Carnegie Mellon University
Software Engineering Institute

Modeling and Validating Security and
Confidentiality in System Architectures

Aaron Greenhouse
Jorgen Hansson
Lutz Wrage

March 2021

TECHNICAL REPORT
CMU/SEI-2021-TR-004
DOI: 10.1184/R1/13659911

Software Solutions Division

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

http://www.sei.cmu.edu

http://www.sei.cmu.edu

Copyright 2021 Carnegie Mellon University.

This material is based upon work funded and supported by the Department of Defense under Contract
No. FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software Engineering
Institute, a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not
be construed as an official Government position, policy, or decision, unless designated by other docu-
mentation.

This report was prepared for the SEI Administrative Agent AFLCMC/AZS 5 Eglin Street Hanscom AFB,
MA 01731-2100

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTI-
TUTE MATERIAL IS FURNISHED ON AN "AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES
NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUD-
ING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EX-
CLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNI-
VERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM
PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited dis-
tribution. Please see Copyright notice for non-US Government use and distribution.

Internal use:* Permission to reproduce this material and to prepare derivative works from this material
for internal use is granted, provided the copyright and “No Warranty” statements are included with all
reproductions and derivative works.

External use:* This material may be reproduced in its entirety, without modification, and freely distributed
in written or electronic form without requesting formal permission. Permission is required for any other
external and/or commercial use. Requests for permission should be directed to the Software Engineer-
ing Institute at permission@sei.cmu.edu.

* These restrictions do not apply to U.S. government entities.
Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.
DM21-0145

mailto:permission@sei.cmu.edu

Table of Contents

Abstract

1
2

6

Introduction

The Bell-LaPadula Security Model

2.1
2.2
2.3
2.4
2.5

Subjects and Objects
Security Labels

Security Properties
Trusted Subject

Examples and Discussion
2.5.1 Access Matrix
2.5.2 Security Violations
2.5.3 Hierarchical Models
2.5.4 Trusted Subject

Representing Bell-LaPadula in AADL

3.1

3.2

3.3

Security Labels in AADL

3.1.1 The Security and Security_Type_Specifications Property Sets
Subjects and Objects in AADL

3.2.1 AADL Components

3.2.2 AADL Features

Access Modes in AADL

3.3.1 AADL Port Features

3.3.2 AADL Feature Group Features

3.3.3 AADL Access Features

Analysis and Validation in AADL

4.1
4.2

4.3

4.4

4.5

Maximum vs. Current Security Label
Checking the Simple Security Property
4.2.1 Checking Subprogram Calls

4.2.2 Software—Hardware Bindings
Checking the Star Property

4.3.1 Representing the Current Security Label
4.3.2 Checking the Star Property in AADL
Checking Architectural Consistency

441 Features

4.4.2 Connections

443 Flows

4.4.4 Least Privilege

Sanitizing Information

4.5.1 Sanitized Flows

4.5.2 Sanitization Metrics

4.5.3 Caveats

Examples and Case Studies

5.1
5.2

Example 1
Example 2

Conclusion

References/Bibliography

CMU/SEI-2021-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

ONNOO OO PPWWW

S G G\ QT G G |
NOoO onoTwmhdND =00

PNDNDMNDMNDMNPDMNDMNDNDNDMNDNDN = = -
QAR WWWMNDMNON L0 O OO

NN
o oo

w W
(=2 T

List of Figures

Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4

Figure 5.1
Figure 5.2

CMU/SEI-2021-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

Graphical Notation of o; — s; — o4,

An Example with Object—Subject Dependencies
Hierarchical Modeling of s; and s,

Decomposition of s Showing a Trusted Subject ts

An Example System Annotated with Security Labels
Example from Figure 2.2 with the Security Label of s, Corrected

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

o 0 O O

29

Listings

3.1 The Level and Level _Caveats Property Declarations

3.2 The Level_Type and Caveat_Type Property Type Declarations
3.3 A Thread Component with Security Level (confidential, {A})

3.4 Declaring the Security Levels of Features

4.1 The Downgrading Property Declaration
4.2 An Example of Sanitization

5.1 Security-Annotated Data Classifier Declarations for the System in Figure 5

5.2 Security-Annotated Producer Systems for the System in Figure 5.1

5.3 Security-Annotated Computer and Consumer Systems for the System in Figure 5.1
5.4 Outer System Declaration for the System in Figure 5.1

5.5 Data Types for the Objects in Figure 5.2

5.6 System Types for the Subjects in Figure 5.2

5.7 Top-Level System Specification for the Example in Figure 5.2

CMU/SEI-2021-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

10
11
12
13

24
24

26
27
28
29
30
30
32

Abstract

The importance of security in computer and information systems is increasing as network-
connected computer systems become more ubiquitous. The objective of security is to verify
that the computing platform is secured and that data and information are properly accessed
and handled by users and applications, ensuring data confidentiality and integrity. To develop
a framework for modeling and verifying security as a data quality attribute, designers need

to identify parameters and variables with the expressive power to capture and represent secu-
rity models and determine the type of analysis to enable. This report presents an approach for
modeling and validating confidentiality based on the Bell-LaPadula security model using the
Architecture Analysis and Design Language (AADL). The report describes the Bell-LaPadula
security model and elaborates how security and Bell-LaPadula attributes are mapped to con-
cepts and represented in AADL. It then describes modeling and validating security in AADL
models, considering conditions that need to be enforced for a system to ensure conformance to
the Bell-LaPadula security policy. It also presents the analysis capabilities provided by AADL
and examples modeled in AADL.

CMU/SEI-2021-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY iv
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

1 Introduction

Security in computer and information systems has received a lot of attention over the past
few decades, and its importance will only increase as the use of network-connected computer
systems becomes more ubiquitous. Ensuring computer security is a multifaceted technical
challenge, and it focuses on developing a secure computing platform by means of protective
measures that include prevention, detection, and reaction. Prevention measures the focus on
protecting resources from being used, accessed, or damaged. Detection concerns measures for
detecting the improper use of a resource. Finally, reaction concerns measures taken to enable
recovery or remedy a security breach.

Security can be viewed as the concurrent existence of (1) availability for authorized users only,
(2) confidentiality, and (3) integrity [1]. Confidentiality addresses concerns that sensitive data
be disclosed to or accessed by only authorized users (i.e., enforcing prevention of unautho-
rized disclosure of information). Data integrity is closely related, as it concerns the prevention
of unauthorized modifications of data. The specific objective of security is to verify that the
computing platform is secured and that data and information are properly accessed and han-
dled by users and applications, ensuring confidentiality and data integrity.

In this report, we focus on data confidentiality and data integrity, describing how to model
and verify them in a system. Common techniques conducive to confidentiality include the fol-
lowing;:

* enforcing access control to stored data objects
* communicating data in encrypted forms when transmitted over networks

* partitioning systems to group subsystems and applications based on their authorized
access privileges and the security level of the resources they access

The sensitivity of the data, based on security-level classifications, helps in choosing an appro-
priate means for enforcing confidentiality. Supporting data integrity implies that modifications
or alterations of data are controlled (e.g., by using an access matrix specifying permissible op-
erations by users on data objects).

When developing a framework for modeling and verifying security as a data quality attribute,
we need to (1) identify parameters and variables with the expressive power to capture and
represent previously developed security models and (2) determine the type of analysis that
should be enabled. Some significant contributions to security models have been made (for
example, see the paper “Security Models” [20] for good introductions to the field), and im-
portant frameworks for enforcing confidentiality have been proposed, specifically the Bell-
LaPadula [5], Chinese wall [7, 17], role-based access control [13], Biba [6], and information-
flow models [19].

In this report, we present an approach for modeling and validating confidentiality based on
the Bell-LaPadula security model and discuss integrity in this context. Specifically, we cover
the following topics:

* representation of confidentiality requirements of resources (i.e., objects)

* representation and generation of security clearance/privileges of subjects operating on
the objects

* the role of the access matrix, specifying allowed access operations of subjects on objects
to support integrity

CMU/SEI-2021-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 1
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

+ analysis of an Architecture Analysis & Design Language (AADL) model of a system
with respect to the basic principles of confidentiality, need to know, least privilege, and
controlled sanitization

Section 2 provides a brief background and a description of the Bell-LaPadula security model
in more detail. In Section 3, we elaborate how security and Bell-LaPadula attributes are
mapped to concepts and represented in AADL. Section 4 describes modeling and validating
security in AADL models, discussing conditions that need to be enforced for a system. Sec-
tion 5 walks through examples modeled in AADL. We conclude this report with observations
on how model-based engineering can support early modeling and validation of security in Sec-
tion 6.

CMU/SEI-2021-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

2 The Bell-LaPadula Security Model

The Bell-LaPadula security model is a mathematical framework and model for designing se-
cure computer system architectures. In particular, it regulates the dynamic behavior of a sys-
tem as “subjects” with differing privileges to read from and write to “objects” with different
access restrictions. A system in conformance with the model never allows a subject to access
an object that it is not permitted to and never allows the subject to manipulate an object in
non-permitted ways. An early use of the model was to design a security kernel for the Mul-
tics operating system. The model was initially described and evolved in a series of technical
reports [3, 2, 4]; it is collected, and its application to Multics described, in the more defini-
tive report [5]. In this section, we summarize the portions of the Bell-LaPadula model needed
to understand our mapping into AADL. The interested reader may refer to the report Secure
Computer Systems: Unified Exposition and MULTICs Interpretation [5] for more details.

2.1 Subjects and Objects

The Bell-LaPadula model regulates the manner in which active subjects access passive ob-
jects. A subject, denoted s;, is drawn from the set of subjects S = {s1,...,s,}. Examples
of subjects in a system include processes, threads, and other software components at a soft-
ware level and processors and memory at a hardware level. Similarly, an object, denoted o;,
is drawn from the set of objects O = {o1,...,0,}. Examples of objects in a system include
executable code and data objects at the software level and memory at the hardware level.!

