
CRAFTING THE WEIGHTS OF A

CONVOLUTIONAL NEURAL NETWORK

TO MAKE A DRAWING

By

ERIK ULBERG

ACKNOWLEDGMENTS

I’d like to thank Daniel Cardoso Llach for being the chair of my advising committee. His

feedback always kept me critical of technical artifacts and focused on the humans involved.

Daragh Byrne was a consistent force in shaping this thesis through all of its transformations.

His advice was invaluable for clarifying what I was making while at the same time keeping

the work true to myself. Golan Levin, whose presence at CMU first drew my interest to the

school, was an excellent teacher and supportive mentor who pushed me to make stuff. He

also connected me to Kyle McDonald who helped me to understand my drawing algorithm.

Many other faculty assisted along the way. Molly Wright Steenson gave me a broader

view of AI in society and was a patient and thoughtful guide while I searched for a thesis

that fit my background and interests. Eunsu Kang provided further exposure to machine

learning art and a community of students trying to figure out what it was about. I also

thank Tai Sing Lee for nurturing curiosity and exploration among his students. His support

of my creative projects allowed me to deepen my understanding of computational perception

and its connection to art.

I thank my peers from the Computational Design program, especially Vincent Mai, Yi-

Chin Lee, Ian Friedman, Yixiao Fu, Yaxin Hu, and Emek Erdolu who participated in the

Code Club reading group and made time out of their busy schedules for other fun activities.

I’m grateful to my mother, Marilyn Watkins, and brother, Carl Ulberg, for their enduring

support through all my explorations. Also, a special shout out goes to my non-biological

brother Patrick Williams for his technical mentoring related to this project.

Finally, I’d like to dedicate this thesis to my loving partner Claire who made sure I took

breaks, listened to my endless musings, and assisted as a test subject for presentations and

editor for drafts. I couldn’t have stayed sane or enjoyed the process without you!

iii

CRAFTING THE WEIGHTS OF A

CONVOLUTIONAL NEURAL NETWORK

TO MAKE A DRAWING

Abstract

by Erik Ulberg, Masters
Carnegie Mellon University

May 2020

A growing number of visual artists use convolutional neural networks (CNNs) in their prac-

tice. While CNNs show promise as a form of representation in art, the lack of interpretability

of CNNs limits creative control to high level decisions around datasets, algorithms, and hy-

perparameters. As an alternative, the field of computer vision presents a more immediate

paradigm of control through the hand-crafting of convolutional kernels. This thesis inves-

tigates the hand-crafted approach as an additional creative lever for artists working with

CNNs. It reimagines network weights as a continuous, spatial, and computational material

supporting direct human interaction. Two experimental tools are proposed: one for para-

metrically generating first layer kernels and the other for editing multiple layers. These tools

attempt to transform the hand-crafting of features into “crafting” in a truer sense by bringing

CNNs and visual materials into a close feedback loop. The author extensively engaged with

these tools and this serves as a case study that examines the affordances of hand-crafted

CNNs. The results suggest that hand-crafted CNNs can be a viable form of representation

for artists seeking to build simple, bespoke feature detectors, but that more complex CNNs

would likely require a hybrid approach integrating data-driven methods.

iv

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . iii

ABSTRACT . iv

CHAPTER

1 Introduction . 1
1.1 Forms of Representation . 1
1.2 Machine Learning Art . 4
1.3 The Limits of Convolutional Neural Networks 5
1.4 Thesis Vision . 7
1.5 Summary of Thesis . 9

2 Background . 11
2.1 Understanding the Aesthetics of AARON 11
2.2 Convolution Neural Networks . 17
2.3 Image-Making with Convolutional Neural Networks 20
2.4 Representing Visual Concepts Within Convolutional Neural Networks . . 24
2.5 Hand-Crafting Convolutional Neural Networks 27

3 Methods . 30
3.1 Overview . 30
3.2 Tools . 32

3.2.1 Kernel Tuner . 32
3.2.2 Network Builder . 36
3.2.3 Supporting Code . 39

4 Results . 43
4.1 Affordances . 43

v

4.1.1 Using the Kernel Tuner . 43
4.1.2 Discussion of the Kernel Tuner . 52
4.1.3 Using the Network Builder . 54
4.1.4 Discussion of the Network Builder 64

4.2 Artistic Experiments . 70
4.2.1 Drawing a Shape . 70
4.2.2 Drawing a Composition . 71
4.2.3 Conceptual Work . 73
4.2.4 Discussion of the Artistic Experiments 82

5 Conclusion . 85
5.1 Summary . 85

5.1.1 Convolutional Neural Networks as a Representation 86
5.1.2 The Economy of Hand-Crafted Convolutional Neural Networks . . 87

5.2 Future Work . 89
5.3 Final Thoughts . 90

REFERENCES . 96

APPENDIX

A . 98
A.1 The SmartCanvas . 98

vi

Chapter One

Introduction

...to talk of one’s internal model of the world is to talk of a representation,

clearly. But it is not a fixed, coherent representation, the way a representation

on a sheet of paper may be thought of as fixed and coherent. It takes very little

introspection to discover that the pictures we conjure up in our heads are

anything but complete.

Harold Cohen

1.1 Forms of Representation

When I sit down to make art, I have a vision in mind. There is a thing that I want to exist in

the world. My vision for it may not be clear, but I have an intuition. AI art pioneer Harold

Cohen referred to this intuition as the “volatile” mental image (Cohen, 1982). For me, art

making is putting this ephemeral internal idea into an external representation. I don’t expect

others to see what I see, and usually they don’t. But, occasionally, that compelling internal

thing becomes a compelling external thing. External transmission is an act of clarification

for myself and a method of sharing with others.

These creative concepts do not exist in a vacuum. They emerge out of connections I

make between inspirational experiences and forms of representation that I have available. In

that way, the tools I use and the forms of representation that they enable shape how I think

1

about the world. A new form of representation can transform a creative practice. Two of

my favorite artists made mid-career transitions after being inspired by new ways of working

that ended up defining their legacies. Conceptual artist Theo Jansen discovered the kinetic

possibilities of yellow PVC pipes using an evolutionary algorithm in 1990 (Jansen, 2020).

Ever since then, we have been treated to his Strandbeest sculptures populating the beaches

of the Netherlands. Cohen was introduced to programming in 1968 after a successful stint as

an abstract painter (McCorduck, 1991). AARON, his AI painting program, was born shortly

thereafter. New forms of representation cause new connections between internal concepts

and potential realizations.

(a) (b)

Figure 1.1 (a) The Strandbeest Sabulosa Cutis (Jansen, 1994). (b) 82P2 (Cohen
and AARON, 1981).

Artists have always sought out novel forms for their unique affordances for externalizing

ideas. The tools and methods used in image-based artwork have morphed over time to

transmit nature realistically, capture momentary sensations, combine multiple views of an

object, or convey other aspects of the essence of images.

This search has expanded past the confines of specific artifacts to rule-based artwork,

which exists beyond a fixed, physical form. Artists specify a visual concept through symbolic

logic that generates a universe of possible outputs. Conceptual artist Sol LeWitt described his

2

(a) (b) (c)

Figure 1.2 (a) A naturalistic painting (Velázquez, 1650). (b) A painting of a
momentary impression (Monet, 1890). (c) A painting capturing multiple angles
(Picasso, 1910).

wall drawings with diagrams and rules such as “A Wall is divided into four horizontal parts.

In the top row are four equal divisions. . . ” (Reas, 2004; LeWitt, 1970b). Theorists George

Stiny and James Gips brought a mathematical formalization they called shape grammars to

production rules for design (Stiny and Gips, 1971). Shape grammars eschew words and use

the shapes themselves to define rules. Artworks that exist in these forms can be executed

by anyone, or by any thing. For example, computational artist Casey Reas ported LeWitt’s

rules to a creative coding platform in 2004 (Reas, 2004). Combined with computation,

rule-based approaches have the potential to dynamically yield many artworks.

Early forms of AI art operated on the assumption that building up enough of these rules

within a computer program would result in artistic agents that mimicked human cognition.

Cohen’s drawing machine AARON is an iconic example of these so-called “expert systems.”

Each of AARON’s hundreds of small functions were interpretable, but once these functions

were arranged within many layers of feedback the results were highly unpredictable (Cohen,

1979). Much has changed since AARON’s creation in the early 1970’s, but the drawings and

paintings produced by that system still loom large. In my opinion, they stand as some of

the most satisfying artworks made with AI, or for that matter, computation in general.

3

(a) (b)

Figure 1.3 (a) Untitled, from Composite Series (LeWitt, 1970b). (b) The drawing
executed by a computer (Reas, 2004).

1.2 Machine Learning Art

More recently, machine learning has enabled the “automatic” encoding of rules within a

computer by inferring them from examples (I use quotes here because there are many hidden

efforts in these systems that often go unnoticed). Instead of directly describing an artwork

with symbolic logic, artists use a data-driven approach to generate it computationally. They

gather images or other data and train the system to mimic the input in interesting ways.

Machine learning art often involves leveraging a convolutional neural network (CNN) as

the primary method of encoding visual concepts. A CNN is a specific type of neural network

that translates between raw pixels and abstract information by applying filters as a sliding

window across an image. CNNs as a form of representation for art making are the main

focus of this thesis.

4

(a) (b)

Figure 1.4 (a) Cover art from The Book of GANesis (Sarin, 2019a). (b) Neural
Glitch (Klingemann, 2018).

1.3 The Limits of Convolutional Neural Networks

Standard applications of machine learning have demonstrated that CNNs are a robust form

of representation. CNNs can encode highly complex and abstract visual concepts. As a

result, this technology is making inroads in many commercial settings such as self-driving

cars and medical diagnostics (Hu, 2019; Metz, 2019). Given the litany of recent successes

using CNNs to work with images, there is clearly a latent potential in this medium to act as

a form of representation for artists.

However, the manner in which CNNs encode visual concepts is not well understood. Deep

networks record information using tens of millions of weights. Thus, direct manipulation

seems to be a fool’s errand and we leave the networks to be trained by algorithms in a

data-driven process. When artists employ CNNs, control is mostly limited to trial and error

with different datasets, algorithms, and hyperparameters.

But with limited direct control, how will mastery emerge in the realm of machine learning

art? One critic mused that the field is completely reliant on novelty and is a race to see

5

who can be the first to use each new algorithm or dataset. The author argued that neural

networks have no aesthetic potential and are only suitable for use in an art context as a

critique of commercial practices (Offert, 2019). Before we declare neural networks a pictorial

dead-end, I think we should re-examine our approach.

Figure 1.5 Most visual art made with machine learning can be boiled down to this
setup.

This is not to overlook the existing examples of strong work in machine learning art.

Self-proclaimed “folk AI artist” Helena Sarin incorporates CNNs within a technique she

calls “NeuroBricolage” (Sarin, 2018; Sarin, 2019b). Using datasets of her own paintings and

photographs, she generates textures and images with CNNs and then post-processes them by

hand, custom code, or additional neural networks to produce digital collages. Sarin is one of

a number of machine learning artists using alternative approaches such as custom datasets,

smaller networks, or creatively-structured outputs (Ridler, 2017; Akten, 2017; Barrot and

Barrat, 2019). While these avenues hold promise, this thesis takes a different approach that

may yield exciting results of its own or simply provide a better intuition of how CNNs can

represent visual concepts within art.

6

1.4 Thesis Vision

This thesis attempts direct manipulation of the internal weights of CNNs to make art.

It does not use machine learning. There is no gradient descent or training of weights.

Instead, this project adopts a data structure from machine learning, the convolutional neural

network, and uses human reasoning to shape them. While machine learning art happens on

the outside of CNNs, this thesis goes inside.

My approach was born out of a desire to mix insights from AARON’s expert AI with

current methods using CNNs for art making. It is an experiment to flesh out an idea.

Prominent AI researcher Christopher Olah asks the provocative question: “What if we treated

individual neurons, even individual weights, as being worthy of serious investigation?” (Olah

et al., 2020b). I wanted to see if the right tool could transform CNNs into a continuous,

spatial, and computational material capable of being directly sculpted by a human.

Figure 1.6 This thesis replaces the data-driven approach with direct manipulation.

This project is an attempt to enable engagement with CNNs as a craft. It borrows the

notion of “hand-crafted” weights from the field of computer vision, where the term is widely

used to describe feature detectors designed by humans instead of automatically calculated

from data. These hand-crafted features are usually restricted to the first layer of CNNs due

7

to the lack of interpretability of networks. However, recent research into representations

and interactive visualizations suggests the possibility of pushing our comprehension into the

realm of shallow networks (Olah et al., 2020a).

While hand-crafted features typically cater to generic image recognition tasks, this thesis

re-imagines hand-crafting as a creative lever for artists working with machine learning. The

tools demonstrated in this project put editable convolutional kernels in direct communication

with visual materials, thus transforming the process into “crafting” in a truer sense.

This brings me to my research question:

What are the affordances and uses cases of hand-crafted convolutional neural networks

as a form of representation for art-making?

Figure 1.7 The tools in this thesis are meant to make visible and support the
manipulation of weights in a CNN with respect to a particular visual material.

This document attempts to partially demystify the magic of the so-called “black box”

of CNNs. It demonstrates a potential way for artists to achieve specific control over CNNs

and clarifies the underlying aesthetic value proposition of CNNs for art-making. Overall, the

goal of this project is to uncover what layers of convolution can do for artists as a form of

representation.

