
Practical Black-Box Analysis for
Network Functions and Services

Submitted in partial fulfillment of the requirements for
the degree of

Doctor of Philosophy
in

Electrical and Computer Engineering

Soo-Jin Moon

BASc., Electrical Engineering, University of Waterloo

Carnegie Mellon University
Pittsburgh, PA

September 2020

c© Soo-Jin Moon 2020.
All Rights Reserved

Acknowledgments
I am deeply grateful to many outstanding people who have helped to make this

dissertation possible.
First, I am immensely grateful to my advisor, Vyas Sekar, for guiding me through

the Ph.D. process, giving me the tremendous freedom to chart my own course and
believing in my work. Vyas has been instrumental in teaching me how to formulate
the problem in the right context and articulate my thoughts and work clearly. Among
many things, he taught me how to efficiently and rigorously approach research prob-
lems. Working with him made me the researcher I am today.

I want to take this opportunity to thank and acknowledge the support of my the-
sis committee members: Sujata Banerjee, Lujo Bauer, Bryan Parno, and Michael
K. Reiter. I am grateful to Sujata for her mentorship, collaboration, and support in
the past few years. Sujata had helped my overall development as a researcher. She
had always shown confidence in my work even when things were not looking too
great (multiple paper rejections), which served as a great morale booster. While I
haven’t had the luxury to collaborate closely with Bryan and Lujo, I am grateful for
their time and feedback. Bryan has always been ready to offer his time to read my
research drafts and let me be a teaching assistant for the introduction to computer
security class. Lujo helped me improve this thesis with his insightful questions and
constructive feedback. Mike, whom I first met as a first-year Ph.D. student to dis-
cuss my research project (Nomad), only had words of encouragement whenever I
interacted with him. I continue to be amazed by his attention to technical details and
insightful questions that trigger deep thoughts for days.

I am also fortunate to have worked with many additional collaborators: Yves
Bieri, Jeffrey Helt, Limin Jia, Ruben Martins, Rahul Muthoo, Rahul Anand Sharma,
Jono Spring, Sahil Uppal, Wenfei Wu, Mihalis Yannakakis, Yucheng Yin, Yifei
Yuan, and Ying Zhang. I benefited from discussing ideas and designs of Alem-
bic (Chapter 3) with Ying, Wenfei, and Mihalis. Jeff gave me tremendous help
in building and debugging Alembic. Yifei contributed to the theoretical proofs for
Alembic and taught me how to formalize my insights. Ruben was always ready to
offer his time and help whenever I was stuck with Z3 when building Pryde (Chapter
4). Yucheng helped me implement and run large-scale measurements, and Rahul
helped me with the analysis framework for AmpMap (Chapter 5). I am grateful for
all my collaborators and for the opportunity to learn from each one of them.

As a Ph.D. student, I spent a significant amount of my time at CyLab. I would
like to thank the members of CyLab for providing a welcoming and collaborative
environment. I am grateful to the remaining CyLab faculty for their advice, our
research group members for many discussions, and the faculty and students of the
Tuesday systems seminar for their valuable feedback on my talks. The administrative
aspects of the Ph.D. programs were easy thanks to the staff members at CyLab and
the Department of Electrical and Computer Engineering: Brigette Bernagozzi, Toni
Fox, Karen Lindenfelser, Chelsea Mendenhall, Jamie Scanlon, and Nathan Sniza-
ski. Also, I thank Chad Dougherty for managing and helping with our Beluga lab

clusters.
I want to thank my friends I met during my Ph.D. journey and friends outside of

graduate school. I thank them for providing me with the much-needed distraction
when I needed it the most and tolerating me during my many deadlines.

I saved the most important for the last. I am indebted to my family for their
unconditional support, prayers, and encouragements. My parents and grandparents
gave me the courage to pursue my dream and have been always supportive of my
decision. My sister has always been my best friend as long as I can remember.
Lastly, I want to thank my Lord and Savior, Jesus Christ, for your grace and blessings
throughout my Ph.D. journey. “In their hearts humans plan their course, but the
Lord establishes their steps.” (Proverbs 16:9)

The work presented in this thesis was supported in part by NSF awards CNS-
1440065, CNS-1552481, and generously supported with funds from the CONIX Re-
search Center, one of six centers in JUMP, a Semiconductor Research Corporation
(SRC) program sponsored by DARPA. The work presented in this thesis was spon-
sored in part by the U.S. Army Combat Capabilities Development Command Army
Research Laboratory and was accomplished under Cooperative Agreement Number
W911NF-13-2-0045 (ARL Cyber Security CRA). The views and conclusions con-
tained in this document are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied, of the Combat Capa-
bilities Development Command Army Research Laboratory or the U.S. Government.
The U.S. Government is authorized to reproduce and distribute reprints for Govern-
ment purposes notwithstanding any copyright notation here on.

Thesis Committee Members:
Vyas Sekar (Chair)

Sujata Banerjee
Lujo Bauer
Bryan Parno

Michael K. Reiter

Abstract
Modern networks are exploding with an increasing array of diverse network

functions (e.g., network firewalls) and services (e.g., public servers). Despite their
critical role in our modern infrastructure, they remain largely black-box in nature,
given that they are proprietary or configured and deployed by third parties. This
black-box nature makes it fundamentally difficult for operators and Internet secu-
rity experts to reason about security implications and correctness of these functions
and services. Unfortunately, this lack of understanding and analysis leaves gaps for
high-impact network attacks exploiting their insecurities and network outages.

This dissertation aims to bridge this operational gap by building techniques to
automatically analyze the behavior and vulnerabilities of these network devices and
services. Specifically, we design techniques to (1) automatically infer high-fidelity
models to enable accurate testing and verification, and (2) identify new avenues for
potential abuse against network functions and services. Given that we only have
black-box access, our techniques do not require access to the code or binary for
instrumentation. However, designing these techniques is challenging. First, we need
to reason about their behavior under a large traffic space and possible configurations.
Second, they may exhibit complicated (hidden) behaviors. Our high-level approach
in building these tools is to leverage structural properties inherent to black-boxes
and their input and configuration space. This insight allows us to reduce the relevant
search space and efficiently search over the relevant part of the search space.

The key contributions of this thesis are three concrete tools. First, is Alembic, a
tool that can automatically synthesize high-fidelity models of stateful network func-
tions, for accurate testing and verification workflow. Second, is Pryde, a tool which
provides operators with capabilities for identifying subtle evasion vulnerabilities in
stateful firewalls. Lastly, is AmpMap, a low-footprint measurement framework that
can systematically quantify the amplification risk against black-box protocol servers
at scale. In presenting each of these tools, we highlight how each tool (1) uncovered
unexpected behavior and new security vulnerabilities, and (2) highlighted signifi-
cant variability in the behavior and security implications of these black-boxes across
vendors and implementations. Our findings and results affirm the need for auto-
matic tools to analyze the behaviors for black-box functions and services to properly
understand their security implications.

Contents

1 Introduction 1
1.1 Motivating Scenarios . 2
1.2 A Taxonomy of Alternatives . 7
1.3 Thesis Overview . 9

1.3.1 Thesis Statement . 9
1.3.2 Key Challenges . 10
1.3.3 High-Level Approach . 10
1.3.4 Contributions . 11

1.4 Outline . 13

2 Related Work 14
2.1 Analyzing Network Functions and Services . 14

2.1.1 Type I: White-Box Analysis . 15
2.1.2 Type II: Binary Analysis . 17
2.1.3 Type III: Black-Box Analysis . 18

2.2 Analyzing Other Application Domains . 21
2.2.1 Protocol Testing and Verification . 22
2.2.2 Software Analysis and Fuzzing . 23
2.2.3 Other Prior Work . 24

3 Alembic: Automated Black-Box Model Inference for Stateful Network Functions 26
3.1 Motivation . 30
3.2 Alembic System Overview . 33

3.2.1 Problem Formulation . 33
3.2.2 Key Ideas . 35
3.2.3 Operational Model and Limitations . 37
3.2.4 Alembic Workflow . 39

3.3 Extended L* for FSM Inference . 41
3.3.1 Background on L* Algorithm . 42
3.3.2 Challenges in using L* for Black-box NFs 43
3.3.3 Generating Input Alphabet . 44
3.3.4 Classifying Output Packets . 46
3.3.5 Building an Equivalence Oracle . 46

3.4 KeyLearning: Learning State Granularity . 47

vi

3.4.1 Intuition and Workflow . 48
3.4.2 Correctness Proof . 50

3.5 Handling NF Header Modifications . 54
3.6 Handling an Arbitrary Config . 55

3.6.1 Generating SymbolicRules . 55
3.6.2 Alembic Online: Instantiating a Concrete Model 56

3.7 Implementation & Evaluation . 62
3.7.1 Validation using Synthetic NFs . 64
3.7.2 Correctness with Real NFs . 64
3.7.3 Scalability . 67
3.7.4 Case Studies . 69
3.7.5 Implications for Network Testing and Verification 72

3.8 Other Related Work on Network-Wide Verification and FSM Inference 73
3.9 Summary . 74

4 Pryde: Automatic Synthesis of Evasion Attacks for Black-Box Stateful Firewalls 75
4.1 Background and Motivation . 79

4.1.1 Background on Stateful Firewalls . 79
4.1.2 Motivating Scenarios . 81

4.2 Pryde Problem Overview . 85
4.2.1 Threat Model . 85
4.2.2 Problem Formulation . 86
4.2.3 High-Level Design . 87

4.3 Model Inference . 88
4.3.1 Limitations of Alembic . 89
4.3.2 Generating Evasion-Centric Input Alphabets 90
4.3.3 Extending the Inference Algorithm . 92

4.4 Attack Strategy Generator . 93
4.4.1 Encoding the System Model . 94
4.4.2 Discovering Semantically-Different Attacks 96

4.5 Evaluation . 97
4.5.1 Aggregate Summary of Attacks . 98
4.5.2 Structure of Evasion Attacks . 103

4.6 Other Related Work on Firewall Policy Checking 110
4.7 Countermeasures . 110
4.8 Summary . 111

5 AmpMap: Accurately Measuring Global Risk of Amplification Attacks 112
5.1 Background and Motivation . 116

5.1.1 Motivating Use Cases . 117
5.1.2 Case for a Measurement Service . 118

5.2 AmpMap Problem Overview . 122
5.2.1 Problem Formulation . 123
5.2.2 High-Level Challenges . 124

vii

5.3 AmpMap Overview and Design . 126
5.3.1 Single-Server Algorithm . 126
5.3.2 Multi-Server Algorithm . 131
5.3.3 Analysis of Our Approach . 133

5.4 Evaluation . 136
5.4.1 Protocol and Server Diversity . 138
5.4.2 Assessing Amplification Risks . 141
5.4.3 In-Depth Analysis on DNS . 144
5.4.4 Amplification Patterns for NTP . 150
5.4.5 Amplification Patterns for SNMP . 151
5.4.6 Amplification Patterns for Other Protocols 152
5.4.7 Parameters and Validation . 153

5.5 Precautions and Disclosure . 156
5.5.1 Scanning Precautions . 156
5.5.2 Disclosure . 157

5.6 Other Related Work on Amplification Attacks and Mitigation 158
5.7 Summary . 159

6 Reflections, Limitations, and Future Work 161
6.1 Reflections and Lessons . 161
6.2 Limitations . 163
6.3 Future Work . 165

6.3.1 Enhancing Black-Box Analysis Techniques 165
6.3.2 Securing Our Network Infrastructure 168

Bibliography 170

viii

List of Tables

2.1 Examples of prior work on analyzing network functions, services, and protocols
mapped to each category in the taxonomy (from Section 1.2) 15

3.1 Notations for the KeyLearning correctness proof 51
3.2 Validating the correctness of KeyLearning using Click-based NFs 64
3.3 Coverage of models over input packet types . 65
3.4 Results of stress testing (C for correct-seq, and CI for combined-seq) 66
3.5 Time to infer a symbolic model (h: hours, m: min) 67
3.6 Scalability benefits of our design choices . 68

4.1 Number of states for inferred models (N/A means that the model inference did
not converge); (1) involves only connection setup, DI, and (2) involves teardown
packets, DI-T . 100

4.2 Number of raw attacks found using random fuzzing 101

5.1 Summarizing known, unforeseen, and polymorphic query patterns found using
AmpMap . 115

5.2 Effectiveness of S1 and S2 in enabling use cases 119
5.3 Effectiveness of S3 that does per-version analysis 120
5.4 Statistics on (a) the # of IPs we scanned per protocol, (b) the # of pruned IPs, (c)

the # of raw IPs we needed from the DB ; (d) the # of total public-facing IPs as
is (Shodan and Censys); and (e) the % of IPs we scanned 137

5.5 Contrasting the risk extrapolated from prior works and measured by AmpMap
for 10K servers . 141

5.6 Amplification risk from new patterns whose risks will be missed by prior works . 142
5.7 Statistics on the affected DNS vendors . 150
5.8 Statistics on the affected SNMP vendors . 151
5.9 Statistics on the # of notification emails we sent and the responses we got from

system owners . 158

ix

List of Figures

1.1 A black-box network function in an enterprise network, and an operator who
wants to run a testing and verification workflow 2

1.2 A concrete example showing how an inaccurate model can affect the correctness
of a network testing tool . 3

1.3 A stateful firewall in an enterprise network, and an operator who wants to un-
cover semantic evasion attacks against this firewall 4

1.4 Packet sequences played against a firewall . 5
1.5 A primer on amplification attack, and Internet security experts who want to mea-

sure the amplification risk on the Internet . 6
1.6 Definitions of black-box access for each motivating scenario (Section 1.1) 7
1.7 A taxonomy of alternatives; the branch marked in bold denotes the approach

taken in this dissertation . 8

3.1 Network set-up . 30
3.2 A handwritten model of a stateful firewall (FW) which incorrectly reports a pol-

icy violation . 31
3.3 Example of a simplified ConfigSchema and ConcreteConfig for a firewall (FW)

and a NAT . 34
3.4 Alembic key insights leveraging structural properties 35
3.5 An NF with located packets . 38
3.6 Alembic Workflow . 40
3.7 SymbolicRules and ConcreteRules for a Firewall 41
3.8 L* overview and example . 42
3.9 Key challenges in adopting the L* workflow for NF model inference 44
3.10 KeyLearning Decision Tree . 49
3.11 NAT example . 58
3.12 The light/dark coloring indicates packets on host A/B’s interface, respectively.

The figure below shows the 3 states for PfSense firewall (FW) accept rule 69
3.13 Partial FSM for Untangle firewall (FW) accept, drop, default rule, and Propri-

etaryNF accept rule . 70
3.14 First 3 states of the HAProxy and PfSense load balancers (LBs). Stars on head/-

tail of packets indicate src/dst modification . 71

4.1 A Stateful Firewall in an Enterprise Network 80

x

4.2 Packet sequences played against a firewall (anonymized vendor, FW-1); Scenario
1 is an identical sequence from the motivating scenario (Figure 1.4b in Section
1.1), but we present here again for ease of reference 81

4.3 Attack scenario setup . 83
4.4 Scenario 1 mapped to an attack setup . 84
4.5 Pryde System Overview . 87
4.6 An example of an output model and the corresponding input alphabet used by

Alembic (lan for internal and wan for external due to space) 89
4.7 Basic Input Alphabet for Alembic . 91
4.8 Rewriting logic to handle interference (IX) set 93
4.9 Aggregate summary of semantically-distinct attacks found against 4 firewalls

across all input templates . 99
4.10 Breakdown of the distinct attacks we found for each attack length against all

firewalls (Y-axis on a log scale) . 99
4.11 Cross-validating the discovered attacks by taking successful attacks against a

firewall (x-axis) and testing on a firewall (y-axis) and reporting the attack success
rate . 102

4.12 Evasion attacks against FW-1 across 5 clusters. 104
4.13 Evasion attacks against FW-2 across 4 clusters 106
4.14 Evasion attacks against FW-3 across 7 clusters 107
4.15 Evasion attacks against FW-4 exploiting SYN + (optional) ACK from (C1) . . . 109
4.16 Evasion attacks against FW-4 from (C2) and (C3) 110

5.1 Diversity of AF given a query across servers . 121
5.2 Histogram showing the Jaccard similarity scores between Top-10 query patterns

of pairwise servers . 122
5.3 Simplified protocol definition to highlight challenges of uncovering amplifica-

tion queries . 124
5.4 Query space for one server, server 1 (s1). QPi refers to a query pattern 125
5.5 Query space across multiple servers, only showing the case when f1=1 (i.e.,

Heatmap 1 as in Figure 5.4) . 126
5.6 Viewing the query space as a logical graph (for the abstract protocol shown in

Figure 5.4) . 128
5.7 AmpMap Workflow . 129
5.8 Boxplot showing the distribution of the maximum AF achieved by each server

given a protocol . 138
5.9 Summary across servers and protocols (from 2019 and 2020 runs) 140
5.10 Visualizing the DNS residual risk when known patterns (P): edns:0,recordtype:ANY—TXT,

are blocked. The size of the circle 9 the max AF of each server and red circles
denote when the delta is ě 20% . 143

5.11 % of DNS servers that remain susceptible to amplification even if we use recom-
mendations by prior works to block query patterns; i.e., x EDNS, ANY—TXT y
is a filter that blocks queries EDNS:0 and ANY|TXT 143

xi

5.12 The variability of field values (for a specific field, recordtype) that contribute
to high amplification. Apart from known ones (recordtype:ANY, TXT), many
other recordtype values can lead to large AF 144

5.13 Steps to obtain query patterns to shed light on the patterns of amplification 145
5.14 DNS: Top 10 query patterns for a particular depth where 8 fields are left as con-

crete values of ranges . 147
5.15 Tree showing how the query patterns change across levels. An edge means a field

value transitioned from a wildcard (*) in level L to a concrete value or range in
the next level, L` 1 . 148

5.16 NTP top query patterns where the top-2 are MONLIST patterns. Other top QPs
have peer list, if reload, peer list sum, and peer stats as reqcode. 150

5.17 Validating the choice of total budget (B) . 154
5.18 Validating the choice of budget allocation . 155
5.19 Validation of coverage of AmpMap and alternate solutions using 1K server mea-

surements . 155
5.20 A notification email to IP owners . 157

xii

Chapter 1

Introduction

Modern networks (e.g., enterprise, cloud, wide-area) are abounding with an increasing array of

diverse network functions [170] (e.g., firewalls, load balancers) and services [95, 96] (e.g., pub-

lic servers, applications). They are deployed for security, performance, and efficiency to meet

the sophisticated objectives of our workloads and needs. For instance, these functions and ser-

vices may monitor and control network traffic for security purposes (i.e., firewalls [51], intrusion

detection systems [36]), distribute traffic across servers to increase capacity and reliability (i.e.,

load balancers [38]), and translate human-readable domain names such as cmu.edu to numeric

IP addresses to help browsers load Internet resources (i.e., public DNS servers [37]).

However, these network functions and services are black-box in nature, given that these net-

work functions can be proprietary and public services are configured and deployed by third

parties. In these black-box settings, network operators deploying these functions or Internet se-

curity experts assessing vulnerabilities of these services may not have full knowledge about their

internal workings and lack access to the source code. Despite their critical roles in various net-

work infrastructures, it is fundamentally difficult for operators and Internet security experts to

reason about their security implications and correctness of these network functions and services.

Unfortunately, this lack of understanding and hence, a lack of systematic analysis leave gaps for

high-impact network attacks that exploit insecurities in these functions and services; e.g., many

1

recent high-impact distributed denial of service attacks (DDoS) attacks have exploited vulner-

abilities in public servers [24, 63]. Further, a failure to correctly test and verify networks can

result in high-cost network outages [20, 63] and significant performance degradation [9]. This

thesis aims at bridging this operational gap by building techniques to analyze the behavior and

security vulnerabilities of these black-box functions and services.

1.1 Motivating Scenarios

We now discuss three motivating scenarios that highlight how lacking appropriate tools for an-

alyzing these black-box functions and services leads to significant operational gaps for network

operators and Internet security experts.

?
Operator

Can we check before onboarding?

Is the policy implemented correctly?

Black-Box
Stateful NF

Config with intended policy

Test

Verification
Model

Has black-box access to NFs:

• Access to input/output

• Can configure with rules

LAN
 WAN

External Host (E)
Internal Host (I)

Figure 1.1: A black-box network function in an enterprise network, and an operator who

wants to run a testing and verification workflow

S1) Network testing and verification: Modern production networks are composed of black-

box network functions (NFs) such as firewalls and load balancers [170]. Given their proprietary

natures, operators only have black-box access to configuration interfaces but lack access to the

code (Figure 1.1). To help network operators manage and configure these networks and NFs,

2

there are many efforts in network testing and verification [97, 152, 172] as well as “onboarding”

new virtual NFs [141]. However, these tools implicitly assume access to high-fidelity models of

these NFs for generating verification proofs and test traffic. However, given a lack of tools that

can automatically synthesize these models, operators are forced to rely on their domain expertise

to hand-craft these NF models. Unfortunately, these hand-crafted models’ inaccuracy leads to

fundamental correctness issues in these verification and testing tools.

I Real Firewall E

SYN

SA
SYN

(a) Firewall implementation

I Firewall Model E

SYN

SA

SYN

(b) Handwritten model [97]

Figure 1.2: A concrete example showing how an inaccurate model can affect the correctness

of a network testing tool

Consider an operator (in Figure 1.1) who needs to test whether the following intended policy

is implemented correctly: “an external host’s TCP traffic should only be allowed if a packet be-

longs to an already established connection initiated from an internal host.” To test this policy, the

operator runs a testing tool, BUZZ [97], with a hand-written model of an NF configured with this

policy. BUZZ flags that the policy has been violated. However, the firewall was implementing

the policy correctly. Upon investigating the root cause, an operator found that the hand-crafted

model did not correctly reflect the real implementation. As seen in Figure 1.2, a SYN from an in-

ternal host on both a handwritten model and a firewall were forwarded, followed by a SYN-ACK

(SA) from an external host (E). At this point, the three-way handshake has not been completed

from an internal host (I). When E sends a SYN packet, the real firewall drops the SYN packet,

but the BUZZ model lets it through. Due to the discrepancy in these outputs, BUZZ flags it as a

policy violation when there is no violation (i.e., a false positive). Even this simple example high-

lights how the model’s inaccuracies detrimentally affect the utility of this testing tool. We need

3

to equip operators with the capability of automatically synthesizing NF models to help them run

these tasks effectively.

S2) Semantic evasion testing for stateful firewalls: Stateful firewalls (FW) play a critical

role in securing network infrastructures in various deployments [42, 48]. These firewalls impose

restrictions on undesirable traffic from outside networks. As opposed to simple access control

lists, stateful firewalls track the state of individual TCP connections (along with rules) to deter-

mine which packets are allowed. A typical policy shown in Figure 1.3 is to drop all external

packets that do not belong to an established connection initiated from an internal host. An error

in implementing these stateful semantics will have severely detrimental security implications.

2

LAN
 WAN

Are “stateful” semantics correctly implemented?

DROP TCP packets from WAN unless it belongs to
an already ESTABLISHED connection from LAN

Black-Box Firewall
 External Host (E)
Internal Host (I)

Black-box access to FW:

• Access to input/output

• Can configure with rules

Operator

?

Figure 1.3: A stateful firewall in an enterprise network, and an operator who wants to

uncover semantic evasion attacks against this firewall

However, operators deploying these firewalls implicitly assume vendors implement these

stateful semantics correctly (specifically, given a lack of necessary tools and having only black-

box access). Unfortunately, this is not the case. Specifically, we find a simple vulnerable se-

quence that leads to the firewall forwarding a DATA packet from an untrusted external host (E)

to an otherwise unreachable internal host (I). To explain this, we contrast it with a normal (stan-

dard) packet sequence (Figure 1.4a). Here, (I) wants to access an external service and initiates a

connection setup by sending a TCP SYN to (E). An external service, (E), acknowledges with a

SA, followed by an ACK from an internal host. As the TCP three-way handshake is completed,

4

they can now freely exchange DATA packets. Now, consider this strange sequence (Figure 1.4b),

where FW-1 allows a DATA packet from an external host even before a three-way handshake has

been completed. Here, the firewall is not checking for the last ACK packet of the handshake.

I Firewall E
SYN

SA

ACK

DATA

DATA

(a) Normal Scenario

I Firewall E

SYN

SA

DATA

(b) Exploitable Scenario

Figure 1.4: Packet sequences played against a firewall

While this is a simple illustration, the reality is much worse. These semantic errors mani-

fest in so many different ways (e.g., polymorphic variants of this attack, exploiting other TCP

aspects). Given the critical roles played by these firewalls, we need to equip operators with the

capability to automatically identify evasion vulnerabilities against black-box firewalls.

S3) Risk quantification of DDoS amplification attacks: Despite extensive industrial and

research efforts (e.g., [6, 8, 148]), distributed denial-of-service (DDoS) attacks still continue to

plague the Internet. Recent report [2] suggests that the scale and severity of their impact have

risen by nearly 200% only in the past two years itself. Specifically, many recent high-impact

DDoS attack attacks rely on amplification [24, 31, 32]. In an amplification attack, as shown

in Figure 1.5, an attacker spoofs the victim’s source IP address and sends carefully-constructed

queries (e.g., 60 bytes query) to a public server on the Internet (e.g., DNS, NTP, Memcached

servers). This server acts as an amplifier and, in turn, sends large responses to the victim; in Fig-

ure 1.5, the response has been amplified by 50ˆ. While there are best practices to mitigate these

attacks [3, 4, 5], they are unevenly applied. If a source IP address can be spoofed, any stateless

protocols (UDP) in which the response is larger than the query can be abused. Further, there still

5

continue to be many public-facing black-box servers that are exploited for amplification.

(spoofed) packet 3000 bytes
50x Amplification
Factor (AF)

Black-Box Servers (on the Internet)

Attacker Victim

Internet security experts

What are the highest priority risk?  

Which query patterns yield high amplification (AF)?
?

60 bytes

Black-box access to servers:

•Access to input/output

Figure 1.5: A primer on amplification attack, and Internet security experts who want to

measure the amplification risk on the Internet

Given these serious threats, Internet security experts need to assess the precise risk to focus

their remediation efforts and identify which query patterns yield amplification. However, given

that these servers are deployed by third parties, they also only have black-box access to these

servers (i.e., ability to send and observe outputs). Existing efforts for measuring the risk simply

count the number of servers (e.g., [10]) or focus on only a handful of amplification-inducing

patterns (e.g., [85, 175]). Unfortunately, these approaches are fundamentally imprecise; they

do not account for the variability of risk across servers and miss many amplification-inducing

patterns. In light of the continued threat, we need to equip these security experts with the ability

to precisely assess amplification risk. This can inform remediation efforts such as throttling

servers, generating signatures, informing protocol changes, and provisioning defenses [10, 14].

Summarizing these scenarios: Having discussed these scenarios, we summarize in Figure 1.6

why we only have black-box access and what having black-box access means for each scenario.

Across all scenarios, operators and security experts have access to input and output interfaces of

these black boxes. Further, they know the input format of these black boxes (e.g., DNS packet

format for S3). However, they lack access to code and binary for instrumentation and do not

6

1

Public-Facing Services (S3)
Network Functions

including Firewalls (S1 & S2)

What black-box
access means:

• No access to code

• Access to input/output

• Know the input format

• Ability to configure

• No access to code/binary

• Access to input/output

• Know the input format

• No ability to configure

Why black-box: Proprietary devices Remote deployment (by third parties)

Figure 1.6: Definitions of black-box access for each motivating scenario (Section 1.1)

know the internal workings of these black boxes. Lastly, only operators deploying these NFs

(including firewalls) in a local deployment have the ability to configure them.

These motivating scenarios showcase that modern networks invariably incorporate a diverse

array of black-box functions and services. Hence, we need to equip operators and security experts

with the capabilities to reason about the security implications and correctness of them. Depend-

ing on the scenario, this involves developing techniques to (a) infer models of these black boxes

to enable accurate testing and verification (S1), and (b) proactively identify potential attack vec-

tors (S2, S3). However, given only black-box access, we can only infer models using the input

and output pairs seen so far. Similarly, we can only identify potential attack vectors if an output

packet from a black-box function or service satisfies specific properties of interest (e.g., large

response size for an amplification attack). Naturally, behavior and vulnerabilities that are not

observable as an output packet (e.g., software bugs) would be outside the scope of these settings.

1.2 A Taxonomy of Alternatives

Having summarized these scenarios highlighting the pain points faced by operators and security

experts today, we present a taxonomy of alternatives (Figure 1.7) for analyzing these black boxes.

This taxonomy also helps us put our contributions in perspective; the high-level approach taken

in this dissertation is specified in bold text in Figure 1.7. We defer a more in-depth description

7

Analysis of

Network Functions

& Services White-box

Binary

Black-box
Manual

Automated
Structure-free

Structure-based

Figure 1.7: A taxonomy of alternatives; the branch marked in bold denotes the approach

taken in this dissertation

of prior work and examples for each category to Chapter 2. At the first level, we can classify a

specific approach or a technique based on the type of analysis as shown in Figure 1.7:

‚ White-box analysis: White-box analysis (e.g., [155, 182]) uses program analysis techniques

to investigate the internal logic using the source code of the system.

‚ Binary analysis : Binary analysis (e.g., [71]) requires having access to the binary code so that

an operator can add instrumentation. The process involves reverse-engineering the binary to

model data types, and control paths using various techniques.

‚ Black-box analysis: Black-box analysis (e.g., [64, 106, 107]) does not require access to the

code or binary for instrumentation. However, it requires access to the system where the user

can send inputs and observe outputs. Depending on the problem setting, it may have the

ability to generate more packet traces (e.g., [106, 107]) and have some knowledge about the

types of inputs (e.g., [64, 171]) such as “this server takes a DNS packet.”

Given that it can be impractical for operators to obtain the code or binary for instrumenta-

tion, we take a black-box approach that requires only black-box access with limited information

about the inputs. Among black-box approaches, we can further classify an approach based on:

(1) a manual analysis such as manually generating hypothesis and testing them, and (2) an au-

tomated analysis. Our dissertation takes an automated approach given the diversity and the

number of vendors and implementations. Lastly, we can further classify automated approaches

based on a specific algorithm or a technique used:

‚ Structure-free approach: This class of approaches (e.g., [10, 69, 175]) does not take into

8

account of the domain-specific properties. They either send a few probes to black boxes

to determine the presence of vulnerabilities (e.g., [10]) or use un-modified fuzzing-based

strategies (e.g., random search) to discover exploitable inputs.

‚ Structure-based approach: This class of structure-based approaches makes use of certain

structural properties and domain-specific insights to optimize and customize the baseline

algorithms (e.g., machine learning [110], learning theory [62]). Given the complexity of the

black boxes we consider, structure-free approaches were highly ineffective (e.g., unable to

discover vulnerabilities). Hence, this thesis takes the structure-based approach.

We will expand this taxonomy and discuss a few examples from prior work in Chapter 2.

1.3 Thesis Overview

We start by presenting our thesis statement and then discuss the challenges of designing tech-

niques to support this statement. We then discuss our high-level approach before concluding

with in-depth summary of our key technical contributions.

1.3.1 Thesis Statement

Given black-box access to network functions and services, the structural properties of these

black boxes and their input and configuration space can be leveraged to automatically analyze

the behavior and vulnerabilities of network functions and services. This thesis presents three

techniques to: (1) infer high-fidelity models of stateful network function for accurate testing

and verification; (2) identify semantic evasion attacks against network firewalls; and (3) identify

DDoS amplification vulnerabilities against public services at scale. Each technique is more

accurate than prior methods or achieves higher coverage than naive fuzzing techniques.

The thesis is composed of three technical components. Each addresses the pain points iden-

tified in our motivation scenarios (from Section 1.1) stemming from lacking appropriate tools to

9

analyze these black-box functions and services. Note that while the goal of (1) is to design a gen-

eral technique for inferring models of network functions, (2) and (3) focus on specific problem

settings. For instance, (2) focuses on network firewalls, and (3) focuses on DDoS amplification

attacks. However, (2) and (3) address high-impact areas in operational security. The insights that

we leverage for (2) and (3) can also be applicable if we were to tackle similar problems for other

functions and services (more in Section 6.3.2).

1.3.2 Key Challenges

There are three high-level challenges in building techniques to support our thesis statement.

C1. Large input space: The input space of these black boxes can be prohibitively large (e.g.,

all possible TCP packets). In the case of stateful network functions, the input space also includes

all possible sequences of packets.

C2. Large configuration space: These black-box functions and services take concrete configu-

rations or settings. Network functions (e.g., firewalls) take a configuration composed of multiple

rules, where fields within a rule (e.g., source IP) can take large sets of values (e.g., IP prefixes).

Further, different server instances vary in the set of amplification-inducing query patterns. Fur-

ther, the exact amplification for a given query pattern also differs across server instances. We

need to search this configuration or server space efficiently.

C3. Complex internal behavior: The internal logic of a black box can be quite complex.

Network functions can modify packet headers or drop packets, making reasoning about their

behavior more complex. The structure of amplification a black-box server yields is a complex

function of multiple factors (e.g., an input packet, a configuration, data contained in the server).

1.3.3 High-Level Approach

We address the above challenges by using domain-specific insights that leverage structural

properties of the black-box function or service. These insights help us reduce the large search

10

space of input and configuration space and systematically explore the search space.

We briefly discuss only a few examples of how we leverage structural properties but defer

a full list of structural properties to each applicable chapter. First, in building Alembic for in-

ferring NF models (Chapter 3), we find that considering all possible input packets under an NF

configured with all possible configurations is infeasible. Fortunately, we observe that given a

rule type (e.g., firewall drop rule), the NF’s logical behavior is identical across different val-

ues of rule parameters (i.e., drop X vs. drop Y). This structural property allows us to infer

symbolic representations once for a given rule type. Second, in building Pryde for uncovering

evasion attacks (Chapter 4), we observe that these attacks exploit subtle implementation errors

specific to a firewall implementation. This property inspired us to use a model-guided approach

rather than naively searching over packet sequences. Lastly, in building AmpMap for identify-

ing amplification-inducing patterns (Chapter 5), we observe that amplification-inducing patterns

exhibit locality and overlap in the field values. Hence, once we bootstrap a query in a specific

operating regime (i.e., gives some amplification), we can search one field at a time instead of

searching all N fields. This insight, combined with others (more in Chapter 5), allows us build a

low-footprint measurement system while discovering multiple amplification-inducing patterns.

1.3.4 Contributions

We now provide an overview of three key contributions of this thesis.

Model inference for stateful black-box network functions (Chapter 3): We present Alem-

bic [146], a tool that can automatically infer the models of black-box network functions (i.e.,

firewalls, network address translators). Alembic fills the critical missing piece (i.e., the ability to

synthesize NF models) of modern testing and verification tools. In building Alembic, we tackle

the challenges of (1) a large NF configuration space containing diverse rule types, and (2) dy-

namic and stateful NF behaviors. Alembic leverages multiple structural properties to enable a

scalable solution. Apart from inferring symbolic models (discussed in Section 1.3.3), we also

11

observe that NF’s behavior is the logical composition of its behavior for individual rules. This

property allows us to compose models across rules instead of considering all rules at once. Fi-

nally, to infer a stateful behavior model, we identify a natural parallel to a classical algorithm for

FSM inference (i.e., L* [62]) and extend it to handle NF-specific behavior.

Results summary: Using Alembic, we inferred high-fidelity models of firewalls, load balancers,

and network address translators. We highlight significant variability across NF implementations

of a given type (e.g., firewalls, load balancers). We showcase that our high-fidelity models im-

prove the effectiveness of testing and verification tools (i.e., [97, 152]).

Automatic synthesis of evasion vulnerabilities against stateful firewalls (Chapter 4): We

present Pryde,1 a tool which automatically synthesizes semantic evasion vulnerabilities against

black-box stateful firewalls. In developing Pryde, we tackle the challenges of a large input space

including adversarial inputs and discovering multiple subtle attack opportunities. Pryde uses a

model-guided approach where it first infers a model (using an extended Alembic) to reason about

adversarial scenarios. Then, Pryde efficiently encodes various deployment settings in a model

checker and defines custom refinement constraints to discover multiple attack opportunities.

Results summary: We evaluated Pryde on four popular (virtual) firewalls (three commercial-

grade and one open-source). We found 294 to 8,200 attack strategies depending on the vendor.

Further, post-processing these attacks reveals that the discovered attacks exploit different TCP

aspects (e.g., incomplete handshake, simultaneous open). Further, we find that these attacks are

highly vendor-specific. We also demonstrate that structure-less approaches are ineffective; i.e.,

random fuzzing finds 0 to 3 attacks after 15K tries for two complex firewalls.

Risk quantification of DDoS amplification attacks (Chapter 5): We present AmpMap [147],

a low-footprint Internet health monitoring service that systematically quantifies amplification risk

to inform mitigation efforts. AmpMap equips security experts with the capability to precisely

identify (server-specific) patterns exploitable for amplification attacks. In designing AmpMap,

1The name is inspired by the Marvel X-men superhero Kitty Pryde who has the ability to walk through walls [46]

12

we tackle the challenges of a large input/server space and handle a complicated relationship

between query (header) values, amplification it induces, and server instances. Specifically, we

leverage multiple key structural insights across protocol header and server space. In addition

to leveraging the locality structure to search one dimension at a time, we also use appropriate

sampling strategies to explore large fields (e.g., 16-bit field) based on our observations. Further,

we also observe that while servers vary in their risk, they share some similarities, allowing us to

reduce overhead by sharing insights.

Results summary: Using AmpMap, we scanned 10K servers across 6 UDP-based protocols

(e.g., DNS, SNMP, NTP). Our measurements revealed new patterns and polymorphic variants of

known patterns; e.g., for NTP, while prior work only stresses a known pattern (i.e., MONLIST),

we discover additional NTP commands (e.g., get restrict) that can also incur more than 500ˆ

amplification. Relying on prior recommendations to block specific queries still leaves open sub-

stantial residual risk as they miss many query patterns. Lastly, we demonstrate that our strategy

achieves higher coverage across patterns than structure-free approaches (e.g., random search).

1.4 Outline

The rest of this dissertation is organized as follows. Chapter 2 expands on the taxonomy of

alternatives and discusses the prior work in this space. Then, Chapters 3, 4, and 5 present the

three key components to this dissertations: (1) Alembic automatically infers high-fidelity models

of stateful network functions from black-box observations; (2) Pryde automatically synthesizes

evasion vulnerabilities against black-box stateful firewalls using a model-guided approach; and

(3) AmpMap quantifies the amplification risk at scale and identifies query patterns that lead to

large amplification for each black-box server. In presenting each technique, we demonstrate

that each technique is more accurate than prior methods or achieves higher coverage than naive

fuzzing techniques. Finally, Chapter 6 reflects our findings and learned lessons, discusses the

limitations of the proposed solutions, and concludes with future work.

13

Chapter 2

Related Work

Having laid the vision of this thesis in Chapter 1, we expand on the taxonomy of alternatives

(Figure 1.7) for analyzing network functions and services. We first discuss the prior work on

analyzing network functions and services in light of this taxonomy (Section 2.1). We then discuss

similar efforts in other domains to put this body of work on analyzing network devices and

services in perspective (Section 2.2). Note that we will present other domain-specific related

work relevant for each contribution (in Chapters 3, 4, and 5) in each respective chapter.

2.1 Analyzing Network Functions and Services

As a high level, we can classify an approach based on the level of access an approach needs:

(1) white-box analysis requires the most access by needing the source code; (2) binary analysis1

does not require source code but requires access to binary for instrumentation; and (3) black-box

approach does not need source code or binary for instrumentation but only requires access to

input and output interfaces with potential knowledge of input format. Table 2.1 lists the prior

1Another possible classification is to use grey-box analysis [142], which include a large body of work on binary

analysis. The grey-box analysis uses static information or obtains execution paths, whereas white-box analysis

analyzes the source code or an intermediate code

14

Examples of Prior Work

White-box analysis

Rossow [165], Cosby et al. [84], Bro [153], Ptacek et al. [160]

PIC [155], NFactor [182],CASTAN [156], MAX [130]

Dobrescu et al. [92], VigNAT [188], Vigor [187], Gravel [189]

Binary analysis Rossow [165] , Polyglot [71], MACE [80]

Black-box

analysis

Manual
INTANG [179], Khattak et al. [127],Lib•erate [136]

Qian et al. [161], Chen et al. [77], Joncheray [124]

Automated
Structure-free CyberGreen [10], Geneva [69]

Structure-based

Pulsar [106], AutoFuzz [111], HVLearn [171], SFADiff [64]

SNAKE [121], Kif [53], SNOOZE [67]

Bishop [68], Lin et al [140]

Table 2.1: Examples of prior work on analyzing network functions, services, and protocols

mapped to each category in the taxonomy (from Section 1.2)

work in this space and where each work fits into the taxonomy; these examples of prior work

were chosen based on the relevance to our motivating scenarios. We now describe each approach

in turn.

2.1.1 Type I: White-Box Analysis

White-box analysis analyzes the source of the underlying functions and services to investigate

the internal logic. We can further classify white-box analysis based on manual vs. automated.

We start by discussing manual approaches (e.g., [153, 160]). We generally observe that these

manual approaches are more common at the earlier stage of the exploration for a given attack

or relatively-less-understood functions and services at that given time. For instance, one of the

earlier works that exposed amplification vulnerabilities in multiple UDP-based protocols [165]

manually analyzed the code (and the binary). Seminal papers on network intrusion detection

systems (NIDS) evasion [153, 160], and algorithmic complexity attacks [84] against network

15

services also used manual code analysis.2 While these manual approaches have inspired a large

body of follow-up work, such approaches will not scale given the diversity of vendors and im-

plementations.

Given the inherent limitations of manual approaches, researchers have developed automated

tools (e.g., [130, 155, 182]), which use program analysis techniques (e.g., program slicing, sym-

bolic execution) to examine the system’s source code. These approaches have been proven ef-

fective for testing (e.g., [155]), generating adversarial inputs (e.g., [156]), modeling (e.g., [182]),

and verifying certain properties (e.g., [92, 187, 188, 189]).

For testing purposes, PIC [155] uses symbolic execution for testing interoperability in proto-

col implementations. For generating adversarial inputs, CASTAN [156] uses symbolic execution

to generate adversarial workloads for network functions to cause performance degradation. For

modeling purposes, NFactor [182] used program slicing techniques to infer the behavior for net-

work functions, in the form of a match-action table (NFactor [182] shares a similar goal as one

of our key contributions, Alembic in Chapter 3. However, Alembic works in a black-box setting

and, as a result, can generate models for proprietary NFs).

For verification purposes, prior work (e.g., [92, 187, 188, 189]) has used symbolic execu-

tion to verify the correctness of NFs. Earlier work in this space by Dobrescu et al. [92] used

symbolic execution to discover low-level programming errors such as memory safety and crash-

freedom for stateless NFs written in Click [129]. VigNAT [188] focuses on building a frame-

work for writing a Network Address Translator (NAT) that is guaranteed to be semantically

correct and memory-safe. Vigor [187] generalizes VigNAT to handle more NFs and verifies the

underlying OS network stack and the packet-processing framework. Both VigNAT [188] and

Vigor [187] require developers to write NFs using their frameworks. Both tools require devel-

opers to write pseudocode-like low-level specifications. Unlike VigNAT [188] and Vigor [187],

Gravel [189] verifies higher-level NF-specific properties (e.g., load balancer’s connection persis-

2As the authors do not discuss automated techniques and are aware of implementation issues, we can hypothe-

size that they used manually analyzed the code. In fact, the author of [153] implemented the Bro NIDS.

16

tency) for Click-based NFs. Gravel, too, requires developers to provide high-level specifications

on a symbolic trace of packets. However, these efforts (e.g., [187, 188, 189]) are emerging ideas

that may not apply to legacy NFs that are not written in Click [189] or written in other frame-

works [187, 188]. Furthermore, writing high-level specifications or synthesizing them may be

non-trivial using these tools. Nevertheless, these ideas could be beneficial for building network

functions or services that are correct by construction (more in Chapter 6). (We also note that

orthogonal efforts test and verify network-wide properties in large networks [97, 152, 172]. As

we specifically focus on prior work on analyzing a single network function or service in this

chapter, we discuss these orthogonal efforts when we present Alembic in Chapter 3.)

Overall, these white-box approaches can complement our efforts to enable black-box analy-

sis. Specifically, unlike the black-box approach, the white-box approach has access to and can

reason about the system’s internal logic. However, as we saw from the motivating scenarios

in Section 1.1, it can be impractical for network operators and security experts to obtain the

system’s source code. Further, the assumption that functions and services are written in spe-

cific languages or using specific frameworks may not make particular work applicable for legacy

network functions and services (which is the focus of this thesis).

2.1.2 Type II: Binary Analysis

Another alternative is to use binary analysis, which involves analyzing and reverse-engineering

the binary code. It can be a practical alternative when the source code is not available (i.e., the

white-box approach is not feasible), but the binary is available. This analysis works by perform-

ing lightweight static analysis or gathering dynamic information about its execution [142].

As many works in the binary analysis focused on building automated tools, we focus our dis-

cussion on automated tools (e.g., [71, 80, 183]). For instance, MACE [80] analyzes the code at a

binary level to infer the protocol state machine and use the inferred machine to uncover software

bugs (e.g., buffer overflow, out-of-bounds reads). Specifically, it uses a combination of symbolic

17

and concrete executions. Other efforts in this space use binary analysis techniques to infer pro-

tocol message formats and specifications (e.g., [71, 83]) or generate fingerprints for malicious

servers (e.g., [183]). These works are similar in spirit to the binary analysis techniques in the

software domain (e.g., [169, 186]) but have been adapted for network functions and services.

Binary analysis is complementary to our efforts in enabling black-box analysis as it has access

to information such as code coverage that the black-box approach does not. However, obtaining

the binary code can be impractical in certain scenarios. For instance, to assess amplification risks

(i.e., AmpMap in Chapter 5), we need to run vulnerability assessment for services deployed and

configured by third parties where we only have access to input-output interfaces.

2.1.3 Type III: Black-Box Analysis

Having described the prior work for both white-box and binary analysis, we now discuss related

work in black-box analysis, which is an approach that this thesis takes. Black-box approaches,

too, can be classified based on manual vs. automated.

