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Abstract

Data-driven modeling and optimization are both core elements in process systems en-

gineering. When first-principle models are unavailable, empirical models can serve as a

surrogate for the underlying physics of a process. The advent of sophisticated sensors and

increased digital storage capabilities presents the chemical industry with vast quantities of

data and the opportunity to generate more realistic surrogate models. Despite the need

to scale up data-driven modeling algorithms, there has been limited work in developing

parallel computing techniques for model building. The goals of this dissertation are to de-

velop efficient parallel algorithms for model building, and investigate parallel approaches

for optimization of linear programming problems.

In Chapter 2, we review techniques used for generating linear models and discuss using

QR factorization to generate empirical models from tall and skinny matrices. We describe

high performance parallel implementations for the linear least squares problem solved with

QR factorization. We discover that state-of-the-art algorithms are not optimized for tall

and skinny linear least squares problems. We propose the use of derivative-free optimization

and simulation optimization to optimize the performance of QR factorization routines in the

MAGMA [93] library. Results demonstrate that the performance of solving the linear least

squares problems can be accelerated with the use of optimal tuning parameters identified

by derivative-free optimization.

In Chapter 3, we revisit the problem of algorithmic parameter tuning. We review the liter-

ature on auto-tuning techniques and propose a hybrid derivative-free optimization strategy

for auto-tuning. Our approach combines local and global derivative-free optimization with
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the multi-armed bandit function. We implement our hybrid algorithm in an open-source

tool, HybridTuner, furthering the development of sophisticated autotuners and assisting

others in optimizing code performance without exhaustive tuning.

After addressing how to efficiently generate linear models, we describe approaches for

identifying a sparse set of linear regressors. In Chapter 4, we propose to solve the best

subset selection problem with backward stepwise elimination. We develop a theoretical

guarantee on the accuracy of backward stepwise elimination using the supermodularity

ratio, and compare its efficacy against other subset selection strategies like the lasso [166],

and forward stepwise selection [58].

Finally, in Chapter 5, we discuss methods for parallelizing the simplex algorithm. We

consider previous methods for solving linear programming problems and parallelize the

block-LU update [70] with GPU computing. We solve quantile regression linear program-

ming problems up to a factor of 4.03x faster than a sequential primal simplex algorithm.

We also demonstrate that our approach is resistant to numerical instability when solving

quantile regression problems.
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Chapter 1

Introduction

1.1 Motivation

The last decade has seen an explosion in the usage of graphics processing units (GPUs)

for general purpose computing. Originally designed to render images on a computer, GPUs

have been partially re-purposed for a variety of applications ranging from dense linear

algebra [42, 93] to mining crypto currency. Underlying all of these applications is the need to

perform single instructions multiple data (SIMD) operations. The first fully programmable

GPU was released in 2001 [144], and general purpose GPU applications were being developed

within the same year [108, 82]. Several years later in 2006, NVIDIA released the CUDA

programming language to create a structured way for programmers to take advantage of

GPU parallel computing [130].

GPUs have successfully been applied to different applications such as iterative linear

algebra [59], Monte Carlo simulations [180], sparse matrix-vector multiplication [21, 120],

and bioinformatics [175]. GPUs accelerate applications where the same task needs to be

performed independently on multiple sets of data. The large number of independent oper-

ations in dense linear algebra kernels make them an ideal candidate for GPU computing.

Parallelizing the linear least squares problem with GPU computing is one of the fastest ways

to solve it. In the area of linear programming, parallel sparse linear algebra operations can

result in modest speedups on some classes of linear programming problems.

Additionally, portability of GPU algorithms has remained a major challenge. Portability

Chapter 1. Introduction
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1.1 Motivation

refers to the ability of software to be developed on one computer or GPU for use on another

system. In particular, GPU algorithms are parameterized by several GPU specific tuning

parameters that impact performance. Optimal parameters are dependent on the underlying

architecture of the GPU. When an algorithm developed on one GPU is used on another,

performance is lower when proper parameter tuning is not considered.

This dissertation proposes developments in parallelizing the solution of the linear least

squares problems (LLSPs) and linear programming (LP) problems. Despite the ever increas-

ing availability of data, there has been limited effort to develop efficient parallel optimization

algorithms to handle larger and more nuanced data sets. When parallel algorithms are de-

veloped, parameter tuning is handled with heuristic strategies that severely limit portability

and their use in practice. This thesis aims to both develop GPU parallel algorithms for

large-scale computing and develop novel parameter tuning techniques to improve tuning

performance when applied to GPU algorithms. In this chapter, we discuss the state-of-the-

art relevant to GPU parallel computing for the problems that we consider, and describe the

remaining chapters in this work.

1.1.1 Linear least squares problem

As more powerful data collection techniques become available in the chemical industry,

engineers have access to more process data than ever before. With larger data sets, en-

gineers have the potential to develop models that can better capture the physics of real

systems. However, developing models that represent reality with larger data sets may lead

to prohibitively expensive computational times. At its core, surrogate model generation

from process data is a problem of feature selection and regression. The goal is to identify a

sparse set of features that accurately relate input observations to an output measurement.

The set of features comprises both measurable properties and nonlinear transformations of

2
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1.1 Motivation

those features. First, we address the problem of efficiently generating a linear model given

a set of features.

In this case, a model is generated by solving the linear least squares problem (LLSP)

defined as

min ‖Ax− b‖2 (1.1)

where A is a matrix of size m×n, x is a vector of size n, and b is a vector of size m. Here m

refers to the number of observations in the matrix A that contains information about the

input variables, and n refers to the number of features considered and m ≥ n. The solution

of the LLSP satisfies the normal equation

ATAx = AT b. (1.2)

The normal equation is solved with QR factorization, where A is decomposed into an or-

thogonal matrix Q and an upper triangular matrix R. One common element in LLSPs is

that A is usually tall and skinny, i.e., m >> n. While parallel GPU algorithms have been de-

veloped for QR factorization, no previous work has considered investigating the portability

of these methods for tall and skinny matrices. Portability is commonly addressed through

algorithmic parameter tuning or autotuning. Autotuning is the problem of systematically

optimizing the performance of an algorithm by adjusting tuning parameters or compiler op-

tions. Optimal tuning parameters are desirable as they can lead to significant performance

benefits. For example, well-chosen parameters have led to a 25% increase in performance

compared to default parameter values in the case of matrix-matrix multiplication [110].

In Chapter 2, we investigate the benefits of using derivative-free optimization (DFO) and

simulation optimization (SO) to systematically optimize tunable parameters for a GPU

or hybrid CPU/GPU architecture. DFO and SO address optimization problems whose

objective function are not available in algebraic form. Computational experiments show

Chapter 1. Introduction
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1.2 HybridTuner

that both DFO and SO are effective tools for determining optimal tuning parameters that

speed up the performance of the popular LLSP solver MAGMA by about 1.8x, compared

to MAGMA’s default parameters for large tall and skinny matrices. By using DFO solvers,

we identify optimal parameters using an order of magnitude fewer simulations than with

direct enumeration.

1.2 HybridTuner

Algorithms are commonly designed with tuning parameters. A tuning parameter can be

defined as any parameter that, when modified, improves the performance of an algorithm on

either a particular computer, or for a particular problem. It is nearly impossible to develop

a generic algorithm that is optimal for every problem on every machine. Instead, algorithms

are designed with adjustable parameters that can be modified to improve the performance

of an algorithm on a particular class of problems. For example, in 2010, CPLEX 12.1 had 76

tunable parameters that adjust the performance of CPLEX for certain classes of problems.

Hutter et al. demonstrated that tuning the 76 parameters led to speedups of more than a

factor of 10x for certain problems [90].

As we show in Chapter 2, parameter tuning can be posed as a black-box optimization

problem. Assume that there exists a relationship between algorithmic tuning parameters

and an output performance metric that needs to be optimized, such as execution time,

that can be obtained by querying a black-box. There may not exist an explicit algebraic

functional form to relate the input tuning parameters to its output. Given that this rela-

tionship varies dynamically with the computer architecture and the problem structure, we

propose to address this challenge with derivative-free optimization. As solution strategies

in this field involve querying a black-box, the number of simulations required to identify

optimal solutions to a problem increases with the number of variables. In practice, tuning

4
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1.3 Backward stepwise elimination

problems are challenging in cases with more than 30 variables, though some methods have

been observed to find reasonable solutions for problems with hundreds of parameters [12].

As there is no way to validate whether optimal parameters have been found for problems

with a large search space, many users determine tuning parameters with heuristics, often

producing inefficient algorithms.

In Chapter 3, we propose two hybrid derivative-free optimization methods to maximize

the performance of an algorithm after evaluating a small number of possible algorithmic

configurations. Our autotuner (a) reduces the execution time of dense matrix multiplication

by a factor of 1.4x compared to state-of-the-art autotuners, (b) identifies high-quality tuning

parameters within only 5% of the computational effort required by other autotuners and (c)

can be applied to any computer architecture. We demonstrate our approach for problems

with up to 50 hyperparameters.

1.3 Backward stepwise elimination

Next we address the challenge of identifying a succinct, yet accurate set of features that

relate input to output measurements. As datasets and models become more complex, the

ordinary least squares method may lead to over-fitting models without providing model

interpretability. To prevent over-fitting, a model can be created by selecting a subset of

regressors. We address the feature selection problem with best subset selection.

Best subset selection is NP-hard to solve and is expensive to solve for problems with a large

number of features. Many researchers have addressed the problem of sparse linear regression

with exact solution techniques [76, 44, 24], L1 penalty methods [166, 119], exhaustive search,

or heuristic strategies [58]. In practice, heuristic strategies are often used even though they

rarely come with performance guarantees. Inspired by the work of Nemhauser et al. [126],

the concept of submodular set functions can provide a lower bound when maximizing a

Chapter 1. Introduction
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1.4 GPU block-LU update

set function with the greedy selection algorithm subject to a cardinality constraint. There

has investigated providing an approximation guarantee for the forward stepwise selection

algorithm using approximate submodularity [52]. Almost no work has been done to provide

an approximation guarantee on the accuracy of backward stepwise elimination.

Another challenge with subset selection is that even when it is possible to solve exactly,

the mathematically optimal model may not be the best choice in practice. The work

of Hastie et al. [83] demonstrates that for most problems the performance of a stepwise

selection heuristic, forward stepwise selection, performed as well as models obtained by L1-

regularization or models obtained by solving an integer programming formulation of subset

selection with a time limit.

In Chapter 4, we investigate solving the best subset selection problem with backward

stepwise elimination (BSE). We prove an approximation guarantee for BSE that bounds its

performance by applying the concept of approximate supermodularity. We develop a GPU

parallel BSE algorithm that is 5x faster than an efficient CPU implementation. Finally,

we demonstrate the performance of BSE against several state-of-the-art feature selection

approaches. For certain classes of problems, BSE generates solutions with lower relative

test error than the lasso, the relaxed lasso, and forward stepwise selection.

1.4 GPU block-LU update

The simplex algorithm for solving linear programming (LP) problems is regarded as one

of the most influential algorithms ever developed. LP problems allow modelers to explicitly

represent the physics of a system, physical constraints, capital costs, operating costs, and

determine an optimal set of control actions that maximize or minimize some objective. The

simplex algorithm is central to identifying optimal solutions for linear, nonlinear, mixed-

integer, and stochastic optimization problems. When solving larger and more complex

6
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problems, efficient implementations are essential to identify accurate solutions for large

industrial applications in a reasonable amount of time. Over the last 70 years, advances in

both algorithms and hardware have resulted in tremendous algorithmic speedups. Parallel

computing has accelerated individual simplex iterations, and across several iterations [89].

The simplex algorithm is an iterative method, in the case of the primal simplex, moving

from one basic feasible solution to another until proving optimality. LU factorization and

basis updates speedup the transition from one iteration to the next. Despite the use of

parallel computing in several steps of the simplex algorithm, no work has been done to

parallelize a method known as the block-LU update [70] with GPU computing.

In Chapter 5, we parallelize the block-LU update using the many-core processing power

of GPUs. We present the benefit of this approach by solving quantile regression problems

formulated as LP problems. While linear regression is obtained through minimizing the sum

of squared residuals, quantile regression is the solution to minimizing the sum of absolute

residuals [103]. Quantile regression is a robust estimator that outperforms linear regression

when the noise is heteroskedastic, and is more robust when generating models from data

with outliers [102]. A quantile regression model is obtained from solving the following LP

problem:

min
(β,u,v)∈Rr×R2s

+

{τ1Tr u+ (1− τ)1Tr v|Xβ + u− v = b}, (1.3)

where τ ∈ {0, 1} is the desired quantile, X ∈ Rr×s is a design matrix used for generating

a regression model, r is the number of observations, s is the number of design variables,

b ∈ Rr is the observed output response, and 1r ∈ Rr where all values are 1. The regression

coefficients are stored in β, while u and v are non-negative slack variables.

We propose a hybrid CPU-GPU primal simplex algorithm that updates the basis matrix

and solves linear systems of equations on a graphics processing unit (GPU). We accelerate

the performance of a primal simplex algorithm with our parallel block-LU update compared
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to the HSL LA04 [75] simplex algorithm for quantile regression problems. Computational

results show a geometric average speedup of 1.63x for tall and skinny quantile regression

problems with {2000, 2500, 3000} rows and 1500 columns. We also demonstrate that the

block-LU update is insensitive to numerical instability that results from solving quantile

regression problems.

8
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Chapter 2

LLSP Parameter Tuning

2.1 Introduction

Numerical solvers on graphics processing units (GPUs) are typically designed for one par-

ticular GPU architecture [115], and may be suboptimal or even unusable on another one [95].

Programmers have circumvented this problem by introducing tunable parameters into their

algorithms that can be easily modified when the solver is being implemented on a different

GPU architecture than it had been designed for [1]. However, determining tuning parame-

ters that maximize solver performance is a challenging optimization problem because there

is no explicit relationship to model the interactions between the software, algorithms, and

hardware. Derivative-free optimization (DFO) [147] and simulation optimization (SO) [8]

can be used to solve this problem since they do not require explicit functional representa-

tions of the objective function or of the constraints. Instead, the solver can be treated as a

black-box system that accepts tuning parameters, and outputs a performance metric such

as execution time or floating point operations per second (FLOPs).

This paper addresses the problem of using DFO and SO to determine optimal tuning

parameters for solving linear least squares problems (LLSPs) with GPUs. Dense LLSPs

are solved in a wide range of fields, such as curve fitting, modeling of noisy data, signal

processing, parameter estimation, and machine learning, including best subset selection and

the lasso [34, 54]. LLSPs arise when solving an overdetermined system of equations Ax = b,

where A ∈ Rm×n, b ∈ Rm, and x ∈ Rn. In modeling an input-output system, the A matrix
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contains information about input variables. One common element in LLSPs is that A is

usually tall and skinny (TS), i.e., m >> n. The vector x denotes the LLSP solution, and b

is the vector of output measurements. In an overdetermined system (m > n), there may not

exist an exact solution. The LLSP finds x that minimizes the difference between b and Ax

or, more formally, min ‖Ax− b‖2. It can be shown that the optimal LLSP solution satisfies

the normal equation ATAx = AT b.

Even though many techniques exist to solve LLSPs, we decided to use QR factorization.

Given A, QR factorization determines matrices Q and R, where Q is orthogonal and R is

upper triangular, such that A = QR. The LLSP solution with QR factorization simplifies

to x = R−1QT b. Other methods such as the normal equation method, and singular value

decomposition, were ruled out for issues related to the numerical stability of ill-conditioned

matrices [73], or more expensive computational costs, respectively [54]. Another technique,

the seminormal equation method, combines the normal equation approach with QR fac-

torization. In this method, QR factorization is used on one side of the normal equation

to simplify the solution x to RTRx = AT b where no information is needed about Q [114].

Although this method reduces the amount of memory needed to decompose a matrix, if A

is ill-conditioned, the method may not find an accurate solution.

Dense linear algebra problems were one of the earliest applications for general purpose

GPU computing dating back to the early 2000’s [132]. Now, NVIDIA has standard GPU

libraries for both basic linear algebra subprograms (BLAS) and dense linear algebra solvers

as libraries built into CUDA that are able to solve LU factorization, Cholesky factorization,

and all other types of dense linear algebra problems [42, 128]. Work has also been conducted

on systems that use both the CPU and the GPU to perform linear algebra problems in

parallel on both processing units in libraries such as MAGMA [168]. While most QR

factorization algorithms are inherently sequential, the most time consuming operations of

10

Chapter 2. LLSP Parameter Tuning



2.1 Introduction

the algorithm can be parallelized to be executed on GPUs.

To allow for a wider audience to use GPU solvers, a considerable amount of research

has gone into autotuning, methods that are used to automatically tune solver performance

on different architectures [174, 110, 6]. Autotuning approaches cannot provide a certificate

of optimality to ensure that they identify the best possible parameters since an exhaustive

search of all parameter options is prohibitively expensive. Some common tuning approaches

require a programmer’s insight into the solver to determine acceptable values, and then use

empirical testing to identify better values. Other methods use heuristics that limit certain

parameters to a reduced set of values, and then exhaustively enumerate all of the remaining

choices.

Optimal tuning parameters are desirable as they can lead to significant performance

benefits. For example, well chosen parameters have led to a 25% increase in performance

compared to default parameter values in the case of matrix-matrix multiplication [110].

This paper investigates the potential of using DFO and SO solvers to tune GPU algorithms

for LLSPs. The idea of using DFO algorithms to tune algorithms is not new. Audet and

Orban [16] proposed a DFO approach to tune a trust-region method. By using DFO and SO

solvers to determine optimal tuning parameters for solving LLSPs with GPUs, the primary

contributions of this paper are as follows:

1. We provide a computational comparison of DFO and SO algorithms, thus adding to

a recently emerging literature on comparisons of DFO algorithms that is still in its

infancy [147] and helps increase our understanding of the capabilities of these solvers.

2. We show that it is possible to accelerate MAGMA’s QR solver by a factor of 1.8 for

large TS matrices compared to the default MAGMA algorithm.

3. We demonstrate that a specific collection of five DFO solvers is capable of finding

optimal GPU parameters and that it succeeds in doing so while requiring an order of
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magnitude fewer simulations than complete enumeration.

The remainder of this paper is organized as follows. In Section 2.2, we review QR factor-

ization which we use to solve dense LLSPs, and we analyze state-of-the-art CPU, GPU, and

hybrid QR algorithms. In Section 2.3, we evaluate four QR solvers, cuSolverDN, LAPACK,

MAGMA, and PLASMA in a comparative study that aims to determine a high quality

solver that may be amenable to performance improvements through parameter tuning. In

Section 2.4, we describe different types of DFO and SO algorithms that were used in our

experiments to determine optimal GPU tuning parameters. In Section 2.5, we use the DFO

and SO algorithms to tune MAGMA and compare the performance of the tuned MAGMA

library against default options. Finally, we provide conclusions in Section 2.6.

2.2 QR factorization

QR factorization decomposes A into the product of two matrices Q and R, where Q is an

orthogonal matrix, and R is an upper triangular matrix. This decomposition technique can

be applied to any square or rectangular matrix. QR algorithms based on the Gram-Schmidt

method and the Givens rotation method are sequential in nature and are not amenable to

parallel computing. On the other hand, QR algorithms based on approaches such as the

Householder transformation method can achieve high levels of performance on multicore

computers or GPUs [5].

2.2.1 Parallel Householder factorization methods

Utilizing Householder transformations, a few parallel QR algorithms have been developed

to solve large problems. These methods decompose A into panels or tiles that can be

operated on with matrix-matrix multiplication that can be sped up with parallel computing.

Implemented in LAPACK, panel factorization was introduced to speed up QR factorization

12
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by taking advantage of cache locality [9]. Panel factorization is a technique where A is

divided into rectangular panels which have m rows and nb columns, where nb < n. The

block size, nb, is an adjustable value, which is used to manipulate the algorithm’s granularity.

Blocked methods are composed of two operations, panel factorizations, which are limited

by matrix-vector multiplication, and matrix updates which are bound by the performance

of matrix-matrix multiplication. Panel factorization involves the decomposition of a panel

into the product of Q and R, and matrix updates involve multiplying the QT matrix from

the panel factorization with trailing panels. With the WY representation [155], it is possible

to delay and apply many updates simultaneously with matrix-matrix multiplication.