The model considers four access modes to objects by subjects based on the four combina-
tions of observing and altering the object:

*+ execute (no observation, no alteration)
* read (observation, no alteration)

» append (no observation, alteration)

» write (observation, alteration)

The set A = {e,r,a, w}, respectively, denotes the access modes. As with subjects and objects,
the exact interpretation of each access mode depends on the context of the model application.

The system keeps track of the current access set B. A current access (s,0,a) € B means
that subject s currently has access a to object o. Allowed accesses are governed by a con-
ceptual access matrix M. Matrix component M; ; C A records the modes in which subject
s; is permitted to access object 0;. An operational system should not allow a current access
(si,04,a) such that a ¢ M, ;.

2.2 Security Labels

A security label (level, categories) € B is a pair constructed from a classification level € L
and set of categories categories C P. The set L has a linear order <, and thus the elements of
L correspond to “classification” or “clearance” levels, such as unclassified or confidential. The

"The model places no restrictions on entities that may be both subjects and objects. In this case, memory can
both be a subject and an object. Modeling a software application, we want to ensure that a data element (object) is
allowed to be stored only in dedicated memory (subject) that has support for hardware encryption. The security level
of the memory should dominate the security level of the data element. Modeling the system at a hardware compo-
nent level, we want to ensure that a processor (subject) is only allowed to access memory (object) for which it has
clearance.

CMU/SEI-2021-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 3
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

categories in P embody the concept of “need to know”: it is not enough to possess the correct
clearance. This requirement is captured by the dominates relation > that imposes a partial
order over B =L x P:

(level,, categories,,) > (level,, categories,) < level, < level, A categories, C categories,,

Every object o; has a security label fo(o;). Every subject s; has a maximum security la-
bel fs(s;) and a current security label fc(s;). The maximum security label of a subject
does not change and denotes the upper bound of the subject’s permission. A subject is al-
lowed to operate at a lower security label—indeed, this is necessary in some situations (see
Section 2.3)—and this is captured as the current security label. It is required that fs(s;) >

fo(si).

2.3 Security Properties

For each current observe access, when the maximum security label of the subject dominates
the security label of the object, the simple security property is satisfied. More specifically,
the property requires V(s,0,a) € B: a € {r,w} = fs(s) > fo(0).

The simple security property protects only information containers, not the information itself.
In particular, it does not prevent a subject from reading information from a high-level object
and writing that information to a low-level object. Enforcement of the *-property or star
property is necessary to prevent this from occurring. A subject that has simultaneous 0b-
serve access to one object and alter access to another object satisfies the star property if the
security label of the altered object dominates the security label of the observed object:

V(84,0i,0i),(85,05,a5) € B: a; € {r,w} Aa; € {a,w} = fo(o;) > fo(o;)

In plain English, the security label of information can only increase. A consequence of satisfy-
ing the star property is that the access modes constrain the current security label of a subject.
When the star property is satisfied, we have

a=a = fo(o)> fc(s)
VY(s,0,a) € B:{ a=w = fo(o)= fc(s)
a=r = fo(s)> fo(o)

Specifically, a subject may need to lower its current security label before it can write informa-
tion to an object. Additionally, we emphasize that it is implicit in the model that a subject

s does not hold on to or remember information read from an object o when it no longer has
access to the object, that is, when (s,0,a) ¢ B. Being able to do so would allow a subject

to circumvent the star property by observing a high-level object, remembering the high-level
information, disconnecting from the high-level object, and then writing the remembered infor-
mation to a low-level object.?

Finally, the discretionary security property has already been mentioned. All current ac-
cesses must respect the access matrix: V(s;,0;,a) € B: a € M, ;.

2Alternatively, this behavior can be prevented by considering all memory addresses to be objects requiring a se-
curity label before data can be remembered in or read from them. A physical example would be the requirement that
writing notes into a notebook while reading a secret document causes the notebook to also be considered secret.

CMU/SEI-2021-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 4
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Legend

Object (circles)
Subject (box)
level, categories) Security label
— Access

- Sanitized access

» O

—~

Figure 2.1: Graphical Notation of o; — s; — o,

2.4 Trusted Subject

By design, a consequence of the star property is that a subject cannot derive low-level data
from high-level data or have simultaneous observe and alter access to unrelated objects with
incompatible security labels. But some subjects, such as the scheduler in an operating system
or an encryption component, can be trusted to not perform a security-breaching information
transfer even if it is possible. So-called trusted subjects are exempt from the star property.
The design and implementation of trusted subjects are expected to receive extra scrutiny. We
say that the low-level output of a trusted subject is sanitized.

2.5 Examples and Discussion

We now introduce an example to better elaborate the details of the Bell-LaPadula model.
Figure 2.1 introduces the graphical notation we use for subjects and objects in this and fol-
lowing sections. The figure shows a subject s; accessing the objects o; and oy. Subject s; has
security label fs(s;) = (I;,¢;), and the objects o; and oy have the security labels fo(0;) =
(liyc;) and fo(ox) = (lg,ck), respectively. The relation o; — s; implies that s; observes o;.
The relation s; — o, shows that s; alters oy. Thus, s; has r access to o; and a has access to
o,. A feedback loop between a subject and an object, as with o and s; in Figure 2.2, signifies
w access.> We say that s; uses o; as input and produces oy as output. We represent sanitized
output by a dashed arrow in the figure and denote it as s; ~~ oy; sanitization is allowed to be
performed only on altered objects.

3This notation cannot express e access.

CMU/SEI-2021-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 5
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

-

S1 L, 53 N
(2.{a}) (4,{a})
/V
52
(3,{a,b})
Sy L S5 N
(1,{a}) (1,{b})
Legend
(o} Object (circles) Level Category
] Subject (box) .
level, categories) — Security label 4 Top secret a Pro!ect A
— Access 3 Secret b ProjectB
- Sanitized access 2 Confidential
1 Unclassified

Figure 2.2: An Example with Object—Subject Dependencies

Figure 2.2 depicts an example with S = {s1,...,s5} and O = {oy,...,08} consisting of a
number of scenarios, potential faults, and errors that we refer to below. The example contains
several object—subject dependencies:

* a feedback loop 07 — s; — 07 indicating that s; has w access to o
* subjects, such as sy and ss, that read from and write to multiple objects

* a trusted subject with sanitization: sy ~> o7

2.5.1 Access Matrix

The access matrix M for the example is

01 02 03 04 Os O6 o7 08
0 0 0
{r} {fa} 0
0 0 0
{a} 0 0

0
0
0
{r} {a

00 {r} {a}

As stated previously, in an operational system, the access matrix is consulted during execu-
tion to dynamically determine whether a subject should have access to an object. Further-
more, the matrix itself is dynamic: whether and how a subject is allowed to access a particu-
lar object can be updated during execution (consider the case of altering file permissions, for
example). This implies that the access matrix itself is an object and requires protection; see
the discussion of Multics access control lists in the report Secure Computer Systems: Unified
Ezposition and MULTICs Interpretation [5].

When modeling a system, however, the role of the access matrix is more flexible:

CMU/SEI-2021-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 6
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

* On one hand, the matrix can continue to be interpreted as a constraint on the system.
In this view, the accesses described in the model need to be checked against the accesses
allowed by the matrix, and they need to be rechecked whenever the model changes.

* On the other hand, the access matrix can be derived from a model and serve as a sum-
mary of the extant access patterns. However, the level of detail in the model determines
the completeness of the access matrix, so an access matrix should be generated only
from a model where subject—object dependencies are specified in full.

2.5.2 Security Violations

We begin by noting that the relationship o5 — s4 violates the simple security property be-
cause fs(s4) = (1,{a}) » fo(o1) = (1,{b}). That is, even though s4 has high enough clear-
ance to access 01, it does not have a need to know based on the sets of categories.

In addition, the security level of s3 is larger than necessary: fs(s3) = (4,{a}) > (3,{a}).
While this is consistent with the simple security property, it is problematic from the point of
view of data integrity [18]. Such considerations were outside the scope of the original problem
addressed by Bell-LaPadula, but they are easily incorporated: the security label of a subject
should be the least-restrictive security label capable of satisfying the simple security and star
properties.

2.5.3 Hierarchical Models

Absent from the original Bell-LaPadula model is any consideration of the hierarchical compo-
sition of subjects, that is, subjects constructed of other subjects. Decomposing subjects in this
manner supports incremental modeling and directly relates to the structure of AADL models.
As an example, Figure 2.3 reimagines subjects s; and s4 as subcomponents of a new subject
So-

CMU/SEI-2021-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 7
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

)

‘ L))] @) [T\ @f{ah
(2, {a,b}) (2, {a,b})
(1 {b))] @p [T\ @ {b))

Figure 2.3: Hierarchical Modeling of s; and s,

09 -~ S21 R 03
(2, {a}) |G Aah) [\ BAal)

\(3a {av b})

ts

(2, {a,b}) |

&
&

Figure 2.4: Decomposition of s, Showing a Trusted Subject ts

» The left side shows sy substituted for s; and s4.
* The right side shows the decomposition of sg:
— Subjects s; and s4 are nested inside sy to show the hierarchical structure.
— The erroneous security level of s, mentioned above is corrected here to (1,{b}).

* The security level of sy needs to be permitted to access all the objects accessed by its
subcomponents. More specifically, the security level must dominate the security levels of
its subcomponents: fs(sg) > fs(s1) A fs(so) > fs(s4). In this case, we have fg(sg) =
(2,{a,b}).

Although not shown here, it is reasonable for sy to have accesses of its own that do not be-
come delegated to subcomponents. These accesses would be subject to the simple security
property and star property as usual, and the security level of sy would need to reflect this.
Additionally, a single access by an outer component could decompose to multiple accesses
across multiple nested components or even the outer component itself. Finally, it is natural
to continue to decompose subjects s; and s4 as necessary.

2.5.4 Trusted Subject

Access s9 ~» 07 is sanitizing, in this case combining information from oz and og. Such an ac-
tion should yield an object with the security label (2,{a,b}), but in this case, the resulting
security label is instead (1,{b}). In contrast, access s, — 03 is not sanitizing. This requires
that no information from og may be written to o3 because o3 misses category b. Subject ss is
decomposed in Figure 2.4:

CMU/SEI-2021-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 8
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

* Subject sy contains a trusted subject ts that performs the required sanitization: ts ~» o7.
* Subject sy contains a subject so; with observe access to only os and no access to o3.
* Access 0o — so decomposes to the accesses 0o — s91 and 0y — ts.