We start by discussing prior work that used manual analysis. For instance, these manual ap-

proaches have been applied to identify censorship evasion against nation-wide censorship devices

(e.g., [127, 136, 179]), attacks against TCP congestion control (e.g., [124, 167]), or side-channel

attacks that hijack TCP connections (e.g., [73, 77, 161]). For instance, INTANG [179] developed

a suite of effective hand-crafted evasion strategies against the Great Firewall of China (Note that

Pryde in Chapter 4 generates evasion attacks against stateful firewalls). However, INTANG [179]

manually generated hypotheses based on domain knowledge. While such manual identification

is valuable, these approaches will not scale given that these strategies may need to evolve due to

changes in implementations of these network functions and services.

We observe that manual black-box analysis has been useful, especially in the earlier explo-

ration of the behavior or attacks against functions and services. Unfortunately, this approach

does not scale given a diversity of vendors and implementations. As such, researchers have de-

18

veloped automated black-box analysis tools to address this scalability and accuracy challenges

inherent to manual approaches. In fact, this dissertation also takes an automated approach to

building black-box analysis tools. As mentioned in the taxonomy before (Figure 1.7), we can

classify automated black-box analysis based on structure-free vs. structure-based approaches.

2.1.3.1 Structure-Free Approach

This class of approaches usually either probes network functions and services using already-

known probes (e.g., network packets) or uses off-the-shelf fuzzing-based strategies. For in-

stance, prior work on identifying amplification vulnerabilities enumerates the number of servers

by checking for open ports (e.g., CyberGreen [10], openresolver [13]) or sends previously

known attack vectors to servers (i.e., send a handful of known queries for DNS [175]). Unfortu-

nately, these simplistic approaches will not capture the diversity of attack vectors across servers

and the inputs. For example, these will misses many other vectors that lead to high amplification.

Others use off-the-shelf fuzzing-based strategies to search over the input space. For instance,

Geneva [69] recognizes that a body of work (e.g., [136, 179]) that manually identified evasion

strategies against nation-wide censors does not scale. Therefore, Geneva leverages a genetics

algorithm to build an automated approach. Similar genetics algorithm-based approaches have

been applied to other popular protocols (e.g., [138]). While these structure-free approaches (e.g.,

a genetics algorithm, random search) can be sufficient for certain scenarios, they were highly

ineffective for our application context. Furthermore, these structure-free approaches are unaware

of the (hidden) internal states which could be useful to discover multiple attacks or highlight rel-

evant behavior for complex black boxes. This motivated us to build structure-based approaches

we discuss next.

19

2.1.3.2 Structure-Based Approach

Structure-based approaches recognize that while pure random-based strategies may work in some

scenarios, the probability of finding interesting behavior or uncovering relevant security vulner-

abilities is low. Hence, these structure-based approaches use domain-specific insight or certain

guidelines (e.g., behavior models) to explore relevant portions of the input space. We further

classify these structure-based approaches based on whether an approach tackles a black box that

is stateful vs. stateless.

Stateful black boxes: Structure-based approaches that analyze stateful black boxes (e.g., a fire-

wall keeping connection states) explicitly infer the (stateful) behavioral model or use it as a guide

to efficiently search over the space. Approaches that infer a model either leverages seminal in-

ference algorithms (e.g., L* algorithm) or statistical methods. For instance, a large body of work

(e.g., [64, 79, 80]) leveraged L* algorithm to discover protocol vulnerabilities (e.g., [79, 171]),

TCP/IP implementation errors in operating systems (e.g., [101, 102]), and specific attacks (e.g.,

cross-site scripting) against web-application firewalls [64]. (While Alembic in Chapter 3 also

leveraged the L* algorithm to infer NF models, these prior works (e.g., [101, 171]) cannot be

used to model NFs. They cannot handle NF-specific challenges, such as handling large configu-

ration space and NF-specific behavior.) Other approaches (e.g., [106]) use statistical methods to

infer a model. For instance, PULSAR [106] takes an input of network traffic captures and uses

a probabilistic technique [132] to infer a message content and a state machine. Then, PULSAR

uses the inferred model to uncover vulnerabilities against protocol implementation (e.g., FTP).

Apart from inferring models, prior work (e.g., [102, 118, 122]) also used model check-

ing [123] or model-based testing [174] efficiently to search over the large search space. Specif-

ically, these methods were successful in identifying security bugs in TCP congestion control

(e.g., [122]), TCP/IP implementations (e.g., [102]), and 4G LTE implementation (e.g., [118]).

(While the specifics of the challenges and techniques differ, we also leverage a similar model-

based approach for Pryde in Chapter 4 to uncover evasion attacks against enterprise stateful

20

firewalls.) Similarly, a body of prior work (e.g., [53, 67, 121]) uses the specifications or state

machine to efficiently fuzz the input traffic, and these approaches are often referred to as stateful

or guided fuzzing. However, these fuzzing tools primarily focus on crashes or fatal errors in the

program. Further, these assume that they are given the specifications (in contrast to Pryde in

Chapter 4, which directly infers these models).

Stateless black boxes: Prior work also has leveraged statistical approaches and machine learn-

ing techniques (e.g., GAN) to uncover security implications or behaviors/specifications of state-

less network black boxes. For example, they have been used in the context of protocol message

inference (e.g., [107, 140, 178]), and identifying exploitable inputs (e.g., [140]).

Given network packet captures, ProDecoder [178] uses statistical methods to infer the protocol-

complaint format. Specifically, their key structural insight is to leverage highly skewed frequency

distribution in messages to enable accurate protocol message format inference. NEMESYS [107]

learns the message format by examining the distribution of changes in the bits throughout the

protocol message.

Furthermore, given the rise of machine learning, some have started looking into leveraging

machine learning techniques (e.g., GAN or generative adversarial network [110]) to enable these

tasks. For instance, Lin et al. [140] demonstrate the early promise of GAN in inferring protocol

message format and identifying inputs that can be exploited for attacks. However, these GAN-

based approaches are not yet viable to infer a complex state machine (for stateful black boxes).

Supporting this would be an exciting avenue for future work.

2.2 Analyzing Other Application Domains

While our thesis focuses on analyzing network functions and services, we discuss similar ef-

forts that analyze other application areas. First, given that network functions or services that

we consider implement protocols, we start with discussing prior work on testing and verifying

21

protocol implementation (Section 2.2.1). Then, we discuss related efforts on analyzing software

(Section 2.2.2). Specifically, fuzz testings in the software domain have some of the same goals

that we have. Further, our high-level taxonomy (i.e., white-box vs. black-box) is also inspired

by classification used in the software domain. Then, while not an extensive list, we conclude by

summarizing similar efforts on analyzing other application domains (Section 2.2.3).

2.2.1 Protocol Testing and Verification

We start with protocol testing and verification (e.g., [1, 53, 67, 68, 130, 155]). These works have

focused on conformance testing (e.g., [155]), identifying potential attack vectors against protocol

implementations (e.g., [130]), and running verification proofs (e.g., [86, 87, 150]).

We first discuss prior work that used white-box approaches (e.g., [130, 150, 155]) that ana-

lyze the source code. For instance, PIC [155] applies symbolic execution for checking interoper-

ability in protocol implementations. Kothari et al. [130] applied symbolic execution to uncover

manipulation attacks. Musuvathi et al. [150] designed a model checker to verify the Linux TCP

implementation against a formal specification. This body of work shares similar ideas and tech-

niques to the white-box approaches used for network functions and services.

Apart from white-box approaches, other prior work in this space (e.g., [1, 53, 67, 68]) used

black-box analysis. However, this body of work usually requires either user-specified spec-

ifications (e.g., [1]) or stateful models of protocols as inputs (e.g., [53, 67]). For instance,

SNOOZE [67] used a state machine to efficiently fuzz the input traffic to identify fatal errors

or crashes. (Again, this approach contrasts with Pryde in Chapter 4, which directly infers fire-

wall models to uncover evasion attacks.)

Others have looked into proving security properties; e.g., protocol composition logic (PCL)

(e.g., [86, 87, 88, 89, 115]) is a formal logic for stating and proving security properties of network

protocols such as SSL/TLS. This formal logic supports reasoning about each step in a protocol,

which can be composed to prove complex protocols’ properties. While our thesis focuses on

22

testing or generating inputs to verification tools (Alembic in Chapter 3), proving that certain

security properties are met given the black-box implementations of these functions or services

would be an exciting future direction (more in Chapter 6).

Overall, while protocol testing and verification share similar goals as this thesis, our thesis

differs from this body of work. Specifically, this thesis focuses on modeling network devices or

findings attacks against network functions or services instead of finding protocol bugs or check-

ing protocols’ correctness. Designing techniques for network functions and services brings ad-

ditional challenges. For instance, the behavior and security vulnerabilities of these functions and

services are not just a function of the underlying protocol implementation. These also depend on

configuration settings and other factors (e.g., data contained in the server). Naturally, supporting

this thesis statement requires building tools that can efficiently reason about the behavior under

a large configuration space and handle NF or server-specific challenges.

2.2.2 Software Analysis and Fuzzing

We now discuss similar efforts in the software domain. One of the first uses of fuzzing is de-

scribed by Miller et al. [144], and it was applied against standard UNIX utilities. Since then,

fuzzing has been remained highly popular due to its simplicity and empirical evidence of its

success in discovering software vulnerabilities [142]. At a high level, these fuzz testers repeat-

edly generate inputs to programs. The goal is to generate syntactically or semantically mal-

formed inputs that trigger particular software behavior [142]. All three types of analysis have

been used for analyzing software: (1) white-box (e.g., [72, 108]) that requires the source code,

(2) binary (e.g., [109, 186]) that require access to the binary and ability to instrument and col-

lect information; and (3) black-box (e.g., [76, 181]) that require no access to the code or bi-

nary for instrumentation. These fuzzers focus on finding inputs that lead to unintended actions

(e.g., [158, 169, 181, 186]) such as crashes.

An example of a white-box approach is KLEE [72], one of the popular symbolic execution

23

implementations. The idea of KLEE is to execute the program with symbolic-valued input and

identify inputs that drive the program execution to go down a specific path. KLEE has also

been used in network-wide testing (i.e., BUZZ [97]). However, BUZZ [97] had to leverage their

domain ideas to make it work in the context of networking. A popular binary fuzzer, American

Fuzzy Lop (AFL) [186], mutates inputs and focuses on testing new code paths using evolutionary

techniques (also, utilized by Geneva [69] to find evasion attacks against nation-wide censors). An

example of a black-box approach is by Woo et al. [181]. This fuzzer designed to maximize the

number of unique bugs found for software. Further, with recent attention given to machine learn-

ing, a large body of work (e.g., [168, 169]) have focused on using machine learning techniques

to improve fuzzing.

While fuzz testers in the software domain are related to this thesis, the goal and the use cases

we consider are orthogonal. As a result, the key insights and the techniques differ from prior

work in the software domain. For instance, Alembic (Chapter 3) leverages structural properties

to enable a general method of inferring high-fidelity NF models. Our approach contrasts to these

fuzz testers that directly identify exploitable inputs. The work in this thesis that is closest to fuzz

testing is AmpMap (Chapter 5). While AmpMap can be seen as a form of guided fuzzing that ef-

ficiently uncovers amplification-inducing queries, AmpMap, too, leverages structural properties

specific to amplification-inducing patterns to enable our low-footprint solution.

2.2.3 Other Prior Work

Analyzing behavior and uncovering security vulnerabilities have been widely applied in multiple

other domains. While not an extensive list, they have been applied in the context of IoT mobile

applications (e.g., [75, 91, 139, 149, 151]), IoT devices and protocols (e.g., [98, 99, 117]), and

manufacturing domains (e.g., [143, 190]).

For instance, prior work on IoT application analysis (e.g., [75, 91, 139, 149, 151]) seeks to

find violations in the application actions. IoTMon [91] extracts interactions between applications

24

with the device and environment and use this information to identify risky or unsafe behavior. As

the application code is readily available, these tools tend to use white-box approaches requiring

application code [75, 91, 139, 151] or metadata [149]. Other works in this space focus on findings

flaws in smart home devices and protocols (e.g., [98, 117, 164]) or uncovering privacy leaks

(e.g., [74, 99]).

Other efforts (e.g., [143, 190]) also have looked into the manufacturing domain in the context

of programmable logic controllers (e.g., [143, 190]) and industrial control systems (e.g., smart

meters [57], water purification system [78]). TSA [143] runs static symbolic execution on PLC’s

temporal execution graph. In contrast, VetPLC [190] verifies the PLC implementation at runtime

by constructing timed event sequences. ARTINALI [57] mined temporal properties from smart

meters to build intrusion detection. Similarly, Chen et al. [78] inferred invariants from data traces

to build anomaly detection for a water purification testbed. While these works are related to this

dissertation, the goal and the use cases that we consider are orthogonal. As a result, the presented

tools in this thesis address additional challenges specific to network functions and services (e.g.,

a large configuration space).

25

Chapter 3

Alembic: Automated Black-Box Model

Inference for Stateful Network Functions

The Problem: As discussed from one of our motivating scenarios (Section 1.1), modern net-

work testing and verification tools rely on network functions (NF) models to create test cases,

generate verification proofs, and run compatibility tests. Today, NF models are handcrafted

based on manual investigation [97, 172], which is tedious, time-consuming, and inaccurate. As

we saw from a simple example (in Section 1.1), using low-fidelity models can affect the cor-

rectness and effectiveness of these testing and verification tools (we expand more on this in

Section 3.1). Further, these handcrafted models do not capture subtle implementation differ-

ences across vendors [97, 125]. Surprisingly, while many efforts from the networking commu-

nity have focused on building more efficient and general network testing and verification tools

(e.g., [97, 152, 172, 185]), not much attention has given to automatically synthesizing models of

these NFs to guide this testing and verification workflow.

The Solution: To fill this critical gap, we present Alembic [146] in this chapter. Alembic is a tool

that can automatically infer a high-fidelity model of network functions. However, synthesizing

these NF models is challenging because: (1) NFs have large state spaces; (2) their state may be

26

mutated by any incoming packet (i.e., large input space); and (3) in response, the NF may react

with any number of diverse and possibly even non-deterministic actions (i.e., complex internal

logic). While we also make simplifying assumptions to make the problem tractable, Alembic

addresses a scoped portion of this open challenge. Specifically, we focus on modeling NFs

where their internal states are mutated by incoming TCP packets, and their actions are restricted

to dropping and forwarding packets, possibly with header modification. Our goal is to synthesize

high-fidelity NF models in a black-box setting, given only the binary executable, vendor manuals,

and a specific configuration with which the NF is to be deployed. We adopt this pragmatic black-

box approach as vendors may not be willing to share their source code, even with customers.

Even this scoped problem presents significant challenges (Recall the high-level challenges we

discussed in Section 1.3.2):

‚ C1) Modeling and representing stateful NF behaviors: The behavior of an NF often depends

on the history of observed traffic, making it difficult to discover and concisely represent its

internal states.

‚ C2) Large input space: Given the stateful behavior, the input space potentially includes all

possible sequences of TCP packets. Naively enumerating this large space would be pro-

hibitively expensive.

‚ C3) Large configuration space: Concrete configurations (e.g., a firewall rule set) are com-

posed of multiple rules. Fields within a rule (e.g., source IP) can take large sets of values

or ranges of values (e.g., IP prefix), making it impractical to infer models for all possible

configurations.

‚ C4) Complex NF actions and internal workings: NFs such as NATs can modify packet head-

ers, making model inference more difficult.

To tackle these challenges, we leverage the following key insights (Section 3.2) based on

the structural properties inherent to these black-box network functions (NFs) and their input and

configuration space:

27

‚ A) Compositional model: Rather than exhaustively modeling an NF under all possible con-

figurations, we consider the NF’s behavior as the logical composition of its behavior for

individual rules in a configuration.

‚ B) Learning symbolic model: Configurations consist of different rule types, such as a fire-

wall drop rule, where each type is associated with a different runtime behavior of the NF. For

a given type, the logical behavior of the NF is the same across different values of the rule’s

parameters. Hence, we can learn a symbolic model for each rule type rather than exhaustively

infer a new model for each possible value.

‚ C) Ensemble representation : Even with the above insights, each rule has a large search

space as each rule parameter can take a range of values (e.g., a range of ports). Fortunately,

we observe that NF behavior is logically independent for subsets of these ranges. For in-

stance, assume a firewall contains one rule and we know it keeps per-connection state. We

can then model this rule using an ensemble of independent models by cloning the model

learned using a single connection. However, we must then consider how to infer the specific

granularity of state tracked by the NF (e.g., per-connection or per-source). We show in Sec-

tion 3.4 how we can automatically infer this granularity and prove the correctness in Section

3.4.2.

‚ D) Finite-state machine (FSM) learning : FSMs are a natural abstraction to represent

stateful NFs [97, 152], and using them allows us to potentially leverage classical algorithms

for FSM inference (e.g., L* [62]). But there are practical challenges in directly applying

L* here: First, we need to create suitable mappings between logical inputs (i.e., an input

alphabet) that L* uses and the real network packets/configurations that NFs take as inputs

(Section 3.3). Second, header modifications by NFs make it incompatible with L*, so we

need domain-specific ideas to handle such cases (Section 3.5).

Having described the high-level insights, we discuss how they specifically address the chal-

lenges: Compositional modeling (Insight A) addresses the large configuration space (C3). Both

28

symbolic and ensemble representations (Insights B and C) address the large input space (C2)

by learning a symbolic model for each rule type and then appropriately cloning it to create an

ensemble representation (say for large IP/port ranges). Lastly, extending L* (Insight D) enables

us to represent stateful NF behavior (C1 and C4).

Building on these insights, we design and implement Alembic.1 In the offline stage, we infer

symbolic FSMs for different rule types as defined by an NF’s manual. To concisely represent

the internal states of an NF, we extend the L* algorithm [62]. We also leverage our L*-based

workflow to infer the state granularity tracked by the NF (e.g., per-connection). Since model

synthesis need only be done once per NF, we can afford several tens of hours for this stage.

Given a concrete configuration (i.e., a set of rules), the online stage uses these symbolic models

to construct a concrete model within a few seconds. Specifically, the online stage maps each rule

in a configuration to a corresponding symbolic FSM which, coupled with the inferred granularity,

is used to create an ensemble of FSMs. The ensemble is logically composed together for each

rule to construct the final concrete model for the given configuration. The resulting concrete

model can then be used as an input to network testing and verification tools.

Evaluation and Findings: We evaluate Alembic with a combination of synthetic, open-source,

and proprietary NFs: PfSense [26], Untangle [34], ProprietaryNF, Click-based NFs [129], and

HAProxy [17]. We show that Alembic generates a concrete model for a new configuration in less

than 5 seconds, excluding the offline stage. Alembic finds implementation-specific behaviors of

NFs that would not be easily discovered otherwise, including some that depart significantly from

typical high-level handwritten models (Section 3.7.4). For instance, we discover: (1) in contrast

to a common view of a three-way TCP handshake, for some NFs, the SYN packet from an

internal host is sufficient for an external host to send any TCP packets; and (2) the FIN-ACK

packet does not cause internal NF state transitions leading to the changes in the NF’s behavior.

Finally, we show that using Alembic-generated models can improve the accuracy of network

1Alembic is a tool used in the alchemical process of distillation or extraction, as our system extracts NF models.

29

testing and verification tools (Section 3.7.5).

3.1 Motivation

In this section, we expand on an example from Section 1.1 and elaborate on more examples

to highlight how inaccuracies in handwritten NF models may affect the correctness of network

verification and testing tools. Figure 3.1 shows an example network, where the operator uses a

stateful firewall (FW) to ensure that external hosts (e.g., B1) cannot initiate TCP traffic to internal

hosts (e.g., A1). This intent translates to three concrete policies:

‚ Policy 1: To prevent unwanted traffic from entering the network, A1 must establish a con-

nection with B1 before the firewall forwards B1’s TCP packets to A1.

‚ Policy 2: When A1 sends a RST or RA (RST-ACK) packet to terminate the connection, the

firewall should drop all subsequent packets from B1.

‚ Policy 3: To protect against an attacker sending out-of-window packets to de-synchronize

the connection state [179], the firewall should drop or send a RST when it receives packets

with out-of-window sequence (seq) or acknowledgment (ack) numbers.

Stateful Firewall
Internal
Network

Intended Policy: Only allow TCP traffic from external hosts on already ESTABLISHED
connections

Host A1
(10.1.1.1)

Host B1
(156.4.0.1)

External
Network

Rule 1: <srcip=10.1.1.0/24, srcport=*, dstip=156.4.0.0/24, dstport=*, action=1>

Figure 3.1: Network set-up

To implement these policies, the firewall is configured with the rule shown in Figure 3.1.

Since many firewalls implement a default-drop policy, there is no explicit drop rule for packets

originating externally. Note we do not need explicit rules for Policy 2 and 3 as they should be

performed by the firewall when following the TCP protocol.

To check if the network correctly implements the intended policies, operators use testing and

30

False positive (no violation but
reports a violation)

Test
Packets

Intended
Policy

Actual
Network

Buzz
Model

Forward Forward Forward
Forward Forward Forward
Drop Drop Forward

: Packets from an internal host A1 to an external host B1SYN SA ACKPacket
Legend SYN SA ACK

ESTABL
-ISHED

SYN
SENT

NULL

SYN! / Drop
SYN / Forward

! / DropSA

/ ForwardSA/Forward

Handwritten Model (BUZZ, NSDI16)

: Packets from an external host B1 to an internal host A1

Limitations of a handwritten model

FIN

FIN

SYN

SYN

SA

/ Forward
FIN

FIN

FIN! FIN

Figure 3.2: A handwritten model of a stateful firewall (FW) which incorrectly reports a

policy violation

verification tools [97, 152, 172]. These tools use NF models to generate test traffic [97, 173] or

to verify intended properties [152]. If these models are inaccurate, the results can have any of

the following error types: (1) false positives, where the tool reports violations when there is no

violation; (2) false negatives, where the tool fails to discover violations; or (3) inability to test

or verify where the tool fails completely because the models are not expressive enough. As an

example, consider BUZZ [97], a recently-developed network testing tool. BUZZ uses a model-

based testing approach to generate test traffic for checking if the network implements a policy,

and the original paper includes several handwritten models. In the remainder of this section, we

present three examples of how operators can encounter issues while using the BUZZ tool due to

discrepancies between handwritten models and NF implementations. Our goal is not to pinpoint

limitations of the BUZZ tool but to highlight shortcomings of handwritten models. We find that

models from other tools lead to similar problems [152, 172].

To control for NF-specific artifacts (for now), we use two custom, Click-based [129] firewalls

that correctly implement the above policies. Figure 3.2 shows the handwritten model of a stateful

firewall used in the BUZZ tool [97]. We use the BUZZ firewall model for comparison as it

implements a policy similar to our example (i.e., the firewall only forwards packets belonging to

a TCP connection initiated by an internal host).

31

Test case (policy 1): The operator uses the BUZZ tool to generate test traffic and check if

TCP packets from B1 can reach A1. Figure 3.2 shows a sample test traffic sequence generated

by BUZZ: SYNInternal
A1)B1 (i.e., TCP SYN packet from A1 to B1), SYN-ACKExternal

B1)A1 , and finally

SYNExternal
B1)A1 . Our Click-based firewall drops the last SYN from B1, which matches the policy

intent as the TCP handshake did not complete. However, according to the handwritten model,

SYNExternal
B1)A1 is marked as forwarded. Specifically, the model updates the state to ESTABLISHED

on receiving a SYN-ACK (SA in Figure 3.2) from B1, allowing SYNExternal
B1)A1 to be forwarded to

A1. This discrepancy between the model and the Click-based firewall will be flagged as a policy

violation, resulting in a false positive.

Test case (policy 2): The operator wants to test if a RST from A1 actually resets the connection

state of the firewall. However, as we see in Figure 3.2, the handwritten model only checks for

FIN packets but not RST packets to reset the connection state. Hence, the test cases generated by

the handwritten model will have discrepancies with the Click-based firewall, resulting in a false

positive (similar to policy 1).

Test case (policy 3): The operator wants to test whether the firewall correctly handles packets

with out-of-window seq and ack numbers. We observe that many firewall vendors enable this

feature by default (examples in Section 3.7.4). Unfortunately, the handwritten model is not ex-

pressive enough to encode the notion of packets with correct and incorrect seq and ack numbers.

To make matters worse, existing tools (e.g., [97, 152, 172]) assume homogeneous models

across vendor implementations for a given NF type. However, we found non-trivial differences

in implementations (Section 3.7.4). Further, NF models fed to testing and verification tools need

to be aware of the impact of specific configurations, which can easily be missed by handwritten

models. For instance, the BUZZ firewall model assumes a default drop policy from the external

interface, which is consistent with many vendors. However, while running model inference using

Alembic, we found that one specific NF (Untangle firewall) allows packets by default [34]. To

implement a default-drop policy in Untangle, we need an explicit drop-all rule, and a model for

32

Untangle needs to be customized for this configuration.

3.2 Alembic System Overview

In this section, we state our goals, identify the key challenges, describe our insights to address

these challenges, and provide an end-to-end overview of Alembic.

Preliminaries: We introduce the terminology related to NF configurations, which describe an

NF’s runtime behavior. A configuration schema contains NF rule types. Each rule

type has various configuration fields, and the data types these fields accept (e.g., “srcip” takes

an IPv4 range). Once we specify the concrete values for the fields (concrete values can be

wild-card), we obtain a concrete rule of the rule type. A concrete configuration

consists of multiple concrete rules. Figure 3.3 shows an example of a firewall (FW) and a network

address translation (NAT) configuration schema and their corresponding concrete configurations.

In the NAT Rule type, the outsrcip field denotes the possible output IP values used in address

translation.

3.2.1 Problem Formulation

Given an NF with a concrete configuration, Alembic’s goal is to automatically synthesize a high-

fidelity behavioral model of the NF in a black-box setting. Since NF implementations do not

change often, we can afford several tens of hours of offline profiling per NF. However, since

concrete configurations (e.g., a firewall rule-set) can change often, we need to generate a new

model given a new configuration quickly, within a few seconds.

Alembic takes five inputs: (1) the NF executable binary, (2) the configuration schema (Con-

figSchema), (3) the high-level rule processing semantics of parsing the configuration (e.g., first

match), (4) a list of network interfaces, and (5) the set of input packet types (e.g., TCP SYN or

ACK) the model needs to cover. For (1), we assume no visibility into the internal implemen-

tation or source code and only have access to its manual describing configuration. For (2), the

33

ProprietaryNF firewall

ConfigSchema:

Rule type 1 (Accept): xsrcip:IPv4 range, srcport:Port range, dstip:IPv4 range, dstport:Port range, action:1 y

Rule type 2 (Deny): x srcip:IPv4 range, srcport:Port range, dstip:IPv4 range, dstport:Port range, action:0 y

ConcreteConfig:alembic:

Rule 1: x srcip:10.1.1.1,srcport:*,dstip:156.4.0.1,dstport:*, action:1 y

Rule 2: x srcip:10.8.0.0/16,srcport:*,dstip:151.0.0.0/8,dstport:*,action:0y

PfSense outbound NAT

ConfigSchema:

Rule type 1: xsrcip: IPv4 range, srcport: Port range, dstip: IPv4 range, dstport: Port range, outsrcip: IPv4

range, outsrcport: Port rangey

ConcreteConfig:alembic:

Rule 1: xsrcip:10.1.0.0/16,srcport:*,dstip:156.4.0.0/16,dstport:*,outsrcip:126.2.0.0/16,outsrcport=* y

Rule 2: xsrcip:10.0.0.0/8,srcport:*,dstip:162.4.0.0/16,dstport:*,outsrcip:192.1.0.0/16,outsrcport=* y

Figure 3.3: Example of a simplified ConfigSchema and ConcreteConfig for a firewall (FW)

and a NAT

ConfigSchema is typically already available from vendor documentation. (Alembic requires a

one-time, manual effort to translate this documentation into a format compatible with our cur-

rent workflow). The ConfigSchema in Figure 3.3 assumes we are explicitly given a set of rule

types (e.g., accept or deny), where each rule type is associated with a different runtime behav-

ior. In practice, the vendor documentation may only specify a set of fields and their types. For

instance, a firewall ConfigSchema provides one rule type with an action field that takes a binary

value, in which each value leads to a rule type with different runtime behaviors. We show how

we generate a set of all rule types in such a case (Section 3.6). For (3), we assume the rule

processing semantics are available from the vendor documentation. Our design can handle any

NF that applies a single rule per packet. Our implementation currently supports first-match se-

mantics but can be easily extended to handle others (e.g., last-match). For (4), we need to know

a list of interfaces that the NF is configured with. In this work, we assume that we are given two

34

interfaces (e.g., internal and external-facing interfaces). Lastly, given packet types (5), Alembic

will automatically configure each packet type with appropriate field values.

Here, we focus on modeling TCP-relevant behavior for NFs that forward, drop, or modify

headers (e.g., firewalls, NATs, and load balancers). We provide default packet types for TCP,

but Alembic can be extended with additional packet types. We scope the types of NFs and their

actions that Alembic can handle in Section 3.2.3 and discuss how to extend Alembic to handle

more complex NFs in Section 6.3.1.

3.2.2 Key Ideas

To highlight our main insights to address challenges C1 through C4 from the preamble of this

chapter, suppose we want to model an NF with a concrete configuration C1 composed of N con-

crete rules tR1 ¨ ¨ ¨RNu. Figure 3.4 illustrates our ideas to make this modeling problem tractable.

C1
C2

C∞

…

M1

M2

…

Rule1 (R1)

Rule1 (R2)

Space of possible
configurations

…
C1 à a logical composition of
its behavior for individual rules

(a) Compositional model

M1 (A)

R1 (FW TCP Accept)
<srcip=10.1.x.x, … >

A ß10.1.1.1…

A ß10.1.255.255
Do not need to learn a model for all concrete values
Classify the logical rule type à learn a symbolic model

R2 (FW TCP Deny)
<srcip=10.1.y.y , … >

M2 (B)
B ß10.1.1.1…

B ß10.1.255.255

(b) Symbolic model (e.g., M1pAq for TCP accept)

M1,1

M1,..

srcip=10.1.1.1 à

srcip=10.1.1.255 à

…

M1

…

Model with
large relevant traffic

Ensemble of logically
independent models

Homogeneous

R1 (FW TCP Accept)
<srcip=10.1.1.0/24, … >

(c) Ensemble of independent models per rule

Figure 3.4: Alembic key insights leveraging structural properties

A) Compositional model (Figure 3.4a): The concrete configuration C1 can be logically de-

35

composed into individual rules. As seen in Figure 3.4a, suppose we have models M1 for R1 and

M2 for R2. Then, we can create a compositional model for the NF given the processing seman-

tics defined by the ConfigSchema (e.g., first-match). If the packet matches Rule1, then apply

Model1, else if it matches Rule2, then apply Model2. Otherwise, apply Modeldefault .

B) Symbolic model (Figure 3.4b): To start, we make two simplifying assumptions, which we

relax below: (1) the IP and port fields in a concrete rule take a single value from a range (e.g.,

10.1.1.1 for srcip); and (2) the NF keeps per-connection state. Suppose the srcip field in R1

(Figure 3.4b) takes a single IP from 10.1.0.0/16. It is infeasible to exhaustively infer the model

for all possible values. Fortunately, we observe that the logical behavior of the NF for a particular

rule type (e.g., firewall accept rule) is homogeneous across different values for the IPs and ports

in this range. Thus, we can efficiently generate a model by representing each IP and port field in

a rule with a symbolic value. Hence, for each logical rule type (e.g., firewall accept rule), we can

learn a symbolic model (e.g., M1pAq).

C) Ensemble representation (Figure 3.4c): We relax the assumption that IPs and ports take

single values and discuss how we handle ranges within a rule (i.e., R1 in Figure 3.4b takes a /16

prefix for a srcip). We observe that NF behavior is logically independent for subsets of this large

traffic space. Consider a stateful firewall that keeps per-connection state. Rather than viewing

M1 as a monolithic model that captures the behavior of all relevant connections, we can view

the model as a collection of independent models, one per connection (i.e., M1,1 for connection

1, M1,2 for connection 2, etc.). Combining this idea with B above, we learn a symbolic model

for each rule type and logically clone the model to represent IP and port ranges (henceforth, an

ensemble of models). However, to leverage this idea, we need to infer the granularity at which an

NF keeps independent states (e.g., per-connection or per-source). We show in Section 3.4 how

to automatically infer this.

D) FSM inference: The remaining question is how to represent and infer a symbolic model.

Following prior work in stateful network analysis, we adopt the FSM as a natural abstraction [97,

36

Algorithm 1: NF operational model for processing incoming packets

1 Function NF(p, Config c, ProcessingSemantic ps, Map[rule, Map[key, state]] stateMap):

2 poutList = []

3 rule = FINDRULETOAPPLY(p, c, ps); if rule is None then

4 rule = GETDEFAULTRULE()

5 keyType = GETKEYTYPE(rule)

6 key = EXTRACTHEADER(keyType, p) v

7 FSM = GETMODEL(key, rule) curState = GETSTATE(stateMap, rule, key)

8 poutList, nextState = TRANSITION(FSM, p, curState)

9 UPDATESTATE(stateMap, rule, key, nextState)

10 return poutList

152]. To this end, we develop a workflow that leverages L* for FSM inference [62]. At a high-

level, given a set of relevant inputs, L* adaptively constructs sequences, probes the blackbox, and

infers the FSM. However, directly applying L* for an NF entails significant challenges: First, L*

requires the set of inputs a priori. Hence, we need to generate inputs from a large input space, and

create suitable mappings between inputs that L* takes and real packets for the NF. Second, L* is

not suitable for learning a FSM for a header-modifying NF because it assumes: (1) we know the

input alphabet a priori, and (2) the underlying system is deterministic. As an example violation of

(2), a NAT may nondeterministically choose the outgoing ports. We leverage a domain-specific

idea to extend L* for such cases (Section 3.5).

3.2.3 Operational Model and Limitations

Having described our key insights, we scope the types of NFs for which Alembic is applicable.

We use an abstract NF (Algo. 1) to describe how incoming packets are processed (a more detailed

description can be found in Section 3.6.2.2). Our goal is to handle NFs with logic stated in

Algo. 1.

37

Lin
NF

L interface
Lout

Rin

Rout R interface
legend

Located
packet

Figure 3.5: An NF with located packets

NF operational model: We start by describing the inputs and outputs of the abstract NF. The

NF receives or transmits a located packet [126] (i.e., a packet associated with an interface).

Figure 3.5 shows a setup for an NF with 4 located packets. The NF is configured with two

interfaces, L (e.g., internal) and R (e.g., external). As an example, Lin is a packet entering the

NF via L, and Lout is an outgoing packet from the NF via L.

The abstract NF is configured with a concrete configuration, composed of a set of rules. Each

rule maintains a mapping between keys and concrete FSMs. For instance, if the NF uses a per-

connection key, then it will keep a concrete FSM for each unique 5-tuple. The concrete FSMs

describe the appropriate action (i.e., Lout or Rout) for an incoming located packet (i.e., Lin or

Rin). As shown in Algo. 1, when a located packet arrives, the NF searches the configuration for

the correct rule to apply based on the processing semantics. If no rule is found, the NF uses the

default (i.e., empty) rule. Then, it uses the relevant packet headers determined by the rule’s key

to find the concrete FSM and current state associated with that key. Finally, the NF processes

the packet according to the FSM and updates the current state (Lines 8 and 9). Alembic aims to

synthesize models for NFs following Algo. 1.

Assumptions on configurations: We make the following assumptions about NF configurations:

• Rules in a concrete configuration are independent. For instance, we do not consider NFs that

share the same state across different rules. At most one rule in a configuration can be applied

to an incoming packet.

• Within a concrete rule, the states across different keys (i.e., state granularity tracked by an NF)

are independent. For a per-connection firewall with a rule that takes IP and port ranges, states

38

across connections are independent.

• When IPs and ports in a concrete rule take ranges (e.g., ports=*), NFs treat each value in

the range homogeneously such that we can pick a representative sample and learn a symbolic

model (i.e., the symbolic model obtained using port 80 or port 5000 for an outsrcip is identical).

Assumptions on NF actions: We now scope the NF actions that Alembic can handle:

• For simplicity, we only consider single-function NFs, excluding cases such as combined NFs

processing firewall rules and then NAT rules.

• To make learning tractable, we only look at IP and port modifications. Our implementation

does not consider seq/ack numbers, ToS, or other fields (Section 3.3.3). We only handle header

modifications for connection-oriented NFs (Section 3.5). (Most header modifying NFs we

are aware of are connection-oriented.) We tackle header modification for an NF that initially

modifies IP/port of a packet, p1, entering from a particular interface before modifying a packet,

p2 (that belongs to the same connection as p1) entering from the other interface. Lastly, we

cannot infer context-sensitive relations such as how the modified IP or port (e.g., NAT ports)

is chosen.

• We do not explicitly model temporal effects, such as connection timeouts. When we inject

input packets into the NF, we collect outputs for ∆wait (e.g., 100 ms) before injecting the next

input packet. Alembic cannot handle cases where output packets are results of prior input

packets (e.g., retries after 1 second).

• We support five types of state granularity: per-connection, per-source (e.g., a scan detec-

tor which counts a number of SYN packets), per-destination (e.g., DDoS detector), cross-

connection, and stateless.

3.2.4 Alembic Workflow

Having described our key insights and scope, we now present our workflow (Figure 3.6) consist-

ing of two stages:

39

NF binary

ConfigGen($3.6.1)

SymbolicRuleij

Library of
symbolic models

SymbolicRule ij :
(KeyijàSymbolicModelij)

FSM Inference
using Extended L*

($3.3)

KeyLearning
($3.4)

For each RuleTypei:

PktTypeProtoConfigSchema
Operator

Offline

Rule 1
Rule 2

… Concrete Model
for a Concrete Config

Library of
symbolic models

(from offline) MatchClone(Rule1)

MatchClone(Rule2)
…

Ensemble

Ensemble

If packet p match Rule1:

Else if packet k match Rule2:

Concrete Config

Online ($3.6.2)

Figure 3.6: Alembic Workflow

Offline stage: From the ConfigSchema, we generate a set of rule types (Section 3.6). Given

each rule type, the ConfigGen module generates a SymbolicRule, Rsymb, and a corresponding

ConcreteRule. For instance, given a firewall ConfigSchema, it generates two SymbolicRules and

ConcreteRules (e.g., firewall accept and deny rule as shown in Figure 3.7).

For each SymbolicRule, we use the FSMInference module, which leverages L*-based work-

flow to infer a symbolic model where IPs and ports are symbolic (Section 3.3) and handles header

modifications (Section 3.5). This module uses our version of L* (i.e., Extended L*). We also

design the KeyLearning module, which leverages the FSMInference module and infers the state

granularity (i.e., key type) tracked by the NF (e.g., per-connection). Using the key type, we can

identify the key, a set of header field values that identifies logically independent states (e.g., a

5-tuple for per-connection NF). The offline stage produces a set of symbolic models, mapping

each SymbolicRule to a symbolic model and its key type.

40

Firewall TCP Accept Rule

Rsymb
1 : xsrc:A,srcport:Ap1,dst:B,dstport:Bp1, action:1y

Rconc
1 : xsrc:10.1.1.1,srcport:2000,dst:156.4.0.1,dstport:5000,action:1y

Firewall TCP Deny Rule

Rsymb
2 : xsrc:A,srcport:Ap1,dst:B,dstport:Bp1, action:0y

Rconc
2 : xsrc:10.1.1.1,srcport:2000,dst:156.4.0.1,dstport:5000,action:0y

Figure 3.7: SymbolicRules and ConcreteRules for a Firewall

Online stage: Given a new configuration, each rule is matched to a corresponding Symboli-

cRule, mapped to a key type and a symbolic model. Based on the key type, we logically clone

the symbolic model to represent concrete IP and port ranges (collectively, an ensemble of FSMs).

Given the processing semantics, we logically compose each ensemble to create the final model

for this configuration. Network management tools can then use the resulting model.

Roadmap: In the interest of clarity, Section 3.3 describes the FSMInference module of Alembic

for a given SymbolicRule with the following simplifying assumptions: NFs keep per-connection

state and do not modify headers. In subsequent sections, we relax these assumptions and show

how we infer the state granularity (Section 3.4) and handle header-modifying NFs (Section 3.5).

Section 3.6 discusses how we generate a set of rule types and the corresponding SymbolicRule

and the Alembic online stage.

3.3 Extended L* for FSM Inference

We now present the FSMInference module, which leverages the Extended L* for inferring a

symbolic model given a SymbolicRule, Rsymb (e.g., in Figure 3.7). Recall that we are also

given a corresponding ConcreteRule, Rconc, to configure the NF. For clarity, we start with two

simplifying assumptions: (1) NFs keep per-connection state, and (2) NFs do not modify packet

headers. We relax these assumptions in Section 3.4 and Section 3.5.

41

Initialize Equivalence
Oracle

Generate query
+Probe Blackbox Update Complete?

Yes
No

Done

If counterexample
Refinement Stage

Itr Hypothesis Refinement (queries) Eq. Oracle

1
0

a/1,b/0

0 1
a/1

b/0

a/0,b/1 aa ! 10
ab ! 11
ba ! 00
bb ! 01

input, i=abbb
M(i) ! 1111
BB(i) ! 1110

2
0 1 2

a/1

b/0 b/1

a/0
Blackbox under learning

0 1 2 3
a/1

b/0 b/1 b/1

a/0 a/0 ⇤/0 aba ! 110
abb ! 111

. . .
abba ! 1110

Terminate

Figure 6: Iterations of Angluin

of the SUL (NF) and the length of the counterexamples.

Practical challenges with NFs: While AngluinAlgo is
a useful starting points, we cannot directly use it in Alem-
bic for the following reasons:
1. Generating input alphabets: AngluinAlgo assumes

input alphabets are given. However, this is a challenge
because of the large size of the traffic space.

2. NF behavior (e.g., non-determinism): NFs perform di-
verse actions such as dynamically modifying packet
headers (as shown in (2)). This is a domain-specific
challenge as Angluin’s Algorithm requires all input
symbols to be known a priori. Furthermore, NFs
are non-deterministic meaning the same input can be
mapped to different outputs where AngluinAlgo can-
not handle.

3. Network I/O: We need the ability to inject concrete
traffic into the NF and monitor the NFs’ actions on
these injected traffic traces ((4) in Figure). Classifying
actions is crucial to distinguish different states.

4.2 Extending AngluinAlgo for Alembic
We now describe how we design ExtendedAngluin that
builds on AngluinAlgo to generate a symbolic-state rep-
resentation of an NF given a SymbolicAtomicConfig.

4.2.1 InputGen: Generating input alphabets

AngluinAlgo assumes that input alphabets are given a
priori. A naive solution would be either exhaustive
searching which is clearly infeasible. Alternatively, we
can use randomly generated packets, but the chance of
these exercising the NF state space is small. We discuss
our domain-specific heuristics to achieve both coverage
and efficiency.

Instead of generating raw packets, we define the input
space in terms of abstract traffic units we refer to as ATUs
(Alembic traffic units) to serve as input alphabets. To en-
able generalizing to arbitrary configs, ATU are symbolic
representation mapped to concrete traffic traces.

Now, a relevant question is how we find relevant fields
from packe headers and map values. To do so, we ob-

serve that fields that may affect the states are either in or
be derived from the Cdir. As defined by Cgrammar, if the
packet fields are defined in the Cdir then we deem they
are relevant. Also, for other unspecified fields, we fol-
low the protocol model. For some packet fields such as
TOS/TTL unless specified in Cdir, we use the “default"
values. For the dynamically changing packet fields such
as Checksum, we follow the protocol specification to re-
compute them. Now the question is how to generate dif-
ferent connections. To achieve generality, Alembic gen-
erates all possible flows (using the configured IPs in Cdir)
on all interfaces. Then, we use NF ACL to prune irrele-
vant connection objects.

4.2.2 Handling NF-specific behavior

Handling dynamic header modifications: An-
gluinAlgo requires all input symbols (ATU) to be known
a priori. However, NFs may modify various fields in the
packet headers. For instance, a NAT translates the IP and
port of internal hosts’ traffic to an external IP/port. Sup-
pose a NAT gateway is using a hash function to map each
IP-port pair to an external one. Hence, It is unrealistic for
us to know, a priori, the output of this hash function for
every internal IP-port pair. Our idea is to observe if new
alphabets have appeared as part of actions and use new
symbols to generate additional symbols for another run
of ExtendedAngluin. This process repeats until we con-
verge and no more new symbols are seen.

Handling non-determinism: The previous approach
only works if the mapping is determistic. However, NFs
exhibit non-determistic behavior such as NAT re-writing
packet header fields such that the same internal IP can be
re-mapped to different public ports (IP A gets mapped
to port 80. After reset, it maps to 90). Formally, at
any given time or iteration t, f (s, i, t) ! {null,ot} where
ot 6= i,ot 6= ot�1. If we use the same technique for han-
dling dynamic modification, we will never reach a con-
vergence because new port will always be generated.
Another solution is to use algorithm for learning NFA.
However, the number of non-determistic paths can be

6

Itr Hypothesis Refinement (queries) Eq. Oracle

1
0

a/1,b/0

0 1
a/1

b/0

a/0,b/1 aa ! 10
ab ! 11
ba ! 00
bb ! 01

input, i=abbb
M(i) ! 1111
BB(i) ! 1110

2
0 1 2

a/1

b/0 b/1

a/0
Blackbox under learning

0 1 2 3
a/1

b/0 b/1 b/1

a/0 a/0 ⇤/0 aba ! 110
abb ! 111

. . .
abba ! 1110

Terminate

Figure 6: Iterations of Angluin

of the SUL (NF) and the length of the counterexamples.

Practical challenges with NFs: While AngluinAlgo is
a useful starting points, we cannot directly use it in Alem-
bic for the following reasons:
1. Generating input alphabets: AngluinAlgo assumes

input alphabets are given. However, this is a challenge
because of the large size of the traffic space.

2. NF behavior (e.g., non-determinism): NFs perform di-
verse actions such as dynamically modifying packet
headers (as shown in (2)). This is a domain-specific
challenge as Angluin’s Algorithm requires all input
symbols to be known a priori. Furthermore, NFs
are non-deterministic meaning the same input can be
mapped to different outputs where AngluinAlgo can-
not handle.

3. Network I/O: We need the ability to inject concrete
traffic into the NF and monitor the NFs’ actions on
these injected traffic traces ((4) in Figure). Classifying
actions is crucial to distinguish different states.

4.2 Extending AngluinAlgo for Alembic
We now describe how we design ExtendedAngluin that
builds on AngluinAlgo to generate a symbolic-state rep-
resentation of an NF given a SymbolicAtomicConfig.

