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Abstract 

Thermal conductivity of the building envelope is the basis for building energy simulation and 
gives key information about its energy performance. Accurate assumptions about thermal 
conductivity contribute to accurate energy labelling of buildings, provide insights for retrofit 
strategies and are instrumental in energy policy making at an urban level. However, 
physically establishing the thermal conductivity of the external walls of a building is difficult 
and is often a time-consuming process. Currently available measurement methods are 
extremely technical with restrictive boundary conditions. To avoid this dilemma, thermal 
conductivity is often inferred from published standards, which gives significantly different 
values compared to in-situ measurement. It is therefore important not only to measure 
thermal conductivity of buildings in-situ, but also to make the means for evaluating thermal 
conductivity ubiquitous, accessible and uncomplicated for architects, surveyors and building 
engineers.  

Aiming to bridge the identified gap, this thesis presents a study of material properties, how 
they interrelate, and how these relationships can be exploited to assess the building fabric. It 
presents a computational approach, which is a data-driven method motivated by 
experimental results. In this method thermal conductivity is predicted using computation on 
experimental data of relevant material properties rather than direct measurement. During 
this work, extensive experiments were conducted to measure thermal conductivity, dielectric 
and mechanical material properties to determine their correlation. These experiments were 
conducted on two categories of materials. One that represents wood-frame construction, 
which is the most prevalent form of construction for residential use here in the United States. 
The materials studied for this category included solid wood, plywood, OSB, chipboard, MDF 
and gypsum drywall. The other category of materials is the ceramic family and is 
representative of clay brick construction. Clay bricks, concrete, naturally occurring stone and 
gypsum were included in this study. Apart from the categories described above, work was 
also conducted on multiple-layered materials so that the effect of stacking layers together 
could be studied. A final study was performed to explore the effects of moisture on materials 
thermal conductivity and dielectric properties. 

The empirical data collected during this study suggests a strong correlation between thermal 
conductivity and dielectric properties. This correlation has not been systematically studied 
previously and experimental data on the subject is extremely scarce. The correlation found 
through this study identifies the potential of using handheld meters or antenna-based 
devices that can quickly measure capacitance and dielectric properties, to measure thermal 
conductivity instead. If successful, this method will eliminate the need to create steady-state 
conditions required for thermal conductivity measurement and simplify the measurement 
enough to bring a useful gadget not only for experts, but also for the layperson. 

Keywords: 

Thermal Conductivity, in-situ measurement, relative permittivity, dielectric constant, material 
properties, correlation, materials properties, experimental data collection 

  



iii 

Table of Contents 

Advisory Committee ............................................................................................................... i 

Abstract ................................................................................................................................. ii 

List of tables ........................................................................................................................ vii 

List of Figures..................................................................................................................... viii 

PART I ................................................................................................................................ xii 

1 Introduction ................................................................................................................... 1 

1.1 Main Results .......................................................................................................... 3 

1.2 Significance of the Work ......................................................................................... 3 

1.3 Outline ................................................................................................................... 4 

1.3.1 Part I ............................................................................................................... 4 

1.3.2 Part II: Experiments ......................................................................................... 4 

2 State of the Art .............................................................................................................. 6 

2.1 Heat Flow Measurements: ISO and ASTM standard practices ............................... 6 

2.2 Hot Box Method ..................................................................................................... 7 

2.3 Infra-red Thermography ......................................................................................... 8 

2.4 Transient Techniques ............................................................................................. 9 

2.5 Use of Tables ......................................................................................................... 9 

2.6 Conclusion ............................................................................................................10 

3 Computational Approach to Material Properties ...........................................................11 

3.1 Thermal Conductivity: Effect of Density and Moisture Content ..............................11 

3.1.1 Thermal Conductivity of Solid Wood ..............................................................11 

3.1.2 Thermal Conductivity of Wood Based Panels .................................................13 

3.2 Electrical Properties of Materials and Thermal Conductivity ..................................14 

3.2.1 Dielectric Constant: Sensitivity to Density and Moisture Content ....................14 

3.2.2 Capacitance ...................................................................................................14 

3.3 Thermal Conductivity and Speed of Sound ...........................................................15 

3.3.1 Thermal Conductivity and Speed of Sound in Geology ..................................16 

3.3.2 Properties of Construction Material and Speed of Sound ...............................16 

3.3.3 Machine learning, Speed of Sound and Material Properties in Civil Engineering
 17 

3.4 Conclusion ............................................................................................................17 

4 Analysis of Existing Data ..............................................................................................18 



iv 

4.1 Solid Wood............................................................................................................18 

4.1.1 Thermal Conductivity of Solid Wood ..............................................................18 

4.1.2 Dielectric Properties of Solid Wood ................................................................21 

4.1.3 Combined Properties of Solid Wood ..............................................................23 

4.2 Plastics: Dielectric, thermal and sound speed .......................................................24 

4.3 Wood and Plastic Combined: Can Wood Learn from Plastic? ...............................25 

4.4 Masonry ................................................................................................................26 

4.5 Conclusion ............................................................................................................27 

Part II: Experiments .............................................................................................................29 

5 Sample Preparation .....................................................................................................30 

5.1 Thermal Conductivity ............................................................................................31 

5.2 Dielectric Properties ..............................................................................................31 

5.3 Sound ...................................................................................................................32 

5.4 Moisture Studies ...................................................................................................32 

5.5 Pouring Concrete ..................................................................................................34 

6 Apparatus and Methods ...............................................................................................35 

6.1 Thermal Conductivity: Measurement Apparatus and Method ................................35 

6.1.1 Measuring Thermal Conductivity: Method A ...................................................35 

6.1.2 Measuring Thermal Conductivity: Method B ...................................................37 

6.1.3 Development Process for Thermal Experimental Setup:  Lessons Learned ...38 

6.2 Dielectric Properties: Measurement Method and Apparatus ..................................39 

6.2.1 Practical Measures for Dielectric Measurement .............................................40 

6.3 Other Electrical Properties ....................................................................................40 

6.4 Sound: Measurement Method and Apparatus .......................................................41 

6.4.1 Sound Impact Method to Measure Sound Speed ...........................................41 

6.4.2 Resonance Method with Signal Generator .....................................................42 

6.5 Density ..................................................................................................................42 

6.6 Moisture Content ...................................................................................................42 

6.7 Error Propagation ..................................................................................................43 

6.7.1 Other Sources of Error ...................................................................................43 

6.8 Repeatability .........................................................................................................43 

6.8.1 Repeatability of Thermal Conductivity Measurements (Method B) .................44 

6.8.2 Repeatability of Dielectric Measurements ......................................................44 

7 Wood and Wood-Based Materials ................................................................................45 

7.1 Materials ...............................................................................................................45 



v 

7.2 Methods ................................................................................................................45 

7.3 Results and Discussion .........................................................................................46 

7.3.1 Correlation with Oven-Dry Density and Moisture Content: Equations Predicting 
Thermal Conductivity....................................................................................................46 

7.3.2 Correlation with Density Independent of Moisture Content .............................47 

7.3.3 Correlation of Dielectric Properties and Thermal Conductivity ........................48 

7.4 Conclusions and Future Work ...............................................................................51 

8 Sound ..........................................................................................................................52 

8.1 Sound ...................................................................................................................52 

8.2 Sound Impact Method ...........................................................................................52 

8.3 Results from Signal Gen Method ...........................................................................53 

8.4 Machine Learning Results .....................................................................................53 

8.5 Conclusion ............................................................................................................54 

9 Multilayered Materials: Wood Frame Construction .......................................................55 

9.1 Properties of Multilayered (Composite) Materials and Contact Resistance ............55 

9.2 Measurement of Multilayered and Cavity Walls .....................................................56 

9.2.1 Thermal Conductivity .....................................................................................56 

9.2.2 Dielectric Properties .......................................................................................56 

9.3 Materials ...............................................................................................................57 

9.4 Apparatus and Method ..........................................................................................57 

9.5 Results and Discussion .........................................................................................58 

9.5.1 Correlation with Density .................................................................................58 

9.5.2 Correlation of Thermal Conductivity and Dielectric Constant ..........................59 

9.5.3 Multivariate Linear Regression .......................................................................61 

9.6 Conclusion ............................................................................................................61 

10 Moisture Study: Wood and Wood-Based Materials ...................................................63 

10.1 Experiments to Generate Training Data: Materials and Methods ...........................63 

10.1.1 Results: Correlation of Moisture Content with Electrical Properties ................64 

10.1.2 Correlation of Thermal Conductivity with Electrical Properties ........................65 

10.2 Experiments to Generate Test Data: Materials and Methods ................................67 

10.3 Results: Predictions of Test Set Using Generated Training Data ...........................68 

10.4 Dielectric Properties of Water: Feasibility of Measuring at Higher Frequencies. ....69 

10.5 Challenges and Sources of Errors .........................................................................70 

10.6 Conclusions ..........................................................................................................72 

11 Ceramics: Single and Multiple Layers .......................................................................73 



vi 

11.1 Materials ...............................................................................................................73 

11.2 Methods ................................................................................................................73 

11.3 Additional Uncertainty ...........................................................................................74 

11.4 Results: Bricks, Concrete, Gypsum and Multilayered Materials .............................74 

11.4.1 Correlation with Density .................................................................................74 

11.4.2 Correlation of Thermal Conductivity with Dielectric Properties .......................77 

11.5 The Case of Naturally Occurring Stones ...............................................................78 

11.5.1 Frequency Sweeps with NanoVNA ................................................................79 

11.6 Conclusions ..........................................................................................................80 

12 Summary of Conclusions and Future Work ...............................................................81 

12.1 Consolidating all Experimental Studies: Can Concrete Learn from Wood?............81 

12.2 Significance of Work .............................................................................................83 

12.3 Summary of Conclusions from all Experiments .....................................................84 

12.4 Future Work ..........................................................................................................85 

12.4.1 Data Collection ...............................................................................................85 

12.4.2 Development of Device ..................................................................................85 

References ..........................................................................................................................87 

Appendix A ..........................................................................................................................97 

Appendix B ..........................................................................................................................98 

Appendix C .........................................................................................................................99 

Appendix D ....................................................................................................................... 100 

Appendix E ........................................................................................................................ 101 

Appendix F ........................................................................................................................ 102 

Appendix G ....................................................................................................................... 103 

 

 

 

  



vii 

List of tables 

 

Table 1: A timeline of computational approaches to thermal conductivity of wood ...............12 

Table 2 Formulas for calculation of capacitance and heat transfer ......................................15 

Table 3 Variables recorded for the resonance method ........................................................42 

Table 4 Sources used for data collection for analysis described in Chapter 4 ................... 100 

Table 5 Advantages of using the computational approach to thermal conductivity as 
proposed in this thesis over other commonly used methods .................................. 103 

 

 

 

 

 

 

  



viii 

List of Figures 

 

Figure 1 (Left) Sensors embedded in walls during the study by Luo et al [25]. ..................... 6 

Figure 2 (Left) One data point of measured thermal conductivity for every ten minutes as per 
the study by Luo et al. ............................................................................................... 7 

Figure 3 Configuration of a Hot-Box as described by Sassine [29] ....................................... 8 

Figure 4 Hot box as described by Meng et al [30] ................................................................. 8 

Figure 5 Hand-held u-value meter as described by Sorensen .............................................. 9 

Figure 6 Thermal conductivity vs specific gravity for wood and wood-based panels 
reproduced from Siau [14] .......................................................................................13 

Figure 7 Breakdown of data collected for analysis ...............................................................18 

Figure 8 A (left) Scatter plot between thermal conductivity and density. B (right) Scatter plot 
between moisture content and thermal conductivity .................................................19 

Figure 9 A-E: How equations of various scientists performed on the data collected for wood 
thermal conductivity. ................................................................................................20 

Figure 10 Dielectric constant as a function of frequency. A (left) varying moisture content %. 
B (right) varying density (unit kg/m3) ........................................................................21 

Figure 11 Predictions of thermal conductivity from dielectric material properties. ................22 

Figure 12 Predictions of thermal conductivity from Dielectric and Mechanical properties ....24 

Figure 13 Predictions of thermal conductivity from dielectric properties ...............................25 

Figure 14 Predictions of thermal conductivity from mechanical properties ...........................25 

Figure 15 Predictions of thermal conductivity from both dielectric and mechanical properties.
 ................................................................................................................................25 

Figure 16 Four-fold cross validation results from wood and plastic combined. .....................26 

Figure 17 Graph showing effect of density and moisture content on thermal conductivity on 
block walls.  Data used from Belgium CSTC as reported in BRE study [81]. ............27 

Figure 18 Table Saw (wood and derivatives) .......................................................................30 

Figure 19 Drill press (wood and derivatives) ........................................................................30 

Figure 20 Grinder (wood) ....................................................................................................30 

Figure 21 Foam Cutter (foam insulation) .............................................................................30 

Figure 22 Wet saw (ceramics, cutting) ................................................................................31 

Figure 23 Knee mill (ceramics, drilling) ................................................................................31 

Figure 24 Angle grinder (ceramics, cutting) .........................................................................31 

Figure 25 Dremmel tool (ceramics, grinding) .......................................................................31 

Figure 26 Prepared samples for dielectric measurements ...................................................32 



ix 

Figure 27 Prepared samples for the sound impact method (sound speed) ..........................32 

Figure 28 Prepared samples for the resonance method with signal generator ....................32 

Figure 29 Oven Drying ........................................................................................................33 

Figure 30 Samples inside vacuum bags meant to retain oven dry condition of samples ......33 

Figure 31 Humidity box containing humidifier, samples and humidity sensor.......................33 

Figure 32 Arduino, relay switch and LCD screen .................................................................33 

Figure 33 Molds for casting concrete samples.....................................................................34 

Figure 34: (Left) The instruments used for measuring thermal conductivity. Right: Schematic 
for the measurement. ...............................................................................................36 

Figure 35 Reaching steady state conditions for sample # 131 of Redwood. ........................36 

Figure 36. Apparatus to measure thermal conductivity.. ......................................................37 

Figure 37. Schematic for measurement of thermal conductivity. ..........................................37 

Figure 38 Upside down Apparatus ......................................................................................38 

Figure 39 Readings of thermal conductivity for wood sample No 105. .................................38 

Figure 40 Edge effect between two plates of a capacitor is shown in pink ...........................39 

Figure 41 Apparatus for the sound impact method to record sound speed ..........................41 

Figure 42 Typical reading from the oscilloscope  from the sound impact method ................41 

Figure 43 Apparatus for resonance method with signal generator .......................................42 

Figure 44 Acrylic samples that were measured for thermal conductivity ..............................44 

Figure 45 Material samples for solid wood (above) and wood-based materials (below) .......45 

Figure 46 Density distribution and number of samples and types studied ............................45 

Figure 47 Comparison of measured data with predicted data from equations 5 to 9.. ..........47 

Figure 48 Correlation of density and thermal conductivity for wood and wood-based 
materials. .................................................................................................................48 

Figure 49 Correlation of density and relative dielectric constant for wood and wood-based 
materials. .................................................................................................................48 

Figure 50 Strong correlation between relative dielectric constant and thermal conductivity is 
found. ......................................................................................................................49 

Figure 51 No correlation was found between dissipation factor and thermal conductivity. ...50 

Figure 52 Scatter plot of sound speed vs density: ...............................................................52 

Figure 53  Scatter plot of sound speed vs Thermal Conductivity. ........................................52 

Figure 54 Results from signal gen: Thermal conductivity vs sound properties .....................53 

Figure 55 Prediction of thermal conductivity from data collected through signal gen and the 
sound impact method ..............................................................................................54 

Figure 56 Multilayered material: Layers connected in series. ..............................................55 



x 

Figure 57  Samples 1-4: Hardwood-insulation. 5-7: gypsum drywall with insulation or solid 
wood. 8-11 OSB samples, first without air, then with layer of air. 12: Typical sample 
with dimensions. ......................................................................................................57 

Figure 58. Scatter plot between density and relative dielectric constant. .............................59 

Figure 59. Scatter plot for density and thermal conductivity. Variation in insulation thickness 
affects both density and thermal conductivity. ..........................................................59 

Figure 60. Scatter plot between density and dissipation factor ............................................59 

Figure 61. Multi-layered materials (red, blue, green) and single layered (grey) from Saeed et 
al [82] for solid wood and wood-based materials. .....................................................60 

Figure 62. Thermal conductivity shows a strong correlation with relative dielectric constant at 
given frequency. ......................................................................................................60 

Figure 63. Scatter plot of dissipation factor and thermal conductivity for multilayered 
materials ..................................................................................................................60 

Figure 64 Comparison of experimentally measured thermal conductivity with predictions 
using multivariate linear regression ..........................................................................61 

Figure 65 Scatter plots showing change in electrical properties with a change in moisture 
content. ....................................................................................................................65 

Figure 66 Change in thermal conductivity as a function of change in relative dielectric 
constant ...................................................................................................................66 

Figure 67 Thermal conductivity as a function of dielectric constant for all the woods 
measured for study 1. Size indicates moisture levels ...............................................67 

Figure 68 Thermal conductivity as a function of dissipation factor for all the woods measured 
for study 1. Size indicates moisture levels ...............................................................67 

Figure 69 Test data collected for the experiments. Size of datapoint represents density (450 
– 1110 kg/m3). Color represents moisture content % (MC) ......................................67 

Figure 70 Predicted thermal conductivity vs true (experimental) values. Color bar indicates 
moisture content as percent (MC). Dashed lines indicate ±10% and ±20%..............68 

Figure 71 Change in dielectric constant of water with increased frequency below 10 
megahertz as shown by Rusiniak [124] ....................................................................69 

Figure 72 Change in dielectric constant of water at room temperature with increased 
frequency in gigahertz range as shown by Andryieuski et al [125] ...........................69 

Figure 73 Adverse effects of the moisture content on the samples. .....................................70 

Figure 74 Use of two different blocks to collect data for dielectric properties and thermal 
conductivity resulted in some errors in the dataset. ..................................................71 

Figure 75 Stones: granite, sandstone, marble and taxila stone (from left to right). ...............73 

Figure 76 Poured concrete samples ....................................................................................73 

Figure 77 Clay brick samples ..............................................................................................73 

Figure 78 Fourteen multi-layered ceramics samples included in the study: brick+foam, 
concrete+foam, brick+concrete ................................................................................73 



xi 

Figure 79 Errors in fabrication: presence of voids, irregular geometry and larger cavities to 
house thermocouples. .............................................................................................74 

Figure 80 Scatter plot of density and dielectric constant at 100 kHz of the ceramics studied
 ................................................................................................................................75 

Figure 81 Scatter plot of density and dielectric constant of the ceramics studied .................75 

Figure 82 Scatter plot of density and dissipation factor at 100 kHz for the ceramics ............76 

Figure 83 Correlation of thermal conductivity and dielectric constant at 100 kHz .................77 

Figure 84 Correlation of thermal conductivity and dissipation factor at 100 kHz ..................77 

Figure 85 Predictions using Gradient Boost Regressor. R² Score: 0.98, Predictors: Dielectric 
constant and dissipation factor at 100 kHz ...............................................................78 

Figure 86 Stone correlation for dielectric constant vs thermal conductivity ..........................78 

Figure 87 Stone correlation for density vs dissipation factor ................................................78 

Figure 88 Stone correlation for density vs thermal conductivity ...........................................78 

Figure 89 The Taxila stone is anisotropic and has veins of variable thickness running 
through it .................................................................................................................79 

Figure 90 Frequency Sweeps with NanoVNA. Numbers to the right represent average % 
change in dielectric constant between 10 kHz and 100 kHz as measured by LCR 
meter .......................................................................................................................79 

Figure 91 Effect of changing frequency on the correlation of thermal conductivity and 
dielectric constant ....................................................................................................79 

Figure 92 Prediction of thermal conductivity of ceramics and wood-based materials using 
the same regressor. .................................................................................................81 

Figure 93 Dielectric Constant at 10 kHz (left) and 100 kHz (right) plotted against thermal 
conductivity ..............................................................................................................82 

Figure 94 Dissipation Factor at 10 kHz (left) and 100 kHz (right) plotted against thermal 
conductivity ..............................................................................................................82 

Figure 94 Ganjian's work on thermal conductivity of concrete and its density .................... 101 

Figure 95 Asadi’s [115] data and equation for the correlation of density and thermal 
conductivity for lightweight concrete ...................................................................... 101 

Figure 96 Correlation of bulk density and thermal conductivity of clay bricks as shown by 
Dondi et al [136] .................................................................................................... 102 

Figure 97 Correlation of bulk density and thermal conductivity for clay bricks as shown by 
Lassinantti et al [134] ............................................................................................. 102 

 

  



xii 

 

 

 

 

 

 

 
 

 

 

 

 

 

PART I 

 
 

  



1 

1 Introduction 

Thermal conductivity is a material property that defines the rate at which thermal energy is 
transported through a material due to a temperature gradient [1]. Thermal conductivity of 
walls signals the amount of heat lost through a building envelope; thus, it is an important 
indicator of building energy efficiency. In the current context of a worldwide call towards 
sustainable practices, buildings and construction are responsible for 30% of the global 
energy consumption [2]. As such, accurate and reliable in-situ diagnostic tools for evaluating 
and predicting building energy consumption are becoming increasingly imperative. 

Although thermal conductivity is important to measure, its difficult measurement process [3] 
makes it an elusive number. In-situ measurements of the building envelope add further 
complications to the process. The methods available for this measurement are slow or 
expensive, typically requiring technical expertise. The most commonly used method is 
known as the heat flow meter method (HFM), which requires a minimum of three days to 
complete. The other more commonly used technique is infra-red thermography, which has 
additionally restrictive boundary conditions that depend on weather and environmental 
conditions. Results may deviate by up to 200% from the actual value [4]. Both methods 
require considerable temperature difference of at least 10°C between indoors and outdoors 
and steady state conditions be ensured at the time of measurement. Results improve with a 
higher temperature difference between indoors and outdoors [5] in each case, making 
environmental conditions a pre-requisite for accuracy. 

