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Abstract
As large-scale neural recordings become common, many neuroscientific inves-

tigations are focused on identifying functional connectivity from spatio-temporal
measurements in two or more brain areas. Spatio-temporal data in neural recordings
can be viewed as matrix-variate data, where the first dimension is time and the sec-
ond dimension is space. A matrix-variate Gaussian Graphical model (MGGM) can
be applied to study the conditional dependence between different nodes under the
assumption that the overall covariance is the tensor product of the spatial covariance
and temporal covariance. This provides a way to study functional connectivity via
the spatial component of the precision matrix. We develop and study penalized
regression methods that enable us to do statistical inference and simultaneous hy-
pothesis testing for multi-session local field potential data. Our approach includes
four innovations. First, we provide a simultaneous testing framework for MGGM
with a high-dimensional bootstrap technique, which enables us to test the strength of
neural connectivity between two brain areas. Second, because estimation of spatial
dependence also relies on an accurate estimate for temporal covariance structure,
we assume autoregressive temporal dependence and thereby provide estimation of
the temporal precision matrix based on a Cholesky factor decomposition. Third,
for spatial precision matrix estimation and inference, we implement group Lasso to
jointly estimate multi-graphs and study a new statistic to aggregate information from
multiple sessions to improve inference. Finally, using our matrix-variate assumption
for high-dimensional data, we develop a novel cross-region dynamic factor analysis
model to estimate dynamic neural connectivity across multiple brain regions.
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Chapter 1

Background

Neurons communicate with each other via action potentials, which are rapid electrical events
and discharges. As large neural recordings become common, many neuroscientific investigations
are focused on identifying associations from spatio-temporal measurements within one area
and across different brain areas [62]. These studies attempt to answer the question whether the
neural activity changes across different time stages and experimental conditions. Local Field
Potentials (LFPs) are electrical signals generated by the synchronous electrical activity of the
neurons near the electrodes, and LFP is believed to be correlated with subthreshold membrane
potential fluctuations [45][11][29]. Past work reveals that LFP is also highly correlated with
network fluctuations in single neuron spiking activity, and decodes spike–stimulus relationship
[33]. As recent progress in technology enables neural measurements with finer resolution and
larger volumes [56], it also poses new challenges to develop tools to analyze the data with high-
dimensional statistics. LFP data usually consists of multi-electrode measurements spanning over
a certain time range. For example, we have a three-dimensional dataset with 3000 trials, 192
electrodes and 800 timeticks (800ms). The problem is to characterize statistical associations
which we call connectivity, examine and test changes in connectivity within brain areas and
across brain areas. To make it even more challenging, the same experiment may be repeated
over multiple sessions (days) for one subject, which we call the multi-session data. To solve
this problem, we analyze spatial-temporal data under Matrix-variate Gaussian Graphical Model,
from both inference-focused side and estimation-focused side. For inference part, we develop a
Matrix-variate Gaussian Graphical Model and fit it using the regression-based approach [38][51],
and provide a simultaneous testing based on Gaussian approximation bootstrap method proposed
by [17]. We further formulated the multi-session data inference into a multi-graph inference
problem, and provide a novel estimator for multiple Matrix-variate Gaussian Graphical Model.
For estimation part, we propose a novel Latent Dynamic Factor Analysis for High-dimensional
(LDFA-H) data combining flavors of both canonical correlation analysis and factor analysis to
improve the estimation of cross-region dynamic connectivity, which not only recovers dynamic
cross-region connectivity, but also retrieves low-dimensional temporal factors and spatial factor
loadings for neural population.
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1.1 Experiment

In our thesis, we analyze data from multiple LFP recordings in visual cortex area V4 (V4)
and prefrontal cortex (PFC) which are believed to involved in visual processing. V4 is a mid-
level visual region in visual-processing where inputs from earlier regions are further processed
and transmitted to later regions. Effects of attention on neuronal responses of visual cortex
are highlighted by several electrophysiological studies [46][4]. Moreover, PFC has long been
considered to be involved with control of attention and response modulation in posterior visual
areas. The dataset was collected by the Smith Lab at Carnegie Mellon Neuroscience Institute
during an experiment on the neurophysiology of attention [32]. During the experiment, a monkey
is asked to perform a memory-guided saccade task. The timeline of the experiment is stated as
follows:

• The animal fixated on a point at the center of the screen for 200ms.
• A circular target appeared at one of eight randomly chose locations of the screen for 50ms.
• The animal had to remember the location of the target while maintaining fixation for a delay

period of 500ms.
• After the delay period, the fixation point was turned off, and the monkey had to make a

saccade to remember the location of the target.

Local field potentials were measured simultaneously from multiple electrodes in PFC and V4
while monkey was performing the task. After data preprocessing, only successful trials are kept
in the dataset. There are 2000 trials, 192 electrodes (96 in PFC and 96 in V4) and 750 timeticks
(750ms long) in total. There is also the location information for the electrodes in each area. A
subset of the data containing the first trial is shown in Figure 1.1. The measurement covered all
experimental stages described as above and an additional 50ms after the delay period. The color
in the heatmap corresponds to the intensity of LFP signal, and V4 seems to be more active than
PFC.

The same experiment session might be repeated by multiple times as well, which results in
multi-session LFP recordings. In this thesis, we obtain multi-session dataset from the Smith Lab,
where during each session the animal is performing the same saccade task as before. The complete
dataset contains 5 consecutive sessions, 2000 trials, 192 electrodes and 750 timeticks.

1.2 Data Analysis Goals

For this dataset, we are interested in the following questions:
• Q1. How should we characterize the connectivity among large number of LFPs while taking

advantage of their spatio-temporal structures?
• Q2. How strong is the connectivity among electrodes within PFC and V4? How does

connectivity change when the animal is under different conditions?
• Q3. How strong is the connectivity across these two areas?
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Figure 1.1: Experimental data from monkey saccade task. (a) Primate cortical areas of the
attention network [53]. Pink areas are the approximate locations of attention control areas while
blue areas are the approximate locations of visual areas. (b) Utah array with 10x10 recording
electrodes with 400µm interval [43]. For each region, one Utah array with 96 electrodes is
implanted. (c) LFPs were recorded simultaneously from V4 and PFC. The X axis is time in
millisecond, while Y is the electrode. Time is aligned at t = 0 for each trial when the circular
target just appeared. The total length is 750ms covering all experimental stages.

1.3 Gaussian Graphical Model
The vector-variate Gaussian Graphical model has been widely applied to high dimensional data in
scientific studies to explore the conditional dependence relationship among entries of a random
vector, including the neural data [25, 60]. For a random vector Z ∈ Rp, we can define a
undirected graph G = (V,E) associated with Z, where the set V contains p nodes each of which
corresponds to an entry in Z, and the set E consists of all edges among V . Specifically, there is
no edge between two nodes in V if and only if the corresponding two variables are conditionally
independent given the rest of variables in Z. For a Gaussian vector, one can assess the graph
structure, i.e., the set E, in terms of the precision matrix, the inverse of covariance matrix of Z
[34] because two variables are conditionally independent if and only if their partial correlation is
zero. Now consider that we have n samples {x(i)}ni=1 where x(i) ∼ N(0,Σ); the log-likelihood
can be written as

l(Ω) =
1

2
log det(Ω)− 1

2
tr(SΩ), (1.1)

where the sample covariance matrix S = 1
n

∑n
i=1 x

(i)(x(i))
′ .

3



To answer substantive scientific questions Q2-Q3, estimation and inference for the entry in
the precision matrix are required. Methods to estimate the sparse precision matrix for normal
distribution are well-studied in recent years [44][66]. There are two main categories of method for
sparse precision matrix estimation: penalized likelihood method [1] and regression based method
[38][51].

The penalized likelihood method is a popular method for Gaussian Graphical Model estimation
and inference. This method adds a penalty term in addition to Equation 1.1. For example, in
Graphical Lasso [26], the goal is to maximize the following likelihood function

l(Ω) = log det(Ω)− tr(SΩ) + ρ‖Ω‖1,

where ρ is the tuning parameter. For statistical inference, [31] proposed a method to estimate
confidence band for entries in sparse precision matrices, which guaranteed asymptotic normality
for each edge. However, since the objective function is non-convex, the optimization approach
is theoretically less appealing; moreover, methods based on optimization will usually require
the irrepresentability condition, which is difficult to validate. We adapted the regression-based
approach in our work [38][51]. Assuming 1 ≤ i ≤ p, 1 ≤ j ≤ p, we consider the regression
model as follows,

Xi = X−iβi + εi =
∑
j 6=i

Xjβi,j + εi,

where βi,j = −Ωij
Ωii

. It follows from the linear regression theory that Cov(εi, εj) =
Ωij

ΩiiΩjj
.

Therefore, we can estimate the entries in precision matrix with the regression residuals. Following
this regression approach, the work of [49] studied the estimation of c-level partial correlation
graphs in ordinary graphical models where partial correlations are larger than a pre-specified
constant c. Moreover, the work of [15] studied the construction for simultaneous confidence
regions for the precision matrix in a Gaussian graphical model.

Because LFP data involve both space (electrodes on an array) and time, we replace the
Gaussian graphical model by a Matrix-variate Graphical Model (MGGM). Here, the recordings
from each trial form a p × q matrix, where p is the number of time points and q is the number
of electrodes. MGGM has become popular in analyzing spatio-temporal data from biomedical
imaging and financial markets [68][16].

1.4 Matrix-variate Graphical Model
We let vec(X) ∈ Rpq×1 denote the vectorization of matrix X , ⊗ as the Kronecker product. It
follows that

X ∼ N(µ,U ⊗ V )

if and only if
vec(X

′
) ∼ N(vec(µ

′
),U ⊗ V ), (1.2)

with mean µ ∈ Rp×q, row covariance matrixU ∈ Rp×p, and column covariance matrix V ∈ Rq×q.
By fitting our data with MGGM, we assume that the trials are repeated under the same condition,
the LFP temporal correlation is consistent across space and the spatial correlation is consistent
across time.
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We can design our hypothesis testing for each edge (Q2) by deriving the corresponding
asymptotic distribution for the entry in spatial precision matrix. Testing a set of edges is more
theoretically challenging. However, there are many pioneer works focusing on the graph estimation
[37][64][67][68], and interesting recent works on inference for Matrix-variate Gaussian graphical
model using the regression based approach.

The work of [16] developed a multiple testing framework for support recovery in MGGM, and
provided theoretical analysis for asymptotic normality and false discovery rate (FDR) control. The
work of [63] developed a paired test of matrix graphs to infer brain connectivity with correlated
samples, and similarly, their testing procedure was based on multiple testing and FDR control.
We are interested, however, in deriving a single statistic to simultaneously test the conditional
dependence between subgroups of nodes.

The most relevant work is [61]. The authors proposing a multiple testing framework to identify
conditionally independent pairs, and developed another global test to examine whether all spatial
locations are conditionally dependent. The major limitation is that the limiting distribution of test
statistic is Gumbel distribution, which has a notoriously slow rate of convergence approximation
[39]. Besides, the global test included the tests of all off-diagonal edges in the graph, while in our
design the subset of edges can be of arbitrary size. Finally, most of the previous works will either
assume that the temporal covariance is known, or only estimate them with sparsity assumption,
while neglecting the decaying autocorrelation structure of the temporal signals.

Therefore, to handle Q2, we formulate the simultaneous testing procedure using Gaussian
approximation bootstrap method proposed by [17]. We can test the strength of neural connectivity
between two brain areas by testing the corresponding subset of edges in precision matrix. With
testing a single edge and testing a group of edges solved under MGGM model, we will be able
to identify the change of connectivity by deriving the asymptotic distribution of the difference
between test statistics. We noticed that previous methods analyzing LFP signals such as Granger
Causality model the temporal data as an vector auto-regressive model [55], and accordingly, we
propose a Cholesky factor decomposition approach [5] which imposes a non-stationary condition
for temporal precision matrix estimation, while still assuming sparsity for spatial precision matrix
estimation.

For multi-session data, each session can be viewed as a single matrix-variate graph. However,
naively applying the method developed for single graph to multi-session data may lose information
about the common structures shared across different graphs. Especially, since the task and the
subject are the same across all sessions, we can assume that the structure of the connectivity (the
sign of edge between two particular electrodes in spatial precision matrices) remains the same,
while the amplitude might vary across different graphs. Therefore, to fully address Q2 in such
dataset, a novel multiple MGGM estimation and inference method is needed.

Inference under multiple matrix-variate graphs is missing in literature. The most relevant
work is by [68], where the main focus is on multiple matrix-variate graph estimation. The
authors established a non-convex optimization method with sparse and group Lasso penalization
to estimate multiple matrix-variate Gaussian graphs for matrix-normal distributed data. They
further designed an efficient optimization algorithm, and established the asymptotic properties
of the estimator under special scenarios with sparse penalty or group penalty only. However,
since this work was based on non-convex optimization method, stronger assumptions are needed
to guarantee convergence of estimation, and inference remains to be unknown under such a
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formulation. Besides, estimation of multiple ordinary Gaussian graphical models based on
optimization method was studied by [12, 20, 36]. On the other hand, [48] proposed Bayesian
inference on multiple Gaussian graphical models. A Markov random field prior is implemented to
encourages common edges across graphs, and a spike-and-slab prior is placed on the parameters
to learn the groups which have a shared structure. Therefore, this model can learn the information
between sample groups, and measure the relative network similarity across groups effectively. In
contrast, our new inference framework is motivated by inference with regression based method
in multiple ordinary networks. [50] proposed a large-scale tuning-free heterogeneous inference
framework with on chi-based and linear functional-based tests under ordinary Gaussian graphical
models. Especially, the linear functional-based test is optimal in achieving testable region
boundary, and the sample size requirement for the linear functional-based test is minimal. With
regression method based on Group Lasso, we adapt linear functional-based test into Matrix-variate
graph setting, and extend the simultaneous testing under single-graph case to multiple-graph
case. We show that in both theory and simulation, our method outperforms baseline methods
[12, 36, 50, 68] with better estimation accuracy and test power.

However, when moving from Q2 to Q3 and considering cross-region inference, one single
matrix-variate graphical model applying to all regions may be too stringent. The Kronecker
product assumption indicates that all electrodes share the same autocorrelation structure, which
barely holds for multiple brain regions. Therefore, to solve Q3, we move on with a more
complicated factor model which can capture cross-region dynamic connectivity.

1.5 Latent Dynamic Factor Analysis of High-Dimensional Neu-
ral Recordings

Estimating dynamic connectivity structure across regions, which is a major concern of Q3, can
be challenging due to the high dimensionality in spatial and temporal domain. Moreover, the
auto-correlation of noise in the measurements is usually strong, which may contaminate the cross-
region connectivity structure and make it difficult to detect. One simple yet popular approach is a
two-step approach, where researchers take averages over signals in each area and apply Granger
causality [55] to study information flow between regions[10]. However, taking simple averages
means losing information from each unique signal inside one area, especially considering the
scenario where a subset of signals in one region are positively correlated with those in the other
region, while the correlation between another subset of signals might be negative. In recent
years, people developed new method based on canonical correlation analysis (CCA) to handle
dynamic connectivity. Dynamic kernel-CCA (DKCCA) extends traditional CCA by implementing
a more flexible and computationally efficient kernel-based approach and allowing the correlation
structure dynamically changing over time [52]. Compared with other common cross-correlation
analysis method, DKCCA discovers a dynamic switch in the lead-lag relationship between
the hippocampus (HPC) and prefrontal cortex (PFC). [7] extended a parametric approach on
CCA to develop a model-based cross-region connectivity estimate DynaMICCS. Adopting a
Gaussian graphical model, the authors recapitulated cross-region connectivity in terms of partial-
correlation graphs. The most serious issue with CCA-based approach is that it fails to account
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for the contribution of the correlation structure from auto-correlated noise inside each region.
Without properly denoising the signal and smoothing the data, it is questionable whether the
cross-connectivity is contaminated or even obscured by the noise.

On the other hand, to study cross-connectivity, factor analysis model, and its dynamical
generalization, state space model draw more and more attention in neuroscience community over
recent years. Such models are shown to provide explainable low-dimensional representation, and
generate better characterization of the population activity than traditional two-stage approaches.
Gaussian Process Factor Analysis (GPFA) offers a flexible and stable framework for extracting
smooth low-dimensional latent factors [65]. Despite its popularity in neuroscience community,
GPFA fails to address the cross-region connectivity and lead-lag issues, thus becomes inappropri-
ate for analyzing large neural recordings containing measurements from multiple brain regions.
On the other hand, a state space model was proposed to tackle with cross-region dynamic connec-
tivity in magnetoencephalography (MEG) and electroencephalography (EEG) [62]. This model
characterizes the non-stationary dynamic dependence across regions of interest (ROIs) using
time-varying auto-regression, and the mean response of each ROI is encoded as the space variable.
While it addresses the cross-region dynamic connectivity to some extent, it remains to have several
serious issues. First, both auto-regressive assumption for factors and independent assumption for
noises appear to be rigid and limited, which barely hold under any realistic scenario. Second, the
model does not include sparsity-inducing regularization, therefore the number of parameters can
be large and the model can be under-determined under high-dimensional settings.

In this thesis, we propose a new model which uses probabilistic CCA to carry out an extension
of factor models, but the framework allows far richer spatiotemporal dependencies than is typically
assumed in GPFA, and it has been built to handle high-dimensional problems. Here, “spatial”
dependence refers to dependence among the various observational time series and, in the neural
context, this results from the spatial arrangement of the electrodes, each of which records one of
the time series. In the usual setup of GPFA, two reasonable simplifications are made: first, the
observation noise is assumed to be white and, second, the latent Gaussian processes are stationary.
Our approach relaxes these assumptions: We allow the observation noise to have spatiotemporal
dependence, which we have found more realistic, and we let the latent processes be non-stationary,
so their dependence can evolve dynamically, which is important in our applications because
cross-process dependence describes the sudden flow of information from one brain region to
another during short epochs. We thus call our method LDFA-H. These generalizations come at
a cost: we now have a high-dimensional time series problem within each brain region together
with a high-dimensional covariance structure. We solve these high-dimensional problems by
imposing sparsity of the dominant effects, building on related, but as yet unpublished work [7]
that treats the high-dimensional covariance structure in the context of observational white noise,
and by incorporating banded covariance structure as in [5]. In a simulation study, based on
realistic synthetic time series, we verify recovery of cross-region structure even when some of our
assumptions are violated, and even in the presence of high noise. We then apply the method to
our experimental data and find time-varying cross-region dependencies.

7



1.6 Organization of this Document
My thesis focus is on developing new inference and estimation method for spatial-temporal
neural data under the framework of matrix-variate Gaussian graphical models to study the neural
connectivity within area and cross area. In Chapter 2, I provide a procedure for multiple matrix-
variate graph estimation and inference based on regression method, which effectively addresses
Q1-Q2. In Chapter 3, for cross-area dynamic connectivity analysis, an estimation-focused factor
analysis model is designed to answer Q3.
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Chapter 2

Inference and Estimation in Multiple
Matrix-Variate Graphical Models

This chapter is taken from work submitted to Journal of the American Statistical Association in
2020 aside from minor changes for style consistency. I collaborated with Zhao Ren and Robert E.
Kass.

The primary goal of this chapter is to address Q2 – how strong the connectivity and change
of connectivity are within each brain area. We fit the spatio-temporal LFPs in each session with
a Matrix-variate Gaussian Graphical Model, as the spatial connectivity can be characterized by
spatial precision matrix. The multiple Matrix-variate Graphs are then estimated using Group
Lasso and we developed a new statistic which aggregates information across all sessions. Based
on the test statistic, the hypothesis testing framework for both single edge case and multiple edge
case are studied under multiple MGGMs. We further formulate Q2 into three types of hypothesis
tests as in Equation (2.1)-(2.3).

We consider d matrix-variate Gaussian graphs which encode neural connectivity patterns
among p time ticks and q spatial locations during d different experimental sessions. For each
dataset on session t, we have n independent and identically distributed (i.i.d) p × q matrix-
variate samples, X(1)

t ,...,X(nt)
t , following matrix-variate Gaussian distribution which is defined in

Equation (1.2). For any t ∈ [d] and i ∈ [nt],

X
(i)
t ∼ N(0,Ut ⊗ Vt).

Furthermore, letAt = U−1
t denote the row precision matrix, andBt = V −1

t denote column
precision matrix. It is easy to see thatX(i)

t ∼ N(0, (At ⊗Bt)
−1), which implies that the graph

structure is encoded byAt ⊗Bt. In particular, the spatial connectivity structure is the support of
the column precision matrixBt. Comparing with precision matrix, partial correlation is preferred
to characterize the magnitude of neural connectivity since it is invariant to scaling of variables.
For column precision matrix, we define the corresponding partial correlation for each entry (i, j)

at session t as ρtij = − btij
(btiibtjj)1/2

. We define D = {{X(i)
1 }n1

i=1, ..., {X
(i)
d }

nd
i=1} as the collection of

the full observations over these sessions.
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In neural data, as is shown later in our data analysis (Figure 2.5), usually all sessions share a
similar neural connectivity structure but the distributions of edge for each session may not be the
same. Therefore, it is reasonable to assumeBt’s may be different but share a similar support for
1 ≤ t ≤ d. Equivalently, denoting the joint spatial partial correlation vector of the pair (i, j) by
ρ0
ij = (ρ1ij, ρ2ij, · · · , ρdij)

′ , we expect that either ρ0
ij = 0 or it can be different from zero with

distinct nonzero entries. We are commonly interested in testing whether the connectivity between
a fixed pair of nodes or different regions exists across multiple sessions. In the single-edge test
scenario, for a pair (i, j), we are interested in testing the following null hypothesis,

H0,ij : ρ0
ij = 0. (2.1)

In the multiple edge test scenario, for a cross-region set S , we aim to test whether there is no edge
at all in S, which is stated as the following null hypothesis,

H0,S : ρ0
ij = 0, ∀(i, j) ∈ S. (2.2)

Notice that the single edge test can be treated as a special case of multiple edge test when
S = {(i, j)}. Moreover, we notice that partial correlation is considered to be closely related to
effective connectivity and can be viewed as a graphical representation for interactions in biological
system, such as neurons and genes [23, 41, 49]. Therefore, to study the strength of connectivity, a
more interesting and practical hypothesis test is proposed,

H ′0,S :
1

d

d∑
t=1

|ρtij| ≤ c, ∀(i, j) ∈ S, (2.3)

To address the above hypothesis tests effectively, our approach is based on the observation
that using the d-session data collectively can achieve better accuracy than estimating each graph
separately and combining the results naively. In this spirit, we assume that spatial precision
matrices share similar sparsity structure and temporal precision matrices are banded following
similar parametric space. Especially, for the spatial precision matrix, we also assume that the sign
of spatial connectivity does not change across d sessions, which is reasonable since the locations
of spatial nodes are fixed and the tasks the animal performs in each session are the same. The
precise definition can be found in Section 2.2.2.

Our new inference framework is motivated by the following works targeting to three different
aspects of our main goal. For testing the strength of conditional dependence, the work of [49]
studied the estimation of c-level partial correlation graphs in ordinary graphical models where
partial correlations are larger than a pre-specified constant c. For inference in multiple networks,
[50] proposed a large-scale tuning-free heterogeneous inference framework with on chi-based
and linear functional-based tests under ordinary Gaussian graphical models. Especially, the
linear functional-based test is optimal in achieving testable region boundary, and the sample size
requirement for the linear functional-based test is minimal. For simultaneous testing under MGGM,
the most relevant work is [61]. The authors proposed a multiple testing framework to identify
conditionally independent pairs, and developed another global test to examine whether all spatial
locations are conditionally dependent. The major limitation is that the limiting distribution of test
statistic is Gumbel distribution, which has a notoriously slow rate of convergence approximation

10



[39]. Besides, the global test includes the tests of all off-diagonal edges in the graph, while in our
design the subset of edges can be of arbitrary size.

In our work, we propose a three-step procedure targeting to the hypothesis tests in Equa-
tion (2.1)-(2.3). First, we estimate our spatial correlation matrix using residuals and coefficients
from group Lasso using data from all sessions, and reconstruct the spatial precision matrix and
partial correlation matrix. Second, we follow the modified Cholesky factor decomposition to
estimate the Frobenius norm of temporal covariance matrix for each graph separately. Finally,
based on the results from the previous two steps, we construct a new linear-functional test statistic,
which effectively address both single edge test and multiple edge test. The main contributions of
the paper are summarized as follows:
• For spatial partial correlation, by assuming the sign of connectivity invariant across multiple

graphs, we establish the theoretical guarantee of group Lasso to estimate multiple matrix-
variate graphs with high-dimensional multi-response regression. Such a joint-estimation
approach enjoys more efficiency and fewer samples when comparing with naive approach
which applies single matrix-variate graph method on each graph.
• For temporal covariance, most of the previous works will either assume that the temporal

covariance is known, or only estimate them with sparsity assumption, while neglecting
the decaying autocorrelation structure of the temporal signals. We noticed that previous
methods analyzing LFP signals such as Granger Causality fit the temporal data with an vector
auto-regressive model [55], and accordingly, we propose a Cholesky factor decomposition
approach [5] which imposes a non-stationary condition for temporal precision matrix
estimation.

• We formulate the simultaneous testing procedure using Gaussian approximation bootstrap
method proposed by [17]. This framework enables us to test the strength of neural connec-
tivity between two brain areas by testing the corresponding subset of edges over multiple
partial correlation matrices simultaneously, thus address the issue of simultaneous test in
multiple MGGMs for the first time.

2.1 Simultaneous Inference in Multiple Matrix-variate Net-
works

In this section, we develop our inference framework aiming to hypothesis testing problems
stated in (2.1)-(2.3), and leave all theoretical studies in Section 2.3. The full procedure is
summarized in Algorithm 1 at the end of this section. For each dataset on session 1 ≤ t ≤ d,
we have nt i.i.d p× q matrix-variate samples,X(1)

t , ...,X
(nt)
t , following matrix-variate Gaussian

distribution N(0,Ut ⊗ Vt), where nt can vary among different sessions. We further define
D = {{X(i)

1 }n1
i=1, ..., {X

(i)
d }

nd
i=1} as the collection of the full observations over these sessions.

2.1.1 Notations and Preliminaries
We use bold notation for all matrices and vectors. We adopt the following notation throughout this
paper. For a p-dimensional vector x, we write xi:j for its sub-vector (xi, xi+1, · · · , xj)′. Moreover,
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let ‖x‖p denote the vector `p−norm of x, and J(x) = {1 ≤ k ≤ p : xk 6= 0}. Assume that X
is a p × q matrix, let Xi,· denote the i-th row of X , X·,j denote the j-th column of X , Xi,−j
denote the i-th row of X with j-th column removed, X−i,j denote the j-th column of X with
i-th row removed, and X−i denote the original matrix with i-th row and i-th column removed.
Let ‖X‖p denote the matrix p-norm of X , while notice that ‖X‖2 is also the spectral norm or
operator norm. We use ‖X‖F to denote its Frobenius norm and |X|∞ to denote the entry-wise
sup-norm. For any set J we denote its cardinality by |J |. Finally, for the spatial graphs, we denote
the non-zero spatial edge set in the graphs by Es =

{
(i, j) : 1 ≤ i 6= j ≤ q and ρ0

ij 6= 0
}

.