Introducing a trusted subject in this case serves to reduce the complexity of the trusted sub-
ject. It accesses only the minimum number of objects necessary to fulfill its function, thus
simplifying verification.

CMU/SEI-2021-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

0 N O o A WO N =

3 Representing Bell-LaPadula in AADL

In this section, we describe our approach to mapping the concepts from the Bell-LaPadula
security model to architectural models written in AADL.! This mapping is described in three
steps:

1. We describe our use of the AADL property mechanism to define security labels.
2. We describe our mapping of subjects and objects to AADL language features.

3. We describe how this mapping affects Bell-LaPadula access modes.

3.1 Security Labels in AADL

As described in Section 2.2, the security label of a subject/object consists of a security level
value and a set of categories. The level value is drawn from a totally ordered set and denotes
how securely an object must be handled and how privileged a subject is. Categories further
refine the security level by labeling objects and giving subjects permission to access appro-
priately labeled objects. This style of security label captures the typical governmental model,
wherein security levels are unclassified, confidential, secret, or top secret and categories
are used to further restrict access. Represented this way, a security label (level;, categories,) is
said to dominate another security label (levely, categories,), if and only if level; > level, and
categories; D categories,.

We use AADL property associations to add security labels to AADL components and features
that represent subjects and objects. We use a pair of properties to associate both a level and
a list of categories with each subject/object.? The declarations of the properties Level and
Level_Caveats that declare an item’s security level and set of categories, respectively, are
shown in Listing 3.1.

—-— Security Levels

Level: inherit Security_Type_Specifications::Level_Type =>
Security_Type_Specifications: :Minimum_Level
applies to (system, processor, virtual processor, thread,
thread group, subprogram, subprogram group, data, port,
feature group, process, device, memory, abstract, flow,
parameter, access);

Security Categories

Level_Caveats: inherit list of
Security_Type_Specifications::Caveat_Type => ()
applies to (system, processor, virtual processor, thread,
thread group, subprogram, subprogram group, data, port,
feature group, process, device, memory, abstract, flow,
parameter, access);

Listing 3.1: The Level and Level_Caveats Property Declarations

"This work is based on earlier work published in Hansson et al. [14].

2For this work, we use the Security property set from the proposed AADL security annex. The scope of the
property set is more general than the work presented here, so the properties are more widely applicable than our
needs require. For example, the Level property may be applied to subprogram and subprogram group classi-
fiers even though, as we shall see, they are neither subjects nor objects in our mapping.

CMU/SEI-2021-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 10
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

© 00 N O O O N =

3.1.1 The Security and Security Type Specifications Property Sets

Both the Level and Level_Caveats properties are marked as inherit. This means that
if a component or feature is not explicitly associated with a value for the property, it will re-
ceive the property value of its containing component. The definitions reference two property
types, Level _Type and Caveat_Type, and a property constant, Minimum_Level, that are
defined in a secondary property set Security_Type_Specifications. This facilitates cus-
tomization of the space of security levels and is analogous to the AADL standard’s use of the
AADL_Project property set to allow customization of the property definitions in the other-
wise fixed AADL_Project property set.

More specifically, the Level_Type property type of the Level property is expected to be an
enumeration. We consider the enumeration literals as being ordered based on the order they
are declared in the enumeration type; the Level _Type type thus provides a totally ordered
set of classifications for the space of security levels. We interpret them as going from the high-
est to the lowest level. The property constant Minimum_Level provides the default value for
the Level property. The value of this constant is expected to be the last (that is, lowest) lit-
eral of the Level_Type enumeration type.3

The Caveat_Type property type is also expected to be an enumeration. In this case, the
enumeration is used to define the set of categories applicable to the problem space of the
model. Acceptable values for the Level_Caveats property are actually lists of values of type
Caveat_Type, thus providing the second component of the security label: the set of cate-
gories.*

—-— Security Classification Properties type declarations

Level_Type: type enumeration (
TopSecret, Secret, Confidential, Unclassified);

Minimum_Level: constant Security_ Type_Specifications::Level_ Type
=> Unclassified;

Caveat_Cype: type enumeration (A, B, C, D, E);
Listing 3.2: The Level_Type and Caveat_Type Property Type Declarations

The property types Level _Type and Caveat_Type and the property constant
Minimum_Level are declared in the Security_Type_Specifications property set,
shown in Listing 3.2. The default security levels are the standard military classification lev-
els with the ordering TopSecret > Secret > Confidential > Unclassified. For the
categories, we use A, B, C, D, and E as placeholders for more meaningful project-specific val-
ues. As stated previously, the intent is that the modeler customizes the enumerations based
on the domain of the system being modeled.

As discussed in the following sections, our approach imposes the modeling constraint that all
components and features must have property associations for the Security: :Level and
Security::Level _Caveats properties. By defining default values for these two proper-
ties, we satisfy this constraint. Furthermore, by declaring the property values as inherit, we
make it much more likely that the simple security property (see Section 4.2) will be satisfied
because—unless otherwise specified—a subcomponent or feature will have the same security

3This constant is necessary because there is no type-independent way to identify the last element of an enumera-
tion type, and we would like the default value of the Level property to be the least restrictive classification level. It is
trivial for an analysis to verify that this constant does indeed refer to the last enumeration literal.

4AADL does not support the specification of sets, only of lists (i.e., there is no language mechanism that prevents
the repetition of an item in the list). It is easy enough for an analysis to be insensitive to repetition of enumeration
literals in the property value.

CMU/SEI-2021-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 11
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

D O A WO N =

attributes as its container. Using inheritance and default property values also lightens the an-
notation burden for the modeler. Specifically, a model with no explicit security property as-
sociations will always be correct because all subjects and objects will have the same security
label: the lowest security level and the empty set of categories.

3.2 Subjects and Objects in AADL

In the Bell-LaPadula model, active subjects act on passive objects. In AADL, components
communicate through ports and other categories of features. For the most part, data is not
explicitly represented in the model, although data subcomponents can be shared with other
components via data access features. Instead, data port and other features belonging to
components are connected to describe the transfer of information throughout the modeled sys-
tem. A feature is thus a proxy for the data that pass through it. These observations motivate
us to consider, in general, AADL components as subjects and AADL features as objects. The
specifics of, and exceptions to, these considerations are discussed in the sections below, based
on AADL language constructs.

3.2.1 AADL Components

We treat all AADL components—with the exception of data, subprogram, and
subprogram group components—as subjects. Components are sites of activity that coor-
dinate the movement and generation of data throughout the system. Each component (sub-
ject) is expected to have a security label, expressed using property associations, to describe its
clearance to utilize objects. This is the mazimum security level that the component requires
to operate (see Section 4.1). Listing 3.3 shows an example of a component type with a secu-
rity level.

thread producer
—— Features, etc., are elided
properties
Security::Level => confidential;
Security::Level_Caveats => (A);
end producer;

Listing 3.3: A Thread Component with Security Level (confidential, {A})

3.2.1.1 Data Components

AADL data components are objects. Although they can contain subprogram features, data
components do not possess an active nature; external threads of control must invoke a data
component’s subprograms. A data component is operated on through data access fea-
tures that enable direct access to its contents. Thus, a data component is expected to have

a security label expressed using property associations to describe the classification of its con-
tents.

3.2.1.2 Subprogram and Subprogram Group Components

AADL subprogram components are neither subjects nor objects. A subprogram is not data
that is manipulated by the system, so it is not an object.® Furthermore, a subprogram itself
does not manipulate data; instead, a particular invocation, or call in AADL parlance, does.
And that call actually happens within a particular thread. Thus the calling thread compo-
nent is the subject, not the subprogram (see Section 4.2.1).

5A system that manipulates code sequences as data is certainly possible, but in such a case the subprograms
being manipulated would be modeled as data components, not as an AADL subprogram.

CMU/SEI-2021-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 12
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

0 N O g WO N =

D 00 WO N =+ O ©

An AADL subprogram group is a passive collection of subprogram subcomponents
meant to represent a library. Obviously, if a subprogram is neither a subject nor an object,
then the same is true of a subprogram group.

3.2.2 AADL Features

AADL defines a feature as “a part of a component type definition that specifies how that
component interfaces with other components in the system” [15, §8 €1]. In most cases, a fully
specified feature has a classifier associated with it; usually it is a data classifier. In general,
AADL uses the data classifier to describe the data that passes through the port. It is thus
natural to use the security-level property associations of the classifier associated with the fea-
ture as the security level of the data represented by the feature.® While this is our preference,
it is not always possible:

* A fully specified event port feature does not specify a classifier.

* A model is not required to be fully specified; therefore, a feature may be missing a clas-
sifier.

The security-label property associations in these cases must be made on the feature declara-
tion. We would prefer, however, to avoid the situation where the security label is specified on
both the feature and the classifier; we revisit this problem in Section 4.4.1.

The security label of a feature represents the ezact security label of the data that passes
through the feature. In particular, unlike with components, it does not represent the maxi-
mum security level of the data. Such a choice would cause less precise modeling and analysis.

3.2.2.1 Data Port Features

The data port feature is the most obvious example of a feature that transmits data objects.
A fully specified data port feature has a data classifier. Listing 3.4 shows the declaration
of the data port feature output in the thread type producer. The security label of the
port is (confidential, {A}) because that is the security label of the data classifier A.

data A
properties
Security::Level => confidential;
Security::Level_Caveats => (A);
end A;

thread producer
features
output: data port A;
interrupt: event port {
Security::Level => confidential;
Security::Level_Caveats => (B);
}i
properties
Security::Level => confidential;
Security::Level_Caveats => (A, B);

6The rationale for introducing types that differ only by their security properties came through realizing that model-
ing intends to make particular semantic properties of the system more apparent and easier to reason about. It is thus
acceptable for the model to contain abstractions whose distinctions may be blurred in the actual implementation. In
this context, differentiating data type classifiers based on their security properties makes sense; it reduces the mod-
eling overhead and makes clear in the model that different features treat data differently. In fact, it helps prevent con-
nections from being made between features with different security levels because AADL semantics require that the
data classifiers on either end of a connection be the same. The data type variants, however, can be mapped to the
same implementation type using the standard AADL property Programming_Properties: : Type_Source_Name.

