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Abstract 

While machine learning has become ubiquitous in certain fields, its public policy applications in the 
infrastructure and air pollution domains are relatively understudied. This work develops two 
frameworks to analyze (1) the impacts of infrastructure and social equity and (2) the impact of area 
source pollution on resultant concentrations to better inform public policy along these two 
domains. This work employs a range of machine learning techniques to perform variable search 
and selection and analyzes causal connections between infrastructure (i.e., bridges) and social 
equity factors. Further, a novel neural network design that combines vector autoregression 
techniques with pollution data capably predicts pollution concentrations for two species of PM2.5. 
Throughout this work, the techniques and frameworks are specifically designed to be accessible by 
engineers and policymakers in the infrastructure and air quality managements domains. 
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Chapter 1 Introduction 

Infrastructure and environmental problems present issues that current techniques cannot 

always adequately address. For example, it is difficult to isolate social and equity impacts of 

infrastructure; it is also difficult and costly to determine air pollution exposure concentrations. This 

thesis assesses the possibility of using machine learning techniques to make inroads into these 

issues. These algorithms can reveal and quantify previously undiscovered links between data and 

do so at faster computational speeds than more conventional empirical or simulation methods. This 

ability is particularly useful in situations where large quantities of disparate data are available and 

whose linkages are not always ascertainable for first principles in engineering and social science. 

This is especially the case when the signal of interest can be relatively small or obscured by 

irrelevant information.  

Thus far, machine learning (ML) has been used on many other applications but less so on 

issues related to infrastructure and air pollution. In infrastructure, the studies that do use ML 

typically focus on technical aspects of these topics and less on understanding their social impacts 

(Abuodeh et al. 2019; Alipour et al. 2017; Rumelhart et al. 1986). In air pollution, machine learning 

has been used for three main areas of interest:  source apportionment, forecasting or prediction of 

air pollution and quality or exposure and generating hypotheses (Bellinger et al. 2017). When it has 

been used in these instances, other researchers have used it as a module in a chemical transport 

model (CTM), a city-scale PM2.5 predictor using only wind and precipitation, and to generate sensor-

level data using satellite imagery. Therefore, this thesis will apply Least Absolute Shrinkage and 

Selection Operator (LASSO), causal machine learning algorithms, vector autoregression (VAR), and 

convolutional neural networks (CNN), to address social equity influences in infrastructure and air 

pollution exposure concentrations in these domains. 

That ML literature which specifically focuses on bridges primarily focus on highly technical 

aspects of bridges and their maintenance (Alipour et al. 2017; Kushida et al. 1997; Lu et al. 2017). 
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The literature on maintaining bridges describes how government institutions can maximize 

resources to optimize maintenance of the greatest number of bridges (Chengalur-Smith et al. 1997; 

Mohammadi Jamshid et al. 1995). These studies primarily use cost as the outcome and have 

technical measures as the explanatory factors such as: condition ratings, structural safety 

requirements, and age of bridge. Their primary concern is to rank-order bridges for maintenance 

priority. When researchers do take user cost factors into consideration, they tend to focus on 

factors affected only during construction or rehabilitation such as detour lengths, traffic delays, and 

congestion (Liu and Frangopol 2005; Liu Min and Frangopol Dan M. 2006; Liu Ming and Frangopol 

Dan M. 2006; Twumasi-Boakye and Sobanjo 2017). This literature is primarily concerned with 

technical engineering factors before and during construction or maintenance (Amini, Nikraz, and 

Fathizadeh, 2016), and the main consideration given to social factors is the impact on the bridge 

users during those same periods. Understanding wider social impacts of infrastructure, such as 

bridges, on populous that do not necessarily use but proximate such infrastructure is still generally 

understudied and the motivation of this work. 

ML methods can be used to examine disparate data to discover new insights about the 

social impacts of infrastructure. ML techniques are capable of identifying trends and relationships 

that are difficult or impossible to learn through other methods. By focusing ML methods on the 

social impacts of infrastructure, we can add quantitative evidence to existing qualitative evidence 

and theoretical foci about society and the built environment. The literature around society and the 

built environment has the following foci.  

The predominant focus here reconceptualizes the built environment as a conduit for both 

intended and unintended social connections (Audretsch et al. 2015; Joerges 1999; Pinch and Bijker 

2012; Schindler 2015; Shilton 2013; Star 1999; Winner 1980; Woolgar and Cooper 1999). As Howe 

and colleagues (2016) write, “Infrastructural deficiencies can both index preexisting inequalities, 

just as they may, simultaneously, deepen those inequalities” (Howe et al. 2016 p. 551).  
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On the one hand, infrastructure improves the flow of goods and services such that it can 

help recognize market opportunities. In an infrastructure study from 2001-2005, the researchers 

found the impact of infrastructure on new startup activity varies by type and industry (Audretsch et 

al. 2015). On the other hand, while those using the focal infrastructure may see benefits, the 

populations living near the infrastructure may experience harm. These deleterious effects may have 

disproportionately negative effects on the poor and marginalized (Epting 2016; Faoziyah 2016; 

Grabowski et al. 2017; Star 1999). A marginalized population is one which is “excluded from 

mainstream social, economic, cultural, or political life (Cook 2008).“  

Another focus argues that in the perception of the built environment as technical 

engineering objects, social values are often taken for granted (Grabowski et al. 2017; Leonardi and 

Barley 2010; Star 1999; Star and Bowker 2006). Generally speaking, this literature is comprised of 

a rich set of detailed qualitative studies, with few large-scale quantitative analyses (Desai and 

Armanios 2018, as a rare exception). It is not yet clear how widespread are the social impacts from 

the built environment, particularly the degree to which the built environment affects proximate 

marginalized populations. In fact, prior studies have noted this is largely ignored and not subject to 

the same breadth and depth of public and governmental review (Schindler 2015).  

With regard to air pollution, the literature is clear that there are adverse health effects due 

to air pollution, particularly from fine particulate matter (PM2.5) (Krewski et al. 2009; Lepeule et al. 

2012; Stieb et al. 2002). These health effects are a motivating factor for this research. Second, due to 

the complexities of the interactions between different chemical species, some of the true 

relationships of these chemical species are not fully understood nor are they accurately predicted 

by linear modelling techniques (Fiore et al. 2003; Karydis et al. 2007; Stieb et al. 2002). This is the 

primary motivation for employing machine learning techniques, generally, and neural networks, in 

particular, which have been successful at modelling many relationships (linear and non-linear) not 

readily identified by other methods (Hornik 1991; Hornik et al. 1989; Huang et al. 2016). Third, ML 
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techniques are only beginning to be used in studies on air pollution (Bellinger et al. 2017; Kelp et al. 

2020; Kleine Deters et al. 2017; Xue et al. 2019).  

Within the ML in atmospheric pollution space, the majority of work is attempting to use 

available sensor networks to predict future air pollution (Bellinger et al. 2017; Feng et al. 2015; 

Kleine Deters et al. 2017; Xue et al. 2019). Researchers are also using ML to make more 

computationally efficient modules for use in Chemical Transport Models (CTM), the gold standard 

in air pollution modelling (Kelp et al. 2020, 2019). This work is using ML to develop a 

computationally efficient model that learns how chemical species interact based on a CTM in order 

to predict air pollution concentrations with known adverse health consequences.  

Problem Statement 

The author focuses on two domains for which machine learning may make inroads – 

infrastructure and air pollution. The first domain of interest comes from the social and 

environmental justice and civil engineering domains. The author asks what is the relationship 

between infrastructure (specifically, bridges) and socioeconomic equity? The ultimate goal would be 

to establish a causal link between the two. Awareness of and desire to promote sustainability in the 

civil engineering domain has gained traction in the most recent decades. While desire to 

incorporate sustainability is present, there are not a lot of examples of it in the civil engineering 

literature. One of the possible reasons for this is that it is a very difficult problem that requires 

disparate data sources. The publicly available data sources are not easily combined into actionable 

data. Additionally, due to all the other factors that influence people’s socioeconomic wellbeing, 

attributing specific wellbeing effects to infrastructure is difficult. In the 50th anniversary edition of 

the Journal of Construction and Engineering Management, Professor Levitt opined, “Bringing the 

third dimension of sustainability—social equity—into an overall cost–benefit sustainability 

calculus is much more challenging […] and is extremely difficult to reduce to one-dimensional 

quantitative metrics (Levitt Raymond E. 2007 p. 627)”. Doloi (2018) observed “theories for 
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quantitative evaluation of social performance and underlying social value creation in public 

infrastructure projects from a community perspective remain unexplored” (p. 1). Thus, the 

information policymakers need to make better decisions concerning infrastructure and social 

equity is not easily combined to gain insights to make better policies. 

The second domain is to apply machine learning to air pollution. The state of the science 

chemical transport models are computationally and temporally expensive (Kelp et al. 2019). In 

spite of all the research that has gone into developing these models, there are still some phenomena 

that are not completely understood. Even for the chemical reactions that are well understood, the 

temporal scales at which reactions and other processes occur vary widely. This is an added 

measure of complexity for which chemical transport models must account. These models are also 

not readily accessible to policymakers. Simplified models exist to aid policymakers, but they too 

have shortcomings and often have difficulty modeling non-linear and/or nonstationary behavior of 

some chemical species. The author’s motivation of studying air pollution is to better assess its 

impact on human health, by data-driven machine learning. Here too, the desire is to discover causal 

links and estimate properties of causal influences. First, the author seeks to test whether ML 

techniques can effectively link emissions to concentrations of fine particulate matter chemical 

species. Second, the author focuses on volatile organic compounds (VOC) to test whether ML can 

outperform existing models in one or more dimensions.  

Common to both of these domains is the fact that performing scientific experiments are 

nearly impossible due to cost and ethical concerns. To perform the gold standard of a randomized 

controlled trial with infrastructure could cost hundreds of thousands to millions of dollars and 

would take many years to decades to properly assess long-term socio-economic effects. It would 

also be unethical to install a pollution creating device in close proximity to population centers in 

order to test air pollution effects on health and well-being. Therefore, this type of work is typically 

restricted to natural experiments.  
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Machine learning is particularly adept at disambiguating signals from big data. Many 

algorithms have also been developed to analyze data with the intent of discovering causal links 

between the variables. Many of these methods are well developed and accessible. The author plans 

to use these methods to make inroads to the following objectives. 

Aims and Objectives 

The aim for the first domain is to create an empirical framework and research design for 

linking bridge data to socioeconomic data and present a case study using these methods. The 

overall research design seeks to compare “treated” tracts (i.e., those that receive a restrictive 

bridge) to “control” tracts that mirror, as much as possible, those treated tracts. This work provides 

a protocol for how to combine the most granular, publicly available infrastructure and 

socioeconomic data to assess equity impacts of infrastructure using accessible machine learning 

methods. One of the more challenging parts for social equity domain non-experts is the selection of 

available variables and therefore the author provides quantitative analysis of available variables 

and methods to assess the causal link between these variables. The authors feel advancing this 

method may also help policymakers more sharply assess and prioritize which bridges to replace or 

rehabilitate that may promise the greatest social benefits. The authors specifically focus on bridges 

here to assess the feasibility of this approach but feel this protocol can be applied to other forms of 

physical infrastructure. 

The aim of the second domain is to first build a machine-learned model based on a state of 

the science chemical transport model, focusing the model on nonlinear and/or nonstationary causal 

influences in a data-driven manner. That model could then be made available to a wider audience 

concerned with air pollution and health policy.  
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Abstract 

Civil engineers recognize the need to better address the potential consequences of 

infrastructure systems on social equity. However, the challenge has been translating social equity 

concerns into metrics that are usable in engineering analyses. In this case study, the authors aim to 

identify such metrics that can be subsequently used by engineers who seek to make equity-

informed infrastructure construction, replacement and rehabilitation decisions. Combining 

geospatial and statistical techniques on publicly available data sources, this research proposes a 

quantitative framework for how to incorporate social equity metrics into infrastructure analyses. 

The feasibility of this framework is analyzed in the case of Pennsylvania’s bridge system. This 

feasibility study finds that selection effects (i.e., factors that drive bridge siting) are stronger than 

treatment effects (i.e., changes that occur after bridge construction) of bridges on social equity. 

Consistent variables are also identified as correlated with such effects (e.g., demographic and, to a 

lesser degree, family variables). Overall, this research proposes measures and an approach that 

helps local government transportation agencies better incorporate social equity into infrastructure 

construction, replacement and rehabilitation.  

Introduction 

Civil engineers increasingly recognize the need to better consider the potential 

consequences of infrastructure systems on social equity. In the 50th anniversary edition of the 

Journal of Construction and Engineering Management, Levitt (2007) opined, “Bringing the third 

dimension of sustainability—social equity—into an overall cost-benefit sustainability calculus is 

mailto:shjones@cmu.edu
mailto:darmanios@cmu.edu
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much more challenging […] and is extremely difficult to reduce to one-dimensional quantitative 

metrics (p. 627)”. In a recent analysis of transportation plans, Manaugh, et al (2015) found that 

even with an increased emphasis on sustainability, social equity is still poorly understood and 

poorly operationalized if used at all. Doloi (2018) observed “theories for quantitative evaluation of 

social performance and underlying social value creation in public infrastructure projects from a 

community perspective remain unexplored” (p. 1). A pressing concern then for engineers and 

policymakers alike is how to consider social equity in prioritization of infrastructure funding and 

maintenance. 

Grounded in philosophical discussions around equity (Rawls 1971; Walzer 1983), the 

working definition of social equity used here is the process by which assets are “distributed evenly 

over people, irrespective of the differences between those people – unless convincing arguments 

can be provided for another way of distribution” (Martens et al. 2012 p. 687). The first part (even 

distribution irrespective of differences) refers to “horizontal” equity which argues the “equal 

distribution of effects (benefits and costs) among individuals” (El-Geneidy et al. 2016 p. 542). The 

second part (unless convincing arguments otherwise) refers to “vertical” equity, which requires 

“special considerations for socially and economically disadvantaged groups in the sense that 

benefits should be intentionally provided to them” (El-Geneidy et al. 2016 p. 542). As applied here, 

social equity is therefore viewed as even distribution of the benefits and costs of infrastructure 

assets (horizontal equity), unless factors, for which the authors seek to identify here, undermine 

this distribution in ways that especially impact more marginalized groups (vertical equity). 

Prior work in environmental and social justice makes a compelling case for considering 

socioeconomic factors in particular when building and maintaining physical infrastructure to 

ensure equity to those marginalized (Bullard 1990; Grabowski et al. 2017). Studies have observed 

deleterious segregation effects of transportation infrastructure (Grannis 1998; Reardon et al. 

2008). In two cities, the size and speed of road networks were better predictors of racial contiguity 
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than geographic closeness and larger streets with higher speeds acted as boundaries to 

neighborhoods (Grannis 1998). In a study emphasizing the importance of scale on segregation 

patterns, the researchers posit that “It seems plausible that the built environment (including 

highways, street networks, railroads, and public transportation systems) may influence residential 

segregation patterns (and vice versa)” (Reardon et al. 2008 p. 509). In a legal review, Schindler 

(2015) noted that infrastructure accessibility “can shape the demographics of a city and isolate a 

neighborhood from those surrounding it, often intentionally” (p. 1939). In so doing, the built 

environment controls human behavior by constraining physical movement. Overall, infrastructure 

can have asymmetric influences on a populous that is especially harmful to the most vulnerable. 

To initiate this undertaking, the authors scope this case study to bridges, a form of 

infrastructure argued to impact physical connectivity in potentially asymmetric ways. Restrictive 

bridge heights are argued to constrict the passage of certain vehicles, which may disproportionately 

affect those groups who rely more on public transportation, and may thus segregate across 

different socioeconomic and demographic groups (Winner 1980). A study that simulated the effect 

of a bridge linking two populations centers in Indonesia concluded that while the bridge was 

expected to equalize benefits between the districts, the model demonstrated that the majority of 

benefits accrued to the already more developed population (Faoziyah 2016).  

To assess the feasibility of incorporating social equity in bridge systems, the authors more 

specifically ask: how do restrictive bridges impact social equity? By “restrictive,” the authors mean 

those bridges that are below 4.27 meters (14 feet) and “non-restrictive” bridges are those bridges 

that are 4.27 meters (14 feet) or above. This is both a prominent regulatory clearance standard for 

bridges and also a key cutoff that can inhibit the passage of certain vehicles such as commercial 

trucks (Desai and Armanios 2018). Such restrictions may have social equity implications if certain 

groups rely on vehicles that are now blocked by such bridges (Winner 1980). This is also especially 

applicable since restrictive bridge clearances further serve as an important component of 
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sufficiency ratings, which helps ascertain to what degree a structurally deficient bridge is eligible 

for federal funding (Small et al. 1999). The authors also consider whether a tract is more likely to 

receive any bridge at all as a lack of bridges is also another possible source of restrictions (Table 1).  

Table 1. New bridges built by underclearance category during a census period (e.g., 1961-1970) 
Year Restrictive Non-restrictive All bridges 
1970 56 1,773 5,816 
1980 15 995 3,360 
1990 12 536 2,987 
2000 7 588 2,697 
2010 4 658 2,872 
Total 94 4,550 17,732 

 
A necessary first step is to empirically identify those social equity factors that are associated 

with infrastructure placement, planning, and subsequent usage. Historically, this has proven to be a 

challenging enterprise (Doloi 2018; Levitt Raymond E. 2007). Infrastructure and socioeconomic 

data are not just managed across dispersed sources; they are also at different levels of analysis and 

availability (Manaugh et al. 2015). Infrastructure data is located at specific point locations and 

usually updated annually or at more granular temporal scales. However, historical (e.g., as early as 

the 1970s) socioeconomic data is most easily accessible every ten years through the U.S. Census, 

and adequately detailed social equity measures tend to appear in more recent decades and less so 

in earlier decades. Moreover, the most granular geophysical level for which this is publicly available 

is usually a census tract (average area size – 36 km2 or 13.9 mi2), and tracts change in size and 

shape with changes in population (GeoLytics 2018). This study’s aim then is to assess the feasibility 

of integrating these existing methods and data sources to address this pressing yet empirically 

challenging need to gauge the social equity impacts of infrastructure.  

To arrive at a comprehensive list of socioeconomic measures of equity, the authors 

conducted an extensive literature review and identified four research areas whereby infrastructure 

is argued to impact social equity: neighborhood effects (Crowder and South 2008; Sampson et al. 

1999, 2002; Sharkey 2014), social justice (Brady et al. 2017; Schindler 2015), environmental justice  
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Table 2. Most influential variables from the study’s selection models with description and effect direction. 
 Variable Category (in bold)  Directional Effect on Selection 

 Variable Description Restrictive 
Non-

restrictive All New 
Income 

*IHS-transformed 
Real Average 
income 

Inverse Hyperbolic Sine Transformation 
of average household income in past 12 
months (2010 Constant $ US) 

NS + + 

*IHS-transformed 
Real Aggregate 
income 

Inverse Hyperbolic Sine Transformation 
of Aggregate household income in past 
12 months (2010 Constant $ US) 

+ + + 

*% Welfare rate 
Percentage of households with public 
assistance inc. (incl. SSI) last year of 
total households 

NS ‒ + 

Demographic 

*% Minority Non-White percentage of total 
population NS ‒ ‒ 

*% African 
American 

Black/African American percentage of 
total population NS ‒ ‒ 

*% Hispanic Percentage Hispanic/Latino of total 
population NS ‒ ‒ 

Family 

*% single-parent 
families w/kids 

Percentage of single-parent families 
with own children under 18 years old of 
total families and subfamilies 

NS NS ‒ 

*% female-headed 
families 

Percentage female-headed families with 
or without own children of total families 
and subfamilies 

NS NS ‒ 

Transportation 

*IHS-transformed 
Travel on public 
transportation 

Inverse Hyperbolic Sine Transformation 
of Workers 16+ years old traveling to 
work on public transportation (taxi not 
included) 

‒ + NS 

*IHS-transformed 
Commute over 45 
minutes 

Inverse Hyperbolic Sine Transformation 
of Workers 16+ years old with travel 
time to work more than 45 minutes 

NS ‒ NS 

Education 

*% Associate 
Degree Graduate 

Percentage of persons 25+ years old 
who have an associate degree but no 
bachelor’s degree 

‒ ‒ NS 

*% bachelor’s or 
higher Degree 
Graduate 

Percentage of Persons 25+ years old 
who have a bachelor’s or 
graduate/professional degree 

+ NS NS 

* Lagged variable when used as an independent variable 
Note: NS = not significant, + = positive relationship, - = negative relationship. 
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(Bullard 1990; Carless 2018; Pathak et al. 2011), and segregation (Crowder et al. 2012; Farley and 

H. Frey 1994; Lee et al. 2008). The neighborhood effects literature argues infrastructure, such as 

roads, create boundaries that isolate neighborhoods. When such boundaries isolate, for example, 

more affluent from less affluent neighborhoods, this can create social equity disparity in these 

neighborhoods. The social justice literature argues minorities suffer systemic structural  

disadvantages creating social inequity. The environmental justice literature argues undesirable, 

often high-polluting infrastructure, is sited in minority neighborhoods. This leads to more adverse 

environmental and health outcomes for these neighborhoods, an example of social inequity. The 

segregation literature argues infrastructure has effectively, whether intended or not, isolated 

minorities from majority populations, which creates social equity imbalances for these minorities. 

Based on this review, the authors classified the equity measures used in these perspectives into the 

following themes across these research areas: wealth status, race, family composition, education, 

and housing. Since the object of this study is transportation infrastructure, the authors also added 

available transportation-related variables.  

The authors then looked for quantitative sources to collect such measures in a way that 

could adequately be mapped onto the 50-70 year design life of a bridge (Hu Xiaofei and Madanat 

Samer 2015; Neves et al. 2006). As per the challenges discussed in the previous paragraph, a 

dataset that normalized tracts to a reference year that accounts for population change would 

greatly facilitate a comparative analysis over time as such a reference point. The Neighborhood 

Change Database (NCdB) is a dataset with such normalized tracts and the longest duration available 

to the authors was from 1970 to 2010 (GeoLytics 2018). The authors then searched the census data 

as provided by the NCdB (GeoLytics 2018), and identified forty-one variables that most closely 

matched or proxied for these aforementioned social equity and transportation categories. This 

study’s main variables are listed in Table 2 and more fully in the Appendix I, Section C, Table 22 - 

Table 30. 
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What the authors subsequently present then is a novel empirical approach and research 

design for linking bridge data to this socioeconomic data. To gauge the feasibility of such an 

approach, the authors use bridge data from the Pennsylvania Department of Transportation’s 

(PennDOT) Bridge Management System v. 2.0 (BMS2) (Pennsylvania Department of Transportation 

2018a) and census tract data from the Neighborhood Change Database (GeoLytics 2018). As of 

2017, Pennsylvania has the second-highest number of structurally deficient bridges in the country 

(FHWA 2017). Thus, Pennsylvania serves as a good candidate case to ascertain whether social 

equity measures could help further plan funding around those bridges in need of repair and 

maintenance.  

The overall research design seeks to compare “treated” tracts (i.e., those that receive a 

restrictive bridge) to a “control” tract that mirror, as much as possible, those treated tracts. To do 

that, the authors begin with the full sample of tracts as a baseline using a simple circular buffer 

around the bridges to approximate interactions between the bridge and nearby tracts (see 

Appendix I, Section E). The authors then sharpen the treated tracts using a network analysis that 

identifies the bridge service area to isolate better the treated tracts that are connected by the bridge 

(Liu Min and Frangopol Dan M. 2006; Twumasi-Boakye and Sobanjo 2017). The authors finally 

sharpen the control tracts using a coarsened exact matching (CEM) technique to isolate better those 

tracts that do not receive a restrictive bridge but as closely as possible approximate the treatment 

tracts (Desai 2018; Iacus et al. 2008, 2009, 2012). The authors hope through this novel empirical 

approach and research design, this study can provide a protocol for how to combine the most 

granular, publicly available infrastructure and socioeconomic data to assess equity impacts of 

infrastructure. The authors feel advancing this method may also help policymakers more sharply 

assess and prioritize which bridges to replace or rehabilitate that may promise the greatest social 

benefits. The authors specifically focus on bridges here to assess the feasibility of this approach but 

feel this protocol can be applied to other forms of physical infrastructure. 
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Physical Infrastructure (Bridge Systems) on Social Equity – Selection vs. Treatment 

To guide the research design and analysis, the authors first assessed the existing literature 

and ways in which social impacts of infrastructure are considered. The authors only briefly 

summarize those efforts here, in the Introduction and Table 3. Appendix I, Section H provides a 

more extensive literature review for the interested reader. More specifically, the authors needed to 

integrate sociological thinking into the civil engineering dialogue. While civil engineering depicts 

bridges as facilitating flows, sociology posits that bridges may actually serve as barriers. 

Infrastructure, when built well, is taken for granted, and only when infrastructure malfunctions do 

people recognize its obstructive power (Star 1999). For example, while most people see bridges as 

a conduit for access, Winner (1980) shows in his depiction of Robert Moses’ parkway bridges in 

New York that for those who rely on public transportation, bridges can also act as a conduit for 

exclusion. While prior research has debated about the issues of equity that arise from specific cases 

of physical infrastructure, namely whether designers intended or not to create these obstacles 

(Joerges 1999; Winner 1980; Woolgar and Cooper 1999), few have empirically analyzed the 

magnitude and scope of these equity problems through a large-N quantitative analysis.  

Generally, civil engineers accept that infrastructure improves the lives of people who live 

and work near it. However, this belief is restricted in scope. Namely, when discussing social issues 

from an infrastructure perspective, the focus is predominantly on user costs or economic impact to 

surrounding businesses of an infrastructure system, and predominantly during the construction or 

maintenance period of said systems (Liu Min and Frangopol Dan M. 2006; Twumasi-Boakye and 

Sobanjo 2017; Yavuz et al. 2017). Meanwhile, local communities which may not use but neighbor 

these systems may also be affected, and this is less considered. Further, few studies have attempted 

to quantify the social effects of infrastructure, and more specifically, bridges, which are the authors’ 

focus here. Since Winner (1980) brought up his concerns about infrastructure’s impact on social 

equity, there have been few attempts to quantify that impact on a wider, more systematic scale. In 
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short, infrastructure may be conduits for more direct and intended positive connections but also 

more indirect and hidden negative connections. 

Table 3. Main papers that inform the theoretical framework for this study 
Author(s) Year Main Findings How impacts study 

Levitt 2007 Social equity is a key neglected 
dimension of sustainability in 
construction management 

Impetus for performing study 

Winner 1980 Bridge clearances can be used to 
obstruct the mobility of certain 
populations over others 

Drives focus on bridges as a 
case study for assessing social 
equity impacts of infrastructure 

Howe, et al 2016 Infrastructural deficiencies can 
both index preexisting inequalities, 
just as they may, simultaneously, 
deepen those inequalities 

Drives our distinction between 
the "selection" and "treatment" 
associations of infrastructure 
on equity 

Grannis 1998 Tertiary street connections are 
better predictors of same race than 
spatial adjacency 

Inform our view that bridges 
can obstruct besides enable 
connectivity, both prior to and 
after their construction 

Star 1999 One person's benign infrastructure 
is another's major hurdle (steps 
and wheelchairs) 

Informs the view used here that 
infrastructure can benefit and 
harm different groups 
simultaneously 

Desai & 
Armanios 

2018 Bridges are institutional "relics" in 
that standards from the existing 
social system are explicitly built 
into the physical attributes of the 
bridge, and these attributes persist 
even when these social systems and 
resulting standards may later 
change 

Helps informs how equity may 
be associated with 
infrastructure through social 
factors that predate the 
building of the system 

Bullard 1990 Hazardous waste facility siting 
associated with more minority 
communities 

Informs how communities that 
predate infrastructure 
construction can be associated 
where such systems are sited 

 
Therefore, in this study, the authors consider how bridges might inhibit movement or 

create disproportionate effects on populations surrounding the bridge. In summary, this study 

seeks to join sociological thinking, namely Winner’s (1980) theoretical conjecture around the social 

impacts of bridges, into the civil engineering discourse, per Levitt’s (2007) call. To put it more 

plainly, the authors see bridges as an interesting subject of research not just for what they facilitate 

but also for what they may obstruct. The aims of this study are to quantify the possible social 
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benefits and costs of bridges to better understand the associations between infrastructure and 

social equity. 

To guide the inclusion of social factors into engineering research, the authors consider two 

potential relationships between bridges and the surrounding population: “selection” (i.e., how the 

social factors affect where bridges are placed) and “treatment” (i.e., what changes once a bridge is 

built). Reaffirming Howe and colleagues (2016), the authors define selection as how 

“Infrastructural deficiencies can… index preexisting inequalities,” and treatment as how 

infrastructure “may, simultaneously, deepen those inequalities (p. 551).” The authors’ aim here in 

assessing the impacts of physical infrastructure on social equity is to disentangle these two effects 

more clearly.  

Prior research suggests that social factors do influence where new infrastructure is placed 

as a means to regulate access (Joerges 1999; Winner 1980; Woolgar and Cooper 1999). Examples of 

such selection effects abound, especially in the social justice, environmental justice and segregation 

literature that argues polluting industries, power plants, and major thoroughfares are more likely 

to be placed in poor and minority neighborhoods (Bullard 1990; Carless 2018; Grannis 1998). 

These studies argue that a lack of power or awareness amongst these neighborhoods allows these 

polluting industries to be concentrated in these areas. The purpose of focusing on selection effects 

is to test which, if any, social factors predict or are associated with where a certain type of bridge 

will be built, or if a bridge will be built at all. Also, if the authors do not examine selection effects, 

they may overlook prevailing conditions prior to placement of a bridge that may be more 

deterministic of future social equity factors than what happens after the bridge is constructed 

(Howe et al. 2016). From this literature, the authors posit that tracts with more marginalized 

populations (e.g., lower-income, higher poverty and/or a higher percentage of minorities) are 

associated with more restrictive bridges. 
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The purpose of focusing on treatment effects is to ascertain whether restrictive bridges 

subsequently predict or are associated with social factors that may or may not deepen inequalities. 

Prior literature has shown that infrastructure institutionalizes political systems extant during 

construction, and those norms can persist for many years or decades after that (Desai and 

Armanios 2018). While there are certainly many mechanisms that could help to explain this 

deepening, one of the mechanisms could be as simple as moving. As people choose to move and 

self-organize, Grannis (1998) explains that people like to live down the street from people similar 

to themselves and that infrastructure acts as a de facto barrier. Therefore, people choose to move to 

neighborhoods separated by barriers that group them with similar others. Whether this mechanism 

or others, the authors would posit that tracts with a higher percentage of restrictive bridges will be 

associated with more negative levels of social equity. 

Data 

As noted at the onset of this study, historical empirical challenges in assessing equity 

impacts due to infrastructure necessitated significant effort to develop the dataset for this analysis. 

In particular, such an analysis requires integrating and cleaning disparate sources that vary in both 

spatial and temporal resolution. Therefore, a lack of available data and methods to merge disparate 

infrastructure and social equity data across levels of analysis are arguably a key reason that 

analyses on equity impacts of infrastructure have not been undertaken despite calls to do so (Doloi 

2018; Levitt Raymond E. 2007).  

To initiate this process, the authors used GIS software buffering and intersection functions 

to link physical infrastructure data (often a point source) to its appropriate census tract (a polygon 

area). The authors will expound upon these processes in greater detail in subsequent sections. 

Given the reporting errors that occur in such data (Tierney et al. 2012; Turnbull et al. 2013), the 

authors went through an extensive cleaning process to check the bounds of each variable and, if 
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extensively prone to error, checked for alternative sources. For more details on the data acquisition 

and cleaning process used in this study, please consult Appendix I, Section A. 

In particular, the authors integrate two types of data - physical infrastructure and social 

demographic data. The physical infrastructure data came from PennDOT’s BMS2 (Pennsylvania 

Department of Transportation 2018a) and OpenStreetMaps street network data hosted by 

Geofabrik GmbH (“Geofabrik Download Server” 2018). Other analysts use National Bridge 

Inventory data for such an analysis (Desai and Armanios 2018). However, the authors chose BMS2 

as PennDOT gave us access to this data, and this access afforded the authors data closer to the 

source of reporting for NBI (e.g., NBI relies on reporting from state DOTs). However, the tradeoff is 

that only the latest measures are preserved and PennDOT only provided access to highway bridges. 

The authors compiled total counts of bridges by underclearance height and counts of new bridges 

built in the current census period (10 years) by these aforementioned types (see Table 1). To gauge 

if there was any significant bias, the authors compared BMS2 data with NBI data for PA bridges. 

BMS2 serves as a conservative estimate of restrictive bridges in that BMS2 reports fewer restrictive 

bridges than NBI data, given it is based on current data. Another important boundary condition to 

these results is that these are exclusively highway bridges and underclearances that are only 

reported if there is a road or railway beneath the bridge (under record) (Pennsylvania Department 

of Transportation 2018b pp. 3-36-3–42). However, for the purpose of a feasibility study, this is 

useful as this will also likely provide conservative estimates of the results given that the authors do 

not have all bridges in each locale based on the assumption that more bridges will produce more or 

stronger effects. Moreover, for conducting widescale equity evaluations of infrastructure, most 

infrastructure managers would rely on these or similar datasets. In the Limitations section, the 

authors discuss this further as well as possible future approaches to alleviate this.  

The social demographic data comes from the Neighborhood Change Database (NCdB) from 

1970-2010 (GeoLytics 2018). These two data sources compile a total of 36,986 bridges in 3,217 
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census tracts. Two data subsets were used to overcome a lack of sampling in the census data for 

primarily rural tracts in 1970 and 1980 (see Appendix I, Section D, Fig. 33 for a map of the rural 

tracts not sampled in 1970 and 1980). The first subset removed 1970 and 1980 time periods from 

the data. The total number of tracts and bridges did not change, but the number of time periods 

changed from five to three. The other subset used to compensate for the missing data was to create 

a list of tracts with missing samples and then remove those tracts from the subset. Using the data 

cleaning and merging process noted previously, the authors only removed those tracts with missing 

data and were left with 20,005 bridges in 2,529 census tracts that were usable for analysis. In 

conducting statistical tests between included and excluded tracts, due to data availability, those 

tracts that were excluded from the analysis through this process indeed tended to be in rural, less 

populous counties (see Appendix I, Section D, Fig. 33 and Table 31). Given the authors’ focus to 

analyze variation in socio-economic impacts due to infrastructure, urban tracts are likely where 

much of the social equity dynamics of interest occur, so excluding rural tracts is less of a concern. 

For more detail on the data acquisition and cleaning process, see Appendix I, Section A. 

Research Design and Empirical Approach 

The ideal research design for assessing the social equity impacts of a restrictive bridge 

would be to randomize the placement of a new restrictive bridge and assess its effects in relation to 

the same tract without such a bridge. Given that this design is not feasible, the authors use the 

following research design to approximate as much as possible this ideal empirical strategy. This 

design aims to compare as closely as possible “treated” tracts (e.g., receive a new restricted bridge) 

with “control” tracts that most closely approximate these tracts and never receive such a bridge. 

Fig. 1 summarizes the authors’ process. 

After analyzing the full sample to create a baseline, the authors first sharpen the treated 

tracts through a network analysis that helps more accurately identify a focal bridge’s service area. 

The network analyst extension in ArcGIS uses Dijkstra's algorithm (see Appendix I, Section J) to 
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trace the OpenStreetMaps street network out from a bridge (point source) to build a service area 

(polygon area) to determine which census tracts interact with the bridge (El-Geneidy et al. 2014; 

Liang et al. 2016; Tanguy et al. 2017). This analysis is used to exclude nearby tracts that do not 

share a road network with the bridge. To illustrate the importance of this analysis, the authors 

compare this service area analysis to a circular buffer for one bridge (see Fig 2). When using a 

circular buffer, the number of tracts counted as “treated” would be five. However, the service area 

network analysis would more conservatively only count two tracts as treated. 

The authors then sharpen the control tracts through coarsened exact matching (CEM). CEM 

aims to match treated (e.g., tracts with a restrictive bridge) and control tracts along observable 

factors to ensure improved covariate balance between the two groups (see Appendix I, Section K). 

In this way, one can more safely assume that unobservables are more likely randomly distributed 

across these groups (Iacus et al. 2008, 2009, 2012). In short, this approach is used to ensure the 

control tracts are as equivalent as possible to the treated tracts. To ensure CEM did achieve greater 

balance, the authors conduct t-tests of the means, Kolmogorov-Smirnov tests (ks-test) of the 

distribution and a Bayesian alternative to the t-test (Kruschke and Meredith 2018). As shown in 

Appendix I, Section I, Table 63 - Table 70, overall and univariate imbalance (L1) greatly improved in 

comparison to the full sample baseline. The t-tests and ks-tests were no longer significant across 

the matching controls, and the Bayesian tests also showed a move toward a more unified 

distribution. All of which indicates CEM achieved greater treatment-control group balance. 

Overall, the authors’ approach seeks to find the sharpest set of treatment tracts that receive 

a new restrictive bridge to the most equivalent control tracts that do not receive such a bridge. The 

authors use a variety of methods (e.g., service area network analysis – sharpens treatment and CEM 

– sharpens control) to ensure achievement as close as possible to the ideal. The authors also ran 

analyses on tracts with any new bridge, regardless of underclearance or presence of under-record 

route. These analyses were to ascertain whether restrictions were due more to the height of an 
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existing (or new) bridge construction or due to lack of connectivity in the form of having (or not) 

any new bridge construction.  

Variables 

To inform variable selection, the authors used the procedure discussed in the introduction 

and depicted in Fig. 3. Given that bridges are the authors’ key interest, the authors used the 

following commonly accepted physical infrastructure variables: PennDOT structure ID, NBI 

structure number, underclearance height, latitude, longitude, year built, and year of construction or 

year of last major reconstruction (Desai and Armanios 2018; Youssef et al. 1991). Given the sheer 

volume of proposed socioeconomic variables in prior studies and with the additional need to assess 

which of these variables are most salient to the feasibility case study of interest (Pennsylvania), the 

authors used the following variable selection process.  

First, and as discussed in the Introduction, the authors conducted a literature review and 

collected variables that prior social equity studies argued link infrastructure to equity outcomes. 

Second, since many of the variables measure closely related phenomena, the authors then tested for 

correlation, found that several variables were highly correlated (r=0.7 or greater) and were, 

therefore, not selected for use in the models (See Appendix I, Section B, Table 18 - Table 21). After 

this reduction, twenty-four variables remained (see Appendix I, Section C, Table 22 - Table 30). 

Since many of the variables of interest measured different aspects of the same or highly similar 

phenomena, they were analyzed in separate models with the intent of minimizing remaining 

correlations and isolating variables that measure the same phenomena. For example, real average 

income and real aggregate income are two variables that essentially measure the same phenomena 

and are therefore not used at the same time in any model. 

Dependent Variables 

See Appendix I, Section C, Table 30 for an exhaustive list, and the relevant citations 

informing the inclusion of analyzed variables. For the selection effect models, the authors regress 
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on restrictive bridge measures – the underclearance height. The primary measure is whether a 

bridge is restrictive (under 4.27 meters or 14 feet) or non-restrictive (over 4.27 m or 14 ft), in line 

with prior studies (Desai and Armanios 2018). To assess whether effects pertain to any new bridge 

construction more generally, the authors also have a separate measure for all bridges including 

those that do not have a road or railroad (under-record) beneath them. The authors also consider 

more granular measures for underclearance height, and the authors report the results from these 

more refined height distinctions in Appendix I, Section G. 

The authors specify the dependent variables in two ways. The first is as a dichotomous 

variable (0/1), signifying that a new bridge of that underclearance height was built in that tract 

during the focal census period (10 years). Since the census is a decennial survey, the authors chose 

to match the ten-year window to the census timing (e.g., changes during 1961-1970 are recorded in 

the 1970 census). The other dependent variable is a total count of new bridges built during the 

census period. For the treatment effect models, the authors use the socioeconomic factors as the 

dependent variables with these new bridge group variables as independent variables.  

Independent Variables 

In the selection models, the independent variables are the aforementioned socioeconomic 

factors. In the treatment models, the independent variables are the bridge treatment term, the 

bridge treatment group term, and their interaction term. Each independent variable was lagged by 

one time period (e.g., one 10-year census period). The complete set of independent variables from 

the literature review is in Appendix I, Section C, Table 22 - Table 30). Later in the Results section, 

the authors summarize those variables that proved most significant and, thus, have the greatest 

likelihood to guide future decision-making in Table 2.  

The treatment model independent variables are dichotomous variables (i.e. binary, 1 or 0). 

The treatment term is the time period on or after the treatment group receives treatment 

(treatment = receiving a new restrictive bridge; in additional analyses, treatment = receiving any 
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new bridge). The census period when a new bridge appears in a tract begins the treatment time. 

The treatment group is those tracts that will at any point, receive a bridge. Thus, the event study 

interaction term is one for those periods in which a treatment tract receives a bridge and zero for 

all other instances. Fig. 4 provides a graphical representation of all tracts receiving a restrictive 

bridge treatment.  

Tracts without any new bridges comprise the control group, so these bridges were linked to 

the treatment group through random assignment of a treatment year (Borusyak and Jaravel 2016). 

This step of assigning a treatment year to non-treated tracts is necessary for an event study. Event 

study models are designed to analyze the effects of events on different units at different times. The 

authors use event study in the same sense as Borusyak and Jaravel (2016), de Faria, et al. (2017), 

and Clay, et al. (2016). A difference-in-difference analysis studies an event that affects all 

individuals in the study in the same time period and thus, the treatment time is universal for all 

individuals in the study. To briefly illustrate this, those control tracts before random treatment year 

assignment would have a treatment term and treatment group term equaling zero in all time 

periods. However, those control tracts after random treatment year assignment would have a 

treatment group term remaining as zero, but now a treatment term equal to one after the period of 

assignment. For treatment groups, the group variables would consistently equate to one. Prior to 

the tract receiving a treatment bridge, the treatment term equals zero, but after the treatment year, 

the treatment term equals one. 

Control Variables 

The authors then control for engineering factors around bridge placement. The first is the 

need to span a geophysical impediment such as a chasm or a river (ASCE 2016). Since Pennsylvania 

has many rivers, the authors selected tract water area (as a percentage of total tract area) as a 

proxy variable for geophysical impediments. The second is population density to account for 

potential demand for bridges. After examining the sizes of tracts and their proximity to cities, the 
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authors created two dichotomous variables to act as rural definitions based on natural cutoffs in 

the data around population centers. The reason for this is that tract areas are a function of 

population and so rural tracts have sparser populations which leads to larger tract size. To ensure 

the size of the tract was not consequential to the model, the authors used two size specifications. 

The first used the mean of tract area (4million square meters) and the other was a more extreme 

size that more than doubled the mean (10 million square meters). Graphical representations 

showing tracts coded as urban are available in Appendix I, Section D, Fig. 31 - Fig. 32. Related to 

rural definitions is the overall area of each tract. Because census tracts attempt to create geographic 

regions with a similar number of residents, the relation between tract area and population is part of 

the definition of a census tract. The authors decided, therefore, to also use tract area size as a 

control variable to better account for comparably sized tracts in conjunction with population 

density. See Appendix I, Section C, Table 30 for the complete set of variables used in the main 

analysis.  

Statistical Methods and Models 

Selection Effect Models 

The selection effect model is designed to analyze the probability of a tract receiving a new 

restrictive bridge. This selection effect is of interest because the authors want to know if there are 

associations between the decision to build a new restrictive bridge in a tract based on the 

population that lives there prior to its construction. A logistic model is designed to predict 

probabilities based on provided factors. The treatment effect model is designed to determine the 

difference in consequences between tracts that received a new restrictive bridge and those that did 

not.  

Logistic regression was used and found to have the best goodness of fit of the selection 

effect models used. The goodness of fit measures used for this model are AIC and BIC. Linear 

probability, OLS, and Poisson regression models were also used to analyze selection effects and 
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details can be found in Appendix I, Section G. These produced largely consistent results for most 

variables (Fig. 5 - Fig. 7). The equation for this model was as follows: 

Equation 1. Logistic Regression Model Specification 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑝𝑝(𝑥𝑥)) =  𝑙𝑙𝑙𝑙𝑙𝑙
𝑝𝑝(𝑥𝑥)

1 − 𝑝𝑝(𝑥𝑥)
= 𝛽𝛽0 + 𝜸𝜸𝒌𝒌𝑿𝑿𝒌𝒌,𝒊𝒊,𝒕𝒕−𝟏𝟏 + 𝛿𝛿𝑡𝑡 + 𝑒𝑒𝑖𝑖,𝑡𝑡 

where logit(p(x)) is the probability that a variable designating a new restrictive bridge was built in 

the census period, in tract i, in census year t, 𝜸𝜸𝒌𝒌 is a vector of control variable coefficients, X is a 

vector of variables of social interest, and 𝛿𝛿 is a fixed effect for each census year. 

Treatment Effect Model 

The authors employed an event study model to analyze treatment effects (Borusyak and 

Jaravel 2016; Clay et al. 2016; de Faria et al. 2017). Fixed effects and difference-in-difference 

models were also used to analyze treatment effects and details can be found in Appendix I, Section 

G. These produced generally consistent results for most variables. The equation for this model was 

as follows: 

Equation 2. Event Study treatment effect model specification 

𝑧𝑧𝑖𝑖,𝑡𝑡 = 𝛽𝛽0 + 𝛽𝛽1�𝑥𝑥𝑖𝑖,𝑡𝑡 × 𝑙𝑙𝑖𝑖,𝑡𝑡�+ 𝛽𝛽2𝑥𝑥𝑖𝑖,𝑡𝑡 + 𝛽𝛽3𝑙𝑙𝑖𝑖,𝑡𝑡 + 𝜸𝜸𝒌𝒌𝑪𝑪𝒌𝒌,𝒊𝒊,𝒕𝒕−𝟏𝟏 + 𝛿𝛿𝑡𝑡 + 𝑓𝑓𝑖𝑖 + 𝑒𝑒𝑖𝑖,𝑡𝑡 

where z is a social equity variable of interest, in tract i, in year t, 𝛽𝛽1 is the event study coefficient for 

the treatment and group interaction term, x is a dummy variable designating the tract received a 

new restrictive bridge treatment, g is a dummy variable designating the tract as receiving a 

restrictive bridge at any time, 𝜸𝜸𝒌𝒌 is a vector of control variable coefficients, C is a vector of lagged 

control variables, 𝛿𝛿 is a fixed effect for each census year, and f is a time-invariant tract fixed effect 

(Borusyak and Jaravel 2016; Clay et al. 2016; de Faria et al. 2017). 

Regardless of the model, due to the nature of census data, errors were found to be 

heteroskedastic in nature. Therefore, robust standard errors were calculated using a variance-

covariance matrix and Wald test (Zeileis 2004, 2006). All standard errors and p-values reported are 

the results of these calculations. 
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Results 

Results presented here focus on three bridge categories: restrictive bridges (under 4.27 m 

or 14 ft), non-restrictive bridges (over 4.27 m or 14 ft), and all bridges (including those without an 

under-record route). Results are considered from the perspective of new restrictive bridges. 

Variables were considered to have an association if the point estimate and standard error did not 

encapsulate zero. Figs. Fig. 5-Fig. 7report the coefficient estimates for various selection models 

from the analysis. As will become evident, the treatment effect models were generally inconsistent 

and not robust, so those models are only reported in Appendix I, Section F. 

Before going into greater detail, these analyses lead to several overall insights. First, social 

factors seem more significantly associated with bridge selection as opposed to treatment, especially 

the demographic variables and, to a lesser degree, family variables. Percentage of Hispanic, African 

American, and non-White populations all are negatively associated with the placement of non-

restrictive bridges, or any bridge construction, and these associations are consistent and robust. 

Regarding family variables, those households with more single parents with children and female-

led households were associated with less bridge construction of any kind, and these associations 

were consistent and robust. Education variables, finance, housing, and transportation variables 

generally did not yield consistent nor robust associations (see Appendix, Section G, Fig. 40 - Fig. 46 

for all model comparison plots). Overall, this suggests that tracts with more non-White 

demographics and single or female-led households are associated with less infrastructure, which 

suggests less physical connectivity and mobility. A summary of these variables that proved 

significant is available in Table 2. 

Second, physical factors that arguably capture more technical rationales for bridge 

construction have less association on selection or treatment, even before CEM is applied to handle 

potential selection along these variables. Rural tracts and water area all hover around zero in both 

sets of models. This result suggests social as opposed to technical factors are perhaps more 
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associated with bridge construction, particularly where it is sited. That said, the measures used as 

proxies for technical causes or reasons for building a bridge are limited to water and land area. The 

reason is social context often informs the appropriate variables that can hypothetically influence 

whether a locale needs a bridge and whether it receives it. Since the context was Pennsylvania and 

many bridges are used to traverse bodies of water and geophysical features such as ravines, land 

and water area were selected as proxies. These proxies may not be applicable across social contexts 

as these measures may not adequately capture other possible contextual sources of geophysical 

variation such as elevation change. Thus, while this suggests social factors may matter more than 

technical factors in bridge siting and that the overall framework may be replicable, the authors 

cautiously note that the realities of the local context should guide the variables included. 

Selection Effect Model Results 

The authors graphically represent the coefficient estimates across models in Fig. 5, Fig. 6 & 

Fig. 7, with remaining comparisons shown in Appendix I, Section G, Fig. 40 - Fig. 46. For baseline 

cases and full panel results, see Appendix I, Section E. Results shown in this section are those after 

CEM is applied, and the authors will discuss this further in the Robustness Checks section.  

In terms of selection effects, most demographic variables were robustly and consistently 

negatively associated with non-restrictive bridges and all new bridge placement. Percent Hispanic, 

African American, and non-White had robust and consistently negative associations. Based on the 

literature, this association is not surprising as these at-risk groups are typically located in less 

affluent neighborhoods that often do not receive the benefit of new infrastructure (Brady et al. 

2017). The literature also reports that these variables can be indicators associated with spatial 

segmentation (i.e., segregation) and migration patterns due to social and economic characteristics 

(Crowder et al. 2012; Lee et al. 2008). However, foreign-born were neither consistent nor robust in 

their associations (Fig. 7) which seems consistent with prior literature that found the influence of 

foreign-born populace to mitigate segregation (Lee et al. 2008). 
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Regarding family variables (percent single parents with children, percent female head of 

household, percent under 18-years-old, and adult to child ratio), the most prominent effects were 

those on any new bridge placement. Tracts with more female-led households and single parents 

with children were robustly and consistently associated with less new bridge construction (Fig. 6) 

which confirms prior literature findings that used these factors to measure concentrated 

disadvantage (Sharkey 2014). That literature would find that these are groups are at higher risk of 

poverty and spatial segmentation (Crowder et al. 2012; Sharkey 2014). 

Regarding the education variables (percent of population with: eight years of education, a 

high school education, an Associate’s degree, or a bachelor’s degree), only percent of population 

with an Associate’s degree and with a bachelor’s degree had estimates associated with new 

restrictive bridges, but these estimates had a small magnitude and were similar to the estimates for 

non-restrictive bridges. Tracts with more individuals with associate degrees were consistently 

associated with decreases in restrictive bridge clearances, and individuals with bachelor’s degrees 

are consistently associated with increases in non-restrictive bridge clearances. Yet, neither are 

robust associations. Prior literature finds that higher education levels are associated with more 

affluent neighborhoods for which new infrastructure can be an indicator (Crowder et al. 2012; Lee 

et al. 2008; Sampson et al. 1999). Therefore, perhaps, these associations are not robust due to 

education being closely tied to affluence, and affluence has a stronger association with new 

infrastructure. 

However, generally speaking, affluence also seems to be a less consequential association. Of 

the financial variables (average household income, aggregate household income, percent below the 

poverty line, and percent receiving welfare), there were no consistent nor robust results for 

restrictive bridges. All the variables were robust for non-restricted bridges, but the coefficients for 

average income and aggregate income were small in magnitude. Only the percentage of population 

below the poverty line was robust for all new bridges. Aggregate household income was 
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consistently negative for all bridge types. These findings are somewhat surprising as the literature 

typically postulates that these measures are all associated with more affluent neighborhoods 

(Crowder et al. 2012; Sampson et al. 1999). Conversely, the percent population receiving welfare 

was consistently positive for all bridge types. However, these were not robust associations.  

Across models, the housing variables (percent vacant housing, percent renter-occupied 

housing, owner to renter ratio, and percent change in housing supply) also did not yield robust nor 

consistent associations. The literature typically shows that homeownership increases resident 

involvement in advocating for improvements to their neighborhood including new infrastructure 

(Sampson et al. 2002; Tach and Emory 2017a). Moreover, this literature also finds a positive 

association with housing supply changes as new infrastructure often accompanies new housing and 

improving socio-economic conditions (Farley and H. Frey 1994). However, our study did not find 

evidence to support those findings. 

Across models, the transportation variables (travel on public transportation, commute time 

over 45 minutes, commute time between 25 and 45 minutes, and commute time less than 25 

minutes) only yielded consistent associations with commute times between 25 and 45 minutes, but 

none were robust. The only robust results were for commute times over 45 minutes for non-

restricted bridges and travel on public transportation for both non-restrictive and all new bridges. 

Interestingly, the physical variables (4 million meters2 rural indicator, 10 million meters2 

rural indicator, total bridges, and water area percent) usually hovered around zero. None of the 

variables were robust for restricted bridges. Non-restricted bridges had robust measures for 

percent water area, rural tract dummy indicator for over 4 million m2, and total bridges. All bridges 

had robust measures for rural tract indicator for over 4 million m2 and total bridges. This result 

suggests the prevailing technical reasons, namely the need to traverse waterbodies, or economic 

reasons, namely greater population demand, for bridges were less associated with the type of new 

bridge infrastructure deployed in a locale. 
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The authors posited a selection effect - social factors would influence where restrictive 

bridges are placed. The authors find associations that partially support this assertion. Demographic 

variables are associated with where less-restrictive bridges are placed as well as where any new 

bridge construction is sited. Family variables are associated with where any new bridge 

construction is sited.  

Treatment Effect Model Results 

The full results of all the models are available in the Appendix I, Section F, Table 36 - Table 

51 with visual representations in Fig. 34 - Fig. 39. The treatment effect associations of receiving a 

new bridge on social factors generally appear to be very small and not very significant. Of the 

twenty-four variables, only four have robust associations across all bridge types. The first is that 

percent Hispanic is negatively associated with any type of bridge after construction (restrictive, 

non-restrictive, or any). The second is that population traveling on public transportation is 

negatively associated with both new restrictive and non-restrictive bridges. Given that these results 

are consistent across restrictive and non-restrictive bridges, the authors cannot draw insights from 

these associations as they pertain to treatment effects from bridge restrictions. The third is that the 

owner to renter ratio is positively associated with only non-restrictive bridge construction. This 

result may suggest that locales with more non-restrictive bridges are perhaps associated with 

greater wealth and thus more homeownership. Individuals receiving Associate degrees are 

negatively associated with restrictive bridges. This result may suggest that locales with more 

restrictive bridges perhaps are associated with greater difficulty in placing educational 

opportunities with these locales or for individuals to travel to other locales with these 

opportunities. That said, the authors’ assertions of a treatment effect due to restrictive bridges are 

largely unsupported with these associations. Few variables have a robust treatment association and 

if they do, it is usually not clear whether they are uniquely associated with restrictive or non-

restrictive bridges. 
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Robustness Checks 

Even though the authors recognized, based on the data, that a logistic model would likely be 

the most appropriate model to analyze selection effects, the authors began by using simpler 

methods to test if there is a measurable effect that warranted more sophisticated methods. The 

linear probability model was not good as the predictions were out of range (i.e., below 0 or above 1) 

for over 65% of the predictions. That said, the results were consistent with those from the main 

logistic regression model. Due to the nature of census data primarily consisting of counts, a Poisson 

regression model was also developed. The results varied slightly, but the results were consistent 

with the logistic models. 

During the data exploration phase of this work, the authors compared variable 

transformations and their effects on the goodness of fit for the various models. Transformations 

included percentage of total populations, log+1, and inverse hyperbolic sine (Burbidge et al. 1988; 

MacKinnon and Magee 1990). In almost every case, inverse hyperbolic sine outperformed the log 

transformation. Since the interpretability of log and inverse hyperbolic sine are similar and in order 

to provide a consistent basis for analysis, the authors chose only to use the inverse hyperbolic sine. 

In cases where the percentage transformation performed as well or better than the inverse 

hyperbolic sine, the percentage transformation was selected. 

Supplementary Analysis 

Undoubtedly, bridges do not operate in isolation. The prior literature contends that the built 

environment acts as a conduit for both intended and unintended social connections (Audretsch et 

al. 2015; Joerges 1999; Pinch and Bijker 2012; Schindler 2015; Shilton 2013; Star 1999; Winner 

1980; Woolgar and Cooper 1999). If so, then our findings may work in concert with other 

infrastructure systems and local policies. To gauge this possibility, the authors ran three 

supplementary analyses by splitting the data on the median value of three variables that could 

capture the effects of exogenous factors. The three factors attempt to capture the effects of roads, 
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public transportation availability, and local community salience. The variables used for each are the 

lane road length in a tract, the number of people who use public transportation, and the number of 

National Historic Registration of Places locations within a tract. In particular, we find that when 

negative associations between new and non-restrictive bridges and non-white, African-American, 

and Hispanic population percentages were significant, they were more so for tracts with less road 

mileage, with more public transportation usage, and with fewer National Registered Historic Places. 

This suggests these negative associations are worsened when a tract has fewer alternative travel 

routes, greater reliance on public transportation, and has less awareness of their local 

infrastructure  (as communities need to apply to nationally register local infrastructure as a historic 

place). For a more detailed discussion of these analyses can be found in Appendix I, Section G, Table 

52 - Table 60 and Fig. 47 - Fig. 67.  

Limitations 

There were two overriding limitations to the data used. The first is that the authors only 

had access to highway system bridges. As previously discussed, this likely provides conservative 

estimates. The other major limitation was a lack of high-fidelity social variables that were 

consistently available in the NCdB. As the census has evolved, there is an increasing number of 

variables that more finely account for demographics and finances. Very few of these variables 

existed in 1970, but due to the enduring nature of bridges, the authors chose variables that could 

help disentangle the long-term effects of bridges. It is possible that restricting the time scale to 

more recent decades may yield clearer results especially concerning financial and demographic 

social factors. That said and as noted in the study’s motivation, the authors chose to use such data 

because this is the most accurate publicly available data for engineers to assess equity impacts. 

Moreover, the authors wanted to develop a methodology that reflects the 50-70 year design life of a 

bridge (Hu Xiaofei and Madanat Samer 2015; Neves et al. 2006). 
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Second, the data is strictly from the state of Pennsylvania. While Pennsylvania is a great 

candidate for a study on bridges since it contains a disproportionately large number of bridges, the 

results here are likely to differ when applied to another context. Expanding this study to cover all 

states could provide more statistical power for the study’s results and potentially find associations 

not present in Pennsylvania. This expansion would also help assess the study’s generalizability in 

terms of findings and approaches. 

Discussion and Conclusion 

In seeking to make inroads to more general calls for civil engineers to better understand the 

social equity impact on the built environment (Levitt Raymond E. 2007; Reardon et al. 2008), this 

study specifically asks how do restrictive bridges impact social equity? To make progress into this 

challenge, this study develops a methodological framework and applies it to the case of 

Pennsylvania’s bridge system as a proof-of-concept. As applied to this case, the authors find that 

selection effects (i.e., factors influencing placement) are more consequential than treatment effects 

(i.e., factors that change after placement) on social equity. In particular, demographic variables 

seem to play the strongest associative role and then family-based variables. Interestingly, technical 

factors that drive bridge siting have fewer implications on equity than do these aforementioned 

social factors. Table 2 summarizes the key factors found that associate bridge infrastructure with 

social equity. The authors hope that this table helps engineers more clearly identify those key 

factors for which they can focus when considering the impacts infrastructure on equity. In 

particular, the most salient variables seem to be those that measure demographic and family 

factors, and this case study recommends that these factors are a good starting point for 

infrastructure managers and engineers to assess equity impacts from infrastructure. 

Besides identifying a targeted set of key measures in Table 2 for which engineers can 

ascertain equity impacts from infrastructure (in this case bridge infrastructure), this study also 

makes several additional contributions that may, perhaps, generalize beyond the Pennsylvania 
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bridge case used here. First, this study presents what the author’s see as a replicable methodology 

for assessing the equity impacts of infrastructure in other contexts. Prior literature is unable to 

assess relationships between infrastructure and equity because these assessments require 

dispersed data sources that differ in both temporal and spatial resolution (Grannis 1998; Knaap 

and Oosterhaven 2002; Lee et al. 2008; Liu Min and Frangopol Dan M. 2006; Sampson et al. 2002; 

Star and Bowker 2006). The authors demonstrate a method to bring these disparate available data 

sources together to provide insights into the social impacts of infrastructure. This study contributes 

a research design that incorporates network service area analysis and CEM to make inroads into 

harmonizing and isolating, as much as possible, treatment locales, comparable control locales, and 

the most salient equity variables for analysis. Such a design can aid infrastructure managers and 

engineers in assessing equity impacts of infrastructure while reducing the need for extensive data 

integration or extensive social science expertise to inform equity variable selection. The authors 

hope other engineers will test the replicability of this method in other locales to assess further the 

robustness of this approach to other local conditions, which will help further develop boundary 

conditions for this methodology. 

Second, and particular to this case study, this study finds social factors may matter more 

than technical factors in understanding the equity impacts of infrastructure, and the identified 

associations seem more consequential at selection than treatment. Prior literature seems to argue 

that there are both selection and treatment effects on infrastructure-equity relationships 

(Audretsch et al. 2015; Grabowski et al. 2017; Joerges 1999; Pinch and Bijker 2012; Schindler 2015; 

Shilton 2013; Star 1999; Winner 1980; Woolgar and Cooper 1999). However, in terms of this case 

study, the authors find that selection is a more prominent factor. This finding intuitively makes 

sense given the longevity of these systems and that social context at the time often drives bridge 

construction and siting decisions (Desai and Armanios 2018).  
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A third contribution is to demonstrate that it is possible to use quantitative methods with 

publicly available data to discover associations between infrastructure and social factors. In 

contrast to the current civil engineering literature that focuses on impacts to infrastructure users 

primarily during construction or maintenance (Liu and Frangopol 2005; Liu Min and Frangopol Dan 

M. 2006; Liu Ming and Frangopol Dan M. 2006; Twumasi-Boakye and Sobanjo 2017), this paper has 

shown that it is possible to look at longer-term equity impacts to those communities who may not 

use but rather border such infrastructure. This possibility provides a challenge for the civil 

engineering community to look beyond focusing on the time period during construction or 

maintenance to understand broader, longer-lasting social impacts of bridges and other physical 

infrastructure to nearby communities.  

Additionally, the authors see pragmatic managerial implications in planning and 

maintenance. The first practical implication is that this study helps address prior research that has 

shown engineers have trouble operationalizing social equity factors in transportation plans 

(Manaugh et al. 2015). Therefore, this case study suggests that engineers and managers, 

particularly those working on Pennsylvania bridge systems, may want to consider including 

demographic and family measures in their maintenance planning and siting processes. Moreover, 

they may also want to weigh such factors in ways that recognize the higher barriers infrastructure 

presents in more disadvantaged neighborhoods. The variables demonstrated here can be 

operationalized, are available from the American Community Survey, and prior literature has 

shown they are useful in identifying such concentrated disadvantage (Sharkey 2014). As with this 

study’s methodology, the authors hope not just the robustness of the methods are assessed through 

additional case studies, but also compare and contrast equity findings from those case studies to 

the one conducted here. In this way, the scholarly and managerial community can collectively 

advance a more generalized set of findings and conditions for which social factors drive 
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infrastructure-equity relationships, whether they are associative or causal, and whether they occur 

at infrastructure selection, subsequent treatment, or both. 

The second practical implication is that infrastructure managers are increasingly asked to 

repair an ever-growing set of outdated bridges with budgets that are increasing but insufficient to 

address infrastructure demands completely. As the most recent ASCE report stated, “In 2018, the 

Commonwealth of PA estimated that $7.7 billion is needed for bridge repairs. Under current 

funding practices, it would take 13 years to reach the national average of poor condition bridges 

(ASCE 2019).” This estimate suggests infrastructure managers could benefit from having other 

metrics for which to prioritize further and identify the most critical bridges in need of repair during 

their planning processes. Including equity dimensions through this methodology may present an 

additional set of factors that can allow infrastructure managers to prioritize bridge needs under 

budgetary constraints more effectively. 

As a final concluding thought, the authors should strongly note that the intent of this study 

is not to blame any individual party for the equity-based social ills that these infrastructure systems 

present. Increasingly, all parties recognize these important yet difficult social challenges. As a clear 

example, the state of Pennsylvania’s Department of Transportation and Department of Community 

and Economic Development actively sponsored and shared their expertise with the authors to 

conduct this work because they recognize these challenges and want to address them. Thus, the 

authors also see this equity-based approach to infrastructure as a novel and exciting frontier to 

bring various government and academic stakeholders together not just to acknowledge these social 

ills but try to present possible approaches that can advance effective solutions. 

Data Availability Statement 

Data analyzed during the study were provided by a third party. Requests for data should be 

directed to the provider indicated in the Acknowledgements.  
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Disclaimer 

The views expressed in this article are those of the author and do not reflect the official policy or 

position of the United States Air Force, Department of Defense, the U.S. Government. 

Notation 

The following symbols are used in this paper: 

C = a vector of lagged control variables; 

d = a dichotomous variable designating the interaction of the group and treatment variables; 

e = the error term; 

f = a time-invariant tract fixed effect; 

g = a dummy variable designating the tract as receiving a new bridge at any time (group term); 

i = the tract index; 

k = the index for a particular variable; 

logit(p(x)) = the probability that a variable designating a new bridge was built in the preceding 10 

years; 

t = the year index; 

X = a vector of variables of social interest; 

x = a dummy variable designating the tract received a new bridge treatment (treatment term); 

y = either a dichotomous variable designating a new restrictive bridge was built in the preceding 10 

years or the count of such bridges; 

z = a social equity variable of interest; 

𝛽𝛽0 = the intercept; 

𝛽𝛽1 = the event study coefficient for the treatment and group interaction term; 

𝛽𝛽2 = the coefficient for the treatment term; 

𝛽𝛽3 = the coefficient for the group term; 

𝜸𝜸𝒌𝒌 = a vector of control variable coefficients; 
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𝛿𝛿 = a fixed effect for each census year; 

𝜆𝜆 = he Lagrange multiplier that balances the tradeoff between the squared error loss and the L1 

penalty 

Figures 

 
Fig. 1. Flow diagram of research design 

 

 
Fig. 2. Comparing circular buffer to service area analysis. Circular buffer (large circle) 

intersects five tracts while service area (triangle) intersects two tracts (numbered 1-5). The small 
dot inside the triangle indicates bridge location. 
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Fig. 3. Flow diagram of variable selection process. 

 

 
Fig. 4. Graphic depicting tracts that received a new restrictive bridge throughout the time 

period of study 
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Fig. 5. Graphical representation of physical variables for various models for restricted, non-

restricted, and all bridges. 
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Fig. 6. Graphical representation of family variables for various model for restricted, non-

restricted, and all bridges. 
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Fig. 7. Graphical representation of demographic variables for various models for restricted, 

non-restricted, and all bridges. 
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Abstract 

When assessing the impact and consequences of infrastructure systems on social equity, it 

is very difficult to include quantitative metrics that capture social equity factors for inclusion into 

cost-benefit analyses. Civil engineers increasingly recognize the need to include these social factors 

as a means of addressing social sustainability. Previous studies have shown that the general 

benefits of infrastructure are not enjoyed universally by neighboring locales. In this study, the 

authors expand their previous framework to ease the burden on civil engineers, non-experts of the 
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social equity domain, by adding accessible machine learning methods to provide quantitative 

analysis and selection of available variables and to discover the causal links between these 

variables. This research demonstrates further quantitative methods to incorporate social equity 

and sustainability into the engineering calculus. These machine learning methods help to obviate 

the need for domain expertise to guide variable selection thus allowing engineers to competently 

select meaningful variables. Through triangulating several algorithms and techniques, the authors 

identify consistent variables that are of causal or associational importance to infrastructure and 

social equity (e.g., demographic, family, transportation and financial variables). The authors also 

propose a workflow that should prove useful to engineers and decisionmakers. 

Introduction 

Civil engineers are increasingly concerned about the impacts of infrastructure on social 

equity. As with prior work (El-Geneidy et al. 2016 p. 542; Jones and Armanios n.d.; Martens et al. 

2012 p. 687), this study’s working definition of social equity is the uniform cost-benefit distribution 

of infrastructure assets (what some call “horizontal equity”), unless factors are identified for which 

such a uniform distribution especially impacts more marginalized groups (what some call “vertical 

equity”). Our aim here is to ascertain what are those equity factors that would help us capture and 

remediate such deleterious and asymmetric impacts of infrastructure on marginalized groups.  

While civil engineers increasingly recognize equity as a key concern, numerous recent 

studies note that there is a dearth of approaches to help assist civil engineers make more equity-

informed infrastructure decisions. Grabowski et al (2017) note a clear need for interdisciplinary 

frameworks that ensure equity concerns factor into all physical infrastructure lifecycle phases. 

While there is newfound emphasis on incorporating equity into all phases of the infrastructure 

lifecycle, there is recognition that doing so has been historically difficult. As noted by Levitt (2007 p. 

627), “Bringing the third dimension of sustainability—social equity—into an overall cost–benefit 

sustainability calculus is much more challenging […] and is extremely difficult to reduce to one-
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dimensional quantitative metrics”. Presumably, the difficulty of incorporating these metrics may 

explain why “theories for quantitative evaluation of social performance and underlying social value 

creation in public infrastructure projects from a community perspective remain unexplored” (Doloi 

2018 p. 1). This work seeks to address this gap to aid policymakers and engineers in making social 

equity factors more accessible. 

This work builds upon a previous empirical framework only very recently set forth to aid 

civil engineers, policymakers, and other infrastructure stakeholders in making equity-informed 

infrastructure decisions (Jones and Armanios n.d.). While this work is an important and significant 

contribution, this study has two key limitations for which we seek to address in this work. First, this 

study requires engineers to have a strong grasp of the social equity literature. These studies are 

spread across different literatures including but not limited to neighborhood effects (Crowder and 

South 2008; Sampson et al. 1999, 2002; Sharkey 2014), social justice (Brady et al. 2017; Schindler 

2015), environmental justice (Carless 2018; Pathak et al. 2011), and segregation (Crowder et al. 

2012; Farley and H. Frey 1994; Lee et al. 2008; Lichter et al. 2015). This knowledge strongly 

informed the selection of 24 variables that prior literature would surmise as having equity 

implications (Jones and Armanios n.d.). This study seeks to relax these assumptions by using 

methods that can help engineers isolate only the most important of these variables for their 

respective context and needs without having such an extensive working knowledge of these social 

equity literatures. Second, the study is correlational; it shows important associations between 

specific demographic and family-based factors and equity impacts of infrastructure (e.g., where 

new and non-restrictive bridge constructions are sited). This study hopes to ascertain how causal 

are these factors on infrastructure decision-making.  

Overall then, this study seeks to develop a methodological framework that can underpin 

and extend the empirical framework provided by Jones & Armanios (n.d.). This study particularly 

seeks to help civil engineers more quickly identify the most important social equity factors and 
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ascertain the extent to which these are causal on infrastructure equity impacts. At the same time, 

this study’s choice of computational methods attempts to account for the fact that infrastructure 

stakeholders may not necessarily have extensive working knowledge of the social equity literature 

as was needed in the Jones & Armanios (2020) approach. 

The authors chose to examine the relationship of socioeconomic measures with bridges. 

This was chosen to ensure direct compatibility with the Jones & Armanios (2020) study, which was 

also their infrastructure of choice. Moreover, prior researchers have argued bridges especially 

impact physical connectivity, and thus access to goods and services, in potentially asymmetric 

ways. Winner (1980) first argued that restrictive bridge heights were designed to constrict passage 

of certain vehicles and those restrictions disproportionately affect certain demographics more than 

others. In order to assess the feasibility of incorporating social equity in infrastructure systems, 

Jones & Armanios (n.d.) asked: “how do restrictive bridges impact social equity?” As per prior studies 

(Desai and Armanios 2018), the Jones & Armanios (n.d.) study, and as adopted here, restrictive 

bridges are defined as those below 4.27 meters (14 feet) as this height is a commonly used 

regulatory clearance standard for bridges as it inhibits the passage of certain vehicles such as 

commercial trucks. The authors refine the original Jones & Armanios (2020) question to the 

following: what are the most important of these social factors and to what degree do they casually 

explain the equity impacts of restrictive bridges? 

To answer this more refined question, this work uses Least Absolute Shrinkage and 

Selection Operator (LASSO) and Markov Blanket-based causal search algorithms to analyze the 

feasibility of allowing variable selection to be driven from a purely computational viewpoint (Chang 

2016; Desai 2018; Jain et al. 2014; Kamarianakis et al. 2012; Tibshirani 1996). These two methods 

were chosen for several reasons. First, they provide a bridge between empirically-grounded 

statistical machine learning (ML) methods (e.g., OLS and logistic regression) and more causal-

focused ML search methods, and so they share some commonalities and yield similar, if not 
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identical, results. Therefore, these two methods were chosen based on their similarities and their 

already demonstrated accessibility for engineering applications such as the ones studied here 

(Aliferis et al. 2010; Ma and Statnikov 2017; Ramsey et al. 2017). Moreover, this choice of bridging 

between statistical and causal ML methods also allow for greater ease of comparability to the 

purely empirically-informed methods used in the Jones & Armanios (n.d.) study (e.g., service area 

network analysis, coarsened exact matching, and event study methods).  

Finally, recall that the hope of this study is to reduce the time and social equity working 

knowledge that infrastructure stakeholders must have to implement these equity-informed 

frameworks. Jones & Armanios (n.d.) hand-selected and verified variables from the available socio-

economic data. As noted previously, this is a time and knowledge intensive process that may not be 

available or feasible for infrastructure stakeholders. Here, the authors use LASSO and Markov 

Blanket-based (MB) methods to directly search more than 200 variables of potential relevance. 

Then, the authors use causal search algorithms to discover any associations or causal linkages 

previously undiscovered by all previous steps. By adding these two steps, the authors hope to aid in 

variable selection, thus providing a means for infrastructure stakeholders who are not domain 

experts in social sciences, to incorporate social equity factors into these civil engineering domains. 

By incorporating these social equity factors, the authors hope to better enable policymakers to 

maximize social benefits as they prioritize infrastructure placement, replacement, rehabilitation 

and maintenance, even if they have less working knowledge of the state of the art in social equity 

research. We will now go into greater detail as to the methods of our study and then present the 

results and how they compare to the Jones & Armanios (n.d.) study upon which this study builds. 

Methods 

Data 

For this study, the authors utilized the two data types previously integrated in prior studies 

- physical infrastructure and social demographic data (Jones and Armanios n.d.). The physical 
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infrastructure data came from the Pennsylvania Department of Transportation’s (PennDOT) Bridge 

Management System v2.0 (BMS2) (Pennsylvania Department of Transportation 2018b) and 

OpenStreetMaps street network data hosted by Geofabrik GmbH (“Geofabrik Download Server” 

2018). The social demographic data came from the Neighborhood Change Database (NCdB) from 

1970-2010 (GeoLytics 2018). The final dataset contains 20,005 bridges in 2,529 census tracts. For 

more detail surrounding the data acquisition and cleaning process, the authors refer the reader to 

the Jones & Armanios study (n.d.) for more details on the data acquisition and cleaning processes 

used. These processes were replicated here to ensure identical data was used so as to ensure direct 

comparability across these studies. 

Research Design  

An experimental research design would assess social equity impacts of a restrictive bridge 

by randomly placing a new restrictive bridge in a tract and assess the effects in relation to the exact 

same tract (or an almost identical tract) without such a bridge. Given the cost and time prohibitions 

of such a method, Jones & Armanios (n.d.) follow a natural experiment design to approximate this 

ideal empirical strategy. The overall aim of this design is to compare as closely as possible those 

tracts that are “treated” (e.g., receive a new restricted bridge) to those “control” tracts that most 

closely approximate these tracts prior to bridge placement but never receive such a bridge. Fig. 8 

summarizes the authors’ process from their prior work with the extensions included in this work. 

For the sake of clarity, the authors note the entire research design process here. However, in this 

section, the authors will briefly describe the first three steps and Causal Search part of the flow 

diagram in Fig. 8, and discuss LASSO and MB-based variable selection methods in the Variables 

section.  

After first running analysis on the entire sample, Jones & Armanios (n.d.) sharpened the 

treated tracts by conducting a network analysis using GIS software to help target a more accurate 

and conservative service area. This analysis was used to exclude nearby tracts that do not share a 
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road network with the bridge. The authors thirdly sharpened the control tracts through the use of 

coarsened exact matching (CEM) (Iacus et al. 2008, 2009). The aim of using CEM was to match 

treatment (in this case tracts with a new restrictive bridge) and control tracts along observable 

factors (water area, land area, population, total bridges and time period) to ensure improved 

covariate balance between the two groups. This approach was used to ensure the control tracts are 

as similar as possible to the treated tracts. For a more detailed explanation of the first three steps 

please refer to this previous study (Jones and Armanios n.d.).  

Overall, the Jones & Armanios (n.d.) approach sought to find the sharpest set of treatment 

tracts that receive a new restrictive bridge to the most equivalent control tracts that do not receive 

a new restrictive bridge. The authors did this through a variety of methods (e.g., service area 

network analysis – sharpens treatment and coarsened exact matching – sharpens control) to ensure 

that they achieve as closely as possible to this ideal. The authors also ran analysis on tracts with any 

new bridge, regardless of underclearance or presence of under-record route. This was to ascertain 

whether influences were due more to the height of existing or new bridge constructions or due to 

lack of connectivity in the form of having (or not having) any type of new bridge construction.  

Here, the authors add important methodological steps that help select variables using the 

LASSO algorithm (to be discussed shortly) and Markov blanket-based algorithms to predetermine 

variable selection (Tibshirani 1996). Then, the authors used causal search algorithms on both sets 

of variables, the original literature-review-based variables and the new computational-based 

variables, to attempt to identify any significant causal relationships. Finally, the authors used the 

same models as the previous work to quantitatively measure the effects of the variables. This 

approach enhances our understanding of which variables are the most important and most 

causality linked to equity impacts than what is possible in the Jones & Armanios (2020) study. 

Moreover, this approach also relaxes the need for domain expertise that was important for the 

Jones & Armanios (2020) study. 
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Variables 

As previously noted, there were two types of variables used: physical infrastructure and 

socioeconomic. For physical infrastructure variables, the authors used the following variables: 

PennDOT structure ID, NBI structure number, underclearance height, latitude, longitude, year built, 

and year of construction or year of last major reconstruction (Desai 2018; Youssef et al. 1991). For 

socioeconomic variables, the authors conducted a variable selection process as depicted in Fig. 9.  

As detailed in Jones & Armanios (n.d.), the authors conducted an extensive literature review 

in the research areas of neighborhood-effects (Crowder and South 2008; Sampson et al. 1999, 

2002; Sharkey 2014), social justice (Brady et al. 2017; Schindler 2015), environmental justice 

(Carless 2018; Pathak et al. 2011), and segregation (Crowder et al. 2012; Farley and H. Frey 1994; 

Lee et al. 2008; Lichter et al. 2015). Based on this review, the authors found the following themes: 

wealth status, race, family composition, education, and housing. Since the object of this study is 

transportation infrastructure, the authors also added available transportation-related variables. 

Census data (GeoLytics 2018) captured 41 variables that most closely matched or proxied for these 

categories. After taking correlation of variables that measured approximately the same phenomena 

into account (r=0.7 or greater), 24 variables remained (Jones and Armanios n.d.). 

The authors here developed a parsimonious methodologically informed approach that 

relaxes the need for social equity domain expertise. Given social context can inform which variables 

are likely to be more relevant or salient in a given case study (Abend et al. 2013; Sampson et al. 

2002), the authors used the LASSO and MB-based algorithms as an alternative to expert knowledge 

in order to quantitatively narrow variable selection. LASSO fits a generalized linear model using a 

penalized maximum likelihood function to guide selection of appropriate variables (Friedman et al. 

2010). The initial set of variables included census data variables and a few transformations (e.g., 

percentages, log +1, inverse hyperbolic sine) for a total of 216 variables (Burbidge et al. 1988; 

MacKinnon and Magee 1990). This process included not just those variables identified in the 
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literature review but also any additional variables which may be reasonably suspected of 

importance for an engineer managing bridge infrastructure from all those available in the original 

PennDOT and Geolytics census datasets.  

As discussed before, to further attest to whether any of the variables selected, by either 

LASSO or MB-based algorithms, could guide infrastructure decision-making in the event equity is 

deemed a key concern, the authors then applied ML causal search algorithms (e.g., FGES without 

MB restrictions). These algorithms quantify probabilities for which those variables could causally 

affect an outcome. For comparison and to investigate the usefulness of each procedure, the authors 

present the results for each step of the process in the Causal Search section of the Results. Due to 

the similarities in results between LASSO and the Markov blanket-based algorithms one can think 

of using these algorithms to triangulate and facilitate the variable search. Hereafter, for ease of 

reference, the authors refer to the LASSO and Markov blanket-based results as ML search results. 

Alternatively, the authors also chose a causal search algorithm that does not restrict itself to 

the Markov Blanket to ensure that relevant variables were not being neglected by the previous 

algorithms. Due to the relative computational efficiency, the authors selected the fast greedy 

equivalence search (FGES) algorithm but now with an expanded search process that includes but is 

not limited to the Markov blanket. Unlike before, FGES here is not restricted to the Markov blanket 

as opposed to previously with FGES-MB, which allows it to engage in wider causal search (Ramsey 

et al. 2017). The purpose of opening the aperture of the search space is to ensure that all important 

or causal variables are discovered. FGES is also a relatively easy algorithm to implement increasing 

its utility for engineers and decisionmakers. Finally, the authors employ the Fast Causal Inference 

(FCI) algorithm to test for latent (e.g., unobservable) variables (Spirtes et al. 1993). FCI was 

designed to discover DAG from conditional independence information from observed variables. In 

spite of its name, it is rather expensive computationally and is only applied after variable selection 

is completed through other ML search algorithms. FCI was also used to analyze the causal relations 
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of the variables identified through the previous study’s literature review for comparative purposes 

(Jones and Armanios n.d.). 

To engage in the causal search aspects of this study, the authors used the software package, 

Tetrad (http://www.phil.cmu.edu/tetrad/), to run ML-based causal search analyses (Glymour et al. 

2017) (see appendices K and L for information about these algorithms). Tetrad is a software 

package that is a collection of machine learning algorithms for causal analysis. These algorithms 

perform causal search that can be used to identify causal relationships between variables by 

analyzing their observed data. Tetrad contains many of the most well-known algorithms such as PC, 

FGES, FCI, etc. (Glymour et al. 2014). Since the authors are interested in discovering how specific 

variables are related to others, in this case restrictive new bridges, the authors began exploration 

with algorithms that utilized a MB. As previously noted, this choice was due to the ease at which an 

engineer could use these algorithms. These are quite flexible and share similarities with LASSO, as 

well as have been used in other engineering applications such as traffic event detection and 

variable selection for concrete strength prediction (Abuodeh et al. 2019; Yan et al. 2016) 

Dependent Variables 

Table 4 details the variables found to be causally related to the three bridge categories 

along with relevant literature references (see Appendix II, Section B, Table 72 for the exhaustive list 

of analyzed variables). To ensure the greatest compatibility with the Jones & Armanios (2020) 

study, we run the same two sets of regression models. The first set of regressions models are on 

restrictive bridge measures – the underclearance height. The primary measure is whether a bridge 

is restrictive (under 4.27 meters or 14 feet) or non-restrictive (over 4.27 m or 14 ft). To assess 

whether effects pertain to any new bridge construction more generally, the authors also have a 

separate measure for all bridges including those that do not have a road or railroad (under-record) 

beneath them. The authors specify these dependent variables in two ways. The first is as a 

dichotomous variable (i.e., binary 0 or 1) signifying that a new bridge of that underclearance height 
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was built in that tract during the census period (10 years). Since the census is a decennial survey, 

the authors chose to use this ten-year window to match the census timing. The other dependent 

variable is a total count of the number of new bridges of each group built during the census period. 

The second set of regressions models are on socioeconomic factors delineated in greater detail in 

the Independent Variables section, and the three new and restrictive bridge measures previously 

discussed are now the independent variables.  

Independent Variables 

For the first set of regression models on the previously aforementioned new and restrictive 

bridge measures, the independent variables are the entirety of socioeconomic factors identifiable in 

PennDOT and Geolytics census data. For this set of models, each independent variable was lagged 

by one time period (i.e., one census period or ten years). The complete set of independent variables 

from the literature review is in Jones and Armanios (n.d.) Appendix I, Section C. For convenience 

here, the authors have placed those variables that proved to be most relevant and have the highest 

likelihood to guide future decision-making in Table 4.  

For the second set of regression models on socioeconomic factors, the independent 

variables are the event study interaction term, the bridge treatment term (e.g., when a new 

restrictive bridge of interest is constructed), and the bridge treatment group term (e.g., the census 

tract that receives such a bridge). These independent variables are also dichotomous (i.e., binary 0 

or 1). The event study interaction term is one in all periods where both the treatment and control 

variables are one, the treatment term changes to one and remains one in each time period after the 

treatment time period and the treatment group term is one in all time periods if that tract ever 

receives the treatment bridge.  provides a graphical representation of all tracts receiving a 

restrictive bridge treatment. For tracts that received a new bridge, the census period when a new 

bridge was built is the treatment time period. Tracts without any new bridges comprised the 

control group.  
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Control Variables 

The authors control for the same engineering factors around bridge placement as did the 

Jones & Armanios (n.d.) study. These controls were used for matching during coarsened exact 

matching (CEM). The first two controls are the tract’s land and water areas as proxies for 

geophysical impediments. The third is the number of people living within the tract. The fourth is the 

total number of bridges in the tract as a measure for how much infrastructure was already present. 

The final control is the treatment time. These are the five aspects used to match treatment tracts 

with control tracts. For the event study model, the lagged socio-economic variables serve as control 

variables. 

LASSO and Markov blanket-based ML variable search 

While there are several social equity literatures to guide selection of relevant 

socioeconomic variables, the authors wanted to ensure that the results were not biased due to 

background knowledge based variable selection. Moreover, the authors wanted to develop a 

replicable approach that an engineer not necessarily familiar with these insights could employ 

without having to conduct a similarly exhaustive search as was performed in the Jones & Armanios 

(n.d.) study. Additionally, in considering that causal discovery algorithms can be temporally and 

computationally expensive with large numbers of variables, it would be useful to eliminate those 

variables with limited causal likelihoods. For these reasons, the authors sought a means to 

computationally assess variable appropriateness without the need for predetermined selection by 

the researcher or an expert with domain expertise. The LASSO and Markov blanket-based 

algorithms were selected as means to determine which variables are most relevant for different 

types of new bridges (Friedman et al. 2010; Ramsey et al. 2017; Ramsey 2006; Tibshirani 1996). 

Both LASSO and the MB-based algorithms can be configured with a penalty coefficient that controls 

how parsimonious the results are. Both have options that make them compatible with linear and 

non-linear relationships. The algorithms are also computationally efficient and therefore accessible 
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to a large audience. Therefore, it is relatively easy and not very time consuming to experiment with 

several values. The authors compared the results of LASSO and the two Markov-blanket based 

algorithms (i.e., Markov Blanket Fan Search (MBFS) and Fast Greedy Equivalence Search-Markov 

Blanket (FGES-MB)) and found that the results were very similar and identical in some cases. 

LASSO helps assess which variables are most important (e.g., variables with the largest 

coefficients), while MB-based approaches help detect causality (e.g., determine causal linkages). 

In this paper, we assume that the causal relations are acyclic (without feedback); as a 

consequence, the causal structure can be represented by a Directed Acyclic Graph (DAG). The 

reason is that the target variables (T in Fig. 10) in this study are the physical infrastructure of 

interest (e.g., bridges), while the parents (P in Fig. 10) and children (C in Fig. 10) are social factors. 

Social factors may influence where they are cited (social factors as “parents”), or what impacts 

come from them (social factors as “children”). However, feedback is less possible, at least 

immediately, given extended design life of physical infrastructure like bridges. In other words, once 

a bridge is built, we assume it cannot necessarily be rebuilt purely due to social factors, at least not 

immediately. Discussions with bridge managers suggest the decision to replace a bridge is due 

more immediately to the condition of the bridge and economic factors than social factors, which 

suggests this is a reasonable assumption. In graphical models represented by a DAG, Markov 

blankets are the set of variables (e.g., other bridge infrastructure and socioeconomic variables of 

interest) that make a given node (e.g., the focal bridge infrastructure variable of interest) 

independent of all variables outside of the Markov blanket conditional on the variables included in 

the Markov blanket. This means that the Markov blanket of a particular node includes its parents, 

its children and the other parents of its children (Fig. 10) (Koller and Friedman 2012; Pearl 1988). 

Markov blankets are useful as these methods find a parsimonious number of variables causally 

linked to the target node (i.e., bridge variables interactions with socioeconomic and other bridge 

variables). It is important to note here that not all variables found in a Markov Blanket will be 
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causally linked to the target node (e.g., parents of the node’s children). In deploying methods 

utilizing a Markov Blanket, the authors specifically started with the fast greedy equivalence search-

Markov blanket (FGES-MB) (Ramsey et al. 2017) and Markov blanket fan search (MBFS) (Ramsey 

2006) algorithms. Both of these methods are based on Meek’s (1997) greedy equivalence search 

(GES) algorithm (Glymour et al. 2017). FGES-MB restricts the FGES algorithm to the union of edges 

over the target variable’s Markov Blanket. MBFS is similar to FGES-MB, but it is based on the Peter 

and Clark (PC) algorithm instead of GES (Spirtes and Glymour 1991). Therefore, MBFS is a PC 

search that is restricted to just the Markov blanket of the target variable (see Appendix II, Section 

E). Again, since the authors are primarily interested in how the bridge variables interact with the 

rest of the variables, setting the bridge variable as the primary node of interest in a Markov Blanket 

is ideal. These algorithms make a good introduction to the world of causal search and should also 

act as a metaphorical “bridge” from statistical methods to causal methods. 

As discussed earlier, the authors were able to use these ML search algorithms to evaluate all 

the available variables suggested by the literature review, as well as several transformations of 

these aforementioned variables, and other variables that might be reasonably selected by an 

engineer interested in a similar infrastructure problem (Fig. 9). By using both the count of the 

number of bridges by underclearance height and a dichotomous dummy variable that is one insofar 

as at least one bridge of that type is built in that census period (10 years), the authors ran OLS and 

logit regressions to determine the influence of these socioeconomic variables which is part of the 

LASSO process and serve as a baseline upon which the algorithm can optimize. 

Once the authors formulated all the variables for inclusion, they used ML search algorithms 

to guide variable inclusion into the main models (see Appendix II, Sections D - E). LASSO uses a 

lambda parameter to guide inclusion of only the most important variables in the final parsimonious 

model. Lambda is a penalty coefficient used to drive the beta coefficients to zero (James et al. 2013; 

Tibshirani 1996). The authors searched three values of lambda in order to create a more 
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parsimonious list of relevant variables:  the minimum mean cross-validated error value of lambda, 

the largest value of lambda one standard error away from that minimum and a value half-way 

between the first two values on a log scale. The reason for these three values of lambda is that the 

minimum value was not parsimonious enough (e.g., LASSO found 94 variables for all new bridges), 

the value of lambda that was one standard error away was too parsimonious (e.g., LASSO found 2 

variables for restricted bridges), but the one in the middle found a reasonably parsimonious 

number of variables including demographic variables (e.g., LASSO found 12 variables for all new 

bridges). Similarly, the Markov blanket algorithms have a penalty discount. By varying the value, 

the search results will be more or less parsimonious (the authors used 2, the default, and 0.001 

with SEM BIC scoring and Fisher Z scoring). By including any variables found by these three 

algorithms and FGES, the authors were able to narrow the list of relevant variables (including 

transformations) from 216 variables down to 34 (29 were found by LASSO and MB-based searches 

and 5 additional variables by FGES—see Fig. 13 and Appendix II, Section E for results from the ML 

search algorithms). Therefore, ML search can be a useful preprocessing step. These algorithms 

safely eliminate unimportant variables from the dataset allowing the causal discovery algorithms 

and engineers to only focus on the most relevant variables. 

Equation 1. LASSO linear model specification 

min
𝛾𝛾0,𝛾𝛾

1
𝑁𝑁
�𝑙𝑙(𝑦𝑦𝑖𝑖,𝑡𝑡,𝛾𝛾0 + 𝛾𝛾𝑇𝑇𝑥𝑥𝑖𝑖,𝑡𝑡−1 + 𝛿𝛿𝑡𝑡) + 𝜆𝜆(‖𝛾𝛾‖1) 
𝑁𝑁

𝑖𝑖=1

 

where l(y, η) is negative log-likelihood contribution for observation i, y is the count of new 

restrictive bridges built in the preceding 10 years, in census year t, 𝛾𝛾 represents the variable 

coefficients, x represents 216 variables of social interest, 𝛿𝛿 is a fixed effect for each census year and 

𝜆𝜆 is the tuning parameter controlling the strength of the LASSO penalty (Hastie and Qian 2016). 

Equation 2. LASSO logistic model specification 
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min
(𝛾𝛾0,𝛾𝛾)∈ℝ𝑝𝑝+1

− �
1
𝑁𝑁
�𝑦𝑦𝑖𝑖,𝑡𝑡  (𝛾𝛾0 + 𝑥𝑥𝑖𝑖,𝑡𝑡−1𝑇𝑇 𝛾𝛾 + 𝛿𝛿𝑡𝑡)  −  𝑙𝑙𝑙𝑙𝑙𝑙(1 + 𝑒𝑒(𝛾𝛾0+𝑥𝑥𝑖𝑖,𝑡𝑡−1

𝑇𝑇 𝛾𝛾+𝛿𝛿𝑡𝑡)) 
𝑁𝑁

𝑖𝑖=1

�  +  𝜆𝜆(‖𝛾𝛾‖1) 

where the objective function uses the negative binomial log-likelihood, y is a dummy variable 

designating a new restrictive bridge was built during the census period, in census year t, 𝛾𝛾 

represents the variable coefficients, x represents 216 variables of social interest, 𝛿𝛿 is a fixed effect 

for each census year and 𝜆𝜆 is the tuning parameter controlling the strength of the LASSO penalty 

(Hastie and Qian 2016). 

Of the 34 ML search-selected variables, eighteen were directly included by the literature 

review in the Jones & Armanios (n.d.) study with an additional seven being variants of variables 

included by the variable review. Only nine variables were not suggested by the literature review 

(see Appendix I, Section C for more information). Even though 25 of these were suggested by the 

literature review, only nineteen of these variables were previously included in the models (Jones 

and Armanios n.d.) as the ML search algorithms (MB and LASSO) chose variants to these variables. 

More specifically, share of white population was not used previously in order to use share of 

different types of minority groups and some minority groups were rare in Pennsylvania; only four 

of five education variables were used; various occupational measures were suggested by the 

literature review but were highly correlated with income; and only one type of vacant housing was 

used. 

There are a few variables that were identified by ML search that are not included in Table 4. 

These variables are:  land area, water area, tract population density, and transformations of 

variables included in the table. These variables were used as controls for CEM or were redundant 

and not included in the table or the models themselves.  

The ML search algorithms found two rural tract indicator variables, seven demographic variables, 

five family variables, four transportation or commute-related variables, two related to education, 

ten variables related to finances or income and four housing variables (Table 4). The nine variables 
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found by ML search that were not suggested by the literature review are:  rural tract indicator (10 

M and 4 M square meters), commute less than 25 minutes, commute between 25 and 45 minutes, 

commute over 45 minutes, travel on public transportation, population working at home, population 

working in county, and vacant housing for occasional use. The seven variables related to the 

literature review that were not used in the prior study are:  IHS transformation of population born 

outside US; IHS transform of foreign born population; precision crafter workers; IHS transform of 

farm, fishery and forestry workers; military females and military males. The ability of these 

algorithms to select so many variables consistent with the literature review provides a great deal of 

confidence in both the algorithms and the sociological literature. 
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Table 4. ML search discovered variable descriptions by category with relevant citations. The prior 
column annotates if the exact variable was used in the Jones & Armanios (n.d.) study. The lit column 
denotes if the variable was suggested by the literature review directly (D), is a variant (V) or was 
not included (N). 

Cat Variable description Citation Prior? Lit? 

  

Rural tract indicator > 10M sq. 
meters Jones & Armanios, 2020 Y N 

Rural tract indicator > 4M sq. meters Jones & Armanios, 2020 Y N 

De
m

og
ra

ph
ic

 

% African Americans Brady, et al, 2017; Crowder, et al, 2012, 
Lee, et al, 2008; N D 

% Hispanic Brady, et al, 2017; Crowder, et al, 2012; 
Lee, et al, 2008 N V 

% Native American Brady, et al, 2017; Crowder, et al, 2012 N D 
% Asian Brady, et al, 2017; Crowder, et al, 2012 N D 
% White Brady, et al, 2017; Crowder, et al, 2012 Y D 
IHS-transformed Born outside U.S Lee, et al, 2008; Lichter, et al, 2015 N V 
IHS-transformed foreign-born Lee, et al, 2008; Lichter, et al, 2015 Y V 

Fa
m

ily
 

Lagged % female-headed families Sharkey, 2014; Crowder, et al, 2012 Y D 
% married families w/kids Sampson, et al, 1999; Crowder, et al, 2012 N D 
Lagged Male-headed families with 
children Sharkey, 2014; Crowder, et al, 2012 N D 

IHS-transformed Male-headed 
families without children Sampson, et al, 1999; Crowder, et al, 2012 N V 

% children Sampson, et al, 1999; Sharkey, 2014; 
Crowder, et al, 2012; Tach & Emory, 2017 Y D 

Co
m

m
ut

e Commute less than 25 minutes Jones & Armanios, 2020 Y N 
Lagged Commute 25-45 minutes Jones & Armanios, 2020 Y N 
Commute over 45 minutes Jones & Armanios, 2020 Y N 
IHS-transformed Travel on public 
transportation Jones & Armanios, 2020 Y N 

Ed
 Completed 8 years of school Sampson, et al, 1999; Crowder, et al, 2012; 

Lee, et al, 2008; de Faria, et al, 2017 Y D 

% Some College Sampson, et al, 1999; Crowder, et al, 2012; 
Lee, et al, 2008; de Faria, et al, 2017 N D 

Fi
na

nc
ia

l 

IHS-transformed Work at home this study N N 
Work in county this study N N 
Precision crafters Lee, et al, 2008; Lichter, et al, 2015 N V 
IHS-transformed Farm, fishery and 
forestry workers Lee, et al, 2008; Lichter, et al, 2015 N V 

Military males Lee, et al, 2008; Lichter, et al, 2015 N V 
Military females Lee, et al, 2008; Lichter, et al, 2015 N V 
Lagged IHS-transformed Real 
Aggregate income Sampson, et al, 1999; Lee, et al, 2008 Y D 

Lagged IHS-transformed Real 
Average income Sampson, et al, 1999; Lee, et al, 2008 Y D 

% Poverty rate Sharkey, 2014; Crowder, et al, 2012 Y D 
% Welfare rate Sharkey, 2014 Y D 

H
ou

si
ng

 % Vacant housing Farley & Frey, 1994; Lee, et al, 2008 Y D 
Vacant housing for occasional use this study N N 
% New housing Farley & Frey, 1994; Lee, et al, 2008 Y D 

Owner to Renter rate McCabe, 2016; Sampson, et al, 1999; 
Crowder, et al, 2012 Y D 
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Statistical Models 

The LASSO and MB-selected variables were then fed into the statistical models used in the 

Jones & Armanios (n.d.)study to compare the results achieved across these two studies. In order to 

maintain the same setup as the first study, similar variables were separated into four groups (see 

Appendix I, Section C for groupings and Section F for model results). The first set of regression 

models are designed to analyze the probability of a tract receiving a new restrictive bridge. This 

model should determine if there are pre-existing conditions that determine where a new bridge is 

built. The second set of regression models is designed to determine the difference in consequences 

between tracts that received a new restrictive bridge and those that did not. Event study models are 

designed to analyze the effects of events on different units at different times. There are several 

different models called event study models, but the authors use event study in the same sense as 

Borusyak and Jaravel (2016), de Faria, et al (2017), and Clay, et al (2016). The models are provided 

here for convenience, but the reader should refer to the Jones & Armanios (n.d.) study for more 

information as these models are similarly deployed here as they were in this study. Again, this was 

a conscious choice to enhance comparability between the two studies.  

For the first set of models, a logistic regression model was used and found to have the best 

goodness of fit of the selection effect models used and details can be found in Appendix I, Section G. 

Equation 3. Logistic Regression Model Specification 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑝𝑝(𝑥𝑥)) =  𝑙𝑙𝑙𝑙𝑙𝑙
𝑝𝑝(𝑥𝑥)

1 − 𝑝𝑝(𝑥𝑥)
= 𝛽𝛽0 + 𝜸𝜸𝑘𝑘𝑿𝑿𝑘𝑘,𝑖𝑖,𝑡𝑡−1 + 𝛿𝛿𝑡𝑡 + 𝑒𝑒𝑖𝑖,𝑡𝑡 

where logit(p(x)) is the probability that a variable designating a new restrictive bridge was built in 

the census period, in tract i, in census year t, 𝜸𝜸𝑘𝑘 is a vector of control variable coefficients, X is a 

vector of variables of social interest, and 𝛿𝛿 is a fixed effect for each census year. 

For the second set of models, the authors employed an event study model to analyze 

treatment effects (Borusyak and Jaravel 2016; Clay et al. 2016; de Faria et al. 2017). Details about 

other models considered can be found in Jones & Armanios (n.d.). 
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Equation 4. Event Study treatment effect model specification 

𝑧𝑧𝑖𝑖,𝑡𝑡 = 𝛽𝛽0 + 𝛽𝛽1�𝑥𝑥𝑖𝑖,𝑡𝑡 × 𝑙𝑙𝑖𝑖,𝑡𝑡�+ 𝛽𝛽2𝑥𝑥𝑖𝑖,𝑡𝑡 + 𝛽𝛽3𝑙𝑙𝑖𝑖,𝑡𝑡 + 𝜸𝜸𝑘𝑘𝑪𝑪𝑘𝑘,𝑖𝑖,𝑡𝑡−1 + 𝛿𝛿𝑡𝑡 + 𝒇𝒇𝑖𝑖 + 𝑒𝑒𝑖𝑖,𝑡𝑡 

where z is a social equity variable of interest, in tract i, in year t, 𝛽𝛽1 is the event study coefficient for 

the treatment and group interaction term, x is a dummy variable designating the tract received a 

new restrictive bridge treatment, g is a dummy variable designating the tract as receiving a 

restrictive bridge at any time, 𝜸𝜸𝑘𝑘 is a vector of control variable coefficients, C is a vector of lagged 

control variables, 𝛿𝛿 is a fixed effect for each census year, and f is a time-invariant tract fixed effect 

(Borusyak and Jaravel 2016; Clay et al. 2016; de Faria et al. 2017). 

Due to the nature of census data, errors were found to be heteroskedastic in nature. 

Therefore, robust standard errors were calculated using a variance covariance matrix and Wald test 

(Zeileis 2004, 2006). All standard errors and p-values reported are the results of these calculations. 

Results 

Results presented here focus on three bridge categories:  restrictive bridges (under 4.27 m 

or 14 ft), non-restrictive bridges (over 4.27 m or 14 ft), and all bridges (including those without an 

under-record route). Results are considered from the perspective of new restrictive bridges. To 

make interpretations, the authors use average marginal effect sizes. While there is debate on the 

overall appropriateness of comparing different types of models, average marginal effects are the 

most comparable measures when looking across different types of model specifications (Bogard 

2016; Davis 2018; Fernihough 2019; Williams 2018). Table 5 and Fig. 13 report the coefficient 

estimates for the bridge siting models based on ML search selected variables. Variables were 

considered to have a robust effect if the point estimate and standard error did not encapsulate zero. 

24 of the 34 variables have at least one significant effect with one of the bridge categories. We 

summarize the key points here before delving into greater detail in subsequent sections. 

First, the authors find consistent results with previous models but along different variables 

than the Jones & Armanios (n.d.) study. While the Jones & Armanios (n.d.) statistical models find 
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restrictions evident in non-white populations around bridge placement, ML search also finds 

another opposite yet similar effect - less restrictions in white populations around bridge placement 

(Fig. 13 and Table 5). There are four variables for which there was a significant result in the 

previous study and none in this study:  travel on public transportation, 8 years if education, HIS-

transformed real average income and HIS-transformed real aggregate income. Four variables have 

significant findings where there was not one in the previous study:  rural indicator 10M m2, rural 

indicator 4M m2, % children, and % welfare rate. Even though LASSO found the IHS-transformed 

African American variable, the authors chose to use % African American for the sake of consistency, 

both for the other race based demographic variables and with the previous study. The ML search 

techniques also discovered four new industry-based associations. The number of precision crafter 

and farm, fishery, and forestry workers were negatively associated with non-restrictive bridge 

construction. The IHS-transformed count of military males and females were also found but not 

with any significance. 

Second, causal machine learning algorithms found some sources of causality. These 

algorithms discovered the structural relationship between variables (i.e., the count of a particular 

type of bridge and the dummy indicator signifying that a particular type of bridge had been built in 

a tract) demonstrating their efficacy at finding causal links (Spirtes and Scheines 2004; Spirtes and 

Zhang 2016). These searches also discovered causal relationships between bridges and several 

variables of sociological interest. These results will be explained in more detail in the following 

section discussing causal search. Overall, these results indicate that incorporating causal-search 

early in the variable discovery process both has resonance with the prior purely empirical 

approaches of the Jones & Armanios (n.d.) study and sheds novel light. In particular, a different set 

of parsimonious variables were selected when using computationally-informed variable selection 

(instead of literature based as previously done), and some new factors were identified, namely 

industry-based factors (e.g., farm, fishery, and forestry, precision crafters and military). 
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Bridge Placement Model with ML search-selected variables 

ML search helped the authors identify not just key variables but also combinations of 

transformations to best model the data (see Variable Search section and Appendix II, Section E). 

Table 5 and Fig. 13 summarize the results from the model. 

The ML search-selected variables show similar trends after CEM to Jones & Armanios (n.d.) 

study (Fig. 13 and Appendix II, Section C). While the previous results show associations with non-

white populations, ML search shows similar relationships for white populations as well as non-

white populations. In particular, while previous results show non-white populations are associated 

with fewer constructed bridges, the ML search model shows that white populations are more 

influential with more constructed bridges. In other words, tracts with more white populations are 

at least associated with more bridges, which mirrors previous results that non-white populations 

are associated with fewer bridges. This is an opposite yet symmetric result to what was found 

previously. There were no robust associations found for restrictive bridges for tracts based on their 

white population size. Also, the effects on the Hispanic population are consistent to what was found 

previously and robust.  

The LASSO approach also uncovered previously unconsidered industry-based influences on 

bridge construction. The literatures primarily divide workers between white-collar and blue-collar 

jobs, and only the variable for white collar workers (professional occupations) was included in the 

previous models after following the variable selection method (Jones and Armanios n.d.). For 

example, ML search methods find a robust but small positive association between the number of 

farm, fishery, and forestry workers and any bridge construction and a minute negative association 

for non-restrictive bridges. Perhaps, these industries heavily rely on trucking and other large 

vehicles to ensure sufficient flows of its products that necessitate an extensive bridge network that 

does not cross over other routes (under records). 
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Overall, this model using ML search -selected variables finds results that are similar to those 

previously reported (Jones and Armanios n.d.) but through different variables. The ML search 

algorithms also helped uncover some new industry-based associations with bridge construction. 

Post-Placement Bridge Effect Models 

This interaction captures the difference between those tracts that received a new bridge 

and those that did not. To assess effects of bridge variables, models were compared to the same 

model without the bridge variables. In all models the differences in R2 were very small suggesting 

that bridge variables do not have much, if any, explanatory power for the treatment effect. 

Therefore, as with the Jones & Armanios (n.d.) study, the authors see bridge siting as playing more 

of an equity impact than effects that are identified after bridge placement.  

Causal Search 

The machine learning results demonstrate relationships identifiable by using causal search 

algorithms. Detailed results for each of the algorithms used follow.  

