
HELIX: From Math to Verified Code

Submitted in partial fulfillment of the requirements for

the degree of

Doctor of Philosophy

in

Electrical and Computer Engineering

Vadim Zaliva

A.S. Electrical Engineering, Kiev College of Radio Electronics

B.S. Computer Aided Design Systems, Ukraine State Academy of Light Industry

M.S. Computer Science, Colorado State University

Carnegie Mellon University

Pittsburgh, PA

December 2020



©Vadim Zaliva, 2020

All Rights Reserved



For my father.



Acknowledgments

There are so many people who have supported me in my work on this thesis over

the years that I am in peril of forgetting to mention some of them. I am grateful

for everyone’s support, even if I have neglected to mention their names below.

First of all, I would like to thank my committee members - Dr. Steve

Zdancewic, Dr. Corina Pasareanu, Dr. Limin Jia, and my advisor Dr. Franz

Franchetti for being a part of this journey.

The key person without whom none of it would be possible is my advisor

Franz Franchetti. He not only chose me to be his student despite my non-typical

background and the fact that my research interests were not immediately related

to his, but he also gave me an opportunity to find my way by pursuing research

directions of my own choosing. He provided steadfast support, advice, and encour-

agement during all these years. I could not wish for a better advisor than him. An

exemplary piece of mentoring advice from him was, “I think you are wrong, but you

should try to do this anyway to see it for yourself.” (For the record, I was wrong).

Tze Meng Low, Doru Thom Popovici, Richard Veras, Berkin Akin, Jiyuan

Zhang, and Daniele Spampinato from the CMU SPIRAL research group at Pitts-

burgh always engaged me in stimulating technical discussions, explained to me in-

trinsic details of SPIRAL system, provided feedback on my presentations and pa-

pers, and gave invaluable general academic advice. Our outings at The Porch were

highlights of my visits to the main campus.

Second, I would like to thank people at the University of Pennsylvania: Steve

iv



Zdancewic, Yannick Zackowski, Calvin Beck, and Irene Yoon with whom I collabo-

rated very closely during the last few years. They accepted me and made me feel

like a member of their research group. This collaboration was a huge contrast and

a welcome change to the mostly solitary research I had been doing before, and I

greatly enjoyed and benefited from it.

There are many people from the PL community who influenced me and acted

as role models. At various conferences and online, I often pestered them with my

sometimes näıve questions soliciting their advice. There are too many to list, but to

name a few: Andrew W. Appel, Adam Chlipala, Clément Pit-Claudel, Benjamin J.

Delaware, and Gregory Malecha. Dr. Lester Ludwig was instrumental in steering me

towards the CMU PhD program. Jeremy Johnson from Drexel University provided a

much needed kick start at the beginning of my journey. Matthieu Sozeau dedicated

an extended amount of his time by inviting me to visit him at the Institut de

Recherche en Informatique Fondamentale, which helped me to advance my research

and gave me a chance to better understand Coq internals.

My business partner, Alex Sova, gave me the opportunity to pursue my

PhD by letting me take an extended sabbatical from our business. Last, but not

least, I would like to thank my wife, Tanya, who was patient and supportive during

my frequent travels, irregular working hours, and missed vacations and weekends

throughout all of these years.

The work in this dissertation could not have happened without support from

the Defense Advanced Research Projects Agency (DARPA), National Science Foun-

dation (NSF), US Department of Energy (DOE), and CMU Software Engineering

Institute (SEI).

Vadim Zaliva

v



Abstract

This thesis presents HELIX, a code generation and formal verification system with a

focus on the intersection of high-performance and high-assurance numerical comput-

ing. This allowed us to build a system that could be fine-tuned to generate efficient

code for a broad set of computer architectures while providing formal guarantees of

such generated code’s correctness.

The method we used for high-performance code synthesis is the algebraic

transformation of vector and matrix computations into a dataflow optimized for par-

allel or vectorized processing on target hardware. The abstraction used to formalize

and verify this technique is an operator language used with semantics-preserving

term-rewriting. We use sparse vector abstraction to represent partial computations,

enabling us to use algebraic reasoning to prove parallel decomposition properties.

HELIX provides a formal verification foundation for rewriting-based alge-

braic code synthesis optimizations, driven by an external oracle. Presently HELIX

uses SPIRAL as an oracle deriving the rule application order. The SPIRAL system

was developed over the years and successfully applied to generate code for various

numeric algorithms. Building on its sound algebraic foundation, we generalize and

extend it in the direction of non-linear operators, towards a new theory of partial

computations, applying formal language theory and formal verification techniques.

HELIX is developed and proven in Coq proof assistant and demonstrated

on a real-life example of verified high-performance code generation of the dynamic

window safety monitor for a cyber-physical robot system.
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Chapter 1

Introduction

1.1 Problem Statement

The increased dependence of modern society on computer programs combined with

the growing sophistication of software systems and hardware architectures poses a

significant challenge in keeping computer systems reliable and correct. For example,

Boeing’s 787 airplane contains about 6.5 million lines of code to operate its avionics

and onboard support systems [1]. According to the same source, the premium class

automobile contains more than 100 million lines of code. A lot of this code controls

mission-critical systems, which, if they malfunction, could endanger human lives.

There are multiple reported cases or costly recalls when such bugs were discovered

and deemed critical. There are significant ongoing engineering efforts in developing

reliable embedded software at such a scale [2].

Most vehicular embedded software is run on one of the Electronic Control

Units (ECUs), controlling various car functionality aspects. Lower-end models uti-

lize between 30-50 ECUs, while in high-end luxury cars, this number could be even

higher. These ECUs could utilize different Instruction Set Architectures (ISAs),

1



memory architectures, clock speeds, and data bus widths. This makes the problem

of developing software even more formidable. Not only does one have to write and

maintain millions of lines of code, but this code will be targeting multiple hardware

architectures. Due to price and energy consumption constraints, these embedded

systems are typically underpowered compared to modern desktop computers. At

the same time, they often control functions that require high-performance computa-

tions. For example, an ECU, which controls airbag deployment, must react within

15 to 40 milliseconds [1].

Software for cyber-physical systems could be roughly split into algorithmic

and numeric parts. The key requirements for such software are high performance

and correctness. The algorithmic part is well studied and known approaches exist for

its high-performance implementation and verification. The challenges posed by the

numeric part are often underappreciated. For example, converting a mathematical

formula describing a robot’s dynamics into high-performance machine implementa-

tion is not trivial. Proving the correctness of the implementation is even less so.

While for some operations, well-known fast and numerically stable algorithms ex-

ist; however, when combining such operations into more complex expressions, these

properties are not guaranteed to be preserved.

The problem we are trying to address lies on the intersection of high-

performance and high-assurance numerical computing. Our goal is to design a

system for generating high-performance code for a class of numeric algorithms,

useful for practical real-life applications. The system has to be formally verified

from top to the bottom providing formal guarantees or correctness of generated

high-performance implementation.

2



1.2 SPIRAL Overview

With the current level of sophistication of hardware architectures, the problem of

high-performance implementation of numerical algorithms becomes challenging for

manual implementation even when using optimizing compilers and is often solved

by specialized code generation systems, such as SPIRAL [3].

Developed over the last 20 years, the SPIRAL system has been used to

generate, synthesize, and autotune programs and libraries. It works by translat-

ing rule-encoded high-level specifications of mathematical algorithms into highly

optimized/library-grade implementations. SPIRAL has been used to formalize a

variety of computational kernels from the signal and image processing domain, in-

cluding graph algorithms, robotic vehicle control, software-defined radio (SDR), and

numerical solution of partial differential equations. SPIRAL is capable of generating

code for multiple platforms ranging from mobile devices and multicore (desktop and

server) processors to high-performance and supercomputing systems [4].

SPIRAL works by transforming the original expression into a series of inter-

mediate languages (as shown at Figure 1.1). The translation steps correspond to

different levels of abstraction:

1. Mathematical formula

2. The dataflow (OL)

3. The dataflow with implicit loops (Σ-OL)

4. Imperative program (i-Code)

5. Mainstream programming language code: (C Program)

3



Figure 1.1: SPIRAL transformation stages

The dataflow language is very close to mathematical notation and can rep-

resent a wide class of relevant mathematical formulae. As a first step, SPIRAL

attempts to deconstruct the original expression into simpler expressions, which,

combined by a function composition, represent a data-flow graph of the computa-

tion [5]. The resulting expression is then translated into another language, called

Σ-OL which adds the implicit representation of iterative computations. Next, the

Σ-OL expression is rewritten using a series of rewrite rules, driven by the extensive

knowledge base of SPIRAL’s optimization algorithms, into a shape which lends it-

self to generating the most efficient code for the target platform. Subsequently, a

Σ-OL expression is compiled into an intermediate imperative language. By doing

this, SPIRAL converts the dataflow graph into a sequence of loops and arithmetic

operations. Finally, an intermediate imperative language representation, after some

additional transformations, yields a C program which is compiled with an optimizing

compiler, producing an executable high-performance machine code implementation

of the original expression.

1.3 HELIX Introduction

When SPIRAL is applied to generate high-performance libraries used in mission

critical software, the question arises as to what kind of assurances could be made

about the correctness of the generated code. The goal of HELIX, as a part of

the High Assurance SPIRAL project [6, 7], is to formally prove the correctness of

SPIRAL optimizations and code generation using Coq proof assistant.

4



Similar to SPIRAL, HELIX works by transforming the original expression

into a series of intermediate languages (as shown at Figure 1.2). The languages

will be introduced in more detail in the following Section 3. The translation steps

correspond to different levels of abstraction:

1. Mathematical formula

2. Dataflow (HCOL1)

3. Dataflow with implicit loops (Σ-HCOL)

4. Dataflow with implicit loops, using memory blocks (MHCOL)

5. Imperative program (DHCOL)

6. Imperative program using machine numeric types (floats and ints) (FHCOL)

7. Mainstream low-level assembly language (LLVM IR)

Each language lowers the level of abstraction and introduces an additional

level of detail, narrowing down the space of possible computational solutions of

the given problem towards an exact algorithm. An expression is not only converted

between the languages, but a series of transformations is performed at each language

level. These transformations are optimization steps.

HELIX is not just a proof of SPIRAL correctness. It is inspired by SPIRAL

and will typically be used in conjunction with SPIRAL but is different is several

aspects:

� The projects have different primary goals. SPIRAL’s main objective is high-

performance code generation, while HELIX focuses on high-assurance.

1HCOL stands for Hybrid Control Operator Language.
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Figure 1.2: HELIX transformation stages

� There are two problems: 1) finding the optimal translation of a given formula

to machine code for target architecture (search) and 2) verifying this transla-

tion. SPIRAL performs the former while HELIX is responsible for the latter.

Currently, HELIX depends on SPIRAL as on a search oracle and just verifies

SPIRAL results. In future, using HELIX as a foundation, some search func-

tions could be transferred to it. This would open a door to formal verification

of search/optimization algorithms instead of verifying their results.

� The final steps in the SPIRAL system are to generate a program in C language2

and to compile it using a C compiler. In HELIX, we generate LLVM IR

code, which verified compilation to machine code will be handled by 3rd party

projects, like Vellvm. The main motivating factor in making this decision

was the ease of formal verification; at the time, the only available formally

verified C compiler (CompCert) lacked some necessary features (e.g. 64-bit

support, vector instructions, intrinsics). However, we feel that LLVM IR is a

better intermediate language for machine code generation. SPIRAL generates

C code in a very restricted manner: it is in static single assignment (SSA)

2C is used when targeting standard general purpose ISA like x86 or ARM. SPIRAL also supports
custom hardware platforms and GPUs where other languages like Verilog or CUDA are used instead
of C.

6



form; only a few basic language constructs and operators are used; all loops

have static bounds; compiler optimizations are disabled; and intrinsics are

used to access low-level ISA capabilities, like vector instructions. Basically,

it is used as a high-level assembly language. In our opinion, LLVM IR is

better positioned to be used as such an assembly language. Additionally, the

use of LLVM opens a few interesting possibilities, such as code generation

for a wide list of hardware platforms via a growing list of LLVM backends

and support for additional platform-specific optimization steps which could

be verified using the same semantics framework. It must be noted that while

the use of LLVM IR over C seems like a better approach architecturally, in

practice, the maturity and support for modern C compilers at present makes

C the more sensible choice, until the LLVM infrastructure matures further.

� SPIRAL is implemented in a heavily modified GAP [8] computer algebra sys-

tem, while HELIX is implemented in Coq proof assistant.

� Originally, SPIRAL was built on the foundation of linear and multilinear op-

erator theory. In early versions, all SPIRAL operators had to be multilinear.

In later stages, SPIRAL added some support for non-linear operators [9]. HE-

LIX, from the very beginning, was designed without the linearity assumption

and supports non-linear operators.

� Due to the linear algebra lineage of SPIRAL, many of its core concepts were

expressed using terminology and ideas from this field. HELIX, being a pro-

gramming language (PL) project at it core, uses terminology and concepts

from PL and type theories, formal methods, and functional programming. In

other words, a computer science PL researcher will feel much at ease reading

7



HELIX papers and code while an algebraist will find the SPIRAL literature

more tractable.

1.4 Motivating Example

Let us consider an application of HELIX to a real-life situation of high-assurance

vehicle control [6] using a dynamic window vehicle control approach [10], as shown

in Figure 1.3.

Given a physical model of vehicle dynamics, we generate a code to check a

safety constraint. In this example, we will be checking whether it’s safe to proceed

given the vehicle’s position, speed, and acceleration, with the location of an obstacle.

The function will be invoked by the vehicle controller, and if it returns “false,” the

vehicle will enter “fail-safe” mode, which would trigger emergency braking.

We will consider a ground robot driving on a flat, even surface. The robot

is equipped with a distance measuring sensor (e.g. Lidar) which can detect and

measure distance to obstacles. The obstacle sensor is sampled periodically, for

example every 20ms and based on these measurements, the decisions on control

outputs, such as steering, acceleration, and braking, are made. Once such decisions

are applied to actuators controlling the robot, no further control changes can be

made until the next sampling cycle. The obstacle does not have to stay static and

can move.

This model allows the development of a control system which will help a robot

avoid obstacles by stopping or steering around them. However, in this example, we

will be considering only a safety monitor part of the system which ensures the

passive safety property. Informally, that means there will be no collisions while the

robot is driving, and collisions may occur only if the obstacle runs into the robot.

8



Without discussing detailed dynamic model of the system for which we refer

interested readers to [6], we present the final formula for a dynamic window safety

monitor in Equation (1.1). The soundness of the monitor formula from the point of

view of cyber-physical control systems was proven in KeYmaera X [11].

safe , ||pr − po||∞ >
v2
r

2b
+ V

vr
b

+

(
A

b
+ 1

)(
A

2
ε2 + ε(vr + V )

)
(1.1)

The variables used in the safety monitor formula are:

pr - robot position

po - obstacle position

vr - robot longitudinal speed

V - maximum obstacle speed

b - maximum braking (negative acceleration)

A - maximum acceleration (positive)

ε - sampling period

To complete the high-assurance chain for this monitor, we would like to have

its implementation as machine code suitable for execution onboard, which is proven

to be correct with respect to the mathematical formulation. Additionally, since

this monitor will be executed in real-time and at high frequency, we would like the

synthesized implementation to be efficient with respect to the target hardware.

We will use SPIRAL to generate high-performance implementation of the

monitor function and verify it with HELIX. The first step is to express the input

formula in SPIRAL OL and HELIX HCOL input languages. We will consider V , b,

A and ε to be constants. The monitor function will take vr, pr, and po as inputs and

return a Boolean value corresponding to the safety property. The data type of vr is
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Figure 1.3: HELIX application to high-assurance vehicle control

scalar, and those of pr and po are 2-dimensional coordinate vectors. Following [6],

Equation (1.1) could be further rewritten as Equation (1.2), a form more suitable

for HCOL representation.

safeV,A,b,ε : R× R2 × R2 → Z2; (1.2)

(vr, pr, po) 7→ (p(vr) < d∞(pr, po))

d∞(~x, ~y) , ||~x− ~y||∞ (1.3)

p(x) , a2x
2 + a1x+ a0 (1.4)

a0 =

(
A

b
+ 1

)(
A

2
ε2 + εV

)
(1.5)

a1 =
V

b
+ ε

(
A

b
+ 1

)
(1.6)

a2 =
1

2b
(1.7)
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(1.8)

Running an HCOL expression representing (1.2) through SPIRAL will pro-

duce an unverified C-language implementation. During the processing, SPIRAL

will invoke a number of sophisticated heuristics to find an optimal implementation

for the target platform. The heuristics result in application of a sequence of se-

mantically preserving transformation steps to the original expression to reshape it

into optimized form. The list of transformation steps will be recorded in a “trace”

file produced by SPIRAL. The C code will depend on target platform parameters.

For the simple case where the target platform is set to generic x86 without SIMD

instructions, the C implementation of the dynamic monitor is shown in Listing B.2.

Parameters of the generated function are:

D[0] - a0

D[1] - a1

D[2] - a2

X[0] - vr

X[1] - pr.x (x component of the vector pr)

X[2] - pr.y (y component of the vector pr)

X[3] - po.x (x component of the vector po)

X[4] - po.y (y component of the vector po)

The return values are 1 for True, 0 for False.

For comparison, in Listing B.3, we show the C code, which is generated

for an x86 platform with Intel Streaming SIMD Extensions (SSE) enabled. This

version includes runtime floating point error analysis using the online uncertainty

propagation approach, described in Section 5.3.2. In addition to 1 for True or 0
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False false, this version could also return −1, which means that the safety property

could not be reliably computed for the given input values.

HELIX will start with the same input formula. Unlike SPIRAL, it does not

make decisions about what transformation steps to perform, but rather it relies on

SPIRAL’s trace for the list of steps to perform. However, in HELIX, each of these

steps is backed up by a formally proven lemma which guarantees that it preserves

the semantics of the expression. HELIX will re-create SPIRAL’s transformation

of the expression, but this time, each step, and as a result, the whole sequence of

transformations, will be formally proven to be correct. In the unlikely event that

SPIRAL would suggest a non-semantically preserving transformation, HELIX will

reject this step and report an error.

Finally, the optimized expression will be compiled by HELIX into LLVM

IR assembly language (as shown in Listing B.1). This compilation will also be

proven correct, and the generated code will be guaranteed to correctly implement

the computations described by the input expression, up to some error bounds of

numerical accuracy related to limitations due to use of floating point calculations

instead of real numbers in the original formula.

The LLVM IR program could be further compiled by the LLVM compiler

toolchain, into machine code for the target hardware platform. At this time, there

are no formally verified IR compiler backends, but they are included in the roadmap

of the DeepSpec project [12].

As shown by this example, HELIX provides a framework of automated trans-

lation from a mathematical formula to an efficient and formally verified implemen-

tation in machine code.

This formulation of the dynamic window monitor was used in High Assurance
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SPIRAL [6] in the scope of the DARPA HACMS project. The target vehicles were

the LandShark robot by Black-I Robotics3 and a simulated car modeled after an

American built car, shown in Figure 1.4.

Figure 1.4: HACMS vehicles

3http://www.blackirobotics.com/
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Chapter 2

Background

In this section, we provide a brief history and accessible introduction of formal

verification and the key concepts of formal semantics of programming languages.

The fields of constructive mathematics, type theory, and formal verification are

vast, so we will limit our scope to the theories, developments, tools, and approaches

relevant to our work.

2.1 Formal Verification

A formal verification of a computer program involves formally proving that it sat-

isfies some set of properties, often collectively referred to as formal specification.

The specification does not deal only with the expected results of computation in

a purely mathematical sense, but it can also state requirements on computational

complexity, use of memory and resources, program inputs and outputs, etc.

The result of such verification is a formal proof of the compliance of the

program to the given specification. Such proof is usually required to be machine-

checkable because, for most practical applications, the proofs are too big to be
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checked by hand. Most proofs make some assumptions about program inputs or the

execution environment. These assumptions must be clearly stated as part of the

specification. It is important to understand that the formal guarantees provided

will be constrained by these assumptions.

2.2 Mathematical Foundations

The idea of formal verification of computer programs is rooted in constructive math-

ematics and proof theory. Although there were earlier attempts, the idea of formal-

ization of mathematics was most fully explored by Alfred North Whitehead and

Bertrand Russell in their seminal work, Principia Mathematica [13]. Most modern

formalizations of mathematics are based on Zermelo-Fraenkel set theory (ZF) with

or without the axiom of choice.

The idea of constructive mathematics is that to prove the existence of a

mathematical object, one needs to be able either to produce it or describe a way

to construct it from other objects. While there is still discussion about whether

constructivism is the right approach for building a comprehensive foundations of

all mathematics, it has been shown to be very useful and practical for describing a

substantial part of the body of modern mathematics. Constructive proofs have been

shown for the Fundamental Theorem of Algebra [14, 15], the Fundamental Theo-

rem of Integral Calculus [16], and others. There are several varieties of constructive

mathematics. One variety of particular interest is Per Martin-Löf’s Constructive

Type Theory [17], where he developed the notion of dependent types, which allowed

Thierry Coquand to develop his Calculus of Constructions [18], a variant of which,

Calculus of Inductive Constructions (CIC), is used today for the constructive foun-

dation of mathematics used in Coq [19] proof assistant.
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The concept of dependent types is fairly straightforward yet very powerful.

In a simple, non-dependent type system, every term a has a simple type A, usually

written as a:A. Dependent types are, in essence, type-valued functions [20] that

send terms to types. Thus, we can have a term b which has type T parameterized

by a term c, written as b: T(c). One example of a dependent type frequently

used in HELIX is the fixed-size vector type. A näıve way to represent vectors is

to use unbounded lists. The disadvantage of this approach is that for an operation

which is only defined for vectors of certain size (e.g. dot product), this constraint

can not be enforced at compilation time by the type signature and must be checked

at runtime. The dependent type of vector of length n with elements of type A

would be vector (A :Type) (n :N). Using this type, we can define a dot product as

dot: vector A n → vector A n → A, and Coq typechecker will ensure that it can be

applied only to vectors of size n.

The last founding piece is the Curry-Howard Isomorphism [21], which could

be described informally as establishing a correspondence between constructive proofs

and computable programs and between logical propositions and types. Thus, prov-

ing a logical implication A ⊃ B is the same as writing a function in typed lambda

calculus with type A→ B.

2.3 Coq Proof Assistant

The historic developments described in the previous section paved the way to build

the Coq proof assistant we use in this work1. The mathematical theorems are ex-

pressed in a dependent type system. The proofs are constructed either automatically

(using tactics) or handwritten but verified by the proof assistants’ small trusted ker-

1Many other proof assistants exist. Isabelle, Lean, Idris, Nuplr, and Agda to name a few.
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nel, which interprets them as programs in the Calculus of Inductive Constructions.

With Coq you can:

� Define functions and predicates.

� State mathematical theorems and software specifications.

� Interactively develop formal proofs of theorems.

� Machine-check these proofs.

� Extract Coq programs to languages like OCaml, Haskell, or Scheme.

Coq architecture [22] is shown in Figure 2.1. Coq consistency could not be

proven in Coq itself because this would contradict Gödel’s second incompleteness

theorem. Thus, Coq contains a small trusted code base, written by hand but not

formally verified. Whenever we trust a proof in Coq, we implicitly trust that this bit

of the code is correct. The trusted code base consists of three main parts. The pars-

ing part is responsible for parsing input programs in Coq’s input languages: Gallina

and Ltac. The extraction part is used only when Coq’s programs are “extracted”

into languages like Haskell or OCaml. Finally, the kernel type-checks the Calculus

of Inductive constructions. This feature of having a small independent kernel which

can check proof terms by relatively small and comprehensible algorithms is called

the De Bruijn criterion for proof assistants [23]. Coq’s kernel is relatively small (18

KLOC) and has been carefully written and reviewed2. Still, critical bugs are found

in it at an approximate rate of one per year[22]. The rest of the implementation

(the untrusted code) does not need to be trusted, as the results of its processing

are ultimately passed through the trusted kernel, which will either accept or reject

it if incorrect. Whenever a tactic is invoked, it must produce a proof term, which

will be type-checked by the kernel, and the proof will be accepted only if it passes

the check. For example, one can develop Coq’s extension which will introduce a

2https://coq.discourse.group/t/coq-trusted-kernel-code-size/1012/2
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new tactic command, which will claim to automatically prove a class of unprovable

goals. However, this tactic can not produce a correct proof term which would pass

the kernel check. This safety check will prevent proofs from using this erroneous

tactic.

untrusted code

trusted code base

type inference

kernel

type classes tactics

plugins

type checking

extractionparsing

Figure 2.1: Coq architecture

Coq has demonstrated its usefulness for reasoning about a variety of

problems. Coq’s applications include:

� Properties of programming languages. The CompCert certified compiler project

[24], the Bedrock verified low-level programming library [25].

� Formalization of mathematics. The full formalization of the Feit-Thompson the-

orem [26], Fundamental theorem of calculus [16], Four color theorem [27], and

Homotopy type theory [28].

� Verification of distributed protocols. Blockchain consensus algorithms [29].

� Verification of cryptography. Encryption and digital signature schemes [30], zero-
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knowledge protocols [31], and hash functions [32].

2.3.1 Quick Introduction to Coq

The two most important categories of objects Coq distinguishes between are those

belonging to the Prop sort and those belonging to the Type sort. The first is used

for logical propositions, while the second is used for arbitrary data types. Types can

be defined inductively. For example, the natural number type has two constructors:

O (zero) and S (successor function):

Inductive N :=

| O : N

| S : N → N.

This definition allows us to express any natural number. For example, zero is just

O, one is (S O), two is (S (S O)), etc. Recursive functions can be defined using

the Fixpoint command. Since we know that by construction any term of type N is

either O or S n for some n ∈ N, we can use pattern-matching on its constructors to

define natural number addition:

Fixpoint plus (n m : N) : N:=

match n with

| O ⇒ m

| S p ⇒ S (plus p m)

end

Coq only accepts definitions of functions that are guaranteed to terminate.

This limitation is needed to ensure logical consistency of the system, as well as the

decidability of the type-checking. In our plus definition, we recurse on a direct

subterm of n. In such case, Coq is able to automatically infer a termination proof.

In other cases, the termination must be proven by the user.
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Finally, we can state and prove theorems about the objects we define. Let +

be notation for plus. Now, we can prove a simple arithmetic theorem, stating that

2 + 3 = 5:

Theorem plus_2_3 : (S (S O)) + (S (S (S O))) = (S (S (S (S (S O))))).

Proof.

simpl. (* expand definition of plus *)

reflexivity. (* use definition of equality *)

Qed.

We construct a proof using tactics. In the example above, simpl is a tactic

that performs basic application of definitions, and reflexivity proves equality

between two syntactically equal terms (modulo some reductions).

Another statement we can prove is ∀n, 0 + n = n:

Theorem plus_O_n : (∀ n, O + n = n).

Proof.

intros n. (* take any n *)

simpl. (* expand definition of plus *)

reflexivity. (* use definition of equality *)

Qed.

To prove ∀n, n+0 = n, a slightly different version of the previous statement,

we need to use a mathematical induction:

Theorem plus_n_O : (∀ n, n + O = n).

Proof.

(* proof by induction on n *)

induction n; cbn.

(* base case *)

- reflexivity.

(* inductive step *)

- rewrite IHn. (* apply induction hypothesis *)
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reflexivity.

Qed.

By Curry-Howard Isomorphism, the proof of this statement corresponds to

the following functional program:

plus_n_O = λ n : N ⇒

nat_ind (λ n0 : N⇒ n0 + O = n0) eq_refl

(λ (n0 : N) (IHn : n0 + O = n0) ⇒

eq_ind_r (λ n1 : N⇒ S n1 = S n0) eq_refl IHn) n

: ∀ n : N, n + O = n

where nat_ind is a term with a type that corresponds to the natural number induc-

tion principle, and eq_refl is a term of type ∀x, x = x.

2.4 Formal Semantics of Programming Languages

In this section, we introduce a few core concepts from formal semantics of program-

ming languages. This is not a comprehensive introduction into the topic and [33]

should be a better reference.

