
GeoMatries: Machine Learning-Empowered Simulation for 4D

Printing and Morphing Materials Design

By

Humphrey Yang

ABSTRACT

Materials in nature are mostly active, responsive, and transformative. Yet in conventional design practices,
these features are often neglected and removed from the final products. By contrast, morphing matter

design leverages the tunable, temporal properties of materials to program functions into artifacts, and
requires accurate physical performance predictions to inform design decisions. 4D printing, in particular,
is an additive manufacturing technique that manipulates residual stress to create stimuli-responsive,

shape-changing artifacts. However, due to the lack of a fast and physically accurate simulation method to
inform design decisions, the current design workflow of 4D printing requires intensive physical

prototyping to iterate designs, making it a slow, inefficient, and indirect process.

This thesis takes 4D printing as an example of morphing matter design and responds to the workflow
challenges mentioned above with SimuLearn, a data-driven simulation technique that combines

numerical methods and machine learning, to mitigate the need of physical prototyping in design
iterations. Compared to finite element analysis, our results show that this technique can simulate physical
transformations with speed (1500 times faster) while having an identical accuracy (1.6% maximum

relative error). Workflows adopting SimuLearn will be able to afford interactive and physically-informed
digital iterations and extend the design space of 4D printing. Additionally, a prototype computer-aided
morphing matter design tool is also implemented to expose the development guidelines of tools that

adopt SimuLearn and is deployed in several design tasks to demonstrate its applicability and potential.
Lastly, this thesis will also discuss the limitations, generalizability, and potential improvements of
SimuLearn to guide future works and real-world deployments.

Thesis advisors:

Dr. Daniel Cardoso Llach

Dr. Lining Yao 

 1

“You say to a brick, ‘What do you want, brick?’
And brick says to you, ‘I like an arch.’ And you say
to brick, ‘Look, I want one, too, but arches are
expensive and I can use a concrete lintel.’ And
then you say: ‘What do you think of that, brick?’
Brick says: ‘I like an arch.’”
- Louis Kahn. (Kahn, 1971) 

 2

ACKNOWLEDGMENT

First and foremost, I want to thank my collaborators form the SimuLearn team - Yuxuan Yu, Haolin Liu,
Kuanren Qian, Jianzhe Gu, Dr. Yongjie Jessica Zhang, and Dr. Lining Yao - for helping me with various
aspects of this thesis and supporting me through numerous challenges over the past year. Needless to say,

this thesis is an interdisciplinary research that I cannot accomplish alone, and I have learned much from
each of my teammates and supervisors. In particular, I want to thank Haolin for always making time for
me when I need technical supports and encouraging me through the challenges of writing this thesis.

My colleagues from the CodeLab are companions that I respect and love in the past two years. I enjoy the
early-morning Inquiry talks about various aspects of computational design, the late-night debugging
marathons when we took 112 together, or the intellectual brawls happened during pre-thesis seminars.

These are the memories that I will cherish for the years to come, but among all of the times we spent
together, I adore most the conversations we had about human-machine collaborations in design. Those
are the discussions that inspired me to think about the future of computational design and are worth

ruminating for the rest of my life. It is a great honor to be a part of the cohort, and I wish everyone good
luck with the journeys to come.

Members of the morphing matter lab also played essential roles during my time at CMU, especially

Guanyun Wang, Zeyu Yan, and Jianzhe Gu. They are the best of friends as well as the sharpest of minds to
work with. In particular, Zeyu is the friend that helped me balance life under the pressure of CMU

workloads. I also want to thank Jack Forman for mutual support during graduate school applications.

Among all people at CMU, I am most grateful to my advisors Daniel and Lining. I could not have become
a good researcher without Daniel’s training nor finish this thesis without his guidance. His lectures are

what inspired the conceptualization of this thesis. Similarly, Lining is also a great mentor as well as friend
to work with. In addition to her teaching, I also appreciate her words of encouragement along the journey.

My journey into computational design began at the National Cheng Kung University, and could not have

come true without the mentorship from Professor Hsueh. He was the one who supported me through the
moments of doubt of being an architect and enlightened me to rethink the role of architects beyond mere
designers of buildings.

Lastly, I want to thank my family for the unconditional support throughout my life. Words fall short of
expressing my gratitude toward them, especially Chia Ping, for accommodating our long-distance

 3

relationship. I could not have finished this thesis without her support and encouragements, our love is the
beacon that led me through the darkest hours of life. 

 4

TABLE OF CONTENTS

Abstract

Acknowledgement

Table of Contents

1. Introduction

Motivating a Material-Driven CAD Practice
Challenges of current 4D Printing Design Tools

 What You See Is Not What You Get
 Unlimited Design Space
 Design Workflow
 Simulation Tools

Hypothesis and Goal
Outline

2. Related Work

Material-Driven Design Paradigms
Machine Learning for Simulation

 Computational Fluid Dynamics
Finite Element Analysis
Euler Methods

Functional Simulation in Design

3. Methods

Overview
Material System

Transformation Mechanism
Fabrication, Toolpathing, and Design
Triggering

Hierarchical Composition
SimuLearn

Concept
Technical Pipeline

Apparatus
Pipeline Implementation

FEA Modeling
Discretization
Boundary Conditions

 5

1

3

5

8
9

10
11
12
12
13
14
15

16
17
19
19
20
21
23

25
26
26
26
27
27
29
31
31
32
32
33
33
33
34

Material Property
Solver Setting

Data Processing
Data Generation
Representation and Feature Extraction
Feature Reduction
Spatial Symmetry

Machine Learning
Graphical Network Blocks
Double GN
Training Method

Design Tool
Architecture
Module Details

Composer
Inspector
Simulator
Slicer

4. Results

FEA Model
Dataset
SimuLearn Performance
User Workflow
Design Space

Neck Support
Bottle handle
Modular Structure

5. Limitation and Future Work

Data, Data, and Data
 Parameters and Variances
 Dataset for Design Tasks

Generalizing the ML-FEA Technique
 Current FEA Model Limitations
 Applicable Patterns and Materials
 Graphical Representation Extension
 Large Continuum Simulation

Design Tool Reliability
Differentiable Simulation

6. Discussions

Design Decisions
Biases as Design Decisions
Rationalizing Simulator Developments

Data-Driven Simulation
 Concurrent Learning

 6

35
36
37
37
39
41
41
42
42
44
45
46
46
47
47
47
48
48

49
50
51
52
54
56
56
57
58

59
60
60
60
61
61
62
63
64
65
65

67
68
68
68
69
69

 Beyond Mechanical Simulations
Ecosystems

 Manufacturing Ecosystems
 SimuLearn Ecosystems

Augmentative Design Agents

7. Conclusions
Contributions

References

List of Figures 

 7

69
70
70
70
71

73
75

76

79

INTRODUCTION

In this chapter, we will motivate and situate
material-driven designs in contemporary
practices, and use 4D printing as an example to
expose the intricacies in material-driven design
workflows. Next, we will hypothesize a strategy of
CAD tool design to respond to the most
significant barrier of realizing a material-driven
design practice - simulations. 

 8

Motivating a Material-Driven CAD Practice

Materials in nature are active, responsive, and transformative. Leaves curl in response to moisture changes
in the environment; muscles retract in response to neural signals; even non-organic materials like crystals
may vibrate when subjected to electric currents. These feedback loops are the most ubiquitous form of

computation around us. However, in conventional design practices, these features are often neglected and
removed from artifacts. We adore timber for its texture but dislike its moisture-responsive curving; we use
thermoplastics for 3D printing but gets frustrated when they warp due to its residual stress. Inspecting

common design practices, fabrication tools, and computer-aided design (CAD) software. Kahn’s quote
serves as an incisive criticism of the issues that current design practices are facing- the absence of active
material properties.

Early developments of CAD were founded on the manufacturing of static materials (Cardoso Llach.,
2015). Both its representations, tools, and fabrication machines were built for modeling shapes with
precision and often neglects the active properties of materials. More recently, while new software systems

like Abaqus (Dassault Systems., 2019) have emerged and afford us to accurately compute material
deformations, they are often oriented toward engineering purposes, creating a division between
engineering and design labors in material-driven CAD practices. This thesis uses 4D printing as an

example of such design practices and takes the initial step to reconcile materials and geometries in the
digital realm.

Figure 01. Pinecone Transformation. Pinecones will transform to release its pollens or seeds when exposed to
moisture. This mechanism assures the seeds to grow in ideal environments. Images courtesy of Morphing Matter
Lab, CMU. 

 9

Challenges of Current 4D Printing Design Tools

Figure 02. 4D printed Thermorph rose. The artifact is printed with a desktop 3D printer as a flat sheet and
triggered in hot water to transform into the targeted rose shape. Images reprinted from Thermorph (An et al.,
2018).

In contrast to conventional design practices, 4D printing (Tibbits., 2014) is a technique that leverages
additive manufacturing and material anisotropy to produce active objects that can transform over time.
This technique takes what is conventionally considered a defect in materials engineering, deformations,

and leverages it to design transformative artifacts. Once exposed to the correct stimuli, these artifacts will
transform to take a different shape (Figure 02). Using 4D printing as a manufacturing approach,
researchers are envisioning electricity-free, gearless actuators and self-deploying structures that can

improve fabrication time, reduce manufacturing complexity, and save packaging spaces.

While 4D printing has been applied to various material systems, thermoplastics have been the most
popular subject due to the wide adoption of hobbyist fused deposition modeling (FDM) 3D printers

(Figure 03). These personal fabrication devices allow users to combine rapid prototyping with CAD
seamlessly, and 4D printing will further strengthen this convenience by making design iterations more
economical in terms of time and material costs. However, several issues inhibit the wide adoption of this

fabrication method. 

 10

Figure 03. Thermoplastics-based 4D Printing Design Space. Left - a landscape model from Geodesy; middle - a
seat of chair made with 4DMesh; right - a jumping frog toy appeared in A-line. Images reprinted from Geodesy
(Gu et al., 2019), 4DMesh (Wang et al., 2018), and A-line (Wang et al., 2019)

What You See Is Not What You Get

Figure 04. Comparison of topologies. The rose (left)
from Thermorph (An et al., 2018) has a tree-like
topology and the grid design (right) from 4DMesh
(Wang et al., 2018) has a net-like topology.

In conventional design practices of 3D printing, the model we see in CAD environments are accurate
representations of the artifact. Whereas in 4D printing, the model represents either the pre-triggering or
transformed shape and does not represent the artifact’s temporal statuses. For simple geometries that have

tree-like topologies, such as A-line (Wang et al., 2019) and the origami structures of Thermorph (An et al.,
2018), we can find simplified abstractions (e.g., forward kinematics and parametric geometries) to
visualize the transformation process. However, for complex geometries that have net-like topologies, such

as the mesh patterns of 4DMesh (Wang et al., 2018) and Geodesy (Gu et al., 2019), their transformations
are much harder to predict as they involve dynamic interactions between elements (Figure 04). Moreover,
in larger scales, physical factors like gravity, buoyancy, fixed-end conditions, and nonlinear material

properties also become dominant in transformation processes and cannot be ignored.

 11

Unlimited Design Space

Standard CAD tools like Rhinoceros (Robert McNeel & Associates., 2019) are designed for general
modeling purposes, providing us with a myriad of modeling commands - the metaphorical tools - to
choose from and wield at will to create arbitrary designs across scales. However, given a 4D printing

technique and material system, most of the commands may not comply with its limitations and therefore
unworkable with. Furthermore, the computational geometries of CAD are designed to represent

homogeneous objects, making them less compatible with the core mechanism of 4D printing - material
anisotropy. Therefore, the ideal CAD tool for active materials should strategically confine the design space
and streamline the design process to avoid users’ frustration.