FGES-MB and MBFS 

Using all 216 of the potential variables available, the same set of data used by the LASSO 

algorithm, the algorithms targeted one bridge category variable at a time. Since the MBFS algorithm 

does not assume linearity, the authors ran the algorithm on both the count of the number of new 

bridge types built as well as on the dummy variable indicating that at least one of a type of bridge 

was built (see Fig. 11 and Appendix II, Section A for scatterplots demonstrating relationships 

between variables) . Unlike MBFS, FGES-MB does make a linearity assumption and therefore only 

the count of the number of new bridge types was used. This means the authors ran sixteen searches 

using MBFS and eight with FGES-MB for a total of 24 searches. Many of the possibly causal links 

discovered using these methods were of a structural nature, e.g. the links between military males 

and females and their respective IHS-transformations seen in Fig. 12. These two search algorithms 

found eight of the 28 variables deemed relevant by LASSO (see Appendix II, Section D for results). 
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Table 5. Bridge placement models with LASSO & MB-based variables after CEM. Variables not 
encapsulating the null are in bold. 

DV: Dummy variable denoting that a new bridge was built in this tract in the last 10 years 

  Restrictive Non-
restrictive All New 

Rural tract indicator > 10M sq. meters 
-0.124 -0.066 0.960*** 
(0.426) (0.103) (0.185) 

Rural tract indicator > 4M sq. meters 
-1.289* 0.265* 0.948*** 
(0.601) (0.112) (0.105) 

Lagged African American Percentage 
-0.040 -0.990** -2.417*** 
(0.853) (0.313) (0.473) 

Lagged Hispanic Population Percentage 
-2.490 -3.996** -8.351** 
(4.375) (1.457) (2.600) 

Lagged Native Americans percentage 
-116.283 -32.675 -6.097 
(137.095) (23.672) (19.715) 

Lagged Asian, Native Hawaiian and other percentage 
-9.433 2.177 0.438 
(18.601) (1.558) (1.918) 

Lagged Percentage of White Population 
-0.640 0.764* 0.760** 
(1.316) (0.330) (0.282) 

Lagged IHS-transformed Population Born Outside U.S. 
-0.084 -0.065* -0.133*** 
(0.143) (0.033) (0.032) 

Lagged IHS-transformed Population Foreign Born 
-0.406 0.025 -0.162*** 
(0.243) (0.055) (0.048) 

Lagged % female-headed families 
-1.664 -0.571 -3.111*** 
(3.880) (0.835) (0.783) 

Lagged Percentage Married Couples with Children 
1.840 -0.526 1.131* 
(2.136) (0.519) (0.509) 

Lagged IHS-transformed male-headed families w/kids 
0.067 -0.085* 0.014 
(0.214) (0.037) (0.041) 

Lagged IHS-transformed Male Single Parent with Children 
-0.248 0.064 -0.162*** 
(0.320) (0.051) (0.044) 

Lagged Population Percentage under 18 
0.434 -2.190** 1.627* 
(2.496) (0.728) (0.695) 

Lagged Population with Commute < 25 minutes 
0.001 0.001*** 0.000 
(0.000) (0.000) (0.000) 

Lagged Commute 25-45 minutes 
0.001 -0.001*** 0.000 
(0.001) (0.000) (0.000) 

Lagged Population with Commute > 45 minutes 
0.001 -0.002*** 0.000 
(0.001) (0.000) (0.000) 

Lagged IHS-transformed Population Travel on Public 
Transportation 

-0.068 0.042 -0.010 
(0.115) (0.031) (0.033) 
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DV: Dummy variable denoting that a new bridge was built in this tract in the last 10 years 

  Restrictive Non-
restrictive All New 

Lagged over 25-yr-olds with at Least 8 Years Education 
0.001 0.001** 0.000 
(0.001) 0.000  0.000  

Lagged percentage of over 25-yr-olds with Some College 
-26.024** -2.597 -2.941 
(8.515) (2.032) (2.057) 

Lagged IHS-transformed Population Work at home 
-0.300 -0.129** 0.097* 
(0.159) (0.041) (0.043) 

Lagged Population Work in county 
0.001 0.000** 0.000 
(0.001) (0.000) (0.000) 

Lagged Precision crafters 
0.005 -0.002** 0.000 
(0.003) (0.000) (0.000) 

Lagged IHS-transformed Farm, fishery and forestry 
workers 

0.144 -0.084** 0.004 
(0.137) (0.032) (0.040) 

Lagged IHS-transformed Military females 
0.412 0.094 -0.252 
(0.216) (0.077) (0.153) 

Lagged IHS-transformed Military males 
0.004 0.054 0.065 
(0.154) (0.036) (0.037) 

Lagged IHS-transformed Real Average income 
0.062 0.012 -0.014 
(0.092) (0.027) (0.027) 

Lagged IHS-transformed Real aggregate income 
0.079 -0.046** 0.027 
(0.074) (0.017) (0.018) 

Lagged Population Percentage Below the Poverty Line 
5.639 1.859** 1.838** 
(3.124) (0.591) (0.630) 

Lagged Population Percentage Receiving Welfare 
0.402 2.111** -2.384** 
(3.653) (0.699) (0.797) 

Lagged Percentage Housing Units Vacant 
-0.202 0.878 -0.708 
(3.587) (0.851) (1.439) 

Lagged Vacant housing for occasional use 
0.003 -0.001 -0.003 
(0.003) (0.001) (0.003) 

Lagged Percent Change in Housing Unit Supply 
-0.491 -0.051 0.002 
(1.784) (0.386) (0.090) 

Lagged Owner to Renter Ratio 
-0.008 -0.001 0.000 
(0.007) (0.001) (0.000) 

***p < 0.001, **p < 0.01, *p < 0.05 
  



Machine Learning for Public Policy: Applications in Infrastructure and Air Pollution 

68 

FGES 

Finally, the authors thought it valuable to run FGES with all variables. The algorithms found 

13,246 edges or links between variables. The authors first narrowed down this list by eliminating 

all links that linked nodes with two bridge variables or two non-bridge variables. By sorting and 

eliminating linkages not targeted, there were only 23 remaining connections. Of these 23, all but 

five had already been discovered by the LASSO and MB-based search algorithms (see Appendix II, 

Section F). These five variables or a variant thereof had previously been included in the literature 

review-based models in Jones & Armanios (n.d.). All five variables were used in the bridge 

placement and post-placement models. 

With regard to the main concern of this research, the bridge variables, the algorithm found 

23 potential causal links. The following probabilities are estimates of the probability of the 

existence of an edge and should be considered as a measure of the confidence in the edge, but not 

necessarily the correctness of the output. It is also important to note that direct edges can be found 

even when none exist and the true relationship is actually multiple indirect paths (e.g., A→E could 

be found when the true relationship is multiple paths of intermediate nodes between A and E such 

as A→B→D→E or A→C→D→E or A→D→E). Regardless of the actual path, finding the causal links 

between variables is the object of this research. See Table 6 for the probabilities of each of the 

found 23 edges or links. From the table, most edges are low probability. The one exception being 

the IHS-transformed count of total bridges is causally connected to the rural 4M m2 variable. 

FCI 

FCI is an extension of the PC algorithm (Spirtes and Glymour 1991). It is computationally 

expensive and benefits from a variable selection pre-process. Spirtes, et al. (1993) have proven that 

FCI is robust at estimating acyclic graphs eve in the presence of latent variables and selection 

variables. Latent variables are those that are not recorded or included in our data, but affect the 

data nonetheless. Using conditional independence information from observed variables and 
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operating under the faithfulness assumption, FCI is able to learn a Markov equivalence class of 

DAGs (Colombo et al. 2012) 

The authors used FCI on both the literature review-based variable and the ML search-based 

variables. See Table 7 and Table 8 for results. The results have been filtered to only show results 

describing a relationship between a bridge and a non-bridge variable.  

The relationship signified by “<->” in Table 7 and Table 8 means that there is an 

unmeasured confounder of the two nodes. There may exist other variables along the causal 

pathway between the unmeasured confounder and the node. This means that neither node is a 

cause of the other. The “o->” indicates that either node1 is the cause of node2 or there is an 

unmeasured confounder or both. This expanded knowledge means that some of the relationships 

identified through the ML search methods are not causal relationships after all. However, these 

findings do mean that there is some other unknown variable that is causally related to both nodes 

and can be pursued to gain better understanding of the casual relationships of these variables. 

The relationship signified by “<-- (dd, nl)” in Table 8 means that there is a causal 

relationship from node 2 to node 1, “dd” signifies definitely direct and “nl” signifies no latent 

confounder. When examining the literature review-based variables, FCI found that the rural 10M 

m2 indicator definitely directly influences the total number of IHS-transformed total bridges with 

no latent confounder. 

FCI then was a valuable check to confirm or refute causality findings from other algorithms. 

Overall, what the results from these causal search algorithms suggest is that some of the variables 

identified by the literature review and ML search algorithms are causal in their relationship to 

bridge infrastructure even though the measured effects are small. These algorithms show some of 

the causal links between infrastructure and sociological variables of interest. They can also be used 

to identify selection trends that may or may not have been intentional.  
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The authors contend that the causal links and non-causal associations discovered by using 

this framework extension are worthy of consideration and may lead to further understanding of 

how to employ infrastructure in a more socially responsible manner to promote greater social 

equity. The discovered causal links may serve as a starting point for greater causal understanding 

of the system. 

Incorporating these or similarly appropriate algorithms into the workflow would be of use 

to engineers and policymakers concerned with if and how their infrastructure projects impact local 

residents’ well-being. To maximize the contribution of theses algorithms they should be employed 

early in the process. The optimal point is shortly after data collection is complete in order to aid 

with variable selection. See Fig. 14 for a flow diagram illustrating this recommendation. These 

techniques allow engineers and policymakers to cast a wide net over potential variables and 

provide an efficient and computationally tractable method to discover the most relevant variables. 

By using multiple methods, variable value can be triangulated and justified more fully.  

Robustness Checks 

During the data exploration phase of this work, the authors compared variable 

transformations and their effects on goodness of fit for the various models. Transformations 

included percentages of total populations, log +1, and inverse hyperbolic sine (Burbidge et al. 1988; 

MacKinnon and Magee 1990). In almost every case, inverse hyperbolic sine outperformed the log 

transformation. Since the interpretability of log and inverse hyperbolic sine are similar and in order 

to provide a consistent basis for analysis the authors chose to only use the inverse hyperbolic sine if 

the percentage transformation was inappropriate. 
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Table 6. Causal links found by FGES algorithm with all data. 

Node1 Int Node2 Ensemble 
No 
Edge --> <-- 

IHS new total bridges <-- Rural tract ind (10M) 0.167 0.833   0.167 
Total bridges --> Rural tract ind (10M) 0.667 0.333 0.667   
IHS total bridges --> Rural tract ind (10M) 0.833 0 0.833 0.167 
newbridge.under14 <-- Rural tract ind (10M) 0.333 0.667   0.333 
IHS total bridges --> Rural tract ind (4M) 1 0 1   
Owner occupied housing --> New total bridges 0.167 0.833 0.167   
Log foreign born --> New restrictive bridges 0.167 0.833 0.167   
Log Male head of house w/kids --> New restrictive bridges 0.167 0.833 0.167   
IHS real average income --> IHS total bridges 0.167 0.833 0.167   
IHS real aggregate income --> IHS total bridges 0.333 0.667 0.333   
Log real average income --> IHS total bridges 0.167 0.833 0.167   
% Male head of house w/kids --> IHS total bridges 0.333 0.667 0.333   
Population density --> IHS total bridges 0.5 0.333 0.5 0.167 
Some college --> Total non-restrictive bridges 0.167 0.833 0.167   
Commute < 25 min <-- Restrictive bridges 0.167 0.833   0.167 
Commute 25-45 min <-- Restrictive bridges 0.167 0.833   0.167 
% Some college <-- Restrictive bridges 0.167 0.833   0.167 
Female head of house <-- Restrictive bridges 0.167 0.833   0.167 
% Female head of house <-- Restrictive bridges 0.167 0.833   0.167 
IHS new houses <-- Restrictive bridges 0.167 0.833   0.167 
IHS Native American <-- Restrictive bridges 0.167 0.833   0.167 
Log vacant housing <-- Restrictive bridges 0.167 0.833   0.167 
Welfare <-- Restrictive bridges 0.167 0.833   0.167 

 
Table 7. Filtered FCI results for the ML search-based variables 

Node1 int node2 ens 
no 
edge -> <- -> <- o-> <-o <-> 

IHS foreign born <-> Total new bridges 1        1 
Occasional use 
vacant housing <-> Total new bridges 1        1 

Farm, fish, forest 
workers <-> New bridge ind 0.8     0.2   1 

IHS public trans <-> New bridge ind 0.8     0.2   1 
% female head of 
house <-> New bridge ind 0.6     0.2  0 1 

Total new bridges <-> Rural tract ind (10M) 1        1 
New bridge ind <-> Rural tract ind (10M) 0.6  0   0.2   1 
% new housing <-> Restrictive bridge ind 0.4 0.4      0 0 
Non-restrictive 
indicator o-> Rural tract ind (10M) 0.8 0.2     1   

Non-restrictive 
indicator o-> Rural tract ind (10M) 0.8 0.2     1   
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Table 8. Filtered FCI results for the literature review-based variables 

Node1 Int Node2 Ens 
No 

edge --> <-- <-> 
IHS total bridges <-> Rural indicator (4M) 1    1 
New bridge ind <-> Rural indicator (10M) 1    1 

IHS total bridges <-- 
(dd,nl) Rural indicator (10M) 0.8  0 1  

Land Area <-> Total bridges 1    1 
Land Area <-> IHS total bridges 1    1 

Water Area <-> IHS total bridges 0.8 0.2   1 
 
Limitations 

The limitations that Jones & Armanios (n.d.) identify also apply here, hence these are 

discussed only briefly here. There were two overriding limitations to the data used:  first, the 

authors only had access to highway system bridges and second, a lack of high fidelity social 

variables that were consistently available in the NCdB, and third, the data is strictly from the state 

of Pennsylvania. As previously noted, even when a causal link is identified, it is still possible that the 

link is not direct or that a latent confounder exists.  

Discussion and Conclusion 

The authors developed a framework to make inroads to a general call for civil engineers to better 

understand the social equity impact on the built environment (Levitt Raymond E. 2007; Reardon et 

al. 2008), this study extended that framework to specifically address variable selection and 

causality discovery. As applied to the case study of Pennsylvania, the authors found that equity 

impacts are greater from those factors influencing bridge placement rather than that change after 

bridge placement as does the Jones & Armanios (n.d.) study. However, this ML-based approach 

reveals some interesting differences that further refine this prior study. While demographic 

variables seem to play the strongest role as in the prior study, the ML-based variable and causal 

search approaches used here also identify some new factors, namely industry-based factors (e.g., 

fishery, farming, and forestry, precision crafters and military) (see Table 9 for a summary of 

findings and Appendix II, Section C for detailed results). These algorithms had similar results 
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showing that triangulating these algorithms can be gainfully employed for variable selection 

purposes and discovered relevant, consistent variables and some variables not emphasized or 

suggested by the literature review (see Appendix II, Section B for more details). Moreover, the 

causal ML-based search mechanisms also found several causal links (e.g., rural indicators, area land, 

area water and population density) not suggested by the literature review nor discovered by the 

LASSO and Markov blanket algorithms. Overall, then, the ML-based approaches advanced here to 

ascertain equity impacts from infrastructure help confirm but also refine the purely empirical-

based approaches in prior studies. These refinements further isolate and reveal new infrastructure 

variables that may be important and associated with, if not causally linked, to equity 

considerations. This is done in a way that relaxes the need for engineers to have social equity 

domain expertise. 

As summarized in Fig. 8, this study extends the previous research design by incorporating 

ML-based variable and causal search algorithms to make inroads into discovering the most salient 

equity variables for analysis and the causality of identified associations. The motivation behind this 

extension is to provide confidence in these tools in order to relax the need for domain expertise. 

The authors hope that with these extensions the previous methodology will become even more 

attractive to engineers by alleviating the need for deep knowledge of the social equity domain. A 

potential workflow diagram is included here in Fig. 14 to illustrate how these techniques could be 

used efficiently. 

The main contribution of this extension is to demonstrate that it is possible to use 

quantitative methods with data very similar to publicly available data to discover valuable 

associations and causal relationships between infrastructure and social factors. Moreover, these 

methods can be employed by engineers with little familiarity in underlying theory around social 

equity. These extensions should provide additional metrics for which to further prioritize and 

identify the most critical bridges in need of repair. Therefore, including equity dimensions through 
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this methodology presents an additional set of factors that can advance such needs and allow 

infrastructure managers to prioritize bridge needs more effectively in ways that more closely match 

budgetary constraints. 

Policy Recommendations 

Given the efficacy of the machine learning methods explored in this study, the authors feel it 

is even more feasible to modify DOT practices to encourage including social equity concerns in their 

policies and procedures. Since this paper also provides additional evidence for the general efficacy 

offered by infrastructure investments, the authors recommend that state and local transportation 

departments adopt policies to identify neighborhoods within their jurisdiction that would most 

benefit from infrastructure investment and identify what kind of infrastructure would be of most 

benefit to those neighborhoods and then prioritize those investments especially for historically 

underserved populations. This may be especially useful because even when funding is often too 

limited to cover all infrastructure projects identified as critical with technical factors alone. Thus, 

having a computationally efficient and parsimonious equity-informed approaches such as the one 

here could help uncover additional factors that can further help states prioritize critical 

infrastructure for funding in ways technical factors alone cannot accomplish. 
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Table 9. Most relevant variables from the study’s selection models with description and effect 
direction. (An “†” denotes a lagged variable when used as an independent variable. NS stands for not 
significant and denotes that the null effect was encompassed by the point estimate and standard error. 
“‒” denotes a negative direction and “+” denotes a positive direction). 

Cat  Variable description Restrictive 
Non-

restrictive 
All 

Bridges 

  Rural tract indicator > 10M sq. meters NS NS NS 

De
m

og
ra

ph
ic

 

†Rural tract indicator > 4M sq. meters - + + 
†% White NS + + 

†% African Americans NS - - 
†% Native American - - NS 

†% Asian NS NS + 

†% Hispanic NS - - 
†IHS-transformed Born outside U.S. NS - NS 

Fa
m

ily
 

†IHS-transformed foreign-born NS - - 
†Lagged % female-headed families - - - 

†% married families w/kids NS + NS 
†Lagged Male-headed families with children NS NS NS 

†IHS-transformed Male-headed families without children - NS - 

Co
m

m
ut

e †% children NS - NS 
†Commute less than 25 minutes NS + NS 

†Lagged Commute 25-45 minutes NS - NS 
†Commute over 45 minutes NS - NS 

Ed
 †IHS-transformed Travel on public transportation NS + + 

†Completed 8 years of school NS NS NS 

Fi
na

nc
ia

l 

†% Some College - NS NS 
†IHS-transformed Work at home - - + 

†Work in county NS NS NS 
†Precision crafters NS NS NS 

†IHS-transformed Farm, fishery and forestry workers NS - + 
†Military males - NS NS 

†Military females NS + NS 
†Lagged IHS-transformed Real Aggregate income NS - NS 
†Lagged IHS-transformed Real Average income + NS NS 

H
ou

si
ng

 †% Poverty rate NS NS + 
†% Welfare rate + + + 

†% Vacant housing NS NS NS 
†Vacant housing for occasional use NS NS NS 
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Future Work 

Some further work is desirable to better understand the differences in results between the 

MB-based search algorithms and the LASSO algorithm. It is possible that linearity (or the lack 

thereof) is partially responsible for the difference. Further work is necessary to confirm if the 

linearity assumptions are warranted and/or to perform ML-based methods that account for 

nonlinearity such as kernel-based methods (Mohri et al. 2018; Zhang et al. 2012).  

Environmental impacts of construction and changes to traffic could also be incorporated in 

order to measure health impacts of infrastructure. This could help this framework address more 

sustainability factors. Including pollution and its impact on environment and resident health could 

provide additional prioritization factors. These additional factors may provide additional data-

based justification for changes to funding priorities or provide additional awareness and 

justification useful for engaging with civic leaders and citizens in the process of securing 

appropriate funding levels to address these concerns. The most obvious extension would be to 

apply this framework to other locales to test its efficacy and apply to the nation as a whole. 

Data Availability Statement 

Data analyzed during the study were provided by a third party. Requests for data should be 

directed to the provider indicated in the Acknowledgements.  

Disclaimer 

The research and views presented are those of the authors and do not necessarily represent the 

views of the Department of Defense or any of its components. 

 

Notation 

The following symbols are used in this paper: 

C = a vector of lagged control variables; 

d = a dichotomous variable designating the interaction of the group and treatment variables; 
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e = the error term; 

f = a time-invariant tract fixed effect; 

g = a dummy variable designating the tract as receiving a new bridge at any time (group term); 

i = the tract index; 

k = the index for a particular variable; 

logit(p(x)) = the probability that a variable designating a new bridge was built in the preceding 10 

years; 

t = the year index; 

X = a vector of variables of social interest; 

x = a dummy variable designating the tract received a new bridge treatment (treatment term); 

y = either a dichotomous variable designating a new restrictive bridge was built in the preceding 10 

years or the count of such bridges; 

z = a social equity variable of interest; 

𝛽𝛽0 = the intercept; 

𝛽𝛽1 = the event study coefficient for the treatment and group interaction term; 

𝛽𝛽2 = the coefficient for the treatment term; 

𝛽𝛽3 = the coefficient for the group term; 

𝜸𝜸𝒌𝒌 = a vector of control variable coefficients; 

𝛿𝛿 = a fixed effect for each census year; 

𝜆𝜆 = the Lagrange multiplier that balances the tradeoff between the squared error loss and the L1 

penalty 
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Figures 

 
Fig. 8. Flow diagram of research design. 

 

 
Fig. 9. Variable selection process flow diagram 

 

 
Fig. 10. Sample Markov Blanket showing a target variable’s (T) parents (P), children (C) and 

parents of children (CP) 

T
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Fig. 11. Example plot showing all new bridge demographic variable scatterplots in lower 

left triangle. Diagonal contains distribution plots. Upper right triangle is correlation between 
variables. Additional plots for other variables and bridge types are available in the appendix. 
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Fig. 12. Graph of FGES-MB discovered relationships for the category consisting of all new 

restrictive bridges 
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Fig. 13. Bridge placement models average marginal effect results for all ML search variables 
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Fig. 14. Workflow diagram to use these techniques in an efficient manner 
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Chapter 4 Machine Learning Methods to Predict Air Pollution Concentration for 

Policymakers 
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Abstract 

Machine learning techniques have been employed to discover insights, solve and accurately 

predict many highly complex problems in the past two decades. This work applied these 

advancements to atmospheric pollution modeling. This paper represents a step toward applying 

machine learning to mimic chemical transport models (CTM). The ultimate goal is to develop a 

machine learning-based atmospheric chemistry model that is both accurate and computationally 

efficient. This paper took one small step toward that goal by developing a machine learning 

algorithm that:  learns causes and effects of three chemical species from the area emission inputs 

and concentration outputs of a CTM, lays a groundwork for learning other atmospheric chemical 

interactions, and reduces computational costs for simulating atmospheric pollution to make these 

simulations more accessible to policymakers on a standard personal computer with a modest GPU. 

This work does not provide an adequate substitute for a CTM for our target audience but 

represents a step in that direction. 

Introduction 

State of the art air chemistry and chemical transport models (CTM) simulate interactions of 

chemicals and meteorological conditions in the atmosphere at heavy computational cost. These 

models are computationally intensive and require a fairly extensive background in the sciences, as 

well as additional training particularly focused on these models. Therefore, the model results and 

their interpretations are often intractable to laypersons or policymakers. Reduced complexity 

models (RCM) are much less computationally intensive and are far more accessible. However, the 

reduced accuracy, while adequate to conduct comparative analysis across different potential 

policies, is not necessarily adequate to base actual policy upon (Gilmore et al. 2019). A policy is 

generally required to be evaluated using a CTM in order to qualify for consideration by a 

governmental entity like the Environmental Protection Agency (EPA). Sub-federal government 

entities have varying and different requirements for simulations to inform policy. So, there exists a 
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tradeoff between desiring the most accurate simulation possible while also desiring expanded 

access and reduced computational costs. 

Similar friction in other domains (e.g., agent modelling, the geosciences, natural language 

processing) has been solved in recent decades through the use of machine learning models 

(Karpatne et al. 2017; Tenney et al. 2019; Vinyals et al. 2019). Machine learning models have been 

very successful at simulating or predicting highly complex systems at fractions of the computational 

cost of systems which explicitly simulate the system. Recent work in the atmospheric pollution 

domain has shown the promise of reducing computational times in the range of ~250 times with 

the same hardware and up to ~3,700 times with a graphics processing unit (GPU) (Kelp et al. 2020, 

2019).  

Besides computational savings, machine learning has also shown in other domains (e.g., 

image recognition) to be capable of finding mechanisms that elude other quantitative methods 

(Hornik 1991; Hornik et al. 1989; Huang et al. 2016). There exist some non-linear interactions 

within air quality engineering that are still not well understood in situ (Fiore et al. 2003; Karydis et 

al. 2007; Stieb et al. 2002). Machine learning may be able to discover these mechanisms, provide 

additional understanding of, or at least predict, these non-linear interactions.  

The ultimate goal is to develop a machine learning model with a much lower computation 

cost, but similar accuracy compared to a state of the art CTM. This work does not reach that goal but 

represents a step toward that goal. In order to evaluate the promise of machine learning techniques 

to find causal relationships with reduced computation costs, the authors develop a machine 

learning model based on the input and output of a CTM. The authors begin by learning and 

predicting a very well understood species with known adverse health effects:  elemental carbon 

(EC) (Krewski et al. 2009; Lepeule et al. 2012; Stieb et al. 2002). The authors selected this species 

because it is inert and does not interact with other species in order to evaluate how well the ML 

model was able to accurately learn and predict EC. If the model is unable to learn EC, it would be 
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reasonable to suspect that it would not be capable of learning other species with complex 

interactions. It was also chosen due to its contribution to PM2.5 with related health effects. 

Literature Review 

There are several themes that the authors identified. First, the literature is clear that there 

are adverse health effects due to air pollution, particularly from fine particulate matter (PM2.5) 

(Krewski et al. 2009; Lepeule et al. 2012; Stieb et al. 2002). The authors note that these health 

effects are a motivating factor for this research. Second, due to the complexities of the interactions 

between different chemical species, some of the true relationships of these chemical species are not 

fully understood nor are they accurately predicted by linear modelling techniques (Fiore et al. 

2003; Karydis et al. 2007; Stieb et al. 2002). This is the primary motivation for employing machine 

learning techniques, generally, and neural networks, in particular, which have been successful at 

modelling many relationships (linear and non-linear) not readily identified by other methods 

(Hornik 1991; Hornik et al. 1989; Huang et al. 2016). Third, machine learning techniques are 

beginning to be used in studies on air pollution. At least two studies have shown the reduction in 

computation cost when using ML algorithms to model one chemical process compared to that 

chemical process module in a CTM (Kelp et al. 2020, 2019) on the order of ~250 to ~3,700 times 

reduction. Kelp et al (2020, 2019) did not model an entire CTM, but focused on a single module that 

modelled one chemical process. Structurally, the module was made to only model the interactions 

within a single grid cell (accounting for inputs and outputs of surrounding cells). Fourth, reduced 

complexity models (RCM) with differing mechanisms used to reduce the complexity are sufficiently 

accurate to base policy recommendations upon (Gilmore et al. 2019; Heo et al. 2016; Muller et al. 

2011). For this reason, the authors believe a sufficiently accurate machine learning model can be 

developed to provide expanded access to policymakers. See Appendix III, Section A for additional 

information about these themes. 
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Muller et al (2011) use the Air Pollution Emission Experiments and Policy (APEEP) RCM 

model to estimate damages from six major pollutants by industry. This is a good example of an RCM 

for use by policymakers. Using this model, Muller et al (2011) calculate damages by industry and 

delineate which provide a greater ratio of gross external damages to value added. The Estimating 

Air pollution Social Impact Using Regression (EASIUR) model was developed to specifically 

estimate public health costs of fine particulate matter (PM2.5). Using their EASIUR RCM, Heo et al 

(2016) were able to demonstrate results with fractional errors which are similar to or less than 

CTM’s performance. Gilmore et al (2019) compared several chemical transport models (CTM) with 

reduced complexity models (RCM) and found that the reduced complexity models predicted PM2.5 

with only a modest reduction in accuracy when compared to CTMs. The RCMs predictions were 

within a factor of two to three which is usually less sensitive than the value of a statistical life (VSL) 

and other uncertainties. Therefore, these findings support using RCMs as valid tools for policy 

formulation and analysis. 

Within the machine learning in atmospheric pollution space and to our knowledge, none of 

the articles the authors reviewed had the same objective or methods as those in this study (i.e., 

develop a model based on a CTM with a feedforward network to estimate the transport of 

emissions to concentrations). There are several that share similarities with the goals and methods 

and the authors share details about these articles below in order to better delineate commonalities 

and differences. Only the Kelp et al (2020, 2019) papers are trying to emulate part of a CTM, the 

rest of the papers are using real-world measurements of one kind or another to make predictions 

about the same real-world measurements. Feng et al (2015) created a hybrid model using wavelet 

transformations with a neural network to predict coarse PM2.5 levels up to two days in advance in 

China based on temperature, wind, humidity, general conditions, day of year and day of week. 

Kleine Deters et al (2017) developed a neural network to predict PM2.5 concentrations solely based 

on wind and precipitation levels in Quito, Ecuador. This method is computationally less expensive 



Machine Learning for Public Policy: Applications in Infrastructure and Air Pollution 

88 

than CTMs. They argue that weather sensors are both more accurate and less expensive than PM2.5 

sensors. Their technique also demonstrated limitations of using only weather data with a neural net 

to predict air pollution. Kelp et al (2019) developed a neural network to emulate the carbon bond 

mechanism Z (CBM-Z) gas-phase chemical mechanism. This model predicted the hourly 

concentrations of 77 chemical species with an average root mean square error (RMSE) of 1.97 ppb 

(median is 0.02 ppb) (Kelp et al. 2019). Using GPUs, this model was able to achieve speedup of 

4,250 times compared to a CTM. The model requires more work in order to constrain propagation 

errors that compound over time. In their later work (Kelp et al. 2020), they were able to improve 

the stability of their model and forecast further into the future. They were also able to show that it 

is possible to reasonably compress the number of species modeled without appreciable 

degradation of accuracy, thus reducing memory requirements. They also explored the variable 

space extensively to test the limitations of their model. Xue et al (Xue et al. 2019) combined inputs 

from satellites, CTMs, and in-situ readings to develop a machine learning model to predict PM2.5. 

The model was trained using data from 2013-2016. The model was then applied to the time period 

from 2000-2012, a period known for having missing measurements. Their model produced 

predictions for daily, monthly and annual averages. They then added a generalized additive model 

to interpolate missing predictions due to missing satellite data. This two-stage estimation technique 

sacrificed daily prediction accuracy but significantly improved monthly and annual prediction 

accuracy. Their predictions found increasing pollution during the period from 2000-2007 and 

decreased pollution thereafter. They offer these data in the hope that others will use them to 

perform large-scale epidemiological studies. Bellinger et al. (2017) identified potential areas for 

future work including deep learning and geo-spatial pattern mining. 

In the machine learning literature, Hornik et al. (1991; 1989) show how feedforward neural 

networks are universal approximators. Since that time, many applications have established this 

principle and a plethora of feedforward network architectures have been developed. Huang et al 
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(2016) build upon that architecture and demonstrated deep neural network advantages including:  

less prone to overfitting, ease of training and regularizing effects. A fairly recent focus of deep 

learning has been the utility of autoregressive feedforward nets. The simplest and most readily able 

to replace statistical autoregressive models is AR-net (Triebe et al. 2019). AR-net is a simple 

feedforward autoregressive network that is as equally interpretable as a non-neural network 

autoregressive statistical model. The two major advantage this neural net-based method has over 

the traditional statistical method is that it is more computationally efficient and can therefore 

handle larger datasets and larger orders (number of lags). Google’s Wavenet and PixelCNN are 

more complicated examples of this class of learning architecture (Oord et al. 2016b; a). Several 

models in this class have been shown to outperform more complex and computationally expensive 

recurrent neural nets (RNN) and long short-term memory (LSTM) models (Dauphin et al. 2017; 

Kalchbrenner et al. 2016; Vaswani et al. 2017). Bai et al. (2018) performed an empirical evaluation 

of convolutional nets versus RNN and developed a “generic” auto-regressive network they call a 

temporal convolution network. Their work showed not only an improvement in task performance 

but also a reduction in computational costs. This literature informed the authors’ choices in ML 

architecture for the task at hand. 

Methodology 

Data 

The data for this project covers three calendar years in 1990, 2001 and 2010. These three 

years were chosen due to data availability. Carnegie Mellon University’s Center for Atmospheric 

Particle Studies (CAPS) has already simulated three full years (excepting 4 days) (Xing et al. 2013). 

CAPS researchers modeled these three years due to availability of the U.S. EPA’s National Emission 

Inventory (NEI). The NEI data was formatted to be used as the input for the Particulate Matter 

Comprehensive Air Quality Model with Extensions (PMCAMx). The data consist of three general 

categories:  pollution sources, meteorological conditions, and resultant concentrations (Appendix 
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III, Table 1). The model developed in this work only uses the area pollution sources and the 

resultant concentrations (Table 10). Area pollution sources are the input and resultant 

concentrations are the output. The data are hourly measurements covering the continental United 

States (CONUS) divided into 36 km x 36 km cells (Fig. 15). For this work, as previously noted, the 

authors concentrate on the well-understood EC species. The authors chose to divide EC (and other 

species) particulate matter into two regulated size categories with the smaller size shown to have 

health effects:  fine (PM2.5) EC and coarse (PMC) EC. Hereafter, the authors refer to fine EC as EC2.5 

and coarse EC as ECC. The authors use the EPA’s definition for fine and coarse (US EPA 2014). Fine 

particulate matter is ≤ 2.5µm. Course particulate matter is ≤ 10µm and > 2.5µm.  

Due to the limited number of air pollution species, the authors found that a major portion of 

time to train the models was actually being used to gather data from the disparate files. Therefore, a 

function was developed that would pre-load the subset of data desired for each training run. After 

gathering the hourly data from the daily files into input and output dataset containing all hourly 

data for three years, the data was lagged (number of lags dependent on geographic scale—lags 

decreased as geographic scale increased, see Vector Autoregression section) and stored in a third 

dataset. The authors then identically randomized the order of the data in all three datasets. This 

means that the random order of hourly measurements is in the same order and position in each of 

the three datasets. The order must be synchronized to allow the model to properly parse the data 

during training. Finally, the datasets were split using current best practices into train (80%), 

validation (5%) and test (15%) datasets. These data were used to train, validate and test this 

model. See Table 10 for additional details about the data. 
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Table 10. Data characteristics of file types representing one day of measurements 

Data Type Layers Rows Columns Variables Time 
Steps 

Output Files 

Daily Hourly Concentration Output 1 82 132 509 24 

Emission Source Input Files 

Area - On Road Pollution 1 116 152 114 24 

Area - Non-road Pollution 1 116 152 114 24 
 

Preliminary Analysis 

Before implementing a neural network, the authors analyzed the data to determine if other 

methods were more appropriate. Therefore, the authors employed vector auto regression (VAR), 

Least Absolute Shrinkage and Selection Operator (LASSO), and Constraint-based Causal Discovery 

from Nonstationary/HeterOgeneous Data (CD-NOD) methods. The results from that analysis guided 

the parameters of the neural network and a synopsis of those results are included here. For this 

preliminary analysis, the full dataset was not used and could not be used due to the computational 

costs of these preliminary methods. Instead, the authors used small sample grids consisting of a 

group of 3 x 3 or 11 x 11 cells (Fig. 15). The 3 x 3 grids were randomly selected and centered in the 

Pacific Ocean and Mexico. The 11 x 11 grid was centered around New York City. The authors started 

with the smallest sized grid that would have at least one cell with bordering cells on each side in 

order to test for interactions between the cells. The 11 x 11 grid was then used to test if interactions 

persist over a larger geographic area and to observe computational requirements for larger 

samples.  

Vector Auto Regression (VAR) 

VAR is a multivariate algorithm used to analyze how multiple time series interact. This 

method is used to determine how much information is contained in the past. It is considered 

autoregressive because it is concerned with how past measurements influence the present 

measurement. The authors only used the CTM output data for the VAR analysis. To ensure VAR is a 

suitable method for the data, some preliminary tests were run including: stationarity, Granger 
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causality (Granger 1969), Johansen’s co-integration (Johansen 1991), augmented Dickey-Fuller test, 

and order selection. (See appendix for more information on these tests.) Granger’s causality tests 

showed that past values contain information about the present value meaning that there is an 

autoregressive component to the concentrations. Johansen’s co-integration test showed that the 

autoregressive nature of the concentrations has a long run, statistical relationship. The augmented 

Dickey-Fuller test showed that the data was stationary. The temporal order selection process 

determined that as the regions increased in size, the order decreased. The smallest regions 

determined a temporal order of four lags was optimal while the largest region (CONUS) had an 

optimal order of one lag. These orders were used in all future models. Each variable is modeled as a 

function of past variables. The coefficients measure the spatial relationship. The preliminary 

analysis showed that including an autoregressive aspect to our model would provide non-trivial 

information. See appendix for the more information and preliminary results.  

Least Absolute Shrinkage and Selection Operator (LASSO) 

VAR analysis determined the optimal order (number of lags) of the output data. To test for 

variable importance and geographic adjacency dependencies, the authors used the LASSO 

algorithm (Tibshirani 1996). It was originally developed for ordinary least square (OLS) as an 

alternative to subset selection and ridge regression techniques. LASSO effectively performs both 

functions at the same time. LASSO shrinks some variable coefficients and sets others to 0, which 

effectively subsets the data. See appendix for more information and preliminary results which show 

that LASSO found similar but more parsimonious results than VAR (typically only 7~8 coefficients 

were found to be important by LASSO, whereas VAR provided an estimate for all 121 grid cells for 

each temporal lag). LASSO showed that there is a geographic component to the autoregressive data 

emphasizing proximity (up to 200 km) as an important component. 
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Causal Discovery from Nonstationary/HeterOgeneous Data (CD-NOD) 

A common assumption made to use many causal discovery algorithms is that the data 

provided are stationary, i.e. the joint probability distribution (and by extension the mean and 

variance) does not change over time. Despite the stationarity results from the augmented Dickey-

Fuller tests, the CD-NOD results showed there is sufficient non-trivial non-stationarity present in 

the concentration data that can be used to make causal inferences. (See appendix, Table 8.) 

Therefore, in addition to a VAR component, the desired model should also include a time-varying 

component (Table 11) capable of recognizing recurring or seasonal shift in the underlying 

distributions. The CD-NOD algorithm’s purpose is to detect non-stationarity and use that 

information to build a causal structure in the form of a directed acyclic graph (DAG) (Zhang et al. 

2017). CD-NOD explicitly identifies which nodes (variables) in the graph have non-stationarity and 

uses that information to better detect the causal structural skeleton of the graph. Further 

assumptions and the algorithm can be found in the appendix. Due to the computational costs of the 

algorithm, the authors used LASSO to find a more parsimonious set of lagged variables in order to 

eliminate any lagged variables that were not influential on the non-lagged variables. Of the 72 

lagged variables (four (4) temporal lags each for EC2.5 and ECC (2) for each grid (9), see appendix, 

Table 8), LASSO determined 22 were salient. Finally, the authors then selected a two-month period 

of transition between seasons (February and March of 1990) to use as a test case. The resulting 

recovered graph structure showed that there are causal links between different grid cells as 

expected likely due to prevailing weather patterns. 

With this preliminary analysis complete, the authors felt there was sufficient justification to 

proceed with further analysis. The next section will provide details about the approach used to 

develop an explainable neural network capable of simulating air pollution at a regional or national 

scale. 
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Approach 

The authors built upon this foundation by employing neural networks. The first foray into 

the space employed the temporal convolution network (TCN) (Bai et al. 2018). While Bai et al. 

(2018) showed the superior predictive ability of convolution neural networks (CNN), CNNs are not 

as interpretable as feedforward networks due to the regularization that maps the feature space to a 

new objective function and acts as a layer of abstraction and is typically accompanied by a 

reduction in dimensionality. Feedforward networks are capable of approximating any continuous 

function without feedback loops or regularization. As the model is applied to other species, 

interpretability will become important. After some preliminary results from TCN, the authors 

determined to develop their own non-CNN model. For the sake of interpretability, the authors also 

chose not to pursue a long short-term memory (LSTM) model or a recurrent neural network (RNN) 

model. Both of these models include feedback loops that make interpretability and feature 

extraction more difficult. 

The authors iteratively developed a model that began with using a simple neural network 

configured as a vector autoregression model. After searching for a ready-made model and only 

finding autoregressive neural networks (Triebe et al. 2019) and far more complicated LSTM-

inspired networks like WaveNet (Oord et al. 2016a), the authors developed their own (Jones and 

Zhang n.d.). The VAR neural network (VARNN) itself was trivial, but the data preparation was not. 

See appendix for a model diagram and preliminary results. Both a linear (LinVARNN) and non-

linear model (VARNN) was created along with utility scripts to make operating the model as trivial 

as possible to employ. The most encouraging result from this iteration was the computational 

savings over traditional VAR models in terms of memory and time. Using the traditional VAR 

models, the 11x11 grid subset was infeasible to model on the author’s personal computer (PC) 

requiring over 100 GB of memory and thus requiring a server. The same data was handled by the 
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NN version on the author’s PC, only used 3% of the GPU’s processing capabilities and completed in 

a fraction of the time. 

The next iteration added area emissions to the VAR component of the model creating a 

hybrid vector autoregressive model (HyVARNN). The model takes as input both the autoregressive 

component up to k past lags and couples those with emission data. These inputs pass through 

several hidden layers and finally emerge as concentrations. The authors experimented with many 

hyperparameters and found that optimal results were attainable with a relatively shallow network. 

The model scaled well and the entire continental United States (CONUS) was modeled on a Nvidia 

Tesla T4 GPU with 15 GB of memory. See appendix for sample results. Since one of the goals of this 

work is to make these models as accessible as possible, smaller scale models were also developed 

and tested using a PC with a Nvidia GeForce MX150 with 2 GB of memory.  

Table 11. Time and seasonality variables 
Variable Possible Values 

Year 1990, 2001, 2010  
Month 1-12 

Day of Year 1-366 
Day of month 1-31 

Weekday 1-7 
Hour 1-24 

 

Finally, the authors added a time component (Table 11) to both the inputs and the previous 

outputs of the model (HyVARNN-T). Each iteration required more work on the data preparation 

and loading than on the neural network itself. See Fig. 16 for a graphical representation of the 

model and Equation 5 for a functional representation. 

Equation 5. Vector autoregressive hybrid model functional representation 

𝐶𝐶𝑡𝑡 = 𝐺𝐺 ��𝐴𝐴𝑖𝑖
(𝑡𝑡)𝐶𝐶𝑡𝑡−𝑖𝑖

𝑘𝑘

𝑖𝑖=1

,𝐸𝐸(𝑡𝑡)� 

where: 

Ct are concentrations at time t 
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A is a coefficient for concentration with different influence from time (t) periods, causal 

relation between locations, represented by a vector autoregressive feedforward neural network, 

E are emissions, 

G is the function representing the feedforward network that takes A and E as inputs and 

outputs concentrations. 

Each model was trained on a subset of data as previously explained in the data section. The 

authors first performed some trial runs on the smallest 3x3 grid located in Mexico in order to 

determine the optimal combination of optimizer and loss function. Based on the functions available 

for the type of data, there were three candidate optimizers and two loss functions. The Adam 

optimizer outperformed RMSProp and stochastic gradient descent (SGD) (see appendix Table 9 for 

more details). Huber or the smooth L1 function outperformed mean square error (MSE).  

Fig. 17 depicts the modelling process. The process begins by gathering data from the daily 

data files and subsetting the desired region. Next, the prior output concentrations are lagged 

temporally (according to the order determined by the VAR analysis) to be used as inputs into the 

VAR component of the network. Then, the three datasets are identically randomized, as previously 

discussed, before being split into a training set (80%), validation set (5%), and test set (15%). 

There are no rules for how much each split should contain, but best practices general use similar 

divisions. This split is important for the training of the network. In order to ensure that the test set 

does not influence the training of the network, the validation set is used as a means for testing the 

model while it is being trained. After each epoch of training, the validation set is treated as a test set 

to check the progress of training. When training the authors tasked the optimizer with following a 

regime that reduced the learning rate by a factor of 10 whenever it determines loss during the 

previous seven consecutive optimizations to be equal or less than the current value. The learning 

rate is then fixed for the next 100 epochs before it is allowed to be further reduced. Additionally, 

the authors also allowed for early stopping while training. Early stopping was based upon the 
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validation mean squared error (MSE). In order to allow the learning rate reduction to have a 

chance, the early stopping conditions required eleven consecutive validation test cycles to be equal 

or less than the current validation loss. Early stopping did not occur frequently, but when it did it 

was typically because the network had learned the average of the data and not a function that 

reproduced the CTM output to any acceptable degree. 

Research scope and Constraints 

The scope of this current work is to develop an interpretable machine learning model 

capable of faithfully reproducing the results of a state of the art CTM at a lower computational cost. 

By interpretability, the authors mean the ability to analyze the network to determine what it is 

doing and how. To aid in this pursuit, the authors kept the number of hidden layers low and utilized 

a feed-forward network. Additionally, a major focus is to ensure that the developed model is more 

accessible to engineers and policymakers both in terms of hardware requirements as well as 

specialized knowledge. This initial foray is scoped to only model two size categories of EC with a 

goal to add other species. Ideally, the model will be capable of representing the entire CONUS. Even 

if hardware constraints do allow that, regional models will be developed and trained on six US 

regions. Since one of the objectives of this work is to make the model accessible to policymakers, 

the model has been designed to allow for regional and smaller geographic areas to allow it to be run 

on different hardware configurations.  

Results 

The model was intentionally run on different hardware configurations. The final model was 

too large to run on a single GPU with 15 GB of memory, so two different sized regional models were 

developed (see Fig. 15 for a graphical depiction of the regions). The larger regional model covers 

810,000 km2 (503,311 mi2) and trained at six locations (see Fig. 15). A smaller regional model 

covering 291,600 km2 (181,192 mi2) was also developed that could be run on a personal computer. 

See  
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Table 12 and Table 13 for training and test statistics. Times do not include data loading 

(typically between 19 and 30 seconds) from two files that had already gathered all the PMCAMx 

files into two separate files: one for input and one for output. Preloading the data took considerably 

longer and could take up to two hours. Depending on the number of species and the hardware used, 

it took between 20 and 60 minutes to train the models for 100 epochs using 80% of the three years 

of hourly data. Once a model was trained it never took more than 3 seconds to generate 3 years of 

data regardless of the size of the region including CONUS. 

See Fig. 18 and Fig. 19 for representative results of average hourly actuals from PMCAMx 

(top row), average hourly predictions for the test set (middle row), data the model has never 

experienced, from HyVARNN-T, and average hourly error (prediction – actual on bottom row). The 

pink regions were underpredicted by the model and green regions represent overprediction. These 

results show that the model is very good at predicting EC2.5, but ineffective at predicting ECC. This is 

a very understandable result considering that this run only included area pollutants which do not 

include any ECC data. By examining the scale ranges, ECC data are also very small and the model 

appears to not be capable of making predictions that close to zero. Figs. Fig. 18 and Fig. 19 show 

that both regional models stay within an error range of +0.02/-0.01 µg/m3 for EC2.5, and +0.006/-

0.006 µg/m3 for ECC. The average error is almost two orders of magnitude less than the values for 

EC2.5 and an order of magnitude more than the values of ECC for the smaller region and the same 

order of magnitude for the larger region. The pattern for EC2.5 shows that the errors are not random 

like for ECC. The predictions fall within the same range as the actuals and seem to mirror them quite 

well. However, when examining the time series plots in Figs. Fig. 20 and Fig. 21, it is clear that the 

average errors don’t tell the entire story. For EC2.5, the errors generally at least an order of 

magnitude less than the values. For ECC, the errors are much worse—2~3 orders of magnitude 

greater than the values of ECC. Another way to look at the data is via a the scatterplots in Fig. 22. If 

the model was able to perfectly predict the emissions, all of the data points would fall on a 45° line 
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from the origin (prediction would equal actual). While EC2.5 predictions are not perfect, they do 

cluster near this 45° line. ECC, however, does not match at all. The predictions vary from -0.006 to 

0.01 µg/m3 while the actual data only varies from 0 to 0.001 µg/m3. It also appears to overpredict 

the major metropolitan areas. The model accuracy would increase greatly for ECC if it could be 

taught to not predict negative values. Two methods were used to actualize this limitation, but the 

end results were less accurate than the current model. Training the model on all six regions 

produced better results than clamping (restricting values to 0 or above) or adding a rectified linear 

unit (ReLU-which only produces positive values) to the output. One other item worthy of mention is 

that the edges of the model do not appear to suffer more than other grid cells. Edges are often 

difficult for CTMs to accurately predict.  

Time series plots for 3 sample grid cells from 1990 are shown in Figs. Fig. 20 and Fig. 21 

and other years are available in the appendix. 1990 has the most volatile data and the model 

struggles to match the peaks more in 1990 than in any other year. This is at least partly due to 1990 

having higher pollutant levels than later years. These plots generally show that the model does not 

fluctuate as much as the actual measurements, but closely approximates the values on average. 

While the predictions for ECC are gross overpredictions, the predictions do appear to mimic the 

fluctuations but in a more exaggerated manner.  

The authors also calculated several statistics for the test set and the entire dataset. See  

Table 14 and Table 15 for the test set statistics and appendix for statistics for the entire 

dataset. The authors chose to include the following statistics according to the specifications set 

forth by Boylan and Russell (2006), and Chang and Hanna (2004):  mean fractional error (MFE), 

mean fractional bias (MFB), Pearson’s correlation coefficient, and fraction of predictions within a 

factor of two observations (FAC2). A perfect model would have MFE of 0, MFB of 0, Pearson’s of 1 

and FAC2 of 1. Further, Boylan and Russell (2006) proposed criteria against which to compare air 

quality models. For EC, they proposed an MFE criteria threshold of ~110% at 1 µg/m3 average 
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concentration and a goal of ~80% at 1 µg/m3 average concentration. Boylan and Russell (2006) 

note that MFE cannot be negative, but that is only true if the model does not predict negative values 

like this one does for ECC. All of the models far exceed the performance goals for EC2.5 (see  

Table 14 and Table 15). Even though the larger model shows that it also exceeds the 

performance goals for ECC, it is likely that it is due to large amounts of negative predictions and not 

truly due to a good fit. The overall statistics are better than those shown in  

Table 14 and Table 15 since they only reflect the test set that the model had not 

experienced. The overall statistics are available in the appendix. 

The authors were able to include additional species and model SO2 and sulfate (PSO4). The 

results are also very promising. Based on the average hourly predictions and errors (Fig. 24 and Fig. 

25), it appears that SO2 also hovers around zero and the model ends up predicting negative values 

that overall average out much better than for EC. So, at first glance it appears that the errors for SO2 

are miniscule (Fig. 24 and Fig. 25). See  

Table 16 and Table 17 for test set statistics. The model does great predicting fine PSO4, but 

not so well for SO2 or coarse PSO4. 

Discussion 

Considering that this level of accuracy was achieved by only using two of the twelve CTM 

input types (see Appendix III, Table 1 for list of all available inputs) is quite encouraging as it is 

likely that the accuracy will increase as more input types are added. The other encouraging results 

are the speeds at which the model was built, trained and can generate predictions. Even if the 

smaller model were used to generate data for the entire country it would take less than 50 seconds 

to generate three years of data for the entire continental US. The larger regional model would take 

less than 20 seconds to generate the three years of data for the entire continental US. Even if 

hardware limitations required that models had to be built for each species or a small number of 

related species, the speed at which the models can generate data is orders of magnitude faster than 
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CTMs. These results bode well for continuing to pursue and refine these and similar models. By 

incorporating these models into an RCM, the performance could be increased.  

Additionally, there are a couple of other areas not yet mentioned that improve accessibility 

for policymakers. The data formats used by the model are generic and therefore more accessible 

than those used by a CTM. A sample dataset that could be easily modified could be included with an 

RCM to allow policymakers to design and test scenarios. The smaller model can easily be run on a 

personal computer with an inexpensive GPU. A GPU is not strictly necessary, but the authors have 

not yet tested speeds without a GPU. 

Table 12. HyVARNN-T model training and test statistics for a 15 x 15 grid region for 2 sizes of EC 
on a PC with a Nvidia MX150 GPU wit 2GB of memory. Best value in bold. * Trained on all six 
regions, statistics come from predicting WA data. 

Region Hidden 
Layers 

Neurons/ 
Hid Layer 

Test 
Loss Test MSE All MSE Time to train 

1k epochs 
Time to predict 
3 yrs 

CA 5 462 0.0065 0.0133 0.0132 00:35:38 00:00:01 

GL 5 462 0.0075 0.0157 0.0154 Unavailable 00:00:02 

NY 5 462 0.0099 0.0209 0.0210 00:36:47 00:00:01 

SE 5 462 0.0066 0.0136 0.0134 00:37:55 00:00:01 

TX 5 462 0.0037 0.00743 0.00730 00:35:57 00:00:01 

WA 5 462 0.0025 0.00502 0.00499 Unavailable 00:00:02 

All 6* 5 462 0.0132 0.0137 0.0136 Unavailable 00:00:01 

 

Table 13. HyVARNN-T model training and test statistics for a 25 x 25 grid region for 2 sizes of EC 
on a server with a single Nvidia Tesla T4 GPU with 15 GB of memory. Best value in bold. 

Region Hidden 
Layers 

Neurons/ 
Hid Layer 

Test 
Loss Test MSE All MSE Time to train 

1k epochs 
Time to predict 
3 yrs 

CA 5 1262 0.0038 0.00774 0.0076 00:25:24 00:00:02 

GL 5 1262 0.0053 0.011 0.0108 00:23:24 00:00:02 

NY 5 1262 0.0084 0.0174 0.0174 00:26:09 00:00:02 

SE 5 1262 0.0065 0.0132 0.0131 n/a 00:00:02 

TX 5 1262 0.0050 0.0102 0.00997 00:26:50 00:00:02 

WA 5 1262 0.0014 0.00276 0.00276 00:25:47 00:00:02 

All 6 5 1262 0.0202 0.0435 0.0439 00:42:02 00:00:13 
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Table 14. Test set statistics for 15 x 15 grid size regions. Mean Fractional Error (MFE), Mean 
Fractional Bias (MFB), Pearson’s Correlation Coefficient and Fraction of data within a factor of 2 
(FAC2). Values in italics meet accuracy goals as set forth by Boylan and Russell (2006). (Bolded 
value is best in that column.) Measures are the mean of hourly measurements for each hour in each 
grid cell. 

  EC2.5   ECC 

Region MFE ↓ MFB ↓ Pearson ↑ FAC2 ↑   MFE ↓ MFB ↓ Pearson ↑ FAC2 ↑ 

CA 0.293 0.055 0.678 0.925   -0.605 2.000 0.003 0.087 

GL 0.264 0.051 0.785 0.947   -0.049 1.770 -0.014 0.037 

NY 0.253 0.052 0.867 0.946   -0.141 1.890 -0.005 0.024 

SE 0.230 0.045 0.818 0.960   0.109 1.533 0.000 0.038 

TX 0.202 0.039 0.823 0.970   -0.434 2.098 -0.008 0.045 

WA 0.295 0.057 0.658 0.923   -0.187 1.898 0.010 0.029 

 

 

 

 

Table 15. Test set statistics for 25 x 25 grid size regions. Mean Fractional Error (MFE), Mean 
Fractional Bias (MFB), Pearson’s Correlation Coefficient and Fraction of data within a factor of 2 
(FAC2). Values in italics meet accuracy goals as set forth by Boylan and Russell (2006). (Bolded 
value is best in that column.) Measures are the mean of hourly measurements for each hour in each 
grid cell. 

  EC2.5   ECC 

Region MFE ↓ MFB ↓ Pearso
n ↑ FAC2 ↑   MFE ↓ MFB ↓ Pearso

n ↑ FAC2 ↑ 

CA 0.268 0.043 0.739 0.943   -0.399 2.059 0.013 0.031 

GL 0.249 0.030 0.784 0.955   -0.309 1.964 -0.002 0.038 

NY 0.281 0.059 0.818 0.928   0.175 1.392 0.008 0.060 

SE 0.268 0.065 0.759 0.930   -3.248 4.840 0.002 0.052 

TX 0.241 0.053 0.781 0.950   -1.468 3.063 0.010 0.050 

WA 0.248 0.047 0.757 0.944   7.366 -5.837 0.052 0.080 
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Table 16. Test set statistics for 15 x 15 grid size regions. Mean Fractional Error (MFE), Mean 
Fractional Bias (MFB), Pearson’s Correlation Coefficient and Fraction of data within a factor of 2 
(FAC2). Values in italics meet accuracy goals as set forth by Boylan and Russell (2006). (Bolded 
value is best in that column.) Measures are the mean of hourly measurements for each hour in each 
grid cell. 

 

 

 

 

 

 

 

Table 17. Test set statistics for 25 x 25 grid size regions. Mean Fractional Error (MFE), Mean 
Fractional Bias (MFB), Pearson’s Correlation Coefficient and Fraction of data within a factor of 2 
(FAC2). Values in italics meet accuracy goals as set forth by Boylan and Russell (2006). (Bolded 
value is best in that column.) Measures are the mean of hourly measurements for each hour in each 
grid cell. 

 

  

Region MFE ↓ MFB ↓ Pearson ↑ FAC2 ↑ MFE ↓ MFB ↓ Pearson ↑ FAC2 ↑ MFE ↓ MFB ↓ Pearson ↑ FAC2 ↑
CA 0.149 1.407 0.018 0.051 0.089 0.012 0.904 0.991 0.823 0.292 0.683 0.489
GL 0.055 1.377 0.037 0.087 0.084 0.009 0.914 0.992 2.020 -1.178 0.746 0.544
NY 12.696 -11.566 0.122 0.219 0.116 0.008 0.981 0.982 0.460 0.611 0.793 0.380
SE 0.264 0.825 0.079 0.193 0.143 0.018 0.953 0.977 0.492 0.482 0.756 0.479
TX -0.247 1.439 0.051 0.139 0.126 0.011 0.969 0.984 0.519 0.420 0.740 0.512

WA -1.337 2.886 0.047 0.062 0.137 0.019 0.878 0.970 0.678 0.356 0.643 0.470

SO2 Fine PSO4 Coarse PSO4

Region MFE ↓ MFB ↓ Pearson ↑ FAC2 ↑ MFE ↓ MFB ↓ Pearson ↑ FAC2 ↑ MFE ↓ MFB ↓ Pearson ↑ FAC2 ↑
CA -0.315 1.885 0.017 0.062 0.121 0.016 0.794 0.988 0.898 0.550 0.358 0.359
GL -2.893 4.115 0.088 0.167 0.147 0.014 0.952 0.979 0.628 0.772 0.588 0.288
NY -0.670 1.816 0.107 0.198 0.169 0.016 0.952 0.970 1.042 0.874 0.556 0.270
SE 0.862 0.207 0.087 0.218 0.194 0.032 0.928 0.954 0.803 0.535 0.639 0.377
TX 0.618 0.610 0.053 0.139 0.173 0.023 0.946 0.968 0.883 0.504 0.571 0.386

WA -0.635 2.187 0.034 0.067 0.161 0.031 0.726 0.963 0.884 0.473 0.289 0.391

SO2 Fine PSO4 Coarse PSO4
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Limitations and Applicability  

The intrinsic limitation of using CTM inputs and outputs is that the algorithms will be 

limited to learning the methods employed by the CTM. In other words, the underlying assumptions 

and limitations of the CTM will end up being emulated by the ML model. This means that it is only 

able to discover real-world causal relationships between species that are correctly modeled by the 

CTM. Transitioning to real-world measurements would greatly improve the probability of 

discovering true causal relationships. Another aspect of using the CTM inputs and outputs is that 

the ML model will not be capable of exceeding the accuracy of the CTM. Best case scenario is that it 

will be able to match the accuracy of the CTM. After transitioning to the real-world measured 

outputs, the possibility to achieve accuracy higher than the CTM exists. 

Another possible limitation is related to major shifts in pollution regimes. As entire sectors 

move away from certain forms of fuels, the distribution of pollutants produced also changes 

drastically.  Since the data is separated by decades, these changes may or may not be gradual 

enough for the ML algorithm to learn. The current results seem to be able to handle changes during 

the period of this work, but future changes may drastically alter pollution patterns and break the 

model (this depends on the level of abstraction the model is able to actuate).  

Since this work has not yet incorporated meteorological data (see Appendix III, Table 1 for 

available data), a major source of variation, the time and season variables (Table 11) provide 

valuable information that is likely better represented by actual weather conditions. The lack of 

meteorological data may explain the diminished variability in the model’s predictions of EC. Once 

these weather conditions are included, the time and season variables’ contributions will likely 

diminish and may even become unnecessary. Ideally, the model will learn the chemical and physical 

interactions and then modify those interactions according to the meteorological conditions—in 

essence learning the chemistry and physics of the system. The two-time variables that may retain 

some value are hour of day and day of week. Hour of day can be considered as a proxy for the angle 
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and presence of the sun since sunlight affects chemical reactions in the atmosphere. Day of week 

can capture human activity as people’s activities vary based on the day of week (e.g., weekends). 

Not yet including point sources (see Appendix III, Table 1), especially electricity generating 

units (EGU), is a limitation for being able to accurately predict concentrations, generally, and SO2, 

particularly, since they major sources of pollution. The current model is capable of incorporating 

this information in its present form. The issue to this point is being able to only include the point 

sources within the regions being analyzed. A computationally efficient method has not yet been 

attempted and including all 111,255 point sources would likely exceed memory capacity of 

available hardware. 

Another important limitation that will need to be addressed in future work is to use the 

predictions as the past values given to the VAR portion of the model. Currently, the model always 

uses temporally lagged CTM outputs as the past values of concentrations. To better test for 

compounding errors, the prediction routing will need to be modified to only predict one hour at a 

time to allow the model to feed the concentrations predictions back into the inputs as past 

concentration values. Kelp et al’s (2020) paper specifically worked towards making their module 

more stable and were able to increase stability to longer than a week without runaway error 

compounding. 

Validation 

Before any model was allowed to process data, a test set and a validation set were separated 

from the training data. The validation data was used for hyperparameter tuning and to test 

predictions during training. Only after training was completed and the model was taken out of 

learning mode was it allowed to process the test data. Future work should include comparing this 

model’s predictions with the same validation methods used by the team who generated the CTM 

data (Xing et al. 2013). The authors could also include in the future work using the atmospheric 
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model evaluation tool (AMET) (Appel et al. 2011) as it has recently added the ability to evaluate 

CAMx models. 

Lee et al (2011) developed an emulator for an aerosol microphysics module used in a CTM 

in order to quantify uncertainty. Due to the size of the search space for the chosen variables, 

running the CTM for the required number of runs would be computationally and temporally 

prohibitive, therefore a Gaussian process emulator was used to reduce time and computation costs. 

Their method of validating their emulator may prove to be a useful method for the authors to use as 

an additional validation in future work. 

Disclaimer 

The research and views presented are those of the authors and do not necessarily represent the 

views of the Department of Defense or any of its components. 

Notation 

The following symbols are used in this paper: 

C = a vector of lagged control variables; 

d = a dichotomous variable designating the interaction of the group and treatment variables; 

C = a vector of air pollution concentrations 

A = a coefficient for concentration with different influences from different time periods, causal 

relation between locations, represented by a vector autoregressive feedforward neural 

network 

E = vector of emissions 

G = the function representing the feedforward network that takes A and E as inputs and calculates 

or predicts air pollution concentrations. 
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Figures 

  
Fig. 15. Lambert Conformal Projection with 36 km2 grid cells showing fraction of grid cell 

covered by water. The small 3x3 blue squares were used for preliminary analysis. The red 11x11 
square was also used for preliminary analysis and hyperparameter tuning. The 15x15 purple 
regions were modeled using a personal computer with a GPU with 2 GB memory. The green 25x25 
regions were modeled using a server with a GPU with 15 GB memory.  
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Fig. 16. Graph representation of the vector autoregressive hybrid model. Inputs include 

past measures of concentrations (blue), current measures of emissions (grey) and both are coupled 
with six time variables (orange).  

 
 
 

 
Fig. 17. Flow diagram of modelling process. The top right graph shows a sample of the learning rate 
reducer. The bottom right graph shows the validation set loss after each epoch. 
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Fig. 18. Test set average hourly measurements for the 15x15 grid region in Washington state. EC2.5 
is on the left and ECC is on right. The top rows are the outputs of the CTM, the middle row is the 
prediction from HyVARNN-T and the bottom row contains the error (prediction – actual). For the 
error heatmap, green is an overprediction and pink is an underprediction. 
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Fig. 19. Test set average hourly measurements for the 25x25 grid region in Washington 

state. EC2.5 is on the left and ECC is on right. The top rows are the outputs of the CTM, the middle 
row is the prediction from HyVARNN-T and the bottom row contains the error (prediction – actual). 
For the error heatmap, green is an overprediction and pink is an underprediction. 
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Fig. 20. Small Washington region prediction (red) vs actual (blue) in 1990 for EC2.5 (left) and ECC 
(right) in three grid cells in the middle of the region. The red is transparent, so any purple hues are 
where the prediction and actual match. Data points are hourly measurements in a single grid cell 
annotated by the x and y coordinates in the graph title. 
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Fig. 21. Large Washington region prediction (red) vs actual (blue) in 1990 for EC2.5 (left) 

and ECC (right) in three grid cells in the middle of the region. The red is transparent, so any purple 
hues are where the prediction and actual match. Data points are hourly measurements in a single 
grid cell annotated by the x and y coordinates in the graph title. 
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Fig. 22. Scatterplots of predicted to actual values of EC2.5 (left) and ECC (right) for three grid cells in 
the middle of the region. The plot area has a consistent aspect ratio for x and y axes. A perfect plot 
would find all points on a 45° diagonal. Each point represents one hour, each graph is for a single 
grid cell annotated by the x and y coordinates in the graph title. 
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Fig. 23. Elemental carbon (µg/m3) and Sulfate(µg/m3)  MFE (left) and MFB (right) for all 
benchmark runs compared to proposed performance goals and criteria from Boylan and Russel 
(2006) shown here as reference for criteria and goal performance measures.  
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Fig. 24. Test set average hourly measurements for the 25x25 grid region in Washington 

state. SO2 is on the left, Fine PSO4 is in the middle and coarse PSO4 is on right. The top rows are the 
outputs of the CTM, the middle row is the prediction from HyVARNN-T and the bottom row 
contains the error (prediction – actual). For the error heatmap, green is an overprediction and pink 
is an underprediction.  
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Fig. 25. Large Washington region prediction (red) vs actual (blue) in 2010 for fine PSO4 (middle) 
and coarse PSO4 (right) in three grid cells in the middle of the region. The red is transparent, so any 
purple hues are where the prediction and actual match. Data points are hourly measurements in a 
single grid cell annotated by the x and y coordinates in the graph title. 
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Fig. 26. Scatterplots of predicted to actual values of SO2 (left), PSO4,2.5 (left) and PSO4,C (right) for 
three grid cells in the middle of the region. The plot area has a consistent aspect ratio for x and y 
axes. A perfect plot would find all points on a 45° diagonal. Each point represents one hour, each 
graph is for a single grid cell annotated by the x and y coordinates in the graph title. 
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Chapter 5 Summary and conclusions 

I here summarize key findings and contributions from this dissertation. From the first 

domain of infrastructure and equity, the analyses lead to several overall insights. First, social 

factors seem more significantly associated with bridge selection as opposed to treatment, especially 

the demographic variables and, to a lesser degree, family variables. Percentage of Hispanic, African 

American, and non-White populations all are negatively associated with the placement of non-

restrictive bridges or any bridge construction and these associations are consistent and robust. 

Regarding family variables, those households with more single parents with children and female-

led households were associated with less bridge construction of any kind, and these associations 

were consistent and robust. Education variables, finance, housing, and transportation variables 

generally did not yield consistent nor robust associations. Overall, this suggests that tracts with 

more non-White demographics and single or female-led households are associated with less 

infrastructure, which suggests less physical connectivity and mobility. LASSO notes similar results 

but with less associative strength, while also uncovering potential industry-based influences on 

bridge infrastructure. ML causal-based search mechanisms note some of these factors are 

associative rather than causal, but they do find some causal connections. In particular, the Fast 

Casual Inference algorithm finds that some connections are due to latent confounders and more 

research is needed to better identify these confounders. 

Second, physical factors that arguably capture more technical rationales for bridge 

construction have less association on selection or treatment, even before CEM is applied to handle 

potential selection along these variables. Rural tracts and water area all hover around zero in both 

sets of models. This suggests social as opposed to technical factors are perhaps more associated 

with bridge construction, particularly where it is sited. That said, the measures used as proxies for 

technical causes or reasons for building a bridge are limited to water and land area. The reason this 

may be is that social context often informs the appropriate variables that can hypothetically 
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influence whether a locale is in need of a bridge and whether it receives it. Since the context was 

Pennsylvania and many bridges are used to traverse bodies of water and geophysical features such 

as ravines, land and water area were selected as proxies. These proxies may not be applicable 

across social contexts as these measures may not adequately capture other possible contextual 

sources of geophysical variation such as elevation change. Thus, while this suggests social factors 

may matter more than technical factors in bridge siting and that the overall framework may be 

replicable, the authors cautiously note that the variables included should be guided by the realities 

of the local context. 

In terms of the models using the ML search-selected variables, the authors found consistent 

results with previous models along different variables. ML search finds another parallel effect to the 

literature-review based demographic variables - less restrictions in white populations around 

bridge placement. In other words, tracts with more white populations are associated with more 

bridges, which mirrors previous results that non-white populations are associated with less 

bridges. The ML-based search technique also discovered new industry-based associations of bridge 

construction. The number of precision crafters, farm, fishery, and forestry workers were negatively 

associated with non-restrictive bridge construction.  

Second, causal machine learning algorithms found some sources of causality, but most 

variables are merely associational. These algorithms discovered structural relationships between 

variables (e.g., the count of a particular type of bridge and the dummy indicator signifying that a 

particular type of bridge had been built in a tract). These searches also discovered associations 

between bridge types and rural tract dummy indicator variables. Ultimately, eighteen of the 32 

variables identified by LASSO and MB machine learning algorithms were found to have a possible 

causal connection. When employing the fast greedy equivalence search (FGES) algorithm, which is 

not restricted to a Markov Blanket, the algorithm found 16 low probability causal connection and 

only one high probability connection (IHS-transformed count of total bridges -> rural 4M m2 
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indicator). FCI found that nonrestrictive bridges were either causally influence the rural 10M m2 

indicator or there is an unmeasured confounder or both. When examining the literature review-

based variables, FCI found that the rural 10M m2 indicator definitely directly influences with no 

latent confounder the total number of IHS-transformed total bridges. FCI then was a valuable check 

to confirm or refute causality findings from other algorithms. Overall, what the results from these 

causal search algorithms suggest is that some of the variables identified by the literature review 

and ML search algorithms are causal in their relationship to bridge infrastructure. Overall, these 

results indicate that most of the findings are associational and not necessarily causal. 

With regard to the second domain, the authors were able to develop a rather effective 

algorithm for predicting chemical species which contribute to health issues with PM2.5. Along the 

way the authors also discovered a method to apply neural networks to a popular form of 

econometric analysis (VAR). The machine learning based algorithm was much more efficient in 

terms of memory, power, and time. As the authors tested for time variability, the vector 

autoregression model, with nonlinearity and/or nonstationary causal influences, found that the 

optimal lag decreased as the geophysical size of the problem set increased. This was 

counterintuitive and not what the authors expected. The authors ended up developing a hybrid 

neural network that took as input emission and past periods of output to accurately predict PM2.5 

chemical species. The model the authors developed shows great potential to become even more 

accurate as more environmental variables are added into the model. Even with the limited area 

emissions and a limited number of pollution concentration lags, the model was able to learn to 

predict future pollution concentrations to a reasonable degree of accuracy. With the added 

computational efficiencies brought to the table by the neural network, the author believes the 

model is worth further development to add it to a reduced complexity model in order to make air 

pollution modeling more accessible to local and state policymakers. After the model has 
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successfully integrated other meteorological factors, it would be a valuable exercise to attempt to 

transfer it to real-world data. 

Contributions 

The first study provides several contributions. First, this study presents a replicable 

methodology for assessing equity impacts of infrastructure. Prior literature is unable to assess 

relationships between infrastructure and equity because these assessments require dispersed data 

sources that differ in both temporal and spatial resolution (Grannis 1998; Knaap and Oosterhaven 

2002; Lee et al. 2008; Liu Min and Frangopol Dan M. 2006; Sampson et al. 2002; Star and Bowker 

2006). The authors demonstrate a method to bring disparate available data sources together to 

provide insights into the social impacts of infrastructure. This study contributes a research design 

that incorporates network service area analysis and CEM to make inroads into harmonizing and 

isolating as much as possible treatment locales, comparable control locales, and the most salient 

equity variables for analysis according to our extensive literature review thus minimizing the need 

for expert variable selection. The authors hope other engineers will test the replicability of this 

method in other locales to further assess the robustness of this approach to other local conditions, 

which will help further develop boundary conditions for this methodology. 

Second, and particular to the Pennsylvania case study, the authors found social factors 

matter more than the limited technical factors at our disposal in understanding the equity impacts 

of infrastructure and identified associations seem more consequential at selection than treatment. 

Prior literature seems to argue that there are both selection and treatment effects on 

infrastructure-equity relationships (Audretsch et al. 2015; Grabowski et al. 2017; Joerges 1999; 

Pinch and Bijker 2012; Schindler 2015; Shilton 2013; Star 1999; Winner 1980; Woolgar and Cooper 

1999). However, in terms of this case study, the authors find selection is a more prominent factor. 

This intuitively makes sense given the longevity of these systems and the social context at the time 

that drives bridge construction and siting (Desai and Armanios 2018). As with this study’s 
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methodology, the authors hope not just the robustness of the methods are assessed through 

additional case studies, but also compare and contrast equity findings from those case studies to 

the one conducted here. In this way, the scholarly community can collectively advance a more 

generalized set of findings and conditions for which social factors drive infrastructure-equity 

relationships, whether they are associative or causal, and whether they occur at infrastructure 

selection, subsequent treatment, or both. 

A third contribution is to demonstrate that it is possible to use quantitative methods with 

publicly available data to discover associations between infrastructure and socioeconomic factors. 

In contrast to the current civil engineering literature that focuses on construction or maintenance 

impacts only during construction (Liu and Frangopol 2005; Liu Min and Frangopol Dan M. 2006; 

Liu Ming and Frangopol Dan M. 2006; Twumasi-Boakye and Sobanjo 2017), this paper has shown 

that it is possible to look at longer term equity impacts of infrastructure. This provides a challenge 

for the civil engineering community to look beyond strictly focusing on the time period during 

construction or maintenance to understand more long-lasting social impacts of bridges and other 

physical infrastructure.  

Additionally, the authors see pragmatic managerial implications. Infrastructure managers 

are increasingly asked to repair an ever-growing set of outdated bridges with budgets that are 

increasing but not adequate to completely address infrastructure demands. As the most recent 

ASCE report stated, “In 2018, the Commonwealth of PA estimated that $7.7 billion is needed for 

bridge repairs. Under current funding practices, it would take 13 years to reach the national 

average of poor condition bridges (ASCE 2019).” This suggests infrastructure managers could 

benefit from having other metrics for which to further prioritize and identify the most critical 

bridges in need of repair. Therefore, including equity dimensions through this methodology 

presents an additional set of factors that can advance such needs and allow infrastructure 

managers to prioritize bridge needs more effectively under budgetary constraints. 
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The main contribution of the first study’s extension (Study 2) is to demonstrate that it is 

possible to use quantitative methods with publicly available data to distinguish causal relationship 

from associative relationship. Even in those cases where causality could not be confirmed, valuable 

associations were discovered with the ability to impact the socioeconomic conditions of some of 

society’s at-risk and underserved communities. Moreover, these methods can be employed by 

engineers with little familiarity in underlying sociological theory, statistics, and machine learning 

algorithms. These extensions should provide additional metrics with which to further prioritize and 

identify the most critical bridges in need of repair. Therefore, including equity dimensions through 

this methodology presents an additional set of factors that can advance such needs and allow 

infrastructure managers to more effectively prioritize infrastructure maintenance and manpower 

in ways that more closely match budgetary constraints. 

The first contribution of the second domain was not expected. Vector autoregressive 

algorithms are a well-known and well-used tool in the economist’s toolbox which is why the 

authors were surprised that the method has not been modeled using a neural network. The 

advantages in terms of memory, time and computation power were unexpectedly large. With 

virtually no resource on the GPU, the VAR neural net was able to duplicate jobs that require servers 

to complete. By integrating emissions with time-varying autoregressive pollution concentrations 

the authors were able to quickly learn the underlying functions of a couple of chemical species with 

impact on human health. Further development is warranted to ascertain just how accurate such a 

model can become. The computational efficiencies and human capital savings are significant. 

During the development of the model the authors kept their eye on accessibility and ensured that 

there is sufficient utility in a regional model. The authors found that adding the temporal aspect 

improved the model and provided useful information to the neural network.  

The second contribution was an ML algorithm capable of learning chemical interactions 

based on a CTM. The first two iterations of this algorithm took past concentrations and  area 
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pollution sources as inputs in order to predict future concentrations. The algorithm models PM2.5 

for EC and PSO4 very well with these limited inputs. Based on the predictive power of the model 

based on these two inputs, further development is warranted. 

Future Work 

As previously noted, there are opportunities to replicate the case study framework in other 

locales outside Pennsylvania or at a larger national scale. Applying this methodology to other types 

of infrastructure may also yield new insights into the interactions of infrastructure with equity. The 

results of the causal methods discovered that some associations are the result of currently 

unknown or unmeasured factors and work is needed to find these factors, especially in ways that 

account for potential nonlinearity. As for the air pollution models, there are a plethora of future 

research directions. One of the first steps could be to integrate the available meteorological factors 

one at a time to delineate and quantify the differential contributions of each discrete factor. The 

same model or a similar construct may be useful in econometric domains which employ VAR 

models. One of the challenges the authors faced was limited computing resources, and so regional 

models were developed. Incorporating the hybrid VAR neural network with time dependencies into 

a reduced complexity model as its prediction engine could open the doors to policymakers and 

concerned citizens by making complex air pollution models accessible to them at their desk.   
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Appendix I: Methodological Framework and Feasibility Study to Assess Social Equity 

Impacts of the Built Environment Supplemental information 

Code and some data are available at: https://github.com/ZhongSiming/SocialBridges  

Section A Data Processes 

Figures S1 and S2 summarized the data acquisition and cleaning process. 

 

Fig. 27. Flow diagram of data acquisition process. NCdB = Neighborhood Change Database, 
BMS=Bridge Management System, converted to 2010 real dollars using CPI 

 

 

Fig. 28. Flow diagram of data cleaning process. 

This data is at the resolution of a census tract, which serves as the level of analysis. Since 

census tracts change over time, the data used was standardized by Geolytics using the 2010 census 

tract boundaries in their Neighborhood Change Database (NCdB) (GeoLytics 2018). There are 

approximately six hundred tracts that do not have data for the 1970 and 1980 census years because 
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the census was not conducted in these rural tracts (see Robustness Checks section and Fig. 7 for 

additional details). Other researchers have used data standardized by Geolytics to help determine 

socioeconomic factors surrounding power generation infrastructure and spatial segmentation of 

classes (Carless 2018; Sharkey 2014). For example, combining Geolytics standardized data with 

administrative data from a federal housing renewal program was used by other researchers to 

track urban inequality over time (Tach and Emory 2017b). Despite the standardization performed 

by GeoLytics, steps were still required to identify and mitigate data inconsistencies. Thus, the NCdB 

serves as a widely accepted high-resolution dataset for social demographic data.  

For this analysis, the data used focuses on bridges with a route (road or highway) that will 

allow motorized vehicles to pass under the bridge. This paper focuses on two types of bridges: 

restrictive and non-restrictive. Using the convention developed by Desai and Armanios (2018) to 

analyze the National Bridge Inventory data, the minimum underclearance considered is 3 meters 

(9.8 feet). Of these bridges, restrictive bridges are defined as those with an underclearance of fewer 

than 4.27 meters (14 feet) which allow cars, buses and light trucks to pass. Non-restrictive bridges 

are defined as those with an underclearance of 4.27 meters (14 feet) or higher which would enable 

commercial trucks to pass. As bridge underclearance drops lower to less than 3.66 meters (12 feet) 

or 3.05 meters (10 feet), buses and smaller trucks also become restricted. These restrictions can 

have a disproportionate effect on small businesses and marginalized populations which rely on 

small trucks and buses for movement of goods and people. While the federal government does not 

regulate commercial vehicle height (Federal Highway Administration 2004), the states restrict 

vehicle height from 4.11 meters (13 feet 6 inches) to 4.27 meters (14 feet) (for example, 

Pennsylvania “Title 75” 2018, 7). Thus, an underclearance of 4.27 meters (14 feet) was chosen 

because (“Size and Weight Limitations” 2018) it is the highest bound that begins to restrict non-

military vehicles.  
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Fig. 29. Number of bridges by service area length 

Since bridges may act as boundaries, the authors needed to find a quantitative method to 

define a boundary bridge (i.e., a bridge that straddles between tracts or could serve as a barrier 

between tracts). Fig. 3 and Fig. 4 summarize the result of this process. To ascertain the size range 

the authors should consider for the service area analysis, the authors ran a sensitivity analysis 

where the service area size varied from 200 to 2,000 meters from the bridge of interest. This 

identified bridges with service areas that overlapped with 1, 2, 3, 4, and 5 tracts. The authors used 

these service areas to ascertain at what size they see a pronounced shift in the number of bridges 

comprising each group (see Appendix I, Section A, Fig. 29 - Fig. 30). Using this approach, the most 

appropriate natural cutoff was found to be 400 meters from the bridge. This range incidentally is 

almost identical to the buffer values used in a prior analysis of income and race on busy roadways 

(Turnbull et al. 2013 p. 32). The lines represent the number of tracts intersected by a bridge’s 

service area. The y-axis represents the number of bridges with a service area that intersects the 

specified number of tracts as specified by the line. The x-axis represents how far the street network 

was traced away from the bridge while building the service area. As the number of tracts increases 

the number of bridges with a service area intersecting that number of tracts decreases. 
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Fig. 30. Number of bridges with the number of tracts by service area length 
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Section B Correlation Matrices 

Table 18. Correlation matrix for set 1 variables 

newbridg AREAWATrur10m bridge.totAVHHIN.2MINORITYFORBORNTRVLPBN.EDUC8.lagEDUC16.laPOVRATNOWNRNT VACHU.laNEWHOU
newbridge.under14.mod 1.00 0.06 0.02 -0.03 -0.06 -0.01 -0.03 -0.04 -0.03 -0.03 -0.02 -0.01 -0.03 -0.02
AREAWATR.pct 0.06 1.00 -0.08 0.02 0.00 0.00 0.00 0.01 0.01 -0.03 0.06 -0.01 0.08 -0.02
rur10m 0.02 -0.08 1.00 0.58 -0.10 -0.26 -0.29 -0.39 0.03 -0.05 -0.21 0.01 0.04 0.13
bridge.total.ihs.lag -0.03 0.02 0.58 1.00 0.35 -0.21 -0.09 -0.07 0.19 0.16 -0.04 0.03 0.21 0.19
AVHHIN.2010real.ihs.lag -0.06 0.00 -0.10 0.35 1.00 0.22 0.44 0.70 0.35 0.38 0.44 0.05 0.39 0.12
MINORITY.lag.pct -0.01 0.00 -0.26 -0.21 0.22 1.00 0.22 0.46 0.24 0.06 0.67 -0.03 0.33 -0.10
FORBORN.lag.pct -0.03 0.00 -0.29 -0.09 0.44 0.22 1.00 0.57 0.12 0.32 0.28 -0.03 0.14 -0.01
TRVLPBN.ihs.lag -0.04 0.01 -0.39 -0.07 0.70 0.46 0.57 1.00 0.15 0.24 0.48 -0.06 0.25 -0.04
EDUC8.lag.pct -0.03 0.01 0.03 0.19 0.35 0.24 0.12 0.15 1.00 0.27 0.44 -0.04 0.37 0.09
EDUC16.lag.pct -0.03 -0.03 -0.05 0.16 0.38 0.06 0.32 0.24 0.27 1.00 0.07 -0.03 0.14 0.06
POVRATN.lag.pct -0.02 0.06 -0.21 -0.04 0.44 0.67 0.28 0.48 0.44 0.07 1.00 -0.05 0.50 -0.02
OWNRNT.pct.lag -0.01 -0.01 0.01 0.03 0.05 -0.03 -0.03 -0.06 -0.04 -0.03 -0.05 1.00 -0.04 -0.01
VACHU.lag.pct -0.03 0.08 0.04 0.21 0.39 0.33 0.14 0.25 0.37 0.14 0.50 -0.04 1.00 0.13
NEWHOUS.lag.pct -0.02 -0.02 0.13 0.19 0.12 -0.10 -0.01 -0.04 0.09 0.06 -0.02 -0.01 0.13 1.00  

Table 19. Correlation matrix for set 2 variables 

newbridgeAREAWAT rur4m bridge.tot AVHHINN.FORBORN.SPWKID.laCOMMUT2EDUCA.lagVACHU.lagNEWHOUS
newbridge.under14.mod 1.00 0.06 0.02 -0.03 -0.06 -0.03 -0.03 -0.05 -0.04 -0.03 -0.02
AREAWATR.pct 0.06 1.00 -0.07 0.02 0.00 0.00 0.05 -0.01 -0.01 0.08 -0.02
rur4m 0.02 -0.07 1.00 0.57 -0.08 -0.27 -0.32 -0.01 0.04 -0.03 0.14
bridge.total.ihs.lag -0.03 0.02 0.57 1.00 0.34 -0.09 -0.07 0.31 0.27 0.21 0.19
AVHHINN.2010real.ihs.lag -0.06 0.00 -0.08 0.34 1.00 0.44 0.47 0.70 0.46 0.39 0.12
FORBORN.lag.pct -0.03 0.00 -0.27 -0.09 0.44 1.00 0.24 0.28 0.15 0.14 -0.01
SPWKID.lag.pct -0.03 0.05 -0.32 -0.07 0.47 0.24 1.00 0.45 0.31 0.47 -0.03
COMMUT2.ihs.lag -0.05 -0.01 -0.01 0.31 0.70 0.28 0.45 1.00 0.66 0.40 0.18
EDUCA.lag.pct -0.04 -0.01 0.04 0.27 0.46 0.15 0.31 0.66 1.00 0.30 0.07
VACHU.lag.pct -0.03 0.08 -0.03 0.21 0.39 0.14 0.47 0.40 0.30 1.00 0.13
NEWHOUS.lag.pct -0.02 -0.02 0.14 0.19 0.12 -0.01 -0.03 0.18 0.07 0.13 1.00  
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Table 20. Correlation matrix for set 3 variables 

newbridgeAREAWATRrur10m bridge.totaSHRBLKN.laAD2CHILD.FORBORN.WELFARN. COMMUT4EDUC12.la RNTOCC.laVACHU.lagNEWHOUS
newbridge.under14.mod 1.00 0.06 0.02 -0.03 -0.01 -0.06 -0.03 -0.02 -0.05 -0.04 -0.04 -0.03 -0.02
AREAWATR.pct 0.06 1.00 -0.08 0.02 0.01 0.03 0.00 0.05 -0.02 0.01 0.07 0.08 -0.02
rur10m 0.02 -0.08 1.00 0.58 -0.24 -0.13 -0.29 -0.22 -0.02 0.07 -0.36 0.04 0.13
bridge.total.ihs.lag -0.03 0.02 0.58 1.00 -0.20 0.31 -0.09 -0.07 0.31 0.31 -0.06 0.21 0.19
SHRBLKN.lag.pct -0.01 0.01 -0.24 -0.20 1.00 0.18 0.12 0.68 0.17 0.10 0.39 0.31 -0.10
AD2CHILD.ihs.lag -0.06 0.03 -0.13 0.31 0.18 1.00 0.45 0.37 0.70 0.49 0.65 0.39 0.09
FORBORN.lag.pct -0.03 0.00 -0.29 -0.09 0.12 0.45 1.00 0.20 0.29 0.07 0.48 0.14 -0.01
WELFARN.lag.pct -0.02 0.05 -0.22 -0.07 0.68 0.37 0.20 1.00 0.39 0.28 0.57 0.48 -0.06
COMMUT4.ihs.lag -0.05 -0.02 -0.02 0.31 0.17 0.70 0.29 0.39 1.00 0.63 0.41 0.39 0.17
EDUC12.lag.pct -0.04 0.01 0.07 0.31 0.10 0.49 0.07 0.28 0.63 1.00 0.24 0.41 0.10
RNTOCC.lag.pct -0.04 0.07 -0.36 -0.06 0.39 0.65 0.48 0.57 0.41 0.24 1.00 0.32 -0.02
VACHU.lag.pct -0.03 0.08 0.04 0.21 0.31 0.39 0.14 0.48 0.39 0.41 0.32 1.00 0.13
NEWHOUS.lag.pct -0.02 -0.02 0.13 0.19 -0.10 0.09 -0.01 -0.06 0.17 0.10 -0.02 0.13 1.00  

 

Table 21. Correlation matrix for set 4 variables 

newbridgeAREAWAT rur4m bridge.totaSHRHSPN.lFORBORN.CHILD.lag. FHHTOT.laTRVLPBN.i COMMUTXEDUC8.lag OWNRNT.pVACHU.lagNEWHOUS
newbridge.under14.mod 1.00 0.06 0.02 -0.03 -0.02 -0.03 -0.05 -0.03 -0.04 -0.05 -0.03 -0.01 -0.03 -0.02
AREAWATR.pct 0.06 1.00 -0.07 0.02 0.01 0.00 -0.03 0.06 0.01 -0.04 0.01 -0.01 0.08 -0.02
rur4m 0.02 -0.07 1.00 0.57 -0.15 -0.27 0.00 -0.39 -0.37 0.00 -0.03 0.02 -0.03 0.14
bridge.total.ihs.lag -0.03 0.02 0.57 1.00 -0.09 -0.09 0.32 -0.11 -0.07 0.30 0.19 0.03 0.21 0.19
SHRHSPN.lag.pct -0.02 0.01 -0.15 -0.09 1.00 0.28 0.20 0.36 0.22 0.17 0.35 -0.02 0.19 -0.04
FORBORN.lag.pct -0.03 0.00 -0.27 -0.09 0.28 1.00 0.31 0.31 0.57 0.30 0.12 -0.03 0.14 -0.01
CHILD.lag.pct -0.05 -0.03 0.00 0.32 0.20 0.31 1.00 0.48 0.63 0.46 0.24 -0.07 0.33 0.12
FHHTOT.lag.pct -0.03 0.06 -0.39 -0.11 0.36 0.31 0.48 1.00 0.63 0.48 0.44 -0.06 0.46 -0.10
TRVLPBN.ihs.lag -0.04 0.01 -0.37 -0.07 0.22 0.57 0.63 0.63 1.00 0.46 0.15 -0.06 0.25 -0.04
COMMUTX.log.lag -0.05 -0.04 0.00 0.30 0.17 0.30 0.46 0.48 0.46 1.00 0.50 -0.06 0.41 0.16
EDUC8.lag.pct -0.03 0.01 -0.03 0.19 0.35 0.12 0.24 0.44 0.15 0.50 1.00 -0.04 0.37 0.09
OWNRNT.pct.lag -0.01 -0.01 0.02 0.03 -0.02 -0.03 -0.07 -0.06 -0.06 -0.06 -0.04 1.00 -0.04 -0.01
VACHU.lag.pct -0.03 0.08 -0.03 0.21 0.19 0.14 0.33 0.46 0.25 0.41 0.37 -0.04 1.00 0.13
NEWHOUS.lag.pct -0.02 -0.02 0.14 0.19 -0.04 -0.01 0.12 -0.10 -0.04 0.16 0.09 -0.01 0.13 1.00  
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Section C Variables 

Census data utilizes multiple categories for certain phenomena such as education or 

provides subsets of certain phenomena such as single parents. Since these phenomena have 

multiple variables and are often linear combinations and therefore not linearly independent, each 

of these variables were placed in separate sets of variables for use in the models in order to avoid 

issues of multicollinearity (see Tables S5 - S12). For example, there are six different measures of 

educational achievement, one measures those who completed more than elementary but did not 

complete high school. The authors chose to only use the four educational variables that correspond 

to the completion of some level of school: elementary, high, associate degree, and bachelor’s degree 

or higher. Population density is an example of a variable that is highly correlated with many other 

variables such as income, poverty rate, welfare, renter-occupied housing, three kinds of single 

parents, and three commute measures. 

