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Abstract
Subject-matter experts typically think of their datasets as causes and effects be-

tween many variables, forming a large, complex causal system. Directed acyclic

graphs (DAG), also called Bayesian networks, provide a natural way to conceptu-

alize these systems. In contrast, regression modeling can provide strong evidence

for the local, causal neighborhood of an outcome within the causal system, but

providing structure for the larger system is challenging with regression. Despite

its value as exploratory data analysis or in conjunction with regression models to

refine causal understanding, methods for estimating the causal structure underlying

a dataset, causal discovery, are rare in fields such as epidemiology, possibly due to

the difficulty handling data with continuous and discrete random variables.

This thesis focuses on developing a causal discovery method for researchers whose

data typically are comprised of both discrete and continuous variables. Its primary

contribution is the development of an estimator for graph divergence, the Kullback-

Leibler divergence between the full, joint distribution and the Bayesian factorization

indicated by a DAG. Graph divergence is a generalization of conditional mutual

information: it quantifies the fit of a DAG to the data, with greater divergence

indicating worse fit and a divergence of zero indicating a perfect characterization of

the conditional independence relationships among the variables. Its nearest neighbor

approach gives the estimator the capability to handle mixed data. We show that

the estimator is consistent and its convergence separately for the continuous and

discrete case under some assumptions.

Last, we demonstrate a way to use graph divergence with a greedy Markov

equivalence search algorithm in practice. Though this work is not complete, we

estimate causal relationships between personal demographics, sexual risk behaviors,

and HIV Pre-exposure prophylaxis among men who have sex with men (MSM) on

the American Men’s Internet Survey data. This work may be able to inform public

health initiatives and guidelines surrounding sexual health of MSM.
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As I write this introduction, the world is in the midst of a global pandemic.

Scientists have scrambled to study many different aspects of the virus, SARS-CoV-

2, and its impact on the economy, education, personal well-being, global relations,

the climate, and so on. Of particular interest to policymakers and citizens alike is

learning what can be done to limit transmission risk. Even knowing where to start

looking can be hard. One characteristic that makes infectious disease challenging

is that modes of transmission vary by circumstance, population, or even evolve

over time. Discerning combinations of circumstances that will lead to transmission

can be difficult partly because patterns of sequential events do not always indicate

causation and partly because its seemingly probabilistic nature. This problem is

compounded with increasing numbers of potential risk factors at play. During the

emergence of SARS-CoV-2, no one possessed specific prior knowledge on its prolific

spread. Causal discovery, data methods that do not require prior causal understand-

ing to sort through, evaluate, and organize risk factors into an causal diagram, have

potential to supplement expert opinion. This could be particularly helpful in com-

plex, and causally unstructured problems, such as emerging infectious disease. This

thesis focuses on causal discovery for the types of data found in epidemiological set-

tings, where data are frequently comprised of a mix between discrete and continuous

variables whose statistical dependence may or may not have a linear relationship.

Working as a biostatistician in HIV and sexually transmitted infections (STI)

research, my primary role was to understand a causal theory then investigate it with

statistical models, primarily with regression. In my experience, medical doctors and

epidemiologists would explain their theories as chains of events, couched within a

mental model more complex than I could capture with regression. But, understand-

ing the larger picture was necessary for variable selection, which in practice tended

to be more of trial and error. This experience and the desire to understand the

data in a more principled and systematic way caused me to look for data-driven

approaches for variable selection and causal discovery. During this time, I also be-
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came familiar with some limitations with statistical tools resulting when data are

collected from people such as missing or censored data, mixed variables types, non-

linearity, followup variation, and so on. These experiences are what inspired this

line of research.

This thesis shows my journey of attempts to contribute to this goal and the

understanding that I developed throughout the process. Chapter 2 gives a brief

background on prior methods in causal discovery. For the following work both

constraint-based methods such as the PC algorithm and score-based methods like

GES were my primary starting point.

Chapter 3 is a study using a causal discovery method to illustrate causal path-

ways from maternal stress during pregnancy to pregnancy outcomes. This topic was

interesting because the maternal stress during pregnancy is widely believed to con-

tribute to preterm birth but the causal pathways are not well understood. For this

study, we wrote an implementation of kernel conditional independence test in R.

With little experience in software development, writing this code took a significant

amount of time. We used this code with the PC algorithm from the pcalg R package

to do the data analysis. As my first time doing research with casual discovery, I

learned a lot on how researchers experience and understand graphical models which

informed my work moving forward.

Chapter 4 presents a method for calculating conditional mutual information

with discrete and continuous data. Information theory in general seemed to be

a promising path forward because there were already estimators for discrete data

and continuous data, but not both. Moreover, information estimators quantify

dependence/independence generally, as opposed to linear correlation. In this paper,

we show consistency but do not give a convergence rate. Under the assumptions we

made, it is possible to have arbitrarily slow convergence. Though, the simulations

we used performed very well.

Chapter 5 expands on Chapter 4, presenting a method to estimate the Kullback-
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Leibler divergence between a Bayesian factorization of a joint distribution and the

true distribution, called graph divergence. This work is unfinished and will likely be

split into two or three papers. From what is already finished, it seems possible that

we can prove that the continuous estimator obeys the central limit theorem (CLT)

with specific assumptions. This result would deserve to be its own paper. Following

this, I would like to continue work on a mixed graph divergence estimator with

assumptions to support another CLT theorem. It is clear from the CMI work that

the mixed graph divergence estimator is similarly consistent in this work. Moving

to a complete causal discovery algorithm, it will be necessary to understand how

this estimator performs with a greedy DAG search algorithm given that is has no

sparsity penalty as currently implemented.

Chapter 6 is preliminary work using the method from Chapter 5 combined with

a graph search algorithm to causally organize risk factors contributing sexually

transmitted infections among men who have sex with men. For the thesis, I felt

it was important to have a preliminary results as to show that this method does (or

does not) have potential in practice. But, as stated, I would like to take more time

to consider alteration to both the graph divergence estimator and the greedy DAG

search algorithm. I would also like to consider ways to communicate estimation

error to subject-matter experts who are not statisticians or data scientists.
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2.1 Graph Learning Algorithms

Graph learning algorithms typically attempt to build either a directed acyclic graph

(DAG) or a conditional independence graph (CIG). DAGs, sometimes called Bayesian

networks, show all causal relationships between variables including the direction of

causation; see figure 2.1a. CIGs show all dependencies conditioning on every other

variable in the data without showing the direction of causation; see figure 2.1b. For

any DAG, there is a corresponding CIG by connecting nodes that have a common

cause, though the converse is not true, figure 2.1 shows this correspondence.

a b c

d e f

g

h i

(a) Directed Acyclic Graph

a b c

d e f

g

h i

(b) Conditional Independence Graph

Figure 2.1: Types of graphical models

Marginal dependence between variables X and Y (X ⊥6⊥ Y ) is thought to be

induced in three ways: causation (X → Y or Y → X), confounding (X ← Z → Y ),

or sampling bias (X → S ← Y and S influences sampling). Thus, anytime a

marginal dependence between variables is observed, it is thought to be induced

by at least one of these. Considering conditional dependence relationships is also

helpful. For an undirected path of three variables X − Z − Y , there are 4 possible

causal structures, see table 2.1.

Moving in the other direction, learning structure from data, it is necessary to

assume faithfulness for most methods. Faithfulness assumes that if there is a causal

relationship in the data, it will exhibit dependence. This may seem straightforward

but it is possible to have a causal relationship between variables but still observe

independence in the variables. In general, structure learning is computationally
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Table 2.1: Causal structures for three variables with marginal and conditional inde-
pendence

Name Structure Marginal Conditional

1. Causal Trail X → Z → Y X ⊥6⊥ Y X ⊥⊥ Y |Z
2. Evidential Trail X ← Z ← Y X ⊥6⊥ Y X ⊥⊥ Y |Z
3. Common Cause X ← Z → Y X ⊥6⊥ Y X ⊥⊥ Y |Z
4. Common Effect X → Z ← Y X ⊥⊥ Y X ⊥6⊥ Y |Z

challenging because the discrete search space, the set of all graphs on p variables,

grows super-exponentially with p [1]. The remaining part of this section explains

various methods for structure learning.

2.2 Constraint-Based Method/PC

Using the principals above, the PC algorithm [2] uses a series of tests to determine

conditional independence relationships between variables in order to build a partial

DAG where some edges may not be oriented. Intuitively, PC begins by forming a

complete graph, connecting each node to every other node. Using an independence

test (PC does not specify one), PC removes any edges whose nodes/variables test

not significant marginally. In the following steps, it exhaustively checks conditional

independence relationships for variables that remain connected by and edge, condi-

tioning on neighbors of either. Algorithm 1 modified from reference [3] shows how

PC builds the DAG skeleton. The following step in PC shows how to orient edges



CHAPTER 2. BACKGROUND 8

based on detecting common effect conditional independence patterns in the graph.

Algorithm 1: PC Skeleton

Data: Vertex Set V , Conditional Independence Information

Result: Estimated skeleton graph

Form complete undirected graph C̃ on the vertex set V ;

Set ` = 0 (size of conditioning set) and C = C̃ (current graph);

while for each ordered pair of adjacent nodes i, j : |adj(C, i)\{j}| < ` do

Choose a (new) ordered pair of nodes i, j that are adjacent in C and that

adj(C, i)\{j} ≥ `;

for all ordered pairs of adjacent variables i and j such that

i, j : |adj(C, i)\{j}| ≥ ` and K ⊆ adj(C, i)\{j} with do

while edge i, j exists or there is an untested K ⊆ adj(C, i)\{j} with

|K| = ` do

Choose a set of variables K such that K ⊆ adj(C, i)\{j} with

|K| = ` and test i⊥⊥ j|K;

if i⊥⊥ j|K then

Delete edge i, j;

end

end

end

end

2.3 Score-Based Methods/GES

Score-based methods are a class of graph-learning algorithms that, rather than di-

rectly using conditional independence tests, use a score function to measure a graph’s

fit to the data. The idea is that graphs that fit the data poorly will not capture the

correct independence relationships in the data. In this section, we mainly consider

greedy equivalence search (GES) from reference [4].

Score-based methods typically build on parametric regression model selection
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techniques based on scoring such as AIC or BIC. Recall that the BIC of a model

is defined as BIC = `(θ̂) − d
2 log n where `(θ̂) is the log likelihood, d is the number

of parameters, and n is the number of observations. The model with the greatest

score is thought to be the best model among the models considered because it

attempts to maximize log-likelihood while accounting for using the data twice (once

to estimate the parameters and once to estimate the log-likelihood). More recently,

a reproducing kernel Hilbert space (RKHS) estimator has been developed which

relaxes many of the assumptions for AIC and BIC [5].

DAG estimation relies on the fact that DAGs encode a joint distribution factor-

ization, chapter 3 from reference [6]. That is, given the causal DAG, G, a factoriza-

tion of its corresponding joint distribution, P (X1, . . . , Xd) =
∏d
i=1 P (Xi|paG(Xi))

where paG(Xi) is the set of parent nodes of Xi in G. Thus, the joint log-likelihood

can be decomposed into the sum of log-likelihoods of regression models for each

P (Xi|paG(Xi)). However, rather than adding log-likelihoods to generate the com-

posite score for any given graph, we add BICs together. This has the advantage of

more accurately modeling DAG fit than likelihood alone.

Unfortunately, as mentioned in section 2.2, finding the graph that maximizes

this composite score involves searching the space of DAGs on p nodes is challenging

if p is large. Further, because distinct DAGs can have identical conditional inde-

pendence relationships between variables as described in reference [4] and chapter 3

from reference [6]. DAGs with identical conditional independence relationships form

an equivalence class whose composite scores are all the same as well. To simplify

the search process, GES defines graphs adjacent to G as those graphs that can be

obtained by adding an edge, removing an edge, or changing an edge orientation.

Only considering equivalence classes of DAG, the search space is narrowed, simpli-

fying the search. In a greedy search, from any DAG equivalence class, we score all

adjacent equivalence classes and choose the class the gives the largest score. Refer-

ence [4] suggests we use a two phases process. In the first phase, we start with an
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empty DAG, adding edges until a local maximum is reached. In the second phase,

we removed edges again until a local maximum is reached, at with point we output

the result.

2.4 LiNGAM

Unlike constraint-based and score-based DAG learning techniques, Linear non-Gaussian

acyclic models [7] eponymously assumes that variables are continuous but do not

have a Gaussian distribution and that the generating process for variable xi is a

linear function of its parents, xi =
∑

xj∈pa(xi)
bijxj + εi and εi is residual noise such

that xi ⊥⊥ εi and εi is non-Gaussian.

Using this paradigm, we can write X = BX+ε where X is the vector of variables,

x1, . . . , xd, and ε is the vector containing the entries ε1, . . . , εd and all independently

generated. Notice that because we are assuming that the underlying structure is

a DAG, the columns and rows of B can be simultaneously permuted to create a

strictly upper or lower triangular matrix. Otherwise, there would be feedback loops

in the DAG. Solving for X, we have X = (I−B)−1ε. Using independent component

analysis (ICA) [8], we can search for a matrix A = (I −B)−1 that attempts to find

linear transformations of the entries of ε which are as independent as possible. Note,

however, that A is unique up to scaling and permutation as discussed above [9]. The

requirement of non-Gaussianity relies on ICA’s requirement of non-Gaussianity.

For LiNGAM, the ordering of rows and columns of B, and thus, A is important as

well as the scaling. Once ICA is applied to the data, the LiNGAM algorithm works

exclusively with W = A−1. The goal of the LiNGAM algorithm is to transform W to

an lower triangular matrix with ones along the diagonal. Reference [7] summarizes

the algorithms as follows:

1. Given an m×n data matrix X with (m� n), where each column contains one

sample vector x, first subtract the mean from each row of X, then apply ICA to
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obtain a factorization X = Aε where ε contains the independent components

of X.

2. Find the one and only permutation of rows of W which yields a matrix W̃

without any zeros on the main diagonal. In practice, small estimation errors

will cause all elements of W to be non-zero, and hence we search for the

permutation that minimizes
∑

i
1

|W̃ii| .

3. Divide each row of W̃ by its corresponding diagonal element, to yield a new

matrix W̃ ′ with all ones on the diagonal.

4. Compute an estimate B̂ of B using B̂ = I −W ′.

5. To find a causal ordering, find the permutations matrix P applied equally to

rows and columns of B̂ which yields matrix B̃ = PB̂P T which is as close to

possible to the strictly lower triangular measured by
∑

i≤j B̃
2
ij .

2.5 Glasso

Graphical lasso or Glasso [10] attempts to estimate the inverse covariance matrix,

Σ−1, of a multivariate Gaussian distribution. Reference [11] shows that a zero

entry in the ijth entry of Σ−1 implies that the i and j components of the random

vector are conditionally independent given all other components. That is, in a CIG

or Markov network, nodes i and j will be connected iff the ijth entry of Σ−1 is

non-zero. Unfortunately, it is unlikely for most estimates, Σ̂−1, of Σ−1 to contain

components that are exactly zero. Reference [12] used an `1 penalty on the log-

likelihood estimate for the inverse covariance matrix to enforce zero matrix entries,

changing the problem to a semidefinite programming problem:

Σ̂−1 = arg max
Θ�0

[
log det Θ− tr

(
Σ̂Θ
)
− λ ‖Θ‖1

]
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where Σ̂ = 1
N

∑
i(xi − µ̂)(xi − µ̂)T , λ is the regularization parameter to be tuned,

and ‖·‖1 is the `1 norm, the sum of absolute values of the matrix entries.

This model is problematic for most datasets because it is not likely that each

variable is Gaussian, or even continuous. Further, this model will need to either

drop or impute missing values.

2.6 Lasso Neighborhood Selection

Lasso neighborhood selection [13] aims to build a CIG by learning the neighborhood

(set of adjacent nodes) for each node/variable in the graph. The framework assumes

a p-dimensional multivariate Gaussian distribution where neither the number of

observations nor the number of variables is fixed. Using the Markov property of

CIGs, we have that any variable not in the Markov blanket of a target variable

will be conditionally independent of the target given the Markov blanket. Said

differently, for any node, a, in the graph, and for its corresponding variable Xa,

consider the vector θa such that

θa = arg min
θ:θa=0

E

Xa −
∑

1≤i≤p
θiXi

2

.

We would expect θi = 0 only for Xi in Markov blanket of Xa. Unfortunately, the

parameter estimates for variables not in the Markov blanket of Xa are not likely

to be exactly zero for this optimization problem without an additional constraint.

Using the `1 penalty on the previous objective function, given as

θ̂a,λ = arg min
θ:θa=0

(
‖Xa −Xθ‖22 + λ ‖θ‖1

)
,

we can coerce some variables to be exactly zero, yielding a neighborhood estimate of{
k : θ̂a,λk 6= 0

}
. Under some assumptions, reference [13], shows that neighborhoods

can be estimated. If a neighborhood is estimated for each variable, there may be
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conflicts on the existence of an edge that can either be resolved by accepting an

edge only when each variable considered the other to be its neighbor OR when one

or the other does. A benefit to this approach is it is less computationally intensive

than the previous methods and because it is feasible on data where p� n.

2.7 GRaFo

Graphical random forest (GRaFo) [14] builds a CIG using random forests with sta-

bility selection [15]. Random forest variable importance is used here as a measure of

association between variables that can handle both continuous and discrete variables

well. Briefly, the variable importance of a variable Xi for an outcome Y is calculated

for the forest by averaging the difference in prediction accuracy with the out-of-bag

sample for each tree, once without permuting Xi and once with permuting Xi. By

regressing a target variable on all other variables, we can then rank variables based

on variable importance with respect to the target. To create an edge ranking, gener-

ate a variable importance ranking with respect to each variable in the data, and for

each pair of variables, keep the minimum of the two scores. Using the edge ranking

alone, it is not clear where to draw a cutoff for choosing the top q edges.

Stability selection gives a method for choosing q and bounding the expected

number of false positives, E[V ], from graphs generated on subsamples of the full

data. Edges in the final graph are those that exist in a proportion, πthr, of graphs

generated on the subsamples. The idea is that these edges are “sufficiently stable”

among the subsamples. Theorem one from [15] relates E[V ], πthr and q under the

fairly week assumptions:

E[V ] ≤ q2

(2πthr − 1)p(p− 1)/2

where πthr ∈ (1
2 , 1) and p is the number of variables in the data. By specifying E[V ]

and πthr, we can choose q = b
√

(2πthr − 1)p(p− 1)/2c. GraFo works by first gen-
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erating nsub subsamples without replacement, X(1), . . . ,X(nsub), each of size bn/2c.

For each subsample, rank each edge using the variable importance and choose the

top q edges. Include in the final graph only those edges that appear in at least πthr

proportion of the graphs.

A draw back of variable importance is that it has been shown to not satisfy the

data processing inequality [16]. Fixes for this problem have been proposed but none

are computationally feasible.
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3.1 Application in Stress and Pregnancy

Many medical risks are multifactorial, with complex pathways connecting causes to

adverse events. The biological and psychosocial pathways leading to adverse preg-

nancy outcomes, such as preterm birth, are complex and only partially understood.

In this section, we show how to use structure learning to model those pathways

simultaneously, providing an interpretable high-level view of potential causal mech-

anisms. We examined adverse pregnancy outcomes because they are a well-studied

topic, where researchers have examined a range of potential causes, from psychoso-

cial factors such as stress, childhood neglect, and depression, to biological indicators

such as inflammation, hypertension, and diabetes.

Maternal stress has been one critical focus of PTB research. While there are

theories on biological pathways linking stress and PTB, the evidence is mixed [17].

Dole and others found that anxiety, negative life events, and perceived racial dis-

crimination were all associated with increased risk of PTB [18]. Copper and others

found that stress was associated with both PTB and low birth weight [19]. Kramer

and others found that only anxiety, out of a large number of stressors and psycholog-

ical distress measures, was associated with PTB. They further explored biological

pathways by sampling stress biomarkers, but were not able to confirm a causal

mechanism [20]. In a review of the epidemiology of PTB, Goldenberg and others

list stress as one factor among several which can initiate PTB [21]. Interestingly,

some studies have also found no association. Glynn and others were not able to

predict PTB from anxiety and perceived stress measured at 18 - 20 and 30 - 32

weeks of gestation [22].

3.2 Data

In the Measures of Maternal Stress (MOMS) Study, 744 women were recruited

between June 2013 and May 2015 from four sites, Northwestern University, Univer-
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sity of Texas Health Science Center at San Antonio, University of Pittsburgh, and

Schuylkill County, Pennsylvania, a rural site led by Childrens Hospital of Philadel-

phia. All women were at least 18 years of age with a singleton intrauterine pregnancy,

less than 21 weeks pregnant at enrollment, English-speaking, and with no known

fetal congenital anomalies. Enrolled women were examined twice, once between 12

and 21 weeks of gestation (visit A), and again between 32 and 36 weeks of gestation

(visit B). Due to a higher proportion of missing data, including some key outcomes,

we did not use variables collected at visit B. In all, there were 744 women at visit A

and 639 at visit B; ultimately, 686 post-delivery medical records, such as pregnancy

outcomes, were available. Additional details about the original data collection can

be found in prior publications [23].

3.3 Method

We used the PC algorithm from section 2.2 with the kernel conditional independence

(KCI) test [24] for this analysis. In the remainder of the paper, we refer to the

method as PC-KCI. We did not use PC to orient edges.

Kernel conditional independence (KCI) test [24] uses the reproducing kernel

Hilbert space (RKHS) structure to determine the independence of two random vec-

tors conditioning a third random vector, building on [25] and [26]. This section

provides an summary of how Mercer kernels can be used to measure independence.

A more detailed account can be found in appendix 3.6.

At a very high overview, kernels are functions that allow mapping probability

measures to spaces of functions. Using the machinery in these spaces, it is possible

to determine whether probability measures mapped into the function spaces are

independent. Let X be a measurable set and P be the set of probability measures

on X with corresponding RHKS, H and kernel function k : X × X → R. A kernel
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is characteristic if the mapping

µ : P → H defined by P 7→
∫
X
k(x, ·)dP(x)

is injective. Intuitively, this ensure that H is a rich enough function space to

represent characteristic functions. This is necessary in order to represent char-

acteristic functions of probability measures in H. Recall that random variables

X1, X2, . . . , Xk are independent if and only if φX1,X2,...,Xk(t) =
∏k
j=1 φXj (tj) where

φX(t) = E [exp {itX}] is the characteristic function of a random variable, X, [27]

exercise 3.9.6.

In this application of kernels, however, we use the cross covariance operator

which is a mapping from one RKHS to another with the property that it can easily

compute the covariance of random variable under transformations (functions) in

each RKHS. That is, let X,Y, Z be random variables in X ,Y,Z with corresponding

RHKSs HX ,HY ,HZ , and kernels kX , kY , kZ , respectively. Assume

E [kX (X,X)] <∞,E [kY(Y, Y )] <∞,E [kZ(Z,Z)] <∞.

This ensures that for each random variable, its RKHS is contained within its L2

space. The cross covariance operator is the mapping ΣY X : HX → HY that satisfies

〈g,ΣY Xf〉HY = E[f(X)g(Y )]− E[f(X)]E[g(Y )]

for all f ∈ HX and g ∈ HY . It is called the covariance operator, ΣXX , if X = Y .

The conditional cross covariance operator is defined as

ΣY X|Z = ΣY X − ΣY ZΣ−1
ZZΣZX .

The parallel between covariance operators and covariance matrices is that the oper-

ators are a generalization of the matrices. These operators are helpful for this work
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because if the kernels are characteristics and the operator is the zero mapping, then

the random variables must be independent. The Hilbert-Schmidt operator norm,

which maps operators to a real scalars so that only the zero operator corresponds

to zero, makes it easier to create a statistical test for independence. In short, the

test estimates the distribution of the Hilbert-Schmidt norm of the (conditional)

cross covariance estimator under the null hypothesis (independence) to determine

significance with empirical data.

3.4 Results

We break the results into two parts: affirming prior research and extending prior

research. The most obvious relationships are among the neighbors of infant ad-

verse pregnancy outcomes, where gestational weeks is closely related to preterm

premature rupture of membranes (PPROM), length of stay in the neonatal inten-

sive care unit (NICU), and percentile gestational weight at birth. Similar patterns

emerge between gestational weeks and most maternal adverse outcomes (maternal

gestational diabetes, preeclampsia, and gestational hypertension). The positive re-

lationship between BMI, C-Reactive Protein (CRP) and earlier gestational age at

delivery confirms established relationships[28, 29, 30]. Similarly, we find that race,

a documented risk factor for preterm birth [31, 32], is connected to pre-gestational

diabetes, which itself is connected to gestational weeks. In our findings, Hispanic

ethnicity is connected to pre-gestational diabetes which we know from the literature

to be a population trend.

Of the extending type, we observed that pathways differ by race, such that

African-American participants were more likely to have elevated hair cortisol levels,

which, in turn, was associated with pre-eclampsia onset and shorter gestational

weeks. We also found that higher scores on the Childhood Trauma Questionnaire

are associated with small for gestational age infants at birth and, furthermore, that

this is related to social problems and perceived social stress in adulthood. Prior
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Figure 3.1: Visual representation of results from the algorithm applied to the Mea-
sures of Maternal Stress (MOMS) Study. Weeks in which measurement was taken
are in parentheses. Solid lines represent edges appearing in both the p < 0.01 and
p < 0.05 graphs. Dashed lines represent edges for p < 0.05. The three dotted blue
lines connecting TNF alpha to hair cortisol, pregestational diabetes, and gestational
diabetes represent key potential false negative edges that may have been missed by
PC-KCI

literature has shown a relationship between economically disadvantaged childhood

and shorter gestational weeks, when controlling for current income [28]. Here we

find that this pathway is related to current economic disadvantage, as indicated by

insurance type, suggesting that factors related to economic status that are distinct

from income, may be playing a critical role in the preterm birth pathway. Finally,

prior preterm birth, age, and Hispanic ethnicity are connected to whether a patient

had a C- section, with Hispanic women in the sample almost twice as likely to have a

C-section (20%) compared to non-Hispanic women (12%). The graph indicates that
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this relationship was not mediated by BMI (a commonly cited cause of C-sections),

suggesting other possible explanations, such as patient preference for the procedure

or variation between hospitals (e.g., San Antonio vs. Pittsburgh) in C-section rates.

3.5 Discussion

Associations or statistical dependency between two variables are generally induced

via one of two ways: direct causation, in which one variable causes the other, or

confounding, in which there is a third, unmeasured variable that causes two mea-

sured variables. Statistical methods for distinguishing between these cases are lim-

ited and often controversial within the statistical community. For this reason, we

proceed with caution in making causal claims based solely on observational data.

However, the absence of statistical association generally indicates that two variables

are not causally linked given that there are enough data to detect an association.

The independence tests are probabilistic with an attendant degree of risk of false

positives and false negatives. As shown by the failure to detect the pathway between

TNF-alpha and gestational weeks, PC-KCI is likely to be too conservative, with a

higher chance of false negatives or missing edges between variables in the graph. For

analyses based on a priori theoretical models, a regression approach could produce

somewhat different results, compared to the exploratory approach of PC-KCI.

3.6 Appendix: KCI

Let X be a measurable set and P be the set of probability measures on X with cor-

responding RHKS, H and kernel function k : X ×X → R. A kernel is characteristic

if the mapping

µ : P → H defined by P 7→
∫
X
k(x, ·)dP(x)

is injective. Intuitively, this ensure that H is a rich enough function space to

represent characteristic functions. This is necessary in order to represent char-
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acteristic functions of probability measures in H. Recall that random variables

X1, X2, . . . , Xk are independent if and only if φX1,X2,...,Xk(t) =
∏k
j=1 φXj (tj) where

φX(t) = E [exp {itX}] is the characteristic function of a random variable, X, [27]

exercise 3.9.6. The rest of this section is devoted to the sufficient conditions for

ensuring that a kernel is characteristic.

In general, we assume the integrability of all random variables under their re-

spective kernels so that E [k(X,X)] < ∞. Reference [33] shows that this ensures

that µ(P) ∈ H and that EP [f(X)] = 〈f, µ(P)〉H. Assuming f ∈ H, we have

|EP [f(X)]| ≤ EP |f(X)| Jensen

= EP |〈f, k(X, ·)H〉|

≤ EP

[√
k(X,X) ‖f‖H

]
Cauchy Schwartz

This shows that EP [f(X)] exists. It’s easy to see using Riesz representation theorem

that EP [f(X)] = 〈f, µ(P)〉H.

Theorem 3.6.1. Let H be an RKHS with corresponding measurable, bounded kernel

k on a measurable space (X ,B). If H⊕R (direct sum) is dense in Lq(X ,P) for any

P ∈ P and q ≥ 1, then k is characteristic.

Proof. To show that µ is injective, assume that µ(P) = µ(Q). Let ε > 0 and

A ∈ B. Since H⊕R is dense in Lq(X ,P), there must be a function f ∈ H and c ∈ R

such that |E[f(X)] + c− P(A)| < ε/2 and |E[f(Y )] + c−Q(A)| < ε/2. Then

|P(A)−Q(A)| = |[E[f(Y )] + c−Q(A)]− [E[f(X)] + c− P(A)]|

≤ |E[f(Y )] + c−Q(A)|+ |E[f(Y )] + c−Q(A)|

≤ ε

2
+
ε

2
= ε.

Since, A and ε were arbitrary, we must have that P(A) = Q(A) for all A ∈ B so that

P = Q. This shows that µ is injective so that k is characteristic.
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This next theorem connects characteristic functions (Fourier transforms) with

characteristic kernels. We say that a kernel, k, is translation invariant if there is

another function φ such that for all x, y ∈ X , k(x, y) = φ(x − y). Recall that the

Fourier transform of a function, φ, is defined as

φ̃(ξ) :=

∫
X
e−itξφ(t)dt.

