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Abstract

Record linkage is the process of identifying records corresponding to unique entities across data sets. Linking

individuals in historical data allows researchers to better characterize topics like population mobility, impact

of local/national events, and generational changes. Historians in Ireland are currently interested in linking

the recently released 1901 and 1911 census record databases. Like with many (historical) record linkage

applications, there are challenges arising from the digitization of hand-written records, high frequencies

of common names, and human mobility. Traditional methods struggle with these issues, and it is often

acknowledged that specific sub-populations (e.g., women who change their names, individuals who move

between census dates) are linked with lower accuracy. Additionally, these methods often consider only

pairwise record comparisons without incorporating household or relationship information across records.

Furthermore, development and assessment of supervised record linkage methodology often relies on labeled

data sets with unknown label quality.

To help address these challenges, we designed a record linkage interface to study the impact of the human

labeling process on the full record linkage pipeline. Via this interface, workers not only link records at the

individual level but also at the household and within-household level, matching 1901 Ireland census records

to their (potential) 1911 counterparts. In addition, we collect multiple instances for each label to assess

label uncertainty. Our work capitalizes on this label collection process as well as known historical changes

and the data’s household structure. We find evidence that models incorporating this information better link

hard-to-match populations.

Beyond linking the actual records and households, we collect information about how the labeler interacts

with the interface (e.g., time spent, click patterns), providing rich information across labeler populations.

Our approach was iteratively adapted to balance worker engagement, label quality, and monetary expenses.

We find differences in downstream record linkage model performance based on changes in label generation

and argue that it is critical to pay attention to these changes when labeling records or building models

with pre-existing data. Data about the crowdsourced individual and household matches, the human labelers

(from both CMU and Amazon MTurk), and the overall labeling process will be made publicly available. We
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hope this data and our resulting insights prompt new areas of research within and beyond the record linkage

community.
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Chapter 1

Introduction

1.1 Early 20th Century Ireland

The early 20th century was a time of transition in Ireland, from religious reformation to the growth of cities

[41]. Historians and scholars alike are particularly interested in changes in demographics, family structure,

mobility, and the effects of world events across time. This is typically studied manually with the use of

archival records and historical documents. However, recently the National Archives of Ireland transcribed,

digitized, and publicly posted the country’s original 1901 and 1911 census records as the respective 100

year embargoes expired (available at www.census.nationalarchives.ie/ [42]). This process has, in turn,

increased the accessibility of these records to the public and created a great opportunity for their study.

Figure 1.1: William Gossett, 1901 (left) and William Gosset, 1911 (right)

The Irish Census online database contains both the original records (Fig. 1.1) and their transcribed

machine-readable counterparts (Table 1.1). In Fig. 1.1, we see the 1901 and 1911 census record for the

household of William Gosset, the English Statistician best known for his development of the Student’s t-

distribution [44]. In the 1901 record (left) we see Gossett (misspelled) with other brewers and servants. In

1

www.census.nationalarchives.ie/


1901
Surname Forename Age Birthplace Relation to Head Occupation
Case Thomas 30 England Head of Family Brewer
Arthur Jackson 26 England Boarder Brewer
Gossett William 24 England Boarder Brewer
Geoffray Phillpotts 24 England Boarder Brewer
Goodwin Maria 47 Queen’s Co Servant Cook/Servant
Cregan Rose 22 Co Meath Servant Servant
Gorman Mary 41 Co Louth Servant Servant

1911
Surname Forename Age Birthplace Relation to Head Occupation
Gosset William Sealy 34 England Head of Family Brewer
Gosset Marjory Surtees 31 England Wife
Gosset Isaac Henry 4 England Son
Gosset Marion Bertha 2 Co Dublin Daughter
Gosset Ruth Helen Co Dublin Daughter
Gosset Agnes Sealey 59 England Mother
Connolly Elizabeth Agnes 25 Co Wicklow Servant Servant/Parlourmaid
Gorgory Rosanna 26 England Co Dublin Cook/Servant
McKenna Marie Eleanor 30 Dublin City Nurse Nurse

Table 1.1: Original William Gosset(t) records transcribed and published online in the National Archives
of Ireland.

the 1911 record (right) we see his immediate family, as well as servants and a nurse. An unusual feature of

the Ireland Census is that household location is defined by a person’s actual physical location on the stated

census day at a pre-defined time. So households can and do include people who do not consistently live at

that address (e.g., servants, visitors)∗. In addition to name and relation to head of household, the record

includes fields like religion, education, age, gender, occupation, and birthplace. The data are recorded at

the household-level, meaning that individuals who were at the same physical location on the census day are

recorded with the same household ID as everyone else at that location. The 1911 form (but not the 1901

form) also includes marriage status and information about children birthed. For every woman who has had

a child, the record includes the total number of children birthed and the total number of children alive at

the time of the census.

∗This creates an additional challenge in that some individuals are double counted in multiple locations, and we can imagine
that there may be systematic patterns to this duplication. Deduplication within a dataset is another area of record linkage and
could be applied here as well[14]. But, we leave deduplication within the census years for future work.

2



Figure 1.2: Ireland Census Database search box (left) and results (right). Notice that we do not find the
William Gosset when we search for ‘gosset’ in 1901. This is because William Gosset’s last name in 1901 was
recorded as ‘Gossett’ with two ‘t’s’ instead of one.

Figure 1.3: Ireland Census Database search box (left) and results (right). William Gosset appears as the
first record when we search for the term ‘gosset’ in 1911.

Irish historians currently utilize the existing digitized Irish Census Data base (Fig. 1.2) to extract and

link information across the two census years, but there are limitations to this search mechanism [42]. For

example, the use of exact-match only search parameters do not make allowances for “fuzzy matching” that

would identify transcription or spelling errors. We see an example of this in Fig. 1.2 where the database does

not find the correct William Gosset record as a possible matching 1901 record. His record is found when we

search the same keyword in 1911 (Fig. 1.3). This limitation further complicates the linkage process if names

or addresses have changed (e.g., (re)marriage or household moves). The search results are also not ranked,

and historians tend to search one-by-one for potential links, which is an extremely time-consuming process

[46].
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The 1901 Irish population has 3.2 million people and this drops by about 80,000 over the next 10 years

(the 1911 population is about 3.1 million). This drop in population is in part due to the combination of

increased emigration out of Ireland and reduced immigration into Ireland. It is estimated that 399,065 Irish

immigrated to the United States between 1901 and 1910 [56]. Another source cites as many as 4.5 million

immigrants from Ireland to the US between the years of 1820 and 1930 [40]. Therefore, due to immigration

and emigration in addition to births and deaths, we are aware that there will be 1901 records that do not

have a matching 1911 record.

Our data is composed of counties (similar to United States counties) and the counties are further composed

of electoral divisions (DEDs) which are composed of town streets. A population map of our data (from 1901)

is shown in Fig. 1.4 (left) and a historic map of how County Carlow is divided is shown in the lower right of

the image on the right.

Figure 1.4: Ireland (left) is composed of counties which are composed of local administrative units called
District Electoral Divisions (DED). County Carlow is shown on the right.

There are challenges that make linking the 1901 Irish Census to the 1911 Irish Census difficult, and the

current data base is not set up for record linkage. Therefore, one thesis goal is to show the benefits of using

statistical record linkage methodology to link the data.

1.1.1 Introduction to Record Linkage

Building upon the William Gosset example, we could compare the following two individuals (Table 1.1) and

ask: Is the William Gosset in 1901 the same as William Sealey Gosset in 1911?
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Year Surname Forename Age Birthplace Relation to Head Occupation
1901 Gossett William 24 England Boarder Brewer
1911 Gosset William Sealy 34 England Head of Family Brewer

From just the data above in Table 1.1, it seems likely that these individuals are the same person. But if

we somehow knew that the name “William Gosset” was an extremely common name, or that being a brewer

was a common occupation, we may not be so certain, especially given that there are no other common

members across the two households (Table 1.1). Hand examining each record pair would be an impossible

task. As such, we turn to statistical record linkage methodology to generalize matching records at a larger

scale.

Record linkage is the process of identifying records corresponding to unique entities (e.g., individuals,

companies) across data sets that do not have a unique identifier (e.g., Social Security Number, student

ID). Often, record linkage approaches are classified as either deterministic or probabilistic. Deterministic

approaches link records based on the number of exact matching features across the records[58]. Probabilistic

record linkage, on the other hand, assigns weights to the feature comparisons and outputs a probability that

the records match[20]. Probabilistic approaches typically outperform deterministic ones[58].

Often, statistical, probabilistic record linkage approaches follow a similar pattern, as shown in

(Fig. 1.5)[13]. Records are first cleaned and standardized (if necessary) and then blocked† (if necessary)

to reduce the number of comparisons. Pairs of records not in the same block are assumed to be non-matches.

Then, pairs of records are compared within blocks using standard string/field similarity metrics (e.g., exact

matching). Once pairs are compared, we can build statistical models to predict matching and non-matching

pairs. If we wish to label pairs of records, we can set a cutoff and declare any pair that has a high enough

predicted probability as a match. Otherwise, if we wish to provide a unique ID for each original record

we will first need to resolve any transitivity issues (e.g., if A matches B and B matches C, then A should

match C) if necessary by clustering, or some other heuristic approach [59]. We would finally assign unique

identifiers to the individual records (that are shared across the two years).

Blocking

When looking for the (potential) 1911 matching record for a particular 1901 record, we could compare

the 1901 record of interest to every 1911 record to find the one with the highest similarity. But, this is

computationally very expensive (we’d need to make trillions of comparisons) and unnecessary (there is no

need to compare “John Dalton” from Dublin to “Mary Murphy” from Limerick due to the dissimilarity

of these records). Therefore, it is common in record linkage to block (partition) the data set into subsets

of similar records and then only make comparisons within that subset[52]. For example, we may only

†Blocking is the process of partitioning data into similar subsets and only examining / comparing records within those
subsets. Records across blocks are not compared. This is discussed further in the following Section (1.1.1)

5



1901 Data
one row = one record

1911 Data
one row = one record

block 1

block m

block 1

block m

block 1

block m

block 1

block m

Comparison Data
(one row = one record pair)

Classify record pairs;
resolve intransitivity

1901 Data
w/ shared IDs

1911 Data
w/ shared IDs

block block

compare compare

classify

Figure 1.5: Flowchart of a common record linkage approach.

compare “John Dalton” from Dublin to men whose first names start with “J” and last names start with

“D” within some geographic radius of Dublin. While there are many benefits to blocking, there are also

downsides. Blocking introduces false negative errors (that can often not be recovered) because you cannot

match individuals who were never compared.

Blocking is an often inevitable pre-processing step of record linkage. The blocks can be completely

independent (e.g., we only compare individuals who have the same first letter of their first and last name) or

can be made within non-independent passes (e.g., we compare individuals who match on first name or first

letter of first and live in the same city). Blocks can also be learned via machine learning approaches[38][9].

There are numerous blocking approaches with benefits and costs to each[52]. In [7], blocks are creating using

the Year of Birth and the Soundex code for Last Name. [8] uses first letter of first name and first letter of

last name. Regardless of blocking approach, it is important to clearly state any blocking decisions[29].
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Comparing individual records

When comparing two records to determine whether they refer to the same unique entity (i.e., match), we

commonly analyze the similarity of the fields (e.g., first name, last name, age). Each field-pair (e.g., first

name of record 1 to first name of record 2) is then assigned one, or multiple, metrics that represent the

similarity between the entities. Common text string field similarities include the Jaro-Winkler (JW) [64]

or phonetic similarity (e.g., Soundex [2]). Common numeric field similarities include absolute (numeric)

difference (to capture numeric change) as well as string similarity metrics (to capture transcription error).

For example, a comparison of William Gossett 1901 vs. William Sealey Gosset 1911 might give:

Surname
Jaro-Winkler

Surname
Soundex

Forename
Jaro-Winkler

Age
Absolute Diff

Occupation
Jaro-Winkler

True
Match

0.97 1 0.9 10 1 ?

There are many combinations of field similarities that we can construct in our comparison stage. Note that

comparisons are made at the record-pair level, which is a limitation of common record linkage frameworks.

Reliance on pairwise comparisons appear in both historical and non-historical record linkage, regardless of

estimation approach (e.g., [7], [48]). We can consider comparing multiple (similar) individuals simultaneously

or, multiple (similar) sets of individuals simultaneously (e.g., two households). More details on record and

household similarity can be found in Section 5.2.

Modeling

If we were to know whether or not a record-pair comparison corresponds to a true match (shown below),

then we could use supervised classification models to predict whether or not a future comparison corresponds

to a match or non-match.

Surname
Jaro-Winkler

Surname
Soundex

Forename
Jaro-Winkler

Age
Absolute Diff

Occupation
Jaro-Winkler

True
Match

0.97 1 0.9 10 1 1

Assuming that the labels are of high enough quality, you can use your favorite supervised model (e.g.,

logistic regression, random forest, boosting) to link the two databases [31] [6]. However, these training

labels can be expensive (in terms of both money and time) to obtain and difficult to create. Unsupervised

classification models (e.g., Fellegi & Sunter [41]) assume that matched records have high similarity among

a set of binary or discretized field comparison variables (e.g., exact match yes/no, 0.5 < Jaro-Winkler <

0.8). These methods also often assume conditional independence between the variables, which is limiting and
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rarely met in practice (given that a pair is a true match, agreement on last name is likely not independent of

matching on household location). This also creates issues when deriving string comparisons. For example,

should we use Soundex or Jaro-Winkler to compare Forename? Using both would violate model assumptions

and produce poor fitting models. There are advantages and disadvantages to both approaches and it is

context-dependent / situational as to whether one would want to collect labels or fit unsupervised models.

We predominantly use supervised record linkage methodology, as early analysis showed these methods

to be more promising in this application [22]. Since this data has never before been explored, there are no

existing “truth” labels that link the two years. A second goal is to collect labeled data and study the label

generation process, an aspect of record linkage that is seldom studied due to the fact that methodological

papers often start with an existing labeled data set.

Final Linking / Decision Making

Regardless of how record similarities are determined, a decision needs to be made about whether two (or

more) records refer to the same entity. Once we have a likelihood / probability of matching for pairs of

records, we can set a probability cutoff and determine whether pairs are matches or not. Alternatively, we

may want to assign unique IDs to the original records that are shared across the databases. As we assign

IDs, we need to be wary of transitivity issues (Person 1 matches to Person 2 and Person 3, but Person 2

does not match to Person 3). To resolve this problem, we could cluster the records prior to assigning IDs,

or incorporate more information (e.g., about household similarity) to determine which individuals should be

linked. Details on this process can be found in Appendix A.1.

1.1.2 Challenges

In the context of historical Irish census records, traditional record linkage methods may struggle. Our records

have limited (few, uninformative), non-standardized fields. Largely due to the time period, we find errors

due to varying education levels of Irish citizens, changes in the format and style over the two years, as well as

errors from the digitization of scanned, hand-written original records. In addition, we find a high frequency

of common names (e.g., Mary, Murphy, Brendan) throughout Ireland in the early 1900s. Exploring the

most common first name of each DED in 1901 and 1911, we see that the first names “Mary” and “Bridget”

overwhelm the map seen in Fig. 1.6. Additionally, we see a striking geographic relationship among female

first name popularity.
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Figure 1.6: Most common first name in each DED across 1901 (left) and 1911 (right).

Because of these limitations, it makes sense to incorporate as much relevant information about the records

into the modeling process as we can. As we saw in Fig. 1.1, the census is filled out by each household.

Therefore, we inherently have additional information about a record originating from the other members

listed on the form.

Often household information is provided in the original data, either directly or indirectly (Fig. 1.1). This

additional structure is informative but often underutilized. Previous related work has been done within

the historical record linkage framework. Antonie, Inwood, Lizotte, and Ross [8] employ a supervised record

linkage approach to link 1871 and 1881 Canadian censuses. They utilize household information to secure

confident matches but do not incorporate it within their modeling process. Group linkage methodology tries

to more directly capitalize on existing group structure in the data [37] [43]. Li, Dong, Guo, Maurino, and

Srivastava present a two step algorithm that first finds “pivots”, or clusters, of similar records and then

further merges records within pivots to find individual links. Fu, Christen, and Boot first link individuals

with the expectation of some erroneous links, and then use existing household structure to refine and improve
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1901:
Surname Forename Age Address Relation Religion Birthplace

1. Byrne Mary 9 Portrushin Up Daughter Roman Catholic Carlow
2. Byrne Mary 9 Portrushin Up Daughter R Catholic Carlow

1911:
Surname Forename Age Address Relation Religion Birthplace

3. Byrne Mary 20 Ticknock Daughter Roman Catholic Carlow

1901 House 1

Forename Age
John 45
Mary 33
Mary 9
John 6
James 0

1901 House 2

Forename Age
Joseph 45
Anne 34
Anne 15
Joseph 11
Mary 9
...

...

1911 House 3

Forename Age
John 55
Mary 42
Mary 20
John 17
Thomas 7
...

...

Table 1.2: There exist two (almost identical) Mary Byrne records in 1901 but only one similar record in
1911. It is unclear which of the first two (if any) records match with Mary from 1911. To better understand
the situation, we can explore the individuals that were recorded on the same form as the Mary Byrnes. We
now can see that Mary (1) more strongly matches to Mary (3) than Mary (2) due to the similar parents and
sibling names.

the individual linkage results [23]. Although it seems intuitive (Table 1.2) that household or family structure

would improve linkage results, given the complexities and variation in household structure and its availability

across historical record linkage problems, the optimal way to incorporate this information is less clear.

A common problem in historical record linkage is how to handle expected field changes or differences [7]

rather than typographical errors or common name variations (John vs Jon). If a woman marries, we expect

her last name to change. If a family moves, we expect their location to change. The size and shape of a

household unit will likely change over 10 years due to birth, death, and natural geographic movement. This

is a challenging task without an obvious solution. Adopting the temporal record linkage approach of Hu,

Wang, Vatsalan, and Christen may be a promising solution [32].

Our challenges do not end with data errors / lack of information at the record level. In consultation

with Dr. Paul Rouse, a lecturer in the School of History at the University College Dublin, we discovered

additional challenges due to historical policy reasons. During the Irish Land Act, land no longer had to be

divided among all sons, but was given to the eldest son [16]. Younger sons often moved to cities like Belfast

or Dublin to find work. So, searching for matches to younger sons (particularly in farming families) requires

a larger geographic region (or a targeted search area based on typical job mobility trajectories) than for elder

sons. In addition, social security benefits were introduced between 1901 and 1911 which provided incentive
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to lie about age. A larger age difference than 10 years between 1901 and 1911 is not unexpected, especially

among older individuals.

1.1.3 Thesis Outline

As introduced in this section, one focus of this thesis is to characterize the usefulness of household structure

in the context of early 1900s Ireland historical record linkage. The other is to better understand the impact

of record linkage labels and their generation on the full linkage pipeline, given that this data is currently

completely unlabeled and we have a unique opportunity to start with the early linkage stages. To do this,

we develop a linkage interface (see Chapter 2) that allows us to track and source the entire record linkage

labeling pipeline. To crowdsource labels at faster speeds, we utilize the Amazon Mechanical Turk (MTurk)

platorm. We discuss this process and it’s challenges in Chapter 3. In Chapter 4 we discuss all aspects of

our data. This includes labels we collect about individuals, households, and individuals within-households.

It also includes metadata about the labeling process (including but not limited to label uncertainty, labeler

quality, and labeler / interface interactions). In Chapter 5 we describe the process of comparing individual

and household records and explore differences between metrics. We discuss supervised modeling approaches

in Chapter 6 and report results for such models. We expand upon those models in Chapter 7 to explore

differences based on the actual labeling process and our interface. We conclude in Chapter 8.
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Chapter 2

Interface

To train our supervised models, we need ground truth data that links matching records from the 1901 census

to the 1911 census. A labeler typically uses their best judgement to link individuals across data sets, and

our goal is to train an algorithm to match this human judgement. However, there are currently no unique

identifiers (e.g. a social security number) to link an individual from their 1901 record to their 1911 record

due to the recent release of this data. This means the ground truth data needs to be collected ‘by hand’ if

we want to utilize them. In order to facilitate this generation of ground truth data, we build an electronic

interface that streamlines the process of hand-matching data. This interface is built in R Shiny, a web

application that is available here: https://link.stat.cmu.edu/Ireland.

[[Kayla says: @RN Do we want to reference the DSAA paper here? Or more just introduce the DSAA

and the ICDM papers in an intro section?]]

In this chapter we describe a novel record linkage labeling interface that attempts to address many of the

record linkage challenges previously mentioned (Section 1.1.2). Due to these challenges, a successful labeling

interface needs to have a flexible candidate identification process that does not solely rely on the similarity

of individual record pairs. While this interface attempts to collect high quality labels, it also collects rich

information about the labeling process. We can then study this process and potentially utilize process

information in subsequent record linkage models. Increased emphasis on improving the data collection

process (rather than focusing on methodology alone) during the initial labeling stages has the potential for

a large impact on the quality of the final linked data. The label collection process is often treated as a

black box and we seek to study it directly. Furthermore, commonly used public record linkage data sets like

Krebsregister [19], RLData [10], German Cancer Registry [4], and [61] do not include any information on

label quality, origin, or the collection process. [51] found that understanding and collecting information label

had large impacts on downstream analyses. Therefore, the resulting data that we create with our interface
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is unique and can have a large impact on the record linkage community. We discuss other interface benefits

in Section 2.6.

Our novel record linkage interface:

• Provides additional group information to human labelers during the linkage process (e.g., household

information in the Ireland census) and asks the labeler to link both the groups as well as individuals

within groups;

• Improves the matching of individuals by finding those with expected field changes that would otherwise

be missed using more traditional pairwise methods;

• Captures uncertainty in labels by having multiple individuals label a given record;

• Tracks labeler interface interactions (e.g., decisions / clicks) to collect information about the human

labeling process;

• Supports the use of record linkage models that incorporate label uncertainty and human decision-

making.

We will proceed in the following sections with a more detailed description of the labeling interface.

2.1 Interface Description

We present an interactive record linkage interface for collecting labeled individual, household, and individual-

within-household records as well as information about how they were linked. We implement our interactive

record linkage interface as an R Shiny application. The interface infrastructure can be broken up into three

parts (depicted pictorially in Figure 2.1) that include:

(A) a flexible pre-processing phase dependent on the application/context that leverages and incorporates

known structure about the data set at hand,

(B) a labeling interface that collects nested sets of human-labeled matches, and

(C) a back-end tracking of the human and computer interactions.

Application specific details of parts A, B, and C can be found in Subsections 2.2, 2.3, and 2.4, respectively.

Additionally, this interface is highly adaptable and can include iterative feedback loops to enhance label

collection and model performance (Subsection 2.5).
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Figure 2.1: We present an overall diagram of the interface process. The interface contains 3 major steps:
the data pre-processing, the physical labeling interface, and the data that is output at the end of the pipeline.
Dependent on candidate section rules (see Table 2.1 Ireland-based examples), the data pre-processing step
cleans and pulls the data that will be shown to the labeler. The labeling interface then presents the pre-
processed data to labelers to collect matches for individuals, groups (in our case households), and individuals
within groups. We also collect meta data about interactions between the labeler and the interface in order
to capture the labeler’s decision making process. The final component of our interface compiles and outputs
the various data collected and tracked through the process.

2.2 Data Pre-Processing

To facilitate a more efficient labeling process, it is important to perform time-intensive computational steps

before the labeler interacts with our interface. In our interface, these costly computational steps include

identifying most-likely candidate matches and transforming them into a form which the labeler can easily

understand.

2.2.1 Reference Selection

A reference record is a 1901 individual record that is shown to a labeler for linking. Our label collection

was first focused on linking reference records within Ticknock, County Carlow due to its small population

and rural nature (lending to a more homogeneous structure). We then progressively included more reference

records from outside of Ticknock to capture individuals in the surrounding regions of County Carlow and

County Wicklow. In order to capture geographic areas with a more diverse demographic structure, we collect

labels from County Dublin and its surrounding areas, a much larger and densely populated area. Details

about the specific data collected are provided in Section 4.1.
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2.2.2 Candidate Selection

Given a reference record, we need to find a set of potential matching candidates. Record linkage often

uses techniques (e.g., blocking [53]) to reduce the number of potential candidates that could match a given

reference record. Similarly, before asking labelers (e.g., crowd-sourced or expert) to match individuals, one

needs a process of narrowing down the set of potential candidates. We use rules that attempt to capture

the true matches while accounting for both standard record linkage and application-specific expected field

differences. This implicitly involves a trade-off between having strict rules that may exclude the true match

and loose rules that might create so many candidates that they cause labeler fatigue.

Our approach is different than other record / candidate generating approaches, like Abramitzky (2014)’s

iterative procedure [5] which increases the set of rules until a suitable number of candidates have been found

or the strict guidelines from Collins and Wanamaker (2013) [15] that focus on finding only exact matches.

Instead, we propose defining a set of both standard and application-specific rules that capture a wide net of

potential candidates.

