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Abstract
Computer vision has a great potential to help our daily lives by searching for lost keys,

watering flowers or reminding us to take a pill. To succeed with such tasks, computer vision
methods need to be trained from real and diverse examples of our daily dynamic scenes.
First, we need to give computers insight into our world, and our daily lives. Not just through
the charade the we present to the world on social media, but through a genuine look at the
most boring, mundane, routine aspects of our lives. But how do we model this data? How
do we model information over time? How do we harness the richness and complexity of
this data to enable understanding?

To provide a lens through which to look at humans in their mundane lives, we explored
techniques for crowdsourcing the creation of this data from hundreds of people in their
own homes, and analyzed how humans think about activities along with the best strategies
for annotating complex data of this nature. Given this insight into human behaviour, we
can start understanding where other vision techniques have trouble, understand how to
improve them, and which venues are most promising moving forward.

Once we have this kind of data, we can start building algorithms that harness the unique
aspects of this data by learning how human activities change over time, and what activities
occur with a recognizable temporal structure. We can harness the data to learn how complete
human events generally unfold, such as a snowboarding trip, and apply these models to
applied problems such as summarizing photo albums. Finally, we combine ideas from our
work to demonstrate how these techniques can be used to collect data and modeling human
activities from first and third-person at the same time, and unsupervised concept learning
from web videos. We hope this kind of realistic bias may provide new insights that aid
robots equipped with our computer vision models operating in the real world.
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Chapter 1

Introduction

One of the great promises of AI and Robotics is to bring more and more computation and
machines into our daily lives and routines. This will enable machines to assist us and work
among us. However, a fundamental challenge for enabling machines that live among us, is
creating machines that understand us. Where do we start? First, we need to give computers
insight into our world, and our daily lives. Not just through the charade the we present to
the world on social media, but through a genuine look at the most boring, mundane, routine
aspects of our lives. Once we have data that we can give to the computer, the questions are:
How do we model this data? How do we model information over time? How do we harness
the richness and complexity of this data to enable understanding? For example, looking at
Figure 1.1 we can see that our daily activities do not occur in isolation, and tend to be very
semantically meaningful, even though the change in appearance is subtle. We perform a
sequence of activities, usually with a purpose—an intent. Modelling the complete nature of
the activities is an important problem that we can tackle with such a data.

Once we have this kind of data, we can start building algorithms that harness the unique
aspects of this data by learning how human activities change over time, and what activities
occur with a recognizable temporal structure [217]. We can harness the data to learn how
complete human events generally unfold, such as a snowboarding trip, and apply these
models to applied problems such as summarizing photo albums [215]. We can combine
ideas from our work to demonstrate how these techniques can be used to collect data and
modelling human activities from first and third-person at the same time [219]. We hope
this kind of realistic bias may provide new insights that aid robots equipped with our
computer vision models operating in the real world. Finally, to expand the understanding
of our models beyond labelled data, we have explored multi-modal ideas for unsupervised
learning of language and translation from hundreds of millions of YouTube video clips [214].

Understanding humans, is as elusive of a task as it is to define. Even for the complexities
of human intelligence, even relatively minor damage can significantly impair the ability
to understand human behavior. This suggests that simple observations of humans may
not be sufficient for full understanding, and if we really want our systems to understand
humans we need to teach them to put themselves in our shoes. To fully understand human
culture and humans themselves, it may be needed to go beyond building a complete dataset
that captures all possible concepts. Thus, venturing forth away from prepared datasets is
eventually needed to expand the knowledge of the model. We explore this idea of learning
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TimeHolding a cup
Pouring into a cup

Drinking from a cup

Intent: Getting something to drink

Figure 1.1: Understanding human activities requires understanding the subtle sequence of
motions and tasks that make up daily human activities, and how they are tied together with
the person’s intentions.

concepts in an unsupervised manner from videos uploaded by people to the web.
In this thesis, we explore the full pipeline from acquiring data, building systems using

the data, to analyzing the high-level of what these systems are able to do. The thesis is
organized into three parts: (I) Getting Data. (II) Building Algorithms. (III) Understanding
Humans. These parts are summarized below.

I Data for Activity Understanding. The first part explores how to provide the data for
learning about human activities. We explored a new lens throughwhich to look at humans in
their daily lives, using techniques for crowdsourcing the creation of this data from hundreds
of people in their own homes. Prompted by this novel data, we analyzed how humans
think about activities and the best strategies for annotating complex data of this nature. This
insight into human behaviour, allowes to to start investigating where other vision techniques
have trouble, understand how to improve them, and which venues are most promising
moving forward.

II Algorithms for Video Understanding. In the second part, once we have this kind of
data, we can start building algorithms that harness the unique aspects of this data by learning
how human activities change over time, and what activities occur with a recognizable
temporal structure. On an even higher level, we can harness the data to learn how complete
human events, such as a snowboarding trip, generally unfold, and apply these models
to practical problems such as summarizing photo albums. Building systems that process
chaotic real world video data, requires using 3D information, and allocating resolution to
where it is needed. Incorporating camera motion into all layers of a network allows for
synthetic “eye movements” that can address these problems.

2



III Understanding Humans from Their Perspective. Finally, in the third part, we com-
bine ideas from our work to demonstrate how these techniques can be used to collect data
and modelling human activities from first and third-person at the same time. To extend the
understanding from a labelled data to arbitrary human concepts, we demonstrate how con-
cepts can be learned from watching unlabelled videos and that these concepts are consistent
across languages.

Concretely, the contributions of this dissertations are: (1) The Charades and Charades-
Ego datasets for training and evaluating human activity recognition models, along with
techniques for extensive annotation and analysis of such data. (2) Techniques for modeling
human activities in videos and photo albums over long time scales. (3) Human inspired
techniques for modeling video from first/third person perspectives and world coordinate
viewpoints. (4) A method for unsupervised translation using uncurated web videos. These
contributions were previously described in [214–223] and are briefly outlined below.

Overview
In Chapter 2we propose a novelHollywood inHomes approach to collect any data. Instead of
shooting videos in the lab, we ensure diversity by distributing and crowdsourcing the whole
process of video creation from script writing to video recording and annotation. Following
this procedure we collect a new dataset, Charades, with hundreds of people recording videos
in their own homes, acting out casual everyday activities. The dataset is composed of 9,848
annotated videos with an average length of 30 seconds.

Chapter 3 then investigates and determines the most cost-effective way of obtaining
high-quality multi-label annotations for temporal data such as videos. Watching even a
short 30-second video clip requires a significant time investment from a crowd worker;
thus, requesting multiple annotations following a single viewing is an important cost-saving
strategy. But howmany questions shouldwe ask per video? Wedemonstrate the effectiveness
of our method by collecting multi-label annotations of 157 human activities on 1,815 videos.

This then allows us, in Chapter 4, to analyze the current state of human activity un-
derstanding in videos, where we examine datasets, evaluation metrics, algorithms, and
potential future directions. We look at the qualitative attributes that define activities such as
pose variability, brevity, and density.

In Chapter 5 we consider that a thorough understanding of videos requires going beyond
appearance modeling and necessitates reasoning about the sequence of activities, as well
as the higher-level constructs such as intentions. We propose a fully-connected temporal
CRF model for reasoning over various aspects of activities that includes objects, actions, and
intentions, where the potentials are predicted by a deep network. To address this challenge,
we present an asynchronous variational inference method that allows efficient end-to-end
training.

Pushing long-term temporal reasoning to its limits, we explore in Chapter 6 how to
automatically learn the temporal aspects, or storylines of visual concepts fromweb data. Our
novel Skipping Recurrent Neural Network (S-RNN) model does not attempt to predict each
and every data point in the sequence, like classic RNNs. Rather, S-RNN uses a framework
that skips through the images in the photo stream to explore the space of all ordered subsets
of the albums via an efficient sampling procedure. We show how our learned storylines can
be used to analyze, predict, and summarize photo albums from Flickr.

3



Exploring space in addition to time, we introduce the idea of WorldFeatures in Chapter 7,
where each feature at every layer has a spatial transformation, and the feature map is only
transformed as needed. We show that a network built with these WorldFeatures, can be
used to model eye movements, such as saccades, fixation, and smooth pursuit, even in a
batch setting on pre-recorded video. That is, the network can for example use all 224 by
224 pixels to look at a small detail one moment, and the whole scene the next. We show
that typical building blocks, such as convolutions and pooling, can be adapted to support
WorldFeatures using available tools.

In Chapter 8 we introduce Charades-Ego, a large-scale dataset of paired first-person and
third-person videos, involving 112 people, with 4000 paired videos. This enables learning
the link between the actor and observer perspectives. We use this data to learn a joint
representation of first and third-person videos, with only weak supervision, and show its
effectiveness for transferring knowledge from the third-person to the first-person domain.

Finally, Chapter 9 demonstrates that given powerful video modeling we can now estab-
lish a common visual representation between two languages by learning embeddings from
unpaired instructional videos narrated in the native language. Given this shared embed-
ding we demonstrate that (i) we can map words between the languages, particularly the
‘visual’ words; (ii) that the shared embedding provides a good initialization for existing
unsupervised text-based word translation techniques, forming the basis for our proposed
hybrid visual-text mapping algorithm, MUVE; and (iii) our approach achieves superior
performance by addressing the shortcomings of text-based methods – it is more robust,
handles datasets with less commonality, and is applicable to low-resource languages.
Following is the relevant publication list for each chapter.

Ch. 2 Hollywood inHomes: CrowdsourcingDataCollection forActivityUnderstanding [223]
(ECCV 2016)

Ch. 3 Much Ado About Time: Exhaustive Annotation of Temporal Data [221]
(HCOMP 2016)

Ch. 4 What Actions are Needed for Understanding Human Actions in Videos? [222]
(ICCV 2017)

Ch. 5 Asynchronous Temporal Fields for Action Recognition [217]
(CVPR 2017)

Ch. 6 Learning Visual Storylines with Skipping Recurrent Neural Networks [215]
(ECCV 2016)

Ch. 7 Beyond the Camera: Neural Networks in World Coordinates [218]
(ArXiv 2020)

Ch. 8 Actor and Observer: Joint Modeling of First and Third-Person Video [219]
(CVPR 2018)

Ch. 9 Visual Grounding in Video for Unsupervised Word Translation [214]
(CVPR 2020)
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Part I

Data for Activity Understanding
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The first step in most modern AI models is data. A model cannot be expected to learn
information that is not available, and even generalizing from current data is an unsolved
problem. If we want to learn about humans, then we need insight into human lives. Getting
that data requires cleverly harnessing the data humans put on the internet, but also acquiring
the data that is not put on the internet. For example, the really boring stuff. We explore
these ideas in Chapter 2 and Chapter 3. Utilizing the only expert human understanding that
currently exists—humans, we need to identify what it means to understand, and what steps
are needed to get to that level with our systems. These ideas are explored in Chapter 3 and
Chapter 4.
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Chapter 2

Crowdsourcing Video Collection

Computer vision has a great potential to help our daily lives by searching for lost keys,
watering flowers or reminding us to take a pill. To succeed with such tasks, computer vision
methods need to be trained from real and diverse examples of our daily dynamic scenes.
While most of such scenes are not particularly exciting, they typically do not appear on
YouTube, in movies or TV broadcasts. So how do we collect sufficiently many diverse but
boring samples representing our lives? We propose a novel Hollywood in Homes approach
to collect such data. Instead of shooting videos in the lab, we ensure diversity by distribut-
ing and crowdsourcing the whole process of video creation from script writing to video
recording and annotation. Following this procedure we collect a new dataset, Charades,
with hundreds of people recording videos in their own homes, acting out casual everyday
activities. The dataset is composed of 9,848 annotated videos with an average length of 30
seconds, showing activities of 267 people from three continents, and over 15% of the videos
have more than one person. Each video is annotated by multiple free-text descriptions,
action labels, action intervals and classes of interacted objects. In total, Charades provides
27,847 video descriptions, 66,500 temporally localized intervals for 157 action classes and
41,104 labels for 46 object classes. Using this rich data, we evaluate and provide baseline
results for several tasks including action recognition and automatic description generation.
We believe that the realism, diversity, and casual nature of this dataset will present unique
challenges and new opportunities for computer vision community.

2.1 Background
Large scale visual learning fueled by huge datasets has changed the computer vision land-
scape [36, 299]. Given the source of this data, it’s not surprising that most of our current
success is biased towards static scenes and objects in Internet images. As we move forward
into the era of AI and robotics, however, new questions arise. How do we learn about differ-
ent states of objects (e.g., cut vs. whole)? How do common activities affect changes of object
states? In fact, it is not even yet clear if the success of the Internet pre-trained recognition
models will transfer to real-world settings where robots equipped with our computer vision
models should operate.

Shifting the bias from Internet images to real scenes will most likely require collection

7



of new large-scale datasets representing activities of our boring everyday life: getting up,
getting dressed, putting groceries in fridge, cutting vegetables and so on. Such datasets will
allow us to develop new representations and to learn models with the right biases. But more
importantly, such datasets representing people interacting with objects and performing
natural action sequences in typical environments will finally allow us to learn common sense
and contextual knowledge necessary for high-level reasoning and modeling.

But how dowe find these boring videos of our daily lives? If we search common activities
such as “drinking from a cup”, “riding a bike” on video sharingwebsites such as YouTube, we
observe a highly-biased sample of results (see Figure 2.1). These results are biased towards
entertainment—boring videos have no viewership and hence no reason to be uploaded on
YouTube!

We propose a novel Hollywood in Homes approach to collect a large-scale dataset
of boring videos of daily activities. Standard approaches in the past have used videos
downloaded from the Internet [50,68,106,124,139,232] gathered from movies [128,185,187]
or recorded in controlled environments [69, 123, 165, 186, 189, 205]. Instead, as the name
suggests: we take the Hollywood filming process to the homes of hundreds of people on
AmazonMechanical Turk (AMT). AMTworkers follow the three steps of filming process: (1)
script generation; (2) video direction and acting based on scripts; and (3) video verification
to create one of the largest and most diverse video dataset of daily activities.

There are threefold advantages of using the Hollywood in Homes approach for dataset
collection: (a) Unlike datasets shot in controlled environments (e.g., MPII [189]), crowd-
sourcing brings in diversity which is essential for generalization. In fact, our approach even
allows the same script to be enacted bymultiple people; (b) crowdsourcing the script writing
enhances the coverage in terms of scenarios and reduces the bias introduced by generating
scripts in labs; and (c) most importantly, unlike for web videos, this approach allows us
to control the composition and the length of video scenes by proposing the vocabulary of
scenes, objects and actions during script generation.
The Charades v1.0 Dataset
Charades is our large-scale dataset with a focus on common household activities collected
using the Hollywood in Homes approach. The name comes from of a popular American
word guessing game where one player acts out a phrase and the other players guess what
phrase it is. In a similar spirit, we recruited hundreds of people from Amazon Mechanical
Turk to act out a paragraph that we presented to them. The workers additionally provide
action classification, localization, and video description annotations. The first publicly
released version of our Charades dataset will contain 9,848 videos of daily activities 30.1
seconds long on average (7,985 training and 1,863 test). The dataset is collected in 15 types
of indoor scenes, involves interactions with 46 object classes and has a vocabulary of 30 verbs
leading to 157 action classes. It has 66,500 temporally localized actions, 12.8 seconds long
on average, recorded by 267 people in three continents. We believe this dataset will provide
a crucial stepping stone in developing action representations, learning object states, human
object interactions, modeling context, object detection in videos, video captioning and many
more. The dataset will be publicly available at http://allenai.org/plato/charades/.
ContributionsThe contributions of ourwork are three-fold: (1)We introduce theHollywood
in Homes approach to data collection, (2) we collect and release the first crowdsourced
large-scale dataset of boring household activities, and (3) we provide extensive baseline
evaluations.

8
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The Charades Dataset

Figure 2.1: Comparison of actions in the Charades dataset and on YouTube: Reading a book,
Opening a refrigerator, Drinking from a cup. YouTube returns entertaining and often atypical
videos, while Charades contains typical everyday videos.

The KTH action dataset [205] paved the way for algorithms that recognized human
actions. However, the dataset was limited in terms of number of categories and enacted
in the same background. In order to scale up the learning and the complexity of the data,
recent approaches have instead tried collecting video datasets by downloading videos from
Internet. Therefore, datasets such as UCF101 [232], Sports1M [106] and others [68,124,139]
appeared and presented more challenges including background clutter, and scale. However,
since it is impossible to find boring daily activities on Internet, the vocabulary of actions
became biased towards more sports-like actions which are easy to find and download.

There have been several efforts in order to remove the bias towards sporting actions. One
such commendable effort is to use movies as the source of data [58, 147]. Recent papers
have also used movies to focus on the video description problem leading to several datasets
such as MSVD [19], M-VAD [242], and MPII-MD [187]. Movies however are still exciting
(and a source of entertainment) and do not capture the scenes, objects or actions of daily
living. Other efforts have been to collect in-house datasets for capturing human-object
interactions [72] or human-human interactions [196]. Some relevant big-scale efforts in
this direction include MPII Cooking [189], TUM Breakfast [123], and the TACoS Multi-
Level [186] datasets. These datasets focus on a narrowdomain by collecting the data in-house
with a fixed background, and therefore focus back on the activities themselves. This allows
for careful control of the data distribution, but has limitations in terms of generalizability,
and scalability. In contrast, PhotoCity [246] used the crowd to take pictures of landmarks,
suggesting that the same could be done for other content at scale.

Another relevant effort in collection of data corresponding to daily activities and objects is
in the domain of ego-centric cameras. For example, theActivities ofDaily Living dataset [173]
recorded 20 people performing unscripted, everyday activities in their homes in first person,
and another extended that idea to animals [93]. These datasets provide a challenging task
but fail to provide diversity which is crucial for generalizability. It should however be noted
that these kinds of datasets could be crowdsourced similarly to our work.
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Actions
per video Classes Labelled

instances
Total
videos Origin Type Temporal

localization
Charades v1.0 6.8 157 67K 10K 267 Homes Daily Activities Yes

ActivityNet [50] 1.4 203 39K 28K YouTube Human Activities Yes
UCF101 [232] 1 101 13K 13K YouTube Sports No
HMDB51 [124] 1 51 7K 7K YouTube/Movies Movies No
THUMOS’15 [68] 1-2 101 21K+ 24K YouTube Sports Yes
Sports 1M [106] 1 487 1.1M 1.1M YouTube Sports No
MPII-Cooking [189] 46 78 13K 273 30 In-house actors Cooking Yes
ADL [173] 22 32 436 20 20 Volunteers Ego-centric Yes
MPII-MD [187] Captions Captions 68K 94 Movies Movies No

Table 2.1: Comparison of Charades with other video datasets.

The most related dataset is the recently released ActivityNet dataset [50]. It includes
actions of daily living downloaded from YouTube. We believe the ActivityNet effort is
complementary to ours since their dataset is uncontrolled, slightly biased towards non-
boring actions and biased in the way the videos are professionally edited. On the other
hand, our approach focuses more on action sequences (generated from scripts) involving
interactions with objects. Our dataset, while diverse, is controlled in terms of vocabulary of
objects and actions being used to generate scripts. In terms of the approach, Hollywood in
Homes is also related to [303]. However, [303] only generates synthetic data. A comparison
with other video datasets is presented in Table 2.1. To the best of our knowledge, our
approach is the first to demonstrate that workers can be used to collect a vision dataset by
filming themselves at such a large scale.

2.2 Hollywood in Homes
We now describe the approach and the process involved in a large-scale video collection
effort via AMT. Similar to filming, we have a three-step process for generating a video. The
first step is generating the script of the indoor video. The key here is to allow workers to
generate diverse scripts yet ensure that we have enough data for each category. The second
step in the process is to use the script and ask workers to record a video of that sentence being
acted out. In the final step, we ask the workers to verify if the recorded video corresponds to
script, followed by an annotation procedure.

2.2.1 Generating Scripts
We focus on indoor scenes, hence, we group together rooms in residential homes (Living
Room, Home Office, etc.). We found 15 types of rooms to cover most of typical homes, these
rooms form the scenes in the dataset. In order to generate the scripts (a text given to workers
to act out in a video), we use a vocabulary of objects and actions to guide the process. To
understand what objects and actions to include in this vocabulary, we analyzed 549 movie
scripts from popular movies in the past few decades. Using both term-frequency (TF) and
TF-IDF [203] we analyzed which nouns and verbs occur in those rooms in these movies.
From those we curated a list of 40 objects and 30 actions to be used as seeds for script
generation, where objects and actions were chosen to be generic for different scenes.
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To harness the creativity of people, and understand their bias towards activities, we
crowdsourced the script generation as follows. In the AMT interface, a single scene, 5
randomly selected objects, and 5 randomly selected actions were presented to workers.
Workers were asked to use two objects and two actions to compose a short paragraph about
activities of one or two people performing realistic and commonplace activities in their
home. We found this to be a good compromise between controlling what kind of words
were used and allowing the users to impose their own human bias on the generation. Some
examples of generated scripts are shown in Figure 2.2. (see the website for more examples).
The distribution of the words in the dataset is presented in Figure 2.3.

2.2.2 Generating Videos
Once we have scripts, our next step is to collect videos. To maximize the diversity of scenes,
objects, clothing and behaviour of people, we ask the workers themselves to record the 30
second videos by following collected scripts.

AMT is a place where people commonly do quick tasks in the convenience of their homes
or during downtime at their work. AMT has been used for annotation and editing but can
we do content creation via AMT? During a pilot study we asked workers to record the videos,
and until we paid up to $3 per video, no worker picked up our task. (For comparison, to
annotate a video [221]: 3 workers × 157 questions × 1 second per question × $8/h salary =
$1.) To reduce the base cost to a more manageable $1 per video, we have used the following
strategies:
Worker Recruitment. To overcome the inconvenience threshold, worker recruitment was
increased through sign-up bonuses (211% increased new worker rate) where we awarded a
$5 bonus for the first submission. This increased the total cost by 17%. In addition, “recruit
a friend” bonuses ($5 if a friend submits 15 videos) were introduced, and were claimed by
4% of the workforce, generating indeterminate outreach to the community. US, Canada, UK,
and, for a time, India were included in this study. The first three accounted for estimated
73% of the videos, and 59% of the peak collection rate.
Worker Retention. Worker retention was mitigated through performance bonuses every
15th video, and while only accounting for a 33% increase in base cost, significantly increased
retention (34% increase in come-back workers), and performance (109% increase in output
per worker).

Each submission in this phase was manually verified by other workers to enforce quality
control, where a worker was required to select the corresponding sentence from a line-up
after watching the video. The rate of collection peaked at 1225 per day from 72 workers.
The final cost distribution was: 65% base cost per video, 21% performance bonuses, 11%
recruitment bonuses, and 3% verification. The code and interfaces will be made publicly
available along with the dataset.

2.2.3 Annotations
Using the generated scripts, all (verb,proposition,noun) triplets were analyzed, and the
most frequent grouped into 157 action classes (e.g., pouring into cup, running, folding towel,
etc.). The distribution of those is presented in Figure 2.3.

For each recorded video we have asked other workers to watch the video and describe
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vacuum
groceries

chair
refrigerator

pillow

laughing
drinking
putting
washing
closing

Kitchen

"A person opens a refrigerator, 
and begins drinking out of a 
jug of milk before closing it."

"A person is washing their 
refrigerator. Then, opening it, 

the person begins putting 
away their groceries."

"A person stands in the kitchen 
and cleans the fridge. Then start 
to put groceries away from a bag"

"person drinks milk from a fridge, 
they then walk out of the room."

Sampled Words Scripts Recorded Videos Annotations

AMT AMT AMT
Opening a refrigerator

Closing a refrigerator
Putting groceries somewhere

Opening a refrigerator

Drinking from cup/bottle

Figure 2.2: An overview of the three AmazonMechanical Turk (AMT) crowdsourcing stages
in the Hollywood in Homes approach.

what they have observed with a sentence (this will be referred to as a description in contrast
to the previous script used to generate the video). We use the original script and video
descriptions to automatically generate a list of interacted objects for each video. Such lists
were verified by the workers. Given the list of (verified) objects, for each video we have
made a short list of 4-5 actions (out of 157) involving corresponding object interactions and
asked the workers to verify the presence of these actions in the video.

In addition, to minimize the number of missing labels, we expanded the annotation pro-
cedure to exhaustively annotate all actions in the video using state-of-the-art crowdsourcing
practices [221], where we focused particularly on the test set.

Finally, for all the chosen action classes in each video, another set of workers was asked to
label the starting and ending point of the activity in the video, resulting in a temporal interval
of each action. A visualization of the data collection process is illustrated in Figure 2.2. On
the website we show numerous additional examples from the dataset with annotated action
classes.

2.3 Charades v1.0 Analysis
Charades is built up by combining 40 objects and 30 actions in 15 scenes. This relatively
small vocabulary, combined with open-ended writing, creates a dataset that has substantial
coverage of a useful domain. Furthermore, these combinations naturally form action classes
that allow for standard benchmarking. In Figure 2.3 the distributions of action classes, and
most common nouns/verbs/scenes in the dataset are presented. The natural world generally
follows a long-tailed distribution [224, 302], but we can see that the distribution of words in
the dataset is relatively even. In Figure 2.3 we also present a visualization of what scenes,
objects, and actions occur together. By embedding the words based on their co-occurance
with other words using T-SNE [250], we can get an idea of what words group together in
the videos of the dataset, and it is clear that the dataset possesses real-world intuition. For
example, food, and cooking are close to Kitchen, but note that except for Kitchen, Home Office,
and Bathroom, the scene is not highly discriminative of the action, which reflects common
daily activities.

Since we have control over the data acquisition process, instead of using Internet search,
there are on average 6.8 relevant actions in each video. We hope that this may inspire new
and interesting algorithms that try to capture this kind of context in the domain of action
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0 1000
Throwing a broom
Washing a window

Fixing a door
Washing a cup/glass

Washing some clothes
Taking a laptop from

Clos ing a box
Throwing a pillow

Tidying up a blanket/s
Lying on the  floor

Snuggling with a pillow
Putting shoes  somewhere
Putting a box somewhere

Holding a vacuum
Putting a blanket

Holding a shoe/shoes
Holding some medicine

Holding a laptop
Taking a

Holding a box
Holding a broom

Someone  is  undress ing
Holding a blanket

Putting some food
Someone  is  laughing
Playing with a phone

Holding a dish
Holding a phone/camera

Sitting in a chair

Count Count Count

Figure 2.3: Statistics for actions (gray, every fifth label shown), verbs (green), nouns (blue),
scenes (red), and most co-occurring pairs of actions (cyan). Co-occurrence is measured
with normalized pointwise mutual information. In addition, a T-SNE embedding of the
co-occurrence matrix is presented. We can see that while there are some words that strongly
associate with each other (e.g., lying and bed), many of the objects and actions co-occur with
many of the scenes. (Action names are abbreviated as necessary to fit space constraints.)
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recognition. Some of the most common pairs of actions measured in terms of normalized
pointwise mutual information (NPMI), are also presented in Figure 2.3. These actions occur
in various orders and context, similar to our daily lives. For example, in Figure 2.4 we can see
that among these five videos, there are multiple actions occurring, and some are in common.
We further explore this in Figure 2.5, where for a few actions, we visualize the most probable
actions to precede, and most probable actions to follow that action. As the scripts for the
videos are generated by people imagining a boring realistic scenario, we find that these
statistics reflect human behaviour.

Holding a laptop Closing a laptop Put down laptop Taking a dish Taking a dish

Watching TV Watching laptop Closing a laptop Taking phone Playing on phone

Playing on phone Watching TVSitting at table Standing upSitting at table

Watching TV Sneezing Eating Sneezing Fixing hair

Walk in doorway Sneezing Taking box Tidying shelf

Figure 2.4: Keyframes from five videos in Charades. We see that actions occur together in
many different configurations. (Shared actions are highlighed in color).

2.4 Applications
We run several state-of-the-art algorithms on Charades to provide the community with a
benchmark for recognizing human activities in realistic home environments. Furthermore,
the performance and failures of tested algorithms provide insights into the dataset and its
properties.
Train/test set. For evaluating algorithms we split the dataset into train and test sets by
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Smiling at a book

Reading a book 13%
Smiling 9%

Holding a book 9%
Taking a book 7%

Laughing 5%

Smiling 12%
Laughing 5%
Closing a book 9%
Put book somewhere 6%
Reading a book 5% Snuggling with a blanket

Holding a blanket 8%
Taking a blanket 7%

Sitting down 5%
Sitting in a chair 3%

Walk in doorway 3%

Standing up 7%
Put blanket 4%
Throw blanket 4%
Awakening 3%
Smiling 3%

Taking a picture

Play with camera 38%
Hold camera 26%
Take camera 17%

Walk in doorway 6%
Sit in chair 5%

Put camera 9%
Smiling 7%
Playing with camera 5%
Take camera 4%
Hold camera 3% Opening a window

Walk in doorway 22%
Look out window 16%

Standing up 13%
Smiling 10%
Running 9%

Look out window 16%
Close window 5%
Drink from cup 3%
Holding cup 3%
Sneezing 3%

Figure 2.5: Selected actions from the dataset, along with the top five most probable actions
before, and after the action. For example, when Opening a window, it is likely that someone
was Standing up before that, and after opening, Looking out the window.

Random C3D AlexNet Two-Stream-B Two-Stream IDT Combined
5.9 10.9 11.3 11.9 14.3 17.2 18.6

Table 2.2: mAP (%) for action classification with various baselines.

considering several constraints: (a) the same worker should not appear in both training and
test; (b) the distribution of categories over the test set should be similar to the one over the
training set; (c) there should be at least 6 test videos and 25 training videos in each category;
(d) the test set should not be dominated by a single worker. We randomly split the workers
into two groups (80% in training) such that these constraints were satisfied. The resulting
training and test sets contain 7,985 and 1,863 videos, respectively. The number of annotated
action intervals are 49,809 and 16,691 for training and test.

2.4.1 Action Classification
Given a video, we would like to identify whether it contains one or several actions out of our
157 action classes. We evaluate the classification performance for several baseline methods.
Action classification performance is evaluated with the standard mean average precision
(mAP) measure. A single video is assigned to multiple classes and the distribution of classes
over the test set is not uniform. The label precision for the data is 95.6%, measured using
an additional verification step, as well as comparing against a ground truth made from 19
iterations of annotations on a subset of 50 videos. We now describe the baselines.
Improved trajectories. We compute improved dense trajectory features (IDT) [264] captur-
ing local shape and motion information with MBH, HOG and HOF video descriptors. We
reduce the dimensionality of each descriptor by half with PCA, and learn a separate feature
vocabulary for each descriptor with GMMs of 256 components. Finally, we encode the distri-
bution of local descriptors over the video with Fisher vectors [172]. A one-versus-rest linear
SVM is used for classification. Training on untrimmed intervals gave the best performance.
Static CNN features. In order to utilize information about objects in the scene, we make use
of deep neural networks pretrained on a large collection of object images. We experiment
with VGG-16 [225] and AlexNet [122] to compute fc6 features over 30 equidistant frames in
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HOG HOF MBH HOG+MBH HOG+HOF+MBH
K=64 12.3 13.9 15.0 15.8 16.5
K=128 12.7 14.3 15.4 16.2 16.9
K=256 13.0 14.4 15.5 16.5 17.2

Table 2.3: Action classification evaluation with the state-of-the-art approach on Charades.
We study different parameters for improved trajectories, by reporting for different local
descriptor sets and different number of GMM clusters. Overall performance improves by
combining all descriptors and using a larger descriptor vocabulary.

the video. These features are averaged across frames, L2-normalized and classified with a
one-versus-rest linear SVM. Training on untrimmed intervals gave the best performance.
Two-stream networks. We use the VGG-16 model architecture [225] for both networks and
follow the training procedure introduced in Simonyan et al. [227], with small modifications.
For the spatial network, we applied finetuning on ImageNet pre-trained networks with
different dropout rates. The best performance was with 0.5 dropout rate and finetuning on
all fully connected layers. The temporal network was first pre-trained on the UCF101 dataset
and then similarly finetuned on conv4, conv5, and fc layers. Training on trimmed intervals
gave the best performance.
Balanced two-stream networks. We adapt the previous baseline to handle class imbalance.
We balanced the number of training samples through sampling, and ensured each minibatch
of 256 had at least 50 unique classes (each selected uniformly at random). Training on
trimmed intervals gave the best performance.
C3D features. Following the recent approach from [244], we extract fc6 features from a 3D
convnet pretrained on the Sports-1M video dataset [106]. These features capture complex
hierarchies of spatio-temporal patterns given an RGB clip of 16 frames. Similar to [244], we
compute features on chunks of 16 frames by sliding 8 frames, average across chunks, and use
a one-versus-rest linear SVM. Training on untrimmed intervals gave the best performance.
Action classification results are presented in Table 2.2, where we additionally consider
Combined which combines all the other methods with late fusion.

Notably, the accuracy of the tested state-of-the-art baselines is much lower than in most
currently available benchmarks. Consistently with several other datasets, IDT features [264]
outperform other methods by obtaining 17.2% mAP. To analyze these results, Figure 2.6(left)
illustrates the results for subsets of best and worst recognized action classes. We can see that
while the mAP is low, there are certain classes that have reasonable performance, for example
Washing a window has 62.1% AP. To understand the source of difference in performance for
different classes, Figure 2.6(right) illustrates AP for each action, sorted by the number of
examples, together with names for the best performing classes. The number of actions in a
class is primarily decided by the universality of the action (can it happen in any scene), and
if it is common in typical households (writer bias). It is interesting to notice, that while there
is a trend for actions with higher number of examples to have higher AP, it is not true in
general, and actions such as Sitting in chair, and Washing windows have top-15 performance.

Delving even further, we investigate the confusion matrix for the Combined baseline in
Figure 2.7, where we convert the predictor scores to probabilities and accumulate them for
each class. For clearer analysis, the classes are sorted by the object being interacted with.
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Figure 2.6: On the left classification accuracy for the 15 highest and lowest actions is presented
for Combined. On the right, the classes are sorted by their size. The top actions on the left are
annotated on the right. We can see that while there is a slight trend for smaller classes to
have lower accuracy, many classes do not follow that trend.

The first aspect to notice is the squares on the diagonal, which imply that the majority of
the confusion is among actions that interact with the same object (e.g., Putting on clothes, or
Taking clothes from somewhere), and moreover, there is confusion among objects with similar
functional properties. The most prominent squares are annotated with the object being
shared among those actions. The figure caption contains additional observations. While
there are some categories that show no clear trend, we can observe less confusion for many
actions that have no specific object of interaction. Evaluation of action recognition on this
subset results in 38.9% mAP, which is significantly higher than average. Recognition of
fine-grained actions involving interactions with the same object class appears particularly
difficult even for the best methods available today. We hope our dataset will encourage new
methods addressing activity recognition for complex person-object interactions.

2.4.2 Sentence Prediction
Our final, and arguably most challenging task, concerns prediction of free-from sentences
describing the video. Notably, our dataset contains sentences that have been used to create
the video (scripts), as well as multiple video descriptions obtained manually for recorded
videos. The scripts used to create videos are biased by the vocabulary, and due to the
writer’s imagination, generally describe different aspects of the video than descriptions. The
description of the video by other people is generally simpler and to the point. Captions
are evaluated using the CIDEr, BLEU, ROUGE, and METEOR metrics, as implemented
in the COCO Caption Dataset [20]. These metrics are common for comparing machine
translations to ground truth, and have varying degrees of similarity with human judgement.
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Figure 2.7: Confusion matrix for the Combined baseline on the classification task. Actions
are grouped by the object being interacted with. Most of the confusion is with other actions
involving the same object (squares on the diagonal), and we highlight some prominent
objects. Note: (A) High confusion between actions using Blanket, Clothes, and Towel; (B)
High confusion between actions using Couch and Bed; (C) Little confusion among actions
with no specific object of interaction (e.g. standing up, sneezing).