CMU/SEI-2021-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 13
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

17

end producer;
Listing 3.4: Declaring the Security Levels of Features

An event data port feature differs from a data port feature only by its delivery seman-
tics. It is also straightforward to consider them to be Bell-LaPadula objects.

Likewise, a parameter feature of a subprogram classifier represents the transfer of data,
and it is also a Bell-LaPadula object.

Again, a fully specified event data port or parameter feature has a data classifier, but
if the classifier is absent, the property association must be made on the feature itself.

3.2.2.2 Event Port Features

An event port does not pass an explicit data object between components. The raising of
an event, however, can be interpreted as the transfer of an “event happened” data object, one
that need not be explicitly represented because there is only one value. One can easily imag-
ine the need to constrain the observation of particular events to those components with an ap-
propriate clearance. For example, an event that communicates that an intruder was detected
should not be publicly available because we might not want the intruder to be able to learn of
the detection by querying a public access point. As we see, an event port is also an object
in the Bell-LaPadula model.

Because it never has an associated classifier, an event port feature’s security-label property
values are always retrieved from the feature itself. Listing 3.4 also shows the declaration of an
event port feature interrupt in the thread type producer. Its security label (confiden-
tial, {B}) must be explicitly declared using property associations on the feature.

3.2.2.3 Feature Group Features

An AADL feature group aggregates features. From an architectural point of view, it is

a container for features. A fully specified feature group feature includes a reference to

a feature group type classifier. The feature group type declares the features of the
feature group. As with port features, the security label of the feature group feature is
obtained from the feature group type classifier if it is present and from the feature itself if
it is not present. As a basic principle of containment, we require that the security label of the
feature group dominate the security labels of the features in the feature group. This require-
ment can be viewed as an application of the simple security property (see Section 4.2).
The feature declarations in the feature group type determine the security labels of the
features in the feature group.

3.2.2.4 Data Access Features

A data access feature differs from a data port in that it represents direct access to a
data object—one that is ultimately represented by a data component instance elsewhere

in model. We must still, however, treat the feature as a proxy for the data because the exact
data component being accessed is unknown outside the component that actually connects the
data component to the feature.

As with port features, a completely specified data access feature includes a data classi-
fier that describes the data object being shared. We retrieve the security label from the classi-
fier when it is present and from the feature itself if the classifier is unavailable.

3.2.2.5 Subprogram and Subprogram Group Access Features

AADL subprogram access and subprogram group access features simply make
subprogram and subprogram group components accessible to other components. As pre-

CMU/SEI-2021-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 14
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

viously discussed, these components are neither subjects nor objects, and thus these features
do not represent objects.

3.2.2.6 Abstract Features

An abstract feature is a generic or placeholder feature that can later be refined to a more
specific kind of feature, such as a data port, an event port, or data access. That is,
the specification of the semantics of the feature is deferred to a subtype of the containing clas-
sifier. However, abstract features may have a classifier that describes the data object being
shared. We retrieve the security label from the classifier when it is present and from the fea-
ture itself if the classifier is unavailable.

3.2.2.7 Bus Access and Virtual Bus Access Features

In this section, it is enough to remark that bus access and virtual bus access fea-
tures do not model data in an AADL model and thus are not objects for the Bell-LaPadula
model. We revisit these kinds of features in Section 4.2.2, where we discuss the impact of
software—hardware bindings, and in Section 4.4.2.

3.3 Access Modes in AADL

The Bell-LaPadula model defines four access modes to describe a subject’s effects on an ob-
ject:

1. Execute access does not permit the subject to observe or alter the contents of the ob-
ject.

2. Read access permits a subject to observe but not alter the contents of the object.
3. Append access permits a subject to alter but not observe the contents of the object.
4. Write access permits a subject both to alter and observe the contents of the object.

Given our mapping of objects to AADL features and data components, we must derive access
rights based on the AADL semantics for those features. Considering that AADL is not exe-
cutable, this exercise may seem to be purely theoretical. However, we need to understand the
access modes so we can properly enforce the simple security property and star property
of the Bell-LaPadula model.

3.3.1 AADL Port Features

We begin by considering the data port. A data port transmits and receives data objects
by marshalling and un-marshalling, respectively, complete objects between threads through
buffers that represent the port in the component. That is, objects obtained from an in data
port are read, and objects sent through an out data port are newly created. Thus, an in
data port corresponds to read access, and an out data port corresponds to append
access. An in out data port is bidirectional, but not on the same data object; it is more
like a port that can be used for both sending and receiving objects, but not simultaneously.
When used to receive, an in out data port thus corresponds to read access; when used
to transmit, it corresponds to append access.”

An event port communicates events between threads. Following the notion above that
the port transfers an “event happened” object, an in event port corresponds to a read
access, and an out event port corresponds to an append access. Again, an in out

7In practice, an in out data port is checked as if it were an out data port because the out nature of an
in out data port is more constraining than its in nature.

CMU/SEI-2021-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 15
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

event port is never simultaneously observing and announcing, so its access mode is deter-
mined according to its current usage.

An event data port combines the semantics of an event port with those of a data
port. For our purposes, an event data port is like a data port; in particular, an
event data port transmits complete data objects between threads. Unlike an in data
port, an in event data port queues received objects. You might suspect that an in
event data port would have write access because it must read from and modify the
queue. However, the queue is not interesting from the point of view of a security analysis be-
cause we are interested in the data being transmitted through the queue and not the underly-
ing implementation of the AADL semantics.

The semantics of subprogram parameter features are similar to those of data port fea-
tures. Data is copied into the subprogram at the time it is called and out of the subprogram
when it returns. So as with a data port, an in parameter corresponds to read access,
an out parameter corresponds to append access, and an in out parameter is read
access during the call phase and append access during the return phase.®

3.3.2 AADL Feature Group Features

Fundamentally, a feature group is simply a bundle of features, including those features of any
nested feature groups. Conceptually, components interact via the features contained in a fea-
ture group, not via the feature group itself; the feature group is simply an abstraction that
bundles together related features. Thus, a feature group itself has no direction, but the fea-
tures it contains do have direction. Therefore, in general, we cannot speak of the access mode
of the feature group feature, only of the access modes of the individual features contained in
the feature group. These access modes are determined as described above.

There are, however, two aspects of AADL that complicate the above reasoning:

1. A feature group might be empty. This aspect supports incremental modeling by allowing
empty feature groups to be declared to abstractly represent the communication that oc-
curs between components, even when the exact nature of the communication has not yet

been decided.

2. Two feature groups may be directly connected via feature group connections. In fact,
AADL allows access to the contained features of a feature group only when connecting
a subcomponent and its containing component; sibling subcomponents must connect
feature groups in their entirety using feature group connections.

There are thus cases where we must consider the feature group as a single entity from the
point of view of data access. In these cases, clearly the security level of the accessed object is
the security level of the feature group. Just as the security level of a feature group must be a
maximization of the security levels of its constituent features, so must the access attributed to
the feature group be a maximization of the accesses attributed to its features. Conservatively,
this implies that we treat a feature group as an append access—the only choice when dealing
with an empty feature group (because we do not know the directions of the features yet to be
added).®

8|t might seem that an in out parameter should capture the fact that the data might be modified internal to
the subprogram as the subprogram executes. But the semantics of AADL dictate that the internal actions of the sub-
program are not relevant here: “An in out parameter declaration represents a parameter whose value is passed in
and returned by value. Parameters passed by reference are modeled using requires data access”[emphasis
added] [15, §8.5 {3].

9We can be less conservative by inspecting the directions of the feature group’s features: If all the features in a
feature group (including any nested feature groups) are in features, then the feature group can be treated as a read
access.

CMU/SEI-2021-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 16
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

3.3.3 AADL Access Features

AADL data access features represent direct access to shared data. Although AADL distin-
guishes between provides and requires data access features, this distinction captures
where the shared object is located and does not describe whether the object is written to or
read from. This access is determined instead by the standard property Access_Right on
the feature.'® Acceptable property values are read_only, write_only, read.write, and
by method. The first three values indicate direct manipulation of the shared data and map
naturally to the access modes read, append, and write, respectively. The read_write ac-

cess right, however, much like the in out port, is not used for both actions simultaneously.

Rather, we determine the read or append mode based on context as determined by AADL
flow specifications (see Section 4.3.1).

The by _method access right indicates that the shared data object may be manipulated only
by using the subprogram features declared within its data classifier. Because we do not know
what the subprograms do to the data, we map by _method to the write access mode.

As stated in Section 3.2.2.7, bus access and virtual bus access features are not ob-
jects, so they do not have access modes.

10The direction of the connection can also be used to determine the direction of data flow. The property value
has a default value and thus is always defined for access features, so it is the most reliable approach to determining
access. Also, it is the only way to specify by_method access rights.

CMU/SEI-2021-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

17

4 Analysis and Validation in AADL

The Bell-LaPadula model requires the security labels of subjects and objects in a system to
be consistent with the simple security property and the star property. In addition, the seman-
tics of AADL require that several additional properties be enforced for the security modeling
to make sense. This section describes the analysis rules that must be enforced over an AADL
instance model to ensure the consistency of a security model. We begin by revisiting what ex-
actly the security label of a subject means in our implementation of a Bell-LaPadula model.

4.1 Maximum vs. Current Security Label

The Bell-LaPadula model associates two security labels with a subject:
1. the maximum security label
2. the current security label

The maximum security label, as the name implies, is the maximum security label (with re-
spect to the dominates ordering) at which the subject may operate. In particular, this label
represents the full capability of the subject to access objects in general. Note, however, that it
does not say anything about how a subject may manipulate a specific object; an access matrix
fills this role. In AADL, the security label associated with a component via the Level and
Level_Caveats properties specifies the component’s mazimum security label.

