
Learning and Decision Making
from Diverse Forms of Information

Yichong Xu

June 2020
CMU-ML-20-108

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA

Thesis Committee

Artur Dubrawski, Co-Chair
Aarti Singh, Co-Chair

Sivaraman Balakrishnan
John Langford (Microsoft Research)

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright c© 2020 Yichong Xu

This research was sponsored by: Air Force Research Laboratory award numbers FA87501220324, FA87501420244,
FA87501720130 and FA87501720212; National Institutes of Health award numbers R01GM117622, R01HL141916,
R01HL144692 and R01NR013912; National Science Foundation award numbers CCF1563918, CCF1763734 and
IIS1320347; and Innovation Works award number 2015WCZ01733E1.

Keywords: interactive learning, pairwise comparison, multitask learning, preference learning,
ranking

To my family, my girlfriend, and everyone I have ever met

iv

Abstract
Classical machine learning posits that data are independently and identically

distributed, in a single format usually the same as test data. In modern applications
however, additional information in other formats might be available freely or at a
lower cost. For example, in data crowdsourcing we can collect preferences over the
data points instead of directly asking the labels of a single data point at a lower cost.
In natural language understanding problems, we might have limited amount of data
in the target domain, but can use a large amount of general domain data for free.

The main topic of this thesis is to study how to efficiently incorporate these diverse
forms of information into the learning and decision making process. We study two
representative paradigms in this thesis.
• Firstly, we study learning and decision making problems with direct labels and

comparisons. In many applications such as clinical settings and material science,
comparisons are much cheaper to obtain than direct labels. We show that
comparisons can greatly reduce the problem complexity; using comparisons as
input, our algorithm requires an exponentially smaller amount of labels to work
than traditional label-only algorithms. Moreover, our total query complexity is
similar to previous algorithms. We consider various learning problems in this
settings, including classification, regression, multi-armed bandits, nonconvex
optimization, and reinforcement learning.

• Secondly, we study multi-task learning and transfer learning to learn from
different domains and tasks of data. In this case, our algorithm use the previous
collected data from similar tasks or domains, which are essentially free to
use. We propose simple yet effective ways to transfer the knowledge from
other domains and tasks, and achieve state-of-the-art result on several natural
language understanding benchmarks.

We illustrate both theoretical and practical insights in this thesis. Theoretically, we
show performance guarantees of our algorithms as well as their statistical minimaxity
through information-theoretic limits. On the practical side, we demonstrate promising
experimental results on price estimation and natural language understanding tasks.

vi

Acknowledgments
First and foremost, I would like to thank my PhD advisors Artur Dubrawski and Aarti

Singh. It is no doubt that my advisors shape me as a researcher in every aspect, from my
research taste, my topics, to how I write scientific papers. Not only did I learn about the
knowledge, but also I learn from their methods and thoughts to tackle research problems.
From another perspective, I think I should also thank them for paying me salary so that I will
not go bankrupt during my PhD journey (laugh).

Thank Sivaraman Balakrishnan and John Langford as my thesis committee members.
It was wonderful experience working with Siva during my PhD. He helped me a lot on my
paper writing skills, and I learned a lot from his writings. I had many exciting discussions on
reinforcement learning with John, and that inspires a lot of my interest. I would also like to
thank both of them for their helpful comments to improve this thesis.

During my PhD, I had two exciting internships at Microsoft Research. I would like to
thank Jianfeng Gao, Jingjing Liu, Xiaodong Liu and Yelong Shen, who mentored and helped
me a lot during these internships. Natural language processing was a complete new area
for me, and I was lucky to have them when I entered this area. I learned a ton about the
methodology and think process for doing experiments on machine learning. Special thanks to
Xiaodong, who helped me a lot on coding and tricks. My coding improved every time I went
to an internship.

I would like to thank all my collaborators: Sivaraman Balakrishnan, Xi Chen, Artur
Dubrawski, Jianfeng Gao, Aparna Joshi, Chunyuan Li, Jingjing Liu, Xiaodong Liu, Hariank
Muthakana, Kyle Miller, Hoifung Poon, Nihar B. Shah, Yelong Shen, Xiaofei Shi, Pingzhong
Tang, Yifeng Teng, Ruosong Wang, Yuexin Wu, Shenke Xiao, Tianjun Xiao, Kuiyuan Yang,
Lin F. Yang, Yiming Yang, Hongyang Zhang, Jiaxing Zhang, Zheng Zhang and Han Zhao.
It was a nice experience working with all of you. My special thank goes to Nihar, Shah,
Pingzhong Tang, Jiaxing Zhang and Zheng Zhang. I worked a lot with Nihar after he came to
CMU, and I learned a lot from his ways of tackling research problems. I would also like to
thank Pingzhong, Jiaxing and Zheng for being my mentors when I was undergraduate and
spawning my interest in scientific research.

I would like to thank all of my friends, from CMU, from Microsoft Research, from
Tsinghua University, and from anywhere in the world. Friendship means a lot for someone
like me, who came to an entirely new country for my PhD. I really appreciate all the time I
spent with friends. I would like to all of them for the joy, the support, the excitement that they
gave me. I would also thank Diane Stidle and other amazing administrative staff at CMU
MLD for supporting the PhD students here.

Last but most importantly, I would like to thank my family and my girlfriend Zhixin Li
for their unconditional love and support during my PhD. Doing a PhD is never an easy thing
for me, and I would not have done it without their help. I thank them sincerely.

Overall, my PhD is a difficult but rewarding journey. Research is like a box of chocolates.
You never know whether you are gonna get ground-breaking and inspiring results, or another
piece of junk that is not meaningful anyway. PhD is a wonderful journey, but my life journey
has just begun. All in all, I appreciate all my experience that brings me here, and I will also
appreciate everywhere they bring me to in the future of my life.

viii

Contents

1 Introduction 1
1.1 Overview of Results . 1

1.1.1 Interactive Learning from Labels and Comparisons 2
1.1.2 Decision Making with Comparisons . 2
1.1.3 Natural Language Understanding from Multiple Domains 3

I Interactive Learning from Labels and Comparisons 5

2 Classification with Labels and Comparisons 7
2.1 Our Techniques . 9
2.2 Related Works . 10
2.3 Preliminaries . 11
2.4 The ADGAC Algorithm . 13

2.4.1 Algorithm Description . 13
2.4.2 Theoretical Analysis of ADGAC . 14

2.5 A2-ADGAC: Learning of Generic Hypothesis Class 16
2.6 Margin-ADGAC: Learning of Halfspaces . 17
2.7 Lower Bounds . 18

2.7.1 Lower Bound on Label Complexity . 19
2.7.2 Lower Bound on Total Query Complexity 19
2.7.3 Adversarial Noise Tolerance of Comparisons 20

2.8 Conclusion . 20
2.9 Proofs . 20

2.9.1 Proof of Theorem 4 . 20
2.9.2 Proof of Theorem 5 . 24
2.9.3 Proof for A2-ADGAC . 24
2.9.4 Proof for Margin-ADGAC . 26
2.9.5 Proof of Lower Bounds . 32
2.9.6 Proof of Theorem 10 . 32
2.9.7 Proof of Theorem 11 . 32
2.9.8 Proof of Theorem 12 . 33

ix

3 Regression with Labels and Ordinal Information 37
3.1 Our Contributions . 38
3.2 Related Works . 39
3.3 Nonparametric Regression with Ordinal Information 40

3.3.1 Background and Problem Setup . 40
3.3.2 Nonparametric Regression with Perfect Ranking 42
3.3.3 Nonparametric Regression using Noisy Ranking 45
3.3.4 Regression with Noisy Pairwise Comparisons 47

3.4 Linear Regression with Comparisons . 48
3.4.1 Background and Problem Setup . 49
3.4.2 Algorithm and Analysis . 50
3.4.3 Lower Bounds . 51

3.5 Experiment Results . 52
3.5.1 Modifications to Our Algorithms . 53
3.5.2 Simulated Data . 54
3.5.3 Predicting Ages from Photographs . 57
3.5.4 Estimating AirBnB Listing Prices . 59

3.6 Conclusion . 60
3.7 Additional Experimental Results . 62
3.8 Detailed Proofs . 64

3.8.1 Proof of Theorem 22 . 64
3.8.2 Proof of Theorem 23 . 69
3.8.3 Proof of Theorem 24 . 71
3.8.4 Proof of Theorem 26 . 74
3.8.5 Proof of Theorem 27 . 77
3.8.6 Proof of Theorem 30 . 79
3.8.7 Proof of Theorem 32 . 81
3.8.8 Lower Bounds for Total Number of Queries under Active Case 82

3.9 Auxiliary Technical Results . 84

II Decision Making with Dueling Choices 85

4 Discrete and Continuous Multi-Armed Bandits with Dueling Choices 87
4.1 Introduction . 87
4.2 Our Contribution . 88
4.3 Related Work . 88
4.4 Discrete Case: The K-Armed MAB-DC Problem 89

4.4.1 Problem Setup . 90
4.4.2 Algorithm and Analysis . 90
4.4.3 Experiments . 91

4.5 Continuous Case: MAB-DC for Optimizing a Nonconvex Function 92
4.5.1 The Gaussian Process Back End . 94
4.5.2 The Borda Function fr . 95

x

4.5.3 The COMP-GP-UCB Algorithm . 97
4.5.4 COMP-GP-UCB with Unknown ζ . 100
4.5.5 Comparison with MF-GP-UCB [103] 101
4.5.6 Experiments . 102

4.6 Conclusion . 106
4.7 Proofs . 106

4.7.1 Proof of Theorem 45 . 106
4.7.2 Proof of Proposition 46 . 107
4.7.3 Proof of Theorem 47 and 48 . 107
4.7.4 Proof of Lemma 55 . 111
4.7.5 Proof of Corollary 49 . 111

5 The Thresholding Bandit Problem with Dueling Choices 113
5.1 Related Works . 114
5.2 Preliminary . 114

5.2.1 Problem Complexity . 115
5.3 Algorithm and Analysis . 117

5.3.1 Algorithm Description . 117
5.3.2 Theoretical Analysis . 119

5.4 Lower Bounds . 119
5.4.1 An Arm-Wise Lower Bound . 119
5.4.2 Optimality of nduel and npull . 120

5.5 Implications of Bounds in Special Cases . 120
5.6 Experiments . 122

5.6.1 Setup and Baselines . 122
5.6.2 Experiment Results . 123

5.7 Conclusion . 123
5.8 Proofs . 124

5.8.1 Proof of Theorem 58 . 124
5.8.2 Proof of Theorem 59 . 126
5.8.3 Proof of Corollary 61 . 128
5.8.4 Proof of Proposition 62 . 128
5.8.5 Proof for Example 1 . 128
5.8.6 Proof for Example 2 . 129

6 Preference-based Reinforcement Learning with Finite-Time Guarantees 131
6.1 Related Work . 132
6.2 Problem Setup . 132

6.2.1 Preference Probablities . 134
6.3 PbRL with a Simulator . 135
6.4 Combining Exploration and Policy Search for General PbRL 136

6.4.1 Preferece-based Exploration and Policy Search (PEPS) 136
6.4.2 Discussion . 139
6.4.3 Another Version to Accommodate Arbitrary PAC Dueling Algorithm . . 139

xi

6.4.4 Adapting PEPS to the Fixed Budget setting 140
6.5 Experiments . 140
6.6 Conclusion . 142
6.7 Proofs . 142

6.7.1 Proof of Proposition 66 . 142
6.7.2 Proof of Proposition 67 . 143
6.7.3 Proof of Theorem 68 . 143
6.7.4 Proof of Theorem 70 . 144
6.7.5 Proof of Theorem 72 . 145
6.7.6 Proof of Theorem 74 . 146

6.8 Auxiliary Lemma . 147

III Natural Language Understanding from Multiple Domains 151

7 Multi-task Learning with Sample Re-weighting for Machine Reading Comprehen-
sion 153
7.1 Related Works . 154
7.2 Model Architecture . 154

7.2.1 Input Format . 155
7.2.2 Lexicon Encoding Layer . 155
7.2.3 Contextual Encoding Layer . 155
7.2.4 Memory/Cross Attention Layer . 155
7.2.5 Answer Module . 156

7.3 Algorithms . 157
7.3.1 Mixture Ratio . 157
7.3.2 Sample Re-Weighting . 158

7.4 Experiment Results . 159
7.4.1 Datasets . 160
7.4.2 Experiment Details . 160
7.4.3 Performance of MT-SAN . 161
7.4.4 Comparison of Different MTL Algorithms 164
7.4.5 Additional Experiments on DrQA . 166

7.5 Conclusion . 167

8 Multi-Source Transfer Learning for Natural Language Understanding in the Medi-
cal Domain 169
8.1 Related Works . 170
8.2 Methods . 170

8.2.1 Fine-tuning details . 170
8.2.2 Model Ensembles . 172
8.2.3 Dataset-Specific Details . 172
8.2.4 Implementation and Hyperparameters 173

8.3 Experiment Results . 174

xii

8.3.1 Test Set Performance and LeaderBoards 174
8.3.2 Ensembles from Different Sources . 175
8.3.3 Single-Model Performance . 175

8.4 Conclusion . 176

9 Conclusion and Discussion 177

Bibliography 179

xiii

xiv

List of Figures

2.1 Explanation of work flow of ADGAC-based algorithms 8

3.1 Workflow of R2 Algorithm . 43
3.2 Graphical illustration of lower bounds . 45
3.3 Experiments on simulated data for R2 . 54
3.4 Experimental results on synthetic dataset for R2 with comparisons 56
3.5 Experimental results on synthetic dataset for CLR 57
3.6 Experimental results on age prediction . 58
3.7 Results for AirBnB price estimation . 61
3.8 Scatter plot of true prices w.r.t average user estimated prices 63
3.9 Experimental results on synthetic dataset for R2 with comparisons 63
3.10 Experiments on AirBnB price estimation for nonparametric methods with nearest

neighbors . 64
3.11 Graphic illustration about the sampling process in the proof of Theorem 43 . . . 83

4.1 Results on synthetic data . 92
4.2 Empirical results comparing COMP-GP-UCB with baseline methods 102
4.3 Result comparing comparison and direct regret 105
4.4 Empirical results comparing COMP-GP-UCB with baselines, under a single

fidelity and same cost . 105

5.1 Graphical illustration of problem-dependent gaps 116
5.2 Graphical illustration of the examples . 121
5.3 Empirical results comparing RS and other baselines 122
5.4 Empirical results comparing RS and RankThenSearch 124

6.1 Experiment Results comparing PEPS to baselines 141
6.2 Example for proof of Proposition 66 . 143

7.1 Effect of the mixture ratio on the performance of MT-SAN 165

8.1 Illustration of the proposed multi-source multi-task learning method 170

xv

xvi

List of Tables

2.1 Comparison of methods for learning of generic hypothesis class 9
2.2 Comparison of methods for learning of halfspaces 9
2.3 Summary of notations . 13

3.1 Summary of existing results for passive/active classification for isotropic log-
concave X distributions . 51

3.2 Performance of comparisons versus labels for both tasks 60

7.1 Statistics of the datasets . 160
7.2 Performance of our method to train SAN in multi-task setting on SQuAD dataset 162
7.3 Performance of our method to train SAN in multi-task setting on NewsQA dataset 162
7.4 Performance of our method to train SAN in multi-task setting on MS MARCO

dataset . 163
7.5 Performance of MT-SAN on SQuAD Dev and WDW test set 163
7.6 Comparison of methods to use external data . 163
7.7 Comparison of different MTL strategies on MT-SAN 164
7.8 Scores for examples from NewsQA and MS MARCO and average scores for

specific groups of samples . 164
7.9 Single model performance of our method to train DrQA on multi-task setting . . 166

8.1 The leaderboard for MedNLI task . 174
8.2 The leaderboard for RQE task . 174
8.3 The leaderboard for QA task . 175
8.4 Comparison of ensembles from different sources 176
8.5 Single model performance on MedNLI developlment data 176

xvii

xviii

Chapter 1

Introduction

Traditionally, machine learning deal with data from a single distribution and in a fixed form,
usually independently and identically distributed. In many practical applications, however, we
can obtain data in diverse forms for a single target task, with varied costs and qualities. A
natural question is that whether and how algorithms can benefit from using these diverse forms of
information. In this thesis we aim to answer this question by analyzing how diverse information
can be incorporated into learning algorithms.

Multi-formed data can come in various ways in practice, and we study two different paradigms
in this thesis. We first consider multi-formed data from feedbacks; during data acquisition, workers
can not only answer about the label of a specific sample, but also many other alternative questions
to help understand the problem. A broad goal is to understand the usefulness of, and to design
algorithms to exploit, such alternative feedbacks. We study a special version of such feedbacks,
namely learning from pairwise comparisons, in this thesis.

We then consider multi-formed data from multiple domains. In many applications, the
available data is limited. However, we can obtain data from other domains, effectively of a
different distribution, at essentially no cost. For example, for understanding Wikipedia, we
can also use other forms of text, such as news and webpages, to train our model. We study
the application of multi-task learning to understand multi-domain data for natural language
understanding (NLU) problems.

By demonstrating the results of learning from multiple feedbacks and multiple domains, we
illustrate the effectiveness of using multiple-source data in learning and decision making problems.
We give an overview of our results in the next section.

1.1 Overview of Results

We review our results in this section. In Section 1.1.1, we illustrate our results on learning from
both labels and comparisons. In Section 1.1.2, we describe the dueling-choice framework for
decision making, where comparisons (duels) are available in addition to traditional direct queries.
Lastly in Section 1.1.3, we study the problem of learning from multiple domains on natural
language understanding tasks.

1

1.1.1 Interactive Learning from Labels and Comparisons

Classical classification and regression algorithms is centered around using labeled observations
{(X1, y1), ..., (Xn, yn)}, where Xi ∈ Rd, and yi ∈ {−1, 1} for binary classification, or yi ∈ R
for regression. In Chapter We consider an alternative way of interaction in this setup, where in
addition to direct labels, we can also compare two points (Xi, Xj) in the data pool, and obtain the
point with a larger y value.

In many applications of machine learning comparisons are easier to obtain than labels. For
example, in crowdsourcing, workers are often able to provide ordinal feedback accurately with
little effort [153, 164]. Similarly, in clinical settings, precise assessment of each individual
patient’s health status can be difficult, expensive and/or risky (e.g. it may require application of
invasive sensors or diagnostic surgeries), but comparing relative statuses of two patients at a time
may be relatively easy and accurate.

In Chapter 2, we consider the problem of active classification with both labels and comparisons,
and characterize how the access to an easier comparison oracle helps in improving the label and
total query complexity. We show that the comparison oracle reduces the learning problem to that
of learning a threshold function. We then present an algorithm that interactively queries the label
and comparison oracles and we characterize its query complexity under Tsybakov and adversarial
noise conditions for the comparison and labeling oracles. This chapter is based on [187].

In Chapter 3, we consider linear and nonparametric regression with additional ordinal in-
formation. We consider ordinal feedback of varying qualities where we have either a perfect
ordering of the samples, a noisy ordering of the samples or noisy pairwise comparisons between
the samples. We provide a precise quantification of the usefulness of these types of ordinal
feedback in both nonparametric and linear regression, showing that in many cases it is possible to
accurately estimate an underlying function with a very small labeled set, effectively escaping the
curse of dimensionality. We also present lower bounds, that establish fundamental limits for the
task and show that our algorithms are optimal in a variety of settings. Finally, we present extensive
experiments on new datasets that demonstrate the efficacy and practicality of our algorithms and
investigate their robustness to various sources of noise and model misspecification. This chapter
is based on [185, 188].

1.1.2 Decision Making with Comparisons

Many practical problems can be casted as bandit or optimization problems, where we aim to
find target items in a given (finite or infinite) set. In the classical Multi-Armed Bandit(MAB)
framework, we selectively query (or pull) an arm to get a random reward from its mean distribution
in each iteration. We consider the same additional interaction with comparisons as in the previous
section: In each iteration in addition to pulls, we can also compare (or duel) two arms to get the
arm with a larger reward. We refer to this problem as Multi-Armed Bandits with Dueling Choices
(MAB-DC) since MAB with comparisons is usually called dueling bandits in literature [200], and
duels are optional in the algorithm process.

In Chapter 4, we consider regret minimization for MAB-DC under both discrete and continuous
arm spaces. For the discrete K-armed MAB-DC, we propose the DF algorithm by combining
Beat-the-Mean [199] and Successive Elimination[70]. We show that DF acehives a O(log T)

2

regret rate where T is the number of direct queries, and the regret combines the benefit of both
duels and pulls. For a continuous arm space, we give the COMP-GP-UCB algorithm based on
GP-UCB [156], where instead of directly querying the point with the maximum Upper Confidence
Bound (UCB), we perform constrained optimization and use comparisons to filter out suboptimal
points. COMP-GP-UCB comes with theoretical guarantee of O(Φ√

T
) on simple regret where Φ is

an improved information gain stemming from a comparison-based constraint set that restricts the
space for optimum search. In contrast, in the plain direct query setting, Φ depends on the entire
domain. We discuss theoretical aspects and show experimental results to demonstrate efficacy of
our algorithms. This chapter extends the content of [189].

In Chapter 5, we consider the Thresholding Bandit Problem (TBP) with Dueling Choices.
The Thresholding Bandit Problem (TBP) aims to find the set of arms with mean rewards greater
than a given threshold. We provide an algorithm called Rank-Search (RS) for solving TBP-DC
by alternating between ranking and binary search. We prove theoretical guarantees for RS, and
also give lower bounds to show the optimality of it. Experiments show that RS can outperform
baseline algorithms when duels can be obtained at a lower cost than direct assessments. This
chapter is based on [192].

In Chapter 6, we consider reinforcment learning with comparisons, namely Preference-based
Reinforcement Learning (PbRL). PbRL replaces reward values in traditional reinforcement
learning by preferences to better elicit human opinion on the target objective, specially when
reward metrics are hard to design or elicit. Despite promising results in applications, the theoretical
understanding of PbRL is still preliminary. We present the first finite-time analysis for general
PbRL problems. We first show that a unique optimal policy may not exist if preferences over
trajectories are deterministic for PbRL. If preferences are stochastic, and the preference probability
relates to the reward values, we present algorithms for PbRL both with or without a simulator
that are able to identify the best policy up to accuracy epsilon with high probability. Our method
explores the state space by navigating to every (remove every since states with very low reach
probability are not visited?) under-explored states, and solves PbRL using a combination of
dueling bandits and policy search. Experiments show the efficacy of our method on real-world
problems. This chapter is based on [193].

1.1.3 Natural Language Understanding from Multiple Domains
We focus another paradigm of learning from multiple sources, where we have data from multiple
domains, and would like to learn a joint model targeting the performance on a specific dataset. The
domains can be different in their input/output formats, data distributions and label distributions.
We focus on the problem of Natural Language Understanding (NLU) problems, since NLU data
is typically collected from different sources using various corpora.

In Chapter 6, we consider the problem of multi-task learning for machine reading comprehen-
sion(MRC). We propose a framework to learn a joint MRC model that can be applied to a wide
range of MRC tasks in different domains. Inspired by recent ideas of data selection in machine
translation, we develop a novel sample re-weighting scheme to assign sample-specific weights to
the loss. Empirical study shows that our approach can be applied to many existing MRC models.
Combined with contextual representations from pre-trained language models (such as ELMo), we
achieve new state-of-the-art results on a set of MRC benchmark datasets. This work is based on

3

[191].
In Chapter 7, we consider the problem of transfer multiple source of knowledge to NLU in

the medical domain. We use a multi-source transfer learning approach to transfer the knowledge
from MT-DNN [119] (general domain NLU) and SciBERT [33] (language model in the medical
domain). For transfer learning fine-tuning, we use multi-task learning various tasks on general
and medical domains to improve performance. The proposed methods are proved effective for
natural language understanding in the medical domain, and we rank the 2nd on the QA task of the
MEDIQA-2019 shared task[34]. This work is based on [190].

4

Part I

Interactive Learning from Labels and
Comparisons

5

Chapter 2

Classification with Labels and
Comparisons

Given high costs of obtaining labels for big datasets, interactive learning is gaining popularity
in both practice and theory of machine learning. On the practical side, there has been an
increasing interest in designing algorithms capable of engaging domain experts in two-way
queries to facilitate more accurate and more effort-efficient learning systems (c.f. [124, 171]).
On the theoretical side, study of interactive learning has led to significant advances such as
exponential improvement of query complexity over passive learning under certain conditions
(c.f. [14, 15, 26, 44, 86, 146]). While most of these approaches to interactive learning fix the
form of an oracle, e.g., the labeling oracle, and explore the best way of querying, recent work
allows for multiple diverse forms of oracles [25, 36, 64, 196]. The focus of this chapter is on
this latter setting, also known as active dual supervision [11]. We investigate how to recover a
hypothesis h that is a good approximator of the optimal classifier h∗, in terms of expected 0/1
error PrX [h(X) 6= h∗(X)], given limited access to labels on individual instances X ∈ X and
pairwise comparisons about which one of two given instances is more likely to belong to the +1/-1
class.

Our study is motivated by important applications where comparisons are easier to obtain than
labels, and the algorithm can leverage both types of oracles to improve label and total query
complexity. For example, in material design, synthesizing materials for specific conditions requires
expensive experimentation, but with an appropriate algorithm we can leverage expertize of material
scientists, for whom it may be hard to accurately assess the resulting material properties, but
who can quickly compare different input conditions and suggest which ones are more promising.
Similarly, in clinical settings, precise assessment of each individual patient’s health status can be
difficult, expensive and/or risky (e.g. it may require application of invasive sensors or diagnostic
surgeries), but comparing relative statuses of two patients at a time may be relatively easy and
accurate. In both these scenarios we may have access to a modest amount of individually labeled
data, but the bulk of more accessible training information is available via pairwise comparisons.
There are many other examples where humans find it easier to perform pairwise comparisons rather
than providing direct labels, including content search [77], image retrieval [171], ranking [90],
etc.

Despite many successful applications of comparison oracles, many fundamental questions

7

Refine Sampling Space

Request Batch

Learn Classifier

Labeling Oracle

	�� ����� �� ������ ���
�

������������
�� ��������������
��

	������
��������
��
� ����������������

Figure 2.1: Explanation of work flow of ADGAC-based algorithms. Left: Procedure of typical
active learning algorithms. Right: Procedure of our proposed ADGAC-based interactive learning
algorithm which has access to both pairwise comparison and labeling oracles.

remain. One of them is how to design noise-tolerant, cost-efficient algorithms that can approximate
the unknown target hypothesis to arbitrary accuracy while having access to pairwise comparisons.
On one hand, while there is theoretical analysis on the pairwise comparisons concerning the
task of learning to rank [7, 95], estimating ordinal measurement models [152] and learning
combinatorial functions [28], much remains unknown how to extend these results to more generic
hypothesis classes. On the other hand, although we have seen great progress on using single or
multiple oracles with the same form of interaction [23, 64], classification using both comparison
and labeling queries remains an interesting open problem. Independently of our work, Kane
et al. [105] concurrently analyzed a similar setting of learning to classify using both label and
comparison queries. However, their algorithms work only in the noise-free setting.
Our Contributions: Our work addresses the aforementioned issues by presenting a new algo-
rithm, Active Data Generation with Adversarial Comparisons (ADGAC), which learns a classifier
with both noisy labeling and noisy comparison oracles.
• We analyze ADGAC under Tsybakov (TNC) [165] and adversarial noise conditions for

the labeling oracle, along with the adversarial noise condition for the comparison oracle.
Our general framework can augment any active learning algorithm by replacing the batch
sampling in these algorithms with ADGAC. Figure 2.1 presents the work flow of our
framework.

• We propose A2-ADGAC algorithm, which can learn an arbitrary hypothesis class. The label
complexity of the algorithm is as small as learning a threshold function under both TNC
and adversarial noise condition, independently of the structure of the hypothesis class. The
total query complexity improves over previous best-known results under TNC which can
only access the labeling oracle.

• We derive Margin-ADGAC to learn the class of halfspaces. This algorithm has the same
label and total query complexity as A2-ADGAC, but is computationally efficient.

• We present lower bounds on total query complexity for any algorithm that can access both
labeling and comparison oracles, and a noise tolerance lower bound for our algorithms.
These lower bounds demonstrate that our analysis is nearly optimal.

An important quantity governing the performance of our algorithms is the adversarial noise
level of comparisons: denote by Tolcomp(ε, δ,A) the adversarial noise tolerance level of compar-
isons that guarantees an algorithmA to achieve an error of ε, with probability at least 1− δ. Table
2.1 compares our results with previous work in terms of label complexity, total query complexity,

8

Table 2.1: Comparison of various methods for learning of generic hypothesis class (Omitting
log(1/ε) factors).

Label Noise Work # Label # Query Tolcomp

Tsybakov (κ) [84] Õ
((

1
ε

)2κ−2
dθ
)

Õ
((

1
ε

)2κ−2
dθ
)

N/A

Tsybakov (κ) Ours Õ
((

1
ε

)2κ−2
)

Õ
((

1
ε

)2κ−2
θ + dθ

)
O(ε2κ)

Adversarial (ν = O(ε)) [86] Õ(dθ) Õ(dθ) N/A
Adversarial (ν = O(ε)) Ours Õ(1) Õ(dθ) O(ε2)

Table 2.2: Comparison of various methods for learning of halfspaces (Omitting log(1/ε) factors).

Label Noise Work # Label # Query Tolcomp Efficient?

Massart [27] Õ(d) Õ(d) N/A No
Massart [14] poly(d) poly(d) N/A Yes
Massart Ours Õ(1) Õ(d) O(ε2) Yes

Tsybakov (κ) [86] Õ(
(

1
ε

)2κ−2
dθ) Õ(

(
1
ε

)2κ−2
dθ) N/A No

Tsybakov (κ) Ours Õ
((

1
ε

)2κ−2
)
Õ
((

1
ε

)2κ−2
+ d
)
O(ε2κ) Yes

Adversarial (ν = O(ε)) [202] Õ(d) Õ(d) N/A No
Adversarial (ν = O(ε)) [15] Õ(d2) Õ(d2) N/A Yes
Adversarial (ν = O(ε)) Ours Õ(1) Õ(d) O(ε2) Yes

and Tolcomp for generic hypothesis class C with error ε. We see that our results significantly
improve over prior work with the extra comparison oracle. Denote by d the VC-dimension of
C and θ the disagreement coefficient. We also compare the results in Table 2.2 for learning
halfspaces under isotropic log-concave distributions. In both cases, our algorithms enjoy small
label complexity that is independent of θ and d. This is helpful when labels are very expensive to
obtain. Our algorithms also enjoy better total query complexity under both TNC and adversarial
noise condition for efficiently learning halfspaces.

2.1 Our Techniques

Intransitivity: The main challenge of learning with pairwise comparisons is that the comparisons
might be asymmetric or intransitive. If we construct a classifier h(x) by simply comparing x
with a fixed instance x̂ by comparison oracle, then the concept class of classifiers {h : h(x) =
Z(x, x̂), x̂ ∈ X} will have infinite VC dimension, so the complexity will be as high as infinite
if we apply the traditional tools of VC theory. To resolve the issue, we conduct a group-based
binary search in ADGAC. The intuition is that by dividing the dataset into several ranked groups
S1, S2, ..., the majority of labels in each group can be stably decided if we sample enough examples
from that group. Therefore, we are able to reduce the original problem in the high-dimensional

9

space to the problem of learning a “threshold” function in one-dimension space. Then some
straightforward approaches such as binary search learns the thresholding function.
Combining with Active Learning Algorithms: If the labels follow Tsybakov noise (i.e., Con-
dition 2), the most straightforward method to combine ADGAC with existing algorithms is to
combine ADGAC with an algorithm that uses the label oracle only and works under TNC. How-
ever, we cannot save query complexity if we follow this method. To see this, notice that in each

round we need roughly ni = Õ
(
dθ
(

1
εi

)2κ−1
)

samples and mi = Õ
(
dθ
(

1
εi

)2κ−2
)

labels; if

we use ADGAC, we can obtain a labeling of ni samples with at most εini ≈ mi errors with low
label complexity. Suppose N is the set of labels that ADGAC makes error on. However, since the
outside active learning algorithm works under TNC, we will need to query labels in N to make
sure that the ADGAC labels follow TNC. That means our label complexity is still mi, the same
as the original algorithm. To avoid this problem, we combine ADGAC with algorithms under
adversarial noise in all cases including TNC. This eliminates the need to query additional labels,
and also reduces the query complexity.

Handling Independence: We mostly follow previous works on combining ADGAC with existing
algorithms. However, since we now obtain labels from ADGAC instead of PXY , the labels are not
independently sampled, and we need to adapt the proof to our case. We use different methods for
A2-ADGAC and Margin-ADGAC: For the former, we use results from PAC learning to bound
the error on all ni samples; for the latter, we decompose the error of any classifier h on labels
generated by ADGAC into two parts: The first part is caused by the error of ADGAC itself,
and second is by h on truthful labels. Using the above techniques enables us to circumvent the
independence problem.

Lower Bounds: It is typically hard to provide a unified lower bound for multi-query learning
framework, as several quantities are simultaneously involved in the analysis, e.g., the comparison
complexity, the label complexity, the noise tolerance, etc. So traditional proof techniques for
active learning, e.g., Le Cam’s and Fano’s bounds [44, 86], cannot be trivially applied to our
setting. Instead, we prove lower bounds on one quantity by allowing arbitrary budgets of other
quantities. Another non-trivial technique is in the proof of minimax bound for the adversarial
noise level of comparison oracle (see Theorem 12): In the proof of upper bound, we divide the
integral region w.r.t. the expectation into n segments, each of size 1/n, and the expectation is thus
the limit when n→∞. We upper bound the discrete approximation of the integral by a careful
calibration of noise on each segment for a fixed n, and then let n→∞. The proof then leads to a
general inequality (Lemma 21), and it might be of independent interest.

2.2 Related Works
It is well known that people are better at comparison than labeling [152, 158]. It has been widely
used to tackle problems in classification [124], clustering [109] and ranking [5, 77].

Balcan et al. [28] studied using pairwise comparisons to learn submodular functions on sets.
Another related problem is bipartite ranking [4], which exactly does the opposite of our problem:
Given a group of binary labels, learn a ranking function that rank positive samples higher than
negative ones.

10

Interactive learning has wide application in the field of computer vision and natural language
processing (see e.g., [171]). There are also abundant literatures on interactive ways to improve
unsupervised and semi-supervised learning [109]. However, there lacks a general statistical analy-
sis of interactive learning for traditional classification tasks. Balcan and Hanneke [23] analyze
class conditional queries (CCQ), where the user gives counterexamples to a given classification.
Beygelzimer et al. [36] used a similar idea using search queries. However, their interactions re-
quires a oracle that is usually stronger than the traditional labelers (i.e., we can simulate traditional
active learning using such oracles), and is generally hard to deploy in practice. There turns out to
be little general analysis on using a ”weaker” interaction between human and computer. Balcan
and Hanneke[23] studied an abstract query based notions from exact learning, but their analysis
cannot handle queries that gives relation between samples (as comparisons do). Our work fits in
this blank.

We compare our work to traditional label-based active learning [86], which has drawn a lot of
attention in the society in recent years. Disagreement-based active learning has been shown to
reach a near-optimal rate on classification problems [84]. Another line of research is margin-based
active learning [14], which aims at computational efficiency of learning halfspaces, under the
large-margin assumption.

2.3 Preliminaries

Notations: We study the problem of learning a classifier h : X → Y = {−1, 1}, where X
and Y are the instance space and label space, respectively. Denote by PXY the distribution over
X × Y and let PX be the marginal distribution over X . A hypothesis class C is a set of functions
h : X → Y . For any function h, define the error of h under distribution D over X × Y as
errD(h) = Pr(X,Y)∼D[h(X) 6= Y]. Let err(h) = errPXY (h). Suppose that h∗ ∈ C satisfies
err(h∗) = infh∈C err(h). For simplicity, we assume that such an h∗ exists in class C.

We apply the concept of disagreement coefficient from Hanneke [84] for generic hypothesis
class in this chapter. In particular, for any set V ⊆ C, we denote by DIS(V) = {x ∈ X : ∃h1, h2 ∈
V, h1(x) 6= h2(x)}. The disagreement coefficient is defined as θ = supr>0

Pr[DIS(B(h∗,r))]
r

, where
B(h∗, r) = {h ∈ C : PrX∼PX [h(X) 6= h∗(X)] ≤ r}.
Problem Setup: We analyze two kinds of noise conditions for the labeling oracle, namely,
adversarial noise condition and Tsybakov noise condition (TNC). We formally define them as
follows.
Condition 1 (Adversarial Noise Condition for Labeling Oracle). Distribution PXY satisfies
adversarial noise condition for labeling oracle with parameter ν ≥ 0, if ν = Pr(X,Y)∼PXY [Y 6=
h∗(X)].
Condition 2 (Tsybakov Noise Condition for Labeling Oracle). Distribution PXY satisfies Tsy-
bakov noise condition for labeling oracle with parameters κ ≥ 1, µ ≥ 0, if ∀h : X →
{−1, 1},err(h)− err(h∗) ≥ µPrX∼PX [h(X) 6= h∗(X)]κ. Also, h∗ is the Bayes optimal classifier,
i.e., h∗(x) = sign(η(x)− 1/2). 1 where η(x) = Pr[Y = 1|X = x]. The special case of κ = 1 is

1The assumption that h∗ is Bayes optimal classifier can be relaxed if the approximation error of h∗ can be
quantified under assumptions on the decision boundary (c.f. [44]).

11

also called Massart noise condition.
In the classic active learning scenario, the algorithm has access to an unlabeled pool drawn

from PX . The algorithm can then query the labeling oracle for any instance from the pool. The
goal is to find an h ∈ C such that the error Pr[h(X) 6= h∗(X)] ≤ ε2. The labeling oracle has
access to the input x ∈ X , and outputs y ∈ {−1, 1} according to PXY . In our setting, however, an
extra comparison oracle is available. This oracle takes as input a pair of instances (x, x′) ∈ X ×X ,
and returns a variable Z(x, x′) ∈ {−1, 1}, where Z(x, x′) = 1 indicates that x is more likely
to be positive, while Z(x, x′) = −1 otherwise. In this chapter, we discuss an adversarial noise
condition for the comparison oracle. We discuss about other conditions on comparisons at the end
of this section.
Condition 3 (Adversarial Noise Condition for Comparison Oracle). Distribution PXXZ satisfies
adversarial noise with parameter ν ′ ≥ 0, if ν ′ = Pr[Z(X,X ′)(h∗(X)− h∗(X ′)) < 0].

Note that we do not make any assumptions on the randomness of Z: Z(X,X ′) can be either
random or deterministic as long as the joint distribution PXXZ satisfies Condition 3.

For an interactive learning algorithmA, given error ε and failure probability δ, let SCcomp(ε, δ,A)
and SClabel(ε, δ,A) be the comparison and label complexity, respectively. The query com-
plexity of A is defined as the sum of label and comparison complexity. Similar to the def-
inition of Tolcomp(ε, δ,A), define Tollabel(ε, δ,A) as the maximum ν such that algorithm A
achieves an error of at most ε with probability 1 − δ. As a summary, A learns an h such
that Pr[h(X) 6= h∗(X)] ≤ ε with probability 1 − δ using SCcomp(ε, δ,A) comparisons and
SClabel(ε, δ,A) labels, if ν ≤ Tollabel(ε, δ,A) and ν ′ ≤ Tolcomp(ε, δ,A). We omit the parameters
of SCcomp,SClabel,Tolcomp,Tollabel if they are clear from the context. We use O(·) to express
sample complexity and noise tolerance, and Õ(·) to ignore the log(·) terms. Table 2.3 summarizes
the main notations throughout the chapter.
Learning under TNC for comparisons. In this section we justify our choice of analyzing
adversarial noise model for the comparison oracle. In fact, any algorithm using adversarial
comparisons can be transformed into an algorithm using TNC comparisons, by treating learning
comparison functions as a separate learning problem. Let C′ be a hypothesis class consisting
of comparison functions f : X × X → {−1, 1}. Suppose the optimal comparison function is
f ∗(x, x′) = sign(g∗(x)−g∗(x′)), and Tsybakov noise condition holds for ((X,X ′), Z) with some
constant µ′, κ′; i.e., for any f ∈ C′ we have

Pr[f(X,X ′) 6= Z]− Pr[f ∗(X,X ′) 6= Z] ≥ µ′ Pr[f(X,X ′) 6= f ∗(X,X ′)]κ
′
.

Also suppose f ∗(x, x′) = sign(Pr[Z = 1|X = x,X ′ = x′]−1/2). Assume C′ has VC-dimension
d′ and disagreement coefficient θ′, standard active learning requires

Φ(ν ′) = Õ
(
θ′
(

1

ν ′

)2κ′−2

(d′ log(θ′) + log(1/δ)) log

(
1

ν ′

))
samples to learn a comparison function of error ν ′ with probability 1 − δ. So an algorithm A
for adversarial noise on comparisons can be automatically transformed into an algorithm A′ for

2Note that we use the disagreement Pr[h(X) 6= h∗(X)] instead of the excess error err(h)− err(h∗) in some of
the other literatures. The two conditions can be linked by assuming a two-sided version of Tsybakov noise (see e.g.,
Audibert 2004).

12

Table 2.3: Summary of notations.

Notation Meaning

C Hypothesis class
X,X Instance & Instance space
Y,Y Label & Label space
Z,Z Comparison & Comparison space
d VC dimension of C
θ Disagreement coefficient
h∗ Optimal classifier in C
g∗ Optimal scoring function
κ Tsybakov noise level (labeling)
ν Adversarial noise level (labeling)
ν ′ Adversarial noise level (comparison)

errD(h) Error of h on distribution D
SClabel Label complexity
SCcomp Comparison complexity
Tollabel Noise tolerance (labeling)
Tolcomp Noise tolerance (comparison)

TNC on comparisons with SClabel(A′) = SClabel(A) and SCcomp(A) = Φ(Tolcomp(A)). So we
only analyze adversarial noise for comparison in other parts of this chapter.

2.4 The ADGAC Algorithm
The hardness of learning from pairwise comparisons follows from the error of comparison
oracle: the comparisons are noisy, and can be asymmetric and intransitive, meaning that the
human might give contradicting preferences like x1 4 x2 4 x1 or x1 4 x2 4 x3 4 x1

(here 4 is some preference). This makes traditional methods, e.g., defining a function class
{h : h(x) = Z(x, x̂), x̂ ∈ X}, fail, because such a class may have infinite VC dimension.

In this section, we propose a novel algorithm, Active Data Generation with Adversarial
Comparisons (ADGAC), to address this issue. Having access to both comparison and labeling
oracles, ADGAC generates a labeled dataset by techniques inspired from group-based binary
search. We show that ADGAC can be combined with any active learning procedure to obtain
interactive algorithms that can utilize both labeling and comparison oracles. We provide theoretical
guarantees for ADGAC.

2.4.1 Algorithm Description
To illustrate ADGAC, we start with a general active learning framework in Algorithm 1. Many
active learning algorithms can be adapted to this framework, such as A2 [26] and margin-based
active algorithms [14, 15]. Here U represents the querying space/disagreement region of the

13

algorithm (i.e., we reject an instance x if x 6∈ U), and V represents a version space consisting of
potential classifiers. For example, A2 algorithm can be adapted to Algorithm 1 straightforwardly
by keeping U as the sample space and V as the version space. More concretely, A2 algorithm
[26] for adversarial noise can be characterized by

U0 = X , V0 = C, fV (U, V,W, i) = {h : |W |errW (h) ≤ niεi}, fU(U, V,W, i) = DIS(V),

where εi and ni are parameters of the A2 algorithm, and DIS(V) = {x ∈ X : ∃h1, h2 ∈
V, h1(x) 6= h2(x)} is the disagreement region of V . Margin-based active learning [15] can also
be fitted into Algorithm 1 by taking V as the halfspace that (approximately) minimizes the hinge
loss, and U as the region within the margin of that halfspace.

Algorithm 1 Active Learning Framework
Input: ε, δ, a sequence of ni, functions fU , fV .

1: Initialize U ← U0 ⊆ X , V ← V0 ⊆ C.
2: for i = 1, 2, ..., log(1/ε) do
3: Sample unlabeled dataset S̃ of size ni. Let S ← {x : x ∈ S̃, x ∈ U}.
4: Request the labels of x ∈ S and obtain W ← {(xi, yi) : xi ∈ S}.
5: Update V ← fV (U, V,W, i), U ← fU(U, V,W, i).
6: end for

Output: Any classifier ĥ ∈ V .

To efficiently apply the comparison oracle, we propose to replace step 4 in Algorithm 1 with
a subroutine, ADGAC, that has access to both comparison and labeling oracles. Subroutine 2
describes ADGAC. It takes as input a dataset S and a sampling number k. ADGAC first runs
Quicksort algorithm on S using feedback from comparison oracle, which is of form Z(x, x′).
Given that the comparison oracle Z(·, ·) might be asymmetric w.r.t. its two arguments, i.e.,
Z(x, x′) may not equal to Z(x′, x), for each pair (xi, xj), we randomly choose (xi, xj) or (xj, xi)
as the input to Z(·, ·). After Quicksort, the algorithm divides the data into multiple groups of
size αm = ε|S̃|, and does group-based binary search by sampling k labels from each group and
determining the label of each group by majority vote.

For active learning algorithm A, let A-ADGAC be the algorithm of replacing step 4 with
ADGAC using parameters (Si, ni, εi, ki), where εi, ki are chosen as additional parameters of the
algorithm. We establish results for specific A: A2 and margin-based active learning in Sections
2.5 and 2.6, respectively.

2.4.2 Theoretical Analysis of ADGAC
Before we combine ADGAC with active learning algorithms, we provide theoretical results for
ADGAC. By the algorithmic procedure, ADGAC reduces the problem of labeling the whole
dataset S to binary searching a threshold on the sorted list S. One can show that the conflicting
instances cannot be too many within each group Si, and thus binary search performs well in our
algorithm. We also use results in [7] to give an error estimate of Quicksort. We have the following
result based on the above arguments.

14

Subroutine 2 Active Data Generation with Adversarial Comparison (ADGAC)

Input: Dataset S with |S| = m, n, ε, k.
1: α← εn

2m
.

2: Define preference relation on S according to Z. Run Quicksort on S to rank elements in an
increasing order. Obtain a sorted list S = (x1, x2, ..., xm).

3: Divide S into groups of size αm: Si = {x(i−1)αm+1, ..., xiαm}, i = 1, 2, ..., 1/α .
4: tmin ← 1, tmax ← 1/α.
5: while tmin < tmax do . Do binary search
6: t = (tmin + tmax)/2.
7: Sample k points uniformly without replacement from St and obtain the labels Y =
{y1, ..., yk}.

8: If
∑k

i=1 yi ≥ 0, then tmax = t; else tmin = t+ 1.
9: end while

10: For t′ > t and xi ∈ St′ , let ŷi ← 1.
11: For t′ < t and xi ∈ St′ , let ŷi ← −1.
12: For xi ∈ St, let ŷi be the majority of labeled points in St.
Output: Predicted labels ŷ1, ŷ2, ..., ŷm.

Theorem 4. Suppose that Conditions 2 and 3 hold for κ ≥ 1, ν ′ ≥ 0, and n = Ω
((

1
ε

)2κ−1
log(1/δ)

)
.

Assume a set S̃ with |S̃| = n is sampled i.i.d. from PX and S ⊆ S̃ is an arbitrary subset of
S̃ with |S| = m. There exist absolute constants C1, C2, C3 such that if we run Subroutine 2

with ε < C1, ν ′ ≤ C2ε
2κδ, k = k(1)(ε, δ) := C3 log

(
log(1/ε)

δ

) (
1
ε

)2κ−2, it will output a labeling
of S such that |{xi ∈ S : ŷi 6= h∗(xi)}| ≤ εn, with probability at least 1 − δ. The expected
number of comparisons required is O(m logm), and the number of sample-label pairs required
is SClabel(ε, δ) = Õ

(
log
(
m
εn

)
log(1/δ)

(
1
ε

)2κ−2
)

.

Similarly, we analyze ADGAC under adversarial noise condition w.r.t. labeling oracle with
ν = O(ε).
Theorem 5. Suppose that Conditions 1 and 3 hold for ν, ν ′ ≥ 0, and n = Ω

(
1
ε

log(1/δ)
)
.

Assume a set S̃ with |S̃| = n is sampled i.i.d. from PX and S ⊆ S̃ is an arbitrary subset of S̃
with |S| = m. There exist absolute constants C1, C2, C3, C4 such that if we run Subroutine 2 with
ε < C1, ν ′ ≤ C2ε

2δ, k = k(2)(ε, δ) := C3 log
(

log(1/ε)
δ

)
, and ν ≤ C4ε, it will output a labeling

of S such that |{xi ∈ S : ŷi 6= h∗(xi)}| ≤ εn, with probability at least 1 − δ. The expected
number of comparisons required is O(m logm), and the number of sample-label pairs required
is SClabel(ε, δ) = O

(
log
(
m
εn

)
log
(

log(1/ε)
δ

))
.

Proof Sketch. We call a pair (xi, xj) an inverse pair if Z(xi, xj) = −1, h∗(xi) = 1, h∗(xj) = −1,
and an anti-sort pair if h∗(xi) = 1, h∗(xj) = −1, and i < j. We show that the expectation of
inverse pairs is n(n− 1)ε∗. By the results in [7] the numbers of inverse pairs and anti-sort pairs
have the same expectation, and the actual number of anti-sort pairs can be bounded by Markov’s
inequality. Then we show that the majority label of each group must be all -1 starting from
beginning the list, and changes to all 1 at some point of the list. With a careful choice of k, we

15

may obtain the true majority with k labels under Tsybakov noise; we will thus end up in the
turning point of the list. The error is then bounded by the size of groups. See appendix for the
complete proof.

Theorems 4 and 5 show that ADGAC gives a labeling of dataset with arbitrary small error
using label complexity independent of the data size. Moreover, ADGAC is computationally
efficient since it only involves binary search. These nice properties of ADGAC lead to improved
query complexity when we combine ADGAC with other active learning algorithms.

2.5 A2-ADGAC: Learning of Generic Hypothesis Class
In this section, we combine ADGAC with A2 algorithm to learn a generic hypothesis class. We use
the framework in Algorithm 1: let A2-ADGAC be the algorithm that replaces step 4 in Algorithm
1 with ADGAC of parameters (S, ni, εi, ki), where ni, εi, ki are parameters to be specified later.
Under TNC, we have the following result.
Theorem 6. Suppose that Conditions 2 and 3 hold, and h∗(x) = sign(η(x)− 1/2). There exist
global constants C1, C2 such that if we run A2-ADGAC with ε < C1, δ, ν ′ ≤ Tolcomp(ε, δ) =

C2ε
2κδ, εi = 2−(i+2), ni = Ω

(
1
εi

(d log(1/ε)) +
(

1
εi

)2κ−1

log(1/δ)

)
, ki = k(1)

(
εi,

δ
4 log(1/ε)

)
with k(1) specified in Theorem 4, with probability at least 1 − δ, the algorithm will return a
classifier ĥ with Pr[ĥ(X) 6= h∗(X)] ≤ ε with comparison and label complexity

E[SCcomp] = Õ
(
θ log2

(
1

ε

)
log(dθ)

((
d log

(
1

ε

))
+

(
1

ε

)2κ−2

log(1/δ)

))
,

SClabel = Õ
(

log

(
1

ε

)
log

(
min

{
1

ε
, θ

})
log(1/δ)

(
1

ε

)2κ−2
)
.

The dependence on log2(1/ε) in SCcomp can be reduced to log(1/ε) under Massart noise.
We can prove a similar result for adversarial noise condition.

Theorem 7. Suppose that Conditions 1 and 3 hold. There exist global constants C1, C2, C3 such
that if we run A2-ADGAC with ε < C1, δ, ν ′ ≤ Tolcomp(ε, δ) = C2ε

2δ, ν ≤ Tollabel(ε, δ) = C3ε,

εi = 2−(i+2), ni = Ω̃
(

1
εi
d log

(
1
εi

)
log(1/δ)

)
, ki = k(2)

(
εi,

δ
4 log(1/ε)

)
with k(2) specified in

Theorem 5, with probability at least 1− δ, the algorithm will return a classifier ĥ with Pr[ĥ(X) 6=
h∗(X)] ≤ ε with comparison and label complexity

E[SCcomp] = Õ
(
θd log(θd) log

(
1

εi

)
log(1/δ)

)
,

SClabel = Õ
(

log

(
1

ε

)
log

(
min

{
1

ε
, θ

})
log(1/δ)

)
.

Proof of Theorems 6 and 7 uses Theorem 4 and Theorem 5 with standard manipulations in
VC theory. Theorems 6 and 7 show that having access to even a biased comparison function can

16

reduce the problem of learning a classifier in high-dimensional space to that of learning a threshold
classifier in one-dimensional space as the label complexity matches that of actively learning a
threshold classifier. Given the fact that comparisons are usually easier to obtain, A2-ADGAC will
save a lot in practice due to its small label complexity. More importantly, we improve the total
query complexity under TNC by separating the dependence on d and ε; The query complexity is
now the sum of the two terms instead of the product of them. This observation shows the power
of pairwise comparisons for learning classifiers. Such small label/query complexity is impossible
without access to a comparison oracle, since query complexity with only labeling oracle is at least
Ω
(
d
(

1
ε

)2κ−2
)

and Ω
(
d log

(
1
ε

))
under TNC and adversarial noise conditions, respectively [86].

Our results also matches the lower bound of learning with labeling and comparison oracles up to
log factors (see Section 2.7).

We note that Theorems 6 and 7 require rather small Tolcomp, equal to O(ε2κδ) and O(ε2δ),
respectively. We will show in Section 2.7.3 that it is necessary to require Tolcomp = O(ε2) in
order to obtain a classifier of error ε, if we restrict the use of labeling oracle to only learning a
threshold function. Such restriction is able to reach the near-optimal label complexity as specified
in Theorems 6 and 7.

2.6 Margin-ADGAC: Learning of Halfspaces
In this section, we combine ADGAC with margin-based active learning [15] to efficiently learn
the class of halfspaces. Before proceeding, we first mention a naive idea of utilizing comparisons:
we can i.i.d. sample pairs (x1, x2) from PX × PX , and use Z(x1, x2) as the label of x1 − x2,
where Z is the feedback from comparison oracle. However, this method cannot work well in our
setting without additional assumption on the noise condition for the labeling Z(x1, x2).

Before proceeding, we assume that PX is isotropic log-concave on Rd; i.e., PX has mean
0, covariance I and the logarithm of its density function is a concave function [14, 15]. The
hypothesis class of halfspaces can be represented as C = {h : h(x) = sign(w · x), w ∈ Rd}.
Denote by h∗(x) = sign(w∗ · x) for some w∗ ∈ Rd. Define lτ (w, x, y) = max (1− y(w · x)/τ, 0)
and lτ (w,W) = 1

|W |
∑

(x,y)∈W lτ (w, x, y) as the hinge loss. The expected hinge loss of w is
Lτ (w,D) = Ex∼D[lτ (w, x, sign(w∗ · x))].

Margin-based active learning [15] is a concrete example of Algorithm 1 by taking V as
(a singleton set of) the hinge loss minimizer, while taking U as the margin region around that
minimizer. More concretely, take U0 = X and V0 = {w0} for some w0 such that θ(w0, w

∗) ≤ π/2.
The algorithm works with constants M ≥ 2, κ < 1/2 and a set of parameters ri, τi, bi, zi that
equal to Θ(M−i) (see proof in Appendix for formal definition of these parameters). V always
contains a single hypothesis. Suppose V = {wi−1} in iteration i− 1. Let vi satisfies lτi(vi,W) ≤
minv:‖v−wi−1‖2≤ri,‖v‖2≤1 lτi(v,W) + κ/8, where wi is the content of V in iteration i. We also have

fV (V,W, i) = {wi} =
{

vi
‖vi‖2

}
and fU(U, V,W, i) = {x : |wi · x| ≤ bi}.

Let Margin-ADGAC be the algorithm obtained by replacing the sampling step in margin-
based active learning with ADGAC using parameters (S, ni, εi, ki), where ni, εi, ki are additional
parameters to be specified later. We have the following results under TNC and adversarial noise
conditions, respectively.

17

Theorem 8. Suppose that Conditions 2 and 3 hold, and h∗(x) = sign(w∗ ·x) = sign(η(x)−1/2).
There are settings of M,κ, ri, τi, bi, εi, ki, and constants C1, C2 such that for all ε ≤ C1, ν

′ ≤
Tolcomp(ε, δ) = C2ε

2κδ, if we run Margin-ADGAC with w0 such that θ(w0, w
∗) ≤ π/2, and ni =

Õ
(

1
εi
d log3(dk/δ) +

(
1
ε

)2κ−1
log(1/δ)

)
, it finds ŵ such that Pr[sign(ŵ ·X) 6= sign(w∗ ·X)] ≤ ε

with probability at least 1− δ. The comparison and label complexity are

E[SCcomp] = Õ
(

log2(1/ε)

(
d log4(d/δ) +

(
1

ε

)2κ−2

log(1/δ)

))
,

SClabel = Õ
(

log(1/ε) log(1/δ)

(
1

ε

)2κ−2
)
.

The dependence on log2(1/ε) in SCcomp can be reduced to log(1/ε) under Massart noise.
Theorem 9. Suppose that Conditions 1 and 3 hold. There are settings of M,κ, ri, τi, bi, εi, ki, and
constants C1, C2, C3 such that for all ε ≤ C1, ν

′ ≤ Tolcomp(ε, δ) = C2ε
2κδ, ν ≤ Tolcomp(ε, δ) =

C3ε, if we run Margin-ADGAC with ni = Õ
(

1
εi
d log3(dk/δ)

)
and w0 such that θ(w0, w

∗) ≤ π/2,
it finds ŵ such that Pr[sign(ŵ · X) 6= sign(w∗ · X)] ≤ ε with probability at least 1 − δ. The
comparison and label complexity are

E[SCcomp] = Õ
(
log(1/ε)

(
d log4(d/δ)

))
, SClabel = Õ (log(1/ε) log(1/δ)) .

The proofs of Theorems 8 and 9 are different from the conventional analysis of margin-
based active learning in two aspects: a) Since we use labels generated by ADGAC, which is not
independently sampled from the distribution PXY , we require new techniques that can deal with
adaptive noises; b) We improve the results of [15] over the dependence of d by new Rademacher
analysis.

Theorems 8 and 9 enjoy better label and query complexity than previous results (see Table
2.2). We mention that while Yan and Zhang [195] proposed a perceptron-like algorithm with
label complexity as small as Õ(d log(1/ε)) under Massart and adversarial noise conditions, their
algorithm works only under uniform distributions over the instance space. In contrast, our
algorithm Margin-ADGAC works under broad log-concave distributions. The label and total
query complexity of Margin-ADGAC improves over that of traditional active learning. The lower
bounds in Section 2.7 show the optimality of our complexity.

2.7 Lower Bounds
In this section, we give lower bounds on learning using labeling and pairwise comparison. In
Section 2.7.1, we give a lower bound on the optimal label complexity SClabel. In Section 2.7.2 we
use this result to give a lower bound on the total query complexity, i.e., the sum of comparison and
label complexity. Our two methods match these lower bounds up to log factors. In Section 2.7.3,
we additionally give an information-theoretic bound on Tolcomp, which matches our algorithms in
the case of Massart and adversarial noise.

18

Following from [86, 87], we assume that there is an underlying score function g∗ such that
h∗(x) = sign(g∗(x)). Note that g∗ does not necessarily have relation with η(x); We only require
that g∗(x) represents how likely a given x is positive. For instance, in digit recognition, g∗(x)
represents how an image looks like a 7 (or 9); In the clinical setting, g∗(x) measures the health
condition of a patient. Suppose that the distribution of g∗(X) is continuous, i.e., the probability
density function exists and for every t ∈ R, Pr[g∗(X) = t] = 0.

2.7.1 Lower Bound on Label Complexity

The definition of g∗ naturally induces a comparison oracle Z with Z(x, x′) = sign(g∗(x)−g∗(x′)).
We note that this oracle is invariant to shifting w.r.t. g∗, i.e., g∗ and g∗ + t lead to the same
comparison oracle. As a result, we cannot distinguish g∗ from g∗ + t without labels. In other
words, pairwise comparisons do not help in improving label complexity when we are learning a
threshold function on R, where all instances are in the natural order. So the label complexity of
any algorithm is lower bounded by that of learning a threshold classifier, and we formally prove
this in the following theorem.
Theorem 10. For any algorithm A that can access both labeling and comparison oracles,
sufficiently small ε, δ, and any score function g that takes at least two values on X , there
exists a distribution PXY satisfying Condition 2 such that the optimal function is in the form of
h∗(x) = sign(g(x) + t) for some t ∈ R and

SClabel(ε, δ,A) = Ω
(
(1/ε)2κ−2 log(1/δ)

)
. (2.1)

If PXY satisfies Condition 1 with ν = O(ε), SClabel satisfies Equation (2.1) with κ = 1.
The lower bound in Theorem 10 matches the label complexity of A2-ADGAC and Margin-

ADGAC up to a log factor. So our algorithm is near-optimal.

2.7.2 Lower Bound on Total Query Complexity

We use Theorem 10 to give lower bounds on the total query complexity of any algorithm which
can access both comparison and labeling oracles.
Theorem 11. For any algorithm A that can access both labeling and comparison oracles, and
sufficiently small ε, δ, there exists a distribution PXY satisfying Condition 2, such that

SCcomp(ε, δ,A) + SClabel(ε, δ,A) = Ω
(
(1/ε)2κ−2 log(1/δ) + d log(1/ε)

)
. (2.2)

If PXY satisfies Condition 1 with ν = O(ε), SCcomp + SClabel satisfies Equation (2.2) with κ = 1.
The first term of Equation (2.2) follows from Theorem 10, whereas the second term follows

from transforming a lower bound of active learning with access to only the labeling oracle. The
lower bounds in Theorem 11 match the performance of A2-ADGAC and Margin-ADGAC up to
log factors.

19

2.7.3 Adversarial Noise Tolerance of Comparisons
Note that label queries are typically expensive in practice. Thus it is natural to ask the following
question: what is the minimal requirement on ν ′, given that we are only allowed to have access
to minimal label complexity as in Theorem 10? We study this problem in this section. More
concretely, we study the requirement on ν ′ when we learn a threshold function using labels.
Suppose that the comparison oracle gives feedback using a scoring function ĝ, i.e., Z(x, x′) =
sign(ĝ(x)− ĝ(x′)), and has error ν ′. We give a sharp minimax bound on the risk of the optimal
classifier in the form of h(x) = sign(ĝ(x)− t) for some t ∈ R below.
Theorem 12. Suppose that min{Pr[h∗(X) = 1],Pr[h∗(X) = −1]} ≥

√
ν ′ and both ĝ(X) and

g∗(X) have probability density functions. If ĝ(X) induces an oracle with error ν ′, then we have
mint maxĝ,g∗ Pr[sign(ĝ(X)− t) 6= h∗(X)] =

√
ν ′.

The proof is technical and omitted. By Theorem 12, we see that the condition of ν ′ = ε2 is
necessary if labels from g∗ are only used to learn a threshold on ĝ. This matches our choice of ν ′

under Massart and adversarial noise conditions for labeling oracle (up to a factor of δ).

2.8 Conclusion
We presented a general algorithmic framework, ADGAC, for learning with both comparison
and labeling oracles. We proposed two variants of the base algorithm, A2-ADGAC and Margin-
ADGAC, to facilitate low query complexity under Tsybakov and adversarial noise conditions.
The performance of our algorithms matches lower bounds for learning with both oracles. Our
analysis is relevant to a wide range of practical applications where it is easier, less expensive,
and/or less risky to obtain pairwise comparisons than labels.