In our Ireland example, we use eight rules based on both common similarity heuristics and known

historical and longitudinal information to generate potential candidates, as seen in Table 2.1. Rules 2© and

3© allow for potential location changes among marriage-age men and women and last name changes among

marriage-age women. Rules 4© through 8© allow for differences in one field, given that the rest of the record

pair is extremely similar. In the interface architecture (Fig. 2.1, left block), we notate these rules as part

of the data pre-processing phase and acknowledge their downstream influence. To help future researchers

best leverage any collected labeled data and incorporate human subjectivity and biases found in the linking

process into subsequent work, we strongly suggest that candidate selection rules be documented and made

public.
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Candidate Selection Rules

Definition

Common links

Distance(Location1901, Location1911) ≤ 8000m,

Exact(Gender1901, Gender1911) == 1,

Age1911 − Age1901 ∈ [5, 15],

Jaro-Winkler(Surname1901, Surname1911) ≥ .8,

Jaro-Winkler(Forename1901, Forename1911) ≥ .8

1©

Married or

mover men

Distance(Location1901, Location1911) ≤ 20000m,

Exact(Gender1901, Gender1911) == 1,

(Age1911 − Age1901) ∈ [5, 15],

Jaro-Winkler(Surname1901, Surname1911) ≥ .8,

Jaro-Winkler(Forename1901, Forename1911) ≥ .8

2©

Married or

mover women

Distance(Location1901, Location1911) ≤ 20000m,

Exact(Gender1901, Gender1911) == 1,

(Age1911 − Age1901) ∈ [5, 15],

Jaro-Winkler(Forename1901, Forename1911) ≥ .8

3©

Strict rules

Distance(Location1901,Location1911) ≤ 2000m,

Exact(Gender1901, Gender1911) == 1,

(Age1911 − Age1901) ∈ [5, 15],

Jaro-Winkler(Surname1901, Surname1911) ≥ .95,

Jaro-Winkler(Forename1901, Forename1911) ≥ .95

Let distance

differ

Strict rules

−
(

Distance(Location1901, Location1911) ≤ 2000m
)

+
(

Distance(Location1901, Location1911) ≤ 35000m
) 4©

Let gender

differ

Strict rules

−
(

Exact(Gender1901, Gender1911) == 1
) 5©

Let age differ
Strict rules

−
(

(Age1911 − Age19−1) ∈ [5, 15]
) 6©

Let last name

differ

Strict rules

−
(

Jaro-Winkler(Surname1901, Surname1911) ≥ .95
) 7©

Let first name

differ

Strict rules

−
(

Jaro-Winkler (Forename1901, Forename1911) ≥ .95
) 8©

Table 2.1: We notate the rules that define the set of potential 1911 candidates for each 1901 reference
record in our Ireland census application. Note that “Jaro-Winkler” stands for the standard Jaro-Winkler
edit distance similarity[34]. The Jaro-Winkler similarity was used due to its common use in practice, but
other similarity metrics could also be used to generate rules. Rule 1© captures common record linkage
candidates. Rules 2© and 3© attempt to capture links among individuals who likely got married or moved
between the two years. For each of rules 4©- 8©, we start with the strict rule and then allow for one of the
field similarities to be violated (e.g. 5© allows for the gender to differ between the two records).
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2.3 Labeling Interface

Once the pre-processing is complete, we address the steps a labeler will take to match records. On the first

page, one reference record and a set of candidate records is presented to the labeler along with individual

and household (group) information about these records. The labeler is asked to determine if there are any

matches between the reference and candidate records. If a labeler indicates there is a match, they are then

presented with a second page that asks them to determine whether there are additional matching records

from the households. The labeling interface is shown in the middle section of the interface architecture (Fig.

2.1).

Page 1

Figure 2.2: An example screen shot of Page 1 of the labeling interface. In this example only two candidates
were similar enough to be included as potential matches. In the upper right hand corner the labeler selected
to see the household members of “Candidate #1”, shown below the reference record’s household. In the upper
left hand corner the interface collects whether there was a matching candidate and if the two households
match (there are additional household members that should be linked).

Figure 2.2 presents an example of the first page of the interface. We ask labelers to provide a link (if

one exists) between a reference record and a set of candidate records using our platform, which allows for

intelligent interaction with the available data. We allow the user to explore all potential candidates further by

reordering candidates by any record field, informally allowing the user to “re-weight” the usefulness of each

of these columns. Additionally, and more importantly, the user can choose to view group membership and

examine records from the reference and candidate households. From page 1 we store matches for individuals
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(i.e., did the reference and the candidate match?) and households (i.e., did any individuals in the reference’s

household match to any individuals in the candidate’s household?).

Page 2

Once the labeler determines whether a matching candidate exists at the individual level, they then

decide whether or not the groups also match (i.e., at least one more pair of individuals across groups

match). If the households are labeled as a match, the labeler moves to Page 2 (Fig. 2.3), and links

matching individuals between households (stored as a within-group match). This second step captures

a slightly different conditional probability than before, moving from P(match | individual similarity) to

P(match | groups match, individual similarity). One would expect, on average, that the latter probability

would be higher for a given similarity vector. If you know that the reference record’s household contains

matching individuals to the candidate’s household, you might be more likely to match the reference to the

candidate.

Figure 2.3: An example screen shot of Page 2 of the labeling interface. This page appears if the labeler
believed that the households matched when examining them on Page 1 of the interface. One additional
individual (Thomas Dalton) seems to belong to both households (and as such we see a link between the 5th
individual in the first household and the 1st individual in the second household). It is not shown here, but
in the last phase of data collection, we allow labelers to say that the household actually doesn’t match and
“fix” an incorrect house link.

One of the greatest advantages of linking additional individuals across households is that we can capture

individual matches that might not be found via the candidate selection process (e.g., due to low similarity

scores, name changes, typographical/transcription errors). One example of such a link is described later in
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Variable Name Description

reference reference record
candidates candidate chosen
labeler ID optional ID of labeler

household useful was the household info useful? (boolean)
household match did the household match? (boolean)

household match mistake did the labeler say the household matched on page 1
but change their mind on page 2? (boolean)

household click was the household information viewed? (boolean)
clicks the order in which the labeler clicked to view

potential candidates and their household information
(e.g. 2 1 3 2)

label source was the label from page 1 (individual page) or page
2 (within-household page)?

time on page time spent on either page 1 or page 2

Table 2.2: A subset of the data that is tracked while the labeler interacts with the interface.

Section 2.6.2. Another advantage is the sheer increase in number of labels we receive (relative to time spent

labeling); we discuss this in Section 2.6.1.

2.4 Back-End Tracking and Label Confidence

Throughout the linking process, we track how the labeler interacts with the interface. Specifically, we

capture information on how the user explores the potential candidates, the speed at which they do so, and

if they find the group information to be useful etc. (see Table 2.2 for a subset of the tracked information).

The right panel of the ‘Labeling Interface’ box of Fig. 2.1 indicates the role of tracking within the overall

framework. This allows us to study the utility of group information, how to collect higher quality links,

and user responses to interface features. Beyond recording individual labeler decisions, we crowdsource

multiple labels per reference record to capture label uncertainty. The idea of collecting repeated labels

within crowdsourcing has been shown to be beneficial to overall label quality [51]. Furthermore, [63] found

that error rates of the label decrease exponentially with more labels. This uncertainty can be incorporated

into downstream models and interface adaptations. This idea is reflected in Fig. 2.1’s global process with

three tabs representing the three hypothetical labelers of a given reference record.

2.5 Adapting and Extending the Interface

Our labeling interface is designed to improve record linkage methodology and the quality of linked data sets

through 1) better and more informative data collection and 2) an understanding of the labeling process.

Each step of the record linkage process has downstream impacts and we additionally seek to understand /
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quantify those impacts. Reference selection criterion affects which data the labelers and models see; candidate

selection rules prohibit labelers from matching records outside of the pre-selected candidates; the interface’s

visual presentation affects the consistency and robustness of labeler conclusions; overall data quality affects

what models we build and how they perform. Figure 2.4 embodies how the proposed interface fits into record

linkage approaches and naturally adapts to include feedback from record linkage models.

Each of the feedback loops reflects potential updates to the process based on model performance or

patterns in the collected data. As an example, the current interface infrastructure was expanded as a

result of early back-end data collection showing high utility and impact of incorporating group (household)

information in the linkage process. Preliminary findings relative to labeler uncertainty (discussed in Section

C.1) and known benefits of incorporating active learning in crowdsourcing tasks [39] suggest additional

dynamic features such as adaptively choosing the number of times a record is labeled and / or which record

to show a particular user. Application-specific adaptations can also be included, as necessary. We discuss

iterative changes that we’ve made to the interface as we’ve collected more data and received user feedback

in Section 3.3.

Figure 2.4: Potential for feedback / updates to the record linkage interface process. The square blocks
represent the process of a reference record and the cloud bubbles represent “developer” decisions that affect
the overall process.

Although this thesis focuses on the application of Irish Census records, the R Shiny interface can easily

be adapted to other problems via two context-specific decisions and a data formatting requirement. First,

the user needs to define the selection method for which reference records are shown to which labeler. Second,

the user needs to define the candidate selection rules (see Subsection 2.2 for our candidate selection process).

The last requirement is to flag the column that represents the group membership (in our case, the household

ID). An adaptation of this interface has been used by the Center for Statistics and Applications in Forensic

Evidence (CSAFE) at Carnegie Mellon University to label and link dark web seller accounts [54] [55].
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2.6 Interface Benefits

A large product of this thesis is the unique data that we produce via the linkage interface. These data are

applicable not only to record linkage but also to communities like human computer interaction (HCI) and

crowdsourcing. These benefits are discussed further in the data and conclusion Chapters ( 4 and 8). In

this section, we present some of the other benefits of using the interface for record linkage. Note that these

benefits were found while linking a subset of the Irish Census records from 1901 and 1911, and may not

necessarily be extrapolated to other applications. We assess the usefulness of including household information

in the linkage process and how the interface can find links that may otherwise be missed.

2.6.1 Usefulness of Household Information

The first version of the interface (including only Page 1, which is shown in Fig. 2.2) asked labelers whether

the household information provided in the right panel of the interface was useful in matching a candidate

to the reference record. Overwhelmingly, 73.1% (71.3, 74.8)% of records had labelers who deemed this

information useful. A visual representation of this data is shown in Fig. 2.5. Our first round labelers (from

CMU) informed us that they found this information useful because the addition of (or lack of) other matching

within-household pairs strengthened their certainty of a potential reference / candidate match.

Figure 2.5: Household information usefulness. We indicate indicates the proportion of times users found
the household information useful by reference record (1 = 100%); in general, users overwhelmingly found
household information to be beneficial. In this dataset of 338 records from 1901 and 313 records from 1911,
we have 105,118 pairs of records with only 204 matches.

To capitalize on the fact that labelers were already spending time examining the households, we decided

to ask the labeler to input whether the households matched. Furthermore, we asked them whether any

additional individuals should be linked across households. Once we changed the interface to collect this

additional information (using Page 2, shown in Fig. 2.3), we found that 62.2% (58.6, 65.8)% of the time the
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household of the reference record matched the household of the matching candidate. If there were only one

additional matching household-household pair for every individual link, this would suggest 62% more records

were able to be captured, greatly increasing our total number of labeled matches for little additional work.

But, we know that labelers often find multiple matching members (e.g., an entire family) across households,

giving 62% as a lower bound. In fact, in Table 2.3 we see that we actually get more than a 200% increase in

the number of records by including the second page of the interface (and a 100% increase in the number of

unique records).

Individual Household Overall
(page 1) (page 2)

Label instances 695 1638 2333
Unique references 632 1053 1391

Table 2.3: A summary of the data collected for the second CMU round of crowdsourcing. We show the
number of reference records examined from both Page 1 and 2 of the labeling interface as well as the number
of unique records. Unique records are applicable because reference records can be analyzed by multiple
labelers both on Page 1 as well as on Page 2 of the interface.

Please note that all conclusions from this subsection were drawn from labels collected at CMU (but the

results hold for data collected via Amazon MTurk–which we discuss in future sections).

2.6.2 Finding Unique Record Pair Matches

The linakge interface not only captures more links faster, but also helps to find unique and often commonly

mislabeled matches.

We can see one example of such a record in Table 2.4. In 1901 we see the record for Thomas Neil (age

9) and in 1911 we see the record for Ths Kehoe (age 19), located in a different city. Based solely on the

individual records (ignoring any household information), most algorithms and human labelers would not link

the two together based on the dissimilarity of the record fields. But, it is highly likely that they are the

same person once we examine the complete households. Table 2.4 shows the other memebers in the Kehoe

/ Neil households. We observed that a labeler using our interface was able to link “Thomas” and “Ths” on

Page 2 of the interface after having linked Julia Neil, Thomas’ mother, on Page 1.

This is just one example of a labeled match that we were able to collect via the interface, that would

otherwise not be linked together. By collecting more accurate and diverse training data we are able to focus

on building models that also find these hard-to-match links.
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1901
Surname Forename Age Location Relation to Head
Neil Thomas 60 Ticknock House head
?Neil ?Julia ?55 ?Ticknock ?Wife
Kehoe Patrick 14 Ticknock Son
Kehoe Garrett 11 Ticknock Son
Neil Thomas 9 Ticknock Son

1911
Surname Forename Age Location Relation to Head
?Neill ?Julia ?64 ?Rathvilly ?House head
Kehoe Patrick 24 Rathvilly Son
Kehoe Garret 21 Rathvilly Son
Kehoe Ths 19 Rathvilly Son

Table 2.4: Originally a labeler linked the two Julia Neil records (denoted with a star ?). This linkage
allowed a labeler to link Thomas Neil (1901) to Ths Kehoe (1911) even though these records were dissimilar
and not an obvious match without the household information. Note that all other available fields (e.g.,
birthplace, religion) were consistent across all members of both households.
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Chapter 3

Crowdsourcing Using Amazon

Mechanical Turk

Amazon Mechanical Turk (https://www.mturk.com/) (MTurk) is an online platform that facilitates the

crowdsourcing of work from around the world. [11] found that crowdsourced data is just as good as or better

than in-person data collection. These findings have been corroborated by others like [28] and therefore we

feel confident using a crowdsourcing platform like Amazon Mechanical Turk to label Irish Census Records.

MTurk connects “requesters” with “workers”. The requester (us, in this case) sets up a “task” for the

workers. Tasks are released in batches, according to the specifications set by the requester. Workers can

preview all available tasks and accept ones that they want to complete. We, the requesters, are notified once

a worker submits our task. We pay a fee to both the worker and Amazon, and all payments are facilitated

via the Mechanical Turk platform. More details on specific payments are in Section 3.1.1. After a batch is

completed, the requester receives very limited information on the workers and the metadata regarding their

work. We can then choose to either approve or reject the submitted task. Details on how we make these

decisions can be found in Section 3.2. We can also block workers from completing any future tasks we make,

which we do when we find a worker misusing the interface. During the Mechanical Turk crowdsourcing

process, we receive feedback from workers. Using this feedback and interface tracking data, we make changes

to the interface and the task setup in an attempt to receive higher quality labels from happier workers.

Feedback and interface changes are documented in Section 3.3.

3.1 Setup

Projects are created using the “Create” feature. Amazon MTurk has customizable templates that requesters

can use to design our tasks. They have multiple built-in templates for tasks like image classification, natural
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language processing, and data collection. The requester is told that “You can use any HTML, CSS, or

JavaScript to customize your layout”. But, I had already built my label collection interface in R Shiny, and

hosted it on an R Shiny server. Converting this interface to meet Amazon’s requirements would have been

time intensive and created issues consolidating and streamlining the data we collect. Additionally, when

we checked with MTurk support staff in early 2020, it was impossible to have a worker complete multiple

labels within a batch. Due to the nature of our interface, it did not seem an efficent use of ours or the

worker’s time to work one label at a time. For all of these reasons, we found it best to use the “Survey

Link” template, shown in Figure 3.1 and send the workers to our website instead of embedding our interface

within the MTurk platform.

Figure 3.1: Example of an Amazon MTurk survey link template.

Once you click the orange “Create Project” button at the bottom of the template (shown in Fig. 3.1),

you are sent to a new page (Fig. 3.2) to fill out information about your batch. In Fig. 3.2 we see the details
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needed to create a new project, which we will discuss in the following subsections. In the upper portion, you

can see that we must first provide a title, description, and keywords so that workers can search for our task.

Figure 3.2: Template of the specifications required for an MTurk batch.

The remaining features of the template require a longer explanation, so we will detail those responses

in the subsections below. Note that we made use of Reddit among other MTurk tracking platforms to

understand common worker concerns and requester mistakes[3].
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3.1.1 Payment and Number of Workers

In the second portion of the project form, we determine the quantity of workers we need and the amount of

money we will pay them in USD. We determined to pay workers $0.10 per label (a submit on either Page 1 or

Page 2) which we thought was competitive given the time a task takes. Because we can set a varying number

of labels required to complete a batch, workers receive $1.50 for short tasks (15 labels) and $10.00 for long

tasks (100 labels). We started by releasing shorter batches with more respondents (15 labels per worker) but

moved towards longer batches with fewer respondents (100 labels per worker). In our final collection rounds,

we paid our best workers $15.00 for 100 labels to show our appreciate for their continued support and work.

Amazon charges double (of their typical fee) for tasks that utilize ten or more respondents. So, when we

release long batches we release them with 9 respondents to save a bit of money. We provide an example of

costs below, by detailing some Amazon Mechanical Turk “receipts” for both a short and long batch.

Table 3.1: Short batch receipt, 60 workers x 15 labels = 900 labels. The total cost with masters qualifications
is $130 whereas it is $126 without.

Value # of Workers Cost
Task Reward $1.50 60 $90.00

Masters Fee (5% of reward) $0.075 60 $4.50
Amazon Fee (20% of reward) $0.30 60 $18.00

More than 9 workers Fee (20% of reward) $0.30 60 $18.00
Total Cost (With Masters) $130.50

Total Cost (Without Masters) $126.00

Table 3.2: Long batch receipt, 9 workers x 100 labels = 900 labels. The total cost with masters qualifications
is $112 whereas it is $108 without.

Value # of Workers Cost
Task Reward $10.00 9 $90.00

Masters Fee (5% of reward) $0.50 9 $4.50
Amazon Fee (20% of reward) $2.00 9 $18.00

More than 9 workers Fee (20% of reward) NA NA $0.00
Total Cost (With Masters) $112.50

Total Cost (Without Masters) $108.00

In both the long and short batches, we receive 900 labeled records. But, in the short batch we receive

fewer labeled records per MTurk worker. There are pros and cons to both approaches. Workers are less likely

to get labeler fatigue in the shorter batches compared to the longer batches. On the other hand, we had

hoped that the label quality would be higher in the longer batches because it would take much more effort
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to game the system and would be more challenging to quickly provide poor quality labels. Furthermore, it is

easier to pay close attention to worker quality when there are fewer workers. A purely financial motivation

to use longer batches is that we don’t have to pay an additional 20% to Amazon. After assessing the pros

and cons (and taking worker feedback into consideration–see Section 3.3) we decided to focus on releasing 9

person batches where each worker provides 100 labels.

3.1.2 Time Constraints

As shown in Fig. 3.2 we also need to set the time allotted per worker to complete a task. This is the amount

of time the worker has between when they accept the task and when they need to submit the task. You

want to set a time that is long enough so that workers do not feel stressed / rushed. On the other hand,

once a worker accepts a task they get counted towards the total number of respondents. Therefore, we don’t

want to set the allotted time to be too long or else a worker, who may not end up submitting our task, could

occupy a viable slot. For our long tasks (100 labels per worker) we set a time of 2 days, but for short tasks

(15 labels per worker) we set a time of 90 minutes. We also have to set a survey expiration date. If tasks

are not accepted by this time, they will expire. Additionally, we have to set a time to auto-approve and pay

workers. If we don’t accept or reject work by this time, it will be automatically accepted. We want to allow

ourselves enough time to review the work so that we aren’t paying for poor quality work, but we also want

to be fair to the workers and make sure they aren’t waiting too long to be paid. We decided to go with the

recommended amount of time of 3 days.

3.1.3 Worker Requirements

At the bottom of Fig. 3.2 you will see the option to require workers to be “Masters”. Masters are high

performing workers, as determined by Amazon∗. For a typical batch, hiring Masters workers costs an

additional $4.50, which we thought was small cost to ensure higher quality labels. But, early analysis of

label quality showed that the Masters workers were not higher quality than non-Masters and we still needed

to closely monitor and reject many of the works for poor quality work. So, going forward, we removed that

qualification from our batch requirements. Amazon MTurk offers numerous other qualifications that we

initially did not use for the project.† But, towards the end of the labeling process, we identified our best

workers (who seemed to enjoy the tasks) and created batches that only they were invited to complete. We

∗“Amazon Mechanical Turk (MTurk) has built technology which analyzes Worker performance, identifies high performing
Workers, and monitors their performance over time. Workers who have demonstrated excellence across a wide range of HITs are
awarded the Masters Qualification. Masters must continue to pass our statistical monitoring to maintain the MTurk Masters
Qualification.”[1]
†Selecting workers in a specific location or with specific HIT acceptance rates come at no charge to the requestor. But,

to select workers from a specific age group will cost $0.50 per worker. Choosing handedness will cost $0.15 and selecting for
smokers will cost $0.30 per worker.
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will discuss this further later in the section, but this appeared to be a mutually beneficial decision for both

us and the workers.

3.1.4 Example Task

Once we are satisfied with the final version of our batch and have set the proper parameters, we can publish

our task. Workers can preview our task, which will look very similar to Fig. 3.3.

Figure 3.3: A preview of the task we created for MTurk workers.

Workers use the survey link we provided to label records and once they have labeled the designated

amount (15 for short batches, and 100 for long batches) they are provided with a survey code in the interface

that they can paste into MTurk to submit their work.

3.1.5 Future Tasks

We can simultaneously run multiple batches, but due to computational constraints of our server and of R

Shiny we tend to keep batch sizes small and only publish one batch at a time. In Fig. 3.4 you can see four

different project versions, two short (Ireland4, Ireland6) and two long versions (IrelandLong1, IrelandLong2).
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At any point I can publish a batch from any of the projects we’ve created, or I can repeat the process above

to create a new batch.

Figure 3.4: Creating an Amazon MTurk batch from an existing batch.

All batches are managed using the “Manage” tab at the top of our MTurk requestor account. In Fig. 3.5

we can see all batches that we have published. We see the batch at the top is in progress and has yet to be

completed, but the batch underneath is already finished.

3.2 Work Approval

We have the opportunity to review the submitted work before we decide to pay the workers. Because we

believe we are paying the workers fairly and competitively for their time, we only want to accept quality

work. Amazon allows us to download a CSV data summary of completed work, which is summarized in

Fig. 3.6. We can then upload an edited CSV to quickly approve or reject work in batches. To approve an

assignment we put a “x” in the column titled “Approve”, and to reject an assignment we put our rejection

feedback (required) in the column titled “Reject”.

A submission is accepted if the following criteria are met.
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Figure 3.5: Managing existing Amazon MTurk batches.

• The worker labels the correct number of records for a given batch. Note that the correct number of

records varies by batch. We have small batches which collect only 15 labels, and larger batches which

collect up to 100.

• The survey code the worker provides on MTurk matches the code we give them.

• There is ample time between when the worker accepts and submits the task. This is tracked via AWS

and provided in our batch results output. Ample batch times vary by the length of the batch, but for

15 links is 6 minutes.

• There is ample time spent on each individual label. The worker needs to spend at least 10 seconds on

at least 75% of their labels.

• The worker clicks on candidates for at least one label.

• The worker selects a candidate (as opposed to selecting “no matches selected”) for at least one of their

labels.
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Figure 3.6: A preview of the work batches for review.

Note that these criteria were formed in an iterative approach as we analyzed work quality and interface

metadata. When we first moved the application to Amazon Mechanical Turk, we published small batches

to better understand the platform and the work quality. We added criteria as we explored and analyzed the

MTurk work we received. We found that work quality varied drastically from worker to worker. There were

some workers who were hoping that we would simply approve all work and therefore they just made up a

survey code and did not click on and open our application. Others figured out the quickest way to move

between labels within our application and breezed through the labels as fast as possible to receive a survey

code. Those are two examples of poor work quality that would not be accepted, but were achieved in very

different ways.

For at least one of their tasks, we rejected work from 70 of the 225 unique workers who submitted tasks

with us. The percentage of work rejected decreased to virtually zero as time went on and we adapted our

tasks and predominately worked with our best workers. 2, 411 of the 10, 647 submits on Page 1 were by

workers who received rejections at some point and 238 of the 2, 493 submits on Page 2 were by rejected

workers. We are not surprised that the percentage of rejected work on Page 2 is lower because a common
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habit of bad workers is selecting “no candidate selected” for all reference records on Page 1, and never

matching records on Page 2.

While work was rejected on the actual Amazon MTurk platform, we do not remove this data from our

data base until analyses where we specifically explore label quality (see Chapter 7).

3.2.1 Worker Details

We can also produce reports on the workers who have completed our tasks. Using these reports, we write

a script to block bad workers so that they cannot complete future tasks. We can either accept / reject

work first within the batch and then proceed to block workers through the “Manage Workers” tab (shown

in Fig. 3.7). Or, if we block workers that have current work with us that has yet to be accepted or rejected,

we can simultaneously block workers and reject their work.

Figure 3.7: Managing MTurk workers by worker ID. Using tools on this page we can block workers or
reject work for specific batches. We can do so manually or by uploading a CSV file populated with block /
reject information.
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Blocking workers ensures that they will not submit any future tasks with us. Let’s say we wanted to

pay all workers, regardless of work quality. We could still pay workers for their poor quality work and then

ensure they don’t submit more in future.

3.3 Worker Feedback and Subsequent Changes

Throughout the Amazon MTurk process, we have had to make modifications to the crowdsourcing process

and document those here. These changes were made either to better fit MTurk’s existing framework, to elicit

higher quality labels, or to improve the interface for the MTurk workers.

Figure 3.8: Worker ID input. This is how MTurk
workers tell the interface who they are so that they
can receive credit.

Figure 3.9: Submission code. Workers receive
a submission code once they have completed all
matches in a batch. We can confirm that they submit
a valid / correct code when we review their work.

Figure 3.10: Interface has been adapted to allow workers to track number of labels they have submitted.
This information is highlighted with a red circle.
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Moving to an online crowdsourced system, we need to be able to track which worker is labeling what data,

so we need the MTurk worker to provide us with their unique MTurk ID. Then, the worker needs to receive

and submit a code to receive credit for their work. Both of these changes (Fig. 3.8 and Fig. 3.9) were made

to configure our application for the Amazon Mechanical Turk system. These changes also allow workers

to submit multiple labels before receiving a code. With traditional MTurk tasks within the pre-formatted

templates, you cannot have a worker submit multiple entries as one task. Now that we are using this new

system, we needed to show workers how many labels they have already completed. This information is now

tracked at the bottom of the interface pages (circled in red at the bottom of Fig. 3.10). It is important to

differentiate between a worker’s tasks across batches so that we can properly assign credit. These are just

some examples of changes we made to the interface to better adapt to the MTurk existing framework.

