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Abstract

Sensory and motor computations require tens of thousands of highly stochastic neurons in

a cortical circuit to meaningfully coordinate their firing activity for a common goal. The trial-

to-trial variability structure of neuronal population activity characterizes the coordinated neu-

ral dynamics underlying computation. Unsurprisingly, the dimension of the variability shared

across neurons in one cortical population is generally orders of magnitude smaller than the

number of neurons involved in a task. But how does this shared neuronal variability map across

multiple cortical areas involved in the same computation?

In this thesis, I study the propagation of low dimensional shared variance across cortical

regions as a means to understand the dynamics of multi-area brain computation. I first present

a statistical model of movement encoding in human primary motor cortex that uncovers a one-

dimensional trajectory of latent activity differentially modulated during movements in which

the subject received somatosensory feedback. I then present new evidence that the dimension

of shared variability increases from V4 to PFC during distributed processing of visual stimuli. I

develop a multi-layer spiking network model with tuning-structured connectivity that, through

non-linear recurrent dynamics, replicates the dimensionality expansion observed in vivo. Finally,

I show evidence that my model’s non-linear recurrent dynamics can be interpreted as time-

sharing between multiple states of low-dimension, linear dynamics inherited from the upstream

brain area. Together, these results aid our understanding of the subspaces of neuronal activity

that are relevant across multiple brain areas during sensory and motor behaviors.
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1. Introduction

The mammalian brain consists of approximately 100 billion neurons [1] that communicate

through the emission of timed action potentials, or spikes [2]. Patterns of spiking activity across

neuronal populations give rise to the brain’s ability to compute [3, 4, 5]. Contemporary systems

neuroscience has thus been in a “technological arms race” [6] to simultaneously record single

unit electrical activity from as many neurons as possible [7, 8, 9]. Calcium imaging techniques

can record electrical activity from O(104) neurons (often of genetically-specified cell type) by

measuring the fluorescence of proteins that bind to calcium ion channels [10, 11]. The re-

sulting fluorescence signal represents a slower timescale convolution of the spiking activity of

individual neurons. Multi-electrode arrays (MEAs) can record single unit activity from O(102)

neurons, with the advantage that voltage traces are captured at the temporal resolution of sin-

gle action potentials [12, 13, 14]. Systems neuroscience datasets, such as the two modeled in

this thesis, increasingly consist of multiple, simultaneous MEA recordings. Datasets with simul-

taneous recordings from multiple regions of cortex are of particular interest, as they aid our

understanding of neuronal communication both within and across cortical areas.

As advances in recording technologies continue to increase the scale of neural datasets, the

focus of systems neuroscience has largely shifted from the study of individual neuron receptive

field properties to the study of neuronal population dynamics – the temporal evolution of firing

responses across entire neural ensembles [15]. Complex firing patterns across a neural ensem-

ble can be summarized by the covariance structure of population spiking activity [16, 17, 18].

The covariance of a neural ensemble typically has latent structure of significantly lower dimen-

sionality than the number of neurons in the ensemble, a signature of the ensemble’s coordinated

effort to perform a common computation [19, 20, 21, 8, 22, 23, 24]. The structure and dimen-

sionality of spike count co-variability thus provides critical insight into the neural code [25, 26].
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Chapter 1. Introduction

This thesis examines multi-area brain computation through the lens of neuronal co-variability.

The introductory chapter that follows begins by defining neuronal variability and co-variability.

I then provide an overview of statistical models and dimensionality reduction techniques that

have been successfully used to characterize the latent structure of neuronal co-variability. Fi-

nally, I review the different physiological mechanisms that give rise to neuronal co-variability,

distinguishable through network model studies of spiking neurons. I draw particular atten-

tion to the distinction between mechanisms in which co-variability is inherited from upstream

neuronal populations and mechanisms by which co-variability is generated through recurrent

network interactions. These distinctions are crucial to understand how neuronal co-variability

propagates and transforms across the multiple recorded brain areas of our cortical circuits mod-

eled in Chapters 2 and 3.

1.1 Definitions of spiking co-variability

Neural activity varies as a function of incoming sensory information. Two neurons that have

similar receptive field properties, or functional tuning, are likely to respond to repeated presen-

tations of a stimulus with similar spiking activity. I will refer to spiking co-variability arising from

similarities in stimulus tuning as signal correlations. The pairwise signal correlation between the

spiking activity of neuron i and neuron j can be defined as

ρsignal(i, j, T ) =
∑

s∈Stimuli

∑

t∈Trials

Cov(NT
i (s, t), NT

j (s, t))
√

Var(NT
i (s, t))Var(NT

i (s, t))
, (1.1)

where NT
i (s, t) is the spike count of neuron i over window length T [27].

The work in this thesis is focussed primarily on a different subset of spiking co-variability that

is independent of changes to the measured environmental stimuli. Neurons exhibit irregular

spiking responses to repeated presentations of the same stimulus, a phenomenon often referred

to as trial-to-trial variability. Much of this trial-to-trial variability is private to each neuron

and reflects individual cellular processes such as ion channel fluctuations and stochastic vesicle

release [28, 29, 30]. A small fraction of trial-to-trial variability, however, is shared amongst cells

in a cortical circuit and represents common fluctuations underlying the spiking responses of

multiple neurons. These common fluctuations are due to unobserved sources of co-modulation,

2



1.2. Characterizing low-dimensional shared variability

which may arise from cognitive processes such as arousal [31], attention [32, 33], learning [34,

35], working memory [36, 37], and other internal states, or may simply encompass modulations

in network activity due to any unobserved common inputs [38, 39]. I will refer to this type of

trial-to-trial co-variability as shared variability. The pairwise spike count correlation between

neuron i and neuron j owing to shared variability can be defined as

ρ(i, j, s, T ) =
∑

t∈Trials

Cov(NT
i (s, t), NT

j (s, t))
√

Var(NT
i (s, t))Var(NT

i (s, t))
. (1.2)

Here, NT
i (s, t) represents either neuron i’s residual spike count in an evoked state, after sub-

traction of its mean response to a stimulus, or neuron i’s spike count in a spontaneous state of

activity.

Correlations defined by (1.2) are sometimes referred to as “noise correlations”. For brevity,

this thesis more often adopts the standard of calling them simply correlations. The use of a

modifier is reserved for discussions about signal correlations.

1.2 Characterizing low-dimensional shared variability

The full pairwise correlation matrix for a population of N neurons has N(N + 1)/2−N unique

entries, each defined by (1.2). However, analysis of neural data recorded in vivo consistently

shows that population spiking activity exists in a subspace of significantly lower dimensionality

[19, 20, 21, 8, 22, 23, 24]. The following portions this Introduction describe dimensionality

reduction and statistical techniques that can be used to characterize the latent, low-dimensional

structure of correlations. In addition, I will highlight example systems neuroscience studies in

which the application of these techniques provided novel insight about neural computation.

1.2.1 Dimensionality reduction of neural data

Dimensionality reduction techniques reduce the population spiking activity from N neurons to

a set of K << N latent dimensions that still capture a majority of the population’s shared vari-

ability. Most linear dimensionality reduction techniques are instances of a larger class of Linear

Gaussian Models [40, 41]. I give more thorough treatment to this relationship in Appendix A.

3



Chapter 1. Introduction

Here, I will present a simple definition of a Linear Gaussian Model for i.i.d. observed data,

defined by

~x = ~w ~w ∼ N (0, Q)

~y = C~x+ ~ε ~ε ∼ N (0, R).

(1.3)

In neuroscience applications, ~y is an observed population vector of activity from N neurons, ~x is

a K-dimensional latent subspace that summarizes population activity, C is the matrix of model

parameters that determine how the neural data is projected into the subspace, and ~ε is a matrix

of observation noise.

Principal component analysis (PCA), perhaps the most widely used dimensionality reduction

technique, corresponds to a model of form (1.3) with the additional constraint R = limε→0~ε I.

In other words, PCA assumes all observed trial-to-trial co-variability of neural activity is due to

shared variability. It lacks a model of observational noise, and by extension, a model of private

trial-to-trial neuronal variability. It can then be shown that in PCA, the latent space ~x corre-

sponds exactly to an eigendecomposition of ~y, the observed trial-to-trial co-variability. Factor

analysis (FA), another commonly used dimensionality reduction technique in neuroscience, cor-

responds to a model of form (1.3) with the much looser constraint R = diag(R). This constraint

represents the assumption that observation noise is un-correlated and due exclusively to private

sources of trial-to-trial neuronal variability. Appendix A provides a detailed overview of Factor

Analysis, which is used extensively in Chapter 3 of this thesis.

Some dimensional reduction techniques leverage the observation that spike trains are time-

series data and neuronal firing activity is likely to evolve smoothly over time. The objective

of this subclass of temporal dimensionality reduction techniques is to uncover latent dynamics

[21]; specifically, these techniques assume trajectories of spiking activity in the K-dimensional

latent subspace are signatures of an underlying dynamical structure controlling the tempo-

ral evolution of the network response. Dimensionality reduction techniques of this general

form that have commonly been applied to neural data include Gaussian Process Factor Analysis

(GPFA) [42] – in which the dynamics model of the latent space is stationary, but neural trajecto-

ries in the latent space are constrained to be smooth over time – and the family of Latent Linear

Dynamical Systems (LDS) techniques, in which ~x from (1.3) has dynamics according to the full

4



1.2. Characterizing low-dimensional shared variability

Linear Gaussian Model definition presented in Appendix A’s Equation (A.1). Temporal dimen-

sionality reduction techniques like Switching Linear Dynamical Systems (SLDS) [43] and Latent

Non-linear Dynamical Systems (NLDS) [44] expand upon this work by allowing the latent state

to evolve with more flexible, non-linear dynamics. SLDS decomposes data into multiple states

of latent linear dynamics. NLDS changes the form of the actual dynamics model to contain

non-linear, recurrent terms.

1.2.2 Generalized Linear Model frameworks for capturing shared neuronal vari-

ability

Generalized Linear Models (GLMs) are an alternative, regression-based approach to capturing

the structure of population spiking activity [45, 46]. GLMs flexibly extend the ordinary linear

regression framework by allowing the response variable to take any distribution in the exponen-

tial family. A link function relates the linear predictor to the response variable. (Ordinary linear

regression corresponds to a special case of the GLM in which the response variable is normally

distributed, and the link function is simply the identity function.) Neuronal firing activity is

commonly modeled with a GLM in which the response variable has a Poisson distribution, cap-

turing the observation that spiking activity recorded in vivo has approximately equal mean and

variance. The simplest GLM of sensory encoding posits that a neuron i’s spiking activity yi(t)

follows a Poisson distribution whose conditional intensity λi(t) is a linear function of measured

stimuli features:

λi(t) = (yi(t) | θ)

= f


βi0 +

∑

j∈Stim Feat

βijSj(t)


 (1.4)

where βi0 is a constant bias capturing the magnitude of the neuron’s baseline firing response,

βji captures the neuron’s receptive field properties for stimulus feature Sj , and f is the inverse

of the link function. For a Poisson GLM, the canonical link function is the log of the response

variable, and f(u) = eu is the inverse link function.

Multiple regression techniques can be used to simultaneously fit the spiking activity of many

5



Chapter 1. Introduction

neurons according to the GLM in Equation (1.4). However, the resulting model of popula-

tion spiking activity only characterizes signal correlations as defined in Equation (1.1). In the

vocabulary of the Machine Learning community, encoding models like (1.4) constitute a super-

vised learning problem – the variability of the population spiking response is attributed entirely

to known signals (the measured stimulus features). Shared neuronal variability as defined in

Equation (1.2) is the portion of neuronal co-variability that we attribute to co-fluctuations in

population activity from unobserved sources. Models involving latent (unobserved) covariates

are labeled unsupervised learning problems. All dimensionality reduction techniques described

in the previous section are thus unsupervised learning techniques. The GLM framework can be

extended to include a mixture of signal covariates and latent covariates, simultaneously fitting

a supervised learning model of stimulus encoding and an unsupervised learning model that

captures shared variability as defined in Equation (1.2).

A Poisson GLM of neuron i’s spiking activity that includes latent covariates may take the

general form:

λi(t) = f


βi0 +

∑

j∈Stim Feat

βijSj(t) +
∑

k∈Latents

CikXk(t)


 , (1.5)

where coefficient Cik relates neuron i’s conditional spiking activity λi(t) to the kth dimension of

the population latent spaceX(t) and all other terms are consistent with Equation (1.4). Note the

similarities in form between the latent covariate portion of the GLM model in Equation (1.5)

and the Gaussian Linear Model generalizations of linear dimensionality reduction techniques

defined in Equation (1.3). Neuro-statisticians have fit GLMs of the general form (1.5) with

various implementations and interpretations of the latent space X(t). In Rabinowitz et al. [23],

Xk was a constant value per stimulus presentation that reflected the “shared gain” of visual

neurons in hemisphere k. In Kulkarni & Paninski [39], the latent space X(t) had only K = 1

latent dimension, but that univariate latent was a temporally evolving process (modeled as a

Gauss-Markov autoregressive process) that represented unobserved common inputs. Models in

which the latent spaceX evolves with temporal dynamics are known as state-space models. They

have been applied generously to neural data [47, 48, 49, 50, 51], as summarized in a review

from Paninski et al. [52].

I would now like to draw attention to the immense similarities between the GLM variety

6



1.2. Characterizing low-dimensional shared variability

of state-space models discussed in the previous paragraph and temporal dimensionality reduc-

tion techniques. Both techniques adopt a Bayesian approach in which a generative probabilistic

model links a state-evolving K-dimensional latent subspace to the N -dimensional population

spiking activity, where K << N [52]. The posterior distribution of each latent variable k ∈ K

is then recovered from the observed spike train data, as a function of the probabilistic model

parameters, using a computational inference procedure [53]. In neuroscience literature, the

nomenclature “state-space model” has most commonly been applied to regression approaches

in which neural activity is modeled as a function of both observed stimulus features and a

temporally evolving latent space. This remains true despite the observation that temporal di-

mensionality reduction techniques of the LDS form technically qualify as state-space models,

even when they do not fit data to any observed covariates. A key distinction between the GLM

approach to state-space models, described by Equation 1.5, and temporal dimensionality re-

duction techniques with linear dynamics, is the non-linearity and linearity, respectively, of the

resulting models – the GLM approach singularly results in a non-linear mapping of the original

spiking data because of its link function.

1.2.3 Low-dimensional shared variability in the brain

Several systems neuroscience studies have uncovered low-dimensional structure in the shared

variability of neuronal population spiking activity. I will highlight a handful of these studies in

which the results provided tantalizing scientific insight about the structure of neural computa-

tion. First, let us examine a collection of studies that used simple, rank-1 models to characterize

the shared variability of activity in primary visual cortex (V1). Lin et al. [22] found that pair-

wise correlations in V1 were well-predicted by a population-wide model of shared variability;

any heterogeneity in trial-to-trial responses across the population resulted only from each neu-

ron’s multiplicative or additive gain onto a global factor. More importantly, this global factor

constrained the population’s encoding of visual information. Relatedly, Schölvinck et al. [54]

found that the majority of neuronal trial-to-trial variability in V1 could be explained with a

global factor modeled as the sum of trial-to-trial variances over all recorded neurons. This

global factor modulated with the presentation of different visual stimuli. In yet another anal-

ogous study, Okun et al. [55] found that the pairwise spike count correlations of V1 neurons

in both mouse and monkey could be well-approximated merely by quantifying each neuron’s
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degree of coupling to the population firing rate. Population couplings subsequently predicted

the tunedness of a neuron’s response to sensory stimuli versus behavioral states such as motor

intention. Population coupling was even well-correlated with a neuron’s in-degree of synaptic

connectivity. Together, this collection of studies links low-dimensional shared variability struc-

ture in V1 to observations about network anatomy and visual computation.

GLM methods of capturing latent shared variability (Section 1.2.2) have been used to im-

prove the accuracy of stimulus encoding and decoding [46]. Vidne et al. [56] applied Kulkarni

& Paninski [39]’s GLM model of (unobserved) common inputs to data from retinal ganglion

cells (RGCs). The common input GLM successfully captured the spatiotemporal correlation

structure in the spike trains of large populations of RGCs. The GLM simultaneously fit terms

representing direct coupling between RGCs. In the absence of the univariate latent term for

common input, the direct coupling strengths predicted by the model were significantly greater

than the strength of synaptic connections measured in vivo; the addition of the latent term for

common input produced biologically plausible coupling strengths. State-space GLMs have also

been applied to brain-machine interfaces to improve the accuracy of decoded motor commands

[57]. Finally, Rabinowitz et al. [23] used a GLM with latent shared gain terms to capture the

effects of attentional modulation on a V4 neural population. Similar to the studies mentioned

in the previous paragraph [22, 54, 55] only one latent gain modulator per V4 hemisphere was

required to capture a significant fraction of variability in the population spiking activity, and the

magnitude of the latent waxed and waned in the attended versus unattended state, respectively.

The field of systems neuroscience has employed dimensionality reduction techniques ex-

tensively and fruitfully to identify “neural manifolds” of sensory and motor coding [19, 21].

However, as noted in a recent review by Williamson et al. [58], dimensionality reduction tech-

niques have, to date, most frequently been applied to either trial-averaged neural activity or

single-trial neural responses to a stimulus presentation. This thesis is more interested in the

burgeoning use of dimensionality reduction techniques for the identification of latent structure

in the shared trial-to-trial variability of neural responses. Williamson et al. [59] used factor

analysis (FA) to characterize the dimension of shared variability generated by Litwin-Kumar &

Doiron [60]’s clustered spiking network model in the spontaneous state. Recently, Cowley et al.

[61] used dimensionality reduction techniques to characterize drift in the shared variability of

V4 and PFC activity. Huang et al. [24] used FA to uncover rank-1 shared variability in V4 and
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1.3. Circuit mechanisms of shared variability

then developed a mechanistic spiking network model of internally-generated, low-dimensional

shared-variability that was capable of producing similar FA results. This last study is an exciting

example of how dimensionality reduction techniques applied to trial-to-trial neural responses

can motivate and constrain neural circuit models.

1.3 Circuit mechanisms of shared variability

Dimensionality reduction techniques can identify the prominent latent modes of activity under-

lying shared neuronal variability, and GLMs can build expressions of neuronal spiking activity

that account for these latent fluctuations and their contribution to neural encoding/decoding al-

gorithms. However, neither of these statistical approaches supplies a mechanistic understanding

of how correlations arise or propagate through the pairwise connectivity of individual neurons.

Interpretable models of correlation transfer through neural circuits require us to consider the

biophysical dynamics of individual neurons and the resultant dynamics of their interactions. In

this section, I will first review the dynamics of spiking networks with random recurrent coupling

obeying a balance between excitation and inhibition. Balanced networks generate trial-to-trial

variability, but are incapable of generating shared variability. I then summarize circuit mecha-

nisms by which shared variability is inherited from external neural populations and modulated

by private sources of neuronal variability or the transfer functions of individual neurons. These

mechanisms of variability propagation are reviewed in Doiron et al. [16]. Finally, I will tease

circuit mechanisms in which shared variability is shaped by recurrent interactions, a topic that

will be further dissected in Chapter 3 of this thesis.

1.3.1 Balanced networks for internally generated variability

van Vreeswijk & Sompolinsky [62, 63] introduced a balanced network theory in which neuronal

variability is internally generated through the random, recurrent coupling of excitatory (E) and

inhibitory (I) neurons. In the original formulation of the model, the spiking activity of neuron

i is reduced to a binary state variable si, which thresholds the linear combination of its inputs:

si(t) = H


µ+

N∑

j=1

Jαβij sj(t)− θ


 . (1.6)

9



Chapter 1. Introduction

Here, H(·) is the Heaviside step function, µ is a constant bias to each neuron, sj(t) is the spiking

input from neuron j, Jij is the synaptic strength of connection from neuron j in population β

to neuron i in population α, where {α, β} ∈ {E, I}, and θ is each neuron’s threshold. Each

neuron receives inputs from an average of K = pN other neurons, where p is the probability of

connection.

Balanced networks achieve spike count variability by scaling synaptic strengths according

to Jαβ ∝ O(1/
√
K). If we denote the mean of the presynaptic input from population α to

population β as Iαβ, the variance of Iαβ is Var(Iαβ) ∝ K(1/
√
K)2 = O(1). However, this choice

of scaling also implies that the mean synaptic input from each population β to α grows with

network size according to 〈Iαβ〉 ∝ K(1/
√
K) =

√
K. To avoid mass excitation under their

chosen scaling law, van Vreeswijk & Sompolinsky [62] introduced the balance condition, in

which the mean synaptic inputs to each cell-type population exactly cancel. Assuming that the

constant bias to each neuron also scales with K such that µ = µ̄
√
K, the mean synaptic inputs

to the E and I populations are, respectively,

〈IE〉 =
√
K
(
µ̄E + J̄EE〈sE〉 − J̄EI〈sI〉

)
(1.7)

〈II〉 =
√
K
(
µ̄I + J̄IE〈sE〉 − J̄II〈sI〉

)
. (1.8)

Equations 1.7 and 1.8 will diverge with K unless they satisfy

0 =µ̄E + J̄EE〈sE〉 − J̄EI〈sI〉 (1.9)

0 =µ̄I + J̄IE〈sE〉 − J̄II〈sI〉. (1.10)

This leads to the following solutions for 〈sE〉 and 〈sI〉:

〈sE〉 =
µ̄E J̄II − µ̄I J̄EI

J̄EI J̄IE − J̄II J̄EE (1.11)

〈sI〉 =
µ̄E J̄IE − µ̄I J̄EE
J̄EI J̄IE − J̄II J̄EE . (1.12)

Without loss of generality, we can rescale all network weights such that JEE = JIE = 1 and

only connections from I cells affect our solution. Positive values of 〈sE〉 and 〈sI〉 are then only
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satisfied through one of the following two conditions:

J̄EI > J̄II ,
µ̄E

µ̄I
>
J̄EI

J̄II
(1.13)

J̄EI < J̄II ,
µ̄E

µ̄I
<
J̄EI

J̄II
. (1.14)

The second condition allows 〈IE〉 =
√
K
(
µ̄E − J̄EI µ̄I

J̄II

)
→ −∞ when 〈sE〉 = 0 and can thus be

rejected. A balanced network solution therefore uniquely exists for the conditions of Equation

1.13.

These balance conditions can similarly be applied to networks of leaky-integrate-and-fire

(LIF) model neurons. Figure 1.1 shows the raster of excitatory activity from a balanced network

containing 4000 E and 1000 I LIF model neurons. We note that the balance condition produces

an asynchronous state in which neural activity has near-zero shared variance. van Vreeswijk &

Sompolinsky [62, 63] formally derived the asynchronous population dynamics of the balance

condition under the assumption that network connectivity was sparse. That is, they assumed

neuronal connection probabilities were very low such that K << N and subsequently, that

pairs of neurons had few common inputs. However, many noted that the balance condition

(1.13) produced network activity in the asynchronous state even when networks were densely

connected. Indeed, connection probabilities in our pictured network are pEE = 0.2, pIE =

pIE = pII = 0.5, but population activity is still asynchronous.

Renart et al. [64] solved this puzzle when they demonstrated that shared E and I fluctu-

ations cancel in densely connected balanced networks, producing net zero shared fluctuations

and asynchronous activity. Let us define each subpopulation β ∈ {E, I} ’s input current to

neuron i of population α as

Iαβi =
∑

j

Jαβij s
β
j . (1.15)

The total input current to population α is

Iα = µα + IαE + IαI . (1.16)

The shared variance between a pair of neurons i and j from population α is then

Cov(Iαi , I
α
j ) = Cov(IαEi , IαEj ) + Cov(IαIi , IαIj ) + 2Cov(IαEi , IαIj ). (1.17)
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Figure 1.1: Asynchrony in balanced networks with dense connectivity (a) Spike times of NE =
4000 neurons in a balanced network simulated over 2 seconds. The network contains NE =
1000 neurons, and connection probabilities were pEE = 0.2, pIE = pIE = pII = 0.5. Spiking
activity is asynchronous despite dense connectivity. (b) The total input currents received by
pairs of excitatory neurons are, on average, uncorrelated (black), despite the fact that neuron
pairs receive correlated input fluctuations from E neurons (red) and I neurons (blue). These
positive input current correlations are cancelled by the anti-correlations between the E and
I currents that pairs receive (purple). Pairwise correlations were computed for a sample of

nE = nI = 200 neurons from the larger network.

When IαEi and IαIj are anti-correlated, terms on the right hand side of the above equation can

cancel, making the total shared variance of our neuron pair zero. Figure 1.1b illustrates this

phenomenon. Methods Section 3.3.10 of Chapter 3 sketches the formal derivation of a self-

consistent solution, in which the asynchronous state, defined by O(1/N) shared variance, relies

on the dynamic cancellation of subpopulation current fluctuations.

1.3.2 Shared variability inherited from upstream neuronal populations

What circuit mechanisms are capable of producing network activity with shared variability, since

it cannot be achieved with classic E/I balance? To answer this question, we adopt the mecha-

nistic framework of correlation transfer reviewed by Doiron et al. [16] and apply this framework

to a pair of simultaneously recorded neurons. The neurons are themselves uncoupled, but can

be correlated through the input each receives from an upstream neuronal population. We de-

fine the afferent inputs received by neuron i as xi(t) for i = 1 or 2 of our studied pair. The
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covariance of the activity across the two afferent populations is

Cov(x̂1, x̂2),

where x̂i characterizes the integrated synaptic inputs to neuron i over time window T :

x̂1 =

∫ T

0
xi(t)dt.