Script Description
RW Random NN S2VT Human RW Random NN S2VT Human

CIDEr 0.03 0.08 0.11 0.17 0.51 0.04 0.05 0.07 0.14 0.53
BLEU4 0.00 0.03 0.03 0.06 0.10 0.00 0.04 0.05 0.11 0.20
BLEU3 0.01 0.07 0.07 0.12 0.16 0.02 0.09 0.10 0.18 0.29
BLEU2 0.09 0.15 0.15 0.21 0.27 0.09 0.20 0.21 0.30 0.43
BLEU1 0.37 0.29 0.29 0.36 0.43 0.38 0.40 0.40 0.49 0.62

ROUGEL 0.21 0.24 0.25 0.31 0.35 0.22 0.27 0.28 0.35 0.44
METEOR 0.10 0.11 0.12 0.13 0.20 0.11 0.13 0.14 0.16 0.24

Table 2.4: Sentence Prediction. In the script task one sentence is used as ground truth, and in
the description task 2.4 sentences are used as ground truth on average. We find that S2VT is
the strongest baseline.

For comparison, human performance is presented along with the baselines where workers
were similarly asked to watch the video and describe what they observed. We now describe
the sentence prediction baselines in detail:
RandomWords (RW): Random words from the training set.
Random Sentence (Random): Random sentence from the training set.
Nearest Neighbor (NN): Inspired by Devlin et al. [38] we simply use a 1-Nearest Neighbor
baseline computed using AlexNet fc7 outputs averaged over frames, and use the caption
from that nearest neighbor in the training set.
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GT: A person opens a 
closet and picks up a 
pink toy laptop off of 
the shelf. They close 
the closet, turn off the 
light, and exit the 
room.

GT: A person sweeps 
the floor and places 
the dirt into a trash 
bag.

GT: A person is sitting 
in a chair while 
watching something 
on a laptop. The 
person then begins to 
laugh.

GT: A person is 
cooking on a stove 
they are mixing the 
food in the pot they go 
to the cabinet and take 
out a spice they put 
the spice in the pot

GT:  Person is 
standing in the 
doorway drinking 
coffee before grabbing 
a towel from the closet 
and tossing it out the 
door.

GT: A person wakes 
up and turns a light 
on and off before 
going back to sleep

A person is walking 
into a room and then 
picks up a broom and 
puts it on the floor

Person is standing in 
front of a mirror , 
opens a cabinet and 
takes out out of a 
cabinet

A person is lying on a 
bed with a blanket . 
the person then gets 
up and walks to the 
room and sits down 

A person is standing 
in the kitchen 
cooking on a stove . 
they then take a 
drink from a glass 
and drink it

A person is standing 
in the doorway 
holding a pillow . the 
person then takes a 
drink from a glass 
and drinks it

A person is lying on a 
bed with a blanket . 
the person then gets 
up and walks to the 
door and sits down 

Figure 2.8: Three generated captions that scored low on the CIDEr metric (red), and three
that scored high (green) from the strongest baseline (S2VT). We can see that while the
captions are fairly coherent, the captions lack sufficient relevance.

S2VT: We use the S2VT method from Venugopalan et al. [251], which is a combination of a
CNN, and a LSTM.

Table 2.4 presents the performance of multiple baselines on the caption generation task.
We both evaluate on predicting the script, as well as predicting the description. As expected,
we can observe that descriptions made by people after watching the video are more similar
to other descriptions, rather than the scripts used to generate the video. Table 2.4 also
provides insight into the different evaluation metrics, and it is clear that CIDEr offers the
highest resolution, and most similarity with human judgement on this task. In Figure 2.8 few
examples are presented for the highest scoring baseline (S2VT). We can see that while the
language model is accurate (the sentences are coherent), the model struggles with providing
relevant captions, and tends to slightly overfit to frequent patterns in the data (e.g., drinking
from a glass/cup).

2.5 Discussion
We proposed a new approach for building datasets. Our Hollywood in Homes approach
allows not only the labeling, but the data gathering process to be crowdsourced. In addition,
Charades offers a novel large-scale dataset with diversity and relevance to the real world.
We hope that Charades and Hollywood in Homes will have the following benefits for our
community:
(1) Training data: Charades provides a large-scale set of 66,500 annotations of actions with
unique realism.
(2) A benchmark: Our publicly available dataset and provided baselines enable benchmarking
future algorithms.
(3) Object-action interactions: The dataset contains significant and intricate object-action rela-
tionships which we hope will inspire the development of novel computer vision techniques
targeting these settings.
(4) A framework to explore novel domains: We hope that many novel datasets in new domains
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can be collected using the Hollywood in Homes approach.
(5) Understanding daily activities: Charades provides data from a unique human-generated
angle, and has unique attributes, such as complex co-occurrences of activities. This kind of
realistic bias, may provide new insights that aid robots equipped with our computer vision
models operating in the real world.
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Chapter 3

Annotation of Video Data

Large-scale annotated datasets, like the one introduced in the previous chapter, allow AI
systems to learn from and build upon the knowledge of the crowd. Many crowdsourcing
techniques have been developed for collecting image annotations. These techniques often
implicitly rely on the fact that a new input image takes a negligible amount of time to
perceive. In contrast, we investigate and determine the most cost-effective way of obtaining
high-quality multi-label annotations for temporal data such as videos. Watching even a
short 30-second video clip requires a significant time investment from a crowd worker; thus,
requesting multiple annotations following a single viewing is an important cost-saving
strategy. But how many questions should we ask per video? We conclude that the optimal
strategy is to ask as many questions as possible in a HIT (up to 52 binary questions after
watching a 30-second video clip in our experiments). We demonstrate that while workers
may not correctly answer all questions, the cost-benefit analysis nevertheless favors consensus
from multiple such cheap-yet-imperfect iterations over more complex alternatives. When
compared with a one-question-per-video baseline, our method is able to achieve a 10%
improvement in recall (76.7% ours versus 66.7% baseline) at comparable precision (83.8%
ours versus 83.0% baseline) in about half the annotation time (3.8 minutes ours compared
to 7.1 minutes baseline). We demonstrate the effectiveness of our method by collecting
multi-label annotations of 157 human activities on 1,815 videos from our Charades dataset,
which forms the test set.

Large-scale manually annotated datasets such as ImageNet [36] led to revolutionary
development in computer vision technology. In addition to playing a critical role in advanc-
ing computer vision, crowdsourced visual data annotation has inspired many interesting
research questions: How many exemplars are necessary for the crowd to learn a new visual
concept [169]? How can image annotation be gamified [255, 256]? How can we provide
richer annotators in the form of visual attributes [170] or object-object interactions [121]?
How can we exhaustively annotate all visual concepts present in an image [37]?

Much of the work on visual data annotation has focused on images, but many real-world
applications require annotating and understanding video rather than image data. A worker
can understand an image in a few hundred milliseconds [241]. Naïvely applying image
annotation techniques to data that takes longer to understand, such as data involving time, is
prohibitively expensive. Developing effective strategies for temporal annotation is important
for multiple domains that require watching, listening, or reading: musical attributes or
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Time

Image Video/Audio/Text

Cat?Sandwich?Phone?
Cat walking?Eating a sandwich?Playing on phone?150 ms + 2 sec per question 30 sec + 2 sec per question

Figure 3.1: Time data (e.g., video) is fundamentally different from image data. In this
chapter, we explore cost-optimal strategies for exhaustively annotating video data.

emotion on songs [134], web page categorization [248], news article topics [204], and video
activity recognition [223].

We are interested in the following annotation task illustrated in Fig. 3.1: given a video and
a set of visual concepts (such as a set of objects or human actions or interesting events), label
whether these concepts are present or absent in the video. Efforts such as Glance [129] focus
on quickly answering a question about a video by parallelizing the work across the crowd
workforce in 30-second video clips. They are able to get results in near real-time, allowing
for interactive video annotation. In contrast, we are interested in annotating a large-scale
video dataset where multiple questions (known apriori) need to be answered about each
video. Even for a short 30-second video clip, it takes at least 15 seconds at double speed
for an annotator to watch the video; thus, asking only a single question at a time is highly
inefficient. Efforts such as [15,36] explore multi-label annotation of images but cannot be
directly applied to temporal video data because of this inefficiency.

We thus ask: how many questions should we ask workers when annotating a video?
Psychology research shows that only on the order of 7 concepts can be kept in short-term
memory [158]. However, our results demonstrate asking many more questions at a time in
a single Human Intelligence Task (HIT) can be significantly more efficient. In particular,
we demonstrate that asking as many questions as possible, up to 52 questions at a time
about a 30-second video in our experiments, provides an optimal tradeoff between accuracy
and cost. When compared with a one-question-at-a-time baseline, our method achieves
a 10% improvement in recall (76.7% ours versus 66.7% baseline) at comparable precision
(83.8% ours versus 83.0% baseline) in about half the annotation time (3.8 minutes ours
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compared to 7.1 minutes baseline). We empirically verify that our conclusions hold for
videos of multiple lengths, explore several strategies for reducing the cognitive load on the
workers in the context of video annotation and demonstrate the effectiveness of our method
by exhaustively annotating a video dataset of [223] enabling computer vision research into
multi-label human action understanding.

The annotated data and additional details are available at: http://allenai.org/plato/
charades/.

3.1 Background
Video annotation applications. Video understanding is important for many applications
ranging from behavior studies [27] to surveillance [202] to autonomous driving [62]. Large-
scale annotated computer vision video datasets [50,68,124,232,288] enable the development
of algorithms that are able to automatically process video collections. However, the lack of
large-scale multi-label video datasets makes it difficult to study the intricate interactions
between objects and actions in the videos rather than focusing on recognition of one or a
handful of concepts.

Efficient video annotation. Video annotation is very time-consuming. Determining the
absence of a concept in an image takes on the order of seconds; in contrast, determining the
absence of a concept in a video takes time proportional to the length of the video. Efforts such
as [252,258,293] exploit temporal redundancy between frames to present cost-effective video
annotation frameworks. The approaches of [54,252,260] and others additionally incorporate
active learning, where the annotation interfaces learns to query frames that, if annotated,
would produce the largest expected change in the estimated object track. However, these
methods combine human annotation with automatic computer vision techniques, which
causes several problems: (1) these techniques are difficult to apply to challenging tasks
such as activity recognition where computer vision models lag far behind human ability;
(2) these methods are difficult to apply to scenarios where very short or rare events, such
as shoplifting, may be the most crucial, and (3) the resulting hybrid annotations provide
unfair testbeds for new algorithms.

Glance [129] focuses on parallelizing video annotation effort and getting an answer
to a single question in real-time. Our work can be effectively combined with theirs: they
parallelize annotation in 30-second video chunks, while we explore the most effective ways
to obtain multiple labels simultaneously for every 30-second video.

Action recognition datasets. Some existing large-scale action datasets such as Event-
Net [287] or Sports-1M [106] rely on web tags to provide noisy video-level labels; others
like THUMOS [68] or MultiTHUMOS [288] employ professional annotators rather than
crowdsourcing.

There are two recent large-scale video annotation efforts that successfully utilize crowd-
sourcing. The first effort is ActivityNet [81] which uses a proposal/verification framework
similar to that of ImageNet [36]. They define a target set of actions, query video search
engines for proposal videos of those actions and then ask crowd workers to clean up the
results. The second effort [223] entirely crowdsources the creation of a video dataset: one
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worker writes a video script containing a few target objects/actions, another one acts out
the script and films the video, and others verify the work. In both these efforts, each video
comes pre-associated with one or a handful of action labels, and workers are tasked with
verifying these labels. In contrast, we’re interested in the much more challenging problem
of multi-label video annotation beyond the provided labels.

Multi-label image annotation. Increasingly more complex image annotations are pro-
vided in recent dataset [14, 121, 138]. Multi-label image annotation has been studied by
e.g., [15, 37, 163, 255, 297]. We incorporate insights from these works into our video an-
notation framework. We use a hierarchy of concepts to accelerate multi-label annotation
following [15, 37]. Inspired by [120], we explore using cheap but error-prone annotation
interfaces over thorough but more expensive formulations.

3.2 Method for multi-label video annotation
We are given a collection ofM videos and a set ofN target labels: for example, a list of target
object classes, e.g., “cat,” “table,” or “tree,” or a list of human actions, e.g., “reading a book”
or “running.” The goal is to obtainM ×N binary labels, corresponding to the presence or
absence of each of the N target concepts in each of theM videos. These labels can then be
used for a variety of applications from training computer vision models [223] to studying
human behavior [27].

We are particularly interested in situations where the label space N is large: N = 157 in
our experiments. As a result, the key challenge is that workers are not able to remember all
N questions at the same time; however every time a worker is required to watch a video of
length L during annotation, they have to invest an additional L seconds of annotation time.
We focus on video annotation but our findings may be applicable to any media (e.g., audio,
text) where a non-trivial amount of time L is required to process each input.

3.2.1 Multiple question strategy
Our strategy is to ask all N target questions at the same time about each video, even if N
is much higher than the 7 concepts that people can commit to short-term memory [158].
We randomize the order of questions and ask workers to select only the concepts that occur
within the video. This naturally leads to lower recall r than if we ask only a handful of
questions that the workers would be more likely to read carefully. However, there are two
advantages.

Advantage #1: Low annotation times. Since only one worker has to watch the video
instead of askingN different workers to annotate one label each, this recall r is obtained with
relatively little time investment t. This makes it a highly effective strategy combined with
consensus among multiple workers [211]. Given a fixed time budget T , we can repeat the
annotation process T

t times with different workers. Assume the workers are independent
and we count the concept as present in the image if at least one worker annotates it. Our
expected recall in T time is:

ExpectedRecall = 1− (1− r)Tt (3.1)
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since eachworker will miss a concept with 1−r probability, and a concept won’t be annotated
only if all Tt workers independently miss it.

Advantage #2: High precision. The M × N label matrix is naturally sparse since most
concepts do not occur in most videos. When workers are faced with only a small handful of
concepts and none of them occur in the video, they may get nervous that they are not doing
the task correctly and provide erroneous positive labels. However, when they are faced with
many concepts at the same time and asked to select the ones that occur in the video, they
get satisfaction out of being able to annotate several target concepts and are less likely to
erroneously select additional concepts.

3.2.2 Practical considerations
In designing an effective multi-question video annotation interface shown in Fig. 3.2, we
incorporate insights from image annotation [37] to reduce the space of N labels and from
video annotation [129] to compress the video length L.

Semantic hierarchy. Following [37] we create a semantic hierarchical grouping of concepts
to simplify the multi-label annotation. However, [37] use the hierarchy differently. They ask
one question at a time about a matrix of images, e.g., “click on all images which contain an
animal.” They then ask a low-level question, e.g., “click on all images which contain a dog,”
on a smaller matrix of images which were positive for the prior question. In contrast, we use
the concept hierarchy similar to [279] to simplify our annotation interface on a single video.

Playback speed. Videos of average length of 30 seconds are played at 2x speed follow-
ing [129]. In this way, worker time is not unnecessarily wasted but they are able to perceive
and accurately annotate the target concepts.

Instructions. Workers are instructed to carefully watch each video and select all concepts
that occur. Since most concepts do not occur in the video, workers are asked to only check
the boxes for the ones that do occur and to ignore the others. We experimentally verify this
design choice below.

Time vs cost. Weuse human time and cost interchangeably throughout. We group together
multiple videos into a single HIT such that each HIT takes approximately the same time to
complete: e.g., an interface with fewer questions will allow for more videos to be annotated
in a single HIT. We pay a uniform amount per HIT. Thus, an interface that takes 3x less time
will allow for 3x more videos per HIT which will allow for 3x fewer HITs to annotate the full
dataset, which will in turn translate to a 3x reduction in cost when annotating a large-scale
video dataset.
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Check here if someone is Taking a picture of something in the video  

Check here if someone is interacting with cup/glass/bottle in the video  

If checked, how? (Select all that apply. Use ctrl or cmd to select multiple):

Drinking from a cup/glass/bottle
Holding a cup/glass/bottle of something
Pouring something into a cup/glass/bottle
Putting a cup/glass/bottle somewhere
Taking a cup/glass/bottle from somewhere
Washing a cup/glass/bottle
Other

Check here if someone is interacting with laptop in the video  

Check here if someone is interacting with doorknob in the video  

Check here if someone is interacting with table in the video  

Check here if someone is interacting with broom in the video  

Check here if someone is interacting with picture in the video  
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Below is a link to a video of one or two people, please watch each video and answer the
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This HIT contains multiple videos, each followed by few questions. The number of videos

and questions is balanced such that the task should take 3 minutes.

Make sure you fully and carefully watch each video so you do not miss anything.

This is important. 

It is possible that many of the actions in this HIT do not match. It is important to verify an

action is indeed not present in the video.

Check all that apply! If there is any doubt, check it anyway for good measure.

Read each and every question carefully. Do not take shortcuts, it will cause you to

miss something.
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Figure 3.2: Our multi-question video annotation interface.

3.3 Experiments
We begin by describing the setup used to evaluate our method, including steps taken to
control for factors of variation across different crowdsourcing experiments. We then present
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a series of smaller-scale experiments on 100-150 videos at a time investigating (1) varying
the number of questions in the annotation interface, and (2) strategies for reducing cognitive
load on workers during annotation. We conclude by bringing our findings together and
evaluating our large-scale multi-label video annotation pipeline.

3.3.1 Data and evaluation setup
We use the large-scale video dataset [223] with a focus on common household activities. The
target labels are 157 activity classes such as Someone is running and Putting a cup somewhere
provided with the dataset. The videos are associated with some labels apriori, similar to
ImageNet [36] and ActivityNet [50]. Fig. 3.3 shows some examples. This misses additional
activities also present in the video, making it difficult to evaluate computer vision algorithms
and to study interactions between different actions. We demonstrate how to cost-effectively
collect exhaustive annotations for this dataset and exhaustively annotate the test set consisting
of 1,815 videos.

Evaluating recall. We use the originally provided action labels to evaluate the recall of our
multi-label annotation algorithms. There were on average 3.7 activities labeled per video in
this dataset. The activities follow a long-tailed distribution: some occur in as many as 1391
videos, others in only 33. Each activity occurs in 42 videos on average.

Evaluating precision. Precision is more difficult to evaluate since to the best of our knowl-
edge no large-scale video dataset is annotated with hundreds of visual concepts. Annotating
the videos in this dataset exhaustively in a straight-forward way is prohibitively expensive,
which is exactly what we are trying to address. We adopt a middle ground. After obtaining
a set of candidate labels from the annotators, we perform a secondary verification step. In
the verification task, workers have to annotate the temporal extent of the action in the video
or specify it is not present in the video. This serves as an evaluation of the precision of
multi-label annotation. In addition, this provides temporal action annotations which we
also publicly released.

Semantic hierarchy. The 157 target human activities are grouped based on the object being
interacted with to simplify the annotation interface. The annotator first sees several questions
such as “Check here if someone is interacting with a book in the video” or “Check here
if someone is interacting with shoes in the video.” If the annotator says yes someone is
interacting with a book, s/he will be asked to select one or more of the types of interaction:
closing a book? opening a book? holding a book? putting a book somewhere?

We create 33 object groups, each group with 4.2 activities on average. Additionally, 19
activities (such as Someone is laughing, Someone is running somewhere) do not belong to any
group and are asked individually. Thus, we obtain 52 high-level questions which cover all
of the label space.

3.3.2 Crowdsourcing setup
During the study, 674 workers were recruited to finish 6,337 tasks on Amazon Mechanical
Turk. We summarize some key crowdsourcing design decisions here.
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Watching/Looking outside a windowSitting at a table

Lying on a sofa/couch Sitting on a sofa/couchWatching television
Figure 3.3: Examples from the video dataset of [223]. The videos contain complex human
activities that require the annotator to carefully watch each video.

Quality control. Workers were restricted to United States, with at least 98% approval rate
from at least 1000 tasks. We used recall, annotation time, and positive rate to flag outliers,
which were manually examined and put on a blacklist. To maintain a good standing with
the community all work completed without clear malice was approved, but bad workers
were prohibited from accepting further work of this type.

In Fig. 3.4 the relationship between how much time an individual worker spends on a
task and quality of the annotation is presented. We can see that apart from clear outliers,
there is no significant difference, and we treat the worker population as following the same
distribution, and focus on the time difference between different methods.

Uncontrolled factors. There are many sources of variation in human studies, such as
worker experience (we observed worker quality increasing as they became more familiar
with our tasks) or time of day (full-time workers might primarily be available during normal
business hours). We attempted to minimize such variance by deploying all candidate
methods at the same time within each experiment.

Payment. In order to verify our hypothesis that it is best to ask multiple questions about a
video simultaneously, we need to evaluate interfaces with a varying number of questions per
video. However, we want to maintain as much consistency as possible outside of the factor
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Figure 3.4: Workers that spend more time answering questions have marginally higher
accuracy (Pearson’s correlation of time with recall is 0.227 and with precision is 0.036). How-
ever this trend is so slight that we ignore it and instead focus on improving the annotation
workflow as a whole.

we’re studying. We use a single type of HIT where workers are provided with V videos and
Q questions for each video using the interface of Fig. 3.2. When we increase the number of
questions Q per video, we decrease the number of videos V to keep the expected annotation
effort consistent within the HIT.

To do this, we ran some preliminary experiments and analyzed the average amount of
time it takes to label a video in our dataset with Q questions. Fig. 3.5 shows the relationship
between number of questions Q and time. The least-squares line of best fit to this data is

T = 14.1 + 1.15Q (3.2)

Thus it takes an average of 14.1 seconds to watch a video and 1.15 seconds to answer each
question. This is consistent with our expectations: our average video is 30.1 seconds long
played at double speed, and binary questions take on the order of 1-2 seconds to answer [121].

We varied the number of videos in each HIT using Eqn. 3.2 to target about 150 seconds
of expected annotation effort. We paid $0.40 per HIT, amounting to about $9.60 per hour.

Multiple question interface. We report results on annotating the 157 activities using
the 52-question semantic hierarchy.1 Our method solicits labels for all 52 questions and
corresponding sub-questions in the same interface as shown in Fig. 3.2. When evaluating
interfaces with a smaller number of questions k, we partition the 52 questions into 52

k subsets
randomly. Multiple workers then annotate the video across 52

k tasks, and we accumulate the
results.2 An iteration of annotation refers to a complete pass over the 52 questions for each
video. We can then directly compare the annotations resulting from interfaces with different
values of k.

1We additionally verified that all conclusions hold if we are interested in only the 52 high-level activities as well.
2Some of the questions take longer than others, and thus some subsets may take longer to annotate than others.

However, we report cumulative results after all subsets have been annotated and thus the variations in time between
the subsets is irrelevant.
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Figure 3.5: The relationship between number of questions in the interface and the amount
of time it takes. We use it to maintain a consistent amount of annotation effort across HITs
while varying the number of questions in the interface. Error bars correspond to 1 standard
deviation.

3.3.3 Effect of varying the number of questions
So far we described the data, the evaluation metrics and the crowdsourcing setup. We are
now ready to begin experimenting with different annotation strategies.

We begin by varying the number of questions the workers are asked after watching
each video: from only 1 question per video (very time-inefficient since 52 workers have to
independently watch the video) up to all 52 questions at the same time (potentially daunting
for the workers). We run the annotation experiment on 140 videos, and report the time, recall
and precision after one iteration of annotation, i.e., after workers answer all 52 questions
about each video.

Advantages of askingmultiple questions. Fig. 3.6 demonstrates two advantages to asking
multiple questions together rather than one-at-a-time. The first advantage is low annotation
time: the time for one iteration of annotation drastically decreases as the number of questions
increases. Concretely, it takes 8.61 minutes per video with the 1-question interface versus
only 1.10 minutes per video with the 52-question interface (since the time to watch the video
gets amortized).

The second advantage to asking multiple questions together is increased precision of
annotation. Concretely, precision is only 81.0% with the 1-question interface but rises up
to 86.4% with the 52-question interface. When only one question per video is asked, all
answers in a HIT will likely be negative since only a handful of target activities occurs
in each 30-second video. Workers report being concerned when all answers are negative.
We hypothesize that as a result they may erroneously answer positively if they have any
suspicions about the activity being present, which decreases the precision of annotation in
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Figure 3.6: Accuracy (left axis) and time (right axis) of annotation as a function of the number
of questions in the interface (x-axis). While recall is higher with fewer questions, this is at
the cost of significantly higher annotation time.

the few-question interfaces.

Drawback of asking multiple questions. The one drawback of asking multiple questions
is decreased recall. When asked only one question per video, workers achieve 56.3% recall
compared to only 45.0% recall when asked all 52 questions at once. This is because it is
challenging to keep 52 questions in memory while watching the video or the entire video in
memory while answering the questions. Interestingly, Fig. 3.6 shows a sharp drop in recall
beyond 5-7 questions in the interface, which is the number of concepts people can keep in
short-term memory [158].

Fixing the drawback. Even though recall is lower when asking multiple questions about
a video, it is obtained in significantly less annotation time. Given a fixed time budget, we
can compute the expected recall if we were to ask multiple workers to do the annotation
by referring back to Eqn. 3.1. In particular, assume we are given 8.61 minutes that it takes
to fully annotate a video using the 1-question interface. In this amount of time, we can
ask at least 7 workers to annotate it with the 52-question interface (since it only takes 1.10
minutes per iteration). Fig. 3.7 reports the expected recall achievable in 8.61 minutes using
the different interfaces. We conclude that the many-question interfaces are better than the
few-question interfaces not only in terms of time and precision, but also in terms of recall
for a fixed time budget. We will revisit this in later experiments.

Worker behavior. Besides quantitatively evaluating the different interfaces according to
the standard metrics, it is also informative to briefly look into annotator behavior.
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Figure 3.7: Expected recall given a fixed time budget (simulated using Eqn. 3.2) for interfaces
with a varying number of questions. The budget is 8.61 minutes per video, enough to run 1
iteration of annotation with the 1-question interface.
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Figure 3.8: The number of times workers paused or synced the video (video) and the number
of questions answered affirmatively after an iteration of annotation (questions) as a function
of the number of questions in the interface.

Fig. 3.8 reports the number of interactions of workers with the video: i.e., the number of
times they pause or seek the video. We observe that the interactions with the video generally
increase with the question count, suggesting that workers may be watching the video more
carefully when asked more questions. Interestingly, however, with only a single question
the users seem to hurry through the video.

Fig. 3.8 additionally reports the average number of questions answered affirmatively by
the workers after an iteration of annotation. As the number of questions in the interface
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increases, the average number of affirmative answers after 52 questions have been answered
decreases from 5.36 to 3.62. We hypothesize that when multiple questions are presented
to the workers simultaneously, they feel satisfied once they are able to answer a handful
of them positively; when faced with only a small number of questions, they feel increased
pressure to find more positive answers. This contributes to both the increase in recall and
the drop in precision.

Worker feedback. Finally, we asked workers to report their enjoyment of the task on a
scale of 1 (lowest) to 7 (highest). Average enjoyment ranged from 5.0 to 5.3 across the
different interfaces, indicating that workers were equally pleased with both few-question
and many-question tasks.3

3.3.4 Targeting the UI for different number of questions
So far we investigated the effect that number of questions have on the accuracy and efficiency
of annotation, while keeping all other factors constant. However, using the same user
interface and annotation workflow for different numbers of questions may not be optimal.
For example workers tend to worry when asked too many negative questions in a row in an
interface with a few questions, or may not read all questions in detail in an interface with
many questions.

In this section, we use the 3-question interface for the few-questions setting, and the 26-
question interface for themany-questions setting. We run a series of experiments investigating
strategies for improving the UI. We discover two strategies for improving the few-questions
interface and conclude that our many-questions interface is optimal.

Positive bias. When using the few-questions interface, most answers within a HIT are
expected to be negative since most target activities are not present in the videos. This has
two undesirable effects: (1) workers may start paying less attention, and (2) workers may
get nervous and provide erroneous positive answers, lowering the annotation precision.

To overcome this, we duplicate questions known to be positive and inject them such that
approximately 33% of the questions are expected to be positive. This forces the workers to
pay closer attention and be more active in the annotation; on the downside, this increases
the number of questions per annotation from 52 to 78 including the duplicates.

In an experiment on 150 videos, injecting such positive bias into the few-questions
interface improves on all three metrics: recall, precision and time of annotation. Recall
increases from 53.2% to 57.9% with positive bias,4 precision increases slightly from 79.0%
to 81.3% with positive bias, and time for an iteration of annotation drops from 4.6 minutes
to 3.6 minutes, likely because workers trust their work more and thus are able to annotate
faster. Workers also report slightly higher enjoyment: on a scale of 1 (lowest) to 7 (highest),
they report 5.8 enjoyment of the task with positive bias versus 5.5 without. We incorporate
positive bias into the few-question interface in future experiments.

3In our preliminary experiments we did not use Eqn. 3.2 to control for the amount of work within each HIT;
worker enjoyment was then strongly inversely correlated with the amount of work.

4To maintain a fair comparison, answers to duplicate questions are ignored during evaluation. Thus the time it
takes to answer them is also ignored when computing annotation time per iteration.
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Grouping. Prior work such as [36] demonstrated that asking about the same visual con-
cepts across multiple images reduces the cognitive load on workers and increases annotation
accuracy. In our second experiment, we apply the same intuition to videos: we randomly
group questions together and make sure that all questions are the same for all videos within
a single HIT. Residual question not part of the groups, and groups too small to fill a whole
task were discarded, but each question was presented both in the context of grouping and
not, for a fair comparison.

In the few-questions interface, grouping improves the precision and the time of anno-
tation, albeit at a slight reduction in recall. Specifically, in an experiment on 100 videos,
precision increases from 77.7% to 81.4% when grouping is added. Annotation time per
iteration drops from 5.9 minutes to 5.1 minutes with grouping; however, recall also drops
from 70.4% to 67.2% with grouping. To determine if the drop in recall is a concern, we
refer back to Eqn. 3.1 to compute the expected recall for a fixed time budget. In 5.9 minutes
(enough for one iteration without grouping), we expect a recall of 72.3% with grouping,
higher than 70.4% recall without. Thus, we conclude that grouping is strictly beneficial in
the few-question setting as hypothesized, and we use it in future experiments.

We also investigated the effect of grouping in the many-question interface, but concluded
it’s unhelpful. Recall with grouping is 55.2%, much lower than 62.0% without grouping.
Even though annotation time is faster (1.4 minutes per iteration with grouping compared
to 1.6 minutes per iteration without), this is not enough to compensate for the drop in
recall: the expected recall given a budget of 1.6 minutes of annotation is still only 61.2% with
grouping compared to 62.0% without. Further, precision is also lower with grouping: 79.0%
with grouping compared to 80.2% without. We hypothesize that this is because workers are
not able to remember all 26 questions anyway, so grouping only provides a false sense of
security (as evidenced by the speedup in annotation time). We do not use grouping in the
multi-question interface in future experiments.

Note that grouping had no effect on worker enjoyment. On a scale of 1 (lowest) to 7
(highest), workers reported 5.30 enjoyment with grouping and 5.24 without. We believe
this is because while grouping makes the task easier, the workers are also less engaged since
it is more repetitive.

Video summary. Having discovered two strategies for improving the few-question inter-
face (positive bias and grouping), we turn our attention to strategies targetting the multi-
question setup. The main challenge in this setting is that workers may be overwhelmed by
the number of questions and may not read them all carefully.

To better simulate a scenariowhere theworker has to pay careful attention to the video, we
add an additional prompt to the many-questions interface. In an experiment on 100 videos,
workerswere asked to “please describewith approximately 20wordswhat the person/people
are doing in the video.” This adds on average 36 seconds per iteration, yielding 2.1 minutes
of annotation time with the additional prompt versus 1.5 without. However, the extra time
does not translate to noticeable benefits in annotation accuracy: recall drops slightly to 53.2%
with the prompt compared to 54.2% without, although precision increases slightly to 88.3%
with the prompt compared to 87.1% without. We conclude that adding the prompt has no
significant impact on the accuracy of annotation despite a 1.4x increase in annotation time.
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Forced responses. The final investigation into improving the many-questions interface is
asking workers to actively select a yes/no response to every question rather than simply
checking a box only if an action is present. Intuitively this forces the workers to pay attention
to every question. However, this again produces no improvements in accuracy, indicating
that workers are already working hard to provide the most accurate responses and are only
confused by the additional forced responses.

Concretely, we experimented on 100 videos and observed a drop in recall to 55.7% with
the forced responses compared to 63.3% without as well as a drop in precision to 84.6%
with forced responses compared to 88.8% without. Further, annotation time increases to 2.2
minutes per video with forced responses versus 1.6 minutes without. Thus forcing workers
to read every question is in fact appears harmful: it is better for them to focus on watching
the video and only skim the questions.

Conclusions. We thoroughly examined the annotation interface in the few-questions and
many-questions setting. We discover that positive bias and grouping are effective strategies
for improving the few-questions UI, and incorporate them in future experiments. For the
many-questions setting, simply randomizing the questions and allowing the workers to
select the actions that appear in the video is shown to be more effective than any other
baseline.

3.3.5 Multi-iteration video annotation
So far we established that (1) themany-questions interface provides amore effective accuracy
to annotation cost tradeoff on expectation than the few-questions interface when all other
factors are kept the same, (2) the few-questions interface can be further improved by the
addition of positive bias and grouping, and (3) the many-questions interface we proposed
is optimal as is. In this section we bring all these findings together and conclusively demon-
strate that our many-question annotation strategy is strictly better than the few-questions
alternatives for practical video annotation.

Advantages of askingmultiple questions. In previous sectionswe computed the expected
recall across multiple iterations of annotations for a fixed time budget to compare different
methods; here, we report the results in practice. We run multiple iterations of annotation
and consider a label positive if at least one worker marks it as such. Thus, recall steadily
increases with the number of iterations while precision may drop as more false positives are
added.

Fig. 3.9 reports recall and precision as a function of annotation time. For the few-question
interfaces (5-questions and 1-question) we include the positive bias and grouping strategies
found helpful above. Nevertheless, we observe a clear advantage of the multi-question
methods.

For example, given 7.1 minutes required to annotate a video with the 1-question interface,
we are able to run two iterations with the 5-question interface (taking up 6.2 minutes), and
five iterations with 52-questions (taking up 6.3 minutes). With this annotation budget,
the 52-question interface obtains a recall of 85.3%, which is 10.5% higher than the 74.8%
recall with 5-questions and 18.6% higher than the 66.7% recall with 1-question. Further,
the 52-question interface obtains precision of 81.2%, which is 6.6% higher than the 74.6%
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Figure 3.9: Recall (top) and precision (bottom) with multiple iterations of annotation. Each
square represents one iteration. We can see that since each annotation iteration with the
52-question interface is much cheaper, it quickly matches the performance of the more
time-costly alternatives.

precision with 5-questions and slightly lower by 1.8% than the 83.0% precision with the
1-question interface.

In another example, in about half the annotation time (3.8 versus 7.1 minutes) we achieve
a 10% improvement in recall (76.7% with three iterations of 52-questions versus 66.7% with
one iteration of 1-question) at comparable precision (83.8% with 52-questions versus 83.0%
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Figure 3.10: Statistics from the dataset. Histogram of the lengths of the videos, where we
can see that the videos have various lengths enabling analysis based on content length.

with 1-question). The improvement in recall is statistically significant at 0.01 level using a
one-tailed unequal variance t-test.

We conclude that simultaneously asking multiple questions per video, as many as 26
or even 52, is significantly more effective than asking only a handful of questions. When
comparing the 26-question and 52-question interfaces in Fig. 3.9, the results are remarkably
similar: recall per unit time is almost identical, although precision is slightly (statistically
insignificantly) higher for 26-questions. Thus while there are diminishing returns with
asking more questions in the same interface, asking “too many” questions per video does not
appear to be harmful to annotation quality. Studying the exact point at which the number of
questions becomes overwhelming for workers is important future work.

Effect of video length. We investigate whether these conclusions hold for different video
lengths – for example, an image is just a zero-length video, so would our conclusions still
apply? Our dataset contains videos of varying length as shown in Fig. 3.10 and we group
the videos into three groups: 0-20 seconds, 20-40 seconds and 40-60 seconds long.

Fig. 3.11 reports the recall of the different methods for each of the three groups, following
the same experimental design as before. For shorter videos that require little time to process,
the exact annotation interfaces make little difference. This suggests that in the case of images
our method would be as effective as the standard one-question baseline.