2.2.2 Tall and skinny QR and communication-avoiding QR

While panel methods work well with square matrices that are limited by their update

steps, blocked methods perform an order of magnitude worse for TS matrices [10]. This

decrease in performance can be attributed to a communication limitation that occurs when

the solvers are bottlenecked by memory bandwidth. To increase the performance of solvers

for TS matrices, the authors of [55] created tall and skinny QR (TSQR) which is an algo-

rithm that minimizes the amount of memory access required to perform QR factorization.

Algorithms for TSQR divide the matrix into square tiles, and perform multiple tile factor-

izations simultaneously. Tile factorization is similar to panel factorization, except that tiles

are of size nb × nb and elimination operations also need to be used to zero out tiles that

are below the diagonal. After a series of tile factorizations, the transformations computed

by the corresponding tile factorization are applied to the trailing tiles in each row of tiles.

TSQR algorithms require more operations than panel factorization algorithms because of

the need to use parallel tile factorization and elimination operations to generate R, which

are not required in panel QR algorithms. However, factorization and elimination operations
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can be overlapped in TSQR to increase performance when run on a multicore CPU or GPU.

The TSQR algorithm is designed for TS matrices but is slower than blocked methods on

square matrices. As an extension to handle wider problems, communication-avoiding QR

uses concepts from TSQR with a tree update procedure [10]. These changes allow TSQR to

be extended for use on square matrix problems as well as on tall and skinny problems. In

communication-avoiding QR, the block size is a key variable that controls the algorithm’s

granularity and trades off how small the tiles are with how efficiently a core can factorize a

single tile.

2.2.3 State-of-the-art QR solvers

Motivated by the need to solve large and dense problems, QR factorization research has

considered GPU-only, CPU-only, and hybrid implementations. Two state-of-the-art CPU

solvers are LAPACK and PLASMA. LAPACK was one of the first dense linear algebra

libraries created in the early 90’s to handle large linear algebra problems [9]. PLASMA was

created later as a multicore version of LAPACK that was meant to increase the parallelism

of LAPACK and allow the solution of large problems more efficiently using blocking and

other techniques. MAGMA, a hybrid dense linear algebra library [40], is designed to acceler-

ate dense linear algebra routines by assigning sequential tasks to the CPU and parallelizable

tasks to the GPU [168]. Hybrid algorithms gain significant performance benefits by simul-

taneously running operations in parallel on the CPU and the GPU. In particular, MAGMA

runs the dgeqrf kernel from LAPACK on the CPU at the same time as the magma dlarfb

kernel on the GPU [93]. The LAPACK dgeqrf kernel performs a panel QR factorization

routine on a panel of A, while the magma dlarfb kernel uses the computed Householder

reflectors from the factored panel to update the trailing matrix panels on the GPU. The

magma dlarfb kernel involves a series of matrix-matrix multiplications, and a triangular

14

Chapter 2. LLSP Parameter Tuning



2.2 QR factorization

matrix multiplication operation. These matrix multiplication operations are performed

on the GPU through the cuBLAS library. Overlapping dgeqrf and dlarfb calculations,

magma dgeqrf3 gpu updates one panel. Simultaneously, the next panel is factored on the

CPU and the remaining panels are updated on the GPU. Panel factorization computations

are sequential in nature, and are best handled by the CPU, while update operations that

are filled with matrix-matrix multiplication operations are best performed in parallel by the

GPU, allowing for an efficient distribution of work.

One disadvantage of hybrid computing is that it relies on expensive data transfers between

the processing units. All data that is transferred between these units has to pass through

the PCI express bus. Newer PCI express buses have a peak memory bandwidth of 32

GB/s, an order of magnitude lower than the peak memory bandwidth of newer GPUs. This

difference in transfer speed results in CPU to GPU communication being expensive, limiting

the performance of many hybrid algorithms. Thus, hybrid algorithms have to be developed

carefully to limit the transfer between the CPU and the GPU.

For problems where computations are not bottlenecking performance, solving the entire

problem on the GPU can be a more efficient strategy. Communication-avoiding QR is

one example of a GPU-only algorithm that is designed to avoid the penalty of the PCI

express bus [10]. NVIDIA has also designed its own GPU-only dense QR factorization

algorithm, included in the library cuSolverDN, where the compiler is in charge of optimizing

architecture specific variables to solve QR factorization problems on the GPU [128]. One

advantage of cuSolverDN is that NVIDIA has knowledge of how their software and hardware

interact, allowing them to optimize their solver.
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2.3 QR factorization comparative study

The standard approach for comparing QR factorization algorithms in the literature is

to evaluate their performance on a range of square matrix problems [1]. Square matrices

are used for comparing the peak performance of solvers when they are compute-bound,

where solvers that have the best performance are considered the best. However, not all

problems are able to be parallelized in an efficient way that can fully utilize the entire

GPU. Thus, another meaningful performance metric is how well an algorithm performs

when it is communication-bound (limited by data transfer). Communication limitations

have been commonly observed when decomposing TS matrices with QR factorization [10].

While we compared different solvers for both square and TS matrices to learn which solvers

are best for different types of problems, our primary focus was on discovering which solver

was best able to handle TS problems.

We conducted our experiments on a workstation running CentOS7, on two Intel Xeon

processors E5-2660 v3 at 2.6 GHz and 128 GB of RAM. The workstation is equipped with

a NVIDIA Tesla K40 GPU, which has 15 streaming multiprocessors each with 192 CUDA

cores, 12 GB of RAM, and a peak memory bandwidth of 288 GB/s. The algorithms are

compiled with GCC version 5.2 using optimization flag -O3, and the NVCC CUDA 7.5

compiler when applicable. The matrices used in all of the experiments were randomly

generated with elements between 0 and 1 from a uniform distribution. These matrices are

sufficient for our purposes since performance of the algorithms compared is based entirely

on the number of floating point operations performed, which is determined by the size

of the matrix, and not its condition. Each matrix size was evaluated with ten different

randomly generated matrices in double precision accuracy, and the average performances

are reported. Performance was measured in terms of billions of floating-point operations

per second (GFLOPs) taken by QR factorization. The number of operations needed to

16
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solve LLSPs by x = R−1QT b is negligible and ignored. We conducted two comparative

studies, one on square matrices, and the other on TS matrices. Table 2.1 summarizes the

solvers used in the computational experiments, and their defining properties. BLAS refers

to basic linear algebra subprograms utilized and are the routines that perform basic vector

and matrix operations [29].

Table 2.1: QR libraries used in comparative experiments

Solver Computing environment BLAS library

cuSolverDN v7.5 [128] GPU only cuBLAS v7.5 [42]

LAPACK v3.6.1 [9] CPU only OpenBLAS v0.2.18 [178]

MAGMA v2.1 [168] Hybrid cuBLAS v7.5

PLASMA v2.8.0 [78] Multicore CPU Intel MKL v16.0.3

2.3.1 Square matrices

We factor square matrices ranging from 1000 to 36000 rows by increments of 1000. Fig-

ure 2.1 shows solver performance in terms of GFLOPs as a function of matrix size. As seen

in this figure, MAGMA outperforms all of the other solvers by over 150% for problems with

more than 5000 rows. MAGMA, which simultaneously performs sequential factorizations

on the CPU and update calculations on the GPU, excels at solving square problems that are

amenable to solution approaches that utilize both processing units. Even though the per-

formance of hybrid algorithms suffers from continuously transferring data between the CPU

and the GPU, by overlapping updates with factorizations, MAGMA is able to minimize the

idle time of the GPU allowing it to outperform the other solvers. While MAGMA is able to

saturate the GPU with parallel update computations, cuSolverDN performs both update
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Figure 2.1: Performance of four different LLSP solvers for square matrix problems

and factorization operations on the GPU. When performed on the GPU, the factorization

operations lower the average performance of the algorithm, and prevent devoting the entire

GPU to the update operations that are rich in matrix-matrix multiplications. Both of these

GPU solvers exhibit a typical behavior where their performance increases linearly as the

problem size increases, until a certain point. Problems larger than that problem size begin

to lead to leveling off in performance, because the GPU cores become fully utilized and

peak performance is reached.

When comparing MAGMA or cuSolverDN to LAPACK or PLASMA, MAGMA and cu-

SolverDN are about ten times more efficient than LAPACK, highlighting the benefits of

using GPUs for dense linear algebra. For larger square problems, PLASMA is five times

faster than LAPACK, but PLASMA is still significantly outperformed by the GPU solvers

because of how efficiently the GPU solvers are able to factor square dense problems.

18
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2.3.2 Tall and skinny matrices

Even though the analysis of square matrices is useful for determining an algorithm’s peak

performance, TS problems are more relevant for solving LLSPs. Our choice of TS matrices

also aims to analyze algorithms that are communication-bound because those problems are

representative of LLSPs in the machine learning area [66, 44]. We are utilizing TS matrices

with 500 columns and 1000 to 126000 rows in increments of 5000. Beyond 1000 columns,

solvers become limited more by computations as opposed to communication limitations,

which is not the behavior we are trying to investigate.

From Figure 2.2, the average performance of solvers on TS problems is an order of mag-

nitude worse than the average performance on square problems with the same number of

rows. This decrease in performance is related to solvers becoming communication-bound

for TS matrices and is consistent with what has been observed before in the literature [10].

Algorithms are not able to perform as well on TS matrices because common approaches to

solve these problems are bandwidth-bound and cannot fully utilize the GPU. Even though

the performance for solving these problems is lower than for square problems, determining

the best solvers for these problems is essential to efficiently solving LLSPs.

Based on the results in Figure 2.2, there is no clear best solver like in the case of square

problems. For smaller problems, it is beneficial to solve the entire problem on the GPU as

opposed to offloading small factorization operations to the CPU, which is why cuSolverDN

has the best performance for these problems. Although cuSolverDN barely outperforms

MAGMA, both GPU solvers outperform the CPU solvers. Like in the case of square prob-

lems, as the problems increase in size, the performance of the solvers begins to level off

when the transfer rates become saturated. For problems with 35000 to 60000 rows, the

performance of MAGMA increases and surpasses the constant performance of cuSolverDN,

and remains above PLASMA.
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Figure 2.2: Performance of four different LLSP solvers for TS matrix problems

The most surprising result was that while MAGMA began to decrease in performance as

the problem size increased beyond 60000 rows, PLASMA’s performance increased. MAGMA’s

performance was expected to increase and level off as in the case of square problems. How-

ever, in this experiment as the number of rows increased, the number of columns was held

constant. The block size which has a large effect on performance in MAGMA is controlled

by the smallest dimension of the matrix. As the number of rows increased beyond a certain

point, while maintaining the number of columns, the block size could not change leading

to a decrease in performance for larger problems. Without changing the block size as the

problems become even taller, the CPU became less efficient at decomposing taller matrices.

This decrease in factorization efficiency, shifted the bottleneck from the update operations

and data transfers on the GPU, that are normally the most time consuming, to the fac-

torizations and data transfers on the CPU. PLASMA, on the other hand, experienced an

increase in performance because it was able to parallelize both the factorization and update

operations on the CPU without having to transfer data through the PCI express bus. The
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performance of cuSolverDN does not seem to be affected by increasing the problem size,

suggesting that the performance is probably limited by communication as opposed to how

fast operations can be performed on the GPU. Finally, LAPACK had the worst performance

of the four solvers for all problem sizes. Its performance seems to remain relatively constant

regardless of the problem size.

These results suggest that, depending on the application, different solvers could be useful

for solving TS LLSPs. One question we asked was if there was a way to increase the

performance of MAGMA because it was able to achieve the highest performance in the

square problems, suggesting that it could be the most efficient solver for large TS problems.

In this study, we do not intend to tune all four of the solvers. Instead, we focused on only

the one solver that seemed the most promising, MAGMA. Towards improving MAGMA,

we investigated whether there was a way to not only stop the performance degradation on

larger problems, but also to further increase the performance for all problem sizes above the

other solvers. To answer this question, we carried out experimentations aiming to determine

whether DFO and SO algorithms are capable of determining optimal tuning parameters for

MAGMA. These optimization algorithms are discussed in the next section.

2.4 Derivative-free optimization and simulation optimization

As the complexity of GPU algorithms increases, the interactions between algorithms,

compilers, and hardware becomes more difficult to model. As a result, the problem of tun-

ing algorithms to particular software and hardware combinations has become challenging.

Tuning algorithms is especially difficult when there is no explicit algebraic model for the

relationship between tuning parameters and performance, forcing the one carrying out the

optimization to treat the system as a black box.

To address these issues with a more systematic approach than has previously been used,
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we utilized DFO and SO algorithms [147, 8]. These classes of algorithms address optimiza-

tion problems whose objective functions are not available in algebraic form and/or gradients

and functions are difficult, too expensive to evaluate, or noisy. Noise, for instance, may be

due to random variations in measurements, including computer time measurements. Both

classes of algorithms apply to black-box systems, i.e., systems for which the input-output

relationship is not available in a form other than by querying a simulator or running an

experiment. The literature reserves the term SO to denote algorithms that are built for an

explicit treatment of noise and stochasticity. On the other hand, DFO algorithms may be

applied to noisy problems but do not come with theoretical results for this class of problems.

In the following sections, we will introduce the DFO and SO solvers we investigated in this

study. For a more detailed background on DFO solvers, the interested reader is referred

to [147], and to [8] for a more thorough analysis of SO solvers. Table 2.2 provides a listing

of the DFO and SO solvers investigated in this paper.

Table 2.2: DFO and SO solvers used in this paper

Solver Type

ASA† [94] DFO, global, stochastic

BOBYQA† [143] DFO, local, model-based

CMA-ES† [81] DFO/SO, global, stochastic

DAKOTA/DIRECT† [3] DFO, global, deterministic

DAKOTA/EA† [3] DFO, global, stochastic

DAKOTA/PATTERN† [3] DFO, local, direct

DAKOTA/SOLIS-WETS† [3] DFO, global, stochastic

DFO† [41] DFO, local, model-based

FMINSEARCH† [106] DFO, local, direct
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GLOBAL† [45] DFO, global, stochastic

HOPSPACK† [137] DFO, local, direct

IMFIL† [99] DFO, local, model-based

MCS† [127] DFO, global, deterministic

NEWUOA† [142] DFO, local, model-based

NOMAD† [2] DFO, local, direct

PRAXIS† [31] DFO, local, direct

PSWARM† [172] DFO/SO, global, stochastic

SID-PSM† [48] DFO, local, direct

SNOBFIT† [92] DFO/SO, global, deterministic

TOMLAB/CGO† [87] DFO, global, deterministic

TOMLAB/GLB† [97] DFO, global, deterministic

TOMLAB/GLC† [97] DFO, global, deterministic

TOMLAB/GLCCLUSTER† [97] DFO, global, deterministic

TOMLAB/LGO† [136] DFO, global, stochastic

TOMLAB/MSNLP† [87] DFO, global, hybrid

TOMLAB/RBF† [140] DFO, global, deterministic

TOMLAB/GLCDIRECT∗ [87] DFO, global, deterministic

TOMLAB/MIDACO∗ [87] DFO, global, stochastic

TOMLAB/GLCFAST∗ [87] DFO, global, deterministic

TOMLAB/GLCSOLVE∗ [87] DFO, global, deterministic

TOMLAB/GLCCLUSTER∗ [87] DFO, global, deterministic

SPSA BASIC† [160] SO, local, stochastic approximation

SPSA Second Order† [160] SO, local, stochastic approximation

STRONG† [37] SO, local, response surface, trust region
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SNM∗ [36] SO, global, direct search

† solver accepts continuous variables only

∗ solver accepts continuous and integer variables

2.4.1 DFO local search methods

2.4.1.1 Direct methods

Direct search methods are defined as those that compare trial solutions with the cur-

rent best solution using some strategy to determine what the next evaluation point should

be [88]. In practice there is a variety of techniques that can be used, such as simplex meth-

ods, pattern search algorithms, and mesh adaptive direct search methods [125, 170, 15].

Originally, direct methods were used to solve difficult problems without any formal termi-

nation or convergence proofs [147]. As the field has developed, under certain assumptions,

a few different direct methods can be shown to converge to a stationary point [169].

2.4.1.2 Model-based methods

Model-based methods sample the search space to generate surrogate models which can be

used to suggest new evaluation points [147]. Surrogate models are typically first- or second-

order models of the black-box system that can be solved to optimality faster than performing

function evaluations on the black-box system. Surrogate models allow these methods to

use gradient information from the surrogate model as well as probability density function

information to guide the search of the true objective function. Model-based methods begin

by sampling the search space to build a surrogate model. The surrogate models are then

updated based on results from more evaluations of the black-box function. There are two

major types of model-based methods, trust-region methods and filtering methods [71, 141].
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2.4.2 DFO global search methods

2.4.2.1 Deterministic methods

Global deterministic search methods fall into two major categories, direct methods and

model-based methods. These methods use techniques that balance local and global search

so that they do not get trapped in a local optimum until they have sufficiently explored

the search space. Some of these methods rely on optimizing a function that underestimates

the objective function by using knowledge of the Lipschitz constant [157]. If the Lipschitz

constant is unknown, then other methods to perform global search can be used such as

DIviding the search space into hyperRECTangles (DIRECT), or branch-and-bound. The

DIRECT algorithm computes function values at the center of intervals and searches the

space for an optimal point, and in the absence of a Lipschitz constant terminates after

reaching an iteration limit [97]. Multilevel coordinate search (MCS), like the DIRECT

algorithm, divides the search space into boxes where it is able to vary how local the search

method is by limiting how many times the same box can be subdivided and processed [91].

Branch-and-bound explores the problem space by branching on the domain. A lower bound

can be estimated based on function evaluations and an upper bound can be determined

through statistical bounds [135]. Then branches can be fathomed if a lower bound is no

smaller than the best known solution.

Global model-based methods operate by optimizing a surrogate model to determine can-

didate optimal points for the black-box model. After a point is chosen from the solution of

the surrogate model, that point is evaluated and used to update the accuracy of the surro-

gate. There are many techniques that can create these surrogate models such as response

surface methods [19], pattern search [30], and optimization by branch-and-fit [92].
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2.4.2.2 DFO stochastic methods

As opposed to deterministic methods, stochastic approaches require non-deterministic

steps that can be used to choose evaluation points. Many stochastic DFO solvers are

inspired by physical or biological principles. Stochastic methods have been widely studied

in the literature and are simpler to implement than deterministic algorithms. Stochastic

methods prevent getting trapped in a local optimum by using techniques to help them

diversify their search strategy, while also being able to intensify and reach a global optimum

when certain conditions are satisfied. A few of the stochastic search strategies have global

convergence proofs under certain assumptions [20]. Some popular methods include hit-and-

run algorithms [158], simulated annealing [121], genetic algorithms [86], and particle swarm

optimization [57]. Many global derivative-free optimization solvers combine deterministic

and stochastic methods into hybrid algorithms.

2.4.3 SO local search methods

Local SO algorithms rely on strategies that are similar to DFO, but include techniques

that allow them to handle the uncertainty in the output values [8]. Three common types of

these algorithms include response surface methodologies (RSM), gradient-based methods,

and direct search methods. RSM relies on generating a surface (surrogate model) to model

the input-output relationship of the simulation. Once a surrogate model is generated,

derivative-based optimization techniques can be used to determine optimal points that can

be compared with simulation results to further refine the model.

Finite difference is commonly used to estimate gradient information. However, in the case

of simulation optimization, where simulations have uncertainty, and can be costly, finite

differences is not an approach that can be used to identify accurate gradient information.

Instead, gradient-based methods use stochastic approximations to generate an estimated
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gradient to move towards an optimal solution. Simultaneous perturbation stochastic ap-

proximation (SPSA) is an algorithm that is able to estimate gradient information with only

two function evaluations [160].

Direct search methods optimize by performing a sequential examination of points gener-

ated by some strategy [88]. These methods rely solely on a comparison of function values,

and make no attempt to estimate gradient information. Almost all SO direct search meth-

ods are extensions of DFO direct methods, that employ sampling techniques to manage

the uncertainty obtained in measurements, such as evaluating the same point a few times

to calculate an average and standard deviation in the measurement. These methods are

simple to implement and one example of an algorithm is SNM that uses a Nelder-Mead

direct search [36].

2.4.4 SO global search methods

Global SO methods are comprised of ranking and selection algorithms, metaheuristics,

model-based methods, and Lipschitzian optimization. Like DFO global methods, these

algorithms are equipped with tools to escape from local optima and explore the entire

search space at the cost of usually more function evaluations. With a finite parameter

space, ranking and selection tries to minimize the number of repeated simulations required

to accurately identify an optimal solution. The goal of these algorithms is to guarantee

that the optimal design is better than all others by some amount δ with a probability of

1 − α. Metaheuristic approaches rely on some stochastic element when identifying what

points to evaluate. Typical approaches used are genetic algorithms, simulated annealing,

tabu search, and scatter search. These methods are easy to implement and often effective.