Theorem 3.6.2. Assume that k is translation invariant. If for all ξ ∈ Rm, there

exists τ0 such that ∫
φ̃(τ(u+ ξ))2

φ̃(u)
du <∞ (3.1)

for all τ > τ0 then H is dense in L2(P) for any Borel probability measure P on Rm.

Proof. Without loss of generality, assume that φ(0) = 1. Using positive definite-

ness of k, we have that |φ(z)|2 ≤ φ(0)2 = 1. Now, since the RKHS associated with

k consists of the functions such that

H =

f ∈ L2(Rm) :

∫ ∣∣∣f̃(u)
∣∣∣2

φ̃(u)
du <∞

 ,

where f̃ and φ̃ are the Fourier transforms of f and φ.

Let P be an arbitrary probability measure on Rm and ξ ∈ Rm. Notice that

the Fourier transform of e−iξ
T zφ(z/τ) is φ̃(τ(u + ξ)). From the assumption of the

theorem we must have that e−iξ
T zφ(z/τ) ∈ H for all τ > τ0. Since φ(z/τ) → 1

as τ → ∞ and e−iξ
T zφ(z/τ) is bounded by a constant, we can use the dominated

convergence theorem to ensure that

EP

[
e−iξ

T z − e−iξT zφ(z/τ)
]
→ 0 as τ →∞.

This shows that we only have to prove that the span of A :=
{
e−iξ

T z : ξ ∈ Rm
}

is

dense in L2(P).
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Now, let f ∈ L2(P). We can assume that f is differentiable with compact support

since it’s in L2(P). Let ε > 0 and M = supx∈R |f(x)|, and A such that [−A,A]m

contains the support of f and P ([−A,A]m) > 1−ε/4M2. From a functional analysis

text, we have that the series of functions

fN (z) =

N∑
n1=−N

. . .

N∑
nm=−N

cn exp

{
iπ

A
nT z

}
for N ∈ N

where

cn =
1

(2A)m

∫
[−A,A]m

f(z) exp

{
iπ

A
nT z

}
dz

converges uniformly to f(z) on [−A,A]m as N →∞. Then there must be some N

large enough such that |f(z) − fN (z)|2 < ε/2 on [−A,A]m and from the definition

of fN (z) it must be the case that

sup
x∈Rm

|fN (z)|2 <
(
M +

√
ε

2

)
< 2M2.

Then we have that EP |f − fN |2 < ε so that spanA is dense in L2(P).

Reference [34] uses a concept they coin F-correlation defined as

ρ = max
(f1,f2)∈F×G

corr(〈Φ1(x1), f1〉, 〈Φ2(x2), f2〉

= max
(f1,f2)∈F×G

corr (f1(x1), f2(x2)) ,

where Φ1,Φ2 are the maps into the respective RKHS. Essentially, this measure of

correlation is similar to the cross-covariance in that it is also a measure of general

independence and equal to zero if and only if the random variables are independent.

Reference [34] was originally written for kernel ICA but the proof makes it clear

how kernel are used for independence.

Theorem 3.6.3. Let X1 and X2 be random variables in X = Rp with corresponding

RKHS, H and kernel K. If K is characteristic, then ρH = 0 iff X1 and X2 are
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independent.

Proof.

[⇒] Assume that X1 and X2 are independent. Then for every f, g ∈ H, f(X1) is

independent of g(X2) (Durrett, thm 2.1.6) so that cov(f(X1), g(X2)) = 0.

[⇐] Assume that ρ = 0. Then, since

0 = max
f,g∈H

|corr (f(X1), g(X2))|

it must be the case that for every f, g ∈ H, cov(f(X1), g(X2)) = 0 or, equivalently,

that E [f(X1)g(X2)] = E [f(X1)]E [g(X2)].

Now consider the function φ(x) = e−x
2/2τ2eiξx whose Fourier transform is φ̃(ξ) =

√
2πτe−τ

2(ξ−ξ0)2/2 for ξ0 ∈ R. Further, φ̃ satisfies 3.1 when τ > σ/
√

2 so that φ ∈ H.

So, for all ξ1, ξ2 ∈ R, we have that

E
(
eiξ1X1+iξ2X2e−(X2

1+x22)/2τ2
)

= E
(
eiξ1X1e−X

2
1/2τ

2
)
E
(
eiξ2X2e−x

2
2/2τ

2
)
.

As τ →∞, we have that

E
(
eiξ1X1+iξ2X2

)
= E

(
eiξ1X1

)
E
(
eiξ2X2

)
.

Since, the equation above holds for all ξ1, ξ2 ∈ R these define characteristic func-

tions for X1 and X2. And, since the joint characteristic function of (X1, X2) can be

factored into the product of characteristics functions of independent random vari-

ables, it must be the case that X1 and X2 are independent since these characteristic

functions uniquely determine the distributions of X1 and X2.

Cross covariance operators on RKHSs, in essence, define a map between RKHSs

so that the inner product in the range space is the covariance of under all transfor-

mations in both RKHSs. If a kernel is characteristics, this allows us to represent
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high order moments.

LetX,Y, Z be random variables in X ,Y,Z with corresponding RHKSsHX ,HY ,HZ ,

and kernels kX , kY , kZ , respectively. Assume

E [kX (X,X)] <∞,E [kY(Y, Y )] <∞,E [kZ(Z,Z)] <∞.

This ensures that for each random variable, its RKHS is contained within its L2

space. The cross covariance operator is the mapping ΣY X : HX → HY that satisfies

〈g,ΣY Xf〉HY = E[f(X)g(Y )]− E[f(X)]E[g(Y )]

for all f ∈ HX and g ∈ HY . It is called the covariance operator, ΣXX if X = Y .

The conditional cross covariance operator is defined as

ΣY X|Z = ΣY X − ΣY ZΣ−1
ZZΣZX .

In general there is a parallel between covariance operators and covariance matrices

is that the operators are a generalization of the matrices. [35] showed that there

exists a unique, bounded (operator norm) operator, VY X : HX → HY coined the

normalized cross covariance operator such that

ΣY X = Σ
1/2
Y Y VY XΣ

1/2
XX

In some cases, it is useful to define ΣY X in terms of its representation in the

product space of HX ⊗HY which is isomorphic to the set of Hilbert-Schmidt oper-

ators (explained more in depth in the next section) from HX to HY , HS(HX ,HY),

defined by the map

HX ⊗HY → HS(HX ,HY)

∑
i

fi ⊗ gi 7→

[
h 7→

∑
i

〈h, fi〉HX gi

]
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as in [36].

Using this paradigm, we can think of

ΣY X = EY X [kY(Y, ·)⊗ kX (X, ·)]− µ(PY )⊗ µ(PX) = µ(PY X)− µ(PX ⊗ PY ).

Changing this slightly for simplicity to the uncentered cross covariance operator,

ΣY X = EY X [kY(Y, ·)⊗ kX (X, ·)],

then

〈g,ΣY Xf〉HY = 〈EY X [kY(Y, ·)⊗ kX (X, ·)], g ⊗ f〉HX⊗HY

= EY X
[
〈kY(Y, ·)⊗ kX (X, ·), g ⊗ f〉HX⊗HY

]
= EY X

[
〈g, kY(Y, ·)〉HY 〈f, kX (X, ·)〉HX

]
= EY X [g(Y )f(X)] .

Further, the assumption of integrability ensures that the cross covariance oper-

ator exists.

‖ΣY X‖HX⊗HY = ‖EY X [kY(Y, ·)⊗ kX (X, ·)]‖HX⊗HY

≤ EY X ‖[kY(Y, ·)⊗ kX (X, ·)]‖HX⊗HY

≤ EY X
[√

kX (X,X)kY(Y, Y )
]

≤
√
E[kX (X,X)]E[kY(Y, Y )] <∞

[26] shows the following theorems which show the relationship between the cross

covariance operators and independence.

Theorem 3.6.4. 1. If the product kernel kXkY is characteristic, then VY X = 0
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if and only if X ⊥⊥ Y .

2. Let Ẍ = (X,Z) and kẌ = kXkZ . If kẌkY is characteristic on X ×Z ×Y and

HZ + R is dense in L2(PZ) then VY Ẍ|Z = 0 if and only if X ⊥⊥ Y |Z.

Proof. Here I will prove (1). Assume that X ⊥⊥ Y . Using [27], theorem

2.1.6, we have that for any measurable function, f, g, f(X) ⊥⊥ g(Y ) therefore

cov(f(X), g(Y )) = 0. Since this must be the case for all f ∈ HX and g ∈ HY ,

ΣY X = 0; that is, it is the operator that sends everything in HX to the zero element

in HY .

Now, if ΣY X = 0, then µ(PX⊗PY )−µ(PX)µ(PY ) = 0. Since kXkY is characteristic,

we must have that PY X = PY PX so X and Y are independent.

In order for this theory to be helpful in an empirical setting, it is necessary to be

able to estimate ΣY X and ideally translate it to a scalar representing its norm (so

that ΣY X = 0 if and only if ‖ΣY X‖ = 0). We can do this using the Hilbert-Schmidt

norm for operators. Assuming that our RHKSs are separable1, the Hilbert-Schmidt

norm of an operator,A : HX → HY , is

‖A‖2HS =
∑
i∈I

∑
j∈J

∣∣∣〈yj , Axi〉HY ∣∣∣2

where {xi}i and {yi}i are countable bases of HX and HY , respectively.

Given a independently, identically distributed sample, (X1, Y1, Z1), . . . , (Xn, Yn, Zn),

we can estimate ΣY X using a plug-in estimate so that µ̂
(n)
X = 1

n

∑n
i=1 kX (·, Xi) and

µ̂
(n)
Y = 1

n

∑n
i=1 kY(·, Yi). Similarly, the plug-in estimator of ΣY X is

Σ̂
(n)
Y X =

1

n

n∑
i=1

(
kY (·, Yi)− µ̂(n)

Y

)〈
kX (·, Xi)− µ̂(n)

X , ·
〉
HY

.

1A Hilbert space is separable if it has a countable basis
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Defining Σ̂
(n)
XX and Σ̂

(n)
Y Y analogously, we can estimate VY X and VY X|X as

V̂
(n)
Y X =

(
Σ̂

(n)
Y Y + εnI

)−1/2
Σ̂

(n)
Y X

(
Σ̂

(n)
XX + εnI

)−1/2

where εn > 0 is a regularizing constant which guarantees inversion as shown in [34],

and

V̂
(n)
Y X|Z = V̂

(n)
Y X − V̂

(n)
Y Z V̂

(n)
ZX .

Following [26], we can use the Gram centered matrices, GX , GY , GZ , to estimate

these operators as follows

GX,ij =
〈
kX (·, Xi)− µ̂(n)

X , kX (·, Xj)− µ̂(n)
X

〉
HX

;

however, in practice, we use H = I − 1
n11T so center the Gram matrix,

GX = H [kX (Xi, Xj)]ij H

and we define GY and GZ analogously. Next, define RX = GX(GX + nεIn)−1 and

RY and RZ the same way as well. Using these definitions, we can construct test

statistic of the Hilbert-Schmidt norm as

∥∥∥V̂ (n)
Y X

∥∥∥
HS

= Tr [RYRX ]

and ∥∥∥V̂ (n)
Y X|Z

∥∥∥
HS

= Tr
[
RŸRẌ − 2RŸRẌRZ +RŸRZRẌRZ

]
.

To evaluate these measures of independence, [26] uses permutation tests for

marginal independence to simulate the distribution of
∥∥∥V̂ (n)

Y X

∥∥∥
HS

under the null

hypothesis. For the conditional test, they partitioned Zi (the conditioning random

variable), into bins then permuted Xi and Yi within those bins.

[24], building on [26], showed that, under some minor changes, that
∥∥∥V̂ (n)

Y X|Z

∥∥∥
HS
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has a Gaussian chaos distribution asymptotically:

p =
1

n

n2∑
k=1

λkz
2
k

where λk are nuisance parameters and zk are Gaussian. In practice, this can be

estimated using a gamma distribution. Having an a way to estimate the distribution

under the null hypothesis is helpful especially for the conditional independence test

since a permutation test may not work with real data if Z is not easily binned.

In general, however, hypothesis testing capable of testing for strong conditional

independence has been a hard problem [37].
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4.1 Introduction

Estimating the dependence between random variables or vectors from data when the

underlying distribution is unknown is central to statistics and machine learning. In

most scientific applications, it is necessary to determine if dependence is mediated

through other variables. Mutual information (MI) and conditional mutual informa-

tion (CMI) are attractive for this purpose because they characterize marginal and

conditional independence (they are equal to zero if and only if the variables or vec-

tors in question are marginally or conditionally independent), and they adhere to

the data processing inequality (transformations never increase information content)

[38].

While there has been limited use of information theoretic statistics in specific

research areas such as gene regulatory networks [39, 40, 41], this has tended to be

the exception rather than the norm. Typically, it is more common to use generalized

linear regression despite its inability to capture nonlinear relationships [42]. This

may be, in part, because until recently, empirically estimating mutual information

was only possible for exclusively discrete or exclusively continuous random variables,

a severe limitation for these fields.

In this paper, we briefly review methods leading up to the estimation of MI and

CMI using distribution-free, nearest-neighbors approaches. We extend the existing

work to develop an estimator for MI and CMI that can handle mixed data types

with improved performance over current methods. We prove that our estimator is

theoretically consistent and show its performance empirically. Our research code

can be found at https://github.com/omesner/knncmi.

4.2 Background

The MI between two random variables (or vectors) is a measure of dependence quan-

tifying the amount of “information” shared between the random variables. The CMI
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between two random variables given a third is a measure of dependence quantifying

the amount of information shared between random variables given the knowledge of

a third random variable or vector. These concepts were first developed by Shannon

[43]; the standard modern treatment is [44]. These concepts are inherently linked

to entropy and sometimes defined in terms of entropy.

4.2.1 Measure Theoretic Information

Traditionally, the information-theoretic metrics, entropy and differential entropy

have been used separately for discrete and continuous random variables, respectively;

however, they largely share the same properties [44]. Moreover, both of these metrics

are equivalent to the expected value of a log-transformed Radon-Nikodym (RN)

derivative (or density function), E
[
log dP

dµ

]
, where P is a probability measure and

µ is a reference measure. The primary distinction between entropy and differential

entropy is the choice of reference measure, µ, using the Lebesgue measure, λ, for

continuous random variables and the counting measure for discrete variables.

A more general construction allows for mixed probability measures with both

discrete and continuous regions in their domain. Reference [45, §5.5] defines entropy

(and other divergences) for generalized probability spaces as the supremum of all

finite, discrete representations (quantizers) of random variables, mirroring the defi-

nition of the Lebesgue integral. Because our problem is concerned specifically with

mixed, discrete-continuous measures, we use this explicit definition which is helpful

when calculating theoretical values and assume all measurable spaces are standard

according to [45, §1.4].

A nuance specific to this generalized framework is determining an appropriate

reference measure, µ, such that P is absolutely continuous with respect to µ, P � µ.

Similarly, MI and CMI are expected values of the log-transformed RN derivative of

a joint probability measure with respect to a product measure of marginal or condi-

tional factors, requiring that the joint measure be absolutely continuous with respect
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to the product. For discrete measures, this is not a concern, but mathematically

critical for continuous ones due to the Radon-Nikodym theorem. The lack of abso-

lute continuity for MI and CMI can occur when a continuous random variable is a

deterministic function of another for any region of the joint space. For mixed prob-

ability measures, we avoid this for the continuous region of a probability measure’s

domain by characterizing cross-sections of arbitrary subsets.

Definition 4.2.1. Let (X × Y,B, PXY ) be a probability space with marginal prob-

ability measures, PX and PY . PXY is non-singular if for any measurable set,

E ⊆ X × Y, a ∈ X and b ∈ Y, such that PX(Eb) = 0 and PY (Ea) = 0, then

PXY (E) = 0 where Eb = {x : (x, b) ∈ E} and Ea = {y : (a, y) ∈ E}.

Notice that discrete measures are vacuously non-singular, but continuous mea-

sures will be singular if supported on a Lebesgue-measure zero subset of the joint

space.

Requiring that a mixed, joint probability measure is non-singular ensures the

existence of a product reference measure:

Lemma 4.2.1. Let (X ,B, P ) be a d-dimensional probability space such that for each

i ∈ [d] := {1, 2, . . . , d}, there exists a Bi-measurable set E ⊆ Xi such that Pi � λ on

E and λ(X\E) = 0. If P is non-singular then there exists a d-dimensional product

measure µ =
∏d
i=1 µi on X such that P � µ such that for each i ∈ [d], µi = λ+ IC

where C = {x ∈ Xi : Pi({x}) > 0}.

Further, if all conditional probability measures are regular, non-singularity en-

sures the existence of MI and CMI as shown in the following theorem.

Theorem 4.2.2. Let PXY Z be a joint probability measure on the space X ×Y ×Z,

where X ,Y,Z are all metric spaces. If for every value of Z, PXY |Z is non-singular

(see def. 4.2.1), then
dPXY |Z

d(PX|Z×PY |Z)
is well-defined.

Proof. For the RN derivative to exist, the Radon-Nikodym theorem requires that

PXY |Z is absolutely continuous with respect to PX|Z × PY |Z , PXY |Z � PX|Z ×
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PY |Z . Because we assume that all conditional probabilities are regular, we omit the

argument associated with Z and proceed as probabilities measures of X and Y as

appropriate.

AssumeA ⊆ X×Y such that (PX|Z×PY |Z)(A) = 0. DefineA1 =
{
x : PY |Z(Ax) > 0

}
×

Y, A2 = X ×
{
y : PX|Z(Ay) > 0

}
, and A3 =

{
(x, y) : PX|Z(Ay) = PY |Z(Ax) = 0

}
.

Notice that A ⊆ A1 ∪A2 ∪A3.

From Fubini’s theorem, we have that

0 = (PX|Z × PY |Z)(A)

=

∫
X
PY |Z(Ax)dPX|Z(x).

Using [46, Lemma 1.3.8], f ≥ 0,
∫
fdµ = 0 ⇒ µ {x : f(x) > 0} = 0, for the first

equality, we must have

0 = PX|Z
({
x : PY |Z(Ax) > 0

})
= PXY |Z

({
x : PY |Z(Ax) > 0

}
× Y

)
= PXY |Z (A1) .

Using the same construction but switchingX and Y , we also have that 0 = PXY |Z (A2).

PXY |Z (A3) = 0 follows from the definition of nonsingular.

This shows that PXY |Z � PX|Z×PY |Z . Now, we may apply the RN theorem, so

there exists a measurable function, f such that for any measurable set A ⊆ X × Y,

∫
A
fd(PX|Z × PY |Z) = PXY |Z(A) (4.1)

and f is unique almost everywhere PX|Z × PY |Z .

[45, Lemmas 7.16 and 7.17] show that if a joint measure is absolutely continuous

with respect to any product measure, then it is absolutely continuous with respect

to its product measure. Theorem 4.2.2 maybe more helpful for data analysis by
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showing the sufficient condition for a nonsingular distribution in the mixed setting

in def. 4.2.1.

Definition 4.2.2. The conditional mutual information of X and Y given Z is

I(X;Y |Z) ≡
∫

log

(
dPXY |Z

d
(
PX|Z × PY |Z

)) dPXY Z (4.2)

where PXY |Z , PX|Z , and PY |Z are regular conditional probability measures and
dPXY |Z

d(PX|Z×PY |Z)

is the Radon-Nikodym derivative of the joint conditional measure, PXY |Z , with re-

spect to the product of the marginal conditional measures, PX|Z × PY |Z . If Z is

constant, then Eq. 4.2 is I(X;Y ), the mutual information of X and Y .

Definition 4.2.2 retains the standard properties of CMI.

Corollary 1. 1. X and Y are conditionally independent given Z, X ⊥⊥ Y |Z, if

and only if I(X : Y |Z) = 0.

2. I(X;Y |Z) = H(X,Y, Z)−H(X,Z)−H(Y,Z) +H(Z)

3. If X → Z → Y is a Markov chain, the data processing inequality states that

I(X;Y ) ≤ I(X;Z).

4.2.2 Estimators for Discrete Random Variables

Many estimators of entropy, MI, and CMI for discrete random variables are based

on straight-forward “plug-in” estimates, substituting the empirical distribution in to

the defining formulas. The entropy plug-in estimator for discrete random variables

with a finite range (alphabet),

Ĥ(X) := −
∑
X=i

p̂i log p̂i, (4.3)

where p̂i := P(X = i) is estimated from the data, is asymptotically Gaussian [47].

More generally, information theoretic plug-in estimators for random variables with
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countable ranges are universally consistent under some conditions and without these

conditions, can converge arbitrarily slowly [48]. However, such estimates can suffer

from substantial finite-sample bias, especially when the number of categories is

large [49].

In cases where the range is large, relative to the number of samples, replacing the

logarithm in the entropy plug-in with the digamma function, ψ(x) := d
dx log Γ(x),

may decrease bias [50]. Within the Bayesian estimation paradigm, the use of the

digamma function emerges from the Dirichlet distribution as the conjugate prior for

the multinomial distribution [51]. Other, problem-specific estimators have emerged

as well, such as neural spike trains [52] and ecology [53], for example.

4.2.3 Estimators for Continuous Random Variables

Estimation for continuous random variables is also challenging. A direct plug-in

estimation would first require density estimates, which is a challenging problem

in itself. Dmitriev and Tarasenko first proposed such an estimator for function-

als [54] for scalar random variables. Darbellay and Vajda [55], in contrast, proposed

an estimator mutual information based on frequencies in rectangular partitions.

Nearest-neighbor methods of estimating information-theoretic quantities for contin-

uous random variables which evade the step of directly estimating a density go back

over thirty years, to Kozachenko and Leonenko [56], which proposed an estimator

of the differential entropy.

Kozachenko and Leonenko estimator of entropy

Kozachenko and Leonenko (KL) first used nearest neighbors to estimate differential

entropy [56]. Briefly, let X ∈ X ⊆ Rd be a random variable and x1, . . . , xn ∼ PX be

a random sample from X. Estimating the entropy of X, as

Ĥ(X) = − 1

n

n∑
i=1

̂log fX(xi) (4.4)
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where fX is the density of X, we focus on ̂log fX(xi) for each i locally. Define ρk,i,p

as the `p-distance from point xi to its kth nearest neighbor, kNNi, and B(xi, ρk,i,p)

as the d-dimensional, `p ball of radius ρk,i,p centered at xi. Consider the probability

mass of B(xi, ρk,i,p), Pk,i,p ≡ PX(B(xi, ρk,i,p)). Pk,i,p could be estimated using the

d-dimensional volume in `p of B(xi, ρk,i,p) [57] as

Pk,i,p ≈ fX(xi)cd,pρ
d
k,i,p (4.5)

where cd,p = 2dΓ
(

1 + 1
p

)d /
Γ
(

1 + d
p

)
if fX(xi) were known. Notice that, intuitively,

Pk,i,p ≈ k
n . In fact, using lemma 4.6.6 and seeing that the integral is the same as

E [log V ] for V ∼ Beta(k, n− k),

E [logPk,i,p] = ψ(k)− ψ(n) (4.6)

where ψ(x) = d log Γ(x)/dx is the digamma function, and does not depend on choice

of p. Substituting the estimate for Pk,i,p in approximation (4.5) into the expectation

in (4.6), we have the estimator for ̂log fX(xi):

̂log fX(xi) = ψ(k)− ψ(n)− log cd,p − d log ρk,i,p, (4.7)

making the KL estimator

Ĥ(X) = −ψ(k) + ψ(n) + log cd,p +
d

n

n∑
i=1

log ρk,i,p. (4.8)

[58] showed that its bias is Õ(n−1/d) and variance is Õ(1/n) where Õ is the limiting

behavior up to polylogarithmic factors in n.
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i
ρk,i

ρk,i

X

Y

Figure 4.1: The scatter plot above shows point i and its kNN where k = 2 on the
right vertical dashed line. Here nX,i = 9 and nY,i = 6.

Kraskov, Stögbaur, and Grassberger estimator of mutual information

Kraskov, Stögbaur, and Grassberger (KSG) [59] developed an estimator for MI based

on I(X,Y ) = H(X)+H(Y )−H(X,Y ) and a variation of the KL entropy estimator

for continuous random variables or vectors, X and Y in RdX and RdY , respectively.

Let (x1, y1), . . . , (xn, yn) ∼ PXY . Setting p =∞, define the `∞-distance from point

(xi, yi) to its kNN as 1
2ρk,i,∞ ≡

1
2ρk,i, so that cd,p = 1 and log cd,p = 0. Using this,

the local KL estimate for the (negative) joint entropy at point i is

̂log fXY i = −ψ(k) + ψ(n) + (dX + dY ) log ρk,i; (4.9)

Ĥ(X,Y ) is computed as in eq. (4.4). To calculate l̂og fXi and l̂og fY i, the KSG

method deviates slightly from KL by using different values for the k hyper-parameter

argument for each i. In contrast, ̂log fXY i used the same value of k for each i to

calculate Ĥ(X,Y ). For KL, the k argument can be chosen as any integer value

between 1 and n− 1 which in turn determines the `p-distance to each point’s kNN.

Considering each point i separately, KSG works backward for Ĥ(X) and Ĥ(Y ), by
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first choosing a distance, r, then counting the number of points that fall within

the `∞ ball of radius r centered at point i within the X (or Y ) subspace. It uses

this count of points to compute l̂og fXi (or l̂og fY i) in place of k hyper-parameter

argument and r in the distance argument. Specifically, for each i, KSG chooses

r = 1
2ρk,i, the `∞-distance from point (xi, yi) to its kNN in (RdX+dY , `∞), that was

used to calculate ̂log fXY i. Call the corresponding count of points n∗X,i in the X

subspace and n∗Y,i in the Y subspace:

n∗W,i =

∣∣∣∣{wj : ‖wi − wj‖∞ <
1

2
ρk,i, i 6= j

}∣∣∣∣ (4.10)

and

̂log fW i = −ψ(n∗W,i) + ψ(n) + dW log ρk,i (4.11)

where W is either X or Y .

The KL estimator is accurate because the value of Pk,i,p, the probability in the

local neighborhood around (xi, yi) extending out to its kNN, is completely deter-

mined by k and n. By using the `∞ norm in the KSG estimator, 1
2ρk,i is equal to

the absolute scalar difference between point (xi, yi) and kNNi at a coordinate in

either X or Y . This way, the entropy estimates for either X or Y will be accurate

in the KL paradigm. But, the point kNNi is not counted in n∗X,i or n∗Y,i because

the definition counts points whose distance from (xi, yi) are strictly less than 1
2ρk,i,

biasing (4.7) toward zero. Using n∗W,i + 1 for W = X,Y corrects this for either X

or Y but not both; that is, either nX,i + 1 or nY,i + 1 will be the number of points

within a distance of exactly 1
2ρk,i. See Fig. 4.1.

Plugging the estimates for Ĥ(X,Y ), Ĥ(X) and Ĥ(Y ) discussed above into I(X,Y ) =

H(X,Y )−H(X)−H(Y ), we have

ÎKSG(X;Y ) = ψ(k) + ψ(n)− 1

n

n∑
i=1

[
ψ(n∗X,i + 1) + ψ(n∗Y,i + 1)

]
(4.12)
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where the d
n

∑n
i=1 ρk,i terms all cancel from using the same value of ρk,i for each i

and log cd,p is zero using the `∞ norm and choosing to set the kNN distance to 1
2ρk,i.

The original work [59] did not offer any proofs on convergence. Attempting to

correct the counting error mentioned, [59] provided another, less-used estimator as

well. Gao et al. [58] later showed that the KSG estimator is consistent with a bias

of Õ
(
n
− 1
dX+dY

)
and a variance of Õ (1/n). Reference [60] provides a very clear

analysis assumptions and corresponding convergence rates for both the KL entropy

estimator and the KSG MI estimator.

Frenzel and Pompe estimator of conditional mutual information

Using a similar technique to estimate conditional mutual information, Frenzel and

Pompe (FP) first, though several other papers as well [61, 62, 63, 64, 65] used

I(X;Y |Z) = H(X,Y, Z) − H(X,Z) − H(Y, Z) + H(Z) combined with the KSG

technique to cancel out the ρk,i term from each of the entropy estimators to estimate

CMI as

ξi = ψ(k)− ψ(n∗XZ,i + 1)− ψ(n∗Y Z,i + 1) + ψ(n∗Z,i + 1) (4.13)

where nW,i is calculated as in equation 4.10 with W = XZ, Y Z,Z. The global

CMI estimator, ÎFP(X;Y |Z), is calculated by averaging overall ξi. While these

papers show that this estimator does well empirically, they do not provide theoretical

justification.

4.2.4 Estimation for Mixed Variables

Gao, Kannan, Oh, and Viswanth estimator of mutual information

Gao, Kannan, Oh, and Viswanth (GKOV) [66] expanded on the KSG technique to

develop an MI estimator for mixes of discrete and continuous, real-valued random

variables. In this setting, unlike the purely continuous one, there is some probability

that multiple independent observations will be equal. Depending on the value of k,
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there is a corresponding, nonzero probability that the kNN distance is zero for some

points. While this impairs the KL entropy estimator due to the log ρ term, the KSG

estimator only uses the kNN distance for counting points with that radius. Similar

to the insight for the KSG technique, [66] allows k to change for points whose kNN

distance is zero:

k̃∗i =
∣∣{(xj , yj) : ‖(xi, yi)− (xj , yj)‖∞ = 0, i 6= j

}∣∣ . (4.14)

To accommodate points whose kNN distance is zero, [66] changes the definition of

n∗W,i to include boundary points:

nW,i =

∣∣∣∣{wj : ‖wi − wj‖∞ ≤
1

2
ρk,i, i 6= j

}∣∣∣∣ (4.15)

where 1
2ρk,i remains the `∞ distance from point (xi, yi) to kNNi. For index i, [66]

locally estimates MI as

ξi = ψ(k̃∗i ) + log(n)− log(nX,i + 1)− log(nY,i + 1). (4.16)

The global MI estimate is the average of the local estimates for each point:

ÎGKOV(X;Y ) =
1

n

n∑
i=1

ξi . (4.17)

[66] shows that this estimator is consistent under some mild assumptions.