Computational Design is fundamentally a tool-making enterprise that critically exam-

8

ines the role of technical approaches applied to creative practice. In that vein, this thesis

consists of building two interactivate visualization tools and then using them to explore the

affordances of hand-crafting CNNs. Producing interactive artifacts helps move an idea past

speculation. Technical probes clarify questions and provide material with which to reason

about a theoretical premise.

Personally, my use of software as a probe was inspired by architectural researcher Nicholas

Negroponte’s development of URBAN5. URBAN5 was a software system for urban design

that examined the “desirability and feasibility of conversing with a machine about an en-

vironmental design program.” This highly experimental project was never functional and

“inexhaustibly printed garbage,” but served as the primary research material to better un-

derstand the theoretical premise of collaborating with an AI agent within a specific context

(Negroponte, 1970). The process of realizing a system, regardless of whether it fully works,

helps to uncover questions, challenges, and potential futures. Harold Cohen echoed this sen-

timent when explaining his development of AARON, describing it as a way for him to “pin”

down aesthetic principles (McCorduck, 1991). Hypothesizing about an experience cannot

substitute for a confrontation with the actual substance.

I should mention that the system I am building is not meant to automate art. Cohen

said that it is a misconception that artists need easy tools. In fact, they need tools that are

“difficult to use — not impossible, but difficult.” That way, they “stimulate a sufficient level of

creative performance, which does not happen with tools that are easy to use.” (McCorduck,

1991) I do not see the future of machine learning as replacing the labor of human artists,

but as a mode of communication allowing the computer to become a richer medium.

1.5 Summary of Thesis

This thesis is divided into chapters. First, the background chapter traces my journey from

finding inspiration in the aesthetics of AARON, to art making with CNNs, to the experimen-

9

tal method employed in this thesis: hand-crafting convolutional kernels. The main topics it

covers are AI art, CNNs, interactive visualizations of CNNs, and hand-crafting features in

CNNs. Following that, the methods chapter explains my research approach and the tools I

built. The next chapter covers the results and discussion of the research investigations. It

examines the affordances related to the tools and then explores the practice of hand-crafting

CNNs through drawings, compositions, and conceptual artwork. Following these investiga-

tions, the conclusion summarizes the findings of the thesis and describes potential future

work.

10

Chapter Two

Background

Human art-making behavior is characterized by the artist’s awareness of the

work in progress.

Harold Cohen

This chapter begins by examining the aesthetic contributions of Harold Cohen’s AARON

through its historical development and a partial reconstruction of its functionality. I connect

this to CNNs and then, after briefly explaining the basics of convolution, I review projects

that use CNNs for image making. Next, I discuss interpretations of the inner workings of

CNNs and interactive visualizations that support these interpretations. Finally, I describe

methods of hand-crafting weights in CNNs.

2.1 Understanding the Aesthetics of AARON

I find the aesthetic qualities of AARON’s output to be uniquely exceptional among AI art.

This led me to examine the details of its creation and implementation to help inform my

own approach to making art with AI tools.

Cohen’s key insight was that art making programs should focus on process rather than

output. He theorized that human drawings are interesting mainly because they are made by

humans (Cohen, 1976). To make machine drawings interesting, they should be produced in a

11

Figure 2.1 Athlete Series (Cohen and AARON, 1986).

similar manner. AARON did not necessarily match “the ‘facts’ of the human system,” but it

mimicked the “fluently changing pattern of decision-making which characterizes the practice

of art” (Cohen, 1973). The decision-making used by AARON was infused by Cohen as part of

a deep relationship with the system that was nurtured over time. This led Cohen to refer to

it as an “expert’s system” rather than an expert system (Cohen, 1988). The emphasis being

on the machine as an extension of himself rather than as a replacement for his labor. Cohen

saw his act of programming AARON as its own form of art-making (McCorduck, 1991).

To better understand the origin of AARON’s aesthetic, we should examine its historical

development and the perspective of its expert.

12

The Development of AARON

Cohen brought a unique background to computational art. He had a successful career as a

painter before AARON. He was named one of five artists to represent Great Britain in the

Venice Biennale in 1966. Shortly after, Cohen moved to the United States to teach art at UC

San Diego, where he was introduced to programming by one of his students. (McCorduck,

1991)

In 1968, Cohen wrote his first computer program (McCorduck, 1991). His early programs

were concerned with the division of space and human perception of open versus closed forms

(Cohen, 1976). Cohen had a strong theoretical and aesthetic underpinning for his work

carrying influences from artificial intelligence, computational design, and conceptual art.

(a) (b)

Figure 2.2 (a) Search (Cohen, 1964). (b) A Hewlett Packard 2100 A, one of the
early systems Cohen mentions in his work (Cohen, 1974).

Cohen began AARON by writing the simplest program capable of creating evocative

shapes. Its basic function was to differentiate between figure and ground, open and closed

forms, and insideness and outsideness (Cohen, 1976). As a painter, Cohen had an interest

in symbols and the grammar of shapes. Through AARON, he was searching for a universal

language of visual primitives, finding inspiration in glyph paintings on rocks he encountered

13

on hikes in the Southwest (Cohen, 1979). Cohen was also influenced by the idea of grammars.

He explicitly talks about left and right hand rules for his program, echoing contemporary

ideas found in the shape grammars of Stiny and Gips. Although, their grammars existed

in an abstract world of shapes while AARON’s production rules manipulated a pixel-like

representation of the world (Cohen, 1976; Stiny and Gips, 1971). In addition, Cohen seems

to have drawn from contemporary themes in conceptual art. AARON was a very literal

extension of Sol LeWitt’s declaration “the idea becomes a machine that makes the art”

(LeWitt, 1967).

Shortly after beginning work on AARON, Cohen developed relationships with the nascent

AI community. He spent two years at Stanford’s AI Laboratory working with Edward

Feigenbaum, a pioneer in AI expert systems (Grimes, 2016). Cohen developed a view of

computers as analogous to the human brain. He shared the common conception of the era

that a computer could model human thinking by stringing enough if-statements together

(McCorduck, 1991). Cohen had read economist and AI pioneer Herb Simon’s Sciences of the

Artificial and believed in the usefulness of computers as a rigorous test bed for understanding

human intelligence (McCorduck, 1991; Simon, 1969). He claims to have come to these

conclusions on his own, but they were, at the very least, reinforced through his exposure to

these groups (McCorduck, 1991).

Over time, AARON grew organically. Cohen always focused on the experience of the

viewer in relation to the piece and its construction. He exhibited his work with the robot

actively producing the pieces, thus allowing visitors to watch the process of decision making

unfold in front of them. His initial intention was for viewers to make interpretations based on

the shapes. After he added explicit representations, the focus shifted to relationships among

shapes (McCorduck, 1991). AARON continued to evolve until Cohen’s death in 2016.

Cohen’s project investigated the human art making process. Fundamental to his approach

is the idea of mimicking how humans make art. He did not explicitly focus on outcomes,

but process. His concern was not merely the transformation of images, but their generation

14

Figure 2.3 “Harold Cohen with a painting machine at the Computer Museum in
Boston in 1995.” 1995.

(McCorduck, 1991). Cohen was challenging what he saw as a serious deficit in computer

art of the time, which was that the systems generally functioned as “picture-processors.”

He drew a distinction between AARON and the simple feedback in programs like Conway’s

“Game of Life.” (Cohen, 1979)

In AARON, there are feedback loops at every level from the composition of the artwork

down to the movement control of the drawing robot. According to Cohen, an early version

of the main program had three hundred “micro-productions” that each handled an “action-

atom” (Cohen, 1979). While each function might be understandable, it was not possible to

predict the outcome of these feedback loops.

Reconstruction of the Hand-Drawn Aesthetic of AARON

To investigate Cohen’s approach of using layers of feedback, I decided to reconstruct the

bottom levels of AARON to see if I could mimic the hand-drawn aesthetic of the original.

Source code is not available, so I used a close reading of Cohen’s descriptions of the system to

15

recreate it. Cohen states that drawing even a single line involved twenty or thirty productions

spanning at least three levels. At the most basic level, AARON navigated by controlling the

speeds of two wheels, using their ratio to draw arcs of different sizes (Cohen, 1979). It used

a model based on freehand drawing and did no pre-planning of any kind (McCorduck, 1991).

In addition, Cohen added an element of randomness to imitate “arthritic joints” (Cohen,

1976). I incorporated these details and others to rebuild portions of AARON’s architecture

corresponding to the movement control, lookahead, sectors, lines, and planning portions of

the architecture using p5.js and JavaScript. I also added a basic composition function to

make the program draw multiple shapes.

(a) (b)

Figure 2.4 The hierarchy of feedback in the architecture of AARON and a diagram
showing the line drawing algorithm in AARON (Cohen, 1979).

Upon running the program, the resulting shapes from the reconstruction loosely approx-

imate the hand-drawn aesthetic of the shape outlines in AARON. They lack the in-fills and

shadows, but the quality of line is similar. The complex feedback between a hierarchy of

16

layers yields forms that are unpredictable, but with a subtle, logical structure. This is similar

to the stochastic, but orderly, forms found in nature. I believe Cohen’s focus on the process

of drawing the line rather than the final goal, along with small amounts of randomness, is

the source of the organic feel.

A surprising finding while constructing this was the strong effect of the temporal aspect

on the impression of the system. The reconstruction adjusts its heading to correct its course

to the signposts along its way. It also uses a “lookahead” function to avoid obstacles. Seeing

a program make decisions in real-time allows humans to relate, in some small way, to the

machine’s “thinking” process. This causes the impression of intelligence within the system.

Cohen’s approach of using an expert system and focusing on cognitive behavior seems

to run counter to much of the machine learning art we see today. Machine learning art

is data-driven. These systems are based on existing examples of artwork rather than the

human process used to create them. By being limited to a set of results, it appears that

data-driven machine learning art has more in common with the “picture-processors” Cohen

was trying to avoid than AARON.

Most visual art made with machine learning relies on the use of a CNN to encode images.

The rest of the background will examine CNNs, their use in art, and the potential of hand-

crafting them as a way to avoid falling into the “picture-processor” trap.

2.2 Convolution Neural Networks

This project focuses on how CNNs can be used to encode visual concepts for art making.

CNNs have their origin in the visual nervous system of mammals and have been around

in some form or another since Fukushima’s neocognitron. In this seminal work, the author

created a neural network using convolution to recognize patterns independently of their posi-

tion. He also organized the layers in pairs to model the simple and complex cells of our visual

system that first detect patterns and then combine them to add invariance. (Fukushima,

17

(a)

(b)

Figure 2.5 (a) Early shapes produced by AARON (Cohen, 1979). (b) The output
of the reconstruction built by the author.

18

1980) After the neocognitron, algorithmic improvements and computing power slowly built

up. In 2012, a breakthrough performance on ImageNet, the widely used benchmark for

classification accuracy on natural images, propelled CNNs into widespread use (Hadji and

Wildes, 2018).

(a) (b)

Figure 2.6 (a) The image on the left shows how the neocognitron contained pairs
of layers to select for structures and then invariance. (b) The diagram on the right
shows the activation outputs as the neocognitron selects for higher level features to
recognize the number “4.” (Fukushima, 1980)

CNNs are generally useful for translating an image from pixel values to higher order

features. They do this through a process called convolution in which kernels are applied as

a sliding window across an image. After these kernels are convolved, each pixel location is,

in effect, given a more meaningful name such as “vertical line” or “corner facing down and

right.” This ability to translate from raw pixels to higher order constructs makes CNNs

useful as a crude form of perception for art-making programs. Before describing more about

how CNNs function as a form of representation, I will next discuss how they have been used

to make art.

(Note: A “kernel” is a 2D matrix of weights. A “filter” is a stack of kernels, with one

19

kernel for each input channel.)

Figure 2.7 The process of convolution (Shafkat, 2018).

2.3 Image-Making with Convolutional Neural Networks

CNNs can be used in art making in a variety of ways. The most common approaches are

to use them as a reward function for a generative algorithm or to integrate them into a

co-creative drawing canvas for feature detection or image synthesis. One author describes

these paradigms as “Heroic AI” (the AI does all the work) and “Collaborative AI” (the AI

“supports, challenges, and provokes” human creativity) (d’Inverno and McCormack, 2015).

Not all examples fall neatly into one of these two categories, but it helps to clarify the field.

Heroic AI

Generative adversarial networks (GANs) are a popular method for generating art with CNNs.

The adversarial setup of competing networks was first proposed by Ian Goodfellow in 2014

(Goodfellow et al., 2014). In this arrangement, a generative CNN is trained as an adversary

against a discriminative CNN that has been trained on a dataset of images. The generative

CNN learns to produce fake images that trick the discriminator (thus using it somewhat like

a reward function) while the discriminator simultaneously learns to distinguish between fake

20

and real images. Eventually, the generative CNN can become capable of producing images

that are similar to the original dataset, but different. GANs make no assumptions about

the underlying structures in the dataset. The network infers structure from pixel patterns.

While impressive examples exist, there is little control over the structural relationships that

GANs identify within the visual concepts. The outputs can look like a melted version

of the original. Many artists leverage this surreal effect to extract interesting textures or

serendipitous results.

Other approaches have leveraged the GAN setup, but swapped out the generative CNN

for a reinforcement learning agent that paints through a stroke-based structure (Huang,

Heng, and Zhou, 2019; Mellor et al., 2019). In a GAN, the generative CNN learns to make

a pixel image in a one-shot process. By using strokes, systems can engage in a step-by-step

feedback loop that uses a CNN as a form of perception.