A programming language is defined by its syntax describing how the program

looks and semantics describing how it behaves. A program matching the formal

syntax definition is said to be well-formed. For mainstream programming languages,

like Java or Python, we can further distinguish between concrete syntax and abstract

syntax. The former deals with the representation of a program as a sequence of

characters as stored on disk or shown in a text editor. Concrete syntax is concerned

with minutiae of spacing, indentation, separators, quoting, keywords, etc. The

concrete syntax is normally processed by a compiler or an interpreter’s parsing pass

into an internal representation in memory, typically an abstract syntax tree (AST)
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which should comply to the language’s abstact syntax.

Formal verification of concrete syntax parsing by hand is laborious and rarely

done. A more practical approach is to use a parser generator which generates parser

implementation based on formal syntax definition in Backus-Naur Form (BNF) style.

Then, such a parser generator could be either proven to be correct or extended to

automatically generate proof that the generated parsing code indeed complies to the

syntax description [34, 35, 36].

An alternative approach often used in domain-specific languages (DSLs) is

to skip the concrete syntax definition and to “embed” the target language in some

other existing host language. There are two flavors of doing this: a shallow and a

deep embedding. In the case of shallow embedding, the target language is defined as

a subset of the host language constructs, inheriting both their syntax and semantics.

In case of deep embedding, the syntax of the target language (the AST) is encoded

as a data structure in the host language, and its semantics are provided separately

by additional definitions in the host language. There are also combinations of these

two approaches, which are generally referred to as “mixed embedding.”

An AST is just a data structure, and the abstract syntax is to ensure that

this structure represents a well-formed program. Depending on the expressiveness of

the host language, the abstract syntax compliance may or may not need additional

checks. For example, when using such a powerful language as Gallina with its

inductive and dependent types, it is often possible to enforce an AST compliance to

an abstract syntax in AST’s data type definition, making all ASTs represent only

well-formed programs “by construction.”

There are several approaches for ascribing a formal semantics to a program-

ming language. We are interested in the following ones, as they are relevant to this
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work:

Big-step operational semantics is also sometimes referred to as evaluation se-

mantics or natural semantics. It defines what would be the result of a completed

execution of a program and is usually implemented as an interpreter written in the

host language. For imperative languages, such an evaluation function maps the

initial state of memory and environment to the final state after program execution.

ITrees-based semantics is a novel approach to defining the semantics of pro-

gramming languages in terms of interaction trees[37]. This approach offers modular,

compositional, and executable semantics [38] and can represent impure, potentially

non-terminating, and mutually recursive computations.

2.5 Certified Compilation and Translation Validation

Given a pair of languages with formally defined syntax and semantics, the question

is how to develop a compiler which translates between them while providing some

formal guarantees about compilation results.

We need to start with the question of what guarantees we want to provide.

On the highest level, we usually want to guarantee the semantic preservation prop-

erty. Informally, that states that the semantics of a program in the source language

remain the same after compilation to the target language. Usually the two seman-

tics are compared in terms of observable behaviors, such as whether the program

diverges or terminates, how it modifies memory, and whether the traces of system

calls match [24].

The two main approaches relevant to our work are:

Compiler verification requires proving that the given compiler for all well-formed
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programs in the source language always produces programs in the target language

which are semantically equivalent to the originals. This is a high-level description,

but in real-life implementations, one also needs to consider invalid programs, pro-

grams too complex for a compiler to handle, and programs with undefined behaviors.

See [24] for further discussion on how these could be handled.

Translation validation does not require proving that the compiler is always cor-

rect. Instead, given a program in the source language and a corresponding program

in the target language, presumably produced by the compiler, it requires proving

their semantic equivalence. This is done by writing a validator which either returns

a proof of such equivalence or fails if it can find none. Obviously, this is a more lim-

ited approach than the full compiler verification since in the worst case, it requires

manually writing a validator for each compiled program. However, a generic val-

idator which checks semantics preservation for a pair of programs could be written

with prior knowledge of the structure of code that the target compiler produces, so

the validation proofs can be automated. Ideally, such automation would validate all

programs produced by a given compiler automatically.
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Chapter 3

HELIX Formalization

As discussed in Section 2.4, in order to reason about the properties of programs

in the languages used in HELIX, we first need to formally define their syntax and

semantics in a form which would allow us to reason about them.

HELIX is implemented in Coq with all its languages embedded in Gallina.

All translation steps are also implemented in Coq or Template-Coq [39] using several

techniques which are discussed in detail in Section 4.

In this section, we present all HELIX languages, shown in Figure 1.2. A quick

summary of the languages is shown in Table 3.1. We chose to embed all HELIX

languages in Coq Proof assistant [19], which allowed us to reason about them in

Coq’s Calculus of Inductive Constructions using its tactics language.

As can be seen from the table, the type representing numerical data differs

among the languages. We start from R, which abstracts R in HCOL, and end up

with IEEE floating-point numbers in LLVM IR. Similarly, vector data representa-

tion also evolves. We start with dense finite-size vectors as the main data type of

HCOL which, in the final translation, are represented as memory blocks referenced
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Name Scalars Vectors Embedding Type Error Handling

HCOL R dense vector shallow declarative no
Σ-HCOL Rθ sparse vector mixed functional no
MHCOL R memory blocks mixed functional yes
DHCOL R env. + memory deep imperative yes
FHCOL IEEE double env. + memory deep imperative yes
LLVM IR IEEE double env. + memory deep imperative yes

Table 3.1: Summary of HELIX languages

by variables in LLVM IR. Although all languages are embedded in Gallina, different

types of embedding are used, as shown in Table 3.1. Also, as we proceed down

the translation chain, we transition from purely functional to imperative languages.

Finally, while programs in our input language HCOL are always “correct by con-

struction” (as ensured by Coq’s type system), once such a program is transitioned

into an imperative form later in the chain, the error handling is introduced. The de-

tails of all these implementation aspects will be discussed for each HELIX language

in detail in the following sections.

Aside from general principle of lowering the abstraction level of each step,

the choice of languages was driven by several considerations:

� The first two languages, HCOL and Σ-HCOL, were designed by formalization

of SPIRAL OL and Σ-OL languages. They have to match these languages

modulo syntax to allow us to use SPIRAL results in the translation validation

approach.

� The last language in HELIX is LLVM IR. Our first choice was to use C lan-

guage, as SPIRAL does. However, at the time, the only certified compiler

available, CompCert, did not support some of the features we needed (e.g.

64-bit, vector instructions). Also, the C language was overkill for the code
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generation we wanted to perform. We chose LLVM IR, a lower-level language

which allows us to express more directly the shape of the machine code we

ultimately want to produce.

� The decision to use LLVM IR instead of C also affected our choice of the previ-

ous language in the chain. Both in SPIRAL and HELIX, the last intermediate

language is a high-level imperative language which is capable of expressing

the algorithms we synthesize but is high-level enough to allow reasoning and

proofs about these algorithms without going into lower-level details (like mem-

ory and pointers) of languages like C or IR. SPIRAL uses i-Code language

for this purpose which is quite close to C. Since in HELIX, we no longer use

C, we have more flexibility in defining this intermediate imperative language.

The language we devised, DHCOL, is indeed imperative but of a higher level

than i-Code, more specialized, and better shaped for formal reasoning and

translation to IR. For example, it uses de Bruijn indices for variables, has log-

ically scoped memory allocation, and shares the memory model with Vellvm’s

IR semantics.

� The split between DHCOL and FHCOL is motivated by our desire to clearly

define the boundary between abstract numeric types (DHCOL) and concrete

machine types (FHCOL). To simplify numeric analysis, we want these lan-

guages to be very similar, representing the same sequence of computation

steps but for different types.

� The MHCOL language was added for pure convenience to bridge the gap

between functional Σ-HCOL and the imperative DHCOL. Much of the proof

for this transition has to do with representing Σ-HCOL vectors in memory.
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To simplify these proofs, we found it convenient to introduce memory block

abstraction first, while keeping the language functional.

All HELIX languages are embedded in Coq but use different types of em-

bedding. We chose a shallow embedding for HCOL as it reflects it’s algebraic nature

in the most natural way. Σ-HCOL uses functional abstraction, which also fits well

with the shallow embedding (as Gallina is a functional language). It is especially

convenient to represent the operator families used in iterative operators as functions.

However, because of sparsity, Σ-HCOL operators need to carry some additional in-

formation. In particular, the sparsity contract. Thus, we chose the mixed embedding

where each operator is a record which contains a shallow embedded operator im-

plementation along with two sets representing the sparsity contract. This form still

allows us to use the setoid rewriting technique. MHCOL representation is similar to

that of Σ-HCOL. To express additional logical properties of operators for all these

languages, we used typeclasses. Finally, for DHCOL, we switched to deep embedding.

This allowed us to clearly separate the language abstract syntax from it’s semantics

and, in particular, to assign more than one semantics to the language.

3.1 HCOL Language

HELIX HCOL language is based on the SPIRAL OL language which was originally

designed to represent linear algebra expressions on real or complex vectors. The

primitive HCOL operators are functions from vectors to vectors. Higher-order op-

erators, such as function composition, allow the building of more complex HCOL

expressions.

Since HELIX uses SPIRAL as an oracle, the HCOL and OL languages must

be compatible. HCOL is a formalization of OL, deep embedded in Coq. Any well-
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formed OL expression could be trivially mechanically translated into the correspond-

ing HCOL expression. Unlike OL, HCOL expressions are always well-formed as we

use Coq’s powerful dependent type system to enforce this. Thus, for example, vector

dimensions will always match when constructing complex HCOL expressions from

elementary operators. Similarly, constants and arithmetic expressions representing

indices of vector elements will be properly bound.

By varying the dimensions of vectors, HCOL could represent computations

with different levels of granularity. The structure of such expressions represents the

dataflow graph of computation. By applying a set of rewriting rules, an HCOL

expression could be gradually “broken down,” synthesizing the dataflow to match

the hardware architecture of the target system.

HCOL is a shallow-embedded language in Coq proof assistant. All HCOL

operators are represented as functions in Coq’s host language, Gallina. The lim-

itation of this approach is that operators must be total functions which can be

proven to terminate. This poses no problem in practice, as all HCOL operators we

encountered fit this definition. The following are the data types used in HCOL:

The Carrier Type: Unlike OL, the main data type is abstract instead of using

concrete types, such as R or C. HCOL R is an abstract representation of such a

numeric type, expressed in terms of its algebraic properties. See description below

in Section 3.1.1 for details.

Finite-dimensional Vectors: To represent vectors, we use the inductively-defined

Vector type from Coq’s standard library. Vector elements have type R. We will use

Coq notation avector n or mathematical notation Rn interchangeably to describe

vectors of R of length n.

Finite natural numbers: Some HELIX operators use finite natural numbers as
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vector offsets. They are upper-bounded to ensure not to exceed the expected target

vector size. They are encoded using Coq’s sig type to represent a number along

with the proof that it has passed the range check. In this paper, we sometimes use

the shorthand notation In to denote {x : N | x < n} type.

The dimensions of input and output vectors of an HCOL operator are en-

coded as indices of the vector type family, and vector type Rn corresponds to

(vector R n) in Coq. When constructing a complex HCOL expression, Coq’s type

system ensures that the dimensions of all components match.

3.1.1 Carrier Type

This is an abstract representation of a numeric type, expressed in terms of its al-

gebraic properties. Definitions and proofs formulated for the carrier type can be

applied, for example, to R, Q, or Z, as they satisfy these properties.

We denote the carrier type as R. Algebraic properties are expressed using

corresponding typeclass instances from the MathClasses library [40]. It is postulated

that there are instances for R of the following typeclasses:

� Equality: Equiv, Setoid (see discussion below in Section 3.1.2.).

� Constants: Zero, One.

� Operators: Plus, Mult, Negate, Abs.

� Abstract algebra structures: Ring.

� Comparisons: Lt, Le.

� Decidability: Decision (x=y), Decision (x<y).

� Ordering: TotalOrder, StrictSetoidOrder, SemiRingOrder,

FullPseudoOrder.

For example, we require that R, along with the corresponding operations,
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forms an algebraic ring, has a total ordering, and has decidable equality. Some op-

erators do not require all these properties, but to be able to construct homogeneous

HCOL expressions, the carrier type imposes the superposition of all the constraints

required by all HCOL operators. Additionally, it is assumed that the R type is

populated with some special values, like zero and one.

All these properties are assumed, by admitting instances of the corresponding

typeclasses. This provides an axiomatic system of abstract R.

3.1.2 Equality

The definition of equality is essential for HCOL operator rewriting. The Coq default

notion of equality (eq) is too restrictive for our purposes. For example, it would

not allow us to work with rational numbers represented by non-reduced integer

fractions. Depending on what concrete type is used in place of the abstract carrier

type, we would like to be able to define a meaningful equality relation for this type.

In general, we would like to work on a carrier type equipped with an equivalence

relation, which is also called a setoid.

Operational typeclass Equiv defines an equiv relation for a given type. its

subclass, Setoid, additionally requires this relation to be an equivalence relation by

presenting proofs that it is transitive, commutative, and reflexive.

Since we have declared our carrier type R to be an instance of a Setoid

typeclass, we can define equiv for vectors of this type as a pointwise relation which

makes them also a setoid: ∀ (n :N), Setoid (vectorR n).

From that follows the natural definition of the HCOL operator extensional

equality which states that two operators F and G are equal if for all possible input

vectors x, the values of (F x) and (Gx) are also equal.
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As we work mostly with setoid equality instead of Coq’s standard equality,

we follow the MathClasses library convention of using the (=) notation to refer to

the equiv relation instead of Coq’s standard eq. To refer to standard Coq’s eq

equality, we use the notation (≡). These notations are followed throughout this

thesis.

3.1.3 HCOL operators

Our current formalization of HCOL includes the following operators, shallow-

embedded in Coq.

HPointwise : ∀ (n ∈ N), (In → R→ R)→ Rn → Rn

This operator applies a given function to each element of the input vector, as shown

in Figure 3.1. The function takes two arguments: the element’s index and its value.

The output is the vector of the same length as the input vector.

Figure 3.1: HPointwise operator

Let us look more closely at the definition of the HPointwise operator in Coq:

Definition HPointwise {n : N} (f : In → R → R) (x: vector R n) : vector R n

:= Vbuild (λ j jd ⇒ f (mkFinNat jd) (Vnth x jd )).

Listing 3.1: HPointwise operator definition
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The operator is implemented using the Vbuild function from the CoLoR

library [41]. The definition is fairly straightforward; HPointwise generates a vector

of length n where an element with index j is the result of the application of the j-th

function from family f to the input vector x.

HAtomic : (R → R)→ R1 → R1

This operator “lifts” a scalar valued function to an HCOL operator on single element

vectors.

HScalarProd : ∀ (n ∈ N), Rn+n → R1

Calculates the dot product of two vectors. The input vectors are concatenated and

passed as a single vector of size n + n. The result is returned as a single-element

vector. For an input vector x = [x0, x1, . . . , xn+n−1] it computes [x0 ·xn+x1 ·xn+1 +

· · ·+ xn−1 · xn+n−1].

HBinOp : ∀ (n ∈ N), (In → R→ R→ R)→ Rn+n → Rn

This operator applies a given function to pairs of elements from two halves of an

input vector, as shown in Figure 3.2. The function additionally takes an index in

the range of 0 to n− 1 as an argument.

HReduction : ∀ (n ∈ N), (R → R→ R)→ R→ Rn → R1

This operator performs a right fold of a vector. The two parameters are a binary

function and the initial value. The result is returned as a vector size 1.
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Figure 3.2: HBinOp operator

HEvalPolynomial : ∀ (n ∈ N), Rn → R1 → R1

This operator computes a univariate polynomial of an n-th degree. It is parame-

terized by a vector of constant coefficients. The input and output scalar values are

represented as vectors of size 1.

For input ~x = [x0] and parameter ~a = [a0, a1, . . . , an], it computes [a0 + a1 ·

x0 + a2 · x2
0 + · · ·+ an · xn0 ].

HPrepend : ∀ (m,n ∈ N), Rm → Rn → Rm+n

This operator concatenates the input vector of size n with the constant vector “pre-

fix” of size m.

HMonomialEnumerator : ∀ (n ∈ N), R1 → Rn+1

This operator computes a list of positive integer powers (0 to n) of a single variable.

Assuming the input is a single-element vector ~x = [x0], it returns [1, x0, x
2
0, . . . , x

n−1
0 ].
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HInductor : ∀ (n ∈ N), (R → R→ R)→ R→ R1 → R1

This operator is a recursor [42] applied up to the depth n. The parameters are

a binary function f and the initial value z. For example, if the input is a single-

element vector ~x = [x0], for n = 5, it computes [f (f (f (f (f z x0) x0) x0) x0) x0].

It is analogous to Fold operator in Wolfram Mathematica [43].

HInduction : ∀ (n ∈ N), (R → R→ R)→ R→ R1 → Rn

This operator is similar to HInductor but returns all intermediate values for depths

up to n. For example, if the input is a single-element vector ~x = [x0], for n = 3, it

computes [z, f z x0, f (f z x0) x0]. It is analogous to FoldList operator in Wolfram

Mathematica.

HInfinityNorm : ∀ (n ∈ N), Rn → R1

This operator computes an infinity norm ||x||∞ of a given input vector and returns

it as a single-element vector.

HChebyshevDistance : ∀ (n ∈ N), Rn+n → R1

This operator computes the Chebyshev distance between two vectors of size n. The

vectors are concatenated and passed as a single input vector of size n + n. The

resulting scalar value is returned as a single-element vector.

HVMinus : ∀ (n ∈ N), Rn+n → Rn

This operator represents subtraction of two vectors of size n. The vectors are con-

catenated and passed as an input vector of size n+ n.
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HCross : ∀ (n1, n2,m1,m2 ∈ N), (Rm1 → Rn1)→ (Rm2 → Rn2)→ (Rm1+m2 → Rn1+n2)

This is a higher-order operator implementing the cartesian product of two operators,

sometimes called a tupling combinator. When applied to operators f and g, it pro-

duces a new operator which takes as input a pair of vectors (x0, x1) (concatenated)

and returns (f x0, g x1) (also concatenated).

HStack : ∀ (n1, n2,m ∈ N), (Rm → Rn1)→ (Rm → Rn2)→ (Rm → Rn1+n2)

This is a higher-order operator implementing parallel application of two operators.

When applied to operators f and g it produces a new operator which for input

vector x and returns (f x, g x) (concatenated).

HCompose : ∀ (m,n, t ∈ N), (Rt → Rn)→ (Rm → Rt)→ (Rm → Rn)

This is a higher-order operator for operator composition. When applied to operators

f and g it produces a new operator (f ◦ g).

HTLess : ∀ (n,m1,m2 ∈ N), (Rm1 → Rn)→ (Rm2 → Rn)→ (Rm1+m2 → Rn)

This is a higher-order operator implementing element-wise comparison of the results

of the cartesian product of two operators. When applied to the operators f and g,

it produces a new operator which takes as input a pair of vectors (x0, x1) (concate-

nated) and returns a vector produced by element-wise “less than” comparison of

f x0 and g x1 using a decidable lt predicate, which must be defined for R. If the

predicate is True, the corresponding output vector’s element will be zero or one

otherwise. The zero and one are special values in R.
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3.1.4 Example

An HCOL formulation of the dynamic window monitor expression (1.2) introduced

in Section 1.4 is shown in Listing 3.2.

Definition dynwin_orig (a: avector 3): avector (1 + (2 + 2)) → avector 1

:= HTLess (HEvalPolynomial a) (HChebyshevDistance 2).

Listing 3.2: Dynamic Window Monitor in HCOL

3.2 Σ-HCOL Language

Most vector and matrix operations can be expressed as iterative computations on

their elements. To generate machine code for such computations, we transform our

expressions into a form where these iterations become explicit.

The goal of our next language, Σ-HCOL is to represent algebraically iterative

computations on vectors. Where HCOL operates on whole vectors, Σ-HCOL allows

for finer granularity introducing operations on individual elements.

An iterative computation on vectors can be viewed as superposition of com-

putations performed during each step which processes only a subset of elements.

The vector positions not used during an iteration step can be left undefined. This

can be represented naturally with sparse vectors. For example, an element-wise

function application to elements of a dense vector can be represented as the sum

of columns of a diagonal sparse matrix, as shown in Figure 3.3. In this example,

for simplicity, we use Rn type to represent sparse real-valued vectors of length n

and assume that sparse cells hold a special structural zero value, which is treated

as regular zero under addition. Later in this section, we will give a more formal

treatment of how we represent and reason about sparsity in HELIX.
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Figure 3.3: Dense vector as sum of four sparse vectors

Assuming that f is implemented in C as void f(R *src, R *dst), it roughly

corresponds to the following loop:

for ( int i =0; i <4; i++)

{

f ( s r c+i , dst+i ) ;

}

which requires four iterations. If we have a vectorized implementation of f2 with

type f2 : R2 → R2 which is implemented in C as void f2(R src[2], R dst[2]), the

sum would look like Figure 3.4.

Figure 3.4: Dense vector as sum of two sparse vectors

It roughly corresponds to the following loop, which now requires only two

iterations:

for ( int i =0; i <2; i++)

{

f2( s r c +2* i , dst+2* i ) ;

}

38



In these examples, f can be viewed as an abstraction for a scalar CPU

instruction, such as x86 FADD, and f2 can be a SIMD version of it, similar to

ADDPS x86 SSE instruction.

In essence, sparsity allows us to represent partial computations. For in-

stance, in Figure 3.3, we use an operation (e.g. addition) and the default value for

the sparse elements (e.g. zero), which form a monoid, to represent superposition

of partial computations algebraically. Maintaining algebraic abstraction allows us

to transform and to prove equality of operations on vectors, representing various

computation flows.

3.2.1 Modelling Missing Values and Collisions

In our formalization, each sparse vector’s element could be either an actual value or

a structural value. One can think about a structural value as an empty cell with a

default placeholder value assigned to it.

To ensure proper factorization of a complex computation into superposition

of elementary ones, we need to make sure that the calculation of each vector’s

element is assigned to exactly one elementary computation. That means that when

combining vectors representing the results of two computations, we should never

combine two non-empty vector elements. When combining vector elements pairwise,

one of the values must be structural. If both values are non-structural, we call

this a collision, which indicates there are two conflicting paths trying to perform

computation of the same value. Any collision detected should be tracked down

the computation tree, and any operation with a value produced as a result of that

collision should be marked as colliding as well. Normally, the well-formed Σ-HCOL

expression triggers no collisions (see Section 3.2.5 on how we ensure this).
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The first, näıve approach to tracking structural and collision flags is to use

a product type which contains the actual value and two flags: R× B× B. However

in many situations, we only care about actual values and want to avoid dealing

with structural flags implicitly. Our solutions is to use Writer Monad to track the

structural properties of carrier type R, as described below.

Record Rflags : Type := mkRflags {is_struct: B; is_collision: B}.

In the snippet above, we first define a record data type Rflags which holds

structural and collision flags. To use these flags in Writer Monad (using ExtLib [44]

library), we also need to define a Monoid record:

Definition mzero := mkRthetaFlags > ⊥.

Definition mappend (a b : Rflags) : Rflags :=

mkRthetaFlags

(is_struct a && is_struct b)

(is_collision a || is_collision b ||

(negb (is_struct a || is_struct b ))).

Definition Monoid_Rflags : Monoid Rflags := Build_Monoid mappend mzero.

Listing 3.3: Exclusive Union Monoid

The initial flags’ value called mempty has the structural flag true and the

collision flag false. The mappend operation above is used to combine the two sets of

flags. It works as follows. If one of the operands is non-structural, the result is also

non-structural. The collision flags are ”sticky;” once set for either operand, they

are propagated into the result. Finally, attempting to combine two non-structural

elements raises a new collision.

It could be shown that the following Monoid laws are satisfied:

∀a, a⊕ 0 = 0⊕ a = a (3.1)
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∀a,∀b,∀c, (a⊕ b)⊕ c = a⊕ (b⊕ c) (3.2)

Here, we use 0 for mempty and ⊕ for mappend. In Coq, we just declare

an instance of the MonoidLaws typeclass for our newly defined Monoid record and

prove properties from the Equations (3.1) and (3.2).

Instance MonoidLaws_Rflags: MonoidLaws Monoid_Rflags.

To track the flags while performing operations on the values of typeR, we use

Writer Monad, parametrized by a Monoid which defines how flags will be handled:

Variable fm :Monoid Rflags.

Definition Monad_Rflags := writer fm.

Definition Rfm := Monad_Rflags R.

To construct values of the type Rfm, we define two convenience functions:

Variable fm :Monoid Rflags.

Definition mkStruct (v :R) : Rfm fm := ret v.

Definition mkValue (v :R) : Rfm fm := tell (mkRflags ⊥ ⊥) ;; ret v.

For most Σ-HCOL operators, we are interested in the Rflags type

parametrized by a Monoid with exclusive union as a mappend operation, as shown

in Listing 3.3. We will call this type Rθ. A commonly used constant 0· of this type

holds R ring’s additive identity (0) as a value and has the structural flag set and

the collision flag unset:

Definition Rθ := Rfm Monoid_Rflags.

Definition 0· : Rθ := mkStruct 0.

To illustrate how Writer Monad is used to track the flags, let us examine

how they are combined when a binary operation is performed on underlying values.

Recall the execWriter will return the flags value of type Rflags for a given monadic
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value of type Rθ. To apply the binary operation op to the underlying R values,

we use liftM2 to promote it to a monad. Now, just by unfolding the underlying

definitions, it could be trivially shown that:

∀ (op : R → R → R) (a b: Rθ),

execWriter (liftM2 op a b) = mappend (execWriter a) (execWriter b ).

In other words, that arguments’ flags will be combined using the mappend

operation. Similarly, using evalWriter to unwrap the writer monad to extract the

underlying value, it could be shown that lifting a binary operation will result in a

value computed by applying it to the unwrapped arguments:

∀ (op : R → R → R) (a b: Rθ),

evalWriter (liftM2 op a b) = op (evalWriter a) (evalWriter b ).

The Rθ is not the only parametrisation of Rfm we use. Other monoids could

be used to provide different strategies for combining flags. For example, another

useful monoid uses the same mzero value as in Listing 3.3 except with the mappend’

function which tracks the preexisting collisions without generating new ones:

Definition mappend’ (a b : Rflags) : Rflags :=

mkRthetaFlags

(is_struct a && is_struct b)

(is_collision a || is_collision b ).

Definition Monoid_Rflags’ : Monoid Rflags :=

Build_Monoid mappend’ mzero .

Listing 3.4: “Safe” Union Monoid

This monoid instance allows us to define a “safe” variant of the Rθ type as

Rθ′ , Rfm Monoid Rflags′ . This type could be used, for example, in scenarios where

iteration does not represent partial computations. To mix these different types of
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iterations, a conversion between Rθ and Rθ′ is defined, which preserves both flags

and values (see SafeCast and UnSafeCast operators below).

Some definitions do not depend on the monoid used to specialize Rfm, and

in the rest of this section, we use type R , Rfm fm and assume that all equations

using this type are universally quantified over fm ∈ Monoid Rflags.

Frequently, we need to combine vectors element-wise using the provided bi-

nary scalar function dot : R → R→ R. For each output vector element, the values

are computed applying dot to the corresponding elements of the two input vectors.

The flags are combined using the mappend operation from the provided monoid.

This operation is called Vec2Union:

Definition Vec2Union {n :N } (dot : R → R → R)

: svector fm n → svector fm n → svector fm n.

Listing 3.5: Vec2Union vector combining operation

When fm = Monoid_Rflags, this operation represents the combination of two

partial computations. On the other hand, when fm = Monoid_Rflags′ , it is just an

element-wise combination of the two sparse vectors using the provided binary oper-

ation. For example, if dot = plus, it is just vector addition.

3.2.2 Index Mapping Functions

Sometimes, we will use functions to express the relationship between the indices of

two vectors. We call such functions index mapping functions.

An index mapping function f has a domain of natural numbers N in interval

[0,m) (denoted as Im) and the range of N in interval [0, n) (denoted as In and

encoded as {x : N | x < n} type in Coq).
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fm→n : Im → In

Such a function, for example, could be used to establish a relation between

the indices of two vectors with respective sizes m and n.

3.2.3 Families of Index Mapping Functions

We can extend our notion of an index mapping function into a family of index

mapping functions. We define a family f of k index mapping functions:

∀j < k, fj
m→n : Im → In (3.3)

Such families could be used, for example, to represent the individual index

maps used per loop iteration. The non-collision property corresponds to the in-

jectivity of a family of index mapping functions, and the totality of computation

corresponds to bijectivity.