Importantly, as the content gets longer the benefit of our method becomes more pro-
nounced. For example, on 40-60 second videos for a fixed annotation budget of 4.4 minutes
(enough to run one iteration with the 5-question interface), our 52-question method achieves
62.7% recall compared to only 37.4% with the 5-question baseline (a 25.3% improvement!)
and 83.1% precision compared to only 79.4% precision of the 5-question baseline.

3.3.6 Annotated dataset
We used our annotation strategy to collect additional annotations for the video dataset
of [223]. This amounted to 443,890 questions answered, resulting in 1,310,014 annotations
for the 1,815 videos. This increased the density of annotation on the dataset from 3.7 labels
per video on average (which were available apriori based on the data collection procedure)
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to 9.0 labels per video. When evaluating the precision of annotation we additionally collected
temporal annotation of when the actions took place in the video. This yielded 66,963 action
instances. We verified the quality of temporal annotations by collecting duplicate annotations
on a subset of the data. Agreement among the workers for temporal annotation was 82.8%
using 0.1 temporal intersection-over-union overlap.

Using these temporal annotations, we verify that using our method we are able to
successfully annotate both actions that are long and short in the video. For every one of the
157 target actions, we compute the average (median) length of its instances in the videos as
well as the recall of our annotations. Fig. 3.12 plots recall as a function of action duration.
As expected, recall tends to be slightly higher for actions that are longer in the video but
not significantly (Pearson correlation of 0.178). We conclude our method is effective at
annotating both long and short events.

3.4 Discussion
We explored the challenging problem of multi-label video annotation. In contrast to insights
obtained from studying crowdsourcing of video annotation, we demonstrated that asking
multiple questions simultaneously about a video provides themost effective tradeoff between
annotation time and accuracy. While we observed that accuracy decreases with additional
questions for each video, this drop was not sufficient to warrant the significant cost of only
a few questions per video. Furthermore, we observed that the performance gap between
cheap fast methods over slow careful methods grows with increasing content length. In
conclusion, our results suggest that optimal strategy of annotating data involving time is
to minimize the cost in each iteration through sufficiently many questions, and simply run
multiple iterations of annotation.
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Figure 3.11: Breakdown of Fig. 3.9 for different video lengths: (top) 0-20 second videos,
(middle) 20-40 second videos, (bottom) 40-60 second videos. The benefit of the many-question
interfaces is more prominent with increased content length.
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Chapter 4

Modeling Human Actions in
Videos

After creating, annotating, and benchmarking our video dataset in the previous chapters,
we can start investigating where methods succeed and where they fail. That is, what is the
right way to reason about human activities? What directions forward are most promising?
In this chapter, we analyze the current state of human activity understanding in videos. The
goal is to examine datasets, evaluation metrics, algorithms, and potential future directions.
We look at the qualitative attributes that define activities such as pose variability, brevity,
and density. The experiments consider multiple state-of-the-art algorithms and multiple
datasets. The results demonstrate that while there is inherent ambiguity in the temporal
extent of activities, current datasets still permit effective benchmarking. We discover that
fine-grained understanding of objects and pose when combined with temporal reasoning is
likely to yield substantial improvements in algorithmic accuracy. We present the many kinds
of information that will be needed to achieve substantial gains in activity understanding:
objects, verbs, intent, and sequential reasoning. The software and additional information
will be made available to provide other researchers detailed diagnostics to understand their
own algorithms.

4.1 Background
Over the last few years, there has been significant advances in the field of static image
understanding. There is absolutely no doubt that we are now closer to solving tasks such
as image classification, object detection, and even semantic segmentation. On the other
hand, when it comes to video understanding we are still struggling to figure out basic
questions such as: What is an activity and how should we represent it? Do activities have
well-defined spatial and temporal extent? What role do goals and intentions play in defining
and understanding activities?

A significant problem in the past has been the absence of good datasets for activity
detection and recognition. Most of the major advances in the field of object recognition
have come with the creation of generic datasets such as PASCAL [48], ImageNet [36] and
COCO [138]. These datasets helped define the problem scope and the evaluation metrics, as
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Figure 4.1: Now that the field of activity recognition has moved on from simple motions
(KTH [205]), sports (UCF101 [232]), and isolated activities in movies (HMDB51 [124])
to cluttered sequences of home activities (Charades [223]), how should we think about
activities? What are the categories? Do activities have well-defined boundaries? In the
highlighted video fromCharades, a person “walks to the kitchen,” “opens the fridge,” “grabs
some milk,” “opens the bottle,” “drinks from the bottle,” “puts it back,” and “closes the
fridge.” We discuss the problem of how to think about when, where, and what the person is
doing at any given time.

well as revealed the shortcomings of existing approaches.
On the other hand, historically video datasets such as UCF101 [232] have been biased

and have corresponded to activities that are hardly seen in daily lives. However, in recent
years, things have started to change with the arrival of large-scale video datasets depicting a
variety of complex human activities in untrimmed videos. Datasets such as ActivityNet [50],
Sports1M [106], Charades [223], and MultiTHUMOS [68, 288] have revitalized activity
recognition and inspired new research and new ideas.

But before we move forward and define the benchmarks, we believe it is worth pausing
and thoroughly analyzing this novel domain. What does the data show about the right
categories for recognition in case of activities? Do existing approaches scale with increasing
complexity of activities categories, video data, or temporal relationships between activities?
Are the hypothesized new avenues of studying context, objects, or intentions worthwhile:
Do these really help in understanding videos?

This chapter provides an in-depth analysis of the new generation of video datasets,
human annotators, activity categories, recognition approaches, and above all possible new
cues for video understanding. Concretely, we examine:

What are the right questions to ask?. Here we investigate some fundamental questions
regarding the problem of activity recognition. First, we ask what are the right categories
for activities? Unlike objects where semantic categories are somewhat well-defined, activity
categories defined by verbs are relatively few in number. Should we model one activity
category called “open” or should we model “open suitcase”, “open windows” and “open
curtain” by different categories. We also ask a fundamental question: whether we should
perform classification or localization. Do humans agree on temporal activity boundaries?
And if they do not, is it worth exploring localization at all?
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What are existing approaches learning, and are those the right things?. In the next set
of analyses, we explore the current algorithms for activity classification and localization. We
define attributes for quantifying video and category complexity and evaluate algorithms
with respect to these attributes. Do current approaches work better when there are multiple
activities per video by exploiting the context? Does large variation in pose among categories
help in activity classification? The analyses presented in this section have been combined
into a single open-sourced tool that automatically renders a summary of the diagnostics and
suggest improvements to existing algorithms.

What directions seem most promising?. By considering various ideal components of
activity understanding, we evaluate how can we get the next big gain. Should we explore
intentions, verbs, and sequences of activities, or only focus on jointly reasoning over objects
and activities?

4.2 Evolution of Activity Recognition
Starting with the KTH action dataset [205] we have observed significant advances in under-
standing activities through new datasets and algorithms. KTH combined with the idea that
activities are motions sparked numerous advances [31,115,117,127,128]. With increasingly
complex datasets such as UCF101 [232] and others [68, 106, 124, 139] came new challenges,
including scale, background clutter, and action complexity, in turn leading to improved
algorithms [100,166,227,264]. However, these datasets still focused on short individual clips
of activities, and commonly sports, which encouraged the next wave of datasets that focus
on sequences of everyday activities [50, 173, 223,288].

These recent datasets present different challenges for activity understanding. Activi-
tyNet [50] includes many activity categories and a dense hierarchy of activities, although
each video is only associated with one activity label. THUMOS [68] and its extension Mul-
tiTHUMOS [288] provide multi-label sports videos. Charades [223] contains diverse and
densely annotated videos of common daily activities occurring in a variety of scenes.

Our setup:. Much of our evaluation focuses on understanding the scope of and the inter-
action between different activities. Thus we choose Charades [223] as the best testbed for
our analysis, and introduce MultiTHUMOS [288], THUMOS [68], and ActivityNet [50] as
needed to establish the generality of our conclusion. All datasets use the same normalized
mAP metric that is robust to different ratios of positives to negatives as well as different
number of categories [88]. Charades contains 9,848 videos, split into 7,985 for training and
1,863 for testing. It contains annotations of 157 activity categories such as “drinking from a
cup” and “watching the tv” which happen naturally along with other categories. “watching
the tv” might for example occur with “lying on the couch” and “snuggling with a blanket”,
or “drinking from a cup”. That is, activity categories have moved from capturing verbs to
capturing a variety of (object,verb) pairs, and we begin our investigation by analyzing this
distinction in more detail.
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Baselines:. We evaluate Two-Stream [227]1, Improved Dense Trajectories (IDT) [264],
LSTM on top of VGG-16 [292], and two recent approaches: ActionVLAD [65] with so-
phisticated spatio-temporal pooling and Asynchronous Temporal Fields [217] with a deep
structured model.2

4.3 What are the right questions to ask?
To start our discussion about activities, let us establish what we want to learn. When we
talk about activities, we are referring to anything a person is doing, regardless of whether
the person is intentionally and actively altering the environment, or simply sitting still. In
this section, we will first look at how to define activity categories, and then investigate the
temporal extents of activities.

4.3.1 What are the right activity categories?
Should we focus our analysis on general categories such as “drinking”, or more specific,
such as “drinking from cup in the living room”? Verbs such as “drinking” and ”running”
are unique on their own, but verbs such as “take” and “put” are ambiguous unless nouns
and even prepositions are included: ”take medication”, “take shoes”, “take off shoes”. That
is, nouns and verbs form atomic units of actions.

To verify this property of verbs, we ran a human study using workers on Amazon
Mechanical Turk. We presented them with Charades videos [223], and asked workers to
select which of the 157 activities are present in the video. We looked at the likelihood a
worker will choose an activity B when activity A is present in the video but not B. We found
that people considered verbs to be relatively more ambiguous. That is, given the verb,
workers confused activities with different objects, e.g., “holding a cup” vs “holding a broom,”
only 0.3% of the time. However given the object, there was more confusion among different
verbs, e.g., “holding a cup” vs “drinking from a cup,” 1.3% of the time. A similar pattern of
confusion between similar categories is seen by state-of-the-art algorithms in Sec. 4.4.1.

To quantitatively determine the distinctiveness of the different types of categories, we
looked at pose similarity (Sec. 4.4.4) across categories on the Charades dataset, both for
verb supercategories, and (verb,noun) categories. As expected, even with this simple metric
there was more distinctiveness across categories for (noun,verb) than verbs (p<0.01). This
reinforces that verbs alone lack the clarity to provide clear supervision for learning.

4.3.2 Do Activities Have Temporal Extents?
Physical objects have clear boundaries defined by their physical extent, which is visible as a
depth change with respect to the viewer. Activities, however, have few such clear boundaries.
How should we evaluate when each activity is happening? Would two people even agree on
this?

1The Two-Stream network uses a soft-max loss function and randomly samples positive training examples from
each class at training time.

2We primarily use the test set predictions of these models released by [217] available at github.com/gsig/
temporal-fields; for ActionVLAD we use predictions provided by [65].
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We looked at how well human annotators agreed with the activity boundaries by asking
Amazon Mechanical Turk workers to re-annotate the extent of actions in the Charades and
MultiTHUMOS videos. We make three observations.

First, the average agreement with ground truth was only 72.5% intersection-over-union
(IOU)3 for Charades and 58.7% IOU in MultiTHUMOS, indicating that temporal extent
of an activity is ambiguous even for humans. The median starting error was less than the
ending error (0.9±0.8 sec compared to 1.4±1.4 sec in Charades), which suggests that more
of the confusion is about the end of the activity.

Second, there is a significant positive correlation between IOU agreement and the du-
ration of activity (ρ=0.50) suggesting that longer activities tend to be easier for humans
to localize. Further, humans tend to better agree on the starting point of longer activities
compared to shorter activities: the starting error in seconds decreases with longer duration
(ρ=0.18). This suggests that categories of temporally brief activities may require more
careful annotation.

Finally, the difference in IOU agreement between categories in Charades was lower than
average IOU agreement (13.0% IOU standard deviation compared to 27.5% average IOU),
implying that the ambiguity in temporal boundaries is a common problem for many activity
categories.

This analysis suggests that there is inherent ambiguity in precisely localizing activities,
which primarily depends on the length of the activity, and evaluation metrics must account
for this. Furthermore, this suggests that algorithms might benefit from treating the activity
boundaries as fluid, which is related to jointly reasoning about the whole video and the
boundaries therein.

Can we evaluate temporal localization?. This raises a natural question: if there is such
inherent ambiguity in localizing activities, is evaluating localization simply too erroneous?
To analyze this, we experimented with omitting ambiguous boundary regions from the test
set. Concretely, for a ground truth action instance with temporal extent [t1, t2], we define
the boundary as B=[t1−α, t1+α] ∪ [t2−α, t2+α] with α=(t2−t1)/3.

We again consider human annotations and compute consensus IOU ignoring the bound-
ary region in both the intersection and the union. The human consensus increases from
72.5% IOU to 79.8% IOU. We found that the center (33%) of an activity was likely to be
agreed upon, where 82.7% of the center was covered by a subsequent annotator.4

To investigate if this is significant on algorithmic evaluation, we use a Two-Stream net-
work [227] (Sec. 4.2), which outputs per-frame predictions for 157 activities. We evaluate its
per-frame accuracy following the Charades metric [223] ignoring the ambiguous boundary
regions. Accuracy increases from 9.6% mAP to 10.9% mAP (0.1-4.3% increase on other
datasets). Looking at state-of-the-art baselines on Charades (Sec. 4.2) we find that they
increase by 0.96± 0.33% mAP where 0.33% mAP is less than the average difference between
methods 1.26% mAP. Thus, this does not affect order for evaluation. This suggests that de-
spite boundary ambiguity, current datasets allow us to understand, learn from, and evaluate
the temporal extents of activities.

3Equivalently, only 76.1% were over 50% IOU.
4Training a Two-Stream (RGB) [227] baseline on only this part of the activity yielded an improvement in

classification, 15.9% to 16.7%mAP.
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Should we evaluate temporal localization?. We ask one final question. When videos are
short, is it perhaps unnecessary to worry about localization at all? We measured how well
a perfect video classifier emitting the same binary prediction for every frame would fare
on localization accuracy. In Charades, videos are 30.1 seconds on average and localization
accuracy of this oracle was 56.9% mAP. That is, a perfect classifier would automatically do 5
times better than current state-of-the-art [217] on activity localization. Similarly, a perfect
classifier improves over our localization baseline on all the datasets.

This suggests that focusing our attention on gaining more insight into activity classifica-
tion would naturally yield significant improvements in localization accuracy as well. Further,
as we will see, understanding temporal relationships is important for perfect classification;
with the complete understanding of activities and their temporal relationships needed to
get perfect classification accuracy, we stand to benefit in terms of localization as well. In the
rest of this chapter, we focus on classification accuracy, but report localization accuracy to
gain a deeper understanding.

4.4 What are existing approaches learning?
Having concluded that (1)we should be reasoning about activities as (verb,object)pairs rather
than just verb, that (2) temporal boundaries of activities are ambiguous but nevertheless
meaningful, and that (3) classification of short videos is a reasonable proxy for temporal
localization, we now dig deeply into the state of modern activity recognition. What are our
algorithms learning? In Sec. 4.4.1 we start by analyzing the errors made by state-of-the-art
approaches; in Sec. 4.4.2 we analyze the effect of training data and activity categories; in
Sec. 4.4.3 we look at the importance of temporal reasoning; and in Sec. 4.4.4 we emphasize
the importance of person-based reasoning. All annotated attributes along with software to
analyze any new algorithm along with diagnostics from the software for various algorithms
are available at github.com/gsig/actions-for-actions.

Setup:. The models described in Sec. 4.2 are trained on the Charades training videos and
we evaluate classification mAP on the Charades test set unless stated otherwise. Accuracy is
measured using mAP, which is normalized [88] as to be comparable across different subsets
of the data with different numbers of positive and negative examples. Please refer to the
Appendix for details.

The category plots are generated from (x, y) pairs where x is a an attribute for a category
and y is the classification performance for the category. Finally, the pairs are clustered by
the x coordinate and the average of the y coordinates visualized. Error bars for category
plots represent one standard deviation around Two-Stream based on the y values in each
cluster. In this section we report Pearson’s ρ correlation between x and y. The video plots
are generated similarly by clustering the videos based on the attributes. Finally the mAP is
calculated in that group of videos. Error bars for video plots represent the 95% confidence
interval around Two-Stream obtained via bootstapping [49].

4.4.1 Analyzing correct and incorrect detections
What kind of mistakes are made by current methods?

46

github.com/gsig/actions-for-actions


True
Positives

False
Positives

False
Negatives

a)

d)

b)

c)

Figure 4.2: Example results from a Two-stream network [227] on per-frame classification of
the “Lying on a couch” action in Charades. a) High-scoring true positives commonly include
canonical views of both a couch and a person. Top false positives often include b) confusion
with other objects (e.g., beds) or verbs (e.g., sitting) and c) the correct scene but with an
absent action (e.g., vacant couches). d) Top false negatives include unusual viewpoints.

To understand what current methods are learning and motivate the rest of this section,
we start by highlighting some of the errors made by current methods. First, we look at visual
examples of the errors that a Two-Stream Network [227] makes on Charades. In Fig. 4.2 we
see correct classifications, as well as three types of errors. The figure suggests that 1) models
need to learn how to reason about similar categories (Sec. 4.4.2); 2) methods have to develop
temporal understanding that can suppress temporally similar but semantically different
information (Sec. 4.4.3); and, 3) models need to learn about humans and not assume if
couch is detected, then “Lying on a couch” is present (Sec. 4.4.4).

To provide further insight into the algorithms we provide brief overview of the types of
errors made by multiple algorithms. In Fig. 4.3 we look at the relative types of errors. First,
we note that not many errors are made close to the boundary. However, we can see that
significant confusion is among similar categories, both for verbs and objects, interestingly
TFields [217] confuse unrelated categories much less (29.1% compared to 41.0 − 44.0%),
but at the cost of confusing categories with similar object. In fact, for a given category the
more categories share the object or verb, the worse the accuracy. This is visualized in Fig. 4.4,
where we consider how many categories share an object/verb with the given category
(Object/Verb complexity). This suggests that moving forward fine-grained discrimination
between activities with similar objects and verbs is needed.
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Figure 4.3: Fraction of top ranked predictions for each class that are correct (TP), on the
boundary (BND), other class with same object (OBJ), other class with same verb (VRB),
other class with neither (OTH), or no class (FP). Inspired by Hoiem et al. [88].
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Figure 4.4: Accuracy of activity categories for multiple methods as a function of how many
categories share its object/verb.

4.4.2 Training Data

Are current methods limited by the available data? How do we handle imbalanced data and similar
categories?

To understand how training data affects current algorithms, we first look at the relation-
ship between amount of data and accuracy to understand how to better make use of data
and what kind of data we need more of.

We train a Two-Stream (RGB) [227] baseline and focus on Charades, since it has naturally
occurring long-tailed distribution of classes. With all of the available training data we get
15.6% mAP, and with 7

10 and 3
10 of the data we get 14.7% and 11.6% mAP. This is expected—

more data is better. However, what kind of more data is better? For example there is not
a clear relationship for larger categories to have higher accuracy in the datasets (ρ<0.10).
Why is more data not helping these categories?
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Focus on small categories.. First, we note that most categories seem to benefit from more
data even in other categories. Since Charades has different number examples in each class,
removing 1

2 of the data removes many more examples from large categories than small.
Even so, small categories see a larger decrease in accuracy (ρ=0.18, p=0.03). In the extreme,
limiting all categories to at most 100 examples, there is still no significant relationship
between category size and drop in accuracy.

The only significant correlation we found with this drop in accuracy when limiting all
categories to at most 100 examples was with the number of similar categories (that share
the same object/verb). Categories with more similar categories had more reduction in
performance (ρ=0.18, p<0.05). This suggests that there is no such thing as balanced data. Any
attempts at reweighting and resampling without considering similarity between categories
is unlikely to help all small categories uniformly. For example, when limiting categories to at
most 100 samples, the range in relative change in accuracy is from a 65.8% decrease (“holding
a laptop”) to 52.2% increase (“standing on a chair”). The highest drop is in a category that
has 5 categories that share the object, and 18 categories that share the verb. “Standing on a
chair” however is a relatively unique activity with only 42 examples. Investigating this large
difference in performance when balancing the data will be important to fully harness this
kind of activity data.

Focus on large categories.. Categories that are naturally ubiquitous and have many exam-
ples in naturally long-tailed datasets seem to have additional complexity that outweighs
the advantage of having more training data. For example in Charades, they have slightly
more pose diversity: concretely, the correlation between the number of training examples
of a category and its pose diversity (as defined in Sec. 4.4.4) is ρ=0.09. Second, they tend
to have less inter-class variation. For example, categories with more examples have more
categories that share the same object ρ=0.13 (“object complexity” in Sec. 4.4.1). Thus more
common actions may in fact be more challenging to learn.

Interestingly, looking at current methods, we find that the main improvement in accuracy
does not come from models that are better able to make use of the wealth of data in large
categories, but rather in small categories. This is visualized in Fig. 4.5 both for number of
training examples as well as training frames. This both suggests that developing models that
generalize well across categories is clearly beneficial, but also that more expressive models
are needed for large categories, perhaps by dividing them into subcategories.

4.4.3 Temporal Reasoning

How does the temporal extent of activities affect accuracy? Should we think about activities in terms
of high-level temporal reasoning?

Given that Two-Stream networks, which operate on isolated RGB and Optical Flow
frames, are on par with state-of-the-art on many recent datasets, it is either that temporal
reasoning beyond instantaneous motion is not needed for activity recognition, or current
methods are missing important pieces of temporal reasoning. In this section we look at
current algorithms at increasing granularity of temporal reasoning: motion, continuity, and
temporal context.
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Figure 4.5: Accuracy of activity categories for multiple methods as a function of training
examples/frames.

Motion and temporal continuity.. Most activities involve movement that causes blurred
frames, intermittent observability, and large visual variation. In theory, algorithmic ap-
proaches must be robust to these effects by combining multiple predictions over time. To
analyze how well current algorithms combine predictions to, for example, reason in the pres-
ence of motion, we consider average amount of optical flow in a given category on average
(Motion for Category) and the average temporal extent of activities in each category (Average
Extent for Category). This is visualized in Fig. 4.6. We find that instantaneous motion affects
algorithms differently, for example, more temporal reasoning seems to help (IDT [264],
TFields [217]) algorithms be robust to motion. Furthermore, short actions do noticeably
worse on the datasets (ρ=0.21−0.42). We could expect that longer activities indeed do better
because they have more training data, but this view was refuted in Sec. 4.4.2. This suggests
that current methods are better at modeling longer activities than shorter ones, implying that
more emphasis may be needed on understanding shorter activities. This both suggests that
brief patterns, motion and short actions, need more temporal reasoning to be understood.
One potential avenue for exploration would be combining the trajectory representation in
IDT (which appears to help on shorter activities) with the benefits of longer-term pooling of
Two-Stream (which works well on longer activities).

How well do these algorithms combine predictions over time? As it turns out, naive
temporal smoothing of the predictions helps improve localization and classification accuracy,
where all methods except LSTM benefit from averaging predictions over a window 4% of the
video size (1.2 sec on average). However, for optimally smoothed Two-Stream for example,
the relative change in accuracy for individual classes varies from 24.7% decrease (“Holding
a broom”) to 32.4% increase (“Closing a window”). Furthermore, smoothing helps larger
classes more (ρ=0.22, p<0.01), but does not help classes with much motion. This leads to
the conclusion that combining predictions over time is a non-trivial problem that must be
addressed in future work.
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Figure 4.6: Accuracy as a function of motion and temporal extent for categories in Charades.

Temporal Context.. Moving to larger temporal scales, we now investigate how current
methods utilize temporal context. We noticed that for videos with 1-4 activities per video,
Two-Stream [227] obtains 22.1% mAP, for videos with 14 or more, the accuracy is 16.6% mAP.
One could expect that with more activities, the additional context could be used to improve
performance, but the additional complexity seems to outweigh any additional context. This
pattern also applies to temporal overlap (multiple activities happening at a given instant)
where classes that overlap frequently in the training data are significantly more confused
at test time (ρ=0.28 correlation between percent of training frames where classes overlap,
versus score given to class A when class B is present but not A).

In fact, the methods vary significantly in terms of how much they use context. In Fig. 4.7
we visualize how much each method benefits from context; we measure for each action how
many other actions on average increase the prediction confidence of that action by being
present in a video. We consider video classification, and since all methods do combine their
predictions to make a video prediction, context is being used in some form by all methods.
We observe that high-level temporal modeling in TFields [217] helps utilize context, and is
important moving forward.

4.4.4 Person-based Reasoning
Should activity recognition be image-based or person-based? Should activity recognition models be
explicitly taught what a person is?

In CNNs for object recognition, it has been observed that object parts are discovered
automatically [298]. Ideally, we would want the person to be automatically discovered by
activity recognition systems. But is this happening now?

Person location in the frame.. First, we look at the average size of a person in a video as
measured by the highest-scoring per-frame Faster-RCNN bounding box detection [209]
(Person Size in Pixels), as well as whether there are more than one person in the video (More
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Figure 4.8: Supporting plots for Sec. 4.4.4. Visualizing the impact of attributes on classifica-
tion performance in the Charades Dataset.

than One Person). We look at how classification performance changes with these attributes.
From Fig. 4.8a,c we notice that there is significant dependency on the size of the person, and
that there seems to be an optimal size in the middle. This pattern was observed on multiple
datasets, where models perform the best on actions with medium-sized people (48.7-78.3
pixels in size) and worse on small or large. Having multiple people in the video does not
significantly affect accuracy. This suggests that the networks are not properly latching onto
the person in the scene.

To investigate this further we ran ablative studies on the network. We removed the person
from the scene (No Person) and then removed everything but the person from the scene (No
Background) and evaluated the network accuracy. The removal was done by using the same
Faster-RCNN bounding box detection and by setting all removed pixels to the average value.
In Fig. 4.8b, we can see that removing the person from the test images does more damage
than removing other parts of the image. Finally, we retrain the Two-stream network [227]
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different baselines. c) Two types of perfect information combinedwith a baseline onmultiple
datasets.

on only the cropped image of the person (Retrain on Person). Retraining on the cropped
image yields a noticeable improvement in accuracy (15.6% to 17.9% mAP). This suggests
that person-focused reasoning may be beneficial to current algorithms.

Pose.. Daily human activities are centered around the person. Even so, many top scoring
methods get good performance without explicitly reasoning about human poses. First, we
found that the variability of a pose in each category significantly determined the accuracy
on Charades (ρ=0.28). Pose variability is the average Procrustes distance [108] between any
two poses in the category, which aligns the poses5 with a linear transformation and euclidean
distance between corresponding joints (Pose variability). We visualize how the accuracy
in a category increases as the category contains more diverse poses in Fig. 4.8d. Second,
pose similarity between poses in two categories determines how much two categories are
confused at test time in Charades (ρ=0.39) where we consider the same metric but across
categories. This demonstrates that poses play a significant role in modern human activity
recognition and harnessing poses is likely to lead to substantial advances.

4.5 Where should we look next?
Nowwehave analyzed state-of-the art algorithms in terms of various attributes and identified
some strengths and weaknesses. To try to understand what directions look promising, we
consider what aspects would help the most if solved perfectly, i.e., with an oracle.

Types of oracles:. We study the effectiveness of five oracles on action recognition in Cha-
rades [223], MultiTHUMOS [288], THUMOS [68], and ActivityNet [50] datasets.

(1) Perfect Object Oracle assumes the list of objects that the person is interacting with in
the test video is given. There are 38 objects in Charades. Given this list of objects, we predict
that all actions associated with these objects are present, and all other actions are absent
from the video.

(2) Perfect Verb Oracle is similar except it assumes the list of verbs that the person is
executing in the test video is given. There are 33 verbs in Charades.

5Poses were obtained using Convolutional Pose Machines [273].
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(3) Perfect Temporal Oracle assumes that for each frame of the test video, the last activity
to end and the next activity to begin are given. There are 157 activities in Charades, 65 in
MultiTHUMOS, 20 in THUMOS, and 200 ActivityNet. From the video annotations we learn
the distribution of activities that is likely occur in this frame given this information.6 This
produces a probability distribution of actions in each frame; we max-pool over all frames to
obtain predictions for the entire video.

(4) Perfect Intent Oracle is the trickiest. Each video contains multiple labels. When
thinking about Intent we can imagine that these labels occur together in certain ways. For
example, “put on clothes” “put on shoes” “open door”, might be associated with the intent
of leaving the house. We cluster the labels from all the videos into 30 or 50 clusters.7 Each
intent cluster thus corresponds to a distribution of activities. A perfect intent oracle gives
which cluster the video corresponds to. Given this cluster, the distribution of activities
within the cluster is used as the activity prediction.

(5) Perfect Pose Oracle We cluster the poses in all frames into 500 clusters. Given the
cluster, the distribution of activities within the cluster is used as the activity prediction.

These oracles should be thought of as lower bounds for these types of information. That
is, a method using these types of information should do at least this well on the datasets.
However, it is likely that better performance could be obtained with better ways of using
perfect information.

Comparing different oracles:. We start by evaluating these oracles on video classification
on Charades. To do so, we design a simple video classification method using each oracle
that is combined with Two-Stream (RGB) [227] on each of the datasets by multiplying their
probabilities; results are presented in Fig. 4.9a. All of these oracles individually are beyond
current state-of-the-art of computer vision, which suggests room for improvement in many
directions. Object understanding is more effective than temporal reasoning on its own in
Charades. This suggests object understanding is important moving forward. Getting a
benefit from poses proved challenging, likely because this oracle samples individual poses
throughout the video in isolation, and does not consider the motion. The accuracy of only
30 types of intent suggests that more research into how to understand intent is likely to yield
substantial gains.8

Comparing methods in terms of oracles:. Next, we selected oracles on Charades to high-
light differences between current methods. In Fig. 4.9b we see how much is gained by
combining perfect intent and time with the baselines. Adding time helps Two-Stream the
most, since Two-Stream does not model temporal information beyond optical flow. Interest-
ingly, intent helps IDT [264] the least, which suggests the trajectory information captures
high-level information missing from Two-Stream based approaches. To summarize, devel-
opment of algorithms that combine complementary benefits of IDT, LSTM [292] and global
pooling such as ActionVLAD [65] is likely to increase accuracy.

6We use simple first-order statistics, i.e., the probability of an action a in the current frame given that action ap
occurred before and action an occurs after is p(a|ap, an) = p(a|ap)p(a|an).

7Each video can be thought of as a 157 dimensional vector with 0s and 1s based on what categories are in the
video. We cluster these vectors with cosine distance and spectral clustering.

8We attempted using Two-Stream to predict the 30 intent clusters in Charades (by comparing their label
distributions), however this only predicted the right cluster 15.1% of the time, suggesting that intent clustering
should be joint with learning discriminative intent clusters.
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Comparing datasets in terms of oracles:. Finally, we selected two oracles to compare
different datasets; results are presented in Fig. 4.9c. For the datasets with fewer categories,
having 30 types of intent given from the oracle, gives almost a perfect score. Although
Charades and ActivityNet have 200 classes, they see improvement from only 30 types of
intent. Temporal oracle helps the datasets with multiple actions per video, Charades [223]
and MultiTHUMOS [288], but not the detection oriented datasets ActivityNet [50] and
THUMOS [68]. The datasets address different needs, and these results highlight that some
can be useful for developing better high-level temporal modelling and others for better ways
of combining predictions to detect activities.

4.6 Discussion
Our analysis of action recognition in videos is inspired by the diagnosis and analysis paper
of Hoiem at al. [88] and a long line of meta-analyses that have been done in other domains:
e.g., studying dataset bias in image classification [243], analyzing sources of errors in object
detection [40,88,92,110,167,194], understanding image segmentation [249], and investigating
specific classes of models such as CNNs [295] or LSTMs [104]. Several studies have surveyed
action recognition [177, 247, 274] but to the best of our knowledge we are the first to study it
in this level of depth.

We have analyzed multiple attributes of activities, several modern activity recognition
algorithms, and the latest activity datasets. We demonstrated that even though human
disagreement and ambiguity are an inevitable part of activity annotation, they do not present
significant roadblocks to progress in activity understanding. We showed that more detailed
understanding of scenes depicted in videos, at the level of individual objects and human
poses, holds promise for the next iteration of algorithms. We showed that this generation of
rich, multi-label, fine-grained activity benchmarks provides ample opportunities for complex
joint high-level reasoning about human activities. We hope the community learns from our
analysis, and builds upon our work.

Appendix.. We look at the performance among different subsets of data. Without any
consideration, random chance performance would be different on different subsets. For
mAP we use normalized precision P (c) similar to [88]: P (c)=

R(c)·Npos

R(c)·Npos+F (c)·Nneg
, where

R(c) is the recall and F (c) is the false positive rate. N are set to the average numbers on the
Charades test set.
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Video data is an unique source of information, with challenges fundamental to intelligence.
For example, reasoning over time, credit assignment, concept learning, and attention. One
of the primary problems video understanding has recently faced is converting successful
image architectures to handle video input. This problem has seen significant progress for
video lengths up to few seconds, and our analysis indicates low-level temporal reasoning
beyond a few seconds is likely not needed (Chapter 7). This suggests that specific high-level
temporal reasoning is needed for large time-scales, and detailed low-level temporal reasoning
is needed for few second time-scales. To improve the few second time-scale modeling, we
explore techniques that better model people, such that their intentions, and better attend
to the available data, to enable synthetic eye movement with neural networks in world
coordinates. This is covered in Chapter 5 and Chapter 7. In Chapter 5 and Chapter 6 we
then explore ideas for extending temporal reasoning from seconds to minutes and weeks.
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Chapter 5

Modeling Long Activities in Video

Our first algorithmic contribution tackles how to model activities that are approximately
30 seconds long, such as the ones in our Charades dataset. Actions are more than just
movements and trajectories: we cook to eat and we hold a cup to drink from it. A thor-
ough understanding of videos requires going beyond appearance modeling and necessitates
reasoning about the sequence of activities, as well as the higher-level constructs such as
intentions. But how do we model and reason about these? We propose a fully-connected
temporal CRF model for reasoning over various aspects of activities that includes objects,
actions, and intentions, where the potentials are predicted by a deep network. End-to-end
training of such structured models is a challenging endeavor: For inference and learning we
need to construct mini-batches consisting of whole videos, leading to mini-batches with only
a few videos. This causes high-correlation between data points leading to breakdown of
the backprop algorithm. To address this challenge, we present an asynchronous variational
inference method that allows efficient end-to-end training. Our method achieves a classifi-
cation mAP of 22.4% on the Charades [223] benchmark, outperforming the state-of-the-art
(17.2% mAP), and offers equal gains on the task of temporal localization.

Consider the video shown in Figure 5.1: A man walks through a doorway, stands at a
table, holds a cup, pours something into it, drinks it, puts the cup on the table, and finally
walks away. Despite depicting a simple activity, the video involves a rich interplay of a
sequence of actions with underlying goals and intentions. For example, the man stands at
the table ‘to take a cup’, he holds the cup ‘to drink from it’, etc. Thorough understanding
of videos requires us to model such interplay between activities as well as to reason over
extensive time scales and multiple aspects of actions (objects, scenes, etc).

Most contemporary deep learning based methods have treated the problem of video
understanding as that of only appearance andmotion (trajectory)modeling [66,152,226,244].
While this has fostered interesting progress in this domain, these methods still struggle to
outperform models based on hand-crafted features, such as Dense Trajectories [264]. Why
such a disconnect? We argue that video understanding requires going beyond appearance
modeling, and necessitates reasoning about the activity sequence as well as higher-level
constructs such as intentions. The recent emergence of large-scale datasets containing rich
sequences of realistic activities [223,275,288] comes at a perfect time facilitating us to explore
such complex reasoning.
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TimeHolding a cup
Pouring into a cup

Drinking from a cup

Intent: Getting something to drink

Figure 5.1: Understanding human activities in videos requires jointly reasoning about mul-
tiple aspects of activities, such as ‘what is happening’, ‘how’, and ‘why’. We present an
end-to-end deep structured model over time trained in a stochastic fashion. The model
captures rich semantic aspects of activities, including Intent (why), Category (what), Object
(how). The figure shows video frames and annotations used in training from the Cha-
rades [223] dataset.