The neighborhood-effects literature helps select key socio-economic factors for this 

research because this literature attempts to illuminate the social and institutional processes and 

mechanisms responsible for neighborhood-level outcomes. This literature has identified key 

mechanisms such as: concentrated disadvantage, “life-cycle status, residential stability, 

homeownership, density and ethnic heterogeneity (Sampson et al. 2002 p. 446).” A study focused 

on determining the spatial separation of the black middle class created an index of neighborhood 

concentrated disadvantage based on five census tract characteristics: “welfare receipt, poverty, 

unemployment, female-headed households, and density of children (percentage of residents under 

18) (Sharkey 2014 p. 910).” A study focused on spatial dynamics affecting collective efficacy for 

children used: concentrated immigration, percentage of owner-occupied homes, percentage of 

population in professional or managerial occupations, ratio of adults to children, population density 

(persons per square kilometer), education, income, occupational prestige, sex, current marital 

status, homeownership, mobility (number of moves in the past five years), years in the 
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neighborhood, and age (Sampson et al. 1999 pp. 640–1). They found the most consistent predictors 

of collective efficacy were characteristics of stable neighborhoods: concentrated affluence, low 

population density, and residential stability (Sampson et al. 1999). A study concerned with white 

flight used socio-economic status indicators including sex, marital status, number of children, 

homeownership level, poverty level, and concentration of single-mother families, among others to 

conclude that whites take the racial composition of nearby neighborhoods into account when they 

choose where to move (Crowder and South 2008).  
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Table 22. List of independent variables in set 1 in Selection Effect Model with references to other works 

Variable Description Citation 
Area (Water) Area (Water) This study 
Rural tract indicator > 10M sq. 
meters Rural indicator for tracts greater than 10M sq. meters  This study 

Lagged IHS-transformed Total 
bridges 

Lagged Inverse Hyperbolic Sine Transformation of Total number of 
bridges in and near the tract This study 

Lagged IHS-transformed Real 
Average income 

Lagged Inverse Hyperbolic Sine Transformation of Average household 
income in past 12 months (2010 Constant $ US) Sampson et al, 1999; Lee et al, 2008 

Lagged % Minority Lagged Non-White percentage of total population Brady et al, 2017; Crowder et al, 2012 
Lagged % foreign-born Lagged Percentage of Foreign-born of total population Lee et al, 2008;  
Lagged IHS-transformed 
Travel on public transportation 

Lagged Inverse Hyperbolic Sine Transformation of Workers 16+ years old 
traveling to work on public transportation (taxi not included) This study 

Lagged % bachelor’s or higher 
Degree Graduate 

Lagged Percentage of Persons 25+ years old who have a bachelor’s or 
graduate/professional degree 

Sampson et al, 1999; Crowder et al, 
2012; Lee et al, 2008 

Lagged % Poverty rate Lagged Percentage of total persons below the poverty level in past 12 
months Sharkey 2014; Crowder et al, 2012 

Lagged Owner to Renter rate Lagged Ratio of Owner-Occupied housing units to Renter Occupied 
Housing units 

McCabe 2016; Sampson et al, 1999; 
Crowder et al, 2012 

Lagged % Vacant housing Lagged Percentage of vacant housing units Tach and Emory, 2017 

Lagged % New housing Lagged Percentage of change in number of housing units since last census 
of total housing units Farley and Frey, 1994; Lee et al, 2008 

Year Year This study 
Tract Census Tract Identifier This study 

  



Machine Learning for Public Policy: Applications in Infrastructure and Air Pollution 

142 

Table 23. List of independent variables in set 2 in Selection Effect Model with references to other works 

Variable Description Citation 
Area (Water) Area (Water) This study 
Rural tract indicator > 4M sq. 
meters Rural indicator for tracts greater than 4M sq. meters (median area) This study 

Lagged IHS-transformed Total 
bridges 

Lagged Inverse Hyperbolic Sine Transformation of Total number of 
bridges in and near the tract This study 

Lagged IHS-transformed Real 
Aggregate income 

Lagged Inverse Hyperbolic Sine Transformation of Aggregate household 
income in past 12 months (2010 Constant $ US) Sampson et al, 1999; Lee et al, 2008 

Lagged % foreign-born Lagged Percentage of Foreign-born of total population Lee et al, 2008;  
Lagged % single-parent 
families w/kids 

Lagged Percentage of single-parent families with own children under 18 
years old of total families and subfamilies 

Sampson et al, 1999; Crowder et al, 
2012 

Lagged IHS-transformed 
Commute less than 25 minutes 

Lagged Inverse Hyperbolic Sine Transformation of Workers 16+ years old 
with travel time to work less than 25 minutes or work at home This study 

Lagged % Associate Degree 
Graduate 

Lagged Percentage of Persons 25+ years old who have an associate degree 
but no bachelor’s degree 

Sampson et al, 1999; Crowder et al, 
2012; Lee et al, 2008 

Lagged % Vacant housing Lagged Percentage of vacant housing units Tach and Emory, 2017 

Lagged % New housing Lagged Percentage of change in number of housing units since last census 
of total housing units Farley and Frey, 1994; Lee et al, 2008 

Year Year This study 
Tract Census Tract Identifier This study 
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Table 24. List of independent variables in set 3 in Selection Effect Model with references to other works 

Variable Description Citation 
Area (Water) Area (Water) This study 
Rural tract indicator > 10M sq. 
meters Rural indicator for tracts greater than 10M sq. meters This study 

Lagged IHS-transformed Total 
bridges 

Lagged Inverse Hyperbolic Sine Transformation of Total number of 
bridges in and near the tract This study 

Lagged % African American Lagged Black/African American percentage of total population Brady et al, 2017; Crowder et al, 2012; 
Lee et al, 2008 

Lagged Adult to child ratio Lagged Ratio of adults 18+ years old to children under 18 years old 
(adults/children) Sampson et al, 1999; Sharkey, 2014 

Lagged % foreign-born Lagged Percentage of Foreign-born of total population Lee et al, 2008;  

Lagged % Welfare rate Lagged Percentage of households with public assistance inc. (incl. SSI) last 
year of total households Sharkey, 2014 

Lagged IHS-transformed 
Commute 25-45 minutes 

Lagged Inverse Hyperbolic Sine Transformation of Workers 16+ years old 
with travel time to work 25 to 44 minutes This study 

Lagged % High School 
Graduate 

Lagged Percentage of Persons 25+ years old who have completed high 
school but no college 

Sampson et al, 1999; Crowder et al, 
2012; Lee et al, 2008 

Lagged % Renter-occupied Lagged Percentage of renter-occupied housing units of total housing units 
Crowder, Tanner et al, 2012; Albright, 
2018; Pathak, Reader, and Casper, 
2011; 

Lagged % Vacant housing Lagged Percentage of vacant housing units Tach and Emory, 2017 

Lagged % New housing Lagged Percentage of change in number of housing units since last census 
of total housing units Farley and Frey, 1994; Lee et al, 2008 

Year Year This study 
Tract Census Tract Identifier This study 
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Table 25. List of independent variables in set 4 in Selection Effect Model with references to other works 

Variable Description Citation 
Area (Water) Area (Water) This study 
Rural tract indicator > 4M sq. 
meters Rural indicator for tracts greater than 4M sq. meters (median area) This study 

Lagged IHS-transformed Total 
bridges 

Lagged Inverse Hyperbolic Sine Transformation of Total number of 
bridges in and near the tract This study 

Lagged % Hispanic Lagged Percentage of Hispanic/Latino of total population Brady et al, 2017; Crowder et al, 2012; 
Lee et al, 2008;  

Lagged % children Lagged Percentage of Children under 18 years old of total population Sampson et al, 1999; Sharkey, 2014; 
Crowder et al, 2012 

Lagged % foreign-born Lagged Percentage of Foreign-born of total population Lee et al, 2008;  
Lagged % female-headed 
families 

Percentage of female-headed families with or without own children of 
total families and subfamilies Sharkey, 2014; Crowder et al, 2012 

Lagged IHS-transformed 
Commute over 45 minutes 

Lagged Inverse Hyperbolic Sine Transformation of Workers 16+ years old 
with travel time to work more than 45 minutes This study 

Lagged % Completed 8 years of 
school 

Lagged Percentage of Persons 25+ years old who have completed 0-8 
years of school 

Sampson et al, 1999; Crowder et al, 
2012; Lee et al, 2008 

Lagged Owner to Renter rate Lagged Ratio of Owner-Occupied housing units to Renter Occupied 
Housing units 

McCabe, 2016; Sampson et al, 1999; 
Crowder et al, 2012 

Lagged % Vacant housing Lagged Percentage of vacant housing units Tach and Emory, 2017 

Lagged % New housing Lagged Percentage of change in number of housing units since last census 
of total housing units Farley and Frey, 1994; Lee et al, 2008 

Year Year This study 
Tract Census Tract Identifier This study 
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Table 26. List of independent variables in set 1 in Treatment Effect Model with references to other works 

Variable Description Citation 

New restrictive bridge 
treatment dummy 

Dummy variable denoting that a new bridge with an underclearance 
under 4.27 m (14 ft) and over 3 m (9.8 ft) was built in this tract in this or a 
previous time period 

This study 

New restrictive bridge 
treatment group dummy 

Dummy variable denoting that a new bridge with an underclearance 
under 4.27 m (14 ft) and over 3 m (9.8 ft) was built in this tract in any 
time period 

This study 

Area (Water) Area (Water) This study 

Rural tract indicator > 10M m2 Rural indicator for tracts greater than 10M sq. meters This study 

Lagged IHS-transformed Total 
bridges 

Lagged Inverse Hyperbolic Sine Transformation of Total number of 
bridges in and near the tract This study 

Lagged IHS-transformed Real 
Average income 

Lagged Inverse Hyperbolic Sine Transformation of Average household 
income in past 12 months (2010 Constant $ US) Sampson et al, 1999; Lee et al, 2008 

Lagged % Minority Lagged Non-White percentage of total population Brady et al, 2017; Crowder et al, 2012 
Lagged % foreign-born Lagged Percentage of Foreign-born of total population Lee et al, 2008;  
Lagged IHS-transformed 
Travel on public transportation 

Lagged Inverse Hyperbolic Sine Transformation of Workers 16+ years old 
traveling to work on public transportation (taxi not included) This study 

Lagged % bachelor’s or higher 
Degree Graduate 

Lagged Percentage of Persons 25+ years old who have a bachelor’s or 
graduate/professional degree 

Sampson et al, 1999; Crowder et al, 
2012; Lee et al, 2008 

Lagged % Poverty rate Lagged Percentage of total persons below the poverty level in past 12 
months Sharkey, 2014; Crowder et al, 2012 

Lagged Owner to Renter rate Lagged Ratio of Owner-Occupied housing units to Renter Occupied 
Housing units 

McCabe, 2016; Sampson et al, 1999; 
Crowder et al, 2012 

Lagged % Vacant housing Lagged Percentage of vacant housing units Tach and Emory, 2017 

Lagged % New housing Lagged Percentage of change in number of housing units since last census 
of total housing units Farley and Frey, 1994; Lee et al, 2008 

Year Year This study 
Tract Census Tract Identifier This study 

  



Machine Learning for Public Policy: Applications in Infrastructure and Air Pollution 

146 

Table 27. List of independent variables in set 2 in Treatment Effect Model with references to other works 

Variable Description Citation 

New restrictive bridge 
treatment dummy 

Dummy variable denoting that a new bridge with an underclearance 
under 4.27 m (14 ft) and over 3 m (9.8 ft) was built in this tract in this or a 
previous time period 

 This study 

New restrictive bridge 
treatment group dummy 

Dummy variable denoting that a new bridge with an underclearance 
under 4.27 m (14 ft) and over 3 m (9.8 ft) was built in this tract in any 
time period 

 This study 

Area (Water) Area (Water)  This study 
Rural tract indicator > 4M sq. 
meters Rural indicator for tracts greater than 4M sq. meters (median area)  This study 

Lagged IHS-transformed Total 
bridges 

Lagged Inverse Hyperbolic Sine Transformation of Total number of 
bridges in and near the tract  This study 

Lagged IHS-transformed Real 
Aggregate income 

Lagged Inverse Hyperbolic Sine Transformation of Aggregate household 
income in past 12 months (2010 Constant $ US) Sampson et al, 1999; Lee et al, 2008 

Lagged % foreign-born Lagged Percentage of Foreign-born of total population Lee et al, 2008;  
Lagged % single-parent 
families w/kids 

Lagged Percentage of single-parent families with own children under 18 
years old of total families and subfamilies 

Sampson et al, 1999; Crowder et al, 
2012 

Lagged IHS-transformed 
Commute less than 25 minutes 

Lagged Inverse Hyperbolic Sine Transformation of Workers 16+ years old 
with travel time to work less than 25 minutes or work at home  This study 

Lagged % Associate Degree 
Graduate 

Lagged Percentage of Persons 25+ years old who have an associate degree 
but no bachelor’s degree 

Sampson et al, 1999; Crowder et al, 
2012; Lee et al, 2008 

Lagged % Vacant housing Lagged Percentage of vacant housing units Tach and Emory, 2017 

Lagged % New housing Lagged Percentage of change in number of housing units since last census 
of total housing units Farley and Frey, 1994; Lee et al, 2008 

Year Year  This study 
Tract Census Tract Identifier  This study 
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Table 28. List of independent variables in set 3 in Treatment Effect Model with references to other works 

Variable Description Citation 

New restrictive bridge 
treatment dummy 

Dummy variable denoting that a new bridge with an underclearance 
under 4.27 m (14 ft) and over 3 m (9.8 ft) was built in this tract in this or a 
previous time period 

 This study 

New restrictive bridge 
treatment group dummy 

Dummy variable denoting that a new bridge with an underclearance 
under 4.27 m (14 ft) and over 3 m (9.8 ft) was built in this tract in any 
time period 

 This study 

Area (Water) Area (Water)  This study 

Rural tract indicator > 10M m2 Rural indicator for tracts greater than 10M sq. meters  This study 

Lagged IHS-transformed Total 
bridges 

Lagged Inverse Hyperbolic Sine Transformation of Total number of 
bridges in and near the tract  This study 

Lagged % African American Lagged Black/African American percentage of total population Brady et al, 2017; Crowder et al, 2012; 
Lee et al, 2008 

Lagged Adult to child ratio Lagged Ratio of adults 18+ years old to children under 18 years old 
(adults/children) Sampson et al, 1999; Sharkey, 2014 

Lagged % foreign-born Lagged Percentage of Foreign-born of total population Lee et al, 2008;  

Lagged % Welfare rate Lagged Percentage of households with public assistance inc. (incl. SSI) last 
year of total households Sharkey, 2014 

Lagged IHS-transformed 
Commute 25-45 minutes 

Lagged Inverse Hyperbolic Sine Transformation of Workers 16+ years old 
with travel time to work 25 to 44 minutes  This study 

Lagged % High School 
Graduate 

Lagged Percentage of Persons 25+ years old who have completed high 
school but no college 

Sampson et al, 1999; Crowder et al, 
2012; Lee et al, 2008 

Lagged % Renter-occupied Lagged Percentage of renter-occupied housing units of total housing units 
Crowder, Tanner t al, 2012; Albright, 
2018; Pathak, Reader, and Casper, 
2011; 

Lagged % Vacant housing Lagged Percentage of vacant housing units Tach and Emory, 2017 

Lagged % New housing Lagged Percentage of change in number of housing units since last census 
of total housing units Farley and Frey, 1994; Lee et al, 2008 

Year Year  This study 
Tract Census Tract Identifier  This study 
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Table 29. List of independent variables in set 4 in Treatment Effect Model with references to other works 

Variable Description Citation 

New restrictive bridge 
treatment dummy 

Dummy variable denoting that a new bridge with an underclearance 
under 4.27 m (14 ft) and over 3 m (9.8 ft) was built in this tract in this or a 
previous time period 

 This study 

New restrictive bridge 
treatment group dummy 

Dummy variable denoting that a new bridge with an underclearance 
under 4.27 m (14 ft) and over 3 m (9.8 ft) was built in this tract in any 
time period 

 This study 

Area (Water) Area (Water)  This study 
Rural tract indicator > 4M sq. 
meters Rural indicator for tracts greater than 4M sq. meters (median area)  This study 

Lagged IHS-transformed Total 
bridges 

Lagged Inverse Hyperbolic Sine Transformation of Total number of 
bridges in and near the tract  This study 

Lagged % Hispanic Lagged Percentage of Hispanic/Latino of total population Brady et al, 2017; Crowder et al, 2012; 
Lee et al, 2008;  

Lagged % children Lagged Percentage of Children under 18 years old of total population Sampson et al, 1999; Sharkey, 2014; 
Crowder et al, 2012 

Lagged % foreign-born Lagged Percentage of Foreign-born of total population Lee et al, 2008;  
Lagged % female-headed 
families 

Percentage of female-headed families with or without own children of 
total families and subfamilies Sharkey, 2014; Crowder et al, 2012 

Lagged IHS-transformed 
Commute over 45 minutes 

Lagged Inverse Hyperbolic Sine Transformation of Workers 16+ years old 
with travel time to work more than 45 minutes  This study 

Lagged % Completed 8 years of 
school 

Lagged Percentage of Persons 25+ years old who have completed 0-8 
years of school 

Sampson et al, 1999; Crowder et al, 
2012; Lee et al, 2008 

Lagged Owner to Renter rate Lagged Ratio of Owner-Occupied housing units to Renter Occupied 
Housing units 

McCabe, 2016; Sampson et al, 1999; 
Crowder et al, 2012 

Lagged % Vacant housing Lagged Percentage of vacant housing units  Tach and Emory, 2017 

Lagged % New housing Lagged Percentage of change in number of housing units since last census 
of total housing units Farley and Frey, 1994; Lee et al, 2008 

Year Year  This study 
Tract Census Tract Identifier  This study 
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Table 30. List of all used variables with references to other works 

  Variable Description Citation 

Ph
ys

ic
al

 In
fr

as
tr

uc
tu

re
 D

at
a 

New restrictive 
bridge dummy 

Dummy variable denoting that a new bridge with an 
underclearance under 14 ft & over 9.8 ft was built in this 
tract in the last 10 years 

This study 

New restrictive 
bridge treatment 
dummy 

Dummy variable denoting that a new bridge with an 
underclearance under 14 ft & over 9.8 ft was built in this 
tract in this or a previous time period 

This study 

New restrictive 
bridge treatment 
group dummy 

Dummy variable denoting that a new bridge with an 
underclearance under 14 ft & over 9.8 ft was built in this 
tract in any time period 

This study 

New restrictive 
bridge count 

Total number of bridges in and near the tract with 
underclearance under 14 ft & over 9.8 ft built in the last 
10 years 

This study 

New non-
restrictive bridge 
dummy 

Dummy variable denoting that a new bridge with an 
underclearance over 14 ft was built in this tract in the last 
10 years 

This study 

New non-
restrictive bridge 
treatment dummy 

Dummy variable denoting that a new bridge with an 
underclearance over 14 ft was built in this tract in this or 
a previous time period 

This study 

New non-
restrictive bridge 
treatment group 
dummy 

Dummy variable denoting that a new bridge with an 
underclearance over 14 ft was built in this tract in any 
time period 

This study 

New non-
restrictive bridge 
count 

Total number of bridges in and near the tract with 
underclearance over 14 ft built in the last 10 years This study 

All new bridge 
dummy 

Dummy variable denoting that a new bridge was built in 
this tract in the last 10 years This study 

All new bridge 
treatment dummy 

Dummy variable denoting that a new bridge was built in 
this tract in this or a previous time period This study 

All new bridge 
treatment group 
dummy 

Dummy variable denoting that a new bridge was built in 
this tract in any time period This study 

All new bridge 
count 

Total number of bridges in and near the tract built in the 
last 10 years This study 

*IHS-transformed 
total bridges 

Inverse hyperbolic sine transformation of total number of 
bridges in and near the tract This study 

Tract Census Tract Identifier This study 

Area (Land) Area (Land) This study 
% water area Percentage of area composed of water This study 
Rural tract 
indicator > 10M sq. 
meters 

Rural indicator for tracts greater than 10M sq. meters This study 

Rural tract 
indicator > 4M sq. 
meters 

Rural indicator for tracts greater than 4M sq. meters 
(median area) This study 

Year Year This study 
Treatment 
Normalized Year Treatment normalized year (0 is year of treatment) This study 
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Table 30. List of all used variables with references to other works (cont’d) 
So

ci
al

 D
em

og
ra

ph
ic

 D
at

a 
*IHS-transformed Real 
Average income 

Inverse Hyperbolic Sine Transformation of average household 
income in past 12 months (2010 Constant $ US) 

Sampson et al, 1999; Lee et al, 
2008 

*IHS-transformed Real 
Aggregate income 

Inverse Hyperbolic Sine Transformation of Aggregate household 
income in past 12 months (2010 Constant $ US) 

Sampson et al, 1999; Lee et al, 
2008 

Population Total population  

*% Poverty rate Percentage of total persons below the poverty level in past 12 
months 

Sharkey, 2014; Crowder et al, 
2012, Carless, 2018 

*% Welfare rate Percentage of households with public assistance inc. (incl. SSI) 
last year of total households Sharkey, 2014 

*% Minority Non-White percentage of total population Brady et al, 2017; Crowder et al, 
2012 

*% African American Black/African American percentage of total population 
Brady et al, 2017; Carless, 2018; 
Crowder et al, 2012; Lee et al, 
2008 

*% Hispanic Percentage of Hispanic/Latino of total population Brady et al, 2017; Crowder et al, 
2012; Lee et al, 2008;  

*% foreign-born Percentage of Foreign-born of total population Lee et al, 2008;  

*% children Percentage of Children under 18 years old of total population Sampson et al, 1999; Sharkey, 
2014; Crowder et al, 2012 

*IHS-transformed 
adult to child ratio 

Inverse Hyperbolic Sine Transformation of ratio of adults 18+ 
years old to children under 18 years old (adults/children) 

Sampson et al, 1999; Sharkey, 
2014 

*% single-parent 
families w/kids 

Percentage of single-parent families with own children under 18 
years old of total families and subfamilies 

Sampson et al, 1999; Crowder et 
al, 2012 

*% female-headed 
families 

Percentage of female-headed families with or without own 
children of total families and subfamilies 

Sharkey, 2014; Crowder et al, 
2012 

*IHS-transformed 
Travel on public 
transportation 

Inverse Hyperbolic Sine Transformation of Workers 16+ years 
old traveling to work on public transportation (taxi not included) This study 

*IHS-transformed 
Commute less than 25 
minutes 

Inverse Hyperbolic Sine Transformation of Workers 16+ years 
old with travel time to work less than 25 minutes This study 

*IHS-transformed 
Commute 25-45 
minutes 

Inverse Hyperbolic Sine Transformation of Workers 16+ years 
old with travel time to work 25 to 44 minutes This study 

*IHS-transformed 
Commute over 45 
minutes 

Inverse Hyperbolic Sine Transformation of Workers 16+ years 
old with travel time to work more than 45 minutes This study 

*% Completed 8 years 
of school 

Percentage of persons 25+ years old who have completed 0-8 
years of school 

Sampson et al, 1999; Crowder et 
al, 2012; Lee et al, 2008 

*% High School 
Graduate 

Percentage of persons 25+ years old who have completed high 
school but no college 

Sampson et al, 1999; Crowder et 
al, 2012; Lee et al, 2008 

*% Some College 
Percentage of Persons 25+ years old who have completed some 
college but no degree 

Sampson et al, 1999; Crowder et 
al, 2012; Lee et al, 2008 

*% Associate Degree 
Graduate 

Percentage of persons 25+ years old who have an associate 
degree but no bachelor’s degree 

Sampson et al, 1999; Crowder et 
al, 2012; Lee et al, 2008 

Table 30. List of all used variables with references to other works (cont’d) 
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*% bachelor’s or 
higher Degree 
Graduate 

Percentage of Persons 25+ years old who have a bachelor’s or 
graduate/professional degree 

Sampson et al, 1999; Crowder et 
al, 2012; Lee et al, 2008; Carless, 
2018 

*Owner to Renter rate Ratio of Owner-Occupied housing units to Renter Occupied 
Housing units 

McCabe, 2016; Sampson et al, 
1999; Crowder et al, 2012 

*% Renter-occupied Percentage of renter-occupied housing units of total housing 
units 

Crowder et al, 2012; Pathak, 
Reader, Tanner & Casper, 2011; 

*% Vacant housing Percentage of vacant housing units Tach & Emory, 2017 

*% New housing Percentage of change in number of housing units since last 
census of total housing units 

Farley & Frey, 1994; Lee et al, 
2008 

  



Machine Learning for Public Policy: Applications in Infrastructure and Air Pollution 

152 

Section D Rural Tracts 

Fig. 31. The blue areas depict tracts coded as zero for the Rural 4 million m2 variable 

 

Fig. 32. The blue areas depict tracts coded as zero for the Rural 10 million m2 variable 
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Fig. 33. The yellow areas depict tracts missing census data for 1970 and 1980 data 

 

Table 31. Results of statistical tests for all variables comparing tracts missing census data vs. all 
other tracts 

  Area (Land) Area (Water) 

Rural tract 
indicator > 
10M sq. m 

Rural tract 
indicator > 

4M sq. m 
  Mean Difference (Data tracts – missing tracts) 

All years -90926591.552 -934094.421 -0.411 -0.349 
  T-Test 

All years -37.938 -20.684 -46.478 -41.718 
All years p-values 5.93E-265 3.50E-90 0.00E+00 0.00E+00 

  Kolmogorov-Smirnov Test 
All years 0.483 0.343 0.411 0.349 

All years p-values 0.00E+00 0.00E+00 0.00E+00 0.00E+00 
*Note: Tracts normalized across years to 2010 census boundaries to ensure accurate comparisons 
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Table 31. Results of statistical tests for all variables comparing tracts missing census data vs. all 
other tracts (cont’d) 

  Population 
Population 

Density 

Real 
Aggregate 

income 

Real 
Average 
income 

Poverty 
level Welfare 

  Mean Difference 
1970 3694.414 2840.743 59928426.306 52749.310 360.972 44.602 
1980 2527.604 2269.499 38234156.131 29008.216 263.626 87.220 
1990 -81.983 1837.990 19594643.847 14350.610 -80.060 -0.010 
2000 -178.047 1775.125 17763525.653 13693.529 -51.119 3.965 
2010 -157.954 1808.055 18519507.905 14071.550 -41.622 4.630 

All years 1160.807 2106.283 30808051.968 24774.643 90.359 28.081 
  T-Test 

1970 97.382 34.317 88.383 91.039 40.413 29.069 

1970 p-values 0.00E+00 3.57E-214 0.00E+00 0.00E+00 8.96E-278 
7.11E-

161 
1980 32.525 30.599 22.680 30.160 21.019 24.447 

1980 p-values 3.95E-157 2.19E-180 1.55E-91 3.69E-140 5.38E-90 
2.06E-

120 
1990 -1.327 24.523 13.153 20.245 -5.217 -0.003 

1990 p-values 1.85E-01 1.67E-121 6.61E-38 2.13E-85 2.08E-07 9.98E-01 
2000 -2.790 24.516 9.326 16.886 -3.376 1.070 

2000 p-values 5.35E-03 2.18E-121 3.10E-20 7.10E-61 7.56E-04 2.85E-01 
2010 -2.238 24.926 8.149 15.243 -2.338 2.445 

2010 p-values 2.54E-02 2.41E-125 7.00E-16 3.81E-50 1.95E-02 1.46E-02 
All years 28.713 62.015 31.748 48.063 12.381 17.939 

All years p-values 1.18E-166 0.00E+00 6.42E-205 0.00E+00 7.88E-35 9.94E-71 
  Kolmogorov-Smirnov Test 

1970 0.987 0.987 0.986 0.986 0.985 0.939 
1970 p-values 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

1980 0.671 0.717 0.561 0.475 0.665 0.664 
1980 p-values 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

1990 0.064 0.490 0.213 0.333 0.264 0.174 
1990 p-values 2.36E-02 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.11E-14 

2000 0.079 0.494 0.170 0.284 0.247 0.174 
2000 p-values 2.32E-03 0.00E+00 4.98E-14 0.00E+00 0.00E+00 1.18E-14 

2010 0.074 0.489 0.154 0.271 0.190 0.150 
2010 p-values 5.34E-03 0.00E+00 1.40E-11 0.00E+00 0.00E+00 5.24E-11 

All years 0.335 0.592 0.311 0.294 0.332 0.306 
All years p-values 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 
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Table 31. Results of statistical tests for all variables comparing tracts missing census data vs. all 
other tracts (cont’d) 

  Whites Minorities 
African 

Americans 
American 

Indians Asians Hispanics 
Foreign-

born 
  Mean Difference 

1970 3291.229 403.189 391.329 0.000 0.000 38.465 157.642 
1980 2095.705 431.892 387.607 2.683 17.247 45.845 115.335 
1990 -512.120 430.137 367.348 -0.663 28.818 51.725 77.824 
2000 -672.730 494.683 388.792 1.031 58.530 80.349 110.881 
2010 -728.035 570.081 404.131 2.324 97.194 130.930 150.616 

All years 694.810 465.997 387.841 1.075 40.358 69.463 122.459 
  T-Test 

1970 92.698 16.151 15.769 NA NA 13.641 44.389 

1970 p-values 0.00E+00 6.31E-56 1.65E-53 NA NA 5.60E-41 
9.88E-

324 
1980 27.199 18.444 17.229 13.584 12.808 9.161 31.453 

1980 p-values 
2.36E-

122 1.30E-71 4.25E-63 8.68E-41 1.84E-36 9.05E-20 
1.74E-

186 
1990 -8.220 18.433 17.079 -1.764 10.528 7.760 18.713 

1990 p-values 5.16E-16 5.88E-72 2.60E-62 7.80E-02 2.67E-25 1.14E-14 2.71E-73 
2000 -10.568 20.804 18.442 2.601 14.271 8.891 18.687 

2000 p-values 4.43E-25 2.79E-90 3.54E-72 9.39E-03 1.58E-44 1.03E-18 4.19E-73 
2010 -10.730 20.884 18.205 5.135 15.798 9.422 16.919 

2010 p-values 8.68E-26 2.86E-90 1.75E-70 3.03E-07 8.92E-54 9.96E-21 2.22E-60 
All years 17.715 41.662 38.403 6.831 23.884 17.877 46.973 

All years p-
values 5.00E-68 0.00E+00 8.25E-308 8.97E-12 

1.91E-
123 1.15E-70 0.00E+00 

  Kolmogorov-Smirnov Test 
1970 0.987 0.860 0.743 0.000 0.000 0.727 0.972 

1970 p-values 0.00E+00 0.00E+00 0.00E+00 1.00E+00 1.00E+00 0.00E+00 0.00E+00 
1980 0.669 0.639 0.572 0.254 0.421 0.596 0.667 

1980 p-values 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 
1990 0.168 0.351 0.317 0.199 0.244 0.197 0.366 

1990 p-values 1.00E-13 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 
2000 0.209 0.378 0.324 0.115 0.294 0.251 0.365 

2000 p-values 0.00E+00 0.00E+00 0.00E+00 1.26E-06 0.00E+00 0.00E+00 0.00E+00 
2010 0.225 0.408 0.369 0.062 0.360 0.294 0.345 

2010 p-values 0.00E+00 0.00E+00 0.00E+00 3.00E-02 0.00E+00 0.00E+00 0.00E+00 
All years 0.333 0.345 0.344 0.031 0.202 0.272 0.469 

All years p-
values 0.00E+00 0.00E+00 0.00E+00 1.05E-02 0.00E+00 0.00E+00 0.00E+00 
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Table 31. Results of statistical tests for all variables comparing tracts missing census data vs. all 
other tracts (cont’d) 

  

Married 
families 

with 
children 

Single-
parent 

families 
w/kids 

Male-
headed 
families 

with 
children 

Female-
headed 
families 

Female-
headed 
families 

with 
children Children 

Adult to 
child 
ratio 

  Mean Difference 
1970 437.542 59.663 8.909 110.165 50.754 1207.400 0.959 
1980 247.588 65.340 7.927 113.685 57.412 653.345 0.271 
1990 -47.944 13.885 -2.566 40.446 16.451 -48.268 0.031 
2000 -29.616 15.497 -5.565 42.909 21.061 -9.095 -0.003 
2010 -8.937 12.842 -6.988 43.367 19.830 12.231 -0.007 

All years 119.727 33.445 0.344 70.114 33.102 363.123 0.250 
  T-Test 

1970 92.981 38.003 48.356 47.330 34.645 86.468 148.362 

1970 p-values 0.00E+00 
1.56E-

251 0.00E+00 0.00E+00 3.02E-216 0.00E+00 0.00E+00 
1980 26.558 28.196 24.936 32.909 27.079 29.908 7.329 

1980 p-values 
2.98E-

118 
8.00E-

155 7.07E-120 
2.93E-

199 1.04E-144 
3.53E-

143 6.41E-13 
1990 -6.526 5.357 -4.530 10.492 7.179 -2.874 4.709 

1990 p-values 1.00E-10 9.41E-08 6.45E-06 3.59E-25 9.57E-13 4.13E-03 2.78E-06 
2000 -4.033 5.224 -6.480 11.172 8.554 -0.528 -0.461 

2000 p-values 5.84E-05 1.94E-07 1.36E-10 2.94E-28 2.19E-17 5.98E-01 6.45E-01 
2010 -1.242 4.062 -8.584 10.613 7.786 0.667 -0.807 

2010 p-values 2.14E-01 5.08E-05 2.97E-17 1.12E-25 1.10E-14 5.05E-01 4.20E-01 
All years 28.968 23.204 0.886 36.373 28.725 35.349 22.406 

All years p-
values 

1.95E-
171 

3.11E-
115 3.76E-01 

9.36E-
270 5.20E-174 

1.14E-
246 

3.15E-
104 

  Kolmogorov-Smirnov Test 
1970 0.986 0.980 0.833 0.985 0.974 0.988 0.987 

1970 p-values 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 
1980 0.671 0.667 0.567 0.674 0.667 0.671 0.470 

1980 p-values 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 
1990 0.161 0.091 0.157 0.129 0.090 0.108 0.183 

1990 p-values 1.24E-12 2.49E-04 6.04E-12 2.93E-08 2.85E-04 6.37E-06 4.44E-16 
2000 0.143 0.106 0.173 0.157 0.115 0.074 0.133 

2000 p-values 5.20E-10 1.03E-05 1.70E-14 5.26E-12 1.16E-06 5.06E-03 8.87E-09 
2010 0.138 0.105 0.206 0.150 0.114 0.063 0.140 

2010 p-values 2.34E-09 1.39E-05 0.00E+00 5.10E-11 1.58E-06 2.65E-02 1.10E-09 
All years 0.335 0.332 0.260 0.335 0.330 0.337 0.293 

All years p-
values 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 
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Table 31. Results of statistical tests for all variables comparing tracts missing census data vs. all 
other tracts (cont’d) 

  

Travel on 
public 

transportation 

Travel 
in 

private 
vehicle 

Travel 
by other 
means 

Commute 
less than 

25 
minutes 

Commute 
25-45 

minutes 

Commute 
over 45 
minutes 

  Mean Difference 
1970 206.656 1023.670 143.645 0.000 0.000 0.000 
1980 146.371 826.214 31.795 449.302 446.601 150.561 
1990 121.862 11.073 -11.559 -66.999 117.434 52.849 
2000 95.711 -83.223 -6.138 -95.246 74.681 18.619 
2010 101.792 -66.328 -2.662 -2.198 0.000 0.000 

All years 134.478 342.281 31.016 56.972 127.743 44.406 
  T-Test 

1970 33.096 99.255 44.012 NA NA NA 
1970 p-values 5.55E-201 0.00E+00 0.00E+00 NA NA NA 

1980 33.994 29.478 4.317 22.783 38.803 34.076 

1980 p-values 5.91E-213 
5.41E-

139 1.76E-05 3.87E-92 1.93E-222 3.55E-212 
1990 28.202 0.415 -1.843 -2.926 14.418 11.084 

1990 p-values 8.85E-155 6.78E-01 6.56E-02 3.51E-03 2.66E-44 1.09E-27 
2000 27.339 -2.860 -1.091 -4.224 8.004 2.523 

2000 p-values 6.89E-148 4.30E-03 2.76E-01 2.59E-05 2.65E-15 1.18E-02 
2010 25.339 -2.047 -0.496 -0.853 NA NA 

2010 p-values 2.62E-129 4.08E-02 6.20E-01 3.94E-01 NA NA 
All years 64.947 20.833 11.660 4.638 27.228 16.372 

All years p-
values 0.00E+00 2.44E-92 4.93E-31 3.60E-06 4.04E-156 3.87E-59 

  Kolmogorov-Smirnov Test 
1970 0.932 0.986 0.982 0.000 0.000 0.000 

1970 p-values 0.00E+00 0.00E+00 0.00E+00 1.00E+00 1.00E+00 1.00E+00 
1980 0.687 0.670 0.525 0.670 0.680 0.668 

1980 p-values 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 
1990 0.544 0.067 0.080 0.079 0.211 0.156 

1990 p-values 0.00E+00 1.54E-02 1.97E-03 2.22E-03 0.00E+00 6.44E-12 
2000 0.468 0.126 0.083 0.120 0.156 0.090 

2000 p-values 0.00E+00 7.00E-08 1.11E-03 3.51E-07 8.24E-12 2.97E-04 
2010 0.469 0.106 0.098 0.084 0.000 0.000 

2010 p-values 0.00E+00 9.67E-06 6.61E-05 9.12E-04 1.00E+00 1.00E+00 
All years 0.567 0.333 0.296 0.141 0.187 0.137 

All years p-
values 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 
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Table 31. Results of statistical tests for all variables comparing tracts missing census data vs. all 
other tracts (cont’d) 

  

Completed 
8 years of 

school 

Completed 
9-12 years 
of school 

High 
School 

Graduate 
Some 

College 

Associate 
Degree 

Graduate 

bachelor’s 
or higher 

Degree 
Graduate 

  Mean Difference 
1970 604.240 438.502 713.514 151.479 0.000 196.350 
1980 286.405 269.568 608.338 181.801 0.000 243.837 
1990 -47.492 -10.627 -193.634 70.342 18.487 177.821 
2000 -27.957 -40.771 -301.168 39.791 8.717 209.485 
2010 -9.435 -43.550 -322.319 15.508 -17.841 244.241 

All years 161.152 122.624 100.946 91.784 1.873 214.347 
  T-Test 

1970 68.608 70.782 90.782 67.045 NA 46.490 
1970 p-values 0.00E+00 0.00E+00 0.00E+00 0.00E+00 NA 0.00E+00 

1980 29.430 30.007 29.449 33.398 NA 27.969 

1980 p-values 3.24E-148 2.26E-151 4.03E-138 
1.36E-

174 NA 1.12E-144 
1990 -6.680 -1.186 -9.667 12.394 6.698 15.211 

1990 p-values 3.83E-11 2.36E-01 3.12E-21 1.37E-33 3.12E-11 1.61E-49 
2000 -5.760 -4.413 -13.861 5.399 2.668 13.707 

2000 p-values 1.08E-08 1.12E-05 3.56E-40 8.03E-08 7.72E-03 7.51E-41 
2010 -2.235 -6.414 -13.693 1.736 -3.643 12.661 

2010 p-values 2.56E-02 2.04E-10 2.53E-39 8.29E-02 2.82E-04 3.44E-35 
All years 40.948 27.338 8.068 22.632 0.919 31.179 

All years p-
values 0.00E+00 3.40E-155 9.16E-16 

3.30E-
108 3.58E-01 1.22E-201 

  Kolmogorov-Smirnov Test 
1970 0.987 0.987 0.987 0.988 0.000 0.986 

1970 p-values 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.00E+00 0.00E+00 
1980 0.673 0.674 0.674 0.670 0.000 0.669 

1980 p-values 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.00E+00 0.00E+00 
1990 0.186 0.116 0.211 0.195 0.134 0.228 

1990 p-values 1.11E-16 1.05E-06 0.00E+00 0.00E+00 6.67E-09 0.00E+00 
2000 0.187 0.170 0.278 0.101 0.072 0.231 

2000 p-values 1.11E-16 5.10E-14 0.00E+00 3.18E-05 7.59E-03 0.00E+00 
2010 0.164 0.195 0.298 0.052 0.107 0.232 

2010 p-values 4.30E-13 0.00E+00 0.00E+00 1.08E-01 8.09E-06 0.00E+00 
All years 0.332 0.336 0.337 0.334 0.018 0.333 

All years p-
values 0.00E+00 0.00E+00 0.00E+00 0.00E+00 3.68E-01 0.00E+00 

 
Table 31. Results of statistical tests for all variables comparing tracts missing census data vs. all 
other tracts (cont’d) 
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  Professionals 
New 

housing 
Owner-

occupied 
Renter-

occupied 
Vacant 

housing 
  Mean Difference 

1970 576.935 0.000 792.541 372.230 44.218 
1980 503.089 -238.787 434.435 303.980 50.425 
1990 238.065 -1140.348 -66.299 63.743 -167.595 
2000 190.374 -52.641 -112.652 57.553 -167.687 
2010 187.655 -11.628 -122.604 64.956 -176.736 

All years 339.224 -288.681 185.084 172.492 -83.475 
  T-Test 

1970 77.525 NA 90.420 52.182 38.542 
1970 p-values 0.00E+00 NA 0.00E+00 0.00E+00 5.33E-258 

1980 37.436 -8.716 15.461 28.148 15.502 
1980 p-values 5.08E-212 1.82E-17 1.12E-47 8.64E-142 5.19E-50 

1990 16.743 -34.124 -3.465 5.397 -11.287 
1990 p-values 4.08E-58 5.08E-152 5.49E-04 8.09E-08 2.66E-27 

2000 11.714 -5.819 -5.357 4.591 -11.906 
2000 p-values 2.12E-30 7.74E-09 1.02E-07 4.88E-06 5.88E-30 

2010 9.680 -0.769 -5.152 4.640 -12.266 
2010 p-values 1.63E-21 4.42E-01 3.02E-07 3.88E-06 1.59E-31 

All years 40.043 -23.832 15.014 29.283 -15.059 
All years p-values 2.62E-310 7.94E-117 9.19E-50 2.35E-176 9.47E-50 

  Kolmogorov-Smirnov Test 
1970 0.988 0.000 0.986 0.980 0.971 

1970 p-values 0.00E+00 1.00E+00 0.00E+00 0.00E+00 0.00E+00 
1980 0.678 0.445 0.537 0.667 0.665 

1980 p-values 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 
1990 0.267 0.667 0.103 0.136 0.310 

1990 p-values 0.00E+00 0.00E+00 2.05E-05 4.32E-09 0.00E+00 
2000 0.205 0.242 0.133 0.143 0.318 

2000 p-values 0.00E+00 0.00E+00 1.09E-08 4.27E-10 0.00E+00 
2010 0.199 0.078 0.143 0.152 0.328 

2010 p-values 0.00E+00 2.63E-03 4.90E-10 2.43E-11 0.00E+00 
All years 0.334 0.180 0.308 0.332 0.327 

All years p-values 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 
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Section E Logistic selection effect (SE) results (full panel and circular buffers) 

Table 32. Bridges built by underclearance category during census period (e.g., 1961-1970) 

Year Mini Low Medium High Super Restrictive Non-
restrictive All bridges 

1970 6 50 944 436 393 56 1,773 5,816 
1980 11 4 510 153 332 15 995 3,360 
1990 3 9 194 95 247 12 536 2,987 
2000 3 4 134 171 283 7 588 2,697 
2010 0 4 115 256 287 4 658 2,872 
Total 23 71 1,897 1,111 1,542 94 4,550 17,732 
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Table 33. Restrictive bridge SE logistic model results (full panel and circular buffers) 

DV: Dichotomous variable denotes a new restrictive bridge was built in the last 10 years 
  Set 1 Set 2 Set 3 Set 4 

% Water Area 5.268*** 5.423*** 4.988*** 4.849*** 
(1.168) (1.112) (1.131) (1.132) 

Rural tract indicator > 10M sq. meters 0.970***   0.927***   
(0.273)   (0.272)   

Rural tract indicator > 4M sq. meters 
 1.235***  1.277*** 
 (0.299)  (0.307) 

Lagged IHS-transformed Total bridges 0.099 0.061 0.192* 0.082 
(0.096) (0.102) (0.086) (0.100) 

Lagged IHS-transformed Real Average 
Income 

-0.011    

(0.053)    

Lagged IHS-transformed Real Aggregate 
Household Income 

  0.089**     
  (0.030)     

Lagged non-White Population -1.062    

(1.034)    

Lagged African American Population 
Percentage of 

    -1.134   
    (1.152)   

Lagged Hispanic Population Percentage 
of 

   -18.001 
   (14.234) 

Lagged Population Percentage of 
Foreign-born 

-0.026 4.21 3.173 -0.43 
(4.873) (3.420) (3.573) (5.850) 

Lagged Population Percentage of under 
18 

   14.346*** 
   (3.134) 

Lagged IHS-transformed Adult to Child 
Ratio 

    0.184   
    (0.259)   

Lagged Percentage of single parents with 
Children 

 3.014   
 (1.667)   

Lagged Percentage of female Head of 
Household 

      -3.341 
      (1.915) 

AIC 747.527 715.729 730.279 683.437 
BIC 916.611 861.756 891.677 852.522 
Log Likelihood -351.764 -338.864 -344.139 -319.719 
Deviance 703.527 677.729 688.279 639.437 
Num. obs. 16085 16085 16085 16085 

***p < 0.001, **p < 0.01, *p < 0.05 
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Table 33. Restrictive bridge SE logistic model results (full panel and circular buffers) cont’d 

DV: Dichotomous variable denotes a new restrictive bridge was built in the last 10 years 
  Set 1 Set 2 Set 3 Set 4 

Lagged IHS-transformed Population 
Travel on Public Transportation 

0.065   0.199 
(0.110)   (0.115) 

Lagged IHS-transformed Population with 
Commute < 25 minutes 

  -0.365***     
  (0.098)     

Lagged IHS-transformed Population with 
Commute > 25 < 45 minutes 

  -0.280**  
  (0.104)  

Lagged IHS-transformed Population with 
Commute > 45 minutes 

      -0.784*** 
      (0.151) 

Lagged Over 25-yr-old with at Least 8 
Years Education 

-14.965   -4.188 
(7.978)   (5.445) 

Lagged Over 25-yr-old with at Least High 
School Education 

    -3.402*   
    (1.423)   

Lagged Over 25-yr-old with Associate 
Degree 

 -20.402*   
 (8.687)   

Lagged Over 25-yr-old with bachelor’s 
degree 

-2.13       
(2.495)       

Lagged Population Percentage of Below 
the Poverty Line 

2.413    

(1.662)    

Lagged Population Percentage of 
Receiving Welfare 

    3.628   
    (2.008)   

Lagged Owner to Renter Ratio -0.051   -0.101 
(0.042)   (0.068) 

Lagged Percentage of Housing Units 
Renter-occupied 

    1.807   
    (1.035)   

Lagged Percentage of Housing Units 
Vacant 

-3.205 -0.974 0.004 0.261 
(3.335) (2.177) (2.316) (1.955) 

Lagged Percent Change in Housing Unit 
Supply 

-1.134* -0.897 -1.028 -1.682* 
(0.569) (0.531) (1.027) (0.738) 

AIC 747.527 715.729 730.279 683.437 
BIC 916.611 861.756 891.677 852.522 
Log Likelihood -351.764 -338.864 -344.139 -319.719 
Deviance 703.527 677.729 688.279 639.437 
Num. obs. 16085 16085 16085 16085 

***p < 0.001, **p < 0.01, *p < 0.05 
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Table 34. Non-restrictive bridge SE logistic model results (full panel and circular buffers) 

DV: Dummy variable denoting that a new non-restrictive bridge was built in this tract in the 
last 10 years 

  Set 1 Set 2 Set 3 Set 4 

% Water Area 2.513*** 2.814*** 2.435*** 2.550*** 
(0.413) (0.421) (0.412) (0.408) 

Rural tract indicator > 10M sq. meters 0.648***   0.623***   
(0.078)   (0.079)   

Rural tract indicator > 4M sq. meters 
 0.982***  1.108*** 
 (0.081)  (0.080) 

Lagged IHS-transformed total bridges 0.330*** 0.245*** 0.328*** 0.293*** 
(0.037) (0.038) (0.039) (0.037) 

Lagged IHS-transformed real average 
income 

-0.022    

(0.016)    

Lagged IHS-transformed real aggregate 
household income 

  -0.005     
  (0.007)     

Lagged non-White population percentage 
of 

-1.238***    

(0.288)    

Lagged African American population 
percentage of 

    -0.920**   
    (0.344)   

Lagged Hispanic/Latino population 
percentage of 

   -5.249** 
   (1.596) 

Lagged foreign-born population 
percentage of 

-0.136 2.347* 0.339 1.33 
(1.233) (0.990) (1.064) (1.093) 

Lagged population percentage of under 
18 

   -1.538*** 
   (0.417) 

Lagged IHS-transformed adult to child 
ratio 

    0.201   
    (0.139)   

Lagged percentage of single parents with 
children 

 1.099   
 (0.731)   

Lagged percentage of female-headed 
families 

      1.207** 
      (0.458) 

AIC 9621.492 9547.857 9638.509 9488.454 
BIC 9759.834 9663.142 9769.165 9626.796 
Log Likelihood -4792.746 -4758.929 -4802.255 -4726.227 
Deviance 9585.492 9517.857 9604.509 9452.454 
Num. obs. 16085 16085 16085 16085 

***p < 0.001, **p < 0.01, *p < 0.05 
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Table 34. Non-restrictive bridge SE logistic model results (full panel and circular buffers) cont’d 

DV: Dummy variable denoting that a new non-restrictive underclearance bridge was built in this 
tract in the last 10 years 

  Set 1 Set 2 Set 3 Set 4 
Lagged IHS-transformed population travel on 

public transportation 
0.114***   0.137*** 
(0.027)   (0.027) 

Lagged IHS-transformed population with 
commute < 25 minutes 

  0.069     
  (0.045)     

Lagged IHS-transformed population with 
commute > 25 < 45 minutes 

  -0.016  
  (0.034)  

Lagged IHS-transformed population with 
commute > 45 minutes 

      -0.078* 
      (0.036) 

Lagged percentage of persons 25+ years old 
who have completed 0-8 years of school 

-0.168   1.793 
(1.438)   (1.102) 

Lagged percentage of persons 25+ years old 
who have completed high school but no 

college 

    -0.782   

    (0.492)   

Lagged percentage of persons 25+ years old 
who have an associate degree but no 

bachelor’s degree 

 -3.075   

 (3.145)   

Percentage of persons 25+ years old who 
have a bachelor’s or graduate/professional 

degree 

0.545       

(0.425)       

Lagged population percentage of below the 
poverty line 

2.302***    

(0.525)    

Lagged population percentage of Receiving 
welfare 

    1.975**   
    (0.719)   

Lagged owner to renter ratio -0.001   -0.001 
(0.001)   (0.001) 

Lagged percentage of housing units renter-
occupied 

    0.910**   
    (0.285)   

Lagged percentage of housing units vacant -2.280*** -1.653* -2.309*** -1.467** 
(0.692) (0.701) (0.689) (0.536) 

Lagged percent change in housing unit 
supply 

-0.097 -0.114 -0.064 -0.056 
(0.603) (0.757) (0.659) (0.494) 

AIC 9621.492 9547.857 9638.509 9488.454 
BIC 9759.834 9663.142 9769.165 9626.796 
Log Likelihood -4792.746 -4758.929 -4802.255 -4726.227 
Deviance 9585.492 9517.857 9604.509 9452.454 
Num. obs. 16085 16085 16085 16085 

***p < 0.001, **p < 0.01, *p < 0.05 
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Table 35. All new bridges SE logistic model results (full panel and circular buffers) 

DV: Dummy variable denoting that a new bridge was built in this tract in the last 10 
years 

  Set 1 Set 2 Set 3 Set 4 

% Water Area -0.209 -0.016 -0.292 0.005 
(0.434) (0.478) (0.428) (0.490) 

Rural tract indicator > 10M sq. 
meters 

1.485***   1.490***   
(0.062)   (0.063)   

Rural tract indicator > 4M sq. 
meters 

 1.912***  1.858*** 
 (0.075)  (0.076) 

Lagged IHS-transformed Total 
bridges 

0.753*** 0.778*** 0.773*** 0.770*** 
(0.027) (0.028) (0.027) (0.028) 

Lagged IHS-transformed Real 
Average Income 

-0.022*    

(0.009)    

Lagged IHS-transformed Real 
Aggregate Household Income 

  0.007     
  (0.006)     

Lagged non-White Population 
Percentage of 

-2.117***    

(0.265)    

Lagged African American 
Population Percentage of 

    -1.869***   
    (0.279)   

Lagged Hispanic Population 
Percentage of 

   -7.093*** 
   (1.586) 

Lagged Population Percentage of 
Foreign-born 

-2.941* -7.803*** -6.073*** -4.359** 
(1.257) (1.278) (1.222) (1.418) 

Lagged Population Percentage of 
under 18 

   1.118*** 
   (0.305) 

Lagged IHS-transformed Adult to 
Child Ratio 

    -0.098   
    (0.118)   

Lagged Percentage of single 
parents with Children 

 -1.705***   
 (0.479)   

Lagged Percentage of female 
Head of Household 

      -1.340*** 
      (0.403) 

AIC 11034.913 10775.511 11008.14 10758.508 
BIC 11203.997 10921.538 11169.538 10927.593 
Log Likelihood -5495.456 -5368.755 -5483.07 -5357.254 
Deviance 10990.913 10737.511 10966.14 10714.508 
Num. obs. 16085 16085 16085 16085 

***p < 0.001, **p < 0.01, *p < 0.05 
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Table 35. All new bridges SE logistic model results (full panel and circular buffers) cont’d 

DV: Dummy variable denoting that a new bridge was built in this tract in the last 10 
years 

  Set 1 Set 2 Set 3 Set 4 
Lagged IHS-transformed 

Population Travel on Public 
Transportation 

-0.032   -0.037* 

(0.018)   (0.019) 

Lagged IHS-transformed 
Population with Commute < 25 

minutes 

  -0.071***     

  (0.016)     

Lagged IHS-transformed 
Population with Commute > 25 < 

45 minutes 

  -0.083***  

  (0.016)  

Lagged IHS-transformed 
Population with Commute > 45 

minutes 

      -0.126*** 

      (0.017) 

Lagged percentage of over 25-yr-
olds with at Least 8 Years 

Education 

-3.374***   0.938 

(0.672)   (0.725) 

Lagged percentage of over 25-yr-
olds with at Least High School 

Education 

    -0.955***   

    (0.213)   

Lagged percentage of over 25-yr-
olds with Associate Degree 

 -6.724***   
 (1.346)   

Lagged percentage of over 25-yr-
olds with bachelor’s degree 

-0.986***       
(0.232)       

Lagged Population Percentage of 
Below the Poverty Line 

1.470**    

(0.458)    

Lagged Population Percentage of 
Receiving Welfare 

    0.662   
    (0.644)   

Lagged Owner to Renter Ratio 0   0 
0.000    0.000  

Lagged Percentage of Housing 
Units Renter-occupied 

    0.328   
    (0.239)   

Lagged Percentage of Housing 
Units Vacant 

-1.298*** -0.205 -0.655 0.018 
(0.327) (0.335) (0.342) (0.342) 

Lagged Percent Change in 
Housing Unit Supply 

0.044 0.057 0.11 0.016 
(0.058) (0.061) (0.104) (0.059) 

AIC 11034.913 10775.511 11008.14 10758.508 
BIC 11203.997 10921.538 11169.538 10927.593 
Log Likelihood -5495.456 -5368.755 -5483.07 -5357.254 
Deviance 10990.913 10737.511 10966.14 10714.508 
Num. obs. 16085 16085 16085 16085 

***p < 0.001, **p < 0.01, *p < 0.05 
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Section F Full Model Results 

To make interpretations, the authors use the average marginal effect sizes. While there is 

debate on the overall appropriateness of comparing different types of models, average marginal 

effects are the most comparable measures when looking across different types of model 

specifications (Bogard 2016; Davis 2018; Fernihough 2019; Williams 2018). For example, using the 

average marginal effect size, a small increase in the percentage of the non-White population, is 

associated with a reduced probability of having a non-restrictive bridge and any new bridge 

construction, by 10.4% and 17.7%, respectively. While these variables were also negatively 

associated with fewer restrictive bridges, these associations were not robust. Per Table 1 in the 

main article, these effects could be more prominent to non-restrictive as opposed to restrictive 

bridges due to sample size (there are far fewer restrictive bridges). 
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Table 36. Mini bridge selection effect logistic model CEM results 

DV: Dummy variable denoting that a new mini bridge was built in this 
tract in the last 10 years 

  Set 1 Set 2 Set 3 Set 4 

% Water Area 3.493 7.54 9.046 5.562 
(4.461) (5.727) (7.012) (5.668) 

Rural tract indicator > 10M sq. 
meters 

1.916   2.965   
(3.642)   (3.135)   

Rural tract indicator > 4M sq. 
meters 

  2.514   1.948 
  (1.634)   (1.419) 

Lagged IHS-transformed Total 
bridges 

-1.609* -1.35 -1.153 -1.592* 
(0.692) (0.755) (0.760) (0.652) 

Lagged IHS-transformed Real 
Average Income 

0.163   0.567   
(0.280)   (0.828)   

Lagged IHS-transformed Real 
Aggregate Household Income 

  -0.258   0.075 
  (0.233)   (0.163) 

Lagged Population Percentage of 
Below the Poverty Line 

0.126       
(10.365)       

Lagged Population Percentage of 
Receiving Welfare 

   0.546   
    (8.823)   

Lagged non-White Population 
Percentage of 

2.352       
(2.440)       

Lagged African American 
Population Percentage of 

    -0.561   
    (1.824)   

Lagged Hispanic Population 
Percentage of 

      -3.991 
      (6.601) 

Lagged Population Percentage of 
Foreign-born 

  5.417   3.937 
  (16.132)   (16.647) 

Lagged Population Percentage of 
under 18 

  7.566     
  (11.235)     

Lagged IHS-transformed Adult to 
Child Ratio 

    -12.438   
    (13.690)   

AIC 89.488 77.026 80.512 84.606 
BIC 152.358 139.896 143.382 147.476 
Log Likelihood -30.744 -24.513 -26.256 -28.303 
Deviance 67.907 58.219 61.103 63.667 
Num. obs. 659 659 659 659 

***p < 0.001, **p < 0.01, *p < 0.05 
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Table 36. Mini bridge selection effect logistic model CEM results (cont’d) 

DV: Dummy variable denoting that a new mini bridge was built in this 
tract in the last 10 years 

  Set 1 Set 2 Set 3 Set 4 
Lagged Percentage of single 

parents with Children 
  12.566     
  (9.279)     

Lagged Percentage of female Head 
of Household 

      4.876 
      (8.822) 

Lagged IHS-transformed 
Population Travel on Public 

Transportation 

-0.628     -0.647 

(0.483)     (0.475) 
Lagged IHS-transformed 

Population with Commute < 25 
minutes 

  4.771**     

  (1.746)     
Lagged IHS-transformed 

Population with Commute > 25 < 
45 minutes 

    3.84   

    (2.443)   
Lagged IHS-transformed 

Population with Commute > 45 
minutes 

      1.049 

      (1.082) 
Lagged percentage of over 25-yr-

olds with at Least 8 Years 
Education 

      27.468 

      (15.453) 
Lagged percentage of over 25-yr-

olds with at Least High School 
Education 

    33.497*   

    (15.964)   
Lagged percentage of over 25-yr-

olds with Associate Degree 
  18.917     
  (23.891)     

Lagged percentage of over 25-yr-
olds with bachelor’s degree 

1.085       
(6.994)       

Lagged Owner to Renter Ratio -0.058       
(0.325)       

Lagged Percentage of Housing 
Units Renter-occupied 

    7.73   
    (8.902)   

Lagged Percentage of Housing 
Units Vacant 

-1.771       
(13.748)       

Lagged Percent Change in Housing 
Unit Supply 

  -1.229     
  (1.446)     

Year Fixed Effect Included? Yes Yes Yes Yes 
AIC 89.488 77.026 80.512 84.606 
BIC 152.358 139.896 143.382 147.476 
Log Likelihood -30.744 -24.513 -26.256 -28.303 
Deviance 67.907 58.219 61.103 63.667 
Num. obs. 659 659 659 659 

***p < 0.001, **p < 0.01, *p < 0.05 
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Table 37. Low bridge selection effect logistic model CEM results 

DV: Dummy variable denoting that a new low bridge was built in this tract 
in the last 10 years 

  Set 1 Set 2 Set 3 Set 4 

% Water Area -0.48 -1.132 -0.462 -0.44 
(4.472) (3.598) (3.453) (3.410) 

Rural tract indicator > 10M sq. 
meters 

1.121   0.755   
(0.960)   (0.833)   

Rural tract indicator > 4M sq. 
meters 

  -0.407   -0.713 
  (1.012)   (0.937) 

Lagged IHS-transformed Total 
bridges 

-0.254 -0.066 -0.289 -0.103 
(0.267) (0.323) (0.256) (0.311) 

Lagged IHS-transformed Real 
Average Income 

0.018   0   
(0.091)   (0.186)   

Lagged IHS-transformed Real 
Aggregate Household Income 

  0.012   0.036 
  (0.084)   (0.053) 

Lagged Population Percentage of 
Below the Poverty Line 

7.605**       
(2.454)       

Lagged Population Percentage of 
Receiving Welfare 

    2.962   
    (7.600)   

Lagged non-White Population 
Percentage of 

-2.529       
(2.221)       

Lagged African American Population 
Percentage of 

    0.561   
    (3.622)   

Lagged Hispanic Population 
Percentage of 

      -8.616 
      (22.214) 

Lagged Population Percentage of 
Foreign-born 

  -19.525   -16.426 
  (14.315)   (11.392) 

Lagged Population Percentage of 
under 18 

  -0.651     
  (4.537)     

Lagged IHS-transformed Adult to 
Child Ratio 

    0.364   
    (1.224)   

AIC 213.801 219.897 222.37 221.386 
BIC 308.094 314.19 316.663 315.679 
Log Likelihood -92.9 -95.949 -97.185 -96.693 
Deviance 190.603 197.558 199.653 199.181 
Num. obs. 6218 6218 6218 6218 

***p < 0.001, **p < 0.01, *p < 0.05 
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Table 37. Low bridge selection effect logistic model CEM results (cont’d) 

DV: Dummy variable denoting that a new low bridge was built in this tract in 
the last 10 years 

  Set 1 Set 2 Set 3 Set 4 
Lagged Percentage of single parents 

with Children 
  -1.382     
  (4.540)     

Lagged Percentage of female Head of 
Household 

      -2.056 
      (2.732) 

Lagged IHS-transformed Population 
Travel on Public Transportation 

-0.107     -0.088 
(0.174)     (0.145) 

Lagged IHS-transformed Population 
with Commute < 25 minutes 

  0.115     
  (0.302)     

Lagged IHS-transformed Population 
with Commute > 25 < 45 minutes 

    -0.023   
    (0.196)   

Lagged IHS-transformed Population 
with Commute > 45 minutes 

      0.033 
      (0.192) 

Lagged percentage of over 25-yr-olds 
with at Least 8 Years Education 

      -0.833 
      (8.803) 

Lagged percentage of over 25-yr-olds 
with at Least High School Education 

    2.858   
    (7.508)   

Lagged percentage of over 25-yr-olds 
with Associate Degree 

  -27.687     
  (16.409)     

Lagged percentage of over 25-yr-olds 
with bachelor’s degree 

2.275       
(3.457)       

Lagged Owner to Renter Ratio -0.015       
(0.034)       

Lagged Percentage of Housing Units 
Renter-occupied 

    -2.064   
    (1.904)   

Lagged Percentage of Housing Units 
Vacant 

-1.841       
(6.825)       

Lagged Percent Change in Housing Unit 
Supply 

  -0.09     
  (4.375)     

Year Fixed Effect Included? Yes Yes Yes Yes 
AIC 213.801 219.897 222.37 221.386 
BIC 308.094 314.19 316.663 315.679 
Log Likelihood -92.9 -95.949 -97.185 -96.693 
Deviance 190.603 197.558 199.653 199.181 
Num. obs. 6218 6218 6218 6218 

***p < 0.001, **p < 0.01, *p < 0.05 
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Table 38. Medium bridge selection effect logistic model CEM results 

DV: Dummy variable denoting that a new medium bridge was built in this tract in the last 
10 years 

  Set 1 Set 2 Set 3 Set 4 

% Water Area 3.003*** 3.641*** 3.094*** 3.540*** 
(0.800) (0.815) (0.789) (0.795) 

Rural tract indicator > 10M sq. meters -0.037   -0.034   
(0.172)   (0.170)   

Rural tract indicator > 4M sq. meters   0.271   0.315 
  (0.191)   (0.180) 

Lagged IHS-transformed Total bridges -0.179** -0.259*** -0.171** -0.248*** 
(0.060) (0.066) (0.060) (0.068) 

Lagged IHS-transformed Real Average 
Income 

-0.045   -0.04   
(0.023)   (0.039)   

Lagged IHS-transformed Real Aggregate 
Household Income 

  0.021   -0.028 
  (0.023)   (0.015) 

Lagged Population Percentage of Below 
the Poverty Line 

2.618**       
(0.801)       

Lagged Population Percentage of 
Receiving Welfare 

    2.587*   
    (1.169)   

Lagged non-White Population Percentage 
of 

-1.081*       
(0.436)       

Lagged African American Population 
Percentage of 

    -1.023   
    (0.528)   

Lagged Hispanic Population Percentage 
of 

      -1.933 
      (1.657) 

Lagged Population Percentage of 
Foreign-born 

  1.528   1.517 
  (1.999)   (1.877) 

Lagged Population Percentage of under 
18 

  -2.224*     
  (1.118)     

Lagged IHS-transformed Adult to Child 
Ratio 

    0.048   
    (0.480)   

AIC 2478.188 2479.23 2480.922 2492.258 
BIC 2578.972 2580.014 2581.706 2593.042 
Log Likelihood -1225.094 -1225.615 -1226.461 -1232.129 
Deviance 2620.194 2622.058 2623.637 2634.709 
Num. obs. 9886 9886 9886 9886 

***p < 0.001, **p < 0.01, *p < 0.05 
  



Machine Learning for Public Policy: Applications in Infrastructure and Air Pollution 

173 

Table 38. Medium bridge selection effect logistic model CEM results (cont’d) 

DV: Dummy variable denoting that a new medium bridge was built in this tract in the last 
10 years 

  Set 1 Set 2 Set 3 Set 4 
Lagged Percentage of single parents with 

Children 
  1.626     
  (1.113)     

Lagged Percentage of female Head of 
Household 

      0.513 
      (0.698) 

Lagged IHS-transformed Population 
Travel on Public Transportation 

0.073     0.103* 
(0.040)     (0.044) 

Lagged IHS-transformed Population with 
Commute < 25 minutes 

  0.307*     
  (0.139)     

Lagged IHS-transformed Population with 
Commute > 25 < 45 minutes 

    0.052   
    (0.055)   

Lagged IHS-transformed Population with 
Commute > 45 minutes 

      -0.043 
      (0.050) 

Lagged percentage of over 25-yr-olds 
with at Least 8 Years Education 

      1.711 
      (2.496) 

Lagged percentage of over 25-yr-olds 
with at Least High School Education 

    -2.108*   
    (1.057)   

Lagged percentage of over 25-yr-olds 
with Associate Degree 

  -1.71     
  (5.579)     

Lagged percentage of over 25-yr-olds 
with bachelor’s degree 

1.412*       
(0.605)       

Lagged Owner to Renter Ratio -0.003       
(0.004)       

Lagged Percentage of Housing Units 
Renter-occupied 

    1.177**   
    (0.444)   

Lagged Percentage of Housing Units 
Vacant 

1.437       
(1.129)       

Lagged Percent Change in Housing Unit 
Supply 

  -0.06     
  (1.105)     

Year Fixed Effect Included? Yes Yes Yes Yes 
AIC 2478.188 2479.23 2480.922 2492.258 
BIC 2578.972 2580.014 2581.706 2593.042 
Log Likelihood -1225.094 -1225.615 -1226.461 -1232.129 
Deviance 2620.194 2622.058 2623.637 2634.709 
Num. obs. 9886 9886 9886 9886 

***p < 0.001, **p < 0.01, *p < 0.05 
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Table 39. High bridge selection effect logistic model CEM results 

DV: Dummy variable denoting that a new high bridge was built in this tract in the last 10 
years 

  Set 1 Set 2 Set 3 Set 4 

% Water Area 1.384 1.722 0.663 1.267 
(1.067) (1.093) (1.149) (1.127) 

Rural tract indicator > 10M sq. meters 0.005   0.112   
(0.188)   (0.183)   

Rural tract indicator > 4M sq. meters   0.601*   0.585* 
  (0.237)   (0.229) 

Lagged IHS-transformed Total bridges -0.277*** -0.338*** -0.241*** -0.345*** 
(0.068) (0.080) (0.070) (0.081) 

Lagged IHS-transformed Real Average 
Income 

-0.001   -0.052   
(0.028)   (0.052)   

Lagged IHS-transformed Real Aggregate 
Household Income 

  0.049   0.006 
  (0.026)   (0.019) 

Lagged Population Percentage of Below 
the Poverty Line 

0.953       
(0.913)       

Lagged Population Percentage of 
Receiving Welfare 

    1.526   
    (1.358)   

Lagged non-White Population Percentage 
of 

-0.423       
(0.482)       

Lagged African American Population 
Percentage of 

    -0.943   
    (0.516)   

Lagged Hispanic Population Percentage 
of 

      -0.573 
      (1.548) 

Lagged Population Percentage of 
Foreign-born 

  1.944   3.192 
  (1.811)   (1.687) 

Lagged Population Percentage of under 
18 

  -3.987**     
  (1.239)     

Lagged IHS-transformed Adult to Child 
Ratio 

    0.634   
    (0.512)   

AIC 2504.713 2492.682 2500.031 2495.957 
BIC 2606.156 2594.124 2601.473 2597.4 
Log Likelihood -1238.357 -1232.341 -1236.015 -1233.979 
Deviance 2570.307 2557.223 2567.554 2561.345 
Num. obs. 10362 10362 10362 10362 

***p < 0.001, **p < 0.01, *p < 0.05 
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Table 39. High bridge selection effect logistic model CEM results (cont’d) 

DV: Dummy variable denoting that a new high bridge was built in this tract in the last 10 
years 

  Set 1 Set 2 Set 3 Set 4 
Lagged Percentage of single parents with 

Children 
  1.767     
  (1.189)     

Lagged Percentage of female Head of 
Household 

      0.948 
      (0.771) 

Lagged IHS-transformed Population 
Travel on Public Transportation 

-0.022     0.014 
(0.038)     (0.042) 

Lagged IHS-transformed Population with 
Commute < 25 minutes 

  0.142     
  (0.085)     

Lagged IHS-transformed Population with 
Commute > 25 < 45 minutes 

    -0.033   
    (0.058)   

Lagged IHS-transformed Population with 
Commute > 45 minutes 

      -0.190*** 
      (0.054) 

Lagged percentage of over 25-yr-olds 
with at Least 8 Years Education 

      -4.081 
      (2.709) 

Lagged percentage of over 25-yr-olds 
with at Least High School Education 

    -1.974**   
    (0.745)   

Lagged percentage of over 25-yr-olds 
with Associate Degree 

  4.969     
  (6.093)     

Lagged percentage of over 25-yr-olds 
with bachelor’s degree 

1.759***       
(0.447)       

Lagged Owner to Renter Ratio 0       
(0.001)       

Lagged Percentage of Housing Units 
Renter-occupied 

    0.637   
    (0.457)   

Lagged Percentage of Housing Units 
Vacant 

0.017       
(0.900)       

Lagged Percent Change in Housing Unit 
Supply 

  -0.048     
  (0.530)     

Year Fixed Effect Included? Yes Yes Yes Yes 
AIC 2504.713 2492.682 2500.031 2495.957 
BIC 2606.156 2594.124 2601.473 2597.4 
Log Likelihood -1238.357 -1232.341 -1236.015 -1233.979 
Deviance 2570.307 2557.223 2567.554 2561.345 
Num. obs. 10362 10362 10362 10362 

***p < 0.001, **p < 0.01, *p < 0.05 
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Table 40. Super bridge selection effect logistic model CEM results 

DV: Dummy variable denoting that a new super bridge was built in this tract in the last 
10 years 

  Set 1 Set 2 Set 3 Set 4 

% Water Area 2.060* 3.024** 2.380* 2.894** 
(1.012) (0.961) (0.999) (0.954) 

Rural tract indicator > 10M sq. meters 0.229   0.162   
(0.169)   (0.165)   

Rural tract indicator > 4M sq. meters   0.376*   0.415* 
  (0.186)   (0.184) 

Lagged IHS-transformed Total bridges -0.145* -0.201** -0.161** -0.215*** 
(0.058) (0.063) (0.058) (0.064) 

Lagged IHS-transformed Real Average 
Income 

-0.077**   -0.118**   
(0.024)   (0.041)   

Lagged IHS-transformed Real Aggregate 
Household Income 

  0.011   -0.035* 
  (0.020)   (0.014) 

Lagged Population Percentage of Below 
the Poverty Line 

2.013*       
(0.831)       

Lagged Population Percentage of 
Receiving Welfare 

    2.571*   
    (1.039)   

Lagged non-White Population Percentage 
of 

-2.087***       
(0.503)       

Lagged African American Population 
Percentage of 

    -1.387**   
    (0.486)   

Lagged Hispanic Population Percentage 
of 

      -3.947* 
      (1.748) 

Lagged Population Percentage of 
Foreign-born 

  -1.216   -0.484 
  (2.137)   (1.865) 

Lagged Population Percentage of under 
18 

  -2.378*     
  (1.015)     

Lagged IHS-transformed Adult to Child 
Ratio 

    1.028*   
    (0.423)   

AIC 3015.648 3040.826 3026.976 3020.527 
BIC 3116.618 3141.796 3127.945 3121.497 
Log Likelihood -1493.824 -1506.413 -1499.488 -1496.264 
Deviance 3138.718 3161.805 3150.077 3141.968 
Num. obs. 10018 10018 10018 10018 

***p < 0.001, **p < 0.01, *p < 0.05 
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Table 40. Super bridge selection effect logistic model CEM results (cont’d) 

DV: Dummy variable denoting that a new super bridge was built in this tract in the last 
10 years 

  Set 1 Set 2 Set 3 Set 4 
Lagged Percentage of single parents with 

Children 
  -0.579     
  (1.104)     

Lagged Percentage of female Head of 
Household 

      -1.03 
      (0.670) 

Lagged IHS-transformed Population 
Travel on Public Transportation 

0.086*     0.107** 
(0.037)     (0.041) 

Lagged IHS-transformed Population with 
Commute < 25 minutes 

  0.054     
  (0.057)     

Lagged IHS-transformed Population with 
Commute > 25 < 45 minutes 

    -0.001   
    (0.050)   

Lagged IHS-transformed Population with 
Commute > 45 minutes 

      -0.103* 
      (0.050) 

Lagged percentage of over 25-yr-olds 
with at Least 8 Years Education 

      7.003*** 
      (1.341) 

Lagged percentage of over 25-yr-olds 
with at Least High School Education 

    2.371**   
    (0.804)   

Lagged percentage of over 25-yr-olds 
with Associate Degree 

  -8.972*     
  (4.387)     

Lagged percentage of over 25-yr-olds 
with bachelor’s degree 

-2.115**       
(0.644)       

Lagged Owner to Renter Ratio 0       
(0.001)       

Lagged Percentage of Housing Units 
Renter-occupied 

    -0.217   
    (0.438)   

Lagged Percentage of Housing Units 
Vacant 

1.009       
(1.235)       

Lagged Percent Change in Housing Unit 
Supply 

  -0.073     
  (0.712)     

Year Fixed Effect Included? Yes Yes Yes Yes 
AIC 3015.648 3040.826 3026.976 3020.527 
BIC 3116.618 3141.796 3127.945 3121.497 
Log Likelihood -1493.824 -1506.413 -1499.488 -1496.264 
Deviance 3138.718 3161.805 3150.077 3141.968 
Num. obs. 10018 10018 10018 10018 

***p < 0.001, **p < 0.01, *p < 0.05 
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Table 41. Restrictive bridge selection effect logistic model CEM results 

DV: Dummy variable denoting that a new bridge was built in this tract in the last 10 
years 

  Set 1 Set 2 Set 3 Set 4 

% Water Area 1.078 0.86 1.142 1.179 
(2.057) (1.694) (1.728) (1.720) 

Rural tract indicator > 10M sq. meters 0.891   0.806   
(0.558)   (0.557)   

Rural tract indicator > 4M sq. meters   -0.424   -0.529 
  (0.643)   (0.582) 

Lagged IHS-transformed Total bridges -0.318 -0.066 -0.317 -0.141 
(0.179) (0.193) (0.183) (0.187) 

Lagged IHS-transformed Real Average 
Income 

0.054   0.039   
(0.075)   (0.106)   

Lagged IHS-transformed Real Aggregate 
Household Income 

  -0.02   0.051 
  (0.070)   (0.047) 

Lagged Population Percentage of Below 
the Poverty Line 

4.097       
(2.353)       

Lagged Population Percentage of 
Receiving Welfare 

    1.68   
    (4.143)   

Lagged non-White Population Percentage 
of 

-0.288       
(1.130)       

Lagged African American Population 
Percentage of 

    0.66   
    (1.841)   

Lagged Hispanic Population Percentage 
of 

      -3.597 
      (6.079) 

Lagged Population Percentage of 
Foreign-born 

  -4   -2.247 
  (6.733)   (5.903) 

Lagged Population Percentage of under 
18 

  2.066     
  (3.270)     

Lagged IHS-transformed Adult to Child 
Ratio 

    0.123   
    (0.865)   

AIC 354.579 355.932 360.186 359.615 
BIC 450.44 451.793 456.047 455.476 
Log Likelihood -163.289 -163.966 -166.093 -165.807 
Deviance 339.259 345.278 345.023 346.241 
Num. obs. 6955 6955 6955 6955 

***p < 0.001, **p < 0.01, *p < 0.05 
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Table 41. Restrictive bridge selection effect logistic model CEM results (cont’d) 

DV: Dummy variable denoting that a new bridge was built in this tract in the last 10 
years 

  Set 1 Set 2 Set 3 Set 4 
Lagged Percentage of single parents with 

Children 
  -1.611     
  (4.200)     

Lagged Percentage of female Head of 
Household 

      -1.511 
      (2.644) 

Lagged IHS-transformed Population 
Travel on Public Transportation 

-0.12     -0.128 
(0.121)     (0.123) 

Lagged IHS-transformed Population with 
Commute < 25 minutes 

  0.183     
  (0.317)     

Lagged IHS-transformed Population with 
Commute > 25 < 45 minutes 

    -0.032   
    (0.203)   

Lagged IHS-transformed Population with 
Commute > 45 minutes 

      0.077 
      (0.209) 

Lagged percentage of over 25-yr-olds 
with at Least 8 Years Education 

      0.552 
      (8.205) 

Lagged percentage of over 25-yr-olds 
with at Least High School Education 

    -0.058   
    (5.921)   

Lagged percentage of over 25-yr-olds 
with Associate Degree 

  -18.271     
  (14.222)     

Lagged percentage of over 25-yr-olds 
with bachelor’s degree 

2.89       
(2.482)       

Lagged Owner to Renter Ratio -0.012       
(0.023)       

Lagged Percentage of Housing Units 
Renter-occupied 

    -1.614   
    (1.411)   

Lagged Percentage of Housing Units 
Vacant 

-3.432       
(5.563)       

Lagged Percent Change in Housing Unit 
Supply 

  -0.57     
  (3.969)     

Year Fixed Effect Included? Yes Yes Yes Yes 
AIC 354.579 355.932 360.186 359.615 
BIC 450.44 451.793 456.047 455.476 
Log Likelihood -163.289 -163.966 -166.093 -165.807 
Deviance 339.259 345.278 345.023 346.241 
Num. obs. 6955 6955 6955 6955 

***p < 0.001, **p < 0.01, *p < 0.05 
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Table 42. Non-restrictive bridge selection effect logistic model CEM results 

DV: Dummy variable denoting that a new over 14-ft bridge was built in this tract in the 
last 10 years 

  Set 1 Set 2 Set 3 Set 4 

% Water Area 1.925* 2.555*** 1.817* 2.496*** 
(0.768) (0.743) (0.764) (0.748) 

Rural tract indicator > 10M sq. meters -0.004   -0.008   
(0.126)   (0.123)   

Rural tract indicator > 4M sq. meters   0.449**   0.472*** 
  (0.141)   (0.136) 

Lagged IHS-transformed Total bridges -0.067 -0.154** -0.056 -0.154** 
(0.045) (0.050) (0.046) (0.052) 

Lagged IHS-transformed Real Average 
Income 

-0.063***   -0.082**   
(0.018)   (0.029)   

Lagged IHS-transformed Real Aggregate 
Household Income 

  0.021   -0.032** 
  (0.015)   (0.011) 

Lagged Population Percentage of Below 
the Poverty Line 

2.171***       
(0.595)       

Lagged Population Percentage of 
Receiving Welfare 

    1.934*   
    (0.845)   

Lagged non-White Population Percentage 
of 

-1.551***       
(0.340)       

Lagged African American Population 
Percentage of 

    -1.286***   
    (0.369)   

Lagged Hispanic Population Percentage 
of 

      -5.224** 
      (1.752) 

Lagged Population Percentage of 
Foreign-born 

  0.463   1.59 
  (1.227)   (1.168) 

Lagged Population Percentage of under 
18 

  -2.942***     
  (0.747)     

Lagged IHS-transformed Adult to Child 
Ratio 

    0.576   
    (0.311)   

AIC 4713.531 4708.67 4711.262 4700.148 
BIC 4814.968 4810.107 4812.699 4801.586 
Log Likelihood -2342.765 -2340.335 -2341.631 -2336.074 
Deviance 4924.773 4917.775 4925.182 4909.864 
Num. obs. 10358 10358 10358 10358 

***p < 0.001, **p < 0.01, *p < 0.05 
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Table 42. Non-restrictive bridge selection effect logistic model CEM results (cont’d) 

DV: Dummy variable denoting that a new over 14-ft bridge was built in this tract in the 
last 10 years 

  Set 1 Set 2 Set 3 Set 4 
Lagged Percentage of single parents with 

Children 
  0.45     
  (0.754)     

Lagged Percentage of female Head of 
Household 

      0.136 
      (0.479) 

Lagged IHS-transformed Population 
Travel on Public Transportation 

0.054     0.091** 
(0.028)     (0.031) 

Lagged IHS-transformed Population with 
Commute < 25 minutes 

  0.057     
  (0.049)     

Lagged IHS-transformed Population with 
Commute > 25 < 45 minutes 

    -0.054   
    (0.038)   

Lagged IHS-transformed Population with 
Commute > 45 minutes 

      -0.154*** 
      (0.038) 

Lagged percentage of over 25-yr-olds 
with at Least 8 Years Education 

      2.511 
      (1.507) 

Lagged percentage of over 25-yr-olds 
with at Least High School Education 

    -0.216   
    (0.604)   

Lagged percentage of over 25-yr-olds 
with Associate Degree 

  -5.994     
  (3.104)     

Lagged percentage of over 25-yr-olds 
with bachelor’s degree 

0.271       
(0.389)       

Lagged Owner to Renter Ratio -0.001       
(0.001)       

Lagged Percentage of Housing Units 
Renter-occupied 

    0.501   
    (0.311)   

Lagged Percentage of Housing Units 
Vacant 

0.222       
(0.848)       

Lagged Percent Change in Housing Unit 
Supply 

  -0.073     
  (0.544)     

Year Fixed Effect Included? Yes Yes Yes Yes 
AIC 4713.531 4708.67 4711.262 4700.148 
BIC 4814.968 4810.107 4812.699 4801.586 
Log Likelihood -2342.765 -2340.335 -2341.631 -2336.074 
Deviance 4924.773 4917.775 4925.182 4909.864 
Num. obs. 10358 10358 10358 10358 

***p < 0.001, **p < 0.01, *p < 0.05 
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Table 43. All new bridges selection effect logistic model CEM results 

DV: Dummy variable denoting that a new bridge was built in this tract in the last 10 years 
  Set 1 Set 2 Set 3 Set 4 

% Water Area -1.044 -0.413 -1.005 -0.479 
(1.092) (1.079) (1.091) (1.094) 

Rural tract indicator > 10M sq. meters 0.401   0.421   
(0.348)   (0.344)   

Rural tract indicator > 4M sq. meters   0.327*   0.315* 
  (0.132)   (0.132) 

Lagged IHS-transformed Total bridges -0.322*** -0.364*** -0.304*** -0.390*** 
(0.060) (0.060) (0.058) (0.061) 

Lagged IHS-transformed Real Average 
Income 

0.028   0.073*   
(0.023)   (0.037)   

Lagged IHS-transformed Real Aggregate 
Household Income 

  -0.007   0.03 
  (0.020)   (0.016) 

Lagged Population Percentage of Below 
the Poverty Line 

1.443*       
(0.682)       

Lagged Population Percentage of 
Receiving Welfare 

    1.089   
    (0.949)   

Lagged non-White Population Percentage 
of 

-2.000***       
(0.389)       

Lagged African American Population 
Percentage of 

    -1.977***   
    (0.407)   

Lagged Hispanic Population Percentage of       -9.095** 
      (2.924) 

Lagged Population Percentage of Foreign-
born 

  -4.647**   -3.074 
  (1.803)   (1.678) 

Lagged Population Percentage of under 18   1.584     
  (0.899)     

Lagged IHS-transformed Adult to Child 
Ratio 

    -0.73   
    (0.400)   

AIC 3587.598 3599.245 3588.673 3580.556 
BIC 3682.779 3694.426 3683.853 3675.736 
Log Likelihood -1779.799 -1785.623 -1780.336 -1776.278 
Deviance 3806.165 3816.145 3810.28 3789.159 
Num. obs. 6625 6625 6625 6625 

***p < 0.001, **p < 0.01, *p < 0.05 
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Table 43. All new bridges selection effect logistic model CEM results (cont’d) 

DV: Dummy variable denoting that a new bridge was built in this tract in the last 10 
years 

  Set 1 Set 2 Set 3 Set 4 
Lagged Percentage of single parents with 

Children 
  -3.134***     
  (0.774)     

Lagged Percentage of female Head of 
Household 

      -2.398*** 
      (0.612) 

Lagged IHS-transformed Population 
Travel on Public Transportation 

-0.060*     -0.021 
(0.028)     (0.035) 

Lagged IHS-transformed Population with 
Commute < 25 minutes 

  0.008     
  (0.049)     

Lagged IHS-transformed Population with 
Commute > 25 < 45 minutes 

    -0.079   
    (0.047)   

Lagged IHS-transformed Population with 
Commute > 45 minutes 

      0.012 
      (0.052) 

Lagged percentage of over 25-yr-olds 
with at Least 8 Years Education 

      4.709* 
      (2.121) 

Lagged percentage of over 25-yr-olds 
with at Least High School Education 

    1.147   
    (0.888)   

Lagged percentage of over 25-yr-olds 
with Associate Degree 

  2.428     
  (4.089)     

Lagged percentage of over 25-yr-olds 
with bachelor’s degree 

-0.232       
(0.509)       

Lagged Owner to Renter Ratio 0       
0.000        

Lagged Percentage of Housing Units 
Renter-occupied 

    -0.219   
    (0.341)   

Lagged Percentage of Housing Units 
Vacant 

-1.103       
(1.438)       

Lagged Percent Change in Housing Unit 
Supply 

  0.009     
  (0.112)     

Year Fixed Effect Included? Yes Yes Yes Yes 
AIC 3587.598 3599.245 3588.673 3580.556 
BIC 3682.779 3694.426 3683.853 3675.736 
Log Likelihood -1779.799 -1785.623 -1780.336 -1776.278 
Deviance 3806.165 3816.145 3810.28 3789.159 
Num. obs. 6625 6625 6625 6625 

***p < 0.001, **p < 0.01, *p < 0.05 
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Table 44. Mini bridge treatment effect event study model CEM results 

Dependent Variable 

Interaction 
Estimator 

for new 
mini 

bridge 
 

(SE) 

t value 
 

(p value) 

new mini 
bridge 

Treatme
nt 

Variable 
 

(SE) 

t value 
 

(p value) 

new mini 
bridge 
Group 

Dummy 
Variable 

 
(SE) 

t value 
 

(p value) 

# Other 
Control

s 
Se
t 

R2 (Adj. R2) 
diff w/o 

New 
Variables 

R2 
 

(Adj. 
R2) 

Inverse Hyperbolic Sine 
Transformation of Average household 
income in past 12 months (2010 
Constant $ US, mean = 11.4) 

-1.1 
(0.755) 

-1.45 
(0.147) 

0.664 
(0.646) 

1.03 
(0.305) 

-4.59 
(3.42) 

-1.34 
(0.179) 12 1 7.63e-05 

(0.000114) 
0.995 

(0.992) 

Inverse Hyperbolic Sine 
Transformation of Aggregate 
household income in past 12 months 
(2010 Constant $ US, mean = 18.3) 

-1.36 
(1.11) 

-1.22 
(0.222) 

0.83 
(0.866) 

0.959 
(0.338) 

-6.61 
(5.53) 

-1.2 
(0.232) 12 1 4.66e-05 

(6.84e-05) 
0.997 

(0.994) 

Non-White percentage of total 
population 

0.0217 
(0.0478) 

0.455 
(0.649) 

0.0361 
(0.0237) 

1.52 
(0.128) 

0.0297 
(0.116) 

0.256 
(0.798) 12 1 0.000414 

(0.000603) 
0.969 

(0.947) 
Black/African American percentage of 
total population 

0.0437 
(0.0498) 

0.877 
(0.381) 

0.0244 
(0.0186) 

1.32 
(0.188) 

0.0602 
(0.123) 

0.489 
(0.625) 12 1 0.000291 

(0.000369) 
0.963 

(0.937) 
Percentage of Hispanic/Latino of total 
population 

-0.0174 
(0.0131) 

-1.33 
(0.183) 

0.0147 
(0.00892) 

1.65 
(0.1) 

-0.00136 
(0.0241) 

-0.0565 
(0.955) 12 1 0.0027 

(0.0043) 
0.907 
(0.84) 

Percentage of Foreign-born of total 
population 

-0.04 
(0.022) 

-1.82 
(0.0693) 

0.0162 
(0.0112) 

1.45 
(0.148) 

0.0205 
(0.0392) 

0.523 
(0.601) 12 1 0.00168 

(0.00263) 
0.93 

(0.88) 
Percentage of Children under 18 years 
old of total population 

-0.0382 
(0.0348) 

-1.1 
(0.273) 

0.0283 
(0.0193) 

1.47 
(0.142) 

-0.0491 
(0.102) 

-0.48 
(0.631) 12 1 0.00036 

(0.000559) 
0.983 

(0.972) 
Inverse Hyperbolic Sine 
Transformation of Ratio of adults 18+ 
years old to children under 18 years 
old (adults/children, mean = 1.02) 

-0.0844 
(0.0804) 

-1.05 
(0.295) 

0.0533 
(0.0643) 

0.83 
(0.407) 

-0.467 
(0.297) 

-1.57 
(0.116) 12 1 6.22e-05 

(8.04e-05) 
0.993 

(0.987) 

Percentage of single-parent families 
with own children under 18 years old 
of total families and subfamilies 

-0.0156 
(0.0392) 

-0.396 
(0.692) 

0.0245 
(0.016) 

1.53 
(0.127) 

0.003 
(0.107) 

0.0281 
(0.978) 12 1 0.000325 

(0.000383) 
0.95 

(0.915) 

Percentage of female-headed families 
with or without own children of total 
families and subfamilies 

0.0819 
(0.0717) 

1.14 
(0.253) 

0.0234 
(0.0196) 

1.19 
(0.234) 

0.0188 
(0.163) 

0.116 
(0.908) 12 1 0.000303 

(0.000388) 
0.962 

(0.935) 

Inverse Hyperbolic Sine 
Transformation of Workers 16+ years 
old traveling to work on public 
transportation (taxi not included mean 
= 3.37) 

0.0468 
(0.698) 

0.0671 
(0.947) 

-0.01 
(0.36) 

-0.0278 
(0.978) 

5.14 
(1.57) 

3.27 
(0.0011) 12 1 2.78e-07 

(-8.93e-05) 
0.975 

(0.956) 

Inverse Hyperbolic Sine 
Transformation of Workers 16+ years 
old with travel time to work less than 
25 minutes (mean = 5.2) 

-0.681 
(0.61) 

-1.12 
(0.265) 

-0.0124 
(0.456) 

-0.0273 
(0.978) 

-1.87 
(2.14) 

-0.872 
(0.384) 12 1 2.7e-05 

(-3.89e-07) 
0.987 

(0.977) 

Inverse Hyperbolic Sine 
Transformation of Workers 16+ years 
old with travel time to work 25 to 44 
minutes (mean = 4.45) 

-0.81 
(0.593) 

-1.37 
(0.173) 

0.0812 
(0.42) 

0.193 
(0.847) 

-1.37 
(2.11) 

-0.651 
(0.515) 12 1 4.73e-05 

(2.79e-05) 
0.985 

(0.974) 

Inverse Hyperbolic Sine 
Transformation of Workers 16+ years 
old with travel time to work more than 
45 minutes (mean = 3.83) 

-0.812 
(0.55) 

-1.48 
(0.141) 

-0.174 
(0.397) 

-0.437 
(0.662) 

-3.65 
(1.97) 

-1.85 
(0.0647) 12 1 0.000125 

(0.000152) 
0.982 
(0.97) 

Percentage of Persons 25+ years old 
who have completed 0-8 years of 
school 

0.0319 
(0.018) 

1.77 
(0.0767) 

0.00504 
(0.00616) 

0.819 
(0.413) 

-0.00153 
(0.0371) 

-0.0413 
(0.967) 12 1 0.000584 

(0.000852) 
0.958 

(0.927) 

Percentage of Persons 25+ years old 
who have completed high school but no 
college 

0.0239 
(0.0419) 

0.57 
(0.569) 

0.0182 
(0.011) 

1.65 
(0.0997) 

0.0759 
(0.0757) 

1 
(0.316) 12 1 7.21e-05 

(9.23e-05) 
0.991 

(0.985) 

Percentage of Persons 25+ years old 
who have an associate degree but no 
bachelor’s degree 

-0.00701 
(0.009) 

-0.779 
(0.436) 

-0.00276 
(0.00479) 

-0.576 
(0.564) 

0.0103 
(0.0198) 

0.52 
(0.603) 12 1 7.87e-05 

(4.86e-05) 
0.976 

(0.958) 

Percentage of Persons 25+ years old 
who have a bachelor’s or 
graduate/professional degree 

-0.0549 
(0.0602) 

-0.911 
(0.362) 

-0.00996 
(0.0107) 

-0.928 
(0.354) 

-0.088 
(0.0946) 

-0.93 
(0.352) 12 1 0.000112 

(0.000122) 
0.98 

(0.966) 

Percentage of total persons below the 
poverty level in past 12 months 

0.000993 
(0.0302) 

0.0329 
(0.974) 

0.0272 
(0.0118) 

2.31 
(0.0212) 

-0.134 
(0.0615) 

-2.18 
(0.0298) 12 1 0.00064 

(0.000953) 
0.959 
(0.93) 

Percentage of households with public 
assistance inc. (incl. SSI) last year of 
total households 

0.0207 
(0.0321) 

0.644 
(0.52) 

0.0243 
(0.00691) 

3.51 
(0.00046

6) 

-0.021 
(0.054) 

-0.39 
(0.697) 12 1 0.00171 

(0.00275) 
0.947 

(0.909) 

Ratio of Owner-Occupied housing units 
to Renter Occupied Housing units 

1.66 
(22.3) 

0.0744 
(0.941) 

14.8 
(20) 

0.74 
(0.459) 

-50.6 
(104) 

-0.484 
(0.628) 12 1 0.000741 

(-0.000116) 
0.607 

(0.325) 

Percentage of renter-occupied housing 
units of total housing units 

-0.00953 
(0.0295) 

-0.323 
(0.747) 

-0.018 
(0.0176) 

-1.02 
(0.307) 

-0.204 
(0.0724) 

-2.81 
(0.005) 12 1 5.98e-05 

(6.03e-05) 
0.988 

(0.979) 

Percentage of vacant housing units 
-0.0238 

(0.0169) 
-1.41 

(0.159) 
0.00281 

(0.00716) 
0.392 

(0.695) 
0.158 

(0.156) 
1.01 

(0.312) 12 1 6.73e-05 
(-7.4e-06) 

0.965 
(0.94) 

Percentage of change in number of 
housing units since last census of total 
housing units 

-0.239 
(0.165) 

-1.45 
(0.148) 

-0.106 
(0.125) 

-0.847 
(0.397) 

-0.429 
(0.418) 

-1.03 
(0.306) 12 1 6.34e-06 

(1.7e-06) 
0.997 

(0.996) 
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Table 44. Mini bridge treatment effect event study model CEM results (cont’d) 

Dependent Variable 

Interaction 
Estimator 

for new 
mini 

bridge 
 

(SE) 

t value 
 

(p 
value) 

new mini 
bridge 

Treatment 
Variable 

 
(SE) 

t value 
 

(p value) 

new mini 
bridge 
Group 

Dummy 
Variable 

 
(SE) 

t value 
 

(p value) 
# Other 
Controls Set 

R2 (Adj. 
R2) diff 

w/o New 
Variables 

R2 
 

(Adj. 
R2) 

Inverse Hyperbolic Sine 
Transformation of Average household 
income in past 12 months (2010 
Constant $ US, mean = 11.4) 

-0.254 
 
(0.474) 

-0.537 
 
(0.592) 

0.698 
 
(0.5) 

1.4 
 
(0.163) 

-5.3 
 
(2.62) 

-2.02 
 
(0.0432) 10 2 

0.00113 
 
(0.00195) 

0.996 
 
(0.994) 

Inverse Hyperbolic Sine 
Transformation of Aggregate 
household income in past 12 months 
(2010 Constant $ US, mean = 18.3) 

-0.143 
 
(0.595) 

-0.24 
 
(0.81) 

0.83 
 
(0.619) 

1.34 
 
(0.181) 

-7.87 
 
(4.64) 

-1.69 
 
(0.0904) 10 2 

0.000691 
 
(0.00119) 

0.997 
 
(0.995) 

Non-White percentage of total 
population 

-0.0315 
(0.0396) 

-0.795 
(0.427) 

0.00795 
(0.0258) 

0.308 
(0.758) 

0.0254 
(0.0654) 

0.388 
(0.698) 10 2 

0.0121 
(0.0208) 

0.981 
(0.968) 

Black/African American percentage of 
total population 

-0.0242 
 
(0.0351) 

-0.689 
 
(0.491) 

-0.00526 
 
(0.0164) 

-0.32 
 
(0.749) 

0.0892 
 
(0.066) 

1.35 
 
(0.177) 10 2 

0.0177 
 
(0.0303) 

0.981 
 
(0.967) 

Percentage of Hispanic/Latino of total 
population 

-0.0249 
(0.0156) 

-1.59 
(0.111) 

0.0101 
(0.0107) 

0.941 
(0.347) 

0.0113 
(0.0266) 

0.425 
(0.671) 10 2 

-0.00502 
(-0.00861) 

0.899 
(0.827) 

Percentage of Foreign-born of total 
population 

-0.013 
(0.0134) 

-0.971 
(0.332) 

0.0223 
(0.0106) 

2.11 
(0.0353) 

-0.00482 
(0.0215) 

-0.224 
(0.823) 10 2 

0.0234 
(0.0402) 

0.952 
(0.918) 

Percentage of Children under 18 years 
old of total population 

-0.0398 
 
(0.0181) 

-2.2 
 
(0.0282) 

0.0205 
 
(0.0142) 

1.45 
 
(0.148) 

-0.0546 
 
(0.0753) 

-0.725 
 
(0.469) 10 2 

0.005 
 
(0.00858) 

0.988 
 
(0.98) 

Inverse Hyperbolic Sine 
Transformation of Ratio of adults 18+ 
years old to children under 18 years 
old (adults/children, mean = 1.02) 

0.0253 
 
(0.0631) 

0.401 
 
(0.689) 

0.0608 
 
(0.0608) 

1 
 
(0.317) 

-0.607 
 
(0.256) 

-2.38 
 
(0.0177) 10 2 

0.000537 
 
(0.000921) 

0.993 
 
(0.988) 

Percentage of single-parent families 
with own children under 18 years old 
of total families and subfamilies 

-0.076 
 
(0.0467) 

-1.63 
 
(0.104) 

-0.00651 
 
(0.0133) 

-0.488 
 
(0.626) 

0.0908 
 
(0.085) 

1.07 
 
(0.286) 10 2 

0.0127 
 
(0.0218) 

0.963 
 
(0.936) 

Percentage of female-headed families 
with or without own children of total 
families and subfamilies 

-0.0163 
 
(0.0396) 

-0.411 
 
(0.681) 

-0.00618 
 
(0.014) 

-0.441 
 
(0.659) 

0.0496 
 
(0.0765) 

0.649 
 
(0.517) 10 2 

0.0214 
 
(0.0367) 

0.984 
 
(0.972) 

Inverse Hyperbolic Sine 
Transformation of Workers 16+ years 
old traveling to work on public 
transportation (taxi not included mean 
= 3.37) 

-0.26 
 
(0.625) 

-0.415 
 
(0.678) 

0.3 
 
(0.395) 

0.76 
 
(0.448) 

4.65 
 
(1.26) 

3.68 
 
(0.000245) 10 2 

-0.00111 
 
(-0.00191) 

0.973 
 
(0.954) 

Inverse Hyperbolic Sine 
Transformation of Workers 16+ years 
old with travel time to work less than 
25 minutes (mean = 5.2) 

0.198 
 
(0.327) 

0.608 
 
(0.544) 

0.191 
 
(0.309) 

0.619 
 
(0.536) 

-2.58 
 
(1.22) 

-2.12 
 
(0.0345) 10 2 

0.00591 
 
(0.0101) 

0.993 
 
(0.987) 

Inverse Hyperbolic Sine 
Transformation of Workers 16+ years 
old with travel time to work 25 to 44 
minutes (mean = 4.45) 

-0.0772 
 
(0.297) 

-0.26 
 
(0.795) 

0.317 
 
(0.259) 

1.22 
 
(0.221) 

-2.16 
 
(1.25) 

-1.73 
 
(0.0844) 10 2 

0.00626 
 
(0.0107) 

0.991 
 
(0.985) 

Inverse Hyperbolic Sine 
Transformation of Workers 16+ years 
old with travel time to work more than 
45 minutes (mean = 3.83) 

-0.0585 
 
(0.29) 

-0.202 
 
(0.84) 

0.0786 
 
(0.273) 

0.288 
 
(0.773) 

-4.59 
 
(1.14) 

-4.04 
 
(5.68e-05) 10 2 

0.00706 
 
(0.0121) 

0.989 
 
(0.982) 

Percentage of Persons 25+ years old 
who have completed 0-8 years of 
school 

0.0323 
 
(0.0156) 

2.07 
 
(0.0388) 

0.0061 
 
(0.00585) 

1.04 
 
(0.297) 

-0.0287 
 
(0.0306) 

-0.935 
 
(0.35) 10 2 

0.00442 
 
(0.00758) 

0.962 
 
(0.934) 

Percentage of Persons 25+ years old 
who have completed high school but 
no college 

-0.0313 
 
(0.0393) 

-0.798 
 
(0.425) 

0.0107 
 
(0.0124) 

0.867 
 
(0.386) 

0.14 
 
(0.0622) 

2.25 
 
(0.0249) 10 2 

-0.000609 
 
(-0.00105) 

0.99 
 
(0.984) 

Percentage of Persons 25+ years old 
who have an associate degree but no 
bachelor’s degree 

-0.0114 
 
(0.0109) 

-1.05 
 
(0.296) 

-0.00774 
 
(0.00505) 

-1.53 
 
(0.125) 

0.0413 
 
(0.0214) 

1.93 
 
(0.0539) 10 2 

-0.00222 
 
(-0.00381) 

0.973 
 
(0.954) 

Percentage of Persons 25+ years old 
who have a bachelor’s or 
graduate/professional degree 

0.0313 
 
(0.0467) 

0.671 
 
(0.502) 

-0.00404 
 
(0.0159) 

-0.255 
 
(0.799) 

-0.166 
 
(0.0591) 

-2.81 
 
(0.00507) 10 2 

0.00113 
 
(0.00194) 

0.981 
 
(0.968) 

Percentage of total persons below the 
poverty level in past 12 months 

-0.0224 
 
(0.0353) 

-0.635 
 
(0.525) 

0.00265 
 
(0.0109) 

0.242 
 
(0.808) 

-0.0854 
 
(0.0598) 

-1.43 
 
(0.154) 10 2 

-0.00153 
 
(-0.00262) 

0.957 
 
(0.926) 

Percentage of households with public 
assistance inc. (incl. SSI) last year of 
total households 

-0.00168 
 
(0.0208) 

-0.0807 
 
(0.936) 

0.0213 
 
(0.00788) 

2.71 
 
(0.00693) 

-0.0356 
 
(0.0281) 

-1.26 
 
(0.206) 10 2 

0.0245 
 
(0.042) 

0.97 
 
(0.948) 

Ratio of Owner-Occupied housing 
units to Renter Occupied Housing 
units 

5.55 
 
(21.3) 

0.261 
 
(0.794) 

8.74 
 
(18.8) 

0.464 
 
(0.643) 

-132 
 
(110) 

-1.21 
 
(0.227) 10 2 

-0.0565 
 
(-0.0969) 

0.55 
 
(0.228) 

Percentage of renter-occupied housing 
units of total housing units 

0.0438 
 
(0.0378) 

1.16 
 
(0.247) 

0.00843 
 
(0.0135) 

0.623 
 
(0.533) 

-0.285 
 
(0.0606) 

-4.7 
 
(2.93e-06) 10 2 

0.00294 
 
(0.00504) 

0.991 
 
(0.984) 

Percentage of vacant housing units 
-0.0257 
(0.0126) 

-2.04 
(0.0413) 

-0.00186 
(0.00517) 

-0.359 
(0.72) 

0.159 
(0.136) 

1.17 
(0.242) 10 2 

0.00156 
(0.00268) 

0.967 
(0.943) 

Percentage of change in number of 
housing units since last census of total 
housing units 

-0.0578 
 
(0.0965) 

-0.598 
 
(0.55) 

-0.0262 
 
(0.0732) 

-0.358 
 
(0.72) 

-0.503 
 
(0.197) 

-2.55 
 
(0.0109) 10 2 

7.45e-05 
 
(0.000128) 

0.997 
 
(0.996) 
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Table 44. Mini bridge treatment effect event study model CEM results (cont’d) 

Dependent Variable 

Interaction 
Estimator 

for new 
mini 

bridge 
 

(SE) 

t value 
 

(p 
value) 

new mini 
bridge 

Treatment 
Variable 

 
(SE) 

t value 
 

(p value) 

new 
mini 

bridge 
Group 

Dummy 
Variable 

 
(SE) 

t value 
 

(p value) 
# Other 
Controls Set 

R2 (Adj. R2) 
diff w/o New 

Variables 

R2 
 

(Adj. 
R2) 

Inverse Hyperbolic Sine 
Transformation of Average household 
income in past 12 months (2010 
Constant $ US, mean = 11.4) 

0.327 
(0.599) 

0.547 
(0.585) 

0.575 
(0.53) 

1.09 
(0.278) 

-7.04 
(2.53) 

-2.78 
(0.00546) 12 3 0.00113 

(0.00193) 
0.996 

(0.994) 

Inverse Hyperbolic Sine 
Transformation of Aggregate 
household income in past 12 months 
(2010 Constant $ US, mean = 18.3) 

0.527 
(0.702) 

0.751 
(0.453) 

0.688 
(0.643) 

1.07 
(0.285) 

-9.69 
(4.32) 

-2.24 
(0.0252) 12 3 0.000735 

(0.00125) 
0.997 

(0.996) 

Non-White percentage of total 
population 

0.0302 
(0.0552) 

0.547 
(0.584) 

0.00948 
(0.0214) 

0.443 
(0.658) 

0.266 
(0.114) 

2.34 
(0.0197) 12 3 0.0122 

(0.0209) 
0.981 

(0.968) 
Black/African American percentage of 
total population 

0.0517 
(0.0568) 

0.911 
(0.363) 

-0.00511 
(0.0134) 

-0.382 
(0.703) 

0.317 
(0.12) 

2.64 
(0.00837) 12 3 0.0159 

(0.0272) 
0.979 

(0.964) 
Percentage of Hispanic/Latino of total 
population 

-0.011 
(0.0122) 

-0.903 
(0.367) 

0.00841 
(0.00967) 

0.87 
(0.385) 

0.0384 
(0.027) 

1.42 
(0.155) 12 3 0.00307 

(0.00494) 
0.907 
(0.84) 

Percentage of Foreign-born of total 
population 

-0.0325 
(0.0194) 

-1.68 
(0.093) 

0.0218 
(0.0111) 

1.97 
(0.0496) 

-0.0456 
(0.034) 

-1.34 
(0.18) 12 3 0.0109 

(0.0185) 
0.939 

(0.896) 

Percentage of Children under 18 years 
old of total population 

0.00773 
(0.021) 

0.369 
(0.713) 

0.0132 
(0.0141) 

0.935 
(0.35) 

-0.0351 
(0.0725) 

-0.485 
(0.628) 12 3 0.00519 

(0.00887) 
0.988 
(0.98) 

Inverse Hyperbolic Sine 
Transformation of Ratio of adults 18+ 
years old to children under 18 years 
old (adults/children, mean = 1.02) 

-0.00582 
(0.0611) 

-0.0953 
(0.924) 

0.0662 
(0.0618) 

1.07 
(0.284) 

-0.713 
(0.245) 

-2.91 
(0.00371) 12 3 0.00085 

(0.00144) 
0.993 

(0.989) 

Percentage of single-parent families 
with own children under 18 years old 
of total families and subfamilies 

0.0201 
(0.0374) 

0.537 
(0.591) 

-0.0156 
(0.00923) 

-1.69 
(0.0913) 

0.257 
(0.111) 

2.32 
(0.0206) 12 3 0.0172 

(0.0294) 
0.967 

(0.944) 

Percentage of female-headed families 
with or without own children of total 
families and subfamilies 

0.0508 
(0.063) 

0.806 
(0.42) 

0.00529 
(0.0136) 

0.388 
(0.698) 

0.319 
(0.152) 

2.1 
(0.0362) 12 3 0.0118 

(0.0202) 
0.974 

(0.955) 

Inverse Hyperbolic Sine 
Transformation of Workers 16+ years 
old traveling to work on public 
transportation (taxi not included 
mean = 3.37) 

-0.186 
(0.694) 

-0.268 
(0.789) 

0.279 
(0.403) 

0.692 
(0.489) 

3.71 
(1.16) 

3.21 
(0.00137) 12 3 -0.00182 

(-0.00321) 
0.973 

(0.953) 

Inverse Hyperbolic Sine 
Transformation of Workers 16+ years 
old with travel time to work less than 
25 minutes (mean = 5.2) 

0.129 
(0.473) 

0.272 
(0.786) 

0.0773 
(0.333) 

0.232 
(0.817) 

-4.59 
(1.32) 

-3.49 
(0.000502) 12 3 0.00378 

(0.00645) 
0.991 

(0.984) 

Inverse Hyperbolic Sine 
Transformation of Workers 16+ years 
old with travel time to work 25 to 44 
minutes (mean = 4.45) 

0.141 
(0.449) 

0.314 
(0.754) 

0.164 
(0.277) 

0.592 
(0.554) 

-4.2 
(1.25) 

-3.35 
(0.000848) 12 3 0.00407 

(0.00694) 
0.989 

(0.981) 

Inverse Hyperbolic Sine 
Transformation of Workers 16+ years 
old with travel time to work more 
than 45 minutes (mean = 3.83) 

0.0206 
(0.407) 

0.0505 
(0.96) 

-0.0484 
(0.291) 

-0.166 
(0.868) 

-6.34 
(1.15) 

-5.53 
(4.05e-08) 12 3 0.0047 

(0.00801) 
0.987 

(0.978) 

Percentage of Persons 25+ years old 
who have completed 0-8 years of 
school 

0.0318 
(0.0178) 

1.78 
(0.0755) 

0.00854 
(0.00627) 

1.36 
(0.174) 

-0.0252 
(0.032) 

-0.79 
(0.43) 12 3 -0.000162 

(-0.000429) 
0.957 

(0.926) 

Percentage of Persons 25+ years old 
who have completed high school but 
no college 

0.0145 
(0.0339) 

0.427 
(0.67) 

0.00578 
(0.012) 

0.48 
(0.632) 

0.179 
(0.0715) 

2.5 
(0.0127) 12 3 -0.000887 

(-0.00156) 
0.99 

(0.983) 

Percentage of Persons 25+ years old 
who have an associate degree but no 
bachelor’s degree 

0.000496 
(0.0103) 

0.0483 
(0.961) 

-0.0105 
(0.00499) 

-2.1 
(0.0364) 

0.0425 
(0.0205) 

2.07 
(0.0384) 12 3 -0.000263 

(-0.000539) 
0.975 

(0.957) 

Percentage of Persons 25+ years old 
who have a bachelor’s or 
graduate/professional degree 

-0.0269 
(0.0495) 

-0.544 
(0.587) 

-0.00383 
(0.0152) 

-0.251 
(0.802) 

-0.203 
(0.0867) 

-2.34 
(0.0197) 12 3 -0.00162 

(-0.00286) 
0.979 

(0.963) 

Percentage of total persons below the 
poverty level in past 12 months 

0.00939 
(0.0299) 

0.314 
(0.754) 

0.00155 
(0.0097) 

0.16 
(0.873) 

0.0455 
(0.0818) 

0.556 
(0.578) 12 3 -0.0079 

(-0.0137) 
0.95 

(0.915) 
Percentage of households with public 
assistance inc. (incl. SSI) last year of 
total households 

0.000194 
(0.0284) 

0.00683 
(0.995) 

0.0289 
(0.00836) 

3.46 
(0.000556) 

0.0174 
(0.0441) 

0.395 
(0.693) 12 3 0.0109 

(0.0185) 
0.956 

(0.925) 

Ratio of Owner-Occupied housing 
units to Renter Occupied Housing 
units 

-5.9 
(24.5) 

-0.241 
(0.81) 

16.3 
(19.6) 

0.831 
(0.406) 

-63.1 
(95.7) 

-0.659 
(0.51) 12 3 -0.0573 

(-0.0998) 
0.549 

(0.225) 

Percentage of renter-occupied 
housing units of total housing units 

-0.00222 
(0.0279) 

-0.0795 
(0.937) 

0.0122 
(0.0133) 

0.915 
(0.36) 

-0.424 
(0.082) 

-5.18 
(2.74e-07) 12 3 0.00121 

(0.00203) 
0.989 

(0.981) 

Percentage of vacant housing units 
0.00568 
(0.0106) 

0.538 
(0.591) 

-0.00697 
(0.00487) 

-1.43 
(0.153) 

0.176 
(0.127) 

1.39 
(0.166) 12 3 0.00539 

(0.00915) 
0.971 

(0.949) 

Percentage of change in number of 
housing units since last census of total 
housing units 

0.0319 
(0.115) 

0.278 
(0.781) 

-0.0693 
(0.0817) 

-0.849 
(0.396) 

-1 
(0.34) 

-2.95 
(0.00321) 12 3 0.000134 

(0.000222) 
0.998 

(0.996) 
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Table 44. Mini bridge treatment effect event study model CEM results (cont’d) 

Dependent Variable 

Interaction 
Estimator 

for new 
mini 

bridge 
 

(SE) 

t value 
 

(p 
value) 

new mini 
bridge 

Treatment 
Variable 

 
(SE) 

t value 
 

(p 
value) 

new 
mini 

bridge 
Group 

Dummy 
Variable 

 
(SE) 

t value 
 

(p value) 
# Other 
Controls Set 

R2 (Adj. 
R2) diff 

w/o New 
Variables 

R2 
 

(Adj. 
R2) 

Inverse Hyperbolic Sine 
Transformation of Average 
household income in past 12 months 
(2010 Constant $ US, mean = 11.4) 

0.0367 
 
(0.493) 

0.0744 
 
(0.941) 

0.67 
 
(0.478) 

1.4 
 
(0.161) 

-4.5 
 
(2.48) 

-1.82 
 
(0.0694) 12 4 

0.00115 
 
(0.00196) 

0.996 
 
(0.994) 

Inverse Hyperbolic Sine 
Transformation of Aggregate 
household income in past 12 months 
(2010 Constant $ US, mean = 18.3) 

0.124 
 
(0.567) 

0.219 
 
(0.827) 

0.992 
 
(0.646) 

1.53 
 
(0.125) 

-6.57 
 
(4.4) 

-1.49 
 
(0.135) 12 4 

0.000728 
 
(0.00123) 

0.997 
 
(0.996) 

Non-White percentage of total 
population 

0.00799 
 
(0.0344) 

0.233 
 
(0.816) 

-0.00982 
 
(0.0137) 

-0.718 
 
(0.473) 

-0.0743 
 
(0.0937) 

-0.793 
 
(0.428) 12 4 

0.00812 
 
(0.0138) 

0.977 
 
(0.961) 

Black/African American percentage 
of total population 

0.0191 
 
(0.0367) 

0.52 
 
(0.603) 

-0.0246 
 
(0.0144) 

-1.71 
 
(0.0885) 

-0.0441 
 
(0.0967) 

-0.456 
 
(0.648) 12 4 

0.0131 
 
(0.0224) 

0.976 
 
(0.959) 

Percentage of Hispanic/Latino of 
total population 

-0.0132 
(0.00909) 

-1.45 
(0.147) 

0.00849 
(0.00689) 

1.23 
(0.218) 

0.0226 
(0.0275) 

0.821 
(0.412) 12 4 

-0.00211 
(-0.00414) 

0.902 
(0.831) 

Percentage of Foreign-born of total 
population 

-0.0201 
(0.0171) 

-1.17 
(0.241) 

0.0267 
(0.0136) 

1.95 
(0.0509) 

0.0312 
(0.0294) 

1.06 
(0.289) 12 4 

0.0147 
(0.0249) 

0.943 
(0.902) 

Percentage of Children under 18 
years old of total population 

-0.0125 
 
(0.0207) 

-0.606 
 
(0.545) 

0.0112 
 
(0.0145) 

0.772 
 
(0.44) 

-0.0977 
 
(0.0806) 

-1.21 
 
(0.226) 12 4 

0.00475 
 
(0.00808) 

0.988 
 
(0.979) 

Inverse Hyperbolic Sine 
Transformation of Ratio of adults 
18+ years old to children under 18 
years old (adults/children, mean = 
1.02) 

0.0021 
 
(0.0562) 

0.0374 
 
(0.97) 

0.086 
 
(0.0547) 

1.57 
 
(0.117) 

-0.44 
 
(0.241) 

-1.82 
 
(0.0686) 12 4 

0.000783 
 
(0.00131) 

0.993 
 
(0.988) 

Percentage of single-parent families 
with own children under 18 years 
old of total families and subfamilies 

-0.0152 
 
(0.0334) 

-0.455 
 
(0.649) 

-0.0225 
 
(0.0231) 

-0.973 
 
(0.331) 

-0.0124 
 
(0.103) 

-0.121 
 
(0.904) 12 4 

0.0145 
 
(0.0248) 

0.965 
 
(0.939) 

Percentage of female-headed families 
with or without own children of total 
families and subfamilies 

0.00208 
 
(0.0455) 

0.0456 
 
(0.964) 

-0.0337 
 
(0.0192) 

-1.75 
 
(0.0798) 

-0.112 
 
(0.118) 

-0.948 
 
(0.344) 12 4 

0.0145 
 
(0.0247) 

0.977 
 
(0.96) 

Inverse Hyperbolic Sine 
Transformation of Workers 16+ 
years old traveling to work on public 
transportation (taxi not included 
mean = 3.37) 

-0.0759 
 
(0.587) 

-0.129 
 
(0.897) 

-0.0667 
 
(0.309) 

-0.216 
 
(0.829) 

4.81 
 
(1.45) 

3.33 
 
(0.000905) 12 4 

0.00015 
 
(0.000124) 

0.975 
 
(0.956) 

Inverse Hyperbolic Sine 
Transformation of Workers 16+ 
years old with travel time to work 
less than 25 minutes (mean = 5.2) 

0.229 
 
(0.341) 

0.671 
 
(0.503) 

0.224 
 
(0.317) 

0.708 
 
(0.479) 

-2.21 
 
(1.14) 

-1.93 
 
(0.0534) 12 4 

0.00486 
 
(0.00829) 

0.992 
 
(0.986) 

Inverse Hyperbolic Sine 
Transformation of Workers 16+ 
years old with travel time to work 25 
to 44 minutes (mean = 4.45) 

0.151 
 
(0.341) 

0.442 
 
(0.659) 

0.24 
 
(0.28) 

0.857 
 
(0.392) 

-1.76 
 
(1.17) 

-1.5 
 
(0.135) 12 4 

0.00498 
 
(0.00848) 

0.99 
 
(0.983) 

Inverse Hyperbolic Sine 
Transformation of Workers 16+ 
years old with travel time to work 
more than 45 minutes (mean = 3.83) 

0.111 
 
(0.298) 

0.373 
 
(0.709) 

0.0397 
 
(0.285) 

0.14 
 
(0.889) 

-3.93 
 
(1.04) 

-3.77 
 
(0.000175) 12 4 

0.00634 
 
(0.0108) 

0.989 
 
(0.98) 

Percentage of Persons 25+ years old 
who have completed 0-8 years of 
school 

0.0261 
 
(0.0131) 

2 
 
(0.0462) 

0.00452 
 
(0.00554) 

0.817 
 
(0.414) 

-0.0392 
 
(0.0323) 

-1.21 
 
(0.226) 12 4 

0.00618 
 
(0.0104) 

0.963 
 
(0.937) 

Percentage of Persons 25+ years old 
who have completed high school but 
no college 

0.0107 
 
(0.033) 

0.325 
 
(0.745) 

-0.00604 
 
(0.0129) 

-0.468 
 
(0.64) 

0.0623 
 
(0.0617) 

1.01 
 
(0.313) 12 4 

0.000361 
 
(0.000573) 

0.991 
 
(0.985) 

Percentage of Persons 25+ years old 
who have an associate degree but no 
bachelor’s degree 

-0.00565 
 
(0.011) 

-0.512 
 
(0.608) 

-0.00433 
 
(0.00532) 

-0.813 
 
(0.416) 

0.0298 
 
(0.0207) 

1.44 
 
(0.151) 12 4 

0.00132 
 
(0.00214) 

0.977 
 
(0.96) 

Percentage of Persons 25+ years old 
who have a bachelor’s or 
graduate/professional degree 

0.00889 
 
(0.0431) 

0.206 
 
(0.837) 

0.0139 
 
(0.0125) 

1.12 
 
(0.265) 

-0.0737 
 
(0.0761) 

-0.969 
 
(0.333) 12 4 

0.00135 
 
(0.00221) 

0.982 
 
(0.968) 

Percentage of total persons below 
the poverty level in past 12 months 

0.0149 
 
(0.0321) 

0.465 
 
(0.642) 

-0.00664 
 
(0.0134) 

-0.496 
 
(0.62) 

-0.171 
 
(0.0738) 

-2.32 
 
(0.0205) 12 4 

-0.00462 
 
(-0.00817) 

0.954 
 
(0.92) 

Percentage of households with public 
assistance inc. (incl. SSI) last year of 
total households 

-0.0149 
 
(0.0194) 

-0.765 
 
(0.444) 

0.016 
 
(0.00788) 

2.03 
 
(0.0422) 

-0.0792 
 
(0.0322) 