The family is called injective if it satisfies:

∀a,∀b,∀i,∀j, fa(i) = fb(j) =⇒ (i = j) ∧ (a = b) (3.4)

The family is called surjective if it satisfies:

∀j,∃a,∃i, fa(i) = j (3.5)

The family is called bijective if it is both injective and surjective.

The subscript indices in the mathematical notation above are just additional
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arguments, and the actual type of the function is:

f : Ik → Im → In (3.6)

Or in uncurried form:

fm→n : (Ik × Im)→ In (3.7)

In which case, the standard definitions of surjectivity and injectivity apply.

3.2.4 Operator Type

Σ-HCOL operators are defined using mixed embedding. By that, we mean that

an operator’s implementation is Gallina function from vectors to vectors, which is

wrapped up in a record that holds some additional information. The full definition

is shown in Listing 3.6.

Record SHOperator {i o: N} {svalue: CarrierA} {fm:Monoid RthetaFlags} : Type :=

mkSHOperator {

op: svector fm i → svector fm o ;

op_proper: Proper ((=) =⇒ (=)) op;

in_index_set: FinNatSet i ;

out_index_set: FinNatSet o;

svalue_at_sparse: ∀ v,

(∀ j (jc:j<o), ¬out_index_set (mkFinNat jc) → evalWriter (Vnth (op v) jc) = svalue);

}.

Listing 3.6: SHOperator type

The operator record type is indexed by:
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i,o Input and output vector dimensions. Vector sizes are static and must match

when building complex expressions from elementary operators.

svalue The default value which will be used to initialize new sparse cells.

fm Flags monoid instance. It defines how sparsity flags will be handled.

The fields of the SHOperator record are:

op Functional, shallow-embedded, implementation of the operator.

op proper Proper morphism instance for op function.

in index set, out index set Sparsity patterns for input and output vectors, en-

coded as sets of finite natural numbers with bounds corresponding to dimen-

sions of input and output vectors, respectively.

svalue at sparse The guarantee (proof) that the opeator’s output will contain the

svalue at sparse indices.

It should be noted that this definition of an operator provides no guarantees

that the implementation will respect sparsity patterns. This will be ensured via

structural properties, discussed next.

3.2.5 Structural Correctness

Expressions must be in a certain shape which lends itself to efficient code generation.

Ensuring such a shape is a problem distinct from semantics preservation, and we have

defined a separate set of properties to ensure what we call “structural correctness.”

It involves reasoning about the underlying operations performed on sparse vectors

using a monad to track sparsity and detect structural errors.

Each operator definition includes two sets, in index set and out index set,

representing its sparsity contract. They define the expected sparsity patterns of

input vectors and the guaranteed sparsity patterns of output vectors.
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We have also defined the following structural properties which guarantee that

a Σ-HCOL expression is in a form which is suitable for optimal and correct code

generation:

1. The sparsity contract (in index set and out index set membership) is de-

cidable.

2. Only the values at indices from the in index set of the input vector affect

the output.

3. During operator evaluation, a sufficiently filled input vector (values at all

indices in the in index set) guarantees a properly filled output vector (values

at all indices in the out index set).

4. An operator evaluation will never generate values at indices which are not

present in the out index set.

5. As long as there are no collisions at indices in the in index set in the input

vector, none will be produced at indices in the out index set in the output

vector.

6. An operator evaluation will never generate collisions at indices outside the

out index set of the output vector.

We have grouped these properties in a SHOperator Facts type class and

have proven its instances for all Σ-HCOL operators that we have defined. The

proof of these properties for higher-order operators is compositional ; as long as all

operators involved are instances of SHOperator Facts, it can be shown that all Σ-

HCOL higher-order operators are also instances of SHOperator Facts. That gives

us a structural correctness proof “by construction” for any Σ-HCOL expression.
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3.2.6 Operator Families

Similar to families of index mapping functions, we can have families of operators.

We define a family F of k operators as:

∀fm,∀i,∀o, ∀svalue, F : Ik → SHOperator fm i o svalue (3.8)

All operators in the family use the same monoid, the same input and output

dimensions, and the same default structural value.

3.2.7 Equality

For Σ-HCOL, we need to define the notion of equality for scalar values, vectors, and

operators, as we did for HCOL in Section 3.1.2. Here again, we use Equiv typeclass

to define our equality relation for various types as described below.

For scalar values of type (Rfm fm), the equality relation is defined for any

monoid fm ∈ Monoid Rflags. It is defined as an equality of the underlying values of

type R:

Instance Rfm_equiv: Equiv (Rfm fm)) :=

λ am bm ⇒ (evalWriter am) = (evalWriter bm ).

For sparse vectors of this type, we use pointwise equality.

Finally for Σ-HCOL operators, the equality is defined as extentional equality

of the underlying shallow-embedded implementations:

Instance SHOperator_equiv {i o : N} {svalue: R}:

Equiv (@SHOperator i o svalue) := λ a b ⇒ op a = op b.

At first glance, the definition is missing the comparison of sparsity patterns.

It can be shown that, as defined, the relation is strong enough to guarantee that
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the sparsity patterns will also match, assuming both the operators are structurally

correct.

3.2.8 Σ-HCOL Operators

There are fourteen Σ-HCOL operators described below. Unless specified other-

wise, they operate on sparse vectors with elements of type (Rfm fm) for any

fm ∈ MonoidRflags.

Embed

Embed (svalue: R) (n b: N) (bc : b < n) : @SHOperator fm 1 n svalue.

Takes an element from a single-element input vector and puts it at a specific

index in a sparse vector of given length.

Figure 3.5: Embed dataflow

Pick

Pick (svalue: R) (n b: N) (bc : b < n) : @SHOperator fm n 1 svalue.
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Selects an element from the input vector at the given index and returns it as

a single element vector.

Figure 3.6: Pick dataflow

Scatter

Scatter (svalue: R) (n m: N) (f : index_map n m) {f_inj : index_map_injective f} :

@SHOperator fm n m svalue.

Embedding can be generalized where more than one element can be em-

bedded at once. The destination selection is controlled by a user-provided index

mapping function.

The operator maps elements of the input vector to the elements of the out-

put according to an index mapping function f . The mapping is injective but not

necessarily surjective. That means the output vector could be sparse.
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Figure 3.7: Scatter dataflow

Gather

Gather (svalue: R) (n m: N) (f : index_map m n) :

@SHOperator fm n m svalue.

Picking can be generalized where more than one element can be picked at

once. The element selection is controlled by a user-provided index mapping function.
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Figure 3.8: Gather dataflow

liftM HOperator

liftM_HOperator (svalue: R) (i o: N)

(op : avector i → avector o)

‘{HOP : HOperator i o op}

: @SHOperator fm i o svalue.

This operator allows “lifting” HCOL operators, so they can be used in Σ-

HCOL expressions. Since HCOL operates on dense vectors, the input vector is

first “densified” by dropping structural flags and replacing sparse values with the

svalue. During this operation, structural values become indistinguishable from non-

structural values. After applying the HCOL operator, the result is “sparsified”

(converted to sparse vector format) by marking all values as non-structural.

SHPointwise

SHPointwise (svalue: R) (n: N)
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(f : FinNat n → R → R)

‘{pF : !Proper ((=) =⇒ (=) =⇒ (=)) f}

: @SHOperator fm n n svalue

This is a Σ-HCOL version of the HPointwise operator from HCOL (see Sec-

tion 3.1.3). We could not just lift HPointwise via liftM Hoperator because we

want to preserve structural flags. However, it can be shown that the two implemen-

tations are equal with respect to SHOperator equiv which only compares values

and ignores flags.

SHBinOp

SHBinOp (svalue: R) (n: N)

(f : FinNat n → R → R)

‘{pF : !Proper ((=) =⇒ (=) =⇒ (=)) f}

: @SHOperator fm (n+n) n svalue.

This is a Σ-HCOL version of the HBinOp operator from HCOL (see Sec-

tion 3.1.3). Just like with SHPointwise, can not just lift the HBinOp via the

liftM Hoperator because we want to preserve structural flags. However, it can be

shown that the two implementations are equal with respect to SHOperator equiv

which only compares values and ignores flags.

SHInductor

SHInductor (svalue: R) (n: N)

(f : FinNat n → R → R)

‘{pF : !Proper ((=) =⇒ (=) =⇒ (=)) f}

(initial: R)

: @SHOperator fm 1 1 svalue.
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This is a Σ-HCOL version of the HInductor operator from HCOL (see Sec-

tion 3.1.3). The initial value is treated as non-structural.

Apply2Union

Apply2Union (i o : N)

(svalue: R)

(dot : R → R → R)

‘{dot_mor: !Proper ((=) =⇒ (=) =⇒ (=)) dot}

‘{scompat: BFixpoint svalue dot}

(f g : @SHOperator fm i o svalue)

: @SHOperator fm i o svalue.

This is a higher-order operator applying two operators to the same input and

combining their results using Vec2Union (See Listing 3.5).

Figure 3.9: Apply2Union dataflow

The additional constraint is that the default value for sparse cells (svalue)

is a fixpoint of the provided binary function dot, defined as dot svalue svalue =

svalue. This is to assure that the value of sparse cells is preserved when combining

them.

SafeCast
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SafeCast {svalue: R} {i o: N}

(f : @SHOperator Monoid_Rflags’ i o svalue)

: @SHOperator Monoid_Rflags i o svalue.

This is a higher-order operator wrapping another Σ-HCOL operator. While

it does not change the values computed by the wrapped operator, it swaps the

monadic wrapper used to track sparsity properties from Monoid_Rflags’ to Monoid_

Rflags. As we recall from Section 3.2.1, the former does not track collisions, while

the latter does.

UnSafeCast

UnSafeCast {svalue: R} {i o: N}

(f : @SHOperator Monoid_Rflags i o svalue)

: @SHOperator Monoid_Rflags’ i o svalue.

Similar to SafeCast but with wrappers switched in the opposite direction,

from Monoid_Rflags to Monoid_Rflags’.

SHCompose

SHCompose {svalue: R}

{i1 o2 o3 : N}

(op1 : @SHOperator o2 o3 svalue)

(op2 : @SHOperator i1 o2 svalue)

: @SHOperator i1 o3 svalue.

This performs a functional composition of operators. The op2 is applied to

the input first. The result is then used as an input of op1. Sometimes, we use

shortcut notation (op1 } op2) alluding to the function composition operator ◦.
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IReduction

IReduction {svalue: R} {i o n: N}

(dot : R → R → R)

‘{pdot : !Proper ((=) =⇒ (=) =⇒ (=)) dot}

‘{scompat: BFixpoint svalue dot}

(op_family: @SHOperatorFamily Monoid_Rflags’ i o n svalue)

: @SHOperator Monoid_Rflags’ i o svalue.

This iteratively applies an indexed family of n operators to the input and

combines their outputs element-wise using the provided binary function dot. See

additional discussion on implementation of this operator below in Section 3.2.10.

The additional constraint is that the default value for sparse cells (svalue) is

a fixpoint of provided binary function dot, defined as dot svalue svalue = svalue.

This is to assure that the value of sparse cells is preserved when combining two of

them.

This operator is defined for vectors of Rθ′ as its intended use is to computa-

tionally combine the results of a family of operators, and it must not treat combining

non-sparse values as errors (collisions).

IUnion

Definition IUnion {svalue: R} {i o n: N}

(dot : R → R → R)

‘{pdot : !Proper ((=) =⇒ (=) =⇒ (=)) dot}

‘{scompat: BFixpoint svalue dot}

(op_family: @SHOperatorFamily Monoid_Rflags i o n svalue)

: @SHOperator Monoid_Rflags i o svalue :=

Iteratively applies an indexed family of n operators to the input and combines
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their outputs element-wise using the provided binary function dot. See additional

discussion on implementation of this operator below.

The additional constraint is that the default value for sparse cells (svalue)

is a fixpoint of the provided binary function dot, defined as dot svalue svalue =

svalue. This is to assure that the value of sparse cells is preserved when combining

them.

This operator is defined for vectors of Rθ and represents an abstraction

for a parallel loop, combining the results of partial computations. To allow loop-

level parallelism in a well-formed Σ-HCOL expression, partial computations should

never overlap. Such overlapping can not occur as long as the sparsity patterns of

op family members are disjoint. The collision tracking built-in in Rθ allows us to

prove this.

3.2.9 Sparse Embedding

One class of HCOL expressions that we are particularly interested in has the follow-

ing form:

SparseEmbeddingf,g,K , (λi. Scatfi ◦Ki ◦ Gathgi) (3.9)

The parameters are:

� A family of k index mapping function gm→t

� A family of k “kernel” operators K

� An injective family of k index mapping function f `→n

This form is called a sparse embedding of an operator family K (the ker-

nel) and could be used as a step in iterative processing of a vector’s elements. It
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corresponds to the body of a loop with k iterations in which the gather picks the

input vector’s elements, which are then processed by K, and the results are then

dispatched to appropriate positions in the output vector using scatter. The index

function family f must be injective. The SparseEmbedding is monoid-agnostic and

defined for vectors of R .

This is a very flexible and powerful construct. We can process vector elements

one by one or in groups. The order of processing is controlled by index mapping

functions. It allows us to model various memory access patterns useful for SIMD or

CPU cache related optimizations.

3.2.10 Map-Reduce

The IUnion and IReduction HCOL operators are variants of the same operation,

which we will call map-reduce. The higher-order map-reduce operation MRk,f,z takes

an indexed family of k operators (typically a sparse embedding) and produces a new

operator. It has the following type:

MRk,f,z : (N→ (Rn → Rm))→ Rn → Rm (3.10)

When evaluated, map-reduce applies all family members with indices between

0 and k − 1 (inclusive) to an input vector, and the resulting k vectors are folded

element-wise using a binary function (f : R → R → R). The initial value (z : R )

is used in the first folding step and treated as a structural value.

A simple example applies a function f to all elements of a vector of size 2:

MR2,+,0(λi.(Scatλx.i ◦ JfK ◦ Gathλx.i)) (3.11)
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When using map-reduce in IReduction, the results of family members’ ap-

plications must be dense. In the case of IUnion, the body of map-reduce should

be a family of sparse embeddings. The dataflow of expression (3.11) is shown in

Figure 3.10.

Figure 3.10: Map-Reduce of a Sparse Embedding

3.2.11 Relation between HCOL and Σ-HCOL

Lifting HCOL operators to be used in Σ-HCOL allows a temporary mixture of

abstractions, corresponding to embedding mathematical formulae in a functional

program. A Σ-HCOL expression can be gradually transferred to a purely functional

form by applying a series of rewriting rules.

In iterative factorization of operations on vectors, each iteration represents

a partial computation which outputs a sparse vector. In SPIRAL, the sparsity is

represented by default values (typically 0) assigned to sparse cells. No tracking is

performed which historically leads to many difficult to find implementation bugs. In

Σ-HCOL, we have implicit sparsity tracking and a special sparse vector type. Thus,

while in SPIRAL, Σ-OL is a superset of OL, in HELIX, Σ-HCOL and HCOL are

two distinct languages operating on different data types: sparse vs. dense vectors.

59



Σ-HCOL operators represent partial computations and are defined on sparse

vectors, unlike HCOL operators which represent total computations and are defined

on dense vectors.

3.2.12 Example

A result of the initial translation of an HCOL formulation of the dynamic window

monitor from Listing 3.2 to Σ-HCOL is shown in Listing 3.7. It has been abridged

to hide some non-essential parameters.

Definition dynwin_SHCOL (a: avector 3): @SHOperator Monoid_Rflags (1+(2+2)) 1 zero :=

SafeCast (SHBinOp (IgnoreIndex2 Zless))

} Apply2Union plus

(ScatH 0 1

} (liftM_HOperator (@HReduction plus 0)

} SafeCast (SHBinOp (IgnoreIndex2 mult))

} liftM_HOperator (HPrepend a )

} liftM_HOperator (HInduction 3 mult one))

} GathH 0 1)

(ScatH 1 1

} liftM_HOperator (@HReduction max 0)

} SHPointwise (IgnoreIndex abs)

} (SumSparseEmbedding (n:=2)

(λ jf ⇒ SafeCast

(SHBinOp (o:=1)

(Fin1SwapIndex2 jf (IgnoreIndex2 sub))))

(λ j ⇒ h_index_map (proj1_sig j) 1)

(λ j ⇒ h_index_map (proj1_sig j) 2))

} GathH 1 1).

Listing 3.7: Dynamic Window Monitor in Σ-HCOL

3.3 MHCOL Language

MHCOL is an intermediate step in the HELIX transformation chain between purely

functional Σ-HCOL and imperative DHCOL languages. Imperative language seman-
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tics, as we see in later sections, ultimately describes how program execution steps

update the memory state. Sparse vectors in Σ-HCOL are an algebraic abstrac-

tion for memory blocks. We make this explicit in the intermediate mixed-embedded

language, MHCOL (M stands for memory). While MHCOL is still a functional

language, we bring it closer to the next language transformation step by changing

data representation from vectors to memory blocks. Each memory block is repre-

sented as a finite map from memory offsets to values of a carrier type. There is

no mappings for keys corresponding to sparse values. Besides physical data rep-

resentation, the main change from Σ-HCOL is that we made the sparsity implicit.

Starting from MHCOL, we no longer the maintain algebraic abstraction which we

used to transform and optimize Σ-HCOL expressions. There are no “default” values

for sparse cells. That means that reading a sparse element is an error which leads

to introduction of implicit error handling in MHCOL.

An example of both representations is shown in Figure 3.11. It shows a

sparse vector with three initialized cells, A, B, and C, and one sparse cell with

default value 0. The memory representation of the same vector uses a dictionary

with three elements. There is no mapping for key 1 corresponding to vector’s sparse

cell.

Figure 3.11: Sparse vectors as dictionaries

Generally speaking, there is a 1-to-1 correspondence between Σ-HCOL and

MHCOL operators with the main difference in the input and output data types.
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MHCOL uses memory blocks, where Σ-HCOL uses sparse vectors. An example

application of the MApply2Union operator in MHCOL is shown in Figure 3.12. It

is similar to the Apply2Union Σ-HCOL operator in Figure 3.9 but operates on

memory blocks instead of vectors. Each of the two operators f and g are applied

to the input memory block x producing corresponding dictionaries with disjoint

keys {0, 2} and {1, 3}, respectively. They are then merged into the final resulting

dictionary y. Unlike Σ-HCOL, merging memory blocks does not involve combining

cells with matching keys using a binary operation. The memory blocks are simply

merged. If there is a value associated with a key in both input blocks, it is considered

an error.

Figure 3.12: MApply2Union in MHCOL

With this change of data representation, we move away from the algebraic

nature of Σ-HCOL towards a lower-level representation. In this representation, an

actual value must be associated with a key in a dictionary before it can be accessed.

Trying to access an uninitialized key is an error. It means that MHCOL opera-

tors could return errors and thus have the type: mem block → option mem block.

However, we will prove later that our translation of a structurally correct Σ-HCOL

program produces an MHCOL program that does not err when applied to an input

memory block that matches the expected input sparsity patterns.

Like in Σ-HCOL, we use mixed embedding [45] (a combination of shallow and

deep embedding) to represent MHCOL operators. The following record type is used:
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Record MSHOperator {i o: N} : Type := mkMSHOperator {

mem_op: mem_block → option mem_block;

mem_op_proper: Proper ((equiv) =⇒ (equiv)) mem_op;

m_in_index_set: FinNatSet i;

m_out_index_set: FinNatSet o;

}.

Listing 3.8: MSHOperator definition

It is indexed by dimensions of input and output memory blocks. The fields

include: a function implementing the operation on memory blocks which can fail

(returning None); a proper morphism [46] instance for this function with respect to

the setoid equality equiv (required because the carrier type is still abstract); and

the two sets which define input and output memory access patterns.

Additionally, all MHCOL operator implementations must satisfy certain

memory safety properties. We have formulated these properties as the typeclass,

MSHOperator Facts, and have proven instances of it for all operators. This is a simi-

lar approach to what we took with Σ-HCOL structural properties, but the properties

are different:

1. When applied to a memory block which has mappings present for all keys in

m in index set, mem op will not return an error.

2. The mem op must assign a value to each element with a key in m out index set

and must not assign a value to any element with a key not in m out index set.

3. The output block of mem op is guaranteed to contain no mappings for keys

outside of an operator’s declared output size.
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3.3.1 Memory Model

MHCOL definitions rely on memory block abstraction which can be viewed as a

part of a more comprehensive memory model used in later stages. In MHCOL,

memory blocks are immutable and transient and are passed as arguments to the

operators and returned as the results. However, the same type of memory block can

be made persistent and organized into a memory which will maintain the state of

a collection of such blocks, whereas each block will maintain the state of its cells.

This hierarchical two-level memory organization was inspired by the CompCert [24]

compiler [47] and by the Vellvm project.

As we re-use this memory model for other HELIX languages, it is generalized

to support various value types. This is implemented using a Coq module system. All

modules used in the memory model definition, along with their dependencies, are

shown in Figure 3.13. The square boxes represent module types, while the rounded

ones are module instances. Dashed lines depict type dependencies and solid lines

signify subtyping.
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Figure 3.13: Memory model modules

The type of values was abstracted as a CType module type which can be

instantiated for R as CarrierAasCT. The full definition of this module is discussed

in Section 3.4.1. Suffice it to say that it contains a type and the equality relation:

Module Type CType.

Parameter Inline t : Type.

Declare Instance CTypeEquiv: Equiv t.

Declare Instance CTypeSetoid: @Setoid t CTypeEquiv.

. . .

End CType.

Listing 3.9: Partial CType module type definition

Parameterized by the module type CType, the module type MBasic defines

memory model basics. It includes the abstract type memory, which represents a

mapping from “addresses” (represented as natural numbers) to memory blocks and

provides the essential operations for adding, removing, or looking up memory blocks.
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It also provides a constant memory empty, which represents the initial empty memory

state. An abridged definition of memory interface from the MBasic module type is

shown in Listing 3.10.

Definition memory : Type.

Definition mem_block : Type.

Definition memory_empty : memory.

Definition memory_lookup : memory → N→ option mem_block.

Definition memory_set : memory → N→ mem_block → memory.

Definition memory_remove : memory → N→ memory.

Definition memory_keys_lst : memory → list N.

Definition memory_next_key : memory → N.

Definition mem_block_exists : N → memory → Prop.

Parameter decidable_mem_block_exists :

∀ (k : N) (m : memory), decidable (mem_block_exists k m).

Listing 3.10: Memory interface

The memory address space is unbounded. In a given state, some addresses

could be already associated with memory blocks while others may be not initialized

yet. Operation memory set assigns a memory block to a given memory address.

It could be also used to change a memory state by replacing a block at the given

address. Decidable predicate mem block exists checks whether a given memory

address has been initialized. A block can be freed with memory remove. The function

memory next key returns the address of the next unallocated address.

The memory block has abstract type mem block, which in turn is also a

mapping of “offsets” (represented as natural numbers) to values of type CType.t.
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Memory blocks are also unbounded and have interface similar to memory. A con-

stant mem empty represents an empty memory block which contains no values. An

abridged definition of mem block interface from the MBasic module is shown in

Listing 3.11.

Definition mem_empty : mem_block.

Definition mem_lookup : N → mem_block → option CType.t.

Definition mem_add : N → CType.t → mem_block → mem_block.

Definition mem_delete : N → mem_block → mem_block.

Definition mem_in : N → mem_block → Prop.

Parameter decidable_mem_in : ∀ (k : N) (m : mem_block), decidable (mem_in k m).

Definition mem_keys_lst : mem_block → list N.

Definition mem_value_lst : mem_block → list CType.t.

Listing 3.11: Memory block interface

The MMemSetoid module type extends MBasic with a definition of setoid

equality for memory blocks and proofs of proper morphism for memory operations

with respect to setoid equality. Finally, MMemoryOfCarrierA instantiates this mod-

ule with CarrierAasCT for CType. An MHCOL language definition and all related

proofs are done for this instantiation of a memory model.

3.3.2 Example

A result of a translation of the Σ-HCOL formulation of a dynamic window monitor

from Listing 4.7 to MHCOL is shown in Listing 3.12. It has been abridged to hide

the non-essential operator parameters.

Definition dynwin_MHCOL (a: avector 3) : @MSHOperator (1 + 4) 1 :=
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MSHCompose (MSHBinOp (IgnoreIndex2 Zless))

(MHTSUMUnion plus

(MSHCompose (MSHEmbed (le_S (le_n 1)))

(MSHIReduction 0 plus

(λ jf : FinNat 3,

MSHCompose

(MSHCompose (MSHPointwise (Fin1SwapIndex jf (mult_by_nth a)))

(MSHInductor (‘ jf) mult 1))

(MSHPick (GathH1_domain_bound_to_base_bound (h_bound_first_half 1 4))))))

(MSHCompose (MSHEmbed (le_n 2))

(MSHIReduction 0 minmax.max

(λ jf : FinNat 2,

MSHCompose

(MSHBinOp

(λ (i : FinNat 1) (a0 b : CarrierA),

IgnoreIndex abs i (Fin1SwapIndex2 jf (IgnoreIndex2 sub) i a0 b)))

(MSHIUnion

(λ jf0 : FinNat 2,

MSHCompose (MSHEmbed (proj2_sig jf0))

(MSHPick

(h_index_map_compose_range_bound

(GathH_jn_domain_bound (‘ jf) 2 (proj2_sig jf))

(h_bound_second_half 1 4) (‘ jf0)

(proj2_sig jf0)))))))))

Listing 3.12: Dynamic Window Monitor in MHCOL

3.4 DHCOL Language

DHCOL is an imperative language, deep-embedded in Coq proof assistant. The

main data it operates on are fixed-size vectors of R values, stored in memory. In

addition to memory, DHCOL has lexically scoped variables, which could hold R

values, pointers to memory blocks, and natural numbers (used for loop bounds and

memory offset computations).

All variables are immutable. The language is statically scoped and de Bruijn

indices are used to reference variables from an evaluation context which holds the

68



values of all variables in scope, with the most recently introduced one at the top.

It should be noted that DHCOL is not a general purpose programming lan-

guage. It is an intermediate representation language for the class of problems HELIX

is designed for. As such, it is heavily focused on operations on R vectors. Only the

features needed to represent corresponding HELIX abstractions are present in the

language. It may seem fairly esoteric, compared to general purpose programming

languages.

The DHCOL memory model, shared with MHCOL, is described in Sec-

tion 3.3.1. New memory blocks could be allocated and freed by a DHCOL pro-

gram, and their elements can be modified repeatedly. This changing memory state

represents an imperative aspect of the DHCOL design.

DHCOL supports typed expressions: NExpr for natural numbers, AExpr

for R values, MExpr for constant memory blocks, and PExpr for memory block

pointers. R and natural number expressions allow constants and provide a set of

arithmetic operations like addition, subtraction, and division. Additionally, expres-

sions could reference variables from the environment, which are typed. Evaluation

of an expression has no side-effects but could fail.

3.4.1 DHCOL Type Parametrization

Like previous language in the HELIX transformation chain, DHCOL also uses ab-

stract data type R for data stored in memory and N for memory addresses and

offsets within memory blocks. However, this is the last language in the chain to

use these types. The very next language in the chain, FHCOL, will be identical to

DHCOL modulo these two types. FHCOL will use floating point numbers instead

of R and unsigned fixed-length machine integers instead of N. Thus, FHCOL and

69



DHCOL are essentially a family of languages parameterized by different types. To

implement such parametrization, we used Coq’s module system. We defined two

module types, as shown in Listings 3.13 and 3.14, to wrap each type with required

operations and properties.

Module Type CType.

Parameter Inline t : Type.

(* Equality *)

Declare Instance CTypeEquiv: Equiv t.

Declare Instance CTypeSetoid: @Setoid t CTypeEquiv.

(* Values *)

Parameter CTypeZero: t.

Parameter CTypeOne: t.

(* operations *)

Parameter CTypePlus : t → t → t.

Parameter CTypeNeg : t → t.

Parameter CTypeMult : t → t → t.

Parameter CTypeAbs : t → t.

Parameter CTypeZLess: t → t → t.

Parameter CTypeMin : t → t → t.

Parameter CTypeMax : t → t → t.

Parameter CTypeSub : t → t → t.