When Cov(x̂1, x̂2) 6= 0, the presynaptic inputs are correlated. When these input correlations

are small, the shared variance of our studied pair of output neurons can be approximated as a

linear function of the input covariance,

Cov(y1, y2) ≈ G2Cov(x̂1, x̂2), (1.18)

where yi is the spiking activity of neuron i over time window T and Gi = G is the gain of the

target neuron. This gain represents the neuron’s sensitivity to its inputs at the operational point

of our approximation and is often referred to in statistical mechanics literature as the neuron’s

linear response. Equation (1.18) results from the assumption that the spiking activity of neuron

i is a linear combination of its baseline activity and perturbations from weak common input

fluctuations s(t) such that

〈yi〉 ≈ 〈yi0〉+Gŝ, (1.19)

where 〈.〉 denotes an expectation over trials, 〈yi0〉 is the mean spike count of neuron i at our

operational point s = 0 and

ŝ =

∫ T

0
s(t)dt

represents the synaptic integration of the input fluctuations. Notably, Equation (1.18) can be

used to measure state-dependent changes in shared variability structure, as modulations in net-

work state will change the operating point of (1.18), and subsequently, alter the linear response

G of our studied pair of neurons. See Appendix B for a more in-depth treatment of the assump-

tions of linear response theory, which will be used in Chapter 3.

The total integrated input to each neuron, x̂i(t), is comprised of both a presynaptic com-

ponent that we define as Pi, owing to the upstream neuronal population, and a postsynaptic
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component, owing to the receiving neuron’s cellular sources of variability such as stochastic

vesicle release. We assume that the postsynaptic component of the integrated input is uncorre-

lated between neuron 1 and neuron 2. Correlations inherited from the presynaptic component

of the integrated input, occurring when Cov(P1, P2) 6= 0, can result from two sources. The first

is common afferent projections, in which neuron 1 and neuron 2 receive direct synaptic input

from the same neuron or neurons in the upstream neuronal population. The second mecha-

nism of presynaptic input correlations owes to spike count correlations between the activity

of the upstream neuronal ensembles projecting to neuron 1 and neuron 2. Notably, each of

these presynaptic mechanisms can induce input correlations without the other. This implies,

through Equation (1.18), that in a feed-forward network, shared variability between neuron 1

and neuron 2 can be inherited through common projections from an upstream neuronal pop-

ulation with asynchronous activity, disjoint projections from an upstream neuronal population

with correlated activity, or common projections from an upstream neuronal population with

correlated activity. These three circuit conditions capable of inducing presynaptic correlation

will be indistinguishable from the vantage point of the postsynaptic neuron pair.

In a biological neural circuit, it is likely that total presynaptic activity is due to both excitatory

E and inhibitory I upstream inputs, and the presynaptic shared variance is

Cov(P1, P2) = Cov(Ê1, Ê2) + Cov(Î1, Î2) + Cov(Î1, Ê2) + Cov(Ê1, Î2). (1.20)

Doiron et al. [16] demonstrate that cell-type specific changes in drive to the upstream popu-

lation can then have non-monotonic effects on the shared variance of neuron 1 and neuron 2.

The network model we will develop in Chapter 3 uses a simpler upstream population structure

in order to focus on the propagation of inherited variability; our input population consists only

of excitatory cells, making the presynaptic shared variance

Cov(P1, P2) = Cov(Ê1, Ê2). (1.21)

We modulate the strength of presynaptic shared variability (1.21) by way of modulating the

strength of spike count correlations in the upstream ensemble activity, and we observe the

result on the shared variability of neuron pairs in the output population (1.18). In a network

without recurrent coupling, increasing (1.21) will monotonically increase (1.18), but Chapter 3
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also studies less intuitive cases of shared variability propagation owing to recurrent interactions.

We introduce recurrent mechanisms of shared variability in the subsection that follows.

As outlined in Doiron et al. [16], the presynaptic shared variability inherited in a feed-

forward network can be modulated by the postsynaptic noise of the receiving neurons or by

changing the neurons’ conductance-based input fluctuations. In the first modulation mecha-

nism, inherited presynaptic shared variability is diluted by increasing levels of private postsy-

naptic variability owing to cellular properties like increased stochasticity of vesicle release or

increased stochasticity of ion channel gating [28, 29, 30]. This modulation mechanism con-

stitutes a change in background synaptic fluctuations. In the second modulation mechanism,

increased variance of the presynaptic input Var(Pi) decreases the response gain G of a neuron

(1.19),(1.18),[65, 66, 67].

1.3.3 Shared variability generated and modulated through recurrent interactions

Uniform balanced recurrent coupling produces correlations that scale inversely with network

size N , resulting in near-zero correlations for networks with thousands of neurons (Figure 1.1).

Networks with more structured recurrent coupling are capable of generating non-zero noise

correlations; clustered [60, 68] and spatially-dependent [69, 70, 71, 72] recurrent coupling

profiles can internally generate localized pockets of positive correlations between proximal pairs

of neurons. Recent advances in spiking network theory show that networks with spatially-

dependent coupling can even internally generate population-wide, low-rank shared variability

[24].

Whether shared variability in a multi-layer network is internally generated through recurrent

coupling or inherited through presynaptic inputs, we can study its propagation through recur-

rent interactions using an extension of the linear response framework introduced in the previous

subsection (1.18) so long as the strength of shared input fluctuations is still much smaller than

the strength of private synaptic fluctuations at our chosen operating point. When our stud-

ied output neuron pair exists in a network layer with recurrent coupling, the shared variance of

presynaptic inputs Cov(P1, P2) will arise through common fluctuations F (t) received via two cir-

cuit pathways. The first is a feedforward pathway, in which shared variance is inherited through

direct projections of upstream inputs entrained to F (t). We denote shared variance inherited
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through the feedforward pathway CovFF. The second is an indirect recurrent pathway, in which

common fluctuations F (t) are filtered through excitatory and inhibitory recurrent projections to

the studied output neuron pair. The shared variance of presynaptic inputs is a function of the

covariance owing to these two circuit pathways and their interactions such that

Cov(P1, P2) = f(CovFF,CovRec,CovFFRec), (1.22)

where CovRec is the shared variance from common recurrent input to the studied output neuron

pair and CovFFRec represents covariance resulting from the interaction of the feedforward and

recurrent circuit pathways.

1.4 Outline of this thesis

This thesis presents the work of two studies, both of which characterize the propagation of

shared variance through a multi-area cortical circuit. In Chapter 2, I study the effects of so-

matosensory inputs to the primary motor cortex (M1) of a human subject using an intracortical

brain-machine interface (BMI). I show that the somatosensory signal induces a low-rank shared

variance of M1 activity that changes the appearance of M1 tuning; when unaccounted for, this

signal disrupts the decoding performance of the BMI. I then develop an improved model of M1

encoding that accounts for latent shared variance due to sensory input. My model is a general-

ized additive model, which extends the class of GLMs discussed in Section 1.2.2 by including a

smooth, non-parametric modulator representative of common sensory fluctuations. This work

was done in collaboration with my advisor Valerie Ventura of the Carnegie Mellon University

Department of Statistics, as well as former graduate student John Downey, Dr. Jennifer L.

Collinger, Dr. Douglas J. Weber, Dr. Michael Boninger, and Dr. Robert Gaunt of the University

of Pittsburgh Rehab Neural Engineering Laboratory.

In Chapter 3, I apply dimensionality reduction techniques (Section 1.2.1) to uncover an ex-

pansion of the dimension of shared variability between visual cortex (V4) and prefrontal cortex

during a visual task. I then develop a mechanistic, spiking network model of this multi-area

circuit to better understand how PFC’s non-linear recurrent dynamics filter the low-dimensional
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shared variance inherited from multiple, tuned V4 inputs. My PFC model network is glob-

ally balanced (1.3.1) , but includes tuned assemblies that give rise to the non-linear recurrent

dynamics. This work was done in collaboration with my advisor Dr. Brent Doiron from the

University of Pittsburgh Department of Mathematics, as well as former graduate student San-

jeev Khanna from the University of Pittsburgh Department of Bioengineering and Dr. Matthew

Smith from Carnegie Mellon University’s Department of Biomedical Engineering.

17





2. Proprioceptive feedback modulates motor

cortical tuning during human brain-machine

interface control

2.1 Abstract

Loss of proprioception is known to severely impair motor control, but the neural mechanisms by

which proprioception aids in the planning and execution of visually guided movements are not

well understood. We investigated the impact of providing proprioceptive feedback to a human

subject with tetraplegia and intact sensation who was implanted with two 100-channel micro-

electrode arrays in primary motor cortex (M1). BMI-assisted reach performance was highly

dependent on the feedback sources provided during decoder training; if a decoder was trained

with vision alone, adding proprioceptive feedback during a reach task degraded reach perfor-

mance. The inability to mismatch decoder and task feedback conditions arises from a shift in

M1 velocity tuning between the visual (V) and visual+proprioceptive (VP) feedback conditions.

The VP condition was also marked by decreased modulation depth and increased variability of

M1 velocity tuning, which resulted in degraded BMI-assisted reach performance. Because we do

not believe that proprioception fundamentally degrades motor control in healthy individuals,

we propose that M1 encodes proprioceptive information with dynamics unknown to our BMI

decoder. We show evidence that M1 activity in the VP condition is better modeled with the

inclusion of a smooth, time-dependent, modulator that is shared amongst the neural popula-

tion. Our encoding model that includes this modulator improves M1 tuning the most when the

subject receives somatosensory feedback, suggesting the modulator captures shared variability

from somatosensory inputs to M1. Together, our results suggest that new decoders will need to
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be developed for closed-loop BMIs that make efficient use of natural or surrogate somatosensory

information.

2.2 Introduction

Complex limb movements like reaching and grasping are closed-loop motor programs that inte-

grate feedback from multiple sensory modalities [73, 74]. A person attempting to grasp a cup

must first visually locate the cup, plan a movement trajectory to the target [75], and issue that

motor command through a pattern of motor cortex (M1) activity [76]. The motor command

is read out by the spinal cord and executed by muscle motor neurons [73]. As the reach pro-

gresses, the person receives both visual and proprioceptive feedback to guide the movement

and correct for perturbations [77]. Accordingly, motor control degrades significantly in human

subjects with afferent pathway damage that results in the loss of proprioceptive information

[78, 79, 80]. Recent studies have confirmed that somatosensory cortex (S1) communicates di-

rectly to M1 via monosynaptic projections that are capable of driving motor behavior [81, 82].

Brain machine interfaces (BMIs) restore motor function in patients with spinal cord injuries

and damaged efferent pathways by transforming M1 activity to a control signal for a cursor

or robotic arm [83]. Despite the known importance of proprioceptive information for upper

extremity control, most current BMI implementations rely exclusively on visual feedback [84].

We had the rare opportunity to investigate the differential effects of providing proprioceptive

feedback to a human subject during her BMI control. The subject, who has tetraplegia but intact

sensation, used a BMI in which an exoskeleton moved her own arm congruently with a virtual

arm or robotic arm. She thus received proprioceptive information from her muscle and tendon

stretch receptors [85] and tactile information from the interaction between her arm and the

exoskeleton [86].

Unlike the results of a previous study on proprioceptive feedback during non-human primate

BMI control [87], our subject’s performance of a BMI-assisted reaching task degraded when we

allowed a decoder trained only with visual feedback to leverage the subject’s proprioceptive

signals. More generally, the feedback sources provided during decoder training and online BMI

control could not be mismatched without a degradation of reach performance. This behavioral
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observation suggested that proprioception altered the decoder’s known mapping between neu-

ral activity and kinematics. Analysis of neural activity confirmed that additive proprioceptive

feedback shifted the velocity tuning curves of recorded M1 channels. Proprioceptive feedback

also caused a decrease in the modulation depth of M1 velocity tuning curves, making neu-

ral activity non-exchangeable between reaches guided with somatosensory feedback and those

guided with vision alone.

Contrary to the intuition that additive somatosensory feedback could only aid BMI perfor-

mance, our subject’s BMI assisted reach control degraded with online proprioceptive feedback,

even when the decoder was trained using proprioception. The neural signature of this behav-

ioral effect was reduced signal to noise ratio of M1 velocity tuning during trials when the patient

had somatosensory feedback. This manifested as (1) a decrease in the modulation depth of ve-

locity tuning curves, (2) an increase in the trial-to-trial variability of velocity tuning curves, and

(3) an increase in the noise correlations of M1 activity.

Because we do not believe that proprioceptive information fundamentally degrades motor

control in healthy individuals, we propose that M1 encodes proprioceptive information in ways

incongruous with the simple endpoint velocity tuning leveraged by current BMI decoders. Af-

ter the effects of velocity tuning were removed, neural activity in the proprioceptive feedback

condition contained gain fluctuations that were coordinated across broad subpopulations of

recorded M1 channels. The coordinated fluctuation of neural activity that we observed in the

proprioceptive feedback condition is consistent with observations that M1 may integrate infor-

mation from large regions of S1 [88]. Moreover, several recent studies have uncovered low-rank

co-fluctuations of neural activity in cortex [55, 22, 23].

To account for co-fluctuations that might drive the M1 population when the subject had

proprioceptive feedback, we developed a novel M1 encoding model in which the spiking activity

of each recorded M1 channel is a function of channel-specific tuning for endpoint velocity and

a time-varying waveform of activity that is shared across the M1 population. The addition of

a global gain-modulating waveform improves velocity tuning in the proprioceptive feedback

condition. We therefore propose that S1 activity might be encoded as a shared wave of activity

that broadly modulates the gain of M1 neurons. BMIs seeking to make efficient use of natural

or surrogate somatosensory feedback may need to account for such shared modulators.
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2.3 Methods

The experimental methods that follow will be described in more detail in a forthcoming publi-

cation by Gaunt et al.

2.3.1 Study participant and regulations

The subject was a 52 year old woman with a diagnosis of spinocerebellar degeneration with-

out cerebellar involvement, manifesting as complete tetraplegia with generally intact afferent

innervation. While the subject did have some mild sensory deficits and hypersensitivity, clinical

testing confirmed that her proprioception was robust enough to give her appropriate feedback.

The subject provided informed consent verbally for study participation, with documents

signed by her legal proxy. The study was carried out under approval from the Institutional

Review Boards of the University of Pittsburgh, and the Space and Naval Warfare Systems Center

Pacific. Implanted devices were granted Investigational Device Exemption by the US Food and

Drug Administration. The trial is registered on clinicaltrials.gov under identifier NCT01364480.

2.3.2 Behavioral tasks

The subject was trained to control either an adjacent, free-standing prosthetic arm (modular

prosthetic limb [MPL], Johns Hopkins University, Applied Physics Laboratory, Baltimore, MD,

USA), or a virtual representation of that arm, in a two-dimensional workspace. The subject

completed two tasks that tested her BMI-assisted motor control. The first, a line-crossing (LC)

task, required the subject to move the MPL medial-laterally across parallel lines spaced 20 cm

apart as many times as possible in a 60 s period (Figure 2.1a). We used the number of line

crossings achieved in the 60 s trial to measure the extent to which the subject could effectively

control the MPL. Though the task was one-dimensional, MPL control was two-dimensional in

the coronal plane.

The second task, a 2D pursuit (2DP), required the subject to move a virtual arm to one of

five on-screen targets in the following positions of the coronal plane: center, above-center, left-

of-center, right-of-center, or below-center (Figure 2.2a). The subject received a visual signal of
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the target that was to be pursued before the movement onset cue. The subject did not have to

return to the center target after each reach.

The subject completed the two tasks described above using the typical BMI control paradigm

of exclusively visual feedback (V) and a paradigm in which she received simultaneous visual and

proprioceptive feedback (VP). In the VP paradigm, the subject’s own arm was placed in an up-

per extremity exoskeleton (Armeo Power, Hocoma, Switzerland) and moved congruently with

the MPL or virtual arm. In a small subset of initial LC task trials with VP feedback, prior to

the introduction of the exoskeleton, an experimenter manually moved the subject’s arm congru-

ently with the MPL. The number of line crossings achieved in the VP condition did not differ

significantly between trials in which the arm was moved manually and trials in which the arm

was moved with an exoskeleton. The subject was always unable to view her own moving arm

in the VP paradigm, disallowing multiple points of visual attention.

2.3.3 Electrophysiology

The subject had two 100-channel microelectorde arrays (4 x 4 mm2 footprint, 1.5 mm shank

length, Blackrock Microsystems, Salt Lake City, UT, USA) implanted into the somatotopic region

of left M1 responsible for right arm and hand control [89]. The experiments analyzed in this

study began 11 months post-implantation and continued until two years post-implantation. Sig-

nals from up to 192 microelectrodes were recorded. Each microelectrode recorded intracortical

neuron depolarization using the NeuroPort data acquisition system (Blackrock Microsystems,

Salt Lake City, UT, USA). Several parameters were saved from these depolarizations, including

threshold crossings, timing and action potential waveform snippets. Due to the low firing rates

observed in the recorded M1 activity, action potentials were not sorted to distinguish signals

generated by individual neurons. Therefore, the neural data recorded on each channel of the

array, which were used for decoding and all post-hoc analysis, may represent the activity of

multiple neurons. Threshold crossing times were collected into 30 ms time bins to create a

vector of spike counts si(t) for each of the N total recorded channels.
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2.3.4 Online decoding

Commands from motor cortex produce unique combinations of spiking activity [76]. The con-

trol scheme for a BMI thus requires a map between spiking activity and the kinematics of the

MPL or virtual arm. To train the BMI decoder, the subject observed a computer program per-

forming the 2DP task. She was visually cued to the appropriate reach target and then instructed

to imagine performing the reach while she observed the virtual arm’s movement. The spike

count si(t) of each recorded neural channel i was smoothed with a low pass filter in which the

kernel was an exponential function of 450 ms width. A square root transform was performed

on the smoothed vector to stabilize variance. Each channel’s resulting firing rate vector fi(t)

was then mapped to the virtual arm’s movement velocity according to

fi(t) = βi0 + βi1vx(t) + βi2vy(t) + εi(t) (2.1)

where vx(t) and vy(t) are vectors of the x and y velocity of the virtual arm over the reach

duration. In matrix form, this relationship is expressed as

F = V B + ε (2.2)

where F is the T ×N matrix of all channel firing rate vectors fi(t) over the total trial duration

T , V is a T x 3 column matrix defined by [~1, vx(t)>, vy(t)
>], B is the 3×N matrix of regression

coefficients [ ~β0
>

, ~β1
>
, ~β2
>

], and ε is the matrix of channel residuals ∼ N (0, σ2).

The maximum likelihood estimate of B with ridge regression regularization is:

B̂ = (V TV + λI)−1V TF (2.3)

where λ is the regularization parameter optimized to minimize the prediction risk of F and I is

a 3 × 3 identity matrix.

The mapping between firing activity and kinematics in Equation (2.2) was then inverted to

predict the subject’s reach intent during the behavioral tasks according to:

V = FW + ε (2.4)
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where the weight matrix W can be computed by taking the Moore-Penrose Pseudoinverse of B̂

in Equation (2.4). Additional details about the decoder can be found in Collinger et al. [89]

and Wang et al. [90].

We computed the mapping between velocity information and firing activity that is described

above for two different feedback paradigms during 2DP training: one paradigm in which the

subject had only visual feedback of the virtual arm (V), and one in which the subject had both

visual and proprioceptive feedback (VP), provided by the exoskeleton. This resulted in two sets

of decoder parameters, which we will refer to as WV and WV P .

2.3.5 Reach analysis

In the LC task, we evaluated the subject’s ability to control her reaching movements by three

metrics: (1) the number of line crossings she achieved in a 60 s period, (2) the mean path

length per line crossing, and (3) the variance of the reach in the anterior-posterior dimension,

which was the dimension of control orthogonal to the LC goal. In the 2DP task, we evaluated

the subject’s performance by the number of reaches that were successfully terminated at the

designated target within a 3 s period. For each task, reach trajectories were smoothed with a

Gaussian filter of width 200 ms. Kinematic observations were pooled across trials, and a two-

way ANOVA with post hoc t-tests was used to determine whether performance differed across

the feedback and decoder conditions.

2.3.6 Post-hoc tuning curve analysis

Our reach analysis suggested that the structure of the neural activity differed in the V and VP

conditions. We therefore conducted a post-hoc analysis of M1 tuning, to compare M1 activity

structure in the V and VP conditions. Previous studies have demonstrated that the preferred

velocity directions of M1 neurons shift with prolonged BMI decoder in ways that optimize the

movement readout of the decoder [91, 92, 93]. We wanted to study the natural structure of

M1 activity in the V and VP feedback conditions, without the conflating influence of optimized

decoder readout. We therefore focussed our analysis of M1 activity on the neural data recorded

during the 2DP decoder training, when the subject imagined movement rather than affecting it

with the neuroprosthetic.
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The majority of recorded channels had very low, sub-5 Hz firing rates and Fano Factors

of approximately 1. We therefore chose to re-analyze neural data using each channel’s un-

smoothed vector of spike counts si(t). We fit new tuning curves, or mappings between each

channel’s spiking activity and the velocity of the virtual arm, according to the following Poisson

regression:

log(si(t)) = βi0 + βi1vx(t) + βi2vy(t) + εi(t) (2.5)

where vx(t) and vy(t) are the x and y coordinates of the velocity vector v(t) standardized by its

Euclidean norm. Equation (2.5) can be restated as Equation (2.6), the cosine form of tuning

commonly used to describe the velocity preferences of M1 neurons [76]:

log(si(t)) = αi0 + αi1 cos(θ(t)− θiPD) + εi(t) (2.6)

where θ is the angle formed by the velocity vector [vx, vy] and θiPD is the preferred direction

of channel i. Channels for which the velocity tuning curve in Equation 2.6 did not explain

significantly more variance than the spike count mean were excluded from all analyses that

follow (Chi-squared test, p < 0.05 with Bonferroni correction).

The modulation depth of a tuning curve measures the strength of a channel’s preference

for θiPD over other velocity directions. Modulation depth was calculated as the difference

between the channel’s maximum and minimum fitted spike count standardized by the channel’s

maximum fitted spike count, and therefore always takes a unitless value between 0 and 1.

Variability about fitted curves, or model dispersion, was estimated using the ratio between the

residual deviance and the residual degrees of freedom of the model.

Correlations in the noise of the neural population describe the co-activity of channels once

the effect of velocity tuning has been removed. Noise correlations were computed using the

N x N pairwise correlation matrix Σ of each channel’s tuning curve residual vector, εi(t). Re-

latedly, the mood of the M1 population–which characterizes population-wide co-fluctuations of

noise over time–was calculated by averaging residual vectors εi(t) across all N channels. We

characterized the degree to which a channel’s non-velocity-tuned activity was coupled to the

population mood by computing the Pearson correlation between the channel’s residuals εi(t)

and the mood function.
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2.3.7 A new, shared gain model of M1 tuning

Our post-hoc analysis of tuning curves revealed large co-fluctuations of noise in the VP condi-

tion. We therefore developed a novel model of M1 tuning in which we appended a time-varying

signal that was shared amongst the neural population to the tuning model in Equation (2.5).

The resulting tuning structure is described by the generalized additive model [94] below,

log(si(t)) = βi0 + βi1vx(t) + βi2vy(t) + γ(t) + εi(t) (2.7)

where γ(t) is a single smooth function of time that is shared by all channels. Note that though

γ(t) is the same for every channel, the degree of coupling that each channel i has to the shared

waveformform is allowed to vary through the intercept value βi0. Also note that due to the log

link function used in Poisson regression, γ(t) modulates the gain of a channel’s velocity tuning.

Equation (2.7) requires that all N channels be fit simultaneously. Our model design matrix

H ∈ RTN×(KN+1) has the form

H =




τ1 V1 0 . . . 0

τ2 0 V2
. . .

...
...

...
. . . . . . 0

τN 0 . . . 0 VN



, (2.8)

where Vi ∈ RT×K is the matrix of K kinematic covariates to which each channel i is fit inde-

pendently:

Vi = V = [~1, vx(t)>, vy(t)
>], (2.9)

and τi ∈ RT×1 is a vector of time indices to which our shared function γ(t) is simultaneously fit

across each channel i:

τi = τ = [1, 2, ..T ]>. (2.10)

Because we did not have prior knowledge about the form of the shared gain waveform, we

sought a smooth, flexible, and non-parametric transformation of the shared time index vector.

We chose to model the gain waveform as a 1st degree local linear regression on the time index

vector, corresponding to a kernel smoother in which each kernel is fitted with a weighted least
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squares linear regression between spiking activity and time index. Briefly, the general form

of a local linear linear estimator r̂(x) of response variable Y with standard, Gaussian error

distribution is

r̂(x) =
∑

i

`i(x)Yi

`(x)> = e>1 (X>x WxXx)−1X>x Wx

Xx =




1 x1 − x0

1 x2 − x0

...
...

1 xn − x0




e1 = (1, 0, ..., 0)>

Wx = wi(x0)I (2.11)

Our regression model is for a response variable with Poisson distributed error and requires a

link function. See Fan et al. [95] for a generalized linear model treatment of local polynomial

regression.

We used cross validation to select the kernel width of the smoother for each training session

dataset independently. The kernel width selected by cross validation was always a physically

interpretable number of time steps less than T , the duration of all reaches in the training session,

despite that the total length of the time index column of H was TN . We fit the full model

described by Equation (2.7) with the open source gam package in the scientific computing

language R. The gam package fits generalized additive models using the backfitting algorithm

[94], in which the partial residuals of each of the additive model terms are fit iteratively until

the residual sum of squares of the full model satisfies the convergence criterion.

We evaluated the fit of the shared gain tuning model using the deviance, a scaled version

of the log-likelihood ratio of two nested models. The total deviance of the shared gain model,

which is equivalent to adjusted R2, expresses the log-likelihood ratio between the shared gain

model fit and a null model fit, where the null model is the mean spike count of a channel. We

can also calculate the proportion of deviance explained by the added gain term γ(t). This is

equivalent to computing the log-likelihood ratio between the Equation (2.7) and Equation (2.5)
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model fits.

2.4 Results

2.4.1 M1 tuning changes in the presence of proprioceptive feedback

The subject first completed the 2DP decoder training with V and VP feedback, resulting in

two sets of decoding parameters, WV and WV P . Each set of decoding parameters was used

to perform the LC task, and the subject received either V or VP online feedback on a given

trial (Figure 2.1a). This protocol allowed us to test the effect of mismatching decoder training

protocol and task feedback condition. For example, the subject could perform the LC task with

online VP feedback, even if the WV decoder was being used to drive the movement of the MPL.