4.2.1 InputGen: Generating input alphabets

AngluinAlgo assumes that input alphabets are given a
priori. A naive solution would be either exhaustive
searching which is clearly infeasible. Alternatively, we
can use randomly generated packets, but the chance of
these exercising the NF state space is small. We discuss
our domain-specific heuristics to achieve both coverage
and efficiency.

Instead of generating raw packets, we define the input
space in terms of abstract traffic units we refer to as ATUs
(Alembic traffic units) to serve as input alphabets. To en-
able generalizing to arbitrary configs, ATU are symbolic
representation mapped to concrete traffic traces.

Now, a relevant question is how we find relevant fields
from packe headers and map values. To do so, we ob-

serve that fields that may affect the states are either in or
be derived from the Cdir. As defined by Cgrammar, if the
packet fields are defined in the Cdir then we deem they
are relevant. Also, for other unspecified fields, we fol-
low the protocol model. For some packet fields such as
TOS/TTL unless specified in Cdir, we use the “default"
values. For the dynamically changing packet fields such
as Checksum, we follow the protocol specification to re-
compute them. Now the question is how to generate dif-
ferent connections. To achieve generality, Alembic gen-
erates all possible flows (using the configured IPs in Cdir)
on all interfaces. Then, we use NF ACL to prune irrele-
vant connection objects.

4.2.2 Handling NF-specific behavior

Handling dynamic header modifications: An-
gluinAlgo requires all input symbols (ATU) to be known
a priori. However, NFs may modify various fields in the
packet headers. For instance, a NAT translates the IP and
port of internal hosts’ traffic to an external IP/port. Sup-
pose a NAT gateway is using a hash function to map each
IP-port pair to an external one. Hence, It is unrealistic for
us to know, a priori, the output of this hash function for
every internal IP-port pair. Our idea is to observe if new
alphabets have appeared as part of actions and use new
symbols to generate additional symbols for another run
of ExtendedAngluin. This process repeats until we con-
verge and no more new symbols are seen.

Handling non-determinism: The previous approach
only works if the mapping is determistic. However, NFs
exhibit non-determistic behavior such as NAT re-writing
packet header fields such that the same internal IP can be
re-mapped to different public ports (IP A gets mapped
to port 80. After reset, it maps to 90). Formally, at
any given time or iteration t, f (s, i, t) ! {null,ot} where
ot 6= i,ot 6= ot�1. If we use the same technique for han-
dling dynamic modification, we will never reach a con-
vergence because new port will always be generated.
Another solution is to use algorithm for learning NFA.
However, the number of non-determistic paths can be

6

HypothesisItr
Equivalence Oracle
(counter-example)

Alphabet, w = {a,b}*

Itr Hypothesis Refinement (queries) Eq. Oracle

1
0

a/1, b/0 aa ! 10
ab ! 11
ba ! 00
bb ! 01

0 1
a/1
b/0

a/0, b/1
input, i=abbb
M(i) ! 1111

Blackbox(i) ! 1110

2
0 1 2

a/1
b/0 b/1

a/0 aba ! 110
abb ! 111

. . .

abba ! 1110 0 1 2 3
a/1
b/0 b/1 b/1

a/0 a/0 ⇤/0
No counterexample

Terminate

Figure 9: Iterations of Angluin

copies it for each connection. The copies are created reactively as
the model encounters new, active connections.

5.1 Key Learning

Figure 10: key learning module i/o

Ideally, we would like to remove the assumption that the NF is
keeping state based on the fields {srcip,srcport,dstip,dstport} (i.e.,
keeping connection-based state). For instance, an IDS may keep
per-source state, such as in tracking and limiting the number of
outgoing connections from a single host. We now discuss how we
learn the granularity at which this state is maintained (i.e., learn the
key) assuming NF is deterministic but not necessarily connection-
oriented.

We first describe input/output model of key learning. Key learn-
ingtakes as input a AtomicSymbolicConfig and a ConfigSchema.
Both are used to identify packet header fields with IP and port types
that can also take ranges. It also requires access to the ModelInfer-
ence module (as described in §4) and the blackbox NF. The output
of key learning is a set of configuration fields that influence the
state. For instance, the output for an IDS that keeps per-source state
would be {srcip, srcport}. Note that the key is only relevant for a
particular AtomicSymbolicConfig. Thus, for a particular NF, the key
learningalgorithm needs to be run for every AtomicSymbolicConfig.

This is a large cost only needs to be incurred once, however, as the
results can be stored.

[SM: in key learning, we also re-run the inputgen to generate inputs.. shud i say

that?]

Figure 11: Intuition on Keylearning

Types of key: We conduct a survey on canonical NF configurations
(e.g., [1–3]). We find that NF configured with a concrete configu-
ration can be classified into the following classes based the type
of state they keep: (1) per-connection; (2) per-source (i.e., scan de-
tector which counts the number of packets from each source); (3)
per-destination; (4) cross-connection (e.g., caching proxy that sends
request based on the content), and (5) stateless. We describe our
key learning algorithm that determines the category that NF with a
concrete configuration belongs amongst the five categories.

Intuition: We start by illustrating the high-level intuition behind
our approach. First, consider a connection-oriented firewall with

9

Flowchart

Detailed Steps
Refinement Stage

Target FSM

M1
Input seq, i=abbb

M1(i) à 1111
Blackbox(i) à 1110

M2

Figure 3.8: L* overview and example

3.3.1 Background on L* Algorithm

Before discussing the challenges of directly applying L*, we provide a high-level description of

the L* algorithm [62], which infers a FSM for a given black-box. Given the input alphabet, Σ

(e.g., ta, bu where a, b are input symbols), L* generates sequences (e.g., a, aa, aba), and probes

the black-box, resetting the box between sequences. For each input sequence, L* builds a hy-

pothesis FSM consistent with the input-output pairs seen so far. Specifically, it builds a Mealy

machine whose outputs are a function of its current state and inputs. As shown in Figure 3.8, L*

iteratively refines the hypothesis FSM until it is complete (i.e., the set of probing sequences cover

the state space of this hypothesis). After the hypothesis converges, L* queries an Equivalence

Oracle (EO), which checks if the inferred FSM is identical to the black-box and provides a coun-

terexample if they are not. If the EO reports that the hypothesis is identical to the black-box, the

algorithm terminates. Otherwise, L* uses the counterexample to further refine the hypothesis.

The process repeats until the EO reports no counterexamples. L*’s runtime complexity is poly-

42

nomial in the number of states and transitions of a minimal FSM representing the target FSM as

well as the length of the longest counterexample used to refine the hypothesis [62].

Example: Figure 3.8 illustrates an example of the steps in L* for the target FSM shown with

Σ “ ta, bu. Initially, L* starts with the inputs, a and b, and a single-state FSM. It generates four

sequences to refine the model and converges to M1 as shown. It then queries the EO and finds

a counterexample where Blackbox(abbb)=1110 but M1pabbbq=1111, which is used to update the

model. To explore the state space of the new hypothesis, L* generates longer sequences. After

this second iteration, the EO finds no counterexamples (as M2 is identical to the blackbox), and

the algorithm terminates.

3.3.2 Challenges in using L* for Black-box NFs

While L* is a natural starting point, there are practical challenges in applying it directly to NFs.

We will describe these challenges using Figure 3.9 and discuss our solutions.

1) Generating input alphabet (Section 3.3.3): L* assumes the input alphabet (Σ) is known.

As discussed in Section 3.2, we can set Σ for Alembic to be a set of located symbolic packets,

which are packets with symbolic IPs and ports associated to interfaces. From now on, when we

say packets, we refer to located packets. The main disconnect here is that the NF (i.e., the black-

box in the L* workflow) takes in concrete packets and not symbolic packets. Thus, we need to

map a symbolic packet to a concrete packet. Two challenges exist here: First, the possible header

space for concrete packets is large (i.e., all IPs and ports), and second, the concrete packets need

to exercise the internal states of the NF (e.g., trigger the NF behavior).

2) Classifying output packets (Section 3.3.4): Next, for each symbolic packet suggested by

L*, we need to map it to an NF action. The practical challenge is that NFs may require an

unpredictable delay. If we assume a processing delay that is too short and classify the action as a

drop, we might learn a spurious model. While a delay that is too long will lead to our inferences

taking a long time. Thus, we need a robust way to map an input to the observed output.

43

Input Alphabet
L* Algo

Equivalence
Oracle

NF
(Concrete Rule)

$3.3.3
Generating
input alphabet

Symbolic pkt

{Symbolic pkt}

concrete pkt concrete pkt

Symbolic pkt $3.3.4 Classifying
output packets

$3.3.5

Figure 3.9: Key challenges in adopting the L* workflow for NF model inference

3) Building an equivalence oracle (Section 3.3.5): L* assumes access to an EO (Figure 3.9).

In cases where we do not have access to the ground truth, we can only approximate the or-

acle via input-output observations. There are two practical issues. First, existing approaches

(e.g., [81, 105]) to building an EO generate a large number of equivalence queries, creating a

scalability bottleneck. Second, different approaches for building an EO may affect the sound-

ness of Alembic (Section 3.3.5).

3.3.3 Generating Input Alphabet

We now describe how we generate a set of located symbolic packets for the input alphabet and

how we map each located symbolic packet to a concrete packet. As discussed in Section 3.2, we

are given the representative packet types of interest PktTypeProto (e.g., TCP handshake) as an

input.

To illustrate these challenges, consider two straw-man solutions that generate packets for:

(1) every possible combinations of header fields, and (2) randomly generated header fields. (1)

is prohibitively expensive, and (2) may not exercise the relevant stateful behaviors. Our idea

is to use the symbolic and concrete rules to identify relevant header fields and their values.

Specifically, we observe that the header fields and their values (e.g., IP-port) in Rconc will trigger

relevant NF behaviors. Thus, we generate all combinations of these relevant IP-port pairs using

44

their concrete values from Rconc. Using a pair of Rsymb
1 and Rconc

1 as an example (Figure 3.7),

we identify A=10.1.1.1 as a possible candidate for both source and destination IPs across all

interfaces (i.e., A can be a source or destination IP on packets entering from internal or external

interfaces). We consider all interfaces, as a packet entering different interfaces can be treated

differently.

We also consider the scenario where the packet does not match any rules. One approach is to

pick concrete header values that do not appear in the concrete rule and generate a corresponding

symbolic packet (e.g., not A=12.1.0.1). However, this would double the size of Σ. Instead, we

leverage our insight regarding the compositional behavior of NFs and view this as composing

the action with the default behavior of the NF when no concrete rule is installed. We separately

infer a model, Mdefault, with an empty configuration (e.g., a firewall without any rules). (We

acknowledge an assumption that rule matching is correctly implemented by the NF. If the NF

has a rule for src=A and dst=B but a buggy implementation that matches A’ and B’, we will not

uncover this behavior.)

Example: From Rsymb, we mark A:Ap1 and B:Bp1 as possible IP:port pairs, where A:Ap1 and

B:Bp1 refer to srcip:srcport and dstip:dstport pairs from Rsymb. Then, we generate all possible

combinations across source and destination IP/ports and network interfaces: (1) TCPInternal
A:Ap1)B:Bp1

(corresponding to a TCP packet with srcip:port=A1:Ap1 and dstip:port=B1:Bp1 on the internal

interface), (2) TCPExternal
A:Ap1)B:Bp1, (3) TCPInternal

B:Bp1)A:Ap1, . . ., etc. Suppose the packet types of interest

are: tSYN, SYN-ACK,ACKu. Then, for (1), we obtain SYNInternal
A:Ap1)B:Bp1, SYN-ACKInternal

A:Ap1)B:Bp1,

¨ ¨ ¨ . We follow the similar procedure for (2) and (3). Essentially, SYNInternal
A:Ap1)B:Bp1 is a sym-

bolic packet which maps to a concrete SYN packet with A=10.1.1.1 and Ap1=2000 that is in-

jected from the internal interface. Alembic internally tracks the symbolic-to-concrete map (i.e.,

A=10.1.1.1) to connect the symbolic packet used by L* to the concrete packets into the NF.

Finally, we (optionally) prune out packets that are infeasible given the known reachability prop-

erties of the network. For instance, it is infeasible for a packet with srcip=10.1.1.1 to enter from

45

the external interface.

3.3.4 Classifying Output Packets

To classify the output from the NF, we monitor for output packets at all interfaces of the NF

and map them to their symbolic representations. For instance, after detecting a SYN on the ex-

ternal interface with source IP:port, 10.1.1.1:2000, and destination IP:port, 156.4.0.1:5000, we

assign the output symbols as SYNExternal
A:Ap1)B:Bp1. Specifically, Alembic monitors all interfaces for

∆wait and reports the set of observed packets (e.g., Lout and Rin). ∆wait is critical for classify-

ing dropped packets and we cannot have an arbitrarily assigned values. Unfortunately, an NF

sometimes introduces unexpectedly long delays in packets (ě 200ms). For instance, Untangle

performs connection setup steps with variable latency upon receiving SYN packets, and Propri-

etaryNF experiences periodic spikes in CPU usage leading to delayed packets. Such delays can

result in misclassifying a packet as a drop and affect the learning process. For these NFs, ∆wait is

determined by injecting the TCP packets and measuring the maximum observed delay. Further,

we extended L* with an option to probe the same sequence multiple times and pick the action

that occurs in the majority of test sequences.

3.3.5 Building an Equivalence Oracle

Building an efficient oracle is difficult with just black-box access [81, 105]. Any EO will be

incomplete as it cannot generate all sequences. Our goal is to achieve soundness with respect to

the generated Σ without sacrificing scalability.

We tested three standard approaches for generating EOs that LearnLib [162], an open-source

tool for FSM learning, supports: (1) Complete Oracle (CO), which exhaustively searches se-

quences to a specified length; (2) Random Oracle (RO), which randomly generates sequences;

and (3) Partial W-method (Wp-method) [105], which takes d as an input parameter which is an

upper bound on the number of additional states from its current estimate at each iteration. (In

46

practice, the number of states can grow by ą d at each iteration.) We discarded the CO as it

simply performs an exhaustive search and the RO as it is not systematic in exploring the state

space. Instead, we use the Wp-method, a variant of the W-method [81] that uses fewer test

sequences without sacrificing W-method’s coverage guarantees. Briefly, the W-method uses a

characterization set, the W-set, which is a set of sequences that distinguish every pair of states in

the hypothesis FSM. The W-method searches for new states that are within d additional inputs

of the current hypothesis and uses the W-set to confirm the new states. In theory, one can set d to

be large but increases the runtime by a factor of |Σ|d. For this reason, we set d “ 1 in Alembic.

Alembic can only discover additional NF states that are discoverable by the Wp-method with

d “ 1; i.e., Alembic with Wp-method (d “ 1) is sound. Even with d “ 1, Alembic synthesizes

models that are more expressive than many handwritten models and discovers implementation-

specific differences (Section 3.7).

Distributed learning: Both L* and Wp-method for d “ 1 are polynomial in runtime. How-

ever, the Wp-method is the bottleneck as the number of sequences generated by Wp-method is

approximately |Σ| factor higher than that of the L*. Fortunately, the equivalence queries can be

parallelized. In our system implementation (Section 3.7), we run equivalence queries in parallel

across multiple workers until we find a counterexample. Using this technique, we can signifi-

cantly reduce the time for learning a complex behavioral models (Section 3.7.3).

3.4 KeyLearning: Learning State Granularity

Thus far, we assumed that the NF maintains per-connection state. We now relax this assumption

and show how we tackle NFs that maintains other key types (e.g., per-source). Specifically, we

implement a KeyLearning module. Given a SymbolicRule, the module outputs the key type, a

set of header fields that identify a relevant model in an ensemble representation. Note that here

we still assume that the NF does not modify packet headers, which we will relax next in Section

47

3.5. We start with discussing the high-level intuition and workflow of a KeyLearning (Section

3.4.1) module and formally prove the correctness of this approach (Section 3.4.2).

3.4.1 Intuition and Workflow

Consider a firewall configured with a rule that keeps per-connection state. A packet from one

connection only affects its own FSM and is unaffected by packets that belong to other connec-

tions. Now, consider an NF which keeps per-source state, and packets, p1 and p2, with the same

srcip, but with different dstip. The arrival of p1 affects not only the state for processing p1, but

also the state associated with p2 because they share the same srcip. The KeyLearning algorithm

builds on the above intuition; if two connections are independent with respect to an NF’s pro-

cessing logic, then the packet corresponding to one connection only affects the state of its FSM.

Thus, to infer the key type, we construct test cases using multiple connections to validate the in-

dependence assumptions across these connections. We show how we can validate independence

by inspecting two connections using carefully constructed source and destination values.

The KeyLearning algorithm is composed of test cases to distinguish between different key

types. As a concrete example of a test case, suppose we have a SymbolicRule, which takes

xsrcip=A, dstip=By where A and B are ranges of IPs (e.g., A=10.1.0.0/16 and B=156.4.0.0/16).

First, we infer two models with two separate ConcreteRules, where we configure each IP using

a concrete singleton (e.g., Rconc
1 , with xsrcip=10.1.1.1, dstip=156.4.0.1y to learn Model1 , and

Rconc
2 with xsrcip=10.1.1.1, dstip=156.4.0.2y to learn Model2). Note that these two have the

same srcip. We leverage the FSMInference module in Section 3.3. We first generate Σ1 for

Rconc
1 and use the FSMInference in Section 3.3 to obtain Model1 , and then repeat for Model2 .

Assuming these models are independent, we run a logical FSM composition operation to con-

struct Model composite (Def.7 in Section 3.4.2). This is what the hypothetical model will be if these

two connections are independent. As a second step, we now learn a joint model Model joint , where

we combine input alphabets from both connections. Specifically, we configure a ConcreteRule,

48

where the dstip takes a range of IPs (e.g., 156.4.0.1-156.4.0.2).

For example, consider a scan detector, that keeps per-source state. As the above two connec-

tions have the same srcip, Model joint will reflect that the packets affect each other’s state (i.e.,

Model joint is not equivalent to Model composite , which assumes independence across two connec-

tions). But, for a per-connection model, the two connections are independent (i.e., Model joint

would be equivalent to Model composite). Thus, we now have a simple logical test to distinguish

between per-connection and per-source.

Test1:
Cross-Conn Test

Key=
Cross-Conn

Test2:
Per-Src Test

Test3:
Per-Dst Test

Key=
Per-src

Key=
Per-dst

Key=
Per-Conn

No No No

YesYesYes

Start

Stateless Per-conn Per-src Per-dst Cross-conn
Test 1

(diff src, diff dst)
N N N N Y

Test 2
(same src, diff dst)

N N Y N Y

Test 3
(diff src, same dst)

N N N Y Y

Decision Tree

Test Cases (diff means different)

Figure 3.10: KeyLearning Decision Tree

Inference Algorithm: Our inference algorithm generalizes the basic test described above. By

crafting different ConcreteRules (i.e., changing the overlap on srcip or dstip) and running the

equivalence tests between Model composite and Model joint for each case, we create a decision tree

to identify the key type maintained by the NF, which are: (1) per-connection, (2) per-source (e.g.,

a scan detector), (3) per-destination, (4) cross-connection, or (5) stateless. Note that the key for

a stateless NF is a 5-tuple. We can view a stateless NF as an FSM with a single state, which is

identical to each 5-tuple keeping one state.

49

Figure 3.10 shows the result of test cases for these key types. For instance, Test 1 config-

ures two connections to have different sources and destinations, to check whether the NF keeps

cross-connection state. Test 2 configures two connections to have the same sources, but with

different destinations. If Test 2 outputs that two connections affect the states relevant for each

other, then the NF is maintaining either a cross-connection or per-source state. The decision

tree (Figure 3.10) uniquely distinguishes the key and the correctness naturally follows from our

carefully constructed test cases.

3.4.2 Correctness Proof

We formalize the definition of the granularities of states maintained by NFs (i.e., keys) and prove

the correctness of our KeyLearning algorithm.

Recall that each NF SymbolicRule (1 rule) consists of multiple configuration fields (e.g., a

firewall needs to be configured to allow packets from a subnet X to Y). To simplify the presen-

tation, let us consider a rule r in an NF that takes two configuration fields, namely source and

destination, and thus also omit configuration fields that do not affect the key (e.g., an action and a

load-balancing algorithm that do not affect the key). We use NF xX,Y yr to refer to an NF instance

only with the targeted rule r that is configured with source X and destination Y. Given such an

NF instance, we use L* to learn a model from it. Particularly, let LΓpNF
xX,Y y
r q refer to the FSM

learned by L* for the NF instanceNF xX,Y yr using packets only from the set Γ Ă XˆY YY ˆX .

We assume that the FSM learned by L* is correct with respect to the NF instance. That is, given

any sequence of packets with source a and destination b, running LΓpNF
xX,Y y
r q on it obtains the

same output sequence as running NF xX,Y yr on it, provided that pa, bq P XˆY or pa, bq P Y ˆX .

Definition of keys: To prove the correctness of our KeyLearning algorithm, we first formalize

the definition of NF keys. Table 3.1 summarizes the notations we use. Using this notation, the

definition of keys is given as follows.

Definition 1 (Cross-connection NF). A rule r in an NF keeps cross-connection state iff for all

50

Term Definition

Σ

ΣpX,Y q

the set of packets (symbol for FSMInference)

the set of packets with source (destination, resp.) IP from X (Y , resp.)

σ|pa,bq

Given σ and a source-destination pair) pa, bq, σ|pa,bq is the sequence of packets

obtained from σ by removing all packets that are not with source a and

destination b.

σ|pa,bq,pb,aq
Similar to above, but also keeps packets

with source b and destination a.

σ ``pa, bq The sequence obtained by appending pa, bq to the sequence σ

NF
xX,Y y
r pσq the output of the last packet given σ to the NF configured with xX,Y yr

Table 3.1: Notations for the KeyLearning correctness proof

NF instances NF xX,Y yr , all pairs of connections pa, bq and pc, dq such that a, c P X , b, d P Y ,

and pa, bq ­“ pc, dq, there exists a sequence σ P Σpa,bq, such that NF xX,Y yr pσ ` `pc, dqq ­“

NF
xX,Y y
r ppc, dqq.

Definition 2 (Per-source NF). A rule r in an NF keeps per-source state if all its instanceNF xX,Y yr

satisfies the three conditions:

1. @ a P X and b P Y , there exits a σ over Σptau,Y q, such that NF xX,Y yr pσ ``pa, bqq ­“

NF
xX,Y y
r ppa, bqq.

2. @ a P X , b P Y , and σ1, σ2 over Σptau,Y q such that σ1 and σ2 have the same length,

NF
xX,Y y
r pσ1 ``pa, bqq “ NF

xX,Y y
r pσ2 ``pa, bqq.

3. @ a P X , b P Y , and σ over ΣpX,Y q, NF xX,Y yr pσ ``pa, bqq “ NF
xX,Y y
r pσ|pa, q ``pa, bqq.

Definition 3 (Per-destination NF). A rule r in an NF keeps per-destination state if all its instance

NF
xX,Y y
r satisfies the three conditions:

1. @ a P X and b P Y , there exits a σ over ΣpX,tbuq, such that NF xX,Y yr pσ ``pa, bqq ­“

NF
xX,Y y
r ppa, bqq.

2. @ a P X , b P Y , and σ1, σ2 over ΣpX,tbuq such that σ1 and σ2 have the same length,

51

NF
xX,Y y
r pσ1 ``pa, bqq “ NF

xX,Y y
r pσ2 ``pa, bqq.

3. @ a P X , b P Y , and σ over ΣpX,Y q, NF xX,Y yr pσ ``pa, bqq “ NF
xX,Y y
r pσ|p ,bq ``pa, bqq.

Definition 4 (Per-connection NF). A rule r in an NF keeps per-connection state if all its instance

NF
xX,Y y
r satisfies the two conditions:

1. @ pa, bq P X ˆ Y Y Y ˆX , there exits a σ over Σptau,tbuq Y Σptbu,tauq, such that

NF
xX,Y y
r pσ ``pa, bqq ­“ NF

xX,Y y
r ppa, bqq.

2. @ pa, bq P X ˆ Y Y Y ˆX , and σ over ΣpX,Y q Y ΣpY,Xq, NF xX,Y yr pσ ``pa, bqq “

NF
xX,Y y
r pσ|pa,bq,pb,aq ``pa, bqq.

Definition 5 (stateless). A rule r in an NF is called a stateless NF iff for all NF instanceNF xX,Y yr ,

packet p P ΣpX,Y q, and sequence σ over ΣpX,Y q, NF xX,Y yr pσ ``pq “ NF
xX,Y y
r ppq.

In addition, we assume all NFs satisfy the following consistency in the configuration space:

Definition 6 (Consistency in the configuration space). For all A,B,X, Y, σ such that A Ă X ,

B Ă Y and σ is a sequence over ΣpA,Bq, NF xX,Y yr pσq “ NF
xA,By
r pσq.

FSM composition: The definition of FSM composition is given below.

Definition 7 (FSM composition for key learning). Suppose we are given two FSMs, FSMi “

pSi,Σi,∆i, δi, s
0
i q, where (1) Si is the state space, (2) Σi is the space of possible input symbols

such that Σ1 X Σ2 “ H, (3) ∆i is the set of output symbols, (4) δi : Si ˆ Σi Ñ Si ˆ ∆i is the

transition function, and (5) s0
i P Si is the initial state of FSMi. The composite FSM of FSM1

and FSM2 is FSMcomposite “ pS1 ˆ S2,Σ1 Y Σ2,∆1 Y∆2, δ, s
0
1 ˆ s0

2q, where δpps1, s2q, pq “

pps11, s
1
2q, p

1q if and only if 1) δ1ps1, pq “ ps11, p
1q and s2 “ s12; or 2) δ1ps2, pq “ ps12, p

1q and

s1 “ s11.

Proof of KeyLearning algorithm: The correctness of our KeyLearning algorithm is given in

the following theorem.

Theorem 1 (Correctness of KeyLearning). Figure 3.10 is correct.

52

Proof Sketch. For brevity, we only prove the column for the per-source NF; proofs of other

columns are similar. The proof for per-source NF follows from the three lemmas below.

Lemma 1. All NFs that keep per-source state cannot pass Test 1.

Proof. LetA1 andA2 be the FSM learned forNF xtau,tbuyr andNF xtcu,tduyr respectively (i.e., A1 “

Ltpa,bqupNF
xtau,tbuy
r q, similarly for A2), B be the FSM learned for NF xta,cu,tb,duyr using packets

from pa, bq and pc, dq (i.e., B “ Ltpa,bq,pc,dqupNF
xta,cu,tb,duy
r q), and C be the FSM composed of A1

and A2. We only need to prove that for any sequence σ consisting of packets over tpa, bq, pc, dqu,

Bpσq “ Cpσq. W.L.O.G., suppose σ ends with pa, bq. Then Bpσq “ NF
xta,cu,tb,duy
r pσq “

NF
xta,cu,tb,duy
r pσ|pa,bqq “ Bpσ|pa,bqq (condition 3), Cpσq “ Cpσ|pa,bqq “ A1pσ|pa,bqq (the first

equality is by condition 3 and the second is by FSM composition). But by homogeneity in the

config space, A1pσ|pa,bqq “ Bpσ|pa,bqq. Thus, Bpσq “ Cpσq. In other words, B is equivalent to

C.

Lemma 2. All NFs that keep per-source state can pass Test 2.

Proof. Let A1 and A2 be the FSM learned for NF xtau,tbuyr and NF xtau,tcuyr respectively, B be the

FSM learned for NF xtau,tb,cuyr , and C be the FSM composed of A1 and A2. By the first condition

of per-source NF, there exists a σ over Σptau,tb,cuq, such that Bpσ ``pa, bqq ­“ Bppa, bqq. By the

second condition, Bpσ ``pa, bqq “ Bpσ1 ``pa, bqq, where σ1 is a sequence consisting of only

pa, cq. Since C is composed of A1 and A2, Cpσ1 ` `pa, bqq “ A1ppa, bqq. But by homogeneity

in the configuration space, A1ppa, bqq “ Bppa, bqq. Thus, Cpσ1 ``pa, bqq ­“ Bpσ1 ``pa, bqq. In

other words, B is not equivalent to the composite FSM of A1 and A2.

Lemma 3. All NFs that keep per-source state cannot pass Test 3.

Proof. Let A1 and A2 be the FSM learned for NF xtau,tbuyr and NF xtcu,tbuyr respectively, B be the

FSM learned forNF xta,cu,tbuyr , andC be the FSM composed ofA1 andA2. Consider any sequence

σ over Σpta,cu,tbuq. W.L.O.G., suppose σ ends with pa, bq. Then by condition 3,Bpσq “ Bpσ|pa,bqq.

By definition of composition, Cpσq “ A1pσ|pa,bqq. But by homogeneity in the configuration

53

space, A1pσ|pa,bqq “ Bpσ|pa,bqq. Thus, Cpσq “ Bpσq. In order words, B and C are equivalent.

3.5 Handling NF Header Modifications

Now, we extend our FSMInference in Section 3.3 to handle header modifications, such as a

NAT rewriting a private IP-port pair to a public IP-port pair. We currently only handle NFs that

maintain per-connection state while modifying IPs and ports. We consider two cases of possible

header modifications: (1) static (e.g., a source NAT modifies a private port to a static public port),

and (2) dynamic (e.g., a source NAT or LB randomly generates port mappings across resets). We

first describe how we handle each case individually, then present our combined workflow to

handle both cases. Our workflow does not require knowing a priori that an NF modifies header

fields, which field it modifies, or how it modifies packet headers (i.e., static or dynamic).

Static header modifications: Consider a source NAT that deterministically maps a source IP-

port pair (e.g., A:Ap1) to a public source IP-port pair (e.g., X:Xp1). To discover the NAT’s

behavior that rewrites the public IP-port back to the private IP-port, we need to generate a sym-

bolic packet using the public (modified) IP-port (i.e., X:Xp1). However, we may not know the

concrete value of X:Xp1 a priori. Hence, we cannot generate a complete set of |Σ|. Our idea is to

first run the inference module (Section 3.3) and check whether a symbolic model has additional

symbolic IPs and ports. If so, we append the new IP-port pairs to the Σ and re-run the inference.

We repeat this step until the output FSM contains no new IP-port pairs. Given that the static

modification maps an IP-port to the same IP-port pair, this approach converges.

Dynamic header modification: The above approach of updating the input alphabet will not

converge for NFs that dynamically modify packet headers, however. Consider a NAT that ran-

domly picks one of the available ports for the same 5-tuple (e.g., a private IP-port (e.g., A:Ap1

first maps to X:Xp1 but then to X:Xp2 after L* resets the NF). Since L* assumes a deterministic

FSM, it will crash as a result of this nondeterminism. Our idea is simple. If L* crashes, then

54

we identify the IP-port pair that caused the nondeterministic behavior. Next, we mask this non-

deterministic behavior of the NF from L* by explicitly mapping such IP-port pairs to consistent

symbolic values (e.g., Alembic maps SYNInternal
A)B to SYNInternal

X)B regardless of the concrete value

of the rewritten source IP). Since the concrete value of X will change across resets, the extended

L* uses the most-recently observed concrete value of X when playing sequences.

Combining both cases, we first run the FSMInference module (Section 3.3). If L* completes

but discovers new symbols (i.e., static modification), then we re-run the workflow with new

symbols. However, if L* crashes due to a nondetermistic FSM (i.e., dynamic modification), we

mask the non-deterministic behavior as discussed. After the required modifications are applied,

the L* is repeated until it converges. As we only handle modification for per-connection NF, we

assume the key is per-connection for an NF that modifies packet headers.

3.6 Handling an Arbitrary Config

We now discuss how we generate a set of SymbolicRules (Section 3.6.1) and then how the online

stage constructs a concrete model given a concrete configuration (Section 3.6.2).

3.6.1 Generating SymbolicRules

The ConfigGen module generates a set of SymbolicRules. As discussed in Section 3.2.1, the

vendor documentation may not clearly give a set of rule types where each type is associated with

a different runtime behavior (e.g., firewall accept vs. deny). Suppose the firewall ConfigSchema

specifies a rule types as xsrcip, srcport, dstip, dstport, actionywhere “action” takes a binary value.

To obtain a set of logical rule types, we use a set of conservative heuristics. Typically, we observe

that fields which take a large set of values (e.g., IPs and ports) demonstrate similar behaviors

across values within the set. For fields that only take a small set of values (e.g., action), each value

typically carries a distinct run-time behavior. Based on this observation, the ConfigGen module

first assigns a new symbol (i.e., A for srcip) to each field that takes a large set of values. Then

55

for each combination of other small fields (e.g., action), this module generates a SymbolicRule

(for each rule type). We also generate a corresponding ConcreteRules by sampling a value for

each field. For the example above, ConfigGen generates two rule types, accept and deny.

3.6.2 Alembic Online: Instantiating a Concrete Model

We now describe Alembic’s online stage, which constructs a concrete model for a given a con-

figuration. The concrete model then uses our operational model (Algo. 1) to model how an

NF processes incoming packets. We start with a high-level workflow (Section 3.6.2.1) and then

present a more detailed description of how we instantiate an ensemble of FSMs (Section 3.6.2.2).

3.6.2.1 High-level workflow

Constructing a concrete model: For each concrete rule, R, in a concrete configuration, we first

fetch the corresponding by SymbolicRule by substituting fields that were made symbolic with

concrete values from the rule, R (e.g., xsrcip=10.1.0.1 ¨ ¨ ¨ action=1y matches a SymbolicRule,

xsrcip=A ¨ ¨ ¨ action =1y). Then, we fetch the corresponding symbolic FSM and the key type, and

use the key type (e.g., srcip-port for per-source NF) to appropriately clone the symbolic model

to create an ensemble representation. There is one additional step when the key type is not

per-connection; we must substitute any ranges based upon the key type. For example, for a per-

source NF, dstip-port in a concrete model refers to a range of concrete values specified in R for

dstip and dstport. The output is an ensemble of concrete models for each rule in a configuration.

Processing incoming packets: Upon receiving a packet, the NF fetches the corresponding rule

in a configuration using the processing semantics (e.g., first-match). The NF then uses the key to

access the relevant concrete FSM in an ensemble of FSMs and the current state associated with

the packet (Line 7 in Algo. 1). Finally, the NF applies the appropriate action and updates the

current state associated with that packet.

56

3.6.2.2 Instantiating an Ensemble of Concrete Models

We present a detailed description of how we instantiate a concrete model in our online stage.

We consider three cases: (1) NFs that keep per-connection state but do not modify headers, (2)

NFs that keep per-connection state and do modify headers, and (3) NFs that keep state according

to other keys but do not modify headers. We do not consider header-modifying NFs that keep

state based on other keys (e.g., per-source); they are outside our current scope. For simplicity,

we assume a perfect Equivalence Oracle such that the generated symbolic model from the offline

stage is identical to the ground truth.

Case 1) NFs that keep per-connection state but do not modify headers: For NFs that do not

modify packet headers, we define a key with (A:Ap1, B:Bp1) where A:Ap1 is a srcip-port and

B:Bp1 is a dstip-port. Note that the logic for matching a per-connection key is bi-directional.

For example, a TCP packet with srcip-port, B:Bp1, and dstip-port, A:Ap1, would also match the

key, (A:Ap1, B:Bp1). Then, for each concrete value of the key in a rule, we instantiate a concrete

FSM. We posit that our instantiation logic is correct for an input packet type with all TCP packet

types (e.g., SYN, SYN-ACK, ACK, RST-ACK) for the following reasons:

1. A model learned using one connection from the offline stage represents the ground truth

(assuming a perfect Equivalence Oracle).

2. Because we assume each connection is independent and has the same logical behavior (from

Section 3.2.3 and Def. 4 in Section 3.4.2), cloning a model learned from one connection to

represent other connections does not introduce additional errors.

Case 2) NFs that keep per-connection state and do modify headers: We extend the NF

operational model presented in Algo. 1 to instantiate a concrete model for header-modifying

NFs. Recall that in the Alembic’s offline stage, we learn a model using a range, where we infer

a model using a symbolic IP and port in a range. For header-modifying NFs, even though the

learned model is represented using symbolic IPs and ports, our instantiation logic is correct

because each concrete model is indexed with a concrete IP and port (Algo. 2). Consider a NAT

57

Rule Type 1: Lin à Rout
(e.g., source NAT)

Lin : IPL à IPR

NF
Lout : IPR à IPL

Rin : IPR à PIP

Rout : PIP à IPR

IPL : an internal IP-port pair
IPR : an external IP-port pair
PIP : a public-facing IP-port pair

Figure 3.11: NAT example

with two rule types defined in its ConfigSchema.

1. Rule Type 1 : Lin Ñ Rout where the initial modification for a new connections happens for

Lin (e.g., modifying the source IP of an internal IP to a public-facing IP).

2. Rule Type 2 : Rin Ñ Lout where the initial modification for a new connections happens for

Rin (e.g., port forwarding where the TCP packets with port 8080 entering from the R interface

is forwarded to port 80 on the internal server).

For ease of explanation, we first show how we instantiate a concrete model for a model

inferred for a rule type 1 and later describe how we extend our design to handle a rule type 2.

Figure 3.11 shows the ranges of valid source and destination IPs and ports for located packets

for a NAT configured with a concrete rule for a rule type 1 (e.g., a valid ranges for Lin is IPL for

a srcip pair and IPR for a dstip-port pair).

To tackle the challenge above, we introduce two maps to associate an output (or modified)

packet’s 5-tuple to the corresponding input packet’s 5-tuple for both interfaces. Specifically, we

use TL�R to map Lin to Rout, and TR�L to map Rin to Lout (Algo. 2). Algo. 2 is a detailed de-

scription after Line 3 in the operational model (Algo. 1 in Section 3.2). For ease of presentation,

we assume we found a rule that matches an incoming packet (Line 3 in Algo. 1).

If an NF receives a packet from the L interface, the algorithm checks whether the packet is

a new connection by performing a lookup in the map (in ForLin). If the connection does not

already exist in the map, we update the TL�R with pIPL, IPRq Ñ pPIP, IPRq and TR�L with

58

Algorithm 2: Instantiating a model for a per-connection NF with header modifications

1 Function OnlineForModification(locatedPkt p, Rule r, Map[rule, Map[key, state]] stateMap,

TL�R, TR�L):

2 if p.interface == L then

3 pout = FWDDIRECTION(p, r, stateMap, TL�R, TR�L)

4 else

5 pout = REVERSEDIRECTION(p, r, stateMap, TL�R, TR�L)

6 return pout

7 Function ForLin(locatedPkt p, Rule r, Map[rule, Map[key, state]] stateMap, TL�R, TR�L):

8 if NewConnection then

9 Update TL�R, TR�L

10 Extract FSM, currentState

11 pout, nextStateÐ Get action from the FSM

12 Update currentState with nextState

13 return pout

14 Function ForRin(locatedPkt p, Rule r, Map[rule, Map[key, state]] stateMap, TL�R, TR�L):

15 if p P TR�L then

16 Extract FSM, currentState

17 pout, nextStateÐ Get action from the FSM

18 Update currentState with nextState

19 else

20 Extract default FSM, currentState

21 pout, nextStateÐ Get action from default FSM

22 Update currentState with nextState

23 return pout

pIPR,PIPq Ñ pIPR, IPLq. Then, we extract the corresponding FSM and the current state (or

an initial state for a new connection) to apply an appropriate action (i.e., determine pout). If

an incoming packet enters from the R interface, we look up the corresponding map, TR�L, to

59

fetch the original IP-port (e.g., IPL). Then, it uses the key to fetch the corresponding FSM and

determine an appropriate action for the incoming packet. If the entry does not exist in the map,

our concrete model instead uses the FSM associated with the NF’s default behavior. Note that

in the case of static header modification, such as a NAT configured with a list of static mappings

between internal and external IP-port pairs, we pre-populate TL�R and TR�L with these static

mappings. Hence, for an NF that statically modify packet headers, we will not reach Line 20 as

these mapping already exist.

Extending for Rule Type 2 : We now discuss how to adapt the above framework to handle a rule

type 2 where the initial modification happens for packet entering the other interface (e.g., Rin). In

contrast to rule type 1, an NF configured with a concrete rule for a rule type 2 initially modifies

packet header for Rin (i.e., not Lin). We need to make two changes in Algo 2:

1. Line 3 must change to call ForLin (Line 8) if the packet comes via the R interface.

2. For the corresponding packet coming from the reverse direction (i.e., Lin for rule type 2), we

need to perform a look up in TL�R to check if the reverse mapping exists instead of TR�L

(i.e., change Line 16).

Note that our approach does not need a priori knowledge of which rule type the NF is config-

ured with. We just need to infer at which interface the initial modification happens by parsing the

generated model. For instance, if the initial modification happens for Lin (i.e., rule type 1), then

we follow the original algorithm shown in Algo. 2. If the initial modification happens for Rin

(i.e., rule type 2), then we follow the algorithm in Algo. 2 with two changes mentioned above.

The above algorithm describes how we instantiate a concrete FSM. Now, there are two types

of modifications. In the case of static modification, we know the value of the modified packet

a priori for a given incoming packet, so we can pre-populate the concrete FSMs with all the

known IPs and ports. However, in the case of dynamic modification where we cannot predict the

modified values in advance, we initialize an ensemble of concrete FSMs with symbolic IP and

port (for the modified values) and bind them to concrete IPs and ports as they are revealed (i.e.,

60

after injecting packets and observing outputs).

Given this context, we posit the correctness of these instantiated models (formal proof is

outside our current scope). For per-connection NFs with static header modifications, our instan-

tiation of FSMs is correct with an input packet type of all TCP packet types, for the same two

reasons described for case 1. We now state additional reasoning:

1. The same 5-tuple for an input packet maps to the same 5-tuple for the output packet, and

TL�R and TR�L store these mappings. Thus, we will correctly discover the reverse mapping

during the instantiation.

2. Even in the presence of connection resets, the same 5-tuple will be mapped to the same output

(i.e., 5-tuple). Hence, the model for each connection is correct even in the presence of packets

that reset the connection state (i.e., we can reuse the previous mappings stored).

For NFs that dynamically modify packet headers, we posit that for the input set of TCP-

handshake packets (i.e., SYN, SYN-ACK, ACK). However, when we receive a TCP packet that

resets a connections (e.g., RST-ACK), the concrete IP and port that was bound to a symbolic IP

and port will change (i.e., after a reset, srcip-port maps to P:Pp2 instead of P:Pp1). Hence, the

generated model will continue to use the mapping already stored in TL�R and TR�L, resulting in

inaccurate model.

Case 3: NFs that do not keep per-connection state: We now consider NFs that do not modify

packet headers but have keys other than per-connection. Recall the following key types and their

corresponding header fields: (1) Per-source key, defined by a source IP; (2) Per-destination key,

defined by a destination IP; (3) Cross-connection key, defined by any packet (i.e., all IP and ports

with the range); and (4) Stateless key, defined by srcip-port and dstip-port. Note that we view the

stateless NF as keeping a per-connection state but the FSM is always just a single state.

When we instantiate an ensemble of concrete FSMs for an NF that keeps per-source state,

the IPs and ports that are not part of the the key (i.e., srcport, dstip, and dstport) refer to ranges

of values. Hence, the model given a srcip should accept any srcport, dstip, and dstport within the

61

specified range.

We posit that our instantiation logic outputs a correct model for an input packet type, with

all TCP-relevant symbols (i.e., all TCP-relevant symbols as there are no modifications) if the

per-source NF adheres to the Def. 2 in Section 3.4.2:

1. Our definition for a per-source NF assumes that all destinations given the same source IP are

treated homogeneously. Hence, it is correct to use the model learned from one connection

and simply replace the symbolic destination in the model to any destination IP that appears in

the configuration.

2. As we assume no header modification, the instantiated model is correct for all TCP-relevant

symbols.

We omit the cases for per-destination, cross-connection, and stateless for brevity. The cor-

rectness arguments for these cases are similar to that of per-source NFs.

3.7 Implementation & Evaluation

System Implementation: We implemented Alembic using Java for the extended L* built atop

LearnLib [162]. We used C for monitoring NF actions, and Python for the rest. We create packet

templates using Scapy [27]. Then, Alembic feeds the output of prior modules into the Extended

L*. We re-architected the Learnlib framework to enable distributed learning where queries are

distributed to workers via JSON-RPC [23].2 Our L* implementation tracks the symbol-concrete

mapping of IPs and ports to translate between symbolic and concrete packets. The symbolic

FSM output is stored in DOT format, which is then consumed by the online stage.

L* assumes that we have the ability to reliably reset the NF between every sequences. For

Alembic, we need to reset the connection states. For some NFs, this can be performed using

a single command (e.g., pfctl -k in PfSense). However, other NFs required that the VM

2Due to some unhandled edge cases, our current implementation requires using only one worker for NFs with

dynamic header modifications.

62

be rebooted (e.g., Untangle). In such cases, we take a snapshot of the initial state of the VM

and restore the state to emulate a reset. This does cost up to tens of seconds but is a practical

alternative to rebooting.

Experimental Setup: We used Alembic to model a variety of synthetic, open-source, and

proprietary NFs. First, we created synthetic NFs using Click [129] to validate the correctness of

Alembic. Each Click NF takes an FSM as input and processes packets accordingly, so we know

NF’s ground-truth FSM. To validate against real NFs, we generated models of PfSense [26]

(firewall, static NAT, NAT that randomizes the port mappings, and LB), ProprietaryNF (firewall,

static NAT), Untangle [34] (firewall), HAProxy [17] (LB). We now use NAT to refer to a static

NAT and a randNAT to refer to a NAT that randomizes the IP-port mappings. Our experiments

were performed using CloudLab [94]. We ran PfSense, Untangle, ProprietaryNF, HAProxy, and

Click in VMs running on VirtualBox [35]. Recall that ∆wait needs to be customized for each

NF. We used ∆wait of 100 for PfSense and Click-based NFs, 250 ms for ProprietaryNF, 200 ms

for Untangle, and 300 ms for HAProxy. For NFs that incur unexpected delays (e.g., HAProxy,

ProprietaryNF, Untangle), we took a majority vote of 3.

Packet types: We use two TCP packet types. First, the correct-seq set consists of standard

TCP packets, tSYNC, SYN-ACKC, ACKC, RST-ACKC, FIN-ACKCu, where the handling of

seq and ack are under-the-hood. Instead of introducing seq and ack numbers in Σ, we introduce

additional logic in the Extended L* to track seq and ack of the transmitted packets and rewrite

them during the inference to adhere to the correct semantics (i.e., update the ack of SYN-ACKC

after we observed an output of SYNC). (The seq number is incremented by 1 for packets with

a SYN or FIN flag set and otherwise, by the data size. T. The ack number for a side of a

connection is 1 greater than any received packet’s sequence number.) Second, we introduce

combined-seq set to model the interaction of TCP packets in the presence of out-of-window

packets. We extend the correct-seq set with packets with randomly-chosen, incorrect seq and ack

values, tSYNACKI, ACKI, RSTACKI, FINACKIu.