Design Workflow

Figure 05. Current 4D printing design workflow. This workflow demands physically prototyping and indirect
pattern manipulation to iterate designs. Images reprinted from 4DMesh (Wang et al., 2018).

In this thesis, we categorize 4D printing design workflows into two kinds - forward- and inverse-design
workflows. Forward-design workflows allow users to freely configure materials and design without an
explicit goal in mind; inverse-design workflows demand users to have a transformation target prior to

using the tools. Both workflows share a common issue - inefficient design iterations. Users must physically
prototype the designs in order to evaluate them, which takes a long time to perform (Figure 05). The
printing process itself may easily take tens of minutes or hours to perform. Instead, if the design tool

affords users to iterate without having to prototype the artifacts physically, the workflow will become truly
economical and efficient.

 12

Simulation Tools

Currently, there are two simulation methods available to us - geometrical and numerical methods. On the
one hand, geometrical methods are fast to compute but are often bespoke and ignore certain physical
factors in the computation, resulting in physical inaccuracy. On the other hand, numerical methods such

as finite element analysis (FEA) are generalized but prohibitively slow to compute and does not provide
real-time feedback. Both methods have their targeted applications - geometrical methods are commonly

used in the entertainment industries, where the audiences require only fast and seemingly correct
simulations; numerical methods are often used for engineering purposes, where the priority is physical
accuracy and computational time is less crucial. However, the ideal simulation method for 4D printing

design tools should be sufficiently accurate to inform design decisions and reasonably fast to facilitate
real-time design iterations (Figure 06).

Figure 06. Simulation method comparison. This comparison is based on a thermoplastic beam of dimension 75
mm * 7.2 mm * 4 mm. Images reprinted from 4DMesh (Wang et al., 2018).  

 13

Hypothesis and Goal

Figure 07. Hypothesis overview. We propose a data-driven simulation technique and design tool to augment 4D
printing design workflows, such that iterations no longer require physical prototyping.

This thesis proposes a data-driven simulation technique to augment 4D printing and morphing matter
design workflows. This simulation method takes FEA results as the source of data to guarantee sufficient
physical accuracy and inform design decisions in CAD tools, and use machine learning (ML) regressors to

generalize from the data and facilitate efficient computations. Specifically, the maximum simulation error
should be smaller than the material’s compliance (<5% for the material system of this work), and the speed
should be fast enough to enable real-time iterations (~ 1 second). This simulation approach will

breakdown a design into consistently represented building blocks - actuators - to simulate their
transformations and enable geometrical reconfigurations of design. Design tools adopting this simulation
engine will afford users to, in a bottom-up and forward-design manner, design patterns by composing

actuators together without needing to have an explicit target shape in mind. Workflows adopting this tool
also does not require physical prototyping to iterate designs (Figure 07). Compared to designing with
inverse-design algorithms, this modality of design also liberates users from the geometrical limitations of

inverse-design algorithms.

Figure 08. Data-driven simulation.

 14

Based on the hypothesis above, this thesis will provide a pipeline to develop such data-driven simulators
(also known as SimuLearn, Figure 08), utilize it to derive proofs-of-concept for this technique, and
illustrate the design tool’s capability with several design tasks.

Outline

Vision and Concept (Chapter 1 and 3)

• Simulation-empowered design workflows.

• Hierarchical composition of 4D printing.

• Data-driven simulators and design tools.

Technical Contributions (Chapter 3 - 4)

• SimuLearn and its development pipeline.

• Graph theories for 4D printing.

• Design tool and Evaluations.

Artifacts (Chapter 4)

• A dataset of FEA results and a proofs-of-concept SimuLearn engine

• Design tool prototype and application examples.

With the Introduction establishing the background knowledge, the next chapter will situate this work in

related literature to motivate its relevance and discuss several works that we take as inspiration. In the
Methods chapter, an overview is provided to explain the experimental perimeters and high-level concepts.

We will discuss our technical implementations in two-folds - considerations that apply to different
materials and implementation details that are specific to our chosen material system. Next, a Results
section will compare an instance of SimuLearn engines with FEA to provide performance evaluations as

proofs-of-concept and discuss several design examples produced with our design tool prototype to reveal
its potential. Lastly, we provide discussions on the limitations, future works, and several topics related to
this work. 

 15

RELATED WORK

This chapter is aimed to contextualize the topic,
technique, and hypothesis of this thesis, and to
credit several previous research that inspired our

work. In particular, this chapter answers the “so
what” and “how” of a data-driven fast and
physically-accurate simulation method. 

 16

Material-Driven Design Paradigms

Figure 09. The design tool of Transformative Appetite. The transformation is simulated by interpolating between
pre-computed FEA results. Reprinted from Transformative Appetite (Wang et al., 2017).

Beside thermoplastics, various materials also exhibit material properties that can be leveraged to create
self-deploying objects, such as edible gels (Wang et al. 2017) or programmable hydrogels (Gladman et al.
2016). In particular, Transformative Appetite (Wang et al. 2017) used FEA and a data-driven method to

provide deformation predictions in the design tool implementation (Figure 09), identical to the
hypothesis of this thesis. However, their technique is based on geometrically interpolating between pre-
calculated shapes to simulate unseen designs, and the capability of such simulator is limited to a selected

few geometries. The material system and design space we are targeting at in this thesis, on the other hand,
is geometrically variant and have nonlinear behaviors, and therefore cannot be simulated using the
method mentioned above.

In addition to 4D printing, material properties and responses also play vital roles in a variety of design
practices. For instance, compared to conventional practices, compliant mechanism (Howell et al., 2013)
takes a different approach to design mechanical parts by leveraging the flexibility of materials. This

method allows us to produce kinetic elements as a single piece and without using gears, allowing for
applications across scales and domains - from low-cost packaging to high-cost products; from nanoscale
fabrication to large-scale structures; from vehicle parts to medical devices (Figure 10). However, the

nonlinear motions and force behaviors of compliant mechanism often cannot be adequately defined with

 17

simplified linear equations, and therefore requires simulation or prototyping to inform design iterations -
identical to the workflow challenges of 4D printing. Thus, we speculate that this design practice can also
benefit from fast and physically accurate simulations.

Figure 10. Compliant Mechanisms. These mechanical structures leverage the elasticity of material to produce
functional objects. Images reprinted from Handbook of compliant mechanisms (Howell et al., 2013).

Beyond shape-changing materials, there also exist materials that have variable and tunable mechanical
properties. jamSheets (Ou et al., 2014) is one of such material systems that has actively tunable stiffnesses.
In their work, Ou et al. leveraged layer jamming to produce stiffness- and shape-changing interfaces and

afford multi-modal functions. However, jamSheets designs also require certain mechanical properties and
behaviors to produce functional objects, therefore necessitates physical prototyping or simulation to
inform design decisions. 

 18

Machine Learning for Simulation

This thesis takes inspiration from several works that adapt machine learning for simulation to formulate
our methods. In particular, our feature vector design is inspired by related works in data-driven
computational fluid dynamics (CFD); the technical pipeline is inspired by the literature that use ML to

approximate FEA simulation; we take inspiration from ML-empowered Euler method simulations to
design geometrically variable ML simulators and model representations.

Computational Fluid Dynamics

Figure 11. PhysicsForests. The trained simulator can approximate the behaviors of various types of liquids in
different environments. Images reprinted from Physics Forests (Apagom AG, 2019).

In Data-driven Fluid Simulations using Regression Forests (Ladicky et al., 2015), the authors used
machine learning techniques to speed up computational fluid dynamics. This technique takes a large
dataset of simulations produced by a traditional solver to train a regressor to perform physically-based

CFD simulations. The underlying abstractions and mechanisms were no different from those of
conventional CFD - dividing a scene into numerous particles and compute their behaviors individually to
derive their next status in time. Using a traditional CFD solver to compute the behaviors will require small

time steps to guarantee the stability of simulations. However, ML regressors were able to approximate the
behaviors with a large time step, boosting the computation time by one to three orders of magnitude
compared to the state-of-the-art solver on a single GPU, enabling real-time interactive simulations of large

scenes. Additionally, due to the variety of materials that appeared in the dataset, the trained simulator was
also able to predict the movement of different types of liquid. This work is later packaged into a software
system called Physics Forests (Apagom AG, 2019) to bring physically-based rapid CFD into animations

and entertainment applications (Figure 11).

In their work, Ladicky et al. also illustrated a rule-of-thumb for feature vector design in ML simulators. In
addition to the material’s intrinsic properties, the feature vector should also describe the element’s

 19

interactions with the environment. For instance, the feature vector should describe the ambient forces
affecting the particle’s movement. The algorithm used to calculate the interactions should scale linearly
with the number of particles to facilitate the scalability of simulation.

Finite Element Analysis

Figure 12. Using neural networks to approximate steel beam deformation. Reprinted from ML and FEA for
Physical Systems Modeling (Kononenko et al., 2018).

Compared to fluid dynamics, FEA computations are even more time-consuming to compute. Whereas a
CFD scene can be divided into individual particles for parallel calculation, FEA simulates a scene by
solving a large linear system. On a cluster or supercomputer, a large FEA model can easily take hours to

weeks to compute. With this inconvenience in mind, Kononenko et al. explored using artificial neural
networks to approximate FEA solutions in Machine Learning and Finite Element Method for Physical
Systems Modeling (Kononenko et al. 2018). In this work, the task is to predict the deformation of a steel

beam under oscillating loads, and the ML model takes the boundary condition (load amplitude and
frequency) of a scene as input to compute the steel beam’s maximum deformation. Note that the feature
vector does not describe the beam’s geometry and the resulting trained ML model can only simulate a

specific beam model. The validation results showed that ML regressors can successfully and accurately
approximate FEA simulations (Figure 12). Furthermore, the authors also provided an implementation
framework to develop FEA-based ML simulators.

While they showed that the technique is viable, Kononenko et al. also explained that developing a reliable
ML-FEA simulator that takes multiple boundary conditions as input will require a large amount of data.
This statement also agrees with the conclusion of an earlier work that adapts Machine Learning for

Modeling the Biomechanical Behavior of Human Soft Tissue (Martin-Guerrero et al., 2016). In particular,
the ML simulators in both works can only account for small or no model variations and are therefore

 20

geometrically limited. Nonetheless, these works both envisioned that using ML to approximate FEA will
have applications in a variety of domains, including science, engineering, medicine, and entertainment.

Euler Methods

Figure 13. Simulations with Interaction Network. Left - n-body gravity system; Middle - bouncing balls; Right -
Spring-mass model. Reprinted from Interaction Network (Battaglia et al., 2016)

Euler methods are simulations that are based on integrating a differentiable function over time, such as
spring mass models or n-body gravitational systems. These tasks are often decomposed into smaller
elements for simulation and reconfiguration, and the interactions between elements cannot be

disregarded during simulations. Therefore, a critical challenge of adapting machine learning to Euler
methods is to account for the interactions and reconfigurations. Among available literature in this
domain, Interaction Networks (Battaglia et al., 2016) is most relevant to this thesis. This work leveraged

graphical representations to develop a relation-centric and object-oriented ML model to perform
simulations, such that the trained simulator is easily scalable and reconfigurable for different scenarios
(Figure 13). Furthermore, the ML model computes the interactions of elements by exploiting the explicit

structure of graphs, therefore is more efficient compared to convolutional neural networks (CNN).