The subject’s LC task performance degraded when we mismatched the decoder training

protocol and the online task feedback. When using the WV decoder, she completed significantly

more line crossings in the V than the VP condition (p < 0.05), with an average of 27.9 ±3.57

and 22.5 ±3.37 line crossings (mean ± 1 SE, across all recording sessions) for the V and VP

feedback conditions, respectively (Figure 2.1b). When using the WV P decoder, she completed

more line crossings in the VP (26.8 ±3.01) than the V (24.3 ±4.08) condition, though this effect

was not significant, (mean ± 1 SE, across all recording sessions).

The quality of the subject’s reaches during the LC task also degraded visibly when we mis-

matched the decoder training protocol and the online task feedback (Figure 2.1c-d). When the

subject used the WV decoder, the mean reach path length per line crossing was significantly

smaller (p < 0.01) in the V (0.52 ±0.009 m) than the VP (0.69 ±0.045 m) condition (mean ±

1 SE, across all recording sessions). When the subject used the WV P decoder, the mean reach

path length per line crossing was significantly smaller (p < 0.05) in the VP (0.62±0.019 m) than

the V (0.67 ±0.024 m) condition (mean ± 1 SE, across all recording sessions). The subject’s

decreased ability to control the reach when decoder training protocol and the online task feed-

back were mismatched was even more obvious when we analyzed the variance of her reaches

in the task irrelevant dimension. Though the line crossing task was essentially one-dimensional,

the subject had two-dimensional control of the MPL in the coronal plane. Optimal task perfor-

mance would show negligible reach variability in the superior/inferior dimension, which was
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Figure 1: BMI-assisted Line Crossing Task. (A) Overhead view of single-trial reach
trajectories in the BMI-assisted line-crossing task using the decoder training with
vision alone (WV ) or vision+proprioception (WV P ) decoder. Online reach feedback
was visual (V) or visual and proprioceptive (VP). (B) Mean number of line-crossings
achieved in a 60 s period, pooled across four days of trials containing 5 runs each.
Error bars represent 95% CIs. (C) Mean path length per line crossing, pooled across
the same 4 days. Error bars represent 95% CIs. (D) Mean variance of reach in the
task irrelevant dimension, pooled across the same four days. Error bars represent 95%
CIs.

Figure 2.1: BMI-assisted 1D reaches suffer from proprioceptive feedback (a) Overhead view of
single-trial reach trajectories in the BMI-assisted line-crossing task using the decoder training
with vision alone (WV ) or vision+proprioception (WV P ) decoder. Online reach feedback was
visual (V) or visual and proprioceptive (VP). (b) Mean number of line-crossings achieved in a
60 s period, pooled across four days of trials containing 5 runs each. Error bars represent 95%
CIs. (c) Mean path length per line crossing, pooled across the same 4 days. Error bars represent
95% CIs. (d) Mean variance of reach in the task irrelevant dimension, pooled across the same

four days. Error bars represent 95% CIs.

orthogonal to the LC goal. Variance in the task irrelevant dimension was significantly smaller

(p < 0.01) in the V (0.0026 ±0.00045 m2) than the VP (0.015 ±0.0018 m2) condition when the

subject used the WV decoder (mean ± 1 SE, across all recording sessions). Similarly, variance

in the task irrelevant dimension was significantly smaller (p < 0.05) in the VP (0.0118 ±0.0011

m2) than the V (0.0129 ±0.0016 m2) condition when the subject used the WV P decoder (mean

± 1 SE, across all recording sessions).

The subject then completed the 2DP task (Figure 2.2a) with same 2 × 2 experimental block

design that tested the interaction effects between decoder parameters and online task feedback
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Figure 2: BMI-assisted 2D Pursuit task. (A) Schematic of the 2D pursuit task. The
black box represents the virtual arm, the circles represent the 5 possible targets, and
the green circle represents the target the subject was cued to pursue. Examples of 2
consecutive reaches are shown. (B) Average proportion of targets at which the subject
successfully terminated a reach within a 3 s period during a single iteration of the 2D
pursuit task, which contained approximately 30 reaches. Results are pooled across 5
iterations of the task in each condition. Error bars represent 95% CIs.
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Figure 2: BMI-assisted 2D Pursuit task. (A) Schematic of the 2D pursuit task. The
black box represents the virtual arm, the circles represent the 5 possible targets, and
the green circle represents the target the subject was cued to pursue. Examples of 2
consecutive reaches are shown. (B) Average proportion of targets at which the subject
successfully terminated a reach within a 3 s period during a single iteration of the 2D
pursuit task, which contained approximately 30 reaches. Results are pooled across 5
iterations of the task in each condition. Error bars represent 95% CIs.

Figure 2.2: BMI-assisted 2D reaches suffer from mismatched feedback conditions (a) Schematic
of the 2D pursuit task. The black box represents the virtual arm, the circles represent the
5 possible targets, and the green circle represents the target the subject was cued to pursue.
Examples of 2 consecutive reaches are shown. (b) Average proportion of targets at which the
subject successfully terminated a reach within a 3 s period during a single iteration of the 2D
pursuit task, which contained approximately 30 reaches. Results are pooled across 5 iterations

of the task in each condition. Error bars represent 95% CIs.

conditions. We quantified proficiency in the 2DP task by the fraction of times the subject success-

fully terminated a reach at the correct target within a 3 s period. As in the LC task, performance

degraded significantly (p < 0.01) when we mismatched the decoder training protocol and the

online task feedback (Figure 2.2b).

The subject’s motor performance when using the WV and WV P decoders was not exchange-

able, suggesting that the structure of M1 activity changed between the V and VP conditions.

BMI decoders rely on a mapping between reach velocity and M1 activity, and failure of a BMI

decoder necessitates that the mapping is no longer valid. We therefore sought to understand the

difference between the map from kinematics to M1 activity in the V and VP conditions. Visual-

izations of channel firing rates as a function of velocity direction for the LC task revealed stable

velocity tuning curves over multiple trials within a feedback condition, but not across feedback

conditions (Figure 2.3a).

Tuning curves from the LC or 2DP tasks, when the subject affected movement with the BMI,

might be a conflation of M1’s natural tuning structure and a tuning structure M1 has learned to

optimize the output a specific decoder [91, 92, 93]. We wished to investigate the natural state
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Figure 3: (A) Firing rate as a function of velocity direction for 2 example M1
channels. Each curve represents one repetition of the line-crossing task, and four
repetitions of the task are shown. Curves are stable within reach feedback type,
but not across feedback types. Left: An example channel for which VP decreases
modulation depth of velocity tuning. Right: An example channel for which there is
a stable shift in ✓iPD between feedback conditions. (B) Preferred velocity directions
✓iPD of each channel i in the V and VP on the paired day. (C) Radial histogram of
the shift in ✓iPD between the V and VP conditions on the paired day, corresponding
to Fig 4B.
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Figure 3: (A) Firing rate as a function of velocity direction for 2 example M1
channels. Each curve represents one repetition of the line-crossing task, and four
repetitions of the task are shown. Curves are stable within reach feedback type,
but not across feedback types. Left: An example channel for which VP decreases
modulation depth of velocity tuning. Right: An example channel for which there is
a stable shift in ✓iPD between feedback conditions. (B) Preferred velocity directions
✓iPD of each channel i in the V and VP on the paired day. (C) Radial histogram of
the shift in ✓iPD between the V and VP conditions on the paired day, corresponding
to Fig 4B.

Figure 2.3: Shifts in preferred direction. (a) Firing rate as a function of velocity direction for 2
example M1 channels. Each curve represents one repetition of the line-crossing task, and four
repetitions of the task are shown. Curves are stable within reach feedback type, but not across
feedback types. Left: An example channel for which VP decreases modulation depth of velocity
tuning. Right: An example channel for which there is a stable shift in θiPD between feedback
conditions. (c) Distribution of the shift in preferred direction, ∆θiPD, between the V and VP

conditions on the matched day.

of M1 velocity tuning in the V and VP conditions, not those potentially imposed by the WV or

WV P decoder. To do this, we re-fit velocity tuning curves to the M1 activity recorded during

WV and WV P training sessions, when the subject merely imagined movement. Our experiments

were not designed with the purpose of detecting a shift in M1 velocity tuning between feedback

conditions. This unexpected finding was only uncovered once we completed a more detailed

analysis of the neural data, which was after the date when we were required to explant the

subject’s microelectrode arrays. Our data therefore contains only one session in which WV

and WV P training was completed on the same day. This is the only day for which we can be

reasonably certain that the activity of a channel i will reflect the activity of the same neuron or

group of neurons for both the V and VP conditions. On this day, which we will henceforth refer
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Figure 4: M1 responses have diminished velocity tuning in the VP condition.(A)
Modulation depth of velocity tuning curves for each channel i on the paired day,
compared across the V and VP conditions. Channels have larger modulation depth
in the V condition. (B) Modulation depth of all analyzed channels in the V and VP
conditions, pooled across four training sessions per condition. (C) The dispersion,
or variability, about each channel i’s fitted velocity tuning curve on the paired day,
compared across the V and VP conditions. Velocity tuning is more variable in the
VP condition. (D) Tuning curve dispersion of all analyzed channels in the V and VP
conditions, pooled across the four training sessions per condition.

Figure 2.4: M1 responses have diminished velocity tuning in the VP condition. (a) Modulation
depth of velocity tuning curves for each channel i on the paired day, compared across the V
and VP conditions. Channels have larger modulation depth in the V condition. (b) Modulation
depth of all analyzed channels in the V and VP conditions, pooled across four training sessions
per condition. (c) The dispersion, or variability, about each channel i’s fitted velocity tuning
curve on the paired day, compared across the V and VP conditions. Velocity tuning is more
variable in the VP condition. (d) Tuning curve dispersion of all analyzed channels in the V and

VP conditions, pooled across the four training sessions per condition.

to as the paired day, there were roughly 60 tuned channels in the WV and WV P conditions,

and 37 channels that were tuned in both conditions. Of these 37 channels,59.4± 9% (mean ± 1

SE, bootstrap) of channels exhibited ≥ 45◦ changes in the preferred velocity direction θPD (Eq.

(2.5)) between the V and VP conditions (Figure 2.3b). The VP condition was also associated

with a decrease in the modulation depth of the fitted velocity tuning curve. On the paired day,

37.8 ± 6% (mean ± SE, bootstrap) of channels exhibited ≥ 20% decrease in modulation depth

in the VP condition (Figure 2.4a).
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2.4.2 Proprioceptive input results in shallower and more variable velocity tuning

curves

One would intuitively think that additional sources of sensory feedback could only improve

BMI performance. Contrary to that intuition, the quality of the subject’s reaches in the LC task

degraded strikingly in the VP condition even when the subject used the WV P decoder. Reach

variance in the task irrelevant dimension was significantly larger (p < 0.001) in the condition

where VP feedback was provided to a WV P decoder than the condition when V feedback was

provided to a WV decoder (Figure 2.1d). The mean path length per line crossing was also

significantly greater (p < 0.001) in the condition where VP feedback was provided to a WV P

decoder than the condition when V feedback was provided to a WV decoder (Figure 2.1c).

The behavioral result explained above cannot be accounted for by a shift in velocity tuning

between the V and VP conditions, because we removed the effect of mismatched decoders.

Instead, the behavior indicates that M1 activity must be less tuned to endpoint velocity in the

VP condition (without accounting for latent sources of shared variability). We fit neural data

from WV and WV P with velocity tuning models described by Equation 2.5 and calculated the

dispersion of those tuning models, a measure of the spike count variability about the fitted

tuning curve. Though both V and VP tuning curves had sub-Poisson variability (dispersion <

1), dispersion was larger in the VP than the V condition. This was true to significant effect for

the paired day training sessions (Figure 2.4c), for which we could directly compare the V and

VP tuning curves of a channel i with confidence that the same neurons were being recorded

in the two feedback conditions. VP tuning curves had greater dispersion on average when

channel statistics were pooled across all four training sessions of each feedback type, but this

effect was not significant (Figure 2.4d). As discussed previously, the modulation depth of tuning

curves was also smaller in the VP condition than the V condition. Tuning curves were therefore

broader (i.e., more overlapping) and more variable in the VP condition, which would result in

more variable BMI output for a given reach intention.

Finally, we observed that neural data in the VP condition contained co-fluctuations of ac-

tivity that were not tuned to velocity and that were shared by large subpopulations of chan-

nels. Correlations in noise–the neural activity once the mean effects of the velocity tuning were

removed–were greater in the VP than the V condition on the paired day, when there is high
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Figure 2.5: Low-dimensional shared variability in the VP condition (a) Pairwise noise correla-
tions for paired day channels in the V (upper) and VP (lower) conditions. Channels are ordered
according to their array locations, the black solid lines delineate the two electrode arrays. Array
2 consists of channels 21 through 38. (b) Distribution of noise correlations on Array 2. (c)
Distribution of the correlation between the residuals of each channel on the paired day and
the mood of the population, or the average residual activity as a function of time across chan-
nels. Channels are more correlated with the mood in the VP condition, indicating that noise

fluctuations in the VP condition are shared by many channels.

probability that the same neurons were being recorded in feedback conditions (Figure C.1a-b).

An anatomical mapping of noise correlations revealed that large, proximally-located subpopula-

tions of channels on the microelectrode arrays co-fluctuated about their individual tuning curves

in the VP condition. The VP condition was specifically marked by a significant increase in noise

correlations on Array 2 of our MEAs (Figure C.1b, p = 1.5 × 10−19, two-sided Wilcoxon signed

rank test). We characterized the mood of the neural population–the global, un-tuned activity

as a function of time–using the average of the activity of the all N analyzed neurons after the

spiking activity due to velocity tuning was removed. We then measured the correlation between

each channel’s residuals and the mood. Individual channels had greater correlation with the

mood in the VP condition (Figure C.1c), indicating that there were global co-fluctuations in the

noise in the VP condition.
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2.4.3 A shared gain model of somatosensory feedback in M1

Our neural data analysis in Sections 2.4.1 and 2.4.2 revealed spiking co-variability in the VP

condition that could not be explained by Equation 2.5, in which the spiking activity of each

channel i was conditioned exclusively on its private velocity tuning. We developed a new model

of M1 activity that quantifies global gain fluctuations in the VP condition. In the new model, the

spiking activity of each channel i is conditioned on its private velocity tuning and a waveform

of activity shared by every channel (Equation 2.7). The global waveform modulates the gain

of each channel’s private velocity tuning curve; the degree of that modulation is controlled by

a term that represents the channel’s coupling strength to the global activity. Examples of γ(t)

are shown in Figure 2.6. We were struck by the observation that γ(t) seemed to fluctuate at

time scales relevant to the duration of one imagined reach, despite the fact that we placed no

constraint on our modulator’s timescale (in our regression format, the temporal neighborhood

of smoothing).

Moreover, when we compared the form of γ(t) across reach epochs, we found that its latent,

1D dynamics were remarkably stereotyped across repeated reach trajectories (Figure 2.6b).

Many potential factors could give rise to shared variability with stereotyped dynamics; propri-

oceptive information is one such factor that would be strongly correlated with reach type, as

different subsets of muscle and tendon receptors are activated for reaches across body space.

We are cautious of making bold claims about this observation, especially because we have very

few repeated reaches for a given recording session. The form of γ(t) fluctuations is probably

not comparable across days, over which period it is unlikely that we are fitting our regression

models to the same neural population across. Even if we were observing the same neurons over

multiple recording sessions, we would likely need to account for population-wide slow drifts

in neural activity to align γ(t) over days [61, 96]. But slow drifts would share scaling with

our formulation of γ(t), making the two difficult to disambiguate. We hope future studies with

more repeated reaching trials and statistical power might examine the latent dynamics of trial-

to-trial variability in M1 to see if they have stereotyped form related to somatosensory feedback.

Many studies have found evidence of latent manifolds that constrain M1’s tuned activity during

movement control [19, 97, 98], but few have isolated and examined the population structure

of residual activity [58].
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Figure 2.6: Latent shared gain trajectories γ(t) in M1 trial-to-trial activity (a) Example of a
shared gain signal γ(t), fitted using the shared gain model in Equation 7. The entire time-
course of γ(t) across all 30 reaches is shown, where reach epochs are delineated with vertical
lines. The confidence band represents a 95% CI. The regression is fitted with a log-link func-
tion, so negative values of γ(t) are interpreted as gain depression. (b) Shared gain signal γ(t)
segmented by reach type. Confidence bands represent 95% CIs. On a single plot, reaches of
the same type are shown in the same color. The type of reach is indicated by the corresponding
target diagram in the upper lefthand corner of the plot. γ(t) traces are aligned using reach
proportion (x axis), which the fraction of the reach completed, where the completion of a reach

across two targets in either the x or y direction has a value of 1.

The addition of a shared gain term improved model fits dramatically for both the V and

VP condition. Figure 2.7 shows the adjusted R2 of the entire tuned population for the cosine

tuning model (Equation 2.5) and the shared gain model (Equation 2.7) in both the V and VP

conditions. The shared gain term explains 54.9% and 33.9% more spiking variability on average

in the V and VP conditions, respectively, where averages were computed across training sessions

with the same feedback conditions. However, variability in results across training sessions were

large, especially in the V condition.
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Figure 7: The shared gain model improves tuning di↵erentially in the VP condition.
(A) Adjusted R2 of the full population model (containing all N channels) for the V and
VP conditions and the Cosine Tuning and Shared Gain models. Each point represents
one analyzed training session, and there were four training sessions of each feedback
condition. The paired day results are indicated with a *. The shared gain model assists
tuning in both the V and VP conditions, the paired day shows more improvement for
the VP than the V condition. (B) The proportion of deviance explained by �(t) for
each channel i in the V and VP condition. Single channel values may be negative
because all channels in the Shared Gain model are fit simultaneously (and the result
will be the best fit for the entirety of the population). More deviance is explained
by �(t) in the VP condition. (C) The improvement in the modulation depth of
each channel i’s velocity tuning after the addition of �(t), on the paired day. More
channels show greater modulation depth improvement with the addition of �(t) in the
VP condition. (D) Change in the amplitude (↵1, Eq. 6) of velocity tuning for each
channel i on the paired day with the addition of �(t). Channels show larger amplitude
shifts in the VP condition, and therefore �(t) has greater e↵ect.

Figure 2.7: The shared gain model improves M1 tuning differentially in the VP condition. (a)
Adjusted R2 of the full population model (containing all N channels) for the V and VP con-
ditions and the Cosine Tuning and Shared Gain models. Each point represents one analyzed
training session, and there were four training sessions of each feedback condition. The paired
day results are indicated with a *. Though the shared gain model assists tuning in both the V
and VP conditions, the paired day shows more improvement for the VP than the V condition.
(b) The proportion of deviance explained by γ(t) for each channel i in the V and VP condition.
Single channel values may be negative because all channels in the Shared Gain model are fit
simultaneously (and the result will be the best fit for the entirety of the population). More de-
viance is explained by γ(t) in the VP condition. (c) The improvement in the modulation depth
of each channel i’s velocity tuning after the addition of γ(t), on the paired day. More channels
show greater modulation depth improvement with the addition of γ(t) in the VP condition. (d)
Change in the amplitude (α1, Eq. (2.6)) of velocity tuning for each channel i on the paired
day with the addition of γ(t). Channels show larger amplitude shifts in the VP condition, and

therefore γ(t) has greater effect.
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We can also calculated the proportion of deviance explained explicitly by the shared gain

term γ(t) for each of the i fitted channels in a training session. On the paired day, the shared

gain term explained a larger proportion of deviance in the VP condition than the V condition for

59.5% of channels (Figure 2.7b), indicating that γ(t) aids the mapping between kinematics and

spiking activity more in the VP than the V condition. Similarly, γ(t) caused a differential increase

in the modulation depth of channel tuning curves in the VP condition in 64.8% of channels

(Figure 2.7c). This effect arises because the inclusion of a γ(t) waveform causes much larger

shifts in VP tuning curve parameters than V tuning curve parameters. With the addition of γ(t),

channels on the paired day showed larger standardized changes in the amplitude of their cosine

velocity tuning curves (αi1, Equation 2.6) in the VP condition than the V condition (Figure

2.7d). Together, these results suggest that global co-fluctuations of the neural population in the

VP condition mask channels’ private velocity tuning; once we condition spiking responses on a

shared gain waveform γ(t) in the VP condition, channels are more sharply tuned to endpoint

velocity.

2.5 Discussion

We had the first known opportunity to study the neural differences between feedforward and

closed-loop, somatosensory-assisted motor control in a human subject with a motor-specific neu-

ropathy. We found that BMI-assisted motor control significantly degraded when there was a mis-

match in the sensory feedback sources provided during decoder training and online BMI reach-

ing performance. The change in motor behavior between the visual (V) and visual+proprioceptive

(VP) conditions was marked neurally by significant shifts in the preferred directions, gains, and

variability of M1 velocity tuning curves.

Our results are at odds with those of a previous study from Suminski et al. [87], which found

that online proprioceptive feedback improved BMI-assisted reaching behavior in non-human

primates even when the BMI decoder was trained with vision alone. The result from Suminski

et al. [87] would require that M1 velocity tuning remain stable in the presence/absence of

proprioceptive feedback, and that proprioception simply improve the signal-to-noise ratio of

stable velocity tuning curves. Other studies have demonstrated instabilities in M1 tuning during
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sensory adaptation [99] and motor learning [100], lending credence to our conclusion that the

mapping from kinematics to spiking activity shifts in the presence of proprioception.

There are several notable differences between our experiment and that published by Sum-

inski et al. [87], which could account for the contrasting results. First, the neural data in their

study was automatically sorted by the voltage waveform of the recorded spikes to ensure that

tuning models were fit to the activity of single neurons. We chose not to spike sort the ac-

tivity of our recorded channels, in part due to research demonstrating that BMIs have trivial

reductions in performance when channel activity is merely thresholded rather than sorted, and

successful spike sorting requires large quantities of data collected at high sampling rates [101].

We also observed that very few channels of our recorded data had supra-threshold single-unit

activity; spike sorting activity for single units would therefore remove much of the information

we recorded from the M1 population. It is therefore possible that the shift in tuning that we

observed in the VP condition could be do to the activation of different subsets of cells recorded

by a single electrode, and not to a shift in the velocity preference of single neuron. However,

this explanation would be much more likely if we observed preferred direction shifts on only a

few channels; instead, we observed shifts ≥ 45 degrees on the majority of recorded channels.

The non-human primate subjects in the Suminski et al. [87] study also had years of experience

using visually-trained BMI decoders of the form used in the experiment. We consider it more

likely that the M1 activity of the non-human primates had adapted to optimize that decoder out-

put [91, 92, 93]; this adaptation may have masked natural representations of somatosensory

information.

More unexpectedly, we found that proprioception degraded reaching performance even

when subject used a decoder trained with proprioceptive feedback. This is an unintuitive re-

sult given several proposed neural models of Bayesian multisensory integration, which posit

that sensory state estimation is achieved through a linear combination of the sensory feedback

sources, with weights that are inversely proportional to the variance of the feedback source

[102, 103]. In this framework, state estimation can only be as bad as the most variable sensory

cue. One would therefore think that motor responses to simultaneous visual and proprioceptive

feedback would be at least as reliable as motor responses to visual feedback alone. However,

the behavioral consequence of sensory cue integration is dependent on the read-out of the cir-

cuit. Circuits native to or downstream of M1 may be able to effectively integrate visual and
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somatosensory information such that additive proprioceptive feedback decreases the variability

of motor output. Moreover, these read-out circuits may in fact be linearly summing basis pat-

terns of activity encoded by visual and somatosensory feedback, but the basis patterns may not

be of the tuning forms recognized by our current BMI decoder implementations.

Our results showed that a gain-modulating waveform of activity, which was shared across

the M1 population, masked the effects of velocity tuning on spiking variability, particularly when

M1 received somatosensory feedback. Our findings come amidst a series of recent publications

that have discovered low-rank neural activity in several sensory regions of cortex [55, 22, 23].

These large network co-fluctuations have been shown to dominate and mask local circuit effects

when their presence is not accounted for [72]. Though the co-fluctuations of activity uncovered

by all of these studies are not due to the effects of the stimulus presented during the experi-

ment, the mass coordination of the activity suggests that it is an effect of the circuit that shapes

computation and not simply “noise”.

Though the source or circuit mechanism of the gain-modulating signal in our model remains

uncertain, there are reasons to believe the shared gain term could represent communication

from S1 to M1. First, the shared gain model aids the tuning of neural data in the VP condition

more than the V condition. Additionally, sensorimotor circuit research has shown evidence

that M1 neurons most responsive to sensory information are intermingled with motor-tuned

neurons [104]. Furthermore, despite the fact that the S1 tonotopy is roughly preserved in S1

to M1 projections [105, 106], S1 tonotopic projections terminate in overlapping regions of M1,

and wide M1 neuron dendritic activity results in single M1 neurons integrating information

from broad somatotopic regions of S1 [88]. Finally, previous studies has found evidence of

traveling waves of correlated fluctuations between sensory and motor areas, which would not

be dissimilar in form from our modeling choice of γ(t) [107]. We do not rule out the possibility

that the shared gain term in our model represents converging somatosensory input as well as

other sources of network co-variability [96]. This could explain why a shared gain signal still

aided M1 tuning in the V condition.