Thermal conductivity of building walls is often inferred from published standards or from 
literature provided by manufacturers [6]. It is assessed from the properties of constituent 
material layers and components. However, numerous studies have demonstrated that in-situ 
measurements of thermal conductivity are significantly different from the calculations based 
on relevant standards  [7]. Asdrubali concludes that several factors may be at play.  
Manufacturers may report an exaggerated performance of their products for marketing 
reasons, or that installation may not have been carried out correctly. Measurement under 
controlled lab conditions may also be a factor. Furthermore, environmental conditions, 
moisture migration, workmanship, and substitution of materials during construction can also 
affect thermal conductivity in-situ.  

Inaccuracies in the assumption of thermal conductivity lead to poor energy predictions. 
Studies show that actual energy consumption deviates from predicted values considerably 
[8]. Doran [9] showed that existing methods of energy calculations for regulatory purposes 
underestimate true heat losses in walls by more than 30% in some cases. Prada et al [10] 
has demonstrated that the precision of energy models of buildings depends largely on the 
inaccuracy of the assumed thermo-physical properties of the building envelope. Majcen et al 
showed that in every energy efficient building, actual gas consumption exceeded predicted 
levels [11]. He showed that a slight deviation in the estimate of U-values can account for a 
large part of the gap between the predicted and actual energy consumption [12].  

To address the gap in the evaluation of thermal conductivity of building walls, this thesis 
presents a computational approach to thermal conductivity. Using this approach, thermal 
conductivity is predicted by exploring correlations between material properties rather than 
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direct measurement. This approach is data driven and relies on regression algorithms rather 
than scientific measurement. In this thesis, I propose to use material dielectric properties to 
estimate thermal conductivity. Dielectric properties relate to the electrical property of 
capacitance and quantifies a material’s ability to store electric charge. The relative dielectric 
constant (relative permittivity), denoted by ϵ’ refers to a material’s ability to store electric 
charge, while the dielectric loss factor ϵ’’ refers to its ability to dissipate energy in the form of 
heat. The ratio of the two quantities is called the dissipation factor and is also referred to as 
the tangent of the loss angle, tan δ.  

For wood and some wood-derivatives, the correlation of density and moisture with thermal 
conductivity has enabled the prediction of thermal conductivity rather than direct 
measurement [13,14]. Sensing of density and moisture content of wood [15] and numerous 
agricultural products [16–18] has been achieved using their dielectric properties. It is thus 
hypothesized that the thermal conductivity of wood and wood-based materials may be 
predicted using their dielectric properties. A study by Venkateswaran in 1974 concluded that 
wood thermal conductivity and permittivity are more strongly correlated than thermal 
conductivity is with density and moisture content [19]. Although the study was not 
completely based on experimental data, it confirms the hypothesis presented in this thesis. 

The core of this thesis lies in the extensive experimental work that was conducted to explore 
the relationship between various material properties. However, before beginning the 
experiments, a comprehensive data collection was performed from various literature and 
websites about these material properties. Almost no data was found where thermal 
conductivity and dielectric properties were measured on the same material. However, data 
analytic techniques were used to join various sets to form a conceptual dataset and this set 
was analyzed prior to conducting experiments. The results of the data analysis set forth the 
precedence for the experimental work. 

Substantial experimental work was then conducted to explore the relationship of thermal 
conductivity with dielectric material properties. A large focus was been placed on materials 
related to the wood-frame construction. According to the US census bureau, more than 90% 
new single family and more than 80% percent new multifamily building in the United States 
were constructed using the wood-frame construction [20]. Solid wood is not only used in 
construction by itself, but its numerous derivatives form an integral part of wood-frame 
construction. For this reason, several experiments were dedicated to solid wood and the 
way its material properties inter-relate. Other materials studied in this category were 
plywood, OSB, chipboard, MDF and gypsum drywall. 

Further experiments were performed on the ceramic family of materials to explore their 
material properties. Brick construction is the primary form of construction in a large part of 
the world, and 1,391 billion units of bricks are produced annually [21]. For this reason, clay 
bricks, poured concrete / mortar and gypsum were included in the study. These materials 
represent components of brick construction. 

In addition to the two material categories described above, further studies were conducted 
on multilayered materials. For this study, layers of material were stacked together to form a 
multilayered material representative of a section of a wall. This was done for wood and 
wood-based materials in a separate study, and for ceramic materials in another one. The 
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effect of layering materials, like contact resistance was studied. Further, cavity walls and the 
potential for both thermal conductivity and dielectric constant were explored. 

The last study related to moisture content of materials. In this study only wood and wood-
based materials were included. After oven-drying the samples to find their dry densities, the 
samples were conditioned to hold specific moisture levels. The effect of moisture on thermal 
conductivity and dielectric properties was recorded. Correlations were drawn for various 
electrical properties with thermal conductivity and the suitability of each metric was explored. 
Finally, data analytics were applied to effectively predict thermal conductivity of a new set of 
samples using the collected data. 

1.1 Main Results 

Results of the experiments indicate that there is enough information encoded in dielectric 
material properties to effectively predict thermal conductivity. This metric may be used for in-
situ energy evaluation efficiently and easily. For the studied construction materials, there is a 
strong correlation between thermal conductivity and dielectric properties. The tools and 
gadgets available to measure dielectric properties quickly and easily can be employed to 
predict thermal conductivity. The study of wood and wood-based materials revealed a 
straightforward correlation at 100 kHz frequency given that the materials held similar 
moisture levels. However, higher and lower moisture levels added complication. Thermal 
conductivity could be predicted within a ±20% accuracy using advanced machine learning. 
While 100 kHz was found suitable for wood, ceramic materials were found to be better 
characterized at higher frequencies in the Megahertz and Gigahertz range.  

Dielectric properties were found suitable for predicting thermal conductivity not only for the 
individually tested construction materials, but also in the case where these materials were 
stacked together in series. Contact resistance seemingly affects both thermal conductivity 
and dielectric properties in similar ways. The correlation holds for both wood, wood-based 
materials and materials belonging to the ceramic family. Another significant finding of the 
study is that cavity walls can be successfully measured using dielectric properties as well. 

1.2 Significance of the Work 

The correlation explored in this thesis between thermal conductivity and dielectric material 
properties has several strong implications. If proven, then it would then imply that thermal 
conductivity can be predicted by measuring the dielectric properties of building envelopes in-
situ and the tools developed thus far for measuring dielectric properties can be effectively 
used to predict thermal conductivity. Such technology to measure dielectric properties of 
building walls is highly developed in the form of radar systems, GPRs and technology 
related to structural health monitoring. These technologies can be customized to serve as 
thermal conductivity meters. It thus has the potential for a bespoke gadget which can be 
utilized for lay use. 

Since the measurement of dielectric properties of a building envelope is independent of 
environmental conditions, the proposed method would effectively remove such a reliance. 
For example, both the heat flow meter method and thermography rely on a temperature 
difference of at least 10°C between indoors and outdoors. At the very least a stable direction 
of heat flow during measurement time is required. Thermography results are affected by 
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cloud cover, wind speed etc. which can lead to inaccuracies. The proposed method would 
be free of such requirements. It would also take a far shorter time for measurement. 

This thesis also offers a unique dataset. There is very scarce literature which explores the 
relationship between thermal conductivity and dielectric properties. Such a relationship has 
not been systematically explored in the past, and thus this dataset offers unique insights for 
scientists of various fields. 

1.3 Outline 

This thesis is divided into two parts. In the first part, the concept of estimating thermal 
conductivity using other material properties is explored theoretically. The notion that material 
properties inter-relate and hence one property can be estimated from another is explored 
using existing data and literature produced by other scientists. The second part of this thesis 
is about experiments to collect data related to material properties. The methods and tools 
related to those experiments and the analysis of the collected data. 

1.3.1 Part I 

Chapter 1: The first chapter introduces the thesis, and the concepts it is built upon. The 
need for the research is identified, important results are conveyed and the implications of 
the work are presented. 

Chapter 2: The second chapter explores the ways in which thermal conductivity is estimated 
in-situ. Technology in use today and state of the art techniques are discussed in this 
chapter. The drawbacks and advantages of each method is presented and the gap in field is 
identified. 

Chapter 3: A brief history of the computational view of material properties is presented. 
Scientist work to compute the material property of their interest from other properties is 
explored. The results and success of these studies are investigated. 

Chapter 4: Chapter 4 describes the data collected for this thesis from literature, websites 
and repositories related to thermal conductivity and mechanical properties of materials. 
Presented in this chapter, are methods used to interrelate this data, and the correlation of 
various material properties that were uncovered.  

1.3.2 Part II: Experiments 

Chapter 5: This chapter kick starts the section related to the experiments with a description 
of fabrication process of hundreds of samples for the experiments. Tools and methods used 
sample preparation, and the accommodations needed for each experiment type are 
described here. 

Chapter 6:  Experimental apparatus and methods are described in this chapter. 
Experimental methods for the measurement thermal conductivity, dielectric properties and 
sound are cataloged in this chapter. Tools and gadgets along with make and model number 
are reported. Associated formulas for calculation of material properties are also narrated.  

Chapter 7: Experimental results correlating thermal conductivity and dielectric properties for 
wood and wood-based materials are detailed. A thorough examination of existing literature 
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to validate the experimental results is produced. The strength of the correlation and its 
repercussions are examined. 

Chapter 8: Experimental results related to sound are detailed in this chapter. How the 
speed of sound relates to thermal conductivity and the strength of the correlation is 
investigated. 

Chapter 9: The effect of layering materials together to form composites on both thermal 
conductivity and dielectric properties is scrutinized and experimental results are illustrated. 
Contact resistance and the presence of air cavities is considered in the context of material 
suitable for wood-frame construction.  

Chapter 10: The distinctly different behavior of ceramic materials compared to wood and 
wood-based materials is studied in this chapter. Ceramic thermal conductivity and dielectric 
properties are explored experimentally. Suitability of frequency range for this measurement 
is investigated. 

Chapter 11: The effect of moisture content on wood thermal conductivity and dielectric 
properties is described along with important conclusions.  

Chapter 12: In the final chapter a summary of conclusions for all experiments is detailed. 
The potential for unified regression parameters is also explored. The scope for future work is 
identified and a reflection on the main points of focus is narrated. 
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2 State of the Art 

Based on the nature of the temperature field within a sample, thermal conductivity is 
measured using either steady state, or transient methods [22]. In the former, a steady 
temperature field is created or assumed inside the sample, and heat transfer is estimated by 
subtracting all losses from the delivered heat. Steady state conditions must be created in 
this case, which means that heat must be flowing at a steady pace through the material 
during the measurement period. In the case of transient methods, the sample is subjected to 
time varying temperature field, in which case the losses are negligible due to short 
measurement times. There is a lot of sophisticated equipment to measure thermal 
conductivity under lab conditions, using both the steady state and transient means. 
However, such measurements for in-situ walls are very difficult and mostly limited to steady 
state methods. A brief description of methods used to estimate thermal properties of in-situ 
walls that are currently in use are given below. 

2.1 Heat Flow Measurements: ISO and ASTM standard practices 

Based on the steady state method, calculation of thermal conductivity of existing structures 
is detailed in international ISO standards (ISO 9869) [23] , and is also defined by the ASTM 
(C1155-95) [24]. These standards give guidelines on computing the thermal resistance of 
existing walls using heat flux and temperature measurements, along with the relevant 
mathematical models. This method requires careful placement of heat flux and temperature 
sensors on walls, and for measurements of sensor data to be recorded every five to ten 
minutes over an extended time period. The time series data is analyzed in different ways to 
calculate the R-value or U-value of the material. 

A study carried out in University of Newcastle by Luo et al used heat flow measurements to 
find thermal conductivity of walls of a test module [25]. Their study and results are indicated 
by Figure 1 and Figure 2. These figures represent the typical method of finding thermal 
conductivity of walls based on steady state methods as described in the ASTM and ISO 
standards. Figure 1 illustrates the sensors used for temperature measurements, and how 
these are affixed to walls. Figure 2 shows the recorded results over a one-month period. It 
reveals how the measured thermal conductivity measurements swing wildly over each 
twenty-four hour time period. These measured values are averaged out to estimate the 
thermal conductivity. 

  

Figure 1 (Left) Sensors 
embedded in walls during the 
study by Luo et al [25]. Some 
of the sensors were painted 
the same color as the wall in 
an attempt to match the 
absorbance and emissivity of 
the walls. 
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Figure 2 (Left) One data 
point of measured thermal 
conductivity for every ten 
minutes as per the study by 
Luo et al. Measured values 
seem to swing between 0 
and 1.5 in every 24-hour 
period  

 
The above study demonstrates that this type of measurement is time intensive. The reason 
for this is that the time needed to reach steady state conditions is directly proportional to the 
square of the thickness of the material and inversely proportional to thermal diffusivity of the 
material [26]. The change in temperature during the day and night ensures that heat is not 
flowing at a constant rate long enough to attain steady state conditions. 

Drawbacks: This method is time extensive and takes several days to collect data [23,24]. 
The minimum duration for measurement and recording of temperature data is three days, 
and the accuracy increases with increased number of days [27]. Moreover, it requires a 
significant temperature difference between indoors and outdoors to yield accurate results, 
and thus it is seasonally restricted [6]. Appendix A gives the results of a detailed analysis 
comparing how the number of days required to calculate thermal conductivity changes 
according to different seasons, and how different mathematical models in use today 
compare against one another. Furthermore, the accuracy of results increases with an 
increased temperature gradient. This temperature gradient might not be possible in mild 
climatic conditions [28]. Additionally, this method also requires training, and according to 
ASTM standards should only be performed by a skilled individual [24].  

2.2 Hot Box Method 

This technique is also based on steady state methods, and is described in ASTM C1363 – 
11 [29]. This technique designed for testing construction materials under lab conditions and 
is suitable for materials of a built-up or composite nature. Various scientists have proposed 
adaptions of the method so that it could be performed in-situ. Figure 3 shows the 
experimental set up of a hot box as described by Sassin et al [30]. Meng et al [31] presented 
optimal measurements of a portable hot box and a mathematical model for in-situ 
measurements of thermal conductivity (See Figure 4). This method has not been tested on 
multi leaf walls, and is a new technique requiring verification. 

Drawbacks: The hot box method is meant for a laboratory setting only. Variations of this 
technique adapted for on-site calculations have been proposed by various scientists. 
However, measurement time is very long owing to the need for steady state conditions. 
Moreover, it requires the transport of cumbersome equipment to the site.  
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Figure 3 Configuration of a 
Hot-Box as described by 
Sassine [30] 

 

 
 

Figure 4 Hot box as 
described by Meng et al [31] 

2.3 Infra-red Thermography 

Infrared cameras are used to measure surface temperature and emissivity combined with 
readings for wind speed to calculate thermal conductivity of materials. Calculation time for 
this technique is within a few hours. Although a lot quicker than heat flow measurements, 
this method has many boundary conditions as defined by researchers [5,32–35]. These 
boundary conditions are described as being season and weather bounded requiring specific 
weather and daylight conditions to work properly. Accurate results can only be obtained in 
overcast days with best results early in the morning. Required temperature difference 
between indoors and outdoors must be at least ten degrees, with low wind speed. Moreover, 
the method works well for heavy structures like bricks, but more research is needed to 
produce good results for light weight structures like timber etc. Recent research by Tejedor 
et al (Sept 2017) shows advances in this technology using quantitative internal 
thermography requiring only a 7 degree temperature difference, workable for single or 
double leaf walls and doable within 2-3 hours [36]. However, this is a new technique and 
requires further research to verify and consolidate. 
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Drawbacks: The technique is weather and hence seasonally bound. While good results can 
be achieved within a few hours during some seasons, the same may not be true for 
summers, or for freely ventilated buildings. Moreover, the procedure is very complicated, 
requiring skilled professionals to take accurate measurements. 

2.4 Transient Techniques 

Sorensen describes a handheld U-value meter, which is 
termed as a device for measuring heat loss based on 
transient methods of calculation. This is illustrated in 
Figure 5. This device however, only works on single leaf 
structures in the absence of moisture and the supposition 
that heat flow is from inside to outside and not vice versa 
[37,38]. Pilkington et al attempted to determine the 
thermal conductivity using thermal probes like hot wires, 
disks, or strips, but reported that the task could not be 
completed because these sensors need to be inserted 
into the material, and this is not possible with in-situ walls 
using non-destructive methods [39]. Rasooli et al 
proposed a response-factor based approach to 
calculation of u-values of in-situ walls, and reported 
accuracy within 2%. However, this technique requires the 
use of a heater, ice and fan to linearly heat and cool the 
wall over at least a two hour period and is very 
cumbersome [40]. This technique is also very new and is 
yet to be tested by other researchers. Its major drawback is the cumbersome equipment like 
heater and ice that needs to be transported to the site. The technique is also very sensitive 
and requires much skill to complete. He built upon this technique and tested it on various 
types of construction and found that this technique does not work on cavity walls or walls 
where insulation is very thick [41].  

2.5 Use of Tables 

Thermal conductivity values for energy modeling are usually taken out of tables from 
published data, and many countries have their own standards and practices defined by 
concerned authorities [6]. It is assessed from the properties of constituent material layers 
and components. 

However, there may be several discrepancies related to the published data used to infer 
thermal conductivity of building walls. Available thermal properties of materials like concrete 
may vary up to 80% [42]. A look at ASHRAE’s [43] material properties table (chapter 26) 
reveals that about fifty percent of the sources for the listed data precedes 1989, which 
means that the statistics are based on materials which may no longer be in use, or their 
properties changed by new manufacturing methods and materials. Appendix B provides a 
quick look at such data. It can also be seen that much of the data is established through the 
work done by a single scientist on a small data set. Furthermore, data from various countries 
may not be in agreement, and whatever data that does agree is a result of historic 
‘borrowing’ [44] where data is copied from one text to another without correct referencing.  

Figure 5 Hand-held u-value 
meter as described by 
Sorensen 
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Numerous studies have demonstrated that in-situ measurements of thermal conductivity are 
significantly different from the calculations based on relevant standards [45,46]. Asdrubali  
[7] concluded that several factors may be at play.  Manufacturers may report an 
exaggerated performance of their products for marketing reasons, or that installation may 
not have been carried out correctly. Measurement under controlled lab conditions may also 
be a factor. Furthermore, environmental conditions, moisture migration, workmanship, and 
substitution of materials during construction can also affect thermal conductivity in-situ. 

Drawbacks: Unreliable and inadequate. 

2.6 Conclusion 

Of the methods described to estimate the thermal conductivity of in-situ walls, the most 
commonly used ones are extremely time consuming and bound by weather and seasonal 
conditions. Some require a lot of equipment to be carried to the site and can only be 
performed by professionals trained in this practice. All of them are based on a method of 
measurement of temperature and heat flux. Consequently, there is a need for new tools to 
estimate the thermal properties of in-situ walls with easier to use methods and devices. 

A summary of techniques used for measuring thermal conductivity of in-situ walls, and their 
related drawbacks are presented below. 

Method 
Time 
Taken 

Weather / 
Season 
Bound 

Works 
for Multi 
Leaf 
Walls 

Works 
with 
moisture 
content 

Accuracy Equipment Comment 

Heat Flow 
Method 

Min. 3 
days Can 
be more 
than 20 

Yes, 
highly 

Yes Yes 

Only under 
correct 
weather 
conditions 

Min. 4 
sensors. 

Most 
commonly 
used 
method 

Infra-Red 
Thermo-
graphy 

Few hours 
Yes, 
highly 

Not 
tested 
for 
cavity 
walls 

Yes 

Only under 
correct 
weather 
conditions 

Expensive. 
Trained 
operator 
required 

Most 
commonly 
used 
method 

Hot box 
by Meng 
et al [31] 

Min. 3 
days  

No 
Not 
tested 
yet 

Not 
tested 
yet 

High for 
the one 
wall it was 
tested. 

Cumber-
some 

New 
technique 
not yet 
verified 

U-Value 
Meter 
[37,38].  

Instant Yes No No 
High for 
dry single 
leaf walls 

Small and 
handy 

Does not 
work for 
moisture 
content 

Response 
Factor 
Approach 
[40,41].  

Few 
Hours 

No 
Not for 
cavity 
walls 

Yes 
High for 
the walls 
tested 

Heater, 
ice, fan, 
and min 4 
sensors. 

Shows good 
initial results 
but needs 
verification 
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3 Computational Approach to Material Properties 

The computational approach to material properties is data driven. It is about finding 
correlations between various properties and using data analytics to make predictions 
instead of direct measurement. This approach is about mapping one set of numbers onto 
another in a meaningful and informed way. The crux of this thesis is how material properties 
are inter-related, and how one property can be used to make predictions about another. 
Sometimes it can be done by translating one set of numbers onto another using ordinary 
least squares linear regression, and sometimes by using multidimensional vectors with 
sophisticated machine learning algorithms to make these predictions.  

The concept of a computational approach to material properties is centuries old. One 
example is that of the measurement of temperature, which was first derived from a 
measurement of distance in the seventeenth century. Temperature was first measured 
based on how much a gas expands or contracts in response to environmental conditions 
[47]. In 1720 a thermometer was invented which determined the temperature based on how 
much mercury expands or contracts [48]. Thus, a change in volume of mercury provided a 
yardstick to measure temperature. Modern day thermocouples make use of the 
thermoelectric effect and map a measurement of voltage difference across two dissimilar 
electrical conductors to determine the temperature. Here, the computation relates to how the 
voltage difference across the junction of the two metals is mapped to temperature. In this 
measurement type, ordinary least squares linear regression is used to map one set of 
numbers to another. 

The exploration in this chapter is intended to lead to an identification of which material 
properties might be useful in make a prediction of thermal conductivity. It is also meant to 
explore how this property may be mapped to thermal conductivity. This chapter investigates 
how scientists in various fields have used a computational approach to measure some 
material properties of interest. 

3.1 Thermal Conductivity: Effect of Density and Moisture Content 

By far the most studied link between thermal conductivity and other material properties is 
that of density and moisture content. This relationship has been extensively studied for 
wood and wood-based panels used in the construction industry. Some of this work is 
described in the following sections. 

3.1.1 Thermal Conductivity of Solid Wood 

There are various models to predict the thermal conductivity of wood based on density, 
moisture content and porosity. These models assert that thermal conductivity of wood is 
independent of wood species and depends solely on other properties like density, moisture 
content and porosity. Thermal conductivity increases linearly with an increase in density or 
moisture content. 