While working for Amazon MTurk, workers can send the requestor (us) messages. These can be during

the middle of a task to ask a clarifying question or to alert us about an application issue. They can also be

after we have accepted or rejected their work. The content of these messages varies greatly. We document

examples of worker messages below in Table 3.3. The overall sentiment of the positive feedback we receive

is that our work is quite different from most of the other tasks. We’ve also found that those who either have

ties to Ireland or have an interest in history / genealogy really enjoy the work. This positive feedback was

one of the reasons we decided to release longer batches. We knew we were receiving higher quality labels

and that these workers enjoyed the task. Many of them even told us they would enjoy doing even more if

they were available.

On the other hand, not all workers enjoyed our task or our standards for work quality. Our negative

feedback was mainly from workers who were upset that we rejected their work (Table 3.3, Negative 1).

Rejections can negatively affect worker reputations and scores and so we understand why they reach out

(and even sometimes ask to re-do the work correctly). Occasionally a worker has a difficult time using our

application for a variety of reasons (e.g., server crashes, varying internet speeds). I realized how critical

it was to be available to promptly respond to emails while batches are released so that I could personally

address any worker challenges or questions. Whenever a user had an issue with the application, I would reply

and give them a code to submit so that we can award them for their time, regardless of whether they could

finish the task. For example, I responded to Negative Feedback 2 (Table 3.3) with the following message:

“I’m so sorry about the issues with the application. Please submit the following code and we will award

you for your time: ’INTERFACEerrorCP4720’ ” but their response was “I’ve already returned it. You can

keep your dollar.” Besides realizing how important it is to be attentive to worker emails, I also realized that

increasing the allotted completion time (as discussed in Section 3.1.2) can be helpful to allow workers who

are having legitimate issues time to debug.
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Positive Feedback
1 Enjoyed the HIT, btw. Nice change of pace from the average survey!

2 I really enjoyed your HIT/task. I recently returned from staying in the U.K. for a few years and found a
deep interest in the history and heresy for the common lives of the people, part of my family moved from
Scotland in the 1700’s and I can see now what they’ve been through and why we take these large steps
as people. I found the same interests when I was looking through the records, seeing how the servants
were listed as family in the ’household’ and the occupations that entailed change of standing.

3 I thoroughly enjoyed this hit and would be willing to do tons more if available to me! Genealogy is one
of my favorite hobbies! Thanks in advance.

4 This is absolutely fascinating, by far the best HIT i ever worked on here! Best regards!

Negative Feedback
1 Hello sir, I did not attend any qualify test only do 15 matching data.What a reason for reject the hit

2 Your website has numerous coding errors in it. I have wasted an hour trying to help you with your
research but the website is unusable. It gives no code though I have made over 15 labels. It continues
to bring up the previous record when I match two households. It is slow and time consuming and I am
irritated that you have thought so little of my and other users time.

3 Dear Sir, First of all I extremely apologize for the bad work done by me. It’s all happened due to some
less clarified instructions. I accept it’s all mistake done on my side. Again I wish to work on the same
HIT with your permission without any issue. Kindly consider to do me the same again.

Constructive Feedback
1 I wanted to let you know about an issue with your website. I couldn’t get any data for household members

of potential candidates to load, and couldn’t really submit any labels/”no match” entries to the site. I
kept getting a delayed error message - something about ”ajax 7” and ”ajax 9.” I really enjoy working
on your HITs, and would love to continue on this project, but unfortunately have had to return the HIT
due to issues with the website. Please do let me know if you’re able to get this resolved - or if there are
any steps I can take on my end to get past these errors - I’d love to do more of these HITs. I recently
finished my MA in history, so this is the kind of stuff I love to do.

2 When I first started the study, it took really long time for the page to load. However, when it finally
did load, I clicked my answer proceeded to submit, but the next page didn’t load. I tried refreshing the
page, but now I’m getting a proxy error page.

Table 3.3: Questions/Comments/Concerns from MTurk workers who have accepted our tasks

Lastly, messages from workers have been critical in helping us debug the system. Because we are working

with new servers (shout-out to our technician Carl Skipper for all of his help) and we often cannot reproduce

the same errors locally, worker feedback has been super helpful. Debugging these errors has been a challenging

parts of utilizing the MTurk system. We have no idea the workers’ computer’s age, wifi speeds etc. and

therefore have a hard time debugging whether an error is originating on our or their end.

Despite crowdsourcing challenges, Amazon MTurk allowed us to collect data quickly and furthermore

allows us to study the impact of data quality on record linkage.
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Chapter 4

Data

A large goal of this interface is to generate high quality, record linkage data to aid in the development

of linkage methodologies. As mentioned previously, typical record linkage data only contains information

about the individual records and binary individual matches (person a matches person b). Data output by

the interface, on the other hand, contains additional label information about group structure (i.e., group

match, within-group individual matches), label uncertainty, and the human labeling process. A summary

of the type of data we collect (which has been described in the previous sections) is shown pictorially in

Fig. 2.1’s data output section. We have collected data in multiple stages, informally by colleagues as well

as formally by utilizing Amazon’s Mechanical Turk Platform (Section 3). In this section we summarize the

data we have collected, and detail how to take the output data from our interface and prepare/process it for

record linkage.

4.1 Data Sources

We first show a sample (both in terms of rows as well as columns) of the original census records. We will

specifically focus the labels / data collected for John Clynch (shown in the first row of Table 4.1) throughout

this section.

Table 4.1: Original Records

ID Forename Surname Age Sex Occupation Birthplace TownStreet DED
1901.68 John Clynch 31 Male Gardener/Servant County Wicklow Fortgranite Talbotstown
1911.62 John Clinch 41 Male Gardener/Servant Co Wicklow Kilmurry Talbotstown
1911.63 Bridget Clinch 42 Female - Co Carlow Kilmurry Talbotstown
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4.1.1 Data Collected on Individual Matches

As detailed in Section 2.1 we collect information / data on both Page 1 and Page 2 of the interface. We

will use the phrases “Page 1” and “Page 2” to distinguish between labels / data collected about individuals

directly on the first page versus as part of household matches on the second page. These data are stored

separately and previewed in Tables 4.2 and 4.4, respectively.

One row of data in Tables 4.2 is the information that is collected after a labeler clicks “Submit” on Page

1. We collect the ID of the 1901 reference (Reference) record that we are labeling, the ID of the candidate

that the labeler chose (Candidate) as well as the ID of the labeler (LabelerID). We asked the labeler whether

the households of the individuals matched (House Match) and we collected the sequence of their clicks on

various candidates (Click Sequence). We store within which round the label was collected (Round). The

labels originate from one of six rounds which we call: CMU round1, CMU round2, MTurk initial, MTurk,

MTurkLong, and MTurkLongSubset. These rounds are labeled in chronological order as we first utilized

students, staff, and faculty at CMU to label the records and then moved to the Amazon MTurk platform.

As detailed in Chapter 3 we adapted our label collection on Mechanical Turk to collect labels using fewer

labelers in longer tasks. In the final round (MTurkLongSubset) we utilized our best workers for a long task

on only subsets of records that had already been previously labeled (to ensure we collected uncertainty for

those records). We additionally store the time that the label was collected. We can map this data back to the

original census records if we wanted to know, for example, to which household the reference and candidate

belongs. We also have information about which candidates were shown to the labeler when labeling a given

reference record. The process was refined between cycles, and any information that is not available (likely

because it was not collected at the time) is denoted with a dash “-”.

Table 4.2: Page 1 Interface Data for 1901 Record 1901.68

Reference Candidate LabelerID House
Match

Click
Sequence

Round Timestamp ...

1901.68 1911.62 a05cb - - CMU round1 - ...
1901.68 1911.62 ebe29 1 4 CMU round2 2019-01-21 14:38:14 ...
1901.68 no matches selected d31ab 0 2 1 4 2 4 MTurk 2020-03-27 12:58:39 ...

In Table 4.2 we see all labels for the reference record 1901.68 of 1901 John Clynch (one row = one

submit). John was labeled by three separate labelers on Page 1 in three separate labeling rounds. The first

two labelers determined that candidate record 1911.62 was the correct match while the third labeler did not

think that there was a match among the candidates shown. We were not collecting click data when the first

instance was labeled, but we see that labeler 2 did not click / view other candidates while the third labeler

clicked around before selecting “No Match”. This small example is consistent with what we see across the

full data collection; the amount of time / number of clicks varies greatly by labeler.
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Because the information shown in Table 4.2 is only about the candidate record that was chosen, we need

to expand this data to include all of the 1911 candidates who were not selected. We show the expanded

labels from Page 1 in Table 4.3. We now need to add a column for whether the individual pairs were matched

as the same individual (“Match”). In cases where the labeler said “no matches selected” we need to store a

non-match (zero) for all candidates that were shown to the labeler, but ultimately not selected. There are

some fields (i.e. LabelerID, Round) that are consistent across all candidates for a given label (even those

that were not selected). Some fields (e.g., House Match) only relate to the candidate that was linked to

the reference; in the case of House Match we need to assign a household non-match (zero) to non-selected

candidates. Now that we have done an initial preprocessing of labels from Page 1, we need to explore the

data that are collected on the second page of the interface.

Table 4.3: Full Page 1 Interface Data for 1901 Record 1901.68

Reference Candidate Match LabelerID House
Match

Click
Sequence

Round ...

1901.68 1911.96 0 a05cb - - CMU round1 ...
1901.68 1911.1080 0 - ...
1901.68 1911.59 0 - ...
1901.68 1911.62 1 - ...
1901.68 1911.96 0 ebe29 0 4 CMU round2 ...
1901.68 1911.1080 0 0 ...
1901.68 1911.59 0 0 ...
1901.68 1911.62 1 1 ...
1901.68 1911.96 0 d31ab 0 2 1 4 2 4 MTurk ...
1901.68 1911.1080 0 0 ...
1901.68 1911.59 0 0 ...
1901.68 1911.62 0 0 ...

In Table 4.4 we see the data collected on Page 2 of the interface. The record 1901.68 was additionally

labeled three more times on Page 2 of the interface. This means that other people from John’s households

were linked on Page 1 and therefore John was shown as a potential within-house match on Page 2. We can

see that this occurred when three of his 1901 housemates (1901.70, 1901.71, 1901.69) were labeled on Page

1 (meaning they appear as the original, Page 1 References in Table 4.4). John was then shown on the left of

Page 2 and compared to all of the 1911 household members on the right. John (1901.68) was matched with

1911.62 by labeler 65454, 1911.63 by labeler de566, and 1911.62 by labeler 60f7d. A zero is recorded for

all of the “Match” column for 1911 individuals within the household that John was not matched to. There

are many other matches and non-matches across the two households that are not shown here. We only show

the pairs related to John Clynch (1901.68).

As with data collected on Page 1, on Page 2 we also collect information about who is labeling the records,

what round the label originated in, and the timestamps of the collection. These variables are shown in the

last columns of Table 4.4.
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Table 4.4: Page 2 Interface Data for 1901 Record 1901.68

Reference Candidate Match Page 1
Reference

Page 1
Candidate

LabelerID Round Timestamp ...

1901.68 1911.62 1 1901.70 1911.196 65454 CMU round2 2019-01-21 11:48:17 ...
1901.68 1911.63 0 ...
1901.68 1911.64 0 ...
1901.68 1911.66 0 ...
1901.68 1911.67 0 ...
1901.68 1911.62 0 1901.71 1911.66 de566 MTurkLong 2020-04-12 11:09:17 ...
1901.68 1911.63 1 ...
1901.68 1911.64 0 ...
1901.68 1911.65 0 ...
1901.68 1911.67 0 ...
1901.68 1911.62 1 1901.69 1911.63 60f7d MTurkLongSubset 2020-08-30 05:02:58 ...
1901.68 1911.64 0 ...
1901.68 1911.65 0 ...
1901.68 1911.66 0 ...
1901.68 1911.67 0 ...

4.1.2 Interface Data Consolidation

Once we have collected data on both Page 1 and Page 2 of the interface we need to consolidate the labels and

more importantly the matches. We present a sample of the consolidated labels for reference record 1901.68

in Table 4.5. We consolidate the data separately for labels collected on Page 1 (at the individual level) and

on Page 2 (at the within-household level). The column “Match” represents the number of times the pair

was labeled as a match and the “Total” represents the total number of times the pair was seen by a labeler

(and therefore had the ability to be matched). As a reminder, the reason why we have multiple labels at

both the individual and household level is that we allow multiple labelers to label the same record. Notice

that there are three sources for this data and the source tells us where the label(s) originated from. To this

matrix we can calculate and add the similarities between the fields of the reference and candidate records as

well. We will detail this in Chapter 5.

There are numerous ways that we can utilize the raw numbers of matches and total labels. The first way

is to simply take the proportion of times that a candidate was chosen by dividing the matches by the totals.

We can do this for both Page 1 and Page 2 separately, as well as together. We can then use this overall

proportion and determine a binary yes/no match by letting anything over 0.5 be a match and anything

below be a non-match. We see that we have two pairs that both get classified as a match when we do this.

If we wanted to enforce that there is only one match for each reference, we could assign a 1 to the pair that

received the most matches and a 0 to all other pairs. In this case 1911.62 received four matches and 1911.63

only received one. Despite this difference, the Page 2 and Total Match Proportions make the two candidates
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Table 4.5: Individual Pairwise Label Consolidation. Un-processed match numbers are shown in the Match
and Total columns. We identify where the label was created using the Source column.

Reference Candidate Page 1
Match

Page 1
Total

Page 2
Match

Page 2
Total

Source Field
Similarities

1901.68 1911.62 2 3 2 3 Page 1 & 2 ...
1901.68 1911.96 0 3 - - Page 1 ...
1901.68 1911.1080 0 3 - - Page 1 ...
1901.68 1911.59 0 3 - - Page 1 ...
1901.68 1911.64 - - 0 3 Page 2 ...
1901.68 1911.65 - - 0 2 Page 2 ...
1901.68 1911.66 - - 0 2 Page 2 ...
1901.68 1911.67 - - 0 3 Page 2 ...
1901.68 1911.63 - - 1 2 Page 2 ...

seem similarly likely. We need to think about situations like this when we proceed with future analysis of the

data (e.g., modeling matches). Note that we can use the raw counts to calculate other combinations of these

values (e.g., weight matches from Page 1 higher than Page 2). We propose rather naive approaches to label

consolidation because we are interested in understanding the record linkage labeling process in its rawest

form, but there is work suggesting the use of statistical models to assign weights to labelers pre-consolidation

[45] [18].

Table 4.6: Individual Pairwise Match Consolidation. We include the match proportions (match / total)
for Page 1 and Page 2 separately. We then consolidate these in the column “Total Match Proportion”. We
can discretize whether the total match proportion is greater than 0.5. We can also enforce that only one
candidate receives a 1 per reference record.

Reference Candidate Page 1 Match
Proportion

Page 2 Match
Proportion

Total
Match
Proportion

Total
Match?

Max
Candidate?

1901.68 1911.62 0.67 0.67 0.67 1 1
1901.68 1911.96 0.00 0.00 0 0
1901.68 1911.1080 0.00 0.00 0 0
1901.68 1911.59 0.00 0.00 0 0
1901.68 1911.64 0.00 0.00 0 0
1901.68 1911.65 0.00 0.00 0 0
1901.68 1911.66 0.00 0.00 0 0
1901.68 1911.67 0.00 0.00 0 0
1901.68 1911.63 0.50 0.50 1 0

Besides information about the number of matches and the number of labels, we also have auxiliary

information about the reference / candidate pairs. We detail some of these other fields in Table 4.7. For

each of the pairs in Table 4.5 we see the IDs of the labelers from both pages as well as the round in which
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the label was collected. We also have information about how often the pair’s houses matched and similarity

scores for the pair’s household.

Table 4.7: Individual Pairwise Labels - Meta Data. Here we preview information that we have for each
reference and candidate pair. We know where each pair was labeled and we know whether or not their
households were also linked. Not shown, but we have information on time spent and number of clicks for
each pair as well.

Reference Candidate Page 1
Labelers

Page 2
Labelers

Page 1
Rounds

Page 2
Rounds

House Matches and
Field Similarities

1901.68 1911.62 a05cb,
ebe29,
d31ab

60f7d,
65454,
de566

CMU round1,
CMU round2,
MTurk

MTurkLongSubset,
CMU round2,
MTurkLong

...

1901.68 1911.96 a05cb,
ebe29,
d31ab

d4cd0 CMU round1,
CMU round2,
MTurk

- ...

1901.68 1911.1080 a05cb,
ebe29,
d31ab

d4cd0 CMU round1,
CMU round2,
MTurk

- ...

1901.68 1911.59 a05cb,
ebe29,
d31ab

d4cd0 CMU round1,
CMU round2,
MTurk

- ...

1901.68 1911.64 d4cd0 60f7d,
65454,
de566

- MTurkLongSubset,
CMU round2,
MTurkLong

...

1901.68 1911.65 d4cd0 60f7d,
de566

- MTurkLongSubset,
MTurkLong

...

1901.68 1911.66 d4cd0 60f7d,
65454

- MTurkLongSubset,
CMU round2

...

1901.68 1911.67 d4cd0 60f7d,
65454,
de566

- MTurkLongSubset,
CMU round2,
MTurkLong

...

1901.68 1911.63 d4cd0 65454,
de566

- CMU round2,
MTurkLong

...

1901.68 1911.103 d4cd0 d4cd0 - - ...
...

...
...

...
...

... ...

This meta deta about the pairwise matches can be used to understand label uncertainty as well as analyze

specific subsets of our data (e.g., CMU versus MTurk labelers).

4.1.3 Matching Households

After the first round of labeling at CMU, we started collecting whether or not the labeler thought that the

two households matched. Because we allowed labelers to view and utilize household data to make selections
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for the individuals, we soon realized that labelers were spending a lot of time studying the households.

Therefore, because they were already spending quality time examining the household, we decided that we

should capture whether the households matched and any extra individual matches within those households.

We discuss this in more detail when we introduced Page 2 in Section 2.3. Additionally, familial-based record

linkage data seldom contains information about whether the households match so this information adds

depth / uniqueness to our data. CITE Using this additional information provided by our labelers, we can

calculate whether or not two households match as well as field similarities about the two households.

Table 4.8: Labels that make Household Comparisons.This is the subset of the individual pairwise data
for anyone from h(1901.68) and h(1911.62). Labels from individual pairs are consolidated to understand
whether households should be considered matches. Households can be compared via any of the individuals
that reside in that household.

Reference Candidate Page 1
Match

1901 House 1911 House House
Match

LabelerID Round

1901.70 1911.65 1 h(1901.70) h(1911.65) 1 65454 CMU round2
1901.69 1911.63 1 h(1901.69) h(1911.63) 1 4365a CMU round2
1901.68 1911.62 1 h(1901.68) h(1911.62) 1 ebe29 CMU round2
1901.68 1911.62 0 h(1901.68) h(1911.62) 0 d31ab MTurk
1901.70 1911.65 0 h(1901.70) h(1911.65) 0 e5cd9 MTurk
1901.71 1911.66 1 h(1901.71) h(1911.66) 1 de566 MTurkLong
1901.69 1911.63 1 h(1901.69) h(1911.63) 1 60f7d MTurkLongSubset

We collect labels for household matches on Page 1 of the interface. When a labeler submit a

(potential) matching candidate, they also determine if the candidate’s household matches the reference’s

household. We pull all of the Page 1 labels for the two households of interest (John / John’s

Matches): Household 1: h(1901.68) = h(1901.69) = h(1901.70) = h(1901.71) = h(1901.72) and

Household 2: h(1911.62) = h(1911.63) = h(1911.64) = h(1911.65) = h(1911.66) = h(1911.67) and display

these labels in Table 4.8. As a reminder, h is a function that pulls the household ID for each of the individual

records; because 1911.62 and 1911.63 are in the same household, h(1911.62) = h(1911.63).

Now that we have all information about household matches for these two households (meaning all Page 1

labels for anyone from the two households), we can start to define what it means for a house to match. One

way we can consider two houses to match is by summing the number of times that the household matched,

given that the candidate was chosen (definition 1). Using definition 1, a house would only receive a zero

(non-match) if a candidate within the household was chosen but the household was not matched. We can

see in Table 4.8 that the first three and last two rows fall into this category in that they received a one (1)

for the Page 1 Match. Out of these five rows, all of them received a one (1) for the House Match meaning

that this household pair had 5/5 matches when using definition 1. This definition, however, doesn’t capture

the cases where a labeler explored the two households as part of a Page 1 match but decided not to link the

individuals (and therefore couldn’t possibly link the households).
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In definition 2 all of the households of the candidates that were not selected will also receive a zero when

determining House Match. The denominator (total labels for definition 2) becomes the count of the times

two households were shown to a labeler on Page 1 instead of just the times that they were shown and an

individual was matched. The numerators in both definitions are equal. This process of determining what

counts as a non-match is subjective and there are pros and cons to both definitions. The main concern

with Definition 2 is that there could be a situation where the household actually matched even though the

candidate shown did not match the reference shown.

Table 4.9: Household Comparisons. We take the unprocessed, subset data about houses h(1901.68) and
h(1911.62) in Table 4.8 and consolidate that information here.

1901 House 1911 House House
Match

House
Total (Def 1)

House
Total (Def 2)

Def 1
Proportion

Def 2
Proportion

Field
Similarities

(
h(1901.68)
=h(1901.69)
=h(1901.70)
=h(1901.71)
=h(1901.72)

) (
h(1911.62)
=h(1911.63)
=h(1911.64)
=h(1911.65)
=h(1911.66)
=h(1911.67)

)
5 5 7 1 0.71 ...

In Table 4.9 we show what a row of our household comparison (one row = one pair of households)

looks like for the household’s of individual records 1901.68 and 1911.62. We see the sum of the labels

using both definitions as well as the consolidated proportion of matches across the two definitions. “Def

1 Proportion” is defined as House Match / House Total (Def 1) and “Def 2 Proportion” is defined as

House Match / House Total (Def 2). We can also calculate the field similarities for variables at the household

level (see Section 5.3 for details). The household of 1901.68 is also compared to many other households but

those data are not shown here.

Tables 4.5, and 4.6 preview how labels about individual pairs originating on Page 1 and Page 2 of our

interface are processed and consolidated. Table 4.9 shows this process for pairs of households.

4.2 Blocking

The pairs of labels that we saw previewed in Table 4.5 came directly from our labeling interface. We only

include labels (matching or non-matching) for records that were shown to a labeler on either page 1 or page

2. More specifically, the pair was either

• labeled as a match on Page 1,

• labeled as a non-match (by not being selected) on Page 1,

• labeled as a match on Page 2 (by being linked across households), or

46



• labeled as a non-match on Page 2 (by not being linked across households).

We understand that in many record linkage settings one is not collecting their own labels and wants

to model the data using existing labels. In these situations, when a researcher is attempting to model

pre-labeled record linkage data, it is very common to “block” the records ahead of time. As mentioned

in Section 1.1.1, blocking is a common tool used in record linkage to increase computational traction and

address the large class imbalance. There’s not always a need to compare 1901 “Mary Murphy” to every single

person from 1911. Instead we may only want to compare her to the likely 1911 matches. Records are only

compared if they match a set of criteria. Any pairs that don’t meet this criteria are never compared (and

therefore could never be predicted as matches). There are many ways to build blocks using unsupervised or

supervised methods and these blocks can be independent from each other or built through passes. A record

linkage paper that links historical records from Canada block using a first name code and the first letter of

the last name [8]. If a researcher were to take our pre-labeled data (which we will make public) and decide

to block the records for a pairwise analysis, they might take a similar approach to [8] due to the similarities

in application.

Note that we have already imposed strict blocking by limiting the number of candidates we show our

labelers. Showing a human labeler hundreds of records to parse through would be inefficient and likely

produce low quality labels. Given our initial strict blocking, we are additionally interested in how record

linkage models perform when there is less strict blocking applied to our data. Therefore, we need to add

in blocked pairs for the reference records we’ve already labeled. For a given reference record, additional

candidates are selected if they:

Table 4.10: Blocking Criteria. In additional blocked pairs, we block based on the soundex of first name,
the first letter of the last name, and geographic region.

Blocking Criteria
Agree on the first two letters of the Soundex representation of first name,
Agree on the first letter of last name, and
Live within a bordering county.

We utilize this blocking scheme to mimic other historical record linkage blocking schemes. We needed to

add the additional location constraint to our blocks to reduce the block size further. There is an extremely

large name similarity across Ireland in this time period and the first two conditions did not constrain the size

enough. These additional blocked pairs will all have zero “Matches” meaning that they were never labeled as

a match. We feel comfortable assigning these blocking pairs to be non-matches because the reference record

had the ability to or was linked in our interface. We do not add additional blocks to pairs that were labeled

as non-matches on Page 2 but were never labeled on Page 1.
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We add additional blocked, non-matching pairs to the John Clynch example that we’ve used throughout

this chapter (shown in Table 4.11). We add these because John was matched on both Page 1 and Page 2,

meaning that we feel comfortable assigning a zero to additional blocking pairs.

Table 4.11: Individual Pairwise Matches - Adding Blocking. This is a representation of the rows of data
that are added via blocking.

Reference Candidate Page 1
Match

Page 1
Total

Block
Match

Block
Total

Source

1901.68 1911.62 2 3 - - Page 1 & 2
1901.68 1911.103 - - 0 1 Block 1
1901.68 1911.117 - - 0 1 Block 1
1901.68 1911.132 - - 0 1 Block 1
...

...
...

...
...

...

As shown in Table 4.12 the records 1911.103, 1911.117, and 1911.132 all fit the blocking criteria and

are somewhat similar records to John (1901.68). Note that these records didn’t match strongly enough to

be considered a candidate in our interface. From examining the original records, we feel confident that none

of these individuals match better to John than the John that was selected most often by our labelers.

Table 4.12: Blocking Records. The original data for a few of the records that are added to the comparison
space for 1901.68.