In addition to its scalability and reconfigurability, Interaction Networks also allows sharing learning across
elements in graphs, reducing the amount of data required for training. This work also adopts an iterative

 21

strategy of simulation to perform dynamic simulations and enable extracting more training data from 1

one episode of Euler method simulation. Later, this simulation technique is developed into Graph
Networks (Sanchez-Gonzalez et al., 2018) for robotic simulation and adapted for reinforcement learning

(Figure 14).

Figure 14. Simulating an inchworm robot with Graph Networks. The simulation rollout matches the ground truth
well. Reprinted from Graph networks as learnable physics engines for inference and control (Sanchez-Gonzalez et
al., 2018).

 In a dynamic simulation, the boundary condition and geometrical topology may change over time. Therefore 1

we cannot directly compute the final result.

 22

Functional Simulation in Design

In addition to predicting the transformed results, simulations also help users to communicate design
intentions between one another and to inform design decisions. For example, in Printed Paper Actuator
(Wang et al., 2018), the design tool provides a library of design examples for users to play with and take

inspiration from. However, the functions of these reversibly actable designs cannot be expressed using
static images and models and demands an animated preview for communication (Figure 15).

Figure 15. Design tool interface from Printed Paper Actuator. Reprinted from Printed Paper Actuator (Wang et al.,
2018).

Identical to the example mentioned above, visualizing the transformation process also helps to inform
decisions in 4D printing. In this field, although users are ultimately only concerned about the initial and
transformed shape, simulating the transformation process will help us to reason over the triggering

condition. For example, we can use the simulations to estimate how much space is required for the
transformation to take place and plan the triggering method accordingly.

On a different note, we can also use simulations to evaluate and optimize the performance of designs. For

instance, Forté (Chen et al., 2018) is an optimization design tools based on FEA simulations. Given a user-
defined 2D structural sketch and load specification as input, the software will iteratively simulate the
design’s internal stress distribution with FEA to identify redundant voxels and remove them from the

model, producing a structurally optimized design that takes the least amount of material to fabricate
(Figure 16). Furthermore, designers can also use this software to explore design variations by altering
optimization parameters. 

 23

Figure 16. Structural Optimization with Forte. This software system leverages FEA to produce structurally
efficient designs. Reprinted from Forte (Chen et al., 2018).

Unshackling Evolution (Cheney et al. 2013) is another research that harnesses simulation engines to
compose optimization design tools. Given a target function (e.g., moving as fast as possible), this work
leverages genetic algorithm and compositional pattern producing networks to derive optimized soft-robot

designs by iterations. Noticeably, the fitness of each design is determined by using a dynamic soft-body
simulator to predict its performance. In this particular use case, as the algorithm involves the evaluation of
a considerable amount of robots, simulation speed becomes a critical factor to the viability of this

technique. Likewise, Forté also leveraged simplified and coarsened FEA to reduce simulation time and
enable real-time interactions.  

 24

METHODS

With the backgrounds and relevance of our scope
in mind, this chapter will firstly introduce the
perimeters and technical concepts of our work

and document the technical implementations of
SimuLearn in detail. We will also discuss a design
tool development framework that is adapted to

data-driven simulators to complement our
simulation technique. 

 25

Overview

Material System

This thesis adopts a 4D printing material system identical to that of 4DMesh, in which we use
thermoplastics to produce mesh-like structures made of bending-beam actuators that can transform 2

when heated. The following section provides a brief introduction to the mechanism and condition of

transformation.

Transformation Mechanism

Figure 17. Material Mechanism.

Polylactic Acid (PLA) is a type of thermoplastic that has microscopic polymer chain structures. These
polymer chains are flexible when liquid, and rigid when solid. In raw materials, these polymer chains are
randomly coiled and relaxed, and will not result in material deformation. However, when extruding liquid

PLA through a 3D printer nozzle, the narrow channel will cause the polymer chains to shear-align and
become stressed. If the PLA is cooled down before the polymer chains can fully relax, the shear-
alignments will lead to residual stresses in the material. As a result, when we heat printed materials above

the glass transition temperature (Tg, 60 ℃) of PLA, the polymer chains will release their energy and cause 3

the extruded paths to shrink along the printing direction (Figure 17). We can characterize this
transformation by calculating its shrinkage ratio with respect to the original length. 

 In this thesis, we will also use “grids” and “patterns” as synonyms of “mesh-like structures”.2

 At the glass transition temperature, while the PLA is still solid, the material and its polymer chain will become 3

soft and malleable.

 26

Fabrication, Toolpathing, and Design

Leveraging the material property of PLA, we can deliberately arrange the tool paths to program
anisotropic deformations into shapes. Take a beam shape for example, we can program them into bending

actuators by printing the bottom half along the longitudinal axis and the top half perpendicularly , such 4

that the bottom half will shrink along the axis of the beam when heated while the top half does not,
resulting in the beam to bend downward (Figure 18). Note that the constraint will still shrink along the

beam’s width direction, but the deformation is small and negligible. Identically, we can program the beam
to bend on the opposite direction by switching the top/bottom toolpath assignments or create a passive,
non-actuator beam by printing both halves with perpendicular toolpaths.

Figure 18. Actuator Toolpathing. We can composite anisotropic toolpath blocks togethers to create bending
actuators.

With the aforementioned bending actuator designs, we can then produce larger scale transformative
artifacts by composing multiple bending beams together into mesh-like structures. Joint blocks between
adjacent beams are printed with alternating toolpath directions to minimize transformation and avoid 5

them from complicating the transformation process. Depends on the bending direction assignment of
individual beams, the structures can transform into a variety of different shapes. In this work, the
composed patterns are required to have a quad-mesh, grid-like configuration, and the width and thickness

of individual beams are fixed to 7.2 mm and 4 mm respectively to confine the design space.

Triggering

Printed mesh structures are triggered to transform inside a hot water bath (Figure 19). Compared to hot-

air triggering, water provides more uniform heating over the transformation process. We glue one joint of

 A block that has toolpath directions perpendicular to the longitudinal axis of beams is also called constraints.4

 Odd and even layers’ toolpath directions are perpendicular to each other.5

 27

a structure to a fixed support to suspend it in the water tank during transformation and avoid from
sinking to the tank bottom. The water bath is sufficiently large to avoid the grids from hitting the walls

during transformations and is heated to 80 ℃, 20 ℃ higher than the Tg of PLA to allow for ample

transformation time before the bath cools below Tg, and the PLA solidifies. Furthermore, artifacts are
retrieved from the tank when the water temperature drops below Tg to avoid our actions form deforming

the artifacts.

Figure 19. Physical prototyping workflow. A toolpath (.gcode) file is printed with commercial 3D printers, and the
printed artifact is triggered in a hot water bath.

 28

Hierarchical Composition

Figure 20. Compositional hierarchy of our material system.

This thesis takes inspiration from structured representations and inspects the design of our material
system by breaking it into a chain of composition. Given an active material, we use additive
manufacturing machines to structure it into anisotropic toolpath blocks. We then organize multiple

toolpath blocks into actuators that can achieve certain transformation behaviors. Lastly, we composite
multiple actuators into 4D printing artifacts that can transform on demand (Figure 20).

Figure 21. FEA Perspective of Simulation. In our material system, FEA decomposes a model into a high-resolution
voxel body, creating 30k to 200k elements to compute.

The FEA perspective of simulation discretizes a continuum into voxels of materials, going from one end of
the composition hierarchy to the other to create simulation units. While this method is generalized and
adaptable to different geometries, it also creates lots of simulation elements to compute during simulations

(Figure 21). On the other hand, general purposed CAD software systems allow us to operate across scales
and levels in the compositional hierarchy, exposing users to an overwhelming amount of modeling
commands and design options.

 29

Instead of being unconstrained in the compositional hierarchy, this thesis limits the development of
simulators and design tools at a single level of abstraction - actuators - to expedite design processes and
simulations. At a single level of abstraction (Figure 22), the elements can be easily described with several

parameters and are limited to a specific compositional topology. While this approach narrows down the
design space, it also allows us to compose dedicated design tools that take fewer parameters to work with
and streamline design workflows. Similarly, choosing a single hierarchical level will allow for a consistent

and uniform representation of building blocks, enabling data-driven simulations to take place.
Furthermore, actuators are high-level abstractions in our hierarchy of composition and will allow us to
simulate transformations with fewer elements. Rather than discretizing a design into a high-resolution

voxel body, we can go one step down in the hierarchy of composition and simulate the transformation of
individual actuators and joints (building blocks).

Figure 22. Design tool at a limited level of abstraction. Limiting the level of abstraction at primitives will allow us
to develop dedicated design tools and compose simulation methods that compute with fewer elements. 

 30

SimuLearn

Concept

The data-driven simulation method we developed is called SimuLearn. This technique takes FEA result as
training data and leverages graph convolutional networks (GCN) to produce simulation engines for

compositional designs. An intuitive interpretation of its computation is, given an input grid design, the
model will decompose it into its building blocks, update their statuses individually, assemble the blocks

back together to derive the grid’s next status in time, and iterate this process until the transformation is
converged (Figure 23). Compared to directly computing the final shape of transformation, this iterative
approach will allow us to collect more training data from an episode of FEA simulation and to visualize

the transformation process in design tools.

Figure 23. Simulearn computation flow.

Compared to FEA, SimuLearn operates at a higher level of abstraction and has fewer elements to
compute. The mathematical differences between FEA and SimuLearn also result in the later to run faster
than the former. FEA represents a model as a linear system whose size (number of entries) is quadratic to

the number of simulation elements, and the computation is based on solving this linear system - a
sequential operation that usually takes lots of time to compute. On the other hand, SimuLearn conceives
the transformation as a function of time, divides this function into multiple segments, and utilizes

machine learning as regressors to approximate these segmented functions. This way, the computation is
simplified into a combination of matrix multiplications and additions - parallelizable operations that
computers are efficient at and have dedicated hardware for (GPGPU), therefore running faster compared

to FEA. However, since SimuLearn is merely an approximation of FEA simulations, it is expected to have a
lower accuracy compared to FEA.

 31

Technical Pipeline

With the SimuLearn technique in mind, we implement a development pipeline (Figure 24) consisting of
three steps for SimuLearn engines. Each step in the pipeline has its unique challenges and goal. The FEA

modeling step is aimed to establish a physically accurate model of the material system and its actuation
environment, and configure the FEA solver and data structure to facilitate information retrieval at later
steps. Once the FEA model is established, we can then use it to generate raw simulation results for data

extraction. Note that an FEA raw result will contain the information (position, stress distribution) of every
element at each time step, creating lots of information redundancy that may cause the ML model difficult
to converge or prone to overfit. Therefore, we further distill these raw results at the data processing step to

create an effective, less biased, and concise dataset for ML training. Lastly, we use GCN to generalize from
the dataset to acquire fast and physically accurate simulation engines.

Figure 24. Technical pipeline overview.

Apparatus

We implement our pipeline on a consumer-grade desktop computer (Intel i9-9900k 8C16T processor, 64
GB RAM, Nvidia P5000 Graphics Card with 16 GB Memory) to produce proofs-of-concept for the
SimuLearn technique. This implementation uses the non-linear FEA software Abaqus to compute physical

simulations, the ML library Pytorch (PyTorch, 2019) to construct ML models leveraging its CUDA
backend, and the modeling software Rhinoceros and Grasshopper (Rutten et al., 2019) to process and

visualize geometries, and compose design tools.

In terms of fabrication, we use off-the-shelf materials (Polymaker PLA) and a hobbyist-grade 3D printer
(Modix Big 60) for physical prototyping. The extruder nozzle diameter is strategically set at 0.6 mm to

balance between fabrication time and actuation performance. While using smaller nozzle diameters will
enable us to program larger deformations into actuators, they will also increase the printing time due to
denser infill toolpaths. Identically, wider nozzles will reduce the fabrication time, but the resulting

actuators are unable to perform sufficiently large transformations. As for the fabrication parameters (e.g.,
printing speed, layer thickness), we favor the configuration that allows us to prototype with speed while
ensuring a good printing quality.