There are multiple directions for future works. One improvement over our work is to show
complexity bounds for excess risk err(h) − err(h∗) instead of Pr[h 6= h∗]. Also, our bound
on comparison complexity is in expectation due to limits of quicksort; deriving concentration
inequalities on the comparison complexity would be helpful. Also, an adaptive algorithm that
applies to different levels of noise w.r.t. labels and comparisons would be interesting; i.e., use
labels when comparisons are noisy and use comparisons when labels are noisy. Other directions
include using comparisons (or more broadly, rankings) for other ML tasks like regression or
matrix completion.

2.9 Proofs

2.9.1 Proof of Theorem 4
Proof. We only prove the theorem for κ > 1, the case of κ = 1 holds with a similar proof. An
equivalent condition (see e.g., page 341, [37]) for Condition 2 under κ > 1 is that there exists
constant µ̃ > 0 such that for all t > 0 we have

Pr(|η(x)− 1/2| < t) ≤ µ̃t1/(κ−1). (2.3)

We use Equation (2.3) instead of Condition 2 through out the proof.

20

To bound the error in labeling by ADGAC, we first bound the number of incorrectly sorted pairs
due to noise/bias of the comparison oracle. We call (xi, xj) an inverse pair if h∗(xi) = 1, h∗(xj) =
−1, xi 4 xj (the partial order is decided by randomly querying Z(xi, xj) or Z(xj, xi)). Also, we
call (xi, xj) an anti-sort pair if h∗(xi) = 1, h∗(xj) = −1, i < j (after sorting by Quicksort). Let
T be the set of all anti-sort pairs, T ′ be the set of all inverse pairs in S, and T̃ ′ be the set of all
inverse pairs in S̃. We first bound |T | using |T ′|. Let s be the random bits supplied for Quicksort
in its process, by Theorem 3 in [7] we have

Es[|T |] = |T ′|.

Notice that sampling a pair of (X,X ′) is equivalent to sample a set S̃ of n points and then
uniformly pick two different points in it. Also, number of inverse pairs in S is less than that in S̃.
So we have

ES [Es[|T |]] = ES[|T ′|] ≤ ES̃[|T̃ ′|] = n(n− 1)ν ′ ≤ n2ν ′.

By Markov inequality we have

Pr

(
|T | ≥ 2ν ′

δ
n2

)
≤ δ

2
. (2.4)

Suppose |T | < 2ν′

δ
n2 (which holds with probability > 1− δ/2). We now proceed to bound

the number of labeling errors made by ADGAC. First, notice that in Algorithm 2, we divide all
samples into groups of size αm = εn/2. For every set Si, let

q(Si) =
1

|Si|
min

{∑
x∈Si

I(h∗(x) = 1),
∑
x∈Si

I(h∗(x) = −1)

}

= min

{
Pr
X∼Si

(h∗(x) = −1), Pr
X∼Si

(h∗(x) = 1)

}
where X ∼ Si denote the empirical distribution that X is drawn uniformly at random from the
finite collection of points in Si. Let

β =
2

ε

√
ν ′

δ
≤ Cεκ−1

for some constant C. Suppose ε is small enough such that β ≤ 1/2. Then we claim that there
is at most 1 set Si such that q(Si) ≥ β. Otherwise, suppose two such sets exist; let them be Si
and Sj . So there are at least αβm points x ∈ Si with h∗(x) = −1, and αβm points x ∈ Si with
h∗(x) = 1; the same holds for Sj . These -1s and 1s would indicate at least

2α2β2m2 =
2ν ′

δ
n2

anti-sort pairs, which violates our claim of |T |.
Since ADGAC uses group binary search, we first analyze some properties of the major-

ity label of the Bayes optimal classifier within each group/set. For each set Si, let µ(Si) =

21

sign(
∑

x∈Si h
∗(xi)) be the majority Bayes optimal label. We can show that µ(Si) is mono-

tonic: that is, for every i < j we have µ(Si) ≤ µ(Sj). To see this, suppose there exist
two sets Si, Sj, i < j such that µ(Si) = 1 and µ(Sj) = −1. That would indicate at least
α2m2/2 > α2β2m2 anti-sort pairs, which violates our assumption. So there must be a boundary l
such that µ(Si) = −1 for i < l, and µ(Si) = 1 for i ≥ l. We call Sl to be the boundary set. Now
consider two cases:

• Case 1: there exists a set Sl′ such that q(Sl′) ≥ β (recall that from previous arguments,
there is only one such set). If l 6= l′, the sets Sl and Sl′ generates at least 2(αm/2)(αβm) ≥
2α2β2m2 anti-sort pairs, which violates our assumption for |T |. So l = l′.

• Case 2: for all sets Si, we have q(Si) < β.

In both cases, we have q(Si) < β for all i 6= l.
Now we prove that the majority vote of the noisy labels agrees with the majority vote of the

Bayes optimal classifier µ(Si) for each set Si that we visit, and hence we will find the boundary
set Sl. Suppose q(Si) < β. Take

t =

(
ε

16µ̃

)κ−1

.

For small enough ε, we have t ≤ 1/2, and Pr(x : |η(x)− 1/2| ≤ t) ≤ ε/16. Let U = {xi ∈ S :
|η(xi)− 1/2| ≤ t}. By relative form of Chernoff bound we have

Pr (|U | > 3 log(4/δ) + nε/8) ≤ exp

(
−3 log(4/δ) + εn/16

3

)
≤ δ

4
.

Suppose |U |/n ≤ ε/8, so at most 1/4 of each Si is in U .
For each set Si, let S̄i = {x ∈ Si : h∗(x) 6= µ(Si)} and S ′i = {x ∈ Si : |η(x)− 1/2| ≤ t}. So

for each set such that q(Si) ≤ β, we have

Pr(Y 6= µ(Si)|X ∼ Si) ≤Pr(Y 6= µ(Si)|X ∈ S ′i) Pr(X ∈ S ′i|X ∼ Si)+

Pr(Y 6= µ(Si)|X ∈ S̄i) Pr(X ∈ S̄i|X ∼ Si)+

Pr(Y 6= µ(Si)|X 6∈ S ′i, X 6∈ S̄i) Pr(X 6∈ S ′i, X 6∈ S̄i|X ∼ Si)

≤
(

1

2
+ t

)
· 1

4
+ 1 · β +

(
1

2
− t
)
·
(

3

4
− β

)
=

1

2
− 1

2
t+

(
1

2
+ t

)
β.

Pick ν ′ small enough such that β ≤ 1
4
t:

2

ε

√
ν ′

δ
≤ 1

4

(
ε

16µ̃

)κ−1

.

This yields

ν ′ ≤ ε2κδ

32(16µ̃)2κ−2
.

22

Note that this also guarantees β ≤ 1/2 above, since t ≤ 1
2
. Now we have

Pr [Y 6= µ(Si)|X ∼ Si] ≤
1

2
− 1

2
t+

1

4
t (t+ 1/2) ≤ 1

2
− 1

4
t.

In the algorithm, suppose we pick X1, X2, ..., Xk ∈ Si as the points for which to query the label
and the labels are Y1, ..., Yk. Note that since n = Ω

((
1
ε

)2κ−1
log(1/δ)

)
, we have |Si| = αn ≥ k

for every i, so we will not run out of samples for each set. By Hoeffding’s inequality, we have

Pr

[
sign

(
k∑
j=1

Yj

)
= µ(Si)

]
= Pr

[
1

k

n∑
j=1

I(Yj = µ(Si)) >
1

2

]
≤ exp

(
−1

8
kt2
)
.

The choice of k yields that the majority vote of the noisy labels agrees with the majority vote µ(Si)
of the Bayes optimal classifier for each Si with q(Si) ≤ β we visit, with probability δ

8 log(2/ε)
.

Suppose the binary search output set St (i.e., the value of t at step 10). Now we analyze the
errors we made in the final output. We consider the two cases:

• Case 1: If q(Sl) ≥ β, then with probability 1 − δ, we have t ∈ {l − 1, l, l + 1} since we
might behave arbitrarily in set Sl. In this case, we have q(Sl)|Sl| ≥ αβm, and so |{x : x ∈
St′ , t

′ < l, h∗(x) = 1} ≤ αβm, because otherwise we have α2β2m2 anti-sort pairs, which
violates our assumption on |T |. Similarly, |{x : x ∈ St′ , t′ > l, h∗(x) = −1}| ≤ αβm.
Counting also the possible errors made on Sl, the total number of errors is

|{ŷi : ŷi 6= h∗(xi)}| ≤ αm+ 2αβm ≤ εn

2

(
1 +

1

2
t

)
≤ εn.

• Case 2: If q(Si) < β for all i, then we have t ∈ {l−1, l}. Now note that we have |{x ∈ Sl−1 :
h∗(x) = −1}| ≥ αm/2, and so |{x ∈ St′ : t′ < l−1, h∗(x) = 1}| ≤ αβm since otherwise
at least α2βm/2 anti-sort pairs are present. So |{x ∈ St′ : t′ ≤ l− 1, h∗(x) = 1}| ≤ 2αβm
considering q(Sl−1) < β. Similarly, |{x ∈ St′ : t′ ≥ l, h∗(x) = −1}| ≤ 2αβm. So the
total number of errors is

|{ŷi : ŷi 6= h∗(xi)}| ≤ 4αβm ≤ εn.

So we have at most εn error under both cases. Now we examine the total query complexity: The
expected comparison complexity is O(m logm) even if we have noisy comparisons, see [7]. For
label complexity, it takes k = Õ

(
log(1/δ)

(
1
ε

)2κ−2
)

queries for each set St, and we do this for

O(log(1/α)) = O
(
log
(

2m
εn

))
times. So the total query complexity is

Õ
(

log

(
2m

εn

)
log(1/δ)

(
1

ε

)2κ−2
)
.

23

2.9.2 Proof of Theorem 5
Proof. The first part of proof is exactly the same as that of Theorem 4. We now bound Pr[Y 6=
µ(Si)|X ∼ Si]. Suppose q(Si) < β. Let V = {x : Pr[Y 6= h∗(X)|X = x] > 1/4} and
U = {xi : Pr[Y 6= h∗(X)|X = xi] > 1/4}. We have P (V) ≤ 4ν. By a relative Chernoff bound,
if ν ≤ C1ε for a small enough constant C1 we have

Pr[|U | ≤ 8nν + 3 log(4/δ)] ≤ exp

(
−3 log(4/δ) + 4νn

3

)
≤ δ/4.

So if ν ≤ 1
64
ε we have |U |/n ≤ ε/8 with probability δ/4. In this case, at most 1/4 of each Si is in

U .
For each set Si, let S̄i = {x ∈ Si : h∗(x) 6= µ(Si)} and S̃i = {x ∈ Si, x ∈ U}. So for each

set such that q(Si) ≤ β, we have

Pr(Y 6= µ(Si)|X ∼ Si) ≤Pr(Y 6= µ(Si)|X ∈ S̃i) Pr(X ∈ S̃i|X ∼ Si)+

Pr(Y 6= µ(Si)|X ∈ S̄i) Pr(X ∈ S̄i|X ∼ Si)+

Pr(Y 6= µ(Si)|X 6∈ S̃i, X 6∈ S̄i) Pr(X 6∈ S̃i, X 6∈ S̄i|X ∼ Si)

≤1 · 1

4
+ 1 · β +

(
3

4
− β

)
1

4

=
7

16
+

3

4
β.

So there exists constant C2 such that if ν ′ ≤ C2ε
2δ we have β ≤ 1

24
, Pr(Y 6= µ(Si)|X ∼ Si)] ≤

1
2
− 1

32
. Thus by Hoeffding’s inequality, the choice of k yields that we recover µ(Si) for each i we

visit with probability δ
8 log(2/ε)

.
By similar analysis as the proof of Theorem 4, we can show that the number of errors (i.e.,

|{ŷi : ŷi 6= h∗(xi)}|) is at most εn.
Now examine the total query complexity: It takes k = O (log(log(1/ε)/δ)) queries for each

set St, and we do this for O(log(1/α)) = O(log
(

2m
εn

)
) times. So the total query complexity is

O
(

log

(
2m

εn

)
log

(
log(1/ε)

δ

))
.

2.9.3 Proof for A2-ADGAC
We use the following lemma adapted from [86]:
Lemma 13 ([86], Lemma 3.1). Suppose that D = {x1, x2, ..., xn} is i.i.d. sampled from PX , and
h∗ ∈ C. There is a universal constant c0 ∈ (1,∞) such that for any γ ∈ (0, 1), and any n ∈ N,
letting

U(n, γ) = c0
d log(n/d) + log(1/γ)

n
,

24

with probability at least 1− γ, ∀h ∈ C, the following inequalities hold:

Pr
X∼PX

[h(X) 6= h∗(X)] ≤ max{2 Pr
X∼D

[h(X) 6= h∗(X)], U(n, γ)},

Pr
X∼D

[h(X) 6= h∗(X)] ≤ max{2 Pr
X∼PX

[h(X) 6= h∗(X)], U(n, γ)}.

Here X ∼ D means X is uniformly sampled from finite set D.

Algorithm 3 A2-ADGAC
Input: ni,C, ε, δ, comparison oracle f .

1: Let V ← C.
2: for i = 1, 2, ..., dlog(1/ε)e do
3: Sample dataset S̃ of size ni.
4: Let S ← {x ∈ S̃ : x ∈ DIS(V)}.
5: Run ADGAC (Subroutine 2) with S, S̃, εi = 2−(i+2), ki and labeled dataset W .
6: V = V \ {h : |W |errW (h) ≥ niεi}.
7: end for

Output: Any Classifier ĥ ∈ V .

Proof of Theorem 6. For a labeled dataset W = {(xi, ŷi)}ni=1, let errW (h) = 1
n

∑n
i=1 I(h(xi) 6=

ŷi) be the empirical risk of h on W for any h ∈ C (remind that ŷi are predictions of ADGAC). For
a clearer explanation, we formalize the A2-ADGAC algorithm in Algorithm 3. We use induction
to prove that after iteration i we have Pr[h(X) 6= h∗(X)] ≤ 4εi for all h ∈ V after step 6 in
Algorithm 3. This proposition holds for i = 0. Suppose it holds for i − 1. By Theorem 4 and
a union bound, with probability 1 − δ/4, for every iteration i we have at most niεi errors with
respect to h∗ after running ADGAC, i.e., |W |errW (h∗) ≤ niεi. So h∗ will not be eliminated from
V in any iteration with probability 1− δ/4. On the other hand, notice that by Step 6 in Algorithm
3 all functions h ∈ V satisfies |W |errW (h) ≤ niεi, so by triangle inequality we have (notice that
W is just the set S with labels)

|S| Pr
X∼S

[h(X) 6= h∗(X)] = |{x ∈ S : h(x) 6= h∗(x)}|
≤ |{(x, ŷ) ∈ W : h(x) 6= ŷ}|+ |{(x, ŷ) ∈ W : h∗(x) 6= ŷ}|
≤ 2εini.

Also note that functions in V agrees on S̃ \ S; so |S̃|PrX∼S̃[h(X) 6= h∗(X)] ≤ 2εini, and since
|S̃| = ni we have PrX∼S̃[h(X) 6= h∗(X)] ≤ 2εi. Now using Lemma 13 with n = ni, we have
PrX∼PX [h(x) 6= h∗(x)] ≤ 4εi for every h ∈ V by choosing ni such that U

(
ni,

δ
4 log(1/ε)

)
≤ εi.

So at the end of the algorithm it outputs a classifier with Pr[ĥ 6= h∗] ≤ ε.
Now we examine the number of queries. By definition of disagreement coefficient, at round

i we have DIS(V) ≤ θεi; thus using a relative Chernoff bound we know that with probability
1− δ/4 we have

mi := |S| ≤ log(12/δ) + 2niθεi = O
(
θ

(
(d log(1/ε)) +

(
1

εi

)2κ−2

log(1/δ)

))
.

25

It takes O(mi logmi) comparisons in expectation to rank the set, and there are log(1/ε) iterations.
So the total comparison complexity is

E[SCcomp]=Õ
(
θ log

(
1

ε

)(
log dθ + (κ− 1) log

(
1

ε

))((
d log

(
1

ε

))
+

(
1

ε

)2κ−2

log(1/δ)

))
.

This obtained the stated comparison complexity. The label complexity follows by multiplying the
label complexity of ADGAC by log(1/ε). Note that in every step we have mi

εini
= O

(
min

{
θ, 1

ε

})
.

Proof of Theorem 7. With the same proof, A2-ADGAC outputs a classifier with Pr[ĥ 6= h∗] ≤ ε
upon finishing. We know examine the number of queries. By definition of disagreement coefficient,
at round i we have DIS(V) ≤ θεi; thus using a Chernoff bound we know that with probability
1− δ/4 we have

mi := |S| ≤ log(12/δ) + 2niθεi = O
(
θd log

(
1

εi

)
log

(
1

δ

))
.

It takes O(mi logmi) comparisons in expectation to rank the set, and there are log(1/ε) iterations.
So the total comparison complexity is

E[SCcomp] = Õ
(
θd log(θd) log

(
1

εi

)
log

(
1

δ

))
.

This obtained the stated comparison complexity. The label complexity follows by multiplying the
label complexity of ADGAC by log(1/ε). Note that in every step we have mi

εini
= O

(
min

{
θ, 1

ε

})
.

2.9.4 Proof for Margin-ADGAC
We first prove Theorem 8, and Theorem 9 follows exactly the same proof with κ = 1 and using
Theorem 5. For clearer explanation, we re-illustrate Margin-ADGAC in a form similar to that in
[15] in Algorithm 4. The proof mostly follows that of [15]. We give a refined sample complexity
via Rademacher complexity following the ideas in [195], and also change the proof according
to the properties of ADGAC (note that we are not using independent samples by replace the
sampling step with ADGAC).

To simplify notations, let err(w) be err(hw(x)) = err(sign(w · x)). Define ∆D(w,w′) =
PrX∼D[sign(w ·X) 6= sign(w′ ·X)]. Also, let θ(w1, w2) be the angle between two vectors w1, w2.
Let Dw,γ = {x : |w · x| ≤ γ}.

The key step is to prove the following theorem:
Theorem 14. For k ≤ log(1/ε), if ∆PX (wk−1, w

∗) ≤M−(k−1), with probability 1− δ
k+k2 , after

round k of Margin-ADGAC we have ∆Dwk−1,bk−1
(wk, w

∗) ≤ κ.
To prove the theorem, we first list useful properties of isotropic log-concave distributions and

fix the parameters we use for the algorithm. We use exactly the same parameters for ri, τi, bi, zi as
in [15], and we restate them here for completeness.

26

Algorithm 4 Margin-ADGAC: Efficiently learning halfspaces with comparison
Input: ε, δ, target errors εk, sample sizes nk, sequences rk, bk, τk, precision value κ.

1: Draw n1 unlabeled samples to S and run ADGAC with(
S, n1, ε0,

δ
8 log(1/ε)

, k1

(
ε0,

δ
8 log(1/ε)

))
, and obtain a labeled dataset W .

2: for k = 1, 2, ..., s = dlog(4/ε)e do
3: Find vk ∈ B(wk−1, rk) that approximately minimize training hinge loss over W , with
‖vk‖2 ≤ 1:

lτk(vk,W) ≤ min
w∈B(wk−1,rk)∩B(0,1)

lτk(w,W) + κ/8.

4: wk ← vk
‖vk‖2

.

5: Sample another dataset S̃ of nk unlabeled samples.
6: S = {x ∈ S : |wk · x| ≤ bk}.
7: Run ADGAC with

(
S, nk, εk,

δ
8 log(1/ε)

, k(1)
(
εk,

δ
8 log(1/ε)

))
and obtain labeled dataset

W .
8: end for

Output: Return ws.

Lemma 15 ([15, 24, 121]). Suppose X ∼ PX is a isotropic log-concave distribution in Rd with
probability density function f . Then

(a) There is an absolute constant c1 such that, if d = 1, f(x) > c1 for all x ∈ [−1/9, 1/9].
(b) There is an absolute constant c2 such that for any two unit vectors u and v in Rd we have

c2θ(u, v) ≤ ∆PX (u, v).
(c) There exists constant c3 such that for any unit vector w and γ > 0, Pr[|w ·X| ≤ γ] ≤ c3γ.
(d) There is a constant c4 such that for any unit vector u, all 0 < γ < 1, for all a such that
‖u− a‖2 ≤ γ and ‖a‖2 ≤ 1, EX∼Du,γ [(a ·X)2] ≤ c4(r2 + γ2).

(e) For any c5 > 0, there is a constant c6 > 0 such that the following holds: let u and v be
two unit vectors in Rd, and assume that θ(u, v) = α < π/2. Then PrX∼PX [sign(u ·X) 6=
sign(v ·X) and |v ·X| ≤ c6α] ≤ c5α.

Now we give the settings of parameters. Let M = max{ 2
c2π
, 2}. Let c′1 be the value

of c6 in Lemma 15 corresponding to the case where c5 is c2
4M

; let bk = c′1M
−k. Let rk =

min{M−(k−1)/c2, π/2} and κ = 1
4c′1M

. Let τk = c1 min{bk−1,1/9}κ
6

, and z2
k = r2

k + b2
k−1. Let

εk =
c3τ2

k bkκ
2

256c4z2
k

, and nk = O
(

1
bk
d log3

(
dk
1/δ

))
. Also let mk = 2c3bknk + log(12k/δ).

Then we prove the following lemma:
Lemma 16. Suppose |W | ≥ mk. Let c(W) be the set with truthful labels w.r.t. w∗, i.e., c(W) =
{(x, sign(w∗ · x)) : x ∈ W}. For any w ∈ B(wk−1, rk), with probability 1− δ

3(k+k2)
we have

|l(w,W)− l(w, c(W))| ≤ κ/8.

Proof. Let N = {(x, ŷ) ∈ W : ŷ 6= sign(w∗ ·x)} be the set where ADGAC has x’s label different

27

than sign(w∗ · x) (remind that ŷ is the prediction of ADGAC). We have

l(w,W) =
1

|W |
∑

(x,ŷ)∈W

lτk(w, x, ŷ)

=
1

|W |

 ∑
(x,y)6∈N

lτk(w, x, sign(w∗ · x)) +
∑

(x,y)∈N

lτk(w, x,−sign(w∗ · x))

 .

So

|l(w,W)− l(w, c(W))| ≤ 1

τk|W |
∑
x∈N

2(w · x)

≤ 1

τk|W |
∑
x∈W

I(x ∈ N)2(w · x). (2.5)

We use the following lemma from [15]:

Lemma 17 (Lemma D.4, [15]). For an absolute constant c, with probability 1− δ
6(k+k2)

,

max
x∈W
‖x‖2 ≤ c

√
d log

(|W |k
δ

)
.

Note that
|w · x| ≤ |wk−1 · x|+ |(w − wk−1) · x| ≤ bk + rk‖x‖2.

So with probability 1− δ
6(k+k2)

, an event Eδ happens such that

|w · x|
τk

≤ c′
√
d log

(|W |k
δ

)
for all x ∈ W , for some constant c′.

Notice that |N ||W | ≤ εknk
mk

. Let N ′ be a εknk
mk

fraction of W with the largest values of |w · x|. Let
ϕ(W) =

∑
x∈N ′ |w · x|. So by Equation (2.5) we have |l(w,W) − l(w, c(W))| ≤ 2

τk|W |
ϕ(W).

Now we have

E[ϕ(W)] = E

[∑
x∈W

δ(x ∈ N ′)|w · x|
]

≤
√
|N ′|
|W |E

√∑
x∈W

(w · x)2


≤
√
εknk
mk

√√√√E

[∑
x∈W

(w · x)2

]

≤
√
εknk
mk

√
c4zk|W | ≤ κτk|W |/16.

28

The first inequality is by Cauchy-Schwartz inequality; the second is by Jensen’s inequality; the
third inequality is by property (d) in Lemma 15; the last inequality is by the value of εi. If we
condition PX onEδ, the above expectation will be smaller since we bound |w ·x| from above. Now

by Mcdiarmid’s inequality, 1
|W |ϕ(W) deviates by at most

c′
√
d log(|W |kδ)
|W | when we change a single

value ofw ·x for some x ∈ W . So by McDiarmid’s inequality, using |W | ≥ mk = Ω(d log2(d/δ)),
with probability 1− δ

3(k+k2)
we have

|l(w,W)− l(w, c(W))| ≤ E[ϕ(W)|Eδ] + κ/16 ≤ κ/8.

The other lemma is about bounding the difference between l(w, c(W)) and EW [l(w, c(W))].
We improve the results in [15] using Rademacher complexity as below.

Lemma 18. With probability 1− δ
6(k+k2)

we have

|EW [l(w, x, sign(w∗ · x))]− l(w,W)| ≤ κ/16.

Proof. Note that every x ∈ W is sampled independently from Dwk,bk−1
. Following the same

proof as in Lemma 16, an Event Eδ happens with probability 1− δ
6(k+k2)

that

∣∣∣∣w · xτk
∣∣∣∣ ≤ c′

√
d log

(|W |k
δ

)

for all x ∈ W , for some constant c′. This means lτk(w, x, sign(w∗ · x)) are also bounded in the
same range under Eδ.

Define the function class F = {x→ lτk(w, x, sign(w∗ ·x)), ‖w−wk‖ ≤ rk}. On eventEδ, all
functions in F are bounded. Now we bound the Rademacher complexity Rn(F). Actually, define
F ′ = {x → 1

τk
w · x · sign(w∗ · x), ‖w − wk‖ ≤ rk}, we have Rn(F) ≤ Rn(F ′) by contraction

29

inequality of Rademacher complexity (since hinge loss is 1-Lipschitz). So

Rn(F) ≤ Rn(F ′)

=
1

τkn
Ex1,...,xn∼Dwk,bk−1

Eσ1,...,σn sup
w:‖w−wk‖≤rk

n∑
i=1

σiw · xi · sign(w∗ · xi)

=
1

τkn
Ex1,...,xn∼Dwk,bk−1

Eσ1,...,σn sup
w:‖w−wk‖≤rk

n∑
i=1

σi(w · xi) (2.6)

=
1

τkn
Ex1,...,xn∼Dwk,bk−1

Eσ1,...,σn

n∑
i=1

σi(wk · xi)+

1

τkn
Ex1,...,xn∼Dwk,bk−1

Eσ1,...,σn sup
w:‖w−wk‖≤rk

n∑
i=1

σi(w − wk) · xi

=
1

τkn
Ex1,...,xn∼Dwk,bk−1

Eσ1,...,σn sup
w:‖w−wk‖≤rk

n∑
i=1

σi(w − wk) · xi

=
1

τkn
Ex1,...,xn∼Dwk,bk−1

Eσ1,...,σn sup
w:‖w−wk‖≤rk

(w − wk)
n∑
i=1

σi · xi

≤ 1

τkn
Ex1,...,xn∼Dwk,bk−1

Eσ1,...,σn sup
w:‖w−wk‖≤rk

‖w − wk‖2

∥∥∥∥∥
n∑
i=1

σixi

∥∥∥∥∥
2

≤ 2rk
τkn

√√√√Ex1,...,xn∼Dwk,bk−1
Eσ1,...,σn

∥∥∥∥∥
n∑
i=1

σixi

∥∥∥∥∥
2

2

(2.7)

≤ 2rk
τkn

√√√√Ex1,...,xn∼Dwk,bk−1
Eσ1,...,σn

[
n∑
i=1

‖xi‖2
2 +

∑
i,j

σiσjxi · xj
]

(2.8)

≤ O
(

1

n
·
√
nd log2

(
nk

δ

))
(2.9)

= O

√d log2
(
nk
δ

)
n

 .

Equation (2.6) is by the property that σi · sign(w∗ · xi) has the same distribution as σi, and thus
we can substitute σi · sign(w∗ · xi) with a single variable; Equation (2.7) is by Jensen’s inequality,

30

and Equation (2.9) is by the boundary condition on ‖x‖2. So by Rademacher’s inequality we have

|EW [l(w, x, sign(w∗ · x))]− l(w,W)| ≤ R|W |(F) +

√
log(1/δ)

|W | C
√
d log

(|W |k
δ

)

≤ O


√√√√d log2

(
|W |k
δ

)
|W |

+

√
log(k/δ)

|W | C
√
d log

(|W |k
δ

)

= O
(√

d log(k/δ)

|W | log

(|W |k
δ

))
.

The choice of |W | = mi = Ω
(
d log3

(
dk
1/δ

))
makes the above quantity less than κ/16.

Now we are ready to prove Theorem 14.

Proof of Theorem 14. With a probability of 1− δ
k+k2 , suppose the conditions in Lemma 16 and

18 holds for w = vk and w = w∗. We have

∆Dwk−1,bk−1
(wk, w

∗)

= ∆Dwk−1,bk−1
(vk, w

∗)

≤ Ex∈Dwk−1,bk−1
[l(vk, x, sign(w∗ · x))] (Since hinge loss upper bounds 0-1 loss)

≤ l(vk, c(W)) + κ/16 (Using Lemma 18)
≤ l(vk,W) + κ/8 (Using Lemma 16)
≤ l(w∗,W) + κ/4 (By the process of selecting vk)
≤ l(w∗, c(W)) + κ/4 + κ/16 (Using Lemma 16)
≤ L(w∗) + κ/4 + κ/8 (Using Lemma 18)
≤ κ. (Using Lemma 3.7 in [15])

Now we can prove Theorem 8.

Proof of Theorem 8. By relative Chernoff bound and property (c) in Lemma 15, with probability
1− δ

6(k+k2)
we have |W | ≥ mk = 2c3bknk + log(12k/δ) in every iteration. Then the correctness

of Margin-ADGAC follows the same way as in [15]. Now examine the number of queries: In each
step we need to compare mi instances, as well as fitting the minimum requirement of ADGAC.
So the comparison complexity is

E[SCcomp] = Õ
(

log2(1/ε)

(
d log4(d/δ) +

(
1

ε

)2κ−2

log(1/δ)

))
.

31

The label complexity is again obtained by multiplying the label complexity in each iteration by
log(1/ε). Note that εknk

mk
is constant in each iteration. Therefore,

SClabel = Õ
(

log(1/ε) log(1/δ)

(
1

ε

)2κ−2
)
.

Proof of Theorem 9. The proof follows exactly the same process as that of Theorem 8 using
κ = 1, and Theorem 5.

2.9.5 Proof of Lower Bounds

2.9.6 Proof of Theorem 10
Proof. Suppose g(x1) = a and g(x0) = b for x1, x2 ∈ X , a < b. Let h1(x) = sign(g(x) − a)
and h2(x) = sign(g(x)− b). Note that using Z(x1, x2) = 0 incurs ν ′ = 0 for both h∗ = h1 and
h∗ = h2, and thus comparison cannot distinguish between h1 and h2. Suppose C = {h1, h2}.
Thus, any algorithm A using both comparison and labeling oracles can be transformed into an
algorithm A′ that uses labeling oracle only, by making the comparison oracle always return 0.
Note that SClabel(A) = SClabel(A′), so we only need to lower bound SClabel(A′). In the following,
we adapt the proof in [86] to give a lower bound. The main difference is that our goal is to reach a
small Pr[h(X) 6= h∗(X)], whereas in [86] the goal is a small err(h)− err(h∗).

Let P (x1) = 24ε, P (x0) = 1 − 24ε. Consider two distributions P1,P2 over X × Y with
two different Bayes function η1(), η2(). Let γ = εκ−1 if κ > 1, or γ = 1

48
if κ = 1. Let

η1(x0) = η2(x0) = 1, η1(x1) = 1
2

+ γ, η2(x1) = 1
2
− γ. It is easy to verify both P1 and P2 satisfy

Tsybakov noise condition.
Choose the groundtruth distribution to be P1 or P2 both with probability 1/2. By the same

proof as Theorem 4.3 in [86], an event happens with probability at least δ that ĥ(x1) 6= h∗(x1),
and thus Pr[ĥ(X) 6= h∗(X)] ≥ ε, if at most 2b1−γ2

γ2 log
(

1
8δ(1−2δ)

)
c labels are queried. So we

prove the theorem for TNC.
The proof for adversarial noise is the same as the above proof using κ = 1.

2.9.7 Proof of Theorem 11
Proof of Theorem 11. The first term in Equation (2.2) follows directly from Theorem 10. For
the second term, we consider the case where both labeling and comparison oracles are perfect
with ν = ν ′ = 0. This is a special case for all Conditions 1, 2 and 3. Notice that in this
case, a perfect comparison oracle can be constructed from a labeling oracle by Z(x, x′) =
sign(Y (x)− Y (x′)) = sign(h∗(x)− h∗(x′)); thus, any algorithm A with access to both labeling
and comparison oracles can be transformed into another algorithm A′ that uses labeling oracle
(by replacing the comparison oracle with one that queries labeling oracle instead). So we have

2SCcomp(A) + SClabel(A) = SClabel(A′) = Ω(d log(1/ε)),

where Ω(d log(1/ε)) is the standard lower bound for realizable active learning (see e.g., [86]).

32

2.9.8 Proof of Theorem 12

Define RB(ĝ) to be the error of comparison oracle induced by ĝ, and also Cĝ = {h : h(x) =
sign(ĝ(x) − t), t ∈ R}. To prove Theorem 12, we first give a lower bound on the left hand
side (Theorem 19) by giving a ĝ that every h ∈ Cĝ will have every at least

√
ν ′. Then we

give an upper bound on it (Theorem 20) by finding a good estimator t. We find t by reducing
Pr[sign(ĝ(X)− t) 6= h∗(X)] to the case when for every x, x′ such that ĝ(x) = ĝ(x′) we also have
h∗(x) = h∗(x′). We find such a good function f in this case by fixing the amount of error at each
value of ĝ(x), and carefully adjusting the noise levels.

Theorem 19. Suppose min{Pr[h∗(X) = 1],Pr[h∗(X) = −1]} ≥
√
ν ′. For any g∗ such that

g∗(X) has a density function, there exists ĝ which induces a comparison oracle with error ν ′,
such that for every h ∈ Cĝ, we have Pr[h(X) 6= h∗(X)] ≥

√
ν ′.

Proof. Consider the distribution of g∗(X). Pick a consecutive interval I = [a, b] with a < 0 < b
such that Pr(g∗(X) ∈ [0, b]) = Pr(g∗(X) ∈ [a, 0]) =

√
ν ′. Pick some integer n ∈ N. Suppose

the cdf and pdf of random variable T = g∗(X) is F (t) and p(t) respectively. Define

ĝ(x) =


a+ (b− a)F (g∗(x))−F (a)√

v′
, if x ∈ [a, 0],

a+ (b− a)F (g∗(x))−F (0)√
v′

, if x ∈ (0, b],

g∗(x), otherwise.

The error of the comparison oracle induced by ĝ can be represented as

RB(ĝ) = 2

∫
g∗(x)∈(0,b]

p(g∗(x))

∫
g∗(x′)∈[a,0)

p(g∗(x′)) · δ(ĝ(x′) > ĝ(x)) dg∗(x)dg∗(x′)

Let t = g∗(x) and t′ = g∗(x′). Then ĝ(x′) > ĝ(x) if and only if

F (t′)− F (a) > F (t)− F (0),

⇔F (t)− F (t′) <
√
ν ′.

33

For every t ∈ [0, b], let G(t) satisfy F (t)− F (G(t)) =
√
ν ′. Then

RB(ĝ) = 2

∫ b

t=0

p(t)

∫ 0

t′=a

p(t′) · δ
(
F (t)− F (t′) <

√
ν ′
)

dtdt′

= 2

∫ b

t=0

p(t)

∫ G(t)

t′=a

p(t′) dtdt′

= 2

∫ b

t=0

p(t)(F (G(t))− F (a))dt

= 2

∫ b

t=0

p(t)(F (t)− F (0))dt

= 2

∫ b

t=0

p(t)

∫ t

t′=0

p(t′)dtdt′

= 2

∫ b

t=0

∫ b

t′=0

p(t)p(t′)δ(t′ < t)dtdt′

= ν ′.

Now examine any function in Cĝ. If we pick a threshold t 6∈ [a, b], the error is at least
√
ν ′

since we incur error on either {x : g∗(x) ∈ [a, 0]} or {x : g∗(x) ∈ [0, b]}. If we pick threshold
a + (b− a)t for t ∈ [0, 1], we induce an error for any g∗(x) ∈ [a, 0] with F (g∗(x))−F (a)√

v
> t, and

any g∗(x) ∈ (0, b] with F (g∗(x))−F (0)√
v

< t. A routine calculation shows the error is always
√
ν ′.

Theorem 20. Suppose that ĝ induces a comparison oracle with error ν ′, and also distributions
of ĝ(X) and g∗(X) are smooth in the sense that they both have a density function. There exists
ht(x) := sign(ĝ(x) − t) ∈ Cĝ such that the error of ht(x) with respect to h∗(x) is at most

√
ν ′,

i.e.,
Pr[ht(X) 6= h∗(X)] = Pr[(ĝ(X)− t)g∗(X) < 0] ≤

√
ν ′.

We first prove the inequality:
Lemma 21. Suppose {xi}ni=1 and {yi}ni=1 satisfies xi, yi ∈ R, xi, yi ≥ 0. If

∑n
i=1

∑n
j=i xiyj ≤ t,

we have

min
k=0,1,...,n

{x1 + · · ·+ xk + yk+1 + · · ·+ yn} ≤
√

2nt

n+ 1
,

the equality holds when x1 = x2 = · · · = xn = y1 = · · · = yn =
√

2t
n(n+1)

.

Proof of Lemma 21. Let f(k) = x1 + · · ·+ xk + yk+1 + · · ·+ yn. We first prove that when the
maximum of mink=0,1,...,n f(k) is achieved, we must have xi = yi for all i. If not, not losing
generality suppose xl > yl. Now consider x′i = xi for all i 6= l, l + 1, and x′l = yl, x

′
l+1 =

xl+1 + xl − yl (omit the latter step if l = n). Let f ′(k) be the function of k computed based on x′

and y. By xl > yl we have f(l) > f(l − 1). Notice that only f ′(l) = f(l − 1) < f(l) is reduced

34

and for all other k 6= l we have f(k) = f ′(k), so the minimum remains the same. Now we have

n∑
i=1

n∑
j=i

x′iyj =
n∑
j=1

j∑
i=1

x′iyj =
n∑
j=1

yj

j∑
i=1

x′i

=
l−1∑
j=1

yj

j∑
i=1

xi + yl

l∑
i=1

x′i +
n∑

j=l+1

yj

j∑
i=1

xi

≤
l−1∑
j=1

yj

j∑
i=1

xi + yl

l∑
i=1

xi +
n∑

j=l+1

yj

j∑
i=1

xi

≤ t.

So there exists a configuration that maximizes mink f(k) with xi = yi for all i. Now suppose
xi = yi for all i. The constraint becomes

n∑
i=1

n∑
j=i

xixj ≤ ε,

which is equivalent to (
n∑
i=1

xi

)2

+
n∑
i=1

x2
i ≤ 2ε.

By Cauchy-Schwarz inequality we have
n∑
i=1

x2
i ≥

(
∑n

i=1 xi)
2

n
.

So

x1 + · · ·+ xk + yk+1 + · · ·+ yn =
n∑
i=1

xi ≤
√

2nt

n+ 1
.

It is easy to verify the equality condition.

Proof of Theorem 20. Not losing generality, suppose ĝ(x) ∈ [0, 1]; such a assumption is justifiable
since any increasing transformation of ĝ does not change RB(ĝ). So we only need to consider
Cĝ = {h : h(x) = ht(x) = sign(ĝ(x)− t), t ∈ [0, 1]}. Let q(u) denote the distribution of ĝ(X).
Let ξ(u) = q(u) Pr(h∗(X) = 1|ĝ(x) = u). So we have∫ t

0

ξ(u)du = Pr(h∗(X) = 1, ĝ(X) < t).

So the error of ht with respect to h∗ can be expressed as

Pr((ĝ(X)− t)g∗(X) < 0) = Pr(ĝ(X) > t, g∗(X) < 0) + Pr(ĝ(X) < t, g∗(X) > 0)

=

∫ t

0

ξ(u)du+

∫ 1

t

(q(u)− ξ(u))du.

35

On the other hand, the comparison error can be expressed as

RB(ĝ) = 2 Pr(ĝ(X) > ĝ(X ′), h∗(X) = −1, h∗(X) = 1)

=

∫ 1

0

ξ(u)

∫ 1

u

(q(v)− ξ(v))dudv.

Now consider we do this on the grid with step size 1/n and let n→∞; the integral will be the
limit value. So, let

Sn =
1

n2

n∑
i=1

n∑
j=i

ξ(i/n)(q(j/n)− ξ(j/n)).

So
Pr(ĝ(X) > g(X ′), h∗(X) = −1, h∗(X) = 1) = lim

n→∞
Sn.

Also, let

T tn =
1

n

 ∑
i:i/n<t

ξ(i/n) +
∑

i:i/n>=t

(q(i/n)− ξ(i/n))

 ,

so
Pr((ĝ(X)− t)g(X) < 0) = lim

n→∞
T tn.

Now let xi = 1
n
ξ(i/n), yi = 1

n
(q(i/n)− ξ(i/n)) in Lemma 21, and we have

min
t
T tn ≤

√
2nSn
n+ 1

.

Note that limn→∞ 2Sn = RB(ĝ) ≤ ν ′ and let n→∞ on both side, we have

min
t

Pr[(ĝ(X)− t)g(X) < 0] ≤
√
ν ′.

36

Chapter 3

Regression with Labels and Ordinal
Information

Classical regression is centered around the development and analysis of methods that use la-
beled observations, {(X1, y1), . . . , (Xn, yn)}, where each (Xi, yi) ∈ Rd × R, in various tasks
of estimation and inference. Nonparametric and high-dimensional methods are appealing in
practice owing to their flexibility, and the relatively weak a-priori structural assumptions that they
impose on the unknown regression function. However, the price we pay is that these methods
typically require a large amount of labeled data to estimate complex target functions, scaling
exponentially with the dimension for fully nonparametric methods and scaling linearly with the
dimension for high-dimensional parametric methods – the so-called curse of dimensionality. This
has motivated research on structural constraints – for instance, sparsity or manifold constraints –
as well as research on active learning and semi-supervised learning where labeled samples are
used judiciously.

We consider a complementary approach, motivated by applications in material science, crowd-
sourcing, and healthcare, where we are able to supplement a small labeled dataset with a potentially
larger dataset of ordinal information. Such ordinal information is obtained either in the form of
a (noisy) ranking of unlabeled points or in the form of (noisy) pairwise comparisons between
function values at unlabeled points. Some illustrative applications of the methods we develop in
this chapter include:

Example 1: Crowdsourcing. In crowdsourcing we rely on human labeling effort, and in
many cases humans are able to provide more accurate ordinal feedback with substantially less
effort (see for instance [150, 154, 164]). When crowdsourced workers are asked to give numerical
price estimates, they typically have difficulty giving a precise answer, resulting in a high variance
between worker responses. On the other hand, when presented two products or listings side by
side, workers may be more accurate at comparing them. We conduct experiments on the task of
price estimation in Section 3.5.4.

Example 2: Material Synthesis. In material synthesis, the broad goal is to design complex
new materials and machine learning approaches are gaining popularity [72, 194]. Typically, given
a setting of input parameters (temperature, pressure etc.) we are able to perform a synthesis

37

experiment and measure the quality of resulting synthesized material. Understanding this land-
scape of material quality is essentially a task of high-dimensional function estimation. Synthesis
experiments can be costly and material scientists when presented with pairs of input parameters
are often able to cheaply and reasonably accurately provide comparative assessments of quality.

Example 3: Patient Diagnosis. In clinical settings, precise assessment of each individual
patient’s health status can be difficult, expensive, and risky but comparing the relative status of
two patients may be relatively easy and accurate.

In each of these settings, it is important to develop methods for function estimation that
combine standard supervision with (potentially) cheaper and abundant ordinal or comparative
supervision.

3.1 Our Contributions
We consider both linear and nonparametric regression with both direct (cardinal) and comparison
(ordinal) information. In both cases, we consider the standard statistical learning setup, where the
samples X are drawn i.i.d. from a distribution PX on Rd. The labels y are related to the features
X as,

y = f(X) + ε,

where f = E[y|X] is the underlying regression function of interest, and ε is the mean-zero label
noise. Our goal is to construct an estimator f̂ of f that has low risk or mean squared error (MSE),

R(f̂ , f) = E(f̂(X)− f(X))2,

where the expectation is taken over the labeled and unlabeled training samples, as well as a new
test point X . We also study the fundamental information-theoretic limits of estimation with
classical and ordinal supervision by establishing lower (and upper) bounds on the minimax risk.
Letting η denote various problem dependent parameters, which we introduce more formally in the
sequel, the minimax risk:

M(m,n; η) = inf
f̂

sup
f∈Fη

R(f̂ , f), (3.1)

provides an information-theoretic benchmark to assess the performance of an estimator.
First, focusing on nonparametric regression, we develop a novel Ranking-Regression (R2)

algorithm for nonparametric regression that can leverage ordinal information, in addition to direct
labels. We make the following contributions:
• To establish the usefulness of ordinal information in nonparametric regression, in Sec-

tion 3.3.2 we consider the idealized setting where we obtain a perfect ordering of the
unlabeled set. We show that the risk of the R2 algorithm can be bounded with high-
probability as Õ(m−2/3 + n−2/d)1, where m denotes the number of labeled samples and n

1We use the standard big-O notation throughout this chapter, and use Õ when we suppress log-factors, and Ô
when we suppress log-log factors.

38

the number of ranked samples. To achieve an MSE of ε, the number of labeled samples
required by R2 is independent of the dimensionality of the input features. This result
establishes that sufficient ordinal information of high quality can allow us to effectively
circumvent the curse of dimensionality.

• In Sections 3.3.3 and 3.3.4 we analyze the R2 algorithm when using either a noisy ranking
of the samples or noisy pairwise comparisons between them. For noisy ranking, we show
that the MSE is bounded by Õ(m−2/3 +

√
ν + n−2/d), where ν is the Kendall-Tau distance

between the true and noisy ranking. As a corollary, we combine R2 with algorithms for
ranking from pairwise comparisons [39] to obtain an MSE of Õ(m−2/3 + n−2/d) when
d ≥ 4, when the comparison noise is bounded.

Turning our attention to the setting of linear regression with ordinal information, we develop
an algorithm that uses active (or adaptive) comparison queries in order to reduce both the label
complexity and total query complexity.
• In Section 3.4 we develop and analyze an interactive learning algorithm that estimates

a linear predictor using both labels and comparison queries. Given a budget of m label
queries and n comparison queries, we show that MSE of our algorithm decays at the rate of
Õ (1/m+ exp(−n/d)). Once again we see that when sufficiently many comparisons are
available, the label complexity of our algorithm is independent of the dimension d.

To complement these results we also give information-theoretic lower bounds to characterize the
fundamental limits of combining ordinal and standard supervision.
• For nonparametric regression, we show that the R2 algorithm is optimal up to log factors

both when it has access to a perfect ranking, as well as when the comparisons have bounded
noise. For linear regression, we show that the rate of O(1/m), and the total number of
queries, are not improvable up to log factors.

On the empirical side we comprehensively evaluate the algorithms we propose, on simulated and
real datasets.
• We use simulated data, and study the performance of our algorithms as we vary the noise in

the labels and in the ranking.
• Second, we consider a practical application of predicting people’s ages from photographs.

For this dataset we obtain comparisons using people’s apparent ages (as opposed to their
true biological age).

• Finally, we curate a new dataset using crowdsourced data obtained through Amazon’s
Mechanical Turk. We provide workers AirBnB listings and attempt to estimate property
asking prices. We obtain both direct and comparison queries for the listings, and also study
the time taken by workers to provide these different types of feedback. We find that, our
algorithms which combine direct and comparison queries are able to achieve significantly
better accuracy than standard supervised regression methods, for a fixed time budget.

3.2 Related Works
As a classical way to reduce the labeling effort, active learning has been mostly focused on
classification [85]. For regression, it is known that, in many natural settings, the ability to make

39

active queries does not lead to improved rates over passive baselines. For example, [47] shows
that when the underlying model is linear, the ability to make active queries can only improve
the rate of convergence by a constant factor, and leads to no improvement when the feature
distribution is spherical Gaussian. In [178], the authors show a similar result that in nonparametric
settings, active queries do not lead to a faster rate for smooth regression functions except when
the regression function is piecewise smooth.

There is considerable work in supervised and unsupervised learning on incorporating additional
types of feedback beyond labels. For instance, [138, 207] study the benefits of different types
of “feature feedback” in clustering and supervised learning respectively. [62] consider learning
with partial corrections, where the user provides corrective feedback to the algorithm when the
algorithm makes an incorrect prediction.

There is also a vast literature on models and methods for analyzing pairwise comparison data,
like the classical Bradley-Terry [38] and Thurstone [162] models. In this literature, the typical
focus is on ranking or quality estimation for a fixed set of objects. In contrast, we focus on function
estimation and the resulting models and methods are quite different. We build on the work on
“noisy sorting” [39, 151] to extract a consensus ranking from noisy pairwise comparisons.

Given ordinal information of sufficient fidelity, the problem of nonparametric regression is
related to the problem of regression with shape constraints, or more specifically isotonic regression
[29, 203]. Accordingly, we leverage such algorithms in our work and we comment further on the
connections in Section 3.3.2. Some salient differences between this literature and our work are
that we design methods that work in a semisupervised setting, and further that our target is an
unknown d-dimensional (smooth) regression function as opposed to a univariate shape-constrained
function.

The rest of this chapter is organized as follows. In Section 3.3, we consider the problem of
combining direct and comparison-based labels for nonparametric regression, providing upper
and lower bounds for both noiseless and noisy ordinal models. In Section 3.4, we consider the
problem of combining adaptively chosen direct and comparison-based labels for linear regression.
In Section 3.5, we turn our attention to an empirical evaluation of our proposed methods on real
and synthetic data. Finally, we conclude in Section 3.6 with a number of additional results and
open directions. In the Appendix we present detailed proofs for various technical results and a
few additional supplementary experimental results.

3.3 Nonparametric Regression with Ordinal Information
We now provide analysis for nonparametric regression. First, in Section 3.3.1 we establish the
problem setup and notations. Then, we introduce the R2 algorithm in Section 3.3.2 and analyze it
under perfect rankings. Next, we analyze its performance for noisy rankings and comparisons in
Sections 3.3.3 and 3.3.4.

3.3.1 Background and Problem Setup
We consider a nonparametric regression model with random design, i.e. we suppose first that
we are given access to an unlabeled set U = {X1, . . . , Xn}, where Xi ∈ X ⊂ [0, 1]d, and Xi

40

are drawn i.i.d. from a distribution PX and we assume that PX has a density p which is upper
and lower bounded as 0 < pmin ≤ p(x) ≤ pmax for x ∈ X . Our goal is to estimate a function
f : X 7→ R, where following classical work [82, 166] we assume that f is bounded in [−M,M]
and belongs to a Hölder ball Fs,L, with 0 < s ≤ 1:

Fs,L = {f : |f(x)− f(y)| ≤ L‖x− y‖s2,∀ x, y ∈ X} .

For s = 1 this is the class of Lipschitz functions. We discuss the estimation of smoother functions
(i.e. the case when s > 1) in Section 3.6. We obtain two forms of supervision:

1. Classical supervision: For a (uniformly) randomly chosen subset L ⊆ U of size m (we
assume throughout that m ≤ n and focus on settings where m � n) we make noisy
observations of the form:

yi = f(Xi) + εi, i ∈ L,

where εi are i.i.d. Gaussian with E[εi] = 0,Var[εi] = 1. We denote the indices of the labeled
samples as {t1, . . . , tm} ⊂ {1, . . . , n}.

2. Ordinal supervision: For the given dataset {X1, . . . , Xn} we let π denote the true
ordering, i.e. π is a permutation of {1, . . . , n} such that for i, j ∈ {1, . . . , n}, with
π(i) ≤ π(j) we have that f(Xi) ≤ f(Xj). We assume access to one of the following types
of ordinal supervision:
(1) We assume that we are given access to a noisy ranking π̂, i.e. for a parameter ν ∈ [0, 1]
we assume that the Kendall-Tau distance between π̂ and the true-ordering is upper-bounded
as: ∑

i,j∈[n]

I[(π(i)− π(j))(π̂(i)− π̂(j)) < 0] ≤ νn2. (3.2)

(2) For each pair of samples (Xi, Xj), with i < j we obtain a comparison Zij where for
some constant λ > 0:

P(Zij = I(f(Xi) > f(Xj))) ≥
1

2
+ λ. (3.3)

As we discuss in Section 3.3.4, it is straightforward to extend our results to a setting where
only a randomly chosen subset of all pairwise comparisons are observed.

Although classic supervised learning learns a regression function with labels only and without
ordinal supervision, we note that learning cannot happen in the opposite way: That is, we cannot
consistently estimate the underlying function with only ordinal supervision and without labels:
the underlying function is only identifiable up to certain monotonic transformations.

As discussed in Section 3.1, our goal is to design an estimator f̂ of f that achieves the minimax
mean squared error (3.1), when f ∈ Fs,L. We conclude this section recalling a well-known fact:
given access to only classical supervision the minimax risk M(m; η) = Θ(m−

2s
2s+d), suffers from

an exponential curse of dimensionality.

41

3.3.2 Nonparametric Regression with Perfect Ranking
To ascertain the value of ordinal information we first consider an idealized setting, where we are
given a perfect ranking π of the unlabeled samples in U . We present our Ranking-Regression (R2)
algorithm with performance guarantees in Section 3.3.2, and a lower bound for it in Section 3.3.2
which shows that R2 is optimal up to log factors.

Upper bounds for the R2 Algorithm

Algorithm 5 R2: Ranking-Regression

Input: Unlabeled data U = {X1, . . . , Xn}, a labeled set of size m and corresponding labels, i.e.
samples {(Xt1 , yt1), . . . , (Xtm , ytm)}, and a ranking π̂.

1: Order elements in U as (Xπ̂(1), . . . , Xπ̂(n)).
2: Run isotonic regression (see Equation (3.4)) on {yt1 , . . . , ytm}. Denote the estimated values

by {ŷt1 , . . . , ŷtm}.
3: For i = 1, 2, . . . , n, let ĩ = tk, where π̂(tk) is the largest value such that π̂(tk) ≤ π̂(i), k =

0, 1, . . . ,m, and ĩ = ? if no such tk exists. Set

ŷi =

{
ŷ̃i if ĩ 6= ?

0 otherwise.

Output: Function f̂ = NearestNeighbor({(Xi, ŷi)}ni=1).

Our nonparametric regression estimator is described in Algorithm 5 and Figure 3.1. We first
rank all the samples in U according to the (given or estimated) permutation π̂. We then run isotonic
regression [29] on the labeled samples in L to de-noise them and borrow statistical strength. In
more detail, we solve the following program to de-noise the labeled samples:

min
{ŷπ̂(t1),...,ŷπ̂(tm)}

m∑
k=1

(ŷπ̂(tk) − yπ̂(tk))
2

s.t. ŷtk ≤ ŷtl ∀ (k, l) such that π̂(tk) < π̂(tl)

−M ≤ {ŷπ̂(t1), . . . , ŷπ̂(tm)} ≤M.

(3.4)

We introduce the bounds {M,−M} in the above program to ease our analysis. In our experiments,
we simply set M to be a large positive value so that it has no influence on our estimator. We then
leverage the ordinal information in π̂ to impute regression estimates for the unlabeled samples in
U , by assigning each unlabeled sample the value of the nearest (de-noised) labeled sample which
has a smaller function value according to π̂. Finally, for a new test point, we use the imputed (or
estimated) function value of the nearest neighbor in U .

In the setting where we use a perfect ranking the following theorem characterizes the perfor-
mance of R2:
Theorem 22. For constants C1, C2 > 0 the MSE of f̂ is bounded by

E(f̂(X)− f(X))2 ≤ C1m
−2/3 log2 n logm+ C2n

−2s/d.

42

Figure 3.1: Top Left: A group of unlabeled points are ranked according to function values using
ordinal information only. Top Right: We obtain function values of m randomly chosen samples.
Middle Right: The values are adjusted using isotonic regression. Bottom Right: Function values
of other unlabeled points are inferred. Bottom Left: For a new point, the estimated value is given
by the nearest neighbor in U .

Before we turn our attention to the proof of this result, we examine some consequences.
Remarks: (1) Theorem 22 shows a surprising dependency on the sizes of the labeled and
unlabeled sets (m and n). The MSE of nonparametric regression using only the labeled sam-
ples is Θ(m−

2s
2s+d) which is exponential in d and makes nonparametric regression impractical

in high-dimensions. Focusing on the dependence on m, Theorem 22 improves the rate to
m−2/3polylog(m,n), which is no longer exponential. By using enough ordinal information we
can avoid the curse of dimensionality.
(2) On the other hand, the dependence on n (which dictates the amount of ordinal information
needed) is still exponential. This illustrates that ordinal information is most beneficial when it is
copious. We show in Section 3.3.2 that this is unimprovable in an information-theoretic sense.
(3) Somewhat surprisingly, we also observe that the dependence on n is faster than the n−

2s
2s+d

rate that would be obtained if all the samples were labeled. Intuitively, this is because of the
noise in labels: Given the m labels along with the (perfect) ranking, the difference between two
neighboring labels is typically very small (around 1/m). Therefore, any unlabeled points in U \ L
will be restricted to an interval much narrower than the constant noise in direct labels. In the case
where all points are labeled (i.e., m = n), the MSE is of order n−2/3 + n−2s/d, also slightly better
rate than when no ordinal information is available. On the other hand, the improvement is stronger
when m� n.
(4) Finally, we also note in passing that the above theorem provides an upper bound on the
minimax risk in Equation (3.1).

Proof Sketch We provide a brief outline and defer technical details to the Supplementary Material.
For a randomly drawn point X ∈ X , we denote by Xα the nearest neighbor of X in U . We

43

decompose the MSE as

E
[
(f̂(X)− f(X))2

]
≤ 2E

[
(f̂(X)− f(Xα))2

]
+ 2E

[
(f(Xα)− f(X))2

]
. (3.5)

The second term corresponds roughly to the finite-sample bias induced by the discrepancy between
the function value atX and the closest labeled sample. We use standard sample-spacing arguments
(see [82]) to bound this term. This term contributes the n−2s/d rate to the final result. For the
first term, we show a technical result in the Appendix (Lemma 34). Without loss of generality
suppose f

(
Xt1

)
≤ · · · f

(
Xtm

)
. By conditioning on a probable configuration of the points and

enumerating over choices of the nearest neighbor we find that roughly (see Lemma 34 for a
precise statement):

E
[
(f̂(X)− f(Xα))2

]
≤
(log2 n logm

m

)
×

E
(m∑
k=1

((
f̂(Xtk)− f(Xtk)

)2
+
(
f
(
Xtk+1

)
− f

(
Xtk

))2
))
. (3.6)

Intuitively, these terms are related to the estimation error arising in isotonic regression (first term)
and a term that captures the variance of the function values (second term). When the function f is
bounded, we show that the dominant term is the isotonic estimation error which is on the order of
m1/3. Putting these pieces together we obtain the theorem.

Lower bounds with Ordinal Data

To understand the fundamental limits on the usefulness of ordinal information, as well as to study
the optimality of the R2 algorithm we now turn our attention to establishing lower bounds on the
minimax risk. In our lower bounds we choose PX to be uniform on [0, 1]d. Our estimators f̂ are
functions of the labeled samples: {(Xt1 , yt1), . . . , (Xtm , ytm)}, the set U = {X1, . . . , Xn} and
the true ranking π. We have the following result:
Theorem 23. For any estimator f̂ we have that for a universal constant C > 0,

inf
f̂

sup
f∈Fs,L

E
[
(f(X)− f̂(X))2

]
≥ C(m−2/3 + n−2s/d).

Comparing with the result in Theorem 22 we conclude that the R2 algorithm is optimal up to
log factors, when the ranking is noiseless.
Proof Sketch We establish each term in the lower bound separately. Intuitively, for the n−2s/d

lower bound we consider the case when all the n points are labeled perfectly (in which case the
ranking is redundant) and show that even in this setting the MSE of any estimator is at least n−2s/d

due to the finite resolution of the sample.
To prove the m−2/3 lower bound we construct a novel packing set of functions in the class

Fs,L, and use information-theoretic techniques (Fano’s inequality) to establish the lower bound.
The functions we construct are all increasing functions, and as a result the ranking π provides no

44

Figure 3.2: Original construction for nonparametric regression in 1-d (left), and our construction
(right).

additional information for these functions, easing the analysis. Figure 3.2 contrasts the classical
construction for lower bounds in nonparametric regression (where tiny bumps are introduced to a
reference function) with our construction where we additionally ensure the perturbed functions
are all increasing. To complete the proof, we provide bounds on the cardinality of the packing set
we create, as well as bounds on the Kullback-Leibler divergence between the induced distributions
on the labeled samples. We provide the technical details in Section 3.8.2.

3.3.3 Nonparametric Regression using Noisy Ranking
In this section, we study the setting where the ordinal information is noisy. We focus here on the
setting where as in equation Equation (3.2) we obtain a ranking π̂ whose Kendall-Tau distance
from the true ranking π is at most νn2. We show that the R2 algorithm is quite robust to ranking
errors and achieves an MSE of Õ(m−2/3 +

√
ν + n−2s/d). We establish a complementary lower

bound of Õ(m−2/3 + ν2 + n−2s/d) in Section 3.3.3.

Upper Bounds for the R2 Algorithm

We characterize the robustness of R2 to ranking errors, i.e. when π̂ satisfies the condition
in Equation (3.2), in the following theorem:
Theorem 24. For constants C1, C2 > 0, the MSE of the R2 estimate f̂ is bounded by

E[(f̂(X)− f(X))2] ≤ C1

(
log2 n logm

(
m−2/3 +

√
ν
))

+ C2n
−2s/d.

Remarks: (1) Once again we observe that in the regime where sufficient ordinal information
is available, i.e. when n is large, the rate no longer has an exponential dependence on the
dimension d.
(2) This result also shows that the R2 algorithm is inherently robust to noise in the ranking, and
the mean squared error degrades gracefully as a function of the noise parameter ν. We investigate
the optimality of the

√
ν-dependence in the next section.

We now turn our attention to the proof of this result.

45

Proof Sketch When using an estimated permutation π̂ the true function of interest f is no longer
an increasing (isotonic) function with respect to π̂, and this results in a model-misspecification
bias. The core technical novelty of our proof is in relating the upper bound on the error in π̂ to an
upper bound on this bias. Concretely, in the Appendix we show the following lemma:
Lemma 25. For any permutation π̂ satisfying the condition in Equation (3.2)

n∑
i=1

(f(Xπ−1(i))− f(Xπ̂−1(i)))
2 ≤ 8M2

√
2νn.

Using this result we bound the minimal error of approximating an increasing sequence
according to π by an increasing sequence according to the estimated (and misspecified) ranking π̂.
We denote this error on m labeled points by ∆, and using Lemma 25 we show that in expectation
(over the random choice of the labeled set)

E[∆] ≤ 8M2
√

2νm.

With this technical result in place we follow the same decomposition and subsequent steps before
we arrive at the expression in equation Equation (3.6). In this case, the first term for some constant
C > 0 is bounded as:

E
(m∑
k=1

(
f̂(Xtk)− f(Xtk)

)2
)
≤ 2E[∆] + Cm1/3,

where the first term corresponds to the model-misspecification bias and the second corresponds
to the usual isotonic regression rate. Putting these terms together in the decomposition in Equa-
tion (3.6) we obtain the theorem.