(a) (b)

Figure 2.8 (a) “Learning to Paint” (Huang, Heng, and Zhou, 2019). (b) SPIRAL
(Mellor et al., 2019).

Collaborative AI

CNNs have also been used in art making by integrating them into digital canvases. A recent

example of this is a project entitled Suggestive Drawing which integrates multiple AI bots

into a canvas for feature detection and image synthesis. The author uses a CNN to label

sketched objects and to fill those objects with appropriate or interesting textures (Alonso,

21

2017). Similarly, the Sketch Apprentice project uses a CNN to recognize human drawing

input and respond fittingly. As an example, the Sketch Apprentice can recognize a user-

drawn tree and decide to draw a mushroom next to it (Davis et al., 2016). Both the Sketch

Apprentice and Suggestive Drawing projects leverage the ability of CNNs to dynamically

respond to messy input and to serve as an artificial co-creator.

(a) (b)

Figure 2.9 (a) The Suggestive Drawing agent correctly identifies the objects and
fills them with an appropriate color (Alonso, 2017). (b) The co-creative agent knows
that mushrooms usually live next to trees (Davis et al., 2016).

Another important approach to consider when working with machine learning and line

drawings is recurrent neural networks (RNNs). RNNs are well matched to sequential data.

Line drawings are created through a series of strokes, which RNNs can encode more efficiently

than pixel-based CNNs. Projects like Sketch-RNN have leveraged sequential stroke data to

impressive effect (Ha and Eck, 2017). While RNNs can readily perceive the steps involved

in creating a visual concept, they lack the ability to perceive an overall visual impression of

an image, as does a CNN.

While the creation of art has a strong sequential aspect, the resulting image must also be

able to stand on its own as a visual impression. This would seem to require the involvement

of something more like a CNN than an RNN. There has been some research into combining

the strengths of the vector-based interpretation of RNNs with the pixel-based interpretation

of CNNs, but it is not well examined and is beyond the scope of the tools presented here (Li

22

et al., 2018). This project limits itself to investigating CNNs as a form of representation.

Critical Art Inquiries

A number of artists have built generative systems that critically interrogate the visual in-

formation encoded within CNNs. Tom White created a stroke-based, evolutionary drawing

algorithm to generate images using popular classifiers (White, 2018). In his project, Percep-

tion Engines, the algorithm continually adjusts images to better match the visual concept

contained within the CNNs. His work highlights the potential of CNNs to act as a form of

perception and to drive a creative process. Mario Klingemann probed the nature of repre-

sentation within CNNs by manually altering the internal weights of a GAN (Klingemann,

2018). His results retain some of the appearance of the original output, but with haunting

effects. Klingemann’s work reveals the delicate balance of weights within the network and

shows how even small changes can have a dramatic impact on the learned structures.

Figure 2.10 Perception Engines by Tom White (2018).

In generla, CNNs as a form of representation seem to have a connection to themes from

Surrealist art. Artist Philipp Schmitt relates machine learning art to frottage, a technique

developed by Surrealist Max Ernst that involves rubbing a drawing tool on a piece of paper

pressed against an object to produce a texture. Frottage results in objective forms by

leveraging a reality outside of the subjective control of the artist (Schmitt, 2018; Ernst et

al., 1969). In addition, the architectural similarities between CNNs and human perception

suggest the importance of Gestalt theory as a lens of interpretation for CNN-based art.

Gestalt theory is the formal study of the phenomena of our visual impression switching

23

between individual objects, background, and texture. When humans experience gestalt,

their impression of a whole image becomes more than the sum of its parts. Likewise, CNNs

do not simply calculate a sum of pixel values. These networks find meaning through complex

connections between parts.

The next section will touch on current research into the nature and interpretation of

these connections.

2.4 Representing Visual Concepts Within Convolutional

Neural Networks

CNNs are able to robustly encode visual concepts, but the process of how this happens is

not well understood. The prevailing wisdom is that each layer of a network contains a higher

order abstraction than the previous layer (Olah, Mordvintsev, and Schubert, 2017). This

may or may not be the case, but it is at least a useful starting point for thinking about how

networks learn (Greff, Srivastava, and Schmidhuber, 2017). In the first layer, filters function

as templates. At this point, they are easily understood because they visually correspond

to the pattern that activates them. The filters can have some tolerance, but they match a

narrow range of pixel arrangements. After multiple layers, the filters no longer correspond

to templates. The filters match different scales, rotations, and individual expressions of an

object and thus defy explanation through a single image. Various visualization techniques

have yielded some insight into what they encode, but they are still somewhat of a mystery

(Olah, Mordvintsev, and Schubert, 2017; Olah et al., 2020b).

One approach to deciphering visual concepts within CNNs is using K-means clustering.

In this technique, images are clustered by their activation patterns to see if images near each

other in activation space are semantically related. Wang et. al used this technique on a

set of natural images and found that the interior layers of CNNs learn semantically related

24

parts, as well as groupings of images with no obvious correspondence. This suggests that

networks can be built by dividing visual concepts into parts. It also shows that networks learn

representations that defy simple human comprehension. In addition, the authors found that

clusters corresponded to a “dense” description of the object. In other words, the intermediate

parts learned by the network had significant overlap. Finally, the authors found that the

visual concepts they discovered were mostly represented through a distribution of activations

rather than the activation of a single filter. (Wang et al., 2016)

Figure 2.11 A “dense” description of the object (Wang et al., 2016).

In a simple world, each visual concept would correspond to a single filter acting as a

“grandmother cell” (the theoretical neuron in our brain that gets excited when we see our

grandmother). In practice, CNNs do not heavily utilize this type of cell. While the work

by Wang et al. demonstrates the complexity of CNNs, it tells us that their internal weights

can divide a recognition task into smaller, comprehensible visual concepts. It also shows us

that these parts often overlap and that it is possible (even though machines rarely do it) to

represent them with single filters.

While Wang et al. used natural images, this thesis focuses on line drawings. To see how

their findings would hold up on line drawings, I repeated their K-means clustering method

on Sketch-A-Net, a state-of-the-art line drawing CNN with eight convolutional layers (Yu

et al., 2017). I found that the network slowly built up representations. As expected, the

25

first layer visual concepts corresponded to the kernels. The second layer began adding

corners, curved corners, texture fields, and dots, while passing along filters matching single

lines. The third layer started showing edges of objects (as opposed to lines), pipes (pairs of

lines), and a greater variety of textures. The fourth and fifth layers continued to add the

features beginning to emerge in the third layer, but began to define more textures. Layers

six through eight all had receptive fields that spanned the entire image, so they divided the

images essentially by type. Although, layers six and seven had interesting combinations of

types such as scissor/planes and table/cows.

Figure 2.12 Artistic renderings of visual concepts found in Sketch-A-Net through
K-means clustering by the author.

My interpretation of the basic structures within a CNN was validated in recent work by

Olah et al. examining the first several layers of a CNN trained on natural images. They also

found that the early layers build from Gabor filters to lines, curves, corners, textures, and

pipes (which they refer to as “double boundaries”) (Olah et al., 2020a).

Ultimately, there is no single image that can represent what activates a given filter within

a CNN. The interactions are complex. Even if we find a particular activation pattern that

maps to a set of images, we would still have trouble understanding the weights that are

involved in creating that mapping. Regardless, it is important to analyze which visual

concepts are learned at which layers in order to know what is possible to build.

26

Figure 2.13 Apparent structures in the second convolutional layer of InceptionV1
(Olah et al., 2020a).

This thesis attempts to shape CNNs in human interpretable ways. Instead of focusing

on what machine learning algorithms find most useful or efficient, we can use insights from

how those algorithms shape networks as possible strategies to inform direct manipulation.

Direct manipulation, also called hand-crafting, has serious limitations, but it can be used

effectively in the first layer of CNNs and recent research has opened up the possibility of

pushing that effectiveness deeper.

2.5 Hand-Crafting Convolutional Neural Networks

The term hand-crafted is widely used in the field of computer vision to describe an approach

to image processing where feature detectors are designed by humans instead of automatically

calculated from data. Two popular methods of hand-crafting are HOG and SIFT (Lowe,

2004; Dalal and Triggs, 2005).

A common alternative to hand-crafted features which has arisen in the past several years

is to learn features through machine learning. This has led to a number of studies examining

the comparative advantages of hand-crafted and learned features on standard image datasets.

Some studies found that learned features outperform hand-crafted alternatives (Antipov et

27

(a) (b)

Figure 2.14 (a) SIFT (Scale Invariant Feature Transform) (Lowe, 2004). (b) HOG
(Histogram of Gradients) (Dalal and Triggs, 2005).

al., 2015; Tiwari, 2020). Others have found contradictory results with more sophisticated

hand-crafting algorithms (Schonberger et al., 2017). Even when hand-crafted features are

used, they are typically used as the first layer of a neural network in combination with learned

features (Majtner, Yildirim-Yayilgan, and Hardeberg, 2016; Nanni, Ghidoni, and Brahnam,

2017; Chherawala, Roy, and Cheriet, 2013). Although, hand-crafted Gabor kernels with

learned parameters functioned well at multiple layers in one study (Zhang et al., 2020).

Machine learning has displaced most hand-crafting of networks, but there still seems to be

some benefit to using expert knowledge.

Figure 2.15 Gabor filters for a layer of a CNN designed through learned parameters
(Zhang et al., 2020).

28

While HOG and SIFT are not specific to a certain type of image, some hand-crafted

features are more “crafted” in the traditional sense. An early example of the use of the

term hand-craft comes from a report on outdoor navigation in 1991. Thorpe and Kanade

describe their hand-crafted stop sign detector as follows, “We use the red color as a cue to

sign location, then look for color edges, then use a variety of techniques to fit the octagonal

shape.” (Thorpe and Kanade, 1991) This hand-crafted feature detector is specific to a certain

scenario. It uses expert knowledge of a subject to make an educated hypothesis about the

salient features of an image of a stop sign. The authors’ close attention to material aligns

with the use of the term craft outside of computer vision.

In other fields, the term craft is associated with workmanship and is used to imply

a subconscious dexterity in the actions of a practitioner. Woodworker and design theorist

David Pye contrasts design and workmanship as the difference between what can and cannot

be “conveyed in words and by drawing” (Pye, 1968). There is a special form of expert

judgement at play through the development process. Hand-craft also invokes the classical

association with the hand of the worker that can both sense and act. Architect and digital

designer Malcolm McCullough describes the hand as “part effector and part probe.” It

acts on a material while sensing important details at the same time. The hand serves

as the source of embodied knowledge and skill central to craftsmanship. This is not to

say that craft is restricted to workers using their hands. McCullough elaborates that the

perception of craft is relative to “the degree of personal participation, more than any degree

of independence from machine technology.” (McCullough, 1998) Craft can be present in

technology and computational workflows as long as the user is exercising personal design

decisions. Computer vision practitioners who bring their expert knowledge and react to

their observations meet this mark. The focus of this thesis is leveraging expert knowledge

(an artist’s) to hand-craft networks with respect to a specific material (a line drawing).

29

Chapter Three

Methods

You can speculate on how things work, and painters usually do. But everybody

has his own ideas, painters and critics alike; everyone’s in charge of his own

fantasy — that means you can’t pin anything down because you don’t have

rigorous testing procedures.

Harold Cohen

3.1 Overview

The tools I built are called the Kernel Tuner and the Network Builder. They assist with

the direct manipulation of convolutional kernels and provide interactive visualizations of

the effect of those kernels when applied to a particular visual material (in this case, black

and white line drawings). The Kernel Tuner parametrically creates groups of kernels for

detecting features on the raw pixels of the canvas. The Network Builder attempts to support

the more ambitious goal of hand-crafting multiple layers of a CNN. The technical aspects

and features of the Kernel Tuner and Network Builder are described in detail in the Tools

chapter. Additional information on supporting code can be found in the appendix.

The tools for this thesis, much like URBAN5 and AARON, were not developed with an

eye towards public release. While something of the sort could happen one day, this thesis

is an experiment to flesh out whether directly manipulating CNNs is feasible or desirable.

30

Before doing this research, I knew that I could make reasonable kernels with the Kernel

Tuner (based on its similarity to research in computer vision), but I did not know if the

ability to fine tune those kernels with respect to a specific visual material was desirable for

art making. On the other hand, beyond desirability, I questioned the basic feasibility of

hand-crafting multiple layers of a CNN with the Network Builder.

This research contains two connected investigations in which I used myself as a case

study. One covers the affordances of the tools and the second offers potential use cases.

First, I explore the affordances of the tools for hand-crafting shallow CNNs. By “affor-

dances,” I mean the ways in which the features provided by the tool transform my ability

to directly interact with a CNN. This part of the research focuses on the feasibility of using

these systems. I had to find out if the tools provided affordances to make the difficult task

of crafting CNNs slightly less difficult.

For the Kernel Tuner, I describe the process of creating a set of kernels for detecting line

ends, document the steps taken, and explain how I used the tool to inform my actions. To

analyze the results, I discuss the resulting line end detector and compare the hand-crafted

kernels to learned versions from a CNN for classifying line drawings.

For the Network Builder, I give an account of my construction of basic networks to detect

a line at a flexible vertical position and a box of flexible size. Again, I describe the steps

taken along the way and my decision making process. Then, I relate a specific example of

how I used the features of the Network Builder to solve a particular problem I was having

with the box network. I analyze the results and offer theoretical explanations of some of the

phenomena and challenges encountered during the process.