Rahimzamani, Asnani, Viswanath, and Kannan (RAVK) [67] extend the idea

of [66] for estimating MI for mixed data to a concept the authors define as graph

divergence measure, a generalized Kullback-Leibler (KL) divergence between a joint

probability measure and a factorization of the joint probability measure. The au-

thors say that this can be thought of as a metric of incompatibility between the

joint probability and the factorization.

Setting the factorization of PXY Z to PX|ZPY |ZPZ gives an equivalent definition
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of 4.2.2 of conditional mutual information. Using this factorization, the GKOV

estimator for CMI at index i is

ξi = ψ(k̃i)− log(nXZ,i + 1)− log(nY Z,i + 1) + log(nZ,i + 1). (4.18)

The authors state that k̃i is the number of points within, ρk,i, the distance to the

kNN, of observation i. Giving more detail, case III in the proof for [67, theorem 2]

states that ρk,i > 0 implies that k̃i = k, suggesting that k̃i is defined the same as

(4.14). Similarly, the proofs suggest that nW,i is defined as (4.15). The global CMI,

IGKOV(X;Y |Z) is calculated by averaging over all ξi. This paper shows that this

estimator is consistent with similar assumptions to those found in [66].

4.3 Proposed Information Estimators

The estimator for CMI (and MI) proposed in this paper builds on the ideas in

the previous papers but with critical changes that improve performance. Start

by considering local CMI estimates as in (4.13). As discussed in § 4.2.3, for in-

dex i, each negative local entropy estimate (4.7), ̂log fXY Zi, ̂log fXZi, ̂log fY Zi, and

l̂og fZi, (before terms cancel) is identical to the KL paradigm when the distance

from (xi, yi, zi) to its kNN, nXZ,iNN, nY Z,iNN, and nZ,iNN for each respective sub-

space (XY Z,XZ, Y Z or Z) is exactly 1
2ρk,i. Moving from exclusively continuous

data, where ties occur with probability zero, to mixed data where ties occur with

nonzero probability, required that n∗W,i from (4.10) include boundary points as in

nW,i from (4.15). With this change, the entropy estimates are frequently accurate

using nW,i rather than nW,i + 1 for W = XZ, Y Z,Z for continuous data.

With the `∞ norm, the kNN distance value, 1
2ρk,i, is equal to the scalar distance

in at least one coordinate of the random vector (X,Y, Z). If this coordinate is in

Z, then the distance term in each local entropy estimate from (4.7) will be exactly

d log ρk,i for ̂log fXY Zi, ̂log fXZi, ̂log fY Zi, and l̂og fZi (because each contains Z).
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Again, this is because within each given subspace, ρk,i = ρnW,i,i, forW = XZ, Y Z,Z,

and thus

ξi = − ̂log fXY Zi + ̂log fXZi + ̂log fY Zi − l̂og fZi

= ψ(k)− ψ(nXZ,i)− ψ(nY Z,i) + ψ(nZ,i)

with perfect cancellations.

If the `∞-distance coordinate is in X, then ρk,i = ρnXZ,i,i, so that the corre-

sponding terms in ̂log fXY Zi and ̂log fXZi cancel but the other two distance terms

may not. An analogous argument can be made for Y . If the dimension of Z is

greater than X and Y , heuristically, one might expect the kNN distance to fall in

the larger Z dimension.

Theorem 4.3.3 shows that the proposed estimator tends to zero as the dimen-

sion of the Z vector increases if the sample size remains the same. The methods

discussed in § 4.2.4 will also converge to zero as the dimension increases; however,

the proposed method is an improvement, especially for discrete points. The com-

bined dimension of (X,Y, Z) can affect the value of k̃i, on discrete data, when the

kNN distance is greater than zero. Consider the case where data is comprised of

exclusively discrete random variables, that is; each point in the sample has a posi-

tive probability point mass. As the dimension of (X,Y, Z) grows, probability point

masses will diminish as long as the added variables are not determined given the

previous variable. Moreover, point masses in higher-dimensional spaces will neces-

sarily be less than or equal to their corresponding locations in lower-dimensional

spaces. It is possible that the kNN distance for index i is zero, especially if it has

a large probability point mass relative to n. But, if its point mass in the XY Z-

space is not sufficiently large to expect more than one point at its location for the

given sample size, n, we would expect its kNN distance to be greater than zero.

If the k̃i = k, as it would in eq. (4.14) because 1
2ρk,i > 0, then nXZ,i, nY Z,i, and

nZ,i will be the total number of points within the distance to the kNN including
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points on the boundary for the appropriate subspace, XZ, Y Z or Z. But, because

the data are discrete, it is possible/likely that the kNN is not unique. This would

indicate that there are more than k, points at and within the same radius, 1
2ρk,i in

the XY Z-space. Under counting here would bias the local estimate of CMI (4.18)

downward because k would be small relative to the values nXZ,i, nY Z,i, and nZ,i, in

the associated subspaces. To fix this, we set k̃i to the number of points that are less

than or equal to the kNN distance from point (xi, yi, zi) as

k̃i =

∣∣∣∣{wj : ‖wi − wj‖ ≤
1

2
ρk,i, i 6= j

}∣∣∣∣ . (4.19)

Notice that if the data are all continuous, then k̃i = k with probability one so this

change will only affect discrete points.

Moving to the use of the digamma function, ψ, verses the natural logarithm, log,

the overview of discrete estimators given in § 4.2.2, indicate that the use of digamma

should improve performance, particularly if there are many discrete categories. The

methods presented in § 4.2.3 to estimate MI and CMI for continuous data also

indicate using the digamma function over log. In contrast, the methods in §4.2.4

use both when estimating MI and CMI for mixed data. Though no explicit reason is

given for the deviation, it seems innocuous given that |log(w)− ψ(w)| ≤ 1
w for w > 0,

and, possibly reasonable given that the plug-in estimator of CMI on discrete data

is log(k̃i)− log(nXZ,i)− log(nY Z,i) + log(nZ,i) similar to (4.13), with the difference

being that it uses log in place of digamma. But, the use of digamma has emerged in

both the discrete and continuous literature. Moreover, using a single functional form

rather than one for the discrete case and another for the continuous case, makes for

a simpler estimator. For this reason, we use ψ for continuous and discrete data.

If a variable/coordinate of (X,Y, Z) is categorical (non-numeric), we use the

discrete distance metric for that coordinate in the random vector, in place of absolute

difference: the coordinate distance is zero at that coordinate for two observations

when equal and one otherwise. Several cited lemmas and theorems used in the
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proofs in § 4.3.1 assume vectors to be in Rd. Categorical variables do not strictly

satisfy this requirement but transforming categorical variables to dummy indicators

(as one does in regression) yields an isometry between the categorical space with the

discrete metric and Rm where the variable takes m + 1 distinct values with an `∞

metric. While it is not necessary to create dummy variables for the code to work,

we can be assured that the proofs are satisfied even when data include categorical

data.

To calculate the proposed local CMI estimate for index i, notice that k̃i = k when

the region surrounding observation i (to its kNN) is continuous but k̃i > k when

discrete. Thus, using the value of k̃i is appropriate in both cases. After calculating

k̃i and its kNN distance, 1
2ρk,i using eq. (4.19), 1

2ρk,i is reused to determine nW,i for

W ∈ {XZ, Y Z,Z} from eq. (4.15). For each i ∈ {1, . . . , n}, define

ξi = ψ
(
k̃i

)
− ψ(nXZ,i)− ψ(nY Z,i) + ψ(nZ,i) . (4.20)

The sample estimate for the proposed CMI estimator is

Îprop(X;Y |Z) = max

{
1

n

n∑
i=1

ξi, 0

}
. (4.21)

To calculate MI between X and Y , we can make Z constant according to def. 4.2.2

so that nZ,i = n. We define CMI and MI as the positive part of the mean because

CMI and MI are provably non-negative. This setting can easily be changed in the

code with a function argument. In the simulations shown in § 4.4, we display the

mean itself for greater visibility.

4.3.1 Consistency

The estimator proposed in §4.3 is consistent for fixed-dimensional random vectors

under mild assumptions. Theorem 4.3.1 shows that the estimator is asymptotically

unbiased and theorem 4.3.2 shows that its asymptotic variance is zero.
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As shorthand notation, we set f ≡ dPXY |Z

d(PX|Z×PY |Z)
and for a random variable W

on W with probability measure, PW , and w ∈ W, define

PW (r) = PW ({v ∈ W : ‖v − w‖∞ ≤ r}) . (4.22)

Theorem 4.3.1. Let (x1, y1, z1), . . . , (xn, yn, zn) be an i.i.d. random sample from

PXY Z . Assume the following:

1. k = kn →∞ and kn
n → 0 as n→∞.

2. For some C > 0, f(x, y, z) ≤ C for all (x, y, z) ∈ X × Y × Z.

3. {(x, y, z) ∈ X × Y × Z : PXY Z((x, y, z)) > 0} is countable and nowhere dense

in X × Y × Z

then

lim
n→∞

E
[
Îprop(X,Y |Z)

]
= I(X,Y |Z) . (4.23)

The proof can be found in App. 4.6.1.

Theorem 4.3.2. Let W = {W1, . . . ,Wn} be a random samples of size n such that

for each i, Wi = (Xi, Yi, Zi), k ≥ 2, and let În(W ) = 1
n

∑n
i=1 ξi(W ) where ξi(W ) =

ξi as defined above. Then

lim
n→∞

Var
(
Îprop(W )

)
= 0 . (4.24)

The proof can be found in App. 4.6.2.

Corollary 2. Let W1, . . . ,Wn be an independent, identically distributed sample.

Then

P
(∣∣∣În(W )− E

[
În(W )

]∣∣∣ > t
)

≤ 2 exp

{
−t2n

2592k2γ2
d(log n)2

} (4.25)
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Figure 4.2: X ∼ Exponential(10), Z ∼ Poisson(X), and Y ∼ Binomial(Z, 0.5),
I(X;Y |Z) = 0.

where γd is a constant that is only dependent on the dimension of W .

The proof can be found in App. 4.6.3.

Despite the estimator’s unbiasedness in large samples, it is biased toward zero

on high-dimensional data with a fixed sample size, suffering from the curse of di-

mensionality as kNN regression does.

Theorem 4.3.3. Assume X and Y have fixed-dimension and that Z = (Z1, Z2, . . . , Zd)

is a d-dimensional random vector. If the entropy rate of Z is nonzero, that is,

limd→∞
1
dH(Z) 6= 0, then Îprop(X,Y |Z)

P−→ 0 (converges in probability) as d→∞.

The proof can be found in App. 4.6.4.

4.4 Experiments

To evaluate the empirical performance of the proposed estimator, we compared it to

the FP estimator for continuous variables found in § 4.2.3 and to two versions of the

RAVK estimator for CMI in § 4.2.4 on simulated mixed data from various setting.

Both RAVK1 and RAVK2 are calculated using eq (4.18), but using different values
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Figure 4.3: X ∼ Discrete Uniform(0, 3) and Y ∼ Continuous Uniform(X,X + 2),
Z ∼ Binomial(3, 0.5), I(X;Y |Z) = log 3− 2 log 2/2.
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Figure 4.4: P((X,Y ) = (1, 1)) = P((X,Y ) = (−1,−1)) = 0.4, P((X,Y ) =
(1,−1)) = P((X,Y ) = (1,−1)) = 0.1, Z ∼ Poisson(2), I(X;Y |Z) = 2 ·
0.4 log(0.4/0.52) + 2 · 0.1 log(0.1/0.52).

for k̃i. RAVK1 uses eq (4.14) and RAVK2 uses eq (4.19). The FP estimator, as it

was designed for exclusively continuous data, when ρk,i = 0 will compute 0 for n∗w,i

from eq 4.10, so ψ will be undefined. In the simulations, we used max
{
n∗w,i, 1

}
.

For greater visibility, all figures show positive and negative estimator values (even
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Figure 4.5: X and Y are a mixture distribution where with probability 1
2 , (X,Y )

is multivariate Gaussian with a correlation coefficient of 0.8 and with probability
1
2 , (X,Y ) places probability mass of 0.4 at (1, 1), (−1,−1) and probability mass
of 0.1 at (1,−1) and (−1, 1), as in the third experiment. Z is an independently
generated Binomial(3, 0.2). I(X;Y |Z) = 0.4 log(2 · 0.4/0.52) + 0.1 log(2 · 0.1/0.52) +
0.125 log(4/(1− 0.82))
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Figure 4.6: Information between race and recidivism conditioning on COM-
PAS recidivism prediction score. Each sample was bootstrapped for the re-
quired size. Here the true CMI is not known. The data can be found at
https://github.com/propublica/compas-analysis
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though CMI is non-negative). Specifically, all figures show the proposed estimator

as 1
n

∑n
i=1 ξi rather than equation (4.21). All simulation data, methods code, and

visuals were done in Python 3.6.5. Both the estimation package and simulation

code can be found at https://github.com/omesner/knncmi. We simulated data from

differing distributions with 100 observations up to 1000 in intervals of 100. The

violin plots in Fig. 4.2–4.5 show the distribution of estimates from 100 simulated

datasets for each sample size. The “×” markers in each violin plot indicates the

mean of all estimates and the “−” represent to most extreme values. For both the

proposed and continuous estimator, we used k = 7 for all datasets.

The first simulation (Fig. 4.2) was inspired by [68, example 4.4.5]. In this sce-

nario, a mother insect lays eggs at a random rate, X ∼ Exponential(10). The

number of eggs she lays is Z ∼ Poisson(X), and the number of the eggs that sur-

vive is Y ∼ Binomial(Z, 0.5). In this Markov chain (X → Z → Y ), X and Y are

marginally dependent X ⊥6⊥Y but independent conditioning on Z, X ⊥⊥Y |Z so that

I(X;Y |Z) = 0.

The second simulation (Figure 4.3) is from [66]: X ∼ Discrete Uniform(0, 3) and

Y ∼ Continuous Uniform(X,X + 2) with an additional, independently generated

random variable, Z ∼ Binomial(3, 0.5). Here, X ⊥6⊥ Y |Z and I(X;Y |Z) = log 3 −

2 log 2/2. This example, a combination of discrete and continuous random variables,

is common in many applications. Here, the discrete variables are numeric but it

is also reasonable to use the discrete distance metric for non-numeric categorical

variables.

The third simulation (Figure 4.4) places probability mass of 0.4 at both (1, 1),

and (−1,−1) and probability mass of 0.1 at (1,−1) and (−1, 1) with an inde-

pendently generated Z ∼ Poisson(2). In this case, X ⊥6⊥ Y |Z with I(X;Y |Z) =

2 · 0.4 log(0.4/0.52) + 2 · 0.1 log(0.1/0.52). In this example, all variables are discrete.

The fourth simulation is also from [66]. X and Y are a mixture distribu-

tion where with probability 1
2 , (X,Y ) is multivariate Gaussian with a correlation
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coefficient of 0.8 and with probability 1
2 , (X,Y ) places probability mass of 0.4

at (1, 1), and (−1,−1) and probability mass of 0.1 at (1,−1) and (−1, 1), as in

the third experiment. Z is an independently generated Binomial(3, 0.2) so that

I(X;Y |Z) = I(X;Y ). We separate the domain of the integral into its discrete

and continuous parts; that is, (1, 1), (−1,−1), (1,−1) and (−1, 1) make up the

discrete part and everywhere else the continuous part. From here we calculate

MI on each partition by multiplying the distribution by 1
2 , yielding I(X;Y |Z) =

0.4 log(2 · 0.4/0.52) + 0.1 log(2 · 0.1/0.52) + 0.125 log(4/(1 − 0.82)). Results are in

Figure 4.5. In HIV research, for example HIV viral load, the amount of virus in a

milliliter of a patient’s blood can only be measured to a minimum threshold. Below

that threshold, depending on the assay used, a patient is said to be undetectable.

This is a real-world example of a random variable that is itself a mix of discrete and

continuous, difficult for most regression models. The this experiment shows that

the proposed estimator has no problem in this scenario.

The following figure, figure 4.6, shows performance on real data, and perhaps

an abbreviated example for a use of information theoretic statistics on applications

that typically use regression. Journalists at ProPublica curated and analyzed these

data primarily to expose racial bias within the Correctional Offender Management

Profiling for Alternative Sanctions (COMPAS) algorithm used “to assess a criminal

defendant’s likelihood of becoming a recidivist–a term used to describe criminals

who re-offend” [69]. The data contain more than 10,000 records from individual

criminal defendants in Broward County, Florida within 2013 and 2014. We focus on

three variables, the defendant’s race, record of recidivism—defined as a new arrest

within two years, and the COMPAS decile (1–10 integer) score, which is intended

to predict a defendant’s likelihood of recidivism, a greater score indicates a greater

risk of recidivism. More details on the data can be found at [69]. We excluded

observations with no decile score, or if the time between the score and arrest date

differed by more than 90 days, leaving 10010 records; this screen is more inclusive
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Table 4.1: ProPublica COMPAS/Recidivism data summary by race

Race Count COMPAS Score (mean) Recidivism (%)

African-American 4960 5.25 40.6
Asian 50 2.72 20.0
Caucasian 3503 3.59 28.8
Hispanic 885 3.25 25.4
Native American 31 4.51 32.3
Other 581 2.77 24.8

than that originally used. Table 4.1 shows an aggregated data summary by race.

We examine the relationship between race and recidivism controlling for the

COMPAS decile score. It is easy to see from table 4.1 that race is associated with

recidivism. Interestingly, the COMPAS score, which is computed using a question-

naire, does not explicitly ask for race. CMI, in this setting, quantifies the additional

information in race for predicting recidivism that is not already contained in the

COMPAS score. Said differently, is COMPAS indirectly using race to predict re-

cidivism?

Figure 4.6 was generated similarly to figures 4.2 through 4.5; rather than using

simulated datasets, we used bootstrap samples of the required sample size from the

larger dataset to visualize each estimator’s empirical distribution. While the true

CMI in this case is unknown, it is possible to glean meaning from the estimates.

Because the FP estimator was not intended for this type of data, it is not likely

to be accurate. As previously mentioned in § 4.3, both RAVK1 and 2 are likely to

underestimate CMI in small samples, which is clearly happening in this case because

since CMI is non-negative and the violin plots are entirely below zero, though the

upward trend indicates improvement with larger samples. The proposed estimator

is fairly constant, with the violin plots flanking zero consistently. Table 4.2 provides

CMI estimates for each estimator on the full data of 10010 observations. Given the

performance of the proposed estimator on simulated data, it seems likely that zero

is the true CMI. Thus, any information captured in race for predicting recidivism
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Table 4.2: Estimated I(Race; Recidivism|COMPAS Score) on all observations

Method FP RAVK1 RAVK2 Proposed

Estimated CMI 2.4320 -0.0124 -0.0096 -0.0015

is already captured by COMPAS. This indicates that while not directly asking for

race, COMPAS is using race to make predictions.

4.5 Conclusion

We have presented a non-parametric estimator of CMI (and MI) for arbitrary com-

binations of discrete, continuous, and mixed variables. Under mild assumptions, the

estimator is consistent, and on empirical simulations, the proposed estimator per-

forms better over other similar estimators in all sample-sizes. Note that we do not

provide a mean squared error (MSE) convergence rate for the proposed estimator.

We believe that in order to obtain such a rate, it will be necessary to make stronger

assumptions than those we have made for both the discrete and continuous com-

ponents of the joint distribution. Specifically, the discrete points in a distribution

will likely require upper and lower bounds on their corresponding probabilities as

in [48] while the continuous part will require some smoothness and tail assumptions

as in [60]. While in practice, the necessary assumptions for the underlying distribu-

tion of the data are rarely verifiable, the theoretical guarantees would be helpful to

understand this estimator’s behavior in a high-dimensional regime beyond what we

provide in theorem 4.3.3.

An analytical estimation of the sampling distribution for this estimator would

also be of particular interest and utility for applied disciplines. Though, this devel-

opment will likely require even stronger assumptions on the underlying distribution.

Approximation with the bootstrap may be a way forward, as in [70]. Further devel-

opment on approximating the sampling distribution of Î is an interesting, valuable

open problem for further inference including testing and confidence intervals.
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Another area of interest is estimation on data with strongly dependent variables.

To control the bias emerging from strong dependence, we assume that the density

is bounded. However, bias is likely to increase as this bound increases as one can

see in the proof of theorem 4.3.1. One way to diminish bias arising from strong

dependence may be to include an appropriate adjustment term, as in [71]. The

correction in[71] may improve accuracy in such a setting and remains an area of

future research.

Finally, MI and CMI are typically used to determine a relationship between two

variables, or groups of variables. Of some interest is understanding many relation-

ships, usually causal, between multiple variables. Expanding mutual information to

many variables, Carrara and Vanslette [72] showed that any correlation estimator

with some constraints obtain an information theoretic form. The RAVK estima-

tor from [67] and others such as in reference [73] provide a paradigm for using

information-theoretic measures to explore more complex relationships. Estimators

of this genre could be helpful for exploring causal pathways between many variables.

In this work, we have attempted to provide an estimator for CMI/MI and show

its behavior with limited distributional assumptions. However, stronger assump-

tions and modifications to the estimator itself will likely yield helpful information

for practice and are certainly welcome. While there is room for development on sev-

eral fronts, we believe that the estimator proposed here will be of current value to

many applied researchers for quantifying marginal and conditional dependence be-

tween variables. The development of this estimator was primarily motivated by data

from scientific applications. There are clear advantages of using CMI for scientific

inquiry that we reiterate. While this method does require independent, identically

distributed data, it does not require parametric assumptions or specific functional

relationships between variables such as linearity to quantify dependence. Due to the

data processing inequality, greater shared information among random variables in-

dicates closer causal proximity in causal chains. In this vein, CMI (or MI) estimates
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close to or equal to zero indicate likely conditional (or marginal) independence. For

these reasons, information is ideal for inference and discovery causal of relationships

which may not satisfy parametric requirements. And, like regression, information

is easily interpretable: CMI, I(X;Y |Z), can be understood as the degree of asso-

ciation or statistical dependence shared between X and Y given Z or controlling

for Z. Finally, we encourage others to continue researching innovative methodolo-

gies to accommodate fields whose data is too messy for most current data science

methodologies.

4.6 Appendix

4.6.1 Proof of Theorem 4.3.1

Proof. Define f ≡ dPXY |Z

d(PX|Z×PY |Z)
and for a random variable W onW with probability

measure, PW , and w ∈ W, set

PW (w, r) = PW ({v ∈ W : ‖v − w‖∞ ≤ r}) . (4.26)

Let (x1, y1, z1), . . . , (xn, yn, zn) be an i.i.d. random sample from PXY Z and that

În(X,Y |Z) is the value of Îprop(X,Y |Z) for this sample.

Partition X × Y × Z into three disjoint sets:

1. Ω1 = {(x, y, z) : f = 0}

2. Ω2 = {(x, y, z) : f > 0, PXY Z(x, y, z, 0) > 0}

3. Ω3 = {(x, y, z) : f > 0, PXY Z(x, y, z, 0) = 0}

so that X × Y × Z = Ω1 ∪ Ω2 ∪ Ω3. Notice that

E
[
În(X,Y |Z)

]
= E

[
1

n

n∑
i=1

ξi

]
= E [ξ1] (4.27)
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so that we only need show that E[ξi]→ I(X;Y |Z) for one point. In light of this, we

drop the subscript. Using the law of total expectation and properties of integrals,

|E[ξ]− I(X;Y |Z)| (4.28)

=

∣∣∣∣EXY Z [E[ξ|X,Y, Z]]−
∫
f(x, y, z)dPXY Z(x, y, z)

∣∣∣∣ (4.29)

≤
∫
|E[ξ|x, y, z]− f(x, y, z)| dPXY Z(x, y, z) (4.30)

=

∫
Ω1

|E[ξ|x, y, z]− f(x, y, z)| dPXY Z(x, y, z) (4.31)

+

∫
Ω2

|E[ξ|x, y, z]− f(x, y, z)| dPXY Z(x, y, z) (4.32)

+

∫
Ω3

|E[ξ|x, y, z]− f(x, y, z)| dPXY Z(x, y, z). (4.33)

For clarification, the value of E[ξ|X,Y, Z] depends on both the value of the value of

the random vector (X,Y, Z) and rest of the sample. We show that

∫
Ωi

|E[ξ|x, y, z]− f(x, y, z)| dPXY Z → 0 (4.34)

for each i = 1, 2, 3 in three cases.

Case1: (x, y, z) ∈ Ω1. Let πXY (Ω1) = {(x, y) : (x, y, z) ∈ Ω1} be the projection

onto the first two coordinates of Ω1. Using the definition of f as the RN derivative,

PXY |Z(πXY (Ω1))

=

∫
πXY (Ω1)

fd(PX|Z × PY |Z)

=

∫
πXY (Ω1)

0d(PX|Z × PY |Z) = 0.

Then PXY Z(Ω1) = (PXY |Z × PZ)(Ω1) = 0. So,

∫
Ωi

|E[ξ|x, y, z]− f(x, y, z)| dPXY Z = 0. (4.35)
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Case 2: Assume (x, y, z) ∈ Ω2. This is the partition of discrete points because

singleton have positive measure in X × Y × Z. Using lemma 4.6.8, we have

f(x, y, z) =
PXY Z(x, y, z, 0)PZ(x, y, z, 0)

PXZ(x, y, z, 0)PY Z(x, y, z, 0)
. (4.36)

Knowing the exact value of f allows us to work with it directly.

Let ρ be the distance from (x, y, z) to its kNN. Proceed in two cases, when ρ = 0

and when ρ > 0 by writing the integrand as dominated by the following two terms:

|E[ξ|x, y, z]− log f(x, y, z)|

≤ |E[ξ|x, y, z, ρ > 0]− log f(x, y, z)|P(ρ > 0)

+ |E[ξ|x, y, z, ρ = 0]− log f(x, y, z)|P(ρ = 0)

≡ |E[ξ|ρ > 0]− log f |P(ρ > 0)

+ |E[ξ|ρ = 0]− log f |P(ρ = 0)

suppressing the x, y, z for brevity. We bound |E[ξ|ρ > 0]− log f | and P(ρ = 0) and

show that |E[ξ|ρ = 0]− log f | and P(ρ > 0) converge to zero. By proposition 4.6.1,

there exist a finite set of points with positive measure E ⊆ Ω2 such that

PXY Z(Ω2\E) <
ε

3(4 log n+ logC)
. (4.37)

Starting with P(ρ > 0), ρ > 0 when less than k points in the sample equal

(x, y, z). The number of points exactly equal to (x, y, z) has a binomial distribution

with parameters, n− 1 and PXY Z(x, y, z, 0) ≡ PXY Z(0), Binomial(n− 1, PXY Z(0)).

Because k
n → 0 as n→∞, there must be an n sufficiently large such that

max

{
k

n
,
−2

n
log

(
ε

3(4 log n+ logC)|E|

)
+

2k

n

}
≤ min

(x,y,z)∈E
PXY Z(x, y, z, 0).
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This inequality ensures that k − 1 ≤ (n − 1)PXY Z(x, y, z, 0) for all (x, y, z) ∈ E to

use Chernoff’s inequality [74, §2.2]:

P(ρ > 0) = P(Binomial(n− 1, PXY Z(0)) ≤ k − 1)

≤ exp

{
−[(n− 1)PXY Z(0)− (k − 1)]2

2PXY Z(x, y, z, 0)(n− 1)

}
≤ exp

{
−
(

1

2
nPXY Z(0)− k

)}
≤ ε

3(4 log n+ logC)|E|
.

To bound |E[ξ|ρ > 0]− log f |, first notice that k̃, nXZ , nY Z , nZ ≤ n. If k = k̃, then

ξ uses ψ and if If k < k̃, then ξ uses log, so that |ξ| ≤ max {4ψ(n), 4 log n} = 4 log n.

And, f ≤ C by assumption so |E[ξ|ρ > 0]− log f | < 4 log n+ logC.

Now we show that |E[ξ|ρ = 0]− log f | → 0. When ρ = 0, there must be k or

more points exactly equal to (x, y, z). Because a point in the sample being equal to

(x, y, z) is an independent, Bernoulli event, and because when ρ = 0, k̃, defined in

(4.19), will be the total number of points equal to (x, y, z), k̃ − k ∼ Binomial(n −

k − 1, PXY Z(0)). We can make identical arguments for nXZ − k, nY Z − k, and

nZ−k in their respective subspaces so that nXZ−k ∼ Binomial(n−k−1, PXZ(0)),

nY Z − k ∼ Binomial(n− k − 1, PY Z(0)), and nZ − k ∼ Binomial(n− k − 1, PZ(0)).

[66, Lemma B.2] provides a rigorous proof for this.

Showing that |E[ξ|ρ = 0]− log f | → 0, we can choose k and n sufficiently large

so that 1
k ≤

ε
48|E| , k ≥

PZ(0)
1−PZ(0) and k

n ≤
ε

24|E| . Assume k̃ = k, so that ξ will use ψ.
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Using lemma 4.6.4 four times and that PXY Z(0) ≤ PXZ(0), PY Z(0) ≤ PZ(0),

|E[ξ|ρ = 0]− log f |

=
∣∣∣E[ψ(k̃)|ρ = 0]− E[ψ(nXZ)|ρ = 0]

− E[ψ(nY Z)|ρ = 0] + E[ψ(nZ)|ρ = 0]

− log
(nPXY Z(0))(nPZ(0))

(nPXZ(0))(nPY Z(0))

∣∣∣
≤
∣∣∣E[ψ(k̃)|ρ = 0]− log nPXY Z(0)

∣∣∣
+ |E[ψ(nXZ)|ρ = 0]− log nPXZ(0)|

+ |E[ψ(nY Z)|ρ = 0]− log nPY Z(0)|

+ |E[ψ(nZ)|ρ = 0]− log nPZ(0)|

≤ 2

k
+

k

nPXY Z(0)
+

2

k
+

k

nPXZ(0)

+
2

k
+

k

nPY Z(0)
+

2

k
+

k

nPZ(0)

≤ 8

k
+

4k

nPXY Z(0)

≤ ε

6|E|
+

ε

6|E|PXY Z(0)
.