But what is the right way to model and reason about temporal relations and goal-driven
behaviour? Over the last couple of decades, graphical models such as Conditional Random
Fields (CRFs) have been the prime vehicles for structured reasoning. Therefore, one possible
alternative is to use ConvNet-based approaches [122] to provide features for a CRF training
algorithm. Alternatively, it has been shown that integratingCRFswith ConvNet architectures
and training them in an end-to-end manner provides substantial improvements in tasks
such as segmentation and situation recognition [23,286,296].

Inspired by these advances, we present a deep-structured model that can reason tem-
porally about multiple aspects of activities. For each frame, our model infers the activity
category, object, action, progress, and scene using a CRF, where the potentials are predicted
by a jointly end-to-end trained ConvNet over all predictions in all frames. This CRF has a
latent node for the intent of the actor in the video and pair-wise relationships between all
individual frame predictions.

While our model is intuitive, training it in an end-to-end manner is a non-trivial task.
Particularly, end-to-end learning requires computing likelihoods for individual frames and
doing joint inference about all connected frames with a CRF training algorithm. This is
in stark contrast with the standard stochastic gradient descent (SGD) training algorithm
(backprop) for deep networks, where we require mini-batches with a large number of
independent and uncorrelated samples, not just a few whole videos. In order to handle
this effectively: (1) we relax the Markov assumption and choose a fully-connected temporal
model, such that each frame’s prediction is influenced by all other frames, and (2) we
propose an asynchronous method for training fully-connected structured models for videos.
Specifically, this structure allows for an implementation where the influence (messages)
from other frames are approximated by emphasizing influence from frames computed
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in recent iterations. They are more accurate, and show advantage over being limited to
only neighboring frames. In addition to being more suitable for stochastic training, fully-
connected models have shown increased performance on various tasks [118,296].

In summary, our key contributions are: (a) a deep CRF based model for structured
understanding and comprehensive reasoning of videos in terms of multiple aspects, such as
action sequences, objects, and even intentions; (b) an asynchronous training framework for
expressive temporal CRFs that is suitable for end-to-end training of deep networks; and, (c)
substantial improvements over state-of-the-art, increasing performance from 17.2% mAP to
22.4% mAP on the challenging Charades [223] benchmark.

5.1 Background
Understanding activities and actions has an extensive history [31,115,126–128,150,171,177,
264,274]. Interestingly, analyzing actions by their appearance has gone through multiple
iterations. Early success was with hand-crafted representations such as Space Time Interest
Points (STIP) [127], 3D Histogram of Gradient (HOG3D) [115], Histogram of Optical Flow
(HOF) [128], and Motion Boundary Histogram [31]. These methods capture and analyze
local properties of the visual-temporal datastream. In the past years, the most prominent
hand-crafted representations have been from the family of trajectory based approaches [126,
150, 171, 264], where the Improved Dense Trajectories (IDT) [264] representation is in fact
on par with state-of-the-art on multiple recent datasets [68, 223].

Recently there has been a push towards mid-level representations of video [97, 125, 198,
231], that capture beyond local properties. However, these approaches still used hand-crafted
features. With the advent of deep learning, learning representations from data has been
extensively studied [33, 66, 100, 106, 131,213, 227, 239, 244, 259, 266, 284]. Of these, one of the
most popular frameworks has been the approach of Simonyan et al. [227], who introduced
the idea of training separate color and optical flow networks to capture local properties of
the video.

Many of those approaches were designed for short clips of individual activities and hence
do not generalize well to realistic sequences of activities. Capturing the whole information
of the video in terms of temporal evolution of the video stream has been the focus of some
recent approaches [57,95,174,190,235,238]. Moving towards more expressive deep networks
such as LSTM has become a popular method for encoding such temporal information [42,
215,233,236,269,289,292]. Interestingly, while those models move towards more complete
understanding of the full video stream, they have yet to significantly outperform local
methods [227] on standard benchmarks.

A different direction in understanding comes from reasoning about the complete video
stream in a complementary direction — Structure. Understanding activities in a human-
centric fashion encodes our particular experiences with the visual world. Understanding
activities with emphasis on objects has been a particularly fruitful direction [73, 133, 179,
197,257]. In a similar vein, some works have also tried modeling activities as transforma-
tions [269] or state changes [53]. Recently, there has been significant progress in modelling
the complete human-centric aspect, where image recognition is phrased in terms of objects
and their roles [75, 286]. Moving beyond appearance and reasoning about the state of agents
in the images requires understanding human intentions [114,175]. This ability to understand
people in terms of beliefs and intents has been traditionally studied in psychology as the
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Figure 5.2: An overview of our structured model. The semantic part captures object, action,
etc. at each frame, and temporal aspects captures those over time. On the left side, we show
how for each timepoint in the video, a Two-Stream Network predicts the potentials. Our
model jointly reasons about multiple aspects of activities in all video frames. The Intent
captures groups of activities of the person throughout the whole sequence of activities, and
fine-grained temporal reasoning is through fully-connected temporal connections.

Theory of mind [178].
How to exactly model structure of the visual and temporal world has been the pursuit of

numerous fields. Of particular interest is work that combines the representative power of
deep networks with structured modelling. Training such models is often cumbersome due
to the differences in jointly training deep networks (stochastic sampling) and sequential
models (consecutive samples) [159,296]. Here we focus on fully-connected random fields,
that have been popular in image segmentation [118], where image filtering was used for
efficient message passing, and later extended to use CNN potentials [206].

5.2 Proposed Method
Given a video with multiple activities, our goal is to understand the video in terms of
activities. Understanding activities requires reasoning about objects being interacted with,
the place where the interaction is happening, what happened before and what happens after
this current action and even the intent of the actor in the video. We incorporate all these by
formulating a deep Conditional Random Field (CRF) over different aspects of the activity
over time. That is, a video can be interpreted as a graphical model, where the components
of the activity in each frame are nodes in the graph, and the model potentials are the edges
in the graph.

In particular, we create a CRF which predicts activity, object, etc., for every frame in
the video. For reasoning about time, we create a fully-connected temporal CRF, referred as
Asynchronous Temporal Field in the text. That is, unlike a linear-chain CRF for temporal
modelling (the discriminative counterpart to Hidden Markov Models), each node depends
on the state of every other node in the graph. We incorporate intention as another latent
variable which is connected to all the action nodes. This is an unobserved variable that
influences the sequence of activities. This variable is the common underlying factor that
guides and better explains the sequence of actions an agent takes. Analysis of what structure
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this latent variable learns is presented in the experiments. Our model has three advantages:
(1) it addresses the problem of long-term interactions; (2) it incorporates reasoning about
multiple parts of the activity, such as objects and intent; and (3) more interestingly, as we
will see, it allows for efficient end-to-end training in an asynchronous stochastic fashion.

5.2.1 Architecture
We encode multiple components of an activity. Each video with T frames is represented as
{X1, . . . , XT , I} where Xt is a set of frame-level random variables for time step t and I is an
unobserved random variable that represent global intent in the entire video. We can further
write Xt = {Ct, Ot, At, Pt, St}, where C is the activity category (e.g., ‘drinking from cup’),
O corresponds to the object (e.g., ‘cup’), A represents the action (e.g., ‘drink’), P represents
the progress of the activity {start, middle, end}, and S represents the scene (e.g. ‘Dining
Room’). For clarity in the following derivation we will refer to all the associated variables of
Xt as a single random variable Xt. A more detailed description of the CRF is presented in
the appendix.

Mathematically we consider a random field {X, I} over all the random variables in
our model ({X1, . . . , XT , I}). Given an input video V={V1, . . . , VT }, where Vt is a video
frame, our goal is to estimate the maximum a posteriori labeling of the random field by
marginalizing over the intent I . This can be written as:

x∗ = arg max
x

∑
I

P (x, I|V ). (5.1)

For clarity in notation, we will drop the conditioning on V and write P (X, I). We can
define P (X, I) using Gibbs distribution as: P (X, I)= 1

Z(V) exp (−E(x, I)) where E(x, I) is
the Gibbs energy over x. In our CRF, we model all unary and pairwise cliques between all
frames {X1, . . . , XT } and the intent I . The Gibbs energy is:

E(x, I) =
∑
i

φX (xi)︸ ︷︷ ︸
Semantic

+
∑
i

φXI(xi, I) +
∑
i,j
i6=j

φXX (xi, xj)

︸ ︷︷ ︸
Temporal

, (5.2)

where φXX (xi, xj) is the potential between frame i and frame j, and φXI(xi, I) is the potential
between frame i and the intent. For notational clarity φX (xi) incorporates all unary and
pairwise potentials forCt, Ot, At, Pt, St. Themodel is best understood in terms of two aspects:
Semantic aspect, which incorporates the local variables in each frame (Ct, Ot, At, Pt, St);
and Temporal aspect, which incorporates interactions among frames and the intent I . This
is visualized in Figure 5.2. We will now explain the semantic, and temporal potentials.
Semantic aspect The frame potential φX (xi) incorporates the interplay between activity cate-
gory, object, action, progress and scene, and could bewritten explicitly asφX (Ct, Ot, At, Pt, St).
In practice this potential is composed of unary, pairwise, and tertiary potentials directly pre-
dicted by a CNN.We found predicting only the following terms to be sufficient without intro-
ducing toomany additional parameters: φX (Ct, Ot, At, Pt, St)=φ(Ot, Pt)+φ(At, Pt)+φ(Ot, St)+
φ(Ct, Ot, At, Pt) where we only model the assignments seen in the training set, and assume
others are not possible.
Temporal aspect The temporal aspect of the model is both in terms of the frame-intent
potentials φXI(xi, I) and frame-frame potentials φXX (xi, xj). The frame-intent potentials
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Figure 5.3: Illustration of the learning algorithm, and the message passing structure. Each
timepoint that has been processed has amessage (Blue highlightsmessages that have recently
been computed). The loss receives a combination of those messages, uses those to construct
new messages, and updates the network.

are predicted with a CNN from video frames (pixels and motion). The pairwise potentials
φXX (xi, xj) for two time points i and j in our model have the form:

φXX (xi, xj) = µ(xi, xj)
∑
m

w(m)k(m)(vi, vj), (5.3)

where µ models the asymmetric affinity between frames, w are kernel weights, and each
k(m) is a Gaussian kernel that depends on the videoframes vi and vj . We use a single kernel
that prioritises short-term interactions:

k(vi, vj) = exp

(
− (j − i)2

2σ2

)
(5.4)

The parameters of the general asymmetric compatibility function µ(xi, xj) are learned from
the data, and σ is a hyper-parameter chosen by cross-validation.

5.2.2 Inference
While it is possible to enumerate all variable configurations in a single frame, doing so
for multiple frames and their interactions is intractable. Our algorithm uses a structured
variational approximation to approximate the full probability distribution. In particular,
we use a mean-field approximation to make inference and learning tractable. With this

63



approximation, we can do inference by keeping track of message between frames, and
asynchronously train one frame at a time (in a mini-batch fashion).

More formally, instead of computing the exact distribution P (X, I) presented above,
the structured variational approximation finds the distribution Q(X, I) among a given
family of distributions that best fits the exact distribution in terms of KL-divergence. By
choosing a family of tractable distributions, it is possible tomake inference involving the ideal
distribution tractable. Here we use Q(X, I) = QI(I)

∏
iQi(xi), the structured mean-field

approximation. Minimizing the KL-divergence between those two distributions yields the
following iterative update equation:

Qi(xi) ∝ exp

{
φX (xi) + EU∼QI [φXI(xi, U)]

+
∑
j>i

EUj∼Qj [φXX (xi, Uj)]

}

+
∑
j<i

EUj∼Qj [φXX (Uj , xi)]

}
(5.5)

QI(I) ∝ exp

{∑
j

EUj∼Qj [φXI(Uj , I)]

}
(5.6)

where Qi is marginal distribution with respect to each of the frames, and QI is the marginal
with respect to the intent. An algorithmic implementation of this equation is as presented in
Algorithm 1.

Algorithm 1 Inference for Asynchronous Temporal Fields
1: Initialize Q . Uniform distribution
2: while not converged do
3: Visit frame i
4: Get∑j>i EUj∼Qj [φXX (xi, Uj)]

5: Get∑j<i EUj∼Qj [φXX (Uj , xi)]

6: Get∑j EUj∼Qj [φXI(Uj , I)]
7: while not converged do
8: UpdateQi andQI using Eq. 5.6
9: Send EU∼Qi [φXX (x, U)]
10: Send EU∼Qi [φXX (U, x)]
11: Send EU∼Qi [φXI(U, I)]

Here ‘Get’ and ‘Send’ refer to the message server, and f(x) is a message used later by frames
in the same video. The term message server is used for a central process that keeps track
of what node in what video sent what message, and distributes them accordingly when
requested. In practice, this could be implemented in a multi-machine setup.

5.2.3 Learning
Training a deep CRF model requires calculating derivatives of the objective in terms of each
of the potentials in the model, which in turn requires inference of P (X, I|V ). The network
is trained to maximize the log-likelihood of the data l(X) = log

∑
I P (x, I|V ). The goal is

to update the parameters of the model, for which we need gradients with respect to the
parameters. Similar to SGD, we find the gradient with respect to one part of the parameters
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Figure 5.4: Evolution of prediction with increasing messages passes. The first row shows the
initial prediction for the category tidying with a broom without any message passing, where
darker colors correspond to higher likelihood, blue is then an increase in likelihood, and
brown decrease. In the first message pass, the confidence of high predictions gets spread
around, and eventually increases the confidence of the whole prediction.

at a time, specifically with respect to one potential in one frame. That is, φiX (x̂) instead of
φX (x̂). The partial derivatives of this loss with respect to each of the potentials are as follows:

∂l(X)

∂φiX (x̂)
= 1x=x̂ −Qi(x̂) (5.7)

∂l(X)

∂φiXI(x̂, Î)
=

exp
∑

j φXI(xj , Î)∑
I exp

∑
j φXI(xj , I)

1x=x̂ −Qi(x̂)QI(Î) (5.8)
∂l(X)

∂µi(a, b)
=
∑
j>i

1x=ak(vi, vj)−Qi(x̂)
∑
j>i

QI(b)k(vi, vj)

+
∑
j<i

1x=bk(vj , vi)−Qi(x̂)
∑
j<i

QI(a)k(vi, vj) (5.9)

where φiX (x̂) and φiXI(x̂, Î) is the frame and frame-intent potentials of frame i, and we use
x̂ to distinguish between the labels and variables the derivative is taken with respect to.
µi(a, b) are the parameters of the asymmetric affinity kernel with respect to frame i, and
1x=x̂ is a indicator variable that has the value one if the ground truth label corresponds to
the variable. Complete derivation is presented in the appendix. These gradients are used to
update the underlying CNN model. These update equations lead to the learning procedure
presented in Algorithm 2.

Algorithm 2 Learning for Asynchronous Temporal Fields
1: Given videos V
2: while not converged do
3: for each example in mini-batch do
4: Sample frame v ∈ V ⊆ V
5: Get incoming messages
6: UpdateQi andQI
7: Find gradients with Eq. 5.7-5.9
8: Backprop gradients through CNN
9: Send outgoing messages
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Figure 5.3 graphically illustrates the learning procedure. Since the videos are repeatedly
visited throughout the training process, we do not have to run multiple message passes
to calculate each partial gradient. This shares ideas with contrastive divergence [85, 201].
Given a single video at test time, we visualize in Figure 5.4 how the predictions changes as
the distribution converges with multiple messages passes.
MessagePassingThe key thing to note is all the incomingmessages are of the formM(z)=

∑
j fj(z)

where fj is some function from node j; for e.g.,M(z) =
∑
j EUj∼Qj [φXI(Uj , z)] =

∑
j fj(z)

from Algorithm 1. We use the following approximation during training:

M(z)≈ h∑
j d

j

∑
j

djfJ(j)(z), (5.10)

where d ∈ [0, 1] is a discount factor, h is a hyperparameter, and J(·) is an ordering of the
messages in that video based on the iteration in which the message was computed. The
messages are a weighted combination of stored messages.

5.3 Experimental Results and Analysis
We analyzed the efficacy of our model on the challenging tasks of video activity classification
and temporal localization. In addition, we investigated the different parts of the model, and
will demonstrate how they operate together.
Dataset Recent years have witnessed an emergence of large-scale datasets containing se-
quences of common daily activities [223,275,288]. For our evaluation, we chose the Charades
dataset [223]. This dataset is a challenging benchmark containing 9,848 videos across 157
action classes with 66,500 annotated activities, including nouns (objects), verbs (actions),
and scenes. A unique feature of this dataset is the presence of complex co-occurrences of
realistic human-generated activities making it a perfect test-bed for our analysis. We evaluate
video classification using the evaluation criteria and code from [223]. Temporal localization
is evaluated in terms of per-frame classification using the provided temporal annotations.
Implementation details We use a VGG16 network [225] with additional layers to predict
the model potentials (Figure 5.5). We train both a network on RGB frames, and stacks of
optical flow images, following the two-stream architecture [227]. The main challenge in
training the network is the increase in the output layer size. For the larger potentials, we
used the following structure to go from fc7 to φXI : Linear layer (4096 to 100), ReLU, Dropout,
Linear layer (100 to the potential values).

The input to the RGB network is an image of size 224×224×3 where we crop random
location, size, and aspect ratio. We use data augmentation with color jitter and PCA lighting
noise. The RGB network was pretrained on ImageNet. The input to the Flow network is a
stack of 10 consecutive optical flow frames at 24 FPS starting with the current frame. Since
each optical flow has two channels, the input size is 224×224×20 as in [227]. The Flow
network was pretrained on UCF101 [232] as in Sigurdsson et al. [223], and random cropped
in the same way as RGB.

We follow the training setup in Charades [223] and consider a frame to have one activity
label at a time. Even so, our method is still able to reason about other activities in the
video. Convergence of the model is evaluated using the approximate distribution Qi(X) at
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Figure 5.5: The VGG-16 variant predicts the potentials for both RGB and Flow. The network
predicts the values of all potentials except one (in this figure we group the frame potentials
φX into one layer for clarity). The model is trained end-to-end by passing gradients from
the Asynchronous Temporal Field through the network.

each frame. The Charades dataset has the property that scenes were chosen at random for
each sequence of activities. For this reason, we found reasoning about scenes to reduce the
performance, and the weight of that term was lowered in the model.

To obtain annotations for action progress pt, we split each activity annotation into three
equally sized parts. All layers of the network are trained with a batch size of 240 and a
learning rate of 10−3 (RGB), 10−5 (Flow). Learning rate was reduced by a factor of 10 every
30k iterations for RGB, and every 140k iterations for Flow. The value of the message decay
parameter dwas set to d = 0.9, and the standard deviation σ in (5.4) was set to 6.25 sec (150
frames).

For testing, we sampled 25 equally spaced frames from the video and synchronously
pass messages between the frames until convergence (10 message passes). The predictions
of the RGB and Flow networks are combined in a probabilistic fashion by multiplying their
probabilistic predictions for each class. More implementation details may be found in the
appendix. The networks were implemented in Torch, and the code is available on project
page.
Diverse batches As highlighted in Section 5, the standard way of sampling batches for
temporal models results in high correlation between data points leading to a breakdown of
the SGD. To understand the importance of having many diverse examples from multiple
videos, we compare the convergence of our method to two alternatives using homogeneous
batches: CNN+LSTM from Ng et al. [292], and a synchronous version of our method,
where each batch contains full videos (only three videos fit into each mini-batch). We do
synchronous message passing until convergence before calculating gradients for backprop.
Figure 5.6 shows that our asynchronous training method, containing more diverse training
batches, has faster and more stable convergence.
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Figure 5.6: Convergence of our method compared to other methods that capture temporal
structure. Our asynchronous training method contains more diverse batches, has faster and
more stable convergence, and reaches higher accuracy on the test set.

5.3.1 Video Classification

Given a video, the task here is to verify whether it contains one or several of the 157 activity
categories. Classification accuracy is measured with the standard mean average precision
(mAP) criterion, where a prediction is given for each video. This task has been shown to be
highly challenging, with the state-of-the-art non-ensemble methods reaching an mAP of
only 17.2%, particularly as each video in this dataset has a sequence of multiple fine-grained
activities with a real-world long-tailed activity distribution.

We trained ourmodels using the provided training split following the procedure outlined
in Section 5.2. To make predictions for the whole video, we marginalize out everything
except the activity category for 25 equidistant frames in the video. The score for each activity
category is themaximumacross all frames following the setup from [223]. In our analysis, we
include the provided non-ensemble baselines from [223] as well as the following additional
baselines:

Two-Stream++. We reimplemented the network described in [223], which follows Si-
monyan et al. [227], with the same parameters. We added data augmentation and fine-tuned
all layers of the network. The performance of only the RGB stream is included (RGB++).
We also consider Two-Stream Extended which is the same network, but the Flow network was
trained for 25 times more iterations than the RGB network (two weeks of computation on a
Titan X GPU). Combined with the augmentation, we found this to non-trivially increase the
accuracy.

Two-Stream+LSTM. We followed the method outlined in [292] to jointly train a LSTM
on top of the two-stream network. We trained both an RGB and an Optical Flow network
using the same setup from [223]. The trained networks from Two-Stream++ were used to
initialize the models.

Table 5.1 displays the accuracy obtained by our method along with the baselines. Our
proposed approach obtains an mAP of 22.4% substantially outperforming the Two-stream
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Approach mAP Approach mAP
Random [223] 5.9 RGB++ 15.6
C3D [244] 10.9 Two-Stream++ 16.8
AlexNet [122] 11.3 Two-Stream+LSTM 17.8
IDT [264] 17.2 Two-Stream Extended 18.6
Two-Stream [226] 14.3 Ours (RGB Only) 18.3

Ours 22.4

Table 5.1: Video classification results on Charades [223]. The left shows the published
baselines from [223] and the right show additional new baselines. Our proposed approach
outperforms all competing methods on this dataset.

Washing a window
Holding a broom

Closing a refrigerator
Putting broom somewhere

 Opening a refrigerator
 Tidying up with a broom

 Lying on a bed
 Taking a broom

 Washing a mirror
 Drinking from a cup

 Throwing shoes

 Closing a window
 Fixing a light

 Someone is smiling
 Working at a table

 Washing a cup
 Smiling in a mirror

 Turning off a light
 Lying on the floor

 Wash dishes

mAP Difference
-7.0 +34.1

mAP Difference
-7.0 +34.1

Figure 5.7: The classes with the highest positive and negative difference between our method
and Two-Stream (no structure). Our method does better on many classes, without doing
much worse on any. In particular, activities that have temporal structure, such as Open-
ing/Closing a refrigerator have significantly higher performance, since our model can reason
jointly about those.

Extended baseline at 18.6% mAP, and the IDT baseline at 17.2%. Our method reasons over
significantly larger timescales and multiple aspects of the activities. To ascertain this, we
highlight in Figure 5.7, the activity classes with the highest positive and negative difference
between our method and the Two-Stream network. It is interesting to note that two of
those activities are opening and closing a refrigerator, that arguably have a significant causal
structure (an open refrigerator was opened at some point), which our model harnesses to
significantly increase the accuracy.
Ablation studies To study the contribution of different model parts, we also train ablated
versions of our model separately choosing the best hyperparameters for each version. In
addition to our model with only RGB or Flow, we also consider dropping φXX (i.e., no
sequential information), φXI (i.e., no intent), both (i.e., only semantic information), and
further dropping φX (i.e., dropping all structure). Figure 5.8 shows that semantic reasoning
improves over the baseline. Further, while both φXI and φXX capture temporal information,
they are complementary.
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Figure 5.8: Ablation analysis for our proposed model. Y-axis is video classification mAP %.
Each factor helps in improving the overall model performance. φ(P ) indicates dropping the
‘progress’ term within the semantic factor φX .

Category: Sitting in a chair
Category: Reading a book
Category: Holding a book

Action: sit
Action: hold
Object: book

Figure 5.9: Model predictions for a sample video. We see the interplay between categories,
objects and actions over time. For example, model becomes confident about the action sit
early, which aids the understanding of Sitting in a chair once the chair becomes visible, and
helps predicting Reading a book. Darker colors represent higher likelihood, and we average
predictions to correspond to each frame.

5.3.2 Temporal Localization
To measure the ability of the methods to temporally localize and understand when exactly
activities happen, we adapt the benchmark of [223] to evaluate with the same mAP metric
but on individual frames. That is, instead of having a single prediction per video, evaluation
is now split into 25 equidistant timepoints having zero or more activities, and the models
make a prediction for each of those∗. We find this way of evaluating localization robust to
annotation ambiguity, and informative for challenging datasets. All hyperparameters were
kept equal between localization and classification experiments. All baselines are run on 75
frames across the video, and then every third frame selected for a total of 25 frames. We also
considered methods with post-processing where the model predictions for the 75 frames are
averaged across 30 frames to obtain more spatial consistency, and then 25 frames selected as
before.

Table 5.2 shows that our method outperforms the alternatives, including the LSTMmodel
which has been shown to be a powerful temporal modeling tool, but challenging to train on
top of a two-stream network due to correlations between consecutive samples. These results
demonstrate the our method is tractable way of training end-to-end structured models to
understand activities. Interestingly, our method still benefits from adding post-processing,
significantly more than the LSTM baseline, likely since our method is reasoning on larger
time-scales. This suggests that our model could further benefit from joint training with
additional kernels in the temporal term.
∗This evaluation code has been included as a part of the Charades dataset (allenai.org/plato/charades/).
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Random RGB Two-Stream++ Two-Stream Two-Stream Ours+LSTM Extended
Standard 2.42 7.89 8.94 9.60 9.37 9.69

Post-processing 2.42 9.05 10.9 10.4 11.6 12.8

Table 5.2: Temporal localization results (mAP %) on the Charades [223] dataset. Our
proposed method outperforms the LSTM model, and is also more tractable to train at a
large-scale.

Cluster 1 Cluster 2 Cluster 3

Figure 5.10: To visualize the learned intent, we cluster videos based on intent. In Cluster
1, the model captures the intent of get up from lying down. In Cluster 2, folding clothes is
followed by putting them away, and Cluster 3 shows cleaning with a broom/vacuum/towel,
followed by picking up things.

Qualitative visualization A key advantage of our model is the structured understanding of
videos in terms of multiple aspects, such as action sequences, objects, and even intentions.
To visualize this, we display predictions over time in Figure 5.9 for the three most confident
activity categories, twomost confident actions, and themost confident object. More examples
are presented in the Appendix.
Interpretation of Intent In our model, the intent I is a continuous distribution over the
latent variables. To get an insight into how our model learns the intent, we ran a simple
experiment that clustered videos in the dataset that have the most similar inferred intent
distributions. The first cluster in Figure 5.10 shows the model captures the simple intent that
the person intends to get up from lying down. In the videos, these actions are 10-20 seconds
apart, demonstrating that the intent helps reason over large time scales.

In order to further analyze the ‘intent’ variable, we plot the t-SNE embedding of the
intent variable for the videos in the test set. We see that there is clear clustering of similar
videos in Fig. 5.11a. We also annotated 10 types of intent (100 videos total). More details
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Figure 5.11: t-SNE visualization for the learned intent. Each point corresponds to a video.
In a) it is colored based on its activity shared by the most of the 10 nearest neighbors (each
video has multiple actions). In b) videos with 6 annotated intent types are emphasized with
larger points colored by the type.

are presented in the Appendix. We observe that the intent representation preserves some of
the intent types in Fig. 5.11b. Quantitatively, even without mitigating outliers, the average
distance (in 10−3) between pairs of videos within an intent type was 6.02 compared to 7.25
(σ=1.06) for any points, and the difference is significant for 5 of 10 intent types (p=0.1).
This tentatively suggest that the intent captures interesting structure in the data, and we
hope this will encourage future work.

5.4 Discussion
We have presented a deep-structured model using a fully-connected temporal CRF that
not only models semantic aspects of activities but also reasons about long-term temporal
relations. We also presented an asynchronous stochastic inference algorithm that circumvents
a key bottleneck in the large-scale end-to-end model learning. Using our proposed method,
we have demonstrated impressive activity classification and temporal localization results on
a challenging dataset of realistic activities.
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5.5 Appendix
This appendix contains the following additional content:

1. Description of the CRF.

2. Derivation of the update equations.

3. Details of the learning algorithm.

4. Additional implementation details.

5. Details about intent analysis.

6. Additional visualizations of output predictions.

5.5.1 Description of the CRF
We create a CRF which predicts activity, object, etc., for every frame in the video. For
reasoning about time, we create a fully-connected temporal CRF, referred to as Asynchronous
Temporal Field in the text. That is, unlike a linear-chain CRF for temporal modelling (the
discriminative counterpart to Hidden Markov Models), each node depends on the state of
every other node in the graph. We incorporate intention as another latent variable which is
connected to all the action nodes.

We encode multiple components of an activity. Each video with T frames is represented
as {X1, . . . , XT , I} where Xt is a set of frame-level random variables for time step t and I is
a random variable that represent global intent in the entire video. For clarity of derivation
Xt includes all frame level variables (Ct, Ot, At, Pt, St)

Mathematically we consider a random field {X, I} over all the random variables in our
model ({X1, . . . , XT , I}). We now list the complete description of the CRF.

CRF Variables:

• Random field {X, I} = {X1, . . . , XT , I}

• Frame Xt = {Ct, Ot, At, Pt, St}, Xt ∈ X ,X = C×O×A×P×S

– Category Ct ∈ C, C = {1, 2, ..., 157} (For each category in the dataset)
– Object Ot ∈ O,O = {1, 2, ..., 38} (Includes "No object")
– Action At ∈ A,A = {1, 2, ..., 33}

– Progress Pt ∈ P,P = {1, 2, 3} (Before, Middle, End)
– Scene St ∈ S,S = {1, 2, ..., 15}

• Intent I ∈ I, I = {1, 2, ..., NI} (NI = 30 is used here)
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Figure 5.12: The model captures interactions between all frames Xt and the intent I , that
is, a fully-connected model. Here shown for T = 5. We visualize some of the potentials
of the model, and where they fit into the graph. All φiXI share the same parameters, but
we calculate the gradients with respect for each of them separately below. For efficient
inference, we use a mean-field approximation presented below. A mean-field approximation
is a simpler distribution that is fit to the original distribution when needed.

CRF Potentials:

• φX : X 7→ R, equivalently: φX : C×O×A×P×S 7→ R

• φX decomposes as follows: φX (Ct, Ot, At, Pt, St)=φ(Ot, Pt)+φ(At, Pt)+φ(Ot, St)+φ(Ct, Ot, At, Pt)

– φ(Ot, Pt) : O×P 7→ R
– φ(At, Pt) : A×P 7→ R
– φ(Ot, St) : O×S 7→ R
– φ(Ct, Ot, At, Pt) : B 7→ R, here B is all configurations of Ct, Ot, At, Pt that exist in
the training data.

• φXI : X×I 7→ R (specifically we parametrize this as φXI : O×I 7→ R)
• φXX : X×X 7→ R (specifically we parametrize this as φXI : O×O 7→ R)

The complete distribution of the model is:

P (X, I) =
1

Z
exp

∑
i

φiX (xi) +
∑
i

φiXI(xi, I) +
∑
i

∑
j 6=i

φiXX (xi, xj)

 (5.11)

where φXX (xi, xj) is the potential between frame i and frame j, and φXI(xi, I) is the potential
between frame i and the intent. For notational clarity φX (xi) incorporates all potentials for
Ct, Ot, At, Pt, St. The model is presented in Figure 5.12.

5.5.2 Derivation of the Update Equations
Given an input video V={V1, . . . , VT }, our goal is to estimate the maximum a posteriori
labeling of the random field by marginalizing over the intent I ,∑I P (X, I|V ) as discussed
above. In the following derivations we omit the conditioning on V and write P (X, I) and
φ(X, I).

Before we present the update equations and gradients, we define the following messages
which will be used in the final version of the following equations for clarity in their presen-
tation. Messages are a term used for cached computations sent between different functions
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in a dynamic programming fashion. In the following derivations, X∗ is used to explicitly
denote the ground truth used for training. Plain X is used to refer to the variable.
Outgoing Messages (Messages that are calculated from a single frame)

FAj(xj) = EU∼Qj [µ(xj , U)] (5.12)
FBj(xj) = EU∼Qj [µ(U, xj)] (5.13)
Hj(I) = EU∼Qj [φXI(U, I)] (5.14)
H∗j (I) = φXI(x∗j , I) (5.15)
Kj(xj) = Qj(xj) (5.16)
K∗j (xj) = 1xj=x∗j (5.17)

Incoming Messages (Messages that are calculated from messages from multiple frames
and used for the computation of a single frame)

FAi(xi) =
∑
j>i

EUj∼Qj [µ(xi, Uj)]K(vi, vj) =
∑
j>i

FAj(xi)K(vi, vj) (5.18)

FBi(xi) =
∑
j<i

EUj∼Qj [µ(Uj , xi)]K(vj , vi) =
∑
j<i

FBj(xi)K(vj , vi) (5.19)

Hi(I) =
∑
j 6=i

EUj∼Qj [φXI(Uj , I)] =
∑
j 6=i

Hj(I) (5.20)

H∗i (I) =
∑
j 6=i

φXI(x∗j , I) =
∑
j 6=i

H∗j (I) (5.21)

KAi(xi) =
∑
j>i

Qj(xj)K(xi, xj) =
∑
j>i

Kj(xi) (5.22)

KA∗i (xi) =
∑
j>i

1xj=x∗jK(xi, x
∗
j ) =

∑
j>i

K∗j (xi) (5.23)

KBi(xi) =
∑
j<i

Qj(xj)K(xj , xi) =
∑
j<i

Kj(xi) (5.24)

KB∗i (xi) =
∑
j<i

1xj=x∗jK(x∗j , xi) =
∑
j<i

K∗j (xi) (5.25)

Instead of computing the exact distribution P (X, I) presented above, the structured
variational approximation finds the distribution Q(X, I) among a given family of distribu-
tions that best fits the exact distribution in terms of KL-divergence. By choosing a family
of tractable distributions, it is possible to make inference involving the ideal distribution
tractable. Here we use Q(X, I) = QI(I)

∏
iQi(xi), the structured mean-field approxima-

tion. More details on mean-field approximation are presented section 11.5 generic update
equation for Q (Equation 11.54 in [116]) is:

Q(xi) ∝ exp
{
EX−i∼Q [logP (xi|X−i)]

} (5.26)

where X−i refers to all variables except xi. Using Eq. 5.11 along with Eq. 5.26 we get the

75



following update equations:

Qi(xi) ∝ exp

{
φX (xi) + EU∼QI [φXI(xi, U)] +

∑
j>i

EUj∼Qj [φXX (xi, Uj)] +
∑
j<i

EUj∼Qj [φXX (Uj , xi)]

}

∝ exp

{
φX (xi) + EU∼QI [φXI(xi, U)] + FAi(xi) + FBi(xi)

}
(5.27)

QI(I) ∝ exp

{∑
j

EUj∼Qj [φXI(Uj , I)]

}
(5.28)

∝ exp

{
Hi(I) +Hi(I)

}
(Here i refers to the frame of interest, but any choice of i holds)

(5.29)

where Qi is marginal distribution with respect to each of the frames, and QI is the marginal
with respect to the intent.

5.5.3 Details of the learning algorithm
Training a deep CRF model requires calculating derivatives of the objective in terms of each
of the potentials in the model, which in turn requires inference of P (X, I|V ). The network is
trained to maximize the log-likelihood of the data:

l(X∗) = log
∑
I

P (X∗, I|V ) (5.30)

= log
∑
I

P̃ (X∗, I|V )

Z(V )
(5.31)

= log
∑
I

P̃ (X∗, I|V )− logZ(V ) (5.32)

Z(V ) =
∑
I

∑
X

P̃ (X, I|V ) (5.33)

where we explicitly write out the partition function Z(V), and P̃ () is the unnormalized
version of P (). Again, we use X∗ to explicitly refer to the ground truth labels. As before,
V is omitted from the following derivations. The goal is to update the parameters of the
model, for which we need gradients with respect to the parameters. Similar to SGD, we find
the gradient with respect to one part of the parameters at a time, specifically with respect to
one potential in one frame. That is, φiX (x) instead of φX (x). The partial derivatives of this
loss with respect to each of the potentials are as follows.