The second investigation tests the desirability of hand-crafting CNNs by examining po-

tential use cases. To do this, I incorporated the output of the tool into my own art making

practice. I describe my initial views on the relative strengths of the networks I built and how

I attempted to leverage those strengths when designing multiple art pieces. Then, I reflect

on how the aesthetic outputs compare to other computational approaches for making art.

31

3.2 Tools

This section gives a detailed look at the tools used in this thesis: the Kernel Tuner, the

Network Builder, and their supporting code.

3.2.1 Kernel Tuner

The Kernel Tuner is a parametric tool for crafting the first layer of kernels in a CNN to extract

basic features from line drawings. Taking inspiration from the practice of hand-crafting in

computer vision, it puts the visual material of a line drawing in direct communication with

the design of convolutional kernels. Typically, we leave it to the machine to infer the weights

of a CNN from training data. However, the first layer almost always ends up looking like a

type of kernel called a Gabor filter (Olah et al., 2020b). If we know what we want the result

to be, why not make the kernels ourselves? This is the motivating consideration behind

hand-crafting. By crafting these kernels ourselves, we ensure their even distribution and

match them to human-comprehensible visual concepts.

I use the Kernel Tuner to generate kernels, observe how they interact with a canvas

through visualizations, and then use those observations to guide further updates to the

kernels. The kernels can then be exported from the tool and inserted as fixed, pre-trained

weights in larger networks.

Features
Parametric Control: Users can adjust the size, types and number of rotations of the

kernels. In addition, they can choose the width of the positive activation and the radius of

the 2D Gaussian function applied to the kernels.

Drawing Input: The drawing space allows making or erasing lines, as well as rotating

the canvas, to check the robustness of the kernels to position and rotation.

Interactive Visualizations: To provide insight into the performance of the kernels, the

32

Figure 3.1 A screenshot of the Kernel Tuner.

tool includes three charts. The first chart shows a color-coded map of the top activations by

location. It can zoom in on hover and allows selection to control the other two charts. The

second chart is a bar graph comparing activations by kernel at a given location. The final

chart shows the kernels as overlays at the selected location to allow the user to understand

how the activations are being calculated.

33

Construction of Kernels

The Kernel Tuner uses Gabor filters as the basis of its approach. Previous research has

demonstrated the effectiveness of Gabor filters as the kernels of the first layer (Yu et al.,

2017). Gabor filters are kernels created using a Gaussian function applied to a sine wave

(Mehrotra, Namuduri, and Ranganathan, 1992). They are useful for edge detection (or in

this case, line detection) and provide similar performance to the receptive fields in our visual

system (Jones and Palmer, 1987).

(a) (b)

Figure 3.2 (a) A vertical Gabor filter from the Kernel Tuner. (b) The construction
of a 1D Gabor filter (Mehrotra, Namuduri, and Ranganathan, 1992). The filter line
(blue) combines a sine wave (red) and a Gaussian/normal distribution (green).

The patterns for the kernels produced by the Kernel Tuner are not precisely Gabor filters.

They differ in a number of ways. Typically, Gabor filters are applied at various sizes. This

tool is designed to work with line drawings of a consistent stroke width and therefore provides

a single size. In addition, this tool produces filters with three ridges (one positive flanked

by two negative). Gabor filters usually have multiple ridges to match textures in addition

to lines. For simplicity’s sake, this project ignores textures and focuses on detecting line

features.

The other important difference between the output of the Kernel Tuner and Gabor filters

is the range of features matched. Instead of being limited to lines of different orientations,

the kernels produced by this tool can match a range of feature types. Normally, networks

34

(a) (b)

Figure 3.3 (a) A bank of Gabor filters at different sizes and rotations to match
edges/lines of different widths and textures. (b) Sample of kernels from the first
layer of Sketch-A-Net, a state-of-the-art line drawing CNN. (Yu et al., 2017)

take their time to build up these representations (Olah et al., 2020a).

Figure 3.4 Each kernel is a Frankenstein of Gabor filters corresponding to the lines
involved. The “L” corner is made by stitching together two Gabor filters at an angle.

The kernel types chosen span the range of possibilities from one, two, or three lines

passing through the center of the kernel. There are usually kernels matching lines that do

not pass through their center in machine-trained kernels (Yu et al., 2017; Olah et al., 2020a).

I chose to exclude these offset filters to reduce the size of the network. The goal of the Kernel

Tuner is to efficiently extract the most salient, “template”-like information available. The

layers built on top of these kernels can further push the representations as need be.

35

Figure 3.5 The one, two, and three line constructions considered.

3.2.2 Network Builder

The second tool is called the Network Builder and assists with building a CNN with multiple

layers of convolution and pooling. Like the Kernel Tuner, the goal of the tool is to support

the creation of these kernels with close attention to a particular visual material. To that end,

the Network Builder provides a drawing area and a visualization of a network with respect to

that drawing. Drawings can be executed by a human or through a generative algorithm. As

lines are drawn or changes are made to kernels the interactive visualization of the network

updates in real time.

Features
Drawing Input: The network builder uses a similar drawing input to the Kernel Tuner.

However, this drawing input also includes an “AutoDraw” feature that uses a drawing algo-

rithm to render the network.

Edit Network Shape: The first step to building a network is defining a network shape.

The interface currently supports convolutional and max pooling layers. In order to simplify

36

Figure 3.6 A screenshot of the Network Builder.

working with the network, I decided to follow a consistent pattern. Therefore, I set the

strides on the convolutions to one, the bias to zero, and the kernel size to nine-by-nine. This

size allows for enough space to pad the activations to account for flexibility, to prevent errors

at the pixel boundaries and to add negative weights outside of the positive areas. Size seven

or less would often not leave enough room.

Interactive “Waterfall” Visualization: The network is displayed as a series of steps

down and to the right, like a waterfall. The output shape of each convolutional layer is the

shape of the input for the next layer. Visualizing a CNN as a staircase shape works well

when it is small. Typically, CNN visualizations focus on activations instead of kernels and

are too large to display in this manner. The waterfall visualization is a novel method of

37

display of a CNN (as far as the author knows).

At the top of the waterfall are the kernels imported from the Kernel Tuner. Each of these

kernels is actually a filter made up of one kernel. Every filter in a convolutional layer has

a “shadow” of its positive weights displayed above or to the left of the filter. The current

activations resulting from the drawing area are displayed down or to the right for each output

channel of a layer. In terms of channels, the output shape of a convolutional layer is the

input shape of the next layer. As a result, the convolutional filters rotate the output ninety

degrees. Pool layers are indicated by triangles and feed directly to the next layer without

rotation since they have the same input and output shape for channels.

Edit Kernels: Kernels are edited through a pop-up overlay. The overlay has convenience

functions for reflection, shifting, and rotation. Many of the kernels end up as transformations

of other kernels in the network and these functions make copying and pasting much more

efficient.

Figure 3.7 A pop-up overlay for editing a kernel.

38

Zoom Activations: The interface provides a zoom function that allows the user to

select an area of the drawing to focus on. All the activation displays in the waterfall zoom in

to that area. In addition, the user can select a channel of activation outputs in the waterfall

and see a matrix of the exact values for that filter.

Figure 3.8 The zoom selection in the drawing area scopes all the activation outputs.

Save and Load: When the user is satisfied with a network, they can save it to the

browser’s localStorage for later use.

3.2.3 Supporting Code

AutoDraw Function

The most important visualization tool (and the artistic output of the system) is the Auto-

Draw function. It is an agent-based line drawing algorithm that attempts to maximize a

layer and filter at a given location. This function is meant to be a simple and generic way

of using a CNN as a reward function. It has required tuning and adjustments to coordinate

39

action with the CNNs, but its core functionality has remained the same throughout. At a

high level, the AutoDraw function is a brute force algorithm with two subroutines: “start

new line” and “continue current line.” The algorithm tests out line segments and picks the

best one. It tries to continue from its current position before jumping to a new starting loca-

tion. The algorithm only draws lines that improve the activation “score” and after a certain

number of failures to find an option above a certain score threshold, it exits the program.

(a) (b)

Figure 3.9 (a) Inspiration for the drawing algorithm comes from AARON, by
Harold Cohen (Cohen, 1979). (b) A flow chart showing the typical steps taken by
the line drawing algorithm in this thesis.

The exact nature of the reward function that determines the scores for the line drawing

algorithm can be altered. For testing a single visual concept, the algorithm maximizes the

activation at a given location. When drawing a composition, the reward function needs to

dynamically balance activations for different visual concepts at various locations.

The main idea behind the drawing algorithm is that “the vision of time is broad, but

when you pass through it, time becomes a narrow door” (Herbert, 1965). At the beginning

of a drawing, there are many possibilities. As the drawing is executed, the set of possible

completions becomes smaller and smaller. The algorithm and network must be designed such

that the algorithm does not draw itself into any dead ends. It should progress towards its

goal broadly at first. Then, towards the end, it should follow the limited path that completes

the line. The complications of satisfying this requirement are mainly left to the CNN.

40

Figure 3.10 The line drawing function is an agent-based algorithm that prefers to
draw continuous lines to maximize the activation of the CNN, but can start new
ones as well.

Ultimately, any algorithm that explores a design space in a suitably rich way can be

paired with a discriminative CNN to produce images. I chose to use a simple, brute force

line drawing algorithm because it was easy to implement and required no training. This

allowed me to immediately evaluate changes to a network. Generative networks require

extensive training and evolutionary algorithms can require many generations to find suitable

outputs. My approach allowed me to quickly iterate on different sets of weights in the

Network Builder. Although, it also made designing the discriminative CNNs more difficult.

SmartCanvas

Crucial to the performance and function of the AutoDraw algorithm is the special code

backing the drawing canvas to support efficiently processing incremental updates. I call this

feature the SmartCanvas. Normally, CNNs are used on fixed datasets of unrelated images.

Large datasets of distinct images are fed in for training and inference. Therefore, it makes

sense to recalculate all the activations for each image. In this project, I wanted to test

thousands of small updates of a few pixels to the same image. When the same image is

fed into the network over and over again with minor adjustments, the network has already

calculated most of the activations in the system. The influence of a change to a few pixels

spreads out in the network, but leaves most of the activations untouched. The SmartCanvas

greatly speeds up calculating activations for small updates by caching these values. More

41

information on the SmartCanvas can be found in the appendix.

Figure 3.11 The illustration shows the mapping of affected activations through the
CNN (marked in red) after a small update.

42

Chapter Four

Results

4.1 Affordances

This section examines the affordances of hand-crafted CNNs as enabled by the Kernel Tuner

and Network Builder.

4.1.1 Using the Kernel Tuner

The Kernel Tuner parametrically produces a set of kernels that detect features related to

line drawings. These convolutional kernels allow art making systems to react dynamically to

input without having to track every mark made to the canvas. This section will examine the

affordances provided by the Kernel Tuner with respect to a single layer of kernels through a

case study describing my construction of a dynamic line end detector.

Crafting a Line End Detector

I used the Kernel Tuner to find a set of kernels for detecting line ends. The line drawing

system I built prefers to draw continuous lines rather than many short, separate segments.

To facilitate this, it needed to be aware of line ends when deciding where to start new lines.

It could memorize every line drawn to the canvas, but sometimes the canvas might not start

blank or the lines could be altered through erasure or intersection. I wanted the machine to

43

Figure 4.1 A line drawing with line ends detected using a CNN.

be dynamic and react to whatever was placed in front of it. I felt the drawing system should

rely on its impression of the canvas as much as possible. Therefore, a line end detecting

CNN seemed like the best solution.

The detector I was building did not have to be perfect (there could be some false positives

or false negatives), but I wanted it to be fast. My goal when approaching the Kernel Tuner

for this session was to detect the terminal end points of lines of a particular stroke weight

with as few and as small of kernels as possible. Fewer and smaller kernels would minimize

the calculations performed during convolution and thus speed up detection.

I started by selecting the kernel type corresponding to line ends at four rotations at size

five-by-five. This produced four kernels to apply to the drawing area.

44

(a)

(b)

Figure 4.2 (a) Selecting the type, rotations, and size of the kernels. (b) The four
kernels currently active.

45

With those kernels in hand, I compared them to a drawing I made composed of random

marks. I rotated the drawing to determine how well the feature detectors reacted to the

visual material. As seen here, the activations were hyperactive and matched all parts of the

lines.

Figure 4.3 Adjusting the rotation of the input drawing. On the right, the color-
coded map shows strong activity all along the lines, not just at the line ends.

46

I then used the color-coded chart to closely examine the top activations.

Figure 4.4 Navigating the color-coded map by hovering and selecting a point to
further inspect.

47

I tried adjusting the width of the positive portion of the kernels and the 2D Gaussian

function to tune the kernels to the line drawing. The activation charts updated in real time

as I adjusted the parameters allowing me to see the results of my changes in a tight feedback

loop.

(a)

(b)

Figure 4.5 (a) Adjusting the spread of the kernels. (b) The four kernels currently
active.

48

After adjusting the parameters the best I could, I was concerned that some line ends that

should be showing up were disappearing at certain angles. It seemed that four rotations was

not accurate enough.

(a) (b)

Figure 4.6 (a) The color coded chart on the left shows a strong match to a line end.
(b) The activation becomes faint to the point of disappearing at another rotation.