2.2 Simultaneous Inference Framework
In this section, we develop our inference framework aiming to hypothesis testing problems
stated in (2.1)-(2.3), and leave all theoretical studies in Section 2.3. The full procedure is
summarized in Algorithm 1 at the end of this section. For each dataset on session 1 ≤ t ≤ d,
we have nt i.i.d p× q matrix-variate samples,X(1)

t , ...,X
(nt)
t , following matrix-variate Gaussian

distribution N(0,Ut ⊗ Vt), where nt can vary among different sessions. We further define
D = {{X(i)

1 }n1
i=1, ..., {X

(i)
d }

nd
i=1} as the collection of the full observations over these sessions.

2.2.1 Estimation of Spatial Precision Matrix
We first discuss the model Xt ∼ N(0, (At ⊗ Bt)

−1) for each graph/session 1 ≤ t ≤ d as
a motivation for our approach. Node-wise regression ([38, 44]) has been a popular approach
for graphical model analysis. Indeed, it is well-known that the conditional distribution of Xtli

(i.e., electrode i at time l) against remaining variablesXtl,−i at the same time l follows a linear
regression,

Xtli = Xtl,−iβti + εtli =
∑
j 6=i

Xtljβtij + εtli,

where it follows from the linear regression theory that βtij = − btij
btii

and E(εtli) = 0. Due to this
connection between the coefficient βti and the column precision matrix Bt, a certain sparsity
assumption onBt naturally implies a sparse linear regression model. On the one hand, given the
values of βti for each time 1 ≤ l ≤ p, it is easy to obtain that the covariance matrix among all
residuals across 1 ≤ i ≤ q, i.e., εtl := (εtl1, ..., εtlp)

′ isRl
t = Cov(εtl) = (rltij)q×q = (

utllbtij
btiibtjj

)q×q.
Therefore, testing whether ρtij = 0 (or βtij = 0) is equivalent to testing whether rltij = 0. On the
other hand, we note that the coefficient βti remains the same across all 1 ≤ l ≤ p. In addition,
ρtij = 0 if and only if all rltij = 0 at all time tick 1 ≤ l ≤ p. These two facts together suggest us to
treat each rowXtl,· of the matrix-variateXt as a q-dimensional sample and consider all p samples
together. By doing this, we have p correlated vector-variate samples for a sparse linear regression
model, where the covariance among these “row samples” is characterized by Ut. Finally, we
define the average of the covariance matrices of residuals from these correlated p samples as
Rt = (rtij)q×q = 1

p

∑p
l=1R

l
t with

rtij =
tr(Ut)

p

btij
btiibtjj

=
btij

btiibtjj
. (2.4)
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To facilitate our analysis, we have assumed tr(Ut) = p for each session in Equation (2.4) to
avoid any identifiability issue, which is formally stated in Assumption 2 of Section 2.3. Note that
ρtij = − btij√

btiibtjj
= −rtij

√
btiibtjj . In what follows, we build our test statistics based on some

accurate estimation of rtij and the equivalence between ρtij = 0 and rtij = 0.
Having discussed the model for each session above, we are in a position to consider all d

sessions together to improve the estimation accuracy of each ρtij . The fact that all sessions tend
to share the same support among the column precision matrices Rt’s implies the d coefficient
vectors βti’s share the same support as well. To this end, we natural treat β1ij, ..., βdij as a group
for each pair (i, j), and stack linear models from d sessions together to take the advantage of
this group structure. With certain assumption on the joint sparsity structure of d graphs, which
is formally stated in Assumption 4 in Section 2.3, the group Lasso ([66]) or other group sparse
regression approaches can be adopted to fit our data. We introduce a few more notations before
formally stating our procedure. Let βti = (βti1, · · · , βti(i−1), βti(i+1), · · · , βtiq) ∈ Rq−1. The

stacked coefficient from d sessions is denoted as β0
i =

(
β1i

′
,β2i

′
, · · · ,βdi

′
)′
∈ R(q−1)d. By the

construction of β0
i , we have group sparsity structure in the sense that all but at most s subvectors

β0
i(l) are none-zero where the lth group subvector of β0

i is defined as β0
i(l) = (β1il, ..., βdil)

′ ∈ Rd.
From the definition, we observe that β0

i(l) = 0 for all (i, l) ∈ Ecs , where Ecs is the compliment set
of Es.

We are ready to state our regression-based approach with all data D. Let the stacked row

samples for each session Zt =

(
X

(1)
t

′

,X
(2)
t

′

, · · · ,X(nt)
t

′
)′
∈ Rntp×q, and its ith column

Zt,·,i =

(
X

(1)
t,·,i

′

,X
(2)
t,·,i

′

, · · · ,X(nt)
t,·,i

′
)′
∈ Rntp. For each session/graph t and each node i, the

residuals of the kth sample is denoted as ε(k)
t,·,i = X

(k)
t,·,i −X

(k)
t,·,−iβti. By combining all d graphs,

we estimate the coefficient β0
i using group Lasso,

β̂0
i = argmin

α0
i∈R(q−1)d

∑d
t=1‖Zt,·,i −Zt,·,−iαti‖2

2

2n0p
+ λi

∑
l 6=i

‖D1/2
i(l)α

0
i(l)‖2, (2.5)

where the relationship among αti, α0
i and α0

i(l) is similar to that among βti, β0
i and β0

t(l), n0 =
min1≤t≤d nt is the smallest sample size among d sessions (see Assumption 1 in Section 2.3

on sample sizes), Dti ∈ R(q−1)×(q−1) is defined as the diagonal matrix of
Z
′
t,·,−iZt,·,−i

ntp
, Di ∈

R(q−1)d×(q−1)d is the block diagonal matrix with element (D1i,D2i, · · · ,Ddi), andDi(l) ∈ Rd×d

is the submatrix of Di corresponding to the lth group. The parameter λi can be tuned using
cross-validation or other model selection methods. In our theoretical analysis, a data-driven
yet conservative choice of each λi can be picked. Although group Lasso is not new, our group
Lasso regression is applied to, instead of i.i.d. samples, correlated samples since all rows of each
matrixX(k)

t are treated as distinct samples. Therefore, in Section 2.3, we provide a self-contained
analysis and derive the rates of convergence of estimation as well as prediction, which might be
of independent interest for dealing with high-dimensional correlated data.
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With estimated regression coefficients, the fitted residuals can be calculated as

ε̂
(k)
tli = X

(k)
tli −X

(k)
tl,−iβ̂ti, (2.6)

where ε̂(k)
tli is the fitted residual for row l of the kth sample for graph t. In order to estimate the

population covariance among residuals, the simple empirical covariance using fitted residuals has
larger bias compared to the expected root ntp rate due to the Lasso penalty, as demonstrated in a
simpler vector-Gaussian graphical model [38]. To address this bias issue, the covariance of the
residuals r̂tij can be estimated with a bias-correction term as

r̂tij =

{
− 1
ntp

∑nt
k=1

∑p
l=1

(
ε̂

(k)
tli ε̂

(k)
tlj + β̂tij(ε̂

(k)
tlj )

2
+ β̂tji(ε̂

(k)
tli )

2
)
, if i 6= j,

1
ntp

∑nt
k=1

∑p
l=1 ε̂

(k)
tli ε̂

(k)
tlj , if i = j.

(2.7)

In view of the relationship between our goal ρtij and btij in Equation (2.4), we can estimate btij
via

b̂tij =
r̂tij

r̂tiir̂tjj
. (2.8)

Finally, the partial correlation ρtij can be constructed via

ρ̂tij = − b̂tij

(̂btiib̂tjj)1/2
. (2.9)

Our estimator for partial correlation resembles the form proposed by [16] for a single matrix-
variate Gaussian graphical model. However, in contrast with [16], we borrow the information from
multiple sessions and apply a group Lasso in Equation (2.5) to obtain a faster rate of convergence
for estimating the coefficient of each session/graph, which is summarized in Theorem 1 and
Remark 3. More importantly, as we introduce the final form of test statistic in Equation (2.10),
the testing accuracy for our goals can be further improved with a factor of root d, thanks to the
similar graph structures among multiple sessions.

2.2.2 Simultaneous Test by Parametric Bootstrap
Single Edge Test

The way of stacking correlated rows of each matrix-variate sample and combining multiple graphs
in Equation (2.5) not only enables us to estimate d graphs efficiently through a group Lasso
regression, but also allows us to construct new tests that are more powerful than the single graph
scenario by borrowing information from different graphs. We first focus on the single edge test
H0,ij : ρ0

ij = 0 in Equation (2.1). Due to the group sparsity structure, it is natural to construct
a test statistic using certain function of all estimators ρ̂tij for 1 ≤ t ≤ d. In our application, we
assume that the sign does not change across all sessions, which corresponds to a sign vector of
length d where all elements equal to the same value one. More generally, an additional sign
information on elements of the alternative ρ0

ij may be available. With this additional knowledge,
we present a test statistic based on a linear combination of those ρ̂tij for 1 ≤ t ≤ d, which is
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closely related to its `1 norm. More specifically, with a sign vector ξij = (ξ1ij, . . . , ξdij)
′ ∈ Rd,

we propose the following test statistic for our hypothesis testing problem in Equation (2.1),

Pn,d,(i,j)(ξ) = − 1√
d

d∑
t=1

ξtij

√
ntpb̂tiib̂tjj r̂tij =

1√
d

d∑
t=1

ξtij
√
ntpρ̂tij. (2.10)

Intuitively, this test statistic should be close to its population counterpart P ∗n,d,(i,j)(ξ) =
1√
d

∑d
t=1 ξtij

√
ntpρtij , which is equal to zero under null. On the other hand, when alternative

is true, with the sign vector ξtij = sign(ρtij) for 1 ≤ t ≤ d, P ∗n,d,(i,j)(ξ) should be significantly
larger than zero as it represents the aggregated signal across d graphs in terms of the `1 norm of
ρ0
ij . Indeed, as we formally show in Proposition 1 of Section 2.3, the difference ρ̂tij − ρtij under

certain sample size requirement can be well approximated by a leading term

θtij =
δ̃tij√
rtiirtjj

− rtij δ̃tjj
2rtjj
√
rtiirtjj

− rtij δ̃tii
2rtii
√
rtiirtjj

, (2.11)

where δ̃tij = r̃tij − rtij is the error of the oracle estimator of rtij , r̃tij = 1
ntp

∑nt
k=1

∑p
l=1 ε

(k)
tli ε

(k)
tlj .

Although residuals ε(k)
tli ’s from individual rows 1 ≤ l ≤ p are correlated, by certain version of

central limit theorem it is well expected that the following difference ∆Pi,j is asymptotically close
to a normal distribution with a finite variance,

∆Pi,j = Pn,d,(i,j)(ξ)− P ∗n,d,(i,j)(ξ) =
1√
d

d∑
t=1

ξtij
√
ntp(ρ̂tij − ρtij). (2.12)

Once the asymptotic variance can be consistently estimated, it is straightforward to construct
the confidence interval for P ∗n,d,(i,j)(ξ) and the p-value for our single edge test in Equation (2.1).
We do not pursue this direction immediately here. Instead, as we move to the more challenging
multiple edge test scenario in Equation (2.2), one can easily obtain the testing procedure for the
single edge test as it is just a special case of multiple edge test.

Simultaneous Test

We consider the multiple edge test for a general pre-defined set S with the null hypothesis stated
in Equation (2.2),

H0,S : ρ0
ij = 0, ∀(i, j) ∈ S.

In high-dimensional setting, the cardinality of S can be as large as q(q − 1)/2. In practice, S
can be a collection of edges between different brain areas. Therefore, even if we have asymptotic
normality for each ∆Pi,j , (i, j) ∈ S, the multivariate central limit theorem, which is valid for
fixed |S|, cannot be applied to test H0,S directly with growing |S|. Simultaneous testing for H0,S
has been considered in other context earlier via Bonferroni correction, which leads to conservative
procedures. In this paper, due to the sparsity structure on the entire graphs, we consider a test
statistic using the maximum among all ∆Pi,j’s in magnitude. More specifically, for a given edge
set S ⊂ {(i, j) : 1 ≤ i 6= j ≤ q} with size e = |S|, denote the e-dimensional vector by ∆PS
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whose elements correspond to the test statistics for the subset of edges of interest. Now we can
define a bijective mapping χ(·) = {χ1(·), χ2(·)} from {1, ..., e} to S such that we can write
∆PS = {∆Pχ1(1),χ2(1), ...,∆Pχ1(e),χ2(e)}. Then our test statistic is defined as

‖∆PS‖∞ = max
(i,j)∈S

|∆Pi,j| = max
(i,j)∈S

| 1√
d

d∑
t=1

ξtij
√
ntp(ρ̂tij − ρtij)|, (2.13)

where the sign vector is edge-specific, i.e., ξij = (ξ1ij, . . . , ξdij)
′ ∈ Rd for each pair (i, j) ∈ S.

The key idea is that although one do not have asymptotic normal for the entire vector ∆PS ,
following the idea of [17], it can be shown that the limiting behavior of ‖∆PS‖∞ can be approxi-
mated by that of the supnorm of a certain multivariate normal vector. We will elucidate this idea
later. Based on our test statistic, a 1− α confidence region for partial correlation vector can be
constructed as

CS(1− α) = {c ∈ Rd|S| : max
(i,j)∈S

|
∑d

t=1 ξtij
√
ntp(ρ̂tij − ctij)√
d

| ≤ q̂ζ(α)}, (2.14)

with some well estimated critical value q̂ζ(α). Given the test level α for H0,S , we reject the null
hypothesis if 0 /∈ CS(1− α). In other words, we reject null hypothesis if Ψα = 1 where

Ψα = 1(0 /∈ CS(1− α)). (2.15)

It remains to provide a critical value q̂ζ(α) for our testing procedure. As we discussed
for single edge test, the leading term of the difference ρ̂tij − ρtij under certain sample size
requirement is denoted by θtij in Equation (2.11). Similar to the way we defined χ(·), we
represent ΘtS = {θt,χ1(1),χ2(1), ..., θt,χ1(e),χ2(e)} and ξtS = {ξt,χ1(1),χ2(1), ..., ξt,χ1(e),χ2(e)}. At a
high level, the distribution of ‖∆PS‖∞ should be close to that of ‖

∑d
t=1

√
ntp√
d
ξtS ◦ΘtS‖∞, which

is further close to the supnorm of a multivariate normal with the same covariance matrix of∑d
t=1

√
ntp√
d
ξtS ◦ΘtS , where ◦ is the Hadamard product. This is formally stated and shown in

Proposition 2. In order to use this approximation to obtain critical value q̂ζ(α), we need to know
the covariance matrixW P , which is defined as

W P = E{( 1√
d

d∑
t=1

√
ntpξtS ◦ΘtS)(

1√
d

d∑
t=1

√
ntpξtS ◦ΘtS)

′}. (2.16)

An analytical form forW P = (wPij)e×e is provided in Lemma 11 as

wPij =
1

d

d∑
t=1

(‖Ut‖2
F

p
(ρt,χ1(i),χ1(j)ρt,χ2(i),χ2(j) + ρt,χ1(i),χ2(j)ρt,χ1(j),χ2(i)

+
1

2
ρt,χ1(i),χ2(i)ρt,χ1(j),χ2(j)ρ

2
t,χ1(i),χ1(j) +

1

2
ρt,χ1(i),χ2(i)ρt,χ1(j),χ2(j)ρ

2
t,χ2(i),χ2(j)

+
1

2
ρt,χ1(i),χ2(i)ρt,χ1(j),χ2(j)ρ

2
t,χ1(i),χ2(j) +

1

2
ρt,χ1(i),χ2(i)ρt,χ1(j),χ2(j)ρ

2
t,χ1(j),χ2(i)

− ρt,χ1(i),χ1(j)ρt,χ1(j),χ2(j)ρt,χ1(j),χ2(i) − ρt,χ1(i),χ1(j)ρt,χ1(i),χ2(i)ρt,χ1(i),χ2(j)

− ρt,χ2(i),χ2(j)ρt,χ1(j),χ2(j)ρt,χ1(i),χ2(j) − ρt,χ2(i),χ2(j)ρt,χ1(j),χ2(i)ρt,χ1(i),χ2(i))
)
. (2.17)
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Due to the temporal structure,W P depends on the temporal convariance matrices Ut’s via their
Frobenius norms. In next subsection, we develop a procedure based on modified Cholesky
decomposition ofAt to obtain a consistent estimator Û ∗t in Equation (2.24) under the Frobenius
norm. With Û ∗t ’s and ρ̂tij’s obtained in Equation (2.9), we can construct a plug-in estimator Ŵ P

using Equation (2.17).
Now let ζ̂1, ..., ζ̂B be i.i.d random vector with each sample ζ̂i ∼ N(0, Ŵ P ), we can ap-

proximate the distribution of ‖ζ̂‖∞ using the empirical distribution of B bootstrap samples,
F̂ζ,B(x) = 1

B

∑B
i=1 1{‖ζ̂i‖∞ ≤ x}. Finally, the critical value q̂S(α) used in our testing procedure

Equations (2.14)-(2.15) can be estimated by the quantile function of F̂ζ,B(x) as,

q̂S(α) = inf{x ∈ R : F̂ζ,B(x) ≥ 1− α}.

The validity of our Gaussian approximation is formally provided in Theorem 2 in terms of
the Kolmogorov distance between the distributions of ‖∆PS‖∞ and ‖ζ̂‖∞. In addition, we also
provide a complementary power analysis in Theorem 3 to further demonstrate the advantage of
our procedure with multiple graphs.
Remark 1. With matrix-variate data, we have correlated samples in the leading term θtij of
our test statistic, where the correlation is characterized by the temporal covariance matrix Ut.
Thanks to the Kronecker product structure, we can consistently estimate W P with a plug-in
estimator. It is worthwhile to mention that under other dependence structures among samples,
one may construct different procedures for a vector-variate Gaussian graph. For instance, [15]
implemented a kernel estimator for estimation ofW P in multi-variate time series data.

We point out that the proposed multiple edge test can be extended straightforwardly to a
general simultaneous testing H0,S : ρ0

ij = c0
ij, ∀(i, j) ∈ S where c0

ij = (c1ij, . . . , cdij)
′ is a

pre-specified vector for each edge (i, j) ∈ S. The interpretation of the sign vector should be the
sign of the difference between c0

ij and alternative ρ0
ij , i.e., ξtij = sign(ρtij − ctij) when alternative

is true. Denote c = {ctij : (i, j) ∈ S, 1 ≤ t ≤ d}. One only need to replace the construction of
confidence region in Equation (2.15) by Ψα = 1(c /∈ CS(1 − α)). We present our theoretical
justifications in Section 2.3 based on this more general procedure.

Finally, we extend our current simultaneous testing to a c-level test as earlier discussed in
Equation (2.3), we are interested in testing

H ′0,S :
1

d
‖ρ0

ij‖1 ≤ c for all (i, j) ∈ S.

Under our assumption that all ρ1ij, . . . , ρdij share the same sign, the null can be equivalently
written as H ′0,S : 1

d
|
∑d

t=1 ρtij| ≤ c and sign(ρ1ij) = . . . = sign(ρdij) for all (i, j) ∈ S. One can
still obtain a confidence region from Equation (2.14) with ξtij = 1 for all 1 ≤ t ≤ d and (i, j) ∈ S .
However, since the null hypothesis is composite now, we should modify the rejection region
accordingly. To this end, define Cc-level = {c ∈ Rd|S| : 1

d
|
∑d

t=1 ctij| ≤ c and sign(c1ij) = . . . =
sign(cdij) for all (i, j) ∈ S}

Then we reject null hypothesis if Ψ′α = 1 where

Ψ′α = 1(Cc-level ∩ C ′S(1− α)) 6= ∅). (2.18)
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2.2.3 Estimation of Temporal Covariance Matrix
Our testing framework developed in Section 2.2.2 requires the knowledge of the temporal co-
variance Ut in terms of its Frobenius norm ‖Ut‖F . In this subsection, we propose an estimation
procedure based on modified Cholesky decomposition. Motivated by our data, unlike the way we
estimate the spatial precision matrices borrowing the information across all sessions in Section
2.2.1, here we will estimateUt for each graph/session individually only based on certain bandable
structure imposed on the Cholesky factor of eachAt = U−1

t . Indeed, despite that the experimental
stages are properly aligned, the temporal alignment of neural response is still an open research
question due to the existence of response latencies of neurons to stimulus [58]. Especially, the
neural response time for saccade tasks might depend on a variety of factors in previous studies
[2, 21, 47], such as saccade amplitude, direction and change in luminance. As the neural reaction
time to stimulus may be impacted by even more complicated factors across experimental sessions,
we do not assume Ut’s are identical or very close to each other, but rather simply assume all
temporal precision matricesAt’s demonstrate certain structure, which would be introduced below.

Our procedure is motivated by the temporal dependence structure of neural time series and
based on modified Cholesky decomposition [5, 40]. Neural time series such as the Local Field
Potential have been widely modeled as an autoregression problem with a limited order [8, 9, 55].
Assume that Yt = (Yt1, ..., Ytp)

′ is a centered p-variate random vector with temporal covariance
Ut, Yti can be predicted using the measurements from a few previous timeticks. Now assume that
cti = (ct1, ..., ct(i−1))

′ is the coefficient for the following population regression,

Ŷti =
i−1∑
j=1

ctijYtj = Y
′

t,1:i−1cti, (2.19)

where Yt,1:i−1 = (Yt,1, Yt,2, · · · , Yt,i−1)
′ . Let εt = Yt − Ŷt denote the residual, dti = Var(εti)

denote variance of residual,Dt = diag(dt) denote the diagonal matrix of residual, Ct denote the
lower triangular matrix with zeros on the diagonal and the coefficients cti arranged in row i. Then
the Cholesky decomposition ofAt = U−1

t can be written as

At = (I −Ct)
′
D−1

t (I −Ct). (2.20)

In high-dimensional neural time series setting, the dependence of Yti on its history Ytj(j < i)
grows weaker and exhibits natural decay as i−j becomes larger, which indicates that ctij becomes
smaller accordingly. In this paper, we consider a parameter space for eachAt as formally stated
in Assumption 6 later,

Qαt(M) = {At : |ctij| < M(i− j)−αt−1, 1 ≤ j ≤ i− 1},

where the value αt specifying the rate of decay is assumed to be known. In fact, the popular AR(k)
model corresponds to the k-banded Cholesky factor decomposition where ctij = 0 if i− j > k.

The above model focuses on the standard vector-variate distributions. For our matrix-variate
Gaussian graphical model, we can apply each column of Xt ∈ Rp×q to obtain the Cholesky
decomposition for the corresponding node. Similar to the observation we made on node-wise
regression for each row of Xt in Section 2.2.1, due to the Kronecker product structure, the

18



population Cholesky factorCt remains the same while the diagonal matricesDt’s are proportional
to each other for regression models across all q columns of Xt. This motivates us to treat all
columns of Xt as individual samples. By doing this, the actual number of samples can be
significantly increased, thanks to the matrix-variate data structure. Of note, those samples
obtained from individual columns of Xt are no longer independent and their covariance is
characterized by the spatial covariance matrix Vt. To formally introduce our estimation procedure,

for each session t, we denote Zt,i,· =
(
X

(1)
t,i,·,X

(2)
t,i,·, · · · ,X

(nt)
t,i,·

)′
∈ Rntq, and Zt,i−h:i−1,· =

(Zt,i−h,·,Zt,i−h+1,·, · · · ,Zt,i−1,·) ∈ Rntq×p. We follow the procedure proposed in [40] for i.i.d
samples and apply it to our correlated samples. The first step is to find the empirical regression
coefficients cti by least squares for the ith variable only against its previous ht number of variables
instead of all variables shown in the true regression model in Equation (2.19). The idea is that
by ignoring many weak signals far away from variables i, the estimation of cti can be achieved
optimally with the bias-variance trade-off. Specifically, define bandwidth ht = d(ntq)

1
2αt+2 e, we

have
ĉhti = (ĉti(i−h), ..., ĉti(i−1))

′
= (Zt,i−h:i−1,·

′
Zt,i−h:i−1)−1Zt,i−h:i−1,·

′
Zt,i,·. (2.21)

Let ĉti be a vector of length i − 1 with the first i − 1 − h elements padded as zero, and other
entries filled with ĉhti. Then Ct can be estimated by the lower triangular matrix Ĉt with zeros on
the diagonal and the coefficients ĉti arranged in row i. Having obtained the empirical regression
coefficients ĉhti, the second step is to estimate the noise variance given by

d̂ti =
1

ntq

nt∑
k=1

q∑
m=1

(
X

(k)
tim − (X

(k)
t,i−h:i−1,m)

′
ĉhti

)2

. (2.22)

Let D̂t = diag(d̂t) ∈ Rp×p, where d̂t = (d̂t1, ..., d̂tp)
′ . The final estimator of Ut is defined as

Ût = Â−1
t =

(
(I − Ĉt)

′
D̂−1

t (I − Ĉt)
)−1

. (2.23)

As shown in Theorem 4 of Section 2.3, our estimator Ût actually aims to the normalized
temporal covariance matrix Tr(Vt)

q
Ut rather than Ut. In view of Assumption 2 to avoid the

identifiability issue, finally we define T̂v = Tr(Ût)
p

, and the normalized estimator for temporal
covariance matrix is given by

Û ∗t =
1

T̂v
Ût. (2.24)

The theoretical properties of our estimator Û ∗t under correlated samples for each session are
deferred to Theorem 4 and Corollary 2.

2.3 Theoretical Properties
Before formally presenting our procedure and main results, we make the following assumptions
for our model.
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Algorithm 1 Simultaneous Testing for Multiple MGGMs
1: Input: Multi-session data D, edge set S, test level α.
2: Output: Test result Ψα.
3: Spatial precision matrix estimation:
4: for i = 1 : q do
5: Estimate the regression coefficient β̂0

i and residual using Equation (2.5).
6: Estimate the regression residual ε̂(k)

tli using Equation (2.6).
7: end for
8: for t = 1 : d, i = 1 : q, j = 1 : q do
9: Estimate the de-biased residual variance r̂tij using Equation (2.7).

10: Estimate the spatial precision b̂tij and partial correlation ρ̂tij using
11: Equation (2.8) and (2.9).
12: end for
13: Temporal precision matrix estimation:
14: for t = 1 : d do
15: Estimate temporal regression coefficient and residual in Equations (2.21), (2.22).
16: end for
17: Hypothesis testing based on bootstrap:
18: Calculate the plug-into estimator Ŵ P for bootstrap covariance in Equation (2.17).

19: Sample
{
ζ̂i

}B
i=1
∼ N(0, Ŵ P ) and calculate the confidence region by Equation (2.14).

20: Test result Ψα is given by Equation (2.15).
21: return test results Ψα.
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Assumption 1. It holds that n1 � ... � nt with � meaning asymptotically the same order, and
that max1≤t≤d

nt
n0
≤M0, n0 = min1≤t≤d nt, where M0 is a positive constant.

Assumption 2. We assume that tr(Ut)
p

= 1 for all 1 ≤ t ≤ d.
Assumption 3. Define {λti}pi=1 as the eigenvalues of Ut with λt1 ≤ λt2 · · · ≤ λtp, and {λ′ti}

q
i=1

as the eigenvalues of Vt with λ′t1 ≤ λ′t2 · · · ≤ λ′tq; there exists a constant ce, so that

c−1
e ≤ λt1 ≤ λtp ≤ ce and c−1

e ≤ λ′t1 ≤ λ′tq ≤ ce for all 1 ≤ t ≤ d.

Assumption 4. The l-th group structure of {Bt}dt=1 is defined as bi(l) = (b1il, ..., bdil) ∈ Rd; the
group sparsity s is defined as the maximum node degree, i.e., s = maxi

∑
l 6=i{bi(l) 6= 0} with s

satisfying
max (s2 log q(log q + d)2, log7 q)

n0pd
= o(1).

