
Data-Driven Robotic Grasping in the Wild

Adithyavairavan Murali

CMU-RI-TR-20-49

September 21, 2020

The Robotics Institute
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA

Thesis Committee:
Professor Abhinav Gupta, Carnegie Mellon University (chair)

Professor Oliver Kroemer, Carnegie Mellon University
Professor David Held, Carnegie Mellon University

Professor Dieter Fox, University of Washington
Professor Sonia Chernova, Georgia Institute of Technology

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Robotics.

Copyright c© 2020 Adithyavairavan Murali. All rights reserved.

To my parents, Bharathy and Murali.

Abstract

Robotic grasping has seen tremendous advancements in recent years. Yet, the current
paradigm of manipulation research is typically some form of table-top manipulation
in constrained setups or in simulation. Building general purpose personal robots that
can autonomously grasp unknown objects in unstructured environments like homes is
an open problem. In this thesis, we explore important directions in scaling data-driven
grasping to the diversity and constraints imposed by the real world.

We first discuss how we can go beyond picking individual objects in isolation to 6-
DOF grasping in clutter. Most existing methods train policies on datasets collected
in curated settings (in lab or simulation) and hence may not cope with the mismatch
in data distribution when deployed in the wild. We build and open-source a low-cost
mobile manipulator platform to parallelize data collection in challenging settings like
homes and show that policies trained on this data generalize to novel objects in unseen
homes. As a result, we also discuss ideas for scaling robot learning with several robots
and transferring policies between different hardware. Yet, we hypothesize that visual
perception alone is insufficient for robustness and present a self-supervised tactile-based
re-grasping framework to close the loop on grasp execution. Lastly, we strive to go
beyond robotic pick-and-place and generalize to diverse semantic manipulation tasks.
We do so by scaling task-oriented grasping datasets with crowdsourcing and learning
from semantic information like knowledge graphs.

iii

Acknowledgments

I would first like to thank my advisor Abhinav Gupta for the incredible couple of years
in grad school. He has provided invaluable advice, ideas, encouragement and set a high
bar for research. I’m always inspired by this wisdom, passion for embodied AI and
fierce commitment for making robots work in the real world. He gave me the space
to explore high-risk-high-reward ideas at the crossroads of robotics, machine learning,
knowledge systems, computer vision and robotic hardware. He keeps inspiring me with
his creativity, commitment to research and the effort he puts into nurturing his students.

I would also like to thank my committee and several faculty members who helped me
in my research journey. I would like to thank Dieter Fox for the opportunity to intern at
NVIDIA and his encouragement to focus on robotic grasping in my PhD. His work on
multi-modal sensing (RGB-D, tactile) and philosophy on using structured knowledge
in learning systems (without learning from scratch) inspired the approaches I took in
my papers. I had the great opportunity to work with Oliver Kroemer on several robotics
classes at CMU. Working on the first iteration of Learning for Manipulation taught me
so many applications of machine learning in robotics. I’m also incredibly proud that
the locobots introduced in this thesis were used in teaching Robot Autonomy. Thanks to
Oliver for pushing me to be a better communicator and educator. David Held has been
constantly supportive of my research from the start, serving on all my committees and
giving valuable feedback. Sonia Chernova encouraged me to think beyond functional
problems in robotics, but also in terms of semantics and using prior knowledge. I’ve
also had the opportunity to work with her lab, namely Weiyu Liu who really taught
me everything I know about semantic knowledge in robotics. I also received valuable
advice from several other faculty members at CMU who shaped my thoughts over the
years: Chris Atkeson, Martial Hebert, Tom Mitchell, Kris Kitani, Deva Ramanan, Sidd
Srinivasa, Drew Bagnell, Max Likhachev, Ralph Hollis and Katharina Muelling.

I would like to thank the incredible colleagues and collaborators in my lab who had
a major impact on my graduate experience: Kenneth Marino, Tao Chen, Lerrel Pinto,
Dhiraj Gandhi, Yin Li, Judy (Yufei) Ye, Victoria Dean, Helen Jiang, Sudeep Dasari,
Shikhar Bahl, Gunnar Sigurdsson, Sam Powers, Gaurav Pathak, Wenxuan Zhou, Senthil
Purushulwalkam, Pratyusha Sharma, Nadine Chang, Nilesh Kulkarni, Xinlei Chen,
Ishan Misra, Xiaolong Wang, Jacob Walker and Abhinav Shrivastava. Thanks for all
the discussions on AI, life and everything in between. Thanks for being patient with
me and hope you forgive me for all the mess I made in lab!

I was also extremely lucky to have collaborated with industry partners. My internship
at NVIDIA Seattle Robotics Lab was a terrific experience. I am thankful to Arsalan
Mousavian and Clemens Eppner for being excellent mentors, role models and teaching
me so much about sim2real transfer. My discussions with Ankur Handa, Chris Paxton,
Tucker Hermans, Nathan Ratliff, Yu Xiang, Jonathan Tremblay, Stan Burchfield, Xinke
Deng, Keunhong Park, Chris Xie, Muhammad Asif Rana were very valuable and

iv

shaped my perspectives on perception. Thanks to Saurabh Gupta, Kalyan Vasudev and
Soumith Chintala at Facebook AI Research for their mentorship and help in launching
the PyRobot project. I would also like to thank Shubam Tulsiani, Jessica Hodgins,
Stuart Anderson and Mustafa Mukadam for their collaboration and mentorship.

While it be challenging to list everyone, I would also like to thank all my friends and
colleagues from the CMU Smith Hall and Robotics community: Dinesh Reddy, Leonid
Keselman, Raaj Yadav, Aayush Bansal, Jason Zhang, Pragna Mannam, Achal Dave,
Peiyun Hu, Alex Spitzer, Rogerio Bonatti, Brian Okorn, Ben Newman, Adam Harley,
Wen Sun, Thomas Weng, Allie Del Giorno, Xingyu Liu, Shivam Vats, Samuel Clarke,
Arpit Agarwal, Suren Jayasuriya. Thanks to Achal, Senthil, Dinesh and Ankit for the
amazing mid-afternoon Halo tournaments (and graciously losing to me on a number of
occasions). Everything I know about robot hardware comes from Roberto Shu, Dhiraj
Gandhi and Ankit Bhatia. I’d also like to thank Jacky Liang, Tim Lee, Anirudh Vemula
for countless discussions and helping me whenever I was in a tight spot (sometimes
quite literally). Thanks also to Judy, Brian and Tim for motivating me to keep a active
lifestyle and pick up running, spinning, groupx, amongst others.

My interest in robotics was kindled during my undergraduate years at UC Berkeley.
Big thanks to my undergraduate advisors Ken Goldberg and Pieter Abbeel for nurturing
my interests and encouraging me to continue with graduate studies in robotics. I’d also
like to thank the graduate students I worked with during my time at Berkeley and from
whom I think I got my healthy dose of academic scepticism: Animesh Garg, Michael
Laskey, Jeff Mahler, Sanjay Krishnan, Sidd Sen, Ben Kehoe, Florian Pokorny, Sachin
Patil. While I did not have the foresight of working on grasping back in Berkeley, the
theses of Jeff Mahler and Ben Kehoe heavily influenced my PhD research.

I owe a huge thanks to Suzanne Muth, Christine Downey, David Wettergreen and Alison
Day for their support through key milestones in my PhD program.

I would also like to thank several researchers from the international robotics community
who have mentored me and whose research motivated my own: Tapo Bhattacharjee,
Sergey Levine, Ronald Fearing, David Hsu, Peter Allen, Samarth Brahmbhatt, Berk
Calli, Wenzhen Yuan, Hyosang Lee, amongst several others.

Thanks also goes to my mentors in high school who pushed me to focus on science
research: Sathyan Subbiah, Nikolai Yakovlev, Rebecca Carrier, Jason Tan, Koh Siak
Peng, Law Hock Ling and Otto Fong.

Last but not least, no words can express my gratitude to my parents, family and friends
from Singapore, India and Berkeley. They knew nothing about robotics but their love
and support kept me going through the ups and downs.

Thanks everyone!

v

Contents

1 Introduction & Background 1
1.1 Grasping Preliminaries . 2
1.2 Classical Grasping . 2
1.3 Data-driven Grasping . 3
1.4 Grasping Applications in Practice . 4
1.5 Thesis Goal and Contributions . 4
1.6 Thesis Organization . 6

I Generalization to Clutter 9

2 6-DOF Grasping for Object Manipulation in Clutter 10
2.1 Introduction . 10
2.2 Related Work . 12
2.3 6-DOF Grasp Synthesis for Objects in Clutter . 13

2.3.1 Overview of Approach . 14
2.3.2 6-DOF Grasp Synthesis for Isolated Objects 14
2.3.3 Collision Detection for Grasps in Clutter: CollisionNet 16
2.3.4 Implementation Details . 16

2.4 Experimental Evaluation . 17
2.4.1 Ablation analysis and Discussion . 17
2.4.2 Real Robot Experiments . 19
2.4.3 Application: Removing Blocking Objects 22

2.5 Conclusion . 22

II Generalization with Robots 24

3 Curriculum Learning for High Dimensional Grasping 25
3.1 Introduction . 25
3.2 Related Work . 27
3.3 Curriculum Accelerated Self-Supervised Learning (CASSL) 28

3.3.1 CASSL Framework . 29

vi

3.3.2 Sensitivity Analysis . 29
3.3.3 Determining the Curriculum Ranking . 30
3.3.4 Modeling the Policy . 30
3.3.5 Curriculum Training . 31

3.4 CASSL for Grasping . 33
3.4.1 Adaptive Grasping . 33
3.4.2 Grasping Problem Definition . 34
3.4.3 Sensitivity Analysis on Adaptive Grasping 34
3.4.4 Training and Model Inference . 35

3.5 Experimental Evaluation . 36
3.6 Conclusion . 38

4 Robot Learning in Homes 39
4.1 Introduction . 39
4.2 Related Work . 40
4.3 Overview . 42
4.4 Learning on Low Cost Robot Data . 43

4.4.1 Grasping Formulation . 43
4.4.2 Modeling Noise as Latent Variable . 43
4.4.3 Learning the latent noise model . 44
4.4.4 Training details . 45

4.5 Experimental Evaluation . 46
4.5.1 Experiment 1: Performance on held-out data 47
4.5.2 Experiment 2: Performance on Real LCA Robot 48
4.5.3 Does factoring out the noise in data improve performance? 49

4.6 Conclusion . 49

5 Democraticizing Robotics with PyRobot 51
5.1 Introduction . 51
5.2 Related Work . 52
5.3 PyRobot Framework . 53
5.4 Supported Hardware and Simulators . 56
5.5 PyRobot Controllers . 56

5.5.1 Accuracy of Base Control . 56
5.5.2 Repeatability Tests for Manipulator . 58

5.6 High-Level AI Applications . 58
5.6.1 Visual SLAM . 59
5.6.2 Navigation via SLAM and Path Planning 59
5.6.3 Learned Visual Navigation . 59
5.6.4 Grasping . 60
5.6.5 Pushing . 60

5.7 Conclusion . 60
5.8 Code Listings . 61

vii

III Generalization with Robustness 68

6 Tactile Re-grasping 69
6.1 Introduction . 69
6.2 Related Work . 72
6.3 Dataset . 74
6.4 Overview . 75
6.5 Initial Grasp from Touching . 75

6.5.1 Particle Filter for Touch Localization . 76
6.6 Grasp Execution via Re-grasping . 77

6.6.1 Learning Haptic Features . 79
6.6.2 Learning to Re-grasp . 79
6.6.3 Improving Vision-Based Grasping with Re-grasping 81

6.7 Experimental Evaluation . 82
6.7.1 Learning Haptic Features . 82
6.7.2 Tactile Based Grasping . 85

6.8 Conclusion . 87

IV Generalization to Semantic Tasks 89

7 Data and Semantic Knowledge for Task-Oriented Grasping 90
7.1 Introduction . 90
7.2 Related Work . 92
7.3 Dataset . 93

7.3.1 Data Acquisition on a Robot . 94
7.3.2 Data Annotation by Crowdsourcing . 94
7.3.3 Analysis . 95

7.4 Task-Oriented Grasping with Semantic Knowledge 96
7.5 Experimental Evaluation . 98

7.5.1 Zero-Shot Generalization . 98
7.5.2 Analysis . 99
7.5.3 Real Robot Evaluation . 100
7.5.4 Comparison to SG14000 . 101
7.5.5 Analysis on GCNGrasp Predictions . 102

7.6 Conclusion . 102

8 Conclusion 105
8.1 Overview . 105
8.2 Limitations . 105
8.3 Directions for Future Research . 106

Bibliography 108

When this dissertation is viewed as a PDF, the page header is a link to this Table of Contents.

viii

List of Figures

2.1 Given an unknown target object (left) our proposed method leads to robust grasp-
ing (right) despite challenging clutter and occlusions. This is enabled by explicitly
reasoning about successful and colliding grasps (center). 11

2.2 Overview of our cascaded grasping framework. A local point cloud centered on the
target object is cropped from the scene point cloud using instance segmentation.
6-DOF grasps are then generated and ranked by collisions with the scene. 12

2.3 Comparing the VAE sampler and Surface Normal Sampler. The number next to the
legend is the area under curve (AUC) and the VAE sampler has a higher AUC. . . . 17

2.4 CollisionNet outperforms the Voxel-based approach in both success and coverage.
The Voxel-based without Target Object ablation only considers collisions with the
scene. 18

2.5 Examples where the voxel-based heuristic fails to predict collisions but CollisionNet
succeeds. These false positives are due to missing points (region highlighted by
dotted circle) from occlusion. These grasps will lead to critical collisions if executed. 19

2.6 Our cascaded approach demonstrates much higher success and coverage compared
to a single-stage and instance-agnostic model. 20

2.7 Representative example of the data provided to the different grasping architectures
a) single-stage model without object instance information b) single-stage model
with object instance mask used as a feature vector along with the point cloud c) our
cascaded model to sample with object-centric point cloud and evaluate for collisions
with clutter-centric data. The target object is colored in blue. 20

2.8 Application of our approach in retrieving a partly occluded mug (highlighted in
(a)). The blocking objects are ranked (colored in (b), red being most inhibiting) and
removed from the scene. The target object is finally grasped in (f). 21

2.9 Scenes used for testing. See accompanying video for grasp performance. 21

3.1 Given a table-top scene, our robot learns to grasp objects by Curriculum Accelerated
Self-Supervised Learning (CASSL). Given the various control dimensions, such as
mode, height, grasp angle, etc., our robot focuses on learning to predict the easier
dimensions earlier. We used a Fetch-robot with an adaptive 3-fingered gripper from
Robotiq. 26

ix

3.2 A small subset of the data processed by the model during training can be seen here.
Note that during training, we use a wide variety of objects with different sizes,
shapes and rigidity. 29

3.3 We employ a deep neural network to learn the action policy. The convolutional
layers and the first fully connected layer (fc6) are shared (in grey). The fc7 and
output control layers are trained (in orange) to learn control-specific weights. . . . 31

3.4 Our grasping problem formulation involves the high dimensional control of the
adaptive gripper. (a) describes the translational and rotational control dimensions
(xG and yG are however subsumed in input samples). (b) describes the various
modes of grasping, i.e. basic, wide and pinch modes. (c) illustrates the force the
gripper is allowed to apply on the objects. (d) describes the gripper’s commanded
height with respect to the table and the object. 33

3.5 Set A contains 10 objects seen in training. Set B and C contain 10 and 20 novel
objects respectively not used in training . 36

3.6 Some successful grasps achieved by model trained with CASSL. 37
3.7 Variation in grasp accuracy with respect to stages in learning 38

4.1 We built multiple low-cost robots and collected a large grasp dataset in several homes. 40
4.2 Our architecture consists of three components - a) the Grasp Prediction Network

(GPN) which infers grasp angles based on the image patch of the object b) the Noise
Modelling Network (NMN) which estimates the latent noise given the image of the
scene and robot information and the c) marginalization layer computing the final
grasp angles. 44

4.3 Homes used for collecting training data and environments where models were tested 46
4.4 We visualize the predicted corrections made by the Noise Modelling Network

(NMN). The arrows indicate the NMN learned direction of correction for noisy
patches uniformly sampled in the image for multiple robots. This demonstrates that
the NMN outputs are both, dependent on the raw pixel location of the noisy grasp
and, dependent on the robot ID. 50

5.1 Overview of PyRobot system architecture. 55
5.2 LoCoBot (left) and LoCoBot-Lite (right). Both robots have a 5 DOF arm mounted

on top of a mobile base (Kobuki or Create2). Robots are equipped with a RGB-
D camera mounted on a pan-tilt stand. Robots come with a battery pack and an
on-board computer. 62

5.3 LoCoBot is low-cost and hence scalable. 63
5.4 Qualitative comparisons for trajectory tacking for LoCoBot and LoCoBot-Lite.

Reference trajectory (a circle of radius 0.4 m) is shown in red. 64
5.5 An example of Navigation via SLAM and Path Planning. First row corresponds to

the 2-D map constructed using the on-board SLAM and the second row corresponds
to the actual motion of the robot. 65

5.6 Snapshots from a run of visual navigation policy (CMP [101]) deployed on Lo-
CoBot. See project website for videos. 65

5.7 Grasps selected by the grasp model and execution by the robot. 65

x

6.1 Our Fetch robot learns to localize and grasp a novel object of unknown shape from
just tactile sensing. Our method estimates the target’s location by touch-probing the
workspace (top right), and establish an initial grasp (bottom left). We then learn to
extract features from haptic feedback, and predict how to adjust the grasp (bottom
right). This re-grasping process is repeated until our method identifies a stable grasp. 70

6.2 Overview of our system and approach. (a) Our robot and sensors: We equip a fetch
robot with a Robotiq gripper and additional sensor packages. Our sensors include
force sensor on the fingers of the gripper and RGB-D cameras on the head of the
robot; (b) Our touch based object localization: We touch-probe a 2D grasp plane
of the workspace, and use particle filtering to aggregate evidences of the object’s
location. An initial grasp is established given an estimate of the object’s 2D location.
(c) Our unsupervised learning scheme for haptic features: We learn to represent
haptic data during grasping using an conditional auto-encoder. The learned features
are fed into our re-grasping model to correct the initial grasp. (d) Our re-grasping
model: Based on haptic features from current grasp, we estimate grasp stability
and predict how to adjust the grasp. A new grasp is generated by applying the
adjustment to the current grasp. This process repeats until our method predicts a
stable grasp. 73

6.3 Tactile response from both successful and failed grasps. These grasps are from
objects with varying shape/material/compliance properties. We plot the time series
of force magnitude from our sensors on three fingers (red: right, green: middle,
blue: left). The maximum force during grasping is also displayed. We record
signals before and after the gripper closes (shown in bottom). These signals contain
important information about the object (e.g., material, shape) and the grasping (e.g.,
grasp stability). And we explore using them to estimate how to correct a previous
grasp. 78

6.4 Network architectures for learning haptic features (top) and re-grasping policy
(bottom). Our conditional auto-encoder MENC–MDEC learns to reconstruct haptic
data using both haptic signals and applied gripper control. We treat the learned latent
space H as features for learning re-grasping policy πre−grasp. Our re-grasping
policy maps the hidden representation H to the adjustments of planar grasping
parameters (∆x,∆y,∆z,∆θ) (4D). These high level parameters are then executed
using the motion planner to generate a new grasp. 80

6.5 Our test set of objects. These objects were not in the training data. We divide our
test set into two parts. Set A contains slightly harder objects to grasp (such as the
red and orange toy guns) compared to Set B. 83

6.6 Confusion matrix for material recognition on a held out test set. Using our learned
haptic features, we achieve an accuracy of 42.86%. 84

6.7 Visualization of learned haptic features using t-SNE Embedding. Red and blue dots
correspond to failed and successful grasps respectively. We also plot four typical
examples for grasp stability estimation. 86

xi

7.1 Example point clouds and grasps from our TaskGrasp dataset. Column 7-9 shows
how grasps vary with tasks for a salad tongs (with higher diversity) and a rolling pin
(with lower diversity). Green and Red means successful and incorrect task-oriented
grasps respectively. 93

7.2 Semantic hierarchy of objects. Each level of the hierarchy is represented by one ring
with the innermost circle as the root of the hierarchy. The angle of each segment is
proportional to the number of objects. 95

7.3 Overview of our Task-Oriented grasping framework using semantic knowledge
graphs. 97

7.4 Robot executions of example task-oriented grasps on unknown objects. For each
execution, the top 3D visualization shows the grasp that was executed (which had the
best evaluator score) and the bottom shows all the stable grasp candidates colored
by their scores (green is higher). 100

7.5 mAP across tasks for GCNGrasp predictions. The red bar is for AP predictions by
a random model while the red and blue cumulatively represents the model prediction. 103

xii

List of Tables

2.1 Real Robot experiments . 22

3.1 Control parameters, range and discretization . 34
3.2 Sensitivity Analysis results . 35
3.3 Results on test set with seen and novel objects . 37

4.1 Results of binary classification on different test sets 48
4.2 Results of grasp performance in novel homes (Real-LCA) 49
4.3 Results of grasp performance in lab on the Sawyer robot (Real-Sawyer) 49

5.1 Base position control performance for LoCoBot and LoCoBot-Lite. We report
translation and rotation error for different motion types for the different controllers
for base position control implemented in PyRobot. Lower errors are better. 57

5.2 Locobot Arm Pose Repeatability . 59

6.1 Results of Material Recognition . 84
6.2 Results of Grasp Stability Estimation . 85
6.3 Re-grasping results with oracle object locations 85
6.4 Grasping accuracy of our full method. We also present results of combining our

re-grasping module with a vision based policy to further improve grasping. 87

7.1 Comparing recent Task-Oriented Grasping Datasets 94
7.2 Results on TaskGrasp . 99
7.3 Ablation on Semantic Knowledge . 99
7.4 Cross generalization on TaskGrasp and SG14000 102
7.5 Object Task Combinations . 104

xiii

Chapter 1

Introduction & Background

“Supposedly you really can’t tell, except by looking at
the hands. They haven’t perfected the hands yet.”
— Response from Peter when John is unable to tell a robot from
a human in the Delos amusement park, Westworld (1973). In this
futuristic sci-fi Western film, roboticists have managed to build
humanoids that resemble humans, except for the grippers!

Humans can effortlessly grasp a wide variety of objects in diverse environments. On the other

hand, robotic grasping has been extremely challenging in practice and is far from matching human

dexterity. This puzzling gap is nicely captured by Moravec’s paradox, which states that low-

level sensorimotor skills demand enormous computational resources when compared to high-level

reasoning [172]. In the case of AI research, computers have surpassed humans at games like Go

[219] which demand complex decision making, but a robot will still struggle to manipulate a stone

on the gameboard. A controversial comment at many robotics conferences (often as ice breaker)

is that “grasping is solved” 1. If this was indeed the case, why bother researching or even writing

a thesis on the topic? In reality, grasping is still an active area of research with over four decades

of prior work, and the number of papers increase every year [76]. Despite recent progress in the

community, most research is still largely focused on constrained setups: picking individual objects

on a table top setting. This is in stark contrast to the overall ambition of roboticists in building

a general-purpose personal robot that can manipulate objects in unstructured environments. This

robot has enormous promise with applications in logistics, hospitals, retail, warehouses and assistive

care for the disabled and elderly. This thesis aims to scale data-driven grasping to the diversity and
1This was famously said by former DARPA program manager Gill Pratt at IROS 2012. He has since clarified that

position and does not regret saying that. Source: IEEE Spectrum [98]

1

https://spectrum.ieee.org/automaton/robotics/artificial-intelligence/gill-pratt-on-toyota-robot-plans

1. Introduction & Background

constraints imposed by real world environments.

1.1 Grasping Preliminaries

Grasping is an empirical and multidisciplinary problem encompassing hardware, software, theory

and algorithms. Grasp planning can be described by three stages: 1) grasp synthesis, the process

of generating grasp candidates from a large (infinite) search space, 2) grasp analysis which is

ranking the candidates based on some metric and 3) grasp execution to apply the predicted grasp

with a motion planner and controller on real robot hardware [32, 33, 180]. There are several

factors affecting grasp success, including object geometry, material, contacts, surface friction, mass

distribution, amongst others. Visual perception is crucial in acquiring observations for these factors,

especially the object geometry which is needed for grasp synthesis and analysis. There are many

ways of parameterizing grasps, but a popular formulation is the pose of the gripper. Typically,

the gripper has its fingers open when positioned at a planned grasp pose, which will result in a

successful grasp when they close. This grasp can be executed by commanding the robot to that

specific pose with the help of motion planning and a controller. Barring a few papers [120, 142],

these methods typically rely on good camera calibration and proprioceptive feedback to execute

grasps. A parallel line of work investigates new gripper hardware [30], compliance and exploiting

stiffness in the environment for grasping [76]. These are complementary themes to this thesis.

1.2 Classical Grasping

Summarizing classical grasp analysis in a few paragraphs would not do justice to its rich history. We

refer readers to Bicchi and Kumar [32], Miller [165], Murray et al. [180] for a detailed treatment

of the subject. Instead, we will describe the key insights and shortcomings of this school of

thought. Classical approaches provide analytic solutions with guarantees, and they are formulated

as a constrained optimization problem given accurate models of the object geometry and hand

kinematics [180]. They are also based on practical assumptions such as simplified contact models,

rigid body modeling and Coulomb friction.

The first key drawback of these classical approaches is their lack of robustness to positional

errors during contact. In practice, robotic systems have several systematic and random errors, due to

inaccurate kinematic, dynamics, sensor and calibration models. These errors are accentuated with

wear and tear from contact interactions. This precludes any notion of “perfect execution” of grasps

to the all but simulations or well-calibrated factory robots working in curated environments. While

some works have modelled compliance [76] and caging [205] to reduce the reliance on accurate

positioning, they were mainly shown to work in simulation and/or planar grasping. Several papers

2

1. Introduction & Background

have demonstrated that classical approaches do not necessarily transfer from simulation to the real

world due to these assumptions [26, 95, 171]. The Columbia grasp database [95] contains grasps for

several thousand objects and multiple hands. The best grasps (ranked by analytic metrics) failed

to transfer to known and similar (but not identical) objects [95]. This was due to execution error

from camera calibration and overreliance on precise geometry, which can be different even for

similar looking objects. Balasubramanian et al. [26] found that robust grasps resulting from human

kinesthetic demonstrations could not be explained by analytic metrics. Heuristics like the alignment

between the hand with the object’s principal axis better captured these stable grasps. While object

pose estimation has evolved with deep learning [66, 238], they have historically been prone to errors

[200], may not generalize to novel objects, and can be slow to accurately register noisy point cloud

data to known shape models during execution [94].

The second shortcoming with classical grasping are the assumptions on object information. To

acquire object shape in the wild, we need to visually segment the object from the scene and integrate

noisy observations from multiple views to get a complete 3D representation (without self-occlusions,

etc.) [32, 165, 180]. This is very challenging in general, even in table top settings with known

objects, and sometimes impossible in unstructured settings with clutter. We also may not know

other physical parameters like friction coefficients, weight, center of mass and weight distribution.

Acquiring such information from vision is an open problem.

1.3 Data-driven Grasping

Data-driven grasping has shown tremendous potential for generalization. Compared to analytic

approaches, data-driven approaches focus on learning a feature representation of objects and grasps.

They typically sample grasp candidates and rank them using a learnt evaluator [33, 153]. State-of-

the-art algorithms have shown generalization to object instances [142, 153, 190], viewpoints[142],

DOF constraints [144, 173, 179, 231], unknown environments [99] and even adversarial objects

[242]. We refer to Bohg et al. [33] for a more detailed survey of the literature pre-2016.

There have been several macro trends that have contributed to the success of these techniques.

First, deep learning [136, 139] and domain randomization [236] have allowed grasping models

to learn a mapping from raw visual observations to grasp poses, and transfer to unknown objects

in novel poses. Second, the complementary development of cloud computing [152], physical

simulators (GraspIt! [165], FleX[164], Bullet [56]), visual renderers [36, 173] and photorealistic

simulation [238] have allowed training on large scale datasets. Last, the price of robotic hardware is

also steadily decreasing [91, 99], further reducing the entry barrier to widely deploying grasping

systems. This includes low-cost collaborative manipulators and commodity 3D RGBD sensors like

the Kinect and Realsense [123]. As a result of these trends, one can also just execute grasps on a

3

1. Introduction & Background

low-cost robot to collect interactive data for self-supervised learning or for extensive testing.

Data-driven grasping has limitations that accompany any application of machine learning.

Datasets suffer from bias [99] and overfitting to the specific hardware (e.g. gripper, cameras),

environment they are trained on (labs, simulators) and may not transfer to real data. For more

complex applications such as task-oriented grasping, there is a significant bottleneck in data, since

we are reliant on semantic labelling by humans [178]. State-of-the-art algorithms have reported

grasp performances of 96% on unknown objects [120]. While this is an impressive feat, we still need

to optimize for robustness (on the scale of 99.99% accuracy) and long-tail data to deploy in the real

world. With papers reporting a saturation of performance with more visual grasp data [142, 190], it

is unclear whether more data is the solution.

1.4 Grasping Applications in Practice

Grasping has typically been used in pick-and-place systems in factories, where the robot is pro-

grammed to grasp a known object in constrained poses and place it elsewhere. Recently, empirical

competitions like the Amazon Picking Challenge have exposed the significant gap between classical

theory and grasping in practice. In fact, the winning teams for several years deployed a combination

of vacuum suction grippers (abandoning fingers entirely), deep learning and point cloud heuristics

(grasping along the surface normal) [50, 72]. They outperformed teams using the classical grasp-

ing pipeline of 3D pose estimation of known objects followed by executing pre-computed grasps

[22, 203]. It is also worth noting that the contributions introduced in this thesis transcend the fingers

vs. suction debate and can be applied for both systems.

At the time of writing this thesis, the world is dealing with the fallout from the COVID19

global pandemic. This has greatly accelerated the need for more robotic automation in warehouses

and other settings and has created a new market for medical and delivery robots [97]. Despite the

progress in robotic picking, robots are still effectively in a “cage”: a stationary table-top environment

with a well-calibrated hardware setup. It is unclear if existing industrial art can be confidently

applied in unconstrained settings like homes on a personal robot.

1.5 Thesis Goal and Contributions

While factory and warehouse automation are the most practical applications of robotic grasping,

the wider ambition of the robotics community is in building general-purpose robots that can work

in unstructured settings like homes and hospitals. I argue that both prior waves of classical and

data-driven grasping are insufficient in building this next generation of manipulators. In such spirit,

the goal of this thesis can be summarized as follows: To scale data-driven grasping to the diversity

4

1. Introduction & Background

and constraints imposed by real environments, in terms of robustness to grasp execution, clutter,

robots and tasks.

We approach this problem from several important directions. First, we need to go beyond

reasoning about individual objects to grasping objects in clutter, where occlusion and collision

avoidance are important considerations. Second, we typically use expensive well-calibrated hardware

to perform a handful of grasps on a single robot in the lab. As promised by science fiction, we

will have several models of personal robots (with their own collision model, kinematics, dynamics

and textures) in the future. We show how to transfer policies between different robots, use low-

cost robots to scale up data-collection and finally demonstrate how to improve grasp sampling

efficiency on high-dimensional hardware systems. We also present open source hardware and

software frameworks to democratize grasping research. Third, we hypothesize that visual perception

alone is insufficient for robust grasping and present a data-driven method of closing the loop on the

grasp execution process with tactile sensing.

Despite the enormous progress and generalization in robotic grasping in recent years, there is

still a large gap between robot and human dexterity. When humans grasp an object, we do so with a

particular purpose or task in mind and grasping is just the first step to that end. We grasp objects

for prototypical uses, such as grasping a cup by the handle for drinking, and creative applications

like scooping with a bowl. Motivated by this and as the final lap of the thesis, we strive to go

beyond robotic pick-and-place by generalizing grasping for tasks. We do so by scaling task-oriented

grasping datasets with crowdsourcing and improvising supervision with semantic knowledge graphs.

The primary contributions of this thesis are detailed as follows:
• We present a learning-based approach for 6-DOF grasp synthesis of novel objects in struc-

tured clutter. We additionally propose a learnt collision checker conditioned on the gripper

information and on the raw occluded point cloud of the scene. Trained only with synthetic

data, our framework achieves a grasp accuracy of around 80 % on the real robot with several

cluttered scenes of unknown objects.

• We assemble low-cost mobile manipulators for scaling interactive dataset collection in un-

structured environments and for benchmarking progress in grasping

• We also present the first systematic effort in collecting a robotic grasping dataset inside homes

using these low-cost robots. We demonstrate how data collected from these diverse home

environments leads to superior performance and requires little-to-no domain adaptation when

testing on novel homes with unseen objects

• A framework for policy learning from noisy data collected from multiple low-cost robots

which improves overall grasping performance

• We propose the Hardware Conditioned Policies (HCP) algorithm for the more general problem

5

1. Introduction & Background

of transfer learning policies between robots of completely different kinematics and dynamics

• We present the PyRobot software framework for writing hardware agnostic code to improve

the sharing of datasets and algorithms for robotic manipulation. It is designed to be beginner-

friendly to democratize grasping (along with the low-cost robots)

• A curriculum learning approach to improving the grasp sampling complexity for high-

dimensional hardware systems like multi-fingered grippers

• A framework for grasping unknown objects in novel poses from tactile sensing alone. The

object is localized using particle filtering with contact sensing. The grasps are iteratively

improved in a closed loop manner using a learnt re-grasping policy. We also demonstrate that

tactile re-grasping can be used to substantially improve robustness when applied on top of

vision-based grasping.

• We propose to scale supervision for task-oriented grasping with crowdsourcing, presenting

the TaskGrasp dataset which expands upon prior datasets by an order of magnitude. This

allows us to study generalization in terms of objects and tasks.

• We also demonstrate that semantic knowledge in the form of knowledge graphs and semantic

embeddings can be used for generalizing task-oriented grasping.

1.6 Thesis Organization

This thesis is organized into four main parts.

Part I Generalization to Clutter: In Chapter 2, we present a 6-DOF grasp generation approach

in structured clutter. Grasping in cluttered environments is challenging since it requires both reason-

ing about unseen object parts and potential collisions with the manipulator. Our method plans 6-DOF

grasps for any desired object in a cluttered scene from partial point cloud observations. Though only

trained on simulated data, our approach achieves a grasp success of 80.3%, outperforming baseline

approaches by 17.6% in clearing multiple cluttered table scenes of unknown objects when tested on

a real robotic platform. In corner cases when the target object is initially not reachable, we reason

about moving blocking objects out of the way to finally grasp the target object.

Part II Generalization with Robots: It is extremely challenging to demonstrate grasping on

real robots but most real datasets are overfit to the specific hardware and environments they are

collected in. We use low-cost robots to scale up data-collection, show how to transfer policies

between different robots and finally on how we can improve sampling efficiency on high-dimensional

hardware systems.
• In Chapter 3, we investigate the problem of scaling self-supervised grasping approaches with

curriculum learning on control space. To overcome the curse of dimensionality, we would

6

1. Introduction & Background

need to either scale up data collection efforts or use a clever sampling strategy for training.