Updating the frame potential φX

The frame potential φX (xi) incorporates the interplay between activity category, object, ac-
tion, progress and scene, and could be written explicitly as φX (Ct, Ot, At, Pt, St). In practice
this potential is composed of unary, pairwise, and tertiary potentials directly predicted by
a CNN. We found predicting only the following terms to be sufficient without introduc-
ing toomany additional parameters: φX (Ct, Ot, At, Pt, St)=φ(Ot, Pt)+φ(At, Pt)+φ(Ot, St)+
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φ(Ct, Ot, At, Pt) where we only model the assignments seen in the training set, and assume
others are not possible.

Let us first derive the update equation for φX as a whole, and then demonstrate how to
update each of the individual potentials. In the following derivation, we simply take the
partial derivative where appropriate and iteratively use the chain rule.

∂l(X∗)

∂φîX (x̂)
=

1∑
I P̃ (X∗, I)

(∑
I

P̃ (X∗, I)

)
∂
(∑

i φ
i
X (x∗i )

)
∂φîX (x̂)

− ∂ logZ

∂φîX (x̂)
(5.34)

= 1x̂=x∗ −
1

Z

∑
X

∑
I

∂P̃ (X, I)

∂φîX (x̂)
(Denominator and numerator cancel)

(5.35)

= 1x̂=x∗ −
1

Z

∑
X

∑
I

1x̂=xP̃ (X, I) (5.36)

= 1x̂=x∗ −
∑
X

∑
I

1x̂=xP (X, I) (5.37)

≈ 1x̂=x∗ −
∑
X

∑
I

1x̂=xQ(X, I) (Using the mean-field) (5.38)

= 1x̂=x∗ −
∑
X

∑
I

1x̂=xQI(I)
∏
i

Qi(xi) (5.39)

= 1x̂=x∗ −Qî(x̂) (Since
∑
xi

Qi(xi) = 1) (5.40)

where we use X∗ to refer to the ground truth labels, and X̂ to refer to the variables we are
taking the partial derivative with respect to. We note that ∂(

∑
i φ

i
X (x∗i ))

∂φîX (x̂)
= 1x̂=x∗ . Intuitively

this implies the partial gradient is the difference between the ground truth and the model
prediction. This equation is easily extended to update each of the individual potentials as
follows:

∂l(X∗)

∂φî(Ôt, P̂t)
= 1(Ôt,P̂t)=(O∗t ,P

∗
t )
−
∑
Ct

∑
At

∑
St

Qî(X
∗
t ) (5.41)

∂l(X∗)

∂φî(Ât, P̂t)
= 1(Ât,P̂t)=(A∗t ,P

∗
t )
−
∑
Ct

∑
Ot

∑
St

Qî(X
∗
t ) (5.42)

∂l(X∗)

∂φî(Ôt, Ŝt)
= 1(Ôt,Ŝt)=(O∗t ,S

∗
t )
−
∑
Ct

∑
At

∑
Pt

Qî(X
∗
t ) (5.43)

∂l(X∗)

∂φî(Ĉt, Ôt, Ât, P̂t)
= 1(Ĉt,Ôt,Ât,P̂t)=(C∗t ,O

∗
t ,A
∗
t ,P
∗
t )
−
∑
St

Qî(X
∗
t ) (5.44)

where we marginalize out the variables that are not a part of each potential. Again, Xt

incorporates all the frame variables {Ct, Ot, At, Pt, St}. These partial derivatives are passed
down the CNN (backprop) to update the parameters of the network.
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Updating the frame-intent potential φXI

Similarly to φX we proceed as follows:

∂l(X∗)

∂φîXI(x̂, Î)
=

1∑
I P̃ (X∗, I)

(∑
I

P̃ (X∗, I)1x̂=x∗1Î=I

)
− ∂ logZ

∂φîXI(x̂, Î)
(5.45)

=
P̃ (X∗, Î)∑
I P̃ (X∗, I)

1x̂=x∗ −
∂ logZ

∂φîXI(x̂, Î)
(5.46)

=
exp

{∑
i φ

i
XI(x∗i , Î)

}
∑
I exp

{∑
i φ

i
XI(x∗i , I)

}1x̂=x∗ − ∂ logZ

∂φîXI(x̂, Î)
(Terms without I cancel)

(5.47)

=
exp

{∑
i φ

i
XI(x∗i , Î)

}
∑
I exp

{∑
i φ

i
XI(x∗i , I)

}1x̂=x∗ − 1

Z

∑
X

∑
I

∂P̃ (X, I)

∂φîXI(x̂, Î)
(5.48)

=
exp

{∑
i φ

i
XI(x∗i , Î)

}
∑
I exp

{∑
i φ

i
XI(x∗i , I)

}1x̂=x∗ − 1

Z

∑
X

∑
I

P̃ (X, I)1x̂=x1Î=I (5.49)

=
exp

{∑
i φ

i
XI(x∗i , Î)

}
∑
I exp

{∑
i φ

i
XI(x∗i , I)

}1x̂=x∗ −∑
X

∑
I

P (X, I)1x̂=x1Î=I (5.50)

≈
exp

{∑
i φ

i
XI(x∗i , Î)

}
∑
I exp

{∑
i φ

i
XI(x∗i , I)

}1x̂=x∗ −∑
X

∑
I

Q(X, I)1x̂=x1Î=I (Mean-field approximation)

(5.51)

=
exp

∑
i φXI(x∗i , Î)∑

I exp
∑
i φXI(x∗i , I)

1x̂=x∗ −Qî(x̂)QI(Î) (5.52)

=
exp

{
H∗
î
(Î) +H∗

î
(Î)
}

∑
I exp {H∗i (I) +H∗i (I)}

1x̂=x∗ −Qî(x̂)QI(Î) (5.53)

This equation can be interpreted in that it captures the difference between the distribution
of the intent given the ground truth, and the predicted distribution of the intent.

Updating the frame-frame potential φXX

The pairwise potentials φXX (xi, xj) for two time points i and j in our model have the form:

φXX (xi, xj) = µ(xi, xj)
∑
m

w(m)k(m)(vi, vj) (5.54)

= µ(xi, xj)k(vi, vj) (5.55)

where µ models the asymmetric affinity between frames, w are kernel weights, and each
k(m) is a Gaussian kernel that depends on the videoframes vi and vj which are omitted from
this notation for convenience, but the probability and the potentials are conditioned on V.
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Here we use a single kernel that prioritises short-term interactions:

k(vi, vj) = exp

(
− (j − i)2

2σ2

)
(5.56)

The parameters of the general asymmetric compatibility function µ(xi, xj) are learned from
the data, and σ is a hyper-parameter chosen by cross-validation. The parameters of µ are
learned as follows, and this could be extended to a more general form of φXX :

∂l(X∗)

∂µî(x̂, b̂)
=

1∑
I P̃ (X∗, I)

(∑
I

P̃ (X∗, I)

)
∂

∂µî(x̂, b̂)

∑
j>î

φiXX (x∗i , x
∗
j ) +

∑
j<î

φiXX (x∗j , x
∗
i )

− ∂ logZ

∂µî(x̂, b̂)

(5.57)

=
∑
j>î

1x̂=x∗1b̂=x∗j
k(vî, vj) +

∑
j<î

1x̂=x∗1b̂=x∗j
k(vj , vî)−

1

Z

∑
X

∑
I

∂P̃ (X, I)

∂µî(x̂, b̂)

(5.58)
=
∑
j>î

1x̂=x∗1b̂=x∗j
k(vî, vj) +

∑
j<î

1x̂=x∗1b̂=x∗j
k(vj , vî)

− 1

Z

∑
X

∑
I

P̃ (X, I)
∑
i

∑
j>i

1x̂=x1b̂=xjk(vi, vj) +
∑
j<i

1x̂=x1b̂=xjk(vj , vi)


(5.59)

=
∑
j>î

1x̂=x∗1b̂=x∗j
k(vî, vj) +

∑
j<î

1x̂=x∗1b̂=x∗j
k(vj , vî)

−
∑
X

∑
I

QI(I)
∏
i

Qi(xi)
∑
i

∑
j>i

1x̂=x1b̂=xjk(vi, vj) +
∑
j<i

1x̂=x1b̂=xjk(vj , vi)

 (Mean-field)

(5.60)
∂l(X∗)

∂µî(a, b)
=
∑
j>î

1a=x∗
î
1b=x∗j k(vî, vj)−Qî(a)

∑
j>î

Qj(b)k(vî, vj) +
∑
j<î

1b=x∗
î
1a=x∗j k(vj , vî)−Qî(b)

∑
j<î

Qj(a)k(vj , vî)

(5.61)
= 1a=x∗

î
KA∗

î
(b)−Qî(a)KAî(b) + 1b=x∗

î
KB∗

î
(a)−Qî(b)KBî(a) (5.62)

This update equation consists of two symmetric parts, one for influence from frames
before, and one for influence from frames after. Intuitively, this captures the difference in
the true affinity between frame i and all frames j on the one hand, and on the other hand
the predicted affinity, where the affinity is weighted by the kernel.

5.5.4 Additional implementation details
A more detailed algorithmic description of the model is presented in Algorithm 3. More
details can be found on the project page https://github.com/gsig/temporal-fields/.
Training time Training the models took a while: The RGB stream of the Two-Stream model
converged after only 0.2 epochs (20% of the total data, randomly selected) of the training
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Algorithm 3 Learning for Asynchronous Temporal Fields (Detailed)
1: Given videos V
2: while not converged do
3: for each example in mini-batch do
4: Sample frame v ∈ V ⊆ V that has index i
5: Calculate messages with Eq. 5.18-5.25, approximated by Eq. 9 (above)
6: Alternate updating Qi and QI until convergence
7: Find gradients with Eqs. 5.40,5.53,5.62
8: Backprop gradients through CNN
9: Store computations of Eq. 5.12-5.17 for later use
10: Update CNN using accumulated gradients

data, but training the Flow stream needed 4.0 epochs to reach the best performance. Our
model needed 0.7 epochs for the RGB stream and 8.3 epochs for the Flow stream. Each 0.1
epoch is approximately 1450 batches of size 256 (all labelled frames at 8 FPS), and takes
between 3-8 hours depending on hardware and model. Our learning rate schedule was
chosen by finding the largest learning rate that did not cause divergence, and then making
sure the learning ratewas decayed by a factor of 100 over the course of training. Investigations
into training these kinds of models faster are likely to yield substantial benefits.
Training Deep Models with Latent Variables One of the pursuits of this work was intro-
ducing latent variables into a deep framework, the intent. The gradient for the frame-intent
potential, contains predictions of the model on both sides, which is a common problem
in deep reinforcement learning, where a variety of tricks such as target fixing, double Q-
learning, and gradient clipping, are used to combat the instability caused by this. We found
that simply severing the dependency of the frame-intent variable on the input data got rid of
the instability, and still gave acceptable performance on the RGB stream, however we found
that this did not give good performance on the Flow stream.

In order to train the network with the frame-intent potential depending on the input data,
we experimented with a variety of techniques from the reinforcement learning literature.
Only two methods were found to help: Alternating target and prediction networks, and
regularization. For alternating target and prediction networks, the network predicts two
frame-intent potentials, and then the network randomly chooses which to use as the target,
and which to use as the source, and backprop only through one of them. For regularization,
we enforce the frame-intent potential to be close to zero, similar to weight decay (set to
4 · 10−4). Regularization was found to be give slightly better performance, and easy to
implement/tune, and was used here.

5.5.5 Details about intent analysis
To analyze the learned intent variable, we defined 10 types of intent: getting something to eat,
clean the living space, getting dressed, getting something from storage, get informed, get out of bed,
leave the house, photograph something, relaxing, working. To identify videos corresponding to
the intent, we used keyword related to the intent (such as closet and clothes for getting
dressed) and manually verified that the content of the video matched the intent. The analysis
demonstrates that the latent intent variables captures non-trivial structure of the label space,
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but precisely understanding goal-oriented behavior compared to simple activity analysis
remains important future work.

5.5.6 Additional Visualizations of Output Predictions
We present here additional visualizations from the model. In Figure 5.13 we present in the
same way as Figure 9 (above). That is, we present the 3 most confident categories, 2 most
confident actions, and 1 most confident object. For example, in the first row we can see that
once the light turns on in the room and the couch becomes visible the category Sitting on
a sofa/couch fires, which in turn increases the likelihood of sitting in the next few frames.
Furthermore, in Figure 5.14 we present similar visualizations, but only the 6 most confident
categories, to further understand the interplay between the activity categories. In the first
row, we can see a video of a person walking towards the camera, and we can see how one
after the other the model recognizes cup, phone, and sandwich, and reasons about these
connected activities. Finally, in Figure 5.15 we present a breakdown of the mean average
precision (mAP) by our model for each class of the dataset, sorted by the mAP of our model.
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Figure 5.13: Visualizations of the model predictions for the 3 most confident categories, 2
most confident actions, and 1 most confident object. Darker colors indicate higher likelihood.
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Figure 5.14: Visualizations of the model predictions for the 6 most confident categories.
Darker colors indicate higher likelihood.
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Holding a box
Lying on the  floor
Smiling at a  book

Taking a blanket from somewhere
Tidying up a blanket/s

Tidying up a c lose t/cabine t
Putting a cup/glass/bottle  somewhere

Snuggling with a pillow
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Someone  is  running somewhere
Taking a broom from somewhere

Tidying some clothes
Putting a dish/es  somewhere

Watching something/someone/themse lves  in a mirror
Taking a dish/es  from somewhere

Putting something on a she lf
Holding a towel/s

Taking a cup/glass/bottle  from somewhere
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Someone  is  holding a paper/notebook
Holding a bag
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Throwing clothes  somewhere

Putting some food somewhere
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Taking food from somewhere
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Someone  is  undress ing
Holding a blanket

Someone  is  dress ing
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Someone  is  eating something
Holding a vacuum

Someone  is  smiling
Someone  is  awakening somewhere

Someone  is  s tanding up from somewhere
Holding a laptop
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Snuggling with a blanket
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Sitting in a chair

Clos ing a re frigerator
Holding a broom
Sitting at a  table

Opening a re frigerator
Tidying up with a broom

Walking through a doorway
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Taking a bag from somewhere
Throwing a towe l/s  somewhere

Holding some medicine
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Taking a sandwich from somewhere
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Putting a book somewhere
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Putting a bag somewhere

Taking paper/notebook from somewhere
Taking a book from somewhere
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Putting a box somewhere
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Taking a laptop from somewhere
Putting shoes  somewhere

Taking a phone/camera from somewhere
Holding a shoe/shoes

Taking a pillow from somewhere
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Watching/Looking outs ide  of a  window
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Figure 5.15: mAP for our model for all classes, sorted by mAP. The column on the right is
the continuation of the left column.
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Chapter 6

Modeling Week-long Activities

If we want to model activities that are much longer than the 30 second activities addressed
in the previous chapter, we need to change our approach. For example, what does a typical
visit to Paris look like? Do people first take photos of the Louvre and then the Eiffel Tower?
Can we visually model a temporal event like “Paris Vacation” using current frameworks?
This activity, or event, can be measured in weeks, not seconds. We explore how we can
automatically learn the temporal aspects, or storylines of visual concepts from web data.
Previous attempts focus on consecutive image-to-image transitions and are unsuccessful at
recovering the long-term underlying story. Our novel Skipping Recurrent Neural Network
(S-RNN) model does not attempt to predict each and every data point in the sequence, like
classic RNNs. Rather, S-RNN uses a framework that skips through the images in the photo
stream to explore the space of all ordered subsets of the albums via an efficient sampling
procedure. This approach reduces the negative impact of strong short-term correlations, and
recovers the latent story more accurately. We show how our learned storylines can be used
to analyze, predict, and summarize photo albums from Flickr. Our experimental results
provide strong qualitative and quantitative evidence that S-RNN is significantly better than
other candidate methods such as LSTMs on learning long-term correlations and recovering
latent storylines. Moreover, we show how storylines can help machines better understand
and summarize photo streams by inferring a brief personalized story of each individual
album.

In the past few years, there has been a remarkable success in learning visual concepts [21,
39] and relationships [21,199] from images and text on the web. In theory, this allows the
creation of systems that, given enough time and resources, can grow to know everything
there is to learn. However, most of these approaches are still largely centered around single
images and focus on learning static semantic relationships such as is-part-of [21], is-eaten-
by [199] etc. Moreover, many semantic concepts have not only a visual aspect but also a
temporal aspect or even storylines associatedwith them. For example, a visual representation
of Wedding would involve guests entering the venue, followed by exchange of rings and
finally celebrations in the wedding reception. How can we learn such visual storylines from
the web as well?

There are two aspects to these storylines: the visual aspect, often represented by modes
in visual appearances, and the temporal aspect, which is the temporal order in which these
modes appear. How do we capture both of these aspects from the web data? User photo
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A)

“Paris”
B)

C)

Figure 6.1: Given a concept, our algorithm can automatically learn both its visual and
temporal aspect (storylines) from the web. To do this, we retrieve related albums from Flickr
and apply our S-RNN model to automatically discover long-term temporal patterns. Here is
a visualization of the storylines the model learned for the concept Paris. For visualization,
we distill the top images that a trained S-RNN model prefers by sampling storylines from a
Paris photo album. Denoting the images as nodes in a graph, we visualize the most common
pairwise transitions using arrowed lines. On the right, we sample three probable storylines
(A,B,C) that include these 10 images. We can see that the Eiffel Tower is prominent early in
the story followed by sightseeing of common landmarks (Arc de Triomphe and others) and
finally visiting the Lourve. On a map of Paris, the Eiffel Tower and the Arc de Triomphe are
indeed in close proximity

albums in Flickr are a perfect example of web data that capture both aspects. First, most
Flickr images are supplied with sufficiently informative tags, like Paris [94]. Second, meta-
information like time is usually available. In particular, the photos in each album are taken
in ordered sequences, which hypothetically embed common storylines for concepts such
as Paris. Therefore, we propose to utilize Flickr photo streams across thousands of users
and learn underlying visual storylines associated with these concepts. What is the right
representation for these storylines and how do we learn it?

Recently, there has been momentous success in using CNN [122] features along with
Recurrent Neural Networks [46,145, 212,282,285, 300] (RNNs) to represent those temporal
dynamics in data [22,42, 70, 105, 251, 254, 283,301]. We aim to extend that idea to modeling
the dynamics in storylines. In theory, RNN canmodel any sequence, but has limitedmemory
in practice, and can only learn short-term relationships due to vanishing gradients [13].

Our Skipping Recurrent Neural Network (S-RNN) skips through the photo sequences to
extract the common latent stories, instead of trying to predict each and every item in the
sequence. This effectively alleviates the artifacts of short-term correlations∗ (e.g. repetition)
between consecutive photos in the stream, and focuses the learning effort towards the
∗In our Flickr dataset, 71.1% of consecutive images are above average (cosine) similarity.
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Guests Enter Ceremony Begins Marriage Celebration

River Thames St Paul's Cathedral Big Ben The London Eye

Figure 6.2: Given a concept, such asWedding, our algorithm can retrieve an ordered collection
of images to describe that concept (Sec. 6.3). In this figure we show the collections discovered
by our model for two concepts. For example, for Wedding (first row), it picks images
that represent four steps: guests enter; ceremony begins, marriage and celebration. For
travel-related concepts like London, it prefers iconic landmarks for the story. The subtitles
are manually provided for visualization. This is distilled from 1000 photo albums. More
examples are provided in the appendix.

underlying story. This solution is complementary to, and different from, more complex RNN
architectures such as LSTMs [86] that still focus on learning transitions between consecutive
images. Similar to clustering, the S-RNN model can be efficiently trained in an unsupervised
manner to learn a global storyline and infer a private story for each album. Different from
most clustering techniques, S-RNN inherits the power of RNNs that can capture the temporal
dynamics in the data.

We evaluate the effectiveness of our storyline model by comparing the storylines with
baselines. In addition we evaluate the storyline model on two applications: a) image pre-
diction [112, 113]; and b) photo album summarization [35, 109, 148, 160]. Constructing a
convincing storyline for a concept of interest requires both visual and temporal aspects.
Therefore, algorithms need to retrieve a diverse collection of images, with the right order-
ing among them. For image prediction, we show that our model is particularly suited for
discovering the long-term correlations buried under the short-term repetitions in Flickr
albums, while other approaches do not. Finally in the summarization task, the goal is to take
images in a single photo album and select a small summary of those. A typical example is a
series of photos, taken by a family on their visit to Paris, visiting all the iconic landmarks,
such as the Eiffel Tower. Classically, summarization is approached by collecting a dataset of
videos/albums and their associated summaries generated by people [26, 109, 111, 200, 281],
in order to learn how to make a summary in a supervised way. This process is, however,
considerably laborious. In this chapter, we specifically experiment with the hypothesis that
a quality summary of an album can be constructed by exploiting the similarities across
thousands of similar albums (e.g. Paris). Then a summary of the album is inferred by telling
a personalized version of the story.
Contributions. a) We present a newway of approaching sequence modeling with RNNs, by
exploring all ordered subsets of the data to avoid short-term correlations between consecutive
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Scuba Diving

Snowboarding

Safari

Figure 6.3: Given an individual photo album, our algorithm can summarize the photo album
with a ordered collection of images that capture the album in terms of its underlying concept,
by first learning about the concept from thousands of albums. (Sec. 6.3). In this figure we
show the summaries generated for three photo albums. One about a Safari, the second about
Scuba Diving, and the third Snowboarding. More examples are provided in the appendix.

elements in the sequence. b) We present the novel S-RNN architecture that efficiently
implements this idea on web-scale datasets. c) We demonstrate that this method can learn
visual storylines for a concept (e.g. Paris) from the web, by showing state-of-the-art results
on selecting representative images, long-term image prediction, and summarizing photo
albums.

6.1 Background
Learning storylines. The earliest form of storyline can be traced back to the 1970-80s, where
scripts [208] (structured representations of events, causation relationships, participants,
etc.) are used as knowledge backbones for tasks like text summarization and question
answering. Unfortunately, these rich knowledge structures require hand construction by
the experts, which fundamentally limits their usage in an open domain. This motivates
the recent developments of unsupervised approaches that can learn underlying storylines
automatically [18,151] from text. Inspired by this idea, ourwork aims to acquire the temporal
aspect of a concept automatically from images. Similar work in vision is limited by either
the scale of the data [262,281] or the domain to which the approach is applied [74]. Perhaps
the most similar work is [112, 113], where the storyline graphs are learned for Flickr albums.
However, our work differs in several important aspects. First, while [113] is an important
step in learning storylines, it focuses its learning effort on each and every pairwise transition,
but our method learns the long-term latent story. In fact, [113] could be extended using this
framework, but here we extend a standard RNNmodel. Second, our method requires no
a-priori clustering, feature independence, nor a Markov assumption, and does parameters
sharing like RNNs.
Temporal visual summarization. Summarizing video clips is an active area of research [245].
Many approaches have been developed seeking cues ranging from low-level motion and
appearances [17, 35, 160] to high level concepts [109, 132] and attentions [143]. This line
of research has been recently extended to photo albums, and more external factors are
considered for summarization besides the narrative structure. For example, in [228] the
authors put forward three criteria: quality, diversity, and coverage. Later, in [164] a system is
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proposed that considers the social context (e.g. characters, aesthetics) into the summarization
framework. Sadeghi et al. [200] also consider if a photo is memorable or iconic. Moreover,
most of these approaches are supervised, namely the associated summaries for videos/albums
are first collected by crowd-sourcing, then a model is learned to generate good summaries.
While performance-wise it may seem best to leverage human supervision and external factors
when available, practically it suffers serious issues like scalability and inconsistency in the
ground-truth collection process, and generalizablility when applied to other domains. On
the other hand, the task of summarization will be less ambiguous if the concept is given,
which is exactly what we want to explore here.
Sequential learning with RNNs. Recurrent neural networks [46] are a subset of neural
networks that can carry information across time steps. Compared to other models for
sequential modeling (e.g. hidden Markov models, linear dynamic systems), they are better
at capturing the long-range and high-order time-dependencies, and have shown superior
performance on tasks like language modeling [155] and text generation [237]. We extend
the network to model high dimensional trajectories in videos and user albums through the
space of continuous visual features. Interestingly, since our network is trained to predict
images several steps away, it can be viewed as a simple and effective way to learn long term
memories [86] and predict context [157] as well. Fundamentally, LSTM still looks at only
the next image and decides if it should be stored it in memory, but S-RNN reasons over
all future images, and decides which it should store in memory (greedy vs. global). We
outperform multiple LSTM baselines in our results. Furthermore, running LSTMs directly
on high-dimensional continuous features is non-trivial, and we present a network that
accomplishes that.

6.2 Learning Visual Storylines
Given hundreds of albums for a concept, our goal is to learn the underlying visual appear-
ances and temporal dynamics simultaneously. Once we have learned this by building upon
state-of-the-art tools, we can use it for multiple storyline tasks, and distill the explicit knowl-
edge as needed, such as in Fig. 6.1. In this section, we explain our novel S-RNN architecture
that is trained over all ordered subsets of the data, and show that this can be accomplished
with update equations equally efficient to original RNN. The full derivation of these update
equations by using the EM-method is presented in the appendix. We formulate the storyline
learning problem as learning an S-RNN. To understand S-RNN, we start by introducing the
basic RNN model.

Recurrent Neural Networks The basic form of RNN [46] models a time sequence by
decomposing the probability of a complete sequence into sequentially predicting the next
item given the history (in our application, this sequence is images in a temporal order).
Given a sequence of T images x1:T = {x1, . . . , xT },† the network is trained to maximize the

†For simplicity in notation, we assume a single training sequence, but in our experiments we use multiple
albums for one concept to discover common latent storylines.
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log-likelihood:

M∗ = arg max
M

log P(x1:T ;M)− λR(M)

where log P(x1:T ;M) =
∑
t

log P (xt+1|x1:t;M). (6.1)

HereM is the set of allmodel parameters, andR(·) is the regularizer (e.g. `2). The probability
P(·|·, ·) is task dependent, e.g. for language models it directly compares the soft-max output
yt with the next word xt+1 [155]. The standard optimization algorithm for RNNs is Back
Propagation Through Time [276, 277] (BPTT), a variation of gradient ascent where the
gradient is aggregated through time sequences.

The model consists of three layers: input, recurrent, and output. The input layer uses the
input xt to update the hidden recurrent layer ht using weightsWI . The recurrent layer ht
updates itself viaWR and predicts the output yt via weightsWO. The update function at
step twrites as follows:

ht = σ (WIxt + WRht−1) ; yt = ζ(WOht). (6.2)

Here σ(·) and ζ(·) are non-linear activation functions, e.g. sigmoid, soft-max, rectified linear
units [122], etc. All the history in RNN is stored in the memory ht. This assumes conditional
independence of xt+1 and x1:t given ht.

In practice, the recurrent layer ht has limited capacity and the error cannot be back
propagated effectively (due to vanishing gradients [13]). This can be a critical issue for
modeling sequences like photo streams—due to the high correlation between consecutive
images, where the dominant pattern in the short term is repetition. For example, people
can take multiple pictures of the same object (e.g. the Eiffel Tower or family members),
or the entire album is about things that are visually similar (e.g. artwork in the Louvre or
fireworks). This pattern is so salient that if an RNN is directly trained on these albums, the
signals of underlying storylines are largely suppressed. How to resolve this issue of learning
long-term patterns? One way is to regularize RNN with a diversity term [228]. However,
note that if an album is indeed single-themed, we still want visually similar images in the
storyline. Furthermore, Flickr tags are not perfect and noise in the album set can easily
distract the model.

Skipping Recurrent Neural Networks We now build upon the RNN framework to pro-
pose a skipping recurrent neural network model. Instead of learning each consecutive
transition, S-RNN chooses to learn a “higher-level” version of the story, and focuses its learn-
ing effort accordingly. The key underlying idea is to select the storyline nodes by skipping a
lot of images in the album and then modeling the transitions between the images selected as
nodes.

Formally, let us suppose x1:T represents the T images in the album, z1:N is the set of
indexes that represent the selected images for the storyline and the constantN is the number
of nodes in the storyline. Note thatN � T , zn ∈ {1, 2, . . . , T}, and zn < zn+1 since z defines
an ordered subset. Our goal is to learn the maximum likelihood model parameters (M) by
maximizing the marginal likelihood of the observed data. Therefore, our objective function
is:
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Figure 6.4: Our S-RNN model (unrolled in time). Instead of trying to predicting each and
every photo in the sequence (as in the basic RNN model), latent variables zn are introduced
into our model to skip through the photo sequences, which is an effective strategy to address
the local repetition issue (multiple pictures are taken for a single object like the Eiffel Tower)
and can help extract common latent stories in the entire set of albums related to a concept
(e.g. Paris). To overcome the high-dimensional regression problem, the loss is an softmax
loss over future images

M∗ = arg max
M

log
∑
z1:N

P(x1:T , z1:N ;M)− λR(M). (6.3)

We can factorize P(x1:T , z1:N ;M) as P(x1:T |z1:N ;M)P(z1:N ) where P(z1:N ) is a prior
on z. As described above, we use a simple prior on z that it is an ordered subset. Here we
make an assumption that the likelihood of a whole album is proportional to the likelihood
of the selected sub-sequence of images xz (that is, we assume P(x1:T |z;M) ∝ P(xz;M)).
Factorizing, and inserting this assumption into Eq. 6.3 we have:

M∗ = arg max
M

log
∑
z1:N

(∏
n

P
(
xzn+1

|xz1:n
;M

))
P(z1:N )− λR(M). (6.4)

We observe that this equation is starting to look similar to standard RNN (Eq. 6.1).

Maximizing the S-RNN Objective Maximizing the marginal likelihood over all possible
subsets of z is computationally intractable. Therefore, we make use of the Expectation
Maximization (EM) algorithm, and then sequentially factor the update equations. More
details of the EM derivation are given in the appendix. During the E-step, we sample z given
the current model, and use that to train the model in the M-step, as we would an RNN. We
initialize the EM-algorithm by setting z based on a randomly ordered subsets of images.

S-RNN Implementation Details Now that we know how to optimize the objective, the
only design choice left is the loss P

(
xzn+1 |xz1:n ;M

) (the data likelihood in Eq. 6.4). While
Gaussian likelihood is often used for real-valued regression, we recognize that the space of
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allowed future images is not infinite, but simply images after xzn , defined as Xn. Thus the
likelihood is defined as a softmax likelihood over the future images:

P
(
xzn+1

|xz1:n
;M

)
=

exp(yTnxzn+1
)∑

x∈Xn exp(yTnx)
(6.5)

where yn is the output of the network after step n. Effectively, this avoids modeling the
negative world as “everything except the ground truth” and instead models the negative
world as “other possible choices”. This significantly helps with high-dimensional data (fc7
features), since the possible image choices in an album are usually only few hundred, but
visual features few thousand.

In summary, during training and testing, z is sequentially sampled using the current
model (which skips through the sequence), and during training those samples used to
sequentially update the network with BPTT to maximize the objective. A visualization of
the idea can be found in Fig. 6.4. A full implementation of is available.

6.3 Experiments
Since there has been so little done in the area of learning storyline models and their applica-
tions, there are no established datasets, evaluation methodologies, or even much in terms of
relevant previous work to compare against. Therefore, we will present our evaluation in
two parts: (a) first, in Section 6.3, we directly evaluate how “good” our learned storyline
model is. Specifically, we ask the Amazon Mechanical Turk (AMT) users how good our
storyline model is compared to a baseline in terms of the representativeness and the diversity
of image nodes in the storyline model; (b) next, in Section 6.3 and Section 6.3, we evaluate
our storyline model for two applications: long-term prediction and album summarization.
For these tasks, we show qualitative, quantitative, and user studies to demonstrate the
effectiveness of S-RNN based storyline model. We begin by describing our data collection
process and the baselines.

Flickr Albums Dataset We gather collections of photo albums by querying Flickr through
the YFCC100Mdataset [240], a recently released public subset of the Flickr corpus containing
99.3 million images with all the meta-information like tags and time stamps. This dataset
is an unrefined subset of images on Flickr, making it a reproducible way of working with
web data. The selection process gathers at most 1000 photo albums for a single concept
(e.g. Paris), with an average size of 150 images. Each album is sorted based on a photo’s
date taken. We experimented with seven concepts: Christmas, London, Paris, Wedding, Safari,
Scuba-diving, and Snowboarding with a total number of 700k images. Examples from the
dataset are provided in the appendix. This subset will be made available.

ImplementationDetails Wecompare our S-RNNmodelwith several approaches to demon-
strate its effectiveness in learning visual storylines. For fairness, all the methods used the
same fc7 features from AlexNet [122] pre-trained on ImageNet.

For S-RNN, the fc7 features are directly fed into the model. The network is trained with
BPTT, which unrolls the network, and uses gradient ascent with a momentum of 0.9. We
set the starting learning rate as 0.05, and gradually reduce it when the likelihood on the
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validation set no longer increases. The input size of the layer is set to 4096 (size of fc7 ), and
the hidden recurrent layer size 50. We keepN = 10 for all the concepts as a good compromise
between content and brevity (The appendix contains analysis of different sizes of N). We
choose `2 regularization and set weight decay λ to be 10−7. Training takes approximately
2-3 hours on a single CPU. Each story was generated by sampling from the model 500 times,
and picking the sampled sequence with the highest likelihood. The code is available at
github.com/gsig/srnn.

Below we list the main baselines, and note that additional baselines will be added for
individual experiments when necessary.
Sample. We uniformly sample from the data distribution.
K-Means. To take advantage of the global storylines shared in a concept, we apply K-Means
to all the albums (similar to the first step of [113] except with different features).
Graph. We adapted the original code for [113] to use fc7 features. Then a storyline is
generated with the forward-backward algorithm as described in [113].
RNN. This architecture is similar to a language model [155] except it predicts the cluster (as
in K-Means) of the next image. We sample without replacement to generate the story. This is
a standard application of RNN to the problem.
LSTM.We train an LSTM network [104], similar to the RNN baseline.
LSTMsub. LSTM trained as before, but when generating the summary, we first generate
a longer sequence (N = 100) and then sub-sample that sequence to the desired summary
length 10. Intuitively, if LSTM was indeed able to learn the long-term correlations regardless
of the repetitions, this should perform well.
S-RNN-. For ablation analysis, we also provide a baseline where we use the network
without skipping, but with the softmax loss over future images. All the hyper-parameters
for training are kept identical to our model except the network predicts each and every item
in the sequence. This is similar to RNN, but benefits from our improved loss.
D-RNN Similar to S-RNN-, except trained on a diverse subset of each album using the k-
means++ algorithm [9]. This was significantly better than other variants, including training
on random subsets, fixed interval subsets, or a random diverse subset.

Evaluating Storylines In the first experiment, we directly evaluate how “good” the learned
storylinemodel is for a given concept. We define the goodness of a storylinemodel in terms of
how representative and diverse the selected images are for a given concept. Two qualitative
examples for Wedding and London are shown in Fig. 6.2. Fig. 6.5 shows more examples
of learned storylines for different concepts. Our storyline model captures the essence of
scuba-diving, snowboarding, etc., by capturing representative and diverse images (e.g., beer,
fun and snowboarding during day).
Setup. For each concept, we have each method select only 10 images from 50 photo albums
(thousands of photos) that best describe the concept, and AMT workers select which one
they prefer. Each algorithm has access to the full training data to train the model. For Graph
and RNN-based baselines, we sample multiple times from each album and use the highest
ranked collection in terms of likelihood. Sample and K-Means are simply applied on all
images, and in K-Means we assign the closest image to each cluster center. The appendix
contains more qualitative examples.
Results. Table 6.1 summarizes the results. Each comparison was given to 15 separate AMT
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K-Means Sample Graph LSTM LSTMsub D-RNN RNN S-RNN-

S-RNN 71.2% 68.3% 79.8% 84.3% 70.9% 60.0% 85.1% 75.5%

Table 6.1: Evaluating Storylines. Fraction of the time our S-RNN storylines are preferred
against competing baselines. 50% is equal preference. Our method significantly outperforms
the baselines, being preferred 60% of the time against the strongest baseline. See Section 6.3
for details

Safari

Snowboarding

Scuba Diving

Figure 6.5: Evaluating Storylines. Images selected by S-RNN for three storylines from thou-
sands of images for the concepts Safari, Scuba Diving, and Snowboarding

workers. We can see that S-RNN is preferred 60%of the time against the strongest baseline
across all the concepts. Different baselines fail in different ways. For example, Sample and
K-Means can capture a diverse set of images to represent the concept, but are prone to the
inherent noise in the Flickr albums. On the other hand, Graph and LSTM overfit to the
short-term correlations in the data and select repetitive images. Finally, S-RNN outperforms
D-RNN since S-RNN is not restricted to a single specific diversity method as in D-RNN.