Assumption 5. There are some constants δ1 = o(1), with log(d/δ1) = O(sd+log q
d

).
Assumption 6. We assume the temporal precision matrixAt for each 1 ≤ t ≤ d belongs to the
following parameter space

Qαt(M) = {At : |ctij| < M(i− j)−αt−1, 1 ≤ j ≤ i− 1},

where Ct is defined in Equation (2.20) through the Cholesky decomposition. We further assume
that log max(p,ntq)

(ntq)
αt
αt+1

= o(1).

Assumption 1 suggests that the sample size from each graph is balanced and we use n0 to
represent the common level; Assumption 2 is simply for identifiability; Assumption 3 is a standard
eigenvalue assumption in covariance estimation [13]; Assumption 4 indicates that the column
precision matrix is sparse, and limits the spatial dimension of the matrix variable given the number
of samples, the temporal dimension and the number of graphs; Assumption 5 limits the number of
graphs with respect to the spatial dimension and sparsity; the first part of Assumption 6 is a fair
assumption for neural time series, since neural data, especially LFPs, are usually modeled as an
auto-regressive process with limited order, which is also widely considered in literature [5, 40];
the second part of Assumption 6 is similar to Assumption 4 and limits the temporal dimension.

We first provide a theoretical justification for our group Lasso procedure proposed in Section
2.2.1. Although with correlated rows, our results below demonstrate that the optimal rates of
convergence for estimation and prediction can be still obtained compared to the case with i.i.d.
samples. Define λ∗ =

√
d+log q
n0p

; we have the following theorem for our regression coefficients in
Equation (2.5),

Theorem 1. Let λi = c ξ+1
ξ−1

√
d+log q
n0p

= c ξ+1
ξ−1

λ∗ as in Equation (2.5), with positive constants c > 0

and ξ > 1. With probability at least 1 − q−δ, for all 1 ≤ i ≤ q, there is a constant C which
depends on δ, ce and M0 only, we have that∑

1≤l≤q,l 6=i

1√
d
‖β̂0

i(l) − β0
i(l)‖2 ≤ Cs[

1 + (log q)/d

n0p
]1/2, (2.25)

1√
d
‖β̂0

i − β0
i ‖2 ≤ C[s

1 + (log q)/d

n0p
]1/2, (2.26)
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1

n0pd

d∑
t=1

‖Zt,·,−i(β̂ti − βti)‖2
2 ≤ Cs

1 + (log q)/d

n0p
. (2.27)

Remark 2. In Lemma 3, we provide a data-driven yet conservative method to pick the proper λi,
so that the major conclusions in this paper still hold under this tuning parameter. In practice, we
can also implement the cross-validation method to pick λi in group Lasso regression. Moreover,
we found that the performance of our method is much better than baseline methods regardless
of tuning parameters, especially under the condition which favors our method, i.e., under high
temporal and spatial dimensions, as demonstrate in the simulation in Section 2.4.

We now turn to theoretical results from Section 2.2.2. Based on Theorem 1, the following
proposition provides an upper bound for the remainder term of each ρ̂tij − ρtij − θtij , where the

estimator ρ̂tij is proposed in Equation (2.9) and θtij =
δ̃tij√
rtiirtjj

− rtij δ̃tjj
2rtjj

√
rtiirtjj

− rtij δ̃tii
2rtii
√
rtiirtjj

.
Proposition 1. we have for any δ > 0, and δ1 as in Assumption 5, there exists a constant C which
depends on δ, ce and M0 only, such that

P

(
d∑
t=1

|ρ̂tij − ρtij − θtij| ≥ Csλ2
∗

)
≤ q−δ + δ1.

It then immediately follows that ∆PS = Pn,d,S(ξ)−P ∗n,d,S(ξ) = 1√
d

∑d
t=1

√
ntp(ξtS ◦ΘtS +

ξtS ◦OtS), with ‖
∑d

t=1

√
ntp√
d
ξtS ◦OtS‖∞ being a smaller term as shown in Proposition 1.

Remark 3. For single edge test, we need to make
∑d

t=1

√
ntp√
d
ξtS ◦ OtS an op(1) term, which

imposes the condition that s
2(d+log q)2

d
= o(n0p); for multiple edge test (simultaneous test), in order

to make ‖
∑d

t=1

√
ntp√
d
ξtS ◦OtS‖∞ an op(1) term, the sample size requirement is s2 log q(d+log q)2

d
=

o(n0p), as stated in Assumption 4. In comparison, one can also naively apply the estimation
procedure for each graph separately as in [16], and compute a similar test statistic to perform
single edge and multiple edge test following our procedure. However, such a naive method will
require a much stronger sample size assumption, which is s2d(log q)2 = o(n0p) in single edge
test and s2d(log q)3 = o(n0p) in simultaneous test.

Built upon the idea from [17], we establish the Gaussian approximation result for our test
statistic ‖∆PS‖∞. Recall the covariance from the leading termW P is defined in Equation (2.16).
Proposition 2. Let ζ ∼ N(0,W P ) whereW P is defined in Equation (2.16), it holds that

sup
x>0
|P(‖∆PS‖∞ > x)− P(‖ζ‖∞ > x)| → 0.

Remark 4. Proposition 2 indicates that the Kolmogorov distance between the distributions of
‖∆PS‖∞ and ‖ζ‖∞ converges to zero with rate O ((n0pd)−c) for c > 0 as shown in the proof.
However, while increasing d shrinks the distance, without proper adjustment of n0p, naively
changing d will break Assumption 4 and fail sample size requirement as stated in Remark 3.

The following theorem parallels to the previous proposition except that we replace the popula-
tion covarianceW P by its plug-in estimator Ŵ P . At a high level, as long as the covarianceW P

can be estimated well under the supnorm, the Gaussian approximation results remains valid. The
proof of Theorem 2 relies on Propositions 1-2.
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Theorem 2. Let ζ̂ ∼ N(0, Ŵ P ) where Ŵ P is the plug-in estimator forW P , with ŵPij following
the same form in Equation (2.17), ρ̂tij given in Equation (2.9) and Û ∗t given in Equation (2.24), it
holds that with probability going to 1,

sup
x>0

∣∣∣P(‖∆PS‖∞ > x)− P(‖ζ̂‖∞ > x|D)
∣∣∣→ 0.

The above theorem establishes the theoretical foundation for simultaneous testing over multiple
graphs. Next we formally state the validity of our testing procedure as well as a power analysis
under a general testing H0,S : ρ0

ij = c0
ij, ∀(i, j) ∈ S.

Theorem 3. Under the null, we have that PH0(Ψα)→ α. On the other hand, in the alternative

case, if max(i,j)∈S |
∑d
t=1 ξtij

√
ntp(ρtij−ctij)√
d

| ≥ C
√

log qmax1≤j≤r(w
P
jj)

1/2 and C is a large enough
constant, then we have PH1(Ψα)→ 1.

With ctij being zero for all 1 ≤ t ≤ d and (i, j) ∈ S, it implies that as long as the largest
`1 norm of the partial correction vector ‖ρ0

ij‖1 is above the order of
√
d log q/(nop), the power

would be close to 1. Assuming the same order ρtij across all graphs 1 ≤ t ≤ d, i.e., ρ1ij � ρtij �
. . . � ρdij , the power of the test is close to 1 if max(i,j)∈S |ρ1ij| is far larger than

√
log q/(dnop).

In contrast, the corresponding detection boundary becomes
√

log q/(nop) for a single graph.
Therefore, by borrowing the information from multiple graphs/sessions, we are able to reduce the
detection accuracy by a factor of root d.

The validity of our c-level test in Equation (2.18) is summarized below before we move to the
theoretical properties for Section 2.2.3.
Corollary 1. Under the null H ′0,S , the test is an α level test, i.e., PH′0(Ψα) ≤ α. On the other

hand, in the alternative case, if max(i,j)∈S

∑d
t=1
√
ntp(|ρtij |−c)√
d

≥ C
√

log qmax1≤j≤r(w
P
jj)

1/2 and C
is a large enough constant, we have PH′1(Ψα)→ 1.

In the end, we summarize the estimation bounds under the Frobenius norm for individual
temporal covariance and precision matrices obtained in Section 2.2.3. Although exiting results for
i.i.d. sample are available in [40], there is no result for correlated samples as derived in our model.
We thus provide a self-contained analysis, which might be of independent interest.
Theorem 4. For our estimation for the temporal covariance matrix Ut and precision matrixAt,
we have that for any δ > 0, there exists a constant C which depends on δ and ce only, such that

P(
1

p
‖Ût −

Tr(Vt)
q

Ut‖2
F ≥ C

log p

(ntq)
2αt+1
2α2+2

) ≤ p−δ,

P(
1

p
‖Ât −

q

Tr(Vt)
At‖2

F ≥ C
log p

(ntq)
2αt+1
2αt+2

) ≤ p−δ.

Consequently, their scaled Frobenius norms can be consistently estimated, which is sufficient
for our main result Theorem 2.
Corollary 2. For our normalized temporal covariance estimator, we have max1≤t≤d |

‖Û∗t ‖2F−‖Ut‖
2
F

p
| =

op(1).
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Figure 2.1: Three types of spatial graphs in simulation: random graph, hub graph and band
graph.

2.4 Numerical Studies

2.4.1 Simulation Studies
We study the performance of our method via multiple different simulation scenarios. Since
simultaneous testing in multiple matrix graphs is largely missing in literature, we demonstrate the
effectiveness of our method (M0) via comparison with multiple matrix-variate graph estimation
method by [68] (M1) and several multi-graph estimation methods for ordinary Gaussian Graphical
Model (M2-M4) , as is shown in Section 2.4.1. We further show that in real-data driven simulation,
our method (M0) is still better than the state-of-art method (M1). Finally, in Section 2.4.1, we
show that in simultaneous testing, our proposed bootstrap procedure can accurately approximate
the ‖∆PS‖ as theoretically shown in Theorem 2.

We generate our temporal precision matrixAt following our the parameter space defined in
Assumption 6: Recall Equation (2.20), we set ctij = M(i − j)−αt−1 for 1 ≤ j < i ≤ q with
M = 0.2, αt = 1, and Dt is simply an identity matrix, for t ∈ [d]. We generate our spatial
precision matrix Bt with three different popular structures as in Figure 2.1: a random graph,
where the edges between each nodes are randomly generated, with probability of having an edge
between i and j as

√
3
q
; a hub graph, where all the nodes are divided into several groups, with the

number of hub centers as d q
20
e and all the rest of nodes divided evenly into each group; a chain

graph, which is a special case of banded graph with bandwidth equal to 1. Once the common
graph structure is fixed, for each sub-graph t, the strength of the non-zero edge btij is generated
randomly with uniform distribution Unif(0, 0.3/2t−1).

As an evaluation, we show the receiver operating characteristic (ROC) curve by varying the
test levels for our method. In a typical ROC curve, the y-axis is the true positive rate (TPR), and
the x-axis is the false positive rate (FPR), which, in our case, are defined as

TPR =
1

d

d∑
t=1

∑
1≤i<≤j≤q 1(btij 6= 0, b̂tij 6= 0)∑

1≤i<≤j≤q 1(btij 6= 0)
,
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FPR =
1

d

d∑
t=1

∑
1≤i<≤j≤q 1(btij = 0, b̂tij 6= 0)∑

1≤i<≤j≤q 1(btij = 0)
.

Edge-wise Estimation Comparison

We compare our method with several multiple Gaussian Graph estimation methods, which contains
the following two categories: (1) the most recent matrix-variate Gaussian multi-graph estimation
method proposed by [68] (M1), and (2) multi-graph estimation methods for ordinary Gaussian
Graphical Model, such as regression based method by [50] (M2), and optimization based methods
by [12] (M3) and [36] (M4). For the baseline methods, the ROC curve can be retrieved by
changing tuning parameters, such as the group penalty and sparsity penalty. For methods in the
second category, we pre-process the data with whitening over temporal dimension and treat signal
at each time point as i.i.d sample. For our method, under different regression tuning parameters,
by varying test level α, we get different ROC curves. We discovered that our method is much
better than baseline regardless of the tuning parameter, and one example is shown in Figure A.1.
The results with λ = 1e− 4 are shown in Figure 2.2. Based on ROC curve, our method recovers
the underlying graph structure accurately, and outperforms the baseline methods. Moreover,
comparing methods designing for ordinary Gaussian graph, our method is much better when
temporal dimension p is large, thanks to the temporal precision estimation based on Cholesky
decomposition in Section 2.2.3.

We further modify our method to make precision matrix estimation, which contains two steps:
first, by setting a test level α, for an edge (i, j), we can test whether H0 : btij = 0 for t ∈ [d]
is rejected or not; next, for all edges in precision matrix, based on the test results, we estimate
the non-significant edges to be 0, and significant edges following Equation (2.8). Therefore, we
can calculate the precision matrix for a particular test level α. The proper choice of α remains
to be determined, and we adapt a cross-validation approach. Specifically, we tune the test level
α through a grid search of 10 values by estimating the precision matrix on a training set and
testing its performance on a validation set through 5-fold cross validation. The training and
validation datasets are split with a 80:20 ratio. For l-th fold, denote by our spatial precision matrix
estimation based on the training data {B̂−lt (α)}dt=1, and denote by the sample spatial precision
matrix estimation based on the validation data {V̂ l

t }dt=1. To make a fair comparison, we obtain
precision matrix estimates of both methods on the same training set, and calculate the loss function
on the same validation set, where the loss function is given by

l(α) =
5∑
l=1

d∑
t=1

{
log
[
det
(
B̂−lt (α)

)]
− tr

(
V̂ l
t B̂

−l
t (α)

)}
Of all baseline methods, M1 is the only method that aims for multiple matrix-variate estimation,
and recovers the best ROC curve when temporal dimension p is reasonably large. Therefore, we
compare our method with M1 especially. We tune group penalty and sparse penalty following
the procedure in [68]. Under optimal tuning parameters, to evaluate the accuracy of estimation,
we calculate the three different types of loss functions, the matrix 1-norm l1, the spectral norm l2
and the Frobenius norm lF . By fixing number of samples n and temporal dimension p, we vary
number of graphs d and spatial dimension q, the comparison between our method M0 and baseline
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Figure 2.2: Simulation results under different graph configurations and temporal dimensions. We
fix n = 5, q = 30 and d = 5. Rows change with types of graphs, and columns correspond to
different temporal dimensions. Blue curve corresponds to our method (M0) while other colors
correspond to baseline methods. Our method is consistently better than baselines while our
advantage is very obvious for large p, thanks to our temporal covariance estimation procedure.

M1 is shown in Table 2.1. We observe that over all settings, M0 outperforms M1 and achieve
lower estimation error than M1. Besides, our method is faster in computation than non-convex
optimization method, which is slow and not guaranteed to converge.

Simultaneous Test

In this section, we evaluate the performance of propose statistic in Equation (2.12) and verify
the correctness of Theorem 2 in finite samples. To set up the simultaneous test, we consider
two different index sets: Soff = {(i, j) : i 6= j} and Szero = {(i, j) : btij = 0, ∀t ∈ d}. Due
to the limiting computational resources, we consider fixed temporal dimension p = 50 and
spatial dimension q = 30. Then we examine the accuracy of our approximation ‖ζ̂off‖∞ and
‖ζ̂zero‖∞ to ‖∆PSoff‖∞ and ‖∆PSzero‖∞, where ζ̂off and ζ̂zero are Gaussian random variables
with covariance calculated based on plug-in estimators in Equation (2.17) for each index set. The
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Graph d q l1 l2 lF
M0 M1 M0 M1 M0 M1

Random
5 30 7.84(0.86) 7.92(1.98) 2.95(0.27) 4.50(0.58) 7.75(0.42) 10.30(0.85)

50 8.56(1.27) 11.09(0.70) 3.44(0.22) 4.80(0.73) 11.43(0.47) 12.40(1.49)

10 30 11.05(2.09) 13.47(2.60) 6.12(0.87) 7.82(1.17) 14.90(1.14) 18.58(1.55)
50 12.07(2.47) 14.63(3.64) 6.51(0.52) 8.21(0.85) 20.47(1.16) 24.96(1.33)

Hub
5 30 10.34(0.85) 16.38(2.12) 3.08(0.23) 5.26(0.73) 6.95(0.28) 8.83(0.96)

50 11.55(0.51) 17.94(1.03) 3.23(0.10) 5.73(0.23) 8.71(0.26) 11.00(0.50)

10 30 19.15(2.10) 25.58(3.12) 6.20(0.51) 8.24(0.91) 11.70(1.03) 14.62(1.65)
50 30.72(3.23) 34.63(4.58) 8.08(0.57) 10.30(1.28) 20.47(0.94) 22.01(1.98)

Band
5 30 4.65(0.12) 6.74(0.13) 2.74(0.06) 3.88(0.08) 7.71(0.09) 10.63(0.12)

50 9.72(0.20) 10.00(0.10) 3.23(0.06) 3.94(0.07) 11.35(0.10) 13.78(0.13)

10 30 14.58(0.15) 15.42(0.20) 6.35(0.05) 6.78(0.07) 17.69(0.11) 18.97(0.14)
50 18.33(0.21) 18.66(0.21) 6.97(0.08) 7.07(0.10) 24.30(0.08) 24.83(0.10)

Table 2.1: Mean and standard deviation of spatial precision estimation for n = 20, p = 50.

simulation steps are stated as follows:
• For each type of graph (random, hub, chain), we generate one set of corresponding temporal

precision matrix {At}dt=1 and spatial precision matrices {Bt}dt=1.
• Given the precision matrices, for i = 1, . . . , 1000, we generate one data realization, which

we can apply our estimation procedure and calculate ‖∆PSoff‖∞ and ‖∆PSzero‖∞. Since
their true distributions are unknown, the empirical distributions based on 1000 realizations
are denoted by Foff (·) and Fzero(·).

• For each data realization i, we can apply our simultaneous testing procedure and estimate
the W P corresponding to Soff and Szero. By sampling ζ̂ ∼ N(0, Ŵ P ), we approximate
‖∆PSoff‖∞ and ‖∆PSzero‖∞ based on the distribution of 3000 bootstrap samples at quantile
α = 0.925, α = 0.950, α = 0.975, denoted by q̂off,α,i and q̂zero,α,i.

• Finally, we can calculate the mean and standard deviation for {Foff (q̂off,α,i)}1000
i=1 and

{Fzero(q̂zero,α,i)}1000
i=1 .

The results are shown in Table 2.2 and Table 2.3 for d = 3 and d = 5, respectively. We observe
that the difference between the empirical coverages decreases as the number of sample increases,
and the value becomes very small starting from n = 5, which demonstrates that our procedure
approximates the distribution well and Theorem 2 still holds for finite samples. Comparing
Table 2.2 and Table 2.3, we observe that for fixed number of sample, our method performs better
for smaller number of graphs, which agrees with our theory that larger number of graphs requires
larger number of samples given log q is small.

nsample Quantile Random Hub Band
Soff Szero Soff Szero Soff Szero

5
0.925 0.945(0.006) 0.948(0.004) 0.952(0.003) 0.951(0.004) 0.952(0.006) 0.952(0.007)
0.95 0.964(0.003) 0.967(0.003) 0.965(0.003) 0.964(0.003) 0.973(0.003) 0.972(0.003)
0.975 0.979(0.004) 0.981(0.003) 0.987(0.004) 0.985(0.004) 0.985(0.002) 0.985(0.002)

10
0.925 0.931(0.005) 0.933(0.004) 0.915(0.005) 0.917(0.004) 0.930(0.005) 0.925(0.007)
0.95 0.947(0.003) 0.952(0.003) 0.942(0.004) 0.942(0.004) 0.959(0.004) 0.957(0.004)
0.975 0.971(0.004) 0.973(0.004) 0.976(0.003) 0.976(0.004) 0.978(0.002) 0.977(0.002)

20
0.925 0.929(0.005) 0.929(0.006) 0.921(0.005) 0.921(0.004) 0.922(0.005) 0.923(0.005)
0.95 0.950(0.002) 0.951(0.003) 0.949(0.005) 0.948(0.005) 0.950(0.006) 0.950(0.006)
0.975 0.973(0.003) 0.971(0.004) 0.975(0.001) 0.975(0.001) 0.978(0.004) 0.977(0.004)

Table 2.2: Average of empirical coverages and their standard deviations for d = 3, p = 50, q = 30.
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nsample Quantile Random Hub Band
Soff Szero Soff Szero Soff Szero

5
0.925 0.954(0.005) 0.953(0.006) 0.952(0.005) 0.952(0.005) 0.963(0.004) 0.961(0.004)
0.95 0.965(0.003) 0.967(0.002) 0.972(0.003) 0.972(0.003) 0.979(0.003) 0.977(0.003)
0.975 0.982(0.002) 0.983(0.002) 0.990(0.002) 0.989(0.002) 0.995(0.002) 0.994(0.002)

10
0.925 0.936(0.005) 0.939(0.003) 0.945(0.005) 0.942(0.005) 0.927(0.004) 0.930(0.003)
0.95 0.958(0.004) 0.958(0.004) 0.968(0.004) 0.965(0.002) 0.947(0.004) 0.947(0.004)
0.975 0.973(0.002) 0.976(0.001) 0.979(0.001) 0.979(0.001) 0.972(0.004) 0.972(0.003)

20
0.925 0.930(0.005) 0.931(0.007) 0.918(0.005) 0.917(0.006) 0.926(0.006) 0.927(0.006)
0.95 0.947(0.005) 0.949(0.005) 0.944(0.004) 0.944(0.004) 0.954(0.004) 0.956(0.003)
0.975 0.976(0.004) 0.976(0.004) 0.973(0.004) 0.974(0.004) 0.981(0.002) 0.982(0.003)

Table 2.3: Average of empirical coverages and their standard deviations for d = 5, p = 50, q = 30.

Experimental Data Driven Simulation

The details of the experiment can be found in Section 2.4.2. We apply our method to V4 LFPs
during the cue stage, and estimate the spatial and temporal precision matrix. For spatial precision,
we pick alpha level α = 0.01 with Bonferroni correction to generate a sparse spatial precision
matrix. With these spatio-temporal estimation, we re-generate simulation data, which share the
same dimension as real data with n = 1000, p = 50, q = 96. We set the number of sessions
d = 3 since M1 is slow on high-dimensional data. As is shown in Figure 2.3, our method (M0)
outperforms the multiple matrix graph estimation method (M1) regardless of tuning parameter.
We also notice that under this setting with a reasonable lambda, we almost recover ROC curve
perfectly. While our data-driven procedure prefers larger tuning parameter to guarantee the
correctness of theory, we further notice that in practice, the optimal lambda can be determined by
cross-validation.

Figure 2.3: Simulation results using real data estimates under different tuning parameter λ values.
The dataset is of the same dimension as real data, n = 1000, p = 50, q = 96, but only keep
d = 3 for fast computation of M1. Our method (M0) is always better than M1 regardless of
tuning parameter. As the number of sample is large, M2 is similar to our method, thus the curve is
omitted here.

Since our real data has a relatively smaller dimension, q = 96, the difference between our
method (M0) and modified inference method (M2) is not obvious especially when number of
sample is large. By setting n = 10, we compare the ROC curve between our method (M0)
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and M2, which is shown in Figure 2.4. Our method (M0) is better than M2 when processing
high-dimensional data with small sample size.

Figure 2.4: Simulation results using real data estimates under different tuning parameters. The
dataset is of the same spatial and temporal dimension as real data, but only keep n = 10 to make
it a high dimensional inference problem. Our method (M0) is always better than M2 regardless of
tuning parameter.

2.4.2 Experimental Data Analysis
The details of the data can be found in Section 1.1, and we are focused on the complete dataset
which contains 5 different experimental sessions. Before applying our method to the data, we
need to verify that for a pair of edge (i, j), the sign of ρtij remains the same for all 1 ≤ t ≤ d. We
calculate the sample partial correlation estimate ρ̂sampt for each sub-graph separately, and plot the
edge values in sub-graph against each other in Figure 2.5. We also provide the sample estimate
B̂samp
t for precision matrix in Figure A.2 in the appendix. We observe that across different

sessions, the sample estimates for a fixed edge are strongly correlated (correlation coefficient
> 0.94 for all sessions pairs in Figure 2.5), and the signs are mostly the same, thus our assumption
holds.

We further define four different experimental stages: fixation stage (200ms), cue stage (50ms),
early delay stage (the first 250ms of delay stage) and late delay stage (the last 250ms of delay
stage). We leave 100 trials as cross-validation data for tuning parameter λ in group Lasso following
similar procedure as in Section 2.4.1.

Within-area Inference

We apply our method in PFC and V4 separately, each with 96 electrodes located in a 10× 10 utah
array. Since the spatial location for electrodes is known, we are particularly interested in inferring
the relationship between neural connectivity and physical distance. Notice the significance of the
edge is encoded in our test statistic, which can also be interpreted as sum of partial correlation
for each edge over multiple graphs. Therefore, we can calculate the average test statistic over
all edges for a particular physical distance, which will reflect how the connectivity is related to
edge distance in physical space. As in Figure 2.6, we discover that the test statistic declines as the
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Figure 2.5: Sample estimate of ρt for each session plotting against each other. For each panel,
we plot vec(ρ̂sampt ) vs. vec(ρ̂sampt+1 ), for 1 ≤ t ≤ 4. Each blue dot corresponds to an edge value
in partial correlation matrix. The sample estimate shows that edges in each sub-graph are
strongly correlated, and the signs keep the same for most edges, especially the edges with strong
connectivity.

physical distance increases for all experimental stages in both area, which echos with the fact that
the correlation of neuron activity depends strongly on physical distances from previous studies
[28, 60]. This serves as a side proof that our test statistic is intepretable and reasonable in real
data.

Next, for each area and each experimental stage, we apply our method on the corresponding
data segments. Define the connectivity strength of node i as 1

d

∑
j:(i,j)∈S∗

∑d
t=1 |ρtij|, where S∗ is

the set of significant edges at level α = 0.05 for each stage, then we can investigate the distribution
of connectivity strength changing with area and experimental stages. In Figure 2.7, we observe
that the within area connectivity are strongest during fixation and cue stage, while it declines
during delay stage. We also observe that PFC seems to be more connected than V4. Especially, at
the delay stage, when animal needs to proceed the visual signals, connectivity in both PFC and
V4 decreases; the connectivity in V4 dies down quickly while connectivity in PFC remains on a
high level during delay stage. To further test our observation, we define the change of connectivity
for node i as 1

d

∑
j:(i,j)∈S′∗

∑d
t=1(|ρ1

tij| − |ρ2
tij|), where ρ1

tij is the partial correlation between i and
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Figure 2.6: The average test statistic vs physical distance during late delay period in V4. Notice
that the test statistic declines as the physical distance increase. This phenomenon is consistently
identified over all experimental stages, both in PFC and V4

j for graph t at late delay stage, ρ2
tij is the partial correlation between i and j for graph t at cue

stage, S ′∗ is the set of significantly changed edges between cue stage and late delay stage at level
α = 0.05. The spatial distribution of change of connectivity is shown in Figure A.3. We observe
negative changes in connectivity strength for both PFC and V4 when switching from cue stage to
delay stage.