In its current form, our shared gain model of M1 tuning presents a few challenges for transla-

tion to clinical BMI work. Though it is straightforward to invert our tuning model and create an

Optimal Linear Estimator (OLE) [108] that predicts velocity kinematics from the neural data,
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doing so requires us to have advanced knowledge of the form of the shared gain signal over

time. In other words, a decoder trained with one set of neural data might not have a shard

gain signal that was generalizable to a new set of neural data encountered during online de-

coding. This challenge might be overcome if the single-trial activity of the shared gain signal

has predictable dynamics, as suggested by our results in Figure 2.6. Additionally, the shared

gain signal may be partially co-linear with velocity kinematics, meaning that neural data would

contain less information about velocity once the effects of the shared gain were subtracted in

the decoding process. Though just as others have espoused the benefits of using BMI as a tool

for basic science research [109, 110], we view this study primarily as a rare opportunity to gain

insight into human sensorimotor coding. Clinical BMI decoders that utilize somatosensory feed-

back will progress as we continue to gain a better understanding of the communication between

S1 and M1.
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3. Assembly structure expands the dimension of

shared variability in cortical networks

3.1 Abstract

Cortical circuits often receive multiple inputs from upstream populations with non-overlapping

stimulus tuning preferences. Both the feedforward and recurrent architectures of the receiving

cortical layer will reflect this diverse input tuning. We study how population-wide neuronal

variability propagates through a hierarchical cortical network receiving multiple, independent,

tuned inputs. We present new analysis of in vivo neural data from the primate visual sys-

tem showing that the number of latent variables (dimension) needed to describe population

shared variability is smaller in V4 populations compared to those of its downstream visual area

PFC. We successfully reproduce this dimensionality expansion from our V4 to PFC neural data

using a multi-layer spiking network with structured, feedforward projections and recurrent as-

semblies of multiple, tuned neuron populations. We show that tuning-structured connectivity

generates attractor dynamics within the recurrent PFC current, where attractor competition is

reflected in the high dimensional shared variabilty across the population. Indeed, restricting

the dimensionality analysis to activity from one attractor state recovers the low-dimensional

structure inherited from each of our tuned inputs. Our model thus introduces a framework

where high-dimensional cortical variability is understood as “time-sharing” between distinct

low-dimensional, tuning-specific circuit dynamics.

43



Chapter 3. Assembly structure expands the dimension of shared variability in cortical networks

3.2 Introduction

Contemporary recording technologies have enabled us to simultaneously monitor the single

unit activities of large populations of neurons within and across cortical areas [7]. Neuroscien-

tists have since sought to understand the patterns of activity across many neurons in a cortical

circuit, as this provides insight into the population dynamics underlying sensory and motor

computations. The trial-to-trial fluctuations of neural responses are one important measure of

neural population dynamics that help characterize and differentiate private sources of neural

variability from shared fluctuations in activity due to common afferent projections or recurrent

network architectures [16, 17].

Network models offer a means to control the wiring rules governing network architecture

and then observe the resulting structure and propagation of trial-to-trial variability in model

neuron responses. As such, these models are a tool uniquely suited for the difficult challenge of

relating network connectivity to network dynamics. Early spiking network models commonly

employed uniform, random recurrent connections with balanced excitation and inhibition to

internally generate the large variability observed in single neuron responses in vivo [111, 63,

112]. However, balanced network models with uniform connectivity produce asynchronous

spiking dynamics with mean zero co-variability between the trial-to-trial responses of pairs of

neurons [64]. These classical balanced models are thus inadequate to describe several datasets

in which neurons have positive noise correlations, or shared variability [113, 114, 115, 54,

22]. More recent recurrent network models have used non-uniform connectivity to produce

neural activity with positive, structured noise correlations. Recurrent networks with spatially-

dependent coupling profiles can produce spatially-dependent noise correlations [71, 72, 116,

117]. Other wiring architectures that give rise to structured shared variability include local

connectivity motifs [118, 119, 120, 121, 122], coupling described by connectivity matrices of

constrained form [123, 124], and assembly structures [60].

A handful of studies have explicitly investigated how non-uniform recurrent connectivity

architectures determine the dimension of shared variability. Huang et al. [24] internally gen-

erated low-dimensional shared variability in spiking networks with slow inhibitory kinetics and

spatially-dependent coupling profiles. Recanatesi et al. [125] demonstrated that the rank of
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shared variance in recurrent networks depends on the local connectivity motifs, like chains

and loops, that make up the network’s full architecture. Mastrogiuseppe & Ostojic [123] were

able to predict the minimum rank of a connectivity matrix required to implement a computa-

tion of specified complexity. Williamson et al. [59] discovered that the dimension of a spik-

ing network’s shared variance scaled linearly with the number of excitatory cell assemblies in

Litwin-Kumar & Doiron [60]’s clustered spiking network framework. All of the above models

provide mechanisms by which shared variability of determinate rank is internally generated

through recurrent network interactions in one layer of a cortical circuit. However, this class

of “internally-generated variability” models does not consider variability inherited from outside

sources. Conversely, there are models that accurately capture the structure of neural data with

low-dimensional shared variance by assuming that structure is inherited from fluctuations in

an external brain area [16, 126, 127, 128, 129]. This class of “externally-inherited variability”

models has historically not considered how recurrent network interactions might affect the rank

of inherited co-variability.

Our study’s central goal is to create a unifying theory of how structured recurrent connectiv-

ity can transform the dimension of the shared variability inherited from external brain regions.

We are motivated by our finding that the dimension of shared variance expands between mul-

tiple, simultaneously recorded regions of a visual circuit. We first present novel data analysis

of neural activity recorded in vivo showing that the dimension of shared variance in prefrontal

cortex (PFC) is significantly greater than that of upstream visual area V4. We note that the sig-

nificant dimensionality expansion between V4 and PFC activity either precludes linear dynamics

in PFC or necessitates that PFC receives many additional, unobserved cortical inputs. While it

is well known that PFC receives information from several sensory cortices to implement inte-

grative brain functions [130, 131, 132, 133], we believe that appealing to unobserved data in

order to explain our PFC activity “punts” the responsibility of developing a mechanistic theory

of the cortical region’s dynamics. We instead choose to develop a parsimonious model in which

PFC can expand the dimensionality of shared variance inherited from V4 through non-linear re-

current interactions alone. We note that our parsimonious modeling choice still self-consistently

allows for additional PFC inputs not observed in this study.

Our model accounts for PFC’s laterally-tuned projections carrying visual inputs from both

hemispheres of the brain. We show that a strongly coupled, balanced recurrent network exhibits
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Chapter 3. Assembly structure expands the dimension of shared variability in cortical networks

multi-stable, non-linear dynamics when receiving disjoint projections from multiple indepen-

dent, tuned upstream neuron populations. When the activity from each of these tuned upstream

neuron populations is highly self-correlated, as is the neural activity in a single V4 hemisphere

[32, 23], each attractor state of dynamics is marked by pathological anti-correlations between

the activity of recurrent cells receiving opposing projections. Motivated by studies showing that

cortical neurons have clustered recurrent architecture reflecting tuning preferences, we investi-

gate the consequences of adding clustered excitatory (E) and inhibitory (I) connections to our

model PFC network. We find that tuning-specific recurrent assemblies of E and I cells diffuse

the pathological anti-correlations induced by lateralized input projections and temper winner-

take-all recurrent dynamics. We identify a degree of clustering at which our recurrent network

model successfully predicts the dimension of shared variance observed in our PFC neural data

recorded in vivo. Finally, we show that the high-dimensional shared variance generated by our

recurrent network model is the result of “time-sharing” between multiple states of activity, each

of which independently has low-dimensional, linear dynamics reflective of our tuned inputs.

Together, our results provide a new circuit-based model by which recurrent networks with struc-

tured connectivity can internally amplify the shared variability they inherit from upstream brain

areas. Furthermore, our results provide a framework in which the high-dimensional dynamics

commonly observed in sensory integration areas of the brain can be decomposed into multiple

states of interpretable linear dynamics representing discretely tuned neural populations.

3.3 Methods

3.3.1 Experimental methods

All neural data were collected by the students and staff of the Smith Laboratory (formerly

University of Pittsburgh Department of Opthalmology, currently Carnegie Mellon University De-

partment of Biomedical Engineering.) All procedures were approved by the University of Pitts-

burgh Institutional Animal Care and Use Committee and complied with the National Institute

of Health’s Guide for the Care and Use of Laboratory Animals.

A 96-electrode “Utah” Array (Blackrock Microsystems, Salt Lake City, UT) was implanted

in right 8Ar of the dorsolateral prefrontal cortex (PFC) of a male rhesus macaque (Mucaca
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mulatta). The PFC array was positioned on the pre-arcuate gyrus, medial to the principal sulcus

and anterior to the arcuate sulcus. A second 96-electrode Utah Array was implanted in right V4.

The implanted monkey performed a memory guided saccade (MSG) task as follows. The

monkey watched a 21” monitor with 1024x768 pixel resolution and 100 Hz refresh rate from

36 cm viewing distance. A 0.5 diameter dot appeared at the center of the screen. After fixation

was established for 200 ms, a target appeared for 50 ms at one of forty 2D screen locations,

defined by its coordinates at one of eight angular location (0◦ to 315◦ in increments of 45◦)

and one of five radial distances (5 degrees visual acuity (dva), 7.5 dva, 9.9 dva, 12.3 dva, 14.7

dva). When the target disappeared, the monkey was required to maintain fixation at the center

of the screen for 500 ms. The disappearance of the central fixation point would then signal the

monkey to make a saccade to the remembered target location. Each recording session consisted

of blocks of 40 trials, in which a random 1 of the 40 possible target locations was presented on

each trial. At least 40 blocks, or presentations of a given target condition, were collected during

a single recording session. Further details about the array implantation, task, and neural data

collection procedures can be found in Khanna et al. [134] and Cowley et al. [61].

3.3.2 Spike train statistics

Spike train statistics for both recorded neural data and the spiking network model realizations

were computed as follows. A neuron i spikes at times {ti1, ti2, ti3, . . . }. Neuron i’s spike train is

then defined as yi(t) =
∑

k δ(t − tik), where δ(t − s) is a Dirac delta function centered at time

point s. The number of spikes emitted by the neuron between times t and t+ ∆t is

Ni(t, t+ ∆t) =

∫ t+∆t

t
yi(t
′)dt′. (3.1)

The firing rate of neuron i over interval (t, t+ ∆t) is defined as:

fi(t, t+ ∆t) =
1

∆t
〈Ni(t, t+ ∆t)〉, (3.2)

where 〈·〉 denotes an expectation over trials. Finally, the Fano factor of neuron i is defined as

Fi(t, t+ ∆t) =
Var (Ni(t, t+ ∆t))

〈Ni(t, t+ ∆t)〉 . (3.3)
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The spike count correlation coefficient between neurons i and j is their covariance normal-

ized by the geometric mean of their variances:

ρij(t, t+ ∆t) =
Cov (Ni(t, t+ ∆t), Nj(t, t+ ∆t))√

Var (Ni(t, t+ ∆t)) Var (Nj(t, t+ ∆t))
. (3.4)

Unless otherwise specified, spike count covariance and spike count correlation analyses of both

the neural data recorded in vivo and the simulated data were performed on populations of

excitatory neurons, and all spike train statistics were averaged across trials.

3.3.3 Neural data preparation

The neural data recorded were sorted into single unit activity. Units without at least a 2.5

signal-to-noise ratio (SNR), defined as the ratio of the average waveform amplitude to the

standard deviation of the waveform noise, were disregarded. Remaining units were included

in our analyses and taken to represent single neuron activity. Only neurons with a mean firing

rates of at least 1 Hz (∆t = 500 ms,(3.2)) for all target locations relevant to a given analysis

were used in that analysis. The analyzed neural population was further filtered to include only

neurons showing evidence of spatial tuning. To test tuning specificity, PFC neural responses

were calculated from 10 ms to 260 ms after the presentation of the target. These peak delay

period responses were baseline-corrected by subtracting a neuron’s average activity across all

conditions in the 30 ms to 180 ms epoch after fixation. A Kruskal-Wallis one-way analysis

of variance on a neuron’s average firing activity across locations was then used to determine

whether a neuron had significant (p < .05) spatial tuning.

Each neuron’s full spatial response field was obtained by averaging its baseline-corrected

response across multiple presentations of the same target condition. The resulting response

portrait over target space was linearly interpolated to obtain 0.25 dva x 0.25 dva resolution

response map, which was then convolved with a 2D gaussian filter of 1 dva variance for smooth-

ing. A neuron’s preferred spatial location was defined as the center of mass (COM) of all map

points where the magnitude of the neural response was at least 75% that of the maximum re-

sponse on the map. Responses that were suppressed below baseline were not considered in

the COM calculation. Response fields presented are oriented such that the contralateral visual

hemifield encodes the left half of the image displayed to the monkey.
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3.3.4 Noise correlation analyses of neural data

Spike counts of PFC neurons were summed over the delay period of the task (∆t = 500 ms,(3.2))

for each trial. Neural responses for trials of the same target condition were then normalized such

that each target condition had mean a spike count of zero and variance of one. The residual

spiking activity around the baseline response of each target condition represents a neuron’s

response to “noise”, or sources of fluctuation other than the stimulus tuning. Pearson correlation

coefficients were computed between these noise responses of all pairs of neurons (3.4). Pairs

of neurons were then organized according to the Euclidean distance between the COMs of the

two neurons’ spatial response fields, in bin increments of 2.25 dva.

3.3.5 Factor Analysis of neural data

To understand the dimensionality of the noise fluctuations in both layers of our network, we

performed Factor Analysis (FA) [135, 136] on the simultaneously recorded PFC and V4 neural

data. Target conditions on the right half of the visual field do not evoke meaningfully tuned

responses in the recorded V4 hemisphere. All FA results (in both V4 and PFC neural populations)

were therefore calculated using only the 25 stimulus conditions on the left visual hemifield, in

which the target orientation was between 90 and 180 dva, inclusive of those boundaries.

PFC neural responses were analyzed over the task delay period, while V4 neural responses

were analyzed during the period of target presentation. PFC spike counts were computed over

a 0 to 540 ms interval following the target presentation, binned in windows of 180 ms. V4

spike counts were computed over a 0 to 90 ms interval beginning with the target presentation,

binned in windows of 30 ms. Note that by binning spike counts with different window sizes for

V4 and PFC data, we were able to instead hold constant the number of observations used in FA

for each brain area. FA is sensitive to the number of data observations it receives [59]. Our bin

width choices result in the same number of observations of PFC and V4 neural data, despite the

fact that PFC data was measured surrounding a 500 ms delay period and V4 data could only be

meaningfully measured surrounding the considerably shorter 50 ms target presentation period.

In making this choice, we assume that the firing activity of PFC neurons is stationary over 180

ms periods, which is reasonable given the average firing rate of a neuron in the PFC population

was < 5 Hz.
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Neural data from both brain areas were normalized for each target condition such that

the mean firing rate per target condition was zero. Spike count observations from all trial

repetitions of all left hemifield target conditions were then concatenated into a single matrix of

data observations per brain region in prepation for FA. Each matrix of data observations used

in FA represented sorted single unit activity during a single recording session. We assume that

data collected throughout a single recording session were from consistent V4 and PFC neuronal

populations. FA was never performed on data pooled across multiple recording sessions, as we

did not attempt to track single unit activity across days of recording.

Appendix A provides a detailed description of the computations underlying FA. In brief, FA

finds a latent basis set that describes the shared variance of the analyzed neural data. We order

the latent dimensions of this basis set by their percentage of shared variance explained. We

define dshared as the number of (ordered) latent dimensions required to cumulatively explain

95% of the neural data’s shared variance. We calculated dshared of the V4 and PFC neural data

over each recording session. The FA loading matrix L describes how the activity of individual

neurons loads onto each latent dimension. We computed the loadings of each PFC neuron onto

the top 3 latent dimensions L1:3 to determine whether PFC neurons that preferred the ipsilateral

versus contralateral visual hemifield were separable in the latent space.

3.3.6 Spiking network simulations

Layer 1 of our spiking network model represents two inputs from V4, encoding both the left (L)

and right (R) visual hemifield. The neural activity of each model V4 hemifield was simulated

as a doubly-stochastic process. V4 neurons with a given hemifield preference h ∈ L,R shared a

rank 1 fluctuation generated by the Ornstein-Uhlenbeck (OU) process

τ
dλh
dt

= λ̄− λh +
√
σ2τξh(t), (3.5)

where λh is the shared firing rate of hemifield h, λ̄ is the baseline firing rate of that hemifield,

ξh(t) is the hemifield’s shared white noise process, and τ and σ are the timescale and ampli-

tude of the shared fluctuations, respectively. Each neuron i in hemifield h then emitted spikes

according to the Poisson process

vih(t) ∼ Pois(λh) (3.6)
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Each V4 hemifield consisted of NFF
L = 2000 excitatory neurons preferring the left visual

hemifield and NFF
R = 2000 excitatory neurons preferring the right visual hemifield, where the

superscript FF denotes that these neurons make only feedforward projections.

Layer 2 of our model represents PFC and consists of excitatory (E) and inhibitory (I) pop-

ulations of NRec
E = 4000 and NRec

I = 1000 neurons, respectively, where the superscript Rec

denotes that these neurons make recurrent connections. Each Layer 2 neuron was modeled as

a leaky integrate-and-fire unit obeying membrane potential dynamics given by:

V̇ =
1

τmem
(µ− V ) + Isyn(t). (3.7)

Neurons emit spikes when they reach the voltage threshold Vth = 1 in our non-dimensionalized

units, at which time they are reset to Vre = 0 for an absolute refractory period of 5 ms. All other

parameter values are specified in Table 3.1.

Synaptic currents were modeled as differences of exponentials according to the equation:

F β(t) =
H(t)

τ2 − τ1

(
e−t/τ1 − e−t/τ2

)
, (3.8)

where synaptic timescale parameters are provided in Table 3.1. Here H(t) is a Heaviside func-

tion and a pre-synaptic spike occurred at time t = 0.

The uncoupled network analyzed in Figure 3.3 consisted exclusively of feedforward projec-

tions from Layer 1 to Layer 2. The total synaptic input to Layer 2 neuron i of cell type α ∈ {E, I}

was then:

Iαi,syn(t) =
∑

j

JFF
ij F

FF ∗ vFF
j (t), (3.9)

JFF
ij is the strength of the synaptic projections from neuron j in the feedforward population to

neuron i in population α, F FF is the synaptic filter for projections from neurons in the feedfor-

ward population, ∗ denotes convolution, and vFF
j (t) =

∑
k δ(t− tjk) is the spike train of neuron

j in population the feedforward population (tjk is the kth spike time from neuron j).

Connection probabilities pαFF from neurons in the feedforward layer to neurons in the recur-

rent population were pEFF = 0.2 and pIFF = 0.5, respectively. Importantly, every neuron in Layer

2 was assigned a preference for the left or right visual hemifield, and Layer 1 neurons projected
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exclusively to Layer 2 neurons preferring their same visual hemifield. That is, pαhRec FFh = pαFF

when hRec = h for {hRec, h} ∈ {L,R} and pαhRec FFh = 0 when hRec 6= h. If a connection from

neuron j in the feedforward population to neuron i in population α existed, JαFF
ij = JαFF;

otherwise JαFF
ij = 0. Synaptic strengths JαFF

ij for a strongly coupled network are provided in

Table 3.1. These synaptic strengths are proportional to 1/
√
K where K = pαFFNRec

α . Linear

response theory for the weakly coupled network (Methods 3.3.9.2) assumes synaptic strengths

proportional to 1/K. Synaptic strengths describe the postsynaptic target’s membrane potential

deflection, neglecting leak, in the non-dimensional units of Eq. (3.7).

In Figures 3.4-3.6, we model Layer 2 of our network with recurrent connections. With

the inclusion of these recurrent interactions, the total synaptic input to Layer 2 neuron i in

population α is:

Iαi,syn(t) =
∑

j

JFF
ij F

FF ∗ vFF
j (t) +

∑

kβ

Jαβik F
β ∗ sβk(t), (3.10)

where α, β ∈ {E, I}, Jαβik is the strength of the synaptic projections from recurrent layer neuron

k in population β to recurrent layer neuron i in population α, F β is the synaptic filter for

projections from neurons in recurrent population β, and sβk(t) is the spike train of neuron k in

recurrent population β, consisting of δ functions at each spike emission time.

Connection probabilities pαβ from neurons in the recurrent population β to neurons in the

recurrent population α were pEE = 0.2 and pEI = pIE = pII = 0.5. If a connection from neuron

k in population β to neuron i in population α existed, Jαβik = Jαβ in the uniformly connected

recurrent network. In networks with clustered architecture, each recurrent layer neuron i, j was

assigned membership to an assembly based on hemifield preference hRec. The ratio R dictated

the gain on synaptic strengths of two neurons in the same assembly. See the Results section

for further information on tuned assemblies. Jαβik = 0 when there was no connection from

neuron k to neuron i. All synaptic strengths Jαβik for a strongly coupled network are provided

in Table 3.1. These synaptic strengths are proportional to 1/
√
K where K = pαβNRec

α . Linear

response theory for the weakly coupled network (Methods 3.3.9.2) assumes synaptic strengths

proportional to 1/K. Synaptic strengths describe the postsynaptic target’s membrane potential

deflection, neglecting leak, in the non-dimensional units of Eq. (3.7). All spiking network

simulations were performed using Euler integration with a 0.1 ms timestep.
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Symbol Description Value

NFF Number of feedforward (E) neurons 4,000
NRec
E Number of E neurons, recurrent layer 4,000

NRec
I Number of I neurons, recurrent layer 1,000

pEFF Connection probability, feedforward to E 0.2
pIFF Connection probability, feedforward to I 0.5
pEE Recurrent connection probability, E to E 0.2
pIE Recurrent connection probability, E to I 0.5
pEI Recurrent connection probability, I to E 0.5
pII Recurrent connection probability, I to I 0.5
λ̄ baseline firing rate of feedforward neurons 4 Hz
τλ timescale of input fluctuations 60 ms
σ amplitude of input fluctuations 0-2.4 Hz
µERec membrane potential bias, E neurons, recurrent coupling 1.1-1.2
µIRec membrane potential bias, I neurons, recurrent coupling 1.0-1.05

µEUncoupled membrane potential bias, E neurons, uncoupled network -1.1

µIUncoupled membrane potential bias, I neurons, uncoupled network -1.0

τEmem membrane time constant, E neurons 15 ms
τ Imem membrane time constant, E neurons 10 ms
τE1 Rise time for E synapses 1 ms
τE2 Decay time for E synapses 3 ms
τ I1 Rise time for I synapses 1 ms
τ I2 Decay time for I synapses 2 ms
JEFF feedforward to E synaptic weight 0.0707
JIFF feedforward to I synaptic weight 0.0354
JEE E to E synaptic weight, recurrent layer, unclustered 0.0236
JIE E to I synaptic weight, recurrent layer, unclustered 0.0141
JEI I to E synaptic weight, recurrent layer, unclustered -0.0453
JII I to I synaptic weight, recurrent layer, unclustered -0.0566
R recurrent clustering strength 1-2.5

Table 3.1: Spiking network parameters
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3.3.7 Visualizing clustering

Visualizations of each network architecture in Figure 3.4 were performed on subsets of 250

neurons, sampled uniformly across all populations, using network visualization software Gephi

[137]. Network nodes were visually distributed according to the strength of synaptic con-

nections between neurons using Gephi’s implementation of the Fruchterman-Reingold force-

directed algorithm [138].

3.3.8 Variance of model V4 activity

Model V4 neurons in each hemifield were correlated through a common OU process as described

by Eq. (3.5). The covariance of V4 activity across both hemifields is then

V =




VL 0

0 VR




, (3.11)

where the matrix has block structure because spiking activity between the left and right V4

hemifields is uncorrelated.

The covariance of each visual hemifield Vh for h ∈ {L,R} is:

Vh = Cov(vFF
h , v

FF
h )

=




λ̄+ σ2

2

σ2

2
. . .

σ2

2 λ̄+ σ2

2



, (3.12)

which is the variance of the stationary solution to the OU process described by Eq. (3.5).
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3.3.9 Linear response approximations of model PFC shared variance

Linear approximations of our network dynamics assume that a recurrent neuron i linearly trans-

forms its synaptic inputs to emit spiking response yi(t). See Appendix B for a more detailed

review of the assumptions underlying this ansatz.

3.3.9.1 Uncoupled Network

When Layer 2 is uncoupled, the firing response of each neuron i has the linear approximation:

yαi (t) ≈ Gαi


∑

j

JFF
ij F

FF(t) ∗ vFF
j (t)


 , (3.13)

where vFF
j (t) is the firing response of a feedforward neuron that projects to yαi (t), JαFF

ij is the

strength of synaptic connection from neuron j in population FF to neuron i in population α

(see Eq. (3.9)), F FF(t) is the synaptic filter (see Eq. (3.8)), and Gαi is the gain of neuron i in

population α, which quantifies its sensitivity to its inputs. We remark that Eq. (3.13) is only

valid under an expectation, and when the system is observed at sufficient long time windows

[120, 139] (See Appendix B). Under the second stated assumption, we need only consider the

the effects of the synaptic filter F FF(t) integrated over all time:

yαi (t) ≈ Gαi
∫ ∞

0
F FF(t)dt


∑

j

JFF
ij v

FF
j (t)




≈ Gαi


∑

j

JFF
ij v

FF
j (t)


 (3.14)

We chose the form of F FF(t) such that synaptic filter effects integrated to 1 (see Eq. (3.8)).

Using this linear approximation, the covariance of Layer 2 activity due to feedforward inputs

is:

Cy ≈ Cov(~y, ~y)

≈ GJFFV (GJFF)>, (3.15)
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where ~y is the firing responses of all Layer 2 neurons, V is the shared variance of V4 activity

(3.11), JFF is the full feedforward connectivity matrix, and G is a diagonal matrix of all Layer

2 neuron gains. When we apply this linear response theory to our simulated data, we observe

our network and compute spike count covariance statistics over a 50 ms time window. Though

this breaks the previously stated condition that we observe our system over infinitely long time

windows, we make the assumption that 50 ms is a sufficiently long observation period such that

our network’s trial averaged responses resemble those to static inputs and not to time-varying

signals (see Appendix B).