(* Proper *)

Declare Instance Zless_proper: Proper ((=) =⇒ (=) =⇒ (=)) CTypeZLess.

Declare Instance abs_proper: Proper ((=) =⇒ (=)) CTypeAbs.

Declare Instance plus_proper: Proper((=) =⇒ (=) =⇒ (=)) CTypePlus.
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Declare Instance sub_proper: Proper((=) =⇒ (=) =⇒ (=)) CTypeSub.

Declare Instance mult_proper: Proper((=) =⇒ (=) =⇒ (=)) CTypeMult.

Declare Instance min_proper: Proper((=) =⇒ (=) =⇒ (=)) CTypeMin.

Declare Instance max_proper: Proper((=) =⇒ (=) =⇒ (=)) CTypeMax.

End CType.

Listing 3.13: CType module type

For CType, we define equality and equivalence relations; constants for additive

identity (zero) and multiplicative identity (one); and basic algebraic operations like

addition and multiplication. Additionally, we require all these operations to be

proper with respect to defined equality. CType is in essence a subset of what we

had assumed and could easily be instantiated for R. The set of properties is smaller

since at this stage, we no longer require some algebraic properties like ring or total

order. As we will see later in Section 3.5, this module could be also instantiated for

IEEE floating point numbers.

Module Type NType.

Parameter Inline t : Type.

Declare Instance NTypeEquiv: Equiv t.

Declare Instance NTypeSetoid: @Setoid t NTypeEquiv.

(* Values *)

Parameter NTypeZero: t.

(* Decidable equiality *)

Declare Instance NTypeEqDec: ∀ x y: t, Decision (x = y).
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(* could always be converted to ‘N‘ *)

Parameter to_N: t → N.

Declare Instance to_N_proper: Proper ((=) =⇒ (=)) to_N.

(* not all Ns could be converted to ‘t‘ *)

Parameter from_N: N→ err t.

Declare Instance from_N_proper: Proper ((=) =⇒ (=)) from_N.

(* arithmetics operators *)

Parameter NTypeDiv : t → t → t.

Parameter NTypeMod : t → t → t.

Parameter NTypePlus : t → t → t.

Parameter NTypeMinus : t → t → t.

Parameter NTypeMult : t → t → t.

Parameter NTypeMin : t → t → t.

Parameter NTypeMax : t → t → t.

Declare Instance NTypeDiv_proper: Proper ((=) =⇒ (=) =⇒ (=)) NTypeDiv.

Declare Instance NTypeMod_proper: Proper ((=) =⇒ (=) =⇒ (=)) NTypeMod.

Declare Instance NTypePlus_proper: Proper ((=) =⇒ (=) =⇒ (=)) NTypePlus.

Declare Instance NTypeMinus_proper: Proper ((=) =⇒ (=) =⇒ (=)) NTypeMinus.

Declare Instance NTypeMult_proper: Proper ((=) =⇒ (=) =⇒ (=)) NTypeMult.

Declare Instance NTypeMin_proper: Proper ((=) =⇒ (=) =⇒ (=)) NTypeMin.

Declare Instance NTypeMax_proper: Proper ((=) =⇒ (=) =⇒ (=)) NTypeMax.

Parameter to_string: t → String.string.

(* If [from_N] succeeds for a number, it also succeeds for all

numbers less than it.

*)

Parameter from_N_lt:
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∀ x xi y,

from_N x ≡ inr xi →

(y<x)%N →

∃ yi, from_N y ≡ inr yi.

(* 0 is always convertible *)

Parameter from_N_zero: ∃ z, from_N O ≡ inr z.

End NType.

Listing 3.14: NType module type

Our NType module type definition is similar to the CType with a few ad-

ditions. A method to convert NType.t values to strings is provided mostly for

debugging convenience. We additionally require this type to always be convertible

to N. Conversion from N is also defined, but it could return an error, because

for fixed-size parametrizations, it might not be possible to fit arbitrary-size natural

numbers to a fixed number of bits. For error handling, we use err monad, described

later. A couple of properties must be proven for instances of this module type. The

first property states that if conversion from N succeeds for a given natural number,

it will also succeed for all natural numbers less than this. This property could be

considered a form of monotonicity. The second property simply states that natu-

ral number 0 could be always successfully converted to NTtype.t. This makes the

type inhabited, with at least one value corresponding to 0 ∈ N. This module type

could easily be instantiated for natural numbers as well as for fixed-length machine

integers.

It should be noted that while NType.t is used to represent loop indices in

iterative operators, loop bounds are expressed as natural numbers. This implemen-
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tation decision is meant to simplify proofs by induction.

A diagram showing the modular organization of DHCOL is shown in Fig-

ure 3.14. The square boxes represent module types, while the rounded ones are

module instances. Dashed lines depict type dependencies and solid lines signify

subtyping.

Figure 3.14: DHCOL modules

This diagram includes some modules which will be discussed later, in partic-

ular MDSigmaHCOLITree discussed in Section 4.7 and Float64asCT, Int64asCT, and

MDSHCOLOnFloat64 discussed in Section 3.5. The blue MMemSetoid block connects

this diagram to the memory model shown in Figure 3.13. It reflects the fact that

the DHCOL module type depends on a memory model module type, instantiated

with the same CType and NType parameters.
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3.4.2 DHCOL Expressions and Operators

The DHCOL language family is defined as a module type parametrized by mod-

ules CT for CType and NT for NType. It defines DHCOL expressions and operators.

There are four expression types, each of which can be evaluated to the values of the

corresponding types:

NExpr is a type of integer expressions which evaluates to NType.t values.

PExpr type represents pointers to blocks in memory. These pointers can be used

to modify the objects they point to, changing the memory state. It evaluates to a

tuple with type N×NT.t. The first element of the tuple is an address of a block in

memory and the second is the size of this block.

MExpr also refers to memory blocks but can only be used to access, not modify

data. In addition to referencing blocks in memory, it can also represent standalone

constant memory blocks. It evaluates to a tuple with type mem block×NT.t.

AExpr expressions evaluate to scalar values of CType.t.

The definition of AExpr type is shown in Listing 3.15. The evaluation seman-

tics for expressions will be discussed later in Section 3.4.3.

Inductive AExpr : Type :=

| AVar : var_id → AExpr

| AConst: CT.t → AExpr

| ANth : MExpr → NExpr → AExpr

| AAbs : AExpr → AExpr

| APlus : AExpr → AExpr → AExpr

| AMinus: AExpr → AExpr → AExpr

| AMult : AExpr → AExpr → AExpr

| AMin : AExpr → AExpr → AExpr
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| AMax : AExpr → AExpr → AExpr

| AZless: AExpr → AExpr → AExpr.

Listing 3.15: AExpr type

The DHCOL operator type is shown in Listing 3.16. In addition to the

expression types described above, it uses the MemRef type, which is a memory

pointer combined with an offset as a natural number: (PExpr × NExpr).

Inductive DSHOperator :=

| DSHNop

| DSHAssign (src dst: MemRef)

| DSHIMap (n: N) (x_p y_p: PExpr) (f: AExpr)

| DSHBinOp (n: N) (x_p y_p: PExpr) (f: AExpr)

| DSHMemMap2 (n: N) (x0_p x1_p y_p: PExpr) (f: AExpr)

| DSHPower (n:NExpr) (src dst: MemRef) (f: AExpr) (initial: CT.t)

| DSHLoop (n:N) (body: DSHOperator)

| DSHAlloc (size:NT.t) (body: DSHOperator)

| DSHMemInit (y_p: PExpr) (value: CT.t)

| DSHSeq (f g: DSHOperator).

Listing 3.16: DSHOperator type

A detailed description of all DHCOL operators follows.

DSHNop

This is a “no-op” operator. It does nothing.

DSHAssign (src dst : MemRef )

An assignment operator copies a single CType.t value from memory location src to

memory location dst.
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DSHIMap (n : N) (x y : PExpr ) (f : AExpr )

It iterates the index from 0 to n − 1. For each iteration, the values from x at the

index offset are added to the evaluation context, and the expression f is evaluated.

It could be viewed as calling function f with the two arguments: an index i of type

NType.t and a value x[i] of type CType.t. The result is written to y[i].

DSHBinOp (n : N) (x y : PExpr ) (f : AExpr )

This operator is similar to DSHIMap. It also iterates from 0 to n − 1. For each

iteration, it reads two values: at the index offset and at n plus the index offset from

x and adds them to the evaluation context and then evaluates the expression f. It

could be viewed as calling the function f with the two arguments: x[i] and x[n+i].

The result is written to y[i].

DSHMemMap2 (n : N) (x0 x1 y : PExpr ) (f : AExpr )

This is another iterative map. It also iterates from 0 to n− 1. For each iteration, it

reads x0[i] and x1[i] and adds them to the evaluation context and evaluates the

expression f. It could be viewed as calling the function f with the two arguments:

x0[i] and x1[i]. The result is written to y[i].

DSHPower (n : NExpr ) (src dst : MemRef ) (f : AExpr ) ( initial : CT .t)

First, it initializes a memory location pointed by dst with initial value and pro-

ceeds to iterate n times. On each iteration, values are loaded from src and dst, the

f is evaluated, and the result of the evaluation is stored back in dst. In C-like pseudo

code, it could be expressed as: *dst=initial; while(n--){*dst=f(*src,*dst)}.
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DSHLoop (n :N) ( body : DSHOperator )

This is a simple loop. It evaluates a body n times. For each iteration, the value of

the loop index (starting from 0) is put on the top of the evaluation context before

evaluating the body.

DSHAlloc ( size : NT .t) ( body : DSHOperator )

Lexically scoped memory allocation. It allocates a new memory block of size size.

The newly allocated block is uninitialized. The new block’s offset in memory is put

on the top of the evaluation context and then the body is evaluated. The block is

only available while the body is being evaluated.

DSHMemInit (y : PExpr ) ( value : CT .t)

Initialize all elements of block y with given value.

DSHSeq (f g : DSHOperator )

Evaluate f and then, evaluate g. Memory modifications peformend by the evaluation

of the first operator are visible during the evaluation of the second.

3.4.3 DHCOL Evaluation

Recursive definition evalDSHOperator takes an operator to evaluate, an evaluation

context σ, and the initial memory state mem. If successful, it returns the final

memory state after the evaluation:

Fixpoint evalDSHOperator (σ: evalContext) (op: DSHOperator)

(mem: memory) (fuel: N): option (err memory).
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It is implemented via structural recursion over the structure of the DHCOL

expression. For error handling, it is wrapped in exception monad, for which we use

err type defined by Vellvm. All DHCOL programs are guaranteed to terminate,

but fuel is used to simplify termination proofs. The evaluation result is double

wrapped in an option monad (on top of the err monad) to account for errors due

to insufficient fuel. There is a matching estimateFuel function which estimates

the fuel required to execute a given DHCOL operator, and we’ve proven a lemma

showing that the estimated fuel is always sufficient for a successful evalDSHOperator

completion. In other words, with estimated fuel it will never return None (but may

still return an error).

The evalDSHOperator function defines big-step operation semantics, for-

mally presented in Appendix A.

3.4.4 Example

The result of a translation of the MHCOL formulation of a dynamic window monitor

from Listing 3.12 to DHCOL is shown in Listing 3.17.

Definition dynwin_DHCOL : DSHOperator :=

DSHAlloc 2

(DSHSeq

(DSHAlloc 2

(DSHAlloc 2

(DSHSeq

(DSHSeq

(DSHAlloc 1

(DSHSeq

(DSHAlloc 1

(DSHSeq (DSHMemInit 1 (PVar 0) CarrierAz)

(DSHLoop 3

(DSHSeq

(DSHAlloc 1

(DSHSeq

(DSHAssign
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(PVar 9, NConst 0)

(PVar 0, NConst 0))

(DSHAlloc 1

(DSHSeq

(DSHPower

(NVar 2)

(PVar 1, NConst 0)

(PVar 0, NConst 0)

(AMult (AVar 1) (AVar 0))

CarrierA1)

(DSHIMap 1

(PVar 0)

(PVar 4)

(AMult

(AVar 0)

(ANth (MVar 10) (NVar 4))))))))

(DSHMemMap2 1 (PVar 1)

(PVar 2) (PVar 2)

(APlus (AVar 1) (AVar 0)))))))

(DSHAssign (PVar 0, NConst 0) (PVar 1, NConst 0))))

(DSHAlloc 1

(DSHSeq

(DSHAlloc 1

(DSHSeq (DSHMemInit 1 (PVar 0) CarrierAz)

(DSHLoop 2

(DSHSeq

(DSHAlloc 2

(DSHSeq

(DSHLoop 2

(DSHAlloc 1

(DSHSeq

(DSHAssign

(

PVar 11,

NPlus

(NPlus

(NConst 1)

(NMult (NVar 3) (NConst 1)))

(NMult

(NVar 1)

(NMult (NConst 2) (NConst 1))))

(PVar 0, NConst 0))

(DSHAssign
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(PVar 0, NConst 0)

(PVar 2, NVar 1)))))

(DSHBinOp 1

(PVar 0)

(PVar 3)

(AAbs (AMinus (AVar 1) (AVar 0))))))

(DSHMemMap2 1 (PVar 1)

(PVar 2) (PVar 2)

(AMax (AVar 1) (AVar 0)))))))

(DSHAssign (PVar 0, NConst 0) (PVar 2, NConst 1)))))

(DSHMemMap2 2 (PVar 0) (PVar 1) (PVar 2)

(APlus (AVar 1) (AVar 0))))))

(DSHBinOp 1 (PVar 0) (PVar 2) (AZless (AVar 1) (AVar 0))))

Listing 3.17: Dynamic Window Monitor in DHCOL

3.5 FHCOL Language

FHCOL language is an instantiation of DHCOL, parameterized with machine nu-

meric types. This brings us one abstraction step down from DHCOL toward machine

code.

We instantiate module type NType to represent unsigned 64-bit machine inte-

gers as an MInt64asNT module. We use the integer type definition from the Vellvm

library, which can be traced back to a similar CompCert definition. In this imple-

mentation, a machine integer (type int) is represented as a Coq arbitrary-precision

integer (type Z) plus the proof that it is in the range from 0 (included) to modulus

(excluded):

Record int : Type := mkint { intval: Z ; intrange: −1 < intval < modulus }.

For example, the concrete type Int64 that we use, is an instantiation of int

with modulus = 264. Definitions of the remaining fields of the NType module and

required proofs are straightforward. To extend HELIX to generate code for other
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hardware platforms, int could be similarly instantiated for 32-bit or even 16-bit

integers.

We instantiate module type CType to represent fixed-length 64-bit IEEE

floating point numbers as an MFloat64asCT module. To work with IEEE floating

point numbers, we use the Flocq [48] library, which provides comprehensive formal-

ization of IEEE floating point arithmetic in Coq. Flocq supports a range of binary

float representations, parameterized by two constants: P and emax describing the

range of the integer significands and exponents, respectively. P is the number of

bits of the mantissa including the implicit one. The emax is chosen so that 2emax

is the smallest power of two that is too large to be represented. Finite non-zero

numbers are encoded in the form m× 2e where m and e represent the respective in-

teger values of the mantissa (significand) and the exponent, each bounded by P and

emax, respectively. To encode exceptional values (such as infinities) the following

inductive type definition is used in Flocq:

Inductive binary_float :=

| B754_zero (s : B)

| B754_infinity (s : B)

| B754_nan (s : B) (pl : positive) : nan_pl pl = true → binary_float

| B754_finite (s : B) (m : positive) (e : Z) : bounded m e = true → binary_float.

Flocq’s binary64 type which corresponds to the double type in C language

is defined with P = 24 and emax = 128. We instantiate the CType module type for

the binary64 type, which represents 64-bit IEEE floating point numbers. As with

integers, definitions of all required module fields are straightforward. Whenever the

rounding mode needs to be specified, we always use “round to nearest.”

One operation whose definition is non-obvious is CTypeZLess. It must com-

pare two floating point numbers and return one if the first is less than the second
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or zero otherwise. Flocq Bcompare implements the comparison function, as defined

in the IEEE specification. It is fairly complex and contains 32 lines of match state-

ments for various combinations of IEEE binary value types: zero, infinities, finite

non-zero numbers, and NaNs. One point of interest here is the NaN handling. In this

implementation, it differs from how NaNs are handled by the fcmp olt instruction

in LLVM IR. From a HELIX system point of view, this is inconsequential, the proofs

are constrained to input data which contains no NaNs, and we can prove that NaNs

will not appear as the result of any computations. Thus, to simplify FHCOL to

LLVM IR compiler proofs, we handle NaN values during the comparison as similar

as possible to how it is done in the IR fcmp olt instruction, into which CTypeZLess

will be compiled. Per IR fcmp olt specification, the expected behavior is to ”yield

true if both operands are not a QNaN and the first operand is less than the second

operand,” and this is how we define CTypeZLess on binary64:

Definition CTypeZLess (a b : binary64) : binary64 :=

match a , b with

| B754_nan _ _ _ _ _ , _ | _ , B754_nan _ _ _ _ _ ⇒ CTypeZero

| _ , _ ⇒

match Bcompare _ _ a b with

| Some Datatypes.Lt ⇒ CTypeOne

| _ ⇒ CTypeZero

end

end .

One may notice that our definition differs from the literal interpretation of

IR spec. In our definition, we make no distinction between “quiet” and “signalling”

NaNs. In IR specification, at of time of this writing, the behavior for the SNaN under

comparison is not specified. We believe this is just a documentation shortcoming.

To verify this, we tested how fcmp instruction behaves in an LLVM IR compiler
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reference implementation for an x86 backend and indeed, it does not distinguish

between QNaN and SNaN. This is the behavior we assume in HELIX.

The final step to implementing FHCOL is a matter of simple module instan-

tiation using MFloat64asCT and MInt64asNT modules:

Module Export MDSHCOLOnFloat64 := MDSigmaHCOLITree(MFloat64asCT)(MInt64asNT).

3.5.1 Example

A result of the translation of a DHCOL formulation of the dynamic window monitor

from Listing 3.17 to FHCOL is shown in Listing 3.18.

Definition dynwin_FHCOL : DSHOperator :=

DSHAlloc 2%int64

(DSHSeq

(DSHSeq

(DSHAlloc 1%int64

(DSHSeq

(DSHSeq (DSHMemInit (PVar 0) Float64asCT.Float64Zero)

(DSHAlloc 1%int64

(DSHLoop 3

(DSHSeq

(DSHAlloc 1%int64

(DSHSeq

(DSHAssign

(PVar 7, NConst 0)

(PVar 0, NConst 0))

(DSHAlloc 1%int64

(DSHSeq

(DSHPower (NVar 2)

(PVar 1, NConst 0)

(PVar 0, NConst 0)

(AMult (AVar 1) (AVar 0))

Float64asCT.Float64One)

(DSHIMap 1 (PVar 0) (PVar 3)

(AMult (AVar 0)

(ANth

(MPtrDeref (PVar 8))

(NVar 4))))))))
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(DSHMemMap2 1 (PVar 2) (PVar 1) (PVar 2)

(APlus (AVar 1) (AVar 0)))))))

(DSHAssign (PVar 0, NConst 0)

(PVar 1, NConst 0))))

(DSHAlloc 1%int64

(DSHSeq

(DSHSeq (DSHMemInit (PVar 0) Float64asCT.Float64Zero)

(DSHAlloc 1%int64

(DSHLoop 2

(DSHSeq

(DSHAlloc 2%int64

(DSHSeq

(DSHLoop 2

(DSHAlloc 1%int64

(DSHSeq

(DSHAssign

(PVar 9,

NPlus

(NPlus

(NConst 1)

(NMult (NVar 3)

(NConst 1)))

(NMult (NVar 1)

(NMult

(NConst 2)

(NConst 1))))

(PVar 0,

NConst 0))

(DSHAssign

(PVar 0,

NConst 0)

(PVar 2, NVar 1)))))

(DSHBinOp 1 (PVar 0) (PVar 2)

(AAbs (AMinus (AVar 1) (AVar 0))))))

(DSHMemMap2 1 (PVar 2) (PVar 1) (PVar 2)

(AMax (AVar 1) (AVar 0)))))))

(DSHAssign (PVar 0, NConst 0)

(PVar 1, NConst 1)))))

(DSHBinOp 1 (PVar 0) (PVar 2) (AZless (AVar 1) (AVar 0))))

Listing 3.18: Dynamic Window Monitor in FHCOL
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Chapter 4

HELIX Verification

In this section, we describe how the HELIX translation steps are implemented and

verified. Due to the disparate nature of the languages involved, we use a variety of

techniques to implement and prove the different steps.

The sequence of verification steps in HELIX is shown in Figure 4.1 and briefly

described below and again in more detail in subsequent sections.

Figure 4.1: HELIX chain of verification

Artefacts provided by SPIRAL are shown in red and HELIX-generated artefacts are

shown in blue:

Ph - source program in HCOL

th - SPIRAL trace containing list of “breakdown” steps

Ph′ - program in HCOL after “breakdown” step (generated by SPIRAL)
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thΣ - SPIRAL trace containing list of OL to Σ-OL translation steps

PΣ - program in Σ-HCOL (generated by SPIRAL)

tΣ - SPIRAL trace containing list of Σ-OL rewriting steps

PΣ′ - program in Σ-HCOL after rewriting step (generated by SPIRAL)

Pm - program in MHCOL

Pd - program in DHCOL

g - list of global variables upon which Pd depends along with their DHCOL

types

Pf - program in FHCOL

g′ - list of global variables upon which Pf depends along with their FHCOL

types

Pi - program in LLVM IR

The numbered arrows in Figure 4.1 depict the translation steps, listed below along

with brief descriptions of how they are validated:

1O The HCOL “breakdown” step constitutes application of a sequence of semantics-

preserving rewriting steps from th to Ph resulting in Ph′ . Each element of th

corresponds to a single SPIRAL OL breakdown rule application. For each

such rule, we formulate and prove a lemma. The semantic equivalence of Ph

and Ph′ is then proven by automated sequential application of breakdown rule

lemmas. See Section 4.1 for details.

2O The HCOL to Σ-HCOL translation step constitutes application of a sequence of

semantics-preserving rewriting steps from thΣ to Ph′ lifted to Σ-HCOL result-

ing in a full native (without lifted operators) Σ-HCOL version PΣ. Each ele-

ment of thΣ corresponds to a single SPIRAL Σ-OL rewriting rule application.

For each such rule, we formulate and prove a lemma. The semantic equiva-
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lence of lifted Ph′ and PΣ is then proven by automated sequential application

of rewriting rule lemmas. Additionally, we prove the structural correctness of

the resulting expression. See Section 4.2 for details.

3O After the initial HCOL to Σ-HCOL translation, an additional translation step

is performed by applying another series of rewriting rules from thΣ to PΣ

resulting in PΣ′ . It is proven in the exact same manner as the previous step.

See Section 4.3 for details.

4O The MHCOL program Pm is generated from PΣ′ with the help of a Template-Coq

metaprogram. For the resulting program, an MSHOperator Facts instance is

proven using proof automation. Then, the semantics preservation property is

validated by proving an instance of an SH MSH Operator compat typeclass for

a Pm and PΣ′ pair. This automated proof relies on MSHOperator Facts as

well as a proof of the structural correctness of the PΣ′ generated during the

previous step. See Section 4.4 for details.

5O The DHCOL program Pd is generated from Pm with the help of a Template-Coq

metaprogram, which also produces a list g of the global variables Pd depends

upon. Then, the DSH pure and MSH DSH compat typeclass instances are proven

using proof automation. See Section 4.5 for details.

6O The DHCOL to FHCOL translation is implemented in Gallina. It translates

program Pd and a list of global variables g to the corresponding Pf and g′.

This step is not validated. See Section 4.6 for discussion of our reasoning.

7O The final step of translation from FHCOL to LLVM IR is performed using a

certified compiler that we wrote in Gallina. We have proven this compiler to

be correct (with caveats). See Section 4.7 for details.
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Thus, given an original HCOL expression, a SPIRAL trace file containing

the transformation steps, and the intermediate SPIRAL code synthesis results (all

shown in red in Figure 4.1), HELIX will either fail or provide the following high-level

results:

1. LLVM IR version of the HCOL program, which includes SPIRAL-guided code

optimizations.

2. Correctness guarantee that the IR program on IEEE floating-point inputs

that do not contain NaN values will generate the same results as the HCOL

program on real numbers up to guarantees provided by the numeric analysis

step.

If HELIX fails, it could be that SPIRAL-generated steps and intermediate

results are either inconsistent, use unproved rules, or that the HELIX LLVM com-

piler is missing the functionality required to compile the given expression. The first

indicates a bug in the SPIRAL system, which needs to be fixed. The latter two

reasons point to HELIX implementation shortcomings that could be cured by ex-

tending HELIX with additional rules or the compiler capabilities using the existing

framework.

We discuss how these results are achieved in subsequent sections.

4.1 HCOL Breakdown

At the first translation step, HELIX performs semantically preserving modifications

of the HCOL expressions. The goal is to break down more complex operations into

elementary ones, representing a fully terminated computation dataflow graph opti-

mized for target hardware taking into account such target architecture parameters
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as number of words in SIMD instructions, number of cores, and CPU cache size.

The breakdown steps are determined by SPIRAL and validated by HELIX. Each

step is implemented in SPIRAL as an application of a “breakdown rule.” Per the

translation validation approach discussed earlier, we prove a lemma for each rule and

apply them following the trace generated by SPIRAL. Application of the breakdown

rules is done using setoid rewriting [49] together with HCOL operator equational

theory.

The result of the HCOL rewriting steps of the expression from Listing 3.2 is

shown in Listing 4.1

Definition dynwin_HCOL (a: avector 3) : : avector (1 + (2 + 2)) → avector 1 :=

HBinOp (IgnoreIndex2 Zless) ◦
HCross

(HReduction plus zero ◦
(HBinOp (IgnoreIndex2 mult) ◦ HPrepend a) ◦
HInduction _ mult one)

(HReduction minmax.max zero ◦
(HPointwise (IgnoreIndex abs)) ◦
HBinOp (o:=2) (IgnoreIndex2 sub)).

Listing 4.1: Dynamic Window Monitor in HCOL after rewriting

It corresponds to the dataflow graph shown in Figure 4.2.
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Figure 4.2: Dynamic Window Monitor dataflow graph in HCOL

4.1.1 Breakdown Rules as Lemmas

SPIRAL breakdown rules are expressed as lemmas in HELIX. Each lemma states

the equality (using equiv relation) between two HCOL expressions. Typically, the

lemma is used in a left-to-right direction in the setoid rewrite Coq tactic, replac-

ing the left hand side expression with the right hand side equivalent. Let us look at

a couple of rules.
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HScalarProd breakdown rule

Recall from Section 3.1, the HScalarProd operator calculates the dot product of

two vectors. The input vectors are concatenated and passed as a single vector of

size n + n. The result is returned as a single-element vector. For an input vector

~x = [x0, x1, . . . , xn+n−1], it computes [x0 · xn + x1 · xn+1 + · · ·+ xn−1 · xn+n−1].

The SPIRAL breakdown rule for this operator states that it could be rep-

resented as a composition of HReduction and HBinOp operators. First, HBinOp is

applied multiplying corresponding elements in the first and second halves of the

input vector producing, as an intermediate result, a vector of size n with values

[x0 · xn, x1 · xn+1, . . . , xn−1 · xn+n−1]. The operator takes as parameter f a function

with type In → R→ R→ R which will be applied to an index and a pair of elements

from the first and the second halves of the vector. Since in this case, we only want

to multiply elements without using the index, we wrap the multiplication function

in IgnoreIndex2, which discards the first argument, and use it as the parameter f .

Next, with HReduction (+) 0, we compute [0 + x0 · xn + x1 · xn+1 + · · · +

xn−1 · xn+n−1] as a right fold. The corresponding lemma and the definition of the

helper function are shown in Listing 4.2.

Definition IgnoreIndex2 {A B :Type} (f :A → A → A) := const (B:=B) f.

Fact breakdown_OScalarProd: ∀ {n :N},

HScalarProd (n:=n) = HReduction (+) 0 ◦ HBinOp (IgnoreIndex2 mult).

Listing 4.2: HScalarProd breakdown rule
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HEvalPolynomial breakdown rule

The rule for HEvalPolynomial breakdown states that it could be broken down as a

composition of HScalarProd, HPrepend, and HMonomialEnumerator.