If k̃ > k, ξ will use log and rather than ψ. Lemma 4.6.4 shows that the bound used

above will also work in this case.

It is clear that P(ρ = 0) ≤ 1.
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Putting together the previous parts,

∫
Ω2

|E[ξ|x, y, z]− log f(x, y, z)| dPXY Z(x, y, z)

=
∑

(x,y,z)∈Ω2

|E[ξ|x, y, z]− log f(x, y, z)|PXY Z(x, y, z, 0)

≡
∑

(x,y,z)∈Ω2

|E[ξ]− log f |PXY Z(0)

=
∑

(x,y,z)∈E

|E[ξ]− log f |PXY Z(0)

+
∑

(x,y,z)∈Ω2\E

|E[ξ]− log f |PXY Z(0)

≤
∑

(x,y,z)∈E

|E[ξ|ρ > 0]− log f |P(ρ > 0)PXY Z(0)

+
∑

(x,y,z)∈E

|E[ξ|ρ = 0]− log f |P(ρ = 0)PXY Z(0)

+
∑

(x,y,z)∈Ω2\E

|E[ξ]− log f |PXY Z(0)

≤
∑

(x,y,z)∈E

log(n4C)

(
ε

3 log(n4C)|E|

)
PXY Z(0)

+
∑

(x,y,z)∈E

(
ε

6|E|
+

ε

6|E|PXY Z(0)

)
PXY Z(0)

+
∑

(x,y,z)∈Ω2\E

(4 log n+ logC)PXY Z(0)

≤ log(n4C)|E|
(

ε

3(log(n4C))|E|

)
+ |E|

(
ε

3|E|

)
+ PXY Z (Ω2\E) (4 log n+ logC)

=
ε

3
+
ε

3
+

(
ε

3 log(n4C)

)
log(n4C)

= ε.

Case 3: Assume (x, y, z) ∈ Ω3. This is the continuous partition because sin-

gletons have zero measure in X × Y × Z. Lemma 4.6.5 assures that k̃ → k almost
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surely as n→∞; PXY Z

({
(x, y, z) ∈ Ω3 : k̃ → k

})
= 1. k̃ is discrete so there is an

N such that for n ≥ N , k̃ = k with probability one.

Define Fρ(r) as the cumulative distribution function of the kNN distance, r;

that is, Fρ(r) is the probability that that the kNN distance is r or less. Begin by

decomposing the integrand into its parts:

|E [ξ|X,Y, Z]− log f(X,Y, Z)| (4.38)

≡ |E [ξ]− log f |

=

∣∣∣∣∫ ∞
0

(E [ξ|ρ = r]− log f) dFρ(r)

∣∣∣∣
=
∣∣∣ ∫ ∞

0
E [ξ|ρ = r]− log

(
PXY Z(r)PZ(r)

PXZ(r)PY Z(r)

)
+ log

(
PXY Z(r)PZ(r)

PXZ(r)PY Z(r)

)
− log fdFρ(r)

∣∣∣
=
∣∣∣ ∫ ∞

0
E [ψ(k)− ψ(nXZ)− ψ(nY Z)− ψ(nZ)|ρ = r]

− log

(
(nPXY Z(r))(nPZ(r))

(nPXZ(r))(nPY Z(r))

)
+ log

(
PXY Z(r)PZ(r)

PXZ(r)PY Z(r)

)
− log fdFρ(r)

∣∣∣
≤
∣∣∣∣∫ ∞

0
ψ(k)− log(nPXY Z(r))dFρ(r)

∣∣∣∣ (4.39)

+

∣∣∣∣∫ ∞
0

E[ψ(nXZ)|ρ = r]− log(nPXZ(r))dFρ(r)

∣∣∣∣ (4.40)

+

∣∣∣∣∫ ∞
0

E[ψ(nY Z)|ρ = r]− log(nPY Z(r))dFρ(r)

∣∣∣∣ (4.41)

+

∣∣∣∣∫ ∞
0

E[ψ(nZ)|ρ = r]− log(nPZ(r))dFρ(r)

∣∣∣∣ (4.42)

+

∣∣∣∣∫ ∞
0

log

(
PXY Z(r)PZ(r)

PXZ(r)PY Z(r)

)
− log fdFρ(r)

∣∣∣∣ . (4.43)

Next, we show that with sufficiently large n, each of these terms is less than ε/5.

Do to this, we change variables for each integral using lemma 4.6.6.
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Beginning with (4.39),

∣∣∣∣∫ ∞
0

ψ(k)− log(nPXY Z)(r)dFρ(r)

∣∣∣∣
=

∣∣∣∣ψ(k)− log n−
∫ ∞

0
logPXY Z(r)dFρ(r)

∣∣∣∣
=

∣∣∣∣ψ(k)− log n−
∫ ∞

0
PXY Z(r)

(n− 1)!

(k − 1)!(n− k − 1)!

[PXY Z(r)]k−1[1− PXY Z(r)]n−k−1dPXY Z(r)

∣∣∣∣
=

∣∣∣∣ψ(k)− log n− (n− 1)!

(k − 1)!(n− k − 1)!∫ ∞
0

[PXY Z(r)]k[1− PXY Z(r)]n−k−1dPXY Z(r)

∣∣∣∣
= |ψ(k)− log n− (ψ(k)− ψ(n))|

= |ψ(n)− log(n)| < 1

n
.

For lines 4.40, 4.41, and 4.42, consider the random variables nXZ , nY Z , and nZ

defined in line 4.15. In this case, we know that k̃ = k almost surely. Note that

nXZ , nY Z , nZ ≥ k. Observation j in the sample will contribute to the count of

nW,i − k for W ∈ {(XZ), (Y Z), Z} when ‖wi − wj‖∞ ≤ ρk,i given that it is not

one of the first k nearest neighbors. There are n − k − 1 independent, identically

distributed, data points left not counting the k nearest neighbors or point i. A

point j has probability, PW (ρk,i), that it is within a radius of ρk,i in the W sub-

space. The probability that a point falls within a radius of ρk,i in the XY Z-space

is PXY Z(ρk,i). Using basic conditional probability rules, one can see that the prob-

ability that any point contributes to the count of nW is
PW (ρk,i)−PXY Z(ρk,i)

1−PXY Z(ρk,i)
. Then,

for W ∈ {XZ, Y Z,Z}

nW,i − k ∼

Binomial

(
n− k − 1,

PW (ρk,i)− PXY Z(ρk,i)

1− PXY Z(ρk,i)

) (4.44)
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PXY Z(ρk,i) ≤ PW (ρk,i) for all points. Choosing k such that k ≥ 15+3ε
ε and applying

lemma 4.6.9, we bound lines 4.40, 4.41, and 4.42 by ε
5 .

Moving to line 4.43, using lemma 4.6.7, we have

PXY Z(r)PZ(r)

PXZ(r)PY Z(r)
→ f (4.45)

(converges pointwise) as r → 0 and

PXY Z(r)PZ(r)

PXZ(r)PY Z(r)
≤ C (4.46)

almost everywhere [PX|Z×PY |Z ]. Using Egoroff’s theorem, there exists a measurable

set, E ⊆ Ω3 such that

PXY Z(Ω3\E) ≤ ε

10 logC
(4.47)

and
PXY Z(r)PZ(r)

PXZ(r)PY Z(r)

U−→ f (4.48)

(converges uniformly) as r → 0 on E. Using the uniform convergence on E, there

exists rε > 0 such that for all r ≤ rε∣∣∣∣log
PXY Z(r)PZ(r)

PXZ(r)PY Z(r)
− log f

∣∣∣∣ ≤ ε

20
(4.49)

for all (x, y, z) ∈ E. And for sufficiently large n, we have

max

k

n
,
−2 log

(
ε

40 logC

)
+ 2k

n

 ≤ PXY Z(rε). (4.50)

Consider the probability, P(ρ > rε), that a point’s kNN distance is greater than

rε. This can only happen when k − 1 or less neighbors fall within a radius of rε.

There are n− 1 independent, identically distributed points that can potentially fall

in to this region each with probability, PXY Z(rε) so that this also has a binomial
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distribution. Again using Chernoff’s inequality,

P(ρ > rε)

≤ exp

(
−[(n− 1)PXY Z(rε)− (k − 1)]2

2PXY Z(rε)(n− 1)

)
≤ exp

(
−1

2
nPXY Z(rε) + k

)
≤ ε

40 logC
.

With assumption 2, f ≤ C, and line 4.46 from proposition 4.6.7,

∣∣∣∣log
PXY Z(r)PZ(r)

PXZ(r)PY Z(r)
− log f

∣∣∣∣ ≤ 2 logC. (4.51)

For points (x, y, z) ∈ E,

∣∣∣∣∫ ∞
0

log
PXY Z(r)PZ(r)

PXZ(r)PY Z(r)
− log fdFρ(r)

∣∣∣∣
≤
∫ ∞

0

∣∣∣∣log
PXY Z(r)PZ(r)

PXZ(r)PY Z(r)
− log f

∣∣∣∣ dFρ(r)
=

∫ rε

0

∣∣∣∣log
PXY Z(r)PZ(r)

PXZ(r)PY Z(r)
− log f

∣∣∣∣ dFρ(r)
+

∫ ∞
rε

∣∣∣∣log
PXY Z(r)PZ(r)

PXZ(r)PY Z(r)
− log f

∣∣∣∣ dFρ(r)
≤
∫ rε

0

ε

20
dFρ(r) +

∫ ∞
rε

2 logCdFρ(r)

=
ε

20
P(ρ ≤ rε) + (2 logC)P(ρ > rε)

≤ ε

20
+

ε

20
=

ε

10
.
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But, for points (x, y, z) ∈ Ω3\E, it is only necessary bound the integrand,

∣∣∣∣∫ ∞
0

log
PXY Z(r)PZ(r)

PXZ(r)PY Z(r)
− log fdFρ(r)

∣∣∣∣
≤
∫ ∞

0

∣∣∣∣log
PXY Z(r)PZ(r)

PXZ(r)PY Z(r)
− log f

∣∣∣∣ dFρ(r)
≤
∫ ∞

0
2 logCdFρ(r)

≤ 2 logC.

The last step follows because Fρ(r) is a probability measure. Integrating term 4.43

over all of Ω3,

∫
Ω3

∣∣∣∣∫ ∞
0

log
PXY Z(r)PZ(r)

PXZ(r)PY Z(r)
− log fdFρ(r)

∣∣∣∣ dPXY Z
≤
∫
E

∣∣∣∣∫ ∞
0

log
PXY Z(r)PZ(r)

PXZ(r)PY Z(r)
− log fdFρ(r)

∣∣∣∣ dPXY Z
+

∫
Ω3\E

∣∣∣∣∫ ∞
0

log
PXY Z(r)PZ(r)

PXZ(r)PY Z(r)
− log fdFρ(r)

∣∣∣∣ dPXY Z
≤
∫
E

ε

10
dPXY Z +

∫
Ω3\E

2 logCdPXY Z

=
ε

10
+ (2 logC)PXY Z(Ω\E) ≤ ε

5

where we used Ergoroff’s theorem from line 4.47 in the last line. Now we inte-

grate line 4.38 over Ω3 using the previous arguments showing that lines 4.39 4.40,

4.41, 4.42, and 4.43 are all bounded. Choosing n large enough to satisfy the previous

conditions, we have
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∫
Ω3

|E [ξ]− log f | dPXY Z

≤
∫

Ω3

∣∣∣∣∫ ∞
0

ψ(k)− log(nPXY Z(r))dFρ

∣∣∣∣ dPXY Z
+

∫
Ω3

∣∣∣∣∫ ∞
0

E[ψ(nXZ)]− log(nPXZ(r))dFρ

∣∣∣∣ dPXY Z
+

∫
Ω3

∣∣∣∣∫ ∞
0

E[ψ(nY Z)]− log(nPY Z(r))dFρ

∣∣∣∣ dPXY Z
+

∫
Ω3

∣∣∣∣∫ ∞
0

E[ψ(nZ)]− log(nPZ(r))dFρ

∣∣∣∣ dPXY Z
+

∫
Ω3

∣∣∣∣∫ ∞
0

log
PXY Z(r)PZ(r)

PXZ(r)PY Z(r)
− log fdFρ

∣∣∣∣ dPXY Z
≤
∫

Ω3

ε

5
dPXY Z +

∫
Ω3

ε

5
dPXY Z

+

∫
Ω3

ε

5
dPXY Z +

∫
Ω3

ε

5
dPXY Z +

ε

5

= ε

4.6.2 Proof of Theorem 4.3.2

Proof. Let W ′1 . . . ,W
′
n be another random sample of size n such that for each i,

Wi = (Xi, Yi, Zi), W
′
i = (X ′i, Y

′
i , Z

′
i) and that Wi

d
= W ′i (equally distributed).

LetW (i) = {W1, . . . ,Wi−1,W
′
i ,Wi+1, . . . ,Wn} and letW i− = {W1, . . . ,Wi−1,Wi+1, . . . ,Wn}.

We proceed using the Stein-Efron inequality as in [74, Theorem 3.1],

Var
(
În(W )

)
≤ 1

2

n∑
i=1

E
[
În(W )− În(W (i))

]2
.

To reduce the number of cases we must examine, consider the following supre-
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mum over possible values w1, . . . wn, w
′
i of the random vector W :

sup
w1,...wn,w′i

∣∣∣În(W )− În(W (i))
∣∣∣

≤ sup
w1,...wn,w′i

(∣∣∣În(W )− În(W i−)
∣∣∣

+
∣∣∣În(W i−)− În(W (i))

∣∣∣)
≤ sup

w1,...wn

∣∣∣În(W )− În(W i−)
∣∣∣

+ sup
w1,...,wi−1,w′i,wi+1,...,wn

∣∣∣În(W i−)− În(W (i))
∣∣∣

= 2 sup
w1,...wn

∣∣∣În(W )− În(W i−)
∣∣∣

=
2

n
sup

w1,...wn

n∑
j=1

∣∣ξj(W )− ξj(W i−)
∣∣ .

The penultimate step holds because W
d
= W (i).

We proceed by bounding
∣∣ξj(W )− ξj(W i−)

∣∣ by looking at the individual cases.

Case 1: i = j.

Notice that if 0 < a, b ≤ n then

|ψ(a)− log(b)| ≤ |ψ(a)− log(a)|+ |log(b)− log(b)|

≤ 1

b
+ log(max {a, b}) ≤ log n+ 1.
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Using this,

∣∣ξj(W )− ξj(W i−)
∣∣

≤
∣∣∣ψ(k)− log(k̃′j)

∣∣∣+
∣∣ψ(nXZ,j)− log(n′XZ,j)

∣∣
+
∣∣ψ(nY Z,j)− log(n′Y Z,j)

∣∣+
∣∣ψ(nZ,j)− log(n′Z,j)

∣∣
≤ 4 log n+ 4.

In the summation from j = 1 to n, this can only happen one times, so we have that∑n
j=1

∣∣ξj(W )− ξj(W i−)
∣∣ ≤ 4 log n+ 4.

Case 2: i 6= j, k̃j > k.

Recall that ξj(W ) = log(k̃j)− log(nXZ,j)− log(nY Z,j)+log(nZ,j) and that ρk,j is the

`∞-distance from Wj to its kNN. Removing Wi from W will only change ξj(W ) if

Wi is counted in k̃j , nXZ,j , nY Z,j , or nZ,j . Because k̃j > k, there must be at least two

points whose distance toWj is exactly ρk,j , so removing one point cannot change ρk,j ,

regardless of its location with respect to Wj . Because ρk,j will remain unchanged

after removing Wi from W , k̃j , nXZ,j , nY Z,j , or nZ,j can each only decrease by a

count of one. Under ξj(W
i−), if k̃j = k, then the log function will become ψ. In

general, we have that ψ(w)−ψ(w−1) = 1
w−1 , log(w)−log(w−1) = log

(
w
w−1

)
≤ 1

w−1
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and, log(w)− ψ(w − 1) = log(w)− ψ(w) + 1
w−1 ≤

2
w−1 . Regardless, we have

∣∣ξj(W )− ξj(W i−)
∣∣

≤
∣∣∣log(k̃j)− ψ(k̃j − 1)

∣∣∣
+ |log(nXZ,j)− ψ(nXZ,j − 1)|

+ |log(nY Z,j)− ψ(nY Z,j − 1)|

+ |log(nZ,j)− ψ(nZ,j − 1)|

≤ 2

k̃j − 1
+

2

nXZ,j − 1

+
2

nY Z,j − 1
+

2

nZ,j − 1
.

Now, rather than considering the number of points that can change with the

removal of Wi, we focus on the number of counts, k̃j , nXZ,j , nY Z,j , and nZ,j , that

will change. If Wi is among the k̃jNN of Wj , then its removal can change at most

the k̃j points within a distance of ρk,j in all coordinates. If Wi is not among the

k̃jNN of Wj but is counted in nXZ,j , (and possibly in nZ,j too), then its removal will

not affect k̃j or nY Z,j and will only change nXZ,j , (and nZ,j) for the points within

a distance of ρk,j from Wj in the XZ coordinates, which is nXZ,j . Similarly, nY Z,j
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and nZ,j will change for at most nY Z,j and nZ,j points, respectively. So, we have

n∑
j=1

∣∣∣ξj(W )− ξj(W (i))
∣∣∣

≤
n∑
j=1

2

k̃j − 1
+

n∑
j=1

2

nXZ,j − 1

+
n∑
j=1

2

nY Z,j − 1
+

n∑
j=1

2

nZ,j − 1

≤ 2k̃j

k̃j − 1
+

2nXZ,j
nXZ,j − 1

+
2nY Z,j
nY Z,j − 1

+
2nZ,j
nZ,j − 1

≤ 16

Case 3: i 6= j, k̃j = k.

Again, removing Wi from W will change ξj(W ) only if Wi is counted in at least one

of k̃j , nXZ,j , nY Z,j , or nZ,j . If Wi is within the kNN of Wj , then removing Wi will

change the value of ρk,j . Because ρk,j is different, we cannot say how nXZ,j , nY Z,j ,

or nZ,j will change so we give the loosest bound from case 1:

∣∣ξj(W )− ξj(W i−)
∣∣ ≤ 4 log n+ 4.

Using the first part of [66, Lemma C.1], if U ′i , U1, . . . , Un are vectors in Rd and

U = {U1, . . . , Uj−1, U
′
i , Uj+1, . . . , Un}, then

n∑
j=1

I{U ′i is in the kNN of Uj in U} ≤ kγd

where γd is a constant that only depends on the dimension of the XY Z space [75,
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Corollary 6.1]. With this, we have

n∑
i=1

[
ξj(W )− ξj(W i−)

]
≤ kγd(4 log n+ 4).

If Wi is not within the kNN of Wj , it can still contribute to the count of

nXZ,j , nY Z,j , or nZ,j . In this case ρk,j will not change, so removing one point will

decrease nXZ,j , nY Z,j , or nZ,j by at most one, similar to case 2.

∣∣∣ξj(W )− ξj(W (i))
∣∣∣

≤ |ψ(k)− ψ(k)|

+ |ψ(nXZ,j)− ψ(nXZ,j − 1)|

+ |ψ(nY Z,j)− ψ(nY Z,j − 1)|

+ |ψ(nZ,j)− ψ(nZ,j − 1)|

=
1

nXZ,j − 1
+

1

nY Z,j − 1

+
1

nZ,j − 1
.

Using the second part of [66, Lemma C.1], if U ′i , U1, . . . , Un are vectors in Rd

and U = {U1, . . . , Uj−1, U
′
i , Uj+1, . . . , Un}, then

n∑
j=1

1

ki
I{U ′i is in the kiNN of Uj in U} ≤ γd(log n+ 1).
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Then

n∑
j=1

∣∣ξj(W )− ξj(W i−)
∣∣

≤
n∑
j=1

1

nXZ,j − 1
+

n∑
j=1

1

nY Z,j − 1

+

n∑
j=1

1

nZ,j − 1

≤
n∑
j=1

1

nXZ,j
+

n∑
j=1

1

nY Z,j

+
n∑
j=1

1

nZ,j
+ 3

≤ (γdXZ )(log n+ 1) + γdY Z (log n+ 1)

+ γdZ (log n+ 1) + 3

≤ γd(log n+ 1) + 3

where dXZ is the dimension of XZ, etc.

Combining all of these cases, we have

n∑
j=1

∣∣∣ξj(W )− ξj(W (i))
∣∣∣

≤ (4 log n+ 4) + 16 + kγd(4 log n+ 4)

+ γd(log n+ 1) + 3

≤ 36kγd log n



CHAPTER 4. MIXED CONDITIONAL MUTUAL INFORMATION 74

for n ≥ 2, k ≥ 1 (and d ≥ 3 so γd ≥ 3). Using Stein-Efron inequality,

Var
(
În(W )

)
≤ 1

2

n∑
i=1

E
[
În(W )− În(W (i))

]2

=
1

2

n∑
i=1

E

∣∣∣∣∣∣ 1n
n∑
j=1

ξj(W )− 1

n

n∑
j=1

ξj(W
(i))

∣∣∣∣∣∣
2

≤ 1

2n2

n∑
i=1

E

 n∑
j=1

∣∣∣ξj(W )− ξj(W (i))
∣∣∣
2

≤ 1

2n2

n∑
i=1

E

 n∑
j=1

sup
W

∣∣ξj(W )− ξj(W i−)
∣∣2

≤ 1

2n2

n∑
i=1

E [36kγd log n]2

=
648k2γ2

d(log n)2

n

→ 0.

The last step uses l’Hospital’s rule twice.

4.6.3 Proof of Corollary 2

Proof. From the proof in theorem 4.3.2, it is easy to verify that

sup
w1,...wn,w′i

∣∣∣În(W )− În(W (i))
∣∣∣

≤ 2

n
sup

w1,...wn

n∑
j=1

∣∣ξj(W )− ξj(W i−)
∣∣

≤ 72kγd log n

n
.
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So, În satisfies the bounded difference property. Using the bounded difference in-

equality ([74, Theorem 6.2]) with

v =
1296k2(log n)2

n
,

we bound the one-sided probability by exp
{
−t2/(2v)

}
and simply multiply this

value by a factor of 2.

4.6.4 Proof of Theorem 4.3.3

Proof. Let (x, y, z) be an arbitrary point in the domain of (X,Y, Z). Choose r ≥ 0

if (x, y, z) is a discrete point and r > 0 if (x, y, x) is a continuous point. Recall

that we define PZ(r) ≡ PZ(B(z, r)). Proceeding by contradiction, assume that

limd→∞ PZ(r) > 0; that is, there exists a δ > 0 such that for every D > 0, there

is a d ≥ D such that PZ(r) > δ. B(z, r) is a d-dimensional, `∞-ball so it can be

written as the product of d sets. Defining Zk ≡ (Zk−1, · · · , Z1) for k = 1, 2, . . . , d.

PZk|Zk(r) ≡ P(Zk ∈ πk(B(z, r))|Zk ∈ πk(B(z, r))) where πk is the projection on to

the kth coordinate and πk is the projection on to the k−1, . . . , 1 coordinates. Then

we have that
d∏

k=1

PZk|Zk(r) = PZ(r) > δ.

Then

lim
d→∞

d∑
k=1

logPZk|Zk(r) > log δ > −∞.

For each k, logPZk|Zk(r) ≤ 0 so logPZk|Zk(r) → 0 as d → ∞ using the fact that

ai ≥ 0,
∑∞

i=1 ai < M for some M ⇒ ai → 0.

Choose ε > 0 and let Q be a finite partition of the domain of Z into sets with

positive measure in PZ . Because z and r were chosen arbitrarily in the previous

part, then for each Q ∈ Q, there is a point zQ in the domain of Z and distance

rQ such that B(zQ, rQ) ⊆ Q. Then there must be a dQ such that for every k ≥
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dQ, − logPZk|ZK (B(zQ, rQ)) ≤ ε
‖Q‖ because logPZk|ZK (B(zQ, rQ)) → 0 for each Q.

Choosing k ≥ maxQ∈Q dQ, we have that

∑
Q∈Q
−PZkZk(Q) logPZk|Zk(Q)

≤
∑
Q∈Q
− logPZk|Zk(Q)

≤
∑
Q∈Q
− logPZk|ZK (B(zQ, rQ))

≤
∑
Q∈Q

ε

‖Q‖
= ε.

Let {Ql : l = 1, 2, . . . } be a sequence of increasingly fine partitions of the domain

of Z into sets with positive measure in PZ . Using [45, Lemma 7.18], we have that

H(Zk|Zk) = lim
l→∞

∑
Q∈Ql

−PZkZk(Q) logPZk|Zk(Q) ≤ ε.

Using Cesàro’s lemma (ai → a⇒ 1
n

∑n
i=1 ai → a),

lim
d→∞

1

d
H(Z) = lim

d→∞
H(Zd|Zd) ≤ ε.

But, ε was chosen arbitrarily, so

lim
d→∞

1

d
H(Z) = 0,

a contradiction. Thus, limd→∞ PZ(r) = 0 for all z in the domain of Z.

Again, by contradiction, assume that PZ(ρk)
P−→ 1 as d→∞. Then

∞∑
d=1

logPZd|Zd(ρk) = log

( ∞∏
l=d

PZd|Zd(ρk)

)

= log (PZ(ρk))
P−→ 0
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using the continuous mapping theorem. But, the sum of non-positive values can

converge to zero only if logPZd|Zd(ρk) = 0 for each d with probability one. Then

PZ(ρk) = 1 for each finite d.

Fix d. For PZ(ρk) = PZ(B(z, ρk)) = 1, B(z, ρk) must include the support of

Z. Then kNN (in the XY Z space) must be on a boundary of the domain of Z

and ρk, the `∞, kNN distance in XY Z, must be at least half of diameter of the

domain of Z with probability one. Because all observations are independent of each

other and identically distributed, all Z-coordinates within the sample must also be

on the boundary of the domain of Z with probability one. If Z were continuous,

then the boundary would have measure zero, indicating that each coordinate of Z

must be discrete. Note that Z coordinates need not be binary if using a discrete

scalar distance metric for non-numeric, categorical variables. If the support of Z

contains more than one point, then ties are possible with positive probability, and

ρk = 0 with positive probability and PZ(B(z, ρk)) < 1. Then Z must have support

on one point, again contradicting a non-zero entropy rate for Z. This indicates that

limd→∞ PZ(ρk) < 1.

Using this fact, there must be an r such that for each d ≥ 1, PZ(ρk) ≤ PZ(r) < 1,

so that PZ(ρk) ≤ PZ(r)→ 0 as d→∞.

Finally, because PZ(ρk) ≥ PXY Z(ρk), we must have

PZ(ρk)− PXY Z(ρk)

1− PXY Z(ρk)

P−→ 0

as d → ∞. Recall that nZ − k has a binomial distribution with the probability

parameter stated above which converges to zero. From here, it is easy to see that

nZ
D−→ k (converges in distribution) as d → ∞. Because nZ is converging to a

constant, we also have nZ
P−→ k. But, k ≤ k̃, nXZ , nY Z ≤ nZ , so k̃, nXZ , nY Z

P−→ k

as well. By the continuous mapping theorem, for each sample point,

ξi = ψ(k)− ψ(nXZ)− ψ(nY Z) + ψ(nZ)
P−→ 0
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so that

Îprop(X;Y |Z) =
1

n

n∑
i=1

ξi
P−→ 0.

4.6.5 Auxiliary Lemmas

Proposition 4.6.1. Let (X, 2X , µ) be a discrete measure space with µ(X) = C <∞.

Then for every ε > 0, there exists a finite set E such that µ(X\E) < ε and each

point in E has non-zero measure.

Proof. If X is finite, the problem is trivial. Assume X in infinite. Without loss

of generality, remove any zero-measure points from X. Because (X, 2X , µ) is dis-

crete, X must be countable so we number each point in X. We must have that∑∞
i=1 µ(xi) = C. Then there must be a positive integer, N , such that for each n ≥ N ,

C −
∑n

i=1 µ(xi) < ε. Let E = {xi : 1 ≤ i ≤ N}. Then µ(X\E) = µ(X) − µ(E) =

C −
∑N

i=1 µ(xi) < ε.

Proposition 4.6.2. Assume Wn ∼ Binomial(n, p), then

E
[

1

Wn + 1

]
=

1− (1− p)n+1

(n+ 1)p
≤ 1

np
(4.52)
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Proof.

E
[

1

Wn + 1

]
=

n∑
m=0

1

m+ 1

(
n

m

)
pm(1− p)m−n

=
1

(n+ 1)p

n∑
m=0

(
n+ 1

m+ 1

)
pm+1(1− p)n−m

=
1

(n+ 1)p

n∑
m=1

(
n+ 1

m

)
pm(1− p)n+1−m

=
1

(n+ 1)p
[1− P(Xn+1 = 0)]

=
1− (1− p)n+1

(n+ 1)p

Proposition 4.6.3. Let W ∼ Binomial(n, p) then

∣∣∣∣E [log

(
W + k

np+ k

)]∣∣∣∣ ≤ 1

np+ k
(4.53)

Proof. Using Taylor’s theorem to expanding log(x) about np + k, there exists c ∈

[x, np+ k] such that

log(x) = log(np+ k) +
x− np− k
np+ k

− (x− np− k)2

2c2
. (4.54)

Plugging in W + k for x and aggregating the log terms,

log

(
W + k

np+ k

)
=
W − np
np+ k

− (W − np)2

2c2
. (4.55)

Taking the expected value of both sides, the first-order term drops out,

E
[
log

(
W + k

np+ k

)]
= E

[
−(W − np)2

2c2

]
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for some c ∈ [np+ k,W + k]. Notice that E
[
log
(
W+k
np+k

)]
≤ 0 for all c, so that

∣∣∣∣E [log

(
W + k

np+ k

)]∣∣∣∣ ≤ E
[

max
c∈[np+k,W+k]

{
(W − np)2

2c2

}]
. (4.56)

Because 1
2c2

is monotonic, (W−np)2
2c2

is optimized at the boundary values of c = np+k

and c = W + k. If c = np+ k,

E
[

(W − np)2

2c2

]
=

np(1− p)
2(np+ k)2

≤ np+ k

2(np+ k)2

=
1

2(np+ k)

using E[(W − np)2] = Var(W ) = np(1− p).