 32

Pipeline Implementation

FEA Modeling

Discretization

We discretize the mesh-like patterns of our material system into cubic voxel bodies for FEA. In addition 6

to the baseline mesh quality requirements of FEA - regular voxel dimensions and no pointy voxel corners,

each block also has an odd number of nodes on the length, width, and height directions to enable 7 8

sampling midpoint positions of edges and on cross-sections.

Figure 25. Model discretization and index map. With this map, we can retrieve the index of a point by using its
relative position in the model.

In the raw simulation results produced by Abaqus, the nodal and elemental information are stored as flat
lists that are difficult to index. The index of a node does not provide any information about its parent
block, nor its position in the blocks. For instance, if we want to acquire the position of a beam’s center

point, we have no way of knowing the index of that node in the list. To address this issue, during the
model discretization process, we assign each node with a unique tuple key to indicate their relative
position in our model (Figure 25). The tuple keys record the index of the nodes’ parent blocks and their

positions along the length, width, and height directions of blocks, and are associated with the nodes’

 In Abaqus, this corresponds to C3D8 elements.6

 We will refer to the collection of Joints and Beams as blocks in the following sections.7

 In FEA conventions, points are called nodes and voxels are called elements.8

 33

indices in the information lists. Likewise, the voxels are also associated with a tuple key to enable
convenient indexing.

Boundary Conditions

Figure 26. FEA boundary conditions. We use three boundary and initial conditions in our model, including
residual stress, body force, and fixed end conditions.

In reality, in addition to the material’s intrinsic properties, the transformation process is also affected by
the physical factors in the triggering environment. We can account for these factors by modeling them as
boundary conditions (BC) in our FEA model. In our case, the material system is mainly influenced by

three physical factors (Figure 26). Firstly, we assign a fixed-end condition to the joint that the grid is held
at during the triggering process. More accurately, since the fixed joint is glued to the support during the
transformation process, only the gluing interface - the top face of joint - is fixed in the simulation.

Secondly, the artifacts are simultaneously subjected to buoyancy and gravity in the water bath. We
integrate these two factors into a uniform body force applied to the whole model. Lastly, depending on the
local toolpath, each voxel is assigned with a stress field oriented along the printing direction to describe

the residual stress induced by the printing process. We can compute the oriented stress field

 by using the following formulas:

!

!

!

!

= [σ11, σ22, σ33, σ12, σ13, σ23]

σ11 = σ cos2 α

σ22 = σ − σ11

σ33 = 0

σ12 = − σ sin α cos α

 34

!

!

Where is the magnitude of the residual stress; is the printing direction’s polar angle; , , and

are respectively the stress components on the x-, y-, and z-axis; , , are the shear stress

components on the xy, xz, and yz plane.

Material Property

Using FEA to simulate physical transformations demands a mechanical material definition to produce

accurate results. We can collect this information either from literature or by experiments. Specific to the
PLA that we are using, while its density is immediately available in the literature, its mechanical properties
at the triggering temperature are not yet characterized in available works and data sheets. Therefore, we

conduct dynamic mechanical analysis (DMA, Figure 27) to characterize its properties for our FEA model.

Figure 27. DMA test. Left - DMA machine; middle - compression test; right - tension test.

At the triggering temperature, PLA exhibits two distinctive mechanical properties - viscoelasticity and
hyperelasticity - and we design our DMA test to characterize both components individually with an RSA-
G2 Solids Analyzer by TA Instruments. This instrument has an enclosed, insulated, and temperature-

regulated chamber to accurately recreate the triggering temperature for our experiments. We characterize
the viscoelasticity component of PLA by putting 3D printed and stress-released samples under oscillating
(0.01 to 100 Hz) tensile displacement loads to measure the material’s storage (E’) and loss (E’’) modulus,

and we can directly import these results into our FEA software for material modeling. As for the

σ13 = 0

σ23 = 0

σ α σ11 σ22 σ33

σ12 σ13 σ23

 35

hyperelastic part, we sample its stress-strain relationship by putting the samples under compressive and
tensile loads to measure their deformations. Once we acquire the stress-strain data, we then perform
curve-fitting on them with various polynomial hyperelastic models to identify the one with the lowest

error (Marlow model) and import the result into the FEA software. Note that we perform both tests
multiple time with different samples and average the results to mitigate experiment error, and the test
samples are stress-released before experiments.

Lastly, in order to quantify the residual stress induced by the printing process, we perform multiple
rounds of FEA simulation with different geometries and stress values and compare the results with
physical ground truths (i.e., printed and triggered designs) to determine the residual value that leads to the

lowest error. We then use this stress value for all future simulations.

Solver Setting

We configure our FEA solver to iteratively compute and log the transformation over time to adapt to the

iterative strategy of SimuLearn. Specifically, an episode of FEA is divided into multiple equally-spaced
time steps for simulation, and the solver will save the temporal results at a regular interval. For instance,
our solver will divide an episode of simulation into 100 increments and save the results at a 10 step

interval, resulting in 11 frames (including the initial input) in total. Consequently, a SimuLearn engine
trained with this data will perform an episode of simulation with ten increments and output the temporal

statuses accordingly.  

 36

Data Processing

Data Generation

In order to gather episodes of FEA simulations to train ML models, we compose a parametric script to
batch-generate grid designs (Figure 28, 29). Given a user-specified grid size , the script will produce a 9

skeletal grid by randomly sampling from predefined ranges of parameters and shift vertices around to
diversify output geometries. Each edge in the grid is randomly assigned into an upward- or downward-
bending actuator, or a passive unit. The skeletal grids are then converted into 3D models and processed

into FEA input files with the aforementioned FEA modeling method.

Figure 28. Parametric grid generator.

When using random sampling to produce grid designs, we should use importance sampling instead of
uniform sampling to generate parameters to avoid implicitly biasing our dataset. For instance, we use
randomly generated vectors to shift vertices around, and the vectors are defined as V(θ, r) in polar

coordinate systems, where θ is the polar angle and r is the radius. While uniformly sampling θ is unbiased,
doing so on r will cause the vectors to concentrate around the origin and result in a dataset that is biased
toward regular grid designs. 

 We use grid size to describe the number of vertices along the x- and y-direction of grids.9

 37

Figure 29. Grids generated by our script.  

 38

Representation and Feature Extraction

Figure 30. Graphical representation of grid designs. We can regard the beams and joints in a grid as edges and
nodes, and represent the compositional pattern as an abstract graph.

The computed FEA raw results are converted into readable files (.csv files) using Abaqus2Matlab
(Papazafeiropoulos et al., 2017). Nevertheless, we also have to convert the grid models into representations
compatible with GCN. Given a grid model, we can regard it as an abstract graph

 , in which the joints are nodes and beams are edges, and represent it concisely

using three matrices - a binary adjacency matrix to describe the connectivity between blocks and two

feature matrices () and () to encode the information of beams and joints

(Figure 30). The rows and columns of correspond to the beams and joints in our grid respectively

and the entries are set to one when two blocks are contiguous and zero otherwise. The beams and joints

are individually described with a feature vector consisting of three terms - geometry, stress, and boundary
conditions that the blocks are subjected to (Figure 31).

The minimal information required to reconstruct an arched beam’s geometry is three cross-sections at the

start, middle, and end of it, and we can rebuild the solid beam by lofting these cross-sections into a tube.
Since the cross-sections are approximately rectangular and have identical dimensions, we can represent
them concisely by describing the spatial plane that they are situated and centered on with a center point

and two 3D vectors. While other representation methods may construct the cross-section more accurately,
such as directly describing the four corners of the rectangular cross-sections, they will also lead to longer

feature vectors, and the differences are visually trivial. As for the stress term, we sample the stress fields at
the Gaussian quadratures around the cross-sections’ corners. These positions are observed to undergo the
most significant stress change during the morphing process, leading to large numerical variances that will

make our dataset easier to generalize from. In the boundary condition term, we use a binary indicator to

G = (Madj, Medges, Mnodes)

Madj

Medges Mbeams Mnodes Mjoints

Madj

 39

indicate whether the beam is a bending actuator or a passive beam and a 3D vector to describe the beam’s
relative positions with respect to the fixed joint. In total, the feature vector length of beams is 223.

Figure 31. Geometry and stress representation of blocks. The geometry of beams are represented as the loft of
three cross sections, and joints are represented as a double-sided extrusion of a surface. We sample the stress at
positions that undergo the largest stress change.

Compared to the tube-like shapes of beams, the joint blocks have approximately box-like shapes and are
nearly rigid throughout transformation processes. Therefore, a joint’s geometry can be concisely
represented as the double-sided extrusion of a quadrilateral surface located at the middle of the joint.

More accurately, we describe the surface using one center point and four 3D vectors pointing from the
center point to the surface corners and capture the extrusion with a 3D vector pointing from the surface
center to the joint’s top-face center point. The stress fields are sampled at the Gaussian quadratures 10

around the corners of the joint. Lastly, the joint’s boundary condition term comprises a binary indicator to
described the joint’s fixed-end condition and a 3D vector to describe its relative positions with respect to
the fixture. In total, the feature vector length of joints is 70. 

 FEA computes the stress field of elements on the Gaussian quadratures instead of nodes.10

 40

Feature Reduction

Figure 32. Beam PCA results. At 98% information retention rate, the beam feature length is reduced by 53.4%.

Despite that the blocks’ features are already compact, a good portion of them are still redundant, especially
in the stress term. In response to this problem and informed by previous work (Liang et al., 2018), we
perform principal component analysis (PCA) to reduce feature redundancy. We set the information

retention cutoff of PCA to 98%, which results in halving the feature dimension of beams (Figure 32) and
shortening the joint feature vectors by 25%. The Eigenvectors produced by our PCA is saved and applied
to the inputs of our ML model during forward-computations.

When using PCA, an important note is that it should be applied to the geometrical, stress, and boundary
condition terms individually to avoid removing critical information. For instance, only one joint in the
grid is assigned with a fixed-end condition in the boundary condition term. This scarcity leads to

comparatively low variance in that column across the dataset. Performing PCA on the three
representation terms at once will very likely remove this information from the dataset.

Spatial Symmetry

In reality, regardless of the position and planar rotation of an object, it should always perform the same
transformation as long as it is appropriately and consistently oriented. However, since we generate our
data with FEA software systems, the points of the same model may take different values depending on

their location in the CAD environment, creating unnecessary variances in our dataset. We eliminate this
meaningless variance by repositioning the grids such that the fixed joints are always positioned at the

spatial origin. On the other hand, our data generation script produces grid models that are approximately
axis-aligned, which may cause the ML model to implicitly bias. As a result, we increase rotational
variances in our dataset by rotating raw FEA results to create additional episodes of simulation.

The aforementioned geometrical translations (repositions) are applied to the points in the representations’
geometrical terms, and the rotations are applied to both the points and vectors. Note that when
performing rotations, we should also rotate the stress fields to match the geometry. 

 41

Machine Learning

Graphical Network Blocks

Figure 33. GN Model and forward computation.

Graphical network (GN) blocks are the building blocks of GCN (Figure 33). A single GN block takes the

graphical representation of a grid as input and outputs its update

 . In particular, a GN block contains four sub-neural networks to perform

different aspects of the computation. Two of the four neural networks (and) are used to

compute the interactions between neighboring blocks, and the rest (and) is used to

compute the updates of individual nodes and beams. Figure 34 describes the inputs and outputs of each
sub-neural network:

Figure 34. Inputs and outputs of sub-neural networks.