The current security label represents the security label at which the subject is currently oper-
ating (i.e., the subject does not need to operate with its full capabilities). The intent is that

a subject modifies its current security label as it acquires and releases access to objects dur-
ing the course of its execution. Thus, the current security label captures a dynamic behavior
of the subject (e.g., as a user modifies its current state to access files in a shared file system).
Unfortunately, AADL is not well suited to capturing dynamic system behavior at this level of
detail.! We choose, therefore, not to represent the current security level of a subject explic-
itly but to obtain this information implicitly from additional features of the AADL model. We
return to this issue in Section 4.3.

4.2 Checking the Simple Security Property

The simple security property enforces the expectation that a subject should access only ob-
jects that it is allowed to use. Specifically, it requires that the maximum security label of a
subject dominates the security label of each object that it accesses. In AADL, a component
declares all its data accesses as explicit features. Thus, to check the simple security property,
we need to enforce the following rule:

Rule 1 (Simple Security Property for Components) The security label of each compo-
nent must dominate the security label of each feature in the component.

Feature groups do not require special treatment with respect to this rule because of the re-
quirement from Section 3.2.2.3 that the security label of a feature group must dominate the
security labels of its features. If the security label of a component dominates the security label
of a feature group, it must also dominate the security labels of the feature group’s features;

TAADL modes allow a modeler to describe alternate aspects of a component’s operation. Mode transitions capture
the dynamic aspects of system behavior. Modes are better suited to describe alternate operating states of a com-
ponent in which it has differing interactions with other components in the system (e.g., encrypting versus clear-text
or normal operation versus recovering from failure) than to describe the dynamics of a component during its normal
course of operation.

CMU/SEI-2021-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 18
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

otherwise, there will be errors reported on the feature group’s features. We now recast this
previous architectural rule as an additional analysis rule:

Rule 2 (Simple Security Property for Feature Groups) The security label of each fea-
ture group must dominate the security labels of each feature in the feature group.

We also require a rule for enforcing the simple security property on subcomponents:

Rule 3 (Simple Security Property for Subcomponents) The security label of each com-
ponent must dominate the security label of each subcomponent in the component.

This rule has no direct analog in the Bell-LaPadula security model because the model does
not consider a hierarchical relationship among subjects. The rationale for this check in the
case of non-data components is that a subcomponent performs work for—as part of—its con-
taining component. Its container, therefore, must be authorized to access the data that the
subcomponent may access. A data subcomponent exists in one of two scenarios:

1. As a subcomponent of a non-data subcomponent. In this case, the subcompo-
nent is data, an object accessed by the containing subject, and the above rule is a direct
application of the simple security property.

2. As a subcomponent of a data subcomponent. The subcomponent represents a
portion of the overall data component. Therefore, the containing data component must
have a security level at least as great as that of the subcomponent.

4.2.1 Checking Subprogram Calls

As mentioned in Section 3.2.1.2, subprogram subcomponents are not subjects and are in-
stantiated as part of an AADL call sequence. As the name implies, a call sequence describes a
sequence of subprogram invocations. Call sequences may appear only in subprogram and
thread components; the AADL standard specifies which component executes any given sub-
program call within a sequence [15, §5.2 €19]. In short, depending on how the subprogram
is (1) declared in the model and (2) referenced in the call sequence, the subprogram may be
executed by one of the following components:

* the calling thread
* the called thread (i.e., a remote procedure call)
* the providing device
* the providing processor
This yields the following rule:

Rule 4 (Simple Security Property for Subprogram Calls) The security label of a fea-
ture in a subprogram call must be dominated by the security label of the component that exe-
cutes the subprogram.

This rule is presently of no practical importance because the current AADL tool sets do not
actually instantiate call sequences.

4.2.2 Software-Hardware Bindings

AADL components can be divided into software components, such as thread, data, and
process, and hardware components, such as bus, memory, and processor. In a com-
pletely instantiated and bound model [15, §13.1 €3], the software components must be bound
to hardware components. The binding is specified via property associations on the software
components. The full details are described in the work of Feiler and Gluch [11, §11.2]. The
basic intent is that threads are bound to processors, data is bound to memory, and connec-
tions are bound to buses, although more complicated bindings are possible. Of particular note

CMU/SEI-2021-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 19
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

is that data port and event data port features should be bound to a memory compo-
nent that indicates where the actual data that flows through that port is stored.

The software—hardware binding is very much analogous to the subcomponent hierarchy dis-
cussed above:

* Because a processor executes a thread, it must be authorized to access the data
(that is, objects) that the thread needs to access.

* Memory must be authorized to store the actual data that is bound to it.
This leads to the following rule:

Rule 5 (Simple Security Property for Binding) If a component ¢ or feature f is bound
to a component t, the security label of t must dominate the security label of ¢ or f.

If multiple components or features are bound to the same hardware component, its security
label must dominate all their security labels.

Connections are interesting in this context because—excepting bus access and virtual
bus access connections—they act like objects.? The data passing through the connection
must be accessible to all the components the connection is bound to. As described in Sec-
tion 4.4.2, the security label of the data comes from the connection end points.

This yelds the following rule:

Rule 6 (Simple Security Property for Bound Connection) If a connection c is bound
to a component t, the security label of t must dominate the security label of c¢’s data.

4.3 Checking the Star Property

The star property enforces the expectation that a subject should not be able to leak classi-
fied information by reading data from a high-level object and then writing that information
into a low-level object. Fundamental to the star property is that if a subject has simultaneous
“observe” access to one object and “alter” access to another object, the security label of the
alterable object must dominate the security label of the observable object. This principle can
be restated in terms of the relationship between the current security label of a subject s and
the security label of a single object o, as follows:

* If s has append access to o, the security label of o must dominate the current security
label of s.

» If s has write access to o, the security label of o must be equal to the current security
label of s.

 If s has read access to o, the security label of 0 must be dominated by the current secu-
rity label of s.

4.3.1 Representing the Current Security Label

To check the star property, we must resolve the issue of representing the current security la-
bel. The simplest approach is to leave the concept out of our mapping into AADL (i.e., the

maximum security label is always the current security label). This choice would result in the
requirement that all out ports have the same security label as their containing components:

* Per Section 3.3.1, out ports have append access, and the simple security property re-
quires that the component’s label dominate the port’s label.

2While not addressed in the standard [15], it makes no sense for a bus access oravirtual bus access
connection to be bound because it creates the hardware structure to which other connections are bound.

CMU/SEI-2021-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 20
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

» The star property, above, requires that because the port has append access, the port’s
label dominates the component’s label.

This requirement would be overly restrictive when a component has multiple output ports be-
cause all the ports would have to have identical security labels. Such a requirement may not
be satisfiable without artificially inflating the security labels of ports throughout the system.

An alternative approach to modeling the current security label presents itself when we recall
the intent behind the star property: Data should not flow from a high-level object to a low-
level object. While AADL is not well suited to describing dynamic component behavior, it is
designed to describe data flow through a component. AADL flow path specifications explic-
itly declare that data arriving at the source feature flows to (or otherwise influences) the data
written to the destination feature. These factors suggest that we can check the star property
by using flows as a surrogate for explicit current security label information. In particular, the
natural way to check the star property via flows would be to check that the security label of
the feature that is the flow source is dominated by the security label of the feature that is the
flow sink.

Under our mapping of the Bell-LaPadula model into AADL, this is exactly what must be the
case:

* AADL semantics require the source of a flow path to be an in feature or an access
with Read_Only or Read Write access rights. As previously discussed, these map to
read mode (“observe”) access.

* Similarly, AADL semantics require the destination of a flow path to be an out fea-
ture or an access with Write_ Only or Read Write access rights. As previously dis-
cussed, these map to append mode (“alter”) access.

» Therefore, the star property dictates that the security label of the flow source must be
dominated by the security label of the flow destination.

This improvement allows a component to have out ports with differing security labels be-
cause it no longer relates the security label of a feature to the security label of its containing
component.

Although the Bell-LaPadula model is traditionally considered to be an access control model
[16] of security, this approach to checking the star property actually makes our security anal-
ysis implementation an information flow model [12, 9, 10] that operates on the semantics of
AADL rather than of a lower level programming language.

4.3.2 Checking the Star Property in AADL
The following rule summarizes the above discussion:

Rule 7 (Star Property for Flows) For each flow path in a component, the security level of
the destination feature/component must dominate the security level of the source feature/com-
ponent.

There is no need to check flow sink and flow source specifications; they do not denote
a path from one feature to another.

In light of the discussion in Section 3.3.2, it is worth noting that a feature group feature
that appears as an end point of a flow path does not require special treatment. As fea-
tures, they must have security labels.

CMU/SEI-2021-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 21
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

4.4 Checking Architectural Consistency

We must perform several additional checks on a model to make sure that its security at-
tributes are consistent with AADL-specific structures.

441 Features

In our modeling approach, we prefer that the security label of a feature is specified by the
property associations of the feature’s data classifier. This is not always possible, so some-
times the property associations on the feature itself must be used (see Section 3.2.2). Because
AADL semantics dictate that the property associations on the feature take precedence [15,
§11.3 €12], our approach becomes confusing when security-label property associations are
present on both the feature and the feature’s classifier. Such a situation conflicts with our de-
sire that the feature’s classifier be the sole descriptor of the data. The following rule clarifies
this situation:

Rule 8 (Feature—Classifier Label Equality) If both a feature and the feature’s classifier
have security-label property associations, the two security labels must be equal.

4.4.2 Connections

We must check that the security label of the source of a connection is equal to the security
label of the destination of a connection. This check is necessary because the AADL feature
(or data component) that is the connection destination represents the same data object as the
AADL feature (or data subcomponent) that is the connection source. If the end points were
allowed to have different security labels, we would be saying that a single data object could
simultaneously have two different security labels.

As mentioned above, ideally, ports would have a data classifier specified, and these would be
necessarily identical at the source and destination of a connection. Were this universally true,
this check would be unnecessary. We have, however, already discussed several exceptions to
this expectation and now further point out that AADL allows the source and destination to
have different classifiers subject to reasonable type-matching rules [15, §9.2 €13].