ID Forename Surname Age Sex Occupation Birthplace TownStreet DED
1911.103 James Candy 54 Male Farm Servant Co Carlow Bromville Ballintemple
1911.117 John Clarke 20 Male Farm Servant Dublin City Kilgraney Ballintemple
1911.132 James Coe 60 Male General Servant Co Carlow Craans Ballintemple

We add blocks to help understand the effect of block strictness (on future modeling), given that there is

no established “correct” or “standard” blocking scheme in practice. One of the benefits of looser (less strict)

blocking is the potential to find matches among the additionally added data. While we assigned a zero as the

true match value for all blocked pairs, it would be interesting to see whether any models uncover mistakes

or blocked pairs that should have been examined and matched earlier in our process. In future sections we

make the distinction between models / analyses that were used with pr without the additional pairs from

“blocking”.
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4.3 Data Summary

We show the number of labels we collected via crowdsourcing in Table 4.13. CMU Round 1 was collected in

March 2018, and Round 2 was collected in January 2019. We collected our initial MTurk labels in December

of 2019. The rounds “MTurk”, “MTurkLong”, and “MTurkLongSubset” were collected in March, April, and

June of 2020. We tabulate the number of labels by the round in which the label was collected. Given the

design of our interface, we explore the number of labels separately colleced on Page 1 and Page 2. Looking

at the row for Round “MTurkLongSubset” our labelers submitted labels on Page 1 2, 251 times. Of those

submits, 1, 200 found a matching candidate and 1, 004 additionally found a matching household. On Page

2, labelers in “MTurkLongSubset” provided labels for 3616 reference records or reference/candidate pairs

within the 1, 004 household matches. As we show in Section 2.6.1 and can see here, there are label quantity

gains by labeling on Page 2 of the interface given that the average number of labels per household pair

is greater than 1. In the last two rows under the dashed line, we total these values and also provide the

number of unique labels. There were 13, 058 submits on Page 1 equating to 8, 531 unique reference record.

The remainder were duplicate labels. On Page 2 we received 2, 731 submits and of those 2031 were unique

household pairs. The remainder household pairs were labeled multiple times. On Page 2 we received labels

for 8, 850 individual pairs of which 6034 were for unique 1901 records.

Table 4.13: Number of labels collected via crowdsourcing. We see the breakdown of labels collected in
each of the rounds of labeling. The rounds of labeling are ordered chronologically. We first started labeling
at CMU and then moved to MTurk. The first two columns represent a submit on Page 1 of the interface.
When someone submits on Page 1 they give a label (or say no match selected) for one reference record.
The second column represents the submits on Page 1 where a match was found among the candidates (the
labeler did not say no match selected). On Page 2 the labeler can link multiple pairs of people across the
two households. Therefore for each household submit, we can receive multiple matching labels. The fourth
column represents the total number of 1901 records that were matched on Page 2. At the bottom under the
dashed line, we see the total and unique number of labels. Because we have multiple labelers label a given
reference record, it is important to distinguish between total labels and unique labels.

Page 1
Submits

Page 1
Match Found

Page 2
Submits

Page 2
Match Found

CMU round1 2737 1928 0 0
CMU round2 786 561 474 1823
MTurk initial 767 181 96 325

MTurk 2983 709 341 1029
MTurkLong 3534 1251 816 2057

MTurkLongSubset 2251 1200 1004 3616
Total 13058 5838 2731 8850

Total (Unique) 8531 3666 2031 6034
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In Table 4.14 we explore how the data we collect changes by round. We first explore the percentage of

times that a labeler said that there was no match found. One of the biggest concerns when we started utilizing

the Amazon MTurk platform was how often labelers said that there was no match among the provided

candidates (potentially introducing false negatives into the data). Looking once again at the last round,

“MTurkLongSubset”, we find that 1 − (1200/2251) = 0.467 or 46.7% of submits said “no match selected”.

In this round, the labelers said the household matched about 45% of the time (1004/2251 = 0.446). When

they labeled on Page 2, they provided labels for on average 3.6 reference records per household. There are

clear differences between CMU and MTurk labeler behavior, which we will explore further in the modeling

sections.

No Match
Found %

House
Match %

Average Individual
Labels Per House

CMU round1 29.60
CMU round2 28.60 60.30 3.85
MTurk initial 76.40 12.50 3.38

MTurk 76.20 11.40 3.02
MTurkLong 64.60 23.10 2.52

MTurkLongSubset 46.70 44.60 3.60

Table 4.14: The column “No Match Found%” is the percentage of submits on Page 1 in which the labeler
said that there was no match among the presented candidate records. The column “House Match %” is the
percentage of labelers on Page 1 who said that the households matched (and were therefore sent to Page 2).
The column “Average Individual Labels Per House” is the average number of matching pairs we received for
each submit on Page 2.

The summary tables 4.13 and 4.14 do not include the pairs of non-matching individuals that we receive

when a labeler utilizes our interface. To describe the full number of pairs received we look to Table 4.15.

There were over 90,000 individual pairwise labels collected on Page 1 and almost 5,000,000 on page 2.

Additionally, we received labels for 58,000 pairs of households.

Table 4.15: Pairs of labels collected via crowdsourcing.

Page 1 Individual Pairs Page 2 Individual Pairs Household Pairs Block Individual Pairs
Match (1) 5830 8467 2218 0
Non-Match (0) 84588 4952533 56264 12390803
Total 90438 4961000 58482 12390803

In Figure 4.1 we examine the distribution of blocks added to each reference record. We find that for

reference records with very common names, up to almost 8, 000 rows of data could be added. When modeling

we take steps to examine how results change with only subsets of our added blocks, but this will be discussed

in more detail later.
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Figure 4.1: Distribution of block size for each reference record. Most records have less than 1000 added
blocks but some reference records have up to 8000.

[[Kayla says: Add a map of Ireland with a dot for each label]]

4.3.1 Data Going Forward

Our initial work and data collection was focused on Ticknock, County Carlow, Ireland (and surrounding

areas) which is a small rural town in the southeastern part of the country. As we move to later phases

of label collection, we expand to other geographic regions including Counties Carlow, Wicklow, Kilkenny,

Dublin, Kildare, and Meath. In addition to collecting larger geographic regions, we also collected matching

information at the household level about households and individuals within households. For following

analyses, we will focus on two data sets that were collected with labelers at both CMU and Amazon MTurk.

The first data set represents matches/non-matches that we receive directly from the labeling interface. The

second contains additional non-matching pairs pulled using a typical blocking approach. The data includes

the larger geographic region we mentioned above.
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Chapter 5

Comparing Data

In this Chapter, we detail similarity metrics for record linkage. In Section 5.1 we introduce notation that

we will use throughout the remainder of the thesis. In Section 5.2 we introduce comparison metrics for

comparing pairs of individuals. In Section 5.3 we introduce comparison metrics for comparing pairs of

groups of individuals. In Section 5.4 we mathematically compare the group-wise comparison metrics and

briefly conclude in Section 5.5.

5.1 Notation

Individuals & Individual Pairs

Given a set of census records from year t we use the notation Xt
i,k to denote the kth feature of the ith

individual within year t. Within each year, there are i = 1...nt individuals and k = 1...Kt features. In this

thesis, we are working with two sets of census records, one from 1901 and one from 1911. We refer to these

data sets as X1901 and X1911 respectively. There are n1901 records with K1901 features in the first data

set and n1911 records with K1911 features in the second. Therefore, X1901 is an (n1901 ×K1901) matrix and

X1911 is a (n1911 ×K1911) matrix. Let X1901
i and X1911

j index records in X1901 and X1911, respectively.

If we wanted to compare all individuals within 1901 to all individuals within 1911, we would need to

make n1901 ·n1911 pairwise comparisons. These pairs can be classified either as a match (i.e., they truly refer

to the same entity) or a non-match (i.e., they do not refer to the same entity). We use X1901
i ∼ X1911

j to

denote that records i and j are a true match and belong to the same entity. We use M to refer to the set of

all pairs of records that truly match and U to refer to the set of pairs that are true non-matches, such that

M = {(X1901
i , X1911

j ) ∈ X1901 ×X1911 : X1901
i ∼ X1911

j } and U = {(X1901
i , X1911

j ) ∈ X1901 ×X1911 :

X1901
i �X1911

j }. We use lower case m and u to refer to matches and non-matches within a subset of record
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pairs. When comparing a subset of 1901 records (A) to a subset of 1911 records (B), we define the matches

to be: m = {(ai, bj) ∈ A×B : ai ∼ bj}.

Households & Household Pairs

For all records, we were provided with a household identifier that indicates at which household the individual

record was recorded at. The function ht(i) : {1, . . . , nt} 7→ {1, . . . , nht} maps individual indices to household

indices (e.g., i 7→ h1901(i)). For example, h1901(i) represents the household ID for person i from the year

1901. We use Xt(ht(i)) to refer to the subset of all records that are in the household of person i from time

t: Xt(ht(i)) ⊂Xt = {Xt
l· : ht(l) = ht(i)}.

Let h1901(i) and h1911(j) index households in X1901 and X1911, respectively. Furthermore, we may be

interested in the set of one specific field within a household. We use Xt·k(ht(i)) = {Xt
lk : ht(l) = ht(i)} to

denote the set of individual values for field k within house ht(i) (of year t). We provide concrete examples

of how our notation is used below.

Notation Examples

For the remainder of this chapter, we will use a running example (Table 5.1) to illustrate various comparison

metrics. In this example we have the Murphy household from 1901 containing a father, mother, and two

daughters. The 1911 household only contains the two parents. This is a situation where the daughters moved

out of the house between the ten year census recording gap. Therefore the daughters do not appear in the

1911 census, even though the households are the same.

Example 1901 Household

Individual
Index (i)

House
Index (ha) Forename Surname Gender Age · · ·

32 6 Patrick Murphy Male 45 · · ·
33 6 Ellen Murphy Female 42 · · ·
34 6 Eliza Murphy Female 15 · · ·
35 6 Mary Murphy Female 12 · · ·

Example 1911 Household

Individual
Index (j)

House
Index (hb) Forename Surname Gender Age · · ·

9596 2401 Patrick Murphy Male 56 · · ·
9597 2401 Ellen Murphy Female 43 · · ·

Table 5.1: Examples of the Murphy Households from 1901 and 1911. We believe that Patrick and Ellen are
the same individuals in 1901 as 1911, but that Eliza and Mary moved between the two census’ and therefore
do not appear in 1911.
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We are often interested in comparing individuals across data sets. Using the example households in

Table 5.1, we may be interested in comparing Ellen Murphy’s 1901 record (X1901
33,· ) to her 1911 record

(X1911
9597,·). To compare these records as a whole, we may want to compare them field by field. For example, if

we wanted to compare the Surnames of both records, we could compare X1901
33,4 to X1911

9597,4. X1901
33,4 is “Murphy”,

which is the 4th feature (Surname) of the 33rd record in the 1901 census. X1911
9597,4 is also “Murphy”, which is

the 4th feature (Surname) of the 9597th record in the 1911 census. Besides comparing individuals, sometimes

we want to compare entire households. In a similar fashion, we may want to compare all first names of one

household to another. For example, we could compare X1901
·3 (h6) (which we can also write as X1901

·Surname(h6))

to X1911
·3 (h2401). This would allow us to compare the set {Patrick, Ellen, Eliza, Mary} to the set {Patrick,

Ellen}. We will provide further examples of metrics to compare individuals and households in the sections

below.

5.2 Comparing Individuals

5.2.1 Exact Match Similarity

One metric for comparing two strings is to determine whether or not they are an exact match, which we

define formally below.

simexact-match (s1, s2) =

0 if s1 6= s2

1 if s1 = s2

(5.1)

For example, we can compare the forenames of record pairs from Table 5.1. We first compare X1901
32,3 to

X1911
9596,3. Both entries for the 3rd field (Surname) are the string “Patrick”, which are an exact match and

therefore are calculated to have a score of “1”. Next we compare X1901
32,3 (Patrick) to X1911

9597,3 (Ellen) which

are not the same string, so that pair receives a score of “0” for the binary, exact match comparison.

simexact-match (“Patrick”, “Patrick”) = 1

simexact-match (“Patrick”, “Ellen”) = 0

Exact match comparisons can be made for both string / text and numeric fields, which make this

comparison metric easy to apply in many settings. The binary nature of the metric is also easy to work

with, although exact matching can be seen as too stringent in many record linkage settings because much of

our data is recorded with typographical errors or inconsistencies that exact match metrics will not consider.
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5.2.2 Numeric Valued Differences

A common approach to comparing numeric values is to take their difference. Age is a common example

for which utilizing a difference metric makes sense, but we need to be cognizant of applications with a

longitudinal time component. For example, our two census data bases were recorded 10 years apart and

therefore we expect individuals to age 10 years in that time frame. If we are using the difference metric in a

continuous way, we are able to use the raw difference score, defined below. We subtract the 1901 value from

the 1911 value.

simdifference (X1901
i,k , X1911

j,k ) = X1911
j,k −X1901

i,k (5.2)

Below, we subtract Patrick’s 1901 age from his 1911 age from our running example (Table 5.1).

simdifference (45, 56) = 11

Absolute Value Differences

If we know we expect a certain value difference (e.g., ten years between a decennial Census), we may want

to create our own difference metrics. For example, one metric we found useful was the number of years

away from the expected value of ten. The intuition is that we may want to treat a 9 year difference between

ages the same as an 11 year difference. Using the “years from ten” difference value below, both of those

differences will be the same.

simyears-from-ten (X1901
i,k , X1911

j,k ) = |10− (X1911
j,k −X1901

i,k )| (5.3)

Below, we apply the “years from ten” difference to Patrick’s 1901 and 1911 ages. If the two ages were

exactly ten years apart, the difference would produce zero.

simyears-from-ten (45, 56) = |10− (56− 45)| = |10− 11| = 1
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Binned Differences

As we mentioned previously, sometimes we want binary comparisons because of their simplicity. However,

historical evidence has shown (and our research has confirmed) that census ages are wildly inaccurate and

therefore a binary exact match on age (even after accounting for the 10 year difference) may not be practical.

Therefore, for age in particular, we can 1) adjust temporally, 2) bin our data, and 3) apply an exact match

to utilize a less strict exact match.

Therefore, for age in particular, we could subtract any known temporal diferences (e.g., 10 years), bin

those values, and then see if the bins are an exact match across the pair we want to pair. This is one way

to apply a looser exact match for age. We show this below:

simbinned-difference (X1901
i,k , X1911

j,k ) = simexact-match (bin(X1901
i,k ), bin(X1911

j,k − 10)). (5.4)

Binning can be done in any way, but we chose to bin our data into 5 year intervals from 0 to 110. Once

again we apply this difference to the Patrick example from Table 5.1, and show the results here:

simbinned-difference (45, 56) = simexact-match (bin(45), bin(56− 10)) = simexact-match((45, 50], (45, 50]) = 1

.

5.2.3 Jaro-Winkler Similarity

As formerly noted in Section 1.1.1, a common metric for assessing the similarity of two strings is an edit

distance called the Jaro-Winkler (JW) [64]. It is simliar to the Jaro similarity[34], but places a higher

emphasis on letters within the strings matching at the beginning of the string. Both of these similarity

scores are bounded between 0 and 1 with 1 indicating the highest similarity and 0 the lowest. We might

use Jaro-Winkler to assess how similar “suzanne” is to “susan” or how similar “catholic” is to “church of

england”. The Jaro-Winkler allows us to assign a continuous or fuzzy match metric to two strings (which

the Exact Match similarity did not). We define the Jaro-Winkler edit distance below formally, for the

comparison of two strings s1 and s2, where s1 = Xt1
i,k, and s2 = Xt2

j,k. We use this notation to notate that

we are interested in comparing field k (e.g., forename) between the ith individual at time t1 (e.g., 1901) and

the jth individual at time t2 (e.g., 1911).
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simjaro (s1, s2) =

0 if m = 0

1
3

(
c
|s1| + c

|s2| + c−t
c

)
otherwise

(5.5)

Where:

• |s1| is the number of characters in the string s1

• c is the number of matching characters

• t is the number of transpositions

Using the Jaro Similiarity (Equation 5.5), we define the Jaro-Winkler Similarity (Equation 5.6) below.

Once again, letting s1 = Xt1
i,k and s2 = Xt2

j,k,

simjaro-winkler (s1, s2) = simjaro (s1, s2) + lp(1− simjaro (s1, s2)) (5.6)

Where:

• l is the number of characters that match at the beginning of both strings, with a maximum of 4

characters

• p is a constant scaling factor, often p = 0.1

More details on the Jaro and Jaro-Winkler similarity and the definitions of matching characters and

transpositions can be found on the “Jaro–Winkler distance” Wikipedia page∗ or the Statistical Odds &

Ends Blog†.

5.2.4 Consolidating Field Similarity Into Individual Pairwise Comparisons and

Matches

Now that we know how to compare fields across two records (e.g., Exact Match, Difference, Jaro-Winkler),

we want to consolidate the field similarities and try to determine whether the two records actually belong

to the same entity.

There are many ways to determine if two individuals match. To highlight a few ways we could match the

individuals, we use the Patrick Murphy example shown in Table 5.1 as well as below (Table 5.2). We decide

on a similarity metric for each field (in practice one could calculate multiple metrics per field) and show the

similarity scores below the raw data (Table 5.3).

∗https://en.wikipedia.org/wiki/Jaro-Winkler_distance
†https://statisticaloddsandends.wordpress.com/2019/09/11/what-is-jaro-jaro-winkler-similarity/
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Patrick Murphy Raw Census Data

Year
Individual
Index (i)

House
Index (ha) Forename Surname Gender Age Occupation Birthplace

1901 32 6 Patrick Murphy Male 45 Farmer Co Carlow
1911 9596 2401 Patrick Murphy Male 56 Agriculture Carlow

Table 5.2: Patrick Murphy original census records.

Patrick Murphy Similarity Comparisons

Forename: J-W Surname: J-W Gender: Exact Age: Binned Exact Occupation: J-W Birthplace: J-W
1 1 1 1 0.5 0.8

Table 5.3: Patrick Murphy similarity comparisons.

Matches can be determined by heuristics or rules. For example we could say if all fields are their max

similarity, classify as a match. In the Patrick Murphy example, the Jaro-Winkler (J-W), Exact, and Binned

Exact similarities are all bounded by a maximum similarity value of 1. Since two of the fields are not the

max value we would classify the pair as a non-match. A rule that would classify the pair as a match might

be: if name, gender and age all exactly match and the other fields have a similarity of at least a 0.5 level,

classify as a match. Multiple sets of rules can be used together, joined by either “and” or “or” statements.

These sets can be developed by exploring the data (either in an unsupervised or supervised fashion) and /

or by working with experts in the application area.

As another example, various pairwise field similarity metrics could be averaged or summarized. If all

similarities were bounded between 0 and 1, we could simply take the average. In our example, we would

calculate an overall pairwise similarity of 1+1+1+1+0.5+0.8
6 = 0.883. We could then decide that all pairs that

have a similarity above some threshold, say 0.7 be declared a match. Both of the methods described above

are unsupervised in that no ground truth match status data is used to determine whether or not the pair is

a true match. Other, more statistical, unsupervised linkage approaches will be discussed in Chapter D.

Statistical models could also be used to classify individuals as matches in a pairwise fashion. For example,

we could predict (0/1) whether an individual pair is a match from the variables we generate about their

pairwise fields using the true known match status of other pairs. In a later Chapter (see 6), we go into much

greater details about statistical models for record linkage.

As mentioned in our notation section (Section 5.1), we use X1901
i ∼X1911

j to refer to two individuals who

truly are the same entity (in our case they are the same person recorded in both 1901 and 1911). However,

we do not always know whether or not two individuals are the same person. In our application, the ground

truth linkage structure is not known. We do collect labels via our human label collection, but that is for only

a subset of the data. Therefore, we will also predict whether or not two individuals are a match. We will use

a “hat” to indicate that a matching link is estimated: X1901
i ∼̂X1911

j . The full set of estimated matches is
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indicated by M̂ = {(X1901
i , X1911

j ) ∈ X1901 ×X1911 : X1901
i ∼̂X1911

j }. Similarly for subsets of individual

matches, we use m̂ = {(ai, bj) ∈ A×B : ai∼̂bj} to indicate the estimated matches.

5.3 Group Similarity

In order to expand similarity from individuals to groups of individuals, we need to establish and utilize

metrics for comparing groups. These metrics and methods are often different from those used to compare

individuals. In this subsection, we outline existing group similarity approaches.

5.3.1 Jaccard Index

A common mathematical approach to comparing sets, or groups of items, is the Jaccard index (Jaccard

similarity coefficient) [33]. This index is bounded between 0 and 1 where 1 indicates the maximum similarity

and 0 indicates the least. We define the Jaccard index between two, unordered sets, A and B in Equation

5.7.

Let A = {a1, a2, ..., ana}

Let B = {b1, b2, ..., bnb
}

Jaccard(A,B) =
|A ∩ B|
|A ∪ B|

(5.7)

For example, we could compare the set of first names across the two households in Table 5.1. Using the

same notation introduced earlier, we can compare A = X1901
·Forename(h6) = {Patrick, Ellen, Eliza, Mary} to

B = X1911
·Forename(h2401) = {Patrick, Ellen} and calculate a Jaccard index of 2

4 because “Patrick” and “Ellen”

appear in both sets (intersection size of two) and there are four unique elements across both sets.

A = { Patrick, Ellen, Eliza, Mary}

B = {Patrick, Ellen}

Jaccard(A,B) =
|A ∩ B|
|A ∪ B|

=
|{Patrick, Ellen }|

|{Patrick, Ellen, Eliza, Mary}]|
=

2

4
= 0.5
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5.3.2 Ruzicka / Weighted Jaccard Index

An extension of the Jaccard Index, otherwise known as an “adjusted” or “weighted” Jaccard index has been

re-introduced numerous times across the literature for various applications[50][12][Deza]. This “weighted”

version is known as the Ruzicka similarity, the Jaccardized Czekanowski Index, or the Generalized Jaccard

format[47]. If na = nb and all ai, bi ≥ 0, we can write the Jaccard index (Equation 5.7) using the Ruzicka

similarity (Equation 5.8) below. Note that the numeric valued sets A and B are paired/ordered (unlike

the sets in Equation 5.7) such that a1 is compared to b1 and ana
is compared to bnb

. The specific order of

elements within A and B does not matter, as long as A can directly be compared to B, element by element.

Jaccard Ruzicka (A,B) =

∑
i

min
(
ai, bi

)
∑
i

max
(
ai, bi

) (5.8)

One disadvantage of the Ruzicka similarity is that (because of the additional constraints on our sets) we

would not be able to calculate the similarity of the previous example (A = {Patrick, Ellen, Eliza, Mary} to

B = {Patrick, Ellen}) because the sets are different lengths, the values are non-numeric, and it is unclear

how to pairwise compare the elements across the two sets. As a human, we may be able to guess that

the “Patrick”s and “Ellen”s should be compared and that “Eliza” and “Mary” do not have a pair in 1911,

but a computer or automated system would not know which elements to compare. As a reminder, the

Ruzicka similarity metric can only be used (as is) if we were to compare two sets that each had multiple,

positive numeric features (in an order such that the sets can be compared element-wise). However, if we

were to calculate the counts of each word across A and B, we could create ordered, positive numeric sets

and satisfy the constraints of the Ruzicka. We call these tabulations A′ and B′, which are the counts of the

following elements: {Eliza, Ellen, Mary, Patrick}. For this example we arbitrarily chose to order the text

alphabetically, but we could have ordered them in a different way. It only matters that we compare the

count of “Eliza” from A′ to the count of “Eliza” from B′ and not that we compare the “Eliza” counts first

and the “Mary” counts third. The fact that we are only comparing the 1901 “Eliza” to the 1911 “Eliza” (as

opposed to another name) is another benefit of the Ruzicka. If we know the inherent ordering within the

sets, we can focus on the comparisons of elements that are “paired” or should be directly compared. Now

that we have A′ = {1, 1, 1, 1} and B′ = {0, 1, 0, 1} representing the counts of the unique words in both sets,

we can apply the Ruzicka similarity to assess how similar A is to B. Note that because these elements are

counts, if “Eliza” happened to appear twice in the first set we would see a “2” instead of a “1” as the first

element. Both of the hypothetical “Eliza”s would get to contribute to the Ruzicka similairty, whereas the

unadjusted Jaccard does not change with the addition of repeated elements.
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A′ = {1, 1, 1, 1}

B′ = {0, 1, 0, 1}

Jaccard Ruzicka (A′,B′) =

∑
i

min
(
a′i, b

′
i

)
∑
i

max
(
a′i, b

′
i

) =
0 + 1 + 0 + 1

1 + 1 + 1 + 1
=

2

4
= 0.5

We notice that the Ruzicka Jaccard of A′ and B′ produce the same score as the unadjusted Jaccard of A

and B, but this is not always the case. We will discuss their differences further in Section 5.3.3.

5.3.3 Adjusting the Jaccard Index for Record Linkage

We noticed in the above subsections that there are benefits to using the Ruzicka similarity, but that it cannot

be used in all settings (as is). Therefore, we formally rewrite our sets such that we can always use either the

Jaccard or the Ruzicka similarity. The first step is to refer to our sets as multisets, given that there can be

repeated elements. Multisets have been used for hundreds of years within the mathematics literature, but

was formally coined in the 1970s [35]. A multiset is a set in which elements can be repeated. The support of

a multiset is the set of unique elements of the muiltiset. The support is also known as the underlying set of

the multiset. In a multiset, we care about the number of times each element of the support appears in the

multiset. The multiplicity of an element in the support is the number of times the set element appears in

the multiset. The cardinality of the multiset is the total number of elements within the set. We define these

formally below.