G = (Madj, Mbeams, Mjoints)

ΔG = (ΔMbeams, ΔMjoints)

fI−joint fI−beam

fU−beam fU−joint

Network name Input Output

�cat (Xjoint, conv(Ijoint))

�cat (Xbeam, Xjoint, Xjoint)

�Ibeam� , joint-to-beam interaction networkfI−beam

�cat (Xbeam, conv(Ibeam))

�ΔXjoint

�Ijoint

� , joint update networkfU−joint

� , joint-to-joint interaction networkfI−joint

�cat (Xbeam, Xjoint, Xjoint)

�ΔXbeam� , beam update networkfU−beam

 42

In the interaction networks, denotes vector concatenation, and are the beam and joint

feature vectors, and and are the latent interaction vectors with joints or beams as the receivers,

respectively. Note that we regard the graphical representations of grids as directed graphs . Therefore, the 11

first joint appeared in the concatenation depicts the sender and the second the receiver. In the update

networks, the terms in the inputs are the element-wise interaction convolutions (i.e., summing the

latent interaction vectors that the element is the receiver of), and the outputs and are the

updates of individual joints and beams.

Figure 35. GN block forward computation steps.

During forward computations, given an input grid , the GN block will follow these procedural steps

(Figure 35) to compute :

1. For each pair of adjacent blocks, compute with or with .

2. For each block, convolute and that the block is the receiver of to get or

 .

cat () Xbeam Xjoint

Ijoint Ibeam

conv()

ΔXbeam ΔXjoint

Gt

Gt+1

Ijoint fI−joint Ibeam fI−beam

Ijoint Ibeam conv(Ijoint)

conv(Ibeam)

 In a directed graph, edges (beams) are unidirectional. For instance, given two adjacent nodes (joints) A and B 11

in a graph, and are treated differently.

 43

A B BA

3. For each block, compute with or with .

4. Compute .

In step 1 and 2, we can use the of to identify block adjacencies. Note that in our material system

and transformation processes, is constant and the connectivities between elements do not change

over time. Therefore, we omit ’s updates in our implementation. Additionally, the input interaction

pairs of and as well as the inputs of and are geometrically translated

(repositioned) to the coordinate origin to preserve spatial symmetry.

Double GN

Figure 36. Single GN and double GN model comparison. The Double GN
model has a latent graph G’ that allows information to propagate.

While a single GN block can already learn and simulate transformations of the mesh-like structures, we
take inspiration from Sanchez-Gonzalez et al. and construct double GN models to produce more accurate
simulation engines (Figure 36). In a double GN model, the two GN blocks (GN1 and GN2) are arranged

in a deep network-like arrangement and have unshared parameters. GN1 takes a graph as input and

computes a latent graph ; the feature matrices of and are then concatenated together to form the

input of GN2 , and GN2 will compute the final update of the graph to get . Compared to using a 12

single GN block, this model is verified to have higher simulation accuracies as it allows the nodes and

edges to communicate through . 

ΔXjoint fU−joint ΔXbeam fU−beam

Gt+1 = Gt + ΔGt

Madj G

Madj

Madj

fI−joint fI−beam fU−joint fU−beam

Gt

G′� Gt G′ �

Gt+1

G′�

 GN2 takes the concatenated graph as input and therefore has larger neural network dimensions than GN1. 12

 44

Training Method

The hyperparameters of our ML model are decided by a grid search algorithm, including the lengths of
latent interaction vectors and the dimensions of the GCNs’ neural networks. In particular, the neural

networks are structured to have pyramid-like shapes (i.e., wide input and narrow output layers). As a GCN
is essentially a combination of multiple neural networks, we directly train the models as deep networks
with batch gradient descend (BGD) and an Adam optimizer. Additionally, we monitor the trends of

training and validation loss, and early-terminate the training process when overfitting occurs (i.e.,
decreasing training loss and increasing validation loss). 

 45

Design Tool

Architecture

Our design tool architecture consists of four modules - composer, inspector, simulator, and slicer - each
responding to different aspects of the design process (Figure 37). Given the sketch of a design and actuator
assignments as input, the composer will translate it into a 3D model, program material properties

accordingly, and provide visualizations to the user. The inspector will check the composed model against
the design rules of the material system and visually inform users of violations. Once the model is verified,

the user can then use the simulator to predict the design’s transformation and modify the input to iterate.
Lastly, the slicer will process the model and assigned material properties into fabrication files for physical
prototyping. In this framework, the modules will proxy pattern compositions/decompositions happening

at different stages of design and allow users to operate at a single level of abstraction.

Figure 37. Software Modules.

 46

Module Details

Composer

As a rule of thumb, the input of the design tool should be as succinct and adjustable as possible to promote
design and iteration convenience. In our implementation, the design tool takes a collection of lines

representing the axes of beams as input to model the geometry of grids, and designers can adjust the
model by dragging the endpoints of lines or by deleting/adding edges. By default, the composer till

initialize the beams as passive units, and users can assign them as actuators by typing into a text panel.
Lastly, users can specify the fixed-end condition by selecting the index of joints.

Inspector

Figure 38. Inspector Module. The inspector will check the input against the material system’s design rules and
inform users of violations.

When composing dedicated CAD tools for material-driven design practices, it is essential to
communicate the tools’ limitations to the users to avoid frustration. These limitations originate material
systems, simulators, or fabrication tools. For instance, our inspector implementation will check the 3D

model and inform users when a joint violates the quad-mesh topological requirement of our material
system; when the design exceeds the maximum printable area of our printer; or when the length of the
beams is too long/short and therefore unseen in the simulator training dataset. In particular, since

 47

SimuLearn is a data-driven simulation technique, the simulator cannot perform reliably on designs made
of actuators that have parameters unseen in the dataset (Figure 38).

Simulator

The simulator takes 3D models and actuator assignments as input, converts them into graphical
representations, and simulates their transformations with a pre-trained SimuLearn engine. In our
implementation, the simulator will output the intermediate graphs at each simulation time step to provide

animated transformations and to inform design decisions. In order to visualize the simulation results, the
3D models are reconstructed from the geometrical terms in the feature matrices of graphs.

Slicer

The slicer is integrated into our design tool to avoid switching between CAD and slicing software during
prototyping. In our implementation, the slicer produces fabrication files by traversing down the hierarchy
of composition. A design is decomposed into its building blocks (joints and beams), and building blocks

into multiple toolpath blocks for rasterization. For the beams in the design, their toolpath blocks are
always rasterized with a printing direction either parallel or perpendicular to the longitudinal axes of
beams. The joints, on the other hand, are not required to perform transformation and are rasterized into

axis-aligned toolpaths for convenience. Finally, the slicer will translate the rasterized toolpaths into G-
Code files for fabrication. 

 48

RESULTS

In this chapter, we will utilize our pipeline to
produce proofs-of-concept for the techniques we
developed in this thesis. The implementation is

also deployed in several design tasks to evaluate
the design space innovated by data-driven
simulations and composition-based design tools. 

 49

FEA Model

We use two samples of different dimensions to verify our FEA model at different scales - 3x3 grid design
that is 150 mm * 120 mm in size (Figure 39), and a 7x3 grid that is 410 mm * 100 mm in size (Figure 40).
In each round of the experiment, we sample several points on the grid, measure their relative distance, and

compare the physical ground truth with FEA simulation to determine the error. The maximum simulation
error of the small sample is ~4.9% with respect to its dimension whereas the large sample has a maximum
error of ~4.5%.

Figure 39. 3x3 grid simulation error. The maximum error is 7 mm (4.9%).

Figure 40. 7x3 grid simulation error. The maximum error is 6.1 mm (4.5%).

 50

Dataset

We use our pipeline implementation to simulate 200 3x3 grid designs to collect raw FEA results (Figure
41). The FEA solver logs ten temporal frames, and the results are rotated ten times to eliminate rotational
bias, therefore allowing us to extract 100 graphs out of 1 trial of FEA. The largest grid dimension appeared

in this dataset is approximately 200 mm * 200 mm, and the smallest is 100 mm * 100 mm in size. The 200
episodes of FEA are deliberately divided into three groups for different types of actuator assignment that
can morph into varying shapes- all bending upward, all bending downward, or each actuator bending on a

randomly assigned direction - to produce different types of transformed shapes. The first two groups of
grids that have the actuators bending on the same direction will transform into bowl-like shapes, whereas
the later will either become a saddle shape or an arbitrary surface.

Figure 41. A subset of the curated 3x3 grid dataset.  

 51

SimuLearn Performance

We use the curated dataset to train a double GN model with BGD for 1000 epochs, in which the second
half has a 0.1x learning rate compared to the first half. In total, it took us 24 hours to train the model with
our software implementation, and the entire pipeline produces around 204 GB of files (201 GB of FEA

raw results, 1.5 GB of training data, and 0.75 GB of ML model).

Figure 42. Simulation Result. Blue - FEA ground truth; Red - SimuLearn result.

The trained model is validated on 2 grids of different dimensions (Figure 43, 44). Compared to FEA
ground truths (Figure 42), the maximum simulation error we measured is ~1.2 mm, which corresponds to
a ~1.6% error with respect to the dimension of the grid. Compounding this error with our FEA simulation

accuracy, this instance of SimuLearn engines is expected to have ~6.4% maximum error with respect to
physical results. On another hand, the simulation took only 0.8 seconds to compute and runs 1500x faster
than FEA (1200 seconds). In general, this result shows that SimuLearn can perform FEA-like simulations

with a substantial acceleration.

Figure 43. Large 3x3 grid simulation rollout. Blue - FEA ground truth; Red - SimuLearn result.  

 52

Figure 44. Small 3x3 grid simulation rollout. Blue - FEA ground truth; Red - SimuLearn result.

For our material system, a maximum simulation error of 5% is already sufficiently accurate due to the
compliance of our material and the unaccountable factors in the physical world. Although not the
dominant factors, the actuation environment has several factors that complicate the transformation

process, affect the triggering result, but are challenging to model. For instance, convections within the hot
water bath may slightly deform the object but are computationally difficult - if not impractical - to model.
It is also impossible to consider uncontrollable external factors like deformation or shaking in our FEA

simulations. In practice, we can leverage the flexibility of our material to bypass unaccountable physical
factors as well as to absorb simulation errors.

While our trained SimuLearn engine approximates FEA results well, the inaccuracy of our FEA model still

makes the final accuracy with respect to the physical reality insufficient for design tasks. Another
important thing to note is that since our dataset generator produces grid geometries by random, regular
grid designs rarely appear in our dataset and consequently causing our simulator to bias. The trained

simulator performs well on grids that have irregular structures but poorly on regular patterns that are
commonly seen in human-produced designs (Figure 45).

Figure 45. Regular grid simulation failure. Blue - FEA ground truth; Red - SimuLearn result. 

 53

User Workflow

Our software prototype affords users to sketch, simulate, and iterate designs in a single CAD environment
without having to switch between multiple software. Using our implementation, a designer can initialize a
pattern by intuition, simulate its transformation, evaluate the result against certain design goal (e.g.,

shape-fitting), adjust the pattern, and repeat this process until the outcome is satisfactory. Compared to
previous works, our design tool allows users to directly operate on patterns without having to use target
shapes and geometrical algorithms as proxies. This feature promotes direct manipulation of design in 4D

printing and enables intuitive design exploration and iteration.

Simulations play an essential role in the workflow mentioned above to inform effective design decisions.
Ideally, the design tool will adopt SimuLearn engines to produce physically accurate and fast predictions,

but our current simulator is merely a proof-of-concept that has limited versatility (i.e., only trained for 3x3
grids, not performing well on regular grids) and accuracy for design tasks. Therefore we are using FEA for
simulation in our current implementation to enable an extended design space and to compromise speed

for accuracy (Figure 46, 47).