49

So I went back and set the tuner to provide eight rotations while keeping the kernel size

at five. I also updated the width and spread parameters.

(a)

(b)

Figure 4.7 (a) Adjusting the rotation of the input drawing. (b) The eight kernels
currently active.

50

Now, the color-coded activations seemed balanced and active at every rotation. I could

use the kernels to create a line end detector. I exported the kernels and integrated them into

the line drawing system.

(a) (b) (c)

Figure 4.8 With the line end detector, the canvas was able to dynamically track
line ends quickly and fairly accurately as I made updates (line ends highlighted in
red).

51

4.1.2 Discussion of the Kernel Tuner

Throughout this process, the Kernel Tuner allowed me to finely adjust kernels to correspond

to the visual material of the line drawing. I chose the minimum set of kernels I needed

and I was able to determine my own balance of speed and accuracy through my decisions

around kernel type, number of rotations, and size. It is important to note that the eight

small kernels that I produced are not a one-size fits all solution for detecting line ends in

images. Instead, they are a solution for my particular project that draws black lines against

a white canvas at a stroke weight of 1.7px using the p5.js renderer.

The Kernel Tuner creates kernels that are well distributed and human-comprehensible.

When we leave training to the machine (as seen in Figure 4.9), the filters formed are messy,

offset, and incomplete. It is unclear how they are distributed or whether they are overfit to

the data. The kernels produced by this tool are evenly spaced by angle and correspond to vi-

sual concepts with human-interpretable names such as “lines,” “corners,” and “intersections.”

Crafting the kernels ourselves allows us to manage over-fitting with a balanced approach.

(a) (b)

Figure 4.9 (a) The first layer kernels in Sketch-A-Net (Yu et al., 2017). (b) Kernels
produced with the Kernel Tuner matching lines, line ends, corners, T-intersections,
X-intersections, Y-intersections, points, open corners, dots, fields, and individual
pixels.

52

One concern with generating the filters by hand is that we could easily miss features that

are useful for classification. Patterns spread across vast troves of data can be easier to detect

for computers cranking out billions of calculations per second than for a human thumbing

through images one-by-one. This potential downside explains why most researchers use

hand-crafting in conjunction with learned kernels or parameters. Still, hand-crafting has the

advantage of restricting the search space for the machine.

Figure 4.10 Gabor filters produced with learned parameters for the first layer of a
CNN (Zhang et al., 2020).

While machine learning has its strengths, humans have difficulty evaluating the kernels

produced. We tolerate this lack of interpretability of CNNs because we assume that the

mystery is connected to their power. There is a commonly held belief that networks under-

stand concepts that we cannot grasp and that a tradeoff must be made between accuracy

and interpretability. This attitude may work for metric driven settings such as diagnosing

cancer, but it seems inappropriate for artists seeking creative control. One must understand

a material to mold it. The Kernel Tuner allows for a human to take the lead, but perhaps

the ideal approach uses human guidance to refine the search space and then uses example

data to balance the exact parameters.

53

4.1.3 Using the Network Builder

This section covers my use of the Network Builder as a probe into hand-crafting multiple

layers of CNNs. The results are divided into three sections. I start with a simple example

of encoding a line at a flexible vertical position. Next, I describe the process of encoding a

flexibly sized box. Then, I close with a specific example of how I used the tool to guide my

adjustments to a CNN.

Encoding a Flexible Line

Before discussing more complex shapes, I will start with a network for drawing a line at a

flexible vertical position. If we want to have a single line of a certain length, we can start

with a kernel matching a horizontal line.

(a) (b)

Figure 4.11 (a) A network consisting of only the horizontal line filter. (b) Its
output with the AutoDraw function.

Then, we add a layer that extends that line. The negative margin on the first layer kernel

encodes a single, connected line. As long as the negative margin is larger than the pooling

size, there should be no problem. However, there is also no flexibility.

(a) (b)

Figure 4.12 (a) A network with a pooling layer and another convolutional layer
that extends the horizontal line along. (b) Its output with the AutoDraw function.

54

The complications to this scheme arise when we start to introduce flexibility. What if we

want a single line, but we want it to have a flexible vertical location? We could try vertically

extending the positive activations in the kernel in the second layer. Unfortunately, the output

of this network does not match our desired criteria. We may have encoded flexibility (as

demonstrated by the lines appearing at multiple levels), but we now have more lines than

we wanted (one).

(a) (b)

Figure 4.13 (a) A network with a flexible vertical activation in the second layer.
(b) Its output with the AutoDraw function.

It turns out we cannot just add a wider receptive field. To select for a single line at a

flexible location, we have to use one layer to define a long singular line and another to add

vertical flexibility. The negative margin in the preceding layer prevents multiple lines from

emerging in the generative drawing. Now, the output matches our desired criteria.

(a) (b)

Figure 4.14 (a) A network adding a larger negative margin to go with the larger
vertical positive activation. (b) Its output with the AutoDraw function.

55

Encoding a Box

Next, we will move on to a shape that has multiple, overlapping constraints. Let us imagine

I want to draw a box. What is a box? I might say a box is a rectangle of flexible size, formed

by a single continuous line with no loose ends and square corners that are approximately in

line with each other. Maybe they look something like the following. . .

Figure 4.15 A variety of boxes of flexible size drawn with a single continuous line.

To encode this within a CNN I started with six kernels produced by the Kernel Tuner.

These kernels shown below serve as the first layer. I used these, plus a pooling layer, as the

foundation for all the networks in this example.

Figure 4.16 The kernels of the first layer of a box CNN.

With that base in hand, I first tried matching pairs of vertical and horizontal lines. I

wanted to add size flexibility, so I tried different widths for the receptive areas.

Figure 4.17 Attempts nos. 1-3 matching vertical and horizontal lines with different
widths (Left) and some example output (Right).

56

I also wanted the shape to have a continuous line. These boxes were too broken up (just

like we encountered with the preceding line example), so I added positive receptive areas for

the corners at different widths.

Figure 4.18 Attempts nos. 4-6 added corner receptors at different widths.

These boxes had fewer extra lines. The receptive field that is only one pixel wide is

starting to look like a box, but it is not flexible.

57

I decided to add another layer to try to add flexibility while maintaining the single line

restriction. Now, I would start with a layer that recognized edges consisting of a wall and

two corners. I would have four of these filters and combine them in the next layer to make a

box. The idea was to select for features at one layer and add flexibility at the next. Again,

I tested different widths.

Figure 4.19 Attempts nos. 7-9 with an additional layer along with their results.
The networks have different widths on the negative and positive margins.

58

I found that sufficient thickness at both layers yielded the best result. However, the

corners still needed to be cleaned up. To do this, I added a negative backstop behind each

edge for the other type of edge. The result was a flexible, clean looking box.

Figure 4.20 A network that yields a flexibly shaped box with a single clean line.

59

Problem Solving with the Network Builder

The above example showed the steps I took to encode a box. This section will illustrate how

the Network Builder was used to make some of those decisions.

In this scenario, the AutoDraw function has gotten stuck at a corner while drawing a box.

When I encountered this issue, I paused the drawing and used the tool to investigate. The

goal was for the activation scores to go up as the corner was completed. Since the AutoDraw

function was stuck, I could assume that was not the case at this point.

Figure 4.21 The AutoDraw function has gotten stuck while drawing a box.

60

To begin unpacking the issue, I first used the zoom function to scope all the activations

to the area around the box. The issue appeared to be at the corner shared by the left and

bottom edges. The color-coded displays of the scores are helpful for high level observations,

but for close observation the actual scores are more precise. So, I selected the activation

display of the left edge to see the heads up display of its activation scores.

(a) (b)

(c)

Figure 4.22 (a) Zooming the activation scores. (b) Selecting the activations to
show in the heads up display. (c) The heads up display of activation scores. We
care about the ‘945’ score at the center.

61

Next, I drew and erased on the canvas to observe the effect on the scores. Continuing

the vertical line downwards increased the activation score, so that was not the problem. At

this point, I knew it must be an issue with the horizontal line. I tried extending the bottom

edge towards the incomplete corner and confirmed the score did indeed go down.

(a) (b) (c)

Figure 4.23 (a) The original state when the problem was encountered. (b) Ex-
tending the vertical line raised the activation score as desired. (c) Extending the
horizontal line decreased the score.

62

At this point, I hypothesized that the issue was with the weights in the left edge. I

thought that the vertical line detector on the left edge was conflicting with the horizontal

line as it approached since the vertical line detector has a negative margin on its right side.

Therefore, I removed the positive weights at the bottom of the vertical line portion to reduce

its effect at the corner.

(a) (b)

(c)

Figure 4.24 (a) Selecting the kernel to edit. (b) Using the edit kernel overlay. (c)
The result after editing.

63

After making this edit and performing another drawing test, the decrease in score per-

sisted. My next idea was to change the bottom-left corner detector. By increasing the

positive connection in the corner detector kernel, the system would know to emphasize it

more.

(a) (b)

Figure 4.25 (a) Increasing the positive score of the bottom corner of the left edge
from one to five. (b) After adjusting the corner, the score increased as the horizontal
line was completed.

After adjusting the corner, the activation score increased as the horizontal line was com-

pleted. With this update, the expectation was that the AutoDraw function would avoid

getting stuck at corners. I proceeded to update the other corner detector kernels to match.

4.1.4 Discussion of the Network Builder

Through these explorations, I demonstrated the use of the Network Builder to hand-craft

shallow CNNs to encode abstract visual concepts. The CNNs acted as a form of representa-

tion that guided a generic drawing algorithm to render a variety of basic shapes.

The shapes produced were abstract. By that, I mean they maintained their key structural

elements while spanning a diversity of possible shapes. The alternative would have been

64

(a) (b)

(c)

Figure 4.26 Example outputs from the AutoDraw function using hand-crafted
networks encoding (a) houses, (b) leaves, and (c) bottles.

what I call fuzzy templates. Fuzzy templates are kernels that match a specific shape and

can only allow for flexibility through padding (thus the fuzziness). This coarse manner of

accommodating variance results in a loss of structure.

As an example of a fuzzy template, imagine a kernel with a thick square of positive

activations. This fuzzy template would match a thick square, a square with squiggly lines,

rectangles of all sorts, and multiple rectangles. It would map to a large design space, but

65

in an undiscerning way. The visual concepts encoded within a CNN have this ability to be

flexible, but with greater structure. A network with multiple layers maps to designs in a

way that could not be matched by a fuzzy template. Attempting to use a fuzzy template to

match them would incorporate a whole host of designs that violate the desired structure of

their design. For example, using the thick square to encode a box would look something like

my early attempts at building networks that had unconnected lines.

(a) (b)

Figure 4.27 (a) A fuzzy template for a box. (b) A hypothetical result for the fuzzy
template.

The ability to encode flexible structure emerges through multiple layers of convolution.

The two rows of images below illustrate deconstructing and reassembling an image of the

word “TIXY” with one and multiple layers to demonstrate the superior discernment of mul-

tiple layers. The individual pixels have about the same variance in both sets, but the ones

on the bottom maintain the structures crucial to the visual concept. This happens through

slowly building up flexibility layer by layer.

Using the Network Builder also demonstrated some of the challenges facing a practitioner

when hand-crafting CNNs. It seems that the complexity of balancing weights within and

between kernels may be impractical for anything beyond trivial concepts. Even encoding a

flexible line proved challenging. A straight line has many properties that only become clear

upon rigorous examination. For example, lines have a length, stroke width, connectedness,

and straightness. There are many possibilities that could theoretically match a straight line.

When we implement a line with rules we have to be very explicit.

66

Figure 4.28 These two rows show the word “TIXY” deconstructed at different levels
(by letter, letter part, line segment, and pixel) and reassembled. The top row adds
variance at a single level while the bottom row adds variance at multiple layers.

Figure 4.29 Different possibilities in the design space of “a straight line.”

The exploration of the box further demonstrated the delicate interplay between different

kernels. The weights of the kernels, when coupled with the drawing algorithm, create different

selections of a design space. A design space is many dimensional, which makes it difficult

to represent. Building these networks requires a great deal of labor to find a balance. One

key issue is related to the experimental setup: the line drawing algorithm requires the CNN

to act as a perfect compass through the design space as it draws an object. The network

has to intelligently play the role of an ever increasing (formally referred to as “monotonically

increasing”) reward function that guides the drawing in the right direction.

This leads to issues when partial structures create activations that compete with each

other. Many shapes share parts of their structures with other shapes. A line looks like

the start of a corner at first, but the corner activation evaporates when the line continues

67

Figure 4.30 The network must remap the design space such that a blank canvas is
at the origin and every segment that is added increases the activation slightly until
it reaches the final goal. It also must avoid rewarding dead ends or moving past the
desired design space.

straight. On the other hand, completing the corner would cause the straight line activation

to disappear. This tradeoff seems desirable, but implementing this system allowed me to see

that the effects are more complicated.

(a) (b) (c)

Figure 4.31 As the corner is made, vertical line activations are destroyed and
horizontal line activations only happen strongly several pixels into the turn.

For example, we might assume that a completed corner would be a combination of ver-

68

tical and horizontal lines meeting at an intersection. In practice, there is a buffer at the

intersection. The corner itself does not strongly activate either. In addition, it activates

strongly for one as a line is drawn, but once the turn is made, that activation at the intersec-

tion disappears. This phenomena has led to constant issues with the line drawing algorithm

getting stuck from negative activations while turning.