A = a multiset (5.9)

Multiplicity(a) = dA(a) =
∑
x∈A

1(x = a) (5.10)

Multiplicity(A) = {dA(a) | a ∈ Supp(A)} (5.11)

Support(A) = Supp(A) = {a ∈ U | dA(a) > 0} (5.12)

Cardinality(A) = |A| =
∑

a∈Supp(A)

dA(a) (5.13)

Now that we have the language to refer to these sets, we can rewrite the Jaccard and the Ruzicka

similarities below, using this terminology. If we are working with multisets, but want to capture the original
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Jaccard (Equation 5.7), we can write the Jaccard as follows. Note that dSupp(A)(x) is either going to be 1 (if

x ∈ A) or 0 (if x /∈ A). We further note that x ∈ Supp(A) ∪ Supp(B) is the same as x ∈ A ∪ B, meaning all

x in the union of all unique values across A and B. Because both unions are the same and the summations

below could be written in either way, we choose the simpler one. In the original Jaccard equation we only

look to the support of the set because we do not want to incorporate information about repeated elements.

Jaccard(A,B) =
|A ∩B|
|A ∪B|

=

∑
x∈A∪B

min
(
dSupp(A)(x), dSupp(B)(x)

)
∑

x∈A∪B
max

(
dSupp(A)(x), dSupp(B)(x)

) (5.14)

Alternatively, when we compare two sets and do want to incorporate information about the repeated

elements, we look to the full multiset (we calculate the multiplicity of the full mutiset as opposed to the

multiplicity of the support). The equations are equivalent except in the Ruzicka Jaccard we replace the

multiplicity of the support of the multiset (dSupp(A)(x)) with the multiplicity of the multiset (dA(x)).

Jaccard Ruzicka (A,B) =

∑
i

min
(
ai, bi

)
∑
i

min
(
ai, bi

)
=

∑
x∈A∪B

min
(
dA(x), dB(x)

)
∑

x∈A∪B
max

(
dA(x), dB(x)

) (5.15)

Example

In the section above (5.3.3) we introduce a format for referring to multisets, such that we can easily compute

both the Jaccard and the Ruzicka Adjusted Jaccard. We saw that when assessing the similarity of first

names from Table 5.1, the Jaccard and the Ruzicka produced identical results. However, for variables with

repeated elements (i.e., A 6= Support(A)) the results are not always the same. To demonstrate this idea, we

compare the Gender of the households in our recurring example (Table 5.1).
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A = {Male, Female, Female, Female}

Supp(A) = {Male, Female}

Multiplicity(A) = (1, 3)

Multiplicity(Supp(A)) = (1, 1)

Cardinality(A) = 4

B = {Male, Female}

Support(B) = {Male, Female}

Multiplicity(B) = (1, 1)

Multiplicity(Supp(B)) = (1, 1)

Cardinality(B) = 2

A ∪ B = {Male, Female}

Now that we have determined the support and multiplicity of our multisets, we can calculate the Jaccard

and the Ruzicka Jaccard.

Jaccard(A,B) =

∑
x∈A∪B

min
(
dSupp(A)(x), dSupp(B)(x)

)
∑

x∈A∪B
max

(
dSupp(A)(x), dSupp(B)(x)

)=
1 + 1

1 + 1
=

2

2
= 1.0

Jaccard Ruzicka (A,B) =

∑
x∈A∪B

min
(
dA(x), dB(x)

)
∑

x∈A∪B
max

(
dA(x), dB(x)

) =
1 + 1

1 + 3
=

2

4
= 0.50

The Gender example above exemplifies how having repeated elements within a set can inadvertently

produce a higher Jaccard index than we may expect. The two multisets A and B are not identical, yet they

produce the maximum similarity score using the Jaccard index. In variables with many repeated elements

(e.g., gender, surname) the Jaccard index is often 1, because it does not consider the repeated elements and

only the unique ones. In the above example, the Jaccard index does not account for the two additional

Female individuals in 1901 that do not appear in 1911. Instead, we calculate an index of 1, which we know is
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the maximum similarity value. While the Jaccard index may work well for some fields, for others that often

have repeated values within household members, the Jaccard index (5.7) will dilute or ignore the information

we have about repeated elements within households.

5.3.4 Group Linkage Measure

So far we have covered the comparison of individual fields and how to consolidate those into the comparison

of individual records (Section 5.2). We have also explored the similarity of sets of individual field values

at the household level (Section 5.3). However, we sometimes want to asses how similar two households are

based on the similarity of individuals within those households. In 2007, On, Koudas, Lee, and Srivastava

introduced the Group Linkage Measure as a way to link groups when individual similarities and matches

within groups are known [43]. Group linkage gives one similarity value per household pair whereas the

Jaccard similarities give one similarity value per field per household pair. One application example they use

is the linkage of authors (group variable) across various databases where the author has multiple citations

(each citation is an individual record) within each database. Each citation includes features such as the title

and co-author(s). Their goal is to link as many authors as possible, using the group information available

from the citations. Authors are linked if there are enough matching citations between them and the strength

of the similarity between citations is high enough. To better illustrate group linkage, we define it below and

follow with an example.

The group linkage measure is the similarity of Group A (A) to Group B (B). Each group is made up of

the individual records ai and bj , respectively, such that ai is the ith individual / record from group A. m̂ is

the pairs of individuals / records across groups A and B that have been estimated to be true matches. The

“hat” on top of the similarity symbol indicates that these matches are estimated and are not ground truth.

Similarity of record pairs across the two groups can be made in a variety of ways including, but not limited

to, heuristics, edit distances, TF-IDF cosine similarity, and model outputs (e.g., predicted probability of

matching)[49][36]. The numerator of Equation 5.16 is the sum of these individual pairwise similarity scores,

but only for pairs that are considered to match (typically by an arbitrary cutoff for the similarity scores).

The numerator is the total number of estimated unique individuals. It is calculated by summing the number

of individuals in group A and group B and subtracting those individuals who were double counted across

the groups (i.e. those who are actually the same person).
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A = {a1,·,a2, ...,anh1901(i)
}

B = {b1,·, b2, b3, ..., bnh1911(j)
}

m̂ = {(ai, bj) ∈ A×B : ai∼̂bj}

simgroup-linkage(A,B) =

∑
(ai,bj)∈m̂

sim(ai, bj)

|A|+ |B| − |m̂|
(5.16)

As an example, let’s compare the households in Table 5.1. We use A and B to represent the household

records, with ai and bj denoting the individual records within the two households, respectively. We can

set A = X1901(h6) = The 1901 Murphy Household and B = X1911(h2401) = The 1911 Murphy Household.

As a reminder of notation from Section 5.1, A = Xt(ht(i)) = {Xt
l· : ht(l) = ht(i)} is the subset of all

individual records that belong to household ht(i). When comparing A to B, we are essentially comparing

the group of all individuals from household A to household B. The first step is to calculate the similarity

across all pairs of individuals. As previously mentioned, this similarity can be calculated in various ways

and is typically a consolidation of the individual pairwise field similarities (see Section 5.2.4). The similarity

scores are shown visually on the edges of the left graph in Fig. 5.1. Then we set an arbitrary cutoff that

determines which pairs are matches or non-matches. The matches, who have a higher similarity than our

cutoff of 0.5, are shown in the right of Fig. 5.1. Now that we have the similarity scores, we can calculate the

number of matching pairs. Because we set this cutoff at 0.5, only the Patricks and the Ellens match meaning

that |m̂| = 2. Additionally, only the Patrick / Patrick and Ellen / Ellen similarities get to contribute to the

numerator of their group similarity. We can now proceed to calculate the group similarity as shown in 5.17.
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Patrick Murphy

Ellen Murphy

Eliza Murphy

Mary Murphy

Patrick Murphy

Ellen Murphy

1901 House 6 1911 House 2401

All individual similarity scores

0.8

1.0

0.1

0.12

0.2

0.2

0.3

0.05

Patrick Murphy

Ellen Murphy

Eliza Murphy

Mary Murphy

Patrick Murphy

Ellen Murphy

1901 House 6 1911 House 2401

Matching individuals (sim(ai, bj) ≥ 0.5)

0.8

1.0

Figure 5.1: Bipartite graphs of the 6th household in 1901 and the 2401st household in 1911. Similarity
scores are shown for the pairs of individuals. On the right we only keep the similarity for those pairs that
are considered a match (similarity score greater than or equal to 0.5.)

A = X1901(h6) = {X1901
32· , X

1901
33· , X

1901
34· , X

1901
35· }

B = X1911(h2401) = {X1911
9596·, X

1911
9597·}

m̂ = {(X1901
32· ,X

1911
9596·), (X1901

33· ,X
1911
9597·)}

simgroup-linkage(A,B) =

∑
(ai,bj)∈m̂

sim(ai, bj)

|A|+ |B| − |m̂|
=

0.8 + 1.0

4 + 2− 2
=

1.8

4
= 0.45

Using the information in Fig. 5.1 we were able to calculate the group linkage similarity between 1901

House 6 and 1911 House 2401 (5.17). But in practice, sometimes we want to compare 1901 House 6 to
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multiple potential 1911 household matches to determine which household has the highest similarity. For

example, in the paper where group linkage similarity is introduced ([43]), they compare multiple authors

(that each have various sets of citations) to determine which authors are actually the same individual. ‡ We

demonstrate the [43] group linkage application in Fig. 5.2 and Fig. 5.3. We already introduced Fig. 5.2 where

we compare 1901 House 6 to 1911 House 2401 and calculate a group linkage similarity of 0.45. However,

we also want to see how similar House 6 is to 1911 House 81 to see if House 81 may be a better match. In

Fig. 5.3 we visualize and calculate a group linkage similarity of 0.116. Therefore, they would classify House

2401 to be the best match for House 6 because it has a higher group similarity.

In the historical record linkage context, Fu, Christen, and Boot utilize the existing group linkage measure

as a post-processing step to help resolve intransitivities among individual records [23]. They first link

individuals with the expectation of some erroneous links, and then use existing household structure to refine

and improve the individual linkage results. If an individual from the first data set is linked to two individuals

within the second data set, they use the household similarity to determine which of the two potential matches

is chosen. [23] would, in practice, utilize the group similarity slightly differently than [43] because [23] is

concerned with linking individuals and [43] is concerned with linking the group. [23] use household group

similarity to help determine the correct individual-level match in the case of multiple matching individuals.

We see in our example that, Ellen Murphy from 1901 House 6 matches to Ellen Murphy (at a threshold

above 0.5) in both 1911 Houses: 2401 and 81. Therefore, following the approach in [23] we would choose the

1911 Ellen whose group similarity is higher (in this case that would be the first Ellen). If one did not want

household information to influence the individual linkage, there are large benefits to using group linkage

as a post-processing step. § One potential downside of group linkage is its dependence on the strength of

the individual links. Confident individual links will likely lead to a dependable group linkage measure, but

individual links are not always strong. If individual similarities are used in the group linkage measure, it

may be unwise to use the group linkage measure in a secondary individual level linkage because of potential

overfitting.

‡They first use individual based matching techniques (e.g., cosine similarity) to assign a similarity score to pairs of citations.
They then arbitrarily threshold these similarity scores, determining that those above the threshold are matches. They use
the individual citation matches within an author pair to determine the group linkage score of the two author groups. More
specifically, they take the bipartite graph (left is a group of an author’s citations from one database, right is a group of an
author’s citations from a second database) and take an average of the weights of matching elements across the two groups.
§Sometimes there are government mandates / regulation that prevents additional household information from being used

in the individual linkage. Luiza Antonie (committee member) informed us that this is the case in some historical Canadian
linkages.
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Patrick Murphy

Ellen Murphy

Eliza Murphy

Mary Murphy

Patrick Murphy

Ellen Murphy

1901 House 6 1911 House 2401

0.8

1.0

Patrick Murphy

Ellen Murphy

Eliza Murphy

Mary Murphy

Brendan Murphy

Bridget Murphy

Ellen Murphy

1901 House 6 1911 House 81

0.7

Figure 5.2: Potential house match (1911 House
2401) with group linkage similarity of 1.8 / 4 = 0.45

Figure 5.3: Potential house match (1911 House 81)
with group linkage similarity of 0.7 / 6 = 0.116

Both papers utilize the same group linkage similarity score, but in different ways based on the focus

to link either individuals or groups. We have demonstrated both approaches using historical Irish Census

records in Fig. 5.2 and Fig. 5.3. In this thesis we use group linkage as one way to calculate a similarity score

for two households in their entirety. We will discuss how we use this metric in later sections.

5.4 Comparing Similarity Measures

5.4.1 Equality of Group Linkage and Jaccard Similarities

We show that the group linkage with a similarity function that indicates whether two individuals match

is the same as the Jaccard Index for identifying unique individuals. We show this at both the individual

(Theorem 5.1) and field/set level (Theorem 5.2).

In Theorem 5.1 we show that the Group Linkage of household A and household B is the same as the

Jaccard of these households. Note that in Equation 5.7 for Jaccard similarity we originally compared sets

of a specific field (e.g. first name). A ∩ B represented the field values that appeared in both set A and

set B where A ∪ B additionally represented those field values that appeared in only set A or set B but not

the other. When thinking about the actual individuals (instead of their fields) we can consider A ∩B to
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ai bj sim(ai, bj)
Patrick Murphy Patrick Murphy 1
Ellen Murphy Ellen Murphy 1
Eliza Murphy Patrick Murphy 0
Mary Murphy Ellen Murphy 0
Patrick Murphy Ellen Murphy 0
Ellen Murphy Patrick Murphy 0
Eliza Murphy Ellen Murphy 0
Mary Murphy Patrick Murphy 0

Eliza
Murphy

Mary
Murphy

Patrick
Murphy

Ellen
Murphy

B=
X1911(h2401)

A=
X1901(h6)

Figure 5.4: Visualizing the relationship between group linkage and Jaccard similarities for two households,
A and B. The 1901/1911 Patricks and Marys are the same person but Ellen and Eliza from 1901 have no
match in 1911 and therefore belong outside of the union of the two households.

represent the individuals who had records in both 1901 and 1911 (and therefore their unique entity should

only be counted once) and A ∪B to additionally include those individuals who only appeared in one of the

two census record databases. |A ∪B| gives us the total number of unique individuals that appear in either

1901 or 1911. In Figure 5.4 we present a visual representation of what is happening. We first assume we

have the similarities between pairs of records and therefore have an existing match status. The exact match

status of these records is often unknown (but can be estimated, for example using sim(ai, bj)). To get this

match status we could calculate the average field similarity or the cosine similarity of pairs of individuals

and then apply a binary threshold to those similarities. Alternatively we could build a (unsupervised or

supservised) statistical model and threshold the output match probabilities. Regardless, the group linkage

similarity requires a set of starting matches (the pairs that will form one entity within m̂). Once we have

these similarities we can calculate both the group linkage and Jaccard similarities. In the right of Figure 5.4

we see the matches within the union whereas the individuals without a match are outside of the union. We

will show that under specific similarity conditions, the group linkage and the Jaccard are the same.

We can also show that the group linkage similarity of two sets (A and B) is the same as the Jaccard

similarity of those sets, once again provided that the similarity is 1 for exact matching string pairs and 0

for non-matching string pairs. When thinking about group similarity at the field level (as opposed to the

individual level) we consider m̂ to be the field string pairs that match across the two groups (instead of m̂

representing the individual pairs that match). In Figure 5.5 we show the similarity scores as well as the

resulting Venn diagram of the strings. Those that match belong in the union and those individuals without

a match are not in the union.
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ai bj sim(ai, bj)
“Patrick” “Patrick” 1
“Ellen” “Ellen” 1
“Eliza” “Patrick” 0
“Mary” “Ellen” 0
“Patrick” “Ellen” 0
“Ellen” “Patrick” 0
“Eliza” “Ellen” 0
“Mary” “Patrick” 0

“Eliza”

“Mary”

“Patrick”

“Ellen”

B=
X1911
·Forename(h2401)

A=
X1901
·Forename(h6)

Figure 5.5: Visualizing the relationship between group linkage and Jaccard similarities for the sets of first
names (A and B) across the two households. “Patrick” and “Mary” appears in both 1901 and 1911 but the
names “Mary” and “Eliza” do not appear in 1911.

Theorem 5.1 (Equality of Group Linkage and Jaccard for individuals). The group linkage similarity of two

groups (A and B) is the same as the Jaccard similarity of the two groups, provided we have an initial set

of (likely estimated) matches between individuals. Specifically, sim(ai, bj) = 1 if ai is considered to be the

same entity/person as bj and sim(ai, bj) = 0 if they are considered to be different entities.

simgroup-linkage(A,B) = Jaccard(A,B) (5.17)

if sim(ai, bj) =

1 if ai∼̂bj

0 if ai�̂bj

Proof of Theorem.

A = {a1,·,a2, ...,anh1901(i)
}

B = {b1,·, b2, b3, ..., bnh1911(j)
}

m̂ = {(ai, bj) ∈ A×B : ai∼̂bj}
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simgroup-linkage(A,B) =

∑
(ai,bj)∈m̂

sim(ai, bj)

|A|+ |B| − |m̂|

=

∑
(ai,bj)∈m̂

1

|A|+ |B| − |m̂|

=
|m̂|

|A|+ |B| − |m̂|

=
|A ∩B|

|A|+ |B| − |A ∩B|

=
|A ∩B|
|A ∪B|

= Jaccard(A,B)

Theorem 5.2 (Equality of Group Linkage and Jaccard for field sets). We show that group linkage similarity

of two sets (A and B) is the same as the Jaccard similarity of those sets, given that we use an exact match

string similarity to determine the matches. Specifically, sim(ai, bj) = 1 if ai is the same string as bj and

sim(ai, bj) = 0 if the strings do not match.The strings from A that have a match in B belong in the union

and those that don’t appear in the other household belong within their original respective household (but not

in the union). The union and m are synonymous in that the strings that appear in both households make up

m which is the set of all matching string pairs.

Jaccard(A,B) = simgroup-linkage(A,B)

if sim(ai, bj) =

1 if ai∼̂bj

0 if ai�̂bj

if m = {(ai, bj) : ai∼̂bj}
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Proof of Theorem.

Let A = {a1, a2, ..., ana
}

Let B = {b1, b2, ..., bnb
}

m = {(ai, bj) : ai∼̂bj}

To simplify notation we let dSA(x) = dSupp(A)(x).

Jaccard(A,B) =

∑
x∈A∪B

min
(
dSA(x), dSB(x)

)
∑

x∈A∪B
max

(
dSA(x), dSB(x)

)

=

∑
x∈A∩B

min
(
dSA(x), dSB(x)

)
+

∑
x∈A∩Bc

min
(
dSA(x), dSB(x)

)
+

∑
x∈B∩Ac

min
(
dSA(x), dSB(x)

)
∑

x∈A∩B
max

(
dSA(x), dSB(x)

)
+

∑
x∈A∩Bc

max
(
dSA(x), dSB(x)

)
+

∑
x∈B∩Ac

max
(
dSA(x), dSB(x)

)

=

∑
x∈A∩B

1 +
∑

x∈A∩Bc

0 +
∑

x∈B∩Ac

0∑
x∈A∩B

1 +
∑

x∈A∩Bc

1 +
∑

x∈B∩Ac

1

=

∑
(ai,bj)∈m

1

|m|+ |A ∩ Bc|+ |B ∩ Ac|

=

∑
(ai,bj)∈m

1

|m|+ |A| − |m|+ |B| − |m|

=

∑
(ai,bj)∈m

1

|A|+ |B| − |m|

= simgroup-linkage(A,B)

5.5 Chapter Conclusion

In this Chapter we first introduce mathematical notation for use throughout the remaining chapters. We

introduce approaches for comparing fields, individual records, groups of fields, and groups of individual

records. We re-write the Jaccard and the Ruzicka Jaccard so that they can easily be compared, especially

in the case of multisets. We can show the equality between the Jaccard and the Group Linkage similarities,

under conditions about the group linkage similarity score, although in the remainder of this thesis we will
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use the Jaccards and the Group Linkage within slightly different contexts. We use the Jaccard to explore

sets of group fields while we use group linkage to compare two households in their entirety. The group

linkage similarity is heavily dependent on the provided similarity scores and the resulting match status of

the individuals or fields across households.
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Chapter 6

Supervised Models

In this section we explore classification methods for record linkage. Within record linkage, we typically try

to predict whether two individuals are a match (binary yes/no) from information (often similarity scores)

about the record pair. Within this setting, a row of data represents a pair of individuals, one from each data

source, (e.g. one individual from 1901 and one from 1911 for the Ireland census problem). If we happen to

know the match status of a set of record pairs, we can build supervised models, which will be the focus of this

chapter. Because we know yij (i.e., whether or not the two individuals match) we can model yij as a function

of the pair’s features/covariates. These covariates (Xij) are typically similarity scores comparing the two

individuals (e.g., name similarity, geographic distance). It is typical to denote the relationship between the

probability of a pair matching (yij = 1) and the covariates (Xij) by the following classification equation:

Pr(yij = 1) = f(Xij). (6.1)

Please note that we can use any classification model, such as logistic regression (Equation 6.2), general

additive models (GAMs) (Equation 6.3), or random forests to classify our record pairs [62] [27] [30]. Logistic

regression is commonly used in record linkage due to its interpretability; we chose to include GAMs for

their ease at modeling non-linear variables; and random forests have been shown to achieve strong predictive

performance in this field [57] [60]. In the context of this thesis we are less concerned with finding the machine

learning model that performs best and more concerned with exploring and understanding how changes to

the underlying model structure impact linkage (specifically with respect to certain sub-populations).
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Pr(yij = 1) = logit−1(Xijβ) (6.2)

Pr(yij = 1) = logit−1(β0 + f1(Xij1) + · · ·+ fk(Xijk)) (6.3)

This chapter proposes adaptions of classification models for record linkage that incorporate household

information in various ways. In Sections 6.1 and 6.2 we prepare the individual and household data for

classification. In section 6.3 we formally state the models (with their adaptations). We discuss model

validation and our training/testing splits within Section 6.4. In Section 6.5 we report performance results

and analyze these differences. We briefly conclude in Section 6.6.

6.1 Features from Individuals to Individual Comparisons

In Table 6.1 we see the original two record databases side by side. In order to compare these records, one must

process the data to create the covariates Xij for the record linkage model.In Section 5.2.4 we demonstrated

how to consolidate pairwise similarities into a vector of similarities, which is a common pre-processing step.

The visual representation of what this looks like for the entire data set is shown here in Table 6.2.

1901

ID Forename Surname · · · Sex
1 Maryanne Sheridan · · · Female
...

...
...

. . .
...

n1901 Paul Hanlon · · · Male

1911

ID Forename Surname · · · Sex
1 Maryanne Waldron · · · Female
...

...
...

. . .
...

n1911 Matilda Moore · · · Female

Table 6.1: Original Census Records from 1901 and 1911.

More specifically, Table 6.2 shows the full matrix that is created when we calculate comparisons from

the original records, where the rows are now associated with the pairwise comparison of two individuals. As

previously mentioned, we sometimes know whether or not two individuals are the same person (shown via

the column “Match” in Table 6.2). In this application, we will know the match status for individuals who

have been hand labeled via our interface (as described in Chapter 2).

6.2 Features from Households to Household Comparisons

Although it is critical to compare records at the individual level, as we’ve discussed and shown anecdotally,

it can be additionally useful to use household information to help label records. Similar to how we compare

individuals above, household data also needs to be prepared for record linkage. We use the tools presented

in Section 5.3, i.e. Jaccard Similarity, Ruzicka Jaccard Similarity, Group Linkage Similarity, to produce a
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Individual Comparison Data

1901 ID (i) 1911 ID (j)

X1901
i ∼X1911

j︷ ︸︸ ︷
Match

sim
(
X1901

i ,X1911
j

)︷ ︸︸ ︷
JW(Forename) JW(Surname) · · · Exact(Sex)

1 1


1 1 0.49 · · · 1
1 2 NA 0 0.22 · · · 1

...
...

...
...

...
. . .

...
n1901 n1911 0 0.6 0.45 · · · 0

Table 6.2: Comparison/similarity data across 1901 and 1911 individual records.

similarity matrix for the households. We subset the individual level data by each household and then compare

the sets of individuals across 1901 and 1911 according to their household ID. Using the group-level similarity

metrics described in Section 5.3, we assign household-level similarity scores (covariates) to Table 6.3. Note

h1911(1) = h1911(2) = h1911(3) = h1911(4) because the first four individuals in 1911 all belong to the same

household.

Household Comparison Data

1901 HouseID 1911 HouseID

X1901(h1901(i))∼X1911(h1911(j))︷ ︸︸ ︷
Match

sim
(
X1901(h1901(i)),X1911(h1911(j))

)︷ ︸︸ ︷
Jaccard (Forename) Jaccard (Surname) · · · Group Linkage

h1901(1) h1911(1)


NA 0.7 1 · · · 0.85
h1901(1) h1911(5) 0 0.1 0 · · · 0.15

...
...

...
...

...
. . .

...
h1901(n1901) h1911(n1911) 1 1 1 · · · 1

Table 6.3: Comparison/similarity data across 1901 and 1911 households.

In the following sections (6.3) we will discuss how we incorporate this new household similarity matrix

into the record linkage process.

6.3 Classification Models

We take a standard approach to classifying pairs of records as matches or non-matches, by building models

that output the probability of matching for two individuals. We can then threshold this output to determine

our final classes. In this section we outline all of our models for building classification models. We first

start with a baseline model of just individual-specific features (Section 6.3.1) and then adapt this model to

incorporate household information. We can incorporate household information directly into the model using

household covariates like the Ruzicka Jaccard similarities (Equation 6.6) or by using a household similarity
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derived from individual covariates like the Group Linkage Similarity (Equation 6.7). We can also utilize a

Group Linkage Similarity that has been derived from estimated individual pair probabilities (Section 6.3.3).

Finally, we use multilevel models that incorporate the structure of individuals within households.

6.3.1 Baseline Model

We are interested in predicting whether a pair of individuals match from multiple covariates representing

the similarity of the pair. In this classification setting (adapted from Equation 6.1), yij represents whether

or not the pair of individuals (X1901
i ,X1911

j ) match (yij = 1 or X1901
i ∼ X1911

j indicate a match, yij =

0 or X1901
i �X1911

j indicate the two individuals do not match). X represents the covariates about the pair

of individuals (i.e., sim(X1901
i , X1911

j )). We denote this below:

yij =

0 if X1901
i �X1911

j

1 if X1901
i ∼X1911

j

Xij = sim(X1901
i , X1911

j ).

