipate that our insights could

also be applied to achieve substantial computational gains in other more structured priors for LPMs, such

as latent cluster model (Krivitsky et al., 2009) or the multi-resolution network model Fosdick et al. (2018).

Recently, Turnbull (2020) explored the use of sequential Monte Carlo (Doucet and Johansen, 2009) for

Bayesian inference of longitudinal latent position models. They found that the scaling of the algorithm was

poor for large networks due to the computational complexity of evaluating the likelihood. These findings

suggest that a combination of their approach with the algorithms we present here could be fruitful.

Finally, it is worth briefly commenting on our motivation for focusing on the Gaussian link function

instead of the traditional logistic link function. When proposing the GLPM, Rastelli et al. (2016) argued

that the Gaussian LPM yields results that are analogous and comparable to those of the logistic LPM, whilst

providing interpretable link function parameters and making it easier to derive theoretical results. Since then,

Spencer and Shalizi (2019) proved consistent estimation results for the Gaussian link function—analogous

results under the logistic link function remain an open problem. In this chapter, we have demonstrated

additional benefits of the Gaussian link function over the logistic link function. The closed-form Gaussian

decomposition underlying our split HMC algorithm is not possible with a logistic link, and the FlyMC

strategy cannot be applied because it relies on a factorization of the sparsity parameter τ from the link

127

function. Moreover, the likelihood of the logistic link LPM is not differentiable when two nodes have the

same position, which complicates the application of HMC at all. For all of these reasons, we propose that

the Gaussian LPM would be a more suitable “default” choice of the link function—the logistic link should

only be used when its particular functional form is justified by the application.

4.6 Additional Details

4.6.1 Computational Details of Experiments

The implementations of all of the algorithms we used for the empirical studies in Section 4.4.2 and

Section 4.4.3 have been made public as part of the R package LatentPositionNetworks (Spencer, 2020).

The Metropolis within Gibbs algorithms use a multivariate uniform distribution over [zi − δ, zi + δ] as the

proposal distribution qδ, with δ tuned to target an acceptance rate within 20 and 30 percent. Similarly, the

value of ε for the split HMC algorithms was tuned to target an acceptance rate between 80 and 85 percent.

The tuned values of ε and δ for all of the configurations in Study 1 are available in Figure 4.6.3.

All experiments (except those involving Stan) were run using the Bridges High Performance Computing

System (Nystrom et al., 2015) at the Pittsburgh Supercomputing Center. The computing costs were

supported by XSEDE Integrated Advanced Digital Services (Towns et al., 2014). Because of a software

version incompatibility issue, we had to instead run the Stan experiments on a Hydra computing cluster

supported by the Department of Statistics and Data Science at Carnegie Mellon University. Timing tests

revealed that the Bridges supercomputer runs roughly 3.3 to 3.6 times slower than analogous runs on the

Hydra computing cluster. To facilitate direct comparisons between the Hydra and Bridges experiments, all

run times of the Stan algorithms were multiplied by a factor of 3.3 when determining the comparisons shown

in Figure 4.1. Version 2.18.2 of rstan was used to run the experiment, and coda version 0.19-2 was used

when calculating effective sample sizes.

4.6.2 Full Conditional Distributions

Sections 4.6.2 and 4.6.2 provide the details of thetargeted joint distribution as well as the relevant conditional

distributions and algorithmic steps for split HMC + FlyMC and standard split HMC, respectively.

128

Split HMC + FlyMC

The full joint distribution of all observed data and parameters for our split HMC + FlyMC strategy (after

applying the re-parametrization described in Section 4.3.3) can be decomposed as

p(A,U,Z, θ, τ, γ2 | x, a∗, b∗, α, β,Ω) = p(U |γ2, A,Ω)p(A | Z, θ, τ, γ2, x)p(Z | γ2,Ω) (4.46)

× p(θ | τ, x)p(τ | α, β)p(γ2 | a∗, b∗), (4.47)

where x ∈ [C]n×n denotes the observed covariates, a∗, b∗ ∈ R+ denote the hyperparameters for the inverse

gamma prior on γ2, α, β ∈ RC+ denote the hyperparameters for the beta prior(s) on τ , and Ω denotes the

prior covariance for the latent positions Z before the re-parametrization. The full expression for each of the

components in the decomposition is

p(A | Z, θ, τ, γ2, x) =

 ∏
{i,j}∈EA

τxij

 exp

(
−1

2

d∑
`=1

ZT·`LAZ·`

) ∏
θij=1
Aij=0

(
1− exp

(
−1

2
‖zi − zj‖2

))
(4.48)

p(Z | γ2,Ω) =
1

(2π)nd/2γnddet (Ω)
d

exp

(
− 1

2γ2

d∑
`=1

ZT·`Ω
−1Z·`

)
(4.49)

p(γ2 | a∗, b∗) =
ba∗∗

Γ(a∗)
(γ2)−a∗−1 exp

(
− b∗
γ2

)
(4.50)

p(θ | τ, x) =
∏
{i,j}∈A

τθijxij
(
1− τxij

)1−θij
(4.51)

p(τ | α, β) =

C∏
c=1

Γ(αc + βc)

Γ(αc)Γ(βc)
ταc−1
c (1− τc)βc−1

(4.52)

p(U |γ2, A,Ω) =
det
(

1
γ2 Ω−1 + LA

)d
(2π)nd/2

exp

(
−1

2

d∑
`=1

UT·`

(
1

γ2
Ω−1 + LA

)−1

U·`

)
(4.53)

where det(·) denotes the determinant of a matrix and Γ(·) denotes the Gamma function. To perform MCMC

on this distribution, we alternate through the following conditional updates

1. Use split HMC described in Section 4.3.1 to update (Z,U) according to the conditional posterior

density p(U,Z | A, θ, γ2,Ω) defined by

p(U,Z | A, θ, γ2,Ω) ∝ exp

(
−1

2

d∑
`=1

ZT·`

(
1

γ2
Ω−1 + LA

)
Z·` + UT·`

(
1

γ2
Ω−1 + LA

)−1

U·`

)
(4.54)

×
∏
θij=1
Aij=0

(
1− exp

(
−1

2
‖zi − zj‖2

))
(4.55)

129

Note that in this case, the mass matrix for HMC is given by

M =

(
1

γ2
Ω−1 + LA

)
(4.56)

which amounts to having it adaptively updated according to γ2.

2. Apply the Metropolis-Hastings strategy described in Section 4.3.2 to update each of θij for which

Aij = 0 according to the conditional posterior density p(θ | τ, x) defined by

p(θij = 0 | Aij = 0, τxij) =
1− τxij

1− τxij exp
(
− 1

2‖zi − zj‖2
) . (4.57)

Recall that because p(θij = 0 | Aij = 1, τxij) = 0, the θij for which Aij = 1 need not be updated—they

are known to be fixed at one.

3. Apply the Gibbs updates described in Section 4.3.3 to update each entry in τ according to the beta

conditional posterior densities

p(τc|θ, αc, βc) =
Γ(αc + βc + Θ0

c + Θ1
c)

Γ(αc + Θ0
c)Γ(βc + Θ1

c)
τ
αc+Θ1

c−1
c (1− τc)βc+Θ0

c−1
(4.58)

where Θc
0 and Θc

1 are defined as in (4.34) and (4.35), reproduced below for easy access.

Θ0
c = |

{
{i, j} ∈ [n]2 : θij = 1 and xij = c

}
|

Θ1
c = |

{
{i, j} ∈ [n]2 : θij = 0 and xij = c

}
|.

4. Apply the Gibbs update described in Section 4.3.3 to update γ2 according to the inverse gamma

conditional density

p(γ2|a∗, b∗, Z,Ω) =

(
b∗ + 1

2

∑d
`=1 Z

T
·`Ω
−1Z·`

)a∗+nd
2

Γ(a∗ + nd
2) (γ2)

a∗+
nd
2 +1

exp

−
(
b∗ + 1

2

∑d
`=1 Z

T
·`Ω
−1Z·`

)
γ2

. (4.59)

Note that this expression above arises only after marginalizing the momentum variables U . Typically,

after such a marginal update in MCMC, the U parameter would need to be updated according to its

conditional distribution. In practice, this is not necessary, as U is not one of the target parameters

(moreover, the Gibbs update is immediately applied again in the following Step 1).

130

Split HMC

The full joint distribution of all observed data and parameters for our split HMC strategy (after applying

the re-parametrization described in Section 4.3.3) can be decomposed as

p(A,U,Z, τ, γ2 | x, a∗, b∗, α, β,Ω) = p(U |γ2, A,Ω)p(A | Z, τ, γ2, x)p(Z | γ2,Ω) (4.60)

× p(τ | α, β)p(γ2 | a, b), (4.61)

where x ∈ [C]n×n denotes the observed covariates, a∗, b∗ ∈ R+ denote the hyperparameters for the inverse

gamma prior on γ2, α, β ∈ RC+ denote the hyperparameters for the beta prior(s) on τ , and Ω denotes the

prior covariance for the latent positions Z before the re-parametrization. The full expression for each of the

components in the decomposition is

p(A | Z, τ, γ2, x) =

 ∏
{i,j}∈EA

τxij

 exp

(
−1

2

d∑
`=1

ZT·`LAZ·`

) ∏
{i,j}/∈EA

(
1− τxij exp

(
−1

2
‖zi − zj‖2

))
(4.62)

p(Z | γ2,Ω) =
1

(2π)nd/2γnddet (Ω)
d

exp

(
− 1

2γ2

d∑
`=1

ZT·`Ω
−1Z·`

)
(4.63)

p(γ2 | a∗, b∗) =
ba∗∗

Γ(a∗)
(γ2)−a∗−1 exp

(
− b∗
γ2

)
(4.64)

p(τ | α, β) =

C∏
c=1

Γ(αc + βc)

Γ(αc)Γ(βc)
ταc−1
c (1− τc)βc−1

(4.65)

p(U |γ2, A,Ω) =
det
(

1
γ2 Ω−1 + LA

)d
(2π)nd/2

exp

(
−1

2

d∑
`=1

UT·`

(
1

γ2
Ω−1 + LA

)−1

U·`

)
(4.66)

where det(·) denotes the determinant of a matrix and Γ(·) denotes the Gamma function. To perform MCMC

on this distribution, we alternate through the following conditional updates

1. Use split HMC described in Section 4.3.1 to update (Z,U) according to the conditional posterior

density p(U,Z | A, γ2,Ω) defined by

p(U,Z | A, γ2,Ω) ∝ exp

(
−1

2

d∑
`=1

ZT·`

(
1

γ2
Ω−1 + LA

)
Z·` + UT·`

(
1

γ2
Ω−1 + LA

)−1

U·`

)
(4.67)

×
∏

{i,j}/∈EA

(
1− τxij exp

(
−1

2
‖zi − zj‖2

))
(4.68)

131

Note that in this case, the mass matrix for HMC is given by

M =

(
1

γ2
Ω−1 + LA

)
(4.69)

which amounts to having it adaptively updated according to γ2.

2. Apply a random walk Metropolis to update each entry in τ using its posterior conditional distribution

p(τc | A, xij , αc, βc) ∝ τ
αc+ζ

1
c−1

c (1− τc)βc−1
∏
xij=c
Aij=0

(
1− τxij exp

(
−1

2
‖zi − zj‖2

))
(4.70)

where ζ1
c is defined as

ζ1
c = |

{
{i, j} ∈ [n]2 : Aij = 1 and xij = c

}
|.

We recommend updating each entry individually, using a uniform proposal centered at its current value

with step-size tuned to obtain an acceptance rate within 20 and 30 percent. This is the strategy we

used throughout the chapter.

3. Apply the Gibbs update described in Section 4.3.3 to update γ2 according to the inverse gamma

conditional density

p(γ2|a∗, b∗, Z,Ω) =

(
b∗ + 1

2

∑d
`=1 Z

T
·`Ω
−1Z·`

)a∗+nd
2

Γ(a∗ + nd
2) (γ2)

a∗+
nd
2 +1

exp

−
(
b∗ + 1

2

∑d
`=1 Z

T
·`Ω
−1Z·`

)
γ2

. (4.71)

Note that this expression above arises only after marginalizing the momentum variables U . Typically,

after such a marginal update in MCMC, the U parameter would need to be updated according to its

conditional distribution. In practice, this is not necessary, as U is not one of the target parameters

(moreover, the Gibbs update is immediately applied again in the following Step 1).

4.6.3 Additional Figures and Tables

132

τ = 0.8, γ2 = 0.2 τ = 0.8, γ2 = 1.0

τ = 0.2, γ2 = 0.2 τ = 0.2, γ2 = 1.0

50 100 200 500 50 100 200 500

0.0

0.5

1.0

1.5

2.0

2.5

0.0

0.5

1.0

1.5

2.0

2.5

Number of Nodes

S
te

p
S
iz

e
(ε

or
δ)

Metropolis
within Gibbs

Metropolis within
Gibbs + FlyMC

split HMC
split HMC
+ FlyMC

Figure 4.6: Four panels depicting the tuned step size parameters used for Metropolis within Gibbs,
Metropolis within Gibbs + FlyMC, split HMC, and split HMC + FlyMC algorithms used to fit the 16
different networks considered in Study 1 (Section 4.4.2). Each panel displays the step size parameter (δ for
Metropolis methods and ε for HMC methods) used for the 50, 100, 200, and 500 node networks generated
using the parameter values featured in the panel heading. Point color, point shape, line color, and line shape
are used to distinguish between the four algorithms.

133

τ = 0.8, γ2 = 0.2 τ = 0.8, γ2 = 1.0

τ = 0.2, γ2 = 0.2 τ = 0.2, γ2 = 1.0

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0
1
2
3
4
5

0
1
2
3
4
5

Posterior Draws τ

Po
st

er
io

r
D

ra
w

s
γ
2

posterior 50 nodes 100 nodes 200 nodes 500 nodes true values

Figure 4.7: Four panels depicting the marginal joint posterior of τ and γ2 for the 16 different networks
considered in Study 1 (Section 4.4.2). Each panel displays draws from the joint posterior for the 50, 100,
200, and 500 node networks generated using the parameter values featured in the panel heading. The draws
for the networks of different sizes are differentiated by color, with a black point used to indicate the true
value of τ and γ2 used to generate each synthetic network.

134

Chapter 5

Bayesian Inference for Neural Spike

Train Models via the Spike and Slab

Zigzag Process

135

5.1 Introduction

Brains contain networks of interconnected neurons transmitting information simultaneously in short bursts of

electrical activity called spikes (Rieke et al., 1999; Kass et al., 2018). A spike train (Brown et al., 2004; Kass

et al., 2018) is a sequence of times at which a neuron is recorded spiking. Historically, spike train recordings

monitored just a few neurons at once (Brillinger, 1992; Kass et al., 2018), but current technologies can now

record thousands of neurons across multiple brain areas (e.g. Jun et al. (2017)). The breadth of this new

data represents an unprecedented opportunity for understanding the brain’s function and structure.

Developing and fitting statistical models to such massive neural data presents several new computational

and methodological challenges. In particular, standard multivariate spike models based on generalized linear

models (GLMs (Truccolo et al., 2005; Kass et al., 2018)) are challenging to fit because each neuron’s spiking

is modeled as depending on the spike history of all other recorded neurons; the number of coefficients to

estimate increases quadratically in the number of neurons being recorded. This large number of coefficients

often leads to a high degree of uncertainty in their fitted values, especially for those corresponding to neurons

that rarely spike.

For this reason, Bayesian inference is an especially useful framework for fitting spike train GLMs because

it provides an intuitive way to quantify uncertainty in model fits. It also allows for additional structure to be

promoted in the model coefficients through hierarchical and/or sparsity promoting priors (e.g. Linderman

et al. (2016); Vinci et al. (2018); Wu et al. (2019)) that reduce the effective dimension of the parameter

space.

Despite these advantages, fully Bayesian inference is notorious for being computationally intensive to

perform. The GLMs used for spike train models are typically non-conjugate, so the corresponding posterior

expectations are typically computed using Markov chain Monte Carlo (MCMC (Geyer, 1992; Kass et al.,

1998)). Unfortunately, popular generic MCMC algorithms such as Metropolis within Gibbs are known to

scale poorly with both the dimension of the model and the number of data points (Beskos and Stuart, 2009).

This poor scaling has necessitated the development of alternative computational approaches for fitting large

GLMs. These alternatives take one of two forms: specialized MCMC algorithms that exploit the structure

of the particular problem to drastically improve the computational efficiency of the sampling procedure (e.g.

Neal (2011), Polson et al. (2013), Bouchard-Côté et al. (2018), Nishimura and Suchard (2018), Hahn et al.

(2019), Sen et al. (2019)), or approximate algorithms that modify/approximate some aspect of the problem

to make it more tractable (e.g. Ramirez and Paninski (2014), Barber et al. (2016), Huggins et al. (2017), Blei

et al. (2017), Bardenet et al. (2017), Campbell and Broderick (2018), Zoltowski and Pillow (2018), Trippe

et al. (2019)).