We present a novel approach - Curriculum Accelerated Self-Supervised Learning (CASSL)

- which orders the sampling of training data based on control dimensions: the learning and

sampling are focused on few control parameters before others. The right curriculum for

learning is suggested by variance-based global sensitivity analysis of the control space. Our

experimental results indicate that CASSL provides significant improvement compared to

baseline methods such as staged curriculum learning (8% increase) and end-to-end learning

(14% improvement).

• In Chapter 4, we present the first systematic effort in collecting large scale robot data inside

diverse environments like peoples homes. We first build a low cost mobile manipulator

assembled for under 3K USD to parallelize data collection. Second, data collected using

low-cost robots suffer from noisy labels due to imperfect execution and calibration errors. To

handle this, we develop a framework which factors out the noise as a latent variable. The

models trained with our home dataset showed a marked improvement of 43.7% over a baseline

model trained with data collected in lab when tested in unseen homes. Our architecture which

explicitly models the latent noise in the dataset also performed 10% better than one that did

not factor out the noise.

• In Chapter 5, we introduce PyRobot and LoCoBot in our efforts to democratize grasping and

encourage benchmarking. LoCoBot is the improved version of the low cost mobile manipu-

lator used in Chapter 4. PyRobot is a light-weight, high-level interface on top of ROS that

provides a consistent set of hardware independent mid-level APIs to control different robots.

PyRobot abstracts away details about low-level controllers and inter-process communication,

and allows non-robotics researchers (ML, CV researchers) to focus on building high-level

AI applications. PyRobot aims to provide a research ecosystem with convenient access to

robotics datasets, algorithmic implementations and models that can be used to quickly create a

state-of-the-art baseline. We believe PyRobot, when paired up with low-cost robot platforms,

will reduce the entry barrier into robotics, and democratize robotics.

Part III Generalization with Robustness: We hypothesize that visual perception alone cannot

guarantee robust grasp executions. In Chapter 6, we present a self-supervised tactile-based approach

for closing the loop for grasping. Specifically, we study the challenging problem of grasping novel

objects without prior knowledge of their location or physical properties. Our key idea is to combine

touch based object localization with tactile based re-grasping. Our re-grasping model learns to

progressively improve grasps with tactile feedback based on the learned features. This network learns

to estimate grasp stability and predict adjustment for the next grasp. Re-grasping is thus performed

iteratively until our model identifies a stable grasp without slippage. Finally, we demonstrate

7

1. Introduction & Background

extensive experimental results on grasping a large set of novel objects using tactile sensing alone.

Most importantly, we demonstrate robustness by showing that re-grasping significantly boosts the

overall performance by 10.6% when applied on top of a vision-based policy.

Part IV Generalization to Semantic Tasks: How do we go beyond pick-and-place applications

and use grasping for completing more complex tasks? Despite the enormous progress in robotic

grasping in recent years, existing methods have yet to generalize task-oriented grasping to the same

extent. This is largely due to the scale of the datasets both in terms of the number of objects and

tasks studied. In Chapter 7, we address these concerns with the TaskGrasp dataset which is more

diverse both in terms of objects and tasks, and an order of magnitude larger than previous datasets.

The dataset contains 250K task-oriented grasps for 56 tasks and 191 objects along with their

RGB-D information. We take advantage of this new breadth and diversity in the data and present

the GCNGrasp framework which uses the semantic knowledge of objects and tasks encoded in a

knowledge graph to generalize to new object instances, classes and even new tasks. Our framework

shows a significant improvement of around 12% on held-out settings compared to baseline methods

which do not use semantics. We demonstrate that our dataset and model are applicable for the real

world by executing task-oriented grasps on a real robot on unknown objects.

The specific publications for each chapter are listed below:

Chapter 2: 6-DOF Grasping for Target-driven Object Manipulation in Clutter, ICRA 2020 [179].

Chapter 3: CASSL: Curriculum Accelerated Self-Supervised Learning, ICRA 2018 [176].

Chapter 4: Robot Learning in Homes: Improving Generalization and Reducing Dataset Bias,

NuerIPS 2018 [99]. Though not featured in this thesis, the following work also has several related

contributions and ideas: Hardware Conditioned Policies for Multi-Robot Transfer Learning [45].

Chapter 5: PyRobot: An Open-source Robotics Framework for Research and Benchmarking,

2019 [177].

Chapter 6: Learning to Grasp Without Seeing, ISER 2018 [175].

Chapter 7: Same Object, Different Grasps: Data and Semantic Knowledge for Task-Oriented

Grasping, Submitted. [178].

8

Part I

Generalization to Clutter

9

Chapter 2

6-DOF Grasping for Object
Manipulation in Clutter

2.1 Introduction

Grasping is a fundamental robotic task, but is challenging in practice due to imperfections in percep-

tion and control. Most commonly, grasp planning involves generating gripper pose configurations

(3D position and orientation) that maximize a grasp quality metric on a target object in order to

find a stable grasp. There are several factors that affect grasp stability, including object geometry,

material, gripper contacts, surface friction, mass distribution, amongst several others [32, 196]. Most

traditional approaches to grasping assume a separate perception system that can perfectly [196], or

with some uncertainty [151], infer object information such as pose and shape. This is followed by

physics-based grasp analysis [195, 196] or nearest-neighbour lookup on a database of pre-computed

grasps [53]. These methods are slow [94], prone to perception error and do not generalize to novel

objects.

Grasp synthesis is much harder in clutter, such as the example in Fig 6.1. The target object has

to be grasped without any unwanted collisions with surrounding objects or the environment. In a

real world application, a personal robot might be commanded to grasp a specific beverage from a

narrow kitchen cabinet packed with other items. Grasps sampled agnostic of the clutter could end

up in collision with the environment. Even if the gripper pre-shape is not in collision, it may be

challenging to plan a collision-free and kinematically feasible path for the manipulator to achieve

the gripper configuration. One would have to generate a diverse set of grasps since not all the

grasps will be kinematically feasible to execute in the environment. Most model-based approaches

in the grasping and task and motion planning literature assume perfect object knowledge or use

10

2. 6-DOF Grasping for Object Manipulation in Clutter

Figure 2.1: Given an unknown target object (left) our proposed method leads to robust grasp-
ing (right) despite challenging clutter and occlusions. This is enabled by explicitly reasoning about
successful and colliding grasps (center).

an occupancy-grid representation for collision checking, which may not be reliable or practical in

real-world settings [29, 70, 128, 196].

A large part of the difficulty lies in perception. In clutter, large and important parts of object

geometry are occluded by other objects. Traditional shape matching techniques will find it extremely

challenging to operate in such conditions, even when object geometry is known. In addition, getting

quality 3D information is challenging and previous methods resort to using high quality depth

sensors [153] or using multiple views [232], which would require observation-gathering exploratory

movements impossible in confined spaces. This limits the deployment of such systems outside of

controlled environments.

Recent works have explored data-driven methods for grasping unknown objects [33, 99, 120,

142, 153, 190, 232]. However, they mainly focus on the limited setting of planar-grasping and bin-

picking. Some recent methods tackle the more difficult problem of generating grasps in SE(3) from

2D (image) [176], 2.5D (depth, multi-view) [147, 232, 250] and 3D (point cloud) [48, 144, 173]

data. These works primarily consider the problem from an object-centric perspective or in bin-

picking settings. We consider the problem of 6-DOF grasp generation in structured clutter using a

learning-based approach. Our method uses instance segmentation and point cloud observation from

just a single view. We follow a cascaded approach to grasp generation in clutter, first reasoning

about grasps at an object level and then checking the cluttered environment for collisions. We use a

learned collision checker, which evaluates grasps for collisions from just raw partial point cloud

observations and works under varying degrees of occlusion. Specifically, we present the following

contributions:

• A learning-based approach for 6-DOF grasp synthesis for novel objects in structured clutter,

which uses a learned collision checker conditioned on the gripper information and on the raw

point cloud of the scene.

• Showing that our approach, trained only with synthetic data, achieves a grasp accuracy of

80.3% with 23 real-world test objects in clutter. It also outperforms a clutter-agnostic baseline

11

2. 6-DOF Grasping for Object Manipulation in Clutter

Figure 2.2: Overview of our cascaded grasping framework. A local point cloud centered on the
target object is cropped from the scene point cloud using instance segmentation. 6-DOF grasps are
then generated and ranked by collisions with the scene.

approach of 6-DOF GraspNet [173] with state-of-the-art instance segmentation [248] by

17.6%.

• Demonstrating an application of our approach in moving blocking objects away out of the

way to grasp a target object that is initially occluded and impossible to grasp.

2.2 Related Work

Grasping is a widely studied field in robotics ([32, 33, 196]). In the following we will focus our

comparison on existing approaches that are data-driven and the aspects in which they differ from the

proposed method.

Grasping in clutter vs. isolated objects: Among learning-based methods for grasping a

significant amount focuses on dealing with isolated objects on planar surfaces ([121, 139, 147, 173,

250]). Our approach specifically tackles the problem of grasping objects from a cluster of multiple

objects. This problem is significantly harder since the accessible workspace around the target object

is severely limited, occlusions are more likely to hamper perception and predicting outcomes might

be more difficult due to contact interactions between objects. Although multiple learning-based

approaches for dealing with grasping in clutter exist ([142, 152, 190, 232]) we will show in the

following that they differ from our approach in multiple aspects.

Bin-picking vs. structured clutter: Most learning-based grasping approaches for clutter deal

with rather small and light objects that are spread in a bin ([96, 142, 152, 190]). In contrast our

approach focuses on structured clutter. We define structured clutter as packed configurations

of mostly larger, heavier objects. Examples include kitchen cupboards or supermarket shelves.

Compared to the bin-picking setup successful grasps are more sparsely distributed in structured

clutter scenarios. Collisions and unintended contact is often more catastrophic since objects have

fewer stable equilibria when they are not located on a pile. Since avoiding collision becomes more

important, structured clutter is more prominent in evaluations of model-based task-and-motion-

12

2. 6-DOF Grasping for Object Manipulation in Clutter

planning. Our approach explicitly predicts grasp configurations that are in collision and can do so

despite occlusions.

Planar vs. spatial grasping in clutter: Many learning-based grasp algorithms for clutter are

limited to planar grasps, representing them as oriented rectangles or pixels in the image ([142, 150,

190, 257]). As a result, grasps lack diversity and picking up an object might be impossible given

additional task or arm constraints. This limitation is less problematic in bin-picking scenarios where

objects are small and light. In structured clutter, spatial grasping is unavoidable, otherwise pre-grasp

manipulations are needed [71]. Those learning-based approaches that plan full grasp poses are

either based on hand-crafted features ([106, 129, 156]) or have non-learned components [232]. Our

approach uses a learned grasp sampler that predicts the full 6D grasp pose and accounts for unseen

parts due to occlusions.

Model-based vs. model-free: A lot of planning approaches exist that tackle scenarios of

grasping in structured clutter ([19, 55, 71, 124, 128]). These approaches rely on full observability

and prior object knowledge. In contrast, our method does not require any object models and poses;

grasps are planned based on raw depth images. In that regard, it is similar to other data-driven

methods for clutter ([142, 150, 190, 232, 257]) but differs from techniques that use hand-engineered

features ([86, 106, 129, 156]).

Target-agnostic vs. target-driven: Few approaches focus on grasping specific objects in

clutter ([62, 114]). Our method is target-driven as it uses instance segmentation [248] to match

grasps with objects.

2.3 6-DOF Grasp Synthesis for Objects in Clutter

We consider the problem of generating 6-DOF grasps for unknown objects in clutter. The input

to our approach is the depth image of the scene and a binary mask indicating the target object.

In particular, we aim to estimate the posterior grasp distribution P (G∗|X), where X is the point

cloud observation and G∗ is the space of successful grasps. We represent g ∈ G∗ as the grasp pose

(R, T) ∈ SE(3) of an opened parallel-yaw gripper that results in a robust grasp when closing its

fingers.

The distribution of successful grasps is complex, multi-modal and discontinuous. The number of

modes for a new object is not known a-priori and is determined by the geometry, size, and physics of

the object. Additionally, small perturbations of a robust grasp could lead to failure due to collision

or slippage from poor contact. Finally, cluttered scenes limit the robot workspace significantly.

Although a part of an object might be visible it could be impossible to grasp if the gripper itself is a

large object (such as the Franka Panda robot hand we use in our experiments) that leads to collisions

with surrounding objects.

13

2. 6-DOF Grasping for Object Manipulation in Clutter

2.3.1 Overview of Approach

Our cascaded grasp synthesis approach factors the estimation of P (G∗|X) by separately learning

the grasp distribution for a single, isolated object P (G∗|Xo) and a discriminative model P (C|X, g)

which we call CollisionNet that captures collisions C between gripper at pose g and clutter observed

as X . X is the cropped point cloud of the scene and Xo =Mo(X) is the segmented object point

cloud, whereMo is the instance mask of the target object.

The advantage of this factorization is twofold. First, it allows us to build upon prior work [173]

which successfully infers 6-DOF grasp poses for single, unknown objects. Second, by explicitly

disentangling the reasons for grasp success, i.e., the geometry of the target object and a collision-

free/reachable gripper pose, we can reason beyond simple pick operations. As shown in a qualitative

experiment in Sec. 2.4.3 we can use our approach to infer which object to remove from a scene to

maximize grasp success of the target object.

Fig. 7.3 shows an overview of our approach. During inference, a target object can be selected

based on a state-of-the-art segmentation algorithm [248]. Given this selection we infer possible

successful grasps for the object ignoring clutter, and combine it with the collision results provided

by CollisionNet.

In the following two sections, we will present both of these models. Note that our particular

design decisions are based on comparisons with alternative formulations. In Sec. 2.4.1 we will

show how our approach outperforms variants that do not distinguish between grasp failures due to

collisions and target geometry, or use non-learned components.

2.3.2 6-DOF Grasp Synthesis for Isolated Objects

We first want to learn a generative model for the grasps given the point cloud observation of the

cluttered scene. Though this generative model is learned from a reference set of positive grasps, it is

not completely perfect due to several reasons. As a result, we follow the approach presented in [173]

to have a second module to evaluate and further improve these generated grasps. Conditioned on the

point cloud and grasp, the evaluator predicts a quality score for the grasp. This information could

also be used to incrementally refine the grasp. We also explore the importance of object instance

information in all stages of the 6-DOF grasping pipeline, from grasp generation to evaluation, in the

ablation study.

Variational Grasp Sampling: The grasp sampler is a conditional Variational Autoencoder

[126] and is a deterministic function that predicts the grasp g given a point cloud Xo and a latent

variable z. P (z) = N (0, I) is a known probability density function of the latent space. The

likelihood of the grasps can be written as such:

14

2. 6-DOF Grasping for Object Manipulation in Clutter

P (G|Xo) =

∫
P (G|Xo, z)P (z)dz (2.1)

Optimizing Eqn 2.1 is intractable as we need to integrate over all the values of the latent space

[126]. To make things tractable, an encoder Q(z|Xo, g) is used to map each pair of point cloud Xo

and grasp g to the latent space z while the decoder reconstructs the grasp given the sampled z. The

encoder and decoder are jointly trained to minimize the reconstruction loss L(ĝ, g) between the

ground truth grasps g ∈ G+ and predicted grasps ĝ, with the KL-divergence penalty between the

distribution Q and the normal distribution N (0, I):

LV AE =
∑

z∼Q,g∼G∗

L(ĝ, g)− αDKL[Q(z|Xo, g),N (0, I)] (2.2)

Note that the input to the VAE is the point cloud of the target object segmented from the scene

with instance mask.

To combine the orientation and translation loss, we define the reconstruction loss as L(ĝ, g) =
1

n

∑
||T (g; p)−T (ĝ; p)|| where T is the transformation of a set of predefined points p on the robot

gripper. During inference, the encoder Q is discarded and latent values are sampled from N (0, I).

Both the encoder and decoder are based on the PointNet++ architecture [197], where each point has

a feature vector along with 3D coordinates. The features of each input point of the point cloud are

concatenated to the grasp g and the latent variable z in the encoder and decoder respectively.

Though instance information can give a strong prior about the object, it is not perfect in practice.

This is especially the case in cluttered scenarios where objects are occluded or very close to

each other, resulting in noisy under and over-segmentation. When rendering the segmentation in

simulation, we add random salt-and-pepper noise to the object boundaries and randomly merge

partially occluded objects to neighboring ones in image space, to mimic the imperfections of instance

segmentation methods on the real images.

Grasp Evaluation: Though the grasp sampler is trained with only positive grasps, it may

still predict failed grasps which need to be identified and removed. We train an evaluator that

predicts a grasp score P (S|Xo, g), with the training data consisting of positive G+
S = G+ and

negative G−S = G− grasps. The evaluator’s input is Xo, the point cloud of the object segmented

from the full scene. Since the space of all possible 6-DOF grasp poses is large, it is not possible

to sample all the negative grasps for training the grasp evaluator P (S|Xo, g). Therefore, during

training we sample from true negatives but also sample hard negative grasps by perturbing positive

grasps with a small translation and orientation and choosing those that are in collision with the

object or are too far from the object to grasp the object. At test time on the robot, the grasps are

ranked by their evaluator scores and only those above a threshold are selected.

15

2. 6-DOF Grasping for Object Manipulation in Clutter

Grasp Refinement: A significant proportion of the grasps rejected by the evaluator are actually

in close proximity to robust grasps. This insight could be exploited to perform a local search in

the region of g to iteratively improve the evaluator score. We concretely want to sample ∆g to

increase the probability of success, i.e., P (S|∆g + g,Xo) > P (S|g,Xo). The refinement was

found using gradient descent in [173]. In practice, computing gradients is not fast. Instead, we use

Metropolis-Hastings sampling where a random ∆g is sampled and with probability of P (S|g+∆g,Xo)
P (S|g,x)

grasp g + ∆g is accepted. We observe that this sampling scheme yields similar performance to the

gradient-based one while it is computationally twice as fast.

2.3.3 Collision Detection for Grasps in Clutter: CollisionNet

CollisionNet predicts a clutter-centric collision score P (C|X, g) given the full scene information

X . The training data for CollisionNet is G+
C = {g|g ∈ Gref ,¬Ψ(g, x)} and G−C = {g|g ∈

Gref ,Ψ(g, x)}. The ground truth labels are generated in simulation with a collision checker Ψ

assuming full state information x. In each batch, we used balanced sampling of grasps within the

subsets of the reference set Gref , which consists of the positive and negative sets (G+, G−), hard-

negatives generated by perturbing positive grasps (G−hn) and grasps in free spaceGfree. We observed

that balanced sampling improved the stability of training and generalization at test time over uniform

sampling from G+ ∪G−. Similar to the grasp evaluator, the scene/object point cloud X/Xo and

gripper point cloudXg are combined into a single point cloud by using an extra indicator feature that

denotes whether a point belongs to the object or to the gripper. The PointNet++ [197] architecture

then uses the relative information between gripper pose g and point clouds for classifying the grasps.

CollisionNet is optimized using cross entropy loss.

2.3.4 Implementation Details

Training data is generated online by arranging multiple objects randomly at their stable poses.

Objects are added to the scene with rejection sampling poses to ensure they are not colliding with

existing clutter. In order to generate grasps for the scenes, we combine the positive and negative

grasps of each object from [173] which includes a total of 126 objects from several categories

(boxes, cylinders, bowls, bottles, etc.). From each scene we take multiple 3D crops centered

on the object (with some noise) along with grasps that are inside the crop. The cropped point

cloud of the 3D box is down-sampled to 4096 points. All the samplers and VAEs are based on

PointNet++ [197] architecture and the dimension of latent space is set to 2. During inference, object

instances are segmented with [248]. The VAE sampler generates the grasps given the point cloud

of the target object by sampling 200 latent values. Grasps are further refined with 20 iterations of

Metropolis-Hastings. The whole inference takes 2.5s on a desktop with NVIDIA Titan XP GPU.

16

2. 6-DOF Grasping for Object Manipulation in Clutter

Figure 2.3: Comparing the VAE sampler and Surface Normal Sampler. The number next to the
legend is the area under curve (AUC) and the VAE sampler has a higher AUC.

2.4 Experimental Evaluation

2.4.1 Ablation analysis and Discussion

Evaluation Metrics: Following [173], we used two metrics for evaluating the generated grasps:

success rate and coverage. Success rate is the percentage of grasps that succeed grasping the object

without colliding and coverage is the percentage of sampled ground truth grasps that are within

2cm of any of the generated grasps. The ablations were done in simulation with a held-out test

set of 15 unseen objects of the same categories arranged at random stable poses in 100 different

scenes. Physical interactions are simulated using FleX [164]. Area under curve (AUC) of the

success-coverage plot is used to compare different variation of the methods in the ablations.

Learned vs. Surface Normal Based Grasp Sampler: The first ablation study we consider

is the effect of using a learned VAE to sample grasps in comparison with a geometric baseline.

This baseline generates grasps by sampling random points on the object along surface normals,

with random standoff, and random orientation along the surface normal. Fig. 2.3 shows that our

learned VAE sampler yields more grasp coverage. It is worth noting that the surface-normal based

sampler performed well for simpler shapes like boxes but failed to generate grasps for more complex

geometry with rim, handles, etc.

CollisionNet vs Voxel-Based Collision Checking: We compared the effectiveness of Collision-

Net with a voxel-based heuristic commonly used (such as in MoveIt! [47]) for obstacle avoidance in

17

2. 6-DOF Grasping for Object Manipulation in Clutter

Figure 2.4: CollisionNet outperforms the Voxel-based approach in both success and coverage. The
Voxel-based without Target Object ablation only considers collisions with the scene.

unknown 3D environments. In our case, from each object, 100 points are sampled using farthest

point sampling. Each sampled point is represented by a voxel cube of size 2cm. Collision checking

is done by checking the intersection of the gripper mesh with any of the voxels. As shown in

Fig. 2.4, CollisionNet outperforms the voxel-based heuristic in terms of precision and coverage.

Qualitatively, we observed that the voxel-based representation fails to capture collision when the

gripper mesh intersects with occluded parts of objects, or if there is missing depth information (see

Fig. 2.5). In cases where the voxel-based collision checking fails, CollisionNet has 89.7% accuracy

in classifying the collisions correctly.

The voxel-based approach also has several false negatives by rejecting good grasps that are

slightly penetrating voxels corresponding to points on the target object, as the voxels expand

the spatial region for collision checking. Without considering the voxels on the target object for

collisions, the coverage decreases marginally (blue curve in Fig. 2.4). The grasp success also

decreases as grasps that are actually colliding with the target object are not pruned out. CollisionNet

does not suffer from such biases and can reason about relative spatial information in the partial point

clouds.

Single-stage vs. Cascaded Evaluator: Instead of a cascaded grasp generation approach, one

could also use a single-stage sampler and evaluator with object instance information. Once the

grasps are sampled, there is only a single evaluator that directly estimates P (S,¬C|X, g). The

positive training set is G+
SC = {g|g ∈ G+,¬Ψ(g, x)} while the negative set is G−SC = {g|g ∈

G+,Ψ(g, x)}∪ {g|g ∈ G−}. As a result, some positive grasps g ∈ G+ will be in collision resulting

18

2. 6-DOF Grasping for Object Manipulation in Clutter

Figure 2.5: Examples where the voxel-based heuristic fails to predict collisions but CollisionNet
succeeds. These false positives are due to missing points (region highlighted by dotted circle) from
occlusion. These grasps will lead to critical collisions if executed.

in lower scores. An example of the input data to this baseline is shown in Fig. 2.7(b), where the

indicator mask of the target object is passed as an additional feature to the PointNet++ architecture.

We found that the cascaded model outperformed the single-stage model, as shown in Fig 2.6.

This improvement is due to two factors. First, the VAE is far more proficient in learning

grasps from an object-centric observation than from scene-level information. Second, the cascaded

architecture imposes an abstraction between having a grasp evaluator that is singly proficient in

reasoning about grasp robustness and CollisionNet that is proficient in predicting collisions.

Role of Object Instance Segmentation: We compared our cascaded grasp sampling approach

to an instance-agnostic baseline. Without instance information, the baseline is a single-stage grasp

planner that uses the point cloud of the scene, since we cannot get a object-centric input. An example

of the input data to this baseline is shown in Fig. 2.7(a). From the ablation shown in Fig. 2.6, we

found that our cascaded grasp sampler (using instance information and CollisionNet) had a AUC of

0.22 and outperformed the object instance-agnostic baseline in terms of both success and coverage,

which had a AUC of 0.02. A common failure mode of the instance-agnostic model is that the

variational sampler gets confused as to which object to grasp in the scene, with the latent space

being potentially mapped to grasps for multiple objects and degrading the overall grasp quality for

all the objects.

2.4.2 Real Robot Experiments

In our robot experiments, we wanted to show that our cascaded grasp synthesis approach (1)

transfers to the real world despite being trained only in simulation; (2) has competitive performance

19

2. 6-DOF Grasping for Object Manipulation in Clutter

Figure 2.6: Our cascaded approach demonstrates much higher success and coverage compared to a
single-stage and instance-agnostic model.

Figure 2.7: Representative example of the data provided to the different grasping architectures a)
single-stage model without object instance information b) single-stage model with object instance
mask used as a feature vector along with the point cloud c) our cascaded model to sample with
object-centric point cloud and evaluate for collisions with clutter-centric data. The target object is
colored in blue.

20

2. 6-DOF Grasping for Object Manipulation in Clutter

Figure 2.8: Application of our approach in retrieving a partly occluded mug (highlighted in (a)).
The blocking objects are ranked (colored in (b), red being most inhibiting) and removed from the
scene. The target object is finally grasped in (f).

Figure 2.9: Scenes used for testing. See accompanying video for grasp performance.

for target-driven grasping in real clutter scenes and (3) outperforms baseline methods using the

clutter-agnostic 6-DOF GraspNet implementation [173] with instance segmentation and voxel-based

collision checking. Our physical setup consists of a 7-DOF Franka Panda robot with a parallel-jaw

gripper. We used a Intel Realsense D415 RGB-D camera mounted on the gripper wrist for perception.

We execute the grasps in a open-loop fashion where the robot observes the scene once, generates the

grasps and then executes solely based on the accurate kinematics of the robot. We found open-loop

execution to work reasonably well in our setting. CollisionNet only considers collisions between the

gripper and the clutter. We also use occupancy voxel-grid collision checking on top of CollisionNet

to make sure that the rest of the manipulator arm does not collide with the clutter and table during

motion planning. We compared the performance of the method on 9 different scenes (see Fig 2.9)

with the fixed order (pre-computed randomly) of objects to be grasped. A grasp was considered a

success if the robot could grasp the object within two consecutive attempts on the same scene. One

could choose the order in which all the target objects are completely visible. To make the problem

more challenging, half of the chosen target objects were occluded. To generate grasps, a batch size

of 200 latents were sampled and the grasps that have scores lower than a threshold for each of the

evaluator is filtered out. From the remainder of grasps, the one with maximum score is chosen to be

21

2. 6-DOF Grasping for Object Manipulation in Clutter

executed.

Table 2.1: Real Robot experiments

Approach Trials Performance (%)
6-DOF GraspNet [173] + Ins. Segmentation [248] 32/51 62.7

Object Instance 31/51 60.7
Object Instance + CollisionNet (Ours) 41/51 80.3

The results are summarized in Table 2.1. Our framework achieves a success rate of 80.3% and

outperforms the baseline 6 DOF-GraspNet approach by 17.6%. Furthermore, without CollisionNet,

our model performance degrades substantially. The two failure cases are the grasps that are colliding

with the object but object centric evaluator predicts high score for them. These grasps are filtered

out by CollisionNet. The second failure mode pertains to the fact that the voxel-based representation

cannot capture all collisions.

2.4.3 Application: Removing Blocking Objects

Consider scenarios such as that shown in Fig. 2.8, where the target object is being blocked by other

objects and none of the sampled grasps are kinematically feasible. To accomplish this task, the model

needs to generate potential grasps for the target object even though the target object is not physically

reachable (detected by low scores from CollisionNet). Given the potential grasps, we can identify

which objects are interfering with the generated grasps for the target object. The blocking object j is

chosen to be the one with the largest increase in collision scores when removing the corresponding

object points from the scene point cloud i.e. αj = P (C|X̂j , g) − P (C|X, g). The objects are

colored by this ranking metric αj in Fig. 2.8(b), with the red object being the most blocking. The

modified point cloud X̂j , which hallucinates the scene without object j, is implemented by merging

the object’s instance mask with that of the table and projecting corresponding points to the table

plane. Grasps are then generated for the blocking object and removed from the scene. Collision-free

grasps can now be generated for the unoccluded target object for the robot to recover it. Target

objects can be specified by any down-stream task but in this use case, it is specified by choosing the

segmentation corresponding to the target object.

2.5 Conclusion

We present a learning-based framework for 6-DOF grasp synthesis for novel objects in structured

clutter settings. This problem is especially challenging due to occlusions and collision avoidance

which is critical. Our approach achieves a grasp accuracy of 80.3% in grasping novel objects in

clutter on a real robotic platform despite being only trained in simulation. A key failure mode of our

22

2. 6-DOF Grasping for Object Manipulation in Clutter

approach is that it only considers gripper pre-shape collisions by design and hence motion planning

could still fail on generated grasps. In future work, we hope to consider trajectory generation in

grasp planning and explore the use of our approach in task planning applications. We also aim to

apply this framework in grasping objects from challenging environments like kitchen cabinets and

handle the case of retrieving stacked objects in structured clutter.

23

Part II

Generalization with Robots

24

Chapter 3

Curriculum Learning for High
Dimensional Grasping

3.1 Introduction

With the advent of big data in robotics [20, 140, 142, 190], there has been an increasing interest in

self-supervised learning for planning and control. The core idea behind these approaches is to collect

large-scale datasets where each data-point has the current state (e.g. image of the environment),

action/motor-command applied, and the outcome (success/failure/reward) of the action. This large-

scale dataset is then used to learn policies, typically parameterized by high-capacity functions

such as Convolutional Neural Networks (CNNs) that predict the actions of the agent from input

images/observations. But what is the right way to collect this dataset for self-supervised learning?

Most self-supervised learning approaches use random exploration. That is, first a set of random

objects is placed on the table-top followed by a random selection of actions. However, is random

sampling the right manner for training a self-supervised system? Random exploration with few

thousand data points will only work when the output action space is low-dimensional. In fact,

the recent successes in self-supervised learning which shown experiments on real robots (not just

simulation) use a search space of only 3-6 dimensions 1 for output action space. Random exploration

is also sub-optimal since it leads to a very sparse sampling of the action-space.

We focus on the problem of sampling and self-supervised learning for high-level, high-dimensional

control. One possible approach is to collect and sample training data using staged-training [190] or

on-policy search [228]. In both these approaches, random sampling is first used to train an initial

policy. This policy is then used to sample the next set of training points for learning. However, such
1[20, 142, 190] use 3,4,5-dim search space respectively

25

3. Curriculum Learning for High Dimensional Grasping

CL1 - Mode (MG) CL2 – Height (hG) CL3 – Grasp Angle (𝜽)

Figure 3.1: Given a table-top scene, our robot learns to grasp objects by Curriculum Accelerated
Self-Supervised Learning (CASSL). Given the various control dimensions, such as mode, height,
grasp angle, etc., our robot focuses on learning to predict the easier dimensions earlier. We used a
Fetch-robot with an adaptive 3-fingered gripper from Robotiq.

approaches are hugely biased due to initial learning from random samples and often sample points

from a small search space. Therefore, recent papers have investigated other exploration strategies,

such as curiosity-driven exploration [110]. However, data sparsity in high-dimensional action space

still remains a concern.

Let’s take a step back and think how do humans deal with high-dimensional control. We note

that the action space of human control grows continually with experience: the search does not

start in high-dimensions but rather in a small slice of the high-dimensional space. For example, in

the early stages of human development, when hand-eye coordination is learned, a single mode of

grasping (palmar-grasp) is used, and we gradually acquire more complex, multi-fingered grasping

modalities [90]. Inspired by this observation, we propose a similar strategy: order the learning

in control parameter space by fixing few dimensions of control parameters and sampling in the

remaining dimensions. We call this strategy curriculum learning in control space, where the

26

3. Curriculum Learning for High Dimensional Grasping

curriculum decides which control dimensions to learn first 2. We use a sensitivity analysis based

approach to define the curriculum over control dimensions. We note that our framework is designed

to infer high-level control commands and use planners/low-level controllers to achieve desired

commands. In future work, the curriculum learning of low-level control primitives, such as actuator

torques, could be explored.

We demonstrate the effectiveness of our approach for the task of adaptive multi-fingered grasping

(See Fig 3.1). Our search space is 8-dimensional and we sample the training points for learning

control in 6-dimensions (x, y is done via region-proposal sampling, as explained later). We show

how a robust model for grasping can be learnt with very few examples. Specifically, we illustrate

that defining a curriculum over the control space improves overall grasping rate compared to that of

random sampling and staged-training strategy by a significant margin. To the best of our knowledge,

this is the first work applications of curriculum learning on a physical robotic task.

3.2 Related Work

Curriculum Learning: For biological agents, concepts are easier to learn when provided in a

structured manner instead of an arbitrary order [220]. This idea has been formalized for machine

learning algorithms by Elman et al. [75] and Bengio et al. [28]. Under the name of Curriculum

Learning (CL) [28], the core idea is to learn easier aspects of the problem earlier while gradually

increasing the difficulty. Most curriculum learning frameworks focus on the ordering of training

data: first train the model on easy examples and then on more complex data points. Curriculum over

data has been shown to improve generalization and speed up convergence [46, 143]. In our work,

we propose curriculum learning over the control space for robotic tasks. The key idea in our method

is that in higher dimensional control spaces, some modalities are easier to learn and are uncorrelated

with other modalities. Our variance-based sensitivity analysis exposes these easy to learn modalities

which are learnt earlier while focusing on harder modalities later.

Intrinsic Motivation: Given the challenges for reinforcement learning in tasks with sparse

extrinsic reward, there have been several works that have utilized intrinsic motivation for exploration

and learning. Recently, Pathak et al. [186] learned a policy for a challenging visual-navigation task

by optimizing with intrinsic rewards extracted from self-supervized future image/state prediction

error. Sukhbaatar et al. [225] proposed a asymmetric self-play scheme between two agents to

improve data efficiency and incremental exploration of the environment. In our work, the curriculum

is defined over the control space to incrementally explore parts of the high-dimensional action space.
2Note our curriculum is defined in control space as opposed to standard usage where easy examples are used first

followed by hard examples for training. In our case, the objects being explored, though diverse and numerous, remain
fixed.

27

3. Curriculum Learning for High Dimensional Grasping

Ranking Functions: An essential challenge in CL is to construct a ranking function, which

assigns the priority for each training datapoint. In situations with human experts, a stationary ranking

function can be hand defined. In Bengio et al. [28], the ranking function is specified by the variability

in object shape. Some other methods like Self-Paced Learning [137] and Self-Paced Curriculum

Learning [117] dynamically update the curriculum based on how well the agent is performing. In

our method, we use a stationary ranking that is learned from performing sensitivity analysis [211] on

some data collected by sampling the control values from a quasi-random sequence. This stationary

ranking gives priority ordering on control parameters. Most formulations of curriculum training use

a linear curriculum ordering. A recent work by Svetlik et al. generated a directed acyclic graph of

curriculum ordering and showed improved data efficiency for training an agent to play Atari games

with reinforcement learning [229].