(a) (b) (c) (d)

Figure 4.32 (a) Three stages of drawing a corner. (b-d) The activations of line
filters at the point where the corner happens. As the corner is drawn, the corner
loses significant activation for the vertical line and gains only a microscopic amount
of activation for a horizontal line.

The phenomena of competing activations that cancel each other out also raises the ques-

tion of what types of kernels are needed. With only straight line kernels, there is a gap in

activations at corners. If we add kernels that match a corner, we can better identify this

point of interest and correctly guide the drawing algorithm. This approach could be taken

further by adding offset corners and lines such that we could perfectly identify every possible

situation, but this would add complexity. As it is now, there are only kernels for centered

lines.

The problem of competing activations also suggests that a more sophisticated line drawing

algorithm could reduce the labor involved in designing the CNN portion of the system. Other

algorithms, such as reinforcement learning, incorporate delayed gratification to allow systems

to discover future rewards. This helps them persevere through short term losses, but they

69

are also difficult and time consuming to train. Hidden steps in the reward function make

the design space more difficult to navigate. The current line drawing system has the benefit

of simplicity.

Overall, using the Network Builder helped to uncover some of the challenges with hand-

crafting CNNs. While there were minor successes, the results indicate that crafting more

complex visual concepts will likely require better tools or the incorporation of data-driven

methods.

4.2 Artistic Experiments

This section explores the use of hand-crafted convolutional kernels arranged in one or more

layers for art making. First, I describe the design and testing of the drawing system. Then,

I relate the conceptual development of several artistic explorations. The chapter concludes

with a discussion of the output in relation to other modes of art making.

4.2.1 Drawing a Shape

The drawing algorithm uses a shallow CNN as its guiding function. It draws new lines or

continues drawing the line at its current position. The algorithm prefers to start new lines

at line ends (which it detects using the line end detector). The segments it adds either make

a mark or erase. The result is a drawing system that reacts to its situation without any

memory of how the drawing was made (except the drawing agent’s current location).

I provided the drawing system with a series of random drawings to see how it would react.

The bottles produced incorporated elements of what was on the canvas and successfully

moved the image towards the shape of a bottle in a rough-hewn and abstract manner.

70

Figure 4.33 The top row images are random drawings by me. The bottom row
images show the same images after running the bottle network.

4.2.2 Drawing a Composition

After testing the bottle shape, I turned my attention to building compositions with it. To

create artwork with the drawing system I needed to find a way to put multiple instances of

the bottle on the same canvas. During development the networks acted as reward functions

for the drawing algorithm at a particular location, but for rendering I scaled them to the size

of the canvas. Before using bottles, I tested out making compositions with simple networks.

My hope was that the system would draw versions of a single feature all over the canvas.

Instead, the algorithm ended up drawing only one part of the feature.

71

(a) (b)

Figure 4.34 (a) The red square with a black diagonal is a kernel (black/gray is
positive, red is negative). The square below it shows the activation scores from the
composition that was drawn. (b) The composition drawn by the system.

At any given point, the system’s strongest motivation was to draw a diagonal line since

that had the strongest weight in the kernel. As it drew, each diagonal line began to activate

the diagonal line for a kernel in the neighboring position and the line ended up continuing

to the edge of the canvas.

To remedy this, I decided to work towards exceptional individual scores rather than

maximizing the sum of scores. I created a wrapper algorithm that focused selective attention

on one location at a time. Its goal was to improve the score at a location until it could do

no better and then move on. After this change, the drawing system drew complete versions

of the target feature.

72

(a) (b)

Figure 4.35 The reward function has been given an attention state such that the
drawing algorithm focuses on maximizing activation at one location at a time. The
result was completed individuals.

4.2.3 Conceptual Work

Once I had the ability to render bottles in compositions, I began experimenting with creating

artistic images. My hope was to create physical artifacts suitable for decorating a wall. The

CNNs used in these examples act as feature detectors and reward functions. Each system

chooses locations based on where the CNN detects line ends and high activations. Once it

has chosen a location, it uses the CNN to test potential changes to the canvas.

My goal with the following conceptual work was to leverage the CNNs ability to dynami-

cally respond to input. One strength of the drawing system was that it did not have to know

how the image got to the state it was in. It could work with human input or other drawing

systems as long as the marks on the page were somehow meaningful to it.

Multiple Drawing Systems Interacting

First, I made artworks where multiple versions of the drawing system interacted on the

same canvas. I considered using CNNs with different visual concepts, but I realized that the

CNNs needed to share structures in order for rich interactions to emerge. I wanted them to

compete and build off of each other. A single network shares structures within and between

73

layers. The neuron representing the top of a bottle could build off of the neuron representing

a corner from the layer below it. My plan was for the higher layers to absorb and build off

of the lower layers. The neurons would randomly cast their focus around the canvas and

concentrate on maximizing activations that were already partially developed.

I imagined all the drawing systems corresponding to different neurons simultaneously

entering the scene in waves. The lower layers would create promising building blocks for

the next layer. The image would start out as primitive fragments and would begin to form

higher and higher orders of image “life forms.” The process would unfold like life forming

from amino acids in a primordial soup or like a wave crashing on the beach with foam made

up of increasingly elemental pieces of the visual concept.

(a) (b) (c) (d)

Figure 4.36 A box emerging from the primitive building blocks of lines, corners,
and edges.

(a) (b) (c) (d)

Figure 4.37 A wave of bottles that gets a little crowded.

I also tried waves expanding in concentric circles from the center and waves that spanned

the whole canvas, tinting the latter with watercolor.

74

Figure 4.38 Waves of bottle parts growing from the center.

75

Figure 4.39 Bottles rendered to the whole canvas, resulting in a wall paper-like
appearance.

76

Figure 4.40 Hand-painted version no. 1.

77

Figure 4.41 Hand-painted version no. 2.

78

Reacting to Human Input

I also wanted to leverage the dynamic ability of the system to respond to human input.

So, I painted suggestive shapes, scanned them into the computer, performed basic image

processing, and then ran the drawing system on the input. The idea was to use the network

to release me from the need to give specific definition to the paintings. By adding specific

structures after the fact, I would be able to focus on laying down the paint loosely and

expressively without worrying. Trying to make a watercolor look like something can get in

the way of the beauty of the watercolor pigment.

(a) (b)

(c) (d)

Figure 4.42 The original watercolor image (a) was scanned into the system (b).
The bottle network was run on it (c) and then the marks were printed onto the
original painting (d).

The results were not as strong as the previous experiments. In addition, it did not free

me from worrying about what I was painting. My goal had been to stay loose and expressive

79

while laying the down paint, but I had trouble finding a balance between suggestion and

openness. The system was cantankerous about responding to the images I made, probably

because washes of watercolor are not a part of its vocabulary. I had decided to use paint to

delineate a clear distinction between the digital canvas and real life through its stochastic

detail. I thought that the image would still have enough for the drawing system to work

with, but I struggled to find a style of painting stroke that it could work with. In retrospect,

I should have stuck to black and white lines.

To test with black and white lines, I searched for existing artwork by other artists to

use as the prompt for the system. My thought was the existing composition in the artwork

would serve as scaffolding for the bottle drawing network. I tried a few different pieces, but

I liked the outcome from a Jackson Pollock canvas the best.

80

Figure 4.43 The result of running the bottle network on Jackson Pollock’s Autumn
Rhythm (Number 30) (Pollock, 1950).

Figure 4.44 The same image with Pollock’s painting removed.

81

4.2.4 Discussion of the Artistic Experiments

These explorations demonstrate a few of the potential ways hand-crafted CNNs can be used

for art making. Through this process my focus was on producing art, but the results helped

me to examine the question: What does it mean to use a CNN as a form of representation

for art making?

Comparing Gestalt and Frottage with Convolutional Neural Networks

CNNs, whether formed by hand or through data, seem to bear relation to both gestalt and

frottage from Surreal art. Gestalt is a popular theme with Surrealist artists, and can be seen

reflected in the piece in Figure 4.45 by Paul Klee. In Klee’s work, the eye moves around,

tracing the suggestive lines and catching short impressions that fade between texture and

form. Likewise, the artistic outputs of this thesis stimulated my subconscious in particular

ways. For example, the concentric circles created with the bottle network triggered an optical

effect. The bits of structure caused my eye to be active, shifting back and forth between

texture and individual elements in a search for completeness.

Figure 4.45 Rich Harbour (Picture of a Journey) (Klee, 1938)

In addition, the appearance of my outputs closely corresponded to artworks produced

82

through frottage. However, Max Ernst used frottage to free himself from the pressures of the

blank canvas and to use the texture as an “optical provocateur.” (Ernst et al., 1969) In my

explorations, I too sought a release from the fussiness of representation, but I did not use the

output as inspiration for free association. Instead, one could argue that the drawing system

used my input as its jumping off point. I added structure indirectly through the CNN after

loosely making a painting. My technique was related in terms of goals, but was the opposite

with respect to procedure.

(a) (b)

Figure 4.46 Excerpt from a drawing with the bottle network bears a visual simi-
larity to the Surrealist technique of frottage (Ernst et al., 1969).

Similarly, Philipp Schmitt draws a distinction between machine learning art and frottage

in that machine learning art often seeks representation while frottage traditionally dissolves

it (Schmitt, 2018). While this might be the case, it is important to highlight that CNNs focus

on a general form of representation. They strike a balance of dissolving specific details while

maintaining crucial structures. For me, this ability to mimic human gestalt by handling

messy visual impressions is the most exciting part of CNNs. Computers have a tendency

towards exactness, but a CNN’s robustness to variance allows it to operate in a more organic

realm.

83

The Rough-Hewn Aesthetic of Convolutional Neural Networks

The bottle images I produced can be described as rough-hewn in comparison to what one

might generate with a traditional, rule-based approach. If we think about a piece of wood

shaped by a hand axe versus a mill, I created networks with the equivalent of the axe.

Rough-hewn is often used in a negative sense to mean lacking refinement. However, it can

also mean a material that has been shaped as necessary for its function, but not frivolously

smoothed.

Personally, I enjoy this aesthetic. According to art historian Pierre Francastel, the “rough

sketch” has been popular since Impressionism. He notes that while many observers mistake

a rough piece as incomplete or unfinished, it can also be the result of an “extreme precision”

in a process that “simply responded to dictates that differed from those of classical art.”

Through this lens, a drawing system guided by a CNN can be seen as following the “dictates”

of the visual concept that the CNN encodes. The system perceives a gestalt of the canvas

through the CNN and retains structures it considers crucial while discarding others. It

distills the visual concept to its core features. Francastel sees this distillation as the basis

for transcending imitation and progressing into the realm of true creation. (Francastel and

Cherry, 2000)

So, are the networks in this thesis rough-hewn in the positive sense that Francastel was

talking about with the rough sketch or are they simply inefficient?

On the one hand, my method did not feel like “extreme precision.” It was slow and

difficult and the tools did not quite give me a clear view of the impact of my choices. There

was still an element of guess and check and I had to accept what the network was willing to

give me. But, ultimately, the weights were still directly chosen by me. I was able to inject

at least some of my own dictates. The tools did not fully convert me into a craftsman of

network weights, but it feels like I was at least pointed in the right direction.

84

Chapter Five

Conclusion

5.1 Summary

This thesis has proposed two tools for hand-crafting small CNNs for art making purposes:

the Kernel Tuner and the Network Builder. The purpose of these tools was to make working

with kernel weights a seamless experience by providing information directly at the point of

action.

Before reading this, an artist might have assumed that hand-crafting could only be used

unintentionally by randomly assigning weights to make glitch art. My contribution with

this thesis was demonstrating two tools that gave me slightly more visibility when working

with inner weights. I described my experience with the tools and the tightly woven feedback

afforded by simultaneous interaction with a canvas and a visualization of a CNN. In addition,

I provided examples of hand-crafted networks used to make intentional pictures and discussed

how they related to other art forms.

While the process was far from seamless, the exercise of designing and using the tools

provided fertile ground for thinking about representations within CNNs and the aesthetic

value proposition of layers of convolution.

85

5.1.1 Convolutional Neural Networks as a Representation

What does it mean to use a CNN in the production of art? AI art always replaces some

aspect of the human art making process. There are many models for this process, but,

in my opinion, the high level phases are planning, action, and judgment. These phases

are interwoven and repeat, but those are the main parts. An artist has some sort of plan

(although it may be vague or partial). They execute part of that plan. Then, they view the

result and make some decision about how to proceed.

A CNN replaces part of the judging portion. In that sense, it is view-obsessed. This

stands in contrast to rule-based approaches or RNNs that focus on the planning step. CNNs

may not explicitly make decisions, but they control how the system perceives the state of

the image. Perception of a situation deeply informs any decisions made with respect to it.

CNNs can be used in art as an imitation of a portion of human perception. The question

then becomes: is this imitation creative? Is it something an artist wants?

Harold Cohen believed the deficit in computer art arose not from imitation in of itself,

but from imitation of results. He criticized “picture-processors” and modeled AARON after

the elementary activities of human art making. (Cohen, 1973) His goal was an imitation of

processes. Typical uses of CNNs for art-making depend on datasets of images. The results

of these processes seem to be limited to geometric transformations of the original images

(Todorov, 2019). Whether those images are produced by the artist themselves or come from

a public dataset, the system is imitating results, not processes. Thus, they would not satisfy

Cohen’s taste.