Though the latter approximation-based algorithms are often far more computationally efficient than the

former MCMC algorithms, they typically lack the suite of theoretical guarantees and diagnostic tools that

136

accompany MCMC. As a result, these “shortcut” algorithms may yield unreliable results due to inaccurate

approximations. To make matters worse, most shortcut methods lack formal diagnostic tests, meaning it

can be impossible to judge their accuracy without running the expensive inference procedure that was being

avoided in the first place. Some exceptions exist for certain cases (e.g. Yao et al. (2018) and Huggins et al.

(2019) for forms variational inference), but as a general rule, shortcut algorithms must be applied with

caution—especially in high-dimensions.

For this reason, the focus of this chapter is to develop a specialized MCMC algorithm that is especially

well-suited for doing posterior computation of high-dimensional multivariate spike train GLMs. The

workhorse of our algorithm is the zigzag process, a recent advance in the realm of non-reversible continuous

time Markov chains (Bierkens et al., 2019a) that can efficiently fit massive logistic regressions. Building on

the exact data subsampling tricks recently proposed in Sen et al. (2019), we develop a method for simulating

the zigzag process that explicitly exploits the sparsity and structure of the design matrix, coefficient vector,

and response vector for spike train GLMs. Moreover, we promote sparsity in the coefficient vector through a

spike-slab-prior (Mitchell and Beauchamp, 1988) consisting of a point mass at zero and Laplace distribution

for each coefficient. We introduce a new parametrization that accommodates the mixture of discrete and

continuous components in the posterior, allowing our zigzag process to seamlessly move through the mixed

distribution without the need for discrete auxiliary variables.

The remainder of this article is organized as follows. Section 5.2 provides background and notation

on logistic regression models for spike trains, as well as a general statement of and background on the

zigzag process. Section 5.3 outlines our implementation of the zigzag process that is specifically designed

to exploit the properties of neural spike train GLMs, as well as the special spike-and-slab prior structure

we have developed to obtain sparsity in the regression coefficients. Section 5.4 analyzes the efficiency of

our algorithm and outlines a series of synthetic experiments to demonstrate the scenarios in it outperforms

the spike-and-slab Polya-Gamma augmentation algorithm of Linderman et al. (2016). Finally, Section 5.5

contains some concluding remarks.

5.2 Background

We consider the problem of modeling the spiking behavior (i.e. spike trains) of an ensemble of N neurons

that are being recorded simultaneously. Figure 5.1(a) provides an example of such data following N = 5

neurons for 1500 milliseconds. Because neural spikes are instantaneous events whose frequencies and times are

known to vary stochastically, spiking behavior is typically modeled as following a multivariate point process

(Truccolo et al., 2005). Specifically, each neuron’s instantaneous spiking rate is modeled as depending on its

own spiking history (e.g. to allow for a refractory period), the spiking history of other neurons (e.g. neurons

may excite or inhibit each other), and any extrinsic covariates (e.g. a stimulus that may prompt the neuron

137

to spike). In practice, fitting a point process model that accounts for the relationship between instantaneous

spiking rates, spike histories, and covariates can be framed as a logistic regression task.

1

2

3

4

5

0 500 1000

Time in milliseconds

n
eu

ro
n

(a)

1

2

3

4

5

0 50 100 150

Time in milliseconds

n
eu

ro
n

no spike

spike

(b)

Figure 5.1: (a) depicts all recorded spike times for five neurons—labeled 1 through 5—over a 1500
millisecond time interval. Vertical bars are used to show the time of each spike. (b) depicts the spike
counts binned at 2 millisecond intervals for the first 150 milliseconds of the same spike trains shown in
(a). For each neuron, a bin is colored black if a spike occurs in its interval, white otherwise. Dotted lines
delineating the first 150 milliseconds are shown in both (a) and (b) to facilitate comparison.

5.2.1 Notation

The following notation will be used throughout the chapter. We use R to denote the set of real numbers, R+

to denote the set of non-negative real numbers, N to denote the set of natural numbers, and [n] to denote

the set {1, . . . , n} of natural numbers less than or equal to n. For a set S, we use Sd to denote the collection

of all d-length vectors with entries from S and Sn×d to denote collection of possible n × d matrices with

entries from S. For two sets S1, S2, S1 × S2 denotes their Cartesian product.

138

For a vector z ∈ Rd, zi denotes its ith entry and ‖z‖ denote its Euclidean norm. For a matrix B ∈ Rn×d,

Bi· denotes its ith row, B·i denotes its ith column, Bij denote its (i, j)th entry, BT ∈ Rd×n denotes its

transpose, ‖B‖ denotes its Frobenius norm, ‖B‖1 denotes its `1 norm, and B−1 denotes its inverse.

5.2.2 Spike Trains as Logistic Regression

To frame the modeling of multivariate spike trains as a logistic regression task, we follow Truccolo et al. (2005)

and summarize each neuron’s spiking behavior using the spike counts within discrete time bins. Specifically,

we separate the duration of an experiment trial into T ∈ N separate bins of equal width, then count the

number of times each neuron spikes in each bin. Assuming our data come from an experiment consisting of

K separate trials of equal duration, our entire spiking dataset can thus be summarized as a a 3-dimensional

array Y , where Y kn,t denotes the spike count for neuron n ∈ [N] in time bin t ∈ [T] for trial k ∈ [K]. After

discretization, modeling the instantaneous spiking rate of a neuron reduces to modeling the spiking behavior

within each bin, conditional on the ensemble spiking history and any covariate information.

We consider the spike train generalized linear model as popularized by (Truccolo et al., 2005). In this

model, the expected spike count E(Y kn,t) of neuron n at time bin t of trial k is modeled as a nonlinear function

(we will use the logistic function) of the instantaneous rate ψkn,t defined according to

ψkn,t = bkn,t +

N∑
u=1

∆=tmax∑
∆=1

F∑
f=1

βfun · Y ku,t−∆ · gf (∆) . (5.1)

Here, bkn,t ∈ R captures the neuron’s baseline rate across the trial (potentially varying across k and t),

g1(t), . . . , gF (t) are basis functions modeling the time delayed coupling of activity between neurons (e.g.

splines (Kass and Ventura, 2001), Laguerre bases (Song et al., 2013), exponential functions (Linderman

et al., 2016), or raised cosine bumps (Pillow et al., 2008)), tmax is the maximum time delay at which the

model allows coupling to occur, and βfun models the sign and magnitude of basis function f for the time-

delayed coupling between neurons u ∈ [N] and n ∈ [N]. For our purposes, we assume the basis functions

g1, . . . gF are non-negative, upper bounded by 1 on the interval [0, tmax], and 0 elsewhere. Many basis

functions satisfy these criteria—in Section 5.4, we use the raised cosine bumps of Pillow et al. (2008).

By choosing the value of T to be sufficiently large (i.e. making the bins sufficiently small), we can ensure

each neuron spikes at most once within each time bin. Thus, Y k ∈ {0, 1}N×T for all k ∈ [K]. Figure 5.1(b)

illustrates the binned representation of the first 150 milliseconds of the spike trains shown in Figure 5.1(a).

This set-up facilitates the modeling of Y using logistic regression—the 0–1 encoded spiking behavior plays the

role of the response variable, with past spiking and covariate information playing the role of the predictors.

Before delving into the details of how to frame (5.1) as a logistic regression for binary response Y ,

it is worth briefly commenting on other possible GLM set-ups—namely Poisson regression and negative

139

binomial regression—that also fall within the Truccolo et al. (2005) framework. Unlike logistic regression,

these regression models assign positive probability to all natural number-valued responses, allowing for any

number of spikes to occur in any given time bin. These models can thus accommodate coarser discretizations

of the response Y , and correspondingly smaller values of T . Depending on the inference algorithm being

used, coarsening the discretization can provide considerable computational advantages—the corresponding

reduction in the number of observations will speed up Bayesian inference drastically. However, these

computational gains come at the cost of leaving the model insensitive to small time scales; an overly coarse

discretization will not capture fine-structure such as the refractory period of a neuron. We thus recommend

discretizing Y into a binary response to promote adequate sensitivity of the model.

Once the discretization of Y is fine enough to ensure the probability of more than one spike occurring in

a given bin is negligible, both Poisson regression and negative binomial regression are effectively modeling

Bernoulli responses. Therefore, any difference between the Poisson, negative binomial, and logistic model

fits will come down to subtleties of the nonlinearity in the link function being used. In this work, we have

chosen to focus on the case of logistic regression because it ultimately leads to a posterior distribution that

admits a log-density with a globally bounded gradient, thus facilitating the fast posterior inference strategy

via the zigzag process we outline in Section 5.3. In Section 5.5, we briefly comment on how to choose link

function for Poisson regression and negative binomial regression to also obtain a globally bounded gradient.

We can now proceed with the specifics of spike train logistic regression. To streamline our exposition, we

make two simplifications. We assume a fixed intercept term bn for each neuron n ∈ [N] that is independent

of the trial number k and the time. That is, we parametrize the model as bkn,t = bn for all k ∈ [K], t ∈ [T],

ignoring the presence of extrinsic covariates, non-stationarity within a trial, or trial-specific effects. Note

that the methods we present here are equally applicable for time-varying and trial-varying baselines, they

just require extra bookkeeping and additional coefficients. Moreover, we focus on the case of K = 1 (a

single trial), dropping the k superscript from Y and ψ to make the notation cleaner. Our approach extends

immediately to multiple trials by simply stacking the design matrices and response vectors for all trials into

a single dataset.

Using the notation in (5.1), our logistic regression model for the random matrix Y {0, 1}N×T takes the

form:

Yn,t | ψn,t ∼iid Bernoulli((1 + eψn,t)−1). (5.2)

At first glance, it may be unclear how the above expression corresponds to logistic regression. After all, ψn,t

in (5.1) depends on Y , the response variable. How can Y depend on itself in logistic regression? And where

is the familiar design matrix X?

140

The key to answering these questions lies in recognizing that ψn,t depends only on those Yn,t−∆ for which

∆ ≥ 1. That is, each neuron’s current spiking behavior is modeled as depending on the past spiking behavior

of all recorded neurons. This is akin to how serial dependence is modeled in vector autoregressive time series

models (Hamilton and Press, 1994)—past observations serve as covariates for future observations, allowing

for standard vector autoregressive models to be fit as straightforward linear regressions. Analogously, fitting

our spike train model can be framed as fitting as a logistic regression model. The past spiking behavior of

the neurons, combined with the basis functions g1, . . . , gF , are used to construct the design matrix X as

follows.

For a given set of basis function g1, . . . gF , we can construct lower triangular matrices G1, . . . , GF ∈

[0, 1]T×T according to Gfij = gf (i− j). Now,

Yn,t | Xt, bn, β
∗
·n ∼iid Bernoulli((1 + ebn+Xt·β

∗
·n)−1) (5.3)

where β∗·n ∈ RNF denotes the vector concatenation

β∗·n =
(
β1
·n, β

2
·n, . . . , β

F
·n
)
, (5.4)

and the design matrix X ∈ [0, 1]T×NF is defined according to

X =
[
G1Y T G2Y T · · · GFY T

]
. (5.5)

As such, modeling Y amounts to fitting N distinct logistic regressions—one for the activity Yn· of each

neuron. Note that because the design matrices X for each neuron are derived from the same spiking history

Y , all of these regressions use an identical∗ design matrix X as defined in (5.5) . If one were only interested

in doing inference via maximum likelihood estimation, fitting the model would thus reduce to N separate

logistic regressions. Each could be optimized via iteratively re-weighted least squares in parallel.

However, recall from Section 5.1 that N may be very large—representing hundreds or even thousands

of neurons, and the corresponding logistic regressions are thus very high-dimensional with a high degree of

uncertainty. For this reason, we use Bayesian inference to both quantify this uncertainty in the estimator and

promote additional structure in the coefficients (e.g. sparsity and network dependence). Doing so requires

summarizing the full the posterior distribution of regression coefficients β, which is a very computationally

intensive task for each regression when or N or T is large. Moreover, hierarchical priors that promote

structure (e.g. Linderman et al. (2016); Vinci et al. (2018); Wu et al. (2019)) in the regression coefficients

∗Note that if any neuron-specific effects or extrinsic covariates are appended to X, the design matrices will no longer be
identical across all N regressions.

141

can induce dependence between the N separate regressions, further increasing the computational burden by

requiring that the uncertainty in the coefficients of the N regressions be quantified simultaneously.

We are therefore motivated to develop as efficient and scalable an algorithm as possible for computing

the posterior distribution of the regression coefficients β. In particular, we are interested in scaling to

the case where the number of neurons N , and therefore the number of coefficients in the each logistic

regression, is very large. For this task, we rely on the zigzag process (Bierkens et al., 2019a), a new family of

posterior sampling algorithms that are known to perform particularly well for efficiently computing posterior

distributions associated with logistic regression.

5.2.3 The Zigzag Process

In this section, we describe the key details of the zigzag processes for Bayesian computation. We begin

with a brief non-technical overview of what zigzag processes are and what sorts of problems they are good

at solving. This is followed by a more detailed explanation of how their implementations work. We use a

notation that emphasizes our application to logistic regression on spike trains in Section 5.3. For additional

discussion of the zigzag process for logistic regression, we recommend Bierkens et al. (2019a) and Sen et al.

(2019).

Zigzag processes (Bierkens et al., 2019a) are a recently proposed family of continuous time Markov

processes designed to target a desired distribution as their stationary measure. As depicted in Figure 5.2, a

zigzag process explores the distribution using a continuous path of piece-wise linear segments, each segment

ending by reversing direction along a dimension. These reversals—which we refer to as bounces—occur

stochastically according a carefully defined inhomogeneous Poisson process. This ensures the path is likely

to stay in regions of high probability. Simulating a zigzag process trajectory is thus a powerful tool for

computing a posterior distribution in Bayesian inference (Bierkens and Duncan, 2017; Bierkens et al., 2019b).

Typically, the main computational bottleneck of simulating a zigzag process is generating the bounce

times. For this reason, zigzag processes tend to be especially well-suited for exploring log densities that

decompose into summands with bounded gradients—these are properties that allow for fast bounce time

generation via Poisson thinning and superposition (Kingman, 1992). Zigzag processes have thus been shown

to outperform traditional posterior computation algorithms on variety of relevant statistical problems (e.g.

Bierkens et al. (2020b); Koskela (2020)) with high-dimensional logistic regression standing out as an especially

effective example (Bierkens et al., 2019a; Sen et al., 2019; Sachs et al., 2020). In Section 5.3, we continue

this tradition by developing a technique for especially fast bounce time simulation for spike train logistic

regression.

Let us now delve into the specifics of the zigzag process. Let β ∈ Rd denote a continuous random

variable with a differentiable probability density denoted π(β). A zigzag process targeting π(β) consists of

142

two components: a position variable β(τ) ∈ Rd and a velocity variable θ(τ) ∈ {−1, 1}d. Here, τ denotes

the artificial† time index along which the zigzag process trajectory evolves. Specifically, {β(τ), θ(τ)}τ>0

defines a continuous time Markov process with the position variable β(τ) moving through Rd in a series of

linear trajectories, its velocity dictated by θ(τ). Each entry in θ(τ) occasionally swaps its sign as a random

state-dependent event, thus causing β(τ) to reverse its direction along that coordinate. These stochastic

sign-swapping events are the “bounces”.

The following notation is useful for describing a bounce. For i ∈ [d], let Si : {−1, 1}d → {−1, 1}d denote

a function that swaps the sign of the ith coordinate. That is, for all θ ∈ {−1, 1}d and i, j ∈ [d], define

(Si(θ))j =

θj if i 6= j

−θj if i = j

(5.6)

The evolution of a zigzag process trajectory thus consists of two types of updates:

1. The deterministic linear updates of the positions β(τ) according to the velocity θ(τ), and

2. The stochastic bounce updates that occasionally swaps the sign of an entry in velocity θ(τ).

Figure 5.2 illustrates a short example trajectory for a two dimensional zigzag process. Here, the position

variables β(τ) evolve piece-wise linearly in τ for a stochastic amount of time until a bounce occurs. When a

bounce occurs, the trajectory of β(τ) reverses direction along the bounce dimension with the trajectory along

the other dimensions remains unchanged. That is, θ(τ)→ Si(θ(τ)) where i denotes the bounce dimension.

-1.00

-0.75

-0.50

-0.25

0.00

0.25

-2 -1 0

β1

β
2

Figure 5.2: An illustration of the piece-wise linear trajectory of a zigzag process with a two-dimensional
position variable β. Arrowheads indicate the direction of each piece-wise linear component as it progresses
along with τ .

To ensure that a zigzag process targets the appropriate stationary distribution π(β), the bounce rates

must steer the trajectory towards regions of high probability. Doing so requires that zigzag bounce rate

†The index τ represents how long the chain is being run, serving as the continuous analog of the number of draws in
traditional discrete time Markov chain Monte Carlo.