-2.46 
 
(0.014) 12 4 

0.0188 
 
(0.0321) 

0.964 
 
(0.938) 

Ratio of Owner-Occupied housing 
units to Renter Occupied Housing 
units 

-5.99 
 
(25.9) 

-0.232 
 
(0.817) 

19.7 
 
(21.6) 

0.913 
 
(0.362) 

-18 
 
(96.9) 

-0.186 
 
(0.852) 12 4 

0.00762 
 
(0.011) 

0.614 
 
(0.336) 

Percentage of renter-occupied 
housing units of total housing units 

0.0177 
 
(0.0239) 

0.742 
 
(0.459) 

0.017 
 
(0.0108) 

1.57 
 
(0.116) 

-0.222 
 
(0.0664) 

-3.35 
 
(0.000842) 12 4 

0.00201 
 
(0.0034) 

0.99 
 
(0.983) 

Percentage of vacant housing units 
-0.000627 
(0.012) 

-0.0524 
(0.958) 

-0.00694 
(0.00882) 

-0.788 
(0.431) 

0.153 
(0.133) 

1.15 
(0.251) 12 4 

0.00527 
(0.00889) 

0.97 
(0.949) 

Percentage of change in number of 
housing units since last census of 
total housing units 

-0.102 
 
(0.12) 

-0.85 
 
(0.396) 

0.00326 
 
(0.0766) 

0.0425 
 
(0.966) 

-0.2 
 
(0.228) 

-0.876 
 
(0.381) 12 4 

4.03e-05 
 
(5.55e-05) 

0.997 
 
(0.996) 

Table 45. Low bridge treatment effect event study model CEM results 
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Dependent Variable 

Interaction 
Estimator 

for new 
low bridge 

 
(SE) 

t value 
 

(p value) 

new low 
bridge 

Treatment 
Variable 

 
(SE) 

t value 
 

(p 
value) 

new low 
bridge 
Group 

Dummy 
Variable 

 
(SE) 

t value 
 

(p value) 
# Other 
Controls Set 

R2 (Adj. 
R2) diff 

w/o New 
Variables 

R2 
 

(Adj. 
R2) 

Inverse Hyperbolic Sine 
Transformation of Average household 
income in past 12 months (2010 
Constant $ US, mean = 11.6) 

-0.829 
 
(0.676) 

-1.23 
 
(0.22) 

-0.318 
 
(0.37) 

-0.858 
 
(0.391) 

-1.21 
 
(2.4) 

-0.504 
 
(0.615) 12 1 

3.3e-05 
 
(4.21e-05) 

0.992 
 
(0.988) 

Inverse Hyperbolic Sine 
Transformation of Aggregate 
household income in past 12 months 
(2010 Constant $ US, mean = 18.6) 

-0.939 
 
(0.977) 

-0.962 
 
(0.336) 

-0.637 
 
(0.566) 

-1.12 
 
(0.261) 

-2 
 
(3.84) 

-0.522 
 
(0.602) 12 1 

3.99e-05 
 
(5.24e-05) 

0.992 
 
(0.989) 

Non-White percentage of total 
population 

-0.0698 
(0.065) 

-1.07 
(0.283) 

-0.00222 
(0.0041) 

-0.541 
(0.589) 

0.0495 
(0.0679) 

0.729 
(0.466) 12 1 

0.00035 
(0.00048) 

0.964 
(0.949) 

Black/African American percentage of 
total population 

-0.0568 
 
(0.0632) 

-0.899 
 
(0.369) 

-0.00421 
 
(0.00326) 

-1.29 
 
(0.197) 

0.0441 
 
(0.0663) 

0.665 
 
(0.506) 12 1 

0.000366 
 
(0.000506) 

0.967 
 
(0.953) 

Percentage of Hispanic/Latino of total 
population 

-0.0171 
(0.00653) 

-2.62 
(0.0089) 

0.00119 
(0.0024) 

0.496 
(0.62) 

0.00149 
(0.00742) 

0.201 
(0.841) 12 1 

0.000187 
(0.00019) 

0.877 
(0.824) 

Percentage of Foreign-born of total 
population 

-0.0106 
(0.0057) 

-1.86 
(0.0629) 

8.83e-05 
(0.0026) 

0.0339 
(0.973) 

0.00425 
(0.00714) 

0.595 
(0.552) 12 1 

6.29e-05 
(1.12e-05) 

0.877 
(0.822) 

Percentage of Children under 18 years 
old of total population 

-0.0233 
 
(0.0144) 

-1.61 
 
(0.106) 

0.00425 
 
(0.00813) 

0.522 
 
(0.602) 

-0.0218 
 
(0.054) 

-0.403 
 
(0.687) 12 1 

2.07e-05 
 
(1.69e-05) 

0.98 
 
(0.971) 

Inverse Hyperbolic Sine 
Transformation of Ratio of adults 18+ 
years old to children under 18 years 
old (adults/children, mean = 0.998) 

-0.0973 
 
(0.089) 

-1.09 
 
(0.274) 

-0.0179 
 
(0.0285) 

-0.627 
 
(0.531) 

-0.0348 
 
(0.223) 

-0.156 
 
(0.876) 12 1 

2.66e-05 
 
(3.19e-05) 

0.99 
 
(0.986) 

Percentage of single-parent families 
with own children under 18 years old 
of total families and subfamilies 

-0.00897 
 
(0.0152) 

-0.589 
 
(0.556) 

-0.00146 
 
(0.00535) 

-0.273 
 
(0.785) 

0.0432 
 
(0.0235) 

1.84 
 
(0.0655) 12 1 

1.6e-05 
 
(-7.16e-07) 

0.963 
 
(0.947) 

Percentage of female-headed families 
with or without own children of total 
families and subfamilies 

-0.0128 
 
(0.0199) 

-0.643 
 
(0.52) 

-0.00428 
 
(0.00752) 

-0.569 
 
(0.569) 

0.0365 
 
(0.0312) 

1.17 
 
(0.242) 12 1 

3.18e-05 
 
(2.41e-05) 

0.966 
 
(0.951) 

Inverse Hyperbolic Sine 
Transformation of Workers 16+ years 
old traveling to work on public 
transportation (taxi not included 
mean = 3.55) 

-0.687 
 
(0.403) 

-1.7 
 
(0.0887) 

-0.177 
 
(0.174) 

-1.02 
 
(0.31) 

1.36 
 
(0.9) 

1.51 
 
(0.131) 12 1 

0.000136 
 
(0.000162) 

0.948 
 
(0.925) 

Inverse Hyperbolic Sine 
Transformation of Workers 16+ years 
old with travel time to work less than 
25 minutes (mean = 5.16) 

-0.164 
 
(0.376) 

-0.435 
 
(0.663) 

0.0857 
 
(0.175) 

0.489 
 
(0.625) 

-0.0377 
 
(1.46) 

-0.0257 
 
(0.979) 12 1 

6.67e-06 
 
(-4.5e-08) 

0.985 
 
(0.978) 

Inverse Hyperbolic Sine 
Transformation of Workers 16+ years 
old with travel time to work 25 to 44 
minutes (mean = 4.5) 

-0.302 
 
(0.382) 

-0.791 
 
(0.429) 

0.11 
 
(0.169) 

0.648 
 
(0.517) 

-0.767 
 
(1.39) 

-0.551 
 
(0.582) 12 1 

1.61e-05 
 
(1.09e-05) 

0.981 
 
(0.973) 

Inverse Hyperbolic Sine 
Transformation of Workers 16+ years 
old with travel time to work more 
than 45 minutes (mean = 3.9) 

-0.238 
 
(0.327) 

-0.73 
 
(0.466) 

0.134 
 
(0.143) 

0.934 
 
(0.35) 

-1.18 
 
(1.05) 

-1.13 
 
(0.26) 12 1 

2.69e-05 
 
(2.62e-05) 

0.98 
 
(0.972) 

Percentage of Persons 25+ years old 
who have completed 0-8 years of 
school 

0.00253 
 
(0.00816) 

0.309 
 
(0.757) 

-0.00352 
 
(0.00283) 

-1.24 
 
(0.214) 

0.0147 
 
(0.0146) 

1 
 
(0.317) 12 1 

7.37e-05 
 
(5.99e-05) 

0.928 
 
(0.897) 

Percentage of Persons 25+ years old 
who have completed high school but 
no college 

0.0135 
 
(0.0279) 

0.486 
 
(0.627) 

-0.00269 
 
(0.00632) 

-0.426 
 
(0.67) 

0.0965 
 
(0.0393) 

2.45 
 
(0.0141) 12 1 

2.69e-06 
 
(-1.74e-06) 

0.991 
 
(0.987) 

Percentage of Persons 25+ years old 
who have an associate degree but no 
bachelor’s degree 

-0.0187 
 
(0.00741) 

-2.52 
 
(0.0117) 

0.00368 
 
(0.00188) 

1.95 
 
(0.0507) 

0.00323 
 
(0.0085) 

0.38 
 
(0.704) 12 1 

0.000168 
 
(0.000217) 

0.961 
 
(0.944) 

Percentage of Persons 25+ years old 
who have a bachelor’s or 
graduate/professional degree 

-0.0563 
 
(0.0234) 

-2.41 
 
(0.016) 

0.00599 
 
(0.00709) 

0.845 
 
(0.398) 

-0.0373 
 
(0.0328) 

-1.14 
 
(0.256) 12 1 

7.03e-05 
 
(8.28e-05) 

0.971 
 
(0.959) 

Percentage of total persons below the 
poverty level in past 12 months 

-0.0784 
 
(0.066) 

-1.19 
 
(0.234) 

-0.00162 
 
(0.00664) 

-0.244 
 
(0.807) 

0.144 
 
(0.072) 

1.99 
 
(0.0463) 12 1 

0.000698 
 
(0.000955) 

0.923 
 
(0.889) 

Percentage of households with public 
assistance inc. (incl. SSI) last year of 
total households 

-0.00693 
 
(0.0105) 

-0.663 
 
(0.507) 

-0.00169 
 
(0.00308) 

-0.55 
 
(0.582) 

0.0236 
 
(0.0139) 

1.69 
 
(0.0904) 12 1 

4.73e-05 
 
(-1.01e-05) 

0.878 
 
(0.825) 

Ratio of Owner-Occupied housing 
units to Renter Occupied Housing 
units 

14 
 
(5.2) 

2.69 
 
(0.00726) 

-7.8 
 
(4.41) 

-1.77 
 
(0.0773) 

-35.4 
 
(13.4) 

-2.64 
 
(0.00823) 12 1 

0.000867 
 
(0.00077) 

0.257 
 
(-
0.0688) 

Percentage of renter-occupied 
housing units of total housing units 

-0.021 
 
(0.0161) 

-1.3 
 
(0.192) 

-0.00846 
 
(0.01) 

-0.846 
 
(0.398) 

0.037 
 
(0.0387) 

0.956 
 
(0.339) 12 1 

3.98e-05 
 
(4.39e-05) 

0.979 
 
(0.97) 

Percentage of vacant housing units 
-0.0188 
(0.00923) 

-2.04 
(0.0418) 

0.00201 
(0.00628) 

0.32 
(0.749) 

0.103 
(0.0303) 

3.4 
(0.000675) 12 1 

5.14e-05 
(2.66e-05) 

0.926 
(0.894) 

Percentage of change in number of 
housing units since last census of total 
housing units 

0.521 
 
(0.375) 

1.39 
 
(0.166) 

-0.311 
 
(0.399) 

-0.779 
 
(0.436) 

-0.712 
 
(0.532) 

-1.34 
 
(0.181) 12 1 

7.77e-05 
 
(-0.000376) 

0.24 
 
(-
0.0932) 
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Table 45. Low bridge treatment effect event study model CEM results (cont’d) 

Dependent Variable 

Interaction 
Estimator 

for new 
low bridge 

 
(SE) 

t value 
 

(p value) 

new low 
bridge 

Treatment 
Variable 

 
(SE) 

t value 
 

(p 
value) 

new low 
bridge 
Group 

Dummy 
Variable 

 
(SE) 

t value 
 

(p value) 
# Other 
Controls Set 

R2 (Adj. 
R2) diff 

w/o New 
Variables 

R2 
 

(Adj. 
R2) 

Inverse Hyperbolic Sine Transformation 
of Average household income in past 12 
months (2010 Constant $ US, mean = 
11.6) 

-0.418 
 
(0.714) 

-0.586 
 
(0.558) 

-0.308 
 
(0.35) 

-0.881 
 
(0.378) 

-1.33 
 
(1.93) 

-0.69 
 
(0.49) 10 2 

0.000978 
 
(0.00141) 

0.992 
 
(0.989) 

Inverse Hyperbolic Sine Transformation 
of Aggregate household income in past 
12 months (2010 Constant $ US, mean = 
18.6) 

-0.357 
 
(1.03) 

-0.348 
 
(0.728) 

-0.638 
 
(0.53) 

-1.21 
 
(0.228) 

-2.4 
 
(3.02) 

-0.794 
 
(0.427) 10 2 

0.00129 
 
(0.00185) 

0.993 
 
(0.991) 

Non-White percentage of total 
population 

-0.0658 
(0.0584) 

-1.13 
(0.26) 

0.00275 
(0.00405) 

0.678 
(0.497) 

0.0395 
(0.063) 

0.627 
(0.531) 10 2 

-0.00778 
(-0.0112) 

0.956 
(0.937) 

Black/African American percentage of 
total population 

-0.0525 
 
(0.0582) 

-0.903 
 
(0.367) 

-0.000991 
 
(0.00289) 

-0.343 
 
(0.732) 

0.0368 
 
(0.0624) 

0.589 
 
(0.556) 10 2 

-0.00529 
 
(-0.0076) 

0.962 
 
(0.945) 

Percentage of Hispanic/Latino of total 
population 

-0.0137 
(0.00443) 

-3.1 
(0.00193) 

0.00187 
(0.00227) 

0.824 
(0.41) 

-0.00443 
(0.00691) 

-0.641 
(0.521) 10 2 

-0.00876 
(-0.0126) 

0.868 
(0.811) 

Percentage of Foreign-born of total 
population 

-0.00897 
(0.00463) 

-1.94 
(0.053) 

0.000714 
(0.00287) 

0.249 
(0.803) 

0.00298 
(0.00692) 

0.43 
(0.667) 10 2 

-0.00218 
(-0.00314) 

0.874 
(0.819) 

Percentage of Children under 18 years 
old of total population 

-0.0161 
 
(0.012) 

-1.34 
 
(0.181) 

0.00433 
 
(0.00614) 

0.705 
 
(0.481) 

-0.0441 
 
(0.0312) 

-1.41 
 
(0.158) 10 2 

0.00601 
 
(0.00863) 

0.986 
 
(0.98) 

Inverse Hyperbolic Sine Transformation 
of Ratio of adults 18+ years old to 
children under 18 years old 
(adults/children, mean = 0.998) 

-0.0616 
 
(0.0877) 

-0.703 
 
(0.482) 

-0.0132 
 
(0.0271) 

-0.487 
 
(0.626) 

-0.0278 
 
(0.197) 

-0.141 
 
(0.888) 10 2 

0.000182 
 
(0.000261) 

0.99 
 
(0.986) 

Percentage of single-parent families with 
own children under 18 years old of total 
families and subfamilies 

-0.00214 
 
(0.0139) 

-0.154 
 
(0.878) 

-0.000886 
 
(0.00537) 

-0.165 
 
(0.869) 

0.0373 
 
(0.0196) 

1.9 
 
(0.0572) 10 2 

-0.00094 
 
(-0.00135) 

0.962 
 
(0.946) 

Percentage of female-headed families 
with or without own children of total 
families and subfamilies 

-0.00138 
 
(0.0152) 

-0.0906 
 
(0.928) 

-0.00125 
 
(0.00758) 

-0.164 
 
(0.87) 

0.0326 
 
(0.0245) 

1.33 
 
(0.184) 10 2 

-0.0026 
 
(-0.00374) 

0.964 
 
(0.948) 

Inverse Hyperbolic Sine Transformation 
of Workers 16+ years old traveling to 
work on public transportation (taxi not 
included mean = 3.55) 

-0.589 
 
(0.388) 

-1.52 
 
(0.129) 

-0.113 
 
(0.169) 

-0.673 
 
(0.501) 

1.26 
 
(0.796) 

1.58 
 
(0.115) 10 2 

0.000562 
 
(0.000809) 

0.948 
 
(0.925) 

Inverse Hyperbolic Sine Transformation 
of Workers 16+ years old with travel 
time to work less than 25 minutes (mean 
= 5.16) 

-0.0775 
 
(0.27) 

-0.287 
 
(0.774) 

0.0247 
 
(0.122) 

0.203 
 
(0.839) 

-0.646 
 
(0.918) 

-0.704 
 
(0.481) 10 2 

0.00552 
 
(0.00794) 

0.99 
 
(0.986) 

Inverse Hyperbolic Sine Transformation 
of Workers 16+ years old with travel 
time to work 25 to 44 minutes (mean = 
4.5) 

-0.206 
 
(0.257) 

-0.802 
 
(0.423) 

0.0495 
 
(0.117) 

0.422 
 
(0.673) 

-1.38 
 
(0.878) 

-1.57 
 
(0.116) 10 2 

0.00632 
 
(0.00909) 

0.987 
 
(0.982) 

Inverse Hyperbolic Sine Transformation 
of Workers 16+ years old with travel 
time to work more than 45 minutes 
(mean = 3.9) 

-0.152 
 
(0.228) 

-0.668 
 
(0.504) 

0.0896 
 
(0.101) 

0.89 
 
(0.373) 

-1.73 
 
(0.679) 

-2.55 
 
(0.0109) 10 2 

0.00567 
 
(0.00815) 

0.986 
 
(0.98) 

Percentage of Persons 25+ years old who 
have completed 0-8 years of school 

0.00298 
 
(0.00718) 

0.416 
 
(0.678) 

-0.00131 
 
(0.00288) 

-0.454 
 
(0.65) 

0.0172 
 
(0.0135) 

1.27 
 
(0.203) 10 2 

-0.00138 
 
(-0.00198) 

0.927 
 
(0.895) 

Percentage of Persons 25+ years old who 
have completed high school but no 
college 

0.0289 
 
(0.0318) 

0.909 
 
(0.363) 

-0.00537 
 
(0.00664) 

-0.809 
 
(0.419) 

0.0945 
 
(0.0421) 

2.25 
 
(0.0247) 10 2 

-0.00126 
 
(-0.00181) 

0.99 
 
(0.986) 

Percentage of Persons 25+ years old who 
have an associate degree but no 
bachelor’s degree 

-0.0185 
 
(0.00729) 

-2.54 
 
(0.0112) 

0.00354 
 
(0.00203) 

1.74 
 
(0.0817) 

0.00594 
 
(0.00824) 

0.72 
 
(0.471) 10 2 

5.83e-06 
 
(8.39e-06) 

0.961 
 
(0.944) 

Percentage of Persons 25+ years old who 
have a bachelor’s or 
graduate/professional degree 

-0.0642 
 
(0.0248) 

-2.59 
 
(0.0097) 

0.0126 
 
(0.00847) 

1.49 
 
(0.136) 

-0.0178 
 
(0.0298) 

-0.597 
 
(0.551) 10 2 

-0.00303 
 
(-0.00435) 

0.968 
 
(0.954) 

Percentage of total persons below the 
poverty level in past 12 months 

-0.0715 
 
(0.0646) 

-1.11 
 
(0.268) 

0.00119 
 
(0.00662) 

0.179 
 
(0.858) 

0.14 
 
(0.07) 

2 
 
(0.0461) 10 2 

0.00085 
 
(0.00122) 

0.923 
 
(0.89) 

Percentage of households with public 
assistance inc. (incl. SSI) last year of total 
households 

-0.0058 
 
(0.00913) 

-0.635 
 
(0.525) 

0.00137 
 
(0.00346) 

0.396 
 
(0.692) 

0.0288 
 
(0.0124) 

2.33 
 
(0.0201) 10 2 

-0.0051 
 
(-0.00733) 

0.873 
 
(0.818) 

Ratio of Owner-Occupied housing units 
to Renter Occupied Housing units 

12 
 
(5.03) 

2.39 
 
(0.0168) 

-7.46 
 
(4.43) 

-1.68 
 
(0.0923) 

-31.8 
 
(15.9) 

-2 
 
(0.0453) 10 2 

0.00839 
 
(0.0121) 

0.265 
 
(-
0.0575) 

Percentage of renter-occupied housing 
units of total housing units 

-0.00132 
 
(0.0222) 

-0.0595 
 
(0.953) 

-0.00381 
 
(0.00957) 

-0.398 
 
(0.691) 

0.0382 
 
(0.0315) 

1.21 
 
(0.225) 10 2 

-0.00141 
 
(-0.00202) 

0.978 
 
(0.968) 

Percentage of vacant housing units 
-0.00792 
(0.0091) 

-0.87 
(0.385) 

2.69e-05 
(0.00581) 

0.00464 
(0.996) 

0.0884 
(0.0214) 

4.13 
(3.62e-
05) 10 2 

0.00514 
(0.00739) 

0.931 
(0.901) 

Percentage of change in number of 
housing units since last census of total 
housing units 

0.76 
 
(0.447) 

1.7 
 
(0.089) 

-0.387 
 
(0.434) 

-0.89 
 
(0.373) 

-0.811 
 
(0.498) 

-1.63 
 
(0.103) 10 2 

-0.000395 
 
(-0.000568) 

0.24 
 
(-
0.0934) 

Table 45. Low bridge treatment effect event study model CEM results (cont’d) 
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Dependent Variable 

Interaction 
Estimator 

for new 
low bridge 

 
(SE) 

t value 
 

(p value) 

new low 
bridge 

Treatment 
Variable 

 
(SE) 

t value 
 

(p 
value) 

new low 
bridge 
Group 

Dummy 
Variable 

 
(SE) 

t value 
 

(p value) 
# Other 
Controls Set 

R2 (Adj. 
R2) diff 

w/o New 
Variables 

R2 
 

(Adj. R2) 
Inverse Hyperbolic Sine 
Transformation of Average household 
income in past 12 months (2010 
Constant $ US, mean = 11.6) 

-0.401 
 
(0.649) 

-0.619 
 
(0.536) 

-0.376 
 
(0.36) 

-1.04 
 
(0.296) 

-3.13 
 
(2.11) 

-1.48 
 
(0.138) 12 3 

0.000712 
 
(0.00102) 

0.992 
 
(0.989) 

Inverse Hyperbolic Sine 
Transformation of Aggregate 
household income in past 12 months 
(2010 Constant $ US, mean = 18.6) 

-0.33 
 
(0.96) 

-0.343 
 
(0.731) 

-0.74 
 
(0.549) 

-1.35 
 
(0.178) 

-5.36 
 
(3.35) 

-1.6 
 
(0.11) 12 3 

0.000844 
 
(0.00121) 

0.993 
 
(0.99) 

Non-White percentage of total 
population 

-0.0676 
 
(0.0618) 

-1.09 
 
(0.274) 

-0.00283 
 
(0.0043) 

-0.659 
 
(0.51) 

0.0564 
 
(0.0658) 

0.857 
 
(0.392) 12 3 

-0.00148 
 
(-0.00216) 

0.963 
 
(0.946) 

Black/African American percentage of 
total population 

-0.0578 
 
(0.0613) 

-0.943 
 
(0.346) 

-0.00475 
 
(0.00335) 

-1.42 
 
(0.156) 

0.048 
 
(0.0655) 

0.733 
 
(0.464) 12 3 

0.000451 
 
(0.000627) 

0.968 
 
(0.953) 

Percentage of Hispanic/Latino of total 
population 

-0.0139 
(0.00456) 

-3.05 
(0.00227) 

0.00149 
(0.00246) 

0.604 
(0.546) 

-0.00123 
(0.00687) 

-0.179 
(0.858) 12 3 

-0.0121 
(-0.0175) 

0.865 
(0.806) 

Percentage of Foreign-born of total 
population 

-0.0044 
(0.00564) 

-0.78 
(0.436) 

-0.00176 
(0.00307) 

-0.572 
(0.567) 

1.58e-05 
(0.00778) 

0.00203 
(0.998) 12 3 

0.00501 
(0.00713) 

0.881 
(0.83) 

Percentage of Children under 18 years 
old of total population 

-0.0154 
 
(0.0181) 

-0.847 
 
(0.397) 

0.00276 
 
(0.00746) 

0.37 
 
(0.712) 

-0.101 
 
(0.0412) 

-2.46 
 
(0.0141) 12 3 

0.00384 
 
(0.00551) 

0.984 
 
(0.977) 

Inverse Hyperbolic Sine 
Transformation of Ratio of adults 18+ 
years old to children under 18 years 
old (adults/children, mean = 0.998) 

-0.0621 
 
(0.0745) 

-0.833 
 
(0.405) 

-0.0224 
 
(0.0275) 

-0.816 
 
(0.415) 

-0.15 
 
(0.204) 

-0.734 
 
(0.463) 12 3 

0.000328 
 
(0.000465) 

0.99 
 
(0.986) 

Percentage of single-parent families 
with own children under 18 years old 
of total families and subfamilies 

-0.00384 
 
(0.0148) 

-0.26 
 
(0.795) 

-0.00101 
 
(0.00507) 

-0.2 
 
(0.841) 

0.0231 
 
(0.02) 

1.16 
 
(0.247) 12 3 

0.001 
 
(0.00142) 

0.964 
 
(0.948) 

Percentage of female-headed families 
with or without own children of total 
families and subfamilies 

-0.00645 
 
(0.0165) 

-0.392 
 
(0.695) 

-0.00285 
 
(0.00745) 

-0.383 
 
(0.702) 

0.0193 
 
(0.0259) 

0.745 
 
(0.456) 12 3 

-0.00052 
 
(-0.00077) 

0.966 
 
(0.951) 

Inverse Hyperbolic Sine 
Transformation of Workers 16+ years 
old traveling to work on public 
transportation (taxi not included 
mean = 3.55) 

-0.627 
 
(0.426) 

-1.47 
 
(0.141) 

-0.14 
 
(0.162) 

-0.864 
 
(0.388) 

0.843 
 
(0.837) 

1.01 
 
(0.314) 12 3 

-5.41e-05 
 
(-0.000112) 

0.947 
 
(0.924) 

Inverse Hyperbolic Sine 
Transformation of Workers 16+ years 
old with travel time to work less than 
25 minutes (mean = 5.16) 

-0.0529 
 
(0.44) 

-0.12 
 
(0.904) 

0.039 
 
(0.152) 

0.256 
 
(0.798) 

-1.92 
 
(1.13) 

-1.69 
 
(0.0908) 12 3 

0.0031 
 
(0.00444) 

0.988 
 
(0.983) 

Inverse Hyperbolic Sine 
Transformation of Workers 16+ years 
old with travel time to work 25 to 44 
minutes (mean = 4.5) 

-0.18 
 
(0.413) 

-0.434 
 
(0.664) 

0.0691 
 
(0.144) 

0.481 
 
(0.631) 

-2.67 
 
(1.05) 

-2.54 
 
(0.011) 12 3 

0.00419 
 
(0.00601) 

0.985 
 
(0.979) 

Inverse Hyperbolic Sine 
Transformation of Workers 16+ years 
old with travel time to work more 
than 45 minutes (mean = 3.9) 

-0.174 
 
(0.353) 

-0.494 
 
(0.621) 

0.133 
 
(0.118) 

1.12 
 
(0.263) 

-2.72 
 
(0.788) 

-3.45 
 
(0.000556) 12 3 

0.00448 
 
(0.00643) 

0.985 
 
(0.978) 

Percentage of Persons 25+ years old 
who have completed 0-8 years of 
school 

0.00503 
 
(0.00594) 

0.847 
 
(0.397) 

-0.00311 
 
(0.00293) 

-1.06 
 
(0.289) 

0.00972 
 
(0.0123) 

0.792 
 
(0.428) 12 3 

0.000729 
 
(0.001) 

0.929 
 
(0.898) 

Percentage of Persons 25+ years old 
who have completed high school but 
no college 

0.0186 
 
(0.0281) 

0.661 
 
(0.509) 

-0.00341 
 
(0.00653) 

-0.523 
 
(0.601) 

0.0635 
 
(0.0409) 

1.55 
 
(0.121) 12 3 

-0.000845 
 
(-0.00122) 

0.99 
 
(0.986) 

Percentage of Persons 25+ years old 
who have an associate degree but no 
bachelor’s degree 

-0.0199 
 
(0.0074) 

-2.69 
 
(0.00722) 

0.00398 
 
(0.00193) 

2.07 
 
(0.0388) 

0.00776 
 
(0.00831) 

0.934 
 
(0.35) 12 3 

0.00089 
 
(0.00126) 

0.962 
 
(0.945) 

Percentage of Persons 25+ years old 
who have a bachelor’s or 
graduate/professional degree 

-0.046 
 
(0.0257) 

-1.79 
 
(0.0741) 

0.00442 
 
(0.00764) 

0.578 
 
(0.563) 

0.0123 
 
(0.0303) 

0.405 
 
(0.685) 12 3 

-0.000129 
 
(-0.000204) 

0.971 
 
(0.959) 

Percentage of total persons below the 
poverty level in past 12 months 

-0.0691 
 
(0.0602) 

-1.15 
 
(0.251) 

-0.00128 
 
(0.0063) 

-0.204 
 
(0.839) 

0.116 
 
(0.067) 

1.73 
 
(0.0842) 12 3 

0.0042 
 
(0.00599) 

0.927 
 
(0.894) 

Percentage of households with public 
assistance inc. (incl. SSI) last year of 
total households 

-0.00368 
 
(0.0095) 

-0.387 
 
(0.698) 

0.000166 
 
(0.00326) 

0.0508 
 
(0.959) 

0.0169 
 
(0.0125) 

1.36 
 
(0.175) 12 3 

-0.00758 
 
(-0.011) 

0.871 
 
(0.814) 

Ratio of Owner-Occupied housing 
units to Renter Occupied Housing 
units 

7.66 
 
(5.27) 

1.45 
 
(0.146) 

-7.34 
 
(4.46) 

-1.65 
 
(0.0996) 

-16.9 
 
(14.2) 

-1.19 
 
(0.235) 12 3 

0.0119 
 
(0.0166) 

0.268 
 
(-0.0529) 

Percentage of renter-occupied 
housing units of total housing units 

0.00158 
 
(0.0274) 

0.0575 
 
(0.954) 

-0.0086 
 
(0.00993) 

-0.866 
 
(0.387) 

-0.00552 
 
(0.0397) 

-0.139 
 
(0.889) 12 3 

0.00034 
 
(0.000476) 

0.98 
 
(0.971) 

Percentage of vacant housing units 
-0.00787 
(0.00936) 

-0.84 
(0.401) 

-0.000414 
(0.00585) 

-0.0707 
(0.944) 

0.0565 
(0.0225) 

2.51 
(0.0121) 12 3 

0.00593 
(0.00848) 

0.932 
(0.902) 

Percentage of change in number of 
housing units since last census of total 
housing units 

0.499 
 
(0.353) 

1.42 
 
(0.157) 

-0.349 
 
(0.406) 

-0.861 
 
(0.389) 

-0.98 
 
(0.481) 

-2.04 
 
(0.0416) 12 3 

-0.000101 
 
(-0.000632) 

0.24 
 
(-0.0934) 

 
Table 45. Low bridge treatment effect event study model CEM results (cont’d) 



Machine Learning for Public Policy: Applications in Infrastructure and Air Pollution 

191 

Dependent Variable 

Interaction 
Estimator 

for new 
low bridge 

 
(SE) 

t value 
 

(p value) 

new low 
bridge 

Treatment 
Variable 

 
(SE) 

t value 
 

(p 
value) 

new low 
bridge 
Group 

Dummy 
Variable 

 
(SE) 

t value 
 

(p value) 
# Other 
Controls Set 

R2 (Adj. 
R2) diff 

w/o New 
Variables 

R2 
 

(Adj. R2) 
Inverse Hyperbolic Sine 
Transformation of Average household 
income in past 12 months (2010 
Constant $ US, mean = 11.6) 

-0.737 
 
(0.85) 

-0.867 
 
(0.386) 

-0.341 
 
(0.371) 

-0.92 
 
(0.358) 

-1.62 
 
(2.01) 

-0.809 
 
(0.419) 12 4 

0.00052 
 
(0.000743) 

0.992 
 
(0.989) 

Inverse Hyperbolic Sine 
Transformation of Aggregate 
household income in past 12 months 
(2010 Constant $ US, mean = 18.6) 

-0.923 
 
(1.27) 

-0.73 
 
(0.466) 

-0.621 
 
(0.552) 

-1.13 
 
(0.26) 

-3.2 
 
(3.12) 

-1.03 
 
(0.305) 12 4 

0.000828 
 
(0.00118) 

0.993 
 
(0.99) 

Non-White percentage of total 
population 

-0.0498 
 
(0.0512) 

-0.974 
 
(0.33) 

0.00383 
 
(0.00401) 

0.956 
 
(0.339) 

0.0358 
 
(0.052) 

0.688 
 
(0.491) 12 4 

-0.0049 
 
(-0.00709) 

0.959 
 
(0.941) 

Black/African American percentage of 
total population 

-0.0412 
 
(0.0522) 

-0.788 
 
(0.431) 

-0.000363 
 
(0.003) 

-0.121 
 
(0.904) 

0.0319 
 
(0.0526) 

0.607 
 
(0.544) 12 4 

-0.00467 
 
(-0.00676) 

0.962 
 
(0.946) 

Percentage of Hispanic/Latino of total 
population 

-0.0064 
(0.0034) 

-1.88 
(0.0602) 

0.00279 
(0.00204) 

1.37 
(0.171) 

0.00419 
(0.00727) 

0.577 
(0.564) 12 4 

0.0389 
(0.0559) 

0.916 
(0.879) 

Percentage of Foreign-born of total 
population 

-0.00288 
(0.00692) 

-0.416 
(0.677) 

0.000687 
(0.00295) 

0.233 
(0.816) 

-0.00965 
(0.00921) 

-1.05 
(0.295) 12 4 

0.0126 
(0.0181) 

0.889 
(0.84) 

Percentage of Children under 18 years 
old of total population 

-0.0228 
 
(0.015) 

-1.52 
 
(0.128) 

0.00429 
 
(0.00675) 

0.635 
 
(0.525) 

-0.0568 
 
(0.03) 

-1.89 
 
(0.0587) 12 4 

0.00575 
 
(0.00825) 

0.986 
 
(0.979) 

Inverse Hyperbolic Sine 
Transformation of Ratio of adults 18+ 
years old to children under 18 years 
old (adults/children, mean = 0.998) 

-0.0805 
 
(0.0913) 

-0.881 
 
(0.378) 

-0.0128 
 
(0.0274) 

-0.465 
 
(0.642) 

-0.082 
 
(0.202) 

-0.406 
 
(0.684) 12 4 

-5.21e-05 
 
(-8.46e-05) 

0.99 
 
(0.986) 

Percentage of single-parent families 
with own children under 18 years old 
of total families and subfamilies 

0.00173 
 
(0.0152) 

0.114 
 
(0.909) 

-0.000271 
 
(0.00555) 

-0.0488 
 
(0.961) 

0.0424 
 
(0.0208) 

2.04 
 
(0.0414) 12 4 

-0.000861 
 
(-0.00127) 

0.962 
 
(0.946) 

Percentage of female-headed families 
with or without own children of total 
families and subfamilies 

-0.00683 
 
(0.0206) 

-0.332 
 
(0.74) 

0.00163 
 
(0.00837) 

0.195 
 
(0.846) 

0.0547 
 
(0.0344) 

1.59 
 
(0.113) 12 4 

-0.00297 
 
(-0.0043) 

0.963 
 
(0.947) 

Inverse Hyperbolic Sine 
Transformation of Workers 16+ years 
old traveling to work on public 
transportation (taxi not included 
mean = 3.55) 

-0.825 
 
(0.384) 

-2.15 
 
(0.0318) 

-0.136 
 
(0.171) 

-0.792 
 
(0.428) 

1.65 
 
(0.874) 

1.89 
 
(0.0594) 12 4 

0.000658 
 
(0.000896) 

0.948 
 
(0.925) 

Inverse Hyperbolic Sine 
Transformation of Workers 16+ years 
old with travel time to work less than 
25 minutes (mean = 5.16) 

-0.314 
 
(0.33) 

-0.953 
 
(0.341) 

0.0236 
 
(0.144) 

0.165 
 
(0.869) 

-1.16 
 
(0.877) 

-1.32 
 
(0.186) 12 4 

0.00467 
 
(0.0067) 

0.99 
 
(0.985) 

Inverse Hyperbolic Sine 
Transformation of Workers 16+ years 
old with travel time to work 25 to 44 
minutes (mean = 4.5) 

-0.424 
 
(0.32) 

-1.32 
 
(0.185) 

0.0511 
 
(0.137) 

0.374 
 
(0.709) 

-1.67 
 
(0.824) 

-2.03 
 
(0.0426) 12 4 

0.00535 
 
(0.00768) 

0.986 
 
(0.98) 

Inverse Hyperbolic Sine 
Transformation of Workers 16+ years 
old with travel time to work more 
than 45 minutes (mean = 3.9) 

-0.385 
 
(0.287) 

-1.34 
 
(0.179) 

0.0889 
 
(0.11) 

0.811 
 
(0.417) 

-1.94 
 
(0.643) 

-3.02 
 
(0.00256) 12 4 

0.00639 
 
(0.00917) 

0.987 
 
(0.981) 

Percentage of Persons 25+ years old 
who have completed 0-8 years of 
school 

0.000602 
 
(0.00846) 

0.0712 
 
(0.943) 

-0.00122 
 
(0.00305) 

-0.401 
 
(0.688) 

0.0211 
 
(0.0142) 

1.49 
 
(0.137) 12 4 

0.0018 
 
(0.00252) 

0.93 
 
(0.899) 

Percentage of Persons 25+ years old 
who have completed high school but 
no college 

0.0338 
 
(0.0296) 

1.14 
 
(0.253) 

-0.00638 
 
(0.00586) 

-1.09 
 
(0.276) 

0.0812 
 
(0.0384) 

2.12 
 
(0.0343) 12 4 

-0.000471 
 
(-
0.000686) 

0.991 
 
(0.987) 

Percentage of Persons 25+ years old 
who have an associate degree but no 
bachelor’s degree 

-0.0174 
 
(0.00696) 

-2.5 
 
(0.0125) 

0.00422 
 
(0.00208) 

2.03 
 
(0.0422) 

0.00998 
 
(0.00853) 

1.17 
 
(0.242) 12 4 

9.49e-05 
 
(9.9e-05) 

0.961 
 
(0.944) 

Percentage of Persons 25+ years old 
who have a bachelor’s or 
graduate/professional degree 

-0.0701 
 
(0.0244) 

-2.87 
 
(0.00409) 

0.0137 
 
(0.00794) 

1.72 
 
(0.0857) 

-0.0325 
 
(0.0285) 

-1.14 
 
(0.254) 12 4 

-0.00254 
 
(-0.00368) 

0.969 
 
(0.955) 

Percentage of total persons below the 
poverty level in past 12 months 

-0.0739 
 
(0.0649) 

-1.14 
 
(0.255) 

0.00268 
 
(0.0073) 

0.367 
 
(0.713) 

0.134 
 
(0.068) 

1.98 
 
(0.0483) 12 4 

-0.00134 
 
(-0.002) 

0.921 
 
(0.886) 

Percentage of households with public 
assistance inc. (incl. SSI) last year of 
total households 

-0.0146 
 
(0.0114) 

-1.28 
 
(0.199) 

0.00279 
 
(0.00398) 

0.702 
 
(0.483) 

0.039 
 
(0.018) 

2.17 
 
(0.0303) 12 4 

-0.0037 
 
(-0.00544) 

0.875 
 
(0.819) 

Ratio of Owner-Occupied housing 
units to Renter Occupied Housing 
units 

11.4 
 
(4.85) 

2.35 
 
(0.0188) 

-7.74 
 
(4.37) 

-1.77 
 
(0.0768) 

-16.5 
 
(14.8) 

-1.12 
 
(0.265) 12 4 

0.00467 
 
(0.006) 

0.261 
 
(-0.0635) 

Percentage of renter-occupied 
housing units of total housing units 

-0.0056 
 
(0.0233) 

-0.241 
 
(0.81) 

-0.00184 
 
(0.0108) 

-0.17 
 
(0.865) 

0.0239 
 
(0.0399) 

0.598 
 
(0.55) 12 4 

-0.00311 
 
(-0.00449) 

0.976 
 
(0.966) 

Percentage of vacant housing units 
-0.00337 
(0.0102) 

-0.332 
(0.74) 

-0.00108 
(0.00591) 

-0.183 
(0.855) 

0.061 
(0.0211) 

2.89 
(0.00388) 12 4 

0.0111 
(0.016) 

0.937 
(0.91) 

Percentage of change in number of 
housing units since last census of total 
housing units 

0.67 
 
(0.461) 

1.45 
 
(0.146) 

-0.395 
 
(0.436) 

-0.906 
 
(0.365) 

-1.03 
 
(0.546) 

-1.88 
 
(0.0596) 12 4 

-0.000581 
 
(-0.00157) 

0.239 
 
(-0.0944) 

Table 46. Medium bridge treatment effect event study model CEM results 
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Dependent Variable 

Interaction 
Estimator 

for new 
medium 
bridge 

 
(SE) 

t value 
 

(p value) 

new 
medium 
bridge 

Treatment 
Variable 

 
(SE) 

t value 
 

(p 
value) 

new 
medium 
bridge 
Group 

Dummy 
Variable 

 
(SE) 

t value 
 

(p value) 
# Other 
Controls Set 

R2 (Adj. 
R2) diff 

w/o New 
Variables 

R2 
 

(Adj. 
R2) 

Inverse Hyperbolic Sine 
Transformation of Average household 
income in past 12 months (2010 
Constant $ US, mean = 11.4) 

-0.306 
 
(0.187) 

-1.64 
 
(0.102) 

0.0771 
 
(0.124) 

0.621 
 
(0.534) 

-0.392 
 
(1.7) 

-0.231 
 
(0.818) 12 1 

4.85e-06 
 
(3.16e-06) 

0.99 
 
(0.986) 

Inverse Hyperbolic Sine 
Transformation of Aggregate 
household income in past 12 months 
(2010 Constant $ US, mean = 18.4) 

-0.624 
 
(0.292) 

-2.14 
 
(0.0326) 

0.0925 
 
(0.193) 

0.479 
 
(0.632) 

6.5 
 
(2.39) 

2.72 
 
(0.00656) 12 1 

7.67e-06 
 
(7.32e-06) 

0.991 
 
(0.987) 

Non-White percentage of total 
population 

-0.00258 
 
(0.00795) 

-0.324 
 
(0.746) 

0.000885 
 
(0.00196) 

0.452 
 
(0.651) 

0.122 
 
(0.0393) 

3.1 
 
(0.00195) 12 1 

2e-06 
 
(-1.28e-05) 

0.958 
 
(0.941) 

Black/African American percentage of 
total population 

-0.00921 
 
(0.00719) 

-1.28 
 
(0.2) 

0.000981 
 
(0.0016) 

0.611 
 
(0.541) 

0.0969 
 
(0.0275) 

3.53 
 
(0.000425) 12 1 

3.27e-05 
 
(3.05e-05) 

0.959 
 
(0.943) 

Percentage of Hispanic/Latino of total 
population 

-0.004 
(0.0023) 

-1.74 
(0.0821) 

0.00215 
(0.00116) 

1.86 
(0.0629) 

-0.083 
(0.0481) 

-1.73 
(0.0844) 12 1 

7.03e-05 
(4.99e-05) 

0.87 
(0.819) 

Percentage of Foreign-born of total 
population 

0.00421 
(0.00303) 

1.39 
(0.165) 

-0.00103 
(0.00119) 

-0.869 
(0.385) 

0.0779 
(0.0366) 

2.12 
(0.0336) 12 1 

4.69e-05 
(2.33e-05) 

0.887 
(0.842) 

Percentage of Children under 18 years 
old of total population 

-0.0119 
 
(0.00552) 

-2.16 
 
(0.0308) 

0.00584 
 
(0.00325) 

1.8 
 
(0.0725) 

0.152 
 
(0.0389) 

3.91 
 
(9.22e-05) 12 1 

2.64e-05 
 
(2.89e-05) 

0.979 
 
(0.97) 

Inverse Hyperbolic Sine 
Transformation of Ratio of adults 18+ 
years old to children under 18 years 
old (adults/children, mean = 0.988) 

-0.0214 
 
(0.0213) 

-1 
 
(0.315) 

-0.000798 
 
(0.0128) 

-0.0621 
 
(0.95) 

-0.0654 
 
(0.245) 

-0.266 
 
(0.79) 12 1 

3.99e-06 
 
(5.83e-07) 

0.987 
 
(0.981) 

Percentage of single-parent families 
with own children under 18 years old 
of total families and subfamilies 

-0.00711 
 
(0.00346) 

-2.06 
 
(0.0397) 

0.00307 
 
(0.00163) 

1.88 
 
(0.0597) 

0.436 
 
(0.0281) 

15.5 
 
(1.61e-53) 12 1 

3.63e-05 
 
(3.38e-05) 

0.954 
 
(0.937) 

Percentage of female-headed families 
with or without own children of total 
families and subfamilies 

-0.0068 
 
(0.004) 

-1.7 
 
(0.089) 

0.00178 
 
(0.00203) 

0.874 
 
(0.382) 

0.431 
 
(0.0577) 

7.47 
 
(9.01e-14) 12 1 

1.25e-05 
 
(5.82e-06) 

0.969 
 
(0.956) 

Inverse Hyperbolic Sine 
Transformation of Workers 16+ years 
old traveling to work on public 
transportation (taxi not included 
mean = 3.7) 

-0.506 
 
(0.144) 

-3.51 
 
(0.000447) 

0.0798 
 
(0.0724) 

1.1 
 
(0.271) 

11.6 
 
(4.35) 

2.68 
 
(0.0074) 12 1 

0.000128 
 
(0.000155) 

0.936 
 
(0.911) 

Inverse Hyperbolic Sine 
Transformation of Workers 16+ years 
old with travel time to work less than 
25 minutes (mean = 5.27) 

-0.345 
 
(0.129) 

-2.68 
 
(0.00739) 

0.107 
 
(0.0785) 

1.36 
 
(0.173) 

-0.833 
 
(1.43) 

-0.582 
 
(0.56) 12 1 

2.53e-05 
 
(2.85e-05) 

0.982 
 
(0.974) 

Inverse Hyperbolic Sine 
Transformation of Workers 16+ years 
old with travel time to work 25 to 44 
minutes (mean = 4.67) 

-0.256 
 
(0.126) 

-2.03 
 
(0.042) 

0.107 
 
(0.0741) 

1.44 
 
(0.149) 

1.32 
 
(1.14) 

1.15 
 
(0.249) 12 1 

2.1e-05 
 
(2.14e-05) 

0.979 
 
(0.97) 

Inverse Hyperbolic Sine 
Transformation of Workers 16+ years 
old with travel time to work more 
than 45 minutes (mean = 4.05) 

-0.285 
 
(0.111) 

-2.56 
 
(0.0105) 

0.107 
 
(0.0655) 

1.63 
 
(0.103) 

8.57 
 
(3.98) 

2.16 
 
(0.0311) 12 1 

3.11e-05 
 
(3.5e-05) 

0.978 
 
(0.969) 

Percentage of Persons 25+ years old 
who have completed 0-8 years of 
school 

-0.00403 
 
(0.0035) 

-1.15 
 
(0.25) 

-0.000411 
 
(0.00141) 

-0.291 
 
(0.771) 

0.0557 
 
(0.0983) 

0.566 
 
(0.571) 12 1 

4.01e-05 
 
(2.09e-05) 

0.906 
 
(0.868) 

Percentage of Persons 25+ years old 
who have completed high school but 
no college 

-0.0164 
 
(0.00732) 

-2.24 
 
(0.0248) 

0.00129 
 
(0.00286) 

0.449 
 
(0.653) 

-0.623 
 
(0.0826) 

-7.54 
 
(5.13e-14) 12 1 

1.51e-05 
 
(1.67e-05) 

0.988 
 
(0.984) 

Percentage of Persons 25+ years old 
who have an associate degree but no 
bachelor’s degree 

9.13e-05 
 
(0.00204) 

0.0447 
 
(0.964) 

0.000595 
 
(0.000993) 

0.598 
 
(0.55) 

-0.412 
 
(0.0636) 

-6.47 
 
(1.01e-10) 12 1 

3.25e-06 
 
(-1.15e-05) 

0.957 
 
(0.94) 

Percentage of Persons 25+ years old 
who have a bachelor’s or 
graduate/professional degree 

0.029 
 
(0.00937) 

3.1 
 
(0.00198) 

0.00227 
 
(0.00371) 

0.612 
 
(0.54) 

-0.341 
 
(0.36) 

-0.946 
 
(0.344) 12 1 

0.000113 
 
(0.000145) 

0.968 
 
(0.955) 

Percentage of total persons below the 
poverty level in past 12 months 

-0.0116 
 
(0.00771) 

-1.5 
 
(0.134) 

0.000129 
 
(0.0026) 

0.0495 
 
(0.96) 

0.506 
 
(0.116) 

4.36 
 
(1.34e-05) 12 1 

7.47e-05 
 
(7.33e-05) 

0.917 
 
(0.884) 

Percentage of households with public 
assistance inc. (incl. SSI) last year of 
total households 

-0.00281 
 
(0.00403) 

-0.698 
 
(0.485) 

-2.96e-05 
 
(0.00139) 

-0.0213 
 
(0.983) 

0.107 
 
(0.0431) 

2.5 
 
(0.0126) 12 1 

1.62e-05 
 
(-2.18e-05) 

0.88 
 
(0.833) 

Ratio of Owner-Occupied housing 
units to Renter Occupied Housing 
units 

-26.3 
 
(25.5) 

-1.03 
 
(0.301) 

-3.73 
 
(4.98) 

-0.749 
 
(0.454) 

-132 
 
(42.4) 

-3.1 
 
(0.00192) 12 1 

0.000655 
 
(0.000676) 

0.357 
 
(0.104) 

Percentage of renter-occupied 
housing units of total housing units 

-0.00209 
 
(0.00765) 

-0.273 
 
(0.785) 

0.00152 
 
(0.00374) 

0.406 
 
(0.685) 

0.787 
 
(0.15) 

5.26 
 
(1.49e-07) 12 1 

1.09e-06 
 
(-9.17e-06) 

0.971 
 
(0.96) 

Percentage of vacant housing units 
0.0015 
(0.00402) 

0.372 
(0.71) 

-3e-04 
(0.00224) 

-0.134 
(0.893) 

0.42 
(0.0908) 

4.63 
(3.67e-06) 12 1 

1.55e-06 
(-3.52e-05) 

0.899 
(0.859) 

Percentage of change in number of 
housing units since last census of total 
housing units 

0.251 
 
(0.471) 

0.532 
 
(0.595) 

-0.405 
 
(0.319) 

-1.27 
 
(0.204) 

1.4 
 
(1.25) 

1.13 
 
(0.26) 12 1 

8.86e-05 
 
(-9.19e-05) 

0.419 
 
(0.189) 

Table 46. Medium bridge treatment effect event study model w/ CEM results (cont’d) 
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Dependent Variable 

Interaction 
Estimator 

for new 
medium 
bridge 

 
(SE) 

t value 
 

(p value) 

new 
medium 
bridge 

Treatment 
Variable 

 
(SE) 

t value 
 

(p 
value) 

new 
medium 
bridge 
Group 

Dummy 
Variable 

 
(SE) 

t value 
 

(p value) 
# Other 
Controls Set 

R2 (Adj. 
R2) diff 

w/o New 
Variables 

R2 
 

(Adj. 
R2) 

Inverse Hyperbolic Sine 
Transformation of Average household 
income in past 12 months (2010 
Constant $ US, mean = 11.4) 

-0.0245 
 
(0.179) 

-0.137 
 
(0.891) 

0.038 
 
(0.117) 

0.324 
 
(0.746) 

-2.91 
 
(2.07) 

-1.4 
 
(0.161) 10 2 

0.00124 
 
(0.00173) 

0.992 
 
(0.988) 

Inverse Hyperbolic Sine 
Transformation of Aggregate 
household income in past 12 months 
(2010 Constant $ US, mean = 18.4) 

-0.154 
 
(0.273) 

-0.564 
 
(0.573) 

0.0237 
 
(0.177) 

0.134 
 
(0.894) 

3.86 
 
(2.48) 

1.55 
 
(0.12) 10 2 

0.00143 
 
(0.002) 

0.992 
 
(0.989) 

Non-White percentage of total 
population 

0.00277 
 
(0.00811) 

0.342 
 
(0.732) 

0.00263 
 
(0.0023) 

1.14 
 
(0.253) 

0.101 
 
(0.177) 

0.571 
 
(0.568) 10 2 

-0.01 
 
(-0.014) 

0.948 
 
(0.927) 

Black/African American percentage of 
total population 

-0.00522 
 
(0.00708) 

-0.737 
 
(0.461) 

0.00188 
 
(0.0018) 

1.05 
 
(0.296) 

0.0702 
 
(0.11) 

0.641 
 
(0.522) 10 2 

-0.00663 
 
(-0.00924) 

0.953 
 
(0.934) 

Percentage of Hispanic/Latino of total 
population 

-0.00281 
(0.00234) 

-1.2 
(0.231) 

0.00189 
(0.00118) 

1.6 
(0.11) 

-0.171 
(0.0734) 

-2.32 
(0.0202) 10 2 

-0.00364 
(-0.00508) 

0.866 
(0.814) 

Percentage of Foreign-born of total 
population 

0.00498 
(0.00312) 

1.6 
(0.11) 

-0.000555 
(0.00121) 

-0.46 
(0.646) 

0.108 
(0.0187) 

5.77 
(8.15e-09) 10 2 

-0.00309 
(-0.00431) 

0.883 
(0.837) 

Percentage of Children under 18 years 
old of total population 

-0.000313 
 
(0.00489) 

-0.0639 
 
(0.949) 

0.00461 
 
(0.00273) 

1.69 
 
(0.0915) 

0.0296 
 
(0.0559) 

0.529 
 
(0.596) 10 2 

0.00543 
 
(0.00757) 

0.984 
 
(0.978) 

Inverse Hyperbolic Sine 
Transformation of Ratio of adults 18+ 
years old to children under 18 years 
old (adults/children, mean = 0.988) 

-0.00613 
 
(0.0215) 

-0.284 
 
(0.776) 

-0.00334 
 
(0.0128) 

-0.26 
 
(0.795) 

-0.218 
 
(0.248) 

-0.881 
 
(0.378) 10 2 

0.000274 
 
(0.000382) 

0.987 
 
(0.982) 

Percentage of single-parent families 
with own children under 18 years old 
of total families and subfamilies 

-0.00306 
 
(0.0035) 

-0.875 
 
(0.382) 

0.00228 
 
(0.00162) 

1.41 
 
(0.16) 

0.305 
 
(0.0206) 

14.8 
 
(4.62e-49) 10 2 

-0.000871 
 
(-0.00121) 

0.954 
 
(0.935) 

Percentage of female-headed families 
with or without own children of total 
families and subfamilies 

-0.000547 
 
(0.00404) 

-0.135 
 
(0.892) 

0.000875 
 
(0.00198) 

0.443 
 
(0.658) 

0.297 
 
(0.0992) 

2.99 
 
(0.00276) 10 2 

0.000552 
 
(0.000769) 

0.969 
 
(0.957) 

Inverse Hyperbolic Sine 
Transformation of Workers 16+ years 
old traveling to work on public 
transportation (taxi not included mean 
= 3.7) 

-0.378 
 
(0.139) 

-2.71 
 
(0.00668) 

0.074 
 
(0.0697) 

1.06 
 
(0.288) 

9.53 
 
(4.84) 

1.97 
 
(0.049) 10 2 

0.00119 
 
(0.00166) 

0.938 
 
(0.913) 

Inverse Hyperbolic Sine 
Transformation of Workers 16+ years 
old with travel time to work less than 
25 minutes (mean = 5.27) 

-0.0679 
 
(0.106) 

-0.643 
 
(0.521) 

0.0593 
 
(0.062) 

0.956 
 
(0.339) 

-2.05 
 
(1.19) 

-1.72 
 
(0.0858) 10 2 

0.0061 
 
(0.00851) 

0.988 
 
(0.983) 

Inverse Hyperbolic Sine 
Transformation of Workers 16+ years 
old with travel time to work 25 to 44 
minutes (mean = 4.67) 

0.000931 
 
(0.106) 

0.0088 
 
(0.993) 

0.0644 
 
(0.06) 

1.07 
 
(0.283) 

-1.22 
 
(1.13) 

-1.08 
 
(0.281) 10 2 

0.00618 
 
(0.00862) 

0.985 
 
(0.979) 

Inverse Hyperbolic Sine 
Transformation of Workers 16+ years 
old with travel time to work more than 
45 minutes (mean = 4.05) 

-0.0784 
 
(0.0957) 

-0.819 
 
(0.413) 

0.0687 
 
(0.0561) 

1.22 
 
(0.221) 

5.75 
 
(4.54) 

1.27 
 
(0.205) 10 2 

0.0051 
 
(0.00711) 

0.983 
 
(0.976) 

Percentage of Persons 25+ years old 
who have completed 0-8 years of 
school 

-0.00226 
 
(0.0034) 

-0.665 
 
(0.506) 

-0.000205 
 
(0.00138) 

-0.149 
 
(0.882) 

0.0327 
 
(0.0816) 

0.401 
 
(0.688) 10 2 

-0.000162 
 
(-0.000226) 

0.905 
 
(0.868) 

Percentage of Persons 25+ years old 
who have completed high school but 
no college 

-0.0143 
 
(0.00913) 

-1.56 
 
(0.118) 

-0.00227 
 
(0.00346) 

-0.657 
 
(0.511) 

-1.04 
 
(0.106) 

-9.82 
 
(1.3e-22) 10 2 

-0.0025 
 
(-0.00348) 

0.986 
 
(0.98) 

Percentage of Persons 25+ years old 
who have an associate degree but no 
bachelor’s degree 

-0.0013 
 
(0.00212) 

-0.612 
 
(0.54) 

0.000103 
 
(0.00103) 

0.1 
 
(0.92) 

-0.416 
 
(0.0393) 

-10.6 
 
(4.63e-26) 10 2 

-0.0018 
 
(-0.00251) 

0.955 
 
(0.937) 

Percentage of Persons 25+ years old 
who have a bachelor’s or 
graduate/professional degree 

0.0265 
 
(0.0123) 

2.15 
 
(0.0318) 

0.00727 
 
(0.00461) 

1.58 
 
(0.115) 

0.226 
 
(0.407) 

0.554 
 
(0.58) 10 2 

-0.00889 
 
(-0.0124) 

0.959 
 
(0.942) 

Percentage of total persons below the 
poverty level in past 12 months 

-0.00492 
 
(0.0077) 

-0.639 
 
(0.523) 

-0.000234 
 
(0.00244) 

-0.096 
 
(0.924) 

0.442 
 
(0.144) 

3.06 
 
(0.0022) 10 2 

0.00145 
 
(0.00202) 

0.918 
 
(0.886) 

Percentage of households with public 
assistance inc. (incl. SSI) last year of 
total households 

2.73e-05 
 
(0.00404) 

0.00676 
 
(0.995) 

-4.22e-06 
 
(0.0013) 

-0.00325 
 
(0.997) 

0.123 
 
(0.0592) 

2.07 
 
(0.0382) 10 2 

0.00373 
 
(0.00519) 

0.884 
 
(0.838) 

Ratio of Owner-Occupied housing units 
to Renter Occupied Housing units 

-28.9 
 
(24.5) 

-1.18 
 
(0.237) 

-2.13 
 
(5.22) 

-0.409 
 
(0.683) 

-61.9 
 
(47.1) 

-1.32 
 
(0.188) 10 2 

-0.0245 
 
(-0.0341) 

0.332 
 
(0.0689) 

Percentage of renter-occupied housing 
units of total housing units 

0.0084 
 
(0.00768) 

1.09 
 
(0.274) 

0.000615 
 
(0.00363) 

0.169 
 
(0.866) 

0.607 
 
(0.208) 

2.91 
 
(0.00359) 10 2 

0.0023 
 
(0.00321) 

0.973 
 
(0.963) 

Percentage of vacant housing units 
0.0078 
(0.00372) 

2.1 
(0.0359) 

-0.00148 
(0.00215) 

-0.686 
(0.493) 

0.287 
(0.0874) 

3.28 
(0.00103) 10 2 

0.007 
(0.00975) 

0.906 
(0.869) 

Percentage of change in number of 
housing units since last census of total 
housing units 

0.262 
 
(0.468) 

0.56 
 
(0.576) 

-0.445 
 
(0.333) 

-1.34 
 
(0.181) 

2.77 
 
(1.76) 

1.57 
 
(0.115) 10 2 

-6.21e-05 
 
(-8.66e-05) 

0.418 
 
(0.189) 

Table 46. Medium bridge treatment effect event study model CEM results (cont’d) 
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Dependent Variable 

Interaction 
Estimator 

for new 
medium 
bridge 

 
(SE) 

t value 
 

(p value) 

new 
medium 
bridge 

Treatment 
Variable 

 
(SE) 

t value 
 

(p 
value) 

new 
medium 
bridge 
Group 

Dummy 
Variable 

 
(SE) 

t value 
 

(p value) 
# Other 
Controls Set 

R2 (Adj. 
R2) diff 

w/o New 
Variables 

R2 
 

(Adj. 
R2) 

Inverse Hyperbolic Sine Transformation 
of Average household income in past 12 
months (2010 Constant $ US, mean = 
11.4) 

-0.222 
 
(0.186) 

-1.2 
 
(0.232) 

0.0498 
 
(0.126) 

0.397 
 
(0.692) 

-4.62 
 
(1.64) 

-2.82 
 
(0.00483) 12 3 

0.000618 
 
(0.000858) 

0.991 
 
(0.987) 

Inverse Hyperbolic Sine Transformation 
of Aggregate household income in past 
12 months (2010 Constant $ US, mean = 
18.4) 

-0.486 
 
(0.288) 

-1.69 
 
(0.0919) 

0.044 
 
(0.194) 

0.227 
 
(0.821) 

0.276 
 
(2.62) 

0.105 
 
(0.916) 12 3 

0.000675 
 
(0.000937) 

0.992 
 
(0.988) 

Non-White percentage of total 
population 

0.000128 
 
(0.00812) 

0.0158 
 
(0.987) 

0.00127 
 
(0.00203) 

0.626 
 
(0.532) 

0.075 
 
(0.0567) 

1.32 
 
(0.186) 12 3 

-0.00344 
 
(-0.00482) 

0.954 
 
(0.936) 

Black/African American percentage of 
total population 

-0.00741 
 
(0.00714) 

-1.04 
 
(0.299) 

0.00121 
 
(0.0016) 

0.756 
 
(0.45) 

0.0599 
 
(0.0275) 

2.18 
 
(0.0293) 12 3 

-0.00114 
 
(-0.0016) 

0.958 
 
(0.941) 

Percentage of Hispanic/Latino of total 
population 

-0.00297 
(0.00233) 

-1.27 
(0.203) 

0.00171 
(0.0012) 

1.43 
(0.154) 

-0.0925 
(0.0466) 

-1.98 
(0.0472) 12 3 

-0.00765 
(-0.0107) 

0.862 
(0.808) 

Percentage of Foreign-born of total 
population 

0.00419 
(0.00304) 

1.38 
(0.168) 

-0.000998 
(0.00119) 

-0.843 
(0.4) 

0.0821 
(0.0309) 

2.65 
(0.008) 12 3 

-0.000434 
(-0.000647) 

0.886 
(0.841) 

Percentage of Children under 18 years 
old of total population 

-0.00809 
 
(0.00528) 

-1.53 
 
(0.125) 

0.00453 
 
(0.00306) 

1.48 
 
(0.139) 

-0.0644 
 
(0.0469) 

-1.37 
 
(0.17) 12 3 

0.00371 
 
(0.00517) 

0.982 
 
(0.975) 

Inverse Hyperbolic Sine Transformation 
of Ratio of adults 18+ years old to 
children under 18 years old 
(adults/children, mean = 0.988) 

-0.0168 
 
(0.0213) 

-0.788 
 
(0.431) 

-0.00184 
 
(0.0131) 

-0.14 
 
(0.888) 

-0.243 
 
(0.249) 

-0.977 
 
(0.328) 12 3 

0.000129 
 
(0.000175) 

0.987 
 
(0.981) 

Percentage of single-parent families 
with own children under 18 years old of 
total families and subfamilies 

-0.00572 
 
(0.00333) 

-1.72 
 
(0.0859) 

0.00244 
 
(0.00155) 

1.57 
 
(0.117) 

0.31 
 
(0.0575) 

5.39 
 
(7.23e-08) 12 3 

0.00207 
 
(0.00287) 

0.957 
 
(0.939) 

Percentage of female-headed families 
with or without own children of total 
families and subfamilies 

-0.00458 
 
(0.00386) 

-1.19 
 
(0.236) 

0.000966 
 
(0.00192) 

0.503 
 
(0.615) 

0.286 
 
(0.0377) 

7.59 
 
(3.67e-14) 12 3 

0.00173 
 
(0.0024) 

0.97 
 
(0.959) 

Inverse Hyperbolic Sine Transformation 
of Workers 16+ years old traveling to 
work on public transportation (taxi not 
included mean = 3.7) 

-0.447 
 
(0.143) 

-3.13 
 
(0.00175) 

0.0751 
 
(0.072) 

1.04 
 
(0.297) 

8.82 
 
(4.54) 

1.94 
 
(0.0519) 12 3 

-0.000453 
 
(-0.000656) 

0.936 
 
(0.911) 

Inverse Hyperbolic Sine Transformation 
of Workers 16+ years old with travel 
time to work less than 25 minutes 
(mean = 5.27) 

-0.272 
 
(0.123) 

-2.2 
 
(0.0277) 

0.0688 
 
(0.0741) 

0.929 
 
(0.353) 

-4.34 
 
(2.18) 

-1.99 
 
(0.0464) 12 3 

0.00328 
 
(0.00457) 

0.985 
 
(0.979) 

Inverse Hyperbolic Sine Transformation 
of Workers 16+ years old with travel 
time to work 25 to 44 minutes (mean = 
4.67) 

-0.182 
 
(0.118) 

-1.54 
 
(0.123) 

0.0721 
 
(0.0701) 

1.03 
 
(0.303) 

-2.82 
 
(1.54) 

-1.83 
 
(0.0678) 12 3 

0.00378 
 
(0.00526) 

0.983 
 
(0.976) 

Inverse Hyperbolic Sine Transformation 
of Workers 16+ years old with travel 
time to work more than 45 minutes 
(mean = 4.05) 

-0.219 
 
(0.103) 

-2.12 
 
(0.0341) 

0.0756 
 
(0.0613) 

1.23 
 
(0.217) 

4.68 
 
(3.14) 

1.49 
 
(0.135) 12 3 

0.0037 
 
(0.00516) 

0.981 
 
(0.974) 

Percentage of Persons 25+ years old 
who have completed 0-8 years of school 

-0.00299 
 
(0.00337) 

-0.888 
 
(0.374) 

-0.000692 
 
(0.00136) 

-0.509 
 
(0.611) 

-0.00543 
 
(0.0923) 

-0.0588 
 
(0.953) 12 3 

0.00267 
 
(0.00369) 

0.908 
 
(0.872) 

Percentage of Persons 25+ years old 
who have completed high school but no 
college 

-0.0142 
 
(0.0077) 

-1.84 
 
(0.0652) 

-0.000659 
 
(0.00296) 

-0.223 
 
(0.824) 

-0.711 
 
(0.115) 

-6.2 
 
(5.99e-10) 12 3 

-0.000835 
 
(-0.00117) 

0.987 
 
(0.982) 

Percentage of Persons 25+ years old 
who have an associate degree but no 
bachelor’s degree 

-0.00048 
 
(0.0021) 

-0.228 
 
(0.82) 

0.000635 
 
(0.000979) 

0.648 
 
(0.517) 

-0.355 
 
(0.0546) 

-6.49 
 
(8.87e-11) 12 3 

0.00099 
 
(0.00136) 

0.958 
 
(0.941) 

Percentage of Persons 25+ years old 
who have a bachelor’s or 
graduate/professional degree 

0.0257 
 
(0.00991) 

2.6 
 
(0.0094) 

0.00511 
 
(0.0038) 

1.35 
 
(0.179) 

-0.235 
 
(0.454) 

-0.519 
 
(0.604) 12 3 

-0.00135 
 
(-0.0019) 

0.966 
 
(0.953) 

Percentage of total persons below the 
poverty level in past 12 months 

-0.00942 
 
(0.00746) 

-1.26 
 
(0.207) 

-0.000524 
 
(0.00243) 

-0.215 
 
(0.829) 

0.365 
 
(0.126) 

2.91 
 
(0.00362) 12 3 

0.00487 
 
(0.00676) 

0.922 
 
(0.891) 

Percentage of households with public 
assistance inc. (incl. SSI) last year of 
total households 

-0.00191 
 
(0.00412) 

-0.463 
 
(0.643) 

-5.06e-06 
 
(0.00135) 

-
0.00375 
 
(0.997) 

0.0466 
 
(0.0501) 

0.929 
 
(0.353) 12 3 

0.0031 
 
(0.00428) 

0.883 
 
(0.837) 

Ratio of Owner-Occupied housing units 
to Renter Occupied Housing units 

-23 
 
(24.3) 

-0.945 
 
(0.345) 

-2.32 
 
(5.18) 

-0.447 
 
(0.655) 

34.3 
 
(94.1) 

0.364 
 
(0.716) 12 3 

-0.0206 
 
(-0.0289) 

0.336 
 
(0.0741) 

Percentage of renter-occupied housing 
units of total housing units 

0.000129 
 
(0.0075) 

0.0172 
 
(0.986) 

0.000678 
 
(0.00353) 

0.192 
 
(0.848) 

0.464 
 
(0.0968) 

4.79 
 
(1.7e-06) 12 3 

0.00348 
 
(0.00485) 

0.975 
 
(0.965) 

Percentage of vacant housing units 
0.00434 
(0.00376) 

1.15 
(0.248) 

-0.00117 
(0.00213) 

-0.551 
(0.581) 

0.284 
(0.105) 

2.7 
(0.0069) 12 3 

0.00747 
(0.0104) 

0.907 
(0.87) 

Percentage of change in number of 
housing units since last census of total 
housing units 

0.259 
 
(0.473) 

0.547 
 
(0.584) 

-0.428 
 
(0.325) 

-1.32 
 
(0.188) 

2.92 
 
(1.32) 

2.21 
 
(0.0273) 12 3 

3.49e-05 
 
(-0.000167) 

0.419 
 
(0.189) 
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Table 46. Medium bridge treatment effect event study model CEM results (cont’d) 

Dependent Variable 

Interaction 
Estimator 

for new 
medium 
bridge 

 
(SE) 

t value 
 

(p value) 

new 
medium 
bridge 

Treatment 
Variable 

 
(SE) 

t value 
 

(p 
value) 

new 
medium 
bridge 
Group 

Dummy 
Variable 

 
(SE) 

t value 
 

(p value) 
# Other 
Controls Set 

R2 (Adj. R2) 
diff w/o New 

Variables 

R2 
 

(Adj. 
R2) 

Inverse Hyperbolic Sine 
Transformation of Average household 
income in past 12 months (2010 
Constant $ US, mean = 11.4) 

-0.285 
 
(0.183) 

-1.56 
 
(0.119) 

0.0637 
 
(0.112) 

0.569 
 
(0.569) 

1.28 
 
(1.38) 

0.928 
 
(0.354) 12 4 

0.00157 
 
(0.00219) 

0.992 
 
(0.989) 

Inverse Hyperbolic Sine 
Transformation of Aggregate 
household income in past 12 months 
(2010 Constant $ US, mean = 18.4) 

-0.576 
 
(0.285) 

-2.02 
 
(0.0434) 

0.0624 
 
(0.172) 

0.362 
 
(0.717) 

8.23 
 
(1.82) 

4.53 
 
(6.12e-06) 12 4 

0.00161 
 
(0.00223) 

0.992 
 
(0.99) 

Non-White percentage of total 
population 

0.00568 
 
(0.00771) 

0.737 
 
(0.461) 

0.00124 
 
(0.00228) 

0.542 
 
(0.588) 

0.283 
 
(0.0737) 

3.84 
 
(0.000126) 12 4 

-0.00827 
 
(-0.0116) 

0.95 
 
(0.93) 

Black/African American percentage of 
total population 

-0.00392 
 
(0.00662) 

-0.592 
 
(0.554) 

0.00123 
 
(0.00178) 

0.688 
 
(0.492) 

0.165 
 
(0.0488) 

3.37 
 
(0.000743) 12 4 

-0.00652 
 
(-0.00912) 

0.953 
 
(0.934) 

Percentage of Hispanic/Latino of total 
population 

-0.0012 
 
(0.0021) 

-0.572 
 
(0.567) 

0.000227 
 
(0.000988) 

0.229 
 
(0.819) 

0.00983 
 
(0.0219) 

0.448 
 
(0.654) 12 4 

0.036 
 
(0.0502) 

0.906 
 
(0.869) 

Percentage of Foreign-born of total 
population 

0.00579 
 
(0.00315) 

1.84 
 
(0.0658) 

-0.00116 
 
(0.00117) 

-0.992 
 
(0.321) 

0.147 
 
(0.0353) 

4.16 
 
(3.18e-05) 12 4 

0.00119 
 
(0.0016) 

0.888 
 
(0.843) 

Percentage of Children under 18 years 
old of total population 

-0.00872 
 
(0.0049) 

-1.78 
 
(0.0749) 

0.00494 
 
(0.00276) 

1.79 
 
(0.0735) 

0.22 
 
(0.0642) 

3.43 
 
(0.000615) 12 4 

0.00501 
 
(0.00697) 

0.984 
 
(0.977) 

Inverse Hyperbolic Sine 
Transformation of Ratio of adults 18+ 
years old to children under 18 years 
old (adults/children, mean = 0.988) 

-0.0209 
 
(0.0216) 

-0.967 
 
(0.333) 

-0.00173 
 
(0.0124) 

-0.139 
 
(0.889) 

-0.022 
 
(0.202) 

-0.109 
 
(0.913) 12 4 

0.000892 
 
(0.00124) 

0.987 
 
(0.982) 

Percentage of single-parent families 
with own children under 18 years old 
of total families and subfamilies 

-0.0048 
 
(0.00336) 

-1.43 
 
(0.153) 

0.00213 
 
(0.00158) 

1.35 
 
(0.178) 

0.425 
 
(0.0471) 

9.01 
 
(2.5e-19) 12 4 

0.00134 
 
(0.00185) 

0.956 
 
(0.938) 

Percentage of female-headed families 
with or without own children of total 
families and subfamilies 

-0.00382 
 
(0.00398) 

-0.958 
 
(0.338) 

0.000556 
 
(0.002) 

0.278 
 
(0.781) 

0.44 
 
(0.0578) 

7.61 
 
(3e-14) 12 4 

0.000362 
 
(0.000487) 

0.969 
 
(0.957) 

Inverse Hyperbolic Sine 
Transformation of Workers 16+ years 
old traveling to work on public 
transportation (taxi not included 
mean = 3.7) 

-0.49 
 
(0.142) 

-3.46 
 
(0.000537) 

0.0778 
 
(0.072) 

1.08 
 
(0.28) 

12.7 
 
(4.73) 

2.68 
 
(0.00734) 12 4 

0.000586 
 
(0.000781) 

0.937 
 
(0.912) 

Inverse Hyperbolic Sine 
Transformation of Workers 16+ years 
old with travel time to work less than 
25 minutes (mean = 5.27) 

-0.309 
 
(0.118) 

-2.63 
 
(0.00861) 

0.0792 
 
(0.0694) 

1.14 
 
(0.254) 

-0.205 
 
(0.914) 

-0.225 
 
(0.822) 12 4 

0.00418 
 
(0.00582) 

0.986 
 
(0.98) 

Inverse Hyperbolic Sine 
Transformation of Workers 16+ years 
old with travel time to work 25 to 44 
minutes (mean = 4.67) 

-0.223 
 
(0.115) 

-1.94 
 
(0.0522) 

0.0751 
 
(0.0662) 

1.13 
 
(0.257) 

1.84 
 
(1.81) 

1.02 
 
(0.309) 12 4 

0.00411 
 
(0.00572) 

0.983 
 
(0.976) 

Inverse Hyperbolic Sine 
Transformation of Workers 16+ years 
old with travel time to work more 
than 45 minutes (mean = 4.05) 

-0.253 
 
(0.0966) 

-2.62 
 
(0.00874) 

0.0733 
 
(0.0571) 

1.28 
 
(0.199) 

9.16 
 
(4.1) 

2.23 
 
(0.0255) 12 4 

0.00482 
 
(0.00671) 

0.982 
 
(0.975) 

Percentage of Persons 25+ years old 
who have completed 0-8 years of 
school 

-0.00227 
 
(0.00347) 

-0.656 
 
(0.512) 

-0.000794 
 
(0.00137) 

-0.578 
 
(0.563) 

0.131 
 
(0.106) 

1.24 
 
(0.215) 12 4 

0.00441 
 
(0.0061) 

0.91 
 
(0.874) 

Percentage of Persons 25+ years old 
who have completed high school but 
no college 

-0.0198 
 
(0.00857) 

-2.32 
 
(0.0206) 

-0.00129 
 
(0.00321) 

-0.401 
 
(0.688) 

-0.89 
 
(0.107) 

-8.29 
 
(1.34e-16) 12 4 

-0.00136 
 
(-0.0019) 

0.987 
 
(0.982) 

Percentage of Persons 25+ years old 
who have an associate degree but no 
bachelor’s degree 

-0.000837 
 
(0.00211) 

-0.397 
 
(0.691) 

3.54e-05 
 
(0.00102) 

0.0347 
 
(0.972) 

-0.435 
 
(0.0466) 

-9.33 
 
(1.35e-20) 12 4 

-0.00146 
 
(-0.00206) 

0.955 
 
(0.937) 

Percentage of Persons 25+ years old 
who have a bachelor’s or 
graduate/professional degree 

0.0317 
 
(0.0113) 

2.8 
 
(0.00519) 

0.0068 
 
(0.00423) 

1.61 
 
(0.108) 

-0.0581 
 
(0.48) 

-0.121 
 
(0.904) 12 4 

-0.00518 
 
(-0.00724) 

0.962 
 
(0.948) 

Percentage of total persons below the 
poverty level in past 12 months 

-0.00811 
 
(0.00736) 

-1.1 
 
(0.271) 

-0.000415 
 
(0.00249) 

-0.166 
 
(0.868) 

0.541 
 
(0.112) 

4.85 
 
(1.27e-06) 12 4 

0.00265 
 
(0.00365) 

0.919 
 
(0.888) 

Percentage of households with public 
assistance inc. (incl. SSI) last year of 
total households 

-0.00236 
 
(0.00406) 

-0.58 
 
(0.562) 

3.07e-05 
 
(0.00136) 

0.0226 
 
(0.982) 

0.147 
 
(0.0644) 

2.27 
 
(0.023) 12 4 

0.000848 
 
(0.00112) 

0.881 
 
(0.834) 

Ratio of Owner-Occupied housing 
units to Renter Occupied Housing 
units 

-27.3 
 
(25.4) 

-1.08 
 
(0.282) 

-3.65 
 
(4.95) 

-0.738 
 
(0.461) 

-32.1 
 
(45.9) 

-0.698 
 
(0.485) 12 4 

0.000798 
 
(0.000756) 

0.357 
 
(0.104) 

Percentage of renter-occupied 
housing units of total housing units 

0.00129 
 
(0.0076) 

0.169 
 
(0.865) 

0.001 
 
(0.00367) 

0.274 
 
(0.784) 

0.718 
 
(0.158) 

4.54 
 
(5.6e-06) 12 4 

0.00168 
 
(0.00233) 

0.973 
 
(0.962) 

Percentage of vacant housing units 

0.00303 
 
(0.0037) 

0.819 
 
(0.413) 

-0.00106 
 
(0.00214) 

-0.495 
 
(0.62) 

0.404 
 
(0.124) 

3.26 
 
(0.00111) 12 4 

0.00873 
 
(0.0121) 

0.908 
 
(0.872) 

Percentage of change in number of 
housing units since last census of total 
housing units 

0.214 
 
(0.464) 

0.461 
 
(0.644) 

-0.434 
 
(0.33) 

-1.32 
 
(0.188) 

0.593 
 
(1.48) 

0.4 
 
(0.689) 12 4 

-0.00021 
 
(-0.000615) 

0.418 
 
(0.189) 

Table 47. High bridge treatment effect event study model CEM results 
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Dependent Variable 

Interaction 
Estimator 

for new 
high 

bridge 
 

(SE) 

t value 
 

(p value) 

new high 
bridge 

Treatment 
Variable 

 
(SE) 

t value 
 

(p 
value) 

new high 
bridge 
Group 

Dummy 
Variable 

 
(SE) 

t value 
 

(p value) 
# Other 
Controls Set 

R2 (Adj. R2) 
diff w/o 

New 
Variables 

R2 
 

(Adj. R2) 
Inverse Hyperbolic Sine 
Transformation of Average 
household income in past 12 months 
(2010 Constant $ US, mean = 11.4) 

0.0814 
 
(0.16) 

0.51 
 
(0.61) 

-0.0305 
 
(0.123) 

-0.249 
 
(0.803) 

0.196 
 
(0.316) 

0.621 
 
(0.535) 

12 1 
7.42e-07 
 
(-4.76e-06) 

0.986 
 
(0.98) 

Inverse Hyperbolic Sine 
Transformation of Aggregate 
household income in past 12 months 
(2010 Constant $ US, mean = 18.4) 

0.0914 
 
(0.251) 

0.364 
 
(0.716) 

-0.0797 
 
(0.192) 

-0.415 
 
(0.678) 

0.51 
 
(0.486) 

1.05 
 
(0.294) 

12 1 
9.61e-07 
 
(-4.17e-06) 

0.986 
 
(0.981) 

Non-White percentage of total 
population 

0.00315 
(0.00387) 

0.814 
(0.415) 

0.000453 
(0.00175) 

0.259 
(0.795) 

0.0072 
(0.00689) 

1.04 
(0.296) 12 1 1.24e-05 

(-9.41e-07) 
0.954 
(0.935) 

Black/African American percentage 
of total population 

-0.00539 
(0.00331) 

-1.63 
(0.104) 

0.000669 
(0.00139) 

0.482 
(0.63) 

0.00404 
(0.00345) 

1.17 
(0.241) 12 1 3.49e-05 

(3.21e-05) 
0.957 
(0.939) 

Percentage of Hispanic/Latino of 
total population 

0.00153 
(0.00159) 

0.96 
(0.337) 

-0.000917 
(0.000961) 

-0.954 
(0.34) 

0.0104 
(0.00839) 

1.25 
(0.213) 12 1 3.63e-05 

(-8.29e-06) 
0.852 
(0.791) 

Percentage of Foreign-born of total 
population 

0.00497 
(0.0024) 

2.07 
(0.0381) 

-0.00186 
(0.00115) 

-1.62 
(0.106) 

-0.0101 
(0.00551) 

-1.83 
(0.0675) 12 1 0.00019 

(0.000221) 
0.88 
(0.829) 

Percentage of Children under 18 
years old of total population 

0.00459 
 
(0.00475) 

0.966 
 
(0.334) 

-0.00101 
 
(0.00336) 

-0.3 
 
(0.764) 

-0.021 
 
(0.0127) 

-1.65 
 
(0.0998) 

12 1 
4.82e-06 
 
(-4.88e-06) 

0.971 
 
(0.959) 

Inverse Hyperbolic Sine 
Transformation of Ratio of adults 18+ 
years old to children under 18 years 
old (adults/children, mean = 0.983) 

0.00227 
 
(0.0159) 

0.142 
 
(0.887) 

-0.00221 
 
(0.0114) 

-0.194 
 
(0.846) 

0.0558 
 
(0.0284) 

1.96 
 
(0.0496) 

12 1 
2.58e-07 
 
(-7.34e-06) 

0.981 
 
(0.973) 

Percentage of single-parent families 
with own children under 18 years old 
of total families and subfamilies 

-0.00024 
 
(0.00317) 

-0.0758 
 
(0.94) 

0.000513 
 
(0.00162) 

0.316 
 
(0.752) 

0.0201 
 
(0.0135) 

1.49 
 
(0.135) 

12 1 
1.35e-06 
 
(-1.95e-05) 

0.947 
 
(0.925) 

Percentage of female-headed families 
with or without own children of total 
families and subfamilies 

-0.000366 
 
(0.00378) 

-0.097 
 
(0.923) 

0.00284 
 
(0.00205) 

1.38 
 
(0.167) 

0.012 
 
(0.0117) 

1.02 
 
(0.305) 

12 1 
2.2e-05 
 
(1.59e-05) 

0.962 
 
(0.947) 

Inverse Hyperbolic Sine 
Transformation of Workers 16+ years 
old traveling to work on public 
transportation (taxi not included 
mean = 3.51) 

-0.401 
 
(0.114) 

-3.52 
 
(0.000427) 

0.0303 
 
(0.0777) 

0.39 
 
(0.696) 

-1.31 
 
(0.494) 

-2.65 
 
(0.00814) 

12 1 
0.000179 
 
(0.000223) 

0.925 
 
(0.893) 

Inverse Hyperbolic Sine 
Transformation of Workers 16+ years 
old with travel time to work less than 
25 minutes (mean = 5.32) 

-0.103 
 
(0.105) 

-0.979 
 
(0.327) 

0.0103 
 
(0.0738) 

0.14 
 
(0.889) 

0.551 
 
(0.313) 

1.76 
 
(0.0788) 

12 1 
3.81e-06 
 
(-4.09e-06) 

0.977 
 
(0.967) 

Inverse Hyperbolic Sine 
Transformation of Workers 16+ years 
old with travel time to work 25 to 44 
minutes (mean = 4.72) 

-0.0081 
 
(0.101) 

-0.0802 
 
(0.936) 

0.0124 
 
(0.0726) 

0.171 
 
(0.864) 

0.319 
 
(0.276) 

1.16 
 
(0.248) 

12 1 
2.61e-07 
 
(-1.05e-05) 

0.973 
 
(0.962) 

Inverse Hyperbolic Sine 
Transformation of Workers 16+ years 
old with travel time to work more 
than 45 minutes (mean = 4.08) 

0.0629 
 
(0.0897) 

0.701 
 
(0.483) 

-0.0124 
 
(0.0617) 

-0.2 
 
(0.841) 

-0.288 
 
(0.426) 

-0.676 
 
(0.499) 

12 1 
2.28e-06 
 
(-7.21e-06) 

0.974 
 
(0.963) 

Percentage of Persons 25+ years old 
who have completed 0-8 years of 
school 

-0.000689 
 
(0.0026) 

-0.265 
 
(0.791) 

0.00113 
 
(0.00161) 

0.705 
 
(0.481) 

0.00355 
 
(0.0158) 

0.224 
 
(0.822) 

12 1 
1.54e-05 
 
(-1.85e-05) 

0.901 
 
(0.859) 

Percentage of Persons 25+ years old 
who have completed high school but 
no college 

-0.00428 
 
(0.0049) 

-0.874 
 
(0.382) 

0.00253 
 
(0.00314) 

0.805 
 
(0.421) 

-0.014 
 
(0.0109) 

-1.29 
 
(0.197) 

12 1 
3.21e-06 
 
(-5.56e-07) 

0.987 
 
(0.982) 

Percentage of Persons 25+ years old 
who have an associate degree but no 
bachelor’s degree 

-0.000911 
 
(0.00161) 

-0.567 
 
(0.571) 

-0.000765 
 
(0.00119) 

-0.644 
 
(0.52) 

0.0106 
 
(0.00752) 

1.4 
 
(0.16) 

12 1 
1.6e-05 
 
(3.24e-06) 

0.952 
 
(0.932) 

Percentage of Persons 25+ years old 
who have a bachelor’s or 
graduate/professional degree 

0.00613 
 
(0.00641) 

0.956 
 
(0.339) 

-0.000716 
 
(0.00373) 

-0.192 
 
(0.848) 

0.0508 
 
(0.023) 

2.21 
 
(0.0272) 

12 1 
8.22e-06 
 
(-5.89e-06) 

0.957 
 
(0.938) 

Percentage of total persons below the 
poverty level in past 12 months 

0.000644 
 
(0.00433) 

0.149 
 
(0.882) 

0.0041 
 
(0.00265) 

1.55 
 
(0.122) 

0.00567 
 
(0.0138) 

0.41 
 
(0.682) 

12 1 
8.61e-05 
 
(8.61e-05) 

0.911 
 
(0.874) 

Percentage of households with public 
assistance inc. (incl. SSI) last year of 
total households 

-0.000379 
 
(0.00289) 

-0.131 
 
(0.896) 

-0.000474 
 
(0.0014) 

-0.339 
 
(0.734) 

-0.0123 
 
(0.00789) 

-1.56 
 
(0.119) 

12 1 
5.34e-06 
 
(-3.87e-05) 

0.886 
 
(0.838) 

Ratio of Owner-Occupied housing 
units to Renter Occupied Housing 
units 

6.88 
 
(10.2) 

0.675 
 
(0.499) 

-7.11 
 
(6.28) 

-1.13 
 
(0.258) 

-3.36 
 
(8.86) 

-0.379 
 
(0.705) 

12 1 
0.000113 
 
(-3.71e-05) 

0.514 
 
(0.31) 

Percentage of renter-occupied 
housing units of total housing units 

-0.00174 
 
(0.00589) 

-0.296 
 
(0.767) 

0.00359 
 
(0.00335) 

1.07 
 
(0.283) 

0.0883 
 
(0.012) 

7.34 
 
(2.33e-
13) 

12 1 
1.12e-05 
 
(1.2e-06) 

0.964 
 
(0.949) 

Percentage of vacant housing units 0.00642 
(0.00345) 

1.86 
(0.0631) 

0.000311 
(0.00249) 

0.125 
(0.901) 

-0.0632 
(0.0339) 

-1.87 
(0.0621) 12 1 6.3e-05 

(4.28e-05) 
0.885 
(0.837) 

Percentage of change in number of 
housing units since last census of 
total housing units 

0.449 
 
(0.262) 

1.71 
 
(0.0873) 

-0.184 
 
(0.271) 

-0.678 
 
(0.498) 

-0.185 
 
(0.268) 

-0.69 
 
(0.49) 

12 1 
7.53e-05 
 
(-0.000201) 

0.24 
 
(-0.0782) 

Table 47. High bridge treatment effect event study model CEM results (cont’d) 



Machine Learning for Public Policy: Applications in Infrastructure and Air Pollution 

197 

Dependent Variable 

Interaction 
Estimator 

for new 
high 

bridge 
 

(SE) 

t value 
 

(p value) 

new high 
bridge 

Treatment 
Variable 

 
(SE) 

t value 
 

(p 
value) 

new high 
bridge 
Group 

Dummy 
Variable 

 
(SE) 

t value 
 

(p value) 
# Other 
Controls Set 

R2 (Adj. 
R2) diff 

w/o New 
Variables 

R2 
 

(Adj. R2) 
Inverse Hyperbolic Sine 
Transformation of Average household 
income in past 12 months (2010 
Constant $ US, mean = 11.4) 

0.107 
 
(0.141) 

0.76 
 
(0.447) 

-0.0468 
 
(0.105) 

-0.445 
 
(0.656) 

0.654 
 
(0.265) 

2.47 
 
(0.0137) 

10 2 
0.00255 
 
(0.00361) 

0.988 
 
(0.983) 

Inverse Hyperbolic Sine 
Transformation of Aggregate 
household income in past 12 months 
(2010 Constant $ US, mean = 18.4) 

0.133 
 
(0.22) 

0.606 
 
(0.545) 

-0.108 
 
(0.163) 

-0.665 
 
(0.506) 

1.29 
 
(0.418) 

3.08 
 
(0.00206) 

10 2 
0.00274 
 
(0.00389) 

0.989 
 
(0.984) 

Non-White percentage of total 
population 

0.00778 
 
(0.0045) 

1.73 
 
(0.0842) 

5.63e-05 
 
(0.00201) 

0.028 
 
(0.978) 

0.00483 
 
(0.0176) 

0.274 
 
(0.784) 

10 2 
-0.0137 
 
(-0.0195) 

0.94 
 
(0.915) 

Black/African American percentage of 
total population 

-0.00232 
 
(0.00367) 

-0.631 
 
(0.528) 

0.000217 
 
(0.00157) 

0.139 
 
(0.89) 

8.47e-05 
 
(0.00914) 

0.00927 
 
(0.993) 

10 2 
-0.0108 
 
(-0.0153) 

0.946 
 
(0.924) 

Percentage of Hispanic/Latino of total 
population 

0.0016 
(0.00159) 

1 
(0.316) 

-0.00144 
(0.000998) 

-1.44 
(0.15) 

0.00916 
(0.0101) 

0.908 
(0.364) 10 2 -0.00547 

(-0.00775) 
0.847 
(0.783) 

Percentage of Foreign-born of total 
population 

0.00577 
(0.00243) 

2.38 
(0.0175) 

-0.00188 
(0.00117) 

-1.61 
(0.108) 

-0.00919 
(0.00712) 

-1.29 
(0.197) 10 2 -0.00274 

(-0.00389) 
0.877 
(0.825) 

Percentage of Children under 18 years 
old of total population 

0.00777 
 
(0.00406) 

1.92 
 
(0.0555) 

-0.00205 
 
(0.0026) 

-0.785 
 
(0.432) 

-0.00346 
 
(0.0119) 

-0.292 
 
(0.771) 

10 2 
0.0101 
 
(0.0143) 

0.981 
 
(0.973) 

Inverse Hyperbolic Sine 
Transformation of Ratio of adults 18+ 
years old to children under 18 years 
old (adults/children, mean = 0.983) 

8.44e-05 
 
(0.0157) 

0.00538 
 
(0.996) 

-0.00299 
 
(0.0108) 

-0.277 
 
(0.782) 

0.0814 
 
(0.0274) 

2.97 
 
(0.003) 

10 2 
0.000416 
 
(0.00059) 

0.981 
 
(0.974) 

Percentage of single-parent families 
with own children under 18 years old 
of total families and subfamilies 

0.000277 
 
(0.00325) 

0.085 
 
(0.932) 

-0.000359 
 
(0.00159) 

-0.226 
 
(0.821) 

0.0216 
 
(0.0162) 

1.34 
 
(0.182) 

10 2 
0.0011 
 
(0.00156) 

0.948 
 
(0.927) 

Percentage of female-headed families 
with or without own children of total 
families and subfamilies 

0.00105 
 
(0.00385) 

0.272 
 
(0.786) 

0.00178 
 
(0.00193) 

0.921 
 
(0.357) 

0.0139 
 
(0.0171) 

0.811 
 
(0.417) 

10 2 
0.00221 
 
(0.00313) 

0.965 
 
(0.95) 

Inverse Hyperbolic Sine 
Transformation of Workers 16+ years 
old traveling to work on public 
transportation (taxi not included mean 
= 3.51) 

-0.325 
 
(0.111) 

-2.93 
 
(0.00344) 

0.0324 
 
(0.0768) 

0.422 
 
(0.673) 

-1.06 
 
(0.563) 

-1.88 
 
(0.0595) 

10 2 
0.00244 
 
(0.00346) 

0.927 
 
(0.896) 

Inverse Hyperbolic Sine 
Transformation of Workers 16+ years 
old with travel time to work less than 
25 minutes (mean = 5.32) 

-0.0691 
 
(0.0811) 

-0.852 
 
(0.394) 

-0.0157 
 
(0.0552) 

-0.285 
 
(0.776) 

0.921 
 
(0.19) 

4.84 
 
(1.33e-
06) 

10 2 
0.00917 
 
(0.013) 

0.986 
 
(0.98) 

Inverse Hyperbolic Sine 
Transformation of Workers 16+ years 
old with travel time to work 25 to 44 
minutes (mean = 4.72) 

0.0207 
 
(0.0816) 

0.253 
 
(0.8) 

-0.0154 
 
(0.0562) 

-0.273 
 
(0.785) 

0.666 
 
(0.278) 

2.4 
 
(0.0166) 

10 2 
0.00977 
 
(0.0139) 

0.983 
 
(0.976) 

Inverse Hyperbolic Sine 
Transformation of Workers 16+ years 
old with travel time to work more than 
45 minutes (mean = 4.08) 

0.0895 
 
(0.0759) 

1.18 
 
(0.238) 

-0.0384 
 
(0.0497) 

-0.772 
 
(0.44) 

-0.0305 
 
(0.534) 

-0.0572 
 
(0.954) 

10 2 
0.00791 
 
(0.0112) 

0.982 
 
(0.975) 

Percentage of Persons 25+ years old 
who have completed 0-8 years of 
school 

0.000277 
 
(0.00254) 

0.109 
 
(0.913) 

0.000986 
 
(0.00156) 

0.63 
 
(0.529) 

0.00614 
 
(0.0184) 

0.333 
 
(0.739) 

10 2 
0.00175 
 
(0.00248) 

0.902 
 
(0.861) 

Percentage of Persons 25+ years old 
who have completed high school but no 
college 

-0.0104 
 
(0.00601) 

-1.73 
 
(0.0835) 

0.000337 
 
(0.00369) 

0.0914 
 
(0.927) 

-0.0199 
 
(0.0163) 

-1.22 
 
(0.222) 

10 2 
-0.00309 
 
(-0.00438) 

0.984 
 
(0.978) 

Percentage of Persons 25+ years old 
who have an associate degree but no 
bachelor’s degree 

-0.00222 
 
(0.00161) 

-1.38 
 
(0.168) 

-0.000809 
 
(0.00115) 

-0.701 
 
(0.483) 

0.00755 
 
(0.00827) 

0.914 
 
(0.361) 

10 2 
-0.000518 
 
(-0.000734) 

0.951 
 
(0.931) 

Percentage of Persons 25+ years old 
who have a bachelor’s or 
graduate/professional degree 

0.0157 
 
(0.00796) 

1.97 
 
(0.0494) 

0.00278 
 
(0.00463) 

0.599 
 
(0.549) 

0.0632 
 
(0.024) 

2.63 
 
(0.00862) 

10 2 
-0.0127 
 
(-0.018) 

0.944 
 
(0.921) 

Percentage of total persons below the 
poverty level in past 12 months 

0.00279 
 
(0.00427) 

0.654 
 
(0.513) 

0.00322 
 
(0.0024) 

1.34 
 
(0.18) 

0.0112 
 
(0.0188) 

0.599 
 
(0.549) 

10 2 
0.00951 
 
(0.0135) 

0.92 
 
(0.887) 

Percentage of households with public 
assistance inc. (incl. SSI) last year of 
total households 

0.000973 
 
(0.00281) 

0.347 
 
(0.729) 

-0.000357 
 
(0.00126) 

-0.283 
 
(0.777) 

-0.0048 
 
(0.00905) 

-0.53 
 
(0.596) 

10 2 
0.0129 
 
(0.0183) 

0.899 
 
(0.856) 

Ratio of Owner-Occupied housing units 
to Renter Occupied Housing units 

3.12 
 
(10.6) 

0.296 
 
(0.767) 

-5.86 
 
(5.87) 

-0.997 
 
(0.319) 

-0.276 
 
(7.24) 

-0.0381 
 
(0.97) 

10 2 
-0.0814 
 
(-0.115) 

0.432 
 
(0.194) 

Percentage of renter-occupied housing 
units of total housing units 

0.00108 
 
(0.00575) 

0.187 
 
(0.852) 

0.00247 
 
(0.00317) 

0.778 
 
(0.436) 

0.0977 
 
(0.0193) 

5.05 
 
(4.52e-
07) 

10 2 
0.00427 
 
(0.00605) 

0.968 
 
(0.955) 

Percentage of vacant housing units 0.00705 
(0.00329) 

2.14 
(0.0323) 

-0.000791 
(0.00237) 

-0.335 
(0.738) 

-0.0565 
(0.0361) 

-1.56 
(0.118) 10 2 0.0121 

(0.0172) 
0.897 
(0.854) 

Percentage of change in number of 
housing units since last census of total 
housing units 

0.406 
 
(0.238) 

1.71 
 
(0.0875) 

-0.183 
 
(0.285) 

-0.643 
 
(0.52) 

-0.244 
 
(0.265) 

-0.919 
 
(0.358) 

10 2 
0.000231 
 
(0.000328) 

0.24 
 
(-0.0777) 

Table 47. High bridge treatment effect event study model CEM results (cont’d) 
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Dependent Variable 

Interaction 
Estimator 

for new 
high 

bridge 
 

(SE) 

t value 
 

(p value) 

new high 
bridge 

Treatment 
Variable 

 
(SE) 

t value 
 

(p 
value) 

new high 
bridge 
Group 

Dummy 
Variable 

 
(SE) 

t value 
 

(p value) 
# Other 
Controls Set 

R2 (Adj. 
R2) diff 

w/o New 
Variables 

R2 
 

(Adj. R2) 
Inverse Hyperbolic Sine 
Transformation of Average household 
income in past 12 months (2010 
Constant $ US, mean = 11.4) 

0.0487 
 
(0.154) 

0.316 
 
(0.752) 

-0.0734 
 
(0.114) 

-0.642 
 
(0.521) 

0.624 
 
(0.271) 

2.31 
 
(0.0211) 

12 3 
0.00178 
 
(0.00252) 

0.987 
 
(0.982) 

Inverse Hyperbolic Sine 
Transformation of Aggregate 
household income in past 12 months 
(2010 Constant $ US, mean = 18.4) 

0.0255 
 
(0.243) 

0.105 
 
(0.917) 

-0.154 
 
(0.179) 

-0.865 
 
(0.387) 

1.23 
 
(0.366) 

3.36 
 
(0.000778) 

12 3 
0.0018 
 
(0.00255) 

0.988 
 
(0.983) 

Non-White percentage of total 
population 

0.00615 
(0.00398) 

1.54 
(0.123) 

0.000548 
(0.00175) 

0.314 
(0.754) 

0.00983 
(0.00795) 

1.24 
(0.216) 12 3 -0.00187 

(-0.00267) 
0.952 
(0.932) 

Black/African American percentage of 
total population 

-0.00342 
 
(0.00316) 

-1.08 
 
(0.279) 

0.000915 
 
(0.00135) 

0.677 
 
(0.498) 

0.00626 
 
(0.00342) 

1.83 
 
(0.0671) 

12 3 
0.000741 
 
(0.00103) 

0.958 
 
(0.94) 

Percentage of Hispanic/Latino of total 
population 

0.00205 
(0.0016) 

1.28 
(0.201) 

-0.000966 
(0.000987) 

-0.979 
(0.328) 

0.0103 
(0.0077) 

1.34 
(0.181) 12 3 -0.00728 

(-0.0104) 
0.845 
(0.78) 

Percentage of Foreign-born of total 
population 

0.0052 
(0.00242) 

2.15 
(0.0317) 

-0.00208 
(0.00114) 

-1.83 
(0.0678) 

-0.00966 
(0.00561) 

-1.72 
(0.0853) 12 3 -0.000308 

(-0.000486) 
0.879 
(0.829) 

Percentage of Children under 18 years 
old of total population 

0.00401 
 
(0.00453) 

0.885 
 
(0.376) 

-0.00249 
 
(0.00293) 

-0.85 
 
(0.396) 

-0.00407 
 
(0.00909) 

-0.448 
 
(0.654) 

12 3 
0.00769 
 
(0.0109) 

0.979 
 
(0.97) 

Inverse Hyperbolic Sine 
Transformation of Ratio of adults 18+ 
years old to children under 18 years 
old (adults/children, mean = 0.983) 

0.00118 
 
(0.016) 

0.0737 
 
(0.941) 

-0.00549 
 
(0.0111) 

-0.493 
 
(0.622) 

0.078 
 
(0.0289) 

2.7 
 
(0.00693) 

12 3 
0.00052 
 
(0.00073) 

0.981 
 
(0.974) 

Percentage of single-parent families 
with own children under 18 years old 
of total families and subfamilies 

-0.000395 
 
(0.00307) 

-0.129 
 
(0.898) 

0.000461 
 
(0.00154) 

0.3 
 
(0.764) 

0.0221 
 
(0.0142) 

1.55 
 
(0.121) 

12 3 
0.00493 
 
(0.00698) 

0.952 
 
(0.932) 

Percentage of female-headed families 
with or without own children of total 
families and subfamilies 

-0.000359 
 
(0.00372) 

-0.0963 
 
(0.923) 

0.00282 
 
(0.00191) 

1.48 
 
(0.139) 

0.0164 
 
(0.0119) 

1.37 
 
(0.17) 

12 3 
0.004 
 
(0.00566) 

0.966 
 
(0.952) 

Inverse Hyperbolic Sine 
Transformation of Workers 16+ years 
old traveling to work on public 
transportation (taxi not included 
mean = 3.51) 

-0.345 
 
(0.114) 

-3.03 
 
(0.00244) 

0.0156 
 
(0.0772) 

0.202 
 
(0.84) 

-1.11 
 
(0.549) 

-2.02 
 
(0.0429) 

12 3 
0.000115 
 
(0.000133) 

0.925 
 
(0.893) 

Inverse Hyperbolic Sine 
Transformation of Workers 16+ years 
old with travel time to work less than 
25 minutes (mean = 5.32) 

-0.156 
 
(0.0981) 

-1.59 
 
(0.113) 

-0.0237 
 
(0.0654) 

-0.362 
 
(0.717) 

0.924 
 
(0.318) 

2.91 
 
(0.00365) 

12 3 
0.00579 
 
(0.00821) 

0.982 
 
(0.975) 

Inverse Hyperbolic Sine 
Transformation of Workers 16+ years 
old with travel time to work 25 to 44 
minutes (mean = 4.72) 

-0.0512 
 
(0.0932) 

-0.55 
 
(0.583) 

-0.019 
 
(0.0627) 

-0.303 
 
(0.762) 

0.669 
 
(0.213) 

3.14 
 
(0.00172) 

12 3 
0.00691 
 
(0.0098) 

0.98 
 
(0.972) 

Inverse Hyperbolic Sine 
Transformation of Workers 16+ years 
old with travel time to work more 
than 45 minutes (mean = 4.08) 

0.0365 
 
(0.081) 

0.45 
 
(0.652) 

-0.0388 
 
(0.0538) 

-0.721 
 
(0.471) 

-0.0189 
 
(0.414) 

-0.0456 
 
(0.964) 

12 3 
0.00614 
 
(0.00871) 

0.98 
 
(0.972) 

Percentage of Persons 25+ years old 
who have completed 0-8 years of 
school 

-0.000776 
 
(0.00256) 

-0.303 
 
(0.762) 

0.000936 
 
(0.00156) 

0.598 
 
(0.55) 

0.00816 
 
(0.0164) 

0.498 
 
(0.618) 

12 3 
0.00396 
 
(0.00558) 

0.905 
 
(0.864) 

Percentage of Persons 25+ years old 
who have completed high school but 
no college 

-0.00662 
 
(0.00496) 

-1.33 
 
(0.182) 

0.00312 
 
(0.00314) 

0.994 
 
(0.32) 

-0.0107 
 
(0.019) 

-0.562 
 
(0.574) 

12 3 
-0.000452 
 
(-0.000647) 

0.987 
 
(0.981) 

Percentage of Persons 25+ years old 
who have an associate degree but no 
bachelor’s degree 

-0.00113 
 
(0.00159) 

-0.708 
 
(0.479) 

-0.000552 
 
(0.00111) 

-0.496 
 
(0.62) 

0.00786 
 
(0.00682) 

1.15 
 
(0.249) 

12 3 
0.00186 
 
(0.00262) 

0.954 
 
(0.934) 

Percentage of Persons 25+ years old 
who have a bachelor’s or 
graduate/professional degree 

0.0101 
 
(0.00652) 

1.55 
 
(0.12) 

-0.00175 
 
(0.00376) 

-0.465 
 
(0.642) 

0.0477 
 
(0.0261) 

1.83 
 
(0.0673) 

12 3 
-0.000502 
 
(-0.00073) 

0.956 
 
(0.938) 

Percentage of total persons below the 
poverty level in past 12 months 

0.000437 
 
(0.00393) 

0.111 
 
(0.911) 

0.00361 
 
(0.00229) 

1.57 
 
(0.116) 

0.00916 
 
(0.0159) 

0.576 
 
(0.565) 

12 3 
0.0133 
 
(0.0188) 

0.924 
 
(0.892) 

Percentage of households with public 
assistance inc. (incl. SSI) last year of 
total households 