Access connections involving bus and virtual bus components and access features cre-
ate hardware paths that other connections can be bound to. As mentioned previously, bus
access and virtual bus access features are not considered objects but rather proxies
for subjects, so the above discussion of connections would not seem to apply to them. How-
ever, the situation is analogous, and we require that the security label of the bus shared by an
access feature is adequately described by the security label of the access feature. This descrip-
tion is ideally obtained from the feature’s bus or virtual bus classifier but is otherwise
obtained from the feature itself.

In an AADL instance model, “a connection instance is created from the ultimate source to the
ultimate destination component by following a sequence of connection declarations” [15, §9
€2]. That is, the destination of an individual connection declaration becomes the source of the
next individual connection declaration, so all the features must have identical security labels.

This discussion is summarized as the following rule:

Rule 9 (Connection Label Equality) The security label of the source feature of a connec-
tion must be identical to the security label of the destination feature of a connection. The secu-
rity labels of the source and destination features of all the individual connection declarations of
a connection instance must be identical.

CMU/SEI-2021-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 22
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

4.4.3 Flows

Because we rely on flow path specifications to check the star property, it is essential that
the flow specifications for a component be complete. If there are undocumented data flows,
high-level data could be written into low-level objects without being detected by analysis. In
particular, we must check that the flow specifications in each component type account for all
possible data flows in implementations of that type. For each component implementation, we
must determine its actual flow sinks, flow sources, and flow paths and compare them against
those declared in the implementation’s type.

We discover an implementation’s actual flows by using its connection declarations and the
flow specifications of its subcomponents. This analysis approach is modular. We can rely on
the flow specifications of a subcomponent because the analysis of the subcomponent’s clas-
sifier determines whether that subcomponent has missing flow specifications. We search for
flow paths and flow sinks starting from each in port feature. Essentially, we follow each al-
ternating sequence of connections and subcomponent flows until the sequence connects to an
out port of the implementation, in which case we have found a flow path, or we encounter a
subcomponent flow sink, in which case we have found a flow sink in the implementation. If
the component’s type does not declare a flow path between the two ports or a flow sink at the
specific in port, an error should be reported. We search backward from out ports in a simi-
lar manner to discover flow sources.

4.4.4 Least Privilege

A component should not have a higher security label than it needs to access the data that

it manipulates. There is no advantage to a properly functioning component to have a higher
security label than necessary. By minimizing the security label of a component, we minimize
the risk that the component will manipulate data irrelevant to its task. We thus recommend
that each component be checked to ensure that it has the least privilege it needs to do its job.
This guideline relates to the principle of “need to know.”

More formally, the security label of a component should be the least upper bound of the la-
bels of its constituents. The least upper bound of two security labels (level;, categories;) and
(levely, categories,) can be defined as (max(level; levely), categories; U categories,).

Specifically, we recommend the following rules be enforced:

Rule 10 (Least Privilege) The security label of a feature group type should be the least up-
per bound of the security labels of its features. The security label of a component type should
be the least upper bound of the security labels of its features. The security label of a component
implementation should the least upper bound of the security labels of its features, subcompo-
nents, and subprogram calls.

4.5 Sanitizing Information

The purpose of enforcing a security model on a system is to prevent information that should
be kept secret from being released to those who cannot be trusted to see it. In the Bell-
LaPadula model, the star property is central to achieving this goal: It prevents secret infor-
mation from being written into nonsecret containers. In other words, data can only become
more secure. Of course, in the real world, this approach is too limiting. Systems need to be
allowed to perform the following practical behaviors:

* derive less secret data from secret data and pass that derived data to other less-than-
fully-trusted systems

* pass secrets over public communications channels

3This definition exploits the fact that our level ordering is linear.

CMU/SEI-2021-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 23
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

o O WO =

© 00 N O OO A WO N =

The former might be possible by removing or obfuscating personally identifiable information
from a database record; the latter could be achieved by encrypting the information before it is
sent over the wire. In the literature, these kinds of actions are often referred to as sanitizing
(the term we use), write downs, or downgrades. From the modeling point of view, however,
these legitimate actions are valid exceptions to, but violations of, the star property. In this
section, we describe an approach to incorporating these sorts of exceptions into the model.

4.5.1 Sanitized Flows

We accommodate sanitization in the model through the concept of the sanitized flow: a £low
path whose output feature derives a portion of its output from an input feature whose se-
curity label is not dominated by the security label of the output feature. In other words, a
sanitized flow is not checked against the star property. The implication is that the data is
manipulated in some way that allows the lowering of its security label (e.g., the data is en-
crypted, degraded, obfuscated, aggregated, or inherently low-level data that is extracted from
surrounding high-level data). Note that by modeling sanitization, we can determine that it

is performed within the capabilities of a trusted subject. Because sanitization represents an
exception to the security rules, it should be used cautiously and infrequently. The purpose of
a sanitized flow in an AADL model is to mark those places in the system architecture where
sanitization may occur so that the sanitization may receive the extra scrutiny that it deserves.
Our analysis does not attempt to determine whether the sanitization is performed correctly.*

A flow path is marked as sanitized by using the property Security: :Downgrading.
Listing 4.1 shows the definition of the property. In our usage of the property, it only makes
sense when used on a flow path specification. By default, the property value is false,
indicating that a flow is not a sanitized flow. The intent is that specific flows are declared
to be sanitized by explicitly associating the property with true, as shown in Listing 4.2.
We assume that the security label of data type Data.High dominates that of data type
Data.Low.

—-— A downgrading flow path is one where the security level of some or
-— all of the data passing through the input port of the flow path
—-— 1s of a higher security level than that of the data passing

—— through the output port of the flow path.

Downgrading: aadlboolean => false applies to (flow);
Listing 4.1: The Downgrading Property Declaration

system Downgrader
features
input: in data Data.High;
output: out data Data.Low;
flows
downgraded_flow: input =-> output {
Security::Downgrading => true;
}i
end Downgrader;
Listing 4.2: An Example of Sanitization

4Chong and Myers describe a type system that prevents sanitization from occurring at the wrong time [8]. Such
a type system would be useful for checking the source text implementation of a subprogram component that has a
sanitized out parameter.

CMU/SEI-2021-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 24
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

4.5.1.1 Analysis of Sanitized Flows

The primary purpose of marking a flow as sanitized is to exempt its destination port from the
star property.

Rule 11 (Sanitized Flow) When a flow path is sanitized, analysis does not check whether
the security label of its destination dominates the security label of its source.

The destination of a sanitized flow must still respect the simple security property: The sani-
tizing activity must still be within the capabilities of the component.

4.5.2 Sanitization Metrics

Because marking a flow as sanitized sidesteps the security model, the use of sanitization
should be kept to a minimum. A system with many sanitized flows is suspicious. Of course,

it is hard to say how many is too many. To this end, we recommend that analysis tools report
metrics on the number of sanitized flows in a system so that sanitization is always visible to
the modelers.

There is no need to declare a sanitized flow when the security label of the flow destination
dominates the security label of the flow source. It is useful to identify such sanitized flows to
prevent them from being accidentally (or, even worse, deliberately) misused. Analysis tools
should issue at least a warning, if not an error, when a flow is unnecessarily marked as sani-
tized.

4.5.3 Caveats

It is beyond the scope of the current modeling approach to capture the exact nature of the
sanitization, that is, whether it is achieved by encryption, obfuscation, or some other process.
Accordingly, the present approach is not capable of assuring the correct use of the sanitized
data once it leaves the component performing sanitization. For example, if the sanitization is
performed by encrypting top secret data, there is no way to guarantee that the data is later
decrypted to top secret data as we would expect. Without some kind of additional labeling
of the data, there is nothing to prevent the system design from decrypting to secret, which
would be a violation of the security rules.

CMU/SEI-2021-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 25
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

0 N O 0o B WO N =

N o o0 A WO N = O ©

5 Examples and Case Studies

This section contains complete examples of AADL models to illustrate two technical problems
and show how they are represented using AADL.

5.1 Example 1

Our first example is a simple system shown in AADL graphical notation [15, Appendix D] in
Figure 5.1. It has two producer systems, a computation system, and a consumer system. The
diagram shows the four subsystems, their ports, the connections between them, and the flows
through them. The data ports are labeled with their associated data classifiers to enhance the
traceability of the security labels that are declared in the textual representation of the data
types in Listing 5.1. The system includes flow specifications so that the star property can be
enforced.

This example is intentionally straightforward to demonstrate the basic ideas of modeling secu-
rity in AADL. In particular, the example demonstrates the following;:

* Data ports receive their security attributes from their data classifier.

» Event ports receive their security attributes from their local property associations.
* Implementations inherit security attributes from their type.

* Security attributes are applied hierarchically, at each layer of the system.

This example, as well as the next, uses the security categories A, B, and C. Thus, we assume
that the property type Security_Type_Specifications::Caveat_Type has been de-
clared as

Caveat_Type: type enumeration (A, B, C);
The declarations for data types X, Y, and Z are shown in Listing 5.1 and contain the security

property associations necessary to mark them as having the security labels (confidential, {A}),
(confidential, {B}), and (confidential, {A, B}), respectively.

data X
properties
Security::Level => confidential;
Security::Level_Caveats => (A);
end X;
data Y
properties
Security::Level => confidential;
Security::Level_Caveats => (B);
end Y;
data Z
properties
Security::Level => confidential;
Security::Level_Caveats => (A, B);
end 7;

Listing 5.1: Security-Annotated Data Classifier Declarations for the System in Figure 5.1

CMU/SEI-2021-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 26
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

(" Srcl: Producerl
|

(Confidential, {A})

CompleteSystem.Impl

(Confidential, {A, B})

(" Comp:)
Computer
result: Z

Dest: Consumer\

— |
(Confidential, outbut: X
) j P

(" Src2: Producer?