143

be a function of its current state (i.e. position β(τ) and velocity θ(τ)) of the process. Accordingly, we use

λ(β, θ) : Rd ×{−1, 1}d → [0,∞)d to denote the vector of instantaneous bounce rates, with λi(β, θ) denoting

the bounce rate for the ith coordinate. Bierkens and Duncan (2017) and Bierkens et al. (2019b) showed that

for probability densities π(β) that are strictly positive and continuously differentiable, the zigzag process

will be ergodic with respect to π if and only if λ(β, θ) satisfies a condition involving the local gradient of the

log posterior. Soon, we will get into the details of how to define such a λ(β, θ) in (5.11). For concreteness,

we first outline how to simulate a zigzag process for a given λ(β, θ).

Recall that the velocity θ(τ) remains fixed between bounces, so β(τ)’s trajectory evolves deterministically

according to θ(τ). An entire zigzag trajectory {β(τ), θ(τ)}τ>0 can thus be reconstructed from just its initial

starting point (β(0), θ(0)) ∈ Rd × {−1, 1}d, its bounce times (τj ∈ R+)j=1,..., and the states (β(τj), θ(τj))

immediately following each bounce. The remainder of the trajectory is a simple linear interpolation of these

“skeleton points”.

When simulating a zigzag process, we need only concentrate on generating these skeleton points. The

following steps determine the time τj+1 and state (β(τj+1), θ(τj+1)) of the next bounce, given the current

state (β(τj), θ(τj)) and time τj :

• For each i ∈ [d], generate a bounce time ti distributed according to

P(ti > τ) = exp

(
−
∫ τ

τj

λi(β(τj) + θ(τj)(s− τj), θ(τj))ds

)
(5.7)

• Determine the coordinate i0 = argmini∈[d](ti) that bounces first.

• The state (β(τj+1), θ(τj+1)) and time τj+1 of the next bounce are:

τj+1 = ti0 , (5.8)

β(τj+1) = β(τj) + θ(τj+1)(τj+1 − τj), and (5.9)

θ(τj+1) = Si0(θ(τj)) (5.10)

Repeatedly iterating this process J times effectively simulates a zigzag trajectory with duration
∑J
j=1 τj .

Rather than simulate the process for a pre-specified number of bounces, we choose to simulate for a pre-

specified duration, then thin it into a discrete Markov chain by determining its state across a set of equally

spaced times T (e.g. T = {ωi : i ∈ [1000]} for some ω ∈ R+). This approach is analogous to the traditional,

well-studied case of running a Markov chain Monte Carlo algorithm for a pre-specified number of iterations.

We can thus use the existing sweet of tools for discrete time Markov chains when examining the results of

the empirical studies in Section 5.4.

144

Notice that the only non-trivial step of simulating a zigzag process is the generation of the bounce

times for each coordinate. As such, bounce time generation represents the sole computational bottleneck

of simulating a zigzag trajectory. In Section 5.3.3, we describe an efficient strategy for generating bounce

times for the logistic regression spike train model. Before presenting this strategy, however, we first define

the bounce rate λ in a way that ensures π(β) is targeted. The following is a summarization of the results of

Bierkens et al. (2019a) to that effect.

Under regularity conditions‡, a zigzag process with bounce rate λ(β, θ) targets the density π(β) if and

only if

λi(β, θ) =

[
−θi

∂ log(π(β))

∂βi

]
+

+ γi(β, θ) (5.11)

where the function γ : Rd × {−1, 1}d → [0,∞) is defined such that γi(β, θ) = γi(β, Si(θ)) for all β,∈ Rd,

θ ∈ {−1, 1}d, and i ∈ [d], and [x]+ = max(0, x) denotes a function that returns x if x is positive, 0 otherwise.

The expression (5.11) demonstrates that, in order to target a desired density, the instantaneous bounce

rate of the zigzag process must be closely tied to the gradient of the logarithm that density—the additional

summand γ providing some flexibility. Given that zigzag processes with higher bounce rates tend to explore

the posterior distributions less efficiently (Bierkens et al., 2019a), the theoretically optimal choice for λ would

thus be to minimize the effective bounce rate by setting γ(β, θ) = 0 for all (β, θ). In practice, choosing an

appropriate λ is not so clear cut. Because generating bounce times is the sole computational bottleneck of

simulating a zigzag process, the computational efficiency of a zigzag process relies heavily on how rapidly

the bounce times for each coordinate can be generated. It can thus be preferable to choose a bounce rate λ

that corresponds to a nonzero value of γ, provided that is amenable to fast simulation of bounce times.

For non-trivial bounce rates (i.e. those for which the inverse cdf method (Devroye, 1986) is impractical), a

common approach to generating the bounce times (τi)i∈[d] is to think of them as point processes. Specifically,

we can recognize that zigzag bounce times as defined in (5.7) are essentially first arrival times of temporal

Poisson processes with rates λ′i(s) = λi(β(τj) + θ(τj)(s − τj), θ(τj)). Framing the problem this way opens

the door to leverage known techniques for generating Poisson processes such as super-position and thinning

(Kingman, 1992), thus allowing for the generation of bounce times without necessarily having to calculate

the full gradient of the posterior distribution (Bouchard-Côté et al., 2018; Bierkens et al., 2019a). Section 5.3

now describes such an approach specialized for neural spike train regression.

‡The statement of this result in Bierkens et al. (2019a) supposes that log(π(β)) is a continuously differentiable function. In
Section 5.3, we rely on a slightly more general formulation that allows for log(p(β)) to piece-wise differentiable, provided that is
continuous everywhere. Justification to support this generalization is provided in the proof of Proposition 1 in Koskela (2020).

145

5.3 A Zigzag Process for Neural Spike Trains

Having established the necessary background info regarding both spike train logistic regressions and zigzag

processes, we can outline our new framework for efficient posterior computation of spike train logistic

regressions via the zigzag process. The novelty of our approach stems from two main contributions.

First, we carefully design the zigzag bounce rates λ such that we can exploit the imbalance in the response

Y and structured sparsity in the design matrix X to efficiently simulate the bounce times via Poisson thinning

and superposition. Our approach is an extension of the approach proposed in Sen et al. (2019), specialized

to leverage some additional structure in spike train logistic regressions. We separate our description into two

separate parts: our definition of the bounce rate λ is defined in Section 5.3.1, and our strategy for simulating

these bounce rates is outlined in Section 5.3.3.

Second, we describe a strategy with which the zigzag process can be efficiently combined with a spike-and-

slab prior to promote sparsity the regression coefficients β. This approach leads to more efficient posterior

inference whilst simultaneously encoding prior information that the coupling network of neurons within

and across regions of the brain is typically sparse. We efficiently accommodate a spike-and-slab prior in a

zigzag process—without introducing additional discrete variables—through a novel parametrization of the

spike-and-slab prior that suggests a variant of the Poisson process. It amounts to temporarily changing the

velocity θi(τ) to 0—temporarily halting its trajectory—for a pre-specified amount of time each time βi(τ)

crosses the origin. We outlined this approach in Section 5.3.3.

5.3.1 Defining the Zigzag Bounce Rate

In Section 5.2.3, we described how a zigzag process with bounce rate λ will target a distribution π(β)

provided that condition (5.11) holds. Here, we define a specific bounce rate λ that satisfies (5.11) to target

the posterior associated with the spike train regression framework outlined in Section 5.2.2. Our particular

choice is made to promote efficient bounce time simulation.

Recall that Bayesian inference for the modeling task outlined in Section 5.2.2 requires computing the

posterior distribution of N sets of regression coefficients—a separate logistic regression for each neuron being

recorded. However, if the prior distribution on β assumes independence between regression coefficients for the

spiking of distinct neurons, these N tasks can be carried out independently of each other. Going forward, we

assume a prior distribution on β that satisfies this independence criterion. We can thus focus our exposition

on the problem of fitting a single linear regression, understanding that this same procedure applies to all N

regressions. We defer our remarks on how this approach can be extended to allow dependency in the prior

on β to Section 5.5.

Now having reduced our problem to computing the posterior associated with a single regression task, we

can further simplify the notation introduced in Section 5.2.2. Without loss of generality, we focus on the

146

logistic regression associated with spiking of neuron n = 1. We let Y ∈ {0, 1}N denote corresponding the

response variable in the logistic regression (originally denoted Y1· in Section 5.2.2), β ∈ RNF+1 denote the

coefficient vector defined in(5.4) concatenated with the intercept term b1, and X ∈ [0, 1]T×(NF+1) be the

matrix defined in (5.5) with a column of ones added to the end. This intercept concatenation is standard in

regression tasks—it allows for concise representation of both the log posterior and its gradients.

The log likelihood `(β|Y,X) associated with our target posterior distribution can be expressed as

`(β | Y,X) =

T∑
t=1

(
Yt (Xt·β)− log

(
1 + eXt·β

))
. (5.12)

Assuming an independent prior π0(β) on β that decomposes entry-wise into the product of densities

π1
0(β1), . . . , πNF+1

0 (βNF+1), the log posterior log(π(β | Y,X)) is thus equal to

log (π(β | Y,X)) =

T∑
t=1

(
YtXt·β − log

(
1 + eXt·β

))
+

NF+1∑
j=1

log(πj0(βj)) (5.13)

(5.14)

up to an additive constant, and the gradient of the posterior is given by

∂ log (π(β | Y,X))

∂βj
=

T∑
t=1

Xtj

(
Yt −

(
1 + e−Xt·β

)−1
)

+
1

πj0 (βj)

∂πj0(βj)

∂βj
(5.15)

=

T∑
t=1

Xtj (Yt − P(Yt = 1|Xt, β)) +
1

πj0 (βj)

∂πj0(βj)

∂βj
(5.16)

for all j ∈ [NF].

We choose our bounce rate λi for each i ∈ [NF + 1] to be

λi(β, θ) =

T∑
t=1

[
−θi

∂ log (P(Yt | β,Xt·))

∂βi

]
+

+

[
−θi
πi0 (βi)

∂πi0(βi)

∂βi

]
+

(5.17)

=

T∑
t=1

[−θiXtj (Yt − P(Yt = 1|Xt, β))]+ +

[
−θi
πi0 (βi)

∂πi0(βi)

∂βi

]
+

. (5.18)

where [x]+ = max(0, x). In addition to satisfying (5.11), this choice is particularly amenable to efficient

generation of bounce times (Sen et al., 2019). We will describe an efficient algorithm for generating bounce

times in Section 5.3.3. First, however, we must prescribe our spike-and-slab prior for β along with a non-

standard parametrization that allows the zigzag process to be applied in its otherwise discrete setting.

147

5.3.2 Spike-and-slab prior

Sparsity of the regression coefficients is a popular assumption in neural spike train regression (e.g. Park and

Pillow (2011), Linderman et al. (2016), Zoltowski and Pillow (2018), Vinci et al. (2018), Wu et al. (2019))

and regression problems in general (Tibshirani, 1996; Park and Casella, 2008; Ročková and George, 2018).

Sparsity naturally arises in neuroscience in the form of receptive fields, biological neuron connectivity, and

neural network structure. Even in cases where the vector of coefficients is not known be sparse, it can still

be beneficial to “bet on sparsity” in high-dimensional settings (Hastie et al., 2009, Sec. 16.2.2) because

estimation in the non-sparse situation is intractable. Here, we detail a prior structure that promotes sparsity

in β for the spike train logistic regression problem outlined in Sections 5.2.2 and 5.3.1.

We consider a prior π0 on β that decomposes into independent spike-and-slab priors (Mitchell and

Beauchamp, 1988) for each entry in β. Spike-and-slab priors consist of a point mass at 0 (i.e. the spike) and a

diffuse continuous density that is symmetric around 0 (i.e. the slab). We define a canonical parametrization

of π0 in Section 5.3.2, then develop a re-parametrization in Section 5.3.2 that converts it into a continuous

and piece-wise differentiable distribution to accommodate inference via the zigzag process.

Defining the Prior

Recall from Section 5.3.1 that we are interested in a prior π0(β) that decomposes into independent priors

π1
0 , . . . , π

NF+1
0 for each of entries βi, i ∈ [NF + 1]. Here, we define such a spike-and-slab prior with two

hyperparameters for each coefficient: pi ∈ [0, 1] to prescribe the prior probability that βi is nonzero (i.e. the

slab probability), and αi ∈ R+ to control how diffuse the slab is around the origin. Together, each entry in

the prior represents a two component mixture

πi0(βi) := ∼

βi ∼ Laplace(αi) with probability pi

βi = 0 with probability 1− pi
(5.19)

where Laplace(αi) denotes a distribution with probability density function

f(β) = 2−1αie
−αi|β|. (5.20)

Figure 5.3(a) depicts πi0(βi) as a mixed probability mass function/probability density function representation.

As shown in Figure 5.3(a), the atom (i.e. spike) in the distribution at 0 ensures a prior probability of 1−pi
that βi is zero, whereas the Laplace slab component ensures positive prior density over the entire real line. For

a finite number of time bins T , any positive prior probability that βi = 0 be pushed to the posterior, yielding

sparsity in the posterior. The strength of sparsity will depend both on the hyperparameters (pi)i∈[NF+1]

and the observed spiking Y .

148

The maximum of the density component of πi0 is pi2
−1αi. The smaller the value of αi, the more diffuse

the slab component of the distribution. As such, this prior provides an intuitive way to control over both

the expected sparsity in the coefficients, as well as the expected magnitude of the nonzero coefficients using

the two hyperparameters.

pα
2
pα
2

0
0

β

π
0
(β

)

Total
Probability

= 1− p
= p

(a)

pα
2
pα
2

p−1
pα
p−1
pα

1−p
pα

1−p
pα

0
0

β̃

π̃
0
(β̃

)

(b)

Figure 5.3: (a) depicts the canonical parametrization of the spike-and-slab prior π0 as defined in (5.19).
The continuous density component (the slab) of π0 is is shown in orange. The discrete point mass at 0 (the
spike) in blue. (b) depicts the reparametrized prior π̃0 on the variable β̃. Following (a), the portion of the
density corresponding to the slab component is shown in orange, and the uniform distribution encoding the
original spike component is shown in blue.

Despite their providing a simple, intuitive way to encode sparsity, spike-and-slab priors are rarely used in

fully Bayesian inferences of spike train regression outside of relatively low dimensional problems. The reason

for this avoidance is primarily computational—posterior inference on spike-and-slab posterior distributions is

unwieldy due to the effective dimension of the posterior varying along with the number of nonzero coefficients.

The standard computation approach to accommodate such irregular posteriors is to use binary auxiliary

variables to indicate which coefficients are nonzero, then structure the problem in a way that facilitates

either collapsed Gibbs updates (as in Linderman et al. (2016)) or reversible jump Markov chain Monte Carlo

149

(Green, 1995). Nevertheless, the introduction of these auxiliary variables typically leads to slow mixing of

the chain in modern high dimensional problems. For this reason, there has been a recent push in the sparse

Bayesian regression literature towards continuous relaxations of spike-and-slab, such as the horseshoe prior

(Carvalho et al., 2009) and its variants (Johndrow et al., 2017; Piironen et al., 2017; Bhadra et al., 2017,

2019).

Such continuous relaxations lead to continuous posterior densities for which computation tends to be

simpler and more reliable, mainly due to their being accommodating of modern gradient-based posterior

inference methods such as Hamiltonian Monte Carlo (Neal, 2011). However, continuous relaxations also

have a cost—the continuous prior density means that the posterior is no longer sparse. Many posterior

draws will have coefficients that approximately 0, but no coefficient will be exactly 0. These posteriors

are thus more difficult to summarize and interpret. Moreover, using a Markov chain Monte Carlo strategy

to repeatedly update coefficients that are essentially zero seems computationally wasteful as compared to

keeping them fixed at exactly 0 using spike-and-slab.

With this in mind, we have devised a way to get the best of both worlds via the zigzag process. Using a

novel parametrization, we can formulate the spike-and-slab Bayesian inference problem without relying on

auxiliary variables, allowing the zigzag process to rapidly mix.

New parametrization

Recall that zigzag process as outlined in Section 5.2.3 applies only to densities that are continuous and

piece-wise differentiable. Because the canonical representation of our spike-and-slab prior has a discrete

component, the corresponding posterior distribution is not amenable to inference via the zigzag process.

Here, we develop a novel continuous parametrization of the spike-and-slab that is compatible with zigzag

process inference. As we will soon show, we do not even need to explicitly apply this re-parametrization to

reap its rewards—a slight modification of how the zigzag process behaves in the canonical parametrization

will suffice.

Now, we outline our novel parametrization. For each coefficient βi ∈ R, we define a variable β̃i such that

β̃i ∼


β̃i = βi − 1−pi

αipi
if βi < 0

unif
(
− 1−pi
αipi

, 1−pi
αipi

)
if βi = 0

β̃i = βi + 1−pi
αipi

if βi > 0

. (5.21)

where pi and αi correspond to the hyperparameters of πi0.