If c = W + k and k ≤ np, we use
∑n

j=0

(
n+2
j+2

)
pj+2(1 − p)n−j = P(V ≥ 2) where

V ∼ Binomial(n+ 2, p), so that

E
[

(W − np)2

2(W + k)2

]
=

1

2

n∑
j=0

(j − np)2

(j + k)2

(
n

j

)
pj(1− p)n−j

≤ 1

2

n∑
j=0

(j − np)2

(j + 2)(j + 1)

(
n

j

)
pj(1− p)n−j

=
1

2

n∑
j=0

(j − np)2

(n+ 2)(n+ 1)p2

(
n+ 2

j + 2

)
pj+2(1− p)n−j

≤
E
[
(V − np)2

]
2(n+ 2)(n+ 1)p2

=
(n+ 2)p(1− p) + 4p2

2(n+ 2)(n+ 1)p2

≤ (n+ 2)p

2(n+ 2)(n+ 1)p2

≤ 1

2np
≤ 1

np+ k
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for n ≥ 4, k ≥ 2 using k ≤ np in the last step.

If c = W + k ≥ k and np ≤ k, so

E
[

(W − np)2

2c2

]
≤ E

[
(W − np)2

2k2

]
=
np(1− p)

2k2

≤ 1

2k
≤ 1

np+ k

Putting this together,∣∣∣∣E [log

(
W + k

np+ k

)]∣∣∣∣
≤ max

{∣∣∣∣E [(W − np)2

2c2

]∣∣∣∣ , ∣∣∣∣E [(W − np)2

2(W + k)2

]∣∣∣∣}
= max

{
1

2(np+ k)
,

1

np+ k

}
=

1

np+ k

(4.57)

Lemma 4.6.4. Assume Wn − k ∼ Binomial(n− k − 1, p) and k ≥ p
1−p . Then

|E [log(Wn)]− log(np)| ≤ 1

k
+

k

np
(4.58)

and

|E [ψ(Wn)]− log(np)| ≤ 2

k
+

k

np
(4.59)

Proof. Using the triangle inequality,

|E [ψ(Wn)]− log(np)|

≤ E [|ψ(Wn)− logWn|] + |E [log(Wn)]− log(np)| .
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Using lemma 4.6.3, and the fact that | log(w)| ≤ w − 1 for w > 1, we have that

|E [log(Wn)]− log(np)|

≤ |E [log(Wn)]− log((n− k − 1)p+ k)|

+ |log((n− k − 1)p+ k)− log(np)|

=

∣∣∣∣E [log

(
Wn

(n− k − 1)p+ k

)]∣∣∣∣
+ log

(
(n− k − 1)p+ k

np

)
≤ 1

(n− k − 1)p+ k
+

(n− k − 1)p+ k

np
− 1

≤ 1

k
+

k

np
.

Because k ≥ p
1−p , (n− k − 1)p+ k ≥ np.

Because |ψ(w)− log(w)| < 1
w for w > 0 and Wn ≥ k, E [|ψ(Wn)− logWn|] <

E
[

1
Wn

]
≤ 1

k . So,

|E [ψ(Wn)]− log(np)| ≤ 2

k
+

k

np
.

Lemma 4.6.5. Let V be a d-dimensional random variable on the probability space

(V,BV , P ) with V =
∏
i∈I V ⊆ Rd where I = {1, . . . , d} and for nonempty J ⊆ I, let

PJ = PVi:i∈J . Assume that the support of P is V and that for any nonempty J ⊆ I,

the set

DJ =

{
w ∈

∏
i∈J
Vi : PJ({w}) > 0

}

is countable and nowhere dense in
∏
i∈J Vi. Let v1, . . . , vn ∼ P be an independent

sample in V, and for a point v ∈ V, define k̃(v) = |{vi : ‖v − vi‖∞ ≤ ρv}| where ρv

is the distance to the kth nearest neighbor to v in the sample. If k
n → 0, and n→∞

then

k̃(V )→ k almost surely
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given that V ∈ C ≡ {v ∈ V : P ({v}) = 0}

Proof. For each J ⊆ I, DJ is countable, so we can index it with the positive integers.

Using contradiction, assume that some ordering is a Cauchy sequence; that is, for

every ε > 0, there is a positive integer N such that for all integers l,m ≥ N ,

‖al − am‖∞ < ε. But, all Cauchy sequences converge in the complete metric space

([76, Theorem 3.11]), (Rd, `∞), so for some a, ai → a as i → ∞, a contradiction

since Dj is nowhere dense in W . Thus, for each J , there is a ζJ > 0 such that for

any two points, al, am ∈ DJ , ‖al − am‖∞ ≥ ζJ . I is finite, so ζ ≡ minJ⊆I{ζJ}
3 exists.

In (Rd, `∞), if ‖a− b‖∞ = ‖a− c‖∞, then there must be at least one coordinate,

i, such that a(i) − b(i) = a(i) − c(i) ≡ r (where the vectors are function mapping

the coordinate(s) to its coordinate value(s)) and for all other coordinates, j 6= i,

a(j) − b(j), a(j) − c(j) ≤ r. This can only happen when a(i), b(i), c(i) ∈ Di; they

have a positive point mass so ties are possible. Consider a case where there are

discrete points, Pi({w(i)}) > 0 for some coordinates, i ∈ J , but will not have

any ties in distance. Suppose A = {(a(i) : i ∈ I)} is a subset in the support of P

with positive measure such that the marginal distribution on A is discrete for the

coordinates in J and continuous for coordinate in I\J ; that is, Pi({a(i)}) > 0 when

i ∈ J and Pi({a(i)}) = 0 when i ∈ I\J . Assume that for some point (b(i) : i ∈ J)

in a subspace of A, PJ((bi : i ∈ J)) > 0, then the subset of A restricted to equal

(b(i) : i ∈ J) on J ,

B ≡ {(a(i) : i ∈ I) ∈ A : a(i) = b(j), j ∈ J} ,

also has a positive probability. If the random sample has values vm, vl ∈ B and

another arbitrary point b ∈ B, then

P (‖vm − b‖∞ = ‖vl − b‖∞) = 0.

This is because the scalar values of vm(i), vl(i) and b(i) are equal for i ∈ J while
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for i ∈ I\J , vm(i), vl(i) and b(i) are from a continuous distribution, so equal with

probability zero with each positive scalar distances. Further, if there are at least k

sample points in B, each will have a distinct `∞-distance to b for the same reason.

Thus, k̃(b) = k with probability one.

Generalizing on this point, let v ∈ C and let J = {i ∈ I : Pi({v(i)}) = 0}. Define

BJ(v, δ) ⊆ V to be the Cartesian product of [v(i)− δ, v(i) + δ] for i ∈ J and {v(i)}

for i ∈ I\J ,

BJ(v, δ) =
∏
i∈J

[v(i)− δ, v(i) + δ]×
∏
i∈I\J

{v(i)}.

VJ may have positive point masses among continuous points. Because DJ is nowhere

dense in VJ , there is δv > 0 such that DJ ∩ πJ(BJ(v, δv)) = ∅ (where πJ is the

projection onto J) and PJ(BJ(v, δv)) > 0. Notice that if there are more than k

sample points in B(v, δv) then k̃(v) = k.

Let W = {v ∈ C : δv ≥ ζ} and fix w ∈ W . Let ε ∈ [ζ, 0) and ρv be the `∞-

distance from v to its kNN in the sample v1, . . . , vn. Choose N large enough so that

for all n ≥ N , k
n ≤ P (BJ(v, ε)). Then using Chernoff’s bound,

P(ρv > ε) = P(Binomial(n, P (v, ε)) ≤ k)

≤ exp

{
−
(

1

2
nP (v, ε)− k

)}
.

So,
∑∞

n=1 P(ρv > ε) < ∞. Using the Borel-Cantelli lemma, [46, Lemma 2.2.4],

ρv → 0 almost surely as n→∞.

Notice that

P(ρV > ε|V ∈W ) =

∫
W

P(ρv > ε)dP (v).

Using the Lebesgue dominated convergence theorem, with the fact that for each

n,P(ρv > ε) ≤ 1 for all v ∈ W and P(ρv > ε) → 0 almost surely, we have P(ρV >

ε|V ∈ W )→ 0 almost surely as n→∞. Then k̃(V )→ k given that V ∈ W almost

surely as n→∞.
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Consider

C\W = {v ∈ C : δv < ζ} .

For each v ∈ C\W , there must be J ⊆ I such that

D ≡ (DJ × {v(I\J)}) ∩BJ(v, ζ) 6= ∅.

There may be points x ∈ D such that P ({x}) = 0. Notice that

C\W =
⋃
x∈D

B(x, ζ).

Similarly, for each x ∈ D, there is J ⊆ I such that x(J) ∈ DJ . Because D ⊆⋃
J⊆I(DJ × DI\J), D is countable. By choice of ζ, for every two points a, b ∈ D,

‖a− b‖∞ > ζ, so i 6= j, B(xi, ζ) ∩B(xj , ζ) = ∅.. With both of these,

P

(⋃
x∈D

B(x, ζ)

)
=
∞∑
i=1

P (B(xi, ζ)) .

For xi ∈ D, for all v ∈ B(xi, ζ), there is no J , such that v(J) ∈ DJ be-

cause of choice of ζ. Stated differently, for each J ⊆ I, P ({v(J)}) = 0. Con-

sequently, there can be no ties in distance to points other than xi. Let Kxi =

{v ∈ B(xi, ζ)\{xi} : xi ∈ B(v, ρv)} Using [75, Corollary 6.1], |Kxi | ≤ kγd where γd

is a function of only the dimension d. Let pi = P (B(xi, ζ)\{xi}), then

P
(
k̃(v) > k : v ∈ B(xi, ζ)\{xi}

)
≤ P(xi ∈ B(v, ρv))

= P(v ∈ Kxi).

This probability depends on the number of sample points that fall into B(xi, ζ).
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Looking at the random variable and using Chernoff,

P(k̃(V ) > k|V ∈ B(xi, ζ)\{xi})

≤ P(V ∈ Kxi |V ∈ B(xi, ζ)\{xi})

= P (Binomial(n, pi) ≤ kγd)

≤ exp

{
−
(

1

2
npi − kγd

)}
.

So,
∑∞

n=1 P(k̃(V ) > k|V ∈ B(xi, ζ)\{xi}) < ∞. Using the Borel-Cantelli lemma,

[46, Lemma 2.2.4], k̃(V )→ k given that V ∈ C\W almost surely as n→∞.

Lemma 4.6.6. Let Fρ(r) be the probability that the distance to a point’s kNN in

a sample of n points is ρ ≤ r and let PW (r) be the probability mass of the ball of

radius r centered at the same point. Then

dFρ
dPW

(r) =
(n− 1)!

(k − 1)!(n− k − 1)!
×

[PW (r)]k−1 [1− PW (r)]n−k−1 .

(4.60)

Proof. Let ρ1, . . . , ρn−1 be the ordered distances from the point of interest. The

probability that kth largest distance is at least r is

P (ρk ≤ r)

= P (I(ρi ≤ r) ≥ k)

=
n−1∑
j=k

P (I(ρi ≤ r) = j)

=
n−1∑
j=k

(
n− 1

j

)
[PW (r)]j [1− PW (r)]n−j−1 .
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Taking the derivative with respect to Pw(r) ≡ p,

dFρ
dp

=
n−1∑
j=k

(
n− 1

j

)
d

dp

[
pj(1− p)n−j−1

]
=

n−1∑
j=k

(
n− 1

j

)
[jpj−1(1− p)n−j−1

− pj(n− j − 1)(1− p)n−j−2]

=

n−1∑
j=k

(n− 1)!

(j − 1)!(n− j − 1)
pj−1(1− p)n−j−1

−
n−1∑
j=k

(n− 1)!

j!(n− j − 2)
pj(1− p)n−j−2

=
(n− 1)!

(k − 1)!(n− k − 1)!
pk−1(1− p)n−k−1.

The last equality follows from realizing that all terms cancel except for j = k in the

first term.

Proof of Theorem 4.2.1. We construct the product measure, µ by looking at the

scalar coordinates of V ≡ (V1, . . . , Vd) over its product space, V ≡ V1×V2×· · ·×Vd.

If Vi is not a subset of R, Vi is categorical and we use a zero-one distance metric.

So that we can work exclusively in Rc for some positive integer c, we create dummy

indicators for all categories except one; this preserves the `∞ metric for categorical

variables. Recall that the marginal measure for any scalar coordinate is PVi(A) =

PV (V1 · · ·×Vi−1×A×Vi+1×· · ·×Vd) where A ⊆ Vi. For each i = 1, . . . , d, redefine Vi

by restricting it to the support of PVi and BVi the corresponding σ-algebra. Partition

Vi into its discrete and continuous parts. For a set A contained within the support of

a random variable, U , let CU (A) = {x ∈ A : PU (x) = 0} be the continuous partition

and DU (A) = {x ∈ A : PU (x) > 0}, which is countable by assumption. Clearly

CU (A) ∪ DU (A) = A and CU (A) ∩ DU (A) = ∅ for all random variables U . Let
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λ be the Lebesgue measure and ν be the counting measure. Define the measure

µi : BVi → [0,∞) to be λ+ νi, where νi(CVi(Vi)) = 0 and the counting measure on

DVi(Vi), νi(DVi(Vi)) = ν(DVi(Vi)). It is easy to see that µi is a well-defined measure

on the measurable space, (Vi,BVi) because both the counting measure and Lebesgue

measures are well-defined, as is their sum. Define a measure µ : BV → R as the

product measure, µ = µ1 × µ2 × · · · × µd.

With the construction complete, we now show that PV � µ. We begin by

showing that for each coordinate, j = 1, . . . , d, PVj � µj . Let j = 1, . . . , d and A ∈

BVi with µj(A) = 0. Consider the continuous and discrete partitions, CVj (A) and

DVj (A), respectively. By definition, λ(CVj (A)) + νj(DVj (A)) = 0 so λ(CVj (A)) = 0

and νj(DVj (A)) = 0. If the coordinate project for j has a nonempty continuous

partition, then PVj � λ on CVj (Vj), so PVj (CVj (A)) = 0. Also, 0 = νj(DVj (A)) =

ν(DVj (A)), so DVj (A) = ∅, so PVj (DVJ (A)) = 0. Then PVj (A) = PVj (CVj (A)) +

PVj (DVj (A)) = 0

Proceeding by mathematical induction, we already have PV1 � µ1. Assume that

PV1...Vj � µ1 × · · · × µj ≡
∏j
i=1 µi and that for some A ∈ BV1...VjVj+1 (the prod-

uct σ-algebra) (
∏j+1
i=1 µi)(A) = 0. Let Av1,...,vj = {vj+1 : (v1, . . . , vj , vj+1) ∈ A} and

Avj+1 = {(v1, . . . , vj) : (v1, . . . , vj , vj+1) ∈ A}. LetA1 = V1×· · ·×Vj
{
vj+1 : PV1...Vj (Avj+1) > 0

}
and A2 =

{
(v1, . . . , vj) : PVj+1(Av1,...,vj ) > 0

}
× Vj+1.

Using Fubini’s theorem,

0 =

(
j+1∏
i=1

µi

)
(A)

=

(
j∏
i=1

µi × µj+1

)
(A)

=

∫
Vj+1

(
j∏
i=1

µi

)
(Avj+1)dµj+1(vj+1).

Using [46, Lemma 1.3.8], f ≥ 0,
∫
fdµ = 0 ⇒ µ {x : f(x) > 0} = 0, we must
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have

0 = µj+1

({
vj+1 :

(
j∏
i=1

µi

)
Avj+1) > 0

})

= µj+1

(
Vj+1\

{
vj+1 :

(
j∏
i=1

µi

)
(Avj+1) = 0

})

≥ µj+1

(
Vj+1\

{
vj+1 : PV1...Vj (Avj+1) = 0

})
.

The last inequality follows because PV1...Vj �
∏j
i=1 µi implies that

{
vj+1 :

(
j∏
i=1

µi

)
(Avj+1) = 0

}
⊆
{
vj+1 : PV1...Vj (Avj+1) = 0

}
. (4.61)

Then µj+1

(
Vj+1\

{
vj+1 : PV1...Vj (Avj+1) = 0

})
= 0. But, PVj+1 � µj+1 implies that

0 = PVj+1

(
Vj+1\

{
vj+1 : PV1...Vj (Avj+1) = 0

})
= PVj+1

({
vj+1 : PV1...Vj (Avj+1) > 0

})
= PV1...VjVj+1(A1).

Using the same procedure but switching
∏j
i=1 µi and µj+1 and correspondingly,

switching PV1...Vj and PVj+1 , it is easy to show that

0 = PV1...Vj
({

(v1, . . . , vj) : PVj+1(Av1,...,vj ) > 0
})

= PV1...VjVj+1(A2).

Now, consider the set of points (v1, . . . , vj , vj+1) such that each coordinate sat-

isfies PVj+1(Av1,...,vj ) = 0 and PV1...Vj (Avj+1) = 0; call this set, A3. Showing that
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P (A3) = 0, consider the set of points, (a1, . . . ad) ∈ B ⊆ V such that

PVj+1...Vd


A× d∏

i=j+2

Vi


(a1,...,aj)

 = 0

and

PV1...Vj


A× d∏

i=j+2

Vi


(aj+1,...,ad)

 = 0.

Let (b1, . . . , bd) ∈ A3 ×
∏d
i=j+2 Vi. Then

PVj+1...Vd


A× d∏

i=j+2

Vi


(b1,...,bj)


= PVj+1...Vd

A(b1,...,bj) ×
d∏

i=j+2

Vi


= PVj+1

(
A(b1,...,bj)

)
= 0

and

PV1...Vj


A× d∏

i=j+2

Vi


(bj+1,...,bd)


= PV1...Vj

(
Abj+1

)
= 0.

Then

A3 ×
d∏

i=j+2

Vi ⊆ B.

Because PV is non-singular, PV (B) = 0, so

PV

A3 ×
d∏

i=j+2

Vi

 = PV1...VjVj+1(A3) = 0.
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Now, A ⊆ A1 ∪A2 ∪A3 implies that

PV1...VjVj+1(A)

≤ PV1...VjVj+1(A1 ∪A2 ∪A3)

≤ PV1...VjVj+1(A1) + PV1...VjVj+1(A2)

+ PV1...VjVj+1(A3)

= 0,

so PV1...VjVj+1(A) = 0. Thus, by mathematical induction, for any positive integer,

d, we have that PV � µ.

Lemma 4.6.7. Let µ and ν be nonsingular probability measures on (Rd,B) such

that ν � µ and assume {x : µ({x}) > 0} is nowhere dense in Rd. Let B(x, r) be a

ball of radius r centered at x. If µ({x}) > 0 then

dν

dµ
(x) =

ν({x})
µ({x})

otherwise
dν

dµ
(x) = lim

r→0

ν(B(x, r))

µ(B(x, r))
. (4.62)

Proof. If µ({x}) > 0, then dν
dµ(x) = ν({x})

µ({x}) :

∫
{x}

ν({x})
µ({x})

dµ =
ν({x})
µ({x})

µ({x}) = ν({x}).

If µ({x}) = 0 and in the support of µ, there must be some δ > 0 such that for

every y ∈ B(x, δ), µ({y}) = 0 because {x : µ({x}) > 0} is nowhere dense in Rd and

µ(B(x, δ)) > 0. Notice that some coordinates of x = (x1, . . . , xd) may be discrete but

there must be at least one continuous coordinate in order for µ({x}) = 0. Let Icont be

the index of continuous coordinates of x and Idisc be the index of discrete coordinates

of x. Using the proof of lemma 4.2.1, each coordinate of Icont will be dominated by
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the Lebesgue measure within B(x, δ). Again, because {x : µ({x}) > 0} is nowhere

dense in Rd,

δdisc ≡ min
y∈Supp(µ)

{
‖xdisc − ydisc‖`∞ : xdisc 6= ydisc

}
> 0

where zdisc ≡ (zi : Idisc) for z = x, y. If δ > δdisc, then redefine δ = δdisc. Now xdisc

is constant within B(x, δ) and homeomorphic to a subset of Ra for some integer

a ≤ d with the corresponding Lebesgue measure. Then µ � λ on B(x, δ) where λ

is Lebesgue on the support of µ and zero otherwise so that λ � µ as well. Using

[76, Theorem 7.8],
dν

dλ
(x) = lim

r→0

ν(B(x, r))

λ(B(x, r))

and
dµ

dλ
(x) = lim

r→0

µ(B(x, r))

λ(B(x, r))
.

Notice that µ� λ and λ� µ⇒ dµ
dλ (x) > 0. Then

dν

dµ
(x) =

(
dν

dλ

dλ

dµ

)
(x)

=

[
dν

dλ

(
dλ

dµ

)−1
]

(x)

=

(
lim
r→0

ν(B(x, r))

λ(B(x, r))

)(
lim
r→0

µ(B(x, r))

λ(B(x, r))

)−1

= lim
r→0

ν(B(x, r))

µ(B(x, r))
.

Lemma 4.6.8. Assume 0 < f ≤ C, for some C > 0 if PXY Z({(x, y, z)}) > 0 then

f(x, y, z) =
PXY Z({(x, y, z)})PZ({z})
PXZ({(x, z)})PY Z({(y, z)})
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otherwise
PXY Z(r)PZ(r)

PXZ(r)PY Z(r)
→

dPXY |Z

d(PX|Z × PY |Z)
(4.63)

(converges pointwise) as r → 0 and

PXY Z(r)PZ(r)

PXZ(r)PY Z(r)
≤ C (4.64)

almost everywhere [PX|Z × PY |Z ].

Proof. From lemma 4.2.1, for a random variables, U and V define µU × µV = µUV .

Based on definitions from [45, §7.1 and §7.2], define pUV = dPUV
dµUV

, pV = dPV
dµV

, and

pU |V = pUV
pV

. Note that µUV is not a probability measure, but for brevity, we define

µU |V (A|v) = µU (A) for A in the support of U and v in the support of V so that

PU |V and µU |V have the same support.

From lemma 4.2.1, PXY |Z � µXY |Z . Because PX|Z has the same support as

µX|Z , µX|Z � PX|Z ; similarly, PY |Z has the same support as µY |Z , so µY |Z � PY |Z .

Using a proof similar to that of lemma 4.2.1, µX|Z × µY |Z � PX|Z × PY |Z . But,

µXY |Z = µX|Z × µY |Z because it is a product measure.
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Using properties of RN derivatives so that

dPXY |Z

d(PX|Z × PY |Z)

=
dPXY |Z

d(µX|Z × µY |Z)

d(µX|Z × µY |Z)

d(PX|Z × PY |Z)

=
dPXY |Z

dµXY |Z

[
d(PX|Z × PY |Z)

d(µX|Z × µY |Z)

]−1

=
dPXY |Z/dµXY |Z

d(PX|Z × PY |Z)/d(µX|Z × µY |Z)

=
dPXY |Z/dµXY |Z

(dPX|Z/dµX|Z)(dPY |Z/dµY |Z)

=

dPXY Z
dµXY Z

/dPZdµZ(
dPXZ
dµXZ

/dPZdµZ

)(
dPY Z
dµY Z

/dPZdµZ

)
=

dPXY Z
dµXY Z

dPZ
dµZ

dPXZ
dµXZ

dPY Z
dµY Z

=
d(PXY Z × PZ)/d(µXY Z × µZ)

d(PXZ × PY Z)/d(µXZ × µY Z)

=
d(PXY Z × PZ)

d(PXZ × PY Z)
.

Applying lemma 4.6.7 completes the first claim.

Second, note that g ≡ dν
dµ ≤ C implies that for any set A such that µ(A) >

0, ν(A)
µ(A) ≤ C. To see this, ν(A) =

∫
A gdµ ≤

∫
ACdµ = Cµ(A). So, the second claim

holds as well.

Lemma 4.6.9. Assume Wn,r−k ∼ Binomial
(
n− k − 1, q(r)−p(r)1−p(r)

)
where p(r), q(r)

are probabilities, and for all r, p(r) ≤ q(r). Then

∣∣∣∣∫ ∞
0

E [ψ(Wn,r)]− log(nq(r))dFρ(r)

∣∣∣∣ < 3

k − 1
(4.65)
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and

∣∣∣∣∫ ∞
0

E [log(Wn,r)]− log(nq(r))dFρ(r)

∣∣∣∣ < 2

k − 1
. (4.66)

Proof. We suppress the arguments/subscripts, r and n for brevity through out this

proof. Using the triangle inequality, the fact that |ψ(w)− log(w)| ≤ 1
w ,

|E [ψ(Wn,r)]− log(nq(r))|

≡ |E [ψ(W )]− log(nq)|

≤ |E [ψ(W )]− E [log(Wn)]|

+

∣∣∣∣E [log(W )]− log

[
(n− k − 1)

(
q − p
1− p

)
+ k

]∣∣∣∣
+

∣∣∣∣log

[
(n− k − 1)

(
q − p
1− p

)
+ k

]
− log(nq)

∣∣∣∣
≤ E

[
1

W

]
+

∣∣∣∣∣∣E
log

 W

(n− k − 1)
(
q−p
1−p

)
+ k

∣∣∣∣∣∣
+ log

(n− k − 1)
(
q−p
1−p

)
+ k

nq


≤ 1

k
+

1

(n− k − 1)
(
q−p
1−p

)
+ k

+
k

np
− 1

≤ 2

k
+

k

np
− 1.

The penultimate step uses W ≥ k and proposition 4.6.3 for the first two terms. We

show the third term here, again using log(w) ≤ w − 1 for w ≥ 0 and
(
p(1−q)
q(1−p)

)
≤ 1:
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log

(n− k − 1)
(
q−p
1−p

)
+ k

nq


≤

(n− k − 1)
(
q−p
1−p

)
+ k

nq
− 1

=
k
(

1−q
1−p

)
+ (n− 1)

(
q−p
1−p

)
nq

− 1

=
k

np

(
p(1− q)
q(1− p)

)
+
n− 1

n

(
q − p
q(1− p)

)
− 1

=
k

np

(
p(1− q)
q(1− p)

)
+
n− 1

n

(
1− p(1− q)

q(1− p)

)
− 1

=

(
k

np
− n− 1

n

)(
p(1− q)
q(1− p)

)
+

1

n

≤ k

np
− n− 1

n
+

1

n
=

k

np
− 1.

Putting this all together,

∣∣∣∣∫ ∞
0

E [ψ(W )]− log(nq)dFρ

∣∣∣∣
≤
∫ ∞

0
|E [ψ(W )]− log(nq)| dFρ

≤
∫ ∞

0

(
2

k
+

k

np
− 1

)
dFρ

=
2

k
+
k

n

∫ ∞
0

1

p
dFρ − 1

=
2

k
+
k

n

(
n− 1

k − 1

)
− 1

≤ 2

k
+

k

k − 1
− 1 ≤ 3

k − 1

We complete the integration step using lemma 4.6.6 and two beta function iden-
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tities,

∫ ∞
0

1

p
dFρ

=

∫ 1

0

1

p

(n− 1)!

(k − 1)!(n− k − 1)!
pk−1(1− p)n−k−1dp

=
(n− 1)!

(k − 1)!(n− k − 1)!

∫ 1

0
pk−2(1− p)n−k−1dp

=
(n− 1)!

(k − 1)!(n− k − 1)!

(k − 2)!(n− k − 1)!

(n− 2)!

=
n− 1

k − 1
.

The second claim follows using a close but simpler argument.
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5.1 Introduction

Researchers frequently use data to glean information on causal pathways. In many

settings, collaborations combine regression results with expert understanding to

answer a scientific question. This paradigm works well to fine-tune when causal

pathways and structure are largely understood; however, this is not always the case.

In settings where causal connections between many variables are poorly understood,

causal discovery, methods for estimating the causal structure underlying a dataset,

may be of value for exploratory data analysis and hypothesis generation. For ex-

ample, with emerging infectious diseases within a populations, it may be helpful to

start with causal discovery to attempt to understand transmission pathways.

Interestingly, causal discovery is rarely seen in fields that apply data methods.

While the reasons for this are unclear, there may be several contributing factors.

Scientific journals tend to prefer articles that point to positive, conclusive results,

rather than exploratory outcomes. Consequently, this may also contribute to re-

duced exposure to and awareness of causal discovery methods with some scientific

communities, making it more less likely to be used. Another possible reason could

be that most causal discovery methods, other than reproducing kernel Hilbert space

estimators [5], are not able to handle mixed data, that is, data including both

discrete (or categorical) and continuous variables, or variables that include both

discrete and continuous values. Many datasets in applied fields are mixed. Finally,

most causal discovery methods offer no way to test the overall accuracy of results

or provide confidence sets of graph estimates, analogous to confidence intervals for

scalar estimates.

Despite these challenges, much research could stand to benefit from empirically

estimating the underlying causal structure of a dataset, or verifying held mental

models. Further, causal discovery can aid with hypothesis generation, understanding

causal mediation, and policy analysis .