As a reminder from our notation section (Section 5.1), X1901
i is the ith record in the 1901 census database

and X1911
j is the jth record in the 1911 census database. We do not necessarily have to build a model on all

i and all j from the data (blocking enforces that we do not compare all i and j). We will discuss splitting

the data into training / testing later in Section 6.4. We predict whether i all j match from attributes about

the similarity of the pair of records: sim(X1901
i , X1911

j ). The similarity between the two individual records

(sim(X1901
i , X1911

j )) is typically a vector of similarity scores about the pair. For example, the vector could

be the first name similarity, last name similarity, and the sex similarity. Using the above notation we can

abstractly define the classification model in the following equation:

Pr(X1901
i ∼X1911

j ) = f(sim(X1901
i , X1911

j )). (6.4)

In its simplest form we can build Model 6.4 from some of the comparison data in Table 6.2 (that is, with

individual pairwise similarity scores). One example of a model we could build: logistic regression using the

Jaro-Winkler similarity of first names, last names, location, and birthplace, whether the gender is an exact

match, and the absolute difference in ages is shown in here:
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logit(Pr(X1901
i ∼X1911

j )) =β0 + simjaro-winkler (X1901
i,Forename, X

1911
j,Forename)β1 +

simjaro-winkler (X1901
i,Surname, X

1911
j,Surname)β2 +

simexact (X1901
i,Sex, X

1911
j,Sex)β3 + simjaro-winkler (X1901

i,Location, X
1911
j,Location)β4, +

simabs-diff (X1901
i,Age, X

1911
j,Age)β5 + simjaro-winkler (X1901

i,Birthplace, X
1911
j,Birthplace)β6.

The set of covariates chosen in a record linkage model will change depending on context, type of model

used, performance etc. In our paper [21], we chose these variables to build our baseline model largely because

these fields have little missing data across both years. Additionally, in [21] we predominantly found that

random forests performed best out-of-sample.

6.3.2 Adding Household Covariates

Once we have calculated similarity scores at the household level (Section 6.2) we can incorporate those

similarities into our existing record linkage classification models. As a reminder of notation (Section 5.1),

Xt(ht(i)) ⊂Xt = {Xt
i· : i ∈ ht(i)}. This means that Xt(ht(i)) is all records from time t that were recorded

in house ht(i). So below, X1901(h1901(i)) represents all individuals from the same household as individual

i and X1911(h1911(j)) represents all individuals who share a household with individual j. We might define

this type of classification model with added household covariates as:

Pr(X1901
i ∼X1911

j ) = f
(
sim(X1901

i , X1911
j ), sim(X1901(h1901(i)), X1911(h1911(j)))

)
. (6.5)

In Section 5.3 discussed two main ways of calculating household similarity: (Ruzicka) Jaccard

(Section 5.3.3) and group linkage similarity (Section 5.3.4). Because calculating the Jaccard similarity

is an unsupervised process (it is calculated directly from the original records) it can easily be calculated and

included in a classification model. In Equation 6.6, we add in covariates for various example fields at the

household-level, shown here:

Pr(X1901
i ∼X1911

j ) = f
(
simjaro-winkler (X1901

i,Forename, X
1911
j,Forename), · · · ,

simjaro-winkler (X1901
i,Birthplace, X

1911
j,Birthplace),

Jaccard Ruzicka (X1901
·Forename(h1901(i)), X1911

·Forename(h1911(j))), · · · ,

Jaccard Ruzicka (X1901
·Birthplace(h1901(i)), X1911

·Birthplace(h1911(j)))
)
. (6.6)
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This example utilizes the Ruzicka Jaccard but the original Jaccard could also be used. We build the

model using similarity metrics about both the individual and their household. When predicting whether

1901 person i is the same as 1911 person j, we model the similarity scores for the two individuals as well as

the similarity scores for their two households.

Instead of comparing households field by field, we might want one metric that describes the overall

similarity of two households. In Section 5.3.4 we introuced the group linkage similarity , which does just

that. Calculating the group linkage measure, however, requires individual pairwise similarity scores. If we

can calculate those in an unsupervised fashion (e.g., calculating the average similarity of the Jaro-Winkler

scores across individuals), we can incorporate it directly into the individual-level model like we did with the

Jaccard variables. Below, in Equation 6.7 we show an example of what this looks like:

Pr(X1901
i ∼X1911

j ) = f
(
simjaro-winkler (X1901

i,Forename, X
1911
j,Forename), · · · ,

simjaro-winkler (X1901
i,Birthplace, X

1911
j,Birthplace),

simgroup-linkage(X1901(h1901(i)), X1911(h1911(j))
)
. (6.7)

6.3.3 Multi-Stage Group Linkage Model

As done in [23], we can calculate the group linkage similarity using the individual pairwise predicted

probabilities of matching. From there, we can use that group linkage similarity as a feature in a secondary

classification model. We would perform the following steps in Alorithm 1 to complete the process.

Algorithm 1: Multi-stage modeling of individual records using group linkage similarity

Input: All records from 1901 and 1911 (X1901 and X1911)
Household IDs that map i to h1901(i) and j to h1911(j)
Pairwise match cutoff value c

Output: A model that predicts the probability of matching for pairs of X1901, X1911

1 Let S1901
1 ,S1901

2 be subsets of {1, ..., n1901} and S1901
1 ∩ S1901

2 = ∅ ;
2 Let S1911

1 ,S1911
2 be subsets of {1, ..., n1911} and S1911

1 ∩ S1911
2 = ∅ ;

3 Build a model for Pr(X1901
i ∼X1911

j ) with Equation 6.4 using i ∈ S1901
1 , j ∈ S1911

1 ;

4 Calculate simgroup-linkage(X1901(h1901(i)), X1911(h1911(j))) for household pairs of
i ∈ S1901

2 , j ∈ S1911
2 using Equation 5.16. Let sim(ai, bj) be the predicted probabilities from the

model for Pr(X1901
i ∼X1911

j ) on Line 3 ;

5 Build a second model for Pr(X1901
i ∼X1911

j ) with Equation 6.7 using i ∈ S1901
2 , j ∈ S1911

2 and the

simgroup-linkage calculated previously in Line 4 ;
6 Using the model from Line 5, predict the probability of matching for holdout data and determine

links using cutoff c ;
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Using this multi-stage model we first build a model to calculate group linkage similarity and then utilize

that (potentially better household similarity approximation) in a secondary individual model. We can predict

on any data that was not seen in either of the first two models. One challenge of this model is the need for

multiple holdout data sets. In practice this is a limitation because each segment of the algorithm uses less

data than an algorithm that doesn’t build two models.

6.3.4 Hierarchical Classification Models

We have shown how we can incorporate similarities about the two individuals’ households directly into the

model, but we are not accounting for variation that occurs at the household level [24]. We instead could fit

a model where each household pair variables receives its own covariate in an individual pairwise model. We

first write the most general form of a hierarchical linear model in Equation 6.8, shown here:

Pr(yij = 1) = logit−1(Xijβ + αhij
), for y = 1, . . . , n (6.8)

αhij
∼ N(Uhij

γ, σ2
α) for hij = 1, . . . , w.

We are still modeling the probability of y from X but we are allowing the coefficient α to vary by the

group h. Adapting this to the record linkage setting we replace the covariate matrix Xij with the pairwise

similarities sim(X1901
i , X1911

j ). You can see that αh1901(i)h1911(j) is the coefficient specific to the household

pair (h1901(i), h1911(j)). Any pair that originated from households h1901(i) and h1911(j) will have the same

α value. The multilevel model, updated in our specific application, is shown here:

Pr(X1901
i ∼X1911

j ) = logit−1(sim(X1901
i , X1911

j )β + αh1901(i)h1911(j)),

for i = 1, . . . , n1901, j = 1, ..., n1911 (6.9)

αh1901(i)h1911(j) ∼ N(Uh1901(i)h1911(j) γ, σ
2
αh1901(i)h1911(j)

),

for a = 1, ..., nh1901 , b = 1, ..., nh1911 .

6.4 Model Validation

Model evaluation typically follows model building. There is commonly an extremely large class imbalance in

record linkage, because there are many non-matching pairs and few matching pairs. Therefore, evaluation

metrics that include true negatives are typically not used because models can inadvertently appear stronger

than they actually are[29]. For example, overall accuracy about whether a pair was correctly labeled as a
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match or a non-match would still be high if we naively classified all pairs as non-matches. Please also note

that we do not apply any techniques to address the class imbalance directly. But, given the imbalance, it is

more common to examine the precision and recall of record linkage models. It is also common to combine

precision and recall into summary measures like the F-Score, but this metric has been recently criticized and

is no longer recommended within record linkage[25]. When reporting evaluation results, we can use precision

recall curves to visualize model performance under multiple cutoff values simultaneously; this is important

when we don’t know the “correct” cutoff. The area under the precision recall curve (AUC) is a summary

statistic combining both precision and recall, evaluated at these different cutoff values. Typically, the higher

the AUC, the better the classifier. Despite the flaws of the AUC, noted by Hand [26], use of AUC is still

commonplace and easily interpretable without having to select a cutoff value and therefore we report both

precision and recall as well as the AUC when evaluating our models.

It is also important to evaluate our models fairly on testing data that has not been seen by a model.

Appropriately training, validating, and testing models is critical to the model selection and validation process,

especially when determining what models perform “best”. In our application, we are less concerned with

finding the “best” model and more with understanding model differences. We do not suggest that one model

or one set of modeling steps should be used in future analyses but instead argue that attention should be

paid to the full data collection and modeling pipeline. For these reasons, we use a train/test split that splits

the data at the reference record level. This means that of all unique reference records, 60% will be in the

training data and 40% will be in the testing set. In the training set, this equates to around 1, 000, 000 rows

without blocking and 8, 000, 000 million rows with blocking. Within testing this is about 680, 000 without

blocking and 5, 200, 000 with. To reiterate, we could have left a percentage of the data completely unseen

to compare all eventual models as a final step but argue that our goal is not to make that final comparison

and declare a “best” model.

Our main concern with splitting our data by reference record is that a single household pair could get

split across training and testing. But, we would be unable to build a hierarchical model for households /

individuals if we split by the household level. We do build some non-hierarchical models where we split

by the reference record’s household, to compare results with the reference split performance. A potential

future area of research would include utilizing different data splits. Because our data represents pairs of

individuals or pairs of households, splitting the data is more complicated because even if we split by unique

reference/candidate household IDs, both the reference and candidate households are often compared to

numerous other households. In an ideal world, the training and testing populations would look very similar

in distribution but there would not be any overlap between indidivuals or households across training and

testing. Perhaps pre-clustering the data could help us achieve this result in a rigorous way, but we leave

that for future work.
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6.5 Comparing Model Results

There are numerous combinations of fields and field similarities available for use with both individuals and

households, shown here:

Fields Individual Similarities Household Similarities
Relation to head of household Jaro-Winkler Jaccard
Religion Exact Match Ruzicka Jaccard
Education Soundex Group Linkage
Age TF-IDF
Gender
Occupation
Birthplace
Marriage status (1911 only)
Children born (1911 only)
Children alive (1911 only)

We do not perform model selection to try to determine which subsets are best and instead focus on

comparing models, given a constant set of fields / similarities that are both common in the literature and

work well in this application. As we mentioned earlier in the section, we will use fields that we found (in

[21]) that have little missing data. The sets of variables that we use in susequent analyses are listed below.

Individual Variables: Forename Jaro-Winkler, Surname Jaro-Winkler, Age Adjusted-Difference

Sex Exact, Birthplace Jaro-Winkler, Location Jaro-Winkler

Household Variables: Forename (Ruzicka) Jaccard, Surname (Ruzicka) Jaccard,

Age (Ruzicka) Jaccard, Sex (Ruzicka) Jaccard,

Birthplace (Ruzicka) Jaccard, Location (Ruzicka) Jaccard

Naive Group Link: Group Linkage (Eq. 5.16), s.t. sim(ai, bj) = avg(sim(X1901
i , X1911

j ))∗

Group Link: Group Linkage, s.t. sim(ai, bj) = Pr(X1901
i ∼X1911

j )

The first set of variables, titled “Individual”, are individual pairwise similarities. The “Household”

variables are household pairwise similarities calculated directly from the original records. The equation for

Ruzicka Jaccard can be found in Equation 5.8 and the original Jaccard is defined in Equation 5.7. We can

also add the “Group Linkage” metric as a feature in our classification models. “Naive Group Link” uses

individual pair similarity scores to calculate the house similarities, and “Group Link” uses individual pair

match probabilities to calculate it. In cases where we calculate “Group Link” from a statistical model, we

split the training data into a 20%/80% split where the first 20% is used to calculate a baseline individual

model. From this baseline model we can calculate the predicted probabilities for the remaining training data

and then calculate the group linkage score for each household pair. This remaining 80% of the training data

is used to build a model with group linkage as a variable.
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In Section 4.1.2 we introduced various ways to consolidate labels collected from our interface. In this

section, we utilize the “Total Match” calculation from Table 4.6. This is defined as follows:

Total Match Proportion(i, j) =
# of Page 1 Matches(i, j) + # of Page 2 Matches(i, j)

# of Page 1 Labels(i, j) + # of Page 2 Labels(i, j)

Total Match = yij =

0 if Total Match Proportion < 0.5

1 if Total Match Proportion ≥ 0.5

.

The pair of individuals (X1901
i , X1911

j ) is labeled as a yij = 1 if the the proportion of matching labels

across both Page 1 and Page 2 is greater than or equal to 0.5 and a yij = 0 if it is less than 0.5. We take this

approach as a first step because when label quality is unknown, this is the most common approach. Since

we do have information on label quality, We explore other definitions in Chapter 7.

6.5.1 Comparing Model Performance

We first compare the classification models of logistic regression, hierarchical models, and random forests. We

compare these models using two sets of variables: one without and one with household-pair comparisons.

The sets of variables are listed below and are referred to as “Individual” and “Household” within the resulting

figures.

In Figure 6.1 we explore the recall, precision, and AUC for logistic regression and hierarchical models,

both with and without household-pair variables. The logistic regression model without household variables

had an AUC of 0.6 but that slightly increases to 0.623 with the addition of household information about the

individual pairs we model. The AUC for the hierarchical model with fixed effects for only individual variables

is 0.7609 but by including household variables as fixed effects, this drops to 0.7511. In both hierarchical

models, the household-pair ID is used as the random effect. Any household pair in the testing data that

did not appear in the training was predicted using only fixed effects. We find that the hierarchical model

outperforms the logistic regression model, but including household information as fixed effects does not

improve performance.

We can compare these results to those of a random forest model, shown in Figure 6.2. We find that the

random forest with only individual fields has an AUC of 0.661 but this increases to 0.744 and 0.754 with
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Figure 6.1: AUC, precision-recall graph for logistic
regression and multi-level models, without any
additional blocked pairs. Household covariates are
helpful to the logistic regression model, but are not
necessary in the hierarchical model (as fixed effects).
Overall, the hierarchical models perform better than
logistic regression.

Figure 6.2: AUC, precision-recall graph for random
forest models, without any additional blocked pairs.
We add adjusted and unadjusted Jaccard household
covariates. Both make improvements upon the model
without any household information.

Figure 6.3: AUC, precision-recall graph for logistic
regression models, without any additional blocked
pairs. We add household information via the group
linkage metric. We both naively calculate group
linkage and calculate it using a preliminary statistical
model (using a subset of the training data). In the
case of “(All)” the group linkage for the training and
testing were calculated together. This is important
to note because households are often split across
training and testing.

Figure 6.4: AUC, precision-recall graph for random
forest models, without any additional blocked pairs.
Naive group linkage outperforms model-based group
linkage.

the addition of household similarity fields. We do not detect a large difference between results using the

unadjusted and adjusted Jaccard similairites. As mentioned in Section 5.3.3 it is more practical in record
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linkage, and specifically in this application, to use the adjusted comparisons so we proceed with the adjusted

Ruzicka Jaccard similarities.

We also explore model performance for logistic regression and random forest models with the addition

of a group linkage field. Adding in group linkage is a way to account for household similarity by utilizing

information about the similarity of pairs across households. We use the phrase “(All)” in the legend to note

that the group linkage was calculated for the training and testing sets together. This means that households

were subset and compared before training and testing splits. This is the same way that we calculate Jaccard

similarities. But, in the case without “(All)” we calculate the group linkage of a household pair only for

individual pairs from the house that were in the respective training or testing groups. The fact that the

Naive Group Link that where the scores were calculated separately in training and testing perform better

than the case where group linkage is calculated with everyone is surprising. I would have guessed that the

group linkage metric would better represent the household similarity in cases where it’s calculated with all

members. We also find, in Figure 6.3, that the Naive group linkage model performs better than model that

calculated group linkage from a statistical model. Similarly for random forests in Figure 6.4, we find that

the Naive group linkage performs better than the statistical group linkage. However, in the random forest

models, the model where group linkage was calculated with the training/testing data together performs

better than the model where they were calculated separately.

Figures 6.1, 6.2, 6.3, 6.4 all show results for the 40% holdout testing data that was described in

Section 6.4. Tables of variable importance and regression coefficients for the linear models can be found in

Appendix Section B.1.

In Section 4.2 we introduce blocking to the comparison space. For reference records with very common

names, up to almost 8, 000 rows of data could be added, which we saw in Figure 4.1. Because of this

imbalance we also wanted to examine results with only a random selection of blocked pairs added for each

reference record. Therefore, we randomly sample up to 10 and 25 of the additional blocked pairs (per

reference record) and analyze the effect of models with only those pairs added too. Note that the previous

models were built without these additional rows added for blocking. The additional rows from blocking are

labeled as y = 0 because we have determined them to be non-matches. We present the results for a random

forest with blocking in Figures 6.5 and 6.6. Within the legend you will find different colors for “Block 10”,

“Block 25”, and “Block All”, representing the two subsets and the full blocking pass.

We notice that the AUC is lowest in the cases where all blocked individuals were added to the model.

The models perform similarly in the cases where only 10 or 25 blocked pairs were added. In Figures 6.7

and 6.8 we see similar trends for logistic regression and hierarchical models. In a few of the models the 10

block case is slightly better than the 25. Overall, these results make sense; furthering the class imbalance by
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Figure 6.5: AUC, precision-recall graph for random
forest models, with additional blocked pairs. Models
did not include any household-related covariates.

Figure 6.6: AUC, precision-recall graph for random
forest models, with additional blocked pairs. Models
include household-level adjusted Jaccard covariates.

adding more zeros to our training data only makes for, on average, worse models. These differences are less

apparent between cases where only 10 or 25 blocked pairs per reference record are added. Since blocking is

often applied as a necessary step, we argue that the strictness of blocking plays a critical role in downstream

model outcomes and should be paid attention to.

Figure 6.7: AUC, precision-recall graph for logistic
regression models, with additional blocked pairs.
Models include household-level adjusted Jaccard
covariates.

Figure 6.8: AUC, precision-recall graph for multi-
level hierarchical models, with additional blocked
pairs. Models do not include fixed effects for
household-level information, but use the household
pair ID as a random effect.
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6.5.2 Model Results for Hard-To-Label Sub-Populations

Certain sub-populations are known within record linkage to be especially hard to label correctly. These

populations include individuals who move between census years, women who change their last names after

marriage, and individuals who work in households different than their home residence (e.g., servants). In

Figures 6.9 and 6.10 we explore how models perform different only individuals who move between census

dates. Due to the very large out-of-sample data sizes, we have randomly selected 3, 000 pairs to show you in

both graphs†. The results for the full data were similar, but the crowded graphs made them harder to read.

Figure 6.9: Random forest models with (y-axis)
and without (x-axis) household information. Models
with household information tend to identify “movers”
better than models without it. This figure was
created via a subset of 3,000 pairs but the same trend
is seen on the full holdout data. Additionally, no
blocked pairs were added here.

Figure 6.10: Random forest models with (y-axis)
and without (x-axis) household information. Models
with household information tend to identify “movers”
better than models without it. This figure was
created via a subset of 3,000 pairs but the same trend
is seen on the full holdout data. Blocked pairs were
added here.

In both graphs the x-axis represents predicted probabilities from the individual (baseline) random forest

model and the y-axis shows the predicted probabilities from the model that additionally includes the Ruzicka

Jaccard household similarity fields. We define movers as any pair that is correctly linked together, but

has different locations between censuses, and color these points in yellow. In both graphs we can see a

large cluster of yellow points in the upper left corner meaning that the model with household information

correctly identifies movers that the baseline model does not. This is evidence that the model with household

information not only performs better in terms of AUC, but it identifies movers at a higher rate.

We are additionally interested in how well our models identify servants. Shown in Figures 6.11 and 6.12

we show servants who were matched together by labelers in dark purple triangles. All other pairs are shown

†Samples were selected randomly, with a weight on the predicted probability so that points with higher predicted probability
would be selected at a larger proportion than those with a low predicted probability. We did this because there are so many
pairs that are predicted to be non-matches.
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in lime green. True matches are shown with triangles and true non-matches are shown with circles. In

Figure 6.11 we see that the random forest and the random forest with household information both perform

similarly at identifying servants. There are servants that both models identify and servants that both models

miss. But, in Figure 6.12 we compare the random forest with household information to the hierarchical

model that uses household as a random effect. We see that there is a small cluster of servants that are only

identified by the hierarchical model.

Figure 6.11: Identifying servants across random
forest models with (y-axis) and without (x-axis)
household information.

Figure 6.12: Identifying servants across random
forest models with household information (x-axis)
and hierarchical models with household pair as a
random effect (y-axis). In the upper left corner we
observe that the hierarchical model identifies some
servants that the random forest does not.

6.5.3 Comparing Predicted Probabilities of Models

In Figures 6.2 and 6.1 we found that random forests with household-level covariates performed similar to

the model of the hierarchical model. Adding naive group linkage as a covariate improved performance even

more. All models performed better than baseline models without household information. Given that all

three approaches included household information, we explore the differences between models in Figures 6.13

and 6.14. Each point represents an individual pair and the x-axis and y-axis are the predicted probabilities

from the various models. Points are closed circles for non-matches and triangles for matches.

While there is an overall linear relationship between the model outputs, the models perform differently

for some pairs. In Figure 6.15, there is a cluster of points in the upper left hand that the random forest does
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Figure 6.13: Comparing predicted probabilities of a
random forest with adjusted jaccard household-level
covariates to a random forest with naive group linkage
household-level covariates.

Figure 6.14: Comparing predicted probabilities of a
hierarchical model with random effects for household
pairs to a random forest with naive group linkage
household-level covariates.

Figure 6.15: As we saw in Figure 6.12 the
hierarchical model and random forest with household
information performed differently in terms of pre-
dicted probabilities and ability to identify servants.
We examine here the average adjusted Jaccard
similarities across the pairs.

Figure 6.16: We can also examine the random
effects from any pair that had household members
in the training data.

not believe should match, that the hierarchical model is confident should match. Upon further exploration,

many of these pairs were of individuals who were servants although there we were unable to determine a

clear reason why the multilevel model matched those individuals but the addition of Jaccard similarity did

not.

A common followup question might be whether an ensemble method combining the two models would

perform better than either method alone alone. Simply taking the average of the two predictions, wee see

that the AUC is higher for this ensemble in Figure 6.17. We could also assign weights to the two models

depending features of the individuals (e.g., servants get a higher weight for hierarchical).
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Figure 6.17: AUC, precision-recall graph for a model that averages the predicted probabilities of the
random forest with household Jaccards and the hierarchical model.

6.5.4 Train Test Split by 1901 Household

As we mentioned in Section 6.4 one of the biggest issues with splitting the data by reference record is that

households can get split across training and testing. That is, in a family of four the parents’ comparisons

could end up in the training and the children’s comparisons could end up in the testing. Therefore, we also

wanted to explore model performance where we split our training and testing by household. When we do

so, there are 984, 225 comparisons in the training set and 734, 253 in the testing giving a similar ratio to

our 60%/40% split from before. There are 3, 257 unique 1901 households in the training data and 2, 174

1901 households in the testing. When we split by reference record there were 4, 173 and 3, 406 households,

respectively. A challenge of splitting by household instead of individual is that the distribution of number of

pairs per splitting unit increases drastically, as shown in Figures 6.18 and 6.19. The maximum number of

pairs per reference record is 3, 562 but per household is 1, 751, 507. Therefore we have to be cautious about

maintaining an even class balance when splitting this way.

After we’ve split the data by household such that no 1901 household (i.e., the individuals within it) is in

both the training and the testing, we can evaluate results for various models. In Figure 6.20 we see model

results for logistic regression models both with and without household information. Neither model performs

well, and both perform worse than when we split on reference record (as a reminder, those AUC values were

0.6 and 0.623). When exploring the results for the random forest in Figure 6.21, we see that the baseline

model with individual variables also does worse than when we split on reference record. However, the random

forest with household information has a much higher AUC (of 0.888) compared to the AUC of 0.754 when

we split on reference. Potentially keeping the households together created more cohesive training and testing

91



Figure 6.18: The distribution of pairwise compar-
isons per 1901 reference record. Most records have
few comparisons, but some have over 3,500.

Figure 6.19: The distribution of pairwise compar-
isons per 1901 household. Most records have few
comparisons, but some have over 1.5 million. This
greatly skewed distribution makes it difficult to split
by household.

sets that looked more similar in distribution. Either way, is important to pay attention to training / testing

split when reporting results.

Figure 6.20: AUC, precision-recall graph for logistic
regression models, without any additional blocked
pairs. We explore the curves both with and without
household Jaccard covariates. We split the training
and testing data by household so that individuals
within households are not split across the training
and testing sets.

Figure 6.21: AUC, precision-recall graph for
random forest models, without any additional
blocked pairs. We explore the curves both with
and without household Jaccard covariates. We split
the training and testing data by household so that
individuals within households are not split across the
training and testing sets.

We can also see how models with group linkage variables perform when we split by household. In

Figure 6.22 we explore model results for random forests with the group linkage variable, calculated both

naively as well as from an initial random forest model on 20% of the training data.
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Figure 6.22: AUC, precision-recall graph for random forest models, without any additional blocked pairs.
We explore curves for the models with the naive and the model-derived group linkage covariates.