150

The prior πi0 on βi in (5.19) thus translates to the prior π̃i0 on β̃i defined by

π̃i0(β̃i) =


piθi

2 |β̃i| ≤ (1−pi)
piαi

piθi
2 e
−θi

(
|β̃i|−

1−pi
piθi

)
|β̃i| > (1−pi)

piθi

. (5.22)

Figure 5.3(b) depicts this new density π̃i0(β̃i), which can be viewed as a continuous parametrization of the

spike-and-slab prior πi0. The same colors are used in Figures 5.3(a) and 5.3(b) to showcase this connection.

The atom at zero has been recast as uniform distribution centered at 0, and the slab has been split in two,

translated, then appended to either end of the uniform distribution.

Note that (5.21) implies straightforward relationship between β and β̃. That is, the coefficient βi can be

easily recovered from its corresponding β̃i as βi = Bi(β̃i), where

B(β̃i) =


β̃i + 1−pi

αipi
β̃i < − 1−pi

αipi

0 |β̃i| < 1−pi
αipi

β̃i − 1−pi
αipi

β̃i >
1−pi
αipi

. (5.23)

We can thus easily frame the problem of posterior inference of β in terms of this new parametrization—

as posterior inference of β̃. Unlike our original parametrization, this parametrization is amenable to zigzag

because it satisfies the continuity and piece-wise differentiability conditions outlined Section 5.2.3. The

bounce rates λ defined in (5.17) translate bounce rates λ̃ defined as

λ̃i(β̃, θ) =

T∑
t=1

−θi ∂ log
(
P(Yt | B(β̃), Xt·)

)
∂βi

∂B(β̃i)

∂β̃


+

+

 −θi
π̃i0

(
β̃i

) ∂π̃i0(β̃i)

∂β̃i


+

. (5.24)

Armed with this newly defined parametrization and bounce rate, it is now possible to define a new zigzag

process that targets the posterior distribution β̃ directly. However, it turns out that we do not even need to

explicitly switch to the new parametrization to use the zigzag process. Notice that the definition of β̃ has

ensured that for the entire region

|β̃i| <
1− pi
αipi

, (i.e. βi = 0) (5.25)

both

∂π̃i0(β̃i)

∂β̃i
= 0 and

∂B(β̃i)

∂β̃i
= 0. (5.26)

151

Therefore, the bounce rate λ̃i(β̃, θ) = 0 for all values of β̃ such that βi = 0. That is, the reparametrized

zigzag trajectory is guaranteed to never bounce while passing through the region defined by (5.25). As shown

in blue portion in Figure 5.3(b), this region has width (1 − pi)α−1
i p−1

i —each pass through the “no bounce

zone” is guaranteed to last for (1−pi)α−1
i p−1

i time units, independently of what occurs in other dimensions.

Translating back to the canonical parametrization, this effect on the trajectory is exactly equivalent to

following. For each coordinate i ∈ [NF + 1], each time the trajectory β(τ) reaches point at which βi(τ) = 0,

the position βi(τ) gets temporarily “stuck” for a duration of (1− pi)α−1
i p−1

i time units. Once this “stuck”

time has passed, it will resume its trajectory as normal, with direction once again dictated by value of θi

from before getting stuck. That is, the velocity θi will temporarily switch to 0 each time βi reaches 0, with

the switch duration depending on the hyperparameters αi and pi of the prior. Intuitively, the larger the

spike in the prior, the longer each stop at 0 will be. In the extremes, pi = 0 will guarantee that βi(τ) is fixed

at the origin (all spike), and pi = 1 will result in no stop at all (all slab).

It is thus straightforward to implement the spike-and-slab as part of the zigzag process in the canonical

representation. We operate using the slab component of the prior as the entire prior, monitoring when

the positions in β(τ) hit 0. When they do, the spike component of the prior causes them to temporarily

get stuck. That is, we temporarily switch their velocity to 0 for a duration of (1 − pi)θ−1
i p−1

i time units,

then allow the velocity to pick back up where it left off when this duration ends. This approach is exactly

equivalent to running a zigzag process in the continuous, piece-wise differentiable re-parametrized setting

described above. It is thus guaranteed to target the desired stationary distribution due to the results of

Bierkens et al. (2019a) and Koskela (2020).

With our strategy for accommodating the spike-and-slab prior defined, we can now return to discussing

how to simulate bounce times.

5.3.3 Bounce Time Simulation

In this section, we describe how to apply the principles of Poisson superposition and Poisson thinning to

efficiently generates bounce times with the rate λ prescribed (5.17). We also incorporate the concrete details

for letting βi gets “stuck” when crossing zero as described in Section 5.3.2. Our exposition will begin by

focusing on bounce time generation, incorporating the “getting stuck” component only when we bring it all

together at the end.

Note that each λi in (5.17) consists of T + 1 non-negative summands—the first T summands correspond

to the likelihood, and the final one corresponding to the prior. Recall that generating a bounce time with

rate λi is equivalent to determining the first arrival time of an inhomogeneous temporal Poisson process

with rate λi. Invoking the superposition principle of Poisson processes (Kingman, 1992), a Poisson process

with rate λi can thus expressed as the superposition of T + 1 independent Poisson processes with rates

152

λ1
i . . . , λ

T
i , λ

T+1
i , defined as

λti(β, θ) =


[−θiXti (Yt − P(Yt = 1|Xt, β))]+ t ∈ [T][
−θi
πi0(βi)

∂πi0(βi)
∂βi

]
+

= [αiθisign(βi)]+ t = T + 1
, (5.27)

respectively. Therefore, the first arrival time of a process with rate λi has the same distribution as the

minimum of the first arrival times taken across T + 1 processes with rates λ1
i , . . . , λ

T+1
i . We will use this

representation to efficiently generate our bounce times.

At first glance, it may seem that invoking the superposition principle has only made the problem harder.

Exchanging the generation of the first arrival time of a single Poisson process with that of generating

first arrival times for T + 1 separate Poisson processes? That does not feel like progress! However, this

superposition representation ends up being helpful when combined with another common tool for generating

from Poisson processes—Poisson thinning.

Poisson thinning is a technique for generating Poisson processes in which one generates a Poisson process

with rate λ by first generating a Poisson process with rate Λ ≥ λ, then preferentially subsampling the result

to compensate for the difference between λ and Λ at the corresponding points. This approach is especially

powerful when Λ is both a relatively tight bound on λ, and straightforward to simulate from directly (e.g. a

uniform bound corresponds to exponential bounce times).

Poisson thinning allows for the generation of a first arrival time with rate λ via the following rejection

sampling procedure. First, we generate a first arrival time τ∗ with rate Λ. Then, with probability

λ(τ∗)/Λ(τ∗), we accept the value τ∗ as the first arrival time. Otherwise, we advance the base start time to

τ∗ and repeat the procedure until acceptance occurs. This thinning approach is powerful because one need

only be able to upper bound the rate λ and evaluate it point-wise in order to simulate a first bounce time

from it—no evaluation of the inverse cdf is required.

Returning to the task of simulating the bounce rate λi as defined in (5.17), we could apply Poisson thinning

directly by upper bounding the bounce rate λi. This is accomplished by individually upper bounding each§

summand (λti(β, θ))t∈[T+1]. First, let us upper bound the likelihood components λ1
i , . . . , λ

T
i .

For a given θi ∈ {−1, 1}, many of these components will be 0. Specifically, λti(β, θ) = 0 if any of the

following three conditions hold:

1. Xti = 0,

2. Yt = 1 and θi = 1, or

3. Yt = 0 and θi = −1

§Recall that if i ∈ [NF + 1] is currently “stuck” at 0 due to the spike-and-slab prior, its bounce rate is guaranteed to be
0 (see Section 5.3.2) and can thus be ignored until it is no longer stuck. We thus presume that the i ∈ [1 + NF + 1] under
consideration is not currently stuck.

153

Therefore, we need only focus on those t ∈ T not meeting any criteria above. Noting that |Yt − P(Yt = 1|Xt, β)| ≤

1 and Xti > 0, the remaining entries can be upper bounded by the constant Xti. Moreover, the prior term

λT+1
0 is trivially upper bounded by αT+1 if θT+1 = sign(βT+1), and is simply 0 otherwise.

Therefore, we have

λi(β, θ) ≤ Λi(θ) (5.28)

=
∑
t∈Rθi

Xti (5.29)

where

Rθi =

{t ∈ [T] : (Yt + θi) ∈ {0, 1} and Xti > 0} ∪ {T + 1} if θT+1 = sign(βT+1)

{t ∈ [T] : (Yt + θi) ∈ {0, 1} and Xti > 0} otherwise

(5.30)

denotes the set of t ∈ [T + 1] for which λti(β, θ) is not guaranteed to be zero by the three conditions above.

To avoid having to deal with the intercept term separately, we use the slight abuse of notation X(T+1)i = αi.

We can now finally demonstrate the value of the superposition principle. Suppose that our zigzag process

is currently at the state (β, θ). Directly applying Poisson thinning to generate the first arrival τ time using

the upper bound Λi would involve a rejection procedure of generating τ∗ ∼ Exp(Λi) where Exp denotes an

exponential distribution with rate Λi, then accepting τ = τ∗ with probability λi(β + θτ∗)/Λi(θ). Such a

procedure would involve evaluating λti(β + θτ∗) for all t ∈ Rθi . It is thus computationally intensive to apply

this procedure for large T .

Alternatively, we could apply the superposition principle. To do so, we upper bound each (λti)t∈Rθi

individually with Xti. Generating the first arrival time across the T+1 summands is equivalent to generating

τ∗1 ∼ Exp(X1i)

...

τ∗T+1 ∼ Exp(X(T+1)i),

(ignoring those t /∈ Rθi), followed by determining j = argmink∈Rθi
(τ∗k), then accepting τ = τ∗j with

probability λji (β + θτ∗j)/Xji. This procedure requires evaluating at most one λti for each proposal, making

it far more efficient than the non-superposition approach.

154

We can make this superposition procedure even more efficient by taking advantage of a property of the

minimum of exponential distributions. Specifically,

τ∗j = min
(
τ∗1 ∼ Exp(X1i), . . . , τ

∗
T+1 ∼ Exp(X(T+1)i)

)
(5.31)

⇒ τ∗j ∼ Exp

 ∑
t∈Rθi

Xti

 and (5.32)

j ∼ Categorical

(
X1i∑

t∈Rθi
Xti

, . . . ,
X(T+1)i∑
t∈Rθi

Xti

)
. (5.33)

This reduces the problem from drawing |Rθi | + 1 exponential random variables to that of drawing a single

exponential random variable along with a categorical variable.

Generically, generating a single draw from a high-dimensional categorical distribution can be computa-

tionally expensive. However, the linear combination structure of X provided in (5.5) makes it straightforward

to express the categorical distribution in (5.33) as a mixture of at most tmax discrete uniform distributions,

thus allowing for j to be simulated very efficiently.

Moreover, the efficiency gains that can be gleaned from Poisson superposition continue. The categorical

sampling approach we apply in (5.33) can actually be extended to finding the minimum for all of i ∈ [NF+1]

at once. Recall from Section 5.2.3 that our procedure for generating the zigzag process depends only on

determining i0 = argmini∈[NF+1](ti) and ti0 where ti denotes the first bounce time in coordinate i. Let I

denote the set of i ∈ [NF + 1] that are not currently “stuck” at 0 (as described in Section 5.3.2). Now,

extending the same exponential trick as above, we obtain

ti0 ∼ Exp

∑
i∈I

∑
t∈Rθi

Xti

 and (5.34)

(i0, t) ∼ Categorical

(
X11∑

i∈I
∑
t∈Rθi

Xti
, . . . ,

X(T+1)(NF+1)∑
i∈I
∑
t∈Rθi

Xti

)
. (5.35)

Employing Poisson thinning, the draw (i0, ti0) is accepted with probability λti0(β + θti0)/Xti0 , discarded

otherwise. Note that here, we have set-up the categorical draw as being over two separate indices: i0

represents the index i ∈ [NF + 1] of the coefficient being considered, and t ∈ [T + 1] denotes the index of a

single time bin. This two-index procedure ensures that only a single λti needs to be evaluated.

155

We can efficiently make the categorical draw of (i0, t) according to the following nested process:

i0 ∼ Categorical

(∑
t∈Rθ1

Xt1∑
i∈I
∑
t∈Rθi

Xti
, . . . ,

∑
t∈RθNF+1

Xt(NF+1)∑
i∈I
∑
t∈Rθi

Xti

)
(5.36)

t | i0 ∼ Categorical

(
X1i0∑

t∈Rθi0
Xti

, . . . ,
X(T+1)i0∑
t∈Rθi0

Xti

)
(5.37)

This set-up is efficient because the sums
∑
t∈Rθi

Xt1 for each (i, θi) pair need only be computed once for the

entire run of the algorithm, and the conditional draw of t allows the efficient mixture of discrete uniforms

approach to be applied.

Combining this approach with an implementation of the “stickiness” of βi(τ) at 0 due to the spike-and-

slab prior, yields the following algorithm.

Suppose we are currently at state (β(τj), θ(τj)) and time τj . Let I ⊂ [NF+1] denote the set of coefficients

that are currently not stuck at 0, and IC denote the set of coefficients are stuck at 0. For each i ∈ I, we

define Rθi as above. Then, the next bounce time τj+1 and state (β(τj+1), θ(τj+1)) of the next bounce can

be obtained as follows.

1. Initialize τ∗ = τj , β(τ∗) = β(τj), and θ(τ∗) = θ(τj).

2. Iterate the following steps:

(a) For each i ∈ IC , let ui denote the time at which βi is scheduled to become unstuck.

(b) For each i ∈ I, let si denote the time at which βi is scheduled to reach 0 along its current

trajectory. Specifically, si = |βi| if θi 6= sign(βi), si =∞ otherwise.

(c) Determine i1 = argmini∈IC (ui) and i2 = argmini∈I(si).

(d) Generate tb ∼ Exp
(∑

i∈I
∑
t∈Rθi

Xti

)
(e) If(ui1 < si2 and ui1 < tb):

• Append i1 to I and remove it from IC .

• Increment τ∗ ← τ∗ + ui1 and β(τ∗)← β(τ∗) + θ(τ∗) · ui1 ,

• Reset θi1(τ∗) to its unstuck value,

• Return to Step (a).

(f) If(si2 < ui1 and si2 < tb):

• Remove i2 from I and append it to IC .

• Increment τ∗ ← τ∗ + si2 and β(τ∗)← β(τ∗) + θ(τ∗) · si2 ,

• Temporarily set θi2 = 0,

156

• Return to Step (a).

(g) Otherwise (tb < ui1 and tb < si2)

• Generate i0 ∈ IC such that P(i0 = i) ∝
∑
t∈Rθi

Xti.

• Generate t ∈ Rθi0 such that P(t = a) ∝ Xai0 .

• If t = T + 1, proceed immediately to Step 3.

• If θi0 = −1, proceed immediately to Step 3 with probability

P(Yt = 0|Xt, β = βτ∗ + θ(τ∗)tb). (5.38)

• If θi0 = 1, proceed immediately to Step 3 with probability

P(Yt = 1|Xt, β = βτ∗ + θ(τ∗)tb). (5.39)

(h) Increment τ∗ ← τ∗ + tb and β(τ∗)← β(τ∗) + θ(τ∗) · tb

(i) Return to Step (a).

3. The new bounce time and state are defined as:

• τj+1 = τ∗ + tb,

• β(τj) = β(τ∗) + θ(τ∗) · tb,

• θ(τj) = Si0(θ(τ∗)).

Implicit in steps outlined above is the requirement to track how long each i ∈ IC will be stuck in 0, and

save a reference to what velocity θi will return to once βi is unstuck. This task can be efficiently in practice

using an assortment of linked lists that track the states of each i, thus avoiding the need to re-determine

i1 and i2 at every iteration. Moreover, the values Rθi and
∑
t∈Rθi

Xt1 can be precomputed allowing for

an efficient update of the categorical probabilities each time θi swaps its sign. We have implemented this

procedure in C++ code as part of our R package BrainNetworks.

With the details of our bounce procedure described, we will now conduct a series of simulations on

synthetic data to determine the relative performance of our algorithm relative to that of a competitor

(Linderman et al., 2016).

5.4 Efficiency Analysis

The dimensions of spike train logistic regression problems can vary widely depending on brain area, animal

being studied, and recording technology used. Historically, only a small number of neurons N could be

157

recorded at once, meaning the duration of the spike train (that is, the number of spike bins T and number of

experimental trials) was the primary indicator of the computational burden when fitting models. However,

new neural recording technologies (e.g. Jun et al. (2017)) have rapidly changed this paradigm. Thousands

of spike trains across multiple areas of the brain can now be recorded simultaneously. As such, the number

of neurons N can be computational bottleneck. As such, it is important we have computational tools that

can handle both large N and large T . In this section, we assess how our zigzag algorithm performs in the

large N and large T regimes.