(Confidential, output: Y
&) j P

(Confidential, {B})

k(Confidential, {A, B, C}

in2:Y 1

int t (Confidential,
interrup (A, B, C}))

(Confidential,| | ’
{A, B, C}),_J Interrupt

(Confidential, {C})

J

Figure 5.1: An Example System Annotated with Security Labels

The two producer system declarations are shown in Listing 5.2. Each system type contains

the property associations necessary to declare the appropriate security label. No property as-

sociations are required for the data port output of each type because the security label is

derived from the data classifier (X and Y, respectively) of the feature.

system Producerl
features

output: out data port X;

flows

src: flow source output;

properties

Security::Level => confidential;
Security::Level_Caveats => (A);

end Producerl;

system Producer?2
features

output: out data port Y;

flows

src: flow source output;

properties

Security::Level => confidential;
Security::Level_Caveats => (B);

end Producer?;

Listing 5.2: Security-Annotated Producer Systems for the System in Figure 5.1

The declarations for the final two subsystems, Computer and Consumer, are shown in List-

ing 5.3. The security label of the event port interrupt in both systems must be declared

using property associations on the feature declaration because event ports do not have an as-

sociated data classifier.

CMU/SEI-2021-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

27

0 N O O O N =

W W W NN NN NN NN MDD =+ =222 g a a
N = O © 0 N O O & W N - O ©W 0N O O p W N - O ©

system Computer
features
inl: in data port X;
in2: in data port Y;
result: out data port 7;
interrupt: out event port {
Security::Level => confidential;
Security::Level_Caveats => (C);
}i
flows
throughl: flow path inl -> result;
through2: flow path in2 -> result;
src: flow source interrupt;
properties
Security::Level => confidential;
Security::Level_Caveats => (A, B, C);
end Computer;

system Consumer
features
input: in data port Z;
interrupt: in event port {
Security::Level => confidential;
Security::Level_Caveats => (C);
}i
flows
snkl: flow sink input;
snk2: flow sink interrupt;
properties
Security::Level => confidential;
Security::Level_Caveats => (A, B, C);
end Consumer;

Listing 5.3: Security-Annotated Computer and Consumer Systems for the System in
Figure 5.1

The declarations for the outer system, CompleteSystem, and its implementation,
CompleteSystem.impl, are shown in Listing 5.4. The security label of the system is de-
clared in the type and inherited by the implementation.

CMU/SEI-2021-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

28

system CompleteSystem
properties
Security::Level => confidential;
Security::Level_Caveats => (A, B, C);
end CompleteSystem;

system implementation CompleteSystem.Impl
subcomponents
srcl: system Producerl;
src2: system Producer?;
comp: system Computer;
dest: system Consumer;
connections
cl: data port srcl.output =-> comp.inl;
c2: data port src2.output -> comp.in2;
c3: data port comp.result -> dest.input;
cd4: event port comp.interrupt —-> dest.interrupt;
end CompleteSystem.Impl;

Listing 5.4: Outer System Declaration for the System in Figure 5.1

5.2 Example 2

Here we present a second example of modeling security attributes in AADL using the exam-
ple from Section 2.5. Figure 5.2 redisplays the example from Figure 2.2 but with the security
label of s4 corrected. This example illustrates the following:

* It emphasizes that AADL features represent data objects.

* It emphasizes that AADL components represent subjects.

* It emphasizes that AADL connections pass objects between subjects.
* It demonstrates a sanitized flow.

* It suggests an approach to mapping a complex subject—object diagram into an AADL

model.
S1 N S3 L
(2,{a}) (4,{a})
@.1abh |
S4 L .) S5 L, 08
(1,{b}) (L,{b}) (1,{b})

Figure 5.2: Example from Figure 2.2 with the Security Label of s, Corrected

In Figure 5.2, objects are shown explicitly, although in AADL the objects are implicitly repre-
sented as data port features. Thus, we create a data type for each of the objects in the figure
to be used as the data classifiers for data ports. These types are shown in Listing 5.5. Specifi-
cally, there are four data component types:

CMU/SEI-2021-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 29
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

0 N O 0o B WO N =

DN NN - 4 4 a4 a4 4 o A
W N - O © 0N OO O WO =~ O ©

- O © 00 N O o & WO N =

1. The data type Data_Unclassified has the security label (unclassified, {A}) and is
used for accessing object o7.

2. The data type Data_Confidential has the security label (confidential, {A}) and is
used for accessing object os.

3. The data type Data_Secret has the security label (secret, {A}) and is used for access-
ing objects 03 and oy4.

4. The data type Other_Data has the security label (unclassified, {B}) and is used for ac-
cessing objects o5, 0g, 07, and og.

data Data_Unclassified
properties
Security::Level => unclassified;
Security::Level_Caveats => (A);
end Data_Unclassified;

data Data_Confidential
properties
Security::Level => confidential;
Security::Level_Caveats => (A);
end Data_Confidential;

data Data_Secret
properties
Security::Level => secret;
Security::Level_Caveats => (A);
end Data_Secret;

data Other_Data

properties
Security::Level => unclassified;
Security::Level_Caveats => (B);

end Other_Data;

Listing 5.5: Data Types for the Objects in Figure 5.2

For each subject shown in Figure 5.2, we declare a system type of the same name. Sys-

tems S1, S2, S3, S4, and S5 are shown in Listing 5.6. To facilitate traceability to the orig-
inal example, each port feature is named based on the object that it accesses (e.g., o1_in
and o4 _out), and flows are named based on the objects at the end points of the flow (e.g.,
0l to_02). The flow from oy to 07 in system S2, 02_to_o7, is marked as sanitized by a
Downgrading property association on the flow specification declaration. Note that there can
be no flow from og to 03 in S2 because the access s ~» 03 is not sanitizing.

system Sl

features
ol_in: in data port Data_Unclassified;
ol_out: out data port Data_Unclassified;
o02_out: out data port Data_Confidential;

flows
ol_to_ol: flow path ol_in -> ol_out;
ol _to_o2: flow path ol_in -> o2_out;
ol_src: flow source ol_out;

properties
Security::Level => confidential;

CMU/SEI-2021-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 30
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

12
13
14
15
16
17
18
19
20
21

22
23
24
25
26
27
28
29
30
31

32
33
34
35
36
37
38
39
40
41

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

Security::Level_Caveats => (A);
end S1;

system S2
features
02_1in: in data port Data_Confidential;
06_1in: in data port Other_Data;
o3_out: out data port Data_Secret;
o7_out: out data port Other_Data;
flows
02_to_o3: flow path 02_in -> o3_out;
02_to_o7: flow path 02_in -> o7_out {
Security::Sanitized => true;
}i
06_to_o7: flow path o6_in -> o7_out;
properties
Security::Level => secret;
Security::Level_Caveats => (A, B);

end S2;
system S3
features
03_in: in data port Data_Secret;
0o4_out: out data port Data_Secret;
flows
o3_to_o4: flow path o3_in -> o4_out;
properties
Security::Level => top_secret;
Security::Level_Caveats => (A);
end S3;
system S4
features
o5_1in: in data port Other_Data;
o6_out: out data port Other_Data;
flows
o5_to_o6: flow path o5_in -> o6_out;
properties
Security::Level => unclassified;
Security::Level_Caveats => (B);
end S5S4;
system S5
features
o7_in: in data port Other_Data;
o8_out: out data port Other_Data;
flows
o7_to_o8: flow path o7_in -> o8_out;
properties
Security::Level => unclassified;
Security::Level_Caveats => (B);
end S5;

Listing 5.6: System Types for the Subjects in Figure 5.2

CMU/SEI-2021-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

31

0 N O 0o WO N =

W W W W W W W W W NN N NN NN N MND DD 2+ =2 a2 g
0w N O O WO - O ©W 0N O O & WN -~ O © 0N O O W NV =~ O ©

The overall example is assembled as the implementation of a larger system (see List-
ing 5.7), specified by the system type Example and implemented by system implementation
Example.Impl:

* The input object o5 and the output objects o4 and og are the features 0o5_in, o4 _out,
and o8_out, respectively. Each connection is named based on the object that passes
through it.

* Object 07 is purely internal. It exists only as the feedback loop represented by the de-
layed data connection ol_feedback.

* Three flows are declared and implemented. In particular, there are two flow sources in
system type Example starting from o7, but whose paths diverge within ss:

1. 01_to_o8, which feeds back through s; and passes through s, as object oo

2. ol_to_o4, which feeds back through s; and passes through s, as the sanitized ob-
ject o7

system Example
features
0o4_out: out data port Data_Secret;
o5_in: in data port Other_Data;
08_out: out data port Other_Data;
flows
o5_to_o08: flow path o5_in -> o08_out;
ol_to_o8: flow source o08_out;
ol_to_o4: flow source o04_out;
properties
Security::Level => secret;
Security::Level_Caveats => (A, B);
end Example;

system implementation Example.Impl
subcomponents
sl: system S1;
s2: system S2;
s3: system S3;
s4: system S4;
sb: system S5;
connections
ol_feedback: data port sl.ol_out -> sl.ol_in {
Timing => delayed;
}i
02: data port sl.o2_out =-> s2.02_in;
03: data port s2.03_out =-> s3.03_in;
04: data port s3.04_out -> o4_out;
05: data port o5_in -> s4.05_in;
06: data port s4.06_out —-> s2.06_1in;
o7: data port s2.07_out -> s5.07_in;
08: data port s5.08_out =-> 08_out;
flows
o5_to_o08: flow path o5_in -> o5 -—>
s4.05_to_o06 => 06 =—>
s2.06_to_o7 => o7 =>
s5.07_to_o8 => 08 => 08_out;
ol_to_o8: flow source sl.ol_src => ol_feedback —>

CMU/SEI-2021-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

32

39
40
41
42
43
44
45
46

sl.ol_
S2.02_
s6.07_

ol_to_o4:

sl.ol_
S2.02_
s3.03_

end Example.Impl;

to_02 => 02
to_o7 => o7
to_o8 => 08
flow source
to_02 => 02
to_o3 => 03
to_od4 =-> o4

->
->

-> 08_out;

sl.ol_src => ol_feedback —>
->

->

-> 04_out;

Listing 5.7: Top-Level System Specification for the Example in Figure 5.2

CMU/SEI-2021-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

33

6 Conclusion

The concept of subjects and objects, where subjects operate on objects by permissible ac-
cess operations (read, execute, append, write), enables us to model and validate security at
both the software and execution platform levels. At the software level, we can view processes,
threads, and software components as subjects and data objects as objects.