Information theoretic measures such as entropy, mutual information, conditional
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mutual information, and Kullback-Leibler (KL) divergence are attractive for this

purpose for three primary reasons: First, this class of measures is well defined for

general random variables and vectors [45, Lemma 7.3]. Second, other than requiring

distributions be absolute continuous with respect to a reference product measure,

they place no conditions on distributions to accurately capture either uncertainty,

mutual or conditional independence, or similarity. Third, mutual information, con-

ditional mutual information, and KL divergence between a Bayesian factorization

and its full, joint distribution can all be decomposed into sums and differences of

entropies, providing a way to simplify complex structures.

In this paper, we develop a nonparametric, information-theoretic estimator for

quantifying the Kullback-Leibler divergence between a joint distribution and any

Bayesian factorization (DAG) of its variables. We show that this estimator is asymp-

totically Gaussian under some conditions for the ratio of the densities in question.

Having an approximate sampling distribution for the estimator allows for tests and

confidence sets. Paired with an algorithm to optimize the estimator graph diver-

gence score over the space of DAGs, one could test the accuracy of an optimal DAG

(Markov equivalence class) or compute a set of similarly likely Markov-equivalent

DAGs. In practice, this method could be helpful for exploratory scientific research.

We organize the paper as follows. Section 5.2 explains the graph divergence

metric. Section 5.3 briefly reviews past methods for estimating graph divergence

and related metrics. Section 5.4 develops a novel method for estimating graph

divergence for continuous random variables which obeys the central limit theorem.

Section 5.5 expands on the prior method to work with mixed variables.

5.2 Bayesian Factorization and Divergence

At a high level, information theory provides similarity metrics between probability

measures (or distributions). For example, ifX and Y are random variables, their mu-

tual information, I(X;Y ), quantifies the KL divergence between their joint proba-
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bility measure, PXY , and the product of their marginal probability measures, PXPY .

This case of KL divergence indicates the dependence of X and Y ; I(X;Y ) = 0 if

and only if PXY = PXPY . Similarly, with a third random variable, Z, the con-

ditional mutual information, I(X;Y |Z), is the KL divergence between PXY |Z and

PX|ZPY |Z , and quantifies the conditional mutual information between X and Y

given Z. With more variables, there are more possible factorizations indicating the

conditional independence relationships between them.

Let (X ,B, P ) be a d-dimensional probability space and for W ⊆ [d] := {1, . . . , d}

and V ⊆W , let PW be the marginal probability measure of P with respect W and

PW |V be the conditional probability measure of W with respect to V . We assume

that all conditional probability measures are regular [27, Section 4.1.3]. Let G be a

Bayesian network [6, Chapter 3], (also called a directed acyclic graph (DAG)) and

PG :=

d∏
j=1

PXj |pa(j) (5.1)

be a factorization of P according to G into conditional probability measures where

pa(j) are the parents of Xj in the graph.

Definition 5.2.1. The graph divergence between P and PG is

D(G) :=

∫
X

log

(
dP

dPG
(x)

)
dP (x) (5.2)

where dP
dPG

is the RN derivative of P with respect to PG.

In order for this definition to be well-defined, it is necessary that dP
dPG

exist. A

sufficient conditions for this is that the P is non-singular.

Definition 5.2.2. Let (X ,B, P ) be a d-dimensional probability space with X =∏
i∈[d]Xi, XJ :=

∏
i∈J Xi and PJ = PXJ for J ⊆ [d]. For A ⊆ X , and v = (vi : i ∈



CHAPTER 5. GRAPH DIVERGENCE 102

J) ∈ XJ , define the section of A with respect to v as

Av := {(ai : i ∈ [d]\J) : (ai : i ∈ [d]) ∈ A, ai = vj , i = j ∈ J} . (5.3)

P is non-singular if any subset set A ⊆ X and J ⊆ [d] such that for all a ∈ A,

PJ
(
A(ai:i∈[d]\J)

)
= 0 and P[d]\J

(
A(ai:i∈J)

)
= 0 implies P (A) = 0.

This condition ensures that the continuous part of a d-dimensional probability

measure does not concentrate on lower dimensional sets. For example, the joint mea-

sure of a continuous random variable and a deterministic functional transformation

is singular. This is not a problem for the discrete part of the probability measure

because its reference measure, the counting measure, is never zero. The following

theorem shows this is a sufficient condition for the existence of graph divergence.

Theorem 5.2.1. Let (X ,B, P ) be a d-dimensional probability space and PG a Bayesian

factorization corresponding to DAG, G. If P is non-singular, then P � PG and

the Radon-Nikodym derivative of P with respect to PG, dP
dPG

, exists and D(G) =∫
X log dP

dPG
dP is well-defined.

Just as the mutual and conditional mutual information metrics can be written

in terms of entropy, so can graph divergence. Let pa∗(j) = pa(j) ∪ Xj and for

W ∈ [d], let pW := dPW
dµW

be the density function or RN derivative of PW with respect

to its |W |-dimensional reference measure, µW
1. Using properties of conditional

probabilities and RN derivatives, the graph divergence can also be expressed in

terms of entropy.

Proposition 5.2.2. If P is a non-singular probability measure and G is a DAG,

then

D(G) = H(P )−
d∑
j=1

[
H(Ppa∗(j))−H(Ppa(j))

]
. (5.4)

1see appendix for details on reference measures for mixed probability measures
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Proof.

D(G) =

∫
X

log
dP

dPG
dP (5.5)

=

∫
X

log

 dP

d
(∏d

j=1 PXj |pa(j)

)
 dP (5.6)

=

∫
X

log

d
(
P
∏d
j=1 Ppa(j)

)
d
(∏d

j=1 Ppa∗(j)

)
 dP (5.7)

=

∫
X

log

(
p
∏d
j=1 ppa(j)∏d

j=1 ppa∗(j)

)
dP (5.8)

=

∫
X

log p−
d∑
j=1

[
log ppa∗(j) − log ppa(j)

]
dP (5.9)

= H(P )−
d∑
j=1

[
H(Ppa∗(j))−H(Ppa(j))

]
(5.10)

where µ is the reference product measure for P .

Note if a node, say j, has no parents, then pa(j) = ∅; in this case P∅ = 1,

vacuously, as expected. Being able to decompose graph divergence into entropy

components can provide intuition for the estimator and simplify estimation.

More generally, a DAG provides a succinct way to describe a set of conditional

independence relationships for the set of variables that comprise a joint probability

measure. For a faithful distribution (see [6, Def. 3.8]), a DAG having zero diver-

gence indicates that its corresponding set of conditional independence relationships

are a subset of the set of conditional independence relationships in the probability

measure. Because the presence of an edge within a DAG indicates dependence be-

tween variables, if one adds an edge to a zero-divergence DAG, the resulting DAG

will also have a divergence of zero with respect to the given probability measure. A

more in-depth treatment can be found in [6, Chapter 3]. Causal discovery attempts

to estimate the minimal (least number of edges) DAG of zero-divergence.
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5.2.1 Examples

Let (X ,B, P ) be a 5-dimensional probability space with random variables A,B,C,D

and E such that their joint distribution can be factored as

P(A,B,C,D,E) = P(A)P(B|A)P(C)P(D|BC)P(E|C). (5.11)

This factorization corresponds to the following DAG below:

A

B C

D E

G

In this case,

D (G) =

∫
X

log

(
dPABCDE

d
[
PAPB|APCPD|BCPE|C

]) dPABCDE (5.12)

=

∫
X

log

(
d [PABCDEP∅PAP∅PBCPC ]

d [PAPABPCPBCDPCE ]

)
dPABCDE (5.13)

=

∫
X

log

(
d [PABCDEPBC ]

d [PABPBCDPCE ]

)
dPABCDE (5.14)

= H(A,B) +H(B,C,D) +H(C,E)−H(A,B,C,D,E)−H(B,C) (5.15)

The mutual information between two random variables, X and Y , is a special

case of KL divergence between the joint distribution and the product of the marginal

distributions. It is straightforward to see that

I(X;Y ) =

∫
log

(
dPXY
d[PXPY ]

)
dPXY = H(X) +H(Y )−H(X,Y ). (5.16)

Similarly, conditional mutual information betweenX and Y conditioning on Z is also

a special case of KL divergence between the joint conditional distribution, PXY |Z
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and the marginal conditional distributions, PX|ZPY |Z ,

I(X;Y |Z) =

∫
log

(
dPXY |Z

d[PX|ZPY |Z ]

)
dPXY Z (5.17)

=

∫
log

(
d[PXY ZPZ ]

d[PXZPY Z ]

)
dPXY (5.18)

= H(X,Z) +H(Y,Z)−H(X,Y, Z)−H(Z) . (5.19)

5.3 Prior Estimation Methods

The estimation of information theoretic measures for discrete random variables can

be based on plug-in estimates, substituting the empirical distribution into the defin-

ing formulas. [77] showed that the plug-in entropy estimator for discrete random

variables with finite range (alphabet) is asymptotically Gaussian. For arbitrary

discrete random variables with a countable range, [78] further showed that plug-in

estimators for information theoretic measures are universally consistent. Unfortu-

nately, these estimates suffer from finite-sample bias, especially when the range of

a random variable is comparatively large [79].

Estimating information theoretic measures for continuous random variables with

plug-in estimators can be challenging because it requires estimating the underlying

distribution itself. Dmitriev and Tarasenko first proposed such an estimator for

functionals [54] for scalar random variables. Darbellay and Vajda [55], in contrast,

proposed an estimator mutual information based on frequencies in rectangular par-

titions. Nearest-neighbor methods of estimating information-theoretic quantities for

continuous random variables which evade the step of directly estimating a density go

back over thirty years, to [56], which proposed an estimator (KL) of the differential

entropy:

ĤKL(X) = −ψ(k) + ψ(n) + log cd,p +
d

n

n∑
i=1

log ρk,i,p (5.20)

where k is the kNN value, n is the sample size, ρk,i,p is the kNN distance in the `p
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metric, and cc,p := 2dΓ
(

1 + 1
p

)d /
Γ
(

1 + d
p

)
, the volume of a d-dimensional, `p-ball

of radius one [57]. [80] shows that, under some conditions, a weighted variation of

this estimator is asymptotically Gaussian. [59] builds on the original KL estimator to

estimate mutual information based on equation 5.16. With p =∞ in equation 5.20,

this method locally estimates H(X) + H(Y ) − H(X,Y ) for each observation by

calculating ρk,i,∞ for Ĥ(X,Y ) exactly as ĤKL(X,Y ). It estimates Ĥ(X) and Ĥ(Y )

differently by reusing the value of ρk,i,∞ from before and replacing the value of k

in these entropy estimates with n∗X,i and n∗Y,i, the number of sample points within

a radius ρk,i,∞ `∞-distance of the ith observation in the lower dimensional X and

Y subspaces. These modifications cause log cd,p = 0 and log ρk,i,∞ terms to exactly

cancel, making the estimator

ÎKSG(X;Y ) = ψ(k) + ψ(n)− 1

n

n∑
i=1

[
ψ(n∗X,i) + ψ(n∗Y,i)

]
. (5.21)

The original paper did not offer any proofs on consistency or distribution. [58] later

shows that both the KL and the KSG estimator are consistent along with their

mean-squared error (MSE) rates of convergence. The corresponding assumptions

and MSE rates were further developed in reference [81].

This modification is significant for this work because by only requiring count-

ing neighbors within a given radius of each observation, estimation for continuous

random variables becomes similar to that of discrete random variable with counting

identical values. This insight from [66], on estimating mutual information for mixed

data, informed the direction of this work. [67] expanded the previous method to

estimate graph divergence. Both papers show show that under some conditions,

their estimators are consistent along with convergences. [73] develops an estimator

for graph divergence based in kernel density estimation and obeys the central limit

theorem.
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5.3.1 Discrete Graph Divergence Estimation

Using the standard plug-in estimator for entropy (Antos, Kontoyiannis, 2001) and

(Girsanov, 1959), assume X ∼ P takes finitely many value and let X(1), . . . , X(n) ∼

P be an iid sample. Without loss of generality, assume X takes values in [K] and let

p(j) = P(X = j), kj :=
∣∣{i ∈ [n] : X(i) = j

}∣∣, and k(i) :=
∣∣{j ∈ [n] : X(j) = X(i)

}∣∣.
Then, defining 0 log 0 = 0,

Ĥn(X) =

K∑
j=1

p̂j log p̂j =

K∑
j=1

kj
n

log

(
kj
n

)
(5.22)

=
1

n

K∑
j=1

kj log kj − kj log n =
1

n

n∑
i=1

log k(i) − log n . (5.23)

For W ∈ [d], let k
(i)
W =

∣∣∣{j ∈ [n] : X
(j)
W = X

(i)
W

}∣∣∣; that is, the number of sample

points equal to X(i) on the coordinates in W . For each i ∈ [n], letting

ξ(i) = log k(i) − log n−
d∑
j=1

log k
(i)
pa∗(j) − k

(i)
pa(j), (5.24)

we can estimate graph divergence as

D̂n(G) = Ĥn(P )−
d∑
j=1

[
Ĥn(Ppa∗(j))− Ĥn(Ppa(j))

]
(5.25)

=
1

n

n∑
i=1

ξ(i) . (5.26)

Theorem 5.3.1. Let X ∼ P be a d-dimensional random variable taking finitely

many values, and G be a DAG on the coordinates of X. If X(1), . . . , X(n) ∼ P , then

√
n
(
D̂n(G)−D(G)

)
 N(0, V (G)) (5.27)

where V (G) = Var (log f(X)).
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Proof. Because D̂(G) is a linear combination of entropy estimates, each of which is

asymptotically Gaussian, D̂(G) must also be asymptotically Gaussian as well.

5.4 Continuous Graph Divergence Estimation

Let X ,B, P be a d-dimensional probability space such that X ⊆ R and P �

λ, (P is absolutely continuous with respect to Lebesgue measure). Let Xn =

{X(1), X(2), . . . , X(n)} ∼ P be an i.i.d. sample from P . For W ⊆ [d] := {1, 2, . . . , d},

let XW = (Xj : j ∈W ). For k ∈ [n − 1], and X(i) ∈ Xn, let X
(i)
(k) be the kth near-

est neighbor (kNN) to X(i) in Xn\
{
X(i)

}
using the `∞ norm and define ρ

(i)
k :=∥∥∥X(i) −X(i)

(k)

∥∥∥
∞

. When clear, we may drop superscripts. When referring to an ob-

servation without an observation number, we use random variable in the superscript.

For W ⊆ [d] and X,X(1), . . . , X(n) ∼ P , define

n
(X)
W :=

∣∣∣{X(i) :
∥∥∥XW −X(i)

W

∥∥∥
∞
< ρ

(X)
k

}∣∣∣ , (5.28)

the number of points within an `∞ radius of ρ
(X)
k from X in the dimension of W .

For a Bayesian factorization, G, and each i ∈ [n], define

ξ(i) := ψ(k)− ψ(n+ 1)−
d∑
j=1

[
ψ
(
n

(i)
pa∗(j) + 1

)
− ψ

(
n

(i)
pa(j) + 1

)]
(5.29)

where n
(i)
∅ = n. Define the continuous graph divergence estimator as

D̂n(G) :=
1

n

n∑
i=1

ξ(i). (5.30)

For W ∈ [d], r > 0 and x ∈ X , define

P
(x)
W (r) := PW

(
B

(x)
W (r)

)
(5.31)
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as the W -marginal probability mass within an `∞ ball (hypercube) of radius r

centered at X. No subscript indicates the full, joint distribution of X.

For r > 0 and X ∼ P , consider the ratio

fr(X) =
P (X)(r)

P
(X)
G (r)

=
P (X)(r)

∏d
j=1 P

(X)
pa(j)(r)∏d

j=1 P
(X)
pa∗(j)(r)

(5.32)

of probability masses of `∞ balls, comparing the true density to the Bayesian fac-

torization. Each point estimate approximates this ratio with radius ρk:

ξ(X) ≈ fρk(X) . (5.33)

Similar to Lebesgue’s theorem,

fr(X)→ f(X) as r → 0 (5.34)

where f := dP
dPG

, the Radon-Nikodym derivative of P with respect to PG .

Lemma 5.4.1. If X(1), . . . , X(n) ∼ P is a random sample (superscripts in paren-

thesis indicate observation number) and

ξ(X) := ψ(k)− ψ(n+ 1)−
d∑
j=1

[
ψ
(
n

(X)
pa∗(j) + 1

)
− ψ

(
n

(X)
pa(j) + 1

)]
, (5.35)

then

ξ(X) = E [log fρk(X)|X,npa] (5.36)

where npa :=
{
npa(j), npa∗(j) : j ∈ [d]

}
.

The proof can be found in appendix 5.8.

In order to control bias, we make two primary assumptions, that the joint dis-

tribution and all marginals are sufficiently smooth, and that the it has bounded

moments. The smoothness assumption ensures that the point estimates are close to
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the true graph divergence. The bounded moments assumption helps to handle the

tails.

Definition 5.4.1. Let X ⊆ Rd be a measurable set, s > 0, then CβL consists of

all functions g : X̄ → R with continuous partial derivatives in X of integer order

s ≤ bβc, Dsg, such that

bβc∑
s=0

sup
x∈X̄
|Dsg(x)|+ sup

x 6=y∈X̄

∣∣Dbβcg(x)−Dbβcg(y)
∣∣

‖x− y‖β−bβc∞
≤ L . (5.37)

Theorem 5.4.2. Let (X ,B, P ) be a probability space and for W ⊆ [d], let pW =

dPW
dλdW

be the marginal density. Assume

1. For each W ⊆ [d], pW ∈ CβL (Order β Hölder smooth)

2. EP [‖X‖α∞] ≤ Cb <∞

If X(1), . . . , X(n) ∼ P and k ∈ [n], then for all δ > 0,

∣∣∣E [D̂n(G)
]
−D(G)

∣∣∣ ≤ O (n− β
d+β

α
d+α

+δ
)
. (5.38)

The proof sketch can be found in appendix 5.8. As of now, this proof is not

completely finished but most of the pieces are there. However, our goal is to more

accurately calculate the bias so that we can remove it from the estimator to allow

for a bias small enough to accommodate the central limit theorem.

Theorem 5.4.3. Using the assumptions from theorem 5.4.2,

Var [Dn(G)] ≤ 8d2γd
n

. (5.39)

Proof can be found in the appendix 5.8.
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5.5 Mixed Graph Divergence

Many application fields of statistics, data science, and/or machine learning regularly

have datasets where variables (or features) can be discrete or continuous. A proba-

bility measure is said to be continuous if it is absolutely continuous with respect to

Lebesgue measure (λ) and discrete if its support is countable, and thus, is absolutely

continuous with respect to counting measure over a countable set, C. A probabil-

ity measure can be also be hybrid, discrete and continuous. This can happen if a

random vector has some discrete coordinates and some continuous coordinates or if

some coordinates themselves are mixed.

Definition 5.5.1. Let (X ,B, P ) be a d-dimensional probability space such that X ⊆

Rd, B =
∏d
j=1 Bj is the product σ-algebra, and Pj is the corresponding marginal

probability measure. If for some j ∈ [d], there exists a set E ⊆ Xj ⊆ R such that

Pj(E) > 0 and Pj(X\E) > 0 with Pj � λ on E and X\E countable then we say

that P is a mixed probability measure.

However, we place restrictions to ensure the existence of Radon-Nikodym (RN)

derivatives.

Lemma 5.5.1. Let (X ,B, P ) be a d-dimensional, mixed probability space. If P is

non-singular then there exists a d-dimensional product measure µ on X such that

P � µ such that for each j ∈ [d], µj = λ+ IC where C = {x ∈ Xj : Pj({x}) > 0}.

Definition 5.5.2. Let (X ,B, P ) be a d-dimensional probability space. For each,

x ∈ X , let

C(x) =
{
i ∈ [d] : P

(x)
i (0) = 0

}
(5.40)

be the indices of the continuous coordinates of x and

D(x) =
{
i ∈ [d] : P

(x)
i (0) > 0

}
(5.41)
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Figure 5.1: The figure above shows the support of a probability measure in R2. The
cyan square indicates a region where both, X and Y are continuous. The dark blue
lines indicate regions where X is continuous but Y is discrete and visa versa. The
blue dots indicate where X and Y are both discrete.

the indices of the discrete coordinates of x. Let xD :=
(
xj : j ∈ D(x)

)
and xC :=(

xj : j ∈ C(x)
)
.

Lemma 5.5.2. There exists a countable partition, T, of X such that x, y ∈ A ∈ T

implies that C(x) = C(y), dP
dµ is uniformly (and absolutely) continuous on A and

xD = yD.

In general, this partitions the space into classes that are equal on discrete co-

ordinates with continuous pdf for the continuous coordinates. Note that singletons

satisfying these requirements are point masses in each dimension of X .

Theorem 5.5.3. Let (X ,B, P ) be a non-singular d-dimensional, mixed probability

space such that for each j ∈ [d], if there exists a countable set E ⊆ Xj with Pj(E)

then E is nowhere dense [λ] in Xj. Let PG be a Bayesian factorization with respect

to DAG, G. If dP
dPG

is the Radon-Nikodym derivative of P with respect to PG, then

dP (x)(r)

dP
(x)
G (r)

→ dP

dPG
(x) (5.42)
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almost surely [P ] on the support of P . Further, for the partition, T, in lemma 5.5.2,

D (G) =
∑
A∈T

∫
A

log
dP

dPG
dP (5.43)

=
∑
A∈T

 P (x)
D

P
(x)
G,D

log

 P
(x)
D

P
(x)
G,D

 IA(x) +

∫
A

log

(
dPC
dPG,C

(x)

)
dPC(x)

 (5.44)

where we define 0 log 0 := 0 and recall that P∅ = 1.

Note that for the integral above, the discrete coordinates are necessary param-

eters because they provide location (conditioning) information. The continuous

coordinates are not necessary for the discrete term but we leave them for notation

consistency. Entropies are calculated in the standard (discrete and continuous) way

though the probabilities may not add/integrate to one:

D (G) = H(P )−
d∑
j=1

[
H(Ppa∗(j))−H(Ppa(j))

]
(5.45)

=
∑
A∈T

[
P

(x)
D log

(
P

(x)
D

)
IA(x) +

∫
A

log

(
dPC
dλ

(x)

)
dPC(x) (5.46)

−
d∑
j=1

(
P

(x)
D∩pa∗(j) log

(
P

(x)
D∩pa∗(j)

)
IA(x) +

∫
A

log

(
dPC∩pa∗(j)

dλ
(x)

)
dPC∩pa∗(j)(x)

)
(5.47)

+
d∑
j=1

(
P

(x)
D∩pa(j) log

(
P

(x)
D∩pa(j)

)
IA(x) +

∫
A

log

(
dPC∩pa(j)

dλ
(x)

)
dPC∩pa(j)(x)

)
(5.48)

where the last three lines each correspond to an entropy estimate.

The previous chapter showed a method for estimating conditional mutual infor-

mation for mixed data that can be directly applied to graph divergence as well.

Choose k ∈ N := {1, 2, 3, . . . } and let W ⊆ [d] := {1, 2, . . . , d}. Assume (X ,B, P )

is a probability space and X,X(1), X(2), . . . , X(n) ∼ P is an i.i.d. sample from P .
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Consider the set of distances
{∥∥X −X(i)

∥∥
∞ : i ∈ [n]

}
; let ρ

(X)
k be the kth smallest

element of this set, the kth nearest neighbor distance (if the reference point, X,

is clear, we will drop the superscript for brevity). For W ⊆ [d] where XW =

(Xj : j ∈W ), define

n
(X)
k,W :=

∣∣∣{X(i) :
∥∥∥XW −X(i)

W

∥∥∥
∞
≤ ρ(X)

k

}∣∣∣ . (5.49)

We may drop the k subscript when k is clear. This is the number of points within

the kNN distance within a particular subspace of X . Note that n
(X)
[d] can be more

than k if at least one of the coordinate in [d] is discrete. For each i ∈ [n], compute

ξ
(i)
k := ψ(k)− ψ(n+ 1)−

d∑
j=1

[
ψ
(
n

(i)
k,pa∗(j) + 1

)
− ψ

(
n

(i)
k,pa(j) + 1

)]
(5.50)

where n
(i)
∅ = n. Define

D̂n(G) :=
1

n

n∑
i=1

ξ
(i)
k . (5.51)

Theorem 5.5.4. If k = kn → ∞, kn
n → ∞, dP

dPG
< ∞ on X , and the set

{x ∈ X : Pj({x}) > 0, j ∈ [d]} is nowhere dense in X , then

E
[
D̂n(G)

]
→ D(G) and Var

[
D̂n(G)

]
→ 0 (5.52)

as n→∞.

Proof. This proof follows directly from theorem 3.1 and 3.2 in the previous chapter.

For conditional mutual information, d = 3, though this is a generalization of CMI,

the same principles hold.
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5.6 Future Work: Greedy Equivalence Search

The previous sections showed how to calculate graph divergence given a particular

Bayesian network. This section, in contrast, provides a heuristic for using graph

divergence to estimate the Markov equivalence class (see [6, Sect. 3.4.3.3]) underly-

ing a dataset. The heuristic we describe here is based on greedy equivalence search

(GES) [4]. At a high level, GES takes a greedy approach to determine model fit,

starting with an empty graph and adding one edge at a time to optimize a fit score.

When the score can no longer be optimized by adding edges, the algorithm then be-

gins removing edges. Reference [82] showed that an intermediate step of switching

edge direction can improve performance. GES typically uses a composite Bayesian

Information Criterion (BIC) to assess the fit of a Bayesian network to a dataset.

Because BIC is biased toward sparser models, GES also tends to generate sparse

Markov equivalence classes. Controlling the number of edges is necessary because,

as explained in Section 5.2, it is possible to add edges to the true Bayesian net-

work without changing score. The previous sections primarily focused on bounding

asymptotic MSE. For this this reason, GES as intended for a composite BIC may

not work as intended. This section is intended as a proof of concept.

Figure 5.2: Simulated Bayesian network using the Australian Institute of Sport
dataset from the R programming language DAAG package. Image copied from
https://www.r-bloggers.com/simulating-data-with-bayesian-networks/
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We simulated 1000 observations using the bnlearn package in R with the Bayesian

network in figure 5.2 as in [83]. Combining the graph divergence score for mixed

data and GIES [82], we collected all graph scores indicated by the algorithm. Fig-

ure 5.3a shows graph divergence scores for all graphs in the GIES search path by

number of edges. Because this estimator is not biased toward sparser graphs, the

final graph chosen will likely have too many edges.
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Figure 5.3: Scatter plot of scores and estimated DAG on the Australian Institute of
Sport simulation dataset.

Given these limitations, we used the elbow method as a heuristic to guide graph

selection and selected the optimal six-edge graph, displayed in figure 5.3b. However,

more testing is needed.

5.7 Conclusion

This work is unfinished. Currently, our plan is to consider making this into three

papers: one for the continuous case, one for the mixed case, and one working out how

best to use this estimator for graph divergence to search a graph space efficiently.
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5.8 Proofs

Lemma 5.8.1 (5.4.1). If X(1), . . . , X(n) ∼ P is a random sample (superscripts in

parenthesis indicate observation number) and

ξ(X) := ψ(k)− ψ(n+ 1)−
d∑
j=1

[
ψ
(
n

(X)
pa∗(j) + 1

)
− ψ

(
n

(X)
pa(j) + 1

)]
, (5.53)

then

ξ(X) = E [log fρk(X)|X,npa] (5.54)

where npa :=
{
npa(j), npa∗(j) : j ∈ [d]

}
.

Proof of lemma 5.4.1. For any sample, X,X(1), . . . , X(n) ∼ Q,

Q(X)
(∥∥∥X −X(i)

∥∥∥
∞

)
∼ Unif(0, 1) . (5.55)

Then for k ∈ [n], kNN distance, ρ
(X)
k =

∥∥X(k) −X
∥∥
∞, with [84, Corollary 1.2],

Q(X)(ρ
(X)
k ) ∼ Beta(k, n− k + 1). (5.56)

Moreover, for a discrete random variable, K ∈ [n]

E
[
logQ(X)(ρK)

∣∣∣K] = ψ(K)− ψ(n+ 1), (5.57)

using the fact that E [log (Beta(α, β))] = ψ(α)−ψ(α+β) where ψ(x) := d
dx log Γ(x)

is the digamma function.

Note that ρ
(X)
k is the kth order statistics of

{∥∥X −X(i)
∥∥
∞ : i ∈ [n]

}
. For a

subsets of the dimension of X, W ∈ [d],

nW :=
∣∣∣{i ∈ [n] :

∥∥∥XW −X(i)
W

∥∥∥
∞
< ρ

(X)
k

}∣∣∣ (5.58)

is the number of sample points within the `∞ radius of X to its kNN in the dimen-
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sions in W . For each point, let its `∞ distance to X be r
(X)
W,i :=

∥∥∥XW −X(i)
W

∥∥∥
∞

and

ρ
(X)
W = max

r
(X)
W,i≤ρ

(X)
k

r
(X)
W,i . Then

log
(
P

(X)
W (ρk)

)
− log

(
P

(X)
W (ρW )

)
= − log

(
P

(X)
W

(
maxrW,i≤ρk rW,i

)
P

(X)
W (ρk)

)
(5.59)

= min
rW,i≤ρk

− log

(
P

(X)
W (rW,i)

P
(X)
W (ρk)

)
(5.60)

= min
rW,i≤ρk

− log
(
PW

(
B

(X)
W (rW,i)

∣∣∣rW,i ≤ ρk)) .