Task1: Prediction Next, we evaluate our storyline models for two applications. The first
application we consider is the prediction task. There are two possible prediction goals: short-
term prediction and long-term prediction. Short-term prediction can be considered as
prediction of the next image in the album. This was the task used in [112,113]. In the case of
long-term prediction, we predict the next representative event. In the case of Paris vacation,
if the current event is Eiffel tower, the next likely event would be visiting the Trocadero. In
the case ofWedding, if the current event is the ring ceremony, then the next representative
event is the kiss of the newlyweds.
Setup. For the short-term prediction, the ground-truth is the next image in the album. But
how do we collect ground-truth for long-term prediction? We ask experts to summarize the
albums (hoping that album summaries will suppress short-term correlations and capture
only representative events). Now we can reformulate long-term prediction as predicting
the next image in the human-generated summary of the album. We collected 10 ground
truth summaries on average for each concept from volunteers familiar with the concepts
(such as Paris, and London). Each summary consists of 10 images from a photo album that
capture what the album was about. This was used as ground truth only for evaluation.
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Figure 6.6: Predicting the next image. S-RNN is best at capturing long-term correlations, and
nearest-neighbors is best at capturing short-term correlations, as expected

Given Image S-RNN LSTM NN Graph GT

Figure 6.7: Long-term prediction. Examples of the images predicted by our method compared
to baselines. The image is chosen from a line-up of five images from the same album
(generated by experts as summaries). We see our method captures Santa→Tree and Closed
Presents→Open Presents while the baselines focus on similar images

Two settings are compared, the first one (labeled “long-term”) predicts the next image in a
summary (N=198 over 10 folds each); and the second one (labeled “short-term”) predicts the
next image in the original photo album (N=1742). The problem is posed as a classification
task choosing from the true image, and four other images selected uniformly at random
from the same album. Here we also consider NN that simply picks the nearest neighbor,
and FI that picks the furthest image from the given image, both in cosine distance of fc7
features. K-Means is not suitable for this task since it does not include temporal information.
All methods were trained in an unsupervised manner for each concept as before.
Results. In Fig. 6.6 we present results for the prediction of the next image. Whenwe consider
long-term interactions between images, S-RNN successfully predicts the next image in the
storyline 31% of the time, significantly higher than baselines. On the other hand, we can
see that when we simply want to predict consecutive images, NN is the best. To further
visualize the results for “long-term” correlations, we also give example comparisons with
baseline methods in Fig. 6.7.
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Local

S-RNN

LSTM

Figure 6.8: Examples of summaries generated by our method and two representative base-
lines for Scuba-diving and Snowboarding. In the Scuba-diving example Local aims to capture
diversity, and thus our method is more relevant. In Snowboarding, LSTM focuses on short-
term correlations, and chooses many similar images, while our method effectively captures
the album

Task2: Photo Album Summarization In the final experiment, we evaluate on the task of
album summarization. In particular, we focus on summarizing an individual album based
on the concept (e.g. a Paris album), rather than heuristics such as image quality or presence
of faces [164, 200, 228]. This experiment addresses the question whether storylines can help
to summarize an album.
Human Generated Summaries. Photo album summarization is inherently a subjective and
difficult task. To get a sense of the difficulty, we first compared the human summaries
(used in Sec. 6.3) to baselines with a separate AMT preference study. We had two findings.
First, for some concepts, such asWedding, the albums are frequently already summaries by
professional photographers, and thus generating summaries is trivial. Specifically, there
is no significant difference between human generated summaries and uniformly sampling
from the data distribution (Sample). We thus only evaluate on concepts where there is
significant difference between human generated summaries and ones generated by baselines.
Second, we found human generated summaries are only preferred 59.5% of the time against
the strongest baseline.
Setup. The photo albums for a given concept are randomly divided into a training set and
a validation set with a ratio of 9:1, and no ground truth summaries were provided. We
additionally consider the baseline Localwhere K-Means clustering is used for summarization
by applying clustering on fc7 features for each individual album. As before, we assign the
closest image to the cluster center for clustering-based methods. While it is not required for
S-RNN, we sort the selected photos in temporal order as a post-processing step for all the
baselines when necessary for fair comparison.
Qualitative Results. The results for a few concepts are presented in Fig. 6.8. We can see that
S-RNN captures a set of relevant images without losing diversity. In contrast, Local captures
only diversity, and LSTM that tries to learn short-term correlations between consecutive
images, and as result often prefers similar images in a row. Additional summaries by S-RNN
are presented in Fig. 6.3.
Quantitative Evaluation. To directly compare the quality of the generated summaries,
another AMT preference study was conducted. For S-RNN and each baseline, 200 random
pairwise comparisons were generated. Each question was given to 5 separate workers for
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Figure 6.9: Photo album summarization. AMT pairwise preference between our method
and multiple baselines. 70% means that summaries by our method were preferred 70% of
the time. It is important to keep in mind that compared to the strongest baseline, a human
generated summary was on average only preferred 59.5% of the time. Sec. 6.3 contains a
detailed explanation of the experiment setup and analysis of the results

consistency. We used a consensus approach where a comparison gets a score of 1 if there is
a tie, or a score of 2 if there is consensus.

In Fig. 6.9 we present comparison with the baselines. We can see that on average our
method is preferred over all the baselines. To provide a more detailed analysis, we divide
the baseline methods into two groups: the Storyline group (filled with pure colors) that
captures the latent temporal information in the data, and the Non-Storyline group (filled
with patterns) that do not. The Storyline group includes Graph, RNN, LSTM, LSTMSub, and
S-RNN- (Our method also falls into this group), while the Non-Storyline group has K-Means,
Local and Sample. There are few interesting points:

1. S-RNN performs relatively better on travel-related albums (Paris, London) suggesting
it is easier to latch onto landmarks than high-level concepts like in Christmas.

2. For concepts like Christmas, methods that learn short-term correlations from the data
distribution are still preferred by the users. The fact that S-RNN- outperforms LSTMs
and RNNs, can be interpreted as follows. RNNs suffer from the curse of dimensionality
if naively applied to storyline learning, but the S-RNN loss reduces the dimensionality
of the output space by an order of magnitude (4096 to 100s).

3. While simple as they seem, Local and Sample are very competitive baselines. We
believe the reason is that Local aims to provide a diverse set of images from each
album, and Sample is representative of the underlying data. Therefore, with the post-
processing step that re-arranges the selected images in temporal order, these methods
can do well on good albums. However, they do poorly when the album is noisy, as
illustrated in Fig. 6.8 first example.

Does Time Information Help Summarization? For further analysis, we compared the de-
scribed S-RNNwith S-RNN trained on shuffled data (ordering discarded) with a preference
study on AMT. S-RNN using the time information was preferred 68.4% over S-RNNwithout
time information, demonstrating that the time information significantly helps to generate a
summary liked by people.
Transferring storyline knowledge. Each album can have different stories and themes. In
Figure 6.10 we present two different summaries of two photo albums. The first album is a
Scuba Diving album, and the first summary from that album is generated with the model
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Scuba Diving Album

Paris Album

Wedding Story
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Figure 6.10: The first two rows show a Scuba Diving album summarized with a Scuba model
and a Wedding model, and the last two show a Paris album summarized with a Paris model
and a Christmas model. The Wedding story emphasizes the beach resort images of the Scuba
album, and the Christmas story emphasizes the churches and sparkling lights images in the
Paris album

trained on Scuba Diving albums. In the second row, the same album is summarized using a
model trained onWedding albums. We can see that this emphasizes scenic beach pictures
reminiscent of a beach resort wedding. The second album is a Paris album, and the first
summary is generated using Paris model. The second summary however, is generated using
a Christmas model, and we can see that this emphasizes pictures of churches and sparkling
lights at night.

6.4 Discussion
We have presented an approach to learn visual storylines for concepts automatically from
the web. Specifically, we use Flickr albums and train an S-RNN model to capture the long-
term temporal dynamics for a concept of interest. The model is designed to overcome the
challenges posed by high correlations between consecutive photos in the album if sequence
predictors are directly applied. We evaluate our model on learning storylines, image pre-
diction and album summarization, and show both qualitatively and quantitatively that
our method excels at both extracting salient visual signals for the concept, and learning
long-term storylines to capture the temporal dynamics.
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6.5 Appendix
6.5.1 EM-Derivation of the Update Equations
We begin with a standard RNN. Given T data points x1:T = {x1, . . . , xT } (images) and
the model parametersM, RNN maximizes P (xt|x1:t−1;M) at step t, which is an exact
decomposition of P(x1:T ;M), no independence assumed.

The key idea of S-RNN is to train over all ordered subsets (of size N) in x1:T , selected by
latent variables z1:N= {z1, . . . , zN}. Herewe assume the likelihood ofx1:T selected by z1:N , is
only related to the selected subset ẑ1:N= {ẑ1, . . . , ẑN}, namely (here xẑ1:N

= {xẑ1 , . . . , xẑN }):

P(x1:T |z1:N=ẑ1:N ;M) ∝ P(xẑ1:N
|z1:N=ẑ1:N ;M). (6.6)

S-RNN maximizes the likelihood of x1:T over all z1:N :

max
M

P(x1:T ;M) = max
M

∑
z1:N

P(x1:T |z1:N ;M)P(z1:N ) (6.7)

= max
M

∑
z1:N

P(xz1:N
|z1:N ;M)P(z1:N ) (6.8)

= max
M

∑
z1:N

(∏
n

P(xzn+1
|xz1:n

, z1:N ;M)

)
P(z1:N ) (6.9)

Here we assume the prior P(z1:N ) does not depend onM, and use Eq. 6.6. In Eq. 6.9 we also
used the chain rule to make it more similar to RNN (this is Eq. 4 above), but here Eq. 6.8 is
directly solved with the EM-algorithm and factorized later. In the E-Step, we sample z to
approximate the expectation: (for simplicity we remove the subscripts in z1:N and ẑ1:N)

Q(M;M0) := Eẑ∼q0 [log (P(xẑ|z=ẑ;M)P(z=ẑ))] , (6.10)

where q0 is P(z|x;M0). For a single sample ẑ1:N , theM-Step follows:
(for simplicity of notation P(xẑ|z=ẑ;M)=P(xẑ;M))

max
M

Q(M;M0) = max
M

log P(xẑ1:N
;M). (6.11)

= max
M

∑
n

log P(xẑn+1
|xẑ1:n

;M). (6.12)

This is the standard RNN objective except over a subset. The final implementation detail, is
that we can rewrite P(z|x;M0) in a simpler form:

P(z=ẑ|x;M0) ∝ P(x|z=ẑ;M0)P(z=ẑ;M0) (6.13)
∝ P(xẑ|z=ẑ;M0)P(z=ẑ) (6.14)
∝ P(xẑ;M0)P(z=ẑ) (6.15)
=
∏
n

P(xẑn+1
|xẑ1:n

;M0)P(zn+1=ẑn+1|z1:n=ẑ1:n) (6.16)

wherewe used Bayes rule, Eq. 6.6, and the chain rule of probability. This equation allows us to
sample z sequentially, and train the RNN as before. P(zn+1|z1:n) is just the sequential version
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of the priorP(z1:N ) and captures the fact that z defines an ordered subset. (zn ∈ {1, 2, . . . , T},
and zn < zn+1)

In summary, the training method simply alternates sampling from P(z|x;M0) (E-Step in
Eq. 6.10) and updatingM using Eq. 6.12 (M-Step). This falls neatly into the RNN pipeline,
with only a simple sampling step before feeding new samples to the network. Pseudo-
code for training S-RNN is presented in Algorithm 4, for a single training sequence. Note
that P(x=xj |xẑ1:n

;M) is the prediction of the RNN at step n, and Cat is the categorical
distribution. The RNN is updated by using the prediction of the model at step n (yn), xẑn+1 ,
and Xn, with the loss function (described in Eq. 5 above). This provides a gradient which is
back-propagated through the network.

Note that the sampling depends on the model prediction. Intuitively, this is the key that
allows exploring all subsets of the data, since the model is used to intelligently guide the
exploration.

Algorithm 4
1: function Train S-RNN({x1, x2, . . . }) . Images
2: ẑ1:N ,M← random . Randomly initialize
3: n← 1
4: while not converged do
5: Xn ← {xzn+1, xzn+2, . . . } . Set of future images
6: pj ← 0
7: for xj ∈ Xn do
8: pj ← P(x=xj |xẑ1:n

;M)P(zn+1=j|z1:n=ẑ1:n)

9: ẑn+1 ∼ Cat(p1, p2, . . .) . Sample ẑn+1 = j with probability pj
10: Update RNN (M) using xẑn+1 ,Xn . See text
11: n← n+ 1

6.5.2 Choosing the size of the summary

We fixed the size of the storyline and summaries to be N = 10 for all the concepts as a
good compromise between content and brevity, i.e. intuitively allows for a compact but
informative summary of a concept. In Fig. 6.11 we follow the same setup as in Section 4.4. We
plot the performance for S-RNNwith three values ofN = 5, 10, 20 on three tasks: Short-term
prediction (Short-term), Long-term prediction as before (Long-term10), and Long-term
prediction using a ground truth with storylines of length 5 (Long-term5). We observe that
the model trained with N = 10 has the highest performance on all three tasks. This implies
that S-RNN is not overfitting to only the case of 10 image storylines, since then we would
expect theN = 5 method to do significantly better for Long-term5. Our interpretation is that
for small N, the sequences are short and easy to learn, but not very informative. For large N,
the sequence approaches the full album, and more data and model capacity is needed to
learn the long-term correlations.
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Figure 6.11: The performance for S-RNN with three values of N = 5, 10, 20 on three tasks:
Short-term prediction (Short-term), Long-term prediction as before (Long-term10), and
Long-term prediction using a ground truth of size 5 instead of 10 (Long-term5).

6.5.3 Dataset

In Fig. 6.12 we sample images from two randomly selected albums for each concept. As
we can see, some albums are quite relevant to the concept, such as the first Wedding album.
However for this simple sampling, many albums, such as the second Christmas and first
Safari albums, have little relevance. This is typical of the dataset, since a simple query for
Christmas returns, for example, Christmas parades, Christmas plays, and community events,
in addition to the expected family celebrations. Moreover, it can be seen that many images
are not related to the concept. What this means for our tasks, is that retrieving relevant
images for a concept is difficult. However, in any given album, if the album is good, then
uniformly sampling images does quite well at summarizing that album. In addition, in
Fig. 6.13 we show few human-generated summaries for the albums.

6.5.4 Storylines for Different Concepts

In Fig. 6.14, we motivate the problem of selecting images for the storyline by presenting,
for each concept, K-means clusters using fc7 features. We see that while some images are
relevant in each group, some concepts are very different from what we expect, for example
it is difficult to recognize Paris or London. We argue that perhaps more importantly, all the
images in the collection do not complement each other, that is, there is no sequence of events,
or relationship between the images.

However, in Fig. 6.15 we present the images retrieved by our method (S-RNN). We can
see that each collection (each row), captures a coherent story of the concept. If we compare
that with our method without skipping (S-RNN-, Fig. 6.16), we see that the coherence in
those collections is focused on short-term correlations, and those baselines choose highly
correlated images.
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6.5.5 Example Summaries
We present many randomly selected summaries from the dataset. Photo album summa-
rization depends heavily on the quality of the given album, and the album’s relevance.
Summarization is therefore a more difficult task than selecting relevant images for evalua-
tion, since on some albums, simple baselines do remarkably well. In Fig. 6.17 we present
summaries by our method (S-RNN) on the same randomly selected albums as in Fig. 6.12.
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Paris

Wedding

Christmas
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Safari

Snowboarding

Scuba Diving

Figure 6.12: Each row consists of a randomly selected album from the dataset, two for each
topic. Each album is visualized using 10 images uniformly sampled from the album.

Figure 6.13: Example human-generated summaries for Paris, Christmas, and London albums.
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Snowboarding

Scuba Diving

Figure 6.14: (K-Means). Storylines by K-Means for different concepts. Each collection
contains some relevant images, but many of the images are not relevant, since K-Means
emphasizes diversity. Furthermore, each collection is not very coherent.

Paris
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Christmas

London

Safari

Snowboarding

Scuba Diving

Figure 6.15: (S-RNN) Storylines by our method for different concepts. Each collection of
images is more related to the concept, and each collection captures a coherent story of the
concept.
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Figure 6.16: (S-RNN-). Storylines by our method without skipping for different concepts.
While these collections are relevant to the topic, and the collections are coherent, it appears
that the model is focusing on short-term correlations, and the images are not very diverse.
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Figure 6.17: Randomly selected summaries using our method. These albums correspond to
the albums presented in Fig. 6.12. It is difficult to judge the quality of the summaries without
seeing the hundreds of images behind each summary, but hopefully provide insight.
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Chapter 7

Neural Networks in World
Coordinates

Our final algorithmic contribution explores a different axis than time—space. Eye movement
and strategic placement of the visual field onto the retina, gives animals increased resolution
of the scene and suppresses distracting information. This fundamental system has been
missing from video understanding with deep networks, typically limited to 224 by 224 pixel
content locked to the camera frame. We propose a simple idea, WorldFeatures, where each
feature at every layer has a spatial transformation, and the feature map is only transformed
as needed. We show that a network built with these WorldFeatures, can be used to model
eye movements, such as saccades, fixation, and smooth pursuit, even in a batch setting on
pre-recorded video. That is, the network can for example use all 224 by 224 pixels to look at a
small detail onemoment, and thewhole scene the next. We show that typical building blocks,
such as convolutions and pooling, can be adapted to support WorldFeatures using available
tools. Experiments are presented on the Charades, Olympic Sports, and Caltech-UCSD
Birds-200-2011 datasets, exploring action recognition, fine-grained recognition, and video
stabilization.

The success of recent vision systems is in a way surprising, since the input is typically a
224×224 pixel image, or in the case of videos, a temporal stack of such images [16,55]. This is
both low resolution, and does not give much flexibility to investigate important signals in the
image. The system is constrained to what the camera recorded, and has typically no active
role in collecting the data. In particular, video recognition architectures have been shown to
be vulnerable to camera motion, subject size, and temporal scale [222]. In comparison, the
human visual system is not a passive receiver—our eyes are constantly moving to increase
the effective resolution of the scene and suppress irrelevant signals [59].

These eye movements exist in humans and animals with foveal vision, and can be cate-
gorized as: Stabilization, the vestibulo-ocular reflex describes a control system the human
visual system uses to stabilize images on the retina given proprioceptive information, like
head rotation [29]. Smooth Pursuit, where the gaze is voluntarily shifted to track a moving
object, effectively stabilizing the object of interest on the retina [119]. Fixation, where gaze is
fixed towards a single location, to enhance resolution of that area [193]. Saccades, where the
eyes quickly jerk between phases of fixation to explore the scene [98]. In Fig. 9.1 we illustrate
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Video

Camera Motion

Stabilization

Pursuit

Saccades & Fixation3D Scene (World Coordinates)

Figure 7.1: We explore how to model the variety of eye motions, even on pre-recorded
data. We generalize the concept of feature maps, to WorldFeatures, that include a relative
location in space and time, which can encode any type of “eye motion” we want apply to
the recorded data, or undo. Orange to pink is used to denote features at time t−1, t, and
t+1. We show a video from a first-person view, along with the motion of the camera in the
reconstructed world frame (CameraMotion). The original video follows a particular sequence
of viewpoints, however, crucial information about the activities in the video requires different
views—Stabilization transforms the views to the world frame, Pursuit transforms the views to
follow the subject of the video, and Saccades & Fixation scans the scene to extract fine-grained
information from the video.

how a video is constrained to what the camera recorded, but that also the video may be
refocused. How can we build a vision system that has this flexibility to freely explore the
data, and move beyond a fixed 224×224 window?

We propose a simple and effective idea—each feature, has a location in real-world coor-
dinates. This combination of (feature, transformation) pairs is referred to as a World-
Feature. An example transformation might be image coordinates to real-world coordinates
(camera matrix). It turns out preprocessing the video data to, for example, stabilize it,
introduces new problems, as demonstrated in Fig. 7.2. Instead, we use these WorldFeatures
in all layers in the network and index the data according to the transformation or transform
it as needed. That is, implicit transformation instead of explicit. With such network, we can
utilize any type of “eye motion” we want apply to the recorded data, or undo.

To illustrate the idea, in Fig. 7.2 we present a simple two frame featuremap with three
different transformations T1, T2, T3 to showcase how different transformations can highlight
different signals in the data. For example, in the third it is easy to understand the global
layout of the scene, and in the second it is easier to understand the difference in the pose of
the person. In Sec. 7.2 we show more details on WorldFeatures, and how to keep track of the
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Video

Figure 7.2: Illustration of WorldFeatures, attaching transformations to features. Top left is
the original video shown as two frame featuremap. We show the temporal average of an
aligned feature map, with three different transformations T1 (identity), T2 (pursuit), T3
(stabilization). Observe how different transforms highlight different aspects of the data.
We show a potential coordinate frame, that could be used to fit the data into a network,
highlighting a problem with naively stabilizing the data, for example, when 64 frames in a
row need to be aligned. WorldFeatures get around this by keeping the transformation and
only using it as needed.

transformations after every layer to build networks with these operations.

Contributions. We propose the idea of WorldFeatures, where each feature has a trans-
formation, on multiple vision tasks: Fine-grained Image Recognition (Sec. 7.3.1), Video
Stabilization (Sec. 7.3.2), and Video Activity Recognition (Sec. 7.3.3). We formalize World-
Features, and show how different eye movements can bemodeled in this framework. Further,
we propose a simple implementation that can adapt optimized neural networks tools to
operate on WorldFeatures. This implementation can extend many state-of-the-art building
blocks that operate over space and time, such as 3D Convolutions, and MaxPooling. The out-
put of each building block, is also WorldFeatures, such that it can be processed hierarchically
(e.g. 3D-ResNet [270]).

7.1 Background
Many image and video understanding architectures have been proposed in the last few
decades and we refer the reader to [177, 274] for a detailed survey, and focus here on recent
video architectures related to our approach.

Video Architectures Recently, networks have become more evolved for separating content
and motion [16, 55, 195, 227]. This direction is analogous to the different specialization
of the ventral and dorsal streams in the mammalian brain. Similarly, separating camera
motion and subject motion has shown great promise in video segmentation [253]. As the
field moves towards utilizing longer temporal context [278], equipping these networks with
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the capability to separate camera motion, object permanence, scene dynamics, and subject
motion can greatly improve those efforts. We aim to provide the building blocks necessary
to construct these systems.

Video Stabilization Related to our work on understanding eye motion, is the task of video
stabilization that has been pursueddirectly [71,141,267], orwith additional supervision [140].
Of particular relevance is recent work that has incorporated stabilization and tracking of
points over time to improve accuracy of video recognition [263, 266]. Inspired by these
successes, we go a step further, and build a framework that can operate given an arbitrary
transformation signal, and use this to improve the vision system.

Improving Visual Input On the other hand, recent work has also explored how to use the
input data more effectively. This has been done through spatially or temporally modifi-
able connections [30], non-local connections where feature similarity guides the connec-
tions [270], or transformations of the input [96]. Furthermore, [181] investigated the idea
that not all input features are equally useful, and explored how to learn how to highlight and
“zoom in” on the important content in each image. As we will see, eye movement is primarily
useful to allow for efficient allocation of resources, and since our system can handle arbitrary
transformations, we can explicitly utilize various “zoom in” of the data. Furthermore, our
WorldFeatures is a system that allows a network to generalize beyond the camera, and is
complementary to frameworks that learn attention to emphasize parts of the data.

7.2 WorldFeatures: Feature Maps with Camera Movements
Westart by introducing the ideas behindWorldFeatures, that is, (feature, transformation)
pairs. Then we demonstrate how different eye movements can be modeled in this frame-
work. A video is a specific window into the world at the time it was recorded, and a system
analyzing this video might have a completely different objective for watching the scene than
the camera operator. To undo the camera bias or highlight signals in the video, we allow
a transformations that are analogous to eye movements, after the data has already been
recorded.

To undo camera transformations, could we pre-process the data? For example, applying
affine transformations to each frame to undo camera movement, for stabilization. In fact,
even this simple case has problems: How to fit this transformed data into the model? At
what scale should we process the data? How to use imperfect transforms? Consider eyes
scanning a scene, fixating on a variety of points in the scene at multiple resolutions. Creating
data that follows a similar pattern without an understanding how they relate to each other
creates a noisy and disjointed view of the scene. Instead, by keeping track of the relative
transformations between features, we can crop, scale, and zoom in on the data as required,
while still maintaining correct relationships between features.

7.2.1 WorldFeatures Definition
The key to our idea is the concept of WorldFeatures xT . That is, a feature map x of size
T×H×W (time, height, width) and an arbitrary transform T which can encode any type of
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Figure 7.3: Demonstration of a model using WorldFeatures at each layer. Here we look at an
illustration of the outputs of conv1 and maxpool layers, when applied to an “eye movement”
task. The input and output of each layer are WorldFeatures. The receptive field of each
output featuremap is aligned, explicitly or implicitly depending on implementation, before
computing the output. Since each output feature map has a different alignment, each output
has a different transformation, and we repeat the process at every layer. This shows that
WorldFeatures allow the network to combine information across multiple locations and
scales in the image.

“eye motion” we want to apply to the recorded data—or undo.∗ We refer to a single H×W
timepoint as a frame, and note that x=xI , where I is the identity transform.

The feature of xT at (t,h,w) is written x (T (t,h,w)). Therefore, extending a convolution
operation to work on xT looks as follows:

yT
′
(t, h, w) =

∑
i

∑
j

∑
k

x(T (i, j, k)) · f(t−i, h−j, w−k) , (7.1)

where yT ′ is also a WorldFeature, that can then be passed to the next convolution operation
and so on. Here f is a filter, and we omit batch and channel dimensions for clarity. Com-
pared to regular convolutions, the transformation T is necessary to transform the features
as needed. For example, the valid values of each feature map are only defined for t∈ [0, T ),
h∈ [0, H), and w∈ [0,W ), and transforming the video before processing would move content
out of the frame, etc. This convolution layer could use a Spatial Transformer Network [96]
independently transforming the receptive field for each output frame, at every layer, ex-
ponentially increasing computation. This implementation of WorldFeatures is illustrated
in Fig. 7.3. Fortunately, in Sec. 7.3 we outline an efficient implementation of this for CNN
building blocks, which allows us to explore this type of networks.
∗For example, the affine transform, T (t,h,w) = (t, a0th+a

1
tw+a

2
t , a

3
th+a

4
tw+a

5
t ), where ant are the parameters

at frame t.
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7.2.2 Transformation Types
We now outline how this framework can be used to model eye movements: Stabilization,
Smooth Pursuit, Fixation and Saccades. Fig. 9.1 contains illustrative examples for each, and
we refer to this figure in the paragraphs below to explain each of these transformations.
Stabilization The first and most intuitive transformation T we encounter is the stabilizing
transform. We obtain the camera matrix for every frame, and invert it to obtain the stabilizing
transform. That is, the transformed feature map x (T (t,h,w)), will contain the same point in
the world at location (h,w) for any t. The Stabilization example in Fig. 9.1 visualizes how the
frames of the given video are arranged in the world frame.
Smooth Pursuit Since the transform T is arbitrary we can also choose it to stabilize with
respect to a different point of reference. That is, instead of (h,w) for any t pointing to the
same point in the world, we can make it point to the same point on a moving object of
interest, such as a person. The Pursuit example in Fig. 9.1 visualizes how the frames of the
given video can be arranged, and combined with attention to the hands of the person.
Fixation To model fixation, where the high-resolution part of the retina (the fovea) is used,
we use a transform that enhances part of the frame. That is, if xT (t,h,w) is the original
WorldFeature, then we add a “fixation transform” F to get the WorldFeature fT ◦F where
f = x (F(t,h,w)). This fixation transform “zooms in” on a part of the input, increasing the
resolution.
Saccades / Visual Search To model saccades, we proceed similarly to fixation, and define
a transform S that gazes at a particular part of the frame, allowing the model to attend to
different parts of the image. The similarity with the implementation of fixation is because
saccades are in fact defined as the jump between fixations. In the Saccades & Fixation example
in Fig. 9.1 we demonstrate how the transformations can be chosen to pay close attention to
important aspects of the scene, such as the hands, objects and context.
In conclusion, we now have a series of eye movements that are possible within our frame-

work, allowing a variety of augmentations without sacrificing relative location between
features. In the following experiments we use these definitions to provide the model with a
transformation for each video, but a variety of transformations that are learned from data
could be used as well.

7.3 Experiments
In this section we explore WorldFeatures for diverse applications. We use a 3DResNet-style
architecture for videos built fromWorldFeatures. This architecture can be used to incorporate
arbitrary eyemovements in videos and images, where images are just treated as an uneventful
video (replicating images in time). The network can then utilize the transformations to
“zoom in” on various parts of the image. First, we demonstrate that a 3D network, can
outperform 2D networks on fine-grained recognition of nature categories (image task).
Second, we look at video stabilization, and show how implicit transformations can bypass
the problems with explicitly stabilizing the input data with preprocessing. Third, we utilize
enhancing transformations, smooth pursuit and fixation, to improve video recognition
accuracy on the Charades dataset [223].
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Spatial Transformer

Conv Layer Resampling

Figure 7.4: Our simple implementation of WorldFeatures “wraps” a layer (e.g. conv layer)
and applies a spatial transformer to the data to align the receptive field of each output, k
times for a layer with temporal extent of k (e.g. 3 in ResNet), and combines the outputs.†
More details are provided in the Appendix.

Implementation Our implementation extends a 3DResNet50 model, following [270] (sim-
ilar to I3D [16]). All convolution, max pool, and average pool layers are converted to
WorldFeature layers, which implicitly operate on a transformed video. All models start with
parameters from a regular 3DResNet50 pretrained on the Kinetics dataset [16]. In Fig. 7.4
we illustrate a simple method to convert a layer, such as a conv layer, to use WorldFeatures,
without having to engineer special low-level GPU programs for each. More details are pro-
vided in the Appendix. We use the grid sampler from Spatial Transformer Networks [96],
with arbitrary transformation grids. After fitting the transformer, we use the grid sampler
in the nearest (pixel) setting. This avoids blurring of the feature maps as they are repeatedly
transformed. To address missing values after transforming, we add a channel denoting miss-
ing data at a point, similar to [56]. For comparison, all methods use the same batch-size of 2
unless otherwise noted, and follow the same learning rate schedule tuned for the baseline.
The models are implemented in PyTorch, and will be made publicly available.

7.3.1 Saccades - Fine-Grained Recognition
Motivated by human gaze studies in image recognition, we explore using 3D video networks
for fine-grained recognition on the Caltech-UCSD Birds-200-2011 dataset [261]. To provide
a gaze trajectory for the network, we use saliency [90] and objectness [24] to generate 64
bounding boxes. We replicate each 2D image 64 times in time to form a 3D input. The 64
bounding boxes form the basis for the fixation in each frame, and are ordered to maximize
the overlap between consecutive boxes, allowing the network to learn filters that combine
information between various fixations and scales. See Fig. 7.5 for an example. We compare
with regular 3DResNet50, and ResNet50. We start with a 3DResNet50 and fine-tune with the
saccades/fixation setup, and combine with ResNet50.

Results The results are presented in Table 7.1. With a input size of 224 pixels, our method
outperforms architectures specialized for fine-grained recognition, evenwith recent methods
such as [181] that learn the function of what to zoom to, whereas we use off-the-shelf saliency.
†For k=3 the first transformer aligns frames {0,1,2} (the receptive field for output frame 1), and frames {3,4,5}

(receptive field for output frame 4), etc. The second transformer aligns {1,2,3} (receptive field for output frame 2),
etc.
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Top-1 (%) Resolution (px.)
3DResNet50 79.8 224

DT-RAM [137] 82.8 227
ResNet50 83.4 224

Learning to Zoom [181] 84.5 227
3DResNet50 w/Saccades 85.3 224

DT-RAM [137] 86.0 448

Table 7.1: Fine-grained Recognition on the Caltech-UCSD Birds-200-2011 dataset.

Transformed Input

Conv1

MaxPool1

MaxPool2Input Image and Saccades

Figure 7.5: In the left column we visualize the path (the saccades) that the model chooses,
given static saliency and objectness, where dark to light denotes frames 1 through 64, and
the large circles denote the scale of the fixaton in that frame. In the the middle column,
we show the pixel data that the model uses (the model also receives the transformations
between those). Finally in the right column, we show featuremaps from Conv1, MaxPool1,
and MaxPool2, where high values denote high variance over time in the features at that
pixel.

Combining our framework and learning saliency is likely to yield additional gains. The
method from [137] only outperforms other methods when provided with 448×448 image
requiring a special network beyond the scope of this work. These results demonstrate an
exciting new avenue for video architectures applied to the conventionally 2D task of fine-
grained recognition. In Fig. 7.5 we visualize the points of interests and scales suggested
by the saliency algorithm, and how that is translated into pixel data that the network sees
(along with the transformations between those). We also show example of featuremaps
from 3 layers in the network, where we can see how the network combines information
across the different saccades, and builds detailed fine-grained understanding of the image.

7.3.2 Stabilization - Video Activity Recognition
Stabilization is a fundamental vision task, and has been explored in various contexts. Here
we specifically explore stabilization for improving video recognition.

To evaluate the stabilization performance, we start with videos with synthetic camera
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motion. We use 50% of the Charades [223] videos with the least motion‡, and add synthetic
camera movement by linearly moving between 3 locations at randomly chosen scale levels
(30%–300%, Synthetic). Next we consider Olympic-Sports [162], that was used to showcase
the advantage of stabilization in the seminal IDT work [263]. Charades is evaluated with a
video-level mean average precision over 157 classes, andOlympic-Sports uses a top1 accuracy
for each video over 20 classes. Our baselines are 3DResNet50 [270], and 3DResNet50 with
all frames are stabilized to the center frame (3DResNet50++). All models use a 16 temporal
frame stack as input to make stabilization feasible for the baseline, and are trained with
the same learning rate schedule and hyperparameters tuned to the baseline. For each
video we construct the camera motion from the video using direct optimization of affine
transformations parameters between consecutive frames. The details are provided in the
Appendix.
Results In Table 7.2 we see that using the stabilization transformation allows our method to
improve over the baselines. That is, modelling features and transformations together instead
of preprocessing allows our method to avoid compounding errors do to stabilization over
many frames, and loss of resolution.

3DResNet50 3DResNet50++ Pursuit
Synthetic (Video mAP) 13.1 13.5 14.1
Olympic-Sports (% Top-1) 96.4 97.2 97.2

Table 7.2: Results on stabilization on two video activity recognition datasets. Stabilizing
the video before inputting it to the network (3DResNet50++) helps in some cases, but has
drawbacks, whereas implicit stabilization can better utilize the input.

Analysis Wealso looked at an egocentric video dataset, Charades-Ego. With 64 frame inputs,
preprocessing (3DResNet50++) actually reduces performance in the baseline (23.6→ 22.8
mAP), and with 16 frame inputs (only 0.67 sec video clip), preprocessing only slightly
improves performance (17.5→ 18.5 mAP). This demonstrates the challenge of stabilizing a
video before passing it to the network, and interestingly, stabilization does not seem to help
activity recognition much. Perhaps, since what the camera operator is looking at is highly
informative in first-person video. In any case, WorldFeatures have performance at par with
the better method in each case (23.4 and 18.4 mAP).