It is clear that the artwork presented in this thesis does not imitate results. There is no

dataset to imitate. However, it does imitate part of the human process. It replaces a portion

of the judgement involved in art making with a mechanical version of perception historically

modelled after human biology (Fukushima, 1980). A possible summary of my results would

be that I created a drawing system that pushes a rough-hewn image towards a bottle image

86

containing parts I determined to be crucial. However, this assessment paints an overly rosy

picture of the usability of hand-crafted CNNs by implying I was able to “determine” these

crucial parts. In fact, I found it to be a slow and laborious process that required me to

accept what the network was willing to give me. So, is hand-crafting a CNN worthwhile?

5.1.2 The Economy of Hand-Crafted Convolutional Neural Net-

works

I have always felt that artwork is beautiful if the process used to create it is beautiful. This

process oriented view aligns with Cohen’s. Additionally, I prefer some elegance or economy

of input when producing an artwork. Simple and quick is usually best. No one likes fussiness.

I am not saying that artwork should be easy, but I subscribe to the popular notion that an

artwork should not be more complex than it needs to be.

The bottle images produced in this thesis are relatively economic in terms of the com-

plexity of the CNN used to make them. Compared to the millions of weights in most CNNs,

they are tiny and comprehensible. On the other hand, when comparing the amount of labor

that went into hand-crafting versus what an artist might use to build a network in a data-

driven fashion, it was much less economic. Although, this calculation might even out if we

consider the hidden labors that go into producing and collecting datasets.

We could also compare the bottle drawing system to rule-based artwork. When Sol

LeWitt sold a wall drawing, a signed document containing the rules would accompany any

transfer of the drawings (LeWitt, 1970b). On the next page, I have reproduced the weights

of the bottle network and a set of LeWitt’s rules. Both easily fit on the page, but LeWitt’s

rules are easier for a human to read and execute.

87

Figure 5.1 The weights of the bottle network.

Figure 5.2 Rules for A Wall Divided Vertically into Fifteen Equal Parts, Each with
a Different Line Direction and Colour, and All Combinations (LeWitt, 1970a).

88

Finally, there is the comparison to traditional forms of art making. One could say that

the CNNs in this thesis are much less complex than the collection of atoms in a physical

object. However, if we use a more common notion of complexity, such as which feels simpler,

the hand-crafted CNNs would lose out. I could much more easily have sat down and made

drawings with a pen and paper.

Yet, experimenting with CNNs as a form of representation pushed me to think about

images in new ways. When I see an image, I tend to think of it as made up of distinct parts.

With neural networks, these atomic units fade into a noisy collections of signals. A leaf is

not a "leaf" unit. Instead, it is a collection of visual frequencies (many of which we do not

have names for) communicating that it is oval, pointy, green, shiny, veined, etc. This way

of thinking about images is built into CNNs. It shaped my process while working with the

tools in this thesis, and it will now be in the back of my mind whenever I make images going

forward.

5.2 Future Work

The investigations in this thesis suggested possible paths forward for using hand-crafted

CNNs within dynamic art making systems.

First off, I believe that the tools in this thesis could be expanded upon to support the

creation of low level feature detectors for creative coding platforms. Robust systems exist

for detecting features such as hands, faces, animals, or custom objects, but most of them are

oriented towards high level features (ml5js 2020; Webster, 2019; Fiebrink, 2009; Lundgren,

2020). Low level feature detectors might not be as sophisticated, but they could be combined

with layers of rules to create rich and highly complex behavior. Like other CNN-based

detectors, their strength would be their robustness with respect to organic visual materials.

Thus, they could support artists working with randomness or stochastic data from the natural

world.

89

In addition, future research could improve the process of hand-crafting CNNs through a

hybrid method incorporating both direct manipulation and data-driven tuning. The major

challenge encountered within this project was the delicate interdependencies between network

weights. While hand-crafting allows us to integrate our expert knowledge of a visual material,

we can no longer leverage example images. Combining human-designed features with learned

features would leverage both human cleverness and computational power. The human could

set up a general architecture and add obvious features to jump start the data-driven process

which would in turn handle tuning weights and filling in gaps in the representation. This

method is already common practice in most computer vision research using hand-crafting,

but I believe it could be pushed further with new tools and applied to art making. By using

a hybrid method, humans could communicate artistic concepts to a machine through what

I see as the ideal mode of human-computer interaction: directly through hand-crafting and

indirectly through examples.

5.3 Final Thoughts

The tools that artists use and the forms of representation that they enable shape how artists

perceive and react to a work in progress. Many machine learning artists maintain a certain

remoteness to the networks and datasets that they use. Their tools focus on generic image

recognition tasks and only offer coarse-grained creative control. Interaction mediated by

prepackaged feature detectors makes it difficult for an artist to develop an intimate rela-

tionship with their material. Digital designer Malcolm McCullough advises us that craft is

most compelling when we move past the manipulation of symbols to “continuous operations

on a workable medium” (McCullough, 1998). The tools in this thesis re-imagine network

weights as a workable medium of a continuous nature. With further development, this form

of representation could prove a rich mode of communication between artists, computation,

and visual materials.

90

REFERENCES

Akten, M. (2017). Learning to See. url: http://www.memo.tv/portfolio/learning-to-see/.

Alonso, N. M. (2017). “Suggestive Drawing Among Human and Artificial Intelligences”. MA
thesis. Harvard University Graduate School of Design.

Antipov, G. et al. (2015). “Learned vs. Hand-Crafted Features for Pedestrian Gender Recog-
nition”. In: Proceedings of the 23rd ACM international conference on Multimedia. MM
’15. Brisbane, Australia: Association for Computing Machinery, pp. 1263–1266.

Barrot, R. and R. Barrat (2019). BARRAT / BARROT, INFINITE SKULLS. url: http:
//avant-galerie.com/Infinite-Skulls-Barrat-Barrot-press-release.pdf.

Cavigelli, L. and L. Benini (2019). “CBinfer: Exploiting frame-to-frame locality for faster
convolutional network inference on video streams”. In: IEEE Transactions on Circuits
and Systems for Video Technology.

Chherawala, Y., P. P. Roy, and M. Cheriet (2013). “Feature Design for Offline Arabic Hand-
writing Recognition: Handcrafted vs Automated?” In: 2013 12th International Conference
on Document Analysis and Recognition, pp. 290–294.

Cohen, H. (1964). “Search”. In: The New York Times. url: https://www.nytimes.com/
slideshow/2016/05 / 09 / obituaries / harold - cohens - assisted - artistry. html (visited on
04/25/2020).

— (1973). “Parallel to perception: some notes on the problem of machine-generated art”.
In: Computer Studies 4.3/4. url: http://www.aaronshome.com/aaron/publications/
paralleltoperception.pdf.

— (1974). “On purpose: an enquiry into the possible roles of the computer in art”. In: Studio
International 187.962, pp. 9–16.

— (1976). The material of symbols. University of Nevada. url: http://www.aaronshome.
com/aaron/publications/matofsym.pdf.

— (1979). “What is an Image?” In: Proceedings of the 6th International Joint Conference on
Artificial Intelligence - Volume 2. IJCAI’79. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., pp. 1028–1057. url: http://www.aaronshome.com/aaron/publications/
whatisanimage.pdf (visited on 10/06/2019).

91

http://www.memo.tv/portfolio/learning-to-see/
http://avant-galerie.com/Infinite-Skulls-Barrat-Barrot-press-release.pdf
http://avant-galerie.com/Infinite-Skulls-Barrat-Barrot-press-release.pdf
https://www.nytimes.com/slideshow/2016/05/09/obituaries/harold-cohens-assisted-artistry.html
https://www.nytimes.com/slideshow/2016/05/09/obituaries/harold-cohens-assisted-artistry.html
http://www.aaronshome.com/aaron/publications/paralleltoperception.pdf
http://www.aaronshome.com/aaron/publications/paralleltoperception.pdf
http://www.aaronshome.com/aaron/publications/matofsym.pdf
http://www.aaronshome.com/aaron/publications/matofsym.pdf
http://www.aaronshome.com/aaron/publications/whatisanimage.pdf
http://www.aaronshome.com/aaron/publications/whatisanimage.pdf

Cohen, H. (1982). “How to make a drawing”. In: talk given to the Science Colloquium, Na-
tional Bureau of Standards, Washington DC. Vol. 17.

— (1988). “How to Draw Three People in a Botanical Garden.” In: AAAI. Vol. 89, pp. 846–
855.

Cohen, H. and AARON (1981). 82P2. url: https://www.nytimes.com/slideshow/2016/05/
09/obituaries/harold-cohens-assisted-artistry.html (visited on 04/25/2020).

— (1986). “Athlete Series”. In: The New York Times. url: https://www.nytimes.com/
slideshow/2016/05 / 09 / obituaries / harold - cohens - assisted - artistry. html (visited on
04/25/2020).

Dalal, N. and B. Triggs (2005). “Histograms of oriented gradients for human detection”.
In: 2005 IEEE computer society conference on computer vision and pattern recognition
(CVPR’05). Vol. 1. IEEE, pp. 886–893.

Davis, N. M. et al. (2016). “Co-creative drawing agent with object recognition”. In: Twelfth
artificial intelligence and interactive digital entertainment conference.

d’Inverno, M. and J. McCormack (2015). “Heroic versus collaborative AI for the arts”. In:
Twenty-Fourth International Joint Conference on Artificial Intelligence.

Ernst, M. et al. (1969). Max Ernst. New York: H. N. Abrams.

Fiebrink, R. (2009). Wekinator | Software for real-time, interactive machine learning. url:
http://www.wekinator.org/ (visited on 09/19/2019).

Francastel, P. and R. Cherry (2000). “Art & technology”. In: Trans. Randall Cherry. New
York: Zone Books.

Fukushima, K. (1980). “Neocognitron: A self-organizing neural network model for a mech-
anism of pattern recognition unaffected by shift in position”. In: Biological Cybernetics
36.4, pp. 193–202.

Goodfellow, I. et al. (2014). “Generative adversarial nets”. In: Advances in neural information
processing systems, pp. 2672–2680.

Greff, K., R. K. Srivastava, and J. Schmidhuber (2017). “Highway and Residual Networks
learn Unrolled Iterative Estimation”. In: arXiv:1612.07771 [cs].

Grimes, W. (2016). Harold Cohen, a Pioneer of Computer-Generated Art, Dies at 87 - The
New York Times. url: https://www.nytimes.com/2016/05/07/arts/design/harold-
cohen-a-pioneer-of-computer-generated-art-dies-at-87.html (visited on 10/06/2019).

Ha, D. and D. Eck (2017). “A Neural Representation of Sketch Drawings”. In: CoRR abs/1704.03477.

Hadji, I. and R. P. Wildes (2018). “What do we understand about convolutional networks?”
In: arXiv preprint arXiv:1803.08834.

92

https://www.nytimes.com/slideshow/2016/05/09/obituaries/harold-cohens-assisted-artistry.html
https://www.nytimes.com/slideshow/2016/05/09/obituaries/harold-cohens-assisted-artistry.html
https://www.nytimes.com/slideshow/2016/05/09/obituaries/harold-cohens-assisted-artistry.html
https://www.nytimes.com/slideshow/2016/05/09/obituaries/harold-cohens-assisted-artistry.html
http://www.wekinator.org/
https://www.nytimes.com/2016/05/07/arts/design/harold-cohen-a-pioneer-of-computer-generated-art-dies-at-87.html
https://www.nytimes.com/2016/05/07/arts/design/harold-cohen-a-pioneer-of-computer-generated-art-dies-at-87.html

“Harold Cohen with a painting machine at the Computer Museum in Boston in 1995.” (1995).
In: The New York Times. url: https ://www.nytimes .com/slideshow/2016/05/09/
obituaries/harold-cohens-assisted-artistry.html (visited on 04/25/2020).

Herbert, F. (1965). Dune.

Hu, W. (2019). “Driverless Cars Arrive in New York City”. In: The New York Times. url:
https://www.nytimes.com/2019/08/06/nyregion/driverless-cars-new-york-city.html
(visited on 04/14/2020).

Huang, Z., W. Heng, and S. Zhou (2019). “Learning to Paint With Model-based Deep Rein-
forcement Learning”. In: arXiv:1903.04411 [cs].

Jansen, T. (2020). Explains – Strandbeest. url: https ://www.strandbeest .com/explains
(visited on 04/24/2020).

— (1994). Sabulosa Cutis. url: https://www.strandbeest.com/genealogy.

Jones, J. P. and L. A. Palmer (1987). “An evaluation of the two-dimensional Gabor filter
model of simple receptive fields in cat striate cortex”. In: Journal of Neurophysiology 58.6,
pp. 1233–1258.

Klee, P. (1938). Rich Harbour (Picture of a Journey).

Klingemann, M. (2018). Neural Glitch. url: http://underdestruction.com/2018/10/28/
neural-glitch/.

LeWitt, S. (1967). “Paragraphs on conceptual art”. In: Artforum 5.10, pp. 79–83.

— (1970a). A Wall Divided Vertically into Fifteen Equal Parts, Each with a Different Line
Direction and Colour, and All Combinations.

— (1970b). Untitled, from Composite Series.

Li, L. et al. (2018). “Sketch-R2CNN: An Attentive Network for Vector Sketch Recognition”.
In: arXiv:1811.08170 [cs].

Lowe, D. G. (2004). “Distinctive image features from scale-invariant keypoints”. In: Interna-
tional journal of computer vision 60.2, pp. 91–110.