Figure 46. Comparison of design workflows. Our implementation allows for economical iterations. 

 54

Figure 47. Workflow with our design tool implementation. 

 55

Design Space

We deploy our software implementation to several design tasks to evaluate its usability and to reveal the
design space enabled by it. Note that when using FEA for simulation as in our current implementation,
each task took roughly three days to develop to the final product. Once we acquire a reliable SimuLearn

engine, this iteration time can be reduced to less than half an hour.

Neck Support

Figure 48. Neck support design iterations. Top - design iteration; bottom - printed artifact.

The goal of this task is to customize neck support (Figure 48) for an imaginary patient with neck injuries.
The 3D model of the wearer is provided to contextualize design iterations. In the task, we use the
simulation results to evaluate the fitting of the design as well as to adjust its aesthetics. In particular, this

part of the human body has large curvatures and a non-developable shape, which renders it difficult to
design for with currently available 4D printing tools. For instance, Thermorph can only produce origami-
like patterns with limited structural strengths. While 4DMesh adopts a material system identical to ours

 56

and is structurally stable, the geometrical limitations of its algorithms make it incompatible with this part
of the body. Our design tool and workflow, on the other hand, is capable of handling this task.

Bottle Handle

Figure 49. Bottle handle design. From top to bottom - design iterations; triggering process of the final design;
attaching the handle to the bottle; before/after assembly comparison.

We take water bottles as an example to exemplify our tool’s applicability in accessibility augmentation. A
bottle handle allows users with certain disabilities to conveniently hold on and drink from it (Figure 49).

 57

In addition to fitting the design to the shape of the bottle, we also use the simulations to explore different
methods of designing the handle. Noticeably, the final design exhibits self-intersection that is previously
unachievable with available 4D printing flattening algorithms as it violates the surface/mesh manifoldness

assumption. Lastly, some of our designs are curling in opposite directions, and we use the simulations to
identify appropriate fix-ends to avoid the artifact from hitting the support during activation.

Modular Lampshade

Figure 50. Modular lampshade design. Top - design iteration; bottom left - module and assembly render; bottom
right - physical prototype.

The accuracy of simulation allows us to fabricate a large object as a combination of modular structures. In
this task, we divide a lampshade into multiple segments and design each part with our tool, and use
simulations to make sure that the parts do not collide or intersect with each other (Figure 50). The

precision of simulation will also allow us to match the outlines of segments well and design connections
between modules accurately. Note that the beams are assigned as partial actuators in this particular
application to achieve small curvature. 

 58

LIMITATION AND FUTURE WORK

The goal of this work is only to establish the
concept and implementation pipeline of
SimuLearn - our technical solution to bring

materials and geometries one step closer in
computer-aided design. Thus, the techniques we
developed have their limitations that can be

addressed in future works. Here we provide
elaborations for each of the issues we have
identified. 

 59

Data, Data, and Data

Parameters and Variances

Datasets are the very foundation of any data-driven technique. Identically, dataset curation also bounds
the performance of SimuLearn. These limitations come in two folds - accuracy and dataset size.

When composing SimuLearn simulators, the expected error is the compound of FEA and regression error.
While FEA is considered the engineering norm and ground truth of simulation, the results are often
imperfect compared to the physical reality due to incorrect material or boundary condition modeling.

Furthermore, machine learning regressors - especially the neural networks and gradient descend
optimizer we use - cannot perfectly fit the training dataset and will always introduce error to the
predictions.

The dominant factor of SimuLearn’s dataset size requirements or parameter spaces is the number of design
parameters. The more design parameters we take, the exponentially more data we need to train a reliable
simulator. In this study, the parametric FEA input file generator is taking only a few parameters as input

and setting certain parameters, such as the width and thickness of beams, as constants to confine the
parameter space and data requirement. While we can technically account for these factors by curating a
larger dataset, the exponential computational cost renders it impractical.

Lastly, this thesis does not investigate in depth the relationship between SimuLearn accuracy and the
quality of dataset (i.e., quantity, variance). Follow-up works may wish to provide comprehensive studies of

the influential factors.

Dataset for Design Tasks

Our pipeline takes a random sampling strategy to generate data for ML training, but these randomly

decided grid designs does not necessarily reflect human users’ design preferences. For instance, human
users tend to design regular actuators assignments (i.e., developable surfaces, clustered bending
directions) and layout (i.e., approximately rectangular, trapezoidal, or parallelogrammatic), but these

designs are unlikely to appear in our random dataset (Figure 51). As a consequence, the trained
SimuLearn engine does not perform well on these regular patterns and often produce ostensibly wrong
simulation results. The naive solution to this issue is to increase the size of our dataset, assuming that the

more data we have, the more likely these regular designs will appear. Alternatively, a more effective
curation method that may alleviate this issue is to invite human users to generate designs, such that the

 60

dataset reflects real-world design scenarios. However, this is a labor-intensive process, and it is difficult to
generate large datasets with this curation method.

Figure 51. Design regularity comparison. The regularity of human-designed patterns are rare to appear in the
randomly generated dataset.

Generalizing the ML-FEA Technique

Current FEA Model Limitations

Compared to ML regression error, FEA accuracy is currently the bottleneck to our technique. In
particular, the material that we are using is susceptible to the disturbances in the triggering environment,

and the transformation process always has some uncontrollable factor to it. Thus, when we measure the
accuracy by maximum simulation error, it always results in poor performances. That being said, our FEA
modeling may still be inaccurate, and future works may wish to characterize the material model more

rigorously.

While the material definition, boundary conditions, and solver setting of our FEA model are physically-
based, there are several factors that we are omitting in the current implementation, such as collisions

during transformation. The bending actuators in our material system do not have high performances (i.e.,
large bending curvatures) and the grids appeared in this work cannot deform large enough to collide with
themselves. Therefore, we ignore self-collisions to simplify our FEA model and computation. Similarly,

 61

since the artifacts are fixed to suspend in the water bath, we can ignore their collisions with surroundings.
Future works that wish to consider collisions can regard them as a dynamic relation in graphical
representations. For instance, if we instead trigger the 4D printed grids by letting them sink to the bottom

of the water bath, we may use an extra adjacency matrix to dynamically describe contacts between beams/
joints and the tank bottom, use an additional neural network to compute their interactions, and convolute
the interactions into the update of blocks.

Due to the irreversible mechanism of our material system, our current simulator will iteratively update the
input grid design for only a fixed amount of time to compute its transformation. In this scenario, the last
output is the transformed shape of the one-time actuation. Nonetheless, our SimuLearn technique is also

adaptable to reversible actuation like moisture-responsive wood curling. To simulate these physical
systems, we only have to allow the simulator to iterate indefinitely. Lastly, this thesis does not exhaustively
investigate the relationship between SimuLearn accuracy and the quality of dataset (i.e., size, variance).

Follow-up works may wish to provide comprehensive studies of the influential factors.

Applicable Patterns and Materials

Figure 52. Alternative material systems. SimuLearn can be adapted for other transformative mechanisms,
fabrication methods, and compositional units and patterns.

 62

The mesh-like patterns discussed in this thesis are intuitive to abstract into graphical representations, but
this approach is also adaptable to alternative compositional patterns (Figure 52). For example, we can
simulate shell structures by decomposing them into small patches of surfaces, or breakdown voxel bodies

into smaller, local groups of voxels for simulation - identical to mesh coarsening in finite element
methods. Provided that the simulation units allow for consistent representations, we can represent their
compositional designs as graphs and apply the SimuLearn technique on them. Additionally, the PLA in

our material system already has a non-linear material property, indicating that this technique is also
applicable to a wide range of materials. Future works may adapt the SimuLearn technique to other types of
material systems that have different actuation mechanisms, fabrication methods, and compositional units

and patterns.

Graphical Representation Extension

In this work, our implementation affords compositional patterns made of bending beams and passive

joints, each corresponding to the edges and nodes in our graphical representation. Nonetheless, graphical
representations also allow for multiple types of nodes and edges to coexist in a pattern. For instance, we
can add shrinking beams into our material system to expand its design space, and our graphs will then

consist of two types of edges. To account for this, we can then supplement our graphical representation by
adding a new matrix to encode the features of shrinking beams and an additional sub-networks to our

GCN to compute its interactions and updates. Furthermore, this method also allows us to integrate
actuators made of different materials into one design. However, increasing the classes of edges and nodes
will result in a quadratic size growth of ML-FEA models, which at the same time may require more

training data. 

 63

Large Continuum Simulation

Although not being in the scope of this work, training an ML-FEA simulator to predict the
transformation of large continuums reliably may be a difficult and impractical task. For instance, training

an ML-FEA engine to simulate 5x5 grids will require us to curate a dataset of 5x5 grid transformation.
However, using FEA to simulate 4x4 grids will take substantially more time compared to simulating 3x3
grids. Additionally, errors caused by inaccurate FEA modeling tend to propagate and amplify with

increasing model size, resulting in untruthful simulations. In order to address this, a common practice is
to divide large continuums into several parts, simulate them individually, and put the results back together
to get the full model. This method is also compatible with our ML-FEA technique. In particular, we can

extend the hierarchy of composition to account for more levels of abstraction. Take 5x5 grids for example,
instead of simulating them as continuums, we can decompose them into 3x3 patches for simulation to
confine error propagation. On another hand, extending the hierarchy of composition will also allow us to

design with higher-level elements, further saving design efforts (Figure 53).

Figure 53. Extending the hierarchy of composition. When designing larger-scale patterns, we can extend our
compositional hierarchy to operate at higher-level abstractions and automate lower-level efforts.

 64

Design Tool Reliability

Our current design tool implementation does not communicate well the validity of simulation results.
Most commercially available FEA solvers monitor computation processes to detect divergences (i.e.,
unsolvable scenes) and raise errors when encountering one, but ML-based simulators guarantee results

regardless of the input - even if the results are erroneous. We can resolve this issue by implementing a
checker function to validate simulation results before showing them. Take our material system for
example, we can check the simulation results by monitoring dislocations of supposedly adjacent faces and

vertices against a threshold to identify false results.

On the other hand, this thesis mainly focuses on discussing the simulation and design tools of morphing
matter, deemphasizing on the fabrication methods and tools to initiate our study. Nonetheless, providing a

reliable and generalized fabrication module for 4D printing and morphing matter will also be a substantial
contribution to the field that future works can address.

Differentiable Simulation

Figure 54. Optimization leveraging SimuLearn’s differentiability.

In addition to its fast computational speed and convenience of wrapping complex physical phenomena
into a singular model, using SimuLearn for simulation also enables inverse-design due to its
differentiability. This approach is commonly used in robotics for policy-finding (Belbute-Peres et al.,

2018), takes a gradient descent-based approach to optimize designs, and has a mathematical mechanism
identical to the backpropagation algorithm of artificial neural network training. Given an initial design,
we can use a SimuLearn engine to simulate its transformation, evaluate the result against an objective

function to compute its loss, and back propagate the loss to the input while fixing the weights of our
simulator to optimize the input design (Figure54). The objective function can take any form and represent
any design goal as long as it is differentiable. For instance, if we want the design to transform into a

 65

particular explicit shape, our objective function will be the summation over the Euclidean distances
between target and simulated vertices.