In Fig. 7.6 we demonstrate how camera motion makes learning from video challenging.
We show point in time from 4 feature maps. We observe that WorldFeatures can utilize
a transformation to suppress irrelevant signals. Although a deep network might, with
sufficient data, be able to learn all possible variations, this adds complexity the model. We
will see in the next section how we can go even further and use the transformations to focus
on particular parts of the data.

7.3.3 Smooth Pursuit & Fixation - Video Activity Recognition
To demonstrate how WorldFeatures can utilize any transformations, we explored Smooth
Pursuit, where we use a transformation to stabilize the content with respect to a human
‡We used variance of optical flow, yielding 4396 videos of average 30 sec.
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Input Ideal Output Unstable Output WorldFeatures

Figure 7.6: A single frame from 4 feature maps. First feature map is original video, second is
the output of a temporal difference filter applied to an ideal (stable) video, third is output
of the filter applied to the actual unstable video, and finally the output of our method given
the estimated stabilizing transform.

bounding box (Pursuit). We use an RCNN person detector [209], and construct a the
transform such that the person is always centered and fills the input to the network. Going
further, we explored how to utilize the transformations to increase the effective resolution
of particular parts of the scene or the subject in a video. Concretely, we used simple video
saliency (temporal difference), and fit a bounding box around 80% of the variance in the
saliency, and the fixation transforms the input such that the box fills the input (Fixation).

Our experiments are on the Charades dataset [223], evaluated with a video-level mean
average precision over 157 classes. We start with a standard pre-trained baseline network
from the literature (3DResNet50), fine-tune with the new framework, and combine with the
old network.
Results Our results are presented in Table 7.3. Interestingly, adding smooth pursuit on its
own does not significantly improve over the baseline, which stabilizes the video with respect
to the person. However, this is expected since many of the videos in Charades have camera
motion that already follows the video subject. Fortunately, we do see that using smooth
pursuit followed by fixation (FixationPursuit) we can improve performance. This suggests
that whereas stabilization on its own is not particularly helpful to current neural networks,
when it is used to locate an area to increase the resolution it can offer significant benefits,
since 224×224 pixels is not provide much detail, and learn filters that combine information
across multiple locations and resolutions.

3DResNet50 Pursuit Fixation FixationPursuit
Charades [223] (Video mAP) 31.3 31.5 32.3 32.6

Table 7.3: Activity Recognition on the Charades dataset using smooth pursuit and fixation
transformations.

In Fig. 7.7 we visualize frames from a Conv1 feature map applied to a video on a person
sitting at their desk, since each feature has a transformation associated with it, even though
some of the feature maps are at very small scales, the network can move them into a common
coordinate frame as needed.
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Conv1 feature maps Conv1 transformed (composite)

Figure 7.7: Composite of 32 Conv1 feature maps from the fixation model. Different color
indicates different frames.
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Figure 7.8: Illustration of our implementation of WorldFeatures. We start with a world
feature map xT and and in order to calculate the output of a convolution applied to the
feature map at time t, that is yT (t, h, w), we first transform the needed features into the
coordinate system at time t, and then apply the convolution as normal. Black, gray and
white, are used to denote t−1, t, and t+1, respectively.

7.4 Appendix
Implementation Details First, we note that layers using WorldFeatures could be imple-
mented with similar efficiency to their regular counterparts, which would require a ded-
icated engineering effort. To quickly iterate the idea, we implemented WorldFeatures in
high-level PyTorch code. We observe that current neural network architectures have filter
extent of 3 frames [16,80,270]. Thus, we simply transform each chunk of consecutive frames
into a common coordinates as needed for each filter computation. Concretely, mirroring
Eq. (7.1) above, suppose we only need to calculate yT (t, h, w) for some particular frame:
t=t0, h ∈ {0,1, . . . ,H−1}, and w ∈ {0,1, . . . ,W−1}. Then we can rewrite as follows:

x′t(t
′,h′,w′) = x(T (t′,h′,w′)) (7.2)

yT (t, h, w) =
∑
i

∑
j

∑
k

x′t(i,j,k) · f(t−i, h−j, w−k) (7.3)

where the last equation describes regular convolution on x′. Here x′ is an explicitly trans-
formed version of x. Since f only has non-zero values at t = {−1, 0,+1} (if filter extent is 3)
x′ only needs to be computed for t−1, t, and t+1. Thus if we need to compute this for all
values T of t, we need to create T such versions of x′, which corresponds to 3 versions of the
size of the input (T×H×W ), and then we apply the regular convolution to these 3 copies
and merge the results to create yT (t, h, w). This process is illustrated in Fig. 7.8, where 3
frames are temporarily transformed into a common coordinate frame (the coordinates of
frame t), and that used to compute the output of the convolution.

This has numerous advantages: 1) Since 3 or less frames are being transformed at a
time, both cumulative errors in transformation and missing value problems are minimal. 2)
Transforming across long timescales is only done in higher layers, where spatial resolution
is lower, meaning less accuracy is needed. 3) Any layer that operates on the time dimension,
such as maxpool, average pool, and 3d convolution, can be adapted in the same way using
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layer output size transformer
output size

conv1 7×7, 64, stride 2, 2, 2 32×112×112 32
pool1 3×3×3 max, stride 2, 2, 2 16×56×56 16

res2

 1×1, 64
3×3, 64
1×1, 256

×3 16×56×56 16

pool2 3×1×1 max, stride 2, 1, 1 8×56×56 8

res3

 1×1, 128
3×3, 128
1×1, 512

×4 8×28×28 8

res4

 1×1, 256
3×3, 256
1×1, 1024

×6 8×14×14 8

res5

 1×1, 512
3×3, 512
1×1, 2048

×3 8×7×7 8

global average pool, fc 1×1×1 1

Table 7.4: Our 3DResNet50 model for video. The dimensions of 3D output maps and filter
kernels are in T×H×W, with the number of channels following. The input is 64×224×224,
and the pre-computed transformer corresponding to the input is of size 64. Residual blocks
are shown in brackets. The table is adapted from [270].

this method.
In Table 7.4 we illustrate 3DResNet50 extended with WorldFeatures, and how the size

of the transformer changes to correspond to each layer. In our setup, all consecutive layers
receive a (potentially resampled) transformer that contains the transformations to align
consecutive timepoints of the feature map.

Computing Stabilization Before stabilization takes place, we need to compute the transfor-
mations between consecutive frames. Traditionally, optical flow or feature matching have
been utilized for this purpose, but with increase in computation, recent work has moved
towards direct methods for estimating the transformation. This optimizes the transforma-
tion directly on the image intensities, which enables utilizing all of the information in the
image, making the estimation higher accuracy, and particularly robust to frames with few
keypoints [47]. In particular, we directly optimize the parameters of a transformation (affine
or homography), but in a batch fashion on each pair of consecutive frames in each mini
batch. The objective from LSD-SLAM [47] operates directly on images intensities (Huber
norm) and downweighs large values. We simplify it to:

min
θ

∑
h,w

min
(
‖x(t,h,w)− x(Tθ(t+1,h,w))‖2 , δ

)
, (7.4)

where we align the frame at t and t+1. We scale the source (t + 1) and target (t) image
equally such that target image has unit variance, and δ = 0.01. We then use gradient-based
optimization with adaptive learning rate to minimize this objective with respect to the
transformation parameters θ.
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7.5 Discussion
We presented a framework that can use transformations to better use the available data,
moving beyond the implicit biases in the camera that recorded a given video.
Video Stabilization One of the hypotheses that we explore is stabilization in terms of a
world frame, and in terms of a target (smooth pursuit). We discovered that stabilization
on its own is not very helpful for current vision systems. However, when combined with
fixation and saccades that highlight useful aspects of the input, it has significant advantages.
Fixation in Animals Similarly, eye movement and fixation in animals is hypothesized to be
primarily in order to fully utilize the center of the retina, the fovea, that has high-resolution
and only covers about 1-2 degrees of vision [180]. This is, it is about efficient usage of
resources. Furthermore, average fixation duration in humans is only 330 ms (8 frames at 24
fps) [82], suggesting long-term stabilization might be unnecessary for some visual systems.
Thus eye movement primarily plays a role in allowing efficient visual search of the scene.
Stabilization in First-Person Videos Stabilization in the first-person vision case is compli-
cated by the fact that the camera is commonly doing smooth pursuit of the objects/hands of
interest already, and zooming in is unnecessary because the field of view is already narrow.
In the Charades third-person videos the camera often follows the person, that is, smooth
pursuit is already present.
We addressed several challenges that come with moving beyond the camera, and high-
lighted problems that have to be considered. Such as, variability due to scale and aspect
ratio changes, how to include data augmentation, and working with pretrained networks
that only consider particular types of input data. We hope this work opens the door for
systems that learn policies for visual search and efficient allocation of visual resources.
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Part III

Understanding Humans from
Their Perspective
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Understanding humans, is as elusive of a task as it is to define. Even for the complexities
of human intelligence, even relatively minor damage can significantly impair the ability
to understand human behavior. This suggests that simple observations of humans may
not be sufficient for full understanding, and if we really want our systems to understand
humans we need to teach them to put themselves in our shoes. These ideas are explored in
Chapter 8. To fully understand human culture and humans themselves, it may be needed to
go beyond building a complete dataset that captures all possible concepts. Thus, venturing
forth away from prepared datasets is eventually needed to expand the knowledge of the
model. Chapter 9 explores this idea of learning concepts in an unsupervised manner from
videos uploaded by people to the web.
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Chapter 8

Modeling both First and
Third-Person

Several theories in cognitive neuroscience suggest that when people interact with the world,
or simulate interactions, they do so from a first-person egocentric perspective, and seamlessly
transfer knowledge between third-person (observer) and first-person (actor). Despite this,
learning such models for human action recognition has not been achievable due to the
lack of data. We take a step in this direction, with the introduction of Charades-Ego, a
large-scale dataset of paired first-person and third-person videos, involving 112 people,
with 4000 paired videos. This enables learning the link between the two, actor and observer
perspectives. Thereby, we address one of the biggest bottlenecks facing egocentric vision
research, providing a link fromfirst-person to the abundant third-person data on theweb. We
use this data to learn a joint representation of first and third-person videos, with only weak
supervision, and show its effectiveness for transferring knowledge from the third-person to
the first-person domain.

What is an action? How do we represent and recognize actions? Most of the current
research has focused on a data-driven approach using abundantly available third-person
(observer’s perspective) videos. But can we really learn how to represent an action without
understanding goals and intentions? Can we learn goals and intentions without simulat-
ing actions in our own mind? A popular theory in cognitive psychology, the Theory of
Mind [178], suggests that humans have the ability to put themselves in each others’ shoes,
and this is a fundamental attribute of human intelligence. In cognitive neuroscience, the
presence of activations in mirror neurons and motor regions even for passive observations
suggests the same [184].

When people interact with the world (or simulate these interactions), they do so from
a first-person egocentric perspective [103]. Therefore, making strides towards human-
like activity understanding might require creating a link between the two worlds of data:
first-person and third-person. In recent years, the field of egocentric action understand-
ing [99,132,135,173,183,195] has bloomed due to a variety of practical applications, such
as augmented/virtual reality. While first-person and third-person data represent the two
sides of the same coin, these two worlds are hardly connected. Apart from philosophical
reasons, there are practical reasons for establishing this connection. If we can create a link,
then we can use billions of easily available third-person videos to improve egocentric video
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First
Person ?

"Cleaning Dishes"

Learned Joint
Representation

T
ransfer

"Person is typing on a laptop. 
Then they put down the laptop 
and pick up a pillow." 

Figure 8.1: We explore how to reason jointly about first and third-person for understanding
human actions. We collect paired data of first and third-person actions sharing the same
script. Ourmodel learns a representation from the relationship between these twomodalities.
We demonstrate multiple applications of this research direction, for example, transferring
knowledge from the observer’s to the actor’s perspective.

understanding. Yet, there is no connection: why is that?
The reason for the lack of link is the lack of data! In order to establish the link between

the first and third-person worlds, we need aligned first and third-person videos. In addition
to this, we need a rich and diverse set of actors and actions in these aligned videos to
generalize. As it turns out, aligned data is much harder to get. In fact, in the egocentric
world, getting diverse actors and, thus, a diverse action dataset is itself a challenge that has
not yet been solved. Most datasets are lab-collected and lack diversity as they contain only a
few subjects [51, 54, 173].

Here, we address one of the biggest bottlenecks facing egocentric vision research. We
introduce a large-scale and diverse egocentric dataset, Charades-Ego, collected using the
Hollywood inHomes [223]methodology. We demonstrate an overview of the data collection
and the learning process in Figure 8.1, and present examples from the dataset in Figure 8.2.
Our new dataset has 112 actors performing 157 different types of actions. More importantly,
we have the same actors perform the same sequence of actions from both first and third-
person perspective. Thus, our dataset has semantically similar first and third-person videos.
These “aligned” videos allow us to take the first steps in jointly modeling actions from first
and third-person’s perspective. Specifically, our model, ActorObserverNet, aligns the two
domains by learning a joint embedding in a weakly-supervised setting. We show a practical
application of joint modeling: transferring knowledge from the third-person domain to the
first-person domain for the task of zero-shot egocentric action recognition.

8.1 Background
Action recognition from third-person perspective has been extensively studied in computer
vision. The most common thread is to use hand-crafted features [115, 127, 128] or learn
features for recognition using large-scale datasets [16, 227]. We refer the reader to [177, 274]
for a detailed survey of these approaches, and in the following we focus on the work most
relevant to our approach. Our work is inspired by methods that attempt to go beyond
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modeling appearances [99, 271]. Our core hypothesis is that modeling goals and intentions
requires looking beyond the third-person perspective.
Egocentric understanding of activities. Given recent availability of head-mounted cameras
of various types, there has been a significant amount of work in understanding first-person
egocentric data [52, 132,135,142, 173,195]. This unique insight into people’s behaviour gives
rise to interesting applications such as predicting where people will look [135], and how
they will interact with the environment [182]. Furthermore, it has recently been shown that
egocentric training data provides strong features for tasks such as object detection [99].
Datasets for egocentric understanding. Egocentric video understanding has unique chal-
lenges as datasets [51, 54, 132, 173] are smaller by an order of magnitude than their third-
person equivalents [50, 223]. This is due to numerous difficulties in collecting such data,
e.g., availability, complexity, and privacy. Recent datasets have targeted this issue by using
micro-videos from the internet, which include both third and first-person videos [161].
While they contain both first and third-person videos, there are no paired videos that can be
used to learn the connection between these two domains. In contrast, our dataset contains
corresponding first and third-person data, enabling a joint study.
Unsupervised and self-supervised representation learning. In this chapter, we use the
multi-modal nature of the data to learn a robust representation across those modalities. It
allows us to learn a representation from the data alone, without any explicit supervision.
This draws inspiration from recent work on using other cues for representation learning, such
as visual invariance for self-supervised learning of features [1, 99, 136, 149, 168, 233, 268, 271].
For example, this visual invariance can be obtained by tracking how objects change in
videos [271] or from consecutive video frames [149]. Typically, this kind of invariance is har-
nessed via deep metric learning with Siamese (triplet) architectures [25, 67, 78, 87, 265, 294].
Data for joint modeling of first and third person. To learn to seamlessly transfer between
the first and third-person perspectives we require paired data of these two domains. Some
recent work has explored data collected from multiple viewpoints for a fine-grained under-
standing human actions [102]. Due to the difficulty of acquiring such data, this is generally
done in a small-scale lab setting [51,102], with reconstruction using structure-from-motion
techniques [102], or matching camera and head motion of the exact same event [176,290].
Most related to our work is that of Fan et al. [51] which collects 7 pairs of videos in a lab
setting, and learns to match camera wearers between third and first-person. In contrast, we
look at thousands of diverse videos collected by people in their homes.

8.2 Charades-Ego
In order to link first-person and third-person data, we need to build a dataset that has videos
shot in first and third-person views. We also need the videos to be semantically aligned,
i.e., the same set of actions should appear in each video pair. Collection in a controlled lab
setting is difficult to scale, and very few pairs of videos of this type are available on the web.
In fact, collection of diverse egocentric data is a big issue due to privacy concerns. So how
do we scale such a collection?

We introduce the Charades-Ego dataset. The dataset is collected by following themethod-
ology outlined by the “Hollywood in Homes” approach [223], originally used to collect
the Charades dataset [216, 223], where workers on Amazon Mechanical Turk (AMT) are
incentivized to record and upload their own videos. This in theory allows for the creation of
any desired data.
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Third-Person First-Person

Figure 8.2: Examples fromCharades-Ego, showing third-person (left) and the corresponding
first-person (right) video frames.

In particular, to get data that is both in first and third-person we use publicly available
scripts from the Charades dataset [223], and ask users to record two videos: (1) one with
them acting out the script from the third-person; and (2) another one with them acting out
the same script in the same way, with a camera fixed to their forehead. We ensure that all
the 157 activity classes from Charades occur sufficiently often in our data. The users are
given the choice to hold the camera to their foreheads, and do the activities with one hand,
or create their own head mount and use two hands. We encouraged the latter option by
incentivizing the users with an additional bonus for doing so.∗ This strategy worked well,
with 59.4% of the submitted videos containing activities featuring both hands, courtesy of a
home-made head mount holding the camera.

Specifically, we collected 4000† pairs of third and first-person videos (8000 videos in
total), with over 364 pairs involving more than one person in the video. The videos are
31.2 seconds long on average. This data contains videos that follow the same structure
semantically, i.e., instead of being identical, each video pair depicts activities performed by
the same actor(s) in the same environment, and with the same style. This forces a model to
latch onto the semantics of the scene, and not only landmarks. We evaluated the alignment of
videos by asking workers to identify moments that are shared across the two videos, similar
to the algorithmic task in Section 8.4.3, and found the median alignment error to be 1.3s (2.1s
average). This offers a compromise between a synchronized lab setting to record both views
simultaneously, and scalability. In fact, our dataset is one of the largest first-person datasets
available [51, 54, 132, 173], has significantly more diversity (112 actors in many rooms), and
most importantly, is the only large-scale dataset to offer pairs of first and third-person views
that we can learn from. Examples from the dataset are presented in Figure 8.2. Our data is
publicly available at github.com/gsig/actor-observer.

8.3 Jointly Modeling First and Third-Person
As shown in Figure 8.1, our aim is to learn a shared representation, i.e., a common embedding
for data, from the corresponding frames of the first and the third-person domains. In the
∗We compensated AMT workers $1.5 for each video pair, and $0.5 in additional bonus.
†Since the scripts are from the Charades dataset, each video pair has another third-person video from a different

actor. We use this video also in our work.
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example in the figure, we have a full view of a person working on a laptop in third-person.
We want to learn a representation where the corresponding first-person view, with a close-
up of the laptop screen and a hand typing, has a similar representation. We can use the
correspondence between first and third-person as supervision to learn this representation
that can be effective for multiple tasks. The challenges in achieving this are: the views are
very visually different, and many frames are uninformative, such as walls, doors, empty
frames, and blurry frames. We nowdescribe amodel that tackles these challenges by learning
how to select training data for learning a joint representation.

8.3.1 Formulation
The problem of modeling the two domains is a multi-modal learning problem, in that,
data in the first-person view is distinct from data in the third-person view. Following the
taxonomy of Baltrusaitis et al. [10] we formulate this as learning a coordinated representation
such that corresponding samples in both the first and third-person modalities are close-by
in the joint representation. The next question is how to find the alignment or corresponding
frames between the two domains. We define ground-truth alignment as frames from first
and third-person being within ∆-seconds of each other, and non-alignment as frames being
further than ∆′-seconds, to allow for a margin of error.

If a third-person frame x and a first-person frame z map to representations f(x) and
g(z) respectively, we want to encourage similarity between f(x)∼g(z) if their timestamps
tx and tz satisfy |tx − tz| < ∆. If the two frames do not correspond, then we maximize
the distance between their learned representations f(x) and g(z). One possible way to
now learn a joint representation is to sample all the corresponding pairs of (x, z), along
with a non-corresponding first-person frame z′ and use a triplet loss. However, this is not
ideal for three reasons: (1) It is inefficient to sample all triplets of frames; (2) Our ground
truth (correspondence criteria) is weak as videos are not perfectly synchronized. (3) We
need to introduce a mechanism which selects samples that are informative (e.g., hand
touching the laptop in Figure 8.1) and conclusive. These informative samples can also be
non-corresponding pairs (negative).

We define the problem of learning the joint representation formally with our loss function
lθ. The loss is defined over triplets from the two modalities (x,z,z′). The overall objective
function is given by:

L = E
(x,z,z′)∼Pθ

[lθ(x,z,z
′)] , (8.1)

where lθ is a triplet loss on top of ConvNet outputs, and θ is set of all the model parameters.
The loss is computed over a selector Pθ. We also learnPθ, a parameterized discrete distribution
over data, that represents how to sample more informative data triplets (x,z,z′). Intuitively,
this helps us find what samples are likely too hard to learn from. To avoid the degenerate
solution where Pθ emphasizes only one sample, we constrain Pθ by reducing the complexity
of the function approximator, as discussed in Section 8.3.2.

The joint model from optimizing the loss and the selector can be used to generate the
other view, given either first or third-person view. We illustrate this in Figure 8.3, where we
find the closest first-person frames in the training set, given a third-person query frame. We
see that the model is able to connect the two views from the two individual frames, and
hallucinate what the person is seeing.

Our setup is related to previous formulations in self-supervised and unsupervised
learning, where the pairs (x,z) are often chosen with domain-specific heuristics, e.g., tempo-
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Third-Person Frame Nearest Neighbors in First-Person

First-Person Frame Nearest Neighbors in Third-Person

Figure 8.3: Using our joint first and third-personmodel we can hallucinate how a scenemight
look through the eyes of the actor in the scene. The top two rows show nearest neighbours
(on the right) fromfirst-person videos. The bottom two rows show the observer’s perspective,
given a first-person video frame.

ral [99, 271] and spatial [41] proximity. Triplet loss is a common choice for the loss lθ for
these tasks [41, 87, 99, 271]. We will now address how we model our loss function with a
ConvNet, and optimize it with stochastic gradient descent.

8.3.2 Optimizing the objective
Optimizing the objective involves learning parameters of both the triplet loss lθ, as well as
the selector Pθ. This correlated training can diverge. We address this by using importance
sampling to rewrite the objective L (8.1) to an equivalent form. We move the distribution of
interest Pθ to the objective and sample from a different fixed distribution Q as follows:

L = E
(x,z,z′)∼Q

[
pθ(x,z,z

′)

q(x,z,z′)
lθ(x,z,z

′)

]
. (8.2)
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We choose Q to be a uniform distribution over the domain of possible triplets: {(x, z, z′) |
|tx−tz|<∆, |tx−t′z|>∆′}. We uniformly sample frames from first and third-person videos,
but re-weight the loss based on the informativeness of the triplet. Here, pθ(x, z, z′) is the
value of the selector for the triplet choice (x, z, z′).

Instead of modeling the informativeness of the whole triplet, we make a simplifying
assumption. We assume the selector Pθ factorizes as pθ(x,z,z′)=pθ(x)pθ(z)pθ(z

′). Further,
we constrain Pθ such the probability of selecting any given frame in that video sums to
one for a given video. This has similarities with the concept of “bags” in multiple instance
learning [4], where we only know whether a given set (bag) of examples contains positive
examples, but not if all the examples in the set are positive. Similarly, here we learn a
distribution that determines how to select the useful examples from a set, where our sets are
videos. We use a ConvNet architecture to realize our objective.

8.3.3 Architecture of ActorObserverNet
The ConvNet implementation of our model is presented in Figure 8.4. It consists of three
streams: one for third-person, and two for first-person with some shared parameters. The
streams are combined with a L2-based distance metric [87] that enforces small distance
between corresponding samples, and large distance between non-corresponding ones:

lθ(x,z,z
′) =

e‖x−z‖2

e‖x−z‖2 + e‖x−z
′‖2
. (8.3)

The computation of the selector value, pθ(x,z,z′), for a triplet (x,z,z′) is also done by
the three streams. The selector values are the result of a 4096×1 fully-connected layer,
followed by a scaled tanh nonlinearity‡ for each stream. We then define a novel non-linearity,
VideoSoftmax, to compute the per-video normalized distribution over frames in different
batches, which are then multiplied together to form pθ(x)pθ(z)pθ(z

′). Once we have the
different components of the loss in (8.2) we add a loss layer (“Final loss” in the figure). This
layer combines the triplet loss lθ with the selector output pθ and implements the loss in (8.2).
All the layers are implemented to be compatible with SGD [217].
VideoSoftmax layer. The distribution Pθ is modeled with a novel layer which computes a
probability distribution across multiple samples corresponding to the same video, even if
they occur in different batches. The selector value for a frame x is given by:

pθ(x) =
efθ(x)∑

x′∈V
efθ(x′)

, (8.4)

where fθ(x) is the input to the layer and denominator is the sum of efθ(x′) computed over
all frames x′ in the same video V . This intuitively works like a softmax function, but across
frames in the same video.

Since triplet loss lθ is weighted by the output of the selector, the gradient updates with
respect to the triplet loss are simply a weighted version of the original gradient. The gradient
for optimizing the loss in (8.2) with respect to the selector in (8.4) is (with slight abuse of
notation for simplicity):

∂L

∂f
∝ pθ(x,z,z′)(lθ(x,z,z′)− L), (8.5)

‡The choice of Tanh nonlinearity makes the network more stable than unbounded alternatives like ReLU.
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Figure 8.4: Illustration of our ActorObserverNet. The model has separate streams for first
and third-person. Given a triplet of frames from these two modalities, the model computes
their fc7 features, which are used to compare and learn their similarity. The FC and the
VideoSoftmax layers also compute the likelihood of this sample with respect to the selector
Pθ.

where the gradient is with respect to the input of the VideoSoftmax layer f , so we can account
for the other samples in the denominator of (8.4). Q is defined as a constant over the domain,
and can be ignored in the derivation. The intuition is that this decreases the weight of the
samples that are above the loss L (8.1), and increases it otherwise. Our method is related
to mining easy examples. The selector learns to predict the relative weight of each triplet,
i.e., instead of using the loss directly to select triplets (as in mining hard examples). The
gradient is then scaled by the magnitude of the weight. The average loss L is computed
across all the frames.

8.4 Experiments
We demonstrate the effectiveness of our joint modeling of first and third-person data through
several applications, and also analyzewhat themodel is learning. In Section 8.4.2 we evaluate
the ability of the joint model to discriminate correct first and third-person pairs from the
incorrect ones. We investigate how well the model localizes a given first-person moment in
a third-person video, from the same as well as users, by temporally aligning a one-second
moment between the two videos (Section 8.4.3). Finally, in Section 8.4.4 we present results for
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Good Third-Person

Good First-Person

Bad Third-Person

Bad First-Person

Figure 8.5: A selection of frames, from third and first-person videos, the model assigns the
highest and the lowest weights, i.e., pθ(x) and pθ(z) from (8.2) respectively. This provides
intuition into what the model is confident to learn from.

transferring third-person knowledge into the first-person modality, by evaluating zero-shot
first-person action recognition. We split the 8000 videos into 80% train/validation, and 20%
test for our experiments.

8.4.1 Implementation details
Our model uses a ResNet-152 video frame classification architecture, pretrained on the Cha-
rades dataset [223], and shares parameters between both the first and third-person streams.
This is inspired by the two-stream model [227], which is a common baseline architecture
even in ego-centric videos [51, 142]. The scale of random crops for data augmentation in
training was set to 80−100% for first-person frames, compared to the default 8−100% for
third-person frames. We set the parameter ∆ for the maximum distance to determine a
positive pair as one second (average alignment error in the dataset), and the parameter ∆′

for the negative pair as 10 seconds.
We sample the training data triplets, in the form of a positive pair with first and third-

person frames, which correspond to each other, and a negative pair with the same third-
person frame and an unrelated first-person frame from the same video. This sampling is done
randomly following the uniform distribution Q in (8.2). The scales of tanh are constrained
to be positive. For the experiments in Sections 8.4.3 and 8.4.4, the parameters of the fully con-
nected layers for the two first-person streams are shared. Our code is implemented in the Py-
Torch machine learning framework and is available at github.com/gsig/actor-observer.

8.4.2 Mapping third-person to first-person
The first problem we analyze is learning to model first and third-person data jointly, which
is our underlying core problem. We evaluate the joint model by finding a corresponding
first-person frame, given a third-person frame, under two settings: (1) using the whole test
set (‘All test data’); and (2) when the model assigns weights to each sample (‘Choose X%
of test data’). In the second case, the triplets with the top 5%, 10%, or 50% highest weights
are evaluated. Each triplet contains a given third-person frame, and a positive and negative
first-person frames. This allows the model to choose examples from the test set to evaluate. NEW

From Table 8.1 we see that the original problem (‘All test data’) is extremely challenging,
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Random ImageNet
ResNet-152

Charades
Two-Stream ActorObserverNet

Same person
All test data 50.0 53.6 55.5 51.7
Choose 50% of test data 50.0 55.7 60.2 73.9
Choose 10% of test data 50.0 57.9 68.8 97.2
Choose 5% of test data 50.0 56.5 71.9 96.8
Different persons
All test data 50.0 50.6 51.7 50.4
Choose 50% of test data 50.0 50.4 51.6 76.3
Choose 10% of test data 50.0 49.6 50.8 98.8
Choose 5% of test data 50.0 45.6 51.4 98.3
Table 8.1: Given a third-person frame, we determine whether a first-person frame corre-
sponds to it. Results are shown as correspondence classification accuracy (in %). Higher is
better. See Section 8.4.2 for details.

even for state-of-the-art representations. The baseline results are obtained with models
using fc7 features from either ResNet-152 trained on ImageNet or a two-stream network
(RGB stream using ResNet-152 from [223]) trained on Charades to compute the loss. The
baselines use the difference in distance between positive and negative pairs as the weight
used to pick what samples to evaluate on in the second setting.

The results of the two-Stream network (‘Charades Two-Stream’ in the table) and our
ActorObserverNet using all test data (‘All test data’) are similar, but still only slightly better
than random chance. This is expected, since many of the frames correspond to occluded
human actions, people looking at walls, blurry frames, etc., as seen in Figure 8.5. On the
other hand, our full model, which learns to weight the frames (‘Choose X% of test data’ in
the table), outperforms all the other methods significantly. Note that our model assigns a
weight for each image frame independently, and in essence, learns if it is a good candidate for
mapping. We observe similar behavior when we do the mapping with third and first-person
videos containing the same action performed by different people (‘Different persons’ in the
table).

Figure 8.5 shows a qualitative analysis to understand what the model is learning. Here,
we illustrate the good and the bad frames chosen by the model, according to the learned
weights, both in the third and first-person cases. We observe that the model learns to ignore
frames without objects and people, and blurry, feature-less frames, such as the ones seen
in the bottom row in the figure. Furthermore, our model prefers first-person frames that
include hands, and third-person frames with the person performing an action, such as
answering a phone or drinking; see frames in the top row in the figure.

Quantitatively, we found that 68% of high-ranked and only 15% of low-ranked frames
contained hands. This is further highlighted in Figures 8.6 and 8.7 where we visualize
conv5 activations, and gradients at the image layer, respectively. We observe the network
attending to hands, objects, and the field of view. Figure 8.8 illustrates the selection over a
video sequence. Here, we include the selector value of pθ(z) for each frame in a first-person
video. The images highlight points in the graph with particularly useful/useless frames.

132



Figure 8.6: Conv5 activations of ActorObserverNet. The colors range from blue to red,
denoting low to high activations. We observe the network attending to hands, objects, and
the field of view.

Third-
Person

First-
Person

Figure 8.7: By backpropagating the similarity loss to the image layer, we can visualize what
regions the model is learning from. The colors range from blue to red, denoting low to high
importance.

In general, we see that the weights vary across the video, but the high points correspond
to useful moments in the first-person video (top row of images), for example, with a clear
view of hands manipulating objects.

8.4.3 Alignment and localization
In the second experiment we align a given first-person moment in time, i.e., a set of frames in
a one-second time interval, with a third-person video, and evaluate this temporal localization.
In other words, our task is to find any one-second moment that is shared between those
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Figure 8.8: Our model learns to assign weights to all the frames in both third and first-person
videos. Here we show the selector value pθ(z) (the importance of each frame) for a sample
first-person video, and highlight frames assigned with high and low values. See Section 8.4.2
for details.

first and third-person perspectives, thus capturing their semantic similarity. This allows for
evaluation despite uninformative frames and approximate alignment. For evaluation, we
assume that the ground truth alignment can be approximated by temporally scaling the
first-person video to have the same length as the third-person video.

Ifm denotes all the possible one-secondmoments in a first-person and n in a third-person
video, there arem× n ways to pick a pair of potentially aligned moments. Our goal is to
pick the pair that has the best alignment from this set. The moments are shuffled so there is
no temporal context. We evaluate this chosen pair by measuring how close these moments
are temporally, in seconds, as shown in Table 8.2. To this end, we use our learned model, and
find one-second intervals in both videos that have the lowest sum of distances between the
frames within this moment. We use L2 distance between fc7 features in these experiments.

We present our alignment results in Table 8.2, and compare with other methods. These
results are reported as median alignment error in seconds. The performance of fc7 features
from the ImageNet ResNet-152 network is close to that of a random metric (11.0s). ‘Two-
Stream’, which refers to the performance of RGB features from the two-stream network
trained on the Charades dataset, performs better. Our ‘ActorObservetNet’ outperforms all
these methods.NEW

We visualize the temporal alignment between a pair of videos in Figure 8.9. We highlight
in green the best moment in the video chosen by the model: the person looking at their cell
phone in the third-person view, and a close-up of the cell phone in the first-person view.
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Random Chance Human ImageNet
ResNet-152

Charades
Two-Stream ActorObserverNet

Same person 11.0 1.3 8.3 6.5 5.2
Different persons 11.0 1.3 8.7 7.0 6.1

Table 8.2: Alignment error in seconds for our method ‘ActorObserverNet’ and baselines.
Lower is better. See Section 8.4.3 for details.

First-
Person

Match

Third-
Person

Video 1
time

time
Video 2

Figure 8.9: Our model matches corresponding moments between two videos. We find the
moment in the third-person video (bottom row) that best matches (shown in green) our
one second first-person moment (top row), along with other possible matches (gray). (Best
viewed in pdf.)

8.4.4 Zero-shot first-person action recognition
Since our ActorObserverNet model learns to map between third and first-person videos,
we use it to transfer knowledge acquired from a dataset of third-person videos, annotated
with action labels, to the first-person perspective. In essence, we evaluate first-person action
recognition in a zero-shot setting. We annotated first-person videos in the test set with the
157 categories from Charades [223] to evaluate this setup. Following the evaluation setup
from Charades, we use the video-level multi-class mean average precision (mAP) measure.

In order to transfer knowledge from the third-person to the first-person perspective, we
add a classification loss to the third-person model after the fc7 layer. To train this framework,
we use third-person training examples from the Charades dataset, in addition to the training
set from our Charades-Ego dataset. Note that the third-person videos from Charades are
annotated with action labels, while our data only has unlabelled first/third person pairs.
Thus, we use the mapping loss in (8.2) when updating the network parameters due to
first/third person pair, and the RGB component of the two-stream classification loss for an
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Random Charades
VGG-16

Charades
ResNet-152 ActorObserverNet

Accuracy 8.9 17.8 22.7 25.9
Table 8.3: Egocentric action recognition in the zero-shot learning setup. We show the video-
level mAP on our Charades-Ego dataset. Higher is better. See Section 8.4.4 for details.

update due to a Charades third-person example.
Our model now learns to not only map both first and third-person frames to a shared

representation, but also a third-person activity classifier on top of that shared representation.
At test time, we make a prediction for each frame in a first-person test video, and then
combine predictions over all the video frames with mean pooling. We present the results in
Table 8.3.