-0.000335 
 
(0.00289) 

-0.116 
 
(0.908) 

-0.000951 
 
(0.00128) 

-0.742 
 
(0.458) 

-0.00774 
 
(0.00809) 

-0.956 
 
(0.339) 

12 3 
0.00972 
 
(0.0137) 

0.895 
 
(0.852) 

Ratio of Owner-Occupied housing 
units to Renter Occupied Housing 
units 

9.16 
 
(10.4) 

0.878 
 
(0.38) 

-6.85 
 
(5.89) 

-1.16 
 
(0.245) 

-0.478 
 
(13.7) 

-0.0349 
 
(0.972) 

12 3 
-0.0748 
 
(-0.106) 

0.439 
 
(0.203) 

Percentage of renter-occupied 
housing units of total housing units 

-0.00233 
 
(0.00567) 

-0.411 
 
(0.681) 

0.00287 
 
(0.00306) 

0.938 
 
(0.349) 

0.091 
 
(0.00808) 

11.3 
 
(3.29e-29) 

12 3 
0.00559 
 
(0.00792) 

0.969 
 
(0.957) 

Percentage of vacant housing units 0.00636 
(0.00335) 

1.9 
(0.0581) 

-0.000206 
(0.0023) 

-0.0896 
(0.929) 

-0.0561 
(0.0311) 

-1.81 
(0.0709) 12 3 0.0138 

(0.0196) 
0.899 
(0.857) 

Percentage of change in number of 
housing units since last census of total 
housing units 

0.388 
 
(0.253) 

1.53 
 
(0.125) 

-0.185 
 
(0.266) 

-0.696 
 
(0.486) 

-0.179 
 
(0.207) 

-0.867 
 
(0.386) 

12 3 
-2.25e-05 
 
(-0.00034) 

0.24 
 
(-0.0783) 

Table 47. High bridge treatment effect event study model CEM results (cont’d) 
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Dependent Variable 

Interaction 
Estimator 

for new 
high 

bridge 
 

(SE) 

t value 
 

(p value) 

new high 
bridge 

Treatment 
Variable 

 
(SE) 

t value 
 

(p 
value) 

new high 
bridge 
Group 

Dummy 
Variable 

 
(SE) 

t value 
 

(p value) 
# Other 
Controls Set 

R2 (Adj. R2) 
diff w/o 

New 
Variables 

R2 
 

(Adj. R2) 
Inverse Hyperbolic Sine 
Transformation of Average 
household income in past 12 months 
(2010 Constant $ US, mean = 11.4) 

0.00481 
 
(0.14) 

0.0344 
 
(0.973) 

-0.00628 
 
(0.0994) 

-0.0632 
 
(0.95) 

0.0486 
 
(0.271) 

0.179 
 
(0.858) 

12 4 
0.00365 
 
(0.00517) 

0.989 
 
(0.985) 

Inverse Hyperbolic Sine 
Transformation of Aggregate 
household income in past 12 months 
(2010 Constant $ US, mean = 18.4) 

-0.00482 
 
(0.22) 

-0.0219 
 
(0.983) 

-0.0492 
 
(0.155) 

-0.318 
 
(0.75) 

0.321 
 
(0.475) 

0.676 
 
(0.499) 

12 4 
0.0037 
 
(0.00525) 

0.99 
 
(0.986) 

Non-White percentage of total 
population 

0.0064 
(0.00444) 

1.44 
(0.15) 

0.00124 
(0.00195) 

0.634 
(0.526) 

-0.000973 
(0.0108) 

-0.0897 
(0.929) 12 4 -0.0111 

(-0.0157) 
0.943 
(0.919) 

Black/African American percentage 
of total population 

-0.00324 
(0.00358) 

-0.905 
(0.366) 

0.000738 
(0.00156) 

0.471 
(0.637) 

-0.00196 
(0.0059) 

-0.332 
(0.74) 12 4 -0.0094 

(-0.0134) 
0.948 
(0.926) 

Percentage of Hispanic/Latino of 
total population 

0.00024 
(0.00142) 

0.17 
(0.865) 

-0.000149 
(0.000801) 

-0.186 
(0.853) 

0.00476 
(0.00654) 

0.727 
(0.467) 12 4 0.0333 

(0.0471) 
0.886 
(0.838) 

Percentage of Foreign-born of total 
population 

0.0055 
 
(0.00243) 

2.26 
 
(0.0238) 

-0.00149 
 
(0.00112) 

-1.33 
 
(0.185) 

-0.0114 
 
(0.00582) 

-1.96 
 
(0.0503) 

12 4 
0.000841 
 
(0.00112) 

0.88 
 
(0.83) 

Percentage of Children under 18 
years old of total population 

0.00331 
 
(0.00413) 

0.803 
 
(0.422) 

-0.000635 
 
(0.00253) 

-0.251 
 
(0.802) 

-0.0261 
 
(0.013) 

-2.01 
 
(0.0444) 

12 4 
0.01 
 
(0.0142) 

0.981 
 
(0.973) 

Inverse Hyperbolic Sine 
Transformation of Ratio of adults 18+ 
years old to children under 18 years 
old (adults/children, mean = 0.983) 

-0.00388 
 
(0.0152) 

-0.255 
 
(0.799) 

0.000143 
 
(0.0103) 

0.0139 
 
(0.989) 

0.0426 
 
(0.0255) 

1.67 
 
(0.0951) 

12 4 
0.00211 
 
(0.00299) 

0.983 
 
(0.976) 

Percentage of single-parent families 
with own children under 18 years old 
of total families and subfamilies 

-0.00174 
 
(0.0031) 

-0.563 
 
(0.574) 

0.000266 
 
(0.00154) 

0.173 
 
(0.863) 

0.0146 
 
(0.0162) 

0.906 
 
(0.365) 

12 4 
0.00367 
 
(0.00518) 

0.951 
 
(0.93) 

Percentage of female-headed families 
with or without own children of total 
families and subfamilies 

-0.00121 
 
(0.00376) 

-0.323 
 
(0.746) 

0.00242 
 
(0.00194) 

1.25 
 
(0.211) 

0.00676 
 
(0.0167) 

0.405 
 
(0.686) 

12 4 
0.00174 
 
(0.00244) 

0.964 
 
(0.949) 

Inverse Hyperbolic Sine 
Transformation of Workers 16+ years 
old traveling to work on public 
transportation (taxi not included 
mean = 3.51) 

-0.38 
 
(0.113) 

-3.36 
 
(0.000786) 

0.036 
 
(0.0756) 

0.476 
 
(0.634) 

-1.26 
 
(0.492) 

-2.57 
 
(0.0103) 

12 4 
0.00201 
 
(0.0028) 

0.927 
 
(0.896) 

Inverse Hyperbolic Sine 
Transformation of Workers 16+ years 
old with travel time to work less than 
25 minutes (mean = 5.32) 

-0.147 
 
(0.0935) 

-1.57 
 
(0.116) 

-0.00345 
 
(0.0578) 

-0.0597 
 
(0.952) 

0.491 
 
(0.202) 

2.42 
 
(0.0154) 

12 4 
0.00753 
 
(0.0107) 

0.984 
 
(0.977) 

Inverse Hyperbolic Sine 
Transformation of Workers 16+ years 
old with travel time to work 25 to 44 
minutes (mean = 4.72) 

-0.0588 
 
(0.0904) 

-0.65 
 
(0.516) 

0.00236 
 
(0.0578) 

0.0408 
 
(0.967) 

0.254 
 
(0.258) 

0.985 
 
(0.325) 

12 4 
0.00822 
 
(0.0117) 

0.981 
 
(0.974) 

Inverse Hyperbolic Sine 
Transformation of Workers 16+ years 
old with travel time to work more 
than 45 minutes (mean = 4.08) 

0.00933 
 
(0.0789) 

0.118 
 
(0.906) 

-0.0228 
 
(0.0487) 

-0.468 
 
(0.64) 

-0.369 
 
(0.545) 

-0.677 
 
(0.499) 

12 4 
0.00832 
 
(0.0118) 

0.983 
 
(0.975) 

Percentage of Persons 25+ years old 
who have completed 0-8 years of 
school 

-0.00095 
 
(0.0025) 

-0.381 
 
(0.703) 

0.00172 
 
(0.00154) 

1.12 
 
(0.262) 

0.00102 
 
(0.0172) 

0.0592 
 
(0.953) 

12 4 
0.00535 
 
(0.00753) 

0.906 
 
(0.866) 

Percentage of Persons 25+ years old 
who have completed high school but 
no college 

-0.013 
 
(0.00562) 

-2.31 
 
(0.0209) 

0.000758 
 
(0.00341) 

0.222 
 
(0.824) 

-0.0225 
 
(0.0171) 

-1.32 
 
(0.187) 

12 4 
-0.00151 
 
(-0.00215) 

0.986 
 
(0.98) 

Percentage of Persons 25+ years old 
who have an associate degree but no 
bachelor’s degree 

-0.00164 
 
(0.00161) 

-1.02 
 
(0.309) 

-0.00114 
 
(0.0012) 

-0.954 
 
(0.34) 

0.0104 
 
(0.00758) 

1.38 
 
(0.169) 

12 4 
-0.000213 
 
(-0.000332) 

0.952 
 
(0.931) 

Percentage of Persons 25+ years old 
who have a bachelor’s or 
graduate/professional degree 

0.0193 
 
(0.00744) 

2.6 
 
(0.00936) 

0.00138 
 
(0.00428) 

0.322 
 
(0.747) 

0.0682 
 
(0.0246) 

2.77 
 
(0.00557) 

12 4 
-0.00674 
 
(-0.0096) 

0.95 
 
(0.929) 

Percentage of total persons below the 
poverty level in past 12 months 

0.000123 
 
(0.00421) 

0.0291 
 
(0.977) 

0.00345 
 
(0.00245) 

1.41 
 
(0.16) 

0.000838 
 
(0.0175) 

0.0479 
 
(0.962) 

12 4 
0.0104 
 
(0.0147) 

0.921 
 
(0.888) 

Percentage of households with public 
assistance inc. (incl. SSI) last year of 
total households 

0.000101 
 
(0.00284) 

0.0355 
 
(0.972) 

-0.000363 
 
(0.00129) 

-0.282 
 
(0.778) 

-0.0113 
 
(0.00921) 

-1.23 
 
(0.219) 

12 4 
0.00931 
 
(0.0131) 

0.895 
 
(0.851) 

Ratio of Owner-Occupied housing 
units to Renter Occupied Housing 
units 

7.98 
 
(10.3) 

0.776 
 
(0.438) 

-5.41 
 
(6.23) 

-0.868 
 
(0.385) 

-6.09 
 
(8.45) 

-0.721 
 
(0.471) 

12 4 
0.00246 
 
(0.00319) 

0.516 
 
(0.313) 

Percentage of renter-occupied 
housing units of total housing units 

-0.00218 
 
(0.00579) 

-0.376 
 
(0.707) 

0.00233 
 
(0.00311) 

0.75 
 
(0.453) 

0.0866 
 
(0.017) 

5.1 
 
(3.48e-
07) 

12 4 
0.00397 
 
(0.00562) 

0.968 
 
(0.954) 

Percentage of vacant housing units 0.00403 
(0.00333) 

1.21 
(0.226) 

9.09e-06 
(0.0023) 

0.00394 
(0.997) 

-0.0698 
(0.0351) 

-1.99 
(0.0471) 12 4 0.0145 

(0.0205) 
0.9 
(0.858) 

Percentage of change in number of 
housing units since last census of 
total housing units 

0.407 
 
(0.233) 

1.75 
 
(0.0809) 

-0.199 
 
(0.278) 

-0.716 
 
(0.474) 

-0.231 
 
(0.248) 

-0.929 
 
(0.353) 

12 4 
-0.000134 
 
(-0.000651) 

0.24 
 
(-0.0787) 

Table 48. Super bridge treatment effect event study model CEM results 
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Dependent Variable 

Interaction 
Estimator 

for new 
super 
bridge 

 
(SE) 

t value 
 

(p 
value) 

new super 
bridge 

Treatment 
Variable 

 
(SE) 

t value 
 

(p 
value) 

new 
super 
bridge 
Group 

Dummy 
Variable 

 
(SE) 

t value 
 

(p value) 
# Other 
Controls Set 

R2 (Adj. 
R2) diff 

w/o New 
Variables 

R2 
 

(Adj. 
R2) 

Inverse Hyperbolic Sine Transformation 
of Average household income in past 12 
months (2010 Constant $ US, mean = 
11.4) 

0.127 
 
(0.161) 

0.791 
 
(0.429) 

-0.0434 
 
(0.0945) 

-0.459 
 
(0.647) 

-0.235 
 
(0.377) 

-0.624 
 
(0.533) 

12 1 
1.85e-06 
 
(-1.8e-06) 

0.988 
 
(0.983) 

Inverse Hyperbolic Sine Transformation 
of Aggregate household income in past 
12 months (2010 Constant $ US, mean = 
18.4) 

0.143 
 
(0.254) 

0.563 
 
(0.574) 

-0.0156 
 
(0.15) 

-0.104 
 
(0.917) 

-0.125 
 
(0.583) 

-0.215 
 
(0.83) 

12 1 
8.9e-07 
 
(-2.91e-06) 

0.988 
 
(0.984) 

Non-White percentage of total 
population 

0.00162 
(0.00333) 

0.487 
(0.627) 

0.000745 
(0.00181) 

0.413 
(0.68) 

0.00699 
(0.00686) 

1.02 
(0.308) 12 1 5.83e-06 

(-7.81e-06) 
0.956 
(0.939) 

Black/African American percentage of 
total population 

-0.00268 
 
(0.00287) 

-0.933 
 
(0.351) 

0.000775 
 
(0.00146) 

0.53 
 
(0.596) 

0.00249 
 
(0.00424) 

0.589 
 
(0.556) 

12 1 
7.93e-06 
 
(-3.98e-06) 

0.958 
 
(0.942) 

Percentage of Hispanic/Latino of total 
population 

-0.00139 
(0.00163) 

-0.852 
(0.394) 

-0.000628 
(0.00101) 

-0.619 
(0.536) 

0.00459 
(0.00824) 

0.557 
(0.578) 12 1 3.64e-05 

(-2.88e-07) 
0.859 
(0.805) 

Percentage of Foreign-born of total 
population 

0.00224 
(0.00178) 

1.25 
(0.21) 

0.000125 
(0.001) 

0.124 
(0.901) 

0.00417 
(0.00334) 

1.25 
(0.211) 12 1 3.68e-05 

(1.14e-05) 
0.89 
(0.847) 

Percentage of Children under 18 years 
old of total population 

0.00497 
 
(0.00453) 

1.1 
 
(0.273) 

-0.00166 
 
(0.00274) 

-0.607 
 
(0.544) 

0.0125 
 
(0.00926) 

1.35 
 
(0.178) 

12 1 
6.65e-06 
 
(1.36e-07) 

0.975 
 
(0.965) 

Inverse Hyperbolic Sine Transformation 
of Ratio of adults 18+ years old to 
children under 18 years old 
(adults/children, mean = 0.985) 

0.00212 
 
(0.0166) 

0.128 
 
(0.898) 

-0.00181 
 
(0.00927) 

-0.195 
 
(0.845) 

-0.0327 
 
(0.036) 

-0.909 
 
(0.363) 

12 1 
1.75e-07 
 
(-5.82e-06) 

0.983 
 
(0.977) 

Percentage of single-parent families with 
own children under 18 years old of total 
families and subfamilies 

0.0011 
 
(0.00249) 

0.439 
 
(0.66) 

0.000589 
 
(0.00134) 

0.439 
 
(0.661) 

0.0114 
 
(0.0115) 

0.993 
 
(0.321) 

12 1 
5.48e-06 
 
(-1.13e-05) 

0.948 
 
(0.927) 

Percentage of female-headed families 
with or without own children of total 
families and subfamilies 

-7.08e-05 
 
(0.0031) 

-0.0228 
 
(0.982) 

0.00233 
 
(0.00164) 

1.42 
 
(0.156) 

-0.00985 
 
(0.01) 

-0.981 
 
(0.326) 

12 1 
1.43e-05 
 
(7.1e-06) 

0.964 
 
(0.951) 

Inverse Hyperbolic Sine Transformation 
of Workers 16+ years old traveling to 
work on public transportation (taxi not 
included mean = 3.64) 

-0.525 
 
(0.104) 

-5.06 
 
(4.31e-
07) 

0.171 
 
(0.0722) 

2.37 
 
(0.018) 

1.14 
 
(0.861) 

1.33 
 
(0.184) 

12 1 
0.000321 
 
(0.000421) 

0.933 
 
(0.907) 

Inverse Hyperbolic Sine Transformation 
of Workers 16+ years old with travel 
time to work less than 25 minutes (mean 
= 5.31) 

-0.0179 
 
(0.104) 

-0.172 
 
(0.864) 

0.0427 
 
(0.0597) 

0.716 
 
(0.474) 

-0.0422 
 
(0.218) 

-0.193 
 
(0.847) 

12 1 
2.5e-06 
 
(-3.81e-06) 

0.98 
 
(0.972) 

Inverse Hyperbolic Sine Transformation 
of Workers 16+ years old with travel 
time to work 25 to 44 minutes (mean = 
4.71) 

0.024 
 
(0.1) 

0.24 
 
(0.81) 

0.0523 
 
(0.0586) 

0.893 
 
(0.372) 

0.49 
 
(0.158) 

3.09 
 
(0.00202) 

12 1 
6.85e-06 
 
(1.22e-06) 

0.977 
 
(0.968) 

Inverse Hyperbolic Sine Transformation 
of Workers 16+ years old with travel 
time to work more than 45 minutes 
(mean = 4.07) 

-0.00889 
 
(0.088) 

-0.101 
 
(0.919) 

0.0249 
 
(0.0514) 

0.484 
 
(0.629) 

0.15 
 
(0.381) 

0.393 
 
(0.694) 

12 1 
1.41e-06 
 
(-6.39e-06) 

0.977 
 
(0.968) 

Percentage of Persons 25+ years old who 
have completed 0-8 years of school 

0.00182 
 
(0.0026) 

0.702 
 
(0.483) 

-0.00374 
 
(0.00152) 

-2.46 
 
(0.0141) 

0.0279 
 
(0.0198) 

1.41 
 
(0.16) 

12 1 
0.000161 
 
(0.000186) 

0.896 
 
(0.856) 

Percentage of Persons 25+ years old who 
have completed high school but no 
college 

0.00483 
 
(0.00455) 

1.06 
 
(0.288) 

-0.00236 
 
(0.00293) 

-0.806 
 
(0.42) 

0.0109 
 
(0.0281) 

0.387 
 
(0.699) 

12 1 
3.54e-06 
 
(9.26e-08) 

0.987 
 
(0.981) 

Percentage of Persons 25+ years old who 
have an associate degree but no 
bachelor’s degree 

-0.00185 
 
(0.00147) 

-1.25 
 
(0.21) 

0.00126 
 
(0.000936) 

1.35 
 
(0.177) 

-0.0139 
 
(0.00974) 

-1.43 
 
(0.153) 

12 1 
2.47e-05 
 
(1.75e-05) 

0.954 
 
(0.936) 

Percentage of Persons 25+ years old who 
have a bachelor’s or 
graduate/professional degree 

0.00232 
 
(0.00576) 

0.404 
 
(0.687) 

0.00352 
 
(0.00361) 

0.976 
 
(0.329) 

-0.0167 
 
(0.0458) 

-0.364 
 
(0.716) 

12 1 
1.51e-05 
 
(6.6e-06) 

0.96 
 
(0.945) 

Percentage of total persons below the 
poverty level in past 12 months 

0.0046 
 
(0.00429) 

1.07 
 
(0.284) 

0.00138 
 
(0.00213) 

0.65 
 
(0.515) 

-0.000819 
 
(0.017) 

-0.0483 
 
(0.962) 

12 1 
5.35e-05 
 
(4.35e-05) 

0.915 
 
(0.882) 

Percentage of households with public 
assistance inc. (incl. SSI) last year of total 
households 

-5.12e-05 
 
(0.00227) 

-0.0226 
 
(0.982) 

0.000235 
 
(0.00123) 

0.19 
 
(0.849) 

0.0165 
 
(0.0112) 

1.48 
 
(0.14) 

12 1 
7.78e-07 
 
(-3.87e-05) 

0.889 
 
(0.847) 

Ratio of Owner-Occupied housing units 
to Renter Occupied Housing units 

-2.45 
 
(12.3) 

-0.199 
 
(0.843) 

-1.44 
 
(6.6) 

-0.219 
 
(0.827) 

6.01 
 
(13.4) 

0.448 
 
(0.654) 

12 1 
1.68e-05 
 
(-0.000196) 

0.39 
 
(0.155) 

Percentage of renter-occupied housing 
units of total housing units 

0.00541 
 
(0.00542) 

0.999 
 
(0.318) 

0.00425 
 
(0.00311) 

1.37 
 
(0.171) 

-0.0104 
 
(0.0193) 

-0.542 
 
(0.588) 

12 1 
3.56e-05 
 
(3.73e-05) 

0.967 
 
(0.954) 

Percentage of vacant housing units 0.00731 
(0.00492) 

1.49 
(0.137) 

-0.000444 
(0.00222) 

-0.2 
(0.842) 

-0.0155 
(0.0184) 

-0.843 
(0.4) 12 1 8.13e-05 

(7.6e-05) 
0.898 
(0.859) 

Percentage of change in number of 
housing units since last census of total 
housing units 

-0.00556 
 
(0.0806) 

-0.0689 
 
(0.945) 

0.345 
 
(0.18) 

1.92 
 
(0.0551) 

-0.0625 
 
(0.259) 

-0.241 
 
(0.809) 

12 1 
0.000101 
 
(-8.74e-05) 

0.366 
 
(0.122) 
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Table 48. Super bridge treatment effect event study model CEM results (cont’d) 

Dependent Variable 

Interaction 
Estimator 

for new 
super 
bridge 

 
(SE) 

t value 
 

(p 
value) 

new super 
bridge 

Treatment 
Variable 

 
(SE) 

t value 
 

(p 
value) 

new 
super 
bridge 
Group 

Dummy 
Variable 

 
(SE) 

t value 
 

(p value) 
# Other 
Controls Set 

R2 (Adj. 
R2) diff 

w/o New 
Variables 

R2 
 

(Adj. 
R2) 

Inverse Hyperbolic Sine Transformation 
of Average household income in past 12 
months (2010 Constant $ US, mean = 
11.4) 

0.223 
 
(0.144) 

1.55 
 
(0.122) 

-0.0683 
 
(0.0865) 

-0.79 
 
(0.43) 

-0.141 
 
(0.365) 

-0.387 
 
(0.699) 

10 2 
0.00198 
 
(0.00274) 

0.99 
 
(0.986) 

Inverse Hyperbolic Sine Transformation 
of Aggregate household income in past 12 
months (2010 Constant $ US, mean = 
18.4) 

0.28 
 
(0.222) 

1.26 
 
(0.207) 

-0.0596 
 
(0.135) 

-0.44 
 
(0.66) 

0.0744 
 
(0.559) 

0.133 
 
(0.894) 

10 2 
0.00205 
 
(0.00285) 

0.991 
 
(0.987) 

Non-White percentage of total population 
0.000119 
 
(0.00378) 

0.0316 
 
(0.975) 

0.00252 
 
(0.00203) 

1.24 
 
(0.215) 

0.00608 
 
(0.0193) 

0.315 
 
(0.753) 

10 2 
-0.0144 
 
(-0.02) 

0.941 
 
(0.919) 

Black/African American percentage of 
total population 

-0.00296 
 
(0.00307) 

-0.965 
 
(0.335) 

0.00197 
 
(0.00161) 

1.23 
 
(0.219) 

0.000688 
 
(0.0116) 

0.0593 
 
(0.953) 

10 2 
-0.0114 
 
(-0.0158) 

0.947 
 
(0.927) 

Percentage of Hispanic/Latino of total 
population 

-0.00179 
 
(0.00166) 

-1.08 
 
(0.28) 

-7.63e-05 
 
(0.00102) 

-0.0745 
 
(0.941) 

0.000993 
 
(0.011) 

0.09 
 
(0.928) 

10 2 
-0.00473 
 
(-0.00655) 

0.854 
 
(0.798) 

Percentage of Foreign-born of total 
population 

0.00137 
 
(0.00183) 

0.751 
 
(0.453) 

0.000285 
 
(0.00102) 

0.279 
 
(0.781) 

0.0057 
 
(0.00392) 

1.45 
 
(0.146) 

10 2 
-0.00245 
 
(-0.0034) 

0.887 
 
(0.844) 

Percentage of Children under 18 years old 
of total population 

0.00811 
 
(0.00367) 

2.21 
 
(0.0269) 

-0.00264 
 
(0.00233) 

-1.13 
 
(0.257) 

0.0123 
 
(0.0129) 

0.954 
 
(0.34) 

10 2 
0.00766 
 
(0.0106) 

0.982 
 
(0.976) 

Inverse Hyperbolic Sine Transformation 
of Ratio of adults 18+ years old to children 
under 18 years old (adults/children, mean 
= 0.985) 

0.00802 
 
(0.0162) 

0.497 
 
(0.62) 

-0.00262 
 
(0.00919) 

-0.285 
 
(0.776) 

-0.0249 
 
(0.0344) 

-0.725 
 
(0.469) 

10 2 
0.000293 
 
(0.000406) 

0.983 
 
(0.977) 

Percentage of single-parent families with 
own children under 18 years old of total 
families and subfamilies 

0.00297 
 
(0.00244) 

1.21 
 
(0.224) 

0.000951 
 
(0.00134) 

0.71 
 
(0.478) 

0.0061 
 
(0.0151) 

0.403 
 
(0.687) 

10 2 

-0.000203 
 
(-
0.000282) 

0.947 
 
(0.927) 

Percentage of female-headed families with 
or without own children of total families 
and subfamilies 

0.00241 
 
(0.00302) 

0.798 
 
(0.425) 

0.00263 
 
(0.0016) 

1.64 
 
(0.101) 

-0.0148 
 
(0.0162) 

-0.915 
 
(0.36) 

10 2 
0.000657 
 
(0.00091) 

0.965 
 
(0.952) 

Inverse Hyperbolic Sine Transformation 
of Workers 16+ years old traveling to 
work on public transportation (taxi not 
included mean = 3.64) 

-0.472 
 
(0.101) 

-4.7 
 
(2.64e-
06) 

0.149 
 
(0.0717) 

2.08 
 
(0.038) 

1.05 
 
(0.909) 

1.15 
 
(0.249) 

10 2 
0.00154 
 
(0.00214) 

0.934 
 
(0.908) 

Inverse Hyperbolic Sine Transformation 
of Workers 16+ years old with travel time 
to work less than 25 minutes (mean = 
5.31) 

0.0511 
 
(0.08) 

0.639 
 
(0.523) 

0.0135 
 
(0.0481) 

0.281 
 
(0.779) 

-0.0044 
 
(0.19) 

-0.0232 
 
(0.981) 

10 2 
0.0072 
 
(0.00998) 

0.987 
 
(0.982) 

Inverse Hyperbolic Sine Transformation 
of Workers 16+ years old with travel time 
to work 25 to 44 minutes (mean = 4.71) 

0.0984 
 
(0.0784) 

1.26 
 
(0.209) 

0.0266 
 
(0.0474) 

0.56 
 
(0.576) 

0.481 
 
(0.147) 

3.27 
 
(0.00106) 

10 2 
0.00753 
 
(0.0104) 

0.985 
 
(0.979) 

Inverse Hyperbolic Sine Transformation 
of Workers 16+ years old with travel time 
to work more than 45 minutes (mean = 
4.07) 

0.0691 
 
(0.0719) 

0.96 
 
(0.337) 

-0.00439 
 
(0.0443) 

-0.0991 
 
(0.921) 

0.0833 
 
(0.417) 

0.2 
 
(0.841) 

10 2 
0.00618 
 
(0.00856) 

0.983 
 
(0.976) 

Percentage of Persons 25+ years old who 
have completed 0-8 years of school 

0.00179 
 
(0.00252) 

0.71 
 
(0.478) 

-0.00377 
 
(0.0015) 

-2.5 
 
(0.0123) 

0.0275 
 
(0.0197) 

1.4 
 
(0.161) 

10 2 
0.000663 
 
(0.000919) 

0.897 
 
(0.857) 

Percentage of Persons 25+ years old who 
have completed high school but no college 

0.00957 
 
(0.00543) 

1.76 
 
(0.0779) 

-0.00226 
 
(0.0034) 

-0.663 
 
(0.507) 

-0.00917 
 
(0.0339) 

-0.27 
 
(0.787) 

10 2 
-0.00342 
 
(-0.00474) 

0.983 
 
(0.977) 

Percentage of Persons 25+ years old who 
have an associate degree but no 
bachelor’s degree 

-0.00173 
 
(0.00147) 

-1.18 
 
(0.239) 

0.00129 
 
(0.00096) 

1.34 
 
(0.18) 

-0.0152 
 
(0.00942) 

-1.61 
 
(0.107) 

10 2 
-0.00176 
 
(-0.00244) 

0.952 
 
(0.933) 

Percentage of Persons 25+ years old who 
have a bachelor’s or 
graduate/professional degree 

-0.00338 
 
(0.00727) 

-0.465 
 
(0.642) 

0.00295 
 
(0.0044) 

0.669 
 
(0.503) 

0.0136 
 
(0.0502) 

0.271 
 
(0.786) 

10 2 
-0.0126 
 
(-0.0174) 

0.948 
 
(0.927) 

Percentage of total persons below the 
poverty level in past 12 months 

0.00616 
 
(0.00419) 

1.47 
 
(0.142) 

0.0013 
 
(0.0021) 

0.618 
 
(0.537) 

-0.00288 
 
(0.0214) 

-0.134 
 
(0.893) 

10 2 
0.00539 
 
(0.00746) 

0.92 
 
(0.889) 

Percentage of households with public 
assistance inc. (incl. SSI) last year of total 
households 

0.000272 
 
(0.00212) 

0.128 
 
(0.898) 

-0.000103 
 
(0.00115) 

-0.0893 
 
(0.929) 

0.019 
 
(0.014) 

1.36 
 
(0.174) 

10 2 
0.00836 
 
(0.0116) 

0.898 
 
(0.858) 

Ratio of Owner-Occupied housing units to 
Renter Occupied Housing units 

-3.66 
 
(12.1) 

-0.302 
 
(0.763) 

-0.437 
 
(6.96) 

-0.0627 
 
(0.95) 

6.96 
 
(12.3) 

0.565 
 
(0.572) 

10 2 
-0.0294 
 
(-0.0408) 

0.361 
 
(0.115) 

Percentage of renter-occupied housing 
units of total housing units 

0.00987 
 
(0.00509) 

1.94 
 
(0.0528) 

0.00402 
 
(0.00304) 

1.33 
 
(0.185) 

-0.0136 
 
(0.0247) 

-0.554 
 
(0.58) 

10 2 
0.0027 
 
(0.00375) 

0.969 
 
(0.957) 

Percentage of vacant housing units 
0.00998 
 
(0.00447) 

2.23 
 
(0.0257) 

-0.00114 
 
(0.00214) 

-0.534 
 
(0.593) 

-0.0202 
 
(0.0217) 

-0.929 
 
(0.353) 

10 2 
0.00987 
 
(0.0137) 

0.908 
 
(0.873) 

Percentage of change in number of 
housing units since last census of total 
housing units 

0.00932 
 
(0.0605) 

0.154 
 
(0.878) 

0.319 
 
(0.175) 

1.83 
 
(0.0679) 

-0.00778 
 
(0.176) 

-0.0442 
 
(0.965) 

10 2 
-6.55e-05 
 
(-9.08e-05) 

0.366 
 
(0.122) 

Table 48. Super bridge treatment effect event study model CEM results (cont’d) 
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Dependent Variable 

Interaction 
Estimator 

for new 
super 
bridge 

 
(SE) 

t value 
 

(p value) 

new super 
bridge 

Treatment 
Variable 

 
(SE) 

t value 
 

(p 
value) 

new 
super 
bridge 
Group 

Dummy 
Variable 

 
(SE) 

t value 
 

(p value) 
# Other 
Controls Set 

R2 (Adj. R2) 
diff w/o 

New 
Variables 

R2 
 

(Adj. 
R2) 

Inverse Hyperbolic Sine 
Transformation of Average household 
income in past 12 months (2010 
Constant $ US, mean = 11.4) 

0.122 
 
(0.151) 

0.809 
 
(0.419) 

-0.0615 
 
(0.0905) 

-0.68 
 
(0.497) 

-0.0204 
 
(0.282) 

-0.0726 
 
(0.942) 

12 3 
0.00138 
 
(0.0019) 

0.989 
 
(0.985) 

Inverse Hyperbolic Sine 
Transformation of Aggregate household 
income in past 12 months (2010 
Constant $ US, mean = 18.4) 

0.117 
 
(0.235) 

0.496 
 
(0.62) 

-0.0416 
 
(0.143) 

-0.291 
 
(0.771) 

0.282 
 
(0.424) 

0.665 
 
(0.506) 

12 3 
0.00134 
 
(0.00185) 

0.99 
 
(0.986) 

Non-White percentage of total 
population 

0.00286 
(0.00347) 

0.825 
(0.41) 

0.00103 
(0.00183) 

0.56 
(0.575) 

0.01 
(0.00763) 

1.32 
(0.188) 12 3 -0.00286 

(-0.00398) 
0.953 
(0.935) 

Black/African American percentage of 
total population 

-0.00137 
 
(0.00281) 

-0.489 
 
(0.625) 

0.00092 
 
(0.00144) 

0.638 
 
(0.523) 

0.00423 
 
(0.00478) 

0.885 
 
(0.376) 

12 3 
0.000178 
 
(0.000232) 

0.959 
 
(0.943) 

Percentage of Hispanic/Latino of total 
population 

-0.00108 
(0.00168) 

-0.64 
(0.522) 

-0.000558 
(0.00103) 

-0.544 
(0.586) 

0.00256 
(0.00757) 

0.339 
(0.735) 12 3 -0.00873 

(-0.0121) 
0.85 
(0.793) 

Percentage of Foreign-born of total 
population 

0.00173 
(0.00181) 

0.956 
(0.339) 

0.00025 
(0.00101) 

0.248 
(0.804) 

0.00637 
(0.00342) 

1.86 
(0.0624) 12 3 -0.000259 

(-0.000399) 
0.89 
(0.847) 

Percentage of Children under 18 years 
old of total population 

0.00528 
 
(0.00394) 

1.34 
 
(0.181) 

-0.00237 
 
(0.00252) 

-0.937 
 
(0.349) 

0.0165 
 
(0.00546) 

3.02 
 
(0.00256) 

12 3 
0.00582 
 
(0.00806) 

0.981 
 
(0.973) 

Inverse Hyperbolic Sine 
Transformation of Ratio of adults 18+ 
years old to children under 18 years old 
(adults/children, mean = 0.985) 

0.00184 
 
(0.0162) 

0.114 
 
(0.91) 

-0.00346 
 
(0.00922) 

-0.375 
 
(0.707) 

-0.0145 
 
(0.0358) 

-0.405 
 
(0.685) 

12 3 
0.000375 
 
(0.000514) 

0.984 
 
(0.977) 

Percentage of single-parent families 
with own children under 18 years old of 
total families and subfamilies 

0.00222 
 
(0.00241) 

0.921 
 
(0.357) 

0.000168 
 
(0.00127) 

0.132 
 
(0.895) 

0.00809 
 
(0.0123) 

0.66 
 
(0.509) 

12 3 
0.00337 
 
(0.00465) 

0.951 
 
(0.932) 

Percentage of female-headed families 
with or without own children of total 
families and subfamilies 

0.00138 
 
(0.003) 

0.458 
 
(0.647) 

0.00201 
 
(0.00153) 

1.31 
 
(0.189) 

-0.0123 
 
(0.00829) 

-1.48 
 
(0.139) 

12 3 
0.00275 
 
(0.0038) 

0.967 
 
(0.955) 

Inverse Hyperbolic Sine 
Transformation of Workers 16+ years 
old traveling to work on public 
transportation (taxi not included mean 
= 3.64) 

-0.487 
 
(0.103) 

-4.74 
 
(2.23e-
06) 

0.155 
 
(0.0729) 

2.12 
 
(0.0337) 

1.1 
 
(0.892) 

1.23 
 
(0.217) 

12 3 
2.34e-05 
 
(8.05e-06) 

0.932 
 
(0.906) 

Inverse Hyperbolic Sine 
Transformation of Workers 16+ years 
old with travel time to work less than 
25 minutes (mean = 5.31) 

-0.0339 
 
(0.091) 

-0.373 
 
(0.709) 

0.0348 
 
(0.0545) 

0.639 
 
(0.523) 

0.142 
 
(0.232) 

0.611 
 
(0.541) 

12 3 
0.00426 
 
(0.00589) 

0.984 
 
(0.978) 

Inverse Hyperbolic Sine 
Transformation of Workers 16+ years 
old with travel time to work 25 to 44 
minutes (mean = 4.71) 

0.019 
 
(0.0866) 

0.219 
 
(0.826) 

0.0397 
 
(0.0525) 

0.756 
 
(0.45) 

0.627 
 
(0.172) 

3.65 
 
(0.000267) 

12 3 
0.00497 
 
(0.00688) 

0.982 
 
(0.975) 

Inverse Hyperbolic Sine 
Transformation of Workers 16+ years 
old with travel time to work more than 
45 minutes (mean = 4.07) 

-0.000741 
 
(0.077) 

-0.00961 
 
(0.992) 

0.00853 
 
(0.0472) 

0.181 
 
(0.857) 

0.232 
 
(0.29) 

0.802 
 
(0.423) 

12 3 
0.00465 
 
(0.00644) 

0.981 
 
(0.974) 

Percentage of Persons 25+ years old 
who have completed 0-8 years of school 

0.00185 
 
(0.00253) 

0.729 
 
(0.466) 

-0.00374 
 
(0.0015) 

-2.49 
 
(0.0128) 

0.024 
 
(0.0204) 

1.17 
 
(0.24) 

12 3 
0.00315 
 
(0.00433) 

0.899 
 
(0.86) 

Percentage of Persons 25+ years old 
who have completed high school but no 
college 

0.00782 
 
(0.00468) 

1.67 
 
(0.095) 

-0.0028 
 
(0.00296) 

-0.945 
 
(0.345) 

-0.00789 
 
(0.0327) 

-0.241 
 
(0.809) 

12 3 
-0.000762 
 
(-0.00106) 

0.986 
 
(0.98) 

Percentage of Persons 25+ years old 
who have an associate degree but no 
bachelor’s degree 

-0.00197 
 
(0.00146) 

-1.35 
 
(0.177) 

0.00132 
 
(0.000932) 

1.41 
 
(0.157) 

-0.0134 
 
(0.00974) 

-1.38 
 
(0.168) 

12 3 
0.000908 
 
(0.00124) 

0.954 
 
(0.937) 

Percentage of Persons 25+ years old 
who have a bachelor’s or 
graduate/professional degree 

-0.00139 
 
(0.0061) 

-0.228 
 
(0.82) 

0.004 
 
(0.00375) 

1.07 
 
(0.286) 

0.0136 
 
(0.0517) 

0.263 
 
(0.793) 

12 3 
-0.00209 
 
(-0.00292) 

0.958 
 
(0.942) 

Percentage of total persons below the 
poverty level in past 12 months 

0.00476 
 
(0.00412) 

1.16 
 
(0.247) 

0.000971 
 
(0.00199) 

0.489 
 
(0.625) 

-0.00101 
 
(0.014) 

-0.0721 
 
(0.942) 

12 3 
0.00826 
 
(0.0114) 

0.923 
 
(0.893) 

Percentage of households with public 
assistance inc. (incl. SSI) last year of 
total households 

-0.000202 
 
(0.00217) 

-0.0931 
 
(0.926) 

1.6e-06 
 
(0.00115) 

0.00139 
 
(0.999) 

0.0223 
 
(0.0121) 

1.84 
 
(0.0664) 

12 3 
0.00641 
 
(0.00885) 

0.896 
 
(0.856) 

Ratio of Owner-Occupied housing units 
to Renter Occupied Housing units 

0.165 
 
(12) 

0.0138 
 
(0.989) 

-2.36 
 
(6.81) 

-0.347 
 
(0.729) 

0.445 
 
(15.4) 

0.0289 
 
(0.977) 

12 3 
-0.0247 
 
(-0.0344) 

0.366 
 
(0.121) 

Percentage of renter-occupied housing 
units of total housing units 

0.00657 
 
(0.00487) 

1.35 
 
(0.177) 

0.00347 
 
(0.00285) 

1.22 
 
(0.224) 

-0.00659 
 
(0.0128) 

-0.514 
 
(0.607) 

12 3 
0.00418 
 
(0.00579) 

0.971 
 
(0.959) 

Percentage of vacant housing units 0.00842 
(0.00456) 

1.85 
(0.0648) 

-0.00123 
(0.00212) 

-0.582 
(0.56) 

-0.0174 
(0.0176) 

-0.992 
(0.321) 12 3 0.0112 

(0.0154) 
0.909 
(0.874) 

Percentage of change in number of 
housing units since last census of total 
housing units 

-0.0471 
 
(0.0739) 

-0.638 
 
(0.524) 

0.359 
 
(0.187) 

1.91 
 
(0.0557) 

-0.0893 
 
(0.119) 

-0.752 
 
(0.452) 

12 3 
-6.57e-05 
 
(-0.000319) 

0.366 
 
(0.121) 

Table 48. Super bridge treatment effect event study model CEM results (cont’d) 
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Dependent Variable 

Interaction 
Estimator 

for new 
super 
bridge 

 
(SE) 

t value 
 

(p 
value) 

new super 
bridge 

Treatment 
Variable 

 
(SE) 

t value 
 

(p 
value) 

new 
super 
bridge 
Group 

Dummy 
Variable 

 
(SE) 

t value 
 

(p 
value) 

# Other 
Controls Set 

R2 (Adj. 
R2) diff 

w/o New 
Variables 

R2 
 

(Adj. 
R2) 

Inverse Hyperbolic Sine Transformation of 
Average household income in past 12 
months (2010 Constant $ US, mean = 11.4) 

0.0571 
 
(0.143) 

0.4 
 
(0.689) 

-0.0332 
 
(0.0836) 

-0.397 
 
(0.692) 

-0.426 
 
(0.183) 

-2.32 
 
(0.0203) 

12 4 
0.00257 
 
(0.00356) 

0.99 
 
(0.987) 

Inverse Hyperbolic Sine Transformation of 
Aggregate household income in past 12 
months (2010 Constant $ US, mean = 18.4) 

0.0591 
 
(0.223) 

0.265 
 
(0.791) 

-0.0191 
 
(0.131) 

-0.146 
 
(0.884) 

-0.555 
 
(0.322) 

-1.73 
 
(0.0842) 

12 4 
0.00257 
 
(0.00356) 

0.991 
 
(0.988) 

Non-White percentage of total population 0.000928 
(0.00372) 

0.249 
(0.803) 

0.00313 
(0.00193) 

1.62 
(0.105) 

0.0127 
(0.00984) 

1.29 
(0.197) 12 4 -0.0124 

(-0.0172) 
0.943 
(0.922) 

Black/African American percentage of total 
population 

-0.00315 
(0.00303) 

-1.04 
(0.298) 

0.00243 
(0.00154) 

1.58 
(0.115) 

0.00512 
(0.00638) 

0.803 
(0.422) 12 4 -0.0109 

(-0.0152) 
0.947 
(0.927) 

Percentage of Hispanic/Latino of total 
population 

-0.0013 
(0.00144) 

-0.904 
(0.366) 

0.000512 
(0.000844) 

0.607 
(0.544) 

0.00591 
(0.00634) 

0.933 
(0.351) 12 4 0.0401 

(0.0555) 
0.899 
(0.86) 

Percentage of Foreign-born of total 
population 

0.00211 
(0.00183) 

1.15 
(0.249) 

0.000434 
(0.000965) 

0.45 
(0.653) 

0.0057 
(0.00361) 

1.58 
(0.115) 12 4 0.00216 

(0.00294) 
0.892 
(0.85) 

Percentage of Children under 18 years old 
of total population 

0.00313 
 
(0.00373) 

0.84 
 
(0.401) 

-0.00134 
 
(0.00227) 

-0.592 
 
(0.554) 

0.00526 
 
(0.00945) 

0.557 
 
(0.578) 

12 4 
0.00736 
 
(0.0102) 

0.982 
 
(0.975) 

Inverse Hyperbolic Sine Transformation of 
Ratio of adults 18+ years old to children 
under 18 years old (adults/children, mean = 
0.985) 

-0.00118 
 
(0.016) 

-
0.0738 
 
(0.941) 

-0.00137 
 
(0.00882) 

-0.156 
 
(0.876) 

-0.0508 
 
(0.0246) 

-2.07 
 
(0.0385) 

12 4 
0.00133 
 
(0.00184) 

0.984 
 
(0.978) 

Percentage of single-parent families with 
own children under 18 years old of total 
families and subfamilies 

0.00109 
 
(0.0024) 

0.455 
 
(0.649) 

0.00152 
 
(0.00129) 

1.18 
 
(0.239) 

0.00957 
 
(0.0123) 

0.777 
 
(0.437) 

12 4 
0.00255 
 
(0.00351) 

0.95 
 
(0.931) 

Percentage of female-headed families with 
or without own children of total families 
and subfamilies 

0.000262 
 
(0.00304) 

0.0862 
 
(0.931) 

0.00331 
 
(0.00161) 

2.06 
 
(0.0392) 

-0.0122 
 
(0.0103) 

-1.19 
 
(0.235) 

12 4 
0.00041 
 
(0.000548) 

0.965 
 
(0.951) 

Inverse Hyperbolic Sine Transformation of 
Workers 16+ years old traveling to work on 
public transportation (taxi not included 
mean = 3.64) 

-0.527 
 
(0.102) 

-5.15 
 
(2.7e-
07) 

0.165 
 
(0.0721) 

2.28 
 
(0.0224) 

1.07 
 
(0.89) 

1.21 
 
(0.228) 

12 4 
0.000969 
 
(0.00131) 

0.933 
 
(0.908) 

Inverse Hyperbolic Sine Transformation of 
Workers 16+ years old with travel time to 
work less than 25 minutes (mean = 5.31) 

-0.0557 
 
(0.0905) 

-0.615 
 
(0.538) 

0.0323 
 
(0.0507) 

0.637 
 
(0.524) 

-0.283 
 
(0.187) 

-1.51 
 
(0.13) 

12 4 
0.00554 
 
(0.00767) 

0.985 
 
(0.98) 

Inverse Hyperbolic Sine Transformation of 
Workers 16+ years old with travel time to 
work 25 to 44 minutes (mean = 4.71) 

-0.00875 
 
(0.0869) 

-0.101 
 
(0.92) 

0.0456 
 
(0.0497) 

0.918 
 
(0.359) 

0.264 
 
(0.232) 

1.14 
 
(0.255) 

12 4 
0.0059 
 
(0.00817) 

0.983 
 
(0.976) 

Inverse Hyperbolic Sine Transformation of 
Workers 16+ years old with travel time to 
work more than 45 minutes (mean = 4.07) 

-0.0431 
 
(0.0732) 

-0.589 
 
(0.556) 

0.0217 
 
(0.0432) 

0.502 
 
(0.615) 

-0.0502 
 
(0.309) 

-0.162 
 
(0.871) 

12 4 
0.00643 
 
(0.0089) 

0.983 
 
(0.977) 

Percentage of Persons 25+ years old who 
have completed 0-8 years of school 

0.00115 
 
(0.00249) 

0.462 
 
(0.644) 

-0.00331 
 
(0.00148) 

-2.23 
 
(0.0257) 

0.028 
 
(0.0211) 

1.33 
 
(0.185) 

12 4 
0.00472 
 
(0.00648) 

0.901 
 
(0.862) 

Percentage of Persons 25+ years old who 
have completed high school but no college 

0.00293 
 
(0.00534) 

0.548 
 
(0.584) 

-0.00131 
 
(0.0032) 

-0.408 
 
(0.683) 

-0.0045 
 
(0.0352) 

-0.128 
 
(0.898) 

12 4 
-0.00188 
 
(-0.00261) 

0.985 
 
(0.979) 

Percentage of Persons 25+ years old who 
have an associate degree but no bachelor’s 
degree 

-0.0013 
 
(0.00147) 

-0.885 
 
(0.376) 

0.00106 
 
(0.000957) 

1.1 
 
(0.27) 

-0.0152 
 
(0.0101) 

-1.5 
 
(0.134) 

12 4 
-0.00152 
 
(-0.00214) 

0.952 
 
(0.934) 

Percentage of Persons 25+ years old who 
have a bachelor’s or graduate/professional 
degree 

0.0051 
 
(0.00686) 

0.744 
 
(0.457) 

0.00134 
 
(0.00409) 

0.329 
 
(0.742) 

0.00328 
 
(0.0556) 

0.059 
 
(0.953) 

12 4 
-0.00681 
 
(-0.00946) 

0.953 
 
(0.935) 

Percentage of total persons below the 
poverty level in past 12 months 

0.00419 
 
(0.00415) 

1.01 
 
(0.313) 

0.00196 
 
(0.00207) 

0.945 
 
(0.345) 

-0.00203 
 
(0.0145) 

-0.14 
 
(0.889) 

12 4 
0.00646 
 
(0.0089) 

0.921 
 
(0.891) 

Percentage of households with public 
assistance inc. (incl. SSI) last year of total 
households 

-0.000501 
 
(0.00219) 

-0.229 
 
(0.819) 

1.94e-05 
 
(0.0012) 

0.0161 
 
(0.987) 

0.0152 
 
(0.0143) 

1.06 
 
(0.287) 

12 4 
0.00475 
 
(0.00653) 

0.894 
 
(0.853) 

Ratio of Owner-Occupied housing units to 
Renter Occupied Housing units 

-3.18 
 
(12.4) 

-0.256 
 
(0.798) 

-0.769 
 
(6.66) 

-0.115 
 
(0.908) 

11.5 
 
(13.5) 

0.853 
 
(0.394) 

12 4 
-0.000675 
 
(-0.00126) 

0.39 
 
(0.154) 

Percentage of renter-occupied housing units 
of total housing units 

0.00564 
 
(0.00525) 

1.07 
 
(0.282) 

0.00478 
 
(0.00308) 

1.55 
 
(0.121) 

-0.015 
 
(0.0177) 

-0.848 
 
(0.396) 

12 4 
0.00207 
 
(0.00285) 

0.969 
 
(0.957) 

Percentage of vacant housing units 
0.00592 
 
(0.00458) 

1.29 
 
(0.196) 

-7.6e-06 
 
(0.00209) 

-0.00363 
 
(0.997) 

-0.0205 
 
(0.02) 

-1.03 
 
(0.305) 

12 4 
0.0114 
 
(0.0158) 

0.91 
 
(0.875) 

Percentage of change in number of housing 
units since last census of total housing units 

-0.0182 
 
(0.0753) 

-0.241 
 
(0.809) 

0.332 
 
(0.175) 

1.9 
 
(0.0581) 

-0.164 
 
(0.159) 

-1.03 
 
(0.302) 

12 4 
-0.000287 
 
(-0.00074) 

0.366 
 
(0.121) 
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Table 49. Restrictive bridge treatment effect event study model CEM results 

Dependent Variable 

Interaction 
Estimator 

for new 
under 14 ft 

bridge 
 

(SE) 

t value 
 

(p value) 

new 
under 14 
ft bridge 

Treatment 
Variable 

 
(SE) 

t value 
 

(p 
value) 

new 
under 14 
ft bridge 

Group 
Dummy 
Variable 

 
(SE) 

t value 
 

(p value) 
# Other 
Controls Set 

R2 (Adj. R2) 
diff w/o New 

Variables 

R2 
 

(Adj. 
R2) 

Inverse Hyperbolic Sine 
Transformation of Average 

household income in past 12 months 
(2010 Constant $ US, mean = 11.5) 

-1.01 
 

(0.541) 

-1.88 
 

(0.0607) 

0.441 
 

(0.315) 

1.4 
 

(0.162) 

-1.4 
 

(2.33) 

-0.601 
 

(0.548) 
12 1 

4.98e-05 
 

(6.58e-05) 

0.989 
 

(0.984) 

Inverse Hyperbolic Sine 
Transformation of Aggregate 

household income in past 12 months 
(2010 Constant $ US, mean = 18.6) 

-1.25 
 

(0.786) 

-1.59 
 

(0.112) 

0.636 
 

(0.494) 

1.29 
 

(0.198) 

-2.07 
 

(3.77) 

-0.548 
 

(0.584) 
12 1 

3.78e-05 
 

(4.9e-05) 

0.99 
 

(0.985) 

Non-White percentage of total 
population 

-0.0476 
(0.0499) 

-0.954 
(0.34) 

0.00189 
(0.00727) 

0.259 
(0.795) 

0.0272 
(0.0489) 

0.557 
(0.577) 12 1 0.000138 

(0.000181) 
0.966 

(0.951) 
Black/African American percentage 

of total population 
-0.0422 
(0.049) 

-0.86 
(0.39) 

9.5e-05 
(0.00725) 

0.0131 
(0.99) 

0.0316 
(0.048) 

0.659 
(0.51) 12 1 0.000146 

(0.000192) 
0.966 
(0.95) 

Percentage of Hispanic/Latino of 
total population 

-0.0119 
(0.00409) 

-2.92 
(0.00353) 

0.00329 
(0.00255) 

1.29 
(0.196) 

-0.00382 
(0.00417) 

-0.915 
(0.36) 12 1 0.000228 

(0.000256) 
0.874 

(0.816) 
Percentage of Foreign-born of total 

population 
-0.0037 

(0.00492) 
-0.752 
(0.452) 

0.000112 
(0.00346) 

0.0324 
(0.974) 

0.00639 
(0.00601) 

1.06 
(0.288) 12 1 8.32e-06 

(-7.09e-05) 
0.862 

(0.799) 
Percentage of Children under 18 

years old of total population 
-0.019 

(0.0135) 
-1.41 

(0.158) 
0.00452 

(0.00812) 
0.557 

(0.578) 
-0.0323 
(0.052) 

-0.621 
(0.535) 12 1 2e-05 

(1.58e-05) 
0.978 

(0.968) 
Inverse Hyperbolic Sine 

Transformation of Ratio of adults 
18+ years old to children under 18 
years old (adults/children, mean = 

0.998) 

-0.104 
 

(0.0696) 

-1.5 
 

(0.134) 

0.0574 
 

(0.0301) 

1.91 
 

(0.0568) 

-0.101 
 

(0.217) 

-0.464 
 

(0.643) 
12 1 

0.000105 
 

(0.000144) 

0.986 
 

(0.979) 

Percentage of single-parent families 
with own children under 18 years 

old of total families and subfamilies 

-0.0146 
 

(0.014) 

-1.05 
 

(0.296) 

0.00584 
 

(0.00756) 

0.773 
 

(0.44) 

0.0441 
 

(0.0207) 

2.13 
 

(0.0334) 
12 1 

6.85e-05 
 

(7.54e-05) 

0.96 
 

(0.941) 
Percentage of female-headed families 
with or without own children of total 

families and subfamilies 

-0.00617 
 

(0.0198) 

-0.311 
 

(0.756) 

0.00101 
 

(0.0105) 

0.0964 
 

(0.923) 

0.0341 
 

(0.0293) 

1.16 
 

(0.245) 
12 1 

2.29e-06 
 

(-2.04e-05) 

0.961 
 

(0.943) 
Inverse Hyperbolic Sine 

Transformation of Workers 16+ 
years old traveling to work on public 

transportation (taxi not included 
mean = 3.61) 

-0.751 
 

(0.328) 

-2.29 
 

(0.0219) 

0.342 
 

(0.179) 

1.91 
 

(0.0559) 

1.92 
 

(0.541) 

3.54 
 

(0.000397) 
12 1 

0.000277 
 

(0.000377) 

0.955 
 

(0.934) 

Inverse Hyperbolic Sine 
Transformation of Workers 16+ 

years old with travel time to work 
less than 25 minutes (mean = 5.19) 

-0.0636 
 

(0.337) 

-0.189 
 

(0.85) 

0.0404 
 

(0.178) 

0.228 
 

(0.82) 

-0.179 
 

(1.42) 

-0.126 
 

(0.9) 
12 1 

1.6e-06 
 

(-7.49e-06) 

0.984 
 

(0.976) 

Inverse Hyperbolic Sine 
Transformation of Workers 16+ 

years old with travel time to work 25 
to 44 minutes (mean = 4.55) 

-0.178 
 

(0.342) 

-0.519 
 

(0.604) 

0.148 
 

(0.168) 

0.88 
 

(0.379) 

-0.403 
 

(1.33) 

-0.304 
 

(0.761) 
12 1 

2.72e-05 
 

(2.7e-05) 

0.979 
 

(0.97) 

Inverse Hyperbolic Sine 
Transformation of Workers 16+ 

years old with travel time to work 
more than 45 minutes (mean = 3.94) 

-0.178 
 

(0.292) 

-0.608 
 

(0.543) 

0.136 
 

(0.147) 

0.925 
 

(0.355) 

-1.83 
 

(0.94) 

-1.95 
 

(0.0515) 
12 1 

2.98e-05 
 

(2.98e-05) 

0.977 
 

(0.967) 

Percentage of Persons 25+ years old 
who have completed 0-8 years of 

school 

0.00403 
 

(0.0079) 

0.511 
 

(0.61) 

-0.00164 
 

(0.00355) 

-0.461 
 

(0.645) 

0.0152 
 

(0.014) 

1.08 
 

(0.28) 
12 1 

2.04e-05 
 

(-1.76e-05) 

0.921 
 

(0.885) 
Percentage of Persons 25+ years old 
who have completed high school but 

no college 

-0.000719 
 

(0.0244) 

-0.0295 
 

(0.976) 

0.00902 
 

(0.00725) 

1.24 
 

(0.213) 

0.1 
 

(0.0332) 

3.02 
 

(0.00256) 
12 1 

1.78e-05 
 

(1.9e-05) 

0.988 
 

(0.983) 
Percentage of Persons 25+ years old 
who have an associate degree but no 

bachelor’s degree 

-0.017 
(0.00576) 

-2.96 
(0.00308) 

0.0035 
(0.00235) 

1.49 
(0.137) 

-0.00255 
(0.00677) 

-0.377 
(0.706) 12 1 0.000176 

(0.000231) 
0.956 

(0.936) 

Percentage of Persons 25+ years old 
who have a bachelor’s or 

graduate/professional degree 

-0.0337 
(0.0262) 

-1.29 
(0.198) 

0.0123 
(0.00958) 

1.28 
(0.199) 

-0.0524 
(0.0345) 

-1.52 
(0.129) 12 1 8.45e-05 

(0.000101) 
0.964 

(0.947) 

Percentage of total persons below 
the poverty level in past 12 months 

-0.0652 
 

(0.0518) 

-1.26 
 

(0.208) 

0.00152 
 

(0.00735) 

0.207 
 

(0.836) 

0.0914 
 

(0.054) 

1.69 
 

(0.0906) 
12 1 

0.000396 
 

(0.000536) 

0.933 
 

(0.902) 
Percentage of households with public 

assistance inc. (incl. SSI) last year of 
total households 

-0.000506 
 

(0.0104) 

-0.0487 
 

(0.961) 

-0.000639 
 

(0.0057) 

-0.112 
 

(0.911) 

-0.00633 
 

(0.0119) 

-0.532 
 

(0.595) 
12 1 

2.73e-06 
 

(-7.32e-05) 

0.872 
 

(0.813) 

Ratio of Owner-Occupied housing 
units to Renter Occupied Housing 

units 

-1.04 
 

(17.5) 

-0.0596 
 

(0.952) 

19.2 
 

(25.5) 

0.751 
 

(0.452) 

-69.9 
 

(60.4) 

-1.16 
 

(0.247) 
12 1 

0.000567 
 

(0.000401) 

0.296 
 

(-
0.0265) 

Percentage of renter-occupied 
housing units of total housing units 

-0.0213 
 

(0.0132) 

-1.61 
 

(0.108) 

0.0139 
 

(0.00797) 

1.75 
 

(0.0806) 

0.0245 
 

(0.038) 

0.647 
 

(0.518) 
12 1 

7.02e-05 
 

(8.9e-05) 

0.978 
 

(0.968) 

Percentage of vacant housing units -0.019 
(0.00847) 

-2.24 
(0.0253) 

0.00131 
(0.00619) 

0.211 
(0.833) 

0.0456 
(0.0277) 

1.65 
(0.0995) 12 1 4.89e-05 

(2.42e-05) 
0.922 

(0.886) 
Percentage of change in number of 

housing units since last census of 
total housing units 

0.749 
 

(0.455) 

1.65 
 

(0.1) 

-0.469 
 

(0.401) 

-1.17 
 

(0.242) 

-0.524 
 

(0.375) 

-1.4 
 

(0.163) 
12 1 

0.000142 
 

(-0.000195) 

0.334 
 

(0.0286) 
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Table 49. Restrictive bridge treatment effect event study model CEM results (cont’d) 

Dependent Variable 

Interaction 
Estimator 

for new 
under 14 ft 

bridge 
 

(SE) 

t value 
 

(p value) 

new 
under 14 
ft bridge 

Treatment 
Variable 

 
(SE) 

t value 
 

(p 
value) 

new 
under 14 
ft bridge 

Group 
Dummy 
Variable 

 
(SE) 

t value 
 

(p value) 
# Other 
Controls Set 

R2 (Adj. R2) 
diff w/o 

New 
Variables 

R2 
 

(Adj. 
R2) 

Inverse Hyperbolic Sine 
Transformation of Average household 

income in past 12 months (2010 
Constant $ US, mean = 11.5) 

-0.992 
 

(0.734) 

-1.35 
 

(0.177) 

0.453 
 

(0.282) 

1.61 
 

(0.108) 

-1.31 
 

(1.94) 

-0.679 
 

(0.497) 
12 4 

0.000826 
 

(0.0012) 

0.99 
 

(0.985) 

Inverse Hyperbolic Sine 
Transformation of Aggregate 

household income in past 12 months 
(2010 Constant $ US, mean = 18.6) 

-1.19 
 

(1.06) 

-1.12 
 

(0.262) 

0.747 
 

(0.438) 

1.7 
 

(0.0884) 

-2.48 
 

(3.08) 

-0.807 
 

(0.42) 
12 4 

0.000997 
 

(0.00144) 

0.991 
 

(0.987) 

Non-White percentage of total 
population 

-0.0351 
(0.0418) 

-0.842 
(0.4) 

0.00157 
(0.00761) 

0.207 
(0.836) 

-0.00458 
(0.04) 

-0.115 
(0.909) 12 4 -0.00587 

(-0.00859) 
0.96 

(0.942) 
Black/African American percentage 

of total population 
-0.0329 
(0.0422) 

-0.781 
(0.435) 

-0.000931 
(0.00719) 

-0.13 
(0.897) 

0.00333 
(0.04) 

0.0832 
(0.934) 12 4 -0.00477 

(-0.00699) 
0.961 

(0.943) 
Percentage of Hispanic/Latino of total 

population 
-0.00635 

(0.00306) 
-2.08 

(0.038) 
0.00344 

(0.00265) 
1.3 

(0.195) 
0.000513 
(0.00406) 

0.126 
(0.9) 12 4 0.0259 

(0.0377) 
0.899 

(0.853) 
Percentage of Foreign-born of total 

population 
0.00515 
(0.0063) 

0.817 
(0.414) 

-0.000282 
(0.00293) 

-0.0965 
(0.923) 

-0.00487 
(0.00768) 

-0.635 
(0.526) 12 4 0.0194 

(0.0282) 
0.882 

(0.828) 

Percentage of Children under 18 
years old of total population 

-0.0202 
 

(0.0139) 

-1.46 
 

(0.145) 

0.0082 
 

(0.00653) 

1.26 
 

(0.209) 

-0.051 
 

(0.0305) 

-1.68 
 

(0.0939) 
12 4 

0.00477 
 

(0.00694) 

0.983 
 

(0.975) 
Inverse Hyperbolic Sine 

Transformation of Ratio of adults 18+ 
years old to children under 18 years 
old (adults/children, mean = 0.998) 

-0.0876 
 

(0.0756) 

-1.16 
 

(0.247) 

0.0571 
 

(0.0284) 

2.01 
 

(0.0447) 

-0.0973 
 

(0.199) 

-0.49 
 

(0.624) 
12 4 

8.92e-05 
 

(0.000117) 

0.986 
 

(0.979) 

Percentage of single-parent families 
with own children under 18 years old 

of total families and subfamilies 

-0.00788 
 

(0.0126) 

-0.625 
 

(0.532) 

0.00473 
 

(0.00698) 

0.678 
 

(0.498) 

0.0353 
 

(0.0168) 

2.1 
 

(0.036) 
12 4 

-0.00109 
 

(-0.00163) 

0.958 
 

(0.939) 
Percentage of female-headed families 
with or without own children of total 

families and subfamilies 

-0.0122 
 

(0.0207) 

-0.589 
 

(0.556) 

0.00205 
 

(0.0102) 

0.2 
 

(0.841) 

0.0402 
 

(0.0304) 

1.33 
 

(0.185) 
12 4 

-0.0036 
 

(-0.00529) 

0.957 
 

(0.937) 
Inverse Hyperbolic Sine 

Transformation of Workers 16+ years 
old traveling to work on public 

transportation (taxi not included 
mean = 3.61) 

-0.851 
 

(0.321) 

-2.65 
 

(0.00799) 

0.377 
 

(0.174) 

2.17 
 

(0.0299) 

1.73 
 

(0.523) 

3.31 
 

(0.000933) 
12 4 

-0.000366 
 

(-0.000575) 

0.954 
 

(0.933) 

Inverse Hyperbolic Sine 
Transformation of Workers 16+ years 
old with travel time to work less than 

25 minutes (mean = 5.19) 

-0.134 
 

(0.281) 

-0.478 
 

(0.633) 

0.119 
 

(0.135) 

0.887 
 

(0.375) 

-0.675 
 

(0.819) 

-0.824 
 

(0.41) 
12 4 

0.00431 
 

(0.00628) 

0.988 
 

(0.983) 

Inverse Hyperbolic Sine 
Transformation of Workers 16+ years 

old with travel time to work 25 to 44 
minutes (mean = 4.55) 

-0.249 
 

(0.277) 

-0.899 
 

(0.368) 

0.216 
 

(0.123) 

1.76 
 

(0.0792) 

-0.727 
 

(0.76) 

-0.957 
 

(0.339) 
12 4 

0.0051 
 

(0.00742) 

0.984 
 

(0.977) 

Inverse Hyperbolic Sine 
Transformation of Workers 16+ years 

old with travel time to work more 
than 45 minutes (mean = 3.94) 

-0.26 
 

(0.229) 

-1.14 
 

(0.256) 

0.205 
 

(0.109) 

1.88 
 

(0.0603) 

-2.07 
 

(0.506) 

-4.08 
 

(4.56e-05) 
12 4 

0.00648 
 

(0.00943) 

0.984 
 

(0.976) 

Percentage of Persons 25+ years old 
who have completed 0-8 years of 

school 

0.00179 
 

(0.00861) 

0.208 
 

(0.835) 

-0.000774 
 

(0.00356) 

-0.217 
 

(0.828) 

0.0174 
 

(0.0128) 

1.37 
 

(0.172) 
12 4 

-0.00121 
 

(-0.00183) 

0.92 
 

(0.883) 
Percentage of Persons 25+ years old 
who have completed high school but 

no college 

0.00365 
 

(0.026) 

0.14 
 

(0.889) 

0.00707 
 

(0.00792) 

0.892 
 

(0.372) 

0.1 
 

(0.0318) 

3.15 
 

(0.00165) 
12 4 

-6e-04 
 

(-0.000886) 

0.988 
 

(0.982) 
Percentage of Persons 25+ years old 
who have an associate degree but no 

bachelor’s degree 

-0.0182 
 

(0.00589) 

-3.1 
 

(0.00198) 

0.00299 
 

(0.00246) 

1.22 
 

(0.223) 

0.00294 
 

(0.00647) 

0.453 
 

(0.65) 
12 4 

0.000109 
 

(0.000119) 

0.956 
 

(0.936) 
Percentage of Persons 25+ years old 

who have a bachelor’s or 
graduate/professional degree 

-0.0282 
 

(0.0278) 

-1.01 
 

(0.31) 

0.0139 
 

(0.00936) 

1.49 
 

(0.137) 

-0.0793 
 

(0.0292) 

-2.72 
 

(0.00662) 
12 4 

-0.00288 
 

(-0.00423) 

0.961 
 

(0.943) 

Percentage of total persons below the 
poverty level in past 12 months 

-0.0598 
 

(0.0516) 

-1.16 
 

(0.247) 

0.00144 
 

(0.00785) 

0.184 
 

(0.854) 

0.0683 
 

(0.0513) 

1.33 
 

(0.183) 
12 4 

-0.00413 
 

(-0.00608) 

0.928 
 

(0.895) 
Percentage of households with public 

assistance inc. (incl. SSI) last year of 
total households 

-0.0102 
 

(0.0108) 

-0.942 
 

(0.346) 

0.00203 
 

(0.00607) 

0.335 
 

(0.737) 

-0.00225 
 

(0.0144) 

-0.157 
 

(0.875) 
12 4 

-0.00154 
 

(-0.00237) 

0.87 
 

(0.811) 

Ratio of Owner-Occupied housing 
units to Renter Occupied Housing 

units 

5.79 
 

(13.5) 

0.427 
 

(0.669) 

18.7 
 

(25.4) 

0.735 
 

(0.462) 

-63.8 
 

(65) 

-0.982 
 

(0.326) 
12 4 

0.00125 
 

(0.00119) 

0.297 
 

(-
0.0257) 

Percentage of renter-occupied 
housing units of total housing units 

-0.0108 
 

(0.0175) 

-0.619 
 

(0.536) 

0.0134 
 

(0.00917) 

1.46 
 

(0.143) 

0.00301 
 

(0.0334) 

0.0902 
 

(0.928) 
12 4 

-0.00378 
 

(-0.00554) 

0.974 
 

(0.962) 

Percentage of vacant housing units -0.00472 
(0.00977) 

-0.483 
(0.629) 

0.000309 
(0.00553) 

0.0558 
(0.956) 

0.0212 
(0.0176) 

1.21 
(0.228) 12 4 0.0132 

(0.0191) 
0.935 

(0.905) 
Percentage of change in number of 

housing units since last census of 
total housing units 

0.75 
 

(0.447) 

1.68 
 

(0.0937) 

-0.477 
 

(0.428) 

-1.11 
 

(0.265) 

-0.519 
 

(0.307) 

-1.69 
 

(0.0906) 
12 4 

-0.000236 
 

(-0.000947) 

0.333 
 

(0.0278) 
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Table 49. Restrictive bridge treatment effect event study model CEM results (cont’d) 

Dependent Variable 

Interaction 
Estimator 

for new 
under 14 ft 

bridge 
 

(SE) 

t value 
 

(p value) 

new 
under 14 
ft bridge 

Treatment 
Variable 

 
(SE) 

t value 
 

(p 
value) 

new 
under 14 
ft bridge 

Group 
Dummy 
Variable 

 
(SE) 

t value 
 

(p value) 
# Other 
Controls Set 

R2 (Adj. R2) 
diff w/o 

New 
Variables 

R2 
 

(Adj. R2) 
Inverse Hyperbolic Sine 

Transformation of Average household 
income in past 12 months (2010 

Constant $ US, mean = 11.5) 

-0.756 
 

(0.554) 

-1.37 
 

(0.172) 

0.357 
 

(0.281) 

1.27 
 

(0.204) 

-1.43 
 

(1.91) 

-0.748 
 

(0.455) 
10 2 

0.000846 
 

(0.00123) 

0.99 
 

(0.985) 

Inverse Hyperbolic Sine 
Transformation of Aggregate 

household income in past 12 months 
(2010 Constant $ US, mean = 18.6) 

-0.886 
 

(0.787) 

-1.12 
 

(0.261) 

0.524 
 

(0.438) 

1.2 
 

(0.231) 

-2.19 
 

(3.09) 

-0.711 
 

(0.477) 
10 2 

0.000962 
 

(0.0014) 

0.991 
 

(0.987) 

Non-White percentage of total 
population 

-0.0435 
(0.0466) 

-0.935 
(0.35) 

0.00103 
(0.00765) 

0.135 
(0.893) 

0.00328 
(0.0486) 

0.0677 
(0.946) 10 2 -0.00772 

(-0.0112) 
0.958 

(0.939) 

Black/African American percentage of 
total population 

-0.039 
 

(0.0463) 

-0.842 
 

(0.4) 

-0.00104 
 

(0.00736) 

-0.142 
 

(0.887) 

0.0179 
 

(0.0481) 

0.372 
 

(0.71) 
10 2 

-0.00594 
 

(-0.00866) 

0.96 
 

(0.941) 
Percentage of Hispanic/Latino of total 

population 
-0.0109 

(0.00356) 
-3.06 

(0.00221) 
0.00266 

(0.00242) 
1.1 

(0.272) 
-0.0121 

(0.00508) 
-2.37 

(0.0177) 10 2 -0.00631 
(-0.0092) 

0.867 
(0.807) 

Percentage of Foreign-born of total 
population 

0.000118 
(0.00451) 

0.0261 
(0.979) 

-0.00109 
(0.00315) 

-0.348 
(0.728) 

-0.000466 
(0.00703) 

-0.0663 
(0.947) 10 2 0.00402 

(0.00585) 
0.866 

(0.805) 

Percentage of Children under 18 years 
old of total population 

-0.0154 
 

(0.0116) 

-1.32 
 

(0.186) 

0.00611 
 

(0.00631) 

0.968 
 

(0.333) 

-0.0482 
 

(0.0328) 

-1.47 
 

(0.142) 
10 2 

0.00527 
 

(0.00768) 

0.983 
 

(0.975) 
Inverse Hyperbolic Sine 

Transformation of Ratio of adults 18+ 
years old to children under 18 years 
old (adults/children, mean = 0.998) 

-0.0795 
 

(0.0682) 

-1.17 
 

(0.244) 

0.0438 
 

(0.0294) 

1.49 
 

(0.137) 

-0.0869 
 

(0.199) 

-0.437 
 

(0.662) 
10 2 

-0.000613 
 

(-0.000893) 

0.985 
 

(0.978) 

Percentage of single-parent families 
with own children under 18 years old 

of total families and subfamilies 

-0.013 
 

(0.0152) 

-0.858 
 

(0.391) 

0.00488 
 

(0.0075) 

0.65 
 

(0.516) 

0.0419 
 

(0.0196) 

2.14 
 

(0.0323) 
10 2 

-0.00182 
 

(-0.00265) 

0.958 
 

(0.938) 
Percentage of female-headed families 
with or without own children of total 

families and subfamilies 

0.00123 
 

(0.0166) 

0.074 
 

(0.941) 

-0.00144 
 

(0.0106) 

-0.136 
 

(0.892) 

0.0309 
 

(0.0284) 

1.09 
 

(0.278) 
10 2 

-0.00542 
 

(-0.00789) 

0.955 
 

(0.935) 
Inverse Hyperbolic Sine 

Transformation of Workers 16+ years 
old traveling to work on public 

transportation (taxi not included mean 
= 3.61) 

-0.627 
 

(0.311) 

-2.01 
 

(0.044) 

0.38 
 

(0.173) 

2.2 
 

(0.0279) 

1.58 
 

(0.454) 

3.49 
 

(0.000483) 
10 2 

0.00103 
 

(0.0015) 

0.955 
 

(0.935) 

Inverse Hyperbolic Sine 
Transformation of Workers 16+ years 
old with travel time to work less than 

25 minutes (mean = 5.19) 

-0.0303 
 

(0.239) 

-0.126 
 

(0.899) 

0.074 
 

(0.126) 

0.586 
 

(0.558) 

-0.544 
 

(0.898) 

-0.606 
 

(0.545) 
10 2 

0.00542 
 

(0.00791) 

0.989 
 

(0.984) 

Inverse Hyperbolic Sine 
Transformation of Workers 16+ years 

old with travel time to work 25 to 44 
minutes (mean = 4.55) 

-0.122 
 

(0.242) 

-0.504 
 

(0.614) 

0.168 
 

(0.12) 

1.4 
 

(0.162) 

-0.756 
 

(0.843) 

-0.897 
 

(0.37) 
10 2 

0.00586 
 

(0.00853) 

0.985 
 

(0.978) 

Inverse Hyperbolic Sine 
Transformation of Workers 16+ years 

old with travel time to work more than 
45 minutes (mean = 3.94) 

-0.0969 
 

(0.205) 

-0.472 
 

(0.637) 

0.156 
 

(0.106) 

1.47 
 

(0.141) 

-2.21 
 

(0.559) 

-3.95 
 

(7.92e-05) 
10 2 

0.00553 
 

(0.00805) 

0.983 
 

(0.975) 

Percentage of Persons 25+ years old 
who have completed 0-8 years of 

school 

0.00695 
 

(0.0074) 

0.94 
 

(0.347) 

-0.00167 
 

(0.00381) 

-0.44 
 

(0.66) 

0.0119 
 

(0.0128) 

0.927 
 

(0.354) 
10 2 

-0.00286 
 

(-0.00417) 

0.918 
 

(0.881) 
Percentage of Persons 25+ years old 
who have completed high school but 

no college 

-0.00132 
 

(0.0271) 

-0.0485 
 

(0.961) 

0.00534 
 

(0.00774) 

0.69 
 

(0.49) 

0.116 
 

(0.0355) 

3.27 
 

(0.00107) 
10 2 

-0.00128 
 

(-0.00187) 

0.987 
 

(0.981) 
Percentage of Persons 25+ years old 
who have an associate degree but no 

bachelor’s degree 

-0.0188 
 

(0.0058) 

-3.24 
 

(0.00119) 

0.00317 
 

(0.00228) 

1.39 
 

(0.164) 

0.00196 
 

(0.00653) 

0.3 
 

(0.765) 
10 2 

9.49e-05 
 

(0.000138) 

0.956 
 

(0.936) 
Percentage of Persons 25+ years old 

who have a bachelor’s or 
graduate/professional degree 

-0.0278 
 

(0.0298) 

-0.93 
 

(0.352) 

0.0133 
 

(0.00962) 

1.39 
 

(0.165) 

-0.0692 
 

(0.0361) 

-1.92 
 

(0.0552) 
10 2 

-0.00377 
 

(-0.0055) 

0.96 
 

(0.942) 

Percentage of total persons below the 
poverty level in past 12 months 

-0.0625 
 

(0.0513) 

-1.22 
 

(0.223) 

0.000615 
 

(0.007) 

0.0878 
 

(0.93) 

0.0795 
 

(0.0544) 

1.46 
 

(0.144) 
10 2 

-0.00105 
 

(-0.00152) 

0.931 
 

(0.9) 
Percentage of households with public 

assistance inc. (incl. SSI) last year of 
total households 

0.00137 
 

(0.00876) 

0.156 
 

(0.876) 

2.91e-05 
 

(0.00582) 

0.005 
 

(0.996) 

-0.00119 
 

(0.0111) 

-0.106 
 

(0.915) 
10 2 

-0.00213 
 

(-0.00311) 

0.87 
 

(0.81) 
Ratio of Owner-Occupied housing 
units to Renter Occupied Housing 

units 

-6.08 
 

(20.6) 

-0.295 
 

(0.768) 

13.8 
 

(23.8) 

0.581 
 

(0.561) 

-78.9 
 

(70.1) 

-1.13 
 

(0.26) 
10 2 

-0.0394 
 

(-0.0575) 

0.256 
 

(-0.0844) 

Percentage of renter-occupied housing 
units of total housing units 

-0.00405 
 

(0.0169) 

-0.239 
 

(0.811) 

0.00807 
 

(0.00819) 

0.986 
 

(0.324) 

0.00795 
 

(0.0276) 

0.288 
 

(0.774) 
10 2 

-0.00225 
 

(-0.00328) 

0.976 
 

(0.965) 

Percentage of vacant housing units -0.0134 
(0.00852) 

-1.57 
(0.117) 

-0.000632 
(0.00605) 

-0.104 
(0.917) 

0.0425 
(0.021) 

2.03 
(0.0429) 10 2 0.00248 

(0.00362) 
0.924 
(0.89) 

Percentage of change in number of 
housing units since last census of total 

housing units 

0.849 
 

(0.498) 

1.7 
 

(0.0885) 

-0.502 
 

(0.436) 

-1.15 
 

(0.249) 

-0.394 
 

(0.28) 

-1.41 
 

(0.16) 
10 2 

-8.8e-05 
 

(-0.000128) 

0.333 
 

(0.0287) 
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Table 49. Restrictive bridge treatment effect event study model CEM results (cont’d) 

Dependent Variable 

Interaction 
Estimator 

for new 
under 14 ft 

bridge 
 

(SE) 

t value 
 

(p value) 

new 
under 14 
ft bridge 

Treatment 
Variable 

 
(SE) 

t value 
 

(p 
value) 

new 
under 14 
ft bridge 

Group 
Dummy 
Variable 

 
(SE) 

t value 
 

(p value) 
# Other 
Controls Set 

R2 (Adj. R2) 
diff w/o 

New 
Variables 

R2 
 

(Adj. R2) 
Inverse Hyperbolic Sine 

Transformation of Average household 
income in past 12 months (2010 

Constant $ US, mean = 11.5) 

-0.754 
 

(0.511) 

-1.48 
 

(0.14) 

0.285 
 

(0.321) 

0.886 
 

(0.376) 

-2.72 
 

(2.15) 

-1.27 
 

(0.206) 
12 3 

0.000336 
 

(0.000483) 

0.989 
 

(0.984) 

Inverse Hyperbolic Sine 
Transformation of Aggregate 

household income in past 12 months 
(2010 Constant $ US, mean = 18.6) 

-0.887 
 

(0.758) 

-1.17 
 

(0.242) 

0.414 
 

(0.506) 

0.817 
 

(0.414) 

-4.27 
 

(3.49) 

-1.22 
 

(0.221) 
12 3 

0.000314 
 

(0.000452) 

0.99 
 

(0.986) 

Non-White percentage of total 
population 

-0.039 
(0.0472) 

-0.827 
(0.408) 

-0.00155 
(0.00693) 

-0.224 
(0.822) 

0.0293 
(0.049) 

0.597 
(0.55) 12 3 0.000258 

(0.000355) 
0.966 

(0.951) 

Black/African American percentage of 
total population 

-0.0367 
 

(0.0468) 

-0.784 
 

(0.433) 

-0.00266 
 

(0.00686) 

-0.388 
 

(0.698) 

0.0354 
 

(0.0484) 

0.731 
 

(0.465) 
12 3 

0.00134 
 

(0.00193) 

0.967 
 

(0.952) 
Percentage of Hispanic/Latino of total 

population 
-0.00957 

(0.00339) 
-2.82 

(0.00481) 
0.00219 

(0.00237) 
0.925 

(0.355) 
-0.00744 

(0.00484) 
-1.54 

(0.124) 12 3 -0.00543 
(-0.008) 

0.868 
(0.808) 

Percentage of Foreign-born of total 
population 

0.000613 
(0.00549) 

0.112 
(0.911) 

-0.00211 
(0.0035) 

-0.601 
(0.548) 

0.00246 
(0.0072) 

0.342 
(0.732) 12 3 0.00566 

(0.00816) 
0.868 

(0.808) 

Percentage of Children under 18 years 
old of total population 

-0.0114 
 

(0.0155) 

-0.735 
 

(0.463) 

0.00324 
 

(0.00783) 

0.414 
 

(0.679) 

-0.0943 
 

(0.0414) 

-2.28 
 

(0.0228) 
12 3 

0.00282 
 

(0.0041) 

0.981 
 

(0.972) 
Inverse Hyperbolic Sine 

Transformation of Ratio of adults 18+ 
years old to children under 18 years 
old (adults/children, mean = 0.998) 

-0.0872 
 

(0.0636) 

-1.37 
 

(0.17) 

0.0411 
 

(0.0314) 

1.31 
 

(0.191) 

-0.15 
 

(0.214) 

-0.7 
 

(0.484) 
12 3 

-0.000453 
 

(-0.00067) 

0.985 
 

(0.978) 

Percentage of single-parent families 
with own children under 18 years old 

of total families and subfamilies 

-0.00758 
 

(0.0127) 

-0.596 
 

(0.551) 

0.00401 
 

(0.00627) 

0.64 
 

(0.522) 

0.033 
 

(0.0174) 

1.9 
 

(0.0579) 
12 3 

0.00203 
 

(0.00293) 

0.962 
 

(0.944) 
Percentage of female-headed families 
with or without own children of total 

families and subfamilies 

0.00278 
 

(0.0185) 

0.15 
 

(0.881) 

-0.000611 
 

(0.00967) 

-0.0631 
 

(0.95) 

0.0281 
 

(0.0273) 

1.03 
 

(0.304) 
12 3 

-0.000585 
 

(-0.000877) 

0.96 
 

(0.942) 
Inverse Hyperbolic Sine 

Transformation of Workers 16+ years 
old traveling to work on public 

transportation (taxi not included 
mean = 3.61) 

-0.606 
 

(0.339) 

-1.79 
 

(0.0742) 

0.319 
 

(0.163) 

1.95 
 

(0.0508) 

1.35 
 

(0.529) 

2.55 
 

(0.0109) 
12 3 

0.000434 
 

(0.000605) 

0.955 
 

(0.934) 

Inverse Hyperbolic Sine 
Transformation of Workers 16+ years 
old with travel time to work less than 

25 minutes (mean = 5.19) 

-0.0909 
 

(0.382) 

-0.238 
 

(0.812) 

0.0907 
 

(0.165) 

0.55 
 

(0.583) 

-1.6 
 

(1.1) 

-1.46 
 

(0.145) 
12 3 

0.00202 
 

(0.00294) 

0.986 
 

(0.979) 

Inverse Hyperbolic Sine 
Transformation of Workers 16+ years 

old with travel time to work 25 to 44 
minutes (mean = 4.55) 

-0.189 
 

(0.364) 

-0.519 
 

(0.604) 

0.195 
 

(0.149) 

1.31 
 

(0.19) 

-1.83 
 

(0.993) 

-1.84 
 

(0.0651) 
12 3 

0.003 
 

(0.00436) 

0.982 
 

(0.974) 

Inverse Hyperbolic Sine 
Transformation of Workers 16+ years 

old with travel time to work more 
than 45 minutes (mean = 3.94) 

-0.213 
 

(0.32) 

-0.665 
 

(0.506) 

0.215 
 

(0.133) 

1.62 
 

(0.106) 

-3.02 
 

(0.69) 

-4.38 
 

(1.21e-
05) 

12 3 
0.00373 

 
(0.00543) 

0.981 
 

(0.972) 

Percentage of Persons 25+ years old 
who have completed 0-8 years of 

school 

0.00832 
 

(0.00684) 

1.22 
 

(0.224) 

-0.00284 
 

(0.00369) 

-0.769 
 

(0.442) 

0.00805 
 

(0.012) 

0.668 
 

(0.504) 
12 3 

-0.00146 
 

(-0.00218) 

0.92 
 

(0.883) 
Percentage of Persons 25+ years old 
who have completed high school but 

no college 

-0.000341 
 

(0.0238) 

-0.0143 
 

(0.989) 

0.00419 
 

(0.00739) 

0.568 
 

(0.57) 

0.0893 
 

(0.0343) 

2.6 
 

(0.00934) 
12 3 

-0.000863 
 

(-0.00127) 

0.988 
 

(0.982) 
Percentage of Persons 25+ years old 
who have an associate degree but no 

bachelor’s degree 

-0.0177 
 

(0.00527) 

-3.36 
 

(0.000792) 

0.00277 
 

(0.00215) 

1.29 
 

(0.198) 

0.00229 
 

(0.00627) 

0.366 
 

(0.715) 
12 3 

0.00108 
 

(0.00154) 

0.957 
 

(0.938) 
Percentage of Persons 25+ years old 

who have a bachelor’s or 
graduate/professional degree 

-0.0232 
 

(0.0284) 

-0.816 
 

(0.414) 

0.0109 
 

(0.00942) 

1.16 
 

(0.245) 

-0.0306 
 

(0.0323) 

-0.947 
 

(0.344) 
12 3 

-0.000164 
 

(-0.00026) 

0.964 
 

(0.947) 

Percentage of total persons below the 
poverty level in past 12 months 

-0.0555 
 

(0.0473) 

-1.18 
 

(0.24) 

-0.000481 
 

(0.00608) 

-0.0792 
 

(0.937) 

0.0725 
 

(0.0527) 

1.38 
 

(0.169) 
12 3 

0.00292 
 

(0.00422) 

0.935 
 

(0.905) 
Percentage of households with public 

assistance inc. (incl. SSI) last year of 
total households 

0.00571 
 

(0.00904) 

0.632 
 

(0.527) 

-0.00141 
 

(0.00579) 

-0.244 
 

(0.807) 

-0.0114 
 

(0.0109) 

-1.04 
 

(0.299) 
12 3 

-0.00786 
 

(-0.0115) 

0.864 
 

(0.802) 
Ratio of Owner-Occupied housing 
units to Renter Occupied Housing 

units 

-9.73 
 

(20.9) 

-0.465 
 

(0.642) 

14.9 
 

(24.7) 

0.602 
 

(0.547) 

-35.2 
 

(52.4) 

-0.672 
 

(0.501) 
12 3 

-0.0426 
 

(-0.0625) 

0.253 
 

(-0.0894) 

Percentage of renter-occupied 
housing units of total housing units 

-0.0035 
 

(0.0189) 

-0.185 
 

(0.853) 

0.00772 
 

(0.00751) 

1.03 
 

(0.304) 

0.00251 
 

(0.0363) 

0.0692 
 

(0.945) 
12 3 

-0.000957 
 

(-0.00141) 

0.977 
 

(0.966) 

Percentage of vacant housing units -0.0131 
(0.00812) 

-1.62 
(0.106) 

-0.00157 
(0.00586) 

-0.268 
(0.789) 

0.0173 
(0.023) 

0.75 
(0.453) 12 3 0.00551 

(0.00798) 
0.927 

(0.894) 
Percentage of change in number of 

housing units since last census of total 
housing units 

0.665 
 

(0.417) 

1.59 
 

(0.111) 

-0.496 
 

(0.422) 

-1.17 
 

(0.24) 

-0.6 
 

(0.298) 

-2.01 
 

(0.044) 
12 3 

6.11e-05 
 

(-0.000313) 

0.334 
 

(0.0285) 
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Table 50. Non-restrictive bridge treatment effect event study (ES) model CEM results 

Dependent Variable 

Interaction 
Estimator 

for new 
over 14 ft 

bridge 
 

(SE) 

t value 
 

(p value) 

new over 
14 ft 

bridge 
Treatment 

Variable 
 

(SE) 

t value 
 

(p 
value) 

new over 
14 ft 

bridge 
Group 

Dummy 
Variable 

 
(SE) 

t value 
 

(p value) 
# Other 
Controls Set 

R2 (Adj. R2) 
diff w/o New 

Variables 

R2 
 

(Adj. 
R2) 

Inverse Hyperbolic Sine 
Transformation of Average household 

income in past 12 months (2010 
Constant $ US, mean = 11.4) 

0.0571 
 

(0.144) 

0.398 
 

(0.691) 

0.00951 
 

(0.108) 

0.0879 
 

(0.93) 

-0.135 
 

(0.265) 

-0.512 
 

(0.609) 
12 1 

6.39e-07 
 

(-3.17e-06) 

0.988 
 

(0.984) 

Inverse Hyperbolic Sine 
Transformation of Aggregate 

household income in past 12 months 
(2010 Constant $ US, mean = 18.4) 

0.0393 
 

(0.224) 

0.176 
 

(0.861) 

-0.0313 
 

(0.16) 

-0.196 
 

(0.845) 

0.0632 
 

(0.43) 

0.147 
 

(0.883) 
12 1 

1.24e-07 
 

(-3.6e-06) 

0.989 
 

(0.985) 

Non-White percentage of total 
population 

-0.00462 
(0.00378) 

-1.22 
(0.221) 

0.00114 
(0.00197) 

0.578 
(0.564) 

0.00955 
(0.0111) 

0.861 
(0.389) 12 1 1.34e-05 

(2.18e-06) 
0.952 

(0.935) 
Black/African American percentage of 

total population 
-0.00746 

(0.00336) 
-2.22 

(0.0264) 
0.00255 

(0.00161) 
1.58 

(0.114) 
0.00278 

(0.00599) 
0.464 

(0.642) 12 1 4.69e-05 
(4.92e-05) 

0.955 
(0.939) 

Percentage of Hispanic/Latino of total 
population 

-0.0038 
(0.00156) 

-2.44 
(0.0146) 

0.00128 
(0.00108) 

1.19 
(0.233) 

0.0127 
(0.0102) 

1.24 
(0.213) 12 1 8.97e-05 

(7.18e-05) 
0.849 

(0.793) 
Percentage of Foreign-born of total 

population 
0.00118 

(0.00177) 
0.665 

(0.506) 
-0.000976 
(0.00106) 

-0.922 
(0.357) 

-0.00345 
(0.00424) 

-0.815 
(0.415) 12 1 1.59e-05 

(-1.96e-05) 
0.878 

(0.832) 
Percentage of Children under 18 years 

old of total population 
-0.00403 
(0.00401) 

-1.01 
(0.314) 

0.000769 
(0.00303) 

0.254 
(0.799) 

-0.0159 
(0.00753) 

-2.11 
(0.0348) 12 1 4.52e-06 

(-2.39e-06) 
0.975 

(0.965) 
Inverse Hyperbolic Sine 

Transformation of Ratio of adults 18+ 
years old to children under 18 years 
old (adults/children, mean = 0.986) 

0.00627 
 

(0.0147) 

0.428 
 

(0.669) 

0.00559 
 

(0.0121) 

0.462 
 

(0.644) 

0.0145 
 

(0.0359) 

0.403 
 

(0.687) 
12 1 

3.54e-06 
 

(-9.68e-07) 

0.983 
 

(0.976) 

Percentage of single-parent families 
with own children under 18 years old 

of total families and subfamilies 

-0.00303 
(0.00242) 

-1.25 
(0.212) 

0.00144 
(0.00158) 

0.913 
(0.361) 

0.025 
(0.013) 

1.93 
(0.054) 12 1 1.19e-05 

(-7.6e-07) 
0.95 

(0.931) 

Percentage of female-headed families 
with or without own children of total 

families and subfamilies 

-0.00314 
(0.00291) 

-1.08 
(0.282) 

0.00136 
(0.002) 

0.68 
(0.496) 

0.00801 
(0.0145) 

0.552 
(0.581) 12 1 5.96e-06 

(-3.37e-06) 
0.966 

(0.953) 

Inverse Hyperbolic Sine 
Transformation of Workers 16+ years 

old traveling to work on public 
transportation (taxi not included 

mean = 3.72) 

-0.486 
 

(0.0974) 

-4.99 
 

(6.28e-
07) 

0.0759 
 

(0.0769) 

0.988 
 

(0.323) 

-0.8 
 

(0.636) 

-1.26 
 

(0.209) 
12 1 

0.000271 
 

(0.000349) 

0.936 
 

(0.912) 

Inverse Hyperbolic Sine 
Transformation of Workers 16+ years 
old with travel time to work less than 

25 minutes (mean = 5.32) 

-0.0748 
 

(0.0929) 

-0.805 
 

(0.421) 

-0.0578 
 

(0.0767) 

-0.753 
 

(0.451) 

0.322 
 

(0.254) 

1.27 
 

(0.206) 
12 1 

1.17e-05 
 

(8.73e-06) 

0.979 
 

(0.971) 

Inverse Hyperbolic Sine 
Transformation of Workers 16+ years 

old with travel time to work 25 to 44 
minutes (mean = 4.74) 

0.000544 
 

(0.0893) 

0.00609 
 

(0.995) 

-0.075 
 

(0.0737) 

-1.02 
 

(0.309) 

0.411 
 

(0.205) 

2 
 

(0.045) 
12 1 

1.03e-05 
 

(5.8e-06) 

0.976 
 

(0.967) 

Inverse Hyperbolic Sine 
Transformation of Workers 16+ years 

old with travel time to work more 
than 45 minutes (mean = 4.09) 

-0.0534 
 

(0.0794) 

-0.673 
 

(0.501) 

-0.0577 
 

(0.0656) 

-0.879 
 

(0.379) 

-0.407 
 

(0.528) 

-0.771 
 

(0.441) 
12 1 

1.49e-05 
 

(1.18e-05) 

0.974 
 

(0.965) 

Percentage of Persons 25+ years old 
who have completed 0-8 years of 

school 

0.00176 
(0.00243) 

0.722 
(0.47) 

-0.000175 
(0.00142) 

-0.123 
(0.902) 

0.0118 
(0.0143) 

0.822 
(0.411) 12 1 1.26e-05 

(-1.86e-05) 
0.894 

(0.855) 

Percentage of Persons 25+ years old 
who have completed high school but 

no college 

0.0013 
(0.00436) 

0.299 
(0.765) 

0.000583 
(0.00296) 

0.197 
(0.844) 

-0.00803 
(0.0181) 

-0.443 
(0.658) 12 1 6e-07 

(-3.93e-06) 
0.986 

(0.981) 

Percentage of Persons 25+ years old 
who have an associate degree but no 

bachelor’s degree 

-0.00148 
(0.00134) 

-1.1 
(0.272) 

0.000693 
(0.000953) 

0.727 
(0.467) 

0.00446 
(0.00622) 

0.717 
(0.474) 12 1 9.13e-06 

(-4.03e-06) 
0.951 

(0.933) 

Percentage of Persons 25+ years old 
who have a bachelor’s or 

graduate/professional degree 

0.00435 
(0.00586) 

0.742 
(0.458) 

-0.000716 
(0.00403) 

-0.177 
(0.859) 

0.0202 
(0.0363) 

0.557 
(0.578) 12 1 4.48e-06 

(-7.65e-06) 
0.959 

(0.944) 

Percentage of total persons below the 
poverty level in past 12 months 

0.000967 
(0.00429) 

0.225 
(0.822) 

-0.000596 
(0.00245) 

-0.243 
(0.808) 

-0.0168 
(0.0217) 

-0.771 
(0.441) 12 1 1.37e-06 

(-2.83e-05) 
0.911 

(0.878) 
Percentage of households with public 

assistance inc. (incl. SSI) last year of 
total households 

0.000618 
(0.00231) 

0.268 
(0.789) 

0.000102 
(0.00144) 

0.071 
(0.943) 

-0.0216 
(0.00577) 

-3.73 
(0.000189) 12 1 2.28e-06 

(-3.8e-05) 
0.879 

(0.834) 

Ratio of Owner-Occupied housing 
units to Renter Occupied Housing 

units 

13.5 
(8.34) 

1.62 
(0.105) 

-6.08 
(6.63) 

-0.917 
(0.359) 

3.79 
(6.39) 

0.594 
(0.552) 12 1 0.000167 

(4.09e-06) 
0.337 

(0.0895) 

Percentage of renter-occupied housing 
units of total housing units 

0.00501 
(0.00495) 

1.01 
(0.312) 

-0.0013 
(0.00365) 

-0.357 
(0.721) 

0.0668 
(0.0279) 

2.4 
(0.0165) 12 1 5.43e-06 

(-4.03e-06) 
0.966 

(0.954) 

Percentage of vacant housing units 0.00633 
(0.0039) 

1.62 
(0.105) 

-0.000784 
(0.00195) 

-0.403 
(0.687) 

-0.057 
(0.0269) 

-2.12 
(0.0342) 12 1 6.8e-05 

(5.6e-05) 
0.89 

(0.849) 
Percentage of change in number of 

housing units since last census of total 
housing units 

0.407 
(0.312) 

1.31 
(0.191) 

0.102 
(0.295) 

0.347 
(0.729) 

-1.07 
(1.1) 

-0.977 
(0.329) 12 1 4.78e-05 

(-0.000149) 
0.37 

(0.134) 
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Table 50. Non-restrictive bridge treatment effect ES model CEM results (cont’d) 

Dependent Variable 

Interaction 
Estimator 

for new 
over 14 ft 

bridge 
 

(SE) 

t value 
 

(p 
value) 

new over 
14 ft 

bridge 
Treatment 

Variable 
 

(SE) 

t value 
 

(p 
value) 

new over 
14 ft 

bridge 
Group 

Dummy 
Variable 

 
(SE) 

t value 
 

(p value) 
# Other 
Controls Set 

R2 (Adj. 
R2) diff 

w/o New 
Variables 

R2 
 

(Adj. 
R2) 

Inverse Hyperbolic Sine 
Transformation of Average 

household income in past 12 
months (2010 Constant $ US, mean 

= 11.4) 

0.111 
 

(0.132) 

0.844 
 

(0.398) 

-0.00167 
 

(0.106) 

-0.0158 
 

(0.987) 

0.215 
 

(0.237) 

0.905 
 

(0.365) 
10 2 

0.00136 
 

(0.00187) 

0.989 
 

(0.986) 

Inverse Hyperbolic Sine 
Transformation of Aggregate 
household income in past 12 

months (2010 Constant $ US, mean 
= 18.4) 

0.117 
 

(0.201) 

0.583 
 

(0.56) 

-0.0485 
 

(0.15) 

-0.323 
 

(0.747) 

0.67 
 

(0.399) 

1.68 
 

(0.093) 
10 2 

0.00163 
 

(0.00224) 

0.991 
 

(0.987) 

Non-White percentage of total 
population 

-0.00417 
(0.00407) 

-1.02 
(0.306) 

0.00305 
(0.00225) 

1.35 
(0.177) 

-0.00203 
(0.0314) 

-0.0646 
(0.949) 10 2 -0.0114 

(-0.0156) 
0.941 

(0.919) 
Black/African American percentage 

of total population 
-0.00661 
(0.00346) 

-1.91 
(0.0559) 

0.0038 
(0.00176) 

2.16 
(0.031) 

-0.00845 
(0.0193) 

-0.438 
(0.662) 10 2 -0.0084 

(-0.0115) 
0.947 

(0.927) 
Percentage of Hispanic/Latino of 

total population 
-0.00365 

(0.00158) 
-2.31 

(0.0209) 
0.00132 

(0.00108) 
1.23 

(0.22) 
0.00979 
(0.0144) 

0.681 
(0.496) 10 2 -0.00237 

(-0.00325) 
0.847 
(0.79) 

Percentage of Foreign-born of total 
population 

0.000807 
(0.0018) 

0.449 
(0.653) 

-0.000612 
(0.00106) 

-0.578 
(0.563) 

-0.00362 
(0.00602) 

-0.6 
(0.548) 10 2 -0.00184 

(-0.00252) 
0.876 
(0.83) 

Percentage of Children under 18 
years old of total population 

-0.00135 
(0.00334) 

-0.405 
(0.686) 

0.001 
(0.00251) 

0.399 
(0.69) 

-0.00354 
(0.0112) 

-0.317 
(0.751) 10 2 0.00693 

(0.00951) 
0.982 

(0.975) 
Inverse Hyperbolic Sine 

Transformation of Ratio of adults 
18+ years old to children under 18 
years old (adults/children, mean = 

0.986) 

0.00816 
 

(0.0144) 

0.565 
 

(0.572) 

0.00393 
 

(0.0123) 

0.32 
 

(0.749) 

0.0353 
 

(0.0335) 

1.05 
 

(0.292) 
10 2 

0.000104 
 

(0.000143) 

0.983 
 

(0.977) 

Percentage of single-parent families 
with own children under 18 years 

old of total families and subfamilies 

-0.00139 
(0.00249) 

-0.557 
(0.577) 

0.00122 
(0.00156) 

0.784 
(0.433) 

0.0225 
(0.018) 

1.25 
(0.212) 10 2 -1.79e-05 

(-2.46e-05) 
0.95 

(0.931) 

Percentage of female-headed 
families with or without own 
children of total families and 

subfamilies 

-0.00084 
 

(0.00289) 

-0.291 
 

(0.771) 

0.00137 
 

(0.00193) 

0.713 
 

(0.476) 

0.00473 
 

(0.0221) 

0.214 
 

(0.83) 
10 2 

0.00109 
 

(0.0015) 

0.967 
 

(0.955) 

Inverse Hyperbolic Sine 
Transformation of Workers 16+ 

years old traveling to work on 
public transportation (taxi not 

included mean = 3.72) 

-0.44 
 

(0.0948) 

-4.64 
 

(3.51e-
06) 

0.0846 
 

(0.074) 

1.14 
 

(0.253) 

-0.605 
 

(0.658) 

-0.919 
 

(0.358) 
10 2 

0.00189 
 

(0.00259) 

0.937 
 

(0.914) 

Inverse Hyperbolic Sine 
Transformation of Workers 16+ 

years old with travel time to work 
less than 25 minutes (mean = 5.32) 

-0.0176 
 

(0.0709) 

-0.249 
 

(0.803) 

-0.0605 
 

(0.0603) 

-1 
 

(0.316) 

0.628 
 

(0.178) 

3.53 
 

(0.000419) 
10 2 

0.00758 
 

(0.0104) 

0.986 
 

(0.981) 

Inverse Hyperbolic Sine 
Transformation of Workers 16+ 

years old with travel time to work 
25 to 44 minutes (mean = 4.74) 

0.0605 
 

(0.0701) 

0.863 
 

(0.388) 

-0.0811 
 

(0.0596) 

-1.36 
 

(0.173) 

0.697 
 

(0.211) 

3.3 
 

(0.000975) 
10 2 

0.00776 
 

(0.0106) 

0.983 
 

(0.977) 

Inverse Hyperbolic Sine 
Transformation of Workers 16+ 

years old with travel time to work 
more than 45 minutes (mean = 

4.09) 

0.00393 
 

(0.0658) 

0.0597 
 

(0.952) 

-0.0648 
 

(0.0552) 

-1.17 
 

(0.241) 

-0.177 
 

(0.602) 

-0.295 
 

(0.768) 
10 2 

0.00645 
 

(0.00885) 

0.981 
 

(0.974) 

Percentage of Persons 25+ years old 
who have completed 0-8 years of 

school 

0.0021 
(0.00236) 

0.889 
(0.374) 

0.000131 
(0.00139) 

0.0945 
(0.925) 

0.0136 
(0.0165) 

0.825 
(0.409) 10 2 0.000671 

(0.000921) 
0.895 

(0.856) 

Percentage of Persons 25+ years old 
who have completed high school 

but no college 

0.00414 
(0.00543) 

0.762 
(0.446) 

-0.00202 
(0.0036) 

-0.561 
(0.575) 

-0.0106 
(0.026) 

-0.407 
(0.684) 10 2 -0.00327 

(-0.00449) 
0.983 

(0.976) 

Percentage of Persons 25+ years old 
who have an associate degree but 

no bachelor’s degree 

-0.00163 
(0.00137) 

-1.19 
(0.234) 

0.000283 
(0.00098) 

0.289 
(0.773) 

0.00295 
(0.00664) 

0.445 
(0.656) 10 2 -0.00152 

(-0.00208) 
0.95 

(0.931) 

Percentage of Persons 25+ years old 
who have a bachelor’s or 

graduate/professional degree 

0.000755 
(0.00768) 

0.0984 
(0.922) 

0.00266 
(0.00512) 

0.519 
(0.604) 

0.0282 
(0.0422) 

0.669 
(0.504) 10 2 -0.0124 

(-0.017) 
0.947 

(0.927) 

Percentage of total persons below 
the poverty level in past 12 months 

0.00266 
(0.00414) 

0.642 
(0.521) 

-0.000156 
(0.00226) 

-0.0691 
(0.945) 

-0.0165 
(0.0296) 

-0.559 
(0.576) 10 2 0.00593 

(0.00814) 
0.917 

(0.887) 
Percentage of households with 

public assistance inc. (incl. SSI) last 
year of total households 

0.00102 
(0.00223) 

0.459 
(0.646) 

0.000388 
(0.00134) 

0.289 
(0.773) 

-0.0146 
(0.00586) 

-2.48 
(0.013) 10 2 0.00662 

(0.00909) 
0.886 

(0.843) 

Ratio of Owner-Occupied housing 
units to Renter Occupied Housing 

units 

9.81 
(8.6) 

1.14 
(0.254) 

-6.67 
(6.92) 

-0.964 
(0.335) 

0.309 
(5.8) 

0.0534 
(0.957) 10 2 -0.0201 

(-0.0276) 
0.317 

(0.0619) 

Percentage of renter-occupied 
housing units of total housing units 

0.00837 
(0.00484) 

1.73 
(0.084) 

-0.00153 
(0.00346) 

-0.441 
(0.659) 

0.0726 
(0.0363) 