Finally, as the cue appears at one of eight random directions, we analyze the connectivity
distribution with respect to each area, time stage and cue type. For V4, during fixation, there
are no significant differences in connectivity respect to each cue. However, starting from the
cue stage, we observe that in V4, the connectivity peaks at 225◦. The connectivity figures for
eight different cues are shown in Figure 2.8. This gives evidence that V4 neurons do have a
preferred direction, not only in terms of firing rate/tuning curve of single neuron, but also in terms
of the connectivity strength which is defined by sum of partial correlation of bulk activity. To
confirm our finding with evidence from statistical test, for V4 at cue stage, we collect one dataset
containing 210 trials with cue appearing at 225◦, and the other dataset containing same number of
trials with cue uniformly appearing at 7 other direction. We test if the change of connectivity is
significant at level α = 0.05, and plot the change of connectivity strength in Figure A.4, following
similar procedure in Figure A.3. Indeed, we see a striking increase in connectivity and verified
that V4 gains a stronger connectivity for cue at 225◦. For PFC, there is no clear sign of a preferred
direction, which is reasonable as it’s not a visual area as V4. However, when compare the figure of
PFC during cue stage (Figure A.5) with the one during late delay stage (Figure A.6), we observe
that PFC seems to gradually “shift” to attend stimulus at angle 225◦ as well. In Figure A.5, cues
at 45◦/135◦/180◦ all show stronger connectivity than 225◦; however, in Figure A.6, 225◦ seems
to be the strongest. This indicates that the cross communication between PFC and V4 leads PFC
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Figure 2.7: Connectivity strength distribution over 2D array for PFC and V4 over various
experimental stages. The connectivity in both area decays during the delay stage, but V4 seems to
be more influenced and less active than PFC.

to respond similarly as V4, but a more careful inference needs to be carried out later.

Cross-area Inference

The declining connectivity for within area drives us to investigate the cross-area connectivity.
Now combining the electrodes in both area and applying our procedure, we are capable to identify
significant cross-area edges. We sub-sample the electrodes in each area by taking every other
node along the physical dimension, making it 5 × 5 = 25 electrodes for each region, and 625
cross-area edges in total. The electrode subsampling can be justified by the fact that adjacent
nodes are usually strongly connected, thus skipping one neighbour will not negatively impact
our results, but ensures numerical stability. Besides, it saves computational resources and make
visualization of cross-region edges cleaner. Testing at α = 0.05, the significant cross-area edges
are shown in Figure 2.9. We identify least number of edges during cue stage, when the animal is
supposed to observe the cue. The cross-area edges seem to be recovering during early delay stage,
and reach to the same number as fixation stage. At late delay stage, when the animal is about to
make a choice, the most number of cross-edges are identified.

To characterize the overall cross-region connectivity, we implemented the simultaneous test
for the set of cross-area edges at test level α = 0.05. In Table 2.4, we show the test results
at different c-levels. Specifically, we identify that the two area are most strongly connected
during late delay period, and there is few connectivity between two areas during cue period. The
cross-area connectivity appears to be on the same level for fixation stage and early delay stage.

Combining with the results from within-area inference, we identify that cross-area connectivity
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Figure 2.8: Connectivity strength distribution over 2D array for V4 for eight different cues during
cue stage. Eight different panel corresponds to eight different cues appearing at different angles.
The connectivity at 225◦ shows a much stronger amplitude than other directions. Similar figure
for PFC is shown in appendix.

gets enhanced during the delay stage, when the animal has to process the visual signal and prepare
to make a choice, while within-area connectivity is suppressed. On the other hand, during cue
stage, while the animal is focused on seeing the cue, both areas seem to function on its own
and there is little communication. The early delay stage seems to be a transition stage, during
which the within-area connectivity decays while cross-area connectivity recovers to the level of
fixation stage and continues to increase. These observations echo with previous studies that neural
variability in the spiking of neurons declines during the stimulus onset [19], and visual stimuli
causes a substantial decrease in correlation of cortical neurons [57]. We also discover that PFC is
more active than V4 especially during delay stage, while V4 is mainly involved during fixation
and cue stage. As is shown by [35], robust sustained activity in PFC is found during delay stage,
which is further supported by our result. We also identify that the bulk neuron activity in V4
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Figure 2.9: Significant cross-region edges for PFC and V4 over various experimental stages. X
and Y axis are electrode numbering along each dimension. Lower left shows electrodes in PFC,
while upper right shows electrodes in V4. Red lines are the significant cross-area edges.

shows a preferred direction for cue at 225◦.

c-level Fixation Cue Early Delay Late Delay
0 * * *
0.01 * * *
0.02 *

Table 2.4: Simultaneous test results for cross-area edges at different c-levels with test level
α = 0.05. Entry with * represents significant test result.

2.5 Conclusion
In this paper, we propose a linear-functional based test using partial correlation estimator to detect
sparse edges and infer existence and strength of connectivity between two groups of nodes in
multiple matrix-variate Gaussian Graphical Models. The spatial dimension, temporal dimension
and number of graphs are allowed to diverge and even exceed the number of samples.

Both our model and our assumptions are driven by the practical concerns in neural data
analysis. In real data, we observe the within-area connectivity and cross-area connectivity
changes accordingly, as the animal entered different experimental stages. Especially, within-area
connectivity peaks during early experimental stages, while cross-are connectivity grows when the
animal processes the visual signal during late delay stage. Our inference results are illuminating
for scientists to understand the activity and connectivity of PFC and V4 during visual tasks.

Our method is the first attempt to address the simultaneous c-level test problem in multiple
matrix-variate Gaussian graphs. It would be interesting to extend our method to other popular yet
non-Gaussian type of graphs such as Poisson networks. Besides, we currently implemented group
Lasso for our regression model which involves one tuning parameter; in the future, a tuning-free
or scale-free method such as self-tuned Dantzig selector and scaled Lasso is desirable to handle
the issue of heterogeneity and correlation in regression with data from multiple matrix-variate
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Gaussian graphical models. These directions are beyond the scope of this work and will be
interesting for future directions.

Discussion on Significant Result

Throughout Figure 2.6 - Figure 2.8, we draw our conclusions based on significance test. However,
non-significant results may due to either weak signals or large uncertainty. In our case, the
analytical form in Equation 2.17 with Assumption 3 guarantees that the variance of all edges are
asymptotically on the same level, thus specific edges are unlikely to be dropped from our graphs
due solely to the magnitude of uncertainty.

To investigate this further, we analyzed the variance of the test statistic for all the figures
we generated, and discovered that the variance is on a constant level indeed for all the figures
we have in the thesis. Two examples, corresponding to line plot as Figure 2.6 and heatmap
plot as Figure 2.7, are shown here. In Figure 2.10, we show the averaged standard deviation
of our test statistic for each physical distance, and we observe no dramatic change over the
physical distance. In Figure 2.11, we calculate the square root of averaged variance of test statistic
for each node i (

√
1
q

∑q
j=1 |Var(P(i,j))|), and show the heatmap. For each stage and each area,

the spatial distribution of the variance is uniform across all spatial nodes, which indicates that
spatial distribution of connectivity is indeed determined by our signal strength, and is not heavily
influenced by the variance of test statistic.

Figure 2.10: The averaged variance of test statistic vs physical distance during late delay period
in V4. Notice that different from test statistic, the variance seems to be stable over the physical
distance, thus ruling out the possibility of having larger variance for larger physical distance.
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Figure 2.11: The square root of averaged variance of test statistic distribution over 2D array for
PFC and V4 over various experimental stages. There are no obvious spatial patterns for all areas
and experimental stages.
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Chapter 3

Latent Dynamic Factor Analysis of
High-Dimensional Neural Recordings

This chapter is taken from work submitted to NeurIPS 2020, the Thirty-fourth Conference on Neu-
ral Information Processing Systems aside from minor changes for style consistency. I collaborated
with co-author Heejong Bong, Zhao Ren, Matthew A. Smith, Valerie Ventura, and Robert E. Kass.

In this chapter, we would like to investigate Q3, that is, how strong the connectivity is across
area. From the study in Chapter 2, imposing one single matrix-variate graph to multiple brain
areas might be too rigid, as 1) there might be multiple factors and it’s inappropriate to assume the
autocorrelation to be the same over all spatial nodes, as is discussion in Section A.5.1, and 2) we
would like to investigate bi-directional dynamic cross-area connectivity (the lead-lag dependency)
which changes over time and characterizes the information flow in both directions.

Therefore, we introduce a factor model to estimate dynamic spatio-temporal dependence
between PFC and V4 from LFP data. By adding a noise component to CCA and extending it
into multiple components, our model can be interpreted as a general model of dynamic CCA;
by special design for factor covariance and noise covariance, our model can also be viewed as a
cross-region generalization of factor models such as GPFA. We assume that the observed data
consists of two parts, (i) the factor part and (ii) the noise part, as in a typical factor model, and the
novelties of our model comes from two folds: (i) For the factor part, motivated by CCA, we design
a joint latent factor which combines latent components from all brain areas and directly samples
from a full covariance matrix. We further notice that, while having a full covariance for joint
factors enables more flexibility, we have large number of parameters to be estimated. To handle
this situation, we impose the constraint that each in-region and cross-region sub-precision matrix
block are banded. Furthermore, even for the non-zero entries, an `1 penalty is added to impose
sparsity constraint. (ii) For the noise part, we assume that the auto-covariance of noise is the
Kronecker product of spatial covariance and temporal covariance, which is a common assumption
in Matrix-variate Graphical Model designed for processing spatio-temporal data [67]. The spatial
precision matrix can be estimated with Graphical Lasso to impose sparsity structure [26], while
the temporal precision matrix can be estimated with modified Cholesky decomposition to impose
banded structure[5, 40]. Finally, by putting all parts together, we optimize the model parameters
with Expectation–Maximization (EM) algorithm, and the parameter tuning is based on K-fold
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cross-validation.

3.1 Latent Dynamic Factor Analysis of High-dimensional Time
Series

Our notations are slightly different than the notations in previous two chapters, since we assume
different factors in different brain areas. We denote the area by the superscript k, i.e.,X1 is the
observation data from the first area. As a consequence, we denote the i-th sample in region k by
Xk[i]. For practical reason, we only consider two areas in model description, while our model
can be easily extended to three or more areas.

We treat the case of two groups of time series observed, repeatedly, N times. LetX1
t,· ∈ Rp1

andX2
t,· ∈ Rp2 be p1 and p2 recordings at time t in each of the two groups, for t = 1, . . . , T . As

in [65], we assume that a q-dimensional latent factor Zk
t,· ∈ Rq drives each group, here, each brain

region, according to the linear relationship

Xk
t,· | Zk

t,· = µkt,· + β
k ·Zk

t,· + ε
k
t,·, (3.1)

for brain region k = 1, 2, where µkt,· ∈ Rpk are mean vectors, βk ∈ Rpk×q are matrices of constant
factor loadings, and εkt,· ∈ Rpk are errors centered at zero (independently of the latent vectors Z).
We are interested in the pairwise cross-group dependencies of the latent vectors Z1

·,f and Z2
·,f , for

f = 1, . . . , q. As in our related work [6], we assume that the time series of these latent vectors
follows a multivariate normal distribution(

Z1
·,f

Z2
·,f

)
∼ N(0,Σf ), f = 1, . . . , q, (3.2)

where Σf describes all of their simultaneous and lagged dependencies, both within and between
the two vectors. We assume the N sets of random vectors (ε,Z) are independent and identically
distributed. We let Pf be the correlation matrix corresponding to Σf , and write its inverse as

Πf = P−1
f =

 Π11
f Π12

f

Π12>
f Π22

f

 (3.3)

where Π11
f and Π22

f are the scaled auto-precision matrices and Π12
f is the scaled cross-precision

matrix. We now assume finite-range partial autocorrelation and cross-correlation for (Z1
t,f ,Z

2
t,f ),

so that Π11
f , Π22

f and Π12
f in Equation (3.3) have a banded structure. Specifically, for k, l = 1, 2,

we assume there is a value hklf such that Πkl
f is a (2hklf + 1)-diagonal matrix. Because our goal is

to address the cross-region connectivity and lead-lag relationship, we are particularly interested in
the estimation of Π12

f for each latent factor f = 1, . . . , q. Note that the non-zero elements Π12
f,(t,s)

determine associations between the latent pair Z1
·,f and Z2

·,f , which are simultaneous when t = s
and lagged when t 6= s. Finally, we model the noise in Eq. (3.1) as a Gaussian random vector

(εk1,·; ε
k
2,·; . . . ; ε

k
t,·) ∼ N(0,Φk), k = 1, 2, (3.4)
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where we allow Φk to have non-zero off-diagonal elements to account for within-group spatiotem-
poral dependence. We assume Φk can be written in Kronecker product form

Φk = Φk
T ⊗Φk

S , k = 1, 2, (3.5)

where Φk
S and Φk

T are the spatial and temporal components of Φk, as is often assumed for
spatiotemporal matrix-normal distributions, e.g., [22]. Although this is a strong approximation,
implying, for instance, that the auto-correlation of every Xk

·,i is proportional to Φk
T , we regard

Φk as a nuisance parameter: our primary interest is Σf in Eq. (3.2). We also assume an auto-
regressive process of order at most hkε , so that Γk

T =
(
Φk
T
)−1 is a (2hkε + 1)-diagonal matrix. In

our simulation we show that we can recover Σf accurately even when the Kronecker product and
bandedness assumptions fail to hold.

The model in Equations (1)-(5) generalizes other known models. First, when q = 1, and
Z1 = Z2 remains constant over time, in the noiseless case (εk = 0), it reduces to the probabilistic
CCA model of [3]. Thus, model (1)-(5) can be viewed as a denoising, multi-level and dynamic
version of probabilistic CCA. Second, when k = 1, the Gaussian processes are stationary, and the
ε vectors are white noise, (1)-(5) reduces to GPFA [65]. Thus, (1)-(5) is a two-group, nonstationary
extension of GPFA that allows for within-group spatio-temporal dependence.

3.1.1 Identifiability and Sparsity Constraints
Despite the structure imposed on Φk in Eq. (3.5), parameter identifiability issues remain. Our
model in Eqs. (3.1), (3.2) and (3.4) induces the marginal distribution of the observed data
(X1,X2): (

X1
1,·;X

1
2,·; . . . ;X

2
t,·
)
∼ N

(
(µ1

1,·;µ
1
2,·; . . . ;µ

2
t,·),S

)
(3.6)

where S is the marginal covariance matrix given by:

S =

[
Φ1
T ⊗Φ2

S 0
0 Φ2

T ⊗Φ2
S

]
+

q∑
f=1

[
Σ11
f ⊗ (β1

fβ
1>
f ) Σ12

f ⊗ (β1
fβ

2>
f )

Σ12>
f ⊗ (β2

fβ
1>
f ) Σ22

f ⊗ (β2
fβ

2>
f )

]
. (3.7)

The family of parameters

θ{α
1,α2} =


Σ
{α1

1,α
2
1}

1 , . . . ,Σ
{α1
q ,α

2
q}

q , Φ1
S −

q∑
f=1

α1
fβ

1
fβ

1>
f , Φ2

S −
q∑

f=1

α2
fβ

2
fβ

2>
f ,

Φ1
T , Φ2

T , β
1, β2, µ1, µ2

 , (3.8)

where Σ
{α1
f ,α

2
f}

f =

{
Σf +

[
α1
fΦ

1
T 0

0 α2
fΦ

2
T

]}
, induce the same marginal distribution in Eq. (3.6),

for all α1, α2 ∈ Rq (notice that θ = θ{0,0} = {Σ1, . . . ,Σq, Φ1
S , Φ2

S , Φ1
T , Φ2

T , β
1, β2, µ1, µ2}

is the original parameter). Preliminary analysis of LFP data indicated that strong cross-region
dependence occurs relatively rarely. We therefore resolve this lack of identifiability by choosing
the solution given by maximizing the likelihood with an L1 penalty, under the assumption that the
inverse cross-correlation matrix Π12

f is a sparse (2h12
f + 1)-diagonal matrix.
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3.1.2 Latent Dynamic Factor Analysis of High-dimensional Time Series
(LDFA-H)

Given N simultaneously recorded pairs of neural time series {X1[n],X2[n]}n=1,...,N , the max-
imum penalized likelihood estimator (MPLE) of the inverse correlation matrix of the latent
variables solves(

Π̂1, . . . , Π̂q

)
= argmin − 1

N

N∑
n=1

l
(
θ;X1[n],X2[n]

)
+

q∑
f=1

2∑
k,l=1

∥∥Λkl
f �Πkl

f

∥∥
1

s.t. Γk
T is (2hkε + 1)-diagonal,

(3.9)

where the log-likelihood is

l
(
θ;X1,X2

)
= − log detS − (X1

1,·−µ1
1,·; . . . ;X

2
t,·−µ2

t,·)
>S−1(X1

1,·−µ1
1,·; . . . ;X

2
t,·−µ2

t,·),
(3.10)

with S defined in Eq. (3.7), and the constraints are

Λkl
f,(t,s) =


∞, (t, s) : |t− s| > hklf ,

λf , (t, s) : 0 < |t− s| ≤ hklf , k 6= l,

0, otherwise.
(3.11)

for factor f = 1, . . . , q and brain region k = 1, 2. The first constraint forces the corresponding
Πkl
f,(t,s) to zero and thus imposes a banded structure for Πkl

f , and the second assigns the same
sparsity constraint λf on the off-diagonal elements of Π12

f . Finally, to make calibration of tuning
parameters computationally feasible, we use the same bandwidth to latent precision and noise
precision within a region and to latent precision across regions, respectively, and the same sparsity
parameter:

hkkf = hkε = hauto, h
12
f = hcross and λf = λcross,

for each factor f = 1, . . . , q and region k = 1, 2.
The remaining hyperparameters become the temporal bandwidths hauto and hcross; the sparsity

penalty λcross; and the number of latent factors q. The bandwidths are chosen using domain
knowledge and preliminary data analyses. We determine the remaining parameters by 5-fold
cross-validation (CV).

Solving Eq. (3.9) requires S−1. Because it is not available analytically and a numerical approx-
imation is computationally prohibitive, we solve Eq. (3.9) using an EM algorithm [24]. Let θ(r)

be the parameter estimate at the r-th iteration. We consider the data {X1[n],X2[n]}n=1,...,N to be
incomplete observations of {X1[n],Z1[n],X2[n],Z2[n]}n=1,...,N . In the E-step, we estimate the
conditional mean and covariance matrix of each {Z1[n],Z2[n]} with respect to {X1[n],X2[n]}
and θ(r). Given these sufficient statistics, the MPLE decomposes into two separate minimizations
of

1. the negative log-likelihood of Σf , w.r.t. the latent factor model (Eq. (3.2)) and

2. the negative log-likelihood of Φ1
S , Φ2

S , Φ1
T , Φ2

T , β
1, β2, µ1, µ2 w.r.t. the observation

model (Eqs. (3.1) and (3.4)).
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With the noise correlation and latent factor correlation disentangled, the M-step reduces to easy
sub-problems. For example, the minimization with respect to Σf is a graphical Lasso problem
[26] and the minimization with respect to Φk

S and Φk
T is a maximum likelihood estimation of a

matrix-variate distribution [22]. We thus obtain an affordable M-step, and alternating E and M-
steps produces a solution to the MPLE problem. We derive the full formulations in Appendix B.1.
Code is provided at https://github.com/AutoAnonymous/ldfa_anon.

3.2 Results
One major novelty of our method is its accounting of auto-correlated noise in neural time series to
better estimate cross-region associations in CCA type analysis. This is illustrated in Section 3.2.1
based on simulated data. Then in Section 3.2.2, we apply LDFA-H to experimental data to
examine the lead-lag relationships across two brain areas and the spatial distribution of factor
loadings.

3.2.1 Real-data Based Simulation
We simulated N = 1000 i.i.d. neural time series Xk of duration T = 50 from Eq. (3.1) for
brain regions k = 1, 2. The latent time series Zk were generated from Eq. (3.2) with q = 1 pair
of factors and correlation matrix P1 depicted in Fig. 3.1(a). The noise εk was taken to be the
N = 1000 trials of the experimental data analyzed in Section 3.2.2, first permuted to remove
cross-region correlations, then contaminated with white noise to modulate the strength of noise
correlation relative to cross-region correlations. The resulting temporal noise correlation matrices,
found by averaging correlations over all pairs of simulated time series, are shown in Fig. 3.1(b),
for four levels of white noise contamination. The magnitudes of cross-region correlation and
within-region noise auto-correlation are quantified by the determinant of each matrix, known as
the generalized variance [54]; their logarithms are provided atop the panels in Fig. 3.1(a) and
Fig. 3.1(b). Generalized variance ranges from 0 (identical signals) to 1 (independent signals).
Other simulation details are in Appendix B.

We note that the simulation does not satisfy some of the model assumptions in Section 3.1.
The noise vectors εk are not matrix-variate distributed as in Eqs. (3.4) and (3.5) and the derived
Γk
T does not satisfy a banded structure as in Eq. (3.9). Also, the latent auto-correlations (Fig. 3.1)

are not banded as assumed in Eq. (3.9).
We applied LDFA-H with q = 1 factor, hcross = 10, hauto equal to the maximum order of the

auto-correlations in the 2000 observed simulated time series, and λcross determined by 5-fold CV.
Fig. 3.2 shows LDFA-H cross-precision matrix estimates corresponding to the four level of noise
correlation shown in Fig. 3.1(b). They closely match the true Π12

1 shown in the right most panel
of Fig. 3.1(a).

We also applied five other methods to estimate cross-region connections in the simulated
data. They include the popular averaged pairwise correlation (APC); correlation of averaged
signals (CAS); and CCA [30], applied to the NT observed pairs of multivariate random vectors
{X1

t,·,X
2
t,·}n,t∈[N ]×[T ] to estimate the cross-correlation matrix between the canonical variables;

as well as DKCCA [52] and Method A ([6]). The first four methods do not explicitly provide
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Figure 3.1: Simulation settings. (a) True correlation matrix P1 for latent factors Z1
·,1 and Z2

·,1
from model in Eq. (3.2); close-up of the cross-correlation matrix; corresponding precision matrix
Π1 = P−1

1 ; and close-up of cross-precision matrix Π12
1 (Eq. (3.3)). Matrix axes represent the

duration, T = 50 ms, of the time series. Factors Z1 and Z2 are associated in two epochs: Z2

precedes Z1 by 7ms from t = 13 to 19ms, and Z1 precedes Z2 by 7ms from t = 33 to 42ms. (b)
Noise auto-correlation matrices (Eq. (3.5)) for pairs of simulated time series at four strength
levels. log det in (a) and (b) measure correlation strengths.

cross-precision matrix estimates, so we display their cross-correlation matrix estimates in Fig. 3.3,
along with LDFA-H cross-correlation estimates in the last row. It is clear that only LDFA-H
successfully recovered the true cross-correlations shown in the second panel of Fig. 3.1(a), at all
auto-correlated noise levels.

3.2.2 Experimental Data Analysis from Monkey Saccade Task

We now report the analysis of LFP data in areas PFC and V4 of a monkey during an eye saccade
task. One trial of the experiment consisted of four stages: (i) fixation: the animal fixated at the
center of the screen; (ii) cue: a cue appeared on the screen randomly at one of eight locations; (iii)
delay: the animal had to remember the cue location while maintaining eye fixation; (iv) choice:
the monkey made a saccade to the remembered cue location. We focused our analysis on the 500
ms delay period, when the animal both processed cue information and prepared a saccade. LFP
data were recorded for N = 1000 trials by two 96-electrode Utah arrays each implanted in PFC
and V4, β band-passed filtered, and down-sampled from 1 kHz to 100 Hz.

We applied LDFA-H using hauto = hcross = 10, corresponding to 100 ms (at 100 Hz); the LFP
β-power envelops have frequencies between 12.5Hz to 30Hz, and hauto = 10 just enables the
slowest filtered signal to complete one full oscillation period. The other tuning parameters were
determined by 5-fold CV over λcross ∈ {0.0001, 0.001, 0.01, 0.1} and q ∈ {5, 10, 15, 20, 25, 30},
yielding optimal values λcross = 0.01 and q = 10. The fitted factors were ranked based on the
Frobenius norms of their covariance matrices ‖Σf‖2

F ; norms are plotted versus f in decreasing
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Figure 3.2: Simulation results: LDFA-H cross-precision matrix estimates. Estimates of Π12
1 ,

shown in the right-most panel of Fig. 3.1(a), using LDFA-H, for the four noise auto-correlation
strengths shown in Fig. 3.1(b). LDFA-H identified the true cross-area connections at all noise
strengths.

order in Fig. B.1, and log10 ‖Σf‖2
F of the four most dominant factors are provided atop each panel

in Fig. 3.4(a). Factor loadings (slightly smoothed over space) for the 96 V4 electrodes are shown
in Fig. 3.4(a) for the top four factors (first four columns of the estimate of βk in Eq. (3.9), with
area k = 1 being V4), arranged spatially according to electrode positions on the Utah array. The
factors have different spatial modes over the physical space of the Utah array. For example, the
dominant first factor has positive weights concentrated along a vertical strip on the left of the
array, especially in the mid-to-upper left, and negative weights along a vertical strip to the right,
separated by roughly 2000 microns.

We also summarized, for each factor f , the temporal information flow at time t from V4
to PFC and to V4 from PFC with If,out(t) =

∑
t′>t

∣∣∣Π̂12
f,(t,t′)

∣∣∣ and If,in(t) = −
∑

t′<t

∣∣∣Π̂12
f,(t,t′)

∣∣∣,
respectively, where Π̂f is the inverse correlation matrix estimate in Eq. (3.9). Figure 3.4(b)
displays smoothed If,out(t) and If,in(t) as functions of t ∈ [100, 400]ms for the top four factors.
Lead-lag relationships between V4 and PFC change dynamically over time, and the information
flow tends to peak either at the beginning of the delay period, when the animal must remember the
cue, or at the end, when it must make a saccade decision. We observe the strongest information
flow from V4 to PFC in the dominant first factor, when the animal needs to process the visual
signal from V4 during the delay period. We also observe different information flow patterns: (1)
asymmetric (first factor): information in and out avoid conflicting with each other and peak at
different times; (2) parallel (second factor): information in and out are parallel and oscillate over
time; (3) symmetric (third and fourth factors): information in and out are symmetric, meaning
they are activated and suppressed simultaneously.

3.3 Conclusion
To identify dynamic interactions across brain regions we have developed LDFA-H, a nonstationary,
multi-group extension of GPFA that allows for within-group spatio-temporal dependence among
high-dimensional neural recordings. Although we treated the two-group case, and applied
it to interactions across two brain regions, several groups can be handled with obvious, and
straightforward modifications. The approach could, in principle, be applied to many different
types of time series, but it has some special features: first, like all methods based on sparsity,
it assumes a small number of large effects are of primary interest; second, it uses repetitions,
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here, repeated trials, to identify time-varying dependence; third, because the within-group spatio-
temporal structure is not of interest, the method can remain useful even with some modest
within-group model misspecification.