Each entry of matrix Cy represents the covariance of a pair of Layer 2 E neurons, i and k,

which inherit correlations from two feedforward mechanisms according to

Cyik = (JEFF)
2
(
Np2

(
λ̄+

σ2

2

)
+N2p

(
σ2

2

))
, (3.16)

where JEFF is the connection strength of projections from V4 neurons to Layer 2 E neurons,

p is the probability of connection for projections from V4 neurons to Layer 2 E neurons, N

is the total number of Layer 2 E neurons, and λ̄ and σ2/2 are the mean rate and fluctuation

amplitude of the OU process underlying V4 spiking activity, respectively (3.5). The first term

on the right hand side of Eq. (3.16) represents common projections that the Layer 2 neuron

pair receives from the same V4 neuron. The second term of of Eq. (3.16) represents projections

that the Layer 2 neuron pair receives from two (or more) different V4 neurons preferring the

same visual hemifield, whose spiking activity is correlated through the underlying OU process

(3.5). Recalling that synaptic connectivity strengths JFF scale according to the balanced network

condition such that JFF ∝ 1/
√
N [62], it becomes evident that each of the two feedforward

mechanisms of correlation scales as

Cyik ∝ p2

(
λ̄+

σ2

2

)

︸ ︷︷ ︸
O(1)

+Np

(
σ2

2

)

︸ ︷︷ ︸
O(N)

. (3.17)

In the large N limit of neurons, correlations due to common projections (term 1) are negligible

as compared to correlations arising from the spike count covariance of V4 activity (term 2). It

is thus the shared variance, or off-diagonal terms of V (3.12) that predominantly contribute to
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Cy in Equation (3.15). Defining the shared variance of V as

V shared
h =




0
σ2

2
. . .

σ2

2 0




V shared =




V shared
L 0

0 V shared
R




, (3.18)

the shared variance of Layer 2 activity is approximately

Cy ≈ GJFFV shared(GJFF)>, (3.19)

in the large N limit.

Notably, the rank of V shared is 2. (Each block V shared
h for h ∈ {L,R} is rank 1.) The rank

of Layer 2 shared variance Cy is thus restricted by the rank of V shared through the Frobenius

Inequality:

rank(Cy) ≤ min
(

rank(G), rank(JFF), rank(V shared)
)

≤ rank(V shared)

≤ 2. (3.20)

3.3.9.2 Recurrent Network

Linear response theory can be applied to recurrent networks so long as a single neuron’s spiking

response still scales linearly with sum of its synaptic inputs. This implies that neurons in the

recurrent network are weakly coupled, such that it takes many inputs to one neuron to produce
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spiking activity in that neuron. Under these conditions, the linear approximation of Layer 2

neuron i’s firing response is the scaled sum of its inputs from both feedforward projections and

recurrent interactions:

yαi (t) ≈ Gαi


∑

j

JαFF
ij F FF(t) ∗ vFF

j (t) +
∑

kβ

Jαβik F
β(t) ∗ yβk (t)


 , (3.21)

where yβk (t) is the firing response of a neuron k from recurrent population β that projects to

neuron i from recurrent population α, Jαβik is the strength of synaptic connection from neuron

k in recurrent population β to neuron i in recurrent population α, F β(t) is the synaptic filter

of that connection (see Eq. (3.10)), and all other terms were included in our uncoupled linear

approximation in Eq. (3.13). We showed previously that we need only consider the effect of our

synaptic filter integrated over all time, and that our synaptic filter integrates to 1 (Eq. (3.14)).

Eq. (3.21) therefore reduces to

yαi (t) ≈ Gαi


∑

j

JαFF
ij vFF

j (t) +
∑

kβ

Jαβik y
β
k (t)


 . (3.22)

The shared variance of Layer 2 activity is then the shared variance of our network in the

absence of coupling (3.19) filtered through our recurrent interactions such that:

Cy ≈ Cov(~y, ~y)

≈ (I−GJRec)−1GJFFV shared(GJFF)>(I− (GJRec)>)−1, (3.23)

where JRec is the full recurrent connectivity matrix in which each element is Jαβik and all other

terms are taken from the definition of Layer 2 shared variance in the absence of coupling (3.19).

Notably, the rank of Layer 2 shared variance Cy is still bound by the rank of V shared through

the Frobenius Inequality:

rank(Cy) ≤ min
(

rank(G), rank(JFF), rank(JRec), rank(V shared)
)

≤ rank(V shared)

≤ 2. (3.24)
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3.3.10 Mathematical analysis of correlated and asynchronous states in recurrent

networks

This section aims to provide a theory linking our recurrent network’s degree of clustering to

shifts between strongly correlated/anti-correlated, multi-stable dynamics and balanced network

dynamics. We now outline derivations from Rosenbaum et al. [72] and Baker et al. [140] and

explain their novel relevance to our own, clustered network architectures.

3.3.10.1 Cross-spectral density as a measure of co-variability

In the derivations that follow, we will use the cross-spectral density (CSD) to measure co-

variability, defined as:

〈U,Z〉(f) =

∫ ∞

−∞
CUZ(τ)e−2πifτdτ, (3.25)

where

CUZ(τ) = Cov(U(t), Z(t+ τ)) (3.26)

is the cross-covariance of U and Z. The CSD will simplify our co-variability calculations because

many commonly used co-variability measures can be expressed as functions of the CSD. Note

that cross-covariance (3.26) is the inverse Fourier transform of the CSD. Additionally, when we

express spike count as the integral of a spike train over interval [t,∆t] as in (3.1), we note that

spike count covariances over long windows (∆t → ∞) can be expressed as the zero-frequency

CSD:

lim
∆t→∞

1

∆t
Cov

(∫ ∆t

t
U(t′)dt′

∫ ∆t

t
Z(t′)dt′

)
= 〈U,Z〉(f = 0). (3.27)

The spike count covariance between neurons i and j can then be approximated (for large ∆t)

as:

Cov (Ni(t, t+ ∆t), Nj(t, t+ ∆t)) ≈ ∆t〈yi(t′), yj(t′)〉(f = 0) (3.28)
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Chapter 3. Assembly structure expands the dimension of shared variability in cortical networks

3.3.10.2 Balance conditions for strongly coupled recurrent networks with disjoint inputs

We define the population averaged cross-spectral matrix of input currents Isyn:

〈Isyn, Isyn〉 =



〈IEsyn, I

E
syn〉 〈IEsyn, I

I
syn〉

〈IIsyn, I
E
syn〉 〈IIsyn, I

I
syn〉


 , (3.29)

where

〈Iαsyn, I
β
syn〉 = Ei,k

(
〈Iαsyni

, Iβsynk
〉
)

(3.30)

is the expectation over pairwise CSDs between the total input current to recurrent layer neuron

i from population α and recurrent layer neuron k from population β where {α, β} ∈ {E, I}.

Pairwise CSDs where i = k and α = β are excluded from this expectation. We similarly define

〈FF, FF〉 and 〈~y, ~y〉 as the 2 x 2 population averaged cross-spectral matrices of feedforward inputs

FF and recurrent layer spiking activity ~y, respectively. The asynchronous state, in which exci-

tatory activity is balanced by inhibitory activity in the recurrent layer, is defined by the scaling

laws:

〈Isyn, Isyn〉, 〈~y, ~y〉 ∝ O(1/N) (3.31)

〈Isyn, FF〉, 〈~y, FF〉 ∝ O(1/
√
N) (3.32)

The population averaged cross-spectral matrix of input currents Isyn can then be restated in

terms of FF and ~y such that

〈Isyn, Isyn〉 = 〈FF, FF〉+
√
N (JRec〈~y, FF〉+ 〈FF, ~y〉JRec

∗)+NJRec〈~y, ~y〉JRec
∗+JRecAJRec

∗+O(1/
√
N),

(3.33)

where JRec is the recurrent connectivity matrix first defined in , ∗ denotes a conjugate transpose,

and A is defined as

A(f) =



AE(f)/qE 0

0 AI(f)/qI


 , (3.34)

where

Aα(f) = Ek〈yαk (t), yαk (t)〉 (3.35)
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is the expectation over the power spectral densities of recurrent spiking activity from each neu-

ron k from population α = {E, I} and qα is the proportion of neurons that belong to population

α. The O(1/
√
N) term in (3.33) represents the diagonal elements omitted from 〈~y, FF〉.

The asynchronous state condition (3.32) necessitates

√
NJRec〈~y, FF〉 =

√
N〈FF, ~y〉JRec

∗ = −〈FF, FF〉+O(1/
√
N). (3.36)

Equation (3.33) can then be simplified to

〈Isyn, Isyn〉 ∝ −〈FF, FF〉+NJRec〈~y, ~y〉JRec
∗ + JRecAJRec

∗. (3.37)

We invoke the assumption that each neuron i’s conversion of synaptic input Isyni to spiking

activity yi(t) is O(1) such that

〈Isyn, Isyn〉 ∝ 〈~y, ~y〉. (3.38)

Combining (3.37) and (3.38):

〈~y, ~y〉 ∝ −〈FF, FF〉+NJRec〈~y, ~y〉JRec
∗ + JRecAJRec

∗. (3.39)

This apparent inconsistency can be resolved using the asynchronous state requirement 〈~y, ~y〉 ∝

O(1/N) (3.31). The right hand side of (3.39) then cancels such that:

lim
N→∞

NJRec〈~y, ~y〉JRec
∗ = 〈FF, FF〉 − JRecAJRec

∗. (3.40)

The asymptotic scaling of spike count correlations in the asynchronous state is then

lim
N→∞

N〈~y, ~y〉 = (JRec)
−1〈FF, FF〉(JRec

∗)−1 −A. (3.41)

Notably one of two conditions must be satisfied to obey these asynchronous state requirements.

For (3.41) to be satisfied, JRec must be invertible. Alternatively (if JRec is singular), (3.40) can

be satisified if 〈FF, FF〉 is in the column space of A 7→ JRecAJRec
∗.

In our network, every recurrent layer cell is assigned a preference for the left (L) or right

(R) visual hemifield, corresponding to whether that neuron receives feedforward inputs from
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Chapter 3. Assembly structure expands the dimension of shared variability in cortical networks

left or right V4. The full recurrent connectivity matrix is then

JRec =




JELEL JELER JELIL JELIR

JEREL JERER JERIL JERIR

JILEL JILER JILIL JILIR

JIREL JIRER JIRIL JIRIR




(3.42)

In the network with uniform recurrent connectivity, JEhEh′ = JEE , JIhIh′ = JII , JIhEh′ =

JIE , and JEhIh′ = JEI for {h, h′} ∈ {L,R}. Thus, JRec is singular.

Moreover, the symmetry of our network with uniform recurrent connectivity implies that the

average power spectral density is the same for populationsEL andER, as well as for populations

IL and IR. Therefore,

A(f) =




AEL(f)/qEL 0 0 0

0 AER(f)/qER 0 0

0 0 AIL(f)/qIL 0

0 0 0 AIR(f)/qIR




(3.43)

where Aαh is the average CSD of neurons in population αh and qαh is the proportion of neurons

in population αh for α ∈ {E, I} and h ∈ {L,R}.

To determine whether 〈FF, FF〉 is in the column space of A 7→ JRecAJRec
∗, and subsequently,

whether the asynchronous state is possible, we need to more closely examine the structure of

〈FF, FF〉. The average CSD from feedforward inputs 〈FF, FF〉 will be due to both spike count

correlations between neurons in the V4 afferent populations and correlations owing to common

projections from V4 to PFC. We reference the derivations in Baker et al. [140] and define the

CSD due to feedforward inputs between recurrent neuron i and recurrent neuron k as

〈FFαi , FFβk〉 =

〈∑

j

JαFF
ij (F FF ∗ vFF

j (t)),
∑

j′

JβFF
kj′ (F FF ∗ vFF

j′ (t))

〉
(3.44)

where vFF
j (t) is the spike train of feedforward neuron j, vFF

j′ (t) is the spike train of feedforward

neuron j′, JαFF
ij is the strength of projection from neuron j to recurrent neuron i of cell type
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α ∈ {E, I}, JβFF
kj′ is the strength of projection from neuron j′ to recurrent neuron k of cell

type β ∈ {E, I}, and F FF is the post-synaptic current waveform. The mean-field CSD due to

feedforward inputs is then

〈FF, FF〉 = NJFF〈~vFF, ~vFF〉JFF
∗

︸ ︷︷ ︸
O(N)

+ qFF
−1JFFrFFJFF

∗ − qFF
−1JFF〈~vFF, ~vFF〉JFF

∗
︸ ︷︷ ︸

O(1)

, (3.45)

where 〈~vFF, ~vFF〉 describes spike count correlations between neurons in the feedforward layer,

JFF is the full feedforward connectivity matrix, qFF is the proportion of neurons belonging to

the feedforward layer, and U∗ denotes the conjugate transpose of U . Note that the first term

on the right hand side of Eq. (3.45), which scales according to O(N), represents feedforward

correlations inherited through the spike count correlations in V4 activity. The second term of Eq.

(3.45), which scales according to O(1), represents feedforward correlations inherited through

common projections from the same V4 neuron to a Layer 2 neuron pair. These two mechanisms

of feedforward correlation correspond exactly to those expressed in Eq. (3.16), our time-domain

expression of the Layer 2 covariance owing to feedforward input.

For a network with feedforward correlations owing exclusively to shared projections from

V4, 〈~vFF, ~vFF〉 = 0. This corresponds to σ = 0 from Figure 3.4. The mean-field CSD due to

feedforward inputs is then reduced to

〈FF, FF〉 = qFF
−1JFFrFFJFF

∗. (3.46)

Notably, 〈FF, FF〉 will inherit all of its structure from connectivity matrix JFF. Because V4 neu-

rons make disjoint projections to PFC neurons with their same visual hemifield preference, JFF

has the block structure

JFF =




JELFFL 0

JILFFL 0

0 JERFFR

0 JIRFFR




(3.47)

〈FF, FF〉 will also have block structure, and cannot be in the column space of A 7→ JRecA. By

extension, 〈FF, FF〉 cannot be in the column space of A 7→ JRecAJRec
∗. We therefore conclude

that our network with disjoint V4 projections and uniform recurrent connectivity cannot achieve
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Chapter 3. Assembly structure expands the dimension of shared variability in cortical networks

the asynchronous state.

In the network with clustered recurrent connectivity reflecting hemifield tuning, our recur-

rent connectivity matrix JRec (3.42) changes such that Jαhβh = RJαhβh′ for {α, β} ∈ {E, I} and

{h, h′} ∈ {L,R}. Clustering therefore restores the asymmetry to JRec necessary to make it in-

vertible, and the network with hemifield tuned assemblies can achieve the asynchronous state,

even in the presence of disjoint inputs from V4 (Figure 3.4b, top left). Note that all our deriva-

tions in this section assume the large neuron limit (NRec →∞). According to these derivations,

JRec is either invertible and asynchrony is possible, or JRec is singular and asynchrony is impos-

sible. In our neural activity simulated from a network with uncorrelated V4 activity (σ = 0),

the smooth transition from correlated recurrent activity to asynchrony that we observe as we

increase R results from the finite size of our network simulations.

3.3.10.3 The correlated state

Our V4 neurons with a given visual hemifield preference h receive common fluctuations from

the OU process described by Eq. (3.5). When σ > 0 (Figure 3.4), 〈~vFF, ~vFF〉 > 0. In the large

N limit of this correlated state, only the O(N) correlations due to V4 spiking co-variability will

have significant effect on 〈FF, FF〉 (3.45), which in turn reduces to

〈FF, FF〉 ≈ NJFF〈~vFF, ~vFF〉JFF
∗. (3.48)

Balance is achieved in the correlated state when O(N) input correlations are reduced to

O(1) spike count correlations in Layer 2 activity such that

〈FF, FF〉 ∝ O(N) (3.49)

〈~y, ~y〉 ∝ O(1). (3.50)

Using Equation (3.48), Equation (3.39) can then be restated as

〈~y, ~y〉︸ ︷︷ ︸
O(1)

∝ N


JRec〈~y, ~y〉JRec

∗ − JFF〈~vFF, ~vFF〉JFF
∗

︸ ︷︷ ︸
O(1/N)


+ JRecAJRec

∗
︸ ︷︷ ︸
O(1)

, (3.51)
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where the parenthetical terms must scale according to O(1/N) for self-consistency. Solving the

parenthetical terms for 〈~y, ~y〉, we find that Equation (3.51) is self-consistent if and only if JRec

is invertible:

〈~y, ~y〉 = (JRec)
−1JFF〈~vFF, ~vFF〉JFF

∗ (JRec
∗)−1 (3.52)

Analogously to the previous section, uniform recurrent connectivity makes JRec singular, while

clustered recurrent connectivity makes JRec invertible (3.42).

In conclusion, the asynchronous state can be restored in a network with uncorrelated, dis-

joint inputs by adding hemifield specific recurrent clustering. This makes the spatial scale of the

inhibitory recurrent architecture commensurate to the spatial scale of each input, and allows the

network to reduce 〈FF, FF〉 ∝ O(1) correlations due to feedforward inputs to 〈~y, ~y〉 ∝ O(1/N)

correlations in the recurrent layer. By analogous mechanisms, hemifield specific recurrent clus-

tering is able to reduce 〈FF, FF〉 ∝ O(N) feedforward correlations from correlated, disjoint

inputs to 〈~y, ~y〉 ∝ O(1) correlations in the recurrent layer.

3.3.11 Partitioning model PFC activity into states

Our model networks with strong recurrent coupling and correlated, disjoint inputs exhibit multi-

stable dynamics with alternating states of high firing activity from model PFC neurons preferring

the left (State L) or right (State R) visual hemifield. To partition model PFC activity into State L

or State R over time, we first projected each hemifield’s population activity onto its mean activ-

ity and variance of activity over time. Let Yh = {yE1h(t), ..., yENh(t)}, where yEih(t) is the vector of

spike counts over time, binned in non-overlapping windows of ∆t = 50 ms, of excitatory neuron

i in model PFC with visual hemifield preference h ∈ {L,R}. Y = {〈YL〉,Var(YL), 〈YR〉,Var(YR)}

was then used as the feature matrix for State L versus State R classification by a Gaussian

Mixture Model (GMM) [141], where angle brackets denote an expectation over PFC model

neurons preferring hemifield h ∈ {L,R}. Note that a single observation of the feature matrix,

which we will denote Yt, represents one timepoint of the original hemifield population activity.

In brief, the GMM uses an Expectation-Maximization algorithm to learn without supervision

p(ztS = 1|Yt), or the probability that timepoint Yt belongs to the cluster of activity of represent-

ing S ∈ {State L,State R}, where that cluster of activity is modeled as multivariate Gaussian

N (µS ,ΣS) in the feature space of Y. ΣS was constrained to be diagonal.
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Each timepoint of neural activity Yt in which p(zState L = 1|Yt) > 0.97 was assigned to State

L. Each timepoint of neural activity Yt in which p(zState R = 1|Yt) > 0.97 was assigned to State

R. Remaining timepoints were considered to represent dynamics in which the neural activity

was transitioning between the two states, and these timepoints were excluded from analyses on

state partitions. State transitions never exceeded 20% of the total time over which we analyzed

simulated network activity.

3.3.12 Factor Analysis of model PFC activity

We performed Factor Analysis (FA) (Appendix A) on the spike count activity of random subsets

of 100 excitatory neurons from our PFC model simulations, sampled uniformly across hemifield

preferences. Neurons whose firing rates were smaller than 1 Hz were excluded from analysis.

Spike trains were binned in non-overlapping intervals of ∆t = 50 ms.

For factor analysis of state partitioned data (Figure 3.8), we began our state partitioning

procedure described in Methods 3.3.11 with 220 network simulations per connectivity matrices

realization of length 10 s per simulation. Population activity was in a single state S ∈ {State

L, State R} for an average of 4.2 s per simulation. There were 20 non-overlapping sampling of

neurons (10 sampling per realization of connectivity matrices, for 2 realizations of connectivity

matrices). We applied FA on each sampling of neuron spike counts in state S ∈ {State L, State

R}. FA was performed on non-state-partitioned activity by uniformly sampling network activity

over both states S ∈ {State L, State R} and transition timepoints for the same total duration as

the average time spent in a single state S.

3.3.13 Linear response fits to simulated PFC activity

We fit our linear response theory from Methods 3.3.9 to our simulated Layer 2 data. We recall

that a neuron’s gain G is simply the derivative of the neuron’s frequency-current (f -I) curve

evaluated at its steady-state firing rate. We computed the mean input current Iαhsyni = Et[Iαhsyni(t)]

(3.9) and firing rate fαhi = Et[fαhi (t)] of each neuron i in a population αh, where α ∈ {E, I}

denotes cell type and h ∈ {L,R} denotes visual hemifield preference.
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An f -I curve for the mean activity of all neurons in population αh was then fit according to

the piecewise regression model:

fαh =





β0 + β1I
αh
syn + β2

(
Iαhsyn

)2
, Iαhsyn ≤ I

β0 + β1I
αh
syn, Iαhsyn > I

(3.53)

Knot location I was selected by comparing the cross-validated likelihood functions of models of

the form (3.53) for varying values of I. Once a mean-field f -I curve was fitted for population

αh, the gain of each neuron in the population was approximated by the derivative

Gαh =
dfαh
dIαhsyn

(3.54)

=





β1 + 2β2

(
Iαhsyn

)
, Iαhsyn ≤ I

β1, Iαhsyn > I

evaluated at each neuron’s mean firing rate.

These gains could then be used to compute a theoretical approximation of the full, pairwise

covariance matrix of the network activity defined as Cy. We define the theoretical estimate of

pairwise co-variability in the uncoupled network as CUncoupled
y , which was computed using Eq.

(3.15). In the multi-stable network with strong recurrent coupling, Cy was computed according

to Eq. (3.23) separately for State L and State R, where network activity was partitioned into

states using the process described in Subsection 3.3.11. Linear response techniques provide

accurate estimates of the pairwise co-variability of neural activity, but do not provide accurate

estimates of each neuron’s private variability [120]. We can re-write our state-partitioned linear

response estimates of the network with strong recurrent coupling (3.23) as

Cy = (I−GJRec)−1GJFFV (GJFF)>(I− (GJRec)>)−1 (3.55)

= (I−GJRec)−1C0
y (I− (GJRec)>)−1,

where C0
y is the theoretical estimate of the network’s pairwise co-variability in the absence of

recurrent coupling. While we could replace the entirety of C0
y in this computation with the

linear response estimate from our uncoupled network simulations CUncoupled
y , this would break

67



Chapter 3. Assembly structure expands the dimension of shared variability in cortical networks

a key linear response assumption that each neuron has one, stationary gain Gi at the fixed point

of our linearization. Instead, we make only the substitution

diag
(
C0
y

)
= diag

(
CUncoupled
y

)
(3.56)

to correct for linear response theory’s flawed estimates of private neuronal variability.

3.4 Results

3.4.1 Characterizing variability in V4 and PFC

A non-human primate engaged in a memory-guided saccade (MSG) task in which a target was

presented at one of forty locations in 2D screen space (Figure 3.1a). The primate had to make

a saccade to the remembered location after a delay period. We analyzed simultaneous micro-

electrode array recordings from visual area V4 and visually-responsive [142] integration area

PFC during this distributed visual task. Single neuron responses in PFC during the task’s delay

period were spatially tuned, demonstrating specificity for both the angular location and radial

eccentricity of our dense mapping of target space (Figure 3.1b). We distilled each PFC neuron’s

2D spatial response profile to a single preferred location, computed as the center of mass (COM)

of the neuron’s receptive field (black Xes, Figure 3.1b,d). PFC neurons recorded across all

sessions (N = 784 total neurons, 19 recording sessions) exhibited preferences for a wide range

of spatial eccentricities and radial locations that spanned the entire visual scene (Figure 3.1c-d).

This is consistent with previous findings that PFC neurons show spatial tuning both contralateral

and ipsilateral to the recorded hemisphere[143, 144, 142], owing to the converging projections

that one PFC hemisphere receives from both hemispheres of upstream visual brain areas[145,

146, 147]. By contrast, V4 has retinotopic organization and only encodes visual information

contralateral to the recorded hemisphere (Figure 3.1d)[148].