2 
(0.0455) 10 2 0.00319 

(0.00438) 
0.969 

(0.958) 

Percentage of vacant housing units 0.00807 
(0.00367) 

2.2 
(0.0279) 

-0.00103 
(0.00188) 

-0.547 
(0.584) 

-0.055 
(0.0293) 

-1.88 
(0.0605) 10 2 0.00503 

(0.0069) 
0.895 

(0.856) 
Percentage of change in number of 

housing units since last census of 
total housing units 

0.437 
(0.31) 

1.41 
(0.158) 

0.106 
(0.289) 

0.367 
(0.713) 

-1.71 
(1.52) 

-1.12 
(0.262) 10 2 0.000208 

(0.000285) 
0.37 

(0.135) 

Table 50. Non-restrictive bridge treatment effect ES model CEM results (cont’d) 
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Dependent Variable 

Interaction 
Estimator 

for new 
over 14 ft 

bridge 
 

(SE) 

t value 
 

(p value) 

new over 
14 ft 

bridge 
Treatment 

Variable 
 

(SE) 

t value 
 

(p 
value) 

new over 
14 ft 

bridge 
Group 

Dummy 
Variable 

 
(SE) 

t value 
 

(p value) 
# Other 
Controls Set 

R2 (Adj. 
R2) diff 

w/o New 
Variables 

R2 
 

(Adj. 
R2) 

Inverse Hyperbolic Sine 
Transformation of Average household 

income in past 12 months (2010 
Constant $ US, mean = 11.4) 

0.00757 
 

(0.139) 

0.0547 
 

(0.956) 

0.0443 
 

(0.108) 

0.41 
 

(0.682) 

0.189 
 

(0.211) 

0.898 
 

(0.369) 
12 3 

0.000911 
 

(0.00125) 

0.989 
 

(0.985) 

Inverse Hyperbolic Sine 
Transformation of Aggregate 

household income in past 12 months 
(2010 Constant $ US, mean = 18.4) 

-0.0644 
 

(0.215) 

-0.3 
 

(0.765) 

0.0268 
 

(0.158) 

0.17 
 

(0.865) 

0.615 
 

(0.335) 

1.83 
 

(0.0668) 
12 3 

0.000987 
 

(0.00135) 

0.99 
 

(0.986) 

Non-White percentage of total 
population 

-0.00265 
(0.00391) 

-0.677 
(0.498) 

0.00124 
(0.00205) 

0.604 
(0.546) 

0.0122 
(0.0134) 

0.913 
(0.361) 12 3 -0.00324 

(-0.00446) 
0.949 
(0.93) 

Black/African American percentage of 
total population 

-0.00565 
(0.00338) 

-1.67 
(0.0946) 

0.00223 
(0.00164) 

1.36 
(0.174) 

0.0044 
(0.00641) 

0.686 
(0.493) 12 3 

-0.000486 
(-

0.000682) 

0.955 
(0.938) 

Percentage of Hispanic/Latino of total 
population 

-0.00321 
(0.0016) 

-2.01 
(0.0449) 

0.00139 
(0.0011) 

1.26 
(0.206) 

0.0131 
(0.00989) 

1.32 
(0.185) 12 3 -0.00947 

(-0.013) 
0.84 

(0.78) 
Percentage of Foreign-born of total 

population 
0.00073 

(0.00179) 
0.408 

(0.683) 
-0.000595 
(0.00107) 

-0.558 
(0.577) 

-0.00361 
(0.00421) 

-0.857 
(0.392) 12 3 -0.000188 

(-3e-04) 
0.878 

(0.832) 
Percentage of Children under 18 years 

old of total population 
-0.00559 
(0.00356) 

-1.57 
(0.117) 

0.00247 
(0.00275) 

0.898 
(0.369) 

-0.000833 
(0.0074) 

-0.113 
(0.91) 12 3 0.00502 

(0.00688) 
0.98 

(0.972) 
Inverse Hyperbolic Sine 

Transformation of Ratio of adults 18+ 
years old to children under 18 years 
old (adults/children, mean = 0.986) 

0.00416 
 

(0.0145) 

0.287 
 

(0.774) 

0.00671 
 

(0.012) 

0.561 
 

(0.575) 

0.0295 
 

(0.0365) 

0.81 
 

(0.418) 
12 3 

0.000354 
 

(0.00048) 

0.983 
 

(0.977) 

Percentage of single-parent families 
with own children under 18 years old 

of total families and subfamilies 

-0.00243 
(0.00234) 

-1.04 
(0.299) 

0.0017 
(0.00148) 

1.14 
(0.252) 

0.0279 
(0.0129) 

2.16 
(0.0307) 12 3 0.00324 

(0.00443) 
0.953 

(0.935) 

Percentage of female-headed families 
with or without own children of total 

families and subfamilies 

-0.00246 
 

(0.00277) 

-0.888 
 

(0.375) 

0.00165 
 

(0.00183) 

0.903 
 

(0.367) 

0.013 
 

(0.0118) 

1.1 
 

(0.273) 
12 3 

0.00252 
 

(0.00345) 

0.969 
 

(0.957) 
Inverse Hyperbolic Sine 

Transformation of Workers 16+ years 
old traveling to work on public 

transportation (taxi not included mean 
= 3.72) 

-0.467 
 

(0.0966) 

-4.84 
 

(1.34e-
06) 

0.0886 
 

(0.0755) 

1.17 
 

(0.241) 

-0.622 
 

(0.665) 

-0.935 
 

(0.35) 
12 3 

-5.03e-05 
 

(-9.11e-
05) 

0.935 
 

(0.911) 

Inverse Hyperbolic Sine 
Transformation of Workers 16+ years 
old with travel time to work less than 

25 minutes (mean = 5.32) 

-0.136 
 

(0.0825) 

-1.65 
 

(0.099) 

-0.0254 
 

(0.0692) 

-0.367 
 

(0.714) 

0.667 
 

(0.262) 

2.54 
 

(0.011) 
12 3 

0.00445 
 

(0.0061) 

0.983 
 

(0.977) 

Inverse Hyperbolic Sine 
Transformation of Workers 16+ years 

old with travel time to work 25 to 44 
minutes (mean = 4.74) 

-0.0523 
 

(0.0781) 

-0.669 
 

(0.504) 

-0.0416 
 

(0.0662) 

-0.627 
 

(0.53) 

0.734 
 

(0.232) 

3.16 
 

(0.00156) 
12 3 

0.00526 
 

(0.00722) 

0.981 
 

(0.974) 

Inverse Hyperbolic Sine 
Transformation of Workers 16+ years 

old with travel time to work more than 
45 minutes (mean = 4.09) 

-0.089 
 

(0.0693) 

-1.28 
 

(0.199) 

-0.0291 
 

(0.058) 

-0.502 
 

(0.616) 

-0.139 
 

(0.467) 

-0.297 
 

(0.766) 
12 3 

0.00511 
 

(0.00701) 

0.98 
 

(0.972) 

Percentage of Persons 25+ years old 
who have completed 0-8 years of 

school 

0.00163 
(0.00239) 

0.682 
(0.495) 

0.000208 
(0.00139) 

0.149 
(0.881) 

0.0156 
(0.015) 

1.03 
(0.301) 12 3 0.0037 

(0.00505) 
0.898 
(0.86) 

Percentage of Persons 25+ years old 
who have completed high school but no 

college 

0.00362 
(0.00463) 

0.781 
(0.435) 

-0.00107 
(0.00308) 

-0.347 
(0.729) 

-0.0029 
(0.0279) 

-0.104 
(0.917) 12 3 -0.000834 

(-0.00115) 
0.985 
(0.98) 

Percentage of Persons 25+ years old 
who have an associate degree but no 

bachelor’s degree 

-0.00137 
(0.00133) 

-1.03 
(0.304) 

0.000387 
(0.000937) 

0.414 
(0.679) 

0.00222 
(0.00578) 

0.385 
(0.7) 12 3 0.00138 

(0.00188) 
0.953 

(0.935) 

Percentage of Persons 25+ years old 
who have a bachelor’s or 

graduate/professional degree 

0.00111 
(0.00627) 

0.177 
(0.86) 

0.00157 
(0.00418) 

0.376 
(0.707) 

0.0133 
(0.047) 

0.284 
(0.776) 12 3 -0.00166 

(-0.0023) 
0.958 

(0.942) 

Percentage of total persons below the 
poverty level in past 12 months 

0.000737 
(0.0041) 

0.18 
(0.857) 

0.000382 
(0.00221) 

0.173 
(0.863) 

-0.0108 
(0.0195) 

-0.554 
(0.58) 12 3 0.00894 

(0.0122) 
0.92 

(0.891) 
Percentage of households with public 

assistance inc. (incl. SSI) last year of 
total households 

-0.000204 
(0.00227) 

-0.09 
(0.928) 

0.00103 
(0.00136) 

0.756 
(0.45) 

-0.0179 
(0.00483) 

-3.7 
(0.000216) 12 3 0.00483 

(0.0066) 
0.884 

(0.841) 

Ratio of Owner-Occupied housing units 
to Renter Occupied Housing units 

14.7 
(8.44) 

1.75 
(0.0807) 

-7.96 
(6.89) 

-1.16 
(0.248) 

-3.21 
(9.21) 

-0.348 
(0.728) 12 3 -0.0184 

(-0.0255) 
0.318 

(0.064) 
Percentage of renter-occupied housing 

units of total housing units 
0.00437 

(0.00462) 
0.946 

(0.344) 
0.000131 
(0.00327) 

0.0401 
(0.968) 

0.0759 
(0.019) 

4 
(6.38e-05) 12 3 0.00396 

(0.00542) 
0.97 

(0.959) 

Percentage of vacant housing units 0.00626 
(0.00367) 

1.7 
(0.0887) 

-0.000248 
(0.00182) 

-0.137 
(0.891) 

-0.052 
(0.0252) 

-2.07 
(0.0387) 12 3 0.00808 

(0.0111) 
0.898 
(0.86) 

Percentage of change in number of 
housing units since last census of total 

housing units 

0.382 
(0.304) 

1.26 
(0.209) 

0.0802 
(0.285) 

0.282 
(0.778) 

-1.47 
(1.33) 

-1.1 
(0.27) 12 3 0.00201 

(0.00254) 
0.371 

(0.137) 

  



Machine Learning for Public Policy: Applications in Infrastructure and Air Pollution 

211 

Table 50. Non-restrictive bridge treatment effect ES model CEM results (cont’d) 

Dependent Variable 

Interaction 
Estimator 

for new 
over 14 ft 

bridge 
 

(SE) 

t value 
 

(p value) 

new over 
14 ft 

bridge 
Treatment 

Variable 
 

(SE) 

t value 
 

(p 
value) 

new over 
14 ft 

bridge 
Group 

Dummy 
Variable 

 
(SE) 

t value 
 

(p value) 
# Other 
Controls Set 

R2 (Adj. R2) 
diff w/o New 

Variables 

R2 
 

(Adj. 
R2) 

Inverse Hyperbolic Sine 
Transformation of Average household 

income in past 12 months (2010 
Constant $ US, mean = 11.4) 

0.038 
 

(0.13) 

0.292 
 

(0.77) 

0.00307 
 

(0.101) 

0.0303 
 

(0.976) 

-0.0535 
 

(0.128) 

-0.417 
 

(0.676) 
12 4 

0.0019 
 

(0.00261) 

0.99 
 

(0.986) 

Inverse Hyperbolic Sine 
Transformation of Aggregate 

household income in past 12 months 
(2010 Constant $ US, mean = 18.4) 

0.0105 
 

(0.202) 

0.0518 
 

(0.959) 

-0.0439 
 

(0.145) 

-0.303 
 

(0.762) 

0.255 
 

(0.233) 

1.09 
 

(0.274) 
12 4 

0.00199 
 

(0.00272) 

0.991 
 

(0.988) 

Non-White percentage of total 
population 

-0.00263 
(0.00397) 

-0.663 
(0.507) 

0.00338 
(0.0022) 

1.54 
(0.124) 

-0.00279 
(0.0155) 

-0.18 
(0.857) 12 4 -0.00996 

(-0.0137) 
0.943 

(0.921) 
Black/African American percentage of 

total population 
-0.00593 
(0.00334) 

-1.77 
(0.076) 

0.00412 
(0.00173) 

2.38 
(0.0175) 

-0.00688 
(0.00895) 

-0.77 
(0.442) 12 4 -0.00838 

(-0.0115) 
0.947 

(0.927) 
Percentage of Hispanic/Latino of total 

population 
-0.00305 
(0.00142) 

-2.14 
(0.0321) 

0.0012 
(0.000948) 

1.27 
(0.205) 

0.00817 
(0.0069) 

1.18 
(0.236) 12 4 0.0414 

(0.0568) 
0.891 
(0.85) 

Percentage of Foreign-born of total 
population 

0.00156 
(0.00179) 

0.874 
(0.382) 

-0.000758 
(0.00103) 

-0.736 
(0.462) 

-0.00418 
(0.00471) 

-0.887 
(0.375) 12 4 0.00226 

(0.00304) 
0.88 

(0.835) 
Percentage of Children under 18 years 

old of total population 
-0.00392 
(0.00346) 

-1.13 
(0.258) 

0.000923 
(0.00267) 

0.345 
(0.73) 

-0.013 
(0.0113) 

-1.16 
(0.248) 12 4 0.00643 

(0.00881) 
0.981 

(0.974) 
Inverse Hyperbolic Sine 

Transformation of Ratio of adults 18+ 
years old to children under 18 years 
old (adults/children, mean = 0.986) 

0.00444 
 

(0.0142) 

0.313 
 

(0.754) 

0.00525 
 

(0.0121) 

0.434 
 

(0.664) 

0.0163 
 

(0.0207) 

0.79 
 

(0.43) 
12 4 

0.000879 
 

(0.0012) 

0.984 
 

(0.978) 

Percentage of single-parent families 
with own children under 18 years old 

of total families and subfamilies 

-0.00184 
(0.00239) 

-0.771 
(0.441) 

0.00152 
(0.00151) 

1 
(0.317) 

0.0211 
(0.0148) 

1.43 
(0.154) 12 4 0.00272 

(0.0037) 
0.952 

(0.934) 

Percentage of female-headed families 
with or without own children of total 

families and subfamilies 

-0.00182 
(0.00287) 

-0.635 
(0.526) 

0.00156 
(0.00197) 

0.789 
(0.43) 

0.00404 
(0.0154) 

0.262 
(0.793) 12 4 0.000706 

(0.000951) 
0.967 

(0.954) 

Inverse Hyperbolic Sine 
Transformation of Workers 16+ years 

old traveling to work on public 
transportation (taxi not included 

mean = 3.72) 

-0.488 
 

(0.097) 

-5.03 
 

(5.02e-
07) 

0.0719 
 

(0.0787) 

0.914 
 

(0.361) 

-0.737 
 

(0.607) 

-1.22 
 

(0.224) 
12 4 

0.000604 
 

(0.000796) 

0.936 
 

(0.912) 

Inverse Hyperbolic Sine 
Transformation of Workers 16+ years 
old with travel time to work less than 

25 minutes (mean = 5.32) 

-0.0871 
 

(0.0837) 

-1.04 
 

(0.298) 

-0.0653 
 

(0.071) 

-0.919 
 

(0.358) 

0.439 
 

(0.113) 

3.9 
 

(9.51e-
05) 

12 4 
0.00522 

 
(0.00715) 

0.984 
 

(0.978) 

Inverse Hyperbolic Sine 
Transformation of Workers 16+ years 

old with travel time to work 25 to 44 
minutes (mean = 4.74) 

-0.00773 
 

(0.0802) 

-0.0964 
 

(0.923) 

-0.0861 
 

(0.0687) 

-1.25 
 

(0.21) 

0.526 
 

(0.276) 

1.9 
 

(0.0572) 
12 4 

0.00535 
 

(0.00733) 

0.981 
 

(0.974) 

Inverse Hyperbolic Sine 
Transformation of Workers 16+ years 

old with travel time to work more 
than 45 minutes (mean = 4.09) 

-0.0647 
 

(0.069) 

-0.937 
 

(0.349) 

-0.0668 
 

(0.0601) 

-1.11 
 

(0.266) 

-0.323 
 

(0.505) 

-0.64 
 

(0.522) 
12 4 

0.00623 
 

(0.00855) 

0.981 
 

(0.974) 

Percentage of Persons 25+ years old 
who have completed 0-8 years of 

school 

0.00199 
(0.00233) 

0.853 
(0.394) 

5.28e-05 
(0.00137) 

0.0386 
(0.969) 

0.011 
(0.0158) 

0.694 
(0.488) 12 4 0.00587 

(0.008) 
0.9 

(0.863) 

Percentage of Persons 25+ years old 
who have completed high school but 

no college 

-0.000144 
(0.00512) 

-0.0282 
(0.978) 

-0.00101 
(0.00337) 

-0.299 
(0.765) 

-0.012 
(0.0275) 

-0.435 
(0.663) 12 4 -0.00194 

(-0.00268) 
0.984 

(0.978) 

Percentage of Persons 25+ years old 
who have an associate degree but no 

bachelor’s degree 

-0.00131 
(0.00136) 

-0.963 
(0.335) 

0.000211 
(0.000979) 

0.216 
(0.829) 

0.00442 
(0.00662) 

0.668 
(0.504) 12 4 -0.00112 

(-0.00156) 
0.95 

(0.932) 

Percentage of Persons 25+ years old 
who have a bachelor’s or 

graduate/professional degree 

0.00579 
(0.00702) 

0.825 
(0.41) 

0.00125 
(0.00475) 

0.263 
(0.793) 

0.0307 
(0.0506) 

0.607 
(0.544) 12 4 -0.00714 

(-0.00983) 
0.952 

(0.934) 

Percentage of total persons below the 
poverty level in past 12 months 

0.00197 
(0.00404) 

0.487 
(0.626) 

-3.05e-05 
(0.00231) 

-0.0132 
(0.989) 

-0.0194 
(0.0205) 

-0.947 
(0.344) 12 4 0.00652 

(0.0089) 
0.918 

(0.887) 
Percentage of households with public 

assistance inc. (incl. SSI) last year of 
total households 

0.000418 
(0.0023) 

0.182 
(0.856) 

0.000135 
(0.00144) 

0.0936 
(0.925) 

-0.0179 
(0.00591) 

-3.03 
(0.00248) 12 4 0.00288 

(0.0039) 
0.882 

(0.838) 

Ratio of Owner-Occupied housing 
units to Renter Occupied Housing 

units 

12.4 
(8.31) 

1.49 
(0.136) 

-5.43 
(6.63) 

-0.819 
(0.413) 

-1.18 
(7.13) 

-0.166 
(0.869) 12 4 -0.000347 

(-0.000816) 
0.336 

(0.0887) 

Percentage of renter-occupied 
housing units of total housing units 

0.0061 
(0.00484) 

1.26 
(0.208) 

-0.00125 
(0.00363) 

-0.343 
(0.732) 

0.0687 
(0.0251) 

2.73 
(0.00632) 12 4 0.00233 

(0.00318) 
0.969 

(0.957) 

Percentage of vacant housing units 0.00641 
(0.00374) 

1.71 
(0.0866) 

-0.000768 
(0.00184) 

-0.418 
(0.676) 

-0.0578 
(0.028) 

-2.07 
(0.0388) 12 4 0.00704 

(0.00961) 
0.897 

(0.859) 
Percentage of change in number of 

housing units since last census of total 
housing units 

0.457 
(0.331) 

1.38 
(0.168) 

0.0587 
(0.286) 

0.205 
(0.838) 

-1.12 
(1.05) 

-1.06 
(0.289) 12 4 -0.000974 

(-0.00166) 
0.368 

(0.133) 
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Table 51. All new bridge treatment effect event study model CEM results 

Dependent Variable 

Interaction 
Estimator 

for New 
bridge 

 
(SE) 

t value 
 

(p 
value) 

New 
bridge 

Treatment 
Variable 

 
(SE) 

t value 
 

(p 
value) 

New 
bridge 
Group 

Dummy 
Variable 

 
(SE) 

t value 
 

(p 
value) 

# Other 
Controls Set 

R2 (Adj. 
R2) diff 

w/o New 
Variables 

R2 
 

(Adj. 
R2) 

Inverse Hyperbolic Sine Transformation of 
Average household income in past 12 

months (2010 Constant $ US, mean = 11.4) 

-0.361 
 

(0.202) 

-1.78 
 

(0.0743) 

0.243 
 

(0.215) 

1.13 
 

(0.259) 

-0.0536 
 

(0.445) 

-0.12 
 

(0.904) 
12 1 

2.07e-05 
 

(2.31e-05) 

0.99 
 

(0.986) 
Inverse Hyperbolic Sine Transformation of 

Aggregate household income in past 12 
months (2010 Constant $ US, mean = 18.5) 

-0.382 
 

(0.22) 

-1.74 
 

(0.0822) 

0.177 
 

(0.238) 

0.745 
 

(0.456) 

-1.66 
 

(0.725) 

-2.29 
 

(0.0222) 
12 1 

7.49e-06 
 

(5.63e-06) 

0.992 
 

(0.989) 

Non-White percentage of total population 0.000302 
(0.00499) 

0.0605 
(0.952) 

-0.00122 
(0.00388) 

-0.314 
(0.753) 

-0.00543 
(0.0272) 

-0.199 
(0.842) 12 1 1.43e-06 

(-1.78e-05) 
0.968 

(0.954) 
Black/African American percentage of total 

population 
0.000379 
(0.00439) 

0.0863 
(0.931) 

-0.00034 
(0.00329) 

-0.103 
(0.918) 

-0.00992 
(0.0267) 

-0.372 
(0.71) 12 1 1.18e-07 

(-1.84e-05) 
0.97 

(0.957) 
Percentage of Hispanic/Latino of total 

population 
-0.00663 

(0.00297) 
-2.23 

(0.0259) 
0.00255 

(0.00254) 
1 

(0.316) 
-0.0194 

(0.0145) 
-1.34 

(0.182) 12 1 0.00021 
(0.000194) 

0.833 
(0.763) 

Percentage of Foreign-born of total 
population 

0.00016 
(0.00272) 

0.059 
(0.953) 

0.000947 
(0.00239) 

0.397 
(0.692) 

0.00824 
(0.0244) 

0.339 
(0.735) 12 1 1.45e-05 

(-4.41e-05) 
0.895 

(0.851) 

Percentage of Children under 18 years old of 
total population 

-0.00746 
 

(0.0051) 

-1.46 
 

(0.144) 

0.00526 
 

(0.00437) 

1.2 
 

(0.229) 

0.047 
 

(0.0749) 

0.628 
 

(0.53) 
12 1 

2.42e-05 
 

(2.24e-05) 

0.981 
 

(0.973) 
Inverse Hyperbolic Sine Transformation of 

Ratio of adults 18+ years old to children 
under 18 years old (adults/children, mean = 

1.01) 

-0.0129 
 

(0.0157) 

-0.825 
 

(0.409) 

-0.00382 
 

(0.0113) 

-0.337 
 

(0.736) 

-0.113 
 

(0.0853) 

-1.33 
 

(0.184) 
12 1 

7.23e-06 
 

(3.79e-06) 

0.99 
 

(0.985) 

Percentage of single-parent families with 
own children under 18 years old of total 

families and subfamilies 

0.00149 
 

(0.00374) 

0.398 
 

(0.691) 

0.0016 
 

(0.00354) 

0.451 
 

(0.652) 

-0.109 
 

(0.0516) 

-2.12 
 

(0.0342) 
12 1 

1.69e-05 
 

(-5.52e-06) 

0.952 
 

(0.932) 
Percentage of female-headed families with 

or without own children of total families 
and subfamilies 

0.00415 
 

(0.00464) 

0.894 
 

(0.372) 

0.00105 
 

(0.00418) 

0.25 
 

(0.802) 

-0.113 
 

(0.0863) 

-1.31 
 

(0.19) 
12 1 

1.86e-05 
 

(8.55e-06) 

0.971 
 

(0.959) 
Inverse Hyperbolic Sine Transformation of 

Workers 16+ years old traveling to work on 
public transportation (taxi not included 

mean = 4.39) 

-0.0298 
 

(0.128) 

-0.233 
 

(0.815) 

-0.074 
 

(0.119) 

-0.622 
 

(0.534) 

1.04 
 

(2.97) 

0.352 
 

(0.725) 
12 1 

2.3e-05 
 

(8.9e-06) 

0.962 
 

(0.946) 

Inverse Hyperbolic Sine Transformation of 
Workers 16+ years old with travel time to 
work less than 25 minutes (mean = 5.42) 

-0.0519 
 

(0.131) 

-0.397 
 

(0.691) 

0.116 
 

(0.116) 

0.999 
 

(0.318) 

-3.29 
 

(0.61) 

-5.39 
 

(7.22e-
08) 

12 1 
1.39e-05 

 
(9.57e-06) 

0.984 
 

(0.977) 

Inverse Hyperbolic Sine Transformation of 
Workers 16+ years old with travel time to 

work 25 to 44 minutes (mean = 4.81) 

0.0147 
 

(0.121) 

0.122 
 

(0.903) 

0.101 
 

(0.11) 

0.914 
 

(0.361) 

-0.427 
 

(0.821) 

-0.52 
 

(0.603) 
12 1 

2.13e-05 
 

(1.93e-05) 

0.982 
 

(0.975) 

Inverse Hyperbolic Sine Transformation of 
Workers 16+ years old with travel time to 

work more than 45 minutes (mean = 4.14) 

-0.0757 
 

(0.108) 

-0.704 
 

(0.482) 

0.0444 
 

(0.104) 

0.425 
 

(0.671) 

3.61 
 

(0.463) 

7.8 
 

(7.55e-
15) 

12 1 
4.97e-06 

 
(-6.89e-06) 

0.977 
 

(0.968) 

Percentage of Persons 25+ years old who 
have completed 0-8 years of school 

0.000204 
 

(0.00298) 

0.0686 
 

(0.945) 

-0.000742 
 

(0.00258) 

-0.288 
 

(0.773) 

-0.0734 
 

(0.0872) 

-0.842 
 

(0.4) 
12 1 

7.23e-06 
 

(-6.68e-05) 

0.875 
 

(0.823) 

Percentage of Persons 25+ years old who 
have completed high school but no college 

0.0046 
 

(0.0073) 

0.629 
 

(0.529) 

-0.00773 
 

(0.00627) 

-1.23 
 

(0.218) 

-0.147 
 

(0.0889) 

-1.66 
 

(0.0976) 
12 1 

2.05e-05 
 

(1.86e-05) 

0.983 
 

(0.976) 
Percentage of Persons 25+ years old who 

have an associate degree but no bachelor’s 
degree 

0.00289 
 

(0.00249) 

1.16 
 

(0.246) 

0.00126 
 

(0.00239) 

0.526 
 

(0.599) 

0.0362 
 

(0.0302) 

1.2 
 

(0.232) 
12 1 

0.000134 
 

(0.000153) 

0.939 
 

(0.914) 
Percentage of Persons 25+ years old who 

have a bachelor’s or graduate/professional 
degree 

-0.00559 
 

(0.0106) 

-0.53 
 

(0.596) 

0.0119 
 

(0.00943) 

1.26 
 

(0.206) 

0.171 
 

(0.164) 

1.05 
 

(0.296) 
12 1 

7.84e-05 
 

(7.94e-05) 

0.949 
 

(0.927) 

Percentage of total persons below the 
poverty level in past 12 months 

-0.00177 
 

(0.00577) 

-0.307 
 

(0.759) 

0.00108 
 

(0.00442) 

0.244 
 

(0.807) 

-0.0243 
 

(0.037) 

-0.656 
 

(0.512) 
12 1 

3.11e-06 
 

(-3.99e-05) 

0.928 
 

(0.898) 
Percentage of households with public 

assistance inc. (incl. SSI) last year of total 
households 

0.000267 
 

(0.00321) 

0.0834 
 

(0.934) 

-0.00188 
 

(0.0025) 

-0.752 
 

(0.452) 

-0.0342 
 

(0.032) 

-1.07 
 

(0.286) 
12 1 

2.78e-05 
 

(-2.49e-05) 

0.895 
 

(0.852) 

Ratio of Owner-Occupied housing units to 
Renter Occupied Housing units 

-9.78 
 

(15.2) 

-0.646 
 

(0.519) 

-2.07 
 

(11.6) 

-0.179 
 

(0.858) 

37.5 
 

(60.8) 

0.616 
 

(0.538) 
12 1 

0.00018 
 

(-5.15e-05) 

0.501 
 

(0.294) 

Percentage of renter-occupied housing units 
of total housing units 

-0.00933 
 

(0.00795) 

-1.17 
 

(0.24) 

0.0113 
 

(0.00722) 

1.56 
 

(0.118) 

-0.116 
 

(0.0521) 

-2.22 
 

(0.0266) 
12 1 

4.08e-05 
 

(4.15e-05) 

0.974 
 

(0.962) 

Percentage of vacant housing units 0.00552 
(0.00337) 

1.64 
(0.101) 

-0.0011 
(0.00282) 

-0.389 
(0.697) 

-0.00911 
(0.0206) 

-0.443 
(0.658) 12 1 9.56e-05 

(7.68e-05) 
0.905 

(0.865) 

Percentage of change in number of housing 
units since last census of total housing units 

-1.53 
 

(1.63) 

-0.935 
 

(0.35) 

3.68 
 

(3.26) 

1.13 
 

(0.259) 

-2.54 
 

(4.94) 

-0.514 
 

(0.607) 
12 1 

0.000614 
 

(5e-04) 

0.4 
 

(0.151) 
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Table 51. All new bridge treatment effect event study model CEM results (cont’d) 

Dependent Variable 

Interaction 
Estimator 

for New 
bridge 

 
(SE) 

t value 
 

(p 
value) 

New 
bridge 

Treatment 
Variable 

 
(SE) 

t value 
 

(p value) 

New 
bridge 
Group 

Dummy 
Variable 

 
(SE) 

t value 
 

(p value) 
# Other 
Controls Set 

R2 (Adj. 
R2) diff 

w/o New 
Variables 

R2 
 

(Adj. 
R2) 

Inverse Hyperbolic Sine 
Transformation of Average 

household income in past 12 months 
(2010 Constant $ US, mean = 11.4) 

-0.297 
 

(0.191) 

-1.56 
 

(0.12) 

0.213 
 

(0.203) 

1.05 
 

(0.294) 

0.0937 
 

(0.18) 

0.521 
 

(0.602) 
10 2 

-1.07e-05 
 

(-1.51e-05) 

0.99 
 

(0.985) 

Inverse Hyperbolic Sine 
Transformation of Aggregate 

household income in past 12 months 
(2010 Constant $ US, mean = 18.5) 

-0.299 
 

(0.211) 

-1.41 
 

(0.158) 

0.149 
 

(0.23) 

0.649 
 

(0.517) 

-0.205 
 

(0.232) 

-0.884 
 

(0.377) 
10 2 

6.89e-06 
 

(9.75e-06) 

0.992 
 

(0.989) 

Non-White percentage of total 
population 

-0.00476 
(0.00586) 

-0.813 
(0.416) 

0.000192 
(0.00444) 

0.0433 
(0.965) 

-0.0135 
(0.0235) 

-0.574 
(0.566) 10 2 -0.0109 

(-0.0155) 
0.957 

(0.939) 

Black/African American percentage 
of total population 

-0.00322 
 

(0.00497) 

-0.648 
 

(0.517) 

6.38e-05 
 

(0.0037) 

0.0172 
 

(0.986) 

-0.0175 
 

(0.0136) 

-1.29 
 

(0.197) 
10 2 

-0.00872 
 

(-0.0123) 

0.961 
 

(0.945) 

Percentage of Hispanic/Latino of 
total population 

-0.00699 
 

(0.00304) 

-2.3 
 

(0.0215) 

0.0014 
 

(0.00271) 

0.516 
 

(0.606) 

0.0105 
 

(0.0107) 

0.983 
 

(0.326) 
10 2 

-0.00744 
 

(-0.0105) 

0.825 
 

(0.752) 

Percentage of Foreign-born of total 
population 

-0.000441 
 

(0.00272) 

-0.162 
 

(0.871) 

0.00101 
 

(0.00241) 

0.419 
 

(0.675) 

0.00501 
 

(0.00901) 

0.556 
 

(0.578) 
10 2 

-0.00145 
 

(-0.00205) 

0.894 
 

(0.849) 

Percentage of Children under 18 
years old of total population 

-0.00681 
 

(0.00456) 

-1.49 
 

(0.136) 

0.00541 
 

(0.00391) 

1.39 
 

(0.166) 

-0.0275 
 

(0.0149) 

-1.84 
 

(0.0653) 
10 2 

0.00289 
 

(0.00409) 

0.984 
 

(0.977) 
Inverse Hyperbolic Sine 

Transformation of Ratio of adults 18+ 
years old to children under 18 years 

old (adults/children, mean = 1.01) 

-0.0125 
 

(0.0158) 

-0.792 
 

(0.428) 

-0.00184 
 

(0.0113) 

-0.163 
 

(0.871) 

0.0425 
 

(0.029) 

1.47 
 

(0.143) 
10 2 

-0.000249 
 

(-0.000352) 

0.989 
 

(0.985) 

Percentage of single-parent families 
with own children under 18 years old 

of total families and subfamilies 

0.0035 
 

(0.00386) 

0.907 
 

(0.364) 

-0.00179 
 

(0.00356) 

-0.502 
 

(0.616) 

-0.00963 
 

(0.0232) 

-0.414 
 

(0.679) 
10 2 

-0.00187 
 

(-0.00264) 

0.95 
 

(0.929) 
Percentage of female-headed families 
with or without own children of total 

families and subfamilies 

0.00604 
 

(0.00457) 

1.32 
 

(0.187) 

-0.00281 
 

(0.00411) 

-0.684 
 

(0.494) 

0.00578 
 

(0.0191) 

0.303 
 

(0.762) 
10 2 

-0.00013 
 

(-0.000184) 

0.971 
 

(0.959) 
Inverse Hyperbolic Sine 

Transformation of Workers 16+ years 
old traveling to work on public 

transportation (taxi not included 
mean = 4.39) 

-0.0462 
 

(0.129) 

-0.359 
 

(0.72) 

-0.0438 
 

(0.12) 

-0.366 
 

(0.714) 

-2.35 
 

(0.746) 

-3.15 
 

(0.00166) 
10 2 

0.000265 
 

(0.000375) 

0.962 
 

(0.946) 

Inverse Hyperbolic Sine 
Transformation of Workers 16+ years 
old with travel time to work less than 

25 minutes (mean = 5.42) 

0.0185 
 

(0.104) 

0.178 
 

(0.858) 

0.07 
 

(0.103) 

0.679 
 

(0.497) 

-0.104 
 

(0.336) 

-0.309 
 

(0.757) 
10 2 

0.00359 
 

(0.00508) 

0.987 
 

(0.982) 

Inverse Hyperbolic Sine 
Transformation of Workers 16+ years 

old with travel time to work 25 to 44 
minutes (mean = 4.81) 

0.0959 
 

(0.1) 

0.958 
 

(0.338) 

0.0414 
 

(0.102) 

0.407 
 

(0.684) 

-0.824 
 

(0.227) 

-3.63 
 

(0.000283) 
10 2 

0.00257 
 

(0.00364) 

0.985 
 

(0.979) 

Inverse Hyperbolic Sine 
Transformation of Workers 16+ years 

old with travel time to work more 
than 45 minutes (mean = 4.14) 

-0.00658 
 

(0.0962) 

-0.0684 
 

(0.945) 

-0.0104 
 

(0.103) 

-0.102 
 

(0.919) 

-0.37 
 

(0.247) 

-1.49 
 

(0.135) 
10 2 

0.00244 
 

(0.00346) 

0.98 
 

(0.971) 

Percentage of Persons 25+ years old 
who have completed 0-8 years of 

school 

-0.00126 
 

(0.00292) 

-0.43 
 

(0.667) 

0.00076 
 

(0.00259) 

0.293 
 

(0.77) 

0.0174 
 

(0.0324) 

0.539 
 

(0.59) 
10 2 

-0.00156 
 

(-0.00221) 

0.873 
 

(0.821) 
Percentage of Persons 25+ years old 
who have completed high school but 

no college 

0.0137 
 

(0.00895) 

1.53 
 

(0.127) 

-0.0201 
 

(0.00772) 

-2.61 
 

(0.00908) 

0.0329 
 

(0.0496) 

0.664 
 

(0.507) 
10 2 

-0.00463 
 

(-0.00655) 

0.978 
 

(0.969) 
Percentage of Persons 25+ years old 
who have an associate degree but no 

bachelor’s degree 

0.00367 
 

(0.00259) 

1.41 
 

(0.157) 

-0.00025 
 

(0.0025) 

-0.1 
 

(0.92) 

-0.021 
 

(0.0126) 

-1.66 
 

(0.0972) 
10 2 

-0.00135 
 

(-0.0019) 

0.938 
 

(0.912) 
Percentage of Persons 25+ years old 

who have a bachelor’s or 
graduate/professional degree 

-0.0141 
 

(0.0135) 

-1.05 
 

(0.296) 

0.0266 
 

(0.0117) 

2.27 
 

(0.0236) 

-0.0574 
 

(0.0621) 

-0.924 
 

(0.356) 
10 2 

-0.0125 
 

(-0.0177) 

0.936 
 

(0.91) 

Percentage of total persons below the 
poverty level in past 12 months 

-0.00166 
 

(0.00546) 

-0.305 
 

(0.761) 

0.000878 
 

(0.00422) 

0.208 
 

(0.835) 

0.0148 
 

(0.0178) 

0.835 
 

(0.404) 
10 2 

0.0015 
 

(0.00212) 

0.929 
 

(0.9) 
Percentage of households with public 

assistance inc. (incl. SSI) last year of 
total households 

8.85e-05 
 

(0.00309) 

0.0286 
 

(0.977) 

-0.000761 
 

(0.00243) 

-0.313 
 

(0.754) 

0.0229 
 

(0.00947) 

2.42 
 

(0.0157) 
10 2 

0.00215 
 

(0.00304) 

0.898 
 

(0.855) 
Ratio of Owner-Occupied housing 
units to Renter Occupied Housing 

units 

-16.4 
 

(14.8) 

-1.11 
 

(0.269) 

6.32 
 

(11.7) 

0.541 
 

(0.589) 

-15.3 
 

(17.4) 

-0.879 
 

(0.379) 
10 2 

-0.0345 
 

(-0.0488) 

0.467 
 

(0.245) 

Percentage of renter-occupied 
housing units of total housing units 

-0.00549 
 

(0.00794) 

-0.692 
 

(0.489) 

0.00756 
 

(0.00751) 

1.01 
 

(0.315) 

0.159 
 

(0.0159) 

9.97 
 

(3.68e-23) 
10 2 

0.00182 
 

(0.00257) 

0.975 
 

(0.965) 

Percentage of vacant housing units 0.00711 
(0.00325) 

2.19 
(0.0288) 

-0.00303 
(0.0028) 

-1.08 
(0.279) 

-0.00797 
(0.00582) 

-1.37 
(0.171) 10 2 -0.000315 

(-0.000446) 
0.904 

(0.865) 
Percentage of change in number of 

housing units since last census of 
total housing units 

-0.885 
 

(1.2) 

-0.739 
 

(0.46) 

2.54 
 

(2.41) 

1.05 
 

(0.293) 

1.63 
 

(1.58) 

1.03 
 

(0.302) 
10 2 

-0.00326 
 

(-0.00461) 

0.397 
 

(0.146) 
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Table 51. All new bridge treatment effect event study model CEM results (cont’d) 

Dependent Variable 

Interaction 
Estimator 

for New 
bridge 

 
(SE) 

t value 
 

(p value) 

New 
bridge 

Treatment 
Variable 

 
(SE) 

t value 
 

(p 
value) 

New 
bridge 
Group 

Dummy 
Variable 

 
(SE) 

t value 
 

(p value) 
# Other 
Controls Set 

R2 (Adj. 
R2) diff 

w/o New 
Variables 

R2 
 

(Adj. 
R2) 

Inverse Hyperbolic Sine 
Transformation of Average household 

income in past 12 months (2010 
Constant $ US, mean = 11.4) 

-0.328 
 

(0.198) 

-1.66 
 

(0.0976) 

0.272 
 

(0.202) 

1.35 
 

(0.178) 

0.245 
 

(0.658) 

0.373 
 

(0.709) 
12 3 

9.29e-05 
 

(0.000125) 

0.99 
 

(0.986) 

Inverse Hyperbolic Sine 
Transformation of Aggregate 

household income in past 12 months 
(2010 Constant $ US, mean = 18.5) 

-0.329 
 

(0.212) 

-1.55 
 

(0.122) 

0.227 
 

(0.218) 

1.04 
 

(0.298) 

-1.42 
 

(1.02) 

-1.4 
 

(0.163) 
12 3 

0.000113 
 

(0.000155) 

0.992 
 

(0.989) 

Non-White percentage of total 
population 

-0.000638 
(0.00517) 

-0.123 
(0.902) 

-0.0029 
(0.00413) 

-0.701 
(0.484) 

-0.0177 
(0.0266) 

-0.666 
(0.505) 12 3 -0.00315 

(-0.00448) 
0.965 
(0.95) 

Black/African American percentage of 
total population 

6.05e-07 
 

(0.00436) 

0.000139 
 

(1) 

-0.00204 
 

(0.00352) 

-0.578 
 

(0.563) 

-0.0175 
 

(0.0242) 

-0.726 
 

(0.468) 
12 3 

-0.000842 
 

(-0.00121) 

0.969 
 

(0.956) 

Percentage of Hispanic/Latino of total 
population 

-0.00789 
 

(0.00304) 

-2.59 
 

(0.00951) 

0.00281 
 

(0.00275) 

1.02 
 

(0.306) 

-0.0181 
 

(0.015) 

-1.21 
 

(0.228) 
12 3 

-0.00913 
 

(-0.013) 

0.823 
 

(0.75) 
Percentage of Foreign-born of total 

population 
-9.36e-05 
(0.00273) 

-0.0343 
(0.973) 

0.000708 
(0.0024) 

0.295 
(0.768) 

0.00341 
(0.023) 

0.148 
(0.882) 12 3 -0.00157 

(-0.00228) 
0.893 

(0.849) 

Percentage of Children under 18 years 
old of total population 

-0.00719 
 

(0.00505) 

-1.42 
 

(0.155) 

0.00747 
 

(0.00426) 

1.75 
 

(0.0794) 

0.0595 
 

(0.0515) 

1.16 
 

(0.248) 
12 3 

0.00211 
 

(0.00298) 

0.983 
 

(0.976) 
Inverse Hyperbolic Sine 

Transformation of Ratio of adults 18+ 
years old to children under 18 years 

old (adults/children, mean = 1.01) 

-0.0133 
 

(0.0158) 

-0.847 
 

(0.397) 

0.00213 
 

(0.0114) 

0.187 
 

(0.852) 

-0.123 
 

(0.0954) 

-1.29 
 

(0.197) 
12 3 

-1.81e-05 
 

(-3.21e-
05) 

0.99 
 

(0.985) 

Percentage of single-parent families 
with own children under 18 years old 

of total families and subfamilies 

0.00218 
 

(0.00373) 

0.584 
 

(0.559) 

0.0015 
 

(0.00354) 

0.423 
 

(0.672) 

-0.099 
 

(0.0502) 

-1.97 
 

(0.0488) 
12 3 

5.67e-05 
 

(5.08e-05) 

0.952 
 

(0.932) 
Percentage of female-headed families 
with or without own children of total 

families and subfamilies 

0.00474 
 

(0.00445) 

1.07 
 

(0.287) 

0.000649 
 

(0.00398) 

0.163 
 

(0.87) 

-0.0984 
 

(0.0687) 

-1.43 
 

(0.152) 
12 3 

0.000317 
 

(0.000431) 

0.971 
 

(0.959) 
Inverse Hyperbolic Sine 

Transformation of Workers 16+ years 
old traveling to work on public 

transportation (taxi not included mean 
= 4.39) 

-0.0282 
 

(0.128) 

-0.22 
 

(0.826) 

-0.0561 
 

(0.119) 

-0.473 
 

(0.636) 

1.46 
 

(2.92) 

0.5 
 

(0.617) 
12 3 

-6.08e-05 
 

(-0.00011) 

0.962 
 

(0.946) 

Inverse Hyperbolic Sine 
Transformation of Workers 16+ years 
old with travel time to work less than 

25 minutes (mean = 5.42) 

0.0187 
 

(0.12) 

0.156 
 

(0.876) 

0.114 
 

(0.115) 

0.991 
 

(0.322) 

-3.35 
 

(0.959) 

-3.49 
 

(0.000479) 
12 3 

0.00312 
 

(0.00441) 

0.987 
 

(0.981) 

Inverse Hyperbolic Sine 
Transformation of Workers 16+ years 

old with travel time to work 25 to 44 
minutes (mean = 4.81) 

0.0789 
 

(0.111) 

0.713 
 

(0.476) 

0.103 
 

(0.108) 

0.951 
 

(0.342) 

-0.406 
 

(1.13) 

-0.36 
 

(0.719) 
12 3 

0.00281 
 

(0.00396) 

0.985 
 

(0.979) 

Inverse Hyperbolic Sine 
Transformation of Workers 16+ years 

old with travel time to work more than 
45 minutes (mean = 4.14) 

-0.00866 
 

(0.0998) 

-0.0868 
 

(0.931) 

0.0422 
 

(0.102) 

0.415 
 

(0.678) 

3.7 
 

(1.33) 

2.78 
 

(0.00539) 
12 3 

0.00382 
 

(0.00539) 

0.981 
 

(0.973) 

Percentage of Persons 25+ years old 
who have completed 0-8 years of 

school 

-0.000571 
 

(0.00285) 

-0.2 
 

(0.841) 

0.000229 
 

(0.00249) 

0.092 
 

(0.927) 

-0.0658 
 

(0.0914) 

-0.72 
 

(0.472) 
12 3 

0.00428 
 

(0.00598) 

0.879 
 

(0.829) 
Percentage of Persons 25+ years old 
who have completed high school but 

no college 

0.00725 
 

(0.00754) 

0.961 
 

(0.337) 

-0.011 
 

(0.00649) 

-1.69 
 

(0.0908) 

-0.117 
 

(0.106) 

-1.11 
 

(0.268) 
12 3 

-0.00143 
 

(-0.00204) 

0.982 
 

(0.974) 
Percentage of Persons 25+ years old 
who have an associate degree but no 

bachelor’s degree 

0.00234 
 

(0.00245) 

0.955 
 

(0.34) 

0.00123 
 

(0.00236) 

0.522 
 

(0.602) 

0.0359 
 

(0.0335) 

1.07 
 

(0.283) 
12 3 

0.00191 
 

(0.00267) 

0.941 
 

(0.917) 
Percentage of Persons 25+ years old 

who have a bachelor’s or 
graduate/professional degree 

-0.00627 
 

(0.011) 

-0.569 
 

(0.569) 

0.0141 
 

(0.00966) 

1.46 
 

(0.144) 

0.137 
 

(0.181) 

0.758 
 

(0.449) 
12 3 

-0.00215 
 

(-0.00308) 

0.946 
 

(0.924) 

Percentage of total persons below the 
poverty level in past 12 months 

-0.00112 
 

(0.0054) 

-0.207 
 

(0.836) 

0.0017 
 

(0.00432) 

0.393 
 

(0.694) 

-0.0169 
 

(0.028) 

-0.603 
 

(0.547) 
12 3 

0.0022 
 

(0.00307) 

0.93 
 

(0.901) 
Percentage of households with public 

assistance inc. (incl. SSI) last year of 
total households 

3.65e-05 
 

(0.00318) 

0.0115 
 

(0.991) 

-0.000509 
 

(0.00252) 

-0.202 
 

(0.84) 

-0.0309 
 

(0.0269) 

-1.15 
 

(0.251) 
12 3 

0.000479 
 

(0.000614) 

0.896 
 

(0.853) 

Ratio of Owner-Occupied housing 
units to Renter Occupied Housing units 

-13.8 
 

(15.2) 

-0.906 
 

(0.365) 

2.16 
 

(11.7) 

0.184 
 

(0.854) 

17.2 
 

(55.3) 

0.312 
 

(0.755) 
12 3 

-0.0279 
 

(-0.0398) 

0.473 
 

(0.254) 

Percentage of renter-occupied housing 
units of total housing units 

-0.00578 
 

(0.00734) 

-0.788 
 

(0.431) 

0.0113 
 

(0.00675) 

1.68 
 

(0.0938) 

-0.0955 
 

(0.0602) 

-1.58 
 

(0.113) 
12 3 

0.00272 
 

(0.00384) 

0.976 
 

(0.966) 

Percentage of vacant housing units 0.00577 
(0.00329) 

1.75 
(0.0798) 

-0.000714 
(0.00283) 

-0.252 
(0.801) 

-0.00178 
(0.0138) 

-0.129 
(0.897) 12 3 0.00128 

(0.00175) 
0.906 

(0.867) 
Percentage of change in number of 

housing units since last census of total 
housing units 

-1.71 
 

(1.76) 

-0.973 
 

(0.331) 

3.48 
 

(3.09) 

1.12 
 

(0.261) 

0.333 
 

(5.27) 

0.0631 
 

(0.95) 
12 3 

0.000389 
 

(0.000182) 

0.4 
 

(0.151) 
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Table 51. All new bridge treatment effect event study model CEM results (cont’d) 

Dependent Variable 

Interaction 
Estimator 

for New 
bridge 

 
(SE) 

t value 
 

(p 
value) 

New 
bridge 

Treatment 
Variable 

 
(SE) 

t value 
 

(p value) 

New 
bridge 
Group 

Dummy 
Variable 

 
(SE) 

t value 
 

(p value) 
# Other 
Controls Set 

R2 (Adj. 
R2) diff 

w/o New 
Variables 

R2 
 

(Adj. 
R2) 

Inverse Hyperbolic Sine 
Transformation of Average 

household income in past 12 months 
(2010 Constant $ US, mean = 11.4) 

-0.309 
 

(0.2) 

-1.54 
 

(0.123) 

0.195 
 

(0.233) 

0.838 
 

(0.402) 

-0.00229 
 

(0.278) 

-0.00824 
 

(0.993) 
12 4 

0.000266 
 

(0.000371) 

0.99 
 

(0.986) 

Inverse Hyperbolic Sine 
Transformation of Aggregate 

household income in past 12 months 
(2010 Constant $ US, mean = 18.5) 

-0.31 
 

(0.221) 

-1.4 
 

(0.161) 

0.116 
 

(0.268) 

0.433 
 

(0.665) 

-0.271 
 

(0.332) 

-0.816 
 

(0.414) 
12 4 

0.000182 
 

(0.00025) 

0.992 
 

(0.989) 

Non-White percentage of total 
population 

0.000506 
(0.00582) 

0.0869 
(0.931) 

-0.00204 
(0.00461) 

-0.444 
(0.657) 

-0.0184 
(0.0183) 

-1.01 
(0.315) 12 4 -0.0111 

(-0.0157) 
0.957 

(0.939) 

Black/African American percentage 
of total population 

0.000369 
 

(0.005) 

0.0738 
 

(0.941) 

-0.00144 
 

(0.00395) 

-0.365 
 

(0.715) 

-0.0227 
 

(0.0099) 

-2.29 
 

(0.0219) 
12 4 

-0.00954 
 

(-0.0135) 

0.96 
 

(0.944) 
Percentage of Hispanic/Latino of 

total population 
-0.00349 
(0.00269) 

-1.29 
(0.195) 

0.00087 
(0.00292) 

0.298 
(0.765) 

0.00514 
(0.0116) 

0.444 
(0.657) 12 4 0.034 

(0.0479) 
0.867 

(0.811) 

Percentage of Foreign-born of total 
population 

0.000179 
 

(0.00267) 

0.0667 
 

(0.947) 

0.00108 
 

(0.00239) 

0.452 
 

(0.651) 

0.00623 
 

(0.00842) 

0.74 
 

(0.459) 
12 4 

0.000924 
 

(0.00121) 

0.896 
 

(0.853) 

Percentage of Children under 18 
years old of total population 

-0.00459 
 

(0.00462) 

-0.993 
 

(0.321) 

0.00334 
 

(0.00387) 

0.863 
 

(0.388) 

-0.0334 
 

(0.0093) 

-3.59 
 

(0.000329) 
12 4 

0.00278 
 

(0.00392) 

0.983 
 

(0.976) 
Inverse Hyperbolic Sine 

Transformation of Ratio of adults 18+ 
years old to children under 18 years 

old (adults/children, mean = 1.01) 

-0.0118 
 

(0.0157) 

-0.75 
 

(0.454) 

-0.00625 
 

(0.0114) 

-0.547 
 

(0.584) 

0.04 
 

(0.0299) 

1.34 
 

(0.181) 
12 4 

0.000198 
 

(0.00027) 

0.99 
 

(0.985) 

Percentage of single-parent families 
with own children under 18 years old 

of total families and subfamilies 

0.00604 
 

(0.00373) 

1.62 
 

(0.106) 

-0.00334 
 

(0.00347) 

-0.965 
 

(0.335) 

-0.0201 
 

(0.019) 

-1.06 
 

(0.291) 
12 4 

0.000564 
 

(0.000754) 

0.953 
 

(0.933) 
Percentage of female-headed families 
with or without own children of total 

families and subfamilies 

0.00849 
 

(0.00479) 

1.77 
 

(0.0763) 

-0.00373 
 

(0.00429) 

-0.87 
 

(0.385) 

-0.0044 
 

(0.0165) 

-0.267 
 

(0.789) 
12 4 

-0.00138 
 

(-0.00198) 

0.97 
 

(0.957) 
Inverse Hyperbolic Sine 

Transformation of Workers 16+ 
years old traveling to work on public 

transportation (taxi not included 
mean = 4.39) 

-0.0236 
 

(0.131) 

-0.181 
 

(0.857) 

-0.0536 
 

(0.121) 

-0.445 
 

(0.657) 

-2.5 
 

(0.665) 

-3.76 
 

(0.000175) 
12 4 

-2.36e-05 
 

(-6.88e-05) 

0.962 
 

(0.946) 

Inverse Hyperbolic Sine 
Transformation of Workers 16+ 

years old with travel time to work 
less than 25 minutes (mean = 5.42) 

0.0249 
 

(0.12) 

0.208 
 

(0.835) 

0.0297 
 

(0.121) 

0.245 
 

(0.807) 

-0.034 
 

(0.327) 

-0.104 
 

(0.917) 
12 4 

0.00291 
 

(0.00411) 

0.987 
 

(0.981) 

Inverse Hyperbolic Sine 
Transformation of Workers 16+ 

years old with travel time to work 25 
to 44 minutes (mean = 4.81) 

0.0901 
 

(0.117) 

0.77 
 

(0.441) 

0.0225 
 

(0.118) 

0.19 
 

(0.849) 

-0.759 
 

(0.289) 

-2.62 
 

(0.00871) 
12 4 

0.00175 
 

(0.00247) 

0.984 
 

(0.977) 

Inverse Hyperbolic Sine 
Transformation of Workers 16+ 

years old with travel time to work 
more than 45 minutes (mean = 4.14) 

0.0115 
 

(0.103) 

0.112 
 

(0.911) 

-0.0433 
 

(0.108) 

-0.399 
 

(0.69) 

-0.413 
 

(0.25) 

-1.65 
 

(0.0986) 
12 4 

0.00341 
 

(0.00481) 

0.981 
 

(0.973) 

Percentage of Persons 25+ years old 
who have completed 0-8 years of 

school 

0.000942 
 

(0.00285) 

0.33 
 

(0.741) 

-0.000577 
 

(0.00265) 

-0.218 
 

(0.828) 

0.0123 
 

(0.0314) 

0.392 
 

(0.695) 
12 4 

0.00486 
 

(0.00677) 

0.88 
 

(0.83) 
Percentage of Persons 25+ years old 
who have completed high school but 

no college 

0.0157 
 

(0.00855) 

1.83 
 

(0.0669) 

-0.0212 
 

(0.00751) 

-2.82 
 

(0.00484) 

0.0113 
 

(0.0443) 

0.256 
 

(0.798) 
12 4 

-0.0031 
 

(-0.00441) 

0.98 
 

(0.972) 
Percentage of Persons 25+ years old 
who have an associate degree but no 

bachelor’s degree 

0.00295 
 

(0.00257) 

1.15 
 

(0.251) 

0.000385 
 

(0.0025) 

0.154 
 

(0.877) 

-0.0214 
 

(0.013) 

-1.65 
 

(0.0991) 
12 4 

-0.000315 
 

(-0.000503) 

0.939 
 

(0.913) 
Percentage of Persons 25+ years old 

who have a bachelor’s or 
graduate/professional degree 

-0.0206 
 

(0.0128) 

-1.61 
 

(0.108) 

0.0303 
 

(0.0114) 

2.66 
 

(0.00783) 

-0.0203 
 

(0.0496) 

-0.409 
 

(0.682) 
12 4 

-0.00672 
 

(-0.00956) 

0.942 
 

(0.918) 

Percentage of total persons below the 
poverty level in past 12 months 

-0.000451 
 

(0.00573) 

-0.0788 
 

(0.937) 

0.00105 
 

(0.00446) 

0.235 
 

(0.814) 

0.00881 
 

(0.0203) 

0.435 
 

(0.664) 
12 4 

0.00153 
 

(0.0021) 

0.929 
 

(0.9) 
Percentage of households with public 

assistance inc. (incl. SSI) last year of 
total households 

-0.000379 
 

(0.00322) 

-0.118 
 

(0.906) 

-0.000639 
 

(0.00253) 

-0.253 
 

(0.801) 

0.0239 
 

(0.00794) 

3.01 
 

(0.00265) 
12 4 

0.00197 
 

(0.0027) 

0.897 
 

(0.855) 
Ratio of Owner-Occupied housing 
units to Renter Occupied Housing 

units 

-13.3 
 

(15.2) 

-0.875 
 

(0.382) 

-0.242 
 

(11.4) 

-0.0212 
 

(0.983) 

-10.1 
 

(22.2) 

-0.453 
 

(0.651) 
12 4 

-0.00281 
 

(-0.00443) 

0.498 
 

(0.289) 

Percentage of renter-occupied 
housing units of total housing units 

-0.00463 
 

(0.00837) 

-0.553 
 

(0.58) 

0.00663 
 

(0.00784) 

0.847 
 

(0.397) 

0.149 
 

(0.0104) 

14.3 
 

(3.92e-45) 
12 4 

0.000323 
 

(0.000434) 

0.974 
 

(0.963) 

Percentage of vacant housing units 0.00796 
(0.00329) 

2.42 
(0.0157) 

-0.00431 
(0.00301) 

-1.43 
(0.152) 

-0.0125 
(0.00571) 

-2.2 
(0.0282) 12 4 0.00135 

(0.00182) 
0.906 

(0.867) 
Percentage of change in number of 

housing units since last census of 
total housing units 

-0.832 
 

(1.13) 

-0.738 
 

(0.46) 

2.6 
 

(2.45) 

1.06 
 

(0.289) 

-0.274 
 

(1.18) 

-0.231 
 

(0.817) 
12 4 

-0.00345 
 

(-0.00544) 

0.396 
 

(0.145) 
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Fig. 34. Graphic depicting demographic variables in treatment effect models 
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Fig. 35. Graphic depicting education variables in treatment effect models 
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Fig. 36. Graphic depicting family variables in treatment effect models 
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Fig. 37. Graphic depicting financial variables in treatment effect models 
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Fig. 38. Graphic depicting housing variables in treatment effect models 
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Fig. 39. Graphic depicting transportation variables in treatment effect models 

 



Machine Learning for Public Policy: Applications in Infrastructure and Air Pollution 

222 

Section G Robustness checks 

Selection Effect Models 

Even though the authors recognized, based on the data, that a logistic model would likely be 

the most appropriate model, the authors began by using very simple methods to test if there is a 

measurable effect that warrants more sophisticated methods. For the selection effect hypotheses, 

the authors started with a simple linear probability model and then tested for out of range 

predictions. The same model was used as an OLS model by using the count of new restrictive 

bridges instead of a dichotomous dummy variable as the dependent variable. 

Equation 6. Linear Probability and OLS Selection Effect Models Specification 

𝑦𝑦𝑖𝑖,𝑡𝑡 = 𝛽𝛽0 + 𝛾𝛾𝑘𝑘𝑋𝑋𝑘𝑘,𝑖𝑖,𝑡𝑡−1 + 𝛿𝛿𝑡𝑡 + 𝑓𝑓𝑖𝑖 + 𝑒𝑒𝑖𝑖,𝑡𝑡 

where y is a either a dichotomous variable designating a new restrictive bridge was built in the 

preceding 10 years or the count of such bridges, in tract i, in census year t, 𝛾𝛾𝑘𝑘 is a vector of control 

variable coefficients, X is a vector of variables of social interest, 𝛿𝛿 is a fixed effect for each census 

year, and f is a time-invariant tract fixed effect. 

The linear probability model was not a good model as the predictions were out of range for 

over 65% of the predictions. The results varied in magnitude but not direction from the logistic 

regression model (see Section F Tables S24, S25, and S26 for results.) 

Due to the nature of census data primarily consisting of counts of various aspects of life, a Poisson 

regression model was also developed. 

Equation 7. Poisson Regression Selection Effect Model Specification 

log(𝜇𝜇) = 𝛽𝛽0 + 𝛾𝛾𝑘𝑘𝑋𝑋𝑘𝑘,𝑖𝑖,𝑡𝑡−1 + 𝛿𝛿𝑡𝑡  +  𝑒𝑒𝑖𝑖,𝑡𝑡 

where log(𝜇𝜇) is a dichotomous variable designating a new restrictive bridge was built in the 

preceding 10 years, in tract i, in census year t, X is a vector of variables of social interest, and 𝛿𝛿 is a 

fixed effect for each census year. 
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 The Poisson model was found to have slightly worse goodness of fit (AIC and BIC) measures 

than the logistic regression model. The results varied slightly, but the results were consistent with 

the logit link logistic model (see Section F, Table 24 for results.) 

Treatment Effect Models 

For the treatment effect model the authors use a fixed effects regression model. 

Equation 8. Fixed effects regression treatment effect model specification 

𝑧𝑧𝑖𝑖,𝑡𝑡 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥𝑖𝑖,𝑡𝑡 + 𝛽𝛽2𝑙𝑙𝑖𝑖,𝑡𝑡 + 𝛾𝛾𝑘𝑘𝐶𝐶𝑘𝑘,𝑖𝑖,𝑡𝑡−1 + 𝛿𝛿𝑡𝑡 + 𝑓𝑓𝑖𝑖 + 𝑒𝑒𝑖𝑖,𝑡𝑡 

where z is a social equity variable of interest, in tract i, in year t, x is a dummy variable designating 

the tract received a new restrictive bridge treatment, g is a dummy variable designating the tract as 

receiving a new restrictive bridge at any time, 𝛾𝛾𝑘𝑘 is a vector of control variable coefficients, C is a 

vector of lagged control variables, 𝛿𝛿 is a fixed effect for each census year, and f is a time-invariant 

tract fixed effect. 

This model produced some associative results, but the results were not very consistent or 

robust. 

A difference in difference model was developed to discover the treatment effects: 

Equation 9. Difference in difference treatment effect model specification 

𝑧𝑧𝑖𝑖,𝑡𝑡 = 𝛽𝛽0 + 𝛽𝛽1𝑑𝑑𝑖𝑖,𝑡𝑡 + 𝛾𝛾𝑘𝑘𝐶𝐶𝑘𝑘,𝑖𝑖,𝑡𝑡−1 + 𝛿𝛿𝑡𝑡 + 𝑓𝑓𝑖𝑖 + 𝑒𝑒𝑖𝑖,𝑡𝑡 

where z is a social equity variable of interest, in tract i, in year t, d is a dichotomous variable 

designating the interaction of the group and treatment variables, 𝛾𝛾𝑘𝑘 is a vector of control variable 

coefficients, C is a vector of lagged control variables, 𝛿𝛿 is a fixed effect for each census year, and f is a 

time-invariant tract fixed effect. 

One of the key assumptions of a difference in difference model is the parallel trends 

assumption. In order to provide evidence of this assumption event study methods were used. 

The authors also consider more granular measures for underclearance height (“mini”: 3-

3.65 m or 9.8-12 ft, “low”: 3.65-4.27 m or 12-14 ft, “medium”: 4.27-4.87 m or 14-16 ft, “high”: 4.88-
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5.48 m or 16-18 ft, and “super”: 5.49 m or 18 ft and over). Given case study data resolution may be 

too coarse for such granular demarcations, the authors report the results from these more refined 

height distinctions here. 
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Fig. 40. Selection effect model average marginal effect results for demographics variables 
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Fig. 41. Selection effect model average marginal effect results for education variables 
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Fig. 42. Selection effect model average marginal effect results for family variables 
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Fig. 43. Selection effect model average marginal effect results for finance variables 
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Fig. 44. Selection effect model average marginal effect results for housing variables 
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Fig. 45. Selection effect model average marginal effect results for physical variables 
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Fig. 46. Selection effect model average marginal effect results for transportation variables 
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Supplementary Analyses – Possible Moderating Factors 

Undoubtedly, bridges do not operate in isolation. In fact, the prior literature contends that 

the built environment acts as a conduit for both intended and unintended social connections 

(Audretsch et al. 2015; Joerges 1999; Pinch and Bijker 2012; Schindler 2015; Shilton 2013; Star 

1999; Winner 1980; Woolgar and Cooper 1999). If so, then our findings may work in concert with 

other infrastructure systems and local policies. To gauge this possibility, we ran three 

supplementary analyses. First, we assessed whether road networks may work in concert with 

bridges. To assess this, we re-ran our analyses on restrictive bridges by splitting tracts based on 

whether they were above or below the median observed lane road miles. The overall trend of note 

from these analyses (see Tables S34-S36) is that while the effect sizes are not generally different 

between those tracts with more or less mileage, the results for tracts with less mileage were more 

significant, if statistical significance was achieved. In particular, these results suggested the negative 

associations for new and non-restrictive bridges found for non-white, African American, and 

Hispanic populations in the main analysis were more statistically significant for tracts with less 

mileage. This perhaps suggests that restrictions were more likely when fewer alternative routes 

exist in a locale. 

Second, we assessed whether public transportation may work in concert with bridges. To 

assess this, we re-ran our analyses on restrictive bridges by splitting tracts based on whether they 

were above or below the median observed levels of population using public transportation. The 

overall trend of note from these analyses (see Tables S37-S39) is that while the effect sizes are not 

generally different between those tracts with more or less public transportation ridership, the 

results for tracts with more public transportation usage were more significant, if statistical 

significance was achieved. In particular, these results generally suggested the negative associations 

for new and non-restrictive bridges found for non-white, African American, and Hispanic 

populations in the main analysis were more statistically significant for tracts with more public 



Machine Learning for Public Policy: Applications in Infrastructure and Air Pollution 

233 

transportation usage. As with prior research (Winner 1980) this perhaps suggests that restrictive 

bridges especially constrict where those who rely on public transportation have access. 

Third, we assessed whether local community salience to infrastructure may work in concert 

with bridges. In other words, this more generally assesses whether social and physical 

infrastructure act in concert. To assess this, we re-ran our analyses on restrictive bridges by 

splitting the sample tracts based on whether they were above or below the median observed levels 

of Nationally Registered Historic Places (NRHP). Prior studies note that such registration often 

arise due to local collective action to petition for a place to be given such historical significance 

(Desai 2018). Thus, this suggests that a community with more nationally registered places have 

greater salience, and perhaps more local policies, on its infrastructure. The overall trend of note 

from these analyses (see Tables S40-S42) is that while the effect sizes are not generally different 

between those tracts with more or less NRHP, the results for tracts with fewer NHRP were more 

significant, if statistical significance was achieved. In particular, these results generally suggested 

the negative associations for new and non-restrictive bridges found for Hispanic populations in the 

main analysis were more statistically significant for tracts with fewer NHRP. This suggests when 

infrastructure is less salient, and thus more taken-for-granted, to a local community, these 

deleterious effects are perhaps more pronounced (Carless 2018; Winner 1980). 
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Table 52. Lane Road Miles Split Dataset Selection Effect Results for Restrictive Bridges 

DV: Dummy variable denoting that a new restrictive bridge was built in this tract in the last 10 years 

  Full 1 Road=H
i 1 

Road=Lo
w 1 Full 2 Road=H

i 2 
Road=Lo

w 2 Full 3 Road=H
i 3 

Road=Lo
w 3 Full 4 Road=H

i 4 
Road=Lo

w 4 

% Water Area 

1.078 -4.983 1.049 0.86 -11.743 1.231 1.142 -7.087 1.394 1.179 -8.59 1.312 

(2.057) (1.694) (1.728) (1.720) (16.571) (15.821) 
(17.402

) (13.023) (2.511) (2.007) (2.044) (1.876) 
Rural tract 
indicator > 
10M sq. 
meters 

0.891 1.364 -17.101    0.806 1.271 -17.001***    

(0.558) (0.643) (0.557)    (0.860) (1.244) (0.734)    
Rural tract 
indicator > 4M 
sq. meters 

   -0.424 -1.382 -0.579    -0.529 
-

1.156*** -0.678 
   (0.582) (0.946) (1.343)    (1.363) (0.650) (1.230) 

Lagged IHS-
transformed 
Total bridges 

-0.318 -0.495 -0.145 -0.066 0.189 -0.266 -0.317 -0.435 -0.182 -0.141 0.066 -0.322 

(0.179) (0.193) (0.183) (0.187) (0.320) (0.454) (0.299) (0.401) (0.261) (0.306) (0.267) (0.283) 
Lagged IHS-
transformed 
Real Average 
Income 

0.054 0.054 0.015    0.039 0.108 0.02    

(0.075) (0.070) (0.106)    (0.211) (0.075) (0.118)    
Lagged IHS-
transformed 
Real 
Aggregate 
Household 
Income 

   -0.02 -0.145 -0.02    0.051 0.058 0.001 

   (0.047) (0.113) (0.142)    (0.087) (0.130) (0.070) 
Lagged 
Population 
Percentage of 
Below the 
Poverty Line 

4.097 7.298 4.453          

(2.353) (0.317) (0.203)          
Lagged 
Population 
Percentage of 
Receiving 
Welfare 

      1.68 9.197 2.967    

      (5.856) (4.654) (6.912)    
Lagged Non-
white 
Population 
Percentage of 

-0.288 -7.123 0.118          

(1.130) (6.733) (1.841)          
Lagged 
African 
American 
Population 
Percentage of 

      0.66 -5.955 1.139    

      (5.773) (25.701) (1.185)    
Lagged 
Hispanic 
Population 
Percentage of 

         -3.597 -11.662 -4.471 

         
(13.194

) (2.043) (8.287) 
Lagged 
Population 
Percentage of 
Foreign-born 

   -4 9.54 -7.962    -2.247 10.602 -6.769 

   (6.079) (5.900) (11.882)    (4.312) (0.892) (11.645) 
Lagged 
Population 
Percentage of 
under 18 

   2.066 8.158 0.28       

   (5.903) (0.185) (6.304)       
Lagged IHS-
transformed 
Adult to Child 
Ratio 

      0.123 -1.2 -0.012    

      (1.862) (9.488) (0.196)    
Lagged 
Percentage of 
single parents 
with Children 

   -1.611 -1.187 1.314       

   (2.644) (3.876) (5.761)       
Lagged 
Percentage of 
female Head 
of Household 

         -1.511 -2.83 0.307 

         (6.544) (5.125) (4.114) 
Lagged IHS-
transformed 
Population 
Travel on 
Public 
Transportatio
n 

-0.12 -0.122 -0.158       -0.128 -0.121 -0.078 

(0.121) (3.270) (0.865)       (0.353) (0.323) (0.238) 
Lagged IHS-
transformed 
Population 
with Commute 
< 25 minutes 

   0.183 1.050* -0.18       

   (0.123) (3.318) (0.935)       
Lagged IHS-
transformed 
Population 
with 
Commute > 25 
< 45 minutes 

      -0.032 0.038 -0.25    

      (0.274) (0.141) (3.734)    
         0.077 0.067 -0.148 
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Lagged IHS-
transformed 
Population 
with 
Commute > 45 
minutes          

(23.518
) (21.546) (0.359) 

Lagged 
percentage of 
over 25-yr-
olds with at 
Least 8 Years 
Education 

         0.552 -0.945 4.065 

         (4.878) (1.781) (6.872) 
Lagged 
percentage of 
over 25-yr-
olds with at 
Least High 
School 
Education 

      -0.058 -4.415 8.076    

      (6.165) (0.228) (0.006)    
Lagged 
percentage of 
over 25-yr-
olds with 
Associate 
Degree 

   -18.271 -42.045 5.684       

   (0.209) (0.064) (23.517)       
Lagged 
percentage of 
over 25-yr-
olds with 
bachelor’s 
degree 

2.89 6.389 -12.629          

(2.482) (4.200) (4.143)          
Lagged Owner 
to Renter 
Ratio 

-0.012 -0.055 -0.006          
(0.023) (14.222) (5.921)          

Lagged 
Percentage of 
Housing Units 
Renter-
occupied 

      -1.614 -0.145 -2.671    

      (1.968) (9.812) (8.396)    
Lagged 
Percentage of 
Housing Units 
Vacant 

-3.432 0.37 -5.175          

(5.563) (3.969) (1.411)          
Lagged 
Percent 
Change in 
Housing Unit 
Supply 

   -0.57 0.164 -0.472       

   (8.205) (6.879) (1.049)       
AIC 

354.57
9 227.544 138.087 

355.93
2 228.444 138.435 360.186 231.97 138.919 359.615 233.854 142.679 

BIC 450.44 307.487 228.533 
451.79

3 308.386 228.881 456.047 311.913 229.365 455.476 313.797 233.125 
Log 
Likelihood -163.29 -99.772 -55.044 -163.97 

-
100.222 -55.217 -166.09 

-
101.985 -55.46 -165.81 

-
102.927 -57.34 

Deviance 
339.25

9 203.063 119.27 
345.27

8 204.389 123.455 345.023 207.051 120.811 346.241 210.057 125.548 
Num. obs. 6955 2231 4724 6955 2231 4724 6955 2231 4724 6955 2231 4724 

***p < 0.001, **p < 0.01, *p < 0.05 
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Table 53. Lane Road Miles Split Dataset Selection Effect Results for Non-restrictive Bridges 

Road Lane Miles DV: Dummy variable denoting that a new non-restrictive bridge was built in this tract in the last 10 years 

  Full 1 Road=H
i 1 

Road=Lo
w 1 Full 2 Road=H

i 2 
Road=Lo

w 2 Full 3 Road=H
i 3 

Road=Lo
w 3 Full 4 Road=H

i 4 
Road=Lo

w 4 

% Water Area 1.925* 0.043*** 2.208* 2.555*** 0.553 2.687 1.817 -0.34 2.217** 2.496*** -0.463** 2.762*** 
(0.768) (0.743) (0.764) (0.748) (2.112) (2.095) (2.157) (2.240) (0.825) (0.809) (0.809) (0.806) 

Rural tract 
indicator > 
10M sq. 
meters 

-0.004 0.489** -1.234    -0.008** 0.466*** -1.139***    

(0.126) (0.141) (0.123)    (0.171) (0.192) (0.270)    
Rural tract 
indicator > 
4M sq. meters 

   0.449*** 0.804** 0.035***    0.472 0.922*** -0.031 

   (0.136) (0.168) (0.192)    (0.221) (0.265) (0.205) 
Lagged IHS-
transformed 
Total bridges 

-0.067 -0.292** 0.059 -0.154** 
-

0.313*** -0.034*** 
-

0.056*** 
-

0.275*** 0.075 -0.154 -0.31 -0.047 
(0.045) (0.050) (0.046) (0.052) (0.068) (0.066) (0.070) (0.068) (0.061) (0.073) (0.060) (0.074) 

Lagged IHS-
transformed 
Real Average 
Income 

-
0.063*** -0.093 -0.006**    -0.082 

-
0.079*** -0.059    

(0.018) (0.015) (0.029)    (0.045) (0.014) (0.038)    
Lagged IHS-
transformed 
Real 
Aggregate 
Household 
Income 

   0.021** 
-

0.006*** 0.035    -0.032 -0.052 -0.013 

   (0.011) (0.023) (0.022)    (0.025) (0.047) (0.024) 
Lagged 
Population 
Percentage of 
Below the 
Poverty Line 

2.171*** 4.016 1.397          

(0.595) (0.049) (0.038)          
Lagged 
Population 
Percentage of 
Receiving 
Welfare 

      1.934** 5.154* 1.122    

      (1.834) (1.114) (0.497)    
Lagged Non-
white 
Population 
Percentage of 

-
1.551*** -1.184 -1.188***          

(0.340) (1.227) (0.369)          
Lagged 
African 
American 
Population 
Percentage of 

      -1.286 -1.43 -0.912**    

      (1.238) (5.497) (0.383)    
Lagged 
Hispanic 
Population 
Percentage of 

         -5.224 -6.347* -4.368** 

         (1.522) (0.402) (1.579) 
Lagged 
Population 
Percentage of 
Foreign-born 

   0.463** 2.087 0.211    1.590** 3.933 1.681 

   (1.752) (1.016) (2.751)    (0.983) (0.447) (1.377) 
Lagged 
Population 
Percentage of 
under 18 

   -2.942 -2.047* -2.98       

   (1.168) (0.041) (1.177)       
Lagged IHS-
transformed 
Adult to Child 
Ratio 

      0.576 0.315 0.772    

      (0.464) (3.241) (0.040)    
Lagged 
Percentage of 
single parents 
with Children 

   0.45 1.832 0.337       

   (0.479) (0.650) (1.493)       
Lagged 
Percentage of 
female Head 
of Household 

         0.136 2.627 -0.235 

         (0.948) (1.104) (0.621) 
Lagged IHS-
transformed 
Population 
Travel on 
Public 
Transportatio
n 

0.054 0.098*** -0.012       0.091 0.099 0.067 

(0.028) (0.747) (0.311)       (0.124) (0.072) (0.046) 
Lagged IHS-
transformed 
Population 
with 
Commute < 
25 minutes 

   0.057** 0.033*** 0.075       

   (0.031) (1.123) (0.049)       
Lagged IHS-
transformed 
Population 
with 
Commute > 
25 < 45 
minutes 

      -0.054 -0.089* -0.035    

      (0.048) (0.043) (0.820)    
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Lagged IHS-
transformed 
Population 
with 
Commute > 
45 minutes 

         -0.154 -0.182 -0.145* 

         (4.306) (0.839) (0.060) 
Lagged 
percentage of 
over 25-yr-
olds with at 
Least 8 Years 
Education 

         2.511 3.681 0.759 

         (1.055) (0.414) (2.376) 
Lagged 
percentage of 
over 25-yr-
olds with at 
Least High 
School 
Education 

      -0.216 
-

1.029*** -0.268    

      (0.975) (0.052) (0.002)    
Lagged 
percentage of 
over 25-yr-
olds with 
Associate 
Degree 

   
-

5.994*** -7.323 -5.35       

   (0.038) (0.001) (4.591)       
Lagged 
percentage of 
over 25-yr-
olds with 
bachelor’s 
degree 

0.271 0.301 0.540*          

(0.389) (0.754) (0.845)          
Lagged 
Owner to 
Renter Ratio 

-0.001 0 -0.001          
(0.001) (3.104) (0.604)          

Lagged 
Percentage of 
Housing Units 
Renter-
occupied 

      0.501 0.86 0.255    

      (0.600) (2.134) (1.548)    
Lagged 
Percentage of 
Housing Units 
Vacant 

0.222 -0.904 1.862          

(0.848) (0.544) (0.311)          
Lagged 
Percent 
Change in 
Housing Unit 
Supply 

   -0.073 -0.467 -0.058       

   (1.507) (1.200) (0.319)       
AIC 4713.53

1 
2726.07

9 1963.851 4708.67 
2729.96

3 1987.499 
4711.26

2 
2724.22

3 1964.216 
4700.14

8 2710.54 1988.621 

BIC 4814.96
8 

2814.74
5 2058.099 

4810.10
7 

2818.62
8 2081.747 

4812.69
9 

2812.88
9 2058.464 

4801.58
6 

2799.20
6 2082.868 

Log 
Likelihood -

2342.77 

-
1349.03

9 -967.925 
-

2340.34 

-
1350.98

1 -979.749 
-

2341.63 

-
1348.11

2 -968.108 
-

2336.07 
-

1341.27 -980.31 

Deviance 4924.77
3 

2748.85
2 2118.044 

4917.77
5 

2749.13
3 2145.03 

4925.18
2 

2749.40
5 2119.353 

4909.86
4 2730.11 2146.672 

Num. obs. 10358 4160 6198 10358 4160 6198 10358 4160 6198 10358 4160 6198 
***p < 0.001, **p < 0.01, *p < 0.05 
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Table 54. Lane Road Miles Split Dataset Selection Effect Results for All New Bridges 

DV: Dummy variable denoting that a new bridge was built in this tract in the last 10 years 

  Full 1 Road=H
i 1 

Road=Lo
w 1 Full 2 Road=H

i 2 
Road=Lo

w 2 Full 3 Road=H
i 3 

Road=Lo
w 3 Full 4 Road=H

i 4 
Road=Lo

w 4 

% Water Area -1.044 2.164 -2.205 -0.413 2.794 -1.48 -1.005 1.934 -2.168 -0.479 2.674 -1.62 
(1.09) (1.08) (1.09) (1.09) (2.37) (2.37) (2.43) (2.35) (1.43) (1.42) (1.42) (1.43) 

Rural tract 
indicator > 
10M sq. 
meters 

0.401 1.009* -0.398    0.421* 1.044 -0.315    

(0.35) (0.13) (0.34)    (0.45) (0.19) (0.60)    
Rural tract 
indicator > 
4M sq. meters 

   0.327* 0.279* 0.401    0.315* 0.258 0.395* 

   (0.13) (0.44) (0.19)    (0.19) (0.60) (0.19) 
Lagged IHS-
transformed 
Total bridges 

-
0.322*** 

-
0.529*** -0.218*** 

-
0.364*** 

-
0.538*** -0.273*** 

-
0.304*** 

-
0.529*** -0.193** 

-
0.390*** -0.534** -0.319*** 

(0.06) (0.06) (0.06) (0.06) (0.10) (0.10) (0.10) (0.10) (0.08) (0.08) (0.08) (0.08) 
Lagged IHS-
transformed 
Real Average 
Income 

0.028 -0.017 0.101*    0.073 -0.012 0.169*    

(0.02) (0.02) (0.04)    (0.07) (0.02) (0.04)    
Lagged IHS-
transformed 
Real 
Aggregate 
Household 
Income 

   -0.007 -0.003 0.02    0.03 -0.011** 0.080** 

   (0.02) (0.03) (0.03)    (0.03) (0.05) (0.03) 
Lagged 
Population 
Percentage of 
Below the 
Poverty Line 

1.443* 0.706 1.894          

(0.68) (0.05) (0.05)          
Lagged 
Population 
Percentage of 
Receiving 
Welfare 

      1.089 3.236 0.224    

      (2.49) (1.52) (0.56)    
Lagged Non-
white 
Population 
Percentage of 

-
2.000*** -0.819** -1.859***          

(0.39) (1.80) (0.41)          
Lagged 
African 
American 
Population 
Percentage of 

      -1.977 -1.244 -1.830***    

      (1.63) (5.28) (0.42)    
Lagged 
Hispanic 
Population 
Percentage of 

         -9.095 
-

4.594*** -10.619** 

         (2.02) (0.44) (3.57) 
Lagged 
Population 
Percentage of 
Foreign-born 

   -4.647** -3.763 -3.539    -3.074* -2.593* -2.406 

   (2.92) (1.44) (4.26)    (1.13) (0.55) (1.87) 
Lagged 
Population 
Percentage of 
under 18 

   1.584 -0.3 2.418       

   (1.68) (0.05) (1.80)       
Lagged IHS-
transformed 
Adult to Child 
Ratio 

      -0.73 -0.015 -1.189**    

      (0.79) (4.51) (0.03)    
Lagged 
Percentage of 
single parents 
with Children 

   
-

3.134*** 1.537 -3.941       
   (0.61) (1.41) (1.85)       

Lagged 
Percentage of 
female Head 
of Household 

         
-

2.398*** -0.658 -2.496*** 

         (0.92) (1.15) (0.72) 
Lagged IHS-
transformed 
Population 
Travel on 
Public 
Transportatio
n 

-0.060* 0.022 -0.096       -0.021 0.046* -0.058 

(0.03) (0.90) (0.40)       (0.09) (0.07) (0.05) 
Lagged IHS-
transformed 
Population 
with 
Commute < 
25 minutes 

   0.008 0.029 -0.042       

   (0.04) (1.60) (0.07)       
Lagged IHS-
transformed 
Population 
with 
Commute > 
25 < 45 
minutes 

      -0.079 -0.007 -0.161*    

      (0.07) (0.06) (0.76)    
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Lagged IHS-
transformed 
Population 
with 
Commute > 
45 minutes 

         0.012 0.02 -0.026 

         (4.97) (1.01) (0.07) 
Lagged 
percentage of 
over 25-yr-
olds with at 
Least 8 Years 
Education 

         4.709 9.316 2.573 

         (0.13) (0.41) (2.65) 
Lagged 
percentage of 
over 25-yr-
olds with at 
Least High 
School 
Education 

      1.147 1.622 0.78    

      (1.99) (0.08) (0.00)    
Lagged 
percentage of 
over 25-yr-
olds with 
Associate 
Degree 

   2.428 -1.82 4.545       

   (0.05) 0.00  (8.18)       
Lagged 
percentage of 
over 25-yr-
olds with 
bachelor’s 
degree 

-0.232 
-

1.340*** -0.104          

(0.51) (0.77) (0.95)          
Lagged 
Owner to 
Renter Ratio 

0 0 -0.001          
0.00  (4.09) (0.89)          

Lagged 
Percentage of 
Housing Units 
Renter-
occupied 

      -0.219 0.126* -0.125    

      (0.75) (4.31) (2.20)    
Lagged 
Percentage of 
Housing Units 
Vacant 

-1.103 0.643 -3.472          

(1.44) (0.11) (0.34)          
Lagged 
Percent 
Change in 
Housing Unit 
Supply 

   0.009* -0.096 -0.001       

   (2.12) (2.02) (0.40)       
AIC 3587.59

8 
1275.48

5 2312.885 
3599.24

5 
1282.94

4 2317.874 
3588.67

3 
1272.58

1 2317.658 
3580.55

6 
1275.80

3 2303.781 

BIC 3682.77
9 

1350.26
6 2404.353 

3694.42
6 

1357.72
5 2409.343 

3683.85
3 

1347.36
2 2409.127 

3675.73
6 

1350.58
4 2395.249 

Log 
Likelihood -1779.8 

-
623.742 -1142.442 

-
1785.62 

-
627.472 -1144.937 

-
1780.34 -622.29 -1144.829 

-
1776.28 

-
623.902 -1137.89 

Deviance 3806.16
5 

1304.84
7 2461.779 

3816.14
5 1309.43 2469.1 3810.28 

1302.31
2 2469.135 

3789.15
9 

1303.09
3 2449.137 

Num. obs. 6625 1543 5082 6625 1543 5082 6625 1543 5082 6625 1543 5082 
***p < 0.001, **p < 0.01, *p < 0.05 
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Table 55. Access to Public Transportation Proxy Split Dataset Selection Effect Results for 
Restrictive Bridges 

DV: Dummy variable denoting that a new restrictive bridge was built in this tract in the last 10 years 

  Full 1 PT=Hi 1 PT=Low 
1 Full 2 PT=Hi 2 PT=Low 

2 Full 3 PT=Hi 3 PT=Low 
3 Full 4 PT=Hi 

4 
PT=Low 

4 

% Water Area 1.078 1.148 0.905 0.86 0.411 2.013 1.142 0.7 -1.082 1.179 0.816 2.824 
(2.057) (1.694) (1.728) (1.720) (3.635) (3.472) (3.173) (3.308) (4.199) (4.190) (5.166) (3.368) 

Rural tract 
indicator > 10M 
sq. meters 

0.891 1.392 1.202    0.806 0.777 1.237    
(0.558) (0.643) (0.557)    (0.787) (1.095) (1.029)    

Rural tract 
indicator > 4M 
sq. meters 

   -0.424 -0.74 -0.675    -0.529 -0.179 -0.478 

   (0.582) (0.805) (1.039)    (1.071) (1.285) (0.884) 
Lagged IHS-
transformed 
Total bridges 

-0.318 -0.304 -0.353 -0.066 -0.117 -0.016 -0.317 -0.367 -0.429 -0.141 -0.154 -0.106 

(0.179) (0.193) (0.183) (0.187) (0.258) (0.291) (0.269) (0.301) (0.308) (0.330) (0.406) (0.297) 
Lagged IHS-
transformed 
Real Average 
Income 

0.054 -0.375 0.108    0.039 -0.121* 0.071    

(0.075) (0.070) (0.106)    (0.175) (0.105) (0.106)    
Lagged IHS-
transformed 
Real Aggregate 
Household 
Income 

   -0.02 -0.129 -0.016    0.051 -0.212 0.085 

   (0.047) (0.206) (0.113)    (0.108) (0.178) (0.057) 
Lagged 
Population 
Percentage of 
Below the 
Poverty Line 

4.097 -8.579 5.013          

(2.353) (0.317) (0.203)          
Lagged 
Population 
Percentage of 
Receiving 
Welfare 

      1.68 3.436 4.691    

      (3.888) (4.247) (6.427)    
Lagged Non-
white 
Population 
Percentage of 

-0.288 0.262 1.181          

(1.130) (6.733) (1.841)          
Lagged African 
American 
Population 
Percentage of 

      0.66 -0.688 4.508    

      (1.534) (25.848) (2.826)    
Lagged Hispanic 
Population 
Percentage of 

         -3.597 -22.346 6.014 

         (27.336) (3.858) (4.058) 
Lagged 
Population 
Percentage of 
Foreign-born 

   -4 2.586 -16.782    -2.247 -0.795 -15.334 

   (6.079) (1.083) (3.836)    (4.747) (1.557) (24.316) 
Lagged 
Population 
Percentage of 
under 18 

   2.066 1.909** 3.822       

   (5.903) (0.244) (4.722)       
Lagged IHS-
transformed 
Adult to Child 
Ratio 

      0.123 0.033 -0.41    

      (2.206) (5.163) (0.178)    
Lagged 
Percentage of 
single parents 
with Children 

   -1.611 -2.767 1.753       

   (2.644) (4.082) (6.797)       
Lagged 
Percentage of 
female Head of 
Household 

         -1.511 -2.758 0.282 

         (9.190) (6.152) (3.568) 
Lagged IHS-
transformed 
Population 
Travel on Public 
Transportation 

-0.12 0.637 -0.251       -0.128 0.506 -0.244 

(0.121) (3.270) (0.865)       (0.301) (0.226) (0.176) 
Lagged IHS-
transformed 
Population with 
Commute < 25 
minutes 

   0.183 1.835 0.089*       

   (0.123) (7.420) (0.713)       
Lagged IHS-
transformed 
Population with 
Commute > 25 < 
45 minutes 

      -0.032 0.435* 0.030*    

      (1.290) (0.238) (2.428)    
Lagged IHS-
transformed 
Population with 
Commute > 45 
minutes 

         0.077 0.227 0.072 

         (20.024) (6.789) (0.203) 
Lagged 
percentage of 

         0.552 -116.99 1.925 
         (5.728) (2.657) (9.470) 
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over 25-yr-olds 
with at Least 8 
Years Education 
Lagged 
percentage of 
over 25-yr-olds 
with at Least 
High School 
Education 

      -0.058* -16.37 3.851    

      (7.077) (0.619) (0.086)    
Lagged 
percentage of 
over 25-yr-olds 
with Associate 
Degree 

   -18.271 15.588 -31.346       

   (0.209) (0.039) (9.078)       
Lagged 
percentage of 
over 25-yr-olds 
with bachelor’s 
degree 

2.89 5.472 1.583          

(2.482) (4.200) (4.143)          
Lagged Owner 
to Renter Ratio 

-0.012 -0.018 -0.035          
(0.023) (14.222) (5.921)          

Lagged 
Percentage of 
Housing Units 
Renter-
occupied 

      -1.614 -1.755*** -0.62    

      (2.000) (30.571) (6.223)    
Lagged 
Percentage of 
Housing Units 
Vacant 

-3.432 2.907 -1.579          

(5.563) (3.969) (1.411)          
Lagged Percent 
Change in 
Housing Unit 
Supply 

   -0.57 -0.929 -0.672       

      (8.205) (8.510) (2.586)             
AIC 354.579 158.29 204.775 355.932 163.49 205.627 360.186 163.219 208.095 359.615 159.07 212.449 
BIC 450.44 247.72 286.66 451.793 252.92 287.513 456.047 252.645 289.981 455.476 248.5 294.334 
Log Likelihood -163.29 -65.146 -88.387 -163.97 -67.745 -88.814 -166.09 -67.61 -90.048 -165.81 -65.537 -92.224 
Deviance 339.259 139.86 180.111 345.278 145.83 186.275 345.023 144.054 183.783 346.241 141.13 189.343 
Num. obs. 6955 4392 2563 6955 4392 2563 6955 4392 2563 6955 4392 2563 

***p < 0.001, **p < 0.01, *p < 0.05 
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Table 56. Access to Public Transportation Proxy Split Dataset Selection Effect Results for Non-
restrictive Bridges 

Access to Public Transportation DV: Dummy variable denoting that a new non-restrictive bridge was built in this tract in the last 10 years 

  Full 1 PT=Hi 1 PT=Low 
1 Full 2 PT=Hi 2 PT=Low 

2 Full 3 PT=Hi 3 PT=Low 
3 Full 4 PT=Hi 4 PT=Low 

4 

% Water Area 1.925* 2.685*** -0.691* 2.555*** 2.922*** 0.742*** 1.817** 2.450*** -0.451 2.496 3.023 -0.352 
(0.77) (0.74) (0.76) (0.75) (0.80) (0.82) (0.81) (0.80) (2.19) (2.19) (2.11) (2.31) 

Rural tract 
indicator > 
10M sq. 
meters 

-0.004 -0.041** 0.091    -0.008 0.025 0.145    

(0.13) (0.14) (0.12)    (0.19) (0.18) (0.19)    
Rural tract 
indicator > 4M 
sq. meters 

   0.449*** 0.268 0.669    0.472*** 0.225 0.774*** 

   (0.14) (0.20) (0.19)    (0.20) (0.20) (0.20) 
Lagged IHS-
transformed 
Total bridges 

-0.067 -0.021** -0.134 -0.154** -0.035 -0.279 -0.056 0.009 -0.141 
-

0.154*** -0.045 
-

0.263*** 
(0.05) (0.05) (0.05) (0.05) (0.06) (0.07) (0.06) (0.07) (0.08) (0.07) (0.08) (0.08) 

Lagged IHS-
transformed 
Real Average 
Income 

-
0.063*** -0.125 -0.081**    

-
0.082*** -0.171** 

-
0.063***    

(0.02) (0.02) (0.03)    (0.05) (0.03) (0.02)    
Lagged IHS-
transformed 
Real 
Aggregate 
Household 
Income 

   0.021** -0.044** 0.015    -0.032 -0.078 -0.039** 

   (0.01) (0.04) (0.03)    (0.02) (0.04) (0.01) 
Lagged 
Population 
Percentage of 
Below the 
Poverty Line 

2.171*** 1.097 3.23          

(0.60) (0.05) (0.04)          
Lagged 
Population 
Percentage of 
Receiving 
Welfare 

      1.934* 2.15 2.27    

      (1.07) (0.62) (0.70)    
Lagged Non-
white 
Population 
Percentage of 

-
1.551*** -1.099 

-
1.072***          

(0.34) (1.23) (0.37)          
Lagged African 
American 
Population 
Percentage of 

      
-

1.286*** -1.317* -0.144    
      (0.39) (1.61) (0.95)    

Lagged 
Hispanic 
Population 
Percentage of 

         -5.224 -3.179 -10.587 

         (3.03) (1.27) (5.60) 
Lagged 
Population 
Percentage of 
Foreign-born 

   0.463** 1.814** -1.855    1.590* 2.689 -1.011 

   (1.75) (0.39) (1.43)    (1.11) (0.38) (3.70) 
Lagged 
Population 
Percentage of 
under 18 

   -2.942 -2.248 -2.508*       

   (1.17) (0.06) (1.04)       
Lagged IHS-
transformed 
Adult to Child 
Ratio 

      0.576 0.735* 0.357**    

      (0.55) (1.30) (0.05)    
Lagged 
Percentage of 
single parents 
with Children 

   0.45 0.627 1.253       

   (0.48) (0.50) (0.90)       
Lagged 
Percentage of 
female Head of 
Household 

         0.136 0.002 2.140* 

         (1.47) (1.67) (0.99) 
Lagged IHS-
transformed 
Population 
Travel on 
Public 
Transportatio
n 

0.054 0.020*** 0.119       0.091 0.036* 0.164*** 

(0.03) (0.75) (0.31)       (0.06) (0.05) (0.05) 
Lagged IHS-
transformed 
Population 
with Commute 
< 25 minutes 

   0.057** 0.494 
-

0.001***       

   (0.03) (0.69) (0.14)       
Lagged IHS-
transformed 
Population 
with 
Commute > 25 
< 45 minutes 

      -0.054 0.064 -0.101**    

      (0.09) (0.06) (0.99)    
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Lagged IHS-
transformed 
Population 
with 
Commute > 45 
minutes 

         -0.154 -0.107 
-

0.208*** 

         (4.68) (0.95) (0.05) 
Lagged 
percentage of 
over 25-yr-
olds with at 
Least 8 Years 
Education 

         2.511 -0.182 3.102 

         (0.79) (0.60) (2.08) 
Lagged 
percentage of 
over 25-yr-
olds with at 
Least High 
School 
Education 

      -0.216 -0.694 -0.364    

      (0.90) (0.08) (0.00)    
Lagged 
percentage of 
over 25-yr-
olds with 
Associate 
Degree 

   
-

5.994*** -5.115 -6.842       

   (0.04) (0.00) (4.33)       
Lagged 
percentage of 
over 25-yr-
olds with 
bachelor’s 
degree 

0.271 0.919 -0.183*          

(0.39) (0.75) (0.85)          
Lagged Owner 
to Renter 
Ratio 

-0.001 -0.002 0          
(0.00) (3.10) (0.60)          

Lagged 
Percentage of 
Housing Units 
Renter-
occupied 

      0.501 0.421 0.542    

      (0.42) (2.47) (1.45)    
Lagged 
Percentage of 
Housing Units 
Vacant 

0.222 1.019 -0.332          

(0.85) (0.54) (0.31)          
Lagged 
Percent 
Change in 
Housing Unit 
Supply 

   -0.073 -0.451 -0.068       

   (1.51) (1.09) (0.38)       
AIC 4713.53

1 
2257.12

9 
2457.01

8 4708.67 
2242.26

9 
2460.57

9 
4711.26

2 
2252.21

8 
2465.14

9 
4700.14

8 
2259.14

7 
2430.27

4 

BIC 4814.96
8 

2351.11
2 

2546.06
9 

4810.10
7 

2336.25
2 2549.63 

4812.69
9 

2346.20
1 

2554.19
9 

4801.58
6 2353.13 

2519.32
5 

Log Likelihood -2342.77 -1114.56 -1214.51 -2340.34 -1107.13 -1216.29 -2341.63 -1112.11 -1218.57 -2336.07 -1115.57 -1201.14 

Deviance 4924.77
3 

2396.27
3 2501.07 

4917.77
5 

2380.17
5 

2501.36
2 

4925.18
2 

2391.85
9 

2510.89
4 

4909.86
4 

2398.03
5 

2473.05
8 

Num. obs. 10358 6082 4276 10358 6082 4276 10358 6082 4276 10358 6082 4276 
***p < 0.001, **p < 0.01, *p < 0.05 
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Table 57. Access to Public Transportation Proxy Split Dataset Selection Effect Results for All New 
Bridges 

Access to Public Transportation DV: Dummy variable denoting that a new bridge was built in this tract in the last 10 years 

  Full 1 PT=Hi 1 PT=Low 
1 Full 2 PT=Hi 2 PT=Low 

2 Full 3 PT=Hi 3 PT=Low 
3 Full 4 PT=Hi 4 PT=Low 

4 

% Water Area -1.044 -1.368 -1.092 -0.413 0.056 -1.013 -1.005 -0.944 -1.106 -0.479 -0.507 -1.134 
(1.09) (1.08) (1.09) (1.09) (1.30) (1.18) (1.25) (1.26) (2.12) (2.23) (2.13) (2.23) 

Rural tract 
indicator > 
10M sq. 
meters 

0.401 1.159* 0.433    0.421* 1.257* 0.401    

(0.35) (0.13) (0.34)    (0.58) (0.18) (0.41)    
Rural tract 
indicator > 4M 
sq. meters 

   0.327* 0.45 0.101*    0.315 0.418 0.101 

   (0.13) (0.59) (0.18)    (0.20) (0.41) (0.20) 
Lagged IHS-
transformed 
Total bridges 

-
0.322*** 

-
0.166*** 

-
0.553*** 

-
0.364*** -0.187* -0.627* -0.304 -0.123** 

-
0.579*** 

-
0.390*** 

-
0.234*** 

-
0.604*** 

(0.06) (0.06) (0.06) (0.06) (0.08) (0.08) (0.07) (0.08) (0.09) (0.09) (0.09) (0.09) 
Lagged IHS-
transformed 
Real Average 
Income 

0.028 0.076 -0.008*    0.073 0.044 0.083    

(0.02) (0.02) (0.04)    (0.07) (0.03) (0.03)    
Lagged IHS-
transformed 
Real 
Aggregate 
Household 
Income 

   -0.007 -0.057 -0.007    0.03 0.044 0.024 

   (0.02) (0.05) (0.03)    (0.03) (0.05) (0.02) 
Lagged 
Population 
Percentage of 
Below the 
Poverty Line 

1.443* 0.764 2.5          

(0.68) (0.05) (0.05)          
Lagged 
Population 
Percentage of 
Receiving 
Welfare 

      1.089 -0.07 3.453    

      (1.19) (0.71) (1.08)    
Lagged Non-
white 
Population 
Percentage of 

-
2.000*** -1.244** 

-
2.544***          

(0.39) (1.80) (0.41)          
Lagged African 
American 
Population 
Percentage of 

      
-

1.977*** 
-

1.722*** -1.708*    
      (0.42) (3.81) (1.16)    

Lagged 
Hispanic 
Population 
Percentage of 

         -9.095** -13.262 -0.878 

         (5.38) (1.41) (3.29) 
Lagged 
Population 
Percentage of 
Foreign-born 

   -4.647** -2.108** -15.604    -3.074 -0.255 
-

15.594** 

   (2.92) (0.45) (1.93)    (1.46) (0.50) (5.32) 
Lagged 
Population 
Percentage of 
under 18 

   1.584 1.646*** 2.561       

   (1.68) (0.05) (1.17)       
Lagged IHS-
transformed 
Adult to Child 
Ratio 

      -0.73 -1.139 -0.66    

      (0.69) (1.65) (0.06)    
Lagged 
Percentage of 
single parents 
with Children 

   
-

3.134*** -3.104 -1.056**       
   (0.61) (0.61) (0.95)       

Lagged 
Percentage of 
female Head of 
Household 

         -2.398 -1.351 -2.116 

         (1.80) (2.38) (1.39) 
Lagged IHS-
transformed 
Population 
Travel on 
Public 
Transportatio
n 

-0.060* -0.241 0.02       -0.021 -0.219 0.091 

(0.03) (0.90) (0.40)       (0.06) (0.07) (0.06) 
Lagged IHS-
transformed 
Population 
with Commute 
< 25 minutes 

   0.008 0.068 -0.044       

   (0.04) (0.79) (0.12)       
Lagged IHS-
transformed 
Population 
with 
Commute > 25 
< 45 minutes 

      -0.079 
-

0.046*** -0.115    

      (0.11) (0.07) (1.39)    
         0.012 0.03 -0.029 
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Lagged IHS-
transformed 
Population 
with 
Commute > 45 
minutes          (6.82) (1.75) (0.07) 
Lagged 
percentage of 
over 25-yr-
olds with at 
Least 8 Years 
Education 

         4.709 1.95 6.451 

         (0.30) (0.70) (3.52) 
Lagged 
percentage of 
over 25-yr-
olds with at 
Least High 
School 
Education 

      1.147 0.597 1.547    

      (1.11) (0.10) 0.00     
Lagged 
percentage of 
over 25-yr-
olds with 
Associate 
Degree 

   2.428 6.875 -1.763       

   (0.05) (0.00) (5.42)       
Lagged 
percentage of 
over 25-yr-
olds with 
bachelor’s 
degree 

-0.232 0.239*** -1.143          

(0.51) (0.77) (0.95)          
Lagged Owner 
to Renter 
Ratio 

0 -0.002 0          
0.00  (4.09) (0.89)          

Lagged 
Percentage of 
Housing Units 
Renter-
occupied 

      -0.219 0.142 -0.925    

      (0.44) (2.80) (3.07)    
Lagged 
Percentage of 
Housing Units 
Vacant 

-1.103 -1.555 -0.903          

(1.44) (0.11) (0.34)          
Lagged 
Percent 
Change in 
Housing Unit 
Supply 

   0.009* 0.582 -0.042       

   (2.12) (1.62) (0.43)       
AIC 3587.59

8 
2146.48

7 
1428.76

1 
3599.24

5 
2157.06

9 
1426.81

7 
3588.67

3 
2165.28

1 
1428.82

3 
3580.55

6 2134.54 1422.65 

BIC 3682.77
9 2236.82 1506.74 

3694.42
6 

2247.40
2 

1504.79
6 

3683.85
3 

2255.61
3 

1506.80
2 

3675.73
6 

2224.87
3 

1500.62
9 

Log Likelihood -1779.8 -1059.24 -700.38 -1785.62 -1064.53 -699.409 -1780.34 -1068.64 -700.412 -1776.28 -1053.27 -697.325 

Deviance 3806.16
5 

2277.14
2 

1479.24
2 

3816.14
5 

2285.71
7 

1475.89
1 3810.28 

2301.06
1 

1477.48
3 

3789.15
9 2257 1472.75 

Num. obs. 6625 4686 1939 6625 4686 1939 6625 4686 1939 6625 4686 1939 
***p < 0.001, **p < 0.01, *p < 0.05 
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Table 58. National Registry of Historic Places Proxy Split Dataset Selection Effect Results for 
Restrictive Bridges 

DV: Dummy variable denoting that a new restrictive bridge was built in this tract in the last 10 years 

  Full 1 NRHP=
Hi 1 

NRHP=Lo
w 1 Full 2 NRHP=

Hi 2 
NRHP=Lo

w 2 Full 3 NRHP=
Hi 3 

NRHP=Lo
w 3 Full 4 NRHP=

Hi 4 
NRHP=Lo

w 4 

% Water Area 

1.078 4.082 0.997 0.86 6.485 0.376 1.142 4.832 0.872 1.179 14.005 1.09 

(2.057) (1.694) (1.728) (1.720) (32.559) (10.813) 
(14.022

) (14.024) (2.473) (2.517) (2.408) (2.242) 
Rural tract 
indicator > 
10M sq. 
meters 

0.891 1.569 0.689    0.806 0.678 0.68    
(0.558) (0.643) (0.557)    (0.932) (4.177) (0.649)    

Rural tract 
indicator > 
4M sq. meters 

   -0.424 -2.217 -0.277    -0.529 -4.613 -0.478 

   (0.582) (2.533) (1.752)    (0.739) (0.651) (0.626) 

Lagged IHS-
transformed 
Total bridges 

-0.318 -0.556 -0.272 -0.066 0.137 -0.07 -0.317 -0.509 -0.282 -0.141 -0.074 -0.127 

(0.179) (0.193) (0.183) (0.187) (0.871) (0.713) (0.684) (0.861) (0.208) (0.211) (0.214) (0.207) 
Lagged IHS-
transformed 
Real Average 
Income 

0.054 0.355 0.041    0.039* 1.129 -0.025    
(0.075) (0.070) (0.106)    (0.482) (1.141) (0.080)    

Lagged IHS-
transformed 
Real 
Aggregate 
Household 
Income 

   -0.02 1.267 0.023    0.051 0.874 0.039 

   (0.047) (0.232) (1.452)    (0.068) (0.099) (0.046) 
Lagged 
Population 
Percentage of 
Below the 
Poverty Line 

4.097 -4.874 4.879          

(2.353) (0.317) (0.203)          
Lagged 
Population 
Percentage of 
Receiving 
Welfare 