Model-based SO methods build probability distributions that are used to guide the search.

For instance, covariance matrix adaption-evolution strategy (CMA-ES) generates proba-
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bility distributions for covariances between variables, essentially amounting to estimating

hessians. For a more exhaustive list of different strategies used for all of these methods

see [8].

2.5 Using DFO and SO to optimize adjustable parameters of

the MAGMA library

The aim of this computational study is to investigate if we can increase the performance of

MAGMA by using DFO and SO solvers to tune its parameters. In this study, we investigated

the effect of varying the block size (nb) used in QR factorization and how A is stored in

memory. The matrix A can either be stored in pinned memory on the CPU or in non-pinned

memory allocated by malloc. By default, MAGMA stores A in pinned memory which can

be faster to transfer data back and forth between the CPU and the GPU, but there is a

cost associated with storing a matrix in pinned memory. Other typical GPU variables such

as the number of threads, the size of a thread block, and the number of thread blocks to

launch are primarily controlled by cuBLAS and were not able to be manipulated, unless

we developed our own GPU BLAS routines. Typically, cuBLAS has proven to be the most

efficient version of GPU BLAS and we defaulted to using that for this study.

Optimal tuning parameters are dependent on two factors, the GPU architecture that is

being used, and the size of the matrix that needs to be solved. To determine optimal tuning

parameters for any sized matrix, one can develop a lookup table where the matrix size and

the GPU architecture are matched to optimal parameters. The MAGMA library has one

of these lookup tables, which was created through experimentation on a different GPU

architecture than the NVIDIA Tesla K40. To measure the effectiveness of using DFO or SO

to determine tuning parameters, we compare the performance of using MAGMA default
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parameters against the performance of parameters identified from DFO or SO. For the

problem under study, there are 1000 possible combinations of parameters, thus affording us

the possibility to determine an optimal solution via complete enumeration. The questions

addressed in the computational experimentation were (a) whether DFO/SO solvers are able

to find an optimal solution and (b) whether they can do so much faster than exhaustive

enumeration.

2.5.1 DFO parameter tuning results

The DFO algorithms were used to determine optimal parameters for twenty-six different

TS matrix sizes that were tested in Section 2.3. Each of the DFO solvers was given a limit

of twenty function evaluations to search for an optimal solution. Most of the DFO solvers

used in this experiment optimize in real spaces but the selected MAGMA parameters are

integer-valued. Integrality was handled by rounding real values to the nearest integer inside

the simulator. Each of the DFO solvers that uses a starting point was given the same

initial point, and we carried out five trials with different starting points to minimize the

effect a starting point had on solver performance. Parameters were selected from the DFO

algorithm that produced the best result for each problem size. Trials were conducted with

DFO, and MAGMA default parameters in the same manner as the previous experiments for

TS matrices. To determine how far from the true optimal solutions the DFO solvers were,

we also enumerated all feasible variable combinations. In Figure 2.3, it may appear counter

intuitive that a few of the best DFO performance points are better than the enumeration

performance. In these cases, the parameters reported for both the DFO and enumeration

results were the same but differences in how the operating system prioritized CPU jobs

resulted in slightly different timing measurements.

From Figure 2.3, we see that for smaller problems there is not much benefit in optimizing
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Figure 2.3: MAGMA’s QR factorization performance with different tuning parameters

tuning parameters. As the problem size increases, we see significant performance benefits

from finding optimal tuning parameters. For problems with 126000 rows, using the DFO

determined parameters speeds up MAGMA by a factor of 1.8 in comparison to the MAGMA

default values. Additionally, by using these tuned parameters, the performance of MAGMA

not only does not decrease as the problem size increases, but instead continues to increase.

As seen in Table 2.3, as the problem size increased, optimal performance was found by

decreasing the block size and using pinned memory. Using a smaller block size allows

the GPU solver to more finely divide the work, and fully utilize the GPU for smaller

problems. For all problem sizes, there is a performance increase compared to the MAGMA

default values, but for large problems when the performance of MAGMA began to decrease,

there is a significant performance benefit from using DFO-determined parameters. For

every problem in our test set, the DFO solvers determined that using pinned memory

always outperformed non-pinned memory. For smaller problems than those reported here

we observed that using pinned memory is not optimal. Nonetheless, it appears that for
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matrices larger than 700 by 500 pinned memory is the optimal way to store A.

Table 2.3: DFO determined optimal tuning parameters for different sized matrices

compared against the default MAGMA values

Number of rows Optimal nb MAGMA nb

1000 76 64

6000 16 64

11000 16 64

16000 15 64

21000 13 64

26000 8 64

31000 8 64

36000 14 64

41000 8 64

46000 8 64

51000 8 64

56000 8 64

61000 8 64

66000 8 64

71000 8 64

76000 8 64

81000 8 64

86000 8 64

91000 8 64

96000 8 64
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101000 8 64

106000 8 64

111000 8 64

116000 8 64

121000 8 64

126000 8 64

2.5.2 DFO solver performance

One initially puzzling result was that, for some problem sizes, the increase in performance

from using DFO was not as large as for other problem sizes. When comparing the DFO

results with the enumeration performance we observe that those performance decreases do

not happen when the best parameters are chosen. This suggests that none of the DFO

solvers were able to find the optimal parameters for certain problem sizes. However, this

could be explained by the number of function evaluations given to the DFO solvers. Being

able to determine high quality tuning parameters in a reasonable amount of time is a

primary motivation for this work. To decrease the expected computation time, we spent

some time experimenting with smaller problems. We first investigated what a sufficient

number of function evaluations to determine good solutions was for a few problems. We

determined that increasing the number of function evaluations above twenty did not lead

to much of an observed performance benefit so we gave every DFO solver twenty function

evaluations to determine optimal parameters. Although some solvers were able to identify

good solutions in twenty function evaluations, some of the DFO solvers needed a few more

function evaluations to determine optimal solutions and ended up with poor solutions after

twenty function evaluations.

To determine what subset of solvers were best able to solve this problem, we compared
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the performance of twenty-six continuous DFO solvers and five integer DFO solvers. If

MAGMA would need to be tuned on another GPU, a user could focus on the solvers that

proved to be the most efficient in this experiment, saving them time and allowing for high

quality parameters to be determined quickly. Many of the solvers that we used in the

experiment yielded parameters that had a worse performance than the MAGMA default

performance. This could have occurred for a few reasons, the first being that we did not

give enough function evaluations to some of the DFO solvers to determine optimal solutions.

Without enough function evaluations, some of the solvers began evaluating points at one

boundary that led to bad solutions, and were not able to find a good solution within the

stated limit on function evaluations.

For local solvers in particular, another issue was that some of the solvers were getting

stuck in fake local maxima. Using GFLOPs to measure the performance of MAGMA

requires measurements of execution times. These execution times (wall clock times) can

vary even when the same experiment is repeated multiple times. Noise in execution time

could have resulted from the operating system prioritizing the algorithm slightly differently

between runs, causing imbalances on how the problem was solved effecting performance.

Noise effecting the DFO search was mostly observed for some local solvers, DFO, NEWUOA,

FMINSEARCH, BOBYQA, and PRAXIS. These DFO solvers would begin at some starting

point, and on the next function evaluation move to another point that would be rounded to

the exact same initial point. The solver would then obtain a slightly different performance,

and use the two different performance results from the same point to guide the search to

a new point. For some of these solvers this process was repeated for all twenty function

evaluations without the parameters being evaluated changing at all. The solvers would pick

a value that was supposed to move towards a local minimum, but instead could not progress

to an optimal solution.
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In Table 2.4, the DFO solvers used were compared to demonstrate how well each per-

formed for all of the TS problems. The columns in Table 2.4 indicate the average improve-

ment that each solver had over the twenty-six problems tested, and the number of times

each solver found the best block size. There were a few solvers that found the best param-

eters a few times, but performed fairly poorly on some problems decreasing their average

improvement. Looking at both of these metrics, it is possible to identify a subset of solvers

we can use to optimally solve all of the TS problems. If one were to use the five DFO

solvers that had the best performance, GLCCLUSTER, HOPSPACK, SID-PSM, MCS, and

SNOBFIT, they would be able to determine optimal tuning parameters for these twenty-six

problems an order of magnitude faster than exhaustive enumeration could.

Table 2.4: Average improvement and number of best options that each DFO solver found

in the TS matrix experiments

Solver Performance improvement

(%)‡

Best options

ASA 6 2

BOBYQA -73 0

CMA-ES -2 0

DAKOTA/DIRECT 7 0

DAKOTA/EA 4 0

DAKOTA/PATTERN -16 0

DAKOTA/SOLIS-WETS -11 0

DFO -68 1

FMINSEARCH 7 0

GLOBAL 7 2
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HOPSPACK 16 13

IMFIL 7 1

MCS -2 2

NEWUOA -73 0

NOMAD 4 1

PRAXIS -74 0

PSWARM -40 0

SID-PSM 13 10

SNOBFIT 3 4

TOMLAB/CGO -16 0

TOMLAB/GLB -16 0

TOMLAB/GLC -16 0

TOMLAB/GLCCLUSTER† -38 0

TOMLAB/LGO -38 0

TOMLAB/MSNLP -19 1

TOMLAB/RBF -16 0

TOMLAB/GLCDIRECT 11 6

TOMLAB/MIDACO -18 1

TOMLAB/GLCFAST 10 4

TOMLAB/GLCSOLVE 9 5

TOMLAB/GLCCLUSTER∗ 18 18

† solver accepts continuous variables only

∗ solver accepts continuous and integer variables

‡ Performance improvement calculated as (tdefault − ttuned)/tdefault

where tdefault is MAGMA with default tuning parameters
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Table 2.4 suggests that the continuous solvers that were best able to determine the op-

timal tuning parameters were local direct solvers SID-PSM and HOPSPACK, and global

deterministic solvers SNOBFIT and MCS. We also observed that some of the integer solvers

performed exceptionally well for these problems. For these problems, the integer version of

GLCCLUSTER was able to find the optimal solution more often than any of the other DFO

solvers, even for problems where none of the other DFO solvers could find the optimal solu-

tion. The other integer solvers, GLCDIRECT, GLCFAST, and GLCSOLVE all performed

well and were able to identify the optimal parameters in a few problems, but were not able

to perform as well as GLCCLUSTER. One surprising result is the comparison between the

continuous and the integer versions of GLCCLUSTER. We notice an almost 60% increase in

performance when the integer version is used, suggesting that there are significant benefits

for using integer solvers in this parameter tuning problem. The integer solvers were able to

do better than most of the continuous solvers because they did not get stuck on evaluating

the same point because of rounding as in the case of continuous solvers.

One reason why global solvers are useful for solving these problems is that, if the functions

are non smooth and possess many local maxima, local solvers may not be able to identify

optimal solutions. In the case of our problem, when we carried out the enumeration of all

the variable combinations, we discovered that the problems we are maximizing over are not

well-behaved concave functions, as shown in Figure 2.4. Figure 2.4 was obtained by plotting

the performance results from each parameter combination tested for a given problem size.

The performance function has multiple local maxima. As a result, it would be difficult

to find an optimal solution with local solvers. We believe the reason for the presence of

multiple local maxima has to do with performance trade offs that occur when the block size

is changed. In particular, through profiling of the MAGMA algorithm with different block

sizes, we observed that, for large block sizes, the occupancy on the GPU was low, causing
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most of the GPU to remain idle during a large portion of the calculations, while the data

transfer rate was high. When the block size was smaller, we observed the opposite trend

where the GPU had a high level of occupancy, and the transfer rate of data between the

processing units was low. The places where local maxima occur are pareto optimal points

that best maximized performance by balancing the trade off between the occupancy and

data transfer rates between the CPU and the GPU.
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Figure 2.4: QR factorization performance for one problem with different options selected

In addition to tuning the parameters of each individual problem instance, we can search

for better parameters to be applied to the entire test set. The best parameters from such

a study would suggest a set of values that can be used as the default values in MAGMA.

From this experiment, we discovered that by using a block size of eight and pinned memory,

we were able to solve the entire test set faster than using the current default MAGMA

parameters. Even though a block size of eight is not optimal for all problem instances, it

leads to an average improved performance than using MAGMA’s default block size of sixty-

four. By using a block size of eight, users can improve their existing MAGMA QR solver

Chapter 2. LLSP Parameter Tuning

37



2.5 Using DFO and SO to optimize adjustable parameters of the MAGMA library

Table 2.5: Average improvement over MAGMA and number of best options that each SO

solver determined with twenty function evaluations

Solver Performance improvement

(%)

Best options

SPSA basic -74 0

SPSA 2nd order -79 0

STRONG -74 0

SNM 15 0

without having to use DFO to tune MAGMA. Of course, these values are only guaranteed

to be optimal for the NVIDIA Tesla K40. Different values may be better for other GPU

architectures.

2.5.3 SO parameter tuning

We used four different SO solvers: SPSA basic, SPSA 2nd order, STRONG, and SNM.

In our first experiment, we ran the SO solvers under the same conditions as the DFO runs,

i.e., using twenty function evaluations, and each solver was given the same initial starting

point if the solver accepted one.

The average improvement over default MAGMA values of each SO solver is shown in

Table 2.5. SO solvers not improving the performance of MAGMA was unexpected. SO

solvers are designed for optimizing problems that have stochastic elements. However, three

of the four SO solvers performed significantly worse than the default MAGMA parameter

values. These results suggest that these three SO solvers require more function evaluations

than DFO solvers to determine high quality solutions. On the other hand, SNM appeared to

perform fairly well and found parameters that were improvements over the default MAGMA
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values for each problem tested. However, for most problems SNM was only able to find

suboptimal solutions.

Suspecting that SO algorithms typically require more function evaluations to determine

optimal solutions, we also conducted an experiment where we allowed the SO algorithms

200 function evaluations. For the fourteen smallest problems we observed that, for every

problem, more function evaluations had no effect on the performance of the SO algorithms.

For the problems tested, the average performance benefit of using SNM increased from 8%

to 12%, while the other solvers found solutions that on average caused MAGMA to take

twice as long as MAGMA using default parameters. Both versions of SPSA, and STRONG

found solutions that were heavily-dependent on the starting point they were given, while

SNM was still only able to find suboptimal solutions. We conclude that these SO codes are

not mature enough yet to handle problems of this complexity, causing them to not perform

well, even with 200 function evaluations.

To compare the performance between SO and DFO solvers, we also studied the quality

of the solutions found as the number of function evaluations increased. In Figure 2.5, we

compared the best performance found by five different solvers over the first twenty function

evaluations. These results demonstrate that the SO solver SNM was able to obtain a slightly

better level of performance than the default MAGMA parameters within four function

evaluations, and able to surpass that after sixteen evaluations. SO solvers typically will

evaluate the same point multiple times to determine a mean and variance in the noise,

explaining why the SO solver’s performance remains relatively constant for twelve function

evaluations, while the DFO solvers seem to be constantly improving performance.
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Figure 2.5: Tracking the best performance found as the number of function evaluations

given to the different solvers increases for QR factorization of a 121000 by 500 matrix

2.6 Conclusions

This paper addresses the problem of determining optimal tuning parameters in GPU

QR factorization. Previous attempts to perform tuning relied on heuristics combined with

exhaustive enumeration to determine the parameters that maximized performance. We

introduced a systematic approach based on using derivative-free optimization and simulation

optimization algorithms.

The performance of thirty-one different DFO and four SO solvers was compared to deter-

mine solvers capable of optimizing the performance of the MAGMA library on a collection

of problems. The best of these solvers provided optimal block size values that sped up

MAGMA by a factor of 1.8 for tall and skinny matrices with over 100000 rows. With

the DFO-determined parameters, the performance of MAGMA can be improved to above

all of the other state-of-the-art solvers for TS matrix problems. Even for larger problems
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that the untuned version of MAGMA with default parameters had worse performance than

PLASMA and cuSolver, when tuned with DFO, MAGMA was able to outperform all of

the other solvers. As seen in Figure 2.6, this parameter tuning made MAGMA the best

performing LLSP solver over the entire range of tall and skinny matrices that we considered.
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Figure 2.6: Performance of four QR solvers, compared against the performance of

MAGMA with DFO-determined parameters

One of the reasons that we were able to find significant performance benefits over the

MAGMA default parameters is due to the coarse grained nature of MAGMA’s default

lookup table. MAGMA only changes the block size based on the smallest dimension of

the matrix, and the optimal parameters span a wide range of problem sizes. By improving

this type of lookup table to include changes for every 1000 rows or columns, performance

could be greatly improved. Even though this type of lookup table may not select the

optimal parameters, those values would result in a better performance than the current

default parameters and could also be used as an intial point for DFO or SO optimization

to determine optimal tuning parameters for any problem size. This type of fine grained
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lookup table will also allow a user the ability to try adjusting block size as factorization

progresses without having to optimize every iteration to determine what the optimal block

size may be.

The proposed approach relies on DFO solvers that are entirely agnostic to the hardware

configuration used. As a result, single-GPU, multiple-GPU, as well as hybrid multi-core

and multi-GPU environments can be tuned.

42

Chapter 2. LLSP Parameter Tuning



Chapter 3

HybridTuner

3.1 Introduction

As the landscape of high performance computing evolves, the need to design software that

is optimal on a variety of computer architectures has grown. To meet this need, algorithms

are designed with tunable parameters to allow for performance portability. Tunable pa-

rameters consist of categorical decisions, discrete options, or continuous values that impact

algorithmic performance. Valid ranges for each parameter are determined from hardware

specifications, developer insights, or desired algorithmic properties. Tuning is the prob-

lem of selecting a set of parameters that maximize the performance of an algorithm [163].

Identifying an optimal set of parameters in this space is challenging as it requires solving

a multi-extremal optimization problem in the absence of an explicit algebraic function to

relate input tuning parameters to an output performance metric.

To overcome the challenges in this problem, parameter tuning has been solved with

derivative-free optimization techniques. Derivative-free optimization, also known as black-

box optimization, is a field of non-linear optimization methods for addressing problems

without an explicit algebraic function [147]. As solution strategies in this field involve

querying a black-box, the number of simulations required to identify optimal solutions to a

problem increases with the number of variables. In practice, tuning problems are challenging

in cases with more than thirty variables, though some methods have been observed to find

reasonable solutions for problems with hundreds of tuning variables [12]. An optimal set
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of tuning parameters depends on the underlying computer architecture. We have observed

that optimal parameters on one system do not provide any performance guarantees on

another computer. In our computations, performance may decrease by up to 40% when

parameters optimized for one architecture are employed on another. As there is no way

to validate whether optimal parameters have been found for problems with a large search

space, many users determine tuning parameters with heuristics, often producing inefficient

algorithms.

Autotuning aims to automate the tuning process, where a programmer defines lower and

upper bounds for all parameters and a search strategy selects the best set of parameters.

Autotuners have been employed for compiler optimization, and machine learning applica-

tions. In machine learning, where hyperparameters affect classification accuracy, Bayesian

Optimization is commonly utilized for hyperparameter tuning [17].

One area of research that has made use of autotuning is the deployment of algorithms

with graphics processing units (GPUs). GPU tuning problems have a highly nonlinear

and discontinuous parameter space that proves challenging for local search methods and

heuristics to optimize [151]. As the landscape of GPU architectures is constantly evolving,

selecting the best tuning parameters requires a thorough understanding of hardware and

knowledge obtained from performance profilers. Additionally, specific GPU parameters such

as block size, thread block size and grid size have been reported to have dramatic effects on

performance. Well-tuned GPU parameters can reduce execution time by a factor of 1.2x

to 1.4x [110, 151]. Further considerations have to be given to efficiently transferring data

between the CPU and GPU and how discrete decisions impact performance. All of the

factors above contribute to a large parameter space with discrete choices, requiring the use

of autotuning techniques for efficient performance optimization.

A problem of particular interest is optimizing dense linear algebra kernels such as matrix
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multiplication. As the most time consuming operation in several algorithms, the perfor-

mance of matrix multiplication directly impacts the performance of algorithms such as train-

ing neural networks through backpropagation, solving graph theory problems and solving

linear and nonlinear optimization problems. Therefore, matrix multiplication speedups are

essential for scaling up to solve more complex problems. While the problem of parameteriz-

ing and tuning dense matrix-multiplication has been investigated before [110, 53, 123, 162],

it has been addressed primarily with heuristic approaches. None of these heuristic ap-

proaches provide optimality guarantees, and offer limited insights except possibly on the

architecture the algorithm is designed for. Tuning dense matrix-matrix multiplication is

challenging, as the search space is nonsmooth, nonconvex, and too large to be solved with

exhaustive enumeration.