Having mapped V4 and PFC receptive fields, we sought to understand the coordinated pop-

ulation dynamics of both brain areas. We examined the structure of pairwise spike count co-

variability that was not due to stimulus tuning. These shared fluctuations underlying trial-

to-trial variability are commonly referred to as noise correlations (see Methods). Consistent

with previous studies demonstrating spatially-dependent correlations [72], noise correlations

68



3.4. Results

0 5 10 15 20 25 30
||COMa,COMb||2 (cm)

-0.1

0

0.1

0.2
Cont - Cont
Ips - Ips
Cont - Ips

-15 -10 -5 0 5 10 15
x (dva)

-15

-10

-5

0

5

10

15

y 
(d

va
)

V4
Ips PFC
data3
Cont PFC
data1

0 5 10 15
r (dva)

0

0.04

0.08

0.12 PFC
V4

-15 -10 -5 0 5 10 15
x (dva)

-15

-10

-5

0

5

10

15

y 
(d

va
)

V4
Ips PFC
data3
Cont PFC
data1

-15 -10 -5 0 5 10 15
x (dva)

-15

-10

-5

0

5

10

15

y 
(d

va
)

V4
Ips PFC
data3
Cont PFC
data1

Hz

a b c

d e f

0 5 10 15 20 25 30
||COMa,COMb||2 (cm)

-0.1

0

0.1

0.2
Cont - Cont
Ips - Ips
Cont - Ips

0 5 10 15
r (dva)

0

0.04

0.08

0.12 PFC
V4

0 5 10 15

Cont-Cont Ips-Ips Cont-Ips
-0.01

0

0.01

0.02

0.03

0.12

0.08

0.04

0 5 10 15 20 25 300 5 10 15 20 25 30
||COMa,COMb||2 (cm)

-0.1

0

0.1

0.2
Cont - Cont
Ips - Ips
Cont - Ips

(dva)
0 5 10 15 20 25 30

||COMa,COMb||2 (cm)

-0.1

0

0.1

0.2
Cont - Cont
Ips - Ips
Cont - Ips

0

30

60
90

120

150

180

210

240
270

300

330

0
0.2
0.4
0.6
0.8

x (dva)

y 
(d

va
)

COM eccentricity  (dva)

No
rm

al
ize

d 
co

un
t

No
rm

al
ize

d

 c

ou
nt

COM θ (dva)

Raw
Sans 1st 

Latent 

Dimension

PFC

V4

d

0 5 10 15 20 25 30
||COMa,COMb||2 (cm)

-0.1

0

0.1

0.2
Cont - Cont
Ips - Ips
Cont - Ips

-15 -10 -5 0 5 10 15
x (dva)

-15

-10

-5

0

5

10

15

y 
(d

va
)

V4
Ips PFC
data3
Cont PFC
data1

0 5 10 15
r (dva)

0

0.04

0.08

0.12 PFC
V4

-15 -10 -5 0 5 10 15
x (dva)

-15

-10

-5

0

5

10

15

y 
(d

va
)

V4
Ips PFC
data3
Cont PFC
data1

-15 -10 -5 0 5 10 15
x (dva)

-15

-10

-5

0

5

10

15

y 
(d

va
)

V4
Ips PFC
data3
Cont PFC
data1

Hz

a b c

d e f

0 5 10 15 20 25 30
||COMa,COMb||2 (cm)

-0.1

0

0.1

0.2
Cont - Cont
Ips - Ips
Cont - Ips

0 5 10 15
r (dva)

0

0.04

0.08

0.12 PFC
V4

0 5 10 15

Cont-Cont Ips-Ips Cont-Ips
-0.01

0

0.01

0.02

0.03

0.12

0.08

0.04

0 5 10 15 20 25 300 5 10 15 20 25 30
||COMa,COMb||2 (cm)

-0.1

0

0.1

0.2
Cont - Cont
Ips - Ips
Cont - Ips

(dva)
0 5 10 15 20 25 30

||COMa,COMb||2 (cm)

-0.1

0

0.1

0.2
Cont - Cont
Ips - Ips
Cont - Ips

0

30

60
90

120

150

180

210

240
270

300

330

0
0.2
0.4
0.6
0.8

x (dva)

y 
(d

va
)

COM eccentricity  (dva)

No
rm

al
ize

d 
co

un
t

No
rm

al
ize

d

 c

ou
nt

COM θ (dva)

Raw
Sans 1st 

Latent 

Dimension

PFC

V4

d

0 5 10 15 20 25 30
||COMa,COMb||2 (cm)

-0.1

0

0.1

0.2
Cont - Cont
Ips - Ips
Cont - Ips

-15 -10 -5 0 5 10 15
x (dva)

-15

-10

-5

0

5

10

15

y 
(d

va
)

V4
Ips PFC
data3
Cont PFC
data1

0 5 10 15
r (dva)

0

0.04

0.08

0.12 PFC
V4

-15 -10 -5 0 5 10 15
x (dva)

-15

-10

-5

0

5

10

15

y 
(d

va
)

V4
Ips PFC
data3
Cont PFC
data1

-15 -10 -5 0 5 10 15
x (dva)

-15

-10

-5

0

5

10

15
y 

(d
va

)
V4
Ips PFC
data3
Cont PFC
data1

Hz

a b c

d e f

0 5 10 15 20 25 30
||COMa,COMb||2 (cm)

-0.1

0

0.1

0.2
Cont - Cont
Ips - Ips
Cont - Ips

0 5 10 15
r (dva)

0

0.04

0.08

0.12 PFC
V4

0 5 10 15

Cont-Cont Ips-Ips Cont-Ips
-0.01

0

0.01

0.02

0.03

0.12

0.08

0.04

0 5 10 15 20 25 300 5 10 15 20 25 30
||COMa,COMb||2 (cm)

-0.1

0

0.1

0.2
Cont - Cont
Ips - Ips
Cont - Ips

(dva)
0 5 10 15 20 25 30

||COMa,COMb||2 (cm)

-0.1

0

0.1

0.2
Cont - Cont
Ips - Ips
Cont - Ips

0

30

60
90

120

150

180

210

240
270

300

330

0
0.2
0.4
0.6
0.8

x (dva)

y 
(d

va
)

COM eccentricity  (dva)

No
rm

al
ize

d 
co

un
t

No
rm

al
ize

d

 c

ou
nt

COM θ (dva)

Raw
Sans 1st 

Latent 

Dimension

PFC

V4

d

0 5 10 15 20 25 30
||COMa,COMb||2 (cm)

-0.1

0

0.1

0.2
Cont - Cont
Ips - Ips
Cont - Ips

-15 -10 -5 0 5 10 15
x (dva)

-15

-10

-5

0

5

10

15

y 
(d

va
)

V4
Ips PFC
data3
Cont PFC
data1

0 5 10 15
r (dva)

0

0.04

0.08

0.12 PFC
V4

-15 -10 -5 0 5 10 15
x (dva)

-15

-10

-5

0

5

10

15

y 
(d

va
)

V4
Ips PFC
data3
Cont PFC
data1

-15 -10 -5 0 5 10 15
x (dva)

-15

-10

-5

0

5

10

15

y 
(d

va
)

V4
Ips PFC
data3
Cont PFC
data1

Hz

a b c

d e f

0 5 10 15 20 25 30
||COMa,COMb||2 (cm)

-0.1

0

0.1

0.2
Cont - Cont
Ips - Ips
Cont - Ips

0 5 10 15
r (dva)

0

0.04

0.08

0.12 PFC
V4

0 5 10 15

Cont-Cont Ips-Ips Cont-Ips
-0.01

0

0.01

0.02

0.03

0.12

0.08

0.04

0 5 10 15 20 25 300 5 10 15 20 25 30
||COMa,COMb||2 (cm)

-0.1

0

0.1

0.2
Cont - Cont
Ips - Ips
Cont - Ips

(dva)
0 5 10 15 20 25 30

||COMa,COMb||2 (cm)

-0.1

0

0.1

0.2
Cont - Cont
Ips - Ips
Cont - Ips

0

30

60
90

120

150

180

210

240
270

300

330

0
0.2
0.4
0.6
0.8

x (dva)

y 
(d

va
)

COM eccentricity  (dva)

No
rm

al
ize

d 
co

un
t

No
rm

al
ize

d

 c

ou
nt

COM θ (dva)

Raw
Sans 1st 

Latent 

Dimension

PFC

V4

d

a

c

e f

0 5 10 15 20 25 30
||COMa,COMb||2 (cm)

-0.1

0

0.1

0.2
Cont - Cont
Ips - Ips
Cont - Ips

-15 -10 -5 0 5 10 15
x (dva)

-15

-10

-5

0

5

10

15

y 
(d

va
)

V4
Ips PFC
data3
Cont PFC
data1

0 5 10 15
r (dva)

0

0.04

0.08

0.12 PFC
V4

-15 -10 -5 0 5 10 15
x (dva)

-15

-10

-5

0

5

10

15

y 
(d

va
)

V4
Ips PFC
data3
Cont PFC
data1

-15 -10 -5 0 5 10 15
x (dva)

-15

-10

-5

0

5

10

15

y 
(d

va
)

V4
Ips PFC
data3
Cont PFC
data1

Hz

a b c

d e f

0 5 10 15 20 25 30
||COMa,COMb||2 (cm)

-0.1

0

0.1

0.2
Cont - Cont
Ips - Ips
Cont - Ips

0 5 10 15
r (dva)

0

0.04

0.08

0.12 PFC
V4

0 5 10 15

Cont-Cont Ips-Ips Cont-Ips
-0.01

0

0.01

0.02

0.03

0.12

0.08

0.04

0 5 10 15 20 25 300 5 10 15 20 25 30
||COMa,COMb||2 (cm)

-0.1

0

0.1

0.2
Cont - Cont
Ips - Ips
Cont - Ips

(dva)
0 5 10 15 20 25 30

||COMa,COMb||2 (cm)

-0.1

0

0.1

0.2
Cont - Cont
Ips - Ips
Cont - Ips

0

30

60
90

120

150

180

210

240
270

300

330

0
0.2
0.4
0.6
0.8

x (dva)

y 
(d

va
)

COM eccentricity  (dva)

No
rm

al
ize

d 
co

un
t

No
rm

al
ize

d

 c

ou
nt

COM θ (dva)

Raw
Sans 1st 

Latent 

Dimension

PFC

V4

d

0 5 10 15 20 25 30
||COMa,COMb||2 (cm)

-0.1

0

0.1

0.2
Cont - Cont
Ips - Ips
Cont - Ips

-15 -10 -5 0 5 10 15
x (dva)

-15

-10

-5

0

5

10

15

y 
(d

va
)

V4
Ips PFC
data3
Cont PFC
data1

0 5 10 15
r (dva)

0

0.04

0.08

0.12 PFC
V4

-15 -10 -5 0 5 10 15
x (dva)

-15

-10

-5

0

5

10

15

y 
(d

va
)

V4
Ips PFC
data3
Cont PFC
data1

-15 -10 -5 0 5 10 15
x (dva)

-15

-10

-5

0

5

10

15

y 
(d

va
)

V4
Ips PFC
data3
Cont PFC
data1

Hz

a b c

d e f

0 5 10 15 20 25 30
||COMa,COMb||2 (cm)

-0.1

0

0.1

0.2
Cont - Cont
Ips - Ips
Cont - Ips

0 5 10 15
r (dva)

0

0.04

0.08

0.12 PFC
V4

0 5 10 15

Cont-Cont Ips-Ips Cont-Ips
-0.01

0

0.01

0.02

0.03

0.12

0.08

0.04

0 5 10 15 20 25 300 5 10 15 20 25 30
||COMa,COMb||2 (cm)

-0.1

0

0.1

0.2
Cont - Cont
Ips - Ips
Cont - Ips

(dva)
0 5 10 15 20 25 30

||COMa,COMb||2 (cm)

-0.1

0

0.1

0.2
Cont - Cont
Ips - Ips
Cont - Ips

0

30

60
90

120

150

180

210

240
270

300

330

0
0.2
0.4
0.6
0.8

x (dva)

y 
(d

va
)

COM eccentricity  (dva)

No
rm

al
ize

d 
co

un
t

No
rm

al
ize

d

 c

ou
nt

COM θ (dva)

Raw
Sans 1st 

Latent 

Dimension

PFC

V4

d

0 5 10 15 20 25 30
||COMa,COMb||2 (cm)

-0.1

0

0.1

0.2
Cont - Cont
Ips - Ips
Cont - Ips

-15 -10 -5 0 5 10 15
x (dva)

-15

-10

-5

0

5

10

15

y 
(d

va
)

V4
Ips PFC
data3
Cont PFC
data1

0 5 10 15
r (dva)

0

0.04

0.08

0.12 PFC
V4

-15 -10 -5 0 5 10 15
x (dva)

-15

-10

-5

0

5

10

15

y 
(d

va
)

V4
Ips PFC
data3
Cont PFC
data1

-15 -10 -5 0 5 10 15
x (dva)

-15

-10

-5

0

5

10

15

y 
(d

va
)

V4
Ips PFC
data3
Cont PFC
data1

Hz

a b c

d e f

0 5 10 15 20 25 30
||COMa,COMb||2 (cm)

-0.1

0

0.1

0.2
Cont - Cont
Ips - Ips
Cont - Ips

0 5 10 15
r (dva)

0

0.04

0.08

0.12 PFC
V4

0 5 10 15

Cont-Cont Ips-Ips Cont-Ips
-0.01

0

0.01

0.02

0.03

0.12

0.08

0.04

0 5 10 15 20 25 300 5 10 15 20 25 30
||COMa,COMb||2 (cm)

-0.1

0

0.1

0.2
Cont - Cont
Ips - Ips
Cont - Ips

(dva)
0 5 10 15 20 25 30

||COMa,COMb||2 (cm)

-0.1

0

0.1

0.2
Cont - Cont
Ips - Ips
Cont - Ips

0

30

60
90

120

150

180

210

240
270

300

330

0
0.2
0.4
0.6
0.8

x (dva)

y 
(d

va
)

COM eccentricity  (dva)

No
rm

al
ize

d 
co

un
t

No
rm

al
ize

d

 c

ou
nt

COM θ (dva)

Raw
Sans 1st 

Latent 

Dimension

PFC

V4

d
0 5 10 15 20 25 30

||COMa,COMb||2 (cm)

-0.1

0

0.1

0.2
Cont - Cont
Ips - Ips
Cont - Ips

-15 -10 -5 0 5 10 15
x (dva)

-15

-10

-5

0

5

10

15

y 
(d

va
)

V4
Ips PFC
data3
Cont PFC
data1

0 5 10 15
r (dva)

0

0.04

0.08

0.12 PFC
V4

-15 -10 -5 0 5 10 15
x (dva)

-15

-10

-5

0

5

10

15

y 
(d

va
)

V4
Ips PFC
data3
Cont PFC
data1

-15 -10 -5 0 5 10 15
x (dva)

-15

-10

-5

0

5

10

15

y 
(d

va
)

V4
Ips PFC
data3
Cont PFC
data1

Hz

a b c

d e f

0 5 10 15 20 25 30
||COMa,COMb||2 (cm)

-0.1

0

0.1

0.2
Cont - Cont
Ips - Ips
Cont - Ips

0 5 10 15
r (dva)

0

0.04

0.08

0.12 PFC
V4

0 5 10 15

Cont-Cont Ips-Ips Cont-Ips
-0.01

0

0.01

0.02

0.03

0.12

0.08

0.04

0 5 10 15 20 25 300 5 10 15 20 25 30
||COMa,COMb||2 (cm)

-0.1

0

0.1

0.2
Cont - Cont
Ips - Ips
Cont - Ips

(dva)
0 5 10 15 20 25 30

||COMa,COMb||2 (cm)

-0.1

0

0.1

0.2
Cont - Cont
Ips - Ips
Cont - Ips

0

30

60
90

120

150

180

210

240
270

300

330

0
0.2
0.4
0.6
0.8

x (dva)

y 
(d

va
)

COM eccentricity  (dva)

No
rm

al
ize

d 
co

un
t

No
rm

al
ize

d

 c

ou
nt

COM θ (dva)

Raw
Sans 1st 

Latent 

Dimension

PFC

V4

d

d

b

w/out

Figure 3.1: (a) Illustration of the visual task, in which a non-human primate made a saccade
to a remembered target location in 2D space. Neural data were simultaneously recorded in V4
and PFC. b-d: Analysis of V4 and PFC tuning. (b) 2D spatial receptive fields of 9 example PFC
neurons. A neuron’s preferred location, calculated as the center of mass (COM) of its receptive
field, is shown with a black X. Visual space is represented in units of degrees of visual acuity
(dva). (c) Distribution of preferred eccentricity (top) and preferred angular location (bottom)
of recorded V4 and PFC populations. Data from 747 V4 neurons and 487 PFC neurons shown,
pooled across 19 recording sessions. (d) Preferred locations of all recorded neurons (see c)
plotted in the 2D visual space. Targets shown in blue. e-f: Analysis of PFC noise correlations.
Analyses were conducted on the responses of 487 PFC neurons across 19 recording sessions,
56 ± 3 trials per matched target condition in each session. Error bars are SEM. (e) Pairwise
spike count correlation ρ as a function of the Euclidean distance between neurons’ preferred
spatial locations. Spike counts were summed over the 500 ms delay period. Pairs are organized
by visual hemifield preference. Neurons preferring opposite visual hemifields are shown in
orange. The orange star denotes pairs of neurons preferring similar spatial locations that still
span the visual midline (example pair shown in d). (f) Pairwise spike count correlation by
hemifield preference, averaged over all space. Raw correlations denoted by solid dots. Open
squares denote residual correlations after subtracting the effects of the FA-identified top latent
dimension of shared variance (Methods 3.3.5). Spike counts were binned in 180 ms windows.
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Chapter 3. Assembly structure expands the dimension of shared variability in cortical networks

between pairs of PFC neurons preferring the same visual hemifield were positive and decreased

as a function of the Euclidean distance between the COMs of the neurons’ spatial receptive

fields (Figure 3.1e). However, pairs of neurons preferring opposite visual hemifields exhibited

near-zero correlations, even when the distance between their COMs was very small. We sought

to understand whether nearby neurons preferring opposite hemifields were truly uncorrelated

or alternatively, exhibited competitive anti-correlations that were masked by shared common

fluctuations inherited from outside sources. Using factor analysis, we tested whether we could

recover anti-correlation structure between PFC neurons with opposite hemifield preferences af-

ter removing the dominate latent dimension of globally shared variability (see Methods 3.3.5).

Residual correlations with the dominate latent dimension removed were still near-zero across all

recorded pairs of PFC preferring opposite visual hemifields (Figure 3.1f). Thus, we concluded

that PFC neurons with opposite hemifield preferences were not exhibiting strongly competitive

dynamics.

We sought to further characterize the coordinated fluctuations underlying the noise correla-

tions of our neuronal populations. We again used factor analysis (FA), which partitions the spike

count co-variability of neuronal activity into a private variance component, representing the

independent, Poisson-like firing variability of individual neurons, and a shared variance com-

ponent, which represents the coordinated fluctuations of interest (Methods 3.3.5 and Appendix

A). FA finds a latent basis set of dimensions that describe the neuronal population’s shared

variance. To assess the dimensionality of the coordinated fluctuations in both brain areas, we

adopted metric dshared from Williamson et al. [59], defined as the number of ordered latent

dimensions required to explain 95% of the neuronal population’s shared variance. Consistent

with prior findings of low dimensional dynamics in V4 [24, 23], the average dshared of V4 ac-

tivity across recording sessions was one (Figure 3.2a). PFC exhibited much higher dimensional

dynamics, with an average dshared of five across recording sessions (Figure 3.2a). Possessing

simultaneous recordings of our two brain areas, we were able to do a more direct comparison

of the dimensionality expansion between V4 and PFC. Even when assessing the FA results of V4

and PFC activity from matched recording sessions, we found dshared in PFC was typically ≥ 4 de-

spite it consistently inheriting only one-dimensional shared variance from a single hemisphere

of V4 (Figure 3.2b). We note once again that our recorded PFC hemisphere would have received

information from both the left and right visual cortices. Assuming symmetric transmission of
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3.4. Results

V4 activity from both cortices, we would expect PFC to have at most two dimensions of shared

variability if it directly reflected its V4 inputs. We thus concluded that PFC activity contained

additional dimensions of shared variance from those possibly inherited from V4.

We pause now to consider whether it comes as a surprise that PFC has much higher dimen-

sional shared variance than V4. PFC integrates information from multiple senses and is com-

plicit in working memory and other executive functions [130, 131, 132, 133]. These high-level

functions are made possible through the myriad of afferent projections that PFC receives from

cortical areas other than V4. The most naive hypothesis of our dimensionality results would

state that our observed high-dimensional, shared fluctuations in PFC reflect inputs from other

brain regions unrecorded in this study. However, the logistics of confirming or refuting this hy-

pothesis would be intractable with contemporary neural recording technologies [7]. Analyzing

spike count co-variability with dimensionality reduction techniques like FA requires simultane-

ous recordings of single unit activity from many neurons. It is currently infeasible to collect

single unit recordings of this scale across several brain areas simultaneously in an awake, be-

having animal [7]. We instead chose to adopt a parsimonious modeling approach, in which we

set out to determine whether PFC could expand the dimensionality of shared variance inherited

from V4 through recurrent interactions alone. We note that our parsimonious model does not

preclude the existence or influence of inputs to PFC from unobserved brain areas.

If it were true that PFC filtered our V4 input through complex recurrent dynamics rather

than inheriting the structure of its activity directly, it would perhaps mean we would see no ob-

vious hallmark of the V4 latent dimension in the shared fluctuations of our PFC activity. We set

out to investigate this premise. Knowing that the visual system is lateralized and our recorded

V4 activity was likely transmitted preferentially to PFC neurons encoding the same (contralat-

eral) visual hemifield, we investigated whether PFC shared variability was dominated by any

latent dimension that loaded differentially onto PFC neurons with opposite visual hemifield

preferences (Figure 3.2c). A differentially-loaded latent would be quantified by a difference in

the sign or polarity of that latent’s loadings onto PFC neurons preferring the contralateral versus

ipsilateral visual hemifield. Such a result would be evidence that the contralaterally-tuned PFC

population directly inherits and trivially transforms the single latent dimension of shared vari-

ance observed in our V4 activity. To the contrary, we found that none of the latent dimensions

describing PFC’s shared variance cleanly exhibited differential loadings onto PFC neurons with
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Figure 3.2: Factor analysis (FA) of residual activity (trial-to-trial variability) in V4 and PFC.
Analyses performed on each of 19 recording sessions, where there were 39 ± 9 V4 neurons,
25 ± 4 PFC neurons, and 56 ± 3 trials per matched target condition in each session.(a) Cumu-
lative percentage of shared variance explained by each ordered FA latent dimension. Results
are pooled across sessions. Error bars are SEM. (b) Session by session comparison of dshared
(number of latent FA dimensions required to explain 95% of population shared variance) for
simultaneously recorded V4 and PFC data. Marker size proportional to number of sessions
represented at that datapoint (marginal data distributions shown). (c) Distribution of FA load-
ings onto the top 3 latent dimensions (Methods 3.3.5) for ipsilateral-preferring (black) and
contralateral-preferring (grey) PFC neurons. 3 representative recording sessions are shown out

of the 19 total sessions.

ipsilateral versus contralateral tuning. Figure 3.2c visualizes the distribution of loadings from

the top three latent dimensions of shared variance onto ipsilateral and contralateral preferring

PFC cells for 3 example recording sessions of the 19 analyzed in total. The polarity of these load-

ings did not cleanly decompose onto PFC neurons with opposite visual hemifield preferences.

Moreover, ipsilateral and contralateral preferring PFC cells were not obviously separable in the

multi-dimensional space of the loadings from all three top latents. It appeared that the strong,

one-dimensional latent that would have been selectively-inherited by a PFC subpopulation had

been transformed non-linearly across PFC’s network and could no longer be extracted from the
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3.4. Results

activity of its target subpopulation.

3.4.2 Linear network dynamics cannot expand dimensionality

Our findings in the previous section suggested that PFC expands the dimensionality of shared

variance inherited from its inputs through recurrent interactions. The remainder of this chapter

will use spiking network models to gain a mechanistic understanding of the recurrent connec-

tivity architectures that are capable of dimensionality expansion.

We begin by modeling the laterally-tuned V4 inputs to PFC. In the previous section, we con-

firmed findings that the shared variance of activity in a single V4 hemisphere is approximately

one-dimensional [24, 23]. We thus modeled our recorded V4 hemisphere as the activity of

2000 excitatory (E) neurons generated from a doubly-stochastic process, in which individual

neurons had Poisson spiking statistics but were correlated through a common, one-dimensional

fluctuation induced by an Ornstein-Uhlenbeck (OU) process (Methods, Equation 3.5). Previous

studies indicate that noise correlations within a V4 hemisphere are positive, while spiking ac-

tivity across V4 hemispheres is uncorrelated [32, 114]. We captured this effect by simulating

two V4 populations, representing the two visual hemifields, each of which consisted of 2000 E

cells correlated through two different realizations of the OU process (λL and λR, respectively,

Figure 3.3a). The pairwise spike count covariance of our simulated V4 activity converged to the

covariance of our underlying OU processes computed in Equation 3.12 (Figure 3.3a).

To first understand how PFC activity would reflect V4 inputs in the absence of recurrent

interactions, we begin with the simplest PFC model architecture consisting of 4000 uncoupled E

cells with leaky-integrate-and-fire (LIF) dynamics (Figure 3.3b). Noise correlation analyses of

our PFC neural data showed that PFC cells preferring opposite visual hemifields lacked shared

fluctuations (Figure 3.1e). This indicates that PFC neurons preferring opposite visual hemifields

did not receive the same global fluctuations from a common afferent pool. Accordingly, we chose

to model our feedforward connections from V4 to PFC (expressed by connectivity matrix JFF)

as disjoint projections reflective of hemifield tuning, where V4 model neurons preferring the left

visual hemifield projected exclusively to PFC model neurons preferring the left visual hemifield

(Figure 3.3b).
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ba

h 2 L, R : V4 hemifield

�h : shared firing rate of h

�̄ : baseline firing rate

⌧ : timescale of shared fluctuations

� : amplitude of shared fluctuations

⇠h : shared white noise process
<latexit sha1_base64="S7vu1AC2ldA4P1jSV+5iNsd0Kyk="></latexit>

Simulate neural activity in each V4 hemisphere as Poisson spike trains 
correlated through a common, rank 1 fluctuation:  
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Linearized form of the network:
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Figure 3.3: Propagation of shared variability through an uncoupled network with linear dy-
namics. (a) Left: Model network input consisting of two V4 hemifield populations of spiking
neurons, ~vL and ~vR. Spiking activity in each hemifield is correlated through a common, 1 di-
mensional fluctuation (OU process) specific to that hemifield (λL or λR). Right: Spike count
variance and marginal spike count covariance of simulated V4 activity (colored distributions,
mean denoted by dotted line) compared to the theoretical estimate of the underlying OU pro-
cess (black line). Spike counts binned in 50 ms windows. (b) Schematic of a 2-layer network
model in which the V4 inputs (a) project disjointly (weight matrix JFF shown) to an uncoupled,
downstream population of spiking neurons. (c) Factor analysis (FA) of the population activity
from the output layer of the uncoupled network. Two FA latent dimensions capture 100% of
the population shared variance because the network behaves with linear dynamics and directly
inherits the variability structure of the inputs. (FA was performed on 1000 s of simulated activ-
ity, binned in 50 ms windows, from 10 samples of 100 excitatory neurons per network graph
realization, for 2 realizations.) d-f: Linear response theory of the uncoupled network (activity
from the full output layer population of 4000 E neurons, simulated over 1000 s, for 1 graph
realization). Spike counts binned over 50 ms windows. (d) F-I curve for excitatory (E) neurons
preferring the left (L) or right (R) visual hemifield (simulated data, black; subpopulation fits,
red). The gain Gi of each neuron in the subpopulation was fit according to the slope of the F-I
curve (blue). (e) Full pairwise covariance structure Cy of the network for the simulated data
(bottom, Sims) and as predicted by linear response theory (Theory, top). Insets show that the-
ory captures the microstructure of pairwise statistics. (f) Pairwise comparison of linear response
predicted covariance CTheory

y and covariance of simulated data CSims
y . Each datapoint is 1 matrix

entry from e (EL-EL pairs, grey; ER-ER pairs, black; EL-ER pairs, orange).
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3.4. Results

Neurons in our uncoupled model directly inherit the spiking activity of their V4 inputs, with

the exception of minor variability generated through each neuron’s LIF dynamics. The spiking

activity of each PFC neuron in the uncoupled model, defined here as yi(t), can thus trivially be

approximated through a linear combination of its V4 inputs (Methods 3.3.9):

yi(t) = Gi


∑

j

JFF
ij v

FF
j (t)


 , (3.57)

where vFF
j (t) is the spiking activity of a V4 neuron j that projections to PFC neuron i with con-

nection strength JFF
ij . Gi is simply the gain by which each PFC neuron i scales its inputs, often

denoted as the neuron’s linear response [139, 120, 149]. When the network receives sufficiently

slow perturbations and is observed over sufficiently long time windows such that its trial aver-

aged response is static rather than locked to fast-timescale signal, Gi is well approximated by

the slope of a neuron’s frequency-current (F-I) curve, or average firing response to fixed input

current. Given the linear response approximation in (3.57), the shared variance of PFC activity

is:

Cy = Cov(~y, ~y)

= GJFFV shared(GJFF)>, (3.58)

where ~y contains the firing responses of all model PFC neurons. See Methods (3.19) for details.