One of the first few studies in this context began in the late nineteen-twenties. Rowley 
studied these characteristics in detail and published the findings of his work in 1933 [49]. In 
1941, MacLean [13] published his model to predict thermal conductivity. The regression 
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equation on experimental data related to wood samples of various densities and moisture 
content. It was soon followed by Wangaard in 1943 who produced an alignment chart to 
predict thermal conductivity based on an experimental data [50]. Following this, various 
scientists performed experiments and published their findings in various journals. 
Subsequently other scientists collected data from these scattered publications and compiled 
them to form a bigger database. One such scientist was Wilkes [51] who calculated and 
proposed a regression line based on 1094 data points collected from various sources in 
1979. His equation is quoted in the current ASHRAE fundamentals handbook [43] as the 
suggested method for approximating the thermal conductivity of wood. The one suggested 
by Tenwolde in 1988 [52] is used as a guide to thermal conductivity of various wood species 
by the US Department of Agriculture’s Handbook [53].  

As far as raw data is concerned, Cardenas and Bible [54] have perhaps published the 
biggest dataset for wood. It contains more than 500 unique entries for wood thermal 
conductivity, and lists the density, moisture content and source of all published readings.  

A brief history of such computational approaches to thermal conductivity of wood is 
summarized in Table 1. 

Table 1: A timeline of computational approaches to thermal conductivity of wood 
 
Year Source Related info and Equation 
1933 Rowley [55] No published equation, but graph showing straight line 

relationship between density and thermal conductivity. 
 

1940 Wangaard [50] Alinement chart representing relationship between thermal 
conductivity, density and moisture content 

1941 MacLean [13] λ = S (1.39 + 0.028 M) + 0.165 (for moisture content under 40%) 
λ = S (1.39 + 0.038M) + 0.169 (for green wood with more than 
40% moisture content) 
unit of measurement is BTU/(hr⋅ft⋅°F) 

1954 Maku [56] λ = 0.02 + 0.0724S0 + 0.0931S0
2  

unit of λ in Kcal/mh°  
1951 Kollman and 

Malmquist [57] 
λ = 0.219 * (ρ /1000) + 0.0256 
For moisture content of 12% 

1979 Wilkes [51] λ = .02582 + (1.686e-4 + 5.177e-6 * M)* ρ / (1 + 0.01*M) 
1984 Siau [14] λ = 0.510448– 0.4736288* a 

where a can be calculated as: 
a = (1-0.000667*ρ - 0.00001 * M * ρ) ½ for density range 150-
1400 kg/m3 

1988 Tenwolde [52] λ = (D/1000)*(0.1941 + 0.004064* M) + 0.01864 
1998 Harada [58] λ = 0.0256 + .000181 ρ  

(for oven dry conditions only) 
2011 Yu [59]  λ = 0.04409 + .0001278 ρ  

(for oven dry samples only) 
  Where S is the specific gravity, S0 specific gravity at oven dry 

conditions, M is the moisture content in %, ρ is density kg/m3, a 
is porosity and λ is thermal conductivity W/m.K. Units used are 
SI units unless otherwise stated. Given equations are for the 
direction transverse to the grain. 
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Of the above summarized equations, all depend on density and moisture content except for 
Siau. His work presents a model of thermal conductivity based on circuits and explained 
thermal conductivity in terms of its porosity and moisture content. 

Thermal conductivity increases with an increase in temperature. The correction for 
temperature given by Tenwolde, which falls in close agreement to Wilkes’s prediction is 
given as 0.2 percent per degree Kelvin. That is, there will be an increase of 10% with an 
increased temperature of 50° C. 

3.1.2 Thermal Conductivity of Wood Based Panels 

The thermal conductivity of wood-based panels has been linked to density and moisture 
content, much like solid wood. Lewis studied effect of temperature and density on particle 
board and fiberboard [60]. Seventeen types of fiberboards and five types of particleboards 
were studied, and the mean temperatures of 10°, 24°, 38° and 52° C were used for 
measurements. He found the thermal conductivity of wood-based panels has been found to 
be lower than that of wood of the same density. He also found the conductivity values for the 
same density particleboards were higher than the fiberboards. He suggested a design curve 
as a relationship between thermal conductivity and specific gravity for use by designers. 
Siau [14] shows the relationship between thermal conductivity of wood and wood-based 
panels, which is reproduced below in Figure 6. 

 
 

Figure 6 Thermal conductivity vs 
specific gravity for wood and wood-
based panels reproduced from Siau 
[14] 

 
Tenwolde gives a detailed account of these relationships by using the following equations: 

Kplywood               = 0.86 kwood  Plywood 

Kparticleboard = 0.75 kwood   Particleboard, also chipboard 

Kfiberboard      = 0.65 kwood   Fiberboard, also MDF 
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Tenwolde also gives corrections for temperature for each wood-based material. These are: 

Plywood:  0.0002   for each degree Kelvin  
Chipboard:  0.00024 for each degree Kelvin 
Fiberboard:  0.00014 for each degree Kelvin 

3.2 Electrical Properties of Materials and Thermal Conductivity 

Thermal conductivity has been seen as analogous to electrical conductivity, and 
investigators have sought to find a relationship between the two constants [61]. For 
materials with freely moving electrons like metal, both thermal and electrical conduction is 
due to the flow of electrons, and their relationship is explained by the Wiedemann-Franz 
Law [62]. Scientists have tried to establish the relationship of electrical and thermal 
resistivity of soil, so that one could be used to estimate the other. Singh et al studied the 
effect of saturation levels on both electrical and thermal resistivity and presented a 
generalized relationship between the two [63]. Wang et al showed an inverse linear 
relationship between electrical and thermal resistivity for 57 soil types having 7 different 
saturation levels [64]. Erzin et al showed that given the soil type, degree of saturation, and 
thermal conductivity, artificial neural networks could be used to quickly and efficiently 
estimate the electrical resistivity of soil [65]. Pia et al represented porous media as a 
Sierpinski carpet and used the electrical pattern to predict thermal conductivity [66]. Some 
interesting relationships between dielectric material properties and thermal conductivity are 
discussed in the following sections 

3.2.1 Dielectric Constant: Sensitivity to Density and Moisture Content 

Dielectric material properties of solid wood and wood-based materials are highly sensitive to 
density, moisture content and frequency at which the measurement is made. For solid wood 
it also depends on the direction of measurement w.r.t the orientation of the wood fibers.  

The relationship of wood density and moisture content has been thoroughly investigated by 
many scientists. Skaar [67] notes that at moisture content below 30%, the dielectric constant 
is independent of wood species and is affected only by its density and moisture content. 
Torgovnikov indicates that at moisture content below 30% and room temperature of 20 - 
25°C the dielectric constant is proportional to wood density [68]. For transverse direction, 
she proposes the following equation for the dielectric constant as: 

 ϵ’ (Transverse) = a*P0 + 1 

where P0 refers to oven dry density within the range of 300-800 kg/m3 and a is a coefficient 
based on frequency and moisture content. She further notes that the dielectric constant of 
fiberboards can be assumed to be the same as wood of the same density. Sahin 
demonstrated the same rules and showed that dielectric properties increased with increased 
moisture content for all wood species under study. He determined the dielectric properties in 
all three directions and found that grain direction had an important part to play [69]. 

3.2.2 Capacitance 

It is very curious how the formulas for heat transfer are very similar to formulas related to 
electrical charge and capacitance. Heat transfer is often solved in terms of electrical circuits 
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connected in parallel or series. So, there is similarity in the way heat moves through a 
material and how electric charge is stored inside a material. Table 2 highlights these 
similarities and shows the formulas used to calculate electric charge and the rate of heat 
transfer. 

Table 2 Formulas for calculation of capacitance and heat transfer 

Geometry Electrical Charge Equations Heat Transfer Equations 

Rectangular 

   

 
 
 

𝐶 =  
𝝐𝒓𝑨 

𝒅
 

 

 
 
 

𝑞௫ =  
 𝒌𝑨 Δ𝑇

𝒅
 

Cylindrical 
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𝒂
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 𝟐𝝅𝒌𝒍 Δ𝑇
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Spherical 
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 𝒃 −  𝒂
൰ 
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൰ Δ𝑇 

Connected in series 

  

1

𝐶௘௤
=  

1

𝐶ଵ
+  

1

𝐶ଶ
 

 
𝐶௘௤

=  
1

(𝒅𝟏/ 𝝐𝒓𝟏 𝑨) + (𝒅𝟐/ 𝝐𝒓𝟐 𝑨)
 

1

𝑞௫
=  

1

𝑞௫ଵ
+ 

1

𝑞௫ଶ
 

 
𝑞௫

=  
Δ𝑇

(𝒅𝟏/ 𝒌𝟏 𝑨) + (𝒅𝟐/ 𝒌𝟐 𝑨)
 

 
Connected in parallel 

 

 
 

𝐶௘௤ =  𝐶ଵ +  𝐶ଶ 
 

 
 

𝑞௫ =  𝑞௫ଵ + 𝑞௫ଶ 
 

 

The above table shows that the geometry of the object affects its ability to store charge in a 
way similar to its ability to transfer heat. Moreover, the arrangement of materials, may it be 
series or parallel, affects electric charge and heat transfer in comparable ways. 

3.3 Thermal Conductivity and Speed of Sound 

The relationship between thermal conductivity and acoustic wave velocity is based on the 
phonon conduction theory. This theory asserts that thermal energy propagates in dielectrics 
through the propagation of acoustic wave packets known as phonons along a thermal 
gradient. The accepted formula for thermal conductivity is given by: 
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 λ  c v I̅  

where c is the heat capacity of a dielectric that coincides with that of phonon gas, v the 
mean velocity of phonons approximately equal to the sound velocity, I̅ is the mean free path 
of phonons [70]. 

If a correlation between thermal conductivity and the speed of sound exists at a molecular 
level, then perhaps the same would be true on a macroscale, and it might be possible to 
infer thermal conductivity from the speed of sound through that material.  

3.3.1 Thermal Conductivity and Speed of Sound in Geology 

Using compressional wave velocity (speed of sound) to estimate thermal conductivity has 
received a lot of attention in recent times in the field of geology. Scientists want to estimate 
the thermal properties of a rock bed in-situ. Various studies show a linear relationship 
between thermal conductivity and compressional wave velocity [71]. Mielke et al found a 
linear relationship but concluded that this relationship is only true for porous rocks, and the 
relationship stops for non-porous rocks or rocks with very less porosity [72]. Appendix C 
provides details. Gegenhuber et al presented two mathematical models to predict the same 
relationship based on sound velocity, rocks cracks and mineral composition [73]. Pearson’s 
coefficient of correlation between 0.68 and 0.92 was achieved, showing better results for 
granites with high quartz content and sandstone. The mathematical model presented by 
Pimienta et al was based on porosity, mineral composition and compressional wave velocity 
[74]. According to his model, thermal conductivity in rocks with micro-cracks depends mostly 
on the density and geometry of these micro-cracks. Esteban explored various models 
presented by scientists and tested these theories on a rock sample collection from two 
sandstone reservoirs to predict thermal conductivity. The study found a deviation of 10% or 
less for the predicted values from the measurements found under lab conditions for dry and 
saturated rocks from one reservoir, and 30% or less deviation from samples collected at a 
different reservoir [75]. 

The above discussion highlights how geologists have successfully derived thermal 
conductivity of rocks by constructing a mathematical model relating speed of sound through 
that material, porosity and mineralogy. The speed of sound vs thermal conductivity 
relationship seemed to stop for non-porous rocks, or rocks with low porosity. However, most 
construction materials are porous, including bricks, concrete, wood, wood derivatives and 
insulation materials, which works to the advantage of scientists motivated towards finding 
thermal conductivity of construction materials.  

3.3.2 Properties of Construction Material and Speed of Sound 

Concu et al investigated the correlation of ultrasonic wave velocity with density, modulus of 
elasticity and compressional strength on two sets of construction limestone [76]. The 
samples were completely dry. Coefficient of correlation of 0.82 and 0.72 for density, 0.96 
and 0.92 for modulus of elasticity and 0.7 for compressive strength were found.  

 Vasanelli et al carried out tests on limestone blocks to find that size and geometry of stone 
does not have any significant impact on ultrasonic wave speed [77]. Vasanelli et al carried 
out another set of tests on two types of stone commonly used in Italy for construction in 
historic times [78]. Rebound hammer and ultrasonic pulse velocity were used to show 



17 

effectiveness of sound velocity in predicting physical properties of stone. Although one set of 
stones showed a good correlation between density and speed reporting a coefficient of 
correlation of 0.8, the other type of stone showed a poor relationship with .4 stated as the 
coefficient. Vasconcelos et al investigated the physical properties of granites using 
ultrasonic evaluation [79]. He found a correlation between compressive strength (R2 = 0.72), 
Young’s Modulus (R2 = 0.84), porosity (R2 = 0.74) and Tensile strength (R2 = 0.89) 

3.3.3 Machine learning, Speed of Sound and Material Properties in Civil 
Engineering 

Ultrasonics has been used to study the compressive strength of concrete. Trtnik et al used 
artificial neural networks to derive the compressive strength of concrete using various 
material properties [80]. He showed that the speed of sound for predicting compressive 
strength was not enough to get accurate results. However, by using parameters like 
aggregate type and ratios as well as the speed of ultrasonic speed yielded high accuracy 
when processed through ANNs. Amini et al built upon previous work to use UPV along with 
rebound hammer test to predict compressive strength of concrete [81]. Using advanced 
statistical analysis, and three-fold cross validation, this method saw a high accuracy of 
predicted values, without the need for variables related to the history of concrete like water-
cement ratios, or aggregate sizes, relying solely on the two numbers produced by the 
mentioned non-destructive testing techniques. The quoted reason for the success is that the 
rebound hammer and ultrasonic pulse velocity expose different characteristics of concrete.  

3.4 Conclusion 

Two material properties have been identified for the study of relationship with thermal 
conductivity of construction materials. One is the speed of sound through materials, and the 
other is dielectric properties. Sound speed through a material has been investigated in detail 
by various scientists and has been successfully used to predict various material properties, 
including thermal conductivity. Although dielectric material properties have not yet been fully 
investigated to infer thermal conductivity, its strong relationship to density and moisture 
content makes it a worthy metric. If density and moisture content affect thermal conductivity 
similar to dielectric properties, then it could be a useful parameter in making predictions.  
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4 Analysis of Existing Data 

Although there is a lot of 
available data about various 
material properties, there is 
little to no information about 
how thermal conductivity 
correlates with dielectric 
properties or sound speed. As 
an introductory part of the 
project, data from various 
sources: books, journal articles 
and product websites, was 
collected, compiled and 
analyzed. This study attempts 
to combine the various 
databases and search for 
relationships that might exist between thermal conductivity and dielectric properties, and 
between thermal conductivity and sound properties. 

A total of 1400 data points were collected for this exercise. Figure 7 gives a breakdown of 
the type of data that was collected. One of the most researched materials for thermal 
conductivity has been wood, and a lot of data was available for that. The figure also shows a 
breakdown of the number of collected data points for each material property. A detailed 
account the data with referencing is given in Appendix C. 

4.1 Solid Wood 

The main source of information collected for wood thermal properties was from the database 
published by Cardenas and Bible with 547 data points. This work consolidates the work of 
scientists who carried out their work on thermal conductivity prior to 1987 [54]. A large 
database for dielectric properties of solid wood was published by Torgovinkov [68] in 1993. 
A full detail of all sources used for this exercise are listed in Appendix D. 

4.1.1 Thermal Conductivity of Solid Wood 

The collected data related to wood thermal properties consists of over five hundred data 
points. This data contains measurements where the density and the moisture content were 
clearly stated, and any data point without this statistic was discarded from the set. Moreover, 
only the data collected at room temperature was kept, while the data recorded at very high 
or very low temperatures was excluded from the study.  

Figure 8 shows the scatter plot of thermal conductivity vs density and plot of thermal 
conductivity vs moisture content. Although the density shows some correlation with thermal 
conductivity, the relationship with moisture content is not at all visible.  

Figure 7 Breakdown of data collected for analysis 
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Figure 8 A (left) Scatter plot between thermal conductivity and density. B (right) Scatter plot 
between moisture content and thermal conductivity 

Section 3.1.1 describes the equations by which various scientists predict thermal 
conductivity from density and moisture content; in this section we follow up with an 
investigation into how these equations fit with the collected data. A detailed comparison is 
shown in Figure 9. Figure 9 A shows how Maclean, Wilkes, Tenwolde and Siau’s equations 
for the prediction of thermal conductivity compare to each other on the given dataset. Figure 
9 B-D show how the equations of mentioned scientists perform on the entire dataset along 
with the calculated R^2 scores. Figure 9 E shows my own data analysis on the collected 
dataset. 

 

A. Comparison of 
various equations to 
predict thermal 
conductivity through 
moisture content and 
density. 
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B. Wilkes Prediction (ASHRAE) 
R2 Score: 0.76 

C. Tenwolde’s Predictions (USDA) 
R2 Score: 0.49 

  
D. Siau’s Predictions 

R2 Score: .33 
E. Gradient Boost Regression (by author) 

R2 Score test data: .77 

Figure 9 A-E: How equations of various scientists performed on the data collected for wood thermal 
conductivity. 

The most curious thing shown by Figure 9A is although the investigated equations all 
seemingly have the same slope, they have differing intercepts. It is possible that each 
scientist might have been working with a smaller dataset, and hence obtained different 
results. The graph suggests that perhaps the experimental data collected by the various 
scientists have their own bias, which shows up in the form of an elevated reading. Because 
the biases are perhaps consistent, it results in the same slope, but differing intercepts for the 
different scientists studying the same problem. The R2 scores over the dataset as shown in 
Figure 9B-E indicate that the Wilkes equation seemingly does the best job at making 
predictions of thermal conductivity. However, this may well be because he had much of the 
same data as Cardenas and Bible, which form the majority of data for this study.  
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Figure 9E shows how using modern machine learning might increase the R2 score of the 
predictions slightly. However, these are initial test results and lack any method of validation. 

4.1.2 Dielectric Properties of Solid Wood 

Figure 10 shows an analysis of data collected for wood dielectric properties at different 
frequencies. It shows how a high moisture content results in more variation of the dielectric 
constant across different frequencies and vice versa. The same is also true for density and 
is reflected in the graph shown in Figure 10. 

 
Figure 10 Dielectric constant as a function of frequency. A (left) varying moisture content %. B 
(right) varying density (unit kg/m3) 

There is no dataset which gives both the thermal properties of wood as well as its dielectric 
properties. Although there is much information in literature that addresses the thermal 
properties and dielectric properties separately, the correlation between the two has not been 
systematically studied. Both properties are heavily dependent on moisture content as well 
as density. Thus, it makes sense to explore this correlation.  

For the next part of the study, data related to thermal conductivity was generated against the 
data relating to dielectric properties found in existing literature. The data related to dielectric 
properties found in literature typically also contains information on density and moisture 
content of wood. This information was used to generate values for thermal conductivity 
based on Tenwolde’s [52] formula as well as Wilke’s [51] formula for predicting thermal 
conductivity from density and moisture content.  
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A: Dielectric Properties predict thermal 
conductivity data generated by Tenwolde’s 
equation (all frequencies) 

 
B: Dielectric Properties predict thermal 
conductivity data generated by Wilke’s 
equation (all frequencies) 

 
C Thermal conductivity (generated by Tenwolde’s equation) as predicted by dielectric properties at 
different frequencies 

Figure 11 Predictions of thermal conductivity from dielectric material properties. 
Numbers in parenthesis denote: [Training Score, Test Score, % of test Set within +-10%, % of test 
Set within +-20%] 
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Figure 11 shows that dielectric material properties can predict thermal conductivity 
accurately. However, it must be noted that the predicted thermal conductivity is not based 
on experimental data, and was calculated based on a regression equation. The equation 
can predict thermal conductivity with an error of ±20% according to the Tenwolde. 

Although in the previous section, it was shown that the Wilkes equation was the most 
effective in predicting thermal conductivity, this figure shows a stronger relationship between 
dielectric properties and the way thermal conductivity is affected by density and moisture 
content as given by Tenwolde. Figure 11C shows how the dielectric constant changes with 
different frequencies, and how the relationship continues to hold across the spectrum. The 
dielectric constant at 10kHz seems to be as good at making predictions of thermal 
conductivity as at 1Ghz. This figure shows that no single frequency is better at predicting 
dielectric properties, and the minor variations shown in the graph might be a random 
chance.  

Various algorithms were also explored to make the predictions of the assumed thermal 
conductivity. Linear models as well as some ensemble methods were tested for the 
simulation. Linear models work with the assumption that the target value is a linear 
combination of the given set of predictors. These work to minimize a predefined loss 
function. Ensemble methods are distinguishable in that these use several weak models to 
build one strong predictive model. Results of the analysis showed that any of the ensemble 
methods were superior to the linear models. The algorithm with the best R2 scores was 
Gradient Boost Regression, which works to reduce bias in the predictive model. 

4.1.3 Combined Properties of Solid Wood 

A dataset was generated to compare how each of the dielectric and sound properties 
correlate with thermal conductivity. The data related to mechanical properties and sound 
speed was used as the base, and properties relating to thermal conductivity and dielectric 
properties were attached based on the given sample’s density and moisture content. 
Reaching into the database for thermal properties, the density which was closest to a given 
sound speed data point was selected, and the corresponding thermal conductivity was 
recorded. Since density is so closely related to the dielectric properties, the gradient boost 
algorithm was used to generate and attach this data with the sound and mechanical 
properties data. 
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A. Prediction of thermal 
conductivity from sound 
speed 

B. Prediction of thermal 
conductivity from dielectric 
properties 

C. Prediction of thermal 
conductivity from sound 
speed and dielectric 
properties 

Figure 12 Predictions of thermal conductivity from Dielectric and Mechanical properties  

Numbers in parenthesis denote: [Training Score, Test Score, % of test Set within +-10%, % of test 
Set within +-20%] 
 

Figure 12 shows the analyzed data and the cross correlations found. This figure shows that 
while dielectric constant may be a strong predictor of thermal conductivity, sound speed may 
be a weak predictor. Extending the feature space so that both dielectric constant and sound 
speed are used as the predictors only weakens the overall predictive power of the algorithm. 