In settings where ν is large R2 can be led astray by the ordinal information, and a standard
nonparametric regressor can achieve the (possibly faster) O

(
m−

2s
2s+d

)
rate by ignoring the ordinal

information. In this case, a simple and standard cross-validation procedure can combine the
benefits of both methods: we estimate the regression function twice, once using R2 and once
using k nearest neighbors, and choose the regression function that performs better on a held-out
validation set. The following theorem shows guarantees for this method and an upper bound for
the minimax risk (3.1):
Theorem 26. Under the same assumptions as Theorem 24, there exists an estimator f̂ such that

E[(f̂(X)− f(X))2] = Õ
(
m−2/3 + min{√ν,m− 2s

2s+d}+ n−2s/d
)
.

The main technical difficulty in analyzing the model-selection procedure we propose in this
context is that a naı̈ve analysis of the procedure, using classical tail bounds to control the deviation
between the empirical risk and the population risk, results in an excess risk of Õ(1/

√
m).However,

this rate would overwhelm the Õ(m−2/3) bound that arises from isotonic regression. We instead
follow a more careful analysis outlined in the work of [30] which exploits properties of the
squared-loss to obtain an excess risk bound of Õ(1/m). We provide a detailed proof in the
Appendix for convenience and note that in our setting, the y values are not assumed to be bounded
and this necessitates some minor modifications to the original proof [30].

46

Lower bounds with Noisy Ordinal Data

In this section we turn our attention to lower bounds in the setting with noisy ordinal information.
In particular, we construct a permutation π̂ such that for a pair (Xi, Xj) of points randomly chosen
from PX :

P[(π(i)− π(j))(π̂(i)− π̂(j)) < 0] ≤ ν.

We analyze the minimax risk of an estimator which has access to this noisy permutation π̂, in
addition to the labeled and unlabeled sets (as in Section 3.3.2).
Theorem 27. There is a constantC > 0 such that for any estimator f̂ taking inputX1, . . . , Xn, y1, . . . , ym
and π̂,

inf
f̂

sup
f∈Fs,L

E
(
f(X)− f̂(X)

)2 ≥ C(m−
2
3 + min{ν2,m−

2
d+2}+ n−2s/d).

Comparing this result with our result in Remark 3 following Theorem 24, our upper and lower
bounds differ by the gap between

√
ν and ν2, in the case of Lipschitz functions (s = 1).

Proof Sketch We focus on the dependence on ν, as the other parts are identical to Theorem
23. We construct a packing set of Lipschitz functions, and we subsequently construct a noisy
comparison oracle π̂ which provides no additional information beyond the labeled samples. The
construction of our packing set is inspired by the construction of standard lower bounds in
nonparametric regression (see Figure 3.2), but we modify this construction to ensure that π̂ is
uninformative. In the classical construction we divide [0, 1]d into ud grid points, with u = m1/(d+2)

and add a “bump” at a carefully chosen subset of the grid points. Here we instead divide [0, t]d

into a grid with ud points, and add an increasing function along the first dimension, where t is a
parameter we choose in the sequel.

We now describe the ranking oracle which generates the permutation π̂: we simply rank sam-
ple points according to their first coordinate. This comparison oracle only makes an error when
both x, x′ lies in [0, t]d, and both x1, x

′
1 lie in the same grid segment [tk/u, t(k + 1)/u] for some

k ∈ [u]. So the Kendall-Tau error of the comparison oracle is (td)2 × ((1/u)2 × u) = ut2d. We
choose t such that this value is less than ν. Once again we complete the proof by lower bounding
the cardinality of the packing-set for our stated choice of t, upper bounding the Kullback-Leibler
divergence between the induced distributions and appealing to Fano’s inequality.

3.3.4 Regression with Noisy Pairwise Comparisons
In this section we focus on the setting where the ordinal information is obtained in the form
of noisy pairwise comparisons, following equation Equation (3.3). We investigate a natural
strategy of aggregating the pairwise comparisons to form a consensus ranking π̂ and then applying
the R2 algorithm with this estimated ranking. We build on results from theoretical computer
science, where such aggregation algorithms are studied for their connections to sorting with noisy
comparators. In particular, Braverman and Mossel [39] study noisy sorting algorithms under the
noise model described in Equation (3.3) and establish the following result:

47

Theorem 28 ([39]). Let α > 0. There exists a polynomial-time algorithm using noisy pairwise
comparisons between n samples, that with probability 1− n−α, returns a ranking π̂ such that for
a constant c(α, λ) > 0 we have that:∑

i,j∈[n]

I[(π(i)− π(j))(π̂(i)− π̂(j)) < 0] ≤ c(α, λ)n.

Furthermore, if allowed a sequential (active) choice of comparisons, the algorithm queries at
most O(n log n) pairs of samples.

Combining this result with our result on the robustness of R2 we obtain an algorithm for
nonparametric regression with access to noisy pairwise comparisons with the following guarantee
on its performance:
Corollary 29. For constants C1, C2 > 0, R2 with π̂ estimated as described above produces an
estimator f̂ with MSE

E
(
f̂(X)− f(X)

)2 ≤ C1m
−2/3 log2 n logm+ C2 max{n−2s/d, n−1/2 log2 n logm}.

Remarks:
1. From a technical standpoint this result is an immediate corollary of Theorems 24 and 28,

but the extension is important from a practical standpoint. The ranking error of O(1/n)

from the noisy sorting algorithm leads to an additional Õ(1/
√
n) term in the MSE. This

error is dominated by the n−2s/d term if d ≥ 4s, and in this setting the result in Corollary
29 is also optimal up to log factors (following the lower bound in Section 3.3.2).

2. We also note that the analysis in [39] extends in a straightforward way to a setting where
only a randomly chosen subset of the pairwise comparisons are obtained.

3.4 Linear Regression with Comparisons
In this section we investigate another popular setting for regression, that of fitting a linear predictor
to data. We show that when we have enough comparisons, it is possible to estimate a linear
function even when m� d, without making any sparsity or structural assumptions.

For linear regression we follow a different approach when compared to the nonparametric
setting we have studied thus far. By exploiting the assumption of linearity, we see that each
comparison now translates to a constraint on the parameters of the linear model, and as a
consequence we are able to use comparisons to obtain a good initial estimate. However, the
unknown linear regression parameters are not fully identified by comparison. For instance, we
observe that the two regression vectors w and 2 × w induce the same comparison results for
any pairs (X1, X2). This motivates using direct measurements to estimate a global scaling of
the unknown regression parameters, i.e the norm of regression vector w∗. Essentially by using
comparisons instead of direct measurements to estimate the weights, we convert the regression
problem to a classification problem, and therefore can leverage existing algorithms and analyses
from the passive/active classification literature.

48

We present our assumptions and notation for the linear setup in the next subsection. Then we
give the algorithm along with its analysis in Section 3.4.2. We also present information-theoretic
lower bounds on the minimax rate in Section 3.4.3.

3.4.1 Background and Problem Setup
Following some of the previous literature on estimating a linear classifier [13, 14], we assume that
the distribution PX is isotropic and log-concave. In more detail, we assume that coordinates of X
are independent, centered around 0, have covariance Id; and that the log of the density function
of X is concave. This assumption is satisfied by many standard distributions, for instance the
uniform and Gaussian distributions [121]. We let B(v, r) denote the ball of radius r around vector
v. Our goal is to estimate a linear function f(X) = 〈w∗, X〉, and for convenience we denote:

r∗ = ‖w∗‖2 and v∗ =
w∗

‖w∗‖2

.

Similar to the nonparametric case, we suppose that we have access to two kinds of supervision
using labels and comparisons respectively. We represent these using the following two oracles:
• Label Oracle: We assume access to a label oracle Ol, which takes a sample X ∈ Rd and

outputs a label y = 〈w∗, X〉+ ε, with E[ε] = 0, Var(ε) = σ2.
• Comparison Oracle: We also have access to a (potentially cheaper) comparison oracle
Oc. For each query, the oracle Oc receives a pair of samples (X,X ′) ∼ PX × PX , and
returns a random variable Z ∈ {−1,+1}, where Z = 1 indicates that the oracle believes
that f(X) > f(X ′), and Z = −1 otherwise. We assume that the oracle has agnostic noise2

ν, i.e.:
P(Z 6= sign(〈w∗, X −X ′〉)) ≤ ν.

That is, for a randomly sampled triplet (X,X ′, Z) the oracle is wrong with probability at
most ν. Note that the error of the oracle for a particular example (X,X ′) = (x, x′) can be
arbitrary.

Given a set of unlabeled instances U = {X1, X2, . . .} drawn from PX , we aim to estimate
w∗ by querying Ol and Oc with samples in U , using a label and comparison budget of m and
n respectively. Our algorithm can be either passive, active or semi-supervised; we denote the
output of algorithm A by ŵ = A(U ,Ol,Oc). For an algorithm A, we study the minimax risk
(3.1), which in this case can be written as

M(m,n) = inf
A

sup
w∗

E
[
〈w∗ − ŵ, X〉2

]
. (3.7)

Our algorithm relies on a linear classification algorithm Ac, which we assume to be a proper
classification algorithm (i.e. the output of Ac is a linear classifier which we denote by v̂). We let
Ac(U ,O,m) denote the output (linear) classifier of Ac when it uses the unlabeled data pool U ,

2As we discuss in the sequel our model can also be adapted to the bounded noise model case of eqn. (3.3) using a
different algorithm from active learning; see Section 6.4.2 for details.

49

the label oracle O and acquires m labels. Ac can be either passive or active; in the former case
the m labels are randomly selected from U , whereas in the latter case Ac decides which labels to
query. We use εAc(m, δ) to denote (an upper bound on) the 0/1 error of the algorithm Ac when
using m labels, with 1− δ probability, i.e.:

P[err(Ac(U ,m)) ≤ εAc(m, δ)] ≥ 1− δ.
We note that by leveraging the log-concave assumption on PX , it is straightforward to translate
guarantees on the 0/1 error to corresponding guarantees on the `2 error ‖v̂ − v∗‖2.

We conclude this section by noting that the classical minimax rate for ordinary least squares
(OLS) is of order O(d/m), where m is the number of label queries. This rate cannot be improved
by active label queries (see for instance [47]).

3.4.2 Algorithm and Analysis
Our algorithm, Comparison Linear Regression (CLR), is described in Algorithm 6. We first use
the comparisons to construct a classification problem with samples (X −X ′) and oracleOc. Here
we slightly overload the notation of Oc that Oc(Xi −Xj) = Oc(Xi, Xj). Given these samples
we use an active linear classification algorithm to estimate a normalized weight vector v̂. After
classification, we use the estimated v̂ along with actual label queries to estimate the norm of the
weight vector r̂. Combining these results we obtain our final estimate ŵ = r̂ · v̂.

Algorithm 6 Comparison Linear Regression (CLR)
Input: comparison budget n, label budget m, unlabeled data pool U , algorithm Ac

1: Construct pairwise pool U ′ = {X1 −X2, X3 −X4, . . . , Xn−1 −Xn}
2: Run Ac(U ′,Oc, n) and obtain a classifier with corresponding weight vector v̂
3: Query random samples {(Xi, yi)}mi=1

4: Let r̂ =

∑m
i=1〈v̂, Xi〉yi∑m
i=1〈v̂, Xi〉2

.

Output: ŵ = r̂ · v̂.

We have the following main result which relates the error of ŵ to the error of the classification
algorithm Ac.
Theorem 30. There exists some constants C,M such that if m > M , the MSE of Algorithm 6
satisfies

E[〈w∗ − ŵ, X〉2] ≤ Ô

(
1

m
+ log2m · εAc

(
n,

1

m

)
+ ν2

)
.

We defer a detailed proof to the Appendix and provide a concise proof sketch here.
Proof Sketch
We recall that, by leveraging properties of isotropic log-concave distributions, we can obtain an
estimator v̂ such that ‖v̂ − v∗‖2 ≤ ε = O (εAc(n, δ)). Now let Ti = 〈v̂, Xi〉, and we have

r̂ =

∑m
i=1 Tiyi∑m
i=1 T

2
i

= r∗ +

∑m
i=1 Tir

∗〈v∗ − v̂, Xi〉+ εi∑m
i=1 T

2
i

.

50

And thus

〈w∗, X〉 − 〈ŵ, X〉 = r∗〈v∗ − v̂, X〉 −
∑m

i=1 Tir
∗〈v∗ − v̂, Xi〉∑m
i=1 T

2
i

〈v̂, X〉+

∑m
i=1 Tiεi∑m
i=1 T

2
i

〈v̂, X〉.

The first term can be bounded using ‖v̂ − v∗‖2 ≤ ε; for the latter two terms, using Hoeffding
bounds we show that

∑m
i=1 T

2
i = O(m). Then by decomposing the sums in the latter two terms,

we can bound the MSE.

Leveraging this result we can now use existing results to derive concrete corollaries for
particular instantiations of the classification algorithm Ac. For example, when ν = 0 and we
use passive learning, standard VC theory shows that the empirical risk minimizer has error
εERM = O(d log(1/δ)/n). This leads to the following corollary:
Corollary 31. Suppose that ν = 0, and that we use the passive ERM classifier asAc in Algorithm
6, then the output ŵ has MSE bounded as:

E[〈w∗ − ŵ, X〉2] ≤ Ô

(
1

m
+
d log3m

n

)
.

When ν > 0, we can use other existing algorithms for either the passive/active case. We give
a summary of existing results in Table 3.1, and note that (as above) each of these results can
be translated in a straightforward way to a guarantee on the MSE when combining direct and
comparison queries. We also note that previous results using isotropic log-concave distribution
can be directly exploited in our setting since X −X ′ follows isotropic log-concave distribution if
X does [121]. Each of these results provide upper bounds on minimax risk Equation (3.7) under
certain restrictions.

Table 3.1: Summary of existing results for passive/active classification for isotropic log-concave
X distributions. C denotes some fixed constant; ε = εAc(m, δ). The work of [195] additionally
requires that X −X ′ follow a uniform distribution.

Algorithm Oracle Requirement Rate of ε Efficient?

ERM [85] Passive
None Õ

(
d
√

1
m

)
No

ν = O(ε) Õ
(
d
m

)
[14] Passive ν = O(ε) Õ

((
d
m

)1/3
)

Yes

[13] Active ν = O(ε) exp
(
− Cm
d+log(m/δ)

)
Yes

[195]
Passive

ν = O
(

ε
log d+log log 1

ε

)
Õ
(
d
m

)
Yes

Active exp
(
− Cm
d+log(m/δ)

)

3.4.3 Lower Bounds
Now we turn to information-theoretic lower bounds on the minimax risk (3.1). We consider any
active estimator ŵ with access to the two oracles Oc,Ol, using n comparisons and m labels. In

51

this section, we show that the 1/m rate in Theorem 30 is optimal; we also show a lower bound in
the active setting on the total number of queries in the appendix.
Theorem 32. Suppose that X is uniform on [−1, 1]d, and ε ∼ N (0, 1). Then, for any (active)
estimator ŵ with access to both label and comparison oracles, there is a universal constant c > 0
such that,

inf
ŵ

sup
w∗

E
[
〈w∗ − ŵ, X〉2

]
≥ c

m
.

Theorem 32 shows that the O(1/m) term in Theorem 30 is necessary. The proof uses classical
information-theoretic techniques (Le Cam’s method) applied to two increasing functions with
d = 1, and is included in Appendix 3.8.7.

We note that we cannot establish lower bounds that depend solely on number of comparisons
n, since we can of course achieve O(d/m) MSE without using any comparisons. Consequently,
we show a lower bound on the total number of queries in Appendix 3.8.8. This bound shows that
when using the algorithm in the paper of [13] asAc in CLR, the total number of queries is optimal
up to log factors.

3.5 Experiment Results

To verify our theoretical results and test our algorithms in practice, we perform three sets of
experiments. First, we use simulated data, where the noise in the labels and ranking can be
controlled separately. Second, we consider an application of predicting people’s ages from
photographs, where we synthesize comparisons from data on people’s apparent ages (as opposed
to their true biological ages). Finally, we crowdsource data using Amazon’s Mechanical Turk to
obtain comparisons and direct measurements for the task of estimating rental property asking
prices. We then evaluate various algorithms for predicting rental property prices, both in terms of
their accuracy, as well as in terms of their time cost.
Baselines. In the nonparametric setting, we compare R2 with k-NN algorithms in all experiments.
We choose k-NN methods because they are near-optimal theoretically for Lipschitz functions, and
are widely used in practice. Also, the R2 method is a nonparametric method built on a nearest
neighbor regressor. It may be possible to use the ranking-regression method in conjunction with
other nonparametric regressors but we leave this for future work. We choose from a range of
different constant values of k in our experiments.

In the linear regression setting, for our CLR algorithm, we consider both a passive and an
active setting for comparison queries. For the passive comparison query setting, we simply use a
Support Vector Machine (SVM) as A in Algorithm 6. For the active comparison query setting, we
use an algorithm minimizing hinge loss as described in [13]. We compare CLR to the LASSO
and to Linear Support Vector Regression (LinearSVR), where the relevant hyperparameters are
chosen based on validation set performance. We choose LASSO and LinearSVR as they are the
most prevalent linear regression methods. Unless otherwise noted, we repeat each experiment 20
times and report the average MSE3.

3Our plots are best viewed in color.

52

Cost Ratio. Our algorithms aim at reducing the overall cost of estimating a regression function
when comparisons can be more easily available than direct labels. In practice, the cost of obtaining
comparisons can vary greatly depending on the task, and we consider two practical setups:

1. In many applications, both direct labels and comparisons can be obtained, but labels cost
more than comparisons. Our price estimation task corresponds to this case. The cost, in
this case, depends on the ratio between the cost of comparisons and labels. We suppose
that comparisons cost 1, and that labels cost c for some constant c > 1 and that we have a
total budget of C. We call c the cost ratio. Minimizing the risk of our algorithms requires
minimizing M(m,n; η) as defined in (3.1) subject to cm+ n ≤ C; for most cases, we need
a small m and large n. In experiments with a finite cost ratio, we fix the number of direct
measurements to be a small constant m and vary the number of comparisons that we use.

2. Direct labels might be substantially harder to acquire because of privacy issues or because
of inherent restrictions in the data collection process, whereas comparisons are easier to
obtain. Our age prediction task corresponds to this case, where it is conceivable that only
some of the biological ages are available due to privacy issues. In this setting, the cost is
dominated by the cost of the direct labels and we measure the cost of estimation by the
number of labeled samples used.

3.5.1 Modifications to Our Algorithms

While R2 and CLR are near optimal from a theoretical standpoint, we adopt the following
techniques to improve their empirical performance:

R2 with k-NN. Our analysis considers the case when we use 1-NN after isotonic regression.
However, we empirically find that using more than 1 nearest neighbor can also improve the
performance. So in our experiments, we use k-NN in the final step of R2, where k is a small fixed
constant. We note in passing that our theoretical results remain valid in this slightly more general
setting.

R2 with comparisons. When R2 uses passively collected comparisons, we would need O(n2)
pairs to have a ranking with O(1/n) error in the Kendall-Tau metric if we use the algorithm from
[39]. We instead choose to take advantage of the feature space structure when we use R2 with
comparisons. Specifically, we build a nonparametric rankSVM [100] to score each sample using
pairwise comparisons. We then rank samples according to their scores given by the rankSVM.
We discuss another potential method, which uses nearest neighbors based on Borda counts, in
Appendix 3.7.

CLR with feature augmentation. Using the directly labeled data only to estimate the norm of
the weights corresponds to using linear regression with the direct labels with a single feature
〈v̂, x〉 from Algorithm 6. Empirically, we find that using all the features together with the
estimated 〈v̂, x〉 results in better performance. Concretely, we use a linear SVR with input
features (x; 〈v̂, x〉), and use the output as our prediction.

53

3.5.2 Simulated Data
We generate different synthetic datasets for nonparametric and linear regression settings in order
to verify our theory.

Simulated Data for R2

0 200 400 600 800
Number of Labels

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Te
st

 M
SE

1-NN
5-NN
R2 1-NN
R2 5-NN
1-NN-truth
5-NN-truth

(a) Perfect ranking

0 200 400 600 800
Number of Labels

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Te
st

 M
SE

1-NN
5-NN
R2 1-NN
R2 5-NN
1-NN-truth
5-NN-truth

(b) Noisy ranking

0 1 2 3 4
Noise Level

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Te
st

 M
SE

1-NN

5-NN
1-NN-truth

5-NN-truth

R2 1-NN
R2 5-NN

(c) Effect of ranking noise, m = 100

0 1 2 3 4
Noise Level

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Te
st

 M
SE

1-NN

5-NN

1-NN-truth

5-NN-truth
R2 1-NN
R2 5-NN

(d) Effect of ranking noise, m = 10

Figure 3.3: Experiments on simulated data for R2. 1-NN and 5-NN represent algorithms using
noisy label data only; R2 1-NN and R2 5-NN use noisy labels as well as rankings; 1-NN-truth
and 5-NN-truth use perfect label data only.

Data Generation. We generate simulated data following Härdle et al. [88]. We take d = 8,
and sample X uniformly random from [0, 1]d. Our target function is f(x) =

∑d
i=1 f

(i mod 4)(xi),
where xi is x’s i-th dimension, and

f (1)(x) = px− 1/2, f (2)(x) = px3 − 1/3,

f (3)(x) = −2 sin(−px), f (4)(x) = e−px + e−1 − 1

with p sampled uniformly at random in [0, 10]. We generate a training and a test set each of size
n = 1000 samples respectively. We rescale f so that it has 0 mean and unit variance over the

54

training set. This makes it easy to control the noise that we add relative to the function value. For
training data, we generate the labels as yi = f(Xi) + ε where ε ∼ N (0, 0.52), for the training
data {X1, . . . , Xn}. At test time, we compute the MSE 1

n

∑n
i=1(f(X test

i)− f̂(X test
i))2 for the test

data {X test
1 , . . . , X test

n }.
Setup and Baselines. We test R2 with either 1-NN or 5-NN for our simulated data, denoted as
R2 1-NN and R2 5-NN respectively. We compare them with the following baselines: i) 1-NN and
5-NN using noisy labels (X, y) only. Since R2 uses ordinal data in addition to labels, it should
have lower MSE than 1-NN and 5-NN. ii) 1-NN and 5-NN using perfect labels (X, f(X)). Since
these algorithms use perfect labels, when all sample points are labeled they serve as a benchmark
for our algorithms.
R2 with rankings. Our first set of experiments suppose that R2 has access to the ranking over
all 1000 training samples, while the k-NN baseline algorithms only have access to the labeled
samples. We measure the cost as the number of labels in this case. Figure 3.3a compares R2 with
baselines when the ranking is perfect. R2 1-NN and R2 5-NN exhibited better performance than
their counterparts using only labels, whether using noisy or perfect labels; in fact, we find that R2

1-NN and R2 5-NN perform nearly as well as 1-NN or 5-NN using all 1000 perfect labels, while
only requiring around 50 labeled samples.

In Figure 3.3b, R2 uses an input ranking obtained from noisy labels {y1, ..., yn}. In this case,
the noise in the ranking is dependent on the label noise, since the ranking is directly derived from
the noisy labels. This makes the obtained labels consistent with the ranking, and thus eliminates
the need for isotonic regression in Algorithm 5. Nevertheless, we find that the ranking still
provides useful information for the unlabeled samples. In this setting, R2 outperformed its 1-NN
and 5-NN counterparts using noisy labels. However, R2 was outperformed by algorithms using
perfect labels when n = m. As expected, R2 and k-NN with noisy labels achieved identical MSE
when n = m, as ranking noise is derived from noise in labels.

We consider the effect of independent ranking noise in Figure 3.3c. We fixed the number of
labeled/ranked samples to 100/1000 and varied the noise level of ranking. For a noise level of σ,
the ranking is generated from

y′ = f(X) + ε′ (3.8)

where ε′ ∼ N (0, σ2). We also plot the performance of 1-NN and 5-NN using 100 noisy labels
and 1,000 perfect labels for comparison. We varied σ from 0 to 5 and plotted the MSE. We repeat
these experiments 50 times.

For both R2 1-NN and 5-NN – despite the fact that they use noisy labels – their performance is
close to the NN methods using noiseless labels. As σ′ increases, both methods start to deteriorate,
with R2 5-NN hitting the naive 5-NN method at around σ′ = 1 and R2 1-NN at around σ′ = 2.5.
This shows that R2 is robust to ranking noise of comparable magnitude to the label noise. We
show in Figure 3.3d the curve when we use 10 labels and 1000 ranked samples, where a larger
amount of ranking noise can be tolerated.
R2 with comparisons. We also investigate the performance of R2 when we have pairwise
comparisons instead of a total ranking. We train a rankSVM with an RBF kernel with a bandwidth
of 1, i.e. k(x, x′) = exp(−‖x− x′‖2

2), as described in Section 3.5.1. Our rankSVM has a ranking
error of ν = 11.8% on the training set and ν = 13.8% on the validation set. For simplicity, we

55

only compare with 5-NN here since it gives best performance amongst the label-only algorithms.
The results are depicted in Figure 3.4. When comparisons are perfect, we first investigate the
effect of the cost ratio in Figure 3.4a. We fixed the budget to equal to C = 500c (i.e., we would
have 500 labels available if we only used labels), and each curve corresponds to a value of
m ∈ {50, 100, 200} and a varied n such that the total cost is C = 500c. We can see for almost all
choices of m and cost ratio, R2 provides a performance boost. In Figure 3.4b we fix c = 5, and
vary the total budget C from 500 to 4,000. We find that R2 outperforms the label-only algorithms
in most setups.

In Figures 3.4c and 3.4d, we consider the same setup of experiments, but with comparisons
generated from (3.8), where ε′ ∼ N (0, 0.52). Note that here the noise ε′ is of the same magnitude
but independent from the label noise. Although R2 gave a less significant performance boost in
this case, it still outperformed label-only algorithms when c ≥ 2.

2 4 6 8 10
Cost Ratio

0.24

0.26

0.28

0.30

0.32

0.34

Te
st

 M
SE

5-NN
R2 m=50
R2 m=100
R2 m=200

(a) Perfect comparisons, C = 500c

1000 1500 2000 2500 3000 3500 4000
Cost

0.24

0.26

0.28

0.30

0.32

0.34

0.36

0.38

0.40

Te
st

 M
SE

5-NN
R2 m=50
R2 m=100
R2 m=200

(b) Perfect comparisons, c = 5

2 4 6 8 10
Cost Ratio

0.24

0.26

0.28

0.30

0.32

0.34

Te
st

 M
SE

5-NN
R2 m=50
R2 m=100
R2 m=200

(c) Noisy comparisons, C = 500c

500 1000 1500 2000 2500 3000 3500 4000
Cost

0.24

0.26

0.28

0.30

0.32

0.34

0.36

0.38

0.40

Te
st

 M
SE

5-NN
R2 m=50
R2 m=100
R2 m=200

(d) Noisy comparisons, c = 5

Figure 3.4: Experimental results on synthetic dataset for R2 with comparisons. Each curve
corresponds to a fixed m, and we vary n as the cost ratios or total budget change. Note that curves
start at different locations because of different m values.

56

2 4 6 8 10
Cost Ratio

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Te
st

 M
SE

LASSO
SVR
CLR Passive
CLR Active

(a) Varying cost ratio c with C = 50c

100 150 200 250 300 350 400
Cost

0

5

10

15

20

25

30

35

40

Te
st

 M
SE

LASSO
SVR
CLR Passive
CLR Active

(b) Varying budget C with c = 5

Figure 3.5: Experimental results on synthetic dataset for CLR.

Simulated Data for CLR

For CLR we only consider the case with a cost ratio, because we find that a small number of
comparisons already suffice to obtain a low error. We set d = 50 and generate both X and
w∗ from the standard normal distribution N (0, Id). We generate noisy labels with distribution
ε ∼ N (0, 0.52). The comparison oracle generates response using the same noise model: Z =
sign((〈w∗, x1〉+ ε1)− (〈w∗, x2〉 − ε2)) for input (x1, x2), with ε1, ε2 ∼ N (0, 0.52) independent
of the label noise.

Model performances are compared in Figure 3.5. We first investigate the effect of cost ratio in
Figure 3.5a, where we fixed the budget to C = 50c, i.e. if we only used labels we would have
a budget of 50 labels. The passive comparison query version of CLR requires roughly c > 5 to
outperform baselines, and the active comparison query version requires c > 3. We also experiment
with a fixed cost ratio c = 5 and varying budget C in Figure 3.5b. The active version outperformed
all baselines in most scenarios, whereas the passive version gave a performance boost when the
budget was less than 250 (i.e. number of labels is restricted to less than 250 in label only setting).
We note that the active and passive versions of CLR only differ in their collection of comparisons;
both algorithms (along with the baselines) are given a random set of labeled samples, making it a
fair competition.

3.5.3 Predicting Ages from Photographs
To further validate R2 in practice, we consider the task of estimating people’s ages from pho-
tographs. We use the APPA-REAL dataset [6], which contains 7,591 images, and each image is
associated with a biological age and an apparent age. The biological age is the person’s actual age,
whereas the apparent ages are collected by asking crowdsourced workers to estimate their apparent
ages. Estimates from (on average 38 different) labelers are averaged to obtain the apparent age.
APPA-REAL also provides the standard deviation of the apparent age estimates. The images
are divided into 4,063 train, 1,488 validation and 1,962 test samples, and we choose the best
hyperparameters using the validation samples.

57

0 500 1000 1500 2000 2500 3000 3500 4000
Number of Labels

380

390

400

410

420
Te

st
 M

SE
5-NN
10-NN
R2 5-NN
R2 10-NN

(a) R2

0 500 1000 1500 2000 2500 3000 3500 4000
Number of Labels

360

380

400

420

440

460

480

Te
st

 M
SE

LASSO
SVR
CLR Passive
CLR Active

(b) Linear Regression

Figure 3.6: Experimental results on age prediction.

Task. We consider the task of predicting biological age. Direct labels come from biological
age, whereas the ranking is based on apparent ages. This is motivated by the collection process
of many modern datasets: for example, we may have the truthful biological age only for a
fraction of samples, but wish to collect more through crowdsourcing. In crowdsourcing, people
give comparisons based on apparent age instead of biological age. As a consequence, in our
experiments we assume additional access to a ranking that comes from the apparent ages. Since
collecting crowdsourced data can be much easier than collecting the real biological ages, as
discussed earlier, we define the cost as the number of direct labels used in this experiment.

Features and Models. We extract a 128-dimensional feature vector for each image using the last
layer of FaceNet [147]. We rescale the features so that every X ∈ [0, 1]d for R2, or we centralize
the feature to have zero mean and unit variance for CLR. We use 5-NN and 10-NN to compare
with R2 in this experiment. Utilizing extra ordinal information, R2 has additional access to the
ranking of apparent ages; since CLR does not use a ranking directly we provide it access to 4,063
comparisons (the same size as the training set) based on apparent ages.

Our results are depicted in Figure 3.6. The 10-NN version of R2 gave the best overall
performance amongst nonparametric methods. R2 5-NN and R2 10-NN both outperformed other
algorithms when the number of labeled samples was less than 500. Interestingly, we observe that
there is a gap between R2 and its nearest neighbor counterparts even when n = m, i.e. the ordinal
information continues to be useful even when all samples are labeled; this might be because the
biological ages are “noisy” in the sense that they are also determined by factors not present in
image (e.g., lifestyle). Similarly, for linear regression methods, our method also gets the lowest
overall error for any budget of direct labels. In this case, we notice that active comparisons only
have a small advantage over passive comparisons, since the comparison classifiers both converge
with a sufficient number of comparisons.

58

3.5.4 Estimating AirBnB Listing Prices
In our third set of experiments, we consider the cost of both comparisons and direct labels. We
use data of AirBnB listings and ask Amazon Mechanical Turk (AMT) workers to estimate their
price. To measure the cost, we collect not only the labels and comparisons but also the time taken
to answer the question. We use the time as an estimate of the cost.
Data Collection. Our data comes from Kaggle4 and contains information about AirBnB postings
in Seattle. We use 357 listings as the training set and 93 as the test set. We additionally pick 50
listings from the training set as validation data to select hyperparameters. We use the following
features for our experiments:

(1) Host response rate, (2) Host acceptance rate, (3) Host listings count,
(4) Number of reviews per month, (5) Number of bathrooms, (6) Number of bedrooms,
(7) Number of beds, (8) Number of reviews, (9) Review scores rating,

(10) Number of people the house accommodates.

Each worker from AMT is asked to do either of the following two tasks: i) given the description
of an AirBnB listing, estimate the per-night price on a regular day in 2018; ii) given the description
of two AirBnB listings, select the listing that has a higher price. We collect 5 direct labels for
each data point in the training set and 9 labels for each data point in the test set. For comparisons,
we randomly draw 1,841 pairs from the training set and ask 2 workers to compare their prices.
Tasks. We consider two tasks, motivated by real-world applications.
1. In the first task, the goal is to predict the real listing price. This is motivated by the case where
collecting the real price might be difficult to obtain or involves privacy issues. We assume that our
training data, including both labels and comparisons, comes from AMT workers.

2. In the second task, the goal is to predict the user-estimated price. This can be of particular
interest to AirBnB company and house-owners, for deciding the best price of the listing. We do
not use the real prices in this case; we use the average of 10 worker estimated prices for each
listing in the test set as the ground truth label, and the training data also comes from our AMT
results.

Raw Data Analysis. Before we proceed to the regression task, we analyze the workers’ perfor-
mance for both tasks based on raw data in Table 3.2. Our first goal is to compare a pairwise
comparison to an induced comparison, where the induced comparison is obtained by making
two consecutive direct label queries and subtracting them. Similar to [150], we observe that
comparisons are more accurate than the induced comparisons.

We first convert labels into pairwise comparisons by comparing individual direct labels:
namely, for each obtained labeled sample pair (x1, y1), (x2, y2) where y1, y2 are the raw labels
from workers, we create a pairwise comparison that corresponds to comparing (x1, x2) with label
being sign(y1 − y2). We then compute the error rate of raw and label-induced comparisons for
both Task 1 and 2. For Task 1, we directly compute the error rate w.r.t. the true listing price. For
Task 2, we do not have the ground truth user prices; we instead follow the approach of [150]
to compute the fraction of disagreement between comparisons. Namely, in either the raw or
label-induced setting, for every pair of samples (xi, xj) we compute the majority of labels zij

4https://www.kaggle.com/AirBnB/seattle/home

59

https://www.kaggle.com/AirBnB/seattle/home

based on all comparisons on (xi, xj). The disagreement on (xi, xj) is computed as the fraction of
comparisons that disagrees with zij , and we compute the overall disagreement by averaging over
all possible (xi, xj) pairs.

If an ordinal query is equivalent to two consecutive direct queries and subtracting the labels,
we would expect a similar accuracy/disagreement for the two kinds of comparisons. However
our results in Table 3.2 show that this is not the case: direct comparison queries have better
accuracy for Task 1, as well as a lower disagreement within collected labels. This shows that a
comparison query cannot be replaced by two consecutive direct queries. We do not observe a large
difference in the average time to complete a query in Table 3.2; however the utility of comparisons
in predicting price can be higher since they yield information about two labels. Further analysis
of the raw data is given in Appendix 3.7.

Performance Comparisons Labels
Task 1 Error 31.3% 41.3%
Task 2 Disagreement 16.4% 29.5%
Average Time 64s 63s

Table 3.2: Performance of comparisons versus labels for both tasks.

Results. We plot the experimental results in Figure 3.7. For nonparametric regression, R2 had a
significant performance boost over the best nearest neighbor regressor under the same total worker
time, especially for Task 1. For Task 2, we observe a smaller improvement, but R2 is still better
than pure NN methods for all total time costs.

For linear regression, we find that the performance of CLR varies greatly with m (number of
labels), whereas its performance does not vary as significantly with the number of comparisons.
In fact, the errors of both CLR passive and active already plateau with a mere 50 comparisons,
since the dimension of data is small (d = 10). So deviating from our previous experiments, in this
setting, we vary the number of labels in Figure 3.7c and 3.7d. As in the nonparametric case, CLR
also outperforms the baselines in both tasks. For Task 1, the active and passive versions of CLR
perform similarly, whereas active queries lead to a moderate performance boost on Task 2. This is
probably because the error on Task 2 is much lower than that on Task 1 (see Table 3.2), and active
learning typically has an advantage over passive learning when the noise is not too high.

3.6 Conclusion
We design (near) minimax-optimal algorithms for nonparametric and linear regression using
additional ordinal information. In settings where large amounts of ordinal information are
available, we find that limited direct supervision suffices to obtain accurate estimates. We
provide complementary minimax lower bounds, and illustrate our proposed algorithms on real
and simulated datasets. Since ordinal information is typically easier to obtain than direct labels,
one might expect in these favorable settings the R2 algorithm to have lower effective cost than an
algorithm based purely on direct supervision.

Several directions exist for future work. On nonparametric regression side, it remains to
extend our results to the case where the Hölder exponent s > 1. In this setting the optimal rate

60

40000 60000 80000 100000
Time Cost

3600

3800

4000

4200

4400

4600

Te
st

 M
SE

k-NN
R^2 m=50
R^2 m=100

(a) Nonparametric, Task 1

40000 60000 80000 100000
Time Cost

580

600

620

640

660

680

700

720

Te
st

 M
SE

k-NN
R^2 m=50
R^2 m=100

(b) Nonparametric, Task 2

40000 60000 80000 100000
Time Cost

2900

3000

3100

3200

3300

3400

3500

Te
st

 M
SE

Lasso
LinearSVR
CLR Passive
CLR Active

(c) Linear, Task 1

40000 60000 80000 100000
Time Cost

560

570

580

590

600

610

620

630

Te
st

 M
SE

Lasso
LinearSVR
CLR Passive
CLR Active

(d) Linear, Task 2

Figure 3.7: Results for AirBnB price estimation. In (a)(b), each curve has a fixed m with varied
n; for (c)(d), each curve uses only 50 comparisons with a varied number of labels. For Figure (d),
LASSO performs much worse than a LinearSVR and we only show part of the curve.

O
(
m−

−2s
2s+d

)
can be faster than the convergence rate of isotonic regression, which can make our

algorithm sub-optimal. It is also important to address the setting where both direct and ordinal
supervision are actively acquired. For linear regression, an open problem is to consider the
bounded noise model for comparisons. Our results can be easily extended to the bounded noise
case using the algorithm in [85], however that algorithm is computationally inefficient. The best
efficient active learning algorithm in this bounded noise setting [14] requiresm ≥ O

(
d
O(1

(1−2λ)4
)
)

comparisons, and a large gap remains between what can be achieved in the presence and absence
of computational constraints.

Motivated by practical applications in crowdsourcing, we list some further extensions to our
results:
Partial orders: In this paper, we focus on ordinal information either in the form of a total

61

ranking or pairwise comparisons. In practice, ordinal information might come in the form of
partial orders, where we have several subsets of unlabeled data ranked, but the relation between
these subsets is unknown. A straightforward extension of our results in the nonparametric case
leads to the following result: if we have k (partial) orderings, each with n1, . . . , nk samples, and
m1, . . . ,mk samples in each ordering are labeled, we can show an upper bound on the MSE of
m
−2/3
1 + · · ·+m

−2/3
k + (n1 + · · ·+ nk)

−2s/d. It would be interesting to study the optimal rate, as
well as to consider other smaller partial orders.
Other models for ordinal information: Beyond the bounded noise model for comparison, we
can consider other pairwise comparison models, like Plackett-Luce [122, 137] and Thurstone
[162]. These parametric models can be quite restrictive and can lead to unnatural results that we
can recover the function values even without querying any direct labels (see for example [150]).
One might also consider pairwise comparisons with Tsybakov-like noise [165] which have been
studied in the classification setting [187]; the main obstacle here is the lack of computationally-
efficient algorithms that aggregate pairwise comparisons into a complete ranking under this noise
model.
Other classes of functions: Several recent papers [31, 32, 45, 83] demonstrate the adaptivity
(to “complexity” of the unknown parameter) of the MLE in shape-constrained problems. Under-
standing precise assumptions on the underlying smooth function which induces a low-complexity
isotonic regression problem is interesting future work.

3.7 Additional Experimental Results
Relation between true and user estimated price. Figure 3.8 shows a scatter plot of the true
listing prices of AirBnB data with respect to the user estimated prices. Although the true prices is
linearly correlated with the user prices (with p-value 6e− 20), the user price is still very different
from true price even if we take the average of 5 labelers. The average of all listings’ true price is
higher than the average of all user prices by 25 dollars, partially explaining the much higher error
when we use user prices to estimate true prices.
An Alternative to using RankSVM. As an alternative to training RankSVM, we can also use
nearest neighbors on Borda counts to take into account the structure of feature space: for each
sample x, we use the score s(x) = 1

k

∑
x′∈k-NN(x) Borda(x′), where k-NN(x) is the k-th nearest

neighbor of x in the feature space, including x itself. The scores are then used to produce a
ranking. When c is large, this method does provide an improvement over the label-only baselines,
but generally does not perform as well as our rankSVM method. The results when cost ratio
c = 10 and comparisons are perfect are depicted in Figure 3.9. We use k = 25 for deciding the
nearest neighbors for Borda counts, and 5-NN as the final prediction step. While using R2 with
Borda counts do provide a gain over label-only methods, the improvement is less prominent than
using rankSVM.

For estimating AirBnB price the results are shown in Figure 3.10. For task 1, NN of Borda
counts introduces an improvement similar to (or less than) RankSVM, but for task 2 it is worse
than nearest neighbors. We note that for task 1, the best number of nearest neighbors of Borda
counts is 50, whereas for task 2 it is 5 (close to raw Borda counts). We suspect this is due to the
larger noise in estimating true price, however a close examination for this observation remains as

62

0 25 50 75 100 125 150 175 200
True Price

0

25

50

75

100

125

150

175

200

Us
er

 E
st

im
at

ed
 P

ric
e

Figure 3.8: Scatter plot of true prices w.r.t average user estimated prices, along with the ordinary
least square result. We only show prices smaller than 200 to make the relation clearer.

1500 2000 2500 3000 3500 4000
Cost

0.26

0.28

0.30

0.32

0.34

0.36

0.38

Te
st

 M
SE

5-NN
R2 rankSVM
R2 Borda Count

Figure 3.9: Experimental results on synthetic dataset for R2 with comparisons, using nearest
neighbor with Borda counts. Both R2 algorithms uses 5-NN as the final prediction step.

future work.

63

40000 60000 80000 100000
Time Cost

3600

3800

4000

4200

4400

4600

Te
st

 M
SE

k-NN
R^2 m=50 NN-Borda
R^2 m=100 NN-Borda
R^2 m=50 RankSVM
R^2 m=100 RankSVM

(a) Task 1

40000 60000 80000 100000
Time Cost

575

600

625

650

675

700

725

750

Te
st

 M
SE

k-NN
R^2 m=50 NN-Borda
R^2 m=100 NN-Borda
R^2 m=50 RankSVM
R^2 m=100 RankSVM

(b) Task 2

Figure 3.10: Experiments on AirBnB price estimation for nonparametric methods, using nearest
neighbors of Borda count. Figure (a) uses 50-NN for averaging Borda counts, while Figure (b)
uses 5-NN.

3.8 Detailed Proofs

3.8.1 Proof of Theorem 22
Without loss of generality we assume throughout the proof that we re-arrange the samples so that
the true ranking of the samples π is the identity permutation, i.e. that f(X1) ≤ f(X2) ≤ . . . ≤
f(Xn). We letC, c, C1, c1, . . . denote universal positive constants. As is standard in nonparametric
regression these constants may depend on the dimension d but we suppress this dependence.

For a random point X ∈ X , let Xα be the nearest neighbor of X in the labeled set L. We
decompose the MSE as

E
[
(f̂(X)− f(X))2

]
≤ 2E

[
(f̂(X)− f(Xα))2

]
+ 2E

[
(f(Xα)− f(X))2

]
.

Under the assumptions of the theorem we have the following two results which provide bounds
on the two terms in the above decomposition.
Lemma 33. For a constant C > 0 we have that,

E
[
(f(Xα)− f(X))2

]
≤ Cn−2s/d.

Lemma 34. For any 0 < δ ≤ 1/2 we have that there is a constant C > 0 such that:

E
[
(f̂(X)− f(Xα))2

]
≤ 4δM2+

C log(m/δ) log n log(1/δ)

m

[
m∑
k=1

(
E
[
(ŷtk − f(Xtk))

2
])

+
m∑
k=0

(
E
[
(f(Xtk+1

)− f(Xtk))
2
])]

.

64

Taking these results as given we can now complete the proof of the theorem. We first note
that the first term in the upper bound in Lemma 34 is simply the MSE in an isotonic regression
problem, and using standard risk bounds for isotonic regression (see for instance, Theorem 2.2
in Zhang [203]) we obtain that for a constant C > 0:

m∑
k=1

E
[
(ŷtk − f(Xtk))

2
]
≤ Cm2/3.

Furthermore, since f(Xtm+1)− f(Xt0) ≤ 2M , and the function values are increasing we obtain
that:

m∑
k=0

(
E
[
(f(Xtk+1

)− f(Xtk))
2
])
≤ 4M2.

Now, choosing δ = max{n−2s/d, 1/m} we obtain:

E
[
(f̂(X)− f(X))2

]
≤ C1m

−2/3 log2 n logm+ C2n
−2s/d,

as desired. We now prove the two technical lemmas to complete the proof.

Proof of Lemma 33

The proof of this result is an almost immediate consequence of the following result from [82].
Lemma 35 ([82], Lemma 6.4 and Exercise 6.7). Suppose that there exist positive constants pmin

and pmax such that pmin ≤ p(x) ≤ pmax. Then, there is a constant c > 0, such that

E[‖Xα −X‖2
2] ≤ cn−2/d.

Using this result and the Hölder condition we have

E
[
(f(Xα)− f(X))2

]
≤ LE

[
‖Xα −X‖2s

2

]
(i)
≤ L

(
E
[
‖Xα −X‖2

2

])s
≤ cn−2s/d,

where (i) uses Jensen’s inequality. We now turn our attention to the remaining technical lemma.

Proof of Lemma 34

We condition on a certain favorable configuration of the samples that holds with high-probability.
For a sample {X1, . . . , Xn} let us denote by

qi := P(Xα = Xi),

where Xα is the nearest neighbor of X . Furthermore, for each k we recall that since we have
re-arranged the samples so that π is the identity permutation we can measure the distance between
adjacent labeled samples in the ranking by tk − tk+1. The following result shows that the labeled
samples are roughly uniformly spaced (up to a logarithmic factor) in the ranked sequence, and
that each point Xi is roughly equally likely (up to a logarithmic factor) to be the nearest neighbor
of a randomly chosen point.

65

Lemma 36. There is a constant C > 0 such that with probability at least 1− δ we have that the
following two results hold:

1. We have that,

max
1≤j≤n

qi ≤
Cd log(1/δ) log n

n
. (3.9)

2. Let us take tm+1 := n+ 1, then

max
k∈[m+1]

tk − tk−1 ≤
Cn log(m/δ)

m
. (3.10)

Denote the event, which holds with probability at least 1− δ in the above Lemma by E0. By
conditioning on E0 we obtain the following decomposition:

E
[
(f̂(X)− f(Xα))2

]
≤ E

[
(f̂(X)− f(Xα))2|E0

]
+ δ · 4M2

because both f and f̂ are bounded in [−M,M]. We condition all calculations below on E0. Now
we have

E
[
(f̂(X)− f(Xα))2|E0

]
=

n∑
i=1

P[Xα = Xi|E0]E
[
(f̂(Xi)− f(Xi))

2|E0

]
≤

n∑
i=1

max
1≤j≤n

P[Xα = Xj|E0]E
[
(ŷi − f(Xi))

2|E0

]
≤ Cd log(1/δ) log n

n

n∑
i=1

E
[
(ŷ̃i − f(Xi))

2|E0

]
, (3.11)

where we recall that ŷ̃i (defined in Algorithm 5) denotes the de-noised (by isotonic regression) y
value at the nearest labeled left-neighbor of the point Xi.

For convenience we define f(Xt0) = 0 (equivalently as in Algorithm 5 we are assigning a 0
value to any point with no labeled point with a smaller function value according to the permutation

66

π̂). With this definition in place we have that,
n∑
i=1

E
[
(ŷ̃i − f(Xi))

2|E0

]
≤

n∑
i=1

(
2E
[
(ŷ̃i − f(Xĩ))

2|E0

]
+ 2E

[
(f(Xi)− f(Xĩ))

2|E0

])
=

n∑
i=1

m∑
k=0

I[̃i = tk]
(
2E
[
(ŷtk − f(Xtk))

2|E0

]
I[k 6= 0] + 2E

[
(f(Xi)− f(Xtk))

2|E0

])
(i)
≤

n∑
i=1

m∑
k=0

I[̃i = tk]
(
2E
[
(ŷtk − f(Xtk))

2|E0

]
I[k 6= 0] + 2E

[
(f(Xtk+1

)− f(Xtk))
2|E0

])
(ii)
=

m∑
k=0

(
2E
[
(ŷtk − f(Xtk))

2|E0

]
I[k 6= 0] + 2E

[
(f(Xtk+1

)− f(Xtk))
2|E0

]) n∑
i=1

I[̃i = tk]

(iii)
≤ Cn log(m/δ)

m

m∑
k=1

(
2E
[
(ŷtk − f(Xtk))

2|E0

])
+
Cn log(m/δ)

m

m∑
k=0

(
2E
[
(f(Xtk+1

)− f(Xtk))
2|E0

])
≤2Cn log(m/δ)

m

[
m∑
k=1

(
E
[
(ŷtk − f(Xtk))

2|E0

])
+

m∑
k=0

(
E
[
(f(Xtk+1

)− f(Xtk))
2|E0

])]
.

The inequality (i) follows by noticing that if ĩ = tk, f(Xi) − f(Xĩ) is upper bounded by
f(Xtk+1

) − f(Xtk). We interchange the order of summations to obtain the inequality (ii). The
inequality in (iii) uses Lemma 36. We note that,

E
[
(ŷtk − f(Xtk))

2|E0

]
≤ E [(ŷtk − f(Xtk))

2]

P(E0)
≤ 2E

[
(ŷtk − f(Xtk))

2
]
,

since δ ≤ 1/2, and a similar manipulation for the second term yields that,
n∑
i=1

E
[
(ŷ̃i − f(Xi))

2|E0

]
≤4Cn log(m/δ)

m

[
m∑
k=1

E
[
(ŷtk − f(Xtk))

2
]

+
m∑
k=0

E
[
(f(Xtk+1

)− f(Xtk))
2
]]
.

Plugging this expression back in to Equation (3.11) we obtain the Lemma. Thus, to complete the
proof it only remains to establish the result in Lemma 36.

Proof of Lemma 36

We prove each of the two results in turn.

Proof of Inequality Equation (3.9): As a preliminary, we need the following Vapnik-Cervonenkis
result from [46]:
Lemma 37. Suppose we draw a sample {X1, . . . , Xn}, from a distribution P, then there exists a
universal constant C ′ such that with probability 1− δ, every ball B with probability:

P(B) ≥ C ′ log(1/δ)d log n

n
,

contains at least one of the sample points.

67

We now show that under this event we have

max
i
qi ≤

C ′pmax log(1/δ)d log n

pminn
.

Fix any point Xi ∈ T , and for a new point X , let r = ‖Xi −X‖2. If Xi is X’s nearest neighbor
in T , there is no point in the ball B(X, r). Comparing this with the event in Lemma 37 we have

pminvdr
d ≤ C ′ log(1/δ)d log n

n
,

where vd is the volume of the unit ball in d dimension.
Hence we obtain an upper bound on r. Now since p(x) is upper and lower bounded we can

bound the largest qi as

max
i
qi ≤ pmaxvdr

d ≤ C ′pmax log(1/δ)d log n

pminn
.

Thus we obtain the inequality Equation (3.9).

Proof of Inequality Equation (3.10): Recall that we define tm+1 := n+1.Notice that t1, . . . , tm
are randomly chosen from [n]. So for each k ∈ [m] we have

P[tk − tk−1 ≥ t] ≤ n− t+ 1

n

(
n− t
n

)m−1

≤
(
n− t
n

)m−1

,

since we must randomly choose tk in Xt, Xt+1, . . . , Xn, and choose the other m− 1 samples in
X1, . . . , Xtk−t, Xtk+1, . . . , Xn. Similarly we also have

P[tm+1 − tm ≥ t] ≤
(
n− t
n

)m−1

.

So

P[max
k∈[m+1]

tk − tk−1 ≥ t] ≤
m+1∑
k=1

P[max
k∈[m+1]

tk − tk−1 ≥ t]

≤ (m+ 1)

(
n− t
n

)m−1

.

Setting this to be less than or equal to δ, we have

t

n
≥ 1−

(
δ

m+ 1

) 1
m−1

.

Let u = log
(

1−
(

δ
m+1

) 1
m−1

)
= −C log(m/δ)

m
, we have 1 − eu = O(−u) since u is small and

bounded. So it suffices for t ≥ C n log(m/δ)
m

such that

P[max
k∈[m+1]

tk − tk−1 ≥ t] ≤ δ.

68

3.8.2 Proof of Theorem 23
To prove the result we separately establish lower bounds on the size of the labeled set of samples
m and the size of the ordered set of samples n. Concretely, we show the following pair of claims,
for a positive constant C > 0,

inf
f̂

sup
f∈Fs,L

E
[
(f(X)− f̂(X))2

]
≥ Cm−2/3 (3.12)

inf
f̂

sup
f∈Fs,L

E
[
(f(X)− f̂(X))2

]
≥ Cn−2s/d. (3.13)

We prove each of these claims in turn and note that together they establish Theorem 23.

Proof of Claim Equation (3.12): We establish the lower bound in this case by constructing a
suitable packing set of functions, and using Fano’s inequality. The main technical novelty, that
allows us to deal with the setting where both direct and ordinal information is available, is that
we construct functions that are all increasing functions of the first covariate x1, and for these
functions the ordinal measurements provide no additional information.

Without loss of generality we consider the case when d = 1, and note that the claim follows in
general by simply extending our construction using functions for which f(x) = f(x1). We take
the covariate distribution PX to be uniform on [0, 1]. For a kernel function K that is 1-Lipschitz
on R, bounded and supported on [−1/2, 1/2], with∫ 1/2

−1/2

K2(x)dx > 0

we define:

u = dm 1
3 e, h = 1/u,

xk =
k − 1/2

u
, φk(x) =

Lh

2
K

(
x− xk
h

)
, for k = {1, 2, . . . , u},

Ω = {ω : ω ∈ {0, 1}u}.
With these definitions in place we consider the following class of functions:

G =

{
fω : [0, 1] 7→ R : fω(x) =

Lx

2
+

k∑
i=1

ωiφi(x), for x ∈ [0, 1]

}
.

We note that the functions in G are L-Lipschitz, and thus satisfy the Hölder constraint (for any
0 < s ≤ 1).

We note that these functions are all increasing so the permutation π contains no additional
information and can be obtained simply by sorting the samples (according to their first coordinate).
Furthermore, in this case the unlabeled samples contribute no additional information as their
distribution PX is known (since we take it to be uniform). Concretely, for any estimator in our
setup which uses {(X1, y1), . . . , (Xm, ym), Xm+1, . . . , Xn, π} with

sup
f∈G

E
[
(f(X)− f̂(X))2

]
< Cm−2/3,

69

we can construct an equivalent estimator that uses only {(X1, y1), . . . , (Xm, ym)}. In particular,
we can simply augment the sample by sampling Xm+1, . . . , Xn uniformly on [0, 1] and generating
π by ranking X in increasing order.

In light of this observation, in order to complete the proof of Claim Equation (3.12) it sufficies
to show that Cm−2/3 is a lower bound for estimating functions in G with access to only noisy
labels. For any pair ω, ω′ ∈ Ω we have that,

E[(fω(X)− fω′(X))2] =
u∑
k=1

(ωk − ω′k)2

∫
φ2
k(x)dx

= L2h3‖K‖2
2ρ(ω, ω′),

where ρ(ω, ω′) denotes the hamming distance between x and x′.
Denote by P0 the distribution induced by the function f0 with ω = (0, . . . , 0), with the

covariate distribution being uniform on [0, 1]. We can upper bound the KL divergence between
the distribution induced by any function in G and P0 as:

KL(Pm
j , P

m
0) = m

∫
X
p(x)

∫
R
pj(y|x) log

p0(y|x)

pj(y|x)
dydx

= m

∫
X
p(x)

u∑
i=1

ωjiφ
2
i (x)dx

≤ mL2h3‖K‖2
2u.

Now, the Gilbert-Varshamov bound [80, 168], ensures that if u > 8, then there is a subset
Ω′ ⊆ Ω of cardinality 2u/8, such that the Hamming distance between each pair of elements
ω, ω′ ∈ Ω′ is at least u/8. A straightforward application of Fano’s inequality (see for instance
Theorem 2.5 in [166]) shows that for small constants c, c′ > 0, if:

mL2h3‖K‖2
2u ≤ cu,

then the error of any estimator is lower bounded as:

sup
f∈G

E[(f̂(X)− f(X))2] ≥ c′L2h3‖K‖2
2u ≥ c′m−2/3,

establishing the desired claim.

Proof of Claim Equation (3.13): We show this claim by reducing to the case where we have n
points with noiseless evaluations, i.e., we observe {(X1, f(X1)), (X2, f(X2)), . . . , (Xn, f(Xn))}.
We notice that the ranking π provides no additional information when all the points are labeled
without noise. Formally, if we have an estimator f̂ which when provided {(X1, y1), . . . , (Xm, ym), Xm+1, . . . , Xn, π}
obtains an error less than cn−2s/d (for some sufficiently small constant c > 0) then we can also use
this estimator in setting where all n samples are labeled without noise, by generating π according
to the noiseless labels, adding Gaussian noise to the labels of m points, and eliminating the
remaining labels before using the estimator f̂ on this modified sample.

It remains to show that, cn−2s/d is a lower bound on the MSE of any estimator that receives n
noiseless labels. To simplify our notation we will assume that (2n)1/d is an integer (if not we can

70

establish the lower bound for a larger sample-size for which this condition is true, and conclude
the desired lower bound with an adjustment of various constants). For a given sample size n, we
choose

h = (2n)−1/d,

and consider the grid with 2n cubes with side-length h. Denote the centers of the cubes as
{x1, . . . , x2n}. For a kernel function K supported on [−1/2, 1/2]d, which is 1-Lipschitz on Rd,
bounded and satisfies: ∫

[−1/2,1/2]d
K2(x)dx > 0

we consider a class of functions:

G =

{
fω : fω(x) = Lhs

2n∑
i=1

ωiK

(
x− xi
h

)
, for ω ∈ {0, 1}2n

}
.

We note that these functions are all in the desired Hölder class with exponent s. Given n samples
(these may be arbitrarily distributed) {(X1, f(X1)), . . . , (Xn, f(Xn))}, we notice that we are only
able to identify at most n of the ωi (while leaving at least n of the ωi completely unconstrained)
and thus any estimator f̂ must incur a large error on at least one of the functions fω consistent
with the obtained samples. Formally, we have that

sup
f∈G

E(f̂(X)− f(X))2 ≥ nL2h2s+d‖K‖2
2

4
≥ cn−2s/d,

as desired. This completes the proof of Claim Equation (3.13).

3.8.3 Proof of Theorem 24
Throughout this proof without loss of generality we re-arrange the samples so that the estimated
permutation π̂ is the identity permutation. To simplify the notation further, we let X(i) = Xπ−1(i)

be the i-th element according to true permutation π. This leads to f(X(1)) ≤ f(X(2)) ≤ · · · ≤
f(X(n)).

We begin with a technical result that bounds the error of using π̂ instead of the true permutation
π in the R2 algorithm.

The first part of the proof is the same as that of Theorem 22. We have

E
[
(f̂(X)− f(X))2

]
≤ 2E

[
(f̂(X)− f(Xα))2

]
+ 2E

[
(f(Xα)− f(X))2

]
≤ 2E

[
(f̂(X)− f(Xα))2

]
+ Cn−2s/d.

And for event E0 we have (note that ĩ is the nearest neighbor index defined in Algorithm 5)

E
[
(f̂(X)− f(Xα))2

]
≤ C

d log(1/δ) log n

n

n∑
i=1

E
[
(ŷ̃i − f(Xi))

2|E0

]
+ δ

≤ C

(
log2 n

n

n∑
i=1

E
[
(ŷ̃i − f(Xi))

2|E0

]
+ n−2s/d

)
. (3.14)

71

The second inequality is obtained by letting δ = n−2s/d. To bound the sum of expectations above,
we first prove a lemma bounding the difference between X1, . . . , Xn and X(1), . . . , X(n):

Lemma 25(Restated). Suppose the ranking (X1, . . . , Xn) is of at most ν error with respect
to the true permutation. Then

n∑
i=1

(f(Xi)− f(X(i))
2 ≤ 8M2

√
2νn.

Proof. Let θi = f(Xi) and θ(i) = f(X(i)), and let g(θ1, . . . , θn) =
∑n

i=1(θi − θ(i))
2. Consider g

as a function of θi; θi appears twice in g, one as (θi − θ(i))
2, and the other as (θπ(i) − θ(π(i)))

2 =
(θπ(i)− θi)2. If π(i) = i, then θi does not influence value of g; otherwise, g is a quadratic function
of θi, and it achieves maximum either when θi = M or θi = −M . So when g achieves maximum
it must be θi ∈ {−M,M}. Now notice that θ(1) ≤ · · · ≤ θ(n), so the maximum is achieved when
for some 0 ≤ k ≤ n that θ(i) = −M for i ≤ k, and θ(i) = M for i > k.

Note that
∑n

i=1(θi − θ(i))
2 =

∑n
i=1(θπ−1(i) − θ(π−1(i)))

2 =
∑n

i=1(θ(i) − θ(π−1(i)))
2. From the

discussion above, in the maximum case (θ(i) − θ(π−1(i)))
2 = 4M2 iff i and π−1(i) lies on different

sides of k, and otherwise it is 0. To further bound the sum, we use the Spearman Footrule distance
between π and (1, 2, . . . , n), which [66] shows that it can be bounded as∑

i=1

|π(i)− i| ≤ 2
∑

1≤i,j≤n

I [(π(i)− π(j))(i− j) < 0] .

And the RHS can be bounded by 2νn2 since the agnostic error of ranking is at most ν. We also
have that ∑

i=1

|π(i)− i| =
∑
i=1

|π(π−1(i))− π−1(i)| =
∑
i=1

|i− π−1(i)|.

Let U1 = {i : π−1(i) ≤ k, i > k} and U2 = {π−1(i) > k, i ≤ k}. So in the maximum case we
have

n∑
i=1

(θπ(i) − θi)2 = 4M2(|U1|+ |U2|).

Now notice that for i ∈ U1, we have |π−1(i)− i| ≥ i− k; and for i ∈ U2 we have|π−1(i)− i| ≥
k − i+ 1. Considering the range of i we have

|U1|∑
j=1

j +

|U2|∑
j=1

j ≤
n∑
i=1

|π−1(i)− i| ≤ 2νn2.

So |U1|+ |U2| ≤ 2
√

2νn. And

n∑
i=1

(f(Xi)− f(X(i))
2 =

n∑
i=1

(θπ(i) − θi)2 ≤ 4M2(|U1|+ |U2|) ≤ 8M2
√

2νn.

Thus we prove the lemma.