Lundgren, E. (2020). tracking.js. url: https://trackingjs.com/ (visited on 04/24/2020).

Majtner, T., S. Yildirim-Yayilgan, and J. Y. Hardeberg (2016). “Combining deep learning
and hand-crafted features for skin lesion classification”. In: 2016 Sixth International Con-
ference on Image Processing Theory, Tools and Applications (IPTA), pp. 1–6.

McCorduck, P. (1991). Aaron’s code: meta-art, artificial intelligence, and the work of Harold
Cohen. Macmillan.

93

https://www.nytimes.com/slideshow/2016/05/09/obituaries/harold-cohens-assisted-artistry.html
https://www.nytimes.com/slideshow/2016/05/09/obituaries/harold-cohens-assisted-artistry.html
https://www.nytimes.com/2019/08/06/nyregion/driverless-cars-new-york-city.html
https://www.strandbeest.com/explains
https://www.strandbeest.com/genealogy
http://underdestruction.com/2018/10/28/neural-glitch/
http://underdestruction.com/2018/10/28/neural-glitch/
https://trackingjs.com/

McCullough, M. (1998). Abstracting craft: The practiced digital hand. MIT press.

Mehrotra, R., K. R. Namuduri, and N. Ranganathan (1992). “Gabor filter-based edge detec-
tion”. In: Pattern recognition 25.12, pp. 1479–1494.

Mellor, J. F. J. et al. (2019). “Unsupervised Doodling and Painting with Improved SPIRAL”.
In: arXiv:1910.01007 [cs, stat].

Metz, C. (2019). “A.I. Shows Promise Assisting Physicians”. In: The New York Times. url:
https://www.nytimes.com/2019/02/11/health/artificial-intelligence-medical-diagnosis.
html (visited on 04/14/2020).

ml5js (2020). url: https://ml5js.org/ (visited on 04/24/2020).

Monet, C. (1890). Stacks of Wheat (End of Summer).

Nanni, L., S. Ghidoni, and S. Brahnam (2017). “Handcrafted vs. non-handcrafted features
for computer vision classification”. In: Pattern Recognition 71, pp. 158–172. (Visited on
04/07/2020).

Negroponte, N. (1970). The Architecture Machine. M.I.T. Press.

Offert, F. (2019). The Past, Present, and Future of AI Art. url: https://thegradient.pub/
the-past-present-and-future-of-ai-art/ (visited on 09/10/2019).

Olah, C., A. Mordvintsev, and L. Schubert (2017). “Feature Visualization”. In: Distill 2.11,
e7. url: https://distill.pub/2017/feature-visualization (visited on 05/02/2019).

Olah, C. et al. (2020a). “An Overview of Early Vision in InceptionV1”. In: Distill 5.4,
e00024.002. url: https://distill.pub/2020/circuits/early-vision (visited on 04/24/2020).

— (2020b). “Zoom In: An Introduction to Circuits”. In: Distill 5.3, e00024.001. url: https:
//distill.pub/2020/circuits/zoom-in (visited on 04/14/2020).

Picasso, P. (1910). Girl with a Mandolin (Fanny Tellier).

Platform and environment | TensorFlow.js (2020). url: https://www.tensorflow.org/js/
guide/platform_environment (visited on 04/25/2020).

Pollock, J. (1950). Autumn Rhythm (Number 30).

Pye, D. (1968). The nature and art of workmanship. University Press Cambridge.

Reas, C. (2004). {Software} Structures. Comments - Wall Drawing #85. url: https : / /
artport.whitney.org/commissions/softwarestructures2016/_85/comments.html (visited
on 04/14/2020).

Ridler, A. (2017). Fall of the House of Usher. url: http://annaridler.com/fall-of-the-house-
of-usher.

94

https://www.nytimes.com/2019/02/11/health/artificial-intelligence-medical-diagnosis.html
https://www.nytimes.com/2019/02/11/health/artificial-intelligence-medical-diagnosis.html
https://ml5js.org/
https://thegradient.pub/the-past-present-and-future-of-ai-art/
https://thegradient.pub/the-past-present-and-future-of-ai-art/
https://distill.pub/2017/feature-visualization
https://distill.pub/2020/circuits/early-vision
https://distill.pub/2020/circuits/zoom-in
https://distill.pub/2020/circuits/zoom-in
https://www.tensorflow.org/js/guide/platform_environment
https://www.tensorflow.org/js/guide/platform_environment
https://artport.whitney.org/commissions/softwarestructures2016/_85/comments.html
https://artport.whitney.org/commissions/softwarestructures2016/_85/comments.html
http://annaridler.com/fall-of-the-house-of-usher
http://annaridler.com/fall-of-the-house-of-usher

Sarin, H. (2018). #neuralBricolage: An Independent Artist’s Guide to AI Artwork That
Doesn’t Require a Fortune. url: https://www.artnome.com/news/2018/11/14/helena-
sarin-why-bigger-isnt-always-better-with-gans-and-ai-art (visited on 09/10/2019).

— (2019a). A Book of GANesis. Divine Comedy in Tangled Representations.

— (2019b). Twitter post. url: https://twitter.com/glagolista/status/1177752980558417920.

Schmitt, P. (2018). “Augmented imagination: machine learning art as automatism”. In: Plot
(s), the Design Studies Journal 5, pp. 25–32.

Schonberger, J. L. et al. (2017). “Comparative Evaluation of Hand-Crafted and Learned
Local Features”. In: pp. 1482–1491.

Shafkat, I. (2018). Intuitively Understanding Convolutions for Deep Learning. url: https:
//towardsdatascience.com/intuitively-understanding- convolutions- for-deep- learning-
1f6f42faee1 (visited on 02/07/2020).

Simon, H. (1969). The Sciences of the Artificial.

Stiny, G. and J. Gips (1971). “‘Shape Grammars and the Generative Specification of Painting
and Sculpture’”. In: vol. 71, pp. 1460–1465.

Thorpe, C. E. and T. Kanade (1991). Second Annual Report for Perception for Outdoor
Navigation. Carnegie Mellon University, The Robotics Institute.

Tiwari, S. (2020). A Comparative Study of Deep Learning Models With Handcraft Features
and Non-Handcraft Features for Automatic Plant Species Identification. article. (Visited
on 04/07/2020).

Todorov, P. (2019). “A Game of Dice: Machine Learning and the Question Concerning Art”.
In: arXiv:1904.01957 [cs].

Velázquez, D. (1650). Juan de Pareja.

Wang, J. et al. (2016). “Unsupervised learning of object semantic parts from internal states
of CNNs by population encoding”. In: arXiv:1511.06855 [cs].

Webster, B. (2019). Teachable Machine Tutorial: Bananameter. url: https://medium.com/
@warronbebster / teachable - machine - tutorial - bananameter - 4bfffa765866? (visited on
12/11/2019).

White, T. (2018). Perception Engines. url: https://medium.com/artists- and-machine-
intelligence/perception-engines-8a46bc598d57 (visited on 03/27/2020).

Xu, M. et al. (2017). “Accelerating Convolutional Neural Networks for Continuous Mobile
Vision via Cache Reuse”. In: arXiv preprint arXiv:1712.01670.

95

https://www.artnome.com/news/2018/11/14/helena-sarin-why-bigger-isnt-always-better-with-gans-and-ai-art
https://www.artnome.com/news/2018/11/14/helena-sarin-why-bigger-isnt-always-better-with-gans-and-ai-art
https://twitter.com/glagolista/status/1177752980558417920
https://towardsdatascience.com/intuitively-understanding-convolutions-for-deep-learning-1f6f42faee1
https://towardsdatascience.com/intuitively-understanding-convolutions-for-deep-learning-1f6f42faee1
https://towardsdatascience.com/intuitively-understanding-convolutions-for-deep-learning-1f6f42faee1
https://medium.com/@warronbebster/teachable-machine-tutorial-bananameter-4bfffa765866?
https://medium.com/@warronbebster/teachable-machine-tutorial-bananameter-4bfffa765866?
https://medium.com/artists-and-machine-intelligence/perception-engines-8a46bc598d57
https://medium.com/artists-and-machine-intelligence/perception-engines-8a46bc598d57

Yu, Q. et al. (2017). “Sketch-a-Net: A Deep Neural Network that Beats Humans”. In: Inter-
national Journal of Computer Vision 122.3, pp. 411–425.

Zhang, Y. et al. (2020). “AGCNN: Adaptive Gabor Convolutional Neural Networks with
Receptive Fields for Vein Biometric Recognition”. In: Concurrency and Computation:
Practice and Experience, e5697.

96

APPENDIX

Appendix A

A.1 The SmartCanvas

This project uses CNNs differently than most. Crucial to the performance of the AutoDraw

function is a network that can efficiently handle many small updates to the canvas. To

accomplish this, I built a wrapper called the SmartCanvas that only updates activations

within the scope of a given change. While CNNs are interconnected, a single (x,y) location

in the hypercolumn output at any given layer is only connected to an area corresponding to

the kernel size in the previous layer. This means that a change affecting a 10x10 area on a

1000x1000 canvas should only change a tiny fraction of the calculations through the network

from the calculations for the previous frame. If the output is cached and only the affected

portions are updated, the potential speed gains can be immense. This phenomena has been

noted by researchers developing software packages for CNNs processing videos seeking to

take advantage of the “spatio-temporal sparsity of pixel changes” (Xu et al., 2017; Cavigelli

and Benini, 2019). The implementations in these papers were not easily portable to my

project so I looked into my own implementation.

After building the caching system, the performance of the drawing system observationally

seemed to greatly improve. To verify, I ran a series of performance tests to quantify the effect.

To evaluate the system, I tested it with the three backends available for TensorFlow.js:

webgl (using the gpu), wasm (using web assembly), and cpu (using the cpu). WASM allows

for near native code execution speeds for the web (JavaScript is very slow compared to

native programming language) and is helpful for applications dealing with large amounts

of numerical calculations. For most use cases, webgl is much faster than wasm and wasm

98

is much faster than cpu. However, as noted in the TensorFlow documentation, wasm can

be faster for small models (which is what the project uses). (Platform and environment |

TensorFlow.js 2020)

The implementation of these different backends has implications for the caching opti-

mization. While webgl is extremely fast, it is not fast the first time an execution is run.

This means that if we apply the same network to the same size input, the webgl backend

can utilize the gpu to great effect. Unfortunately, if we run custom computations based on

what part of the canvas that has been updated (which is the case with the SmartCanvas)

we end up running custom computations quite often.

To decide if caching was a good idea and which backend to use, I ran a series of tests. I

set up a drawing system that roughly matched my average setup with and without caching

for each type of backend. I used a 1000x1000 canvas, 5 pixel segment length updates, and

networks with seven layers (five conv2d (4374 weights) and two maxPool2d layers).

TensorFlow Backend webgl wasm cpu

No caching 645 ms 594 ms 8723 ms

Caching (SmartCanvas) 137 ms (22-31 ms for repeated ops) 11.4 ms 24.7 ms

Table A.1 Average time to test update by drawing system (300 updates, excluding
first).

While these benchmarks do not reflect extensive testing under different conditions, they

tell a compelling story. They indicate that my use of caching can be many times faster

than if I did not use caching. They also show that WASM is a good choice with or without

caching.

I do not have reason to believe these performance gains will translate to other types

of networks. This performance test and the networks used in this project reflect a very

particular situation. Initial tests using a YOLO network were not promising. YOLO is much

99

deeper and wider with smaller kernels. As the size of the changes increases, the overhead of

inserting and slicing data from the cache will end up making it slower than running a full

update. This means that YOLO benefits more from keeping its calculations on the gpu and

proportionally produces large amounts of activations relative to the number of computations

it makes in convolutions. Based on my tests, I believe that the caching used in this project

is only helpful for projects that use small networks with big kernels applied to large canvases

subject to incremental changes. Caching is probably not a good idea for most other use

cases.

100

	Title Page
	ACKNOWLEDGMENTS
	Acknowledgments

	ABSTRACT
	Abstract
	1 Introduction
	1.1 Forms of Representation
	1.2 Machine Learning Art
	1.3 The Limits of Convolutional Neural Networks
	1.4 Thesis Vision
	1.5 Summary of Thesis

	2 Background
	2.1 Understanding the Aesthetics of AARON
	2.2 Convolution Neural Networks
	2.3 Image-Making with Convolutional Neural Networks
	2.4 Representing Visual Concepts Within Convolutional Neural Networks
	2.5 Hand-Crafting Convolutional Neural Networks

	3 Methods
	3.1 Overview
	3.2 Tools
	3.2.1 Kernel Tuner
	3.2.2 Network Builder
	3.2.3 Supporting Code

	4 Results
	4.1 Affordances
	4.1.1 Using the Kernel Tuner
	4.1.2 Discussion of the Kernel Tuner
	4.1.3 Using the Network Builder
	4.1.4 Discussion of the Network Builder

	4.2 Artistic Experiments
	4.2.1 Drawing a Shape
	4.2.2 Drawing a Composition
	4.2.3 Conceptual Work
	4.2.4 Discussion of the Artistic Experiments

	5 Conclusion
	5.1 Summary
	5.1.1 Convolutional Neural Networks as a Representation
	5.1.2 The Economy of Hand-Crafted Convolutional Neural Networks

	5.2 Future Work
	5.3 Final Thoughts

	REFERENCES
	Appendix
	A
	A.1 The SmartCanvas