(5.61)

Because Ui := PW

(
B

(X)
W (rW,i)

∣∣∣rW,i ≤ ρk) ∼ Unif(0, 1), then− logUi ∼ exponential(1)

and

min
rW,i≤ρk

− log
(
PW

(
B

(X)
W (rW,i)

∣∣∣rW,i ≤ ρk)) ∼ exponential(nW ) (5.62)

as there are nW points such that rW,i ≤ ρk. Then

E
[
log
(
P

(X)
W (ρk)

)
− log

(
P

(X)
W (ρW )

)∣∣∣n(X)
W

]
=

1

n
(X)
W

. (5.63)

Using the property of the digamma function, ψ(x+ 1) = ψ(x) + 1
x ,

ψ
(
n

(X)
W + 1

)
− ψ(n+ 1) = ψ

(
n

(X)
W

)
− ψ(n+ 1) +

1

n
(X)
W

(5.64)

= E
[
logP

(X)
W (ρW )

∣∣∣n(X)
W

]
+ E

[
log
(
P

(X)
W (ρk)

)
− log

(
P

(X)
W (ρW )

)∣∣∣n(X)
W

]
(5.65)

= E
[
log
(
P

(X)
W (ρk)

)∣∣∣n(X)
W

]
. (5.66)
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Then

ξ(X) = ψ(k)− ψ(n+ 1)−
d∑
j=1

[
ψ
(
n

(X)
pa∗(j) + 1

)
− ψ

(
n

(X)
pa(j) + 1

)]
(5.67)

= ψ(k)− ψ(n+ 1)−
d∑
j=1

[
ψ
(
n

(X)
pa∗(j) + 1

)
− ψ(n+ 1)− ψ

(
n

(X)
pa(j) + 1

)
+ ψ(n+ 1)

]
(5.68)

= E
[
log
(
P (X)(ρk)

)]
−

d∑
j=1

E
[
log
(
P

(X)
pa∗(j)(ρk)

)∣∣∣n(X)
pa∗(j)

]
− E

[
log
(
P

(X)
pa(j)(ρk)

)∣∣∣n(X)
pa(j)

]
(5.69)

= E

log

P (X)(ρk)
∏d
j=1 P

(X)
pa(j)(ρk)∏d

j=1 P
(X)
pa∗(j)(ρk)

∣∣∣∣∣∣n(X)
pa

 (5.70)

= E

[
log

(
P (X)(ρk)

P
(X)
G (ρk)

)∣∣∣∣∣n(X)
pa

]
= E

[
log fρk(X)

∣∣∣n(X)
pa

]
. (5.71)

Lemma 5.8.2. Assume X ∼ P with density, p, and E [‖X‖α∞] < ∞. Then for

τ ∈
(

0, α
α+d

)
, and constant, C,

P (p(X) < t) ≤ Ctτ (5.72)

and ∫
X

[p(x)]s exp {−bp(x)} dx ≤ Ks

bs+τ−1
(5.73)
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Proof. Using Hölder’s inequality,

E
[
p−τ (X)

]
=

∫
X
p1−τ (x)dx (5.74)

=

∫
X

[(1 + ‖x‖α) p(x)]1−τ
(

1

1 + ‖x‖α
)1−τ

dx (5.75)

≤
(∫
X

(1 + ‖x‖α) p(x)dx

)1−τ
(∫
X

(
1

1 + ‖x‖α
) 1−τ

τ

dx

)τ
(5.76)

= (1 + E [‖X‖α])1−τ
(∫
X

(
1

1 + ‖x‖α
) 1−τ

τ

dx

)τ
:= C . (5.77)

The second factor of the last line is finite if τ < α
α+d .

Let τ < α
α+d . Then

P(p(X) < t) = P
(
p−τ (X) > t−τ

)
(5.78)

≤ tτE
[
p−τ (X)

]
Markov’s Inequality (5.79)

= Ctτ . (5.80)

∫
X

[p(x)]s exp {−bp(x)} dx = E
[
[p(x)]s−1 exp {−bp(x)}

]
(5.81)

=
1

bs−1
E
[
[bp(x)]s−1 exp {−bp(x)}

]
(5.82)

≤ 2(s− 1)e−1

bs−1
E
[
exp

{
b

2
p(x)

}
exp {−bp(x)}

]
(5.83)

≤ Ks

bs
(5.84)

Lemma 5.8.3. Assume that P(p(X) ≤ t) ≤ Ctτ for τ ∈ (0, 1), then for a constant,

C,

λ {x ∈ X : p(X) ≥ t} ≤ τ

1− τ
Ctτ−1. (5.85)

Proof. See [81, Lemmas 3 and Theorem 6].
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Lemma 5.8.4. Let pW ∈ CβL, W ⊆ [d], and dW := |W |, then for any x ∈ X ,

∣∣∣P (x)
W (r)− pW (x)rdW

∣∣∣ ≤ Lrβ+dW . (5.86)

Proof. We use a bβcth Taylor expansion of pW (y) about x, with the intermediate

value theorem for the remainder,

|pW (y)− pW (x)| =

∣∣∣∣∣∣
bβc−1∑
t=0

‖y − x‖t

t!
DtpW (x) +

‖y − x‖bβc

bβc!
DbβcpW (ζ)− pW (x)

∣∣∣∣∣∣
(5.87)

=

∣∣∣∣∣∣
bβc∑
t=1

‖y − x‖t

t!
DtpW (x) +

‖y − x‖bβc

bβc!

(
DbβcpW (ζ)−DbβcpW (x)

)∣∣∣∣∣∣
(5.88)

= ‖y − x‖β
∣∣∣∣∣∣
bβc∑
t=1

‖y − x‖t−bβc

t!
DtpW (x) +

DbβcpW (ζ)−DbβcpW (x)

bβc! ‖y − x‖β−bβc

∣∣∣∣∣∣
(5.89)

≤ ‖y − x‖β
∣∣∣∣∣
β∑
t=1

DtpW (x) +
DbβcpW (ζ)−DbβcpW (x)

‖y − x‖β−bβc

∣∣∣∣∣ (5.90)

≤ L ‖y − x‖β . (5.91)

The last line follow because pW ∈ CβL. For r > 0, we have (where the integral is
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with respect to the dW -dimensional Lebesgue measure)

∣∣∣P (x)
W (r)− pW (x)rdW

∣∣∣ =

∣∣∣∣∣
∫
B(x)(r)

pW (y)dy − pW (x)

∣∣∣∣∣ (5.92)

=

∣∣∣∣∣
∫
B(x)(r)

pW (y)− pW (x)dy

∣∣∣∣∣ (5.93)

≤
∫
B(x)(r)

|pW (y)− pW (x)| dy (5.94)

≤
∫
B(x)(r)

Lrβdy = Lrβ+dW . (5.95)

Lemma 5.8.5. Assume that g ∈ CβL(Rd) be a density and G(x)(r) :=
∫
B(x) g(y)dy

(integral with respect to the Lebesgue measure). If W ⊆ [d] then

∣∣∣G(x)
W (r)− gW (x)rdW

∣∣∣ ≤ C [G(x)(r)
]β/d

(5.96)

for a constant, C, with respect to r.

Proof. TBD

proof of Theorem 5.4.2. Let X ∼ P and S = {x ∈ X : p(x) ≤ Ln−γ} for γ > 0.
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Then

E
[
D̂n(G)

]
−D(G) = E

[
1

n

n∑
i=1

ξ(i)

]
− E

[
log

(
dP

dPG
(X)

)]
(5.97)

= E
[
ξ(X)

]
− E

[
log

(
dP

dPG
(X)

)]
(5.98)

= E
[(
ξ(X) − log

(
dP

dPG
(X)

))
I(X ∈ S)

]
(5.99)

+ E
[(
ξ(X) − log

(
dP

dPG
(X)

))
I(X 6∈ S)

]
(5.100)

= E
[
ξ(X)I(X ∈ S)

]
− E

[
log

(
dP

dPG
(X)

)
I(X ∈ S)

]
(5.101)

+ E

[(
log

(
P (X)(ρk)

P
(X)
G (ρk)

)
− log

(
dP

dPG
(X)

))
I(X 6∈ S)

]
(5.102)

where line 5.102 follows from lemma 5.4.1.

We proceed by analyzing lines 5.101 and 5.102 separately. We begin with the

second term of line 5.101. Let T := p(X) and FT (t) := P(T ≤ t) ≤ Ctτ , where the

inequality comes from lemma 5.8.2. Then

E [log p(X)I(X ∈ S)] = E [log TI(X ∈ S)] (5.103)

= E
[
log TI

(
T < Ln−γ

)]
(5.104)

=

∫ Ln−γ

0
log tdFT (t) (5.105)

= log(t)FT (t)|Ln−γ0 −
∫ Ln−γ

0

FT (t)

t
dt (5.106)

≥ log
(
Ln−γ

) (
C(Ln−γ)τ

)
−
∫ Ln−γ

0

Ctτ

t
dt (5.107)

= log
(
Ln−γ

) (
C(Ln−γ)τ

)
− C (Ln−γ)

τ

τ
(5.108)

= −O
(
n−γτ log n

)
. (5.109)
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Using this,

∣∣∣∣E [log

(
dP

dPG
(X)

)
I(X ∈ S)

]∣∣∣∣ (5.110)

=

∣∣∣∣∣∣E
log p(X)−

d∑
j=1

log ppa∗(j)(X)− log ppa(j)(X)

 I(X ∈ S)

∣∣∣∣∣∣ (5.111)

≤

∣∣∣∣∣∣E
log p(X) +

d∑
j=1

log ppa(j)(X)

 I(X ∈ S)

∣∣∣∣∣∣ (5.112)

≤ (d+ 1) |E [log p(X)I(X ∈ S)]| − log pW (x) ≤ − log p(x)

(5.113)

= O
(
n−γτ log n

)
. (5.114)

Moving to the first term of line 5.101,

∣∣∣E [ξ(X)I(X ∈ S)
]∣∣∣ (5.115)

=

∣∣∣∣∣∣E
ψ(k)− ψ(n+ 1)−

d∑
j=1

ψ
(
n

(X)
pa∗(j) + 1

)
− ψ

(
n

(X)
pa(j) + 1

) I(X ∈ S)

∣∣∣∣∣∣
(5.116)

≤

∣∣∣∣∣∣E
−ψ(n+ 1)−

d∑
j=1

ψ
(
n

(X)
pa∗(j) + 1

) I(X ∈ S)

∣∣∣∣∣∣ (5.117)

≤ (d+ 1) |E [ψ(n+ 1)I(X ∈ S)]| n
(X)
W ≤ n

(5.118)

≤ (d+ 1) log(n+ 1)P(X ∈ S) ψ(x) ≤ log(x)

(5.119)

≤ (d+ 1)Ln−γ log n . (5.120)

Together, these show that line 5.101 is bounded by O (n−γτ log n).
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Moving to line 5.102,∣∣∣∣∣E
[(

log

(
P (X)(ρk)

P
(X)
G (ρk)

)
− log

(
dP

dPG
(X)

))
I(X 6∈ S)

]∣∣∣∣∣ (5.121)

=

∣∣∣∣∣E
[(

log

(
P (X)(ρk)

P
(X)
G (ρk)

)
− log

(
p(x)ρdk
pG(x)ρdk

))
I(X 6∈ S)

]∣∣∣∣∣ (5.122)

=

∣∣∣∣∣E
[(

log

(
P (X)(ρk)

p(x)ρdk

)
− log

(
P

(X)
G (ρk)

pG(x)ρdk

))
I(X 6∈ S)

]∣∣∣∣∣ (5.123)

=

∣∣∣∣∣∣E
log

(
P (X)(ρk)

p(x)ρdk

)
−

d∑
j=1

log

 P
(X)
pa∗(j)(ρk)

ppa∗(j)(X)ρ
dpa∗(j)
k

− log

 P
(X)
pa(j)(ρk)

ppa(j)(X)ρ
dpa(j)
k

 I(X 6∈ S)

∣∣∣∣∣∣
(5.124)

≤

∣∣∣∣∣∣E
log

(
P (X)(ρk)

p(x)ρdk

)
+

d∑
j=1

log

 P
(X)
pa(j)(ρk)

ppa(j)(X)ρ
dpa(j)
k

 I(X 6∈ S)

∣∣∣∣∣∣ (5.125)

≤

∣∣∣∣∣∣E
log

(
P (X)(ρk)

p(x)ρdk

)
+

d∑
j=1

log

 P
(X)
pa(j)(ρk)

ppa(j)(X)ρ
dpa(j)
k

 I(X 6∈ S, ρk > an)

∣∣∣∣∣∣
(5.126)

+

∣∣∣∣∣∣E
log

(
P (X)(ρk)

p(x)ρdk

)
+

d∑
j=1

log

 P
(X)
pa(j)(ρk)

ppa(j)(X)ρ
dpa(j)
k

 I(X 6∈ S, ρk ≤ an)

∣∣∣∣∣∣
(5.127)

(5.128)
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Moving to line 5.127, we use lemma 5.8.4:

∣∣∣E [(logP
(X)
W (ρk)− log

(
pW (X)ρdWk

))
I(X 6∈ S, ρk ≤ an)

]∣∣∣ (5.129)

≤ E
[∣∣∣logP

(X)
W (ρk)− log

(
pW (X)ρdWk

)∣∣∣ I(X 6∈ S, ρk ≤ an)
]

(5.130)

≤ E
[
max

{∣∣∣log
(
pW (X)ρdWk ± LρdW+β

k

)
− log

(
p(X)ρdWk

)∣∣∣} I(X 6∈ S, ρk ≤ an)
]

(5.131)

= E
[∣∣∣log

(
pW (X)ρk − Lρβk

)
− log (pW (X)ρk)

∣∣∣ I(X 6∈ S, ρk ≤ an)
]

(5.132)

≤ E

[
Lρβk

ζpW (X)
I(X 6∈ S, ρk ≤ an)

]
(5.133)

≤ E

[
Lρβk
ζp(X)

I(X 6∈ S, ρk ≤ an)

]
(5.134)

≤ E

[
2Lρβk
p(X)

I(X 6∈ S, ρk ≤ an)

]
(5.135)

≤ λ {X\S} (5.136)

≤ τ

1− τ
C
(
n−γ

)τ−1
(5.137)

We use the intermediate value theorem on line 5.133, so that 1 − Lρβk
pW (x) ≤ ζ ≤ 1.

The next line follows because p(X) ≤ pW (X). For the same reason, we also have

we have 1− Lρβk
p(x) ≤ ζ ≤ 1. And, with choice of S and an,

Lrβ

p(x)
≤ Laβn
p(x)

≤ 1

2
. (5.138)

So, ζ ≥ 1
2 . The last step uses lemma 5.8.3 where τ ∈

(
0, α

α+d

)
. Putting this

together,∣∣∣∣∣∣E
log

(
P (X)(ρk)

p(x)ρdk

)
+

d∑
j=1

log

 P
(X)
pa(j)(ρk)

ppa(j)(X)ρ
dpa(j)
k

 I(X 6∈ S, ρk > an)

∣∣∣∣∣∣ ≤ (d+ 1)τ

1− τ
Cn−γ(τ−1) .

(5.139)
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For line 5.126, let W ⊆ [d],

∣∣∣E [(logP
(X)
W (ρk)− log

(
pW (x)ρdk

))
I(X 6∈ S, ρk > an)

]∣∣∣ (5.140)

≤
∣∣∣E [logP

(X)
W (ρk)I(X 6∈ S, ρk > an)

]∣∣∣ (5.141)

≤
∣∣∣E [logP

(X)
W (ρk)I(X 6∈ S, ρk > an)

]∣∣∣ (5.142)

≤
∣∣∣E [logP

(X)
W (ρk)

∣∣∣ρk > an

]∣∣∣P(X 6∈ S, ρk > an) (5.143)

≤
∣∣∣ψ (n(X)

W ∗

)
− ψ

(
n

(X)
W

)∣∣∣P(X 6∈ S, ρk > an) (5.144)

≤ n−γ log n (5.145)

Using [84, thm 20.3.1],

P (ρk > an) = P
(

Binomial
(
n, P (x) (an)

)
≤ k

)
(5.146)

≤ exp

{
k − nP (x)(an)− k log

(
k

nP (x)(an)

)}
(5.147)

= exp
{
−nP (x)(an)

}(enP (x)(an)

k

)k
. (5.148)

Because P (x)(r) ≥ p(x)rd − rd+β ≥ 1
2p(x)rd and exp(−nx)

(
enx
k

)k
is decreasing as a

function of x,

P(X 6∈ S, ρk > an) ≤
∫
X\S

exp
{
−nP (x)(an)

}(enP (x)(an)

k

)k
dP (x) (5.149)

≤
∫
{p(x)≥Ln−γ}

exp

{
−n
(

1

2
p(x)adn

)}(
en
(

1
2p(x)adn

)
k

)k
dP (x)

(5.150)

≤
∫

exp

{
−n
(

1

2
Ln−γn−d

)}(
en
(

1
2Ln

−γn−d
)

k

)k
dP (x)

(5.151)

≤ Cn−(β+d) (5.152)



CHAPTER 5. GRAPH DIVERGENCE 128

Proof of Theorem 5.4.3. Using Stein-Efron, let x(1), . . . , x(n) ∼ P and y(1), . . . , y(n) ∼

P be two independent samples. Let Z = (x(1), . . . , x(n)) and Z l = (x(1), . . . , x(l−1), y(l), x(l+1), . . . , x(n)).

Var
(
D̂n

)
(5.153)

≤ 1

2

n∑
l=1

E
[
D̂n(Z)− D̂n(Z l)

]2
(5.154)

=
1

2

n∑
l=1

E

( 1

n

n∑
i=1

ξ(i)(Z)− 1

n

n∑
i=1

ξ(i)(Z l)

)2
 (5.155)

=
1

2n2

n∑
l=1

E

( n∑
i=1

(
ξ(i)(Z)− ξ(i)(Z l)

))2
 (5.156)

=
1

2n2

n∑
l=1

E

 n∑
i=1

d∑
j=1

[
ψ
(
n

(i)
pa∗(j)(Z

l)
)
− ψ

(
n

(i)
pa∗(j)(Z)

)]
+
[
ψ
(
n

(i)
pa(j)(Z)

)
− ψ

(
n

(i)
pa(j)(Z

l)
)]2

(5.157)

≤ 1

2n2

n∑
l=1

E

 d∑
j=1

γdnpa∗(j)

npa∗(j) − 1
+

γdnpa(j)

npa(j) − 1

2 (5.158)

≤ 1

2n2

n∑
l=1

E

 d∑
j=1

2γd + 2γd

2 (5.159)

=
1

2n2

n∑
l=1

E
[
16d2γd

]
=

8d2γd
n

(5.160)

Using Gyorfi, corollary 6.1,

n∑
i=i

IX∈BiW (ρnW )

(
X(i)

)
≤ nWγdW . (5.161)

Let λ be the Lebesgue measure of dimension 1 unless otherwise specified and

[d] = {1, . . . , d}. Further, assume that all conditional probability measures are
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regular.

Lemma 5.8.6. 5.5.1 Let (X ,B, P ) be a d-dimensional probability space such that

for each i ∈ [d], there exists a Bi-measurable set E ⊆ Xi such that Pi � λ on E

and λ(X\E) = 0. If P is non-singular then there exists a d-dimensional product

measure µ on X such that P � µ such that for each i ∈ [d], µi = λ + IC where

C = {x ∈ Xi : Pi({x}) > 0}.

Proof. We construct µ by looking at the scalar coordinates of the random variable

V ∼ P over its product space, X ≡ X1 × X2 × · · · × Xd. If Xi is not a subset of

R, Vi is categorical and we use a zero-one distance metric. So that we can work

exclusively in Rc for some positive integer c, we create dummy indicators for all

categories except one; this preserves the `∞ metric for categorical variables. Recall

that the marginal measure for any scalar coordinate is PVi(A) = PV (X1 · · ·×Xi−1×

A×Xi+1× · · · ×Xd) where A ⊆ Xi. For each i = 1, . . . , d, redefine Xi by restricting

it to the support of PVi and BXi the corresponding σ-algebra. Partition Xi into

its discrete and continuous parts. For a set A contained within the support of a

random variable, U , let CU (A) = {x ∈ A : PU (x) = 0} be the continuous partition

and DU (A) = {x ∈ A : PU (x) > 0}, which is countable by assumption. Clearly

CU (A) ∪ DU (A) = A and CU (A) ∩ DU (A) = ∅ for all random variables U . Let

λ be the Lebesgue measure and ν be the counting measure. Define the measure

µi : BXi → [0,∞) to be λ + νi, where νi(CVi(Xi)) = 0 and the counting measure

on DVi(Xi), νi(DVi(Xi)) = ν(DVi(Xi)). It is easy to see that µi is a well-defined

measure on the measurable space, (Xi,BXi) because both the counting measure and

Lebesgue measures are well-defined, as is their sum. Define a measure µ : BX → R

as the product measure, µ = µ1 × µ2 × · · · × µd.

With the construction complete, we now show that PV � µ. We begin by

showing that for each coordinate, j = 1, . . . , d, PXj � µj . Let j = 1, . . . , d and A ∈

BXi with µj(A) = 0. Consider the continuous and discrete partitions, CVj (A) and

DVj (A), respectively. By definition, λ(CVj (A)) + νj(DVj (A)) = 0 so λ(CVj (A)) = 0
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and νj(DVj (A)) = 0. If the coordinate project for j has a nonempty continuous

partition, then PVj � λ on CVj (Xj), so PVj (CVj (A)) = 0. Also, 0 = νj(DVj (A)) =

ν(DVj (A)), so DVj (A) = ∅, so PVj (DVJ (A)) = 0. Then PVj (A) = PVj (CVj (A)) +

PVj (DVj (A)) = 0

Proceeding by mathematical induction, we already have PV1 � µ1. Assume that

PV1...Vj � µ1 × · · · × µj ≡
∏j
i=1 µi and that for some A ∈ BX1...XjXj+1 (the prod-

uct σ-algebra) (
∏j+1
i=1 µi)(A) = 0. Let Av1,...,vj = {vj+1 : (v1, . . . , vj , vj+1) ∈ A} and

Avj+1 = {(v1, . . . , vj) : (v1, . . . , vj , vj+1) ∈ A}. LetA1 = X1×· · ·×Xj
{
vj+1 : PV1...Vj (Avj+1) > 0

}
and A2 =

{
(v1, . . . , vj) : PVj+1(Av1,...,vj ) > 0

}
×Xj+1.

Using Fubini’s theorem,

0 =

(
j+1∏
i=1

µi

)
(A)

=

(
j∏
i=1

µi × µj+1

)
(A)

=

∫
Xj+1

(
j∏
i=1

µi

)
(Avj+1)dµj+1(vj+1).

Using Lemma 1.3.8 ( dembo2019probability ), f ≥ 0,
∫
fdµ = 0⇒ µ {x : f(x) > 0} =

0, we must have

0 = µj+1

({
vj+1 :

(
j∏
i=1

µi

)
Avj+1) > 0

})

= µj+1

(
Xj+1\

{
vj+1 :

(
j∏
i=1

µi

)
(Avj+1) = 0

})

≥ µj+1

(
Xj+1\

{
vj+1 : PV1...Vj (Avj+1) = 0

})
.

The last inequality follows because PV1...Vj �
∏j
i=1 µi implies that

{
vj+1 :

(∏j
i=1 µi

)
(Avj+1) = 0

}
⊆{

vj+1 : PV1...Vj (Avj+1) = 0
}

. Then µj+1

(
Xj+1\

{
vj+1 : PV1...Vj (Avj+1) = 0

})
= 0.
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But, PVj+1 � µj+1 implies that

0 = PVj+1

(
Xj+1\

{
vj+1 : PV1...Vj (Avj+1) = 0

})
= PVj+1

({
vj+1 : PV1...Vj (Avj+1) > 0

})
= PV1...VjVj+1(A1).

Using the same procedure but switching
∏j
i=1 µi and µj+1 and correspondingly,

switching PV1...Vj and PVj+1 , it is easy to show that

0 = PV1...Vj
({

(v1, . . . , vj) : PVj+1(Av1,...,vj ) > 0
})

= PV1...VjVj+1(A2).

Consider the set of points (v1, . . . , vj , vj+1) such that each coordinate satisfies

PVj+1(Av1,...,vj ) = 0 and PV1...Vj (Avj+1) = 0; call this set, A3. Showing that P (A3) =

0, consider the set of points, (a1, . . . ad) ∈ B ⊆ X such that

PVj+1...Vd


A× d∏

i=j+2

Xi


(a1,...,aj)

 = 0

and

PV1...Vj


A× d∏

i=j+2

Xi


(aj+1,...,ad)

 = 0.
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Let (b1, . . . , bd) ∈ A3 ×
∏d
i=j+2Xi. Then

PVj+1...Vd


A× d∏

i=j+2

Xi


(b1,...,bj)


= PVj+1...Vd

A(b1,...,bj) ×
d∏

i=j+2

Xi


= PVj+1

(
A(b1,...,bj)

)
= 0

and

PV1...Vj


A× d∏

i=j+2

Xi


(bj+1,...,bd)


= PV1...Vj

(
Abj+1

)
= 0.

Then

A3 ×
d∏

i=j+2

Xi ⊆ B.

Because PV is non-singular, PV (B) = 0, so

PV

A3 ×
d∏

i=j+2

Xi

 = PV1...VjVj+1(A3) = 0.

Now, A ⊆ A1 ∪A2 ∪A3 implies that

PV1...VjVj+1(A)

≤ PV1...VjVj+1(A1 ∪A2 ∪A3)

≤ PV1...VjVj+1(A1) + PV1...VjVj+1(A2)

+ PV1...VjVj+1(A3)

= 0,
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so PV1...VjVj+1(A) = 0. Thus, by mathematical induction, for any positive integer,

d, we have that PV � µ.

Theorem 5.8.7. Let (X ,B, P ) be a d-dimensional probability space and PG a Bayesian

factorization corresponding to DAG, G. If P is non-singular, then P � PG and

the Radon-Nikodym derivative of P with respect to PG, dP
dPG

, exists and D(G) =∫
X log dP

dPG
dP is well-defined.

Proof. To show that P � PG, we use mathematical induction where each step is

the number of factors in PG. If PG has one factor, then P = PG, so P � PG in

this case. Assume that P � PG for any factorization,PG, having d factors. Let P ∗G

have d+1 factors and P ∗G = PG1PG2 be some split of the factors with corresponding

spaces XG1 ×XG2 = X .

Assume A ⊆ XG1 × XG2 is measurable and (PG1PG2)(A) = 0. Define A1 =

{x : PG2(Ax) > 0}×XG2 , A2 = XG1×{y : PG1(Ay) > 0}, andA3 = {(x, y) : PG1(Ay) = PG2(Ax) = 0}.

Notice that A ⊆ A1 ∪A2 ∪A3.

From Fubini’s theorem, we have that 0 = (PG1PG2)(A) =
∫
XG1

PG2(Ax)dPG1(x).

Using Lemma 1.3.8 (Dembo 2019), f ≥ 0,
∫
fdµ = 0 ⇒ µ {x : f(x) > 0} = 0, for

the first equality, we must have

0 = PG1 ({x : PG2(Ax) > 0}) = P ({x : PG2(Ax) > 0} × XG2) = P (A1) . (5.162)

Using the same construction but switching G1 and G2, we also have that 0 =

P (A2). P (A3) = 0 follows from the definition of non-singular. This shows that

P � PG1PG2 = P ∗G. Thus, P � PG for any number of factors.

Now, we may apply the RN theorem, so there exists a measurable function, f

such that for any measurable set A ⊆ X ,
∫
A fdPG = P (A) and f is unique almost

everywhere [P ]. Using lemma 7.4 (Gray Entropy), D(G) =
∫
X log dP

dPG
dP is well-

defined.

Theorem 5.8.8. Let (X ,B, P ) be a non-singular d-dimensional probability space
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such that for each i ∈ [d], there exists a Bi-measurable set E ⊆ Xi such that Pi � λ

on E and X\E is nowhere dense [λ] in X . Let PG be a Bayesian factorization with

respect to DAG, G. If dP
dPG

is the Radon-Nikodym derivative of P with respect to

PG, then
dP (x)(r)

dP
(x)
G (r)

→ dP

dPG
(x) (5.163)

almost surely [P ] on the support of P .

Proof. Recall that for W ∈ [d], x ∈ X , and r > 0,

B
(x)
W (r) := {(yi : i ∈ [d]) ∈ X : |xi − yi| ≤ r, i ∈W} (5.164)

P
(x)
W (r) = P ({(yi : i ∈ [d]) : |xi − yi| ≤ r, i ∈W}) . (5.165)

Using the dominating measure (mix of counting and Lebesgue) from lemma 5.5.1,

we first show that P (x)(r)

µ(x)(r)
→ dP

dµ .

Let x ∈ X , C(x) =
{
i ∈ [d] : P

(x)
i (0) = 0

}
and D(x) =

{
i ∈ [d] : P

(x)
i (0) > 0

}
.

Because the set of discrete points is nowhere dense, there must be a ζ > 0 such

that for each y ∈ B(x)

C(x)(ζ), P
(y)

C(x)(0) = 0. Assume C(x) 6= ∅. Let λ be the
∣∣C(x)

∣∣-
dimensional Lebesgue measure. Then P � λ on B

(x)

C(x)(ζ). Using Rudin thm 7.8

(Lebesgue theorem),

P
(x)

C(x)(r)

λ(x)(r)
→ dPC(x)

dλ
(x) (5.166)

as r → 0 almost everywhere [λ]. Note: C(x) orD(x) may be empty; define P∅(A) = 1.

Further, if x has more than |C(x)| coordinates; the discrete coordinates of x indicate

location for the continuous density.

Claim:

f(x) := P
(x)

D(x)(0)
dPC(x)

dλ
(x) =

dP

dµ
(x). (5.167)

Partition X into its uniformly continuous regions according to P : x and y are in the
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same partition if C(x) = C(y) and there exists a subset B ⊆ X with x, y ∈ B, such

that
dP
C(x)

dλ (x) is uniformly continuous on B. Let T be this partition of X described

above. Points x ∈ X such that D(x) = [d] (all coordinates are discrete), will be

singleton classes {x} ∈ T . It is clear that this defines an equivalence class for points

in X . Further, there can be, at most, countably many classes in this partition.