72

Now back to the original proof. Under event E0 we have

n∑
i=1

E[(ŷi − f(Xi))
2|E0]

=
n∑
i=1

E[(ŷ̃i − f(Xi))
2|E0]

≤
n∑
i=1

E
[
2(ŷ̃i − f(Xĩ))

2 + 2(f(Xĩ)− f(Xi))
2|E0

]
≤Cn log(m/δ)

m

m∑
k=1

E
[
(ŷtk − f(Xtk))

2|E0

]
+ 2

n∑
i=1

E
[
(f(Xĩ)− f(Xi))

2|E0

]
. (3.15)

We omit the condition E0 in discussion below. We bound the two terms separately. For the first
term, we use the following theorem adapted from [203]:
Theorem 38 ([203], adapted from Theorem 2.3 and Remark 4.2). Suppose Xtk , ytk are fixed for
k ∈ [m], and f(Xtk) is arbitrary in order. Let

S = min
u

m∑
k=1

(uk − f(Xtk))
2,

where the minimum is taken over all sequence of u ∈ Rm that is non-decreasing. The risk of
isotonic regression satisfies

1

m2/3M1/3

(
E

[
m∑
k=1

(ŷtk − f(Xtk))
2

]
− S

)
≤ C

for some universal constant C.
So from Theorem 38 we know that

E
[
(ŷtk − f(Xtk))

2
]
≤ E[S] + Cm1/3,

where the expectation in E[S] is taken w.r.t. the randomness in tk. From Lemma 25 we know that

n∑
i=1

(f(Xi)− f(X(i)))
2 ≤ C

√
νn.

Note that since tk is taken at random, each element Xi has equal probability m
n

to be picked; so

E[S] ≤ E

[
m∑
i=1

(f(X(tk))− f(Xtk))
2

]
≤ C
√
νm.

73

Now we bound the second term in (3.15). We have

n∑
i=1

E
[
(f(Xĩ)− f(Xi))

2
]

≤ 3
n∑
i=1

E
[
(f(Xĩ)− f(X(̃i)))

2
]

+ 3
n∑
i=1

E
[
(f(X(̃i))− f(X(i)))

2
]

+ 3
n∑
i=1

E
[
(f(X(i))− f(Xi))

2
]

≤ Cn logm

m

m∑
k=1

E
[
(f(Xtk)− f(X(tk)))

2
]

+
Cn logm

m

m∑
k=1

E
[
(f(X(tk+1))− f(X(tk)))

2
]

+ 3
n∑
i=1

E
[
(f(X(i))− f(Xi))

2
]

≤ Cn logm

m

√
νm+

Cn logm

m
· 1 + C

√
νn

= C
√
νn logm.

The first inequality is by noticing (x+ y+ z)2 ≤ 3x2 + 3y2 + 3z2 for any number x, y, z ∈ R; the
second inequality is by grouping values of ĩ, and the choice of tk; the third inequality comes from
analysis of the first term on

∑m
k=1 E

[
(f(Xtk)− f(X(tk)))

2
]
, the fact that f(X(tm))−f(X(t1)) ≤ 1,

and Lemma 25.
Summarizing the two terms we have

E
[
(ŷ̃i − f(Xi))

2|E0

]
≤ C(

√
νn+m−2/3n) logm.

Take this back to (3.14) we prove the theorem.

3.8.4 Proof of Theorem 26
To simplify notation, we suppose that we have m labeled samples T = {(Xi, yi)}mi=1 for training
and another m labeled samples V = {(Xi, yi)}2m

i=m+1 for validation. We consider the following
models:

1. R2 using both the ordinal data and the labeled samples in T , and we denote by f̂0,

2. k-NN regression using only the labeled samples in T for k ∈ [m] which we denote by
{f̂1, . . . , f̂m}.

We select the best model according to performance on validation set. We further restrict all
estimators to be bounded in [−M,M]; i.e., when f̂j(x) < −M for some x and j, we clip its value
by setting f̂j(x) = −M and we analogously clip the function when it exceeds M . We note in
passing that this only reduces the MSE since the true function f is bounded between [−M,M].
Throughout the remainder of the proof we condition on the training set T but suppress this in our
notation. We define the empirical validation risk of a function f̂ to be:

R̂V
(
f̂
)

=
1

m

2m∑
i=m+1

(
yi − f̂(Xi)

)2
,

74

and the population MSE of a function f̂ to be

err(f̂) = E
[(
f̂(X)− f(X)

)2]
,

where ε ∼ N(0, 1) denotes the noise in the direct measurements. Now let

f̂ ∗ = arg min
j=0,...,m

R̂V (f̂j),

be the best model selected using cross validation and

f ∗ = arg min
j=0,...,m

err(f̂j),

be the estimate with lowest MSE in f̂0, . . . , f̂m. Let us denote:

G = {f̂0, . . . , f̂m}.

Recall that f denotes the true unknown regression function. Then in the sequel we show the
following result:
Lemma 39. With probability at least 1− δ, for any f̂ ∈ G we have that the following hold for
some constant C > 0,

err(f̂) ≤ 2
[
R̂V (f̂)− R̂V (f)

]
+
C log(m/δ)

m
, (3.16)[

R̂V (f̂)− R̂V (f)
]
≤ 2err(f̂) +

C log(m/δ)

m
. (3.17)

Since R̂V (f̂ ∗) ≤ R̂V (f ∗) we obtain using Equation (3.16) that with probability at least 1− δ,

err(f̂ ∗) ≤ 2
[
R̂V (f ∗)− R̂V (f)

]
+
C log(m/δ)

m
.

Since f ∗ ∈ G, we can use Equation (3.17) to obtain that with probability 1− δ,

err(f̂ ∗) ≤ 4err(f ∗) +
2C log(m/δ)

m
.

Since err(f̂ ∗) is a positive random variable, integrating this bound we obtain that,

E[err(f̂ ∗)] =

∫ ∞
0

P(err(f̂ ∗) ≥ t)dt,

≤ 4err(f ∗) +
6C log(m)

m
.

So far we have implicitly conditioned throughout on the training set T . Taking an expectation
over the training set yields:

E[err(f̂ ∗)] ≤ 4E[err(f ∗)] +
6C log(m)

m
.

75

We now note that,

E[err(f ∗)]] ≤ min
j∈{0,...,m}

E[err(f̂j)].

Standard results on k-NN regression (for instance, a straightforward modification of Theorem 6.2
in [82] to deal with 0 < s ≤ 1 in the Hölder class) yield that for a constant C > 0,

min
j∈{1,...,m}

E[err(f̂j)] ≤ Cm−2s/(2s+d).

Theorem 24 yields that,

E[err(f̂0)] ≤ C1

(
log2 n logm

(
m−2/3 +

√
ν
))

+ C2n
−2s/d,

and putting these together we obtain that,

E[err(f ∗)] ≤ Õ
(
m−2/3 + min{√ν,m− 2s

2s+d}+ n−2s/d
)
,

and thus it only remains to prove Lemma 39 to complete the proof of the theorem.

Proof of Lemma 39

For a fixed classifier f̂ and for samples in the validation set i ∈ {m+ 1, . . . , 2m} we define the
random variables:

Zi = (yi − f̂(Xi))
2 − (yi − f(Xi))

2 = (f̂(Xi)− f(Xi))
2 + 2εi(f(Xi)− f̂(Xi)),

and note that E[Zi] = err(f̂). In order to obtain tail bounds on the average of the Zi let us bound
the absolute central moments of Zi. Using the inequality that (x+y)k ≤ 2k−1(xk +yk), for k > 2
we obtain that,

E|Zi − E[Zi]|k = E|(f̂(Xi)− f(Xi))
2 + 2εi(f(Xi)− f̂(Xi))− err(f̂)|k

≤ 2k−1E|(f̂(Xi)− f(Xi))
2 − err(f̂)|k + 2k−1E|εi(f(Xi)− f̂(Xi))|k. (3.18)

We bound each of these terms in turn. Since (f̂(Xi)− f(Xi))
2 ∈ [0, 4M2], we obtain that,

E|(f̂(Xi)− f(Xi))
2 − err(f̂)|k ≤ var((f̂(Xi)− f(Xi))

2)(4M2)k−2,

and using the fact that εi are Gaussian we obtain that,

E|εi(f(Xi)− f̂(Xi))|k ≤ E|εi|k−2E(f(Xi)− f̂(Xi))
2(2M)k−2

≤ var(εi(f(Xi)− f̂(Xi)))k!× (2M)k−2.

Since εi is independent of the other terms in Zi we have that,

var(Zi) = var(εi(f(Xi)− f̂(Xi))) + var((f̂(Xi)− f(Xi))
2).

76

Putting these pieces together with Equation (3.18) we obtain,

E|Zi − E[Zi]|k ≤ 2k−1var(Zi)
[
k!× (2M)k−2 + (4M2)k−2

]
≤ var(Zi)

2
k!(16M + 32M2)k−2.

Let us denote r := 16M + 32M2. It remains to bound the variance. We have that,

var(Zi) ≤ E[Z2
i] ≤ 2E((f̂(Xi)− f(Xi))

4) + 8E(f(Xi)− f̂(Xi))
2,

and using the fact that the functions are bounded in [−M,M] we obtain that,

var(Zi) ≤ (8M2 + 8)err(f̂). (3.19)

Now, applying the inequality in Lemma 44, we obtain that for any c < 1 and for any t ≤ c/r that,

err(f̂) ≤ 1

m

2m∑
i=m+1

Zi +
log(1/δ)

mt
+

8t(M2 + 1)err(f̂)

2(1− c) ,

we choose c = 1/2 and t = min{1/(2r), 1/(16(M2 + 1))}, and rearrange to obtain that,

err(f̂) ≤ 2

m

2m∑
i=m+1

Zi +
2 log(1/δ)

m
max{2r, 16(M2 + 1)}, ≤ 2

m

2m∑
i=m+1

Zi +
C log(1/δ)

m
,

and using a union bound over the m+ 1 functions f̂ ∈ G we obtain Equation (3.16). Repeating
this argument with the random variables −Zi we obtain Equation (3.17) completing the proof of
the Lemma.

3.8.5 Proof of Theorem 27
We prove a slightly stronger result, and show Theorem 27 as a corollary.
Theorem 40. Assume the same modeling assumptions for X1, . . . , Xn, y1, . . . , ym as in Theorem
23. Also permutation π̂ satisfies P[(f(Xi) − f(Xj))(π(i) − π(j)) < 0] ≤ ν. Then for any
estimator f̂ taking input X1, . . . , Xn, y1, . . . , ym and π̂, we have

inf
f̂

sup
f∈Fs,L

E
(
f(X)− f̂(X)

)2 ≥ C(m−
2
3 + min{ν d+2

2d m
1
2d , 1}m− 2

d+2 + n−2s/d).

Proof of Theorem 40 In this proof, we use xi to represent i-th dimension of x, and upper script for

different vectors x(1), x(2), Let u = dm 1
2+d e, h = 1/u, and t = min

{(
νm

1
2+d

) 1
2d
, 1

}
. Let

Γ = {(γ1, . . . , γd), γi ∈ {1, 2, . . . , u}}. Choose an arbitrary order on Γ to be Γ = {γ(1), . . . , γ(ud)}.
Let x(k) = γ(k)−1/2

u
, and φk(x) = L

2
thK(x−tx

(k)

th
), k = 1, 2, . . . , ud, where K is a kernel

function in d dimension supported on [−1/2, 1/2]d, i.e.,
∫
K(x)dx and maxxK(x) are both

77

bounded, K is 1-Lipschitz. So φk(x) is supported on [thx(k) − 1/2th, thx(k) + 1/2th]. Let
Ω = {ω = (ω1, . . . , ωud), ωi ∈ {0, 1}}, and

E =

{
fω(x) =

L

2
x1 +

k∑
i=1

ωiφk(x), x ∈ [0, 1]d

}
.

Functions in E are L-Lipschitz. The function value is linear in x1 for x 6∈ [0, t]d in all functions
in E . Consider the comparison function Z(x, x′) = I(x1 < x′1) that ranks x according to the
first dimension. Since K is 1-Lipschitz, it only makes an error when both x, x′ lies in [0, t]d,
and both x1, x

′
1 lie in the same grid segment [tk/u, t(k + 1)/u] for some k ∈ [u]. So the error

is at most t2d(1/u)2 · u ≤ ν for any function f ∈ E . Thus, if there exists one estimator with
supf E[(f − f̂)2] < C min{ν d+2

2d m
1
2d , 1}m− 2

d+2 , then we can obtain one estimator for functions
in E by using f̂ on E , and responding to all comparisons and rankings as Z(x, x′) = I(x1 < x′1).
So a lower bound on learning E is also a lower bound on learning any f ∈ Fs,L with ν-agnostic
comparisons.

Now we show that Ctd+2h2 = C min{ν d+2
2d m

1
2d , 1}m− 2

d+2 is a lower bound to approximate
functions in E . For all ω, ω′ ∈ Ω we have

E[(fω − fω′)2]1/2 =

 pd∑
k=1

(ωk − ω′k)2

∫
φ2
k(x)dx

1/2

=
(
ρ(ω, ω′)L2td+2hd+2

)1/2

= L(th)
d+2

2 ‖K‖2

√
ρ(ω, ω′),

where ρ(ω, ω′) denotes the Hamming distance between x and x′.
By the Varshamov-Gilbert lemma, we can have a M = O(2u

d/8) subset Ω′ = {ω(0), ω(1), . . . ,
ω(M)} of Ω such that the distance between each element ω(i), ω(j) is at least ud/8. So d(θi, θj) ≥
hst(d+2)/2. Now for Pj, P0 (P0 corresponds to fω when ω = (0, 0, . . . , 0)) we have

KL(Pj, P0) = m

∫
X
p(x)

∫
†
pj(y|x) log

p0(y|x)

pj(y|x)
dydx

= m

∫
X
p(x)

ud∑
i=1

ω
(j)
i φ2

ω(j)(x)

≤ m · Chd+2td+2ud = Cudtd+2.

We have Cudtd+2 ≤ cud ≤ α logM (since t ≤ 1), so again using Theorem 2.5 in [166] we obtain
a lower bound of d(θi, θj)

2 = Ch2td+2 = min{ν d+2
2d m

1
2d , 1}m− 2

d+2 .

Now we can prove Theorem 27.

Proof of Theorem 27. We only need to show

min{ν d+2
2d m

1
2d , 1}m− 2

d+2 ≥ min{ν2,m−
2
d+2}. (3.20)

78

If ν
d+2
2d m

1
2d ≥ 1, we have ν2 ≥ m−

2
d+2 . In this case both sides of (3.20) equals m−

2
d+2 . If

ν
d+2
2d m

1
2d ≤ 1, we have m ≤ ν−(d+2), and thus LHS of (3.20) have term ν

d+2
2d m

1
2dm−

2
d+2 ≥ ν2,

which equals RHS.

3.8.6 Proof of Theorem 30
Proof. We first list properties of log-concave distributions:

Theorem 41 ([13, 121]). The following statements hold for an isotropic log-concave distribution
PX:

1. Projections of PX onto subspaces of Rd are isotropic log-concave.
2. P[‖X‖2 ≥ α

√
d] ≤ e1−α.

3. There is an absolute constant C such that for any two unit vectors u and v in Rd we have
C‖v − u‖2 ≤ P(sign(u ·X) 6= sign(v ·X)).

From property of Ac and point 3 in Theorem 41 we can get ‖v̂ − v∗‖2 ≤ CεAc(n, δ/4) using
n comparisons, with probability 1− δ/4. We use a shorthand notion ε = CεAc(n, δ/4) for this
error. Now consider estimating r∗. The following discussion is conditioned on a fixed v̂ that
satisfies ‖v̂ − v∗‖2 ≤ ε. For simplicity let Ti = 〈v̂, X〉i. We have

r̂ =

∑m
i=1 Tiyi∑m
i=1 T

2
i

=

∑m
i=1 Tir

∗〈v∗, Xi〉+ Tiεi∑m
i=1 T

2
i

= r∗ +

∑m
i=1 Tir

∗〈v∗ − v̂, Xi〉+ Tiεi∑m
i=1 T

2
i

.

Now we have

〈w∗ − ŵ, X〉 = r∗〈v∗, X〉 − r̂〈v̂, X〉

= r∗〈v∗ − v̂, X〉 −
∑m

i=1 Tir
∗〈v∗ − v̂, Xi〉+ Tiεi∑m

i=1 T
2
i

〈v̂, X〉.

So

E
[
〈w∗ − ŵ, X〉2

]
≤ 3E

[
(r∗〈v∗ − v̂, X〉)2]+ 3E

[(∑m
i=1 Tir

∗〈v∗ − v̂, Xi〉∑m
i=1 T

2
i

〈v̂, X〉
)2
]

+ 3

[(∑m
i=1 Tiεi∑m
i=1 T

2
i

〈v̂, X〉
)2
]

(3.21)

The first term can be bounded by

(r∗)2E[〈v̂ − v∗, X〉2] = (r∗)2‖v̂ − v∗‖2
2 ≤ (r∗)2ε2.

79

For the latter two terms, we first bound the denominator
∑m

i=1 T
2
i using Hoeffding’s inequality.

Firstly since ‖v̂‖2 = 1, from point 1 in Theorem 41, each Ti is also isotropic log-concave. Now
using point 2 in Theorem 41 with α = 1− log(δ/(4em)) we get that with probability 1− δ/4,
Ti ≤ log(4em/δ) for all i ∈ {1, 2, . . . ,m}. Let ET

δ denote this event, and P′X is the distribution
of X such that Ti ≤ log(4em/δ). Now using Hoeffding’s inequality, under ET

δ for any t > 0

P

[∣∣∣∣∣ 1

m

m∑
i=1

T 2
i − EP′X [〈v̂, X〉2]

∣∣∣∣∣ ≥ t

]
≤ exp

(
− 2mt2

log2(4em/δ)

)
.

Note that EP′X [〈v̂, X〉2] ≤ EPX [〈v̂, X〉2] = 1. Also we have

1 = E[T 2
i] ≤ EP′X [T 2

i] +

∫ +∞

log2(4em/δ)

tP[T 2
i ≥ t]dt

≤ EP′X [T 2
i] +

∫ +∞

log2(4em/δ)

te−
√
t+1dt

≤ EP′X [T 2
i] +

3δ

2m

Let t = 1
4
EP′X [〈v̂, X〉2], we have

m∑
i=1

T 2
i ≤

[
3m

4
EP′X [〈v̂, X〉2],

5m

4
EP′X [〈v̂, X〉2]

]
⊆ [m/2, 2m]. (3.22)

with probability 1− δ/4, when m = Ω(log3(1/δ)).
Let Eδ denote the event when m/2 ≤∑m

i=1 T
2
i ≤ 2m and Ti are bounded by log(4em/δ) for

all i . Condition on Eδ for the second term in (3.21) we have

E

[(∑m
i=1 Tir

∗〈v∗ − v̂, Xi〉∑m
i=1 T

2
i

〈v̂, X〉
)2
]
≤

E
[
(
∑m

i=1 Tir
∗〈v∗ − v̂, Xi〉)2

]
m2

4

E[(〈v̂, X〉)2]

=
4E
[
(
∑m

i=1 Tir
∗〈v∗ − v̂, Xi〉)2

]
m2

Now notice that v̂−v∗
‖v̂−v∗‖2X is also isotropic log-concave; using point 2 in Theorem 41 we have

with probability 1− δ/4, (v̂ − v∗)TXi ≤ ‖v̂ − v∗‖2 log(4em/δ) for all i ∈ {1, 2, . . . ,m}. So

E

(m∑
i=1

Tir
∗〈v∗ − v̂, Xi〉

)2
 ≤ (r∗)2ε2 log2(4em/δ)E

(m∑
i=1

|Ti|
)2


≤ (r∗)2ε2 log2(4em/δ)E

[
m

m∑
i=1

T 2
i

]
= (r∗)2ε2 log2(4em/δ)m2

80

For the third term in (3.21), also conditioning on Eδ we have

E

[(∑m
i=1 Tiεi∑m
i=1 T

2
i

〈v̂, X〉
)2
]

= E

[(∑m
i=1 Tiεi∑m
i=1 T

2
i

)2
]
E
[
〈v̂, X〉2

]
≤

E
[
(
∑m

i=1 Tiεi)
2
]

m2

4

≤ 4E [
∑m

i=1 T
2
i σ

2]

m2
=

4σ2

m
.

Combining the three terms and considering all the conditioned events, we have

E
[
(〈w∗, X〉 − 〈ŵ, X〉)2] ≤4(r∗)2ε2 + (r∗)2ε2 log2(4em/δ) +

4σ2

m
+ C ′δ

≤O
(

1

m
+ log2(m/δ)εAc(n, δ/4) + ν2 + δ

)

Taking δ = 4
m

obtain our desired result.

3.8.7 Proof of Theorem 32

Our proof ideas come from [44]. We use Le Cam’s method, explained in the lemma below:
Lemma 42 (Theorem 2.2, [166]). Suppose P is a set of distributions parametrized by θ ∈ Θ.
P0, P1 ∈ P are two distributions, parametrized by θ0, θ1 respectively, and KL(P1, P2) ≤ α ≤ ∞.
Let d be a semi-distance on Θ, and d(θ0, θ1) = 2a. Then for any estimator θ̂ we have

inf
θ̂

sup
θ∈Θ

P[d(θ̂, θ) ≥ a] ≥ inf
θ̂

sup
j∈{0,1}

P[d(θ̂, θj) ≥ a]

≥ max

(
1

4
exp(−α),−1−

√
α/2

2

)

We consider two functions: w∗0 = (ξ, 0, 0, . . . , 0)T and w∗1 = (1√
m
, 0, 0, . . . , 0)T , where ξ is a

very small constant. Note that for these two functions comparisons provide no information about
the weights (comparisons can be carried out directly by comparing x(1), the first dimension of x).
So differentiating w∗0 and w∗1 using two oracles is the same as that using only active labels. We

have d(w∗0, w
∗
1) = E

[(
(w∗0 − w∗1)TX

)2
]

=
(

1√
m
− ξ
)2

. For any estimator ŵ, let {(Xi, yi)}mi=1

be the set of samples and labels obtained by ŵ. Note that Xj+1 might depend on {(Xi, yi)}ji=1.

81

Now for KL-divergence we have

KL(P1, P0) = EP1

[
log

P1 ({(Xi, yi)}mi=1)

P0 ({(Xi, yi)}mi=1)

]
= EP1

[
log

∏m
j=1 P1(Yj|Xj)P (Xj|{(Xi, yi)}ji=1)∏m
j=1 P1(Yj|Xj)P (Xj|{(Xi, yi)}ji=1)

]

= EP1

[
log

∏m
j=1 P1(yj|Xj)∏m
j=1 P0(yj|Xj)

]

=
m∑
i=1

EP1

[
EP1

[
log

∏m
j=1 P1(yj|Xj)∏m
j=1 P0(yj|Xj)

∣∣∣∣∣X1, . . . , Xm

]]

≤ nmax
x

EP1

[
log

∏m
j=1 P1(yj|Xj)∏m
j=1 P0(yj|Xj)

∣∣∣∣∣X1 = x

]
.

The third equality is because decision of Xj is independent of the underlying function giving
previous samples. Note that given X = x, y is normally distributed; by basic properties of
Gaussian we have

EP1

[
log

∏m
j=1 P1(yj|Xj)∏m
j=1 P0(yj|Xj)

∣∣∣∣∣X1 = x

]
=

(1√
m−ξ)

2

2σ2
.

Now by taking ξ sufficiently small we have for some constants C1, C2,

KL(P1, P0) ≤ C1, d(θ0, θ1) ≥ C2

m
.

Combining with Lemma 42 we obtain the lower bound.

3.8.8 Lower Bounds for Total Number of Queries under Active Case
Theorem 43. For any (active) estimator ŵ with access to m labels and n comparisons, there
exists a ground truth weight w̃ and a global constant C, such that when w∗ = w̃ and 2n+m < d,

E
[
〈ŵ − w∗, X〉2

]
≥ C.

Theorem 43 shows a lower bound on the total number of queries in order to get low error.
Combining with Theorem 32, in order to get a MSE of γ for some γ < C, we need to make at
least O(1/γ + d) queries (i.e., labels+comparisons). Note that for the upper bound in Theorem
30, we need m+ n = Ô(1/γ + d log(d/γ)) for Algorithm 6 to reach γ MSE, when using [13] as
Ac (see Table 3.1). So Algorithm 6 is optimal in terms of total queries, up to log factors.

The proof of Theorem 43 is done by considering an estimator with access to m+ 2n noiseless
labels {(xi, w∗ ·xi)}m+2n

i=1 , which can be used to generate n comparisons and m labels. We sample
w∗ from a prior distribution in B(0, 1), and show that the expectation of MSE in this case is at
least a constant. Thus there exists a weight vector w̃ that leads to constant error.

82

1

l
<latexit sha1_base64="yzCgYY0s4SKqJZKf5/EEuFW3U5k=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIUI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSSwzLFbfmLkE2iZeTCuRoDstfg1HM0gilYYJq3ffcxPgZVYYzgfPSINWYUDalY+xbKmmE2s+Wh87JlVVGJIyVLWnIUv09kdFI61kU2M6Imole9xbif14/NeGtn3GZpAYlWy0KU0FMTBZfkxFXyIyYWUKZ4vZWwiZUUWZsNiUbgrf+8ibpXNc8t+a1biqNah5HES7gEqrgQR0acA9NaAMDhGd4hTfn0Xlx3p2PVWvByWfO4Q+czx/MN4zW</latexit><latexit sha1_base64="yzCgYY0s4SKqJZKf5/EEuFW3U5k=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIUI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSSwzLFbfmLkE2iZeTCuRoDstfg1HM0gilYYJq3ffcxPgZVYYzgfPSINWYUDalY+xbKmmE2s+Wh87JlVVGJIyVLWnIUv09kdFI61kU2M6Imole9xbif14/NeGtn3GZpAYlWy0KU0FMTBZfkxFXyIyYWUKZ4vZWwiZUUWZsNiUbgrf+8ibpXNc8t+a1biqNah5HES7gEqrgQR0acA9NaAMDhGd4hTfn0Xlx3p2PVWvByWfO4Q+czx/MN4zW</latexit><latexit sha1_base64="yzCgYY0s4SKqJZKf5/EEuFW3U5k=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIUI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSSwzLFbfmLkE2iZeTCuRoDstfg1HM0gilYYJq3ffcxPgZVYYzgfPSINWYUDalY+xbKmmE2s+Wh87JlVVGJIyVLWnIUv09kdFI61kU2M6Imole9xbif14/NeGtn3GZpAYlWy0KU0FMTBZfkxFXyIyYWUKZ4vZWwiZUUWZsNiUbgrf+8ibpXNc8t+a1biqNah5HES7gEqrgQR0acA9NaAMDhGd4hTfn0Xlx3p2PVWvByWfO4Q+czx/MN4zW</latexit><latexit sha1_base64="yzCgYY0s4SKqJZKf5/EEuFW3U5k=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIUI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSSwzLFbfmLkE2iZeTCuRoDstfg1HM0gilYYJq3ffcxPgZVYYzgfPSINWYUDalY+xbKmmE2s+Wh87JlVVGJIyVLWnIUv09kdFI61kU2M6Imole9xbif14/NeGtn3GZpAYlWy0KU0FMTBZfkxFXyIyYWUKZ4vZWwiZUUWZsNiUbgrf+8ibpXNc8t+a1biqNah5HES7gEqrgQR0acA9NaAMDhGd4hTfn0Xlx3p2PVWvByWfO4Q+czx/MN4zW</latexit>

wl
<latexit sha1_base64="2iYBJzYKFDaHnkzguCKf04WXRI0=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5KIUI8FLx4r2g9oQ9lsN+3SzSbsTpQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbuZ+55FrI2L1gNOE+xEdKREKRtFK908DOShX3Jq7AFknXk4qkKM5KH/1hzFLI66QSWpMz3MT9DOqUTDJZ6V+anhC2YSOeM9SRSNu/Gxx6oxcWGVIwljbUkgW6u+JjEbGTKPAdkYUx2bVm4v/eb0Uw2s/EypJkSu2XBSmkmBM5n+TodCcoZxaQpkW9lbCxlRThjadkg3BW315nbQva55b8+6uKo1qHkcRzuAcquBBHRpwC01oAYMRPMMrvDnSeXHenY9la8HJZ07hD5zPH1vEjcA=</latexit><latexit sha1_base64="2iYBJzYKFDaHnkzguCKf04WXRI0=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5KIUI8FLx4r2g9oQ9lsN+3SzSbsTpQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbuZ+55FrI2L1gNOE+xEdKREKRtFK908DOShX3Jq7AFknXk4qkKM5KH/1hzFLI66QSWpMz3MT9DOqUTDJZ6V+anhC2YSOeM9SRSNu/Gxx6oxcWGVIwljbUkgW6u+JjEbGTKPAdkYUx2bVm4v/eb0Uw2s/EypJkSu2XBSmkmBM5n+TodCcoZxaQpkW9lbCxlRThjadkg3BW315nbQva55b8+6uKo1qHkcRzuAcquBBHRpwC01oAYMRPMMrvDnSeXHenY9la8HJZ07hD5zPH1vEjcA=</latexit><latexit sha1_base64="2iYBJzYKFDaHnkzguCKf04WXRI0=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5KIUI8FLx4r2g9oQ9lsN+3SzSbsTpQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbuZ+55FrI2L1gNOE+xEdKREKRtFK908DOShX3Jq7AFknXk4qkKM5KH/1hzFLI66QSWpMz3MT9DOqUTDJZ6V+anhC2YSOeM9SRSNu/Gxx6oxcWGVIwljbUkgW6u+JjEbGTKPAdkYUx2bVm4v/eb0Uw2s/EypJkSu2XBSmkmBM5n+TodCcoZxaQpkW9lbCxlRThjadkg3BW315nbQva55b8+6uKo1qHkcRzuAcquBBHRpwC01oAYMRPMMrvDnSeXHenY9la8HJZ07hD5zPH1vEjcA=</latexit><latexit sha1_base64="2iYBJzYKFDaHnkzguCKf04WXRI0=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5KIUI8FLx4r2g9oQ9lsN+3SzSbsTpQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbuZ+55FrI2L1gNOE+xEdKREKRtFK908DOShX3Jq7AFknXk4qkKM5KH/1hzFLI66QSWpMz3MT9DOqUTDJZ6V+anhC2YSOeM9SRSNu/Gxx6oxcWGVIwljbUkgW6u+JjEbGTKPAdkYUx2bVm4v/eb0Uw2s/EypJkSu2XBSmkmBM5n+TodCcoZxaQpkW9lbCxlRThjadkg3BW315nbQva55b8+6uKo1qHkcRzuAcquBBHRpwC01oAYMRPMMrvDnSeXHenY9la8HJZ07hD5zPH1vEjcA=</latexit>

Figure 3.11: Graphic illustration about the sampling process in the proof of Theorem 43.

Proof. We just prove the theorem for 2n + m = d − 1. Note that this case can be simulated
by considering an estimator with access to 2n + m truthful samples; that is, Yi = w∗ · Xi for
i = 1, 2, . . . , 2n+m. In this way truthful comparisons can be simulated by query two labels. We
now prove a lower bound for this new case with 2n+m = d− 1 truthful samples.

We randomly sample w∗ as below: first uniformly sample v∗ on the surface of B(0, 1), and
then uniformly sample r∗ ∈ [0, 1]. Let this distribution be Pw∗ . Since we only have d− 1 labels,
for any set of samples x1, . . . , xd−1 there exists a line l ∈ B(0, 1) such that every w ∈ l produces
the same labels on all the samples. Not losing generality, suppose such l is unique (if not, we
can augment ŵ such that it always queries until l is unique). Now for any active estimator ŵ, let
X1, . . . , Xd−1 denote the sequence of queried points when w∗ is randomly picked as above. Now
note that for every w,

P[w∗ = w|{Xi, yi}d−1
i=1 , l] = P[w∗ = w|{Xi, yi}d−1

i=1] ∝ P[w∗ = w]I(w ∈ l).

The first equality is because l is a function of {Xi, yi}d−1
i=1 ; the second statement is because all

w ∈ l produces the same dataset onX1, . . . , Xd−1, and every w 6∈ l is impossible given the dataset.
Notice that r∗ is uniform on [0, 1]; so with probability at least a half, the resulting l has distance
less than 1/2 to the origin (since l contains w∗, and ‖w∗‖ is uniform on [0, 1]). Denote by wl the
middle point of l (see Figure 3.11). For any such line l, the error is minimized by predicting the
middle point of l: Actually we have

E
[
〈w∗ − ŵ, X〉2|l has distance less than 1/2

]
≥
∫ |l|/2
u=0

u2dP (‖w∗ − ŵ‖2 ≥ u|w∗ ∈ l) (3.23)

.

≥
∫ |l|/2
u=0

u2dP (‖w∗ − wl‖2 ≥ u|w∗ ∈ l) (3.24)

Note that the distribution of w∗ ∈ l is equivalent to that we sample from the circle containing l
and centered at origin, and then condition on w∗ ∈ l (see Figure 3.11). Notice that this sampling
process is the same as when d = 2; and with some routine calculation we can show that (3.24) is
a constant C. So overall we have

E
[
〈w∗ − ŵ, X〉2

]
≥ 1

2
C,

83

where the expectation is taken over randomness of w∗ and randomness of ŵ. Now since the
expectation is a constant, there must exists some w such that

E
[
〈w∗ − ŵ, X〉2

∣∣w∗ = w
]
≥ 1

2
C,

which proves the theorem.

3.9 Auxiliary Technical Results
We use some well-known technical results in our proofs and collect them here to improve
readability. We use the Craig-Bernstein inequality [60]:
Lemma 44. Suppose we have {X1, . . . , Xn} be independent random variables and suppose that
for k ≥ 2, for some r > 0,

E[|Xi − E[Xi]|k] ≤
var(Xi)

2
k!rk−2.

Then with probability at least 1− δ, for any c < 1 and for any t ≤ c/r we have that:

1

n

n∑
i=1

(E[Xi]−Xi) ≤
log(1/δ)

nt
+
t var(Xi)

2(1− c) .

84

Part II

Decision Making with Dueling Choices

85

Chapter 4

Discrete and Continuous Multi-Armed
Bandits with Dueling Choices

4.1 Introduction

The Multi-Armed Bandits (MAB) problem [144] is a popular framework that studies the tradeoff
between exploration and exploitation inherent in applications like online advertising and finance.
In its basic form, we have a arm space X , and in each time step t = 1, 2, ... we pull one arm
xt ∈ X . The goal is to identify the arm with the best reward in X , while also minimizing
the cumulative regret in a total of T steps. Dueling bandit [200] is an important variant of
MAB, where we take duels between a pair of arms (xt, x

′
t) ∈ X 2, and xt wins with probability

Pr[xt � x′t] = 1/2 + ε(xt, x
′
t).

Dueling bandit is a natural fit for various applications including information retrieval and
crowdsourcing; in these cases duels (comparisons) between arms come at a much smaller cost
than pulling individual arms. However, in many of these applications, it is not enough to reply
only on comparisons: For example, in information retrieval, the user preferences might not be
transitive due to user bahavior, and a unique Condorcet winner might not exist. This has motivated
research on suitable notions of a winner, including the Copeland winner [206], the von Neumann
winner [69] and tournament solutions [142]. We propose a complementary approach for dueling
bandits, where we can either pull one arm or duel two arms in each round. We call our setting
Multi-Armed Bandits with Dueling Choices (MAB-DC), we note that different than dueling
bandits, here direct queries and comparisons are both available, and therefore duels are available
as an additional choice.

In many applications, both comparisons (duels) and direct queries are available, and compar-
isons can be available at a cheaper price than direct queries. For example in preference elicitation,
the user can give scores on recommended items, as well as (more easily) compare two items
to choose the preferred one. Similarly, for hyperparameter search of information retrieval (IR)
models, direct queries typically involve collecting relevance scores from paid workers, whereas
comparisons can be obtained by interleaving the ranking of two different models, and observing
user click on the retrieval results [139]. Such comparisons usually come with less cost in both time
and money. As another example, in material synthesis, we aim to optimize the desired properties

87

of materials by controlling the input parameters (temperature, pressure, etc.) [71, 194]. While
material synthesis is expensive, comparisons can be carried out by asking material scientists.

4.2 Our Contribution
We develop and evaluate new algorithms for the MAB-DC problem, for both discrete and
continuous arm spaces. a new algorithm for non-convex optimization with dueling choices, which
we refer to as Comparison-based GP-UCB (COMP-GP-UCB). Our theoretical and experimental
results show the strengths of our algorithm.

• In the discrete case, we propose th Double Filtering (DF) algorithm that combines duels
and pulls. The algorithm alternates between dueling arms and pulling arms. We show that
DF can get the best of both worlds: It chooses the easier way between duels and pulls to
elinimate suboptimal arms.

• Our main contribution is on the continuous MAB-DC problem. Here we consider MAB-DC
in the setting of optimizing a nonconvex blackbox function f : X → R using as few
queries to (a noisy version of) f(x) as possible, and with no gradient information directly
available. We propose the COMP-GP-UCB algorithm. When we can obtain comparisons
based on the target function, we show that comparisons can be as powerful as direct queries:
COMP-GP-UCB can achieve the same rate of convergence as its label-only counterparts,
while using only comparisons and no direct queries. This solves the open problem raised in
[160], to develop continuous dueling bandit algorithms with no-regret guarantees.

• Next, we assume that comparisons are based on a misspecified function fc, where fc
approximates f . COMP-GP-UCB in this case uses comparisons to optimize a function
fr which has the same optimizer as fc, and then use direct queries to search in a smaller
region for the optimum of the target function. The regret rate of COMP-GP-UCB is then
better than the label-only counterparts, and it depends on the difference between fc and f :
the better the approximation, the lower the regret we can get from COMP-GP-UCB. We
further demonstrate a version of the algorithm that adapts to this difference. Our algorithm
also extends multi-fidelity GP optimization to the setting where information is transferred
actively from a lower fidelity to a higher fidelity while only assuming that the optimizer
of the lower fidelity (source function) is within a constant distance of the optimizer of the
higher fidelity (target function), instead of the fidelities being close everywhere.

• In our experiments, we test DF and COMP-GP-UCB against existing algorithms, and show
that they achieves a superior performance under synthetic and real-world settings.

4.3 Related Work
Our MAB-DC extends the framework of dueling bandits, and we refer readers to [42] for a review.
The existing works on dueling bandits mostly focus on the discrete K-armed dueling bandit case
[74, 199, 206]. Most of these algorithms have a regret rate logarithmic in T ; however this regret
rate depends on a constant lower bound on the ε function, i.e., a constant gap between the optimal

88

arm and the other arms. Our MAB-DC takes both pulls and duels, and can have a logarithmic
regret if the gap from duels is small but the gap from pulls is large.

The continuous case of multi-armed bandits is also variously known as zeroth order non-
convex optimization or black-box optimization[41, 49, 76, 79, 89, 175]. Although zeroth order
convex optimization is generally efficient [96], optimizing a non-convex f under smoothness
constraints requires the same effort as estimating f almost everywhere, and usually leads to a query
complexity exponential in d, where d is the feature space dimensionality [49, 76, 79, 175]. We
build our work on GP-UCB[156], a method for optimizing unknown functions under the Gaussian
process (GP) assumption by optimizing the Upper Confidence Bound (UCB). Closest to our setting
is a line of recent research on multi-fidelity GP optimization [103, 104, 148], which assumes
that we can query the target functions at multiple fidelities of different costs and precisions. We
detail the relation and difference of our setting with multi-fidelity optimization in Section 4.5.5.
To briefly describe it, our setting is harder since we cannot directly query the function on which
comparisons are based. Moreover, the multi-fidelity assumptions such as fidelities being close in
sup-norm do not hold for our setting since any constant shift of the comparison function yields the
same comparisons. We instead consider an active transfer learning setting where information
from a function that can be learned using comparisons is transferred actively to optimize the target
function (refer to Section 4.5 for details).

For dueling bandits in the continuous case, [8] studied a reduction to the traditional MAB
problem; and [160] proposes an algorithm based on Thompson sampling to deal with comparisons.
Continuous dueling bandits has also been studied under the framework of derivative-free opti-
mization [96, 110]. Kumagai [110] obtains optimal regret rates for a convex f . However to the
best of our knowledge, no previous work has theoretical guarantees on optimizing a non-convex f .
Also, these results cannot be applied when the comparisons are biased (i.e., a Condorcet winner
on comparisons might not be the best point for direct queries).

Finally, there is another line of research that combines direct queries and comparisons for
classification or regression problems [105, 185, 187]. Our methods differ from theirs because we
focus on the optimization setting, and only care about points near the optimum. These methods
make direct queries across the whole feature space to learn the underlying function well, which is
unnecessary for optimization.

4.4 Discrete Case: The K-Armed MAB-DC Problem

In this section, we first consider the discrete case where the arm space X = {x1, ..., xK}, where
K is the number of arms. We propose an algorithm to combine duels and pulls, so that we get
the best of both worlds: It uses either duels or pulls to eliminate suboptimal arms, and as a result
the cumulative regret is the smaller one between the duel regret and the pull regret. We call our
algorithm Double Filtering (DF) since it uses both duels and pulls. We introduce our notation in
Section 4.4.1, and algorithm with theoretical results in Section 4.4.2. We verify our theoretical
results on synthetic data in Section

89

4.4.1 Problem Setup

To define the MAB-DC problem, we make assumptions on the pull and duel results. Suppose the
pull rewards are random variables with means µ1, ..., µK . We assume the reward distribution of
each bandit is sub-Gaussian with parameter R:

E[exp(tYi − tµi)] ≤ exp(R2t2/2)

for all t ∈ R. We also assume the dueling bandits setup for each pair of bandits. In each iteration,
we can also choose to duel a pair of bandits (i, j), and we have Pij = Pr[xi � xj] = εij + 1/2.

We assume a total ordering over the arms for duels, and WLOG suppose it is x1 � x2 � · · · �
xK . We assume that the comparisons satisfy the strong stochastic transitivity: εik ≥ max{εij, εjk}
for i � j � k. We also assume the triangle inequality that εik ≤ εij + εjk. We do not need the
pull reward means µ1, ..., µK to satisfy this ordering, but we assume that µ1 ≥ maxi=2,...,K µi.

Upon making a query, we accumulate regret

rt =

{
max{µ1 − µi, ε1i}, if pull arm xi,

max{2µ1−µi−µj
2

,
ε1i+ε1j

2
}, if duel arm xi, xj.

Our goal is to minimize the cumulative regret rt over a time frame T . Note that here the regret is
defined based on the number of queries; i.e., we assume that duels and pulls cost the same.

4.4.2 Algorithm and Analysis

The algorithm is described in Algorithm 7. The algorithm alternates between dueling bandits and
traditional MAB on the working setWl. Conceptually, DF combines the process of Beat-the-Mean
Bandits [199] and Successive Elimination [70]. We pick these two algorithms because they both
have the working set concept; we can potentially combine other algorithms that uses a current
working set as well.

The following theorem shows the performance guarantee of DF.

Theorem 45. Let c(n∗) = 3
√

1
n

log(4KT). 1 Suppose T ≥ K. Let ∆k = µ1 − µk. The regret of
Algorithm 7 is at most

R(T) ≤ O

(
K∑
k=2

log T

max{ε1k,∆k}

)
.

Remark. Theorem 45 illustrate a best-of-both-worlds scenario for MAB-DC: the regret rate
depends on the larger gap between the duels and pulls. This is achieved by the shared working set
among the duel part and the pull part. Note that this larger gap is arm specific, meaning that for
each suboptimal arm, DF finds whether it is easier to eliminate it through duels or pulls.

1We assume that the time horizon T is known before the algorithm starts, following [199]. If it is unknown, we
can use a log(t2) factor instead and this will introduce another log(max{ε1k,∆k}) factor in the cumulative regret.

90

Algorithm 7 Double Filtering

Input: Bandits B = {x1, ..., xK}
1: Wl ← B, l← 1
2: ∀b ∈ B, nb ← 0, wb ← 0,mb ← 0, sb ← 0
3: Define P̂b ≡ wb/nb,∀b ∈ B, or P̂b = 1/2 if nb = 0
4: Define µ̂b ≡ sb/mb,∀b ∈ B, or µ̂b = 0 if mb = 0
5: Define n∗ ≡ minb∈Wl

nb, m∗ ≡ minb∈Wl
mb

6: while Budget not exhausted and |Wl| > 1 do
7: b = arg minb∈Wl

nb . Break ties randomly
8: Select b′ ∈ Wl at random, compare b with b′

9: If b wins, wb ← wb + 1
10: nb ← nb + 1
11: if minb∈Wl

P̂b′ + c(n∗) ≤ maxb∈Wl
P̂b − c(n∗) then

12: b′ = arg minb∈Wl
P̂b

13: For all b̃ ∈ W , remove comparison with b′ from nb̃, wb̃
14: Wl ← Wl \ {b′}
15: l← l + 1
16: end if
17: b = arg minb∈Wl

mb . Break ties randomly
18: Pull arm b and get feedback Y
19: sb ← sb + Y
20: mb ← mb + 1
21: if minb∈Wl

µ̂b′ + c(m∗) ≤ maxb∈Wl
µ̂b − c(m∗) then

22: b′ = arg minb∈Wl
µ̂b

23: Wl ← Wl \ {b′}
24: For all b̃ ∈ W , remove comparison with b′ from nb̃, wb̃
25: l← l + 1
26: end if
27: end while
Output: Any arm b ∈ Wl

4.4.3 Experiments

We verify our theoretical insights by running experiments on synthetic data. We compare to the
following baselines:
BeatTheMean: We compare to the duel-only [199], which is essentially one component of our
method.
SuccessiveElimination: We use successive elimination as a pull-only baseline.
UCB: We also compare with the widely-used upper confidence bound baseline.

Our experiment setup resembles that in [199]. In all settings, we use T = 5×106 and compute
the cumulative regret, while varying the number of arms from 40 to 200. We consider two settings
of setting up the reward values of each arm:
• Consistent setting: We generate a set of arm rewards µi for i ∈ [K] by sampling from

91

uniform distribution on [0, 1]. We set µ0 = 1 and let arm 0 be the best arm. When
pulling an arm i, the algorithm suffers regret 1− µi, and gets a feedback of µi + ε, where
ε ∼ N (0, 1). When the algorithm duels two arms i, j, it gets feedback with distribution
Pr[i � j] = 1/(1 + exp((µj − µi)/λ)), following the BTL model with parameter λ; in our
experiment we use λ = 0.01 to ensure that duels and pulls have a similar gap value.

• Inconsistent setting: We generate two sets of arm values µi, µ′i following uniform distribu-
tion on [0, 1]. We fix µ0 = µ′0 = 1 so that arm 0 is the best arm. We use µi as the reward
mean for every arm i, but use µ′i for generating the comparisons. Therefore in this case we
will have different (and independent) gaps for duels and pulls.

In both settings, we generate the comparisons following In the consistent setting, all the arms have
the same gap in duels and pulls, so we would expect all the baselines to perform well; however in
the inconsistent setting, the gaps are different in duels and pulls. In other words, an arm with a
small gap on duels might have large gap on pulls, and therefore large gap on its regret. In this case
we expect our DoubleFiltering algorithm to work well. We repeat the experiment for 40 times and
record the standard deviation.

Figure 4.1 partially verifies our observation. In the consistent setting, most methods come
with a small variance, while DoubleFiltering incurs a slightly worse regret than BeatTheMean and
UCB. This is because DoubleFiltering uses both duels and pulls to find the best arm, and therefore
takes twice the number of queries to identify the best arm in this case. On the other hand, in the
inconsistent settings pull-only and duel-only algorithms suffers a large regret and a large variance,
but DoubleFiltering still performs very well in the inconsistent case. Overall our results show that
DoubleFiltering is robust to the discrepancy between pulls and duels.

25 50 75 100 125 150 175 200

Number of Arms
0

10

20

30

40

50

60

70

80

Pu
ll

Co
m

pl
ex

ity

1e3

DoubleFiltering
BeatTheMean
SuccessiveElimination
UCB

(a) Consistent Setting

25 50 75 100 125 150 175 200

Number of Arms

0

500

1000

1500

2000

Pu
ll

Co
m

pl
ex

ity

1e3

DoubleFiltering
BeatTheMean
SuccessiveElimination
UCB

(b) Inconsistent Setting

Figure 4.1: Results on synthetic data. The bars indicates standard deviation from 20 experiments.

4.5 Continuous Case: MAB-DC for Optimizing a Nonconvex
Function

We consider MAB-DC with a continuous arm space X ⊆ Rd. We set our problem in the zeroth-
order nonconvex optimization setting, i.e., we aim to maximize a function f : X → R. In each

92

iteration t of optimization, we can query (expensive) direct queries to f at a chosen point xt, and
obtain y = f(xt) + ε, ε ∈ [−η, η] and E[ε] = 0, with η > 0 a known constant2.

Comparison Probabilities. In each iteration we can also choose to obtain (cheap) comparisons
for a pair of points (xt, x

′
t) ∈ X × X . We assume that comparisons are based on a function

fc which can be potentially different from f (as described later in this section). A common
assumption in the literature is to use a link function to assume a distribution of the comparisons,
i.e., we assume Pr[x � x′] = σ(fc(x) − fc(x′)) for some function σ. Common link functions
include logistic function (BTL model[38]), or Gaussian cdf (Thurstone model [162]).

Connecting comparisons and direct queries. To make comparisons helpful for optimization,
we also require that fc is a good approximation of f . Here we differentiate between two settings:

• Dueling-Choice Bandits with unbiased comparisons: We assume comparison comes from
the same function as the target function, i.e., fc = f or, more generally, that fc and f have
the same optimizer (ζ = 0 as described below). This may be the case when comparison and
direct queries come from the same agent, such as the preference elicitation example in the
introduction.

• Dueling-Choice Bandits with misspecified comparisons: We assume fc ≈ f . In many cases,
comparisons are from a different source (e.g. experts) than direct queries (e.g. experiments),
and this can result in a biased fc. To this end, we assume a bounded difference near the
optimum:
Assumption 1. Let f ∗ = maxx f(x) and f ∗c = maxx fc(x). There exists a constants ζ such
that for any point x ∈ X we have |(f ∗c − fc(x))− (f ∗ − f(x))| ≤ ζ .

In words, when we get ε-close to the maximum of f , we are at least (ε + ζ)-close to the
maximum of fc, and vice versa. Under this assumption, we would require both comparison
and direct queries if we want to achieve optimization error smaller than ζ .
We note that our results can be generalized to the case where Assumption 1 only holds for
x ∈ {x : f ∗ − f(x) ≤ τ} for some fixed constant τ .

Smoothness Assumptions. We assume that the target function f lies in a reproducing kernel
Hilbert space (RKHS) Hκ induced by kernel κ, and that the RKHS norm of f is bounded:
‖f‖κ ≤ B for a known constant B. This assumption is also analyzed in [56, 156] for traditional
bandits. We note that every function f ∈ Hκ has a finite kernel norm. When κ is the linear kernel,
‖f‖κ ≤ B induces that f is B-Lipschitz.

Budgets and Regrets. We analyze the problem of optimizing f under a given cost budget Λ.
Suppose a direct query costs λl units of some resource and a comparison costs λc < λl. Also, let
nΛ = d Λ

λc
e be the upper bound on number of queries when we use all the budget on comparisons,

and nΛ = b Λ
λl
c be the corresponding lower bound when we only use direct queries. Also let

qt = label if we make direct queries at iteration t, and qt = comp otherwise. We analyze the

2Our methods can also be extended to the setting where ε follows a sub-Gaussian distribution with parameter η.
We assume a bounded ε for simplicity here.

93

simple regret under budget Λ, defined as follows:

S(Λ) = min
t
rt (4.1)

= min
t

{
f ∗ − f(xt) if qt = label,
min{f ∗ − f(xt), f

∗ − f(x′t)}, if qt = comp.

In words, we calculate the minimum regret achieved by either comparison or direct queries. We
compute simple regret over all direct queries; for comparisons, we adopt the notion of weak regret
employed in [200]. Here we choose simple regret because our target is to optimize function f , and
cumulative regret is typically not relevant for our setting. Our method can also be easily extended
to the optimizer error setting, where the algorithm gives an estimation of the optimum when it
ends. In analyzing the regret rates, we use O(·) to ignore constants, and Õ(·) to ignore log terms
in the regret bounds.

4.5.1 The Gaussian Process Back End
We base our methods on Gaussian Process, with kernel function κ. If f was sampled from the
Gaussian process GP(0, κ), and the direct queries were coming from f plus a Gaussian noise, i.e.,
D = {(xi, yi)}ti=1 with yi = f(xi) + ε, ε ∼ N (0, η2), then the posterior distribution at f(x)|D
would be a Gaussian N (µt(x), σt(x)) with

µt(x) = kT (K + η2It)
−1Y, (4.2)

σt(x) = κ(x, x)− kT (K + η2It)
−1k.

Here Y = (y1, ..., yt)
T , k = (κ(x, x1), ..., κ(x, xt))

T , and matrix K ∈ Rt×t is given by Kij =
κ(xi, xj), and It is the t× t identity matrix.

Remark. We note that the Gaussian noise and prior is only assumed to derive updates to the
mean and variance in the algorithm, and we do not assume the actual feedbacks follow a Gaussian
model, nor the functions are sampled from the Gaussian process. We only assume that f have
bounded norm inHκ and that ε is bounded in [−η, η], as stated in the beginning of Section 4.5.
This is the same as the agnostic setting in GP-UCB [56, 156].

The Maximum Information Gain. As in previous works on GP [56, 103], our results will
depend on the maximum information gain [156] between function measurements and the function
values, defined as below:
Definition 1. Suppose A ⊆ X is a subset of feature space, and Ã = {x1, ..., xn} ⊆ A is a
finite subset of A. Then the maximum information gain on A with n evaluations is defined as
Φn(A) = maxÃ⊆A,|Ã|=n I(fÃ+εÃ; fÃ), where fÃ = [f(x)]x∈Ã, εÃ ∼ N (0, η2I), and I(X, Y) =
H(X)−H(X|Y) is the mutual information.

When X ⊆ Rd is compact and convex, [156] shows that i) for linear kernel κ, Φn(X) =
O(d log n); ii) for squared exponential (SE, or RBF) kernel, Φn(X) = O((log n)d+1); iii) For

Matérn kernels κ(x, x′) = 21−ν

Γ(ν)
(
√

2νz
ρ

)νBν(
√

2νz
ρ

), we have Φn(X) = O
(
n

d(d+1)
2ν+d(d+1) log n

)
.

Review of GP-UCB and IGP-UCB. Previous sequential optimization has adopted the upper
confidence bound (UCB) principle, where we maintain a high-confidence upper bound φ : X → R

94

for all x ∈ X , such that f(x) ≤ φ(x) with high probability. Our algorithm builds on UCB
algorithms for GP, namely GP-UCB [156] and IGP-UCB [56] (the latter is an improvement of the
former).

The GP-UCB [156] and IGP-UCB [56] can be unified as in Algorithm 8. In time step t of
optimization, IGP-UCB queries the point that maximizes the confidence upper bound in the form
µ

(l)
t−1(x) + βtσ

(l)
t−1(x), where µ(l)

t−1, (σ
(l)
t−1)2 are the posterior mean and variance function of the GP

from step t−1, and βt is a multiplier that increases with t. In time step t of optimization, IGP-UCB
queries the point that maximizes the confidence upper bound in the form µ

(l)
t−1(x) + βtσ

(l)
t−1(x),

where µ(l)
t−1, (σ

(l)
t−1)2 are the posterior mean and variance function of the GP from step t− 1, and βt

is a multiplier that increases with t. The algorithms only differ at their assumptions and thus the
choice of βt. Our setting of β(r)

t and βt is similar to IGP-UCB, as we focus more on the agnostic
function setting.

Algorithm 8 GP-UCB and IGP-UCB
Input: Budget Λ

1: Set Dl
0 = ∅, (µ

(l)
0 , σ

(l)
0) = (0, κ1/2), t← 0

2: for t = 1, 2, ..., nΛ do
3: Compute xt = arg maxx∈X µt−1(x) + βtσt−1(x)
4: Query f(xt) and obtain feedback yt
5: Use yt and (4.2) to perform posterior updates, and obtain µ(l)

t , σ
(l)
t

6: end for

4.5.2 The Borda Function fr
A straightforward way to incorporate comparisons into optimization is to use them to compute a
GP posterior of either f or fc. However, we will face several difficulties. Firstly, the posterior
based on comparisons cannot be analytically computed. Also, we cannot compute the joint
posterior based on both direct queries and comparisons, since f and fc can be different. Lastly,
comparisons might not be truthful and can be inconsistent; i.e., human might give contradicting
comparisons like x1 � x2 � x3 � x1 [206].

We instead consider a different function directly related to fc, defined as fr(x) = Pr[x � X],
where X is randomly chosen from X . In words, fr(x) is the probability that x beats a random
point X ∈ X . We refer to fr as the Borda function, inspired by Borda scores in the dueling
bandits literature [90, 206]. An advantage of using fr is that we can obtain unbiased estimates of
fr(x) by comparing x to a random point in X ∈ X .

It is easy to see that fr should have the same optimizer as fc. We make the following
assumption to ensure usefulness of comparisons:
Assumption 2. Let f ∗r = maxx fr(x) and f ∗c = maxx fc(x). There exists constants L1, L2 such
that for every x ∈ X we have 1

L1
(f ∗c − fc(x)) ≤ f ∗r − fr(x) ≤ L2(f ∗c − fc(x)).

In other words, difference in fc will cause a difference of similar scale in fr. This requires that
the comparisons induces a Borda function fr such that fr is close to fc at its optimum, and that fr
and fc has the same optimizer. We note that this is a quite weak assumption, as we do not restrict

95

the result of comparing individual points x, x′ to comply with fc(x)− fc(x′), i.e., comparisons do
not need to be consistent. We can show that Assumption 2 holds under the link function setting,
when σ is Lipschitz continuous:

Proposition 46. Suppose comparisons follows a link function σ with a Lipschitz constant between
[1/L1, L2], i.e., |σ(x)−σ(y)|

|x−y| ∈ [1
L1
, L2], ∀x, y ∈ R, then Assumption 2 holds.

We comment that common link functions such as BTL [38] and Thurstone [162] all have
bounded Lipschitz functions if fc is bounded.

Lastly, we note that [8] also compare x to a random point X , and use the feedback to update
the function estimates. However, their method relies on a linear link function σ(x) = 1+x

2
and

cannot be applied for BTL or Thurstone models.

Algorithm 9 COMP-GP-UCB
Input: Comparison bias ζ , comparison exploration threshold γ, confidence δ

1: Set Dr
0 = Dl

0 = ∅, (µ
(r)
0 , σ

(r)
0) = (µ

(l)
0 , σ

(l)
0) = (0, κ1/2), t← 0

2: repeat
3: Compute xt = arg maxx∈X µ

(r)
t−1(x) + β

(r)
t σ

(r)
t−1(x)

4: QUERY(xt, comp)
5: until β(r)

t σ
(r)
t−1(xt) ≤ γ or budget exhausted

6: Let f̂r = µ
(r)
t−1(xt)− β(r)

t σ
(r)
t−1(xt)

7: while Budget not exhausted do
8: Let φ(r)

t (x) = µ
(r)
t−1(x) + β

(r)
t σ

(r)
t−1(x)− f̂r + L2ζ

9: Compute xt = arg max
x∈X :φ

(r)
t (x)≥0

µ
(l)
t−1(x) + βtσ

(l)
t−1(x)

10: if β(r)
t (xt)σ

(r)
t−1(xt) ≥ γ then QUERY(xt, comp)

11: else QUERY(xt, label)
12: end if
13: t← t+ 1
14: end while

15: procedure QUERY(query point xt, query type qt)
16: if qt = comp then
17: Sample x′ randomly from X and query to compare (xt, x

′), obtain zt
18: Update Dc

t ← Dc
t−1 ∪ {(xt, zt)}, Dl

t ← Dl
t−1

19: Perform Bayesian update for µ(r)
t , σ

(r)
t based on Dc

t with yt = zt following (4.2)
20: else
21: Query direct labels for xt and obtain yt
22: Update Dl

t ← Dl
t−1 ∪ {(xt, yt)}, Dc

t ← Dc
t−1

23: Perform Bayesian update for µ(l)
t , σ

(l)
t based on Dl

t following (4.2)
24: end if
25: end procedure

96

4.5.3 The COMP-GP-UCB Algorithm

We describe our COMP-GP-UCB along with its analysis in this section. When ζ is known and
given, COMP-GP-UCB is formally described in Algorithm 9. Our algorithm works both for
unbiased comparisons (ζ = 0) and misspecified comparisons (ζ > 0). COMP-GP-UCB is an
anytime algorithm, meaning that it does not need to know the total budget Λ before it begins. For
any input ζ ≥ 0, the high-level idea is to constrain the search region for f using comparisons
to the set H := {x : fr(x) ≥ f ∗r − L2ζ} where f ∗r = maxx fr(x). H is guaranteed to contain
the optimizer f under our assumptions; To see this, let x∗ be any optimizer of f , and we have
f ∗r − fr(x∗) ≤ L2(f ∗c − fc(x∗)) ≤ L2(f ∗ − f(x∗) + ζ) = L2ζ. The first inequality follows from
Assumption 2 and the second one follows from Assumption 1. It is easy to see that H is much
smaller than X if comparisons are mostly correct (i.e., ζ is small); therefore we can explore more
efficiently by restricting the search onH.

COMP-GP-UCB takes as input ζ , a parameter γ to control exploration on comparisons, and a
confidence level δ. We keep track of posteriors (µ(l), σ(l)), (µ(r), σ(r)) for f and fr respectively,
and construct confidence intervals µ(l)

t−1(x) ± βtσ
(l)
t−1(x), µ(r)

t−1(x) ± β
(r)
t σ

(r)
t−1(x). Since fr is

unknown, to approximateH, the algorithm adopts a two-phase approach: In the first phase (Step
2-5), we optimize fr using comparison queries until β(r)

t σ
(r)
t−1(xt) ≤ γ, i.e., the queried point has

confidence of at least γ. At the end of the first phase, we compute f̂r as a lower bound for f ∗r .
Next, we start the second phase exploring f (Step 7-14). We select the query point xt based on
a filtering φ(r)

t (x) ≥ 0; the filtering approximates the constraint setH by combining the current
UCB of fr and the LCB f̂r from the first phase. Then the algorithm optimizes the UCB of f under
the constraint of φ(r)

t (x) ≥ 0. While doing this, we check the UCB of fr at the maximizer xt and
if we are not confident about fr(xt), we query a comparison, or otherwise we make a direct query
as in GP-UCB.

The query process is described in the procedure QUERY. For direct queries, we query xt
directly, and update the posterior of f according to (4.2); for comparisons, we compare xt with
a random point x′, and use the result as feedback to update posterior of fr. We note that this
comparison result is an unbiased estimate of fr(xt).

The Two-Phase Approach. Both phases are critical for the algorithm to succeed. The first
phase is important in two ways: Firstly, it helps to get a low regret in the unbiased comparisons
setting, and in the initial stages of the algorithm when only comparison queries are used for the
biased (misspecified comparison) setting. Also, it gives a lower bound f̂r ≤ f ∗r of the optimum
of fr at Step 6 which will be used to approximate the constraint setH. Then we use the second
phase to obtain low regret in the biased comparison case.