4.2 Plastics: Dielectric, thermal and sound speed 

Data was collected from various websites of manufacturers of plastic material products. 
Plastic manufacturers websites were explored and those were shortlisted which gave 
substantial information related to their product’s thermal, dielectric and mechanical 
properties. Most websites were found to have omitted at least one material property. These 
were excluded from the study and data collection. Only data points were recorded that 
contained a complete set of information were recorded. 

No data was found on these websites relating to sound speed. This data had to be 
generated based on the material’s mechanical properties. The speed of sound is roughly 
estimated through its Young’s Modulus and density. Shear modulus is approximately equal 
to Young’s modulus, thus this value was substituted whenever the correct information wasn’t 
available. The formula for the sound speed through mechanical properties is:    

 c = ට
ா

ఘ
  

where c is the speed of sound, E is Young’s modulus and ρ is density. 

Another drawback to this study is how the dielectric properties were reported using different 
frequencies by different manufacturers. The most commonly reported frequency was 1 MHz. 
Figure 13 to Figure 15 show the result of the analysis. Once again, gradient boost was 
found to be the best performing algorithm. The figure shows that although there is a strong 
correlation between dielectric and thermal properties, there are some very strong outliers 
which drastically reduce the R2 score of the analysis. The same is the case for mechanical 



25 

properties. Figure 13 and Figure 14 show somewhat scattered results. However, Figure 15 
shows more accurate predictions.  

While dielectric properties alone were found to be a good predictor of solid wood’s thermal 
conductivity, the analysis of plastic reveals that extending the feature space to include 
sound speed as well improves the R2 score of the prediction. 

 
Figure 13 Predictions of 
thermal conductivity from 
dielectric properties 

Figure 14 Predictions of 
thermal conductivity from 
mechanical properties 

Figure 15 Predictions of 
thermal conductivity from 
both dielectric and 
mechanical properties. 

The numbers in the parenthesis indicate [training score, test score, % readings within 10% 
accuracy, % readings within 20% accuracy] 

4.3 Wood and Plastic Combined: Can Wood Learn from Plastic? 

194 Sample Points (91 Plastic 103 Wood) 

While all the analysis described so far pertains to only one material type, in this part of the 
analysis, work was done on a mixed set. Data points for wood and plastic were mixed, and 
the material type was not a part of the predictors. The aim of this exercise was to find out if 
the pattern exhibited by wood continues onto other material types. In short, this part of the 
exercise had a focus on whether wood could learn from plastic or vice versa. 

A four-fold cross validation was performed to interpret the predictive power of the algorithm. 
The results of this prediction are shown in Figure 16 below. The red color refers to 
datapoints relating to wood, and the blue color refers to plastics. Larger circles indicate the 
test set, whereas the small squares refer to the training set. 
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Figure 16 Four-fold cross validation results from wood and plastic combined. Red dots relate to 
wood, and the blue dots relate to the plastics data. The small squares represent training data, while 
the larger round symbols represent the test data 

As shown in Figure 16, the R2 scores range from 0.49 to 0.95 and have an average of 0.72. 
This means that given enough data, patterns of correlation found in one material type might 
be translatable into another material type. 

4.4 Masonry 

There is not much data available on materials such as brick or stone masonry. A small 
amount of data was found in the BRE BEPAC study using figures reported by the Belgium 
CSTC [82]. The found data was plotted, and the result can be seen in Figure 17. It shows a 
clear correlation between density, moisture content and thermal conductivity. Data related to 
the same specimen’s dielectric or sound properties could not be found, so no such analysis 
could be performed.  
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Figure 17 Graph showing 
effect of density and 
moisture content on 
thermal conductivity on 
block walls.  
Data used from Belgium 
CSTC as reported in BRE 
study [82].  

4.5 Conclusion 

Despite the incomplete information, the analysis showed some interesting results. This 
exercise served as a precursor to the results of experiments that were yet to be performed. 
It showed that: 

1. Dielectric properties may be a stronger predictor of thermal conductivity than the 
combination of density and moisture content. 

2. Mechanical properties or sound speed have a weak correlation with thermal 
conductivity. 

3. Adding sound speed or mechanical properties to the feature space with other 
predictors may or may not improve prediction scores based on the material type 
being studied. 
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Part II: Experiments 

A series of experiments are described in this part of the thesis. Hundreds of experiments 
were conducted to explore the relationship of thermal conductivity with other material 
properties. The collected data, analysis and implications of these results are discussed in 
these chapters. 

Over four hundred samples were fabricated for various experiments. The included 
materials were wood, plywood, chipboard, MDF, OSB, XPS insulation, clay bricks, concrete, 
gypsum drywall and acrylic. The work begins by describing the fabrication process of these 
materials. Material samples were fabricated differently for thermal conductivity 
measurements and differently for measuring electrical properties. This chapter is followed by 
a description of the apparatus and methods used for the experiments. A detailed description 
of each experiment type as well as its error analysis are included in this chapter.  

Results of experiments are described in the chapters following those of sample preparation 
and methods. Each chapter describes a different material category. All but one of these 
chapters deal with the relationship of materials thermal conductivity with their dielectric 
constant. In the chapter that does not deal with dielectric properties, the relationship of 
thermal conductivity with properties of sound moving through material are explored. This 
chapter deals with the collected data on sound prediction of thermal conductivity based on 
the collected data related to sound.  

The chapter on wood and wood-based materials describes experiments related to materials 
suitable for the wood-frame construction. The multilayered materials chapter also describes 
the same category of materials, but its focus is on the effect of layering materials together. 
The chapter on ceramic materials deals with materials related to brick construction. Finally, 
the chapter on moisture studies explores how moisture affects wood and wood-based 
materials, their dielectric properties and their thermal conductivity. 

The final chapter summarizes important conclusions of all experimental work. It represents 
the key take-aways of this thesis and outlines the potential for future work. 
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5 Sample Preparation 

Fabrication of material samples was a major part of the thesis and over 400 samples were 
prepared for the study. Samples in wood, plywood, OSB, chipboard, MDF, XPS foam 
insulation, acrylic, clay bricks and concrete were prepared for the experiments. These were 
cut into 25 mm x 50 mm pieces, with thickness varying between 20 and 25 mm. Each 
material’s fabrication presented its own challenges and had to be cut and prepared using 
suitable equipment. The figures below show the plethora of machines used for cutting and 
grinding of the material samples.  

 

 
Figure 18 Table Saw (wood and derivatives) 

 
Figure 19 Drill press (wood and derivatives) 

 
Figure 20 Grinder (wood) 

 
Figure 21 Foam Cutter (foam insulation) 
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Figure 22 Wet saw (ceramics, cutting) 

 
Figure 23 Knee mill (ceramics, drilling) 

 

Figure 24 Angle grinder (ceramics, cutting) 

 
Figure 25 Dremmel tool (ceramics, grinding) 

5.1 Thermal Conductivity 

After cutting and trimming of the samples, they were measured, weighed and recorded 
under a unique ID. Half-inch deep holes with diameter matching that of the thermocouple 
were drilled into each of the samples. The temperature sensors could thus be placed at the 
core of the material under test. 

5.2 Dielectric Properties 

Preparation for these samples began in much the same way as the thermal conductivity 
experiments, i.e., by documenting the physical properties of each sample under a unique ID. 
The top and bottom of the samples were then covered with copper conductive paint which 
would act as electrodes. The edges of the paintwork had to be sharp in order to get a good 
reading. For this, the sides were covered with a protective tape before the application of the 
paint. 
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Fixing the wires to the samples was a bit tricky. It was noted that incorrect fixing of the wires 
resulted in unstable readings. For example, using copper tape made for a shaky connection. 
Using an acrylic holder to keep the wires in place resulted in a poor connection of the wire 
with the painted electrode, where full contact was not achieved. After much experimentation, 
it was found that silver conductive epoxy is best to hold the wires in place. Epoxy by Atom 
Adhesives, product number aa-duct 902 was used for these experiments. Pictures of the 
prepared samples are shown in Figure 26. 

  

Figure 26 Prepared samples for dielectric measurements 

5.3 Sound 

Figure 27 and Figure 28 show the prepared samples for the sound experiments. The 
samples for the sound experiments varied in length from just three inches to twelve inches 
in length. In the case of sound impact a piezo was attached to the sample, and conductive 
paint applied to the opposite side. For the experiments relating to the resonance method, 
the samples had to be cut to equal lengths and cross sections. After the samples were cut to 
equal lengths, a second piezo was attached opposite the first. 

  

Figure 27 Prepared samples for the sound 
impact method (sound speed) 

Figure 28 Prepared samples for the resonance 
method with signal generator 

5.4 Moisture Studies 

To prepare the samples for the moisture studies, they were first oven dried to find their oven 
dry weight. Samples were placed inside a convection oven for over 24 hours at 
approximately 104°C. It was noted that there was no appreciable change in weight at 4-hour 
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intervals after the first 24 hours were over. A picture of the oven and solid wood samples are 
shown in Figure 29. After all moisture was removed, the samples which were to be tested at 
0% moisture levels were placed inside vacuum bags as shown in Figure 30. 

  
Figure 29 Oven Drying Figure 30 Samples inside vacuum bags meant 

to retain oven dry condition of samples 

A humidity box was constructed to condition the samples for the moisture study. This 
consisted of a plastic box, a stand to hold the samples, humidity sensors and a humidifier as 
shown in Figure 31.  The humidifier was controlled by an Arduino and relay switches based 
on the readings of the humidity sensor. It was programmed to spray water droplets inside 
the box at regular intervals. When the humidity sensors inside the box registered humidity 
levels above a certain level, the humidifier was switched off. The readings from the humidity 
sensors were programmed to show on an LCD screen (see Figure 32). The LCD screen was 
used to monitor the humidity levels inside the tanks, as well as keep track of any loose 
connections in the system. 

Figure 31 Humidity box containing humidifier, samples 
and humidity sensor. 

Figure 32 Arduino, relay switch and 
LCD screen 
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The samples remained inside the humidity box for a month at a time while the moisture 
levels in each sample were constantly monitored by weighing the sample. The same levels 
of humidity inside the box produced higher moisture content in softwood as compared to the 
higher density hardwoods.  

All woods did not require the same number of days inside the humidity tank to reach the 
same moisture levels. It was seen that softwoods absorbed moisture a lot more quickly than 
hardwoods. Moisture dissipated inside the softwoods a lot more easily as well. 

5.5 Pouring Concrete 

Mixtures of cement, sand and aggregate were prepared and poured into molds to form 
concrete. The molds were prepared out of foam, with cavities of 25 mm x 50 mm each. The 
poured samples were regularly sprayed with water during the first thirty days of curing. 
These are shown in Figure 33. 

 
 

Figure 33 Molds for casting 
concrete samples 
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6 Apparatus and Methods 

Contains material for reports by Saeed et al in [83–85] 

Each of the three experiment types were designed and developed through a continuous 
learning process. Several iterations were run until a successful result close to theoretical 
values was achieved. All three experimental setups and procedures are described in detail 
in the following sections. 

6.1 Thermal Conductivity: Measurement Apparatus and Method 

The method to measure thermal conductivity was developed over time. Two main methods 
were used for this measurement. These differ in the equipment used for the measurement. 
These are discussed in detail in the following sections. 

6.1.1  Measuring Thermal Conductivity: Method A 

The goal of these experiments was to measure the thermal conductivity of materials as 
accurately as possible. It took several iterations to design a setup which gave satisfactory 
results close to theoretical results. The configuration that was finally used, was chosen from 
layouts suggested by the ASTM Standard C518 [86] for calculating thermal transmission 
properties under steady state conditions.  

The schematic for the experiment is shown in Figure 34. The setup involves creating a 
temperature gradient across the material to be tested by placing it between a heater and a 
cooling plate. A heat-flux sensor (Flux Teq Model PHFS-01) measured heat flow through the 
material, and thermocouples were used to measure the temperature along the temperature 
gradient at two points of the sample. The heat flux sensor was calibrated using NIST tracible 
materials by manufacturer and is sold with a certificate of calibration. The heat flux was 
monitored using a multimeter (Aneng AN8008), while the thermocouples readings were 
observed using a temperature reader by PerfectPrime TC-41. A 12V heater which 
maintained its temperature at 80°C was used for the experiments, and 12V Peltier modules 
for the cooling plates. A heat sink and fan were used so that the cooling plates would 
produce a lower temperature. The thermocouples were inserted into a small cavity drilled 
into the material to monitor the temperature at the core of the sample. Fourier’s Law was 
then used to calculate the thermal conductivity. The equation is: 

𝑞௫ = 𝜆 
Δ𝑇

𝑥
 

 
𝑞௫ is the heat flux in W/m2, ΔT is change in temperature in °K, x is the distance between the 
two thermocouples in meters and λ refers to thermal conductivity in W/m.K. The distance 
was obtained by a Vernier caliper by measuring the distance between the two incisions 
where the thermocouples were inserted. 𝑞௫ was given by the heat flux sensor and ΔT was 
calculated as the recorded temperature difference between the two thermocouples.  
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Figure 34: (Left) The instruments used for measuring thermal conductivity. Right: Schematic for the 
measurement. 

For each experiment, the samples along with the heater were carefully placed inside layers 
of foam insulation. Care had to be taken that the cooling plates were in full contact with the 
material under test so that the heat can be vented out through the heat sink. Once 
everything was packed inside, another layer of cotton insulation was wrapped around the 
apparatus. 

With the insulation, heater, sample and sensors in place the apparatus became ready for 
the measurement. Two power supplies were used to provide DC current to the heater, 
cooling plates and fan. Three readers were used to take measurements from the 
thermocouples and heat flux sensor. These readers were manually turned on, and the 
readings on each was recorded, and the relevant formula applied to calculate the thermal 
conductivity value of each sample.  

Measurements were recorded at ten-minute intervals. The condition for meeting steady 
state conditions was that a new measurement was not to deviate from the average of 
previous five readings by more than half a percent (Figure 35). This rule has been taken 
from the ASTM standard C518 [86] for steady state measurement of thermal transmission 
properties.  

 
 

Figure 35 Reaching 
steady state conditions 
for sample # 131 of 
Redwood. 
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It was seen that steady state conditions were achieved in less than two and half hours for 
wood, and the measurement process was stopped in three hours or less in these cases.  

6.1.2 Measuring Thermal Conductivity: Method B 

The difference between measurement method A and B, is that a single heat flux sensor was 
used in method A, while two were used in method B. A second difference was the use of 
different readers for thermocouples and heat flux sensors. In method A, digital multimeters 
were used, and readings were recorded manually every ten minutes. For method B, a 
datalogger was acquired, which recorded the readings every half a minute or so. 

Figure 36 and Figure 37 show the equipment used for the thermal conductivity 
measurements and a schematic of the testing assembly. Thermal conductivity was 
measured by creating a temperature gradient across the layers of the material until steady 
state conditions were met. The temperature gradient was created by placing the material 
between a heater and cooling plate. The temperature was regulated through the power 
supply. Two heat flux sensors (Fluxteq, model PHFS-01) were placed to measure the heat 
flux through the sample. One between the heater and material, the other between the 
cooling plate and the material. The average of the two readings was taken for the 
calculation. Two thermocouples (Perfectprime 0.13mm) were placed well into the core of the 
material by drilling halfway into it. A data logger (Windaq, model DI-2008i) connected to a 
CPU was used to collect data from two heat flux sensors and thermocouples. Both the heat 
flux sensor and datalogger are calibrated with NIST traceable materials from the 
manufacturer.  

 
 

Figure 36. Apparatus to measure thermal 
conductivity. This consisted of Data-logger 
connected to CPU, to monitor the readings and 
the power supply to control temperature on the 
hot and cold side of material under test. 

Figure 37. Schematic for measurement of 
thermal conductivity. The apparatus consisted of 
two heat flux sensors, two thermocouples, 
heater, cooling plate and heat sink with fans. 

Since two heat-flux sensors were used, the average of the two readings was used to make 
calculations of thermal conductivity. For the sake of uniformity, if one heat flux sensor’s 
readings were significantly higher than the other, then the voltage of the heater or cooling 
plate was adjusted. The voltage was adjusted precisely, so that the heat flux at both the 
sensors became similar. 

The rule establishing steady state conditions was that a new reading of thermal conductivity 
should not deviate from the average of previous five readings by more than 0.5% (same as 
method A). This rule is suggested in ASTM C518 [87] for steady state measurement of 
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thermal transmission properties. Fourier’s law was used to calculate thermal conductivity, 
(same as Method A). 

6.1.3 Development Process for Thermal Experimental Setup:  
Lessons Learned 

The experimental setup and procedure were developed over several iterations. A number of 
interesting observations were made along the way, which prompted more refinements to the 
apparatus. These are noted below: 

1. Upside Down Apparatus: In earlier iterations 
of the development of the setup, the fan, heatsink 
and cooling plates were placed at the top, while 
the heater was placed at the bottom. The 
arrangement was purely based on convenience. 
Figure 38 illustrates this layout. However, since 
hot air rises, and cool air tends to settle down, it 
was felt that this arrangement might cause the 
minute amounts of air inside the apparatus to 
move around. Theoretically speaking, the small 
amount of air trapped inside the apparatus could 
transport heat, causing an interference in the 
readings. In the middle of a measurement 
process, the apparatus was turned upside down, so that the heater was now at the top, 
while the cooling plates along with heatsink and fan were at the bottom. In theory, the 
temperature gradient inside the material would be replicated by the air adjacent to it causing 
less air movement. As expected, doing this caused the numbers on the reader to move 
differently, and a difference in the accuracy was immediately noted. 

2. Thermocouples Inside vs on the Surface: Drilling the samples so that the 
thermocouples measured the temperature at the core of the sample rather than the surface 
made a huge difference in the readings. This was 
a very important detail in the experiments. 

3. Moisture Migration: Although a steady reading 
was reached within two or three hours from the 
beginning of the experiment, it was noted that the 
reading for the calculated thermal conductivity 
continued to fall. The change was miniscule, but it 
was an unmistakable downward trend. Figure 39 
shows the readings of the Cherry wood sample 
number 105 and shows how the thermal 
conductivity decreased from 0.148 to 0.145 in four 
hours. That is a difference of 2% in five hours. 
Experimentation has shown that this downward 
trend does not stop even when the wood is heated 
for fourteen hours. 

Figure 38 Upside down Apparatus 

Figure 39 Readings of thermal 
conductivity for wood sample No 105. 
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Theoretically, the material should reach steady state conditions within one hour. However, 
the reason for the continued downward trend might be moisture migration. As soon as heat 
is applied to one side of the test specimen, moisture begins to move from the heated side to 
the cool side [55]. This creates a gradient of moisture inside the material and influences the 
measurement. For some samples, the prolonged exposure to heat resulted in a thin layer of 
moisture condensation on the cooling plates. In the case of one piece of MDF (Sample no. 
316) two droplets of water were noted at the end of a three-hour long measurement period.  

4. Temperature Corrections: The temperature varied from sample to sample during the 
measurements owing to the performance of the heater. The heater created a slightly higher 
temperature for samples which are more insulating and vice versa. Moreover, the average 
temperature that the heater was kept at the beginning of the experiments to around 80°C. It 
was later brought down to 60°C to reduce moisture migration. For this reason, a correction 
was applied for the temperature. The applied corrections are given in sections 3.1.1 and 
3.1.2 of this work. 

6.2 Dielectric Properties: Measurement Method and Apparatus 

Relative Dielectric constant was calculated based on capacitance from an unshielded, two-
electrode system. The samples reserved for the measurement of dielectric properties were 
covered on two sides with copper conductive paint 843WB by MG Chemicals, which has an 
advertised resistivity of 5.3 x 10-4 Ω·cm. The wires were fixed using a conductive silver 
epoxy by Atom Adhesives. These samples were sized 50 mm x 25 mm with a typical 
distance between the plates of 25 mm. The capacitance and dissipation factor readings from 
an LCR meter (DE 5000 by DER EE) were recorded at 10 kHz and 100 kHz.  

Since the relative dielectric constant was measured from 
capacitance using an unshielded system, a correction for 
edge capacitance had to be applied. When electric 
voltage is applied to two electrodes, the resulting electric 
field does not just exist between the two plates but 
extends a little bit beyond them. This is known as the 
fringing effect or the edge effect shown in Figure 40. As 
the distance between the two plates increases, so does 
the edge effect. The edge effect is therefore the part of 
the capacitance, which is a result of the geometry of the 
material. Numerous studies have proposed formulas to 
remove the edge effect from the readings. The formula 
used in this study to remove the edge effect is the one 
presented in the Journal of National Bureau of 
Standards, 1939 [88] by Scott and Curtis. The ASTM standard D150 [89] for calculations 
related to the dielectric constant are derived from the document by Scott and Curtis. 
Although ASTM D150 contains formulas for edge correction for several configurations of 
electrodes, it does not contain information for rectangular electrodes. 

The formulas presented by Scott and Curtis [88] for rectangular electrodes of size equal to 
samples was used for this work and are given as: 

 
Figure 40 Edge effect between 
two plates of a capacitor is 
shown in pink 
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Ce is edge capacitance, Cn is normal capacitance, k is the relative dielectric constant w, l 
refers to the dimensions of the electrode in cm and d is the distance between the two plates 
in cm. As no formula exists for separating Ce and Cg, Scott and Curtis [88] rate the method 
of using rectangular electrodes inferior to using circular electrodes and estimate an error of 
at least 2.3% in measurements. 

6.2.1 Practical Measures for Dielectric Measurement 

Average measured capacitance for wood and wood-based materials was 2.7 pF. Such a 
small capacitance can easily be influenced by environmental conditions. Some measures 
taken to minimize errors were: 

 Wires were kept as short as possible. 
 All samples were fitted with the same gauge, quality and size of wires. 
 Instrument was calibrated using open and short method specified by manufacturer 

before the measurements. 
 Material under test was kept clear of other objects to avoid their field of capacitance. 

Special care was taken to remove any electronic gadgets from the surroundings 
which might interfere with the readings.  