Parameter tuning is also important in the area of compiler optimization. The GCC

compiler has over three hundred optimization flags and parameters. The performance of

algorithms compiled with GCC is affected by the choice of optimization flags or the param-

eters selected [14, 12, 164]. While default optimization flags -O2 or -O3 are commonly used,

the authors of OpenTuner observed that with tuning they were able to reduce execution

time by a factor of 2x compared to default optimization flags when tuning a matrix multi-

plication algorithm. There have been many proposed methods for tuning GCC, including

the use of machine learning techniques [13].

In this work, we investigate the benefits of new autotuning strategies based on hybridizing

derivative-free optimization algorithms. The primary contributions of this paper are as

follows:

1. We propose an algorithmic framework to combine local and global DFO approaches

for parameter tuning. Two methods, Bandit DFO and Hybrid DFO, are introduced

that identify the best or near-optimal solutions for all problems that are considered
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in this work.

2. We demonstrate that, by combining local and global DFO strategies, it is possible

to improve the performance of dense matrix multiplication by a factor of 1.4x com-

pared to optimal parameters identified by OpenTuner [12], ActiveHarmony [163] and

Bayesian Optimization [17]. Bandit DFO also optimizes the performance of algo-

rithms compiled by GCC, identifying the best observable parameters with fewer than

5% of the iterations required by other methods.

3. We share our implementation with the community facilitating the development and

use of hybrid autotuning algorithms. We provide the proposed Bandit DFO and Hy-

brid DFO as free and open-source software available at https://github.com/bsauk/HybridTuner.

The proposed methods can be used with any derivative-free optimization solvers. We

include several open-source DFO solvers in our implementation.

In Section 3.2, we review related literature, including the field of autotuning, the literature

on derivative-free optimization algorithms, and hybrid tuning algorithms closely related to

this work. In Section 3.3, we propose hybrid DFO algorithms and describe advantages of

hybrid methods over other approaches. In Section 3.4, we present a computational compar-

ison between autotuners and our proposed hybrid methods to measure the performance of

the proposed method for tuning matrix multiplication and the GCC compiler. We provide

conclusions in Section 3.5.

3.2 Literature Review

3.2.1 Autotuners

Algorithmic parameter tuning or autotuning has been studied over the last two decades [163].

The goal of autotuning is to determine a set of algorithmic options that maximize the per-
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formance of an algorithm for solving a given problem on a specific computer architecture.

Algorithmic options may consist of loop unrolling, blocking, parallelization schemes, or a set

of discrete solution strategies [11]. While small modifications to a code lead to significant

performance improvements, in some cases, a code may need to be completely rewritten

to further improve performance. For a majority of programmers who utilize code devel-

oped by others, determining values that seem to be defined arbitrarily is a daunting task.

Autotuning attempts to simplify the process of developing efficient algorithms with a va-

riety of techniques ranging from automating code generation to local direct derivative-free

optimization search methods.

Many authors pose the tuning problem as a black-box optimization problem, that can be

solved with local direct derivative-free optimization methods. These direct methods use an

intelligent search strategy to select a point to evaluate, using data from previously evalu-

ated iterations. ActiveHarmony is one of the first autotuners developed [163], which uses a

Nelder-Mead simplex search strategy to suggest points to evaluate that may be potentially

optimal. PetaBricks generates several algorithms from a list of algorithmic options, and

automates code generation from provided inputs [11]. Algorithms tuned by the PetaBricks

compiler are divided into sub-problems that are tuned independently of each other using a

genetic algorithm. OpenTuner is an autotuner that combines several local search strategies

to determine high quality solutions [12], by solving the multi-armed bandit with sliding win-

dow, area under the curve credit assignment problem (AUC Bandit Meta Technique) [133].

This technique balances exploiting strategies that have performed well in recent iterations

with the potential benefit of having other strategies explore the search space. Other auto-

tuning approaches hide the tuning process from users. These autotuners are designed for

domain-specific languages where each autotuner is developed for one specific application,

and optimizes an algorithm given assumptions that must hold true for the particular applica-
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tion of interest. Automatically Tuned Linear Algebra Software (ATLAS) [177], is a software

that was developed by Whaley et al. to automate the empirical tuning and optimization

of basic linear algebra subroutines (BLAS). ATLAS optimizes the performance of BLAS

on any computer, regardless of architecture, without requiring an extensive knowledge of

the system or the underlying linear algebra involved. For BLAS and LAPACK libraries,

algorithmic developers have developed autotuning approaches for their algorithms based on

heuristics and experimental observations to allow for performance portability [110]. The

Optimized Sparse Kernel Interface (OSKI) [176] improves the performance of sparse matrix

kernels. OSKI uses heuristics to tune sparse algorithms automatically without any input.

In the machine learning literature, hyperparameter tuning refers to techniques to select

parameters for neural networks, such as learning rate, momentum, and categorical decisions,

such as the type of activation function to select. Some parameters have been observed to

affect the accuracy of classification models produced by neural networks or support vector

machines. As accuracy is affected by the selection of hyperparameters, considerable effort

has been invested in hyperparameter optimization. Tuning these algorithms is challenging

and is typically addressed with random search, grid search, or with Bayesian Optimiza-

tion using Gaussian Process models [23]. Bayesian Optimization is widely regarded as the

most efficient way to perform hyperparameter tuning [23, 159, 17]. Other stochastic strate-

gies, such as the Covariance Matrix Adaption Evolution Strategy, have been observed to

outperform Bayesian Optimization solvers as the iteration budget increases [113].

3.2.2 Derivative-free optimization algorithms

DFO algorithms are divided into groups depending on how they search for an optimal

solution. One such distinction is between direct methods, such as the Nelder-Mead sim-

plex [125], that search over a certain pattern and model-based methods, such as the trust
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region method [141], that rely on a model to guide the search. DFO solvers are also classi-

fied by whether they search for local or global solutions, and whether they are deterministic

or employ stochastic elements. For a more detailed discussion of DFO solvers, readers

are referred to [147]. In this work, several DFO solvers that are investigated are listed in

Table 3.1, and expanded upon in the remainder of this section.

Table 3.1: DFO solvers considered

Solver Type

HOPSPACK [137] local, direct

SID-PSM [48] local, direct

SNOBFIT [92] global, model

DAKOTA MESH ADAPTIVE SEARCH (MADS) [4] local, direct

DAKOTA SOGA [4] global, stochastic

TOMLAB/glcDirect [87] global, deterministic

TOMLAB/glcFast [87] global, deterministic

TOMLAB/glcSolve [87] global, deterministic

HOPSPACK [137] is a direct solver that uses a generating set search (GSS) proce-

dure [105]. GSS was proposed as a type of grid search algorithm for DFO. In particular,

HOPSPACK implements an asynchronous version of GSS such that multiple trial points

are evaluated simultaneously and, when a partial improvement is observed, new trial points

are proposed around that solution. While this approach requires more function evaluations,

promising points are identified faster than with a synchronous approach, where only the

best trial points are used in subsequent iterations. HOPSPACK has the capability to use

several search strategies. To facilitate the transfer of information from one strategy to an-
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other, evaluated points are stored in cache memory to prevent repeating a trial point that

has been evaluated by a different solver.

SID-PSM [48] is a MATLAB implementation of a pattern search method for solving

constrained or unconstrained nonlinear optimization problems [47]. The authors improve

upon the generic pattern search algorithm by incorporating a quadratic minimum Frobenius

norm model into the direct search method [46]. SID-PSM has been proven to have global

convergence to a stationary point when solving unconstrained nonlinear problems [170].

Stable Noisy Optimization by Branch and FIT (SNOBFIT) [92] is a global model-based

algorithm that combines randomization with surrogate models to identify an optimal so-

lution. The SNOBFIT package fits linear and quadratic surrogate models around sampled

points. A quadratic model is fit around the incumbent solution, while linear models are

fit around all other points. SNOBFIT determines the next point to sample by optimiz-

ing over surrogate models and then evaluating at the point that is expected to minimize

the black-box function. Randomization is incorporated by sampling additional points from

unexplored areas of the search space.

DAKOTA Mesh Adaptive Search (MADS) [4] is a DFO generalized pattern search. Under

mild assumptions, MADS has been shown to converge to a stationary point when the set of

evaluated points becomes dense. MADS can solve both unconstrained, bound constrained,

and nonlinear constrained problems, and optimizes problems with continuous, discrete, and

categorical variables. The mesh adaptive search is available in the NOMAD software [2].

DAKOTA Single-Objective Genetic Algorithm (SOGA) [4] is a stochastic global optimiza-

tion DFO algorithm. Genetic algorithms optimize by generating a population of candidate

solutions, evaluating the population, and advancing through generations of a population.

In each generation, there can be crossover, causing two candidates to exchange information,

mutations, where random variations take place, or the updated solution pool is evaluated.
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A population is evaluated until the algorithm converges or the number of iterations reaches

a predefined iteration limit.

TOMLAB glcDirect, glcFast and glcSolve [87] are all implementations of the DIviding

RECTangles (DIRECT) algorithm [96]. DIRECT is initialized by sampling the center

point of the search space. Then, a variable is selected and its range is divided into three

segments of equal length. The parameters at the center of the three regions are evaluated.

Then, depending on which region has the best performance, another variable is selected

and trisecting continues in the most promising region. The search procedure is repeated,

continuing to refine the sampled points until a budget on the number of function evaluations

is exhausted.

3.2.3 Existing hybrid tuning algorithms

Hybrid algorithms combine simple solvers that may otherwise be unable to escape from a

local optima. Hybrid search algorithms have been demonstrated to be effective at identifying

optimal tuning parameters for different computational algorithms [12]. In several cases, local

DFO solvers have been combined with global strategies to improve their accuracy with fewer

function evaluations [63, 173].

One line of research involving deterministic hybrid tuning algorithms combines the DI-

RECT algorithm with implicit filtering [35], pattern search techniques [77], or with surrogate

models [85]. In the work of Hemker et al. [85], in every iteration, instead of evaluating a

point at the center of a box, as is done in DIRECT, the point to be evaluated is determined

by minimizing a surrogate over the area of the domain that is being considered. The au-

thors test this implementation on a problem with 17 variables and bound constraints, but

found that the hybrid implementation was unable to determine an optimal solution after

400 function evaluations.
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Griffin et al. [77] developed a hybrid framework that combines DIRECT and APPSPACK [76].

APPSPACK is a predecessor of HOPSPACK and is also a generating set search DFO solver.

The work of Griffin et al. focuses on solving small problems with two, three, or four vari-

ables, and describes how the framework scales with an increasing number of CPU cores.

The authors utilize the asynchronous nature of the DIRECT algorithm, and parallelize

the search process. Their algorithm does not use DIRECT to initialize the starting point

of the APPSPACK algorithm, but instead interleaves the execution of the two algorithms

throughout the entire search.

OpenTuner is a hybrid strategy that is initialized with a random starting point, and

then explores the search space with several local search strategies [12]. The multi-armed

bandit problem is maximized after every iteration to select a solver to locate the next trial

point. OpenTuner has been demonstrated to perform well for parameter tuning on high-

dimensional problems, such as tuning GCC, while it identifies optimal solutions for smaller

problems within a fraction of the iterations required by exhaustive search.

3.3 Proposed hybrid tuning algorithms

Our proposed methodology derives from the observation that certain global DFO strate-

gies identify high quality solutions quickly, but then struggle to escape from a local minima

to obtain a globally optimal solution. We propose two hybrid methodologies, Bandit DFO

and Hybrid DFO. We create Bandit DFO by combining a global DFO solver with several

local DFO solvers that are selected by solving the multi-armed bandit function. In Hybrid

DFO, we initialize a local DFO strategy with the solution found by a global DFO strategy

that is executed for a small fraction of the computational budget.

The methods we propose here borrow ideas from OpenTuner, but significantly improve

tuning performance by combining local with global DFO solvers. Additionally, merely

52

Chapter 3. HybridTuner



3.3 Proposed hybrid tuning algorithms

implementing a global DFO solver in the OpenTuner framework would be insufficient to

obtain near-optimal solutions as quickly as the proposed Bandit DFO method. A key

improvement in our implementation is the frequency at which we solve the multi-armed

bandit problem. We identified that solving the bandit problem less frequently results in

faster convergence to optimal solutions, when including model-based DFO solvers.

3.3.1 Multi-armed bandit technique

The multi-armed bandit problem with a sliding window, area under the curve credit as-

signment problem is a technique developed for programmatic autotuning [133, 12]. This

problem is inspired by attempting to maximize profit when gambling on numerous slot

machines [64]. If multiple machines are available, initially, one has to sample each of the

machines to discover the expected profit from each game. Then, there is a balance be-

tween exploiting machines that have worked well with exploring options that have not been

evaluated recently.

This framework translates well into a hybrid autotuner. In hybrid algorithms, there is

a trade-off between exploiting solvers that are currently performing well, and exploring

the potential of other solvers with unknown or previously poor performance. Different

techniques have been proposed in the literature to balance the trade-off between these

objectives, such as simulated annealing [121] and particle swarm optimization [100].

The multi-armed bandit problem is solved at every iteration in the OpenTuner framework

to select which local solver to use at the current iteration. This approach also includes a

sliding window to bias the current selection towards solvers that have performed well re-

cently, while ignoring results outside of the current time window. The following optimization

problem is solved to determine which technique (t) to select:
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argmax
t

2

Nt(Nt + 1)

Nt∑
i=1

iVti + C

√
2 logW

Ht

Here, Nt is the number of times that technique t has been used in the current time window,

and Vti is 1 if the use of technique t in time period i resulted in discovering a better solution.

The length of the sliding window is defined as W . Ht is the frequency of using technique t

in the current time window. Finally, the non-negative parameter C controls the exploration

and exploitation trade-off. Large values of this parameter put more emphasis on exploration;

smaller values on exploitation. Traditionally, this maximization problem is solved at every

iteration to determine the solver that is expected to perform the best in the next iteration.

While solving the bandit problem at every iteration may be appropriate when using local

direct DFO methods, in practice, we observed that model-based DFO strategies require

several iterations before suggesting a better candidate solution. To allow model-based DFO

methods to find better trial points, we introduced another hyperparameter, n, into the

algorithm to control the frequency of solving the multi-armed bandit problem. This modi-

fication is critical to the performance of our algorithm, and can be set to one to recover the

original formulation. Figure 3.1 outlines our multi-armed bandit function implementation.

During initialization, it is possible to select a starting point either manually, or by using a

DFO solver for a small number of function evaluations. In this work, we initialize Bandit

DFO with the DIRECT search method. The hyperparameters in this implementation are:

• C to control the exploration and exploitation trade-off;

• MaxEvals is the tuning function limit;

• W is the number of iterations to consider in the sliding window; and

• n is the number of iterations between solving the multi-armed bandit problem.
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Select hyperparameters

Initialize starting point

Solve Bandit problem

Call DFO solver for n iterations

Iterations > MaxEvals

Terminate

Update starting point

yes

no

Figure 3.1: Algorithmic framework of proposed Bandit DFO method

3.3.2 Initialization strategy

The proposed Hybrid DFO algorithm is outlined in Figure 3.2. It has previously been

observed that the DIRECT algorithm locates near-optimal solutions with a small number

of iterations but is unable to converge to a globally optimal solution. We improve the per-

formance of DIRECT by initializing a local DFO solver with the solution returned from

DIRECT after a small number of iterations. DIRECT has been combined with local op-

timizers before, but its application was limited to small problems [96, 76]. To extend this

idea to large-scale problems, we investigated what percentage of the experimental budget

to allocate to global search to identify a near-optimal solution.
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We initialize the HOPSPACK and SID-PSM algorithms with a starting point identified

from TOMLAB glcDirect. While HOPSPACK and SID-PSM are local direct search DFO

solvers, they have been observed experimentally to identify the best measured solutions in

previous tuning experiments [151]. We have observed that initializing these solvers with

an intermediate solution obtained by DIRECT, leads to faster convergence to near-optimal

solutions in comparison to other similar techniques. From experimentation, we identified

that assigning 5% − 10% of the iteration budget to a global DFO method leads to near-

optimal performance with this hybrid approach. Allocating global solvers 5% − 10% of

the computational budget corresponded to approximately two or three iterations for each

tuning problem that was considered in this work. The hyperparameters that we consider

are:

• nGlobal controls the number of iterations given to DIRECT; and

• nLocal is the number of iterations given to a local DFO solver.

In the next section, several state-of-the-art autotuners are compared against our proposed

hybrid approaches. In the first subsection, all algorithms are used to tune a customized

GPU matrix-matrix multiplication algorithm with 17 tuning parameters. Then, we tune

GCC compiler parameters and optimization flags on three different applications from the

PolyBench benchmark suite [179].

3.4 Computational Results

We conducted computational experiments on two different machines. The first, running

CentOS7, with an Intel Xeon E5-1630 at 3.7 GHz and 8 GB of RAM, with a NVIDIA

Tesla K40 GPU with 15 streaming multiprocessors, 12 GB of RAM, and a peak memory

bandwidth of 288 GB/s. Algorithms were compiled with the NVCC CUDA 9.1 compiler

or the GCC 4.8.5 compiler when applicable. For the other experiments, the Pittsburgh
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Select hyperparameters

Initialize starting point

Run glcDirect for nGlobal iterations

Update starting point

Run local DFO solver with new

starting point for nLocal iterations

Terminate

Figure 3.2: Algorithmic framework of proposed Hybrid DFO method

Supercomputing Center, Bridges, was used to perform experimentation on a NVIDIA Tesla

P100 GPU [131, 171]. Dense matrix-matrix multiplication is performed on each GPU with a

matrix multiplication algorithm developed by modifying example code provided by NVIDIA

in the CUDA 9.1 release to allow for the inclusion of tunable parameters. We created

the modified example code to create a tuning space that considers algorithmic options

and NVCC compiler optimizations. The parameter space for this problem is 3.4x1011

unique combinations. The GCC examples are codes from the PolyBench 4.2.1 benchmark

suite [179].

Given the size of the parameter space and that the objective function is a black-box,

we are unable to enumerate all parameter combinations to determine an optimal set of

tuning parameters for each problem. Instead, we compared solvers by their performance
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relative to the best solution found in each experiment. Solvers that identify parameters that

produce the highest observable performance in the shortest number of function evaluations

are regarded as the best autotuner in each experiment. In all of the figures provided below,

Bandit refers to our Bandit DFO algorithm, Hybrid refers to the Hybrid DFO algorithm,

and Bayesian refers to solving the problem with Bayesian Optimization.

3.4.1 Matrix multiplication on the Tesla K40

In the matrix multiplication experiment, we addressed the problem of tuning 17 param-

eters. These parameters are listed in Table 3.2, along with their corresponding lower and

upper bounds. Parameters consist of categorical choices and integer decisions. Categori-

cal choices are represented as 0 or 1 binary decisions such as whether to use GPU shared

memory. Integer choices include methods for optimizing spatial locality through tiling.

GPU specific parameters, such as the number of threads in a thread block, are adjusted

by varying an integer value, while maintaining hardware constraints. The inner loop of

matrix multiplication is unrolled based on the loop unrolling parameter. The remainder of

the parameters are NVCC compiler optimizations. We considered the parameters that the

authors of [33] identified as NVCC parameters that could be tuned to outperform the -O2

or -O3 compiler flags. All parameters investigated in this experiment are integer variables.

As several DFO solvers only operate on continuous variables, and may attempt to evaluate

fractional trial points, we rounded values to the nearest integer before passing them to the

matrix multiplication kernel.

We report results only for square matrices of size 10000 by 10000. Not shown here are

results from additional experiments that we conducted with 2000 by 2000 and 6000 by

6000 matrices, for which we observed similar trends to those of the figures shown below

on both the Tesla K40 and the Tesla P100 GPUs. The tuning objective was to maximize
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Table 3.2: Algorithmic options for tuning dense matrix-matrix multiplication

Tunable parameter Lower bound Upper bound

Store transpose of matrix A 0 1

Store transpose of matrix B 0 1

Use of shared memory 0 1

Block size 1 63

Number of threads in x direction 1 32

Loop unrolling 1 256

No-align-double 0 1

Relocatable-device-code 0 1

Single-precision denormals support 0 1

Single-precision floating-point division 0 1

Single-precision floating-point square root 0 1

Cache modifier on global load 0 2

Optimization level 0 3

Fusion of multiplication and addition 0 1

Allow expensive optimizations 0 1

Maximum amount of register count 24 63

Preserve resolved relocations 0 1

performance of the matrix multiplication kernel. Performance was measured in gigaflops

(GFLOPs) and was calculated as the number of operations required to perform dense matrix

multiplication divided by the amount of time required to perform all of the operations. All

solvers were allowed to call the matrix-matrix multiplication kernel 1000 times, and the
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best performance obtained in the experiment was reported against the iteration number in

the figures below. The same random starting point was given to all solvers, if an initial

starting point was accepted.