Choice of φ(r)
t . The choice of φ(r)

t is critical for the algorithm to succeed. We want that the
region S = {x : φ

(r)
t (x) ≥ 0} is not too small or too large: we need that every maximizer x∗ of f

is in S, while also excluding as many points as possible using the information from fr. To achieve
the former, we have added L2ζ to the confidence interval to account for the difference in fc and f .
To achieve the latter, we need both a good UCB of fr and a good LCB of f ∗r = max fr(x). The
good UCB is ensured by the check at Step 10; we only make direct queries when we are confident
enough about fr(xt). The good LCB is ensured by the first phase, where we compute f̂r; without
the first phase f̂r can be arbitrarily bad and it will lead to suboptimal direct queries. In the proof

97

we show that when φ(r)
t (x) ≥ 0 and β(r)

t (x)σ
(r)
t−1(x) ≥ γ, x belongs to an approximation ofH. So

the two constraints combined ensure that we use direct queries to exploreH.
We now present our theoretical results. We defer full proofs to the appendix due to space

constraints. We first analyze the unbiased comparison case. In this case, we have ζ = 0, and we
only need comparisons to achieve low regret. Therefore we run COMP-GP-UCB with ζ = γ = 0;
in this case, the algorithm only executes the first phase, and only uses comparisons to optimize fr.
We obtain the following guarantee.
Theorem 47. Suppose Assumption 2 holds, and fc = f . Let β(r)

t = 2B+
√

2 (Φt−1(X) + 1 + log(1/δ)).
There exists a constant C dependent on d, κ such that COMP-GP-UCB with ζ = γ = 0 has a
simple regret bounded by

S(Λ) ≤ C
(
B +

√
(ΦnΛ

(X) + log(1/δ))
)√ΦnΛ

(X)

nΛ

. (4.3)

Remark. IGP-UCB [56] in the label-only setting has regret of form

SIGP-UCB(Λ) ≤ (4.4)

C

(
B +

√(
ΦnΛ

(X) + log(1/δ)
))√ΦnΛ

(X)

nΛ

,

where nΛ = b Λ
λl
c. This is the same form as (4.3), but with nΛ replaced with nΛ. Recall that nΛ is

the number of queries when we use all the budget on comparisons, and nΛ is the number for using
all budget on direct queries. In other words, COMP-GP-UCB has the same rate as IGP-UCB as if
direct queries are as cheap as comparisons. When comparisons are much cheaper than direct
queries, COMP-GP-UCB leads to a great advantage by significantly reducing the number of direct
queries needed.

We then analyze COMP-GP-UCB in the misspecified comparison setting(ζ > 0). In this
setting, comparisons act as a filter on X to reduce the search region for direct queries. When
fc approximates f well (i.e., a small ζ), the set H = {x : fr(x) ≥ f ∗r − L2ζ} is much smaller
than the feature space X . Therefore by using comparisons, we wish to replace the Φn0(X)
term in (4.4) by Φn0(H), effectively exploring a smaller region. We show that COMP-GP-UCB
can have a similar behavior by exploring on a slightly larger set dependent on γ, defined as
Hγ = {x ∈ X : fr(x) ≥ f ∗r − L2ζ − 4γ}. The following theorem characterizes the regret of
COMP-GP-UCB under the misspecified comparison setting.
Theorem 48. Suppose Assumptions 2 and 1 hold, and ζ is known. Let β(r)

t be the same as
in Theorem 47, and βt = 2B +

√
2 (Φt−1(Hγ) + 1 + log(1/δ)). There exists constants Λ0, C

dependent on ζ, γ, B, d, κ such that if when Λ ≥ Λ0 we have S(Λ) ≤ min{S1, S2}, where

S1 = 2L1γ + ζ+

C
(
B +

√
(ΦnΛ

(X) + log(1/δ))
)√ΦnΛ

(X)

nΛ

,

S2 = C

(
B +

√(
ΦnΛ

(Hγ) + log(1/δ)
))√ΦnΛ

(Hγ)

nΛ

.

98

We discuss about the bounds and setup of parameters before coming to the proof of Theorem
48.

Remarks. The regret bound in Theorem 48 enjoys best of both worlds from comparisons and
direct queries. The first bound has the same form as in Theorem 47 but with another 2L1γ + ζ
term. This comes from the first phase of COMP-GP-UCB, and the extra term comes from the
fact that fc 6= f . In the second phase, the algorithm achieves the second bound S2, which is the
rate of using nΛ direct queries to explore Hγ . Compared with (4.4), the second bound has the
same rate on nΛ, but with a reduced search regionHγ and a startup budget Λ0 for comparisons to
work. When fc is a good approximation to f ,Hγ is much smaller than X and will lead to a great
improvement in the number of direct queries needed.

Setup of parameters. 1. Setting γ: γ acts as a threshold for exploring comparisons in both
phases of COMP-GP-UCB. A small γ will lead to a smallHγ and therefore better regret rates; but
it will also make the algorithm spend more time on comparisons before moving to direct queries,
i.e., a large Λ0. One plausible choice for γ is to set γ = 1

L2
ζ , and this will makeHγ ≈ H.

2. Setting βt: The setup for βt in Theorem 48 requires knowing Φt(Hγ) before algorithm starts
and this is unrealistic to set up. However, in practice the default choice for βt is often very loose
and hand-tuned values are used instead (e.g., [103] uses βt = 0.2d log(2t)). In this sense this
setup for βt does not affect its practical use. For theoretical purposes, we can also set βt = β

(r)
t ;

this leads to a regret rate of Õ
(

(B+
√

ΦnΛ
(X))
√

ΦnΛ
(Hγ)

√
nΛ

)
, slightly larger than the current rate but

still smaller than GP-UCB.

Proof Sketch. We prove Theorem 48 and Theorem 47 follows as a corollary. For the first bound,
if we have left phase 1 and entered phase 2, let T0 be the time that we leave phase 1. By routine
calculation we can show

S(Λ) ≤ f ∗ − f(xT0) ≤ L1(f ∗r − fr(xT0)) ≤ 2L1γ + ζ. (4.5)

On the other hand, if we do not finish phase 1 (e.g., when ζ = γ = 0), we can follow the proof of
IGP-UCB [56] and show that

S(Λ) ≤ Cβ
(r)
nΛ

√
ΦnΛ

(Hγ)

nΛ

+ ζ. (4.6)

Combining (4.5) and (4.6) we get the first bound S1.
Now we show the second bound S2. Suppose the algorithm makes n queries. For any set

A ⊆ X , let T rn(A) be the number of comparison queries into A when the algorithm has made n
queries, and T ln(A) be the number of direct queries. We have

n = T rn(X) + T ln(Hγ) + T ln(Hγ).

For the first term, we show that there exists a constant Cκ such that T rn(X) ≤ Cκ

(
β

(r)
n

γ

)p+2

,
where p = d for SE kernel and p = 2d for Matérn kernel. For the second term, we show that our
algorithm makes sure that T ln(Hγ) = 0, i.e., it always query in Hγ when it uses direct queries.
These two results combined can show that we allocate at least nΛ/2 direct queries to exploreHγ .
The second bound S2 then follows by bounding the regret similar to IGP-UCB.

99

Algorithm 10 COMP-GP-UCB for unknown ζ
Input: Threshold γ, comparison bias starting point ζ0, bias upper bound ζmax, budget Λ

1: Set Dr
0 = Dl

0 = ∅, (µ
(r)
0 , σ

(r)
0) = (µ

(l)
0 , σ

(l)
0) = (0, κ1/2), t← 0, k ← 0, Nl ← 0

2: repeat
3: Compute xt = arg maxx∈X µ

(r)
t−1(x) + β

(r)
t σ

(r)
t−1(x)

4: QUERY(xt, comp)
5: until β(r)

t σ
(r)
t−1(xt) ≤ γ

6: Let f̂r = µ
(r)
t−1(xt)− β(r)

t σ
(r)
t−1(xt)

7: while ζk ≤ ζmax do
8: Let φ(r)

t (x) = µ
(r)
t−1(x) + β

(r)
t σ

(r)
t−1(x)− f̂r + 2L2ζk

9: Compute xt = arg max
x∈X :φ

(r)
t (x)≥0

µ
(l)
t−1(x) + βtσ

(l)
t−1(x)

10: if β(r)
t (xt)σ

(r)
t−1(xt) ≥ γ then QUERY(xt, comp)

11: else
12: QUERY(xt, label)
13: Nl ← Nl + 1
14: end if
15: if Nl ≥ nΛ

2dlog(ζmax/ζ0)e then
16: Nl ← 0, ζk+1 ← 2ζk, k ← k + 1
17: end if
18: t← t+ 1
19: end while

4.5.4 COMP-GP-UCB with Unknown ζ

In practice, we cannot know ζ in general, and it is even hard to verify whether ‖fc − f‖∞ ≤ ζ
holds for a given ζ. On the other hand, we can often know an upper bound ζmax such that
ζ ≤ ζmax. For example, if we know both f and fc are bounded in [−B∞, B∞] we naturally have
‖fc − f‖∞ ≤ 2B∞. However, Algorithm 9 is not useful if we set ζ = 2B∞, because that will
lead to a constraint set H = {x : fr(x) ≥ f ∗r − 2L2B∞} that can be as large as X and we have
to explore the whole feature space with direct queries. We develop a slightly different method
in Algorithm 10 that tries to search ζ between an initial value ζ0 and the upper bound ζmax, and
adapts to the true ζ .

Algorithm 10 works in the finite-horizon scenario, where the budget Λ is given as input. The
process of Algorithm 10 is mostly similar to Algorithm 9, except that it uses ζk in the second
phase in place of ζ . We optimize the function as if Assumption 1 holds for ζk. ζk starts from ζ0; at
step 15, once we have spent enough queries at the current estimate of ζ , we double the current ζk.
We iterate until we reach ζk > ζmax. The threshold for Nl,

nΛ

2dlog(ζmax/ζ0)e , is chosen such that we
divide a label budget of nΛ/2 direct queries equally among the dlog(ζmax/ζ0)e possible values of
the ζk’s. The constant 2 is chosen arbitrarily here; any choice of nΛ/c for a constant c > 1 will
obtain the same rate.

We present our theoretical results as a corollary to Theorem 48. Since we cannot find the exact
ζ, our results depend on a slightly larger ζ̄ = max{2ζ, ζ0}. We use Ĥγ = {x ∈ X : fr(x) ≥

100

f ∗r − 2L2ζ̄ − 4γ} to represent the constraint set of interest when ζ is replaced by ζ̄ .
Corollary 49. Suppose Assumptions 2 and 1 hold, and ζ ≤ ζmax. Under the same setting of

β
(r)
t , C,Λ0 as in Theorem 48, and βt = 2B +

√
2
(

Φt−1(Ĥγ) + 1 + log(1/δ)
)

, the simple regret

of Algorithm 10 satisfies S(Λ) ≤ min{S1, S2}, where

S1 = 2L1γ + 2ζ+

C
(
B +

√
(ΦnΛ

(X) + log(1/δ))
)√ΦnΛ

(X)

nΛ

,

S2 = C

(
B +

√(
ΦnΛ

(Ĥγ) + log(1/δ)
))√ΦnΛ

(Ĥγ)

nΛ

.

Remark. 1. The regret rate of Corollary 49 is almost the same as Theorem 48, except the set
Hγ is replaced with Ĥγ . We note that all the terms in the regret rate depend only on ζ̄ or ζ , and do
not depend on ζmax. This means Algorithm 10 can adapt to unknown level of comparison bias ζ .
2. Similar to Theorem 48, Corollary 49 also requires the unknown quantity Φt(Ĥ

γ) to set βt; in
practice we can also use a similar hyper-parameter search to find this quantity. γ also takes a
similar effect as in Algorithm 9, and γ = 1

L2
ζ0 can lead to Ĥγ ≈ H and a practical algorithm.

Again, setup of these parameters only depends on ζ̄ and is not affected by ζmax.

4.5.5 Comparison with MF-GP-UCB [103]
Our setting and method share some common characteristics as the multi-fidelity method MF-
GP-UCB [103], and we formally discuss them here. Our setup is similar to MF-GP-UCB in the
two-fidelity case, where the algorithm has access to the target function f and its approximation
f (1), with ‖f − f (1)‖∞ ≤ ζ for some known ζ > 0. Although we also assume fc is a good
approximation for f (in a weaker sense of being close in terms of f ∗ and f ∗c , see Assumption 1),
our setting is harder than MF-GP-UCB and their algorithm cannot be directly applied in our case.
This is because we cannot directly query fc: fc is only available through comparisons, and we will
get the same set of comparisons from fc and fc + c for any constant c. In our case, we can only get
unbiased estimates for fr. However, it is unlikely that ‖fr − f‖∞ is small, because fr(x) ∈ [0, 1]
for all x since it is the probability of beating a random point, whereas f can have arbitrary values.

MF-GP-UCB bears some resemblance to the second phase in our Algorithm 9, but they are
principally different in choosing the next query point xt. In the MF-GP-UCB algorithm, we
have access to another function f ′ similar to f . The algorithm constructs two sets of UCBs
φ(x), φ′(x) for f and f ′ separately, and use min{φ(x), φ′(x)} as a final UCB. In our case, UCBs
of fr and f are not comparable. Instead we use a novel constrained optimization approach based
on observations in the first phase.

Another difference is that MF-GP-UCB needs the function difference ζ known beforehand,
whereas our modified COMP-GP-UCB (Algorithm 10) can adapt to an unknown ζ . We note that
MF-GP-UCB does use a doubling mechanism in their experiments to make it practical, but they
do not provide any theoretical guarantees.

101

20 40 60 80 100

Budget Λ

10−2

10−1

100

S
im

pl
e

R
eg

re
t

GP-UCB

MF-GP-UCB

KSS

COMP-GP-UCB

(a) CurrinExp, varying budget

2 4 6 8 10

Cost Ratio λl
λc

10−3

10−2

10−1

100

S
im

pl
e

R
eg

re
t

GP-UCB

MF-GP-UCB

KSS

COMP-GP-UCB

(b) CurrinExp, varying cost ratio

20 40 60 80 100

Budget Λ

40

60

80

100

120

140

160

S
im

pl
e

R
eg

re
t

GP-UCB

MF-GP-UCB

COMP-GP-UCB

(c) Borehole, Varying budget

2 4 6 8 10

Cost Ratio λl
λc

40

50

60

70

80

90

100

110

120

S
im

pl
e

R
eg

re
t

GP-UCB

MF-GP-UCB

COMP-GP-UCB

(d) Borehole, Varying cost ratio

20 40 60 80 100

Budget Λ

0.132

0.134

0.136

0.138

0.140

0.142

C
la

ss
ifi

ca
ti

on
E

rr
or

GP-UCB

MF-GP-UCB

COMP-GP-UCB

(e) SVM Tuning, varying budget

2 4 6 8 10

Cost Ratio λl
λc

1.31× 10−1

1.315× 10−1

1.32× 10−1

1.325× 10−1

1.33× 10−1

S
im

pl
e

R
eg

re
t

GP-UCB

MF-GP-UCB

COMP-GP-UCB

(f) SVM Tuning, varying cost ratio

Figure 4.2: Empirical results comparing COMP-GP-UCB with baseline methods. KSS stands for
KernelSelfSparring.

4.5.6 Experiments

We perform experiments against plausible baselines to verify our theory and illustrate the efficacy
of our algorithm, on both synthetic and real-world data. For comparison, we include state-of-
art algorithms in the label-only and comparison-only setting, as well as an adapted version of
MF-GP-UCB, as described below.
Experiment Setup. For synthetic data, we use functions from the multi-fidelity literature to
produce comparisons on a lower fidelity and direct labels on a higher fidelity. In particular we use
Currin exponential (CurrinExp, d = 2) and Borehole (d = 8) [184] functions. We note that f and
fc have different values and maximizers. We do NOT add additional noise on direct queries for f .

For real-world data, we experiment with the SVM tuning task from the MF-GP-UCB paper

102

[103] and train a SVM classifier on the MAGIC Gamma dataset [68]. We tune the RBF kernel
bandwidth and the soft margin coefficient within range (10−3, 101) and (10−1, 105). We randomly
sample a training set of size 2,000 and a validation set of 500 from the original dataset. Direct
labels take in the specified bandwidth and margin coefficient and return the corresponding
validation accuracy. On the other hand, comparisons only use a (fixed) subset of size 500 from the
training set (noisy but cheap) and return the validation accuracy on the same validation data.
Baselines. We evaluate the performance of COMP-GP-UCB against the following baselines: (1)
GP-UCB[156]: The label-only algorithm optimizing UCB of GP posterior. (2) KernelSelfSpar-
ring[160]: A comparison-only algorithm that uses Thompson Sampling to optimize comparisons.
We note that since f 6= fc, optimizing comparisons cannot lead to the global optimum. (3)
MF-GP-UCB[103]: Although MF-GP-UCB is not directly applicable in our case, we try to use it
by using comparisons as the lower fidelity. When the algorithm selects to query the lower fidelity
on xt, we compare x to a random point X ∈ X and use the result as feedback, the same process
as COMP-GP-UCB.
Implementation Details. All methods use the RBF kernel for GP. For all methods we compute
the simple regret (4.1) w.r.t. f 3. The results are averaged over 20 runs.

We apply basic techniques in Bayesian Optimization to conduct the experiments.
• Initial queries: All the algorithms were initialized with uniform random queries with an

initial budget of Λ0 = 10. For multi-fidelity methods (MF-GP-UCB and COMP-GP-UCB),
we use Λ0/2 on comparisons and Λ0/2 on direct queries; for GP-UCB we use all Λ0 on
labels.

• Choice of kernel parameters: We estimate the kernel bandwidth and scale by maximizing
marginal likelihood with respect to the initial random queries. We also update the kernel
parameters by maximizing the marginal likelihood for the GP over the lower fidelity function
after every 20 iterations, and for the GP over the true function after every 5 iterations.

• Setup of βt and β(r)
t We follow MF-GP-UCB and set β = 0.5 ∗ log(2 ∗ t+ ε) = β

(r)
t .

• Choosing query points. We use the DiRect algorithm [101] to maximize the marginal
likelihood subject to parameter bounds, and to find the next query points.

• Choice of hyperparameters ζ, γ. For synthetic experiments we set ζ = f(x∗) − fc(x∗),
where x∗ is the maximizer of f . For experiments on real data, we heuristically set ζ to be a
large enough value (we use 0.15 in our experiments). We initialize γ = range(f) · ζ, and
whenever COMP-GP-UCB has queried 10 comparisons in a row, we double γ (following
MF-GP-UCB).

Cost Ratio. In practice, the relation between the costs of labels and comparisons can be complex.
We call λl

λc
the cost ratio between labels and comparisons; the larger the cost ratio, the cheaper the

comparisons. Our algorithm generally works for a cost ratio λl
λc
> 1. We test the performance

under various cost ratios in our experiment. Unless otherwise specified, for all the experiments
with a varying budget we follow the setup of MF-GP-UCB and use λc = 0.1 and λl = 1, and
use a total budget of up to Λ = 100. For all the experiments with a varying cost ratio, we set
Λ = 100, λl = 1, and vary the cost ratio between [1, 10].
Results on synthetic data. The results are summarized in Figure 4.2a & 4.2b. Firstly we compare

3We find that KernelSelfSparring is extremely slow for d = 8 so we only test it for CurrinExp.

103

the performance on CurrinExp by varying the total budget from 10 to 100 (Figure 4.2a). COMP-
GP-UCB shows the best performance over all budget setups. It is worth noting that MF-GP-UCB
performs worse than label-only GP-UCB in our setting; this is because the target function of MF-
GP-UCB in this case essentially optimizes the function fr, which is bounded in [0, 1], resulting in
a very large approximation bias. In contrast, COMP-GP-UCB is able to use comparisons in an
efficient way to reduce the search space for optimization. In the appendix, we also include the
case where f = fc and λc = λl (i.e., no bias on comparisons and cost ratio equals 1).

Then in Figure 4.2b, we fix the total budget to be Λ = 100 and cost of labels λl = 1, and
vary the cost ratio from 1 to 10 by varying comparison costs. COMP-GP-UCB achieves the best
performance for all setups except for λc = λl = 1 when it is worse than the label-only GP-UCB
algorithm. This is expected since our algorithm targets to use cheaper comparisons. Our algorithm
can be more effective even with a fairly small cost ratio (≥ 2).

The result on Borehole is depicted in Figure 4.2c. KSS is extremely slow for Borehole due
to the dimension (d = 8), so we exclude it from the plot. As with CurrinExp, COMP-GP-UCB
achieves the best performance with a large gap under all budget setups. Different than CurrinExp,
COMP-GP-UCB displays an advantage over the baselines in all cost ratios including λl = λc
(Figure 4.2d). This might suggest that it is easier to find the maximum using fr (the lower fidelity)
than using f (the higher fidelity).
Alternative Definitions of Regret. Since the simple regret notion defined for settings with both
direct and comparison queries is necessarily unfair for methods designed to handle only one query
type, we perform an additional experiment to examine the comparison regret and direct query
regret separately. Namely, define

Rc(Λ) =

{
min

t,qt=comp
f ∗ − f(xt), if ∃t s.t qt =comp,

∞ otherwise.

and

Rl(Λ) =

{
min

t,qt=label
f ∗ − f(xt), if ∃t s.t qt =label,

∞ otherwise.

In Figure 4.3, we plot the comparison regret Rc and direct query regret Rl for the CurrinExp
synthetic function (same setting as Figure 4.2a). We plot Rc and Rl respectively for both COMP-
GP-UCB and MF-GP-UCB, Rl for GP-UCB, and Rc for KSS. Our results show that even if we
only consider comparisons or direct queries, COMP-GP-UCB still outperforms the baselines in
most budget settings. Overall, COMP-GP-UCB has a large direct query regret initially because
we mostly do comparisons in the initial stage, but it achieves a low regret when we have a larger
budget. We note that COMP-GP-UCB can still query both comparisons and direct queries in this
setting, and it leads to a better regret for both comparisons and direct queries.
Results with Single Fidelity and Same Cost. Although COMP-GP-UCB is designed for the
case where comparisons are cheaper than direct queries, it is also interesting to see how it performs
when comparisons and direct queries cost the same. We conduct an experiment with f = fc and
λc = λl = 1 in Figure 4.4. Note that MF-GP-UCB is not applicable in this setting since it is for the
multi-fidelity setting. COMP-GP-UCB performs on par (for CurrinExp) or better (for Borehole)
than the baselines in our result. Note that while our theory suggests that the convergence rate of

104

Figure 4.3: Result comparing comparison and direct regret.

20 40 60 80 100

Budget Λ

10−2

10−1

100

S
im

pl
e

R
eg

re
t

GP-UCB

KSS

COMP-GP-UCB

(a) CurrinExp

20 40 60 80 100

Budget Λ

102

9× 101
S

im
pl

e
R

eg
re

t

GP-UCB

COMP-GP-UCB

(b) Borehole

Figure 4.4: Empirical results comparing COMP-GP-UCB with baselines, under a single fidelity
and λc = λl = 1. KSS stands for KernelSelfSparring.

COMP-GP-UCB is the same as GP-UCB when λc = λl and f = fc, in practice the underlying
function fr (of COMP-GP-UCB) might be easier to optimize than f , because it is bounded and
can be smoother than f . For the case of CurrinExp, fr and f are of similar shape and values, so
COMP-GP-UCB leads to a slower convergence rate because comparisons are less informative than
direct queries; for Borehole, the fr appears to be easier to optimize than the higher fidelity. One
possible reason is that fr is smoother in shape than f since it is bounded in [0, 1]; this interesting
phenomenon needs further investigation as part of future work. We note that cost ratio λl

λc
= 2 is

enough for COMP-GP-UCB to surpass the performance of GP-UCB on CurrinExp (see Figure
4.2b).
Results on real data. The results are in Figure 4.2e & 4.2f. KernelSelfSparring (KSS) has
an error rate much higher than other methods (larger than 0.16), so we exclude it in the plot.
Similar to the synthetic data case, COMP-GP-UCB outperforms other baselines. The advantage
of COMP-GP-UCB over GP-UCB is smaller than the synthetic case, which might possibly result
from the larger difference between fc and f . Note that for real data we still vary the cost ratio
because in practice the actual cost ratio might depend on various factors like computational cost
and data collection. Nevertheless, Figure 4.2f shows that COMP-GP-UCB has an advantage
over the baselines for cost ratio at least 2; this is very likely to happen since the training set for
comparisons is only 1/4 the size of that for direct queries.

105

4.6 Conclusion
We consider a novel dueling-choice setting when both direct queries and comparisons are available
for discrete and continuous multi-armed bandits problem. For the discrete case, we propose the
DF algorithm that takes the best of both worlds from duels and pulls. For the continuous case,
we propose the COMP-GP-UCB algorithm that can achieve benign regret rates in the dueling-
choice setting, and can adapt to unknown biases in the comparisons. Our algorithm can also be
of independent interest for other multi-fidelity or transfer learning settings where information
gleaned from one fidelity or source domain can be actively transferred to optimize the target
domain function, under milder conditions than existing literature.

Our method takes a two-phase approach in the biased comparison case for continuous opti-
mization. One important future work is to investigate whether the two phases can be combined
in one joint phase for better guarantees and performance. In general with many types of queries,
corralling bandits [3, 10] might also be helpful for solving optimization with both direct and
comparison queries.

4.7 Proofs

4.7.1 Proof of Theorem 45
Proof. Firstly we can show that for each arm and each time step, with probability 1− 1/(4KT),
the confidence intervals we compute is correct. We compute the regret under this event E0.

We first use the following lemma:

Lemma 50 (Lemma 3, [199]). Under event E0, arm bk is removed from Wl if nk ≥ O
(

log T
ε21k

)
.

Lemma 51. Under event E0, arm bk is removed from Wl if mk ≥ O
(

log(T)

∆2
k

)
.

Now consider a variant of Algorithm 7, where in addition to removing duels with b′ in Step 13
and 24, we also remove b̃ in mb̃ and sb̃. This ensures that mb = nb for all b and we always choose
the same b in Step 7 and 17.

Suppose in round l (i.e., when we remove the l-th arm), the worst arm by duels is ε1k1 =
arg maxk∈Wl

ε1k and worst arm by pulls is ∆k2 = arg maxk∈Wl
∆k. Let γ = max{ε1k1 ,∆k2} and

νk = max{ε1k,∆k/} for every arm bk. Consider two ways that an arm can be removed:
i) Some arm j is removed by duels. Consider the number of duels we remove: the first part is nj
duels that initiated from bj . We know that nj ≤ min{ log T

ε21k1

, log T
∆2
k2

} ≤ log T
γ2 , since otherwise arm k1

or k2 will be removed. The other part is the duels that were initiated from other arm bj′ ∈ Wl. Note
that nk for every k ∈ Wl only is at most log T

γ
, since every time we remove one arm, nk cannot be

too large or otherwise we will remove arm bk. So in total there are at most O(|Wl| log T
γ2) duels from

other arms in Wl. Note that the other arm from these comparisons is uniformly distributed in Wl,
and thus the expectation of number of such removals is at most O(log T

γ2). So from Chernoff bound
we know that with probability 1− 1/T the number of removals is at most O(2 log T

γ2). Therefore
the incurred regret from the removed duels is at most O(νj · log T

γ2) ≤ O(log T
γ

).

106

Similarly, we remove O(log T
γ2) pulls from mj . Also following the same statement we incur at

most O(log T
γ

) regret from the removed pulls.
ii) Some arm j is removed by pulls. Following the same argument, we incur at most O(log T

γ
)

regret from the removed duels and pulls.
Putting everything together, we calculate that the total regret is bounded by O(

∑K−1
l=1

log T
γl

),
where γl is the value of γ in round l. It is straightforward to see that this value is bounded by the
rate in the statement of the theorem.

4.7.2 Proof of Proposition 46
Let x∗c be a maximizer of fc. Because of the link function assumption, x∗c is also a optimizer of fr.
We have

f ∗r − fr(x) = E[σ(fc(x
∗
c)− fc(X))]− E[σ(fc(x)− fc(X))]

= E[σ(fc(x
∗
c)− fc(X))− σ(fc(x)− fc(X))]

≤ E[L2|fc(x∗c)− fc(x)|] = L2(f ∗c − fc(x)).

The lower bound can be proved similarly.

4.7.3 Proof of Theorem 47 and 48
We show Theorem 48 and Theorem 47 follows as a direct corollary. We first use results in
IGP-UCB[56] to obtain confidence bands of fr:
Lemma 52 (Theorem 2, [56]). Define β(r)

t = 2‖fr‖κ +
√

2 (Φt−1(X) + 1 + log(2/δ)). Then
with probability 1− δ/2 we have for all time t and any point x ∈ X ,

|µ(r)
t−1(x)− fr(x)| ≤ β

(r)
t σ

(r)
t−1(x).

Lemma 52 also applies to f, x ∈ Hγ, µ(l), σ(l) by setting βt = 2‖f‖κ+
√

2 (Φt−1(Hγ) + 1 + log(1/δ)).
We also use the following lemma to bound the sum of posterior variances:

Lemma 53 (Lemma 8, [103]). Let A ⊆ X . Suppose we have n queries (xt)
n
t=1 of which s points

are in A. Then the posterior σt satisfies∑
xt∈A

σ2
t−1(xt) ≤

2

log(1 + η−2)
Φs(A).

Suppose the event in Lemma 52 holds for f and fr. We first prove the first bound by looking
at comparison queries. Firstly, in the first phase when we compute xt in step 3 we have

f ∗r − fr(xt) ≤ µ
(r)
t−1(x∗r) + β

(r)
t σ

(r)
t−1(x∗r)− (µ

(r)
t−1(xt)− β(r)

t σ
(r)
t−1(xt))

≤ µ
(r)
t−1(xt) + β

(r)
t σ

(r)
t−1(xt)− (µ

(r)
t−1(xt)− β(r)

t σ
(r)
t−1(xt))

= 2β
(r)
t σ

(r)
t−1(xt). (4.7)

107

The first inequality uses Lemma 52, and the second inequality is from that xt is the maximizer of
µ

(r)
t−1(x) + β

(r)
t σ

(r)
t−1(x).

Suppose we finish phase 1 and enter phase 2. Let T0 be the time we leave phase 1, then we
must have β(r)

T0
σ

(r)
T0−1(xT0) ≤ γ. So

S(Λ) ≤ f ∗ − f(xT0)

≤ fc(x
∗)− fc(xT0) + ζ

≤ f ∗c − fc(xT0) + ζ

≤ L1(f ∗r − fr(xT0)) + ζ ≤ 2L1γ + ζ. (4.8)

The second inequality is from Assumption 1, the fourth inequality is from Assumption 2, and the
last inequality is from (4.7).

If we do not finish phase 1, then the number of comparison queries is N1 ≥ nΛ − 1 and
N1 ≤ nΛ, and we have(∑

t

(f ∗r − fr(xt))
)2

≤ N1

∑
t:qt=comparison

(f ∗r − fr(xt))2

≤ N1

∑
t:qt=comparison

4
(
β

(r)
t σ

(r)
t−1(xt)

)2

≤ C1N1

(
β

(r)
N1

)2

ΦN1(Hγ). (4.9)

Here C1 = 8
log(1+η−2)

. The first step is from the Cauchy-Schwarz inequality, and the second step
is from (4.7); the last step uses Lemma 53.

So

S(Λ) ≤ 1

N1

∑
t

(f ∗ − f(xt))

≤ 2L1

N1

∑
t

(f ∗r − fr(xt)) + ζ

≤ β
(r)
N1

N1

√
C1N1ΦN1(Hγ) + ζ

≤ Cβ
(r)
nΛ

nΛ

√
nΛΦnΛ

(Hγ) + ζ

≤ C
(
B +

√
(ΦnΛ

(Hγ) + log(1/δ))
)√ΦnΛ

(Hγ)

nΛ

+ ζ. (4.10)

The second inequality follows from the same process as in (4.8); the third inequality follows from
(4.9); the fourth inequality is from nΛ ≥ N1 ≥ nΛ − 1. Here C is a constant whose value may
change from line to line. Combining (4.8) and (4.10) we get the first bound.

To show the second bound, we examine the regret from direct queries. We first show that x∗ is
never excluded from our feasible region:

108

Claim 54. φ(r)
t (x∗) ≥ 0 for all t.

Proof. Suppose x∗ is a maximizer of f in X . Then we have

φ
(r)
t (x∗) = µ

(r)
t (x∗) + β

(r)
t σ

(r)
t (x∗)−max

x′

{
µ

(r)
t (x′)− β(r)

t σ
(r)
t (x′)

}
+ L2ζ

≥ fr(x
∗)− f ∗r + L2ζ

= −L2(f ∗c − fc(x∗)) + L2ζ

≥ −L2(f ∗ − f(x∗) + ζ) + L2ζ

= −L2ζ + L2ζ = 0.

The first inequality is from Lemma 52; the second inequality is from Assumption 1.

LetN be the (random) total number of queries under budget Λ. We know that the support ofN
lies in [nΛ, nΛ]; we now suppose n is any number in [nΛ, nΛ], and prove properties of Algorithm
9 when it uses n queries.

For any set A ⊆ X , let T rn(A) be the number of comparison queries into A when the algorithm
has made n queries, and T ln(A) be the number of direct queries. We have

n = T rn(X) + T ln(Hγ) + T ln(Hγ)

sinceHγ ∪Hγ = X . We bound the first two terms using the following two lemmas:

Lemma 55. There exists a constant Cκ dependent on κ, d such that T rn(X) ≤ Cκ

(
β

(r)
n

γ

)p+2

,

where p = d for SE kernel and p = 2d for Matérn kernel.
This lemma is proved in Section 4.7.4.

Lemma 56. T ln(Hγ) = 0.

Proof. Suppose qt = label for some t. Then we must have φ(r)
t (xt) ≥ 0, and that β(r)

t σ
(r)
t−1(xt) <

γ, β
(r)
t σ

(r)
t−1(x

(r)
t) < γ, here x(r)

t is the value of xt on line 6. Then we have

fr(xt) ≥ µ
(r)
t−1(xt)− β(r)

t σ
(r)
t−1(xt)

= φ
(r)
t (xt)− 2β

(r)
t σ

(r)
t−1(xt) + max

x′

{
µ

(r)
t−1(x′)− β(r)

t σ
(r)
t−1(x′)

}
− L2ζ

≥ φ
(r)
t (xt)− 2β

(r)
t σ

(r)
t−1(xt) + µ

(r)
t−1

(
x

(r)
t

)
− β(r)

t σ
(r)
t−1

(
x

(r)
t

)
− L2ζ

≥ 0− 2γ + f ∗r − 2γ − L2ζ

= f ∗r − 4γ − L2ζ.

The first inequality is by applying 52; the second inequality is by letting x′ = x
(r)
t ; the third

inequality is by noticing that

µ
(r)
t−1

(
x

(r)
t

)
−β(r)

t σ
(r)
t−1

(
x

(r)
t

)
≥
[
µ

(r)
t−1

(
x

(r)
t

)
+ β

(r)
t σ

(r)
t−1

(
x

(r)
t

)]
−2β

(r)
t σ

(r)
t−1

(
x

(r)
t

)
≥ f ∗r −2γ.

109

Lemma 55 shows that we will not make too many queries on comparisons, whereas Lemma
56 shows that we always query xt ∈ Hγ when qt = label. Now let N0 be the smallest number
such that for any Λ ≥ N0λc we have

λl

(
2r
√
d

εnΛ

)d(
2ηβ

(r)
nΛ

γ

)2

= Cκ

(
β

(r)
nΛ

γ

)p+2

≤ Λ

2

where Cκ and p are defined in (4.12). Such Λ0 is guaranteed to exist, since β(r)
nΛ

grows in sublinear
rate for linear, SE and Matérn kernels on nΛ, and therefore Λ. Thus the number of queries
to fc, T cn(X), is at most nΛ/2, and therefore we query at least nΛ/2 times on direct queries,
T lN(Hγ) ≥ nΛ/2.

We now follow a similar path as for comparison queries to bound the regret based on direct
queries. Note that if we use direct query at round t, we have xt ∈ Hγ and that

f ∗ − f(xt) ≤ µ
(l)
t−1(x∗) + βtσ

(l)
t−1(x∗)− (µ

(l)
t−1(xt)− βtσ(l)

t−1(xt))

≤ µ
(l)
t−1(xt) + βtσ

(l)
t−1(xt)− (µ

(l)
t−1(xt)− βtσ(l)

t−1(xt))

= 2βtσ
(l)
t−1(xt). (4.11)

The first inequality uses Lemma 52, and the second inequality uses Claim 54 and that xt is the
maximizer of µ(l)

t−1(x) + βtσ
(l)
t−1(x).

Now therefore(∑
t:qt=label

(f ∗ − f(xt))

)2

≤ T tn (Hγ)
∑

t:qt=label

(f ∗ − f(xt))
2

≤ T tn (Hγ)
∑

t:qt=label

4
(
βtσ

(l)
t−1(xt)

)2

≤ C1T
t
n (Hγ) (βn)2ΦT tn(Hγ)(Hγ)

Here C1 = 8
log(1+η−2)

. The first step is from the Cauchy-Schwarz inequality, and that T ln(Hγ) = 0;
the second step is from (4.11); the last step uses Lemma 53.

So

S(Λ) ≤ 1

T tN(Hγ)

∑
t:xt∈Hγ ,qt=label

(f ∗ − f(xt))

≤ βN
T tN(Hγ)

√
C1T tN (Hγ) ΦT tN (Hγ)(Hγ)

≤ CβnΛ

nΛ

√
nΛΦnΛ(Hγ)(Hγ)

≤ C

(
B +

√(
ΦnΛ

(Hγ) + log(1/δ)
))√ΦnΛ

(Hγ)

nΛ

.

110

4.7.4 Proof of Lemma 55
We use the following lemma from [103]4:
Lemma 57 (Lemma 13, [103]). Let A ⊆ X such that its L2 diameter diam(A) ≤ D. Say we
have n queries (xt)

n
t=1 of which s points are in A. Then the posterior variance of the GP, κ′(x, x)

at any x ∈ A satisfies

κ′(x, x) ≤
{
CSED

2 + η2

s
, if κ is the SE kernel,

CMatD + η2

s
, if κ is the Matérn kernel,

for appropriate kernel dependent constants CSE, CMat.
Consider the SE kernel and the comparison oracle, and a εn = γ

β
(r)
n
√

8CSE
covering (Bi)

n
i=1 of

X . We claim that the number of comparison queries inside any Bi is at most d2(ηβ
(r)
n

γ
)2e: suppose

we have already queried d2(ηβ
(r)
n

γ
)2e samples in Bi at some time t < n. By Lemma 57 we have

max
x∈Bi

κ
(r)
t−1(x, x) ≤ CSE(2εn)2 +

η2

2(ηβ
(r)
n

γ
)2
≤
(

γ

β
(r)
n

)2

.

Therefore β(r)
n σ

(r)
t−1(x) ≤ β

(r)
t σ

(r)
t−1(x) ≤ γ. Note that whenever qt = comp, we always have

β
(r)
t σ

(r)
t−1(xt) ≤ γ; so the event that qt = comp and xt ∈ Bi will not happen until time n. We can

obtain a similar result for Matérn kernel with εn = γ2

4CMat(β
(r)
n)2

. Therefore we have

T rn(X) ≤ Ωεn(X)d2(
ηβ

(r)
n

γ
)2e ≤

(
2r
√
d

εn

)d(
2ηβ

(r)
n

γ

)2

= Cκ

(
β

(r)
n

γ

)p+2

. (4.12)

Here Ωεn(X) is the covering number of X , and we bound the covering number as Ωεn(X) ≤(
2r
√
d

εn

)d
. HereCκ = 22.5d+2rddd/2C

d/2
SE η

2 and p = d for SE kernel, whileCκ = 23d+2rddd/2Cd
Matη

2

and p = 2d for Matérn kernel.

4.7.5 Proof of Corollary 49
Proof. Firstly, for the first regret bound, we have the same guarantee as in Theorem 48 since the
first phase is exactly the same. For the second bound, when Λ ≥ Λ0, we allocate at least budget of
Λ/2 on direct queries. Since we double ζk in each iteration, at some iteration k0 = O(log(ζ̄/ζ0))
we will have ζk0 ∈ [ζ, ζ̄]. Let Ñ =

nΛ

2 log(ζmax/ζ0)
. From the proof of Theorem 48, we have the

regret S(Λ) ≤ βÑ

√
8ΦÑ (Ĥγ)

log(1+η−2)Ñ
in iteration k0. The theorem then follows by realizing βn,Φn(Ĥγ)

grows sublinearly in n.

4The original lemma from [103] assumes f ∼ GP (0, κ) and ε ∼ N (0, η2), but exactly the same proof applies
without these assumptions.

111

112

Chapter 5

The Thresholding Bandit Problem with
Dueling Choices

The Thresholding Bandit Problem (TBP, [120]) is an important pure-exploration multi-armed
bandit (MAB) problem. Specifically, given a set of K arms with different mean rewards, the
TBP aims to find arms whose mean rewards are above a pre-set threshold of τ . The TBP has
a wide range of applications, such as anomaly detection, candidate filtering, and crowdsourced
classification. For example, a popular crowdsourced classification model [2, 54] assumes that
there are K items with the latent true labels θi ∈ {0, 1} for each item. The labeling difficulty of
the i-th item is characterized by its soft label µi ∈ [0, 1], which is defined as the probability that a
random crowd worker will label the i-th item as positive. It is clear that the item is easy to label
when µi is close to 0 or 1, and difficult when µi is close to 0.5. In MAB, µi is the mean reward of
arm i, and pulling this arm leads to a Bernoulli observation with mean µi. Moreover, it is natural
to assume that the soft label µi is consistent with the true label, i.e., µi ≥ 0.5 if and only if θi = 1.
Therefore, identifying items belonging to class 1 is equivalent to detecting those arms with µi > τ
with τ = 0.5.

Existing literature on TBP considers the setting that only solicits information from pulling
arms directly. However, in many applications of TBP, comparisons/duels can be obtained at a
much lower cost than direct pulls. In crowdsourcing, a worker often compares two items more
quickly and accurately than labeling them separately. It will be cheaper and time efficient to
ask a worker which image is more relevant to a query as compared to asking for an absolute
relevance score of an image (see [153]). Another example is in material synthesis, a pull will
need an expensive synthesis of the material, whereas duels can be carried out easily by querying
experts. In such settings, directly pulling an arm is expensive and could incur a large sample
complexity since each arm needs to be pulled a number of times. This chapter considers two
sources of information: in addition to direct pulls of arms as in the classical TBP, one can also
duel two arms to find out the arm with a greater mean at a lower cost. We refer to this problem as
the TBP with Dueling Choices (TBP-DC), since dueling and pulling are both available in each
round.

It is important to note that some direct pulls are still necessary for solving a TBP even if one
can duel two arms. Without direct assessments of arms, we can at best rank all the arms with duels.
However, we then cannot know the target threshold τ and therefore cannot identify a boundary

113

on the ranking. On the other hand, using an appropriate dueling strategy, the number of required
direct pulls can be much lower than that in the classical TBP setting, where only direct pulling
is available. We further note that TBP-DC is also different from the top-K arm identification
problem considered in wither MAB (see, e.g., [40, 50, 51, 205]) or dueling bandits (see, e.g.,
[130]), because the number of arms with means greater than the threshold τ is unknown to us.

Our contributions. First, we develop the Rank-Search (RS) algorithm for TBP-DC, which
alternates between refining the rank over all items using duels and a binary search process using
pulls to figure out the threshold among ranked items. We analyze the number of duels and pulls
required for RS under the fixed confidence setting, i.e., to recognize the set of arms with reward
larger than τ with probability at least 1− δ. To better illustrate our main idea, we further provide
concrete examples, which show that the proposed RS only requires O(log2K) direct labels, while
the classical TBP requires at least Ω(K) labels. Then, we show complementary lower bounds that
RS is near-optimal in both duel and pull complexity. Finally, we provide practical experiments to
demonstrate the performance of RS.

5.1 Related Works
TBP is a special case of the pure-exploration combinatorial MAB problem. As with other pure-
exploration MAB problems[40] , algorithms for combinatorial bandits fall into either fixed-budget
or fixed-confidence categories. In the former setting, the algorithm is given a time horizon of
T and tries to minimize the probability of failure. In the latter setting, the algorithm is given
a target failure probability and tries to minimize the number of queries. For TBP, the CLUCB
algorithm [52] can solve TBP under the pull-only and fixed confidence setting, with optimal
sample complexity. [52] also develops the CSAR algorithm for the fixed-budget setting which
can also be used for TBP. The result was improved by recent followup work [120, 131] under the
fixed budget setting. [54] considered TBP in the context of budget allocation for crowdsourced
classification in the Bayesian framework.

Motivated by crowdsourcing and other applications, this chapter proposes a new setup since we
allow both pulling one arm and dueling two arms in each round, with the underlying assumption
that dueling is more cost-effective than pulling. To the best of our knowledge, this setting has not
been considered in the previous work. Most close in spirit to our work is a series of recent papers
[105, 185, 187], which consider using pairwise comparisons for learning classifiers. The methods
in those papers are however not directly applicable to TBP-DC because their final goal is to learn
a classification boundary, instead of labeling each item without feature information.

5.2 Preliminary
Suppose there are K arms, which are denoted by A = [K] = {1, 2, ..., K}. Each arm i ∈ A is
associated with a mean reward µi. Without loss of generality, we will assume that µ1 ≤ µ2 ≤
· · · ≤ µK . Given a target threshold τ , our goal is to identify the positive set Sτ = {i : µi ≥ τ}
and the negative set Scτ = {i : µi < τ}.

Modes of interactions. Each instance of TBP-DC is uniquely defined by the tuple (M,µ),

114

where M is the preference matrix (defined below) and µ = {µi}Ki=1 is the reward mean vector. In
each round of our algorithm, we can choose one of two possible interactions:

• Direct Queries (Pulls): We choose an arm i ∈ A and get a noisy reward Y from arm i.
We assume that each arm i is associated a reward distribution νi with mean µi, and that νi
is sub-Gaussian with parameter R: EY∼νi [exp(tY − tE[Y])] ≤ exp(R2t2/2) for all t ∈ R.
The definition of sub-Gaussian variables includes many common distributions, such as
Gaussian distributions or any bounded distributions (e.g., Bernoulli distribution). We denote
by ∆i = |µi − τ | the gap between arm i and the threshold.

• Comparisons (Duels): We can also choose to duel two arms i, j ∈ A and obtain a random
variable Z, with Z = 1 indicating the arm i has a larger mean reward than j and Z = 0
otherwise. Let Mij ∈ [0, 1] characterize the probability that a random worker believes that
arm i is “more positive” than arm j. The outcome of duels is therefore characterized by the
matrix M . The (Borda) score of each arm in dueling is defined as

pi :=
1

K − 1

∑
j∈[K]\{i}

Mij, (5.1)

i.e., the probability of arm i beating another randomly chosen arm j.
In contrast to previous work [153, 161, 200] that usually assumes parametric or structural
assumptions on M , we allow an arbitrary preference matrix M ; the only assumption is that
the score of any positive arm is larger than any negative arm, i.e., pi > pj,∀i ∈ Sτ , j ∈ Scτ .
We note that this is a very weak condition since arbitrary relations within the positive and
negative sets are allowed. This assumption also holds if (1, 2, ..., K) is the Borda ranking
of M ; or the underlying comparison model follows the Strong Stochastic Transitivity (SST,
[75, 151]). We note that the problem is very difficult under this assumption: For example,
even if µi are bounded away from τ by a constant, the pi (knowledge gained from duels)
may be arbitrarily close, hence making the problem much harder.

Taking crowdsourced binary classification as an example, Yi ∈ {0, 1} would correspond to a
binary label of the i-th item obtained from a worker, where µi = PrYi∼νi [Y = 1]. For this case we
have τ = 1/2. Dueling outcome Zij will correspond to asking a worker to compare item i with
item j and Zij = 1 if the worker claims that item i is “more positive” than item j.

The fixed-confidence setting. Given a target error rate δ, our goal is recover the sets Ŝτ and
Ŝcτ , such that Pr[Sτ = Ŝτ , S

c
τ = Ŝcτ] ≥ 1− δ, with as fewer pulls and duels as possible. Since in

practice duels are often cheaper than pulls, we want to minimize the number of pulls while also
avoiding too many duels.

5.2.1 Problem Complexity
We define two problem complexities w.r.t pulls and duels separately.

Pull complexity. Following previous works on TBP and pure-exploration bandits [52, 120],
we introduce the following quantity to characterize the intrinsic problem complexity with direct

115

µ1 µ2 µ3 µ4 µ5τ

∆l
1

∆l
3 ∆l

5

∆l
4

p1 p2 p3 p4 p5

∆c
1

(2)(1) (5)
(4)(3)

∆̄c
1

∆c
5, ∆̄

c
5

Figure 5.1: Graphical illustration of the quantities ∆l
i (left) and ∆c

i , ∆̄
c
i (right) for K = 5 arms,

with Sτ = {4, 5}. We have iu = 4 and il = 3. ∆̄c
1 is equal to the max of min{(1), (2)} and

min{(3), (4)}; ∆̄c
5 is equal to min{(2), (5)}.

pulls. In particular, for any arm i let ∆l
i = |µi − τ | be the gap between arm i and threshold.

Then the pull complexity is defined as Hl =
∑K

i=1
1

(∆l
i)

2 . Chen et al. [52] shows that there exists
an algorithm using at most O(Hl log(KHl/δ)) pulls. Moreover, they show a lower bound that
any pull-only algorithm would require at least Ω(Hl log(1/δ)) pulls to give correct output with
probability 1 − δ. We add another notation for a “partial” label complexity: let Hl(m) be the
sum of the largest m terms in Hl. Namely, we sort µ1, . . . , µK by their gap with threshold, i.e.,
∆l
i1
≤ ∆l

i2
≤ · · · ≤ ∆l

iK
(cf. Figure 5.1 left), and Hl(m) =

∑m
j=1

1
(∆l

ij
)2 .

Duel complexity. Now we define the complexity w.r.t. duels. Our goal is to use duels to infer
the (positive or negative) label of arms without actually pulling them. Therefore the difficulty of
inferring a positive arm i ∈ Sτ will depend on its difference with the “worst” positive arm, and
similarly i ∈ Scτ with the “best” negative arm. Let il = arg maxi∈Scτ pi be the best negative arm
and iu = arg mini∈Sτ pi be the worst positive arm, where pi is defined in Equation (5.1). And for
any arm i ∈ Sτ , let ∆c

i = pi − piu be the gap with arm iu and similarly for any arm j ∈ Scτ define
∆c
j = pil − pj . Intuitively, the complexity of identifying arm i through duels should depend on

∆c
i , and we therefore define Hc,1 =

∑K
i=1

1
(∆c

i)
2 .

Moreover, it is worthwhile noting that the complexity of inferring a positive arm i using arm
iu will not only depend on pi − piu , but also on piu − pil . If the gap piu − pil is very small, we
cannot easily differentiate iu from the other negative arms. On the other hand, we can use any
positive arm j to infer about arm i, when piu ≤ pj < pi. To this end, we define

∆̄c
i =

max
j∈Sτ

min{pj − pil , pi − pj} if i ∈ Sτ ,
max
j∈Scτ

min{pj − pi, piu − pj}, if i ∈ Scτ ,

See Figure 5.1 right for a reference. And we define another duel complexity as Hc,2 =∑
i∈A\{iu,il}

1(
∆̄c
i

)2 .

Relation between ∆c
i and ∆̄c

i . Although we always have ∆c
i ≥ ∆̄c

i and thus Hc,1 ≤ Hc,2, in
many situations ∆c

i and ∆̄c
i are of similar scales. To see this, notice that ∆̄c

i ≥ min{∆c
i , piu − pil}.

In many cases in practice, we would expect a gap between Sτ and Scτ , and therefore piu − pil
will be a constant. We give a formal proposition about the relation between Hc,2 and Hc,1 under
Massart noise condition in Section 5.5.

116

In Section 5.3, we present an upper bound using Hc,2, and in Section 5.4, we present a lower
bound using Hc,1.

5.3 Algorithm and Analysis
We present our Rank-Search algorithm in this section. We give a detailed description of the
algorithm in Section 5.3.1, and analyze its theoretical performance in Section 5.3.2.

5.3.1 Algorithm Description

Algorithm 11 Rank-Search (RS)
Input: Set of arms A, noise tolerance δ, threshold τ

1: Confidence level γ0 ← 1/4, S ← A = [K], counter t← 0
2: For every i ∈ S, let ni ← 0, wi ← 0
3: . ni: Comparison count, wi: Win count
4: while S 6= ∅ do
5: while ∃i ∈ S, ni ≤ 1

γ2
t

log
(

8|S|(t+1)2

δ

)
do

6: for i ∈ S do
7: Draw i′ ∈ [K] uniformly at random, and compare arm i with arm i′

8: If arm i wins, wi ← wi + 1
9: ni ← ni + 1

10: end for
11: end while
12: Compute p̂i ← wi/ni for all i ∈ S
13: Rank arms in S according to their p̂i: S = (i1, i2, ..., i|S|), p̂i1 ≤ p̂i2 ≤ · · · ≤ p̂i|S|
14: Get (k, T) = Binary-Search(S, τ, δ/4(t+ 1)2)
15: If k < |S|, let S = {i ∈ S : p̂i − p̂ik+1

> 2γt}; for i ∈ S, set ŷi = 1
16: If k > 0, let S = {i ∈ S : p̂i − p̂ik < −2γt}; for i ∈ S, set ŷi = 0
17: S ← S − S − S − T
18: γt+1 ← γt/2
19: t← t+ 1
20: end while
Output: Ŝτ = {i : ŷi = 1}, Ŝcτ = A \ Ŝτ

Algorithm 11 describes the Rank-Search algorithm. At a high level, RS alternates between
ranking items using duels (Line 5-13), and a binary search using pulls (Line 14 and Algorithm 12).
We first initialize the work set S with all arms, and comparison confidence γ0 = 1/4. In the rank
phase, we iteratively compare each arm i ∈ S with a random arm, as an unbiased estimator for pi.
After each arm has received log(2/δt)

γ2
t

comparisons, we rank the arms in S according to their win
rates p̂i. Then Algorithm 12 performs binary search on the sorted S to find the boundary between
positive and negative arms (detailed below).

117

Our binary search is a standard process: it starts with the middle of the sequence, and if the
middle arm is positive, we move to the first half (i.e., arms with smaller estimated means), and
otherwise, we move to the second half (i.e., arms with larger estimated means). Algorithm 2 just
behaves as if S is perfectly ranked. It is worthwhile noting that since S is not ranked according to
the real pi’s, there might be negative samples larger than positive samples in S. Nevertheless, the
binary search just proceeds as if S is perfectly ranked. We figure out the label of the middle point
using Figure-Out-Label (Algorithm 13). Figure-Out-Label aims to solve the simple TBP in the
one-arm setting: We keep a confidence interval µ̂i± γ in each round and return the label once τ is
not in the interval.

Binary-Search returns the boundary k. Let S = {i ∈ S : p̂i − p̂ik+1
> 2γt} be the arms that

are separated from arm ik+1, and we label i ∈ S as positive; we do similarly for negative arms.
Then we update working set S with all the unlabeled arms, and shrink confidence γt.

Algorithm 12 Binary-Search
Input: Sequence S = (i1, i2, ..., i|S|), threshold τ , confidence δ0

1: kmin ← 0, kmax ← |S|, T = ∅
2: while kmin < kmax do
3: k = d(kmin + kmax)/2e
4: ŷik = Figure-Out-Label(ik, τ, δ

log |S|)

5: T = T ∪ {ik}
6: if ŷik = 1 then
7: kmax = k − 1
8: else
9: kmin = k

10: end if
11: end while
Output: Boundary kmin, labeled arms T

Algorithm 13 Figure-Out-Label
Input: Arm i, threshold τ , confidence δ1

1: t← 0
2: Define mi ← 0, si ← 0
3: repeat
4: while mi ≤ 2t do
5: Query Yi, and let si ← si + Yi,mi ← mi + 1
6: end while
7: Compute µ̂i ← si/mi

8: γ = R
√

2 log(4(t+1)2/δ1)
mi

9: t← t+ 1
10: until |µ̂i − τ | > γ
Output: Predicted label ŷi = I(µ̂i > τ)

118

5.3.2 Theoretical Analysis

We now present the theorem about performance of RS.
Theorem 58. Let γ∗ = mini∈A\{iu,il} ∆̄c

i and ∆∗ = mini ∆
l
i. Then with probability 1 − δ RS

succeeds, and the number of duels and pulls it uses are bounded by

nduel ≤ 32Hc,2 log
4K log(1/γ∗)

δ
,

npull ≤ 16R2Hl(nl) log

(
nl log(1/∆∗)

δ

)
,

where nl is the number of times Figure-Out-Label is called, and we have nl = O(logK log(1/γ∗)).

Remark. First, the results in [52] correspond to using O
(
Hl(K) log

(
Hl(K)K

δ

))
pulls to

get δ confidence. In terms of number of direct pulls, RS can reduce K dependence to logK
dependence when γ∗ is a constant, an exponential improvement.
Second, in terms of number of duels, RS has a requirement based on dueling complexity Hc,2

instead of Hl. In many cases, Hc,2 is close to Hl, and we point out several such cases in Section
5.5. Thus, we see that in the Dueling-choice framework, the number of pulls required improves
exponentially in dependence on K at the expense of requiring a number of duels proportional to
number of pulls in pull-only case. This is similar to the findings in [105, 185, 187] for regression
and feature-based classification in the Dueling choice setting.

5.4 Lower Bounds
In this section, we give lower bounds that complement our upper bounds. We first give an
arm-wise lower bound in Section 5.4.1 to show that RS is almost optimal in terms of the total
number of queries to each individual arm. Then, we discuss the optimality of both nduel and npull

in Section 5.4.2.
For simplicity, in this section we suppose all rewards follow a Gaussian distribution with

parameter R, i.e., νi = N (µi, R
2). Our results can be easily extended to other sub-Gaussian

distributions (e.g., when all rewards are binary).

5.4.1 An Arm-Wise Lower Bound

The following theorem gives a lower bound on the number of pulls and duels on a particular arm
k.
Theorem 59. Suppose an algorithmA recovers Sτ with probability 1−δ for any problem instance
(M,µ) and δ ≤ 0.15. For any arm i, let DAi be the number of times that arm i is selected for a
duel, and LAi be the number of times that arm i is pulled. Let c = min{ 1

10
, R

2

2
}. Then for any

problem instance (M,µ) with Mij ≥ 3
8

for every arm i, j ∈ [K], and a specific arm k ∈ Sτ , we
have

EM,µ[(∆c
k)

2DAk + (∆l
k)

2LAk] ≥ c log(
1

2δ
). (5.2)

119

Theorem 59 shows an arm-wise lower bound that the sum of duels and pulls (weighted by
their complexity) must satisfy (5.2). In the pull-only setting, this agrees with the known result
that number of pulls needed for an arm k is Ω((∆l

k)
−2). And for duel-choice setting, it shows that

if we never pull arm k, number of duels involving arm k (against some known arm) is at least
Ω((∆c

k)
−2). From our proof of Theorem 58, we can easily show the following proposition for the

upper bound that RS achieves:
Proposition 60. For any problem instance (M,µ) and arm k, Algorithm RS succeeds with
probability at least 1− δ and there exists a constant C such that the RS algorithm achieves that

EM,µ[(∆̄c
k)

2DRS
k + (∆l

k)
2LRS

k] ≤ C log

(
K log(K

γ∗∆∗
)

δ

)
. (5.3)

Comparing (5.3) with (5.2), our RS algorithm is arm-wise optimal except for the difference of
∆c
k vs. ∆̄c

k, and the log factors. This shows that RS is near optimal in the sum EM,µ[(∆c
k)

2DAk +
(∆l

k)
2LAk].

5.4.2 Optimality of nduel and npull

In this subsection, we analyze the lower bound of TBP-DC under the case when duels are much
cheaper than pulls. In this case, we would like to minimize the number of pulls, and then minimize
the number of duels. Intuitively, RS algorithm is optimal in npull as it uses roughly O(logK)
pulls; this is necessary even if we know a perfect ranking of all arms (due to the complexity of
binary search). We consider an extreme case, where we know the label of arm iu and il from pulls,
and wish to infer all other labels using duels. The following corollary of Theorem 59 shows a
lower bound in this case:
Corollary 61. Suppose an algorithm A is given that iu ∈ Sτ and il ∈ Scτ , and uses only
duels. Under the same assumption as in Theorem 59, the number of duels of A is at least
E[nAduel] ≥ cHc,1 log(1/2δ).

Combining Corollary 61 with the fact that O(logK) is necessary for TBP-DC, we show that
RS is near optimal in both nduel and npull.

5.5 Implications of Bounds in Special Cases
We provide two examples to compare our theoretical bounds with the classical pull-only TBP.
Throughout this section, we will assume that all the observations follow Bernoulli distributions,
and τ = 1/2. The examples we raise in this section all follow the Massart noise condition, i.e.,
|µi − τ | ≥ c that is well known in classification analysis [125]. We first give the following
proposition to show that RS is optimal under Massart noise.
Proposition 62. Suppose ∆l

i ≥ c for some c for all arm i, and Mij = 1
2

+ σ(µi − µj) for
some increasing link function σ : R → [−1/2, 1/2]. Also assume for any x, y ∈ [µ1, µK]
we have σ(x − y) ≥ L(x − y) for some constant L. Then we have i) piu − pil ≥ 2Lc, ii)
∆̄c
i ≥ min{2Lc,∆c

i}, and iii) Hc,2 ≤ 1
4L2c2

Hc,1.

120

0 11
2

1
3

1
4

1
5

...
1
l+2

2
3

3
4

4
5

...
l+1
l+2

| | || ||| ||| || || ||| ||| || ||| || | ||| |||| || || |

Figure 5.2: Graphical illustration of the examples. Each red vertical line corresponds to one arm i,
and τ = 1/2. Left: Example 1 with fixed means. Right: Example 2 with K = 40 arms. The blue
curve illustrates the pdf of all arm means.

Proposition 62 shows that Hc,2 = O(Hc,1) under Massart noise and the assumption that
a link function exists. The assumption of such a link function is satisfied by several popular
comparison models including the Bradley-Terry-Luce (BTL) [38] and Thurstone models [162].
We now give two positive examples that RS will lead to a gain compared with the pull-only
setting. For simplicity we will suppose duels follow a comparison model given as follows:
Mij = Pr[i � j] =

1+µi−µj
2

. This is known as the linear link function since it linearly relates the
duel win probability with the reward means. Routine calculations show that under a linear link
function we have pi − pj = Θ(µi − µj). We require that both our method and pull-only method
succeed with probability 1 − δ, with a small constant δ (e.g., δ = 0.05). Both of our positive
examples assume that the means are dense near the boundaries given by µ = 0 and µ = 1, while a
very small fraction of arms have means near 1/2, so that there is a significant gap between the arms
iu and il closest to the threshold, as well as any arm i and arm iu or il that is closest to it(cf. Figure
5.2). Although these examples can look artificial at first sight, we note that such a bowl-shaped
distribution is common in practice, and is similar to Tsybakov noise [165] assumption used to
characterize classification noise in the machine learning literature.

Example 1. Suppose K = 2l, and µi = 1
(l+3)−i for 1 ≤ i ≤ l, and µi = 1 − 1

i−(l−2)
for

l + 1 ≤ i ≤ 2l (see Figure 5.2 left). We will have ∆l
i = ∆̄c

i = Ω(1) for all arms i ∈ A. Then the
previous state-of-art CLUCB algorithm requires O(K logK) pulls, and their lower bounds show
that any pull-only algorithm needs at least Ω(K) pulls. On the other hand, our algorithm requires
O(K logK) duels and only O(log2K) pulls. When pulls are more expensive than duels, there is
a significant cost saving when using our RS algorithm.

Example 2. Suppose K = 2l. Sample x1, ..., xK from an exponential distribution with parameter
λ = 4 log(4l/δ), and let µi = xi for 1 ≤ i ≤ l, and µi = 1 − xi for l + 1 ≤ i ≤ 2l (see Figure
5.2 right). Then with probability 1− δ: i) µi ∈ [0, 1] ∀i ∈ [K]; ii) ∆l

i = Ω(1), and Hc,2 = Hc,1;
iii) CLUCB requires O(K logK) pulls, and any pull-only algorithm requires at least Ω(K) pulls;
iv) Our algorithm requires O(K log3K) duels and O(log2K) pulls.

We provide proofs of the results for these two examples in the appendix.

121

(a) harmonic (b) exponential

(c) 3 groups

100 200 300 400 500

Number of Arms
0

1

2

3

4

Pu
ll

Co
m

pl
ex

ity

1e6

RS
SimpleLabel
CLUCB

(d) Reading Difficulty

Figure 5.3: Empirical results comparing RS and other baselines. Error bars represent standard
deviation across 20 experiments.