Grasping: We demonstrate data-efficiency of CASSL on the grasping problem. Refer to [32, 33]

for surveys of prior work. Classical foundational approaches focus on physics-based analysis of

stability [184]. However, these methods usually require explicit 3D models of the objects and do

not generalize well to unseen objects. To perform grasping in complex unstructured environments,

several data-driven methods have been proposed [142, 152, 190]. For large-scale data collection

both simulation [152] and real-world robots [142, 190] have been used. However, these large scale

methods operate on lower dimensional control spaces (planar grasps are often 3 dimensional in

output space) since high-dimensional grasping requires significantly more amount of data. In our

work, we hypothesize and show that CASSL requires lesser data and can also learn on higher

dimensional grasping configurations.

Robot Learning: The proposed method of Curriculum Accelerated Self-Supervised Learn-

ing (CASSL) is not specific to the task of grasping and can be applied to a wide variety of robot

learning, manipulation and self-supervised learning tasks. The ideas of self-supervised learning have

been used to push and poke objects [20, 191]. Nevertheless, a common criticism of self-supervised

approaches is their dependency on large scale data. While reducing the amount of data for training

is an active area for research [193], CASSL may help in reducing this data dependency. Deep

reinforcement learning [74, 169, 217] methods have empirically shown the ability of neural networks

to learn complex policies and general agents. Unfortunately, these model-free methods often need

data in the order of millions to learn their perception-based control policies.

3.3 Curriculum Accelerated Self-Supervised Learning (CASSL)

We now describe our curriculum learning approach for high-level control. First, we discuss how to

obtain priority ordering of control parameters followed by how to use the curriculum for learning.

28

3. Curriculum Learning for High Dimensional Grasping

Figure 3.2: A small subset of the data processed by the model during training can be seen here.
Note that during training, we use a wide variety of objects with different sizes, shapes and rigidity.

3.3.1 CASSL Framework

Our goal is to learn a policy v = π(I) and scoring function y = F(I, v), which given the current

state represented by image I and action v predicts the likelihood of success y for the task. Note

that in the case of high-dimensional control v = v1, v2....vK where K is the dimensionality of the

action space. For the task of grasping an object, y can be the grasp success probability given the

image of object (I) and control parameters of the grasp configuration (v). The high-level control

dimensions for grasping are the grasping configuration, gripper pose, force, grasping mode, etc. as

explained later.

The core idea is that instead of randomly sampling the training points in the original K-dim

space and learning a policy, we want to focus learning on specific dimensions first. So, we will

sample more uniformly (high exploration) in the dimensions we are trying to learn; and for the other

dimensions we use the current model predictions (low exploration). Consequently, the problem

is reduced to the challenge of finding the right ordering of the control dimensions. One way of

determining this ranking is with expert human labeling. However, for the tasks we care about, the

output function F(I, v) is often too complex for a human to infer rankings due to the complex

space of grasping solutions. Instead, we use global sensitivity analysis on a dataset of physical

robotic grasping interactions to determine this ranking. The key intuition is to sequentially select

the dimension that is the most independent and interacts the least with all other dimensions, hence is

easier to learn.

3.3.2 Sensitivity Analysis

For defining a curriculum over control dimensions, we use variance-based global sensitivity analysis.

Mathematically, for a model of the form y = F(I, v = {v1, v2, · · · , vK}), global sensitivity

analysis aims to numerically quantify how uncertainty in the scalar output (e.g. grasp success

probability in our context) can be expressed in terms of uncertainty in the input variables (i.e. the

29

3. Curriculum Learning for High Dimensional Grasping

control dimensions) [212]. The first order index, denoted by S(1)
j , is the most preliminary metric of

sensitivity and represents the uncertainty in y that comes from vj alone. Another metric of interest

is the total sensitivity index S(T)
j , which is the sum of all sensitivity indices (first and higher order

terms) involving the variable vj . As a result, it captures the interactions (pairwise, tertiary, etc.) of

vj with other variables. Detailed description on monte carlo estimators for the indices and proofs

can be found in [212]. Obtaining the sensitivity metrics requires the model F or an approximate

version of it. Instead, we use Sobol sensitivity analysis [105] implementation in SAlib and propose

a data-driven method for estimating the sensitivity metrics. In Sobol sensitivity analysis, the control

input is sampled from a quasi-random sequence, as it provides a better coverage/exploration of the

control space compared to a uniform random distribution.

3.3.3 Determining the Curriculum Ranking

Given a large control space, an intuitive curriculum would be to learn control dimensions in the

descending order of their sensitivity. However, when designing a curriculum, we also care about

the interactions between a control dimension and others. Hence, we need to optimize on getting

dimensions that have high sensitivity and low correlation with other dimensions. One way to

do this is to minimize higher order (>1) terms (i.e. S(T)
i − S(1)

i) and the pairwise interactions

between variables S(2)
i . Given sensitivity values for each control dimension, we choose the subset

of dimensions Ψ which minimize the heuristic Eqn 3.1 below:

min
Ψ
E(Ψ) =

∑
i∈Ψ

(S
(T)
i − S(1)

i) +
∑
i∈Ψ

∑
j∈(Ω−Ψ)

|S(2)
ij | (3.1)

Here Ω is the set of all control dimensions (i.e. Ω = {v1, v2, · · · , vK}), and Ψ is a subset of

dimensions. We evaluate all possible 2K − 1 subsets and choose the subset with the minimum value

as the first set of control dimensions in the curriculum. We then recompute the term for subsets of

remaining control dimensions and iteratively choose the next subset (as seen in Algorithm 1). The

intuition behind Eqn 3.1 is that we want to choose the subset of control dimensions on which the

output y depends the most and is least correlated with the remaining dimensions.

3.3.4 Modeling the Policy

The policy function v = π(I) takes the image as input I and outputs the desired action v. Inspired

by the approach in [190], we use a CNN to model the policy function. However, since CNNs have

been shown to work better on classification than regression, we employ classification instead of

regressing control outputs. To this end, each control space is discretized into ni bins as given in

Table 3.1.

30

3. Curriculum Learning for High Dimensional Grasping

Conv1
96@

(55x55)

Conv2
256@

(27x27)

Conv3
384@

(27x27)

Conv4
384@

(13x13)

Conv5
256@

(13x13)
fc6

4096

𝜃	(20)

fc7 - 𝜃
1024

Height (5)

fc7 - Height
1024

𝛽	(10) 𝐹𝑜𝑟𝑐𝑒 	(20)

fc7 - 𝛼
1024

fc7 -𝛽
1024

fc7 - Force
1024

𝛼	(10)Mode (3)

fc7 - Mode
1024

Figure 3.3: We employ a deep neural network to learn the action policy. The convolutional layers
and the first fully connected layer (fc6) are shared (in grey). The fc7 and output control layers are
trained (in orange) to learn control-specific weights.

Our network design is based on AlexNet [136], where the convolutional layers are initialized

with ImageNet [209] pre-trained weights as done before in [190, 192]. We used ImageNet pre-trained

features as they been proven to be effective for transfer learning in a number of visual recognition

tasks [93, 201]. The network architecture is shown in Fig 3.3. The fully-connected layer’s weights

are initialized from a normal distribution. While we could have had separate networks for each

control parameter, this would enormously increase the size of our model and make the prediction

completely independent. Instead, we employ a shared architecture commonly used in multi-task

learning [191, 192], such that the non-linear relationship between the different parameters could be

learned. Each parameter has a separate fc7 layer and this ensures that the network learns a shared

representation of the task until the fc6 layer. The fc8 ouputs are finally sent through and normalized

by a sigmoidal function. Predicting the correct discretized value for each control parameter is

formulated as a multi-way classification problem. More specifically, pij = π(I, uij) is akin to a

Q value function that returns the probability of success when the action corresponding to the jth

discrete bin for control dimension i is taken.

3.3.5 Curriculum Training

Algorithm 1 describes the complete training structure of our method. First, initial data is collected

to perform sensitivity analysis and given this priority ordering, we begin the training procedure for

our policy models. Apart from diversity in the objects seen, we still need to enforce exploration in

the action space through all stages of the curriculum training.

As described in Algorithm 1, the greedy action corresponds to executing whatever control

values the network predicts. The hyper-parameters, εpost = 0.15 and εpre = 0.7, determine the

31

3. Curriculum Learning for High Dimensional Grasping

Algorithm 1 Curriculum Accelerated Self-Supervised Learning (CASSL)
Given: ξ, εpre, εpost, D = {}
Collect: dataset d0 with quasi-random control samples
Initialize: aggregated dataset D ← D ∪ {d0}
[S(1), S(2), S(T)]← SensitivityAnalysis(D)
Find curriculum C using [S(1), S(2), S(T)]
Train: Models M0

i with D ∀i
for control (indexed by k) in C do

Collect new dataset dk with the policy below:

πCASSL =


εpost-Greedy with Mk−1

i i < k

Importance sampling of fc 8 i = k

εpre-Greedy with Mk−1
i i > k

Aggregate new dataset D = {D, dk}
Update Model Mk with D

end

probability of choosing a random action vis-à-vis the greedy one given by the policy. Therefore, for

the control dimensions already learned, we are more likely to select the policy via the network. In

our framework, for parameters that have already been learned in the curriculum (i.e i < k), they

will have little exploration. In contrast, for control parameters with i > k, they have a great deal of

exploration so that the data collected captures the higher order effects between control parameters.

When i = k, the control is chosen with importance sampling explained as follows. The grasping

policy is parameterized as a multi-class classifier on a discretized action space. As a result, the

output value pij from the final sigmoid layer for the jth discrete bin for control i can be treated as a

bernoulli random variable with probability pij . Here, the control value ui that is selected is the one

which the model is most uncertain about and hence has the highest variance i.e ui = argmaxj pij(1-

pij)). Taking the analytic derivative, the uncertainity is maximized when pij=0.5. This approach is

similar to previous works such as [?], where actions were taken based on what the agent is most

“curious”/uncertain about and the curiosity reward is defined as the prediction error of the next state

given the current state and action. Similarly, in [110], the actions that maximize information gain

about the agent’s belief of the environment dynamics were taken.

At each stage of the curriculum learning, we also aggregated the training dataset similar to

DAgger [208] and prior work [190]. On stage k of the curriculum, the network was fine-tuned on

Dk ={Dk−1, dk}, where dk is the dataset collected in the current stage of the curriculum. We

sample dk 2.5 times more than Dk−1 to give more importance to new datapoints.

32

3. Curriculum Learning for High Dimensional Grasping

Figure 3.4: Our grasping problem formulation involves the high dimensional control of the adaptive
gripper. (a) describes the translational and rotational control dimensions (xG and yG are however
subsumed in input samples). (b) describes the various modes of grasping, i.e. basic, wide and pinch
modes. (c) illustrates the force the gripper is allowed to apply on the objects. (d) describes the
gripper’s commanded height with respect to the table and the object.

3.4 CASSL for Grasping

We now describe the implementation of CASSL for the task of grasping objects. The grasping

experiments and data are collected on a Fetch mobile manipulator [245]. Visual data is collected

using a PrimeSense Carmine 1.09 short-range RGBD sensor and we use a 3-finger adaptive gripper

from Robotiq. The Expanding Space Tree (ESTk) planner from MoveIt is used to generate collision-

free trajectories and state estimation is hand-designed similar to prior work [190] - using background

subtraction to detect newly placed objects on the table. We further use depth images to obtain an

approximate value for the height of objects.

3.4.1 Adaptive Grasping

The robotiq gripper has three fingers that can be independently controlled and has two primary grasp

modalities - encompassing and finger-tip grips. As shown in Fig 3.4, there are three operational

modes for the gripper - Pinch, Normal and Wide. Pinch mode is meant for precision grasping of

small objects and is limited to finger-tip grasps. Normal grasping mode is the most versatile and

can grasp a wide range of objects with encompassing and finger-tip grasps. Similarly, Wide mode

is adept at grasping circular or large objects. While the fingers can be individually controlled, we

only command the entire gripper to open/close, and the proprietary planner handles the lower-level

control for the fingers. The fingers are operated at a speed of 110mm/sec.

The adaptive mechanisms of the gripper also allow it to better handle the uncertainty in the

object’s geometry and pose. As a result of the adaptive closing mechanism, some of the grasps

end up being similar to push-grasps [70]. The gripper fingers sweep the region containing the

object, such that the object ends up being pushed inside the fingers regardless of its starting position.

Sometimes, such grasps may not have force closure and the object could slip out of the gripper.

33

3. Curriculum Learning for High Dimensional Grasping

Table 3.1: Control parameters, range and discretization

Parameter Min Max # of Discrete Bins
θ −180◦ 180◦ 20
α −10◦ 10◦ 10
β −30◦ 30◦ 10
hG (Height) 0 1 5
MG (Mode) 0 2 3
fG (Force) 15N 60N 20

3.4.2 Grasping Problem Definition

We formulate our problem in the context of table-top grasping, where we infer high-level grasp

control parameters based on the image of the object. There are three parameters that determine

the location of the grasp (xG, yG and hG), three parameters that determine the approach direction

and orientation of the gripper (α, β and θ) and two others that involve the configuration (Mode

MG and Force fG). The geometric description of the three angles with respect to the object pose

is shown in Fig 3.4 and details of each parameter are provided in Table 3.1. θ is very sensitive to

asymmetrical, elongated objects while α - the angle from the vertical axis - allows the gripper to tilt

its approach direction to grasp the objects from the side. The camera’s point cloud data gives a noisy

estimate of the object height, denoted by Hpc. Let HTable be the height of the table with respect to

the robot base. Then, hG is a scaling parameter (between 0 and 1) that interpolates between these

two values, where the final height of the object is zG = hG · (Hpc −HTable) +HTable. The height

of a grasp is crucial in ensuring that the gripper moves low enough to make contact with the object

in the first place. However, note that the error in the height depends on both hG and the noisy depth

measurement from the camera. As shown in Fig 3.4, there were only three discrete modes for the

gripper provided by the manufacturer.

Although the total space of grasp control is 8 dimensional, two of the translational controls (xG
and yG) are subsumed in the sampling. Given an input image of the entire scene IS , 150 patches

IP are sampled which correspond to the different values of xG and yG. Though this increases the

inference time (since we have to input multiple samples), it also massively decreases the search

space as a lot of the scene ({xG, yG} corresponding to the background) is empty. Hence, only 6

dimensions of control {hG, α, β, θ,MG, fG} are learned for our task of grasping.

3.4.3 Sensitivity Analysis on Adaptive Grasping

As described in Section 3.3.2, we collect a dataset of 1960 grasp interactions using the sobol

quasi-random sampling scheme with an accuracy of 21% during data collection. The results for the

S
(1)
i , S

(T)
i and S(2)

ij indices for all control parameters are shown in Table 3.2. While the sensitivity

34

3. Curriculum Learning for High Dimensional Grasping

Table 3.2: Sensitivity Analysis results

fG MG α β θ hG
S(1) 0.014 0.109 0.040 0.087 0.164 0.124
S(T) 0.799 0.985 0.892 1.130 0.850 0.788

S(2)

fG - 0.0125 -0.195 -0.216 -0.153 0.0956
MG - - -0.0859 0.163 -0.190 0.0385
α - - - -0.0904 -0.194 -0.236
β - - - - -0.280 -0.0519
θ - - - - - -0.260
hG - - - - - -

analysis was limited to 10 objects, they were diverse in their properties - shape, deformable vs.

rigid, large vs. small. Given sensitivity indices for each control parameter, the objective function

in Eqn 3.1 is optimized to determine the optimal ordering of the control parameters to learn. The

ordering that minimizes Eqn 3.1 is: [hG, θ, fG,MG, α, β] in decreasing order of priority.

3.4.4 Training and Model Inference

Eqn 6.2 is the joint loss function that is optimized. ŷ corresponds to the success/failure label, D(i)

gives the number of discretized bins for control parameter i (see Table 3.1), K (=6) is the number

of control parameters, B is the batch size and σ is the sigmoid activation. δ(k, ui,j) is an indicator

function and is equal to 1 when the control parameter i corresponding to bin j is applied. yfc7i,j is the

corresponding feature vector that is passed into the final sigmoid activation.

L =

K∑
i=1

D(i)∑
j=1

B∑
k=1

δ(k, ui,j) · Cross-Entropy(σ(yfc7i,j), ŷ) (3.2)

Note that for each image datapoint, the gradients for all six control parameters are back-propagated

throughout training. For each stage of the curriculum, the network is trained for 15-20 epochs

with a learning rate of 0.0001 using the ADAM optimizer [125]. For inference, once we have the

bounding box of the object of interest, 150 image patches are sampled randomly within this window

and are re-sized to 224 × 224 dimensions for the forward pass through the CNN. For each control

parameter, the discrete bin with the highest activation is selected and interpolated to obtain the actual

continuous value. The networks and optimization are implemented in TensorFlow [17]. As a good

practice when training deep models, we used dropout(0.5) to reduce model over-fitting.

35

3. Curriculum Learning for High Dimensional Grasping

Figure 3.5: Set A contains 10 objects seen in training. Set B and C contain 10 and 20 novel objects
respectively not used in training

3.5 Experimental Evaluation

Experimental Settings: To quantitatively evaluate the performance of our framework, we physically

tested the learned models on a set of diverse objects and measured their grasp accuracy averaged

over a large number of trials. We have three test sets (shown in Fig 3.5): 1) Set A containing 10

objects seen by the robot during training 2) Set B containing 10 novel objects and 3) Set C with 20

novel objects. For Sets A and B, 5 grasps were attempted for each object placed in various random

initial configurations and the results are detailed in Table 3.3. CL0 in Table 3.3 refers to the model

that was trained on the 1960 grasps collected for sensitivity analysis. Fig 3.6 shows some of the

successful grasps executed with the robot using the final model trained with CASSL (i.e. CL6).

Given the long physical testing time on the largest test set C, we took the best performing model

and baselines on test sets A and B and tested them on Set C. As summarized in Table 3.3, the values

reported for each model were averaged for a total of 160 physical grasping trials (8 per object).

When testing, the object was placed in 8 canonical orientations (NSWE,NE,SE,SW and NW) with

respect to the same reference orientation.

Curriculum Progress: The grasp accuracy increases with each stage of curriculum learning

on Set A and B, as shown in Fig 3.7. Starting with CL0 at 41.67%, the accuracy topped 70.0% on

Set A (Seen objects) and 62% on Set B (Novel objects) at the end of the curriculum for the CL6

model. Note that at each stage of the curriculum, the model trained on the previous stage was used

to collect around 460-480 grasps as explained in Algorithm 1. As expected, the performance of the

models on Set A with seen objects was better than that of the novel objects in Set B. Yet, the strong

grasping performance on unseen objects suggests that the CNN was able to learn a generalized

visual representation to scale its inference to novel objects. There was a dip in accuracy for CL2,

possibility owing to over-fitting on one of the control dimensions, but the performance recovered in

subsequent stages since the models are trained with all the aggregated data.

36

3. Curriculum Learning for High Dimensional Grasping

Table 3.3: Results on test set with seen and novel objects

Training
Testing

Set A Set B Set C
CL0 20.9 42.0 42.0 -

CASSL(Ours) - CL6(β) 51.1 70.0 62.0 66.9
CASSL(Random1) 42.7 56.0 54.0 55.6
CASSL(Random2) 37.1 54.0 50.0 -

Staged Learning [142, 190] 26.85 66.0 54.0 56.9
Random Exploration 25.8 48.0 48.0 -

Figure 3.6: Some successful grasps achieved by model trained with CASSL.

Baseline Comparison: We evaluated against four baselines, all of which are provided equal or

more data than that given to CASSL. 1) Random Exploration - Training the network from scratch

with 4756 random grasps. 2) Staged Learning [142, 190] - We first trained the network with data

from sensitivity analysis (i.e. CL0) and used this learned policy to sample the next 2796 grasp

data points, as done in prior work. The policy was then fine-tuned with the aggregated data (4756

examples). In the third and final stage, 350 new grasp data points were sampled. This staged

baseline was the training methodology used in prior work [142, 190]. 3) CASSL (Random 1 & 2) -

Instead of using sensitivity analysis to define the curriculum, two sets of randomly ranked control

parameters were trained with CASSL and the performance of the final trained models is reported

in Table 3.3. The ordering for Random 1 and 2 is [MG, α, θ, β, fG, hG] (in decreasing order of

priority) and [β, fG, α, hG,MG, θ] respectively. In addition to the baselines above, the CL0 model

achieves a grasping rate of around 20.86% and this could be roughly considered as the performance

of random grasping trained with 1960 datapoints.

All the curriculum models (except CL0, CL2) outperformed the random exploration baseline’s

37

3. Curriculum Learning for High Dimensional Grasping

Figure 3.7: Variation in grasp accuracy with respect to stages in learning

accuracy of 48%. On the Set B (novel objects), CL6 showed a marked increase of 14%, 8% and 12%

vis-à-vis the random exploration, staged learning and CASSL (Random 2) baselines respectively.

For the results on the larger Set C, CL6 still outperformed staged learning by about 10% and CASSL

(Random 1) by 11.3%. The curriculum optimized with sensitivity analysis outperformed the random

curriculum, illustrating the importance of choosing the right curriculum ranking, the lack of which

can hamper learning performance.

3.6 Conclusion

We introduce Curriculum Accelerated Self-Supervised Learning (CASSL) for high-level, high-

dimensional control in this work. In general, using random sampling or staged learning is not

optimal. Instead, we utilize sensitivity analysis to compute the curriculum ranking in a data-driven

fashion and assign the priority for learning each control parameter. We demonstrate effectiveness

of CASSL on adaptive, 3-fingered grasping. On novel test objects, CASSL outperformed baseline

random sampling by 14%, on-policy sampling by 8% and a random curriculum baseline by 12%.

In future work, we hope to explore the following: 1) Modify the existing framework to include

dynamically changing curriculum instead of a pre-computed stationary ordering 2) Investigate

applications in hierarchical reinforcement learning, where high-level policy trained with CASSL is

used alongside a low-level controller 3) Scale CASSL for learning in high dimensional manipulation

tasks such as in-hand manipulation.

38

Chapter 4

Robot Learning in Homes

4.1 Introduction

Powered by the availability of cheaper robots, robust simulators and greater processing speeds, the

last decade has witnessed the rise of data-driven approaches in robotics. Instead of using hand-

designed models, these approaches focus on the collection of large-scale datasets to learn policies

that map from high-dimensional observations to actions. Current data-driven approaches mostly

focus on using simulators since it is considerably less expensive to collect simulated data than on an

actual robot in real-time. The hope is that these approaches will either be robust enough to domain

shifts or that the models can be adapted using a small amount of real world data via transfer learning.

However, beyond simple robotic picking tasks [187, 194, 236], there exist little support to this level

of optimism. One major reason for this is the wide “reality gap” between simulators and the real

world.

Therefore, there has concurrently been a push in the robotics community to collect real-world

physical interaction data [85, 140, 142, 176, 181, 190?] in multiple robotics labs. A major driving

force behind this effort is the declining costs of hardware which allows scaling up data collection

efforts for a variety of robotic tasks. This approach has indeed been quite successful at tasks such

as grasping, pushing, poking and imitation learning. However, these learned models have often

been shown to overfit (even after increasing the number of datapoints) and the performance of these

robot learning methods tends to plateau fast. This leads us to an important question: why does

robotic action data not lead to similar gains as we see in other prominent areas such as computer

vision [226] and natural language processing [57]?

The key to answering this question lies in the word: “real”. Many approaches claim that the

data collected in the lab is real-world data. But is this really true? How often do we see white table-

clothes or green backgrounds in real-world scenarios? We argue that current robotic datasets lack

39

4. Robot Learning in Homes

Figure 4.1: We built multiple low-cost robots and collected a large grasp dataset in several homes.

the diversity of environments required for data-driven approaches to learn invariances. Therefore,

the key lies in moving data collection efforts from a lab setting to real-world homes of people. In

this chapter, we argue that learning based approaches in robotics need to move out of simulators and

labs and enter the homes of people where the “real” data lives.

There are however several challenges in moving the data collection efforts inside the home. First,

even the cheapest industrial robots like the Sawyer or the Baxter are too expensive (¿20K USD). In

order to collect data in homes, we need a cheap and compact robot. But the challenge with low-cost

robots is that the lack of accurate control makes the data unreliable. Furthermore, data collection in

homes cannot receive 24/7 supervision by humans, which coupled with external factors will lead to

more noise in the data collection. Finally, there is a chicken-egg problem for home-robotics: current

robots are not good enough to collect data in homes; but to improve robots we need data in homes.

In this work, We propose to break this chicken-egg problem and present the first systematic

effort in collecting a dataset inside the homes. Towards this goal: (a) we assemble a robot which

costs less than 3K USD; (b) we use this robot to collect data inside 6 different homes for training

and 3 homes for testing; (c) we present an approach that models and factors the noise in labeled

data; (d) we demonstrate how data collected from these diverse home environment leads to superior

performance and requires little-to-no domain adaptation. We hope this effort drives the robotics

community to move out of the lab and use learning based approaches to handle inaccurate cheap

robots.

4.2 Related Work

Large scale robot learning: Over the last few year there has been a growing interest in scaling up

robot learning with large scale robot datasets. The Cornell Grasp Dataset [139] was among the

40

4. Robot Learning in Homes

first works that released a hand annotated grasping dataset. Following this, Pinto and Gupta [190]

created a self-supervized grasping dataset in which a Baxter robot collected and self-annotated the

data. Levine et al. [142] took the next step in robotic data collection by employing an Arm-Farm of

several industrial manipulators to learn grasping using reinforcement learning. All of these works,

use data in a restrictive lab environment using high-cost data labelling mechanisms. In our work, we

show how low-cost data in a variety of homes can be used to train grasping models. Apart from

grasping, there has also been a significant effort is collecting data for other robotic tasks. ?], Finn

et al. [85], and Pinto and Gupta [191] collected data of a manipulator pushing objects on a table.

Similarly, Nair et al. [181] collects data for manipulating a rope on a table while Yahya et al. [249]

used several robots in parallel to train a policy to open a door. Erickson et al. [77], Murali et al. [175],

and Calandra et al. [40] collected a dataset of robotic tactile interactions for material recognition

and grasp stability estimation. Again, all of this data is collected in a lab environment. We also note

several pioneering work in lifelong robotics like Hawes et al. [102], Veloso et al. [240]. In contrast

to our work, they focus on navigation and long-term autonomy. Grasping: Grasping is one of the

fundamental problems in robotic manipulation and we refer readers to recent surveys Bicchi and

Kumar [32], Bohg et al. [33] for a comprehensive review. Classical approaches focused on physics-

based analysis of stability [184] and usually require explicit 3D models of the objects. Recent papers

have focused on data-driven approaches that directly learn a mapping from visual observations to

grasp control [139, 142, 190]. For large-scale data collection both simulation [36, 80, 153?] and

real-world robots [142, 190] have been used. Mahler et al. [153] propose a versatile grasping model,

that achieves 90% grasping performance in the lab for the bin-picking task. However since this

method uses depth as input, we demonstrate that it is challenging to use it for home robots which

may not have accurate depth sensing in these environments.

Learning with low cost robots: Given that most labs run experiments with standard collab-

orative or industrial robots, there is very limited research on learning on low cost robots and

manipulators. Deisenroth et al. [64] used model-based RL to teach a cheap inaccurate 6 DOF

robot to stack multiple blocks. Though mobile robots like iRobot’s Roomba have been in the home

consumer electronics market for a decade, it is not clear whether they use learning approaches

alongside mapping and planning.

Modelling noise in data: Learning from noisy inputs is a challenging problem that has received

significant attention in computer vision. Nettleton et al. [183] show that training models from

noisy data detrimentally impacts performance. However, as the work in Frénay and Verleysen [88]

points out, the noise can be either independent of the environment or statistically dependent on the

environment. This means that creating models that can account for and correct noise [168, 247] are

valuable. Inspired from Misra et al. [168], we present a model that disentangles the noise in the

training grasping data to learn a better grasping model.

41

4. Robot Learning in Homes

4.3 Overview

The goal of this work is to highlight the importance of diversifying the data and environments for

robot learning. We want to show that data collected from homes will be less biased and in turn allow

for greater generalization. For the purposes of this work, we focus on the task of grasping. Even for

simple manipulation primitive tasks like grasping, current datasets suffer from strong biases such as

simple backgrounds and the same environment dynamics (friction of tabletop etc.). We argue that

current learning approaches exploit these biases and are not able to learn truly generalizable models.

Of-course one important question is what kind of hardware should we use for collecting the

large-scale data inside the homes. We envision that since we would need to collect data from

hundreds and thousands of homes; one of the prime-requirement for scaling is significantly reducing

the cost of the robot. Towards this goal, we assembled a customized mobile manipulator as described

below.

Hardware Setup: Our robot consists of a Dobot Magician robotic arm [1] mounted on a

Kobuki mobile base [4]. The robotic arm came with four degrees of freedom (DOF) and we

customized the last link with a two axis wrist. We also modified the original pneumatic gripper

with a two-fingered electric gripper [2]. The resulting robotic arm has five DOFs - x, y, z, roll &

pitch - with a payload capacity of 0.3kg. The arm is rigidly attached on top of the moving base.

The Kobuki base is about 0.2m high with 4.5kg of payload capacity. An Intel R200 RGBD [123]

camera was also mounted with a pan-tilt attachment at a height of 1m above the ground. All the

processing for the robot is performed an on-board laptop [5] attached on the back. The laptop has

intel core i5-8250U processor with 8GB of RAM and runs for around three hours on a single charge.

The battery in the base is used to power both the base and the arm. With a single charge, the system

can run for 1.5 hours.

One unavoidable consequence of significant cost reduction is the inaccurate control due to

cheap motors. Unlike expensive setups such as Sawyer or Baxter, our setup has higher calibration

errors and lower accuracy due to in-accuracte kinematics and hardware execution errors. Therefore,

unlike existing self-supervised datasets; our dataset is diverse and huge but the labels are noisy. For

example, the robot might be trying to grasp at location x, y but to due to noise the execution is at

(x+ δx, y + δy). Therefore, the success/failure label corresponds to a different location. In order to

tackle this challenge, we present an approach to learn from noisy data. Specifically, we model noise

as a latent variable and use two networks: one which predicts the likely noise and other that predicts

the action to execute.

42

4. Robot Learning in Homes

4.4 Learning on Low Cost Robot Data

We now present our method for learning a robotic grasping model given low-cost data. We first

introduce the patch grasping framework presented in Pinto and Gupta [190]. Unlike the data

collected in industrial/collaborative robots like the Sawyer and Baxter, there is a higher tendency

for noisy labels in the datasets collected with cheap robots. This error in position control can be

attributed to a myraid of factors: hardware execution error, inaccurate kinematics, camera calibration,

proprioception, wear and tear, etc. We present an architecture to disentangle the noise of the low-cost

robot’s actual and commanded executions.

4.4.1 Grasping Formulation

Similar to [190], we are interested in the problem of planar grasping. This means that every object

in the dataset is grasped at the same height (fixed cartesian z) and perpendicular to the ground (fixed

end-effector pitch). The goal is find a grasp configuration (x, y, θ) given an observation I of the

object. Here x and y are the translational degrees of freedom, while θ represents the rotational

degrees of freedom (roll of the end-effector). Since our main baseline comparison is with the lab

data collected in Pinto and Gupta [190], we follow a model architecture similar to theirs. Instead of

directly predicting (x, y, θ) on the entire image I , several smaller patches IP centered at different

locations (x, y) are sampled and the angle of grasp θ is predicted from this patch. The angle is

discretized as θD into N bins to allow for multimodal predictions.

For training, each datapoint consists of an image I , the executed grasp (x, y, θ) and the grasp

success label g. This is converted to the image patch IP and the discrete angle θD. A binary cross

entropy loss is then used to minimize the classification error between the predicted and ground truth

label g. We use a Imagenet pre-trained convolutional neural network as initialization.

4.4.2 Modeling Noise as Latent Variable

Unlike [190] where a relatively accurate industrial arm is used along with well calibrated cameras,

our low-cost setup suffered from inaccurate position control and calibration. Though the executions

are noisy, there is some structure in the noise which is dependent on both the design and individual

robots. This means that the structure of noise can be modelled as a latent variable and decoupled

during training [168]. Our approach is summarized in Fig 4.2.

The conventional approach [190] models the grasp success probability for image patch IP at

angle θD as P (g|IP , θD;R). HereR represents variables of the environment which can introduce

noise in the system. In the case of standard commercial robots with high accuracy,R does not play

a significant role. However, in the low cost setting with multiple robots collecting data in parallel,

43

4. Robot Learning in Homes

Figure 4.2: Our architecture consists of three components - a) the Grasp Prediction Network (GPN)
which infers grasp angles based on the image patch of the object b) the Noise Modelling Network
(NMN) which estimates the latent noise given the image of the scene and robot information and the
c) marginalization layer computing the final grasp angles.

it becomes an important consideration for learning. For instance, given an observed execution of

patch IP , the actual execution could have been at a neighbouring patch. Here, z models the latent

variable of the actual patch executed, and ÎP belongs to a set of possible hypothesis neighbouring

patches P . We considered a total of nine patches centered around IP , as explained in Fig 4.2.

The conditional probability of grasping at a noisy image patch IP can hence be computed by

marginalizing over z:

P (g|IP , θD,R) =
∑
ÎP∈P

P (g|z = ÎP , θD,R) · P (z = ÎP |θD, IP ,R) (4.1)

Here P (z = ÎP |θD, IP ,R) represents the noise which is dependent on the environment variables

R, while P (g|z = ÎP , θD,R) represents the grasp prediction probability given the true patch.

The first part of the equation is implemented as a standard grasp network, which we refer to

as the Grasp Prediction Network (GPN). Specifically, we feed in nine possible patches and obtain

their respective success probability distribution. The second probability distribution over noise is

modeled via a separate network, which we call Noise Modelling Network (NMN). The overall grasp

model Robust-Grasp is defined by GPN ⊗NMN, where ⊗ is the marginalization operator.

4.4.3 Learning the latent noise model

Thus far, we have presented our Robust-Grasp architecture which models the true grasping distribu-

tion and latent noise. What should be the inputs to the NMN network and how should it be trained?

44

4. Robot Learning in Homes

We assume that z is conditionally independent of the local patch-specific variables (θD, IP) given

the global informationR, i.e P (z = ÎP |θD, IP ,R) ≡ P (z = ÎP |R). Apart from the patch IP and

grasp information (x, y, θ), other auxiliary information such as the image of the entire scene, ID of

the specific robot that collected a datapoint and the raw pixels location of the grasp are stored. The

image of the whole scene might contain essential cues about the system, such as the relative location

of camera to the ground which may change over the lifetime of the robot. The identification number

of the robot might give cues about errors specific to a particular hardware. Finally, the raw pixels

of execution contain calibration specific information, since calibration error is coupled with pixel

location, since we do least squares fit to compute calibration parameters.

It is important to emphasize that we do not have explicit labels to train NMN. Since we have

to estimate the latent variable z, one could use Expectation Maximization (EM) [65]. But inspired

from Misra et al. [168], we use direct optimization to jointly learn both NMN and GPN with the

noisy labels from our dataset. The entire image of the scene along with the environment information

is passed into NMN. This outputs a probability distribution over the patches where the grasps might

have been executed. Finally, we apply the binary cross entropy loss on the overall marginalized

output GPN⊗NMN and the true grasp label g.