Recall from Section 3.1, HEvalPolynomial computes a univariate polynomial

n-th degree. It is parameterized by a vector of constant coefficients. The input and

output scalar values are represented as vectors of size 1. For input ~x = [x0] and

parameter ~a = [a0, a1, . . . , an], it computes [a0 + a1 · x0 + a2 · x2
0 + · · ·+ an · xn0 ].

In the broken down version, we first apply HMonomialEnumerator to the

input which computes a vector of its powers: [1, x0, x
2
0, . . . , x

n−1
0 ]. Then, we

prepend this vector with elements of a using the HPrepend operator resulting in

[a0, a1, . . . , an, 1, x0, x
2
0, . . . , x

n−1
0 ]. Finally, we use HScalarProd to compute the dot

product of the first and second halves of this vector resulting in [a0 · 1 + a1 · x0 +

a2 · x2
0 + · · ·+ an · xn0 ]. The corresponding lemma is shown in Listing 4.3.

Fact breakdown_OEvalPolynomial: ∀ (n :N) (a : avector (S n )),

HEvalPolynomial a = HScalarProd ◦ HPrepend a ◦ HMonomialEnumerator n.

Listing 4.3: HEvalPolynomial breakdown rule

4.1.2 Semantics-preserving rewriting

We define our semantics preservation property as an equivalence relation on HCOL

expressions. To prove that HCOL expression A could be broken down into HCOL

expression B while preserving its semantics, we need to prove A = B.

In the case of simple operators, we can just prove a lemma stating the equality

of the two exact expressions. For complex expressions consisting of a composition

of multiple operators, such proof can be performed in a series of automated steps.

Each step corresponds to an application of a “breakdown rule” modifying all or a
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part of an expression. For each rule, there is a lemma in the form A = B. It is

applied using the setoid rewrite tactic, which searches the current expression for

patterns matching A and replaces their occurrences with B. Because (=) relation is

transitive, proving each rewriting step will guarantee the equality between the initial

expression and the results of an application of a sequence of rules. The rewriting

rules in the HELIX library must be manually proven once but after that, these

proofs can be reused to automatically prove the correctness of any sequence of their

applications.

For example, to prove that A ◦ B = D ◦ E, we may first apply rule A = D

to get D ◦ B = D ◦ E and then apply rule B = E to D ◦ E = D ◦ E, which is true

because our equality is reflexive.

To make this machinery work, we need to impose some additional require-

ments on operators. This is done by making them all instances of the HOperator

typeclass:

Class HOperator {i o :N} (op : vector R i → vector R o) :=

op_proper :> Proper ((=) =⇒ (=)) op.

Listing 4.4: HOperator class

Currently, this typeclass does not contain any additional fields except the

one it inherits from the Proper typeclass, which is required for the setoid rewrite

tactic to work. The theory of generalized setoid rewriting and related typeclasses

is discussed in [49]. Informally, it could be said that this Proper typeclass instance

guarantees that for any two inputs of an operator that are related (via equiv rela-

tion), the results of respective applications of the operator to these inputs will also

be in the same relation.

For example, the listing below shows a proof of the HOperator typeclass
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instance for the HPointwise operator from Listing 3.1. The proof involves applying a

couple of helper utility lemmas (Vforall2 intro nth, Vbuild nth) and the existing

Proper typeclass instance for Vnth.

Instance HPointwise_HOperator

{n : N}

{f : In → R → R}

‘{pF: !Proper ((=) =⇒ (=) =⇒ (=)) f}:

HOperator (@HPointwise n f ).

Proof .

intros x y E .

apply Vforall2_intro_nth.

intros j jc .

unfold HPointwise.

setoid_rewrite Vbuild_nth.

apply pF .

reflexivity.

apply Vnth_proper, E .

Qed .

Listing 4.5: HOperator instance for HPointwise

Other breakdown rule proofs frequently make use of the algebraic properties

of R and linear algebra identities.

4.1.3 HCOL Semantics Preservation Verification Framework

The key techniques of our semantics preservation verification framework for HCOL

rewriting are:

� Abstract the data type on which HCOL operates as carrier type R.

� Assume an equivalence relation (=) on R.
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� Assume some algebraic properties of R.

� Define (=) on vectors of R as a pointwise relation.

� Define HCOL operators as functions from vectors to vectors (of a carrier type)

which are instances of the HOperator typeclass.

� Define extensional equality of HCOL operators.

� Define breakdown rules as lemmas stating equality between HCOL expressions.

Using this framework, given the original and the final HCOL expressions, h

and h′, and the trace (list) of breakdown rules applied to get from h to h′, the HELIX

HCOL rewriting proof engine can prove that an applied sequence of breakdown rules

is semantically preserving and that h = h′.

Figure 4.3: HELIX translation validation of SPIRAL HCOL rewriting

This approach, shown in Figure 4.3, is an extension of the translation vali-

dation introduced in Section 2.5. A sequence of rewriting steps is generated outside

of HELIX by SPIRAL. Instead of proving that SPIRAL will always transform an

expression correctly, HELIX formally verifies the correctness of the produced re-

sults. Given that SPIRAL and HELIX use the same library of breakdown rules, the

proof of the goal h = h′ is a sequence of applications of setoid rewrites using already
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proven per-rule lemmas from the HELIX library. We can automatically generate

such proof from the trace and if Coq accepts it, the rewriting is proven correct. If, for

some reason, the trace contains a non-semantically preserving rewriting sequence,

Coq will not accept the proof.

4.2 HCOL to Σ-HCOL Translation

As mentioned in Section 3.2, HCOL operators can be embedded in Σ-HCOL

using the liftM HOperator wrapping operator. When lifting, we use the

Monoid RthetaFlags monoid to detect potential collisions. Thus, a trivial

translation of an HCOL expression h to Σ-HCOL is simply (liftM_HOperator

Monoid_RthetaFlags h).

However, this first näıve translation can be further refined by the additional

rewriting steps which replace HCOL operators with similar Σ-HCOL equivalents

(e.g. lifted HBinOp with SHBinOp). To do that for complex HCOL operators, we need

to exploit the facts that liftM HOperator distributes over operator composition,

and that the operator compostion is associative. Translating a Σ-HCOL expression

to a “normal form” (without occurrences liftM HOperator) is the goal of the HCOL

to Σ-HCOL translation step.

The reasoning about semantics preservation during Σ-HCOL rewriting is

similar in approach to our reasoning about HCOL rewriting. The main difference is

that Σ-HCOL operators work on sparse rather than dense vectors, and a different

equality relation is used (see 3.2.7).

Finally, we need to make sure that the resulting Σ-HCOL expression is struc-

turally correct, as discussed in Section 3.2.5. This is done by proving an instance of

the SHOperator Facts typeclass for the resulting expression. As mentioned earlier,

97



structural correctness proofs are compositional and thus easy to automate. Provided

that we have instances of SHOperator Facts for all basic operators, obtaining struc-

tural correctness for a composite operator is simply a matter of applying respective

typeclass instances. We do this with simple Ltac automation. While automation

solves all goals related to SHOperator Facts instances, some of these goals intro-

duce additional obligations which must also be proven. These have not been fully

automated yet, but they could be in future, as discussed in Section 5.3.3.

In addition to semantics preservation and structural correctness, there are

some additional properties which we want to verify for the final Σ-HCOL expression:

Sparsity contract “subtyping.” It guarantees that the resulting expression’s

in index set is included in the original expression’s in index set, while the

out index set of each expression is the same. This permits potential optimiza-

tion (dead code elimination) during rewriting, when indices of input vectors which

were used by the original expression are no longer used by the resulting expression.

This is proven compositionally by constructing respective sparsity contracts of input

and output expressions.

Totality of the computation. In general, Σ-HCOL operators work on sparse

vectors. However, the sparsity is used only internally to represent partial computa-

tion. The whole composite computation should be total by taking the dense input

and producing the dense output. That means that for top-level Σ-HCOL expres-

sions, we want to prove that both in index set and out index set are the full sets.

This is proven compositionally as well, by constructing respective sparsity contracts

of the input and output expressions.
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4.3 Σ-HCOL rewriting

Once an HCOL expression is translated to the Σ-HCOL “normal form,” additional

rewriting steps are performed on the Σ-HCOL expression to optimize it for efficient

code-generation for target architecture. The optimization steps are determined by

SPIRAL and validated by HELIX. Each step is implemented in SPIRAL as an

application of a “rewriting rule.” Following the translation validation approach

discussed earlier, we prove a lemma for each rule and apply them following the trace

provided by SPIRAL.

The mechanics of Σ-HCOL rewriting are similar to HCOL breakdown, de-

scribed in Section 4.1.2. A few distinctions are described as follows:

4.3.1 Restricted Monoid

Let us consider the following expression which is an IUnion (see Section 3.2.10) of

a sparse embedding (see Section 3.2.9):

MRn,f,z SparseEmbeddinga,b,K (4.1)

It can be shown that this operator will produce the same results regardless

of the underlying operation f as long as (R, f, z) forms a monoid. This fact could

be used to express some rewriting rules in a general way without mentioning the

concrete operation in place of f .

However, we can not use f = max and z = zero here since the (R,max, zero)

is not a monoid because zero is neither a left nor a right identity with respect to

max. On the other hand, for a type R+ , {x ∈ R | zero ≤ x} which is a sub-type

of R, the (R+,max, zero) is indeed a monoid.
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Let us consider the Σ-HCOL operator from Equation 4.1 in the context:

MRn,f,z SparseEmbeddinga,b,K ◦ (SHPointwise abs) (4.2)

It can be shown that the output of (SHPointwise abs) is actually a vector

of values of type R+ and in this particular context, our generic rewriting rules,

which depend on a monoid, can be used. The difficulty with this approach is that

it requires introducing intermediate types and extending all higher-level operators

like SHCompose to deal with heterogeneous input and output types. It also requires

a more sophisticated setoid rewriting theory to deal with sub-types.

Our alternative approach keeps the types intact and defines the notion of a

Restricted Monoid. The full definition is shown in Listing 4.6.

Require Import MathClasses.interfaces.abstract_algebra.

Require Import MathClasses.theory.setoids.

Section MonoidalRestriction.

Context A {Ae : Equiv A}.

(* Predicate on type [A] *)

Class SgPred A := sg_P : A → Prop.

(* Restriction of monoid operator and unit values *)

Class MonRestriction

{Aop : SgOp A}

{Aunit : MonUnit A}

{Apred : SgPred A}: Prop :=

{

rmonoid_unit_P: sg_P mon_unit ;

rmonoid_plus_closed:
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∀ a b , sg_P a → sg_P b → sg_P (a & b)

}.

Class RMonoid

{Aop : SgOp A}

{Aunit : MonUnit A}

{Apred : SgPred A} :=

{

sg_setoid :> Setoid A ;

mon_restriction :> MonRestriction ;

rsg_op_proper :> Proper ((=) =⇒ (=) =⇒ (=)) (&) ;

rmonoid_ass: ∀ x y z ,

sg_P x → sg_P y → sg_P z → x & (y & z) = (x & y) & z ;

rmonoid_left_id: ∀ y , sg_P y → mon_unit & y = y ;

rmonoid_right_id: ∀ x , sg_P x → x & mon_unit = x

}.

Class CommutativeRMonoid {Aop Aunit Ares} : Prop :=

{

comrmonoid_rmon :> @RMonoid Aop Aunit Ares ;

rcommutativity: ∀ x y , sg_P x → sg_P y → x & y = y & x

}.

End MonoidalRestriction.

Listing 4.6: Restricted Monoid

It consists of three typeclasses: MonRestriction, RMonoid, and Commuta-

tiveRMonoid, which are parametrized by an abstract type A, a binary function

(SgOp class instance), and a predicate (SgPred class instance). The MonRestric-

tion typeclass states that the given “unit” value satisfies the predicate and that

the function is closed under the same predicate. The RMonoid typeclass extends
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MonRestriction with the usual monoid properties: associativity, left identity, and

right identity. The CommutativeRMonoid extends RMonoid with the commutativ-

ity property.

Using these classes, we can state and prove that the non-negative values of

the R type form a commutative monoid with max and zero

Global Instance NN : SgPred R := CarrierAle CarrierAz.

Global Instance RMonoid_max_NN: @RMonoid R CarrierAe

(@max R CarrierAle CarrierAledec) CarrierAz NN. (...)

Global Instance CommutativeRMonoid_max_NN: @CommutativeRMonoid R CarrierAe

(@max R CarrierAle CarrierAledec) CarrierAz NN. (...)

The RMonoid typeclass can now be used to state lemmas for expressions

like those in Equation (4.2). It can also be shown that given an RMonoid instance

parameterized by a type A, a predicate P , a function f , and a unit value z, we can

derive an unrestricted Monoid instance for the sigma type {x ∈ A | P x} with the

following binary function:

(λ xs ys ⇒

let x := proj1_sig xs in

let y := proj1_sig ys in

exist (f x y)

(rmonoid_plus_closed A x y

(@proj2_sig A P xs)

(@proj2_sig A P ys )))

and unit value of (exist z (rmonoid_unit_P _)).
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4.3.2 Example

The result of the Σ-HCOL rewriting steps of the expression from Listing 3.7 is shown

in Listing 4.7

Definition dynwin_SHCOL1 (a:avector 3) : @SHOperator Monoid_RthetaFlags dynwin_i dynwin_o zero

:= SafeCast (SHBinOp Monoid_RthetaSafeFlags (IgnoreIndex2 Zless))

} Apply2Union Monoid_RthetaFlags plus

(Embed Monoid_RthetaFlags (le_S (le_n 1))

} SafeCast

(IReduction plus

(SHFamilyOperatorCompose Monoid_RthetaSafeFlags

(λ jf : {x : N| x < 3},

SHCompose Monoid_RthetaSafeFlags

(SHPointwise Monoid_RthetaSafeFlags

(Fin1SwapIndex jf (mult_by_nth a)))

(SHInductor Monoid_RthetaSafeFlags (‘jf) mult 1))

(Pick Monoid_RthetaSafeFlags (1 + 4) 0))))

(Embed Monoid_RthetaFlags (le_n 2)

} SafeCast

(IReduction max

(λ jf : {x : N| x < 2},

SHCompose Monoid_RthetaSafeFlags

(SHBinOp Monoid_RthetaSafeFlags

(λ (i : {n : N| n < 1}) (a0 b : R),
IgnoreIndex abs i

(Fin1SwapIndex2 jf (IgnoreIndex2 sub) i a0 b)))

(UnSafeCast

(ISumUnion

(λ jf0 : {x : N| x < 2},

Embed Monoid_RthetaFlags (proj2_sig jf0)

} Pick Monoid_RthetaFlags

(1 + 4) (1 + ‘jf * 1 + ‘jf0 * (2 * 1))

))))))

Listing 4.7: Dynamic Window Monitor in Σ-HCOL after rewriting
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4.4 Σ-HCOL to MHCOL Translation

4.4.1 Implementation

Translation from Σ-HCOL to MHCOL is implemented using the Coq meta-

programming plugin, Template-Coq [39]. The translation is fairly straightforward,

as there is a one-to-one correspondence between language operators, with the ex-

ception of Σ-HCOL SafeCast and UnSafeCast operators which are translated as

identities. In addition to mapping the operators’ names, the translation changes

their input types from vectors to memory blocks. The return type of all MHCOL

operators is a memory block wrapped in an option type to facilitate error handling.

Σ-HCOL operators are instances of the SHOperator typeclass. They can

be parameterized by some constants which technically means they can be enclosed

in additional lambdas, introducing corresponding variables which could be used

inside an operator’s shallow embedded definition. For example, our dynamic window

monitor Σ-HCOL definition from Listing 3.7 is parametrized by parameter a and

has the actual type:

∀ (a : avector 3) , @SHOperator Monoid_RthetaFlags (1+(2+2)) 1 zero.

Such optional parameters will be detected during translation to MHCOL and

mapped to corresponding binders in the resulting expression. Thus, the result of

the MHCOL translation of the dynamic window monitor Σ-HCOL definition from

Listing 3.7 will also be parametrized by a and have the actual type:

∀ (a : avector 3) , @MSHOperator (1 + 4) 1.

4.4.2 Proof of Semantics Preservation

The semantic equivalence between an Σ-HCOL and an MHCOL operator is defined

as the SH MSH Operator compat typeclass. It ensures that they have the same di-
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mensionality and input and output patterns (index sets) and are both structurally

correct (by the presence of respective SHOperator Facts and MSHOperator Facts

instances). In addition to these properties, it also states the main semantic equiva-

lence property:

mem_vec_preservation:

∀ (x:svector i),

(∀ (j: N) (jc: j < i), in_index_set sop (mkFinNat jc) → Is_Val (Vnth x jc)) →

Some (svector_to_mem_block (op sop x)) = mem_op mop (svector_to_mem_block x)

Listing 4.8: Σ-HCOL and MHCOL main semantic equivalence property

Informally it can be stated as:

For any vector which complies with the input sparsity contract of the Σ-

HCOL operator, an application of the MHCOL operator to such vector,

converted to a memory block, must succeed and return a memory block

which must be equal to the memory block produced by converting the

result of the Σ-HCOL operator.

For regular operators, SH MSH Operator compat instances can be

proven directly. For higher-order operators, the proofs are predicated on

SH MSH Operator compat assumptions for all operators involved. Some operators

may have additional prerequisites. For example, for Apply2Union, the output index

sets of f and g must be disjoint.

For translated programs, we use proof automation to prove that

SH MSH Operator compat holds between the original and the compiled programs.
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4.5 MHCOL to DHCOL Translation

4.5.1 Implementation

Translation from MHCOL to DHCOL is also implemented in Template-Coq as a

recursive descent on MHCOL’s AST. The top-level translation function has the

following type:

Fixpoint compileMSHCOL2DSHCOL

(res : var_resolver)

(vars : varbindings)

(t : term)

(x_p y_p : PExpr)

: TemplateMonad (varbindings*(DSHOperator )).

Since we know that t is Gallina AST of the MHCOL operator which is a

function with type (mem_block → option mem_block), the compiler is parameterized

by two memory pointer expressions specifying where an imperative DHCOL program

corresponding to this function should read input from (x p) and write output to

(y p).

The translation, if it succeeds, returns a DHCOL program and the list of

“global” variables it depends on. Recall that MHCOL operators are MSHOperator

records, which may depend on additional parameters. All such additional parame-

ters will be detected during translation to DHCOL and treated as “global” variables

which must be present in the evaluation context prior to evaluating the DHCOL pro-

gram. The varbindings part of a tuple returned by the compiler is a list of these

variable names with their respective types.

The translation procedure is fairly straightforward, as each MHCOL opera-

tor is compiled to a DHCOL fragment, and the translation is compositional. For
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example, both MSHEmbed and MSHPick from MHCOL translate to DSHAssign in

DHCOL. Some MHCOL operators translate not to a single DHCOL operator but

rather to a DHCOL program fragment. Let us look more closely at an example of

how MSHCompose is translated to DHCOL. The relevant part of the match statement

on the MHCOL operator’s name and arguments from AST is shown in Listing 4.9:

| Some n_SHCompose, [i1 ; o2 ; o3 ; op1 ; op2 ] ⇒

ni1 ← tmUnquoteTyped N i1 ;;

no2 ← tmUnquoteTyped N o2 ;;

no3 ← tmUnquoteTyped N o3 ;;

(* freshly allocated, inside alloc *)

let t_i := PVar 0 in

(* single inc. inside alloc *)

let x_p ’ := incrPVar 0 x_p in

let y_p ’ := incrPVar 0 y_p in

let res1 := Fake_var_resolver res 1 in

’( _ , cop2) ← compileMSHCOL2DSHCOL res1 vars op2 x_p’ t_i ;;

’( _ , cop1) ← compileMSHCOL2DSHCOL res1 vars op1 t_i y_p’ ;;

tmReturn (vars , DSHAlloc no2 (DSHSeq cop2 cop1))

Listing 4.9: MSHCompose operator translation to DHCOL

Using double square brackets as a shortcut for the compileMSHCOL2DSHCOL

call, compiling the MHCOL operator Jop1 ◦ op2K(x, y) will result in the DHCOL

program DSHAlloc no2 (DSHSeq Jop2K(x, t) Jop1K(t, y)) which can be summarized

with the following pseudo-code:

t := allocate o2

t := op2 x

y := op1 t

free t
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The variables in both MHCOL AST and DHCOL are referenced by de Bruijn

indices. However, since the lexical structure of the two languages is different, a non-

trivial mapping between two indices must be established. This is implemented with

the help of the “variable resolvers” mechanism, defined in Listing 4.10.

Definition var_id := N.

Definition var_resolver := N→ var_id.

Definition ID_var_resolver : var_resolver := id .

Definition Fake_var_resolver (parent: var_resolver) (n :N) : var_resolver

:= λ r ⇒ (parent r) + n.

Definition Lambda_var_resolver (parent: var_resolver) (n :N) : var_resolver

:= λ r ⇒ if lt_dec r n then r else (parent (r−n)) + n.

Listing 4.10: Variable resolvers

The var resolver is a map from MHCOL to DHCOL variable indices. The

most basic one is ID var resolver which establishes identity mapping between the

two. The next useful resolver is Fake var resolver which is used when DHCOL

introduces one or more new variables, which have no counterparts in MHCOL.

This resolver is stacked on top of an existing resolver modifying its behavior to

accommodate for such new variables. This is what is happening in Listing 4.9.

We introduce a new Fake var resolver corresponding to one new variable used to

store the allocated temporary memory block. Since this variable is lexically scoped

by DSHAlloc, the new resolver will be used only while compiling the operators

constituting the DSHAlloc body. If these operators reference the other variables

declared earlier, their references will be computed by adding a unit offset to take

into account the new temporary variable introduced by DSHAlloc.
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In the rest of Listing 4.9, we “unquote”1 memory block sizes to natural

numbers. Then, we compile both operators using the Fake var resolver with

n = 1. When compiling two operators, we need to specify the input and output

variable indices for each operator. The index of the newly allocated temporary

variable will be 0, being the most recently introduced. To reference the original x p

and y p, we need to increment their indices by 1 using the incrPVar function to

take into account the new temporary variable introduced by DSHAlloc. This might

look similar to what we do in the resolver, but these are DHCOL variable indices,

which have already been resolved earlier and thus, the resolver mechanism will not

be used, and manual adjustment is required. Finally, we construct the resulting

expression, which consists of allocation of a temporary memory block followed by

sequential execution of the DHCOL code corresponding to op2 and op1.

Another resolver we use elsewhere is Lambda var resolver which is required

when compiling functions with n arguments. It is typically used when compiling the

function argument of operators like MSHPointwise or MSHBinOp. It will introduce n

new variables with de Bruijn indices 0 . . . n − 1 representing the parameters of the

function. While compiling a function, Lambda var resolver will map these indices

as unchanged. However, when MHCOL variables with indices outside this range are

mapped, n is first subtracted, the parent resolver is applied, and then n is added

back to the result.

To illustrate this, let us consider an MHCOL expression which contains

a function with one argument λi.i + a. We assume the current resolver to be

parent resolver = Fake var resolver (ID Var resolver) 1 and the de Bruijn

index of a in MHCOL is 1. When compiling our lambda function, we use

(Lambda var resolver parent resolver 1). When resolving i using this resolver,

1Template-Coq term which means decoding from AST representation.
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we get 0 because of the identity mapping in the lambda arguments. To resolve a

with index 1, we first pass 1− 1 to the parent resolver which returns 1 as an index

of a before entering lambda. Then 1 is added to compensate for the function argu-

ment resulting in the final mapping of 2. Variable index mapping for this example

is shown in Figure 4.4

Figure 4.4: Variable resolver example

4.5.2 Proof of Semantics Preservation

While the regular MHCOL operators translate to a DHCOL program fragment, the

higher-order operators translate into a sequence of instructions, with placeholders

filled with DHCOL translations of their respective parameters. For example, MH-

COL’s (MSHIReduction i o n z f op family) operator is compiled to the follow-

ing DHCOL program:

DSHSeq

(DSHMemInit o y_p z)

(DSHAlloc o (DSHLoop n (DSHSeq dop_family (DSHMemMap2 o y_p′ (PVar 1) y_p′ df)))))

The parameters of the MSHIReduction above are the dimensions of the input

and the output vectors (i and o respectively), the size n of the operator family

op family, and the initialization value z. The parameters df and dop family in

DHCOL correspond to f and op family in MHCOL, respectively.

Operators DSHAlloc and DSHLoop introduce two new variables: the pointer
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to a newly allocated memory block and the loop index. Inside the loop, they can

be referenced by their respective de Bruijn indices as (PVar 1) and (PVar 0). To

evaluate each iteration, the dop family takes the loop index to access the family

operator member, which is then executed and writes output to a temporary memory

block. The output of MSHIReduction is assumed to be written to a memory block

referenced by variable y p, and y p′ is the same variable with the de Bruijn index

increased by two to accommodate for the loop index and a new variable holding a

reference to the newly allocated temporary memory block.

We want to prove that our translation from MHCOL to DHCOL preserves

the semantics. As with other HELIX languages, we use an automated translation

validation approach. To allow automatic proof of translation results, we need to

prove correctness lemmas for each MHCOL operator and its DHCOL translation.

Then, these lemmas can be applied recursively, descending the structure of the

reified MHCOL expression hierarchically.

The first step in the process is to formalize the notion of semanticc equiva-

lence between a purely functional language with denotational semantics (MHCOL)

and an imperative language with operational semantics (DHCOL). Each MHCOL

operator is a function x 7→ y where x and y are memory blocks2. These functions

are pure functions without side effects, whose output y depends on x and other

variables in scope. On the other hand, a DHCOL translation of this MHCOL op-

erator is an imperative program that can read variables available in the evaluation

context and can also read and modify the memory. One block from this memory

will correspond to x, and some other block will correspond to y. Being a translation

of a pure function, the operator can modify only y. The formalization of the class of

DHCOL programs representing pure functions is expressed as a DSH pure typeclass:

2We omit error handling for now.
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Class DSH_pure (d: DSHOperator) (y: PExpr) := {

mem_stable: forall σ m m′ fuel,

evalDSHOperator σ d m fuel = Some (inr m′) ->

forall k, mem_block_exists k m <-> mem_block_exists k m′;

mem_write_safe: forall σ m m′ fuel,

evalDSHOperator σ d m fuel = Some (inr m′) ->

(forall y_i , evalPexp σ y = inr y_i ->

memory_equiv_except m m′ y_i)

}.

It has the following two properties:

◦ memory stability states that the operator does not free or allocate any memory

blocks.

◦ memory safety states that the operator modifies only the memory block ref-

erenced by the pointer variable y, which must be valid in the environment,

σ.

Now, we can proceed to formulate the semantic equivalence between an MH-

COL operator and a “pure” DHCOL program. Since the MHCOL part of this

relation is a function, we need to universally quantify on all possible inputs. Since

DHCOL operators read and modify memory, the input and output of this function

must correspond to some existing memory blocks. In DHCOL memory, locations

can be accessed via pointer variables only, so we state that there are two pointer

variables in the evaluation context corresponding to the input and output memory

block locations. For convenience, we define semantics equivalence as a type class
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parameterized by the respective MHCOL and DHCOL operators, the evaluation

context, and by the name of the input and output pointer variables in this context.

Additionally, the purity of the DHCOL operator must be guaranteed by providing

a DSH pure instance.

Class MSH_DSH_compat

{i o: N} (σ: evalContext) (m: memory)

(mop: @MSHOperator i o) (dop: DSHOperator)

(x_p y_p: PExpr) ‘{DSH_pure dop y_p} :=

{

eval_equiv: ∀ (mx mb: mem_block),

(lookup_Pexp σ m x_p = inr mx) → (lookup_Pexp σ m y_p = inr mb) →

(h_opt_opterr_c

(λ md m’ ⇒ err_p (λ ma ⇒ SHCOL_DSHCOL_mem_block_equiv mb ma md)

(lookup_Pexp σ m’ y_p))

(mem_op mop mx)

(evalDSHOperator σ dop m (estimateFuel dop)));

}.

In the listing above, h opt opterr c deals with error handling. While

mem op has simple error reporting via option type, evalDSHOperator has two-

level error handling, distinguishing between running out of fuel and other errors.

The equality is defined if both operators err (for whatever reason) or both suc-

ceed, in which case, their results must satisfy a provided sub-relation. The sub-

relation (expressed via lambda) does additional error handling via err p to ensure

that y p lookup succeeds in m′. Finally, the equality is reduced to the predicate

SHCOL DSHCOL mem block equiv relating memory blocks mb, ma, and md.