Previous works of 4D printing inverse-design tools are mostly based on geometrical methods. The

algorithms are adapted to specific material systems and inapplicable to others, and they often assume the
target shapes to satisfy additional geometrical properties such as surface manifoldness or developability.
Inverse-design via differentiable simulation engines, on the other hand, is a generalizable technique and

does not require the target shape to satisfy any geometrical prerequisite other than the material system’s. In
a way, as long as we can simulate transformations with the ML-FEA simulator, we can use the same engine
to design artifacts inversely. 

 66

DISCUSSIONS

Beyond the techniques and implementations
d e vel op e d i n t h i s t he s i s , we are a l s o
conceptualizing a design philosophy of for

material-driven practices. In this chapter, we will
briefly discuss several of such thoughts and
envision the CAD future enabled by data-driven

simulations. 

 67

Design Decisions

Biases as Design Decisions

In conventional ML application domains, data biases are often induced by missing important features of
the task or having poor variances of parameters and are perceived as negative properties as they lead to

poorly generalized ML models. To remove these biases, a straightforward solution is to curate larger, more
variant datasets, assuming that the extra data will cover more configurations of parameters. However, this
approach is often impractical due to real-world limitations (e.g., storage space, labor, time).

Compared to conventional ML domains, this thesis conceives biasing as a crucial element to compose
simulators successfully. Strategically biasing the dataset on important design parameters will reduce the
dataset size requirement for ML training as well as help confining the design space of the material system.

In our case, we prioritize the parameters that that users prefer to play with during design processes and
remove less frequently adjusted ones from our implementation. In other words, dataset biases are design
decisions that toolmakers will have to make when following our pipeline, and they contribute toward

composing dedicated CAD tools and successful ML training.

Rationalizing Simulator Developments

Composing data-driven simulation engines is virtually a tradeoff between implementation time and

design convenience (Figure 55). In our pipeline, dataset curations are computationally heavy tasks that
can easily take days - if not weeks - to perform, but the resulting fast and physically accurate simulators

can accelerate design iterations substantially. Designs that would conventionally require days to physically
prototype and iterate will only take minutes with our method. That being said, developing a SimuLearn
engine requires thoughtful rationalization to justify its cost. Our simulation technique is economical only

if the trained simulator is frequently used, such as deploying material systems to the industries or for
mass-customization. For small-scale applications like academic research on novel materials, our technique
is less practical, and FEA will instead be the logical method for simulation. Lastly, SimuLearn is expected

to be less accurate than numerical methods like FEA and may not serve engineering domains as well as
design tasks.  

 68

Figure 55. 3x3 SimuLearn development costs. This development process is a
tradeoff between development time and deployment convenience.

Data-Driven Simulation

Concurrent Learning

While the ML-FEA simulator development workflow may appear to be linear, its implementation is, in
fact, an iterative learning process. The FEA modeling step demands an accurate understanding of the

factors affecting simulation results; the data processing step necessitates proper representations for the
patterns and careful confinement of design spaces; the ML training validates the result of previous steps.
In our implementation, we had to iterate each step several times in order to acquire a properly functional

pipeline, each time expanding our knowledge of the material system. The pipeline serves not only as a tool
to develop SimuLearn engines but also as an educational tool that helps implementors to gain insights.

Beyond Mechanical Simulations

The simulation scope of this thesis - residual stress-induced deformations - is a well-studied domain in
mechanical engineering. We have established accurate numerical models for this phenomenon and know
well its affecting factors, therefore allowing us to utilize FEA to collect the dataset for ML training.

However, there exist domains that we currently do not have an accurate numerical model for, such as the
growth of Muscular Thin Film Actuators (Feinberg et al., 2007), and we can modify our implementation
workflow to take real-world observations as the source of data. For instance, we can record videos of

cellular activities, use computer vision techniques to tag and extract information from these observations,

 69

and use this data to train ML models to predict their actuation performances and behaviors (Figure 56).
Perceiving the data-driven simulation technique as an engineering tool, it will enable us to design with
physical systems that we do not even have deep understandings.

Figure 56. Adapting SimuLearn for biological materials. We can use SimuLearn to approximate and predict
material behaviors that are not yet well-characterized, such as muscular actuators. Image reprinted from Muscular
Thin Film Actuator (Feinberg et al., 2007).

Ecosystems

Manufacturing Ecosystems

We have the vision to democratize and create industrial ecosystems for 4D printing and morphing
materials and look forward to their wide adoption in a variety of domains - interactive devices, self-

assembling furniture, reactive architectural facades, and more. However, these fabrication techniques and
practices are still in their infancy, and we have not yet seen them realized in the market. After having
conversations with several industrial collaborators, we speculate that this is due to the lack of effective

tools that assist us to design and fabricate with convenience and accuracy. This work is our initial step to
advancing toward our vision by addressing the technical challenges of composing CAD tools in this
ecosystem.

SimuLearn Ecosystems

As explained in earlier chapters, curating a dataset that reflects real-world design scenarios is a difficult
task. However, we can create a crowd-sourcing ecosystem that facilitates the curation of such datasets. For

instance, given a material system, organizations that desire to develop SimuLearn engines can offer FEA
computing services to users who wish to simulate in return of their design to collect data. Once the

 70

organizations have acquired a sufficient amount of data, they can then use it to develop SimuLearn
engines and offer them as services.

Augmentative Design Agents

The ultimate vision of this thesis - GeoMatries - is to bring geometries and material together in the CAD

tools of morphing matter design, and SimuLearn is our technical solution to make such vision come true.
Furthermore, this simulation technique will also enable us to create augmentative design agents that
scaffold or improve design experiences (Figure 57).

In addition to its ability to perform fast and physically accurate simulations, the developed SimuLearn
engines can also serve as the foundations of composing augmentative or exploratory design agents. As
discussed, the differentiable computation of SimuLearn can be used for inverse-design and optimization,

and we can further leverage this feature to create design agents that help us to explore design options. For
instance, given a design goal, we can randomly initialize several patterns and optimize them to have good
performances and offer these patterns as design options for the users to choose from.

SimuLearn also offers the basis for computers to reason over physical phenomena and design decisions in
real-time, and take further initiatives in morphing matter design processes. In our current software
implementation, users have to inspect the transformations to decide what to modify manually, and the

computers are playing passive roles in these processes. Alternatively, we can implement additional
functions to actively inform users about the consequences of modifications, or to provide guidance given

design goals. For example, knowing the user’s design goal, the computer can suggest modifications that
will result in better performances, or inform undesired modifications (e.g., resulting in self-collisions). 

 71

Figure 57. SimuLearn-empowered design agents. 

 72

CONCLUSIONS

This chapter will discuss the contributions of our
work, and recap the content and vision discussed
in previous chapters. 

 73

In this thesis, we take 4D printing as an example of material-driven design paradigms to propose,
prototype, and provide proofs-of-concept for a data-driven simulation technique to respond to one of the
challenges we face in such a design practice - rendering material responses in digital tools. Compared to

currently available simulation methods that are oriented to engineering or animation purposes, our
technique is adapted to design tasks and exhibits potential to afford efficient and economical 4D printing
design workflows. Our design tool prototype also shows that CAD tools adopting physically-accurate and

fast simulators can enable us to explore new design frontiers of our selected material system. Beyond 4D
printing, we are also envisioning our technique to be applied to various material-driven design domains.

We as designers are familiar with using materials as a factor in design processes. There are powerful tools

and machines that help us to shape matters into a variety of different shapes and functions. However,
under the industrial mode of making, we often favor materials that have high fabricability or even
engineer matters to have one such property, averting the active, transient, and temporal behaviors of

materials - even more so as we advanced into a computer-aided design and modeling era. Active material
behaviors become maintenance and fabrication issues while they can be leveraged to functionalize
artifacts and instill ubiquitous interactions into everyday objects. We hope this thesis can serve as the

initial step to reconcile materials with geometries in the CAD tools we wield and promote a GeoMatrical -
concurrently geometry- material-driven - design practice.

Lastly, we want to clarify that this simulation technique is not meant to compete with other simulation
methods nor to discriminate the significance of physical prototyping in design processes. In fact, this work
is only made possible by combining engineering technologies with design knowledge and is not realizable

without physical artifacts informing digital implementations. As an architect, I acknowledge the
importance of combining design with technology and mediating between bits with atoms. To me, the role
of architects is never mere designers of buildings, but the coordinators of disciplines and the tools we

make are the very theater of intellectual convergence. 

 74

Contribution

Vision and Concept (Chapter 1 and 3)

• Simulation-empowered design workflows. We envision that fast and accurate simulation tools will
augment current inverse-design workflows and enable forward-design tools of 4D printing and

morphing matter to take place.

• Hierarchical composition of 4D printing. We provide an intellectual framework of 4D printing that
helps us select the level of abstraction, limit design space, and strategize the development of CAD and

simulation engines.

• Data-driven simulators and dedicated design tools. We propose to adopt data-driven methods to
compose efficient simulation engines and make bespoke design tools to streamline design processes.

Technical Contributions (Chapter 3 - 4)

• SimuLearn and its development pipeline. This thesis establishes a pipeline consisting of three steps -
FEA modeling, data-processing, and model training - to cultivate machine learning-empowered, finite

element analysis-based simulators.

• Graph theories for 4D printing. To our knowledge, we are the first to adapt graph theories to
represent the compositional design of 4D printing.

• Design tool and Evaluations. We conceptualize a design tool architecture adapted to our ML-FEA
simulator and investigate its implication in design tasks.

Artifacts (Chapter 4)

• A dataset of FEA results. This dataset consists of 600 randomly generated samples.

• A trained SimuLearn engine. A simulator is developed as a proof-of-concept for our technique.

• A design tool prototype. This CAD tool is adapted to designing 4D printed mesh-like structures made
of thermoplastic bending beams. However, due to technical limitations, this implementation is using
FEA rather than SimuLearn to predict transformations.

• Design examples. We leverage our design tool implementation to explore the design space enabled by
our technique and workflow, including wearable customizations, modular structures, and geometries
that are previously difficult to achieve. 

 75

REFERENCES

An, B., Tao, Y., Gu, J., Cheng, T., Chen, X.'., Zhang, X., Zhao, W., Do, Y., Takahashi, S., Wu, H., Zhang, T., &
Yao, L. (2018). Thermorph: Democratizing 4D Printing of Self-Folding Materials and Interfaces. CHI.

Apagom AG. (2019). Physics Forests [Computer Software]. Retrieved from http://apagom.com/

physicsforests/

Battaglia, P.W., Pascanu, R., Lai, M., Rezende, D.J., & Kavukcuoglu, K. (2016). Interaction Networks for
Learning about Objects, Relations and Physics. NIPS.

Belbute-Peres, F.D., Smith, K.A., Allen, K., Tenenbaum, J.B., & Kolter, J.Z. (2018). End-to-End
Differentiable Physics for Learning and Control. NeurIPS.

Chen, X.'., Tao, Y., Wang, G., Kang, R., Grossman, T., Coros, S., & Hudson, S.E. (2018). Forte: User-Driven

Generative Design. CHI.

Cheney, N., MacCurdy, R.B., Clune, J., & Lipson, H. (2013). Unshackling evolution: evolving soft robots
with multiple materials and a powerful generative encoding. SEVO.

Dassault Systems. (2019). Abaqus [Computer Software]. Retrieved from https://www.3ds.com/products-
services/simulia/products/abaqus/

David Rutten., Robert McNeel & Associates. (2019). Grasshopper [Computer Software]. Retrieved from

https://www.grasshopper3d.com/

Feinberg, A. W., Feigel, A., Shevkoplyas, S. S., Sheehy, S., Whitesides, G. M., & Parker, K. K. (2007).

Muscular thin films for building actuators and powering devices. Science, 317(5843), 1366–1370.