63

3.7.1 Validation using Synthetic NFs

A) Inferring the ground-truth model: We provide Click [129] with a 4-state FSM that de-

scribes a stateful firewall that only accepts packets from external hosts after a valid three-way

handshake. We also constructed another 18-state FSM describing a similar firewall and a 3-state

FSM describing a source NAT. In all three cases, Alembic inferred ground-truth FSMs.

B) Finding intent violations: We used a red-team exercise to evaluate the effectiveness of

Alembic in finding intent violations in NF implementations. In each scenario, we modified the

FSM from A to introduce violations and verified that the Alembic-generated model captured the

behavior for all of the following four cases. A and B refer to an internal and external host, re-

spectively: (1) a firewall prevents the connection from being established by dropping SYN-ACK

packets; (2) a firewall proactively sends SYN-ACK upon receiving SYN from A to B; (3) a

source NAT rewrites the packet to unspecified srcip-port; and (4) a source NAT rewrites a dstip-

port. Some of these scenarios are inspired by real-world NFs.

Ground Truth Test 1 Test 2 Test 3 Result

Cross-connection Y Cross-connection

Per-source N Y Per-source

Per-destination N N Y Per-destination

Per-connection N N N Per-connection

Table 3.2: Validating the correctness of KeyLearning using Click-based NFs

C) Validating key learning: We wrote additional Click [129] NFs that track the number of

TCP connections based on different keys. We applied the key learning algorithm to each and

confirmed it identifies the correct key (Table 3.2).

3.7.2 Correctness with Real NFs

As summarized in Table 3.3, we generated models for PfSense and ProprietaryNF firewalls using

both correct-seq and combined-seq sets. For the other NF types, we used only the correct-seq set

64

Firewall staticNAT randNAT load balancer (LB)

PktType pf ut pNF pf pNF pf pf hp

correct-seq # G# G# #

combined-seq

pf: PfSense, ut: Untangle, pNF: ProprietaryNF, hp: HAProxy

G#: TCP-handshake pkts, tSYNC,SYN-ACKC,ACKCu, for both interfaces

#: G# set excluding SYNC from the external interface

Table 3.3: Coverage of models over input packet types

because the firewall models for these NFs already modeled the interaction of TCP packets in the

presence of out-of-window packets. For an NF that uses dynamic modification (e.g., randNAT),

we cannot correctly instantiate the model in the presence of RST-ACK and FIN-ACK packets

(Section 3.6.2.2). Hence, we only showcased how this NF handles connection establishment.

Untangle and HAProxy have SYN retries and spurious resets (i.e., temporal effects) that are

beyond our current scope (Section 3.2.3) and could not be disabled. Thus, we again only model

how these NFs handle connection establishment. Further, during our attempts to infer models, we

discovered these two NFs are connection-terminating, where an external SYNC packet interfered

with the connection initiation attempt from the internal host, which violates our independence

assumption. To make the learning tractable, we removed the SYNC from the external interface

for these connection-terminating NFs.

Complementary testing methodologies: Since we do not know the ground truth models and

thus cannot report the coverage of code paths inside the NF, we used three approaches to validate

the correctness of our modelsec:alembic: (1) iperf [21] testing, generating valid sequences of

TCP packets; (2) fuzz testing, randomly picking a packet type and a concrete IP and port; and

(3) stress testing, generating packets by first picking a packet type and selecting concrete IP and

port values to activate at least one rule.

For each test run, we generated an arbitrary configuration. For NFs that take multiple rules

(e.g., firewall and NAT), we varied the number of rules between 1, 5, 20, and 100. For each con-

65

NF (pkt type) accuracy NF (pkt type) accuracy

PfSense firewall (C) 98.8-100% ProprietaryNF firewall (C) 99.9-100%

PfSense firewall (CI) 94.8-100% ProprietaryNF firewall (CI) 98-100%

PfSense NAT (C) 99.1-100% PfSense randNAT (C) 98.2-100%

PfSense LB (C) 96.4-97.4% ProprietaryNF NAT (C) 98.8-100%

Table 3.4: Results of stress testing (C for correct-seq, and CI for combined-seq)

crete rule, we randomly sampled a field from the field type defined by the ConfigSchema. We

ensured that we picked concrete configurations different from the ones used during the inference

(Section 3.3). For firewalls and NATs, the generated configurations were installed on one inter-

face (i.e., internal). Further, as Alembic cannot compose models for multi-function NFs (i.e., a

firewall with NAT), we set allow rules on the firewalls when we inferred models for NATs and

LBs. For iperf [21] testing, we set up a client and a server and collect the traces on each interface.

Because iperf [21] generates a deterministic sequence of packets, we only tested with 1 accept

rule. For stress and fuzz testing, we generated sequences of 20, 50, 100, and 300 packets. In each

setting, we measured model accuracy by calculating the fraction of packets for which the model

produced the exact same output as the NF. Each setting is a combination of the NF vendor and

type (e.g., PfSense firewall with the correct-seq set), input packet type (e.g., 300 packets), and

the number of rules (e.g., 20 rules).

Iperf testing: Our models predicted the behavior of all NFs with 100% accuracy.

Fuzz testing: Across all settings for ProprietaryNF and PfSense firewalls (both combined-seq

and correct-seq set), the accuracy was 100%. For PfSense and ProprietaryNF NATs, the accuracy

was 99.8% to 100%.

Stress testing: We summarize the results in Table 3.4. For many NFs (e.g., ProprietaryNF

and PfSense firewalls), we see the lowest accuracy (e.g., 98%) for 1 rule with 300 packets.

This is expected because our testing generates a long sequence of packets that the Wp-method

with d “ 1 did not probe. Also, given the same firewall (e.g., PfSense firewall), we observe

66

NF (pkt type) time NF (pkt type) time

PfSense firewall (C) 11 m ProprietaryNF firewall (C) 48 h

PfSense firewall (CI) 16 h ProprietaryNF firewall (CI) 25 h 18 m

PfSense NAT (C) 28 m PfSense randNAT (C) 14 m

PfSense LB (C) 14 m ProprietaryNF NAT (C) 48 h

Untangle firewall (C) 37 m HAProxy LB (C) 20 m

Table 3.5: Time to infer a symbolic model (h: hours, m: min)

higher accuracy for an NF modeled with the correct-seq set compared to that modeled using

the combined-seq set. We confirm that the model learned using the combined-seq set is rather

large (ą 100 states) resulting from the many ways in which the correct and incorrect packets can

interact. Note that ProprietaryNF NAT correct-seq took 49 hours to model and ProprietaryNF

firewall combined-seq took 5 days to infer the model. Going back to our earlier requirements that

we can afford several tens of hours (i.e., a couple days) for the offline stage, we ran the accuracy

testing on an intermediate model inferred after 48 hours, which still achieved high accuracy. We

did not perform fuzz or stress testing for Untangle firewall and HAProxy LB. These NFs have

temporal effects that result in mis-attribution, which is outside our scope (Section 3.2.3). We see

that Alembic achieves high accuracy even with large configurations.

3.7.3 Scalability

We now evaluate the runtime of Alembic’s components.

Time to learn symbolic models: For each NF, we report the longest time to model one Sym-

bolicRule as learning can be parallelized across symbolic rules. In all cases, we use 20 servers

setup, except for with PfSense random NAT which used one. The results are summarized in

Table 3.5. In summary, we achieved our goal of inferring high-fidelity models in less than 48

hours. We find that the runtime depends on: (1) the size of the FSM and |Σ|, and (2) Alembic or

NF-specific details (e.g., rebooting). For (1), as the size of |Σ| was double for the combined-seq

67

Runtime

(—Σ—)

1 connection (Σ=6) 2 connections (Σ=12) 3 connection (Σ=18)

26 min 10 hr ą 3 days

Runtime

(d in Wp-method)

d=1 d=2 d=3

13 min 1 hr 10 min 7 hr

Table 3.6: Scalability benefits of our design choices

set, it took more than 48 hours to discover 72-state FSM (ProprietaryNF firewall, combined-seq)

but less than 26 hours for 79-state with the correct-seq set. For (2), discovering the NAT model

ProprietaryNF NAT (correct-seq) took longer than the firewall as the NAT inference ran in two

phases (Section 3.5). Lastly, PfSense models take less time to infer as PfSense does not require

rebooting, and has shorter ∆wait .

Time to validate the key: We use PfSense firewall (correct-seq) to report the time to infer the

key. It took 6 hours to infer the key (e.g., 2 hrs for each test).

Time for the online stage: For ProprietaryNF firewall, the time to compose a concrete model

is 75 ms for 10 rules, 0.6 s for 100 rules, and 5 seconds for 1,000 rules. The result generalizes to

other NFs.

Scalability benefits of our design choices: The insights to leverage compositional modeling

and KeyLearning allow Alembic are critical in achieving reasonable runtime by reducing the size

of Σ. Suppose one firewall rule takes a source IP field takes a /16 prefix. Without KeyLearning,

we need to infer a model with all 216 connections. Similarly, for a configuration with 20 rules,

we need to infer a model with all relevant connections. The top half of the Table 3.6 shows

how the runtime drastically increases as we increase the number of connections using a Click-

based [129] firewalls from Section 3.7.1 (using just one worker). Further, we measured the

runtime as a function of d in Wp-method (bottom of Table 3.6). Using d “ 1, we were still able

to infer the ground truth while reducing the run time. These results demonstrate how reducing the

size of |Σ| is critical to obtain a reasonable runtime. Lastly, distributed learning helps scalability.

68

0 1 2
SYN SYN

*
* DROP

DROP

SYN SYN

PfSense FW TCP Accept

Host B
External

FA RA

SYN SA ACK SYN SA ACK

FA RA

NF

Packet Legend

FA RA

SYN SA ACK

*
*

*
* . . .

RA RASYN DROP

FA RA

SA ACK

Host A
Internal

SYN

Figure 3.12: The light/dark coloring indicates packets on host A/B’s interface, respectively.

The figure below shows the 3 states for PfSense firewall (FW) accept rule

The Click-based [129] firewall with 18 states takes 1.6 hours with 1 worker but only 16 minutes

with 19 workers (and 1 controller).

3.7.4 Case Studies

We now highlight vendor-specific differences found using Alembic. For clarity, we present and

discuss only partial representations of the inferred FSMs (as some FSMs are large).

Firewall (correct-seq): A common view of stateful firewalls in many tools is a three-state

abstraction (SYN, SYN-ACK, ACK) of the TCP handshake. Using Alembic, however, we dis-

covered that the reality is significantly more complex. With a single firewall accept rule, the

inferred PfSense model (correct-seq) shows that a TCP SYN from an internal host, A, is suffi-

cient for an external host, B, to send any TCP packets (Figure 3.12). Furthermore, FIN-ACK,

which signals termination of the connection, does not cause a state transition. We find that Pro-

prietaryNF firewall has 79 states for a firewall accept rule in contrast to 3 states for PfSense

firewall. ProprietaryNF, too, does not check for entire three-way handshake (e.g., only SYN,

SYN-ACK). We find that the complexity of the FSM (i.e., 79 states) results from the number

69

0 1 2
SYN SYN

SA*
* DROP

DROP SYN
ACK

SYN

ACK
ACK

SA SA

DROP
DROP

ACK

SA

DROP

Untangle FW accept & FW default

Host A Host B

FA RA

SYN SA ACK SYN SA ACK

FA RA

NF

Legend

0 1 2

SA*
* DROP

DROP ACK

SA SA

DROP

Untangle FW drop all

SYN DROP

ACK ACK ACK

FA RA

SYN SA ACK

0 1 2
SYN

SYN

*
* DROP

DROP

SA

SA

Proprietary FW accept
. . .

FA

FA RA

SYN SA ACK

FA

RARA

*
*

*
*

Figure 3.13: Partial FSM for Untangle firewall (FW) accept, drop, default rule, and Pro-

prietaryNF accept rule

of ways in which the two TCP handshakes (from A and B) can interfere with each other. Such

behavior could not have been exposed through handwritten models. Untangle firewall actually

behaves like a connection-terminating NF (Figure 3.13 shows a partial model). The firewall lets

the first SYN from A through, but when B replies with a SYN-ACK, Untangle forwards it but

70

0 1 2
SYN

*
*

HAProxy LBRST
RST

SA

*
*

RST
RST

ACK SYN

ACK DROP
ACK

ACKSA …

0 1
SYN

*
*

PfSense LB

. . .DROP
DROP

SYN

SYN SYN
ACK ACK

SYN
2

SA SA

DROP

SYN RA

SYN

Figure 3.14: First 3 states of the HAProxy and PfSense load balancers (LBs). Stars on

head/tail of packets indicate src/dst modification

preemptively replies with an ACK. When the A replies with ACK, Untangle drops it to prevent

a duplicate.

Firewall (combined-seq): Surprisingly, for PfSense, we learned 257 states with combined-seq.

The complexity is a result of packets with incorrect seq and ack causing state transitions, where

many are forwarded. We learned a 72-state FSM for the ProprietaryNF firewall after 48 hours

and the full model (104-state) after 5 days. The cause for the larger FSM for PfSense is that the

incorrect seq and ack packets often cause state transitions more frequently than ProprietaryNF

firewalls. Further, it is interesting to see how PfSense only had 3 states for the correct-seq set but

257 states with combined-seq, in contrast to ProprietaryNF where the number of states for both

sets are similar. At a high-level, we find that obtaining such model is useful as it could possibly

be used to generate a sequence of packets to bypass the firewall, but this is beyond the scope of

our work.

Load balancer: HAProxy (Figure 3.14) follows the NF’s connection-terminating semantics.

It completes the TCP handshake with the client before sending packets to the server. After the

handshake, the source of outgoing packets is modified to server-facing IP of LB, and destina-

71

tion is modified to the server (i.e., star on both-ends of TCP SYN in Fig. 3.14). In contrast,

PfSense LB behaves like a NAT. When a client sends a SYN to the LB, the destination is mod-

ified to the server’s IP (i.e., star in state 1 in Figure 3.14). Then, the LB modifies destination

of packets from both client and server. We confirmed that PfSense indeed implements load bal-

ancing this way [159]. Alembic automatically discovered this without prior assumptions of any

connection-termination behavior. Further, the connection-termination semantics of HAProxy

differ from those of Untangle firewall. Unlike HAProxy, Untangle lets SYN packets through and

preemptively completes the connection with the external host. This is yet another example of

non-uniformity across NF implementations.

3.7.5 Implications for Network Testing and Verification

We use two existing tools, BUZZ [97] and VMN [152], to demonstrate how Alembic can aid

in network testing and verification. Using a Click-based [129] firewall which adheres policy

1 and 2 (Section 3.1), we compare the test output using: (1) MAlembic inferred using Alembic,

and (2) existing Mhand for firewall. Using MAlembic, BUZZ did not report a violation. Using

Mhand, BUZZ reported a violation (false-positive) as 1 of 6 test traces did not match (trace in

Section 3.1). Similarly, for policy 2, BUZZ reported a violation using Mhand. The failed test

case isec:alembic: SYNInternal
A)B , RSTExternal

B)A , RSTExternal
B)A . Mhand predicts that both RST packets

are dropped, as the model does not check for RST flags. However, Click NF allows the first RST

packet to reset the NF state. We also plugged the model for PfSense into a network verification

tool, VMN [152]. The existing model in VMN does not check TCP flags. Using VMN, we

verified the property: “TCP packets from an external host, B, can reach A even if no SYN

packet is sent from A.” Recall that in PfSense, SYNInternal
A)B needs to be sent for B to send TCP

packets to A. Hence, the property is NOT SATISFIED. Using Modelhand , the tool returned that

the property is SATISFIED whereas using ModelAlembic indicated that it is not (i.e., false-negative

for Modelhand).

72

3.8 Other Related Work on Network-Wide Verification and

FSM Inference

Chapter 2 presented prior work on analyzing individual network functions and services (Section

2.1) and other domains such as protocols and software (Section 2.2.3). We now discuss the

related work specific to Alembic. First, we discuss orthogonal efforts on testing and verifying

network-wide properties. While Alembic focuses on inferring high-fidelity models of a single

NF. a large body of work on network testing and verification (e.g., [97, 104, 126, 128, 152,

172, 185]) assumes that individual functions are correct but seek to test conformance and verify

network-wide properties (e.g., reachability, absence of black holes). The high-fidelity models

produced by Alembic can be consumed by these testing and verification tools. Then, we also

discuss related work on automatically learning FSMs from the learning theory community. This

line of work (e.g., [62]) laid the foundation for inferring FSMs for Alembic.

Network-wide testing and verification: Earlier work in this space (e.g., [104, 126, 128]) fo-

cused on simple switches and router. More recent work have focused on testing (e.g., [97, 172])

or verifying network (e.g., [152, 185]) composed of “stateful” network functions. BUZZ uses

symbolic execution to test for policy compliance. Symnet [172] statically analyzes an abstract

model of the data plane model consisting of NF models written using their domain language,

SEFL. NetSMC [185] develops a network semantic model and a policy language to verify a

wide range of policies (e.g., dynamic service chaining, path pinning). However, many of these

tools use network function (NF) models to guide testing and verification. Unfortunately, the

models of these NFs are hand-generated, and using a low-fidelity NF model can affect the effec-

tiveness of verification tools [146] (While Symnet wrote parsers to automatically generate NF

models using their language, SEFL, this parser does not generalize to other NFs not written in

Click or to arbitrary configurations). In fact, this is motivation for building Alembic.

FSM inference: For Alembic, L* algorithm by Dana Angluin lays the foundation for learn-

73

ing the FSM [62]. Similar to Alembic, L* algorithm has also been leveraged by related efforts

on discovering cross-site scripting attacks against web-application firewalls [64], TCP/IP im-

plementations [102], and SSL/TLS implementations [171] as discussed in Chapter 2. Further,

the techniques of learning FSMs has been used for model checking black-box systems (e.g.,

[113, 157]). Symbolic finite automata (SFA) [177] are FSMs where the alphabet is given by a

Boolean algebra with an infinite domain. While Alembic does not directly formulate the problem

to infer SFAs, we use the homogeneity assumption in the IP and port ranges to learn a symbolic

model. Hence, using abstractions like SFA may help us to naturally embed symbolic encodings.

We could potentially leverage a tool (e.g., [93]) that extends L* to infer the SFA. However, using

SFA does not address the NF-specific challenges (e.g., inferring the key, handling modifications)

but may serve as the basis for interesting future work.

3.9 Summary

In this chapter, we presented Alembic, a system to automatically synthesize NF models. Alem-

bic leverages structural properties of NFs and their input and configuration space. Specifically,

to tackle the challenges stemming from large configuration spaces, we synthesize NF models

viewed as an ensemble of FSMs. Alembic consists of an offline stage that learns a symbolic

model for each rule type (e.g., a firewall drop rule) and an online stage to compose concrete

models given a concrete configuration. Our evaluation shows that Alembic is accurate, scalable,

and enables more accurate network verification compared to prior methods. While Alembic

demonstrates the promise of NF model synthesis, there remain some limitations (Section 3.2.3).

We also discuss interesting avenues for future work in Chapter 6.

74

Chapter 4

Pryde: Automatic Synthesis of Evasion

Attacks for Black-Box Stateful Firewalls

“Well, let’s just say I know a little girl

who can walk through walls.”

Charles Xavier [46]

The Problem: Network firewalls (FW) play a critical role in securing our current network in-

frastructures in various deployment settings – including enterprise networks [51], cloud virtual-

ized networks [42], and modern containerized settings [48]. Of particular interest to the security

community are stateful firewalls. These stateful firewalls, as opposed to simple access control

lists, track the state of individual TCP connections (together with firewall rules) to determine

which packets are forwarded. To protect internal hosts from untrusted external hosts, a canonical

policy in these settings is to only allow packets on TCP connections that have previously been

established by hosts inside the intranet.

Despite the critically of stateful firewalls in securing our intranet, administrators deploying

firewalls implicitly assume that the vendor implements the stateful semantics correctly. Unfor-

tunately, if vendor implementations are erroneous, then it can weaken the security posture. That

75

is, an enterprise stateful firewall with such errors in implementing these stateful semantics could

allow external attackers to reach internal hosts that should not be reachable. This is orthogonal

to prior work in firewall analysis that examines the safety of the firewall rules and misconfig-

urations (e.g., [54, 56, 184]). The types of vulnerabilities we consider are a more fundamental

semantic vulnerability in tracking internal states and hence are viable even if the rules are con-

figured correctly. Unfortunately, operators have few, if any, tools to check if the vendor firewall

implementations have such semantic vulnerabilities. Manual investigation will be ineffective and

not scalable across many vendors and versions. Ideally, we need to automatically identify such

evasion vulnerabilities. Complicating this further, firewalls are proprietary and acquired from

vendors. Hence, operators have limited visibility into the code/internals of these firewalls.

This black-box setting makes the analysis even more challenging. While fuzzing or black-box

pen-testing tools (e.g. [41, 50, 106, 111]) or recent work on censorship evasion (e.g., [69, 179])

appear as strawman solutions, in practice they have shortcomings. First, their focus is often

orthogonal to our intent. For instance, pen-testing focuses on finding privilege escalation or

application-layer problems in the management APIs. The prior work on censorship evasion

focuses on the opposite problem of an internal host accessing an external service. Second, they

cannot handle the large search space of possible stateful or connection-oriented packet sequences.

Third, they are not robust in discovering subtle attacks across firewall implementations with

varying degrees of implementation complexity.

The Solution: In this chapter, we present Pryde1, a black-box analysis framework for auto-

matically uncovering semantic evasion vulnerabilities for firewalls. Pryde works in a black-box

setting; Pryde only requires input-output access to the firewall and does need visibility into the

binary or the code. We specifically focus on evasion vulnerabilities that allow an external at-

tacker to circumvent the firewall to send an undesirable “data” packet to an internal target which

1The name Pryde is inspired by the Marvel X-men superhero Kitty Pryde who has the ability to use her “phas-

ing” powers to walk through walls [46].

76

should not be reachable by the policy. This capability can subsequently be used as a starting

point for more detailed attack campaigns for persistent threats, lateral movement, or exfiltration

of sensitive information.

As we also saw from our motivating scenario in Section 1.1, these evasion attacks exploit sub-

tle implementation errors (similar to those in Figure 1.4) in implementing the stateful semantics.

Hence, instead of directly searching for these complex attack sequences, Pryde uses a model-

guided approach [174] that proceeds in two logical phases. The first phase uses black-box model

inference to reason about the stateful behavior a given firewall implements for different packet

sequences. Then, given this inferred model, we consider different deployment and threat sce-

narios to identify evasion vulnerabilities. In contrast to structure-free approaches (i.e., random

fuzzing or randomly generating test packet sequences), our approach is efficient and can un-

cover many semantically different vulnerabilities (Section 4.5). Our approach is general across

firewall implementations and extensible to support future evasion scenarios. In designing and

implementing Pryde, we address key technical challenges to (1) make the model inference ro-

bust to consider different types of packets, and (2) efficiently encode the scenarios in a model

checker and define custom refinement constraints to enable the model checker to explore new

attack pathways efficiently.

Findings: We designed and implemented Pryde realizing the aforementioned workflow and key

ideas. We evaluate Pryde on four popular (virtual) firewalls where three are commercial-grade

and one open-source. Two of them are taken from the Amazon EC2 marketplace [40] and also

used in the cloud deployments (As we are disclosing our findings to the affected vendors, we

anonymize vendor names in this thesis). We summarize our findings below (Section 4.5):

• Many semantically distinct attacks: We uncover thousands of semantically distinct (i.e., with

respect to the connection states traversed) attacks—2,591 for FW-1, 2,355 for FW-2, 8,220

for FW-3, and 294 for FW-4. Post-processing these attacks, we find that these attacks exploit

different aspects of a TCP protocol. For instance, some of these attacks exploit a firewall for-

77

warding an external DATA packet “even before” the three-way handshake has been completed

or after an incomplete handshake has been disrupted. Some exploit the simultaneous open fea-

ture of the TCP and/or SYN retries. At a high level, these attacks exploit (1) non-traditional

sequences of TCP packets; (2) interference from other TCP connections (e.g., same headers in

reverse direction or non-compliant sequence/ acknowledgement numbers), and combination

of (1) and (2).

• Many evasion attacks are subtle: While some attack sequences are simple (i.e., requiring only

one or two TCP packets), many others are quite subtle and require a nuanced TCP packet

sequence. Specifically, we uncover more attacks involving longer sequences that are not cap-

tured in smaller sequences; e.g., 47 attacks for an attack length of 1 to 3 vs. 9,231 for an attack

sequence length of just 7. For instance, FW-1 entails a carefully constructed TCP packets in-

volving RST packets after the SYN retries to allow a DATA. Several attacks are also unique

to specific vendors and do not extrapolate across vendors.

• Strawman solutions are ineffective: In contrast to Pryde, random fuzzing only finds a handful

of attacks (0 to 3) for ProprietaryNF and FW-1 after more than 15K tries. This approach

is not robust across firewall implementations. Recent work on automatic censorship evasion

using genetic algorithms (e.g., [69]) is also ineffective at uncovering these attacks. (To be fair,

censorship circumvention focuses on an orthogonal problem with a different system goal and

threat model that makes their strategies ineffective in our context.)

Having summarized our findings, we now put them in a historical context. We note that

evasion attacks have been demonstrated in other settings. For instance, earlier works have un-

covered evasion attacks against network intrusion detection systems (NIDS) (e.g., [153, 160])

or censorship firewalls (e.g., [69, 136, 179]). In these attacks, an attacker similarly sends a se-

quence of malformed (incorrect) packets to evade the intended policy (i.e., a censorship firewall

blocks certain content). However, Pryde is the first system that demonstrates that such evasion

attacks that exploit the semantic vulnerabilities are feasible against enterprise stateful firewalls

78

(with different configurations and settings than those of NIDS and censorship firewalls).

Apart from uncovering evasion attacks against enterprise firewalls, Pryde differs from these

prior works in other settings in that it takes a more principled method using a model-guided

workflow. As a result, Pryde can discover subtle and complex attacks that exploit the fundamen-

tal errors in implementing stateful semantics of tracking per-connection states. Our approach

contrasts with manual analysis (e.g., [153, 160, 179]) or random-based testings (e.g., [69]). Our

findings suggest that these attacks are subtle and complex such that random-based testings are

highly ineffective for complex firewall implementations. Lastly, our automated, general frame-

work enables Pryde to reason about how an unconventional (but realistic) threat model (Section

4.1.2) of an attacker colluding with a weak insider can enable strong attacks.

Ethics and Disclosure: We have disclosed preliminary findings and are in the process of pro-

viding detailed reports to vendors and cloud providers involved.

4.1 Background and Motivation

In this section, we provide the background on stateful firewalls and the deployment model we

consider. Then, we highlight motivating examples of evasion vulnerabilities against a commer-

cial firewall to motivate our work.

4.1.1 Background on Stateful Firewalls

A firewall is the central network device that stops or mitigates unwanted access to the private

(protected) networks from other untrusted external networks such as the Internet. We specifically

consider a layer-3 stateful firewall (FW) in this work. A stateful firewall decides whether to

drop or forward a network packet based on the 5-tuple defining a connection (srcip, srcport,

dstip, dstport, proto), and the configured rules. Typically, a stateful firewall is configured with

rules of the following form: { interface, srcip, srcport, dstip, dstport Ñ action} where interface

79

refers to an interface where incoming TCP packets are matched to (also, can be a wildcard). A

firewall configured with each rule keeps the states of network connections (i.e., a TCP connection

state) and tracks a state during a connection’s lifetime based on the 5-tuple. Further, a firewall

also monitors both incoming and outgoing packets across interfaces to update the connection

state accordingly. This connection state may include details such as the sequence (seq) and

acknowledgment (ack) numbers of the packets traversing the connection.

Internal Host (I) External Host (E)

Internal Network (LAN)

Block external accesses unless
previously ESTABLISHED from internal host

External Network (WAN)

Rule 1: <iface=LAN, srcip=10.1.1.0/24, srcport=*, dstip=*, dstport=*, ACCEPT>
Rule 2: <iface=WAN, srcip=*, srcport=*, dstip=*, dstport=*, DROP>

Figure 4.1: A Stateful Firewall in an Enterprise Network

Deployment model: In an enterprise network, stateful firewalls (Figure 4.1) are typically con-

figured to drop all external packets that do not belong to an established connection initiated from

an internal host. For instance, the firewall must allow internal hosts to initiate a connection to

google.com and also allow the return “data” packets from google.com to arrive at the host

that initiated the connection. This is the “stateful” part; if we only had simple stateless rules to

allow traffic from internal hosts to google.com and block incoming traffic from the Internet,

then the return data packets from google.com would never arrive.

More generally, suppose a TCP packet with srcip:A, srcport:Ap, dstip:B, dstport:Bp enters

via an external interface, the firewall checks whether the connection from srcip:B, srcport:Bp,

dstip:A, dstport:Ap is in the established state. If it is, the packet will be forward and otherwise,

this packet will be dropped.

80

The enterprise scenario we consider differs from other scenarios such as censorship. In the

censorship scenario, FWs are typically configured with the “default-allow” policy for packets

originating from both directions. However, these firewalls will inject RST packets (to terminate

the connection) if a client accesses “blocked” content. As such, the evasion attacks we focus on

are orthogonal to those considered in censorship circumvention (e.g., [69, 179]).

I FW E
SYN

SA

DATA

(a) Scenario 1

I FW E
SYN

SYN

RST

SA

RST

DATA

(b) Scenario 2

Figure 4.2: Packet sequences played against a firewall (anonymized vendor, FW-1); Sce-

nario 1 is an identical sequence from the motivating scenario (Figure 1.4b in Section 1.1),

but we present here again for ease of reference

4.1.2 Motivating Scenarios

Note that the logic of how the firewall decides to a particular action to the current state plays a

critical role in determining whether a packet is dropped or not. Therefore, a flawed implemen-

tation on how a firewall tracks a connection state can have a detrimental effect on the security

posture. To motivate this, we use concrete evasion attacks we uncovered with a real commercial

FW-1.

Before discussing the concrete attack scenarios, we first showcase vulnerable sequences of

packets (which can be exploited for attacks). Specifically, this leads to a firewall allowing a

DATA packet from an untrusted external host (E) to an internal host (I).

To explain these suspicious sequences, recall a normal (standard) packet sequence we have

81

shown in Figure 1.4a from Section 1.1. This is a sequence a firewall expects to see. Let us

elaborate on this standard packet sequence. An internal host wants to access google.com

and initiates a connection setup by sending a TCP SYN. Google.com acknowledges this

by sending a SYN-ACK (SA for short), followed by an ACK from an internal host, thereby

completing a proper three-way handshake. At that point, an internal host and google.com can

freely exchange DATA packets. Now, we show two strange sequences of TCP packets, that will

start allowing a DATA packet from an untrusted external host; these strange packet sequences

drive a connection state to some limbo (vulnerable) state and that is when the firewall also starts

to accept a DATA packet from untrusted external hosts.

Scenario 1 (Incomplete handshake): As seen in Figure 4.2a, the FW-1 allows a DATA packet

from google.com “even before” a three-way TCP handshake has been completed; i.e., the

firewall is not checking whether the last ACK packet from an internal host has been sent or not.

Such a simple error highlights that implementing even a very basic stateful semantics of checking

for a complete handshake can be erroneous. In practice, this problem is much worse than what

it appears as such an error can manifest in so many different ways (i.e., polymorphic variants of

this attack as we will see in Section 4.5.2).

Scenario 2 (SYN retries + Teardown): We now show a more complex and a different sequence

(Figure 4.2b) from the Scenario 1. This scenario exploits an implementation error in how a FW-

1 FW handles a combination of SYN retries and connection teardown (While prior works on

censorship evasion (e.g., [69, 179]) find similar attacks, their focus is orthogonal as their deploy-

ment and the system model differs. Their findings do not directly apply to our setting (Section

4.5.1).) Here, an internal host first sends two subsequent SYN packets (like SYN retries). Then,

an external host sends a RST packet, which drives this connection state to some “limbo” state.

After two non-traditional TCP packet exchanges (an internal SA followed by an RST), a firewall

allows a DATA packet from an external host! One may wonder whether all of these 5 packets

are necessary for a firewall to allow a DATA packet. In fact, that is the case as each packet in a

82

sequence modifies the connection state. Further, only after the first two SYN packets, the fire-

wall does not allow a DATA packet for a FW-1 (however, a FW-3 stateful firewall does, which is

motivating our work). These sequences are discovered by our tool and as we discuss in Section

4.4.1, we specifically only output semantically-distinct attacks (from a black-box perspective).

Insider (I)

External Attacker (E)

Internal Network (LAN) External Network (WAN)

VLAN 1

VLAN 2
(CLASSIFIED)

Victim (V)

(can spoof & send) TCP packets①

(malicious) data packets②

Figure 4.3: Attack scenario setup

Attack scenarios: Now, let us think about how such erroneous implementation can lead to

concrete evasion attacks. One precondition for concrete attacks for the above two scenarios is

that an internal host needs to send specific TCP packets (e.g., the first SYN packet in Scenario

1) in coordination with an external attacker. But, this isn’t too difficult as any internal host

can easily spoof the source IP-port and send it outwardly. Consider a case where we have a

compromised insider such as an IoT device (e.g., a smart printer) in the intranet [45, 52]. In

fact, first compromising these IoT devices is increasingly gaining traction for hackers due to IoT

devices’ prevalence in today’s enterprise network [49] and their lack of built-in-security [45].

In fact, it is recently reported that Russian-state hackers, Strontium (APT28), have been caught

attempting to hack IoT devices (e.g., an office printer, a video decoder) to gain entry points

into their targets’ internal networks [47]. Such an insider (Figure 4.3) may lack direct access

to the target victims as it is not located in the same VLAN as the target victims (e.g., router,

end host). However, this insider colludes with an external attacker and exchange a sequence of

pre-defined TCP packets (including Step 1). Finally, a firewall allows a DATA packet directed

at the target victim (Step 2). The best micro-segmented network with VLANS using the best

83

practices today [43] is also vulnerable to these attacks.

V I FW E
SYN

SA

DATA

Figure 4.4: Scenario 1 mapped to an attack setup

Figure 4.4 shows the Scenario 1 mapped to a concrete attack. In this attack, an insider

first sends a SYN packet with a source IP-port that of a victim, followed by a SA from an

attacker. Then, an external attacker can circumvent the firewall policy by sending a DATA

packet (containing malicious payload) at a victim. It is outside the scope to precisely guarantee

whether all victim software stacks actually accept and process this data packet as such. As such,

we observe that there are many cases (e.g., routers, IoT devices) that will accept the data packet.

At this point, the attacker gained an entry into a highly-classified VLAN. An attacker could

either compromise this target victim or use this victim as another stepping stone to enable more

sophisticated multi-stage attacks.

Attack characteristics: Having described motivating examples, we now derive several charac-

teristics of these attacks:

• Semantic evasion attacks are subtle: These attacks exploit subtle implementation nuances in a

firewall’s logic of tracking a per-connection state. Specifically, to make these attacks to work,

one needs to carefully construct packet headers with the above TCP flags and seq numbers.

Moreover, these attacks may be specific to each firewall vendor’s implementation.

• Semantic diversity of evasion opportunities: As we saw brief examples for FW-1, as these

attacks the fundamental issue in tracking per-connection states, there tend to be multiple such

attacks exploiting diverse mechanisms (e.g., handling teardown packets, incomplete hand-

shake, SYN retries). Further, even within attacks that exploit a similar mechanism, there are

multiple polymorphic variants that are semantically different [146] (detail in Section 4.5) that

84

explore the different stateful semantics.

The above suggests that we need a general and robust framework to uncover such evasion

attacks. Given the subtle and implementation-specific nature of these attack opportunities and

stateful behaviors involved, strawman solutions such as randomly generating packet sequences

are inefficient (Section 4.5).

4.2 Pryde Problem Overview

In this section, we formulate the problem of enabling a model-guided approach and formulate

our problem. We provide an overview of the Pryde workflow and discuss the key challenges in

realizing our workflow.

4.2.1 Threat Model

We begin by scoping the adversary’s goals and capabilities.

Adversary goals and capabilities: The attacker’s goal is to circumvent the firewall and send a

DATA packet to an “unreachable” internal victim. We assume the following attacker capabilities

and constraints.

• Send constructed packets: An external attacker can craft TCP packets and send them to internal

hosts.

• A colluding insider with minimal privileges: The attack may optionally have a “weak” insider

that can spoof the source of the TCP packets and send them to external hosts. A “weak”

insider cannot directly send packets to the victim; e.g., internal firewalls or VLAN policies

may prevent this.

• Firewall-specific knowledge: The attacker does not know the rules that the firewall is con-

figured with. We assume the attacker knows the firewall vendor/version; if not this can be

obtained by known fingerprinting mechanisms such as banner grabbing [44]. We assume the

85

attacker has no visibility into the internal implementation or code. However, we do assume that

the attacker can have offline “black-box” access to the firewall (e.g., obtain a virtual firewall

appliance [40]).

4.2.2 Problem Formulation

Input and output: Pryde works in a black-box setting where it does not require access to the

source code or internal logic. Pryde takes as inputs: (1) firewall binary or virtual appliance; and

(2) a deployment and threat model defining different entities (i.e., an insider, an external attacker)

and their capabilities (e.g., an insider can spoof and send TCP packets). The output of Pryde is

a set of semantically-distinct concrete evasion strategies (we present the definition in Section

4.4.2). Specifically, each concrete evasion strategy is an ordered sequence of input TCP packets

mapped to the corresponding sender (i.e., an insider or an external attacker); an example was

shown in Figure 4.4.

Scope: In this work, we focus on sending a DATA packet from an external attack to an “un-

reachable” internal victim (as defined by the policy). We acknowledge that not all victims may

actually accept and process this data packet. However, we observe that there are many cases

(e.g., routers, IoT devices) that will accept the data packet. Note that the attack’s goal after this

circumvention (e.g., installing back-doors or lateral movement) is outside our scope. Our attack

is a fundamental first step that can enable future attacks.

Challenges: There are two main challenges in enabling our vision. First, the input space is too

large for an unstructured search (i.e., random search). Specifically, as we deal with an adversarial

scenario, we need to consider sequences of packets where each packet can come from diverse

sets (e.g., a sequence of non-standard TCP flags, out-of-window packets, a flow with a flipped

direction). Second, there may be multiple such evasion strategies that could exploit different

features or code paths. While we cannot guarantee coverage, our goal is to discover as many

attacks as possible and also attacks that are semantically different (from the point of view of the

86

Model
Inference

Strategy
Generator

Firewall

Binary

Firewall

model (FSM)

Victim Model (FSM)

Threat Model

Concrete Evasion Strategy

<S1:P1 .. Sn:Pn>

Figure 4.5: Pryde System Overview

black-box analysis).

4.2.3 High-Level Design

A case for a model-guided approach: The evasion attacks we consider exploit nuanced

firewall-specific aspects. For instance, Scenario 2 (Section 4.1) incorrectly allows an external

DATA packet, after SYN retries and teardown packets. That is, identifying such attacks require

carefully-constructed sequences of TCP packets, triggering internal state transitions that will not

be exercised by normal TCP sequences. As a result, strawman solutions (e.g., random fuzzing)

will not discover many of these attacks for many firewalls (Section 4.5.1). Instead, we adopt

a model-guided approach, where we first infer a behavior model of the stateful semantics. We

do note that this model has to be specific to each firewall implementation, since the connec-

tion handling semantics of different firewalls may be different. Having a model enables us to

systematically search over this state-space to discover semantically distinct attack opportunities.

A case for a two-phase approach: One option of a model-guided approach is to couple threat

model encoding with model inference. Unfortunately, this is not extensible as our system and

deployment assumptions change; e.g., modeling a weak insider option would require us to re-

learn the model for each possible scenario of the insider’s capabilities. By decoupling model

inference from attack generation, our workflow is extensible to future threat and deployment

87

models. Thus, Pryde consists of two logical modules (Figure 4.5):

1. Model Inference (Section 4.3): Given a black-box firewall implementation/binary, the Model

Inference engine outputs a Finite-State Machine (FSM) model. This model describes the in-

put and output packets of the firewall in a given connection state. Specifically, Alembic from

Chapter 3 shows the feasibility of blackbox model inference for stateful firewalls [146]. How-

ever, in designing Alembic, we made several simplifying assumptions and focus on inferring

a firewall model under typical or normal packet sequences. Thus, we cannot directly use

Alembic for the context of Pryde; e.g., how a firewall behaves in presence of out-of-window

packets that “interfere” with an existing connection. We address key challenges in extending

Alembic to infer model under more general or anomalous packet sequences.

2. Strategy Generator (Section 4.4): Given a firewall model, we need a systematic way to un-

cover of evasion attacks under the interactions of different entities (i.e., attacker, victim, in-

sider, and the firewall). To this end, in this module, we formulate these system interactions

using SMT and use Z3 [90] to build a custom model checker. We model the problem similar

to bounded model checking [82], where we check if a bounded length path sequence exists.

To uncover semantically different attacks, after finding one attack, we refine our constraints

in the model checker to uncover more semantically-different attacks.

4.3 Model Inference

In this section, we discuss the design of the ModelInference module. Specifically, we recog-

nize that while Alembic (in Chapter 3) is a good starting point, we first elaborate on why it is

fundamentally insufficient for Pryde. Then, we discuss our extension to Alembic to build the

ModelInference module.

88

Input Alphabet

2

10
SYN: lan
SA: wan
ACK: lan;wan
FIN: lan;wan

[lan, SYN] / fwd

[wan, SA] / fwd

[wan, SA] / fwd

[wan, FIN] /
fwd

. . .

. . .

. . .
Output Model

Figure 4.6: An example of an output model and the corresponding input alphabet used by

Alembic (lan for internal and wan for external due to space)

4.3.1 Limitations of Alembic

Let us first recall the design choices we made for Alembic (Chapter 3). Then, we can pinpoint

about why it is insufficient for Pryde. At a high level, Alembic was designed for the verification

and testing workflow, and, hence, assume mostly TCP-compliant (non-adversarial) workloads.

Given this assumption on deployment, Alembic takes an input alphabet (Σ) describing a

“scoped” (TCP-compliant) set of packet types of interest (e.g., TCP SYN from an internal host,

I, to an external host, E, TCP SA from E to I) as shown by Figure 4.6. Further, we propose using

specific optimizations to reduce the size of an Σ. For instance, rather than considering the entire

possible space of TCP headers such as sequence (seq) and acknowledge (ack) numbers (32-bits

each), their system re-writes these seq and ack number of TCP packets during the actual inference

to adhere to the TCP semantics. By doing so, Alembic does not have to search the space of seq

and ack numbers. Given this background, we discuss two key dimensions that render Alembic

insufficient.

1. Need to consider diverse input alphabets: We designed Alembic (Chapter 3) to model the

firewall for mostly TCP-compliant workloads. However, we need to consider adversarial

scenarios (e.g., out-of-window packets) that “interfere” with the TCP-compliant connection

states. For instance, Scenario 2 (Section 4.1) would not have been discovered if we hadn’t

considered an internal SA. While this is just a simple example, we need a systematic way to

89

generate input alphabets to reason about potential evasions.

2. Support for rewriting logic: As this tool, Alembic, makes optimizations to reduce the search

space by rewriting seq and ack numbers during the inference. Unfortunately, we need to

consider adversarial cases where such re-writing logic may not help us to uncover certain

types of evasion attacks. We need to come up with a general way of handling seq and ack

headers during the inference to support various types of input alphabets.

4.3.2 Generating Evasion-Centric Input Alphabets

We discuss how we generate input alphabets (Σ) for the evasion attacks. A strawman solution is

to just generate all possible packets as Σ. Unfortunately, the size of input will grow exponentially

as we need to consider possible combinations of directions, TCP flags, and those TCP packets

that adhere to the TCP semantics and those that do not. Instead, our idea is to come up with an

ensemble of independent Σ where each model learned with a given Σ sheds light on the potential

evasion scenario (i.e., TCP states interfering with packets with the reverse direction). That way,

our method is systematic and extensible to future Σ we may consider.

Further, evasion can happen with or without interfering packets. Hence, we first set a basic Σ

that can reason about attacks using just “non-traditional” sequences of packets (i.e., a sequence

of non-standard TCP flags). Then, we showcase how we generate Σ to reason about interference.

In this work, we only consider interference from packets that share the same bi-directional tuple;

i.e., a TCP packet from lan has source A and destination B and a packet from wan has source

B and destination A. This is a conscious decision as from observations/anecdotes suggest the

firewalls mostly have flaws in processing the state for packets with the same 5-tuples. (It is easy

to extend our design to check if two connections with different source and/or destination interfere

with each other.)

Basic input alphabet: Figure 4.7 shows the two basic input alphabets (Σ). We also denote

abbreviations for input symbols or packet types (e.g., SA and SYN-ACK, DA for DATA).

90

Data Injection (DI) Data Injection with Teardown (DI-T)
SYN: lan
SA: wan
A: lan; wan
DA: wan

SYN: lan
SA: wan
A: lan; wan
DA: wan

Abbreviation:
SA : SYN-ACK
R : RST ; RA: RST-ACK
F : FIN ; FA: FIN-ACK
DA : DATA

R: lan; wan
RA: lan; wan
F: lan; wan
FA: lan; wan

Figure 4.7: Basic Input Alphabet for Alembic

• Data Injection (DI) : This Σ helps to reason about potential circumvention just using the

connection setup packets. This Σ has SYN from lan, SYN-ACK from wan, ACK from lan

and wan, and DATA from wan (left column in Figure 4.7).

Interference input alphabet: We now need to consider Σ to also reason about potential eva-

sion from interference with non-compliant TCP packets; e.g., packets that do not belong to the

same connection (e.g., [69, 179]). Specifically, we observe from anecdotes/prior works that the

firewalls can incorrectly map the state with (1) TCP connection with flipped direction (e.g., SYN

from lan vs wan); and (2) packets with out-of-window seq numbers. These cases are “subtle”

such that these packets share the same 5-tuple. However, if a firewall was implemented correctly,

it should have not been considered so.

In this work, we consider four possible types of interference (IX) input alphabet. Given each

IX set, we append them to the basic Σ to reason about firewall’s behavior when it encounters

both types of packets. While we come up with a representative Σ, our design is easily extensible

for a new Σ. Further, we consider interference from connection setup-relevant packets.