We applied LDFA-H to LFP data, while GPFA has been applied mainly to neural spike count
data. In the analysis of spike counts, we have been struck by the strong attenuation of effects due
to Poisson-like noise, as discussed in [60] and references therein. A version of LDFA-H built for
Poisson-like counts, or for point processes, could be the subject of additional research. It may also
be advantageous to model spatial dependence explicitly, perhaps based on physical distance be-
tween electrodes, analogously to what was done in [60], and there may be important simplifications
available in the temporal structure as well. In addition, it would be helpful to include statistical
inferences for assessing effects. In the future, we hope to pursue these possible directions, and
refine the application of this promising approach to the analysis of high-dimensional neural data.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 3.3: Simulation results: cross-correlation matrix estimates. Estimates of Σ12
1 using (a)

averaged pairwise correlation (APC), (b) correlation of averaged signal (CAS), (c) canonical
correlation analysis (CCA, [30]), (d) dynamic kernel CCA (DKCCA, [52]), (e) Method A ([6]),
and (f) LDFA-H under four noise correlation levels. Only LDFA-H successfully recovered the
true cross-correlation at all noise auto-correlation strengths.
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Figure 3.4: Experimental data results for the top 4 factors. (a) Factor loadings, rescaled between
-1 and 1, plotted against the electrode coordinates (µm) of the V4 Utah array. Factors have
different spatial modes over the physical space of the Utah array. log10 ‖Σf‖2

F , written atop the
panels, measures the strength of each factor. Notice that the strength of the first factor is over 100
order larger than the second largest factor. (b) Dynamic information flow from V 4→ PFC (blue)
and PFC → V 4 (orange). In and out flows seem to peak either at the beginning or at the end of
the delay period, and different couplings of the two flows may indicate different communication
modes between V4 and PFC.
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Benali, H. (2006). Partial correlation for functional brain interactivity investigation in functional
mri. NeuroImage, 32(1):228 – 237. 2

[42] Mazumder, R., Hastie, T., and Tibshirani, R. (2010). Spectral regularization algorithms for
learning large incomplete matrices. Journal of Machine Learning Research, 11(80):2287–2322.
B.1

[43] McKee, Matthew (2019). A braingate electrode array with a dime for size comparison.
[Online; accessed Jan 16, 2020]. (document), 1.1
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Appendix A

Appendix to Chapter 2

A.1 Additional Figures

Figure A.1: ROC curve under random graph with n = 5, p = 100, q = 30 and d = 5. Each
column corresponds to different tuning parameter value for our method (M0). Our method is
consistently better regardless of tuning parameters.

A.2 Proofs

A.2.1 Technical Details
Here we introduced several lemmas that will help us prove propositions and theorems later.
Lemma 1. For any 1 ≤ i ≤ j ≤ q, the sample estimate for (i, j) entry in column covariance of
the t-th graph v̂samptij =

Z′t,·,iZt,·,j

ntp
can be written as

v̂samptij =
1

ntp

nt∑
k=1

p∑
l=1

λtlW
(k)
tli W

(k)
tlj ,

where λtl is the lth eigenvalue of Ut, (W
(k)
tli ,W

(k)
tlj ) ∼ N(0,Vt,[i,j]) and are independent for all

1 ≤ l ≤ p, 1 ≤ k ≤ nt.
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Figure A.2: Sample estimate ofBt for each session plotting against each other. For each panel,
we plot vec(B̂samp

t ) vs. vec(B̂samp
t+1 ), for 1 ≤ t ≤ 4. Each blue dot corresponds to an edge value

in precision matrix. The observation is similar to Figure 2.5 and the signs of connectivity should
be consistent across sessions.

Proof. Let Y (k)
t = U

−1/2
t X

(k)
t ∈ Rp, it immediately follows that Y (k)

t ∼ N(0, Ip×p ⊗ Vt), thus
in particular,

(Y
(k)
t,·,i ,Y

(k)
t,·,j) ∼ N(0, Ip×p ⊗ Vt,[i,j]).

Assuming that we can decompose Ut = P
′
tDtPt, where Pt is an orthogonal matrix andDt is

a diagonal matrix with eigenvalues of Ut as its diagonal elements, we can defineW (k)
t,·,i = PtY

(k)
t,·,i .

Since Pt is orthogonal, we also have (W
(k)
t,·,i,W

(k)
t,·,j) ∼ N(0, Ip×p ⊗ Vt,[i,j]), and (W

(k)
tli ,W

(k)
tlj )
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Figure A.3: Change of connectivity strength distribution over 2D array for PFC and V4 between
late delay stage and cue at stage. X and Y axis are in micrometers. Black dots are the locations
of electrodes in 2D array. Kernel smoother with 400 micrometer bandwidth is implemented to
smooth out the signal with a resolution of 40×40 micrometer pixel. Values for 4 missing nodes on
the array are interpolated with a Nadaraya-Watson normalization of the kernel. We can observe
that most of the spatial changes are negative, meaning connectivity within region decreases during
delay stage. Comparing V4 with PFC, we observe a dark blue region for V4 on the top left, which
indicates that the negative change is larger for V4.

are independent ∀1 ≤ l ≤ p. Thus we have

v̂samptij =
1

ntp

nt∑
k=1

p∑
l=1

X
(k)
tli X

(k)
tlj =

1

ntp

nt∑
k=1

(U
−1/2
t X

(k)
t,·,i)

′
Ut(U

−1/2
t X

(k)
t,·,j)

=
1

ntp

nt∑
k=1

(PtY
(k)
t,·,i )

′
Dt(PtY

(k)
t,·,j) =

1

ntp

nt∑
k=1

W
(k)
t,·,i

′

DtW
(k)
t,·,j

=
1

ntp

nt∑
k=1

p∑
l=1

λtlW
(k)
tli W

(k)
tlj .

Lemma 2. For any δ > 0, there exists a constant C which depends on ce and δ only, such that

P( max
1≤t≤d,1≤i≤j≤q

|v̂samptij − Vtij| ≥ C

√
log dq

ntp
) ≤ (dq)−δ.

Proof. From Lemma 1, it’s easy to see that W (k)
tli W

(k)
tlj is sub-exponential variable. From Assump-

tion 2, Assumption 3 and Theorem 2.8.2 in [59], we prove our main claim.
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Figure A.4: Change of connectivity strength distribution over 2D array for V4 during cue stage
between cue at 225◦ and the rests. X and Y axis are in micrometers. Black dots are the locations
of electrodes in 2D array. Kernel smoother with 400 micrometer bandwidth is implemented to
smooth out the signal with a resolution of 40×40 micrometer pixel. Values for 4 missing nodes on
the array are interpolated with a Nadaraya-Watson normalization of the kernel. We can observe
that most of the spatial changes are positive, meaning a net increase of connectivity for cue at at
225◦ than the rests.

Lemma 3. Let λi = c ξ+1
ξ−1

√
d+log q
n0p

for constant ξ > 1 and a large enough constant c depending

on δ, ce and M0 only. Then with probability 1− q−δ that event Ei holds where

Ei = {max
l 6=i

[∑d
t=1(Z

′
t,·,lEti)

2
]1/2

n0p
≤ ξ − 1

ξ + 1
λi}.

Moreover, define Z̃t,·,iD
−1/2
ti = Z̃t,·,i; with the same probability that event Ẽi holds where

Ẽi = {max
1≤i≤q

[∑d
t=1(Z̃

′

t,·,iEti)
2

]1/2

n0p
≤ ξ − 1

ξ + 1
λi}.

Proof. Note that

(X
(k)
t,·,l, ε

(k)
t,·,i)

iid∼ N

(
0,Ut ⊗ diag(vtll,

1

btii
)

)
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Figure A.5: Connectivity strength distribution over 2D array for PFC for eight different cues
during cue stage. Eight different panel corresponds to eight different cues appearing at different
angles. Notice that 45◦/135◦/180◦ all show stronger connectivity than 225◦.

for 1 ≤ k ≤ nt. Hence

(U
−1/2
t X

(k)
t,·,l,U

−1/2
t ε

(k)
t,·,i)

iid∼ N

(
0, I ⊗ diag(vtll,

1

btii
)

)
.

Condition on Zt,·,l, we obtain that

Z
′
t,·,lEti = D

−1/2
ti,ll Z

′
t,·,lEti = D

−1/2
ti,ll

nt∑
k=1

(X
(k)
t,·,l)

′U
1/2
t U

−1/2
t ε

(k)
t,·,i

∼ N(0,
gtil
btii

),

where gtil = (
∑nt
k=1‖U

1/2
t X

(k)
t,·,l‖

2
2∑nt

k=1‖X
(k)
t,·,l‖

2
2

) · ntp. In addition, due to the independence of d graphs, condition
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Figure A.6: Connectivity strength distribution over 2D array for PFC for eight different cues
during late delay stage. Eight different panel corresponds to eight different cues appearing at
different angles. The connectivity at 225◦ is strongest among eight directions, which indicates
that PFC may be impacted by V4.

on {Zt,·,l}, for 1 ≤ t ≤ d, Z
′
1,·,lE1i, · · · ,Z

′
d,·,lEdi are independent. Consequently, Z

′
t,·,iEti

√
btii
gtil

are i.i.d. N(0, 1), for t ∈ d given {Zt,·,l} for 1 ≤ t ≤ d. By applying the concentration inequality
of χ2 distribution (Lemma E.1 in [50] with y = δ0 log q),

P(χ2
d > d+ 2δ0 log q + 2

√
δ0d log q) ≤ q−δ0 ,

we obtain that

P

(
d∑
t=1

(Z
′
t,·,lEti)

2 > max
t

gtil
btii
· (d+ 2δ0 log q + 2

√
δ0d log q

)
≤ q−δ0 . (A.1)
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Now we bound

gtil
btii

1

(n0p)2
≤ 1

n0p

nt
n0

λtpvtii, (A.2)

where λtp is the largest eigenvalue of Ut. Finally we apply a union bound argument to Equa-
tion (A.1) over 1 ≤ l ≤ q with the help of Equation (A.2) to obtain that

P

max
l 6=i

[∑d
t=1(Z

′
t,·,iEti)

2
]1/2

n0p
> max

t
(
ntλtpvtii
n0

)

√
d+ 2δ0 log q + 2

√
δ0d log q

n0p

 ≤ q−δ0+1.

(A.3)

Let δ = δ0 − 1, this immediately implies that Ei holds with probability at least 1 − q−δ with
constant C depending on δ, ce and M0 only. In addition, the explicit formula of the bound can be
useful for us to provide a data-driven procedure.

The second claim on Ẽi holds with the similar procedure by noticing that

(X
(k)
t,·,−iβti,E

(k)
t,·,i)

iid∼ N

(
0,Ut ⊗ diag(

btiivtii − 1

btii
,

1

btii
)

)
for 1 ≤ k ≤ nt.

Lemma 4. Define the event

Edia = {|
Z ′t,·,iZt,·,i

ntp
| ∈ (

1

2ce
, 2ce) for all 1 ≤ t ≤ d, 1 ≤ i ≤ q},

then Edia holds with probability 1− q−δ, where δ is a positive constant.

Proof. By Lemma 1 with i = j, we have

Z ′t,·,iZt,·,i

ntp
=

1

ntp

nt∑
k=1

p∑
l=1

λtl(W
(k)
tli )2,

W
(k)
tli ∼ N(0, Vtii) and are independent for all 1 ≤ l ≤ p, 1 ≤ k ≤ nt. Hence EZ

′
t,·,iZt,·,i

ntp
=

Vtii
Ut
p

= Vtii by Assumption 2. By Assumption 3 and sub-exponential concentration inequality
(e.g. Theorem 2.8.2 in [59]), combining with union bound and Assumption 1, we obtain that

P

(
max

1≤t≤d,1≤i∈q
|
Z ′t,·,iZt,·,i

ntp
− Vtii| ≥ C

√
log dq

n0p

)
≤ (dq)−δ,

where C depends on M0, δ and ce only. The desired result follows by noting that Vtii ∈ ( 1
ce
, ce)

and C
√

log dq
n0p

is sufficiently small from Assumption 3 and 4 respectively.
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Lemma 5. Define the event

Ecom = {|max
l1,l2
‖Ml1l2‖2 ≤ C

√
log(dq)

n0p
},

whereMl1,l2 ∈ Rd×d is a diagonal matrix with the t-th entry on the diagnalMl1l2,tt =
Z
′
t,·,l1

Zt,·,l2
n0p

−

E
Z
′
t,·,l1

Zt,·,l2
n0p

, then Ecom holds with probability 1− (dq)−δ, where δ is a positive constant and C
only depends on M0, δ and ce.

Proof. SinceMl1l2 is a diagnal matrix,

max
l1,l2
‖Ml1l2‖2 = max

l1,l2,t
|Ml1l2,tt| = max

l1,l2,t
|
Z
′

t,·,l1Zt,·,l2

n0p
− E

Z
′

t,·,l1Zt,·,l2

n0p
|.

By Lemma 1,
Z
′
t,·,l1

Zt,·,l2
n0p

= nt
n0

1
ntp

∑nt
k=1

∑p
l=1 λtlW

(k)
tli W

(k)
tlj , with (W

(k)
tli ,W

(k)
tlj ) ∼ N(0,Vt,[i,j])

and are independent for all 1 ≤ l ≤ p, 1 ≤ k ≤ nt. By Assumption 1 and 3, and sub-exponential
concentration inequality (Theorem 2.8.2 in [59]), we have

max
l1,l2
‖Ml1l2‖2 ≤ C

√
log(qd)

ntp

nt
n0

≤ C ′

√
log(qd)

n0p

where the last inequality is due to nt ≤ M0n0 by Assumption 1. Note that constant C ′ only
depends on δ, M0 and ce.

Lemma 6. For any δ > 0, there exists a constant C which depends on δ, ce only, such that

P(max
1≤i≤q

max
1≤h≤q,h6=i

| 1

ntp

nt∑
k=1

p∑
l=1

ε
(k)
tljX

(k)
tlh | ≥ C

√
log q

ntp
) ≤ q−δ,

and

P(max
1≤i≤q

| 1

ntp

nt∑
k=1

p∑
l=1

ε
(k)
tliX

(k)
tl,−iβti| ≥ C

√
log q

ntp
) ≤ q−δ.

Proof. Let ε(k)
ti = (ε

(k)
t1i , · · · , ε

(k)
tpi )

′; with h 6= i, it’s obvious that ε(k)
ti is orthogonal to X(k)

t,·,h.
Therefore

Cov((ε
(k)
ti ,X

(k)
t,·,h)) = Ut ⊗ diag((btii)

−1, vthh).

Following similar arguments in Lemma 2, we prove the first claim.
Let X̃(k)

t,·,i = (X
(k)
t,1,−iβti, · · · ,X

(k)
t,p,−iβti)

′ , and ε(k)
ti is orthogonal to X̃(k)

ti . Notice thatX(k)
t,·,−i ∼

N(0,Ut ⊗ Vt,−i,−i) and βti = − 1
btii
Bt,−i,i, therefore we have

Cov(X̃
(k)
t,·,i) =

1

b2
tii

tr(Bt,−i,iBt,i,−iVt,−i,−i)Ut =
btiivtii − 1

btii
Ut.
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Then we have

Cov((ε
(k)
ti , X̃

(k)
t,·,i)) = Ut ⊗ diag((btii)

−1,
btiivtii − 1

btii
).

Following similar arguments in Lemma 2, we prove the second claim.

Lemma 7. Define

δ̂tij =
1

ntp

nt∑
k=1

p∑
l=1

ε̂
(k)
tli ε̂

(k)
tlj −

1

ntp

nt∑
k=1

p∑
l=1

ε
(k)
tli ε

(k)
tlj

− 1

ntp

nt∑
k=1

p∑
l=1

(βti,j − β̂ti,j)(ε(k)
tlj )2

1(i 6= j)− 1

ntp

nt∑
k=1

p∑
l=1

(βtj,i − β̂tj,i)(ε(k)
tli )2

1(i 6= j).

We conclude that

d∑
t=1

|δ̂tij| = O(sλ2
∗).

Proof. Let γti = (βti,1, ..., βti,i−1,−1, βti,i+1, ..., , βti,q)
′; we have ε(k)

tli = −X(k)
tl,· γi and ε̂(k)

tli =

−X(k)
tl,· γ̂ti. It follows that

d∑
t=1

(
1

ntp

nt∑
k=1

p∑
l=1

ε̂
(k)
tli ε̂

(k)
tlj −

1

ntp

nt∑
k=1

p∑
l=1

ε
(k)
tli ε

(k)
tlj

)

=
d∑
t=1

(
1

ntp

nt∑
k=1

p∑
l=1

(γti − γ̂ti)
′
(X

(k)
tl,· )

′
ε

(k)
tlj (A.4)

+
1

ntp

nt∑
k=1

p∑
l=1

(γtj − γ̂tj)
′
(X

(k)
tl,· )

′
ε

(k)
tli (A.5)

+
1

np

nt∑
k=1

p∑
l=1

(γti − γ̂ti)
′
(X

(k)
tl,· )

′
X

(k)
tl,· (γtj − γ̂tj)

)
. (A.6)
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For the first and second term (Equation (A.4)- (A.5)), we have

d∑
t=1

(
1

ntp

nt∑
k=1

p∑
l=1

(γti − γ̂ti)
′
(X

(k)
tl,· )

′
ε

(k)
tlj

)

=
d∑
t=1

(
γti,j − γ̂ti,j)

1

ntp

nt∑
k=1

p∑
l=1

X
(k)
tlj ε

(k)
tlj 1(i 6= j)

+
∑

h6=i,h 6=j

(γti,h − γ̂ti,h)
1

ntp

nt∑
k=1

p∑
l=1

X
(k)
tlh ε

(k)
tlj

)

=
d∑
t=1

(
(γti,j − γ̂ti,j)

1

ntp

nt∑
k=1

p∑
l=1

(ε
(k)
tlj )

2
1(i 6= j)

+ (γti,j − γ̂ti,j)
1

ntp

nt∑
k=1

p∑
l=1

X
(k)
tl,−jβtjε

(k)
tlj 1(i 6= j)

+
∑

h6=i,h 6=j

(γti,h − γ̂ti,h)
1

ntp

nt∑
k=1

p∑
l=1

X
(k)
tlh ε

(k)
tlj

)

Thus

d∑
t=1

δ̂tij =
d∑
t=1

(
(γti,j − γ̂ti,j)

1

ntp

nt∑
k=1

p∑
l=1

X
(k)
tl,−jβtjε

(k)
tlj 1(i 6= j)

+
∑

h6=i,h 6=j

(γti,h − γ̂ti,h)
1

ntp

nt∑
k=1

p∑
l=1

X
(k)
tlh ε

(k)
tlj

+ (γtj,i − γ̂tj,i)
1

ntp

nt∑
k=1

p∑
l=1

X
(k)
tl,−iβtiε

(k)
tli 1(i 6= j)

+
∑

h6=i,h 6=j

(γti,h − γ̂ti,h)
1

ntp

nt∑
k=1

p∑
l=1

X
(k)
tlh ε

(k)
tlj

+
1

ntp

nt∑
k=1

p∑
l=1

(γti − γ̂ti)
′
(X

(k)
tl,· )

′
ε

(k)
tli

+
1

np

nt∑
k=1

p∑
l=1

(γti − γ̂ti)
′
(X

(k)
tl,· )

′
X

(k)
tl,· (γtj − γ̂tj)

)
(A.7)
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Now noticing that

d∑
t=1

∣∣∣∣∣(γti,j − γ̂ti,j) 1

ntp

nt∑
k=1

p∑
l=1

X
(k)
tl,−jβtjε

(k)
tlj 1(i 6= j)

∣∣∣∣∣
≤ ‖∆i(j)‖2 ·max

j 6=i

[∑d
t=1

(
Z̃
′

t,·,jεtj

)2
]1/2

ntp
1(i 6= j) (A.8)

d∑
t=1

∣∣∣∣∣ ∑
h6=i,h 6=j

(γti,h − γ̂ti,h)
1

ntp

nt∑
k=1

p∑
l=1

X
(k)
tlh ε

(k)
tlj

∣∣∣∣∣
≤

∑
h6=i,h 6=j

‖∆i(h)‖2 · max
h6=i,h 6=j

[
∑d

t=1(Z
′

t,·,hεti)
2]1/2

ntp
(A.9)

d∑
t=1

∣∣∣∣∣
(

1

ntp

nt∑
k=1

p∑
l=1

(γti − γ̂ti)
′
(X

(k)
tl,· )

′
X

(k)
tl,· (γtj − γ̂tj)

)∣∣∣∣∣
≤ max

1≤i≤j≤q

d∑
t=1

|(γti − γ̂ti)
′
Vt(γtj − γ̂tj)|

+ max
1≤i≤j≤q

d∑
t=1

|(γti − γ̂ti)
′
(V̂t − Vt)(γtj − γ̂tj)|

≤ ce max
1≤i≤q

‖β0
i − β̂0

i ‖2
2 + max

1≤i≤j≤q
‖Mi,j‖2 · (

∑
l 6=i

‖βi(l) − β̂i(l)‖2)2, (A.10)

where the last inequality follows from that
∑d

t=1 |(γti−γ̂ti)
′
Vt(γtj−γ̂tj)| ≤ max1≤t≤d λmax(Vt)‖β0

i−
β̂0
i ‖2

2 and Assumption 3, and that the proof in norm compression inequality (Theorem 3.4 of
[14]) and a simple fact that for any vector v ∈ Rp and M ∈ Rp×p, v′Mv ≤ ‖v‖2

1|M |∞. Here

Ml1,l2 ∈ Rd×d andMl1,l2 = (ml1,l2,t1,t2), where ml1,l2,t1,t2 =
Z
′
t1,·,l1

Zt2,·,l2
n0p

− E
Z
′
t1,·,l1

Zt2,·,l2
n0p

.
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Combining Equation (A.7), (A.8), (A.9) and Equation (A.10), we finally have,
d∑
t=1

|δ̂tij| ≤ ce max
1≤i≤q

‖β0
i − β̂0

i ‖2
2 + max

1≤i≤j≤q
‖Mi,j‖2 · (

∑
l 6=i

‖βi(l) − β̂i(l)‖2)2

+ ‖∆i(j)‖2 ·max
j 6=i

[∑d
t=1

(
Z̃
′

t,·,jεtj

)2
]1/2

ntp

+
∑

h6=i,h 6=j

‖∆i(h)‖2 · max
h6=i,h 6=j

[
∑d

t=1(Z
′

t,·,hεti)
2]1/2

ntp

+ ‖∆j(i)‖2 ·max
i 6=j

[∑d
t=1

(
Z̃
′

t,·,iεti

)2
]1/2

ntp

+
∑

h6=i,h 6=j

‖∆i(h)‖2 · max
h6=i,h 6=j

[
∑d

t=1(Z
′

t,·,hεtj)
2]1/2

ntp
. (A.11)

We can bound the first term and second term with O(sλ2
∗ + s2λ3

∗) = O(sλ2
∗) by Lemma 5

and Theorem 1, the rest terms with sλ2
∗ by Lemma 3 and Theorem 1. Therefore we finish our

proof.

Lemma 8. Define r̃tij = 1
ntp

∑nt
k=1

∑p
l=1 ε

(k)
tli ε

(k)
tlj , then for any M > 0 , there exists a constant C

which depends on δ, ce, M0 only, such that

P

(
max

1≤i≤j≤q
|r̃tij −

btij
btiibtjj

| ≥ C

√
log q

ntp

)
≤ q−δ,

and

P

(
max

1≤i≤j≤q
|

d∑
t=1

(r̃tij −
btij

btiibtjj
)| ≥ C

√
d log q

n0p

)
≤ q−δ.

Proof. From basic regression theory, it’s immediate to see that Cov(ε
(k)
tli ) = utll

btii
and Cov(ε

(k)
tli , ε

(k)
tlj ) =

utll
btij

btiibtjj
. By Lemma 1, we can write

nt∑
k=1

p∑
l=1

ε
(k)
tli ε

(k)
tlj =

nt∑
k=1

p∑
l=1

λtlε
(k)
tli,ε

(k)
tlj ,

d∑
t=1

nt∑
k=1

p∑
l=1

ε
(k)
tli ε

(k)
tlj =

d∑
t=1

nt∑
k=1

p∑
l=1

λtlε
(k)
tli ε

(k)
tlj ,

where ε(k)
tli and ε(k)

tlj are independent over k and l. Noticing that E(ε
(k)
tli ε

(k)
tlj ) = utll

btij
btiibtjj

, with
Assumption 1 and following the same proof as in Lemma 2, we prove the two claims.
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Lemma 9. Assuming that Yt ∼ N(0,Ut), Xt ∼ N(0,Ut ⊗ Vt), At = U−1
t and Bt = V −1

t ,
with a predefined integer h, we define that

chti = argmin
βhti

E(Yti − Y
′

t,i−h:i−1β
h
ti)

2,

dhti = Var(εhti) = Var(Yti − Y
′

t,i−h:i−1c
h
ti),

c̃hti = argmin
βhti

1

q

q∑
m=1

E(Xtim −X
′

t,i−h:i−1,mβ
h
ti)

2,

d̃hti =
1

q

q∑
m=1

Var(εhtim) =
1

q

q∑
m=1

Var(Xtim −X
′

t,i−h:i−1,mc̃
i
h),

we have
c̃hti = chti, (A.12)

d̃hti =
Tr(V )

q
dhti. (A.13)

Proof. From regression theory, it immediately follows that

chti = −(at,h,ih,h )−1At,h,i
−h,h,

dhti = (at,h,ih,h )−1,

c̃hti = −(at,h,ih,h )−1At,h,i
−h,h,

d̃hti =
1

q

q∑
m=1

vtmm(at,h,ih,h )−1 =
Tr(Vt)
q

(at,h,ih,h )−1.

whereAt,h,i = U−1
t,i−h:i−1,i−h:i−1 ∈ Rh×h. Thus our claim holds.

Lemma 10. Following the procedure defined in Section 2.2.3, for any δ > 0, there exists constants
C which depends on δ, ce only, such that

P

(
max
1≤i≤p

‖ĉti − cti‖2 ≥ C

√
log p

(ntq)
2αt+1
2αt+2

)
≤ p−δ,

P

(
max
1≤i≤p

|d̂ti −
Tr(Vt)
q

dti| ≥ C

√
log p

(ntq)
2αt+1
2αt+2

)
≤ p−δ.

Proof. For clarity of notation, in this proof we use h instead of ht, and recall that ht =⌈
(ntq)

1
2αt+2

⌉
. Denote by

α̂i =
1

ntq

nt∑
k=1

q∑
m=1

X
(k)
t,i−h:i−1,mX

(k)
tim,
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From the fact that

ĉhti =
1

ntq
(Ût,i−h:i−1,i−h:i−1)−1

nt∑
k=1

q∑
m=1

X
(k)
t,i−h:i−1,mX

(k)
tim,

it immediately follows that
α̂i = Ût,i−h:i−1,i−h:i−1ĉ

h
ti. (A.14)

Recall the sample estimate for d̂ti is defined as

d̂ti =
1

ntq

nt∑
k=1

q∑
m=1

(ε̂
(k)
tim)2,

where ε̂(k)
tim = X

(k)
tim −X

(k)
t,i−h:i−1,mĉ

h
ti. Denote by ε(k)

tim = X
(k)
tim − (X

(k)
t,i−h:i−1,m)c̃hti; following

Lemma 6, we have for any δ > 0, there exists a constant C such that

P

(
max
1≤i≤p

‖ 1

ntq

nt∑
k=1

q∑
m=1

ε
(k)
timX

(k)
t,i−h:i−1,m‖∞ ≥ C

√
log p

ntq

)
≤ p−δ.

Combining with Equation (A.14), we have for any δ > 0, there exists a constant C such that

P

(
max
1≤i≤p

‖Ût,i−h:i−1,i−h:i−1(ĉhti − c̃hti)‖∞ ≥ C

√
log p

ntq

)
≤ p−δ. (A.15)

Denote ∆cti = ĉhti − c̃hti, we have

‖∆c′ti(Ût,i−h:i−1,i−h:i−1 −Ut,i−h:i−1,i−h:i−1)∆cti‖ ≤ ‖Ût,i−h:i−1,i−h:i−1 −Ut,i−h:i−1,i−h:i−1‖∞‖∆cti‖2
1

≤ C

√
log p

ntq
‖∆cti‖2

1

≤ hC

√
log p

ntq
‖∆cti‖2

2, (A.16)

with probability 1− p−δ by Lemma 2 and Cauchy–Schwarz inequality ‖∆cti‖1 ≤
√
h‖∆cti‖2.