Importantly, the dimension of model PFC’s shared variance Cy will be bounded by the two-

dimensional spiking co-variability of V4 activity (V shared) through the linear algebra Frobenius

Inequality:

rank(Cy) ≤ min(rank(G), rank(JFF), rank(V shared))

≤ rank(V shared)

≤ 2. (3.59)

Factor analysis of the activity simulated from the uncoupled model reveals a dshared of 2 (Figure

3.3c), confirming the bounded rank of share variance predicted by our linear response the-

ory (3.59). Together, this exercise reveals that a network with linear dynamics cannot amplify
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Chapter 3. Assembly structure expands the dimension of shared variability in cortical networks

dimensions; a linear network’s shared variance will instead always be constrained by the min-

imum dimensionality of its input co-variability. So long as our PFC model network has linear

dynamics and receives two-dimensional fluctuations from V4, its coordinated fluctuations will

be confined to a two-dimensional subspace of neuronal activity (Figure 3.3c). We used our lin-

ear response theory for shared variance (3.58) to successfully predict the covariance structure,

at the level of neuron pairs, of our simulated uncoupled network activity (Figure 3.3e-f). This

involved first computing each neuron’s gain Gi (3.57), which quantified the neuron’s sensitivity

to its inputs (Figure 3.3d). Individual neuron gains are well approximated by the slope of their

population’s frequency-current (f -I) curve. (See Methods Section 3.3.13 for details.)

A network with uniform recurrent coupling is also linearizable when that coupling is suffi-

ciently weak such that a single neuron’s spiking response is still linearly related to the sum of

its synaptic inputs (in this case, of both the feedforward and recurrent variety). Linear response

theory has been commonly applied to such weakly coupled recurrent networks [149, 139, 120].

Derivations of the linear response theory for the weakly coupled recurrent version of our model

are contained in Methods Section 3.3.9.2. However, so long as linear response approxima-

tions are appropriate, the dimensionality constraint placed on the shared variance of our net-

work by Equation (3.59) will still hold, and our population activity will still be confined to

two-dimensional subspace (schematic, Figure 3.3c). This implies that even a PFC model net-

work with weak recurrent coupling cannot generate dimensionality or expand the dimension of

shared variance that it inherits from V4.

3.4.3 Metastable dynamics of recurrent networks with multiple, tuned inputs

The previous section demonstrated that linear dynamics are insufficient to explain the dimen-

sionality expansion that we observe between the shared variance of V4 activity and PFC activity.

We now move to studying strongly coupled networks, with the intuition that strong recurrent

interactions are likely necessary to generate non-linear dynamics.

We being by studying a network model with strong, uniform recurrent connectivity. Strongly

coupled networks require inhibition to prevent mass, pathological recurrent excitation and sta-

bilize network dynamics [62, 64]. We therefore introduce 1000 inhibitory (I) cells to our recur-

rent network and make our network connections respect the relative synaptic strengths required
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Figure 3.4: Dynamics of networks with assembly structure that inherit shared variability. (a)
Top: Visualization of connectivity in recurrent networks, with increasing degrees of clustering
(R), that inherit shared fluctuations from tuned, disjoint inputs (pink and purple). The R = 1
network has uniform, random recurrent connectivity. E cells are shown in grey (left hemifield
preference) and black (right hemifield preference). I cells are shown in pink (left hemifield
preference) and red (right hemifield preference). Networks of 250 neurons are visualized. Our
simulated network contained 4000 E and 1000 I neurons. Middle: Spike rasters showing the
spike times of all E neurons. Bottom: Distribution of spike count correlation ρ for pairs of E
neurons within a hemifield (grey) or between hemifields (orange). ρwas computed over 150 ms
windows. Dotted lines denote distribution means. (b) Heatmap of the difference between the
mean within hemifield pairwise spike count correlation ρwithin and the mean between hemifield
pairwise spike count correlations ρbetween, as a function of clustering strength R and amplitude
of shared fluctuations σ. ρ was computed over 150 ms windows. Statistics for each network
architecture were computed over 30 s of simulated data for 3 realizations of the network graph.
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Chapter 3. Assembly structure expands the dimension of shared variability in cortical networks

for E/I balance [62]. Our two V4 populations reflecting visual hemifield tuning still project dis-

jointly to PFC layer cells preferring their same visual hemifield. Under this model architecture,

pairs of neurons in PFC receiving inputs from the same V4 population now exhibit strong spike

count correlations, while neuron pairs receiving inputs from opposing V4 populations exhibit

strong anti-correlations (R = 1, Figure 3.4a). In fact, the anti-correlation mode of population

activity with this model architecture is so strong that the network exhibits winner-take-all dy-

namics to the point of pathology – when PFC neurons tuned to one visual hemifield are active,

neurons tuned to the opposite visual hemifield are nearly silent.

Networks in which multiple inputs disjointly project to a layer of neurons with strong, uni-

form, recurrent coupling cannot avoid this mass anti-correlation mode of activity [72, 117].

The intuition for this known result requires us to consider the relative spatial scales of our

feedforward projections and recurrent interactions. Asynchronous dynamics are achieved in

balanced networks when correlations due to feedforward inputs and recurrent inputs cancel

[64]. A single, broad recurrent architecture cannot, however, dynamically balance multiple,

spatially-localized pockets of correlated activity from tuned inputs with disjoint projections.

(See Methods Section 3.3.10 for a formal derivation of this claim.) What results is multi-stable

dynamics in our PFC network model, with alternating states of highly-correlated activity and

silence from PFC neurons tuned for each visual hemifield.

3.4.4 Tuned recurrent assemblies counterbalance tuned inputs

Our pathological anti-correlations in the previous section resulted from a spatial imbalance of

feedforward projections and recurrent interactions. To reduce these anti-correlations, we would

need recurrent architecture with spatial structure similar to the hemifield-specific projections

from our V4 populations [72]. We considered that clustered synaptic connections between

neurons with similar functional tunings are commonly observed in cortex [150, 151, 152].

PFC neurons that we recorded in vivo preferring the same visual hemifield also showed strong

evidence of increased covariability as compared to PFC neurons with opposite hemifield pref-

erences (Figure 3.1e). We thus introduce recurrent assemblies that reinforce visual hemifield

tuning. Similar to Litwin-Kumar & Doiron [60], we define a clustering parameter R used to con-

trol the degree of increased connectivity between two PFC neurons preferring the same visual
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3.4. Results

hemifield:

Rαβ =
Jαβin

Jαβout

. (3.60)

Here, subscript “in” denotes two PFC neurons in the same assembly, preferring the same visual

hemifield. Subscript “out” denotes two PFC neurons in opposite assemblies. Jαβ describes the

synaptic strength of connections from neurons of cell type β to neurons of cell type α, where

{α, β} ∈ E, I. Note that, unlike the study by Litwin-Kumar & Doiron [60], this means both E

and I connections in our network are clustered. Recent experimental studies support the exis-

tence and maintenance of clustered inhibition that is related to functional tuning [153, 154].

Moreover, inhibitory assemblies were shown to moderate firing rates of active excitatory assem-

blies in Litwin-Kumar & Doiron [60]’s model framework, tempering winner-take-all dynamics.

We employ them for a related but different purpose – to provide recurrent connections with

spatial scale commensurate to our input projections and help dynamically counterbalance the

feedforward correlations arising from our disjoint V4 inputs.

For computational simplicity, we will induce a symmetric clustering constraint in all the

work that follows such that R = REE = REI = RIE = RII . Note that R = 1 describes the

uniform recurrent connectivity explored in the previous section. Competitive dynamics between

PFC neurons preferring the left and right visual hemifield diluted when we introduced tuned

assemblies to the recurrent architecture of our network model, corresponding to clustering co-

efficients of R > 1 (Figure 3.4a). This was measurable through shifts in the distributions of

spike count correlations, both within and between assemblies. As the clustering coefficient R

increased, PFC neurons within assemblies became less correlated, and PFC neurons in opposite

assemblies became less anti-correlated. At R = 2.5 we see convergence of our two distributions

such that there are near-zero mean correlations both within and between hemifields. Critically,

the R = 2.5 network’s ability to counterbalance input correlations arises exclusively from in-

creased communication within assembly; there is no decrease in interactions between neurons

in opposite assemblies as compared to recurrent network with uniform connections (R = 1),

and we are not trivially restoring balance with two, independent networks.

We observed that our network now contained competing co-mechanisms of variability;

strongly correlated, lateralized projections introduced competitive spiking dynamics with a
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Chapter 3. Assembly structure expands the dimension of shared variability in cortical networks

strong anti-correlation mode, and strong recurrent assemblies (R > 1) appeared to dynami-

cally re-balanced the anti-correlation mode. To better understand the interplay of these two

mechanisms, we traversed the 2D model parameter space defined by ranging over the clus-

tering coefficient R and the magnitude of our shared fluctuations inherited from V4 (Figure

3.4b). These V4 fluctuations are defined by the variance σ2 of the OU process underlying our

V4 spiking activity (Equation (3.5)). For each value of R and σ, we measured ρwithin − ρbetween,

where ρ is the mean spike count correlation across neuron pairs, trials, and graph realizations

(NE = 4000 neurons, 30s of data per graph realization, 3 graph realizations) and the subscripts

“within” and “between” denote pairwise correlations within the same hemifield assembly and

between opposing hemifield assemblies, respectively.

The bottom left of the Figure 3.4b heatmap represents a uniformly connected recurrent

network (R = 1) inheriting V4 correlations due exclusively to common projections; at σ = 0

spiking activity from our model V4 neurons is uncorrelated. This exact case is covered by Rosen-

baum et al. [72], and correlations within hemifield are O(1) [140]. The top left of Figure 3.4b

represents a network with the same input structure but strong recurrent assemblies. We have

already presented the intuition for how assemblies restore the spatial scale of feedforward and

recurrent connectivity and dynamically restore balance to the network. Derivations in Meth-

ods Section 3.3.10.2 show that the balance condition is dependent on the invertibility of our

recurrent connectivity matrix. Assemblies restore the asymmetry to our recurrent connectivity

matrix needed to make it invertible. When σ = 0, in the large N limit of neurons, recurrent

assemblies can perfectly balance the feedforward correlations arising from our disjoint inputs

and to produce asynchronous network dynamics.

As we move along the σ axis of Figure 3.4b, we increase the amplitude of the shared fluctu-

ations induced by our OU process, and subsequently, the magnitude of spike count correlations

in our V4 activity. Baker et al. [140] refer to this as the “correlated state”, because the activity

of the feedforward neuronal population has O(1) correlations. These correlations compound

with correlations due to our common input projections, which are also O(1). The total feedfor-

ward correlations received by PFC model neurons are in turn O(N) (Methods, Equation (??)).

Uniform recurrent connectivity (R = 1) cannot dynamically balance these spatially-localized

feedforward correlations, producing model PFC spike count correlations also of O(N) (Bottom
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right, Figure 3.4b, and Methods 3.3.10.2). In this “correlated” state, strong recurrent assem-

blies still significantly dilute both within hemifield correlations ρwithin and between hemifield

anti-correlations ρbetween (Top right, Figure 3.4b). In fact, in the large N limit of neurons,

hemifield-tuned assemblies of sufficient clustering strength are able to dynamically restore bal-

ance (Methods 3.3.10.3). Assemblies cannot, however, restore truly asynchronous dynamics in

the “correlated state”, as model PFC spike count correlations/anti-correlations are then still at

minimum O(1) (Methods 3.3.10.3).

3.4.5 Assembly networks expand the dimension of inherited shared variability

We established that a network model with correlated, disjoint V4 inputs and strong, uniform

(R = 1) recurrent connectivity was sufficient to produce non-linear dynamics in the form of

multi-stability. Identifying a network architecture that gave rise to non-linear recurrent interac-

tions was our original goal, as non-linear dynamics are required for any system to intrinsically

generate dimensionality; we specifically aimed to replicate a dimensionality expansion of shared

variability observed between V4 and PFC. Though our R = 1 network had non-linear recurrent

interactions, it also had pathological levels of anti-correlations that were not representative of

the PFC neural activity we observed in vivo. We solved this problem in Results 3.4.4 by intro-

ducing hemifield-tuned recurrent assemblies, which could successfully dilute the pathological

anti-correlations of the R = 1 model. We showed that in the large N limit of neurons and

as σ → 0, strongly clustered assemblies can even restore the balanced, asynchronous state of

network activity.

Armed now with a model architecture exhibiting both non-linear recurrent dynamics and a

biologically-plausible range of correlation outputs, we sought to test whether this architecture

could indeed expand the two-dimensional shared variability of our model V4 activity. We per-

formed dimensionality analyses on activity simulated from a network with a relatively strong

clustering coefficient (R = 2.3) and relatively weak V4 input correlation parameter (σ = 0.71)

(Figure 3.5). Working in this approximate parameter regime produced recurrent layer spiking

activity that looked nearly asynchronous but contained subtle correlations, qualitatively similar

to our PFC neural data recorded in vivo. Factor analysis (FA) confirmed that our chosen model

architecture could successfully expand the two-dimensional shared variance inherited from V4
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Figure 3.5: The dimension of shared variability in networks with assembly structure. a-c Factor
analysis (FA) of population activity for networks with various strengths of recurrent clustering
R, inheriting common fluctuations of amplitude σ = 0.71. Analyses of each network architec-
ture were computed over 1000 s of simulated activity from 10 samples of 100 neurons each
per network graph realization, for 2 realizations. Spike counts were binned in 50 ms win-
dows. Error bars are SEM. (a) Cumulative percentage of shared variance explained by each
FA-identified, ordered latent dimension in simulated data (left) and PFC neural data (right, see
Fig. 3.2). Error bars are SEM across FA samples. (b) Distribution of FA loadings onto the top 3
latent dimensions (Methods 3.3.12) for model neurons of left (grey) or right (black) hemifield
preference. (c) Percentage of each neuron’s total variance that is shared amongst the popula-
tion, averaged across all analyzed neurons. (d) Fano factor of simulated neural activity as a
function of the time window over which spike counts are binned, for networks of varying R,
σ = 2.4. Analyses of each network architecture were computed over 300 s of simulated activity

for 2 realizations of the network graph.
82



3.4. Results

(uncoupled network, control) to dshared = 6 dimensions of shared variability in model PFC (Fig-

ure 3.5a). These results qualitatively replicated the shared variance that we observed from

PFC activity recorded in vivo. Networks with smaller clustering parameters (R = 1.25 shown,

σ = 0.71, Figure 3.5a) still showed slightly expanded shared variance from the uncoupled con-

trol. (Indeed, even our R = 1 network has multi-stable dynamics, albeit with with a highly

anti-correlated population mode that swamps factor analyses.) Networks with weak clustering

were not able to reproduce the magnitude of dimensionality expansion seen in the PFC data

recorded in in vivo.

We demonstrated in Figure 3.4 that stronger recurrent clustering produced weaker anti-

correlations between model PFC hemifield populations. Analogously, FA reveals that activity

from the two PFC hemifield populations is more separable in the low-dimensional latent space

for smaller network clustering coefficients. We analyzed the distribution of neuronal loadings

onto the top three dimensions of the FA-identified latent space (Appendix A), where each PFC

model neuron was categorized by its preference for the left or right visual hemifield (Figure

3.5b). In the R = 1 network, PFC neurons with opposite hemifield preferences loaded onto each

of the top three latent dimensions with opposite polarity and were linearly separable in a three-

dimensional latent space. Weak degrees of recurrent clustering made the hemifield populations

load onto the top latent dimension with opposite polarities, but this hemifield separability was

not apparent in the second or third latent dimension (R = 1.25, Figure 3.5b). In the R = 2.3

network chosen to model PFC neural data recorded in vivo, model neurons loaded onto the top

three latent dimensions nearly indiscriminately, regardless of their hemifield preference. This

result reproduces our FA findings from the PFC neural data recorded in vivo, in which neurons

of opposite hemifield preference were similarly inseparable in the latent space (Figure 3.2c).

The dilution of correlations/anti-correlations with increasing degrees of recurrent clustering

is also evident through the proportion of total variability that is shared across the population in

networks with different clustering coefficients. We measured the percentage of each neuron’s

total variability that was explained by the latent space of shared variability. We refer to this

measure as a neuron’s “percent shared variance” [59]. The disjoint proportion of variance

that is not shared across the population constitutes FA’s estimate of a neuron’s private “noise”,

or independent trial-to-trial variability. The R = 1 network had the largest percent shared

variance, indicative of the strong, anti-correlating common fluctuations to which the network
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Chapter 3. Assembly structure expands the dimension of shared variability in cortical networks

activity was entrained (Figure 3.5c). Neurons’ percent shared variance decreased as function

of recurrent clustering strength, meaning neural activity was less entrained to latent common

fluctuations for stronger degrees of clustering.

Finally, we examined the neural population’s average Fano factor as a function of recurrent

clustering strength, where Fano factor is defined as the ratio between each neuron’s trial-to-trial

variance and mean spike count over a fixed time window (3.3). Neurons exhibit Poisson-like

trial-to-trial variability, and Poisson processes of stationary rate have a Fano factor of 1. Fano

factors of greater than 1 can therefore indicate fluctuations in a neuron’s underlying firing rate.

We measured Fano factor as a function of the window duration over which spike counts were

binned to evaluate long-timescale firing rate variability in our model neurons (Figure 3.5d).

Fano factors of all evaluated networks were sub-Poisson for time bins less than or equal to

100 ms. These small time bins primarily captured population activity within a single network

state, in which the dominant mode of variability is within-hemifield spike count correlations.

Unsurprisingly, for very small time bins (∆t ≤ 50 ms), neurons in the R = 1 network have lower

Fano factors than neurons in clustered networks; within state, theR = 1 network activity is most

correlated and most entrained to common latent fluctuations. For larger time bins (∆t ≥ 100

ms), however, neurons in clustered networks exhibit smaller Fano factors than neurons in the

uniform network. This discrepancy magnifies as the size of the time bin increases. Large time

bins capture fluctuations in firing rate across the two meta-stable states of network activity.

Clustered networks exhibit weaker anti-correlations across hemifield populations in a single

network state (Figure 3.4). We make the related observation that the spiking activity of a single

neuron in a clustered network will then vary less between State R and State L. This observation

manifests as lower Fano factors in clustered networks even when the networks are evaluated at

timescales that capture state transitions. All Figure 3.5d analyses are performed on networks

with larger inherited variability (σ = 2.4), as larger input correlations will drive firing rate

fluctuations over state transitions. The qualitative trend reported in Figure 3.5d is robust across

choice σ, but small input noise correlations never give rise to super-Poisson variability.
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3.4. Results

3.4.6 Metastability as time-sharing between states of low-dimensional, linear dy-

namics

Our networks with strong, recurrent coupling switch between Left and Right metastable states

of activity. While this switching behavior clearly does not constitute linear dynamics, we asked

whether it was possible to understand the single state dynamics of our network using the lin-

ear response frameworks from Results 3.4.2. We hypothesized that each of our two states of

network activity exhibited approximately linear dynamics. Since linear systems are incapable

of generating dimensionality, this hypothesis would imply that conditioned on each attractor

state of activity, our network inherited two dimensions of shared variance from upstream V4

populations in each state of activity. We could then explain PFC’s ability to expand dimensional-

ity through its “time-sharing” between two states of network activity, each of which comprised

two-dimensional, linear dynamics (Figure 3.6a). A perfect concatenation of these two linear

states of activity (in which hops between states occur instantaneously) would be capable of

producing up to four dimensions of shared variance. We proposed that the extra dimensions

of shared variance observed in our PFC neural data and R = 2.3 model network (dPFC
shared = 5,

Figure 3.2a and dR=2.3
shared = 6, Figure 3.5a, respectively) could arise through non-instantaneous

state transitions, during which time the network activity would not behave according to the

dynamics of either state.

To begin testing this hypothesis, we collected our model network’s recurrent layer activity in

50 ms time bins. We used a Gaussian Mixture Model [141] to assign each time bin a probability

of membership to the Left or Right attractor state of network dynamics. (See Methods 3.3.11

for details and Supplemental C for visualization.) Time bins with less than 0.97 probability of

membership to either state were assumed to constitute a state transition and were disregarded

from all subsequent analysis. We note from Figures 3.4a and 3.5d that the Left and Right

activity states are less differentiable in networks with strong clustering. We therefore conducted

all linear response analyses that follow on a model network with clustering coefficient R = 1.25.

In this parameter regime, over 90% of the total analyzed population activity was assigned to the

Left or Right state.

Using our state-partitioned population activity, we derived a linear response approximation

(Methods 3.3.9) of the full population spike count covariance structure in either the Left and
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Figure 3.6: Attractor states of linear dynamics in networks with strong recurrent coupling and
disjoint inputs. (a) Schematic of network activity “time-sharing” between two, low-dimensional
attractor states, each of which has linear dynamics. State L (green) corresponds to high activity
periods from neurons preferring the left visual hemifield. State R (yellow) corresponds to high
activity periods from neurons preferring the right visual hemifield. b-e: Linear response theory
applied to each attractor state of a network with R = 1.25 recurrent clustering strength that
inherits σ = 0.71 amplitude shared fluctuations from disjoint inputs. Spike counts were binned
in 50 ms windows. See Methods 3.3.11 and 3.3.13 for further details. (b,d) F-I curves fitted
to each cell type and hemifield-tuned neural subpopulation. Simulated data shown as points
with colors corresponding to subpopulation membership (network visualizations, Fig. 3.4). Fits
shown in yellow and green for State R and State L, respectively. (c,e) Pairwise comparison
of linear response predicted covariance CTheory

y and covariance of state-partitioned simulated
data CSims

y (EL-EL pairs, grey; ER-ER pairs, black; EL-ER pairs, orange). Results are com-
pared against a control in which simulated data is shuffled. Lines represent linear regression

summaries of the pairwise relationship between Theory and Sims across all pairs.
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2 Layer Model, Strongly Coupled PFC w/ Assemblies

Ga
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Figure 3.7: Neuronal gain shifts between State L and State R for EL (grey), IL (pink), ER

(black), and IR (red) neurons, as predicted by the linear response theory in Fig. 3.6. Network
schematic is shown above for subpopulation clarity.

Right state of activity. For each state, we computed every neuron’s gain Gi in that state by

differentiating the F-I curves fitted to each population αh (Figure 3.6b and d for State R and

State L fits, respectively). Here α ∈ {E, I} denotes cell type and h ∈ {L,R} denotes visual

hemifield preference. (See Methods 3.3.13 for details.)

We used these gains to compute a theoretical approximation of Cy, the state-conditioned

shared variance of all neuron pairs, according to the linear response equations in Methods

3.3.9. In statistical mechanics literature, this is referred to as a linear response theory of the

microcanonical ensemble. Theoretical approximations of shared variance in State R were pre-

dictive of the spike count covariance of the simulated data in State R at the level of individual

neuron pairs (Figure 3.6c, CTheory
yij = 0.81CSims

yij − 0.011, R2 = 0.63; excitatory neuron pairs

only). We thus concluded that population activity in our network’s State R behaved accord-

ing to approximately linear underlying dynamics. Linear response predictions of shared vari-

ance were more heteroscedastic in State L, in which the theory tended to overestimate anti-

correlations between neurons preferring opposite visual hemifields (Figure 3.6e). However,

theory estimates of shared variance were still significantly more related to the shared variance

of simulated activity than to the control, in which simulated data were shuffled (Figure 3.6e,

C
Theory
yij = 0.86CSims

yij −0.010, R2 = 0.23; CTheory
yij = −2.3×10−5CShuffle

yij +0.012; excitatory neuron

pairs only). Linear response theory assumes that shared variance is shaped by the matrix of
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Chapter 3. Assembly structure expands the dimension of shared variability in cortical networks

neuronal gains G. We therefore examined neuronal gains as a function of state to better un-

derstand the shift in shared variance structure between State R and State L (Figure 3.7). We

remind the reader that all neurons participate in both states, i.e., model neurons preferring the

left visual hemifield still participate in State R – they are simply the less active population. Neu-

rons exhibited organized and significant gain shifts between State R and State L. Both model E

and I neurons preferring the left visual hemifield had larger gains in State L than State R; anal-

ogously, model E and I neurons preferring the right visual hemifield had larger gains in State

R than State L. Symmetries between E and I populations preferring the same visual hemifield

result from the network activity’s existence in a roughly balanced regime.

Our linear response analyses supported the hypothesis that each state of our metastable

network activity obeyed roughly linear dynamics, with interpretable shifts in shared variance

structure occurring between State R and State L. We concluded that if this interpretation of our

network dynamics was indeed true, FA should uncover at most 2 dimensions of shared variance

in state-partitioned population activity. We returned to the R = 2.3 model network used to

capture PFC activity recorded in vivo, in which we saw significant dimensionality expansion

(dshared > 4) in the population activity across all states (Figure 3.5a). As predicted by our

hypothesis, FA revealed dshared = 2 latent dimensions of shared variance in State R of the

R = 2.3 network activity. This constituted a highly significantly reduction from the dshared = 6

latent dimensions of the R = 2.3 network activity across all states.