1. Reverse directions (IXdir) : These TCP 3-way handshake packets have flipped direction only;

i.e., SYN coming from the wan network, SYN-ACK from lan, and ACK from wan. The seq

and ack numbers are not out-of-window.

2. Reverse direction and random seq/ack numbers (IXdir
rand): These TCP 3-way handshake pack-

ets have flipped direction and also are out-of-window. Specifically, the seq & ack numbers

are randomly initialized.

3. Reverse direction and random seq/ack numbers (IXdir
conn): This case is similar to the previ-

91

ous case. However, these out-of-sequence packets themselves form a connection; i.e., their

seq/ack are are in-window among themselves.

4. Packets with out-of-sequence (IXrand): These TCP 3-way handshake packets have the same

direction but are out-of-window and randomly initialized.

A generative model for input alphabets: The generative model for the input alphabet is formed

by considering each of the four basic Σ independently. For each basic input alphabet (Σ), we

append the IX set and reason about the firewall’s behavior. This gives a total of 2 basic Σ and ˆ

5 (1 for basic and 4 for interference) “ 10 input alphabet for each firewall. However, note that

during the model interference, the model may not converge for certain firewalls; i.e., Alembic

assumes that the underlying model is deterministic and fail if this is not the case. Hence, if the

model does not converge for the basic Σ, we do not model for the corresponding input alphabet

appended with IX set.

4.3.3 Extending the Inference Algorithm

We now discuss how we enable the model inference under these diverse input alphabets.

Baseline rewriting logic (RWLogicpq): We briefly discuss the seq/ack rewriting logic of Alem-

bic to reduce |Σ| At a high-level, their tool tracks seq and ack of the transmitted packets and

rewrites them during the inference to adhere to the correct semantics. For instance, suppose the

underlying L* plays this packet sequence of length 2: 1) SYN from A to B from the lan network

(SYN:lan), and 2) SYN-ACK from wan. If the firewall forwards the first SYN to a wan interface,

then the seq number of the transmitted SYN is used to update the seq and ack number of the TCP

packets with a source B and a destination A. We refer to this entire logic as RWLogicpseq “ Xq

where X is the initial seq number.

Rewriting logic to support interference set: We now discuss how we adjust this logic to han-

dle the “interference” packets. The beauty of this extension is in the generality of this design

that makes it extensible and general for future Σ to consider. Note that from the IX sets from

92

www.companyname.com
© 2016 Jetfabrik Multipurpose Theme. All Rights Reserved.

RWLogic(seq=X)

Basic
SYN: lan

. . .

IX
SYN: wan

. . .

Σ = #$%&' ∪)*+,-

Interference from
reverse direction

RWLogic(seq=X)

Basic
SYN: lan

. . .

IX
SYN: wan

. . .

Reverse direction &
out-of-window packets

Σ = #$%&' ∪)*-./++,-

RWLogic(seq=X)

Basic
SYN: lan

. . .

IX
SYN: wan

. . .

Reverse direction &
Out-of-window packets
that form connection

Σ = #$%&' ∪)*01//+,-

RWLogic(seq=Y)

Figure 4.8: Rewriting logic to handle interference (IX) set

Section 4.3.2, there are cases where we need to subject only a certain group of packets to rewrit-

ing, or subject multiple groups of packets to independent rewriting (i.e., reasoning when two

connections with the same 5-tuple but initialized with different seq number such as IXdir
conn).

For a systematic design, we group packets accordingly and subject each group to a corre-

sponding rewriting logic (as shown in Figure 4.8). For instance, if we consider an interference

set where only a direction is reversed (i.e., IXdir), then we would subject both the basic and the

IX set to have the seq/ack numbers in-sync (the left side of Figure 4.8 shows both sets being

subject to RWLogicpXq). Now, consider an interference set where these packets have a reverse

direction and have out-of-window seq/ack numbers are (i.e., IXdir
rand). Then, packets in the basic

Σ are subject to RWLogicpXq and packets in the IX set are only randomly initialized and not

re-written during the inference. Similarly, for IX where packets themselves form a connection,

then we will independently rewrite seq and ack for this set (i.e., RWLogicpY q). The internal of

modified implementation of Pryde keeps track of which “set” each packet belongs and decides

if/how the rewriting logic is applied. These are all exposed configurable parameters.

4.4 Attack Strategy Generator

In this section, we discuss how we used the inferred models from Section 4.3 to generate concrete

evasion strategies. We discuss how we encode the entire system model and the interaction be-

tween different entities (Section 4.4.1). Then, we demonstrate how we achieve coverage across

93

distinct attacks (Section 4.4.2).

4.4.1 Encoding the System Model

Strategy Generator takes an input of a firewall (FW) model (from Section 4.3) and the system

model. The system model is defined by (1) a model of a victim, and (2) the threat model that

defines each entity (i.e., insider, attacker) and their capabilities w.r.t. the packets that they can

send. Specifically, we encode into the model checker that an insider can spoof the source IP and

address of another internal host (e.g., victim).

The output is a concrete evasion strategy, which is an ordered sequences of located input

packets (a concept borrowed from prior work in network verification [126]) mapped to the cor-

responding sender (i.e,. an insider or an external attacker).

At a high-level, a located input packet that comes to either of an interface of a firewall and

we define it below:

Definition 8 (A located input packet). A located input packet, σ, is defined by the following tuple

pintf, srcip, srcport, dstip, dstport, tcp, data, pre, seq, ackq: (1) intf , an incoming interface

(i.e., internal or external), (2) srcip, a source IP, (3) srcport, a source port, (4) dstip, a desti-

nation IP, (5) dstport, a destination port, (6) tcp, TCP flags, (7) data, a Boolean indicating the

presence of a DATA (payload), (8) pre, a prefix indicating whether the seq/ack numbers were

rewritten during the inference to follow the TCP semantics, (9) seq, a sequence number , (10)

ack, an acknowledgement number. For (9) and (10), we use a variable such as X, X+1 to denote

a relation across packets.

A model of a firewall (from Section 4.3) is a Mealy machine and is defined by the following

tuple pQ,∆,O,Φq: (1) Q, a set of states, (2) ∆, a set of input packets, (3) O, a set of output

packets, and (4) Φ, a set of transitions. Similarly, a model of a victim is defined in the same

manner as a firewall.

94

Encoding a firewall as a function of time: As mentioned, a concrete evasion strategy is an or-

dered sequence at discrete timesteps; i.e., we need to model the progression of time as a function

of timesteps. For instance, when a firewall gets an event (i.e., get a located input packet), the

timestep T advances to T `1. Such an event changes the “state” of the entire system. Therefore,

we use the following functions to describe a state of a firewall at a given timestep, T:

1. State : QˆT Ñ Bool. Boolean function that indicates if a given state of the firewall, s P Q,

occurs at a timestep T;

2. Input : ∆ ˆ T Ñ Bool. Boolean function that indicates if an input packet, σ P ∆, occurs at

a timestep T;

3. Output : O ˆ T Ñ Bool. Boolean function that indicates if an output packet, o P O, occurs

at a timestep T;

4. Trs : Φ ˆ T Ñ Bool. Boolean function that indicates whether a specific transition, φ P Φ,

occurs at a timestep T. A particular transition is determined by an input packet (σ), output

packet (o), and a current state (s).

We determine the possible sending entities based on the pre-specified thread model. As

dictated by the threat model, an insider can spoof the source IP as a victim. Our encoding is

extensible and more attributes can be easily be added.

Encoding constraints: We briefly describe how we encode these entities. Specifically, we

encode a firewall function using propositional logic with the following constraints:

• At a given timestep T, we encode the following restrictions: (1) exactly one state occurs, (2)

at most one input packet occurs, (3) at most one output packet occurs, and (4) exactly one

transition happens.

• To encode a firewall input model (a Mealy machine), we add pre- and post-conditions to spec-

ify the state transition.

Intuitively, a transition φj at a timestep T implies occurrences of a specific state and an arrival

of a located input packet at the same timestep T. After a transition φj happens, then the state of

95

a firewall changes and as a result, we observe a corresponding output packet (defined by a Mealy

machine). This can be represented as:

pStatepsi,Tq ^ Inputpσi,Tqq ùñ
ł

j

Trspφj,Tqq

Trspφi,Tqq ùñ pStatepsi`1,T` 1q ^ Inputpσi`1,T` 1q

^ Outputpoi`1,T` 1qq

We also encode the victim’s model using a similar logic. If an attacker’s packet reaches the

victim, then the next input is dictated by the victim’s model (where in our current victim, a

victim accepts all TCP packets). We discuss how this model could be extended in Section 6.3.1.

Encoding the goal: The goal is to find an ordered sequence of σ that leads to the firewall to

be “evadable” at a given timestep T; i.e., a DATA packet from an external attacker reaches an

internal victim.

4.4.2 Discovering Semantically-Different Attacks

To discover concrete attack strategies (i.e., sequences of a located input packet mapped to a

corresponding sender), we leverage the idea from a bounded model checking (BMC) [82] where

we find counterexamples with a bounded length. BMC is a common technique to find bugs in

software that can be identified within a few iterations (i.e., timesteps in our case). By default, the

solver terminates upon finding one counterexample. To find a new counterexample, we must add

additional constraints to block this counterexample and make a new call to the solver. However,

this procedure would find many attacks that may be semantically-identical. Since the model-

checker can be time-consuming, instead of outputting thousands of semantically-identical attacks

and then do post-processing, we made a design decision to encode additional constraints that

block semantically-identical attacks during the search. This procedure is repeated until no more

counterexamples are discovered.

96

We now discuss the invariant of the attacks we output and the refinement strategy we use to

enable the discovery of semantically-distinct attacks.

Loop-free invariant: To efficiently search over the state space of a firewall’s model, we want to

output an attack string that uses a minimum of packets in traversing the state-space of a firewall.

Hence, we encode a loop-free invariant into our model.

Definition 9 (Loop-free invariant). A state, si, can appear at most once in a state sequence

s1 ¨ ¨ ¨ sn transitioned by an attack sequence, p1 ¨ ¨ ¨ pn, where pi is a located input packet.

Refinement strategy: Given this loop-free invariant, when we discover an attack packet string,

a, composed of a sequence of located input packets, tp1 ¨ ¨ ¨ pnu, we exclude the exact packing

string match. Hence, our refinement strategy corresponds to exclude equivalent strings.

Semantically-distinct attacks: Having defined the loop-free invariant and the refinement strat-

egy, we can define semantically-distinct attacks. Note that, we can only provide this definition

given the same input template (where the input space is identical).

Definition 10 (Semantically-distinct attack). Given two loop-free attack strings, a and a1, they

are semantically distinct if a ‰ a1.

By construction, the attack sequences (strings) generated by our tool are loop-free (from

Def. 9). Additionally, as we do an exact string matching as a refinement strategy, all attacks that

we output are semantically distinct.

4.5 Evaluation

System implementation: We implemented Pryde in Java atop Learnlib [162], an implementa-

tion of L* [62] for the Model Inference. We also built a custom Python based model checker

using the Z3 SMT solver [90]. We implement other supporting modules for packet generation

97

using Scapy [27]. Additionally, we have an automated framework to spin up the ModelInference

in Amazon EC2 or Cloudlab [94].

Setup: We use 4 off-the-shelf firewall implementations (i.e., FW-1, FW-2, FW-3, FW-4); three

of them are proprietary firewalls and one has an open-source implementation (but we emulate

it in a black-box manner). Two proprietary firewalls (i.e., FW-1, FW-2) were from the Amazon

EC2 marketplace [40] and were set up in Amazon EC2. We ran FW-4 and FW-3 in VMs in

VirtualBox [35] in CloudLab [94]. We ran the Strategy Generator to find attacks of length 1 to

7. To test concrete attacks, we set up a sandbox network with an insider, a victim, an external

attacker, and the stateful firewall (configured to only allow TCP traffic from external hosts on al-

ready established connections as discussed in Section 4.1). We inject the packets via attacker and

insider as dictated by the concrete attack strategy. For each firewall, we consider the following

candidate input alphabets to identify evasion opportunities:

1. Baseline: Basic Σ without involving interference packets

2. IXdir: Interference by reverse direction only;

3. IXdir
rand: Interference by reverse direction and out-of-window packets with random seq and ack

numbers;

4. IXdir
conn: Interference by reverse direction and out-of-window packets that adhere to the con-

nection semantics w.r.t. seq and ack numbers;

5. IXrand: Interference by out-of-window packets with random seq and ack numbers.

For each template, we run the model inference and the attack generation for 1) Σ involving

connection setup packets (i.e., Data Injection from Section 4.3.2), and 2) Σ for Data Injection

with Teardown.

4.5.1 Aggregate Summary of Attacks

We first start with an aggregate summary and discuss the effectiveness of the strawman solutions.

98

0 1000 2000 3000 4000 5000 6000 7000 8000
Number of semantically-distinct attacks

FW-4

FW-3

FW-2

FW-1

Baseline IXdir
rand IXdir

conn IXdir IXrand

Figure 4.9: Aggregate summary of semantically-distinct attacks found against 4 firewalls

across all input templates

[1,3] 4 5 6 7
Length of an attack sequence

100

101

102

103

17

11
6

55
2

19
05

41

14
7

54
2 65
3 97

2

3

48

31
3

16
92

61
64

2

6

24

72

19
0

FW-1 FW-2 FW-3 FW-4

Figure 4.10: Breakdown of the distinct attacks we found for each attack length against all

firewalls (Y-axis on a log scale)

Aggregate summary: Figure 4.9 shows the number of successful evasion attacks across all

input alphabets. We found 2,591 semantically distinct attacks against FW-1, 2,355 against FW-2,

8,220 against FW-3, and 294 against FW-4. These attacks are loop-free and semantically distinct

given Σ (Section 4.4.2). (For attacks across templates, we compressed identical attack strings.)

From the Baseline templates, we have 1 attack (out of 294) for FW-4, 1253 (out of 2,591) for

FW-1, 844 (out of 2,335) for FW-2, and 1,253 (out of 8,220) for FW-3. The attacks found using

99

this template are the ones that come from non-traditional sequences of the TCP packets. The rest

of the templates help Pryde to discover attacks that come from the TCP packets (with identical

5-tuple) inferring the seq/ack numbers and/or other TCP connection with the reverse direction.

For completeness, we also present the number of states for the inferred models in Table 4.1.

FW-1 FW-2 FW-3 FW-4

Template (1) (2) (1) (2) (1) (2) (1) (2)

Baseline 8 23 3 12 4 56 2 2

IXdir 14 27 14 15 4 63 2 3

IXdir
rand 11 36 5 16 10 63 57 N/A

IXdir
conn 15 50 7 11 10 78 30 N/A

IXrand 10 10 3 11 18 62 55 247

Table 4.1: Number of states for inferred models (N/A means that the model inference did

not converge); (1) involves only connection setup, DI, and (2) involves teardown packets,

DI-T

The number of distinct attacks is correlated with the number of states (i.e., the complexity

of the stateful semantics) and whether that attack can be discovered with the bounded length.

We see a relatively smaller number of attacks for FW-4 as (1) the size of the inferred FSMs are

smaller in contrast to FW-3 (i.e., 2 for Baseline with teardown vs. 56 for FW-3), or (2) for one

large FSM (more than 200 states), we did not find an attack within a bounded length. Here,

the take away is that there are hundreds to thousands of attacks leading to circumvention; i.e.,

patching one such code-path or sequences will be insufficient.

We also summarize the successful attacks based on the length of an attack sequence (Fig-

ure 4.10), where the y-axis is in a log-scale. We see a magnitude higher number of attacks for

larger attack lengths. While all attacks are equally important, the attacks with longer sequences

are likely more subtle in exploiting the implementation error/nuances of the firewalls (more detail

in Section 4.5.2).

100

Attack length
Total

1 2 3 4 5 6 7

generated attacks 1 5 25 125 625 3,125 15,625 19,531

With an insider

FW-1 0 0 0 0 0 1 2 3

FW-2 1 5 25 125 625 3,123 15,618 19,522

FW-3 0 0 0 0 0 0 0 0

FW-4 0 0 1 3 15 91 586 696

Table 4.2: Number of raw attacks found using random fuzzing

Comparison with strawman solutions: We consider a random fuzzing strategy that randomly

generates packet sequences of lengths 1 to 7; the last packet in a sequence is a DATA packet from

an external attacker. Hence, we only have one attack for a length of 1. For an attack sequence of

a length, L` 1, we generate 5ˆ the number of attacks for a length of L (giving a total of 19,531

sequences). Now, to pick each TCP packet in a sequence, we randomly sample values from

“valid” TCP flags (i.e., SYN ¨ ¨ ¨ , and a DATA packet), a direction (i.e., internal vs. external),

and concrete values of seq/ack numbers. Despite the strategy being called the random fuzzing,

we only generate “valid” TCP packets (i.e., being generous). Further, as we lack information

on the state each packet traverses to enforce the loop-free invariant and the refinement strategy

(Section 4.4.2), we only report the “raw” number of attacks. (It turns out non-trivial and there is

no one-to-one mapping to project this randomly-generated sequence to our inferred models.)

Note that using an insider was a pre-condition found by Pryde and this unconventional (but

realistic) threat model is one of our insights. However, even if we consider the fuzzing strategy

with an insider (i.e., being extremely generous to a fuzzing strategy), this strategy is highly

ineffective. Specifically, for FW-3 and FW-1, the strategy discovers only 0 to 3 raw attacks

(from 20K generated ones). Table 4.2 shows the results. The results, 3 attacks against FW-1

and 0 against FW-3, contrast with 2,591 distinct attacks we discovered against FW-1, and 8,220

against FW-3. For FW-4, the random fuzzing found 696 raw attacks (may not necessarily be

101

distinct). This is natural as the state space of FW-4 is quite simplistic (i.e., only 3 states for

the IXdir with teardown packets). Hence, it is relatively easy to get to a goal state. FW-2 has

a close to 100% success rate. That is, as we will see in Section 4.5.2, FW-2 allows a DATA

originating from an external network (even with an explicit “drop” rule). Hence, it is very easy

for any strategy to generate working evasion strategy for FW-2. At a high-level, this strategy is

ineffective and not robust across firewall implementations.

We briefly also evaluate the strategies found by a related work [69] on censorship evasion,

which is an orthogonal problem to our own. The system model in this body of work [69, 179] is

considerably different as these censorship firewalls need to allow users accessing (un-censored)

contents and, hence, has a default-allow policy. However, we still evaluated the 24 published

strategies from Geneva. To map their attacks to our setting, an external web server maps to our

internal victim, serving content, and their internal evader maps to our external attacker (evading

an enterprise firewall). Across all 4 firewalls, none of these 24 strategies worked (i.e., a victim

doest not receive a DATA packet). This is even true for FW-2 as the initial SYN from an external

attacker is dropped (due to the default-drop policy). We discuss more about this body of work

and also broadly, about applying genetic algorithms or model-free approaches for our problem

context in Section 6.3.

FW-1 FW-2 FW-3 FW-4
Attacks Taken From

FW-1

FW-2

FW-3

FW-4A
tta

ck
s

Te
st

ed
 A

ga
in

st 21.4 44.6 23.5

100.0 100.0 100.0

87.5 50.7 35.0

98.8 65.6 90.6 30

45

60

75

90

Figure 4.11: Cross-validating the discovered attacks by taking successful attacks against a

firewall (x-axis) and testing on a firewall (y-axis) and reporting the attack success rate

102

Pairwise overlaps of successful attacks: First, we took the successful attack sequences from

each vendor and replayed the sequence on other vendors. Figure 4.11 shows the results. For

FW-2, attacks from the other three vendors lead to successes. This is because the FW-2 forwards

a DATA packet to an internal host in all states (more details in Section 4.5.2). However, other

than FW-2, we see low success rates for attacks seen in FW-4 and FW-2 on other firewalls; only

23.5% of attacks from FW-4 work on FW-1. We revisit this when we look at the structure of

these attacks in-depth.

4.5.2 Structure of Evasion Attacks

Clustering attack sequences: To help us shed light on the structure of the uncovered attack

sequences, for each firewall vendor we cluster the packet sequences as follows. In our clustering

formulation, each data point is an attack sequence composed of an ordered sequence of located

input packets (Def. 8). From each located packet, for the clustering purposes, we exclude the

specific values used for seq/ack numbers but a prefix (that indicates whether the seq/ack numbers

was re-written to comply to the TCP semantics). For each pair of sequences, we compute the

Levenshtein edit distance. Given this metric, we run a complete-linkage hierarchical clustering

algorithm, with a pre-specified target number of clusters. As the attacks differ across vendors,

we used a different number of clusters (3 to 7) for each firewall vendor.

For each cluster, we report a concrete attack sequence with the shortest attack length as a

canonical example. We also depict other polymorphic variants within the cluster as required.

Similar to Section 4.1, we use timing diagrams to specify these canonical attacks. In our dia-

grams, V refers to the victim, I is the insider, and E is the external attacker. A “dotted” line

indicates whether a non-data packet reaches a victim. A bold line means that a DATA packet

reaches a victim (i.e., successful circumvention). Further, each label in a line specifies the (TCP

flag, seq, ack) from a located input packet; we use abbreviations for TCP flags (e.g., S for SYN,

DA for DATA).

103

V I FW E
[S,X,0]

[SA,X,X+1]
[RA,X+1,X+1]

[DA,X+1,X+1]

(a) Incomplete handshake (C1)

V I FW E
[S,X,0]

[R,X,0]
[R,X+1,0]
[A,X+1,X]

[RA,X,X+1]
[DA,X,X+1]

(b) SYN + RST (C2+C3)

V I FW E
[S,X,0]

[S,Rand(),Rand()]

[SA,X,X+1]
[DA,X+1,X+1]

(c) Simultaneous open (C4)

V I FW E
[S,X,0]

[S,X+1,0]
[R,X,0]
[SA,X+2,X]

[R,X,0]
[DA,X,X+3]

(d) SYN retries (C5)

V I FW E
[S,X,0]

[S,X+1,0]
[R,X,0]

[R,X+2,0]
[A,X+2,X]

[R,X,0]
[DA,X,X+2]

(e) SYN retries variant (C5)

Figure 4.12: Evasion attacks against FW-1 across 5 clusters.

FW-1: From 2,591 attacks, we learned 5 clusters of size 2057, 163, 147, 144, and 80, respec-

tively described below:

• C1) Incomplete handshake and variants. Scenario 1 (Figure 4.4) from Section 4.1 is the

shortest-length attack in this cluster. Here, the firewall allows a DATA packet just after seeing

an SYN from an insider followed by a SYN-ACK from an attacker. A natural question is

whether patching this specific sequence may remove this vulnerability. Unfortunately, this is

not the case. Figure 4.12a shows other polymorphic variants that is more subtle and involves

the connection state being “disrupted” by a teardown packet (i.e., RA). We also find hundreds

104

of variants traversing other parts of the firewall state-space; i.e., patching this problem can be

non-trivial as an attacker may use other sequences.

• C2+C3) SYN disrupted by RST or RST-ACK and variants. The next two clusters con-

tain attacks involving an initial SYN packet disrupted by an external RST packet (C2) or a

RST-ACK packet (C3). The shortest sequence in this cluster is 6, indicating this attack is

subtle; i.e., random fuzzing cannot discover these. Figure 4.12b shows that after an insider

sends a SYN followed by a RST packet from an attacker, an insider and an attacker exchange

three additional TCP packets, leading to circumvention of a DATA packet. There are many

variants of this basic attack as well (not shown for brevity).

• C4) Simultaneous open and variants. The fourth cluster with 144 attacks exploits how the FW-

1 handles the case where two SYN packets are concurrently sent from both directions. (This

was found using the IX templates.) Figure 4.12c shows that in the shortest attack sequence.

After the first SYN from an insider, the attacker sends a SYN packet, which drives the firewall

to another state (i.e., simultaneous open). After that point, the attacker sends a SYN-ACK

followed by a DATA packet, reaching the victim. Again, we find many variants that explore

the other regions of the state space using a variety of TCP flags (e.g., FIN-ACK, RST, and

even DATA packets).

• C5) SYN retries and variants. The last cluster of 80 attacks exploits possibly incorrect han-

dling of connection state after SYN retries. Figure 4.12d shows the shortest attack of length

6. We may think that to exploit SYN retries, we need a SYN-ACK to drive the firewall to

an incomplete handshake state (similar to C1). However, we also find an interesting variant

(Figure 4.12e) that does not involve any SYN-ACK packet to exploit the SYN retries feature!

One invariant we observe here is that the first SYN packet that needs to be sent from an

insider. However, as we will see shortly, this is not the case for other vendors (i.e., FW-2).

FW-2: We found 4 clusters of size 824, 806, 422, and 303, respectively. Recall that (Section

4.5.1), FW-2 allows a DATA packet from an external attacker even with an explicit drop rule

105

V I FW E
[A,X,0]

[FA,X,X]
[DA,X+1,X]

(a) Internal ACK (C1)

V I FW E
[A,X,0]

[A,Rand(),Rand()]

[R,X,0]
[S,X,0]

[A,X,X+1]
[S,Rand(),Rand()]

[DA,X,X+1]

(b) Internal ACK var. (C1)

V I FW E
[S,X,0]

[A,X,X+1]
[SA,X,X+1]

[DA,X+1,X+1]

(c) Internal SYN (C2+C4)

V I FW E
[S,X,0]

[A,X,X+1]

[S,Rand(),Rand()]

[SA,X,X+1]

[R,X+1,0]

[FA,X+1,X+1]

[DA,X+1,X+2]

(d) Internal SYN (C2+C4)

V I FW E
[DA,X,0]

(e) DA allowed (C3)

V I FW E
[A,Y,0]
[S,Y,0]

[DA,X,0]

(f) External ACK (C3)

Figure 4.13: Evasion attacks against FW-2 across 4 clusters

(Figure 4.13e).

• C1) Internal ACK and variants. Attacks in this cluster use an external ACK from an attacker

as the first packet. Figure 4.13a shows the shortest example. After an internal ACK followed

by an external FIN-ACK (FA) packet, an attacker can circumvent and send a DATA packet.

It is surprising that an ACK transitions the connection state without a SYN packet! This is the

largest cluster and again has many variants (not shown).

• C2+C4) Internal SYN and variants. The second and the fourth clusters entail using an internal

SYN packet followed by non-traditional packet sequences. Figure 4.13c shows one shortest

106

example and Figure 4.13d shows an attack of length 7. This is interesting as for the other 3

firewalls, having the first SYN was a requirement but for FW-2, this is just 2 clusters out of 4.

• C3) External TCP packets with ACK flags and variants. This cluster involves a first TCP

packet with an ACK flag (e.g., a DATA packet with an ACK bit or an ACK packet). The

shortest attack involves one DATA packet (Figure 4.13e), but there are numerous variants

involving a range of lengths.

V I FW E
[S,Rand(),Rand()]

[SA,X,0]
[F,X+1,0]

[DA,X+2,0]

(a) Incomplete handshake (C1)

V I FW E
[S,Rand(),Rand()]

[S,X,0]
[SA,X,X+1]

[FA,X+1,X+1]
[DA,X+2,X+1]

(b) SYN retries (C2+C3)

V I FW E
[S,X,0]

[A,X+1,0]
[SA,X,X+1]

[RA,X+1,X+1]
[DA,X+1,X+1]

(c) SYN + ACK (C5)

V I FW E
[S,X,0]

[S,X,0]
[DA,X+1,X+1]

(d) Simul. open (C6)

V I FW E
[S,X,0]

[SA,Rand(),Rand()]

[S,X+1,0]
[S,Rand(),Rand()]

[SA,X,X+2]
[DA,X+1,X+2]

(e) Multiple SYN (C7)

Figure 4.14: Evasion attacks against FW-3 across 7 clusters

FW-3: We identify 7 clusters of sizes 7,621, 212, 198, 63, 58, 37, and 31, respectively.

• C1+C4) Incomplete handshake and variants. The attacks in these clusters exploit a connection

state being disrupted after an incomplete handshake. Figure 4.14a shows an example where

after the initial SYN and SYN-ACK exchanges, a firewall seeing a FIN-ACK packet leads

107

to a circumvention. Cluster 4 is also a special case where the packet disrupted an incomplete

handshake is a FIN-ACK packet (Figures not shown).

• C2+C3) SYN retries + an external SYN-ACK and variants. The attacks in these clusters

exploit a connection state being disrupted. Figure 4.14b shows an example where after SYN

retries, followed by an external SYN-ACK packets and other TCP packets lead to a circum-

vention.

• C5) Internal SYN+ACK (optional) variants. The shortest attack in this sequence is identical

to that of a FW-1’s attack. Specifically, after a SYN followed by a SYN-ACK packet, the

FW-3 allows an external DATA packet.

Other attacks in this cluster exploit a combination of an internal SYN and ACK packets.

Figure 4.14c shows such an example. This cluster is quite interesting as these attacks are

neither simultaneous open, SYN retries nor an incomplete handshake, but rather some strange

packet combinations.

• C6) Simultaneous Open and Variants. Figure 4.14d shows an example that only involves

3 attack packets. That is, after the SYN exchanges, the firewall directly allows an external

DATA packet. This is in contrast with the attacks against FW-1 (Figure 4.12c) and FW-4 (left

of Figure 4.16) exploiting simultaneous sequence; these require longer sequences. However,

in the case of FW-3, only after SYN exchanges, an external DATA packet is allowed! There

are many variants that also required a longer attack path (now shown).

• C7) Multiple SYN packets and Variants: Attacks in this cluster involve multiple SYN packets

in both directions. Figure 4.14e shows such an example. Explaining this fully is outside our

scope; we posit that each packet is responsible for affecting the connection state, and hence,

critical in enabling an attack.

FW-4: We clustered FW-4 attacks using 3 clusters. From 294 attacks, we learned 3 clusters of

sizes 199, 84, and 11, respectively.

• C1) SYN+ (optional) ACK and variants. Many attacks in this cluster contain some combi-

108

V I FW E
[S,X,0]

[DA,X,X+1]

(a) Incomplete handshake(C1)

V I FW E
[S,X,0]

[A,Rand(),Rand()]

[R,..,..]

[DA,X,X+1]

(b) SYN+ACK and var. (C1)

Figure 4.15: Evasion attacks against FW-4 exploiting SYN + (optional) ACK from (C1)

nation of internal SYN and ACK packets. Some also exploit an incomplete handshake (Fig-

ure 4.15a). After the initial SYN packet from an insider, the FW-4 forwards a DATA packet

from an attacker to otherwise an unreachable victim. The right side of Figure 4.15 shows an-

other attack where 3 packets are injected. That is, after the initial SYN followed by an ACK

from an attacker, the FW-4 replies with a RST packet. However, an attacker can send a DATA

packet. This was flagged as a distinct attack from the previous one as the state space traversed

differs.

• C2) Simultaneous open and variants. Attacks here exploit the simultaneous open mechanism

(Figure 4.16a). Again, the shortest attack length is 6, indicating the subtlety required (and

contrasting with FW-3 which had an attack sequence length of 3 as shown in Figure 4.14d).

Interestingly, a FW-4 sends RST packets when it sees unexpected TCP packets (unlike, FW-1,

for instance).

• C3) SYN+ multiple DATA and variants. The last cluster is interesting in that these attacks use

multiple DATA packets (Figure 4.16b). The intermediate DATA packets are required to drive

the connection state but are dropped by a firewall (who replies with a RST packet). However,

eventually, the firewall allows the third attempt! While omitted for brevity, we find multiple

variants.

109

V I FW E
[S,X,0]

[S,Y,0]

[DA,X,X+1]

[R,..,..]

[SA,X+1D,X+1]

[R,..,..]

[S,X+1,0]

[DA,X+1D+1,X+2]

(a) Simul. open (C2)

V I FW E
[S,X,0]

[A,Rand(),Rand()]

[R,..,..]

[S,Rand(),Rand()]

[DA,X,X+1]

[R,..,..]

[DA,X+1D,X+1]

[R,..,..]

[DA,X+2D,X+1]

(b) SYN+multiple DATA (C3)

Figure 4.16: Evasion attacks against FW-4 from (C2) and (C3)

4.6 Other Related Work on Firewall Policy Checking

We now discuss the related work specific to Pryde. Specifically, we discuss orthogonal efforts

that test and verify whether the firewall ruleset is correctly configured (e.g., [54, 56, 184]).

These efforts are orthogonal as Pryde (and other related efforts we presented in Chapter 2) finds

attacks that exploit the subtle implementation nuances as opposed to testing or verifying the

correctness of firewall ruleset. Many of them use abstractions such as Binary Decision Diagrams

(FIREMAN [184]) or a directed graph [55] to verify the FW ruleset. Further, the work by El-

Atawy et al. [54] generates test cases to identify misconfiguration by designing a mechanism to

reduce the search space. At a high-level, these works are orthogonal to Pryde since they do not

focus on discovering implementation errors but on how the rules are configured.

4.7 Countermeasures

In the short term, we envision two fixes. First, vendors could use our generated models and attack

strategies and identify bug fixes. While fixing such logic bugs completely may be difficult, as a

110

starting point, we could focus on fixing bugs up to a length X. Here, the models learned from

AmpMap could help narrow down the exact code region or path for any given attack sequence.

We envision doing this iteratively; i.e., after patching specific vulnerable sequences, we can

rerun AmpMap to validate and identify new evasion attacks. Second, operators can use our

attacks to synthesize policies for traffic normalizers [114]. Some of our post-processing analysis

for summarizing the patterns of attacks may help in this process (e.g., generating signatures).

A longer-term option would be to use some type of program synthesis or formal verification

techniques to generate the FSM handling parts of the firewall that are correct by construction.

4.8 Summary

Stateful firewalls are the “workhorse” of operational network security but are surprisingly hard

to implement correctly. As such, vulnerabilities in the semantics of the stateful processing can

lead to fundamental sources of evasion attacks that can manifest even if the policies are config-

ured correctly. Our work on Pryde automatically synthesizes evasion strategies with a model-

guided approach by taking as input only a black-box firewall implementation. Specifically, our

model-guided workflow is inspired given that these attacks exploit nuanced implementation er-

rors. Pryde build upon Alembic to enable a scalable model inference to reason about adversarial

scenarios. Pryde is extensible and can be used for analyzing a variety of scenarios, though in this

work as a starting point we focus on the circumventing a DATA to a victim host. Our analysis of

multiple production-grade firewalls reveals that: 1) there are more than hundreds (or a thousand

for some cases) of distinct attack sequences for each firewall; and 2) these attacks are subtle that

would be difficult to discover if we had done them manually or used structure-free approaches.

111

Chapter 5

AmpMap: Accurately Measuring Global

Risk of Amplification Attacks

The Problem: Many recent high-profile Distributed Denial-of-Service (DDoS) attacks rely on

amplification [154, 165]. If a source IP address can be spoofed, any stateless protocols in which

the response is larger than the query can be abused. While there are a variety of best practices

to mitigate this situation [3, 4, 5] given that spoofing is possible, they are unevenly applied.

Spoofing the victim’s IP may be avoidable in a future Internet (e.g., [61]), but it continues to

be possible from a large number of ISPs [15]. Finally, there continue to be many public-facing

servers that can be exploited for amplification [165]; many servers do not apply best-practice

mitigation (e.g., rate limiting, restricting access).

As networks evolve and server deployments change, the potential for amplification attacks

changes over time. For instance, new avenues for amplification emerge (e.g., botnet, gaming

protocols) and unexpected vectors for known protocols are discovered [24]. In light of the con-

tinued threat of amplification, we argue that we need an Internet-scale monitoring service that

can systematically and continuously measure the empirical risk of amplification [11, 18]. We

envision a service that periodically maps each server to query patterns yielding high amplifica-

112

tion and quantifies these amplification factors (AF). Such a framework can serve as an empirical

foundation for cyber-risk quantification that many have argued for [10, 14]. Furthermore, it can

inform remediation efforts such as throttling servers, generating signatures, informing protocol

changes, and provisioning of defenses [10, 14].

At first glance, it seems that we can use or extend existing scanning services that look

for and enumerate open/public servers for different protocols (e.g., Censys [95], ZMap [96],

openresolver [13] monitoring open DNS resolvers, shadowserver [29] reporting on

open CharGen, LDAP, QOTD, and SNMP servers, among others). For instance, we can (1) mul-

tiply the number of open servers with previously reported amplification factors (AF) [10, 165],

or (2) extend these scans to probe servers using a set of “known” query patterns (e.g., send ANY

requests to DNS servers) to account for per-server factors (rather than using a single global am-

plification factor for all servers). Unfortunately, these have fundamental shortcomings (Section

5.1.2). These either assume that the amplification that servers yield is homogeneous or that the

servers share an identical set of query patterns. In reality, we see significant and unpredictable

variability in amplification across servers (including within servers running the same software

versions) and query patterns that yield amplification. Thus, these approaches are inaccurate for

estimating the empirical risk and for informing remediation efforts.

At the other extreme, we can envision a brute-force approach of sending all possible protocol-

compliant queries to servers for each protocol. Unfortunately, the search space of possible

queries is large (e.g., NTP has multiple 32-bit fields). We can also consider simple fuzzing or

existing heuristic-based optimization techniques but they all have fundamental limitations as the

relationship between the packet field values and amplification can be quite complex. This high-

lights a fundamental tension between the overhead of such an amplification-monitoring service

and its utility.

The Solution: In this chapter, we present AmpMap [147], a framework for measuring the risk

of amplification with a low network footprint (i.e., ă 1.5K queries per server) that accounts for

113

both the server- and query-specific variability. Our approach builds on key structural properties

of amplification-inducing query patterns.

• First, we observe that distinct amplification-inducing query patterns overlap in terms of values

in protocol fields. This locality structure suggests that if we find one such pattern, we can

potentially uncover other related patterns by changing one field at a time (i.e., assume that

each field in N-dimensional space is “independent”).

• Second, we use smart sampling strategies to explore the search space of large (e.g., 16 or 32

bit) fields based on the insight that these either do not affect amplification (e.g., timestamp

for NTP), or when they do, have contiguous structure (e.g., edns payload for DNS).

• Finally, even though servers/implementations are diverse, they share some similarities. This

helps us further reduce overhead and improve fidelity by sharing insights across servers.

(While we acknowledge that these insights may not be universal for all protocols, these hold

in practice for many protocols that have been popular targets.)

Findings and Evaluation: Leveraging these structural properties, we implemented AmpMap,

validated our parameter settings in lab settings, and ran real-world measurements. Our key find-

ings (Section 5.4) are :

• Uncovering new patterns and polymorphic variants: In addition to confirming findings from

prior work (e.g., GetBulk for SNMP [5], ANY or TXT for DNS [5, 165, 176]), we discovered

new patterns and polymorphic variants (from known ones). Table 5.1 summarizes these find-

ings. We highlight some of the interesting or high amplification-inducing patterns. For NTP,

apart from the MONLIST request, we discover “get restrict” and “if stats” can also incur more

than 500ˆ amplification factor (AF). For SNMP, apart from GetBulk [5, 165], we find that

GetNext can incur AF up to a few hundred! For DNS, we also uncover “multiple” patterns

(e.g., URI, SRV, CNAME records) that collectively incur 21.9 ˆ more risk than a popular-

known pattern (ANY requests). While some of DNS patterns have been pointed by (mostly)

the operational community (e.g., A, RRSIG [166, 176, 180]), many have not been documented

114

Known patterns
AmpMap-discovered

New patterns Polymorphic variants

DNS
edns:0,

recordtype: ANY [3], TXT [28]

edns ‰ 0,

recordtype: LOC, SRV, URI ¨ ¨ ¨

rd:0 (off)

dnssec:0 (off)

ednspayload:ă512

NTP MONLIST [4, 165]

if stats

if reload

get restrict

peer list

peer list sum

SNMP v2 GetBulk [5, 165]
GetNext

Get

Vary OIDs;

number of OIDs

Chargen Character request None None

Memcached Stats [5] None None

SSDP Search request [5, 165] None
ssdp:all

upnp:rootdevice ¨ ¨ ¨

Table 5.1: Summarizing known, unforeseen, and polymorphic query patterns found using

AmpMap

to the best of our knowledge. We also discover polymorphic variants due to server diversity;

e.g, for GetBulk request, SNMP servers can incur a magnitude “higher” AF with certain OID

(object identifier) and the right number of OIDs to query for.

• Variability across servers and protocols: We observe significant variability with the AF that

each server can yield; e.g., the AF can vary between 0 to 1300 for NTP. This confirms we

cannot assess amplification risk by looking at mega-amplifiers or simply counting the number

of servers. We also observe substantial variability in the AF distribution across protocols; e.g.,

DNS servers can yield AF above 100 but 60.4% for Chargen. Such variability across multiple

dimensions calls for the need to do periodic measurements rather than one-time analysis.

• Empirical risk quantification : By analyzing our data, we unfortunately find that just disabling

115

the top few known patterns is far from enough; e.g., blocking EDNS0 and ANY or TXT for

DNS still leaves 17.9ˆ the residual risk from “other” patterns (Table 5.6). Further, using an

additive risk metric (Section 5.1), we highlight the imprecision of the risk estimated by prior

work. Even if we focus on the known patterns (e.g., GetBulk for SNMP), existing techniques

underestimate SNMP risk by 3.5ˆ and overestimate Memcached risk by 5.6Kˆ and DNS by

1.9ˆ. If we consider new patterns, then the inaccuracy gets worse; e.g., DNS risk is underes-

timated by 11.9ˆ.

Having summarized our findings, we now put them in a historical context. Specifically, while

UDP-based amplification attacks have been known for decades in the security community [154]

and exploited at scale [11, 18], AmpMap takes a systematic approach in understanding the attack

landscape. In doing so, AmpMap uncovers new query patterns (i.e., new vulnerabilities) that can

be exploited for UDP-based amplification attacks and confirms the known vulnerabilities that

have not been patched. Further, using AmpMap, we question our prior understanding that only

a few patterns yield high amplification by uncovering many other new patterns that can collec-

tively incur even higher amplification that the know ones combined. Given the complexity of

the amplification attack landscape and variability of attack vectors across server instances, we

need an AmpMap-like Internet health-monitoring framework that can automatically and system-

atically map out these attacks. Our findings can inform remediation efforts such as generating

signatures, throttling servers, and informing protocol changes.

Ethics and Disclosure: We have also disclosed the newly discovered patterns to relevant stake-

holders such as CERT, vendors, and IP address owners (Section 5.5.2).

5.1 Background and Motivation

We start with a background on amplification attacks. We then motivate the need for empirically

measuring amplification risk and discuss why strawman solutions are insufficient.

116

Primer on amplification: In an amplification attack (Figure 1.5 from Section 1.1), the attacker

spoofs a victim’s source IP and sends a small query/request (e.g., 60 bytes) to one or more public

servers that act as amplifiers. These amplifiers send large responses to the victim. The amplifica-

tion factor (AF) is the ratio of the query/response sizes; e.g., |r|
|q|
“ 100 in Figure 1.5. AF is also

referred as BAF (bandwidth AF) in prior work [10, 165]. (We do not report packet amplification

ratios for brevity.) Amplification attacks are well known [154] and have been exploited at scale

(e.g., [24, 31, 32]). For example, one of the query patterns that induce high amplification for

DNS is x id:*, recordtype:ANY, edns:0, payload:(1000,65535) ¨ ¨ ¨ y. Here, edns is set to version

0, allowing a DNS server to use the non-default “payload” size and send large responses (default

payload is 512-bytes) . The payload is set to greater than 1K (to overwrite the default 512-bytes),

and recordtype is set to ANY (all records for a given domain).

5.1.1 Motivating Use Cases

We summarize two motivating use cases as argued by prior academic and policy efforts (e.g,.

[10, 14, 165]). For both use cases, there are two relevant aspects for each server/amplifier:

(1) which query patterns cause large amplification, and (2) how much amplification each query

pattern induces.

U1) Assessing cyber risk: Network operators need to know whether, and by how much, their

deployments are susceptible to amplification. Policymakers need a risk assessment to focus their

remediation efforts on the highest priority risk. Given a query pattern, p, for a protocol, proto,

and a set of servers, S, we define a simple additive risk metric as follows:

RiskMetricpp, Sq “
ÿ

siPS

AFpsi, pq (5.1)

Then, given a set of patterns, P , the total risk then is the summation of the risk for each pattern,

p P P . Even though this does not consider other factors [10] (e.g., outbound link capacity), it is

an instructive metric to quantify risk.

117

U2) Inform defense efforts: Operators need to know which query patterns induce amplifica-

tion to take appropriate defenses (e.g., block or throttle responses). Similarly, protocol designers

and vendors need to know these patterns to (1) guide the design of future protocols, and (2) as-

sess whether particular remediation (e.g., disabling a feature) can reduce the risk. Lastly, ISPs

and operators need to know the degree to which servers are susceptible to amplification to in-

form capacity provisioning for defenses. For this, the per-pattern risk can also help prioritize the

remediation efforts to focus on the largest threats first.

5.1.2 Case for a Measurement Service

Given these use cases, we can consider some seemingly natural strategies derived from (or ex-

tended from) from prior work in amplification analysis (e.g., [10, 85, 165]):

• S1) Scan for open servers : Using a count of the number of open servers, we can multiply this

number by a fixed known AF (e.g., 556 for NTP [33]). For instance, if there are 1M open NTP

servers, this approach would multiply 1M by 556 AF; for a 50 bytes request, this translates to

27.8 billion bytes. Such information can be used for risk quantification (U1) and for informing

network operators of their servers (U2) akin to existing efforts (e.g., [10]).

• S2) Probe servers using fixed patterns : (S1) assumes that servers have identical risk and

does not account for multiple patterns. A more advanced strategy is to probe servers using

previously known patterns and record their AFs (e.g., DNS [175], NTP [85]). Then, we can

use this to assess risk (U1) and construct signatures (U2). There can be different options for

choosing which patterns to probe (e.g., taking the known patterns, taking the top-K patterns

from random sampling).

• S3) Customize S2 for different server software: (S2) did not account for the variability of

query patterns across servers. If servers with the same software setup have similar patterns,

then we can run (S2) once for each “software setup” (e.g., Bind 9.3, Dnsmasq 2.76). That way,

we can reduce the number of probes we send.

118

To understand if these strategies are effective, we run a small-scale measurement study using

DNS (as an example) as its amplification properties are seemingly well understood [33, 165]. We

identify a set of 172 queries based on three fields (recordtype, edns, rd or recursion desired) that

are known to affect amplification [3, 5, 165]. (We generated 172 queries using combinations of

43 values of recordtype=tA, NS, CNAME, ¨ ¨ ¨ u, edns=t0, 1u, and rd=t0, 1u.) (As we will see

later, that these 3 fields do not represent the full set of fields that affect amplification. Rather, we

use this as an illustrative set of query patterns to highlight why these strategies are imprecise.)