By Assumption 3,

∆c
′

tiUt,i−h:i−1,i−h:i−1∆cti ≥ λmin(Ut,i−h:i−1,i−h:i−1)‖∆cti‖2
2 ≥

1

ce
‖∆cti‖2

2.

Therefore we have

∆c
′

tiÛt,i−h:i−1,i−h:i−1∆cti = ∆c
′

ti(Ût,i−h:i−1,i−h:i−1 −Ut,i−h:i−1,i−h:i−1)∆cti (A.17)

+ ∆c
′

tiUt,i−h:i−1,i−h:i−1∆cti ≥
1

2ce
‖∆cti‖2

2,
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with the same probability by noticing that hC
√

log p
ntq
‖∆cti‖2

2 <
1

2ce
‖∆cti‖2

2. Thus we have

‖∆cti‖2
2 ≤ 2ce∆c

′

tiÛt,i−h:i−1,i−h:i−1∆cti ≤ 2ce‖∆c
′

tiÛt,i−h:i−1,i−h:i−1‖∞‖∆cti‖1

≤ 2ceC

√
log p

ntq

√
h‖∆cti‖2,

with probability 1− p−δ, where the last inequality follows from Equation (A.15) and ‖∆cti‖1 ≤√
h‖∆cti‖2. Therefore, we have for any δ > 0, there exists a constant C, such that

P

(
max
1≤i≤p

‖ĉhti − c̃hti‖2 ≥ C

√
log p

(ntq)
2αt+1
2αt+2

)
≤ p−δ. (A.18)

We can similarly bound ‖∆cti‖1 as for any δ > 0, there exists a constant C, such that

P
(

max
1≤i≤p

‖ĉhti − c̃hti‖1 ≥ C

√
log p,

(ntq)
αt
αt+1

)
≤ p−δ.

Following similar proof as in Lemma 8, we can show that for any δ > 0, there exists constants
C, such that

P

(
max
1≤i≤p

| 1

ntq

nt∑
k=1

q∑
m=1

(ε
(k)
tim)2 − d̃hti| ≥ C

√
log p

ntq

)
≤ p−δ. (A.19)

Following similar proof as in Lemma 7, it’s easy to verify that that for any δ > 0, there exists
constants C, such that

P

(
max
1≤i≤p

| 1

ntq

nt∑
k=1

q∑
m=1

(ε̂
(k)
tim)2 − 1

ntq

nt∑
k=1

q∑
m=1

(ε
(k)
tim)2| ≥ C

log p

(ntq)
2αt+1
2αt+2

)
≤ p−δ. (A.20)

Combining the above two inequalities in Equation (A.19) and (A.20), and noticing that both√
log p
ntq

and log p

(ntq)
2αt+1
2αt+2

are asymptotically smaller than
√

log p

(ntq)
2αt+1
2αt+2

, we conclude that

P

(
max
1≤i≤p

|d̂ti − d̃hti| ≥ C

√
log p

(ntq)
2αt+1
2αt+2

)
≤ p−δ. (A.21)

As in Lemma B.3 in [40],
|dhti − dti|2 ≤ C(ntq)

− 2αt+1
2αt+2 ,

‖c∗ti − cti‖2
2 ≤ C(ntq)

− 2αt+1
2αt+2 ,

where c∗ti is a zero-padded vector of length i− 1 with first i− h− 1 elements being zero and later
elements being chti. With Equation (A.12), Equation (A.13), Equation (A.18) and Equation (A.21),
we have for any δ > 0, there exists constants C depending on δ, ce only, such that

P

(
max
1≤i≤p

‖ĉti − cti‖2 ≥ C

√
log p

(ntq)
2αt+1
2αt+2

)
≤ p−δ, (A.22)
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P

(
max
1≤i≤p

|d̂ti −
Tr(Vt)
q

dti| ≥ C

√
log p

(ntq)
2αt+1
2αt+2

)
≤ p−δ. (A.23)

Lemma 11. For each elementW P as defined in Equation (2.16), we have

wPtij =
1

d

d∑
t=1

(‖Ut‖2
F

p
(ρt,χ1(i),χ1(j)ρt,χ2(i),χ2(j) + ρt,χ1(i),χ2(j)ρt,χ1(j),χ2(i)

+
1

2
ρt,χ1(i),χ2(i)ρt,χ1(j),χ2(j)ρ

2
t,χ1(i),χ1(j) +

1

2
ρt,χ1(i),χ2(i)ρt,χ1(j),χ2(j)ρ

2
t,χ2(i),χ2(j)

+
1

2
ρt,χ1(i),χ2(i)ρt,χ1(j),χ2(j)ρ

2
t,χ1(i),χ2(j) +

1

2
ρt,χ1(i),χ2(i)ρt,χ1(j),χ2(j)ρ

2
t,χ1(j),χ2(i)

− ρt,χ1(i),χ1(j)ρt,χ1(j),χ2(j)ρt,χ1(j),χ2(i) − ρt,χ1(i),χ1(j)ρt,χ1(i),χ2(i)ρt,χ1(i),χ2(j)

− ρt,χ2(i),χ2(j)ρt,χ1(j),χ2(j)ρt,χ1(i),χ2(j) − ρt,χ2(i),χ2(j)ρt,χ1(j),χ2(i)ρt,χ1(i),χ2(i))
)
.

Proof. First, it’s easy to observe that

W P = E{( 1√
d

d∑
k=1

√
ntpξtS ◦ΘtS)(

1√
d

d∑
k=1

ξtS ◦
√
ntpΘtS)

′}

=
1

d

d∑
k=1

ntpW
ρ
t . (A.24)

Therefore, we simply need to calculate each entry inW ρ
t = E{ΘtS(ΘtS)

′}.
To proceed for the calculation of W ρ

t , we omit t here since the calculation is the same for
each graph. Denote by r̃tij = 1

ntp

∑nt
k=1

∑p
l=1 ε

(k)
tli ε

(k)
tlj , and

δ̃tij = r̃tij − rtij =
1

ntp

nt∑
k=1

p∑
l=1

ε
(k)
tli ε

(k)
tlj −

btij
btiibtjj

. (A.25)

For each entry W ρ
ij , we have

npW ρ
ij =

1

np
E(

n∑
k=1

p∑
l=1

ε
(k)
lχ1(i)ε

(k)
lχ2(i) − rlχ(i)√

rχ1(i),χ1(i)rχ2(i),χ2(i)

−
rχ1(i),χ2(i)

2rχ1(i),χ1(i)

(ε
(k)
lχ1(i))

2 − rlχ1(i),χ1(i)
√
rχ1(i),χ1(i)rχ2(i),χ2(i)

−
rχ1(i),χ2(i)

2rχ2(i),χ2(i)

(ε
(k)
lχ2(i))

2 − rlχ2(i),χ2(i)
√
rχ1(i),χ1(i)rχ2(i),χ2(i)

)(
n∑
k=1

p∑
l=1

ε
(k)
lχ1(j)ε

(k)
lχ2(j) − rlχ(j)√

rχ1(j),χ1(j)rχ2(j),χ2(j)

−
rχ1(j),χ2(j)

2rχ1(j),χ1(j)

(ε
(k)
lχ1(j))

2 − rlχ1(j),χ1(j)
√
rχ1(j),χ1(j)rχ2(j),χ2(j)

−
rχ1(j),χ2(j)

2rχ2(j),χ2(j)

(ε
(k)
lχ2(j))

2 − rlχ2(j),χ2(j)
√
rχ1(j),χ1(j)rχ2(j),χ2(j)

)

Now applying Lemma 1,
n∑
k=1

p∑
l=1

(ε
(k)
lχ1(i)ε

(k)
lχ2(i) − r

l
χ(i)

) =
n∑
k=1

p∑
l=1

λl(ε
(k)
lχ1(i)ε

(k)
lχ2(i) − rχ(i)

)
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n∑
k=1

p∑
l=1

((ε
(k)
lχ1(i))

2 − rlχ1(i),χ1(i)) =
n∑
k=1

p∑
l=1

λl((ε
(k)
lχ1(i))

2 − rχ1(i),χ1(i))

It’s easy to show that

npW ρ
ij =

1

np

n∑
k=1

p∑
l=1

λ2
l (

E(ε
(k)
lχ1(i)ε

(k)
lχ2(i)ε

(k)
lχ1(j)ε

(k)
lχ2(j))− rχ(i)

rχ(j)

√
rχ1(i),χ1(i)rχ2(i),χ2(i)rχ1(i),χ1(i)rχ2(j),χ2(j)

+
rχ1(i),χ2(i)rχ1(j),χ2(j)(E(ε

(k)
lχ1(i)ε

(k)
lχ1(j))

2 − rχ1(i),χ1(i)rχ1(j),χ1(j))

4rχ1(i),χ1(i)rχ1(j),χ1(j)
√
rχ1(i),χ1(i)rχ2(i),χ2(i)rχ1(i),χ1(i)rχ2(j),χ2(j)

+
rχ1(i),χ2(i)rχ1(j),χ2(j)(E(ε

(k)
lχ2(i)ε

(k)
lχ2(j))

2 − rχ2(i),χ2(i)rχ2(j),χ2(j))

4rχ2(i),χ2(i)rχ2(j),χ2(j)
√
rχ1(i),χ1(i)rχ2(i),χ2(i)rχ1(i),χ1(i)rχ2(j),χ2(j)

−
rχ1(j),χ2(j)(E(ε

(k)
lχ1(i)ε

(k)
lχ2(i)(ε

(k)
lχ1(j))

2)− rχ1(i),χ2(i)rχ1(j),χ1(j))

2rχ1(j),χ1(j)
√
rχ1(i),χ1(i)rχ2(i),χ2(i)rχ1(i),χ1(i)rχ2(j),χ2(j)

−
rχ1(j),χ2(j)(E(ε

(k)
lχ1(j)ε

(k)
lχ2(j)(ε

(k)
lχ1(i))

2)− rχ1(j),χ2(j)rχ1(i),χ1(i))

2rχ1(i),χ1(i)
√
rχ1(i),χ1(i)rχ2(i),χ2(i)rχ1(i),χ1(i)rχ2(j),χ2(j)

−
rχ1(j),χ2(j)(E(ε

(k)
lχ1(i)ε

(k)
lχ2(i)(ε

(k)
lχ2(j))

2)− rχ1(i),χ2(i)rχ2(j),χ2(j))

2rχ2(j),χ2(j)
√
rχ1(i),χ1(i)rχ2(i),χ2(i)rχ1(i),χ1(i)rχ2(j),χ2(j)

−
rχ1(j),χ2(j)(E(ε

(k)
lχ1(j)ε

(k)
lχ2(j)(ε

(k)
lχ2(i))

2)− rχ1(i),χ2(i)rχ2(i),χ2(i))

2rχ2(i),χ2(i)
√
rχ1(i),χ1(i)rχ2(i),χ2(i)rχ1(i),χ1(i)rχ2(j),χ2(j)

+
rχ1(i),χ2(i)rχ1(j),χ2(j)(E(ε

(k)
lχ1(i)ε

(k)
lχ2(j))

2 − rχ1(i),χ1(i)rχ2(j),χ2(j))

4rχ1(i),χ1(i)rχ2(j),χ2(j)
√
rχ1(i),χ1(i)rχ2(i),χ2(i)rχ1(i),χ1(i)rχ2(j),χ2(j)

+
rχ1(i),χ2(i)rχ1(j),χ2(j)(E(ε

(k)
lχ2(i)ε

(k)
lχ1(j))

2 − rχ2(i),χ2(i)rχ1(j),χ1(j))

4rχ2(i),χ2(i)rχ1(j),χ1(j)
√
rχ1(i),χ1(i)rχ2(i),χ2(i)rχ1(i),χ1(i)rχ2(j),χ2(j)

)

= M1 +M2 +M3 +M4 +M5 +M6 +M7 +M8 +M9,

where

M1 =
1

np

n∑
k=1

p∑
l=1

λ2
l (

E(ε
(k)
lχ1(i)ε

(k)
lχ2(i)ε

(k)
lχ1(j)ε

(k)
lχ2(j))− rχ(i)

rχ(j)

√
rχ1(i),χ1(i)rχ2(i),χ2(i)rχ1(i),χ1(i)rχ2(j),χ2(j)

)

=
‖U‖2

F

p
√
bχ1(i),χ1(i)bχ2(i),χ2(i)bχ1(i),χ1(i)bχ2(j),χ2(j)

(bχ1(i),χ1(j)bχ2(i),χ2(j) + bχ1(i),χ2(j)bχ1(j),χ2(i)),

M2 =
1

np

n∑
k=1

p∑
l=1

λ2
l (
rχ1(i),χ2(i)rχ1(j),χ2(j)(E(ε

(k)
lχ1(i)ε

(k)
lχ1(j))

2 − rχ1(i),χ1(i)rχ1(j),χ1(j))

4rχ1(i),χ1(i)rχ1(j),χ1(j)
√
rχ1(i),χ1(i)rχ2(i),χ2(i)rχ1(i),χ1(i)rχ2(j),χ2(j)

)

=
‖U‖2

F

2p
√
bχ1(i),χ1(i)bχ2(i),χ2(i)bχ1(i),χ1(i)bχ2(j),χ2(j)

bχ1(i),χ2(i)bχ1(j),χ2(j)b
2
χ1(i),χ1(j)

bχ1(i),χ1(i)bχ1(j),χ1(j)

,
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M3 =
1

np

n∑
k=1

p∑
l=1

λ2
l (
rχ1(i),χ2(i)rχ1(j),χ2(j)(E(ε

(k)
lχ2(i)ε

(k)
lχ2(j))

2 − rχ2(i),χ2(i)rχ2(j),χ2(j))

4rχ2(i),χ2(i)rχ2(j),χ2(j)
√
rχ1(i),χ1(i)rχ2(i),χ2(i)rχ1(i),χ1(i)rχ2(j),χ2(j)

)

=
‖U‖2

F

2p
√
bχ1(i),χ1(i)bχ2(i),χ2(i)bχ1(i),χ1(i)bχ2(j),χ2(j)

bχ1(i),χ2(i)bχ1(j),χ2(j)b
2
χ2(i),χ2(j)

bχ2(i),χ2(i)bχ2(j),χ2(j)

,

M4 = − 1

np

n∑
k=1

p∑
l=1

λ2
l (
rχ1(j),χ2(j)(E(ε

(k)
lχ1(i)ε

(k)
lχ2(i)(ε

(k)
lχ1(j))

2)− rχ1(i),χ2(i)rχ1(j),χ1(j))

2rχ1(j),χ1(j)
√
rχ1(i),χ1(i)rχ2(i),χ2(i)rχ1(i),χ1(i)rχ2(j),χ2(j)

)

= − ‖U‖2
F

p
√
bχ1(i),χ1(i)bχ2(i),χ2(i)bχ1(i),χ1(i)bχ2(j),χ2(j)

bχ1(j),χ2(j)

bχ1(j),χ1(j)

bχ1(i),χ1(j)bχ1(j),χ2(i),

M5 = − 1

np

n∑
k=1

p∑
l=1

λ2
l (
rχ1(j),χ2(j)(E(ε

(k)
lχ1(j)ε

(k)
lχ2(j)(ε

(k)
lχ1(i))

2)− rχ1(j),χ2(j)rχ1(i),χ1(i))

2rχ1(i),χ1(i)
√
rχ1(i),χ1(i)rχ2(i),χ2(i)rχ1(i),χ1(i)rχ2(j),χ2(j)

)

= − ‖U‖2
F

p
√
bχ1(i),χ1(i)bχ2(i),χ2(i)bχ1(i),χ1(i)bχ2(j),χ2(j)

bχ1(i),χ2(i)

bχ1(i),χ1(i)

bχ1(i),χ1(j)bχ1(i),χ2(j),

M6 =
1

np

n∑
k=1

p∑
l=1

λ2
l (
rχ1(j),χ2(j)(E(ε

(k)
lχ1(i)ε

(k)
lχ2(i)(ε

(k)
lχ2(j))

2)− rχ1(i),χ2(i)rχ2(j),χ2(j))

2rχ2(j),χ2(j)
√
rχ1(i),χ1(i)rχ2(i),χ2(i)rχ1(i),χ1(i)rχ2(j),χ2(j)

)

= − ‖U‖2
F

p
√
bχ1(i),χ1(i)bχ2(i),χ2(i)bχ1(i),χ1(i)bχ2(j),χ2(j)

bχ1(j),χ2(j)

bχ2(j),χ2(j)

bχ1(i),χ2(j)bχ2(i),χ2(j),

M7 = − 1

np

n∑
k=1

p∑
l=1

λ2
l (
rχ1(j),χ2(j)(E(ε

(k)
lχ1(j)ε

(k)
lχ2(j)(ε

(k)
lχ2(i))

2)− rχ1(i),χ2(i)rχ2(i),χ2(i))

2rχ2(i),χ2(i)
√
rχ1(i),χ1(i)rχ2(i),χ2(i)rχ1(i),χ1(i)rχ2(j),χ2(j)

)

= − ‖U‖2
F

p
√
bχ1(i),χ1(i)bχ2(i),χ2(i)bχ1(i),χ1(i)bχ2(j),χ2(j)

bχ1(i),χ2(i)

bχ2(i),χ2(i)

bχ1(j),χ2(i)bχ2(i),χ2(j),

M8 =
1

np

n∑
k=1

p∑
l=1

λ2
l (
rχ1(i),χ2(i)rχ1(j),χ2(j)(E(ε

(k)
lχ1(i)ε

(k)
lχ2(j))

2 − rχ1(i),χ1(i)rχ2(j),χ2(j))

4rχ1(i),χ1(i)rχ2(j),χ2(j)
√
rχ1(i),χ1(i)rχ2(i),χ2(i)rχ1(i),χ1(i)rχ2(j),χ2(j)

)

=
‖U‖2

F

2p
√
bχ1(i),χ1(i)bχ2(i),χ2(i)bχ1(i),χ1(i)bχ2(j),χ2(j)

bχ1(i),χ2(i)bχ1(j),χ2(j)b
2
χ1(i),χ2(j)

bχ1(i),χ1(i)bχ2(j),χ2(j)

,

M9 =
1

np

n∑
k=1

p∑
l=1

λ2
l (
rχ1(i),χ2(i)rχ1(j),χ2(j)(E(ε

(k)
lχ2(i)ε

(k)
lχ1(j))

2 − rχ2(i),χ2(i)rχ1(j),χ1(j))

4rχ2(i),χ2(i)rχ1(j),χ1(j)
√
rχ1(i),χ1(i)rχ2(i),χ2(i)rχ1(i),χ1(i)rχ2(j),χ2(j)

)

=
‖U‖2

F

2p
√
bχ1(i),χ1(i)bχ2(i),χ2(i)bχ1(i),χ1(i)bχ2(j),χ2(j)

bχ1(i),χ2(i)bχ1(j),χ2(j)b
2
χ1(j),χ2(i)

bχ1(j),χ1(j)bχ2(i),χ2(i)

.
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Combing all nine terms and noticing that ρi,j =
bi,j√
bi,ibj,j

we have

npW ρ
ij =

‖U‖2
F

p
(ρχ1(i),χ1(j)ρχ2(i),χ2(j) + ρχ1(i),χ2(j)ρχ1(j),χ2(i)

+
1

2
ρχ1(i),χ2(i)ρχ1(j),χ2(j)ρ

2
χ1(i),χ1(j) +

1

2
ρχ1(i),χ2(i)ρχ1(j),χ2(j)ρ

2
χ2(i),χ2(j)

+
1

2
ρχ1(i),χ2(i)ρχ1(j),χ2(j)ρ

2
χ1(i),χ2(j) +

1

2
ρχ1(i),χ2(i)ρχ1(j),χ2(j)ρ

2
χ1(j),χ2(i)

− ρχ1(i),χ1(j)ρχ1(j),χ2(j)ρχ1(j),χ2(i) − ρχ1(i),χ1(j)ρχ1(i),χ2(i)ρχ1(i),χ2(j)

− ρχ2(i),χ2(j)ρχ1(j),χ2(j)ρχ1(i),χ2(j) − ρχ2(i),χ2(j)ρχ1(j),χ2(i)ρχ1(i),χ2(i)).

Then by Equation (A.24) we finish our proof.

A.3 Proof of the Propositions

Proof of Proposition 1

Proof. First, recall that rtij =
btij

btiibtjj
, δ̃tij = r̃tij − rtij . Starting with i = j, we have

δ̂tii =
1

np

nt∑
k=1

p∑
l=1

ε̂
(k)
tli ε̂

(k)
tli −

1

np

nt∑
k=1

p∑
l=1

ε
(k)
tli ε

(k)
tli = r̂tii − r̃tii. (A.26)

So we have
r̂tii − rtii = δ̃tii + δ̂tii.

By Equation (2.7), denote by ∆tij
ε,β = 1

np

∑nt
k=1

∑p
l=1(β̂tij((ε̂

(k)
tlj )2−(ε

(k)
tlj )2)+β̂tji((ε̂

(k)
tli )2−(ε

(k)
tli )2)),

we have

rtij − r̂tij = rtij +
1

np

nt∑
k=1

p∑
l=1

(ε̂
(k)
tli ε̂

(k)
tlj + β̂tij(ε̂

(k)
tlj )2 + β̂tji(ε̂

(k)
tli )2)

= rtij + δ̂tij + ∆tij
ε,β +

1

np

nt∑
k=1

p∑
l=1

(ε
(k)
tli ε

(k)
tlj + βtij(ε

(k)
tlj )2 + βtji(ε

(k)
tli )2)

= δ̂tij + ∆tij
ε,β +

1

np

nt∑
k=1

p∑
l=1

(ε
(k)
tli ε

(k)
tlj − rtij)

+
βtij
np

nt∑
k=1

p∑
l=1

((ε
(k)
tlj )2 − rtjj) +

βtji
np

nt∑
k=1

p∑
l=1

((ε
(k)
tli )2 − rtii)

= δ̂tij + ∆tij
ε,β + r̃tij − rtij + βtij(r̃tjj − rtjj) + βtji(r̃tii − rtii)

= δ̂tij + δ̃tij + ∆tij
ε,β + βtij δ̃tjj + βtjiδ̃tii. (A.27)
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The i = j case is trivial, since ρ̂tii = ρtii = 1. For i 6= j, we have

ρ̂tij − ρtij = −
r̂tij
√
rtiirtjj − rtij

√
r̂tiir̂tjj√

r̂tiir̂tjjrtiirtjj

= −
(rtij − (δ̂tij + δ̃tij + ∆tij

ε,β + βtij δ̃tjj + βtjiδ̃tii))
√
rtiirtjj√

r̂tiir̂tjjrtiirtjj

+
rtij

√
(rtii + δ̃tii + δ̂tii)(rtjj + δ̃tjj + δ̂tjj)√

r̂tiir̂tjjrtiirtjj

=
δ̂tij
√
rtiirtjj −

√
rtjj√
rtii
rtij δ̃tii −

√
rtii√
rtjj
rtij δ̃tjj +

√
rtjj

2
√
rtii
rtij δ̃tii +

√
rtii

2
√
rtjj
rtij δ̃tjj√

r̂tiir̂tjjrtiirtjj
+O(∆tij)

=
δ̂tij
√
rtiirtjj −

√
rtjj

2
√
rtii
rtij δ̃tii −

√
rtii

2
√
rtjj
rtij δ̃tjj√

r̂tiir̂tjjrtiirtjj
+O(∆tij)

=
δ̃tij√
rtiirtjj

− rtij δ̃tjj
2rtjj
√
rtiirtjj

− rtij δ̃tii
2rtii
√
rtiirtjj

+O(∆′tij),

where ∆′tij are a collection of high order terms with the same or higher order than ∆tij
ε,β,

δ̂tij/δ̂tii/δ̂tjj , and δ̃2
tij/δ̃

2
tii/δ̃

2
tjj/δ̃tij δ̃tii/δ̃tij δ̃tjj . Therefore

|
d∑
t=1

ρ̂tij − ρtij −
δ̃tij√
rtiirtjj

+
rtij δ̃tjj

2rtjj
√
rtiirtjj

+
rtij δ̃tii

2rtii
√
rtiirtjj

|

= O(
d∑
t=1

∆tij
ε,β +

d∑
t=1

δ̂tij +
d∑
t=1

δ̃2
tii).

For the first term, notice that β̂tij and β̂tji are bounded as in Theorem 1, with Lemma 7, we have

d∑
t=1

∆tij
ε,β =

d∑
t=1

1

ntp

nt∑
k=1

p∑
l=1

(β̂tij((ε̂
(k)
tlj )2 − (ε

(k)
tlj )2) + β̂tji((ε̂

(k)
tli )2 − (ε

(k)
tli )2))

=
d∑
t=1

(βtij δ̂tjj + βtjiδ̂tii) +
d∑
t=1

(
(β̂tij − βtij)δ̂tjj + (β̂tji − βtji)δ̂tii

)
≤

d∑
t=1

(βtij δ̂tjj + βtjiδ̂tii) + max
1≤t≤d

|β̂tij − βtij| ·
d∑
t=1

|δ̂tjj|+ max
1≤t≤d

|β̂tji − βtji| ·
d∑
t=1

|δ̂tii|

= O(
d∑
t=1

|δ̂tii|) +O(
d∑
t=1

|δ̂tjj|)

= O(sλ2
∗).
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For the second term, by Lemma 7, we have

d∑
t=1

δ̂tij = O(sλ2
∗).

For the third term, we have

d∑
t=1

δ̃2
tjj ≤ max

1≤t≤d
|δ̃tjj| ·

d∑
t=1

|δ̃tjj| ≤ Cd
log(d/δ1)

n0p
,

where the last inequality holds by further noticing that max1≤t≤d |δ̃tjj| <
√
C log(d/δ1)

n0p
with

probability 1 − δ1/k by Lemma 1 and Lemma E.1 in [50], where C is a positive constant
depending on M only, and log(δ−1

1 ) = o(n0). Combining all three terms, under Assumption 5, we
have

d∑
t=1

|ρ̂tij − ρtij −
δ̃tij√
rtiirtjj

+
rtij δ̃tjj

2rtjj
√
rtiirtjj

+
rtij δ̃tii

2rtii
√
rtiirtjj

| = O(sλ2
∗+ d

log(d/δ1)

n0p
) = O(sλ2

∗),

Proof of Proposition 2

Proof. Denote by ΘP
S = 1√

d

∑d
t=1

√
ntpξtS ◦ΘtS , andOP

S = 1√
d

∑d
t=1

√
ntpξtS ◦OtS . For any

x > 0 and δ > 0, we have

P(‖∆PS‖∞ > x) ≤ P(‖ΘP
S ‖∞ > x− δ) + P(‖OP

S ‖∞ > δ)

≤ P(‖ζ‖∞ > x− δ) + d+ P(‖OP
S ‖∞ > δ)

= P(‖ζ‖∞ > x) + P(x− δ < ‖ζ‖∞ ≤ x) + d+ P(‖OP
S ‖∞ > δ),

where d = supx>0 |P(‖ΘP
S ‖∞ > x)− P(‖ζ‖∞ > x)|. Similarly,

P(‖∆PS‖∞ > x) ≥ P(‖ΘP
S ‖∞ > x+ δ)− P(‖OP

S ‖∞ > δ)

≥ P(‖ζ‖∞ > x+ δ)− d− P(‖OP
S ‖∞ > δ)

= P(‖ζ‖∞ > x)− P(x < ‖ζ‖∞ ≤ x+ δ)− d− P(‖OP
S ‖∞ > δ).