5.4.1 How to Analyze Efficiency?

When assessing the efficiency of our algorithm, it is natural to use an existing algorithm from literature

as a baseline. When it comes to fully Bayesian inference for the spike-and-slab logistic regression problem

outlined in Section 5.2.2, the Markov chain Monte Carlo algorithm proposed by Linderman et al. (2016) is

the current state of the art. This algorithm introduces two sets of auxiliary variables in order to facilitate

closed-form Gibbs updates of the regression coefficients. Specifically, T Polya-Gamma (Polson et al., 2013;

Pillow and Scott, 2012) auxiliary variables (one for each spike bin) are instantiated to bypass the difficulties

of working directly with the logistic link function, and NF + 1 binary spike/slab indicators are instantiated

to accommodate the spike-and-slab prior.

A full sweep of this MCMC algorithm involves Gibbs updates of the Polya-Gamma variables, the binary

spike/slab indicators, and the coefficient vector β. In total, this amounts to computational complexity of

Θ((NF)3 +NFT) per iteration—the (NF)3 term stemming from the Gibbs updates of the NF β coefficients

and binary indicators, the (NFT) term stems from the updates of the T Polya-Gamma variables. In terms

of complexity, this algorithm seems better suited for the traditional setting of small N large T than modern

applications in which N is large.

In contrast, the computational complexity of simulating our zigzag process for a fixed trajectory length

τ is roughly Θ((NF)2T1). Here, T1 denotes the number of time bins for which Yt = 1, rather than the full

number of time bins T . The approximate complexity (NF)2T1 stems from the following argument. For each

proposed bounce time, deciding whether to accept requires evaluating P(Yt = 1|Xt·, β)—this has complexity

Θ(NF). The number of proposed zigzag bounces occurring within a fixed time interval τ is proportional

to the sum of the upper bounds Λi on bounce rates across all dimensions, i.e.
∑NF+1
i=1 Λi(θ). By definition

of Λi(θ) in (5.28), we see that this sum is roughly proportional to ‖X‖1. The definition of X in (5.5)

indicates the rough proportionality ‖X‖1 ∝ T1NF , provided that tmax is small compared to T . Taking the

product of the approximate number of bounces and the approximate complexity per bounce yields the rough

approximation Θ((NF)2T1).

158

Comparing these two complexities—Θ((NF)3 +NFT) for Polya-Gamma versus Θ((NF)2T1) for zigzag,

suggests that the zigzag algorithm will perform comparatively better when NF—the number of regression

coefficients—is relatively large. Moreover, we would also expect better performance when T1 is relatively

small compared to T (i.e. spikes are a rare occurrence). Both of these situations are common in modern

neural datasets.

Though the above complexities provide a compelling heuristic with which to compare the two algorithms,

they do not amount to any sort of formal proof of efficiency. This is because the raw number of iterations

generated is a proof metric with which to judge a MCMC algorithm. Instead, we should be more concerned

with the number of effectively independent iterations that can generated in a given amount of time. That

is, a MCMC algorithm is not necessarily good just because it is fast—it must also produce chains that mix

quickly. As such, a more appropriate metric with which to judge MCMC algorithms is the effective sample

size (Kass et al., 1998; Ripley, 2009) per second (Section 4.4.1 in Chapter 4 provides a detailed definition

treatment of the effective sample size as a metric for MCMC performance).

Unfortunately, outside of simple algorithms applied to toy problems, it is typically impossible to

analytically determine the effective sample size per second a given algorithm. For this reason, the standard

practice is to compare algorithms by running empirical studies. In Section 5.4.2, we run a battery of synthetic

experiments to compare the effective sample size per second between the two algorithms.

Before proceeding with these experiments, it is worth making one additional note about the efficiency of

the Polya-Gamma augmentation. MCMC algorithms based on the Polya-Gamma augmentation have been

shown mix poorly when there is a large class imbalance in the response variable Y (i.e. T1/T is small)

(Johndrow et al., 2018). Since class imbalance is quite common in neural datasets, we specifically design

some experiments in Section 5.4.2 to investigate the relative performance of zigzag under class imbalance.

5.4.2 Synthetic Experiments

In this section, we compare the performance (as measured the effective sample size per second) of the zigzag

process implementation outlined in Section 5.3 to that of the Polya-Gamma augmentation of Linderman

et al. (2016) for synthetic datasets. Specifically, we use both algorithms to fit spike train logistic regressions

to 36 different synthetically generated datasets encompassing a variety of values of T , N , and response

imbalance (i.e. T1/T). For each dataset, we run the zigzag process for a trajectory length of τ = 5000,

obtaining a Markov chain with 50000 observations by considering the discretization associated with T =

{0.1k : k ∈ [50000]}. Similarly, we run the Polya-Gamma augmentation for 5000 draws.

These 36 datasets represent a full factorial experiment on three separate parameters. To assess how each

algorithm performs as the number of neurons N increases, we consider 4 different values of N : N = 25,

N = 50, N = 100, and N = 150. To assess how each algorithm performs as the number of time bins T

159

increases, we consider 3 different values of T : T = 1000, T = 10000, and T = 50000. Finally, we also want

to assess how each algorithm performs under varying degrees of class imbalance. When generating synthetic

spike trains according to the logistic regression model outlined in Section 5.2.2, a straightforward way to

globally control the number spikes in all neurons to vary the intercept terms b. Across the trials, we consider

3 different values for the intercept terms b: b = −3 (for all N neurons), b = −4 (for all N neurons), and

b = −5 (for all N neurons). These values correspond to roughly 4 percent, 2 percent, and 1 percent of time

bins having spikes, respectively.

Recall from Section 5.2.2 that in addition to N , T , and b, generating a full set of synthetic spike trains

requires specification of the number of basis functions F ∈ N, the max time of coupling tmax ∈ N, the basis

functions g1, . . . , gF : [tmax]→ [0, 1] and the coupling coefficients β ∈ RF×N×N .

For all 36 synthetically generated datasets, we used the following structure. We used F = 3 basis functions

with tmax = 30. For the basis functions, we used raised cosine bumps (Pillow et al., 2008). The values in β

were randomly generated to be 90 percent sparse, except the self-coupling filters, which were parametrized

as dense. The nonzero entries in β were generated from zero mean Laplace distributions such that the entries

corresponding to the first basis function had parameter 2, the second basis function had parameter 5, and

the third basis function had parameter 10. To ensure stability of the process, the distribution of coefficients

of the first and second basis functions for the self-coupling filters were modified slightly—instead generated

using negative exponential distributions with means -2 and -1/5, respectively. This prevented any neuron

from having its own positive feedback loop in which it was always spiking.

For each of the 36 datasets, we used both Polya-Gamma and zigzag algorithms to compute the posterior

of the spike train coefficients that modeled the spiking of the first neuron. Running these algorithms required

priors for β. For both algorithms, we defined the spike-and-slab prior π0 such that the non-self coupling

filter coefficients had 90 percent prior probability pi of being 0, and the three self-coupling filter coefficients,

as well as the intercept b had 1 percent prior probability pi of being 0. The parameters αi were chosen to

match¶ those used to generate the coefficient values (i.e. (2, 5, and 10) respectively for the different basis

functions of non-self coupling filters, (1/2, 5, and 10) for the self-coupling filters). We assigned αNF+1 = 1/3

for the intercept b.

Boxplots demonstrating the relative performance of the zigzag process to that of Polya-Gamma algorithm

for each of the 36 datasets are shown in Figure 5.4, Figure 5.5, and Figure 5.6. In all three figures, there

is a boxplot summarizing the results of running the two posterior inference algorithms for each dataset.

These boxplots are constructed from NF + 1 values—one corresponding to each coefficient being inferred

in the posteriors. Each of the values themselves represent the ratio of two quantities pertaining to the

¶Since the Polya-Gamma algorithm requires that Gaussian distributions be used instead of Laplace distributions as the
slab components of the priors, we simply chose Gaussian distributions that matched the standard deviations of corresponding
Laplace distributions when implementing the Polya-Gamma algorithm. Since these priors are quite similar, the downstream
effects on the posterior were minimal

160

b = −3 b = −4 b = −5

T
=

1000
T

=
10000

T
=

50000

25 50 100 150 25 50 100 150 25 50 100 150

0.1

1.0

10.0

100.0

1000.0

0.1

1.0

10.0

100.0

1000.0

0.1

1.0

10.0

100.0

1000.0

Number of recorded neurons N

E
ff

ec
ti

ve
sa

m
p
le

si
ze

P
er

S
ec

on
d

(R
el

at
iv

e
to

P
ol

ya
G

am
m

a
A

u
g
m

en
ta

ti
on

)

Figure 5.4: Boxplots depicting how the efficiency (in terms of effective sample size per second) of our zigzag
process-based posterior inference algorithm compares to that of the Polya-Gamma augmentation algorithm
of Linderman et al. (2016) for doing posterior inference on the regression coefficients as the number of neurons
N increases. Each boxplot corresponds to a different synthetically generated dataset. The datasets differ in
the numbers of neurons N considered, numbers of time bins T reported, and logistic regression intercept b
of the model used to generated the synthetic data. Each boxplot is constructed using the ratio of effective
sample sizes per second of both algorithms for inferring each coefficient in the regression. Note that the
vertical axis is on a logarithmic scale, with the horizontal line at 1 showing the value at which the two
algorithms are considered equally efficient.

same coefficient—specifically, the effective sample size per second of the zigzag algorithm for inferring the

posterior of that coefficient, divided by the effective sample size per second of the Polya-Gamma algorithm

for inferring the posterior of that coefficient. That is, a value of 5 on the vertical axis would indicate that

zigzag is five times as efficient as Polya-Gamma for inferring that coefficient, whereas a value of 1/2 would

indicate that it was only has as efficient. Therefore, the horizontal lines at 1 in each panel depict a value for

which the two algorithms would be considered equally efficient.

Though Figures 5.4, 5.5, and 5.6 technically contain the same information, each of the three is arranged

differently to emphasize a different relationship. Figure 5.4 is arranged to demonstrate that the zigzag

process tends to outperform the Polya-Gamma augmentation to a higher and higher degree as the number of

neurons being recorded grows, and this holds true across all numbers of time bins and all levels of category

imbalance implied by the different values of b. Note that the lower lefthand panel shows that zigzag tends

161

N = 25 N = 50 N = 100 N = 150

T
=

1000
T

=
10000

T
=

50000

-3 -4 -5 -3 -4 -5 -3 -4 -5 -3 -4 -5

0.1

1.0

10.0

100.0

1000.0

0.1

1.0

10.0

100.0

1000.0

0.1

1.0

10.0

100.0

1000.0

True Logistic Regression Intercept b

E
ff

ec
ti

ve
sa

m
p
le

si
ze

P
er

S
ec

on
d

(R
el

at
iv

e
to

P
ol

ya
G

am
m

a
A

u
g
m

en
ta

ti
on

)

Figure 5.5: Boxplots depicting how the efficiency (in terms of effective sample size per second) of our zigzag
process-based posterior inference algorithm compares to that of the Polya-Gamma augmentation algorithm
of Linderman et al. (2016) for doing posterior inference on the regression coefficients as the value of the
regression intercept b decreases. Each boxplot corresponds to a different synthetically generated dataset.
The datasets differ in the numbers of neurons N considered, numbers of time bins T reported, and logistic
regression intercept b of the model used to generated the synthetic data. Each boxplot is constructed using
the ratio of effective sample sizes per second of both algorithms for inferring each coefficient in the regression.
Note that the vertical axis is on a logarithmic scale, with the horizontal line at 1 showing the value at which
the two algorithms are considered equally efficient.

to be at its relative worst for small values of N , large values of T , and lower levels of covariate imbalance.

This is the behavior we expected to see based on our heuristic argument in Section 5.4.1.

Figure 5.5 demonstrates that zigzag process performs relatively better as the amount of class imbalance

increases. The gains appear to be steepest when the number of time bins T is large. Once again, this

supports the heuristic argument provided in Section 5.4.1.

Finally, Figure 5.6 is the more sobering of the three Figures. It demonstrates that as the number of time

bins T increases, the zigzag process tends to perform relatively worse. This suggests that the zigzag process

is not a panacea for all spike train logistic regression problems. In the more traditional large T small N

settings, one is better off using Polya-Gamma unless the categorical imbalance is incredibly lopsided. Once

again, this result is consistent with complexity arguments we provided in Section 5.4.1.

162

N = 25 N = 50 N = 100 N = 150

b
=
−

3
b

=
−

4
b

=
−

5

1 10 50 1 10 50 1 10 50 1 10 50

0.1

1.0

10.0

100.0

1000.0

0.1

1.0

10.0

100.0

1000.0

0.1

1.0

10.0

100.0

1000.0

Number of time bins T (in thousands)

E
ff

ec
ti

ve
sa

m
p
le

si
ze

P
er

S
ec

on
d

(R
el

at
iv

e
to

P
ol

ya
G

am
m

a
A

u
g
m

en
ta

ti
on

)

Figure 5.6: Boxplots depicting how the efficiency (in terms of effective sample size per second) of our zigzag
process-based posterior inference algorithm compares to that of the Polya-Gamma augmentation algorithm of
Linderman et al. (2016) for doing posterior inference on the regression coefficients as the number of observed
time bins T increases. Each boxplot corresponds to a different synthetically generated dataset. The datasets
differ in the numbers of neurons N considered, numbers of time bins T reported, and logistic regression
intercept b of the model used to generated the synthetic data. Each boxplot is constructed using the ratio
of effective sample sizes per second of both algorithms for inferring each coefficient in the regression. Note
that the vertical axis is on a logarithmic scale, with the horizontal line at 1 showing the value at which the
two algorithms are considered equally efficient.

Overall, the results of these synthetic experiments show that our algorithm is a promising new approach

to fitting spike train logistic regressions to modern datasets. Even for a relatively modest-sized spike trains

consisting of 150 neurons, one can expect our zigzag algorithm to be roughly 50 to 100 times faster than

the start of the state of the Polya-Gamma algorithm. The trend as N increases in Figure 5.4, as well as our

heuristic complexity arguments in Section 5.4.1 seem to indicate that the gains could be orders of magnitude

higher for the massive thousands-of-neurons modern datasets.

In this section, our discussion of the scaling performance of our zigzag algorithm has concentrated on

comparisons to the Polya-Gamma algorithm. However, applying the zigzag process to a neural dataset

requires knowledge of the raw performance of the zigzag algorithm as well. For instance, how long does

it take to fit a given dataset? As a reference, we have included Figure 5.7 and Figure 5.8 that report

the raw computer runtime in seconds that it took for our zigzag implementation to generate the 50000

163

iterations used in each of our 36 synthetic datasets. These runtimes were obtained on the Bridges High

Performance Computing System (Nystrom et al., 2015) at the Pittsburgh Supercomputing Center (the

details of which are already discussed in Section 4.6.1). Each run was performed on a single core with no

parallelization. Figures 5.7 and 5.8 contain the same information, but are arranged differently to illustrate

the scaling behavior in terms of the number of neurons N and the number of time bins T , respectively. It

is noteworthy that both increasing relationships shown support the heuristic scaling argument provided in

Section 5.4.1. The longest runtime of 127315 seconds (≈ 35 hours) corresponded to the case with the most

neurons (N = 150), longest duration (T = 50000) and most spikes (b = −3). The shortest runtime of 19

seconds corresponds to the case with the fewest neurons (N = 25), shortest duration (T = 1000) and fewest

spikes (b = −5).

b = −3 b = −4 b = −5

T
=

1000
T

=
10000

T
=

50000

25 50 100 150 25 50 100 150 25 50 100 150

100

1000

10000

100000

100

1000

10000

100000

100

1000

10000

100000

Number of recorded neurons N

Z
ig

za
g

ru
n

ti
m

e
(i

n
se

co
n
d
s)

Figure 5.7: A companion plot for Figure 5.4 reporting the runtime (in seconds) it took to compute the
zigzag trajectory exploring the posterior associated with each of the synthetic spike train. Note that for each
posterior, the algorithm was run to generate a trajectory of length τ = 5000 reported at regular intervals to
obtain a chain of length 50000.

164

N = 25 N = 50 N = 100 N = 150

b
=
−

3
b

=
−

4
b

=
−

5

1 10 50 1 10 50 1 10 50 1 10 50

100

1000

10000

100000

100

1000

10000

100000

100

1000

10000

100000

Number of time bins T (in thousands)

Z
ig

za
g

ru
n

ti
m

e
(i

n
se

co
n
d
s)

Figure 5.8: A companion plot for Figure 5.6 reporting the runtime (in seconds) it took to compute the
zigzag trajectory exploring the posterior associated with each of the synthetic spike train. Note that for each
posterior, the algorithm was run to generate a trajectory of length τ = 5000 reported at regular intervals to
obtain a chain of length 50000.