4.4.4 Training details

We used PyTorch [185] to implement our models. Instead of learning the visual representations

from scratch, we finetune on a pretrained ResNet-18 [103] model. For the noise modelling network

(NMN), we concatenate the 512 dimensional ResNet feature with a one-hot vector of the robot’s ID

and the raw pixel location of the grasp. This passes through a series of three fully connected layers

and a SoftMax layer to convert the correct patch predictions to a probability distribution. For the

grasp prediction network (GPN), we extract nine candidate correct patches to input. One of these

inputs is the original noisy patch, while the others are equidistant from the original patch. The angle

predictions for all the patches are passed through a sigmoid activation at the end to obtain grasp

success probability for a specific patch at a specific angle.

We train our network in two stages. First, we only train GPN using the noisy patch which

allows it to learn a good initialization for grasp prediction and in turn provide better gradients to

NMN. This training is done over five epochs of the data. In the second stage, we add the NMN and

marginalization operator to simultaneously train NMN and GPN in an end-to-end fashion. This

is done over 25 epochs of the data. We note that this two-stage approach is crucial for effective

training of our networks, without which NMN trivially selects the same patch irrespective of the

input. The optimizer used for training is Adam [125].

45

4. Robot Learning in Homes

Figure 4.3: Homes used for collecting training data and environments where models were tested

4.5 Experimental Evaluation

In our experimental evaluation, we demonstrate that collecting data in diverse households is crucial

for our learned models to generalize to unseen home environments. Furthermore, we also show

that modelling the error of low cost robots in our Robust-Grasp architecture significantly improves

grasping performance. We here onwards refer to our robot as the Low Cost Arm (LCA).

Data Collection: First, we describe our methodology for collecting grasp data. We collected a

diverse set (see Fig 4.3) of planar grasping in six homes. Each home has several environments

and the data was collected in parallel using multiple robots. Since we are collecting data in homes

which have very unstructured visual input, we used an object detector (specifically tiny-YOLO,

due to compute and memory constraints on LCA) [202]. This results in bounding box predictions

for the objects amidst clutter and diverse backgrounds, of which we only use the 2D location and

discard the object class information. Once we have the location of the object in image space, we

first sample a grasp and then compute the 3D grasp location from the noisy PointCloud. The motion

planning pipeline is carefully designed since our under-constrained robot only has 5 DOFs. When

collecting training data, we scattered a diverse set of objects and let the mobile base randomly move

and grasp objects. The base was constrained to a 2m wide area to prevent the robot from colliding

with obstacles beyond its zone of operation. We collected a dataset of about 28K grasps.

Quantitative Evaluation: For quantitative evaluation, we use three different test settings:
• Binary Classification (Held-out Data): For our first test, we collect a held-out test set by

performing random grasps on objects. We measure the performance of binary classification

where given a location and grasp angle; the model has to predict whether the grasp would be

successful or not. This methodology allows us evaluate a large number models without needing

to run them on a real robot. For our experiments, we use three different environments/set-ups

46

4. Robot Learning in Homes

for held-out data. We collected two held-out datasets using LCA in lab and LCA in home

environments. Our third dataset is publicly available Baxter robot data [190].

• Real Low Cost Arm (Real-LCA): We evaluated the physical grasping performance of our

learned models on the low cost arm in this setting. For testing, we used 20 novel objects in

four canonical orientations in three homes not seen in training. Since both the homes and the

objects are not seen in training, this metric tests the generalization of our learned model.

• Real Sawyer (Real-Sawyer): In the third metric, we measure the physical grasping perfor-

mance of our learned models on an industrial robotic arm (Sawyer). Similar to the Real-LCA

metric, we grasp 20 novel objects in four canonical orientations in our lab environment. The

goal of this experiment is to show that training models with data collected in homes also

improves task performance in curated environments like the lab. Since the Sawyer is a more

accurate and better calibrated, we evaluate our Robust-Grasp model against the model which

does not disentangle the noise in the data.

Baselines: Next we describe the baselines used in our experiments. Since we want to evaluate the

performance of both the home robot dataset (Home-LCA) and the Robust-Grasp architecture, we used

baselines for both the data and model. We used two datasets for the baseline: grasp data collected

by [190] (Lab-Baxter) as well as data collected with our low cost arms in a single environment

(Lab-LCA). To benchmark our Robust-Grasp model, we compared to the noise independent patch

grasping model [190], which we call Patch-Grasp. We also compared our data and model with

DexNet-3.0 from Mahler et al. [153] (DexNet) for a strong real-world grasping baseline.

4.5.1 Experiment 1: Performance on held-out data

To demonstrate the importance of learning from home data, we train a Robust-Grasp model on both

the Lab-Baxter and Lab-LCA dataset and compare it to the model trained with the Home-LCA dataset.

As shown in Table 4.1, models trained on only lab data overfit to their respective environments and

do not generalize to the more challenging Home-LCA environment, corresponding to a lower binary

classification accuracy score. On the other hand, the model trained on Home-LCA perform well on

both home and curated lab environments.

47

4. Robot Learning in Homes

Table 4.1: Results of binary classification on different test sets

Model Train Dataset
Test Accuracy (%)

Lab-Baxter Lab-LCA Home-LCA

Patch-Grasp [190] Lab-Baxter [190] 76.9 55.1 54.3
Patch-Grasp Lab-LCA 58.0 69.1 56.5
Patch-Grasp Home-LCA 71.5 71.3 69.9

Robust-Grasp Lab-LCA 55.0 71.2 56.1
Fine-tuned Lab-LCA, Home-LCA 74.6 52.1 59.7

Robot-ID Conditioned Home-LCA 73.5 71.1 70.6
Robust-Grasp (Ours) Home-LCA (Ours) 75.2 71.1 73.0

To illustrate the importance of collecting a large Home-LCA dataset, we compare to a common

domain adaptation baseline: fine-tuning the model learned on Lab-LCA with 5K home grasps

(‘Fine-tuned’ in Table 4.1). We notice that this is significantly worse than the model trained with

just home data from scratch. Our hypothesis is that the feature representation learned from Lab data

is insufficient to capture the richer variety present in Home Data.

Further, to demonstrate the importance of the NMN for noise modelling, we compare to a

baseline model without NMN and feed the robot id to the grasp prediction network directly (‘Robot-

ID Conditioned’ in Table 4.1), similar to Hardware Conditioned Policies [45]. This baseline gives

competitive results while testing on Lab-LCA and Lab-Baxter datasets, however it did not fare as

well as Robust-Grasp. This demonstrates the importance of NMN and sharing data across different

LCAs.

4.5.2 Experiment 2: Performance on Real LCA Robot

In Real-LCA, our most challenging evaluation, we compare our model against a pre-trained DexNet

baseline model and the model trained on the Lab-Baxter dataset. The models were benchmarked

based on the physical grasping performance on novel objects in unseen environments. We observe

a significant improvement of 43.7% (see Table 4.2) when training on the Home-LCA dataset over

the Lab-Baxter dataset. Moreover, our model is also 33% better than DexNet, though the latter has

achieved state-of-the-art results in the bin-picking task [153]. The relatively low performance of

DexNet in these environments can be attributed to the high quality depth sensing it requires. Since

our robots are tested in homes which typically have a lot of natural light, the depth images are quite

noisy. This effect is further coupled with the cheap commodity RGBD cameras that we use on our

robot. We used the Robust-Grasp model to train on the Home-LCA dataset.

48

4. Robot Learning in Homes

Table 4.2: Results of grasp performance in novel homes (Real-LCA)

Environment
Model

Home-LCA (Ours) Lab-Baxter [190] DexNet [153]

1 58.75 31.25 38.75
2 57.5 11.25 26.25
3 70.0 12.50 21.25

Overall 62.08 18.33 28.75

4.5.3 Does factoring out the noise in data improve performance?

To evaluate the performance of our Robust-Grasp model vis-à-vis the Patch-Grasp model, we would

ideally need a noise-free dataset for fair comparisons. Since it is difficult to collect noise-free data

on our home robots, we use Lab-Baxter for benchmarking. The Baxter robot is more accurate and

better calibrated than the LCA robot and thus has less noisy labels. Testing is done on the Sawyer

robot to ensure the testing robot is different from both training robots.

Results for the Real-Sawyer are reported in Table 4.3. On this metric, our Robust-Grasp model

trained on Home-LCA achieves 77.5% grasping accuracy. This is a significant improvement over the

56.25% grasping accuracy of the Patch-Grasp baseline trained on the same dataset. We also note that

our grasp accuracy is similar to the performance reported (around 80%) in several recent learning to

grasp papers [142]. However unlike these methods, we train in a completely different environment

(homes) and test in the lab. The improvements of the Robust-Grasp model is also demonstrated with

the binary classification metric in Table 4.1, where it outperforms the Patch-Grasp by about 4% on

the Lab-Baxter and Home-LCA datasets. Moreover, our visualizations of predicted noise corrections

in Fig 4.4, show that the corrections depend on both the pixel locations of the noisy grasp and the

specific robot.

Table 4.3: Results of grasp performance in lab on the Sawyer robot (Real-Sawyer)

Robust-Grasp (Home-LCA) Patch-Grasp (Home-LCA) Patch-Grasp (Lab-Baxter)

77.50 (Ours) 56.25 1.25

4.6 Conclusion

In summary, we present the first effort in collecting large scale robot data inside diverse environments

like people’s homes. We first assemble a mobile manipulator which costs under 3K USD and collect

a dataset of about 28K grasps in six homes under varying environmental conditions. Collecting data

with cheap inaccurate robots introduces the challenge of noisy labels and we present an architectural

framework which factors out the noise in the data. We demonstrate that it is crucial to train models

49

4. Robot Learning in Homes

Robot #1 Robot #2 Robot #3 Robot #4

Figure 4.4: We visualize the predicted corrections made by the Noise Modelling Network (NMN).
The arrows indicate the NMN learned direction of correction for noisy patches uniformly sampled
in the image for multiple robots. This demonstrates that the NMN outputs are both, dependent on
the raw pixel location of the noisy grasp and, dependent on the robot ID.

with data collected in households if the goal is to eventually test them in homes. To evaluate

our models, we physically tested them by grasping a set of 20 novel objects in lab and in three

unseen home environments from Airbnb. The model trained with our home dataset showed a 43.7%

improvement over a model trained with data collected in the lab. Furthermore, our framework

performed 33% better than a baseline DexNet model, which struggled with the typically poor depth

sensing in common household environments with a lot of natural light. We also demonstrate that our

model improves grasp performance in curated environments like the lab. Our model was also able to

successfully disentangle the structured noise in the data and improved performance by about 10%.

50

Chapter 5

Democraticizing Robotics with PyRobot

5.1 Introduction

Over the last few years there have been significant advances in AI, specifically in the fields of machine

learning, computer vision, natural language processing and speech. Most of these advancements

have been fueled by high-capacity neural networks and the availability of large-scale datasets.

However, an often overlooked reason for this fast-paced progress has been the development of a

conducive research ecosystem. Platforms such as Caffe [116], PyTorch [185], TensorFlow [16]

have reduced the entry barrier, which has democratized and accelerated research in these fields. For

example, a new researcher in computer vision can get started with training state-of-the-art detectors

using PyTorch and MSCOCO [145] in less than a day. Common platforms and datasets have also

led to standardized evaluations and benchmarks which also helps quantify progress in these areas.

The field of data-driven robotics has also seen tremendous excitement and energy in the past

several years [20, 21, 84, 99, 113, 140, 142, 153, 190, 192, 193, 258]. However, compared to other

areas in AI, it has been relatively hard for a new researcher to get started and contribute to the

progress in robotics. Why is that the case? One obvious reason is that researchers have to set up

significant hardware infrastructure. This creates a high entry-barrier for researchers both in terms of

financial cost and development time. Fortunately, there has been substantial progress on this front

with the development of low-cost robots such as Blue [91], LoCoBot [99] and others [12, 251]. In

fact, the cost of a robot is now comparable to that of the cost of a GPU! However even with these

low-cost robots, getting started in robotics is still hard due to the lack of research platforms and a

self-sustaining ecosystem.

Frameworks such as ROS [198] have made setting up robots substantially easier by providing

a common mid-level communication layer and tools that are agnostic to low-level hardware and

program context. However, there are two issues with such open-source frameworks:

51

5. Democraticizing Robotics with PyRobot

ROS requires expertise: Dominant robotic software packages like ROS and MoveIt! are

complex and require a substantial breadth of knowledge to understand the full stack of planners,

kinematics libraries and low-level controllers. On the other hand, most new users do not have

the necessary expertise or time to acquire a thorough understanding of the software stack. A

light weight, high-level interface would ease the learning curve for AI practitioners, students and

hobbyists interested in getting started in robotics.

Lack of hardware-independent APIs: Writing hardware-independant software is extremely

challenging. In the ROS ecosystem, this was partly handled by encapsulating hardware-specific

details in the Universal Robot Description Format (URDF) which other downstream services could

read from. Yet, from the perspective of high-level AI applications, most robotics code is still

hardware dependent. As a community, we lack a research platform and a common API that we can

use to share code, datasets and models.

In this work, we attempt to tackle these challenges via an open-source research platform –

PyRobot. PyRobot is a light weight, high-level interface on top of ROS that provides hardware

independent mid-level APIs and high-level examples for manipulation and navigation. PyRobot

also provides libraries for hand-eye calibration, tele-operation, trajectory tracking, and SLAM-based

navigation. We believe PyRobot combined with the recently released LoCoBot robot will reduce

both the financial cost and development time – leading to democratization of data-driven robotics.

The hardware-independent API will lead to development of code and datasets that can be shared

across the community. While the current PyRobot release interfaces with LoCoBot and Sawyer, we

plan to release integration with several new robots like the UR5 [7] and Franka [11], and simulator

platforms like MuJoCo [237] and Habitat [158].

5.2 Related Work

Robotics Software Design. The robotics community has embraced a layered hierarchical software

design from the early days [38] and re-usability has been a core design principle [155]. We refer

readers to Tsardoulias and Mitkas [239] for a comprehensive review. There have been several

motion planning libraries such as OpenRave [68], MoveIt! [47], OMPL [224] which provide

hardware-agnostic core functionalities that can be compiled for each specific robot. In the likes of

ROS, there have also been robotics ecosystems, such as OROCOS [39] and the Microsoft Robotics

Studio that support kinematic libraries, distributed processes, state machines for the real time control

of robots.

Low-cost Mobile Manipulators. There has been very limited research on learning on low-cost

robots, given that most researchers use standard industrial or collaborative robots. Deisenroth et

al. [64] used model-based RL to teach a cheap inaccurate 6 DOF robot to stack multiple blocks and

52

5. Democraticizing Robotics with PyRobot

a previous iteration of LoCoBot was used in Gupta et al. [99] to learn visual grasping policies with

real data collected in people’s homes. Recently, Gealy et al. [91] proposed a compliant low-cost

arm using quasi-direct drive actuation.

Open Source Manipulators. There has been very limited work in open sourced manipulators.

Raven is a open architecture surgical research robot [207]. Recently, the Open Manipulator project

from Robotis allows one to build their own low cost robot with custom kinematics and design [12].

Research Ecosystems in AI Fields. Research in a number of AI fields has benefited from there

being common tasks (such as object detection in computer vision or parsing in NLP), common

datasets (such as BSDS [162], ImageNet [210], PASCAL VOC [79] and MSCOCO [145] in

computer vision, or Penn Tree Bank [159], GLUE [241], SentEval [52] and WMT in NLP, etc.),

and common code bases to experiment with (DPMs [92], Caffe [116], Stanford CoreNLP [157],

spaCy [109], etc.). While some people argue that such use of common tasks and datasets can prevent

creative progress, at the same time, it has lead to rapid progress in these fields, as researchers can

quickly replicate results and build upon each other work.

Benchmarking in Robotics. Benchmarking in robotics is extremely challenging given the vast

scope of applications and diversity of physical test conditions (hardware, objects, environment,

etc.). It is a well acknowledged concern within the robotics community that we are yet to develop

reliable benchmarking metrics that can be widely adopted to quantify research progress. Several

workshops have tried to stimulate discourse towards this end [14, 15] and different task specific

metrics have been proposed for grasping [154], gripper design [135], SLAM [15], etc. Research

has also benefited from creating object datasets with shape and grasp information, such as the

Columbia Grasp Database [95], DexNet [152] and KIT Object Models [122], which could be used

for perception and motion planning. The YCB dataset went a step further by distributing a physical

dataset of household and kitchen objects with corresponding meta data (shape, RGBD scans, etc)

[41]. While there is no consensus yet on benchmarking in robotics, we hope that the combination of

PyRobot and LoCoBot will facilitate further discussion.

5.3 PyRobot Framework

PyRobot is a python-based robotics framework that isolates the ROS system [198] from the user-end

and supports the same API across different robots (see Figure 5.1 for an overview). Essentially,

it provides a python wrapper around the mid-level features provided by ROS and the low-level

C++/C controllers and driver backends. PyRobot has common utility functions for all robots,

such as joint position control, joint velocity control, joint torque control, cartesian path planning,

forward kinematics and inverse kinematics (based on the robot URDF file), path planning, visual

SLAM, among other features. Though it abstracts away the complexity of the underlying software

53

5. Democraticizing Robotics with PyRobot

Listing 5.1 PyRobot example for position control on LoCoBot and Sawyer.

LoCoBot - Arm
from pyrobot import Robot
bot = Robot(’locobot’)
target_joints = [0, 0, 0, 0, 0]
bot.arm.set_joint_positions(target_joints)

LoCoBot - Base
target_position = [1, 1, 1]
bot.base.go_to_absolute(target_position)

Sawyer
from pyrobot import Robot
bot = Robot(’sawyer’,

use_arm=True,
use_base=False,
use_camera=False,
use_gripper=True)

target_joints = [0, 0, 0, 0, 0, 0, 0]
bot.arm.set_joint_positions(target_joints)

stack, users still have the flexibility to use components at varying levels of the hierarchy, such

as commanding low-level velocities and torques by-passing a planner. We summarize the design

philosophy behind PyRobot below.

Beginner-friendly. Ideally, new users should be able to start commanding a robot in just a few

lines of code, as shown in the Listing 5.1, without learning ROS or the underlying software and

firmware stack.

Hardware-agnostic design. PyRobot is designed to easily accommodate common robotic

manipulators and mobile bases. Currently, it supports LoCoBot, a low-cost mobile robot with a

5-DOF manipulator and a Sawyer robot. Each robot has a YACS [13] configuration file that specifies

the necessary robot-specific parameters: joint names, ROS topics to get state and set commands, base

frame, end-effector frame, planner configuration, inverse kinematics solution tolerance, whether it

has an arm or base or camera, etc.. A PyRobot object requires the config file for initialization. As

shown in Listing 5.1, the Sawyer robot can be commanded in a manner identical to that of LoCoBot.

Open Source. Robotics systems development has typically been constrained to robotics experts

in academia and industry with access to expensive and niche robotics systems. However, the

extensive scope of artificial intelligence requires strong collaboration between researchers to build

and maintain these large systems and one can contribute to all layers of the stack with open sourcing.

Apart from the open software, LoCoBot works as an affordable open hardware that can be easily

assembled for use with PyRobot. While simulation is useful for software testing and running

experiments, writing software that works on the real robot is the eventual goal of the field and has

54

5. Democraticizing Robotics with PyRobot

Manipulator Gripper RGB-D
CameraMobile Base

Hardware

Position Control Camera
Drivers and

Firmware
Base

Controllers

Low-Level

Motion
Planning

Mid-Level

Transform
manager

Lightweight Interface

Forward,
Inverse

Kinematics
SLAM

R
ob

ot
 O

pe
ra

tin
g

Sy
st

em

Research Ecosystem

Velocity Control
Torque Control

Motor Drivers

Arm Gripper Active
CameraBase

Datasets Algorithms Models

Gripper
Controller

Py
R

ob
ot

Tools

Figure 5.1: Overview of PyRobot system architecture.

55

5. Democraticizing Robotics with PyRobot

severe challenges. As more developers have access to both open hardware and software, high quality

applications tested on real robots can be publicly shared.

5.4 Supported Hardware and Simulators

PyRobot is currently integrated with the following robots. In addition to real robots, PyRobot can

also be used to control robots in simulators like Gazebo.

LoCoBot: LoCoBot, shown in Figure 5.2 (left), is a low-cost mobile manipulator platform built

for easy setup and benchmarking robot learning research. It consists of a Trossen Widow X robotic

arm [8] assembled with Dynamixel XM-430 and XL-430s servo motors. The arm has five degrees

of freedom (DOFs) - with a working payload of 0.2 kg and a maximum reach of 0.55 m. The robot

comes in two versions, with the arm rigidly mounted on a Kobuki mobile base [4]. The Kobuki

base is about 0.12 m high with payload capacity of around 4.5 kg. For visual perception, an Intel

Realsense D435 RGBD camera [123] is mounted with a pan-tilt attachment at a height of about

0.6 m above the ground. An automatic camera calibration routine is implemented in the software

suite. LoCoBot also comes with a Intel NUC (i5, 8GB RAM) machine rigidly attached on the base,

which could be used for on-board compute. Kobuki base is powered through its own battery that

can run base for about 2 hours. We use a 185 Wh battery pack [9] to power the arm, pan-tilt mount,

and the on-board computer. On a full charge, the complete system is able to run for 50-60 minutes.

LoCoBot-Lite, shown in Figure 5.2 (right), is a cheaper version of LoCoBot that uses the Create2

base [10] instead of the Kobuki base.

Sawyer: The Sawyer is a 7-DOF collaborative robot arm from Rethink Robotics [6]. PyRobot

interfaces with the Intera SDK provided with the Sawyer.

Simulators: PyRobot currently supports Gazebo simulator [130], a 3D rigid body simulator

popular in the robotics community. For LoCoBot and LoCoBot-Lite, PyRobot supports tight

integration with Gazebo i.e., the same code can be run on both Gazebo and the real robot.

5.5 PyRobot Controllers

While a number of robots come with their own implementations for low-level control, PyRobot

implements basic controllers for differential drive bases. It also interfaces with planners such as

MoveIt! [47] and Movebase [160]. We measure the performance of these controllers and planners

implemented in PyRobot for the LoCoBot base and arm.

56

5. Democraticizing Robotics with PyRobot

Table 5.1: Base position control performance for LoCoBot and LoCoBot-Lite. We report
translation and rotation error for different motion types for the different controllers for base position
control implemented in PyRobot. Lower errors are better.

Error with respect to motion capture Error with respect to odometry
Controllers ILQR Proportional Movebase ILQR Proportional Movebase

LoCoBot
Linear motion

Translation (mm) 17 ± 5 46 ± 23 89 ± 16 3 ± 1 41 ± 32 102 ± 2
Rotation (deg) 0.43 ± 0.25 1.77 ± 1.46 10.81 ± 2.19 0.12 ± 0.10 1.65 ± 1.37 10.63 ± 2.19

Rotation motion
Translation (mm) 6 ± 0 6 ± 4 4 ± 2 0 ± 0 5 ± 1 2 ± 1
Rotation (deg) 1.32 ± 0.68 2.48 ± 0.98 12.53 ± 1.09 1.45 ± 0.24 2.54 ± 1.02 13.08 ± 1.18

Combined motion
Translation (mm) 16 ± 2 65 ± 52 78 ± 2 6 ± 1 55 ± 50 87 ± 15
Rotation (deg) 0.29 ± 0.19 3.2 ± 2.69 11.59 ± 1.3 0.84 ± 0.20 2.35 ± 2.94 11.65 ± 1.63

LoCoBot-Lite
Linear motion

Translation (mm) 144 ± 8 142 ± 7 260 ± 81 9 ± 5 34 ± 5 99 ± 31
Rotation (deg) 1.79 ± 1.59 2.82 ± 0.52 7.34 ± 8.19 1.6 ± 1.5 1.61 ± 0.34 5.21 ± 3.13

Rotation motion
Translation (mm) 3 ± 2 3 ± 2 3 ± 1 2 ± 2 3 ± 3 3 ± 1
Rotation (deg) 6.97 ± 1.71 3.07 ± 3.47 9.94 ± 1.46 1.44 ± 1.12 4.59 ± 2.78 3.42 ± 1.66

Combined motion
Translation (mm) 123 ± 7 99 ± 4 230 ± 57 5 ± 6 93 ± 19 93 ± 21
Rotation (deg) 2.8 ± 1.68 1.19 ± 0.95 5.87 ± 8.22 2.57 ± 1.31 1.57 ± 1.15 4.18 ± 3.45

5.5.1 Accuracy of Base Control

PyRobot implements position controllers to command the robot base to a desired target position (pa-

rameterized as a 3-DOF pose, (x, y) location of the base and its heading θ: [x, y, θ]). We implement

the following three controllers:

DWA Controller from Movebase: We implemented Dynamic Window Approach Controller

(DWA) [87] for our robot through Movebase [160] navigation engine. In this approach, we repeat-

edly sample a discrete sequence in the robot’s control space with the highest score and execute the

sequence until the target is reached.

Proportional Controller: We decompose the motion into an on-spot rotation, linear motion and

a final on-spot rotation at the target location. Each segment of this motion is executed using a

proportional controller that applies velocities proportional to the tracking error. For smooth motion,

we bound the velocities and the change in velocities.

Linear Quadratic Regulator: We analytically compute a trajectory (a sharp one that breaks the

motion into on-spot rotation, straight motion and a final on-spot rotation; or a smooth one by fitting

a bézier curve between the stating state and the ending state). We sample this trajectory to obtain

a state trajectory using constraints on maximum linear and angular velocities. We linearize the

dynamics of the robot (assumed to be a bicycle model [25]) around this state trajectory, and construct

57

5. Democraticizing Robotics with PyRobot

a LQR feedback controller [25] to track this state trajectory.

We conducted trials on the robot to quantify the accuracy of each of these different position

controllers on both LoCoBot and LoCoBot-Lite. We measured accuracy using the difference in

commanded state vs. the achieved state as measured using a Vicon motion capture system. The

error was factored into translation (difference in (x, y) location), and rotation (difference in the

heading θ). We report these errors in Table 5.1. We group trials into the following three categories:

a) Linear motion: 5 trials each with targets 2 m in front ([2, 0, 0]), or 2 m behind ([−2, 0, 0]); b)

On-spot rotation: 5 trials each with target being left rotation by π/2 ([0, 0, π/2]), right rotation by

π/2 ([0, 0,−π/2]); c) Combined linear and rotation motion: 5 trials each with targets [1, 1, 0] and

[−1,−1, 0].

Table 5.1 reports translation and rotation errors for the different controllers for the two robots

for these different cases. We generally note that errors are lower for LoCoBot vs. LoCoBot-Lite.

Additionally, LQR and proportional controller generally perform better than the DWA controller

from Movebase. As all these controllers close the loop on the base odometry, we additionally

include errors with respect to base odometry in right part of the table. We observe that the LQR

controller is more effective at closing the loop.

PyRobot also implements trajectory tracking (using feedback controllers as described above).

We show qualitative comparisons between different controllers in Figure 5.4.

5.5.2 Repeatability Tests for Manipulator

Compared to expensive industrial and collaborative robots, low-cost manipulators like LoCoBot

suffer from control errors that can be attributed to a range of factors: manufacturing and assembling

error, gear backlash, hardware execution error, kinematics inaccuracy, hand-eye calibration error,

motor wear and tear, etc. The position-control repeatability was analyzed by commanding the arm

to 4 different 3D poses (and the home pose) in a 2D grid at a fixed height without carrying a payload

for a total of 10 repetitions per pose. The ground truth positions were measured using a Vicon

motion capture system at 120 Hz. The arm always started at the home pose (when the joint angles

are all 0) before moving to the commanded end pose. The results are summarized in Table 5.2.

Overall, the arm had a repeatability error of 0.33 mm to 0.58 mm, computed based on ISO9283

standard. Poses 1 and 3 were closer to the robot torso and had lower error compared to Pose 2 and 4

where the arms were extended at the extremities of the workspace. The standard deviation along the

z axis was also higher across all poses due to gravity. For comparison, the Sawyer and UR5 robots

are reported to have a repeatability of 0.1 mm [6, 7]. The position control in the initial release only

relies on proprioceptive feedback, and using feedforward model-based control in future release

could reduce the error further. The PID gain settings are exposed to the user for more specialized

robot or task-specific tuning.

58

5. Democraticizing Robotics with PyRobot

Table 5.2: Locobot Arm Pose Repeatability

Std Dev.(mm) Poses
1 2 3 4 Home

x 0.12 0.13 0.07 0.11 0.15
y 0.13 0.07 0.10 0.14 0.27
z 0.21 0.33 0.22 0.31 0.24

Repeatability (mm) 0.41 0.58 0.33 0.50 0.52

5.6 High-Level AI Applications

We discuss implementation of a few example high-level AI applications through the PyRobot API.

5.6.1 Visual SLAM

Visual SLAM algorithms provide more accurate odometry as compared to odometry that is derived

purely from inertial sensors on the base. We deployed ORB-SLAM2 [174], a leading visual SLAM

systems in the PyRobot library. ORB-SLAM2 is a feature-based indirect visual SLAM system that

uses ORB features to perform tracking, mapping, and loop closing. We adapt the open-source ORB-

SLAM2 code into a ROS package. This package saves RGB and depth images of the keyframes

and continuously publishes camera trajectory and camera pose. PyRobot uses this published pose

information to return the robot base state and trajectory. This state derived from visual SLAM

can be used in downstream controllers or algorithms for more accurate behavior. PyRobot also

supports dense map reconstruction, by integrating depth image observations using the ORB-SLAM2

estimated camera pose. This can be used for motion planning for navigation tasks.

5.6.2 Navigation via SLAM and Path Planning

We deployed Movebase [160] ROS package on LoCoBot and LoCoBot-Lite for safe navigation in

environments with obstacles. We use the occupancy map as obtained from visual SLAM, to compute

a 2D cost-map that denotes regions of the environment where the robot is safe to move. Movebase

uses this cost-map to generate collision free trajectories to goals specified in the environment. These

trajectories can be executed using any of the controllers implemented in PyRobot. These steps are

run continuously, and the plan is updated if it becomes infeasible as the robot perceives previously

unseen parts of the environment.

5.6.3 Learned Visual Navigation

We deploy learned policies for visual navigation on LoCoBot using PyRobot API. We work with

the cognitive mapping and planning policy (CMP) from Gupta et al. [101]. Given an input goal

59

5. Democraticizing Robotics with PyRobot

location, CMP policy takes in the current image from the on-board camera to output one of four

macro-actions (stop, turn left, turn right or go straight). We use the base position control interface

in PyRobot API to execute these actions. Listing 5.2 shows simplified code, and Figure 5.6 shows

frames from a sample execution.

5.6.4 Grasping

We deploy a learned-based grasping algorithm to grasp objects placed on the ground from RGB

images using the PyRobot API. The model is trained on data from people’s homes [99] and is robust

to a wide variety of objects and backgrounds. This model outputs a grasp in the image space. This

grasp is parameterized by 2D location in the image and the gripper orientation. We convert this 2D

location and orientation into the grasp position (3D location and orientation) using known camera

parameters, and the depth image. We command the robot to the pre-grasp location, that is a few

centimeter above the grasp position, lower the arm to reach the object, and close the gripper to

grasp the object. Listing 5.3 shows simplified code, and Figure 5.7 shows sample grasps using the

LoCoBot.

5.6.5 Pushing

We deploy a heuristic-based pushing algorithm using PyRobot. It relies on the depth sensor, and

thus the quality of the pushing depends on how well the stereo-based depth sensor behaves in

different background. To achieve the best performance, it is best to place the robot on a floor with

non-uniform texture.

The algorithm can be summarized with the following steps: (1) Move the arm out of the camera’s

field of view. (2) Filter the point cloud seen by the RGBD camera, specifically removing points

too far away and those that correspond to the floor by coordinate thresholding. (3) Project the

remaining point cloud onto the xy-plane and use DBSCAN [78] algorithm to automatically cluster

the projected points. (4) Randomly select one cluster and choose a random push-start point on the

enclosing bounding box of the cluster. (5) Move the gripper to the push-start point and move the

gripper horizontally towards the center of the cluster. Listing 5.4 shows simplified code.

5.7 Conclusion

In this chapter, we describe the PyRobot framework, which provides a high-level hardware inde-

pendent API to control different robots. We believe PyRobot when combined with low-cost robots

such as LoCoBot, will reduce the barrier to entry into robotics. In the immediate future, we will

continue to grow the functionality in PyRobot such as by interfacing with simulators (like AI Habi-

60

5. Democraticizing Robotics with PyRobot

tat [158], Gibson [246] and MuJoCo [237]), improving controllers such as be implementing gravity

compensation for LoCoBot. But more broadly, we believe PyRobot will lead to the development of

a research and teaching ecosystem.

PyRobot for robotics instruction. Having a beginner-friendly and open architecture is great

for robotics education, as affordable robotic setups with LoCoBot and PyRobot could easily be

assembled and scaled for hands-on instruction. 10 LoCoBots were used in the Spring 2019 offering

of 16-662: Robot Autonomy (by Professor Oliver Kroemer) in the Robotics Institute at CMU, to

support homework assignments and projects. We believe many more such courses will follow.

PyRobot as a research ecosystem. Compared to other fields, benchmarking in robotics is

challenging due to several reasons. PyRobot’s unified API and LoCoBot’s standard hardware,

will allow researchers to share their high level algorithmic implementations, models and datasets

collected on a real robot. This will allow researchers to collaborate and iterate faster on robotics

applications. We will continue to expand the set of pre-trained models. Hopefully, other researchers

will find the PyRobot framework useful and contribute their models for others to use as well.

5.8 Code Listings

61

5. Democraticizing Robotics with PyRobot

Listing 5.2 Visual navigation example using PyRobot API.

from pyrobot import Robot

Construct Robot.
bot = Robot(’locobot’)

Construct policy.
policy = CMP()

Relative position for each action.
dv = 0.4 # Forward step size
dw = np.pi/2. # Rotation step size
action_position = [[0., 0., 0.0],

[0., 0., -dw],
[0., 0., +dw],
[dv, 0., 0.0]]

Set goal for policy.
policy.set_new_goal(goal)
while action != 0:

Get image.
rgb = bot.camera.get_rgb()

Compute action.
action = policy.compute_action(rgb)

Execute action.
position = action_position[action]
bot.base.go_to_relative(position)

62

5. Democraticizing Robotics with PyRobot

Figure 5.2: LoCoBot (left) and LoCoBot-Lite (right). Both robots have a 5 DOF arm mounted on
top of a mobile base (Kobuki or Create2). Robots are equipped with a RGB-D camera mounted on a
pan-tilt stand. Robots come with a battery pack and an on-board computer.

63

5. Democraticizing Robotics with PyRobot

Figure 5.3: LoCoBot is low-cost and hence scalable.

64

5. Democraticizing Robotics with PyRobot

Figure 5.4: Qualitative comparisons for trajectory tacking for LoCoBot and LoCoBot-Lite. Refer-
ence trajectory (a circle of radius 0.4 m) is shown in red.

65

5. Democraticizing Robotics with PyRobot

Figure 5.5: An example of Navigation via SLAM and Path Planning. First row corresponds to
the 2-D map constructed using the on-board SLAM and the second row corresponds to the actual
motion of the robot.