As shown in Figure 3.3 for multiplication of 10000 by 10000 matrices, we observed that the

autotuners have different performance profiles. ActiveHarmony terminated before finding

a solution above 200 GFLOPs, less than half of the peak performance obtained by our

Bandit DFO. OpenTuner identified a solution with a performance of 350 GFLOPs after 300

function evaluations, using 10 times more function evaluations than the Hybrid DFO solvers

to obtain a similar result. The Bayesian strategy has a similar performance to Bandit DFO

for the first 400 iterations. However, the algorithm was terminated by the operating system

on our machine because it ran out of memory after 500 iterations.

The proposed hybrid initialization technique discovered a solution with a performance

over 300 GFLOPs within the first 20 iterations. Hybrid DFO never escaped from the

locally optimal solution initially obtained by the TOMLAB solvers and terminates after

400 iterations. Both Hybrid DFO and Bandit DFO use a DIRECT algorithm initially.

However, Bandit DFO explored a different search direction than Hybrid DFO, leading to a

worse performance for the first 600 iterations. After 550 function evaluations, the SID-PSM

sover in Bandit DFO escaped from the previous local optima and improved to over 400

GFLOPs. Bandit DFO converged to a parameter set that outperformed the best solution

obtained by the other autotuners by more than 80 GFLOPs after 600 iterations.

3.4.2 Matrix multiplication on the Tesla P100

We also performed the same set of matrix multiplication experiments on another GPU,

the Tesla P100. Figure 3.4 displays the results for the multiplication of square 10000 by

10000 matrices. ActiveHarmony and OpenTuner obtained suboptimal solutions and ter-
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Figure 3.3: Comparison of the performance of different autotuners tuning dense matrix

multiplication for 10000x10000 matrices on the Tesla K40 GPU

minated after 400 and 700 function evaluations respectively. Unlike on the Tesla K40,

Bayesian Optimization was able to be run for 1000 iterations on the Pittsburgh Supercom-

puting Center Bridges. While we do not report all of the results here, we note that the

Bayesian strategy had the same performance profile on all three of the matrix sizes that

we experimented on, converging to a performance around 1600 GFLOPs. In each case, the

Bayesian approach arrives at a slightly different set of optimal parameters, even though the

performance was similar.

Bandit DFO was the first to achieve a performance over 2000 GFLOPs, and then out-

performed all of the other solvers after 550 function evaluations. The use of multiple DFO

solvers combined with the DIRECT strategy performed well in both obtaining near-optimal

solutions, and converging to the best solution observed in our experiments. The second-best

performing strategy was our Hybrid DFO algorithm. This algorithm was the fastest solver

to find a solution with a performance over 2100 GFLOPs. Our main results on the P100
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GPU align with the results on the K40 GPU. Parameters obtained by using our hybrid

tuning algorithms are superior to those obtained with other autotuners, either in terms of

performance, or in the number of function evaluations required to identify the best known

solution. Near-optimal solutions are obtained within the first 200 iterations with the pro-

posed algorithms, while OpenTuner, ActiveHarmony, and Bayesian Optimization fail to

find near-optimal solutions after 1000 iterations. From experiments conducted here, our

proposed hybrid methods are the best solvers to use for this type of tuning problem. For

problems with fewer than 20 variables, and a vast parameter space, both of our hybrid

methods identified near-optimal solutions quickly and identified better solutions than any

other strategy within the first 1000 function evaluations.
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Figure 3.4: Comparison of the performance of different autotuners tuning dense matrix

multiplication for 10000x10000 matrices on the Tesla P100 GPU
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3.4.3 Tuning the GCC Compiler

The matrix multiplication problem addressed in the previous subsection involved 17 hy-

perparameters. In this subsection, we investigate how the proposed framework performs on

more complex problems. The GCC compiler has over 300 optimization flags and tunable

parameters and is challenging to tune. More than half of the tuning parameters are dis-

crete choices, such as turning on an optimization flag, creating a complex parameter space

that is nonsmooth and discontinuous. To improve the quality of the solutions returned

by derivative-free optimization solvers and other autotuners, we performed a sensitivity

analysis on all of the tuning parameters and optimization flags, for each algorithm that we

compiled. We then experimented with the 50 most influential optimization flags and tuning

parameters.

We conducted experiments using algorithms from the PolyBench 4.2.1 benchmark suite [179].

The algorithms contained in this library include different numerical methods: calculating

sample covariance, BLAS routines, linear algebra kernels, stencil calculations, and more.

All these codes are written in C. We compiled them using GCC version 4.8.5. We focused

on three applications:

• doitgen, a kernel of multiresolution adaptive numerical scientific simulation;

• fdtd-2d, a simplified finite-difference time-domain method for 2D data; and

• syrk, a symmetric rank-k update.

In this study, we compare our proposed Bandit DFO and Hybrid DFO algorithms to other

state-of-the-art autotuners, and report performance comparisons between them. Each au-

totuner was given 500 function evaluations. Below, we present profiles for the performance,

measured as time, to execute the compiled code arising with each chosen set of hyperpa-

rameters. The results reported are the average execution time over three runs with different
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starting points. For reference, we provide the performance of each algorithm compiled with

the default GCC -O2 and -O3 optimization flags to demonstrate performance benefits for

autotuning the GCC compiler.
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Figure 3.5: Performance of autotuners to tune compiling the doitgen algorithm

The performance of the tuners on the doitgen algorithm is shown in Figure 3.5, where we

report the best found execution time on the y-axis against the number of iterations used

on the x-axis. From these results, we see that all of the autotuners except ActiveHarmony

found a better solution than the GCC default optimization flags, -O2 and -O3, within the

first 20 iterations. ActiveHarmony, never identified a solution below 1.25 seconds within

the first 500 iterations. All of the other solvers found comparable solutions that obtain a

performance of 0.55 s within the first 100 iterations. OpenTuner and Bandit DFO located

the best set of parameters in this experiment within 50 iterations.

In the case of tuning the FDTD-2D application, as shown in Figure 3.6, all of the au-

totuners determined parameters that are much faster than the default -O2 and -O3 op-

timization flags. Four of the methods found solutions that are more than twice as fast
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Figure 3.6: Performance of autotuners to tune compiling the FDTD-2D algorithm

as -O3. Bandit DFO identified the best observed solution within 60 function evaluations,

while Bayesian Optimization and OpenTuner required over 100 iterations to achieve the

same performance. In 400 iterations, Hybrid DFO converged to the same performance as

the other autotuners. In Bandit DFO, glcDirect was called for 25 iterations before utilizing

a local DFO solver. The performance of Bandit DFO suggests that the solution provided

by DIRECT was critical to the algorithm locating the best known solution, as it converged

after 30 iterations with a local solver.

For the results of the symmetric rank-k update algorithm shown in Figure 3.7, only two

autotuners found parameter settings that outperformed the -O2 optimization flag. Open-

Tuner converged to a solution similar to the -O2 flag within 10 iterations, and never obtained

a better solution. These results suggest that the -O2 parameter flag is a locally optimal

solution that the local solvers used in OpenTuner were unable to escape from within 500

iterations. ActiveHarmony found a solution similar to the -O3 optimization flag after 200

iterations and then was unable to find a better solution. Hybrid DFO never converged to a
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Figure 3.7: Performance of autotuners to tune compiling the symmetric rank-k update

algorithm

solution comparable to the default -O3 compiler optimization. While Hybrid DFO typically

performs well, problems like this suggest the need for utilizing a combination of local DFO

solvers as in Bandit DFO. Both Bayesian Optimization and our Bandit DFO outperformed

default compiler optimization flags. Within the first 10 calls of the syrk kernel, Bandit

DFO obtained a solution that outperformed almost all of the other methods. Bayesian

Optimization required 400 iterations to reach the same level of performance. We observe

that the Bandit method found a near-optimal solution with fewer than 3% of the calls to

the syrk kernel that are required by other techniques.

3.5 Conclusions

This paper investigates hybrid tuning algorithms for parameter tuning. While previous

approaches rely on heuristics, or local direct search derivative-free optimization algorithms,
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we propose hybridizing global DFO algorithms with local methods. We propose two hybrid

methodologies, Bandit DFO and Hybrid DFO, that combine different DFO strategies to

improve the rate at which tuners converge to an optimal solution.

We demonstrate that the two proposed hybrid algorithms outperform three state-of-the-

art autotuners, ActiveHarmony, OpenTuner, and Bayesian Optimization with Gaussian

Process models. Bandit DFO reduces the execution time of dense matrix multiplication

by a factor of 1.4x compared to algorithms generated by other autotuners on a problem

with a parameter space of 3.4x1011 combinations. We also demonstrate that the proposed

methods are able to obtain superb solutions with less than 5% of the iterations required

by other tuners when tuning the GCC compiler. Bandit DFO algorithm obtain the best

observable solution faster than any other technique, in some cases, 20 times faster than

other methods. In several examples, Bandit DFO was the only technique to obtain the best

observable result within 500 iterations. Optimal parameters identified through tuning are

1.1x to 2x faster than default optimization flags used in GCC.

By combining global DFO strategies with local strategies, our hybrid algorithms identify

the best observed parameters for the tuning applications that we present here. The proposed

hybrid algorithms are generic and can tune problems of various sizes. To facilitate the

development and use of autotuning software, we provided an open-source implementation

of our Bandit DFO and Hybrid DFO algorithms for parameteric autotuning.
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Chapter 4

Backward Stepwise Elimination

4.1 Introduction

Datasets may contain thousands of independent features, or nonlinear feature transfor-

mations. Feature selection is the problem of identifying a subset of features that succinctly

and accurately relate a set of input observations to output measurements. We address the

problem of feature selection by solving the best subset selection problem.

The best subset selection problem comes with three major challenges. First, it is NP-

hard to solve with exact solution strategies [7]. When solving with branch-and-bound [68],

mixed-integer optimization [24, 44], or exhaustive enumeration, optimal subset selection

can become intractable for problems with a large number of features. Instead, heuris-

tic techniques, such as forward stepwise selection (FSS), backward stepwise elimination

(BSE) [58], or the lasso [166], are commonly used to identify near-optimal subsets for large

instances [104]. Although heuristic approaches are significantly faster than exact methods,

there are few studies that have investigated the accuracy of these methods.

The second challenge with subset selection is that it is not always obvious which features

or nonlinear transformations should be considered when formulating the subset selection

problem [69]. Including certain classes of features may generate complex models that per-

form well on training data, but perform poorly in practice. To overcome this challenge,

feature selection can be performed on an extensive set of basis functions. However, as the

computational cost for solving subset selection grows exponentially with the number of fea-

Chapter 4. Backward Stepwise Elimination

69



4.1 Introduction

tures, it is not tractable to solve the subset selection problem to optimality for an arbitrary

number of features.

The third challenge with subset selection is that, even when it is possible to solve the

subset selection problem exactly, the mathematically optimal model may not be the best

choice in practice. A recent study compared the accuracy of different subset selection

strategies. In particular, Hastie et al. [83] compared the performance of FSS, the lasso [166],

the relaxed lasso [119], and a mixed-integer formulation [24]. The comparisons did not

consider BSE, thus leaving a gap in the understanding of this technique in comparison to

other approaches.

We investigate the benefits of solving the best subset selection problem with a backward

stepwise elimination algorithm. The contributions of this paper are:

1. We obtain an approximation guarantee for BSE using the concept of the supermod-

ularity ratio. The derived guarantee provides a bound on the accuracy of backward

stepwise elimination.

2. We propose a GPU parallel batched BSE algorithm that is a factor of 5x faster than

a CPU implementation of BSE for a range of problem sizes.

3. We compare the accuracy of BSE and other state-of-the-art subset selection method-

ologies. We demonstrate that, for certain classes of problems, BSE generates models

that are simpler and have less out-of-sample test error than the lasso or forward

selection.

This paper is organized as follows. In Section 4.2, we review the literature related to best

subset selection, stepwise selection, approximate submodularity, and supermodularity. In

Section 4.3, we prove an approximation guarantee for BSE. In Section 4.4, we propose a

batched GPU BSE algorithm, describe our implementation, and compare the performance of

the proposed GPU algorithm against a CPU implementation. In Section 4.5, we compare
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BSE against other popular subset selection techniques in terms of solution quality. We

provide conclusions in Section 4.6.

4.2 Literature review

4.2.1 Best subset selection problem formulation

The best subset selection problem is defined as:

min
x
‖y−Ax‖22, subject to ‖x‖0 ≤ k, (4.1)

where x ∈ Rn, y ∈ Rm when m ≥ n, and k is the subset size. The `0 norm limits the number

of nonzero coefficients and adds nonconvexity to an otherwise convex problem. Without

the cardinality constraint, the problem

min
x
‖y−Ax‖22, (4.2)

can be solved in closed form. A least-squares estimator of x can be found to solve y = Ax+ε,

where ε ∈ Rm. There are many techniques to solve the linear least squares problem, with QR

factorization being one of the most commonly used. QR factorization involves decomposing

a matrix A ∈ Rm×n into the product of an orthogonal matrix Q ∈ Rm×m and an upper

triangular matrix R ∈ Rn×n:

QTA =

 R

0

 (4.3)

Let

QTy =

 y1

w

 (4.4)

where y1 ∈ Rn and w ∈ Rm−n. The least squares estimator is obtained by solving the

following optimization problem

x̂ = arg min
x
‖y−Ax‖22 = arg min

x
‖QT (y−Ax)‖22. (4.5)
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From this, the residual sum of squares (RSS) can be calculated from

RSS = ‖y−Ax̂‖22 = ‖QT (y− x̂)‖22 = ‖w‖22. (4.6)

If QR factorization is used, the residual sum of squares is calculated from the Euclidean

norm of QTy for the vector of values from n+ 1 to m.

4.2.2 Stepwise selection and elimination

A common technique for solving (4.1) involves selecting or eliminating variables, in a

stepwise fashion. Forward stepwise selection initially generates a model that minimizes

RSS by selecting a single variable. Then, in each subsequent iteration, a new variable is

included in the solution until ‖x‖0 = k. In every iteration, a new model is obtained by

identifying the variable that minimizes RSS when added to the previously obtained model.

Forward stepwise selection (FSS) is a greedy selection algorithm, which has a provable worst

performance for certain classes of problems [126]. Forward selection can also be used for

problems when the optimal subset size is not known a priori. Stopping rules for FSS aim

to find a balance between accuracy and model complexity [22].

Backward stepwise elimination (BSE) starts from the standard least squares solution and

removes one feature at a time until the cardinality constraint is satisfied. Given the initial

least squares solution x0, the error for the model after s iterations and the corresponding

subset xs are obtained via factorization or QR downdating [28]. QR downdating refers to

updating the solution to the linear least squares problem when a column or a row is removed

from A. For subset selection, a model with k columns is selected, then RSS is calculated,

where y2 ∈ Rm−k. QR downdating reduces the number of floating point operations by

removing a column from Rs and updating Q to maintain an upper triangular structure in

Rs−1 without having to perform a QR factorization at every iteration. When a column

is removed from Rs−1, the upper triangular structure is only destroyed in the columns to
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the right of the deleted column. As the computational complexity of QR factorization is

O(2mn2), in many cases, the complexity of the update is significantly less than the cost of

factorizing As−1. The sum of squared errors is computed by left multiplying QT to restore

the upper triangular structure Rs−1 with y2. This procedure is repeated to calculate the

best i = n, . . . , nmin models, where nmin ∈ [1, k]. In each iteration, after the best model has

been identified, all suboptimal solutions are discarded, and the next iteration begins. This

algorithm is outlined in Algorithm 1.

Algorithm 1 Generic Backward Subset Elimination Algorithm

1: Given a set of data points xij ,yi for i = 1, ...,m, j = 1, ..., n

2: Generate a set of basis functions from input features A

3: procedure BackwardElimination(A)

4: QnRn ← A

5: for k = n− 1, ..., 0 do

6: for h = 1, ..., k do

7: Ak,h ← Rk+1

8: Qk,hRk,h ← QR(Ak,h(h : m,h : n))

9: wk,h ← QT
k,hwk+1

10: RSSk,h ← ‖wk,h(k + 1 : m)‖22

11: end for

12: i← arg maxhwk,h

13: wk ← wk,i

14: Ak ← Ak,i

15: end for

16: end procedure

Both stepwise techniques have been extensively used for the last fifty years [67]. In most
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cases, BSE requires more floating point operations than FSS. However, the accuracy of BSE

has been observed to be better than FSS for certain classes of problems [117, 43]. While

some have argued that neither approach should be used [145], for problems with millions of

observations and thousands of features, stepwise approaches quickly generate approximately

accurate and sparse solutions.

FSS and BSE are heuristic hill climbing strategies that obtain locally optimal solutions

to the subset selection problem. As both methods require fewer computations than exact

strategies, researchers have investigated if any guarantees exist for these methods. Several

authors have proven statistical bounds on the accuracy of FSS [52, 126]. Using the notion

of the submodularity ratio, it is possible to obtain a worst-case bound on the performance

of FSS. For BSE, Couvreur and Bresler [43] have proven that, under certain conditions,

BSE identifies an optimal subset. Unfortunately, checking the conditions in [43] requires

the solution of an NP-hard problem.

4.2.3 Submodularity and supermodularity

A function f that maps a set to a real number is called submodular if it satisfies the

following property:

f(S ∪ {v})− f(S) ≥ f(T ∪ {v})− f(T ), (4.7)

for S ⊂ T and {v} ⊂ T \S. The results of Nemhauser et al. [126] prove that the greedy algo-

rithm achieves a (1−1/e)-approximation for the maximization of any monotone, submodular

set function over a cardinality constraint. Here, e is the base of the natural logarithm. This

approximation result provides a lower bound on the performance of greedy algorithms for

solving NP-hard problems subject to cardinality constraints. However, subset selection does

not involve a submodular objective function. To develop an approximation guarantee for

subset selection, the work of [52] defines the submodularity ratio as a way to measure how
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close a function is to being submodular:

γU,k(f) = min
L⊂U,S:|S|≤k,S∩L=∅

∑
x∈S f(L ∪ {x})− f(L)

f(L ∪ S)− f(L)
, (4.8)

where f is a set function, L ⊂ U and S ∩ L = ∅. The submodularity ratio is a function of

the maximum subset size k, and the set U . It reflects how much the value of f increases

by adding any subset S of size k to L, compared to the benefit of f(S ∪L). If the function

f is submodular, then the submodularity ratio is defined to be 1, otherwise if γ < 1, the

function is defined as weakly submodular. The authors of [52] prove that FSS has a worst-

case approximation guarantee of 1− exp(−γ) ·OPT , where OPT is the R2 of the optimal

best subset solution. For γ = 1, the guarantee in [52] recovers the guarantee of Nemhauser

et al.; the bound is loose as γ approaches zero.

A function f is supermodular if −f is submodular. Several authors have defined a

supermodularity ratio [112, 98, 148]. Inspired by the work of [148], we define the following

supermodularity ratio:

βU,k(f) ≥
∑

x∈S f(L \ {x})− f(L)

f(L \ S)− f(L)
, (4.9)

where βU,k ∈ [1, k] is selected as the maximum value for each combination of S,L ⊆ U .

Like the submodularity ratio, the supermodularity ratio captures how close a function is to

being supermodular.

4.3 Algorithmic Analysis of BSE

While there exist approximation guarantees for forward selection, no such bound is cur-

rently known for backward stepwise elimination. To determine such a bound, we use the

concept of the supermodularity ratio.

Let f be a nonnegative monotonically increasing set function. The problem we seek to

solve is:
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max
S

f(S), subject to ‖S‖0 ≤ k. (4.10)

Our theoretical contribution is an approximation guarantee on the performance of back-

ward stepwise elimination.

Theorem 1. Let f be a nonnegative, monotonically increasing set function, OPT be the

maximum value of f possible for a set of size k, and k∗ be the size of the subset for OPT .