Determining the viability of a system, given confidentiality requirements of data objects and
security clearance by users, one can see validation as a two-step process: (1) validation of the
software architecture followed by (2) validation of the system architecture, where the software
architecture is mapped to execution platform components. Validating the software requires us
to do all of the following:

* Identify the data elements that we want to protect (objects).
* Determine their security requirements.

* Identify the components (software components, processes, threads) that should be al-
lowed to access the objects.

* Confirm that the access is as specified by access operations.

Thus, we can ensure that data elements are accessed only by authorized users and that con-
fidentiality (as given by security labels) and integrity (as given by access operations) are en-
forced.

Mapping the entities of a software architecture (e.g., processes, threads, and partitions) to an
execution platform architecture consisting of processors, communications channels, memory,
and the like enables us further to ensure that the platform architecture supports the required
security labels. Consider the scenario of two communicating processes, both requiring a high
level of security as the data objects require secret clearance. Furthermore, the system plat-
form in this scenario consists of a set of CPUs with hardware support for various algorithms
that encrypt messages before network transmission. By modeling the system, we can represent
and validate that processes and threads (now considered to be objects) will be executed (ac-
cess mode) on CPUs (subjects) with adequate encryption support. We can also validate that
CPUs (objects) communicate data (access modes of writing and reading) over appropriately
secured communications channels. In a similar fashion, we can enforce design philosophies in
which only processes of the same security label are allowed to coexist within the same CPU or
partition or in which they can write to a secured memory.

In this report, we have demonstrated how model-based engineering can support early model-
ing and validation of security. Specifically, using the AADL, we have specified common and
well-defined security attributes and represented them in the AADL models. The adopted no-
tion is primarily based on the Bell-LaPadula model. Using the AADL and the Bell-LaPadula
and extended sibling models, one can model and validate security according to flow-based ap-
proaches, Bell-LaPadula, Chinese wall, and role-based access. To support security analysis, we
have taken established criteria from the Bell-LaPadula model and defined additional criteria
that allow us to evaluate how viable a system is to enforce security, given confidentiality re-
quirements of data objects and security clearance by users. For example, we can ensure that
processes and threads are mapped to appropriate hardware, communicate over secured chan-
nels, and reside/store data in protected memory.

The overall objective of a secure system implies that security clearances are given conserva-
tively (as opposed to generously). To this end, we can analyze models to derive the minimum
security clearance on components in the model. Or to put it differently, we can use the notion

CMU/SEI-2021-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 34
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

of subjects and objects to determine the minimum security clearance for a subject based on
the requirements of the objects being accessed by the specific subject. By also pointing out
differences between actual security clearances and the minimum security clearance required,
a system designer can evaluate how effective and tight security is. By providing mechanisms
to ensure that sanitization is conducted within allowed boundaries, the designer can analyze
and trace these relatively more threatening security risks, as sanitizing actions are permitted
exemptions of security criteria and rules and, as such, should be minimized in the system.

CMU/SEI-2021-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 35
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

References/Bibliography

URLs are valid as of the publication date of this document.

[1]

[9]

Algirdas Avizienis, Jean-Claude Laprie, and Brian Randell. Fundamental concepts of
dependability. In Proceedings of the Third IEEE Information Survivability Workshop,
pages 712, 2000.

D. E. Bell and L. J. LaPadula. Secure computer systems: A mathematical model. Tech-
nical Report MTR-2547, Vol. II, The MITRE Corporation, 1973. ESD-TR-73-278-11.

D. E. Bell and L. J. LaPadula. Secure computer systems: Mathematical foundations.
Technical Report MTR-2547, Vol. I, The MITRE Corporation, 1973. ESD-TR-73-278-1.

D. E. Bell and L. J. LaPadula. Secure computer systems: A refinement of the mathe-
matical model. Technical Report MTR-2547, Vol. III, The MITRE Corporation, 1974.
ESD-TR-73-278-111.

D. E. Bell and L. J. LaPadula. Secure computer systems: Unified exposition and MUL-
TICs interpretation. Technical Report MTR-2997 Rev. 1, The MITRE Corporation,
1976.

K. J. Biba. Integrity considerations for secure computer systems. Technical Report MTR-
3153, The MITRE Corporation, 1975.

David F. C. Brewer and Michael J. Nash. The Chinese wall security policy. In IEEE
Symposium on Security and Privacy, pages 206-214, 1989.

Stephen Chong and Andrew C. Myers. Security policies for downgrading. In Proceedings
of the 11th ACM Conference on Computer and Communications Security, pages 198-209,
2004.

Dorothy E. Denning. A lattice model of secure information flow. Communications of the
ACM, 19(5):236-243, May 1976.

[10] Dorothy E. Denning and Peter J. Denning. Certification of programs for secure informa-
tion flow. Communications of the ACM, 20(7):504-513, July 1977.

[11] Peter H. Feiler and David P. Gluch. Model-Based Engineering with AADL. Addison-
Wesley, 2013.

[12] J. S. Fenton. Memoryless subsystems. The Computer Journal, 17(1):143-147, January
1974.

[13] David F. Ferraiolo and D. Richard Kuhn. Role-based access controls. In 15th National
Computer Security Conference, pages 554-563, 1992.

[14] Jorgen Hansson, Peter Feiler, and Aaron Greenhouse. Enforcement of quality attributes
for net-centric systems through modeling and validation with architecture description lan-
guages. In Fourth European Congress Embedded Real Time Software and Systems, 2008.

[15] SAE International. Architecture Analysis & Design Language (AADL). Aerospace Stan-
dard AS5506C, SAE International, 2017.

[16] Carl E. Landwehr. A survey of formal models for computer security. Technical Report
8489, Naval Research Laboratory, 1981.

[17] T. Y. Lin. Chinese wall security policy—an aggressive model. In Fifth Annual Computer
Security Applications Conference, pages 282—289, 1989.

CMU/SEI-2021-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 36

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

[18] Terry Mayfield, J. Eric Roskos, Stephen R. Welke, John M. Boone, and Catherine W.
McDonald. Integrity in automated information systems. IDA Paper P-2316, Institute for
Defense Analyses, 1991.

[19] John McLean. Security models and information flow. Technical report, Center for High
Assurance Computing Systems, Naval Research Laboratory, Washington, DC, 1990.

[20] John McLean. Security models. In Encyclopedia of Software Engineering, volume 2, pages
1136-1145. John Wiley & Sons, Inc., 1994.

CMU/SEI-2021-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 37
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, search-
ing existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regard-
ing this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of

1. AGENCY USE ONLY 2. REPORT DATE 3. REPORT TYPE AND DATES

(Leave Blank) March 2021 COVERED
Final

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
Modeling and Validating Security and Confidentiality in System Architectures FA8702-15-D-0002

6. AUTHOR(S)
Aaron Greenhouse, Jérgen Hansson, and Lutz Wrage

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Software Engineering Institute REPORT NUMBER
Carnegie Mellon University CMU/SEI-2021-TR-004
Pittsburgh, PA 15213

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
SEI Administrative Agent AGENCY REPORT NUMBER
AFLCMC/AZS n/a
5 Eglin Street
Hanscom AFB, MA 01731-2100

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT 12B DISTRIBUTION CODE
Unclassified/Unlimited, DTIC, NTIS

13. ABSTRACT (MAXIMUM 200 WORDS)

AADL and examples modeled in AADL.

The importance of security in computer and information systems is increasing as network-connected computer systems become more
ubiquitous. The objective of security is to verify that the computing platform is secured and that data and information are properly ac-
cessed and handled by users and applications, ensuring data confidentiality and integrity. To develop a framework for modeling and
verifying security as a data quality attribute, designers need to identify parameters and variables with the expressive power to capture
and represent security models and determine the type of analysis to enable. This report presents an approach for modeling and validat-
ing confidentiality based on the Bell-LaPadula security model using the Architecture Analysis and Design Language (AADL). The report
describes the Bell-LaPadula security model and elaborates how security and Bell-LaPadula attributes are mapped to concepts and
represented in AADL. It then describes modeling and validating security in AADL models, considering conditions that need to be en-
forced for a system to ensure conformance to the Bell-LaPadula security policy. It also presents the analysis capabilities provided by

14. SUBJECT TERMS
architecture modeling, architecture analysis, confidentiality, security, Bell-LaPadula model

15.

NUMBER OF PAGES
44

16. PRICE CODE

17. SECURITY CLASSIFICATION OF 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION | 20. LIMITATION OF
REPORT OF THIS PAGE OF ABSTRACT ABSTRACT
Unclassified Unclassified Unclassified UL

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18
298-102

CMU/SEI-2021-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[Distribution Statement A] Approved for public release and unlimited distribution.

	Modeling and Validating Security and Confidentiality in System Architectures
	Table of Contents
	List of Figures
	Listings
	Abstract
	Introduction
	2 The Bell–LaPadula Security Model
	Subjects and Objects
	Security Labels
	Security Properties
	Trusted Subject
	Examples and Discussion
	Access Matrix
	Security Violations
	Hierarchical Models
	Trusted Subject

	3 Representing Bell–LaPadula in AADL
	Security Labels in AADL
	The Security and Security_Type_Specifications Property Sets

	Subjects and Objects in AADL
	AADL Components
	AADL Features

	Access Modes in AADL
	AADL Port Features
	AADL Feature Group Features
	AADL Access Features

	4 Analysis and Validation in AADL
	Maximum vs. Current Security Label
	Checking the Simple Security Property
	Checking Subprogram Calls
	Software–Hardware Bindings

	Checking the Star Property
	Representing the Current Security Label
	Checking the Star Property in AADL

	Checking Architectural Consistency
	Features
	Connections
	Flows
	Least Privilege

	Sanitizing Information
	Sanitized Flows
	Sanitization Metrics
	Caveats

	5 Examples and Case Studies
	Example 1
	Example 2

	6 Conclusion
	References/Bibliography