Figure 5.6: Snapshots from a run of visual navigation policy (CMP [101]) deployed on LoCoBot.
See project website for videos.

Figure 5.7: Grasps selected by the grasp model and execution by the robot.

66

5. Democraticizing Robotics with PyRobot

Listing 5.3 Grasping example using PyRobot API.

from pyrobot import Robot

Construct Robot.
bot = Robot(’locobot’)

Set pregrasp and grasp height.
pregrasp_height = 0.2
grasp_height = 0.13

Construct grasp model.
model = GraspModel()

Move arm and camera to reset position.
reset_pos = [-1.5, 0.5, 0.3, -0.7, 0.]
bot.arm.set_joint_positions(reset_pos)
bot.camera.set_pan_tilt(0.0, 0.8)

Get image.
rgb = bot.camera.get_rgb()

Compute action.
grasp_img = model.compute_grasp(rgb)

Convert grasp from Image space to
robot workspace.
grasp_pose = cvt_space(grasp_img)

Execute grasp.
1. Go to pre-grasp pose
pregrasp_position = [grasp_pose[0],

grasp_pose[1],
pregrasp_height]

grasp_angle = grasp_pose[2]
bot.arm.set_ee_pose_pitch_roll(

position=pregrasp_position,
pitch=np.pi / 2,
roll=grasp_angle,
plan=False,
numerical=False)

2. Go to grasp pose.
grasp_position = [grasp_pose[0],

grasp_pose[1],
grasp_height]

bot.arm.set_ee_pose_pitch_roll(
position=grasp_position,
pitch=np.pi / 2,
roll=grasp_angle,
plan=False,
numerical=False)

3. Grasp the object
bot.gripper.close()

67

5. Democraticizing Robotics with PyRobot

Listing 5.4 Object pushing example using PyRobot API.

from pyrobot import Robot

Construct Robot.
bot = Robot(’locobot’)

Setup gripper, camera, arm.
bot.gripper.close()
bot.camera.set_pan_tilt(0, 0.7, wait=True)

Move hand out of camera view.
ov_pos = [1.96, 0.52, -0.51, 1.67, 0.01]
bot.arm.set_joint_positions(ov_pos, plan=False)

Get the point cloud(in base frame).
pts, colors = bot.camera.get_current_pcd(

in_cam=False)

Compute push location, direction.
pre_push_pt, push_pt, obj_center = \

get_push_direction(pts, colors)

Move the gripper to pre-pushing pose
bot.arm.set_ee_pose_pitch_roll(

position=pre_push_pt,
pitch=np.pi / 2,
roll=0,
plan=False,
numerical=False)

Move the gripper vertically down.
down_disp = push_pt - pre_push_pt
bot.arm.move_ee_xyz(down_disp,

plan=False,
numerical=False)

Move the gripper horizontally
to push the object.
hor_disp = 2 * (obj_center - push_pt)
bot.arm.move_ee_xyz(hor_disp,

plan=False,
numerical=False)

68

Part III

Generalization with Robustness

69

Chapter 6

Tactile Re-grasping

6.1 Introduction

Consider the task of grasping a slippery glass bottle. We use vision to determine the object’s location

and its properties such as shape. Based on these estimates, we can even plan how to approach

and make contact with the bottle. However, not until we get tactile feedback by touching, can we

adjust our hands for a reliable grasp. In many cases, the hand completely occludes the object after

contact, severely diminishing the use of hand-eye coordination; yet in all these cases we humans

are invariably successful in grasping the objects. In fact, we are even capable of grasping objects

solely based on touching. A good example is when we probe around on a nightstand for our phone.

Haptics and the sense of touch plays a vital role in grasping. Yet, most of our currently existing

grasping algorithms primarily builds on visual sensing (RGB-Depth or laser scanners). In fact, in

the recent Amazon Picking Challenge, only one of 26 teams used a tactile sensor [54]. Can a robot

learn to grasp solely based on touching and without even using vision? More importantly, can the

robot incorporate both visual inputs and tactile feedback for robust grasping?

Sensory inputs affect the success of a grasp in all stages: localization of the object, planning1

of the grasp control parameters (gripper pose, approach direction, etc.) and the execution of the

grasp on the robot. Vision-based methods, such as object detection, segmentation and point cloud

registration, are widely used for localization. Without using visual sensing, tactile exploration has

demonstrated promising results on locating objects and estimating their 6 DOF poses [115, 119,

133, 188, 189, 213]. However, haptics has rarely been considered in the context of grasping beyond

simple, individual objects. Recently, there has also been tremendous progress in data-driven grasp

planning methods, namely in learning grasp policies from RGB-D images [142, 153, 190, 244]. But

most of these approaches ignore haptic feedback during execution. In fact, tactile sensing has been
1Grasp planning refers to both analytic and data-driven techniques.

70

6. Tactile Re-grasping

Figure 6.1: Our Fetch robot learns to localize and grasp a novel object of unknown shape from
just tactile sensing. Our method estimates the target’s location by touch-probing the workspace
(top right), and establish an initial grasp (bottom left). We then learn to extract features from haptic
feedback, and predict how to adjust the grasp (bottom right). This re-grasping process is repeated
until our method identifies a stable grasp.

71

6. Tactile Re-grasping

previously used for grasp execution, for instance in assessing grasp stability [27, 40, 60], and thus

enabling the hand to adjust its posture and position online [59, 61, 111, 206]. Nonetheless, these

methods assume either the initial grasp or the object information is inferred with vision, with few

exceptions [83]. Felip et al. [83] presented a full system for tactile grasping using hand-crafted rules.

In such light, no general learning framework exists for a complete grasp (localization, planning and

execution) using solely touch sensors.

In this chapter, we present the first general framework for learning to grasp with only tactile

sensing and without prior object knowledge. Our goal is to scale to a diverse set of unknown

objects. To this end, we focus on 2D planar grasps of a single object. To start with, we design a

localization module to obtain an approximate location of the object. Intuitively, we control the robot

to sequentially “touch-scan” the grasp plane until hitting the object and we use a particle filter to

aggregate the measurements and track the target location.

With all the uncertainty of object location, tactile sensing and kinematics, how can the robot

reliably grasp the object? Our core idea is to treat grasping as a multi-step process with error

recovery. Specifically, we propose a re-grasping module that refines the initial grasp with multiple

re-trials. To extract rich meaningful features for the re-grasping task, we use a recurrent auto-encoder

to learn an unsupervised representation from all the unlabelled data. These features are then fed to

another neural network that simultaneously estimates grasp stability, and predicts the adjustment for

the next grasp. Our framework will iterate on the grasps until our network estimates a high chance

of success or the number of trials reaches a predefined limit.

Our high-capacity deep network requires a large-scale tactile dataset for training, which is

missing in the community. We have thus created a new dataset of grasping with both tactile and

visual sensing. Specifically, we record images, haptic measurements as the robot gripper encloses

its fingers on an object, high-level re-grasp actions sent to the motion planner and labels of whether

an object has been successfully grasped. Our publicly available dataset includes 7.8K interactions

with 52 unique objects with material labels. We hope that it will serve as a major resource for future

research on visio-haptic manipulation.

Our method is trained using our dataset, and tested on 20 unseen objects. We systematically

vary components of our framework and benchmark the performance. First, we show that our

unsupervised representation learning produces rich tactile features for a variety of passive (material

recognition) and active (re-grasping) tasks. Next, we show that haptic based re-grasping improves a

baseline policy, with the ground truth object location provided by vision-based localization. Finally,

with touch based localization, our full method achieves a grasping accuracy of 40.0% using tactile

sensing alone. We believe this is one of the first results of grasping a large set of unknown objects

without seeing. Furthermore, we explore combining haptic and visual sensing for robust grasping.

Our results indicate that our multi-step re-grasping with tactile feedback 1) improves the robustness

72

6. Tactile Re-grasping

of grasp execution and 2) offers an easy plug-in for existing grasp planning methods.

6.2 Related Work

Grasping is one of the fundamental problems in robotic manipulation and we refer readers to recent

surveys [32, 33, 230].

Vision Based Grasping. Visual perception has been the primary modality for sensing, grasp

planning and execution. Several work on model-based grasping make use of visual information like

point clouds/images to estimate physical properties of objects (e.g., shape [166] or pose [51]), and

finally to generate control commands for grasping. Sensing detailed physical properties from visual

inputs can be exceedingly challenging, and might not be necessary for finding desired controls.

Therefore, recent papers have focused on learning-based approaches [214, 244]. These methods

directly map input visual data to the control signals for open-loop grasping. Recently, a lot of

progress has been made in this direction by using deep models [140, 142, 153, 190]. However, using

visual inputs alone leads to errors such as slippage due to low-friction or wrong grasp location due

to self-occlusion.

Tactile Exploration. In contrast, humans make great use of tactile signals for grasping and

can even grasp unknown objects without using visual sensing [118]. Therefore, recent work in

robotics has also explored the use of haptics for sensing an object’s shape, pose, location or

attributes [49, 223, 256]. For example, if the location of an object is known, the shape can be

estimated by actively touching its parts [163, 254]. Similarly, given the 3D models of objects,

several recent work seek to infer the 6DOF pose of the objects with a series of information-gathering

actions [115, 188, 213]. However, these results have neither been considered for the task of

grasping nor can generalize to unknown objects. The most relevant work are from [189] and [119].

Pezzementi et al. [189] built occupancy grid mapping using tactile sensing of unknown 2D objects.

Kaboli et al. [119] proposed a pre-touch strategy to localize novel objects in a 3D workspace. These

work are similar to our touch localization step, yet they failed to complete the full pipeline of

touch-based grasping.

Re-grasping with Tactile sensing. Haptic feedback is widely used for closed-loop control

when executing a grasp, also known as re-grasping. Early work [82] focused on analytical solutions

for 2D planar grasp given ideal tactile sensing of a known object shape. For real world tactile data,

hand crafted rules can be highly effective if object shape is known [111]. Several recent works

addressed the task of re-grasping or assessing grasp stability without prior object knowledge [27,

40, 44, 59, 73, 206]. However, they all rely on a good initial grasp given by another sensor modality.

The most relevant work are from [61, 134] and [83]. Based on tactile feedback, Dang et al. [61]

learned to predict grasp stability [60], which is further used to guide grasping. Their method can

73

6. Tactile Re-grasping

Figure 6.2: Overview of our system and approach. (a) Our robot and sensors: We equip a fetch
robot with a Robotiq gripper and additional sensor packages. Our sensors include force sensor
on the fingers of the gripper and RGB-D cameras on the head of the robot; (b) Our touch based
object localization: We touch-probe a 2D grasp plane of the workspace, and use particle filtering
to aggregate evidences of the object’s location. An initial grasp is established given an estimate of
the object’s 2D location. (c) Our unsupervised learning scheme for haptic features: We learn to
represent haptic data during grasping using an conditional auto-encoder. The learned features are
fed into our re-grasping model to correct the initial grasp. (d) Our re-grasping model: Based on
haptic features from current grasp, we estimate grasp stability and predict how to adjust the grasp.
A new grasp is generated by applying the adjustment to the current grasp. This process repeats until
our method predicts a stable grasp.

generalize to unknown objects but requires accurate object locations. Moreover, their approach only

used simulated data with hand-designed features. Koval et al. [134] utilized haptic feedback to learn

both pre and post contact push-grasping policies. Their method accounts for inaccurate sensing

of object location and pose, yet is limited to objects with known shapes. Conversely, our method

learns tactile based re-grasping policies with neither prior knowledge of the object (shape/physics)

nor necessarily a good initial grasp. In addition, our approach makes use of large-scale real-world

visual and haptic data to learn how to grasp. Moreover, Felip et al. [83] presented a full tactile

grasping pipeline (exploration and re-grasping) with a wrist force-torque sensor, fingertip tactile

sensors and a fully actuated multi-fingered gripper. They used a set of hand-crafted rules/features

and demonstrated success on a small set of novel objects. Conversely, our tactile perception modules

are learned from data and only uses the fingertip tactile sensors. We show that our learned model can

be applied to successfully grasp a larger set of novel objects, including deformable and elastic ones.

Grasping Datasets. Alongside algorithmic developments, large-scale datasets have fueled

the success of learning to grasp [140, 190]. However, when it comes to haptic datasets, there

have been only few attempts such as [43, 77]. These datasets either focus on passive tasks e.g.,

74

6. Tactile Re-grasping

material recognition [77], or are limited to grasping a small set of 2-3 objects with a small number

of trials [42, 43]. As part of our effort, we created the first large-scale grasping dataset with both

tactile and visual sensing to facilitate future research of visio-haptic grasping. As a result, our

work is also deeply intertwined with the unsupervised learning of tactile feature representations.

Previous work has primarily used hand-crafted features for haptic data [111]. Schneider et al. [216]

constructed haptic features using bag-of-words. Madry et al. [149] explored unsupervised learning

of haptic features using sparse coding. The learned representation has been shown effective for

re-grasping [44], though it is intended for a specific class of sensors providing a matrix/image of

tactile responses. We propose a novel method for learning haptic features using a deep recurrent

network similar to [227].

6.3 Dataset

In this section, we present the effort on creating our visio-haptic dataset for grasping. Large-scale

haptic dataset for grasping is important for learning high capacity deep models. Unfortunately, this

kind of dataset is missing in the community. We seek to bridge this gap by collecting a new grasping

dataset that includes both visual and haptic sensor data. Specifically, our dataset consists of 7800

grasp interactions with 52 different objects. Each grasp interaction lasts for 3.5-4 seconds and is

recorded with:

• RGB Frames: We capture images of four specific events of a grasping: for the initial scene,

before, during and after grasp execution. These images have a resolution of 1280x960.

• Haptic Measurements: Tactile signals are measured by force sensors mounted on each of

the three fingers of the gripper. The sensor measures the magnitude (F) and the direction of

forces (Fx, Fy, Fz) at 100Hz.

• Grasping Actions and Labels: We record the pose of all 2D planar grasps, including the

initial grasp (x0, y0, z0, θ0) and subsequent re-grasps (xt, yt, zt, θt). We also record whether

the re-grasp succeeded.

• Material Labels of Objects: We label material categories (7) for each object, including

metal, hard plastic, elastic plastic, stuffed fabric, wood, glass and ceramic.

Data Collection. To collect this dataset, we sample and execute a large set of grasps. The robot

will lift up objects and automatically detect successful grasps. A major issue with this data collection

process is how we can get more successful grasps. It is easy to collect failure cases by applying

random grasps but it is difficult to collect successful grasps, which are critical for learning. To

address this issue, we used an existing vision based grasping policy to sample an initial grasp from

a pre-learned visual grasping policy [176]. We collect two sets of data and combine them to form

75

6. Tactile Re-grasping

our final dataset. The first set includes all 52 objects with 50-55 initial grasps. Each initial grasp is

followed by a single random re-grasp. The grasps in this set have a higher rate of success. On the

other hand, our second set contains a subset of 7 objects covering different types of materials. For

each object in this set, we sample 80-100 initial grasps, and allow 2-3 random re-grasps, resulting in

a higher failure rate.

Dataset Statistics. Overall, our dataset includes more than 30K RGB frames and over 2.8

million of tactile samples from 7800 grasp interactions of 52 objects. We provide grasping actions

and labels for each interaction, as well as material labels for each object. To the best of our

knowledge, this is by far the largest dataset for vision-haptic grasping. Our dataset is publicly

available at: cs.cmu.edu/GraspingWithoutSeeing.

6.4 Overview

We present an overview of our framework in Fig 6.2. Our goal is to reliably grasp a target object

using just fingertip tactile sensors and without knowing the location, pose or shape of the object.

Similar to previous works, our framework has two main stages: grasp planning and grasp execution.

For planning, we make use of particle filtering to localize an object based on a sequence of touch-

probing. For grasp execution, we learn to iteratively adjust the grasp based on haptic feedback,

using a deep neural network. Unlike other work in robot learning [140] which learn torque control,

we infer position control commands and use a motion planner to reach that configuration. We also

explore the benefit of applying our re-grasping model on top of a vision based grasping policy. Our

methods for planning and execution are detailed in Section 6.5 and 6.6, respectively.

Platform. We implement our method on a real world robotic platform—a research edition

of Fetch mobile manipulator [245], equipped with a 3-Finger adaptive gripper (Robotiq). We

use ROS [198] and position control with the Expanding Space Tree (ESTk) motion planner from

MoveIt to generate collision-free trajectories for the robot. For haptic sensing, we mount a 3-Axis

Optoforce sensor onto each of the three Robotiq fingers. We made sure this mounting is rigid by

using customized 3D-printed fixtures (see left panel of Fig 6.2). For vision, we use a PrimeSense

Carmine 1.09 short-range RGB-D camera mounted on the robot’s head. Note that visual data is not

used in our method, except when we explore combining RGB frames from PrimeSense with haptic

sensing for grasping.

6.5 Initial Grasp from Touching

We present our method for grasp planning. Traditionally, the goal of planning is to generate a good

initial grasp of a target object. This usually requires the robot to sense the physical properties of the

76

http://www.cs.cmu.edu/afs/cs/user/amurali/www/projects/GraspingWithoutSeeing/

6. Tactile Re-grasping

object, such as shape or pose. This is especially challenging with tactile sensing alone. Nevertheless,

our key observations are that 1) we can infer a rough location of the object by probing the grasp plane

and hitting the target multiple times; 2) even a poor initial grasp is often sufficient for successful

grasping, if we allow the robot to correct the grasp a few times using haptic feedback. Thus, we

propose a simple method for grasping. We first localize the object by touching, and then generate a

random initial grasp. We will show that this method can be highly effective when combined with

our learning based re-grasping policy.

6.5.1 Particle Filter for Touch Localization

The core of our grasp planning is a simple touch-based localization method using contact sensing.

We consider the task of grasping a single target object within a known workspace–in our setting a

constrained packaging box in which the object could be in any pose. In this case, we control the

robot to line-scan a fixed 2D plane of the workspace using one of its fingers, which functions as a

touch probe. The probe moves in a cartesian path until it detects a contact (defined by a threshold

on the magnitude of force). Our method makes multiple contacts and uses particle filtering to infer

the object’s location x ∈ R2 on the 2D plane.

The choice of a particle filter is tailored for our problem, as our contact measurement is highly

non-linear and lacks analytic derivatives. Particle filters are a non-parametric formulation of the

recursive Bayes filter:

bel(xt) = ηp(zt|xt, ut)
∫
p(xt|xt−1, ut)bel(xt−1)dxt−1 (6.1)

The belief bel(xt) is approximated using a finite set of particles Xt = {x[i]
t }ni=1 ∼ bel(xt). xt

above denotes the target location at time t, ut is the line scan action and zt the contact sensing

measurement. The touch-localization framework is summarized in Algorithm 2 and the detailed

mechanisms of the particle filter could be found in [234]. At the end of touch-scanning, the centroid

of the resampled XNSCANS
particles is returned as the final estimate of the target object’s location.

77

6. Tactile Re-grasping

Algorithm 2 Touch localization using Contact Sensing
X0← Uniform random samples
for t = 1:Nscans do

Xt← Ø

Run linear scan ut to get observation zt
for i = 1:Nparticles in Xt−1 do

Sample from motion model x[i]t ∼ p(xt|x
[i]
t−1)

Update measurement w[i]
t ← p(zt|x[i]t , ut)

Xt← {x[i]t } ∪ Xt

end
Xt← Resample(Xt, wt)

end
return: mean(Xt = {x[i]t })→ object location

We present details of our measurement and motion models.
• Motion model: Touching the object might change its location. This displacement is usually

small, yet is determined by how the robot moves (ut), and the physical properties of the object

and its environment. We simplify the motion model by assuming a Gaussian distribution

independent of ut: p(xt|xt−1, ut) = N (xt−1, σ
2I), where σ is a small noise.

• Measurement model: Our measurement model tracks physical occupancy of probed loca-

tions. Any location on the 2D plane can be either free space (no contact) or occupied by

the object (contact). We either increase (occupied) or decrease (free space) the weights of

particles that lies within the vicinity (a sphere of radius 2.5cm for our experiments) of the

location. An example is shown in Fig 6.2, where particles in swept area of the probe are

down-weighted and particles near the contact point (red circle) are up-weighted.

Once we estimate the target location, our next step is to generate a grasp. Without prior object

information, we select a grasp by randomly sampling from the rest of the parameter space. Executing

such a grasp is highly likely to fail, as this sample can be far away from feasible grasps. Somewhat

surprisingly, we will show that this random policy can produce a successful grasp, if we allow the

robot to re-grasp a few times and adjust its controls each time based on tactile feedback.

6.6 Grasp Execution via Re-grasping

Given a noisy object location and a randomly selected grasp, how can the robot reliably grasp the

object? To address this question, let us first look at what is measured by haptic sensors during

grasping. Fig 6.3 shows haptic responses during the task of grasping. It is evident that these signals

encode important information about the object in contact. For example, the magnitude of force

78

6. Tactile Re-grasping

Figure 6.3: Tactile response from both successful and failed grasps. These grasps are from objects
with varying shape/material/compliance properties. We plot the time series of force magnitude from
our sensors on three fingers (red: right, green: middle, blue: left). The maximum force during
grasping is also displayed. We record signals before and after the gripper closes (shown in bottom).
These signals contain important information about the object (e.g., material, shape) and the grasping
(e.g., grasp stability). And we explore using them to estimate how to correct a previous grasp.

implies the material of the object. And the temporal force variation across three fingers indicates the

shape. These signals also capture critical aspects about the grasping. For example, we can predict

the stability of the grasping by tracking the temporal structure of signals before and after contact.

Therefore, we hypothesize that these tactile signals can be used to correct the initial grasp.

We will demonstrate that this is indeed possible if we consider grasping as a multi-stage process,

and allow the robot to re-grasp a few times. Each new grasp is generated by adjusting a previous one

using haptic feedback. Re-grasping thus helps to reduce the uncertainty of sensing. To this end, we

propose a learning based approach for tactile based re-grasping. Our method learns representations

from haptic data, estimate the grasp stability and predict the adjustment for next grasp, all using

deep models. We now present our methods on haptic feature learning and tactile based re-grasping.

79

6. Tactile Re-grasping

6.6.1 Learning Haptic Features

The next question is how do we learn a generalized representation of haptic data? Should we use

hand-designed features or some task-specific representation? Raw tactile signals are in the form of a

time series, with a low dimensional vector at each time step. Since they do not encode much global

information compared to modalities like vision, it is challenging to consider haptic data without the

context of the robot control applied. Therefore, what we need to learn is a conditional representation

and to this end, we trained a conditional auto-encoder model over the haptic signals, shown in

Fig 6.4. Both encoder and decoder in our model have a recurrent architecture (LSTMs [108]). Our

encoder MENC takes a sequence of haptic data and control signals as inputs, and encodes them into

a low dimensional latent space H . Our decoder MDEC reconstructs the input haptic data from the

latent space H .

By conditioning the reconstruction on control actions, the network must learn to embody the

temporal structure of haptic data within the motion of the robot during grasping. This will allow us to

re-use H to present haptic and control signals for re-grasping. Note that the learning is unsupervised

in nature and does not require manual labeling.

More specifically, our haptic signals, denoted by O = {Ot}, include a 12D vector for each time

step from all three fingers. Our control signals include the configuration of the gripper: f = {ft}
and m = {mt}. mt is the mode of the adaptive gripper. m describes the angle between the fingers,

and has categorical values of “pinch”, “normal” and “wide angle”. The under-actuated gripper

fingers have three links each but only one DOF as ft. ft is valid when the gripper has been fully

enclosed on the object. If no object was enclosed (grasp failure), ft will take the maximum possible

value. We use L2 loss and stochastic gradient descent for training. For feature extraction, we discard

the decoder MDEC and only use the encoder MENC to extract the hidden state H from a fixed size

time window (3 seconds).

6.6.2 Learning to Re-grasp

We consider a multi-stage grasping problem, where each grasp is conditioned on the previous one.

Formally, given a current grasp g, we measure the haptic data O and grasp configuration parameters

(m, f) and encode them into H = MENC(O,m, f). H is the hidden state that captures the haptic

responses of the current grasp. Next, we learn the corrective action ∆g = πre−grasp(H) that leads

to better grasp stability and the architecture is shown in Fig 6.4. At the same time, we learn a

score function p = Mstability(H) to predict the grasp stability, which determines the empirical

probability of grasp success. The score function Mstability(H) is a simple feedforward networks

with 5 fully connected layers of size (512, 512, 256, 128, 64) and a final sigmoid function to estimate

the probability. When testing, we iteratively apply the predicted ∆g to current grasp g. We execute

80

6. Tactile Re-grasping

+𝑀# LSTM
(512)

𝐻

512
256

𝑂&':)

LSTM
(512)

512

Encoder MENC Decoder MDEC

Hidden state

𝑓#

512

256

128 64 𝑁,

𝑁-

𝑁.

𝑁/

∆𝑥

∆𝑦

∆𝜃

∆𝑧
𝐻Re-Grasping Policy

𝝅𝒓𝒆8𝒈𝒓𝒂𝒔𝒑

𝑂):'

Figure 6.4: Network architectures for learning haptic features (top) and re-grasping policy (bottom).
Our conditional auto-encoder MENC–MDEC learns to reconstruct haptic data using both haptic
signals and applied gripper control. We treat the learned latent space H as features for learning
re-grasping policy πre−grasp. Our re-grasping policy maps the hidden representation H to the
adjustments of planar grasping parameters (∆x,∆y,∆z,∆θ) (4D). These high level parameters are
then executed using the motion planner to generate a new grasp.

g + ∆g until Mstability predicts a high rate of success. Algorithm 3 summarizes our method.

81

6. Tactile Re-grasping

Algorithm 3 Grasping Without Seeing
Localize object with vision/touch
Sample g1 from πvision/πrandom
Execute g1 on robot
Collect first haptic measurement O1

for i = 2:Tmax do
Encode Hi−1←MENC(Oi−1)

Compute pi−1 = Mstability(Hi−1)
if pi−1 > pthreshold then

break
else

Compute gi = πregrasps(Hi−1)
Execute gi on robot
Collect haptic measurement Oi

end
end

Our output action ∆g is parameterized by the change of the gripper’s position (-0.025m ≤ (∆x,

∆y, ∆z) ≤ 0.025m) and orientation (−π/4 ≤∆θ ≤ π/4). ∆g is thus a 4D vector. Given that the

haptic measurement is only relevant in the local neighborhood of the current grasp, we constrain

the range of these parameters to small adjustments tailored to our setting. During data collection,

continuous values of the re-grasp (∆x, ∆y, ∆z, ∆θ) are sampled randomly. However, for the

deep network we use a dicretized output space. Specifically, we discretize each control dimension

into 5 bins. Thus, the learning of the policy function πre−grasp(H) is similar to multi-way binary

classification.

L =

K∑
i=1

B∑
k=1

D(i)∑
j=1

δ(k, ui,j) · Cross-Entropy(σ(yfinalij), ŷ). (6.2)

Eq 6.2 shows our loss for learning our policy function. ŷ corresponds to the success/failure label

while yfinalij is the final dense layer before the sigmoid. D(i) = 5 gives the number of discretized

bins for control parameter i, K (=4) is the number of control parameters, B is the batch size and

σ is the sigmoid activation. δ(k, ui,j) is an indicator function and is equal to 1 when the control

parameter i ui,j corresponding to bin j is applied. The learning rates for πre−grasp, MENC/MDEC ,

Mstability are 5e-7, 1e-5 and 5e-5 respectively. All models are trained with ADAM optimizer [125]

for around 20 epochs. The networks and optimization are implemented in TensorFlow [17] and

Keras. Similarly, Mstability is learned using a cross-entropy loss.

6.6.3 Improving Vision-Based Grasping with Re-grasping

Finally, for our experiments we also explore incorporating the haptic re-grasping module with

vision based grasping. In practice, any vision-based policies could be used [142, 153, 190]. We

82

6. Tactile Re-grasping

adapt a variant of [176] (hereafter denoted as πvision). πvision is used to generate an initial grasp,

followed by our re-grasping model. We also use this policy to collect our dataset. We sample control

parameters from πvision that are more likely to produce a success grasp to increase the number of

successful grasps in our dataset.

Specifically, five control parameters are inferred from the object’s image Iobj : xpixel, ypixel, θ,

MG, hG ∼ πvision(Iobj). xpixel and ypixel are the 2-D grasp locations in image plane (converted to

3-D coordinates xG and yG with a calibrated depth camera). θ is the angle of the gripper about the

vertical axis in a planar grasp (similar to [190]). MG is the configuration of the gripper, which is

also used for our learning of haptic features. And hG is estimated height of the object from depth

sensing. For both testing and data collection, we sampled Npatches = 40 parameters from πvision

and chose the command ui for each control dimension i by ui = argmaxj πvision(Iobj , uij).

6.7 Experimental Evaluation

We now present our experimental results. Our experiments are divided into two parts. First, we

evaluate the learned haptic features for two key tactile perception tasks of material recognition and

grasp stability estimation. We compare against state-of-the-art haptic feature extraction methods,

and benchmark the choice of classifiers. Second, we test our tactile based grasping framework. We

report results for our re-grasping module, tactile-only grasping, and visio-haptic grasping.

Test Set for Grasping. To evaluate our grasping framework, we physically test grasping

methods on a set of novel objects. We measure the grasp accuracy averaged over multiple trials

per object as our evaluation criteria. This test setting is very challenging: testing objects are not

presented in the training set and thus have not been seen by neither our πre−grasp model nor πvision.

Our testing set is divided into two parts, as shown in Fig 6.5. Each set consists of 10 different

objects. Set A is more difficult than Set B, as it contains objects with more complex geometry,

heterogeneous material distribution (e.g., plastic toy guns and stapler) and articulations. This test set

is also used for grasp stability estimation.

6.7.1 Learning Haptic Features

Our first experiment tests our haptic feature learning scheme. Our decoder achieves a reconstruction

error (L2 norm) of 0.81 and 1.1 on the training set and our held-out testing set (10% of the recorded

data), respectively. This error (around 1 Newton of force) is reasonable when compared to ∼ 0.2

Newton sensing noise from our force sensor. To further evaluate the learned haptic features, we

consider two key tasks in tactile perceptions: (1) material recognition; and (2) grasp stability

estimation. And we consider different combinations of haptic features and classifiers for both tasks.

83

6. Tactile Re-grasping

Figure 6.5: Our test set of objects. These objects were not in the training data. We divide our test
set into two parts. Set A contains slightly harder objects to grasp (such as the red and orange toy
guns) compared to Set B.

Tactile Features. We compare our learned haptic features with two other baselines representa-

tion learning methods.
• Auto-encoder. This is our haptic features learned using a unsupervised recurrent auto-encoder.

Once learned, only the encoder is used to extract features.

• Sparse Coding. This is a variant [204] of ST-HMP features [149]. These features are learned

using dictionary learning and sparse coding on the spectrogram of 1D time series of tactile

signals. Note that directly using ST-HMP is not feasible for us, as it requires 2D tactile

images.

• Hand Crafted. This is from [223], where raw signals from three specific events (before

contact, when the finger closing movement is stalled due to object-finger contact, after the

fingers are in equilibrium) are extracted.

Choice of Classifiers. We further vary the classifiers used for both material recognition and

grasp stability estimation.
• Deep Network. We train a five-layer neural network with cross entropy loss for classification.

• SVM. This is a linear classifier trained with hinge loss.

Material Recognition: The task is to classify 7 different materials in our dataset using tactile

signals during grasping. All features are learned from the full training set, as no supervision is

required. Our classifiers are trained on a subset of the training set (80%) and tested on the held out

testing set (the remaining 20%). We report average class accuracy. The results are presented in

Table 6.1.

84

6. Tactile Re-grasping

Ac
tu

al
 L

ab
el

Predicted Label

Figure 6.6: Confusion matrix for material recognition on a held out test set. Using our learned
haptic features, we achieve an accuracy of 42.86%.

Table 6.1: Results of Material Recognition

Feature Type
Accuracy (%)

Deep Network SVM

Auto-encoder (Ours) 42.86 40.68
Sparse Coding [149, 204] 36.35 35.93

Hand Crafted [223] 33.50 33.66

The features learned from our auto-encoder outperforms sparse coding and hand crafted features

for both the deep network and SVM by a significant margin (at least 4.7%). The feed-forward

network also performs at least comparably or slightly better than the SVM for all features. In

particular, our haptic features with deep networks improves the traditional method of sparse coding

with SVM by 5.8%. Furthermore, we show the confusion matrix for material recognition in Fig 6.6.

The majority of the error comes from hard objects that are composed of wood/metal/glass being

mis-classified as hard plastic. This result demonstrates that our haptic features encode physical

properties of the object.

Grasp Stability Estimation: The task is to estimate whether the grasp will be successful given

tactile signals during grasping. Again, all features are learned from the training set. We train the

classifiers on the training set and apply them on our full test set (580 trials on 20 unseen objects).

We report the accuracy for binary classification. The results are summarized in Table 6.2.

85

6. Tactile Re-grasping

Table 6.2: Results of Grasp Stability Estimation

Feature Type
Accuracy (%)

Deep Network SVM

Auto-encoder (Ours) 85.92 84.50
Sparse Coding [149, 204] 81.37 80.12

Hand Crafted [223] 82.54 82.66

The results of grasp stability follow the same trend of material recognition. Our haptic features

significantly outperform other features. And the combination of our learned haptic features with

deep network achieves the best accuracy. This result suggest that the learned haptic features contains

important information for grasping. To better understand our tactile features for grasping, we

visualize the t-SNE embedding of the learned features and plot example results of our grasp stability

estimation in Fig 6.7. We observe that the main failure modes are from that (1) the part of the finger

containing the haptic sensor may not come into contact with the object; and (2) the object may slip

in the gripper.

Remarks: We demonstrate that our learned features are highly effective for two key tactile

perception tasks. When compared to other haptic features, our feature learning can substantially

improve the performance. We also show that deep networks are on average better than classical

linear SVM with all haptic features. These results provide a strong support to our design of the

re-grasping model, i.e. the combination of our learned haptic features and deep networks.

6.7.2 Tactile Based Grasping

Our second experiment focuses on the tactile based grasping framework. We first evaluate our core

touch based re-grasping model. We then benchmark the full pipeline, and explore incorporating

vision based grasping with our re-grasping model.

Re-grasping Model: We evaluate our core re-grasping model using the full test set (20 objects).

Note in this case, we assume an oracle object location is given: we place each object in eight

canonical orientations (N,S,W,E,NE,SE,SW and NW). Moreover, the initial grasp is randomly

selected given the object location. We then compare three different settings: a single random

re-grasp, multiple random re-grasps, and our re-grasping model. For fair comparison, we set the

number of trials for random re-grasps equal to the maximum number of trials of our model. Both

random re-grasp and our model are based on our grasp stability estimation.

Table 6.3: Re-grasping results with oracle object locations
Object

Location
Initial
Grasp

Re-grasp
Grasp Accuracy (%)

Set A Set B A+B

Vision Random - 16.3 32.5 24.4
Vision Random Random (≤4 trials) 17.5 28.8 23.2
Vision Random Ours (≤4 trials) 33.8 41.3 37.5

86

6. Tactile Re-grasping

True Negative

No Grasp: Gripper
makes initial contact

False Positive

Unstable Grasp:
Object slips in hand

False Negative

Stable Grasp: 2/3
sensors do not make
contact with object

True Positive

Stable Grasp

Figure 6.7: Visualization of learned haptic features using t-SNE Embedding. Red and blue dots
correspond to failed and successful grasps respectively. We also plot four typical examples for grasp
stability estimation.