Then the set selected by BSE, SBSEn−k , has the following approximation guarantee:

f(SBSEn−k ) ≥
(

1− β

k∗

)n−k∗
·OPT. (4.11)

Proof. Let SB0 be the initial set of all variables considered, and S∗n−k be an optimal set of

k variables that has a value of OPT . Let SBi be the set of variables that remain in S after

i iterations of BSE. We begin by rearranging the supermodularity ratio to ensure that the

numerator and denominator in (4.9) are both positive:

∑
xj∈SB

i

(
f(SBi )− f(SBi \ {xj})

)
≤ β

(
f(SBi )− f(SBi \ SBi )

)
. (4.12)

In every iteration of BSE, x̂ is selected to minimize f(SBi )−f(SBi \{x̂}). As the minimum

size of SBi is |SBi | ≥ k and
∑n

i x ≥ n · xmin, we have:

k∗
(
f(SBi )− f(SBi+1)

)
≤ |SBi |

(
f(SBi )− f(SBi+1)

)
≤ βf(SBi ). (4.13)

Letting A(i) be the loss in f in iteration i, A(i) = f(SBi−1)−f(SBi ). Let f(SB0 ) be the value

of f when all variables in the set are included. Then
∑i

j=1A(j) = f(SB0 )− f(SBi ) extends

from the definition of A(i). Rewriting (4.13) in terms of A(·), we get:

A(i+ 1) ≤ β

k

f(SB0 )−
i∑

j=1

A(j)

 . (4.14)
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Using the inequality above, we will prove by induction that:

f(SB0 )−
t∑

j=1

A(j) ≥ f(SB0 )

(
1− β

k

)n−k
≥
(

1− β

k

)n−k
·OPT (4.15)

For t = 0, the inequality is trivial. Assume that the inequality holds for t iterations. Then,

for iteration t+ 1:

f(SB0 )−
t+1∑
j=1

A(j) = f(SB0 )−
t∑

j=1

A(j)−A(t+ 1)

≥ f(SB0 )−
t∑

j=1

A(j)− β

k

f(SB0 )−
t∑

j=1

A(j)


≥

f(SB0 )−
t∑

j=1

A(j)

(1− β

k

)

≥ f(SB0 )

(
1− β

k

)t+1

≥ f(SB0 )

(
1− β

k

)n−k
where t + 1 is less than or equal to n − k. Finally, f(SB0 ) ≥ OPT and from the definition

of f(SBSEn−k∗) = f(SB0 )−
∑n−k

j=1 A(j):

f(SBSEn−k ) ≥
(

1− β

k

)n−k
·OPT. (4.16)

This completes the proof for the approximation guarantee.

We apply this theorem to the best subset selection problem by defining f(S) = R2
S . When

β = 1, our approximation is the tightest, and deteriorates until β = k. This implies that

the proposed guarantee is stronger for functions that are closer to supermodular, similar

to the submodularity ratio for submodular functions. Additionally, the proposed bound is

stronger as k approaches n, where in the case that k = n, BSE returns the linear least

squares solution.

Chapter 4. Backward Stepwise Elimination

77



4.4 A batched GPU algorithm for BSE

4.4 A batched GPU algorithm for BSE

One major criticism against BSE is that it is computationally expensive. To address

this shortcoming, in this section, we develop a parallel BSE algorithm using batched GPU

computing.

4.4.1 Background

To reduce the computational time of BSE, we parallelized the QR downdate operations

in each iteration of Algorithm 1. Unfortunately, in every iteration, each downdate task is

unique. As a result, it cannot be accelerated with a data-parallel framework. In particular,

the problem size and batch size decrease in each iteration, and every downdate requires

a different number of matrix update operations. Instead of a data-parallel approach, we

parallelized tasks with batched GPU computing.

GPUs are powerful accelerators that are designed for single instruction multiple data

parallelism—not task-level parallelism. GPU hardware is designed for rendering graphics

and performing the same set of operations on different sets of data. There are many cases

where thousands of small, independent problems need to be solved. To take advantage of

GPU hardware for scientific computing, “batching” is a technique that solves groups of

problems in parallel [79, 42]. While algorithms designed for batched computing do not fully

utilize the hardware, batched methods have been observed to be a factor of 2x faster than

optimized CPU kernels for performing the same set of instructions [56].

Despite the clear need to solve problems in batches, developing software to execute task-

level parallelism on a GPU efficiently is challenging. To fill this gap, two batched dense

linear algebra libraries have been developed. In CUBLAS, NVIDIA developers have cre-

ated a set of batched basic linear algebra subroutines (BLAS) and batched kernels for

QR factorization, LU factorization, and matrix-matrix multiplication [42]. The Innovative
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Computing Laboratory developed MAGMA, and implemented efficient batched BLAS rou-

tines to accelerate batched linear algebra kernels [79]. MAGMA has demonstrated that,

with proper algorithm-specific optimizations, it is possible to develop algorithms that are

twice as fast as CUBLAS, for problems with a large batch size. Additionally, for small- to

medium-sized problems, batched BLAS approaches are reported as 2-3x faster for batched

matrix-multiplication compared to traditional GPU code [79].

4.4.2 Batched BSE

We employed the batched QR factorization routine available in the MAGMA 2.5.0 li-

brary [93]. While batched QR factorization is the most time consuming portion of the

backwards stepwise algorithm, a BSE algorithm also needs to perform downdates on the

output y to calculate the sum of squared errors for every problem in a batch. Unfortu-

nately, MAGMA does not have a batched implementation to perform QR downdates. In

LAPACK, this functionality corresponds to the routine DORMQR, which uses Q generated

from DGEQRF and calculates QTy.

We augmented the DGEQRF routine to include the update operation on y. We modified

the batched routine to update y when the rest of the matrix A is updated. When y was

a vector, updating y added a negligible amount of time. We conducted experiments, and

observed that the computational time of the modified code did not increase compared to

that of the original batched DGEQRF code.

The batched BSE algorithm computes a solution to the linear least squares problem.

Then, in parallel, the algorithm removes different single features from the linear least squares

solution. Each task then downdates y to calculate the updated sum of squared errors. After

factorizing and updating y for the removal of each candidate variable, the column with the

smallest change in SSE is removed. This process is repeated until terminating at a predefined
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minimum matrix size.

The backwards selection algorithm relies on the QR factorization kernel in MAGMA

for tall and skinny matrices. To optimize the performance of this routine, we performed

parameter tuning on the block size parameter in MAGMA. From previous work [151], it

was observed that varying the block size parameter in MAGMA has a significant impact on

performance. We discovered that changing the block size to 16, from a default value of 32

improved the performance of the batched kernel for problem sizes of interest.

By definition, a batch is made up of problems of the same size. In each iteration, we

perform matrix updates that operate on a different number of columns ranging from zero

to n − si columns, where n is the number of columns in the matrix and si is the current

iteration. As a result, for every task in the same iteration, the number of operations in

each downdate operation is different, depending on which column is removed. If the feature

removed from R is the furthest to the right, no work is needed to downdate the solution.

However, if the first column is removed, the entire matrix needs to be downdated to restore

the upper triangular structure of R. This uneven distribution of work creates a batch size

of one, where all jobs require different computations. To make BSE amenable to batched

computing, we decided to perform downdate operations for every feature as if the entire

matrix is to be downdated. By assuming that all problems are the same size, we greatly

increase the total number of computations in every batch. This design choice allows us to

set the batch size equivalent to the number of features that are candidates to remove in

each iteration, i.e., n−si. Even though doing so increases the total count of operations, our

early computational experimentation demonstrated that the proposed batch methodology

is a reasonable option. In particular, the proposed algorithm is faster than a sequential

CPU BSE implementation and a GPU BSE implementation. An outline of the algorithm

listed above is detailed in Algorithm 2.
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Algorithm 2 Batched Backward Subset Elimination Algorithm

1: Given a set of data points xij ,yi for i = 1, ...,m, j = 1, ...n

2: Generate a set of basis functions from input features A

3: procedure BatchBackwardElimination(A)

4: QnRn ← A

5: for k = n− 1, ..., 0 do

6: Ak ← Rk+1

7: QkRk ← QR(Ak)

8: wk ← QT
kwk+1

9: RSSk ← ‖wk(k + 1 : m)‖22

10: i← arg maxk wk

11: wk ← wk,i

12: Ak ← Ak,i

13: end for

14: end procedure

4.4.3 Computational results

We conducted experiments on a machine running CentOS7, with an Intel Xeon E5-1630

at 3.7 GHz and 8 GB of RAM. The machine was equipped with a NVIDIA Tesla K40

GPU with 15 streaming multiprocessors, 12 GB of RAM, and a peak memory bandwidth

of 288 GB/s. The algorithms were compiled with the NVCC CUDA 9.1 compiler, using

the -03 optimization flag. We generated subset selection problems with randomly generated

values between zero and one. We compare the computational time to solve the best subset

selection problem for problems with m = 500 − 1000 over a range of n = 200 − 600. We

consider problems where the number of rows is larger than the number of columns.
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For each problem size, we generated 10 problem instances and calculated the average

execution time. We utilized the MAGMA-2.5.0 [93] library to perform batched least squares

calculations, with the modification to the DGEQRF routine that we detailed above to

perform QR downdating. We compared the proposed batched GPU algorithm against a

CPU implementation of BSE that relies on LAPACK [9] to perform factorization and QR

downdating.

As seen in Figure 4.1, the parallel backward elimination algorithm is 2-5x faster than

the CPU implementation. In the figure, we report the GPU speedup as a function of the

number of columns, for three matrix sizes. We observe that the speedup levels off as the

number of columns, or equivalently the batch size, increases. A leveling off of performance

is indicative that the computing resources are completely saturated.

The speedup obtained when the number of rows is increased is not as significant as when

the number of columns is increased. As the computational complexity of QR factorization

scales with the square of the number of columns and linearly with the number of rows, our

speedups are in line with the computational complexity of the underlying algorithm.

To reinforce the observation that the speedup for BSE was limited by computational

efficiency of the computing resources, we investigated the performance of the algorithm as

a function of the batch size. Figure 4.2 displays the execution time of the CPU and GPU

BSE algorithms as a function of batch size. In every iteration of BSE, the batch size was

decreased by one. From Figure 4.2, we see that the benefits of batched GPU computing

decrease as the problem size decreases. For batch sizes equal to 600, the GPU outperforms

the CPU by a factor of 5x. For large batch sizes, above 300, the execution time increases

linearly as the problem size increases. A linear relationship between execution time and

problem size suggests that performance is limited by a computational bottleneck. Even

though the GPU outperforms the CPU for large batch sizes, the speedup decreases to one
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Figure 4.1: Speedup as a function of problem size for the backward stepwise elimination

algorithm

around a batch size of 50. The CPU is faster than the batched GPU algorithm for small

problems. For small problems, the overhead of transferring data to the GPU outweighs the

benefits of batched computing.

4.5 Accuracy of backward stepwise elimination

4.5.1 Background

Recently, several articles have been published on the topic of best subset selection. With

advances in integer programming solvers, researchers have investigated this problem with

mixed-integer programming techniques [24, 44]. However, in the statistics community, sev-

eral have postulated that it may not be worthwhile to solve this problem to optimality on

training data [83, 167]. Instead, the use of heuristic approaches like the lasso and forward

selection have been investigated and found to perform well for various problems [83]. In
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Figure 4.2: Execution time as a function of batch size for the backward stepwise selection

algorithm for a problem with 1000 rows and 600 columns with a variable batch size

between one and 600

the work of Hastie et al. [83], both the execution time and several out-of-sample statistical

metrics are used to compare the lasso, a mixed-integer programming formulation, forward

selection, and the relaxed lasso. They discovered that each of the methods obtained the best

solution under different problem sizes and data characteristics. In terms of computational

time, the mixed-integer programming formulation was the most computationally expensive

for all problems considered.

The work of Hastie et al. raised two questions that we investigate in this paper. First,

the examples formulated in their work sought to identify a sparse algebraic representation

for models with five variables in the true model. However, in practice, modeling complex

systems may require complex non-linear equations with more terms. Second, while forward

and backward selection have been compared empirically in the literature, we are interested

in determining when BSE should be used for subset selection. To facilitate a comparison
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between these methods, we performed experiments with four techniques:

1. the proposed batched BSE algorithm,

2. forward selection in the R best-subset package,

3. the lasso in the R best-subset package,

4. the relaxed lasso in the R best-subset package.

Despite recent advances in solving mixed-integer problems, for problems of sufficient size,

solving the best subset selection problem exactly is still costly. We do not include results

for the mixed-integer formulation as the approximate best subset solutions obtained from

preliminary experiments were comparable to forward selection.

4.5.2 Experimental setup

In this section, we make use of the notation proposed in Hastie et al. [83]. Our exper-

iments followed a similar procedure to those presented in the Hastie et al. paper, and

were conducted on the same machine as in the previous section. Data in our experiments

were drawn from distributions that were defined by several parameters. Our matrices were

generated by defining a problem size (m,n), a sparsity level s, to indicate the number of

nonzeros in the model, and a beta-type, to create a sparsity pattern. Additionally, ρ is

used to control the correlation level between variables when generating input data, and a

signal-to-noise-ratio (SNR) term was used to control the level of noise in the data. Matrices

were generated from a true model parameterized by ρ and s. A response vector y was also

drawn by sampling points from the true model while adding noise that satisfied a specified

SNR.

To compare approaches, several test metrics were evaluated: relative risk, relative test

error, proportion of variance explained, and the number of nonzeros in the chosen model.
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As studied in Hastie et al., relative risk (RR) is a measure of predictive performance.

RR(β̂) =
(β̂ − β0)TΣ(β̂ − β0)

βT0 Σβ0
(4.17)

Here, β̂ is the vector of coefficients selected from regression, β0 is the vector of true coef-

ficients that are used to generate the data, and Σ represents the correlation between the

predictor variables. A perfect RR score for relative risk is zero, corresponding to β̂ = β0.

A bad score corresponds to one. Relative test error (RTE) is an out-of-sample procedure

for measuring accuracy, which measures the expected test error relative to the Bayes error

rate:

RTE =
(β̂ − β0)TΣ(β̂ − β0) + σ2

σ2
(4.18)

A perfect RTE score is one, while a score of zero corresponds to β̂ = 0. In this formula,

σ2 is the variance used to generate the matrices while satisfying a predetermined SNR.

Proportion of variance explained is the amount of variance explained by the proposed model

in the output variable y0:

PV E = 1− (β̂ − β0)TΣ(β̂ − β0) + σ2

βT0 Σβ0 + σ2
(4.19)

If the true model is selected, PVE equals SNR
1+SNR , while a null model has a score of zero.

The last metric considered is the number of nonzero coefficients selected. In general, sparser

models generalize better to validation data.

To compare BSE against other subset selection strategies, we conducted experiments

with matrices of size m = 500, n = 100, and s = 5. We were also interested in determining

which methods are better suited for developing more complex models. We consider s over

a range of 10 to 70 in multiples of 20. Experiments for all problem types were conducted

over SNR ∈ [0.05, 0.09, 0.14, 0.25, 0.42, 0.71, 1.22, 2.07, 3.52, 6].

In the work of Hastie et al., multiple methods were used to generate matrices. We used

beta-type 2, where β0 has the first s parameters equivalent to one, with the rest set to zero.
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Experiments were conducted with ρ equivalent to either 0 or 0.35. All values reported below

are an average over five repetitions. For each technique, a solution path was generated for

every SNR considered. The results reported below are from the models that minimized the

desired test metric from each solution path.

4.5.3 Computational results

Figures 4.3 and 4.4 relate SNR to the accuracy metrics for different correlation levels.

The uncorrelated case was unique from the other cases that were observed. BSE and

FSS performs differently when SNR < 0.16. In particular, BSE in the low SNR cases

outperforms all other methods in regards to RR and RTE. For SNR > 0.16 all of the

methods except for the lasso converge to low error solutions. The lasso selects denser

models than all of the other methods, selecting a 25-term model as opposed to a five-term

model.

The results suggest that BSE outperforms the other methods at SNR < 0.16. The

relaxed lasso and lasso both select denser solutions than BSE for these problems. BSE

outperforms FSS because FSS selects several variables in early iterations that hinder its

overall performance as k increases. For this case of noisy data with no correlation, BSE

selects a sparser model than the relaxed lasso, leading to a smaller RTE.

At a larger correlation of ρ = 0.35, the advantage demonstrated by BSE at the low

SNR regime vanishes. BSE and FSS perform similarly except for small deviations in RTE

observed at SNR = 0.42. All of the methods converge to a similar RTE around SNR =

0.71, except for the lasso. The lasso selects a denser solution than all of the other methods,

and does not converge to the RTE obtained by the other methods. The relaxed lasso

does not have this problem as it manipulates a second tuning parameter γ to control the

aggressiveness of the relaxed lasso to shift its performance from that of the lasso to that of
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best subset and forward selection. The results demonstrate that either BSE or the relaxed

lasso are the best methods for problems of this size. The choice of which method to select

depends on the correlation in the underlying data. The correlation of the features affects

the critical transition value after which BSE, best subset, and FSS outperform the lasso

and are competitive with the relaxed lasso method. BSE has a lower RTE than the relaxed

lasso only in the case of ρ = 0.

In Figure 4.5, we report results relating RTE to s. RTE is affected most by a change in the

number of nonzeros in the model. Similar to the results of Hastie et al., models generated

have a critical transition value at which point the RTE of BSE and FSS decreases below

that of the lasso. The performance of the lasso is worse than all of the other methods above

the critical transition value, while that of the relaxed lasso is similar to that of the stepwise

methods. Unlike in the s = 5 case, in all of the results, the relaxed lasso outperforms BSE

for SNR less than the critical transition value. The most notable result from this study

is that, in certain cases above the critical transition value, BSE and FSS outperform the

relaxed lasso. For s = 30, BSE outperforms FSS and the relaxed lasso for SNR = 1.22. We

also investigated whether the RTE converges for all methods if the SNR value is increased

beyond six. At larger SNR values approaching 20, BSE still outperforms FSS and the

relaxed lasso. From this comparison, it appears that, in the case of low correlation in the

input data and regardless of how large the underlying model is, BSE is competitive with

other methods at any SNR. The relaxed lasso and FSS also generate accurate models for

problems of this size.

Depending on the problem structure, different subset selection strategies are optimal. We

expected that BSE would outperform forward selection when the number of terms in the true

model approaches n as suggested by the proposed approximation guarantee in Section 4.3.

This trend was observed for ρ = 0. Overall, the best technique to use depends on the
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Figure 4.3: Four accuracy metrics for the performance of different subset selection

techniques for ρ = 0

Chapter 4. Backward Stepwise Elimination

89



4.5 Accuracy of backward stepwise elimination

Signal to noise ratio

0.1 1  

R
e
la

ti
v
e
 R

is
k

0

0.2

0.4

0.6

0.8

1
Lasso

Forward Stepwise Selection

Backwards Stepwise Elimination

Relaxed Lasso

(a) Relative risk as a function of SNR

Signal to noise ratio

0.1 1  
R

e
la

ti
v
e
 T

e
s
t 

E
rr

o
r

1

1.05

1.1

1.15
Lasso

Forward Stepwise Selection

Backwards Stepwise Elimination

Relaxed Lasso

(b) Relative test error as a function of SNR

Signal to noise ratio

0.1 1  

P
ro

p
o

rt
io

n
 o

f 
V

a
ri

a
n

c
e
 E

x
p

la
in

e
d

0

0.2

0.4

0.6

0.8

1
Lasso

Forward Stepwise Selection

Backwards Stepwise Elimination

Relaxed Lasso

(c) Proportion of variance explained as a

function of SNR

Signal to noise ratio

0.1 1  

N
u

m
b

e
r 

o
f 

b
a

s
is

 f
u

n
c

ti
o

n
s

0

5

10

15

20

25

30

35

40
Lasso

Forward Stepwise Selection

Backwards Stepwise Elimination

Relaxed Lasso

(d) Number of nonzero coefficients as a

function of SNR

Figure 4.4: Four accuracy metrics for the performance of different subset selection

techniques for ρ = 0.35
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Figure 4.5: Four accuracy metrics for the performance of different subset selection

techniques when the number of nonzero coefficients in the real model changes for problems

with ρ = 0
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underlying data. For certain classes of problems, especially those that are uncorrelated,

BSE produces an accurate and sparse model.

4.6 Conclusions

We investigated using backward stepwise elimination to solve the subset selection prob-

lem. Using the concept of the supermodularity ratio, we obtained an approximation guar-

antee for backward stepwise elimination. Our computational results demonstrate that the

performance of backward stepwise elimination is dependent on the difference between n

and k, and more unexpectedly, the supermodularity ratio. We developed a GPU parallel

batched BSE algorithm. This algorithm reduces the execution time of solving the subset

selection problem for matrices with 1000 rows and 600 columns by a factor of 5x.