5.6 Experiments
To verify our theoretical insights, we perform experiments on a series of settings to illustrate the
efficacy of RS, on both synthetic and real-world data. For comparison, we include the state-of-art
CLUCB in the pull-only setting, and several naive baselines.

5.6.1 Setup and Baselines
We run RS and the other baselines with δ = 0.95, τ = 0.5 and K varying from 50 to 500. Also
let K = 2l. The duels follows from a linear link function Pr[i � j] =

1+µi−µj
2

, and the mean
rewards are given as below:
Experiment 1 (harmonic): This is Example 1 from Section 5.5.
Experiment 2 (exponential): This is Example 2 from Section 5.5.
Experiment 3 (3groups): This is similar to the example in [120]. Let µi = 0.1 for i =
1, 2, ..., l − 2, µ(l−2):(l+2) = (0.35, 0.45, 0.55, 0.65), and µi = 0.9 for i = l + 3, ..., K.
Experiment 4 (Reading Difficulty): We use the real-world document reading level data from
[53]. The data consists of 491 passages, each with a reading difficulty level ranged in 1-12. We
randomly take K passages from the whole set, and let µi = li/13, where li is the difficulty level
of passage i. The goal here is to identify the difficult passages with level at least 7.

122

We compare to the following baseline methods:
CLUCB[52]: We implement the CLUCB algorithm which only queries for selective direct pulls
in a TBP setting.
SimpleLabel: This is a simple pull-only baseline where we apply Figure-Out-Label to all the
arms i ∈ A with confidence δ/K.
RankThenSearch: A naive baseline for TBP-DC that first uses a ranking algorithm to rank all
the arms, and then performs a binary search to find the boundary. An obvious drawback of this
method is that it has to recover the ordering for every pair of arms (i, j) ∈ A, therefore leading to
an enormous number of duels. For the ranking algorithm we use ActiveRank from [90], since
it has similar assumptions as ours. Then, we run a single binary search on the sorted sequence,
using Figure-Out-Label to identify labels.

We note that previous works on TBP in the fixed budget setting [120, 131] cannot be imple-
mented in our fixed-confidence setting.

For complexity notion, since there is no pre-defined cost ratio between duels and pulls, we
compare the pull and duel complexity of RS separately with the baselines. Specifically, we
compare pull complexity with SimpleLabel and CLUCB1, and compare duel complexity with
RankThenSearch (since the other two baselines are pull-only algorithms).

5.6.2 Experiment Results

Comparing Pull Complexity. In Figure 5.3, we plot the empirical pull complexity of RS along
with the baselines of CLUCB and SimpleLabel. As expected, the number of pulls of RS is
much lower than the baseline algorithms in all three experiments we consider. Interestingly,
SimpleLabel also has an advantage over CLUCB in the pull-only setting. We note that CLUCB’s
O(Hl log(Hl

δ
)) is only optimal up to log(Hl) factors, and SimpleLabel might have an advantage

because its pull complexity is O(Hl log(K log ∆∗

δ
)) in the pull-only setting, slightly better than

CLUCB. This advantage and the optimal rate for the pull-only setting is of independent interest
and we leave it as future work.
Comparing Duel Complexity. We compare duel complexity between RS and RankThenSearch
in Figure 5.4. Note that since in 3groups the arms are not separable, we only compare to
RankThenSearch in the first two settings. Our results show that ActiveRank acquires an incredible
number of duels in order to rank the arms: to rank 50 arms it acquires more than one billion
(1 × 109) duels. This prohibitive cost makes it impossible to adopt the rank and then search
method.

5.7 Conclusion
We formulate a new setting of the Thresholding Bandit Problem with Dueling Choices, and
provide the RS algorithm, along with upper and lower bounds on its performance. There are
several possible directions for future work. First, it is of interest to tighten the bounds so that

1Although RankThenSearch does achieve a very low pull complexity, we show in the appendix that it is impractical
in terms of duel complexity.

123

(a) harmonic (b) exponential

Figure 5.4: Empirical results comparing RS and RankThenSearch. Error bars represent standard
deviation across 20 experiments.

they can match in the notion of duel complexity that shows up in the lower and upper bounds.
We believe it should be possible to improve the lower bound by randomizing the arms closest
to the threshold. Second, we mention that the proposed algorithm RS is adaptive in the setting
when comparisons are not helpful, in that it achieves the same pull complexity as SimpleLabel
however it requires 2K/ logK duels. It is of interest to investigate whether adaptive algorithms can
be designed with lower duel complexity. Third, we will explore the performance of the proposed
algorithms in real-world applications (e.g. performance on crowdsourced classification in Amazon
MTurk Platform) taking into account the relative costs of pulls vs. duels. Finally, it is also of
interest to investigate the advantage SimpleLabel might have over CLUCB in pull-only settings.

5.8 Proofs

5.8.1 Proof of Theorem 58
First we show that with high probability our confidence interval in Algorithm 11 and 13 bounds
pi and µi.
Lemma 63. With probability 1− δ the following holds:
• At step 13 in Algorithm 11 we have |pi − p̂i| ≤ γt for all i ∈ S and all t;
• At step 8 in Algorithm 13 we have |µi − µ̂i| ≤ γ for all arms i that are passed to Algorithm

13.

Proof. The lemma follows from standard concentration inequality. Using Hoeffding’s inequality
and a union bound we know that in each round of Algorithm 11 we have

Pr[∃i, |pi − p̂i| > γt] ≤ |S| exp(−2ni · γ2
t) ≤

δ

4t2
.

Sum it up we have |pi − p̂i| ≤ γt holds for all i ∈ S and all rounds t with probability at most δ/2.

124

Similarly, from Hoeffding’s inequality for sub-Gaussian random variables and a union bound
we have for any run of Figure-Out-Label,

Pr[∃t, |µi − µ̂i| > γ] ≤
∞∑
t=0

exp(− γ2

2R2
)

≤
∞∑
t=0

δ1

4(t+ 1)2
≤ δ1.

Now sum the probability over all runs of Figure-Out-Label we have

Pr[Every Figure-Out-Label is correct] =
∞∑
t=0

δ

4(t+ 1)2
log |S| · 1

log |S| <= δ/2.

The lemma follows from another union bound.

We now assume the event in Lemma 63 happens. Now we can show that we never make a
mistake when we estimate labels in Algorithm 13 using direct pulls. Firstly, upon termination
of Figure-Out-Label we have |µ̂i − τ | > γ. Not losing generality, suppose we have ŷi = 1 as
the output. Then we have µ̂i − τ > γ, and thus µi > τ , so i ∈ Sτ . Similarly we do not make a
mistake when ŷi = 0.

To show the correctness when we infer labels in step 15 and 16 in Algorithm 11, we first need
the following lemma for binary search in an arbitrary noisy sequence:
Lemma 64. Binary-Search always returns within dlog(|S|) + 1e iterations, and the first output
k satisfies i) ŷik+1

= 1 if k < |S|; and ii) ŷik = 0 if k > 0.

Proof. Firstly, Algorithm 12 always terminates, because k = d(kmin + kmax)/2e satisfies kmax −
kmin ≥ 2 max{k − kmin, kmax − k}. For simplicity, define imaginary labels ŷ0 = 0, ŷ|S|+1 = 1.
We prove by induction that we always have ŷikmin

= 0 and ŷikmax+1
= 1. This is true for the first

iteration; for subsequent iterations, if we move to the left (Line 7) we have ŷik = ŷikmax+1
= 1; if

we move the right (Line 9) we have ŷik = ŷikmin
= 0. Therefore the claim holds. Note that upon

termination we must have kmax = kmin. The lemma then follows from the claim.

Now if we let ŷi = 1 in step 15 in Algorithm 11, we have p̂i − p̂ik+1
≥ 2γt, and therefore

pi > pik+1
. Since, we have ŷik+1

= 1 from Lemma 64 and its label is estimated correctly by
Algorithm 13, yik+1

= 1 and thus ik+1 ∈ Sτ . Since ik+1 ∈ Sτ , pik+1
≥ pj for all j ∈ Scτ and same

holds for pi > pik+1
meaning i ∈ Sτ . Similarly we do not make a mistake on step 16.

Now we consider the number of duels taken to infer when any arm i = A \ {iu, il} is in
S or S and hence is eliminated from further duels. Not losing generality, suppose i ∈ Sτ , and
thus µi > τ . We show that the arm i is eliminated from further duels when we have 4γt < ∆̄c

i .
Suppose we have i 6∈ S i.e. p̂ik+1

≥ p̂i − 2γt at the end of the binary search in round t. Let
j = arg maxj∈Sτ min{pj − pil , pi − pj} be the maximizer to obtain ∆̄c

i .
By Lemma 63 and definition of ∆̄c

i we have

p̂j ≤ pj + γt ≤ pi − ∆̄c
i + γt < pi − 3γt ≤ p̂i − 2γt,

125

so p̂j < p̂i − 2γt ≤ p̂ik+1
. So arm j is ranked before arm ik+1; and since ŷik = 0 by Lemma 64,

we have ik 6∈ Sτ since its label is estimated correctly by Algorithm 13, and therefore arm j is
ranked no later than arm ik, thus p̂j ≤ p̂ik . However, from definitions of ∆̄c

i and arm il, we have

pj ≥ pil + ∆̄c
i ≥ pik + 4γt.

And therefore by Lemma 63 we have p̂j ≥ pj − γt ≥ pik + 3γt ≥ p̂ik + 2γt, which makes a
contradiction. Therefore we will have p̂ik+1

< p̂i − 2γt i.e. arm i ∈ S, and arm i will be excluded
from S in iteration t. In a similar way we can argue that for i ∈ Scτ , it is excluded from S when
∆̄c
i > 4γt.

Therefore we would need log(8|S|t2/δ)
(∆̄c

i/4)2 duels to eliminate arm i from further duels. Sum this over

all arms i and use the fact that t ≤ log(1γ∗), we get the number of duels is O(Hc,2 log(K log(1/γ∗)
δ

))
to identify all arms except {il, iu}. When every arm i ∈ A \ {iu, il} has been given a label, iu, il
will be given a label during binary search.

Now we bound the number of direct pulls. We figure out the label of arm i when 2γ ≥ |µi− τ |
in Algorithm 13. Therefore for each sample we need 2

√
R2 2 log(2/δ0)

T
≤ |µi − τ | pulls; note that

we only require pulls during binary search. Each binary search runs Algorithm 13 for at most
logK times, and we do log(1/γ∗) times of binary search. Combining these terms we get the
number of pulls.

5.8.2 Proof of Theorem 59

Our include a proof that follows a very similar process as [90], but adapting to the case where
both duels and pulls are available.

Not losing generality, suppose k ∈ Sτ ; the proof for k ∈ Scτ is similar. We first use a lemma
from bandit literature [106] that links KL divergence with error probability. Let ν = {νj}mj=1

be a collection of m probability distributions supported on R. Consider an algorithm A that
selects an index it ∈ [m] and receives an independent draw X from νi. it only depends on its past
observations; i.e., it is Ft−1 measurable, where Ft is the σ-algebra generated by i1, X1, ..., it, Xt.
Let χ be a stopping rule ofA that determines the termination ofA. We assume that χ is measurable
w.r.t Ft and Pr[χ < ∞] = 1. Let Qi(χ) be the number of times that νi is selected by A until
termination. For any p, q ∈ (0, 1), let d(p, q) = p log p

q
+ (1 − p) log 1−p

1−q be the KL divergence
between two Bernoulli distributions with parameter p, q. We use the following lemma:
Lemma 65 ([106], Lemma 1). Let ν = {νj}mj=1, ν

′ = {ν ′j}mj=1 be two collections of m probability
distributions on R. For any event E ∈ Fχ with Prν [E] ∈ (0, 1) we have

m∑
i=1

Eν [Qi(χ)]KL(νi, ν
′
i) ≥ d(Pr

ν
[E],Pr

ν′
[E]). (5.4)

Now, define the event E to be the event thatA succeeds underM and µ, i.e., E ≡
{
Sτ = Ŝτ , S

c
τ = Ŝcτ

}
.

Under the relation Mij = 1 − Mji the comparison is uniquely defined by the probabilities
{Mij, 1 ≤ i < j ≤ K}; and pull is uniquely defined by the mean vector µ. For any two arms

126

i, j, let Dij(χ) be the number of times that arms i and j duel before stopping. Therefore for two
problem settings (M,µ) and (M ′,µ′), by Lemma 65 we have

K∑
i=1

K∑
j=i+1

EM,µ[Dij]d(Mij,M
′
ij) +

1

2R2

K∑
i=1

(µi − µ′i)2 ≥ d(Pr
M,µ

[E], Pr
M ′,µ′

[E]). (5.5)

The second term in (5.5) follows from the KL divergence between Gaussian variables. We now
construct another feasible profile (M ′,µ′) and that µk < τ and that p′k < p′j for any j ∈ Sτ
according to M ′. Therefore in this case k 6∈ Sτ (M ′,µ′), where Sτ (M ′,µ′) is the set of arms with
reward larger than τ under M ′,µ′. Since A succeeds with probability 1 − δ for any problem
setting, we have PrM,µ[E] ≥ 1− δ and PrM ′,µ′ [E] ≤ δ. Therefore

d(Pr
M,µ

[E], Pr
M ′,µ′

[E]) ≥ d(δ, 1− δ) ≥ log
1

2δ
,

which holds for δ ≤ 0.15.
We now specify M ′,µ′. Let

M ′
ij =


Mkj − (pk − piu), if i = k, j 6= k,

Mkj + (pk − piu), if j = k, i 6= k,

Mkj otherwise.

and µ′k = 2τ − µk. It is easy to see that µ′k ≤ τ , and therefore k 6∈ Sτ (M ′,µ′). We now show
that the profile M ′,µ′ by showing that p′k < p′j . In the new profile we have

p′k =
1

K − 1

∑
j 6=k

M ′
kj =

1

K − 1

∑
j 6=k

(Mkj − (pk − piu)) = pk − pk + piu = piu .

For other arms i 6= k we have

p′i =
1

K − 1

∑
j 6=i

M ′
ij = pi +

1

K − 1
(pk − piu).

And therefore p′k = piu < p′i for any i ∈ Sτ (M ′,µ′), and therefore (M ′,µ′) is feasible. Also
since Mij ∈ [3

8
, 5

8
] we have

M ′
ij ≤

5

8
+ (

5

8
− 3

8
) =

7

8
,

and similarly M ′
ij ≥ 1

8
. So for any j 6= k we have

d(Mkj,M
′
kj) ≤

(Mkj −M ′
kj)

2

M ′
kj(1−M ′

kj)
= 10(pk − piu)2 (5.6)

Now consider the sums on the LHS of (5.5). Note that M ′
ij = Mij when i 6= k, j 6= k; and also

µk − µ′k = 2(µk − τ) and µi − µ′i = 0 for i 6= k. Combining (5.5) and the uniform bound in (5.6)

127

we have

K∑
i=1

K∑
j=i+1

EM,µ[Dij]d(Mij,M
′
ij) +

1

2R2

K∑
i=1

(µi − µ′i)2

≤ 10(pk − piu)2
∑
j 6=k

EM,µ[Dkj] +
2(µk − τ)2

R2
E[Lk]

= 10(pk − piu)2EM,µ[Dk] +
2(µk − τ)2

R2
E[Lk]

Combining the expectations we get the desired results.

5.8.3 Proof of Corollary 61

The corollary follows directly from Theorem 59: For k 6∈ {iu, il} we have Lk = 0, and therefore

EM,µ[DAk] ≥ c log(1
2δ

)

(∆c
k)

2
.

Sum this over all arm k 6∈ {iu, il} we get the desired result.

5.8.4 Proof of Proposition 62

Under the link function assumption we have

piu − pil =
1

K − 1

∑
i 6=iu

σ(µiu − µi)−
1

K − 1

∑
i 6=il

σ(µil − µi)

≥ 1

K − 1

K∑
i=1

[σ(µiu − µi)− σ(µil − µi)]

≥ K

K − 1
L(µiu − µil) ≥ 2Lc.

For any i ∈ Sτ , use j = iu and we have ∆̄c
i ≥ min{2Lc,∆c

i}, and this holds similarly for i ∈ Scτ .
Finally for iii), notice that 2Lc ≤ 1 because otherwise σ(2c) > 1, and ∆c

i ≤ 1. Thus we have
∆̄c
i ≥ 2Lc∆c

i , and it leads to iii).

5.8.5 Proof for Example 1

The results follow easily from Theorem 58: We have ∆l
i = |µi − τ | ≥ 1

6
for every arm i. Under

the linear link function, we have pi − pj = Θ(µi − µj), and thus ∆̄c
i = Ω(1) for every arm

i 6∈ {l, l + 1}. Therefore Hl = O(K) and Hc,2 = O(K), and the results follow.

128

5.8.6 Proof for Example 2
For each xi, we have Pr[x ≤ 1/4] ≤ δ/(4l). Using a union bound, we have that with probability
1− δ/2 we have xi ≤ 1/4∀i ∈ [K]. Let this event be EB. So under EB all sample means are in
[0, 1/4] and [3/4, 1], so pull-only algorithm requires Ω(K) pulls.

On the other hand, let x(l) and x(l−1) be the l-th and (l − 1)-th order statistic of x1, ..., xl, i.e.,
the largest and second largest element of x1, ..., xl. Then x(l) − x(l−1) is distributed according to a
exponential distribution with parameter λ. Routine calculation shows that

Pr[x(l) − x(l−1) ≥
− log(1− δ/4)

λ
] ≥ 1− δ/4.

Plug in λ and EB we have

Pr[x(l) − x(l−1) ≥
− log(1− δ/4)

4 log(4l/δ)
, EB] ≥ 1− δ/2.

Under this event and symmetrically for l + 1 ≤ i ≤ 2l, we have Hc,2 = O(K log2K); thus
nduel = O(K log3K) and npull = O(log2K).

129

130

Chapter 6

Preference-based Reinforcement Learning
with Finite-Time Guarantees

In reinforcement learning (RL), an agent typically interacts with an unknown environment to
maximize the cumulative reward. It is often assumed that the agent has access to numerical reward
values. However, in practice, reward functions might not be readily available or hard to design,
and hand-crafted rewards might lead to undesired behaviors, like reward hacking [9, 35]. On
the other hand, preference feedback is often straightforward to specify in many RL applications,
especially those involving human evaluations. Such preferences help shape the reward function
and avoid unexpected behaviors. Preference-based Reinforcement Learning (PbRL, [183]) is a
framework to solve RL using preferences, and has been widely applied in multiple areas including
robot teaching [57, 93, 94], game playing [180, 182], and in clinical trials [204].

Despite its wide applicability, the theoretical understanding of PbRL is largely open. To the
best of our knowledge, the only prior work with a provable theoretical guarantee is the recent work
by Novoseller et al. [133]. They proposed the Double Posterior Sampling (DPS) method, which
uses Bayesian linear regression to derive posteriors on reward values and transition distribution.
Combining with Thompson sampling, DPS has an asymptotic regret rate sublinear in T (number
of time steps). However, this rate is based on the asymptotic convergence of the estimates of
reward and transition function, whose complexity could be exponential in the time horizon H .
Also, the Thompson sampling method in [133] can be very time-consuming, making the algorithm
applicable only to MDPs with a few states. To fill this gap, we naturally ask the following question:

Is it possible to derive efficient algorithms for PbRL with finite-time guarantees?
While traditional value-based RL has been studied extensively, including recently [20, 98, 201],

PbRL is much harder to solve than value-based RL. Most efficient algorithms for value-based
RL utilize the value function and the Bellman update, both of which are unavailable in PbRL:
the reward values are hidden and unidentifiable up to shifts in rewards. Even in simple tabular
settings, we cannot obtain unbiased estimate of the Q values since any offset in reward function
results in the same preferences. Therefore traditional RL algorithms (such as Q learning or value
iteration) are generally not applicable to PbRL.

Our Contributions. We give an affirmative answer to our main question above, under general
assumptions on the preference distribution.
• We study conditions under which PbRL can recover the optimal policy for an MDP. In

131

particular, we show that when comparisons between trajectories are noiseless, there exists
an MDP such that preferences between trajectories are not transitive; i.e., there is no unique
optimal policy (Proposition 66). Hence, we base our method and analysis on a general
assumption on preferences between trajectories, which is a generalization of the linear link
function assumption in [133].

• We develop provably efficient algorithms to find ε-optimal policies for PbRL, with or
without a simulator. Our method is based on a synthetic reward function similar to recent
literature on RL with rich observations [67, 129] and reward-free RL [99]. We combine this
reward-free exploration and dueling bandit algorithms to perform policy search. To the best
of our knowledge, this is the first PbRL algorithm with finite-time theoretical guarantees.
Our method is general enough to incorporate many previous value-based RL algorithms
and dueling bandit methods as a subroutine.

• We test our algorithm against previous baselines in simulated environments. Our results
show that our algorithm can beat previous baselines, while being very simple to implement.

6.1 Related Work
We refer readers to [183] for a complete overview of PbRL. In the PbRL framework, there are
several ways that one can obtain preferences: We can obtain preferences on i) trajectories, where
the labeler tells which of two trajectories is more rewarding; ii) actions, where for a fixed state s,
the labeler tells which action gives a better action-value function; or iii) states, where similarly, the
labeler tells which state gives a better value function. In this paper, we mainly study preferences
over trajectories, which is also the most prevalent PbRL scenario in literature. Our method is
potentially applicable to other forms of preferences as well.

PbRL is relevant to several settings in Multi-Armed Bandits. Dueling bandits [42, 200] is
essentially the one-state version of PbRL, and has been extensively studied in the literature
[73, 74, 189, 199]. However, PbRL is significantly harder because in PbRL the observation
(preference) is based on the sum of rewards on a trajectory rather than individual reward values.
For the same reason, PbRL is also close to combinatorial bandits with full-bandit feedback
[12, 58, 143]. Although lower bounds for these bandit problems extends to PbRL, developing
PbRL algorithms is significantly harder since we are not free to choose any combination of
state-action pairs.

6.2 Problem Setup
MDP Formulation. Suppose a finite-time Markov Decision Process (MDP) (S,A, H, r, p, s0),
where S is the state space, A is the action space, H is the number of steps, r : S × A → R
is the reward function1, p : S × A → S is the state transition function, and s0 is the starting
state. For simplicity we assume S ≥ H . We consider finite MDPs with |S| = S, |A| =
A. We start an episode from the initial state s0, and take actions to obtain a trajectory τ =

1For simplicity, here we assume the reward function to be deterministic.

132

{(sh, ah)}H−1
h=0 , following a policy π : S → A. We also slightly overload the notation to use

r(τ) =
∑

(s,a)∈τ r(s, a) to denote the total reward of τ . For any policy π, let τh(π, s) be a
(randomized) trajectory by executing π starting at state s from step h to the end.

We further assume that the state space S can be partitioned intoH disjoint sets S = S1∪· · · SH ,
where Sh denotes the set of possible states at step h. Let Π : {π : S → A} be the set of policies.
We use ΠH to denote the set of non-stationary policies; here a policy π = (π1, ..., πH) ∈ ΠH

executes policy πh in step h for h ∈ [H] 2. Also, let πh1:h2 be the restriction of policy π ∈ ΠH to
step h1, h1 + 1, ..., h2. We use the value function vπh0

(s) = E[
∑H−1

h=h0
r(sh, π(sh))|π, sh0 = s] to

denote the expected reward of policy π starting at state s in step h0; for simplicity let vπ = vπ0 .
Let π∗ = arg maxπ∈ΠH v

π
0 (s0) denote the optimal (non-stationary) policy. We assume that

r(s, a) ∈ [0, 1] for every (s, a) ∈ S ×A, and that v∗(s) = vπ
∗
(s) ∈ [0, 1] for every state s.

Preferences on Trajectories. In PbRL, the reward r(s, a) is hidden and is not observable
during the learning process, although we define the value function and optimal policy based
on r. Instead, the learning agent can query to compare two trajectories τ and τ ′, and obtain a
(randomized) preference τ � τ ′ or τ ′ � τ , based on r(τ) and r(τ ′). We also assume that we can
compare partial trajectories; we can also compare two partial trajectories τ = {(sh, ah)}Hh=h0

and
τ ′ = {(s′h, a′h)}Hh=h0

for any h0 ∈ [H]. Let φ(τ, τ ′) = Pr[τ � τ ′] − 1/2 denote the preference
between τ and τ ′.

PAC learning and sample complexity. We consider PAC-style algorithms, i.e., an algorithm
needs to output a policy π̂ such that vπ̂(s0)− v∗(s0) ≤ ε with probability at least 1− δ. In PbRL,
comparisons are collected from human workers and the trajectories are obtained by interacting
with the environment. So obtaining comparisons are often more expensive than exploring the
state space; we therefore compute separately the sample complexity in terms of the number of
total steps and number of comparisons. Formally, let SCs(ε, δ) be the number of exploration
steps needed to obtain an ε-optimal policy with probability 1 − δ, and SCp be the number of
preferences (comparisons) needed in this process. We omit ε, δ from the sample complexities
when the context is clear.

Dueling Bandit Algorithms. Our proposed algorithms uses a dueling bandit algorithm as a
subroutine. To utilize preferences, our algorithms use a PAC dueling bandit algorithm to compare
policies starting at the same state. Dueling Bandits [200] has been well studied in the literature.
Examples of PAC dueling bandit algorithms include Beat the Mean [199], KNOCKOUT [74], and
OPT-Maximize [73]. We formally define a dueling bandit algorithm below.
Definition 2 ((ε, δ)-correct Dueling Bandit Algorithm). Let ε > 0, δ > 0.M is a (ε, δ)-correct
PAC dueling bandit algorithm if for any given set of arms X with |X | = K, i)M runs for at
most Ψ(ε, δ)ε−α steps, where C(ε, δ) = poly(K, log(1/ε), log(1/δ)) and α ≥ 1; ii) in every step,
M proposes two arms a, a′ to compare; iii) Upon completion,M returns an arm â such that
Pr[â � a] ≥ 1/2− ε for every arm a ∈ X , with probability at least 1− δ.

One important feature of existing PAC dueling bandit algorithms is whether they require
knowing ε before they start - algorithms like KNOCKOUT and OPT-Maximize [73, 74] cannot
start without knowledge of ε; Beat-the-Mean [199] does not need to know ε to start, but can return
an ε-optimal arm when given the correct budget. We writeM(X , ε, δ) for an algorithm with
access to arm set X , accuracy ε and success probability 1− δ; we writeM(X , δ) for a dueling

2We follow the standard notation to denote [H] = {0, 1, ...,H − 1}.

133

bandit algorithm without using the accuracy ε.
Results in the value-based RL and bandit setting. In traditional RL where we can observe

the reward value at every step, the minimax rate is largely still open [97]. The upper bound in
e.g., [20] translates to a step complexity of O

(
H3SA
ε2

)
to recover an ε-optimal policy, but due

to scaling of the rewards the lower bound [61] translates to Ω
(
HSA
ε2

)
. Very recently, Wang et al.

[173] show an upper bound of O
(
HS3A2

ε3

)
, showing that the optimal H dependence might be

linear. It is straightforward to show that the lower bound in [61] translates to a step complexity of
Ω
(
HSA
ε2

)
and a comparison complexity of Ω

(
SA
ε2

)
for PbRL. Lastly, we mention that the lower

bounds for combinatorial bandits with full-bandit feedback [58] can transform to a lower bound
of the same scale for PbRL.

6.2.1 Preference Probablities

As in ranking and dueling bandits, a major question when using preferences is how to define the
winner. One common assumption is the existence of a Condorcet winner: Suppose there exists an
item (in our case, a policy) that beats all other items with probability greater than 1/2. However in
PbRL, because we compare trajectories, preferences might not reflect the true relation between
policies. For example, assume that the comparisons are perfect, i.e., τ1 � τ2 if r(τ1) > r(τ2) and
vice versa. Now suppose policy π1 has a reward of 1 with probability 0.1 and 0 otherwise, and
π2 has a reward of 0.01 all the time. Then a trajectory from π1 is only preferred to a trajectory
from π2 with probability 0.1 if the comparisons give deterministic results on trajectory rewards.
Extending this argument, we can show that non-transitive relations might exist between policies:
Proposition 66. Slightly overloading the notation, for any h ∈ [H] and sh ∈ Sh, let φs(π1, π2) =
Pr[τh(π1, s) � τh(π2, s)]− 1/2 denote the preference between policies π1 and π2 when starting
at sh in step h. Suppose comparisons are noiseless. There exists a MDP and policies π0, π1, π2

such that for some state s ∈ S, φs(π0, π1), φs(π1, π2), φs(π2, π0) are all less than 0.
Proposition 66 shows that making assumptions on the preference distribution on trajectories

cannot lead to a unique solution for PbRL. Instead, since our target is an optimal policy, we make
assumptions on the preferences between trajectories:
Assumption 3. There exists a universal constant C0 > 0 such that for any policies π1, π2 and
state s ∈ S with vπ1(s)− vπ2(s) > 0, we have φs(π1, π2) ≥ C0(vπ1(s)− vπ2(s)).

I.e., the preference probabilities depends on the value function difference. Following previous
literatures in dueling bandits [74, 199], we also define the following properties on preferences:

Definition 3. Define the following properties on preferences when the following holds for any h,
s ∈ Sh and three policies π1, π2, π3 such that vπ1

h (s) > vπ2
h (s) > vπ3

h (s):
Strong Stochastic Transitivity: φsh(π1, π3) ≥ max{φsh(π1, π2), φsh(π2, π3)};
Stochastic Triangle Inequality: φsh(π1, π3) ≤ φsh(π1, π2) + φsh(π2, π3).

These properties are not essential for our algorithms, but are required for some dueling bandit
algorithms that we use as a subroutine. To see the relation between policy preferences and reward
preferences, we show the next proposition on several special cases:
Proposition 67. If either of the following is true, the preferences satisfy Assumption 3, SST and

134

STI:
i) There exists a constant C ′ such that for every pair of trajectories τ, τ ′ we have φ(τ, τ ′) =
C(r(τ)− r(τ ′)).
ii) The transitions are deterministic, and φ(τ, τ ′) = c for r(τ) > r(τ ′) and some c ∈ (0, 1/2].

The first condition in Proposition 67 is the same as the assumption in [133], so our Assumption
3 is a generalization of theirs. We also note that although we focus on preferences over trajectories,
preference between policies, as in Assumption 3, is also used in practice [78].

Algorithm 14 PPS: Preference-based Policy Search
Input: Dueling bandit algorithmM, dueling accuracy ε1, sampling number N2, success proba-

bility δ
1: Initialize π̂ ∈ ΠH randomly
2: for h = H − 1, ..., 0 do
3: for sh ∈ Sh do
4: for n = 1, 2, ..., N2 do
5: Start an instance ofM (A, ε1, δ/S)
6: Receive query (a, a′) fromM
7: Rollout a ◦ π̂h+1:H from sh, get trajectory τ
8: Rollout a′ ◦ π̂h+1:H from sh, get trajectory τ ′

9: Compare τ, τ ′ and return the result toM
10: end for
11: ifM has finished then
12: Update π̂h to the optimal action according toM
13: end if
14: end for
15: end for
Output: Policy π̂

6.3 PbRL with a Simulator

In this section, we assume access to a simulator (generator) that allows access to any state
s ∈ S, executes an action a ∈ A and obtains the next state s′ ∼ p(·|s, a). We first introduce our
algorithm, to then follow with theoretical results. We also show a lower bound that our comparison
complexity is almost optimal.

Although value-based RL with a simulator has been well-studied in the literature [17, 18],
methods like value iteration cannot easily extend to PbRL, because the reward values are hidden.
Instead, we base our method on dynamic programming and policy search [21] - by running a
dueling bandit algorithm on each state, one can determine the corresponding optimal action. The
resulting algorithm, Preference-based Policy Search (PPS), is presented in Algorithm 14. By
inducting from H − 1 to 0, PPS solves a dueling bandit problem at every state sh ∈ Sh, with arm
rewards specified by a ◦ π̂h+1:H for a ∈ A, where π̂ is the estimated best policy after step h+ 1,

135

and ◦ stands for concatenation of policies. By allocating an error of O(ε/H) on every state, we
obtain the following guarantee:
Theorem 68. Suppose the preference distribution satisfies Assumption 3. Let ε1 = C0ε

H
, N0 =

Ψ(ε1, δ/S)ε−α1 , where C0 is defined in Assumption 3. Algorithm 14 returns an ε-optimal policy
with probability 1 − δ using O

(
Hα+1SΨ(A,ε/H,δ/S)

εα

)
simulator steps and O

(
HαSΨ(A,ε/H,δ/S)

εα

)
comparisons.

We can plug in existing algorithms to instantiate Theorem 68. For example, under SST,
OPT-Maximize [73] achieves the minimax optimal rate for dueling bandits. In particular, it has a
comparison complexity of O

(
K log(1/δ)

ε2

)
for selecting an ε-optimal arm with probability 1− δ

among K arms. Plugging in this rate we obtain the following corollary:
Corollary 69. Suppose the preference distribution satisfies Assumption 3 and SST. Using OPT-
Maximize asM, Algorithm 14 returns an ε-optimal policy with probability 1−δ usingO

(
H3SA
ε2

log(δ/S)
)

simulator steps, and O
(
H2SA
ε2

log(δ/S)
)

comparisons.

The proof of Theorem 68 follows from using the performance difference lemma, combined
with properties ofM. Our result is similar to existing results for traditional RL with a simulator:
For example, in the case of infinite-horizon MDPs with a decaying factor of γ, [19] shows a
minimax rate of O

(
SA

ε2(1−γ)3

)
on step complexity. This is the same rate as in Corollary 69 by

taking H = 1
1−γ effective steps.

6.4 Combining Exploration and Policy Search for General PbRL

In this Section, we present our main result for PbRL without a simulator. RL without a simulator
is a challenging problem even in the traditional value-based RL setting. In this case, we will have
to explore the state space efficiently to find the optimal policy. Existing works in value-based
RL typically derive an upper bound on the Q-value function and apply the Bellman equation
to improve the policy iteratively [20, 98, 201]. However for PbRL, since the reward values are
hidden, we cannot apply traditional value iteration and Q-learning methods. To go around this
problem, we use a synthetic reward function to guide the exploration. We present our main
algorithm in Section 6.4.1, along with the theoretical analysis. We discuss relations to prior work
in Section 6.4.2.

6.4.1 Preferece-based Exploration and Policy Search (PEPS)
We call our algorithm Preference-based Exploration and Policy Search (PEPS), and present it in
Algorithm 15. As the name suggests, the algorithm combines exploration and policy search. For
every step h ∈ [H] and sh ∈ Sh, we set up an artificial reward function rsh(s, a) = 1s=sh , i.e.,
the agent gets a reward of 1 once it gets to sh, and 0 everywhere else (Step 4). This function is
also used in recent reward-free learning literatures [67, 99, 129]. But rather than using the reward
function to obtain a policy cover (which is costly in both time and space), we use it to help the

136

Algorithm 15 PEPS: Preferece-based Exploration and Policy Search
Input: Dueling Bandit algorithmM, quantity N0, success probability δ

1: Initialize π̂ ∈ ΠH randomly
2: for h = H,H − 1, ..., 1 do
3: for sh ∈ Sh do
4: Let rsh(s, a) = 1s=sh for all s ∈ S, a ∈ A
5: Start an instance of EULER(rsh , N0, δ/(4S))
6: Start an instance ofM (A, δ/(4S))
7: Get next query (a, a′) fromM
8: U ← ∅
9: for n ∈ [N0] do

10: Obtain a policy π̂n from EULER, and execute π̂n until step h
11: Return the trajectory and reward to EULER
12: if current state is sh then
13: Let π̄ = a ◦ π̂h+1:H if |U | = 0, otherwise a′ ◦ π̂h+1:H

14: Execute π̄ till step H , obtain trajectory τ
15: U ← U ∪ τ
16: end if
17: if |U | = 2 then
18: Compare the two trajectories in U and return toM
19: (a, a′)← next action fromM
20: end if
21: IfM has finished, break
22: end for
23: ifM has finished then
24: Update π̂h(sh) to the optimal action according toM
25: end if
26: end for
27: end for
Output: Policy π̂

dueling bandit algorithm. We can use arbitrary tabular RL algorithm to optimize rsh; here we
use EULER [201] with a budget of N0 and success probability δ/4S. The reason that we chose
EULER is mainly for its beneficial regret guarantees; but we can also use other algorithms in
practice. We also start an instance ofM, the dueling bandit algorithm, without setting the target
accuracy; one way to achieve this is to use a pre-defined accuracy forM, or use algorithms like
Beat-the-Mean (see Theorem 70 and 72 respectively).

Once we get to sh (Step 12), we execute the queried action a or a′ fromM, followed by the
current best policy π̂, as in PPS. If we have collected two trajectories, we compare them and
feed it back toM. Upon finishing N0 steps of exploration, we update the current best policy π̂
according toM. We return π̂ when we have explored every state s ∈ S.

Throughout this section, we use ι = log
(
SAH
εδ

)
to denote log factors. We present two

versions of guarantees with different sample complexity. The first version has a lower comparison

137

complexity, while the second version has a lower total step complexity. The different guarantee
comes from setting a slightly different target forM when it finishes in Step 21. In the following
first version, we setM to finish when it finds a O(ε/H)-optimal policy.
Theorem 70. Suppose the preference distribution satisfies Assumption 3. There exists a constant c0

such that the following holds: Let N0 = c0

(
HαSΨ(A,ε/H,δ/4S)

εα+1 + S3AH2ι3

ε

)
, recall ι = log

(
SAH
εδ

)
.

By setting the target accuracy as C0ε
2H

forM, PEPS obtains an ε-optimal policy with probability
1− δ using step complexity

O(HSN0) = O

(
Hα+1S2Ψ(A, ε/H, δ/4S)

εα+1
+
S4AH3ι3

ε

)
and comparison complexity O

(
HαSΨ(A,ε/H,δ/4S)

εα

)
.

Since we set the target accuracy before the algorithm starts, any PAC dueling bandit algorithm
can be used to instantiate Theorem 70. So similar to Theorem 68, we can plug in OPT-Maximize
[73] to obtain the following corollary:
Corollary 71. Suppose the preference distribution satisfies Assumption 3 and SST. There exists
a constant c0 such that the following holds: Let N0 = c0

(
SH2A log(S/δ)

ε3
+ S3AH2ι3

ε

)
. Using OPT-

Maximize with accuracy ε/H asM, PEPS obtains an ε-optimal policy with probability 1 − δ
using step complexity

O(HSN0) = O

(
H3S2A log(S/δ)

ε3
+
S4AH3ι3

ε

)
and comparison complexity O

(
H2SA log(S/δ)

ε2

)
.

In the second version, we simply do not set any performance target forM; it will explore
until we finish all the N0 episodes. Therefore, we never break in Step 21 and M is always
finished in Step 23. Since different states will be reached for a different number of times, we
cannot pre-set a target accuracy forM. Effectively, we explore every state s to the accuracy
of εs = O

(
ε

(µ(sh)SHα−1)1/α

)
(see proof in appendix for details), where µ(s) is the maximum

probability to reach s using any policy. Although this version leads to a slightly higher comparison
complexity, it leads to a better step complexity since all exploration steps are used efficiently. We
have the following result:
Theorem 72. Suppose the preference distribution satisfies Assumption 3. There exists a constant
c0 such that the following holds: Let N0 = c0

(
Hα−1SΨ(A, ε

HS
,δ/4S)

εα
+ S3AH2ι3

ε

)
. PEPS obtains an

ε-optimal policy with probability 1− δ using step complexity

O(HSN0) =

(
HαS2Ψ(A, ε

HS
, δ/4S)

εα
+
S4AH3ι3

ε

)
and comparison complexity O

(
Hα−1S2Ψ(A, ε

HS
,δ/4S)

εα

)
.

We need to instantiate Theorem 72 with anM that does not need a pre-set accuracy. Under
SST and STI, we can use Beat-the-Mean [199], which returns an ε-optimal arm among K arms

138

with probability 1 − δ, if it runs for Ω
(
(K
ε2

log
(
K
εδ

))
steps. We therefore obtain the following

corollary:
Corollary 73. Suppose the preference distribution satisfies Assumption 3, SST and STI. There
exists a constant c0 such that the following holds: Let N0 = c0

(
HSAι
ε2

+ S3AH2ι3

ε

)
. Using Beat-

the-Mean asM, PEPS obtains an ε-optimal policy with probability 1− δ using step complexity

O(HSN0) = O

(
H2S2Aι

ε2
+
S4AH3ι3

ε

)
and comparison complexity O

(
HS2Aι
ε2

)
.

6.4.2 Discussion
Comparing Corollary 71 and 73. Considering only the leading terms, the step complexity in
Corollary 73 is better by a factor3 of Õ(H/ε) but the comparison complexity is worse by a factor
of Õ(S/H) (recall that we assume S > H). Therefore the two theorems depict a tradeoff between
the step complexity and comparison complexity.
Comparing with lower bounds and value-based RL. Corollary 71 has the same comparison
complexity as Corollary 69. The lower bound for comparison complexity is Õ(SA

ε2
), a Õ(H2)

factor from our result. Our comparison complexity is also the same as the current best upper
bound in value-based RL (in terms of number of episodes), which shows that our result is close to
optimal.

Compared with the Õ(HSA
ε2

) lower bound on step complexity, Corollary 73 has an additional
factor of Õ(HS). The current best upper bound in value-based RL is Õ(H

3SA
ε2

), which is O(H/S)
times our result (recall that we assume H < S).
Comparing with previous RL method using policy covers. Some literature on reward-free
learning and policy covers [67, 99, 129] use a similar form of synthetic reward function as ours.
[67, 129] considers computing a policy cover by exploring the state space using a similar synthetic
function as PEPS. However, our results are generally not comparable since they assume that
µ(s) ≥ η for some η > 0, and their result depends on η. Our result do not need to depend on this
η. Closest to our method is the recent work of [99], which considers reward-free learning with
unknown rewards during exploration. However, their method cannot be applied to PbRL since we
do not have the reward values even in the planning phase. We note that the O(S2) dependence on
the step complexity is also common in these prior works. Nevertheless, our rates are better in H
dependence because we do not need to compute the policy cover explicitly.

6.4.3 Another Version to Accommodate Arbitrary PAC Dueling Algorithm
A drawback of PEPS is that the version in Theorem 72 requires a dueling algorithmM that does
not need a target accuracy, restricting the possible types of algorithms we can use. In this section,
we present a two-phase version of our algorithm to allow arbitraryM, with slightly improved log
factors on the guarantee.

3We use Õ to ignore log factors.

139

The two-phase version is presented in Algorithm 16 as PEPS2. PEPS2 separates the process
of obtaining a policy cover and using dueling bandits for policy search; in the first phase (Step
1-9) uses the synthetic reward function to obtain a policy cover with EULER. We then estimate
µ(s) for every state s ∈ S by executing the policy that we obtain. Using the estimate µ̂s, we
follow the process in PEPS with the target accuracy specified in Step 12.

For every state s ∈ S, let µ(s) = maxπ∈Π pπ(s) be the maximum probability to reach s.
Theorem 74. There exists a constant c0 such that the following holds. Let N0 = c0

S3AH2ι3

ε
, N1 =

c0S2 log(4S/δ)
ε2

, N2 =
Hα−1SΨ(A, ε

HS
,δ/4S)

εα
. With probability 1− δ, Algorithm 16 returns an ε-optimal

policy using HS(N0 +N1 +N2) steps and SN2 comparisons.
We can plug in the guarantee of OPT-Maximize instantiate Theorem 74. This result is better

in terms of the log terms than the result in Corollary 73.

Corollary 75. There exists constants c0 such that the following holds: LetN0 = c0

(
HSA log(δ/S)

ε2
+ S3AH2ι3

ε

)
,

where ι = log(SAH
εδ

). Using OPT-Maximize asM, PEPS2 obtains an ε-optimal policy with prob-
ability 1− δ using step complexity

O(HSN0) = O

(
H2S2A log(δ/S)

ε2
+
S4AH3ι3

ε

)
and comparison complexity O

(
HS2A log(S/δ)

ε2

)
.

6.4.4 Adapting PEPS to the Fixed Budget setting
While we present PPS and PEPS under the fixed confidence setting (with a given ε), one can
easily adapt it to the fixed budget setting (with a given N , number of episodes) by dividing N
evenly among the states. We present a fixed budget version in this section, described in detail in
Algorithm 17. To do this, we set N0 = N/S, where S is the number of non-terminating states.
Before the algorithm start, we start an instance ofM for every state s ∈ S; and instead of only
compare when reaching the target state, we simply explore according toM regardless of the
current state at step h.

In our experiments We realize PEPS with Q-learning instead of EULER because of its
computational efficiency; we use the formulation of [98] with a Hoeffding upper bound on the Q
function. ForM, we use Beat-the-Mean because it can use any budget.

6.5 Experiments
We performed experiments in synthetic environments to compare PEPS with previous baselines.
We consider two environments:
Grid World: We implemented a simple Grid World on a 4 × 4 grid. The agent goes from the
upper left corner to the lower right corner and can choose to go right or go down at each step. We
randomly put a reward of 1/3 on three blocks in the grid, and the maximal total reward is 2/3.
Random MDP: We followed the method in [133] but adapted it to our setting. We consider an
MDP with 20 states and 5 steps, with 4 states in each step. The transitions are sampled from a

140

40 60 80 100 120

Total Budget (Episodes)
0.2

0.3

0.4

0.5

0.6

0.7

Av
er

ag
e

Re
wa

rd

PEPS
DPS
EPMC

(a) GridWorld, c = 1

40 60 80 100 120

Total Budget (Episodes)
0.3

0.4

0.5

0.6

0.7

Av
er

ag
e

Re
wa

rd

PEPS
DPS
EPMC

(b) GridWorld, c = 0.001

40 60 80 100 120

Total Budget (Episodes)

1

2

3

4

5

Av
er

ag
e

Re
wa

rd

PEPS
DPS
EPMC

(c) Random MDP, c = 1

40 60 80 100 120

Total Budget (Episodes)

1

2

3

4

5

Av
er

ag
e

Re
wa

rd

PEPS
DPS
EPMC

(d) Random MDP, c = 0.001

Figure 6.1: Experiment Results comparing PEPS to baselines (DPS & EPMC).

Dirichlet prior (with parameters all set to 0.1) and the rewards are sampled from an exponential
prior with scale parameter λ = 5. The rewards are then shifted and normalized so that the
minimum reward is 0 and the mean reward is 1.

Compared methods. We compared to three baselines: i) DPS [133]: We used the version
with Gaussian process regression since this version gets the best result in their experiments; ii)
EPMC [181], which uses preferences to simulate a Q-function. We followed the default parameter
settings for both DPS and EPMC. Details of the algorithms and hyperparameter settings are
included in the appendix.

Experiment Setup. Our baselines are not directly comparable to PEPS since their goal is
to minimize the regret, instead of getting an ε-optimal policy. However, we can easily adapt all
the algorithms (including PEPS) to the fixed budget setting for optimal policy recovery. For the
baselines, we ran them until N episodes and then evaluated the current best policy. For PEPS, we
used the fixed budget version described in detail in the appendix. For both environments, we varied
the budget N ∈ [2S ′, 8S ′], where S ′ is the number of non-terminating states. The comparisons are
generated following the Bradley-Terry-Luce model [38]: φ(τ1, τ2) = 1

1+exp(−(r(τ1)−r(τ2))/c)
, with c

being either 0.001 or 1. In the first setting of c, the preferences are very close to deterministic while
comparison between equal rewards is uniformly random; in the latter setting, the preferences are
close to linear in the reward difference. We repeated each experiment for 32 times and computed
the mean and standard deviation.

Hyperparameters for experiments. For PEPS, we search the hyperparameters for Q learning
and Beat-the-Mean. This includes the learning rate of Q-learning (in range {0.1, 0.3, 1.0}), the ucb
bound ratio for Q-learning (in range {0.01, 0.1, 1.0}), and the ucb bound ratio for Beat-the-Mean
(in range {0.2, 0.5, 1.0}). We also allow the algorithm to random explore with probability in
{0.05, 0.1, 0.2, 0.5} during Q-learning. For DPS, we follow the default settings to use kernel

141

variance 0.1 and kernel noise 0.001 for the Gaussian process regression. For EPMC, we use
α = 0.2 and η = 0.8.

Results. The results are summarized in Figure 6.1. Overall, PEPS outperforms both baselines
in both environments. In Grid World, while all three methods get a relatively high variance when
c = 1, for c = 0.001 PEPS almost always get the exact optimal policy. Also for random MDP,
PEPS outperforms both baselines by a large margin (larger than two standard deviations). We
note that EPMC learns very slowly and almost does not improve as the budget increases, and this
is consistent with the observation in [133]. One potential reason that makes PEPS outperform
the baselines is because of the exploration method: Both DPS and EPMC need to estimate the Q
function well in order to perform efficient exploration. This estimation can take time exponential
in H , and it is not even computationally feasible to test until the Q function converges. As a result,
both DPS and EPMC explore almost randomly and cannot recover the optimal policy. On the
other hand, our method uses a dueling bandit algorithm to force exploration, so it guarantees that
at least states with high reach probability have their optimal action.

6.6 Conclusion

We analyze the theoretical foundations of the PbRL framework in detail and present the first finite-
time analysis for general PbRL problems. Based on reasonable assumptions on the preferences,
the proposed PEPS method recovers an ε-optimal policy with finite-time guarantees. Experiments
show the potential efficacy of our method in practice, and that it can work well in simulated
environments. Future work includes testing PEPS in other RL environments and applications,
developing algorithms for PbRL with finite-time regret guarantees, as well as PbRL in non-tabular
settings.

6.7 Proofs

6.7.1 Proof of Proposition 66

Proof. Let S = 6, S = {s0, ..., s5}, and A = 3,A = {a0, a1, a2}, and let H = 2. We start at s0.
Let r(s0, a) = 0 for all a ∈ A. Executing a0 in s0 goes to s1 w.p. 0.2, and to s2 w.p. 0.8. Executing
a1 in s0 goes to s3 with probability 1. Executing a2 in s0 goes to s4 w.p. 0.6 and to s5 w.p. 0.4.
For every action a, let r(s1, a) = 1, r(s2, a) = 0.01, r(s3, a) = 0.02, r(s4, a) = 0.5, r(s5, a) = 0.
See Figure 6.2 for a graphical explanation.

Let πi(s0) = ai for i ∈ {0, 1, 2} (actions in other states do not matter). It is easy to verify that
φs0(π1, π2) = −0.3, φs0(π2, π3) = −0.1, and φs0(π3, π1) = −0.02.

142

Figure 6.2: Example for proof of Proposition 66.

6.7.2 Proof of Proposition 67
Proof. For i), by the linearity of expectation we have for two random trajectories τ, τ ′, we have
E[φ(τ, τ ′)] = E[C(r(τ)− r(τ ′))]. Therefore for two policies π1, π2

φs(π1, π2) = Pr[τ(π1, s) � τ(π2, s)]− 1/2

= E[φ(τ(π1, s), τ(π2, s))]

= E[C(r(τ(π1, s))− r(τ(π2, s)))] = C(vs(π1)− vs(π2)).

For ii), when transitions are deterministic each policy corresponds to only one trajectory. Let τ1

and τ2 be the two trajectories corresponding to π1 and π2 starting at s. Then we have φs(π1, π2) =
φ(τ1, τ2). Then Assumption 3 is satisfied with C0 = c.

6.7.3 Proof of Theorem 68
Proof. We only need to show that the output policy π̂ is ε-optimal. Algorithm 14 loops over
h = 1, 2, ..., H . At every step h for every state s ∈ Sh, let π̃∗(s) = arg maxa V (s; a ◦ π̂h+1:H).
Let P ∗h denote the state distribution of π∗ at step h. With probability 1− δ, all instances ofM has
finished. Under this event, from the property ofM and the setup of N0 we have for every state
s ∈ S, Pr[φs(π̂, π̃

∗(s))] ≥ 1/2− ε1. Therefore from Assumption 3 we have

|vπ̃∗(s)(s)− vπ̂(s)| ≤ 1

C0

φs(π̃
∗(s), π̂) ≤ ε

H
.

Therefore using the performance difference lemma we have

V π∗(s0)− V π̂(s0) =
H∑
h=1

Esh∼P ∗h [v(sh; π
∗
h ◦ π̂h+1:H)− v(sh; π̂h:H)]

≤
H∑
h=1

Esh∼P ∗h [v(sh; π̃
∗
h ◦ π̂h+1:H)− v(sh; π̂h:H)]

≤
H∑
h=1

ε

H
= ε.

143

6.7.4 Proof of Theorem 70

Proof. Let S̃h = {s ∈ Sh|µ(s) ≥ ε/2S} be the set of “good” states that are reachable with
probability at least ε/(2S). Also let S̃ =

⋃
h S̃h be the set of all good states.

Now we show that the output policy π̂ is ε-optimal. We first present the performance of
EULER [201]:

Theorem 76 (Theorem 1, [201]). Let Q∗ be the value of the optimal policy. For any reward
function r, the regret of EULER is at most

R ≤ O(
√
Q∗SATL+

√
SSAH2L3(

√
S +
√
H))

with probability 1− δ, with L = log(HSAT/δ).

For any state s, let Ns be the number of times that we reach s in Step 12. Using Theorem 76
with T = HN0, we have for some constant C,

µ(s)N0 −Ns ≤ C(
√
µ(s)SAHN0L+

√
SSAH2L3(

√
S +
√
H)) (6.1)

with probability 1− δ/4S. By a union bound, suppose (6.1) holds for every state s ∈ S, which
happens with probability 1 − δ/4. Now consider any s ∈ S̃. With N0 = Ω(S

3AH2ι3

ε
), we have

Ns ≥ 1/2µ(s)N0. Now also using N0 = Ω
(
SHαΨ(A,ε/H,δ/4S)

εα+1

)
, we have

Ns ≥
1

2
µ(s)N0 ≥ Ω

(
HαΨ(A, ε/H, δ/4S)

εα

)
.

By setting the constant in N0 properly, from the definition of Ψ we know that with probability
1− δ/4S,M returns a CKε

H
optimal arm; here cK is a constant to be specified later.

Algorithm 15 loops over h = 1, 2, ..., H . At every step h for every state s ∈ Sh, let ã∗s =
arg maxa V (s; a ◦ π̂h+1:H). From the guarantees of OPT-Maximize we have

v(sh; ã
∗
s ◦ π̂h+1:H)− v(sh; π̂h:H) ≤ 1

C0

φs(ã
∗
s, π̂h+1:H) ≤ ε

2H
.

The first inequality comes from Assumption 3; we set cK small enough to satisfy the latter
inequality.

144

Let P ∗h denote the state distribution of π∗ at step h. We have

V π∗(s0)− V π̂(s0) =
H∑
h=1

Esh∼P ∗h [v(sh; π
∗
h ◦ π̂h+1:H)− v(sh; π̂h:H)]

≤
H∑
h=1

Esh∼P ∗h [v(sh; π̃
∗
h ◦ π̂h+1:H)− v(sh; π̂h:H)]

≤
H∑
h=1

Pr
π∗

[sh ∈ S̃] + Pr[sh ∈ S̃]Esh∼P ∗h ,sh∈S̃
[v(sh; π̃

∗
h ◦ π̂h+1:H)− v(sh; π̂h:H)]

≤ ε/(2S) · S +
H∑
h=1

ε/(2H) ≤ ε.

Here the first equality is the performance difference lemma (Lemma 13, [129]). The first inequality
comes from the definition of π̃∗; the third inequality comes from definition of S̃ , and the guarantee
ofM. Therefore we show that the output policy is ε-optimal.

Now we compute the sample complexity. It is obvious that the step complexity is HSN0

since we iterate through all s ∈ S, and each episode contains H steps. For comparison com-
plexity, we only need to finish S instances of M; therefore the comparison complexity is
O
(
HαSΨ(A,ε/H,δ/4S)

εα

)
.

6.7.5 Proof of Theorem 72

Proof. The proof follows most parts of that of 70. For any s ∈ S̃, we have Ns ≥ 1
2
µ(s)N0.

Guarantee of Beat-the-Mean is as follows:
For simplicity, let p = 1/α and q = (α − 1)/α. For sh ∈ S̃h, let εsh = ε

2µp(sh)SpHq . For

N0 = Ω
(
Hα−1SΨ(A, ε

HS
,δ/4S)

εα

)
, we have

Nsh ≥ 1/2µ(sh)N0 = Ω

(
µ(sh)H

α−1SΨ(A, ε
HS
, δ/4S)

εα

)
≥ Ω

(
Ψ(A, εsh , δ/4S)ε−αsh

)
.

Similar to proof of Theorem 70, we can set the constants properly to obtain that

v(sh; π̃
∗
h ◦ π̂h+1:H)− v(sh; π̂h:H) ≤ εsh (6.2)

with probability 1− δ/4S. Now suppose (6.2) holds for every h ∈ [H] and sh ∈ Sh, which holds

145

with probability 1− δ. We have

V π∗(s0)− V π̂(s0) =
H∑
h=1

Esh∼P ∗h [v(sh; π
∗
h ◦ π̂h+1:H)− v(sh; π̂h:H)]

≤
H∑
h=1

Esh∼P ∗h [v(sh; π̃
∗
h ◦ π̂h+1:H)− v(sh; π̂h:H)]

≤
H∑
h=1

Pr
π∗

[sh ∈ S̃] + Pr
π∗

[sh ∈ S̃]Esh∼P ∗h ,sh∈S̃
[v(sh; π̃

∗
h ◦ π̂h+1:H)− v(sh; π̂h:H)]

≤ ε/(2S) · S +
H∑
h=1

∑
sh∈S̃h

P ∗h (sh) (v(sh; π̃
∗
h ◦ π̂h+1:H)− v(sh; π̂h:H))

≤ ε/2 +
H∑
h=1

∑
sh∈S̃h

P ∗h (sh)εsh .

Here the first equality is the performance different lemma (Lemma 13, [129]), and P ∗h is the state
distribution of π∗ on step h. The first inequality comes from the definition of π̃∗. Now note that
P ∗h (sh) ≤ µ(sh), and that

∑H
h=1

∑
sh∈S̃h P

∗
h (sh) = H; we have

H∑
h=1

∑
sh∈S̃h

P ∗h (sh)εsh =
ε

2SpHq

H∑
h=1

∑
sh∈S̃h

P ∗h (sh)µ
−p(sh)

≤ ε

2SpHq

H∑
h=1

∑
sh∈S̃h

(P ∗h (sh))
1−p ≤ ε/2.

The inequality holds from Hölder’s inequality. Therefore we show that the output policy is
ε-optimal.

Now we compute the sample complexity. The step complexity is simply O(HSN0). For
comparison complexity, we roll out at most SN0 trajectories, so the comparison complexity is at
most SN0.

6.7.6 Proof of Theorem 74
Proof. The proof of Theorem 74 is largely the same as Theorem 72. For every state s, let µ̃(s)
be the probability that π̂s visits s. Similar to Theorem 70 and 72, we have Ns ≥ 1/2µ(s)N0 for
s ∈ S̃. Therefore by randomly pick a policy from the N0 episodes, we have µ̃(s) ≥ 1/2µ(s).

Using Hoeffding’s inequality and property of EULER we have that with probability 1− δ/2,
for every state s we have

R̂sh/N1 ≥ µ̃(s)−
√

log(4S/δ)

N0

≥ 1/2µ(s)−
√

log(4S/δ)

N0

,

146

and therefore µ(s) ≤ µ̂(s). On the other hand, we also have

µ̂(s) ≤ 2R̂sh/N1 + 2

√
log(4S/δ)

N0

≤ 2µ̃(s) + 4

√
log(4S/δ)

N0

≤ 2µ(s) + 4ε/S ≤ 6µ(s).

Define ε′sh ← ε
2(µ(sh)SHα−1)1/α as in Theorem 72. Therefore we know that with probability

1− δ/2, we have εsh ≤ ε′sh and that εsh = Θ(ε′sh). The rest of the proof follows the same process
as Theorem 72.

6.8 Auxiliary Lemma
We present the performance difference lemma here for completeness. Here we use the version
adapted to episode MDPs as in [129].
Lemma 77 (Lemma 13, [129]). For any episode MDP with reward function r and two policies
π0:H−1 and π′0:H−1, For any h ∈ [H], let Qh(s) be the distribution of state s at step h induced by
policy π0:H−1. We have

vπ0:H−1
(s0)− vπ′0:H−1

(s0) =
H−1∑
h=0

Es∼Qh(s)[Vπh◦π′h+1:H
(s)− Vπ′h:H

(s)].

147

Algorithm 16 PEPS2: Preferece-based Exploration and Policy Search with 2 phases
Input: Target Accuracy ε, Dueling Bandit algorithmM, quantities N0, N1, N2, success proba-

bility δ
1: for h ∈ [H] do
2: S̃h = ∅
3: for sh ∈ Sh do
4: Let rsh(s, a) = 1s=sh for all s ∈ S, a ∈ A
5: Obtain a policy π̂sh by using EULER(rsh , N0, δ/(4S)) to optimize rsh(s, a)

6: Rollout π̂sh for N1 times and record reward the total reward R̂sh under rsh
7: Let µ̂sh ← min{1, 2R̂sh/N1 + 2

√
log(4S/δ)

N
}

8: end for
9: end for

10: Initialize π̂ ∈ ΠH randomly
11: for h = H,H − 1, ..., 1 do
12: Let εsh ← ε

4(µ̂(sh)SHα−1)1/α

13: for sh ∈ Sh do
14: Start an instance ofM (A, εsh , δ/(4S))
15: Get next query (a, a′) fromM
16: U ← ∅
17: for n ∈ [N0] do
18: Execute π̂sh until step h
19: if current state is sh then
20: Let π̄ = a ◦ π̂h+1:H if |U | = 0, otherwise a′ ◦ π̂h+1:H

21: Execute π̄ till step H , obtain trajectory τ
22: U ← U ∪ τ
23: end if
24: if |U | = 2 then
25: Compare the two trajectories in U and return toM
26: end if
27: IfM has finished, break
28: end for
29: ifM has finished then
30: Update π̂h(sh) to the optimal action according toM
31: end if
32: end for
33: end for
Output: Policy π̂

148

Algorithm 17 PEPS with Fixed Budget
Input: Budget N , dueling bandit algorithmM, success probability δ

1: Initialize π̂ ∈ ΠH randomly
2: Start an instance of M (A, δ/(4S)) at every state s ∈ S (denote it by Ms), and get first

action (as, a
′
s)

3: for h = H,H − 1, ..., 1 do
4: for sh ∈ Sh do
5: Let rsh(s, a) = 1s=sh for all s ∈ S, a ∈ A
6: Start an instance of EULER(rsh , N0, δ/(4S))
7: U ← ∅
8: for n ∈ [N/S] do
9: Obtain a policy π̂n from EULER, and execute π̂n until step h

10: Return the trajectory and reward to EULER
11: s̃← current state
12: Let π̄ = as̃ ◦ π̂h+1:H if |U | = 0, otherwise a′s̃ ◦ π̂h+1:H

13: Execute π̄ till step H , obtain trajectory τ
14: U ← U ∪ τ
15: if |U | = 2 then
16: Compare the two trajectories in U and return toMs̃

17: Get next action (as̃, a
′
s̃) fromMs̃

18: Update π̂h(s̃) to the optimal action according toMs̃

19: end if
20: end for
21: end for
22: end for
Output: Policy π̂

149

150

Part III

Natural Language Understanding from
Multiple Domains

151

Chapter 7

Multi-task Learning with Sample
Re-weighting for Machine Reading
Comprehension

Machine Reading Comprehension (MRC) has gained growing interest in the research community
[140, 198]. In an MRC task, the machine reads a text passage and a question, and generates (or se-
lects) an answer based on the passage. This requires the machine to possess strong comprehension,
inference and reasoning capabilities. Over the past few years, there has been much progress in
building end-to-end neural network models [149] for MRC. However, most public MRC datasets
(e.g., SQuAD, MS MARCO, TriviaQA) are typically small (less than 100K) compared to the
model size (such as SAN [115, 117] with around 10M parameters). To prevent over-fitting,
recently there have been some studies on using pre-trained word embeddings [135] and contextual
embeddings in the MRC model training, as well as back-translation approaches [198] for data
augmentation.