Then, we pick a random sample of 1K DNS servers from Censys [95], send each of the 172

queries, and record the AF per query. We also obtained the version string (if available) for each

server using Nmap.

In this dataset, we observe 94 unique patterns that incur ě δ AF (δ=10) with a total risk of

125.8K AF (using Eq. 5.1); if these servers are connected to a mere 10 Mbit/sec connection,

125.8K translates to 918 Gbps across 1K servers.1 Using this “ground truth,” we evaluate the

above strategies using two metrics: (1) the risk estimation accuracy (for U1); and (2) the number

of query patterns missed (for U2).

Strategies % Error in Risk (U1) # missed patterns (U2)

S1
Scaling by

number of servers
4.5ˆ Ó N/A

S2

Using known patterns 5.7ˆ Ó 90 (out of 94)

Top-K from random samples 20ˆ Ó 86 (out of 94)

Top-K from ground-truth data 3.6 ˆ Ó 84 (out of 94)

Table 5.2: Effectiveness of S1 and S2 in enabling use cases

Table 5.2 summarizes these metrics for S1 and S2. For S1 of multiplying by a known AF

factor, we use a factor of 28 as reported earlier [3]. For S2, we considered three possible in-

stantiations: (1) using known query patterns from prior works (edns 0 and recordtype ANY or
160 bytes/query ˆ 128.5 avg AF / server ˆ 1K servers ˆ 8 bits/byte ˆ 14,880 query/sec (using 10 Mbps and a

frame size of 84 bytes).

119

TXT [3, 176]), (2) using the top-10 queries across servers w.r.t. the AF values across servers af-

ter randomly sampling 20% of the possible values of three fields space; and (3) using the global

top-10 patterns from the entire data. Note that (2) and (3) are extremely generous; in practice, we

do not know the global top-10 a priori, and the actual space of queries is much larger than just

172 queries. We see that S1 of scaling server count under-estimates the risk by 4.5ˆ. Depending

on the scaling factor, the risk may also be significantly over-estimated. S2 also under-estimates

the risk (U1). We also see that S2 misses many query patterns (U2).

We also observe that this aggregate estimation error across 1K servers translates to large

percentages (%) of residual risk for “each server” (if we had used S2). Consider the cumulative

distributive function (CDF) of the % of the residual risk for each server. 50% of the servers

would have: (1) ě 68% residual risk (if we had blocked the top-10 patterns from the ground-

truth, which is infeasible in practice), (2)ě 72% residual risk (if we had blocked only the known

patterns), and (3)ě 82% residual risk (if we had taken top-10 patterns after random sampling the

header space). The trend does not really get better, even if we had used other top-K (e.g., 20).

Finally, Table 5.3 shows the ineffectiveness of S3 for top-5 version (ranked by the number

of servers that have at least one query that induces AF ě δ in the dataset). Here, we define that

servers have identical software setup if they share the same vendor and a major version.

% Error in Risk Estimation (U1);

(# of missed patterns / # total patterns) (U2)

Microsoft 6.1 Dnsmasq 2.52 Dnsmasq 2.40 Dnsmasq 2.76 Bind 9.9

Using known

patterns

14.4ˆ Ó

(76/80)

2.7ˆ Ó

(27/31)

6ˆ Ó

(38/42)

3.8ˆ Ó

(44/48)

8.8ˆ Ó

(72/76)

Top-K from

random samples

8.7 ˆ Ó

(70/80)

3.6 ˆ Ó

(27/31)

44.2 ˆ Ó

(41/42)

31.6 ˆ Ó

(45/48)

7 ˆ Ó

(66/76)

Top-K from

groundtruth

4.5ˆ Ó

(70/80)

1.2ˆ Ó

(21/31)

3.8ˆ Ó

(31/42)

1.7ˆ Ó

(38/48)

6ˆ Ó

(66/76)

Table 5.3: Effectiveness of S3 that does per-version analysis

120

To understand why these strategies are inaccurate, we analyzed this data further. To explain

our analysis, we define some terms. Given a server, si, let Qi be the set of queries that incur AF

ě δ; i.e., Qi is the set of queries that elicit large responses. Given n servers, let Q be the union of

Q1 ¨ ¨ ¨Qn; i.e., Q is the union of all amplification-inducing queries.

164 78 79 165 128 140 54 55 148 162
Query Pattern (QP) ID

0

20

40

60

A
m

pl
ifi

ca
tio

n
Fa

ct
or

Figure 5.1: Diversity of AF given a query across servers

Variability in magnitude across servers: Figure 5.1 shows the distribution of the AF value

across servers. Due to space, we only show this for 10 queries that induce the highest AF if

sorted by the AF across our data-set. For a given q, the standard deviation ranges from 3.9 to 17.

Looking beyond the global top 10, if we just consider maximum AF for each server (across all

172 queries), there is significant variability as well with a standard deviation of 16.7. This also

holds for servers sharing the same software versions (not shown).

Variability in query patterns across servers: If only a small subset of patterns induce ampli-

fication on all servers (i.e., Qi are identical), then (S2) and (S3) would have been sufficient. To

this end, we analyze the similarity (or lack thereof) of query patterns across servers in two ways.

Let TopKpQiq denote a set of Top-K queries when Qi is sorted by the AF value. Then, we an-

alyze: (1) How similar are high-amplification query patterns between every pair of servers (i.e.,

TopKpQiq from TopKpQjq)? (2) How similar is a server-specific query pattern set TopKpQiq

to the global TopKpQq? We compare the top-K queries where K=10. Note that we are not

just looking at the “maximum” query (i.e., K“1) as we want to consider multiple patterns. We

observe the same trend holds for varying Ks such as 5, 20 (not shown).

121

[0.
0,0

.1)
[0.

1,0
.2)

[0.
2,0

.3)
[0.

3,0
.4)

[0.
4,0

.5)
[0.

5,0
.6)

[0.
6,0

.7)
[0.

7,0
.8)

[0.
8,0

.9)
[0.

9,1
.0]

Jaccard Similarity Score (Query Patterns)

0
10
20
30
40
50

%
 o

f P
ai

rw
ise

 S
er

ve
rs

(a) Microsoft 6.1

[0.
0,0

.1)
[0.

1,0
.2)

[0.
2,0

.3)
[0.

3,0
.4)

[0.
4,0

.5)
[0.

5,0
.6)

[0.
6,0

.7)
[0.

7,0
.8)

[0.
8,0

.9)
[0.

9,1
.0]

Jaccard Similarity Score (Query Patterns)

0

10

20

30

40

%
 o

f P
ai

rw
ise

 S
er

ve
rs

(b) Dnsmasq 2.52

[0.
0,0

.1)
[0.

1,0
.2)

[0.
2,0

.3)
[0.

3,0
.4)

[0.
4,0

.5)
[0.

5,0
.6)

[0.
6,0

.7)
[0.

7,0
.8)

[0.
8,0

.9)
[0.

9,1
.0]

Jaccard Similarity Score (Query Patterns)

0
10
20
30
40
50

%
 o

f P
ai

rw
ise

 S
er

ve
rs

(c) Dnsmasq 2.40
[0.

0,0
.1)

[0.
1,0

.2)
[0.

2,0
.3)

[0.
3,0

.4)
[0.

4,0
.5)

[0.
5,0

.6)
[0.

6,0
.7)

[0.
7,0

.8)
[0.

8,0
.9)

[0.
9,1

.0]

Jaccard Similarity Score (Query Patterns)

0
10
20
30
40
50
60
70
80

%
 o

f P
ai

rw
ise

 S
er

ve
rs

(d) Dnsmasq 2.76

[0.
0,0

.1)
[0.

1,0
.2)

[0.
2,0

.3)
[0.

3,0
.4)

[0.
4,0

.5)
[0.

5,0
.6)

[0.
6,0

.7)
[0.

7,0
.8)

[0.
8,0

.9)
[0.

9,1
.0]

Jaccard Similarity Score (Query Patterns)

0

10

20

30

%
 o

f P
ai

rw
ise

 S
er

ve
rs

(e) Bind 9.9

Figure 5.2: Histogram showing the Jaccard similarity scores between Top-10 query pat-

terns of pairwise servers

If we look at the histogram of similarity score for K=10, more than 60% of server pairs have

low similarity scores ď 0.2 and only 4% of server pairs have above 0.8 similarity scores. This

trend is also similar for servers with “identical” software (Figure 5.2); e.g., for Microsoft 6.1,

more than 45% have similarity ď 0.1. For the question (2), compared to the global TopKpQq,

we find that more than 70% of servers’ TopKpQiq have ď 0.2 similarity scores.

Taken together, these results suggest that we cannot homogeneously attribute the same risk

per pattern and across servers. Furthermore, we cannot just look at a single server instance (or

one per software version) for our use cases. Given this empirical variability across servers, query

patterns, and the AF values, we argue that we need an active measurement framework that can

quantify the risk and inform defenses for amplification attacks.

5.2 AmpMap Problem Overview

The previous results showed us that we need a measurement service. Next, we formulate the

goals for such a service we call AmpMap and discuss the challenges in realizing them.

122

5.2.1 Problem Formulation

We consider S servers implementing protocol proto. For each server, s P S, our goal is to

uncover as many distinct amplification-inducing query patterns as possible (e.g., say AF ě

δ=10) while keeping our network footprint low. These per-server patterns output by AmpMap

can inform our use cases such as assessing risk and informing defenses. Intuitively, each pattern

is a template for describing protocol queries, where each field takes a value or a contiguous

range; queries in the same pattern trigger similar protocol behavior and hence, have similar AFs

(formal definitions in Section 5.3.3).

We obtain the list of open servers implementing a given protocol from public services (Shodan

[30], Censys [95]). We prune out inactive protocol servers or servers owned by military or gov-

ernment. Each protocol is defined by a set of fields (F “ tf1 ¨ ¨ ¨ fnu), and a set of accepted

values for each field (AV pf1q ¨ ¨ ¨ AV pfnq). We obtain the protocol format from protocol spec-

ifications (e.g., RFCs). For example, DNS defines fields such as dnssec, id, and their accepted

values; e.g., dnssec takes a value from t0, 1u. A valid query of proto is a list of values for each

field (fi=vi P AV pfiq) and a valid query returns a response. To avoid malformed queries that

may impact server operation, we only consider valid queries. We do not include derived fields

(e.g., checksum, count-related fields). Some fields take a value from a set of strings (e.g., do-

main for DNS, OID for SNMP). For these, we sample values; e.g., for DNS, we take popular

domains from different industry sectors (e.g., education, health care) and with different features

(DNSSEC-enabled vs. not). To this end, we keep the set of values for these fields to be small (a

few tens). For the fields that take a “list” of values (e.g., OID list for SNMP), we also specify a

“length” of a list as an input (Section 5.3).

To keep our footprint and impact on servers low, we impose a query budget for each server,

Btotal (400–1500 range as we will discuss in Section 5.4). We also consider additional precau-

tions e.g., limit rate per server (1 query per 5 s), number of servers probed concurrently, and

avoid invalid/malformed requests (more details on precautions in Section 5.5.1).

123

Scope: We focus on stateless and unicast protocols (e.g., UDP) and stateless amplification

strategies. Thus, stateful protocols (e.g., TCP-based) and broadcast or multicast protocols (e.g., [135])

are out of scope. Additionally, stateful attack strategies that seed entries to a server and subse-

quently launch a high AF query are outside our scope; e.g., we do not consider an attacker who

registers his own domain for DNS with many records to amplify the attack.

Fields: F “ tf1, f2, f3, f4, f5u

Accepted values for each field: AV pfiq

1. f1 takes a value from 0 to 1; AV pf1q “ r0, 1s

2. f2 takes a value from 0 to 99; AV pf2q “ r0, 99s

3. f3 takes a value from 0 to 65535; AV pf3q “ r0, 65535s

4. f4 takes a value from 0 to 7; AV pf4q “ r0, 7s

5. f5 takes a value from 0 to 1; AV pf5q “ r0, 1s

Figure 5.3: Simplified protocol definition to highlight challenges of uncovering amplifica-

tion queries

5.2.2 High-Level Challenges

We now discuss three key challenges in achieving our goal. To illustrate these concretely, we

consider a simplified protocol inspired by the structural properties of real protocols. The protocol

is shown in Figure 5.3 and consists of 5 fields with their accepted values. Figure 5.4 represents

the structure of amplification-inducing query patterns for a single server s1 varying two of these

fields, f2 and f3, while fixing values of the other three fields. The left side is when f1=0, and the

right side is when f1= 1. In both cases, f4 and f5 are 0 and 1000, respectively. Each such “red”

(darker) region in these heatmaps is a potential query pattern. Even this relatively simplified

protocol highlights several key challenges. We observe these challenges across protocols we

surveyed (especially for more complex protocols like DNS and NTP). The challenges we discuss

124

f3

0 655354000

48

99

f2

High Query Pattern
(High QP)

Query Pattern 1 (QP1) :
v(f1) = 0
v(f2) = 48
v(f3) = [4000, 65535]
v(f4) = 0
v(f5) = 1000

QP1
19

QP2

QP3

AF Heatmap 1: f1 = 0 AF Heatmap 2: f1 = 1

0

33

99

655354000

QP4

QP5

Figure 5.4: Query space for one server, server 1 (s1). QPi refers to a query pattern

below for AmpMap map directly to three high-level challenges we discussed in Chapter 1:

‚ C1: We observe a large query space of 2ˆ100ˆ 65Kˆ8ˆ2ą200M values; i.e., it is infeasible

to exhaustively explore this space.

‚ C2: Even for a single server, we observe the structure of amplification can be complex as the

fields in a query are dependent on each other and need to be simultaneously set. For instance, in

QP1 (Figure 5.4), both f2 and f3 need to be set to 48 and [4K, 65535], respectively, to yield high

AF. Intuitively, in real protocols, such behavior occurs as certain flags need to be set to trigger a

relevant behavior; e.g., in Section 5.1.2, we need to set edns to 0 and/or rd to 1 for certain servers

to yield large AF. Also, note the relationship between the query and AF does not necessarily

have a nice continuous structure. Worse, our goal is to uncover as many patterns as possible in

this complex, multi-field search space, making the problem even more challenging.

‚ C3: As we saw in Section 5.1.2, across servers, the exact AF for a given query may differ

and the set of query patterns also may differ. Figure 5.5 shows the structure for three servers

(including s1) for the case when f1 is set to 1. In our simplified protocol, queries in QP1 for s1

incurs high AF for s2 (i.e., QP1) but not for s3. Due to a server configuration and the view of data

a servers has (e.g., the number of peers for the NTP server), s3 does not have any query patterns

that cause high AF.

125

999

For server 1 (f1=0)

0

f2 f2

0 4000

f2

QP 1

QP 2

QP 3

65535

f3

999 0

0 4000

QP1’

QP2’

65535

99 99

0 4000 65535

99

f3 f3For server 2 (f1=0) For server 3 (f1=0)

Figure 5.5: Query space across multiple servers, only showing the case when f1=1 (i.e.,

Heatmap 1 as in Figure 5.4)

5.3 AmpMap Overview and Design

In this section, we discuss our key insights regarding structural properties of amplification

patterns common to many protocols that enable a practical design. We start with a single server

case (Section 5.3.1) and use that to build a multi-server solution (Section 5.3.2). Then, we

provide an analysis of why AmpMap can discover amplification-inducing patterns and compare

it with other strawman solutions (Section 5.3.3).

5.3.1 Single-Server Algorithm

Before we explain our insights, let us consider two seemingly natural baselines and see why

these are not practical (we empirically confirm this in Section 5.4).

1. Random fuzzing: We can randomly pick a field value to construct a query. Unfortunately,

achieving coverage across “distinct” pattern would be prohibitively expensive (analysis in

Section 5.3.3); e.g,. if there are 10 patterns and the density of each pattern to the total query

space is 0.1 (ε), then we need ą 29K queries to discover all patterns.

2. Heuristic optimization techniques: Existing heuristic optimization techniques (e.g., simulated

annealing) may find only a few patterns. However, these are ill-suited to achieve coverage as

these getting stuck in “local” optima.

126

5.3.1.1 Single-Server Insights

Next, we present our insights to make the problem tractable. At a high level, these insights were

derived from a combination of simple analysis, local server experiments, and the measurements

we saw in Section 5.1.2.

Insight 1 (I1): Amplification-inducing query patterns exhibit locality and overlap in the values

for fields.

Intuitively, we observe that query patterns often share a subset of specific field values. This

suggests that given a query, q, in one of the amplification-inducing query patterns, we may not

need to change all N fields at a time. Rather, we can discover other nearby patterns by sweeping

one field at a time. Conceptually, we can view the query space as a logical graph and

look for “neighboring” queries that differ in the value of just one field to discover other patterns.

Figure 5.6 shows a logical graph representation of the query space for the abstract protocol (in

Figure 5.4). In this graph, each node is a query and an edge between two queries, q and q1, means

they differ in only one field(e.g., f2). For instance, from a query in QP1, a simple per-field search

approach as described above can discover queries in QP2 and QP3 by changing f2. To discover

QP5, we need to search f1 from a query in QP3.

Insight 2 (I2): If the density of amplification-inducing queries is ą ε, then random sampling

will likely find one such query using ě 1
ε

queries.

This is a very simple probabilistic analysis insight. If the overall density of the queries that

give high AF is ε, then the probability of picking one such query is ε. Then, the expected

budget to find one such query is 1
ε
; i.e., if a probability of a picking an amplification-inducing

query is 1
1000

, then we need an expected budget of 1000 samples. This analysis suggests a viable

path to find at least one query in one of the amplification-inducing query patterns, which can

subsequently be used to exploit the above locality structure.

127

f2

f2

q ∈ QP1
<f1:0, f2:19, f3:4K…>

q ∈ QP2
<f1:0, f2:48, f3:4K…>

q ∈ QP3
<f1:0, f2:99, f3:4K…>

f2

q ∈ QP5
<f1:1, f2:99, f3:4K…>

f1

q ∈ QP4
<f1:1, f2:33, f3:4K…>

f2

An edge indicates that two queries differ in a value for fi

A query, q, in a query pattern, QPj;
q has f1 set to x, f2 set to y, and f3 set to z …

Legend

<fi>

q ∈ QPj
<f1:x, f2:y, f3:z…>

Figure 5.6: Viewing the query space as a logical graph (for the abstract protocol shown in

Figure 5.4)

Insight 3 (I3): Fields with large accepted value ranges either do not affect amplification or

exhibit contiguous range structure w.r.t. AF.

Even if we use I1 and only need to vary one field value at a time, we still may require a high

query budget as some fields take a very large set of accepted values. Fortunately, many of the

large-range fields tend to not affect amplification. If they do, we observe that there is a large con-

tiguous “range” (e.g., f3 with [4K, 65535]) that exhibit similar behavior. For instance, as long as

the EDNS payload is set to a large value (i.e., 4096), an edns feature will allow large responses.

Thus, instead of exhaustive sweeping, we can sample values for large fields. Specifically, we use

a logarithmically-spaced sampling strategy so that if the ranges are sufficiently large, then we

will get at least one query from a contiguous range.

5.3.1.2 Single-Server Workflow

Putting this together, we present our workflow for a single server (left side of Figure 5.7). We

present the pseudocode of the main function in Algo. 3. Recall that given a fixed query budget,

B , we want to maximize coverage of distinct query patterns. In choosing B , we want to strike a

128

PerField
Search

Random
Sampling

Single server workflow Multi server workflow

AFthresh

Random
Sampling

Random
Sampling

Random
Sampling

Probing Stage
Get queries with high AF and probe other servers

PerField
Search

PerField
Search

PerField
Search

Server 1 Server 2 Server N

Server 1 Server 2 Server N

AFthresh

Insight 2

Insight 1 +
Insight 3

Insight 4

Server 1

{QtoAF}
for Brandom samples

Qstart

Qstart

Figure 5.7: AmpMap Workflow

balance between coverage and network load. Our goal is not to find optimal parameters, but to

use reasonable ranges that work well in practice. For relatively complex protocols like DNS, we

empirically find that 1200-1500 is a good operating range as we see diminishing returns beyond

this (Section 5.4.7). For simple protocols with a smaller search space, this property still holds.

RandomSample Stage (Line 2 in Algo. 3): Given a fixed Btotal, the algorithm randomly

samples Brand queries with the goal of discovering an amplification-inducing query (I2). The

discovered queries are the starting points to run the next phase, per-field search, to improve

coverage. For choosing a Brand, we empirically observe that choosing 10% to 45% of the total

budget is sufficient (Section 5.4.7). This is because we just need to find one (or a handful) query

that induces amplification given the locality structure. As we will later, we can use multi-server

experiments to make this further robust to potential mis-estimation of the Brand needed for a

server; i.e., even when the random search fails to find a feasible starting point (Section 5.3.2).

Per-field search (Line 4 in Algo. 3): We then run the Per-field search leveraging I1.

Algo. 5 shows a detailed pseudocode. It takes an input of QtoAF which contains each query to

the AF from the random stage. We also need to determine other relevant input parameters.

• Starting queries for per-field search (Qstart): We pick top K queries w.r.t. the AF values. As

129

we just need one or two queries with high AF, we find choosing 1 is sufficient.

• Threshold to prune low AF queries (AF thresh) : If neighboring queries have AF below AF thresh,

the per-field search prunes them from further exploration. If the value is too low, the search

will degenerate into an exhaustive search. If too high, the search terminates without explo-

ration. As a practical trade-off, if the maximum AF is above 2 ˆ δ, we make the threshold

to be δ (i.e., 10). If it is below 2 ˆ δ, then we use a threshold equal to some fraction of the

maximum AF observed in the random stage (e.g., half).

Using each query from Qstart , the per-field search searches the neighboring queries by varying

one field value (SEARCHNEIGHBORp...q in Line 7. It uses a log-sampling for large fields and

exhaustive search for other fields. Further, for fields that take a set of strings as an input (e.g.,

domains for DNS), we recommend inputting an accepted set as a small set (i.e., few tens). This

is a conscious decision as such fields tend to not have a “contiguous” structure w.r.t. the AF and

each concrete value has a distinct semantic. Hence, we need to treat these fields as small fields

(where we do an exhaustive search). For fields that take a list as an input (e.g., SNMP’s variable

bind list takes a “list” consisting of OID), we search over both the item (OID) and the size of

the list (i.e., 0-256). For this field, it is worthwhile to see how the protocol behaves when this

list size is large. Hence, we recommend putting non-small value (i.e., ě256) so that we can log

sample the values.

Avoiding already-visited pattern: We have one more practical challenge as each query pattern

consists of tens of thousands of queries. Some field take ranges (e.g., f3 had [4000, 65535] to

denote a pattern). If we naively explore, we may redundantly explore other queries in the same

query pattern, wasting our query budget. To avoid this, we heuristically detect if we have already

explored a pattern to decide if we can skip exploring this further. To do so, we infer the contigu-

ous range of a field that incur above-the-threshold AF as we sweep each field. When we need to

explore a query, q’, we first check whether q’ has already been visited (ISNEWPATTERNp¨ ¨ ¨ q,

Line 5) and only explore if it was not. During the per-field search, we refine the inferred pattern

130

structure as we get a new range that contains the old range. The search terminates if the budget

is exhausted or there are no more queries to explore.

Let’s look at a concrete example using the abstract protocol (Section 5.2). Suppose we are

currently exploring a query q, x f1:0, f2:48, f3:6000 ¨ ¨ ¨ y, from a QP 2. When it is a turn to

explore f3. we log sample f3 to obtain the AFs and find that [5K, 65535] has contiguously

“high” AFs. Then, we use this range to describe the pattern structure (i.e., x f1:0, f2:48, f3:[5K,

65535] ¨ ¨ ¨ y). We first check whether this is contained in already-visited patterns and if not,

continue exploring further. For completeness, we show the full pseudo code in Algo. 3.

Algorithm 3: AmpMap algorithm for a single server
Input : B : query budget, AV pfiq for i “ 1, .., n: accepted value for each packet header field

Output: QtoAF : maps each query to corresponding AF

/* Step 1: Random Search */

1 QtoAF = RUNRANDOMUPDATEMAP(Brand)

2 Qstart = FINDTOPKQUERIES(QtoAF ,K “ 1)

3 AF thresh = COMPUTETHRESH(QtoAF) /* Step 2: Local Search */

4 LOCALSEARCHUPDATEMAP(QtoAF , Qstart, AF thresh)

5.3.2 Multi-Server Algorithm

We now discuss how we extend the insights and workflow from a single-server case to handle a

multi-server case.

5.3.2.1 Multi-Server Insights

Insight 4 (I4): While servers exhibit variability, some share a subset of amplification-inducing

queries.

Recall the abstract protocol on multiple servers in Figure 5.5. In that example, the queries

131

in QP1 for s1 also incur high amplification for s2 but not for s3. While these servers are not

“identical” in all query patterns that induce amplification, a subset of these servers can share a

subset of query patterns (even if the specific AF values may differ). We also have observed this

in our small-scale experiment in Section 5.1; while the similarity of query patterns between a

pair of servers is low, it is not always 0. This is natural as these servers implement the same

protocol. Leveraging this insight, we can maximize the “insights” across servers; i.e. if we find

a query that incurs high AF in one server, we add an additional Probing stage that tests these

queries to other servers. Then, we add these queries to the pool of “potential” starting points for

each server. This can boost coverage across servers while accounting for server heterogeneity, as

we still run a per-server per-field search.

5.3.2.2 Multi-Server Workflow

As before, we run the RandomSample Stage per server as in the single-server case. The key

addition is a new stage called the Probing stage (Figure 5.7), that ensures that the insights

are shared across servers. Specifically, using the high-amplification queries found for each server

(from the RandomSample Stage), we test them on other servers to increase the chance of finding

good starting queries for each server.

Probing Stage: Turning this idea into practice, we take all queries that give “high” AFs across

servers from the RandomSample Stage. Then, we pick a small number of queries to probe other

servers (i.e., Bprobe queries). A relevant question is how many queries to use for Bprobe . We

observe that anywhere between 5% to 30% of the total budget is sufficient where we chose 10%

(validation in Section 5.4.7). Specifically, we do not want to assign too much for this value to

ensure that we have sufficient available budget for other (critical) stages; i.e. the Probing stage is

designed to “supplement” the RandomSample Stage for certain servers where the RandomSam-

ple Stage was could not discover amplification-inducing queries. The next relevant question is

how to pick these probing queries. Consider a strategy where we just pick top-X queries w.r.t.

132

the AF. This strategy may “overfit” to a specific query pattern or certain servers with “many”

AF-inducing queries. We want to use a diverse set of probing queries. To this end, we take all

queries with AF above the threshold (e.g., δ), and then run a simple K-means clustering where

we conservatively set the number of clusters K (e.g., 20). (To run K-means clustering, we define

our custom distance function. We normalize N fields and then bin the large fields.) To achieve

diversity of patterns, we sample queries such that we have at least one query from each cluster

and for the remaining ones, we uniformly sample queries proportional to the cluster size. While

the number of clusters does not really affect the coverage, the fact that we use probing queries

boosts the coverage (Figure 5.18 in Section 5.4.7).

The rest of the algorithm mirrors the single-server approach to pick starting points and run

the per-field search. However, the input parameters (i.e., Qstart , AF thresh) are server-specific

to account for server diversity. The only difference is that the top-K starting points are based

both on the original set of random queries and the new additional Bprobe queries. We show the

pseudocode in Algo. 4 for completeness.

5.3.3 Analysis of Our Approach

To make analysis easier, we make two simplifying assumptions: (1) We only consider a single-

server case; and (2) The ratio of the number of high AF queries to the total number of possible

queries, d , is known.

Definitions: We first give necessary definitions for the formal analysis. We use query ranges

to denote a set of queries. Particularly, we write a query range QR as xf1 : rvl1, v
r
1s, f2 :

rvl2, v
r
2s, . . . , fn : rvln, v

r
nsy, where vli, v

r
i P AV pfiq and vli ă vri for i “ 1, ..., n. A query range

represents a set of queries in a natural way. A query q “ xf1 “ v1, .., fn “ vny is in QR (written

q P QR) iff vli ď vi ď vri for i “ 1, .., n.

Given a constant δ, a δ-high query pattern (or simply high query pattern if δ is clear from

the context) QP is a query range xf1 : rvl1, v
r
1s, f2 : rvl2, v

r
2s, . . . , fn : rvln, v

r
nsy satisfying the

133

Algorithm 4: AmpMap algorithm for multiple servers
Input : Btotal : query budget

AV pfiq for i “ 1, .., n: accepted value for each packet field

S: a set of servers

Output: PerServerQToAF : maps each query to corresponding AF

1 PerServerQToAF = tu /* Step 1: Random Search */

2 for s P ServerSet do

3 RUNRANDOMUPDATEMAP(Brand ,PerServerQToAF rss)

/* Step 2: Pick probes based on current obs. */

4 Qprobe = PICKPROBES(PerServerQtoAF , Bprobe) // Run additional probes per

server

5 for s P S do

6 ProbeQToAF s = SENDQUERY(Qprobe)

7 PerServerQToAF rss.insert(ProbeQToAF sq

/* Step 3: Local search for each server */

8 for s P S do

9 Qstart
s = FINDTOPKQUERIES(PerServerQToAF rss,K)

10 AF thresh = COMPUTETHRESH(PerServerQToAF rss)

11 LOCALSEARCHUPDATEMAP(PerServerQToAF rss, Qstart
s , AF thresh)

12 return PerServerQToAF

following two conditions: 1) all queries in the query range induce high AF. That is, @ q P QP,

AF pqq ě δ; 2) the specified range of each field in QP is a maximal in terms of inducing high

AF. That is, @ i “ 1, .., n, v1li and v1ri , if v1li ă vli ď vri ď v1ri or v1li ď vli ď vri ă v1ri , then D a query

q P xf1 : rvl1, v
r
1s, . . . , fi : rv1li , v

1r
i s, . . . , fn : rvln, v

r
nsy such that AF pqq ă δ.

Given a protocol, Proto, we assume that the set of all high query patterns of Proto is unique.

We denote the set of all amplification-inducing query patterns as PProto .

Given a proto and a total budget, Q, the covered high query pattern by Q, denoted copQq, is

the set of high query patterns of proto where each high query pattern shares at least one query

134

with Q. That is, copQq “ tQP P Pproto|Q X QP ­“ Hu. Based on this definition, we can now

formally state the goal of AmpMap. Given a server s running protocol proto, AmpMap seeks to

maximize the size of copQq.

5.3.3.1 Analysis of Strawman Approaches

Here, we analyze the expected budget for different strategies for the one-server case.

Exhaustive Search: An exhaustive search enumerates valid queries of the protocol. While this

can discover all patterns, the budget is prohibitively large: EpBq “
śN

i“1 |AV pfiq|.

Random Search: For pure random search, the expected number of queries to cover all high

query patterns is: EpBq =
ş8

0
p1´

ś|P|
i“1p1´ e

´pitqqdt. Here, pi is the probability of picking a

query in the i-th high query pattern [103]. The expected budget increases exponentially as |P|

increases.

5.3.3.2 Analysis of AmpMap Approach

Under some simplifying assumptions we can analyze the expected budget to discover all patterns.

To make analysis easier to present, we make three simplifying assumptions: (1) Each field, fi, is

of homogeneous size F ; (2) Each distinct pattern just has one query; and 3. We know the number

of distinct patterns, NumPatterns.

In reality, our goal is to discover as many as possible. At a high-level, we can show that our

worst-case run time is linear in the NumPatternsˆ F .

First, note that given d, the density of queries that give high AF, the expected budget to find

one query in one of the patterns is 1
d
. Second, note that the number of queries required to sweep

the all neighboring queries from a given query is F ˆNumField.

Given these preliminaries and our assumptions on the “locality” structure, we can consider

the best-case and worst-case analysis to discover all patterns. The best-case is when all patterns

form a fully connected clique, where two queries in two distinct patterns are neighbors. This

135

means, that when we start from a query in a q1, we will discover all other NumPatterns-1 pat-

terns in just one sweep. The worst case is when all 4 distinct patterns (QP1 ¨ ¨ ¨QP4) form a

chain. That is, we need to do one sweep to discover an additional mode. Note that we are guar-

anteed to find another pattern (Observation 1) because all patterns can be reached by sweeping

each field. Hence, we need to do NumPatterns ´ 1 sweep. Since we assume we know what

is NumPatterns, our search will terminate when we discover all patterns. Taken together, the

best-case run-time is 1
d
` F ˆNumField, and the worst-case run-time is 1

d
` pNumPatterns´

1q ˆ F ˆNumField.

5.4 Evaluation

In this section, we present findings from our Internet measurements for 6 UDP-based protocols

(DNS, NTP, SNMP, Memcached, Chargen, SSDP) and local testing for 3 protocols (QOTD,

Quake, RPCbind). In contrast to a scoped experiment (Section 5.1.2) which was used to motivate

AmpMap, the results we present here are more complete; i.e., we cover more protocols, servers,

and search over the packet header space (opposed to sending a fixed set of queries). We also

validate our design against strawman solutions and parameter choices.

Measurement setup: We use nodes from Cloudlab [94] where 1 node is used as a controller,

and 30 as measurers. (We restricted our node usage to 31 per experiment, as Cloudlab is a shared

platform across institutions.) For these 6 protocols, we scanned 10K sampled servers for each

protocol: DNS with OPT records for EDNS, NTP, SNMP, Memcached, Chargen, SSDP. For

DNS, we scan the servers obtained from Censys and hence, these are mostly open recursers.

(We can easily extend AmpMap to handle authoritative servers.) As the protocol format for

SNMP’s Get, GetNext and GetBulk requests differ, we treated each as a separate protocol and

ran separately. Similarly, we ran separate runs for NTP’s mode 7 (private), mode 6 (control),

and mode 0-5 (normal). We obtained public server IPs from Censys [95] and Shodan [30].

136

We randomly sampled IPs from these lists and pruned out inactive servers (e.g., not respond to

dig for DNS) or owned by military or government. For certain protocols (SNMP, NTP) that

have different modes of operation with distinct formats (e.g., SNMP has GetBulk, GetNext, and

Get), we consider two notions of active server, whether the server responds to (1) “any” of the

modes (OR filter); or (2) “all” of them (AND filter). We present results for both schemes, using

AND/OR superscripts to denote each (e.g., SNMP AND).

IPs scanned

(a)

pruned IPs (b) # IPs taken

(c)=(a)+(b)

IPs in DB

(d)

% IPs scanned

(c) / (d)invalid proto gov’t or mil.

DNS 10K 18,698 15 28,713 8.02M 0.36

NTP 10K 4317 5 14,322 8.4M 0.17

NTP AND 3,083 234,374 7 237,464 8.4M 0.28

SNMP 10k 4,933 3 14,936 2.16M 0.69

SNMP AND 10K 60,187 9 70,196 2.16M 0.33

Memchd 10K 11,736 9 21,745 63K 3.5

Chargen 10K 68,065 6 78,071 83K 9.4

SSDP 10K 78,617 3 88,620 2.16M 3.3

Table 5.4: Statistics on (a) the # of IPs we scanned per protocol, (b) the # of pruned IPs, (c)

the # of raw IPs we needed from the DB ; (d) the # of total public-facing IPs as is (Shodan

and Censys); and (e) the % of IPs we scanned

To finish our measurements in a few days and restrict the number of (shared) nodes we use,

we target 10K servers per protocol. Table 5.4 shows: (1) the number of IPs we needed from

Shodan/Censys to get our final server lists, (2) the total number of public-facing IPs for each

protocol (as of May 30, 2020) from Censys (DNS) and Shodan (others); and (3) the % of IPs we

scanned. When we refer to “servers” to present our results, we are referring to “sampled” servers

rather than the entire Internet servers.

In our experiments, each server is pinned to a measurer. We do not spoof IP addresses and

we send legitimate queries and listen to responses. We impose a limit of 1 query per 5 s for each

137

server with a timeout of 2 seconds (i.e., 7 seconds per query). This gives approximately 3 days

to complete for 10K servers as 30 measurers can handle 500 servers at a given time (each run

takes 3 hours, 7sˆ1500 queries, and need 69 hours to handle 10K servers (not accounting for

timeouts). Our load is low: 48 kbps (egress) across all measurers and 1.6 kbps per measurer. If

we assume an average AF of 5, then we incur 240 kbps in ingress bandwidth.

Protocol specifics: For protocols with more than 10 fields (DNS,NTP, RPCbind), we used a

query budget of 1500 queries per server, setting 45% for RandomSample Stage and 10% for

the Probing stage. For simpler protocols, we used a budget of 400 queries with the same split.

For QOTD, Quake, RPCbind, we set up a single Cloudlab server running the protocol. Some

fields such as domain fields for DNS took strings. As discussed in Section 5.3.1.2, we picked

10 popular domains2 spanning different continents, industry sectors, and enabled features. For

SNMP, we pick v2’s OIDs based on the RFC up to depth 4 (i.e., A.B.C.D). For certain fields that

take as input a list of values (character for Chargen, OID for SNMP), we also search over the

length of the list.

5.4.1 Protocol and Server Diversity

DNS NTPOR NTPAND SNMPOR SNMPAND Chargen SSDP Memcached
Protocols

10
0

10
1

10
2

10
3

M
ax

 A
m

pl
ifi

ca
tio

n
Fa

ct
or

10.44

1.0

5.11
13.11

32.49

204.46

4.08
1.68

Figure 5.8: Boxplot showing the distribution of the maximum AF achieved by each server

given a protocol

2berkeley.edu, energy.gov, chase.com, aetna.com, google.com, Nairaland.com, Alibaba.com, Cambridge.org,

Alarabiya.net, Bnamericas.com

138

Finding 1: There is significant variability in the maximum amplification a server can yield

across servers.

Figure 5.8 (y-axis in log-scale) shows the distribution of the the maximum AF achieved by

each server for each protocol. For many protocols, we observe a long tail in the distribution.

For instance, while the median for SNMP OR is 13.01, the maximum is 495. While the median

is 1 for NTP OR, the maximum is 860. Similarly, for NTP AND, while the median is 5.11 the

maximum is as large as 1300! This confirms we cannot simply count the number of open servers

or attribute the same risk to each server.

Finding 2: There is substantial variability in the maximum AF distribution across protocols.

Figure 5.9a shows the maximum AF distributions with varying AF ranges (e.g., 10-30) across

protocols; these experiments ran in May - June 2020. For SNMP and NTP, we only show the re-

sults for AND schemes for brevity. First, protocols vary in the percentage of potential amplifiers

with AF ą 10: 52% for DNS, 34% for NTP AND, 69% for SNMP AND ¨ ¨ ¨ 0.6% for Memcached.

Further, protocols differ in the most common AF ranges (ě 10) that servers can yield. AF range

for DNS is concentrated on 10 to 30 but above 100 for Chargen. For NTP AND, 14% of servers

give above 100 AF. These results suggest that measuring the risk should take into account the

AF distribution per protocol.

Finding 3: There is variability across time in the AF distribution across servers for different

protocols.

Figure 5.9b shows maximum AF distribution from measurements done in 2019 (opposed to

2020 for Figure 5.9a). These visually highlights the differences across two years. For instance,

only 7% of NTP AND servers yielded AF ě 100 in 2019 vs. 14% in 2020. 90th percentile of DNS

servers induced above 30AF in 2019 but 59 AF for 2020 (almost doubled) using the identical

139

DN
S

NT
PAN

D

SN
M

PAN
D

SS
DP

Ch
ar

ge
n

M
em

ca
ch

ed

Protocols

0

20

40

60

80

100

%
 o

f S
er

ve
rs

< 10
[10,30)
[30,50)

[50,100)
>=100

(a) May-June 2020

DN
S

NT
PAN

D

SN
M

PAN
D

SS
DP

Ch
ar

ge
n

M
em

ca
ch

ed

Protocols

0

20

40

60

80

100

%
 o

f S
er

ve
rs

< 10
[10,30)
[30,50)

[50,100)
>=100

(b) May-June 2019

Figure 5.9: Summary across servers and protocols (from 2019 and 2020 runs)

domain lists.3 We acknowledge that as we sample servers, we cannot attribute the root cause of

differences (i.e., change in server list vs. change in the actual attack landscape). However, such

variability is the reason that calls for the need to do continuous (periodic) measurements rather

than a one-time analysis.

3Across these two experiments, there are minor differences in the parameters (e.g., 53% random in 2019 vs.

45% in 2020, searching over 0-32 as a list size in 2019 vs. 0-256 in 2020) but they do not really affect the results.

140

5.4.2 Assessing Amplification Risks

Known Pattern
Risk Quantification

Result
Prior Work AmpMap

DNS
EDNS:0, ANY [3, 165] 287K 149K 1.9ˆ Ò

EDNS:0, ANY [3],TXT [28] Not Known 183K N/A

DNS (domains

w/o DNSSEC)
ANY, TXT [176] Not Known 126K N/A

NTP OR MONLIST [4, 165] 5,569K 13K 427ˆ Ò

NTP AND MONLIST [4, 165] 5,569K 635K 8.8ˆ Ò

SNMP OR GetBulk [5, 165] 64K 223K 3.5ˆ Ó

SNMP AND GetBulk [5, 165] 64K 317K 5ˆ Ó

Chargen Request 3588K 1399K 2.9ˆ Ò

SSDP Search [5, 165] 308K 126K 2.7ˆ Ò

Memcached Stats [5, 25] 100M [5] 18K 5.6K ˆ Ò

Table 5.5: Contrasting the risk extrapolated from prior works and measured by AmpMap

for 10K servers

Finding 4: Even for known patterns, extrapolations (e.g.,[85, 165]) mis-estimate amplification

risk.

Table 5.5 summarizes the known patterns and their corresponding risks assessed using AmpMap

and prior works [3, 165] (same risk used in Section 5.1.2). For AmpMap, given a pattern for each

protocol (e.g., MONLIST for NTP), we calculate the total risk across 10K servers using Eq. 5.1.

We find that the baseline techniques from prior work has significant mis-estimation; i.e., NTP is

427ˆ overestimated, SNMP v2 is 3.5ˆ underestimated, and Chargen is 2.9ˆ overestimated. The

large inaccuracy for NTP is because the previously reported AF of 556 [165] does not generalize

to majority of NTP servers. Our findings confirm a follow-up study of NTP amplification [85],

141

which specifically focuses on the MONLIST feature. Similarly, the reported average of the worst

10% servers for GetBulk requests (SNMP) is 11.3 [165]. However, the average of the worst 10%

is 90 (7.9ˆ) for SNMP OR and 97 (8.6ˆ) for SNMP AND. This is because the prior analysis does

not account for polymorphic variants (i.e, tweaking the OID and the number of OIDs to request

for).

New Patterns Risk Quantification Patterns

DNS
EDNS‰ 0 or ‰ ANY 3274K (21.9 ˆ known pattern)

EDNS‰ 0 or ‰(ANY or TXT) 3127K (17.1 ˆ known pattern)

NTP OR reqcode ‰MONLIST (20,42) 43K (3.3 ˆ known pattern)

NTP AND reqcode ‰MONLIST (20,42) 663K (1 ˆ known pattern)

SNMP OR
GetNext 61K (0.27 ˆ known pattern)

Get 10K (0.04 ˆ known pattern)

SNMP AND
GetNext 101K (0.32 ˆ known pattern)

Get 11K (0.03 ˆ known pattern)

SSDP None 0

Memcached Get, Gets 33K (1.9 ˆ known pattern)

Table 5.6: Amplification risk from new patterns whose risks will be missed by prior works

Finding 5: Prior recommendations (e.g., [85, 165]) miss many query patterns and leave sub-

stantial residual risk.

We now quantify the risks from new patterns that will be “missed” by prior analysis (Ta-

ble 5.6). For DNS, there are other combinations of edns and recordtype fields that yield consid-

erable amplification. The total risk from these other patterns (e.g., recordtype:LOC, URI) across

10K servers is 3,274K, which is 21.9ˆ larger than the risk of known patterns (149K)! Figure 5.10

shows a bird’s-eye view of the residual risk. We observe similar trends for other protocols; e.g.,

for NTP, a collective risk from other features (e.g., “get restrict”) is 276ˆ higher risk than the

known risk. For simpler protocols like SSDP, we do not find new patterns.

142

Figure 5.10: Visualizing the DNS residual risk when known patterns (P):

edns:0,recordtype:ANY—TXT, are blocked. The size of the circle 9 the max AF of

each server and red circles denote when the delta is ě 20%

AF 10 AF 30 AF 50 AF 100
Range of Amplification Factors

0

25

50

75

100

%
 o

f R
em

ai
ni

ng
Vu

ln
er

ab
le

 S
er

ve
rs

<EDNS, ANY|TXT> <EDNS, * > <*, ANY|TXT >

Figure 5.11: % of DNS servers that remain susceptible to amplification even if we use

recommendations by prior works to block query patterns; i.e., x EDNS, ANY—TXT y is a

filter that blocks queries EDNS:0 and ANY|TXT

Next, we conduct what-if analysis to analyze what percentage of servers are susceptible to

amplification if we were to block known patterns. Given that prior works do not provide con-

crete “signatures”, we consider a few possible interpretations; i.e., a combination of edns:0 and

recordtype:ANY, TXT. Figure 5.11 shows that even with edns0 and (ANY or TXT) blocked,

more than 97% of servers still can yield AF greater than 10. For NTP (mode 7), even with

143

MONLIST as a signature4, 30.5% servers can still yield AF ě 10 and 4.8% ě 100! We observe

similar trends for SNMP. However, prior recommendations achieve high coverage for SSDP,

Chargen, and Memcached.
T
X

T
A

N
Y

D
N

S
K
EY

R
R
S
IG D
S

N
A
PT

R
D

N
A
M

E
S
R
V

U
R
I

S
IG H
IP R
P

N
S
EC

O
PE

N
PG

PK
EY

C
ER

T
TA

LO
C

K
X

IP
S
EC

K
EY

C
N

A
M

E
TL

S
A

N
S

N
S
EC

3P
A
R
A
M

C
D

S
C
D

N
S
K
EY

D
H

C
ID

PT
R

S
S
H

FP
C
A
A

A
PL

D
LV

S
O

A
K
EY

A
FS

D
B

N
S
EC

3
M

X A
A
A
A
A

TS
IG

O
PT

A
X
FR

TK
EY

IX
FR

Record Types

0

10

20

30

40

50

%
 O

f
V
un

le
ra

bl
e

S
er

ve
rs

AF 10-30 AF 30-50 AF 50-100

Figure 5.12: The variability of field values (for a specific field, recordtype) that con-

tribute to high amplification. Apart from known ones (recordtype:ANY, TXT), many other

recordtype values can lead to large AF

5.4.3 In-Depth Analysis on DNS

The previous discussion suggests there are many patterns not highlighted by prior work. We

analyze this further next. We focus on DNS first and defer other protocols to Section 5.4.4-

Section 5.4.6.