Therefore we conclude that

sup
x>0
|P(‖∆PS‖∞ > x)− P(‖ζ‖∞ > x)|

≤ d+ sup
x>0

P(x− δ ≤ ‖ζ‖∞ ≤ x+ δ) + P(‖OP
S ‖∞ > δ). (A.28)

By Corollary 1 in [18], it holds that as δ → 0

sup
x>0

P(x− δ ≤ ‖ζ‖∞ ≤ x+ δ) ≤ Cδ(log q)1/2.
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By Proposition 1, and further notice that λ∗ = O(
√

d+log q
n0p

), we have ‖OP
S ‖∞ = O(

√
n0p
d
sλ2
∗); by

Assumption 4 , we have ‖OP
S ‖∞ = o( 1√

log q
). Therefore, we can find δ = o( 1√

log q
), such that both

supx>0 P(x− δ < ‖ζ‖∞ ≤ x+ δ) and P(‖OP
S ‖∞ > δ) goes to 0. For terms in Equation (A.28),

it’s sufficient to show

d = sup
x>0
|P(‖ΘP

S ‖∞ > x)− P(‖ζ‖∞ > x)| → 0. (A.29)

Recall that ΘP
S = 1√

d

∑d
t=1

√
ntpξtS ◦ΘtS ; for each element in ΘP

S , we rewrite

ΘP
S (i) =

1√
d

d∑
t=1

√
ntpξt,χ1(i),χ2(i)ΘtS(i) =

1√
d

d∑
t=1

√
ntpξt,χ1(i),χ2(i)ΘtS(i)

=
1√
d

d∑
t=1

ξt,χ1(i),χ2(i)√
ntp

nt∑
k=1

p∑
l=1

(
ε

(k)
tlχ1(i)ε

(k)
tlχ2(i) − rlt,χ1(i),χ2(i)

√
rt,χ1(i),χ1(i)rt,χ2(i),χ2(i)

−
rt,χ1(i),χ2(i)

2rt,χ1(i),χ1(i)

(ε
(k)
tlχ1(i))

2 − rlt,χ1(i),χ1(i)
√
rt,χ1(i),χ1(i)rt,χ2(i),χ2(i)

−
rt,χ1(i),χ2(i)

2rt,χ2(i),χ2(i)

(ε
(k)
tlχ2(i))

2 − rlt,χ2(i),χ2(i)
√
rt,χ1(i),χ1(i)rt,χ2(i),χ2(i)

).

Denote by N =
∑d

t=1 nt, then we have

ΘP
S (i) =

1√
Np

d∑
t=1

ξt,χ1(i),χ2(i)

√
N√

ntd

nt∑
k=1

p∑
l=1

(
ε

(k)
tlχ1(i)ε

(k)
tlχ2(i) − rlt,χ1(i),χ2(i)

√
rt,χ1(i),χ1(i)rt,χ2(i),χ2(i)

−
rt,χ1(i),χ2(i)

2rt,χ1(i),χ1(i)

(ε
(k)
tlχ1(i))

2 − rlt,χ1(i),χ1(i)
√
rt,χ1(i),χ1(i)rt,χ2(i),χ2(i)

−
rt,χ1(i),χ2(i)

2rt,χ2(i),χ2(i)

(ε
(k)
tlχ2(i))

2 − rlt,χ2(i),χ2(i)
√
rt,χ1(i),χ1(i)rt,χ2(i),χ2(i)

).

By Assumption 1,
ξt,χ1(i),χ2(i)

√
N

√
ntd

is bounded by constant;now applying Lemma 1 to each term in
the bracket,

nt∑
k=1

p∑
l=1

(ε
(k)
tlχ1(i)ε

(k)
tlχ2(i) − r

l
t,χ1(i),χ2(i)) =

nt∑
k=1

p∑
l=1

λtl(ε
(k)
tlχ1(i)ε

(k)
tlχ2(i) − rt,χ1(i),χ2(i)),

nt∑
k=1

p∑
l=1

((ε
(k)
tlχ1(i))

2 − rlt,χ1(i),χ1(i)) =
nt∑
k=1

p∑
l=1

λtl((ε
(k)
tlχ1(i))

2 − rt,χ1(i),χ1(i)),

we can rewrite

ΘP
S (i) =

1√
Np

d∑
t=1

nt∑
k=1

p∑
l=1

θ
(k)
S,tl(i),

with

θ
(k)
S,tl(i) =

λtlξt,χ1(i),χ2(i)

√
N√

ntd
(
ε

(k)
tlχ1(i)ε

(k)
tlχ2(i) − rt,χ1(i),χ2(i)

√
rt,χ1(i),χ1(i)rt,χ2(i),χ2(i)

−
rt,χ1(i),χ2(i)

2rt,χ1(i),χ1(i)

(ε
(k)
tlχ1(i))

2 − rt,χ1(i),χ1(i)

√
rt,χ1(i),χ1(i)rt,χ2(i),χ2(i)

−
rt,χ1(i),χ2(i)

2rt,χ2(i),χ2(i)

(ε
(k)
tlχ2(i))

2 − rlt,χ2(i),χ2(i)
√
rt,χ1(i),χ1(i)rt,χ2(i),χ2(i)

).
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Now notice that ε(k)
tlχ1(i) and ε(k)

tlχ2(i) are Gaussian random variables; therefore we have each element

θ
(k)
S,tl(i) to be sub-exponential random variable which is independent for over 1 ≤ t ≤ d, 1 ≤ l ≤
p, 1 ≤ k ≤ nt.

According to Corollary 2.1 in [17], our case can be fitted in (E.1): (1)Our random variables
are sub-exponential random variables. (2)By Assumption 4, the condition (log(n0dpq))

7/n0dp =
O((n0pd)−c) with c > 0 is satisfied. We conclude that Equation (A.29) holds with supx>0 |P(‖∆PS‖∞ >
x)− P(‖ζ‖∞ > x)| = O ((n0pd)−c), and we finish our proof.

A.4 Proof of Main Theorems
Proof of Theorem 1

Proof. LetD1/2
i(l)β

0
i(l) = β

0

i(l),D
1/2
i(l) β̂

0
i(l) = β̂

0

i(l), Zt,·,−iD
−1/2
ti = Zt,·,−i. We immediately have

1

2n0p

d∑
t=1

(‖Zt,·,i −Zt,·,−iβ̂ti‖2
2 − ‖Zt,·,i −Zt,·,−iβti‖2

2)

≤ λi
∑
l 6=i

(‖β0

i(l)‖2 − ‖β̂
0

i(l)‖2)

≤ λi(
∑
l∈Ti

‖∆i(l)‖2 −
∑
l∈T ci

‖∆i(l)‖2), (A.30)

where ∆i = (∆′1i,∆
′
2i, · · ·∆′di)

′
= β̂0

i − β0
i , ∆i = D

1/2
i ∆i = β̂

0

i − β
0

i , and ∆i(l) is the l-th
group of ∆i; Ti = {l : β0

i(l) 6= 0} = {l : β
0

i(l) 6= 0} is the group support of vector β0
i , while T ci is

its complement set. By the convexity of `2 norm, we have on event Ei,

1

2n0p

d∑
t=1

(‖Zt,·,i −Zt,·,−iβ̂ti‖2
2 − ‖Zt,·,i −Zt,·,−iβti‖2

2)

≥ 1

n0p

d∑
t=1

∆
′

tiZ
′

t,·,−iεti

≥ −
∑
l 6=i

‖∆i(l)‖2 ·max
l 6=i

[
∑d

t=1(Z
′

t,·,lεti)
2]1/2

n0p

≥ −ξ − 1

ξ + 1
λi(
∑
l 6=i

‖∆i(l)‖2) (A.31)

where the last inequality follows from Lemma 3 on event Ei. Combining Equation (A.30) and
Equation (A.31), we have

λi(
∑
l∈Ti

‖∆i(l)‖2 −
∑
l∈T ci

‖∆i(l)‖2) ≥ −ξ − 1

ξ + 1
λi(
∑
l 6=i

‖∆i(l)‖2),
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which further implies that on Ei,∑
l∈Ti

‖∆i(l)‖2 ≤ ξ
∑
l∈T ci

‖∆i(l)‖2. (A.32)

Now, also notice that

1

2n0p

d∑
t=1

(‖Zt,·,i −Zt,·,−iβ̂ti‖2
2 − ‖Zt,·,i −Zt,·,−iβti‖2

2)

=
1

2n0p

d∑
t=1

(‖Zt,·,−i∆ti‖2
2 − 2∆

′

tiZ
′

t,·,−iEti).

(A.33)

In addition, by Lemma 1, we have on event Ei,

1

n0p
|

d∑
t=1

∆
′

tiZ
′

t,·,−iEti)| ≤
∑
l 6=i

‖∆i(l)‖2 ·max
l 6=i

[
∑d

t=1(Z
′

t,·,lEti)
2]1/2

n0p
≤ λi

ξ − 1

ξ + 1

∑
l 6=i

‖∆i(l)‖2,

(A.34)

where the last inequality follows from Lemma 3 on Ei. Combining Equation (A.30), Equa-
tion (A.33) and Equation (A.34), we obtain that on Ei,

1

2n0p

d∑
t=1

‖Zt,·,−i∆ti‖2
2 ≤ λi(

∑
l∈Ti

‖∆i(l)‖2 −
∑
l∈T ci

‖∆i(l)‖2) + λi
ξ − 1

ξ + 1
(
∑
l∈Ti

‖∆i(l)‖2 +
∑
l∈T ci

‖∆i(l)‖2)

≤ λi
2ξ

ξ + 1

∑
l∈Ti

‖∆i(l)‖2. (A.35)

On the other hand, we have

1

2n0p

d∑
t=1

‖Zt,·,−i∆ti‖2
2 =

1

2n0p

d∑
t=1

‖Zt,·,−iD
−1/2
ti ∆ti‖2

2

=
1

2

d∑
t=1

[∆
′

tiD
−1/2
ti (

Z
′
t,·,−iZt,·,−i

n0p
−Ψti)D

−1/2
ti ∆ti

+ ∆
′

tiD
−1/2
ti ΨtiD

−1/2
ti ∆ti], (A.36)

where Ψti = EZ
′
t,·,−iZt,·,−i

n0p
=

EX(1)
t,·,−i

′
X

(1)
t,·,−i

p
· nt
n0

= Vt,−i,−i
nt
n0

by Assumption 2. By Lemma 4, we
know that on Edia, all diagonal terms of Dti for all 1 ≤ t ≤ d are bounded above and below,
where the event Edia hold with probability 1− (dq)−δ as

Edia = {|
Z
′
t,·,iZt,·,i

n0p
| ∈ (

1

2ce
, 2ce) for all 1 ≤ t ≤ d and 1 ≤ i ∈ q}.
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Hence, by Assumption 1 and Assumption 3, we can bound the second term on the right hand side
of Equation (A.36) as

d∑
t=1

∆
′

tiD
−1/2
ti ΨtiD

−1/2
ti ∆ti ≥ min

1≤t≤d
λmin(Ψti)‖∆i‖2

2

1

2ce
≥ 1

2c2
e

‖∆i‖2
2. (A.37)

To handle the first term on the right hand side of Equation (A.36), we notice that

|
d∑
t=1

∆
′

tiD
−1/2
ti (

Z
′
t,·,−iZt,·,−i

n0p
−Ψti)D

−1/2
ti ∆ti| ≤ 2ce max

l1 6=i,l2 6=i
‖Ml1,l2‖2·(

∑
l 6=i

‖∆i(l)‖2)2, (A.38)

where the last inequality follows from the proof in norm compression inequality (Theorem 3.4 of
[14]) and a simple fact that for any vector v ∈ Rp and M ∈ Rp×p, v′Mv ≤ ‖v‖2

1|M |∞. Here

Ml1,l2 ∈ Rd×d andMl1,l2 = (ml1,l2,t1,t2), where ml1,l2,t1,t2 =
Z
′
t1,·,l1

Zt2,·,l2
n0p

− E
Z
′
t1,·,l1

Zt2,·,l2
n0p

.

By Lemma 5, we have on event Ecom, maxl1 6=i,l2 6=i‖Ml1,l2‖2 ≤ c
√

d+log q
n0p

, which, together
with Equation (A.38), implies that on Ecom ∩ Edia

|
d∑
t=1

∆
′

tiD
−1/2
ti (

Z
′
t,·,−iZt,·,−i

n0p
−Ψti)D

−1/2
ti ∆ti|

≤ 2cec

√
d+ log q

n0p
(
∑
l∈Ti

‖∆i(l)‖2 +
∑
l∈T ci

‖∆i(l)‖2)2

≤ 2cec(1 + ξ)2

√
d+ log q

n0p
(
∑
l∈Ti

‖∆i(l)‖2)2

≤ 2cec(1 + ξ)2

√
d+ log q

n0p
s‖∆i‖2

2, (A.39)

where the last two steps follow from Equation (A.32) and Cauchy–Schwarz inequality, respectively.
Combining Equation (A.36)-(A.39), we have on Ecom∩Edia ,

1

2n0p

d∑
t=1

‖Zt,·,−i∆ti‖2
2 ≥

1

8c2
e

‖∆i‖2, (A.40)

where we have used Assumption 4 which implies s
√

d+log q
n0p

= o(1). Define Ejoint,i = Ecom ∩
Edia ∩ Ei, finally combing Equation (A.35) and Equation (A.40), on Ejoint,i,

‖∆i‖2
2 ≤ 8c2

eλi
2ξ

ξ + 1

∑
l∈Ti

‖∆i(l)‖2 ≤ 8c2
eλi

2ξ

ξ + 1

√
s‖∆i‖2,

which implies

‖∆i‖2 ≤ C

√
s
d+ log q

n0p
. (A.41)
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In addition, on the same event, Ejoint,i

∑
l 6=i

‖∆i(l)‖2 ≤ (1 + ξ)
∑
l∈Ti

‖∆i(l)‖2 ≤ (1 + ξ)
√
s‖∆i‖2

≤ C ′s

√
d+ log q

n0p
. (A.42)

Moreover, by Equation (A.35) and (A.42),

1

2n0p

d∑
t=1

‖Zt,·,−i∆ti‖2
2 ≤ λi

4ξ

ξ + 1
C ′s

√
d+ log q

n0p
≤ C ′′s

d+ log q

n0p
. (A.43)

Finally, note that on Edia, all entries of Dti are simultaneously bounded below and above by
( 1

2ce
, 2ce). In addition, Ejoint,i holds with probabilty at least 1−Ci where Ci = C1 +C2 +C3, i.e,

the sum of the constants corresponding to Ecom, Edia and Ei. Therefore Equation (A.41) - (A.43)
directly imply our statement of Theorem 1.

Proof of Theorem 4

Proof. Our procedure for temporal covariance estimation is applied to each sub-graph separately,
therefore we omit index t here for clarity. We split our proof into algebraic and probabilistic parts.

We start by discussing the probability of certain events. Firstly, we notice that I − C and
I − Ĉ are lower triangular matrix with all diagonal elements as 1, thus it holds naturally that for
some c > 0,

‖I−C‖2 ∈ (
1

c
, c), ‖I−Ĉ‖2 ∈ (

1

c
, c), ‖(I−C)−1‖2 ∈ (

1

c
, c), ‖(I−Ĉ)−1‖2 ∈ (

1

c
, c). (A.44)

Next, by Lemma B.2 as in [40] and Assumption 3, we have that for some c′ > 0,

‖ q

Tr(V )
D−1‖2 ∈ (

2

c
,
c

2
), ‖Tr(V )

q
D‖2 ∈ (

2

c
,
c

2
).

Notice that

‖Tr(V )

q
D‖2 − ‖D̂ −

Tr(V )

q
D‖2 ≤ ‖D̂‖2 ≤ ‖

Tr(V )

q
D‖2 + ‖D̂ − Tr(V )

q
D‖2,

by noticing thatD − D̂ is a diagonal matrix, it directly implies that,

‖Tr(V )

q
D‖2 − max

1≤i≤p
|d̂i −

Tr(V )

q
di| ≤ ‖D̂‖2 ≤ ‖

Tr(V )

q
D‖2 + max

1≤i≤p
|d̂i −

Tr(V )

q
di|.

By Lemma 10 we can bound max1≤i≤p |d̂i − Tr(V )
q
di| ≤ 1

c
with probability at least 1− q−δ; thus

we can directly show that with at least the same probability, the event Ed holds for some constant
c, where

Ed = {‖D̂‖2 ∈ (
1

c
, c), ‖D̂−1‖2 ∈ (

1

c
, c), ‖ q

Tr(V )
D−1‖2 ∈ (

1

c
, c), ‖Tr(V )

q
D‖2 ∈ (

1

c
, c)}
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Now we proceed to algebraic part. Under event Ed, for D̂, we have

1

p
‖D̂ − Tr(V )

q
D‖2

F =
1

p

p∑
i=1

|d̂i −
Tr(V )

q
di|2, (A.45)

1

p
‖D̂−1 − (

Tr(V )

q
D)−1‖2

F ≤
1

p
‖D̂ − Tr(V )

q
D‖2

F · ‖(
Tr(V )

q
D)−1‖2

2 · ‖(D̂)−1‖2
2

≤ C
1

p
‖D̂ − Tr(V )

q
D‖2

F = C
1

p

p∑
i=1

|d̂∗i −
Tr(V )

q
di|2, (A.46)

For Ĉ,

1

p
‖Ĉ −C‖2

F =
1

p

p∑
i=1

‖ĉ∗i − ci‖2
2. (A.47)

1

p
‖(I − Ĉ)−1 − (I −C)−1‖2

F ≤
1

p
‖Ĉ −C‖2

F · ‖(I − Ĉ)−1‖2
2 · ‖(I −C)−1‖2

2

≤ C
1

p
‖Ĉ −C‖2

F = C
1

p

p∑
i=1

‖ĉ∗i − ci‖2
2, (A.48)

where the last inequality follows from Equation (A.44). Finally, as we defined, Û = (I −
Ĉ)−1D̂((I − Ĉ)−1)

′ , Â = (I − Ĉ)
′
D̂−1(I − Ĉ), therefore we have

1

p
‖Û − Tr(V )

q
U‖2

F ≤
3

p

(
‖(I −C)−1‖2

2 · ‖
Tr(V )

q
D‖2

2 · ‖(I − Ĉ)−1 − (I −C)−1‖2
F

+ ‖(I −C)−1‖2
2 · ‖D̂ −

Tr(V )

q
D‖2

F · ‖(I − Ĉ)−1‖2
2

+ ‖(I − Ĉ)−1 − (I −C)−1‖2
F · ‖D̂‖2

2 · ‖(I − Ĉ)−1‖2
2

)
.

1

p
‖Â− q

Tr(V )
A‖2

F ≤
3

p

(
‖I −C‖2

2 · ‖
q

Tr(V )
D−1‖2

2 · ‖C − Ĉ‖2
F

+ ‖I −C‖2
2 · ‖D̂−1 − (

Tr(V )

q
D)−1‖2

F · ‖I − Ĉ‖2
2

+ ‖C − Ĉ‖2
F · ‖D̂−1‖2

2 · ‖I − Ĉ‖2
2

)
.

Notice that underEi and by Equation (A.44), ‖ q
Tr(V )

D̂−1‖2, ‖Tr(V )
q
D̂‖2, ‖(I−C)−1‖2, ‖I−C‖2,

‖(I − Ĉ)−1‖2 and ‖I − Ĉ‖2 are bounded by a constant, thus we have

1

p
‖Û − Tr(V )

q
U‖2

F ≤
C1

p
‖D̂ − Tr(V )

q
D)‖2

F +
C2

p
‖(I − Ĉ)−1 − (I −C)−1‖2

F .
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1

p
‖Â− q

Tr(V )
A‖2

F ≤
C1

p
‖D̂−1 − (

Tr(V )

q
D)−1‖2

F +
C2

p
‖Ĉ −C‖2

F .

With Lemma 10, Equation (A.45)- Equation (A.48), we show that for for any δ > 0, there exists
constants C, such that

P(
1

p
‖Û − Tr(V )

q
U‖2

F ≥ C
log p

(nq)
2α+1
2α+2

) ≤ q−δ,

P(
1

p
‖Â− q

Tr(V )
A‖2

F ≥ C
log p

(nq)
2α+1
2α+2

) ≤ q−δ.

And further notice that Ed holds with probability at least 1 − q−δ, thus we proved the main
conclusion.

Proof of Corollary 2

Proof. Following the proof of Theorem 4 and omitting index t, we denote by Ũ = Tr(V )
q
U ; we

denote by J(Û ), the set of non-zero indices in Û by Ĵ ; we denote by Ĵ c as its complement set.
We immediately have |Ĵ | ≤ p(2h+ 1). By Cauchy-Schwarz inequality, ∑

(i,j)∈Ĵ

|Ûij − Ũij|

2

≤ |Ĵ |
∑

(i,j)∈Ĵ

(Ûij − Ũij)2 ≤ p(2h+ 1)‖ÛĴ − ŨĴ‖
2
F .

By Theorem 4, we known that ‖Û − Ũ‖2
F= O(p log p

(nq)
2α+1
2α+2

), thus

∑
(i,j)∈Ĵ

|Ûij − Ũij| = O(

√
p2h

log p

(nq)
2α+1
2α+2

) = O(

√
p2

log p

(nq)
α
α+1

). (A.49)

Therefore,∣∣∣‖Û‖2
F−‖Ũ‖2

F

∣∣∣ =

∣∣∣∣∣
p∑
i=1

p∑
j=1

(Û2
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ij)
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∣∣∣∣∣∣
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Ũ2
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Ũ2
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=

∣∣∣∣∣∣
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∣∣∣∣∣∣+
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Ũ2
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≤
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∑

(i,j)∈Ĵc

Ũ2
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≤ ‖Û − Ũ‖2
F+2 max

i,j
(|Ũij|)

∑
(i,j)∈Ĵ

|Ûij − Ũij|.
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By Assumption 3, Theorem 4 and Equation (A.49),∣∣∣‖Û‖2
F−‖Ũ‖2

F

∣∣∣ = O

(
p

log p

(nq)
2α+1
2α+2

+ p

√
log p

(nq)
α
α+1

)
= O

(
p

√
log p

(nq)
α
α+1

)
.

By Assumption 6, we have
‖Û‖2

F−‖Ũ‖2
F

p
= o(1), (A.50)

With Assumption 2, denote by Tv = Tr(V )
q

= Tr(Ũ)
p

; by definition of T̂v and Equation (A.49), we
have

T̂v − Tv =
Tr(Û)− Tr(Ũ)

p
= O

(√
log p

(nq)
α
α+1

)
= o(1). (A.51)

Finally,

‖Û ∗‖2
F−‖U‖2

F

p
=
‖Û‖2

F−T̂ 2
v ‖U‖2

F

pT̂ 2
v
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F−T̂ 2
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F

pT̂ 2
v

=
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F

pT̂ 2
v

+
(T 2

v − T̂ 2
v )‖U‖2

F

pT̂ 2
v

≤ 1

T̂ 2
v

(
‖Û‖2

F−‖Ũ‖2
F

p
+ c2

e(T
2
v − T̂ 2

v )

)

Therefore, combining Equation (A.50) and (A.51), we have ‖Û
∗‖2F−‖U‖

2
F

p
= o(1). and we finish

our proof.

Proof of Theorem 2

Proof. Denote dζ = supx>0 |P(‖ζ̂‖∞ > x|D)− P(‖ζ‖∞ > x)|,

sup
x>0
|P(‖∆PS‖∞ > x)− P(‖ζ̂‖∞ > x|D)|

≤ sup
x>0
|P(‖∆PS‖∞ > x)− P(‖ζ‖∞ > x)|+ sup

x>0
|P(‖ζ̂‖∞ > x|D)− P(‖ζ‖∞ > x)|

= sup
x>0
|P(‖∆PS‖∞ > x)− P(‖ζ‖∞ > x)|+ dζ .

From Proposition 2, the first term converges to 0, therefore we only need to prove dζ → 0. Now
with Lemma 3.1 in [17],

sup
x>0
|P(‖ζ̂‖∞ > x|D)− P(‖ζ‖∞ > x)| ≤ C‖Ŵ P −W P‖1/3

∞ {1 ∨ log(q/‖Ŵ P −W P‖∞)}2/3.

Therefore it’s sufficient to show

‖Ŵ P −W P‖∞ = op(1). (A.52)
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Proving such a claim require us to calculate each entry inW P . As defined in Equation (2.16),

W P = E{1

d

d∑
t=1

(
√
ntpΘ

ρ
tS)(
√
ntpΘ

ρ
tS)
′} =

1

d

d∑
t=1

W ρ
t .

Therefore,W P follows fromW ρ
t immediately. By Lemma 11, we have

wPtij =
1

d

d∑
t=1

(‖Ut‖2
F

p
(ρt,χ1(i),χ1(j)ρt,χ2(i),χ2(j) + ρt,χ1(i),χ2(j)ρt,χ1(j),χ2(i)

+
1

2
ρt,χ1(i),χ2(i)ρt,χ1(j),χ2(j)ρ

2
t,χ1(i),χ1(j) +

1

2
ρt,χ1(i),χ2(i)ρt,χ1(j),χ2(j)ρ

2
t,χ2(i),χ2(j)

+
1

2
ρt,χ1(i),χ2(i)ρt,χ1(j),χ2(j)ρ

2
t,χ1(i),χ2(j) +

1

2
ρt,χ1(i),χ2(i)ρt,χ1(j),χ2(j)ρ

2
t,χ1(j),χ2(i)

− ρt,χ1(i),χ1(j)ρt,χ1(j),χ2(j)ρt,χ1(j),χ2(i) − ρt,χ1(i),χ1(j)ρt,χ1(i),χ2(i)ρt,χ1(i),χ2(j)

− ρt,χ2(i),χ2(j)ρt,χ1(j),χ2(j)ρt,χ1(i),χ2(j) − ρt,χ2(i),χ2(j)ρt,χ1(j),χ2(i)ρt,χ1(i),χ2(i))
)

For ‖Ût‖
2
F−‖Ut‖

2
F

p
, we know from Corollary 2 that

‖Ût‖2
F−‖Ut‖2

F

p
= o(1). (A.53)

For the plug-in estimator defined in Equation (2.9), we notice that uniformly for arbitrary
i, i′, i′′, i′′′, j, j′, j′′, j′′′, we have∑d

t=1(ρ̂tij ρ̂ti′j′ − ρtijρti′j′)
d

= o(1), (A.54)

∑d
t=1(ρ̂tij ρ̂ti′j′ ρ̂ti′′j′′ − ρtijρti′j′ρti′′j′′)

d
= o(1), (A.55)∑d

t=1(ρ̂tij ρ̂ti′j′ ρ̂ti′′j′′ ρ̂ti′′′j′′′ − ρtijρti′j′ρti′′j′′ρti′′′j′′′)
d

= o(1), (A.56)

from Proposition 1 and Lemma 8.
From Equation (A.53), Equation (A.54), Equation (A.55) and Equation (A.56) , we know

Equation (A.52) holds, and we finish our proof.

Proof of Theorem 3

Proof. The first claim directly follows from Theorem 2, and we know that PH0(c /∈ CS(1−α))→
α.