      1.68 19.743 1.514    

      
(15.345

) (37.317) (4.918)    
Lagged Non-
white 
Population 
Percentage of 

-0.288 2.009 -0.443          
(1.130) (6.733) (1.841)          

Lagged 
African 
American 
Population 
Percentage of 

      0.66 -11.424 1.488    

      (6.919) (31.470) (1.211)    
Lagged 
Hispanic 
Population 
Percentage of 

         -3.597 39.559 -9.63 

         (8.097) (1.956) (11.444) 
Lagged 
Population 
Percentage of 
Foreign-born 

   -4 7.158 -5.265    -2.247 12.509 -1.667 

   (6.079) (4.862) (11.328)    (3.257) (0.737) (7.541) 
Lagged 
Population 
Percentage of 
under 18 

   2.066 26.516 -0.894       
   (5.903) (0.994) (15.076)       

Lagged IHS-
transformed 
Adult to Child 
Ratio 

      0.123 -15.413 0.765    
      (8.306) (21.325) (0.133)    

Lagged 
Percentage of 
single parents 
with Children 

   -1.611 -10.261 1.549       
   (2.644) (15.060) (5.872)       

Lagged 
Percentage of 
female Head 
of Household 

         -1.511 -41.057 0.702 

         (4.473) (5.272) (2.924) 
Lagged IHS-
transformed 
Population 
Travel on 
Public 
Transportatio
n 

-0.12 -1.021 -0.095       -0.128 -1.429 -0.119 

(0.121) (3.270) (0.865)       (0.359) (0.223) (0.145) 
Lagged IHS-
transformed 
Population 
with 
Commute < 
25 minutes 

   0.183 0.752 0.201       

   (0.123) (7.164) (3.887)       
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Lagged IHS-
transformed 
Population 
with 
Commute > 
25 < 45 
minutes 

      -0.032 0.176 0.038    

      (1.759) (0.933) (2.795)    
Lagged IHS-
transformed 
Population 
with 
Commute > 
45 minutes 

         0.077 3.566 0.014 

         
(17.850

) (6.006) (0.206) 
Lagged 
percentage of 
over 25-yr-
olds with at 
Least 8 Years 
Education 

         0.552 -78.561 5.665 

         (4.943) (1.628) (6.060) 
Lagged 
percentage of 
over 25-yr-
olds with at 
Least High 
School 
Education 

      -0.058 -24.94 8.01    

      
(17.608

) (2.910) (0.049)    
Lagged 
percentage of 
over 25-yr-
olds with 
Associate 
Degree 

   
-

18.271 -4.61 -27.193       

   (0.209) (0.035) (60.976)       
Lagged 
percentage of 
over 25-yr-
olds with 
bachelor’s 
degree 

2.89 18.529 -1.787          

(2.482) (4.200) (4.143)          
Lagged 
Owner to 
Renter Ratio 

-0.012 0.002 -0.017          
(0.023) (14.222) (5.921)          

Lagged 
Percentage of 
Housing Units 
Renter-
occupied 

      -1.614 0.069 -1.053    

      (3.753) (52.367) (4.911)    
Lagged 
Percentage of 
Housing Units 
Vacant 

-3.432 -19.624 -1.529          
(5.563) (3.969) (1.411)          

Lagged 
Percent 
Change in 
Housing Unit 
Supply 

   -0.57 3.431 -0.723       

   (8.205) (60.276) (1.915)       
AIC 

354.57
9 52.275 311.756 

355.93
2 56.44 310.231 

360.18
6 53.557 313.009 

359.61
5 51.333 316.761 

BIC 450.44 120.572 405.512 
451.79

3 124.736 403.986 
456.04

7 121.854 406.765 
455.47

6 119.629 410.517 

Log 
Likelihood 

-
163.28

9 -12.137 -141.878 

-
163.96

6 -14.22 -141.115 

-
166.09

3 -12.779 -142.505 

-
165.80

7 -11.666 -144.38 

Deviance 
339.25

9 24.658 295.646 
345.27

8 29.631 300.051 
345.02

3 26.693 297.701 
346.24

1 24.017 302.476 

Num. obs. 6955 971 5984 6955 971 5984 6955 971 5984 6955 971 5984 

***p < 0.001, **p < 0.01, *p < 0.05 
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Table 59. National Registry of Historic Places Proxy Split Dataset Selection Effect Results for Non-
restrictive Bridges 

National Register of Historic Places Proxy DV: Dummy variable denoting that a new non-restrictive bridge was built in this tract in the last 10 years 

  Full 1 NRHP=
Hi 1 

NRHP=Lo
w 1 Full 2 NRHP=

Hi 2 
NRHP=Lo

w 2 Full 3 NRHP=
Hi 3 

NRHP=Lo
w 3 Full 4 NRHP=

Hi 4 
NRHP=Lo

w 4 

% Water 
Area 

1.925* 3.628*** 0.814* 
2.555**

* 5.199** 1.306*** 1.817** 3.535*** 0.669 2.496 5.031 1.119 
(0.77) (0.74) (0.76) (0.75) (1.20) (1.25) (1.21) (1.21) (1.06) (1.02) (1.04) (1.04) 

Rural tract 
indicator > 
10M sq. 
meters 

-0.004 -0.253** 0.046    -0.008 -0.372 0.052    

(0.13) (0.14) (0.12)    (0.41) (0.47) (0.13)    
Rural tract 
indicator > 
4M sq. 
meters 

   
0.449**

* 0.608 0.429    0.472** 0.548 0.466** 

   (0.14) (0.42) (0.51)    (0.15) (0.13) (0.14) 
Lagged IHS-
transformed 
Total bridges 

-0.067 -0.185** -0.053 -0.154** -0.331 -0.132* -0.056 -0.206* -0.037 -0.154* -0.315 -0.137* 

(0.05) (0.05) (0.05) (0.05) (0.12) (0.14) (0.13) (0.14) (0.05) (0.06) (0.05) (0.06) 
Lagged IHS-
transformed 
Real Average 
Income 

-
0.063**

* -0.127 -0.056**    -0.082 -0.041* -0.086**    
(0.02) (0.02) (0.03)    (0.09) (0.03) (0.02)    

Lagged IHS-
transformed 
Real 
Aggregate 
Household 
Income 

   0.021** -0.037* 0.03    -0.032 -0.072** -0.027* 

   (0.01) (0.05) (0.04)    (0.02) (0.03) (0.01) 
Lagged 
Population 
Percentage of 
Below the 
Poverty Line 

2.171**
* 1.805 2.083          

(0.60) (0.05) (0.04)          
Lagged 
Population 
Percentage of 
Receiving 
Welfare 

      1.934 3.327 1.471    

      (2.40) (1.12) (0.43)    
Lagged Non-
white 
Population 
Percentage of 

-
1.551**

* -1.924 -1.502***          
(0.34) (1.23) (0.37)          

Lagged 
African 
American 
Population 
Percentage of 

      -1.286** -2.071 -1.189***    

      (0.75) (2.43) (0.43)    
Lagged 
Hispanic 
Population 
Percentage of 

         -5.224 1.298* -8.735*** 

         (1.40) (0.48) (2.28) 
Lagged 
Population 
Percentage of 
Foreign-born 

   0.463** 3.105** 0.171    
1.590**

* 2.523* 1.551 

   (1.75) (0.63) (2.74)    (0.86) (0.33) (1.41) 
Lagged 
Population 
Percentage of 
under 18 

   -2.942 -1.971 -3.138       

   (1.17) (0.08) (1.83)       
Lagged IHS-
transformed 
Adult to 
Child Ratio 

      0.576 -0.598 0.704    

      (0.90) (2.42) (0.03)    
Lagged 
Percentage of 
single 
parents with 
Children 

   0.45 1.365 -0.08       

   (0.48) (1.11) (1.47)       
Lagged 
Percentage of 
female Head 
of Household 

         0.136 0.223 0.06 

         (0.92) (0.90) (0.55) 
Lagged IHS-
transformed 
Population 
Travel on 
Public 
Transportati
on 

0.054 0.111*** 0.047       0.091 0.093 0.092** 

(0.03) (0.75) (0.31)       (0.05) (0.04) (0.03) 
Lagged IHS-
transformed 
Population 
with 
Commute < 
25 minutes 

   0.057** 0.027 0.061       

   (0.03) (1.38) (0.11)       
Lagged IHS-
transformed 
Population 

      -0.054 -0.043 -0.062**    
      (0.11) (0.08) (0.68)    
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with 
Commute > 
25 < 45 
minutes 
Lagged IHS-
transformed 
Population 
with 
Commute > 
45 minutes 

         -0.154* -0.101 -0.167*** 

         (3.28) (0.65) (0.04) 
Lagged 
percentage of 
over 25-yr-
olds with at 
Least 8 Years 
Education 

         2.511 -2.54 3.120* 

         (0.63) (0.35) (1.57) 
Lagged 
percentage of 
over 25-yr-
olds with at 
Least High 
School 
Education 

      -0.216 0.155 -0.719    

      (2.07) (0.10) (0.00)    
Lagged 
percentage of 
over 25-yr-
olds with 
Associate 
Degree 

   
-

5.994**
* 2.805 -8.293       

   (0.04) (0.00) (11.42)       
Lagged 
percentage of 
over 25-yr-
olds with 
bachelor’s 
degree 

0.271 -0.015 0.514*          

(0.39) (0.75) (0.85)          
Lagged 
Owner to 
Renter Ratio 

-0.001 0 -0.001          
(0.00) (3.10) (0.60)          

Lagged 
Percentage of 
Housing 
Units Renter-
occupied 

      0.501 0.665 0.549    

      (0.76) (4.75) (0.95)    
Lagged 
Percentage of 
Housing 
Units Vacant 

0.222 0.953 0.216          

(0.85) (0.54) (0.31)          
Lagged 
Percent 
Change in 
Housing Unit 
Supply 

   -0.073 -0.112 -0.066       

   (1.51) (2.27) (0.64)       
AIC 4713.53

1 642.71 4072.024 4708.67 647.549 4060.253 
4711.26

2 641.365 4068.119 
4700.14

8 646.755 4047.752 

BIC 4814.96
8 716.407 4171.384 

4810.10
7 721.246 4159.613 

4812.69
9 715.061 4167.479 

4801.58
6 720.451 4147.112 

Log 
Likelihood 

-
2342.77 -307.355 -2022.012 

-
2340.34 -309.775 -2016.126 

-
2341.63 -306.683 -2020.059 

-
2336.07 -309.377 -2009.876 

Deviance 4924.77
3 657.992 4238.975 

4917.77
5 663.209 4225.004 

4925.18
2 657.136 4237.495 

4909.86
4 662.453 4212.54 

Num. obs. 10358 1428 8930 10358 1428 8930 10358 1428 8930 10358 1428 8930 
***p < 0.001, **p < 0.01, *p < 0.05 
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Table 60. National Registry of Historic Places Proxy Split Dataset Selection Effect Results for All 
New Bridges 

National Register of Historic Places Proxy DV: Dummy variable denoting that a new bridge was built in this tract in the last 10 years 

  Full 1 NRHP=
Hi 1 

NRHP=Lo
w 1 Full 2 NRHP=

Hi 2 
NRHP=Lo

w 2 Full 3 NRHP=
Hi 3 

NRHP=Lo
w 3 Full 4 NRHP=

Hi 4 
NRHP=Lo

w 4 
% Water 
Area 

-1.044 2.923 -1.595 -0.413 4.826 -1.197 -1.005 2.999 -1.663 -0.479 4.564 -1.229 
(1.09) (1.08) (1.09) (1.09) (3.33) (3.40) (3.45) (3.41) (1.18) (1.18) (1.19) (1.18) 

Rural tract 
indicator > 
10M sq. 
meters 

0.401 -0.972* 0.688    0.421 -1.119 0.711    

(0.35) (0.13) (0.34)    (1.45) (0.52) (0.35)    
Rural tract 
indicator > 
4M sq. 
meters 

   0.327* 0.288 0.347    0.315* 0.290* 0.337* 

   (0.13) (1.49) (0.57)    (0.14) (0.35) (0.14) 

Lagged IHS-
transformed 
Total bridges 

-
0.322**

* 
-

0.230*** -0.329*** 

-
0.364**

* -0.273 -0.38 -0.304 -0.229 -0.305*** 

-
0.390**

* 
-

0.280*** -0.404*** 
(0.06) (0.06) (0.06) (0.06) (0.20) (0.18) (0.20) (0.19) (0.06) (0.07) (0.06) (0.07) 

Lagged IHS-
transformed 
Real Average 
Income 

0.028 -0.056 0.033*    0.073 0.028 0.081    

(0.02) (0.02) (0.04)    (0.12) (0.05) (0.02)    
Lagged IHS-
transformed 
Real 
Aggregate 
Household 
Income 

   -0.007 -0.069 0    0.03 -0.006* 0.032 

   (0.02) (0.08) (0.06)    (0.02) (0.04) (0.02) 
Lagged 
Population 
Percentage of 
Below the 
Poverty Line 

1.443* 0.313 1.502          

(0.68) (0.05) (0.05)          
Lagged 
Population 
Percentage of 
Receiving 
Welfare 

      1.089 2.133 0.86    

      (3.48) (1.58) (0.56)    
Lagged Non-
white 
Population 
Percentage of 

-
2.000**

* -2.448** -1.796***          
(0.39) (1.80) (0.41)          

Lagged 
African 
American 
Population 
Percentage of 

      -1.977** -3.085 -1.671***    

      (0.97) (5.06) (0.45)    
Lagged 
Hispanic 
Population 
Percentage of 

         -9.095* 
-

8.577*** -8.959** 

         (2.01) (0.48) (3.12) 
Lagged 
Population 
Percentage of 
Foreign-born 

   -4.647** -0.532** -5.105    -3.074 0.027 -3.547 

   (2.92) (0.77) (3.51)    (0.99) (0.42) (1.92) 
Lagged 
Population 
Percentage of 
under 18 

   1.584 1.694 1.532       

   (1.68) (0.13) (2.72)       
Lagged IHS-
transformed 
Adult to 
Child Ratio 

      -0.73 -1.221 -0.708*    

      (1.55) (2.70) (0.03)    
Lagged 
Percentage of 
single 
parents with 
Children 

   
-

3.134**
* -3.056 -2.813       

   (0.61) (1.68) (2.10)       
Lagged 
Percentage of 
female Head 
of Household 

         -2.398** -2.607 -2.200** 

         (0.88) (0.98) (0.71) 
Lagged IHS-
transformed 
Population 
Travel on 
Public 
Transportati
on 

-0.060* 0.023 -0.064       -0.021 -0.075* -0.01 

(0.03) (0.90) (0.40)       (0.05) (0.05) (0.04) 
Lagged IHS-
transformed 
Population 
with 
Commute < 
25 minutes 

   0.008 0.239 -0.016       

   (0.04) (2.27) (0.32)       
Lagged IHS-
transformed 
Population 

      -0.079 0.168 -0.104*    
      (0.24) (0.12) (0.71)    
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with 
Commute > 
25 < 45 
minutes 
Lagged IHS-
transformed 
Population 
with 
Commute > 
45 minutes 

         0.012 0.194 -0.01 

         (4.31) (0.97) (0.06) 
Lagged 
percentage of 
over 25-yr-
olds with at 
Least 8 Years 
Education 

         4.709 9.035 4.385 

         (0.11) (0.37) (2.28) 
Lagged 
percentage of 
over 25-yr-
olds with at 
Least High 
School 
Education 

      1.147 0.845 0.865    

      (2.75) (0.16) 0.00     
Lagged 
percentage of 
over 25-yr-
olds with 
Associate 
Degree 

   2.428 5.922 1.442       

   (0.05) (0.00) (13.32)       
Lagged 
percentage of 
over 25-yr-
olds with 
bachelor’s 
degree 

-0.232 
-

1.551*** 0.062          

(0.51) (0.77) (0.95)          
Lagged 
Owner to 
Renter Ratio 

0 0 0          
0.00  (4.09) (0.89)          

Lagged 
Percentage of 
Housing 
Units Renter-
occupied 

      -0.219 0.183 -0.199    

      (1.26) (7.00) (1.51)    
Lagged 
Percentage of 
Housing 
Units Vacant 

-1.103 -0.396 -0.998          

(1.44) (0.11) (0.34)          
Lagged 
Percent 
Change in 
Housing Unit 
Supply 

   0.009* 0.894 -0.009       

   (2.12) (4.22) (0.78)       
AIC 3587.59

8 328.224 3268.13 
3599.24

5 332.047 3271.981 
3588.67

3 326.028 3268.959 
3580.55

6 331.649 3256.404 

BIC 3682.77
9 395.917 3361.192 

3694.42
6 399.739 3365.044 

3683.85
3 393.72 3362.022 

3675.73
6 399.342 3349.467 

Log 
Likelihood -1779.8 -150.112 -1620.065 

-
1785.62 -152.023 -1621.991 

-
1780.34 -149.014 -1620.479 

-
1776.28 -151.824 -1614.202 

Deviance 3806.16
5 325.326 3460.416 

3816.14
5 329.164 3462.468 3810.28 321.859 3465.194 

3789.15
9 328.196 3439.438 

Num. obs. 6625 930 5695 6625 930 5695 6625 930 5695 6625 930 5695 
***p < 0.001, **p < 0.01, *p < 0.05 
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Fig. 47. Demographic Variables Split Dataset Selection Effect Results for Restrictive Bridges 

 
Fig. 48. Demographic Variables Split Dataset Selection Effect Results for Non-restrictive Bridges 

 
Fig. 49. Demographic Variables Split Dataset Selection Effect Results for All New Bridges 
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Fig. 50. Family Variables Split Dataset Selection Effect Results for Restrictive Bridges 

 
Fig. 51. Family Variables Split Dataset Selection Effect Results for Non-restrictive Bridges 

 
Fig. 52. Family Variables Split Dataset Selection Effect Results for All New Bridges 
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Fig. 53. Education Variables Split Dataset Selection Effect Results for Restrictive Bridges 

 
Fig. 54. Education Variables Split Dataset Selection Effect Results for Non-restrictive Bridges 

 
Fig. 55. Education Variables Split Dataset Selection Effect Results for All New Bridges 
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Fig. 56. Financial Variables Split Dataset Selection Effect Results for Restrictive Bridges 

 
Fig. 57. Financial Variables Split Dataset Selection Effect Results for Non-restrictive Bridges 

 
Fig. 58. Financial Variables Split Dataset Selection Effect Results for All New Bridges 
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Fig. 59. Transportation Variables Split Dataset Selection Effect Results for Restrictive Bridges 

 
Fig. 60. Transportation Variables Split Dataset Selection Effect Results for Non-restrictive Bridges 

 
Fig. 61. Transportation Variables Split Dataset Selection Effect Results for All New Bridges 
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Fig. 62. Housing Variables Split Dataset Selection Effect Results for Restrictive Bridges 

 
Fig. 63. Housing Variables Split Dataset Selection Effect Results for Non-restrictive Bridges 

 
Fig. 64. Housing Variables Split Dataset Selection Effect Results for All New Bridges 
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Fig. 65. Physical Variables Split Dataset Selection Effect Results for Restrictive Bridges 

 
Fig. 66. Physical Variables Split Dataset Selection Effect Results for Non-restrictive Bridges 

 
Fig. 67. Physical Variables Split Dataset Selection Effect Results for All New Bridges 
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Section H Literature Review 

That literature which specifically focuses on bridges primarily describes optimizing limited 

funds to maintain bridges, and the impacts of construction or maintenance of bridges on the local 

populace that uses the bridge. The literature on maintaining bridges describes how government 

institutions can maximize resources to optimize maintenance of the greatest number of bridges 

(Chengalur-Smith et al. 1997; Mohammadi Jamshid et al. 1995). These studies primarily use cost as 

the outcome and have technical measures as the explanatory factors such as: condition ratings, 

structural safety requirements, and age of bridge. Their primary concern is to rank-order the 

bridges for maintenance priority. When researchers do take user cost factors into consideration, 

they tend to focus on factors affected only during construction or rehabilitation such as detour 

lengths, traffic delays, and congestion (Liu and Frangopol 2005; Liu Min and Frangopol Dan M. 

2006; Liu Ming and Frangopol Dan M. 2006; Twumasi-Boakye and Sobanjo 2017). This literature is 

primarily concerned with technical engineering factors only before and during construction or 

maintenance (Amini, Nikraz, and Fathizadeh, 2016), and the main consideration given to social 

factors is the impact on the bridge users during those same periods. Much progress has even been 

made in minimizing social impacts during construction as demonstrated by Accelerated Bridge 

Construction(ABC) which greatly minimizes user impact. Understanding wider social impacts of 

infrastructure, such as bridges, is still generally understudied and the motivation of this work. 

The literature around society and the built environment has the following foci. The first and 

predominant focus contends that the built environment acts as a conduit for both intended and 

unintended social connections (Audretsch et al. 2015; Joerges 1999; Pinch and Bijker 2012; 

Schindler 2015; Shilton 2013; Star 1999; Winner 1980; Woolgar and Cooper 1999). As Howe and 

colleagues (2016) write, “Infrastructural deficiencies can both index preexisting inequalities, just as 

they may, simultaneously, deepen those inequalities” (Howe et al. 2016 p. 551).  



Machine Learning for Public Policy: Applications in Infrastructure and Air Pollution 

260 

On the one hand, infrastructure improves the flow of goods and services such that it can 

help recognize market opportunities. In an infrastructure study from 2001-2005, the researchers 

found the impact of infrastructure on new startup activity varies by type and industry (Audretsch et 

al. 2015). Knowledge and broadband infrastructure increased startup activity in information-

intensive industries such as technology oriented services, while railway and the efficient movement 

of goods and services increases startup activity in consumer-related services and retail trade 

(Audretsch et al. 2015). 

On the other hand, while those using the focal infrastructure may see benefits, the 

populations living near the infrastructure may experience harm. These deleterious effects may have 

disproportionately negative effects on the poor and marginalized (Epting 2016; Faoziyah 2016; 

Grabowski et al. 2017; Star 1999). A marginalized population is one which is “excluded from 

mainstream social, economic, cultural, or political life (Cook 2008).” A study that simulated the 

effect of a bridge linking two populations centers in Indonesia concluded that while the bridge was 

expected to equalize benefits between the districts, the majority of benefits actually accrued to the 

already more developed population (Faoziyah 2016).  

Studies have observed deleterious and segregational effects of transportation infrastructure 

(Grannis, 1998, Reardon et al, 2008). In two cities, size and speed of road networks were better 

predictors of racial contiguity than geographic closeness and larger streets with higher speeds 

acted as boundaries to neighborhoods (Grannis 1998). In a study emphasizing the importance of 

scale on segregation patterns, the researchers posit that “It seems plausible that the built 

environment (including highways, street networks, railroads, and public transportation systems) 

may influence residential segregation patterns (and vice versa)” (Reardon et al. 2008 p. 509). In a 

legal review, Schindler (2015) noted that infrastructure’s accessibility “can shape the demographics 

of a city and isolate a neighborhood from those surrounding it, often intentionally” (Schindler 2015 

p. 1939). Schindler goes on to note that the built environment controls human behavior by 
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constraining physical movement (Schindler 2015). Restrictive bridges constrain physical 

movement and are therefore of interest to this study. 

The second focus argues that in the perception of the built environment as technical 

engineering objects, social values are often taken for granted (Grabowski et al. 2017; Leonardi and 

Barley 2010; Star 1999; Star and Bowker 2006). A theoretical study chronicling internet 

infrastructure argues the taken-for-granted assumption is that it will “democratize” knowledge by 

extending the reach and access of knowledge, but they observe that internet infrastructure often 

fails in low-income and developing contexts. Even with advances in the internet there are 

unforeseen access and usability barriers that were not known until these breakdowns were 

prominent (DiMaggio et al. 2001; Star and Bowker 2006). When national and local governments 

differ about the aim of infrastructure, such conflicts can lead to variation in bridge design (Desai 

and Armanios 2018). Generally speaking, this literature is comprised of a rich set of detailed 

qualitative studies, with few large-scale quantitative analyses (Desai and Armanios 2018, as a rare 

exception). It is not yet clear how widespread are the social impacts from the built environment, 

especially the scope to which the built environment affects marginalized populations. In fact, prior 

studies have noted this is largely ignored and not subject to the same breadth and depth of public 

and governmental review (Schindler 2015). Recent studies utilizing social network analysis have 

attempted to develop frameworks to quantify social sustainability and satisfaction perceptions, but 

both note the prohibitive costs in time and resources to properly map social networks and the 

likelihood that results are specific to the community of study (Doloi 2018; Wang et al. 2018). Both 

studies focused on the perceptions of the value of the built environment and not on their actual 

effects.  
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Section I Coarsened Exact Matching Statistics 

Coarsened Exact Matching (CEM) is a preprocessing algorithm used to eliminate individuals in a treated and control group based 

on their dissimilarity from an identified attribute. The algorithm follows three steps: 1) temporarily coarsens a variable by dividing the 

values of that variable into sub strata based on defined cut-offs or a number of sub strata similar to a histogram, 2) sort all individuals into 

these strata based on the values of that variable, and 3) remove from the data any individuals without a at least one individual in the 

control and treated groups (Iacus et al. 2009). 

Table 61. Pre- and post-coarsened exact matching statistics for five types of bridges 

 

Table 62. Pre- and post-coarsened exact matching statistics for two types of bridges and all bridges 

 

  

Control Treatment Control Treatment Control Treatment Control Treatment Control Treatment
Original 12784 84 12624 244 10028 2840 10716 2152 10232 2636
Matched 617 42 6052 166 7897 1989 8890 1472 8310 1708
Not-matched 12167 42 6572 78 2131 851 1826 680 1922 928
% Matched 4.8% 50.0% 47.9% 68.0% 78.7% 70.0% 83.0% 68.4% 81.2% 64.8%
% Not-matched 95.2% 50.0% 52.1% 32.0% 21.3% 30.0% 17.0% 31.6% 18.8% 35.2%

New Low BridgesNew Mini Bridges New Super BridgesNew High BridgesNew Medium Bridges

Control Treatment Control Treatment Control Treatment
Original 12548 320 8628 4240 4528 8340
Matched 6739 216 7406 2952 4320 2305
Not-matched 5809 104 1222 1288 208 6035
% Matched 53.7% 67.5% 85.8% 69.6% 95.4% 27.6%
% Not-matched 46.3% 32.5% 14.2% 30.4% 4.6% 72.4%

All New BridgesNew Over 14-ft BridgesNew Under 14-ft Bridges
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Table 63. CEM pre-match statistics for restricted bridges 

All New Bridges Pre-match Statistics 

Variables Land Area 
Water 
Area 

Tract 
Population 

Total 
Bridges 

Treatment 
Time 

Treated Sample Size 320 320 320 320 320 
Control Sample Size 12548 12548 12548 12548 12548 
statistic -20882413 -412242 83.911 -11.395 -12.149 
type (diff) (diff) (diff) (diff) (diff) 
L1 0.000 0.000 0.000 0.407 0.304 
min -463151 0.000 0.000 0.000 0.000 

25% -1424389 -
27974.000 296.000 -8.000 -20.000 

50% -8595211 -226349 -116 -13 -10 
75% -57608686 -601166 74 -16 -10 
max 621328291 18986580 2045 56 0 
Overall Multivariate 
Imbalance Measure 0.969 0.969 0.969 0.969 0.969 

Local Common Support 
(%) 1.045 1.045 1.045 1.045 1.045 

T-Test: Statistic -4.272 -4.549 0.731 -11.533 -13.668 
T-Test: P-Value 0.000 0.000 0.465 < 2.22e-16 < 2.22e-16 
KS-Test: Statistic 0.208 0.322 0.095 0.423 0.304 
KS-Test: P-Value 0.000 < 2.22e-16 0.007 < 2.22e-16 < 2.22e-16 
BEST: Stat Diff -3942986 -132312 80 -12.496 -12.174 
BEST: Sigma Diff -6758625 -193481 -360 -5.398 2.369 
BEST: Effect Size -0.541 -0.912 0.043 -1.895 -0.722 
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Table 64. CEM post-match statistics for restricted bridges 

All New Bridges Post-match Statistics 

Variables Land Area Water Area 
Tract 
Population 

Total 
Bridges 

Treatment 
Time 

Treated Sample Size 216 216 216 216 216 
Control Sample Size 6739 6739 6739 6739 6739 

statistic -
20573679 -242527 -421.703 -11.872 -6.097 

type (diff) (diff) (diff) (diff) (diff) 
L1 0.000 0.000 0.000 0.624 0.165 
min -463151 0.000 0.000 0.000 0.000 
25% -971009 -2773.000 -86.000 -6.000 -10.000 

50% -2862736 -
104010.000 -623.000 -11.000 -10.000 

75% -
17348089 -300766 -663.000 -16.000 -10.000 

max 8494504 -327394 -700.000 1.000 0.000 
Overall Multivariate 
Imbalance Measure (L1) 0.993 0.993 0.993 0.993 0.993 

Local Common Support 
(%) 0.530 0.530 0.530 0.530 0.530 

T-Test: Statistic 0.185 0.209 0.177 -0.703 0.000 
T-Test: P-Value 0.853 0.835 0.859 0.482 1.000 
KS-Test: Statistic 0.178 0.129 0.069 0.178 0.000 
KS-Test: P-Value 0.081 0.373 0.969 0.081 1.000 
BEST: Stat Diff -3297184 -55138.430 -2936 -10.891 -14.123 
BEST: Sigma Diff -4001057 -86201.992 -615 -5.829 -6.035 
BEST: Effect Size -1.073 -0.871 -3.572 -2.515 -1.884 
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Table 65. CEM pre-match statistics for non-restricted bridges 

All New Bridges Pre-match Statistics 

Variables Land Area 
Water 
Area 

Tract 
Population 

Total 
Bridges 

Treatment 
Time 

Treated Sample Size 4240 4240 4240 4240 4240 
Control Sample Size 8628 8628 8628 8628 8628 

statistic -
21000021 -217380 -242.186 -10.254 -9.167 

type (diff) (diff) (diff) (diff) (diff) 
L1 0.000 0.000 0.000 0.458 0.229 
min -121572 0.000 0.000 0.000 0.000 
25% -2341801 0.000 -187.000 -5.000 -10.000 

50% -
10055025 -99077 -351 -10 -10 

75% -
44677997 -387943 -371 -15 -10 

max 51715434 12236365 -256 41 0 
Overall Multivariate 
Imbalance Measure 0.816 0.816 0.816 0.816 0.816 

Local Common Support 
(%) 8.553 8.553 8.553 8.553 8.553 

T-Test: Statistic -13.173 -7.542 -7.412 -35.394 -27.696 

T-Test: P-Value < 2.22e-
16 0.000 0.000 < 2.22e-16 < 2.22e-16 

KS-Test: Statistic 0.322 0.250 0.088 0.465 0.229 

KS-Test: P-Value < 2.22e-
16 

< 2.22e-
16 < 2.22e-16 < 2.22e-16 < 2.22e-16 

BEST: Stat Diff -5677023 -41670 -251 -9.333 -9.197 
BEST: Sigma Diff -8243709 -90122 -157 -5.524 0.621 
BEST: Effect Size -0.791 -0.642 -0.150 -1.843 -0.520 
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Table 66. CEM post-match statistics for non-restricted bridges 

All New Bridges Post-match Statistics 

Variables Land Area 
Water 
Area 

Tract 
Population 

Total 
Bridges 

Treatment 
Time 

Treated Sample Size 2952 2952 2952 2952 2952 
Control Sample Size 7406 7406 7406 7406 7406 
statistic -8637346 -98227 -134.606 -5.977 -6.616 
type (diff) (diff) (diff) (diff) (diff) 
L1 0.000 0.000 0.000 0.503 0.175 
min -121572 0.000 0.000 0.000 0.000 
25% -1388822 0.000 -136.000 -4.000 -10.000 

50% -4297392 -
27974.000 -242.000 -7.000 0.000 

75% -
12755394 -145372 -159.000 -9.000 0.000 

max 7833782 72667 496.000 2.000 0.000 
Overall Multivariate 
Imbalance Measure (L1) 0.868 0.868 0.868 0.868 0.868 

Local Common Support 
(%) 7.234 7.234 7.234 7.234 7.234 

T-Test: Statistic 1.584 -1.299 0.346 -1.658 0.000 
T-Test: P-Value 0.113 0.194 0.729 0.097 1.000 
KS-Test: Statistic 0.099 0.079 0.030 0.139 0.000 
KS-Test: P-Value 0.705 0.909 1.000 0.286 1.000 
BEST: Stat Diff -3696689 -9494.779 -2325 -6.764 -11.786 

BEST: Sigma Diff -3550751 -
27138.878 -413 -3.641 -4.974 

BEST: Effect Size -1.282 -0.482 -2.952 -2.390 -1.206 
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Table 67. CEM pre-match statistics for all bridges  

All New Bridges CEM Pre-match Statistics 

Variables Land Area Water Area 
Tract 
Population Total Bridges 

Treatment 
Time 

Treated Sample Size 8340 8340 8340 8340 8340 
Control Sample Size 4528 4528 4528 4528 4528 
statistic 52774263 598331 237.493 14.620 13.445 
type (diff) (diff) (diff) (diff) (diff) 
L1 0.000 0.000 0.000 0.689 0.336 
min 121572 0.000 0.000 0.000 0.000 
25% 3063833 0.000 223.000 4.000 20.000 
50% 13727566 93310 384 10 20 
75% 60877935 510717 464 20 10 
max 980935185 11688321 256 125 0 
Overall Multivariate 
Imbalance Measure 0.811 0.811 0.811 0.811 0.811 
Local Common 
Support (%) 7.078 7.078 7.078 7.078 7.078 
T-Test: Statistic -50.129 -25.765 -7.885 -80.600 -42.074 
T-Test: P-Value < 2.22e-16 < 2.22e-16 0.000 < 2.22e-16 < 2.22e-16 
KS-Test: Statistic 0.657 0.437 0.099 0.756 0.336 
KS-Test: P-Value < 2.22e-16 < 2.22e-16 < 2.22e-16 < 2.22e-16 < 2.22e-16 
BEST: Stat Diff -7528355 -36954 -259 -8.262 -13.498 
BEST: Sigma Diff -11450446 -84422 -190 -6.227 2.429 
BEST: Effect Size -0.889 -0.607 -0.160 -1.872 -0.800 
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Table 68. CEM post-match statistics for all bridges  

All New Bridges CEM Post-match Statistics 

Variables Land Area Water Area 
Tract 
Population Total Bridges 

Treatment 
Time 

Treated Sample Size 2305 2305 2305 2305 2305 
Control Sample Size 4320 4320 4320 4320 4320 
statistic 1505654 24265 -21.416 2.018 5.115 
type (diff) (diff) (diff) (diff) (diff) 
L1 0.000 0.000 0.000 0.598 0.100 
min 121572 0.000 0.000 0.000 0.000 
25% 852300 0.000 66.000 1.000 10.000 
50% 1418126 0.000 34.000 2.000 10.000 
75% 1944250 38284 34.000 3.000 0.000 
max -3173709 327394 -90.000 0.000 0.000 
Overall Multivariate 
Imbalance Measure 
(L1) 0.923 0.923 0.923 0.923 0.923 
Local Common 
Support (%) 4.907 4.907 4.907 4.907 4.907 
T-Test: Statistic -1.803 0.262 0.125 -1.283 0.000 
T-Test: P-Value 0.071 0.793 0.900 0.199 1.000 
KS-Test: Statistic 0.158 0.040 0.040 0.168 0.000 
KS-Test: P-Value 0.159 1.000 1.000 0.114 1.000 
BEST: Stat Diff -1924188 -1.570 -2121 -2.155 -9.590 
BEST: Sigma Diff -817346 -1.599 -404 -1.078 -6.486 
BEST: Effect Size -2.607 -0.005 -2.863 -2.806 -1.011 
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Table 69. CEM pre-match statistics for five types of bridges 

 

  

Variables

Treated 
Sample 

Size

Control 
Sample 

Size statistic type L1 min 25% 50% 75% max

Overall 
Multivariate 
Imbalance 
Measure

Local 
Common 

Support (%)
T-Test: 

Statistic
T-Test: 
P-Value

KS-Test: 
Statistic

KS-Test: 
P-Value

Land Area 84 12784 -2.29E+06 (diff) 5.55E-17 -6.23E+05 -2.99E+05 -4.56E+05 -3.11E+07 7.84E+08 9.83E-01 5.43E-01 -3.37E-01 7.37E-01 1.50E-01 4.59E-02
Water Area 84 12784 -6.92E-02 (diff) 5.55E-17 0.00E+00 -1.69E-03 -1.38E-02 -1.60E-01 3.49E-01 9.83E-01 5.43E-01 -4.71E+00 9.63E-06 2.99E-01 6.36E-07
Population Density 84 12784 1.08E+03 (diff) 5.55E-17 0.00E+00 7.00E+01 6.20E+02 9.11E+02 2.04E+04 9.83E-01 5.43E-01 8.93E+00 4.29E-14 1.98E-01 2.79E-03
Total Bridges 84 12784 -6.61E+00 (diff) 4.28E-01 0.00E+00 -6.00E+00 -8.00E+00 -9.00E+00 8.20E+01 9.83E-01 5.43E-01 -4.24E+00 5.72E-05 4.60E-01 8.88E-16
Time Period 84 12784 -8.76E+00 (diff) 2.19E-01 -1.00E+01 -1.00E+01 0.00E+00 -1.00E+01 0.00E+00 9.83E-01 5.43E-01 -5.36E+00 7.05E-07 2.19E-01 6.72E-04

Land Area 244 12624 -2.93E+07 (diff) 0.00E+00 -4.63E+05 -2.09E+06 -1.17E+07 -6.69E+07 6.21E+08 9.55E-01 1.71E+00 -4.80E+00 2.69E-06 2.47E-01 3.76E-13
Water Area 244 12624 -2.70E-02 (diff) 0.00E+00 0.00E+00 -1.29E-03 -6.09E-03 -1.08E-02 3.50E-01 9.55E-01 1.71E+00 -4.18E+00 4.10E-05 2.94E-01 < 2.22e-16
Population Density 244 12624 1.34E+03 (diff) 0.00E+00 0.00E+00 7.49E+01 6.23E+02 1.54E+03 2.17E+04 9.55E-01 1.71E+00 2.18E+01 < 2.22e-16 2.65E-01 4.89E-15
Total Bridges 244 12624 -1.31E+01 (diff) 4.16E-01 0.00E+00 -9.00E+00 -1.50E+01 -1.90E+01 5.60E+01 9.55E-01 1.71E+00 -1.12E+01 < 2.22e-16 4.36E-01 < 2.22e-16
Time Period 244 12624 -1.26E+01 (diff) 3.14E-01 0.00E+00 -2.00E+01 -1.00E+01 -1.00E+01 0.00E+00 9.55E-01 1.71E+00 -1.21E+01 < 2.22e-16 3.14E-01 < 2.22e-16

Land Area 2840 10028 -1.56E+07 (diff) 5.55E-17 -1.22E+05 -2.27E+06 -1.05E+07 -3.65E+07 3.21E+08 7.76E-01 1.31E+01 -8.92E+00 < 2.22e-16 2.89E-01 < 2.22e-16
Water Area 2840 10028 -1.35E-02 (diff) 5.55E-17 0.00E+00 -1.73E-04 -5.50E-03 -9.71E-03 1.58E-01 7.76E-01 1.31E+01 -9.01E+00 < 2.22e-16 2.34E-01 < 2.22e-16
Population Density 2840 10028 1.46E+03 (diff) 5.55E-17 0.00E+00 6.97E+01 8.29E+02 1.89E+03 8.56E+03 7.76E-01 1.31E+01 3.45E+01 < 2.22e-16 2.84E-01 < 2.22e-16
Total Bridges 2840 10028 -1.06E+01 (diff) 4.64E-01 0.00E+00 -6.00E+00 -1.10E+01 -1.50E+01 4.70E+01 7.76E-01 1.31E+01 -3.10E+01 < 2.22e-16 4.62E-01 < 2.22e-16
Time Period 2840 10028 -1.17E+01 (diff) 2.92E-01 0.00E+00 -2.00E+01 -1.00E+01 -1.00E+01 0.00E+00 7.76E-01 1.31E+01 -3.35E+01 < 2.22e-16 2.92E-01 < 2.22e-16

Land Area 2152 10716 -2.96E+07 (diff) 0.00E+00 -1.22E+05 -4.25E+06 -1.64E+07 -6.22E+07 3.02E+08 7.86E-01 1.11E+01 -1.36E+01 < 2e-16 3.67E-01 < 2.22e-16
Water Area 2152 10716 -2.43E-03 (diff) 0.00E+00 0.00E+00 -2.27E-04 -4.51E-03 -3.04E-03 1.88E-01 7.86E-01 1.11E+01 -1.74E+00 8.20E-02 2.28E-01 < 2.22e-16
Population Density 2152 10716 1.64E+03 (diff) 0.00E+00 0.00E+00 9.66E+01 9.14E+02 2.15E+03 8.56E+03 7.86E-01 1.11E+01 4.10E+01 < 2e-16 3.63E-01 < 2.22e-16
Total Bridges 2152 10716 -1.34E+01 (diff) 4.78E-01 0.00E+00 -8.00E+00 -1.40E+01 -1.90E+01 4.10E+01 7.86E-01 1.11E+01 -3.21E+01 < 2e-16 4.77E-01 < 2.22e-16
Time Period 2152 10716 -4.55E+00 (diff) 1.17E-01 0.00E+00 -1.00E+01 0.00E+00 0.00E+00 0.00E+00 7.86E-01 1.11E+01 -9.99E+00 < 2e-16 1.15E-01 < 2.22e-16

Land Area 2636 10232 -2.69E+07 (diff) 5.55E-17 -2.62E+05 -2.96E+06 -1.38E+07 -5.15E+07 5.17E+07 7.58E-01 1.28E+01 -1.32E+01 < 2.22e-16 3.29E-01 < 2.22e-16
Water Area 2636 10232 -8.36E-03 (diff) 5.55E-17 0.00E+00 -1.64E-04 -4.79E-03 -8.65E-03 1.58E-01 7.58E-01 1.28E+01 -5.76E+00 8.99E-09 2.26E-01 < 2.22e-16
Population Density 2636 10232 1.59E+03 (diff) 5.55E-17 0.00E+00 9.55E+01 9.28E+02 2.07E+03 8.56E+03 7.58E-01 1.28E+01 3.88E+01 < 2.22e-16 3.30E-01 < 2.22e-16
Total Bridges 2636 10232 -1.12E+01 (diff) 4.43E-01 0.00E+00 -7.00E+00 -1.30E+01 -1.60E+01 4.10E+01 7.58E-01 1.28E+01 -3.14E+01 < 2.22e-16 4.47E-01 < 2.22e-16
Time Period 2636 10232 -5.29E+00 (diff) 1.32E-01 0.00E+00 -1.00E+01 0.00E+00 0.00E+00 0.00E+00 7.58E-01 1.28E+01 -1.35E+01 < 2.22e-16 1.32E-01 < 2.22e-16

New Mini Bridges

New Low Bridges

New Medium Bridges

New High Bridges

Pre-match Statistics

New Super Bridges
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Table 70. CEM post-match statistics for five types of bridges 

 

 

Variables

Treated 
Sample 

Size

Control 
Sample 

Size statistic type L1 min 25% 50% 75% max

Overall 
Multivariate 
Imbalance 
Measure

Local 
Common 

Support (%)
T-Test: 

Statistic
T-Test: 
P-Value

KS-Test: 
Statistic

KS-Test: 
P-Value

Land Area 42 617 -3.71E+06 (diff) 0.00E+00 -4.97E+05 -3.15E+05 4.66E+05 -1.10E+06 2.73E+06 9.87E-01 1.62E+00 1.07E-01 0.92 2.87E-01 0.00
Water Area 42 617 -1.78E+05 (diff) 0.00E+00 0.00E+00 0.00E+00 -1.04E+05 -4.53E+05 1.25E+05 9.87E-01 1.62E+00 -4.77E-02 0.96 1.19E-01 0.47
Population Density 42 617 1.41E+03 (diff) 0.00E+00 0.00E+00 1.04E+03 2.30E+03 1.71E+03 1.18E+02 9.87E-01 1.62E+00 1.13E-01 0.91 7.92E-02 0.91
Total Bridges 42 617 -4.57E+00 (diff) 3.56E-01 0.00E+00 -5.00E+00 -4.00E+00 -4.00E+00 0.00E+00 9.87E-01 1.62E+00 -5.91E-01 0.55 1.68E-01 0.11
Time Period 42 617 -4.27E+00 (diff) 1.41E-01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 9.87E-01 1.62E+00 0.00E+00 1.00 0.00E+00 1.00

Land Area 166 6052 -2.17E+07 (diff) 0.00E+00 -4.63E+05 -1.93E+06 -5.74E+06 -1.74E+07 8.49E+06 9.91E-01 4.72E-01 7.41E-02 0.94 1.58E-01 0.16
Water Area 166 6052 -2.77E+05 (diff) 0.00E+00 0.00E+00 -5.23E+03 -8.27E+04 -3.29E+05 4.99E+05 9.91E-01 4.72E-01 5.45E-01 0.59 1.29E-01 0.37
Population Density 166 6052 -7.30E+02 (diff) 0.00E+00 0.00E+00 -3.37E+02 -9.14E+02 -1.02E+03 -2.47E+02 9.91E-01 4.72E-01 1.63E-01 0.87 5.94E-02 0.99
Total Bridges 166 6052 -1.24E+01 (diff) 6.31E-01 0.00E+00 -8.00E+00 -1.30E+01 -1.80E+01 2.00E+00 9.91E-01 4.72E-01 -4.81E-01 0.63 1.39E-01 0.29
Time Period 166 6052 -6.02E+00 (diff) 1.13E-01 0.00E+00 -1.00E+01 -1.00E+01 -1.00E+01 0.00E+00 9.91E-01 4.72E-01 0.00E+00 1.00 0.00E+00 1.00

Land Area 1989 7897 1.06E+07 (diff) 5.55E-17 1.22E+05 1.41E+06 4.52E+06 1.40E+07 -1.85E+07 9.10E-01 5.52E+00 1.61E+00 0.11 9.90E-02 0.71
Water Area 1989 7897 1.20E+05 (diff) 5.55E-17 0.00E+00 0.00E+00 4.62E+04 1.89E+05 -8.19E+05 9.10E-01 5.52E+00 -8.97E-01 0.37 7.92E-02 0.91
Population Density 1989 7897 1.24E+02 (diff) 5.55E-17 0.00E+00 1.55E+02 1.63E+02 1.62E+02 -1.28E+02 9.10E-01 5.52E+00 2.17E-01 0.83 1.98E-02 1.00
Total Bridges 1989 7897 7.32E+00 (diff) 5.36E-01 0.00E+00 5.00E+00 8.00E+00 1.10E+01 -1.00E+00 9.10E-01 5.52E+00 -1.21E+00 0.23 1.19E-01 0.47
Time Period 1989 7897 8.66E+00 (diff) 2.34E-01 0.00E+00 2.00E+01 1.00E+01 1.00E+01 0.00E+00 9.10E-01 5.52E+00 0.00E+00 1.00 0.00E+00 1.00

Land Area 1472 8890 -1.53E+07 (diff) 1.11E-16 -1.22E+05 -2.24E+06 -6.99E+06 -2.08E+07 -8.22E+06 9.23E-01 3.38E+00 1.43E+00 0.15 1.19E-01 0.47
Water Area 1472 8890 -1.48E+05 (diff) 1.11E-16 0.00E+00 0.00E+00 -5.80E+04 -1.89E+05 9.80E+05 9.23E-01 3.38E+00 -1.36E-01 0.89 3.96E-02 1.00
Population Density 1472 8890 -1.64E+02 (diff) 1.11E-16 0.00E+00 -1.57E+02 -2.13E+02 -1.74E+02 3.77E+02 9.23E-01 3.38E+00 2.65E-01 0.79 2.97E-02 1.00
Total Bridges 1472 8890 -8.19E+00 (diff) 5.21E-01 0.00E+00 -6.00E+00 -9.00E+00 -1.10E+01 3.00E+00 9.23E-01 3.38E+00 -6.80E-01 0.50 6.93E-02 0.97
Time Period 1472 8890 -2.26E+00 (diff) 7.02E-02 0.00E+00 0.00E+00 -1.00E+01 0.00E+00 0.00E+00 9.23E-01 3.38E+00 1.25E-15 1.00 0.00E+00 1.00

Land Area 1708 8310 -1.17E+07 (diff) 0.00E+00 -2.62E+05 -1.78E+06 -5.10E+06 -1.73E+07 3.73E+06 9.01E-01 5.30E+00 1.16E+00 0.25 8.91E-02 0.82
Water Area 1708 8310 -1.11E+05 (diff) 0.00E+00 0.00E+00 0.00E+00 -4.01E+04 -1.72E+05 7.27E+04 9.01E-01 5.30E+00 -1.47E+00 0.14 7.92E-02 0.91
Population Density 1708 8310 -2.26E+02 (diff) 0.00E+00 0.00E+00 -1.76E+02 -3.38E+02 -2.60E+02 -2.58E+02 9.01E-01 5.30E+00 2.13E-01 0.83 3.96E-02 1.00
Total Bridges 1708 8310 -7.03E+00 (diff) 4.97E-01 0.00E+00 -4.00E+00 -8.00E+00 -1.00E+01 2.00E+00 9.01E-01 5.30E+00 -1.05E+00 0.29 1.09E-01 0.59
Time Period 1708 8310 -3.36E+00 (diff) 6.91E-02 0.00E+00 -1.00E+01 0.00E+00 0.00E+00 0.00E+00 9.01E-01 5.30E+00 0.00E+00 1.00 0.00E+00 1.00

Post-match Statistics

New Mini Bridges

New Low Bridges

New Medium Bridges

New High Bridges

New Super Bridges
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Section J Dijkstra’s algorithm 

Dijkstra’s shortest path algorithm was first published in 1959. The algorithm finds the 

shortest path between nodes in a graph. A common variant as employed in this paper fixes one 

node as the source and calculates distances from that node. (“Algorithms used by the ArcGIS 

Network Analyst extension—Help | ArcGIS Desktop” n.d.) 

Pseudocode (Yan 2013) 

𝑑𝑑𝑙𝑙𝑑𝑑𝑙𝑙[𝑑𝑑] ← 0     (distance to source vertex is zero) 

for all 𝑣𝑣 ∈ 𝑉𝑉 − 𝑑𝑑 

 do 𝑑𝑑𝑙𝑙𝑑𝑑𝑙𝑙[𝑣𝑣] ← ∞  (set all other distances to infinity) 

𝑆𝑆 ←  ∅     (S, the set of visited vertices is initially empty) 

𝑄𝑄 ←  𝑉𝑉     (Q, the queue initially contains all vertices) 

while 𝑄𝑄 ≠ ∅    (while the queue is not empty) 

do 𝑢𝑢 ← 𝑚𝑚𝑙𝑙𝑚𝑚𝑑𝑑𝑙𝑙𝑑𝑑𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚𝑒𝑒(𝑄𝑄,𝑑𝑑𝑙𝑙𝑑𝑑𝑙𝑙) (select the element of Q with the min. distance) 

 𝑆𝑆 ←  𝑆𝑆 ∪ {𝑢𝑢}   (add u to list of visited vertices) 

 for all 𝑣𝑣 ∈ 𝑚𝑚𝑒𝑒𝑙𝑙𝑙𝑙ℎ𝑏𝑏𝑙𝑙𝑏𝑏𝑑𝑑[𝑢𝑢] 

  do if 𝑑𝑑𝑙𝑙𝑑𝑑𝑙𝑙[𝑣𝑣] > 𝑑𝑑𝑙𝑙𝑑𝑑𝑙𝑙[𝑢𝑢] + 𝑤𝑤(𝑢𝑢, 𝑣𝑣)  (if new shortest path found) 

   then 𝑑𝑑[𝑣𝑣] ← 𝑑𝑑[𝑢𝑢] + 𝑤𝑤(𝑢𝑢, 𝑣𝑣)  (set new value of shortest path) 

return 𝑑𝑑𝑙𝑙𝑑𝑑𝑙𝑙  
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Section K CEM algorithm 

Coarsened exact matching is a data preprocessing method. The goal of the algorithm is to 

minimize the differences between a treatment and control group based on pre-treatment 

covariates. (Iacus et al. 2009) To do this, the authors use a set of matching controls that are 

designed to rule out other reasons for bridge placement beyond the socioeconomic variables of 

interest. These include physical impediments and terrain (water and land area), demand 

(population), overall construction trends (total bridges), and time (time period) as pre-treatment 

covariates. With the exception of time period, these four variables were found to have high 

correlation with most of the independent variables used in this analysis. These variables were 

selected in order to find tracts that were similar in geophysical, population, and infrastructure. By 

matching on these similarities, the authors goal is to minimize differences between the control and 

treatment groups. The authors then contrast the treatment and control groups before and after the 

match was conducted. The t-tests and ks-tests were no longer significant, and the Bayesian tests 

also saw a move toward a more unified distribution which indicates greater treatment-control 

group balance. 

Algorithm Steps 

“1. Temporarily coarsen each control variable in X as much as you are willing, for 

the purposes of matching. For example, years of education might be coarsened into 

grade school, middle school, high school, college, graduate school. Most researchers 

are intimately familiar with the concept and practice of coarsening, as it is widely 

used in applied data analyses in many fields, although unlike its present use 

coarsening for data analysis involves a permanent removal of information from the 

analysis and ultimate estimates. 

“2. Sort all units into strata, each of which has the same values of the coarsened X. 
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“3. Prune from the data set the units in any stratum that do not include at least one 

treated and one control unit.” (Iacus et al. 2009) 

Notation 

The following symbols are used in this paper: 

C = a vector of lagged control variables; 

d = a dichotomous variable designating the interaction of the group and treatment variables; 

e = the error term; 

f = a time-invariant tract fixed effect; 

g = a dummy variable designating the tract as receiving a new bridge at any time (group term); 

i = the tract index; 

k = the index for a particular variable; 

logit(p(x)) = the probability that a variable designating a new bridge was built in the preceding 10 

years; 

t = the year index; 

X = a vector of variables of social interest; 

x = a dummy variable designating the tract received a new bridge treatment (treatment term); 

y = either a dichotomous variable designating a new restrictive bridge was built in the preceding 10 

years or the count of such bridges; 

z = a social equity variable of interest; 

𝛽𝛽0 = the intercept; 

𝛽𝛽1 = the event study coefficient for the treatment and group interaction term; 

𝛽𝛽2 = the coefficient for the treatment term; 

𝛽𝛽3 = the coefficient for the group term; 

𝜸𝜸𝒌𝒌 = a vector of control variable coefficients; 

𝛿𝛿 = a fixed effect for each census year; 
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𝜆𝜆 = Lagrange multiplier that balances the tradeoff between the squared error loss and the L1 

penalty
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Appendix II:  Methodological Framework and Feasibility Study to Assess Social Equity Impacts of the Built 

Environment Supplemental Information 

Section A Correlation Matrix and Graphics 

Table 71. Correlation matrix for all variables 
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newbridge 1.00 0.59 0.11 0.82 0.50 0.11 0.06 0.15 0.07 -0.10 -0.05 -0.03 -0.07 -0.07 -0.07 -0.13 0.08 -0.04 -0.08 0.01 -0.01 -0.04 -0.05 -0.11 -0.02 -0.05 0.02 -0.02 0.01 0.04 0.00 -0.02 -0.03 -0.04 -0.08 -0.08 -0.08 -0.01 0.02 0.01 -0.06
newbridge.over14 0.59 1.00 0.14 0.66 0.86 0.14 0.02 0.04 0.03 -0.04 -0.04 0.00 -0.04 -0.04 -0.02 -0.05 0.02 -0.03 -0.02 0.00 -0.03 -0.05 -0.06 -0.01 0.02 -0.04 -0.01 -0.01 -0.01 -0.01 0.00 0.01 -0.03 -0.03 -0.02 -0.02 -0.02 -0.01 -0.01 0.00 -0.06
newbridge.under14.mod 0.11 0.14 1.00 0.24 0.16 1.00 0.00 0.01 -0.02 0.01 -0.01 -0.01 -0.01 -0.01 -0.03 -0.01 -0.01 -0.02 -0.02 -0.01 -0.02 -0.01 -0.02 -0.01 0.01 -0.03 -0.03 -0.02 -0.01 0.00 -0.01 0.01 -0.02 -0.03 0.03 0.00 0.00 0.00 -0.04 0.00 -0.03
bridge.new.total 0.82 0.66 0.24 1.00 0.77 0.24 0.04 0.11 0.04 -0.08 -0.04 -0.02 -0.06 -0.07 -0.07 -0.11 0.05 -0.04 -0.07 0.00 -0.03 -0.05 -0.06 -0.09 0.00 -0.07 0.00 -0.02 0.00 0.02 0.01 0.00 -0.05 -0.06 -0.06 -0.07 -0.07 -0.01 0.00 0.01 -0.07
bridge.new.over14 0.50 0.86 0.16 0.77 1.00 0.16 0.01 0.02 0.02 -0.04 -0.03 0.01 -0.04 -0.04 -0.03 -0.04 0.01 -0.04 -0.02 -0.01 -0.04 -0.06 -0.06 -0.02 0.02 -0.05 -0.02 -0.01 -0.01 -0.01 0.01 0.02 -0.04 -0.04 -0.01 -0.02 -0.02 -0.01 -0.02 0.00 -0.06
bridge.new.under14.mod 0.11 0.14 1.00 0.24 0.16 1.00 0.00 0.01 -0.02 0.01 -0.01 -0.01 -0.01 -0.01 -0.03 -0.01 -0.01 -0.02 -0.02 -0.01 -0.02 -0.01 -0.02 -0.01 0.01 -0.03 -0.03 -0.02 -0.01 0.00 -0.01 0.01 -0.02 -0.03 0.03 0.00 0.00 0.00 -0.04 0.00 -0.03
rur10m 0.06 0.02 0.00 0.04 0.01 0.00 1.00 0.28 0.05 -0.05 -0.01 -0.02 -0.01 -0.01 -0.03 -0.08 0.10 -0.01 -0.04 0.05 0.00 -0.01 -0.02 -0.08 -0.03 -0.01 0.04 -0.04 0.01 0.10 0.00 -0.01 0.02 0.01 -0.06 -0.06 -0.05 0.08 0.01 -0.01 -0.03
rur4m 0.15 0.04 0.01 0.11 0.02 0.01 0.28 1.00 0.10 -0.15 -0.06 -0.02 -0.07 -0.04 -0.06 -0.25 0.22 -0.06 -0.17 0.06 0.08 0.01 -0.01 -0.21 -0.11 -0.04 0.08 0.00 0.03 0.13 0.03 -0.01 0.00 -0.02 -0.21 -0.19 -0.16 0.05 0.06 0.06 -0.06
SHRWHTN.pct.lag 0.07 0.03 -0.02 0.04 0.02 -0.02 0.05 0.10 1.00 -0.77 -0.17 -0.08 -0.19 0.07 0.39 -0.51 0.63 -0.01 0.13 0.13 0.25 0.03 -0.15 -0.04 0.02 -0.02 0.41 0.25 0.32 0.17 0.10 -0.05 0.51 0.48 -0.44 -0.51 -0.34 0.02 0.08 -0.16 -0.04
SHRBLKN.pct.lag -0.10 -0.04 0.01 -0.08 -0.04 0.01 -0.05 -0.15 -0.77 1.00 0.21 0.02 0.08 0.06 -0.02 0.77 -0.36 0.25 0.23 0.24 -0.15 0.10 0.28 0.38 0.14 0.13 -0.14 -0.02 -0.16 -0.07 0.00 0.10 0.03 0.06 0.60 0.67 0.52 0.01 -0.07 -0.04 0.13
SHRAMIN.pct.lag -0.05 -0.04 -0.01 -0.04 -0.03 -0.01 -0.01 -0.06 -0.17 0.21 1.00 0.11 0.24 0.14 0.03 0.29 -0.16 0.17 0.08 0.02 0.11 0.09 0.14 0.05 -0.10 0.21 -0.03 -0.02 -0.01 0.01 -0.05 0.04 0.05 0.06 0.26 0.26 0.26 0.03 0.00 -0.03 0.27
SHRAPIN.pct.lag -0.03 0.00 -0.01 -0.02 0.01 -0.01 -0.02 -0.02 -0.08 0.02 0.11 1.00 0.13 0.20 0.31 0.07 -0.05 0.07 0.05 -0.13 0.20 0.17 0.21 0.13 -0.14 0.25 0.10 0.06 0.00 0.00 -0.03 0.04 0.08 0.09 0.17 0.03 0.10 0.08 0.00 -0.03 0.32
SHRHSPN.pct.lag -0.07 -0.04 -0.01 -0.06 -0.04 -0.01 -0.01 -0.07 -0.19 0.08 0.24 0.13 1.00 0.50 0.17 0.31 -0.08 0.22 0.12 0.20 0.04 0.01 0.05 0.10 0.08 0.07 -0.04 -0.02 0.06 0.11 -0.03 -0.01 0.03 0.05 0.39 0.42 0.26 0.04 -0.03 -0.03 0.19
OUTBORN.ihs.lag -0.07 -0.04 -0.01 -0.07 -0.04 -0.01 -0.01 -0.04 0.07 0.06 0.14 0.20 0.50 1.00 0.49 0.20 0.14 0.36 0.35 0.26 0.26 0.15 0.17 0.31 0.20 0.15 0.31 0.37 0.32 0.19 0.15 0.07 0.35 0.39 0.23 0.18 0.13 0.07 0.01 -0.01 0.18
FORBORN.ihs.lag -0.07 -0.02 -0.03 -0.07 -0.03 -0.03 -0.03 -0.06 0.39 -0.02 0.03 0.31 0.17 0.49 1.00 0.10 0.40 0.33 0.57 0.33 0.26 0.35 0.32 0.63 0.34 0.07 0.49 0.55 0.43 0.15 0.17 0.06 0.63 0.67 0.07 0.02 0.01 0.09 0.01 -0.22 0.08
FHHTOT.pct.lag -0.13 -0.05 -0.01 -0.11 -0.04 -0.01 -0.08 -0.25 -0.51 0.77 0.29 0.07 0.31 0.20 0.10 1.00 -0.42 0.37 0.37 0.26 0.04 0.12 0.26 0.38 0.12 0.27 -0.09 0.02 -0.06 -0.01 -0.04 0.05 0.16 0.21 0.80 0.85 0.69 0.03 -0.14 -0.11 0.36
MCWKID.pct.lag 0.08 0.02 -0.01 0.05 0.01 -0.01 0.10 0.22 0.63 -0.36 -0.16 -0.05 -0.08 0.14 0.40 -0.42 1.00 0.04 0.11 0.64 -0.06 -0.01 -0.08 0.12 0.17 -0.21 0.33 0.22 0.33 0.17 0.18 0.00 0.51 0.47 -0.38 -0.36 -0.34 -0.04 0.08 -0.15 -0.30
MHWKID.ihs.lag -0.04 -0.03 -0.02 -0.04 -0.04 -0.02 -0.01 -0.06 -0.01 0.25 0.17 0.07 0.22 0.36 0.33 0.37 0.04 1.00 0.47 0.34 0.32 0.27 0.33 0.27 0.17 0.30 0.23 0.40 0.46 0.15 0.12 0.08 0.31 0.37 0.25 0.31 0.26 0.07 0.01 -0.13 0.35
MHNKID.ihs.lag -0.08 -0.02 -0.02 -0.07 -0.02 -0.02 -0.04 -0.17 0.13 0.23 0.08 0.05 0.12 0.35 0.57 0.37 0.11 0.47 1.00 0.35 0.25 0.31 0.32 0.55 0.42 0.15 0.32 0.53 0.46 0.13 0.15 0.08 0.47 0.55 0.25 0.30 0.22 0.07 0.01 -0.19 0.17
CHILD.pct.lag 0.01 0.00 -0.01 0.00 -0.01 -0.01 0.05 0.06 0.13 0.24 0.02 -0.13 0.20 0.26 0.33 0.26 0.64 0.34 0.35 1.00 -0.19 -0.04 0.03 0.35 0.34 -0.14 0.15 0.16 0.32 0.11 0.14 0.01 0.48 0.48 0.17 0.31 0.10 -0.05 0.02 -0.17 -0.19
COMMUT2.lag -0.01 -0.03 -0.02 -0.03 -0.04 -0.02 0.00 0.08 0.25 -0.15 0.11 0.20 0.04 0.26 0.26 0.04 -0.06 0.32 0.25 -0.19 1.00 0.53 0.41 -0.03 -0.27 0.53 0.32 0.52 0.37 0.29 0.04 0.08 0.24 0.29 -0.04 -0.05 0.04 0.10 0.06 -0.09 0.62
COMMUT4.lag -0.04 -0.05 -0.01 -0.05 -0.06 -0.01 -0.01 0.01 0.03 0.10 0.09 0.17 0.01 0.15 0.35 0.12 -0.01 0.27 0.31 -0.04 0.53 1.00 0.79 0.34 -0.08 0.19 0.18 0.45 0.31 0.19 0.03 0.09 0.21 0.27 -0.06 0.07 0.04 0.06 0.03 -0.07 0.34
COMMUTX.lag -0.05 -0.06 -0.02 -0.06 -0.06 -0.02 -0.02 -0.01 -0.15 0.28 0.14 0.21 0.05 0.17 0.32 0.26 -0.08 0.33 0.32 0.03 0.41 0.79 1.00 0.35 -0.11 0.37 0.15 0.36 0.30 0.10 0.04 0.10 0.18 0.23 0.05 0.17 0.12 0.07 0.01 -0.06 0.44
TRVLPBN.ihs.lag -0.11 -0.01 -0.01 -0.09 -0.02 -0.01 -0.08 -0.21 -0.04 0.38 0.05 0.13 0.10 0.31 0.63 0.38 0.12 0.27 0.55 0.35 -0.03 0.34 0.35 1.00 0.39 -0.04 0.24 0.44 0.21 0.01 0.15 0.07 0.42 0.48 0.26 0.28 0.19 0.02 -0.07 -0.16 -0.07
EDUC8.lag -0.02 0.02 0.01 0.00 0.02 0.01 -0.03 -0.11 0.02 0.14 -0.10 -0.14 0.08 0.20 0.34 0.12 0.17 0.17 0.42 0.34 -0.27 -0.08 -0.11 0.39 1.00 -0.47 0.14 0.39 0.35 0.06 0.18 0.03 0.11 0.20 0.19 0.21 0.01 0.00 -0.01 -0.07 -0.50
EDUC15.pct.lag -0.05 -0.04 -0.03 -0.07 -0.05 -0.03 -0.01 -0.04 -0.02 0.13 0.21 0.25 0.07 0.15 0.07 0.27 -0.21 0.30 0.15 -0.14 0.53 0.19 0.37 -0.04 -0.47 1.00 0.18 0.11 0.10 0.04 -0.04 0.06 0.21 0.20 0.10 0.08 0.25 0.07 0.00 -0.07 0.87
WKHOME.ihs.lag 0.02 -0.01 -0.03 0.00 -0.02 -0.03 0.04 0.08 0.41 -0.14 -0.03 0.10 -0.04 0.31 0.49 -0.09 0.33 0.23 0.32 0.15 0.32 0.18 0.15 0.24 0.14 0.18 1.00 0.46 0.31 0.20 0.16 0.04 0.46 0.48 -0.10 -0.17 -0.08 0.10 0.03 -0.15 0.13
WRCNTYN.lag -0.02 -0.01 -0.02 -0.02 -0.01 -0.02 -0.04 0.00 0.25 -0.02 -0.02 0.06 -0.02 0.37 0.55 0.02 0.22 0.40 0.53 0.16 0.52 0.45 0.36 0.44 0.39 0.11 0.46 1.00 0.65 0.20 0.21 0.09 0.35 0.45 -0.04 -0.06 -0.08 0.08 0.02 -0.14 0.09
OCC5.lag 0.01 -0.01 -0.01 0.00 -0.01 -0.01 0.01 0.03 0.32 -0.16 -0.01 0.00 0.06 0.32 0.43 -0.06 0.33 0.46 0.46 0.32 0.37 0.31 0.30 0.21 0.35 0.10 0.31 0.65 1.00 0.16 0.16 0.06 0.27 0.35 -0.15 -0.09 -0.14 0.02 0.02 -0.11 0.11
OCC9.ihs.lag 0.04 -0.01 0.00 0.02 -0.01 0.00 0.10 0.13 0.17 -0.07 0.01 0.00 0.11 0.19 0.15 -0.01 0.17 0.15 0.13 0.11 0.29 0.19 0.10 0.01 0.06 0.04 0.20 0.20 0.16 1.00 0.13 0.08 0.18 0.20 0.01 0.00 0.00 0.01 0.06 -0.08 0.03
ARMFRM.ihs.lag 0.00 0.00 -0.01 0.01 0.01 -0.01 0.00 0.03 0.10 0.00 -0.05 -0.03 -0.03 0.15 0.17 -0.04 0.18 0.12 0.15 0.14 0.04 0.03 0.04 0.15 0.18 -0.04 0.16 0.21 0.16 0.13 1.00 0.14 0.13 0.15 -0.03 -0.05 -0.06 0.02 0.02 -0.05 -0.12
ARMFRF.ihs.lag -0.02 0.01 0.01 0.00 0.02 0.01 -0.01 -0.01 -0.05 0.10 0.04 0.04 -0.01 0.07 0.06 0.05 0.00 0.08 0.08 0.01 0.08 0.09 0.10 0.07 0.03 0.06 0.04 0.09 0.06 0.08 0.14 1.00 0.04 0.05 0.03 0.03 0.04 0.01 0.01 -0.02 0.03
AVHHIN.2010real.ihs.lag -0.03 -0.03 -0.02 -0.05 -0.04 -0.02 0.02 0.00 0.51 0.03 0.05 0.08 0.03 0.35 0.63 0.16 0.51 0.31 0.47 0.48 0.24 0.21 0.18 0.42 0.11 0.21 0.46 0.35 0.27 0.18 0.13 0.04 1.00 0.98 0.08 0.06 0.13 0.06 0.03 0.01 0.22
AVHHINN.2010real.ihs.lag -0.04 -0.03 -0.03 -0.06 -0.04 -0.03 0.01 -0.02 0.48 0.06 0.06 0.09 0.05 0.39 0.67 0.21 0.47 0.37 0.55 0.48 0.29 0.27 0.23 0.48 0.20 0.20 0.48 0.45 0.35 0.20 0.15 0.05 0.98 1.00 0.12 0.11 0.14 0.07 0.04 0.03 0.23
POVRATN.pct.lag -0.08 -0.02 0.03 -0.06 -0.01 0.03 -0.06 -0.21 -0.44 0.60 0.26 0.17 0.39 0.23 0.07 0.80 -0.38 0.25 0.25 0.17 -0.04 -0.06 0.05 0.26 0.19 0.10 -0.10 -0.04 -0.15 0.01 -0.03 0.03 0.08 0.12 1.00 0.83 0.68 0.06 -0.05 -0.09 0.21
WELFARN.pct.lag -0.08 -0.02 0.00 -0.07 -0.02 0.00 -0.06 -0.19 -0.51 0.67 0.26 0.03 0.42 0.18 0.02 0.85 -0.36 0.31 0.30 0.31 -0.05 0.07 0.17 0.28 0.21 0.08 -0.17 -0.06 -0.09 0.00 -0.05 0.03 0.06 0.11 0.83 1.00 0.67 0.03 -0.11 -0.08 0.21
VACHU.pct.lag -0.08 -0.02 0.00 -0.07 -0.02 0.00 -0.05 -0.16 -0.34 0.52 0.26 0.10 0.26 0.13 0.01 0.69 -0.34 0.26 0.22 0.10 0.04 0.04 0.12 0.19 0.01 0.25 -0.08 -0.08 -0.14 0.00 -0.06 0.04 0.13 0.14 0.68 0.67 1.00 0.22 -0.03 -0.09 0.35
VACOCC.lag -0.01 -0.01 0.00 -0.01 -0.01 0.00 0.08 0.05 0.02 0.01 0.03 0.08 0.04 0.07 0.09 0.03 -0.04 0.07 0.07 -0.05 0.10 0.06 0.07 0.02 0.00 0.07 0.10 0.08 0.02 0.01 0.02 0.01 0.06 0.07 0.06 0.03 0.22 1.00 0.02 -0.03 0.11
NEWHOUS.pct.lag 0.02 -0.01 -0.04 0.00 -0.02 -0.04 0.01 0.06 0.08 -0.07 0.00 0.00 -0.03 0.01 0.01 -0.14 0.08 0.01 0.01 0.02 0.06 0.03 0.01 -0.07 -0.01 0.00 0.03 0.02 0.02 0.06 0.02 0.01 0.03 0.04 -0.05 -0.11 -0.03 0.02 1.00 0.00 0.00
OWNRNT.pct.lag 0.01 0.00 0.00 0.01 0.00 0.00 -0.01 0.06 -0.16 -0.04 -0.03 -0.03 -0.03 -0.01 -0.22 -0.11 -0.15 -0.13 -0.19 -0.17 -0.09 -0.07 -0.06 -0.16 -0.07 -0.07 -0.15 -0.14 -0.11 -0.08 -0.05 -0.02 0.01 0.03 -0.09 -0.08 -0.09 -0.03 0.00 1.00 -0.04
YEAR -0.06 -0.06 -0.03 -0.07 -0.06 -0.03 -0.03 -0.06 -0.04 0.13 0.27 0.32 0.19 0.18 0.08 0.36 -0.30 0.35 0.17 -0.19 0.62 0.34 0.44 -0.07 -0.50 0.87 0.13 0.09 0.11 0.03 -0.12 0.03 0.22 0.23 0.21 0.21 0.35 0.11 0.00 -0.04 1.00



Machine Learning for Public Policy: Applications in Infrastructure and Air Pollution 

276 

 

Fig. 68. Restrictive bridge demographic variable scatterplots in lower left triangle. Diagonal 
contains distribution plots. Upper right triangle is correlation between variables. 
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Fig. 69. Restrictive bridge education variable scatterplots in lower left triangle. Diagonal contains 
distribution plots. Upper right triangle is correlation between variables. 
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Fig. 70. Restrictive bridge family variable scatterplots in lower left triangle. Diagonal contains 
distribution plots. Upper right triangle is correlation between variables. 
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Fig. 71. Restrictive bridge finance variable scatterplots in lower left triangle. Diagonal contains 
distribution plots. Upper right triangle is correlation between variables. 
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Fig. 72. Restrictive bridge transportation variable scatterplots in lower left triangle. Diagonal 
contains distribution plots. Upper right triangle is correlation between variables. 
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Fig. 73. Non-restrictive bridge demographic variable scatterplots in lower left triangle. Diagonal 
contains distribution plots. Upper right triangle is correlation between variables. 
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Fig. 74. Non-restrictive bridge education variable scatterplots in lower left triangle. Diagonal 
contains distribution plots. Upper right triangle is correlation between variables. 
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Fig. 75. Non-restrictive bridge family variable scatterplots in lower left triangle. Diagonal contains 
distribution plots. Upper right triangle is correlation between variables. 
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Fig. 76. Non-restrictive bridge housing variable scatterplots in lower left triangle. Diagonal contains 
distribution plots. Upper right triangle is correlation between variables. 
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Fig. 77. Non-restrictive bridge transportation variable scatterplots in lower left triangle. Diagonal 
contains distribution plots. Upper right triangle is correlation between variables. 
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Fig. 78. All new bridge demographic variable scatterplots in lower left triangle. Diagonal contains 
distribution plots. Upper right triangle is correlation between variables. 
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Fig. 79. All new bridge education variable scatterplots in lower left triangle. Diagonal contains 
distribution plots. Upper right triangle is correlation between variables. 
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Fig. 80. All new bridge family variable scatterplots in lower left triangle. Diagonal contains 
distribution plots. Upper right triangle is correlation between variables. 
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Fig. 81. All new bridge finance variable scatterplots in lower left triangle. Diagonal contains 
distribution plots. Upper right triangle is correlation between variables. 
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Fig. 82. All new bridge housing variable scatterplots in lower left triangle. Diagonal contains 
distribution plots. Upper right triangle is correlation between variables. 
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Fig. 83. All new bridge transportation variable scatterplots in lower left triangle. Diagonal contains 
distribution plots. Upper right triangle is correlation between variables. 
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Section B Variables 

Table 72. List of variables considered by LASSO and MB-search 

Variable Units 
Dummy variable denoting that a new bridge was built in this tract in the last 10 years binary 
Dummy variable denoting that a new bridge was built in this tract in any previous time period binary 
Dummy variable denoting that a new bridge was built in this tract in any time period binary 
Variable denoting how many years since a new bridge was built in this tract binary 
Total number of bridges in and near the tract built in the last 10 years # bridges 
Dummy variable denoting that a new bridge with an underclearance under 13.5 ft & over 9.8 ft was built in this tract 
in the last 10 years binary 
Dummy variable denoting that a new bridge with an underclearance under 13.5 ft & over 9.8 ft was built in this tract 
in this or a previous time period binary 
Dummy variable denoting that a new bridge with an underclearance under 13.5 ft & over 9.8 ft was built in this tract 
in any time period binary 
Dummy variable denoting that a new bridge with an underclearance under 13.5 ft & over 9.8 ft was built in this tract 
in the last 10 years binary 
Total number of bridges in and near the tract with underclearance under 13.5 ft & over 9.8 ft built in the last 10 
years #bridges 
Variable denoting how many years since a new restrictive bridge was built in this tract binary 
Dummy variable denoting that a new bridge with an underclearance over 14 ft was built in this tract in this or a 
previous time period binary 
Dummy variable denoting that a new bridge with an underclearance over 14 ft was built in this tract in any time 
period binary 
Variable denoting how many years since a new non-restrictive bridge was built in this tract binary 
Total number of bridges in and near the tract with underclearance over 13.5 ft built in the last 10 years # bridges 
Total number of bridges in and near the tract # bridges 
Year Year 
Area (Land) Square meters 
Area (Water) Square meters 
Total population # of people 
Rural indicator for tracts greater than 10M sq. meters rural tract 
Rural indicator for tracts greater than 4M sq. meters (median area) rural tract 
Lagged Total population # of people 



Machine Learning for Public Policy: Applications in Infrastructure and Air Pollution 

293 

Variable Units 
Lagged Log(1+ Total population) Log 
Lagged Inverse Hyperbolic Sine Transformation of Total population Inverse Hyperbolic Sine 
Lagged Tract Population Density (people per square kilometer) people/sq. km 
Lagged Inverse Hyperbolic Sine Transformation of Tract Population Density - people/sq. km Inverse Hyperbolic Sine 
Lagged Unweighted sample count of persons (long form) # of people 
Lagged Inverse hyperbolic sine transformation unweighted sample count of persons (long form) # of people 
Lagged Total number of non-White persons # of non-White persons 
Lagged Inverse Hyperbolic Sine Transformation of Total number of non-white persons Inverse Hyperbolic Sine 
Lagged Non-White percentage of total population % non-White minorities 
Lagged Total White population # of people 
Lagged Inverse Hyperbolic Sine Transformation of Total White population Inverse Hyperbolic Sine 
White percentage of total population % White population 
Lagged Total Black/African American population # of people 

Black/African American percentage of total population % 

Lagged Black/African American percentage of total population % Black population 
Lagged Total American Indian/Alaska Native population # of people 
Lagged Inverse Hyperbolic Sine Transformation of Total American Indian/Alaska Native population Inverse Hyperbolic Sine 

American Indian/Alaska Native percentage of total population % American Indian 
population 

Lagged Total Asian, Native Hawaiian and other Pacific Islander population # of people 
Lagged Inverse Hyperbolic Sine Transformation of Total Asian, Native Hawaiian and other Pacific Islander 
population Inverse Hyperbolic Sine 

Percentage Asian, Native Hawaiian and other Pacific Islander of total population % Asian population 
Lagged Total Hispanic/Latino population # of people 
Lagged Inverse Hyperbolic Sine Transformation of Total Hispanic/Latino population Inverse Hyperbolic Sine 

Percentage Hispanic/Latino of total population % Hispanic population 

Lagged Persons not of Hispanic/Latino origin # of people 
Lagged inverse hyperbolic sine transformed persons not of Hispanic/Latino origin # of people 
Lagged Native born population # of people 
Lagged Population born outside the U.S., not foreign born # of people 
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Variable Units 
inverse hyperbolic sine transformed population born outside the U.S., not foreign born # of people 
Lagged foreign-born population # of people 
Inverse Hyperbolic Sine Transformation of foreign-born population Inverse Hyperbolic Sine 
Lagged Percentage foreign-born of total population % foreign-born 
Lagged total households # of households 
Lagged inverse hyperbolic sine transformed total households # of households 
Lagged total persons 15+ years old # of people 
Lagged inverse hyperbolic sine transformed Total persons 15+ years old # of people 
Lagged Males 15+ years old # of people 
Lagged inverse hyperbolic sine transformed Males 15+ years old # of people 
Lagged Females 15+ years old # of people 
Lagged inverse hyperbolic sine transformed Females 15+ years old # of people 
Lagged Males 16-34 years old # of people 
Lagged inverse hyperbolic sine transformed males 16-34 years old # of people 
Lagged Females 16-34 years old # of people 
Lagged inverse hyperbolic sine transformed females 16-34 years old # of people 
Lagged Calculated total families and subfamilies from sub-categories # families 
Lagged Inverse Hyperbolic Sine Transformation of Total families and subfamilies Inverse Hyperbolic Sine 
Lagged Female-headed families with or without own children # female-headed families 
Lagged Inverse Hyperbolic Sine Transformation of Female-headed families with or without own children Inverse Hyperbolic Sine 
Percentage female-headed families with or without own children of total families and subfamilies % female-headed families 
Lagged Female-headed families with own children under 18 years old # of families 
Lagged Inverse Hyperbolic Sine Transformation of Female-headed families with own children under 18 years old Inverse Hyperbolic Sine 

Lagged Percentage female-headed families with own children under 18 years old of total families and subfamilies % female-headed families 
with kids 

Lagged Female-headed families without own children under 18 years old # of families 
Lagged Inverse Hyperbolic Sine Transformation Female-headed families without own children under 18 years old # of families 
Lagged Female-headed families and subfamilies with own children # of families 
Lagged Inverse Hyperbolic Sine Transformation Female-headed families and subfamilies with own children # of families 
Lagged Total families and subfamilies with own children # of families 
Lagged Inverse Hyperbolic Sine Transformation Total families and subfamilies with own children # of families 
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Variable Units 
Lagged Married-couple families with own children under 18 years old # of families 
Lagged Inverse Hyperbolic Sine Transformation of Married-couple families with own children under 18 years old Inverse Hyperbolic Sine 

Percentage married-couple families with own children under 18 years old of total families and subfamilies % married-couple families 
with kids 

Lagged Married-couple families without own children under 18 years old # of families 
Lagged Inverse Hyperbolic Sine Transformation Married-couple families without own children under 18 years old # of families 
Lagged Male-headed families with own children under 18 years old # of families 
Lagged Inverse Hyperbolic Sine Transformation of Male-headed families with own children under 18 years old Inverse Hyperbolic Sine 

Lagged Percentage male-headed families with own children under 18 years old of total families and subfamilies % male-headed families with 
kids 

Lagged Male-headed families without own children under 18 years old # of families 

Inverse Hyperbolic Sine Transformation Male-headed families without own children under 18 years old # of families 

Lagged Single parent families with own children under 18 years old (sum of male-headed and female-headed 
families with children) 

# single parent families with 
kids 

Lagged Inverse Hyperbolic Sine Transformation of Single parent families with own children under 18 years old Inverse Hyperbolic Sine 

Lagged Percentage single parent families with own children under 18 years old of total families and subfamilies % single parent families with 
kids 

Percentage Children under 18 years old of total population % children 
Children under 5 years old # of people 
Children under 5 years old # of people 
Lagged Workers 16+ years old traveling to work by car, truck, or van # of people 
Lagged Inverse Hyperbolic Sine Transformation of Workers 16+ years old traveling to work by car, truck, or van Inverse Hyperbolic Sine 
Workers 16+ years old with travel time to work less than 25 minutes # of people 
Lagged Inverse Hyperbolic Sine Transformation of Workers 16+ years old with travel time to work less than 25 
minutes or work at home Inverse Hyperbolic Sine 

Lagged Workers 16+ years old with travel time to work 25 to 44 minutes # of people 
Lagged Inverse Hyperbolic Sine Transformation of Workers 16+ years old with travel time to work 25 to 44 minutes Inverse Hyperbolic Sine 
Workers 16+ years old with travel time to work more than 45 minutes # of people 
Lagged Inverse Hyperbolic Sine Transformation of Workers 16+ years old with travel time to work more than 45 
minutes Inverse Hyperbolic Sine 

Lagged Workers 16+ years old traveling to work on public transportation (taxi not included) # of people 
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Variable Units 
Inverse Hyperbolic Sine Transformation of Workers 16+ years old traveling to work on public transportation (taxi 
not included) Inverse Hyperbolic Sine 

Lagged Workers 16+ years old working outside the home # of people 
Lagged Inverse Hyperbolic Sine Transformation Workers 16+ years old working outside the home # of people 
Lagged Workers 16+ years old traveling to work by walking or other means (includes taxi) # of people 
Lagged Inverse Hyperbolic Sine Transformation of Workers 16+ years old traveling to work by walking or other 
means (includes taxi) Inverse Hyperbolic Sine 

Persons 25+ years old who have completed 0-8 years of school # of people 

Lagged Inverse Hyperbolic Sine Transformation of Persons 25+ years old who have completed 0-8 years of school Inverse Hyperbolic Sine 
Lagged Percentage of Persons 25+ years old who have completed 0-8 years of school % of people 
Lagged Persons 25+ years old who have completed 9-12 years of school but no diploma # of people 
Lagged Inverse Hyperbolic Sine Transformation of Persons 25+ years old who have completed 9-12 years of school 
but no diploma Inverse Hyperbolic Sine 

Lagged Percentage of Persons 25+ years old who have completed 9-12 years of school but no diploma % of people 
Lagged Persons 25+ years old who have completed high school but no college # of people 
Lagged Inverse Hyperbolic Sine Transformation of Persons 25+ years old who have completed high school but no 
college Inverse Hyperbolic Sine 

Lagged Percentage of Persons 25+ years old who have completed high school but no college % of people 
Lagged Persons 25+ years old who have completed some college but no degree # of people 
Lagged Inverse Hyperbolic Sine Transformation of Persons 25+ years old who have completed some college but no 
degree Inverse Hyperbolic Sine 

Percentage of Persons 25+ years old who have completed some college but no degree % of people 

Lagged Persons 25+ years old who have an associate degree but no bachelor’s degree # of people 
Lagged Inverse Hyperbolic Sine Transformation of Persons 25+ years old who have an associate degree but no 
bachelor’s degree Inverse Hyperbolic Sine 

Lagged Percentage of Persons 25+ years old who have an associate degree but no bachelor’s degree % of people 
Lagged Persons 25+ years old who have a bachelors or graduate/professional degree # of people 
Lagged Inverse Hyperbolic Sine Transformation of Persons 25+ years old who have a bachelors or 
graduate/professional degree Inverse Hyperbolic Sine 

Lagged Percentage of Persons 25+ years old who have a bachelors or graduate/professional degree % of people 
Lagged Persons 25+ years old # of people 
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Variable Units 
Lagged Inverse Hyperbolic Sine Transformation Persons 25+ years old # of people 
Lagged Workers 16+ years old working at home # of people 
Inverse Hyperbolic Sine Transformation Workers 16+ years old working at home # of people 
Workers 16+ years old working within their county of residence # of people 
Workers 16+ years old working within their county of residence # of people 
Workers 16+ years old # of people 
Workers 16+ years old # of people 
Workers 16+ years old working within their metro area of residence # of people 
Workers 16+ years old working within their metro area of residence # of people 
Persons 16+ years old employed in manufacturing, transportation and public administration # of people 
Persons 16+ years old employed in manufacturing, transportation and public administration # of people 
Civilian employed persons 16+ years old # of people 
Civilian employed persons 16+ years old # of people 
Persons 16+ years old employed as operators, assemblers, transportation, material moving, nonfarm laborers, and 
service workers # of people 

Persons 16+ years old employed as operators, assemblers, transportation, material moving, nonfarm laborers, and 
service workers # of people 

Persons 16+ years old employed in professional and technical occupations # of people 
Persons 16+ years old employed in professional and technical occupations # of people 
Persons 16+ years old employed as executives, managers, and administrators (excl. farms) # of people 
Persons 16+ years old employed as executives, managers, and administrators (excl. farms) # of people 
Persons 16+ years old employed as sales workers # of people 
Persons 16+ years old employed as sales workers # of people 
Persons 16+ years old employed as administrative support and clerical workers # of people 
Persons 16+ years old employed as administrative support and clerical workers # of people 
Persons 16+ years old employed as precision production, craft, and repair workers # of people 
Persons 16+ years old employed as precision production, craft, and repair workers # of people 
Persons 16+ years old employed as operators, assemblers, transportation, and material moving workers # of people 
Persons 16+ years old employed as operators, assemblers, transportation, and material moving workers # of people 
Persons 16+ years old employed as nonfarm laborers # of people 
Persons 16+ years old employed as nonfarm laborers # of people 
Persons 16+ years old employed as service workers # of people 
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Variable Units 
Persons 16+ years old employed as service workers # of people 
Persons 16+ years old employed as farm workers or in forestry and fishing # of people 
Inverse hyperbolic sine transformation of persons 16+ years old employed as farm workers or in forestry and 
fishing # of people 

Lagged Persons 16+ years old employed in professional, managerial or administrative occupations (sum of OCC1, 
OCC2, & OCC4) 

# professionals, managers & 
admin 

Lagged Inverse Hyperbolic Sine Transformation of Persons 16+ years old employed in professional, managerial or 
administrative occupations Inverse Hyperbolic Sine 

Lagged Percentage persons employed in professional, managerial or administrative occupations of civilian employed 
persons 16+ years old 

% professionals, managers & 
admin 

Males 16+ years old in the armed forces # of people 
Males 16+ years old in the armed forces # of people 
Females 16+ years old in the armed forces # of people 
Females 16+ years old in the armed forces # of people 
Lagged Aggregate household income in past 12 months (2010 Constant $ US) 2010 Constant $ (US) 
Lagged Inverse Hyperbolic Sine Transformation of Aggregate household income in past 12 months (2010 Constant 
$ US) Inverse Hyperbolic Sine 

Lagged Average household income in past 12 months (2010 Constant $ US) 2010 Constant $ (US) 
Lagged Inverse Hyperbolic Sine Transformation of Average household income in past 12 months (2010 Constant 
$ US) Inverse Hyperbolic Sine 

Lagged Total persons below the poverty level in past 12 months # of people 
Lagged Inverse Hyperbolic Sine Transformation of Total persons below the poverty level in past 12 months Inverse Hyperbolic Sine 
Percentage of total persons below the poverty level in past 12 months % of people 
Total population with poverty status determined # of people 
Total population with poverty status determined # of people 
White persons below the poverty level in past 12 months # of people 
White persons below the poverty level in past 12 months # of people 
White population with poverty status determined # of people 
White population with poverty status determined # of people 
Lagged Households with public assistance inc. (incl. SSI) last year # of households 
Lagged Inverse Hyperbolic Sine Transformation of Households with public assistance inc. (incl. SSI) last year Inverse Hyperbolic Sine 
Percentage households with public assistance inc. (incl. SSI) last year of total households % welfare households 
Total households # of households 
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Variable Units 
Total households # of households 
Total nonelderly persons under 65 years old below the poverty level in the past 12 months # of people 
Total nonelderly persons under 65 years old below the poverty level in the past 12 months # of people 
Persons under 65 years old with poverty status determined # of people 
Persons under 65 years old with poverty status determined # of people 
Elderly persons 65+ years old below the poverty level in past 12 months # of people 
Elderly persons 65+ years old below the poverty level in past 12 months # of people 
Elderly persons 65+ years old with poverty status determined # of people 
Elderly persons 65+ years old with poverty status determined # of people 
Lagged Total housing units # housing units 
Lagged Inverse Hyperbolic Sine Transformation of Total housing units Inverse Hyperbolic Sine 
Unweighted sample count of housing units (long form) # housing units 
Unweighted sample count of housing units (long form) # housing units 
Total occupied housing units # housing units 
Total occupied housing units # housing units 
Lagged Total vacant housing units # housing units 
Lagged Inverse Hyperbolic Sine Transformation of Total vacant housing units Inverse Hyperbolic Sine 
Percentage of vacant housing units % of vacant housing units 
Vacant housing units for rent # housing units 
Vacant housing units for rent # housing units 
Vacant housing units for sale only # housing units 
Vacant housing units for sale only # housing units 
Vacant housing units for seasonal, recreational or occasional use # housing units 
Vacant housing units for seasonal, recreational or occasional use # housing units 
Vacant housing units, other vacant (1990 def.) # housing units 
Vacant housing units, other vacant (1990 def.) # housing units 
Lagged Total renter-occupied housing units # housing units 
Lagged Inverse Hyperbolic Sine Transformation of Total renter-occupied housing units Inverse Hyperbolic Sine 

Lagged Percentage renter-occupied housing units of total housing units % renter-occupied housing 
units 

Total owner-occupied housing units # housing units 
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Variable Units 
Total owner-occupied housing units # housing units 
Total owner-occupied housing units # housing units 
Total specified renter-occupied housing units # housing units 
Total specified renter-occupied housing units # housing units 
Total specified owner-occupied housing units # housing units 
Total specified owner-occupied housing units # housing units 
Persons in occupied rental units # housing units 
Persons in occupied rental units # housing units 
Lagged Change in number of housing units since last census # new housing units 
Lagged Inverse Hyperbolic Sine Transformation of Change in number of housing units since last census Inverse Hyperbolic Sine 
Percentage of change in number of housing units since last census of total housing units % new housing units 

Ratio of Owner-Occupied housing units to Renter Occupied Housing units % owner housing/(1 + renter 
housing) 
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Section C Bridge Siting Model Results 

Table 73. Restrictive bridge siting logistic model post-CEM results 

DV: Dummy variable denoting that a new restrictive bridge was built in this tract in the last 10 years 

 Set 1 Set 2 Set 3 Set 4 
Rural tract indicator > 10M sq. meters -0.124  -0.083  
 (0.426)  (0.425)  

Rural tract indicator > 4M sq. meters  -1.289*  -1.086* 
  (0.601)  (0.483) 
Lagged African American Population percentage  -0.040   
  (0.853)   

Lagged Hispanic Population Percentage    -2.490 
    (4.375) 
Lagged Native Americans percentage   -116.283  
   (137.095)  

Lagged Asian, Native Hawaiian and other percentage   -9.433  
   (18.601)  

Lagged Percentage of White Population -0.640    
 (1.316)    

Lagged IHS-transformed Population Born Outside U.S. -0.084  0.019  
 (0.143)  (0.146)  

Lagged IHS-transformed Population Foreign Born  -0.365  -0.406 
  (0.256)  (0.243) 
Lagged % female-headed families -1.664    
 (3.880)    

Lagged Percentage Married Couples with Children  1.840   
  (2.136)   

Lagged IHS-transformed male-headed families w/kids    0.067 
    (0.214) 
Lagged IHS-transformed Male Single Parent w/o Children   -0.248  
   (0.320)  

Lagged Population Percentage under 18   0.434  
   (2.496)  

Lagged Population with Commute < 25 minutes 0.001    
 (0.000)    

Lagged Commute 25-45 minutes  0.001   
  (0.001)   

Lagged Population with Commute > 45 minutes   0.001  
   (0.001)  

Lagged IHS-transformed Population Travel on Public 
Transportation 

   -0.068 
    (0.115) 
Lagged over 25-yr-olds with at Least 8 Years Education -0.000  0.001  
 (0.001)  (0.001)  

Lagged percentage of over 25-yr-olds with Some College  -23.331*  -
26.024** 

  (9.223)  (8.515) 
Lagged IHS-transformed Population Work at home -0.300  -0.169  
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 (0.159)  (0.167)  

Lagged Population Work in county  0.001  0.001 
  (0.001)  (0.001) 
Lagged Precision crafters 0.005    
 (0.003)    

Lagged IHS-transformed Farm, fishery and forestry workers  0.144   
  (0.137)   

Lagged IHS-transformed Military females    0.412 
    (0.216) 
Lagged IHS-transformed Military males   0.004  
   (0.154)  

Lagged IHS-transformed real average income 0.079  0.062  
 (0.134)  (0.092)  

Lagged IHS-transformed real aggregate income  -0.027  0.079 
  (0.082)  (0.074) 
Lagged Population Percentage Below the Poverty Line 5.639 3.914   
 (3.124) (3.480)   

Lagged Population Percentage Receiving Welfare   2.408 0.402 
   (3.044) (3.653) 
Lagged Percentage Housing Units Vacant -0.202    
 (3.587)    

Lagged Vacant housing for occasional use  0.003   
  (0.003)   

Lagged Percent Change in Housing Unit Supply   -0.491  
   (1.784)  

Lagged Owner to Renter Ratio    -0.008 
    (0.007) 
AIC 316.798 307.564 328.063 312.697 
BIC 417.939 408.705 442.690 413.838 

Log Likelihood -
143.399 

-
138.782 -147.032 -

141.349 
Deviance 293.445 287.456 304.710 291.566 
Num. obs. 6265 6265 6265 6265 
***p < 0.001, **p < 0.01, *p < 0.05 
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Table 74. Non-restrictive bridge siting logistic model post-CEM results 

DV: Dummy variable denoting that a new non-restrictive bridge was built in this tract in the last 10 years 

 Set 1 Set 2 Set 3 Set 4 
Rural tract indicator > 10M sq. meters -0.105  -0.066  
 (0.103)  (0.103)  

Rural tract indicator > 4M sq. meters  0.265*  0.101 
  (0.112)  (0.102) 
Lagged African American Population percentage  -0.990**   
  (0.313)   

Lagged Hispanic Population Percentage    -3.996** 
    (1.457) 
Lagged Native Americans percentage   -32.675  
   (23.672)  

Lagged Asian, Native Hawaiian and other percentage   2.177  
   (1.558)  

Lagged Percentage of White Population 0.764*    
 (0.330)    

Lagged IHS-transformed Population Born Outside U.S. -0.065*  -0.038  
 (0.033)  (0.033)  

Lagged IHS-transformed Population Foreign Born  0.033  0.025 
  (0.046)  (0.055) 
Lagged % female-headed families -0.571    
 (0.835)    

Lagged Percentage Married Couples with Children  -0.526   
  (0.519)   

Lagged IHS-transformed male-headed families w/kids    -0.085* 
    (0.037) 
Lagged IHS-transformed Male Single Parent w/o Children   0.064  
   (0.051)  

Lagged Population Percentage under 18   -2.190**  
   (0.728)  

Lagged Population with Commute < 25 minutes 0.001***    
 (0.000)    

Lagged Commute 25-45 minutes  -0.001***   
  (0.000)   

Lagged Population with Commute > 45 minutes   -0.002***  
   (0.000)  

Lagged IHS-transformed Population Travel on Public 
Transportation 

   0.042 
    (0.031) 
Lagged over 25-yr-olds with at Least 8 Years Education 0.001**  0.000  
 (0.000)  (0.000)  

Lagged percentage of over 25-yr-olds with Some College  0.247  -2.597 
  (1.967)  (2.032) 
Lagged IHS-transformed Population Work at home -0.129**  -0.016  
 (0.041)  (0.044)  

Lagged Population Work in county  0.000***  0.000** 
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  (0.000)  (0.000) 
Lagged Precision crafters -0.002**    
 (0.000)    

Lagged IHS-transformed Farm, fishery and forestry 
workers 

 -0.084**   

  (0.032)   

Lagged IHS-transformed Military females    0.094 
    (0.077) 
Lagged IHS-transformed Military males   0.054  
   (0.036)  

Lagged IHS-transformed real average income -0.055  0.012  
 (0.036)  (0.027)  

Lagged IHS-transformed real aggregate income  -0.026  -0.046** 
  (0.018)  (0.017) 
Lagged Population Percentage Below the Poverty Line 1.488 1.859**   
 (0.769) (0.591)   

Lagged Population Percentage Receiving Welfare   0.685 2.111** 
   (0.779) (0.699) 
Lagged Percentage Housing Units Vacant 0.878    
 (0.851)    

Lagged Vacant housing for occasional use  -0.001   
  (0.001)   

Lagged Percent Change in Housing Unit Supply   -0.051  
   (0.386)  

Lagged Owner to Renter Ratio    -0.001 
    (0.001) 
AIC 4698.235 4710.482 4703.693 4746.432 
BIC 4806.918 4819.165 4826.866 4855.115 

Log Likelihood -
2334.118 

-
2340.241 

-
2334.846 

-
2358.216 

Deviance 4890.718 4889.808 4907.710 4930.341 
Num. obs. 10358 10358 10358 10358 
***p < 0.001, **p < 0.01, *p < 0.05 
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Table 75. All new bridge siting logistic model post-CEM results 

DV: Dummy variable denoting that any new bridge was built in this tract in the last 10 years 

 Set 1 Set 2 Set 3 Set 4 
Rural tract indicator > 10M sq. meters 0.912***  0.960***  
 (0.198)  (0.185)  

Rural tract indicator > 4M sq. meters  0.926***  0.948*** 
  (0.107)  (0.105) 
Lagged African American Population percentage  -2.417***   
  (0.473)   

Lagged Hispanic Population Percentage    -8.351** 
    (2.600) 
Lagged Native Americans percentage   -6.097  
   (19.715)  

Lagged Asian, Native Hawaiian and other percentage   0.438  
   (1.918)  

Lagged Percentage of White Population 0.760**    
 (0.282)    

Lagged IHS-transformed Population Born Outside U.S. -0.119***  -0.133***  
 (0.035)  (0.032)  

Lagged IHS-transformed Population Foreign Born  -0.162***  -0.116* 
  (0.048)  (0.058) 
Lagged % female-headed families -3.111***    
 (0.783)    

Lagged Percentage Married Couples with Children  1.131*   
  (0.509)   

Lagged IHS-transformed male-headed families w/kids    0.014 
    (0.041) 
Lagged IHS-transformed Male Single Parent w/o Children   -0.162***  
   (0.044)  

Lagged Population Percentage under 18   1.627*  
   (0.695)  

Lagged Population with Commute < 25 minutes -0.000    
 (0.000)    

Lagged Commute 25-45 minutes  0.000   
  (0.000)   

Lagged Population with Commute > 45 minutes   0.000  
   (0.000)  

Lagged IHS-transformed Population Travel on Public 
Transportation 

   -0.010 
    (0.033) 
Lagged over 25-yr-olds with at Least 8 Years Education -0.000  0.000  
 (0.000)  (0.000)  

Lagged percentage of over 25-yr-olds with Some College  -0.572  -2.941 
  (1.999)  (2.057) 
Lagged IHS-transformed Population Work at home 0.052  0.097*  
 (0.043)  (0.043)  

Lagged Population Work in county  0.000  0.000 
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  (0.000)  (0.000) 
Lagged Precision crafters 0.000    
 (0.000)    

Lagged IHS-transformed Farm, fishery and forestry 
workers 

 0.004   

  (0.040)   

Lagged IHS-transformed Military females    -0.252 
    (0.153) 
Lagged IHS-transformed Military males   0.065  
   (0.037)  

Lagged IHS-transformed real average income -0.037  -0.014  
 (0.032)  (0.027)  

Lagged IHS-transformed real aggregate income  -0.001  0.027 
  (0.019)  (0.018) 
Lagged Population Percentage Below the Poverty Line 1.599* 1.838**   
 (0.652) (0.630)   

Lagged Population Percentage Receiving Welfare   -2.384** -1.848* 
   (0.797) (0.862) 
Lagged Percentage Housing Units Vacant -0.708    
 (1.439)    

Lagged Vacant housing for occasional use  -0.003   
  (0.003)   

Lagged Percent Change in Housing Unit Supply   0.002  
   (0.090)  

Lagged Owner to Renter Ratio    -0.000 
    (0.000) 
AIC 6061.537 5961.025 6080.875 5998.556 
BIC 6166.511 6065.999 6199.845 6103.530 

Log Likelihood -
3015.769 

-
2965.513 

-
3023.437 

-
2984.278 

Deviance 5993.579 5900.512 6008.472 5936.287 
Num. obs. 8089 8089 8089 8089 
***p < 0.001, **p < 0.01, *p < 0.05 
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Fig. 84. Graphic depicting demographic variables in bridge siting models 
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Fig. 85. Graphic depicting education variables in bridge siting models 
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Fig. 86. Graphic depicting family variables in bridge siting models 
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Fig. 87. Graphic depicting financial variables in bridge siting models 
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Fig. 88. Graphic depicting housing variables in bridge siting models 
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Fig. 89. Graphic depicting transportation variables in bridge siting models 
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Section D LASSO results 

The Least Absolute Shrinkage and Selection Operator (LASSO) algorithm is designed to be a sparse 

variable selector (James et al. 2013; Tibshirani 1996). The LASSO uses an L1 penalty which is used 

to shrink coefficient estimates towards zero. As it does so, only the most influential variables 

maintain a non-zero coefficient (see Fig. 90 for a graphical representation of this process). The 

minimization of the overall loss function can be seen in Equation 10:  

Equation 10. LASSO minimization of overall loss function 

�̂�𝛽 ← 𝑚𝑚𝑏𝑏𝑙𝑙𝑚𝑚𝑙𝑙𝑚𝑚
𝛽𝛽

���𝑦𝑦𝑖𝑖 − 𝛽𝛽 −�𝛽𝛽𝑗𝑗𝑥𝑥𝑖𝑖𝑗𝑗

𝑝𝑝

𝑗𝑗=1

�

2𝑛𝑛

𝑖𝑖=1

� + 𝜆𝜆‖𝛽𝛽‖1 

where {𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖}𝑖𝑖=1𝑛𝑛 is the training data, β the intercept and 𝜆𝜆 is the Lagrange multiplier that balances 

the tradeoff between the squared error loss and the L1 penalty ‖𝛽𝛽‖1 (Jain et al. 2014). 