Multi-task learning [43] is a widely studied area in machine learning, aiming at better model
generalization by combining training datasets from multiple tasks. In this work, we explore
a multi-task learning (MTL) framework to enable the training of one universal model across
different MRC tasks for better generalization. Intuitively, this multi-task MRC model can be
viewed as an implicit data augmentation technique, which can improve generalization on the
target task by leveraging training data from auxiliary tasks. The first method simply adopts a
sampling scheme, which randomly selects training data from the auxiliary tasks controlled by a
ratio hyperparameter; The second algorithm incorporates recent ideas of data selection in machine
translation [167]. It learns the sample weights from the auxiliary tasks automatically through
language models.

Prior to this work, many studies have used upstream datasets to augment the performance of
MRC models, including word embedding [135], language models (ELMo) [136] and machine
translation [198]. These methods aim to obtain a robust semantic encoding of both passages
and questions. Our MTL method is orthogonal to these methods: rather than enriching seman-
tic embedding with external knowledge, we leverage existing MRC datasets across different
domains, which help make the whole comprehension process more robust and universal. Our
experiments show that MTL can bring further performance boost when combined with contextual

153

representations from pre-trained language models, e.g., ELMo [136].
We validate our MTL framework with two state-of-the-art models on four datasets from

different domains. Experiments show that our methods lead to a significant performance gain
over single-task baselines on SQuAD [140], NewsQA [163] and Who-Did-What [134], while
achieving state-of-the-art performance on the latter two. For example, on NewsQA [163], our
model surpassed human performance by 13.4 (46.5 vs 59.9) and 3.2 (72.6 vs 69.4) absolute points
in terms of exact match and F1.

The contribution of this work is three-fold. First, we apply multi-task learning to the MRC
task, which brings significant improvements over single-task baselines. Second, the performance
gain from MTL can be easily combined with existing methods to obtain further performance
gain. Third, the proposed sampling and re-weighting scheme can further improve the multi-task
learning performance.

7.1 Related Works

Studies in machine reading comprehension mostly focus on architecture design of neural networks,
such as bidirectional attention [149], dynamic reasoning [186], and parallelization [198]. Some
recent work has explored transfer learning that leverages out-domain data to learn MRC models
when no training data is available for the target domain [81]. In this work, we explore multi-task
learning to make use of the data from other domains, while we still have access to target domain
training data.

Multi-task learning [43] has been widely used in machine learning to improve generalization
using data from multiple tasks. For natural language processing, MTL has been successfully
applied to low-level parsing tasks [59], sequence-to-sequence learning [123], and web search
[114]. More recently, [127] proposes to cast all tasks from parsing to translation as a QA problem
and use a single network to solve all of them. However, their results show that multi-task learning
hurts the performance of most tasks when tackling them together. Differently, we focus on
applying MTL to the MRC task and show significant improvement over single-task baselines.

Our sample re-weighting scheme bears some resemblance to previous MTL techniques that
assign weights to tasks [107]. However, our method gives a more granular score for each sample
and provides better performance for multi-task learning MRC.

7.2 Model Architecture

We call our model Multi-Task-SAN (MT-SAN), which is a variation of SAN [115] model with
two main differences: i) we add a highway network layer after the embedding layer, the encoding
layer and the attention layer; ii) we use exponential moving average [149] during evaluation. The
SAN architecture and our modifications are briefly described below and in Section 7.4.2, and
detailed description can be found in [115].

154

7.2.1 Input Format
For most tasks we consider, our MRC model takes a triplet (Q,P,A) as input, where Q =
(q1, ..., qm), P = (p1, ..., pn) are the word index representations of a question and a passage,
respectively , and A = (abegin, aend) is the index of the answer span. The goal is to predict A given
(Q,P).

7.2.2 Lexicon Encoding Layer
We map the word indices of P and Q into their 300-dim Glove vectors [135]. We also use
the following additional information for embedding words: i) 16-dim part-of-speech (POS)
tagging embedding; ii) 8-dim named-entity-recognition (NER) embedding; iii) 3-dim exact match
embedding: fexact match(pi) = I(pi ∈ Q), where matching is determined based on the original word,
lower case, and lemma form, respectively; iv) Question enhanced passage word embeddings:
falign(pi) =

∑
j γi,jh(GloVe(qj)), where

γi,j =
exp(h(GloVe(pj)), h(GloVe(qi)))∑
j′ exp(h(GloVe(pj′)), h(GloVe(qi)))

(7.1)

is the similarity between word pj and qi, and g(·) is a 300-dim single layer neural net with Rectified
Linear Unit (ReLU) g(x) = ReLU(W1x); v) Passage-enhanced question word embeddings: the
same as iv) but computed in the reverse direction. To reduce the dimension of the input to the
next layer, the 624-dim input vectors of passages and questions are passed through a ReLu layer
to reduce their dimensions to 125.

After the ReLU network, we pass the 125-dim vectors through a highway network [157], to
adapt to the multi-task setting: gi = sigmoid(W2p

t
i), p

t
i = ReLU(W3p

t
i) � gi + gi � pti, where

pti is the vector after ReLU transformation. Intuitively, the highway network here provides a
neuron-wise weighting, which can potentially handle the large variation in data introduced by
multiple datasets.

7.2.3 Contextual Encoding Layer
Both the passage and question encodings go through a 2-layer Bidirectional Long-Short Term
Memory (BiLSTM, Hochreiter and Schmidhuber, 1997) network in this layer. We append a
600-dim CoVe vector [126] to the output of the lexicon encoding layer as input to the contextual
encoders. For the experiments with ELMo, we also append a 1024-dim ELMo vector. Similar to
the lexicon encoding layer, the outputs of both layers are passed through a highway network for
multi-tasking. Then we concatenate the output of the two layers to obtain Hq ∈ R2d×m for the
question and Hp = R2d×n the passage, where d is the dimension of the BiLSTM.

7.2.4 Memory/Cross Attention Layer
We fuse Hp and Hq through cross attention and generate a working memory in this layer. We
adopt the attention function from [169] and compute the attention matrix as

C = dropout
(
fattention(Ĥ

q, Ĥp)
)
∈ Rm×n.

155

We then use C to compute a question-aware passage representation as

Up = concat(Hp, HqC)

. Since a passage usually includes several hundred tokens, we use the method of [112] to apply
self attention to the representations of passage to rearrange its information:

Ûp = Updropdiag(fattention(U
p, Up)),

where dropdiag means that we only drop diagonal elements on the similarity matrix (i.e., at-
tention with itself). Then, we concatenate Up and Ûp and pass them through a BiLSTM:
M = BiLSTM([Up]; Ûp]). Finally, output of the BiLSTM (after concatenating two directions)
goes through a highway layer to produce the memory.

7.2.5 Answer Module
The base answer module is the same as SAN, which computes a distribution over spans in the
passage. Firstly, we compute an initial state s0 by self attention on Hq:

s0 ← Highway

(∑
j

exp(w4H
q
j)∑

j′ expw4H
q
j′
·Hq

j

)
.

The final answer is computed through T time steps. At step t ∈ {1, ..., T − 1}, we compute the
new state using a Gated Recurrent Unit (GRU, Cho et al., 2014) st = GRU(st−1, xt), where xt
is computed by attention between M and st−1: xt =

∑
j βjMj, βj = softmax(st−1W5M). Then

each step produces a prediction of the start and end of answer spans through a bilinear function:
P begin
t = softmax(stW6M), P end

t = softmax(stW7M). The final prediction is the average of each
time step: P begin = 1

T

∑
t P

begin
t , P end = 1

T

∑
t P

end
t . We randomly apply dropout on the step

level in each time step during training, as done in [115]. During training, the objective is the
log-likelihood of the ground truth: l(Q,P,A) = logP begin(abegin) + logP end(aend).
Answer module for choosing from candidates. For one of the tasks (WDW), we need to choose
an answer from a list of candidates; the candidates are people names that have appeared in the
passage. For this task we first use the same way to summary information in questions as in

span-based models: s0 ← Highway
(∑

j

exp(w4H
q
j)∑

j′ expw4H
q

j′
·Hq

j

)
. We then compute an attention

score via simple dot product: s = softmax(sT0M). The probability of a candidate being the true
answer is the aggregation of attention scores for all appearances of the candidate:

Pr(c|Q,P) ∝
∑

1≤i≤n

siI(pi ∈ C)

for each candidate C. Recall that n is the length of passage P , and pi is the i-th word; therefore
I(pi ∈ C) is the indicator function of pi appears in candidate C. The candidate with the largest
probability is chosen as the predicted answer.

156

7.3 Algorithms

We describe our MTL training algorithms in this section. We start with a very simple and
straightforward algorithm that samples one task and one mini-batch from that task at each
iteration. To improve the performance of MTL on a target dataset, we propose two methods to
re-weight samples according to their importance. The first proposed method directly lowers the
probability of sampling from a particular auxiliary task; however, this probability has to be chosen
using grid search. We then propose another method that avoids such search by using a language
model.

Algorithm 18 Multi-task Learning of MRC
Input: K different datasets D1, ...,DK

1: for epoch= 1, 2, ... do
2: Divide each dataset Dk into Nk mini-batches Dk = {bk1, ..., bkNk}, 1 ≤ k ≤ K

3: S ← ⋃K
k=1Dk

4: Randomly shuffle minibatches in S to obtain a sequence B = (b1, ..., bL), where L = |S|
5: for each mini-batch b ∈ B do
6: Perform gradient update on modelM with loss l(b) =

∑
(Q,P,A)∈b l(Q,P,A)

7: end for
8: end for

Suppose we have K different tasks, the simplest version of our MTL training procedure is
shown in Algorithm 18. In each epoch, we take all the mini-batches from all datasets and shuffle
them for model training, and the same set of parameters is used for all tasks. Perhaps surprisingly,
as we will show in the experiment results, this simple baseline method can already lead to a
considerable improvement over the single-task baselines.

7.3.1 Mixture Ratio

One observation is that the performance of our model using Algorithm 18 starts to deteriorate
as we add more and more data from other tasks into our training pool. We hypothesize that the
external data will inevitably bias the model towards auxiliary tasks instead of the target task.

To avoid such adverse effect, we introduce a mixture ratio parameter during training. The
training algorithm with the mixture ratio is presented in Algorithm 19, with D1 being the target
dataset. In each epoch, we use all mini-batches from D1, while only a ratio α of mini-batches
from external datasets are used to train the model. In our experiment, we use hyperparameter
search to find the best α for each dataset combination. This method resembles previous methods
in multi-task learning to weight losses differently (e.g., Kendall et al., 2017), and is very easy to
implement. In our experiments, we use Algorithm 19 to train our network when we only use 2
datasets for MTL.

157

Algorithm 19 Multi-task Learning of MRC with mixture ratio, targeting D1

Input: K different datasets D1, ...,DK , mixture ratio α
1: for epoch= 1, 2, ... do
2: Divide each dataset Dk into Nk mini-batches Dk = {bk1, ..., bkNk}, 1 ≤ k ≤ K
3: S ← {b1

1, ..., b
1
N1
}

4: Randomly pick bαN1c mini-batches from
⋃K
k=2Dk and add to S

5: Randomly shuffle minibatches in S to obtain a sequence B = (b1, ..., bL), where L = |S|
6: for each mini-batch b ∈ B do
7: Perform gradient update on modelM with loss l(b) =

∑
(Q,P,A)∈b l(Q,P,A)

8: end for
9: end for

7.3.2 Sample Re-Weighting

The mixture ratio (Algorithm 19) dramatically improves the performance of our system. However,
it requires to find an ideal ratio by hyperparameter search which is time-consuming. Furthermore,
the ratio gives the same weight to every auxiliary data, but the relevance of every data point to the
target task can vary greatly.

We develop a novel re-weighting method to resolve these problems, using ideas inspired by
data selection in machine translation [16, 167]. We use (Qk, P k, Ak) to represent a data point
from the k-th task for 1 ≤ k ≤ K, with k = 1 being the target task. Since the passage styles
are hard to evaluate, we only evaluate data points based on Qk and Ak. Note that only data from
auxiliary task (2 ≤ k ≤ K) is re-weighted; target task data always have weight 1.

Our scores consist of two parts, one for questions and one for answers. For questions, we
create language models (detailed in Section 7.4.2) using questions from each task, which we
represent as LMk for the k-th task. For each question Qk from auxiliary tasks, we compute a
cross-entropy score:

HC,Q(Qk) = − 1

m

∑
w∈Qk

log(LMC(w)), (7.2)

where C ∈ {1, k} is the target or auxiliary task, m is the length of question Qk, and w iterates
over all words in Qk.

It is hard to build language models for answers since they are typically very short (e.g., answers
on SQuAD includes only one or two words in most cases). We instead just use the length of
answers as a signal for scores. Let lka be the length of Ak, the cross-entropy answer score is defined
as:

HC,A(Ak) = − log freqC(lka), (7.3)

where freqC is the frequency of answer lengths in task C ∈ {1, k}.
The cross entropy scores are then normalized over all samples in task C to create a comparable

158

metric across all auxiliary tasks:

H ′C,Q(Qk) =
HC,Q(Qk)−min(HC,Q)

max(HC,Q)−min(HC,Q)
(7.4)

H ′C,A(Ak) =
HC,A(Ak)−min(HC,A)

max(HC,A)−min(HC,A)
(7.5)

for C ∈ {1, 2, ..., K}. For C ∈ {2, ..., K}, the maximum and minimum are taken over all samples
in task k. For C = 1 (target task), they are taken over all available samples.

Intuitively, H ′C,Q and H ′C,A represents the similarity of text Q,A to task C; a low H ′C,Q
(resp. H ′C,A) means that Qk (resp. Ak) is easy to predict and similar to C, and vice versa. We
would like samples that are most similar from data in the target domain (low H ′1), and most
different (informative) from data in the auxiliary task (high H ′k). We thus compute the following
cross-entropy difference for each external data:

CED(Qk, Ak) =(H ′1,Q(Qk)−H ′k,Q(Qk))+

(H ′1,A(Ak)−H ′k,A(Ak)) (7.6)

for k ∈ {2, ..., K}. Note that a low CED score indicates high importance. Finally, we transform
the scores to weights by taking negative, and normalize between [0, 1]:

CED′(Qk, Ak) = 1− CED(Qk, Ak)−min(CED)

max(CED)−min(CED)
. (7.7)

Here the maximum and minimum are taken over all available samples and task. Our training
algorithm is the same as Algorithm 1, but for minibatch b we instead use the loss

l(b) =
∑

(P,Q,A)∈b

CED′(Q,A)l(P,Q,A) (7.8)

in step 6. We define CED′(Q1, A1) ≡ 1 for all target samples (P 1, Q1, A1).

7.4 Experiment Results
Our experiments are designed to answer the following questions on multi-task learning for MRC:
1. Can we improve the performance of existing MRC systems using multi-task learning?
2. How does multi-task learning affect the performance if we combine it with other external data?
3. How does the learning algorithm change the performance of multi-task MRC?
4. How does our method compare with existing MTL methods?
We first present our experiment details and results for MT-SAN. Then, we provide a comprehensive
study on the effectiveness of various MTL algorithms in Section 7.4.4. At last, we provide some
additional results on combining MTL with DrQA [48] to show the flexibility of our approach 1.

1We include the results in the appendix due to space limitations.

159

7.4.1 Datasets

We conducted experiments on SQuAD (Rajpurkar et al., 2016), NewsQA[163], MS MARCO (v1,
Nguyen et al.,2016) and WDW [134]. Dataset statistics is shown in Table 7.1. Although similar
in size, these datasets are quite different in domains, lengths of text, and types of task. In the
following experiments, we will validate whether including external datasets as additional input
information (e.g., pre-trained language model on these datasets) helps boost the performance of
MRC systems.

Dataset SQuAD(v1) NewsQA MS MARCO(v1) WDW
Training Questions 87,599 92,549 78,905 127,786

Text Domain Wikipedia CNN News Web Search Gigaword Corpus
Avg. Document Tokens 130 638 71 365

Answer type Text span Text span Natural sentence Cloze
Avg. Answer Tokens 3.5 4.5 16.4 N/A

Table 7.1: Statistics of the datasets. Some numbers come from [159].

7.4.2 Experiment Details

We mostly focus on span-based datasets for MT-SAN, namely SQuAD, NewsQA, and MS
MARCO. We convert MS MARCO into an answer-span dataset to be consistent with SQuAD
and NewsQA, following [115]. For each question, we search for the best span using ROUGE-L
score in all passage texts and use the span to train our model. We exclude questions with maximal
ROUGE-L score less than 0.5 during training. For evaluation, we use our model to find a span in
all passages. The prediction score is multiplied with the ranking score, trained following Liu et al.
[116]’s method to determine the final answer.

We train our networks using algorithms in Section 7.3, using SQuAD as the target task. For
experiments with two datasets, we use Algorithm 19; for experiments with three datasets we find
the re-weighting mechanism in Section 7.3.2 to have a better performance (a detailed comparison
will be presented in Section 7.4.4).

For generating sample weights, we build a LSTM language model on questions following the
implementation of Merity et al. [128] with the same hyperparameters. We only keep the 10,000
most frequent words, and replace the other words with a special out-of-vocabulary token.

Parameters of MT-SAN are mostly the same as in the original paper [115]. We utilize spaCy2

to tokenize the text and generate part-of-speech and named entity labels. We use a 2-layer
BiLSTM with 125 hidden units as the BiLSTM throughout the model. During training, we drop
the activation of each neuron with 0.3 probability. For optimization, we use Adamax [108] with a
batch size of 32 and a learning rate of 0.002. For prediction, we compute an exponential moving
average (EMA, Seo et al. 2016) of model parameters with a decay rate of 0.995 and use it to
compute the model performance. For experiments with ELMo, we use the model implemented by

2https://spacy.io

160

https://spacy.io

AllenNLP 3. We truncate passage to contain at most 1000 tokens during training and eliminate
those data with answers located after the 1000th token. The training converges in around 50
epochs for models without ELMo (similar to the single-task SAN); For models with ELMo, the
convergence is much faster (around 30 epochs).

7.4.3 Performance of MT-SAN

In the following sub-sections, we report our results on SQuAD and MARCO development sets, as
well as on the development and test sets of NewsQA 4. All results are single-model performance
unless otherwise noted.

The multi-task learning results of SAN on SQuAD are summarized in Table 7.2. By using
MTL on SQuAD and NewsQA, we can improve the exact-match (EM) and F1 score by (2%,
1.5%), respectively, both with and without ELMo. The similar gain indicates that our method is
orthogonal to ELMo. Note that our single-model performance is slightly higher than the original
SAN, by incorporating EMA and highway networks. By incorporating with multi-task learning, it
further improves the performance. The performance gain by adding MARCO is relatively smaller,
with 1% in EM and 0.5% in F1. We conjecture that MARCO is less helpful due to its differences
in both the question and answer style. For example, questions in MS MARCO are real web search
queries, which are short and may have typos or abbreviations; while questions in SQuAD and
NewsQA are more formal and well written.

Using 3 datasets altogether provides another marginal improvement. Our model obtains the
best results among existing methods that do not use a large language model (e.g., ELMo). Our
ELMo version also outperforms any other models which are under the same setting. We note that
BERT [65] uses a much larger model than ours(around 20x), and we leave the performance of
combining BERT with MTL as interesting future work.

The results of multi-task learning on NewsQA are in Table 7.3. The performance gain with
multi-task learning is even larger on NewsQA, with over 2% in both EM and F1. Experiments
with and without ELMo give similar results. What is worth noting is that our approach not only
achieves new state-of-art results with a large margin but also surpasses human performance on
NewsQA.

Finally we report MT-SAN performance on MS MARCO in Table 7.4. Multi-tasking on
SQuAD and NewsQA provides a similar performance boost in terms of BLEU-1 and ROUGE-L
score as in the case of NewsQA and SQuAD. Our method does not achieve very high performance
compared to previous work, probably because we do not apply common techniques like yes/no
classification or cross-passage ranking [176].

We also test the robustness of our algorithm by performing another set of experiments on
SQuAD and WDW. WDW is much more different than the other three datasets (SQuAD, NewsQA,
MS MARCO): WDW guarantees that the answer is always a person, whereas the percentage of
such questions in SQuAD is 12.9%. Moreover, WDW is a cloze dataset, whereas in SQuAD and
NewsQA answers are spans in the passage. We use a task-specific answer layer in this experiment

3https://allennlp.org/
4The official submission for SQuAD v1.1 and MARCO v1.1 are closed, so we report results on the development

set. According to their leaderboards, performances on development and test sets are usually similar.

161

https://allennlp.org/

Model Dev Set Performance

Single Model without Language Models EM,F1

BiDAF [149] 67.7, 77.3
SAN [115] 76.24, 84.06
MT-SAN on SQuAD (single task, ours) 76.84, 84.54
MT-SAN on SQuAD+NewsQA(ours) 78.60, 85.87
MT-SAN on SQuAD+MARCO(ours) 77.79, 85.23
MT-SAN on SQuAD+NewsQA+MARCO(ours) 78.72, 86.10

Single Model with ELMo

SLQA+ [174] 80.0, 87.0
MT-SAN on SQuAD (single task, ours) 80.04, 86.54
MT-SAN on SQuAD+NewsQA(ours) 81.36, 87.71
MT-SAN on SQuAD+MARCO(ours) 80.37, 87.17
MT-SAN on SQuAD+NewsQA+MARCO(ours) 81.58, 88.19
BERT [65] 84.2, 91.1
Human Performance (test set) 82.30, 91.22

Table 7.2: Performance of our method to train SAN in multi-task setting, competing published
results, leaderboard results and human performance, on SQuAD dataset (single model). Note that
BERT uses a much larger language model, and is not directly comparable with our results. We
expect our test performance is roughly similar or a bit higher than our dev performance, as is the
case with other competing models.

Model Dev Set Test Set
Model W/o ELMo EM,F1 EM, F1

Match-LSTM1 34.4, 49.6 34.9, 50.0
FastQA2 43.7, 56.1 42.8, 56.1
AMANDA3 48.4, 63.3 48.4, 63.7
MT-SAN (Single task) 55.8, 67.9 55.6, 68.0
MT-SAN (S+N) 57.8, 69.9 58.3, 70.7
Model With ELMo
MT-SAN (Single task) 57.7, 70.4 57.0, 70.4
MT-SAN (S+N) 60.1, 72.5 59.9, 72.6
Human Performance -,- 46.5, 69.4

Table 7.3: Performance of our method to train SAN in multi-task setting, with published results
and human performance on NewsQA dataset. All SAN results are from our models. “S+N” means
jointly training on SQuAD and NewsQA References: 1: implemented by Trischler et al. (2016).
2:Weissenborn et al.(2017). 3: Kundu and Ng(2018).

and use Algorithm 19; the WDW answer module is the same as in AS Reader [102], which we

162

Model Scores
Single Model W/o ELMo

FastQAExt1 (test set) 33.99, 32.09
Reasonet++2 38.62, 38.01
V-Net3 -, 45.65
SAN4 43.85, 46.14
MT-SAN 34.13, 42.65
MT-SAN: SQuAD+MARCO 34.29, 43.47
MT-SAN: 3 datasets 36.99, 43.64
Single Model With ELMo
MT-SAN 34.57, 42.88
MT-SAN: SQuAD+MARCO 37.02, 43.89
MT-SAN: 3 datasets 37.12, 44.12
Human Performance (test set) 48.02, 49.72

Table 7.4: Performance of our method to train SAN in multi-task setting, competing pub-
lished results and human performance, on MS MARCO dataset. The scores stand for (BLEU-1,
ROUGE-L) respectively. All SAN results are our results. “3 dataset” means we train using
SQuAD+NewsQA+MARCO. References: 1: [177]. 2: implemented by [155]. 3:[176]. 4: [115]

Model SQuAD WDW
MT-SAN (Single Task) 76.8, 84.5 77.5
MT-SAN (S+W) 77.6, 85.1 78.5
SOTA 86.2, 92.2 71.7
Human Performance 82.3, 91.2 84

Table 7.5: Performance of MT-SAN on SQuAD Dev and WDW test set. Accuracy is used to
evaluate WDW. “S+W” means jointly training on SQuAD and WDW. State of the art (STOA)
result comes from [197].

Model EM, F1 +/-
QANet 73.6, 82.7 0.0, 0.0
QANet + BT 75.1, 83.8 +1.5,+1.1
SAN 76.8, 84.5 0.0, 0.0
MT-SAN 78.7, 86.0 +1.9,+1.5
SAN + ELMo 80.0, 86.5 +3.2,+2.0
MT-SAN + ELMo 81.6, 88.2 +4.8, +3.7

Table 7.6: Comparison of methods to use external data. BT stands for back translation [198].

describe in the appendix for completeness. Despite these large difference between datasets, our
results (Table 7.5) show that MTL can still provide a moderate performance boost when jointly
training on SQuAD (around 0.7%) and WDW (around 1%).

163

Model Performance
SQuAD + MARCO EM,F1
Simple Combine (Alg. 18) 77.1, 84.6
Loss Uncertainty 77.3, 84.7
Mixture Ratio 77.8, 85.2
Sample Re-weighting 77.9,85.3
SQuAD + NewsQA + MARCO
Simple Combine (Alg. 18) 77.6, 85.2
Loss Uncertainty 78.2, 85.6
Mixture Ratio 78.4, 85.7
Sample Re-weighting 78.8, 86.0

Table 7.7: Comparison of different MTL strategies on MT-SAN. Performance is on SQuAD.
Loss Uncertainty is from Kendall et al. [107].

Samples/Groups CED′ HQ HA

Examples

(NewsQA) Q: Where is the drought hitting?
0.824 0.732 0.951

A: Argentina
(MARCO) Q: thoracic cavity definition

0.265 0.332 0.240
A: is the chamber of the human body ... and fascia.

Averages

Samples in NewsQA 0.710 0.593 0.895
Samples in MARCO 0.587 0.550 0.669
MARCO Questions that start with “When” or “Who” 0.662 0.605 0.761
All samples 0.654 0.573 0.791

Table 7.8: Scores for examples from NewsQA and MS MARCO and average scores for specific
groups of samples. CED′ is as in (7.7), while HQ and HA are normalized version of question
and sample scores. “Sum” are the actual scores we use, and “LM”, “Answer” are scores from
language models and answer lengths.

Comparison of methods using external data. As a method of data augmentation, we compare
our approach to previous methods for MRC in Table 7.6. Our model achieves better performance
than back translation. We also observe that language models such as ELMo obtain a higher
performance gain than multi-task learning, however, combining it with multi-task learning leads
to the most significant performance gain. This validates our assumption that multi-task learning is
more robust and is different from previous methods such as language modeling.

7.4.4 Comparison of Different MTL Algorithms

In this section, we provide ablation studies as well as comparisons with other existing algorithms
on the MTL strategy. We focus on MT-SAN without ELMo for efficient training.

Table 7.7 compares different multi-task learning strategies for MRC. Both the mixture ratio
(Sec 7.3.1) and sample re-weighting (Sec 7.3.2) improves over the naive baseline of simply com-

164

0 0.2 0.4 0.6 0.8 1
76

78

80

82

84

86

88

Sc
or

e
%

Sample Reweighting

Sample Reweighting

EM
F1

Figure 7.1: Effect of the mixture ratio on the performance of MT-SAN. Note that α = 0 is
equivalent to single task learning, and α = 1 is equivalent to simple combining.

bining all the data (Algorithm 18). On SQuAD+MARCO, they provide around 0.6% performance
boost in terms of both EM and F1, and around 1% on all 3 datasets. We note that this accounts
for around a half of our overall improvement. Although sample re-weighting performs similar as
mixture ratio, it significantly reduces the amount of training time as it eliminates the need for a
grid searching the best ratio. Kendal et al., (2017) use task uncertainty to weight tasks differently
for MTL; our experiments show that this has some positive effect, but does not perform as well as
our proposed two techniques. We note that Kendal et al. (as well as other previous MTL methods)
optimizes the network to perform well for all the tasks, whereas our method focuses on the target
domain which we are interested in, e.g., SQuAD.

Sensitivity of mixture ratio. We also investigate the effect of mixture ratio on the model
performance. We plot the EM/F1 score on SQuAD dev set vs. mixture ratio in Figure 7.1 for
MT-SAN when trained on all three datasets. The curve peaks at α = 0.4; however if we use
α = 0.2 or α = 0.5, the performance drops by around 0.5%, well behind the performance of
sample re-weighting. This shows that the performance of MT-SAN is sensitive to changes in α,
making the hyperparameter search even more difficult. Such sensitivity suggests a preference for
using our sample re-weighting technique. On the other hand, the ratio based approach is pretty
straightforward to implement.

Analysis of sample weights. Dataset comparisons in Table 7.1 and performance in Table 7.2
suggests that NewsQA share more similarity with SQuAD than MARCO. Therefore, a MTL
system should weight NewsQA samples more than MARCO samples for higher performance.
We try to verify this in Table 7.8 by showing examples and statistics of the sample weights. We
present the CED′ scores, as well as normalized version of question and answer scores (resp.
(H ′1,Q −H ′k,Q) and (H ′1,A −H ′k,A) in (7.6), and then negated and normalized over all samples in
NewsQA and MARCO in the same way as in (7.7)). A high HQ score indicates high importance
of the question, and HA of the answer; CED′ is a summary of the two. We first show one example
from NewsQA and one from MARCO. The NewsQA question is a natural question (similar to
SQuAD) with a short answer, leading to high scores both in questions and answers. The MARCO
question is a phrase, with a very long answer, leading to lower scores. From overall statistics, we

165

Setup SQuAD (v1) SQuAD (v2) NewsQA WDW
Single Dataset 69.5,78.8 (paper) 61.9, 65.2 51.9, 64.6 75.8

68.6, 77.8 (ours)
MT-DrQA on Sv1+NA 70.2, 79.3 -,- 52.8, 65.8 -
MT-DrQA on Sv1+W 69.2, 78.4 -,- -,- 75.7
MT-DrQA on Sv1+N+W 70.2, 79.3 -,- 53.1, 65.7 75.4
MT-DrQA on Sv2+N -,- 63.6, 66.7 52.7, 65.7 -
MT-DrQA on Sv2+W -,- 63.5, 66.3 -,- 75.4
MT-DrQA on Sv2+N+W -,- 63.1, 66.3 52.5, 65.6 75.3
SOTA (Single Model) 80.0, 87.0 72.3, 74.8 48.4, 63.7 (test) 71.7 (test)
MT-DrQA (Best) 70.2, 79.3 63.6, 66.7 53.0, 66.2(test) 75.4 (test)
Human Performance (test) 82.3, 91.2 86.8, 89.5 46.5, 69.4 84

Table 7.9: Single model performance of our method to train DrQA on multi-task setting, as well
as state-of-the-art (SOTA) results and human performance. SQuAD and NewsQA performance
are measured by (EM, F1), and WDW by accuracy percentage. All results are on development
set unless otherwise noted by “test”. Published SOTA results come from [92, 111, 174, 197]
respectively.

also find samples in NewsQA have a higher score than those in MARCO. However, if we look at
MARCO questions that start with “when” or “who” (i.e., probability natural questions with short
answers), the scores go up dramatically.

7.4.5 Additional Experiments on DrQA

To demonstrate the flexibility of our approach, we also adapt DrQA [48] into our MTL framework.
We only test DrQA using the basic Algorithm 19, since our goal is mainly to test the MTL
framework.
Model Architecture. Similar to MT-SAN, we add a highway network after the lexicon encoding
layer and the contextual encoding layer and use a different answer module for each dataset. We
apply MT-DrQA to a broader range of datasets. For span-detection datasets such as SQuAD, we
use the same answer module as DrQA. For cloze-style datasets like Who-Did-What, we use the
attention-sum reader [102] as the answer module. For classification tasks required by SQuAD
v2.0 [141], we apply a softmax to the last state in the memory layer and use it as the prediction.
Performance of MT-DrQA. We apply MT-DrQA to SQuAD (v1.1 and v2.0), NewsQA, and
WDW. We follow the setup of [48] for model architecture and hyperparameter setup. We use
Algorithm 18 to train all MT-DrQA models. Different than [141], we do not optimize the
evaluation score by changing the threshold to predict unanswerable question for SQuAD v2.0; we
just use the argmax prediction. As a result, we expect the gap between dev and test performance
to be lower for our model. The results of MT-DrQA are presented in Table 7.9. The results
of combining SQuAD and NewsQA obtain similar performance boost as our SAN experiment,
with a performance boost between 1-2% in both EM and F1 for the two datasets. The results
of MTL including WDW is different: although adding WDW to SQuAD still brings a marginal

166

performance boost to SQuAD, the performance on WDW drops after we add SQuAD and
NewsQA into the training process. We conjecture that this negative transfer phenomenon is
probably because of the drastic difference between WDW and SQuAD/NewsQA, both in their
domain, answer type, and task type; and DrQA might not be capable of caputuring all these
features using just one network. We leave the problem of further preventing such negative transfer
to future work.

7.5 Conclusion
We proposed a multi-task learning framework to train MRC systems using datasets from different
domains and developed two approaches to re-weight the samples for multi-task learning on MRC
tasks. Empirical results demonstrated our approaches outperform existing MTL methods and the
single-task baselines as well. Interesting future directions include combining with larger language
models such as BERT, and MTL with broader tasks such as language inference [119] and machine
translation.

167

168

Chapter 8

Multi-Source Transfer Learning for
Natural Language Understanding in the
Medical Domain

Recent advancement in NLP such as BERT [65] has facilitated great improvements in many
Natural Language Understanding (NLU) tasks [119]. BERT first trains a language model on
an unsupervised large-scale corpus, and then the pretrained model is fine-tuned to adapt to
downstream NLU tasks. This fine-tuning process can be seen as a form of transfer learning, where
BERT learns knowledge from the large-scale corpus and transfer it to downstream tasks.

We investigate NLU in the medical (scientific) domain, during the MEDIQA 2019 shared
tasks competition.The MEDIQA 2019 shared tasks [34] aim to improve the current state-of-the-
art systems for textual inference, question entailment and question answering in the medical
domain. This ACL-BioNLP 2019 shared task is motivated by a need to develop relevant methods,
techniques and gold standards for inference and entailment in the medical domain and their
application to improve domain-specific information retrieval and question answering systems.
The shared task consists of three parts: i) natural language inference (NLI) on MedNLI, ii)
Recognizing Question Entailment (RQE), and iii) Question Answering (QA).

To fit BERT to medical domain NLU, we need to adapt to i) The change from general domain
corpus to scientific language; ii) The change from low-level language model tasks to complex
NLU tasks. Although there is limited training data in NLU in the medical domain, we fortunately
have pre-trained models from two intermediate steps:
• General NLU embeddings: We use MT-DNN [119] trained on GLUE benchmark[172].

MT-DNN is trained on 10 tasks including NLI, question equivalence, and machine com-
prehension. These tasks correspond well to the target MEDIQA tasks but in different
domains.

• Scientific embeddings: We use SciBERT [33], which is a BERT model, but trained on
SemanticScholar scientific papers. Although SciBERT obtained state-of-the-art results on
several single-sentence tasks, it lacks knowledge from other NLU tasks such as GLUE.

In this chapter, we investigate different methods to combine and transfer the knowledge from the
two different sources and illustrate our results on the MEDIQA shared task. We name our method

169

Dk
<latexit sha1_base64="nIWvIpXPUYnZ1CkSaNqDEtL1dAU=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIoMuiLlxWsA9oh3InTdvQTGZMMoUy9DvcuFDErR/jzr8x085CWw8EDufcyz05QSy4Nq777RTW1jc2t4rbpZ3dvf2D8uFRU0eJoqxBIxGpdoCaCS5Zw3AjWDtWDMNAsFYwvs381oQpzSP5aKYx80McSj7gFI2V/G6IZkRRpHez3rhXrrhVdw6ySrycVCBHvVf+6vYjmoRMGipQ647nxsZPURlOBZuVuolmMdIxDlnHUokh0346Dz0jZ1bpk0Gk7JOGzNXfGymGWk/DwE5mIfWyl4n/eZ3EDK79lMs4MUzSxaFBIoiJSNYA6XPFqBFTS5AqbrMSOkKF1NieSrYEb/nLq6R5UfXcqvdwWand5HUU4QRO4Rw8uIIa3EMdGkDhCZ7hFd6cifPivDsfi9GCk+8cwx84nz/6SZI4</latexit><latexit sha1_base64="nIWvIpXPUYnZ1CkSaNqDEtL1dAU=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIoMuiLlxWsA9oh3InTdvQTGZMMoUy9DvcuFDErR/jzr8x085CWw8EDufcyz05QSy4Nq777RTW1jc2t4rbpZ3dvf2D8uFRU0eJoqxBIxGpdoCaCS5Zw3AjWDtWDMNAsFYwvs381oQpzSP5aKYx80McSj7gFI2V/G6IZkRRpHez3rhXrrhVdw6ySrycVCBHvVf+6vYjmoRMGipQ647nxsZPURlOBZuVuolmMdIxDlnHUokh0346Dz0jZ1bpk0Gk7JOGzNXfGymGWk/DwE5mIfWyl4n/eZ3EDK79lMs4MUzSxaFBIoiJSNYA6XPFqBFTS5AqbrMSOkKF1NieSrYEb/nLq6R5UfXcqvdwWand5HUU4QRO4Rw8uIIa3EMdGkDhCZ7hFd6cifPivDsfi9GCk+8cwx84nz/6SZI4</latexit><latexit sha1_base64="nIWvIpXPUYnZ1CkSaNqDEtL1dAU=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIoMuiLlxWsA9oh3InTdvQTGZMMoUy9DvcuFDErR/jzr8x085CWw8EDufcyz05QSy4Nq777RTW1jc2t4rbpZ3dvf2D8uFRU0eJoqxBIxGpdoCaCS5Zw3AjWDtWDMNAsFYwvs381oQpzSP5aKYx80McSj7gFI2V/G6IZkRRpHez3rhXrrhVdw6ySrycVCBHvVf+6vYjmoRMGipQ647nxsZPURlOBZuVuolmMdIxDlnHUokh0346Dz0jZ1bpk0Gk7JOGzNXfGymGWk/DwE5mIfWyl4n/eZ3EDK79lMs4MUzSxaFBIoiJSNYA6XPFqBFTS5AqbrMSOkKF1NieSrYEb/nLq6R5UfXcqvdwWand5HUU4QRO4Rw8uIIa3EMdGkDhCZ7hFd6cifPivDsfi9GCk+8cwx84nz/6SZI4</latexit><latexit sha1_base64="nIWvIpXPUYnZ1CkSaNqDEtL1dAU=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIoMuiLlxWsA9oh3InTdvQTGZMMoUy9DvcuFDErR/jzr8x085CWw8EDufcyz05QSy4Nq777RTW1jc2t4rbpZ3dvf2D8uFRU0eJoqxBIxGpdoCaCS5Zw3AjWDtWDMNAsFYwvs381oQpzSP5aKYx80McSj7gFI2V/G6IZkRRpHez3rhXrrhVdw6ySrycVCBHvVf+6vYjmoRMGipQ647nxsZPURlOBZuVuolmMdIxDlnHUokh0346Dz0jZ1bpk0Gk7JOGzNXfGymGWk/DwE5mIfWyl4n/eZ3EDK79lMs4MUzSxaFBIoiJSNYA6XPFqBFTS5AqbrMSOkKF1NieSrYEb/nLq6R5UfXcqvdwWand5HUU4QRO4Rw8uIIa3EMdGkDhCZ7hFd6cifPivDsfi9GCk+8cwx84nz/6SZI4</latexit>

BERT / MT'DNN / Sci'BERT

External Datasets

In,domain Datasets

Dk
<latexit sha1_base64="nIWvIpXPUYnZ1CkSaNqDEtL1dAU=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIoMuiLlxWsA9oh3InTdvQTGZMMoUy9DvcuFDErR/jzr8x085CWw8EDufcyz05QSy4Nq777RTW1jc2t4rbpZ3dvf2D8uFRU0eJoqxBIxGpdoCaCS5Zw3AjWDtWDMNAsFYwvs381oQpzSP5aKYx80McSj7gFI2V/G6IZkRRpHez3rhXrrhVdw6ySrycVCBHvVf+6vYjmoRMGipQ647nxsZPURlOBZuVuolmMdIxDlnHUokh0346Dz0jZ1bpk0Gk7JOGzNXfGymGWk/DwE5mIfWyl4n/eZ3EDK79lMs4MUzSxaFBIoiJSNYA6XPFqBFTS5AqbrMSOkKF1NieSrYEb/nLq6R5UfXcqvdwWand5HUU4QRO4Rw8uIIa3EMdGkDhCZ7hFd6cifPivDsfi9GCk+8cwx84nz/6SZI4</latexit><latexit sha1_base64="nIWvIpXPUYnZ1CkSaNqDEtL1dAU=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIoMuiLlxWsA9oh3InTdvQTGZMMoUy9DvcuFDErR/jzr8x085CWw8EDufcyz05QSy4Nq777RTW1jc2t4rbpZ3dvf2D8uFRU0eJoqxBIxGpdoCaCS5Zw3AjWDtWDMNAsFYwvs381oQpzSP5aKYx80McSj7gFI2V/G6IZkRRpHez3rhXrrhVdw6ySrycVCBHvVf+6vYjmoRMGipQ647nxsZPURlOBZuVuolmMdIxDlnHUokh0346Dz0jZ1bpk0Gk7JOGzNXfGymGWk/DwE5mIfWyl4n/eZ3EDK79lMs4MUzSxaFBIoiJSNYA6XPFqBFTS5AqbrMSOkKF1NieSrYEb/nLq6R5UfXcqvdwWand5HUU4QRO4Rw8uIIa3EMdGkDhCZ7hFd6cifPivDsfi9GCk+8cwx84nz/6SZI4</latexit><latexit sha1_base64="nIWvIpXPUYnZ1CkSaNqDEtL1dAU=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIoMuiLlxWsA9oh3InTdvQTGZMMoUy9DvcuFDErR/jzr8x085CWw8EDufcyz05QSy4Nq777RTW1jc2t4rbpZ3dvf2D8uFRU0eJoqxBIxGpdoCaCS5Zw3AjWDtWDMNAsFYwvs381oQpzSP5aKYx80McSj7gFI2V/G6IZkRRpHez3rhXrrhVdw6ySrycVCBHvVf+6vYjmoRMGipQ647nxsZPURlOBZuVuolmMdIxDlnHUokh0346Dz0jZ1bpk0Gk7JOGzNXfGymGWk/DwE5mIfWyl4n/eZ3EDK79lMs4MUzSxaFBIoiJSNYA6XPFqBFTS5AqbrMSOkKF1NieSrYEb/nLq6R5UfXcqvdwWand5HUU4QRO4Rw8uIIa3EMdGkDhCZ7hFd6cifPivDsfi9GCk+8cwx84nz/6SZI4</latexit><latexit sha1_base64="nIWvIpXPUYnZ1CkSaNqDEtL1dAU=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIoMuiLlxWsA9oh3InTdvQTGZMMoUy9DvcuFDErR/jzr8x085CWw8EDufcyz05QSy4Nq777RTW1jc2t4rbpZ3dvf2D8uFRU0eJoqxBIxGpdoCaCS5Zw3AjWDtWDMNAsFYwvs381oQpzSP5aKYx80McSj7gFI2V/G6IZkRRpHez3rhXrrhVdw6ySrycVCBHvVf+6vYjmoRMGipQ647nxsZPURlOBZuVuolmMdIxDlnHUokh0346Dz0jZ1bpk0Gk7JOGzNXfGymGWk/DwE5mIfWyl4n/eZ3EDK79lMs4MUzSxaFBIoiJSNYA6XPFqBFTS5AqbrMSOkKF1NieSrYEb/nLq6R5UfXcqvdwWand5HUU4QRO4Rw8uIIa3EMdGkDhCZ7hFd6cifPivDsfi9GCk+8cwx84nz/6SZI4</latexit>

k = 1, · · · , K1
<latexit sha1_base64="9EtKC8Uxdh3q9J1tp9a9r97APpE=">AAAB+HicbVDLSgMxFM34rPXRUZdugkVwUcpEBN0IRTeCmwr2Ae0wZDKZNjSTDElGqEO/xI0LRdz6Ke78G9N2Ftp64MLhnHu5954w5Uwbz/t2VlbX1jc2S1vl7Z3dvYq7f9DWMlOEtojkUnVDrClngrYMM5x2U0VxEnLaCUc3U7/zSJVmUjyYcUr9BA8EixnBxkqBWxldoVqfRNLoGrwLUOBWvbo3A1wmqCBVUKAZuF/9SJIsocIQjrXuIS81fo6VYYTTSbmfaZpiMsID2rNU4IRqP58dPoEnVolgLJUtYeBM/T2R40TrcRLazgSboV70puJ/Xi8z8aWfM5FmhgoyXxRnHBoJpynAiClKDB9bgoli9lZIhlhhYmxWZRsCWnx5mbTP6siro/vzauO6iKMEjsAxOAUIXIAGuAVN0AIEZOAZvII358l5cd6dj3nrilPMHII/cD5/ANkykeY=</latexit><latexit sha1_base64="9EtKC8Uxdh3q9J1tp9a9r97APpE=">AAAB+HicbVDLSgMxFM34rPXRUZdugkVwUcpEBN0IRTeCmwr2Ae0wZDKZNjSTDElGqEO/xI0LRdz6Ke78G9N2Ftp64MLhnHu5954w5Uwbz/t2VlbX1jc2S1vl7Z3dvYq7f9DWMlOEtojkUnVDrClngrYMM5x2U0VxEnLaCUc3U7/zSJVmUjyYcUr9BA8EixnBxkqBWxldoVqfRNLoGrwLUOBWvbo3A1wmqCBVUKAZuF/9SJIsocIQjrXuIS81fo6VYYTTSbmfaZpiMsID2rNU4IRqP58dPoEnVolgLJUtYeBM/T2R40TrcRLazgSboV70puJ/Xi8z8aWfM5FmhgoyXxRnHBoJpynAiClKDB9bgoli9lZIhlhhYmxWZRsCWnx5mbTP6siro/vzauO6iKMEjsAxOAUIXIAGuAVN0AIEZOAZvII358l5cd6dj3nrilPMHII/cD5/ANkykeY=</latexit><latexit sha1_base64="9EtKC8Uxdh3q9J1tp9a9r97APpE=">AAAB+HicbVDLSgMxFM34rPXRUZdugkVwUcpEBN0IRTeCmwr2Ae0wZDKZNjSTDElGqEO/xI0LRdz6Ke78G9N2Ftp64MLhnHu5954w5Uwbz/t2VlbX1jc2S1vl7Z3dvYq7f9DWMlOEtojkUnVDrClngrYMM5x2U0VxEnLaCUc3U7/zSJVmUjyYcUr9BA8EixnBxkqBWxldoVqfRNLoGrwLUOBWvbo3A1wmqCBVUKAZuF/9SJIsocIQjrXuIS81fo6VYYTTSbmfaZpiMsID2rNU4IRqP58dPoEnVolgLJUtYeBM/T2R40TrcRLazgSboV70puJ/Xi8z8aWfM5FmhgoyXxRnHBoJpynAiClKDB9bgoli9lZIhlhhYmxWZRsCWnx5mbTP6siro/vzauO6iKMEjsAxOAUIXIAGuAVN0AIEZOAZvII358l5cd6dj3nrilPMHII/cD5/ANkykeY=</latexit><latexit sha1_base64="9EtKC8Uxdh3q9J1tp9a9r97APpE=">AAAB+HicbVDLSgMxFM34rPXRUZdugkVwUcpEBN0IRTeCmwr2Ae0wZDKZNjSTDElGqEO/xI0LRdz6Ke78G9N2Ftp64MLhnHu5954w5Uwbz/t2VlbX1jc2S1vl7Z3dvYq7f9DWMlOEtojkUnVDrClngrYMM5x2U0VxEnLaCUc3U7/zSJVmUjyYcUr9BA8EixnBxkqBWxldoVqfRNLoGrwLUOBWvbo3A1wmqCBVUKAZuF/9SJIsocIQjrXuIS81fo6VYYTTSbmfaZpiMsID2rNU4IRqP58dPoEnVolgLJUtYeBM/T2R40TrcRLazgSboV70puJ/Xi8z8aWfM5FmhgoyXxRnHBoJpynAiClKDB9bgoli9lZIhlhhYmxWZRsCWnx5mbTP6siro/vzauO6iKMEjsAxOAUIXIAGuAVN0AIEZOAZvII358l5cd6dj3nrilPMHII/cD5/ANkykeY=</latexit>

k = K1+1, · · · , K2
<latexit sha1_base64="gg82fn5PwbpGh2te5lm987yANFg=">AAACAHicbVDLSsNAFJ3UV62vqAsXbqYWQbCUpAi6EYpuhG4q2Ac0IUwmk3boJBNmJkIJ3fgrblwo4tbPcOffOG2z0NYDFw7n3Mu99/gJo1JZ1rdRWFldW98obpa2tnd298z9g47kqcCkjTnjoucjSRiNSVtRxUgvEQRFPiNdf3Q79buPREjK4wc1TogboUFMQ4qR0pJnHo2um57tlM+dsl11cMCVrMKmV/fMilWzZoDLxM5JBeRoeeaXE3CcRiRWmCEp+7aVKDdDQlHMyKTkpJIkCI/QgPQ1jVFEpJvNHpjAU60EMORCV6zgTP09kaFIynHk684IqaFc9Kbif14/VeGVm9E4SRWJ8XxRmDKoOJymAQMqCFZsrAnCgupbIR4igbDSmZV0CPbiy8ukU6/ZVs2+v6g0bvI4iuAYnIAzYINL0AB3oAXaAIMJeAav4M14Ml6Md+Nj3low8plD8AfG5w8zMpQ3</latexit><latexit sha1_base64="gg82fn5PwbpGh2te5lm987yANFg=">AAACAHicbVDLSsNAFJ3UV62vqAsXbqYWQbCUpAi6EYpuhG4q2Ac0IUwmk3boJBNmJkIJ3fgrblwo4tbPcOffOG2z0NYDFw7n3Mu99/gJo1JZ1rdRWFldW98obpa2tnd298z9g47kqcCkjTnjoucjSRiNSVtRxUgvEQRFPiNdf3Q79buPREjK4wc1TogboUFMQ4qR0pJnHo2um57tlM+dsl11cMCVrMKmV/fMilWzZoDLxM5JBeRoeeaXE3CcRiRWmCEp+7aVKDdDQlHMyKTkpJIkCI/QgPQ1jVFEpJvNHpjAU60EMORCV6zgTP09kaFIynHk684IqaFc9Kbif14/VeGVm9E4SRWJ8XxRmDKoOJymAQMqCFZsrAnCgupbIR4igbDSmZV0CPbiy8ukU6/ZVs2+v6g0bvI4iuAYnIAzYINL0AB3oAXaAIMJeAav4M14Ml6Md+Nj3low8plD8AfG5w8zMpQ3</latexit><latexit sha1_base64="gg82fn5PwbpGh2te5lm987yANFg=">AAACAHicbVDLSsNAFJ3UV62vqAsXbqYWQbCUpAi6EYpuhG4q2Ac0IUwmk3boJBNmJkIJ3fgrblwo4tbPcOffOG2z0NYDFw7n3Mu99/gJo1JZ1rdRWFldW98obpa2tnd298z9g47kqcCkjTnjoucjSRiNSVtRxUgvEQRFPiNdf3Q79buPREjK4wc1TogboUFMQ4qR0pJnHo2um57tlM+dsl11cMCVrMKmV/fMilWzZoDLxM5JBeRoeeaXE3CcRiRWmCEp+7aVKDdDQlHMyKTkpJIkCI/QgPQ1jVFEpJvNHpjAU60EMORCV6zgTP09kaFIynHk684IqaFc9Kbif14/VeGVm9E4SRWJ8XxRmDKoOJymAQMqCFZsrAnCgupbIR4igbDSmZV0CPbiy8ukU6/ZVs2+v6g0bvI4iuAYnIAzYINL0AB3oAXaAIMJeAav4M14Ml6Md+Nj3low8plD8AfG5w8zMpQ3</latexit><latexit sha1_base64="gg82fn5PwbpGh2te5lm987yANFg=">AAACAHicbVDLSsNAFJ3UV62vqAsXbqYWQbCUpAi6EYpuhG4q2Ac0IUwmk3boJBNmJkIJ3fgrblwo4tbPcOffOG2z0NYDFw7n3Mu99/gJo1JZ1rdRWFldW98obpa2tnd298z9g47kqcCkjTnjoucjSRiNSVtRxUgvEQRFPiNdf3Q79buPREjK4wc1TogboUFMQ4qR0pJnHo2um57tlM+dsl11cMCVrMKmV/fMilWzZoDLxM5JBeRoeeaXE3CcRiRWmCEp+7aVKDdDQlHMyKTkpJIkCI/QgPQ1jVFEpJvNHpjAU60EMORCV6zgTP09kaFIynHk684IqaFc9Kbif14/VeGVm9E4SRWJ8XxRmDKoOJymAQMqCFZsrAnCgupbIR4igbDSmZV0CPbiy8ukU6/ZVs2+v6g0bvI4iuAYnIAzYINL0AB3oAXaAIMJeAav4M14Ml6Md+Nj3low8plD8AfG5w8zMpQ3</latexit>

Task'specific
Layers

Task'specific
Losses

Figure 8.1: Illustration of the proposed multi-source multi-task learning method.

as DoubleTransfer, since it transfers knowledge from two different sources. Our method is based
on fine-tuning both MT-DNN and SciBERT using multi-task learning, which has demonstrated
the efficiency of knowledge transformation [43, 113, 119, 191], and integrating models from both
domains with ensembles.

8.1 Related Works
Transfer learning has been widely used in training models in the medical domain. For example,
Romanov and Shivade [145] leveraged the knowledge learned from SNLI to MedNLI; a transfer
from general domain NLI to medical domain NLI. They also employed word embeddings trained
on MIMIC-III medical notes, which can be seen as a language model in the scientific domain.
SciBERT [33] studies transferring knowledge from SciBERT pretrained model to single-sentence
classification tasks. Our problem is unique because of the prohibitive cost to train BERT: Either
BERT or SciBERT requires a very long time to train, so we only explore how to combine the
existing embeddings from SciBERT or MT-DNN. Transfer learning is also widely used in other
tasks of NLP, such as machine translation [22] and machine reading comprehension [191].

8.2 Methods
We propose a multi-task learning method for the medical domain data. It employs datasets/tasks
from both medical domain and external domains, and leverage the pre-trained model such as
MT-DNN and SciBERT for fine-tuning. An overview of the proposed method is illustrated in
Figure 8.1. To further improve the performance, we propose to ensemble models trained from
different initialization in the evaluation stage. Below we detail our methods for fine-tuning and
ensembles.

8.2.1 Fine-tuning details
Algorithm. We fine-tune the two types of pre-trained models on all the three tasks using multi-
task learning. As suggested by MEDIQA paper, we also fine-tune our model on MedQuAD [1], a
medical QA dataset. We will provide details for fine-tuning on these datasets in Section 8.2.3.
We additionally regularize the model by also training on MNLI [179]. To prevent the negative
transfer from MNLI, we put a larger weight on MEDIQA data by sampling MNLI data with less
probability. Our algorithm is presented in Algorithm 20 and illustrated as Figure 8.1, which is a

170

Algorithm 20 Multi-task Fine-tuning with External Datasets
Input: In-domain datasets D1, ...,DK1 , External domain datasets DK1+1, ...,DK2 , max epoch,

mixture ratio α
1: Initialize the modelM
2: for epoch= 1, 2, ..., max epoch do
3: Divide each dataset Dk into Nk mini-batches Dk = {bk1, ..., bkNk}, 1 ≤ k ≤ K2

4: S ← D1 ∪ D2 ∪ · · · ∪ DK1

5: N ← N1 +N2 + · · ·+NK1

6: Randomly pick bαNc mini-batches from
⋃K2

k=K1
Dk and add to S

7: Assign mini-batches in S in a random order to obtain a sequence B = (b1, ..., bL), where
L = N + bαNc

8: for each mini-batch b ∈ B do
9: Perform gradient update onM with loss l(b) =

∑
(s1,s2)∈b l(s1, s2)

10: end for
11: Evaluate development set performance on D1, ...,DK1

12: end for
Output: Model with best evaluation performance

mixture ratio method for multi-task learning inspired by Xu et al. [191]. We start with in-domain
datasets D1, ...DK1 (i.e., the MEDIQA tasks, K1 = 3) and external datasets DK1+1, ...,DK2 (in
this case MNLI). We cast all the training samples as sentence pairs (s1, s2) ∈ Dk, k = 1, 2, ..., K2.
In each epoch of training, we use all mini-batches from in-domain data, while only a small
proportion (controlled by α) of mini-batches from external datasets are used to train the model.
In our experiments, the mixture ratio α is set to 0.5. We use MedNLI, RQE, QA, and MedQuAD
in medical domain as in-domain data and MNLI as external data. For MedNLI, we additionally
find that using MedNLI as in-domain data and RQE, QA, MedQuAD as external data can also
help boost performance. We use models trained using both setups of external data for ensembling.
Pre-trained Models. We use three different types of initialization as the starting point for fine-
tuning: i) the uncased MT-DNN large model from Liu et al. [119], ii) the cased knowledge-distilled
MT-DNN model from Liu et al. [118], and iii) the uncased SciBERT model [33]. We add a simple
softmax layer (or linear layer for QA and MedQuAD tasks) atop BERT as the answer module for
fine-tuning. For initialization in step 1 in Algorithm 20, we initialize all BERT weights with the
pretrained weights, and randomly initialize the answer layers. After multi-task fine-tuning, the
joint model is further fine-tuned on each specific task to get better performance. We detail the
training loss and fine-tuning process for each task in Section 8.2.3.
Objectives. MedNLI and RQE are binary classification tasks, and we use a cross-entropy loss.
Specifically, for a sentence pair X we compute the loss

L(X) = −
∑
c

1(X, c) log(Pr(c|X)),

where c iterates over all possible classes, 1(X, c) is the binary indicator (0 or 1) if class label c is
the correct classification for X , and Pr(c|X) is the model prediction for probability of class c for
sample X .

171

We formulate QA and MedQuAD as regression tasks, and thus a MSE loss is used. Specifically,
for a question-answer pair (Q,A) we compute the MSE loss as

L(Q,A) = (y − score(Q,A))2,

where y is the target relevance score for pair (Q,A), and score(Q,A) is the model prediction for
the same pair.

8.2.2 Model Ensembles
After fine-tuning, we ensemble models trained from MT-DNN and SciBERT, and using different
setups of in-domain and external datasets. The traditional methods typically fuse models by
averaging the prediction probability of different models. For our setting, the in-domain data is
very limited and it tends to overfit; this means the predictions can be arbitrarily close to 1, favoring
to more over-fitting models. To prevent over-fitting, we ensemble the models by using a majority
vote on their predictions, and resolving ties using sum of prediction probabilities. Suppose we
have M models, and the m-th model predicts the answer p̂m for a specific question. For the
classification task (MedNLI and RQE), we have p̂m ∈ RC , where C is the number of categories.
Let ŷm = arg maxi p̂

(i)
m be the prediction of model m, where p̂(i)

m is the i-th dimension of p̂m. The
final prediction is chosen as

ŷensemble = arg max
y∈maj({ŷm}Mm=1)

M∑
m=1

p̂(y)
m .

In other words, we first obtain the majority of predictions by computing the majority maj({ŷm}Mm=1),
and resolve the ties by computing the sum of prediction probabilities

∑M
m=1 p̂

(y)
m . For QA tasks

(QA and MedQuAD), the task is cast as a regression problem, where a positive number means
correct answer, and negative otherwise. We have p̂m ∈ R. We first compute the average score
p̂ensem = 1

M

∑M
m=1 p̂m. We also compute the prediction as ŷm = I(p̂m ≥ 0), where I is the

indicator function. We compute the ensemble prediction through a similar majority vote as the
classification case:

ŷensem =


1, if

∑M
m=1 ŷm > M/2

0, if
∑M

m=1 ŷm < M/2

I(p̂ensem > 0), otherwise.

To be precise, we predict the majority if a tie does not exist, or the sign of p̂ensem otherwise. The
final ranking of answers is carried out by first rank the (predicted) positive answers, and then the
(predicted) negative answers.

8.2.3 Dataset-Specific Details
MedNLI: Since the MEDIQA shared task uses a different test set than the original MedNLI
dataset, we merge the original MedNLI development set into the training set and use evaluation
performance on the original MedNLI test set. Furthermore, MedNLI and MNLI are the same NLI

172

tasks, thus, we shared final-layer classifiers for these two tasks. For MedNLI, we find that each
consecutive 3 samples in all the training set contain the same premise with different hypothesizes,
and contains exactly 1 entail, 1 neutral and 1 contradiction. To the end, in our prediction, we
constrain the three predictions to be one of each kind, and use the most likely prediction from the
model prediction probabilities.
RQE: We use the clinical question as the premise and question from FAQ as the hypothesis. We
find that the test data distribution is quite different from the train data distribution. To mitigate
this effect, we randomly shuffle half of the evaluation data into the training set and evaluate on the
remaining half.
QA: We use the answer as the premise and the question as the hypothesis. The QA task is cast as
both a ranking task and a classification task. Each question is associated with a relevance score in
{1, 2, 3, 4}, and an additional rank over all the answers for a specific question is given. We use a
modified score to incorporate both information: suppose there are m questions with relevance
score s ∈ {1, 2, 3, 4}. Then the i-th most relevant answer in these m questions get modified score
s− i−1

m
. In this way the scores are uniformly distributed in (s− 1, s]. We shift all scores by −2

so that a positive score leads to a correct answer and vice versa. We also tried pairwise losses to
incorporate the ranking but did not find it to boost the performance very much.

We find that the development set distribution is inconsistent with test data - the training and
test set consist of both LiveQAMed and Alexa questions, whereas the development set seems to
only contain LiveQAMed questions. We shuffle the training and development set to make them
similar: We use the last 25 questions in original development set (LiveQAMed questions) and
the last 25 Alexa questions (from the original training set) as our development set, and use the
remaining questions as our training set. This results in 1,504 training pairs and 431 validation
pairs. Due to the limited size of the QA dataset, we use cross-validation that divides all pairs
into 5 slices and train 5 models by using each slice as a validation set. We train MT-DNN and
SciBERT on both these 5 setups and obtain 10 models, and ensemble all the 10 models obtained.
MedQuAD: We use 10,109 questions from MedQuAD because the remaining questions are not
available due to copyright issues. The original MedQuAD dataset only contains positive question
pairs. We add negative samples to the dataset by randomly sampling an answer from the same
web page. For each positive QA pair, we add two negative samples. The resulting 30,327 pairs
are randomly divided into 27,391 training pairs and 2,936 evaluation pairs. Then we use the
same method as QA to train MedQuAD; we also share the same answer module between QA and
MedQuAD.