Gladman, A. S., Matsumoto, E. A., Nuzzo, R. G., Mahadevan, L., & Lewis, J. A. (2016). Biomimetic 4D
printing. Nature Materials, 15(4), 413–418.

Gu, J., Breen, D.E., Hu, J., Zhu, L., Tao, Y., Zande, T.V., Wang, G., Zhang, Y., & Yao, L. (2019). Geodesy:
Self-rising 2.5D Tiles by Printing along 2D Geodesic Closed Path. CHI.

Howell, L. L., Magleby, S. P., & Olsen, B. M. (2013). Handbook of compliant mechanisms. Chichester, West

Sussex, United Kingdom: John Wiley & Sons.

 76

Kononenko, O., & Kononenko, I. (2018). Machine Learning and Finite Element Method for Physical
Systems Modeling. CoRR, abs/1801.07337.

Ladický, L. ’ubor, Jeong, S., Solenthaler, B., Pollefeys, M., & Gross, M. (2015). Data-driven fluid

simulations using regression forests. ACM Transactions on Graphics. https://doi.org/
10.1145/2816795.2818129

Liang, L., Liu, M., Martin, C., & Sun, W. (2018). A deep learning approach to estimate stress distribution: a

fast and accurate surrogate of finite-element analysis. Journal of the Royal Society, Interface / the Royal
Society, 15(138). https://doi.org/10.1098/rsif.2017.0844

Cardoso Llach, D. (2015). Builders of the Vision. https://doi.org/10.4324/9781315798240

Kahn, L. (1971). Transcribed from the 2003 documentary 'My Architect: A Son’s Journey by Nathaniel
Kahn.

Martin-Guerrero, J. D., Ruperez-Moreno, M. J., Martinez-Martinez, F., Lorente-Garrido, D., Serrano-

Lopez, A. J., Monserrat, C., … Martinez-Sober, M. (2016). Machine Learning for Modeling the
Biomechanical Behavior of Human Soft Tissue. 2016 IEEE 16th International Conference on Data Mining
Workshops (ICDMW). https://doi.org/10.1109/icdmw.2016.0042

Ou, J., Yao, L., Tauber, D., Steimle, J., Niiyama, R., & Ishii, H. (2013). jamSheets. Proceedings of the 8th
International Conference on Tangible, Embedded and Embodied Interaction - TEI ’14. https://doi.org/

10.1145/2540930.2540971

Papazafeiropoulos, G., Muñiz-Calvente, M., & Martínez-Pañeda, E. (2017). Abaqus2Matlab: A suitable
tool for finite element post-processing. Advances in Engineering Software, 105, 9-16.

Pytorch. (2019). Pytorch [Computer Software]. Retrieved from https://pytorch.org

Robert McNeel & Associates. (2019). Rhinoceros [Computer Software]. Retrieved from https://
www.rhino3d.com/

Sanchez-Gonzalez, A., Heess, N., Springenberg, J.T., Merel, J., Riedmiller, M.A., Hadsell, R., & Battaglia,
P.W. (2018). Graph networks as learnable physics engines for inference and control. ICML.

Tibbits, S. (2014). 4D Printing: Multi-Material Shape Change. Architectural Design. https://doi.org/

10.1002/ad.1710

 77

Wang, G., Cheng, T., Do, Y., Yang, H., Tao, Y., Gu, J., An, B., & Yao, L. (2018). Printed Paper Actuator: A
Low-cost Reversible Actuation and Sensing Method for Shape Changing Interfaces. CHI.

Wang, G., Tao, Y., Capunaman, O.B., Yang, H., & Yao, L. (2019). A-line: 4D Printing Morphing Linear

Composite Structures. CHI.

Wang, G., Yang, H., Yan, Z., Ulu, N.G., Tao, Y., Gu, J., Kara, L.B., & Yao, L. (2018). 4DMesh: 4D Printing
Morphing Non-Developable Mesh Surfaces. UIST.

Wang, W., Yao, L., Zhang, T., Cheng, C., Levine, D., & Ishii, H. (2017). Transformative
Appetite. Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems - CHI 17.
doi:10.1145/3025453.3026019

 78

LIST OF FIGURES

Figure 01. Pinecone. Image courtesy of Morphing Matter Lab, Carnegie Mellon University.

Figure 02. 4D printed Thermorph rose. Reprinted from Thermorph (An et al., 2018).

Figure 03.Thermoplastics-based 4D Printing Design Space. Reprinted from 4DMesh (Wang et al., 2018); Geodesy (Gu et

al., 2019); A-line (Wang et al., 2019).

Figure 04. Comparison of topologies. Reprinted from Thermorph (An et al., 2018); 4DMesh (Wang et al., 2018).

Figure 05. Current 4D printing design workflow.

Figure 06. Simulation method comparison.

Figure 07. Hypothesis overview.

Figure 08. Data-driven simulation.

Figure 09. The design tool of Transformative Appetite. Reprinted from Transformative Appetite (Wang et al., 2017).

Figure 10. Compliant mechanisms. Reprinted from Handbook of compliant mechanism (Howell et al., 2013).

Figure 11. PhysicsForests. Extracted from http://apagom.com/physicsforests/videos/.

Figure 12. Using neural networks to approximate steel beam deformation. Reprinted from Machine Learning and Finite

Element Method for Physical Systems Modeling (Kononenko et al., 2018).

Figure 13. Simulations with Interaction Network. Reprinted from Interaction Networks for Learning about Objects,

Relations and Physics (Battaglia et al., 2016).

Figure 14. Simulating an inchworm robot with Graph Networks. Reprinted from Graph networks as learnable physics

engines for inference and control (Sanchez-Gonzalez et al., 2018).

Figure 15. Design tool interface from Printed Paper Actuator. Reprinted from Printed Paper Actuator (Wang et al., 2018).

Figure 16. Structural Optimization with Forte. Reprinted from Forte (Chen et al., 2018).

Figure 17. Material mechanism.

Figure 18. Actuator toolpathing. Image courtesy of Guanyun Wang.

Figure 19. Physical prototyping workflow.

 79

Figure 20. Compositional hierarchy of our material system.

Figure 21. FEA Perspective of Simulation.

Figure 22. Design tool at a limited level of abstraction.

Figure 23. Simulearn computation flow.

Figure 24. Technical pipeline overview.

Figure 25. Model discretization and index map.

Figure 26. FEA boundary conditions.

Figure 27. DMA test.

Figure 28. Parametric grid generator.

Figure 29. Grids generated by our script.

Figure 30. Graphical representation of grid designs.

Figure 31. Geometry and stress representation of blocks.

Figure 32. Beam PCA results.

Figure 33. GN Model and forward computation.

Figure 34. Inputs and outputs of sub-neural networks.

Figure 35. GN block forward computation steps.

Figure 36. Single GN and double GN model comparison.

Figure 37. Software Modules.

Figure 38. Inspector Module.

Figure 39. 3x3 grid FEA simulation error.

Figure 40. 7x3 grid FEA simulation error.

Figure 41. A subset of the curated 3x3 grid dataset.

Figure 42. Simulation Result.

 80

Figure 43. Large 3x3 grid simulation rollout.

Figure 44. Small 3x3 grid simulation rollout.

Figure 45. Regular grid simulation failure.

Figure 46. Comparison of design workflows.

Figure 47. Workflow with our design tool implementation.

Figure 48. Neck support design.

Figure 49. Bottle handle design.

Figure 50. Modular lampshade design.

Figure 51. Design regularity comparison.

Figure 52. Alternative material systems.

Figure 53. Extending the hierarchy of composition.

Figure 54. Optimization leveraging SimuLearn’s differentiability.

Figure 55. 3x3 SimuLearn development costs.

Figure 56. Adapting SimuLearn for biological materials. Muscle image reprinted from Muscular thin films for building

actuators and powering devices (Feinberg et al., 2007).

Figure 57. SimuLearn-empowered design agents. Images extracted from https://www.kisspng.com.

 81

	signature
	hanliny_Master's_Architecture_2019
	thesis_Lining Signed
	coverpage

	hanliny_Master's_Architecture_2019
	thesis
	1
	3
	5
	8
	9
	10
	11
	12
	12
	13
	14
	15
	16
	17
	19
	19
	20
	21
	23
	25
	26
	26
	26
	27
	27
	29
	31
	31
	32
	32
	33
	33
	33
	34
	Abstract
	Acknowledgement
	Table of Contents
	1. Introduction
	Motivating a Material-Driven CAD Practice
	Challenges of current 4D Printing Design Tools
	What You See Is Not What You Get
	Unlimited Design Space
	Design Workflow
	Simulation Tools
	Hypothesis and Goal
	Outline
	2. Related Work
	Material-Driven Design Paradigms
	Machine Learning for Simulation
	Computational Fluid Dynamics
	Finite Element Analysis
	Euler Methods
	Functional Simulation in Design
	3. Methods
	Overview
	Material System
	Transformation Mechanism
	Fabrication, Toolpathing, and Design
	Triggering
	Hierarchical Composition
	SimuLearn
	Concept
	Technical Pipeline
	Apparatus
	Pipeline Implementation
	FEA Modeling
	Discretization
	Boundary Conditions
	Material Property
	35
	36
	37
	37
	39
	41
	41
	42
	42
	44
	45
	46
	46
	47
	47
	47
	48
	48
	49
	50
	51
	52
	54
	56
	56
	57
	58
	59
	60
	60
	60
	61
	61
	62
	63
	64
	65
	65
	67
	68
	68
	68
	69
	Solver Setting
	Data Processing
	Data Generation
	Representation and Feature Extraction
	Feature Reduction
	Spatial Symmetry
	Machine Learning
	Graphical Network Blocks
	Double GN
	Training Method
	Design Tool
	Architecture
	Module Details
	Composer
	Inspector
	Simulator
	Slicer
	4. Results
	FEA Model
	Dataset
	SimuLearn Performance
	User Workflow
	Design Space
	Neck Support
	Bottle handle
	Modular Structure
	5. Limitation and Future Work
	Data, Data, and Data
	Parameters and Variances
	Dataset for Design Tasks
	Generalizing the ML-FEA Technique
	Current FEA Model Limitations
	Applicable Patterns and Materials
	Graphical Representation Extension
	Large Continuum Simulation
	Design Tool Reliability
	Differentiable Simulation
	6. Discussions
	Design Decisions
	Biases as Design Decisions
	Rationalizing Simulator Developments
	Data-Driven Simulation
	Concurrent Learning
	Beyond Mechanical Simulations
	69
	70
	70
	70
	71
	73
	75
	76
	79
	Ecosystems
	Manufacturing Ecosystems
	SimuLearn Ecosystems
	Augmentative Design Agents
	7. Conclusions
	Contributions
	References
	List of Figures
	Motivating a Material-Driven CAD Practice
	Challenges of Current 4D Printing Design Tools
	What You See Is Not What You Get
	Unlimited Design Space
	Design Workflow
	Simulation Tools
	Hypothesis and Goal
	Outline
	Material-Driven Design Paradigms
	Machine Learning for Simulation
	Computational Fluid Dynamics
	Finite Element Analysis
	Euler Methods
	Functional Simulation in Design
	Overview
	Material System
	Hierarchical Composition
	SimuLearn
	Apparatus
	Pipeline Implementation
	FEA Modeling
	Data Processing
	Machine Learning
	Design Tool
	Architecture
	Module Details
	FEA Model
	Dataset
	SimuLearn Performance
	User Workflow
	Design Space
	Data, Data, and Data
	Generalizing the ML-FEA Technique
	Design Tool Reliability
	Differentiable Simulation
	Design Decisions
	Data-Driven Simulation
	Ecosystems
	Augmentative Design Agents
	Contribution