Baseline results. The performance of random chance is 8.9% on the Charades-Ego dataset.
We also compare to the RGB two-stream model trained on Charades (third-person videos),
using both VGG-16 and ResNet-152 architectures, which achieve 18.6% and 22.8% mAP
respectively, on the Charades test set. Both are publicly available [223], and show a 8.9%
and 13.8% improvement respectively, over random chance on our first-person videos.

Our results. Our ActorObserverNet further improves over the state-of-the-art two-stream
network by 3.2%. This shows that our model can transfer knowledge effectively from the
third-person to the first-person domain.

To further analyze whether the gain in performance is due to a better network, or third
to first-person transfer, we evaluated our network on the Charades test set. It achieves 23.5%
on third-person videos, which is only 0.7% higher than the original model, which suggests
that the performance gain is mainly due to the new understanding of how third-person
relates to first-person view.

8.5 Discussion
We proposed a framework towards linking the first and third-person worlds, through our
novel Charades-Ego dataset, containing pairs of first and third-person videos. This type
of data is a first big step in bringing the fields of third-person and first-person activity
recognition together. Our model learns how to jointly represent those two domains by
learning a robust triplet loss. Semantic equivalence in data allows it to relate the two
perspectives from different people. Our results on mapping third-person to first-person,
alignment of videos from the two domains, and zero-shot first-person action recognition
clearly demonstrate the benefits of linking the two perspectives.
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Chapter 9

Semantic Grounding in Video

In this final chapter, we explore how to expand the semantic knowledge of a video model.
Whereas our model might now perfectly understand the information in the video, we need to
connect that information to concepts that we understand. For example, there are thousands
of actively spoken languages on Earth, but a single visual world. Grounding in this visual
world has the potential to bridge the gap between all these languages. Our goal is to use
visual grounding to improve unsupervised word mapping between languages. The key
idea is to establish a common visual representation between two languages by learning
embeddings from unpaired instructional videos narrated in the native language. Given this
shared embedding we demonstrate that (i) we can map words between the languages,
particularly the ‘visual’ words; (ii) that the shared embedding provides a good initialization
for existing unsupervised text-based word translation techniques, forming the basis for our
proposed hybrid visual-text mapping algorithm, MUVE; and (iii) our approach achieves
superior performance by addressing the shortcomings of text-based methods – it is more
robust, handles datasets with less commonality, and is applicable to low-resource languages.
We apply these methods to translate words from English to French, Korean, and Japanese –
all without any parallel corpora and simply by watching many videos of people speaking
while doing things.

Children can learn multiple languages by merely observing their environment and
interacting with other people, without any explicit supervision or instruction; multilingual
children do not hear a sentence and its translation simultaneously, and they do not hear a
sentence in multiple languages while observing the same situation [64]. Instead, they can
leverage visual similarity across situations: what they observe while hearing “the dog is
eating” on Monday is very similar to what they see as they hear “le chien mange” on Friday.

We take a first step towards building an unsupervised multimodal translation system
by relating the machine translation task to the way children learn multiple languages: we
expose the system to videos of people from different countries performing a task while
explaining what they are doing in their native languages. There are many such videos
in YouTube: for example, we can learn how to squeeze orange juice by watching Korean
or English videos. Instructional videos tend to look visually similar and the underlying
concepts being spoken are often the same. We obtained a large number of such videos
and the corresponding subtitles using automatic speech recognition, extending the recent
procedure of [154] to multiple languages.
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Figure 9.1: Across the world, there are many different ways to refer to . But in the visual
domain, a is simply a everywhere on Earth. We leverage this observation to learn to
translate words in different languages without any paired bilingual data.

Working with this data introduces various challenges. First of all, despite significant
recent progress, visual understanding in videos is far from solved – even with the state-
of-the-art models, clustering similar activities is not easy. Additionally, and in contrast
to manually-captioned datasets where words tend to describe the scene, in instructional
videos the words correspond to what the instructors are saying. While performing a task,
the instructors often talk about random topics (such as subscriber counts and audience
interaction) that do not have any visual relevance.

We demonstrate, that despite these challenges, a shared visual representation can fa-
cilitate the mapping of different languages at the word level. As illustrated in Fig. 9.2, we
propose a model that maps two languages through the visual domain (videos). For English
and French, the model correctly translates 28.0% and 45.3% of common words and visual
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"...squeeze the orange..." "...peindre en orange..."

Figure 9.2: We build on recent advances in video modeling and train an unsupervised system that
learns to translate words in multiple languages by grounding the language in video and without any
paired data. (“peindre en orange”=“painting in orange”.)

words, all by only watching videos. For comparison, a retrieval-based baseline (without
sharing the visual representation) achieves 12.5% and 18.6% for common words and visual
words.

Moreover, we show that our model is more robust than the state-of-the-art unsupervised
text-based word mapping models which exploit co-occurrence statistics [6,28], in terms of
sensitivity to (a) the degree to which the two languages differ (e.g., English is more similar
to French than Korean), (b) the dissimilarity of the training corpora of the two languages
(e.g., English and French Wikipedia are highly similar), and (c) the amount of training data.
Finally, we show that the combination approach (with text-based approaches) is reliable for
a large variety of tasks. For example, when the training corpora in French and English are
dissimilar (instructional videos in French and Wikipedia in English), our method achieves a
32.6% recall while that of the text-based ones is less than 0.5%.
Contributions. The contributions are threefold. (i)We propose a method to map languages
through the visual domain using only unpaired instructional videos, (ii)we demonstrate
that our method is effective at connecting words in different languages through vision in
an unsupervised manner, and finally (iii) we show that our method can serve as a good
initialization for existing word mapping techniques addressing many shortcomings of text-
based methods.

9.1 Background
Bilingual child language acquisition. An open question in the field of bilingual language
acquisition is to what extent the systems and representations learned for each language
are shared. This sharing can happen for different aspects of language such as grammar,
morphology, or the conceptual representations [32, 63]. For example, bilingual children
eventually learn that both “chien” and “dog” refer to the actual animal dog, but whether
and when this representation is shared is a matter of debate. We explore whether sharing
the conceptual (visual) representation improve the quality of word translation for different
languages.
Unsupervised text-based word alignment. Words often occur in the same context in differ-
ent languages – in both English and French, “dog”, “catch”, and “ball” co-occur together.
Previous work has used this insight to align the embedding space of different languages and
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use the aligned space to translate words from one language to another language [130, 156].
Earlier work used various degrees of supervision through ground-truth dictionaries or
heuristics [6, 89, 229]; recently, fully unsupervised approaches achieved a similar perfor-
mance on word alignment for different language pairs without any supervision [8, 28].
However, because these methods take advantage of the similarity between both the language
pairs and their training corpora, they are not robust when the languages (or their training
corpora) are very different [7, 230].
Vision and language. There is a growing interest in combining methods developed in
computer vision and natural language processing to solve more challenging problems at
the intersection of these fields [3, 42, 84, 91, 107, 146, 210, 254]. Grounding language is at
the core of the interest of these two communities. It also has a long tradition in symbolic
artificial intelligence, where “meaningless symbols cannot be grounded in anything but
other meaningless symbols” [79]. The same problem of assigning meaning to symbols has
been a fruitful research direction in computer vision. Early work explored weak supervision
and the correspondence problem between text annotations and image regions [11, 43], with
more modern approaches exploring joint image-text word embeddings [60], or building a
language conditioned attention map over the images in caption generation, visual question
answering and text-based retrieval [5,34,83,144,188,191,254,284,300]. Of particular interest,
recent work has focused onmultimodal andmultilingual settings such as producing captions
in many languages, visual-guided translations [12, 45, 234, 272], or bilingual visual question
answering [61]. However, these use a paired corpora, i.e. same video or images are associated
with captions in multiple languages [272]. Obtaining paired corpora in several languages is
expensive, and does not scale.
Instructional videos. We rely on instructional videos [2,207,291] since they can be obtained
at scale without any manual annotation [154]: they consist of YouTube videos and their associ-
ated narrations which is generated using automatic speech recognition (ASR). We propose
to use instructional videos in different languages to show that we can translate words by
only watching and listening to people performing various tasks.

9.2 Unsupervised Multilingual Learning
Wedescribe our approach for unsupervisedmultilingualword alignment through grounding
in the visual domain Z . Our method is unsupervised in that it learns the correspondences
between two languages X and Y (e.g. English and French) without any parallel (paired)
corpora. Instead, we are given two distinct collections of instructional videos, i.e. n videos
narrated with language X and anotherm different videos with language Y . Equipped with
this, our goal is to learn to map languages X and Y by leveraging the shared visual modality
Z – the videos. We evaluate this ability in terms of the accuracy of word translation, i.e. how
well the vocabulary in one language can be mapped to the other one.

Mapping languages through instructional videos is challenging: first, learning video-text
embeddings from instructional videos is difficult as the speech in these videos is only loosely
related to the scene.∗ Second, in multilingual setting, such errors compound since both
languages have this low video-text relevance; moreover, visually similar videos may not be
semantically similar.
∗For example, only 50% of the captions and videos in HowTo100M are semantically related [154].
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Figure 9.3: Details of the three encoders: one for language X , one for language Y , and one for videos
Z . Coupling of the two languages is obtained by sharing relevant parts of the model (shaded region).

This challenge cannot be addressed by using the similarity of videos to construct a parallel
text corpora (see Fig. 9.4). Instead, followingMiech et al. [154], we learn a joint (monolingual)
video-text embedding space from instructional videos. We extend the training strategy to
the multilingual case by defining the following objective:

min
f,g,h

L(f,h)(X × Z)︸ ︷︷ ︸
Language X and vision

+ L(g,h)(Y × Z),︸ ︷︷ ︸
Language Y and vision

(9.1)

where L is a metric-learning loss between text and video embeddings [153]. The parameters
f , g, and h define the embedding functions of the language X , language Y , and the video
domainZ , respectively. The idea is that sharing the visual encoder h across the two languages
is crucial to align the two languages X and Y .

Next, we describe the proposed approach (Eq. (9.1)) in detail. Sec. 9.2.1 explains our
choice of embedding models f , g and h. Sec. 9.2.2 defines the loss function L. Finally, in
Sec. 9.2.3, we explain how our initial model can be used to improve text-based wordmapping
techniques.

9.2.1 Multilingual Visual Embedding: Architecture
An illustration of our architecture is given in Fig. 9.3.
Input to the model. We represent sentences as a fixed-length sequence of integers, i.e. X
and Y are of the form {1, . . . ,K}L where K and L are the vocabulary size and sentence
length, respectively. On average, sentences consist of 10 words. Videos are in pixel space:
Z = RT×H×W×3, where T is the number of frames in the video clips (here 32 frames at 10
FPS); H andW are the height and width of the video respectively, with 3 RGB channels.
Text encoders. The text encoder f in language X , following [154], consists of: (i) a word
embedding layer that takes as input a sequence composed of L tokens and outputs L vectors
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of dimension dw, (ii) a position-wise fully connected feed-forward layer followed by max
pooling over the words to generate a single di-dimensional vector for the whole sequence,
and finally (iii) a linear layer to map the intermediate representation to the joint embedding
space Rd.

For the text encoder g in language Y , we share model weights across languages, following
[77, 101]. More specifically, we share the weights of the feed forward layers and the last
linear layer between f and g. To input different languages to the shared layers, we simply
add a linear layer, referred to as the AdaptLayer, after the word embedding layer in language
Y .

Intuitively, the role of the AdaptLayer is to transform the word embedding space of
language Y such that word embeddings in language Y become as similar as possible to
the word embeddings in language X . Then, the rest of the network can be shared, and yet
preserve the monolingual properties of the word embeddings if needed. As this layer is only
linear, the model does not impose any asymmetry between languages X and Y .
Video encoder. For the video encoder, we use the standard I3D [16] model followed by a
linear layer that maps the output into the joint embedding space.

9.2.2 The Base Model: Training and Inference

Training data. We are given a set of n videos narrated in language X : {(xi, zi)}ni=1 and a set
ofm different videos narrated in language Y : {(yj , z̃j)}mj=1. Note that there is no overlap in
videos in the first and second set, i.e. we do not have access to paired bilingual data.
Training objective. The first term L(f,h) in our objective function Eq. (9.1) is defined as
follows:

L(f,h) ({(xi, zi)}ni=1) =
∑
i

− logNCE (f(xi), h(zi)) , (9.2)

where NCE corresponds to the noise contrastive estimation [76] discriminative operator:

NCE(x, z) =
ef(x)

>h(z)

ef(x)>h(z) +
∑

(x′,z′)∼N
ef(x′)>h(z′)

, (9.3)

where N is a set of negative pairs used to enforce that video and narration that co-occur
in the data are close in the space and those that do not are far. Here the negatives are x
and z paired with other x′ and z′ chosen uniformly at random from the training set X ,
following [153]. In practice, each training batch includes clips from either language, and
the negatives for each element in the NCE loss are the other elements from the batch in the
same language. L(g,h) in Eq. (9.1) has the same form, except with g and {(yj , z̃j)}mj=1.
Inference. Because we use the same visual encoder h for the two languages, we can assume
that the outputs of the language encoders f and g are in the same space. After training our
model with the joint loss in Eq. (9.1), we can directly map the first language to the second
one; for a given x ∈ X , we find y ∈ Y for which the embedding g(y) has the smallest cosine
distance to f(x).
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9.2.3 MUVE: Improving Unsupervised Translation
In this section, we explain how the Base Model can be used to improve a state-of-the-art
text-based word translation technique.
Text-based word translation. It has been shown that distributed representations of words
(e.g. Word2Vec [157]) share similarities across languages. In particular, Mikolov et al. [156]
show that a word embedding matrix in a target language can be approximated by simply
applying a linear mapping on a word embedding matrix in a different source language. To
recover that linear mapping, Mikolov et al. [156] employ a supervised method where, given
a subset of 5,000 pairs of words in the two languages, the mapping is learned by minimizing
a L2 distance between the word embeddings of the source language and the linearly mapped
word embeddings of the target language. Xing et al. [280] show that the results can be
further improved by adding an orthogonality constraint to the linear mapping. This can be
done in closed form with the Procrustes algorithm (see [28] for implementation details).
The unsupervised MUSE method. Conneau et al. [28] propose theMUSE approach that,
in contrast to the method of Mikolov et al. [156], does not require any supervised pairs of
words. MUSE has three main steps (i) finding an initial linear mapping via an adversarial
approach, then (ii) refining the mapping with the Procrustes algorithm, and finally (iii)
normalizing the distances using the local neighborhood.
MUVE: aligning words through vision. As explained in Section 9.2.1, the intuition behind
the linear AdaptLayer (see Fig. 9.3) is to map word embeddings from language Y to a
similar vector space as word embeddings from language X before being fed to the shared
layers. Given this, we propose to replace the step (i) (adversarial initialization) of the
MUSE algorithm by the AdaptLayer of our Base Model, after training it on videos. We call
that method MUVE for Multilingual Unsupervised Visual Embeddings. To further improve
the performance, we follow the observation of [280] by adding to the objective (9.1) an
orthogonal penalty ‖WW>−I‖2F on the weightsW∈Rdw×dw of the AdaptLayer, where I is
the dw-dimensional identity matrix. In Sec. 9.4.3, we demonstrate that MUVE is more robust
than its text-based counterparts in multiple aspects.

9.3 Multimodal and Multilingual Datasets
This section explains the training and evaluation datasets used in our experiments (which
are discussed in Sec. 9.4). All the datasets will be made publicily available.

9.3.1 The HowToWorld Dataset
Existing instructional video datasets curated from YouTube (e.g., the HowTo100M dataset)
are in English. We follow the approach of [154] to obtain data in three new languages:
French (fr), Japanese (ja) and Korean (ko). We use their list of 23,000 tasks (e.g., making a
latte) and translate them to French, Japanese and Korean. We obtain 31M, 30M and 34M
unique clips with narration from automatic speech recognition for the French, Japanese and
Korean datasets, respectively. We use HowTo100M [154] as the English (en) dataset. To
ensure that our datasets are stricly unpaired we removed any videos present in more than
one of the datasets.
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9.3.2 Text Corpora for Training Embeddings
To compare MUVE to the state-of-the-art unsupervised text-based word alignment methods,
we use three text corpora: (i) English and French Wikipedia: we use the publicly available
release of Wikipedia in English and French. We filter the structured output to extract the sen-
tences before processing the text as described in Sec. 9.4.1, (ii) HowToW-Text-{En,Fr,Ko,Ja}:
we use the narration extracted from the videos of HowToWorld in multiple languages and
(iii) WMT Fr-En corpus: we use the publicly available WMT French-English corpus, that
consists of English to French translations for a variety of news articles.

9.3.3 Evaluation benchmarks
Our goal is to translate words from one language to another (e.g., en to fr, en to ko, en to ja).
In this section, we describe the datasets used to analyse the quality of translations.
TheDictionary en-{fr,ko,ja}. We use the test split of the ground-truth bilingual dictionaries
used in the MUSE paper [28] to compare our method to text-based word mapping methods.
Each dictionary provides the translation of 1500 English words in another language (e.g., fr)
and list multiple translations for each English word. There are 2943 en-fr, 1922 en-ko, and
1799 en-ja pairs. As we focus on vision and to understand how different methods compare
on visual versus non visual words, we also manually annotate the bilingual dictionary for
en-fr to select words that can be visually observed (Dictionary (Visual)). This results in 637
English words and 1430 en-fr pairs. Among example words in the Dictionary dataset are:
{torpedo, giovanni, chat, catholics, herald, chuck, ...} whereas the Dictionary (Visual) contains
{torpedo, chuck, pit, garrison, sprint, ...}.
Simple Words en-{fr,ko,ja}. To examine the role of word frequency in the performance of
each method, we create a list of the 1000 most common English words from the Simple
English Wikipedia. We translate the words in this list to French, Korean, and Japanese using
the Google Translate interface. We also manually filter these words to create a list of visual
words (Simple Words (Visual)). Example words in the Simple Words dataset include {correct,
touch, hit, either, regard, carry, with, three, ...} and Simple Words (Visual) contains {do, fall, police,
carry, make, station, afternoon, money, club...}
Human Queries en-{fr,ko,ja}. In order to also qualitatively assess the performance of our
proposed model in Sec. 9.4.5, we create a text dataset containing expressions similar to
narrations contained in instructional videos. To that end, we manually defined a set of 444
visual queries along with their translations in English, French, Korean, and Japanese. We call
this dataset Human Queries. Typical examples include {oil painting, make snowman, glue wood,
cut tomato, play violin, open car door, paint shirt, tennis service, brew coffee, dribbling basketball,
...}.

9.4 Experiments
In this section, we first provide our implementation details (Sec. 9.4.1); in Sec. 9.4.2, we
demonstrate the effectiveness of our BaseModel inword translation benchmarks. In Sec. 9.4.3,
we show that the representations learned by our model can be used to improve the quality
of text-based word translation methods. We also show that our method (MUVE) is more
robust than the text-based methods (Sec. 9.4.4). Finally, in Sec. 9.4.5, we showcase various
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qualitative results that give further insight into our method.

9.4.1 Implementation Details
We tokenise the extracted transcripts of all the videos, lower case all the words, and count
their occurrences. We generate a vocabulary of the 65,536 most common words for each
language independently. All remaining words are mapped to the UNK symbol. After
preprocessing the text, for each language, we train monolingual word embeddings using
Word2Vec [157] (Skip-Gram, 300 dimensions, window of 5 words, 5 negatives). We use
these pretrained embeddings in MUVE, MUSE, and VecMap models.

At training, we sample a video clip (32 frames at 10 FPS) with its corresponding narra-
tion from the given datasets (e.g., HowToW-En or the relevant HowToW-{fr-ko-ja}). Each
training batch includes clips from either language, and the negatives for each element in
the NCE loss are the other elements from the batch in the same language. For the video
encoder, we finetune an I3D model [16] pretrained on the Kinetics-400 dataset [16]. For the
languagemodels, we use themodel described in Sec. 9.2.1, where the word embedding layers
are pretrained on the corresponding HowToW-Text datasets to incorporate distributional
semantics. We use the Adam optimizer with an initial learning rate of 10−3 with batch size
of 128 and train the model for 200k iterations on 2 Cloud TPUs.
Evaluation metrics. We report Recall@n in all our experiments: given a query (e.g. ‘Dog’),
we retrieve n results (e.g. ‘Chien’, ‘Chienne’, ‘Chiot’, . . . ), and the retrieval considered a
success if any of the n results are listed as a correct translation in the ground-truth dictionary.
If not specified otherwise, we report Recall@1 . However, we have observed a similar trend
with Recall@10 .

9.4.2 The Base Model Evaluation
We investigate whether sharing the visual encoder across languages improves the quality of
word translations; to do so, we compare the results of our Base Model with two baselines
which we explain below.
Baselines. Our first baseline method (Random Chance) retrieves a random hypothesis trans-
lation without using videos. The second baseline – Video Retrieval – uses videos to create
a parallel corpus between the two languages. We first extract I3D features pretrained on
Kinetics [16] for all video clips in HowToW-En and HowToW-Fr. We then, for each of the
English video clips (100M), find the three closest French video clips (in terms of the L2
distance). Finally, we take the narrations associated with these video pairs to create a parallel
text corpus. Given the parallel corpus, we can find alignments between English and French
words based on their co-occurrence. More specifically, we calculate the joint probability
between the English and French word pairs. For each English word, we can then rank the
French words using this joint probability.
Results. We report the results of our models and the baselines on the Dictionary and Simple
Words benchmarks in Table 9.1. We observe that our Base Model outperforms the baseline
by a significant margin in both benchmarks. Moreover, not surprisingly, the performance
of all methods is better on the Visual portion of these benchmarks. In Fig. 9.4, we provide
two examples of the two types of failures of the Video Retrievalmodel: In the first row, the
retrieved video is correct (visually related to the query) but the narrations in English and
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English-French Dictionary Simple Words
All Visual All Visual

1) Random Chance 0.1 0.2 0.1 0.2
2) Video Retrieval 6.3 7.6 12.5 18.6
3) Base Model 9.1 15.2 28.0 45.3
4) MUVE 28.9 39.5 58.3 67.5

Table 9.1: The performance of our models and the baselines measured as Recall@1 on the
English-French Dictionary and Simple Words benchmarks.

Video in HowToW-En Nearest Video in HowToW-Fr

“...stich getting color sequence...” “...le pompon va se placer...”
(...the pompom will be placed...)

“...thank you for watching bye bye...” “...j’ai besoin de curcuma et de clous...”
(...I need turmeric and cloves...)

Figure 9.4: Examples of two types of failures of the Video Retrieval baseline.

French do not convey the same meaning. In the second row, the frame from the retrieved
video is somewhat visually similar to the query (both contain food) but does not depict the
same concept. This example shows how visual understanding poses a challenge for this
task.

9.4.3 MUVE: Improving Text-Based Alignment
We evaluate the proposed MUVE approach, how much the representations learned by
our Base Model can improve the text-based word translation methods. We first describe
text-based methods that use large scale corpora for word translation, then show how using
representations from our model (Sec. 9.2.1) improves the performance of a text-based
approach. More specifically, we compare MUVE to three unsupervised and one supervised
methods described below. All methods use word embeddings trained on HowToW-Text for
their respective languages.
Iterative Procrustes iteratively maps word embeddings of two languages using a distance-
based heuristic; then it finds the orthogonal matrix that best maps the chosen pairs. We
choose the best solution from 25 different initializations (either the identitymatrix or random
matrices).
MUSE [28] uses adversarial training to map the word embeddings to a space where they
are indistinguishable, which provides better starting point for the Iterative Procrustesmethod.
The results obtained fromMUSE [28] have been found to be sensitive to the initialization [6].
VecMap [6] is more robust to initialization and differences across languages when compared
toMUSE; it obtains better linear transformation by careful normalization, whitening, and
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Dictionary En-Fr En-Ko En-Ja
All Visual All All

1) Iterative Procrustes 0.2 0.3 0.3 0.3
2) MUSE [28] 26.3 36.2 11.8 11.6
3) VecMap [6] 28.4 40.8 13.0 13.7
4) MUVE 28.9 39.5 17.7 15.1
5) Supervised 57.9 60.3 41.8 41.1
Table 9.2: Performance of our and text-based methods across different language pairs. We
report Recall@1 on the Dictionary dataset. All method use word embeddings trained on
HowToW-Text for their respective languages.

dimensionality reduction.
Supervised alignment method provides an upper bound on the unsupervised ones: it uses
5,000 words and their translations to find an optimal orthonormal matrix that best aligns the
embeddings of those words.
Results. In Table 9.2, we present the word translation results between English and French,
Korean, and Japanese. Our method, MUVE, outperforms all the text-based methods. We
observe a bigger improvement over the text-based methods for English-Korean and English-
Japanese pairs. These results confirm previous findings that suggest text-based methods
are more suited for similar languages (e.g., English and French) [6, 230] and shows that
grounding in visual domain for word translation is especially effective in that regime. Finally,
we also observe in Table 9.1 a significant improvement ofMUVE (row 4) over our Base model
alone (row 3) (+19.8% and +30.3% absolute improvement on the Dictionary and Simple
Words benchmarks, respectively). Overall, this experiment validates our intuition that
the information contained in the visual domain is complementary to the word co-occurence
statistics used by the text-based methods for the task of unsupervised word translation.
Importance of the orthogonal constraint. As explained in Sec. 9.2.3, we add an orthogonal
constraint to the AdaptLayer when applying MUVE. We observe that this penalty was a key
component for MUVE. Precisely, there is a 43.0% relative drop of performance for Recall@1
on the Dictionnary En-Fr (going from 28.9 in Table 9.2 to 16.6) benchmark when removing
the orthogonal constraint. This further corroborates the findings described in [280].

9.4.4 Robustness of Unsupervised Word Translation
Sec. 9.4.3 shows that MUVE is more robust to the difference between language pairs when
compared to the text-basedmethods (i.e. performance degrades less when going from French
to Japanese and Korean in Table 9.2). Here we examine two other axes of robustness: the
dissimilarity of the training corpora of the two languages and the amount of training data.
All results reported in this section are on English and French languages because text-based
models perform better for this pair.
Model selection. We observe that MUSE [28] and VecMap [6] are both sensitive to initial-
ization. To address this, we select the optimal hyperparameters for the text-based method on
the test set: we perform an extensive search over hyperparameters and random initialisations,
e.g. 213 runs for theMUSEmethod, and compute the performance of these runs. We then
select the best performing run on the test set, and hence reporting an upper bound of the
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HowToW-Fr WMT-Fr Wiki-Fr
∼ [28] [6] MUVE ∼ [28] [6] MUVE ∼ [28] [6] MUVE

HTW-En .62 45.8 45.4 47.3 .67 0.3 0.7 35.1 .65 0.3 0.1 41.2
WMT-En .54 0.3 0.2 26.4 .40 88.0 87.2 85.0 .44 45.9 1.3 54.9
Wiki-En .54 0.3 0.1 32.6 .46 56.7 52.3 55.9 .39 86.2 86.7 82.4

Table 9.3: Robustness of different methods to the dissimilarity of training corpora. We report
Recall@10 on English-French Dictionary dataset forMUSE [28], VecMap [6], andMUVE, as
well as the dissimilarity (∼) of the training corpora expressed with the Jensen Shannon
Distance.

true performance of these baselines. Note that when reporting numbers for MUVE we only
use the monolingual validation loss for model selection, and all numbers for MUVE use the
same hyperparameters.
Dissimilarity of the training corpora. We examine how the dissimilarity of the training
corpora affects the models. We follow the approach of [44] and measure the dissimilarity of
two given corpora by comparing their word co-occurrence statistics. More specifically, we
count the frequency of co-occurrences of each pair of words in the same sentence for each
corpus, normalize the numbers in order to get a distribution per word, align pair of words
in English and French using the Google Translate API, and average the Jensen Shannon
distance between distributions for each corresponding words.

We report the results in Table 9.3; all methods are evaluated on the Dictionary dataset
with the Recall@10metric. Looking at the diagonal of the table, we observe when the corpora
are similar (e.g., Wiki-En andWiki-Fr), all methods performwell. However when the corpora
are less similar (off-diagonal elements), we observe that MUVE significantly outperforms its
text-based counterparts. We note that methods trained on Wiki-En and WMT-Fr perform
better compared to Wiki-Fr and WMT-En. This is likely due to the combination of Wiki-Fr
and WMT-En being a smaller corpora: Wiki-En is much larger than Wiki-Fr while the WMT
corpora in both languages are of the same size. In conclusion, our method by using visual
grounding is more robust to the dissimilarity of the corpora in two languages.
Amount of training data. Unsupervised word translation is especially appealing for low-
resource languages where there is no large corpora available. We investigate to what extent
MUVE and the text-based methods are robust to the varying size of training data. More
specifically, we use 100%, 10%, and 1% of the target training corpora (Wiki-Fr orHowToW-Fr)
and report Recall@10. For MUVE, when reducing HowToW-Fr, we also reduce the amount
of videos processed. Our results are shown in Fig. 9.5. MUVE is more robust to conditions
where the training corpora is small when compared to the text-based methods, revealing
another advantage of visual grounding for the task of unsupervised word translation.
Vocabulary size. The text-based methods rely on words’ context to align the space of two
languages; consequently, the size of vocabulary (and the number of words’ neighbors) can
play a role in their performance. For low-resource languages, we do not have access to a large
corpus and as a result words might not have many neighbors. We explore to what extent the
vocabulary size influences the performance of different methods. Fig. 9.6 shows Recall@10
for different methods and vocabulary sizes. We keep the full English vocabulary and vary
the size of French vocabulary. We only evaluate on words that are seen in both English and
French vocabularies. We observe that MUVE is the only method whose performance does
not deteriorate when vocabulary size decreases (even when it is as small as 500).
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Figure 9.5: Recall@10 on English-French Dictionary for MUSE, VecMap, and MUVE using
varying amounts of data for each corpus.
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Figure 9.6: Recall@10 on English-French Dictionary forMUSE, VecMap, andMUVE for English
and French pretrained word embeddings with various vocabulary sizes in French (65k, 10k,
1k, or 500 most common French words). All methods use HowToW-En and HowToW-Fr.

9.4.5 Qualitative Results
In Fig. 9.7, we visualize a 2-stage inference process: (1) given an English query (from the
Human Queries dataset), using our Base Model, we retrieve the video from the training set
that is most similar to that query. (2) Given that video, we retrieve the closest text from the
French Human Queries dataset. The model is able to retrieve relevant videos. However, we
also observe that such 2-stage approach can be problematic for translation (e.g. the second
row of Fig. 9.7 where both individual steps makes sense but the overall result is incorrect
due to model drift).

In Table 9.4, we visualize the 1-stage inference process described in Sec. 9.2.2. The model
is often accurate, and errors often result in semantically similar words, such as translating
“a man with a dog” as “walk dog” and “feed dog”.

9.5 Discussion
Learning multiple languages is a challenging problem that multilingual children tackle with
ease. The shared visual domain can help as it allows children to relate words in different
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English Retrieved Video Top French Hypotheses Given Video

Beach Plage
(Beach)

Courir sur la plage
(Running on the beach)

Point at the sky Des Nuages
(Clouds)

Le coucher du soleil
(Sunset)

Christmas tree Sapin de noël
(Christmas Tree)

Faire un bonhomme de neige
(Make snowman)

Cut carrot Couper la carotte
(Cut carrot)

Carotte
(Carrot)

Add pickle Ajoutez des cornichons
(Add pickle)

Mélanger les legumes verts
(Mix greens)

Add water Verser de l’eau
(Pour water)

Bien mélanger
(Mix thoroughly)

Figure 9.7: Left: a frame from the video that the model chose as most related to the english
query. Right: top 2 french predictions conditioned on the video. The visual grounding
provides signal for unsupervised translation, but introduce errors at inference time.

English Text 1st Model Retrieval
(English Meaning)

2nd Model Retrieval
(English Meaning)

Boy Playing Balle qui rebondit par le chat
(Ball Bouncing by the Cat)

Homme jouant au foot
(Man Playing Football)

Girl Eats Ice Cream Chocolat
(Chocolate)

Sucrer les pancakes
(Top Pancake Sugar)

Man Driving Red Car Homme conduit voiture rouge
(Man Driving Red Car)

Voiture rouge
(Red Car)

AMan with a Dog Promener un chien
(Walk Dog)

Nourrir un chien
(Feed Dog)

Air Conditioning Voler dans les airs
(Fly Air)

Air conditionné
(Air Conditioning)

Table 9.4: Top 2 retrieved results in French on the Human Queries dataset given an English
query.

languages through the similarity of their visual experience. Inspired by this idea, we propose
an unsupervised multimodal model for word translation that learns from instructional
YouTube videos. We show that this approach is beneficial over text-based methods, in that
it allows for significantly more robust translation when faced with a variety of realistic
perturbations across the corpora.
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Chapter 10

Discussion and Conclusion

We proposed a new approach for building datasets. Our Hollywood in Homes approach
allows not only the labeling, but the data gathering process to be crowdsourced. We demon-
strated that asking multiple questions simultaneously about a video provides the most
effective tradeoff between annotation time and accuracy. In addition, Charades offers a novel
large-scale dataset with diversity and relevance to the real world. We hope that Charades
and Hollywood in Homes will have the following benefits for our community. This kind of
realistic bias, may provide new insights that aid robots equipped with our computer vision
models operating in the real world. Using this data we have analyzed multiple attributes of
activities, several modern activity recognition algorithms, and the latest activity datasets.
We demonstrated that even though human disagreement and ambiguity are an inevitable
part of activity annotation, they do not present significant roadblocks to progress in activity
understanding. We showed that more detailed understanding of scenes depicted in videos,
at the level of individual objects and human poses, holds promise for the next iteration
of algorithms. We showed that this generation of rich, multi-label, fine-grained activity
benchmarks provides ample opportunities for complex joint high-level reasoning about
human activities. We hope the community learns from our analysis, and builds upon our
work.

We have presented a deep-structured model using a fully-connected temporal CRF that
not only models semantic aspects of activities but also reasons about long-term temporal
relations. We also presented an asynchronous stochastic inference algorithm that circum-
vents a key bottleneck in the large-scale end-to-end model learning. We have presented
an approach to learn visual storylines for concepts automatically from the web. We show
that our method excels at both extracting salient visual signals for the concept, and learning
long-term storylines to capture the temporal dynamics. Our framework can use transforma-
tions to better use the available data, moving beyond the implicit biases in the camera that
recorded a given video. We hope this work opens the door for systems that learn policies
for visual search and efficient allocation of visual resources.

We proposed a framework towards linking the first and third-person worlds, through
our novel Charades-Ego dataset, containing pairs of first and third-person videos. This type
of data is a first big step in bringing the fields of third-person and first-person activity recog-
nition together. Our model learns how to jointly represent those two domains by learning a
robust triplet loss. We proposed an unsupervised multimodal model for word translation
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that learns from instructional YouTube videos. We show that it allows for significantly more
robust translation when faced with a variety of realistic perturbations across the corpora.
Future Work in Video Understanding. Autonomy requires training, and training requires
supervision. Videos of humans contain oceans of usable data for imitation, and understand-
ing humans. Our effort on multi-modal learning from video [214] and video modeling [217]
demonstrates a direction of utilizing videos for better perception of the environment. Utiliz-
ing multiple modalities to learn better models, such as third-person video, first-person video,
audio, text, tactile, and biometrics, has the potential to significantly help this direction.
FutureWorkon Improving autonomywithhumans-in-the-loop. Generalizing autonomous
systems to unseen and noisy scenarios requires going beyond what is currently possible
with simulators and engineering. Our work on incorporating humans-in-the-loop to create
any data we require through crowdsourcing has the potential to bridge this gap [220,223].
By incorporating crowdsourcing in the pipeline, we can for example gather data for unlikely
scenarios and new concepts. These ideas are effective for learning robust model-based
control [192], and similar ideas could be applied to improve generalization of high-level
concepts using humans-in-the-loop.
Towards EmbodiedVision. To build social robots requires building systems that understand
both the environment and the humans in the environment. Our work on investigating theory
of mind for AI systems [219], and grounding intelligence in a shared experience [214],
has the potential to aid this effort. Further investigation is needed on systems that ground
their reasoning in a modality that is shared with humans (such as the visual world and
the first-person viewpoint), and use this to improve social interaction with autonomous
systems.
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