In this work the authors used two values of lambda. The first is the minimum value of 

lambda and the second is one standard error above the minimum lambda (an example can be seen 

in Fig. 91). By taking agreement between these two values of lambda for both OLS and logistic 

regressions, the authors were able to narrow down the list of variables from 214 down to 17. 
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Table 76. Results of LASSO optimization using all variables for any new bridge regardless of 

underclearance height 

Variable 

OLS % 
Min 

Lambda 

OLS % 
Mid 

Lambda 

OLS % 
1se 

Lambda 

Log % 
Min 

Lambda 

Log % 
Mid 

Lambda 

Log % 
1se 

Lambda 
AREALAND 0.000 0.000 0.000 0.000 0.000 0.000 
AREAWATR 0.000 NA NA NA NA NA 

rur10m 0.365 0.406 0.396 0.172 0.202 0.222 
rur4m 0.198 0.220 0.041 0.129 0.153 0.155 

TRCTPOP.lag NA NA NA NA NA NA 
TPOPDENS.lag 0.000 0.000 NA 0.000 0.000 0.000 

SMPPRS.lag 0.000 0.000 NA 0.000 0.000 0.000 
MINORITY.lag 0.000 NA NA NA NA NA 
SHRWHTN.lag NA NA NA NA NA NA 
SHRBLKN.lag NA NA NA NA NA NA 
SHRAMIN.lag 0.000 NA NA NA NA NA 
SHRAPIN.lag NA NA NA NA NA NA 
NONHISP.lag NA NA NA NA NA NA 
SHRHSPN.lag 0.000 NA NA 0.000 0.000 NA 
ADULTN.lag NA NA NA NA NA NA 

AD2CHILD.lag 0.038 NA NA NA NA NA 
CHILDN.lag NA NA NA NA NA NA 

OLDN.lag NA NA NA 0.000 NA NA 
KIDSN.lag NA NA NA 0.000 NA NA 

NATBORN.lag NA NA NA NA NA NA 
OUTBORN.lag NA NA NA NA NA NA 
FORBORN.lag 0.000 NA NA 0.000 0.000 NA 
NUMHHS.lag NA NA NA NA NA NA 
PERS15P.lag NA NA NA NA NA NA 
MEN15P.lag 0.000 NA NA 0.000 NA NA 
FEM15P.lag NA NA NA NA NA NA 

MGMKTN.lag NA NA NA 0.000 NA NA 
MGMKTD.lag NA NA NA NA NA NA 
FAMSUB.lag 0.001 NA NA 0.000 NA NA 

FFHN.lag NA NA NA NA NA NA 
FFHD.lag NA NA NA NA NA NA 

MCWKID.lag NA NA NA NA NA NA 
MCNKID.lag NA NA NA NA NA NA 
MHWKID.lag NA NA NA 0.000 NA NA 
MHNKID.lag NA NA NA 0.000 NA NA 
FHWKID.lag NA NA NA NA NA NA 
FHNKID.lag 0.000 NA NA 0.000 NA NA 
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Variable 

OLS % 
Min 

Lambda 

OLS % 
Mid 

Lambda 

OLS % 
1se 

Lambda 

Log % 
Min 

Lambda 

Log % 
Mid 

Lambda 

Log % 
1se 

Lambda 
FHNKID.ihs.lag -0.001 NA NA -0.002 NA NA 
TRVLPBN.lag NA NA NA 0.000 NA NA 
TRVLPBD.lag NA NA NA NA NA NA 
WKHOME.lag 0.000 NA NA NA NA NA 

AUTO.lag NA NA NA NA NA NA 
COMMUT2.lag 0.000 NA NA NA NA NA 
COMMUT4.lag 0.000 NA NA NA NA NA 
COMMUTX.lag 0.000 NA NA 0.000 NA NA 
TRVLOTN.lag 0.000 NA NA 0.000 NA NA 

EDUC8.lag NA NA NA 0.000 0.000 NA 
EDUC11.lag 0.000 NA NA NA NA NA 
EDUC12.lag NA NA NA NA NA NA 
EDUC15.lag NA NA NA NA NA NA 
EDUCA.lag NA NA NA NA NA NA 

EDUC16.lag NA NA NA NA NA NA 
EDUCPP.lag NA NA NA NA NA NA 

WRCNTYN.lag 0.000 0.000 NA 0.000 0.000 NA 
WRCNTYD.lag NA NA NA NA NA NA 
WRKSMN.lag 0.000 NA NA 0.000 NA NA 
PRFEMP.lag NA NA NA NA NA NA 
INDEMP.lag NA NA NA NA NA NA 
USKOCC.lag NA NA NA NA NA NA 

OCC1.lag NA NA NA 0.000 NA NA 
OCC2.lag 0.000 NA NA 0.000 NA NA 
OCC3.lag 0.000 NA NA 0.000 NA NA 
OCC4.lag -0.001 NA NA 0.000 NA NA 
OCC5.lag NA NA NA 0.000 0.000 NA 
OCC6.lag 0.000 NA NA 0.000 NA NA 
OCC7.lag NA NA NA 0.000 NA NA 
OCC8.lag NA NA NA NA NA NA 
OCC9.lag 0.002 0.003 NA 0.000 0.001 0.001 

OCCPRO.lag NA NA NA NA NA NA 
OCCPRO.ihs.lag NA NA NA NA NA NA 

ARMFRM.lag 0.000 NA NA 0.000 NA NA 
ARMFRF.lag -0.003 NA NA 0.000 NA NA 

AVHHINN.2010real.lag 0.000 NA NA 0.000 NA NA 
AVHHIN.2010real.lag NA NA NA NA NA NA 

POVRATN.lag NA NA NA NA NA NA 
POVRATD.lag NA NA NA NA NA NA 

POVRATD.ihs.lag NA NA NA NA NA NA 
WHTPRN.lag 0.000 0.000 NA 0.000 0.000 NA 
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Variable 

OLS % 
Min 

Lambda 

OLS % 
Mid 

Lambda 

OLS % 
1se 

Lambda 

Log % 
Min 

Lambda 

Log % 
Mid 

Lambda 

Log % 
1se 

Lambda 
WELFARN.lag 0.000 NA NA 0.000 NA NA 
WELFARD.lag NA NA NA NA NA NA 
NELPOON.lag NA NA NA 0.000 NA NA 
NELPOOD.lag NA NA NA NA NA NA 
ELDPOON.lag 0.000 NA NA 0.000 NA NA 
ELDPOOD.lag NA NA NA 0.000 NA NA 
WHTPRD.lag 0.000 NA NA NA NA NA 
TOTHSUN.lag NA NA NA NA NA NA 
SMPHSU.lag NA NA NA NA NA NA 
OCCHU.lag NA NA NA NA NA NA 
VACHU.lag NA NA NA NA NA NA 
VACRT.lag NA NA NA NA NA NA 
VACFS.lag 0.001 NA NA 0.000 NA NA 

VACOCC.lag 0.000 0.000 NA 0.000 0.000 NA 
VACOTH.lag NA NA NA 0.000 NA NA 
RNTOCC.lag NA NA NA NA NA NA 
OWNOCC.lag NA NA NA NA NA NA 
SPRNTOC.lag 0.000 NA NA 0.000 NA NA 
SPOWNOC.lag -0.001 NA NA 0.000 NA NA 
PRSRNTU.lag NA NA NA NA NA NA 
NEWHOUS.lag 0.000 NA NA NA NA NA 

MINORITY.pct.lag NA NA NA NA NA NA 
SHRWHTN.pct.lag NA NA NA 0.054 0.024 NA 
SHRBLKN.pct.lag NA NA NA NA NA NA 
SHRAMIN.pct.lag 22.843 NA NA 0.564 NA NA 
SHRAPIN.pct.lag 1.270 NA NA 0.333 NA NA 
SHRHSPN.pct.lag NA NA NA NA -0.008 NA 

CHILD.pct.lag -0.273 NA NA NA NA NA 
FORBORN.pct.lag 0.575 NA NA NA NA NA 
MCWKID.pct.lag NA NA NA NA 0.033 NA 
SPWKID.pct.lag NA NA NA NA NA NA 
MHWKID.pct.lag NA NA NA -0.199 NA NA 
FHHTOT.pct.lag NA NA NA -0.041 NA NA 
FHWKID.pct.lag NA NA NA NA NA NA 
EDUC8.pct.lag -0.737 NA NA NA NA NA 

EDUC11.pct.lag -0.105 NA NA NA NA NA 
EDUC12.pct.lag NA NA NA NA NA NA 
EDUC15.pct.lag -0.025 -0.081 NA NA NA NA 
EDUCA.pct.lag -0.571 NA NA -0.091 NA NA 

EDUC16.pct.lag NA NA NA NA NA NA 
OCCPRO.pct.lag 0.452 NA NA NA NA NA 
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Variable 

OLS % 
Min 

Lambda 

OLS % 
Mid 

Lambda 

OLS % 
1se 

Lambda 

Log % 
Min 

Lambda 

Log % 
Mid 

Lambda 

Log % 
1se 

Lambda 
POVRATN.pct.lag 0.077 NA NA 0.130 0.059 NA 
WELFARN.pct.lag 0.571 NA NA 0.094 NA NA 

VACHU.pct.lag -0.578 NA NA -0.392 -0.023 NA 
OWNOCC.pct.lag 0.237 NA NA NA NA NA 
RNTOCC.pct.lag NA NA NA NA NA NA 

OWNRNT.pct.lag 0.000 NA NA 0.000 0.000 NA 
NEWHOUS.pct.lag -0.018 NA NA -0.004 NA NA 
TRCTPOP.ihs.lag NA NA NA NA NA NA 
MINORITY.ihs.lag NA NA NA NA NA NA 

SMPPRS.ihs.lag NA NA NA NA NA NA 
SHRWHTN.ihs.lag NA NA NA 0.003 NA NA 
SHRBLKN.ihs.lag 0.017 NA NA 0.004 NA NA 
SHRAMIN.ihs.lag -0.041 NA NA NA NA NA 
SHRAPIN.ihs.lag -0.006 NA NA -0.005 0.000 NA 
NONHISP.ihs.lag NA NA NA NA NA NA 
SHRHSPN.ihs.lag -0.007 NA NA -0.002 -0.002 NA 
ADULTN.ihs.lag NA NA NA NA NA NA 
CHILDN.ihs.lag NA NA NA NA NA NA 

OLDN.ihs.lag NA NA NA NA NA NA 
KIDSN.ihs.lag NA NA NA NA NA NA 

NATBORN.ihs.lag NA NA NA NA NA NA 
OUTBORN.ihs.lag -0.002 NA NA -0.005 -0.004 NA 
FORBORN.ihs.lag -0.037 NA NA -0.015 -0.005 NA 
NUMHHS.ihs.lag NA NA NA NA NA NA 
PERS15P.ihs.lag NA NA NA NA NA NA 
MEN15P.ihs.lag NA NA NA NA NA NA 
FEM15P.ihs.lag NA NA NA 0.002 NA NA 

MGMKTN.ihs.lag NA NA NA NA NA NA 
MGMKTD.ihs.lag NA NA NA NA NA NA 
FAMSUB.ihs.lag NA NA NA -0.004 NA NA 

FFHN.ihs.lag NA NA NA NA NA NA 
FFHD.ihs.lag NA NA NA NA NA NA 

MCWKID.ihs.lag NA NA NA NA NA NA 
MCNKID.ihs.lag NA NA NA NA NA NA 
MHWKID.ihs.lag NA NA NA NA NA NA 
MHNKID.ihs.lag NA NA NA NA NA NA 
FHWKID.ihs.lag NA NA NA NA NA NA 

WRCNTYN.ihs.lag NA NA NA NA NA NA 
WRCNTYD.ihs.lag NA NA NA NA NA NA 
WRKSMN.ihs.lag NA NA NA NA NA NA 
TRVLPBN.ihs.lag 0.028 NA NA NA NA NA 
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Variable 

OLS % 
Min 

Lambda 

OLS % 
Mid 

Lambda 

OLS % 
1se 

Lambda 

Log % 
Min 

Lambda 

Log % 
Mid 

Lambda 

Log % 
1se 

Lambda 
TRVLPBD.ihs.lag NA NA NA NA NA NA 
WKHOME.ihs.lag NA NA NA 0.004 0.004 NA 

AUTO.ihs.lag NA NA NA NA NA NA 
COMMUT2.ihs.lag NA NA NA NA NA NA 
COMMUT4.ihs.lag NA NA NA 0.000 NA NA 
COMMUTX.ihs.lag NA NA NA NA NA NA 
TRVLOTN.ihs.lag NA NA NA NA NA NA 

EDUC8.ihs.lag NA NA NA NA NA NA 
EDUC11.ihs.lag NA NA NA NA NA NA 
EDUC12.ihs.lag NA NA NA NA NA NA 
EDUC15.ihs.lag NA NA NA NA NA NA 
EDUCA.ihs.lag NA NA NA NA NA NA 

EDUC16.ihs.lag NA NA NA NA NA NA 
EDUCPP.ihs.lag NA NA NA 0.010 NA NA 
PRFEMP.ihs.lag NA NA NA NA NA NA 
INDEMP.ihs.lag NA NA NA NA NA NA 
USKOCC.ihs.lag NA NA NA NA NA NA 

OCC1.ihs.lag NA NA NA 0.014 NA NA 
OCC2.ihs.lag NA NA NA NA NA NA 
OCC3.ihs.lag NA NA NA NA NA NA 
OCC4.ihs.lag NA NA NA NA NA NA 
OCC5.ihs.lag NA NA NA NA NA NA 
OCC6.ihs.lag NA NA NA NA NA NA 
OCC7.ihs.lag NA NA NA NA NA NA 
OCC8.ihs.lag NA NA NA NA NA NA 
OCC9.ihs.lag NA NA NA 0.002 0.003 NA 

ARMFRM.ihs.lag 0.022 NA NA 0.004 0.000 NA 
ARMFRF.ihs.lag 0.027 NA NA NA NA NA 

POVRATN.ihs.lag NA NA NA NA NA NA 
POVRATD.ihs.lag.1 NA NA NA NA NA NA 

WHTPRN.ihs.lag NA NA NA NA NA NA 
WELFARN.ihs.lag NA NA NA -0.007 NA NA 
WELFARD.ihs.lag NA NA NA NA NA NA 
NELPOON.ihs.lag NA NA NA NA NA NA 
NELPOOD.ihs.lag NA NA NA NA NA NA 
ELDPOON.ihs.lag -0.001 NA NA -0.005 NA NA 
ELDPOOD.ihs.lag NA NA NA NA NA NA 
WHTPRD.ihs.lag NA NA NA NA NA NA 
TOTHSUN.ihs.lag NA NA NA NA NA NA 
SMPHSU.ihs.lag -0.067 NA NA -0.024 NA NA 
OCCHU.ihs.lag NA NA NA 0.001 NA NA 
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Variable 

OLS % 
Min 

Lambda 

OLS % 
Mid 

Lambda 

OLS % 
1se 

Lambda 

Log % 
Min 

Lambda 

Log % 
Mid 

Lambda 

Log % 
1se 

Lambda 
VACHU.ihs.lag NA NA NA 0.018 NA NA 
VACRT.ihs.lag 0.010 NA NA NA NA NA 
VACFS.ihs.lag NA NA NA -0.004 NA NA 

VACOCC.ihs.lag -0.022 NA NA -0.002 NA NA 
VACOTH.ihs.lag 0.020 NA NA 0.000 NA NA 
RNTOCC.ihs.lag NA NA NA NA NA NA 
OWNOCC.ihs.lag NA NA NA 0.000 NA NA 
SPRNTOC.ihs.lag 0.092 NA NA 0.014 0.003 NA 
SPOWNOC.ihs.lag NA NA NA NA NA NA 
PRSRNTU.ihs.lag NA NA NA 0.007 NA NA 

TPOPDENS.ihs.lag -0.076 -0.023 NA -0.047 -0.021 -0.011 
NEWHOUS.ihs.lag -0.004 NA NA -0.002 NA NA 

AVHHINN.2010real.ihs.lag NA NA NA NA NA NA 
AVHHIN.2010real.ihs.lag NA NA NA 0.005 NA NA 

factor(YEAR)1980 0.535 0.078 NA NA NA NA 
factor(YEAR)1990 NA NA NA 0.017 0.005 NA 
factor(YEAR)2000 -0.092 -0.037 NA -0.023 -0.023 NA 
factor(YEAR)2010 NA NA NA NA NA NA 
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Table 77. Results of LASSO optimization using All variables for new non-restrictive bridges 

Variable 

OLS % 
Min 

Lambda 

OLS % 
Mid 

Lambda 

OLS % 
1se 

Lambda 

Log % 
Min 

Lambda 

Log % 
Mid 

Lambda 

Log % 
1se 

Lambda 
AREALAND 0.000 NA NA 0.000 NA NA 
AREAWATR 0.000 NA NA NA NA NA 

rur10m 0.113 0.111 NA 0.014 0.007 NA 
rur4m 0.043 0.086 0.000 0.045 0.047 0.028 

TRCTPOP.lag NA NA NA NA NA NA 
TPOPDENS.lag 0.000 0.000 NA 0.000 0.000 NA 

SMPPRS.lag NA NA NA NA NA NA 
MINORITY.lag NA NA NA NA NA NA 
SHRWHTN.lag NA NA NA NA NA NA 
SHRBLKN.lag NA NA NA NA NA NA 
SHRAMIN.lag -0.003 NA NA NA NA NA 
SHRAPIN.lag NA NA NA NA NA NA 
NONHISP.lag NA NA NA NA NA NA 
SHRHSPN.lag 0.000 NA NA 0.000 NA NA 
ADULTN.lag NA NA NA NA NA NA 

AD2CHILD.lag 0.065 NA NA 0.016 NA NA 
CHILDN.lag NA NA NA NA NA NA 

OLDN.lag 0.000 NA NA NA NA NA 
KIDSN.lag NA NA NA NA NA NA 

NATBORN.lag NA NA NA NA NA NA 
OUTBORN.lag 0.000 NA NA NA NA NA 
FORBORN.lag 0.000 NA NA 0.000 NA NA 
NUMHHS.lag NA NA NA NA NA NA 
PERS15P.lag NA NA NA NA NA NA 
MEN15P.lag 0.000 NA NA NA NA NA 
FEM15P.lag NA NA NA NA NA NA 

MGMKTN.lag NA NA NA 0.000 NA NA 
MGMKTD.lag NA NA NA NA NA NA 
FAMSUB.lag 0.000 NA NA NA NA NA 

FFHN.lag NA NA NA NA NA NA 
FFHD.lag NA NA NA NA NA NA 

MCWKID.lag NA NA NA NA NA NA 
MCNKID.lag NA NA NA NA NA NA 
MHWKID.lag 0.000 NA NA NA NA NA 
MHNKID.lag NA NA NA NA NA NA 
FHWKID.lag NA NA NA NA NA NA 
FHNKID.lag NA NA NA NA NA NA 

FHNKID.ihs.lag NA NA NA NA NA NA 
TRVLPBN.lag NA NA NA NA NA NA 
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Variable 

OLS % 
Min 

Lambda 

OLS % 
Mid 

Lambda 

OLS % 
1se 

Lambda 

Log % 
Min 

Lambda 

Log % 
Mid 

Lambda 

Log % 
1se 

Lambda 
TRVLPBD.lag NA NA NA NA NA NA 
WKHOME.lag NA NA NA NA NA NA 

AUTO.lag NA NA NA NA NA NA 
COMMUT2.lag 0.000 0.000 NA 0.000 NA NA 
COMMUT4.lag 0.000 NA NA 0.000 NA NA 
COMMUTX.lag 0.000 0.000 NA 0.000 0.000 NA 
TRVLOTN.lag 0.000 NA NA 0.000 NA NA 

EDUC8.lag NA NA NA 0.000 NA NA 
EDUC11.lag 0.000 NA NA 0.000 NA NA 
EDUC12.lag NA NA NA NA NA NA 
EDUC15.lag 0.000 NA NA 0.000 NA NA 
EDUCA.lag 0.000 NA NA NA NA NA 

EDUC16.lag NA NA NA NA NA NA 
EDUCPP.lag NA NA NA NA NA NA 

WRCNTYN.lag 0.000 0.000 NA 0.000 0.000 NA 
WRCNTYD.lag NA NA NA NA NA NA 
WRKSMN.lag 0.000 NA NA 0.000 NA NA 
PRFEMP.lag 0.000 NA NA NA NA NA 
INDEMP.lag NA NA NA NA NA NA 
USKOCC.lag NA NA NA NA NA NA 

OCC1.lag 0.000 NA NA NA NA NA 
OCC2.lag 0.001 NA NA 0.000 NA NA 
OCC3.lag NA NA NA NA NA NA 
OCC4.lag 0.000 NA NA NA NA NA 
OCC5.lag NA NA NA NA NA NA 
OCC6.lag 0.000 NA NA 0.000 NA NA 
OCC7.lag NA NA NA NA NA NA 
OCC8.lag NA NA NA NA NA NA 
OCC9.lag -0.001 0.000 NA 0.000 NA NA 

OCCPRO.lag NA NA NA NA NA NA 
OCCPRO.ihs.lag NA NA NA NA NA NA 

ARMFRM.lag 0.000 NA NA 0.000 NA NA 
ARMFRF.lag -0.002 NA NA NA NA NA 

AVHHINN.2010real.lag 0.000 NA NA NA NA NA 
AVHHIN.2010real.lag NA NA NA NA NA NA 

POVRATN.lag NA NA NA NA NA NA 
POVRATD.lag NA NA NA NA NA NA 

POVRATD.ihs.lag NA NA NA NA NA NA 
WHTPRN.lag 0.000 0.000 NA 0.000 0.000 NA 
WELFARN.lag NA NA NA NA NA NA 
WELFARD.lag NA NA NA NA NA NA 
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Variable 

OLS % 
Min 

Lambda 

OLS % 
Mid 

Lambda 

OLS % 
1se 

Lambda 

Log % 
Min 

Lambda 

Log % 
Mid 

Lambda 

Log % 
1se 

Lambda 
NELPOON.lag NA NA NA NA NA NA 
NELPOOD.lag NA NA NA NA NA NA 
ELDPOON.lag 0.000 NA NA NA NA NA 
ELDPOOD.lag NA NA NA NA NA NA 
WHTPRD.lag NA NA NA NA NA NA 
TOTHSUN.lag NA NA NA NA NA NA 
SMPHSU.lag 0.000 NA NA NA NA NA 
OCCHU.lag NA NA NA NA NA NA 
VACHU.lag NA NA NA NA NA NA 
VACRT.lag 0.000 NA NA NA NA NA 
VACFS.lag 0.000 NA NA 0.000 NA NA 

VACOCC.lag 0.000 0.000 NA 0.000 0.000 NA 
VACOTH.lag 0.000 NA NA NA NA NA 
RNTOCC.lag NA NA NA NA NA NA 
OWNOCC.lag NA NA NA NA NA NA 
SPRNTOC.lag 0.000 NA NA 0.000 NA NA 
SPOWNOC.lag 0.000 NA NA 0.000 NA NA 
PRSRNTU.lag 0.000 NA NA NA NA NA 
NEWHOUS.lag 0.000 0.000 NA 0.000 0.000 NA 

MINORITY.pct.lag NA NA NA NA NA NA 
SHRWHTN.pct.lag 0.174 NA NA 0.012 NA NA 
SHRBLKN.pct.lag 0.183 NA NA NA NA NA 
SHRAMIN.pct.lag 26.165 2.699 NA 0.456 NA NA 
SHRAPIN.pct.lag 1.099 0.033 NA 0.101 NA NA 
SHRHSPN.pct.lag 0.323 NA NA NA NA NA 

CHILD.pct.lag -0.686 -0.183 NA -0.038 -0.034 NA 
FORBORN.pct.lag 0.212 NA NA NA NA NA 
MCWKID.pct.lag 0.128 NA NA NA NA NA 
SPWKID.pct.lag NA NA NA NA NA NA 
MHWKID.pct.lag NA NA NA NA NA NA 
FHHTOT.pct.lag NA NA NA NA NA NA 
FHWKID.pct.lag NA NA NA NA NA NA 
EDUC8.pct.lag NA NA NA NA NA NA 

EDUC11.pct.lag -0.441 NA NA NA NA NA 
EDUC12.pct.lag 0.015 NA NA NA NA NA 
EDUC15.pct.lag NA NA NA NA NA NA 
EDUCA.pct.lag NA NA NA -0.013 NA NA 

EDUC16.pct.lag -0.049 NA NA NA NA NA 
OCCPRO.pct.lag 0.366 NA NA 0.015 NA NA 

POVRATN.pct.lag NA 0.050 NA 0.024 NA NA 
WELFARN.pct.lag 0.703 0.294 NA 0.097 NA NA 
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Variable 

OLS % 
Min 

Lambda 

OLS % 
Mid 

Lambda 

OLS % 
1se 

Lambda 

Log % 
Min 

Lambda 

Log % 
Mid 

Lambda 

Log % 
1se 

Lambda 
VACHU.pct.lag NA NA NA NA NA NA 

OWNOCC.pct.lag 0.086 NA NA NA NA NA 
RNTOCC.pct.lag NA NA NA NA NA NA 

OWNRNT.pct.lag 0.000 NA NA 0.000 NA NA 
NEWHOUS.pct.lag -0.012 -0.004 NA -0.004 -0.001 NA 
TRCTPOP.ihs.lag NA NA NA NA NA NA 
MINORITY.ihs.lag NA NA NA NA NA NA 

SMPPRS.ihs.lag -0.010 NA NA NA NA NA 
SHRWHTN.ihs.lag NA NA NA NA NA NA 
SHRBLKN.ihs.lag 0.003 0.000 NA 0.002 NA NA 
SHRAMIN.ihs.lag -0.032 -0.001 NA NA NA NA 
SHRAPIN.ihs.lag -0.004 NA NA NA NA NA 
NONHISP.ihs.lag NA NA NA NA NA NA 
SHRHSPN.ihs.lag -0.001 NA NA -0.002 NA NA 
ADULTN.ihs.lag NA NA NA NA NA NA 
CHILDN.ihs.lag NA NA NA NA NA NA 

OLDN.ihs.lag NA NA NA NA NA NA 
KIDSN.ihs.lag -0.008 NA NA NA NA NA 

NATBORN.ihs.lag NA NA NA NA NA NA 
OUTBORN.ihs.lag -0.001 NA NA -0.003 NA NA 
FORBORN.ihs.lag NA NA NA NA NA NA 
NUMHHS.ihs.lag NA NA NA NA NA NA 
PERS15P.ihs.lag NA NA NA NA NA NA 
MEN15P.ihs.lag NA NA NA NA NA NA 
FEM15P.ihs.lag NA NA NA NA NA NA 

MGMKTN.ihs.lag NA NA NA NA NA NA 
MGMKTD.ihs.lag NA NA NA NA NA NA 
FAMSUB.ihs.lag NA NA NA NA NA NA 

FFHN.ihs.lag NA NA NA NA NA NA 
FFHD.ihs.lag NA NA NA NA NA NA 

MCWKID.ihs.lag NA NA NA NA NA NA 
MCNKID.ihs.lag NA NA NA NA NA NA 
MHWKID.ihs.lag NA NA NA -0.001 NA NA 
MHNKID.ihs.lag 0.001 NA NA NA NA NA 
FHWKID.ihs.lag 0.019 NA NA NA NA NA 

WRCNTYN.ihs.lag NA NA NA NA NA NA 
WRCNTYD.ihs.lag NA NA NA NA NA NA 
WRKSMN.ihs.lag NA NA NA NA NA NA 
TRVLPBN.ihs.lag 0.033 0.001 NA 0.007 NA NA 
TRVLPBD.ihs.lag NA NA NA NA NA NA 
WKHOME.ihs.lag -0.001 NA NA -0.001 NA NA 
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Variable 

OLS % 
Min 

Lambda 

OLS % 
Mid 

Lambda 

OLS % 
1se 

Lambda 

Log % 
Min 

Lambda 

Log % 
Mid 

Lambda 

Log % 
1se 

Lambda 
AUTO.ihs.lag NA NA NA NA NA NA 

COMMUT2.ihs.lag NA NA NA NA NA NA 
COMMUT4.ihs.lag NA NA NA NA NA NA 
COMMUTX.ihs.lag NA NA NA NA NA NA 
TRVLOTN.ihs.lag -0.002 NA NA NA NA NA 

EDUC8.ihs.lag NA NA NA NA NA NA 
EDUC11.ihs.lag 0.037 NA NA NA NA NA 
EDUC12.ihs.lag NA NA NA NA NA NA 
EDUC15.ihs.lag -0.038 NA NA NA NA NA 
EDUCA.ihs.lag NA NA NA NA NA NA 

EDUC16.ihs.lag NA NA NA NA NA NA 
EDUCPP.ihs.lag NA NA NA NA NA NA 
PRFEMP.ihs.lag NA NA NA NA NA NA 
INDEMP.ihs.lag NA NA NA NA NA NA 
USKOCC.ihs.lag NA NA NA NA NA NA 

OCC1.ihs.lag NA NA NA NA NA NA 
OCC2.ihs.lag NA NA NA NA NA NA 
OCC3.ihs.lag NA NA NA NA NA NA 
OCC4.ihs.lag NA NA NA NA NA NA 
OCC5.ihs.lag -0.021 NA NA NA NA NA 
OCC6.ihs.lag NA NA NA NA NA NA 
OCC7.ihs.lag 0.009 NA NA NA NA NA 
OCC8.ihs.lag NA NA NA NA NA NA 
OCC9.ihs.lag 0.000 NA NA -0.002 NA NA 

ARMFRM.ihs.lag 0.015 0.005 NA 0.003 NA NA 
ARMFRF.ihs.lag 0.032 0.001 NA 0.004 NA NA 

POVRATN.ihs.lag 0.006 NA NA NA NA NA 
POVRATD.ihs.lag.1 NA NA NA NA NA NA 

WHTPRN.ihs.lag NA NA NA NA NA NA 
WELFARN.ihs.lag NA NA NA NA NA NA 
WELFARD.ihs.lag NA NA NA NA NA NA 
NELPOON.ihs.lag 0.000 NA NA NA NA NA 
NELPOOD.ihs.lag NA NA NA NA NA NA 
ELDPOON.ihs.lag -0.010 NA NA NA NA NA 
ELDPOOD.ihs.lag NA NA NA NA NA NA 
WHTPRD.ihs.lag NA NA NA NA NA NA 
TOTHSUN.ihs.lag NA NA NA NA NA NA 
SMPHSU.ihs.lag -0.017 NA NA -0.003 NA NA 
OCCHU.ihs.lag NA NA NA NA NA NA 
VACHU.ihs.lag 0.000 NA NA NA NA NA 
VACRT.ihs.lag 0.006 NA NA 0.002 NA NA 
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Variable 

OLS % 
Min 

Lambda 

OLS % 
Mid 

Lambda 

OLS % 
1se 

Lambda 

Log % 
Min 

Lambda 

Log % 
Mid 

Lambda 

Log % 
1se 

Lambda 
VACFS.ihs.lag NA NA NA NA NA NA 

VACOCC.ihs.lag -0.008 NA NA NA NA NA 
VACOTH.ihs.lag 0.014 NA NA 0.001 NA NA 
RNTOCC.ihs.lag 0.007 NA NA NA NA NA 
OWNOCC.ihs.lag NA NA NA NA NA NA 
SPRNTOC.ihs.lag 0.034 NA NA 0.003 NA NA 
SPOWNOC.ihs.lag NA NA NA NA NA NA 
PRSRNTU.ihs.lag 0.004 NA NA NA NA NA 

TPOPDENS.ihs.lag -0.080 -0.003 NA -0.011 0.000 NA 
NEWHOUS.ihs.lag -0.003 NA NA -0.001 NA NA 

AVHHINN.2010real.ihs.lag NA NA NA NA NA NA 
AVHHIN.2010real.ihs.lag NA NA NA NA NA NA 

factor(YEAR)1980 0.343 0.127 NA 0.034 0.009 NA 
factor(YEAR)1990 NA NA NA NA -0.004 NA 
factor(YEAR)2000 -0.034 NA NA -0.002 NA NA 
factor(YEAR)2010 NA NA NA NA NA NA 
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Table 78. Results of LASSO optimization using all variables for new restricted bridges  

Variable 

OLS % 
Min 

Lambda 

OLS % 
Mid 

Lambda 

OLS % 
1se 

Lambda 

Log % 
Min 

Lambda 

Log % 
Mid 

Lambda 

Log % 
1se 

Lambda 
AREALAND 0.000 0.000 0.000 NA NA NA 
AREAWATR NA NA NA NA NA NA 

rur10m NA NA NA NA NA NA 
rur4m NA NA NA NA NA NA 

TRCTPOP.lag NA NA NA NA NA NA 
TPOPDENS.lag NA NA NA NA NA NA 

SMPPRS.lag NA NA NA NA NA NA 
MINORITY.lag NA NA NA NA NA NA 
SHRWHTN.lag NA NA NA NA NA NA 
SHRBLKN.lag NA NA NA NA NA NA 
SHRAMIN.lag NA NA NA NA NA NA 
SHRAPIN.lag NA NA NA NA NA NA 
NONHISP.lag NA NA NA NA NA NA 
SHRHSPN.lag NA NA NA NA NA NA 
ADULTN.lag NA NA NA NA NA NA 

AD2CHILD.lag NA NA NA NA NA NA 
CHILDN.lag NA NA NA NA NA NA 

OLDN.lag NA NA NA NA NA NA 
KIDSN.lag NA NA NA NA NA NA 

NATBORN.lag NA NA NA NA NA NA 
OUTBORN.lag NA NA NA NA NA NA 
FORBORN.lag NA NA NA NA NA NA 
NUMHHS.lag NA NA NA NA NA NA 
PERS15P.lag NA NA NA NA NA NA 
MEN15P.lag NA NA NA NA NA NA 
FEM15P.lag NA NA NA NA NA NA 

MGMKTN.lag NA NA NA NA NA NA 
MGMKTD.lag NA NA NA NA NA NA 
FAMSUB.lag NA NA NA NA NA NA 

FFHN.lag NA NA NA NA NA NA 
FFHD.lag NA NA NA NA NA NA 

MCWKID.lag NA NA NA NA NA NA 
MCNKID.lag NA NA NA NA NA NA 
MHWKID.lag NA NA NA NA NA NA 
MHNKID.lag NA NA NA NA NA NA 
FHWKID.lag NA NA NA NA NA NA 
FHNKID.lag NA NA NA NA NA NA 

FHNKID.ihs.lag NA NA NA NA NA NA 
TRVLPBN.lag NA NA NA NA NA NA 
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Variable 

OLS % 
Min 

Lambda 

OLS % 
Mid 

Lambda 

OLS % 
1se 

Lambda 

Log % 
Min 

Lambda 

Log % 
Mid 

Lambda 

Log % 
1se 

Lambda 
TRVLPBD.lag NA NA NA NA NA NA 
WKHOME.lag NA NA NA NA NA NA 

AUTO.lag NA NA NA NA NA NA 
COMMUT2.lag NA NA NA NA NA NA 
COMMUT4.lag NA NA NA NA NA NA 
COMMUTX.lag NA NA NA NA NA NA 
TRVLOTN.lag NA NA NA NA NA NA 

EDUC8.lag NA NA NA NA NA NA 
EDUC11.lag NA NA NA NA NA NA 
EDUC12.lag NA NA NA NA NA NA 
EDUC15.lag NA NA NA NA NA NA 
EDUCA.lag NA NA NA NA NA NA 

EDUC16.lag NA NA NA NA NA NA 
EDUCPP.lag NA NA NA NA NA NA 

WRCNTYN.lag NA NA NA NA NA NA 
WRCNTYD.lag NA NA NA NA NA NA 
WRKSMN.lag NA NA NA NA NA NA 
PRFEMP.lag NA NA NA NA NA NA 
INDEMP.lag NA NA NA NA NA NA 
USKOCC.lag NA NA NA NA NA NA 

OCC1.lag NA NA NA NA NA NA 
OCC2.lag NA NA NA NA NA NA 
OCC3.lag NA NA NA NA NA NA 
OCC4.lag NA NA NA NA NA NA 
OCC5.lag NA NA NA NA NA NA 
OCC6.lag NA NA NA NA NA NA 
OCC7.lag NA NA NA NA NA NA 
OCC8.lag NA NA NA NA NA NA 
OCC9.lag NA NA NA NA NA NA 

OCCPRO.lag NA NA NA NA NA NA 
OCCPRO.ihs.lag NA NA NA NA NA NA 

ARMFRM.lag NA NA NA NA NA NA 
ARMFRF.lag NA NA NA NA NA NA 

AVHHINN.2010real.lag NA NA NA NA NA NA 
AVHHIN.2010real.lag NA NA NA NA NA NA 

POVRATN.lag NA NA NA NA NA NA 
POVRATD.lag NA NA NA NA NA NA 

POVRATD.ihs.lag NA NA NA NA NA NA 
WHTPRN.lag NA NA NA NA NA NA 
WELFARN.lag NA NA NA NA NA NA 
WELFARD.lag NA NA NA NA NA NA 
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Variable 

OLS % 
Min 

Lambda 

OLS % 
Mid 

Lambda 

OLS % 
1se 

Lambda 

Log % 
Min 

Lambda 

Log % 
Mid 

Lambda 

Log % 
1se 

Lambda 
NELPOON.lag NA NA NA NA NA NA 
NELPOOD.lag NA NA NA NA NA NA 
ELDPOON.lag NA NA NA NA NA NA 
ELDPOOD.lag NA NA NA NA NA NA 
WHTPRD.lag NA NA NA NA NA NA 
TOTHSUN.lag NA NA NA NA NA NA 
SMPHSU.lag NA NA NA NA NA NA 
OCCHU.lag NA NA NA NA NA NA 
VACHU.lag NA NA NA NA NA NA 
VACRT.lag NA NA NA NA NA NA 
VACFS.lag NA NA NA NA NA NA 

VACOCC.lag NA NA NA NA NA NA 
VACOTH.lag NA NA NA NA NA NA 
RNTOCC.lag NA NA NA NA NA NA 
OWNOCC.lag NA NA NA NA NA NA 
SPRNTOC.lag NA NA NA NA NA NA 
SPOWNOC.lag NA NA NA NA NA NA 
PRSRNTU.lag NA NA NA NA NA NA 
NEWHOUS.lag NA NA NA NA NA NA 

MINORITY.pct.lag NA NA NA NA NA NA 
SHRWHTN.pct.lag NA NA NA NA NA NA 
SHRBLKN.pct.lag NA NA NA NA NA NA 
SHRAMIN.pct.lag NA NA NA NA NA NA 
SHRAPIN.pct.lag NA NA NA NA NA NA 
SHRHSPN.pct.lag NA NA NA NA NA NA 

CHILD.pct.lag NA NA NA NA NA NA 
FORBORN.pct.lag NA NA NA NA NA NA 
MCWKID.pct.lag NA NA NA NA NA NA 
SPWKID.pct.lag NA NA NA NA NA NA 
MHWKID.pct.lag NA NA NA NA NA NA 
FHHTOT.pct.lag NA NA NA NA NA NA 
FHWKID.pct.lag NA NA NA NA NA NA 
EDUC8.pct.lag NA NA NA NA NA NA 

EDUC11.pct.lag NA NA NA NA NA NA 
EDUC12.pct.lag NA NA NA NA NA NA 
EDUC15.pct.lag NA NA NA 0.000 0.000 0.000 
EDUCA.pct.lag NA NA NA NA NA NA 

EDUC16.pct.lag NA NA NA NA NA NA 
OCCPRO.pct.lag NA NA NA NA NA NA 

POVRATN.pct.lag NA NA NA NA NA NA 
WELFARN.pct.lag NA NA NA NA NA NA 
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Variable 

OLS % 
Min 

Lambda 

OLS % 
Mid 

Lambda 

OLS % 
1se 

Lambda 

Log % 
Min 

Lambda 

Log % 
Mid 

Lambda 

Log % 
1se 

Lambda 
VACHU.pct.lag NA NA NA NA NA NA 

OWNOCC.pct.lag NA NA NA NA NA NA 
RNTOCC.pct.lag NA NA NA NA NA NA 

OWNRNT.pct.lag NA NA NA NA NA NA 
NEWHOUS.pct.lag NA NA NA NA NA NA 
TRCTPOP.ihs.lag NA NA NA NA NA NA 
MINORITY.ihs.lag NA NA NA NA NA NA 

SMPPRS.ihs.lag NA NA NA NA NA NA 
SHRWHTN.ihs.lag NA NA NA NA NA NA 
SHRBLKN.ihs.lag NA NA NA NA NA NA 
SHRAMIN.ihs.lag NA NA NA NA NA NA 
SHRAPIN.ihs.lag NA NA NA NA NA NA 
NONHISP.ihs.lag NA NA NA NA NA NA 
SHRHSPN.ihs.lag NA NA NA NA NA NA 
ADULTN.ihs.lag NA NA NA NA NA NA 
CHILDN.ihs.lag NA NA NA NA NA NA 

OLDN.ihs.lag NA NA NA NA NA NA 
KIDSN.ihs.lag NA NA NA NA NA NA 

NATBORN.ihs.lag NA NA NA NA NA NA 
OUTBORN.ihs.lag NA NA NA NA NA NA 
FORBORN.ihs.lag NA NA NA NA NA NA 
NUMHHS.ihs.lag NA NA NA NA NA NA 
PERS15P.ihs.lag NA NA NA NA NA NA 
MEN15P.ihs.lag NA NA NA NA NA NA 
FEM15P.ihs.lag NA NA NA NA NA NA 

MGMKTN.ihs.lag NA NA NA NA NA NA 
MGMKTD.ihs.lag NA NA NA NA NA NA 
FAMSUB.ihs.lag NA NA NA NA NA NA 

FFHN.ihs.lag NA NA NA NA NA NA 
FFHD.ihs.lag NA NA NA NA NA NA 

MCWKID.ihs.lag NA NA NA NA NA NA 
MCNKID.ihs.lag NA NA NA NA NA NA 
MHWKID.ihs.lag NA NA NA NA NA NA 
MHNKID.ihs.lag NA NA NA NA NA NA 
FHWKID.ihs.lag NA NA NA NA NA NA 

WRCNTYN.ihs.lag NA NA NA NA NA NA 
WRCNTYD.ihs.lag NA NA NA NA NA NA 
WRKSMN.ihs.lag NA NA NA NA NA NA 
TRVLPBN.ihs.lag NA NA NA NA NA NA 
TRVLPBD.ihs.lag NA NA NA NA NA NA 
WKHOME.ihs.lag NA NA NA NA NA NA 
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Variable 

OLS % 
Min 

Lambda 

OLS % 
Mid 

Lambda 

OLS % 
1se 

Lambda 

Log % 
Min 

Lambda 

Log % 
Mid 

Lambda 

Log % 
1se 

Lambda 
AUTO.ihs.lag NA NA NA NA NA NA 

COMMUT2.ihs.lag NA NA NA NA NA NA 
COMMUT4.ihs.lag NA NA NA NA NA NA 
COMMUTX.ihs.lag NA NA NA NA NA NA 
TRVLOTN.ihs.lag NA NA NA NA NA NA 

EDUC8.ihs.lag NA NA NA NA NA NA 
EDUC11.ihs.lag NA NA NA NA NA NA 
EDUC12.ihs.lag NA NA NA NA NA NA 
EDUC15.ihs.lag NA NA NA NA NA NA 
EDUCA.ihs.lag NA NA NA NA NA NA 

EDUC16.ihs.lag NA NA NA NA NA NA 
EDUCPP.ihs.lag NA NA NA NA NA NA 
PRFEMP.ihs.lag NA NA NA NA NA NA 
INDEMP.ihs.lag NA NA NA NA NA NA 
USKOCC.ihs.lag NA NA NA NA NA NA 

OCC1.ihs.lag NA NA NA NA NA NA 
OCC2.ihs.lag NA NA NA NA NA NA 
OCC3.ihs.lag NA NA NA NA NA NA 
OCC4.ihs.lag NA NA NA NA NA NA 
OCC5.ihs.lag NA NA NA NA NA NA 
OCC6.ihs.lag NA NA NA NA NA NA 
OCC7.ihs.lag NA NA NA NA NA NA 
OCC8.ihs.lag NA NA NA NA NA NA 
OCC9.ihs.lag NA NA NA NA NA NA 

ARMFRM.ihs.lag NA NA NA NA NA NA 
ARMFRF.ihs.lag NA NA NA NA NA NA 

POVRATN.ihs.lag NA NA NA NA NA NA 
POVRATD.ihs.lag.1 NA NA NA NA NA NA 

WHTPRN.ihs.lag NA NA NA NA NA NA 
WELFARN.ihs.lag NA NA NA NA NA NA 
WELFARD.ihs.lag NA NA NA NA NA NA 
NELPOON.ihs.lag NA NA NA NA NA NA 
NELPOOD.ihs.lag NA NA NA NA NA NA 
ELDPOON.ihs.lag NA NA NA NA NA NA 
ELDPOOD.ihs.lag NA NA NA NA NA NA 
WHTPRD.ihs.lag NA NA NA NA NA NA 
TOTHSUN.ihs.lag NA NA NA NA NA NA 
SMPHSU.ihs.lag NA NA NA NA NA NA 
OCCHU.ihs.lag NA NA NA NA NA NA 
VACHU.ihs.lag NA NA NA NA NA NA 
VACRT.ihs.lag NA NA NA NA NA NA 
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Variable 

OLS % 
Min 

Lambda 

OLS % 
Mid 

Lambda 

OLS % 
1se 

Lambda 

Log % 
Min 

Lambda 

Log % 
Mid 

Lambda 

Log % 
1se 

Lambda 
VACFS.ihs.lag NA NA NA NA NA NA 

VACOCC.ihs.lag NA NA NA NA NA NA 
VACOTH.ihs.lag NA NA NA NA NA NA 
RNTOCC.ihs.lag NA NA NA NA NA NA 
OWNOCC.ihs.lag NA NA NA NA NA NA 
SPRNTOC.ihs.lag NA NA NA NA NA NA 
SPOWNOC.ihs.lag NA NA NA NA NA NA 
PRSRNTU.ihs.lag NA NA NA NA NA NA 

TPOPDENS.ihs.lag NA NA NA NA NA NA 
NEWHOUS.ihs.lag NA NA NA NA NA NA 

AVHHINN.2010real.ihs.lag NA NA NA NA NA NA 
AVHHIN.2010real.ihs.lag NA NA NA NA NA NA 

factor(YEAR)1980 NA NA NA NA NA NA 
factor(YEAR)1990 NA NA NA NA NA NA 
factor(YEAR)2000 NA NA NA NA NA NA 
factor(YEAR)2010 NA NA NA NA NA NA 

 

 

Fig. 90. Illustration of how variables shrink to zero as lambda changes – number of variables with a 

non-zero coefficient are listed across the top axis 
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Fig. 91. Log lambda vs. MSE with number of non-zero variables across the top. Dashed line on left is 

the minimum lambda and the right dashed line is lambda within one standard error 
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Section E Machine learning causal search algorithms 

These machine learning causal search algorithms are based in information theory. Most of 

them use mutual information and Bayesian statistical methods to discover statistical and causal 

relationships between variables within data sets. This information is then presented in a graph 

form. Depending on the causal relationships of the variables, the graphs may consist of directed or 

undirected edges. A directed edge signifies that the causal relationship is known between the 2 

variables, while an undirected edge signifies that the direction of the causal influence is unknown 

(i.e. from A to B or from B to A). For readers unfamiliar with these methods, it is important to gain 

an understanding of Markov Causal and Faithfulness assumptions (sometimes called conditions) 

and the authors recommend Spirtes, et al (1993) for more information.  

Markov Blanket Fan Search (MBFS) Algorithm 

This algorithm was specifically designed to discover causal relationships of a target variable 

in high dimensional datasets. Using a Markov Blanket in the selection of this subset of variables is 

optimal (Ramsey 2006). A Markov Blanket of a target (t) includes the parents (influencers) of the 

target variable, the children (influenced by) of the target variable and the parents of the children of 

the target variable (Ramsey 2006). The Markov Blanket in essence is a superset of the variables 

that could either directly influence or be directly influenced by the target variable.  

The MBFS algorithm follows the same method for adjacency search as the PC algorithm 

(Peter [Spirtes] and Clark [Glymour] algorithm), but in a novel arrangement (Ramsey 2006). The 

MBFS algorithm is divided into 3 stages: an adjacency search phase, an edge orientation phase, and 

a graph trimming phase (Ramsey 2006). During the adjacency search, the algorithm constructs an 

edge from the target variable to every other variable that is not unconditionally independent of the 

target variable. Then for each variable with an edge, the algorithm finds all variables that are not 

unconditionally independent. This is what Ramsey calls a fan (2006). At the end of the fan search, 

all found variables will be connected to the target variable by no more than 2 steps (i.e. all variables 
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will be connected to the target variable with no more than one intermediate variable). The edge 

orientation phase first orients colliders and then applies the Meek-Orient procedure. Finally, the 

graph is trimmed using Trim-To-MBP creating the final Markov Blanket. The pseudo-code for the 

algorithm follows using G (a graph, to be constructed), A (a list of variables visited by the Construct-

Fan method), t, v, w, and y (variables in V), and T (a set of variables in V) (Ramsey 2006). 

MBFS(V, I, t, dmax): 

1. G ← Ø, A ← Ø 

2. Add t to G 

3. do Construct-Fan(t, V, I, G, A, dmax) 

4. for each v in adj(t) 

5. do Construct-Fan(v, V, I, G, A, dmax) 

6. for each win adj(adj(t)) \ A 

7. do Construct-Fan(w, V, I, G, A, dmax) 

8. do Orient-Colliders(G, A) 

9. do Meek-Orient(G, t, A) 

10. do Trim-To-MBP(G, t) 

11. return G 

Fast Greedy Equivalence Search (FGES) algorithm 

FGES is based on the GES algorithm originally developed by Meek (1995) and further 

developed by Chickering (2002). Meek developed the Greedy Equivalence Search (GES) algorithm 

to specifically answer the following 2 questions: “Does there exists a complete causal explanation 

for a list of conditional independence statements M consistent with background knowledge K?” and 

“Given that there is a complete causal explanation for M what are the causal relationships common 

to every complete causal explanation consist with respect to background knowledge K?” (1995 p. 

404) GES is a Bayesian algorithm that searches the space by starting with an empty graph and 
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scoring it after each change. The forward pass adds edges until the score no longer increases due to 

any single edge addition. The backward pass removes single edges until the score no longer 

increases. (Glymour et al. 2017) 

Chickering provided elements of and proofs for GES, but did not include the precise 

algorithm (2002). Meek, however, provided the algorithm for GES, FGES is an extension that 

imposes background information first, includes the following 4 phases (1995 p. 404): 

I. Examine independence statements in M and try to construct the pattern of some 

directed acyclic graph (DAG) G. Let ΠI be the result of Phase I. 

II. Try to extend ΠI with the background knowledge K. Let ΠII be the result of Phase II. 

III. Try to find a graph ΠIII which is a consistent DAG extension of ΠII. 

IV. Check whether ΠIII is a complete causal explanation for M. 

The FGES improves upon the original GES algorithm by parallelizing and optimizing the 

process (Glymour et al. 2017). Specifically, FGES does this with the following 4 changes: scores are 

cached so that changes to a graph can be updated with each addition or subtraction of an edge, each 

step has been parallelized, if BIC is used the penalty can be increased, and a limited faithfulness 

assumption is implemented whereby if an edge has been found to be uncorrelated it will not be 

added at any future step in the forward search (Ramsey et al. 2017). These changes are the keys to 

speeding the process and allowing GES to function on large data sets. 

Fast Greedy Equivalent Search-Markov Blanket (FGES-MB) algorithm 

This is a modification and restriction of the FGES algorithm. This algorithm restricts the 

search space of the FGES algorithm to the Markov Blanket of a target variable. The process is as 

follows (Ramsey et al. 2017): 

1. For the Markov blanket search, one calculates a set A of adjacencies x–y about t as 

follows.  

2. First, given a score I (a, b, C), one finds the set of variables x such that 
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I (x, t, ∅) > 0 and adds x–t to A for each x found.  

3. Then for each such variable x found, one finds the set of variables y such that I (y, x, ∅) > 

0 and adds y–x to A for each such y found. The general form of this calculation is familiar 

for Markov blanket searches, though in this case it is carried out using a score difference 

function.  

4. One then simply runs the rest of FGES, restricting adjacencies used in the search to the 

adjacencies in A in the first pass and then marrying parents as necessary and re-running 

the backward search to get the remaining unshielded colliders, inferring additional 

orientations as necessary.  

5. The resulting graph may then simply be trimmed to the variables in A and returned. 
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Section F FGES search results  

Table 79. FGES graph results for ML-search identified subset of variables for 1,000 bootstraps with 
80% of data for all variables – only showing variables where one node is a bridge and the other 
node is not 

Node1 Int Node2 Ensemble 
No 
Edge --> <-- 

IHS new total bridges <-- Rural tract ind (10M) 0.167 0.833   0.167 
Total bridges --> Rural tract ind (10M) 0.667 0.333 0.667   
IHS total bridges --> Rural tract ind (10M) 0.833 0 0.833 0.167 
newbridge.under14 <-- Rural tract ind (10M) 0.333 0.667   0.333 
IHS total bridges --> Rural tract ind (4M) 1 0 1   
Owner occupied housing --> New total bridges 0.167 0.833 0.167   
Log foreign born --> New restrictive bridges 0.167 0.833 0.167   
Log Male head of house 
w/kids --> New restrictive bridges 0.167 0.833 0.167   

IHS real average income --> IHS total bridges 0.167 0.833 0.167   
IHS real aggregate income --> IHS total bridges 0.333 0.667 0.333   
Log real average income --> IHS total bridges 0.167 0.833 0.167   
% Male head of house 
w/kids --> IHS total bridges 0.333 0.667 0.333   

Population density --> IHS total bridges 0.5 0.333 0.5 0.167 

Some college --> Total non-restrictive 
bridges 0.167 0.833 0.167   

Commute < 25 min <-- Restrictive bridges 0.167 0.833   0.167 
Commute 25-45 min <-- Restrictive bridges 0.167 0.833   0.167 
% Some college <-- Restrictive bridges 0.167 0.833   0.167 
Female head of house <-- Restrictive bridges 0.167 0.833   0.167 
% Female head of house <-- Restrictive bridges 0.167 0.833   0.167 
IHS new houses <-- Restrictive bridges 0.167 0.833   0.167 
IHS Native American <-- Restrictive bridges 0.167 0.833   0.167 
Log vacant housing <-- Restrictive bridges 0.167 0.833   0.167 
Welfare <-- Restrictive bridges 0.167 0.833   0.167 

 

Table 80. FGES search results for literature review identified subset of variables – only showing 
variables where one node is a bridge and the other node is not 

Node1 Interaction Node2 Ensemble 
No 
edge --> <-- --- 

"AREALAND" --> "bridge.new.total" 0.862 0.111 0.86 0.03   
"AREALAND" <-- "bridge.total.ihs" 0.622 0.155 0.22 0.62 0 
"TRVLPBN.ihs" <-- "bridge.total.ihs" 0.594 0.406   0.59   
"bridge.total.ihs" --> "rur10m" 0.422 0.025 0.42 0.3 0.25 
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Notation 

The following symbols are used in this paper: 

C = a vector of lagged control variables; 

d = a dichotomous variable designating the interaction of the group and treatment variables; 

e = the error term; 

f = a time-invariant tract fixed effect; 

g = a dummy variable designating the tract as receiving a new bridge at any time (group term); 

i = the tract index; 

k = the index for a particular variable; 

logit(p(x)) = the probability that a variable designating a new bridge was built in the preceding 10 

years; 

t = the year index; 

X = a vector of variables of social interest; 

x = a dummy variable designating the tract received a new bridge treatment (treatment term); 

y = either a dichotomous variable designating a new restrictive bridge was built in the preceding 10 

years or the count of such bridges; 

z = a social equity variable of interest; 

𝛽𝛽0 = the intercept; 

𝛽𝛽1 = the event study coefficient for the treatment and group interaction term; 

𝛽𝛽2 = the coefficient for the treatment term; 

𝛽𝛽3 = the coefficient for the group term; 

𝛾𝛾𝑘𝑘 = a vector of control variable coefficients; 

𝛿𝛿 = a fixed effect for each census year; 

𝜆𝜆 = he Lagrange multiplier that balances the tradeoff between the squared error loss and the L1 

penalty;  
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Appendix III:  Machine Learning Methods to Predict Air Pollution Concentration for 

Policymakers Supplemental Information 

Section A Additional details from literature review 

Air pollution effects on human health 

Stieb et al (2002) conducted a comprehensive, systematic synthesis of 109 time-series 

studies on epidemiological link between air pollution and mortality. They found effect sizes were 

generally reduced in multi-pollutant models, but significantly different than zero for PM10 and SO2. 

Respiratory mortality had larger effect sizes for all pollutants except O3. They also found that 

results were robust to the different methodologies used by the various studies. They note further 

work is need in isolating effects of individual pollutants, effect thresholds, and susceptibility of 

different populations. A possibly important finding by Fiore et al (2003) is that as ozone 

simulations become more coarse in the spatial resolution they capture averages better but not 

because the predictions are more accurate. Using PMCAMx, Karydis et al (2007) evaluated the 

efficacy of this CTM for the Eastern United States for all four seasons. Among other findings, they 

discovered that the PM2.5 predictions were encouraging but not great, nitrate was underpredicted, 

wet deposition was inaccurate, ammonium was overpredicted, but elemental carbon predictions 

were particularly good. Peng et al (2017) first simulated and then applied several modelling 

methods developed for dealing with confounders in time-series datasets to the National Morbidity, 

Mortality, and Air Pollution Study (NMMAPS). By doing so, they quantified and characterized the 

uncertainty of each model type. These models used several methods for adjusting for seasonal and 

long-term trends in air pollution epidemiology. They found that regardless of the strengths or 

weaknesses of any particular model, it was clear that there is a link between PM10 and mortality. 

Reduced complexity models are useful 

Muller et al (2011) use the Air Pollution Emission Experiments and Policy (APEEP) RCM 

model to estimate damages from six major pollutants by industry. This is a good example of an RCM 
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for use by policymakers. Using this model Muller et al (2011) calculate damages by industry and 

delineate which provide a greater ratio of gross external damages to value added. The Estimating 

Air pollution Social Impact Using Regression (EASIUR) model was developed to specifically 

estimate public health costs of fine particulate matter (PM2.5). Using their EASIUR RCM, Heo et al 

(2016) were able to demonstrate results with fractional errors which are similar to or less than 

CTM’s performance. Gilmore et al (2019) compared several chemical transport models (CTM) with 

reduced complexity models (RCM) and found that the reduced complexity models predicted PM2.5 

with only a modest reduction in accuracy. The RCMs predictions were within a factor of two to 

three which is usually less sensitive than the value of a statistical life (VSL) and other uncertainties. 

Therefore, these findings support using RCMs as valid tools for policy formulation and analysis. 

Machine Learning Techniques are being Employed in Air Pollution Studies 

Bellinger et al. (2017) conducted a systematic review of machine learning techniques used 

in air pollution epidemiology literature. They reviewed methods from 47 relevant articles from a 

search that discovered 400 potential research articles. They divided the articles into three areas of 

interest “1) source apportionment; 2) forecasting/prediction of air pollution/quality or exposure; 

and 3) generating hypotheses (Bellinger et al. 2017 p. 1).” They found researchers had employed 

neural networks, decision trees, support vector machines, k-means clustering and the APRIORI 

algorithm (a commonly used association mining technique). They also identified potential areas for 

future work including deep learning and geo-spatial pattern mining. Based on the objectives of the 

articles identified during their review, none of the reviewed articles had the same objective or 

methods as those the authors are considering. There are several that share similarities with the 

goals and methods and the authors plan to review these articles in depth in order to better 

delineate commonalities and differences. 

As specific examples of what has been attempted in this space, the authors share details 

about the following works. Feng et al (2015) created a hybrid model using wavelet transformations 
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with a neural network to predict course PM2.5 levels up to two days in advance in China based on 

temperatures, wind, humidity, general conditions, day of year and day of week. Kleine Deters et al 

(2017) developed a neural network to predict PM2.5 concentrations solely based on wind and 

precipitation levels in Quito, Ecuador. This method is computationally less expensive than CTMs. 

They make the case that weather sensors are both more accurate and less expensive than PM2.5 

sensors. Their technique also demonstrated limitations of using only weather data with a neural net 

to predict air pollution. Kelp et al (2019) developed a neural network to emulate the carbon bond 

mechanism Z (CBM-Z) gas-phase chemical mechanism. This model predicted the hourly 

concentrations of 77 chemical species with a root mean square error (RMSE) of 1.97 ppb. Using 

GPUs, this model was able to achieve speedup of 4,250 times compared to a CTM. The model 

requires more work in order to constrain propagation errors that compound over time. Kelp et al 

(2020) next attempt to increase the length of time for which accurate forecasts can be made and 

explore the parameter space to create a more stable, general air chemistry model. Xue et al (Xue et 

al. 2019) combined inputs from satellites, CTMs, and in-situ readings to develop a machine learning 

model to predict PM2.5. The model was trained using data from 2013-2016. The model was then 

applied to sometimes the time period from 2000-2012 which is known for having missing 

measurements. Their model produced rather good predictions for daily, monthly and annual 

averages. They then added a generalized additive model to interpolate missing predictions due to 

missing satellite data. This two-stage estimation technique sacrificed daily prediction accuracy but 

significantly improved monthly and annual prediction accuracy. Their predictions found increasing 

pollution during the period from 2000-2007 and decreased pollution thereafter. They offer these 

data in the hope that others will use them to perform large-scale epidemiological studies. 

General Machine Learning Efficacy 

Hornik et al. (1991; 1989) show how feedforward neural networks are universal 

approximators. Since that time, many applications have established this principle and a plethora of 
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feedforward network architectures have been developed. Huang et al (2016) build upon that 

architecture and demonstrated deep neural network advantages including: less prone to 

overfitting, ease of training and regularizing effects. 

Section B Data 

The data for this project covers three calendar years in 1990, 2001 and 2010. These three 

years were chosen due to data availability. Carnegie Mellon University’s Center for Atmospheric 

Particle Studies (CAPS) has already simulated three full years (excepting 4 days) (Xing et al. 2013). 

CAPS researchers modeled these three years due to availability of the U.S. EPA’s National Emission 

Inventory (NEI). The NEI data was formatted to be used as the input for the Particulate Matter 

Comprehensive Air Quality Model with Extensions (PMCAMx). The data consist of three general 

categories:  pollution sources, meteorological conditions, and resultant concentrations. Pollution 

sources and meteorological condition files are the input and resultant concentrations are the 

output. With the exception of the point pollution sources, the data are hourly measurements 

covering the continental United States (CONUS) divided into 36 km x 36 km cells (see Fig. 15). The 

point pollution sources by contrast are hourly measurements of individual pollution sources 

including physical characteristics, temperature at discharge point, and discharge volume rates. The 

model developed in this work only uses the resultant concentrations and the area pollution sources. 

For this work, as previously noted, the authors concentrate on the well-understood EC species. The 

authors chose to divide EC (and other species) particulate matter into two regulated size categories 

with the smaller size shown to have health effects:  one for fine (PM2.5) EC and one for coarse (PMC) 

EC. Hereafter, the authors refer to fine EC as EC2.5 and coarse EC as ECC. The authors use the EPA’s 

definition for fine and coarse (US EPA 2014). Fine particulate matter is ≤ 2.5µm. Course particulate 

matter is ≤ 10µm and > 2.5µm.  
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Table 81 Data characteristics of file types representing one day of measurements 

Data Type Layers Rows Columns Variable
s 

Time 
Steps 

Output Files 
Daily Hourly Output 1 82 132 509 24 

Meteorology Input Files 
Vertical Diffusivity 14 82 132 1 24 
Land Use 1 82 132 11 1 
Water Vapor  14 82 132 1 24 
Temperature 14 82 132 2 24 
Wind Speed 14 82 132 2 24 
Height Pressure 14 82 132 2 24 
Cloud/Rain 14 82 132 3 24 
Snow 1 82 132 1 1 

Emission Source Input Files 
Area - On Road Pollution 1 116 152 114 24 
Area - Non-road Pollution 1 116 152 114 24 
Point - Electricity Generating Units (EGU) 
pollution 1 8304 (x, y, z, coords 

included in 
 

128 24 

Point - Non-Integrated Planning Module (IPM) 1 102951 (x, y, z, coords 
included in 

 

128 24 

 

Section C Preliminary analysis and exploration 

VAR 

VAR is a multivariate algorithm used to analyze how multiple time series interact. This 

method is used to determine how much information is contained in the past. It is considered 

autoregressive because it is concerned with how past measurements influence the present 

measurement. The authors only used the output data for this method. To ensure VAR is a suitable 

method for the data, some preliminary tests were run including: stationarity, Granger causality 

(Granger 1969), Johansen’s co-integration (Johansen 1991), and order selection. (See Appendix III, 

Section C for more information on these tests.) Each variable is modeled as a function of past 

variables where: 

Equation 11. VAR in context of geographic-based measurements 

𝑦𝑦𝑖𝑖,𝑥𝑥,𝑦𝑦,𝑡𝑡 = α + 𝜷𝜷1𝒀𝒀𝑡𝑡−1 + ⋯+ 𝜷𝜷𝑝𝑝𝒀𝒀𝑡𝑡−𝑝𝑝 + 𝜖𝜖𝑡𝑡 
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𝜖𝜖𝑡𝑡 ∼ 𝑁𝑁𝑙𝑙𝑏𝑏𝑚𝑚𝑚𝑚𝑙𝑙(0, Σ𝑢𝑢) 

where i is the measure of concentration of either PEC2.5 or PECC, x and y are the grid coordinates of 

a variable, 𝑙𝑙 is the time (format:  year-month-day-hour) of the measurement, α is the intercept, 𝜷𝜷 

are coefficients of the lags of Y vectors (including all x, y and i variables in that t) until order p, and 

𝜖𝜖𝑡𝑡 is the error. Here is an example or snapshot in the process: 

Equation 12. VAR example from sample 3 x 3 grid with order 4 time lag 

𝑦𝑦𝑃𝑃𝑃𝑃2.5,33,14,1990−01−15−08:00:00 = α + 𝜷𝜷1𝒀𝒀1990−01−15−07:00:00 + ⋯+ 𝜷𝜷4𝒀𝒀1990−01−15−04:00:00 + 𝜖𝜖𝑡𝑡 

In this example, 4 lags (order 4) were calculated to be the best fit for our 9-cell grid located over 

land in Mexico (locations [32,13] to [34,15] in the Lambert Conformal Projection grid-numbering 

system used by PMCAMx, see Fig. 15). As the algorithm fits the coefficients, it examines the 

concentration of PEC2.5 in the grid cell located at [33, 14] at 0800 on January 15, 1990. On the right-

hand side, the algorithm is looking at the concentration of PEC2.5 and PECC in all 9 grid cells from 

0700 to 0400 on January 15, 1990. After training on the entire 3 years of hourly data, the model can 

be used to generate predictions with only the number of lag measurements as input. See Appendix 

III, Table 82 (shows overall results and only the coefficients for the grid cell in the example 

truncated to a single page and does not include the correlation matrix of residuals). Fig. 92 shows a 

graphical representation of results for the 11 x 11 cell grid. 

After fitting the model, the authors checked to see if there was a leftover pattern in the 

residuals. If there was, that would mean there is some other phenomena that should be identifiable 

and accounted for in the model (other predictors or a different model). To check for serial 

correlation, the authors used Durbin Watson’s Statistic. The statistic varies from 0 to 4. As it 

approaches 0, there is a positive serial correlation; as it approaches 4, there is a negative serial 

correlation; as it approaches 2, there is no significant serial correlation. The specific 

implementation is from the Statsmodels module for Python. See Appendix III, Table 82 for a sample 

of results. No additional serial correlations were found in the residuals. 



Machine Learning for Public Policy: Applications in Infrastructure and Air Pollution 

345 

 
Fig. 92. VAR results for PEC2.5 in grid cell 120, 55. Top row shows PEC2.5 coefficients and 

bottom row shows PECC coefficients.  
 

Pre-processing Analysis to ensure VAR is a reasonable method 

Prior to running the VAR model there are several pre-processing steps required to ensure 

that a VAR model is reasonable. The steps and reasons are provided below. 

Stationarity test. Many of the other pre-processing steps and VAR require the time series 

data to be stationary, that is that the joint probability distribution (and by extension the mean and 

variance) do not change over time. The specific test is the Augmented Dickey-Fuller test that comes 

from the Python statsmodels module. The null hypothesis is that there is a unit root meaning that 

the distribution is not stationary. If the value returned is less that a desired p-value, the series is 

stationary. Almost without exception all data tested was found to be stationary. If the data were not 

stationary, we could use differencing to make the data stationary. See Table 84 for results from the 

9-grid dataset overland in Mexico. 
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Granger Causality test (Granger 1969). This is a statistical hypothesis test that tries to 

determine if one time-series is useful in forecasting another time series. Therefore, a time series X 

is said to Granger-cause time series Y if it can be shown that X provides statistically significant 

information about future values of Y. The specific test used comes from the Python statsmodels 

module which tests the null hypothesis that the two time series do not Granger-cause each other. 

The hypothesis can be rejected if the p-value is below the desired threshold. I tested up to 48 lags 

and found that the null hypothesis was rejected for our data meaning that our variables’ past values 

were found to Granger-cause present values. See Table 85 for a small sample of results from the 9-

grid dataset overland in Mexico. 
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Table 82. Sample results from VAR analysis of for PEC PM2.5 in grid cell 33, 14 located in 
Mexico over land 

Summary of Regression Results 
================================== 
Model:                         VAR 
Method:                        OLS 
Date:           Sat, 14, Mar, 2020 
Time:                     00:04:35 
-------------------------------------------------------------------- 
No. of Equations:         18.0000    BIC:                   -308.205 
Nobs:                     26180.0    HQIC:                  -308.483 
Log likelihood:       3.37243e+06    FPE:               9.33310e-135 
AIC:                     -308.615    Det(Omega_mle):    8.87684e-135 
-------------------------------------------------------------------- 
Results for equation PEC_PM25_14y33x 
===================================================================================== 
                        coefficient       std. error           t-stat            prob 
------------------------------------------------------------------------------------- 
const                      0.000356         0.000073            4.869           0.000 
L1.PEC_PM25_13y32x        -0.010401         0.011095           -0.938           0.348 
L1.PEC_PM25_13y33x         0.185286         0.014969           12.378           0.000 
L1.PEC_PM25_13y34x         0.082247         0.012286            6.694           0.000 
L1.PEC_PM25_14y32x         0.182803         0.015665           11.670           0.000 
L1.PEC_PM25_14y33x         1.161150         0.019076           60.870           0.000 
L1.PEC_PM25_14y34x         0.035414         0.015663            2.261           0.024 
L1.PEC_PM25_15y32x        -0.089695         0.012756           -7.032           0.000 
L1.PEC_PM25_15y33x         0.157815         0.016544            9.539           0.000 
L1.PEC_PM25_15y34x         0.073918         0.011383            6.494           0.000 
L1.PEC_PMC_13y32x         -4.700337         0.992159           -4.737           0.000 
L1.PEC_PMC_13y33x          2.175567         1.195714            1.819           0.069 
L1.PEC_PMC_13y34x         -4.145302         1.189662           -3.484           0.000 
L1.PEC_PMC_14y32x          2.469024         1.371109            1.801           0.072 
L1.PEC_PMC_14y33x          2.121705         1.414384            1.500           0.134 
L1.PEC_PMC_14y34x         -1.599624         1.532338           -1.044           0.297 
L1.PEC_PMC_15y32x         -2.373465         1.215327           -1.953           0.051 
L1.PEC_PMC_15y33x         -3.776709         1.357299           -2.783           0.005 
L1.PEC_PMC_15y34x         -4.029115         1.214434           -3.318           0.001 
...                         ...              ...                 ...             ... 
L4.PEC_PM25_14y32x         0.025249         0.015736            1.605           0.109 
L4.PEC_PM25_14y33x        -0.063831         0.018351           -3.478           0.001 
L4.PEC_PM25_14y34x         0.010234         0.015682            0.653           0.514 
L4.PEC_PM25_15y32x         0.051091         0.013069            3.909           0.000 
L4.PEC_PM25_15y33x         0.036633         0.015991            2.291           0.022 
L4.PEC_PM25_15y34x        -0.002773         0.011995           -0.231           0.817 
L4.PEC_PMC_13y32x          0.002796         0.935159            0.003           0.998 
L4.PEC_PMC_13y33x          1.672722         1.213486            1.378           0.168 
L4.PEC_PMC_13y34x         -2.822515         1.288663           -2.190           0.029 
L4.PEC_PMC_14y32x         -0.849890         1.350372           -0.629           0.529 
L4.PEC_PMC_14y33x         -2.058806         1.407345           -1.463           0.143 
L4.PEC_PMC_14y34x          2.298493         1.543369            1.489           0.136 
L4.PEC_PMC_15y32x         -0.061571         1.126642           -0.055           0.956 
L4.PEC_PMC_15y33x         -0.437012         1.322562           -0.330           0.741 
L4.PEC_PMC_15y34x         -3.074512         1.285940           -2.391           0.017 
===================================================================================== 
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Table 83. Durbin Watson’s Statistic for VAR model residuals for the 3 x 3 grid sample located in 
Mexico 

Durbin Watson Residual Serial Correlation Test 
PEC_PM25_13y32x: 2.0 
PEC_PM25_13y33x: 2.006 
PEC_PM25_13y34x: 2.0 
PEC_PM25_14y32x: 2.002 
PEC_PM25_14y33x: 2.005 
PEC_PM25_14y34x: 2.003 
PEC_PM25_15y32x: 2.003 
PEC_PM25_15y33x: 2.008 
PEC_PM25_15y34x: 2.004 
PEC_PMC_13y32x: 2.007 
PEC_PMC_13y33x: 2.006 
PEC_PMC_13y34x: 2.01 
PEC_PMC_14y32x: 2.003 
PEC_PMC_14y33x: 2.002 
PEC_PMC_14y34x: 2.009 
PEC_PMC_15y32x: 2.004 
PEC_PMC_15y33x: 2.0 
PEC_PMC_15y34x: 2.001 

 
 
 

Table 84. Sample results from Augmented Dickey-Fuller stationarity test 

Augmented Dickey-Fuller Test on "PEC_PM25_13y32x"  
----------------------------------------------- 
 Null Hypothesis: Data has unit root. Non-Stationary. 
 Significance Level    =   0.05 
 Test Statistic        = -16.4242 
 No. Lags Chosen       =  24 
 Critical value 1%     =  -3.431 
 Critical value 5%     =  -2.862 
 Critical value 10%    =  -2.567 
 => P-Value = 0.0. Rejecting Null Hypothesis. 
 => Series is Stationary. 

 
 
 

Table 85. Sample of results from Granger Causality Tests for 3 grid cells (columns Granger-
cause rows if reported p-value is less than 0.05) 

 PEC_PM25_13y32x_x PEC_PM25_13y33x_x PEC_PM25_13y34x_x 
PEC_PM25_13y32x_y 1 0 0 
PEC_PM25_13y33x_y 0 1 0 
PEC_PM25_13y34x_y 0 0 1 
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Johansen Co-integration test (Johansen 1991). Two or more time series are considered to be 

co-integrated if there exists a linear combination of them that has an order of integration less than 

that of the individual series. The specific test used also comes from the Python statsmodels module 

and is limited to testing up to 12 time series. As a result of this limitation, fine and course PEC 

variables were tested separately (i.e. fine with fine and course with course). See Table 86 for results 

from the 9-grid dataset overland in Mexico. 

Table 86. Sample results of Johansen Co-integration tests for fine and course PEC 

Name            ::  Test Stat > C(95%)    =>   Significant?  
----------------------------------------------------------- 
PEC_PM25_13y32x::  16272.93  > 179.5199  =>   True 
PEC_PM25_13y33x::  13106.63  > 143.6691  =>   True 
PEC_PM25_13y34x::  10351.05  > 111.7797  =>   True 
PEC_PM25_14y32x::  7960.74   > 83.9383   =>   True 
PEC_PM25_14y33x::  5769.98   > 60.0627   =>   True 
PEC_PM25_14y34x::  3866.65   > 40.1749   =>   True 
PEC_PM25_15y32x::  2156.88   > 24.2761   =>   True 
PEC_PM25_15y33x::  1030.3    > 12.3212   =>   True 
PEC_PM25_15y34x::  26.72     > 4.1296    =>   True 
----------------------------------------------------------- 
PEC_PMC_13y32x  ::  17127.27  > 179.5199  =>   True 
PEC_PMC_13y33x  ::  14028.51  > 143.6691  =>   True 
PEC_PMC_13y34x  ::  11140.55  > 111.7797  =>   True 
PEC_PMC_14y32x  ::  8674.26   > 83.9383   =>   True 
PEC_PMC_14y33x  ::  6432.9    > 60.0627   =>   True 
PEC_PMC_14y34x  ::  4465.64   > 40.1749   =>   True 
PEC_PMC_15y32x  ::  2624.48   > 24.2761   =>   True 
PEC_PMC_15y33x  ::  1121.89   > 12.3212   =>   True 
PEC_PMC_15y34x  ::  152.81    > 4.1296    =>   True 

 
Order selection. A critical parameter of a VAR is the order of the model. The order is how 

many lags should be analyzed by the model. The VAR function comes with a select order sub-

function. I provided a maximum lag of 48 hours to the function and it returned a list of goodness of 

fit measures (AIC, BIC, FPE and HQIC) and selected the order (number of lags) deemed optimal for 

the data. The default goodness of fit measure used to select the order is BIC. Depending on the 

number of grid cells provided, the order selected changes. For the 3 x 3 grid over Mexico, order 4 

was selected. For the 11 x 11 grid centered on New York City, order 2 was selected. For the entire 

CONUS, order 2 was also selected. See  for results from the 9-grid dataset overland in Mexico.  
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Table 87. Sample of VAR order selection results 

VAR Order Selection (* highlights the minimums)   
================================================== 
       AIC         BIC         FPE         HQIC    
-------------------------------------------------- 
0       -261.8      -261.8  1.984e-114      -261.8 
1       -298.9      -298.8  1.606e-130      -298.8 
2       -307.4      -307.2  3.072e-134      -307.4 
3       -308.4      -308.1  1.124e-134      -308.3 
4       -308.6      -308.2* 9.611e-135      -308.5 
5       -308.7      -308.1  8.976e-135      -308.5 
6       -308.7      -308.1  8.658e-135      -308.5* 
7       -308.7      -308.0  8.386e-135      -308.5 
8       -308.8      -307.9  8.131e-135      -308.5 
9       -308.8      -307.9  7.923e-135      -308.5 
...        ...         ...                     ... 
47      -309.2      -304.5  5.043e-135      -307.7 
48      -309.2*     -304.4  4.997e-135*     -307.7 
-------------------------------------------------- 

 

LASSO 

Least Absolute Shrinkage and Selection Operator (LASSO) 

VAR analysis determined the optimal order (number of lags) of the output data. To test for 

variable importance and geographic adjacency dependencies, the authors used the LASSO 

algorithm. LASSO (also sometimes written lasso) was developed by Tibshirani (1996). Originally 

developed for ordinary least square (OLS) as an alternative to subset selection and ridge regression 

techniques. LASSO effectively performs both functions at the same time. LASSO shrinks some 

variable coefficients and sets others to 0 effectively subsetting the data.  

�𝛼𝛼�, �̂�𝛽� = 𝑚𝑚𝑏𝑏𝑙𝑙 min���𝑦𝑦𝑖𝑖 − 𝛼𝛼 −�𝛽𝛽𝑗𝑗𝑥𝑥𝑖𝑖𝑗𝑗
𝑗𝑗

�

2𝑁𝑁

𝑖𝑖=1

� 

subject to 

��𝛽𝛽𝑗𝑗� ≤ 𝑙𝑙
𝑗𝑗

 

The parameter 𝑙𝑙 ≥ 0 controls the amount of shrinkage applied to estimates.  
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For this specific application, the authors used the Least Angle Regression (LARS) algorithm 

with LASSO modification and 10-fold cross-validation via the Sci-Kit Learn package for Python 

(Efron et al. 2004). This method was selected due to its computational efficiency. To compare 

computational speeds, the authors compared “pure” LASSO, LARS and LARS with LASSO with 10-

fold cross validation on a 3 x 3 cell grid sample on a PC. The analysis took (mm:ss): 22:28, 1:55 and 

0:46 respectively. These results demonstrate that the LARS with LASSO modification is the most 

efficient computationally.  

 
Fig. 93. VAR results for PEC2.5 in grid cell 120, 55. Top row shows PEC PM2.5 coefficients and 

bottom row shows PECC coefficients. 
 
Assuming that there are no instantaneous effects (within the same hourly measurement) 

between grid cells, each cell had both PEC2.5 and PECC variables set as the y variable and then LASSO 

analyzed all lagged variables for importance. For example, if a 3 x 3 grid cell was run with 4 lags as 

was the case for the sample over land in Mexico, LASSO was run 18 times (once per grid cell for 
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both PEC2.5 and PECC) and considered 72 lagged variables (four per grid cell for both PEC2.5 and 

PECC). This analysis quickly ramps up as the sample size increases. The authors also ran LASSO for 

the 11 x 11 grid centered on New York City with 2 lags. This ran LASSO 242 times and considered 

484 lagged variables. This case takes substantially longer to run: 1:49:32 on a PC (LARS took 

26:48:12 for the same data). 

The LASSO algorithm does not automatically generate lags. Therefore, lagged variables 

were added to the dataset. The number of lags were selected by the Vector Autoregression (VAR) 

analysis. Each variable is lagged by 1 or more hours depending on the number of lags determined to 

be optimal (i.e., if 2 lags were determined to be optimal, all variables would be lagged by 1 hour and 

2 hours, effectively tripling the number of variables). 

The algorithm returns a parsimonious set of coefficients for each size of PEC in each grid 

cell. See Table 88 for a sample of results. See Error! Reference source not found. for a graphical 

depiction of the results.  

Table 88. Sample results from LASSO analysis of PEC2.5 in grid cell 119, 55 located near New 
York City 

PEC_PM25_55y119x    
PEC_PM25_50y117x.L1   -0.122165 
PEC_PM25_51y117x.L1    0.063757 
PEC_PM25_52y116x.L1    0.033179 
PEC_PM25_53y115x.L1    0.073355 
PEC_PM25_54y115x.L1    0.034095 
PEC_PM25_54y119x.L1    0.189275 
PEC_PM25_55y119x.L1    0.495967 
PEC_PM25_55y120x.L1    0.064406 
training data MSE      0.073214 
test data MSE          0.067137 
training data R-square 0.858740 
test data R-square     0.864024 
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CD-NOD 

A common assumption made in order to use many causal discovery algorithms is that the 

data provided are stationary, that is the joint probability distribution (and by extension the mean 

and variance) do not change over time. Unfortunately, real-world data is not always stationary. The 

CD-NOD algorithm’s purpose is to detect non-stationarity and use that information to build a causal 

structure in the form of a directed acyclic graph (DAG) (Zhang et al. 2017). CD-NOD explicitly 

identifies which nodes (variables) in the graph have non-stationarity and use that information to 

better detect the causal structural skeleton of the graph.  

The data provided to the CD-NOD algorithm also has a number of lags selected by the Vector 

Autoregression (VAR) analysis. Each variable is lagged by 1 or more hours depending on the 

number of lags determined to be optimal (i.e. if 2 lags were determined to be optimal, all variables 

would be lagged by 1 hour and 2 hours, effectively tripling the number of variables). This data set 

has 4 lags. Due to the computational costs of this algorithm, I also used LASSO to find a more 

parsimonious set of lagged variables in order to eliminate any lagged variables that were not 

influential on the non-lagged variables. Of the 72 lagged variables, LASSO determined 22 were 

important. Finally, I then selected a two-month period of transition between seasons (February and 

March of 1990) to use as a test case. This resulted in a dataset containing 1,344 hourly time periods 

of 40 variables (18 non-lagged concentration measurements and 22 lagged concentration 

measurements). 

Other Assumptions 

Zhang, et al. (2017) make several assumptions for their algorithm to function. First, they do 

not assume causal sufficiency for the observed variables, but do assume that if there are 

unobserved confounders, they can be written as smooth functions of time or domain. Therefore, the 

values of the confounders are fixed in each time or domain. They call this set a “pseudo causal 

sufficiency” assumption (Zhang et al. 2017 p. 1348). Further, they assume that the data are 
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independent but not identically distributed. This is specifically due to the non-stationary nature of 

the problem the algorithm is meant to solve. 

Algorithm S1. Detection of Changing Modules and Recovery of Causal Skeleton  

1. Build a complete undirected graph 𝑈𝑈𝐶𝐶  on the variable set 𝑉𝑉 ∪  {𝐶𝐶}. 
2. (Detection of changing modules) For each 𝑙𝑙, test for the marginal and conditional 

independence between𝑉𝑉𝑖𝑖  and 𝐶𝐶. If they are independent given a subset of {𝑉𝑉𝑘𝑘 | 𝑘𝑘 ≠ 𝑙𝑙}, remove 
the edge between 𝑉𝑉𝑖𝑖 and 𝐶𝐶 in 𝑈𝑈𝐶𝐶 . 

3. (Recovery of causal skeleton) For every i ≠ 𝑗𝑗, test for the marginal and conditional 
independence between 𝑉𝑉𝑖𝑖 and 𝑉𝑉𝑗𝑗 . If they are independent given a subset of {𝑉𝑉𝑘𝑘  | 𝑘𝑘 ≠ 𝑙𝑙,𝑘𝑘 ≠
𝑗𝑗} ∪ {𝐶𝐶}, remove the edge between 𝑉𝑉𝑖𝑖 and 𝑉𝑉𝑗𝑗 in 𝑈𝑈𝐶𝐶 . 
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Table 89. Sample results from CD-NOD analysis of PEC2.5 and PECC in 3 x 3 grid. This 
represents a recovered graph structure. “1” signifies that the row was found to cause the column 
variable. “-1” signifies that a causal link exists between the two variables, but the direction is 
uncertain. Connection of nonstationarity indicator CNI(C) with a “1” signifies that the column 
variable was found to be non-stationary. 
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EC_25_13y32x 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

EC_25_13y33x 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

EC_25_13y34x 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

EC_25_14y32x 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

EC_25_14y33x 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

EC_25_14y34x 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

EC_25_15y32x 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

EC_25_15y33x 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

EC_25_15y34x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

EC_C_13y32x 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

EC_C_13y33x 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

EC_C_13y34x 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

EC_C_14y32x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

EC_C_14y33x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

EC_C_14y34x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

EC_C_15y32x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

EC_C_15y33x 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

EC_C_15y34x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

EC_25_13y32x.L1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 

EC_25_13y33x.L1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 

EC_25_13y34x.L1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 

EC_25_14y32x.L1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 

EC_25_14y33x.L1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

EC_25_14y34x.L1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 

EC_25_15y32x.L1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 

EC_25_15y33x.L1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 

EC_25_15y34x.L1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

EC_C_13y32x.L1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 

EC_C_13y33x.L1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 

EC_C_13y34x.L1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 

EC_C_14y32x.L1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 

EC_C_14y34x.L1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

EC_C_15y32x.L1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

EC_C_15y33x.L1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

EC_C_15y34x.L1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 

EC_25_13y34x.L2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

EC_25_14y34x.L2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

EC_25_15y32x.L2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

EC_25_15y33x.L2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

EC_C_13y32x.L2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 

CNI ( C ) 1 1 1 1 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 
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Section D Hyperparameter tuning 

Generally speaking, the hyperparameter tuning was accomplished using the 11x11 grid 

centered on New York City. Initial testing of loss functions and optimizers was performed using the 

much smaller 3x3 grid sample from Mexico. The various configurations were tested using the 

validation set and run on a personal computer with a modest GPU. The test data set was never used 

for hyperparameter tuning. The exception to this is when the data was run for the entire CONUS. 

Then the model was trained on a server with a Tesla T4 GPU. 

As seen below, the combination with the lowest loss is the Adam optimizer with the Huber 

(L1) loss function. This combination was used for all other hyperparameter tuning. 

Hyperparameter tuning generally focused on the number of units within the hidden layers and the 

number of hidden layers. While modest gains in loss were sometimes realized with deeper and 

wider networks, the authors generally found that a 5-layer network with approximately the same 

number of hidden units as output variables plus double the number of time variables. 

Table 90. LinVARNN hyperparameter tuning to determine optimal pairing of loss function and 
optimizer with 3x3 Mexico PEC subset 

Loss Optimizer Final hh:mm:ss 

Huber MSE RMSProp Adam SGD Validation Loss Time to train 1k 

X   X     0.00002519 00:06:42 

  X X     0.00005232 00:06:09 

X     X   0.00001754 00:06:41 

  X   X   0.00003841 00:06:08 

X       X 0.00836772 00:07:19 

  X     X 0.00814624 00:06:41 
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Table 91. VARNN hyperparameter tuning to determine number of neurons per layer with 11x11 
New York City PEC subset 

Hidden Layers H dim Validation Loss Time to train 1k Time to predict 3 yrs 

3 None 0.00152550 00:09:53 00:00:01 

3 121 0.00166669 00:08:45 00:00:01 

3 242 0.00131906 00:12:58 00:00:01 

 

Table 92. HyVARNN hyperparameter tuning to determine number hidden layers and number of 
neurons per layer with 11x11 New York City PEC subset 

Hidden Layers H dim Validation Loss Time to train 1k Time to predict 3 yrs 

3 121 n/a n/a n/a 

3 242 0.00232673 00:27:43 00:00:03 

5 242 0.00296003 00:14:32 00:00:01 

10 242 0.0177  n/a n/a 

15 242 0.001795341 00:29:49 00:00:01 

 
Table 93. VARNN hyperparameter tuning to determine number hidden layers and number of 
neurons per layer with 11x11 New York City SO2 and PSO4 subset 

Hidden Layers H dim Validation Loss Time to train 1k Time to predict 3 yrs 

3 363 0.001499492 00:11:50 00:00:01 

3 121 0.01719851 00:11:19 00:00:01 

 
Table 94. VARNN hyperparameter tuning to determine number hidden layers and number of 
neurons per layer with CONUS PEC subset 

Hidden Layers H dim Validation Loss MSE Time to train 1k Time to predict 3 yrs 

3 5412 0.00167469 n/a 
 

00:00:41 

5 10824   0.00337 00:19:41 00:00:00 
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Table 95. HyVARNN-T hyperparameter tuning to determine number hidden layers and number of 
neurons per layer with 11x11 New York City PEC subset with 6 time variables 

Hidden Layers H dim Test Loss MSE Time to train 1k Time to predict 3 yrs 

5 121     00:19:41 00:00:00 

5 248 0.0118 0.0248 00:21:14 00:00:00 

5 484     00:31:26 00:00:00 

10 248     00:25:42   

15 242     00:27:19 00:00:00 

 

Table 96. Lag order for each region 

Grid size Order 
3 x 3 7 

11 x 11 4 
15 x 15 2 
25 x 25 2 

  82 x 132 1 
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Section E graphical results for VARNNmodel 

 

Fig. 94. Average hourly measurements for continental United States. EC2.5 is on the left and 
ECC is on right. The top rows are the outputs of the CTM, the middle row is the prediction from 
VARNN and the bottom row contains the error (prediction – actual). For the error heatmap, green is 
an overprediction and pink is an underprediction. 

  



Machine Learning for Public Policy: Applications in Infrastructure and Air Pollution 

360 

 

Fig. 95. Average hourly measurements for the 11x11 grid region in New York state. SO2 is 
on the left, PSO4,2.5 is in the middle and PSO4,C is on the right. The top rows are the outputs of the 
CTM, the middle row is the prediction from VARNN and the bottom row contains the error 
(prediction – actual). For the error heatmap, green is an overprediction and pink is an 
underprediction. 
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Fig. 96. Average hourly measurements for the 11x11 grid region in New York state. SO2 is 
on the left, PSO4,2.5 is in the middle and PSO4,C is on the right. The top rows are the outputs of the 
CTM, the middle row is the prediction from VARNN and the bottom row contains the error 
(prediction – actual). For the error heatmap, green is an overprediction and pink is an 
underprediction. 
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Graphical Results for HyVARNN Model 

 

Fig. 97. Average hourly measurements for the 11x11 grid region in New York state. EC2.5 is 
on the left and ECC is on right. The top rows are the outputs of the CTM, the middle row is the 
prediction from HyVARNN and the bottom row contains the error (prediction – actual). For the 
error heatmap, green is an overprediction and pink is an underprediction. 
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Actual, prediction and error graphical results for HyVARNN-T model 

 

Fig. 98. Test set average hourly measurements for the 15x15 grid region in California state. 
EC2.5 is on the left and ECC is on right. The top rows are the outputs of the CTM, the middle row is 
the prediction from HyVARNN-T and the bottom row contains the error (prediction – actual). For 
the error heatmap, green is an overprediction and pink is an underprediction. 
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Fig. 99. Test set average hourly measurements for the 25x25 grid region in California state. 
EC2.5 is on the left and ECC is on right. The top rows are the outputs of the CTM, the middle row is 
the prediction from HyVARNN-T and the bottom row contains the error (prediction – actual). For 
the error heatmap, green is an overprediction and pink is an underprediction. 
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Fig. 100. Test set average hourly measurements for the 15x15 grid region in California 
state. SO2 is on the left, PSO4,2.5 is in the middle and PSO4,C is on the right. The top rows are the 
outputs of the CTM, the middle row is the prediction from HyVARNN-T and the bottom row 
contains the error (prediction – actual). For the error heatmap, green is an overprediction and pink 
is an underprediction. 
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Fig. 101. Test set average hourly measurements for the 25x25 grid region in California 
state. SO2 is on the left, PSO4,2.5 is in the middle and PSO4,C is on the right. The top rows are the 
outputs of the CTM, the middle row is the prediction from HyVARNN-T and the bottom row 
contains the error (prediction – actual). For the error heatmap, green is an overprediction and pink 
is an underprediction. 

  



Machine Learning for Public Policy: Applications in Infrastructure and Air Pollution 

367 

 

Fig. 102. Test set average hourly measurements for the 15x15 grid near the Great Lakes 
region. EC2.5 is on the left and ECC is on right. The top rows are the outputs of the CTM, the middle 
row is the prediction from HyVARNN-T and the bottom row contains the error (prediction – actual). 
For the error heatmap, green is an overprediction and pink is an underprediction. 
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Fig. 103. Test set average hourly measurements for the 25x25 grid near the Great Lakes 
region. EC2.5 is on the left and ECC is on right. The top rows are the outputs of the CTM, the middle 
row is the prediction from HyVARNN-T and the bottom row contains the error (prediction – actual). 
For the error heatmap, green is an overprediction and pink is an underprediction. 
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Fig. 104. Test set average hourly measurements for the 15x15 grid near the Great Lakes 
region. SO2 is on the left, PSO4,2.5 is in the middle and PSO4,C is on the right. The top rows are the 
outputs of the CTM, the middle row is the prediction from HyVARNN-T and the bottom row 
contains the error (prediction – actual). For the error heatmap, green is an overprediction and pink 
is an underprediction. 
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Fig. 105. Test set average hourly measurements for the 25x25 grid near the Great Lakes 
region. SO2 is on the left, PSO4,2.5 is in the middle and PSO4,C is on the right. The top rows are the 
outputs of the CTM, the middle row is the prediction from HyVARNN-T and the bottom row 
contains the error (prediction – actual). For the error heatmap, green is an overprediction and pink 
is an underprediction. 
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Fig. 106. Test set average hourly measurements for the 15x15 grid region in New York 
state. EC2.5 is on the left and ECC is on right. The top rows are the outputs of the CTM, the middle 
row is the prediction from HyVARNN-T and the bottom row contains the error (prediction – actual). 
For the error heatmap, green is an overprediction and pink is an underprediction. 
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Fig. 107. Test set average hourly measurements for the 25x25 grid region in New York 
state. EC2.5 is on the left and ECC is on right. The top rows are the outputs of the CTM, the middle 
row is the prediction from HyVARNN-T and the bottom row contains the error (prediction – actual). 
For the error heatmap, green is an overprediction and pink is an underprediction. 
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Fig. 108. Test set average hourly measurements for the 15x15 grid region in New York 
state. SO2 is on the left, PSO4,2.5 is in the middle and PSO4,C is on the right. The top rows are the 
outputs of the CTM, the middle row is the prediction from HyVARNN-T and the bottom row 
contains the error (prediction – actual). For the error heatmap, green is an overprediction and pink 
is an underprediction. 
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Fig. 109. Test set average hourly measurements for the 25x25 grid region in New York 
state. SO2 is on the left, PSO4,2.5 is in the middle and PSO4,C is on the right. The top rows are the 
outputs of the CTM, the middle row is the prediction from HyVARNN-T and the bottom row 
contains the error (prediction – actual). For the error heatmap, green is an overprediction and pink 
is an underprediction. 
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Fig. 110. Test set average hourly measurements for the 15x15 grid for the Southeast region. 
EC2.5 is on the left and ECC is on right. The top rows are the outputs of the CTM, the middle row is 
the prediction from HyVARNN-T and the bottom row contains the error (prediction – actual). For 
the error heatmap, green is an overprediction and pink is an underprediction. 
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Fig. 111. Test set average hourly measurements for the 25x25 grid for the Southeast region. 
EC2.5 is on the left and ECC is on right. The top rows are the outputs of the CTM, the middle row is 
the prediction from HyVARNN-T and the bottom row contains the error (prediction – actual). For 
the error heatmap, green is an overprediction and pink is an underprediction. 
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Fig. 112. Test set average hourly measurements for the 15x15 grid for the Southeast region. 
SO2 is on the left, PSO4,2.5 is in the middle and PSO4,C is on the right. The top rows are the outputs of 
the CTM, the middle row is the prediction from HyVARNN-T and the bottom row contains the error 
(prediction – actual). For the error heatmap, green is an overprediction and pink is an 
underprediction. 
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Fig. 113. Test set average hourly measurements for the 25x25 grid for the Southeast region. 
SO2 is on the left, PSO4,2.5 is in the middle and PSO4,C is on the right. The top rows are the outputs of 
the CTM, the middle row is the prediction from HyVARNN-T and the bottom row contains the error 
(prediction – actual). For the error heatmap, green is an overprediction and pink is an 
underprediction. 
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Fig. 114. Test set average hourly measurements for the 15x15 grid region in Texas state. 
EC2.5 is on the left and ECC is on right. The top rows are the outputs of the CTM, the middle row is 
the prediction from HyVARNN-T and the bottom row contains the error (prediction – actual). For 
the error heatmap, green is an overprediction and pink is an underprediction. 
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Fig. 115. Test set average hourly measurements for the 25x25 grid region in Texas state. 
EC2.5 is on the left and ECC is on right. The top rows are the outputs of the CTM, the middle row is 
the prediction from HyVARNN-T and the bottom row contains the error (prediction – actual). For 
the error heatmap, green is an overprediction and pink is an underprediction. 
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Fig. 116. Test set average hourly measurements for the 15x15 grid region in Texas state. 
SO2 is on the left, PSO4,2.5 is in the middle and PSO4,C is on the right. The top rows are the outputs of 
the CTM, the middle row is the prediction from HyVARNN-T and the bottom row contains the error 
(prediction – actual). For the error heatmap, green is an overprediction and pink is an 
underprediction. 
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Fig. 117. Test set average hourly measurements for the 25x25 grid region in Texas state. 
SO2 is on the left, PSO4,2.5 is in the middle and PSO4,C is on the right. The top rows are the outputs of 
the CTM, the middle row is the prediction from HyVARNN-T and the bottom row contains the error 
(prediction – actual). For the error heatmap, green is an overprediction and pink is an 
underprediction. 
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Fig. 118. Test set average hourly measurements for the 15x15 grid region in Washington 
state. EC2.5 is on the left and ECC is on right. The top rows are the outputs of the CTM, the middle 
row is the prediction from HyVARNN-T and the bottom row contains the error (prediction – actual). 
For the error heatmap, green is an overprediction and pink is an underprediction. 
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Fig. 119. Test set average hourly measurements for the 25x25 grid region in Washington 
state. EC2.5 is on the left and ECC is on right. The top rows are the outputs of the CTM, the middle 
row is the prediction from HyVARNN-T and the bottom row contains the error (prediction – actual). 
For the error heatmap, green is an overprediction and pink is an underprediction. 
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Fig. 120. Test set average hourly measurements for the 15x15 grid region in Washington 
state. SO2 is on the left, PSO4,2.5 is in the middle and PSO4,C is on the right. The top rows are the 
outputs of the CTM, the middle row is the prediction from HyVARNN-T and the bottom row 
contains the error (prediction – actual). For the error heatmap, green is an overprediction and pink 
is an underprediction. 
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Fig. 121. Test set average hourly measurements for the 25x25 grid region in Washington 
state. SO2 is on the left, PSO4,2.5 is in the middle and PSO4,C is on the right. The top rows are the 
outputs of the CTM, the middle row is the prediction from HyVARNN-T and the bottom row 
contains the error (prediction – actual). For the error heatmap, green is an overprediction and pink 
is an underprediction. 
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Prediction vs. actual time series graphical results for HyVARNN-T model 

  

Fig. 122. Small California region prediction (red) vs actual (blue) in 1990 (left), 2001 
(middle) and 2010 (right) for EC2.5 in three grid cells in the middle of the region. The red is 
transparent so any purple hues are where the prediction and actual match. Data points are hourly 
measurements in a single grid cell annotated by the x and y coordinates in the graph title. 
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Fig. 123. Large California region prediction (red) vs actual (blue) in 1990 (left), 2001 
(middle) and 2010 (right) for EC2.5 in three grid cells in the middle of the region. The red is 
transparent so any purple hues are where the prediction and actual match. Data points are hourly 
measurements in a single grid cell annotated by the x and y coordinates in the graph title. 
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Fig. 124. Small California region prediction (red) vs actual (blue) in 1990 (left), 2001 
(middle) and 2010 (right) for PSO4,2.5 in three grid cells in the middle of the region. The red is 
transparent so any purple hues are where the prediction and actual match. Data points are hourly 
measurements in a single grid cell annotated by the x and y coordinates in the graph title. 
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Fig. 125. Large California region prediction (red) vs actual (blue) in 1990 (left), 2001 
(middle) and 2010 (right) for PSO4,2.5 in three grid cells in the middle of the region. The red is 
transparent so any purple hues are where the prediction and actual match. Data points are hourly 
measurements in a single grid cell annotated by the x and y coordinates in the graph title. 

  



Machine Learning for Public Policy: Applications in Infrastructure and Air Pollution 

391 

  

Fig. 126. Small Great Lakes region prediction (red) vs actual (blue) in 1990 (left), 2001 
(middle) and 2010 (right) for EC2.5 in three grid cells in the middle of the region. The red is 
transparent so any purple hues are where the prediction and actual match. Data points are hourly 
measurements in a single grid cell annotated by the x and y coordinates in the graph title. 
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Fig. 127. Large Great Lakes region prediction (red) vs actual (blue) in 1990 (left), 2001 
(middle) and 2010 (right) for EC2.5 in three grid cells in the middle of the region. The red is 
transparent so any purple hues are where the prediction and actual match. Data points are hourly 
measurements in a single grid cell annotated by the x and y coordinates in the graph title. 
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Fig. 128. Small Great Lakes region prediction (red) vs actual (blue) in 1990 (left), 2001 
(middle) and 2010 (right) for PSO4,2.5 in three grid cells in the middle of the region. The red is 
transparent so any purple hues are where the prediction and actual match. Data points are hourly 
measurements in a single grid cell annotated by the x and y coordinates in the graph title. 
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Fig. 129. Large Great Lakes region prediction (red) vs actual (blue) in 1990 (left), 2001 
(middle) and 2010 (right) for PSO4,2.5 in three grid cells in the middle of the region. The red is 
transparent so any purple hues are where the prediction and actual match. Data points are hourly 
measurements in a single grid cell annotated by the x and y coordinates in the graph title. 
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Fig. 130. Small New York region prediction (red) vs actual (blue) in 1990 (left), 2001 
(middle) and 2010 (right) for EC2.5 in three grid cells in the middle of the region. The red is 
transparent so any purple hues are where the prediction and actual match. Data points are hourly 
measurements in a single grid cell annotated by the x and y coordinates in the graph title. 
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Fig. 131. Large New York region prediction (red) vs actual (blue) in 1990 (left), 2001 
(middle) and 2010 (right) for EC2.5 in three grid cells in the middle of the region. The red is 
transparent so any purple hues are where the prediction and actual match. Data points are hourly 
measurements in a single grid cell annotated by the x and y coordinates in the graph title. 
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Fig. 132. Small New York region prediction (red) vs actual (blue) in 1990 (left), 2001 
(middle) and 2010 (right) for PSO4,2.5 in three grid cells in the middle of the region. The red is 
transparent so any purple hues are where the prediction and actual match. Data points are hourly 
measurements in a single grid cell annotated by the x and y coordinates in the graph title. 
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Fig. 133. Large New York region prediction (red) vs actual (blue) in 1990 (left), 2001 
(middle) and 2010 (right) for PSO4,2.5 in three grid cells in the middle of the region. The red is 
transparent so any purple hues are where the prediction and actual match. Data points are hourly 
measurements in a single grid cell annotated by the x and y coordinates in the graph title. 
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Fig. 134. Small Southeast region prediction (red) vs actual (blue) in 1990 (left), 2001 
(middle) and 2010 (right) for EC2.5 in three grid cells in the middle of the region. The red is 
transparent so any purple hues are where the prediction and actual match. Data points are hourly 
measurements in a single grid cell annotated by the x and y coordinates in the graph title. 
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Fig. 135. Large Southeast region prediction (red) vs actual (blue) in 1990 (left), 2001 
(middle) and 2010 (right) for EC2.5 in three grid cells in the middle of the region. The red is 
transparent so any purple hues are where the prediction and actual match. Data points are hourly 
measurements in a single grid cell annotated by the x and y coordinates in the graph title. 
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Fig. 136. Small Southeast region prediction (red) vs actual (blue) in 1990 (left), 2001 
(middle) and 2010 (right) for PSO4,2.5 in three grid cells in the middle of the region. The red is 
transparent so any purple hues are where the prediction and actual match. Data points are hourly 
measurements in a single grid cell annotated by the x and y coordinates in the graph title. 
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Fig. 137. Large Southeast region prediction (red) vs actual (blue) in 1990 (left), 2001 
(middle) and 2010 (right) for PSO4,2.5 in three grid cells in the middle of the region. The red is 
transparent so any purple hues are where the prediction and actual match. Data points are hourly 
measurements in a single grid cell annotated by the x and y coordinates in the graph title. 
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Fig. 138. Small Texas region prediction (red) vs actual (blue) in 1990 (left), 2001 (middle) 
and 2010 (right) for EC2.5 in three grid cells in the middle of the region. The red is transparent so 
any purple hues are where the prediction and actual match. Data points are hourly measurements 
in a single grid cell annotated by the x and y coordinates in the graph title. 
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Fig. 139. Large Texas region prediction (red) vs actual (blue) in 1990 (left), 2001 (middle) 
and 2010 (right) for EC2.5 in three grid cells in the middle of the region. The red is transparent so 
any purple hues are where the prediction and actual match. Data points are hourly measurements 
in a single grid cell annotated by the x and y coordinates in the graph title. 
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Fig. 140. Small Texas region prediction (red) vs actual (blue) in 1990 (left), 2001 (middle) 
and 2010 (right) for PSO4,2.5 in three grid cells in the middle of the region. The red is transparent so 
any purple hues are where the prediction and actual match. Data points are hourly measurements 
in a single grid cell annotated by the x and y coordinates in the graph title. 
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Fig. 141. Large Texas region prediction (red) vs actual (blue) in 1990 (left), 2001 (middle) 
and 2010 (right) for PSO4,2.5 in three grid cells in the middle of the region. The red is transparent so 
any purple hues are where the prediction and actual match. Data points are hourly measurements 
in a single grid cell annotated by the x and y coordinates in the graph title. 
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Fig. 142. Small Washington region prediction (red) vs actual (blue) in 1990 (left), 2001 
(middle) and 2010 (right) for EC2.5 in three grid cells in the middle of the region. The red is 
transparent so any purple hues are where the prediction and actual match. Data points are hourly 
measurements in a single grid cell annotated by the x and y coordinates in the graph title. 
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Fig. 143. Large Washington region prediction (red) vs actual (blue) in 1990 (left), 2001 
(middle) and 2010 (right) for EC2.5 in three grid cells in the middle of the region. The red is 
transparent so any purple hues are where the prediction and actual match. Data points are hourly 
measurements in a single grid cell annotated by the x and y coordinates in the graph title. 
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Fig. 144. Small Washington region prediction (red) vs actual (blue) in 1990 (left), 2001 
(middle) and 2010 (right) for PSO4,2.5 in three grid cells in the middle of the region. The red is 
transparent so any purple hues are where the prediction and actual match. Data points are hourly 
measurements in a single grid cell annotated by the x and y coordinates in the graph title. 
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Fig. 145. Large Washington region prediction (red) vs actual (blue) in 1990 (left), 2001 
(middle) and 2010 (right) for PSO4,2.5 in three grid cells in the middle of the region. The red is 
transparent so any purple hues are where the prediction and actual match. Data points are hourly 
measurements in a single grid cell annotated by the x and y coordinates in the graph title. 
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Prediction vs. actual scatterplot graphical results for HyVARNN-T model 

 

Fig. 146. Small California region scatterplots of predicted to actual values of EC2.5 (left) and 
PSO4,2.5 (right) for three grid cells in the middle of the region. Each point represents one hour, each 
graph is for a single grid cell annotated by the x and y coordinates in the graph title.  
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Fig. 147. Small Great Lakes region scatterplots of predicted to actual values of EC2.5 (left) 
and PSO4,2.5 (right) for three grid cells in the middle of the region. Each point represents one hour, 
each graph is for a single grid cell annotated by the x and y coordinates in the graph title.  
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Fig. 148. Small New York region scatterplots of predicted to actual values of EC2.5 (left) and 
PSO4,2.5 (right) for three grid cells in the middle of the region. Each point represents one hour, each 
graph is for a single grid cell annotated by the x and y coordinates in the graph title.  
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Fig. 149. Small Southeast region scatterplots of predicted to actual values of EC2.5 (left) and 
PSO4,2.5 (right) for three grid cells in the middle of the region. Each point represents one hour, each 
graph is for a single grid cell annotated by the x and y coordinates in the graph title.  
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Fig. 150. Small Texas region scatterplots of predicted to actual values of EC2.5 (left) and 
PSO4,2.5 (right) for three grid cells in the middle of the region. Each point represents one hour, each 
graph is for a single grid cell annotated by the x and y coordinates in the graph title.  
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Fig. 151. Small Washington region scatterplots of predicted to actual values of EC2.5 (left) 
and PSO4,2.5 (right) for three grid cells in the middle of the region. The plot area has a consistent 
aspect ratio for x and y axes. A perfect plot would find all points on a 45° diagonal. Each point 
represents one hour, each graph is for a single grid cell annotated by the x and y coordinates in the 
graph title. 
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