Interestingly, the random forest with Jaccard household similarity appears to do better when we split by

household but the random forest with group linkage household similarity performs worse.

6.6 Concluding Thoughts on Modeling

In this chapter we detailed how to pre-process data to be suitable for record linkage models. We introduced

how to incorporate household information into statistical classification models by using the Jaccard index and

group linkage measure. We also introduced a multilevel model as a third way to include household structure

to the modeling process. We discussed model validation and the advantages and disadvantages to various

training / testing splits. We then model our data with the classification approaches introduced earlier in the

section. We find that random forests outperform logistic regression and that hierarchical models perform

similarly to random forests. However, we identify that these models incorporate household information in

very different ways leading to differing model predictions on our holdout set. We briefly discuss model

performance when we split our training and holdout data by household as opposed to reference record and

find that the random forests with Jaccard similarity coefficients for the households perform better, but other

models perform worse.
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Chapter 7

Interface Analysis

In this section we explore performance of record linkage models based on changes in interface information.

We use the same train/test split by reference record that we did at the beginning Section 6.5.1. As we’ve

mentioned, there are advantages and disadvantages to blocking by reference as opposed to household, but

we wanted to allow for the possible use of hierarchical models in this section by splitting on reference record.

We do not use any blocking in this section, but analyzing this section with the addition of blocked pairs is

an interesting area of future research.

7.1 Label Quality

We collected labels over multiple rounds from 2018-2020 and we found evidence of differences in label quality

by round (Sections 3.2, 4.3). Early rounds of labels collected via Amazon MTurk had more “bad” or low

quality work that often did not pass our approval criteria. In Chapter 6 we made the conscious decision to

keep all collected data to understand how our models would perform, given that we used a crowdsourcing

platform with various work quality. Part of the reason we collected multiple labels per reference record was

to assess the extent to which label quality effected downstream models. Unfortunately we were not able

to collect multiple labels for every reference / candidate pair. Shown in Figure 7.1 we see that most pairs

were only labeled by one person but that many were labeled by two labelers. The maximum number of

labels for a pair of records was 21 labels. On the right in Figure 7.2 we explore the percentage of submits

that were from workers who, at one point, did not pass our quality checks. Note that approval criteria was

developed through an iterative analysis of label information, so therefore some low quality labels could have

been approved in early stages. We also do not argue that our approval classification process identified all

forms of poor quality labels. Regardless, between 25 to 40% of labelers in the “MTurk” and “MTurkLong”

rounds were from rejected workers. Given the varying label quality across labels, we might be interested in
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how often label for a reference record differ. We explore this idea in Figures 7.3 and 7.4. Only looking at

labels from Page 1, we see that most often labelers agree but that 11% of the time two unique candidates

were given to the same reference record. This drops to 0.25% and 0.01% of the time for three and four

distinct labels. Including labels from Page 2, we see that there was one case where six distinct labels were

given to a particular reference record. Please note that selecting “no match selected” counts as a unique

label in these graphs.

Figure 7.1: Number of labels collected per 1901 /
1911 individual comparison. Most pairs were labeled
by only one or two unique labelers but some pairs had
up to 21 labelers.

Figure 7.2: Proportion of work per round that was
completed by poor quality labelers. In the initial
round we approved most work while we identified
systematic patterns to label quality.

Since we observed that there is varied quality labels in the data, we explore how having at least one

“bad” label appeared in our models. In Figure 7.5 we explore the relationship between model predicted

probabilities and bad labels, given our model’s mistakes. On the x-axis we have the predicted probabilities

for our random forest without household Jaccard variables, and the y-axis is the predicted probabilities for

the model with that household information. This graph is subset to only show mistakes that either model

made (i.e, true matches classified as non-matches and vice versa). We color the points by whether the pair

had at least one bad labeler. We see a cluster of green points, especially on the right of the figure, indicating

that bad labels were prevalent among our model’s mistakes. On the right, in Figure 7.6 we further subset

the data to only show model predictions for bad labelers. We explore how many unique labelers there were

for each pair. We find that for many of the mistakes, there was only one bad labeler; this indicates that the

bad labelers had a large influence on these mis-labeled points.
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Figure 7.3: Unique labeling decisions per 1901
reference record. A value of “1” indicates that
all labelers chose the same candidate (or lack of
candidate) for this reference record. Results are
shown for labels from Page 1 only.

Figure 7.4: Unique labeling decisions per 1901
reference record. A value of “2” indicates that among
all labelers, two unique decisions were made about
the correct match. Results are shown for labels from
both Page 1 and Page 2.

Figure 7.5: Exploring the predicted probabilities for
ranadom forest models with and without household
information. We subsetted the data to only include
mistakes. Pairs are colored by whether their
“correct” label was determined by at least one low
quality label.

Figure 7.6: Further subsetting to include only the
pairs that had at least one low quality label, we see
that many of these points had only one labeler. The
text on the graph shows the total number of labelers
for each pair. These points were therefore unable to
be outweighed by higher quality labels.

Given this information, we built a model where we recalculated “Total Match” without any of the labelers

who failed our quality checks. The results of this model are shown in Figure 7.8. We see an improvement in

AUC compared to our results from the full set (shown again in Figure 7.7). But, we want to understand if

this model is better or purely the training data was easier to predict on. In Figures 7.9 and 7.10 we explore

the AUC when we predict on the recalculated testing data and the original testing data for the two models.

Interestingly, the original model performs just as well as the updated model on the recalculated testing data,
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but the updated model performs worse on the full test set. This provides evidence that having bad labels in

the training data helps when predicting on data that has bad labels.

Figure 7.7: Repeating Figure 6.2 from Section 6.5.1
for ease of comparison.

Figure 7.8: AUC, precision-recall graph for random
forest models, without any additional blocked pairs.
Data was modeled on the subsetted training data
where matches were determined without low quality
labels. We explore results both with and without
household Jaccard covariates for testing data that
also had bad labels removed.

Figure 7.9: AUC, precision-recall graph for random
forest models, without any additional blocked pairs.
This is the same model as in Figure 7.7, but we
remove bad labels from the testing data.

Figure 7.10: AUC, precision-recall graph for ran-
dom forest models, without any additional blocked
pairs. Data was modeled on the subsetted training
data where matches were determined without low
quality labels. We predict on the full holdout data
set that included bad labels.
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7.2 Label Source and Round

Using our application, labels are collected on both Page 1 and Page 2 of the interface. These labels come

from very different distributions, provided that Page 2 labels are only collected after a household is matched

on Page 1. We model the data separately for pairs that were collected on Page 1 and pairs that were

collected on Page 2. The yij = 0/1 cutoff is determined only by Page 1 or Page 2 labels depending on the

respective model. The AUC for the Page 1 model (both with/without household Jaccard information) is

shown in Figure 7.11 and the AUC for Page 2 is shown in Figure 7.12. While it appears that the Page 2

model performs very well, when we take that model but predict on the full holdout data (see Figure 7.13)

that includes y calculated from both Page 1 and Page 2, it performs much weaker.

Figure 7.11: AUC, precision-recall graph for
random forest models, without any additional
blocked pairs. Data was modeled on the subsetted
training data including only labels from Page 1.
Testing was also from this subset.

Figure 7.12: AUC, precision-recall graph for
random forest models, without any additional
blocked pairs. Data was modeled on the subsetted
training data including only labels from Page 2.
Testing was also from this subset.

Figure 7.13: AUC, precision-recall graph for random forest models, without any additional blocked pairs.
Data was modeled on the subsetted training data including only labels from Page 1 or Page 2 but was tested
on the full holdout data.
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We were similarly interested in examining labeling differences between CMU and MTurk labelers. In

Figures 7.14 and 7.15 we explore the distribution of unique candidates selected per reference record for

both CMU and MTurk.

Figure 7.14: Label agreement among CMU labelers. Figure 7.15: Label agreement among MTurk
labelers.

In Figures 7.16, 7.17, and 7.18 we explore the AUC, precision, and recall for models using only CMU

data and models using only MTurk data. We recalculated the match proportions and true match using these

labels only.∗ The last graph shows labels/data that came only from our best MTurk labelers. We find that

models using CMU and the MTurkLongSubset data were better able to recover matching and non-matching

pairs. The overall MTurk data struggled in terms of AUC, precision, and recall. This makes sense given

that we know many of their labels were rejected for poor work quality.

7.3 Section Conclusion and Modeling Extensions

Recall the baseline model without household information (Section 6.3.1, Figures 6.2 6.1). Next steps might

be to incorporate familial network structure or covariates for labeler quality, source, and round into modeling.

∗We also added label round as a feature to our random forest no blocking model. While the overall AUC performance
slightly improved none of the rounds had variable importance higher than other variables.
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Figure 7.16: AUC, precision-recall graph for
random forest models, without any additional
blocked pairs. Data was modeled on the subsetted
training data including only labels that originated at
CMU.

Figure 7.17: AUC, precision-recall graph for
random forest models, without any additional
blocked pairs. Data was modeled on the subsetted
training data including only labels that originated in
Amazon’s MTurk.

Figure 7.18: AUC, precision-recall graph for
random forest models, without any additional
blocked pairs. Data was modeled on the subsetted
training data including only labels that originated in
Amazon’s MTurk, but only for the last batch which
was our best labelers.

Figure 7.19: Predicting on the full holdout data.

We could model the count of labels instead of the discretized label proportions. We incorporated household

information as covariates using both Jaccard similarities and group linkage similarities in Sections 6.3.2 and

6.3.3 and results were shown in Figures B.3 and 6.4. Both of the individual and household covariates

could vary by interface information and potentially including this information directly into those models

would be beneficial. For example, potentially we could down weight labels that were determined hastily. Or

perhaps we do not use household information in the model if we noticed that the labeler never viewed the

households. We used multilevel models as a way to incorporate household information in Section 6.3.4. We
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could additionally use multilevel models to include a labeler effect, but there are often multiple labelers per

pair so incorporation of this effect requires more thought. Additionally, using label generation information as

well as the fact that there should only be one 1911 record for each 1901 record, we could extend our methods

to enforce a one-to-one match across the censuses and/or deduplicate the individual censuses. In Section 4.1.2

we address the challenges of consolidating labels. In Chapter 6 we proceed to use an average across all labels,

but when we combine labels from Page 1 and Page 2, we could attempt to incorporate the fact that Page 2

labels are drawn from a different distribution than Page 1 labels (i.e. Pr( individual match | blocking ) vs.

Pr( individual match | household match, blocking )). The answers to many of these questions are non-trivial

and require additional thought, but they are interesting extensions of current work.

In summary, in this section we showed that record linkage model performance (AUC, precision, and

recall) vary drastically depending on the data you feed in. Data from high quality labels/labelers and Page

2 of the interface all produce relatively well performing models (when we evaluate on data from the same

populations). But, if we expect testing data to include poor quality labels, models that were built using

poor quality labels perform better. None of these results are surprising but confirm how important labeling

decisions are to downstream model performance, despite how often they are (often unavoidably) overlooked.
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Chapter 8

Conclusion

8.1 Public Data Access

Information on how to access the data will be added after the dissertation defense.

8.2 Dissertation Summary and Contributions

In this thesis we explore approaches for linking the 1901 and 1911 Irish Census data bases. This data

was only released in recent years and therefore there are no existing identifiers to link the records. After

attempting to solve this problem in an unsupervised fashion, we realized that collecting labels would be

critical to building record linkage models that could accurately separate matching records from non-matching

records[22]. Therefore we developed a record linkage interface / platform that can be used to crowdsource

labels for this census data. After having spent time hand labeling records for my ADA with the United States

Census Bureau, I know that household information is critical to the identification of matching individual

pairs. I also learned that matching labels pair-by-pair was mind numbing time consuming and matching

groups of pairs at one time would be more efficient. When we started developing the interface, which was

done completely in R Shiny, our goals were to collect many pairs of labels at once and to allow labelers to

easily incorporate household information into their decision making process. The first round of labels were

collected by CMU students and professors and those preliminary analyses can be found in our IEEE ICDM

paper [22]. We found evidence that both including household information and the use of our interface are

beneficial to the record linkage pipeline. From just the first batch of labelers we saw how much uncertainty

was involved in the record linkage process and how seldom this uncertainty was captured. Pre-labeled record

linkage data are often taken as ground truth and we found that little is known about the record linkage

labeling process. Therefore, the concluding next steps from this first round of labeling were that 1) we
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should try to study how our labelers interact with the labeling interface to better understand the entire

labeling process, and 2) that we should also collect household matches and individual-within-household

matches to provide richer label information at a relatively low cost∗.

As we moved into the second phase of label collection, we incorporated the interface changes mentioned

above and updated our thesis goals. The second phase of labeling, also conducted by CMU students, led to

richer data and the ability to analyze labeler interactions with the interface. We found more evidence of the

importance of household information and correctly identified individuals who move locations between census

dates at a higher rate than baseline record linkage models. We introduced this second phase of the interface

and it’s benefits in our IEEE DSAA paper[21].

Although we greatly appreciated the help of our CMU colleagues / labelers, we knew that more (albeit

delicious) Indian food would not be enough to encourage a third round of labeling. Additionally, we were

interested in studying how labelers in less controlled environments reacted to our linkage interface. Therefore,

we started utilizing Amazon’s Mechanical Turk platform to source online work from around the world. This

provided a fast way to collect a large amount of data, for a relatively reasonable price. Utilizing this interface

came with challenges (which we mention throughout Chapter 3), and we had to balance label quality with

worker satisfaction. We discussed how we consolidate the multiple sources of data we collectd in Chapter 4,

while also reporting the raw data to allow other researchers to consolidate in different ways. In Chapter 5

we discuss how to take pairs of raw data and make mathematical comparisons between them. We do this

at both the individual and group level, and make comparisons between the group metrics. In Chapter 6 we

introduce the various models we end up comparing, utilizing household information in various ways across

the models. We report model results for those models and find that incorporating household information (in

any form) greatly improves model results. We discuss how the addition of blocking impacts models. We pay

special attention to subgroups like movers and servants. In Chapter 7 we go further to discuss differences in

performance based on interface aspects. We explore agreement between labelers, the impact of poor quality

labels, and how the data was generated.

This thesis created a novel data set for use within the record linkage community. This data is novel

in multiple ways. Firstly, we provide nested labels for individual pairs, household pairs, and individual

pairs within households. Secondly, we collect and provide detailed information on the record linkage label

collection process. Thirdly, we collect label certainty by collecting multiple labels per pair as well as providing

quality information about the labelers themselves. We showed how important both household information

and the labeling process is to the downstream linkage results and argue that these details should be given

greater attention.

∗It takes very little time to label households and individuals within households once you have already examined all of the
individual records across both households.
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8.3 Interesting Areas for Future Work

As with any project, there are numerous interesting extensions. Specifically, because this data provides

information that is seldom available in linked record linkage data, there are many interesting areas for future

study. We group our thoughts by category below.

Record Linkage Methodology We are very interested in directly incorporating information from the

label generation process into record linkage methodology. We introduce multiple proposed extensions in

Section 7.3. Additionally we are interested in whether we could/should model the sequence of clicked

candidates to identify the most likely ones? What meta information can we learn from these click sequences?

We are aware we introduce biases when we label via our interface, but potential extensions include addressing

these biases to account for them later on. Can we sequentially link households and then individuals, and

impute unknown structure for unseen households? In addition, it would be interesting to incorporate

expected field changes (last name changes, household moves) to account for the temporal aspect of this

problem. Can we learn these transitions from the data? What is the extent of needing de-duplication within

the 1901 and 1911 Irish Census records? How can household / additional structure be used within de-

duplication problems? Is it similar to how it can be used across years? In terms of unsupervised linkage, would

extending our household similarity metrics beyond exact matching as well as using non-binary comparisons

in our E-M estimation help unsupervised models find signal in this data?

Household Similarity Metrics What is the consequence of using a stringent cutoff for matching pairs in

group linkage? Can we incorporate information from non-matches while weighting matches higher? What

information about the non-matches would be helpful in making a decision about two households and would

we even want to include this? Does this stringent cutoff effect large and small households differently? We

identified that classification models use household information (e.g., Jaccard, Group Linkage) in different

ways, but how do they differ and can we capitalize on their unique differences? We found that the naive

group linkage performed better than group linkage similarities derived from statistical models; can we better

understand this relationship?

Tuning the Labeling Process One potential next step of future labeling with this interface is the

incorporation of active learning into the label selection process to attempt to collect labels that help

downstream modeling. What do informative matches and non-matches look like in historical record linkage?

If we were to continue labeling via Amazon Mechanical Turk, we would hope to identify and utilize strong

labelers early in the process to increase the quality to cost ratio. We provide rich information on labeler and

time sequences and could study the time on task fatigue as an alternative way to quantify label quality. It

would be interesting to explore patterns by labeler. Please note that IRB approval was not needed for our

work, but depending on future label experiments / studies it might be needed.
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In conclusion, it is important to me that this data is made public. It is my top priority to make this data

accessible and promote its use across various areas. I am excited for future extensions and collaborations

and am beyond grateful for the support of my committee through this process.

106



Bibliography

[1] (2005).

[2] (2007 (Retrieved 2010-12-24)). The soundex indexing system.

[3] (2008). r/mturk.

[4] (2011). UCI machine learning repository; record linkage comparison patterns data set.

[5] Abramitzky, R., Boustan, L. P., and Eriksson, K. (2014). A nation of immigrants: Assimilation and

economic outcomes in the age of mass migration. Journal of Political Economy, 122(3):467–506.

[6] Agresti, A. (2003). Categorical data analysis, volume 482. John Wiley & Sons.

[7] Antonie, L., Gadgil, H., Grewal, G., and Inwood, K. (2016). Historical data integration a study of wwi

canadian soldiers. In 2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW),

pages 186–193, Barcelona, Spain. IEEE.

[8] Antonie, L., Inwood, K., Lizotte, D. J., and Ross, J. A. (2014). Tracking people over time in 19th century

canada for longitudinal analysis. Machine learning, 95(1):129–146.

[] Bhattacharya, I. and Getoor, L. (2004). Iterative record linkage for cleaning and integration. In Proceedings

of the 9th ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery, DMKD

’04, page 11–18, New York, NY, USA. Association for Computing Machinery.

[9] Bilenko, M., Kamath, B., and Mooney, R. J. (2006). Adaptive blocking: Learning to scale up record

linkage. In Sixth International Conference on Data Mining (ICDM’06), pages 87–96.

[10] Borg, A. and Sariyar, M. (2019). RecordLinkage: Record Linkage in R. R package version 0.4-11.2.

[11] Casler, K., Bickel, L., and Hackett, E. (2013). Separate but equal? a comparison of participants and

data gathered via amazon’s mturk, social media, and face-to-face behavioral testing. Computers in Human

Behavior, 29(6):2156 – 2160.

107



[12] Cha, S.-H. (2007). Comprehensive survey on distance/similarity measures between probability density

functions.

[13] Christen, P. (2012). Data matching: concepts and techniques for record linkage, entity resolution, and

duplicate detection. Springer Science & Business Media.

[14] Christen, P. (2012). A survey of indexing techniques for scalable record linkage and deduplication. IEEE

Transactions on Knowledge and Data Engineering, 24(9):1537–1555.

[15] Collins, W. J. and Wanamaker, M. H. (2014). Selection and economic gains in the great migration

of african americans: new evidence from linked census data. American Economic Journal: Applied

Economics, 6(1):220–52.

[16] Davitt, M. (1882). The Land League proposal: a statement for honest and thoughtful men, volume 15.

Glasgow: Cameron & Ferguson.

[Deza] Deza, E. Dictionary of distances. Elsevier, Amsterdam, The Netherlands ;, 1st ed. edition.

[18] Dolatshah, M., Teoh, M., Wang, J., and Pei, J. (2018). Cleaning crowdsourced labels using oracles for

statistical classification. Proc. VLDB Endow., 12(4):376–389.

[19] Dua, D. and Graff, C. (2017). UCI machine learning repository.

[20] Fellegi, I. P. and Sunter, A. B. (1969). A theory for record linkage. Journal of the American Statistical

Association, 64(328):1183–1210.

[21] Frisoli, K., LeRoy, B., and Nugent, R. (2019). A novel record linkage interface that incorporates group

structure to rapidly collect richer labels. In 2019 IEEE International Conference on Data Science and

Advanced Analytics (DSAA), pages 580–589.

[22] Frisoli, K. and Nugent, R. (2018). Exploring the effect of household structure in historical record linkage

of early 1900s ireland census records. In 2018 IEEE International Conference on Data Mining Workshops

(ICDMW), pages 502–509, Singapore. IEEE.

[23] Fu, Z., Christen, P., and Boot, M. (2011). Automatic cleaning and linking of historical census data

using household information. In 2011 IEEE 11th International Conference on Data Mining Workshops,

pages 413–420, Vancouver, BC. IEEE.

[24] Gelman, A. and Hill, J. (2007). Data analysis using regression and multilevel/hierarchical models,

volume Analytical methods for social research. Cambridge University Press, New York.

[25] Hand, D. and Christen, P. (2018). A note on using the f-measure for evaluating record linkage algorithms.

Statistics and Computing, 28(3):539–547.

108



[26] Hand, D. J. (2009). Measuring classifier performance: a coherent alternative to the area under the roc

curve. Machine Learning, 77(1):103–123.

[27] Hastie, T. J. and Tibshirani, R. J. (1990). Generalized additive models, volume 43. CRC press.

[28] Hauser, D. J. and Schwarz, N. (2016). Attentive turkers: Mturk participants perform better on online

attention checks than do subject pool participants. Behavior research methods, 48(1):400–407.

[29] Hernández, M. A. and Stolfo, S. J. (1995). The merge/purge problem for large databases. SIGMOD

Rec., 24(2):127–138.

[30] HO, T. (1998). The random subspace method for constructing decision forests. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 20(8):832–844.

[31] Ho, T. K. (1995). Random decision forests. In Proceedings of 3rd international conference on document

analysis and recognition, volume 1, pages 278–282. IEEE.

[32] Hu, Y., Wang, Q., Vatsalan, D., and Christen, P. (2017). Improving temporal record linkage using

regression classification. In Pacific-Asia Conference on Knowledge Discovery and Data Mining, pages

561–573. Springer.

[33] Jaccard, P. (1912). The distribution of the flora in the alpine zone. New Phytologist, 11(2):37–50.

[34] Jaro, M. A. (1989). Advances in record-linkage methodology as applied to matching the 1985 census of

tampa, florida. Journal of the American Statistical Association, 84(406):414–420.

[35] Knuth, D. E. (1998). The Art of Computer Programming, volume 3. Pearson Education.

[36] Li, B. and Han, L. (2013). Distance weighted cosine similarity measure for text classification. In Yin,

H., Tang, K., Gao, Y., Klawonn, F., Lee, M., Weise, T., Li, B., and Yao, X., editors, Intelligent Data

Engineering and Automated Learning – IDEAL 2013, pages 611–618, Berlin, Heidelberg. Springer Berlin

Heidelberg.

[37] Li, P., Dong, X. L., Guo, S., Maurino, A., and Srivastava, D. (2015). Robust group linkage. In

Proceedings of the 24th International Conference on World Wide Web, pages 647–657. International World

Wide Web Conferences Steering Committee.

[] McVeigh, B. S. and Murray, J. S. (2017). Practical bayesian inference for record linkage.

[38] Michelson, M. and Knoblock, C. A. (2006). Learning blocking schemes for record linkage. In AAAI,

volume 6, pages 440–445.

109



[39] Mozafari, B., Sarkar, P., Franklin, M. J., Jordan, M. I., and Madden, S. (2012). Active learning for

crowd-sourced databases. arXiv preprint arXiv:1209.3686.

[40] of Congress, L. (2019). Irish-catholic immigration to america.

[41] of Ireland, T. N. A. Ireland in the early 20th century.

[42] of Ireland, T. N. A. National archives: Census of ireland 1911.

[43] On, B.-W., Koudas, N., Lee, D., and Srivastava, D. (2007). Group linkage. In 2007 IEEE 23rd

International Conference on Data Engineering, pages 496–505. IEEE.

[44] Pearson, E. S., Gosset, W. S., Plackett, R., and Barnard, G. A. (1990). ’Student’, A Statistical Biography

of William Sealy Gosset. Oxford University Press, USA.

[45] Raykar, V. C. and Yu, S. (2012). Eliminating spammers and ranking annotators for crowdsourced

labeling tasks. J. Mach. Learn. Res., 13(null):491–518.

[46] Rouse, D. P. (2018). personal communication.

[47] Ruzicka, M. (1958). Application of mathematical-statistical methods in geobotany (synthetic processing

of recordings). Biologia, Bratisl, 13:647–661.

[48] Sadinle, M. (2017). Bayesian estimation of bipartite matchings for record linkage. Journal of the

American Statistical Association, 112(518):600–612.

[49] Sammut, C. and Webb, G. I., editors (2010). TF–IDF, pages 986–987. Springer US, Boston, MA.

[50] Schubert, A. and Telcs, A. (2014). A note on the jaccardized czekanowski similarity index.

Scientometrics, 98(2):1397–1399.

[51] Sheng, V. S., Provost, F., and Ipeirotis, P. G. (2008). Get another label? improving data quality

and data mining using multiple, noisy labelers. In Proceedings of the 14th ACM SIGKDD international

conference on Knowledge discovery and data mining, pages 614–622.

[52] Steorts, R. C., Ventura, S. L., Sadinle, M., and Fienberg, S. E. (2014a). A comparison of blocking

methods for record linkage. In Domingo-Ferrer, J., editor, Privacy in Statistical Databases, pages 253–

268, Cham. Springer International Publishing.

[53] Steorts, R. C., Ventura, S. L., Sadinle, M., and Fienberg, S. E. (2014b). A comparison of blocking

methods for record linkage. In International Conference on Privacy in Statistical Databases, pages 253–

268. Springer.

110



[54] Tai, X. H. and Eddy, W. F. (2018). A fully automatic method for comparing cartridge case images,.

Journal of Forensic Sciences, 63(2):440–448.