Let A ⊆ X and µ be the dominating measure (mix of counting measure and

Lebesgue). Below, λ is the |C(x)|-dimensional Lebesgue measure, which does not

change within each partition; we suppress the dimension. Then

∫
A
f(x)dµ(x) =

∑
T∈T

∫
A∩T

f(x)dµ(x) (5.168)

=
∑
T∈T

∫
A∩T

P
(x)

D(x)(0)
dPC(x)

dλ
(x)dµ(x) (5.169)

=
∑
T∈T

IA∩T (x)P
(x)

D(x)(0)

∫
A∩T

dPC(x)

dλ
(x)dλ(x) (5.170)

=
∑
T∈T

IA∩T (x)P
(x)

D(x)(0)PC(x)(A ∩ T ) (5.171)

=
∑
T∈T

P (A ∩ T ) = P (A) (5.172)

Because PG is the product of regular conditional probabilities of P , the set of

discrete points for each dimension must be the same for both. Using the same proof

for P , we have

P
(x)

G,D(x)(r)
P

(x)

G,C(x)(r)

λ(x)(r)
→ P

(x)

G,D(x)(0)
dPG,C(x)

dλ
(x) =

dPG
dµ

(x) (5.173)

as r → 0.

Because P is non-singular, P � PG, so dP
dPG

exists. Then, for support points of

P , using properties of RN derivatives

P (x)(r)

P
(x)
G (r)

=
P

(x)

D(x)(r)P
(x)

C(x)(r)

P
(x)

G,D(x)(r)P
(x)

G,C(x)(r)
→ dP

dPG
(x) (5.174)
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as r → 0 almost surely [P ].
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6.1 Introduction

With the advent and increasing use of HIV Pre-exposure prophylaxis (PrEP), drugs

that effectively reduce risk of HIV acquisition, the established understanding for

HIV and STI prevention may be shifting. Sadly, HIV and other sexually transmitted

infections (STI) incidence disproportionately affect young men who have sex with

men (MSM) of color who are less likely know about or able to afford PrEP [85].

This phenomenon, along with many others, can obfuscate the larger picture of the

relationships between interacting risk factors leading to HIV and STI infections.

A clearer picture could aid the development of new interventions for HIV and STI

reduction, particularly in hard-hit communities. In this study, we present a new data

method for depicting causal relationships between variables developed specifically

for the kinds of data found in epidemiological work. With it, we explore causal

relationships found on select variables within a randomized subset of responses from

the American Men’s Internet Survey (AMIS). We examine these relationships with

generalized linear regression models on the remaining data to gain a clearer idea of

risk factors leading to STI acquisition among men who have sex with men.

6.2 Background

PrEP is a class of HIV antiretroviral drug combinations intended to prevent an HIV

infection in HIV-negative individuals considered to be high-risk, such as men who

have sex with men (MSM), trans women, serodiscordant, sexually-active couples,

and persons who inject drugs. In 2012, the US Food and Drug Administration

(FDA) approved Truvada (tenofovir disoproxil fumarate and emtricitabine) [86]as

the first drug combination for use as PrEP. Truvada was originally develop to treat

HIV and is still used in combination with another antiretroviral drug to treat HIV.

In 2019, the FDA also approved Descovy (tenofovir alafenamide and emtricitabine)

for use as PrEP [87].
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PrEP is very effective for preventing HIV infection in at-risk individuals who fol-

low adherence guidelines [88]. With the burgeoning use of PrEP, particularly among

men who have sex with men (MSM), some researchers have observed risk compen-

sation, associated with the reduction in HIV-acquisition risk, leading to an increase

in condomless sex [89, 90, 91]. While PrEP decreases the risk of HIV infection, it

does not protect against other STIs such as syphilis, gonorrhea, chlamydia, or HPV.

Consequently, PrEP’s potential to shift sexual risk behaviors may be disrupting es-

tablished causal pathways leading to HIV and STIs. Moreover, the racial disparity

in PrEP uptake in the US, along with the historic disparity in HIV incidence [92],

further complicates the causal landscape.

Causal discovery, the estimation of causal pathways through the variables of

a dataset with a diagram (called a Bayesian network or directed acyclic graphs

(DAG)), is rare in clinical and epidemiological literature. This may be due, in part,

to the difficulty existing methods have with mixed data. However, the benefit of

such models in this case is clear: a causal diagram could illuminate the role that

PrEP and race, for example, play in potentially confounding multiple behaviors

and outcomes. In this study, we use the 2019 American Men’s Internet Survey

(AMIS) [93], of demographic information, risk behaviors and outcomes for 10,000

MSM in the US. The study team at Emory University responsible for AMIS shared

these data with IRB approval (IRB ID: STUDY2019 00000572).

This chapter aims to present preliminary results; however, our larger aim is two

fold: (1) graphically estimate the underlying causal pathways through the data and

(2) make causal discovery accessible for epidemiologists. Casual discovery provides

a data-driven approach to organizing data and informing variable selection. Re-

gression provides a fine-tuned look at controlled (adjusted) associations with an

outcome. Together, these approaches provide a more complete understanding of the

causal relationships underlying data. Connecting causal Bayesian network models

and regression, we will take half the observations to estimate the graphical model,
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then use it to inform regression model selection for outcomes of interest on the other

half. Ideally, this work will provide evidence for potential public health interven-

tions and further research while giving visibility to and appreciation for a new data

method.

6.3 Methods

The AMIS data is collected annually through an internet survey targeting MSM

through website ad banners and emails through website membership. Part partic-

ipants who agreed to be contacted were also invited to participate again. To take

the survey, participants must be (1) older than 15 years, (2) cisgender male, (3)

living in the US, and (4) report having either oral or anal sexual contact with a

male partner in the past or identify as gay or bisexual.

Because the goal of this work is to explore the relationship between PrEP use,

demographic information, risk behavior and outcomes, we selected participant re-

sponses based on the following: (1) responded being HIV-negative, (2) reported oral

or anal sexual contact with at least one male partner in the past 12 months, and (3)

had no missing values among the variables we chose. We included only HIV-negative

individuals because PrEP is not recommended for individuals living with HIV. We

required one or more oral or anal sex partners within the past 12 months to screen

those not at risk for HIV/STI infection. Last, we included those with no missing or

unknown responses among the variables used as is customary with regression. We

included the following variables:

• AGE: Age in years at time of survey

• RACE: Race as Hispanic, Black, Non-Hispanic White, and Other (we collapsed

categories with few responses)

• EDU: Level of education completed (EDU) as an integer 1 through 4
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• INCOME: Household income, as an integer 1 through 4

• USED PREP: PrEP use in the past 12 months

• NUM PARTNERS: Number of male, oral or anal sexual partners as in integer

• CONDOMLESS: Number of condomless, anal or oral sex, male partners

We randomly assigned individual responses either to group 1 or 2; we used

group 1 data for estimating the Bayesian network, and group 2 for the following

regression. We put each group’s data into separate files to prevent accidental usage

of the same individual response for the different methods. We first estimated the

Bayesian network on group 1 data to develop hypotheses about causal pathways

among the variables. We then chose regression models to explore the findings from

the Bayesian networks. We used generalized linear models for all regression models

because of their familiarity and widespread use in epidemiological work. However,

it should be noted that the Bayesian network estimation method does not assume

linear, statistical associations between variables, as generalized linear models do.

Therefore, discrepancies between the Bayesian network and regression models may

be due, at least in part, to this difference.

For causal discovery, we used mixed graph divergence from Chapter 5 combined

with a variation of greedy equivalence search (GES) [4] and greedy interventional

equivalence search (GIES) [82]. A Bayesian network is a graph structure (a dia-

gram) where variables are nodes and the arrows connecting the nodes are called

edges or directed edges, indicating a causal association. Each edge in the Bayesian

network is directed and following the edges cannot lead to a cycle, which is why

Bayesian networks are also called directed acyclic graphs (DAG). Graph divergence

quantifies the information-theoretic distance between any given Bayesian network

on the variables of a distribution and its true distribution. In theory, a graph di-

vergence of zero indicates that a Bayesian network perfectly fits the data. Due to

estimation error from the variability in the data, it is very unlikely that the true
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Bayesian network will have an estimated graph divergence (EDG) of exactly zero,

but it should be close, as with all estimation. However, it is possible to logically

determine particular edges which, if added to the true causal network, will retain a

zero graph divergence on the augmented network. In contrast, removing one or more

edges from the true causal network will always result in a greater graph divergence.

Because causal networks are typically thought to be sparse, the number of possible

networks with a given number of edges increases with that number of edges. This

potentially increases the risk of false-positive edges in near-zero graph divergence

networks. For these reasons, we prefer causal networks with a small, but positive

graph divergence estimate and fewer edges. Determining a balance between edge

count and near-zero divergence is left to future work.

While graph divergence quantifies the fit of a causal network to a dataset, it does

not provide a way to search through the possible causal networks. To do this, we

implemented versions of GES [4] and GIES [82] tailored to the computationally in-

tensive needs of estimating graph divergence. The algorithm uses three general types

of step, forward, backward, and tuning, to traverse though the space of Bayesian net-

works on the variables provided. The tuning step is only in GIES. Each step inherits

the Bayesian network chosen by the last step. The algorithm is greedy, a computer

science term, because at each step, it chooses to pass on the Bayesian network that

maximizes the EGD among nearby Bayesian networks. A forward step estimates

the graph divergence on all possible Bayesian networks resulting from adding one

directed edge to the inherited network. A backward step estimates the graph diver-

gence on all possible Bayesian networks resulting from deleting one edge from the

inherited Bayesian network. A tuning step estimates the graph divergence on all

possible Bayesian networks resulting from switching direction of one edge on the in-

herited graph. The algorithm takes forward steps until it can no longer improve the

EGD from the previous step. Analogously, the algorithm takes backward/tuning

steps until it can no longer improve the EGD from the previous step. When taking
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the same type of step no longer improves the EGD, it changes to backward from

forward, tuning from backward, and forward from tuning. The algorithm begins

with a forward step on the network with no edges. It ends when none of the steps

can improve the EGD score. We engineered all code in Python 3.7.7. (The code is

not currently ready for public use, but the package will be made publicly available.)

GES and GIES typically use a composite Bayesian information criterion (BIC)

score to estimated graph fit, which penalizes Bayesian networks with many edges.

Graph divergence does not. However, unlike BIC, a graph divergence of zero is

at least theoretically significant as previously discussed. Thus, there may be some

benefit to using graph divergence over BIC, though more research is required. To

avoid spending time on over-fitted networks (with too many edges), we used the

absolute value of EDG for the algorithm. Graph divergence is non-negative in theory

but the estimator can give negative values. In this work, we presents the Bayesian

network with optimal absolute EGD between the two networks whose scores flank

zero once the algorithm finds a network with a negative score. In the future, we

would like to assess this with a statistical test. As of this draft, we did not aggregate

Markov equivalent Bayesian networks. We used Graphviz to display networks.

6.4 Preliminary Results

The full dataset included 10130 total responses. Of those, 3469 indicated either

living with HIV, did not know, or preferred not to respond. 6661 responses indicated

being HIV-negative. Of those, 895 reported having zero oral or anal, male sex

partners; 5766 reported one or more. Among those with at least one oral or anal

sex partner in the past 12 months, 1216 did not know or preferred not to respond

to at least one of the of questions used in the analysis. The screening left a total of

4550 individual responses. The number of included/excluded individual responses

are shown in figure 6.1.

Table 6.1 gives basic counts and means for each variable used in this analysis



CHAPTER 6. AMERICAN MEN’S INTERNET SURVEY 144

AMIS: 10130

HIV-negative: 6661

Unknown, Positive: 3469

≥ 1 sex partners: 5766

0 sex partners: 895

No Missing: 4550

Missing: 1216

Figure 6.1: The flowchart above shows the number of individual responses that were
included and excluded at each step.

among the screened 4550 responses. The median respondent was 29 years at the time

of the survey. The respondents were majority white (63%), and mostly possessed

a college degree or greater (57%) with varied household incomes. Twenty-seven

percent used PrEP within the past 12 months. Within the 12 month prior to taking

the survey, the median participants reported having one condomless, oral or anal,

male sex partners, out of five total oral or anal, male sex partners. These medians

and proportions remained steady after randomization into groups 1 and 2 with 2227

responses randomly selected for group 1 and 2323 for group 2.

6.4.1 Causal Discovery

As discussed in Section 6.3, we used a heuristic to select estimated Bayesian net-

works. Figure 6.2 shows EGD scores for all networks the algorithm traversed. Ini-

tially, the algorithm took 12 steps forward; it evaluated some 13-edge networks,

but none improved absolute EDG. Stepping backward yielded no networks that

improved EDG. As this was somewhat expected, we altered the algorithm to allow

backward steps if the optimal graph (removing one edge) increased EDG by a spec-
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Total Group 1 Group 2

n 4550 2227 2323

Age (years) 29 (24,42) 29 (24,42) 29 (24,42)
RACE

Black 768 (17%) 377 (17%) 391 (17%)
Hispanic 588 (13%) 280 (13%) 308 (13%)
Non-Hispanic White 2872 (63%) 1408 (63%) 1464 (63%)
Other 322 (7%) 162 (7%) 160 (7%)

EDU
Less High School 52 (1%) 22 (1%) 30 (1%)
Some High School 15 (0%) 11 (0%) 4 (0%)
High School 223 (5%) 110 (5%) 113 (5%)
Associates 1678 (37%) 848 (38%) 830 (36%)
College or more 2582 (57%) 1236 (56%) 1346 (58%)

Yearly Household Income ($1000)
0 to 19 566 (12%) 275 (12%) 291 (13%)
20 to 39 926 (20%) 442 (20%) 484 (21%)
40 to 74 1408 (31%) 704 (32%) 704 (30%)
75 or more 1650 (36%) 806 (36%) 844 (36%)

Used PrEP (past 12 mos) 1111 (24%) 528 (24%) 583 (25%)
STI Test (past 12 mos) 2704 (59%) 1312 (59%) 1392 (60%)
Total Sex Partners (12 mos) 5 (2,10) 5 (2,10) 5 (2,10)
Condomless Sex Partners (12 mos) 1 (1,3.8) 1 (1,3) 2 (1,4)

Table 6.1: The table above shows the median (interquartile range) for variables
with more than 4 unique values, and counts (percentage) otherwise, stratified by
randomized group.
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Figure 6.2: Above is a scatter plot of estimated graph divergence by number of
edges for all Bayesian networks within the algorithm search path.

ified allowance. We decreased the allowance as the algorithm progressed from 0.05

to to 0.001 over ten backward iterations. We did this to encourage the algorithm to

consider a more diverse set of graphs.

After several iterations, it became clear that age and race were very statistically

dependent in the data; these were the first variables connected at the beginning

of the algorithm and never disconnected throughout the algorithm’s progression.

This association is probably induced via sampling bias. Because it seems unlikely or

impossible for age and race to influence each other, or for other variables to influence

age and race, we decided to only consider Bayesian networks where age and race

had no incoming arrows. To enforce this in the algorithm, we assigned a score value

of infinity to any Bayesian network with incoming arrows to race and age.

Figure 6.3 shows the optimal Bayesian network according to the criteria we

set, with an estimated graph divergence of −0.001685. The optimal 11-edge net-

work scored 0.006733; it did not include an edge between HOUSEHOLD INCOME and

USED PREP.
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HOUSEHOLD_INCOME

USED_PREP

EDU

CONDOMLESS

NUM_PARTNERS

AGERACE

Figure 6.3: Optimal 12-edge Bayesian network

Some of the edges in figure 6.3 would not be oriented using Markov equiva-

lence. For example, the edge between HOUSEHOLD INCOME and EDU could probably

be oriented in either direction. We kept the orientation given by the algorithm for

transparency. In general, Bayesian networks are said to be Markov equivalent if

they contain the same conditional independence relationships between variable, and

are causally indistinguishable causally without stronger assumptions. Reference [6,

Chapter 3] provides a clear treatment of Markov equivalence and Bayesian networks.

6.4.2 Regression

We ran three regression models partly based on the estimated Bayesian networks

from Section 6.4.1. We chose USED PREP, NUM PARTNERS, and CONDOMLESS as out-

come variables for the regression models. We used logistic regression for the USED PREP

model and linear regression for the NUM PARTNERS and CONDOMLESS models in R Pro-

gramming Language. We included AGE, RACE, EDU, and HOUSEHOLD INCOME in each

models. We included outcome variables in the regression models according to their

location within the Bayesian networks when it made clinical sense. More specifi-
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USED PREP NUM PARTNERS CONDOMLESS
log odds p-value mean change p-value mean change p-value

AGE per 10 yrs 0.08 0.033 0.61 0.065 0.07 0.518
RACE: Black 0.44 0.001 -0.11 0.921 -0.01 0.986
RACE: Hispanic -0.11 0.516 4.03 0.002 0.19 0.672
RACE: Other 0.39 0.029 3.88 0.016 -1.13 0.041
EDU 0.47 0.000 0.11 0.857 -0.10 0.621
INCOME 0.11 0.037 -0.22 0.603 0.17 0.247
USED PREP — — 9.63 0.000 2.52 0.000
NUM PARTNERS — — — — 0.31 0.000

Table 6.2: The table above gives generalized linear regression parameter estimates
based on the causal discovery model.

cally, CONDOMLESS (the number of condomless partners), would seems to depend on

NUM PARTNERS. We chose outcomes as independent variables for these models with

this in mind. The causal ordering for USED PREP with respect to the other outcomes

is less clear; however, the Bayesian network in figure 6.3 indicates a proximity to

independent variables, which is why we included it as in independent variable in the

other models. Table 6.2 give the regression results for each model.

Comparing the regression models to the estimated Bayesian networks, we see

some agreement and some discrepancies. Perfect agreement would indicate that, for

example, within the USED PREP model, AGE, HOUSEHOLD INCOME, and EDU would be

significant, while all other variables would not be. For the CONDOMLESS model to

agree with the estimated Bayesian networks, we would expect only NUM PARTNERS,

AGE, and USED PREP to be significant, which is not the case. In general, perfect agree-

ment in this setting means that only neighboring variables in the Bayesian network

will be significant in the regression, assuming we do not include a downstream cause

of the outcome in the regression. In much of the epidemiology literature, using a

significance level of α = 0.05 is fairly standard. Instead, we will use a significance

level of α = 0.01 which is more conservative but not as conservative as a Bonferroni

correction for 21 tests.

There are several possible reasons for discrepancies between the regression mod-
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Figure 6.4: Density Estimates for AGE by USED PREP. Wilcoxon rank sums test p-
value = 4.6× 10−8, t-test p-value = 0.004

els and Bayesian network. From a data science point of view, we would not expect

perfect agreement because of differing model assumption. Generalized linear models

test for mean differences between a variable (or indicator, as in RACE: Black) and

the baseline category assuming all relationships are linear. Graph divergence, the

statistic used to estimate Bayesian model fit, is non-parametric in that it detects

more than mean difference and does not assume linear relationships. Consider the

relationship between USED PREP and AGE: the Bayesian models indicate that the

other variables in the data cannot explain their relationship, while the PREP USED

regression model indicates if a relationship exists, it can be explained by the other

variables. Density estimates of AGE by USED PREP clearly illustrate this; figure 6.4

shows subtle differences between these distributions. Moreover, the non-parametric,

Wilcoxon rank sums test gives a p-value of 4.6× 10−8 while a t-test gives a p-value

of 0.004, perhaps indicating information is being lost with parametric models.

Similarly, the relationships between NUM PARTNERS and CONDOMLESS both with

AGE may be missed by linear models as well. Figure 6.5 show these relationships

with 2D density plots: the more central contour curves indicate greater density.

In both of these plots, the mean of both NUM PARTNERS and CONDOMLESS remain

fairly constant over varying values of AGE, but its clear that in both, the variance of
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Figure 6.5: 2D Density Plots (blue contours) with local regression (red curve).
There were responses for both plots on the y-axis great than 25. The plots only
show responses below 25 to better illustrate the densities and mean curves

NUM PARTNERS and CONDOMLESS tend to decrease with AGE. This type of association

would not likely be captured with linear models but should with non-parametric

models.

Though, typically, we would expect the opposite to happen more frequently:

significant, controlled associations between independent variables and outcomes in

regression models not appearing to be connected in the Bayesian network. As briefly

explained in Section 6.3, networks with many edges (relative sample size and vari-

ables) have a greater chance of containing false positive edges. False positive edges

can cause directional errors with surrounding edges. For these reasons, it is typ-

ically preferred to present Bayesian networks that include less edges, with false

negative associations preferred over false positives. Fortunately, we would expected

association strength to affect the appearance of an edge in a Bayesian network,

with stronger associations more likely to be present. Interestingly, much scientific

research, knowingly or otherwise, gravitates in the opposite direction, toward pre-

ferring false negative associations over false negative due to the widespread failure

to control for multiple testing.
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Another possible reason for the absence of an edge in a non-parametric, estimated

Bayesian network compared to a generalized linear model can again be due to the

fact that graph divergence does not assume all relationships are linear. Though

we see no evidence of this phenomenon occurring here, it is possible. For example,

assume there are three variables, A, B, and C with A → B → C where the arrow

indicates causal association. If A → B and B → C have non-linear relationships

but a linear relationship does exist between A, and C, a generalized linear model

may not be able properly control for B in this setting.

The last reason we give for this type of discrepancy is the difference in treatment

of categorical variables between regression and the graph divergence statistic within

the Bayesian network estimation. Regression models handle categorical variables

by establishing a baseline subgroup (Private for RACE, for example) and creating

indicator variables for all other groups. While this can be done for the Bayesian

network as well, the additional variables in the could lead to more error. Though this

versatility might be helpful in some settings including this one. Graph divergence

calculates an estimate for each observation point then averages over all observation

estimates. Each category is represented in the overall estimate proportional to its

makeup in the data. Because those non-Whites make up less than 40% of the data,

any differences within this group will represent less than 40% of the graph divergence

estimate. This may be why RACE: Black is significant in the USED PREP model but

not reflected in the Bayesian network.

6.5 Discussion

The estimated Bayesian network in figure 6.3 communicates that, age, more than

any other risk factor, influences much of the causal landscape, including the input

variables level of education, and income. This seems very reasonable, and something

not evaluated by the regression models. Age also seemed to influence all outcomes,

PrEP use, number of total and condomless oral/anal sex partner directly. Figure 6.4
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shows a complex marginal relationship between PrEP use and age, that may have

been missed by the PrEP regression model, with more younger (15 to early 20s) and

older (70 and up) non-PrEP users but more PrEP users between those age groups.

Similarly, there is more variation in number of sex partners with and without a

condom among younger participants, even though the mean number of partners

does not depend as much on age. As such, there may be a greater need for STI

testing among younger MSM.

Race is only connected with income in the Bayesian network. The regression

models indicate that compared to Non-Hispanic Whites, Blacks are more likely to

use PrEP. It also shows that Hispanics, compared to Non-Hispanic Whites, have on

average four more sex partners on average, though the number of condomless sex

partners is similar to Non-Hispanic Whites. It is worth noting that health disparities

for HIV and STI acquisition and treatment do exist, typically with the Black and

Latino communities disproportionately negatively affected [94, 95]. Race is probably

not connected with other variables in the estimated network due to the fact that the

population taking this survey is majority Non-Hispanic White with all other groups

making up less than 40% of the survey population and represented proportional in

graph divergence estimator and not directly compared with Non-Hispanic Whites.

Level of education appears to influence PrEP use. This is clear from all models

presented in this work. We read the connection between PrEP use and level of ed-

ucation as probably causal (or possibly confounded) with education affecting PrEP

use. The regression model indicates that those reporting higher levels of education

were more likely to report PrEP use as well. Additionally, the Bayesian network

shows that education is affected by both age and household income, again, not seen

with the regression models.

The Bayesian network and the regression models both indicate a connection

between PrEP use and number of total and condomless partners. Moreover, both

models agree that the relationship between PrEP use and number of condomless
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partners reported is not mediated by total number of partners. Because physicians

would probably recommend PrEP to a patient reporting having condomless sex with

multiple partners within a short period of time, there is likely a causal feedback loop

from condomless partners to PrEP uses. However, there is likely forward causation

from PrEP use to condomless sex as well. Though this conclusion does not follow

exclusively from the Bayesian network nor regression models though they both give

a consistent narrative. Using PrEP does indicate that a patient and physician think

there is at least some risk of condomless sex and HIV acquisition in the future for the

patient. It is plausible that the reduction in HIV-acquisition risk may actually result

in reduced pressure to use condoms, after using PrEP. However, this assumes that

there is not latent confound influencing both PrEP use and number of sex partners.

While this can be debated, other studies have also found a drop in condom use

corresponding with the rollout of PrEP [96, 97].

Regardless of causal direction, it is clear that PrEP users compared to those

not on PrEP have more condomless sex partners. The CDC already recommends

that PrEP users be tested every three months; a recommendation supported by

these finds. Further, the incidence of STIs within the PrEP using population may

be representative of a wider, less-screened, at-risk population. Local centralized

reporting on all test outcomes, including negative tests, among PrEP users may

help public health officials accurately determine the occurrence of an outbreak more

quickly. The cost of potentially lost privacy and data breaches would need to be

taken into account before such a program were set up, but such analysis is beyond

the scope of this work.

Causal discovery together with regression modeling can give a more complete

picture of interacting risk factors leading to outcomes. In general, causal discovery

could be a useful exploratory data analysis tool to help epidemiologists solidify

potential causal pathways prior to more formal analysis with regression modeling.

This type of approach may aid researchers locate new and interesting research ideas
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that can be further fine-tuned with regression models. This work remains at an early

stage, but we hope it demonstrates a more general approach to statistical modeling

that benefits both from the data-driven causal model and expert understanding, to

improve scientific research.



Chapter 7

Conclusion and Future Work

The aim of this thesis was to provide a usable data analysis tool to help researchers,

with epidemiologists in mind, explore causal structure within datasets for mixed

data without making parametric assumptions. While this work is ongoing, I believe

I have made progress toward that goal.

Chapter 3 was my Ph.D. qualifier and my first attempt at applying a causal

discovery and writing software. This experience was very informative for learning

how researchers tend to interact with graphical models in practice. In this setting,

graphs with fewer, carefully chosen nodes tend to be more helpful. Smaller graphs

are easier to understand. Unrelatedly, many researchers are accustomed to parame-

ter estimates, p-values, and confidence intervals. Given this, it may be more helpful

to combine graphical models and regression. This paper was published in PLoS

One [98].

Chapter 4 develops a method for estimating conditional mutual information on

mixed data. This paper was my first attempt writing a theory-oriented paper. In

it, we showed that our estimator was theoretically consistent and that it performed

better than other, estimators. I used this paper as an opportunity to learn Python

and make a publicly, usable software package. We submitted this paper to IEEE

Transactions on Information Theory in December 2019. We were asked to revise

155
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and resubmit.

Originally, we planned to use CMI combined with the PC algorithm to do struc-

ture learning. But, because we did not know the distribution of the CMI estimator,

it would have been necessary to devise an algorithm that did not require p-values.

It was this that led problem that led to the following chapter.

Chapter 5 is ongoing work. Rather than using many CMI calculations to estimate

a graphical structure using the PC algorithm, this paper exploits that fact that for

any DAG, it is possible to decompose its conditional independence relationships

with entropy. We developed an estimator that could also handle mixed data using

what we learned from Chapter 4.

For this paper, Cosma, Larry, and I set out to prove that graph divergence

estimator obeyed the central limit theorem (CLT). At the start, I did not understand

how challenging this would turn out to be. My first mistake was attempting to

prove the CLT without smoothness assumptions and with the mixed and continuous

distributions combined. Proving that this estimator is consistent does follow directly

from the consistency proofs for CMI. In a higher-dimensional setting, it seemed

important to understand how dimension affects mean squared error (MSE). This

was not included in Chapter 4.

To make the problem easier, I focused only on continuous, Hölder-smooth densi-

ties, planning on adding in the discrete part later. The discrete problem was largely

already solved in reference [78]. I am currently working on proving the MSE con-

vergence rate. We will try to publish this work as a standalone paper and publish

the mixed paper separately.

Chapter 6 is meant as a preliminary look at the AMIS data, written for this

thesis but we will not try to publish it as written here. Before we publish a paper

on the AMIS data, I would like to better understand how to use the graph divergence

estimator with a GES-like algorithm in light of the fact that it does not penalizes less

sparse graphs. Fortunately, the graph we presented in Chapter 6 does seem to make
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sense, and generally agrees with the regression models. But, having this problem

figured out will make the paper much stronger. I would also like to work more

closely with the group of researchers at Emory University responsible for collecting

the AMIS data. Their knowledge of the field as well as the data will surely improve

the paper quality.

For the future, assuming we will be able prove that the graph divergence estima-

tor obeys the CLT, I think it could be very useful to explore inference on Bayesian

networks. In particular, a graph divergence CLT could allow for confidence sets of

graphs. With it, we could provide edge probabilities to help researchers gauge the

likelihood of a causal association from the graphs themselves.

Alternatively, methods for estimating causal graphical models on longitudinal,

or time-series data would also be very interesting. This could be of value in fields

with feedback loops. One possible avenue could begin by expanding on the CMI

estimator in [99] to estimate conditional information rate [100, 101] and adapting a

causal graph estimation method appropriately.

Another natural direction of interest is causal discovery on data with missing

values. Because the estimation process is already iterative, an EM-algorithm-based

approach may be helpful, using the current structure to impute missing values then

re-estimate the structure on the imputed data.

Finally, my research history points to the synergy that can occur when applica-

tion informs theory and visa versa. Using this paradigm for my dissertation research

likely contributed to me being awarded the Ford Foundation Dissertation Fellow-

ship. Though nearly all of my applied research has been in infectious disease, I am

open to expand moving forward. But, regardless of the direction, it is important to

me that my work contributes to overall social progress.
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