The results are shown in Table 6.3. Grasp accuracy on Set B is always higher than Set A. For

the full set, the baseline accuracy for chance grasping is 24.4%, where the first (and only) grasp

is sampled from a random policy with no re-grasping. Interestingly, multiple random re-grasps

slightly decreased the accuracy by 1.2%. And our re-grasping model get the best accuracy of 37.5%.

This is 13.1% better than the baseline of multiple random re-grasps. This result demonstrates the

effectiveness of our re-grasping module.

Grasping without Seeing: Going beyond re-grasping, we test our full pipeline of tactile based

grasping, which includes touch based localization and re-grasping. In this case, we simplify our

benchmark by only considering our test set B and use 5 trials per object. This is primarily limited

by the run time of our experiments. Our results are show in Table 6.4. Our pipeline increases the

baseline of random grasping by 14% and reaches an accuracy of 40% with only tactile sensing. This

is one of the first results for a complete grasping of multiple novel objects using only the sense of

touch.

87

6. Tactile Re-grasping

Table 6.4: Grasping accuracy of our full method. We also present results of combining our
re-grasping module with a vision based policy to further improve grasping.

Object
Location

Initial
Grasp

Re-grasp
Grasp

Accuracy (% on Set B)

Touch Random - 26.0
Touch Random Ours (≤4 trials) 40.0
Vision Vision - 51.3
Vision Vision Ours (≤4 trials) 61.9

Visio-Haptic Grasping: Our last experiment combines the proposed re-grasping model with

a vision based policy from [176]. The results are show in Table 6.4. Our framework can further

benefit from a good initial grasp (+11.3%). And more importantly, combining vision based grasping

with our tactile based re-grasping can largely improve the accuracy by 10.6%. These results provide

a strong evidence for the need of combining visual and tactile sensing for robust grasping. Through

this experiment, we also shows the flexibility of our re-grasping model, which can be readily plugged

into existing grasp planning methods.

6.8 Conclusion

In this chapter, we demonstrate one of the first attempts of learning to grasp novel objects using

only tactile sensing and without prior knowledge about the object. The core of our method lies in

the combination of a) a simple method of touch based localization b) unsupervised learning of rich

tactile features and c) a learning based method for re-grasping using haptic feedback. First, we

created a large-scale dataset for visio-haptic grasping to evaluate our method and to facilitate future

research. With this dataset, we used a auto-encoder to learn rich features from raw tactile signals.

These features proved effective for both passive tasks like material recognition and active tasks like

re-grasping, and displayed an improvement of around 4-9% over prior methods. Finally, we show

that our novel re-grasping model can progressively improve the grasping, leading to significantly

higher success rate even from a noisy initial grasp. Our method achieved a grasping accuracy of

40.0% using only tactile sensing for both localization and grasping. We also demonstrate that this

re-grasping model can be combined with existing vision based grasping to further improve the

accuracy by about 10%. We hope that our method together with our dataset could provide valuable

insights for solving the challenging problem of autonomous grasping.

Our current method is limited in the sense that re-grasping has to start from a random initial

grasp, which is far from optimal. Looking forward, tactile exploration could be used to build

a representation of object shape (e.g., Gaussian Process Implicit Surfaces) followed by grasp

planning [151]. Also, the major failure mode with our current hardware setup is one of partial

observability - the regions of the robot’s finger not covered by the sensor might come in contact and

88

6. Tactile Re-grasping

push the object. This in turns affects all stages of our pipeline - from feature learning, localization,

grasp stability estimation to re-grasping. This could be mitigated by using novel skin/contact sensors

and wrist force-torque sensors alongside incidental contact algorithms [31]. Furthermore, instead of

adding symmetric Gaussian noise in the motion model of the particle filter, we can bias the model in

the direction of the detected contact force. Finally, a joint learning of localization and re-grasping

with reinforcement learning is interesting to explore. Staged learning or policy iteration on the

learned policy would greatly improve its performance as in prior work [142, 176, 190].

89

Part IV

Generalization to Semantic Tasks

90

Chapter 7

Data and Semantic Knowledge for
Task-Oriented Grasping

7.1 Introduction

We have seen tremendous progress in the fundamental task of robotic grasping in recent years. State-

of-the-art grasping algorithms have shown generalization to object instances [120, 153, 190, 257],

viewpoints [141], DOF constraints [173, 179, 232], unknown environments [99] and even adversarial

objects [242]. The key reason for the success of these approaches is large-scale learning. Typically

data is sampled from analytical approaches in simulation [153, 173] or using a self-supervised

framework [141, 190]. Despite these recent successes, there is still a significant gap between how

humans grasp objects and how robots perform picking. Most techniques plan for stable grasps

assuming grasping to be the end goal. However, when humans grasp an object, we do so with a

particular purpose in mind and grasping is just the first step as a means to that end. For example,

when humans grasp a cup, we use the handle to drink from it though several other stable grasps exist.

Humans also use objects creatively, such as scooping with a bowl or hammering with a heavy mug.

Different tasks may require completely different grasps for the same object. To effectively operate

in human homes and complete multiple tasks, a personal robot would have to learn from humans

to generalize grasping to several tasks and skills beyond a tool’s prototypical use. For instance, if

the robot is cooking and needs to stir a pot of pasta but doesn’t have a spoon at hand, it can use an

alternate tool, such as a knife. To truly get to human-level grasping, we must study not just stable

grasping or grasping for an object’s primary use-case but rather how to grasp depending on both the

task and the object.

What are the bottlenecks in task-oriented robotic grasping? The biggest hurdle is the need

91

7. Data and Semantic Knowledge for Task-Oriented Grasping

for human-labeled data. Unlike self-supervised or analytical approaches for which force sensing

or contact models can provide labels for stable grasps, here we need humans to identify how

an object can be grasped for multiple tasks. There has been a lot of recent work in this area,

including [37, 81, 146]. Brahmbhatt et al. [37] used thermal imaging in a curated setup to study

human grasping contacts on 50 3D printed objects for two tasks. Fang et al. [81] proposed to jointly

learn a task-oriented grasping network and manipulation policy in simulation with reinforcement

learning and demonstrated the framework on two-goal tasks with two object categories. Liu et al.

[146] proposed a data-driven approach to learning the complex relationships between grasps, objects,

tasks, and broadened semantic contexts. However, their approach required pixel-wise affordance

segmentation [69] for a small set of known object categories, which is challenging to generalize and

get supervision for. Despite this progress in learning from human grasping, there are still significant

gaps, both from a data and methods perspective. On the data side, existing datasets are limited in

terms of the number of object instances, but especially in the number of tasks and object classes

collected. Yet, even if we scale the datasets, it is unclear if current approaches will generalize to new

object categories and tasks in the real world. We tackle both problems: first, we collect a dataset

that is diverse both in terms of objects and tasks and an order of magnitude larger than previous

datasets. Second, we exploit the semantic knowledge of objects and tasks to present a system that

can generalize to new object instances, classes, and new tasks. To the best of our knowledge, this

work is one of the first efforts in demonstrating robust generalization in task-oriented grasping,

especially with semantic knowledge.

More specifically, our first key contribution of this work is the collection of a large-scale dataset

which we call TaskGrasp. We increase the number of real objects from the current best of 50 in prior

works [37] to 191, and collect RGB-D point cloud observations and object-centric 6-DOF grasps for

the task-oriented grasping problem. We also scale the number of object classes from 40 [37] to 75

and resolve each of these to the standard WordNet ontology [167]. And perhaps most importantly,

we scale the number of tasks from 2− 7 in prior works [37, 81, 146] to 56. This expanded dataset

both gives a better benchmark for task-oriented grasping and allows us to study generalization by

expanding the number of object categories and tasks.

In order to generalize to a new object or task, we need to have some prior semantics about it. For

instance, if we knew that mugs and bowls were both containers, we might infer that we should apply

the scoop action in a similar way. To this end, and for our second main contribution, we propose

a method, called GCNGrasp, that incorporates semantic knowledge into the end-to-end learning

of task-oriented grasping from object point clouds. In particular, we use a Graph Convolutional

Network (GCN) [127] to reason about a knowledge graph that encodes relations between objects

and tasks, and further leverage word embeddings trained on large-scale language tasks to provide

additional prior information. Our GCNGrasp model shows a significant improvement of 12% and

92

7. Data and Semantic Knowledge for Task-Oriented Grasping

3.5% on held-out tasks and object categories, respectively, compared to baselines which do not

incorporate semantics. We also show that our method and dataset are applicable for actual robots by

executing task-oriented stable grasps on a 7-DOF Sawyer Robot on unknown objects.

7.2 Related Work

Task-Oriented Grasping: Prior work in Task-Oriented Grasping can be grouped into analytic

methods, data-driven approaches using object state information, and frameworks learning from

observations. Early work in analytic grasping proposed task wrench spaces with task-oriented

grasp quality metrics [34]. Data-driven approaches have been proposed to improve generalization,

though a large body of work has relied on object state information. Song et al. [221] used generative

Bayesian Networks to model the relations between objects, grasps and tasks; Antanas et al. [23] and

Ardón et al. [24] leveraged probabilistic logic languages to reason about grasp regions affording

different tasks through semantic relations. However, both methods require grounding geometric

information about objects to semantic representations and can only reason about semantic knowledge

alone. A related line of work has used object parts and affordance detection [67, 69, 131, 138].

Do et al. [69] leveraged the affordances of object parts to define the correspondences between

affordances and grasp types (e.g., rim grasp for parts with contain or scoop affordance). Detry

et al. [67] trained a separate affordance detection model using synthetic data to detect suitable

grasp regions for each task. While we do not provide explicit supervision for object affordance, we

demonstrate that our model achieves an implicit understanding.

More recent works have learned task-oriented grasping from just RGB-D observations of objects.

Dang and Allen [58] proposed an example-based approach which learns task-oriented grasps by

storing visual and tactile data of grasps. Hjelm et al. [107] proposed a discriminative model based

on visual features of objects. Jang et al. [114] proposed an end-to-end learning method of grasping

objects from specific categories in a bin. To accelerate learning from observations, there have been

efforts in scaling datasets as discussed previously [37, 81, 146]. The computer vision community

has also focused on annotating datasets for inferring human grasp pose estimation from visual data

[112, 132, 218] with the aim that it could be adapted to robotic grasping with kinematic retargeting.

In this work, we propose an expanded dataset in terms of the number of object categories and tasks

to study generalization. We also present a unified framework that jointly learns from semantic

knowledge and geometric observations.

Semantic Knowledge in Vision: The use of knowledge and knowledge graphs for visual reason-

ing has been well studied. Word embeddings from language has been used extensively [89]. Class

hierarchies, such as WordNet [167], have often been used to aid in image recognition [259]. More

generally, knowledge graphs have found extensive use in visual classification and detection [161], as

93

7. Data and Semantic Knowledge for Task-Oriented Grasping

well as zero-shot classification [243]. We draw on many of the ideas from these works in Computer

Vision, especially those related to word embeddings and graphs, and apply them to a robotics task

and to 3D point cloud data.

Semantic Knowledge in Robotics: In robotics, semantic knowledge has been used to help

robots adapt to diverse and changing environments by providing abstractions that generalize across

similar situations. Large-scale robotic knowledge bases, such as KnowRob [233], RoboBrain [215],

and RoboCSE [63], aimed to provide robots with extensive knowledge about objects, spaces, tasks,

actions, and agents. Other methods leveraged more specific knowledge in a variety of robotic tasks,

such as affordance learning [170] and visual-semantic navigation [252]. Similar to Antanas et al.

[23] and Ardón et al. [24], we reason about semantic knowledge for task-oriented grasping, but we

leverage semantic knowledge for generalization to novel object classes and tasks.

7.3 Dataset

In this section we describe our dataset: TaskGrasp, specifically its properties, collection and

annotation methodology. As shown in Table 7.1, TaskGrasp is the largest and most diverse dataset

for task-oriented grasping to date with respect to number of objects, categories and tasks.

TaskGrasp contains 191 individual household and kitchen objects comprising 75 distinct object

categories and varying in size, geometry, material, and visual appearance. Figure 7.2 shows the

class of each object and its proportion in the dataset. We collect RGB-D pointclouds for each object,

and automatically annotate 250K stable grasps. We also curate a list of 56 everyday tasks that

impose different semantic constraints on grasping and annotate for each grasp whether that grasp is

appropriate for each particular task.

7.3.1 Data Acquisition on a Robot

After selecting our 191 objects by browsing various homegoods stores, we scan the objects to

acquire their point clouds. A Realsense D415 eye-in-hand camera mounted on a LoCoBot [177]

is used for 3D scanning. The object is placed on a transparent mount in front of the robot, which

is commanded to different poses along the object approach direction to capture point clouds from

multiple viewpoints. This setup helps to capture more of the object geometry under self-occlusion,

which in turn increases the coverage of grasp samples. The multi-view observations are registered

using robot kinematics and further refined with the iterative closest point algorithm. After table plane

segmentation, 600 object-centric stable grasps are then sampled [231] from the object point cloud.

25 grasps are selected with farthest point sampling (to maximize grasp coverage) for annotation.

These grasps are chosen as a representative, albeit limited, grasp set for the object to trade off

between dataset size and budget.

94

7. Data and Semantic Knowledge for Task-Oriented Grasping

Figure 7.1: Example point clouds and grasps from our TaskGrasp dataset. Column 7-9 shows
how grasps vary with tasks for a salad tongs (with higher diversity) and a rolling pin (with lower
diversity). Green and Red means successful and incorrect task-oriented grasps respectively.

Table 7.1: Comparing recent Task-Oriented Grasping Datasets

ContactDB [37] SG14000 [146] TOG-Net [81] TaskGrasp (Ours)
Semantic Knowledge 7 7 7 3

Object Categories 40 5 2 75
Objects 50 44 18K (synthetic) 191
Tasks 2 7 2 56

Grasps 3750 14K 1.5M 250K
Grasp Type Contact Map SE(3) Planar SE(3)

7.3.2 Data Annotation by Crowdsourcing

We use Amazon Mechanical Turk (AMT) to crowdsource labels for the 250K stable grasps. Instead

of exhaustively labelling each task-object combination (∼ 10K) , we reduce the annotation cost

with a two-stage procedure. We use the insight that the pre-condition for a task-oriented grasp is

that the object has to be capable of the task in the first place. First, we gather labels for whether

a task is suitable for each object. Second, for this filtered subset of task-object combinations, we

collect labels for the 25 task-oriented grasps per object. To ensure annotation quality, we assign

each labeling task to three annotators and use gold standard questions (questions that we know

the answers to) to filter annotators with low accuracy. For both stages, we take a majority vote

between the annotators. We measure agreement with Randolph’s free-marginal multirater kappa

[199]. Kappa values for the two stages are 0.65 and 0.62 respectively (0.0 meaning agreement equal

to chance, and 1.0 indicating perfect agreement above chance), which suggests good agreement

between annotators.

95

7. Data and Semantic Knowledge for Task-Oriented Grasping

Figure 7.2: Semantic hierarchy of objects. Each level of the hierarchy is represented by one ring
with the innermost circle as the root of the hierarchy. The angle of each segment is proportional to
the number of objects.

7.3.3 Analysis

In Figure 7.1 we show prototypical examples from TaskGrasp. We provide additional examples in

the supplementary materials.

Diversity of Grasps: As a result of the large number of objects and tasks, TaskGrasp contains

a wide variety of task-oriented grasps. On average, each object is suitable for 7 tasks. As shown in

Figure 7.1, these tasks involve both prototypical (a ladle for pouring) and creative use of objects

(tongs for stirring), imposing drastically different semantic constraints on grasping. These examples

also demonstrate the complex geometries presented in real world objects, which pose another

challenge for generalization. We list all the tasks suitable for each object category in Table 7.5.

We also quantitatively measure grasp diversity by analyzing the effect of tasks on grasps. Since

different tasks provide different labels for the same set of stable grasps on each object, we compute

Randolph’s kappa [199] on these labels as a measure of agreement between tasks, i.e., how likely

grasps for one task (e.g., stir) agree with grasps for another task (e.g., cut). Ranging from 0.19 to

0.93, kappa values of the objects suggest that the effect of tasks vary greatly for different objects.

Column 7-9 in Figure 7.1 show how grasps vary with tasks for a salad tongs with a kappa value

of 0.38 and a rolling pin with kappa value of 0.97. In TaskGrasp, 25% of the objects have kappa

values lower than 0.5 and these objects require significantly different grasps for different tasks.

Semantic Knowledge of Objects and Tasks: We also provide semantic knowledge about

96

7. Data and Semantic Knowledge for Task-Oriented Grasping

objects and tasks in the dataset. Objects are manually mapped to WordNet synsets [167] which

represent a semantic hierarchy, as shown in Figure 7.2. Each of the 75 leaf synsets in the hierarchy

represents a distinct object class and is linked to 2.5 objects on average. Building on the hypernym

paths from WordNet, the semantic hierarchy includes a rich set of object concepts interlinked by

“Is-A” relations. This provides useful semantic knowledge for task-oriented grasping as objects in

the same subtree of the hierarchy often share similar functionalities or geometric properties. For

example, mug, ladle, and bottle are in the vessel subtree and can all be used to hold liquid. In

addition, we connect a task to an object class through “Used-For” relations if any object in the class

is considered suitable for the task from the first stage of our crowdsourcing. We provide a thorough

breakdown of object counts, class hierarchies and used-for relations in the supplementary materials.

7.4 Task-Oriented Grasping with Semantic Knowledge

We consider the problem of generating grasps for task-oriented grasping given the object point cloud

and task constraints. Specifically, we want to estimate the grasp distribution P (G∗|X, T), where

X is the point cloud input, T are the constraints imposed by goal tasks, and G∗ is the space of

successful grasps. Following convention in related work [173, 232], we represent grasps g ∈ G∗ as

the grasp pose (R, T) ∈ SE(3) of a parallel-jaw gripper with its fingers open which when closing

will lead to a stable grasp. We further factorize the estimation of P (G∗|X, T) into 1) task-agnostic

grasp sampling P (G∗|X) and 2) task-oriented grasp evaluation P (S|X, T , g). The primary benefit

of this factorization is that it allows us to leverage prior work in stable grasp generation.

In this section, we describe our method (GCNGrasp) for Task-Oriented grasping. Our method is

composed of: (1) a Shape Encoder built on a PointNet++ architecture [197] to encode the object

point cloud, (2) a Graph Convolutional Network [127] which takes the encoded shape as input as

well as a knowledge graph G encoding the semantic relationships between object categories, tasks

and hierarchies and (3) a Grasp Evaluator which outputs the final grasp prediction. See Figure 7.3.

Grasp and Object Shape Encoder: Our input observations are object point clouds and we

want to reason about SE(3) grasps. Qi et al. [197] proposed the PointNet++ architecture to

efficiently represent 3D data which we use to learn a representation for the object point cloud and

6-DOF grasp poses. The grasp g is defined in the object frame and six control points are selected on

the gripper to form a gripper point cloud Xg. Similar to Mousavian et al. [173], Xg is concatenated

with the object point cloud X with an extra latent indicator vector to represent whether a point is

part of the gripper or the object. The PointNet layer reasons about the relative spatial information

between the grasp and the object and outputs a geometric embedding vector.

Graph Convolutional Network: We use the standard Graph Convolutional Network (GCN)

model from Kipf and Welling [127], which is a neural network structured on the shape of the input

97

7. Data and Semantic Knowledge for Task-Oriented Grasping

Figure 7.3: Overview of our Task-Oriented grasping framework using semantic knowledge graphs.

graph. By structuring a neural network to pass information between adjacent nodes, we use the

input graph to correctly reason about the relationship between the object classes and the target task.

The first input of a GCN is the graph itself G = (V,E). In our application, we use a knowledge

graph constructed from two sources: the task-object class relationships in our dataset and the object

hierarchy from WordNet [167]. The graph is represented as a binary adjacency matrix A, which we

normalize to obtain Â following [127]. The next input to each node of the GCN is a D−dimensional

embedding vector. The target tasks are specified using an extra indicator latent variable that is

concatenated with this embedding to get the vector of size D + 1. The embedding vectors are

stacked across nodes to get the input matrix X ∈ R|V |×(D+1). We initialize the matrix with the

word embeddings corresponding to each concept in the knowledge graph (e.g. “mug”). We use

ConceptNet numberbatch [222] for the word embeddings. The grasp and shape encoder nodes are

added online to the existing knowledge graph G by connecting edges to the corresponding object

class nodes.

The output of the GCN are K-dimensional embeddings for each node Z ∈ R|V |×K . The node

embeddings are propagated to their neighbours using message passing in each convolutional layer:

H(l+1) = σ(ÂH(l)W (l)) (7.1)

where σ is the ReLU activation function, H(0) = X and H(L) = Z where L is the number of

layers.

Grasp Evaluator: After the GCN, we are left with a node-level embedding Z . We use the

embedding corresponding to the grasp node zg to train the final grasp evaluator P (S|zg), where S

is the grasp score. This module has three fully connected layers with K units and a final sigmoid

layer. The entire model, including the shape encoder, GCN and grasp evaluator, is optimized with

ADAM using a binary cross entropy loss.

Implementation Details: The point clouds were downsampled to 4096 points during training.

They were also mean centered and unit-scaled. The PointNet module consists of three set abstraction

layers and the number of points sampled are 512, 128 and all points. The set abstraction layers

98

7. Data and Semantic Knowledge for Task-Oriented Grasping

are followed by three fully connected layers with sizes [1024, 512, D]. Each set abstraction layer

has three fully connected layers to learn features. The point clouds were perturbed with random

rotations, jitter and dropout for data augmentation and to build robustness when testing on novel

objects in unknown poses. We choose D=300 and K=128, and L=6 as the parameters for our GCN

network.

7.5 Experimental Evaluation

7.5.1 Zero-Shot Generalization

A central goal of both our dataset and our method is to show that we can learn task-oriented grasping

models which generalize to novel objects, classes and tasks. In an ideal robotics system, we should

be able to correctly grasp a novel object from a novel object class, or even grasp for a novel task.

To test this, we measure our system and baselines in three different held-out test settings: held-out

object instances, held-out object categories, and held-out tasks.

These held-out settings are of increasing difficulty in terms of zero-shot generalization. For

each setting, we perform k-fold cross validation (k=4), such that each category (a task, object class,

or object instance, based on the setting) will be held out exactly once. In each fold, grasps from

25% of the categories will be used for testing while remaining grasps will be used for training and

validation.

In all experiments, we only evaluate tasks that are valid for a given input object class. This

makes sense from an evaluation perspective as it separates the problem of predicting applicable tasks

for objects from task-driven grasping. It also makes the comparison to methods using object-task

information fair since the models do not have to decide whether the object-task pair is valid.

Evaluation Metrics: Since k-fold cross validation in any held-out setting will evaluate all

grasps in the dataset, we can compute Average Precision (AP) scores for any category, i.e., any

object instance, object class, or task. We then compute an mAP averaged over object instances,

mAP averaged over object classes, and mAP over tasks. We show all three metrics for each of our

three settings in Tables 7.2a,7.2b,7.2c, but emphasize the mAP metric that corresponds to what

category is being held out.

Baselines: We compare our approach to the following models: (1) Random, which represents

grasping strategies that focus on grasp stability and ignore task constraints. Results are averaged

over five random seeds. (2) Semantic Grasp Network (SGN), which learns to reason about context

of grasps (e.g., constraints imposed by objects and tasks) from data. This model is adapted from

[146], with the difference that the input to the model is replaced with geometric embedding from

our shape encoder and word embeddings of the task and the object class. Note that embeddings of

99

7. Data and Semantic Knowledge for Task-Oriented Grasping

Table 7.2: Results on TaskGrasp

(a) Object Instance Generalization

Model Test Performance (mAP)

Instances Classes Tasks
Random 59.75 60.28 54.76

SGN [146] 78.51 75.08 68.8
SGN + word embedding 79.74 77.91 74.36

GCNGrasp (ours) 80.25 77.94 73.71

(b) Object Class Generalization

Model Test Performance (mAP)

Instances Classes Tasks
Random 59.32 58.73 52.27

SGN [146] 74.2 72.95 62.55
SGN + word embedding 77.21 75.51 63.73

GCNGrasp (ours) 78.81 76.57 57.36

(c) Task Generalization

Model Test Performance (mAP)

Instances Classes Tasks
Random 59.06 58.24 52.37

SGN [146] 75.17 71.59 63.35
SGN + word embedding 78.06 74.49 70.55

GCNGrasp (ours) 81.5 79.56 76.01

Table 7.3: Ablation on Semantic Knowledge

Model Graph Held-out Setting

Nodes Edges Task Class Instance
GCN + tasks + WordNet 345 989 76.01 76.57 80.25

GCN + tasks 131 693 77.54 75.86 81.46
GCN + WordNet 155 106 71.77 70 78.66

tasks and object classes are both learned from training data. (3) SGN + word embedding, which

uses ConceptNet [222] numberbatch as pretrained word embeddings for object classes and tasks.

7.5.2 Analysis

First, to get context for our results in Table 7.2, we see that random grasp prediction achieves

approximately 50-60% accuracy, establishing a floor for the other methods. Because the number

of positive and negative grasps in the dataset is about even, random guessing is able to achieve a

seemingly high mAP. In a dataset with more negatives we would expect this number to be much

lower.

Our method outperforms baselines in all three settings. This confirms that our method can

effectively leverage the knowledge graph to generalize to novel object instances, object classes,

and tasks. SGN + word embedding also outperforms SGN, suggesting that implicit distributional

knowledge provides a prior that is useful for generalization. Despite the benefit of distributional

knowledge, it still only represents semantic similarities between concepts. In contrast, the knowledge

graph directly stores relations between the relevant objects and tasks, and exploiting this additional

structured knowledge allows our model to achieve better zero-shot generalization than SGN + word

embedding.

When comparing our method with SGN and SGN + word embedding, we observe increasingly

100

7. Data and Semantic Knowledge for Task-Oriented Grasping

Figure 7.4: Robot executions of example task-oriented grasps on unknown objects. For each
execution, the top 3D visualization shows the grasp that was executed (which had the best evaluator
score) and the bottom shows all the stable grasp candidates colored by their scores (green is higher).

larger margins in performance from the held-out instance to the held-out class setting. As objects

from different classes have more variance in terms of geometric and visual features than objects

from the same class, semantic knowledge becomes more important in unifying these objects. The

difference in performance between our method and these two baselines on the held-out task setting

reached 12.6% and 5.46% respectively, affirming that semantic knowledge is especially crucial for

generalizing disparate constraints from different tasks.

Ablations on Knowledge Graph: We investigated how performance is affected by changing

the knowledge graph used in our model. Specifically, we compared the default knowledge graph

with a knowledge graph containing only the semantic hierarchy of objects and a knowledge graph

containing only the relations between object classes and tasks. The results from the three held-out

settings are summarized in Table 7.3 (we only show the mAP metrics corresponding to the held-out

category). From these results, we observe that edges between object classes and tasks were the most

important knowledge for generalizing to novel tasks and instances, though every task we tested was

valid for the target object class. This suggests that knowledge about which objects could generally

be used for which tasks provide important information for discovering similarities between tasks. In

the held-out object class setting, additional knowledge from the object hierarchy helped generalize to

novel object classes by associating known classes and novel classes through the WordNet hierarchy.

7.5.3 Real Robot Evaluation

We run experiments to show that our approach and dataset transfer to a real robot. We test our

approach on novel objects not from the dataset and in unknown poses. We place each object (without

101

7. Data and Semantic Knowledge for Task-Oriented Grasping

clutter) on a table in front of the robot. After table plane segmentation to obtain the object point

cloud, 600 stable grasps are sampled and 50 candidates are selected using farthest point sampling for

evaluation. We evaluate the grasps on our best performing GCNGrasp model from the held-out task

ablations (Table 7.2). Our hardware setup comprises of a 7-DOF Sawyer Robot with a 2-fingered

Robotiq gripper and a Intel Realsense D415 RGB-D camera mounted on the gripper wrist. Inference

for the 50 grasps takes around 3s on a desktop with an NVIDIA GTX 1080 Ti GPU and the grasp

with the best score is executed on the robot. Fig 7.4 shows the executed task-oriented grasps on

unknown objects. Even though our dataset objects were collected only in one canonical pose, our

approach is able to generalize to new grasps and in unknown poses due to data augmentation during

training. Based on the grasp evaluator scores from Fig 7.4, our model is also able to interpolate

between modes in the continuous SE(3) space to reason about task-oriented grasping. One failure

mode of our work is that it does not generalize to categories (like the spray bottle in Fig 7.4 in the

bottom right) with limited training data. A future work is to balance the dataset in terms of object

categories.

7.5.4 Comparison to SG14000

We want to demonstrate that grasping models trained on our GCNGrasp dataset generalize to other

task-oriented grasping datasets, namely SG14000 proposed by Liu et al. [146]. We show transfer

learning results on SG14000, since it has the most similar setting by providing objects with their

corresponding point clouds and grasps in SE(3). Since SG14000 does not come with any semantic

knowledge, we use the Semantic Grasping Network (SGN) + word embedding as the backbone

model instead of GCNGrasp. SG14000 is significantly smaller and less diverse with 14K grasps.

The five object categories and seven tasks were resolved to WordNet synsets to have complete

overlap with TaskGrasp. The test dataset was held-out based on grasps, hence may include known

object classes and tasks during evaluation. The model trained on SG14000 performed well when

tested on itself. However, it failed to generalize to the more diverse TaskGrasp with only a 17%

increase over a random baseline. It is not surprising that the model trained on TaskGrasp was able to

generalize to the held-out test set in TaskGrasp. It also performed well when tested on the SG14000

test set though it did not outperform the model trained on SG14000. This is owing to several reasons.

First, the point clouds in SG14000 were incomplete with a lot of self-occlusions (since objects

were scanned from just a single view) whereas our point clouds are constructed based on scans

from multiple view points. This could affect the performance of the Object and Grasp Encoder

based on PointNet [197]. Second, SG14000 has a dataset bias since it models the effects of material

and object state on grasps, while we focus on object geometry. Another reason could be dataset

imbalance in TaskGrasp as we do not have sufficient quantities of certain categories (bowls, bottles)

in comparison. Lastly, SG14000 has some grasps in free space (which we filtered out in our dataset)

102

7. Data and Semantic Knowledge for Task-Oriented Grasping

where our model predicts a high score. This can be corrected by adding unstable grasps as hard

negatives during training, similar to prior work [173, 179].

Table 7.4: Cross generalization on TaskGrasp and SG14000

Train Dataset
Held-out Test Grasps (mAP)
TaskGrasp SG14000 [146]

TaskGrasp 76.2 52.3
SG14000 25.1 62.7
Random 7.9 24.8

7.5.5 Analysis on GCNGrasp Predictions

Next we visualize AP scores for each task from GCNGrasp predictions trained on TaskGrasp in Fig

7.5. The AP scores for all tasks were computed with cross validation as detailed earlier. The red bar

corresponds to AP score with predictions from a random model (averaged over five seeds) while

the red and blue bar cumulatively represents the model AP score. Overall, GCNGrasp performed

better than random predictions, though some tasks are more challenging than others. For instance,

juice, saute and screw are harder tasks (with low random prediction scores) compared to handover

and poke. Tasks that represent more creative than prototypical uses of an object are typically more

ambiguous and challenging to label. Yet, our model is able to improve over random predictions

even in these challenging tasks.

7.6 Conclusion
We present the TaskGrasp dataset to study generalization in Task-Oriented grasping. The dataset is

diverse and an order of magnitude larger than previous datasets. We also present a framework for

jointly learning from geometric observations and semantic knowledge to generalize to new object

instances, classes and even new tasks. Future work could explore recent techniques in automatic

knowledge graph generation [35] for grasping tasks. While we collected real point cloud data of

objects, we could convert the point clouds to meshes or acquire shape models from large online

repositories to use in physics simulators. This could expand the scope of the dataset for sim2real

transfer and to even learn task policies in simulation conditioned on the task-oriented grasps like in

prior work [81].

103

7. Data and Semantic Knowledge for Task-Oriented Grasping

Figure 7.5: mAP across tasks for GCNGrasp predictions. The red bar is for AP predictions by a
random model while the red and blue cumulatively represents the model prediction.