Factor analysis of State L activity in the same network determined that dshared = 4 latent di-

mensions were required to explain 95% of shared variance. While this result is greater than the

2-dimensional shared variance that would be predicted in a system with truly linear dynamics,

it still represents a statistically significant reduction from the dshared = 6 latent dimensionality

of the network activity over all time. We note that several sources of variability likely influence

our imperfect State L Results. First, in our highly clustered network, the two states of network

activity do not have drastically different population spiking statistics (Figure 3.4). Our Gaussian

Mixture Model (GMM)’s unsupervised partitioning of activity into states can therefore produce

variable results. Lacking a ground truth on network state, we cannot directly quantify the error

in the GMM state partition, and all subsequent analyses are dependent upon this partition. This

means it is possible that our State L partition of network activity contains instances of transitory

dynamics. Second, our factor analyses of state-partitioned activity were performed on a single
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Figure 3.8: Factor Analysis of state-partitioned population activity in the biomimetic model
network with R = 2.3 clustering strength and σ = 0.71 amplitude shared fluctuations from
disjoint inputs (see Fig. 3.5a) Simulated activity was partitioned by a Gaussian Mixture Model
(Methods 3.3.11). Spike counts were binned in 50 ms time windows. Analyses were performed
over ∼ 1000 s of simulated activity from 10 samples of 100 neurons. Error bars are SEM.
See Methods 3.3.12 for further details. The dimension of shared variance for state-partitioned
activity (yellow and green for State R and L, respectively) is similar to that of the control
network without recurrent coupling (grey), which has known linearizable dynamics (Fig. 3.3d-

f).

instantiation of the network graph. Because our model network does not contain unlimited neu-

rons, the micro-connectivity structure of our network in each graph instantiation can influence

network dynamics. Third, we observe our network over ∆t = 50 ms time windows, despite

the fact that our theory is for time windows of infinite length (Appendix B). Finally, we note

that linearization of each state of a network with strong, recurrent coupling and input correla-

tions would be merely an approximation for even a theoretical network of infinite neurons and

labeled states of network dynamics that was observed over infinitely long time windows.

3.5 Discussion

We have shown that multi-stable attractor dynamics arise in balanced networks receiving struc-

tured, feedforward inputs from upstream neural populations with non-overlapping tuning pref-

erences (Figure 3.4). In networks with uniform, random recurrent coupling, this multi-stability

is characterized by “winner-take-all” dynamics, in which neurons receiving different feedfor-

ward inputs have strongly anti-correlated activity (Figure 3.4). Recurrent assembly structures
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Chapter 3. Assembly structure expands the dimension of shared variability in cortical networks

reflecting the input tuning help to dilute these pathological, winner-take-all dynamics, giv-

ing rise to population activity with smaller, biomimetic degrees of correlation (Figure 3.4).

But even with de-correlating assembly architecture, recurrent network dynamics remain subtly

metastable. Attractor competition between states of weakly correlated activity produces high-

dimensional shared variability across the recurrent population (Figure 3.5). The result is a

two-layer network in which low-dimensional shared variance inherited from multiple, tuned in-

puts is expanded through recurrent interactions. Using a model network with this connectivity

architecture, we successfully reproduced in vivo neural data from the primate visual system in

which V4’s dimension of shared variance was smaller than that of downstream visual area PFC

(Figure 3.2a and 3.5a). Finally, we showed that a single attractor state of recurrent activity

reflected the low-dimensional structure inherited from our V4 inputs (Figure 3.6-3.8). We thus

introduced a new framework in which high-dimensional cortical variability can be understood

as“time-sharing” between low-dimensional, tuning-specific circuit dynamics.

3.5.1 The structure of shared variance across subpopulations

Analyses of our in vivo data revealed that PFC neurons preferring the same visual hemifield had

positively correlated spiking activity, while PFC neurons preferring opposite visual hemifields

had uncorrelated spiking activity (Figure 3.1e-f). This result constitutes an asymmetry in the

shared variance of tuning-specific subpopulations. Our network model does not currently cap-

ture this feature of the analyzed neural data. For computational simplicity, our model placed a

symmetric constraint on the clustering coefficient R such that in-cluster synaptic strength was

scaled uniformly for E-to-E, E-to-I, I-to-E, and I-to-I recurrent connections. As a result, in-

creasing R symmetrically reduced correlations within hemifield and anti-correlations between

hemifields (Figure 3.4a).

We showed in Methods 3.3.10 that the balance condition relies on the invertibility of our

recurrent weight matrix. We note that previously studied recurrent architectures of excitatory-

only clusters [60] will not restore invertibility to the recurrent weight matrix and will not dy-

namically balance the correlations inherited from our disjoint inputs. Though some degree of

inhibitory cell type clustering is required to prevent our recurrent weight matrix from being sin-

gular, the invertibility condition does not require exact weight symmetry between all clustered

90
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subpopulations. We therefore postulate that tuning-specific shared variance structure could be

achieved by exploring the full space of recurrent connectivity architectures still satisfying the

weight matrix invertibility condition. Characterizing this full connectivity space and relating it

to network dynamics is an important topic for future study.

3.5.2 Long-timescale variability and co-variability through inheritance

Cortical neurons show firing rate fluctuations over long timescales [155, 156]. Fano factor is

used as a measure of these firing rate fluctuations; since neurons are known to exhibit Poisson-

like private spiking variability, Fano factors greater than 1 are thought to represent variability

in a neuron’s underlying firing rate. In this case, neural activity behaves according to a “doubly

stochastic” process [157], in which spike count variability and slow timescale firing rate dy-

namics are separable. Litwin-Kumar & Doiron [60] reproduced long timescale rate fluctuations

by introducing assembly structure to excitatory subpopulations of recurrent layer neurons. In

this framework, competing pockets of excitatory activity in the recurrent layer internally gave

rise to attractor dynamics. Rate fluctuations, as measured by large Fano factor values, reflect

competition between attractor states. Therefore, in Litwin-Kumar & Doiron [60]’s framework,

increasing the cluster density lengthened the timescale of rate fluctuations and increased Fano

factors.

Our model introduces a completely opposing potential mechanism for firing rate variability,

in which tuned, disjoint inputs give rise to attractor dynamics. In our framework, a network

with balanced, uniform recurrent coupling can have metastable activity by inheriting structured

input correlations from upstream brain areas. Our uniform, balanced recurrent network (R = 1)

thus produces Fano factors greater than 1 at timescales capturing transitions between attractor

states. Moreover, recurrent assemblies in our framework constitute neighborhoods of increased

connectivity between all cell types. Our clustering parameter R strengthens E-to-E, I-to-I, E-

to-I, and I-toE connections. As such, our clusters are mechanisms to make the spatial scale

of recurrent connections match the spatial scale of our disjoint inputs. In our framework, in-

creasing the clustering strength R dilutes the metastable recurrent dynamics that arise through

the input structure. Increased degrees of clustering thus result in reduced rate fluctuations and

smaller Fano factors (Figure 3.5d).
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Chapter 3. Assembly structure expands the dimension of shared variability in cortical networks

Our framework also demonstrates an inverse relationship between Fano factor and the di-

mension of shared variability, as stronger clustering is associated with both smaller Fano factors

and greater dimensionality expansion (Figure 3.5). Previous network models of internally-

generated co-variaibility have been unable to decouple a direct relationship between the Fano

factor magnitude and the rank of population-wide variability [24]. They have thus been un-

able to explain neural datasets with both low-rank shared variability and long timescale rate

fluctuations [32]. Our framework might present a key to understanding such datasets.

These are two of the many ways in which our study highlights major differences in the

dynamics of networks with internally generated versus inherited variability. We showed that

structured inputs can significantly alter the dynamics of known recurrent architectures previ-

ously studied in isolation. We believe that studying the interplay between the mechanisms of in-

herited and internally-generated variability is an important direction for systems neuroscience,

as it is widely acknowledged that integration areas of cortex receive common fluctuations from

outside brain areas.
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4. Conclusion

This thesis presented two studies on the propagation of shared variability through multi-layer

cortical circuits. In Chapter 2, I uncovered low-rank shared variability in motor cortex likely

owing to somatosensory inputs. In Chapter 3, I discovered that the dimension of shared vari-

ability expanded between V4 and PFC. I then produced a two-layer spiking network model that

qualitatively captured the in vivo data, thus revealing one mechanism by which the visual circuit

could have produced the observed dimensionality expansion. In this concluding chapter, I will

briefly discuss relationships between these studies and present possible extensions of the work

for future studies.

4.1 Treatment of shared variability across studies

Though both Chapters 2 and 3 studied circuits in which one cortical area inherited low-rank

shared variability from another cortical area, the methods by which we uncovered low-rank

co-variability structure from the inputs differed. In Chapter 3, we were fortunate to have simul-

taneous recordings of V4 and PFC, meaning we could directly observe the neural activity of the

circuit’s upstream population. This made it possible to disambiguate whether V4 activity had

low-rank shared variability, or whether this latent mode of low-rank variability arose through

common projections from V4 neurons onto the PFC population. Our analyses of V4 data showed

that trial-to-trial activity in V4 was, itself, low-dimensional, and we inferred (through functional

tuning properties of the circuit) that structured projections from V4 were likely an additional

means of correlating the downstream PFC population. By contrast, in Chapter 2, we only had

access to recordings from the downstream M1 population of our circuit; we were not able to

directly observe S1 activity. It is thus impossible to distinguish whether the shared variability

detected in M1 was due to low-dimensional activity in S1 or due to common projections from S1
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neurons; As discussed in Section 1.3.2 of this thesis Introduction, these two circuit mechanisms

of correlation look identical from the vantage point of the observable M1 population.

In Chapter 3, our dataset consisted of many repeated presentations of a finite set of visual

stimuli. It was thus trivial to distinguish the recorded neural population’s response to the stim-

ulus from its trial-to-trial response; the trial-to-trial response was simply the residual neural

activity about the NHP’s mean response to each of the target stimuli. In Chapter 2, the task

(minimally constrained 2D reaches or imagined reaches) was less stereotyped and had more

degrees of freedom. An encoding (regression) model was required to determine the neural

population’s evoked response. In initial analyses, we took the neural population’s trial-to-trial

variability to be the residuals of this regression. We then developed a model of motor encoding

that included a fluctuation shared across the M1 population. In this case, we fit an explicit

model of M1’s shared variance simultaneously with a model of M1’s stimulus tuning, through a

recursive least squares algorithm. Each of these descriptions of neural variability influenced the

outcome of other. Goris et al. [96] titled their study Partitioning Neural Variability, and I believe

this is an apt description of the frequent ambiguities that arise when attributing portions of a

neuron’s total spiking variability to “signal” or “noise”.

The statistical models that we used to characterize the rank of shared variability differed

between chapters, as well. In Chapter 2, our model of shared variability was constrained to be

1-dimensional by design. Fitting addition dimensions of variance would require the use of a true

state space model with a latent state, rather than our chosen approach of regressing all response

variables against a time vector. (If we were to fit multiple shared fluctuations using our current

model format, those fluctuations would share scaling.) The form of our single shared modulator,

however, was very flexible, and provided a non-parametric way to induce smoothness in the

trajectory of our shared fluctuation over time. This approach has the general flavor of using

a dimensionality reduction technique like GPFA [42] fitted with a single latent dimension, as

GPFA enforces temporal smoothness of data in the latent space (albeit parametrically) while

taking the dynamics of the latent space to be stationary. In Chapter 3 we used cross-validation

to determine the dimensionality of the FA-identified latent space, but data was taken to be

i.i.d. (by definition of the FA model) and was not required to have smooth trajectories in that

multi-dimensional latent space.
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Finally, in Chapter 3, we considered that the shared variability read out from our down-

stream neural population (PFC) was due to both inputs from upstream area V4 and PFC’s own

recurrent interactions. We had no such model of M1 recurrent interactions in Chapter 2. The ef-

fects of recurrent interactions are nearly impossible to study without a) direct, cell-type specific

perturbations of a neural circuit through experimental techniques like optogenetics [158] or b)

a mechanistic modeling approach to studying the circuit, in which the biophysical properties

of individual neurons and pairwise interactions of those neurons are considered. Lacking these

approaches in the Chapter 2 study, we in some senses assumed M1’s readout of the shared fluc-

tuation was either a direct reflection or trivial transformation of the S1’s input to M1. Chapter 3

demonstrates how this approach to studying multi-area circuits can be fraught with error when

the recurrent dynamics of the readout layer of the circuit are highly non-linear. Had we ob-

served only PFC neural activity in Chapter 3 and assumed PFC’s shared variability was directly

inherited from our outside brain area V4, we would have come to the incorrect conclusion

that V4 had had high dimensional shared variability. Alternatively we might have incorrectly

assumed PFC’s high dimensional shared variability could only be explained through the inher-

itance of additional sensory inputs. Many systems neuroscience studies implicitly assume this

sort of one-to-one mapping between circuit inputs and outputs; this assumption may not be

appropriate, particularly when studying integrative areas of the brain with complex dynamics.

4.2 Future directions

4.2.1 A theory of transitions between PFC attractor dynamics

In Chapter 3, I developed a circuit model in which PFC activity was metastable by way of

transitions between two attractor states reflecting tuned inputs. I studied this system by lin-

earizing the networks dynamics around an operating points in a single attractor State (L or R).

The current network model thus provides no description of the dynamics of state transitions.

Dimensionality reduction techniques like recurrent switching linear dynamical systems [159]

might better characterize the structure of population activity across transitions between States

L and R. Ultimately, it would be desirable to develop a full theory of our network’s metastable
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dynamics, in which we could predict the transition rates of our neuronal ensembles. Such a

theory remains an open problem in theoretical neuroscience.

4.2.2 PFC recurrent dynamics and mixed selectivity

Rigotti et al. [160] noted that single neurons in PFC have complex receptive field properties

that seem to simultaneously encode mixtures of multiple task parameters. Populations of such

“mixed-selectivity” neurons in PFC encode distributed information about all task-relevant sen-

sory information, resulting in high-dimensional neural representations of the task. Rigotti et al.

[160] characterized the advantage of such a neural code – non-linear receptive fields of indi-

vidual neurons allow for neural ensembles to encode a larger range of stimuli than would be

possible if each neuron exhibited linear selectivity. More over, high-dimensional representations

of stimuli are more easily read out by linear classifiers, as finite data becomes increasingly sep-

arable by a hyper-plane when projected into higher dimensions. (Machine learning classifiers

frequently exploit this observation with a technique known as the kernel trick [161].)

Though Rigotti et al. [160] characterized why mixed-selectivity might be important in an

integrative and cognitive brain area like PFC, they did not propose any circuit mechanisms that

might give rise to PFC’s high-dimensional population dynamics or complex neural responses. I

believe that the network model in Chapter 3 provides one mechanism through which mixed-

selectivity might arise. In Chapter 3, we showed that multiple, tuned inputs to PFC give rise

to highly non-linear population dynamics, in which the network “time-shares” between two at-

tractor states representative of its tuned inputs. “Time-sharing” leads individual PFC neurons

to have highly variable responses; switches between attractor states manifest as high firing rate

variability in neuronal responses, measurable through larger neuronal Fano factors. Moreover,

when the strongly correlating attractor dynamics of disjoint inputs are delicately counterbal-

anced with recurrent assemblies of excitatory and inhibitory neurons, the variability of neural

responses across one tuned assembly can still be high. This gives rise to high dimensional

dynamics akin to those described by Rigotti et al. [160].

I believe it would be interesting to extend Chapter 3’s network model to include more than

two tuned input populations. This would capture the many sensory inputs that PFC receives. All

of these tuned inputs would likely have structured projections to specific subpopulations of PFC,
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4.2. Future directions

and it is correlated, structured inputs that give rise to the attractor dynamics that we studied in

Chapter 3. If we extended our model to include tuned inputs from additional sensory modalities,

not all inputs would project to completely disjoint subpopulations of PFC. For example, a single

PFC neuron might be a member of one assembly that receives tuned visual information, and

a different, potentially overlapping assembly that receives tuned auditory information. I am

interested in studying how this extension of our model might be capable of producing non-

linear response properties in individual neurons, as they “time-share” between the dynamics of

their multiple streams of sensory information. Such a circuit model might shed light on the

mechanisms underlying multi-sensory integration.
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A. Factor Analysis and the general form of Linear

Gaussian Models

This appendix provides an overview of Factor Analysis (FA), a dimensionality reduction tech-

nique that has been used extensively on neural data (Introduction 1.2.1),[21] and is applied

repeatedly to neural and simulated neural data in Chapter 3 of this thesis.

FA is part of a larger class of Linear Gaussian Models [40], which are discrete time linear

dynamical systems of the general form

~xt+1 = A~xt + ~w ~w ∼ N (0, Q)

~yt = C~xt + ~ε ~ε ∼ N (0, R).

(A.1)

Here, ~y is a matrix of observable variables. When Equation A.1 is used to model latent dynamics

in neural data, ~y is the zero-mean population vector of observed spike counts from N simulta-

neously recorded neurons. ~x is the state of the population activity in a K-dimensional latent

subspace, where K << N . ~x evolves according to first-order Markov dynamics, governed by

state transition matrix A. ~w is a random variable representing state evolution. C is the genera-

tive matrix of model parameters relating the latent space ~x to the observable data ~y, and ~ε is a

matrix of observation noise.

If we assume that our neural dataset is i.i.d., the underlying state matrix ~x has no dynamics.

In this case, A = 0, and the generative model reduces to

~x = ~w ~w ∼ N (0, Q)

~y = C~x+ ~ε ~ε ∼ N (0, R).

(A.2)

FA is a Linear Gaussian Model with stationary dynamics of form (A.2). FA places a constraint on
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Appendix A. Factor Analysis and the general form of Linear Gaussian Models

the structure of the observation noise ~ε such that R = diag(R) = ψ. In neuroscience, this con-

straint represents the assumption that the observation noise is uncorrelated between neurons

and instead represents private sources of trial-to-trial neuronal variability, such as stochastic

vesicle release.

The marginal distribution of ~y in Equation (A.2) is a Gaussian of form

~y ∼ N (0, CQC> + ψ). (A.3)

Because there is an arbitrary sharing of scaling between Q and C, we can assume Q = I. In FA,

the generative matrix of model parameters C are called loadings onto latent factors. We will

therefore make the variable change C = L, where L is a loading matrix. Thus, our FA model

takes the form

~y ∼ N (0,LL> + ψ). (A.4)

This is equivalent to saying that the spike count covariance of our neural data can be decom-

posed into a shared variability component LL> and a private variability component ψ. The

dimension of shared variability can then be understood as rank(LL>), which is equivalent to

performing an eigendecomposition of the shared variability in the K dimensional latent space:

Cov(~y, ~y) =

K∑

i

λiνiνi + ψ. (A.5)

Here, λi is the eigenvalue of the ith latent mode of neural population activity.

We will denote the cumulative percentage of shared variance explained by the top J latent

dimensions pCum; using (A.5), this is

pCum =

∑J
i λi∑K
i λi

(A.6)

for J ≤ K and latent modes of neural activity in descending eigenvalue order. pCum is frequently

visualized in Chapter 3. Associated metric dshared is the number of latent modes of neural activity

J required to explain 95% of the shared variance, or the number of latent modes J such that

pCum ≥ 0.95.
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Chapter 3 also reports the percent of each neuron’s total variance that is shared with other

neurons in the population [59]. Using Eq. (A.4), we will denote pshared of neuron n

pshared
n =

LnL>n
LnL>n + ψk

, (A.7)

where Ln is the nth row of the loading matrix L and ψk is neuron k’s private trial-to-trial

variability, which is the kth diagonal in diagonal matrix ψ.

Finally, in Chapter 3, we report the residual spike count covariance without the 1st latent

dimension, expressed by

Q = Cov(~y, ~y)− L1L>1 , (A.8)

where L1 denotes loadings onto the first latent dimension when FA is only fitted with K = 1

latent dimension.

FA model parameters in Chapter 3 were fitted using an Expectation Maximization (EM)

[141] algorithm. Fits were performed using two-fold cross validation, where the dimensionality

of the latent space K was selected according to the cross-validated log-likelihood of the models.
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B. Linear response approximation of covariance

This appendix reviews approximation methods [139, 120] of using network architecture to

predict the pairwise spiking covariance of neurons. Consider a neuron with stochastically fluc-

tuating membrane potential dynamics. We begin with a linear ansatz [162] that says the process

by which a neuron integrates its inputs and produces a realization of a spike train is linear. This

ansatz requires that the input X(t) to the neuron be weak in relation to the neuron’s underlying

noise process ξ(t), which drive its membrane potential fluctuations. Assuming this is true, a

realization of a neuron’s spiking output y(t) can be defined

yi(t) ≈ yi0(t) + (Gi ∗X)(t), (B.1)

where y0(t) is the unperturbed point process, or realization of the neuron’s spiking output due

to its unperturbed membrane potential dynamics, X(t) is a weak input with banishing temporal

average over the window in which we observe the system’s behavior, and G(t) is the neuron’s

linear response, which measures its sensitivity to its inputs.

When the neuron is part of a larger network, input X(t) comes from the neuron’s recurrent

network interactions. So long as those interactions are still sufficiently weak such that the

neuron’s spike train output is a linear transformation of its inputs, our linear ansatz still applies.

In this case, we will replaceX(t) with the expression (fi(t)−Et[fi]), whereEt[.] is an expectation

over time and

fi(t) =
∑

j

Jij(Fj ∗ yj)(t). (B.2)

Here, yj(t) is the spiking response of neuron j that projects to neuron i with synaptic strength

Jij , and Fj is the synaptic filter applied to neuron j’s output.

The convolution terms of Equations (B.1) and (B.2) become multiplicative relations in the
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Appendix B. Linear response approximation of covariance

Fourier domain. We thus consider the Fourier transform of a spike train, yi(ω) =
∫∞
−∞ yi(t)e

−2πiωtdt,

where ω is frequency. Combining Equations (B.1) and (B.2), the recurrent network formulation

of the spike train of neuron i in the Fourier domain is

yi(ω) = y0
i (ω) +Gi(ω)


∑

j

JijFj(ω)yj(ω)


 . (B.3)

The linear response Gi(ω) now measures the degree to which synaptic currents at frequency ω

are transferred into modulations about background spike train activity y0
i (ω).

The cross-spectral density (CSD) of the activity of i and j – which is the equivalent to the

Fourier transform of the pairwise spike train cross-covariances of i and j, Cij(s) – is written:

Cij(ω) = 〈yi(ω)y∗j (ω)〉, (B.4)

where y∗ is the conjugate transpose of y. The full pairwise CSD matrix of our network activity

is then

C(ω) = (I− (J ·K(ω)))−1C0(ω) (I− (J ·K(ω))∗)−1 , (B.5)

where · denotes element wise multiplication and K(ω) is an interaction matrix with entries

Kij(ω) = Ai(ω)Fij(ω). C0(ω) is the CSD in the absence of recurrent interactions.

We now note that spike count covariances over long windows (∆t → ∞) can be expressed

as the zero-frequency CSD:

lim
∆t→∞

1

∆t
Cov

(∫ ∆t

t
U(t′)dt′

∫ ∆t

t
Z(t′)dt′

)
= 〈U,Z〉(ω = 0). (B.6)

For large ∆t, the spike count covariance of a pair of neurons i and j can then be approximated

as:

Cov (Ni(t, t+ ∆t), Nj(t, t+ ∆t)) ≈ ∆t〈yi(t′), yj(t′)〉(ω = 0) (B.7)

This means the linear response approximation of C(ω = 0) can be reduced to

C = (I− (J ·K))−1C0
(
I− (J ·K)>

)−1
, (B.8)

where C is the spike count covariance of the network over an infinitely long window (B.7) and
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C0 is the spike count covariance of the network in the absence of recurrent interactions, also

over an infinitely long window. Equation (B.8) is known as the zero-frequency linear response

approximation. We use the zero-frequency linear response approximation throughout Chapter

3 rather than computing the population CSD over all frequencies ω (B.5). The zero-frequency

approximation both dramatically simplifies the calculations required to characterize population

covariance and makes our predictions of population covariance structure more comparable to

the myriad of experimental neuroscience studies that have reported values of spike count co-

variance and noise correlations (computed using spike count covariance) in the brain [114].

We obviously do not observe our network activity over infinitely long time windows. Why is

the approximation of Equation (B.8) then valid? The answer lies in the shape of neuronal linear

response functions G(ω), which tend to be approximately constant from ω = 0 to ω ≈ 30 Hz

[65, 163]. This claim is equivalent to saying that neuron i has the same sensitivity to its inputs

for synaptic current modulations of frequency 30 Hz or less.

In Chapter 3, we observe our network activity over windows of ∆t = 50 ms. This is equiv-

alent of observing our network’s response to perturbations at frequency ω = 20 Hz. While

our choice of timescale is probably still within the range ω over which G(ω) is approximately

constant, we do note that we are at the upper boundary of ω over which the zero-frequency

response (B.8) might provide a good approximation of our second order network statistics. We

made a conscious choice to observe our system at ∆t = 50 ms windows because we needed to

capture the spike count covariance of our population activity within one attractor state of our

network, and our network tended to transition between attractor states at timescales τ < 300

ms. However, we acknowledge that the ∆t = 50 ms windows over which we compute spike

count covariance might be another source of error in our reported linear response approxima-

tion of C in network State L (Chapter 3, Figure 3.6d-e).
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C. Chapter 3 Supplemental Figures
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Figure C.1: Gaussian Mixture Model (GMM) state partitions of spiking network activity. Each
data point here represents one time bin (∆t = 50 ms) of the activity of all NE = 4000 excitatory
cells in the R = 2.3, σ = 0.71 network, simulated for a total of T = 2000s. The NE dimensional
population activity is projected onto the 4D space described by the mean and variance of the
firing activity of each hemifield. (Here we visualize the data in the 2D space described by the
hemifield population means.) The GMM computes the posterior probability that each time bin
of population activity belongs to State R. (The GMM was constrained to 2 clusters, and the
posterior probability of membership to State R and State L sum to 1.) We accepted time bins
for which the posterior probability of membership to either state was greater than 0.97. Other
time bins (those that are not true yellow or royal blue in this visualization) were considered to
represent dynamics in which our network was transitioning between the two attractor states.
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