5.5 Conclusion and Future Work

Though the synthetic results in Section 5.4.2 are promising, we feel this is just the first step in investigating

exactly how well our algorithm performs. The natural next step we intend to explore is using it to fit a

model to real neural datasets. Doing so will require extending past the toy synthetic environment on which

this chapter focused. For instance, we will need to augment the design matrix X to accommodate varying

intercept terms and the presence of extrinsic covariates. Our algorithm should extend easily to this setting,

barring very irregular structure in X that makes bounce time simulation costly.

Furthermore, one can easily imagine scenarios in which one would want to move past the unstructured

spike-and-slab prior we have presented here. We intend to extend our algorithm to accommodate the latent

variable structure in the sparsity, as proposed in Linderman and Adams (2014); Linderman et al. (2016).

Incorporating this approach requires a method for updating the latent variables in the sampler. Since the

latent variables may not be amenable to zigzag sampling directly, we intend to explore the zigzag Gibbs

hybrid approach proposed in Sachs et al. (2020). This could facilitate the combining of the latent position

model inference algorithm outlined in Chapter 4 with the work presented here. Another option would be a

165

stochastic block model (Holland et al., 1983). We have also done some preliminary work using this approach

to incorporate horseshoe (Carvalho et al., 2009) and horseshoe-like (Bhadra et al., 2017) priors within this

Gibbs framework to provide different shrinkage options beyond spike-and-slab. These could also be combined

with a latent variable structured sparsity as in Linderman et al. (2016).

In a different thread, one can easily imagine extending the approach present here to accommodate

other link functions and spike distributions other than Bernoulli distribution with the logistic link. One

caveat is that the gradient of the corresponding log likelihood should globally upper-bounded, otherwise our

efficient thinning-based bounce simulation algorithms will not work. However, spike distributions such as the

negative binomial with logistic link (Pillow and Scott, 2012), or the Poisson distribution with the softplus

link (Zoltowski and Pillow, 2018) do meet this criteria.

Finally, we should note that the Polya-Gamma algorithm of (Linderman et al., 2016) may not be the

only worthy competitor out there. It is worth exploring other competitor algorithms that can accommodate

the discreteness of spike-and-slab, such as those involving reversible jump MCMC (Green, 1995). It may

also be worth exploring how more generic algorithms such as random walk Metropolis or Hamiltonian Monte

Carlo (Neal, 2011) would fair using our novel continuous and piece-wise differentiable parametrization of the

spike-and-slab prior. One can also imagine extending this new parametrization of the spike-and-slab prior

to other sparse modeling settings, such as sparse estimation of factor loadings in factor analysis (Carvalho

et al., 2008), or non-negative matrix factorization with sparseness constraints (Hoyer, 2004). Finally, it is

worth investigating if the approach we apply here for the zigzag also applies to other versions of piece-wise

deterministic Markov processes such as the Bouncy Particle Sampler (Bouchard-Côté et al., 2018) or the

Boomerang Sampler (Bierkens et al., 2020a).

Overall, we hope that through extending our work to apply to real data and real problems, as well as

comparing to other existing algorithms, we can develop a technique that allows us to scale full Bayes inference

up to massive modern spike train data.

166

Bibliography

Adair, T., Lemay, J., McDonald, A., Shaw, R., and Tewes, R. (2007). The Mount Bierstadt study: An

experiment in unique damage formation in footwear. Journal of Forensic Identification, 57(2):199. 17

Adams, R. P., Murray, I., and MacKay, D. J. (2009). Tractable nonparametric Bayesian inference in Poisson

processes with Gaussian process intensities. In Proceedings of the 26th Annual International Conference

on Machine Learning, pages 9–16. ACM. 35

Aicher, C., Jacobs, A. Z., and Clauset, A. (2014). Learning latent block structure in weighted networks.

Journal of Complex Networks, 3(2):221–248. 3

Airoldi, E. M., Blei, D. M., Fienberg, S. E., and Xing, E. P. (2008). Mixed membership stochastic

blockmodels. Journal of machine learning research, 9(Sep):1981–2014. 3, 93

Aldous, D. J. (1981). Representations for partially exchangeable arrays of random variables. Journal of

Multivariate Analysis, 11(4):581–598. 3

Aliverti, E. and Durante, D. (2019). Spatial modeling of brain connectivity data via latent distance models

with nodes clustering. Statistical Analysis and Data Mining: The ASA Data Science Journal, 12(3):185–

196. 99

Arias-Castro, E., Channarond, A., Pelletier, B., and Verzelen, N. (2018). On the estimation of latent

distances using graph distances. arXiv preprint arXiv:1804.10611. 58

Athreya, A., Fishkind, D. E., Levin, K., Lyzinski, V., Park, Y., Qin, Y., Sussman, D. L., Tang, M., Vogelstein,

J. T., and Priebe, C. E. (2017). Statistical inference on random dot product graphs: a survey. arXiv

preprint arXiv:1709.05454. 3

Baddeley, A., Bárány, I., and Schneider, R. (2007). Spatial point processes and their applications. Stochastic

Geometry: Lectures given at the CIME Summer School held in Martina Franca, Italy, September 13–18,

2004, pages 1–75. 4

167

Bales, B., Pourzanjani, A., Vehtari, A., and Petzold, L. (2019). Selecting the metric in hamiltonian monte

carlo. arXiv preprint arXiv:1905.11916. 103

Barber, R. F., Drton, M., and Tan, K. M. (2016). Laplace approximation in high-dimensional bayesian

regression. In Statistical Analysis for High-Dimensional Data, pages 15–36. Springer. 136

Bardenet, R., Doucet, A., and Holmes, C. (2017). On markov chain monte carlo methods for tall data. The

Journal of Machine Learning Research, 18(1):1515–1557. 136

Beskos, A. and Stuart, A. (2009). Computational complexity of metropolis-hastings methods in high

dimensions. In Monte Carlo and Quasi-Monte Carlo Methods 2008, pages 61–71. Springer. 136

Betancourt, M. (2016). Identifying the optimal integration time in hamiltonian monte carlo. arXiv preprint

arXiv:1601.00225. 95, 127

Betancourt, M. (2017). A conceptual introduction to hamiltonian monte carlo. arXiv preprint

arXiv:1701.02434. 95, 101, 103

Bhadra, A., Datta, J., Polson, N. G., and Willard, B. (2017). Horseshoe regularization for feature subset

selection. arXiv preprint arXiv:1702.07400. 150, 166

Bhadra, A., Datta, J., Polson, N. G., Willard, B., et al. (2019). Lasso meets horseshoe: A survey. Statistical

Science, 34(3):405–427. 150

Bierkens, J. and Duncan, A. (2017). Limit theorems for the zig-zag process. Advances in Applied Probability,

49(3):791–825. 142, 144

Bierkens, J., Fearnhead, P., Roberts, G., et al. (2019a). The zig-zag process and super-efficient sampling for

bayesian analysis of big data. The Annals of Statistics, 47(3):1288–1320. 137, 142, 145, 152

Bierkens, J., Grazzi, S., Kamatani, K., and Roberts, G. (2020a). The boomerang sampler. arXiv preprint

arXiv:2006.13777. 166

Bierkens, J., Grazzi, S., van der Meulen, F., and Schauer, M. (2020b). A piecewise deterministic monte carlo

method for diffusion bridges. arXiv preprint arXiv:2001.05889. 142

Bierkens, J., Roberts, G. O., Zitt, P.-A., et al. (2019b). Ergodicity of the zigzag process. The Annals of

Applied Probability, 29(4):2266–2301. 142, 144

Blei, D. M., Kucukelbir, A., and McAuliffe, J. D. (2017). Variational inference: A review for statisticians.

Journal of the American statistical Association, 112(518):859–877. 136

168

Bloem-Reddy, B. and Cunningham, J. (2016). Slice sampling on hamiltonian trajectories. In International

Conference on Machine Learning, pages 3050–3058. 104

Bodziak, W. J. (2017). Forensic Footwear Evidence. CRC Press. 9, 12

Bodziak, W. J., Hammer, L., Johnson, G. M., and Schenck, R. (2012). Determining the significance of

outsole wear characteristics during the forensic examination of footwear impression evidence. Journal of

Forensic Identification, 62(3):254–278. 12

Bollobás, B., Janson, S., and Riordan, O. (2007). The phase transition in inhomogeneous random graphs.

Random Structures and Algorithms, 31:3–122. 48, 63, 64

Borg, I. and Groenen, P. J. (2005). Modern Multidimensional Scaling: Theory and Applications. Springer.

82

Borgs, C., Chayes, J., Cohn, H., and Zhao, Y. (2014). An lp theory of sparse graph convergence i: Limits,

sparse random graph models, and power law distributions. Transactions of the American Mathematical

Society. 3, 48, 63, 126

Borgs, C., Chayes, J. T., Cohn, H., and Holden, N. (2016). Sparse exchangeable graphs and their limits via

graphon processes. Electronic pre-print, arxiv:1601.07134. 48, 65

Bouchard-Côté, A., Vollmer, S. J., and Doucet, A. (2018). The bouncy particle sampler: A nonreversible

rejection-free markov chain monte carlo method. Journal of the American Statistical Association,

113(522):855–867. 136, 145, 166

Brémaud, P. and Massoulié, L. (1996). Stability of nonlinear hawkes processes. The Annals of Probability,

pages 1563–1588. 6

Brillinger, D. R. (1992). Nerve cell spike train data analysis: a progression of technique. Journal of the

American Statistical Association, 87(418):260–271. 136

Brillinger, D. R., Guttorp, P. M., Schoenberg, F. P., El-Shaarawi, A. H., and Piegorsch, W. W. (2002). Point

processes, temporal. Encyclopedia of environmetrics, 3:1577–1581. 4

Brooks, S., Gelman, A., Jones, G., and Meng, X.-L. (2011). Handbook of Markov chain Monte Carlo. CRC

press. 25

Brown, E. N., Kass, R. E., and Mitra, P. P. (2004). Multiple neural spike train data analysis: state-of-the-art

and future challenges. Nature neuroscience, 7(5):456–461. 136

Campbell, T. and Broderick, T. (2018). Bayesian coreset construction via greedy iterative geodesic ascent.

arXiv preprint arXiv:1802.01737. 136

169

Caron, F. (2012). Bayesian nonparametric models for bipartite graphs. In Advances in Neural Information

Processing Systems, pages 2051–2059. 64

Caron, F. and Fox, E. B. (2014). Sparse graphs using exchangeable random measures. arxiv:1401.1137. 3,

48, 63, 64

Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betancourt, M., Brubaker, M., Guo,

J., Li, P., and Riddell, A. (2017). Stan: A probabilistic programming language. Journal of statistical

software, 76(1). 95, 103, 113, 115, 116

Carrington, P. J., Scott, J., and Wasserman, S. (2005). Models and methods in social network analysis,

volume 28. Cambridge university press. 93

Carvalho, C. M., Chang, J., Lucas, J. E., Nevins, J. R., Wang, Q., and West, M. (2008). High-dimensional

sparse factor modeling: applications in gene expression genomics. Journal of the American Statistical

Association, 103(484):1438–1456. 166

Carvalho, C. M., Polson, N. G., and Scott, J. G. (2009). Handling sparsity via the horseshoe. In Artificial

Intelligence and Statistics, pages 73–80. 150, 166

Champod, C., Evett, I. W., and Jackson, G. (2004). Establishing the most appropriate databases for

addressing source level propositions. Science & Justice, 44(3):153–164. 12

Chao, W.-L., Solomon, J., Michels, D., and Sha, F. (2015). Exponential integration for hamiltonian monte

carlo. In International Conference on Machine Learning, pages 1142–1151. 102, 104

Chatterjee, S. (2015). Matrix estimation by universal singular value thresholding. The Annals of Statistics,

43(1):177–214. 58

Chen, C., Rao, V., Buntine, W., and Teh, Y. W. (2013). Dependent normalized random measures. In

Dasgupta, S. and McAllester, D., editors, Proceedings of the 30th International Conference on Machine

Learning, volume 28 of Proceedings of Machine Learning Research, pages 969–977, Atlanta, Georgia, USA.

PMLR. 34

Chen, L., Vogelstein, J. T., Lyzinski, V., and Priebe, C. E. (2016). A joint graph inference case study: the

c. elegans chemical and electrical connectomes. In Worm, volume 5, page e1142041. Taylor & Francis. 93

Chen, Y., Xin, Q., Ventura, V., and Kass, R. E. (2018). Stability of point process spiking neuron models.

Journal of computational neuroscience, pages 1–14. 6

Chiu, G. S. and Westveld, A. H. (2011). A unifying approach for food webs, phylogeny, social networks, and

statistics. Proceedings of the National Academy of Sciences, 108(38):15881–15886. 93

170

Choi, D. S. and Wolfe, P. J. (2011). Learnability of latent position network models. In Statistical Signal

Processing Workshop (SSP), 2011 IEEE, pages 521–524. IEEE. 57

Clauset, A., Moore, C., and Newman, M. E. (2008). Hierarchical structure and the prediction of missing

links in networks. Nature, 453(7191):98. 3, 93

Cover, T. M. and Thomas, J. A. (2006). Elements of Information Theory. John Wiley, New York, second

edition. 78, 91

Cox, D. R. and Isham, V. (1980). Point processes, volume 12. CRC Press. 5

Crane, H. (2018). Probabilistic foundations of statistical network analysis. Chapman and Hall/CRC. 93

Crane, H. and Dempsey, W. (2016). A framework for statistical network modeling. Electronic pre-print,

arxiv:1509.08185. 50

CSAFE (2019). Longitudinal Shoe Outsole Impression Study. Center for Statistics and Applications in

Forensic Evidence. http://forensicstats.org/shoeoutsoleimpressionstudy/. 32

Dabbs, B., Adhikari, S., and Sweet, T. (2020). Conditionally independent dyads (cid) network models: a

latent variable approach to statistical social network analysis. Social Networks, Revision Under Review.

93

Daley, D. J. and Vere-Jones, D. (2007). An Introduction to the Theory of Point Processes: Volume II:

General Theory and Structure. Springer Science & Business Media. 4, 17

Damary, N. K., Mandel, M., Wiesner, S., Yekutieli, Y., Shor, Y., and Spiegelman, C. (2018). Dependence

among randomly acquired characteristics on shoeprints and their features. Forensic Science International,

283:173–179. 16, 17

D’Amour, A. and Airoldi, E. (2016). Misspecification, sparsity, and superpopulation inference for sparse

social networks. 50

Davenport, M. A., Plan, Y., Van Den Berg, E., and Wootters, M. (2014). 1-bit matrix completion.

Information and Inference: A Journal of the IMA, 3(3):189–223. 49, 58, 77

de Valpine, P. (2018). How we make mcmc comparisons. https://nature.berkeley.edu/~pdevalpine/

MCMC_comparisons/nimble_MCMC_comparisons.html. Accessed: 2020-04-24. 113

Devroye, L. (1986). Non-uniform random variate generation. 145

Diaconis, P. and Janson, S. (2008). Graph limits and exchangeable random graphs. Rendiconti di Matematica

e delle sue Applicazioni, 28:33–61. 2, 47

171

http://forensicstats.org/shoeoutsoleimpressionstudy/
https://nature.berkeley.edu/~pdevalpine/MCMC_comparisons/nimble_MCMC_comparisons.html
https://nature.berkeley.edu/~pdevalpine/MCMC_comparisons/nimble_MCMC_comparisons.html

Diaz, J., McDiarmid, C., and Mitsche, D. (2018). Learning random points from geometric graphs or orderings.

arXiv preprint arXiv:1809.09879. 58

Doucet, A. and Johansen, A. M. (2009). A tutorial on particle filtering and smoothing: Fifteen years later.

Handbook of nonlinear filtering, 12(656-704):3. 127

Duane, S., Kennedy, A. D., Pendleton, B. J., and Roweth, D. (1987). Hybrid monte carlo. Physics letters

B, 195(2):216–222. 95

Dunson, D. B. and Park, J.-H. (2008). Kernel stick-breaking processes. Biometrika, 95(2):307–323. 34

Edwards, H. T. and Gotsonis, C. (2009). Strengthening forensic science in the United States: A path forward.

Statement before the United States Senate Committee on the Judiciary. 10

Erdős, P. and Rényi, A. (1960). On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci,

5(1):17–60. 93

Escobar, M. D. and West, M. (1995). Bayesian density estimation and inference using mixtures. Journal of

the American Statistical Association, 90(430):577–588. 19

Evett, I., Lambert, J., and Buckleton, J. (1998). A Bayesian approach to interpreting footwear marks in

forensic casework. Science & Justice, 38(4):241–247. 10, 11, 12, 33

Facey, O., Hannah, I., and Rosen, D. (1992). Shoe wear patterns and pressure distribution under feet and

shoes, determined by image analysis. Journal of the Forensic Science Society, 32(1):15–25. 12

Ferguson, T. S. (1973). A Bayesian analysis of some nonparametric problems. Ann. Statist., 1(2):209–230.