We start with a recordtype field as this field determines ANY vs. NS records. Figure 5.12

shows the percentage of servers that can induce considerable AF for each possible value of this

field. While the top-2 record types are TXT and ANY (pointed by prior work), more than 20%

of our sampled servers can yield more than 10 AF with 19 other recordtype values (e.g., URI,

HIP, RP, LOC, CNAME). Some of these (e.g., NAPTR) incur very high AF especially if used

4A follow-up paper mentioned the possibility of other settings that induce amplification, they did not specify

which request types [85].

144

Step 1: Preprocessing

. . .

Q à AF for
all servers

Q with
AF > 10

For large fields:
Infer Ranges Flarge à R

For other fields:
Prune if needed.
Get distinct values

Fother à V

f1: v or r
f2: v or r

…
fm: v or r

Step 2: Merge Queries

Step 3: Create a DAG

*

*, f1:1 *,f5:[0,100]. . .

f1:1, f2:1 … f1:1, f2:1 …

.

Output 1:
Find a Minimum Set

QPs at
level 1

QPs at
level m

. . .

Output 2: Infer a Tree

Still very large! (Redundancies)

QP0

QP11 QP13

QPm1 QPm2 QPm3

. . .

f2:0 f5:[0,100]

Prune based on max
or median AF

Figure 5.13: Steps to obtain query patterns to shed light on the patterns of amplification

in conjunction with the dnssec (DNSSEC-OK) set. While many DNSSEC-related recordtype

values (e.g., RRSIG, DNSKEY, DS) can yield high AF [175], we also observe many recordtype

values “unrelated” to DNSSEC (e.g., NAPTR, SRV). This is significant—even if we block ANY,

TXT queries, there are “many other” types that can induce high amplification.

Summarizing and analyzing query patterns: The above analysis only considers one field. In

practice, many other combinations of fields are susceptible, and we want to understand the struc-

ture of amplification-inducing query patterns (QPs). For this summarization, we considered a

number of standard data mining techniques (i.e., hierarchical clustering, K-means clustering, de-

cision trees) but found none were suitable. (For instance, clustering assume that we know the

number of clusters or the right distance metric/threshold. Similarly, given the large combinatorial

space, decision trees produce uninterpretable outputs.) Given these limitations of standard tech-

niques, we designed a custom heuristic (Figure 5.13). Starting from AF-inducing queries across

all servers, we generate a set of candidate patterns where some fields are set to concrete values

or ranges, and others are wildcarded. Specifically, for large fields (e.g., id, payload for DNS)

145

we identify candidate ranges by dividing the accepted values for a large field into exponentially-

spaced bins (e.g., tr0, 10s, r11, 100s ...u. Then, for each server, we generate a bit vector (e.g.,

1111) to represent these bins; i
¯
t is set to 1 if a server has a query (AF ě10) using a field value

that belongs to the bin range. Finally, given a set of bit vectors for all servers, we take candidate

vectors that are observed across ě 10% of servers. We prune out fields that appear to have no

effect on amplification; we count the number of queries (with AF ě 10) by checking if wild-

carding the field makes the AF value histogram follow a uniform distribution. We then generate

candidate patterns by generating all combinations of values and ranges. From these candidates,

we prune out QPs with AF ă 10 based on the “maximum” or the “median” AF. We represent

the QPs as a logical Directed Acyclic Graph (DAG), with these QPs are leaf nodes

(Step 3, Figure 5.13). We create a parent node by taking one of the nodes in the current level and

wild-carding one field; the root of the DAG is a node where all fields are wildcards. Given this

DAG, we consider two analysis:

1. Minimum set cover per level (Output 1, Figure 5.13): We compute the minimum set-cover of

QPs at each level that logically covers all leaf nodes; i.e., the set of QPs obtained at level 10

represents the minimum set of QPs to describe QPs using only 10 fields as concrete values or

ranges.

2. Hierarchical analysis (Output 2, Figure 5.13): To see dependencies across fields, we create

a tree where the edge is annotated with the field and its value which became concrete as we

increase the level (an example in Figure 5.15).

We run the above procedure separately for: 1) domains with DNSSEC support, and 2) do-

mains without support.

Corollary 1: Many unexpected patterns lead to high AF; e.g., with dnssec off and unrelated

to ANY records.

DNSSEC-related patterns: Figure 5.14a shows a boxplot of top 10 QPs w.r.t. the median AF

146

QP82.0 QP59.0 QP67.0 QP20.0 QP32.0 QP45.0 QP21.0 QP104.0 QP55.0 QP23.0

Query Patterns (QP) ranked by median AF

20

40

60
A

m
pl

ifi
ca

tio
n

Fa
ct

or

(a) Rank based on median AF

ID Field values

QP 82 xedns:0, payload:*,recordtype:RRSIG, ad:1, rd:*, rcode:8 ¨ ¨ ¨ y

QP 20 xedns:1, payload:*, recordtype:*, ad:0, rd:1, rcode:* ¨ ¨ ¨ y

QP 32 xedns:1, payload:*, recordtype:TXT, ad:0, rd:1, rcode:* ¨ ¨ ¨ y

(b) Describing query patterns (QPs)

Figure 5.14: DNS: Top 10 query patterns for a particular depth where 8 fields are left as

concrete values of ranges

when 8 fields are left concrete (level 8) in Figure 5.14. QP 82 incurs the largest median AF of

30 with xedns:0, payload:*, record type:RRSIG, rd:* ¨ ¨ ¨ y; here, it is not necessary to have rd set

to 1 and shows that having recordtype RRSIG can also cause high AF. The rank-2 QP has edns

set to 1 and not 0 (a known pattern); several servers that yield high AF had edns not set to 0.

Further, as we find many recordtype values that lead to high AF (also seen in Figure 5.12), this

QP has recordtype set to *. Further, as a side note, when we were pruning out fields that appear

to have no effect on AF (Figure 5.13), dnssec (DNSSEC-OK) got pruned out; however, we have

observed that setting this bit to 1 on certain queries can induce high AF on a subset of servers.

Non-DNSSEC patterns: For certain servers, domains without DNSSEC support can also yield

high AFs. Specifically, the median AF for the top-1 QP is 21 with xedns:1, record type:TXT,

rd:1 ¨ ¨ ¨ y. This confirms that TXT records can cause high AF [176]. We also observe recordtype

values such as DS appear among the QPs; some are attributed to anomalous servers.

147

qr { 0}
id (0,

65536)

opcode
{ 0}

rdataclass
{ 1}

edns {0}

edns {1}

edns {0}

payload
(>370)

opcode
{ 0}

ad { 1}

ad { 0}

rd {1}

rd {0}

rd { 0}

rd {1}

ad { 0}

ad { 1}

opcode
{ 0}

rdataclass
{ 255}

payload
(>776)
payload
(>776)

rcode { 1}

rdatatype
{NS, MX, TXT, SIG, KEY,

DNSKEY, TLSA, ANY, URI}

{TXT, RRSIG, DNSKEY, ANY}

{TXT}

{TXT, RRSIG, DNSKEY, ANY}

Figure 5.15: Tree showing how the query patterns change across levels. An edge means a

field value transitioned from a wildcard (*) in level L to a concrete value or range in the

next level, L` 1

Corollary 2: There are many query patterns that while not “max” provide high enough am-

plification. This can render an existing mitigation (i.e., [119]) ineffective.

At each level of DAG, more QPs are concentrated at AF between 10 and 20. At the leaf

nodes, 699 QPs produce a median AF of 10 to 20 while only 47 above 20 AF. Purely focusing

on one pattern or a handful to drive the mitigation plan will be insufficient.

Corollary 3: There are complex dependencies across field values inducing high AF change

based on other fields.

The DAG output (Figure 5.13) shows complex dependencies across field values that yield

high AF. Specifically, Figure 5.15 shows a subset of a tree (for DNSSEC-related) where the

QPs are filtered based on the “median” AF. If we consider a top branch with edns:0 and rd:1,

with NS, MX, ¨ ¨ ¨ TLSA, URI record types cause high AF. Some other combinations (i.e., blue

edges) will cause different recordtype values to induce high AF. Surprisingly, we find a non-

trivial number of servers that yield high AF even when rd (recursion desired) to 0 (off)! These

suggest that (1) there are many combinations of multiple fields values that lead to high AF, and

(2) this finding generalizes to many servers (as QPs are kept if the “median” AF across servers is

148

ě 10 AF). Further, if we consider a tree where QPs are pruned based on the maximum AF (less

aggressive pruning), we see even more combinations leading to high AF (e.g., OPENPGPKEY,

SOA for recordtype).

Further, we observe that not all servers behave according to specifications further adding

to variability in QPs. For instance, when edns is used, the response should be chopped to the

specified payload value. Unfortunately, for many servers, this is not the case; i.e., 88 servers (out

of 10K) yield AF above 50 with payload ă 512. Also, in our 2019 run, we saw 311 AF for one

server (for SRV record) where we saw many IP fragments. This server went offline shortly after

the experiment. While DNS over UDP does use IP fragmentation to deliver large payloads [22],

this makes defenses more difficult as they miss key fields such as port information [7].

Corollary 4: Given the variability of query patterns, blocking Top-K percentage of patterns

still leave significant residual risk; i.e., the 50th percentile of servers have 80% or more resid-

ual risk even with blocking 20% of query patterns (infeasible in practice).

We now analyze the percentage (%) of the residual risk if we had used the top-K percentage

(%) of QPs to block these queries. For this analysis, from the inferred QPs (Figure 5.13), we

do not prune them based on the maximum or median AF; we need to know all QPs that lead

to high AF for each individual server. We take the top-5 and 20% of these 11K QPs (sorted

by their median AF) and use them to block amplification-inducing queries from each server.

Unfortunately, we observe that even blocking the top-20% QPs (which is infeasible in practice)

still leaves 50% of the servers with 80% risk or higher (96.7% or higher risk if we block top-5

%).

Corollary 5: Many DNS vendors are affected.

Table 5.7 shows the affected vendors with servers that can yield AF ě 10. We only show ven-

dors with more than 20 servers. We discuss our efforts to notify these vendors of the vulnerability

in Section 5.5.2.

149

Vendor # of total servers # server (AF ě 10) % of servers (AF ě 10)

Bind 946 236 24.9%

Dnsmasq 917 819 89.3%

Version:recursive-main/* 522 12 2.3%

Microsoft 261 250 95.8%

PowerDNS 78 50 64.1%

unbound 40 26 65%

Table 5.7: Statistics on the affected DNS vendors

QP 10.0 QP 4.0 QP 8.0 QP 6.0 QP 7.0 QP 9.0 QP 3.0
Query Patterns (QP) ranked by median AF

101

102

103

Am
pl

ifi
ca

tio
n

Fa
ct

or

Figure 5.16: NTP top query patterns where the top-2 are MONLIST patterns. Other top

QPs have peer list, if reload, peer list sum, and peer stats as reqcode.

5.4.4 Amplification Patterns for NTP

We discuss amplification patterns for NTP; as we do not discover new patterns for mode 0-6,

we focus on mode-7 (private mode). Recall that we need to prune candidates QPs based on

maximum or median AF (Figure 5.13). As we observe a high variance across AF achieved by

different NTP servers, we looked at the QPs where they are pruned based on the maximum.

Figure 5.16 shows all QPs where they ranked by the median AF. Apart from MONLIST (QPs

10 and 4), we observe reqcode of peer list , if reload , peer list sum, and peer

stats from NTP OR; some of these other QPs can yield as large as a few hundred (seen by the

150

long “tail” in Figure 5.16). From NTP AND servers, we also observe mem stats, if stats,

and get restrict. Our findings for NTPprivate again complements Corollary 2. The

affected versions (with servers that can yield ě 10AF) are 4.1.1-2, 4,2,4, 4,2,6-8, and 4.2.0.

Further, servers that can induce high AF with other request codes (other than MONLIST) are

not particularly tired to one single version but span across multiple versions.

Vendors
total

servers

GetBulk GetNext

server

(AFě10)

% servers

(AFě10)

server

(AFě10)

% servers

(AFě10)

net-snmp 5357 5044 94.2% 3445 64.3%

cisco Systems 594 96 16.2% 60 10.1%

SonicWall 220 21.7 98.6% 27 12.3%

Broadcom Corp. 205 193 94.1% 81 39.5%

Table 5.8: Statistics on the affected SNMP vendors

5.4.5 Amplification Patterns for SNMP

We now discuss patterns for SNMP, which have 3 modes of operations; i.e., GetBulk, Get-

Next, and Get. We start with GetBulk, which is a known pattern [5] (reported average of 6.3

AF [165]). However, in running AmpMap, we discovered polymorphic variants that lead to sig-

nificantly “higher” AF; i.e. we saw an average of 22.4 AF for SNMP OR and 31.8 AF for SNMP

AND. Specifically, an attacker can modify OID value and the number of OIDs to yield higher

AF. Generally, we generally observe higher AF for queries with (1) a single-digit OID (near the

root) such as 2, 1, 0, and (2) a list containing multiple OID (i.e., 2-15 but above 15). However,

given server variability, there are exceptions; e.g., OID of 1.3.6.1.2, and a list size of 1 appears

in one of the top-4 patterns. The top-1 QP from the SNMP servers yields a median AF of 35

with x community:public ¨ ¨ ¨ OID:2, numoid: (0,8) y. From SNMP AND servers, the top-1 QP

yields 45 median AF with OID:0. We now discuss GetNext requests. While only GetBulk has

151

been highlighted in the prior analysis, AmpMap discovers that a single GetNext request can also

yield hundreds of AF (similarly, by varying the OID and the number of OIDs to query). From

SNMP AND servers, 37% servers can yield AF above 10 and 0.74% above 100AF! From SNMP

OR servers, 10% servers yield above 10 AF and 0.14% above 100. However, unlike SNMPbulk,

we saw high AFs for various OIDs (e.g., 1.3.6.1.2, 0, 1, 1.3.6.1.3); this is expected because

GetNext just requests the “next” variable in the tree, unlike GetBulk which requests a number

of GetNext requests. While we also replicated that a local server can yield 15 AF with GetNext

(by varying the list size), we posit that we see higher AF in the wild given server variability.

Table 5.8 shows the affected vendors for servers that can yield greater than 10AF using GetBulk

or GetNext requests; we only show for vendors with more than 200 servers and this combines

the results from both SNMP AND and SNMP OR. Similar to DNS and NTP, this amplification

vulnerability affects multiple vendors and not just one.

Lastly, measurements reveal that Get requests also can yield tens of AF (but not as large as

GetNext). From SNMP OR, 0.73% servers that have AF greater than 10. Unlike GetNext, we

observe high AF for OID of 1.3, and 1.3.6.1.3-4.

5.4.6 Amplification Patterns for Other Protocols

SSDP: Amplification risk is inherent with SSDP’s “discovery” feature. Our inferred QPs are

quite simple. If the leaf nodes are pruned based on the median AF, we see a discovery request

with one UUID of “ssdp:all.” This is expected as this feature will fetch “all” UUID information.

However, for QPs based on the maximum AF, we see many UUIDs leading to ě 10 AF. Again,

this confirms the presence of multiple query patterns.

Memcached: We did not find any QPs that lead to above 10 AF other than the “stats” request

(a known pattern) from our 2020 run. If we use our runs from 2019, some of the QPs with get

and gets requests did induce above 10 AF. However, it is still the case that “stats” are by far the

dominant pattern, and the residual risk from get and gets requests are negligible. Further, while

152

the known AF for Memcached is tens of thousands [33], the maximum we find from our 2020

run is 35 AF (we believe many have been patched or taken offline).

Chargen: As Chargen servers respond to any UDP datagram, the QPs learned at the leaf nodes

contain all possible characters and lengths. We represented the search space as a list of hex

strings where we search over the hex character as well as the length of the hex character.

We validate the existence of amplification-inducing query patterns for three protocols in a lab

setting. For these, we confirm the known patterns but do not find additional ones.

Quake: “Get status” message induces AF of 10 in our setting.

QOTD: As this server responds with random quotes, we see higher AF when the list size is

smaller and the size of the quote is larger.

RPCbind: The request for the process number running on the server with a correct version ID

incurs high AF (i.e., 10).

5.4.7 Parameters and Validation

Given the lack of ground-truth for all servers, we use a combination of local-server experiments,

a large-scale simulation, and example measurements for validation. In the local experiment, we

randomly sample 2M queries on a local DNS server and measured the AFs to infer the signatures

(Section 5.4.3). Our simulator models an amplification function that maps a query to AF based

on (1) field types, (2) the # of servers, (3) the # of pattern structures across servers, (4) the # of

pattern for each (3). For (3), indicating 100 pattern types instantiates 100 graph structures across

servers where each gets mapped to one type. This simulates the variability across servers.

Validating parameters: There are three key parameters: (1) per-server total budget, B , (2)

allotting B across different stages (e.g., Probing stage), and (3) the number of clusters for K-

means.

To see the impact of total budget (B), we use the local DNS server experiment. Fixing other

parameters (50% for Brand), we varied the B from 100 to 2000 (Figure 5.17). To show the

153

Structure 1 (Original) Structure 2 (Havling the density) Structure 1 (Disable TXT/ANY/RRSIG)
Different Pattern Structures

0
10
20
30
40
50
60
70
80
90

%
 o

f G
ro

un
dt

ru
th

 P
at

te
rn

s
Fo

un
d 100

200
500
800

1000
1200

1500
2000

Figure 5.17: Validating the choice of total budget (B)

robustness across multiple pattern structures, we “emulated” different pattern structures given

one setup. We emulated the effect of (1) reducing the % of AF-inducing queries by half, and (2)

disabling certain patterns (TXT, RRSIG, ANY). Clearly, using only a few hundreds achieves low

coverage but starts seeing the “diminishing” return at 1200 or 1500. We chose 1500 for complex

protocols (e.g., DNS). This confirms our chosen B is in a sufficiently good “operating region.”

To see the impact of the budget across stages, we use our simulator with 1K servers where

30% servers are configured to not induce high amplification (similar to the real-world). To ana-

lyze the robustness w.r.t. different levels of diversity, we test against 100 to 400 pattern structures.

First, using 50% for Brand, we vary the % of Bprobe from 0 to 40% (Figure 5.18b). Using 0% for

probing hurts coverage but using 5% and 30% is robust across settings. We chose 10% (lower

end of the range) as we should spare the budget for other (more critical) stages. Similarly, we

vary the Brandom from 0 to 70% (Figure 5.18a). We observe robustness across 5% to 45%. As it

is crucial for this stage to discover at least one AF-inducing query (for most servers), we chose

45% (the higher end). This leaves per-field search with the remaining 45%.

To validate the number of clusters, we use the same simulator and evaluate based on the

percentage (%) of servers, which the chosen Bprobe discovered (ě one) high AF query. Then, we

vary the number of clusters from 2 to 200 and observe robustness across these values; i.e., this is

not a “crucial” factor.

154

100 400
of Pattern Structures Across Servers

0

20

40

60

80

100
%

 o
f G

ro
un

dt
ru

th
 P

at
te

rn
s

Fo
un

d

1
15

25
35

45
55

65

(a) % of budget for Brandom

100 400
of Pattern Structures Across Servers

0

20

40

60

80

100

%
 o

f G
ro

un
dt

ru
th

 P
at

te
rn

s
Fo

un
d

0
5

10
20

30
40

50
60

(b) % of budget for Bprobe

Figure 5.18: Validating the choice of budget allocation

0 20 40 60 80 100
% of Patterns Found (for Each Server)

AmpMap

Random

Sim. Ann.

Figure 5.19: Validation of coverage of AmpMap and alternate solutions using 1K server

measurements

Comparison with structure-free alternatives: We compare AmpMap vs. two baselines: 1)

Simulated Annealing (SA), and 2) pure random search. Specifically, these baselines are structure-

free approaches. Our success metric is pattern coverage across a set of servers. We compared

these solutions using a small-scale 1K measurements. As we lack the ground-truth for each

server, we compare the “relative” performance across these solutions rather than to claim opti-

mality or completeness. Using a budget of 1500 queries, we inferred the signatures combining

the output across all solutions. Then, we analyze the coverage for each server. For a given server,

we take all queries with AF ě 10 across three solutions, which serves as the basis of comparison

for this server. Then, for each strategy, we compute the % of patterns discovered for each server.

155

Figure 5.19 shows the coverage across 1K servers for each solution. While SA performs better

than pure random strategy, the median coverage is 16.7% while the pure random strategy has

11.9% median. AmpMap achieves 97% coverage in this relative comparison.

5.5 Precautions and Disclosure

We carefully considered the impact of our measurements and the disclosure of our findings. We

followed the ethical principles (Menlo Report [65]) and the scanning guidelines suggested by

prior efforts (Zmap [96]). At a high-level, we adhered to these principles of (1) minimizing the

harm by taking multiple measurement precautions (Section 5.5.1), and (2) being transparent in

our method and results by informing relevant stakeholders of our findings and explaining the

purpose of our scanning (e.g., when we send out email notifications) (Section 5.5.2).

5.5.1 Scanning Precautions

We took precautions to ensure that there was no harm to the amplifying servers and the network.

Our study was approved by IRB under non-human subject criteria. We took care to ensure that

our measurements do not burden servers or the Internet.

• We send at most one query per 5 seconds, do not send malformed requests, and cap overall

budget per server.

• We do not scan the IPv4 network space but only known public servers obtained from Cen-

sys [95] and Shodan [30].

• We do not spoof the source IPs to induce responses to others. Our measurers explicitly receive

the responses.

Abuse complaints: We closely worked with the Cloudlab [94] administrators whom we notified

of our measurements and the purpose of AmpMap. We only received one abuse complaint from

running back-to-back SNMP small-scale experiments (500 servers) on June 3, 2020. This com-

156

plaint came from a third-party monitoring framework called greynoise.io [16]; their goal is

to notify the probing activities in the Internet and mass scanners (e.g., Censys [95], Shodan [30])

are also likely to be flagged by them [16]. We resolved this abuse complaint by discussing this

with Cloudlab admins. We did not receive any other abuse complaints from our 10K server

measurements. Across all 6 protocols, we also ran small-scale runs (300 servers) from our

public-facing server. We are not aware that the campus network operators received any abuse

complaints from these measurements.

SUBJECT: Vulnerable DDoS Amplifier

BODY: Security researchers at Carnegie Mellon University have been conducting Internet measure-

ments to quantify the risk of amplification distributed denial-of-service (DDoS) attacks. Our team has

noticed your system, IP with $PORT$ running $PROTOCOL$, can be abused to create an amplifica-

tion attack (US-CERT). That means certain network queries can induce large responses (i.e., amplifica-

tion factor as defined by US-CERT). Note that this may or may not be a result of mis-configuration of

the server. An example of a network packet that can cause an amplification factor greater than 30 is:

$PACKET INFO $

Please feel free to contact us at ampmap.proj@gmail.com should you have any questions and/or con-

cerns. The details and motivation of our project can be found in $OUR WEB$.

Figure 5.20: A notification email to IP owners

5.5.2 Disclosure

Next, we discuss our steps for responsible disclosure to relevant stakeholders.

Notifying IP owners: We notified the IP owners whose servers can induce AF greater than

30. Following best practices, we obtained the abuse and/or contact email from WHOIS [137].

We include an example notification sent from a project’s email, ampmap.proj@gmail.com in

Figure 5.20. Table 5.9 shows the number of emails we sent and human (not automated) responses

we got; e.g., for DNS, we send 1688 emails and received 17 responses. Example responses

157

greynoise.io
ampmap.proj@gmail.com
ampmap.proj@gmail.com

include “Thanks ¨ ¨ ¨ service detected on ADDR has been shutdown the time to install necessary

mitigation” and “We were not even aware this was the case. we have disabled SNMP.”

proto # sent # resp proto # sent # resp

DNS 1688 17
SNMPAND

GetBulk 3709 35

NTP OR private mode 85 0 GetNext 248 4

NTP AND private mode 620 1 SSDP 643 5

SNMP OR
GetBulk 2208 27 Chargen 5999 9

GetNext 55 0 Memcached 11 0

Table 5.9: Statistics on the # of notification emails we sent and the responses we got from

system owners

Vulnerability reporting: We have initiated a process of disclosing our findings to the affected

parties mediated by the CERT R© Coordination Center (CERT/CC). CERT/CC has accepted our

coordination request and is in the process of identifying and notifying the affected parties. Our

findings require multi-party coordination because unexpected amplification is potentially a pro-

tocol issue, and so all relevant vendors need to be notified in a consistent manner.

Notifying the vendors: Our vulnerability reports to CERT/CC specify affected vendors for

DNS, SNMP, and NTP.

5.6 Other Related Work on Amplification Attacks and Miti-

gation

We now discuss other related work on amplification attacks and mitigation. Prior works have

pointed out that many network protocols have amplification vulnerabilities [154]. Rossow [165]

discovered amplification vulnerabilities in 14 UDP-based protocols via a manual analysis on

the code or reverse engineering. Follow-up research also analyzed detailed amplification vec-

tor in specific protocols by focusing on a specific set of features (e.g., analyzing DNSSEC

158

in DNS [175], MONLIST in NTP [85]). However, using AmpMap, we found many other

recordtype values that can incur high AF. Some have looked at TCP-based amplification [134]

which is outside the scope of AmpMap. There is also an active discussion on the mitigation of

amplification attacks (e.g., [12, 19]). Further, some orthogonal efforts focus on monitoring [131]

and linking [133] DDoS services. Our work is inspired by these prior efforts. To the best of our

knowledge, AmpMap is the first to study the problem of automatically mapping Internet-wide

amplification vulnerabilities precisely.

5.7 Summary

Given the constant evolution of protocols, server implementations, we need a systematic ap-

proach to map the DDoS amplification threat. AmpMap bridges this gap by synthesizing struc-

tural insights with careful measurement design to realize a low-overhead service called AmpMap.

AmpMap can systematically confirm prior observations and also uncover new-possibly-hidden

amplification patterns that are ripe for abuse. As future work, we plan to add support for more

protocols and expand the scale of measurement to make this a continuous “health monitoring”

service for the Internet.

159

Algorithm 5: Per-Field Search

1 Function PerFieldSearch(QtoAF , Qstart , AF thresh):

2 Qexplore = tQstartu; PatternsFound “ tu

3 while Qexplore is not empty do

4 qÐ Extract from Qexplore

5 if ISNEWPATTERN(q.pattern , PatternsFound) then

/* Search neighbors for a new pattern */

6 PatternsFound .insert(q.pattern)

7 tmpQtoAF = SEARCHNEIGHBOR(q, AF thresh)

8 QtoAF .insert(QtoAF neighbor)

9 Qexplore = Qexplore Y tmpQtoAF .keyspq

10 else

11 MERGEQUERIES(q.pattern, PattersFound)

12 return QtoAF

13 Function SearchNeighbor(q, AF thresh):

14 NeighborQToAF “ tu

15 foreach protocol field fi do

16 Qi = tqrfi Ð vis, for vi P Values iu

17 QtoAF i = SENDQUERY(q P Qi)

/* Merge queries into contiguous ranges with high AF */

18 HighRanges = INFERPATTERNRANGE(q, Values i, QtoAF i, AF
thresh) /* Find

representative sample from each range */

19 for xvl, vry P HighRanges do

20 patternid = q.patternrfi Ð pvl, vrqs

21 qn = qrfi Ð randprvi, vrsqs

22 NeighborQToAF .append(qn Ñ AFn)

23 return NeighborQToAF

160

Chapter 6

Reflections, Limitations, and Future Work

In this chapter, we summarize the lessons and reflections from designing and running our tools

(Section 6.1) and discuss the limitations of our proposed solutions (Section 6.2). We conclude

the dissertation by identifying the key future research directions (Section 6.3).

6.1 Reflections and Lessons

Reflection #1: Black-box analysis is a necessary and practical alternative. A black-box

analysis is necessary for scenarios where it is the only viable option (e.g., proprietary functions,

vulnerability assessment for remote services). An interesting question is whether a black-box

analysis is beneficial and necessary when other types of analysis (e.g., white-box) are also viable.

At a high level, we find that different types of analysis (e.g., white-box analysis) complement

each other. For instance, white-box analysis ensures that the internal operations are performed

according to the expectations. On the other hand, the black-box analysis does not have visibility

into the internal logic and cannot discover such erroneous transition not visible from outputs.

However, we find scenarios where even when the internal state (i.e., code state) is in an expected,

correct state, a black-box function can still be exploited. When we were running Pryde, we

saw a specific firewall forwarding an external DATA packet behaving as if the connection is

161

ESTABLISHED, even when a connection state was in a SYN-SENT state (observable through

the user-interface).

Further, a black-box approach dynamically analyzes the system’s functionality as a whole

(i.e., a combination of source code, a configuration, among others) based on only the input-

output behavior. For instance, AmpMap uncovered a significant variability of the amplification-

inducing query patterns across servers with the identical software version (i.e., same code). We

posit that this happens as amplification is not just a function of the source code but many other

factors (e.g., configuration settings, the status of the server’s data).

Reflection #2: We observe a significant variability of implementations across vendors and

versions. Our findings suggest that we cannot merely assume that network functions and ser-

vices of the same type or with identical software (1) have a homogeneous implementation, and

(2) are susceptible to an identical set of vulnerabilities. Otherwise, we will miss out on significant

residual risk or miss our critical security implications. We briefly summarize the variability:

• Alembic (Chapter 3): NFs of the same type (e.g., load balancers) have starkly different behav-

ior across vendors. For example, HAProxy load balancer was a connection-terminating NF. In

contrast, the PfSense was behaving like a destination NAT.

• Pryde (Chapter 4): The discovered evasion vulnerabilities were highly implementation-specific.

For example, FW-2 was forwarding a DATA packet from an external attacker (even with an

explicit drop rule). In contrast, the ProprietaryNF firewall waited for exchanges of SYN and

SYN-ACK packets with correct seq/ack numbers.

• AmpMap (Chapter 5): We uncover a significant diversity of amplification-inducing patterns

across servers. Hence, only focusing on a handful of patterns will leave significant residual for

each server. The motivation for building AmpMap (empirically validated in Section 5.1) is the

variability of query patterns and the risk across servers.

Reflection #3: Our approaches are highly effective in systematically uncovering new vul-

nerabilities and confirming known attacks. While prior literature has uncovered evasion

162

attacks against IDSes [160] and censorship firewalls (e.g., [69, 179]), Pryde takes a systematic

approach to uncover evasion attacks against enterprise firewalls. These attacks exploit more fun-

damental implementation errors in tracking per-connection states. Using Pryde, we uncovered

294 to 8,220 semantically-distinct attacks across four popular firewalls. Furthermore, with our

systematic workflow, we showcase how having a weak insider can enable strong attacks. Sim-

ilarly, while an amplification attack is not a new concept in the security community, AmpMap

revealed a non-trivial number of new amplification-inducing patterns and polymorphic variants

of the known patterns. For instance, while prior work only highlighted ANY for DNS, more than

20% of our sampled servers can yield more than 10 AF with 19 other recordtype values. Our

findings across tools suggest: (1) such errors are prevalent in the implementations and design

of these functions and services; and (2) solely focusing on one feature or one attack vector is

insufficient for mitigation.

Reflection #4: We need structure-based approaches to discover these subtle attacks. While

Pryde uncovered thousands of attacks, a pure random-based strategy only uncovered 1 to 3 (raw)

attacks for two complex firewall implementations. Similarly, for AmpMap, using random-based

strategies (i.e., simulated annealing, random search) is ineffective in discovering multiple am-

plification patterns. These findings suggest that (1) these behavior and vulnerabilities are subtle

that simple approaches are ineffective; and (2) we need to leverage domain-specific insights to

analyze complex network functions and services.

6.2 Limitations

We now examine the limitations of our proposed solutions.

Limitation #1: Observable packet output: We assume a black-box function or service that

takes an input packet and emits packet(s). Hence, our current tools do not support the types of

behavior unobservable as an output packet. These include software bugs (e.g., buffer overflow,

163

privilege escalation), behavior affecting availability (e.g., battery outage), or physical behavior

(e.g., a sudden temperature increase). While our insights may be relevant for these settings, we

would need different mechanisms to identify the internal state or the cyber-physical aspects.

Limitation #2: Complex device behavior: Our techniques currently cannot capture temporal

(e.g., timeout) or quantitative behavior (e.g., rate-limiting, reduced throughput). Supporting these

properties would enable our techniques to handle more complex functions and services (e.g.,

WAN optimizer) and reason about complex bugs (e.g., performance-related bugs).

Limitation #3: Assumptions about the input space: We make certain assumptions about the

input space to reduce the relevant search space. For instance, in building Alembic and Pryde,

we only consider specific header fields such as IP addresses, ports, sequence, and acknowledg-

ment numbers, but not others (e.g., checksum, TTL). Similarly, we only focus on network-layer

behavior or attacks, but not application-layer behavior or attacks across all three tools.

Limitation #4: Knowledge of input format: We assume that we know the input formats (e.g.,

a format of a DNS packet) to these network functions and services (similar to other black-box

approaches [64, 171]). However, there may be scenarios where having such knowledge may be

infeasible; e.g., for proprietary protocols, we may not know the protocol-compliant formats.

Limitation #5: Identifying the structural properties: Leveraging relevant structural proper-

ties allows us to discover subtle behavior and uncover multiple security vulnerabilities. However,

extracting the right kinds of structural properties can be challenging. For example, in building

AmpMap, we identified these properties through an iterative process of coming up with hypothe-

ses and validating them through visualization and local setup testing. However, we observe that

once we identify these properties, we can build automated solutions general across vendors and

implementations.

Limitation #6: Root cause diagnosis: As with any black-box approach, explaining the root

cause of the behavior or security implications is currently outside the scope of our work. Re-

call that using AmpMap, we uncovered a significant diversity of query patterns across server

164

instances (even those with the same software setups). While we posit that this happens as am-

plification is also a function of other factors (e.g., exact configuration), we do not have visibility

into these factors (e.g., configurations, the status of the data contained in the server). While we

can hypothesize a host of factors, fully explaining our observation is outside the scope (of any

black-box approach). Similarly, we uncovered hundreds to thousands of semantically-distinct

bugs using Pryde. While we can approximate the distinct semantics from the stateful model, we

also do not have visibility into the internal workings. Hence, fully explaining the “root cause” of

these bugs is also outside the scope.

6.3 Future Work

Our ultimate vision for enabling analysis of these network functions and services is to make

networks more secure and future-proof to the growing diversity of exploitable network functions

and services. Our work in this dissertation has laid some steps towards achieving our goal. To

this end, we now identify two broad research directions:

• Given the complexity of functions, services, and their interactions, we need to enhance black-

box analysis techniques to reason about complex behavior (Section 6.3.1).

• Given that the ultimate goal is to secure them from future attacks, we lay out future directions

toward securing our modern network infrastructure (Section 6.3.2).

6.3.1 Enhancing Black-Box Analysis Techniques

Supporting temporal and quantitative properties: Representing temporal or quantitative

properties would benefit our tools to uncover performance-related behavior and verify such prop-

erties. To represent quantitative properties (e.g., rate-limiting), we posit that we need to incor-

porate these as part of the inputs to consider (e.g., sessions sent at a certain rate) and monitor

relevant properties. Similarly, to handle temporal effects (e.g., timeout), we need to add the

165

passage of time (e.g., wait for 30 s) to our input space.

While we could extend our current tools to handle this behavior, it may be worth considering

more native abstractions than deterministic FSMs. For instance, many have proposed different

abstractions to represent quantitative (e.g., [58, 60, 116, 145]) and timing properties (e.g., [59]).

Once we pick the abstraction, we can find relevant techniques that extend L* (i.e., [66, 112]). It

is not trivial to find one abstraction to model multiple properties at once, and we need to pick the

abstraction based on the properties of interest.

Handling more complex device interactions: Our current tool focuses on a single device.

However, network systems are composed of complex interactions between multiple functions,

services, and protocols. Thus, these scenarios can benefit from analyzing the network infras-

tructure as a whole (e.g., service function chaining [70], collateral damage between application

services). For instance, in building Pryde, we considered a non-interactive victim that accepts

any TCP packet. Supporting a stateful victim would enable us to discover more sophisticated

attacks such as an attacker exfiltrating data from a protected server.

Supporting a broader set of inputs: Our tools consider reasoning about the behavior using a

scoped set of input packets or header fields. Adding support for other fields such as bad check-

sum, TTL would enable our techniques to discover other behaviors and security vulnerabilities.

While these may sound relatively simple, we will run into scalability challenges. Hence, we

posit that it may be useful to combine our efforts with structure-free efforts [69] as they can

quickly explore more TCP fields. For instance, we envision a pre-processing step where these

tools inform which header fields are worth systematically exploring.

Supporting application-layer functions, services, and attacks against them: More complex

network functions such as layer-7 load balancers (LB), transparent proxy, or deep packet inspec-

tion (DPI) operate at the application layer. To support these network functions, we would need

to model the multi-layer interactions. Further, AmpMap focused solely on network layer attacks

such as DNS amplification. However, application-layer DDoS attacks are also particularly effec-

166

tive as they consume server resources and creates more damage, with less total bandwidth [39].

Automatically extracting structural properties: Identifying and leverage the right kinds of

structural properties are crucial in enabling our scalable solutions (across three applications).

However, we identified these properties from our domain expertise or through an iterative pro-

cess of validating hypotheses (as mentioned in Section 6.2). Therefore, automatically extracting

relevant structural insight to build automated tools to black-box analysis can be a promising

direction. For instance, we could develop candidate templates that test for specific properties

(e.g., testing independence or similarity across input space). That way, we can automatically

synthesize the high-level workflow of a solution given a specific problem.

Supporting more general goals: As mentioned in Section 1.3, AmpMap and Pryde focus

on more specific goals compared to that of Alembic. Pryde focuses on network firewalls, and

AmpMap focuses on DDoS amplification attacks. However, Pryde’s general techniques can

be relevant to synthesize attacks against other NFs. That is, we can still leverage the same

workflow of first inferring a stateful model and use it to systematically uncover attacks that

meet certain properties of interest. Extending Pryde’s general workflow for other NFs, beyond

network firewalls, can be an interesting future direction. Similarly, it would be interesting to

explore whether AmpMap’s insights can transfer to other types of attacks (e.g., performance

degradation for network services).

Leveraging machine learning techniques: We can leverage machine learning techniques to

fine-tune our input parameters automatically. For instance, the current AmpMap algorithm can

benefit from parameter tuning, e.g., automatically decide the % spent on the RandomSample

Stage based on the density observed so far. Further, machine learning techniques may provide

a path forward in handle scenarios where we do not know the input format. Furthermore, the

problem that AmpMap tackles can be also viewed as a black-box optimization problem. Hence,

one interesting future work is to leverage and customize these techniques for AmpMap’s purpose;

e.g., derivative-free optimization [100, 120, 163] or Bayesian Optimization that can optimize for

167

a black-box function. For instance, we would need to customize these algorithms to achieve

coverage rather than finding the maximum value and also handle server diversity, and these

efforts can benefit from our observations and insights.

Our recent vision paper [140] highlights that GANs are appealing for their ability to infer

constraints and correlations in the inputs for synthesizing inputs that meet specific properties

(e.g., protocol formats). Hence, it would be helpful to use such approaches to infer protocol

format or even learn the relationship between header fields.

6.3.2 Securing Our Network Infrastructure

Informing defenses by automatically patching network functions and protocols: The ul-

timate goal for uncovering security implications is to automatically patch these vulnerabilities.

Building a system that can adaptive and automatically install patches would be fruitful would

raise exciting research questions. How would we generate these patches? How do we ensure

the correctness or non-interference with normal operations of these devices and services? For

example, for stateful network functions, generating a model that undoes the effects of identified

vulnerabilities. Further, systematically generate signatures for blocking these input packets (e.g.,

packet values that incur amplification from AmpMap) would be an interesting future direction.

However, this would be challenging as we want a low false-positive rate not to interfere with

legitimate traffic.

Developing correct-by-construction function, services, and protocols: Our thesis focuses

on synthesizing behavior models for accurate verification or identifying exploitable inputs for

legacy network functions and services. However, these legacy functions and services can be

ripe for abuse. One interesting direction that would be particularly impactful is to design tech-

niques to make legacy functions, protocols, and services correct-by-construction with minimum

code changes. An alternate way is to use a clean-slate approach where we build correct-by-

construction network functions, services, and protocols (similar to goals of [187, 188]). How-

168

ever, building these would raise interesting research challenges. First, we need to know what

properties to enforce to make these functions and services correct-by-construction. Second,

enforcing these desired properties requires an expressive language or a framework to describe

these high-level specifications. We may also need to explore how to synthesize these specifi-

cations automatically. All of these directions would help us move toward securing our network

infrastructure with correct network functions, services, and protocols.

169

Bibliography

[1] Oulu University Secure Programming Group: PROTOS Test-Suite: c06-snmpv1. Techni-

cal report, University of Oulu, Electrical and Information Engineering. 22

[2] 5 DDOS Attack Trends to Watch in 2020 . https://www.indusface.com/blog/

ddos-attack-trends/. 5

[3] Alert (TA13-088A) UDP-Based Amplification Attacks. https://www.us-

cert.gov/ncas/alerts/TA13-088A. 5, 112, 115, 119, 120, 141

[4] Alert (TA14-013A) NTP Amplification Attacks Using CVE-2013-5211. https://

www.us-cert.gov/ncas/alerts/TA14-013A. 5, 112, 115, 141

[5] Alert (TA14-017A) UDP-Based Amplification Attacks. https://www.us-

cert.gov/ncas/alerts/TA14-017A. 5, 112, 114, 115, 119, 141, 151

[6] Arbor DDoS. https://www.netscout.com/arbor-ddos. 5

[7] Broken packets: IP fragmentation is flawed. https://blog.cloudflare.com/ip-

fragmentation-is-broken/. 149

[8] Cloudflare DDoS Protection. https://www.cloudflare.com/ddos/. 5

[9] Cloudflare outage on July 17, 2020. https://blog.cloudflare.com/

cloudflare-outage-on-july-17-2020/. 2

[10] CyberGreen. https://stats.cybergreen.net/. 6, 8, 9, 15, 19, 113, 117, 118

[11] DDoS Attacks Get Bigger, Smarter and More Diverse. https://threatpost.com/

170

https://www.indusface.com/blog/ddos-attack-trends/
https://www.indusface.com/blog/ddos-attack-trends/
https://www.us-cert.gov/ncas/alerts/TA13-088A
https://www.us-cert.gov/ncas/alerts/TA13-088A
https://www.us-cert.gov/ncas/alerts/TA14-013A
https://www.us-cert.gov/ncas/alerts/TA14-013A
https://www.us-cert.gov/ncas/alerts/TA14-017A
https://www.us-cert.gov/ncas/alerts/TA14-017A
https://www.netscout.com/arbor-ddos
https://blog.cloudflare.com/ip-fragmentation-is-broken/
https://blog.cloudflare.com/ip-fragmentation-is-broken/
https://www.cloudflare.com/ddos/
https://blog.cloudflare.com/cloudflare-outage-on-july-17-2020/
https://blog.cloudflare.com/cloudflare-outage-on-july-17-2020/
https://stats.cybergreen.net/
https://threatpost.com/ddos-attacks-get-bigger-smarter-and-more-diverse/134028/
https://threatpost.com/ddos-attacks-get-bigger-smarter-and-more-diverse/134028/
https://threatpost.com/ddos-attacks-get-bigger-smarter-and-more-diverse/134028/

ddos-attacks-get-bigger-smarter-and-more-diverse/134028/.

112, 116

[12] Dns reflection defense. https://blogs.akamai.com/2013/06/dns-

reflection-defense.html. 159

[13] DNS SURVEY: OPEN RESOLVERS. http://dns.measurement-factory.com/

surveys/openresolvers.html. 19, 113

[14] Executive Order 13800 - Strengthening the Cybersecurity of Federal Networks

and Critical Infrastructure. https://www.govinfo.gov/content/pkg/DCPD-

201700327/pdf/DCPD-201700327.pdf. 6, 113, 117

[15] Flooding the web: The internet’s epic attack amplification problem. https:

//www.theguardian.com/technology/2014/feb/24/flooding-the-

web-attack-amplification. 112

[16] Grey Noise. https://greynoise.io/about. 157

[17] Haproxy. http://www.haproxy.org/. 29, 63

[18] Here’s how much money a business should expect to lose if they’re hit with a DDoS attack.

https://www.techrepublic.com/article/heres-how-much-money-a-

business-should-expect-to-lose-if-theyre-hit-with-a-ddos-

attack/. 112, 116

[19] How to defend against amplification attacks. https://www.information-

age.com/how-defend-against-amplification-attacks-123457736/.