We demonstrated that BSE performs as well as other state-of-the-art subset selection

strategies that are commonly employed in practice. For certain problems at SNR below

0.5, BSE generated sparser models and achieved a lower relative test error than forward

selection and the lasso. Results demonstrated that BSE also achieved a lower relative test

error than the relaxed lasso, the lasso, or forward stepwise selection for problems with no

correlation and for signal to noise ratios above zero.

Our primary conclusion is that BSE is a technique that should be considered by practi-

tioners who want to develop sparse and accurate models.

92

Chapter 4. Backward Stepwise Elimination



Chapter 5

GPU block-LU update

5.1 Introduction

Consider the standard form of the linear optimization problem

min cTx

s.t. Ax = b

lj ≤ xj ≤ uj j = 1, 2, . . . n

(5.1)

where A ∈ Rm×n with m < n, b ∈ Rm, c ∈ Rn, and x ∈ Rn. We assume that A has full

rank, so there exists at least one set of m columns that forms a non-singular basis matrix

B ∈ Rm×m and the remaining columns form a matrix N ∈ Rm×n−m. The columns in B

are denoted as the basic variables, and the remaining variables as nonbasic. We express the

linear problem (5.1) as

min cTBxB + cTNxN

s.t. BxB +NxN = b

lj ≤ xj ≤ uj j = 1, 2, . . . n

(5.2)

where cB, xB and cN , xN correspond to the cost vectors and variables associated with the

basic and nonbasic variables, respectively. Given B, a solution to the linear problem (5.2)

is found by fixing the nonbasic variables to their lower or upper bound and solving BxB =

b−NxN for xB. If all of the basic variables satisfy bound constraints, then the solution is

a basic feasible solution. The set of all feasible solutions forms an n-dimensional polytope.
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If an optimal solution to the linear program exists, at least one optimal solution point will

occur on one of the vertices of this polytope. The simplex algorithm searches through these

extreme vertices until obtaining an optimal solution, or determining that the problem is

unbounded. Since its inception 70 years ago by George Dantzig [49], several variants of the

simplex algorithm have been proposed [50, 109, 39, 134].

Over the last decade, graphics processing units (GPUs) have accelerated variants of the

simplex algorithm [161, 25, 107, 139, 116, 84, 38]. GPUs are many-core processors capa-

ble of performing thousands of operations simultaneously, resulting in faster algorithms.

GPUs have improved the simplex algorithm when applied to dense LP problems. Speedups

have typically arisen from parallelizing matrix-matrix and matrix-vector multiplication in a

tableau simplex implementation. Instead, we develop a GPU block-LU update that uses the

Schur-complement. Our algorithm is developed to solve any linear programming problem.

We improve algorithmic performance by replacing sparse operations with dense operations

on the Schur-complement matrix that are amenable to GPU parallelization. The block-LU

update best accelerates LP problems whose performance is limited by solving linear sys-

tems and LU update operations. We demonstrate the effectiveness of the block-LU update

approach on problems of this type by experimenting with quantile regression problems.

While linear regression is obtained through minimizing the sum of squared residuals, quan-

tile regression is the solution to minimizing the sum of absolute residuals [103]. Quantile

regression is a robust estimator that outperforms linear regression when the noise is het-

eroskedastic, and is more robust when generating models from data with outliers [102]. A

quantile regression model is obtained from solving the following linear programming prob-

lem:

min
(β,u,v)∈Rr×R2s

+

{τ1Tr u+ (1− τ)1Tr v|Xβ + u− v = b}, (5.3)

where r is the number of observations, s is the number of design variables, τ ∈ {0, 1} is
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the desired quantile, X ∈ Rr×s is a design matrix used for generating a regression model,

b ∈ Rr is the observed output response, and 1r ∈ Rr where all values are 1. The regression

coefficients are stored in β, while u and v are non-negative slack variables. The constraint

matrix of linear problem (5.3), which we will denote as A ∈ Rm×n, where m = r and

n = 2r + s.

The primary contributions of this paper are:

1. We develop a GPU parallel block-LU update that uses the Schur-complement. We

perform sparse matrix operations on the basis matrix, and dense linear algebra on the

dense Schur-complement matrix.

2. We show a speedup of up to 4.03x over a CPU linear programming solver HSL LA04

for quantile regression problems. Speedups are a direct result from performing basis

updates and solving systems of linear equations in parallel on the GPU.

3. We show that the GPU block-LU approach is insensitive to numerical instability that

causes LA04 to prematurely return a suboptimal solution or incorrectly declare that

the problem is unbounded.

In Section 5.2, we provide an algorithmic overview of the primal simplex algorithm, and

review literature related to parallel implementations of the simplex algorithm and the block-

LU update. In Section 5.3, we propose and outline our hybrid CPU-GPU parallel block-LU

update algorithm. In Section 5.4, we present computational results between our algorithm

and a primal simplex algorithm, HSL LA04, on quantile regression problems. We provide

concluding remarks in Section 5.5.
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5.2 Background

5.2.1 Primal simplex algorithm

We present Goldfarb and Reid’s [72] steepest-edge variant.

1. Initialization: Obtain a basic feasible solution B.

2. Factorization: Factorize B = LU , where L is a lower triangular matrix and U is an

upper triangular matrix.

3. Pricing: Solve the linear system BTπ = cB, where π ∈ Rm denotes the prices of the

basic variables.

4. Reduced costs: Select a candidate variable to enter the basis by calculating reduced

costs for all nonbasic variables. Compute dj = cj − πTaj for all j ∈ N , where aj

represents column j from N . Using steepest edge weighting, select the variable that

minimizes the normalized reduced costs. If no variables have a positive steepest edge

weight, the current solution is optimal.

5. Select an improving direction: Solve By = ase, where ase is the column of N selected

from steepest edge weighting.

6. Determine the exiting variable: Use the ratio test [122] to identify which variable exits

the basis when moving along the improving direction. If no variable exits the basis,

the problem is unbounded.

7. Update basis: When a column in the basis is replaced by another column, the LU

factors are updated. After updating, the algorithm returns to the pricing step, un-

less numerical instability is detected, in which case the algorithm returns to the fac-

torization step. The algorithm may also be refactored if it is expected to improve

computational efficiency.

Modern implementations of the simplex algorithm require efficient methods for solving
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linear systems with B. Instead of inverting B after changing one column, update techniques

reduce the number of floating point operations to solve a linear system with B in the next

iteration. Dantzig and Orchard-Hays [51] proposed to represent the inverse of the basis as

a product of elementary matrices. An updated version of the basis was computed from the

product of the previous inverse representation and elementary matrices. Markowitz [118]

proposed to use LU decomposition to decompose B, and perform updates on the LU factors

in each iteration using the product form of the inverse.

Bartels and Golub [18] proposed an LU update with row pivoting to mititgate round-

off errors. By updating the LU factors, the Bartels-Golub update avoids calculating the

inverse of the basis, and only requires triangular solves with upper and lower triangular

matrices. The Bartels-Golub update performs a rank-one update on the leaving column

U , pivoting the spike column to the last column, and then using a series of elementary

transformations to restore an upper triangular matrix. The Bartels-Golub update was a

stability improvement compared to previous basis update methods. However, the update

may produce fill-in.

Several variants were proposed to improve upon deficiencies of the Bartels-Golub update.

Saunders [154] observed that the spike is unlikely to extend to the last row. Instead of

permuting the spike to the last column, Saunders permutes the spike such that the last

nonzero value is a diagonal element. Reid [146] implemented the Bartels-Golub update and

improved the implementation by applying permutations to reduce fill-in. Another method

to reduce fill-in was the Forrest-Tomlin update [65]. While the Bartels-Golub update pivots

only the spike column to the last column, the Forrest-Tomlin update pivots both the rows

and columns. After row and column operations, the pivoted upper triangular matrix will

have no increase in the number of nonzero elements. The Forrest-Tomlin update loses the

stability guarantee of the Bartels-Golub update, and instead a check needs to be performed
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after the update. Fortunately, the update preserves the sparsity of the basis making this

update computationally efficient when it is stable.

Another class of updates are the Schur-complement updates. These updates were orig-

inally proposed by Bisschop and Meeraus [26], who observed that the basis could be rep-

resented as an augmented basis matrix. A sparse factorization occurs on the original basis

matrix B0, and dense matrix operations are performed on a smaller Schur-complement ma-

trix, Ck ∈ Rp×p, where k is the number of iterations since factorizing B0, p is the number

of rows and columns in Ck, and p ≤ k. The system By = ase is then solved with the

augmented system of equations

B0 Vk

ETk


y1
y2

 =

ase
0

 (5.4)

to determine an improving direction in each iteration. Here, B0 ∈ Rm×n, Vk ∈ Rm×p, and

column vi replaces a column in B0. The matrix Ek ∈ Rm×p is a set of unit vectors ej , where

j is the column of the basis that has been replaced by vector vi. Observing that ETk y1 = 0,

particular elements from y1 are set to zero, and elements from y2 are combined with y1 to

obtain the solution y ∈ Rm. Similarly, the system of equations BTπ = cB is solved by

BT
0 Ek

V T
k


π1
π2

 =

c1
c2

 (5.5)

where c1 and c2 are a permutation of [cb 0]T related to the variables of the augmented

system that are in the basis and π is equivalent to π1. In this paper, we utilize the block-

LU update proposed by Gill et al. [70]. For a more exhaustive list of basis update methods,

we refer the interested reader to [60].
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5.2.2 Block-LU update

The block-LU update involves decomposing the system of equations into two augmented

matrices: BT
0 Ek

V T
k

 =

L0

ZTk Ck


U0 Yk

I

 (5.6)

where L0 and U0 are obtained from LU factorization of B0. From (5.6), L0Yk = Ek,

ZTk U0 = V T
k , and Ck = −ZTk Yk, where I is the identity matrix of size p × p, Zk ∈ Rm×p,

and Yk ∈ Rm×p. The system By = ase is then solved by solving three equations:

L0w = ase (5.7)

Cky2 = −ZTk w (5.8)

U0y1 = w − Yky2. (5.9)

The system BTπ = cB is obtained from

UT0 w = c1 (5.10)

CTk π2 = c2 − Y T
k w (5.11)

LT0 π1 = w − Zkπ2. (5.12)

The matrices Yk, Zk, and Ck are stored and updated after every iteration. The matrices are

updated depending on the variables that enter and exit the basis [61, 74]. If the entering

variable is from N0 and the leaving variable is from B0, then the three matrices increase

in size to store information about the incoming variable. If the entering variable is from

B0 and the leaving variable is from N0, then the matrices decrease in size to represent the

current basis. If the entering variable is from B0 and the leaving variable is from B0, then

the matrices remain the same size, but Yk and Ck are updated. If the entering variable is
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from N0 and the leaving variable is from N0, then the matrices remain the same size, but

Zk and Ck are updated. From the above, the value of p is always less than or equal to k

and the size of the augmented matrix is equal to (m+ p)× (m+ p).

From (5.8) and (5.11), it should be noted that a system of linear equations needs to be

solved with the Schur-complement matrix in every iteration. Instead of explicitly updating

Ck, the LU factors of the Schur-complement can be directly updated [74]. In the first case

when a new column and row are added to the Schur-complement matrix, the augmented

Schur-complement matrix can be expressed as:

Ck+1 =

Ck w

vT σ

 (5.13)

where v = −Y ′kZi and w = −Z ′kYi are a new row and column added to Ck in iteration i [74].

Let Ck = PkLkUk be the LU factorization with partial pivoting of Ck. Then, it is possible

to factor the augmented system such that

Ck+1 =

Ck w

vT σ

 =

Pk 0

0 1


 Lk 0

vTU−1k 1


Uk L−1k P−1k w

0 ρ

 (5.14)

where ρ = σ − vTU−1k L−1k P−1k w.

There are several reasons why the block-LU update should be considered for the simplex

algorithm. Instead of operating on the entire LP in each iteration, most of the compu-

tations and updates only occur on the much smaller Schur-complement matrix. Several

authors have also commented that the stability of the block-LU update is comparable to

that of the Bartels-Golub update, under the condition that the original basis matrix is

well-conditioned [70, 62].

Finally, the block-LU update can be accelerated with parallel computing. From previous

experimentation, the sparsity of matrices Yk and Zk has been observed on average to be

29% for problems in the Netlib [32] test library [62]. Given the density and size of these
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matrices, Yk, Zk, and Ck are stored and operated on with dense matrix operations that are

amenable to parallel computing. We propose to accelerate the block-LU update with GPU

computing.

5.2.3 Parallel simplex algorithm

Algorithmic developments and advances in hardware have resulted in tremendous speedups

in solving linear programming problems. Both commercial and research linear programming

solvers have utilized parallel computing to solve large linear programming (LP) problems.

Bixby and Martin [27] profiled the dual revised simplex algorithm and discovered several op-

erations that benefited from parallel processing: pricing, the ratio test, and pivot selection.

Huangfu and Hall [89] incorporated a parallel revised dual simplex algorithm into the FICO

Xpress solver that uses the dual steepest edge method. When the inverse of the basis is

sparse, Shu [156] observed a 17x speedup for some Netlib test problems by parallelizing the

sparse linear algebra operations on the basis matrix. The steepest-edge pivot selection rule

when parallelized on a CPU achieved a speedup of up to 1000x for dense LP problems com-

pared to a sequential steepest-edge pivoting rule [165]. While traditionally the operations in

one simplex iteration are dependent on the result of a previous iteration, the authors of [80]

considered overlapping iterations. By using potentially old reduced cost information, they

speedup the simplex by 2.5x to 4.8x for medium sized Netlib linear programming problems.

Solving several primal subproblems simultaneously, the authors of [101] demonstrate that

a parallel algorithm can solve LPs with millions of columns.

In the last decade, researchers have accelerated variants of the simplex algorithm with

GPUs that have primarily focused on solving dense problems. Comparing a GPU and CPU

implementation in [161], the authors showed that for dense problems a GPU implementa-

tion was slower than a sequential CPU implementation for problems with less than 1600
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variables and constraints, but achieved a speedup of 2.5x for problems with 2000 variables

and constraints. Using dedicated graphic shaders, the authors of [25] demonstrated a 16x

speedup over GLPK using a custom GPU steepest-edge simplex algorithm on randomly

generated LP problems with 50% density. Ploskas and Samaras [138] examined the impact

of parallelizing pivoting rules for the simplex algorithm. They discovered that a GPU par-

allel steepest-edge rule led to a 16x speedup for randomly generated dense LP problems.

Ploskas and Samaras [139] also demonstrated that GPU approaches speedup both dense

and sparse problems. They observed modest speedups when comparing a CPU and GPU

primal-dual exterior point simplex algorithm. A multi-GPU implementation of the primal

simplex tableau method has been reported to be 24.5x faster than a CPU version for dense

LPs with more than 20000 variables and constraints [107]. A hybrid CPU and GPU sim-

plex tableau method was also presented in [116], where part of the tableau was offloaded

to the GPU. Both processing units performed updates on the tableau and the process was

repeated until an optimal solution was obtained. Dense problems with 10000 variables and

constraints achieved a 30x speedup over a CPU algorithm. Speedups were also observed on

several sparse problems from the Netlib test set as the number of CPU cores increased.

5.3 GPU block-LU update

In this section, we present our GPU-based CUDA Fortran implementation of the primal

simplex algorithm. For the operations we do not parallelize, we use the primal simplex al-

gorithm implemented in the HSL LA04 algorithm [75]. Designed by Goldfarb and Reid [72],

the HSL LA04 is a steepest-edge simplex implementation. In our implementation, we par-

allelize:

1. LU factorization,

2. Selecting an improving direction,
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3. Pricing,

4. Updating the basis, and

5. Revising the reduced costs.

Figure 5.1 is an overview of our algorithm, showing the operations that occur on the CPU

or GPU, and when we transfer values between the processing units. After preliminary

profiling of the LA04 algorithm, we determined that a hybrid CPU-GPU algorithm would be

more efficient than a GPU only implementation. We parallelized the most time consuming

operations, and perform the other operations on the CPU.

When solving the improving direction and pricing system of equations with the block-LU

update, we develop two kernels: blockBTRAN and blockFTRAN. We implement blockB-

TRAN and blockFTRAN with cuSPARSE [129], cuSOLVER [128], cuBLAS [42], and CUDA

Fortran. Algorithm 3 and Algorithm 4 are pseudocode for our implementations. Algo-

rithm 3 accepts the column entering the basis as an input. Since A is stored on the GPU,

we gather the nonzeros of the incoming column from GPU memory without transferring

data between the processing units. We then solve three systems of linear equations for

y and retain the vector ai for use in the Schur-complement update. In Algorithm 4, we

load cost coefficients from GPU memory. As U0 and c1 remain the same until the basis is

refactored, after calculating w in the first iteration, Step 4 in the algorithm is replaced by

loading w from GPU memory. After solving for the reduced costs, π is set equal to π1 and

π2 is discarded.

Parallelism in both blockBTRAN and blockFTRAN arises during (a) triangular solves,

(b) matrix-vector operations, and (c) operations with the Schur-complement matrix. Tri-

angular solves are inherently sequential operations, where the values of some variables are

dependent on other values. Yet, the authors of [124] were able to develop a parallel method

for solving a triangular system in two steps. First, analyze the structure of the matrix
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Figure 5.1: Overview of the hybrid block-LU update implementation. Operations in the

left box take place on the CPU, while operations in the right box take place on the GPU.

Lines that cross between the boxes represent data transferred between processing units.
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Algorithm 3 GPU implementation of blockFTRAN for solving By = ase. This function

uses the block-LU update to solve for vector y. In Step 4 and Step 8 we perform a triangular

solve using L0 and U0. These matrices are produced from LU factorization of the basis

matrix, and unchanged until refactorization.

1: Given an initial factorization L0 and U0, p the number of rows replaced in B0, Ck, Yk,

Zk, and column i selected from steepest edge weighting:

2: procedure blockFTRAN(i, p)

3: Gather the sparse vector ai from GPU storage.

4: Using L0, perform a parallel triangular solve for w with Equation (5.7).

5: if p ≥ 0 then

6: Perform a triangular solve for y2 with Equation (5.8).

7: end if

8: Solve for y1 with Equation (5.9).

9: Copy y1 and y2 from the GPU to the CPU.

10: Using the variables currently in the basis, replace values from y1 with the corre-

sponding values in y2.

11: Retain vector ai in GPU memory for use in the next LU update.

12: end procedure
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Algorithm 4 GPU implementation of blockBTRAN for solving BTπ = cB. The block-LU

update is used to solve for the reduced costs pi. Step 4 of this algorithm only needs to be

performed once for every matrix factorization. As c1 are the basis matrix cost coefficients,

and U0 is only updated upon factorization, w does not change. In practice, we store e in

GPU memory and access it in subsequent iterations.

1: Given an initial factorization L0 and U0, p the number of rows replaced in B0, Ck, Yk,

Zk, and the cost for each value in the basis c1 and c2:

2: procedure blockBTRAN(c1, c2, p)

3: Load c1 and c2 from GPU memory.

4: Using UT0 solve for w with Equation (5.10).

5: if p ≥ 0 then

6: Solve for π2 with Equation (5.11).

7: end if

8: Solve for π1 with Equation (5.12).

9: Copy π1 from the GPU to the CPU and set π = π1.

10: end procedure
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and group independent rows into separate levels that can be solved simultaneously. Then,

perform the solve operation exploiting as much parallelism as possible. We utilize the cus-

parseDcsrsv2 routine that implements this parallel triangular solve [129]. Given that the

block-LU update relies on factoring an initial basis and then performing hundreds of solves

with the same basis factorization, the cost of the analysis phase is amortized over hundreds

of iterations. When we factor a new basis matrix, we also perform the requisite analysis

phases. Second, in both blockBTRAN and blockFTRAN, dense matrix-vector multiplica-

tion occurs during (5.9) and (5.12). By explicitly storing Yk and Zk as dense matrices, we

parallelize these operations with dense GPU matrix-vector multiplication kernels. Finally,

as we store our Schur-complement matrix as a dense matrix, we use the cusolverDnDgetrs

routine to solve (5.8) and (5.11).

As previously mentioned, four different updates may occur in each iteration using the

Schur-complement update. In each iteration, we determine which update is required and

then update Ck, Yk, or Zk. Updates are performed using sparse triangular solve operations.