Figure 4.5 shows the origin of these values in a case where no errors occur.
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Legend: σ is an evaluation context, and m and m′ are memory states before and after

execution of the evalDSHOperator. The ma corresponds to a memory block in m′

referenced by y p. The md is the result of applying the MHCOL operator to mx.

Figure 4.5: DHCOL and MHCOL equality relation

To understand this relation, we must recall, that in Σ-HCOL, sparse vec-

tors represent the results of partial computation. Sparse elements correspond to

as yet uncomputed values, while dense elements are already computed. Performing

a union of the resulting sparse vectors represents the combining of several partial

computations. Replacing immutable vectors with mutable memory blocks allows us

to replace the operation of combining computation results with a simple memory

update. Following this reasoning, the result of the MHCOL operator application

(called md, where “d” stands for delta) is a memory block containing values only

at the indices that we need to update. The values at all other indices must re-

main unchanged. On the other hand, in DHCOL, we know the memory state before

the operator evaluation and the updated state after it has been evaluated. Thus,

SHCOL DSHCOL mem block equiv represents the relation between:

◦ mb - memory state of the output block before DHCOL execution

◦ ma - memory state of the output block after DHCOL execution

◦ md - values of changed output block elements after MHCOL evaluation
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This relation is implemented via the element-wise relation, MemOpDelta,

which is lifted to memory blocks as SHCOL DSHCOL mem block equiv:

Definition SHCOL_DSHCOL_mem_block_equiv (mb ma md: mem_block) : Prop

:= ∀ i, MemOpDelta

(mem_lookup i mb)

(mem_lookup i ma)

(mem_lookup i md).

Inductive MemOpDelta (b a d: option CarrierA) : Prop :=

| MemPreserved: is_None d → b = a → MemOpDelta b a d

| MemExpected: is_Some d → a = d → MemOpDelta b a d.

Informally, it could be stated as:

For all memory indices in md where a value is present, the value at the

same index in ma should be the same. For indices not set in md, the value

in ma should remain as it was in mb.

Once we have proven SH MSH Operator compat instances for all MHCOL op-

erators and their corresponding DHCOL equivalents, we can automatically generate

proof for the result of any MHCOL to DHCOL translation as an instance of this

class for top-level MHCOL and DHCOL expressions. During this proof automation,

we need to recursively descend on an MHCOL expression. The reason for this is

that mapping between the two is not injective, and compiling two different MH-

COL operators could result in similar DHCOL constructs not easily distinguishable

by simple matching on the structure. Whereas MHCOL operators can be uniquely

matched.
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4.6 DHCOL to FHCOL Translation

4.6.1 Implementation

Translation from DHCOL to FHCOL is very straightforward, as both languages

belong to the same family and are implemented by different parameterizations of

the same module.

Recall that DHCOL and FHCOL are defined respectively as:

Module Export MDSHCOLOnCarrierA := MDSigmaHCOLEval(CarrierAasCT)(MNatAsNT ).

Module Export MDSHCOLOnFloat64 := MDSigmaHCOLITree(MFloat64asCT)(MInt64asNT).

Listing 4.11: DHCOL module specializations

Translation is implemented as a Gallina function:

Fixpoint DSCHOLtoFHCOL (d : MDSHCOLOnCarrierA.DSHOperator) :

err MDSHCOLOnFloat64.DSHOperator.

Translation works by recursively traversing the structure of DSHOperator uti-

lizing one-to-one correspondence between DHCOL and FHCOL language constructs.

However, the translation may fail for one of two reasons:

1. Translation of CType.t constants requires converting R values to binary64.

Currently, only known constants can be translated, and just two are presently

defined, corresponding to CTypeZero and CTypeOne. Any other constant if

encountered will cause translation to fail. The list of known constants could

be extended in the future, if needed.

2. Translation of NType.t constants requires converting N values to Int64.int.

The mapping is not total, as some natural numbers can not fit 64 bits integer

representation. The natural numbers which need to be translated appear in
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NExpr constants and memory block sizes. If such an out-of-range natural

number value is encountered, the translation will fail.

4.6.2 Proof of Semantics Preservation

DHCOL to FHCOL translation has not been proven. We expect it to mostly involve

numerical analysis. While it is possible to apply generic numeric analysis approaches

to try proving the translation for some class of programs and some ranges of input

values, this is a case where problem-specific approach may be required, taking into

account domain knowledge and specifics of the particular program being compiled

(e.g. what external functions it uses, linearity, etc.).

See Sections 5.3.1 and 5.3.2 for discussion of the approaches we devised but

have not yet implemented to address this.

4.7 FHCOL to LLVM IR Translation

FHCOL programs are further compiled to LLVM IR3 language. This is a low-level

language of the LLVM toolchain which can be further compiled to machine code for

a variety of supported instruction sets. At the time of this writing, LLVM 3.4 sup-

ports code generation for ARM, Qualcomm Hexagon, MIPS, Nvidia Parallel Thread

Execution, PowerPC, AMD TeraScale, AMD Graphics Core Next (GCN), SPARC,

z/Architecture, x86, x86-64, and XCore. Using LLVM toolchain terminology, our

FHCOL to IR compiler can be considered an LLVM front end for FHCOL language4.

HELIX relies on the Vellvm project for LLVM IR language formalization and

semantics. The compiler produces a deep embedded internal representation of the IR

program in Coq. This program can be “pretty printed” (using Vellvm terminology)

3The “IR” stands for intermediate representation.
4Conversely, from the HELIX point of view, the compiler can be considered a back end.
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to standard textual representation of IR suitable for further compilation using one

of the toolchain’s back-end compilers. Additionally, Vellvm provides ITree-based

semantics of LLVM IR [? ] based on interaction trees[37].

Remembering our goal of proving semantics preservation across the end-to-

end chain of HELIX translation steps, we need to connect the semantics of generated

IR programs to those of the previous language in the translation chain: FHCOL.

One way to do this is to prove our compiler correctness by showing that it always

preserves the semantics of the FHCOL program when it is compiled to IR. This is

different from the translation validation approach used to prove semantics preser-

vation of translation between other languages in HELIX.

Instead of trying to match FHCOL operational semantics directly to LLVM

IR ITree-based semantics, we introduce an intermediate step by defining alternative

denotation semantics for FHCOL and proving that it is equivalent to the FHCOL

evaluation semantics used in the previous verification step. Then, we prove the

compiler’s semantic preservation property based on the denotation semantics of the

input language (FHCOL) and the ITree-based semantics of the output language

(IR). The relation of semantics and languages involved is shown in Figure 4.6. The

semantic equivalence relations ≈ and ≈R will be explained in sections that follow.
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Figure 4.6: FHCOL semantics

4.7.1 FHCOL to LLVM IR compiler

4.7.1.1 Type Mapping

FHCOL uses binary64 and Int64.int types to represent floating point and integer

values, respectively. For floating point values, binary64 maps directly to LLVM

double type, as both represent IEEE-754 64-bit binary floats. In Vellvm AST, this

type corresponds to TYPE Double.

The FHCOL Int64.int type is mapped to the IR i64 type, which in Vel-

lvm AST corresponds to TYPE I 64. The LLVM type system makes no distinction

between signed and unsigned integers, unlike C language. IR integers can be in-

terpreted either as signed or unsigned depending on the context. For example, the

quotient of two unsigned integers can be computed using udiv instruction while for

signed integers, sdiv instruction must be used. Since FHCOL integers are always

non-negative, when generating IR code we emit appropriate unsigned instructions.

FHCOL Memory blocks are mapped to IR memory regions and accessed using

pointers to TYPE_Array n TYPE_Double where n is block size. The getelementptr
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instruction is used to address individual values of floating point arrays. All new

memory blocks allocated by the compiled FHCOL program are allocated on the

stack frame using alloca instruction.

4.7.1.2 Translation Units

A top level translation unit is an FHCOL program which corresponds to an FHCOL

operator which may depend on one or more global variables. Programs are described

by the record shown in Listing 4.12.

Record FSHCOLProgram := mkFSHCOLProgram {

i o: Int64.int;

name: string;

globals: list (string * DSHType);

op: DSHOperator;

}.

Listing 4.12: FHCOL Program definition

The record contains the name of the function to generate, a list of global

variable names and types, and the DSHOperator (from module MDSHCOLOnFloat64)

which represents the program code. The code of a well-formed FHCOL program

expects an evaluation environment to be initialized with global variables according

to globals using the same types and indices, immediately followed by two vari-

ables which are pointers to allocated memory blocks of sizes i and o. The first of

these blocks holds the input data vector, and the second one will, upon successful

evaluation, hold the result.

All global FHCOL variables are mapped to corresponding IR global variables

which, depending on the compiler invocation flags, are declared with either the

external or internal linkage type. In the latter case, they are initialized with random
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data, as discussed in Section 4.7.2.

4.7.1.3 Compiler Organization

The FHCOL to LLVM IR compiler is written in Gallina. It translates FHCOL

programs into Vellvm AST for the corresponding IR module. The main compilation

logic is encoded in the genIR function, which translates DSHOperator into a non-

empty sequence of LLVM blocks. It takes as a parameter a successor block id, where

control should be passed at the end of the compiled operator execution (also known

as “destination-passing style”).

Fixpoint genIR (fshcol: DSHOperator) (nextblock: block_id) : cerr segment.

The top-level compiler entry point used for testing and verification is

compile w main, which performs some additional steps compared to standalone

compilation before invoking genIR, such as declaring and initializing global vari-

ables, generating function declaration for the compiled operator, and generating the

main function.

There are a few situations where FHCOL program compilation may fail.

The most obvious example is an invalid FHCOL program that attempts to access

an undeclared variable or one of the wrong type. Another reason for errors is

the integer size restriction: the loop bounds in FHCOL operators are expressed as

natural numbers which may not fit into the target platform integer size (e.g. int64).

For FHCOL programs generated by HELIX, most of these errors are guaranteed not

to occur, but instead of requiring formal guarantees as a pre-condition to invoking

the compiler, we add error handling and later prove that the compiler never fails on

HELIX-generated programs. The error handling is implemented via the exception

monad. The compiler returns either a value or an error message as a string.
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During compilation, the compiler maintains the compiler state. The state

consists of integer counters to generate unique LLVM names and the typing context

Γ. The state data type is shown in Listing 4.13

Record IRState := mkIRState {

block_count: N;

local_count: N;

void_count : N;

Γ: list (ident * typ)

}.

Listing 4.13: Compiler state frame

Global FHCOL variables are mapped to LLVM global variables, while local

variables are mapped to registers. Both of their types are recorded in Γ since FHCOL

does not distinguish between “global” and “local” variables. When compiling the

top-level FHCOL operator, all pre-defined variables are assumed to be global while

all new variables created when opening scopes (e.g. memory pointers in DSHAlloc

or loop indices in DSHLoop) are considered local.

The counters in IRState are used to generate unique identifiers for blocks,

local identifiers, and void identifiers. The new identifiers are generated by append-

ing the corresponding counter number to an arbitrary string prefix. The counters

are initialized with zeroes and increased after each new variable generation. The

combination of counter type and counter value is guaranteed to be unique for each

generated identifier. The string prefix is arbitrary and sometimes used to give the

identifier a meaningful human readable prefix to make the generated IR code more

legible.

Since FHCOL is lexically scoped, as the compiler proceeds with structural

recursion over the FHCOL structure, Γ is used to resolve FHCOL variable de Brujn
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indices to compiler-assigned LLVM global variables or register names and their IR

types.

The compiler state is maintained in a state monad. To combine it with error

handling a new monad, combining features of the state monad and the exception

monad is defined with instances for both ExtLib’s MonadExc and MonadState classes.

On several occasions, we need to generate code for loops in the shape de-

scribed by the following pesudo-code:

int i, from, to;

init();

i=from;

while(i<to)

{

body();

i++;

}

which corresponds to the following IR code:

.entry:

(init)

%c0 = icmp ult i32 %start, %n

br i1 %c0, label %.loop, label %.nextblock

.loop:

%i = phi i32 [ %next_i, .loopcontblock], [ %start, .entry ]

(body)

.loopcontblock:

%next_i = add nsw i32 %i, 1

%c = icmp ult i32 %next_i, %n

br i1 %c, label %.loop, label nextblock
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nextblock:

In particular, the IR code generated for the following FHCOL opera-

tors makes use of this construct: DSHMemInit, DSHPower, DSHIMap, DSHBinOp,

DSHMemMap2, and DSHLoop.

To avoid duplication, the code generation for such loops was generalized via

the genWhileLoop function:

Definition genWhileLoop

(prefix: string)

(from to: exp typ)

(loopvar: raw_id)

(loopcontblock: block_id)

(body_entry: block_id) (body_blocks: list (block typ))

(init_code: (code typ))

(nextblock: block_id)

: cerr (block_id * list (block typ))

The loop initialization code is passed as init_code. The loop body is passed

as a pre-compiled list of blocks as body_blocks. Its entry point is body_entry. After

execution, it is expected to pass control to loopcontblock. To be able to access the

loop index variable within the body, its name must be known in advance and thus,

it is passed as loopvar. Upon completion, the generated loop code will pass control

to nextblock. The loop bounds are passed as Vellvm expressions from and to.

Finally, the string prefix is used to generate new identifiers (using counters from

IRState). Upon success, genWhileLoop returns a list of blocks for the loop and

block id of the loop entry point. This loop generalization, in addition to simplifying

compiler implementation, is also useful for verification as it allows formulating and

proving lemmas about loops in general.
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4.7.2 Compiler Correctness

Our goal is to prove FHCOL to IR compiler correctness. We define correctness as

follows: For every successfully compiled FHCOL program and the corresponding IR

program, assuming that the former does not fail upon evaluation, the latter will not

fail either and will compute the same results.

A few things should be noted about our correctness formulation. First, we

only reason about programs which the compiler is able to successfully compile. This

is a trade-off. On one hand, we could have tried to prove that an FHCOL to

LLVM compiler will never fail for programs generated by HELIX’s previous steps.

Formulating such a lemma would be difficult due to the fact that the previous steps

use MetaCoq and we can not reason about them in pure Coq. Alternatively, we

could apply an approach where this lemma is automatically generated with MetaCoq

and then proven using proof automation. However for practical purposes, its not

necessary to prove that the compiler does not fail. The HELIX system user will try

to synthesize the code and if this step fails, the user will be presented with an error

message. No incorrect program will be produced and no security or safety risks will

be posed. This is how other certified compilers, like CompCert, work.

The other interesting feature of our correctness statement is that we only

reason about the cases where FHCOL evaluation succeeds. It could be shown that

it will always succeed for HELIX-generated programs as long as the environment σ is

properly initialized with data of expected types. Recall for each MHCOL program,

we prove MSH_DSH_compat, which is our statement of semantic equivalence between

MHCOL and its DHCOL translation. This statement guarantees that the DHCOL

version will succeed if MHCOL does not fail. Furthermore, we have previously

proven MSHOperator_Facts, which states in part that our MHCOL program will not
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fail as long as the input memory block respects the operator’s sparsity pattern.

These proofs together guarantee that any DHCOL program produced by HELIX

will not fail on properly initialized input data.

As we recall from Section 4.7.1.2, an FHCOL program corresponds to an

FHCOL operator together with the global variable definitions. To be able to uni-

versally quantify compiled programs over all possible values on globals and inputs

for verification, we have built a wrapper around genIR called compile w main which,

given an FHCOL program and some data, produces a self-enclosed IR compilation

module, including the following:

1. Declarations of named global variables, initialized with the data provided.

2. Declaration of an IR function corresponding to the compiled FHCOL operator.

It takes and returns an array of floating-point values.

3. Declaration of a global, anonymous variable which acts as a placeholder for

the input data. It is statically initialized with the data provided.

4. Declaration of a global, anonymous variable which acts as a placeholder for the

results of computations performed by the FHCOL program. Upon completion

of the generated IR program, the result of computation performed by the

FHCOL operator on the given input data will be stored here.

5. Declaration of the main function which calls the above-mentioned function

with the data from the input placeholder variable and then loads and returns

data from the global output placeholder variable.

The structure of the generated code is illustrated in Listing 4.14.

#define I_SIZE ... /* input size */
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#define O_SIZE ... /* output size */

float global1 = ...;

float[] global2 = {...};

float[I_SIZE] _X = {...};

float[O_SIZE] _Y = {...};

void f(float *x, float *y)

{

/* code, generated from FHCOL */

}

float[O_SIZE] main() {

f(_X,_Y);

return(*_Y);

}

Listing 4.14: IR module organization in pseudo-C

If it succeeds, compile w main returns a self-contained IR module which is

specialized with the given values of the global variables and the input vector. It

has an entry point called main which returns the result of executing the compiled

FHCOL program.

To obtain denotation of the FHCOL program in denote_FSHCOL, we first

perform initialization steps which generate events for allocation of global variables,

input vectors, and output vectors. Memory blocks for globals and for the input

vector are initialized with data provided to denote_FSHCOL. Then after adding events

produced by denoteDSHOperator, an additional event is generated, which loads the

output vector from memory, similar to the return statement in the main function
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in Listing 4.14.

Showing that for all FHCOL programs p and for all possible data, the

itrees which are produced by denotating compile w main p data results and

denote_FSHCOL p data, when interpreted, return the same value will provide basic

compiler correctness. It will not guarantee a specific state of the memory or the en-

vironment upon completion of the program. Additional safety properties, like this

and upper bounds on allocated memory, could be proven later. LLVM specification

also defines undefined behaviors, poison values, and undef values. HELIX-generated

programs do not expose any of these features and thus, they do not affect our cor-

rectness guarantees or proofs. The top-level compiler correctness lemma is shown

in Listing 4.15.

Theorem compiler_correct:

∀ (p: FSHCOLProgram)

(data: list binary64)

(pll: toplevel_entities typ (LLVMAst.block typ * list (LLVMAst.block typ))),

∀ s, compile_w_main p data newState ≡ inr (s,pll) →

eutt (bisim_final []) (semantics_FSHCOL p data) (semantics_llvm pll).

Listing 4.15: IR compiler correctness theorem

The equality between two itrees is expressed via the eutt relation (also known

as “equivalence up to taus”) parameterized by the bisim final relation. This

corresponds to ≈R in Figure 4.6. More specifically, thelix ≈bisim final tllvm relates

thelix and tllvm itrees if they are weakly bisimilar (i.e. they produce the same tree

of visible events, ignoring any finite number5 of silent Tau steps) where all values

returned along corresponding branches are related by bisim final.

The bisim final relation compares the return value of the main function in

5Finite number of Tau steps is a condition of non-divergence.
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LLVM with the evaluation results of the DHCOL program. Even though the final

relation does not examine memory or environment, to prove the above-mentioned

top-level compiler correctness theorem, we need to reason not only about return

values but also about program states during each step of execution. There are three

main stages of execution:

1. Initialization of global variables.

2. Execution of main function.

3. Execution of function which represents compiled FHCOL operator.

The main effort lies in proving the correctness of the compilation of

the FHCOL program, which consists mostly of reasoning about genIR and

denoteDSHOperator functions. Both of them are implemented via structural re-

cursion on denoteDSHOperator, and the proof can be expressed as an eutt equality

using an invariant of the compiler and the interpreter states. The main invariant

carried along combines the following three properties:

1. The memory state satisfies the memory invariant (discussed below).

2. The environment state is well-formed; the σ typechecks with respect to Γ.

3. The counters for generating unique LLVM names are consistent with respect

to the current environment, i.e. they indeed contain a high-water mark for

each type of identifier, which will ensure that the newly generated names will

never collide with existing variables.

The memory invariant relies on HELIX’s evaluation context σ and the typing

context Γ built by the compiler. It states that for any variable in σ named x and its

corresponding type τ from Γ, the value is correct according to the following rules:
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1. For τ in integers and floats, there is a matching variable named x in either

the global or local IR environment. For local variables, the scalar uvalue

in the environment should match the value from σ. The global variables, by

HELIX convention, are always pointers. They must point to the valid memory

location which holds the corresponding uvalue.

2. For τ corresponding to pointers, HELIX pointers have a matching pointer in

the local or global IR environment, and they both point to identical arrays.

FHCOL to LLVM IR compiler correctness proof is close to completion. Work-

ing in collaboration with UPenn’s Vellvm team, we have already proven correct-

ness for all arithmetic expressions (AExpr, NExpr) and higher-order FHCOL opera-

tors, such as DSHLoop and DSHSeq, memory allocation (DSHAlloc), and assignments

(DSHAssign). While proving these operators, we identified and formally defined re-

quired invariants and developed proof techniques along with a supporting library of

lemmas and Ltac scripts, which will be used to conclude compiler correctness proofs.

We do not foresee any significant challenges proving the remaining operators. A few

bugs in the compiler were identified and fixed in the process. We plan to publish a

separate paper describing our compiler correctness proofs.

4.7.3 Compiler Testing

To test our FHCOL to LLVM IR compiler during development before formally

verifying it, we developed a testing framework and defined several compiler tests.

These tests were run either manually or as a part of HELIX continuous integration.

Each test was defined in Gallina as an FSHCOLProgram record which contains an

FHCOL program; its input and output vector dimensions; and a list of the global

variable names and types it depends upon. The FHCOL operator in the test is
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supposed to be produced by HELIX and must follow all of its conventions on variable

naming, sparsity, etc., even though this is not enforced by the testing framework.

A single test execution for a given FSHCOLProgram performs the following

steps:

1. Initialize a data buffer with some random floating-point values. This buffer

will be used as a data pool to initialize all global variables and the input

memory array during the test. The required data pool size is computed based

on the types of global variables and the input vector size from FSHCOLProgram.

As an additional precaution, the buffer will be treated as cyclic, so if the size

is insufficient, some of the random values will be re-used.

2. Compile FHCOL program to LLVM IR, represented as in-memory AST. The

program contains a self-enclosed IR module with global variables and an in-

put array initialized with data from the provided data pool, as discussed in

Section 4.7.2.

3. Run Vellvm interpreter on the generated IR program, executing the main

function and recording the value it returns.

4. Run the FHCOL big-step evaluator giving it sufficient fuel (as estimated by

estimateFuel) and an initial memory state with σ initialized with global

variables, an input vector holding the data taken from the data pool, and the

placeholder for output data. Upon successful evaluation, note the contents of

the memory block designated to hold the result of computation.

5. Compare results of successful FHCOL evaluation and IR interpretation steps.

Most of the testing logic, like running the evaluator and interpreter, is imple-

mented in Gallina and extracted to OCaml. Native OCaml code is used to generate
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random numbers, call extracted test drivers, and to compare the results. For a

test to pass, all steps above must succeed. For the test suite to pass, all tests

must succeed. A partial screenshot of a successful run of the test suite is shown in

Figure 4.7.

Figure 4.7: A screenshot of the compiler test suite execution

We’ve defined eleven tests with different levels of complexity. Some test a

single FHCOL operator, while more complex ones compute the Chebyshev distance

or calculate the dynamic window monitor expression. The latter, being the most

complex test in the suite, produces 368 lines of IR code shown in Appendix B.1.

4.7.4 DHCOL Denotation Semantics

We provide an alternative DHCOL semantics based on interaction trees. The type

of events describing HELIX interactions with its environment is defined as a monad:

Variant MemEvent: Type → Type :=

| MemLU (msg: string) (id: mem_block_id): MemEvent mem_block

| MemSet (id: mem_block_id) (bk: mem_block): MemEvent unit

| MemAlloc (size: NT.t): MemEvent mem_block_id

| MemFree (id: mem_block_id): MemEvent unit.
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Listing 4.16: DHCOL events

It reflects the fact that the only environment DHCOL program modifies is

the memory, as defined by the memory model. The events describe the operations of

allocation and de-allocation of memory blocks as well as reading and writing them.

Additionally, we distinguish two types of failures: static and dynamic. The

former refers to errors indicating an ill-formed program which could be detected at

the compilation stage. An example of such an error is access to an undefined variable

or a loop bound which can not fit the platform integer size. In the presence of such

errors, DHCOL compilation will fail. In contrast, dynamic errors refer to errors that

can not cause compilation failure but do cause the evaluation to fail. The denotation

of a DHCOL program can fail with either static or dynamic failures, although this

distinction is not currently used, because our compiler correctness proof is stated

only for programs which evaluate successfully. However, this mechanism will allow

us to extend the correctness formulation in future to reason about failing programs

as well. For example, we can try to prove that evaluation and compilation would fail

with the same errors, which could be a useful security property for a compiler. Both

failures are implemented as exception monads and, combined with HELIX memory

events, represent a complete model of the DHCOL interaction with its environment,

including error handling:

Definition StaticFailE := exceptE string.

Definition DynamicFailE := exceptE string.

Definition Event := MemEvent +′ StaticFailE +′ DynamicFailE.

To be able to interpret memory events, we define an event handler which

maps them to the state monad on HELIX memory extended with dynamic and
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static failures:

Definition Mem_handler:

MemEvent ∼> Monads.stateT memory (itree (StaticFailE +′ DynamicFailE))

:= λ T e mem ⇒

match e with

| MemLU msg id ⇒

lift_Derr (Functor.fmap (λ x ⇒ (mem,x)) (memory_lookup_err msg mem id))

| MemSet id blk ⇒ ret (memory_set mem id blk, tt)

| MemAlloc size ⇒ ret (mem, memory_next_key mem)

| MemFree id ⇒ ret (memory_remove mem id, tt)

end.

The lift Derr function converts failed memory lookups into dynamic errors.

The memory interpretation can only produce dynamic errors.

Similar to compilation and evaluation, the denotation is implemented via

structural recursion. The fixpoint definition does not return any useful value but

produces an event tree:

Fixpoint denoteDSHOperator (σ: evalContext) (op: DSHOperator): itree Event unit.

The high-level theorem of semantic equivalence between DHCOL evaluation

and denotation semantics corresponding to ≈ in Figure 4.6 is stated as:

Theorem Denote_Eval_Equiv_Succeeds:

∀ (σ: evalContext) (op: DSHOperator) (mem mem’: memory) (fuel: N),

evalDSHOperator σ op mem fuel = Some (inr mem’) →

eutt eq (interp_Mem (denoteDSHOperator σ op) mem) (ret (mem’, tt)).

Listing 4.17: DHCOL semantic equivalence

It says that if the evaluation of the DHCOL operator succeeds, then the

resulting memory will be equivalent to the memory produced by interpreting the
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corresponding itree (assuming that both start from the same initial memory state).

The denotation and evaluation semantics and their equivalence are defined

for the DHCOL family of languages and apply to FHCOL, which is one member of

that family.

4.7.5 Example

The final result of the compilation of the Dynamic Window Monitor to LLVM IR

using HELIX is shown in Appendix B.1.
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Chapter 5

Results and Discussion

5.1 Implementation

The current size of HELIX development is 45 KLOC of Coq. The proof to specifi-

cations ratio is approximately 2:1. There is an insignificant amount of OCaml code

(less than 500 lines) implementing the test harness.

Module loc Percent

HCOL 1,200 2.65%
Σ-HCOL 11,044 24.40%
MHCOL 8,074 17.84%
DHCOL 10,820 23.91%
FHCOL 513 1.13%

LLVM 7,291 16.11%
Tactics 87 0.19%

Util 4,928 10.89%
Dynamic Window Monitor 1,304 2.88%

TOTAL 45,261 100.00%

Table 5.1: Implementation code size

The distribution of code in the lines of code (loc) between modules is shown
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in Table 5.1. Modules corresponding to HELIX languages (e.g. HCOL, Σ-HCOL)

include both formalization of the given language as well as translation with the proof

from the previous language in the chain. For example, the Σ-HCOL module includes:

1) Σ-HCOL language formalization; 2) HCOL to Σ-HCOL compiler implementation

and proofs; and 3) Σ-HCOL rewriting engine implementation and proofs. The

Dynamic Window Monitor module includes a complete dynamic window monitor

example, first defined in HCOL and then translated though all intermediate steps

to LLVM IR with end-to-end proofs.

HELIX is a rather sizable Coq project, and we encountered various engineer-

ing challenges while working on it.