159

[20] How Verizon and a BGP Optimizer Knocked Large Parts of the Internet Offline Today.

https://blog.cloudflare.com/how-verizon-and-a-bgp-optimizer-

knocked-large-parts-of-the-internet-offline-today/. 2

[21] iPerf Performance Tool. https://iperf.fr/. 65, 66

171

https://threatpost.com/ddos-attacks-get-bigger-smarter-and-more-diverse/134028/
https://threatpost.com/ddos-attacks-get-bigger-smarter-and-more-diverse/134028/
https://threatpost.com/ddos-attacks-get-bigger-smarter-and-more-diverse/134028/
https://blogs.akamai.com/2013/06/dns-reflection-defense.html
https://blogs.akamai.com/2013/06/dns-reflection-defense.html
http://dns.measurement-factory.com/surveys/openresolvers.html
http://dns.measurement-factory.com/surveys/openresolvers.html
https://www.govinfo.gov/content/pkg/DCPD-201700327/pdf/DCPD-201700327.pdf
https://www.govinfo.gov/content/pkg/DCPD-201700327/pdf/DCPD-201700327.pdf
https://www.theguardian.com/technology/2014/feb/24/flooding-the-web-attack-amplification
https://www.theguardian.com/technology/2014/feb/24/flooding-the-web-attack-amplification
https://www.theguardian.com/technology/2014/feb/24/flooding-the-web-attack-amplification
https://greynoise.io/about
http://www.haproxy.org/
https://www.techrepublic.com/article/heres-how-much-money-a-business-should-expect-to-lose-if-theyre-hit-with-a-ddos-attack/
https://www.techrepublic.com/article/heres-how-much-money-a-business-should-expect-to-lose-if-theyre-hit-with-a-ddos-attack/
https://www.techrepublic.com/article/heres-how-much-money-a-business-should-expect-to-lose-if-theyre-hit-with-a-ddos-attack/
https://www.information-age.com/how-defend-against-amplification-attacks-123457736/
https://www.information-age.com/how-defend-against-amplification-attacks-123457736/
https://blog.cloudflare.com/how-verizon-and-a-bgp-optimizer-knocked-large-parts-of-the-internet-offline-today/
https://blog.cloudflare.com/how-verizon-and-a-bgp-optimizer-knocked-large-parts-of-the-internet-offline-today/
https://iperf.fr/

[22] IPv6, Large UDP Packets and the DNS. http://www.potaroo.net/ispcol/

2017-08/xtn-hdrs.html. 149

[23] jsonrpc. https://github.com/briandilley/jsonrpc4j. 62

[24] Memcrashed - Major amplification attacks from UDP port 11211. https:

//blog.cloudflare.com/memcrashed-major-amplification-

attacks-from-port-11211/. 2, 5, 112, 117

[25] Open Memcached Key-Value Store Scanning Project. https://

memcachedscan.shadowserver.org/. 141

[26] pfsense. https://www.pfsense.org/. 29, 63

[27] Scapy. http://www.secdev.org/projects/scapy/. 62, 98

[28] Security Bulletin: Crafted DNS Text Attack. https://tinyurl.com/y9zpevuy. 115, 141

[29] ShadowServer. https://www.shadowserver.org/. 113

[30] SHODAN. https://www.shodan.io/. 123, 136, 156, 157

[31] Technical Details Behind a 400Gbps NTP Amplification DDoS Attack. https:

//blog.cloudflare.com/technical-details-behind-a-400gbps-

ntp-amplification-ddos-attack/. 5, 117

[32] The DDoS That Almost Broke the Internet. https://blog.cloudflare.com/

the-ddos-that-almost-broke-the-internet/. 5, 117

[33] UDP-Based Amplification Attacks. https://www.us-cert.gov/ncas/alerts/

TA14-017A. 118, 119, 153

[34] untangle. https://www.untangle.com/. 29, 32, 63

[35] Virtualbox. https://www.virtualbox.org/. 63, 98

[36] What is an intrusion detection system? How an IDS spots threats. https:

//www.csoonline.com/article/3255632/what-is-an-intrusion-

172

http://www.potaroo.net/ispcol/2017-08/xtn-hdrs.html
http://www.potaroo.net/ispcol/2017-08/xtn-hdrs.html
https://github.com/briandilley/jsonrpc4j
https://blog.cloudflare.com/memcrashed-major-amplification-attacks-from-port-11211/
https://blog.cloudflare.com/memcrashed-major-amplification-attacks-from-port-11211/
https://blog.cloudflare.com/memcrashed-major-amplification-attacks-from-port-11211/
https://memcachedscan.shadowserver.org/
https://memcachedscan.shadowserver.org/
https://www.pfsense.org/
http://www.secdev.org/projects/scapy/
https://www.shadowserver.org/
https://www.shodan.io/
https://blog.cloudflare.com/technical-details-behind-a-400gbps-ntp-amplification-ddos-attack/
https://blog.cloudflare.com/technical-details-behind-a-400gbps-ntp-amplification-ddos-attack/
https://blog.cloudflare.com/technical-details-behind-a-400gbps-ntp-amplification-ddos-attack/
https://blog.cloudflare.com/the-ddos-that-almost-broke-the-internet/
https://blog.cloudflare.com/the-ddos-that-almost-broke-the-internet/
https://www.us-cert.gov/ncas/alerts/TA14-017A
https://www.us-cert.gov/ncas/alerts/TA14-017A
https://www.untangle.com/
https://www.virtualbox.org/
https://www.csoonline.com/article/3255632/what-is-an-intrusion-detection-system-how-an-ids-spots-threats.html
https://www.csoonline.com/article/3255632/what-is-an-intrusion-detection-system-how-an-ids-spots-threats.html
https://www.csoonline.com/article/3255632/what-is-an-intrusion-detection-system-how-an-ids-spots-threats.html
https://www.csoonline.com/article/3255632/what-is-an-intrusion-detection-system-how-an-ids-spots-threats.html

detection-system-how-an-ids-spots-threats.html, last accessed

August 16, 2020. 1

[37] What Is DNS? — How DNS Works. https://www.cloudflare.com/learning/

dns/what-is-dns/, last accessed August 16, 2020. 1

[38] What Is Load Balancing? https://www.nginx.com/resources/glossary/

load-balancing/, last accessed August 16, 2020. 1

[39] Application Layer DDoS Attack. https://www.cloudflare.com/learning/

ddos/application-layer-ddos-attack/, last accessed August 17, 2020. 167

[40] AWS Marketplace. https://aws.amazon.com/marketplace, last accessed July

31, 2020. 77, 86, 98

[41] boofuzz: Network protocol fuzzing for humans. https://

boofuzz.readthedocs.io/en/latest/, last accessed July 31, 2020. 76

[42] Cloud-based firewalls are key to protecting employees while working remotely. https:

//securityboulevard.com/2020/05/cloud-based-firewalls-are-

key-to-protecting-employees-while-working-remotely/, last ac-

cessed July 31, 2020. 4, 75

[43] FBI recommends that you keep your IoT devices on a separate network.

https://www.zdnet.com/article/fbi-recommends-that-you-keep-

your-iot-devices-on-a-separate-network/, last accessed July 31, 2020.

84

[44] Firewall Penetration Testing: Steps, Methods And Tools That Work. https:

//purplesec.us/firewall-penetration-testing/, last accessed July 31,

2020. 85

[45] IoT security fail: The weird devices that employees are connecting to the office

network. https://www.zdnet.com/article/iot-security-warning-

173

https://www.csoonline.com/article/3255632/what-is-an-intrusion-detection-system-how-an-ids-spots-threats.html
https://www.csoonline.com/article/3255632/what-is-an-intrusion-detection-system-how-an-ids-spots-threats.html
https://www.csoonline.com/article/3255632/what-is-an-intrusion-detection-system-how-an-ids-spots-threats.html
https://www.cloudflare.com/learning/dns/what-is-dns/
https://www.cloudflare.com/learning/dns/what-is-dns/
https://www.nginx.com/resources/glossary/load-balancing/
https://www.nginx.com/resources/glossary/load-balancing/
https://www.cloudflare.com/learning/ddos/application-layer-ddos-attack/
https://www.cloudflare.com/learning/ddos/application-layer-ddos-attack/
https://aws.amazon.com/marketplace
https://boofuzz.readthedocs.io/en/latest/
https://boofuzz.readthedocs.io/en/latest/
https://securityboulevard.com/2020/05/cloud-based-firewalls-are-key-to-protecting-employees-while-working-remotely/
https://securityboulevard.com/2020/05/cloud-based-firewalls-are-key-to-protecting-employees-while-working-remotely/
https://securityboulevard.com/2020/05/cloud-based-firewalls-are-key-to-protecting-employees-while-working-remotely/
https://www.zdnet.com/article/fbi-recommends-that-you-keep-your-iot-devices-on-a-separate-network/
https://www.zdnet.com/article/fbi-recommends-that-you-keep-your-iot-devices-on-a-separate-network/
https://purplesec.us/firewall-penetration-testing/
https://purplesec.us/firewall-penetration-testing/
https://www.zdnet.com/article/iot-security-warning-employees-are-connecting-these-unauthorised-devices-to-your-network/
https://www.zdnet.com/article/iot-security-warning-employees-are-connecting-these-unauthorised-devices-to-your-network/
https://www.zdnet.com/article/iot-security-warning-employees-are-connecting-these-unauthorised-devices-to-your-network/

employees-are-connecting-these-unauthorised-devices-to-

your-network/, last accessed July 31, 2020. 83

[46] Katherine Pryde. https://marvel-movies.fandom.com/wiki/

Katherine Pryde, last accessed July 31, 2020. 12, 75, 76

[47] Microsoft: Russian state hackers are using IoT devices to breach enterprise

networks. https://www.zdnet.com/article/microsoft-russian-

state-hackers-are-using-iot-devices-to-breach-enterprise-

networks/, last accessed July 31, 2020. 83

[48] Red Hat Sprucing OpenShift for Network Functions on Kubernetes. https:

//www.lightreading.com/nfv/red-hat-sprucing-openshift-for-

network-functions-on-kubernetes/d/d-id/754828, last accessed July

31, 2020. 4, 75

[49] Rogue IoT devices are putting your network at risk from hackers. https:

//www.zdnet.com/article/rogue-iot-devices-are-putting-your-

network-at-risk-from-hackers/, last accessed July 31, 2020. 83

[50] Sulley: Fuzzing Framework. http://www.fuzzing.org/wp-content/

SulleyManual.pdf, last accessed July 31, 2020. 76

[51] The Importance of Using a Firewall for Threat Protection. https:

//www.websecurity.digicert.com/security-topics/importance-

using-firewall-threat-protection, last accessed July 31, 2020. 1, 75

[52] The IoT: Gateway for enterprise hackers. https://www.csoonline.com/

article/3148806/the-iot-gateway-for-enterprise-hackers.html,

last accessed July 31, 2020. 83

[53] Humberto J. Abdelnur, Radu State, and Olivier Festor. Kif: A stateful sip fuzzer. In Proc.

IPTComm, 2007. 15, 21, 22

174

https://www.zdnet.com/article/iot-security-warning-employees-are-connecting-these-unauthorised-devices-to-your-network/
https://www.zdnet.com/article/iot-security-warning-employees-are-connecting-these-unauthorised-devices-to-your-network/
https://www.zdnet.com/article/iot-security-warning-employees-are-connecting-these-unauthorised-devices-to-your-network/
https://www.zdnet.com/article/iot-security-warning-employees-are-connecting-these-unauthorised-devices-to-your-network/
https://marvel-movies.fandom.com/wiki/Katherine_Pryde
https://marvel-movies.fandom.com/wiki/Katherine_Pryde
https://www.zdnet.com/article/microsoft-russian-state-hackers-are-using-iot-devices-to-breach-enterprise-networks/
https://www.zdnet.com/article/microsoft-russian-state-hackers-are-using-iot-devices-to-breach-enterprise-networks/
https://www.zdnet.com/article/microsoft-russian-state-hackers-are-using-iot-devices-to-breach-enterprise-networks/
https://www.lightreading.com/nfv/red-hat-sprucing-openshift-for-network-functions-on-kubernetes/d/d-id/754828
https://www.lightreading.com/nfv/red-hat-sprucing-openshift-for-network-functions-on-kubernetes/d/d-id/754828
https://www.lightreading.com/nfv/red-hat-sprucing-openshift-for-network-functions-on-kubernetes/d/d-id/754828
https://www.zdnet.com/article/rogue-iot-devices-are-putting-your-network-at-risk-from-hackers/
https://www.zdnet.com/article/rogue-iot-devices-are-putting-your-network-at-risk-from-hackers/
https://www.zdnet.com/article/rogue-iot-devices-are-putting-your-network-at-risk-from-hackers/
http://www.fuzzing.org/wp-content/SulleyManual.pdf
http://www.fuzzing.org/wp-content/SulleyManual.pdf
https://www.websecurity.digicert.com/security-topics/importance-using-firewall-threat-protection
https://www.websecurity.digicert.com/security-topics/importance-using-firewall-threat-protection
https://www.websecurity.digicert.com/security-topics/importance-using-firewall-threat-protection
https://www.csoonline.com/article/3148806/the-iot-gateway-for-enterprise-hackers.html
https://www.csoonline.com/article/3148806/the-iot-gateway-for-enterprise-hackers.html

[54] Adel El-Atawy, K. Ibrahim, H. Hamed, and Ehab Al-Shaer. Policy segmentation for

intelligent firewall testing. In Proc. IEEE ICNP Workshop on Secure Network Protocols,

2005. 76, 110

[55] Hari Adiseshu, Subhash Suri, and Guru M. Parulkar. Detecting and resolving packet filter

conflicts. In Proc. IEEE INFOCOM, 2000. 110

[56] Ehab Al-Shaer, Adel El-Atawy, and Taghrid Samak. Automated pseudo-live testing of

firewall configuration enforcement. IEEE J. Sel. Areas Commun., 27(3):302–314, 2009.

76, 110

[57] Maryam Raiyat Aliabadi, Amita Ajith Kamath, Julien Gascon-Samson, and Karthik Pat-

tabiraman. Artinali: Dynamic invariant detection for cyber-physical system security. In

Proc. ESEC/FSE, 2017. 25

[58] Rajeev Alur, Loris DAntoni, Jyotirmoy Deshmukh, Mukund Raghothaman, and Yifei

Yuan. Regular functions and cost register automata. In Proc. LICS, 2013. 166

[59] Rajeev Alur and David L. Dill. A theory of timed automata. Theor. Comput. Sci.,

126(2):183–235, April 1994. 166

[60] Rajeev Alur, Dana Fisman, and Mukund Raghothaman. Regular programming for quan-

titative properties of data streams. In Proc. European Symposium on Programming Lan-

guages and Systems, pages 15–40, New York, NY, USA, 2016. Springer-Verlag New York,

Inc. 166

[61] David G. Andersen, Hari Balakrishnan, Nick Feamster, Teemu Koponen, Daekyeong

Moon, and Scott Shenker. Accountable internet protocol (aip). In Proc. SIGCOMM,

2008. 112

[62] Dana Angluin. Learning regular sets from queries and counterexamples. Inf. Comput.,

75(2):87–106, November 1987. 9, 12, 28, 29, 37, 42, 43, 73, 74, 97

[63] Manos Antonakakis, Tim April, Michael Bailey, Matt Bernhard, Elie Bursztein, Jaime

175

Cochran, Zakir Durumeric, J. Alex Halderman, Luca Invernizzi, Michalis Kallitsis,

Deepak Kumar, Chaz Lever, Zane Ma, Joshua Mason, Damian Menscher, Chad Seaman,

Nick Sullivan, Kurt Thomas, and Yi Zhou. Understanding the mirai botnet. In Proc.

USENIX Security Symposium, 2017. 2

[64] George Argyros, Ioannis Stais, Suman Jana, Angelos D. Keromytis, and Aggelos Ki-

ayias. Sfadiff: Automated evasion attacks and fingerprinting using black-box differential

automata learning. In Proc. CCS, 2016. 8, 15, 20, 74, 164

[65] M. Bailey, D. Dittrich, E. Kenneally, and D. Maughan. The menlo report. IEEE Security

Privacy, 10(2):71–75, 2012. 156

[66] Borja Balle and Mehryar Mohri. Learning weighted automata. In Andreas Maletti, editor,

Algebraic Informatics, pages 1–21, Cham, 2015. Springer International Publishing. 166

[67] Greg Banks, Marco Cova, Viktoria Felmetsger, Kevin Almeroth, Richard Kemmerer, and

Giovanni Vigna. Snooze: Toward a stateful network protocol fuzzer. In Proc. ISC, 2006.

15, 21, 22

[68] Steve Bishop, Matthew Fairbairn, Michael Norrish, Peter Sewell, Michael Smith, and

Keith Wansbrough. Rigorous specification and conformance testing techniques for net-

work protocols, as applied to tcp, udp, and sockets. In Proc. SIGCOMM, 2005. 15, 22

[69] Kevin Bock, George Hughey, Xiao Qiang, and Dave Levin. Geneva: Evolving censorship

evasion strategies. In Proc. CCS, 2019. 8, 15, 19, 24, 76, 78, 79, 81, 82, 91, 102, 163, 166

[70] M. Boucadair, C. Jacquenet, R. Parker, D. Lopez, and C. Pignataro J. Guichard. Ser-

vice function chaining (sfc) use cases. https://tools.ietf.org/html/draft-

boucadair-service-chaining-framework-00, 2013. 166

[71] Juan Caballero, Heng Yin, Zhenkai Liang, and Dawn Song. Polyglot: Automatic extrac-

tion of protocol message format using dynamic binary analysis. In Proc. CCS, 2007. 8,

15, 17, 18

176

https://tools.ietf.org/html/draft-boucadair-service-chaining-framework-00
https://tools.ietf.org/html/draft-boucadair-service-chaining-framework-00

[72] Cristian Cadar, Daniel Dunbar, and Dawson Engler. Klee: Unassisted and automatic

generation of high-coverage tests for complex systems programs. In Proc. OSDI, 2008.

23

[73] Yue Cao, Zhiyun Qian, Zhongjie Wang, Tuan Dao, Srikanth V. Krishnamurthy, and

Lisa M. Marvel. Off-path tcp exploits: Global rate limit considered dangerous. In Proc.

USENIX Security Symposium, 2016. 18

[74] Z. Berkay Celik, Leonardo Babun, Amit Kumar Sikder, Hidayet Aksu, Gang Tan, Patrick

McDaniel, and A. Selcuk Uluagac. Sensitive information tracking in commodity iot. In

Proc. USENIX Security Symposium, 2018. 25

[75] Z. Berkay Celik, Patrick McDaniel, and Gang Tan. Soteria: Automated iot safety and

security analysis. In Proc. ATC, 2018. 24, 25

[76] S. K. Cha, M. Woo, and D. Brumley. Program-adaptive mutational fuzzing. In Proc. IEEE

Symposium on Security and Privacy, 2015. 23

[77] Weiteng Chen and Zhiyun Qian. Off-path TCP exploit: How wireless routers can jeopar-

dize your secrets. In Proc. USENIX Security Symposium, 2018. 15, 18

[78] Y. Chen, C. M. Poskitt, and J. Sun. Learning from mutants: Using code mutation to learn

and monitor invariants of a cyber-physical system. In Proc. IEEE Symposium on Security

and Privacy, 2018. 25

[79] Chia Yuan Cho, Domagoj Babi ć, Eui Chul Richard Shin, and Dawn Song. Inference and

analysis of formal models of botnet command and control protocols. In Proc. CCS, 2010.

20

[80] Chia Yuan Cho, Domagoj Babić, Pongsin Poosankam, Kevin Zhijie Chen, Edward XueJun

Wu, and Dawn Song. Mace: Model-inference-assisted concolic exploration for protocol

and vulnerability discovery. In Proc. USENIX Security Symposium, 2011. 15, 17, 20

[81] T. S. Chow. Testing software design modeled by finite-state machines. IEEE Trans. Softw.

177

Eng., 4(3):178–187, May 1978. 44, 46, 47

[82] Edmund M. Clarke, Armin Biere, Richard Raimi, and Yunshan Zhu. Bounded model

checking using satisfiability solving. Formal Methods in System Design, 19(1):7–34,

2001. 88, 96

[83] Paolo Milani Comparetti, Gilbert Wondracek, Christopher Kruegel, and Engin Kirda.

Prospex: Protocol specification extraction. In Proc. IEEE Symposium on Security and

Privacy, 2009. 18

[84] Scott A. Crosby and Dan S. Wallach. Denial of service via algorithmic complexity attacks.

In Proc. USENIX Security Symposium, 2003. 15

[85] Jakub Czyz, Michael Kallitsis, Manaf Gharaibeh, Christos Papadopoulos, Michael Bailey,

and Manish Karir. Taming the 800 pound gorilla: The rise and decline of ntp ddos attacks.

In Proc. IMC, 2014. 6, 118, 141, 142, 144, 159

[86] A. Datta, A. Derek, J. C. Mitchell, and D. Pavlovic. A derivation system for security

protocols and its logical formalization. In 16th IEEE Computer Security Foundations

Workshop, 2003. Proceedings., pages 109–125, 2003. 22

[87] Anupam Datta, Ante Derek, John Mitchell, and Dusko Pavlovic. Secure protocol compo-

sition. volume 83, pages 11–23, 10 2003. 22

[88] Anupam Datta, Ante Derek, John C Mitchell, and Arnab Roy. Protocol composition logic

(pcl). Electronic Notes in Theoretical Computer Science, 172:311–358, 2007. 22

[89] Anupam Datta, Ante Derek, John C. Mitchell, Vitaly Shmatikov, and Mathieu Turuani.

Probabilistic polynomial-time semantics for a protocol security logic. In Luı́s Caires,

Giuseppe F. Italiano, Luı́s Monteiro, Catuscia Palamidessi, and Moti Yung, editors, Au-

tomata, Languages and Programming, pages 16–29, Berlin, Heidelberg, 2005. Springer

Berlin Heidelberg. 22

[90] Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: an efficient SMT solver. In

178

TACAS, volume 4963 of Lecture Notes in Computer Science, pages 337–340. Springer,

2008. 88, 97

[91] Wenbo Ding and Hongxin Hu. On the safety of iot device physical interaction control. In

Proc. CCS, 2018. 24, 25

[92] Mihai Dobrescu and Katerina Argyraki. Software dataplane verification. In Proc. NSDI,

2014. 15, 16

[93] Samuel Drews and Loris D’Antoni. Learning symbolic automata. In International Con-

ference on Tools and Algorithms for the Construction and Analysis of Systems, pages

173–189. Springer, 2017. 74

[94] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong, Jonathon Duerig, Eric

Eide, Leigh Stoller, Mike Hibler, David Johnson, Kirk Webb, Aditya Akella, Kuangching

Wang, Glenn Ricart, Larry Landweber, Chip Elliott, Michael Zink, Emmanuel Cecchet,

Snigdhaswin Kar, and Prabodh Mishra. The design and operation of CloudLab. In Proc.

ATC, 2019. 63, 98, 136, 156

[95] Zakir Durumeric, David Adrian, Ariana Mirian, Michael Bailey, and J. Alex Halderman.

A search engine backed by internet-wide scanning. In Proc. CCS, 2015. 1, 113, 119, 123,

136, 156, 157

[96] Zakir Durumeric, Eric Wustrow, and J. Alex Halderman. Zmap: Fast internet-wide scan-

ning and its security applications. In Proc. USENIX Security Symposium, 2013. 1, 113,

156

[97] Seyed K. Fayaz, Tianlong Yu, Yoshiaki Tobioka, Sagar Chaki, and Vyas Sekar. Buzz:

Testing context-dependent policies in stateful networks. In Proc. NSDI, 2016. 3, 12, 17,

24, 26, 28, 31, 32, 36, 72, 73

[98] E. Fernandes, J. Jung, and A. Prakash. Security analysis of emerging smart home appli-

cations. In Proc. IEEE Symposium on Security and Privacy, 2016. 24, 25

179

[99] Earlence Fernandes, Justin Paupore, Amir Rahmati, Daniel Simionato, Mauro Conti, and

Atul Prakash. Flowfence: Practical data protection for emerging iot application frame-

works. In Proc. USENIX Security Symposium, 2016. 24, 25

[100] Daniel E Finkel. Direct optimization algorithm user guide. 2003. 167

[101] Paul Fiterău-Broştean, Ramon Janssen, and Frits Vaandrager. Learning fragments of the

tcp network protocol. In International Workshop on Formal Methods for Industrial Criti-

cal Systems, pages 78–93. Springer, 2014. 20

[102] Paul Fiterău-Broştean, Ramon Janssen, and Frits Vaandrager. Combining model learn-

ing and model checking to analyze tcp implementations. In International Conference on

Computer Aided Verification, pages 454–471. Springer, 2016. 20, 74

[103] Philippe Flajolet, Danièle Gardy, and Loÿs Thimonier. Birthday paradox, coupon collec-

tors, caching algorithms and self-organizing search. Discrete Appl. Math., 39(3):207–229,

November 1992. 135

[104] Ari Fogel, Stanley Fung, Luis Pedrosa, Meg Walraed-Sullivan, Ramesh Govindan, Ratul

Mahajan, and Todd Millstein. A general approach to network configuration analysis. In

Proc. NSDI, 2015. 73

[105] Susumu Fujiwara, Gregor von Bochmann, Ferhat Khendek, Mokhtar Amalou, and Abder-

razak Ghedamsi. Test selection based on finite state models. IEEE Trans. Softw. Eng.,

17(6):591–603, June 1991. 44, 46

[106] Hugo Gascon, Christian Wressnegger, Fabian Yamaguchi, Daniel Arp, and Konrad Rieck.

Pulsar: Stateful black-box fuzzing of proprietary network protocols. In SecureComm,

volume 164 of Lecture Notes of the Institute for Computer Sciences, Social Informatics

and Telecommunications Engineering, pages 330–347. Springer, 2015. 8, 15, 20, 76

[107] Erol Gelenbe, Gökçe Görbil, Dimitrios Tzovaras, Steffen Liebergeld, David Garcia,

Madalina Baltatu, and George Lyberopoulos. Nemesys: Enhanced network security for

180

seamless service provisioning in the smart mobile ecosystem. In Information Sciences

and Systems 2013, pages 369–378. Springer, 2013. 8, 21

[108] Patrice Godefroid et al. Dart: Directed automated random testing. In Proc. PLDI, 2005.

23

[109] Patrice Godefroid, Michael Y. Levin, and David Molnar. Automated whitebox fuzz test-

ing. In Proc. NDSS, 2008. 23

[110] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil

Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in

neural information processing systems, pages 2672–2680, 2014. 9, 21

[111] Serge Gorbunov and Arnold Rosenbloom. Autofuzz: Automated network protocol

fuzzing framework. IJCSNS, 10(8):239, 2010. 15, 76

[112] Olga Grinchtein. Learning of timed systems. PhD thesis, Acta Universitatis Upsaliensis,

2008. 166

[113] Alex Groce, Doron Peled, and Mihalis Yannakakis. Adaptive model checking. In Pro-

ceedings of the 8th International Conference on Tools and Algorithms for the Construction

and Analysis of Systems, TACAS ’02, pages 357–370, London, UK, UK, 2002. Springer-

Verlag. 74

[114] Mark Handley, Vern Paxson, and Christian Kreibich. Network intrusion detection: Eva-

sion, traffic normalization, and end-to-end protocol semantics. In Proc. USENIX Security

Symposium, 2001. 111

[115] Changhua He, Mukund Sundararajan, Anupam Datta, Ante Derek, and John C. Mitchell.

A modular correctness proof of ieee 802.11i and tls. In Proc. CCS, 2005. 22

[116] T. A. Henzinger. The theory of hybrid automata. In Proceedings 11th Annual IEEE

Symposium on Logic in Computer Science, pages 278–292, 1996. 166

[117] Grant Ho, Derek Leung, Pratyush Mishra, Ashkan Hosseini, Dawn Song, and David Wag-

181

ner. Smart locks: Lessons for securing commodity internet of things devices. In Proc.

AsiaCCS, 2016. 24, 25

[118] Syed Rafiul Hussain, Omar Chowdhury, Shagufta Mehnaz, and Elisa Bertino. Lteinspec-

tor: A systematic approach for adversarial testing of 4g LTE. In Proc. NDSS, 2018. 20

[119] Internet Systems Consortium. Using the response rate limiting feature. https://

kb.isc.org/docs/aa-00994, 9 2018. 148

[120] Kevin G Jamieson et al. Query complexity of derivative-free optimization. In Proc NIPS,

pages 2672–2680, 2012. 167

[121] S. Jero, H. Lee, and C. Nita-Rotaru. Leveraging state information for automated attack

discovery in transport protocol implementations. In Proc. DSN, 2015. 15, 21

[122] Samuel Jero, Md. Endadul Hoque, David R. Choffnes, Alan Mislove, and Cristina Nita-

Rotaru. Automated attack discovery in TCP congestion control using a model-guided

approach. In Proc. NDSS, 2018. 20

[123] Ranjit Jhala and Rupak Majumdar. Software model checking. ACM Comput. Surv.,

41(4):21:1–21:54, October 2009. 20

[124] Laurent Joncheray. A simple active attack against tcp. In Proc. USENIX Security Sympo-

sium, 1995. 15, 18

[125] D. Joseph and I. Stoica. Modeling middleboxes. Netwrk. Mag. of Global Internetwkg.,

2008. 26

[126] Peyman Kazemian, George Varghese, and Nick McKeown. Header space analysis: Static

checking for networks. In Proc. NSDI, 2012. 38, 73, 94

[127] Sheharbano Khattak, Mobin Javed, Philip D. Anderson, and Vern Paxson. Towards illu-

minating a censorship monitor’s model to facilitate evasion. In Proc. USENIX Workshop

on FOCI, 2013. 15, 18

[128] Ahmed Khurshid, Xuan Zou, Wenxuan Zhou, Matthew Caesar, and P. Brighten Godfrey.

182

https://kb.isc.org/docs/aa-00994
https://kb.isc.org/docs/aa-00994

Veriflow: Verifying network-wide invariants in real time. In Proc. NSDI, 2013. 73

[129] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and M. Frans Kaashoek. The

click modular router. ACM Trans. Comput. Syst., 18(3):263–297, August 2000. 16, 29,

31, 63, 64, 68, 69, 72

[130] Nupur Kothari, Ratul Mahajan, Todd Millstein, Ramesh Govindan, and Madanlal Musu-

vathi. Finding protocol manipulation attacks. In Proc. SIGCOMM, 2011. 15, 16, 22

[131] Lukas Krämer, Johannes Krupp, Daisuke Makita, Tomomi Nishizoe, Takashi Koide, Kat-

sunari Yoshioka, and Christian Rossow. Amppot: Monitoring and defending against am-

plification ddos attacks. In Proc. RAID, 2015. 159

[132] Tammo Krueger, Hugo Gascon, Nicole Krämer, and Konrad Rieck. Learning stateful

models for network honeypots. In Proc. ACM Workshop on Security and Artificial Intelli-

gence, 2012. 20

[133] Johannes Krupp, Mohammad Karami, Christian Rossow, Damon McCoy, and Michael

Backes. Linking amplification ddos attacks to booter services. In Proc. RAID, 2017. 159

[134] Marc Kührer, Thomas Hupperich, Christian Rossow, and Thorsten Holz. Exit from Hell?

Reducing the Impact of Amplification DDoS Attacks. In Proc. USENIX Security Sympo-

sium, 2014. 159

[135] Sanjeev Kumar. Smurf-based distributed denial of service (ddos) attack amplification in

internet. In Proc. ICIMP, 2007. 124

[136] Fangfan Li, Abbas Razaghpanah, Arash Molavi Kakhki, Arian Akhavan Niaki, David

Choffnes, Phillipa Gill, and Alan Mislove. Lib•erate, (n): A library for exposing (traffic-

classification) rules and avoiding them efficiently. In Proc. IMC, 2017. 15, 18, 19, 78

[137] Frank Li, Zakir Durumeric, Jakub Czyz, Mohammad Karami, Michael Bailey, Damon

McCoy, Stefan Savage, and Vern Paxson. You’ve got vulnerability: Exploring effective

vulnerability notifications. In Proc. USENIX Security Symposium, 2016. 157

183

[138] Li Haifeng, Wang Shaolei, Zhang Bin, Shuai Bo, and Tang Chaojing. Network protocol

security testing based on fuzz. In Proc. ICCSNT, 2015. 19

[139] Chieh-Jan Mike Liang, Börje F. Karlsson, Nicholas D. Lane, Feng Zhao, Junbei Zhang,

Zheyi Pan, Zhao Li, and Yong Yu. Sift: Building an internet of safe things. In Proc. IPSN,

2015. 24, 25

[140] Zinan Lin, Soo-Jin Moon, Carolina M. Zarate, Ritika Mulagalapalli, Sekar Kulandaivel,

Giulia Fanti, and Vyas Sekar. Towards oblivious network analysis using generative adver-

sarial networks. In Proc. Workshop on Hot Topics in Networks, 2019. 15, 21, 168

[141] Christian Makaya and Douglas Freimuth. Automated virtual network functions onboard-

ing. In Proc. IEEE SDN-NFV Conference, 2016. 3

[142] Valentin J. M. Manès, HyungSeok Han, Choongwoo Han, Sang Kil Cha, Manuel Egele,

Edward J. Schwartz, and Maverick Woo. The art, science, and engineering of fuzzing: A

survey. IEEE Transactions on Software Engineering, 2019. 14, 17, 23

[143] Stephen McLaughlin. A trusted safety verifier for process controller code. 2014. 24, 25

[144] Barton P. Miller, Louis Fredriksen, and Bryan So. An empirical study of the reliability of

unix utilities. Commun. ACM, 33(12):32–44, December 1990. 23

[145] Mehryar Mohri. Weighted automata algorithms. In Handbook of weighted automata,

pages 213–254. Springer, 2009. 166

[146] Soo-Jin Moon, Jeffrey Helt, Yifei Yuan, Yves Bieri, Sujata Banerjee, Vyas Sekar, Wenfei

Wu, Mihalis Yannakakis, and Ying Zhang. Alembic: Automated model inference for

stateful network functions. In Proc. NSDI, 2019. 11, 26, 73, 84, 88

[147] Soo-Jin Moon, Yucheng Yin, Rahul Anand Sharma, Yifei Yuan, Jonathan M. Spring, and

Vyas Sekar. Accurately measuring global risk of amplification attacks using ampmap. To

Appear in USENIX Security Symposium, 2021. 12, 113

[148] David Moore, Colleen Shannon, Douglas J. Brown, Geoffrey M. Voelker, and Ste-

184

fan Savage. Inferring internet denial-of-service activity. ACM Trans. Comput. Syst.,

24(2):115–139, May 2006. 5

[149] S. Munir and J. A. Stankovic. Depsys: Dependency aware integration of cyber-physical

systems for smart homes. In Proc. ICCPS, 2014. 24, 25

[150] Madanlal Musuvathi and Dawson R. Engler. Model checking large network protocol

implementations. In Proc. NSDI, 2004. 22

[151] Dang Tu Nguyen, Chengyu Song, Zhiyun Qian, Srikanth V. Krishnamurthy, Edward J. M.

Colbert, and Patrick McDaniel. Iotsan: Fortifying the safety of iot systems. In Proc.

CoNEXT, 2018. 24, 25

[152] Aurojit Panda, Ori Lahav, Katerina J. Argyraki, Mooly Sagiv, and Scott Shenker. Verifying

reachability in networks with mutable datapaths. In Proc. NSDI, 2017. 3, 12, 17, 26, 28,

31, 32, 37, 72, 73

[153] Vern Paxson. Bro: A system for detecting network intruders in real-time. In Proc. USENIX

Security Symposium, 1998. 15, 16, 78, 79

[154] Vern Paxson. An analysis of using reflectors for distributed denial-of-service attacks.

SIGCOMM CCR, 31(3):38–47, July 2001. 112, 116, 117, 158

[155] Luis Pedrosa, Ari Fogel, Nupur Kothari, Ramesh Govindan, Ratul Mahajan, and Todd

Millstein. Analyzing Protocol Implementations for Interoperability. In Proc. NSDI, 2015.

8, 15, 16, 22

[156] Luis Pedrosa, Rishabh Iyer, Arseniy Zaostrovnykh, Jonas Fietz, and Katerina Argyraki.

Automated synthesis of adversarial workloads for network functions. In Proc. SIGCOMM,

2018. 15, 16

[157] Doron Peled, Moshe Y. Vardi, and Mihalis Yannakakis. Black box checking. J. Autom.

Lang. Comb., 7(2):225–246, November 2001. 74

[158] Theofilos Petsios, Jason Zhao, Angelos D. Keromytis, and Suman Jana. Slowfuzz: Auto-

185

mated domain-independent detection of algorithmic complexity vulnerabilities. In Proc.

CCS, 2017. 23

[159] pfsense. Inbound Load Balancing. https://doc.pfsense.org/index.php/

Inbound Load Balancing. 72

[160] Thomas H Ptacek and Timothy N Newsham. Insertion, evasion, and denial of service:

Eluding network intrusion detection. Technical report, SECURE NETWORKS INC CAL-

GARY ALBERTA, 1998. 15, 78, 79, 163

[161] Z. Qian and Z. M. Mao. Off-path tcp sequence number inference attack - how firewall

middleboxes reduce security. In Proc. IEEE Symposium on Security and Privacy, 2012.

15, 18

[162] Harald Raffelt, Bernhard Steffen, and Therese Berg. Learnlib: A library for automata

learning and experimentation. In Proc. ACM FMICS 2005. 46, 62, 97

[163] Luis Miguel Rios and Nikolaos V Sahinidis. Derivative-free optimization: a review of

algorithms and comparison of software implementations. Journal of Global Optimization,

56(3):1247–1293, 2013. 167

[164] E. Ronen and A. Shamir. Extended functionality attacks on iot devices: The case of smart

lights. In Proc. IEEE European Symposium on Security and Privacy 2020, 2016. 25

[165] Christian Rossow. Amplification Hell: Revisiting Network Protocols for DDoS Abuse. In

Proc. NDSS, 2014. 15, 112, 113, 114, 115, 117, 118, 119, 141, 142, 151, 158

[166] Thijs Rozekrans and Javy de Koning. Defending against DNS reflection amplification

attacks. https://tinyurl.com/bvw3d85. 114

[167] Stefan Savage, Neal Cardwell, David Wetherall, and Tom Anderson. Tcp congestion

control with a misbehaving receiver. SIGCOMM Comput. Commun. Rev., 29(5):71–78,

October 1999. 18

[168] Dongdong She, Rahul Krishna, Lu Yan, Suman Jana, and Baishakhi Ray. Mtfuzz: Fuzzing

186

https://doc.pfsense.org/index.php/Inbound_Load_Balancing
https://doc.pfsense.org/index.php/Inbound_Load_Balancing
https://tinyurl.com/bvw3d85

with a multi-task neural network. CoRR, abs/2005.12392, 2020. 24

[169] Dongdong She, Kexin Pei, Dave Epstein, Junfeng Yang, Baishakhi Ray, and Suman Jana.

NEUZZ: efficient fuzzing with neural program smoothing. In Proc. IEEE Symposium on

Security and Privacy, 2019. 18, 23, 24

[170] Justine Sherry, Shaddi Hasan, Colin Scott, Arvind Krishnamurthy, Sylvia Ratnasamy, and

Vyas Sekar. Making middleboxes someone else’s problem: Network processing as a cloud

service. In Proc. SIGCOMM, 2012. 1, 2

[171] Suphannee Sivakorn, George Argyros, Kexin Pei, Angelos D. Keromytis, and Suman Jana.

Hvlearn: Automated black-box analysis of hostname verification in ssl/tls implementa-

tions. In Proc. IEEE Symposium on Security and Privacy, 2017. 8, 15, 20, 74, 164

[172] Radu Stoenescu, Matei Popovici, Lorina Negreanu, and Costin Raiciu. Symnet: Scalable

symbolic execution for modern networks. In Proc. SIGCOMM, 2016. 3, 17, 26, 31, 32,

73

[173] Brendan Tschaen, Ying Zhang, Theo Benson, Sujata Benerjee, JK Lee, and Joon-Myung

Kang. SFC-Checker: Checking the Correct Forwarding Behavior of Service Function

Chaining. In IEEE SDN-NFV Conference, 2016. 31

[174] Mark Utting and Bruno Legeard. Practical Model-Based Testing: A Tools Approach.

Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2006. 20, 77

[175] Roland van Rijswijk-Deij, Anna Sperotto, and Aiko Pras. Dnssec and its potential for

ddos attacks: A comprehensive measurement study. In Proc. IMC, 2014. 6, 8, 19, 118,

145, 159

[176] Randal Vaughn and Gadi Evron. Dns amplification attacks preliminary release. 2006.

114, 120, 141, 147

[177] Margus Veanes, Peli de Halleux, and Nikolai Tillmann. Rex: Symbolic regular expression

explorer. In Proc. ICST, 2010. 74

187

[178] Yipeng Wang, Xiaochun Yun, M Zubair Shafiq, Liyan Wang, Alex X Liu, Zhibin Zhang,

Danfeng Yao, Yongzheng Zhang, and Li Guo. A semantics aware approach to automated

reverse engineering unknown protocols. In Proc. International Conference on Network

Protocols, 2012. 21

[179] Zhongjie Wang, Yue Cao, Zhiyun Qian, Chengyu Song, and Srikanth V. Krishnamurthy.

Your state is not mine: a closer look at evading stateful internet censorship. In Proc. IMC,

2017. 15, 18, 19, 30, 76, 78, 79, 81, 82, 91, 102, 163

[180] Ralf Weber. Better than Best Practices for DNS Amplification At-

tacks. https://archive.nanog.org/sites/default/files/

mon general weber defeat 23.pdf. 114

[181] Maverick Woo, Sang Kil Cha, Samantha Gottlieb, and David Brumley. Scheduling black-

box mutational fuzzing. In Proc. CCS, 2013. 23, 24

[182] Wenfei Wu, Ying Zhang, and Sujata Banerjee. Automatic synthesis of nf models by

program analysis. In Proc. Workshop on Hot Topics in Networks, 2016. 8, 15, 16

[183] Zhaoyan Xu, Antonio Nappa, Robert Baykov, Guangliang Yang, Juan Caballero, and

Guofei Gu. Autoprobe: Towards automatic active malicious server probing using dynamic

binary analysis. In Proc. CCS, 2014. 17, 18

[184] Lihua Yuan, Jianning Mai, Zhendong Su, Hao Chen, Chen-Nee Chuah, and Prasant Moha-

patra. FIREMAN: A toolkit for firewall modeling and analysis. In Proc. IEEE European

Symposium on Security and Privacy 2020, 2006. 76, 110

[185] Yifei Yuan, Soo-Jin Moon, Sahil Uppal, Limin Jia, and Vyas Sekar. Netsmc: A custom

symbolic model checker for stateful network verification. In Proc. NSDI, 2020. 26, 73

[186] Michal Zalewski. American fuzzy lop, 2014. 18, 23, 24

[187] Arseniy Zaostrovnykh, Solal Pirelli, Rishabh Iyer, Matteo Rizzo, Luis Pedrosa, Katerina

Argyraki, and George Candea. Verifying software network functions with no verification

188

https://archive.nanog.org/sites/default/files/mon_general_weber_defeat_23.pdf
https://archive.nanog.org/sites/default/files/mon_general_weber_defeat_23.pdf

expertise. In Proc. SOSP, 2019. 15, 16, 17, 168

[188] Arseniy Zaostrovnykh, Solal Pirelli, Luis Pedrosa, Katerina J. Argyraki, and George Can-

dea. A formally verified NAT. In Proc. SIGCOMM, 2017. 15, 16, 17, 168

[189] Kaiyuan Zhang, Danyang Zhuo, Aditya Akella, Arvind Krishnamurthy, and Xi Wang.

Automated verification of customizable middlebox properties with gravel. In Proc. NSDI,

2020. 15, 16, 17

[190] M. Zhang, C. Chen, B. Kao, Y. Qamsane, Y. Shao, Y. Lin, E. Shi, S. Mohan, K. Barton,

J. Moyne, and Z. M. Mao. Towards automated safety vetting of plc code in real-world

plants. In Proc. IEEE Symposium on Security and Privacy, 2019. 24, 25

189

	1 Introduction
	1.1 Motivating Scenarios
	1.2 A Taxonomy of Alternatives
	1.3 Thesis Overview
	1.3.1 Thesis Statement
	1.3.2 Key Challenges
	1.3.3 High-Level Approach
	1.3.4 Contributions

	1.4 Outline

	2 Related Work
	2.1 Analyzing Network Functions and Services
	2.1.1 Type I: White-Box Analysis
	2.1.2 Type II: Binary Analysis
	2.1.3 Type III: Black-Box Analysis

	2.2 Analyzing Other Application Domains
	2.2.1 Protocol Testing and Verification
	2.2.2 Software Analysis and Fuzzing
	2.2.3 Other Prior Work

	3 Alembic: Automated Black-Box Model Inference for Stateful Network Functions
	3.1 Motivation
	3.2 Alembic System Overview
	3.2.1 Problem Formulation
	3.2.2 Key Ideas
	3.2.3 Operational Model and Limitations
	3.2.4 Alembic Workflow

	3.3 Extended L* for FSM Inference
	3.3.1 Background on L* Algorithm
	3.3.2 Challenges in using L* for Black-box NFs
	3.3.3 Generating Input Alphabet
	3.3.4 Classifying Output Packets
	3.3.5 Building an Equivalence Oracle

	3.4 KeyLearning: Learning State Granularity
	3.4.1 Intuition and Workflow
	3.4.2 Correctness Proof

	3.5 Handling NF Header Modifications
	3.6 Handling an Arbitrary Config
	3.6.1 Generating SymbolicRules
	3.6.2 Alembic Online: Instantiating a Concrete Model

	3.7 Implementation & Evaluation
	3.7.1 Validation using Synthetic NFs
	3.7.2 Correctness with Real NFs
	3.7.3 Scalability
	3.7.4 Case Studies
	3.7.5 Implications for Network Testing and Verification

	3.8 Other Related Work on Network-Wide Verification and FSM Inference
	3.9 Summary

	4 Pryde: Automatic Synthesis of Evasion Attacks for Black-Box Stateful Firewalls
	4.1 Background and Motivation
	4.1.1 Background on Stateful Firewalls
	4.1.2 Motivating Scenarios

	4.2 Pryde Problem Overview
	4.2.1 Threat Model
	4.2.2 Problem Formulation
	4.2.3 High-Level Design

	4.3 Model Inference
	4.3.1 Limitations of Alembic
	4.3.2 Generating Evasion-Centric Input Alphabets
	4.3.3 Extending the Inference Algorithm

	4.4 Attack Strategy Generator
	4.4.1 Encoding the System Model
	4.4.2 Discovering Semantically-Different Attacks

	4.5 Evaluation
	4.5.1 Aggregate Summary of Attacks
	4.5.2 Structure of Evasion Attacks

	4.6 Other Related Work on Firewall Policy Checking
	4.7 Countermeasures
	4.8 Summary

	5 AmpMap: Accurately Measuring Global Risk of Amplification Attacks
	5.1 Background and Motivation
	5.1.1 Motivating Use Cases
	5.1.2 Case for a Measurement Service

	5.2 AmpMap Problem Overview
	5.2.1 Problem Formulation
	5.2.2 High-Level Challenges

	5.3 AmpMap Overview and Design
	5.3.1 Single-Server Algorithm
	5.3.2 Multi-Server Algorithm
	5.3.3 Analysis of Our Approach

	5.4 Evaluation
	5.4.1 Protocol and Server Diversity
	5.4.2 Assessing Amplification Risks
	5.4.3 In-Depth Analysis on DNS
	5.4.4 Amplification Patterns for NTP
	5.4.5 Amplification Patterns for SNMP
	5.4.6 Amplification Patterns for Other Protocols
	5.4.7 Parameters and Validation

	5.5 Precautions and Disclosure
	5.5.1 Scanning Precautions
	5.5.2 Disclosure

	5.6 Other Related Work on Amplification Attacks and Mitigation
	5.7 Summary

	6 Reflections, Limitations, and Future Work
	6.1 Reflections and Lessons
	6.2 Limitations
	6.3 Future Work
	6.3.1 Enhancing Black-Box Analysis Techniques
	6.3.2 Securing Our Network Infrastructure

	Bibliography