 Wires not to cross each other to avoid interference. 
 As many items as possible were measured in a single cycle. This ensured that 

environmental conditions like temperature, humidity etc. acted on all the samples in a 
similar way 

 During measurement, the surface that the sample rests on can influence the reading. 
Surface with a very small capacitance was chosen for this work. 

6.3 Other Electrical Properties 

While measuring the capacitance and dissipation factor using the method described in the 
previous section, the series resistance (ESR) was also noted for some experiments. The 
following formulas were then used: 

𝑋𝑐 =
𝐸𝑆𝑅

tan 𝛿
 

|𝑍|  =  ඥ𝐸𝑆𝑅ଶ  + 𝑋ଶ 

𝑍 = 𝐸𝑆𝑅 + 𝑗𝑋 

𝑝𝑓 =  
𝐷𝑓

ඥ1 + 𝐷𝑓ଶ 
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Where Xc is reactance, ESR is series resistance, |Z| is magnitude of impedance in ohms, 
and Z is the complex impedance, pf is the power factor and Df is the dissipation factor. The 
uncertainty for impedance was higher than that for capacitance. The readings for ESR often 
shifted on the meter. 

6.4 Sound: Measurement Method and Apparatus 

Two methods were used to record the behavior of sound through the materials. These are 
described in detail in the following sections. 

6.4.1 Sound Impact Method to Measure Sound Speed 

A unique technique was developed to record the velocity of sound through the material. A 
pictorial view of this method is presented in Figure 41. The time required for sound waves to 
travel through a material was recorded using an oscilloscope (Owon, model number 
VDS1022i). The top side of the sample was struck to produce a noise, which was recorded 
by the piezo at the bottom of the sample.  The time delay between when the wood was 
struck and when the sound was recorded by the piezo was recorded using the oscilloscope. 
See Figure 42 for a typical reading from the oscilloscope. The thickness of the material was 
measured using a Vernier caliper which gave a resolution in millimeters down to two decimal 
places.  The formula used was 

  v  =  d / t 

  

Figure 41 Apparatus for the sound impact 
method to record sound speed 

Figure 42 Typical reading from the oscilloscope  
from the sound impact method 

To produce a signal at the top of the sample, a small voltage was applied.  This voltage was 
produced by static electricity.  A 3/8” ball bearing was channeled through a paper tube, and 
as the ball bearing fell through the tube, it collected static charge.  This charge was 
discharged as the ball bearing struck on the sample, creating both a sound as well as a 
small applied voltage of approximately 5 to 10 mV.  The coin sized conductive paint that was 
applied to the top of the sample then conveyed the signal to the wire, which was connected 
to the oscilloscope.  The conductive paint was applied directly opposite to where the piezo 
was attached and served two purposes.  One was to channel the signal from the ball 
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bearing to the oscilloscope, and the second was to make sure that if the ball bearing strayed 
it would not come in contact with the paint, and so that signal would not be detected, and 
such a reading discarded. 

At least five readings were taken for each sample using this method.  However, samples 
which showed a high variation in readings were given ten trials.  The average time delay 
was recorded, and then divided by the thickness of the material to find the sound speed.  

6.4.2 Resonance Method with Signal Generator 

All wood and wood-derivatives were 
cut to the same length for this set of 
experiments. The setup is shown in 
Figure 43. A signal gen was 
connected to a piezo fixed to the top 
side of the wood, and the oscilloscope 
to the piezo attached to the bottom 
side of the wood. This way, one piezo 
became the speaking device, and the 
other became the listening device. A 
sweep of frequency from 1 Hz to 
approximately 500 Hz was done. The 
oscilloscope’s response was recorded 
in terms of which frequencies showed a distinct peak, and what amplitude these peaks 
occurred. It was also noted at which frequency the signal was completely attenuated. A 
complete list of variables recorded is given in Table 3. 

Table 3 Variables recorded for the resonance method 

Thickness F1 F1 Amp F2 F2 Amp F3 F3 Amp F4 

Thickness 
of Sample 

First Peak 
Amplitude 
of First 
Peak 

Highest 
Peak 

Amplitude 
of Highest 
Peak 

Last 
Peak 

Amplitude 
of Last 
Peak 

Frequency 
where the 
signal was 
lost 

6.5 Density 

Density was measured by recording the sample weight and dimensions. Formula used was: 

𝐷 =   
𝑀 

𝑉
 

 
 
 

where D is density, M is mass and V is volume. 

6.6 Moisture Content 

Samples were oven dried in a convection oven at 105°C for about 24 hours. The oven 
drying process continued until no significant change in weight was found at four-hour 
intervals. This method is compliant with ASTM’s standard test method for direct moisture 

Figure 43 Apparatus for resonance method with signal 
generator 
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content measurement of wood and wood-based materials D4442 [90]. The formula used to 
measure moisture content was: 

𝑀𝑐 =   
𝑀 − 𝑀ௗ௥௬

𝑀ௗ௥௬
 

 
 
 

where Mc is moisture content, M is weight of the sample, and 𝑀ௗ௥௬ is oven dry weight 

6.7 Error Propagation 

Calculated uncertainty for each sample measurement is presented in the results section. 
Uncertainty is calculated based on Taylor’s [91] formula for uncertainty in a function of 
several variables. For x, …,z measured independent and random variables with 
uncertainties δx, …,δz used to compute a function q(x, …,z) then the uncertainty in q is 
given as: 

 𝛿𝑞 =  ඨ൬
𝑑𝑞

𝑑𝑥
𝛿𝑥൰

ଶ

+  … . . + ൬
𝑑𝑞

𝑑𝑧
𝛿𝑧൰

ଶ

  

The uncertainty calculated for the thermal conductivity experiment is determined by the 
derivatives of Fourier’s law. The rate of the error for each variable is assumed according to 
the specifications of the instrument manufacturer. 

6.7.1 Other Sources of Error 

While the previous section accounts for errors caused by instruments and measurements, a 
few other sources of errors need to be taken into consideration. One source of error may be 
from the use of a different piece of wood for thermal and a different one for dielectric 
measurements. Although both the pieces were removed from the same block of wood, the 
natural variation in grain could imply that both pieces were dissimilar to some extent. A 
second source of error may be from the hygroscopic properties of wood which causes its 
moisture content to change with a change in relative humidity of surrounding air. The 
measurements were carried out over a few months, so changes in weather may have 
caused changes in the moisture levels of samples, which went undocumented.  

6.8 Repeatability 

Additional experiments were performed on acrylic samples to test the repeatability of the 
experiments. A set of acrylic samples in four thicknesses were obtained from the same 
manufacturer. The manufacturer provided brochure about material properties was also 
obtained. The results of these experiments are described in the following sections. 
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6.8.1 Repeatability of Thermal Conductivity Measurements (Method B) 

Three acrylic samples (seen in Figure 44) were tested 
using the data logger and two heat flux sensors 
method B described in Section 6.1.2. The recorded 
thermal conductivity was 0.187, 0.188, 0.179. W/m.K. 
The coefficient of variation was 2.6% and standard 
error was 0.003 W/m.K, which shows that the 
experiments are highly repeatable. Manufacturer 
provided value for thermal conductivity is 0.187 
W/m.K. 

6.8.2 Repeatability of Dielectric Measurements 

Sixteen acrylic pieces of various sizes and thicknesses were tested for repeatability in 
dielectric measurements. The sample thicknesses were 9.5, 11.7, 17, 22.9 mm. The 
average recorded relative dielectric constant at 1 kHz was 3.1 with a coefficient of variation 
of 6.3%. The manufacturer provided value for relative dielectric constant was 3.3.  

Average dissipation factor for this set of experiments was found to be 0.0343 while the 
manufacturer provided value was 0.039. The coefficient of variation for the sixteen 
measurements for the dissipation factor was found to be 6.3% and standard error was found 
to be .05. 

 

  

Figure 44 Acrylic samples that were 
measured for thermal conductivity 
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7 Wood and Wood-Based Materials  

This chapter is based on a paper by Saeed et al [85] 

7.1 Materials 

Experiments were performed to determine the correlation between dielectric properties and 
thermal conductivity for solid wood and wood-based materials as seen in Figure 45. The 
sample types, number of samples for each type and their range of densities are highlighted 
in Figure 46. Materials representative of frame construction were chosen for this study and 
included 30 solid woods and 17 wood-based materials samples. The wood-based materials 
included flakeboard (OSB), plywood, chipboard and fiberboard (MDF) samples. A higher 
number of wood samples were chosen because several construction materials like 
insulation, OSB, plywood etc., are derived from wood. Samples for wood were also available 
in a large density range, and an even spread of densities was desirable in establishing 
correlation. The selected samples were cut into at least two pieces of size 50 mm x 25 mm x 
25 mm each. One of the pieces was reserved for determining its thermal conductivity and 
the other to measure its dielectric properties.  

 

 
 

Figure 45 Material samples for solid wood 
(above) and wood-based materials (below) 

Figure 46 Density distribution and number of 
samples and types studied 

7.2 Methods 

For solid wood, all measurements were made perpendicular to the direction of the grain. All 
dielectric measurements were made at room temperature of 20°C to 25°C prior to the oven 
drying process. The experimental apparatus and method are described in Section 6.1.1 of 
this dissertation detailing Method A. Dielectric properties were measured using the method 
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described in Section 6.2 of this dissertation while the density and moisture content were 
measured as described in Section 6.5 and Section 6.6 respectively. 

7.3 Results and Discussion 

Results obtained for the measured thermal conductivity and dielectric properties are in 
agreement with the values reported in literature. Thermal conductivities of wood 
perpendicular to the grain were found to be between 0.11 W/m.K (softwood) and 0.28 
W/m.K (hardwood). Wood-based materials were found to have thermal conductivities 
between 0.09 W/m.K (MDF) and 0.15 W/m.K (plywood). The relative dielectric constant of 
wood perpendicular to the grain was measured to be between 2.0 and 6.0, while the oven 
dry density of the samples was in the range of 325 kg/m3 to 1050 kg/m3. Raw data for these 
measurements can be found in the article by Saeed [83]. 

7.3.1 Correlation with Oven-Dry Density and Moisture Content: Equations 
Predicting Thermal Conductivity 

Scientists have constructed empirical equations to predict the thermal conductivity of wood 
using their oven dry density and moisture content. The oven dry density is the density of 
materials once all moisture has been removed from them and is lower than the density of 
the material in its original state. To compare the results of this study with past literature, the 
samples used in this study were oven dried, and their moisture content was calculated. It 
was found that the moisture content of most samples was between 5% and 8% at the time 
of measurement. Less than 20% of the samples had higher moisture content of up to 13%.  
Samples were only measured for thermal conductivity and dielectric properties in their 
original state and were not measured for these properties in their oven dry condition. 
Further, a temperature correction of 0.2% per degree Kelvin was applied to the measured 
thermal conductivity for solid wood to match the average temperature of 25°C for which 
much of the literature related to thermal conductivity exists  [52].  

The first equation for wood thermal conductivity, based on oven dry density and moisture 
content was given by Maclean [13] in 1941. This was subsequently followed by Wilkes [51] 
1979, Siau [14] in 1985, and Tenwolde [52] in 1988. These equations are given below 
modified to express λ in SI units. 

 𝜆 = 𝜌 (0.200342 +  0.00547699 𝑚𝑐) / 1000 +  0.024358 
Eq 1 Maclean 

 𝜆 = 0.02582 + (1.686𝑒ିସ  +  5.177𝑒ି଺ 𝑚𝑐)𝜌 / (1 +  0.01𝑚𝑐) 
Eq 2 Wilkes 

 𝜆 = 0.510448 –  0.4736288 𝑎 
Eq 3 Siau 

 where        𝑎 =  ඥ1 − 0.000667 𝜌 –  0.00001 𝑚𝑐 𝜌 
Eq 4 
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 𝜆 =  ቀ
𝜌

1000
ቁ (0.1941 +  0.004064𝑚𝑐) +  0.01864 

Eq 5 Tenwolde 

 

Where ρ is the oven dry density in kg/m3, mc is moisture content in %, and a in Eq 9 is 
porosity of wood. 

 

Figure 47 Comparison of measured data with 
predicted data from equations 5 to 9. The 
color of the dots indicates the moisture 
content, black line represents the line of 
perfect agreement, and dotted line represents 
regression line of data as per suggestion of 
scientist equation. 

The comparison of measured experimental readings with predictions made from equations 5 
to 9 are shown in Figure 47. The calculated regression line between measured data and 
predicted data from above mentioned equations are shown in the above graph. It is seen 
that the measured data closely follows the equation for predicting thermal conductivity as 
given by Maclean and Siau with only minor discrepancy. Although Wilkes equation is seen 
to have the least similarity to the true measurements, it is interesting to note that it is still 
accurate up to 0.2 W/m.K thermal conductivity. Moreover, it seemingly has the same slope 
as that of Maclean, but with a different intercept. The Wilkes equation is based on 1094 data 
points and is quoted in the ASHRAE (2013) fundamentals handbook [43] as the suggested 
method for approximating the thermal conductivity of wood. Tenwolde’s equation is used to 
derive and display thermal conductivity for solid wood materials by the US Department of 
Agriculture’s wood handbook [53].  

7.3.2 Correlation with Density Independent of Moisture Content 

The measured thermal conductivities are shown as a function of density in Figure 48. The 
thermal conductivity of solid wood is proportional to its density and is independent of wood 
species, as shown in this graph. For wood-based materials of the same density as solid 
wood the thermal conductivity is typically lower. The presence of moisture elevates thermal 
conductivity. These observations are manifest in Figure 48 and are consistent with literature 
in Tenwolde [52], Kollman [92], Kollman and Cote [93], Lewis [60] etc. According to Lewis, 
fiberboards have lesser thermal conductivity than particleboards and our data is consistent 
with his findings. 
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Figure 48 Correlation of density and 
thermal conductivity for wood and wood-
based materials. Density is based on 
moist weight of samples. Size of data-
points suggests moisture content between 
5% and 13% 

Figure 49 Correlation of density and 
relative dielectric constant for wood and 
wood-based materials. Density is based 
on moist weight of samples. Size of data-
point suggests moisture content between 
5% and 13% 

The strong correlation between relative dielectric constant and density of wood and wood-
based materials is demonstrated in Figure 49. The relationship of wood density and relative 
dielectric constant has been extensively studied in the past, with the earliest being in 1948 
by Skaar [94]. He showed that if frequency, temperature, direction of measurement and 
moisture content was constant, then wood density had a strongly linear correlation with its 
relative dielectric constant. Torgovnikov [68] estimates that the coefficient of correlation 
between oven dry density and relative dielectric constant for moisture levels up to 30% and 
frequencies above one kHz, is above 0.95 in most cases. For measurements perpendicular 
to the grain, she finds a linear relationship between oven dry wood density and its relative 
dielectric constant. 

7.3.3 Correlation of Dielectric Properties and Thermal Conductivity 

Thermal conductivity as a function of relative dielectric constant is shown in Figure 50. The 
coefficient of determination (R² of the regression) between the two material properties was 
found to be 0.87, which indicates a strong correlation. 72% of the data points were found to 
be within 10% of the regression line, whereas all but one reading was within 20% of the 
regression line revealing the strength of the correlation.  
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Figure 50 Strong correlation 
between relative dielectric 
constant and thermal conductivity 
is found. The vertical error bars 
represent calculated uncertainty 
for thermal conductivity, while the 
horizontal error bars indicate 
uncertainty of dielectric 
measurements. Size of data points 
represent moisture content. 

 

Based on this strong correlation, we conclude that the measurement of relative dielectric 
constant could be used as a robust metric for predicting of thermal conductivity of wood and 
wood-based material. The correlation between thermal conductivity and relative dielectric 
constant seen in Figure 50 is stronger than their respective correlation with density seen in 
Figure 48. While many equations to predict thermal conductivity using oven dry density and 
moisture content are listed in section 7.3.1, the R2 score of this method is superior. 
Moreover, in most cases density and moisture content are unknown and, in many situations, 
not measurable in-situ.  

Although the datapoints in Figure 50 do not line up in a perfect agreement with the 
regression line, it must be noted that there is no perfect method or tool to measure thermal 
conductivity of in-situ walls. In the case of measurement using steady state conditions, 
ASTM’s C1155 [24] standard for determining thermal resistance of building envelope 
components from in-situ data allows uncertainty of measurements to be within 10%. Ficco et 
al [95] found the uncertainty of in-situ thermal transmittance measurements are dependent 
on operative conditions. Their study estimates the uncertainty to be 8% under optimal 
operative measurements, and 50% under non-optimal measurement conditions. Atsonios 
reports the expected error for the four different methods of calculating thermal resistance 
based on steady state conditions in-situ to be between 11% and 28% [27]. Moreover, 
depending on the season and whether the building is freely ventilated, it can take 20-30 
days to reach steady state conditions and meet the criteria for convergence [6]. In contrast, 
the advantage of the proposed method of measurement is that it can be done within 
minutes. As an alternative to steady state methods, thermography for determining in-situ 
thermal conductivity also has high uncertainty. Depending on testing conditions, and method 
of measurement for thermography, scientists have reported a deviation between 5% and 
200% [4,96–98] from actual values. A higher error is associated with unfavorable 
environmental conditions for measurement. 
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The R2 score of the shown relationship can be further improved by collecting dielectric data 
of specific materials at higher frequencies and applying machine learning techniques. 
Studies show that measuring dielectric properties at higher frequencies can reveal some 
material behaviors that are not apparent at lower frequencies [99]. This additional 
information from higher frequencies would expand the feature space for machine learning, 
leaving the algorithm more information to draw from, hence improving the prediction quality. 
Additionally, more data can be collected for the materials relevant to the construction 
industry to improve the score. While testing many wood species was central to establishing 
the regression line, only a select few are used in building construction. Targeting specific 
materials, relevant to construction for machine learning would remove some of the error 
seen in the predictions in Figure 50. 

Wood and wood-based materials are seen to fall closely within the same regression line in 
Figure 50. All previous models to predict thermal conductivity rely on a different equation for 
wood, and an added correction for each of plywood, fiberboards and particleboards. But 
using dielectric properties, the same equation and instrumentation may be used to predict 
thermal conductivity of all the above materials. Having all these materials fall close to the 
same regression line gives rise to the question as to whether the correlation could continue 
to hold if these materials were to be connected in series, much like an architectural wall. The 
author speculates that if enough construction materials are similarly correlated, then there is 
a likelihood that their combined thermal conductivity and relative dielectric constant may 
have a similar relationship as shown in Figure 50. This question deserves future research. 

 
 

 

Figure 51 No correlation was found 
between dissipation factor and thermal 
conductivity. The size denotes the 
moisture content and the colors are 
representative of the density in kg/m3. 

 
 

No correlation was found between thermal conductivity and dissipation factor in Figure 51, 
but it may be useful in future work to involve materials with a broader range of moisture 
content. Torgovnikov reports that at frequencies between 10kHz and 10GHz wood 
dissipation factor is mainly influenced by its density and moisture content [68]. Many 
moisture meters rely on the relationship between moisture content and the dielectric loss 
factor of materials to detect moisture in wood. The power factor, which is a direct function of 
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the dissipation factor is described as a nonlinear function of moisture, temperature and 
frequency, exhibiting minimum and maximum values at various combinations of these 
variables [15,67] . Various reports have shown the increase in the dielectric loss factor as 
linear or curvilinear with increased moisture content [69,100–103] for a given frequency in 
the microwave range. Given the strong relationship of thermal conductivity with moisture 
levels, information related to the dissipation or loss factor may yet be beneficial in predicting 
thermal conductivity in materials with unknown amounts of moisture. 

7.4 Conclusions and Future Work 

The results of the experiments show a strong correlation between thermal conductivity and 
the relative dielectric constant. In other words, the potential for predicting thermal 
conductivity using dielectric material properties has been demonstrated. But much work 
remains in order to address composite walls. Once implemented, this method would 
eliminate the need to create steady state thermal conditions for the measurement. This will 
result in a faster measurement process, perhaps making the measurement possible within 
minutes rather than in days. It will also be independent of weather conditions, like requiring 
a large temperature difference between indoors and outdoors. A third advantage is the 
potential development of a gadget for lay use. 

While no correlation was found between the dissipation factor and thermal conductivity in 
this study, it might be a useful metric for future work involving moisture content. The 
dissipation factor is known for its strong sensitivity to moisture in materials and is used in 
many applications to detect and quantify moisture. One limitation of the conducted study is 
that it was not examined in the context of moisture content which has a secondary impact on 
thermal conductivity. Except for a few samples, all had moisture levels between 5% and 8%. 
The study of construction materials in the context of water content is important because the 
thermal properties of a building envelope can change over time due to water seepage and 
deterioration. While both thermal conductivity and dielectric properties increase with 
increased moisture levels, it is unknown if moisture effects both properties in a similar way. 
This may be a point of interest in future work.  
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8 Sound 

8.1 Sound 

Data related to sound was collected using two different methods. These methods are 
described in Section 6.4.1 and Section 6.4.2. The preparation of samples for the two 
methods is described in Section 5.3 of this dissertation. 

8.2 Sound Impact Method 

Results obtained using the sound impact method are shown in Figure 52.  The figure shows 
no strong correlation between density and sound speed through a material.  The regression 
line looks more like a line of classification separating the two types of wood and wood-based 
materials. The only thing highlighted by the results is how sound moves very differently 
through solid wood, and wood-based materials.  The structure of solid wood with its vessels, 
fibers and rays effects the propagation of sound differently, while the wood-based materials, 
which are compressed with resin and glues using heat treatments seemingly are less 
conductive to sound. 

 

 
 

 

Figure 52 Scatter plot of sound speed vs 
density: 

Figure 53  Scatter plot of sound speed vs 
Thermal Conductivity. 

Figure 53 shows show the results for the sound speed found through the sound impact 
method. The displayed scoring function is the R2 coefficient of determination. The score is 
not robust towards outliers, and so some scores may have been heavily affected by the lone 
outlier (yellow triangle) seen within the data. 
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8.3 Results from Signal Gen Method 

The scatter plots of thermal conductivity to various documented sound properties is found in 
Figure 54.  It shows the results of work done for wood and wood-based materials. No 
seeming correlation can be observed between amplitude and density. However, there is 
some correlation between when the signal seemingly begins to die out, and the density of 
the material.  Less dense materials seem to carry signals less effectively. The best 
correlation with density seems to exist between the product of the thickness of the material 
and the frequency which displays the highest amplitude.  