Coq ecosystem maturity was an ongoing concern. We started with Coq version

8.4 and at the time of writing, we were on Coq version 8.12. We encountered and

reported several bugs in Coq and the standard library. Coq documentation was

lacking in many places, and we had to resort to the help of mailing lists, forums, and

personal connections to fill the gaps. Luckily, the Coq community was very helpful

and responsive. The 3rd party Coq libraries that we started using, such as ExtLib,

MathClasses, CoLoR, Vellvm, and MetaCoq introduced additional dependencies and

maintenance challenges. Oftentimes, there was a delay in supporting the latest Coq

versions by these libraries, and we had to wait for maintainers to update them before

we could switch to the new versions of Coq. We encountered some bugs in these

libraries which we reported and in some cases contributed patches. The authors of

these 3rd party projects and the Coq community were very helpful in resolving these

issues. We experienced Coq ecosystem adopting tools, like OPAM package manager

and dune build system, which contributed greatly to the robustness of our project

infrastructure. Coq itself recently made great progress towards becoming a reliable,
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well-supported project. The Coq team has adopted a regular, predictable release

cycle and has improved documentation and packaging, among other enhancements.

The ecosystem of 3rd party libraries and packages is still a mixed bag. Some of

them are well supported and maintained, while others are more academic, showing

interesting results and techniques but not intended or suitable for use in 3rd party

developments.

Performance was another area of concern, starting with build performance. As

of this writing, it takes about 30 minutes to compile HELIX on a modern laptop or

desktop computer (Intel Core i7, quad-core, 16GB RAM, SSD), but this is only after

some code optimizations as well as recent improvements in Coq performance. Before

that, we had to deal with builds of one hour or more. We observed that the build

process does not always utilize all CPU resources available. One reason for that is

the fact that the Coq compiler does not use multiple CPU cores. This is an inherent

restriction of the current OCaml compiler implementation, and it is currently being

actively worked on by the OCaml community[50]. Meanwhile, the only opportunity

to use multiple CPU cores in Coq builds is via parallel build, compiling several

source files in parallel. This works to the point where dependencies between modules

prevent such parallelism. One part of the Coq system which is responsible for a

significant share of our performance problems is typeclass resolution. We actively

use typeclasses in HELIX formalization and proofs. Coq typeclass search could be

very slow. It could be guided towards faster resolution with the Hints mechanism,

but it is rather blunt and does not allow fine control over the search. In an attempt to

diagnose search performance bottlenecks, we wrote a tool to parse the debug output

of a typeclass search and plot it as a graph. Finally, we embarked upon a project

to enhance Coq typeclass search by introducing a caching mechanism. This was
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implemented as a patch to Coq OCaml sources. In our implementation, we cache

failures of typeclass resolution. The cache is a set, and we check for membership. It

is invalidated by changes in hint databases or other variables affecting the typeclass

resolution mechanism. Comparing goals is computationally heavy, so we need to

strike a balance between the cost of cache lookups and the number of cache hits.

Both addition and lookup of the new goals to the cache are heavy operations O(n).

Our initial naive implementation (strict match) gave us a 2.49% hit rate with a

max cache size of approximately 24,000 entries. Implementing a more intelligent

match up to unresolved evars (evar match) increased the hit ratio to 14%, and

the max cache size became more manageable: below 4,000. Our final observation

was that due to the cost of cache lookup, it does not make sense to check the

cache for goals which are the leaves in the proof search tree. We introduced a

min goals parameter which controls how many dependent goals a goal must have

to be included in caching. This slightly decreased the cache size and marginally

improved the performance. Our caching implementation compiling math-classes

Coq library, which makes heavy use of type classes, has shown 27% speed up. The

patch was submitted1 to Coq maintainers but was not accepted in favor of a future,

as yet unspecified, more general solution to this problem.

5.2 Coverage

HELIX is a prototype system and as such has some limitations. It could be ex-

tended in future and developed further to become a production-level counterpart of

SPIRAL. A fair amount of engineering work is required to make it such. However,

it is an entirely feasible engineering project, and HELIX can eventually be devel-

1See https://github.com/coq/coq/issues/6213.
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oped into a code-generation system for general practical use. A few limitations and

shortcomings of the current implementation are worth mentioning:

SPIRAL integration. HELIX uses intermediate OL and Σ-OL expressions as well

as a sequence of rule applications computed by SPIRAL. Our original plan

was to parse the SPIRAL log file to extract the sequence of rules, map them

to corresponding HELIX lemmas, and use them to automatically generate a

proof. Due to time constraints, we have not implemented SPIRAL log file

parsing. For our running example and tests, we have manually extracted and

applied these rules. Similarly, SPIRAL-generated intermediate OL and Σ-OL

expressions were manually translated to HCOL and Σ-HCOL, respectively.

This translation could be trivially automated, as it is purely syntactic.

Numerical analysis. DHCOL to FHCOL translation has not been proven. It

mostly involves numerical analysis. See Sections 5.3.1 and 5.3.2 for discussion

of the approaches we devised but have yet to implement.

Proof automation. Current proof automation is relatively basic and could be im-

proved.

Refactoring, optimization, and cleanup. A list of smaller improvement and

code cleanup opportunities is listed in the TODO.org file in the HELIX git

repository.

5.3 Future Research Directions

Besides the implementation shortcomings, listed in the previous section, we identi-

fied several interesting future research directions, discussed below.
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5.3.1 Integer overflow proofs

When translating from DHCOL to FHCOL, we switch from natural numbers to

fixed-length integers for loop indices and offsets. The out-of-bounds check for all

constants is performed during translation, as discussed in Section 4.6. However dur-

ing execution as arithmetic computations are performed to calculate offsets, integer

overflow could theoretically occur. We need to perform some numeric analysis to

prove this never happens. This should be fairly straightforward, for the following

reasons:

1. All arithmetic expressions involve only loop indices and constants. No input

data is used.

2. Loop indices are bounded by constants.

3. The language does not support recursion, and the only construct we should be

concerned with during integer overflow analysis is a (potentially nested) loop.

4. The integer arithmetic of NExpr is relatively simple and well defined for both

natural numbers and fixed-length integers.

One practical consideration worth mentioning is that HELIX is designed

to operate on dense vectors in memory. Consequently, for most of the practical

applications we envision, the individual vectors typically have relatively small sizes.

Since generated loop bounds are usually linked to data dimensions, that also makes

them relatively small, and the overflow is unlikely to occur.

5.3.2 Floating-point proofs

Floating point numbers present a distinct set of challenges. Instead of introducing

floating point numbers, we work on an abstract data type (generalized reals) up to
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and including the DHCOL language. The next language in the chain is FHCOL,

which replaces the abstract data type with IEEE floating point numbers. The

relation in the real domain between the results of the evaluation of the structurally

similar expressions in these two languages could encapsulate all numeric analysis

properties, such as error bounds and numerical instability. We identified three

approaches:

Offline Uncertainty Propagation. In the most general case, an uncertainty

propagation approach can be applied [51]. Using it, we can estimate error bounds

for compiled FHCOL expressions. Unfortunately, in many cases, the resulting error

bounds are too large to be useful for practical applications.

Problem-specific Error Estimation. Since our system is intended to validate

cyber-physical systems, it is likely that the problem domain could inform additional

physical constraints which would allow us to provide stronger guarantees, such as

tighter error bounds. Therefore, instead of trying to solve this problem in general,

we allow users to plug in their own reasoning here, by providing a lemma which will

guarantee that for a particular expression and its value ranges, the floating point

approximation meets the user’s given criteria.

Online Uncertainty Propagation. This approach is similar to the Abstract

Interpretation with the interval domain, where the values are represented as intervals

which are computed at runtime. The result of the computation is not a single value

but an interval. Because it is computed for concrete values, it is usually much

narrower than one estimated using offline uncertainty propagation. In some cases,

it could be proven that it is smaller than the machine epsilon of the floating point
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representation, collapsing the output interval into a single floating point number.

The price of this approach is that additional computations have to be performed at

runtime affecting the performance. The unique advantage of HELIX here is that

such computations could be compiled into highly efficient parallelized and vectorized

code using SPIRAL’s optimizations. For this approach, we will introduce yet another

language named IHCOL in which we will represent anR value as an interval bounded

by two IEEE floating point numbers.

5.3.3 Finite-sets proofs

In automated proofs when applying per-rule lemmas, sub-goals for additional pre-

conditions may be generated. These are mostly either arithmetic goals related to

index bounds or goals related to (non)intersection, equality, or inclusion of sparsity

patterns represented as finite sets. The former are easily solved automatically by

tactics like lia. The latter are solved manually at present. Recall that we use type

Ensemble (FinNat n) to represent a set of finite numbers bounded by n ∈ N. The set

membership is decidable and typically, n is relatively small as it represents vector

size. An example proof obligation which needs to be solved manually after HELIX

proof automation is shown in Listing 5.1:

∀ (a : vector R 3) (j : N) (jc : j < 2),

Included (FinNat 2) (Full_set (FinNat 2))

(Union (FinNat 2) (singleton 1)

(Union (FinNat 2) (singleton 0) (Empty_set (FinNat 2))))

Listing 5.1: Finite set proof obligation example

It is relatively simple, and the solving of this type of sub-goal can be auto-

mated. One approach would be through classic Coq automation using Ltac. How-
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ever, a more interesting approach is to try to use computation reflection [52].

5.3.4 LLVM vector instructions

To generate high-performance code, SPIRAL uses C compiler intrinsics to gener-

ate SIMD instructions. In LLVM IR language, they correspond to using vector

arguments in arithmetic operators. For example, a fadd operator could take two

arguments of type <4 x double> to perform pointwise addition of two vectors of

four double-precision floating point values. When IR is compiled to machine code

for a platform supporting SIMD instructions (e.g. Intel SSE, AMD 3DNow!, Mo-

torola AltiVec, or IBM SPU), fadd could be compiled to a single CPU instruction

which performs such addition, while for platforms without SIMD support, it will be

translated to a sequence of four scalar additions.

HELIX does not currently use IR vector arithmetic as it is not yet fully

supported by the formal IR semantics of the Vellvm project. Once support for these

instructions is added, HELIX can be modified to generate even more efficient code.

5.3.5 Algebraic Theory of Partial Computations

Our approach where partial computations are represented as operations on sparse

vectors presents an interesting, long-term research direction and could potentially

be developed into a comprehensive algebraic theory of partial computations.

5.4 Related Work

Encoding program transformations as rewriting rules using algebraic properties of

the language is a well established approach in the field (see for example, [53], [54],

[55]). These systems use functional program rewriting without the use of our sparse
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vector parallelism abstraction, and none of them are formally verified.

Another attempt to formally verify SPIRAL is described in [56]. In this

work, the author limits himself to a subset of SPIRAL OL language where all op-

erators are linear and thus could be evaluated to matrices. This informs his linear

algebra approach to operator equivalence and rule validation. He also stops one step

short of actual machine code generation (directly or via an intermediate language

like CompCert Clight) with the output language to which SPIRAL expressions are

compiled being a simple imperative language with arrays called IMP+V. The for-

malization and proofs related to Σ-OL are listed as future work. As this project is

also implemented in Coq, it might be possible to combine it with our work, re-using

his matrix factorization theory for linear operators and related rules in HELIX.

There are several projects for certified compilation from functional to imper-

ative languages. CertiCoq translates Gallina programs to CompCert’s Clight. The

goal is much more ambitious than ours, as the aim is to translate not a domain

specific language like Σ-HCOL but a dependently typed general purpose language.

Interestingly, all three guiding principles cited in [57] also apply to our approach.

Some of their transformation steps could be related to ours. For example, going

from dependently typed Σ-HCOL to MHCOL, we perform nominal type erasure.

However, there are some differences at later stages. For example, unlike HELIX,

CertiCoq uses a continuation-passing style representation and proves compiler cor-

rectness, while HELIX relies on automated translation validation.

Another related project is CakeML [58], which also targets a subset of a

general-purpose language (Standard ML). Unlike HELIX, CakeML uses higher-order

logic (HOL) to specify functional big-step semantics [59]. There are similarities with

our approach, as we also use a definitional interpreter [60] written in Gallina, to de-
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fine the semantics of the higher-order language, FHCOL. The main differences are:

small-step versus big-step semantics and translation validation versus certified com-

pilation. Additionally, our programs can not diverge, and while we technically use

fuel to simplify termination checking, this differs from the clock usage in CakeML.

5.5 Contributions and Lessons Learned

Below is a quick summary of key contributions and results of this work.

1. Formal methods

(a) Formalizing a class of Operator Languages.

(b) Reasoning about partial computations algebraically using sparse vectors.

(c) Dual semantics approach for building a certified compiler.

(d) Several approaches for dealing with floats.

2. System

(a) End-to-end system prototype (with multiple deep and shallow embedded

languages using translation validation and certified compilation).

(b) LLVM-based, verified code generation backend for SPIRAL.

(c) Formal verification of existing system using translation validation.

3. Coq

(a) Switching between deep and shallow embedding.

(b) Monadic sparsity.

(c) Automating translation validation.
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(d) Using typeclasses to formalize properties of operators.

The first lesson we learned from HELIX development is that formal verifica-

tion is still a hard problem. While core tools are available and some techniques are

developed it is still a laborious process, requiring a lot of tedious proving. It tells us

that the field is still far from maturity and there are many opportunities to make

formal verification more streamlined and easier to estimate engineering process.

Another outtake is that translation validation is a very powerful approach

which could be used instead of heavier full compiler verification. The main argument

against it, is usually that it requires additional manual proof work for each program.

We have shown that for some languages these proofs could be automated, making

it suitable for developing self-contained, fully automated certified compilers.

5.6 Concluding Remarks

The diversity and complexity of computer hardware is likely to continue to grow,

making manual implementation of high-performance numeric algorithms more and

more challenging. The optimization space required to generate high-performance

code will be grow exponentially with the number of hardware capabilities. Even now,

a good implementation already needs to take into account the heterogeneous use of

TPUs, GPUs, and CPUs, instruction timing, instruction cache behavior, SIMD

instruction use, the number of CPU threads and cores, the number of registers,

memory access speed, etc.

It is our belief that the future direction of numerical computing is heading

towards high-level, possibly declarative, languages used to describe numeric algo-

rithms. These languages could be equipped with strong type systems and formal

semantics and compiled into efficient code for various target hardware platforms.
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Compilation could involve going through several intermediate languages, each grad-

ually decreasing the level of abstraction towards the target hardware architecture.

During such compilation (or rather optimal code synthesis), the performance-related

code transformations could be performed at every step but as early as possible.

Each level of these transformations will be backed up by sound theory (algebraic,

functional, or computational) which will allow automatic generation of proofs of

correctness of the generated code. This is the approach HELIX demonstrates.
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Appendix A

DHCOL Big-Step Operational

Semantics

In this appendix, we present Big-Step Operational Semantics for the DHCOL lan-

guage, informally described in Section 3.4. This semantics is implemented as a fix-

point evaluator, described in Section 3.4.3. The DHCOL language syntax is made

up of syntactic sets, which are listed below along with their respective Coq types:

1. Natural numbers (N type)

2. Unsigned fixed-length machine integers (NT.t type)

3. Values of abstract carrier type (CT.t type)

4. Constants zero and one (CT.t type)

5. Strings (string type)

6. Memory blocks (mem block type)

7. Constant mem empty for an empty memory block (mem block type)

8. Expressions (NExpr, PExpr, MExpr, and AExpr types)

9. Operators (DSHOperator type)
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In presenting DHCOL syntax, we will use the following conventions:

� lower-case names with subscript s will range over string

� lower-case names with subscript N will range over natural numbers in N

� lower-case names with subscript i will range over unsigned fixed-length ma-

chine integers in NT.t

� lower-case names with subscript c will range over abstract carrier type values

in CT.t

� lower-case names with subscript b will range over memory blocks in mem block

� lower-case names with subscript n will range over NExpr

� lower-case names with subscript p will range over PExpr

� lower-case names with subscript m will range over MExpr

� lower-case names with subscript a will range over AExpr

� upper-case names without subscript will range over DSHOperator

A.1 The Set of States

The set of states has type evalContext ×memory, usually denoted as (σ,m). The

evalContext is a list of variable types and bindings of type DSHVal:

DSHVal := DSHnatVal valuei | DSHCTypeVal valuec | DSHPtrVal valueN sizei

We use square bracket notation σ[indexN] to reference a variable with the

de Bruijn index indexN in the evaluation context σ. The type of σ[indexN] is err

DSHVal. It will be evaluated to inr value in case of successful lookup or inl if

there is no variable with such an index in σ.

The memory represents the state of the memory, per the memory model

described in Section 3.3.1. We also use square bracket notation m[addrN] to reference

a memory block at address addrN. Thus, the type of m[addrN] is err mem block.
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It will be evaluated to inr valueb in case of successful lookup or inl if the address

is out of range.

Finally, we write blockb[offsetN] to access a value at offset offsetN in memory

block blockb. The type of such expression is err CT.t. It will be evaluated to

inr valuec in case of successful lookup or inl if the offset is out of range.

A.2 Expressions

Expressions with types PExpr, MExpr, NExpr, and AExpr are evaluated in a given

state (σ,m) to their respective values of type (N×NT.t), (mem_block×NT.t), NT.t, and

CT.t. The evaluation can fail, so the err monad is used to wrap the evaluation re-

sults. The relation between an expression together with the state and the evaluation

result is denoted as ⇓.

PExpr evaluation semantics

σ[xN] = inr (DSHPtrVal vN sizei)

〈PVar xN, σ,m〉 ⇓ inr (vN, sizei)
PV arOK

σ[xN] = inl msgs
〈PVar xN, σ,m〉 ⇓ inl ”error looking up PVar”

PV arErr

MExpr evaluation semantics

〈xp, σ,m〉 ⇓ inr (xN, sizei) m[xN] = inr vb

〈MPtrDeref xp, σ,m〉 ⇓ inr (vb, sizei)
MPtrDerefOK

〈xp, σ,m〉 ⇓ inl msgs
〈MPtrDeref xp, σ,m〉 ⇓ inl msgs

MPtrDerefErr1
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〈xp, σ,m〉 ⇓ inr (xN, sizei) m[xN] = inl msgs
〈MPtrDeref xp, σ,m〉 ⇓ inl ”MPtrDeref lookup failed”

MPtrDerefErr2

〈MConst vb sizei, σ,m〉 ⇓ inr (vb, sizei)
MConst

NExpr evaluation semantics

σ[xN] = inr (DSHnatVal vi)

〈NVar xN, σ,m〉 ⇓ inr vi
NV arOK

σ[xN] = inl msgs
〈NVar xN, σ,m〉 ⇓ inl msgs

NV arErr1

σ[xN] = inr (DSHCTypeVal vc)

〈NVar xN, σ,m〉 ⇓ inl ”invalid NVar type”
NV arErr2

σ[xN] = inr (DSHPtrVal vN sizei)

〈NVar xN, σ,m〉 ⇓ inl ”invalid NVar type”
NV arErr3

〈NConst vi, σ,m〉 ⇓ inr vi
NConst

〈an, σ,m〉 ⇓ inr ai 〈bn, σ,m〉 ⇓ inr bi bi 6= 0

〈NDiv an bn, σ,m〉 ⇓ inr ai
bi

NDivOK

〈bn, σ,m〉 ⇓ inl msgs
〈NDiv an bn, σ,m〉 ⇓ inl msgs

NDivErr1

〈bn, σ,m〉 ⇓ inr bi bi = 0

〈NDiv an bn, σ,m〉 ⇓ inl ”Division by 0”
NDivErr2

〈bn, σ,m〉 ⇓ inr bi bi 6= 0 〈an, σ,m〉 ⇓ inl msgs
〈NDiv an bn, σ,m〉 ⇓ inl msgs

NDivErr3

〈an, σ,m〉 ⇓ inr ai 〈bn, σ,m〉 ⇓ inr bi bi 6= 0

〈NMod an bn, σ,m〉 ⇓ inr (ai mod bi)
NModOK
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〈bn, σ,m〉 ⇓ inl msgs
〈NMod an bn, σ,m〉 ⇓ inl msgs

NModErr1

〈bn, σ,m〉 ⇓ inr bi bi = 0

〈NMod an bn, σ,m〉 ⇓ inl ”Mod by 0”
NModErr2

〈bn, σ,m〉 ⇓ inr bi bi 6= 0 〈an, σ,m〉 ⇓ inl msgs
〈NMod an bn, σ,m〉 ⇓ inl msgs

NModErr3

〈an, σ,m〉 ⇓ inr ai 〈bn, σ,m〉 ⇓ inr bi

〈NPlus an bn, σ,m〉 ⇓ inr (ai + bi)
NPlusOK

〈an, σ,m〉 ⇓ inl msgs
〈NPlus an bn, σ,m〉 ⇓ inl msgs

NPlusErr1

〈an, σ,m〉 ⇓ inr ai 〈bn, σ,m〉 ⇓ inl msgs
〈NPlus an bn, σ,m〉 ⇓ inl msgs

NPlusErr2

〈an, σ,m〉 ⇓ inr ai 〈bn, σ,m〉 ⇓ inr bi

〈NMinus an bn, σ,m〉 ⇓ inr (ai − bi)
NMinusOK

〈an, σ,m〉 ⇓ inl msgs
〈NMinus an bn, σ,m〉 ⇓ inl msgs

NMinusErr1

〈an, σ,m〉 ⇓ inr ai 〈bn, σ,m〉 ⇓ inl msgs
〈NMinus an bn, σ,m〉 ⇓ inl msgs

NMinusErr2

〈an, σ,m〉 ⇓ inr ai 〈bn, σ,m〉 ⇓ inr bi

〈NMult an bn, σ,m〉 ⇓ inr (ai · bi)
NMultOK

〈an, σ,m〉 ⇓ inl msgs
〈NMult an bn, σ,m〉 ⇓ inl msgs

NMultErr1

〈an, σ,m〉 ⇓ inr ai 〈bn, σ,m〉 ⇓ inl msgs
〈NMult an bn, σ,m〉 ⇓ inl msgs

NMultErr2

〈an, σ,m〉 ⇓ inr ai 〈bn, σ,m〉 ⇓ inr bi

〈NMin an bn, σ,m〉 ⇓ inr min(ai, bi)
NMinOK
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〈an, σ,m〉 ⇓ inl msgs
〈NMin an bn, σ,m〉 ⇓ inl msgs

NMinErr1

〈an, σ,m〉 ⇓ inr ai 〈bn, σ,m〉 ⇓ inl msgs
〈NMin an bn, σ,m〉 ⇓ inl msgs

NMinErr2

〈an, σ,m〉 ⇓ inr ai 〈bn, σ,m〉 ⇓ inr bi

〈NMax an bn, σ,m〉 ⇓ inr max(ai, bi)
NMaxOK

〈an, σ,m〉 ⇓ inl msgs
〈NMax an bn, σ,m〉 ⇓ inl msgs

NMaxErr1

〈an, σ,m〉 ⇓ inr ai 〈bn, σ,m〉 ⇓ inl msgs
〈NMax an bn, σ,m〉 ⇓ inl msgs

NMaxErr2

AExpr evaluation semantics

σ[xN] = inr (DSHCTypeVal vc)

〈AVar xN, σ,m〉 ⇓ inr vc
AV arOK

σ[xN] = inl msgs
〈AVar xN, σ,m〉 ⇓ inl msgs

AV arErr1

σ[xN] = inr (DSHnatVal vi)

〈AVar xN, σ,m〉 ⇓ inl ”invalid AVar type”
AV arErr2

σ[xN] = inr (DSHPtrVal vN sizei)

〈AVar xN, σ,m〉 ⇓ inl ”invalid AVar type”
AV arErr3

〈AConst vc, σ,m〉 ⇓ inr vc
AConst

〈aa, σ,m〉 ⇓ inr vc

〈AAbs aa, σ,m〉 ⇓ inr |vc|
AAbsOK

〈aa, σ,m〉 ⇓ inl msgs
〈AAbs aa, σ,m〉 ⇓ inl msgs

AAbsErr
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〈aa, σ,m〉 ⇓ inr ac 〈ba, σ,m〉 ⇓ inr bc

〈APlus aa ba, σ,m〉 ⇓ inr (ac + bc)
APlusOK

〈aa, σ,m〉 ⇓ inl msgs
〈APlus aa ba, σ,m〉 ⇓ inl msgs

APlusErr1

〈aa, σ,m〉 ⇓ inr ac 〈ba, σ,m〉 ⇓ inl msgs
〈APlus aa ba, σ,m〉 ⇓ inl msgs

APlusErr2

〈aa, σ,m〉 ⇓ inr ac 〈ba, σ,m〉 ⇓ inr bc

〈AMinus aa ba, σ,m〉 ⇓ inr (ac − bc)
AMinusOK

〈aa, σ,m〉 ⇓ inl msgs
〈AMinus aa ba, σ,m〉 ⇓ inl msgs

AMinusErr1

〈aa, σ,m〉 ⇓ inr ac 〈ba, σ,m〉 ⇓ inl msgs
〈AMinus aa ba, σ,m〉 ⇓ inl msgs

AMinusErr2

〈aa, σ,m〉 ⇓ inr ac 〈ba, σ,m〉 ⇓ inr bc

〈AMult aa ba, σ,m〉 ⇓ inr (ac · bc)
AMultOK

〈aa, σ,m〉 ⇓ inl msgs
〈AMult aa ba, σ,m〉 ⇓ inl msgs

AMultErr1

〈aa, σ,m〉 ⇓ inr ac 〈ba, σ,m〉 ⇓ inl msgs
〈AMult aa ba, σ,m〉 ⇓ inl msgs

AMultErr2

〈aa, σ,m〉 ⇓ inr ac 〈ba, σ,m〉 ⇓ inr bc

〈AMin aa ba, σ,m〉 ⇓ inr min(ac, bc)
AMinOK

〈aa, σ,m〉 ⇓ inl msgs
〈AMin aa ba, σ,m〉 ⇓ inl msgs

AMinErr1

〈aa, σ,m〉 ⇓ inr ac 〈ba, σ,m〉 ⇓ inl msgs
〈AMin aa ba, σ,m〉 ⇓ inl msgs

AMinErr2

〈aa, σ,m〉 ⇓ inr ac 〈ba, σ,m〉 ⇓ inr bc

〈AMax aa ba, σ,m〉 ⇓ inr max(ac, bc)
AMaxOK
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〈aa, σ,m〉 ⇓ inl msgs
〈AMax aa ba, σ,m〉 ⇓ inl msgs

AMaxErr1

〈aa, σ,m〉 ⇓ inr ac 〈ba, σ,m〉 ⇓ inl msgs
〈AMax aa ba, σ,m〉 ⇓ inl msgs

AMaxErr2

〈aa, σ,m〉 ⇓ inr ac 〈ba, σ,m〉 ⇓ inr bc ac < bc

〈AZless aa ba, σ,m〉 ⇓ inr one
AZlessOKL

〈aa, σ,m〉 ⇓ inr ac 〈ba, σ,m〉 ⇓ inr bc ac ≥ bc
〈AZless aa ba, σ,m〉 ⇓ inr zero

AZlessOKR

〈aa, σ,m〉 ⇓ inl msgs
〈AZless aa ba, σ,m〉 ⇓ inl msgs

AZlessErr1

〈aa, σ,m〉 ⇓ inr ac 〈ba, σ,m〉 ⇓ inl msgs
〈AZless aa ba, σ,m〉 ⇓ inl msgs

AZlessErr2

〈in, σ,m〉 ⇓ inr ii 〈xm, σ,m〉 ⇓ inr (xb, sizei) ii < sizei xb[ii] = inr vc

〈ANth xm in, σ,m〉 ⇓ inr vc
ANthOK

〈in, σ,m〉 ⇓ inl msgs
〈ANth xm in, σ,m〉 ⇓ inl msgs

ANthErr1

〈in, σ,m〉 ⇓ inr ii 〈xm, σ,m〉 ⇓ inl msgs
〈ANth xm in, σ,m〉 ⇓ inl msgs

ANthErr2

〈in, σ,m〉 ⇓ inr ii 〈xm, σ,m〉 ⇓ inr (xb, sizei) ii ≥ sizei

〈ANth xm in, σ,m〉 ⇓ inl ”ANth index out of bounds”
ANthErr3

〈in, σ,m〉 ⇓ inr ii 〈xm, σ,m〉 ⇓ inr (xb, sizei) ii < sizei xb[ii] = inl msgs
〈ANth xm in, σ,m〉 ⇓ inl ”ANth not in memory”

ANthErr4
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A.3 Operators

Operators evaluate in a given state (σ,m), and the result of the evaluation is either

an error signaled via an err monad by returning (inl error message) or the updated

memory m′ returned as (inr m′).