After updating Yk and Zk, we then update Ck depending on which columns were swapped

in the current iteration. If a column from B0 is replaced by a column from N0, causing the

Schur-complement to grow in size, we perform an LU update on the Schur-complement as

done in [74] and as described in Section 5.2.2. Otherwise, Ck = −Z ′kYk, and we perform

a dense LU factorization on the new matrix Ck. As the size of Ck is small compared to

the size of general linear programming problems, this method is appropriate as long as

the maximum dimension of Ck is limited. For quantile regression problems, we found that

limiting the size of the Schur-complement matrix to at most 1024 × 1024 was numerically

stable, and produced an efficient algorithm. Updating the reduced costs requires updating

all nonbasic variables. Fortunately, this involves a set of single-instruction multiple data

operations that we parallelized with a GPU kernel.
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Inspired by work from Bisschop and Meeraus [26], Eldersveld and Rinard [61] developed

a parallel block-LU update that uses the Schur-complement on a vector machine. They par-

allelized triangular solves on a multi-core computer and demonstrated a moderate speedup

with vectorization. Our hybrid simplex algorithm is a modification of the block-LU update

implemented by Eldersveld and Saunders [62]. The novelty of our implementation is that

(a) we explicitly store Yk and Zk as dense matrices, (b) we perform dense linear algebra

when operating on the Schur-complement matrix, and (c) we apply an LU updating strategy

to the Schur-complement matrix Ck.

5.4 Computational results

We conducted experiments on a machine running CentOS7, with an Intel Xeon E5-1630 at

3.7 GHz and 8 GB of RAM, with a NVIDIA Tesla K40 GPU with 15 streaming multiproces-

sors, and 12 GB of RAM. Algorithms were compiled with the PGI-19.10 pgfortran compiler

that linked to the CUDA 10.1 library. All files were compiled with the -fast, -O3, and -Kieee

flags. We experimented with randomly generated dense quantile regression problems. Sim-

ilar to the work of [111], we generated random design matrices with r = {2000, 2500, 3000}

s = 1500, and we experimented with τ = {0.1, 0.3, 0.5, 0.7}. The values in the design ma-

trix were generated randomly from {0, 1}, and b = Xβ + 1/(s + 1)N (0, 1), and β is also

randomly drawn from {0, 1}. For each combination of r, s, τ , we experiment with three

randomly generated problems. The values reported in Table 5.1 are the average from three

experiments.

We present our computational results in Table 5.1. The first three columns are properties

of the design matrix, and the last three columns are the execution time of the CPU simplex

algorithm, the GPU simplex algorithm, and the hybrid speedup. As two slack variables are

included for every observation, the dimensions of the linear programming problem are r by
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Table 5.1: HSL LA04 and hybrid CPU-GPU primal simplex comparison

r s τ Hybrid CPU-GPU time (s) HSL LA04 time (s) Hybrid speedup

2000 1500 0.1 237.78 244.46 1.04

2500 1500 0.1 556.85 626.06 1.15

3000 1500 0.1 844.92 3402.05 4.03

2000 1500 0.3 372.45 581.96 1.55

2500 1500 0.3 868.45 1281.12 1.50

3000 1500 0.3 1478.52 2652.52 1.82

2000 1500 0.5 406.00 534.33 1.29

2500 1500 0.5 913.84 1622.15 1.79

3000 1500 0.5 1414.82 3162.58 2.30

2000 1500 0.7 354.52 393.31 1.11

2500 1500 0.7 847.69 1212.65 1.42

3000 1500 0.7 1436.75 2801.03 2.03

2r + s. The speedup was calculated as

CPUTime(s)/HybridT ime(s) = Speedup. (5.15)

Our parallel CPU-GPU block-LU update outperforms the LA04 simplex algorithm. The

largest speedups in our algorithm were a result of operating on the dense Schur-complement

instead of the entire LP problem. As we are operating on dense matrices, our algorithm

benefits from parallelizing both the matrix-vector multiplication and solving systems of

equations with the Schur-complement matrix. Across different values of τ , we observed a

geometric mean speedup of 1.23x for problems with 2000 rows, 1.45x for problems with 2500

rows, and 2.42x for problems with 3000 rows. Given that the speedup tends to increase
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as problem size increases, our results suggest that the speedups may increase if we were

to experiment on larger problems. In the best case, we demonstrate a 4.03x speedup for

problems with r = 3000 and τ = 0.1.

With our selected maximum size of the Schur-complement matrix, the block-LU update

performed thousands of updates before refactorizing. The time spent analyzing the un-

derlying structure of L0 and U0 was less than the time saved by reducing the time spent

performing thousands of triangular solves. We also observed that the time spent on block-

FTRAN and blockBTRAN was less than the time spent performing triangular solves in the

LA04 algorithm. Updating the reduced costs had a small effect on performance, but tended

to reduce execution time by a marginal amount.

In addition to performance differences from using the block-LU update, we also observed

that the two algorithms took different solution paths. While both algorithms will refactor

if numerical instability is detected, refactorization for our GPU algorithm occurs when

p equals the maximum size of the Schur-complement matrix, and the LA04 algorithm is

refactored when it detects a performance decrease. We observed that, for quantile regression

problems, our parallel block-LU algorithm needed less iterations than the LA04 algorithm.

This is related to the stability of the block-LU update. The block-LU update is as stable

as the Bartels-Golub update assuming that the initial basis is well-conditioned [62]. In our

experimentation, we never encountered numerical instability with the block-LU update.

Additionally, the block-LU update always terminated with the optimal solution for all of

the problems that we considered. For quantile regression problems with 2500 or 3000 rows,

the HSL LA04 algorithm sometimes returned a suboptimal solution or incorrectly declared

the problem as unbounded.

We observed that, by adjusting the condition for when LA04 refactors the basis, we

were able to improve the likelihood that the algorithm terminated at an optimal solution.
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The LA04 algorithm defaults to refactoring whenever the execution time in the last 10

iterations is 5% slower than the previous 10 iterations. When we lowered the threshold

before refactoring the basis, we found that the LA04 algorithm experienced less numerical

instability. For example, with the default setting, after solving the 3000 row, 1500 column,

and τ = 0.7 problem 10 times, LA04 returned the optimal solution three times, and seven

times out of ten when the algorithm refactored after a 2.5% slowdown.

5.5 Conclusions

This paper investigates parallelizing the block-LU update in a primal simplex algorithm.

Despite the potential performance benefit of graphics processing units, no work has been

done to utilize GPUs for performing the block-LU update in the simplex algorithm. We

develop a hybrid CPU-GPU primal simplex algorithm that utilizes the GPU to perform the

block-LU update. We parallelize sparse LU factorization, the block-LU update, revising

reduced costs, and performing BTRAN and FTRAN operations on the GPU.

We show the effectiveness of our approach on quantile regression problems formulated

as linear programming problems. We obtain up to a 4.03x speedup over a CPU linear

programming solver HSL LA04. We observe that for problems with 2000-4000 observations

and 1500 features our algorithm has a geometric mean performance that is 1.63x faster than

LA04. We demonstrate that the block-LU update does not suffer from numerical instability

that LA04 can experience for quantile regression problems with 2500 or 3000 rows.
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Chapter 6

Conclusion

6.1 Summary of this Thesis

In this section, we summarize important findings and major accomplishments from each

chapter.

6.1.1 Chapter 2: LLSP Parameter Tuning

In Chapter 2, we improve the performance of a GPU parallel linear least squares solver

for tall and skinny matrices that are common in model building. With the goal of accel-

erating the generation of empirical models, we compare linear least squares solvers and

identify that the MAGMA [93] linear least squares routine, a hybrid CPU-GPU approach,

outperformed a CPU only approach [9] and a GPU only approach [128]. However, in the

case of overdetermined problems that routinely arise when generating empirical models, we

noticed a decrease in the performance of the MAGMA linear least squares solver.

We conduct an extensive computational comparison of different derivative-free optimiza-

tion and simulation optimization algorithms. By tuning the block size parameter, we im-

prove the performance of MAGMA on tall and skinny matrices by a factor of 1.8x. Five

derivative-free optimization solvers identify optimal tuning parameters for a variety of tall

and skinny matrices with an order of magnitude less simulations than complete enumera-

tion. The derivative-free optimization solvers also identify higher quality solutions faster

than OpenTuner [12].
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6.1.2 Chapter 3: HybridTuner

In Chapter 3, we return to the problem of algorithmic parameter tuning. We review

the field of autotuning with a focus on techniques that utilize derivative-free optimization

search strategies. Autotuning is essential for parameter tuning to allow for performance

portability. To cover different potential use cases, algorithms may end up with hundreds

of tunable parameters that need to be adjusted in the context of a specific problem. GPU

architectures are especially challenging to tune as new architectures are released every other

year, and optimal parameters on one system may not even compile yet alone be optimal

on another system. Then as the number of tuning parameters increases, the computational

cost of identifying optimal tuning parameters increases almost exponentially.

We focus on two tuning applications: a GPU dense matrix-matrix multiplication kernel

and tuning the GCC compiler. The efficiency of dense matrix multiplication directly impacts

the performance of several algorithms ranging from training neural networks to linear and

nonlinear optimization problems. We tune a customized GPU matrix-matrix multiplication

algorithm with 17 tuning parameters. To demonstrate the performance of autotuners on a

more complex problem, we tune the GCC compiler. Tuning GCC compiler options beyond

the default -O2 or -O3 flags is a daunting task with hundreds of parameters [13, 14, 12, 33,

164]. This is exacerbated when considering that there is no explicit algebraic function to

relate tunable parameters to an output performance metric, and that these models, if they

did exist, would be dependent on problem size and computer architecture.

To address these challenges, we propose to perform autotuning with novel hybrid derivative-

free optimization strategies. We review the literature and discover that several auto-

tuners utilize local derivative-free optimization search strategies [12, 163] such as a Nelder-

Mead [125] simplex search. Inspired by results in Chapter 2, we investigate the benefit of

combining local and global derivative-free optimization search strategies. In particular, we
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initialize a search strategy with the result from the DIRECT algorithm [96]. We propose

two hybrid derivative-free optimization initialization strategies: Hybrid DFO and Bandit

DFO. Hybrid DFO, uses the DIviding RECTangles (DIRECT) [96] algorithm to generate

a starting point for a single local derivative-free optimization strategy. The second, Ban-

dit DFO, uses the DIRECT algorithm to generate a starting point and then utilizes the

multi-armed bandit function with area under the curve credit assignment problem [133] to

identify near optimal solutions for all of the problems that we consider.

We improve the performance of dense matrix-matrix multiplication by a factor of 1.4x

compared to optimal parameters identified by OpenTuner, ActiveHarmony, and a popu-

lar strategy in neural network tuning, Bayesian Optimization. Bandit DFO speeds up

algorithms compiled by GCC, identifying the best observable parameters with 5% of the

iterations required by other methods. Finally, we make our code HybridTuner publicly

available to facilitate the development of future autotuning methodologies.

6.1.3 Chapter 4: Backward Stepwise Elimination

In Chapter 4, we extend our work in Chapter 2 from solving a single linear model to

the subset selection problem. Instead of solving a regression problem, we consider parallel

methods for selecting a subset of features to use in a linear model. Sparse models generated

in this way prevent over-fitting, can be integrated into an optimization model, and solved

with generic optimization solvers. We utilize the backward stepwise elimination algorithm as

it is amenable to parallel computing and demonstrate that it comes with an approximation

guarantee.

Using the supermodularity ratio, we develop an approximation guarantee for backward

stepwise elimination. Despite the fact that the approximation guarantee deteriorates when

a function is far away from being supermodular, we are able to provide some confidence
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in backward stepwise elimination in certain cases that had not existed previously. We

also present a GPU parallel batched backward stepwise elimination algorithm, evaluating

hundreds of potential models simultaneously to select the best one. Computational results

suggest that the GPU algorithm is 5x faster than a sequential CPU approach. Finally,

we systematically compare the accuracy of backward stepwise elimination against other

subset selection approaches. For certain classes of problems, backward stepwise elimination

selects models that are sparser and more accurate than the lasso or forward selection. This

work expands upon recent contributions in the statistics community [83] to compare the

accuracy of subset selection techniques and suggest that different methods are applicable

under different scenarios.

6.1.4 Chapter 5: GPU block-LU update

In Chapter 5, we solve linear programming problems with the primal simplex algorithm.

In particular, quantile regression problems. Quantile regression can be used for model

building when the conditions for linear regression are not met, such as when the data is

heteroskedastic, nonlinear, or has outliers. For example, quantile regression has been used

to suggest public policies to reduce the number of infants born with a low birthweight as

low birthweights have been related to health complications [103].

To solve quantile regression problems, we develop a GPU parallel block-LU update that

parallelizes the basis update and triangular solves steps in the simplex algorithm. We

review the primal simplex algorithm, and describe previous approaches at accelerating it

with CPU, GPU, and hybrid approaches. We then describe our parallel implementation,

where we utilize dense linear algebra operations that are amenable to GPU computing to

perform updates with the Schur-complement matrix. We demonstrate the efficiency of our

approach with GPU speedups obtained from solving tall and skinny quantile regression
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problems. We obtain up to a 4.03x speedup over the HSL LA04 simplex algorithm, and a

geometric average of 1.63x over all of the problems that we consider.

6.2 Research Contributions

The major contributions to this thesis are:

1. We performed a computational comparison of derivative-free optimization and simu-

lation optimization algorithms, comparing different classes of derivative-free optimiza-

tion on an integer black-box optimization problem. We added to a literature that is

still in its infancy and provided comparisons to help users determine what derivative-

free optimization or simulation optimization strategy is best suited for their particular

needs.

2. We accelerated MAGMA’s QR solver by a factor of 1.8x for large tall and skinny

matrices compared to the performance of the MAGMA algorithm with default pa-

rameters, improving its efficiency and allowing for its incorporation into a subset

selection framework.

3. We identified a set of five derivative-free optimization solvers that were capable of

determining optimal GPU parameters with an order of magnitude less simulations

than exhaustive enumeration, reducing the computational cost to obtain an optimal

algorithm regardless of system architecture.

4. For the problem of tuning QR factorization, we showed that the best DFO solvers

identify high quality solutions faster than other autotuners such as OpenTuner.

5. We developed a novel algorithmic framework to combine local and global derivative-

free optimization approaches for algorithmic parameter tuning, identifying the best
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or near-optimal parameters for all problems considered in this work.

6. We improved the performance of dense matrix-matrix multiplication by a factor of 1.4x

compared to the performance with optimal parameters identified by OpenTuner [12],

ActiveHarmony [163], or Bayesian Optimization [17] after at most 1000 simulations.

7. We optimized the performance of algorithms compiled by GCC with fewer than 5% of

the simulations required by other autotuners, greatly reducing the cost for autotuning

and improving the portability of algorithms.

8. We shared HybridTuner with the community to help with the development and use

of hybrid autotuning algorithms. Hybrid DFO and Bandit DFO can be used with

any derivative-free optimization solver allowing for the creation of more sophisticated

techniques.

9. We obtained an approximation guarantee for the accuracy of backward stepwise elimi-

nation using the supermodularity ratio, allowing us to understand the type of modeling

conditions conducive to the generation of sparse and accurate models with backward

stepwise elimination.

10. We proposed a GPU parallel batched backward stepwise elimination algorithm that

was a factor of 5x faster than a CPU implementation.

11. We compared the performance of several state-of-the-art subset selection methodolo-

gies and observed that backward stepwise elimination generated models that were

simpler and have less out-of-sample test error than the lasso or forward selection.

12. We developed a GPU parallel block-LU update that uses the Schur-complement. We

perform sparse matrix operations on the basis matrix, and dense linear algebra on the

dense Schur-complement matrix.
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13. We showed a speedup of up to 4.03x over a CPU linear programming solver HSL LA04

for quantile regression problems. Speedups were a direct result from performing basis

updates and solving systems of linear equations in parallel on the GPU.

14. We showed that the GPU block-LU approach is insensitive to numerical instability

that causes LA04 to prematurely return a suboptimal solution or incorrectly declare

that the problem is unbounded.
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6.4 Future Work

In this section, we suggest future research directions.

6.4.1 Integrate batched backward stepwise elimination into ALAMO

Automated learning of algebraic models for optimization (ALAMO) is a surrogate model

building framework that generates models using a mixed integer programming formula-

tion [44]. The proposed backward stepwise elimination algorithm could be incorporated

into the ALAMO framework as another option for surrogate modeling. For large problems,

mixed integer optimization may prove computationally expensive when generating a surro-

gate model. Currently, ALAMO uses a forward stepwise selection heuristic to generate an

initial model that may be proposed to users who do not require an optimal solution. In this

context, and driven by results that we have observed in Chapter 4, it may prove beneficial

to provide users the option to generate a model with backward stepwise elimination.

In the context of iterative model building, one of the most important features of ALAMO

is its ability to perform error maximization sampling to identify future points to evaluate

and improve the accuracy of a surrogate model. This capability of updating solutions with

new data points could be included in the batched backward stepwise elimination algorithm.

6.4.2 Evaluate the performance of HybridTuner

One of the main contributions from Chapter 2 is the computational comparison of

derivative-free optimization and simulation optimization algorithms. This comparison could

be augmented by including Hybrid DFO and Bandit DFO. A comprehensive test set for

derivative-free optimization problems was proposed in [147], and can serve as a perfor-

mance comparison for Hybrid DFO and Bandit DFO. Despite the fact that dense matrix

multiplication and GCC tuning are challenging problems, without knowing the underly-
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ing model relating input parameters to execution time, it is difficult to provide conclusions

about when Hybrid DFO or Bandit DFO should be recommended for general derivative-free

optimization problems.

Requiring algorithmic tuning, Bandit DFO and Hybrid DFO have a set of hyperparme-

ters. Performance on a test library could serve to identify better default hyperparameters

for both of these algorithms. It would also be interesting to compare the performance of

HybridTuner against other autotuning algorithms for tuning neural networks. The accuracy

and performance of neural networks is dependent on the selection of tuning parameters, and

reducing the training time with efficient autotuners, may lead to improved performance.

6.4.3 Improvements to Bandit DFO

The current framework of Bandit DFO could be expanded to accommodate more global

derivative-free optimization algorithms. Currently, the framework only allows for the use of

derivative-free optimization algorithm that accept a starting point. Without this restriction,

a solver that is selected may not be able to use any information previously obtained, and

provide no guarantees of convergence, as cycling could occur. However, some derivative-free

optimization solvers could theoretically be adapted to accept a starting point and could be

used in this framework.

Another interesting extension would be considering more historical information with each

derivative-free optimization solver. Currently, the only information that a solver receives is

a starting point, and then any information it generates during its n iterations, where n is

the number of iterations between solving the multi-armed bandit problem. A solver that

is developed to generate a surrogate model or to incorporate all previously existing trial

points in determining the next point to evaluate would also benefit from Bandit DFO. While

the ability to incorporate past information would be beneficial, this may prove challenging
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to implement in practice. Derivative-free optimization algorithms in general are complex

to develop, and require a lot of effort to develop theoretical performance guarantees. We

provide Bandit DFO as open-source code to help promote the development of advanced

derivative-free optimization solvers that could make use of these tools.

6.4.4 GPU Parallel Sparse Matrix-Vector Multiplication

An important and time intensive portion of the simplex algorithm is sparse matrix-

vector multiplication (SpMV). In the case of the dual simplex algorithm, Bixby and Martin

observed that SpMV accounted for 18.4% of the total time spent in the simplex algorithm for

30 sparse linear programming problems [27]. SpMV is present in the pricing step, selecting

an improving direction, and revising column weights in the primal simplex algorithm. In our

GPU block-LU update, we utilize dense matrix-vector multiplication. However, as problems

increase in size, and when the Yk and Zk matrices are sparse, an optimized SpMV routine

would decrease the time spent on solving the pricing and improving direction systems of

equations.

To make use of existing sparse algorithms [129], we store our sparse matrix in the com-

pressed sparse column storage format. However, there exist more than 10 other storage

formats that may be more efficient for SpMV for certain types of problems. A recently

proposed merge-based CSR format is particularly promising [120]. The merge-based CSR

was demonstrated to perform well on sparse problems regardless of its sparsity pattern. To

make use of this storage format, other sparse matrix algorithms would have to be developed,

such as LU factorization, and triangular solve kernels. The solve kernel is particularly chal-

lenging as the structure of the sparse matrix needs to be analyzed to overlap computations

during a triangular solve.

An interesting approach to explore is simultaneously storing multiple versions of a matrix
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in different storage formats. For smaller problems, the memory and time overhead for cre-

ating and storing multiple sparse matrices in different storage formats may be smaller than

the potential benefit from using different formats for different operations. As GPU memory

is limited, this will become prohibitively expensive for larger sparse linear programming

problems of interest, but could prove beneficial for some problems.
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