 
Figure 54 Results from signal gen: Thermal conductivity vs sound properties 

8.4 Machine Learning Results 

Numerous studies indicate that several weak classifiers can be combined to make accurate 
predictions. To this end, thermal conductivity was predicted using results of the sound speed 
experiment combined with the signal generator experiment. The columns were first 
projected into a third-degree polynomial. Then ordinary least squares regression was 
performed to obtain the results. These results are shown in Figure 55.  

The three features selected for regression were velocity from the sound impact method 
(which has the strongest correlation for all sound related data), the frequency with the 
highest amplitude, and the amplitude of the first peak. These features were chosen based 
on their individual strength of relationship with thermal conductivity.  Each of these 
parameters were multiplied with their thickness to account for sample thickness. 
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predicted within +-10%: 64% 
predicted within +-20%: 81% 

Figure 55 Prediction of thermal 
conductivity from data collected 
through signal gen and the sound 
impact method  

 

8.5 Conclusion 

Data collection for any of the methods related to sound are tedious and time consuming. 
Moreover, the uncertainty of this method is very high, and the readings are unstable. 
Although several weak classifiers were used successfully to predict thermal conductivity, the 
result is not as reliable as the one obtained from the dielectric properties. For this reason, it 
is concluded that using sound may not be a good metric to predict thermal conductivity. 
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9 Multilayered Materials: Wood Frame Construction 

This chapter is based on report by Saeed et al [84] 

9.1 Properties of Multilayered (Composite) Materials and Contact Resistance 

When two materials of different properties are stacked together, then the resulting multilayer 
system’s properties depend on the constituent layers. A multilayered material is illustrated in 
Figure 56. The following formulae give the thermal conductivity and dielectric properties of a 
multilayered material based on its constituent layers: 

Thermal conductivity: 𝜆 =
𝐿

∑   
𝐿௡
𝜆௡

௡
௜ୀଵ

   Eq 6 

Relative dielectric 
constant: 

𝜖௥ =
𝐿

∑   
𝐿௡
𝜖௡

௡
௜ୀଵ

   Eq 7 

Where λ, 𝜖௥, L are thermal conductivity, relative dielectric constant and total length of 
material of the composite material respectively. λn, 𝜖௥௡, Ln refer to the thermal conductivity, 
relative dielectric constant and length of a constituent layer. 

Contact resistance causes the theoretically calculated properties of multilayered materials to 
deviate from measured values. The roughness of surfaces causes spots of contact as well 
as tiny gaps at the interface of the two materials. These pockets are usually filled with air 
(see Figure 56). Although several theories predict the value of thermal contact resistance, 
the results from practical experiments are considered to be more reliable and accurate [26]. 
In the case of dielectric measurements, a lack of electrical contact between the two surfaces 
causes the deviations from theoretical values. As more individual slabs of materials are 
used to form a composite, the disagreement between measured and theoretical values 
becomes greater [104]. For these reasons, the thermal conductivity and dielectric properties 
of the multilayered materials must be practically measured rather than estimated 
theoretically from its constituent layers. 

 

 

Figure 56 Multilayered material: Layers connected 
in series. Contact resistance occurs at the 
interface of two layers because of the roughness 
of the two surfaces. 
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9.2 Measurement of Multilayered and Cavity Walls 

9.2.1 Thermal Conductivity 

In addition to conduction and radiation, heat transfer in cavity walls also occurs through 
convection. An air cavity is often used in wood-frame and masonry construction, as well as 
in construction materials like cinder blocks etc. When a temperature gradient is formed 
across these walls, a convective current arises. This convection depends on the size and 
geometry of the cavity, as well as the size of the openings into the cavity [105]. The effects 
of convection and radiation are accounted for by calculating the wall thermal transmittance 
value. A distinction is made between thermal transmittance value and thermal conductivity 
value. While thermal conductivity (lambda value) is a measure of how easily heat can flow 
through a material via conduction, thermal transmittance (u-value) accounts for the effect of 
conduction, convection and radiation in heat transfer. The former is independent of 
thickness with SI units of W/m.K, while the latter is dependent on thickness and has SI units 
of W/m2K. Thermal properties of cavity walls can be measured under lab conditions using 
ASTM’s hot box method for building envelope assemblies [29]. 

For the purpose of heat transfer calculations, cavity walls are considered a multilayered 
material, where air is treated as an opaque solid [106]. The thermal transmittance properties 
are estimated by assigning a convective and radiative heat transfer coefficient to the air gap. 
These coefficients are estimated based on studies which correlate aspect ratio of cavity, 
orientation and direction of heat flow with heat transfer [107]. However, some studies have 
found large discrepancies between theoretical calculations and ground reality [108].  

There is no quick or easy way to measure thermal conductivity of cavity walls. Literature 
related to thermography has not addressed walls with an air gap or convective heat flow [4]. 
The more recent transient technique developed by Rasooli [41] is effective in measuring 
multilayered walls, but not for cavity walls or heavily insulated walls. Sorensen’s u-value 
meter [37,38] only works for single leaf walls without moisture and its effectiveness is yet to 
be tested. The hot box method for lab measurements [29] requires dimensioning of the 
meter chamber to be equivalent to the effective height of the assembly with the air cavity 
and detailed CFD analysis, making for a very cumbersome process. 

9.2.2 Dielectric Properties 

One method of measuring dielectric properties is by directing electromagnetic waves toward 
the material under test. The reflected signal or the reflected and transmitted signal are 
measured and recorded by a sensor. Since the phase and attenuation of the reflected and 
transmitted wave depend on the materials properties, a mathematical derivation can be 
used to interpret its dielectric properties [109]. This measurement of dielectric properties can 
be done on a single layer as well as multilayered materials. The reflection and transmission 
of electromagnetic waves through multilayered materials was presented by Richmond [110] 
in 1965.  

Several researchers have extended the theory of the measurement of multilayered materials 
to architectural walls of various compositions like cinder blocks, rebar concrete, drywall 
construction etc., and the theory surrounding such measurements is well developed [111]. 
The measurement of dielectric properties of composite materials is typically done using free 
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space methods [112]. It has been found that if the thickness of a multilayered material is 
small compared to the wavelength, then the multilayers can be considered as an equivalent 
homogenous material [113,114]. Moreover, reflections at the boundaries of internal 
structures can give useful information like the presence of cavities, width of the cavity or 
blockages in cavities, thickness of the leaves etc. [115–117].  

9.3 Materials 

A building wall typically consists of many component layers which represent a multilayered 
system. According to the United States Census Bureau, since 2009, more than 90% new 
single family and more than 80% percent new multifamily building in the United States were 
constructed using the wood-frame construction [20]. The wall assembly of this type of 
construction generally consist of sheathing material like plywood or OSBs, followed by a 
layer of insulation and or air gap and finished on the interior side with gypsum drywall [118]. 
For this reason, the materials chosen for the study were OSB, plywood, gypsum drywall, 
insulation and solid wood. An emphasis was placed on solid wood as a material of study 
because several construction materials are derived from solid wood and exhibit similar 
behaviors. Of the twenty-six samples tested, 6 were constructed by leaving an air gap 
between two layers of solid materials. 

Figure 57 shows some of the samples that were tested and the types of materials that were 
combined to construct these samples. Solid wood samples were placed to be measured 
perpendicular to the grain. The layer surfaces were not glued together, but rather held in 
place with tape on the outer side. The dimensions of the samples were 50mm x 25mm width 
and height, but the thickness was variable. The thickness of each layer ranged between 
5mm and 20mm, whereas the total thicknesses of the samples ranged between 19mm to 
30mm. Using a thicker layer of insulation material resulted in a material with overall low 
density. The layer thicknesses were thus varied to produce a good density range between 
150 and 700 kg/m3.  

 
 

Figure 57  Samples 1-4: Hardwood-insulation. 
5-7: gypsum drywall with insulation or solid 
wood. 8-11 OSB samples, first without air, 
then with layer of air. 12: Typical sample with 
dimensions. 

Of the twenty-six samples tested, 6 were constructed by leaving an air gap between the two 
layers of materials. Figure 57 samples numbered 10-11 are two such examples. 

9.4 Apparatus and Method 

Apparatus and method used to measure thermal conductivity is described in Section 6.1.2 
and for dielectric properties in Section 6.2 of this dissertation. 
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9.5 Results and Discussion 

Measured thermal conductivity was found to be between 0.05 and 0.15 ± 0.01 W/m.K and 
the relative dielectric constant at 100kHz was found to be between 1.5 and 2.7 ± 0.2. The 
results for thermal conductivity were compared with theoretical calculations using the 
properties of constituent layers. The measured results agree with theoretical values for all 
samples except for the ones with a large air gap. Elevated readings were observed in these, 
indicating that additional heat exchange took place due to convection. The air inside the 
sample could not sealed and heated air was replaced by surrounding cooler air. For this 
reason, three samples with an air gap larger than 3.5mm were discarded from the dataset. 

9.5.1 Correlation with Density 

Thermal conductivity, relative dielectric constant and dissipation factor are all strongly 
sensitive to density and moisture content. This is evident in Figure 59, Figure 58 and Figure 
60, where the density of the materials is plotted against their thermal conductivity, relative 
dielectric constant and dissipation factor respectively. Comparing the data in these figures 
with the images of the samples reveals how varying the thickness of the primary material or 
insulation effects density and other material properties. For example, hardwood + insulation 
samples 1-4 show decreasing thickness of hardwood, which is reflected in the figures with 
decreasing density, thermal conductivity and relative dielectric constant. Samples numbered 
5 and 6 may look similar, but the difference in densities is achieved by pairing gypsum in 
sample 5 with hardwood (high density material) and in sample 6 with softwood (low density 
material). Samples number 8 and 9 do not differ much in density, but the thicker layer of 
insulation in 8 has produced a higher thermal conductivity and a higher dielectric constant. 
Samples 8 and 10 have the same volume, but a part of the insulation is replaced by an air 
gap. Doing so has not caused much change in either dielectric or thermal conductivity 
measurements, but the density is affected. 

Solid wood, plywood and OSB: These materials demonstrate a linear increase in thermal 
conductivity with an increase in density, given that moisture and temperature are constant 
[13,14,52]. Similar to thermal conductivity, the relative dielectric constant also increases 
linearly given that the frequency, moisture and temperature are constant [68,119]. The 
dissipation factor for these materials is mostly influenced by density and moisture content 
[15,68,100]. The presence of insulation material has reduced the over-all moisture levels in 
the composite materials made with solid wood, plywood and OSB. With the effect of 
moisture content greatly reduced from these materials, we therefore see a strong correlation 
of these materials’ density with their dissipation factors. See Figure 60. 

Insulation materials: The relationship of thermal conductivity with density is more complex 
for insulation materials. For most insulation materials, thermal conductivity first increases 
and then decreases with increased density [120][121]. In the described experiments only 
extruded polystyrene insulation (XPS) was used. According to literature thermal conductivity 
of XPS insulation is not affected by density in the range of 35 to 65 kg/m3 [122] and can 
remain constant. The insulation materials used in this study have thermal conductivity and 
relative dielectric constant (information as provided by manufacturer) that are not 
appreciably higher than those for air. Their dissipation factor is very low because of the low 
density and absence of moisture. 
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Figure 58. Scatter plot between 
density and relative dielectric 
constant. 

 

 
Figure 59. Scatter plot for density and thermal 
conductivity. Variation in insulation thickness 
affects both density and thermal conductivity. 

Figure 60. Scatter plot between 
density and dissipation factor 

Gypsum Drywall: 21% of gypsum rock is made up of water molecules [123]. This accounts 
for its high dissipation factor as seen in Figure 60. The added moisture content raises its 
thermal conductivity as well as its relative dielectric constant. Samples made with gypsum 
are titled 5-7 in these figures. The thermal conductivity for the gypsum material is higher by 
36% of the values from the regression line, whereas the dielectric constant is higher by 
about 10% from the regression line. 

9.5.2 Correlation of Thermal Conductivity and Dielectric Constant 

The strong correlation of relative dielectric constant with thermal conductivity for the tested 
multilayered materials is seen in Figure 62. It is shown that the dielectric constant is a 
stronger predictor for thermal conductivity than the more commonly used metric of density. It 
is seen that contact resistance does not change the linear, positive correlation between 
thermal conductivity and relative dielectric constant.  

The found regression line seems to pass through the datapoint which represents the 
theoretical values of air. Datapoints 5 and 6 are made of a layer of drywall and a layer of 
wood and these samples fall distinctly above the regression line. Since the gypsum drywall 
layer accounts for more than 50% of the total thickness of these two samples, its properties 
have a stronger influence on the properties of the composite material. 
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The results of this study were compared with the results of a study on single layers  by 
Saeed et al [83] consisting of solid wood, plywood, chipboards etc. The single layered 
materials are shown in grey, and ones from this study are shown in color in Figure 61. The 
regression line of both studies seems to be in general agreement, indicating that contact 
resistance did not alter the correlation of the materials.  

 
 

 
 
 

Figure 61. Multi-layered materials 
(red, blue, green) and single layered 
(grey) from Saeed et al [83] for solid 
wood and wood-based materials. 

Figure 62. Thermal conductivity shows a 
strong correlation with relative dielectric 
constant at given frequency. Horizontal and 
vertical error bars indicate the uncertainty 
associated with each measurement. 

Figure 63. Scatter plot of dissipation 
factor and thermal conductivity for 
multilayered materials (shown in red, 
blue and green) and for solid wood 
and wood-derivatives (shown in 
grey) as found by Saeed et al [83]. 

While the dissipation factor does not have a strong correlation with thermal conductivity, it is 
seen to be strongly affected by moisture content and density. Both density and moisture 
content affect thermal conductivity directly. The scatter plot of the dissipation factor and 
thermal conductivity is shown in Figure 63. The coefficient of determination between 
dissipation factor and thermal conductivity for the multilayered materials of this study was 
found to be 0.64. This figure makes a comparison with data for solid wood taken from a 
previous study by Saeed et al [83]. The datapoint representative of theoretical value for air 
has also been marked on the plot for reference. It is clear from Figure 63 that multilayered 
materials of this study (shown in red and blue) have a lower dissipation factor as compared 
to solid wood. By coupling wood and insulation, the moisture content percent of the resulting 
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material was reduced and consequently the dissipation factor as well. The reverse can be 
observed for the multilayered materials made with gypsum drywall samples (datapoints 5-7).  

9.5.3 Multivariate Linear Regression 

Multivariate linear regression analysis was performed using the relative dielectric constant 
and dissipation factor at 100 kHz. The regression algorithm draws into the strong correlation 
of relative dielectric constant with thermal conductivity, as well as the sensitivity of the 
dissipation factor to moisture content and density. Thermal conductivity prediction as a 
function of these two variables compared to experimentally measured values can be seen in 
Figure 64. The found regression equation is: 

ŷ =  2.0563 (𝜖௥) +  75.6334(𝐷𝑓) − 4.9842 
 

Where ŷ is the predicted thermal conductivity, Df is the dissipation factor. Both dielectric 
constant and dissipation factor were recorded at 100 kHz. 

It is demonstrated through Figure 64 that thermal conductivity can be predicted using 
dielectric properties accurately. A high R2 score of 0.95 is obtained for the tested materials 
using this regression equation. All the predicted values lie within ±20% of the experimentally 
found values, and about 80% lie within ±10% of the true values. The addition of more data 
would serve to refine the equation and improve results further. 

 

 
 
 
 
 
 
 

Figure 64 Comparison of experimentally 
measured thermal conductivity with 
predictions using multivariate linear regression 

  

 

9.6 Conclusion 

Given enough quality data, thermal conductivity of a building walls can be predicted using 
dielectric properties in a quick and efficient manner. Using this method would eliminate the 
dependency on environmental conditions required for steady state conditions. It would also 
eliminate the lengthy measurement periods that can stretch into days or even a month using 
conventional techniques. Additionally, the theory of the dielectric measurement of a building 
walls as a multilayered system has already been well studied. Advanced technology for 
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measuring dielectric properties is available for multi-leaf walls, cavity walls as well as for 
non-homogenous materials like concrete walls with rebar. Moreover, these measurements 
are non-destructive, requiring no advanced preparation of surfaces. This technology can 
thus be utilized to predict thermal conductivity of walls non-invasively. 

Although using dielectric properties to make predictions of thermal conductivity for cavity 
walls cannot account for thermal transmission properties resulting from convective heat flow, 
this disadvantage can be offset by accompanying it with CFD analysis. The thickness of 
each leaf of the wall and the cavity can be measured using the same instruments that 
measure dielectric properties of the building walls.  

Before the proposed technique is ready for real life application, more data related to various 
construction materials and construction techniques needs to be collected. It needs to be 
collected not only for the materials used in construction, but also with in the ratio of 
thickness which each material represents inside a building wall. The quality of the prediction 
of thermal conductivity depends on the quality and quantity of the collected data. 
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10 Moisture Study: Wood and Wood-Based Materials 

While previous chapters describe experiments in the context of density, this chapter 
describes experiments related to moisture content and its effect on both dielectric properties 
and thermal conductivity. Two sets of experimental studies were performed. In the first 
study, six solid wood samples were studied at very small intervals of changing moisture 
levels. This generated about 180 datapoints of high-resolution data, which was used as the 
training set for a machine learning model. In the second study, fifteen additional materials 
were studied, at select moisture levels. This generated 45 more data points, which were 
used as the test set for the machine learning model.  

Through the first set of experiments, it is demonstrated how dielectric properties respond to 
a change in moisture content, given that the density is constant. It is meant as a very fine-
grained study of the behavior of materials as a function of moisture levels. Solid wood at 
moisture contents from 0 to 20%, at 0.5% to 1% intervals was recorded, and the 
corresponding change in dielectric properties was documented. 30 datapoints were 
collected for each of the six sample’s dielectric properties, totaling 180 datapoints in all. On 
the other hand, thermal conductivity was measured for only three datapoints for each piece 
of wood, and the rest of the values for thermal conductivity were interpolated. 

While the first set of experiments was meant as a set of data to learn from, the second set of 
experiments was meant to generate data for testing. This set was used to test how 
accurately the machine learning algorithms can predict thermal conductivity. This set of 
experiments were performed on 10 solid wood, 2 plywood, 2 OSB and 1 MDF pieces. The 
dielectric properties and thermal conductivity of these pieces were recorded at 0%, 10% and 
20%.  

10.1 Experiments to Generate Training Data: Materials and Methods 

Six pieces of solid wood were used for this study. The wood species used were Basswood, 
Cherry, Fir/Pine, Wenge, Purple Heart and Red Oak. The density range for these wood 
pieces was between 460 kg/m3 and 860 kg/m3. Each piece of solid wood was cut into at 
least five pieces, and thus five sets of solid wood were produced; each set containing the six 
unique wood species. Each of these sets of wood was first oven-dried to find its oven-dry 
density, and then conditioned to a different moisture level. A description of how each set 
was conditioned and used for is given below. 

 Sets # 1, 2 and 3 (each set containing six unique wood species) were reserved for 
measuring thermal conductivity. While set # 1 was left in its oven-dry state at 0% 
moisture level, set # 2, and set # 3 were conditioned to approximate 10% and 20% 
moisture levels respectively. This was achieved by placing them inside humidity 
tanks. The details of the humidity tank and related procedures are outlined in Section 
5.4 of this dissertation, which deals with sample preparation.  

 Sets # 4 and 5 were reserved for dielectric measurement. Set # 4 was left in its oven 
dry state. These wood pieces were placed inside vacuum bags to preserve their 
oven dry state until a suitable time to conduct the tests. Set # 5 was conditioned to 
>20% by placing them inside a humidity tank. 
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Subsequently, wood of sets # 4 and 5 were removed from their controlled environment and 
placed in normal indoor conditions. While the weight of wood from set # 4 began to increase 
as the pieces absorbed moisture from the environment, the pieces of set # 5 began to 
decrease in weight as they lost moisture to the environment. Both the sets eventually 
stabilized to approximately 3% – 5% moisture levels in the indoor environment. Minor 
fluctuations in weight continued with natural changes in humidity levels in the environment. 

While the moisture levels of wood from sets # 4 and 5 changed, their dielectric properties 
were continuously monitored. Their parallel capacitance, dissipation factor and ESR were 
recorded using an LCR meter at approximately every 1/2% to 1% change in moisture 
content. The change in moisture content was measured by recording the change in the 
sample weight. By recording such measurements, a dense sent of datapoints points was 
built, between 0% and 20% for each wood species and patterns of change began to 
emerge.  

While a fine-grained set of datapoints related to dielectric properties was meticulously 
tabulated, thermal conductivity of solid wood belonging to Set # 1, 2, and 3 was only 
measured at 0%, 10% and 20% respectively. The rest of the datapoints for thermal 
conductivity were interpolated and joined to the dataset for dielectric properties using 
moisture content as the point of intersection. The increase in thermal conductivity was 
assumed to be linear based on extensive literature. Some equations related to this are given 
in Section 7.3.1. A dataset containing over 180 data points was thus constructed. 

The process to determine moisture level in any sample began with oven-drying it. Once 
each sample was oven-dried and devoid of all moisture, its weight was recorded. 
Subsequently when placed inside a moist environment, its weight increased with time. The 
difference between the current weight and weight in its oven dried state yielded the amount 
of moisture in the sample. This difference divided by its oven-dried weight is the sample’s 
moisture content as a percent. 

10.1.1 Results: Correlation of Moisture Content with Electrical Properties 

Correlation of electrical properties of the studied wood is shown in Figure 65. Very distinct 
patterns of change in the electrical properties can be seen with a change in moisture 
content.  

Fir / Pine Basswood Cherry Red Oak Purple Heart Wenge 

Density: 410 450 550 700 790 840 

 
Moisture Content % vs Dielectric Constant: Exponential  
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Moisture Content % vs Dissipation Factor: Third Degree Polynomial 
 

 
Moisture Content % vs Mag Complex Impedance: Straight Line 

 

Figure 65 Scatter plots showing change in electrical properties with a change in moisture content. 
Moisture content is shown on the x-axis as percent, and corresponding dielectric constant (top), 
dissipation factor (middle) and magnitude of complex impedance (bottom) are shown on the y-axis. 