104

7. Data and Semantic Knowledge for Task-Oriented Grasping

Table 7.5: Object Task Combinations

Object Class Suitable Tasks

atomizer.n.01 pour, clean, squeegee, dispense, handover, spray
backscratcher.n.02 pick up, turn on, shake, scrape, handover, scoop, scratch, mix
basket.n.01 pick up, dispense, lift, handover, scoop, hang
baster.n.03 poke, dispense, squeeze, handover, drink, spray
beer mug.n.01 pour, scoop, ladle, flatten, dispense, hammer, lift, mash, handover, crush, drink, pound
book.n.02 pound, crush, handover
bottle.n.01 pour, clean, juice, squeegee, poke, shake, flip, flatten, dispense, hammer, straighten, handover, pound, drink, spray, mix
bottlebrush.n.01 clean, dust, scrub, scrape, straighten, brush, mash, handover, crush, scratch
brush.n.02 handover, brush, sweep, paint
can opener.n.01 cut, open, squeegee, poke, pick up, squeeze, screw
cereal bowl.n.01 pour, scoop, ladle, pick up, dispense, handover, drink, mix
charger.n.02 plug in, turn on
clamp.n.01 clip, straighten, lift, squeeze, crush, hang
coat hanger.n.01 hang, straighten, pick up, handover
coffee mug.n.01 pour, skim, clean, scoop, ladle, pick up, grind, shake, flatten, dispense, dig, lift, handover, drink, pound
colander.n.01 pour, skim, juice, poke, dig, funnel, handover, crush, sift, scoop, strain, pound
control.n.09 turn on
cookie cutter.n.01 slice, cut
cup.n.01 pour, skim, clean, scoop, ladle, till, saute, poke, pick up, shake, tenderize, flatten, dispense, dig, lift, crush, handover, pound, drink, mix
dustcloth.n.01 clean, dust, brush, sweep
dustpan.n.02 clean, dust, pick up, flip, dispense, lift, handover, scoop, sweep
flashlight.n.01 turn on, handover
fork.n.01 skewer, juice, ladle, poke, stir, pick up, handover, stab, flip, grate, dig, scrape, curl, lift, funnel, mash, scoop, scratch, strain, mix
fork.n.04 till, stir, stab, dig, scrape, handover, scratch
frying pan.n.01 pour, saute, stir, pick up, flip, tenderize, flatten, dispense, hammer, lift, mash, handover, crush, pound, scoop, mix
funnel.n.02 pour, scoop, pick up, stab, dispense, scrape, squeeze, funnel, roll, strain, mix
garlic press.n.01 grind, flatten, hammer, squeeze, mash, handover, crush, scratch
grater.n.01 cut, slice, grind, tenderize, grate, scrape, scratch, strain
hair spray.n.01 roll, spray, handover
hammer.n.02 tenderize, flatten, hammer, straighten, mash, crush, pound
keg.n.02 flatten, dispense, drink, pour
knife.n.01 cut, peel, poke, slice, stab, clip, scrape, sharpen, scratch
ladle.n.01 pour, skim, scoop, ladle, poke, saute, stir, pick up, dispense, hammer, scrape, lift, handover, sift, roll, drink, strain, sweep, mix
masher.n.02 cut, juice, poke, stir, grind, tenderize, flatten, hammer, mash, handover, crush, pound, mix
measuring cup.n.01 pour, scoop, ladle, pick up, dispense, dig, lift, handover, drink
mixing bowl.n.01 pour, dispense, pick up, mix
mortar.n.03 pour, stir, grind, tenderize, flatten, pound, mash, handover, crush, sift, scoop, mix
mug.n.04 pour, drink, scoop, handover
nozzle.n.01 dispense, spray
paint roller.n.01 squeegee, paint, tenderize, flatten, dispense, brush, handover, roll, pound
pancake turner.n.01 cut, skim, ladle, pick up, crush, scoop, saute, turn on, flatten, scrape, handover, mix, pound, pour, stir, poke, flip, dig, lift, mash, sift
peeler.n.03 peel, slice, grate, scrape, scratch
pepper mill.n.01 grind, crush, handover
pitcher.n.02 pour, scoop, ladle, stir, pick up, shake, flatten, dispense, lift, handover, drink, mix
reamer.n.01 plug in, juice, scrape, mash, handover
roller.n.04 roll, clean, lift, handover
rolling pin.n.01 poke, tenderize, flatten, hammer, straighten, mash, handover, crush, roll, pound
saltshaker.n.01 pour, dispense, crush, handover, strain, shake
saucepan.n.01 pour, scoop, ladle, saute, stir, pick up, shake, flatten, dispense, dig, lift, mash, handover, crush, drink, mix
saucepot.n.01 pour, saute, dispense, lift, mash, handover, crush, drink, mix
scissors.n.01 cut, open, poke, slice, handover, stab, clip, scrape, curl, straighten, sharpen, scratch
scoop.n.05 clean, pick up, flip, dig, lift, handover, sift, scoop, strain, mix
scoop.n.06 clean, stir, pick up, dig, lift, handover, scoop, pound
scraper.n.01 peel, clean, squeegee, slice, stir, stab, flatten, dig, scrape, straighten, lift, handover, scoop, scratch
screwdriver.n.01 skewer, open, poke, stab, dig, screw, hang, scratch, mix
scrub brush.n.01 clean, dust, paint, poke, stir, scrub, shake, stab, flip, tenderize, flatten, scrape, straighten, mix, funnel, handover, brush, scratch, sweep, pound
server.n.04 ladle, stir, pick up, curl, lift, handover, sift, scoop, hang, mix
sieve.n.01 sift, dispense, strain, skim
sifter.n.01 sift, dispense, strain
skimmer.n.02 skim, ladle, saute, stir, pick up, flip, scrape, handover, sift, scoop, strain
slicer.n.03 cut, peel, open, juice, slice, saute, grate, screw, mix
spatula.n.01 skim, poke, saute, stir, pick up, scrub, flip, dig, lift, crush, handover, scoop, scratch, mix
spatula.n.02 skim, stir, pick up, flip, flatten, scrape, lift, mix
sponge.n.01 skim, clean, squeegee, dust, poke, scrub, scrape, brush, handover, drink, scratch, sweep
squeegee.n.01 clean, squeegee, scrub, scrape, handover
squeezer.n.01 juice, flatten, squeeze, mash, handover, crush, drink, pound
straightener.n.01 flatten, pick up, straighten
strainer.n.01 skim, stir, pick up, shake, flip, dispense, lift, funnel, handover, crush, sift, scoop, strain, sweep, mix
tablespoon.n.02 skim, ladle, pick up, dispense, curl, scoop, scratch, saute, turn on, stab, flatten, scrape, squeeze, handover, mix, pound, pour, stir, poke, flip, dig, lift, mash, sift, drink, strain
tongs.n.01 squeegee, pick up, clip, dispense, crush, scoop, scratch, saute, turn on, stab, scrape, squeeze, funnel, handover, shake, skewer, mix, stir, straighten, poke, flip, lift, roll
trowel.n.01 till, slice, stir, poke, stab, flip, flatten, hammer, dig, scrape, lift, crush, scoop, scratch, mix
vase.n.01 pour, scoop, tenderize, dig, straighten, lift, handover, drink, shake
watering can.n.01 pour, scoop, poke, dispense, funnel, drink, shake
whisk.n.01 mix, stir, brush, handover
wooden spoon.n.02 skim, ladle, poke, saute, stir, pick up, flatten, dig, scrape, lift, mash, handover, pound, scoop, mix

105

Chapter 8

Conclusion

8.1 Overview

Robotic grasping has seen tremendous advancements in generalization in recent years. Yet, the

current paradigm of manipulation research is typically some form of table-top manipulation in

constrained setups or in simulation. In this thesis, we explored several directions in scaling data-

driven grasping to the diversity and constraints imposed by the real world.

We now summarize the key contributions in the thesis. In Part I, we showed how we can

generalize beyond picking individual objects to 6-DOF grasping in structured clutter from just the

raw partial point cloud observations. In Part II, we discussed challenges with scaling robot learning

on diverse hardware systems. We presented an empirical attempt in collecting a large-scale self-

supervised grasping dataset using several low-cost robots interacting in unstructured environments

like human homes. We also proposed a framework for factoring out robot-specific noise which

improves performance of grasping models during testing. Apart from discussing the algorithmic

problem of transferring policies between different robots, we also introduced the Pyrobot software

framework as an attempt to write hardware-agnostic code for manipulation. In Part III, we showed

how we can improve robustness by closing the loop on grasp execution with data-driven tactile

re-grasping. Lastly, in Part IV, we strive to go beyond robotic pick-and-place and generalize to

diverse semantic manipulation tasks. We do so by scaling task-oriented grasping datasets with

crowdsourcing and learning from semantic information like knowledge graphs.

8.2 Limitations

We will briefly discuss the overall failure modes in the approaches taken in this thesis. We refer to

the individual chapters for more detailed discussion of limitations for each project.

106

8. Conclusion

First, a shortcoming in Part I was that we focused on collisions between just the gripper and

the cluttered scene. Though this worked well in practice, several collisions could be prevented by

considering the arm trajectory in the grasp generation process as well. The larger issue here is that

the grasping literature has evolved separately from motion planning. Though this abstraction has

worked well in table-top settings, it is unclear if this is sufficient in constrained setups like in homes,

kitchens or when working in close proximity to humans. There is less free space in such constrained

environments and only a handful of feasible grasps could be executed without collisions.

Data-driven grasping papers typically demonstrate generalization to unknown object instances

but the generalization to domain shift is understudied. In Part II, we studied this problem in terms of

data from out-of-distribution visual environments and robots. In Part IV, we collected a large grasp

dataset with diverse object categories and found it challenging to generalize to point cloud data from

unknown categories. This was partly because of our imbalanced dataset - common categories like

mugs had more data than more specialized ones like spray bottles.

Third, a failure mode in Part III was partial observability in terms of sensing. Our tactile sensors

were only mounted on the finger-tip and hence a lot of contact on other parts of the gripper were

unaccounted. Without any touch feedback, the robot accidentally pushed objects or slippage went

undetected. Contact estimation is an active area of research including skin sensors with more spatial

coverage[31], Finite-Element Models (FEM) of tactile sensors [182], etc.

Lastly, all the approaches presented in the thesis suffer from the common challenges in depth

sensing (transparent, specular objects, etc.) that affect the quality of the object geometry.

8.3 Directions for Future Research

After reading this thesis and related work, you may still be wondering about the comment on whether

“grasping is solved” which we discussed in the introduction. I hope that this thesis has convinced the

reader otherwise and shown the vast space of problems to be solved before we can have reliable

manipulation in-the-wild. We will conclude this thesis by discussing and speculating on some open

problems.

Developments in Hardware: A major bottleneck for democratizing grasping is that we do not

yet have a mass market manipulation platform. The collaborative robotics industry has not had

its equivalent of the Ford Model T moment (in 1908) for automobiles or what the iPhone did for

smartphones in 2008. Fortunately, the price of robots have been falling for decades [235] and recent

low-cost mobile manipulators like LoCoBot [177], Blue [91], HelloRobot [18] have shown great

promise in working in unstructured environments like homes. We may truly have a mass market

manipulator platform in the near future. Apart from the manipulator itself, the hardware for depth

perception and 3D scanning is also getting more robust and affordable, such as the Microsoft Kinect

107

8. Conclusion

[3] and Realsense line of products [123]. Cheaper tactile and force-torque sensors would also go a

long way to improving robustness for grasping systems [255].

Faster and Robust Software: From a vision standpoint, segmentation is an important building

block of grasping systems and is an active area of research in terms of data [100], algorithms

[104, 248] and applications in grasping [22, 148, 179]. Grasping models are also getting very

complex to train due to domain randomization and the need for curating appropriate simulations for

sim2real transfer [173]. The vision community has started emphasizing system performance (low-

power, real-time detection) and better training procedures. For instance, ImageNet classification

training took 15mins in 2018 [253] compared to 6 days in 2012 [136]). Unfortunetaly, the same

emphasis on systems performance cannot be said of the robotics community. A focus on these factors

could benefit more challenging applications of data-driven grasping, such as dynamic grasping and

manipulating deformable objects like cloth. This will require us to tightly integrate the vision +

action loop (>100 Hz) from the current status quo of very slow inference (3-10s per grasp execution)

that papers have reported [173, 179]. Safety in the context of robotic grasping is also an understudied

problem and could benefit from faster inference times.

Benchmarking, Problem Definition and Harder Tasks: It may also be helpful as a commu-

nity to come to an understanding as to when “grasping will be solved”. Establishing metrics and

boundaries for the problem would be really beneficial for everyone to follow. Unlike machine

learning and computer vision, this can be challenging for the robotics community though there

have been initial efforts such as the YCB dataset [41] and Mean-Picks-Per-Hour (MPPH) metric

for bin-picking [154]. By defining the problem better, we can also apply grasping to harder tasks.

Overall, robotic skill learning and its recent incarnation of deep reinforcement learning has largely

evolved separately from grasping. Despite its promise, skill learning has mainly been confined to

known objects in simulation why grasping systems have shown industrial grade performance in the

real world and on unknown objects. Could we perhaps bridge this gap?

108

Bibliography

[1] Dobot Magician. https://www.dobot.cc/dobot-magician/specification.
html.

[2] Makerblock Gripper. http://store.makeblock.com/robot-gripper.

[3] Microsoft Azure Kinect. https://azure.microsoft.com/en-us/services/
kinect-dk/#industries.

[4] Kobuki Base. http://kobuki.yujinrobot.com/about2/.

[5] On Board Computer. https://www.acer.com/ac/en/US/content/model/NX.
GTSAA.005.

[6] Sawyer technical specifications. https://www.rethinkrobotics.com/sawyer/
tech-specs/, 2016.

[7] Ur5 technical specifications. https://www.universal-robots.com/media/
50588/ur5_en.pdf, 2016.

[8] Trossen widow x robotic arm. https://www.trossenrobotics.com/
widowx-200-robot-arm-mobile-base.aspx, 2018.

[9] Battery pack. https://www.maxoak.net/laptop-power-bank/show/11.
html, 2018.

[10] Create2 mobile base. https://www.irobot.com/about-irobot/stem/
create-2, 2018.

[11] Franka emika specification. https://www.franka.de/, 2018.

[12] Open manipulator project. http://emanual.robotis.com/docs/en/
platform/openmanipulator_x/overview/, 2018.

[13] YACS – yet another configuration system. https://github.com/rbgirshick/
yacs, 2018.

[14] ICRA workshop on benchmarks for robotic manipulation. http://www.
ycbbenchmarks.com/ICRA2019_workshop, 2019.

[15] ICRA workshop on dataset generation and benchmarking of slam algorithms for robotics
and vr/ar. https://sites.google.com/view/icra-2019-workshop/home,
2019.

[16] Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,

109

https://www.dobot.cc/dobot-magician/specification.html
https://www.dobot.cc/dobot-magician/specification.html
http://store.makeblock.com/robot-gripper
https://azure.microsoft.com/en-us/services/kinect-dk/#industries
https://azure.microsoft.com/en-us/services/kinect-dk/#industries
http://kobuki.yujinrobot.com/about2/
https://www.acer.com/ac/en/US/content/model/NX.GTSAA.005
https://www.acer.com/ac/en/US/content/model/NX.GTSAA.005
https://www.rethinkrobotics.com/sawyer/tech-specs/
https://www.rethinkrobotics.com/sawyer/tech-specs/
https://www.universal-robots.com/media/50588/ur5_en.pdf
https://www.universal-robots.com/media/50588/ur5_en.pdf
https://www.trossenrobotics.com/widowx-200-robot-arm-mobile-base.aspx
https://www.trossenrobotics.com/widowx-200-robot-arm-mobile-base.aspx
https://www.maxoak.net/laptop-power-bank/show/11.html
https://www.maxoak.net/laptop-power-bank/show/11.html
https://www.irobot.com/about-irobot/stem/create-2
https://www.irobot.com/about-irobot/stem/create-2
https://www.franka.de/
http://emanual.robotis.com/docs/en/platform/openmanipulator_x/overview/
http://emanual.robotis.com/docs/en/platform/openmanipulator_x/overview/
https://github.com/rbgirshick/yacs
https://github.com/rbgirshick/yacs
http://www.ycbbenchmarks.com/ICRA2019_workshop
http://www.ycbbenchmarks.com/ICRA2019_workshop
https://sites.google.com/view/icra-2019-workshop/home

Bibliography

Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Good-
fellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz,
Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry
Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya
Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas,
Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang
Zheng. TensorFlow: Large-scale machine learning on heterogeneous systems, 2015. URL
https://www.tensorflow.org/. Software available from tensorflow.org.

[17] Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,
Greg S Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et al. Tensorflow: Large-scale
machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467,
2016.

[18] Evan Ackerman. Ex-googler’s startup comes out of stealth with
beautifully simple, clever robot design. 2020. URL https:
//spectrum.ieee.org/automaton/robotics/home-robots/
hello-robots-stretch-mobile-manipulator.

[19] Wisdom C Agboh and Mehmet R Dogar. Real-time online re-planning for grasping under
clutter and uncertainty. In 2018 IEEE-RAS 18th International Conference on Humanoid
Robots (Humanoids), pages 1–8. IEEE, 2018.

[20] Pulkit Agrawal, Ashvin V Nair, Pieter Abbeel, Jitendra Malik, and Sergey Levine. Learning to
poke by poking: Experiential learning of intuitive physics. In Advances in Neural Information
Processing Systems, pages 5074–5082, 2016.

[21] Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Jozefowicz, Bob McGrew,
Jakub Pachocki, Arthur Petron, Matthias Plappert, Glenn Powell, Alex Ray, Jonas Schneider,
Josh Tobin Szymon Sidor, Peter Welinder, Lilian Weng, and Wojciech Zaremba. Learning
dexterous in-hand manipulation. arXiv preprint arXiv:1808.00177, 2018.

[22] Shuran Song Daniel Suo Ed Walker Alberto Rodriguez Jianxiong Xiao Andy Zeng, Kuan-
Ting Yu. Multi-view self-supervised deep learning for 6d pose estimation in the amazon
picking challenge. In International Conference on Robotics and Automation (ICRA). IEEE,
2017.

[23] Laura Antanas, Plinio Moreno, Marion Neumann, Rui Pimentel de Figueiredo, Kristian
Kersting, José Santos-Victor, and Luc De Raedt. Semantic and geometric reasoning for
robotic grasping: a probabilistic logic approach. Autonomous Robots, pages 1–26, 2018.

[24] Paola Ardón, Èric Pairet, Ronald PA Petrick, Subramanian Ramamoorthy, and Katrin S
Lohan. Learning grasp affordance reasoning through semantic relations. IEEE Robotics and
Automation Letters, 4(4):4571–4578, 2019.

[25] Karl J Åström. Introduction to stochastic control theory. Courier Corporation, 2012.

[26] R. Balasubramanian, L. Xu, P. D. Brook, J. R. Smith, and Y Matsuoka. Human-guided grasp
measures improve grasp robustness on physical robot. In IEEE International Conference on
Robotics and Automation (ICRA), page 22942301. IEEE, 2010.

110

https://www.tensorflow.org/
https://spectrum.ieee.org/automaton/robotics/home-robots/hello-robots-stretch-mobile-manipulator
https://spectrum.ieee.org/automaton/robotics/home-robots/hello-robots-stretch-mobile-manipulator
https://spectrum.ieee.org/automaton/robotics/home-robots/hello-robots-stretch-mobile-manipulator

Bibliography

[27] Yasemin Bekiroglu, Janne Laaksonen, Jimmy Alison Jorgensen, Ville Kyrki, and Danica
Kragic. Assessing grasp stability based on learning and haptic data. IEEE Transactions on
Robotics, 2011.

[28] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning.
In International Conference on Machine Learning (ICML), 2009.

[29] Dmitry Berenson, Rosen Diankov, Koichi Nishiwaki, Satoshi Kagami, and James Kuffner.
Grasp planning in complex scenes. International Conference on Humanoid Robots, 2007.

[30] Ankit Bhatia, Aaron Johnson, and Matthew Mason. Direct drive hands: Force-motion
transparency in gripper design. Robotics Science and Systems (RSS), 2019.

[31] T. Bhattacharjee, A. Kapusta, Jim Rehg, and Charles Kemp. Rapid categorization of object
properties from incidental contact with a tactile sensing robot arm. Humanoids, 2013.

[32] A Bicchi and V Kumar. Robotic grasping and contact: a review. In IEEE International
Conference on Robotics and Automation (ICRA), 2000.

[33] Jeannette Bohg, Antonio Morales, Tamim Asfour, and Danica Kragic. Data-driven grasp
synthesisa survey. IEEE Transactions on Robotics, 2014.

[34] Ch Borst, Max Fischer, and Gerd Hirzinger. Grasp planning: How to choose a suitable
task wrench space. In IEEE International Conference on Robotics and Automation, 2004.
Proceedings. ICRA’04. 2004, volume 1, pages 319–325. IEEE, 2004.

[35] Antoine Bosselut, Hannah Rashkin, Maarten Sap, Chaitanya Malaviya, Asli Celikyilmaz, and
Yejin Choi. Comet: Commonsense transformers for automatic knowledge graph construction.
2019. URL https://arxiv.org/abs/1906.05317.

[36] Konstantinos Bousmalis, Alex Irpan, Paul Wohlhart, Yunfei Bai, Matthew Kelcey, Mrinal
Kalakrishnan, Laura Downs, Julian Ibarz, Peter Pastor, Kurt Konolige, et al. Using simulation
and domain adaptation to improve efficiency of deep robotic grasping. In 2018 IEEE
International Conference on Robotics and Automation (ICRA), pages 4243–4250. IEEE,
2018.

[37] Samarth Brahmbhatt, Cusuh Ham, Charlie Kemp, and James Hays. Contactdb: Analyzing
and predicting grasp contact via thermal imaging. Conference on Computer Vision and
Pattern Recognition (CVPR), 2019.

[38] Rodney Brooks. A robust layered control system for a mobile robot. AI Memo 864, 1985.

[39] Herman Bruyninckx. Open robot control software: the orocos project. In International
Conference on Robotics and Automation (ICRA). IEEE, 2001.

[40] Roberto Calandra, Andrew Owens, Manu Upadhyaya, Wenzhen Yuan, Justin Lin, Edward
Adelson, and Sergey Levine. The feeling of success: Does touch sensing help predict grasp
outcomes? Conference on Robot Learning, 2017.

[41] Berk Calli, Aaron Walsman, Arjun Singh, Siddhartha Srinivasa, Pieter Abbeel, and Aaron
Dollar. Benchmarking in manipulation research: Using the yale-cmu-berkeley object and
model set. IEEE Robotics & Automation Magazine, 1070(9932/15):36, 2015.

[42] Yevgen Chebotar, Karol Hausman, Oliver Kroemer, Gaurav Sukhatme, and Stefan Schaal.

111

https://arxiv.org/abs/1906.05317

Bibliography

Generalizing regrasping with supervised policy learning. ISER, 2016.

[43] Yevgen Chebotar, Karol Hausman, Zhe Su, Artem Molchanov, Oliver Kroemer, Gaurav
Sukhatme, and Stefan Schaal. Bigs: Biotac grasp stability dataset. In ICRA Workshop on
Grasping and Manipulation Datasets, 2016.

[44] Yevgen Chebotar, Karol Hausman, Zhe Su, Gaurav S Sukhatme, and Stefan Schaal. Self-
supervised regrasping using spatio-temporal tactile features and reinforcement learning. In
International Conference on Intelligent Robots and Systems (IROS), 2016.

[45] Tao Chen, Adithyavairavan Murali, and Abhinav Gupta. Hardware conditioned policies
for multi-robot transfer learning. Nueral Information Processing Systems, 2018. URL
https://arxiv.org/abs/1811.09864.

[46] Xinlei Chen and Abhinav Gupta. Webly supervised learning of convolutional networks.
International Conference on Computer Vision, 2015.

[47] Sachin Chitta, Ioan Sucan, and Steve Cousins. Moveit![ros topics]. IEEE Robotics &
Automation Magazine, 19(1):18–19, 2012.

[48] Changhyun Choi, Wilko Schwarting, Joseph DelPreto, and Daniela Rus. Learning object
grasping for soft robot hands. In IEEE Robotics and Automation Letters, pages 2370 – 2377.
IEEE, 2018.

[49] Vivian Chu, Ian McMahon, Lorenzo Riano, Craig G McDonald, Qin He, Jorge Martinez Perez-
Tejada, Michael Arrigo, Naomi Fitter, John C Nappo, Trevor Darrell, et al. Using robotic
exploratory procedures to learn the meaning of haptic adjectives. In IEEE International
Conference on Robotics and Automation (ICRA), 2013.

[50] Rico Jonschkowski Roberto Martin-Martin Arne Sieverling Vincent Wall Oliver Brock
Clemens Eppner, Sebastian Hofer. Lessons from the amazon picking challenge: Four aspects
of building robotic systems. Robotics Science and Systems (RSS), 2016.

[51] Alvaro Collet, Dmitry Berenson, Siddhartha S Srinivasa, and Dave Ferguson. Object recog-
nition and full pose registration from a single image for robotic manipulation. In IEEE
International Conference on Robotics and Automation (ICRA), 2009.

[52] Alexis Conneau and Douwe Kiela. Senteval: An evaluation toolkit for universal sentence
representations. arXiv preprint arXiv:1803.05449, 2018.

[53] Hao Dang Peter Allen Corey Goldfeder, Matei Ciocarlie. The columbia grasp database. In
IEEE International Conference on Robotics and Automation (ICRA), 2009.

[54] Nikolaus Correll, Kostas Bekris, Dmitry Berenson, Oliver Brock, Albert Causo, Kris Hauser,
Kei Okada, Alberto Rodriguez, Joseph Romano, and Peter Wurman. Analysis and observa-
tions from the first amazon picking challenge. IEEE Transactions on Automation Science
and Engineering, 2017.

[55] Akansel Cosgun, Tucker Hermans, Victor Emeli, and Mike Stilman. Push planning for object
placement on cluttered table surfaces. In IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 4627–4632. IEEE, 2011.

[56] Erwin Coumans. Bullet physics simulation. ACM SIGGRAPH, 2015.

112

https://arxiv.org/abs/1811.09864

Bibliography

[57] George Dahl, Dong Yu, Li Deng, and Alex Acero. Context dependent pre-trained deep neural
networks for large vocabulary speech recognition. IEEE Transactions on Audio, Speech, and
Language Processing, 2010.

[58] Hao Dang and Peter K Allen. Semantic grasping: Planning robotic grasps functionally
suitable for an object manipulation task. In 2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 1311–1317. IEEE, 2012.

[59] Hao Dang and Peter K Allen. Grasp adjustment on novel objects using tactile experience
from similar local geometry. In International Conference on Intelligent Robots and Systems
(IROS), 2013.

[60] Hao Dang and Peter K Allen. Stable grasping under pose uncertainty using tactile feedback.
Autonomous Robots, 2013.

[61] Hao Dang, Jonathan Weisz, and Peter K Allen. Blind grasping: Stable robotic grasping using
tactile feedback and hand kinematics. In IEEE International Conference on Robotics and
Automation (ICRA), 2011.

[62] Michael Danielczuk, Andrey Kurenkov, Ashwin Balakrishna, Matthew Matl, David Wang,
Robert Martn-Martn, Animesh Garg, Silvio Savarese, and Ken Goldberg. Mechanical search:
Multi-step retrieval of a target object occluded by clutter. In Proc. IEEE Int. Conf. Robotics
and Automation (ICRA), 2019.

[63] Angel Daruna, Weiyu Liu, Zsolt Kira, and Sonia Chetnova. Robocse: Robot common sense
embedding. In 2019 International Conference on Robotics and Automation (ICRA), pages
9777–9783. IEEE, 2019.

[64] Marc Peter Deisenroth, Carl Edward Rasmussen, and Dieter Fox. Learning to control a
low-cost manipulator using data-efficient reinforcement learning. RSS, 2011.

[65] Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from incomplete
data via the em algorithm. Journal of the royal statistical society. Series B (methodological),
pages 1–38, 1977.

[66] Xinke Deng, Arsalan Mousavian, Yu Xiang, Fei Xia, Timothy Bretl, and Dieter Fox. Poserbpf:
A rao-blackwellized particle filter for 6d object pose tracking. Robotics Science and Systems
(RSS), 2019.

[67] Renaud Detry, Jeremie Papon, and Larry Matthies. Task-oriented grasping with semantic and
geometric scene understanding. In 2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 3266–3273. IEEE, 2017.

[68] Rosen Diankov and James Kuffner. Openrave: A planning architecture for autonomous
robotics. Robotics Institute, Pittsburgh, PA, Tech. Rep. CMU-RI-TR-08-34, 2008.

[69] Thanh-Toan Do, Anh Nguyen, and Ian Reid. Affordancenet: An end-to-end deep learning
approach for object affordance detection. In International Conference on Robotics and
Automation (ICRA), pages 1–5. IEEE, 2018.

[70] Mehmet Dogar and Siddhartha Srinivasa. Push-grasping with dexterous hands: Mechanics
and a method. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
2010.

113

Bibliography

[71] Mehmet Dogar and Siddhartha Srinivasa. A framework for push-grasping in clutter. Robotics:
Science and systems VII, 1, 2011.

[72] M McTaggart R Smith N Kelly-Boxall S Wade-McCue J Erskine R Grinover A Gurman T
Hunn D Lee Anton Milan Trung Pham G Rallos A Razjigaev T Rowntree K Vijay Zheyu
Zhuang C Lehnert I Reid Peter Corke Jrgen Leitner Douglas Morrison, Adam W Tow.
Cartman: The low-cost cartesian manipulator that won the amazon robotics challenge. IEEE
International Conference on Robotics and Automation (ICRA), 2018.

[73] Stanimir Dragiev, Marc Toussaint, and Michael Gienger. Uncertainty aware grasping and
tactile exploration. In IEEE International Conference on Robotics and Automation (ICRA),
2013.

[74] Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel. Benchmarking
deep reinforcement learning for continuous control. In International Conference on Machine
Learning (ICML), 2016.

[75] J.L. Elman. Learning and development in neural networks: The importance of starting small.
Cognition, 48, 781799, 1993.

[76] Clemens Eppner. Robot grasping by exploiting compliance and environmental constraints.
Doctoral Thesis, 2018.

[77] Zackory Erickson, Sonia Chernova, and Charles C Kemp. Semi-supervised haptic material
recognition for robots using generative adversarial networks. Conference on Robot Learning,
2017.

[78] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. Density-based spatial
clustering of applications with noise. In Int. Conf. Knowledge Discovery and Data Mining,
volume 240, 1996.

[79] M. Everingham, S. M. A. Eslami, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman.
The pascal visual object classes challenge: A retrospective. International Journal of Computer
Vision, 111(1):98–136, January 2015.

[80] Kuan Fang, Yunfei Bai, Stefan Hinterstoisser, Silvio Savarese, and Mrinal Kalakrishnan.
Multi-task domain adaptation for deep learning of instance grasping from simulation. In
2018 IEEE International Conference on Robotics and Automation (ICRA), pages 3516–3523.
IEEE, 2018.

[81] Kuan Fang, Yuke Zhu, Animesh Garg, Andrey Kurenkov, Viraj Mehta, Li Fei-Fei, and
Silvio Savarese. Learning task-oriented grasping for tool manipulation from simulated
self-supervision. Robotics Science and Systems, 2018.

[82] Ronald Fearing. Simplified grasping and manipulation with dextrous robot hands. IEEE
Journal on Robotics and Automation, 1986.

[83] Javier Felip, Jose Bernabe, and Antonio Morales. Contact-based blind grasping of unknown
objects. IEEE-RAS International Conference on Humanoid Robots, 2012.

[84] Chelsea Finn and Sergey Levine. Deep visual foresight for planning robot motion. In 2017
IEEE International Conference on Robotics and Automation (ICRA), pages 2786–2793. IEEE,
2017.

114

Bibliography

[85] Chelsea Finn, Ian Goodfellow, and Sergey Levine. Unsupervised learning for physical
interaction through video prediction. In Advances in neural information processing systems,
2016.

[86] David Fischinger, Astrid Weiss, and Markus Vincze. Learning grasps with topographic
features. The International Journal of Robotics Research, 34(9):1167–1194, 2015.

[87] Dieter Fox, Wolfram Burgard, and Sebastian Thrun. The dynamic window approach to
collision avoidance. IEEE Robotics & Automation Magazine, 4(1):23–33, 1997.

[88] Benoı̂t Frénay and Michel Verleysen. Classification in the presence of label noise: a survey.
IEEE transactions on neural networks and learning systems, 25(5):845–869, 2014.

[89] Andrea Frome, Greg S Corrado, Jon Shlens, Samy Bengio, Jeff Dean, Marc’Aurelio Ranzato,
and Tomas Mikolov. Devise: A deep visual-semantic embedding model. In Advances in
neural information processing systems, pages 2121–2129, 2013.

[90] Yasuyuki Futagi, Yasuhisa Toribe, and Yasuhiro Suzuki. The grasp reflex and moro reflex in
infants: Hierarchy of primitive reflex responses. International Journal of Pediatrics, 2012.

[91] David Gealy, Stephen McKinley, Brent Yi, Philipp Wu, Phillip Downey, Greg Balke, Allan
Zhao, Menglong Guo, Rachel Thomasson, Anthony Sinclair, Peter Cuellar, Zoe McCarthy,
and Pieter Abbeel. Quasi-direct drive for low-cost compliant robotic manipulation. In
International Conference on Robotics and Automation (ICRA). IEEE, 2019.

[92] R. B. Girshick, P. F. Felzenszwalb, and D. McAllester. Discriminatively trained deformable
part models, release 5. http://people.cs.uchicago.edu/ rbg/latent-release5/.

[93] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies for
accurate object detection and semantic segmentation tech report. Conference on Computer
Vision and Pattern Recognition (CVPR), 2014.

[94] Corey Goldfeder and Peter K Allen. Data-driven grasping. Autonomous Robots, 31(1):1–20,
2011.

[95] Corey Goldfeder, Matei Ciocarlie, Hao Dang, and Peter Allen. The columbia grasp database.
In International Conference on Robotics and Automation (ICRA), pages 1710–1716. IEEE,
2009.

[96] Marcus Gualtieri, Andreas Ten Pas, Kate Saenko, and Robert Platt. High precision grasp
pose detection in dense clutter. In IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 598–605. IEEE, 2016.

[97] Robin R Murphy Howie Choset-Henrik Christensen Steven H Collins Paolo Dario Ken
Goldberg Koji Ikuta Neil Jacobstein Danica Kragic Russell H Taylor Marcia McNutt Guang-
Zhong Yang, Bradley J Nelson. Combating covid-19the role of robotics in managing public
health and infectious diseases. Science Robotics, 5, 2020.

[98] Erico Guizzo and Evan Ackerman. Gill pratt discusses toyotas ai plans and the future of robots
and cars. 2015. URL https://spectrum.ieee.org/automaton/robotics/
artificial-intelligence/gill-pratt-on-toyota-robot-plans.

[99] Abhinav Gupta, Adithyavairavan Murali, Dhiraj Gandhi, and Lerrel Pinto. Robot learning

115

https://spectrum.ieee.org/automaton/robotics/artificial-intelligence/gill-pratt-on-toyota-robot-plans
https://spectrum.ieee.org/automaton/robotics/artificial-intelligence/gill-pratt-on-toyota-robot-plans

Bibliography

in homes: Improving generalization and reducing dataset bias. In Advances in neural
information processing systems, 2018.

[100] Agrim Gupta, Piotr Dollar, and Ross Girshick. LVIS: A dataset for large vocabulary instance
segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2019.

[101] Saurabh Gupta, James Davidson, Sergey Levine, Rahul Sukthankar, and Jitendra Malik.
Cognitive mapping and planning for visual navigation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2017.

[102] Nick Hawes, Christopher Burbridge, Ferdian Jovan, Lars Kunze, Bruno Lacerda, Lenka
Mudrova, Jay Young, Jeremy Wyatt, Denise Hebesberger, Tobias Kortner, et al. The strands
project: Long-term autonomy in everyday environments. IEEE Robotics & Automation
Magazine, 24(3):146–156, 2017.

[103] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.

[104] Kaiming He, G. Gkioxari, Piotr Dollr, , and Ross Girshick. Mask r-cnn. International
Conference on Computer Vision, 2017.

[105] Jon Herman and Will Usher. An open-source python library for sensitivity analysis. Journal
of Open Source Software, 2017.

[106] Alexander Herzog, Peter Pastor, Mrinal Kalakrishnan, Ludovic Righetti, Jeannette Bohg,
Tamim Asfour, and Stefan Schaal. Learning of grasp selection based on shape-templates.
Autonomous Robots, 36(1-2):51–65, 2014.

[107] Martin Hjelm, Carl Henrik Ek, Renaud Detry, and Danica Kragic. Learning human priors for
task-constrained grasping. In International Conference on Computer Vision Systems, pages
207–217. Springer, 2015.

[108] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,
1997.

[109] Matthew Honnibal and Ines Montani. spacy 2: Natural language understanding with bloom
embeddings, convolutional neural networks and incremental parsing. To appear, 2017.

[110] Rein Houthooft, Xi Chen, Yan Duan, John Schulman, Filip De Turck, and Pieter Abbeel.
Variational information maximizing exploration. arXiv preprintarXiv:1605.09674, 2016.

[111] Kaijen Hsiao, Sachin Chitta, Matei Ciocarlie, and E Gil Jones. Contact-reactive grasping of
objects with partial shape information. In International Conference on Intelligent Robots and
Systems (IROS), 2010.

[112] De-An Huang, Minghuang Ma, Wei-Chiu Ma, and Kris Kitani. How do we use our hands?
discovering a diverse set of common grasps. Conference on Computer Vision and Pattern
Recognition (CVPR), 2015.

[113] Jemin Hwangbo, Joonho Lee, Alexey Dosovitskiy, Dario Bellicoso, Vassilios Tsounis,
Vladlen Koltun, and Marco Hutter. Learning agile and dynamic motor skills for legged

116

Bibliography

robots. In Science Robotics, volume 4, 2019.