8.2.4 Implementation and Hyperparameters
We implement our method using PyTorch1 and Pytorch-pretrained-BERT2, as an extension to MT-
DNN3. We also use the pytorch-compatible SciBERT pretrained model provided by AllenNLP4.
Each training example is pruned to at most 384 tokens for MT-DNN models and 512 tokens for
SciBERT models. We use a batch size of 16 for MT-DNN, and 40 for SciBERT. For fine-tuning,

1https://pytorch.org/
2https://github.com/huggingface/pytorch-pretrained-BERT
3https://github.com/namisan/mt-dnn
4https://github.com/allenai/scibert

173

https://pytorch.org/
https://github.com/huggingface/pytorch-pretrained-BERT
https://github.com/namisan/mt-dnn
https://github.com/allenai/scibert

Model Dev Set Test Set
WTMed - 98.0
PANLP - 96.6
Ours 91.7 93.8
Sieg - 91.1
SOTA 76.6 -

Table 8.1: The leaderboard for MedNLI task (link). Scores are accuracy(%). Our method ranked
the 3rd on the leaderboard. Previous SOTA method was from [145], on the original MedNLI test
set (used as dev set here).

Model Dev Set Test Set
PANLP - 74.9
Sieg - 70.6
IIT-KGP - 68.4
Ours 91.7 66.2

Table 8.2: The leaderboard for RQE task (link). Scores are accuracy(%). Our method ranked the
7th on the leaderboard.

we train the models for 20 epochs using a learning rate of 5×10−5. After that, we further fine-tune
the model from the best multi-task model for 6 epochs for each dataset, using a learning rate
of 5 × 10−6. We ensemble all models with an accuracy larger than 87.7 for MedNLI, 83.5 for
shuffled RQE, and 83.0 for QA. We ensemble 4 models for MedNLI, 14 models for RQE. For QA,
we ensemble 10 models from cross-validation and 7 models using the normal training-validation
approach.

8.3 Experiment Results
In this section, we provide the leaderboard performance and conduct an analysis of the effect of
ensemble models from different sources.

8.3.1 Test Set Performance and LeaderBoards
The results for MedNLI dataset is summarized in Table 8.1. Our method ends up the 3rd place on
the leaderboard and substantially improving upon previous state-of-the-art (SOTA) methods.

The results for RQE dataset is summarized in Table 8.2. Our method ends up the 7th place on
the leaderboard. Our method has a very large discrepancy between the dev set performance and
test set performance. We think this is because the test set is quite different from dev set, and that
the dev set is very small and easy to overfit to.

The results for QA dataset is summarized in Table 8.3. Our method reaches the first place on
the leaderboard based on accuracy and precision score and 3rd-highest MRR. We note that the
Spearman score is not consistent with other scores in the leaderboard; actually, the Spearman

174

https://www.aicrowd.com/challenges/mediqa-2019-natural-language-inference-nli/leaderboards
https://www.aicrowd.com/challenges/mediqa-2019-recognizing-question-entailment-rqe/leaderboards

Model Acc Spearman Precision MRR
Ours 78.0 0.238 81.91 0.937
PANLP 77.7 0.180 78.1 0.938
Pentagon 76.5 0.338 77.7 0.962
DUT-BIM 74.5 0.106 74.7 0.906

Table 8.3: The leaderboard for QA task (link). Our method ranked #1 on the leaderboard in terms
of Acc (accuracy). The Spearman score is not consistent with other scores in the leaderboard.

score is computed just based on the predicted positive answers, and a method can get very high
Spearman score by never predict positive labels.

8.3.2 Ensembles from Different Sources

We compare the effect of ensembling from different sources in Table 8.4. We train 6 different
models with different randomizations, with initializations from MT-DNN (#1,#2,#3) and SciBERT
(#4, #5,#6) respectively. If we ensemble models with the same MT-DNN architecture, the resulting
model only has around 1.5% improvement in accuracy, compared to the numerical average of
the ensemble model accuracies (#1+#2+#3 and #4+#5+#6 in Table 8.4). On the other hand, if
we ensemble three models from different sources (#1+#2+#5 and #1+#5+#6 in Table 8.4), the
resulting model gains more than 3% in accuracy compared to the numerical average. This shows
that ensembling from different sources has a great advantage than ensembling from single-source
models.

8.3.3 Single-Model Performance

For completeness, we report the single-model performance on the MedNLI development set under
various multi-task learning setups and initializations in Table 8.5. (1) The Naı̈ve approach denotes
only MedNLI, RQE, QA, MedQuAD is considered as in-domain data in Algorithm 20 without any
external data; (2) The Ratio approach denotes that we consider MedNLI as in-domain data, and
RQE, QA, MedQuAD as external data in Algorithm 20; (3) The Ratio+MNLI approach denotes
that we consider MedNLI, RQE, QA, MedQuAD as in-domain data and MNLI as external data
in Algorithm 20. Note that MNLI is much larger than the medical datasets, so if we use RQE,
QA, MedQuAD, MNLI as external data, the performance is very similar to the third setting. We
did not conduct experiments on single-dataset settings, as previous works have suggested that
multi-task learning can obtain much better results than single-task models [119, 191].

Overall, the best results are achieved via using SciBERT as the pre-trained model, and multi-
task learning with MNLI. The models trained by mixing in-domain data (the second setup) is also
competitive. We therefore use models from both setups for ensemble.

175

https://www.aicrowd.com/challenges/mediqa-2019-question-answering-qa/leaderboards

Model Avg. Acc Esm. Acc
Single Model

#1, MT-DNN - 88.61
#2, MT-DNN - 88.33
#3, MT-DNN - 87.84
#4, SciBERT - 88.19
#5, SciBERT - 87.70
#6, SciBERT - 87.21

Ensemble Model
#1+#2+#3, MT-DNN 88.26 89.7
#4+#5+#6, SciBERT 87.70 89.2
#1+#2+#5, MultiSource 88.21 91.6
#1+#5+#6, MultiSource 87.84 90.4
#1-6, MultiSource 87.98 91.3

Table 8.4: Comparison of ensembles from different sources. Avg.Acc stands for average accuracy,
the numerical average of each individual model’s accuracy. Esm.Acc stands for ensemble accuracy,
the accuracy of the resulting ensemble model. For ensembles, MT-DNN means all the three
models are from MT-DNN, and similarly for SciBERT; MultiSource denotes the ensemble models
come from two different sources.

Init Model Naı̈ve Ratio Ratio+MNLI
MT-DNN 86.9 86.2 87.8
MT-DNN-KD 87.5 88.2 88.8
SciBERT 87.1 87.0 89.4

Table 8.5: Single model performance on MedNLI developlment data. Naiı̈ve means simply
integrating all medical-domain data; Ratio means using MedNLI as in-domain data and other
medical domain data as external data; Ratio+MNLI means using medical domain data as in-domain
and MNLI as external.

8.4 Conclusion
We present new methods for multi-source transfer learning for the medical domain. Our results
show that ensembles from different sources can improve model performance much more greatly
than ensembles from a single source. Our methods are proved effective in the MEDIQA2019
shared task.

176

Chapter 9

Conclusion and Discussion

Throughout this thesis, we develop various ways to incorporate diverse forms of information into
the machine learning and decision making process. The methodology in this thesis is both theoret-
ical and practical: We prove performance guarantees and minimax optimality for our algorithms,
while also demonstrating competitive performance on real-world datasets. The contribution of the
current thesis covers two main forms of such additional information, preferences and multi-task
learning.
• Learning from Preferences.We used comparisons to help accelerate the learning process

for classification, regression, multi-armed bandits and reinforcment learning problems.
In the applications that we consider, comparisons are available at a much cheaper cost
than direct queries; this includes many scenarios in clinical trials, material science and
information retrieval. Comparisons represents a tradeoff between label accuracy and amount
of information in the labels: Comparisons are cheaper and usually more accuracy than
direct labels, but a exact comparison carries less information than a exact direct label, since
it is binary. Through a effcient link between comparisons and direct labels, we show that
we are able to achieve the same performance using either comparisons or direct queries.
Therefore, the overall learning cost is reduced by replacing direct queries with comparisons.
We take two ways to incorporate comparisons into the learning process. In the first way, we
use comparisons to infer direct labels, and use inferred labels for the learning process. This
is the case for classification (Chapter 2), regression (Chapter 3) and thresholding bandits
(Chapter 5). In the second way, we use comparisons to directly optimize for the optimal
action in decision making, and direct labels are not necessarily needed. This is the case for
multi-armed bandits (Chapter 4) and reinforcement learning (Chapter 6).

• Multi-Task and Transfer Learning. In multi-task and transfer learning, the additional
information comes from a similar from as the main task, but is from a different domain.
Our method to use sample-reweighting and multi-source transfer for learning from multiple
domains represents a outstanding example of how diverse forms of information are able to
help machine learning models gain additional performance boost.

In summary, we give an affirmative answer to the question we raised in Chapter 1: We show
that the overall learning cost can be significantly reduced by learning with diverse forms of
information. Human beings are able to understand and answer various kinds of questions, and

177

we believe that machines should not only ask direct queries on the very same domain. With
the increasing need of data from modern machine learning, our methods and insights can make
machine learning more accessible and practical to the human society. By incorporating preference
feedback and multi-task data into the machine learning algorithms, we increase the amount of
information that a machine can obtain for the task at hand.

Future Directions. While we have explored a few ways to incorporate diverse information
into machine learning, we believe that many future directions remain to further improve the amount
of information that a machine can take in. For learning from comparisons, one important question
is how to incorporate comparisons for even more complicated applications, e.g., reinforcement
learning with infinite state space, language generation or image generation tasks, and machine
translation. These tasks also have natural preference queries that can be elicited in an easier way
than direct queries.

More broadly, an important future direction is to find more intuitive ways to elicit the knowl-
edge from human labelers. In addition to comparisons and multiple domains, people have
considered learning from features[63], from corrections[62], from games [170], and many more.
An important question is to understand what effect do these diverse forms of information play in
the learning process, and how they can be transformed into guaranteed on the original learning
problem.

178

Bibliography

[1] Asma Ben Abacha and Dina Demner-Fushman. A Question-Entailment Approach to
Question Answering. arXiv preprint arXiv:1901.08079, 2019. 8.2.1

[2] Yasin Abbasi-Yadkori, Peter Bartlett, Xi Chen, and Alan Malek. Large-Scale Markov
Decision Problems with KL Control Cost and its Application to Crowdsourcing. In In
Proceedings of the International Conference on Machine Learning (ICML), 2016. 5

[3] Alekh Agarwal, Haipeng Luo, Behnam Neyshabur, and Robert E Schapire. Corralling a
band of bandit algorithms. In Conference on Learning Theory, pages 12–38, 2017. 4.6

[4] Shivani Agarwal and Partha Niyogi. Stability and generalization of bipartite ranking
algorithms. In International Conference on Computational Learning Theory, pages 32–47.
Springer, 2005. 2.2

[5] Shivani Agarwal and Partha Niyogi. Generalization bounds for ranking algorithms via
algorithmic stability. Journal of Machine Learning Research, 10:441–474, 2009. 2.2

[6] E Agustsson, R Timofte, S Escalera, X Baro, I Guyon, and R Rothe. Apparent and real
age estimation in still images with deep residual regressors on APPA-REAL database.
In 12th IEEE International Conference and Workshops on Automatic Face and Gesture
Recognition (FG), 2017. IEEE, 2017. 3.5.3

[7] Nir Ailon and Mehryar Mohri. An efficient reduction of ranking to classification. arXiv
preprint arXiv:0710.2889, 2007. 2, 2.4.2, 2.4.2, 2.9.1, 2.9.1

[8] Nir Ailon, Zohar Karnin, and Thorsten Joachims. Reducing dueling bandits to cardinal
bandits. In International Conference on Machine Learning, pages 856–864, 2014. 4.3,
4.5.2

[9] Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan
Mané. Concrete problems in AI safety. arXiv preprint arXiv:1606.06565, 2016. 6

[10] Raman Arora, Teodor V Marinov, and Mehryar Mohri. Corralling stochastic bandit
algorithms. arXiv preprint arXiv:2006.09255, 2020. 4.6

[11] Josh Attenberg, Prem Melville, and Foster Provost. A unified approach to active dual
supervision for labeling features and examples. In Machine Learning and Knowledge
Discovery in Databases, pages 40–55. Springer, 2010. 2

[12] Jean-Yves Audibert, Sébastien Bubeck, and Gábor Lugosi. Regret in online combinatorial
optimization. Mathematics of Operations Research, 39(1):31–45, 2014. 6.1

[13] Pranjal Awasthi, Maria Florina Balcan, and Philip M Long. The power of localization for

179

efficiently learning linear separators with noise. In Proceedings of the forty-sixth annual
ACM symposium on Theory of computing, pages 449–458. ACM, 2014. 3.4.1, 3.1, 3.4.3,
3.5, 41, 3.8.8

[14] Pranjal Awasthi, Maria-Florina Balcan, Nika Haghtalab, and Hongyang Zhang. Learning
and 1-bit compressed sensing under asymmetric noise. In Annual Conference on Learning
Theory, pages 152–192, 2016. 2, 2.2, 2.2, 2.4.1, 2.6, 3.4.1, 3.1, 3.6

[15] Pranjal Awasthi, Maria-Florina Balcan, and Philip M Long. The Power of Localization for
Efficiently Learning Linear Separators with Noise. Journal of the ACM, 63(6):50, 2017. 2,
2.2, 2.4.1, 2.6, 2.6, 2.9.4, 2.9.4, 15, 2.9.4, 17, 2.9.4, 2.9.4

[16] Amittai Axelrod, Xiaodong He, and Jianfeng Gao. Domain adaptation via pseudo in-
domain data selection. In Proceedings of the conference on empirical methods in natural
language processing, pages 355–362. Association for Computational Linguistics, 2011.
7.3.2

[17] Mohammad Gheshlaghi Azar, Remi Munos, M Ghavamzadaeh, and Hilbert J Kappen.
Speedy Q-learning. 2011. 6.3

[18] Mohammad Gheshlaghi Azar, Rémi Munos, and Bert Kappen. On the sample complexity
of reinforcement learning with a generative model. arXiv preprint arXiv:1206.6461, 2012.
6.3

[19] Mohammad Gheshlaghi Azar, Rémi Munos, and Hilbert J Kappen. Minimax PAC bounds
on the sample complexity of reinforcement learning with a generative model. Machine
learning, 91(3):325–349, 2013. 6.3

[20] Mohammad Gheshlaghi Azar, Ian Osband, and Rémi Munos. Minimax regret bounds for
reinforcement learning. arXiv preprint arXiv:1703.05449, 2017. 6, 6.2, 6.4

[21] J Andrew Bagnell, Sham M Kakade, Jeff G Schneider, and Andrew Y Ng. Policy search
by dynamic programming. In Advances in neural information processing systems, pages
831–838, 2004. 6.3

[22] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by
jointly learning to align and translate. arXiv preprint arXiv:1409.0473, 2014. 8.1

[23] Maria-Florina Balcan and Steve Hanneke. Robust Interactive Learning. In COLT, pages
20–21, 2012. 2, 2.2

[24] Maria-Florina Balcan and Philip M Long. Active and passive learning of linear separators
under log-concave distributions. In Annual Conference on Learning Theory, pages 288–316,
2013. 15

[25] Maria-Florina Balcan and Hongyang Zhang. Noise-Tolerant Life-Long Matrix Completion
via Adaptive Sampling. In Advances in Neural Information Processing Systems, pages
2955–2963, 2016. 2

[26] Maria-Florina Balcan, Alina Beygelzimer, and John Langford. Agnostic active learning.
In Proceedings of the 23rd international conference on Machine learning, pages 65–72.
ACM, 2006. 2, 2.4.1

[27] Maria-Florina Balcan, Andrei Broder, and Tong Zhang. Margin based active learning. In

180

International Conference on Computational Learning Theory, pages 35–50. Springer, 2007.
2.2

[28] Maria-Florina Balcan, Ellen Vitercik, and Colin White. Learning Combinatorial Functions
from Pairwise Comparisons. arXiv preprint arXiv:1605.09227, 2016. 2, 2.2

[29] R E Barlow. Statistical Inference Under Order Restrictions: The Theory and Application
of Isotonic Regression. J. Wiley, 1972. 3.2, 3.3.2

[30] Andrew R Barron. Complexity Regularization with Application to Artificial Neural
Networks. chapter 7, pages 561–576. Springer Netherlands, 1991. 3.3.3

[31] Pierre C Bellec. Sharp oracle inequalities for least squares estimators in shape restricted
regression. The Annals of Statistics, 46(2):745–780, 2018. 3.6

[32] Pierre C Bellec and Alexandre B Tsybakov. Sharp oracle bounds for monotone and convex
regression through aggregation. Journal of Machine Learning Research, 16:1879–1892,
2015. 3.6

[33] Iz Beltagy, Arman Cohan, and Kyle Lo. SciBERT: Pretrained Contextualized Embeddings
for Scientific Text. arXiv preprint arXiv:1903.10676, 2019. 1.1.3, 8, 8.1, 8.2.1

[34] Asma Ben Abacha, Chaitanya Shivade, and Dina Demner-Fushman. Overview of the
MEDIQA 2019 Shared Task on Textual Inference, Question Entailment and Question
Answering. In Proceedings of the BioNLP 2019 workshop, Florence, Italy, August 1, 2019.
Association for Computational Linguistics, 2019. 1.1.3, 8

[35] Felix Berkenkamp, Andreas Krause, and Angela P Schoellig. Bayesian optimization
with safety constraints: safe and automatic parameter tuning in robotics. arXiv preprint
arXiv:1602.04450, 2016. 6

[36] Alina Beygelzimer, Daniel J Hsu, John Langford, and Chicheng Zhang. Search Improves
Label for Active Learning. In Advances in Neural Information Processing Systems, pages
3342–3350, 2016. 2, 2.2

[37] Stéphane Boucheron, Olivier Bousquet, and Gábor Lugosi. Theory of classification: A
survey of some recent advances. ESAIM: probability and statistics, 9:323–375, 2005. 2.9.1

[38] Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I.
The method of paired comparisons. Biometrika, 39(3/4):324–345, 1952. 3.2, 4.5, 4.5.2,
5.5, 6.5

[39] Mark Braverman and Elchanan Mossel. Sorting from noisy information. arXiv preprint
arXiv:0910.1191, 2009. 3.1, 3.2, 3.3.4, 28, 2, 3.5.1

[40] Sebastian Bubeck, Tengyao Wang, and Nitin Viswanathan. Multiple Identifications in Multi-
Armed Bandits. In Proceedings of the International Conference on Machine Learning
(ICML), 2013. 5, 5.1

[41] Adam D Bull. Convergence Rates of Efficient Global Optimization Algorithms. Journal
of Machine Learning Research, 12:2879–2904, nov 2011. ISSN 1532-4435. URL http:
//dl.acm.org/citation.cfm?id=1953048.2078198. 4.3

[42] Robert Busa-Fekete, Eyke Hüllermeier, and Adil El Mesaoudi-Paul. Preference-based

181

http://dl.acm.org/citation.cfm?id=1953048.2078198
http://dl.acm.org/citation.cfm?id=1953048.2078198

Online Learning with Dueling Bandits: A Survey. arXiv preprint arXiv:1807.11398, 2018.
4.3, 6.1

[43] Rich Caruana. Multitask learning. Machine learning, 28(1):41–75, 1997. 7, 7.1, 8

[44] Rui M Castro and Robert D Nowak. Minimax bounds for active learning. IEEE Transactions
on Information Theory, 54(5):2339–2353, 2008. 2, 2.1, 1, 3.8.7

[45] Sabyasachi Chatterjee, Adityanand Guntuboyina, and Bodhisattva Sen. On risk bounds in
isotonic and other shape restricted regression problems. Ann. Statist., 43(4):1774–1800,
2015. 3.6

[46] Kamalika Chaudhuri and Sanjoy Dasgupta. Rates of convergence for the cluster tree. In
Advances in Neural Information Processing Systems, pages 343–351, 2010. 3.8.1

[47] Kamalika Chaudhuri, Sham M Kakade, Praneeth Netrapalli, and Sujay Sanghavi. Conver-
gence rates of active learning for maximum likelihood estimation. In Advances in Neural
Information Processing Systems, pages 1090–1098, 2015. 3.2, 3.4.1

[48] Danqi Chen, Adam Fisch, Jason Weston, and Antoine Bordes. Reading Wikipedia to
Answer Open-Domain Questions. arXiv preprint arXiv:1704.00051, 2017. 7.4, 7.4.5, 7.4.5

[49] Hung Chen. Lower rate of convergence for locating a maximum of a function. The Annals
of Statistics, pages 1330–1334, 1988. 4.3

[50] Jiecao Chen, Xi Chen, Qin Zhang, and Yuan Zhou. Adaptive Multiple-{A}rm Identification.
In In Proceedings of the International Conference on Machine Learning (ICML), 2017. 5

[51] Lijie Chen, Jian Li, and Mingda Qiao. Nearly Instance Optimal Sample Complexity Bounds
for Top-k Arm Selection. In Proceedings of the AISTATS, 2017. 5

[52] Shouyuan Chen, Tian Lin, Irwin King, Michael R Lyu, and Wei Chen. Combinatorial
pure exploration of multi-armed bandits. In Advances in Neural Information Processing
Systems, pages 379–387, 2014. 5.1, 5.2.1, 5.3.2, 5.6.1

[53] Xi Chen, Paul N Bennett, Kevyn Collins-Thompson, and Eric Horvitz. Pairwise ranking
aggregation in a crowdsourced setting. In Proceedings of the sixth ACM international
conference on Web search and data mining, pages 193–202. ACM, 2013. 5.6.1

[54] Xi Chen, Qihang Lin, and Dengyong Zhou. Statistical decision making for optimal budget
allocation in crowd labeling. The Journal of Machine Learning Research, 16(1):1–46,
2015. 5, 5.1

[55] Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bahdanau, and Yoshua Bengio. On the
properties of neural machine translation: Encoder-decoder approaches. arXiv preprint
arXiv:1409.1259, 2014. 7.2.5

[56] Sayak Ray Chowdhury and Aditya Gopalan. On kernelized multi-armed bandits. arXiv
preprint arXiv:1704.00445, 2017. 4.5, 4.5.1, 4.5.1, 4.5.3, 4.5.3, 4.7.3, 52

[57] Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei.
Deep reinforcement learning from human preferences. In Advances in Neural Information
Processing Systems, pages 4299–4307, 2017. 6

[58] Alon Cohen, Tamir Hazan, and Tomer Koren. Tight bounds for bandit combinatorial

182

optimization. arXiv preprint arXiv:1702.07539, 2017. 6.1, 6.2

[59] Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and
Pavel Kuksa. Natural language processing (almost) from scratch. Journal of Machine
Learning Research, 12(Aug):2493–2537, 2011. 7.1

[60] Cecil C Craig. On the {T}chebychef inequality of {B}ernstein. The Annals of Mathematical
Statistics, 4(2):94–102, 1933. 3.9

[61] Christoph Dann and Emma Brunskill. Sample complexity of episodic fixed-horizon
reinforcement learning. In Advances in Neural Information Processing Systems, pages
2818–2826, 2015. 6.2

[62] Sanjoy Dasgupta and Michael Luby. Learning from partial correction. arXiv preprint
arXiv:1705.08076, 2017. 3.2, 9

[63] Sanjoy Dasgupta, Akansha Dey, Nicholas Roberts, and Sivan Sabato. Learning from
discriminative feature feedback. In Advances in Neural Information Processing Systems,
pages 3955–3963, 2018. 9

[64] Ofer Dekel, Claudio Gentile, and Karthik Sridharan. Selective sampling and active learning
from single and multiple teachers. Journal of Machine Learning Research, 13:2655–2697,
2012. 2

[65] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018. 7.4.3, 8

[66] Persi Diaconis and Ronald L Graham. Spearman’s footrule as a measure of disarray.
Journal of the Royal Statistical Society. Series B (Methodological), pages 262–268, 1977.
3.8.3

[67] Simon S Du, Akshay Krishnamurthy, Nan Jiang, Alekh Agarwal, Miroslav Dud\’\ik, and
John Langford. Provably efficient rl with rich observations via latent state decoding. arXiv
preprint arXiv:1901.09018, 2019. 6, 6.4.1, 6.4.2

[68] Dheeru Dua and Casey Graff. {UCI}Machine Learning Repository, 2017. URL http:
//archive.ics.uci.edu/ml. 4.5.6

[69] Miroslav Dud\’\ik, Katja Hofmann, Robert E Schapire, Aleksandrs Slivkins, and Masrour
Zoghi. Contextual dueling bandits. arXiv preprint arXiv:1502.06362, 2015. 4.1

[70] Eyal Even-Dar, Shie Mannor, and Yishay Mansour. Action elimination and stopping
conditions for the multi-armed bandit and reinforcement learning problems. Journal of
machine learning research, 7(Jun):1079–1105, 2006. 1.1.2, 4.4.2

[71] Felix A Faber, Alexander Lindmaa, O Anatole Von Lilienfeld, and Rickard Armiento.
Machine Learning Energies of 2 Million Elpasolite (A B C 2 D 6) Crystals. Physical review
letters, 117(13):135502, 2016. 4.1

[72] Felix A Faber, Alexander Lindmaa, O Anatole von Lilienfeld, and Rickard Armiento.
Machine Learning Energies of 2 Million {E}lpasolite{(ABC2D6)}Crystals. Physical
Review Letters, 117(13), 2016. 3

183

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

[73] Moein Falahatgar, Yi Hao, Alon Orlitsky, Venkatadheeraj Pichapati, and Vaishakh Ravin-
drakumar. Maxing and Ranking with Few Assumptions. In Advances in Neural Information
Processing Systems, pages 7060–7070, 2017. 6.1, 6.2, 6.2, 6.3, 6.4.1

[74] Moein Falahatgar, Alon Orlitsky, Venkatadheeraj Pichapati, and Ananda Theertha
Suresh. Maximum selection and ranking under noisy comparisons. arXiv preprint
arXiv:1705.05366, 2017. 4.3, 6.1, 6.2, 6.2, 6.2.1

[75] Peter C Fishburn. Binary choice probabilities: on the varieties of stochastic transitivity.
Journal of Mathematical psychology, 10(4):327–352, 1973. 5.2

[76] Abraham D Flaxman, Adam Tauman Kalai, and H Brendan McMahan. Online convex
optimization in the bandit setting: gradient descent without a gradient. In Proceedings
of the sixteenth annual ACM-SIAM symposium on Discrete algorithms, pages 385–394.
Society for Industrial and Applied Mathematics, 2005. 4.3

[77] Johannes Fürnkranz and Eyke Hüllermeier. Preference learning and ranking by pairwise
comparison. In Preference learning, pages 65–82. Springer, 2010. 2, 2.2

[78] Johannes Fürnkranz, Eyke Hüllermeier, Weiwei Cheng, and Sang-Hyeun Park. Preference-
based reinforcement learning: a formal framework and a policy iteration algorithm. Ma-
chine learning, 89(1-2):123–156, 2012. 6.2.1

[79] Rong Ge, Furong Huang, Chi Jin, and Yang Yuan. Escaping from saddle points—online
stochastic gradient for tensor decomposition. In Conference on Learning Theory, pages
797–842, 2015. 4.3

[80] Edgar N Gilbert. A comparison of signalling alphabets. Bell System Technical Journal, 31
(3):504–522, 1952. 3.8.2

[81] David Golub, Po-Sen Huang, Xiaodong He, and Li Deng. Two-stage synthesis networks
for transfer learning in machine comprehension. arXiv preprint arXiv:1706.09789, 2017.
7.1

[82] László Györfi, Michael Kohler, Adam Krzyzak, and Harro Walk. A distribution-free theory
of nonparametric regression. Springer Science & Business Media, 2006. 3.3.1, 3.3.2, 3.8.1,
35, 3.8.4

[83] Qiyang Han, Tengyao Wang, Sabyasachi Chatterjee, and Richard J Samworth. Isotonic
regression in general dimensions. arXiv preprint arXiv:1708.09468, 2017. 3.6

[84] Steve Hanneke. Adaptive Rates of Convergence in Active Learning. In COLT. Citeseer,
2009. 2.1, 2.2, 2.3

[85] Steve Hanneke. Theoretical foundations of active learning. ProQuest, 2009. 3.2, 3.1, 3.6

[86] Steve Hanneke. Theory of active learning, 2014. 2, 2.1, 2.2, 2.1, 2.2, 2.5, 2.7, 2.9.3, 13,
2.9.6, 2.9.7

[87] Steve Hanneke and Liu Yang. Surrogate losses in passive and active learning. arXiv
preprint arXiv:1207.3772, 2012. 2.7

[88] Wolfgang Karl Härdle, Marlene Müller, Stefan Sperlich, and Axel Werwatz. Nonparametric
and semiparametric models. Springer Science & Business Media, 2012. 3.5.2

184

[89] Elad Hazan, Adam Klivans, and Yang Yuan. Hyperparameter Optimization: A Spectral
Approach, 2017. 4.3

[90] Reinhard Heckel, Nihar B Shah, Kannan Ramchandran, and Martin J Wainwright. Active
Ranking from Pairwise Comparisons and when Parametric Assumptions Don’t Help, 2016.
2, 4.5.2, 5.6.1, 5.8.2

[91] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,
9(8):1735–1780, 1997. 7.2.3

[92] Minghao Hu, Yuxing Peng, Zhen Huang, Nan Yang, Ming Zhou, and Others. Read+
Verify: Machine Reading Comprehension with Unanswerable Questions. arXiv preprint
arXiv:1808.05759, 2018. 7.9

[93] Ashesh Jain, Brian Wojcik, Thorsten Joachims, and Ashutosh Saxena. Learning trajectory
preferences for manipulators via iterative improvement. In Advances in neural information
processing systems, pages 575–583, 2013. 6

[94] Ashesh Jain, Shikhar Sharma, Thorsten Joachims, and Ashutosh Saxena. Learning prefer-
ences for manipulation tasks from online coactive feedback. The International Journal of
Robotics Research, 34(10):1296–1313, 2015. 6

[95] Kevin G Jamieson and Robert Nowak. Active ranking using pairwise comparisons. In
Advances in Neural Information Processing Systems, pages 2240–2248, 2011. 2

[96] Kevin G Jamieson, Robert Nowak, and Ben Recht. Query complexity of derivative-free
optimization. In Advances in Neural Information Processing Systems, pages 2672–2680,
2012. 4.3

[97] Nan Jiang and Alekh Agarwal. Open problem: The dependence of sample complexity
lower bounds on planning horizon. In Conference On Learning Theory, pages 3395–3398,
2018. 6.2

[98] Chi Jin, Zeyuan Allen-Zhu, Sebastien Bubeck, and Michael I Jordan. Is Q-learning Provably
Efficient? arXiv preprint arXiv:1807.03765, 2018. 6, 6.4, 6.4.4

[99] Chi Jin, Akshay Krishnamurthy, Max Simchowitz, and Tiancheng Yu. Reward-Free
Exploration for Reinforcement Learning. arXiv preprint arXiv:2002.02794, 2020. 6, 6.4.1,
6.4.2

[100] Thorsten Joachims. Optimizing search engines using clickthrough data. In Proceedings
of the eighth ACM SIGKDD international conference on Knowledge discovery and data
mining, pages 133–142. ACM, 2002. 3.5.1

[101] D R Jones, C D Perttunen, and B E Stuckman. Lipschitzian optimization without the
Lipschitz constant. Journal of Optimization Theory and Applications, 79(1):157–181, oct
1993. ISSN 1573-2878. doi: 10.1007/BF00941892. URL https://doi.org/10.
1007/BF00941892. 4.5.6

[102] Rudolf Kadlec, Martin Schmid, Ondrej Bajgar, and Jan Kleindienst. Text understanding
with the attention sum reader network. arXiv preprint arXiv:1603.01547, 2016. 7.4.3, 7.4.5

[103] Kirthevasan Kandasamy, Gautam Dasarathy, Junier B Oliva, Jeff Schneider, and Barn-
abas Poczos. Multi-fidelity gaussian process bandit optimisation. arXiv preprint

185

https://doi.org/10.1007/BF00941892
https://doi.org/10.1007/BF00941892

arXiv:1603.06288, 2016. (document), 4.3, 4.5.1, 4.5.3, 4.5.5, 4.5.6, 53, 4.7.4, 57, 4

[104] Kirthevasan Kandasamy, Gautam Dasarathy, Jeff Schneider, and Barnabás Póczos. Multi-
fidelity Bayesian Optimisation with Continuous Approximations. In Proceedings of
the 34th International Conference on Machine Learning - Volume 70, ICML’17, pages
1799–1808. JMLR.org, 2017. URL http://dl.acm.org/citation.cfm?id=
3305381.3305567. 4.3

[105] Daniel M Kane, Shachar Lovett, Shay Moran, and Jiapeng Zhang. Active classification
with comparison queries. arXiv preprint arXiv:1704.03564, 2017. 2, 4.3, 5.1, 5.3.2

[106] Emilie Kaufmann, Olivier Cappé, and Aurélien Garivier. On the complexity of best-arm
identification in multi-armed bandit models. The Journal of Machine Learning Research,
17(1):1–42, 2016. 5.8.2, 65

[107] Alex Kendall, Yarin Gal, and Roberto Cipolla. Multi-task learning using uncertainty to
weigh losses for scene geometry and semantics. arXiv preprint arXiv:1705.07115, 3, 2017.
7.1, 7.3.1, 7.7, 7.4.4

[108] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014. 7.4.2

[109] Akshay Krishnamurthy. Interactive Algorithms for Unsupervised Machine Learning.
Technical report, DTIC Document, 2015. 2.2

[110] Wataru Kumagai. Regret Analysis for Continuous Dueling Bandit. In Advances in Neural
Information Processing Systems, pages 1489–1498, 2017. 4.3

[111] Souvik Kundu and Hwee Tou Ng. A Question-Focused Multi-Factor Attention Network
for Question Answering. arXiv preprint arXiv:1801.08290, 2018. 7.3, 7.9

[112] Zhouhan Lin, Minwei Feng, Cicero Nogueira dos Santos, Mo Yu, Bing Xiang, Bowen
Zhou, and Yoshua Bengio. A structured self-attentive sentence embedding. arXiv preprint
arXiv:1703.03130, 2017. 7.2.4

[113] Xiaodong Liu, Jianfeng Gao, Xiaodong He, Li Deng, Kevin Duh, and Ye-Yi Wang. Repre-
sentation Learning Using Multi-Task Deep Neural Networks for Semantic Classification
and Information Retrieval. In Proceedings of the 2015 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies,
pages 912–921, 2015. 8

[114] Xiaodong Liu, Jianfeng Gao, Xiaodong He, Li Deng, Kevin Duh, and Ye-Yi Wang. Repre-
sentation learning using multi-task deep neural networks for semantic classification and
information retrieval. 2015. 7.1

[115] Xiaodong Liu, Yelong Shen, Kevin Duh, and Jianfeng Gao. Stochastic answer networks
for machine reading comprehension. arXiv preprint arXiv:1712.03556, 2017. 7, 7.2, 7.2.5,
7.4.2, 7.4

[116] Xiaodong Liu, Kevin Duh, and Jianfeng Gao. Stochastic Answer Networks for Natural
Language Inference. arXiv preprint arXiv:1804.07888, 2018. 7.4.2

[117] Xiaodong Liu, Wei Li, Yuwei Fang, Aerin Kim, Kevin Duh, and Jianfeng Gao. Stochastic
Answer Networks for SQuAD 2.0. arXiv preprint arXiv:1809.09194, 2018. 7

186

http://dl.acm.org/citation.cfm?id=3305381.3305567
http://dl.acm.org/citation.cfm?id=3305381.3305567

[118] Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jianfeng Gao. Improving Multi-Task
Deep Neural Networks via Knowledge Distillation for Natural Language Understanding,
2019. 8.2.1

[119] Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jianfeng Gao. Multi-Task Deep Neural
Networks for Natural Language Understanding. arXiv preprint arXiv:1901.11504, 2019.
1.1.3, 7.5, 8, 8.2.1, 8.3.3

[120] Andrea Locatelli, Maurilio Gutzeit, and Alexandra Carpentier. An optimal algorithm for
the thresholding bandit problem. In Proceedings of the 33rd International Conference on
Machine Learning-Volume 48, pages 1690–1698. JMLR. org, 2016. 5, 5.1, 5.2.1, 5.6.1

[121] László Lovász and Santosh Vempala. The geometry of logconcave functions and sampling
algorithms. Random Structures & Algorithms, 30(3):307–358, 2007. 15, 3.4.1, 3.4.2, 41

[122] R Duncan Luce. Individual choice behavior: A theoretical analysis. Courier Corporation,
2005. 3.6

[123] Minh-Thang Luong, Quoc V Le, Ilya Sutskever, Oriol Vinyals, and Lukasz Kaiser. Multi-
task sequence to sequence learning. arXiv preprint arXiv:1511.06114, 2015. 7.1

[124] Subhransu Maji and Gregory Shakhnarovich. Part and attribute discovery from relative
annotations. International Journal of Computer Vision, 108(1-2):82–96, 2014. 2, 2.2

[125] Pascal Massart and Élodie Nédélec. Risk bounds for statistical learning. arXiv Mathematics
e-prints, page math/0702683, feb 2007. 5.5

[126] Bryan McCann, James Bradbury, Caiming Xiong, and Richard Socher. Learned in transla-
tion: Contextualized word vectors. In Advances in Neural Information Processing Systems,
pages 6294–6305, 2017. 7.2.3

[127] Bryan McCann, Nitish Shirish Keskar, Caiming Xiong, and Richard Socher. The Nat-
ural Language Decathlon: Multitask Learning as Question Answering. arXiv preprint
arXiv:1806.08730, 2018. 7.1

[128] Stephen Merity, Nitish Shirish Keskar, and Richard Socher. Regularizing and Optimizing
LSTM Language Models. arXiv preprint arXiv:1708.02182, 2017. 7.4.2

[129] Dipendra Misra, Mikael Henaff, Akshay Krishnamurthy, and John Langford. Kinematic
State Abstraction and Provably Efficient Rich-Observation Reinforcement Learning. arXiv
preprint arXiv:1911.05815, 2019. 6, 6.4.1, 6.4.2, 6.7.4, 6.7.5, 6.8, 77

[130] Soheil Mohajer, Changho Suh, and Adel Elmahdy. Active learning for top-k rank aggre-
gation from noisy comparisons. In Proceedings of the 34th International Conference on
Machine Learning-Volume 70, pages 2488–2497. JMLR. org, 2017. 5

[131] Subhojyoti Mukherjee, Naveen Kolar Purushothama, Nandan Sudarsanam, and Balaraman
Ravindran. Thresholding bandits with augmented UCB. In Proceedings of the 26th
International Joint Conference on Artificial Intelligence, pages 2515–2521. AAAI Press,
2017. 5.1, 5.6.1

[132] Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao, Saurabh Tiwary, Rangan Majumder,
and Li Deng. MS MARCO: A human generated machine reading comprehension dataset.
arXiv preprint arXiv:1611.09268, 2016. 7.4.1

187

[133] Ellen R Novoseller, Yanan Sui, Yisong Yue, and Joel W Burdick. Dueling Posterior
Sampling for Preference-Based Reinforcement Learning. 2019. 6, 6.2.1, 6.5

[134] Takeshi Onishi, Hai Wang, Mohit Bansal, Kevin Gimpel, and David McAllester. Who did
what: A large-scale person-centered cloze dataset. arXiv preprint arXiv:1608.05457, 2016.
7, 7.4.1

[135] Jeffrey Pennington, Richard Socher, and Christopher D Manning. GloVe: Global Vec-
tors for Word Representation. In Empirical Methods in Natural Language Processing
(EMNLP), pages 1532–1543, 2014. URL http://www.aclweb.org/anthology/
D14-1162. 7, 7.2.2

[136] Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton
Lee, and Luke Zettlemoyer. Deep contextualized word representations. arXiv preprint
arXiv:1802.05365, 2018. 7

[137] Robin L Plackett. The analysis of permutations. Applied Statistics, pages 193–202, 1975.
3.6

[138] Stefanos Poulis and Sanjoy Dasgupta. Learning with Feature Feedback: from Theory to
Practice. In Proceedings of the 20th International Conference on Artificial Intelligence and
Statistics, 2017. 3.2

[139] Filip Radlinski, Madhu Kurup, and Thorsten Joachims. How does clickthrough data
reflect retrieval quality? In Proceedings of the 17th ACM conference on Information and
knowledge management, pages 43–52. ACM, 2008. 4.1

[140] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+
questions for machine comprehension of text. arXiv preprint arXiv:1606.05250, 2016. 7,
7.4.1

[141] Pranav Rajpurkar, Robin Jia, and Percy Liang. Know What You Don’t Know: Unanswer-
able Questions for SQuAD. arXiv preprint arXiv:1806.03822, 2018. 7.4.5, 7.4.5

[142] Siddartha Y Ramamohan, Arun Rajkumar, and Shivani Agarwal. Dueling bandits: Beyond
condorcet winners to general tournament solutions. In Advances in Neural Information
Processing Systems, pages 1253–1261, 2016. 4.1

[143] Idan Rejwan and Yishay Mansour. Top-$ k $ Combinatorial Bandits with Full-Bandit
Feedback. In Algorithmic Learning Theory, pages 752–776, 2020. 6.1

[144] Herbert Robbins. Some aspects of the sequential design of experiments. Bulletin of the
American Mathematical Society, 58(5):527–535, 1952. 4.1

[145] Alexey Romanov and Chaitanya Shivade. Lessons from Natural Language Inference in the
Clinical Domain. In Proceedings of the 2018 Conference on Empirical Methods in Natural
Language Processing, pages 1586–1596, 2018. 8.1, 8.1

[146] Sivan Sabato and Tom Hess. Interactive algorithms: from pool to stream. In Annual
Conference On Learning Theory, pages 1419–1439, 2016. 2

[147] Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified embedding
for face recognition and clustering. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 815–823, 2015. 3.5.3

188

http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162

[148] Rajat Sen, Kirthevasan Kandasamy, and Sanjay Shakkottai. Multi-Fidelity Black-Box Opti-
mization with Hierarchical Partitions. In Jennifer Dy and Andreas Krause, editors, Proceed-
ings of the 35th International Conference on Machine Learning, volume 80 of Proceedings
of Machine Learning Research, pages 4538–4547, Stockholmsmässan, Stockholm Sweden,
2018. PMLR. URL http://proceedings.mlr.press/v80/sen18a.html.
4.3

[149] Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Hajishirzi. Bidirectional
attention flow for machine comprehension. arXiv preprint arXiv:1611.01603, 2016. 7, 7.1,
7.2, 7.4.2

[150] Nihar Shah, Sivaraman Balakrishnan, Joseph Bradley, Abhay Parekh, Kannan Ramchan-
dran, and Martin Wainwright. Estimation from pairwise comparisons: Sharp minimax
bounds with topology dependence. Journal of Machine Learning Research, 2016. 3, 3.5.4,
3.6

[151] Nihar Shah, Sivaraman Balakrishnan, Aditya Guntuboyina, and Martin Wainwright.
Stochastically transitive models for pairwise comparisons: Statistical and computational
issues. {IEEE} {T}ransactions on {I}nformation {T}heory, 2016. 3.2, 5.2

[152] Nihar B Shah, Sivaraman Balakrishnan, Joseph Bradley, Abhay Parekh, Kannan Ramchan-
dran, and Martin Wainwright. When is it Better to Compare than to Score? arXiv preprint
arXiv:1406.6618, 2014. 2, 2.2

[153] Nihar B Shah, Sivaraman Balakrishnan, Joseph Bradley, Abhay Parekh, Kannan Ramchan-
dran, and Martin J Wainwright. Estimation from pairwise comparisons: Sharp minimax
bounds with topology dependence. The Journal of Machine Learning Research, 17(1):
2049–2095, 2016. 1.1.1, 5, 5.2

[154] Nihar B Shah, Sivaraman Balakrishnan, and Martin J Wainwright. A Permutation-based
Model for Crowd Labeling: Optimal Estimation and Robustness, 2016. 3

[155] Yelong Shen, Xiaodong Liu, Kevin Duh, and Jianfeng Gao. An Empirical Analysis of
Multiple-Turn Reasoning Strategies in Reading Comprehension Tasks. arXiv preprint
arXiv:1711.03230, 2017. 7.4

[156] Niranjan Srinivas, Andreas Krause, Sham M Kakade, and Matthias Seeger. Gaussian
process optimization in the bandit setting: No regret and experimental design. arXiv
preprint arXiv:0912.3995, 2009. 1.1.2, 4.3, 4.5, 4.5.1, 4.5.1, 4.5.6

[157] Rupesh Kumar Srivastava, Klaus Greff, and Jürgen Schmidhuber. Highway networks.
arXiv preprint arXiv:1505.00387, 2015. 7.2.2

[158] Neil Stewart, Gordon D A Brown, and Nick Chater. Absolute identification by relative
judgment. Psychological review, 112(4):881, 2005. 2.2

[159] Saku Sugawara, Yusuke Kido, Hikaru Yokono, and Akiko Aizawa. Evaluation Metrics for
Machine Reading Comprehension: Prerequisite Skills and Readability. In Proceedings
of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), volume 1, pages 806–817, 2017. 7.1

[160] Yanan Sui, Vincent Zhuang, Joel W Burdick, and Yisong Yue. Multi-dueling bandits with

189

http://proceedings.mlr.press/v80/sen18a.html

dependent arms. arXiv preprint arXiv:1705.00253, 2017. 4.2, 4.3, 4.5.6

[161] Balázs Szörényi, Róbert Busa-Fekete, Adil Paul, and Eyke Hüllermeier. Online rank elici-
tation for Plackett-Luce: A dueling bandits approach. In Advances in Neural Information
Processing Systems, pages 604–612, 2015. 5.2

[162] Louis L Thurstone. A law of comparative judgment. Psychological review, 34(4):273,
1927. 3.2, 3.6, 4.5, 4.5.2, 5.5

[163] Adam Trischler, Tong Wang, Xingdi Yuan, Justin Harris, Alessandro Sordoni, Philip
Bachman, and Kaheer Suleman. Newsqa: A machine comprehension dataset. arXiv
preprint arXiv:1611.09830, 2016. 7, 7.4.1, 7.3

[164] Kristi Tsukida and Maya R Gupta. How to analyze paired comparison data. Technical
report, DTIC Document, 2011. 1.1.1, 3

[165] Alexandre B Tsybakov. Optimal aggregation of classifiers in statistical learning. Annals of
Statistics, pages 135–166, 2004. 2, 3.6, 5.5

[166] Alexandre B Tsybakov. Introduction to nonparametric estimation. Revised and extended
from the 2004 French original. Translated by Vladimir Zaiats, 2009. 3.3.1, 3.8.2, 3.8.5, 42

[167] Marlies van der Wees, Arianna Bisazza, and Christof Monz. Dynamic data s election for
neural machine translation. arXiv preprint arXiv:1708.00712, 2017. 7, 7.3.2

[168] R R Varshamov. Estimate of the number of signals in error correcting codes. In Dokl. Akad.
Nauk SSSR, 1957. 3.8.2

[169] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in
Neural Information Processing Systems, pages 5998–6008, 2017. 7.2.4

[170] Luis Von Ahn, Ruoran Liu, and Manuel Blum. Peekaboom: a game for locating objects
in images. In Proceedings of the SIGCHI conference on Human Factors in computing
systems, pages 55–64. ACM, 2006. 9

[171] Catherine Wah, Grant Van Horn, Steve Branson, Subhransu Maji, Pietro Perona, and Serge
Belongie. Similarity comparisons for interactive fine-grained categorization. In IEEE
Conference on Computer Vision and Pattern Recognition, pages 859–866, 2014. 2, 2.2

[172] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R
Bowman. GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language
Understanding. 2019. 8

[173] Ruosong Wang, Simon S Du, Lin F Yang, and Sham M Kakade. Is Long Horizon
Reinforcement Learning More Difficult Than Short Horizon Reinforcement Learning?
arXiv preprint arXiv:2005.00527, 2020. 6.2

[174] Wei Wang, Ming Yan, and Chen Wu. Multi-Granularity Hierarchical Attention Fusion
Networks for Reading Comprehension and Question Answering. In Proceedings of the
56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), volume 1, pages 1705–1714, 2018. 7.9

[175] Yining Wang, Sivaraman Balakrishnan, and Aarti Singh. Optimization of smooth func-

190

tions with noisy observations: Local minimax rates. In Advances in Neural Information
Processing Systems, pages 4338–4349, 2018. 4.3

[176] Yizhong Wang, Kai Liu, Jing Liu, Wei He, Yajuan Lyu, Hua Wu, Sujian Li, and Haifeng
Wang. Multi-Passage Machine Reading Comprehension with Cross-Passage Answer
Verification. arXiv preprint arXiv:1805.02220, 2018. 7.4.3, 7.4

[177] Dirk Weissenborn, Georg Wiese, and Laura Seiffe. Making Neural QA as Simple as
Possible but not Simpler. In Proceedings of the 21st Conference on Computational Natural
Language Learning (CoNLL 2017), pages 271–280, 2017. 7.3, 7.4

[178] Rebecca Willett, Robert Nowak, and Rui M Castro. Faster rates in regression via active
learning. In Advances in Neural Information Processing Systems, pages 179–186, 2006.
3.2

[179] Adina Williams, Nikita Nangia, and Samuel Bowman. A Broad-Coverage Challenge Cor-
pus for Sentence Understanding through Inference. In Proceedings of the 2018 Conference
of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long Papers), pages 1112–1122. Association for Com-
putational Linguistics, 2018. URL http://aclweb.org/anthology/N18-1101.
8.2.1

[180] Christian Wirth and Johannes Fürnkranz. First steps towards learning from game annota-
tions. 2012. 6

[181] Christian Wirth and Johannes Fürnkranz. EPMC: Every visit preference Monte Carlo for
reinforcement learning. In Asian Conference on Machine Learning, pages 483–497, 2013.
6.5

[182] Christian Wirth and Johannes Fürnkranz. On learning from game annotations. IEEE
Transactions on Computational Intelligence and AI in Games, 7(3):304–316, 2015. 6

[183] Christian Wirth, Riad Akrour, Gerhard Neumann, and Johannes Fürnkranz. A survey
of preference-based reinforcement learning methods. The Journal of Machine Learning
Research, 18(1):4945–4990, 2017. 6, 6.1

[184] Shifeng Xiong, Peter Z G Qian, and C F Jeff Wu. Sequential Design and Analysis of High-
Accuracy and Low-Accuracy Computer Codes. Technometrics, 55(1):37–46, 2013. doi:
10.1080/00401706.2012.723572. URL https://doi.org/10.1080/00401706.
2012.723572. 4.5.6

[185] Y. Xu, H. Muthakana, S. Balakrishnan, A. Dubrawski, and A. Singh. Nonparametric
regression with comparisons: Escaping the curse of dimensionality with ordinal information.
In 35th International Conference on Machine Learning, ICML 2018, volume 12, 2018.
ISBN 9781510867963. 1.1.1, 4.3, 5.1, 5.3.2

[186] Yichong Xu, Jingjing Liu, Jianfeng Gao, Yelong Shen, and Xiaodong Liu. Dynamic Fusion
Networks for Machine Reading Comprehension. arXiv preprint arXiv:1711.04964, 2017.
7.1

[187] Yichong Xu, Hongyang Zhang, Kyle Miller, Aarti Singh, and Artur Dubrawski. Noise-
tolerant interactive learning using pairwise comparisons. In Advances in neural information

191

http://aclweb.org/anthology/N18-1101
https://doi.org/10.1080/00401706.2012.723572
https://doi.org/10.1080/00401706.2012.723572

processing systems, volume 2017-Decem, pages 2431—-2440, 2017. 1.1.1, 3.6, 4.3, 5.1,
5.3.2

[188] Yichong Xu, Sivaraman Balakrishnan, Aarti Singh, and Artur Dubrawski. Interactive
Linear Regression with Pairwise Comparisons. In 2018 52nd Asilomar Conference on
Signals, Systems, and Computers, volume 2018-Octob, pages 636–640. IEEE, 2018. ISBN
9781538692189. doi: 10.1109/ACSSC.2018.8645081. 1.1.1

[189] Yichong Xu, Aparna Joshi, Aarti Singh, and Artur Dubrawski. Zeroth Order Non-convex
optimization with Dueling-Choice Bandits. Proceedings of UAI, 2019. 1.1.2, 6.1

[190] Yichong Xu, Xiaodong Liu, Chunyuan Li, Hoifung Poon, and Jianfeng Gao. DoubleTrans-
fer at MEDIQA 2019: Multi-Source Transfer Learning for Natural Language Understanding
in the Medical Domain. arXiv preprint arXiv:1906.04382, 2019. 1.1.3

[191] Yichong Xu, Xiaodong Liu, Yelong Shen, Jingjing Liu, and Jianfeng Gao. Multi-task Learn-
ing with Sample Re-weighting for Machine Reading Comprehension. In Proceedings of the
2019 Conference of the North {A}merican Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages
2644–2655, Minneapolis, Minnesota, jun 2019. Association for Computational Linguistics.
URL https://www.aclweb.org/anthology/N19-1271. 1.1.3, 8, 8.1, 8.2.1,
8.3.3

[192] Yichong Xu, Xi Chen, Aarti Singh, and Artur Dubrawski. Thresholding Bandit Problem
with Both Duels and Pulls. In Proceedings of AISTATS, 2020. 1.1.2

[193] Yichong Xu, Ruosong Wang, Lin F Yang, Aarti Singh, and Artur Dubrawski.
Preference-based Reinforcement Learning with Finite-Time Guarantees. arXiv preprint
arXiv:2006.08910, 2020. 1.1.2

[194] Dezhen Xue, Prasanna V Balachandran, John Hogden, James Theiler, Deqing Xue, and
Turab Lookman. Accelerated search for materials with targeted properties by adaptive
design. Nature communications, 7:11241, 2016. 3, 4.1

[195] Songbai Yan and Chicheng Zhang. Revisiting Perceptron: Efficient and Label-Optimal
Active Learning of Halfspaces. arXiv preprint arXiv:1702.05581, 2017. 2.6, 2.9.4, 3.1

[196] Liu Yang and Jaime G Carbonell. Cost complexity of proactive learning via a reduction to
realizable active learning. Technical report, CMU-ML-09-113, 2009. 2

[197] Zhilin Yang, Bhuwan Dhingra, Ye Yuan, Junjie Hu, William W Cohen, and Ruslan Salakhut-
dinov. Words or characters? fine-grained gating for reading comprehension. arXiv preprint
arXiv:1611.01724, 2016. 7.5, 7.9

[198] Adams Wei Yu, David Dohan, Minh-Thang Luong, Rui Zhao, Kai Chen, Mohammad
Norouzi, and Quoc V Le. QANet: Combining Local Convolution with Global Self-
Attention for Reading Comprehension. arXiv preprint arXiv:1804.09541, 2018. 7, 7.1,
7.6

[199] Yisong Yue and Thorsten Joachims. Beat the mean bandit. In Proceedings of the 28th
International Conference on Machine Learning (ICML-11), pages 241–248, 2011. 1.1.2,
4.3, 4.4.2, 1, 4.4.3, 50, 6.1, 6.2, 6.2, 6.2.1, 6.4.1

192

https://www.aclweb.org/anthology/N19-1271

[200] Yisong Yue, Josef Broder, Robert Kleinberg, and Thorsten Joachims. The k-armed dueling
bandits problem. Journal of Computer and System Sciences, 78(5):1538–1556, 2012. 1.1.2,
4.1, 4.5, 5.2, 6.1, 6.2

[201] Andrea Zanette and Emma Brunskill. Tighter problem-dependent regret bounds in rein-
forcement learning without domain knowledge using value function bounds. arXiv preprint
arXiv:1901.00210, 2019. 6, 6.4, 6.4.1, 6.7.4, 76

[202] Chicheng Zhang and Kamalika Chaudhuri. Beyond disagreement-based agnostic active
learning. In Advances in Neural Information Processing Systems, pages 442–450, 2014.
2.2

[203] Cun-Hui Zhang. Risk bounds in isotonic regression. The Annals of Statistics, 30(2):
528–555, 2002. 3.2, 3.8.1, 3.8.3, 38

[204] Yufan Zhao, Donglin Zeng, Mark A Socinski, and Michael R Kosorok. Reinforcement
learning strategies for clinical trials in nonsmall cell lung cancer. Biometrics, 67(4):
1422–1433, 2011. 6

[205] Yuan Zhou, Xi Chen, and Jian Li. Optimal {PAC} Multiple Arm Identification with
Applications to Crowdsourcing. In In Proceedings of the International Conference on
Machine Learning (ICML), 2014. 5

[206] Masrour Zoghi, Zohar S Karnin, Shimon Whiteson, and Maarten De Rijke. Copeland
dueling bandits. In C Cortes, N D Lawrence, D D Lee, M Sugiyama, and R Gar-
nett, editors, Advances in Neural Information Processing Systems 28, pages 307–
315. Curran Associates, Inc., 2015. URL http://papers.nips.cc/paper/
6023-copeland-dueling-bandits.pdf. 4.1, 4.3, 4.5.2

[207] James Y Zou, Kamalika Chaudhuri, and Adam Tauman Kalai. Crowdsourcing Feature
Discovery via Adaptively Chosen Comparisons. In Proceedings of the Third {AAAI}
Conference on Human Computation and Crowdsourcing, {HCOMP} 2015, November 8-11,
2015, San Diego, California., page 198, 2015. 3.2

193

http://papers.nips.cc/paper/6023-copeland-dueling-bandits.pdf
http://papers.nips.cc/paper/6023-copeland-dueling-bandits.pdf

	1 Introduction
	1.1 Overview of Results
	1.1.1 Interactive Learning from Labels and Comparisons
	1.1.2 Decision Making with Comparisons
	1.1.3 Natural Language Understanding from Multiple Domains

	I Interactive Learning from Labels and Comparisons
	2 Classification with Labels and Comparisons
	2.1 Our Techniques
	2.2 Related Works
	2.3 Preliminaries
	2.4 The ADGAC Algorithm
	2.4.1 Algorithm Description
	2.4.2 Theoretical Analysis of ADGAC

	2.5 A2-ADGAC: Learning of Generic Hypothesis Class
	2.6 Margin-ADGAC: Learning of Halfspaces
	2.7 Lower Bounds
	2.7.1 Lower Bound on Label Complexity
	2.7.2 Lower Bound on Total Query Complexity
	2.7.3 Adversarial Noise Tolerance of Comparisons

	2.8 Conclusion
	2.9 Proofs
	2.9.1 Proof of Theorem 4
	2.9.2 Proof of Theorem 5
	2.9.3 Proof for A2-ADGAC
	2.9.4 Proof for Margin-ADGAC
	2.9.5 Proof of Lower Bounds
	2.9.6 Proof of Theorem 10
	2.9.7 Proof of Theorem 11
	2.9.8 Proof of Theorem 12

	3 Regression with Labels and Ordinal Information
	3.1 Our Contributions
	3.2 Related Works
	3.3 Nonparametric Regression with Ordinal Information
	3.3.1 Background and Problem Setup
	3.3.2 Nonparametric Regression with Perfect Ranking
	3.3.3 Nonparametric Regression using Noisy Ranking
	3.3.4 Regression with Noisy Pairwise Comparisons

	3.4 Linear Regression with Comparisons
	3.4.1 Background and Problem Setup
	3.4.2 Algorithm and Analysis
	3.4.3 Lower Bounds

	3.5 Experiment Results
	3.5.1 Modifications to Our Algorithms
	3.5.2 Simulated Data
	3.5.3 Predicting Ages from Photographs
	3.5.4 Estimating AirBnB Listing Prices

	3.6 Conclusion
	3.7 Additional Experimental Results
	3.8 Detailed Proofs
	3.8.1 Proof of Theorem 22
	3.8.2 Proof of Theorem 23
	3.8.3 Proof of Theorem 24
	3.8.4 Proof of Theorem 26
	3.8.5 Proof of Theorem 27
	3.8.6 Proof of Theorem 30
	3.8.7 Proof of Theorem 32
	3.8.8 Lower Bounds for Total Number of Queries under Active Case

	3.9 Auxiliary Technical Results

	II Decision Making with Dueling Choices
	4 Discrete and Continuous Multi-Armed Bandits with Dueling Choices
	4.1 Introduction
	4.2 Our Contribution
	4.3 Related Work
	4.4 Discrete Case: The K-Armed MAB-DC Problem
	4.4.1 Problem Setup
	4.4.2 Algorithm and Analysis
	4.4.3 Experiments

	4.5 Continuous Case: MAB-DC for Optimizing a Nonconvex Function
	4.5.1 The Gaussian Process Back End
	4.5.2 The Borda Function fr
	4.5.3 The COMP-GP-UCB Algorithm
	4.5.4 COMP-GP-UCB with Unknown
	4.5.5 Comparison with MF-GP-UCB kandasamy2016multi
	4.5.6 Experiments

	4.6 Conclusion
	4.7 Proofs
	4.7.1 Proof of Theorem 45
	4.7.2 Proof of Proposition 46
	4.7.3 Proof of Theorem 47 and 48
	4.7.4 Proof of Lemma 55
	4.7.5 Proof of Corollary 49

	5 The Thresholding Bandit Problem with Dueling Choices
	5.1 Related Works
	5.2 Preliminary
	5.2.1 Problem Complexity

	5.3 Algorithm and Analysis
	5.3.1 Algorithm Description
	5.3.2 Theoretical Analysis

	5.4 Lower Bounds
	5.4.1 An Arm-Wise Lower Bound
	5.4.2 Optimality of nduel and npull

	5.5 Implications of Bounds in Special Cases
	5.6 Experiments
	5.6.1 Setup and Baselines
	5.6.2 Experiment Results

	5.7 Conclusion
	5.8 Proofs
	5.8.1 Proof of Theorem 58
	5.8.2 Proof of Theorem 59
	5.8.3 Proof of Corollary 61
	5.8.4 Proof of Proposition 62
	5.8.5 Proof for Example 1
	5.8.6 Proof for Example 2

	6 Preference-based Reinforcement Learning with Finite-Time Guarantees
	6.1 Related Work
	6.2 Problem Setup
	6.2.1 Preference Probablities

	6.3 PbRL with a Simulator
	6.4 Combining Exploration and Policy Search for General PbRL
	6.4.1 Preferece-based Exploration and Policy Search (PEPS)
	6.4.2 Discussion
	6.4.3 Another Version to Accommodate Arbitrary PAC Dueling Algorithm
	6.4.4 Adapting PEPS to the Fixed Budget setting

	6.5 Experiments
	6.6 Conclusion
	6.7 Proofs
	6.7.1 Proof of Proposition 66
	6.7.2 Proof of Proposition 67
	6.7.3 Proof of Theorem 68
	6.7.4 Proof of Theorem 70
	6.7.5 Proof of Theorem 72
	6.7.6 Proof of Theorem 74

	6.8 Auxiliary Lemma

	III Natural Language Understanding from Multiple Domains
	7 Multi-task Learning with Sample Re-weighting for Machine Reading Comprehension
	7.1 Related Works
	7.2 Model Architecture
	7.2.1 Input Format
	7.2.2 Lexicon Encoding Layer
	7.2.3 Contextual Encoding Layer
	7.2.4 Memory/Cross Attention Layer
	7.2.5 Answer Module

	7.3 Algorithms
	7.3.1 Mixture Ratio
	7.3.2 Sample Re-Weighting

	7.4 Experiment Results
	7.4.1 Datasets
	7.4.2 Experiment Details
	7.4.3 Performance of MT-SAN
	7.4.4 Comparison of Different MTL Algorithms
	7.4.5 Additional Experiments on DrQA

	7.5 Conclusion

	8 Multi-Source Transfer Learning for Natural Language Understanding in the Medical Domain
	8.1 Related Works
	8.2 Methods
	8.2.1 Fine-tuning details
	8.2.2 Model Ensembles
	8.2.3 Dataset-Specific Details
	8.2.4 Implementation and Hyperparameters

	8.3 Experiment Results
	8.3.1 Test Set Performance and LeaderBoards
	8.3.2 Ensembles from Different Sources
	8.3.3 Single-Model Performance

	8.4 Conclusion

	9 Conclusion and Discussion
	Bibliography