Dielectric Constant: The dielectric constant is seen to rise exponentially with an increase in 
moisture content for all the samples studied. The shown curve’s y-axis is in log scale, and 
the obtained curve looks a straight line. An increase in dielectric constant by up to 700% is 
observed when moisture content is increased from 0 to 20% 

Dissipation Factor: The change of dissipation factor with changing moisture level is 
described as a third-degree polynomial. Although resembling an exponential curve, it has a 
better fit using a polynomial. The highest increase in dissipation factor was observed in the 
Basswood, where an increase of 7300% was recorded with a 20% increase in moisture 
levels. 

Complex Impedance: Impedance changes linearly with a change in moisture content. Up to 
an 86% decrease in the magnitude of the complex impedance was observed with an 
increase in moisture levels from 0% to 20% 

The Basswood and Red Oak represent some differences in the quality of data that was 
collected. For Basswood, a very smooth curve, without much noise can be observed. It is a 
low-density softwood, with very less variation in its grain. On the other hand, the Red Oak 
shows a lot of noise, with two distinct trends. Two independent streams of data can be seen. 
The discrepancy in the curves can be explainable by a loose wire connection at the point of 
attachment. At higher moisture levels, it was seen that the epoxy used to attach the wires to 
the samples did not hold well. Wires fell out easily at 25% or higher moisture levels. 

10.1.2 Correlation of Thermal Conductivity with Electrical Properties 

Thermal conductivity is shown as a function of electrical properties in Figure 66. The nature 
of the material properties interrelationships is highlighted in this figure. A clear 
understanding of these patterns can lead to precise predictions for untested materials. 
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Dielectric Constant: The natural log of the dielectric constant is plotted against thermal 
conductivity in the figure. The straight line indicates that the rate of growth of the dielectric 
constant with increased thermal conductivity is exponential.  

Dissipation Factor: The log of the dissipation factor plotted against thermal conductivity is 
seen in the graph. A third-degree polynomial can be observed here. 

Complex Impedance: Impedance is seen to decrease linearly with an increase in thermal 
conductivity. 

 

Fir / Pine Basswood Cherry Red Oak Purple Heart Wenge 

Density:  410 450 550 700 790 840 

Thermal Conductivity (x-axis) vs Log of Dielectric Constant: Linear  
 

Thermal Conductivity (x-axis) vs Log of Dissipation Factor: Third Degree Polynomial 
 

 
Thermal Conductivity (x-axis) vs Magnitude of Impedance: Straight Line 

 

Figure 66 Change in thermal conductivity as a function of change in relative dielectric constant 

The summary of the above figure can be seen in Figure 67 and Figure 68. The comparison 
of all six woods is shown here, along with their average oven dry densities. The dashed line 
in Figure 67 shows how the dielectric constant at oven-dry moisture level increases with 
increased density. Comparing Figure 67 and Figure 68 one can see how an increased 
dielectric constant is also accompanied by an increased dissipation factor and thermal 
conductivity. However, the only anomalous reading is that of the Basswood. Although 
having a lower thermal conductivity than the Fir/Pine, it has a higher density in comparison. 
For the same moisture levels, it has higher dissipation factor and dielectric constant than the 
other woods. 
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Figure 67 Thermal conductivity as a function of 
dielectric constant for all the woods measured for 
study 1. Size indicates moisture levels 

Figure 68 Thermal conductivity as a 
function of dissipation factor for all the 
woods measured for study 1. Size 
indicates moisture levels 

10.2 Experiments to Generate Test Data: Materials and Methods 

 

 
 

 
 
 

Figure 69 Test data collected for 
the experiments. Size of 
datapoint represents density (450 
– 1110 kg/m3). Color represents 
moisture content % (MC) 
 
 
 

As seen in Figure 69, the test set represented a large range of oven dry densities, and 
moisture levels. The test set consisted of ten wood, two OSB, 2 plywood and 1 MDF 
samples, totalling15 materials in all. Their density ranged between 450 to 1110 kg/m3.  Each 
material was experimentally measured to find its thermal conductivity and dielectric 
properties at approximately 0%, 10% and 20%.  

Much like the previous described study, different samples cut off from the same block of 
material were used to measure thermal conductivity and dielectric properties at different 
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moisture levels. Six samples were cut off from a single block of material. Three of these 
were reserved for the thermal conductivity measurement at 0%, 10%, and 20%, and three 
were kept for the dielectric measurement at matching moisture levels.  

10.3 Results: Predictions of Test Set Using Generated Training Data 

Once data collection was complete, some data cleaning was performed, and predictions 
were made. As seen in Figure 65 and Figure 66, the datapoints for the red oak do not 
display a regular pattern. The wire may have been loose and may not have transmitted the 
full signal each time. The readings from this set were discarded from the training set. Some 
readings from the test set also had to be discarded because of deterioration caused by 
excess moisture. 

 

 
 

 
 
Train Score: 0.93 
Test  Score: 0.74  
Within 10%:   54% 
Within 20%:   90% 

Figure 70 Predicted 
thermal conductivity vs 
true (experimental) 
values. Color bar 
indicates moisture 
content as percent 
(MC). Dashed lines 
indicate ±10% and 
±20% 

 
 

The results for machine learning to predict thermal conductivity are shown in Figure 70. It is 
clear from this graph that wood and wood-based material’s thermal conductivity can be 
predicted using electrical properties even if varying levels of moisture is present within the 
materials. By using the first set of experimental results as a training set, a set of predictions 
were generated for predicting the thermal conductivity of the second set of collected data. 
An R2 score of 0.74 was obtained between predicted values and experimentally measured 
values. About half of the predicted values fall within ±10% of the regression line (shown as 
yellow dashed line) and about 90% fall within ±20% (shown as blue dashed line). Material 
properties that were used in the feature space are the dielectric constant, dissipation factor, 
impedance and reactance at 100 kHz and dielectric constant and dissipation factor at 10 
kHz.  
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The algorithm used for the prediction was Kernel Ridge Regression, using a third-degree 
polynomial. The first difference between this algorithm and ordinary least squares 
regression in how it penalizes the size of the coefficient, as well as minimizes the residual. 
By adding a penalty to the size of the coefficients, it introduces a bias such that some 
features get more importance than the others. The second difference is the use of a kernel. 
It projects the feature space based on the defined kernel before performing the regression. 
In this case, a third-degree polynomial kernel was used. 

10.4 Dielectric Properties of Water: Feasibility of Measuring at Higher 
Frequencies. 

The frequency and temperature dependent behavior of water is shown in Figure 71 and 
Figure 72 as shown by Rusiniak [124] and Andryieuski et al [125] et al.  

 

Figure 71 Change in 
dielectric constant of water 
with increased frequency 
below 10 megahertz as 
shown by Rusiniak [124] 

 

 

Figure 72 Change in 
dielectric constant of water 
at room temperature with 
increased frequency in 
gigahertz range as shown by 
Andryieuski et al [125] 
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The figures show that the dielectric constant of water decreases with increased frequency, 
but the behavior is more complex when temperature is varied. Increased temperature may 
result increase or decrease the dielectric constant of water depending on the frequency 
range. A sharp decrease in the dielectric constant is seen up to frequency of about 100 kHz 
at room temperature, but changes slowly between 100 kHz and 10 MHz. It is considered to 
be approximately 78 in this frequency range [126]. It is seen to decrease considerably in the 
frequency range of 10 GHz and 100 GHz. 

The decreased value of the dielectric constant of water at frequencies in the gigahertz range 
indicates that the overall effect of moisture on the dielectric properties of materials would 
decrease with increased frequency. Since the presence of moisture elevates the dielectric 
properties of water significantly in the lower frequencies, it might be more feasible to 
measure at higher frequencies. 

10.5 Challenges and Sources of Errors 

Several challenges were faced while creating the test set. As soon as the samples were 
removed from the oven, they began to absorb moisture from the environment. This could be 
observed from their increasing weight. Consequently, these samples had to be placed inside 
vacuum bags to maintain their oven-dry state until ready for measurement. Similarly, 
samples with high moisture levels started to lose their moisture as soon as they were 
removed from humidity tanks. Since the process of measuring thermal conductivity takes 
more than two hours, the sample weight was recorded before and after the measurement. 
The recorded weight and moisture level at the end of the measurement was kept and shown 
as the moisture level of the sample. 

Some ways the moisture content adversely affected the material samples is shown in Figure 
73. The first image (Picture A) shows the formation of cracks in the MDF sample. Permanent 
damage to the structure of the material was seen due to the presence of moisture inside the 
material. 

 
 

Figure 73 Adverse effects 
of the moisture content on 
the samples.  

Sample A: Deterioration of 
material. B: Wires falling 
off. C: Severe discoloration. 
D: Slight discoloration and 
different wires. E: What the 
sample should look like. 
 
 

The second picture in the same figure shows how the epoxy was rendered ineffective at 
fixing the wire to the sample. The wires of several samples kept falling off, and had to be 
reattached. Picture C shows the effect of moisture on the copper conductive coating meant 
to act as an electrode for the dielectric measurements. Samples with moisture levels higher 
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than 20-25% could not be tested, because the electrodes deteriorated, and the wires fell 
out. A batch of 15 samples had to be thrown out of the sample set because of this issue. 

Picture labelled D represents the typical oven-dried sample. The predicament for the 
measurement of the sample in its oven-dry state was that painting on the electrode would 
introduce moisture into the sample because the paint is water-based. Moreover, the sample 
would absorb more moisture from the environment when placed outside, (instead of vacuum 
bags) as the paint required some time to dry. For this reason, some samples were oven-
dried with the wire and electrode in place. This way, the weight of the wire and paint could 
be differentiated from the weight of the moisture.  However, this resulted in a discoloration of 
the paint. Compared to Picture E, which represents a normal electrode, Picture D shows a 
lot of color difference. This indicated that the electrode may have reacted with the water as it 
evaporated from the sample. The quality of the electrode is thus compromised, and its 
resistance may increase, affecting the capacitance readings. Moreover, the jacket of the 
wire had to be removed before placing it in the oven, so it wouldn’t melt. This wire has a 
different capacitance than other wires, and it introduced a bias into the readings.  

 

 
 

 Figure 74 Use of two different blocks 
to collect data for dielectric properties 
and thermal conductivity resulted in 
some errors in the dataset. 

 
In this study, a single block of wood was cut up into at least five or six pieces, and each 
piece was used to measure the thermal conductivity or dielectric properties at various 
moisture levels. It was assumed that since each block came from the same bigger block, 
then their densities and hence properties would be similar. However, that is not the case. 
Each sample cut off from the bigger block varied in density because of the natural grain of 
the wood. The maximums standard deviation of the densities of individual blocks cut from 
the same bigger block was 60 kg/m3.  

As seen in Figure 74, the use of different pieces of wood introduced errors into the results. 
The two samples used to collect data related to dielectric properties had a minor difference 
in density, and so two regression lines can be seen (labelled sample 4 & 5). Moreover, three 
separate samples were used to collect data related to thermal conductivity (labelled sample 
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1, 2, 3). These differences had to be ironed out manually in the interpolation process. In 
conclusion, the result would have been more accurate if a single piece of wood had been 
conditioned to different moisture levels and measured for various material properties, 
instead of using several blocks. 

10.6 Conclusions 

Presence of moisture inside materials complicates thermal conductivity prediction. However, 
using machine learning algorithms, and including impedance in the feature space enables 
the prediction of thermal conductivity for wood and wood-based materials effectively. 

Although it felt intuitive to have separate humidity tanks, each conditioning wood at different 
moisture levels simultaneously, in the end it caused errors instead of saving time. 
Conditioning wood cut from the same block to different moisture levels saved time because 
it enabled the preparation of several samples simultaneously. However, because wood is an 
anisotropic material, each block had a slightly different density. This introduced bias into the 
test as well as training data.  
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11 Ceramics: Single and Multiple Layers  

Materials representative of brick construction and belonging to the ceramic family are 
discussed in this chapter. Brick-construction is prevalent in a large part of the world with an 
annual production of approximately 1,391 billion units of bricks [21]. Clay bricks, poured 
concrete, gypsum drywall and naturally occurring stone samples were included in this study.  

11.1 Materials 

Thirty-three material samples were included in this study. These consisted of five categories 
i.e. stone, clay bricks, concrete, gypsum drywall and multilayered materials. The four stone 
samples acquired for the study are granite, sandstone, marble and Taxila stone as shown in 
Figure 75. Seven concrete samples were poured into molds with different ratios of cement, 
sand and aggregate (see Figure 76). Some represented mortar mixes, some were made 
from high strength concrete mix, while others were poured using cement sand and 
aggregate procured from the market.  Six clay bricks baked in kilns from Lahore, Pakistan 
were acquired as shown in Figure 77. Three of these represented the A, B and C class brick 
construction. Roof tile, over burnt brick and handmade yellow brick from soft clay were also 
included. Three samples of gypsum drywall were also studied. Furthermore, fourteen 
samples were constructed by layering together brick or concrete samples with foam as seen 
in Figure 78. These represented the category of multilayered materials.  

   
Figure 75 Stones: 
granite, sandstone, 
marble and taxila stone 
(from left to right). 

Figure 76 Poured concrete samples Figure 77 Clay brick samples 

 
Figure 78 Fourteen multi-layered ceramics samples included in the study: brick+foam, 
concrete+foam, brick+concrete 

11.2 Methods 

Sample preparation is discussed in detail in Chapter 5. The experimental apparatus and 
method for measuring thermal conductivity are described in Section 6.1.2 of this dissertation 
detailing Method B. Dielectric properties were measured using the method described in 
Section 6.2. Pouring of concrete and related details are described in Section 5.5. 
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11.3 Additional Uncertainty 

Fabrication errors caused uncertainty in measurements in additional to the factors described 
in Section 6.7 of this dissertation. While the wooden samples were fabricated with much 
precision, the same could not be done for the ceramic’s samples. The ceramic fabrication 
requires shaping and cutting tools which are different from wood fabrication. While the tools 
for wood are widely available at wood shops across Carnegie Mellon, the same is not true 
for ceramic materials. Cutting, grinding and smoothing of these samples presented a huge 
challenge. Hand tools like angular grinder and rotary tools were utilized for this purpose. 
Examples of fabrication errors are shown in Figure 79.  

 
 

Figure 79 Errors in fabrication: 
presence of voids, irregular 
geometry and larger cavities to 
house thermocouples. 

The errors caused by fabrication of the ceramic family are: 

 Uneven surface and edges resulted in some inconsistencies in the measurement of 
the size of the sample. Since the dielectric properties are calculated based on the 
size of the sample, this caused additional uncertainty. 

 Ceramic is a hard material, difficult to drill into. The holes drilled into the ceramic 
samples to house the thermocouples had bigger diameters than the ones for the 
wood sample. Since there was a bigger void in which the thermocouple was placed, 
the distance between the two thermocouples could be measured with less certainty. 
The thermal conductivity measurement had additional uncertainty due to this 
imprecision. 

 Each datapoint was created by two material samples. One to measure thermal 
conductivity and one to measure dielectric properties. It was assumed that both 
pieces are identical, so that the thermal conductivity of one corresponds to the other. 
However, this assumption is incorrect. Some concrete pieces have voids, which may 
be unevenly distributed. These voids would cause both material samples to have 
different properties, and so an error was introduced into the system.  

11.4 Results: Bricks, Concrete, Gypsum and Multilayered Materials 

The density of the samples was found to be between 470 and 2100 kg/m3 for the single 
layered ceramic materials, and 700 and 1900 kg/m3 for the multi-layered ceramic materials. 
The thermal conductivity ranged from .075 to 2.16 W/m.K and the dielectric constant was 
measured to be between 1.4 and 14.1 at 100 kHz.  

11.4.1 Correlation with Density 

The correlation of density to thermal conductivity, dielectric constant and dissipation factor of 
ceramic materials was found to exponential. Whilst this relationship is best described as a 
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straight line for the wood and related products, for ceramic materials it is shown to be an 
exponential curve. Another distinguishing factor is that the correlation of density with thermal 
conductivity is seemingly stronger than that of density and dielectric constant. 

11.4.1.1 Density – Thermal Conductivity 
The R2 score for density and thermal conductivity of the studied ceramic materials was 
found to be 0.92. This correlation can be seen in the scatter plot in Figure 80. It can be 
described by the equation: 

𝜆 =  0.0069435  𝑒𝑥𝑝(0.00262506 𝜌) 
 

While the density to thermal conductivity relationship was seen to be a straight line for wood 
materials, it is seen as a curve for the ceramics. However, this may be due to a difference in 
the density range of the two studies. The range for the studied wooden materials was 700 
kg/m3, while it is 1600 kg/m3 for the ceramics study. The curve may not have been evident in 
the study related to wood, because it represented a small portion of the curve that can be 
perceived as a straight line. 

 
          

  

Figure 80 Scatter plot of density and 
dielectric constant at 100 kHz of the 
ceramics studied 

Figure 81 Scatter plot of density and 
dielectric constant of the ceramics studied 

Studies indicate that thermal conductivity of concrete is not as simple to predict from density, 
as it is for the wood and wood-based materials. In addition to density, the thermal 
conductivity of concrete depends on the mineralogical content of the aggregate, moisture 
content and conditions of compacting [127] etc. Several scientists [128–131] collected data 
related to concrete and showed an exponential relationship between density and thermal 
conductivity of concrete. These studies found the coefficient of determination for the data to 
be between 0.87 and 0.99. However, various studies present their own equations to predict 
thermal conductivity from density, which are vastly different from one another. The equations 
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are different based on whether the concrete is lightweight, admixtures used, moisture 
content and minerology. Two examples of such work are presented in Appendix E. 

Much like concrete, bricks also present a scenario where thermal conductivity is not easy to 
predict based on density. While thermal conductivity is strongly influenced by its bulk 
density, it is also dependent on firing temperature [132], pore size and distribution [133] 
mineralogical composition and microstructure [134], and additives used in the clay mixture 
[135]. Dondi et al [136] collected data related to thermal conductivity and density of clay 
bricks from literature, and conducted measurements of his own. He obtained an R2 score of 
0.42 for the correlation between density and thermal conductivity in his study. Lassinantti 
[134] showed a score of 0.54 on his collected data. The graphs from these authors are 
presented in Appendix F. 

11.4.1.2 Density – Dielectric Constant 
The R2 score for the density-dielectric constant for this study was found to be 0.74, which is 
lower than the score for density-thermal conductivity. This correlation can be seen in Figure 
81. This correlation contrasts with the wood and wood-based materials study, where 
dielectric constant had a stronger correlation with density.  

The dielectric properties of concrete is influenced by density, curing time, water / cement 
ratio, compressive strength and moisture content [137], much like thermal conductivity. It 
decreases with an increased curing time [138], and increases with an increased moisture 
content or water / cement ratio [139]. The dielectric constant of concrete is also known to 
decrease with increased frequency [140]. Dielectric properties of clay bricks have not been 
well studied. The few studies conducted on the subject matter indicate that the dielectric 
constant of clay bricks increases with increased moisture content and decreases with 
increased frequency [141,142]. It also increases with an increase in temperature at which 
the bricks are fired [143].   

11.4.1.3 Density - Dissipation Factor 
 

 

 

 

 

Figure 82 Scatter plot of density and 
dissipation factor at 100 kHz for the 
ceramics 
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The correlation of density with dissipation factor of ceramic materials can be seen in Figure 
82. While most datapoints fall easily into the regression curve, a few exceptions are easily 
identifiable. The samples made of gypsum drywall material and plaster of paris show a high 
dissipation factor, which may be attributed to their high moisture content. The sample of 
mortar mix and handmade yellow brick also exhibit higher dissipation factor, distinguishing 
them from the rest of the samples. On the other hand, the multilayered samples with a layer 
of insulation material can be observed to have a very low dissipation factor. Since insulation 
material has no moisture content, the overall dissipation factor for these materials is lower. 

11.4.2 Correlation of Thermal Conductivity with Dielectric Properties 

Correlation of thermal conductivity of the studied samples, with their dielectric constant and 
dissipation factor is shown in Figure 83 and Figure 84 respectively. The R2 score is 0.92 and 
0.27 is obtained. Although the graph between thermal conductivity and dissipation factor 
does not show a strong correlation, material properties like moisture level and density are 
evident from the graph. 

 
        

  
Figure 83 Correlation of thermal 
conductivity and dielectric constant at 100 
kHz 

Figure 84 Correlation of thermal 
conductivity and dissipation factor at 100 
kHz 

Thermal conductivity was predicted using dielectric constant and dissipation factor at 100 
kHz with a gradient boosting algorithm. These predictions are shown in Figure 85. The 
shown graph represents a leave one out validation, where the shown data points are the 
result of the held-out set. The predicted value of the held-out set is plotted against the true 
value found by experimentation. An R2 score of 0.98 is achieved, where half of the samples 
fall within ±10% of the regression line, and 80% fall within the ±20% of the regression line. 
Fewer of the multi-layered materials are predictable because the uncertainty in 
measurement is higher in the lower range of thermal conductivity. Prediction quality may be 
improved with more data. 
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Figure 85 Predictions using Gradient 
Boost Regressor. R² Score: 0.98, 
Predictors: Dielectric constant and 
dissipation factor at 100 kHz 

 

11.5 The Case of Naturally Occurring Stones 

Four stones were considered for this study. These ae granite, sandstone, marble and Taxila 
stone as seen in Figure 75. Figure 86 shows their correlation between dielectric constant at 
100 kHz and thermal conductivity. It also shows how the stone samples compare with the 
rest of the ceramic samples described in the previous section. While granite, marble and 
sandstone present minor anomalies, the Taxila stone’s readings deviate from the pattern 
significantly. The stones have similar densities, but their dielectric constant seems 
anomalously higher or lower. However, looking at Figure 87, it can be observed that marble, 
granite and sandstone have a comparatively low dissipation factor accounting for the lower 
dielectric constant. The Taxila stone has a phenomenally higher dissipation factor, 
accounting for the significantly higher dielectric constant. The dissipation factor indicates the 
presence of moisture content or highly electrically polarizable minerals. 