We write m[addrN/valueb] for the memory state obtained by replacing a

memory block at address addrN with the new memory block valueb. To free a

memory at address addrN and designate this address as currently unassigned (which

would lead to an error trying to access it) we write m[addrN/].

Similarly, blockb[offsetN/valuec] will result in a memory block with value at

offsetN replaced with valuec. Notation blockb[0 . . . offsetN/valuec] means to initialize

memory block elements with offsets in the range [0 . . . offsetn) with value valuec.

We use from nat : N → err NT.t function to convert natural numbers to

NT.t. Such a conversion could return an error because the set of natural numbers is

infinite, while NT.t is a finite set. The conversion in the other direction: from NT.t

to N is implicit, and we can use just NT.t where N is expected.

We use the cons operator :: to prepend σ with a new element which will have

index 0. For example: (DSHnatVal ni) :: σ.

Below, we present big-step inference rules for DHCOL operators. For brevity,

we include only rules describing successful evaluation and omit rules describing error

handling. Since error handling is always done via the err monad, whenever the

premise of a rule contains a clause in the form x = inr y, it should be assumed that

there is a corresponding rule for the error case x = inl msgs with inl error message

on the right side of the ⇓ in the conclusion.
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〈DSHNop, σ,m〉 ⇓ inr m
Nop

〈xp, σ,m〉 ⇓ inr (xN, xsizei) 〈yp, σ,m〉 ⇓ inr (yN, ysizei)

m[xN] = inr xb m[yN] = inr yb

〈srcn, σ,m〉 ⇓ inr srci 〈dstn, σ,m〉 ⇓ inr dsti

dsti < ysizei xb[srci] = inl vc

〈DSHAssign (xp, srcn) (yp, dstn), σ,m〉 ⇓ inr m[yN/(yb[dsti/vc])]
Assign

〈xp, σ,m〉 ⇓ inr (xN, xsizei) 〈yp, σ,m〉 ⇓ inr (yN, ysizei)

m[xN] = inr xb m[yN] = inr yb

ni ≤ xsizei ni = from nat nN

〈evalIMap ni xb yb fa, σ,m〉 ⇓ inr y′b
〈DSHIMap nN xp yp fa, σ,m〉 ⇓ inr m[yN/y

′
b]

IMap

〈evalIMap 0 xb yb fa, σ,m〉 ⇓ inr yb
evalIMap0

ac = inr xb[nN]

σ′ = (DSHCTypeVal ac) :: (DSHnatVal ni) :: σ

〈fa, σ′,m〉 ⇓ inr vc
〈evalIMap ni xb yb fa, σ, yb[ni/vc]〉 ⇓ inr y′b
〈evalIMap (ni + 1) xb yb fa, σ,m〉 ⇓ inr y′b

evalIMapSn

〈x0p, σ,m〉 ⇓ inr (x0N, x0sizei) m[x0N] = inr x0b

〈x1p, σ,m〉 ⇓ inr (x1N, x1sizei) m[x1N] = inr x1b

〈yp, σ,m〉 ⇓ inr (yN, ysizei) m[yN] = inr yb

ni = from nat nN ni ≤ ysizei

〈evalMap2 ni x0b x1b yb fa, σ,m〉 ⇓ inr y′b
〈DSHMemMap2 nN x0p x1p yp fa, σ,m〉 ⇓ inr m[yN/y

′
b]

Map2
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〈evalMap2 0 x0b x1b yb fa, σ,m〉 ⇓ inr yb
evalMap2O

ac = inr x0b[nN]

bc = inr x1b[nN]

σ′ = (DSHCTypeVal bc) :: (DSHCTypeVal ac) :: σ

〈fa, σ′,m〉 ⇓ inr vc
〈evalMap2 ni x0b x1b yb[nN/vc] fa, σ,m〉 ⇓ inr y′b
〈evalMap2 (ni + 1) x0b x1b yb fa, σ,m〉 ⇓ inr y′b

evalMap2Sn

〈xp, σ,m〉 ⇓ inr (xN, xsizei) 〈yp, σ,m〉 ⇓ inr (yN, ysizei)

m[xN] = inr xb m[yN] = inr yb

ni = from nat nN ni ≤ ysizei

〈evalBinOp ni ni xb yb fa, σ,m〉 ⇓ inr y′b
〈DSHBinOp nN xp yp fa, σ,m〉 ⇓ inr m[yN/y

′
b]

BinOp

〈evalBinOp 0 offi xb yb fa, σ,m〉 ⇓ inr yb
evalBinOpO

ac = inr xb[ni]

bc = inr xb[ni + offi]

σ′ = (DSHCTypeVal bc) :: (DSHCTypeVal ac) :: (DSHnatVal ni) :: σ

〈fa, σ′,m〉 ⇓ inr vc
〈evalBinOp ni offi xb yb[ni/vc] fa, σ,m〉 ⇓ inr y′b

〈evalBinOp (ni + 1) offi xb yb fa, σ,m〉 ⇓ inr y′b
evalBinOpSn

〈xp, σ,m〉 ⇓ inr (xN, xsizei) 〈yp, σ,m〉 ⇓ inr (yN, ysizei)

m[xN] = inr xb m[yN] = inr yb

〈srcn, σ,m〉 ⇓ inr srci 〈dstn, σ,m〉 ⇓ inr dsti

dsti < ysizei

〈evalPower ni xb yb srci dsti fa σ,m[dsti/initialc]〉 ⇓ inr y′b
〈DSHPower nn (xp, srcn) (yp, dstn) fa initialc, σ,m〉 ⇓ inr m[yN/y

′
b]

Power
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〈evalPower 0 xb yb srci dsti fa σ,m〉 ⇓ inr yb
evalPowerO

ac = xb[srci]

bc = yb[dsti]

σ′ = (DSHCTypeVal bc) :: (DSHCTypeVal ac) :: σ

〈fa, σ′,m〉 ⇓ inr vc
〈evalPower ni xb yb[dsti/vc] srci dsti fa σ,m〉 ⇓ inr y′b
〈evalPower (ni + 1) xb yb srci dsti fa σ,m〉 ⇓ inr y′b

evalPowerSn

〈DSHLoop 0 body, σ,m〉 ⇓ inr m
LoopO

ni = from nat nN

〈DSHLoop nN body, σ,m〉 ⇓ inr m′

〈body, ((DSHnatVal ni) :: σ),m′〉 ⇓ inr m′′

〈DSHLoop (nN + 1) body, σ,m〉 ⇓ inr m′′
LoopSn

〈f, σ,m〉 ⇓ inr m′ 〈g, σ,m′〉 ⇓ inr m′′

〈DSHSeq f g, σ,m〉 ⇓ inr m′′
Seq

〈yp, σ,m〉 ⇓ inr (yN, ysizei) yb = inr m[yN]

〈DSHMemInit yp vc, σ,m〉 ⇓ inr m[yN/(yb[0 . . . ysizei/vc])]
MemInit

∃ti,m[ti] = inl msgs 〈body, ((DSHPtrVal ti sizei) :: σ),m[ti/mem empty]〉 ⇓ inr m′[ti/]

〈DSHAlloc sizei body, σ,m〉 ⇓ inr m′
Alloc
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Appendix B

Examples of Generated Code

B.1 Dynamic Window Monitor in LLVM IR

HELIX-generated LLVM IR code for the dynamic window monitor is shown in

Listing B.1. For legibility, we wrapped some long lines using a backslash symbol “\”

to indicate where lines have been split. This is not a part of official IR syntax.

; Global variables

@D = external constant [3 x double], align 16

; Prototypes for intrinsics we use

declare float @llvm.fabs.f32(float)

declare double @llvm.fabs.f64(double)

declare float @llvm.maxnum.f32(float, float)

declare double @llvm.maxnum.f64(double, double)

declare float @minimum.f32(float, float)

declare double @llvm.minimum.f64(double, double)

declare void @llvm.memcpy.p0i8.p0i8.i32(i8*, i8*, i32, i32, i1)

; Top-level operator definition

define void @dynwin64([5 x double]* readonly align 16 nonnull %X, \

[1 x double]* align 16 nonnull %Y) \
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{

; --- Operator: DSHAlloc 2---

b56:

%a0 = alloca [2 x double], align 16

br label %b55

; --- Operator: DSHAlloc 1---

; --- Operator: DSHSeq---

; --- Operator: DSHSeq---

b55:

%a66 = alloca [1 x double], align 16

br label %b54

; --- Operator: DSHAlloc 1---

; --- Operator: DSHSeq---

b54:

%a70 = alloca [1 x double], align 16

br label %MemInit_loop_entry52

; --- Operator: DSHMemInit (PVar 0) ...---

; --- Operator: DSHSeq---

MemInit_loop_entry52:

%l111 = icmp ult i64 0, 1

br i1 %l111, label %MemInit_loop_loop53, label %Loop_loop_entry48

MemInit_loop_loop53:

%MemInit_init_i110 = phi i64 [0, %MemInit_loop_entry52], \

[%MemInit_loop_next_i113, %MemInit_init_lcont51]

br label %MemInit_init50

MemInit_init50:

162



%l109 = getelementptr [1 x double], \

[1 x double]* %a70, \

i64 0, i64 %MemInit_init_i110

; void instr 64

store double 0x0, double* %l109, align 8

br label %MemInit_init_lcont51

MemInit_init_lcont51:

%MemInit_loop_next_i113 = add i64 %MemInit_init_i110, 1

%l112 = icmp ult i64 %MemInit_loop_next_i113, 1

br i1 %l112, label %MemInit_loop_loop53, label %Loop_loop_entry48

; --- Operator: DSHLoop 3 ---

Loop_loop_entry48:

%l106 = icmp ult i64 0, 3

br i1 %l106, label %Loop_loop_loop49, label %Assign31

Loop_loop_loop49:

%Loop_i71 = phi i64 [0, %Loop_loop_entry48], [%Loop_loop_next_i108, %Loop_lcont32]

br label %b47

; --- Operator: DSHAlloc 1---

; --- Operator: DSHSeq---

b47:

%a82 = alloca [1 x double], align 16

br label %Assign46

; --- Operator: DSHAssign ((PVar 7),0) ((PVar 0),0) ---

; --- Operator: DSHSeq---

Assign46:
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%l103 = getelementptr [5 x double], [5 x double]* %X, i64 0, i64 0

%l105 = load double, double* %l103, align 8

%l104 = getelementptr [1 x double], [1 x double]* %a82, i64 0, i64 0

; void instr 58

store double %l105, double* %l104, align 8

br label %b45

; --- Operator: DSHAlloc 1---

b45:

%a83 = alloca [1 x double], align 16

br label %Power_entry43

; --- Operator: DSHPower (NVar 2) ((PVar 1),0) ((PVar 0),0)...---

; --- Operator: DSHSeq---

Power_entry43:

%l95 = getelementptr [1 x double], [1 x double]* %a83, i64 0, i64 0

; void instr 49

store double 0x3FF0000000000000, double* %l95, align 8

%l100 = icmp ult i64 0, %Loop_i71

br i1 %l100, label %Power_loop44, label %IMap_entry39

Power_loop44:

%Power_i94 = phi i64 [0, %Power_entry43], [%Power_next_i102, %Power_lcont41]

br label %PowerLoopBody42

PowerLoopBody42:

%l96 = getelementptr [1 x double], [1 x double]* %a82, i64 0, i64 0

%l98 = load double, double* %l96, align 8

%l97 = load double, double* %l95, align 8

%l99 = fmul double %l97, %l98

; void instr 51
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store double %l99, double* %l95, align 8

br label %Power_lcont41

Power_lcont41:

%Power_next_i102 = add i64 %Power_i94, 1

%l101 = icmp ult i64 %Power_next_i102, %Loop_i71

br i1 %l101, label %Power_loop44, label %IMap_entry39

; --- Operator: DSHIMap 1 (PVar 0) (PVar 4) ...---

IMap_entry39:

%l91 = icmp ult i64 0, 1

br i1 %l91, label %IMap_loop40, label %MemMap2_entry35

IMap_loop40:

%IMap_i84 = phi i64 [0, %IMap_entry39], [%IMap_next_i93, %IMap_lcont37]

br label %IMapLoopBody38

IMapLoopBody38:

%l85 = getelementptr [1 x double], [1 x double]* %a83, i64 0, i64 %IMap_i84

%l87 = load double, double* %l85, align 8

%l88 = getelementptr [3 x double], [3 x double]* @D, i64 0, i64 %Loop_i71

%l89 = load double, double* %l88, align 8

%l90 = fmul double %l87, %l89

%l86 = getelementptr [1 x double], [1 x double]* %a66, i64 0, i64 %IMap_i84

; void instr 45

store double %l90, double* %l86, align 8

br label %IMap_lcont37

IMap_lcont37:

%IMap_next_i93 = add i64 %IMap_i84, 1

%l92 = icmp ult i64 %IMap_next_i93, 1
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br i1 %l92, label %IMap_loop40, label %MemMap2_entry35

; --- Operator: DSHMemMap2 1 (PVar 1) (PVar 2) (PVar 2) ...---

MemMap2_entry35:

%l79 = icmp ult i64 0, 1

br i1 %l79, label %MemMap2_loop36, label %Loop_lcont32

MemMap2_loop36:

%MemMap2_i72 = phi i64 [0, %MemMap2_entry35], [%MemMap2_next_i81, %MemMap2_lcont33]

br label %MemMap2LoopBody34

MemMap2LoopBody34:

%l73 = getelementptr [1 x double], [1 x double]* %a70, i64 0, i64 %MemMap2_i72

%l76 = load double, double* %l73, align 8

%l74 = getelementptr [1 x double], [1 x double]* %a66, i64 0, i64 %MemMap2_i72

%l77 = load double, double* %l74, align 8

%l78 = fadd double %l76, %l77

%l75 = getelementptr [1 x double], [1 x double]* %a66, i64 0, i64 %MemMap2_i72

; void instr 40

store double %l78, double* %l75, align 8

br label %MemMap2_lcont33

MemMap2_lcont33:

%MemMap2_next_i81 = add i64 %MemMap2_i72, 1

%l80 = icmp ult i64 %MemMap2_next_i81, 1

br i1 %l80, label %MemMap2_loop36, label %Loop_lcont32

Loop_lcont32:

%Loop_loop_next_i108 = add i64 %Loop_i71, 1

%l107 = icmp ult i64 %Loop_loop_next_i108, 3

br i1 %l107, label %Loop_loop_loop49, label %Assign31
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; --- Operator: DSHAssign ((PVar 0),0) ((PVar 1),0) ---

Assign31:

%l67 = getelementptr [1 x double], [1 x double]* %a66, i64 0, i64 0

%l69 = load double, double* %l67, align 8

%l68 = getelementptr [2 x double], [2 x double]* %a0, i64 0, i64 0

; void instr 38

store double %l69, double* %l68, align 8

br label %b30

; --- Operator: DSHAlloc 1---

b30:

%a13 = alloca [1 x double], align 16

br label %b29

; --- Operator: DSHAlloc 1---

; --- Operator: DSHSeq---

b29:

%a17 = alloca [1 x double], align 16

br label %MemInit_loop_entry27

; --- Operator: DSHMemInit (PVar 0) ...---

; --- Operator: DSHSeq---

MemInit_loop_entry27:

%l63 = icmp ult i64 0, 1

br i1 %l63, label %MemInit_loop_loop28, label %Loop_loop_entry23

MemInit_loop_loop28:

%MemInit_init_i62 = phi i64 [0, %MemInit_loop_entry27], \

[%MemInit_loop_next_i65, %MemInit_init_lcont26]

br label %MemInit_init25
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MemInit_init25:

%l61 = getelementptr [1 x double], [1 x double]* %a17, i64 0, i64 %MemInit_init_i62

; void instr 31

store double 0x0, double* %l61, align 8

br label %MemInit_init_lcont26

MemInit_init_lcont26:

%MemInit_loop_next_i65 = add i64 %MemInit_init_i62, 1

%l64 = icmp ult i64 %MemInit_loop_next_i65, 1

br i1 %l64, label %MemInit_loop_loop28, label %Loop_loop_entry23

; --- Operator: DSHLoop 2 ---

Loop_loop_entry23:

%l58 = icmp ult i64 0, 2

br i1 %l58, label %Loop_loop_loop24, label %Assign6

Loop_loop_loop24:

%Loop_i18 = phi i64 [0, %Loop_loop_entry23], [%Loop_loop_next_i60, %Loop_lcont7]

br label %b22

; --- Operator: DSHAlloc 2---

; --- Operator: DSHSeq---

b22:

%a29 = alloca [2 x double], align 16

br label %Loop_loop_entry20

; --- Operator: DSHLoop 2 ---

; --- Operator: DSHSeq---

Loop_loop_entry20:

%l55 = icmp ult i64 0, 2

168



br i1 %l55, label %Loop_loop_loop21, label %BinOp_entry14

Loop_loop_loop21:

%Loop_i42 = phi i64 [0, %Loop_loop_entry20], [%Loop_loop_next_i57, %Loop_lcont16]

br label %b19

; --- Operator: DSHAlloc 1---

b19:

%a43 = alloca [1 x double], align 16

br label %Assign18

; --- Operator: DSHAssign ((PVar 9),?) ((PVar 0),0) ---

; --- Operator: DSHSeq---

Assign18:

%l50 = mul i64 %Loop_i18, 1

%l51 = add i64 1, %l50

%l52 = mul i64 2, 1

%l53 = mul i64 %Loop_i42, %l52

%l54 = add i64 %l51, %l53

%l47 = getelementptr [5 x double], [5 x double]* %X, i64 0, i64 %l54

%l49 = load double, double* %l47, align 8

%l48 = getelementptr [1 x double], [1 x double]* %a43, i64 0, i64 0

; void instr 21

store double %l49, double* %l48, align 8

br label %Assign17

; --- Operator: DSHAssign ((PVar 0),0) ((PVar 2),(NVar 1)) ---

Assign17:

%l44 = getelementptr [1 x double], [1 x double]* %a43, i64 0, i64 0

%l46 = load double, double* %l44, align 8

%l45 = getelementptr [2 x double], [2 x double]* %a29, i64 0, i64 %Loop_i42
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; void instr 19

store double %l46, double* %l45, align 8

br label %Loop_lcont16

Loop_lcont16:

%Loop_loop_next_i57 = add i64 %Loop_i42, 1

%l56 = icmp ult i64 %Loop_loop_next_i57, 2

br i1 %l56, label %Loop_loop_loop21, label %BinOp_entry14

; --- Operator: DSHBinOp 1 (PVar 0) (PVar 3) ...---

BinOp_entry14:

%l39 = icmp ult i64 0, 1

br i1 %l39, label %BinOp_loop15, label %MemMap2_entry10

BinOp_loop15:

%BinOp_i30 = phi i64 [0, %BinOp_entry14], [%BinOp_next_i41, %BinOp_lcont12]

br label %BinOpLoopBody13

BinOpLoopBody13:

%l32 = getelementptr [2 x double], [2 x double]* %a29, i64 0, i64 %BinOp_i30

%l35 = load double, double* %l32, align 8

%l31 = add i64 %BinOp_i30, 1

%l33 = getelementptr [2 x double], [2 x double]* %a29, i64 0, i64 %l31

%l36 = load double, double* %l33, align 8

%l37 = fsub double %l35, %l36

%l38 = call double @llvm.fabs.f64(double %l37)

%l34 = getelementptr [1 x double], [1 x double]* %a13, i64 0, i64 %BinOp_i30

; void instr 14

store double %l38, double* %l34, align 8

br label %BinOp_lcont12

BinOp_lcont12:
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%BinOp_next_i41 = add i64 %BinOp_i30, 1

%l40 = icmp ult i64 %BinOp_next_i41, 1

br i1 %l40, label %BinOp_loop15, label %MemMap2_entry10

; --- Operator: DSHMemMap2 1 (PVar 1) (PVar 2) (PVar 2) ...---

MemMap2_entry10:

%l26 = icmp ult i64 0, 1

br i1 %l26, label %MemMap2_loop11, label %Loop_lcont7

MemMap2_loop11:

%MemMap2_i19 = phi i64 [0, %MemMap2_entry10], [%MemMap2_next_i28, %MemMap2_lcont8]

br label %MemMap2LoopBody9

MemMap2LoopBody9:

%l20 = getelementptr [1 x double], [1 x double]* %a17, i64 0, i64 %MemMap2_i19

%l23 = load double, double* %l20, align 8

%l21 = getelementptr [1 x double], [1 x double]* %a13, i64 0, i64 %MemMap2_i19

%l24 = load double, double* %l21, align 8

%l25 = call double @llvm.maxnum.f64(double %l23, double %l24)

%l22 = getelementptr [1 x double], [1 x double]* %a13, i64 0, i64 %MemMap2_i19

; void instr 9

store double %l25, double* %l22, align 8

br label %MemMap2_lcont8

MemMap2_lcont8:

%MemMap2_next_i28 = add i64 %MemMap2_i19, 1

%l27 = icmp ult i64 %MemMap2_next_i28, 1

br i1 %l27, label %MemMap2_loop11, label %Loop_lcont7

Loop_lcont7:
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%Loop_loop_next_i60 = add i64 %Loop_i18, 1

%l59 = icmp ult i64 %Loop_loop_next_i60, 2

br i1 %l59, label %Loop_loop_loop24, label %Assign6

; --- Operator: DSHAssign ((PVar 0),0) ((PVar 1),1) ---

Assign6:

%l14 = getelementptr [1 x double], [1 x double]* %a13, i64 0, i64 0

%l16 = load double, double* %l14, align 8

%l15 = getelementptr [2 x double], [2 x double]* %a0, i64 0, i64 1

; void instr 7

store double %l16, double* %l15, align 8

br label %BinOp_entry4

; --- Operator: DSHBinOp 1 (PVar 0) (PVar 2) ...---

BinOp_entry4:

%l10 = icmp ult i64 0, 1

br i1 %l10, label %BinOp_loop5, label %b0

BinOp_loop5:

%BinOp_i1 = phi i64 [0, %BinOp_entry4], [%BinOp_next_i12, %BinOp_lcont2]

br label %BinOpLoopBody3

BinOpLoopBody3:

%l3 = getelementptr [2 x double], [2 x double]* %a0, i64 0, i64 %BinOp_i1

%l6 = load double, double* %l3, align 8

%l2 = add i64 %BinOp_i1, 1

%l4 = getelementptr [2 x double], [2 x double]* %a0, i64 0, i64 %l2

%l7 = load double, double* %l4, align 8

%l8 = fcmp olt double %l6, %l7

; void instr 2

; Casting bool to float
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%l9 = uitofp i1 %l8 to double

%l5 = getelementptr [1 x double], [1 x double]* %Y, i64 0, i64 %BinOp_i1

; void instr 1

store double %l9, double* %l5, align 8

br label %BinOp_lcont2

BinOp_lcont2:

%BinOp_next_i12 = add i64 %BinOp_i1, 1

%l11 = icmp ult i64 %BinOp_next_i12, 1

br i1 %l11, label %BinOp_loop5, label %b0

b0:

ret void

}

Listing B.1: Dynamic Window Monitor in LLVM IR

B.2 Dynamic Window Monitor in C

Listing B.2: Dynamic Window Monitor in C (not optimized)

int dwmonitor(const double *X, const double *D) {

double q3, q4, s1, s4, s5, s6, s7, s8, w1;

int w2;

s5 = 0.0;

s8 = X[0];

s7 = 1.0;

for (int i = 0; i <= 2; i++) {

s4 = s7 * D[i];

s5 = s5 + s4;

s7 = s7 * s8;

}

s1 = 0.0;

for (int i = 0; i <= 1; i++) {
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q3 = X[i + 1];

q4 = X[3 + i];

w1 = q3 - q4;

s6 = (w1 >= 0) ? w1 : (-w1);

s1 = (s1 >= s6) ? s1 : s6;

}

w2 = (s1 >= s5);

return w2;

}

Listing B.3: Dynamic Window Monitor in C (optimized)

#include <float.h>

#include <smmintrin.h>

int dwmonitor(float *X, double *D) {

__m128d u1, u2, u3, u4, u5, u6, u7, u8, x1, x10, x13, x14, x17, x18, x19, x2,

x3, x4, x6, x7, x8, x9;

int w1;

{

unsigned _xm = _mm_getcsr();

_mm_setcsr((_xm & 0xffff0000) | 0x0000dfc0);

u5 = _mm_set1_pd(0.0);

u2 = _mm_cvtps_pd(_mm_addsub_ps(_mm_set1_ps(FLT_MIN), _mm_set1_ps(X[0])));

u1 = _mm_set_pd(1.0, (-1.0));

for (int i5 = 0; i5 <= 2; i5++) {

x6 = _mm_addsub_pd(_mm_set1_pd((DBL_MIN + DBL_MIN)),

_mm_loaddup_pd(&(D[i5])));

x1 = _mm_addsub_pd(_mm_set1_pd(0.0), u1);

x2 = _mm_mul_pd(x1, x6);

x3 = _mm_mul_pd(_mm_shuffle_pd(x1, x1, _MM_SHUFFLE2(0, 1)), x6);

x4 = _mm_sub_pd(_mm_set1_pd(0.0), _mm_min_pd(x3, x2));

u3 =

_mm_add_pd(_mm_max_pd(_mm_shuffle_pd(x4, x4, _MM_SHUFFLE2(0, 1)), x3),

_mm_set1_pd(DBL_MIN));

u5 = _mm_add_pd(u5, u3);

x7 = _mm_addsub_pd(_mm_set1_pd(0.0), u1);

x8 = _mm_mul_pd(x7, u2);

x9 = _mm_mul_pd(_mm_shuffle_pd(x7, x7, _MM_SHUFFLE2(0, 1)), u2);

x10 = _mm_sub_pd(_mm_set1_pd(0.0), _mm_min_pd(x9, x8));

u1 = _mm_add_pd(

_mm_max_pd(_mm_shuffle_pd(x10, x10, _MM_SHUFFLE2(0, 1)), x9),

_mm_set1_pd(DBL_MIN));
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}

u6 = _mm_set1_pd(0.0);

for (int i3 = 0; i3 <= 1; i3++) {

u8 = _mm_cvtps_pd(

_mm_addsub_ps(_mm_set1_ps(FLT_MIN), _mm_set1_ps(X[(i3 + 1)])));

u7 = _mm_cvtps_pd(

_mm_addsub_ps(_mm_set1_ps(FLT_MIN), _mm_set1_ps(X[(3 + i3)])));

x14 = _mm_add_pd(u8, _mm_shuffle_pd(u7, u7, _MM_SHUFFLE2(0, 1)));

x13 = _mm_shuffle_pd(x14, x14, _MM_SHUFFLE2(0, 1));

u4 = _mm_shuffle_pd(_mm_min_pd(x14, x13), _mm_max_pd(x14, x13),

_MM_SHUFFLE2(1, 0));

u6 = _mm_shuffle_pd(_mm_min_pd(u6, u4), _mm_max_pd(u6, u4),

_MM_SHUFFLE2(1, 0));

}

x17 = _mm_addsub_pd(_mm_set1_pd(0.0), u6);

x18 = _mm_addsub_pd(_mm_set1_pd(0.0), u5);

x19 = _mm_cmpge_pd(x17, _mm_shuffle_pd(x18, x18, _MM_SHUFFLE2(0, 1)));

w1 = (_mm_testc_si128(

_mm_castpd_si128(x19),

_mm_set_epi32(0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff)) -

(_mm_testnzc_si128(

_mm_castpd_si128(x19),

_mm_set_epi32(0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff))));

asm volatile("" ::: "memory");

if (_mm_getcsr() & 0x0d) {

_mm_setcsr(_xm);

return -1;

}

_mm_setcsr(_xm);

}

return w1;

}
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A program generation framework for fast kernels,” in IFIP Working Confer-

ence on Domain Specific Languages (DSL WC), vol. 5658 of Lecture Notes in

Computer Science, pp. 385–410, Springer, 2009. 1.3

[10] D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach to collision

avoidance,” IEEE Robotics & Automation Magazine, vol. 4, no. 1, pp. 23–33,

1997. 1.4

[11] N. Fulton, S. Mitsch, J.-D. Quesel, M. Völp, and A. Platzer, “Keymaera x:
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