34

Fosdick, B. K., McCormick, T. H., Murphy, T. B., Ng, T. L. J., and Westling, T. (2018). Multiresolution

network models. Journal of Computational and Graphical Statistics, (just-accepted):1–33. 93, 99, 127

Foti, N. and Williamson, S. (2012). Slice sampling normalized kernel-weighted completely random measure

mixture models. In Advances in Neural Information Processing Systems, pages 2240–2248. 34

Foti, N. J. and Williamson, S. A. (2015). A survey of non-exchangeable priors for Bayesian nonparametric

models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(2):359–371. 18, 35

Fruchtenicht, T., Herzig, W., and Blackledge, R. D. (2002). The discrimination of two-dimensional military

boot impressions based on wear patterns. Science & Justice, 42(2):97–104. 12

Gamerman, D. and Lopes, H. F. (2006). Markov chain Monte Carlo: stochastic simulation for Bayesian

inference. CRC Press. 93, 113

172

Gelfand, A. E., Kottas, A., and MacEachern, S. N. (2005). Bayesian nonparametric spatial modeling with

Dirichlet process mixing. Journal of the American Statistical Association, 100(471):1021–1035. 34

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., and Rubin, D. B. (2013). Bayesian data

analysis. CRC press. 93

Geyer, C. J. (1992). Practical markov chain monte carlo. Statistical science, pages 473–483. 136

Gibbs, A. L. and Su, F. E. (2002). On choosing and bounding probability metrics. International statistical

review, 70(3):419–435. 81

Gilbert, E. N. (1961). Random plane networks. Journal of the Society for Industrial and Applied Mathematics,

9(4):533–543. 52

Girolami, M. and Calderhead, B. (2011). Riemann manifold langevin and hamiltonian monte carlo methods.

Journal of the Royal Statistical Society: Series B (Statistical Methodology), 73(2):123–214. 95, 103

Goldenberg, A., Zheng, A. X., Fienberg, S. E., Airoldi, E. M., et al. (2010). A survey of statistical network

models. Foundations and Trends R© in Machine Learning, 2(2):129–233. 93

Green, P. J. (1995). Reversible jump markov chain monte carlo computation and bayesian model

determination. Biometrika, 82(4):711–732. 150, 166

Griffin, J., Leisen, F., et al. (2018). Modelling and computation using ncorm mixtures for density regression.

Bayesian Analysis, 13(3):897–916. 19

Griffin, J. E. and Leisen, F. (2017). Compound random measures and their use in bayesian non-parametrics.

Journal of the Royal Statistical Society: Series B (Statistical Methodology), 79(2):525–545. 11, 19, 20

Hahn, P. R., He, J., and Lopes, H. F. (2019). Efficient sampling for gaussian linear regression with arbitrary

priors. Journal of Computational and Graphical Statistics, 28(1):142–154. 115, 136

Hamilton, J. and Press, P. U. (1994). Time Series Analysis. Princeton University Press. 141

Handcock, M. S., Raftery, A. E., and Tantrum, J. M. (2007). Model-based clustering for social networks.

Journal of the Royal Statistical Society: Series A (Statistics in Society), 170(2):301–354. 51, 94, 99

Hastie, T., Tibshirani, R., and Friedman, J. (2009). The elements of statistical learning: data mining,

inference, and prediction. Springer Science & Business Media. 148

Hawkes, A. G. (1971). Spectra of some self-exciting and mutually exciting point processes. Biometrika,

58:83–90. 4

173

Hecker, M., Lambeck, S., Toepfer, S., Van Someren, E., and Guthke, R. (2009). Gene regulatory network

inference: data integration in dynamic models—a review. Biosystems, 96(1):86–103. 93

Herlau, T., Schmidt, M. N., and Mørup, M. (2016). Completely random measures for modelling block-

structured sparse networks. In Lee, D. D., Sugiyama, M., Luxburg, U. V., Guyon, I., and Garnett, R.,

editors, Advances in Neural Information Processing Systems 29 [NIPS 2016], pages 4260–4268. Curran

Associates. 65

Herman, M. (2016). Measurements and Scoring Procedures for Footwear Impression Comparisons. National

Institute for Standards in Technology. https://www.nist.gov/sites/default/files/documents/2016/

12/19/mherman.pdf. 33

Hjort, N. L., Holmes, C., Müller, P., and Walker, S. G. (2010). Bayesian Nonparametrics. Cambridge Series

in Statistical and Probabilistic Mathematics. Cambridge University Press. 18

Hoeffding, W. (1963). Probability inequalities for sums of bounded random variables. Journal of the

American Statistical Association, 58:13–30. 87

Hoff, P. D. (2005). Bilinear mixed-effects models for dyadic data. Journal of the american Statistical

association, 100(469):286–295. 58

Hoff, P. D., Raftery, A. E., and Handcock, M. S. (2002). Latent space approaches to social network analysis.

J. Am. Stat. Association, 97(460):1090–1098. 2, 47, 51, 59, 62, 94, 96, 97, 99

Hoffman, M. D. and Gelman, A. (2014). The no-u-turn sampler: adaptively setting path lengths in

hamiltonian monte carlo. Journal of Machine Learning Research, 15(1):1593–1623. 95, 103, 115, 127

Holland, P. W., Laskey, K. B., and Leinhardt, S. (1983). Stochastic blockmodels: First steps. Social networks,

5(2):109–137. 2, 166

Horn, R. A. and Johnson, C. R. (1990). Matrix analysis. Cambridge university press. 83, 84, 87, 89

Hoyer, P. O. (2004). Non-negative matrix factorization with sparseness constraints. Journal of machine

learning research, 5(Nov):1457–1469. 166

Huggins, J., Adams, R. P., and Broderick, T. (2017). Pass-glm: polynomial approximate sufficient statistics

for scalable bayesian glm inference. In Advances in Neural Information Processing Systems, pages 3611–

3621. 136

Huggins, J. H., Kasprzak, M., Campbell, T., and Broderick, T. (2019). Practical posterior error bounds

from variational objectives. arXiv preprint arXiv:1910.04102. 137

174

https://www.nist.gov/sites/default/files/documents/2016/12/19/mherman.pdf
https://www.nist.gov/sites/default/files/documents/2016/12/19/mherman.pdf

Jewell, S., Spencer, N., and Bouchard-Côté, A. (2015). Atomic spatial processes. In International Conference

on Machine Learning, pages 248–256. 34

Ji, P. and Jin, J. (2016). Coauthorship and citation networks for statisticians. The Annals of Applied

Statistics, 10(4):1779–1812. 93

Johndrow, J. E., Orenstein, P., and Bhattacharya, A. (2017). Bayes shrinkage at gwas scale: Convergence

and approximation theory of a scalable mcmc algorithm for the horseshoe prior. arXiv preprint

arXiv:1705.00841. 150

Johndrow, J. E., Smith, A., Pillai, N., and Dunson, D. B. (2018). Mcmc for imbalanced categorical data.

Journal of the American Statistical Association, pages 1–10. 159

Jordan, M. I. (2010). Hierarchical models, nested models and completely random measures, pages 207–218.

New York: Springer. 18

Jun, J. J., Steinmetz, N. A., Siegle, J. H., Denman, D. J., Bauza, M., Barbarits, B., Lee, A. K., Anastassiou,

C. A., Andrei, A., Aydın, Ç., et al. (2017). Fully integrated silicon probes for high-density recording of

neural activity. Nature, 551(7679):232. 136, 158

Kallenberg, O. (2002). Foundations of Modern Probability. Springer-Verlag, New York, second edition. 59

Kartun-Giles, A. P., Krioukov, D., Gleeson, J. P., Moreno, Y., and Bianconi, G. (2018). Sparse power-law

network model for reliable statistical predictions based on sampled data. Entropy, 20(4):257. 50

Kass, R. E., Amari, S.-I., Arai, K., Brown, E. N., Diekman, C. O., Diesmann, M., Doiron, B., Eden, U. T.,

Fairhall, A. L., Fiddyment, G. M., et al. (2018). Computational neuroscience: Mathematical and statistical

perspectives. Annual review of statistics and its application, 5:183–214. 136

Kass, R. E., Carlin, B. P., Gelman, A., and Neal, R. M. (1998). Markov chain monte carlo in practice: a

roundtable discussion. The American Statistician, 52(2):93–100. 112, 136, 159

Kass, R. E., Kelly, R. C., and Loh, W.-L. (2011). Assessment of synchrony in multiple neural spike trains

using loglinear point process models. The annals of applied statistics, 5(2B):1262. 6

Kass, R. E. and Ventura, V. (2001). A spike-train probability model. Neural computation, 13(8):1713–1720.

139

Kim, B., Lee, K. H., Xue, L., and Niu, X. (2018). A review of dynamic network models with latent variables.

Statistics surveys, 12:105. 95, 122, 127

Kingman, J. (1967). Completely random measures. Pacific Journal of Mathematics, 21(1):59–78. 18

175

Kingman, J. (1992). Poisson Processes, volume 3. Clarendon Press. 142, 145, 152

Kingman, J. F. C. (1993). Poisson Processes. Oxford University Press, Oxford. 4, 52, 67, 75

Kong, B., Ramanan, D., and Fowlkes, C. (2017). Cross-domain forensic shoeprint matching. In British

Machine Vision Conference (BMVC). 9

Koskela, J. (2020). Zig-zag sampling for discrete structures and non-reversible phylogenetic mcmc. arXiv

preprint arXiv:2004.08807. 142, 145, 152

Kottas, A. and Sansó, B. (2007). Bayesian mixture modeling for spatial Poisson process intensities, with

applications to extreme value analysis. Journal of Statistical Planning and Inference, 137(10):3151–3163.

34

Krioukov, D. and Ostilli, M. (2013). Duality between equilibrium and growing networks. Physical Review

E, 88(2):022808. 49, 52, 53

Krivitsky, P. N. and Handcock, M. S. (2008). Fitting position latent cluster models for social networks with

latentnet. Journal of Statistical Software, 24. 99

Krivitsky, P. N., Handcock, M. S., Raftery, A. E., and Hoff, P. D. (2009). Representing degree distributions,

clustering, and homophily in social networks with latent cluster random effects models. Social networks,

31(3):204–213. 99, 127

Laub, P. J., Taimre, T., and Pollett, P. K. (2015). Hawkes processes. arXiv preprint arXiv:1507.02822. 4, 6

Laurent, B. and Massart, P. (2000). Adaptive estimation of a quadratic functional by model selection. Annals

of Statistics, pages 1302–1338. 70

Ledoux, M. and Talagrand, M. (1991). Probability in Banach Spaces: Isoperimetry and Processes. Springer-

Verlag, Berlin. 71, 72

Leimkuhler, B. and Reich, S. (2004). Simulating hamiltonian dynamics, volume 14. Cambridge university

press. 104

Lijoi, A., Nipoti, B., and Prünster, I. (2014). Bayesian inference with dependent normalized completely

random measures. Bernoulli, 20(3):1260–1291. 34

Linderman, S. and Adams, R. (2014). Discovering latent network structure in point process data. In

International Conference on Machine Learning, pages 1413–1421. 165

Linderman, S., Adams, R. P., and Pillow, J. W. (2016). Bayesian latent structure discovery from multi-

neuron recordings. In Advances in neural information processing systems, pages 2002–2010. xix, 94, 100,

136, 137, 139, 141, 148, 149, 157, 158, 159, 161, 162, 163, 165, 166

176

Livingstone, S., Betancourt, M., Byrne, S., Girolami, M., et al. (2019). On the geometric ergodicity of

hamiltonian monte carlo. Bernoulli, 25(4A):3109–3138. 112

Lloyd, J. R., Orbanz, P., Ghahramani, Z., and Roy, D. M. (2012). Random function priors for exchangeable

arrays with applications to graphs and relational data. In Bartlett, P., Pereira, F. C. N., Burges, C. J. C.,

Bottou, L., and Weinberger, K. Q., editors, Advances in Neural Information Processing Systems 25 [NIPS

2012], pages 1007–1015. Curran Associates. 3

Ma, Z. and Ma, Z. (2017). Exploration of large networks via fast and universal latent space model fitting.

arXiv preprint arXiv:1705.02372. 58

MacEachern, S. N. (2000). Dependent Dirichlet processes. Unpublished manuscript, Department of Statistics,

The Ohio State University, pages 1–40. 34

Maclaurin, D. and Adams, R. P. (2015). Firefly Monte Carlo: Exact MCMC with subsets of data. In

International Joint Conference on Artificial Intelligence. 95, 104, 107

Mangoubi, O. and Smith, A. (2017). Rapid mixing of hamiltonian monte carlo on strongly log-concave

distributions. arXiv preprint arXiv:1708.07114. 112

Mangoubi, O. and Smith, A. (2019). Mixing of hamiltonian monte carlo on strongly log-concave distributions

2: Numerical integrators. In The 22nd International Conference on Artificial Intelligence and Statistics,

pages 586–595. 112

Mannseth, J., Kleppe, T. S., and Skaug, H. J. (2016). On the application of higher order symplectic

integrators in hamiltonian monte carlo. arXiv preprint arXiv:1608.07048. 104

McFarland, D. D. and Brown, D. J. (1973). Social distance as a metric: A systematic introduction to smallest

space analysis. In Laumann, E. O., editor, Bonds of Pluralism: The Form and Substance of Urban Social

Networks, pages 213–253. John Wiley, New York. 51

Meester, R. and Roy, R. (1996). Continuum Percolation. Cambridge University Press, Cambridge. 48, 52,

64

Mitchell, T. J. and Beauchamp, J. J. (1988). Bayesian variable selection in linear regression. Journal of the

american statistical association, 83(404):1023–1032. 137, 148

Møller, J., Syversveen, A. R., and Waagepetersen, R. P. (1998). Log Gaussian Cox processes. Scandinavian

Journal of Statistics, 25(3):451–482. 35

Murray, I., Adams, R., and MacKay, D. (2010). Elliptical slice sampling. In Proceedings of the Thirteenth

International Conference on Artificial Intelligence and Statistics, pages 541–548. 26, 39, 115

177

Neal, R. M. (2003). Slice sampling. Annals of statistics, pages 705–741. 26, 38, 39

Neal, R. M. (2011). MCMC using Hamiltonian dynamics, chapter 5. 95, 101, 102, 136, 150, 166

Newman, M. E. (2002). Spread of epidemic disease on networks. Physical review E, 66(1):016128. 93

Newman, M. E. J. (2003). The structure and function of complex networks. SIAM Review, 45:167–256. 47

Newman, M. E. J. (2010). Networks: An Introduction. Oxford University Press, Oxford, England. 3, 48

Nishimura, A. and Suchard, M. A. (2018). Prior-preconditioned conjugate gradient for accelerated gibbs

sampling in” large n & large p” sparse bayesian logistic regression models. arXiv preprint arXiv:1810.12437.

136

Nystrom, N. A., Levine, M. J., Roskies, R. Z., and Scott, J. R. (2015). Bridges: a uniquely flexible hpc

resource for new communities and data analytics. In Proceedings of the 2015 XSEDE Conference: Scientific

Advancements Enabled by Enhanced Cyberinfrastructure, pages 1–8. 128, 164

Orbanz, P. and Roy, D. M. (2015). Bayesian models of graphs, arrays and other exchangeable random

structures. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37:437–461. 3, 48

Pakman, A. and Paninski, L. (2014). Exact hamiltonian monte carlo for truncated multivariate gaussians.

Journal of Computational and Graphical Statistics, 23(2):518–542. 104, 106

Palla, K., Caron, F., and Teh, Y. W. (2016). Bayesian nonparametrics for sparse dynamic networks.

Electronic pre-print, arXiv:1607.01624. 65

Papaspiliopoulos, O., Roberts, G. O., and Sköld, M. (2007). A general framework for the parametrization

of hierarchical models. Statistical Science, pages 59–73. 109

Park, M. and Pillow, J. W. (2011). Receptive field inference with localized priors. PLoS Comput Biol,

7(10):e1002219. 148

Park, T. and Casella, G. (2008). The bayesian lasso. Journal of the American Statistical Association,

103(482):681–686. 148

PCAST (2016). Report to the President, Forensic Science in Criminal Courts: Ensuring Scientific Validity

of Feature-comparison Methods. Executive Office of the President of the United States, President’s Council

of Advisors on Science and Technolgy. 11, 13, 17, 31

Penrose, M. (2003). Random Geometric Graphs. Oxford University Press, Oxford. 52

Penrose, M. D. (1991). On a continuum percolation model. Advances in Applied Probability, 23:536–556. 52

178

Petraco, N. D., Gambino, C., Kubic, T. A., Olivio, D., and Petraco, N. (2010). Statistical discrimination

of footwear: a method for the comparison of accidentals on shoe outsoles inspired by facial recognition

techniques. Journal of Forensic Sciences, 55(1):34–41. 12, 17

Piironen, J., Vehtari, A., et al. (2017). Sparsity information and regularization in the horseshoe and other

shrinkage priors. Electronic Journal of Statistics, 11(2):5018–5051. 150

Pillow, J. W. and Scott, J. (2012). Fully bayesian inference for neural models with negative-binomial spiking.