          
 

 

   
Figure 86 Stone 
correlation for dielectric 
constant vs thermal 
conductivity 

Figure 87 Stone 
correlation for density vs 
dissipation factor 

Figure 88 Stone 
correlation for density vs 
thermal conductivity 
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As shown in Figure 88, the Taxila stone has an anomalously low thermal conductivity given 
its density. This might be explainable by the anisotropy of the material. The stone is made 
up of several layers, some colored differently than others. See Figure 89 for a picture of the 
stone where its veins are visible. The measurements were taken in the transverse direction, 
perpendicular to the grain. If the thermal conductivity measurement was to be taken in the 
direction parallel to the grain, the reading is likely to be significantly higher. 

 
 

Figure 89 The Taxila stone is anisotropic and 
has veins of variable thickness running 
through it 

11.5.1 Frequency Sweeps with NanoVNA 

A VNA (vector network analyzer) is an instrument which measures network parameters of 
an electrical network. It is used to measure the scatter parameter of electrical circuits at 
radio frequency range and higher. If the radio frequency circuit parameters are estimated 
correctly, then it can be used to estimate impedance, which is directly proportional to the 
scatter parameters [144]. A frequency sweep between 25 kHz and 30 Mhz using one port 
VNA reflection measurement is shown in Figure 90. This measurement was performed using 
a new model of VNA’s on the market, called nanoVNA. While a VNA may cost thousands, 
up to a million dollars, this model offers promising results at a low budget. However, its 
accuracy has not been verified through scholarly endeavors yet. 

 

 

Figure 90 Frequency Sweeps with NanoVNA. Numbers to the right 
represent average % change in dielectric constant between 10 
kHz and 100 kHz as measured by LCR meter 

Figure 91 Effect of changing 
frequency on the correlation 
of thermal conductivity and 
dielectric constant 
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As illustrated in Figure 90, the Taxila stone registers a sharp drop in capacitance (and hence 
the dielectric constant) when measured in the Megahertz range. Based on the current 
pattern, its capacitance is likely to continue to decline at higher frequencies, before it 
stabilizes at around 1 GHz. All previous experimental measurements of this thesis were 
conducted at 10 and 100 kHz. The shown measurements of Figure 90 are higher, up to 20 
Mhz. Other ceramic materials also register a drop in capacitance in this frequency range. 
However, it is a minor decline in comparison.  

The notion that the dielectric constant drops drastically with increased frequency, is 
reinforced by the results of the LCR Meter. The LCR meter is accurate at 10 kHz and 100 
kHz. The results of these readings are also given in Figure 90. These suggest that while 
other ceramics’ dielectric constants register a drop of approximately 56% or lower, the 
measurement for the Taxila stone registers a huge 522% drop between 10 and 100 kHz. A 
study related to poplar wood also points out that material with a high moisture content is 
marked by a rapid decline in its dielectric constant with an increased frequency [145].  

The rapidly changing capacitance of the Taxila stone suggests that its thermal conductivity 
may be accurately predicted at higher frequencies in the mid-Megahertz or the Gigahertz 
range. See Figure 91. At a higher frequency it will fall in line with the rest of the ceramics 
without breaking away from the pattern. 

11.6 Conclusions 

 Unlike wood, the thermal conductivity of clay bricks and concrete is not easily 
predictable using density and moisture content. Dielectric properties offer a superior 
solution to the problem. 

 While most ceramics could be reliably predicted using the dielectric constant and 
dissipation factor at 100 kHz, the characterization of stones presented additional 
challenges. The suitability of higher frequencies to measure dielectric properties was 
identified. It was seen that the pattern is not clear at 100 kHz, but these irregularities 
iron out in the mid Megahertz range or higher.  

 An interesting case of the Taxila stone was studied, which has a significantly low 
thermal conductivity given its density. However, it is concluded that this anomaly can 
be contributed to the anisotropy of the material. If measured parallel to the grain, a 
higher thermal conductivity is likely to be found. 

 The anomalously higher dielectric constant and dissipation factor of the Taxila stone 
at 100 kHz may be attributed to mineral content which is highly electrically 
polarizable, or a high moisture level. The rapid decline in the dielectric constant in 
the Kilohertz range was observed, which could help characterize the stone’s material 
properties. 
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12 Summary of Conclusions and Future Work 

12.1 Consolidating all Experimental Studies: Can Concrete Learn from Wood? 

This section demonstrates that even if the family of a construction material is unknown; it is 
still possible to predict its thermal conductivity based on its dielectric properties. This 
conclusion follows from the reasoning that if the same set of equations can predict all 
material types, then any sample’s thermal conductivity can be predicted regardless of its 
density, moisture content and family. In previous chapters the results of various sets of 
experiments were illustrated, but each set of materials correlations were shown independent 
of other materials. This section uses the data collected from all experiments and focuses on 
an analysis which shows that even when the exact contents of a construction wall are 
unknown, its thermal conductivity can still be accurately predicted. 

While the question of whether plastic can learn from wood was addressed in a previous 
chapter (Section 4.2), this Section asks the relevant question of whether concrete can learn 
from wood and vice versa using machine learning. It is demonstrated using the graph in 
Figure 92 that this is indeed possible. This graph shows the results of predicting thermal 
conductivity of materials belonging to the wood-frame construction as well as the ceramic 
based construction. The predictive model is trained on data from both the material types to 
get a result where the R2 score is 0.99. 64% of the predicted datapoints lie in the ±10% 
accuracy range, and 90% lie in the ±20% accuracy range. 

 

 
Within 10%:   61%  
Within 20%:   90% 

Figure 92 Prediction of thermal 
conductivity of ceramics and wood-
based materials using the same 
regressor. 

Shown datapoints are results of the 
held out set in a leave one out 
validation. Algorithm used is 
Gradient Boost Regression using 
Python’s Scikit Learn library. 

 
Figure 92 shows the results of leave one out validation where the predicted values of the 
held-out set are plotted against the true value found by experimentation. The feature space 
contains three material properties. These are the log of, each of, the dielectric constant, 
dissipation factor and magnitude of the complex impedance. The algorithm used is a 
boosting algorithm called gradient boosted decision tree. This specific algorithm was chosen 
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because it is the best performing algorithm as seen in the analysis performed on the dataset 
related to existing literature (see Chapter 4). The data collected from existing literature 
served as the validation set, where the hyperparameters were finetuned and a predictive 
model was built. In this way, a dataset distinct from experimental data was used to build, 
evaluate and fine tune the predictive model. This method enabled an unbiased estimate of 
the model’s effectiveness, thereby avoiding the bias which would have resulted if the model 
had been built on the experimental data. 

A study of the results shown in Figure 92 suggests that wood and concrete can be predicted 
using the same regression equations. The used data contains datapoints from the wood and 
wood-based single layer and multiple layers, as well as the results from the ceramic single 
and multiple layer experiments with a few exceptions. A few datapoints were excluded from 
this dataset and are expected. These are expected to map well at higher frequencies. The 
cleaned outliers are the materials like the four stones belonging to the ceramic family as 
mentioned in Section 11.5 etc. Further it does not include the materials from the wood 
moisture study. Datapoints related to the stone, ceramic and the wood at 10% moisture 
content have been plotted in Figure 93 and Figure 94. The materials from the wood multi-
layer experiment have also been plotted here for the sake of comparison. 

 
 

    

Figure 93 Dielectric Constant at 10 kHz 
(left) and 100 kHz (right) plotted against 
thermal conductivity  

Figure 94 Dissipation Factor at 10 kHz 
(left) and 100 kHz (right) plotted against 
thermal conductivity  

Figure 93 and Figure 94 show a comparison of dielectric properties at 10 kHz and 100 kHz. 
In Figure 93, it can be seen that the dielectric constant of the moist wood (green circles) at 
10 kHz is more scattered, but these start to pull back at 100 kHz. Similarly, in Figure 94 the 
dissipation factor of the moist wood seems to shrink back, while that of the wood multiple 
layer materials seems to move forward. The dissipation factor for the multilayered materials 
seems a more unified line at 100 kHz. The same is true for the stone for both the dielectric 
constant and dissipation factor. In contrast, the wood multilayered materials which have a 
very low moisture content are not seen to have any significant change in dielectric constant 
between 10 and 100 kHz. The continuously changing behavior of the materials over a 
change in frequency is thus demonstrated in these graphs. This trend is expected to 
continue into higher frequencies, and the trend is confirmed by the results of the NanoVNA 
as shown in Figure 90 of Section 11.5.1.  

The shown trend points to a potentially stronger one-on-one correlation between thermal 
conductivity and dielectric properties at higher frequencies in the Megahertz and Gigahertz 
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range. It is observed that materials with a high moisture content have a significantly higher 
rate of decrease in dielectric constant with an increase in frequency. On the other hand, 
materials with low moisture levels exhibit a modest decrease in their dielectric constant. It is 
speculated that these datapoints will line-up at a higher frequency. Consequently, this will 
lead to a higher accuracy in predictions.  

12.2 Significance of Work 

It is concluded from the experiments of this thesis, that enough information is encoded in the 
dielectric properties of materials, to accurately predict thermal conductivity. The proposed 
method to compute thermal conductivity is superior to any other currently used method for 
measuring thermal conductivity in-situ. A summary of key benefits of using this method and 
the significance of work is given below: 

 Removal of Reliance on Environmental Conditions: The measurement of 
dielectric material properties is free from restrictive environmental conditions. Other 
measurement methods rely on environmental conditions like the need for a 
temperature difference of at least 10°C between indoors and outdoors. In some 
cases, cloud cover, wind speed, presence of heat generating objects inside the 
building contribute can lead to inaccuracies. This means that measurements through 
steady state conditions may not be achieved during the summers or for freely 
ventilated buildings. However, the climate is not a factor if measuring the dielectric 
material properties. 

 Short Measurement Time: Removing the need to create steady state conditions 
would drastically reduce measurement time from up to a month to less than an hour.  

 Readily Available Technology: Any technology used to measure dielectric 
properties may be used for predicting thermal conductivity of materials reliably. The 
technology to measure dielectric properties of architectural walls is already 
developed, well-practiced and readily available. It could be used to make thermal 
conductivity measurements without the additional work to develop new tools. 

 Potential for a Cost Effective Gadget for Lay Use: There are methods to measure 
relative permittivity, which range from expensive and technical to inexpensive and 
easy [146]. There is potential to develop a gadget which is easy to operate for the lay 
person. This would remove the technical aspect of the measurement, bringing it to 
the non-technical person. 

 Unique Dataset: As yet, the relationship between thermal conductivity and dielectric 
properties of construction materials has not been systematically studied. The 
considerably large dataset generated by this thesis is of immense value, because 
statistics of this nature are not available. The data can be useful for material science 
engineers whose work concerns analysis of material properties in a computational 
way. 

 Acceptable margin of error: The uncertainty of the proposed method is comparable 
to existing methods of measurement. The heat flow meter method as described by 
the ASTM is attributed to have an expected error between 11% and 28%  [27] 
depending on the environmental conditions. For thermography, the expected error is 
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between 5% and 200% [4,96–98]. In both cases the error is reduced if the 
environmental conditions are more conducive for the measurement. The proposed 
measurement method is independent of environmental conditions and shows 
promise of error margins within ±20% with potential for further reduced error with 
more data collection and better quality data collection.  

 Potential for predicting thermal conductivity of materials regardless of material 
type or moisture content (Possible with additional work): It was demonstrated in 
the previous section that a unified set of parameters for regression can be defined 
which can predict materials from both wood-frame and ceramic based construction. 
This implies that a material’s thermal conductivity can be predicted even if the 
contents of a construction wall are unknown. While a potential future gadget could be 
calibrated to be more accurate towards a set of material types, it could also be 
workable if the material type is left unspecified. But it was also seen that this might 
be possible if data related to dielectric properties could be gathered at higher 
frequencies. 

For a comparison of the proposed method for predicting thermal conductivity with heat flow 
meter method and thermography, see Table 5, which is presented in Appendix G. This table 
presents a summary of the advantages and disadvantages of the main methods of 
measuring in-situ thermal conductivity and how they compare with the approach presented 
in this thesis. 

12.3 Summary of Conclusions from all Experiments 

This work demonstrates that thermal conductivity can be predicted by measuring the 
dielectric properties of building envelopes in-situ. The data gathered in this thesis is useful 
for prediction, given that the family of the material under study is known. Summary of 
Conclusions from all experiments is listed below: 

Wood and Wood-Based Materials: Single Layers: The results of the experiments show a 
strong correlation between thermal conductivity and the relative dielectric constant. The 
potential for predicting thermal conductivity using dielectric material properties was 
demonstrated.  

Sound: Data collection related to sound is tedious and time consuming with high 
uncertainty. Predictions using dielectric properties were found superior, and so this metric 
was dropped from future experiments. 

Wood and Wood-Based Materials: Multilayers: Thermal conductivity for multilayered 
materials was predicted from dielectric properties effectively. This implies that that contact 
resistance does not distort the correlation in significant ways. Suitability to use of dielectric 
properties to predict thermal conductivity of cavity walls was identified.  

Ceramics: For the ceramic family, the suitability of using dielectric properties at higher 
frequencies to predict thermal conductivity was identified. Rate of change in dielectric 
properties, with a change in frequency was identified as having a strong potential to identify 
moisture content. This metric was also identified as having a strong potential as an 
additional metric for predicting thermal conductivity. 
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Moisture Studies: Presence of moisture inside materials complicates thermal conductivity 
prediction. However, using machine learning algorithms, and including impedance in the 
feature space enables the prediction of thermal conductivity for moist wood and wood-based 
materials effectively. 

Unified Approach: In the final chapter of conclusions, it was demonstrated that a unified set 
of regression parameters could be specified, so that all construction material’s thermal 
conductivity could be predicted from its dielectric properties using the same regressor. The 
advantage of such an approach is that thermal conductivity can be predicted even if the 
contents of a construction wall are unknown.  

12.4 Future Work 

While much has been achieved in this study, a viable gadget predicting thermal conductivity 
for in-situ walls still requires significant work. Future work is to have two streams. The first is 
for further data collection, and the second is for development of the gadget. These are 
described in the following sections. 

12.4.1 Data Collection 

While the collected data suggests clear correlations, more experimental data would increase 
the accuracy further. Future data collection is to focus on two things: 

 Future data collection is proposed to be on multilayered materials having layers in 
the ratio, which is expected to be found in modern day construction. While several 
material samples were studied as multi-layered systems, these were not layered in 
realistic proportions. Study of materials as close to real life situations would give 
better predictability of thermal conductivity of existing buildings. 

 Data collection to be targeted towards the range of thermal conductivity which is 
expected to be found in the buildings that are meant to be measured.  

 Data collection to be geared towards materials more commonly, used in 
construction. While many materials related to wood-frame and ceramic based 
construction were studied, a lot of effort went into the study of solid wood. Study of 
the behavior of solid wood enabled establishing the correlation, however, high 
density solid wood is not part of building construction. Further studies are to focus 
only on the wood species which are commonly used in the construction industry. 

 The potential for a better-quality correlation was identified in studying dielectric 
properties at higher frequencies. Due to certain limitations, work could only be 
conducted for 10 kHz and 100 kHz frequencies for this thesis. This short fall needs to 
be addressed in future work by measuring materials at higher frequencies. 

12.4.2 Development of Device 

Future work entails development of a gadget which can output thermal conductivity values 
by measuring dielectric properties of walls in-situ. Future work is to have three workable 
components. One being the reader, which can make the dielectric measurement. The other 
must be its processing power, which can translate the measured dielectric properties into 
thermal conductivity. The third component is the interface meant for the user to interact with 
the device. 
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Reader: Several technologies have been used in the past to measure dielectric properties of 
walls of buildings. These devices include radars, GPR systems and VNAs. A VNA works by 
measuring the scatter parameter of a sent and received signal. Several researchers have 
used a free space transmission technique using horn antennas connected to a VNA for 
dielectric measurement [141,144,147]. In this system, an antenna is placed at a short 
distance from the target wall to send a signal, and a second antenna is placed on the 
reverse side to receive the signal. Others have used patch antennas, which may be applied 
directly to wall under measurement. Lazaro developed a chipless dielectric constant sensor 
for characterizing civil materials [148]. While the technology for measurement of dielectric 
properties of construction materials and walls is well developed and easily accessible, the 
most viable option for the proposed gadget still needs to be explored. 

Processing: Advanced machine learning techniques may be explored to improve results for 
future work. If enough data relevant to the project has been gathered, then a model needs to 
be developed which can output predictions of thermal conductivity. While this thesis has 
demonstrated several models to predict thermal conductivity, additional data would require 
additional work in this regard. Thus far the feature space only consisted of two to five 
columns and the predictions were based on a single frequency. If data is collected for a 
range of frequencies, then doing so would change the structure of the predictive model.  

Interface: The future work for a device is to include an interface for the user to interact with. 
The true power of the project is in developming of a device designed for a lay person who 
can use it successfully without much formal training. An important component of future work 
must be towards taking the gadget to the non-technical person, to make the measurement 
ubiquitous, user-friendly and accessible. 
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Appendix A 

Comparison of various mathematical models for the length of time (in days) needed to 
calculate thermal conductivity during various seasons as shown by Deconinck et al [6] 
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Appendix B 

A page from the ASHRAE Fundamentals 2013 (Chapter 26) showing material properties, 
and their sources. A lot of sources predate 1989 (approximately 50%) and most are based 
on work by a single scientist [43]. 
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Appendix C 

Results by Mielke et al showing Cross plots of thermal conductivity and compressional wave 
velocity of all tested rock types at dry condition [72]. 
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Appendix D 

* 0- Plastic, 1-Wood, 2-Wood Derivatives 

  

Table 4 Sources used for data collection for analysis described in Chapter 4 

No. Ref. Reference 
Number 
of Data 
Points 

Material 
Studied* 

Property 

1 [149] (Material Properties, 2018) 6 0 All 
2 [150] (Quadrant Plastics, 2018) 26 0 All 
3 [151] (Professional Plastics, 2018) 44 0 All 
4 [152]  (Laminated Plastics, 2018) 54 0 All 
5 [153] (Sahin H. K., 2009) 4 1 Dielectric 
6 [69] (Sahin & Ay, 2004) 36 1 Dielectric 
7 [119] (James, 1975) 64 2 Dielectric 
8 [68] (Torgovnikov, 1993) 324 1 Dielectric 
9 [154] (Suleiman, Larfeldt, Leckner, & 

Gustavsson, 1999) 
3 1 Thermal 

10 [153] (Sahin H. K., 2009) 4 1 Thermal 
11 [155] (Jankowska & Kozakiewicz, 2014) 4 1 Thermal 
12 [156] (Kettunen, 2006) 5 1 Thermal 
13 [157] (Goss & Miller, 1992) 6 2 Thermal 
14 [158] (Vay, De Borst, Hansmann, Teischinger, 

& Muller, 2015) 
9 1 Thermal 

15 [159] (Kawasaki & Kawai, 2006) 12 2 Thermal 
16 [160] (Pralat, 2015) 12 1 Thermal 
17 [161] https://srdata.nist.gov/ NIST US dept of 

commerce 
41 2 Thermal 

18 [54] (Cardenas & Bible, 1987) 547 1 Thermal 
19 [162] (Zhou, Zhou, Hu, & Hu, 2013) 12 2 Thermal & 

dielectric 
20 [163] (Bucur, Handbook of Materials for String 

Musical Instruments, 2016) 
 1 Velocity 

21 [164] (Barkas, Hearmon, & Rance, 1953) 6 1 Velocity 
22 [93] (Kollman & Cote, 1968) 7 1 Velocity 
23 [165] (Bachtiar, Sanabria, Mittig, & Niemz, 

2016) 
8 1 Velocity 

24 [166] (Han, Wu, & Wang, 2006) 14 2 Velocity 
25 [167] (Roohnia, 2016) 17 1 Velocity 
26 [168] (Yang, Yu, & Wang, 2015) 36 1 Velocity 
27 [169] (Bucur, Springer Series in Wood 

Science: Acoustics of wood, 2006) 
73 
 

1 Velocity 

28 [170] (Ozyhar, Hering, Sanabria, & Niemz, 
2013) 

6 1 Velocty 

  TOTAL 1380   
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Appendix E 

              
Figure 95 Ganjian's work on thermal conductivity of concrete and its density 

 
Figure 96 Asadi’s [115] data and equation for the correlation of density and thermal conductivity for 
lightweight concrete 
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Appendix F 

Work of scientists to correlate thermal conductivity with density of clay bricks. Very low 
scores for linear regression are shown. 

 R2 = 0.419 
Figure 97 Correlation of bulk density and thermal conductivity of clay bricks as shown by Dondi et 
al [136] 

  R2 = 0.54 
Figure 98 Correlation of bulk density and thermal conductivity for clay bricks as shown by 
Lassinantti et al [134] 
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Appendix G 

Table 5 Advantages of using the computational approach to thermal conductivity as proposed in 
this thesis over other commonly used methods 

 Heat Flow Meter 
Method 

Infra-red 
Thermography 

Computational 
Approach 

Environmental 
Conditions 

Requires steady state 
conditions. Needs 
temperature difference 
of at least 10°C 
between indoors and 
outdoors 

Requires steady state 
conditions. Needs 
temperature 
difference of at least 
10°C between indoors 
and outdoors 

None 

Weather 
bound 

Need for temperature 
difference implies that 
freely ventilated 
buildings cannot be 
measured in summers 

Affected by cloud 
cover, wind speed, 
temperature, building 
occupancy. Freely 
ventilated buildings 
may not be measured 
in summers 

None 

Ease of 
measurement 

Requires advanced 
technical knowledge 
and training 

Requires advanced 
technical knowledge 
and training 

Potential for 
development of non-
technical device 

Bulky 
equipment 

No Yes No 

Cavity Walls Yes No Yes 

Ceramic / 
Heavy Walls 

Yes No Yes 

Measurement 
Time 

3 days to 30 days Few hours to 3 days Less than an hour 

Expected 
Error 

 

11% to 28% [27]. 

Improves with better 
environmental 
conditions 

5% to 200% [4,96–98] 

Improves with better 
environmental 
conditions 

Up to ±20% 

Can improve with 
more data and better 
quality data 

Cost effective 
Ranges from 
inexpensive to high 
end.  

Expensive 
Ranges from 
inexpensive to high 
end 

 