For the second claim, we define that µζ̂ = E(‖ζ̂‖∞|D), according to standard theory for the
maximum of Gaussian variables, we have

P(‖ζ̂‖∞ ≥ µζ̂ + u|D) ≤ exp(− u2

2 max1≤j≤r ŵPjj
).
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Furthermore, define C0 =
√

2(1 + 1
2 log q

),

µζ̂ ≤ C
√

log q max
1≤j≤r

ŵPjj.

By setting u2 = −2 logαmax1≤j≤r ŵ
P
jj , we have

q̂S(1− α) ≤ (C0

√
log q +

√
−2 logα) max

1≤j≤r
ŵPjj,

Define the event Gε as Gε = {max1≤j≤r
|ŵPjj−wPjj |

wPjj
≤ ε}; as is shown in the proof of Theorem 2,

max1≤j≤r |ŵPjj − wPjj| = o(1), which indicates that max1≤j≤r
|ŵPjj−wPjj |

wPjj
= o(1). For any ε > 0,

this event hold with probability tending to 1. Now under Gε, it is obvious that

q̂S(1− α) ≤ (1 + ε)(C0

√
log q +

√
−2 logα) max

1≤j≤r
wPjj, (A.57)

Without loss of generality, we assume that
∑k
t=1 ξt12

√
ntp(ρt12−ct12)√
k

= max(i,j)∈S |
∑k
t=1 ξtij

√
ntp(ρtij−ctij)√
k

|,
it immediately follows that∑k

t=1 ξt12
√
ntp(ρt12 − ct12)
√
k

≥ C
√

log q max
1≤j≤r

(wPjj)
1/2, (A.58)

Also, we have

PH1(Ψα, Gε)

= PH1( max
(i,j)∈S

|
∑k

t=1 ξtij
√
ntp(ρ̂tij − ctij)√
k

| > q̂S(1− α), Gε)

≥ PH1(

∑k
t=1 ξt12

√
ntp(ρ̂t12 − ct12)
√
k

> q̂S(1− α), Gε)

= PH1(Gε)− PH1(

∑k
t=1 ξt12

√
ntp(ρ̂t12 − ct12)
√
k

≤ q̂S(1− α), Gε)

= PH1(Gε)− PH1(

∑k
t=1 ξt12

√
ntp(ρ̂t12 − ρt12)
√
k

≤ q̂S(1− α)−
∑k

t=1 ξt12
√
ntp(ρt12 − ct12)
√
k

,Gε),

By Equation (A.57), Equation (A.58) and noticing that C is a large enough constant and ε can be
arbitrarily small, we have

PH1(Ψα, Gε) ≥ PH1(Gε)− PH1(

∑k
t=1 ξt12

√
ntp(ρ̂t12 − ρt12)
√
k

≤ −C ′
√

log q max
1≤j≤r

(wPjj)
1/2, Gε),

for some constant C ′. Since the first term tends to 1 while the second term tends to 0, we have

PH1(Ψα) ≥ PH1(Ψα, Gε)→ 1,

Therefore we complete the proof.
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Proof of Corollary 1

Proof. The proof follows similarly as in Proof of Theorem 3. Noticing that sign(ρ1ij) = . . . =
sign(ρdij) and sign(c1ij) = . . . = sign(cdij), thus we omit ξtij here. For the first claim, simply
notice that under the null, for any (i, j), we have

PH′0(
∑k

t=1

√
ntp(|ρ̂tij| − c)√

k
> q̂S(1− α)) ≤ PH′0(

∑k
t=1

√
ntp(|ρ̂tij − ρtij|)√

k
> q̂S(1− α))

Therefore we have

PH′0(Ψ
′
α) = PH′0( max

(i,j)∈S

∑k
t=1

√
ntp(|ρ̂tij| − c)√

k
> q̂S(1− α))

≤ PH′0( max
(i,j)∈S

∑k
t=1

√
ntp(|ρ̂tij − ρtij|)√

k
> q̂S(1− α))→ α.

For the second claim, we follow the proof in Theorem 3 to Equation (A.57). Without loss of
generality we assume

∑k
t=1
√
ntp(|ρt12|−c)√
k

= max(i,j)∈S

∑k
t=1
√
ntp(|ρtij |−c)√
k

. Likewise, we have∑k
t=1

√
ntp(|ρt12| − c)√

k
≥ C

√
log q max

1≤j≤r
(wPjj)

1/2, (A.59)

Notice that,

PH′1(Ψ
′
α, Gε) = PH1( max

(i,j)∈S

∑k
t=1

√
ntp(|ρ̂tij| − c)√

k
> q̂S(1− α), Gε)

≥ PH′1(
∑k

t=1

√
ntp(|ρ̂t12| − c)√

k
> q̂S(1− α), Gε)

= PH′1(
∑k

t=1

√
ntp(|ρ̂t12| − |ρt12|)√

k
> −

∑k
t=1

√
ntp(|ρt12| − c)√

k
+ q̂S(1− α), Gε)

≥ PH′1(−
∑k

t=1

√
ntp(|ρ̂t12 − ρt12|)√

k
> −

∑k
t=1

√
ntp(|ρt12| − c)√

k
+ q̂S(1− α), Gε)

By Equation (A.57), (A.59), and notice that C is a large enough constant, we have

PH′1(Ψ
′
α, Gε)→ 1,

Therefore PH′1(Ψ
′
α) ≥ PH′1(Ψ

′
α, Gε)→ 1 and we complete the proof.

A.5 Tuning-free Method for Single MGGM
In single-session data case, we omit the index t here for clarity. For each fixed 1 ≤ i ≤ q, the
self-tuned Dantzig-constraint is defined as follows

D(i) = {(β, σ) : β ∈ Rp−1, σ > 0, ‖ 1

np

n∑
k=1

p∑
l=1

(X
(k)
l,−i)

′
(X

(k)
li −X

(k)
l,−iβi)‖∞< λσ},
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where λ =
√

log max (q,np)
np

. Then the Self-tuned Dantzig estimator (β̂i, σ̂i) is any solution to the
following optimization problem

min
(β,σ)∈D(i)

(‖β‖1+cσ), (A.60)

where c is a predefined constant which we will discuss about later.
With the regression as in Equation (A.60), following [27], we introduce a few definitions

which will be required for our proposition and proof. For a support set J ⊆ {1, .., q − 1}, we
define the cone of dominant coordinates as

C
(γ)
J := {∆ ∈ Rq−1 : ‖∆Jc‖1 ≤ (1 + γ)‖∆J‖1}.

We define lq − J0 − block sensitivity as

κ
(γ)
q,J0,J

:= inf
∆∈C(γ)

J :‖∆J0
‖q=1

‖Ψ∆‖∞,

with Ψ = V̂−i, where V̂ is the sample estimate for spatial covariance matrix. We define the
restricted eigenvalue as

κ
(γ)
RE,J := inf

∆∈Rq−1\{0}:∆∈C(γ)
J

|∆′
Ψ∆|

‖∆J‖2
2

.

Proposition 3. Define ∆βi = β̂i − βi; set λ =
√

log q
np

, c = 2λ

κ
1/2
1,J(βi),J(βi)

in self-tuned Dantzig

selector; we have β̂i are consistent with the following properties: for any δ1, δ2 > 0, there exists
constants C1, C2 such that

P(max
1≤i≤q

‖∆βi‖1≥ C1sλ) ≤ q−δ1 ,

P(max
1≤i≤q

‖∆βi‖2≥ C2

√
sλ) ≤ q−δ2 .

Remark: In practice, we introduce one way to pick c. According to Proposition 4.2 in [27],
we introduce κ(γ)

1,0 := 1
s

mink=1,...,q−1{min∆k=1,‖∆‖1≤(2+γ)s ‖Ψ∆‖∞}, which is a lower bound of
κγ1,J(βi),J(βi)

, and can be computed by solving linear programs based on the data only. If s is
unknown, we may choose an upper bound based on Assumption 4.

Proof. The proof can be separated into algebraic and probabilistic parts. Let’s focus on the
algebraic part on certain events. In the end we will show that the probabilities of those events are
close to 1. Define the event Gi as

‖ 1

np

n∑
k=1

p∑
l=1

εli,kX
(k)
l,−i‖∞≤ λφi,

where λ =
√

log q
np

, φi is some constant O(1). Denote the difference of our estimator and true

coefficients as ∆βi = β̂i − βi. Then we have
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‖ 1

np

n∑
k=1

p∑
l=1

(X
(k)
l,−i)

′
X

(k)
l,−i∆βi‖∞ ≤ ‖

1

np

n∑
k=1

p∑
l=1

(X
(k)
l,−i)

′
(X

(k)
l,i − (X

(k)
l,−i)

′
β̂i)‖∞

+ ‖ 1

np

n∑
k=1

p∑
l=1

εli,kX
(k)
l,−i‖∞

≤ (σ̂i + φi)λ ≤ λ(2φi + (σ̂i − φi)).

Note on event Gi, we have
‖β̂i‖1+cσ̂i ≤ ‖βi‖1+cφi, (A.61)

which further implies that

‖∆βi,Jc(βi)‖1≤ ‖∆βi,J(βi)‖1+c(φi − σ̂i). (A.62)

Therefore, we have

‖ 1

np

n∑
k=1

p∑
l=1

(X
(k)
l,−i)

′
X

(k)
l,−i∆βi‖∞≤ λ(2φi +

1

c
(‖∆βi,J(βi)‖1−‖∆βi,Jc(βi)‖1). (A.63)

For every γ > 0, we have the following two cases:

• cφi > ‖γ∆βi,J(βi)‖1;
• cφi ≤ ‖γ∆βi,J(βi)‖1.

For the first case, it directly implies that ‖∆βi,J(βi)‖1<
c
γ
φi; for the second case, combing

Equation A.62 we have

‖∆βi,Jc(βi)‖1≤ (1 + γ)‖∆βi,J(βi)‖1. (A.64)

Hence ∆βi ∈ Cγ
J(βi)

. By the definition of κγ1,J(βi),J(βi)
, we claim that with high probability,

κγ1,J(βi),J(βi)
≥ C

s
, (A.65)

where C is a constant. To see this, Lemma 4.1 in [27] gives that κRE,J(βi) ≤ (2 + γ)sκγ1,J(βi),J(βi)
,

and we only need to show that κRE,J(βi) is lower bounded by a constant. For ∆ ∈ Cγ
J(βi)

,

∆
′
Ψ∆ = ∆

′
V−i∆ + ∆

′
(Ψ− V−i)∆ ≥

1

ce
‖∆‖2

2 − ‖Ψ− V−i‖∞‖∆‖2
1

≥ 1

ce
‖∆‖2

2 − ‖Ψ− V−i‖∞(2 + γ)2s‖∆‖2
2.

By Lemma 2 and Assumption 4, ‖Ψ − V ‖∞(2 + γ)2s ≤ 1
2ce

with high probability. Therefore
κRE,J(βi) is on constant level indeed, i.e,

|∆′
Ψ∆|

‖∆J(βi)‖2
2

≥ |∆
′
Ψ∆|
‖∆‖2

2

≥ 1

2ce
.
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Next, continuing our calculation, Equation A.63 implies that

κγ1,J(βi),J(βi)
‖∆βi,J(βi)‖1≤ λ(2φi +

1

c
‖∆βi,J(βi)‖1).

With the condition that κγ1,J(βi),J(βi)
> λ

c
,

‖∆βi,J(βi)‖1≤
2φiλ

κγ1,J(βi),J(βi)
− λ

c

.

Combining two cases we have

‖∆βi,J(βi)‖1≤ max { c
γ
φi,

2φiλ

κγ1,J(βi),J(βi)
− λ

c

}.

For simplicity, we pick γ = 1/2 and c = 2λ

κ
1/2
1,J(βi),J(βi)

. Then we have ‖∆βi,J(βi)‖1≤ 4λ

κ
1/2
1,J(βi),J(βi)

φi

and according to Equation A.62,

‖∆βi‖1 = ‖∆βi,J(βi)‖1+‖∆βi,Jc(βi)‖1

≤ 2‖∆βi,J(βi)‖1+cφi

≤ 10λ

κ
1/2
1,J(βi),J(βi)

φi ≤
10φi
C

λs, (A.66)

where the last inequality follows from Equation A.65. Noticing that 1
c
‖∆βi,J(βi)‖1≤ 2λφi,

Equation A.63 becomes

‖ 1

np

n∑
k=1

p∑
l=1

(X
(k)
l,−i)

′
X

(k)
l,−i∆βi‖∞≤ λ(2φi +

1

c
‖∆βi,J(βi)‖1) ≤ 4λφi. (A.67)

Therefore, combing the above equation with Equation A.66, we have the prediction error of
Dantzig selector as

1

np
|∆β′i

n∑
k=1

p∑
l=1

(X
(k)
l,−i)

′
X

(k)
l,−i∆βi|

≤ ‖∆βi‖1‖
1

np

n∑
k=1

p∑
l=1

(X
(k)
l,−i)

′
X

(k)
l,−i∆βi‖∞

≤ 40λ2

κ
1/2
1,J(βi),J(βi)

φ2
i . (A.68)

To proceed with ‖∆βi‖2, let us denote the event G′i as

‖ 1

np

n∑
k=1

p∑
l=1

(X
(k)
l,−i)

′
X

(k)
l,−i − V−i‖∞< λφ′i,
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where V−i is a submatrix of V with i-th row and column removed, and φ′i is a constant O(1).
First, we notice that

∆β
′

i

1

np

n∑
k=1

p∑
l=1

(X
(k)
l,−i)

′
X

(k)
l,−i∆βi

= ∆β
′

i(
1

np

n∑
k=1

p∑
l=1

(X
(k)
l,−i)

′
X

(k)
l,−i − V−i)∆βi + ∆β

′

iV−i∆βi

≥ 1

ce
‖∆βi‖2

2−‖
1

np

n∑
k=1

p∑
l=1

(X
(k)
l,−i)

′
X

(k)
l,−i − V−i‖∞‖∆βi‖

2
1. (A.69)

Thus under Gi and G′i, we have

‖∆βi‖2
2 ≤ ce‖

1

np

n∑
k=1

p∑
l=1

(X
(k)
l,−i)

′
X

(k)
l,−i − V−i‖∞‖∆βi‖

2
1

+ ce‖∆βi‖1‖
1

np

n∑
k=1

p∑
l=1

(X
(k)
l,−i)

′
X

(k)
l,−i∆βi‖∞

≤ ce(λφ
′
i‖∆βi‖2

1+4λφi‖∆βi‖1), (A.70)

where the last inequality follows from Equation A.67. Since Equation A.66 indicates that ‖∆βi‖1

is a o(1) term, we know λφ′i‖∆βi‖2
1< λφi‖∆βi‖1. Therefore,

‖∆βi‖2
2 ≤ 5ceλφi‖∆βi‖1≤ C ′sλ2.

Therefore, following Equation A.66, we have

‖∆βi‖2≤
√
C ′φi
√
sλ. (A.71)

As the probability of event Gi and G′i is given in Lemma 2 and Lemma 3, from Assumption 4,
Equation A.66 and Equation A.71, we conclude that for any δ1, δ2 > 0, there exists constants
C1, C2 such that

P(max
1≤i≤q

‖∆βi‖1≥ C1sλ) ≤ q−δ1 ,

P(max
1≤i≤q

‖∆βi‖2≥ C2

√
sλ) ≤ q−δ2 .

A.5.1 Evaluating Goodness of Fit
To assess the model fit, we calculate the mean log-likelihood of our model for each node along
time averaged over all trials for the first session. From Fig. A.7(a), we observe that the top-
left sub-region has the largest log-likelihood while the bottom-right sub-region has the lowest
log-likelihood. This indicates that nodes with stronger connectivity play a more important role
when fitting the model. Notice that there is another local minimum at the top-right (location
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Figure A.7: Mean log-likelihood for each node along time averaged over all trials: left panel is
the likelihood of the original fit, and right panel is the likelihood difference between the 3 × 3
finer and original fit. Comparing two panels, log-likelihood values for sub-regions with largest
log-likelihood and lowest log-likelihood are both greatly improved by adapting a local fit.

(2800, 3200)) of the figure, which results from the fact that this area has a lower signal strength
thus a lower weight when fitting the model parameters. Next, we divide the 10× 10 array into
nine parts: along x-axis and y-axis, we divide them into three subset (1,2,3), (4,5,6), (7,8,9,10), so
that the 2D space consists of 3× 3 sub-regions. For each sub-region, we fit a MGGM separately,
and the mean log-likelihood difference between this fit and the original fit is in Fig. A.7(b). Most
of the sub-regions correspond to positive values, which indicates that the fit improves; moreover,
comparing two panels, log-likelihood values for sub-regions with the largest log-likelihood and
the lowest log-likelihood are both greatly improved by this local fit model, which indicates that
different factors may exist inside each sub-region and need to be addressed differently. This
motivates us to apply a multi-factor model in the next Chapter so that each local mode can be
effectively captured.

89



90



Appendix B

Appendix to Chapter 3

B.1 EM-algorithm to Fit LDFA-H

Initialization Let θ̂(0) = {Σ̂(0)
1 , . . . , Σ̂

(0)
q , Φ̂

1,(0)
S , Φ̂

2,(0)
S , Φ̂

1,(0)
T , Φ̂

2,(0)
T , β̂1,(0), β̂2,(0), µ̂1,(0), µ̂2,(0)}

be the initial parameter value. Since the MPLE objective function for LDFA-H given in Eq. (3.9)
is not guaranteed convex, an EM-algorithm may find a local minimum according to a choice of
the initial value. Hence a good initialization is crucial to a successful estimation. Here we suggest
an initialization by a canonical correlation analysis (CCA).

Let {X1[n],X2[n]}n=1,...,N be N simultaneously recorded pairs of neural time series. We
can view them as NT recorded pairs of multivariate random vectors {X1

t,·[n],X2
t,·[n]}(n,t)∈[N ]×[T ].

We obtain β̂1,(0)
1 and β̂2,(0)

1 by CCA as follows:

β̂
1,(0)
1 , β̂

2,(0)
1 = argmax

β̂1
1∈Rp1 ,β2

1∈Rp2

β1>
1 S

12β2
1√

β1>
1 S

11β1
1

√
β2>

1 S
22β2

1

(B.1)

where
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1

NT
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t,·[n]− 1

NT
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According to the equivalence between CCA and probablistic CCA shown by [7], it gives an
estimate of the first latent factors

Ẑ
k,(0)
·,1 [n] = β̂

k,(0)
1 Xk[n] (B.3)

for n = 1, . . . , N and k = 1, 2. The initial second latent factors Ẑk,(0)
2 and the corresponding

factor loading β̂k,(0)
2 is similarly set by the second pair of canonical variables, and so on. Then we
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assign the empirical covariance matrix of {Ẑ1,(0)
f [n], Ẑ

2,(0)
f [n]}n∈[N ] to the initial latent covariance

matrix Σ̂
(0)
f for f = 1, . . . , q and the matrix-variate normal estimate [67] on {ε̂k,(0)[n] := Xk[n]−

β̂k,(0)Ẑk,(0)[n]}n∈[N ] to Φ̂
k,(0)
T and Φ̂

k,(0)
S for k = 1, 2. Along µ̂k,(0) := 1

N

∑N
n=1 X̂

k[n], the above
parameters comprises the initial parameter set θ̂(0).

However, we cannot run an E-step on the above parameter set because Φ̂k,(0) is not invertible.
We instead pick one of its unidentifiable parameter sets θ̂(0),{α1,α2}, defined in Eq. (3.8), with all
Φ̂k,(0)’s and Σ̂

(0)
f ’s invertible. Specifically, we take

αkf =
1

2
λmin

(
Σ

1/2
f

[
Φ1
T 0

0 Φ2
T

]−1

Σ
1/2
f

)
(B.4)

for f = 1, . . . , q and k = 1, 2 where λmin(A) is the smallest eigenvalue of symmetric matrixA.
Henceforth, we notate θ̂(0),{α1,α2} by θ̂(0). For t = 1, 2, . . . , we iterate the following E-step and
M-step until convergence.

Another promising initialization is by finding time (t, s) on which the canonical correlation
betweenX1

t,· andX2
s,· maximizes. i.e., we initialize β̂1,(0)

1 and β̂2,(0)
1 by

β̂
1,(0)
1 , β̂
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such that |t− s| < hcross. (B.5)
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for (t, s) ∈ [T ]× [T ]. Then the other parameters are initialized as above. We can even take an
ensemble approach in which we fit LDFA-H on different initialized values and pick the estimate
with the minimum cost function (Eq. (3.9)).

Now, for r = 1, 2, . . . , we alternate an E-step and an M-step until the target parameter Πf

convergences.

E-step Given θ̂ := θ̂(r−1) from the previous iteration, the conditional distribution of latent
factors Z1[n] and Z2[n] with respect to observed data X1[n] and X2[n] on trial n = 1, . . . , N
follows (

Z1
·,1[n];Z2

·,1[n]; . . . ;Z2
·,q[n]

)
|X1[n],X2[n] ∼ MVN

(
m

(r)
~Z|X

[n],V
(r)
~Z|X

)
, (B.7)
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and
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given
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for f, g = 1, . . . , q.

M-step We find θ̂(r) which maximize the conditional expectation of the penalized likelihood
under the same constraints in Eq. (3.9), i.e.

θ̂(r) = argmin
1

N

N∑
n=1

EZ[n]|X[n],θ̂(r−1)

[
log p(X1[n],X2[n],Z1[n],Z2[n]; θ̂(r−1))
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∥∥Λkl
f �Πkl

f
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1

s.t. Γ̂k
T is (2hkε + 1)-diagonal

(B.11)

where p is the probability density function of our model in Eqs. (3.1), (3.4) and (3.5) and the
expectation EZ[n]|X[n],θ̂(r−1) follows the conditional distribution in Eq. (B.7). Taking a block
coordinate descent approach, we solve the optimization problem by alternating M1 - M4.

M1: With respect to latent precision matrices Ωf , Eq. (B.11) reduces to a graphical Lasso
problem,

Ω̂
(r)
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}
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for each f = 1, . . . , q where Ê[m
(r)
Zf |Xm

(r)>
Zf |X ] = 1

N

∑N
n=1m

(r)
Zf |X [n] m

(r)>
Zf |X [n]. The graphical

Lasso problem is solved by the P-GLASSO algorithm by [42].
M2: With respect to Γk, Eq. (B.11) reduces to an estimation of matrix-variate normal model

[67]. The estimation problem can be formulated as

Γ̂
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and
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for each k = 1, 2 where m(r)

εk|X = Xk − βkm(r)

Zk|X − µ
k and Ê[A] is the empirical mean of a

random matrixA. The estimation of Γk
T under the bandedness constraint is tractable with modified

Cholesky factor decomposition approach with bandwidth hkε using the procedure by [5].
M3: With respect to βk, Eq. (B.11) reduces to a quadratic program

β̂k(r) = arg maxβk


∑
t,s

ΓkT ,(t,s) tr
(
βk>Γk

Sβk (V
(r)

Zkt,·,Z
k
s,·|X
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where ΓkT,(t,s) is the (t, s) entry in Γk
T and Ĉov(A,B) is the empirical covariance matrix between

random vectors A and B. The analytic form of the solution is given by
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M4: With resepct to µk, it is straight-forward that Eq. (B.11) yields

µ̂k(r) = Ê

[
Xk −

q∑
f=1

βkfm
(r)>
Zkf |X

]
.

B.2 Simulation Details
We simulated realistic data with known cross-region connectivity as follows. Simulating q = 1
pair of latent time-series Zk from Equation (3.2), we introduced an exact ground-truth for the
inverse cross-correlation matrix Π12

1 by setting:

Π1 =

[
(P 11

1,0)−1 0
0 (P 22

1,0)−1

]
+

[
D1 Π12

1

Π12>
1 D2

]
(B.17)

where D1 and D2 are diagonal matrices with elements D1
(t,t) =

∑
s Π12

1,(t,s) and D2
(s,s) =∑

t Π
12
1,(t,s), which ensures that the matrix on the right hand side is positive definite. The matrix on

the left hand side contains the auto-precision matrices of the two latent time series, with elements
simulated from the squared exponential function:

P kk
1,0 =

[
exp

(
−ck(t− s)2

)]
t,s

+ λIT , (B.18)
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Figure B.1: Squared Frobenius norms of covariance matrix estimates, Σ̂f , for all factors f =
1, . . . , 10. Notice that the amplitudes of the top four factors dominate the others.

with c1 = 0.105 and c2 = 0.142, chosen to match the observed LFPs autocorrelations in the
experimental dataset (Section 3.2.2). We added the regularizer λIT , λ = 1, to render P kk

invertible. We designed the true inverse cross-correlation matrix Π12 to induce lead-lag relationship
between Z1 and Z2 in two epochs as depicted in the right-most panel of Fig. 3.1(a). Specifically,
the elements of Π12 were set:

Π12
(t,s) =

{
−r, where Z1

1,t and Z2
1,s partially correlate,

0, elsewhere,
(B.19)

where the association intensity r = 0.6 was chosen to match our cross-correlation estimate in
the experimental data (Section 3.2.2). Finally, we rescaled P1 = Π−1

1 to have diagonal elements
equal to one. The corresponding factor loading vector βk1 was randomly generated from standard
multivariate normal distribution and then scaled to have ‖βk1‖2 = 1.

We generated the noise εk from the N = 1000 trials of the experimental data analyzed in
Section 3.2.2. First, we permuted the trials in one region to remove cross-region correlations. Let
{Y 1[n], Y 2[n]}n=1,...,N be the permuted dataset. Then we contaminated the dataset with white
noise to modulate the strength of noise correlation relative to cross-region correlations. i.e.

εkt,· = Y k
t,· − µkt,· + ηkt,·, ηkt,·

indep∼ MVN
(

0, λεĈov[Y k
t,·]
)
, and µkt,· = Ê[Y k

t,·] (B.20)

where Ê[Y k
t,·] and Ĉov[Y k

t,·] wer the empirical mean and covariance matrix of Y k
t,·, respectively, for

k = 1, 2, t = 1, . . . , T . The noise auto-correlation level was modulated by λε ∈ {2.78, 1.78, 0.44, 0.11}.
We also obtained Σ1 by scaling P1 so that Σkk

1,(t,s) = βk>1 Skt β
k
1 . Putting all the pieces together,

we generated observed time series by Eq. (3.1).

B.3 Experimental Data Analysis Details
We investigated the strength of each factor, which is characterized by Σf , in Fig. B.1. Notice that
the strength decreases fast initially and becomes relatively slower starting from the fifth factor.
Therefore, we pick the top 4 factors in our result section.
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Figure B.2: Information flow by partial R2 for the top four factors. In this figure, we characterize
dynamic information flow in terms of partial R2. We show dynamic information flow from
V 4 → PFC (blue) and PFC → V 4 (orange). In and out flows seem to peak at either the
beginning or the end of the delay period, stronger V 4 → PFC is identified, and different
couplings of the two flows are also observed under this new definition. This figure echos with
Fig. 3.4(b).

We also re-formulate the definition of information flow in the context of vector auto-regressive
model. For the latent factor f in V4 at time t, consider the full regression model using the full
history of latent variables in both area,

Z1
t,f ∼ Z1

1:t−1,f +Z2
1:t−1,f

vs. the reduced model using history of latent variables in V4 only,

Z1
t,f ∼ Z1

1:t−1,f .

The partial R2 summarizes the contribution of PFC history to V4, thus can be viewed as infor-
mation flow from V4 to PFC at time t. Dynamic information flow from V4 to PFC is defined
similarly. The results are shown in Fig. B.2. Even from a different perspective, we reach to a
similar conclusion as Fig. 3.4(b).
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