In Advances in neural information processing systems, pages 1898–1906. 158, 166

Pillow, J. W., Shlens, J., Paninski, L., Sher, A., Litke, A. M., Chichilnisky, E., and Simoncelli, E. P.

(2008). Spatio-temporal correlations and visual signalling in a complete neuronal population. Nature,

454(7207):995. 139, 160

Plummer, M., Best, N., Cowles, K., and Vines, K. (2006). Coda: convergence diagnosis and output analysis

for mcmc. R news, 6(1):7–11. 112

Polson, N. G., Scott, J. G., and Windle, J. (2013). Bayesian inference for logistic models using pólya–gamma

latent variables. Journal of the American statistical Association, 108(504):1339–1349. 136, 158

Raftery, A. E., Niu, X., Hoff, P. D., and Yeung, K. Y. (2012). Fast inference for the latent space network

model using a case-control approximate likelihood. Journal of Computational and Graphical Statistics,

21(4):901–919. 94, 99, 100

Ramirez, A. D. and Paninski, L. (2014). Fast inference in generalized linear models via expected log-

likelihoods. Journal of computational neuroscience, 36(2):215–234. 136

Rasmussen, C. E. (2000). The infinite Gaussian mixture model. In Advances in Neural Information Processing

Systems, pages 554–560. 19

Rastelli, R. (2018). The sparse latent position model for nonnegative weighted networks. arXiv preprint

arXiv:1808.09262. 50

Rastelli, R., Friel, N., and Raftery, A. E. (2016). Properties of latent variable network models. Network

Science, 4(4):407–432. 62, 95, 97, 127

Rastelli, R., Maire, F., and Friel, N. (2018). Computationally efficient inference for latent position network

models. arXiv preprint arXiv:1804.02274. 94, 100

Ravikumar, P., Wainwright, M. J., Raskutti, G., Yu, B., et al. (2011). High-dimensional covariance estimation

by minimizing `1-penalized log-determinant divergence. Electronic Journal of Statistics, 5:935–980. 89

179

Richetelli, N., Lee, M. C., Lasky, C. A., Gump, M. E., and Speir, J. A. (2017a). Classification of footwear

outsole patterns using Fourier transform and local interest points. Forensic Science International, 275:102–

109. 9

Richetelli, N., Nobel, M., Bodziak, W. J., and Speir, J. A. (2017b). Quantitative assessment of similarity

between randomly acquired characteristics on high quality exemplars and crime scene impressions via

analysis of feature size and shape. Forensic Science International, 270:211–222. 13

Rieke, F., Warland, D., Van Steveninck, R. D. R., Bialek, W. S., et al. (1999). Spikes: exploring the neural

code, volume 7. MIT press Cambridge. 136

Ripley, B. D. (2009). Stochastic simulation, volume 316. John Wiley & Sons. 112, 159

Roberts, G., Rosenthal, J., et al. (1997). Geometric ergodicity and hybrid markov chains. Electronic

Communications in Probability, 2:13–25. 112

Roberts, G. O., Rosenthal, J. S., et al. (2001). Optimal scaling for various metropolis-hastings algorithms.

Statistical science, 16(4):351–367. 100

Rocha, I., Janssen, J., and Kalyaniwalla, N. (2017). Recovering the structure of random linear graphs. arXiv

preprint arXiv:1704.03189. 58

Ročková, V. and George, E. I. (2018). The spike-and-slab lasso. Journal of the American Statistical

Association, 113(521):431–444. 148

Rodriguez, A., Dunson, D. B., and Gelfand, A. E. (2008). The nested Dirichlet process. Journal of the

American Statistical Association, 103(483):1131–1154. 34

Rosenthal, J. S. (2017). Simple confidence intervals for mcmc without clts. Electron. J. Statist., 11(1):211–

214. 112

Sachs, M., Sen, D., Lu, J., and Dunson, D. (2020). Posterior computation with the gibbs zig-zag sampler.

arXiv preprint arXiv:2004.04254. 142, 165

Salter-Townshend, M. and McCormick, T. H. (2017). Latent space models for multiview network data. The

annals of applied statistics, 11(3):1217. 100

Salter-Townshend, M. and Murphy, T. B. (2013). Variational bayesian inference for the latent position

cluster model for network data. Computational Statistics & Data Analysis, 57(1):661–671. 94

Schweinberger, M., Krivitsky, P. N., and Butts, C. T. (2017). Foundations of finite-, super-, and infinite-

population random graph inference. Electronic pre-print, arxiv:1707.04800. 50

180

Seginer, Y. (2000). The expected norm of random matrices. Combinatorics, Probability and Computing,

9:149–166. 80

Sen, D., Sachs, M., Lu, J., and Dunson, D. (2019). Efficient posterior sampling for high-dimensional

imbalanced logistic regression. arXiv preprint arXiv:1905.11232. 136, 137, 142, 146, 147

Sewell, D. K. and Chen, Y. (2016). Latent space models for dynamic networks with weighted edges. Social

Networks, 44:105–116. 3

Shahbaba, B., Lan, S., Johnson, W. O., and Neal, R. M. (2014). Split Hamiltonian Monte Carlo. Statistics

and Computing, 24(3):339–349. 95, 104

Shalizi, C. R. and Asta, D. (2017). Consistency of maximum likelihood embedding for continuous latent-space

network models. Submitted. 57, 58

Shalizi, C. R. and McFowland III, E. (2016). Estimating causal peer influence in homophilous social networks

by inferring latent locations. arXiv preprint arXiv:1607.06565. 94, 98

Shalizi, C. R. and Rinaldo, A. (2013). Consistency under sampling of exponential random graph models.

Annals of Statistics, 41:508–535. 50, 66

Sheets, H. D., Gross, S., Langenburg, G., Bush, P. J., and Bush, M. A. (2013). Shape measurement tools

in footwear analysis: a statistical investigation of accidental characteristics over time. Forensic Science

International, 232(1-3):84–91. 13

Shor, Y., Wiesner, S., Tsach, T., Gurel, R., and Yekutieli, Y. (2017). Inherent variation in multiple shoe-sole

test impressions. Forensic Science International. 10, 13

Shortreed, S., Handcock, M. S., and Hoff, P. (2006). Positional estimation within a latent space model for

networks. Methodology, 2(1):24–33. 106, 113

Skerrett, J., Neumann, C., and Mateos-Garcia, I. (2011). A Bayesian approach for interpreting shoemark

evidence in forensic casework: Accounting for wear features. Forensic Science International, 210(1-3):26–

30. 10, 12

Snijders, T. A. B. (2010). Conditional marginalization for exponential random graph models. Journal of

Mathematical Sociology, 34:239–252. 50

Song, D., Wang, H., Tu, C. Y., Marmarelis, V. Z., Hampson, R. E., Deadwyler, S. A., and Berger, T. W.

(2013). Identification of sparse neural functional connectivity using penalized likelihood estimation and

basis functions. Journal of computational neuroscience, 35(3):335–357. 139

181

Sorokin, P. A. (1927). Social Mobility. Harper and Brothers, New York. 51

Speir, J. A., Richetelli, N., Fagert, M., Hite, M., and Bodziak, W. J. (2016). Quantifying randomly acquired

characteristics on outsoles in terms of shape and position. Forensic science international, 266:399–411.

11, 17

Spencer, N. A. (2020). Latentpositionnetworks. https://github.com/neilspencer/

LatentPositionsMCMC. 128

Spencer, N. A. and Shalizi, C. R. (2019). Projective, sparse, and learnable latent position network models.

arXiv preprint arXiv:1709.09702. 97, 126, 127

Spillane, J. P. and Hopkins, M. (2013). Organizing for instruction in education systems and school

organizations: How the subject matters. Journal of Curriculum Studies, 45(6):721–747. 120

Spillane, J. P., Hopkins, M., and Sweet, T. M. (2018). School district educational infrastructure and change

at scale: Teacher peer interactions and their beliefs about mathematics instruction. American educational

research journal, 55(3):532–571. 97, 120

Srihari, S. N. and Su, C. (2011). Generative models and probability evaluation for forensic evidence. In

Pattern Recognition, Machine Intelligence and Biometrics, pages 533–559. Springer. 12

Srihari, S. N. and Tang, Y. (2014). Computational methods for the analysis of footwear impression evidence.

In Computational Intelligence in Digital Forensics: Forensic Investigation and Applications, pages 333–

383. Springer. 9

Stone, R. S. (2006). Footwear examinations: mathematical probabilities of theoretical individual

characteristics. Journal of Forensic Identification, 56(4):577. 17, 27, 30

Sussman, D. L., Tang, M., and Priebe, C. E. (2014). Consistent latent position estimation and vertex

classification for random dot product graphs. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 36:48–57. 58, 86

Sweet, T. and Adhikari, S. (2020). A latent space network model for social influence. Psychometrika, pages

1–24. 94, 97, 99

Sweet, T. M., Thomas, A. C., and Junker, B. W. (2013). Hierarchical network models for education research:

Hierarchical latent space models. Journal of Educational and Behavioral Statistics, 38(3):295–318. 94

Taddy, M. A. (2010). Autoregressive mixture models for dynamic spatial Poisson processes: Application to

tracking intensity of violent crime. Journal of the American Statistical Association, 105(492):1403–1417.

34

182

https://github.com/neilspencer/LatentPositionsMCMC
https://github.com/neilspencer/LatentPositionsMCMC

Teh, Y. W., Jordan, M. I., Beal, M. J., and Blei, D. M. (2005). Sharing clusters among related groups:

Hierarchical Dirichlet processes. In Advances in Neural Information Processing Systems, pages 1385–1392.

34

Thompson, W. C. and Newman, E. J. (2015). Lay understanding of forensic statistics: Evaluation of random

match probabilities, likelihood ratios, and verbal equivalents. Law and human behavior, 39(4):332. 10

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical

Society. Series B (Methodological), pages 267–288. 148

Tierney, L. (1994). Markov chains for exploring posterior distributions. the Annals of Statistics, pages

1701–1728. 112

Todeschini, A., Miscouridou, X., and Caron, F. (2016). Exchangeable random measures for sparse and

modular graphs with overlapping communities. Electronic pre-print, arXiv:1602.02114. 65

Tokdar, S. T. and Kass, R. E. (2010). Importance sampling: a review. Wiley Interdisciplinary Reviews:

Computational Statistics, 2(1):54–60. 25

Towns, J., Cockerill, T., Dahan, M., Foster, I., Gaither, K., Grimshaw, A., Hazlewood, V., Lathrop, S.,

Lifka, D., Peterson, G. D., et al. (2014). Xsede: Accelerating scientific discovery computing in science &

engineering, 16 (5): 62–74, sep 2014. URL https://doi. org/10.1109/mcse. 128

Trippe, B., Huggins, J., Agrawal, R., and Broderick, T. (2019). LR-GLM: High-dimensional Bayesian

inference using low-rank data approximations. In Chaudhuri, K. and Salakhutdinov, R., editors,

Proceedings of the 36th International Conference on Machine Learning, volume 97 of Proceedings of

Machine Learning Research, pages 6315–6324, Long Beach, California, USA. PMLR. 136

Truccolo, W., Eden, U. T., Fellows, M. R., Donoghue, J. P., and Brown, E. N. (2005). A point process

framework for relating neural spiking activity to spiking history, neural ensemble, and extrinsic covariate

effects. Journal of neurophysiology, 93(2):1074–1089. 6, 136, 137, 139, 140

Tsybakov, A. B. (2008). Introduction to Nonparametric Estimation. Springer Verlag, New York. Translated

by Vladimir Zaiats. 90

Turnbull, K. (2020). Advancements in latent space network modelling. PhD thesis, Lancaster University. 127

Veitch, V. and Roy, D. M. (2015). The class of random graphs arising from exchangeable random measures.

Electronic pre-print, arXiv:1512.03099. 48, 63, 65

183

Vinci, G., Ventura, V., Smith, M. A., and Kass, R. E. (2018). Adjusted regularization in latent graphical

models: Application to multiple-neuron spike count data. The annals of applied statistics, 12(2):1068.

136, 141, 148

Wasserman, S. and Faust, K. (1994). Social Network Analysis: Methods and Applications. Cambridge

University Press, Cambridge, England. 51

Wilson, H. D. (2012). Comparison of the individual characteristics in the outsoles of thirty-nine pairs of

Adidas supernova classic shoes. Journal of Forensic Identification, 62(3):194. 17

Wu, A., Koyejo, O., and Pillow, J. (2019). Dependent relevance determination for smooth and structured

sparse regression. Journal of Machine Learning Research, 20(89):1–43. 136, 141, 148

Wyatt, J. M., Duncan, K., and Trimpe, M. A. (2005). Aging of shoes and its effect on shoeprint impressions.

Journal of Forensic Identification, 55(2):181. 13

Xie, F. and Levinson, D. (2009). Modeling the growth of transportation networks: A comprehensive review.

Networks and Spatial Economics, 9(3):291–307. 93

Xu, J. (2017). Rates of convergence of spectral methods for graphon estimation. arXiv preprint

arXiv:1709.03183. 58

Yao, Y., Vehtari, A., Simpson, D., and Gelman, A. (2018). Yes, but did it work?: Evaluating variational

inference. arXiv preprint arXiv:1802.02538. 137

Yekutieli, Y., Shor, Y., Wiesner, S., and Tsach, T. (2012). Expert assisting computerized system for

evaluating the degree of certainty in 2d shoeprints. Technical report, Technical report, Technical Report,

TP-3211, National Institute of Justice. 10, 11, 14, 17, 27, 30

Yu, Y., Wang, T., and Samworth, R. J. (2014). A useful variant of the Davis–Kahan theorem for statisticians.

Biometrika, 102(2):315–323. 49, 74

Zoltowski, D. and Pillow, J. W. (2018). Scaling the poisson glm to massive neural datasets through

polynomial approximations. In Advances in Neural Information Processing Systems, pages 3517–3527.

136, 148, 166

184

	List of Tables
	List of Figures
	Introduction
	Background
	Latent Variable Network Models and Graphons
	Point Processes and Marked Point Processes

	A Bayesian Hierarchical Model for Evaluating Forensic Footwear Evidence
	Introduction
	Preliminaries
	Random Match Probabilities
	JESA
	Existing Models for the Distribution of Accidentals
	Random Vectors of Dependent Probability Measures

	Model
	Parameterization of s
	Model Summary and Prior

	Computation
	Computing the Posterior for
	Computing Marginal Densities via Importance Sampling

	Comparisons to Competitors and Summary of Fit
	Comparison to Competitors
	Summary of Inferred Model Parameters

	Discussion
	Additional Details
	Discretization and Kernel Choice
	Additional Related Work
	Details of Parameterization of w
	Details of Marginalization of s
	Details of MCMC Proposal Steps
	Importance Sampling Strategy

	Projective, Sparse, and Learnable Latent Position Network Models
	Introduction
	Background
	Sparsity
	Projectivity
	Latent Position Network Models
	Exchangeable Latent Position Network Models
	Poisson Random Connection Model

	New Framework
	Sparse Latent Position Model
	Rectangular Latent Position Model

	Learnability
	Preliminaries
	Related Work on Learnability
	Learnability Results

	Comparisons and Remarks
	Sparse Graphon-based Latent Position Models
	Comparison with the Graphex Framework
	Remarks

	Proofs
	Intermediary Results
	Projectivity Proofs
	Sparsity Proofs
	Learnability Proofs
	Towards a Negative Learnability Result

	Faster MCMC for Gaussian Latent Position Network Models
	Introduction
	Preliminaries
	Latent Position Network Models
	Bayesian Inference for LPMs
	Hamiltonian Monte Carlo

	New Sampling Methodology
	Split Hamiltonian Monte Carlo
	Firefly Sampling of Non-Edges
	Bayesian Inference of the Parameters of the Link Function

	Empirical Studies
	Measuring relative efficiency of MCMC Algorithm for LPMs
	Study 1: Synthetic Data
	Study 2: Network of Information-sharing in a School District

	Concluding Remarks
	Additional Details
	Computational Details of Experiments
	Full Conditional Distributions
	Additional Figures and Tables

	Bayesian Inference for Neural Spike Train Models via the Spike and Slab Zigzag Process
	Introduction
	Background
	Notation
	Spike Trains as Logistic Regression
	The Zigzag Process

	A Zigzag Process for Neural Spike Trains
	Defining the Zigzag Bounce Rate
	Spike-and-slab prior
	Bounce Time Simulation

	Efficiency Analysis
	How to Analyze Efficiency?
	Synthetic Experiments

	Conclusion and Future Work

	Bibliography