[114] Eric Jang, Sudheendra Vijayanarasimhan, Peter Pastor, Julian Ibarz, and Sergey Levine.
End-to-end learning of semantic grasping. arXiv preprint arXiv:1707.01932, 2017.

[115] Shervin Javdani, Matthew Klingensmith, J Andrew Bagnell, Nancy S Pollard, and Sid-
dhartha S Srinivasa. Efficient touch based localization through submodularity. In IEEE
International Conference on Robotics and Automation (ICRA), 2013.

[116] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross Girshick,
Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional architecture for fast feature
embedding. arXiv preprint arXiv:1408.5093, 2014.

[117] Lu Jiang, Deyu Meng, Qian Zhao, Shiguang Shan, and Alexander G. Hauptmann. Self-paced
curriculum learning. AAAI’15 Proceedings of the Twenty-Ninth AAAI Conference on Artificial
Intelligence Pages 2694-2700, 2015.

[118] Roland S Johansson and J Randall Flanagan. Coding and use of tactile signals from the
fingertips in object manipulation tasks. Nature reviews. Neuroscience, 2009.

[119] Mohsen Kaboli, Di Feng, Kunpeng Yao, Pablo Lanillos, and Gordon Cheng. A tactile-based
framework for active object learning and discrimination using multimodal robotic skin. IEEE
Robotics and Automation Letters, 2017.

[120] Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog, Eric Jang,
Deirdre Quillen, Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke, and Sergey Levine.
Qt-opt: Scalable deep reinforcement learning for vision-based robotic manipulation. Confer-
ence on Robot Learning, 2018.

[121] Daniel Kappler, Jeannette Bohg, and Stefan Schaal. Leveraging big data for grasp planning.
In IEEE International Conference on Robotics and Automation (ICRA), pages 4304–4311.
IEEE, 2015.

[122] Alexander Kasper, Zhixing Xue, and Rudiger Dillman. The kit object models database:
An object model database for object recognition, localization and manipulation in service
robotics. International Journal of Robotics Research, 2012.

[123] Leonid Keselman, John Iselin Woodfill, Anders Grunnet-Jepsen, and Achintya Bhowmik.
Intel realsense stereoscopic depth cameras. arXiv preprint arXiv:1705.05548, 2017.

[124] Jennifer E King, Joshua A Haustein, Siddhartha S Srinivasa, and Tamim Asfour. Nonpre-
hensile whole arm rearrangement planning on physics manifolds. In IEEE International
Conference on Robotics and Automation (ICRA), pages 2508–2515. IEEE, 2015.

[125] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[126] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. International
Conference on Learning Representations (ICLR), 2014.

[127] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. International Conference on Learning Representations (ICLR), 2017.

[128] Nikita Kitaev, Igor Mordatch, Sachin Patil, and Pieter Abbeel. Physics-based trajectory

117

Bibliography

optimization for grasping in cluttered environments. In IEEE International Conference on
Robotics and Automation (ICRA), pages 3102–3109. IEEE, 2015.

[129] Ellen Klingbeil, Deepak Rao, Blake Carpenter, Varun Ganapathi, Andrew Y Ng, and Ous-
sama Khatib. Grasping with application to an autonomous checkout robot. In 2011 IEEE
international conference on robotics and automation, pages 2837–2844. IEEE, 2011.

[130] Nathan Koenig and Andrew Howard. Design and use paradigms for gazebo, an open-source
multi-robot simulator. In 2004 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS)(IEEE Cat. No. 04CH37566), volume 3, pages 2149–2154. IEEE, 2004.

[131] Mia Kokic, Johannes A Stork, Joshua A Haustein, and Danica Kragic. Affordance detec-
tion for task-specific grasping using deep learning. In 2017 IEEE-RAS 17th International
Conference on Humanoid Robotics (Humanoids), pages 91–98. IEEE, 2017.

[132] Mia Kokic, Danica Kragic, and Jeneatte Bohg. Learning task-oriented grasping from human
activity datasets. In IEEE Robotics and Automation Letters, 2020.

[133] Michael C Koval, Mehmet R Dogar, Nancy S Pollard, and Siddhartha S Srinivasa. Pose
estimation for contact manipulation with manifold particle filters. In International Conference
on Intelligent Robots and Systems (IROS), 2013.

[134] Michael C Koval, Nancy S Pollard, and Siddhartha S Srinivasa. Pre-and post-contact policy
decomposition for planar contact manipulation under uncertainty. The International Journal
of Robotics Research, 2016.

[135] Greg Kragten, Aris Kool, and Just Herder. Ability to hold grasped objects by underactuated
hands: Performance prediction and experiments. In International Conference on Robotics
and Automation (ICRA), pages 2493– 2498. IEEE, 2009.

[136] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In Neural Information Processing Systems, 2012.

[137] M. Kumar, Benjamin Packer, and Daphne Koller. Self-paced learning for latent variable
models. Neural Information Processing Systems, 2010.

[138] Safoura Rezapour Lakani, Antonio J Rodrı́guez-Sánchez, and Justus Piater. Exercising
affordances of objects: A part-based approach. IEEE Robotics and Automation Letters, 3(4):
3465–3472, 2018.

[139] Ian Lenz, Honglak Lee, and Ashutosh Saxena. Deep learning for detecting robotic grasps.
International Journal of Robotics Research, 2015.

[140] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training of deep
visuomotor policies. The Journal of Machine Learning Research, 17(1):1334–1373, 2016.

[141] Sergey Levine, Peter Pastor, Alex Krizhevsky, and Deirdre Quillen. Learning hand-eye
coordination for robotic grasping with deep learning and large-scale data collection. ISER,
2016.

[142] Sergey Levine, Peter Pastor, Alex Krizhevsky, Julian Ibarz, and Deirdre Quillen. Learning
hand-eye coordination for robotic grasping with deep learning and large-scale data collection.
The International Journal of Robotics Research, 37(4-5):421–436, 2018.

118

Bibliography

[143] L.-J. Li and Li Fei-Fei. Optimol: automatic online picture collection via incremental model
learning. IJCV, 2010.

[144] Hongzhuo Liang, Xiaojian Ma, Shuang Li, Michael Gorner, Song Tang, Bin Fang, Fuchun
Sun, and Jianwei Zhang. Pointnetgpd: Detecting grasp configurations from point sets. In
IEEE International Conference on Robotics and Automation, 2019.

[145] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan,
Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In
European conference on computer vision, pages 740–755. Springer, 2014.

[146] Weiyu Liu, Angel Daruna, and Sonia Chernova. Cage: Context-aware grasping engine. IEEE
International Conference on Robotics and Automation (ICRA), 2020.

[147] Qingkai Lu, Kautilya Chenna, Balakumar Sundaralingam, and Tucker Hermans. Planning
multi-fingered grasps as probabilistic inference in a learned deep network. arXiv preprint
arXiv:1804.03289, 2018.

[148] S. Gupta A. Li A. Lee J. Mahler M. Danielczuk, M. Matl and K. Goldberg. Segmenting
unknown 3d objects from real depth images using mask r-cnn trained on synthetic data. In
IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2019.

[149] Marianna Madry, Liefeng Bo, Danica Kragic, and Dieter Fox. St-hmp: Unsupervised spatio-
temporal feature learning for tactile data. In IEEE International Conference on Robotics and
Automation (ICRA), 2014.

[150] Jeffrey Mahler and Ken Goldberg. Learning deep policies for robot bin picking by simulating
robust grasping sequences. Conference on Robot Learning, 2017.

[151] Jeffrey Mahler, Sachin Patil, Ben Kehoe, Jur van den Berg, Matei Ciocarlie, Pieter Abbeel,
and Ken Goldberg. GP-GPIS-OPT: Grasp planning with shape uncertainty using gaussian
process implicit surfaces and sequential convex programming. IEEE International Conference
on Robotics and Automation (ICRA), 2015.

[152] Jeffrey Mahler, Florian T Pokorny, Brian Hou, Melrose Roderick, Michael Laskey, Mathieu
Aubry, Kai Kohlhoff, Torsten Kröger, James Kuffner, and Ken Goldberg. Dex-net 1.0: A
cloud-based network of 3d objects for robust grasp planning using a multi-armed bandit
model with correlated rewards. In Robotics and Automation (ICRA), 2016 IEEE International
Conference on, pages 1957–1964. IEEE, 2016.

[153] Jeffrey Mahler, Jacky Liang, Sherdil Niyaz, Michael Laskey, Richard Doan, Xinyu Liu,
Juan Aparicio Ojea, and Ken Goldberg. Dex-net 2.0: Deep learning to plan robust grasps
with synthetic point clouds and analytic grasp metrics. Robotics Science and Systems (RSS),
2017.

[154] Jeffrey Mahler et al. Guest editorial open discussion of robot grasping benchmarks, protocols,
and metrics. In Transactions on Automation Science and Engineering, volume 15. IEEE,
2018.

[155] Alexei Makarenko, Alex Brooks, and Tobias Kaupp. On the benefits of making robotic
software frameworks thin. In IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2007.

119

Bibliography

[156] Abhijit Makhal, Federico Thomas, and Alba Perez Gracia. Grasping unknown objects in
clutter by superquadric representation. In 2018 Second IEEE International Conference on
Robotic Computing (IRC), pages 292–299. IEEE, 2018.

[157] Christopher Manning, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven Bethard, and David
McClosky. The stanford corenlp natural language processing toolkit. In Proceedings of
52nd annual meeting of the association for computational linguistics: system demonstrations,
pages 55–60, 2014.

[158] Manolis Savva*, Abhishek Kadian*, Oleksandr Maksymets*, Yili Zhao, Erik Wijmans,
Bhavana Jain, Julian Straub, Jia Liu, Vladlen Koltun, Jitendra Malik, Devi Parikh, and Dhruv
Batra. Habitat: A platform for embodied ai research. arXiv preprint arXiv:1904.01201,
2019.

[159] Mitchell Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. Building a large anno-
tated corpus of english: The penn treebank. 1993.

[160] E Marder-Eppstein. move base, a ros package that lets you move a robot to desired positions
using the navigation stack.

[161] Kenneth Marino, Ruslan Salakhutdinov, and Abhinav Gupta. The more you know: Using
knowledge graphs for image classification. In Conference on Computer Vision and Pattern
Recognition (CVPR), 2017.

[162] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database of human segmented natural images
and its application to evaluating segmentation algorithms and measuring ecological statistics.
In Proc. 8th Int’l Conf. Computer Vision, volume 2, pages 416–423, July 2001.

[163] Martin Meier, Matthias Schopfer, Robert Haschke, and Helge Ritter. A probabilistic approach
to tactile shape reconstruction. IEEE Transactions on Robotics, 2011.

[164] Nuttapong Chentanez Miles Macklin, Matthias Muller and Tae-Yong Kim. Unified particle
physics for real-time applications. ACM Transactions on Graphics (TOG), 2014.

[165] Andrew Miller. Graspit!: A versatile simulator for robotic grasping. Doctoral Thesis, 2001.

[166] Andrew T Miller, Steffen Knoop, Henrik I Christensen, and Peter K Allen. Automatic
grasp planning using shape primitives. In IEEE International Conference on Robotics and
Automation (ICRA), 2003.

[167] George A Miller. Wordnet: a lexical database for english. Communications of the ACM, 38
(11):39–41, 1995.

[168] Ishan Misra, Lawrence Zitnick, Margaret Mitchell, and Ross Girshick. Seeing through the
human reporting bias:visual classifiers from noisy human-centric labels. Conference on
Computer Vision and Pattern Recognition (CVPR), 2016.

[169] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement learning. Nature, 2015.

[170] Bogdan Moldovan, Plinio Moreno, Martijn Van Otterlo, José Santos-Victor, and Luc De Raedt.
Learning relational affordance models for robots in multi-object manipulation tasks. In

120

Bibliography

International Conference on Robotics and Automation (ICRA), pages 4373–4378. IEEE,
2012.

[171] A. Morales, T. Asfour, P. Azad, S. Knoop, , and R. Dillmann. Integrated grasp planning
and visual object localization for a humanoid robot with five-fingered hands. In IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), page 56635668. IEEE,
2006.

[172] Hans Moravec. Mind children. Harvard University Press, 1988.

[173] Arsalan Mousavian, Clemens Eppner, and Dieter Fox. 6-DOF GraspNet: Variational grasp
generation for object manipulation. International Conference on Computer Vision, 2019.

[174] Raúl Mur-Artal and Juan D. Tardós. ORB-SLAM2: an open-source SLAM system for
monocular, stereo and RGB-D cameras. IEEE Transactions on Robotics, 33(5):1255–1262,
2017. doi: 10.1109/TRO.2017.2705103.

[175] Adithyavairavan Murali, Yin Li, Dhiraj Gandhi, and Abhinav Gupta. Learning to grasp
without seeing. International Symposium on Experimental Robotics (ISER), 2018.

[176] Adithyavairavan Murali, Lerrel Pinto, Dhiraj Gandhi, and Abhinav Gupta. CASSL: Curricu-
lum accelerated self-supervised learning. IEEE International Conference on Robotics and
Automation, 2018.

[177] Adithyavairavan Murali, Tao Chen, Kalyan Vasudev Alwala, Dhiraj Gandhi, Lerrel Pinto,
Saurabh Gupta, and Abhinav Gupta. Pyrobot: An open-source robotics framework for
research and benchmarking. 2019. URL https://arxiv.org/abs/1906.08236.

[178] Adithyavairavan Murali, Weiyu Liu, Kenneth Marino, Sonia Chernova, and Abhinav Gupta.
Same object, different grasps: Data and semantic knowledge for task-oriented grasping. In
Submitted, 2020.

[179] Adithyavairavan Murali, Arsalan Mousavian, Clemens Eppner, Chris Paxton, and Dieter Fox.
6-dof grasping for target-driven object manipulation in clutter. In International Conference
on Robotics and Automation (ICRA). IEEE, 2020.

[180] Richard Murray, Zexiang Li, and Shankar Sastry. A Mathematical Introduction to Robotic
Manipulation. CRC Press, 1994.

[181] Ashvin Nair, Dian Chen, Pulkit Agrawal, Phillip Isola, Pieter Abbeel, Jitendra Malik, and
Sergey Levine. Combining self-supervised learning and imitation for vision-based rope
manipulation. International Conference on Robotics and Automation, 2017.

[182] Yashraj Narang, Karl Van Wyk, Arsalan Mousavian, and Dieter Fox. Interpreting and
predicting tactile signals via a physics-based and data-driven framework. Robotics Science
and Systems (RSS), 2020.

[183] David F Nettleton, Albert Orriols-Puig, and Albert Fornells. A study of the effect of different
types of noise on the precision of supervised learning techniques. Artificial intelligence
review, 33(4):275–306, 2010.

[184] Van-Duc Nguyen. Constructing force-closure grasps. The International Journal of Robotics
Research, 1988.

121

https://arxiv.org/abs/1906.08236

Bibliography

[185] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. 2017.

[186] Deepak Pathak, Pulkit Agrawal, Alexei A. Efros, and Trevor Darrell. Curiosity-driven
exploration by self-supervised prediction. CoRR, abs/1705.05363, 2017. URL http:
//arxiv.org/abs/1705.05363.

[187] Xue Bin Peng, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. Sim-to-real
transfer of robotic control with dynamics randomization. arXiv preprint arXiv:1710.06537,
2017.

[188] Anna Petrovskaya and Oussama Khatib. Global localization of objects via touch. IEEE
Transactions on Robotics, 2011.

[189] Zachary Pezzementi, Caitlin Reyda, and Gregory D Hager. Object mapping, recognition,
and localization from tactile geometry. In IEEE International Conference on Robotics and
Automation (ICRA), 2011.

[190] Lerrel Pinto and Abhinav Gupta. Supersizing self-supervision: Learning to grasp from 50k
tries and 700 robot hours. In 2016 IEEE international conference on robotics and automation
(ICRA), pages 3406–3413. IEEE, 2016.

[191] Lerrel Pinto and Abhinav Gupta. Learning to push by grasping: Using multiple tasks for
effective learning. International Conference on Robotics and Automation, 2017.

[192] Lerrel Pinto, Dhiraj Gandhi, Yuanfeng Han, Yong-Lae Park, and Abhinav Gupta. The curious
robot: Learning visual representations via physical interactions. In European Conference on
Computer Vision, pages 3–18. Springer, 2016.

[193] Lerrel Pinto, James Davidson, and Abhinav Gupta. Supervision via competition: Robot
adversaries for learning tasks. In 2017 IEEE International Conference on Robotics and
Automation (ICRA), pages 1601–1608. IEEE, 2017.

[194] Lerrel Pinto, Marcin Andrychowicz, Peter Welinder, Wojciech Zaremba, and Pieter Abbeel.
Asymmetric actor critic for image-based robot learning. Robotics Science and Systems, 2018.

[195] Florian Pokorny and Danica Kragic. Classical grasp quality evaluation: New algorithms and
theory. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
2013.

[196] Domenico Prattichizzo and Jeffrey Trinkle. Grasping. Springer handbook of robotics, pages
671–700, 2008.

[197] Charles Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hierarchical feature
learning on point sets in a metric space. Neural Information Processing Systems (NeurIPS),
2017.

[198] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs, Rob
Wheeler, and Andrew Y Ng. Ros: an open-source robot operating system. In ICRA workshop
on open source software, 2009.

[199] Justus J Randolph. Free-marginal multirater kappa (multirater k [free]): An alternative to

122

http://arxiv.org/abs/1705.05363
http://arxiv.org/abs/1705.05363

Bibliography

fleiss’ fixed-marginal multirater kappa. Online submission, 2005.

[200] Peter D Brook Joshua R Smith Yoky Matsuoka Ravi Balasubramanian, Ling Xu. Physical
human interactive guidance: Identifying grasping principles from human-planned grasps.
Transactions on Robotics, (99):1–12, 2012.

[201] Ali Sharif Razavian, Hossein Azizpour, Josephine Sullivan, and Stefan Carlsson. Cnn features
off-the-shelf: an astounding baseline for recognition. Conference on Computer Vision and
Pattern Recognition (CVPR), 2014.

[202] Joseph Redmon and Ali Farhadi. Yolo9000: Better, faster, stronger. arXiv preprint
arXiv:1612.08242, 2016.

[203] Colin Rennie, Rahul Shome, Kostas Bekris, and Alberto De Souza. A dataset for improved
rgbd-based object detection and pose estimation for warehouse pick-and-place. In Robotics
and Automation Letters. IEEE, 2016.

[204] Jean-Philippe Roberge, Samuel Rispal, Tony Wong, and Vincent Duchaine. Unsupervised fea-
ture learning for classifying dynamic tactile events using sparse coding. In IEEE International
Conference on Robotics and Automation (ICRA), 2016.

[205] Alberto Rodriguez, Matthew Mason, and Steve Ferry. From caging to grasping. Robotics
Science and Systems (RSS), 2011.

[206] Joseph M Romano, Kaijen Hsiao, Günter Niemeyer, Sachin Chitta, and Katherine J Kuchen-
becker. Human-inspired robotic grasp control with tactile sensing. IEEE Transactions on
Robotics, 2011.

[207] Jacob Rosen, Diana Friedman, Hawkeye King, Phillip Roan, Lei Cheng, Daniel Glozman,
Ji Ma, Sina Kosari, and Lee White. Raven-ii: An open platform for surgical robotics research.
In Transactions on Biomedical Engineering. IEEE, 2012.

[208] Stephane Ross, Geoffrey Gordan, and Andrew Bagnell. A reduction of imitation learning and
structured prediction to no-regret online learning. In arXiv preprint arXiv:1011.0686, 2010.

[209] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C Berg, and Li Fei-
Fei. Imagenet large scale visual recognition challenge. In arXiv preprint arXiv:1409.0575,
2014.

[210] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-
Fei. ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer
Vision (IJCV), 115(3):211–252, 2015. doi: 10.1007/s11263-015-0816-y.

[211] Andrea Saltelli, Paola Annoni, Ivano Azzini, Francesca Campolongo, Marco Ratto, and
Stefano Tarantola. Variance based sensitivity analysis of model output. design and estimator
for the total sensitivity index. Computer Physics Communications, 2010.

[212] Andrea Saltelli, Paola Annoni, Ivano Azzini, Francesca Campolongo, Marco Ratto, and
Stefano Tarantola. Variance based sensitivity analysis of model output. design and estimator
for the total sensitivity index. Computer Physics Communications 181 259270, 2010.

123

Bibliography

[213] Brad Saund, Shiyuan Chen, and Reid Simmons. Touch based localization of parts for high
precision manufacturing. In IEEE International Conference on Robotics and Automation
(ICRA), 2017.

[214] Ashutosh Saxena, Justin Driemeyer, Justin Kearns, Chioma Osondu, and Andrew Y Ng.
Learning to grasp novel objects using vision. In International Symposium on Experimental
Robotics (ISER), 2006.

[215] Ashutosh Saxena, Ashesh Jain, Ozan Sener, Aditya Jami, Dipendra K Misra, and Hema S Kop-
pula. Robobrain: Large-scale knowledge engine for robots. arXiv preprint arXiv:1412.0691,
2014.

[216] Alexander Schneider, Jrgen Sturm, Cyrill Stachniss, Marco Reisert, Hans Burkhardt, and Wol-
fram Burgard. Object identification with tactile sensors using bag-of-features. International
Conference on Intelligent Robots and Systems (IROS), 2009.

[217] John Schulman, Sergey Levine, Pieter Abbeel, Michael I Jordan, and Philipp Moritz. Trust
region policy optimization. In International Conference on Machine Learning (ICML), 2015.

[218] Dandan Shan, Jiaqi Geng, Michelle Shu, and David F Fouhey. Understanding human hands
in contact at internet scale. Conference on Computer Vision and Pattern Recognition (CVPR),
2020.

[219] David Silver, Aja Huang, Chris Maddison, Arthur Guez, Laurent Sifre, George Van Den
Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot,
Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timo-
thy Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis.
Mastering the game of go with deep neural networks and tree search. Nature, 529(7587):
484–489, 2016.

[220] B.F. Skinner. Reinforcement today. American Psychologist 13, 9499, 1958.

[221] Dan Song, Kai Huebner, Ville Kyrki, and Danica Kragic. Learning task constraints for robot
grasping using graphical models. In 2010 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 1579–1585. IEEE, 2010.

[222] Robyn Speer, Joshua Chin, and Catherine Havasi. ConceptNet 5.5: An open multilingual
graph of general knowledge. pages 4444–4451, 2017. URL http://aaai.org/ocs/
index.php/AAAI/AAAI17/paper/view/14972.

[223] Adam Spiers, Minas Liarokapis, Berk Calli, and Aaron Dollar. Single-grasp object classifica-
tion and feature extraction with simple robot hands and tactile sensors. IEEE Transactions on
Haptics, 9, 2016.

[224] Ioan Sucan, Mark Moll, and Lydia Kavraki. The open motion planning library. IEEE Robotics
& Automation Magazine, 19(4), 2012.

[225] Sainbayar Sukhbaatar, Zeming Lin, Ilya Kostrikov, Gabriel Synnaeve, and Arthur Szlam. In-
trinsic motivation and automatic curricula via asymmetric self-play. International Conference
on Learning Representations (ICLR), 2017.

[226] Chen Sun, Abhinav Shrivastava, Saurabh Singh, and Abhinav Gupta. Revisiting unreasonable
effectiveness of data in deep learning era. International Conference on Computer Vision,

124

http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14972
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14972

Bibliography

2017.

[227] Jaeyong Sung, J Kenneth Salisbury, and Ashutosh Saxena. Learning to represent haptic
feedback for partially-observable tasks. arXiv preprint arXiv:1705.06243, 2017.

[228] Richard S Sutton. Generalization in reinforcement learning: Successful examples using
sparse coarse coding. Advances in neural information processing systems, 1996.

[229] Maxwell Svetlik, Leonetti Matteo, Sinapov Jivko, Rishi Shah, Nick Walker, and Peter
Stone. Automatic curriculum graph generation for reinforcement learning agents. AAAI’17
Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, 2017.

[230] Johan Tegin and Jan Wikander. Tactile sensing in intelligent robotic manipulation–a review.
Industrial Robot: An International Journal, 2005.

[231] Andreas ten Pas and Robert Platt. Using geometry to detect grasp poses in 3d point clouds.
In Robotics Research, pages 307–324. Springer, 2018.

[232] Andreas ten Pas, Marcus Gualtieri, Kate Saenko, and Robert Platt. Grasp pose detection in
point clouds. The International Journal of Robotics Research, 36(13-14):1455–1473, 2017.

[233] Moritz Tenorth and Michael Beetz. Representations for robot knowledge in the knowrob
framework. Artificial Intelligence, 247:151–169, 2017.

[234] Sebastian Thrun, Dieter Fox, Wolfram Burgard, and Frank Dellaert. Robust monte carlo
localization for mobile robots. Artificial intelligence, 2001.

[235] Jonathan Tilley. Automation, robotics, and the factory of the future. 2017. URL https://
www.mckinsey.com/business-functions/operations/our-insights/
automation-robotics-and-the-factory-of-the-future.

[236] Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter Abbeel.
Domain randomization for transferring deep neural networks from simulation to the real
world. 2017. URL https://arxiv.org/abs/1703.06907.

[237] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based
control. In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 5026–5033. IEEE, 2012.

[238] Jonathan Tremblay, Thang To, Balakumar Sundaralingam, Yu Xiang, Dieter Fox, and Stan
Birchfield. Deep object pose estimation for semantic robotic grasping of household objects.
Conference on Robot Learning, 2018.

[239] Emmanouil Tsardoulias and Pericles Mitkas. Robotic frameworks, architectures and middle-
ware comparison. arXiv preprint arXiv:1711.06842, 2017.

[240] Manuela Veloso, Joydeep Biswas, Brian Coltin, Stephanie Rosenthal, Tom Kollar, Cetin
Mericli, Mehdi Samadi, Susana Brandao, and Rodrigo Ventura. Cobots: Collaborative robots
servicing multi-floor buildings. In Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ
International Conference on, pages 5446–5447. IEEE, 2012.

[241] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bow-
man. GLUE: A multi-task benchmark and analysis platform for natural language understand-
ing. 2019. In the Proceedings of ICLR.

125

https://www.mckinsey.com/business-functions/operations/our-insights/automation-robotics-and-the-factory-of-the-future
https://www.mckinsey.com/business-functions/operations/our-insights/automation-robotics-and-the-factory-of-the-future
https://www.mckinsey.com/business-functions/operations/our-insights/automation-robotics-and-the-factory-of-the-future
https://arxiv.org/abs/1703.06907

Bibliography

[242] David Wang, David Tseng, Pusong Li, Yiding Jiang, Menglong Guo, Michael Danielczuk, Jef-
frey Mahler, Jeffrey Ichnowski, and Ken Goldberg. Adversarial grasp objects. In Conference
on Automation Science and Engineering. IEEE, 2019.

[243] Xiaolong Wang, Yufei Ye, and Abhinav Gupta. Zero-shot recognition via semantic embed-
dings and knowledge graphs. In Conference on Computer Vision and Pattern Recognition
(CVPR), 2018.

[244] Manuel Watter, Jost Springenberg, Joschka Boedecker, and Martin Riedmiller. Embed to
control: A locally linear latent dynamics model for control from raw images. In Neural
Information Processing Systems, 2015.

[245] Melonee Wise, Michael Ferguson, Derek King, Eric Diehr, and David Dymesich. Fetch &
freight: Standard platforms for service robot applications. Workshop on Autonomous Mobile
Service Robots, IJCAI, 2016.

[246] Fei Xia, Amir R. Zamir, Zhi-Yang He, Alexander Sax, Jitendra Malik, and Silvio Savarese.
Gibson env: real-world perception for embodied agents. In Conference on Computer Vision
and Pattern Recognition (CVPR), 2018.

[247] Tong Xiao, Tian Xia, Yi Yang, Chang Huang, and Xiaogang Wang. Learning from massive
noisy labeled data for image classification. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 2691–2699, 2015.

[248] Christopher Xie, Yu Xiang, Arsalan Mousavian, and Dieter Fox. The best of both modes:
Separately leveraging rgb and depth for unseen object instance segmentation. In Conference
on Robot Learning (CoRL), 2019.

[249] Ali Yahya, Adrian Li, Mrinal Kalakrishnan, Yevgen Chebotar, and Sergey Levine. Col-
lective robot reinforcement learning with distributed asynchronous guided policy search.
International Conference on Intelligent Robots and Systems (IROS), 2017.

[250] Xinchen Yan, Jasmined Hsu, Mohammad Khansari, Yunfei Bai, Arkanath Pathak, Abhinav
Gupta, James Davidson, and Honglak Lee. Learning 6-dof grasping interaction via deep
geometry-aware 3d representations. In IEEE International Conference on Robotics and
Automation (ICRA), pages 1–9. IEEE, 2018.

[251] Brian Yang, Jesse Zhang, Vitchyr Pong, Sergey Levine, and Dinesh Jayaraman. Replab:
A reproducible low-cost arm benchmark platform for robotic learning. arXiv preprint
arXiv:1905.07447, 2019.

[252] Wei Yang, Xiaolong Wang, Ali Farhadi, Abhinav Gupta, and Roozbeh Mottaghi. Visual
semantic navigation using scene priors. arXiv preprint arXiv:1810.06543, 2018.

[253] Cho-Jui Hsieh James Demmel Kurt Keutzer Yang You, Zhao Zhang. Imagenet training in
minutes. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2019.

[254] Zhengkun Yi, Roberto Calandra, Filipe Veiga, Herke van Hoof, Tucker Hermans, Yilei Zhang,
and Jan Peters. Active tactile object exploration with gaussian processes. In International
Conference on Intelligent Robots and Systems (IROS), 2016.

[255] Wenzhen Yuan, Siyuan Dong, and Edward Adelson. Gelsight: High-resolution robot tactile

126

Bibliography

sensors for estimating geometry and force. Sensors, 17(12):2762, 2017.

[256] Wenzhen Yuan, Chenzhuo Zhu, Andrew Owens, Mandayam A Srinivasan, and Edward H
Adelson. Shape-independent hardness estimation using deep learning and a gelsight tactile
sensor. In IEEE International Conference on Robotics and Automation (ICRA), 2017.

[257] Andy Zeng, Shuran Song, Kuan-Ting Yu, Elliott Donlon, Francois R Hogan, Maria Bauza,
Daolin Ma, Orion Taylor, Melody Liu, Eudald Romo, et al. Robotic pick-and-place of novel
objects in clutter with multi-affordance grasping and cross-domain image matching. In IEEE
International Conference on Robotics and Automation (ICRA), pages 1–8. IEEE, 2018.

[258] Henry Zhu, Abhishek Gupta, Aravind Rajeswaran, Sergey Levine, and Vikash Kumar. Dex-
terous manipulation with deep reinforcement learning: Efficient, general, and low-cost. arXiv
preprint arXiv:1810.06045, 2018.

[259] Yuke Zhu, Alireza Fathi, and Li Fei-Fei. Reasoning about object affordances in a knowledge
base representation. In European Conference on Computer Vision (ECCV), 2014.

127

	1 Introduction & Background
	1.1 Grasping Preliminaries
	1.2 Classical Grasping
	1.3 Data-driven Grasping
	1.4 Grasping Applications in Practice
	1.5 Thesis Goal and Contributions
	1.6 Thesis Organization

	I Generalization to Clutter
	2 6-DOF Grasping for Object Manipulation in Clutter
	2.1 Introduction
	2.2 Related Work
	2.3 6-DOF Grasp Synthesis for Objects in Clutter
	2.3.1 Overview of Approach
	2.3.2 6-DOF Grasp Synthesis for Isolated Objects
	2.3.3 Collision Detection for Grasps in Clutter: CollisionNet
	2.3.4 Implementation Details

	2.4 Experimental Evaluation
	2.4.1 Ablation analysis and Discussion
	2.4.2 Real Robot Experiments
	2.4.3 Application: Removing Blocking Objects

	2.5 Conclusion

	II Generalization with Robots
	3 Curriculum Learning for High Dimensional Grasping
	3.1 Introduction
	3.2 Related Work
	3.3 Curriculum Accelerated Self-Supervised Learning (CASSL)
	3.3.1 CASSL Framework
	3.3.2 Sensitivity Analysis
	3.3.3 Determining the Curriculum Ranking
	3.3.4 Modeling the Policy
	3.3.5 Curriculum Training

	3.4 CASSL for Grasping
	3.4.1 Adaptive Grasping
	3.4.2 Grasping Problem Definition
	3.4.3 Sensitivity Analysis on Adaptive Grasping
	3.4.4 Training and Model Inference

	3.5 Experimental Evaluation
	3.6 Conclusion

	4 Robot Learning in Homes
	4.1 Introduction
	4.2 Related Work
	4.3 Overview
	4.4 Learning on Low Cost Robot Data
	4.4.1 Grasping Formulation
	4.4.2 Modeling Noise as Latent Variable
	4.4.3 Learning the latent noise model
	4.4.4 Training details

	4.5 Experimental Evaluation
	4.5.1 Experiment 1: Performance on held-out data
	4.5.2 Experiment 2: Performance on Real LCA Robot
	4.5.3 Does factoring out the noise in data improve performance?

	4.6 Conclusion

	5 Democraticizing Robotics with PyRobot
	5.1 Introduction
	5.2 Related Work
	5.3 PyRobot Framework
	5.4 Supported Hardware and Simulators
	5.5 PyRobot Controllers
	5.5.1 Accuracy of Base Control
	5.5.2 Repeatability Tests for Manipulator

	5.6 High-Level AI Applications
	5.6.1 Visual SLAM
	5.6.2 Navigation via SLAM and Path Planning
	5.6.3 Learned Visual Navigation
	5.6.4 Grasping
	5.6.5 Pushing

	5.7 Conclusion
	5.8 Code Listings

	III Generalization with Robustness
	6 Tactile Re-grasping
	6.1 Introduction
	6.2 Related Work
	6.3 Dataset
	6.4 Overview
	6.5 Initial Grasp from Touching
	6.5.1 Particle Filter for Touch Localization

	6.6 Grasp Execution via Re-grasping
	6.6.1 Learning Haptic Features
	6.6.2 Learning to Re-grasp
	6.6.3 Improving Vision-Based Grasping with Re-grasping

	6.7 Experimental Evaluation
	6.7.1 Learning Haptic Features
	6.7.2 Tactile Based Grasping

	6.8 Conclusion

	IV Generalization to Semantic Tasks
	7 Data and Semantic Knowledge for Task-Oriented Grasping
	7.1 Introduction
	7.2 Related Work
	7.3 Dataset
	7.3.1 Data Acquisition on a Robot
	7.3.2 Data Annotation by Crowdsourcing
	7.3.3 Analysis

	7.4 Task-Oriented Grasping with Semantic Knowledge
	7.5 Experimental Evaluation
	7.5.1 Zero-Shot Generalization
	7.5.2 Analysis
	7.5.3 Real Robot Evaluation
	7.5.4 Comparison to SG14000
	7.5.5 Analysis on GCNGrasp Predictions

	7.6 Conclusion

	8 Conclusion
	8.1 Overview
	8.2 Limitations
	8.3 Directions for Future Research

	Bibliography