[55] Tai, X. H., Soska, K., and Christin, N. (2019). Adversarial matching of dark net market vendor accounts.

In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery &#38; Data

Mining, KDD ’19, pages 1871–1880, New York, NY, USA. ACM.

[56] Themstrom, S., Orlov, A., and Handlin, O. (1980). Harvard encyclopedia of american ethnic groups.

Cambridge, MA: Belknap.

[57] Treeratpituk, P. and Giles, C. L. (2009). Disambiguating authors in academic publications using random

forests. In Proceedings of the 9th ACM/IEEE-CS Joint Conference on Digital Libraries, pages 39–48.

ACM.

[58] Tromp, M., Ravelli, A. C., Bonsel, G. J., Hasman, A., and Reitsma, J. B. (2011). Results from

simulated data sets: probabilistic record linkage outperforms deterministic record linkage. Journal of

clinical epidemiology, 64(5):565–572.

[59] Ventura, S. L. and Nugent, R. (2014). Hierarchical linkage clustering with distributions of distances for

large-scale record linkage. In Domingo-Ferrer, J., editor, Privacy in Statistical Databases, pages 283–298,

Cham. Springer International Publishing.

[60] Ventura, S. L., Nugent, R., and Fuchs, E. R. (2015a). Seeing the non-stars: (some) sources of bias

in past disambiguation approaches and a new public tool leveraging labeled records. Research Policy,

44(9):1672–1701.

[61] Ventura, S. L., Nugent, R., and Fuchs, E. R. (2015b). Seeing the non-stars:(some) sources of bias

in past disambiguation approaches and a new public tool leveraging labeled records. Research Policy,

44(9):1672–1701.

[62] Walker, S. H. and Duncan, D. B. (1967). Estimation of the probability of an event as a function of

several independent variables. Biometrika, 54(1-2):167–179.

[63] Wang, W. and Zhou, Z.-H. (2015). Crowdsourcing label quality: a theoretical analysis. Science China

Information Sciences, 58(11):1–12.

[] Winkler, W. E. (1988). Using the em algorithm for weight computation in the fellegi & sunter model of

record linkage. Alexandria, VA. American Statistical Association.

[64] Winkler, W. E. (1990). String comparator metrics and enhanced decision rules in the fellegi-sunter

model of record linkage. Proceedings of the Section on Survey Research Methods. American Statistical

Association.

111



Appendix

112



Appendix A

Intransitive Matches

A.1 Resolving Intransitive Matches

Once we have decided whether or not a pair of records “match”, or have a high enough similarity/probability

of matching, we want to assign unique IDs to the original records. But we need to be wary of the following

case:

1901 1911 Similarity
Person 1 Person 2 0.9
Person 2 Person 3 0.6
Person 1 Person 3 0.4

Figure A.1: Intransitive matching problem that occurs with a similarity cutoff of 0.5

Shown in (Fig. A.1), If we use 0.5 for our match probability cutoff, we’d link Person 1 to Person 2,

Person 2 to Person 3, but not Person 1 to Person 3. One approach to resolve this transitivity issue, is to

hierarchically cluster the records before assigning IDs. This may look like:

Person 1 Person 2 Person 3
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Now, we can adjust our cutoff and never have an intransitive match situation. With a dissimilarity (1 -

similarity) cutoff of 0.1, all people get a unique ID. If we use a cutoff of 0.4, Person 1 and 2 get the same

ID, and Person 3 is assigned a different. ID. If we use a dissimilarity cutoff of 0.6, then all 3 people get the

same unique ID. Some applications require one-to-one matching [? ] [? ], in which case we could not link

Person 1, 2 and 3. In that situation we’d either need to link two or none of the three people. Please note

that in this thesis we do not resolve intransitive matches or enforce a one-to-one match. Using this data to

do so would be an interesting area for future work.

A.2 Using Household Information to Post-Process Individual

Pairs

Another approach is to use household similarity information as a final step to assign IDs [23]. If we use a

cutoff of 0.5 for our match probability cutoff, we’d need to determine whether Person 2 matches Person 1

or Person 3 since both pairs had high enough (> 0.5) individual match probabilities. From (Fig. A.2), we

see that Person 2 and Person 3 have a higher household similarity than Person 2 and Person 1, so we decide

that Person 2 and Person 3 get the same unique ID, and person 1 receives a separate ID.

1901 1911 Similarity Household similarity
Person 1 Person 2 0.9 0.2
Person 2 Person 3 0.6 0.95
Person 1 Person 3 0.4 0.1

Figure A.2: Intransitive matching problem with a similarity cutoff of 0.5; shown with household similarity
information

As in the focus of [23] we can use household information to post-process individual record pairs. For

example, if we find two plausible 1911 matches for a 1901 record, we may use household information to

make a decision between the two potential matches. We would do so in a process where we first build the

baseline / individual model in Equation 6.4 and then use its output to calculate household similarity. Using

the household similarity we can determine the matching links for ambiguous record pairs.

We build a model for individual pairs using only information about the two individuals (Line 3 of

Algorithm 2). In theory we could build a model using household information (e.g., model 6.6) but if we want

household information to only appear in the post-processing step (to avoid double utilizing this information),

we should not use it in the first step. Once we have the predictions at the individual pairwise level, we

determine if a pair is a match or a non-match using the cutoff c. Pairs below this threshold will be predicted

to be non-matches. Pairs above are initially predicted to be matches. In this model we only want one 1911
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Algorithm 2: Post-processing records using household similarity

Input: All records from 1901 and 1911 (X1901 and X1911)
Household IDs that map i to h1901(i) and j to h1911(j)
Pairwise match cutoff value c

Output: The (potential) matching record for all records in X1901

1 for i = 1, ..., n1901 do
2 for j = 1, ..., n1911 do
3 Build a model for Pr(X1901

i ∼X1911
j ) with Equation 6.4 ;

4 Calculate Pr(X1901
i ∼X1911

j ) ;

5 if Pr(X1901
i ∼X1911

j ) < c then
6 Classify X1901

i and X1911
j as a non-match ;

7 else
8 Calculate simgroup-linkage(X1901(h1901(i)), X1911(h1911(j))) ;
9 end

10 end

11 if j ∈ hb : simgroup-linkage(X
1901(h1901(i)), X1911(h1911(j))) is maximum then

12 Classify X1901
i and X1911

j as a match ;

13 else
14 Classify X1901

i and X1911
j as a non-match ;

15 end

16 end

record for each 1901 record so, if multiple 1911 records match at above the threshold c we select the record

with the highest household match to the 1901 record.
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Appendix B

Supplemental Models and Model

Information

B.1 Model Details

B.1.1 Random Forest Variable Importance

Table B.1: RF No Blocking; Individual

MeanDecreaseGini
locations.jar 2370.48
Age.Yea 1453.88
Forename.jar 1072.00
Surname.jar 935.12
Birthplace.jar 882.08
Sex.Exa 92.39

Table B.2: RF No Blocking; Individual
+ Household

MeanDecreaseGini
Age.Yea 1545.71
locations.jar 1394.62
Forename.jar 1201.97
Forename 793.54
Age 709.65
Birthplace.jar 481.96
Surname.jar 446.27
Birthplace 443.89
Surname 422.84
Sex 401.07
Locations 247.21
Sex.Exa 145.10

Table B.3: RF No Blocking; Individual
+ Household (Unadjusted)

MeanDecreaseGini
Age.Yea 1506.82
locations.jar 1482.97
Forename.jar 1239.79
Forename 900.02
Age 614.21
Birthplace.jar 535.95
Surname.jar 499.61
Surname 415.31
Birthplace 408.76
Locations 219.66
Sex.Exa 142.02
Sex 69.78
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Table B.4: RF Block 10; Individual

MeanDecreaseGini
locations.jar 2356.06
Age.Yea 1508.74
Forename.jar 1020.50
Surname.jar 966.66
Birthplace.jar 848.20
Sex.Exa 98.80

Table B.5: RF Block 25; Individual

MeanDecreaseGini
locations.jar 2365.59
Age.Yea 1531.72
Surname.jar 1011.22
Forename.jar 986.44
Birthplace.jar 799.25
Sex.Exa 98.66

Table B.6: RF Block All; Individual

MeanDecreaseGini
locations.jar 2205.87
Age.Yea 1558.62
Forename.jar 1099.80
Surname.jar 868.49
Birthplace.jar 597.61
Sex.Exa 105.46

Table B.7: RF Block 10; Individual +
Household

MeanDecreaseGini
Age.Yea 1579.76
locations.jar 1426.82
Forename.jar 1124.55
Forename 792.58
Age 626.43
Surname.jar 541.61
Surname 478.08
Birthplace.jar 471.15
Sex 417.23
Birthplace 364.29
Locations 252.34
Sex.Exa 145.46

Table B.8: RF Block 25; Individual +
Household

MeanDecreaseGini
Age.Yea 1558.16
locations.jar 1427.63
Forename.jar 1124.56
Forename 780.69
Age 595.26
Surname.jar 580.93
Surname 505.58
Birthplace.jar 478.82
Sex 405.36
Birthplace 334.51
Locations 280.29
Sex.Exa 136.40

Table B.9: RF Block All; Individual +
Household

MeanDecreaseGini
Age.Yea 1657.16
locations.jar 1334.23
Forename.jar 1281.52
Forename 758.80
Age 564.14
Surname.jar 476.69
Surname 435.40
Birthplace.jar 428.58
Sex 399.74
Birthplace 306.89
Locations 263.49
Sex.Exa 143.64

Table B.10: RF w/o Bad Labels; Individual

MeanDecreaseGini
locations.jar 2235.97
Age.Yea 1707.60
Forename.jar 1160.14
Birthplace.jar 807.23
Surname.jar 780.58
Sex.Exa 113.83

Table B.11: RF w/o Bad Labels;Individual +
Household

MeanDecreaseGini
Age.Yea 1696.42
locations.jar 1358.93
Forename.jar 1215.24
Forename 705.28
Age 579.66
Surname.jar 509.32
Birthplace.jar 460.75
Surname 362.51
Sex 346.08
Birthplace 344.12
Locations 247.04
Sex.Exa 145.81
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Table B.12: RF Page 1; Individual

MeanDecreaseGini
locations.jar 1260.29
Birthplace.jar 306.18
Age.Yea 242.86
Surname.jar 154.57
Forename.jar 133.31
Sex.Exa 0.22

Table B.13: RF Page 1; Individual + Household

MeanDecreaseGini
locations.jar 853.56
Forename 356.01
Locations 259.74
Age 241.60
Birthplace.jar 212.41
Age.Yea 200.29
Sex 181.60
Surname 173.48
Birthplace 155.96
Surname.jar 92.89
Forename.jar 92.66
Sex.Exa 0.33

Table B.14: RF Page 2; Individual

MeanDecreaseGini
Age.Yea 1765.98
Forename.jar 1580.10
Surname.jar 1410.23
locations.jar 748.58
Birthplace.jar 478.36
Sex.Exa 159.83

Table B.15: RF Page 2; Individual + Household

MeanDecreaseGini
Forename.jar 2182.35
Age.Yea 1630.44
Age 486.25
Surname.jar 443.27
Surname 313.86
Birthplace 270.56
locations.jar 263.44
Birthplace.jar 205.39
Sex.Exa 195.73
Sex 162.02
Forename 153.17
Locations 41.47
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B.1.2 Linear Model Coefficients and Output

Logreg No Blocking; Individual Logreg No Blocking; Individual + Household

(Intercept) -21.63∗∗∗ -20.79∗∗∗

(0.23) (0.24)
Forename.jar 5.19∗∗∗ 5.45∗∗∗

(0.12) (0.12)
Age.Yea -0.11∗∗∗ -0.10∗∗∗

(0.00) (0.00)
Sex.Exa 0.64∗∗∗ 0.91∗∗∗

(0.09) (0.09)
Birthplace.jar 2.11∗∗∗ 1.76∗∗∗

(0.08) (0.09)
locations.jar 6.63∗∗∗ 7.13∗∗∗

(0.10) (0.15)
Surname.jar 8.29∗∗∗ 5.62∗∗∗

(0.15) (0.18)
Forename 1.22∗∗∗

(0.10)
Age 1.58∗∗∗

(0.07)
Sex -0.01

(0.08)
Birthplace 0.12

(0.07)
Surname 0.47∗∗∗

(0.07)
Locations -1.37∗∗∗

(0.07)

AIC 26737.97 25201.79
BIC 26820.91 25355.82
Log Lik -13361.99 -12587.89
Deviance 26723.97 25175.79
Num. Obs. 1033301 1033301
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

Table B.16
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Hier No Blocking;Individual Hier No Blocking;Individual + Household

(Intercept) -19.85∗∗∗ -18.97∗∗∗

(0.26) (0.28)
Forename.jar 6.59∗∗∗ 6.46∗∗∗

(0.14) (0.13)
Age.Yea -0.10∗∗∗ -0.10∗∗∗

(0.00) (0.00)
Sex.Exa 1.11∗∗∗ 1.13∗∗∗

(0.10) (0.10)
Birthplace.jar 1.74∗∗∗ 1.43∗∗∗

(0.12) (0.13)
locations.jar 9.10∗∗∗ 7.50∗∗∗

(0.20) (0.26)
Surname.jar 2.57∗∗∗ 2.26∗∗∗

(0.18) (0.17)
Forename 2.66∗∗∗

(0.18)
Age 0.48∗∗∗

(0.11)
Sex 0.40∗∗

(0.13)
Birthplace 0.16

(0.12)
Surname 0.08

(0.10)
Locations -0.35∗

(0.16)

AIC 23059.60 22371.55
BIC 23154.39 22537.43
Log Lik -11521.80 -11171.78
Num. Obs. 1033301 1033301
Groups: House 37972 37972
Var: Group(Intercept) 5.14 4.08
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

Table B.17
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B.2 Modeling Households Directly

Because we collect whether households match (0/1) we could also directly model whether the households are

the same.

Figure B.1 Figure B.2

Pr(X1901(h1901(i)) ∼X1911(h1911(j))) = f
(
sim(X1901(ha), X1911(h1911(j)))

)
(B.1)

Table B.18: Household Definition 1

MeanDecreaseGini
Age 71.10
Sex 64.45
Forename 61.99
Surname 59.26
Birthplace 32.52
locations 13.96

Table B.19: Household Definition 2

MeanDecreaseGini
Forename 308.75
locations 282.86
Age 232.71
Surname 143.64
Birthplace 140.58
Sex 132.86

B.3 Other Graphs
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Figure B.3
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Figure B.4
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Figure B.5
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Appendix C

Supplemental Interface Analyses

While the main goal was to collect the additional matching individuals, we are also interested in studying

how people label records. Labelers are shown a 1901 reference record, and a set of 1911 candidates. These

candidates are of varying length, and chosen based on a combination of geography and field similarity. On

this first page (where a labeler decides if the reference matches to any of the candidates) we record whether

the labeler viewed the household members, which candidates were viewed and in what order. Additionally

we store whether they sorted the fields (if so, which ones? how often?) and the time stamps of these actions.

We found that our labelers often only looked at a few candidates, but sometimes they clicked on as many

as 22 candidates when searching to determine if there is a correct match. The number of clicks is inherently a

function of the number of candidates shown, as we see in Fig. C.1. We understand that there is also a labeler

effect/component in that some people tend to click around more than others and are naturally more/less

decisive.
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Figure C.1: Labelers often only looked at a few candidates, but sometimes clicked on as many as 22
candidates (left). The number of clicks is a function of the number of candidates shown as well as other
variations (right).

C.1 Assessing the uncertainty of human-based record linkage

Another benefit of the interface is the ability to easily collect label uncertainty. By exposing multiple labelers

to the same reference record, we can assess the uncertainty of the link which can help downstream record

linkage models avoid overfitting to uncertain matches. Currently, each record has between one to fifteen

recorded labels and references have between one to four unique labels showing that there indeed exists

disagreement between labelers.

Early assessment of labels suggest some uncertainty between labelers, which begs the question, how many

labels are sufficient (in terms of labeler variability) to stop labeling? How do we balance the cost and benefit

associated with generating a label? In Fig. C.2 we track how the max candidate proportion changes as

we generate more and more label instances for a particular reference record. We call the most common

label for a given reference record the “max candidate”. Excluding those references that had fewer than six

label instances or no disagreement amongst labelers (76% of reference records had no disagreement amongst

labelers), in Fig. C.2 we find that the sequences which bounce around with low label agreement tend to be

green and blue (labeler disagreement in the first two or three instances respectively), indicating that extreme

uncertainties are associated with early inconsistencies. This is an important preliminary finding that will be

further analyzed with future crowdsourcing.
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C.2 Understanding labeler decisions through click patterns

Looking beyond label variability, understanding how humans label records will help inform how best to

build record linkage models and labeling interfaces (including our own). Preliminary analysis of the labelers’

exploration of candidates (specifically the sequences of labeler clicks as they explore candidates), suggest

some potential in this area. For example, the reference record James Byrne had 33 possible candidates,

but looking at the click sequence for multiple labelers we see that they primarily focused on the first few

candidates although the candidates were shown in random order. The three candidate ID click sequences

for James were: 7 3 7 7, 7 2 3 4 12 2 7, and 2 7.

Figure C.2: We examine how the max candidate proportion changes as we generate more label instances
for a particular reference record. We call the most common label for a given reference record the “max
candidate”. One line in this graph represents a reference record that has at least six label instances and
whose final match proportion is less than 1 (some uncertainty exists). The lines are colored by the first time
that a labeler disagrees with previous labelers (e.g., the second color from the left – blue-green – shows those
sequences where the first two labelers agreed on the candidate, but the third labeler did not). We find that
the sequences that finish with low label agreement tend to be green and blue, indicating that future label
uncertainty is associated with early label inconsistencies.
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Moreover, Fig. C.3 shows that the way that labelers explore potential candidates may have semi-cyclic

patterns in terms of increasing and decreasing the need for candidates that have high individual and /

or household similarity scores. We believe this information could enhance record linkage models and our

Figure C.3: We examine the click sequences of three labelers as they explore potential candidates of 1901
James Byrne. This visual examines the labelers’ exploration sequences relative to the similarity of the
reference / candidate individual records as well as their respective households.
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candidate selection process by helping us learn which candidates appear to be most important to a human

labeler.
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Appendix D

Unsupervised Linkage

Note: This section is largely part of [22]. This is using data that had been collected at the very early stages

of our interface and therefore do not include labels for the households or individuals within households.

Geographically, the data in this section is from Ticknock, County Carlow.

D.1 Fellegi & Sunter

In the absence of representative labels or a reluctance to rely on estimated labels, we turn to exploring

unsupervised approaches, starting with the fundamental work by Fellegi & Sunter [20]. This approach was

later expanded by Winkler [? ].

For records a, b, and each binary comparison vector, τ(a, b) of length K (the number of variables/fields),

we calculate the following likelihood ratio:

R(τ(a, b)) =
P(τ | true match)

P(τ | true non-match)
. (D.1)

We make decisions about the match status of pairs of records based on cutoffs where a high R(τ(a, b))

indicates that a and b likely match and a low R(τ(a, b)) indicates that a and b likely do not match.

In practice there is often a clerical review step for record pairs with neither high nor low ratios to determine

their match status, but here we set a hard binary cutoff for determining matches and non-matches. The

Fellegi & Sunter approach has been shown to minimize both false positive/negative linkage errors and the

number of possible links. With respect to estimation, the goal is to maximize the following likelihood f(τ)

for each comparison τ :
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f(τ) = P(match)P(τ |match) + P(non-match)P(τ |non-match)

= p

K∏
k=1

mτk
k (1−mk)(1−τk) + (1− p)

K∏
k=1

uτkk (1− uk)(1−τk)
(D.2)

with parameters:

mk = P(a and b agree on variable k | true match)

uk = P(a and b agree on variable k | true non-match)

p = P(a and b are a match )

E-M algorithm

The E-M algorithm is often used for parameter estimation of the Fellegi & Sunter approach[? ]. Note that

this approach commonly uses binary comparison vectors where each element indicates whether or not two

fields agree/match (vs. a more continuous similarity score). Using our estimated Ticknock labels as ground

truth, we determined reasonable cutoffs for our continuous similarity metrics, finding that a Jaro-Winkler

cutoff of 0.75 fairly well separates the matching and non-matching pairs. With respect to age, recall that

we expect variation beyond the expected ten-year age gap given the national change in benefits during that

time period and typical errors in transcription or record-keeping. We are able to capture most of the true

matching pairs when we allow the age difference to vary between 6 and 14 years. Based on this preliminary

sensitivity analysis, we use the following criteria to dichotomize our variables. We use a Jaro-Winkler cutoff

of 0.75 for birthplace, location, first name, and last name. We allow age to differ 4 years from the expected

age difference of 10 years, and we require gender to match exactly.

We use the following variables in the Fellegi & Sunter model:

Variables: Forename-JW > 0.75, Surname-JW > 0.75, Birthplace-JW > 0.75,

Location-JW > 0.75, 6 < Age-Diff < 14, Sex-Exact.

Parameter estimation

We first look at the E-M iteration convergence results for estimating p, the probability that a given

comparison vector corresponds to a true match. Note that for this analysis of 331 records from 1901 and

313 records from 1911, the true proportion of matches is 204/105,118 = 0.00194. We find, in Table D.1, that

our algorithm quickly overestimates the number of true matches. This is perhaps somewhat expected given

the very low overall percent of matches.
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Table D.1: Estimating p

Iteration 1 Iteration 15 Iteration 30 Truth
0.00031 0.01195 0.06292 0.00194

We similarly compare the estimates for mk and uk across E-M iterations. We expect most of our mk

probabilities to be high; if two people are truly the same person, we typically expect them to agree on most

variables. As such, we initialize mk to be 0.95 for all fields. On the other hand, we expect our uk probabilities

to vary depending on the field of interest. For example, even among non-matching people, we expect gender

to agree about 50% of the time. We expect the u-probability for age to be higher than say, last name, but

not as high as gender. We initialize each uk to be the total number of agreeing comparisons for field k over

the total number of comparisons. This initialization is reasonable given the large class imbalance in our

comparison space.

Figure D.1: We explore the convergence of mk and uk within our model and examine the difference between
their final values for each field. A large difference between mk and uk for a given k indicates that field k is
important in separating matches from non-matches. In the individual model we find that first name and sex
are driving our likelihood ratios, but other fields like last name, location, and age are not playing a strong
role.

The convergence of these parameters is shown in Fig. D.1. A large difference between mk and uk for a

given field k indicates that the variable is influential in determining the match status of the record pair. For

Ticknock, we find that first name and sex are driving our comparison vector likelihood ratios (D.1), but,

contrary to intuition, other fields like last name, location, and age are not playing a strong role.
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D.2 Building Unsupervised Models

Given this household similarity measure, we explore how to add this information to our Fellegi & Sunter

model, keeping in mind that our end goal is still to link individual records. We will assess the following

approaches:

1. Baseline model (no household information)

Fellegi-Sunter( ∼Forename-JW + Surname-JW + Sex-Exact+

Location-JW + Age-Abs-Diff + Birthplace-JW)

2. Add household field similarities to the baseline model

Fellegi-Sunter( ∼[Model 1 variables] +

Forename-House-Jac + Surname-House-Jac + Sex-House-Jac+

Location-House-Jac + Age-House-Jac + Birthplace-House-Jac)

3. Add estimated household similarity to the baseline model

Fellegi-Sunter( ∼[Model 1 variables] +

Household-Similarity)

4. Estimate a Fellegi & Sunter model on the households to determine which records should be compared

in the baseline model

Stage 1 (blocking):

Fellegi-Sunter( ∼[Household-derived variables])

Stage 2:

Fellegi-Sunter( ∼[Model 1 variables])

In option 2, we calculated the adjusted Jaccard similarity between all households for the fields: forename,

age (binned), surname, birthplace, sex, and location. We then added those household similarity variables to
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the individual field comparisons (Jaro-Winkler for birthplace, forename, surname, and location; exact match

for gender; expected difference +/- 4 years for age) in our individual-level model. Results are discussed

below and shown in the upper right graph of Fig. D.2).

In option 3, we ran two Fellegi & Sunter models sequentially. First we modeled the individual matches

(e.g. person 1 matches/non-matches person 2) and then we used those matches to determine the household

similarity (group linkage measure, shown in equation 5.16). We then model the individual matches again,

but include the household similarity as a feature in the model.

In option 4, we ran two Fellegi & Sunter models sequentially. First we modeled household matches

(e.g. household 1 matches/non-matches household 2) and then we modeled the individuals (e.g. person

1 matches/non-matches person 2). We used the likelihood ratios from the household model to determine

whether two households were similar enough to compare the people within them, effectively blocking our

records based on household similarity.

We also explored including the Fellegi & Sunter likelihood ratio for household comparisons as a variable in

the individual-level model, but the performance was comparable to the poor performance of the individual-

level model with the larger set of household similarity variables.

Given the introduction of an additional likelihood ratio cutoff selection, we explore, in Table D.3, the

sensitivity of error rates as a function of the household match threshold. The top line shows our individual-

level model, with no household level blocking. As we reduce our comparison space with the increase of

the household match threshold, the false negative error rates increase (as expected). Ultimately, we set a

household blocking ratio cutoff of 2, reducing the comparison space from 105118 record pairs to 24298.

Model False Negative False Discovery
1 (baseline) 0.24 0.23
2 (+ household vars) 0.78 0.81
3 (+ household sim) 0.27 0.17
4 (household FS to block + baseline FS) 0.32 0.17

Table D.2: Error rates (varying likelihood ratio cutoffs)

In Fig. D.2 we compare all four approaches as a function of the likelihood ratio cutoff for the individual

level matches and non-matches. Including household variables in the baseline model (option 2) increased our

error rates; however, including the group linkage household similarity (option 3) produced similar error rates

to the baseline model (higher false negative, lower false discovery). When using option 3 we are determining

more matches to be non-matches but we are less often incorrectly predicting matches of non-matching pairs.

Estimating household similarity as a blocking mechanism for the individual-level model (option 4) resulted

in a slightly worse performance than the baseline model. In addition to the reduction of the comparison

137



Figure D.2: We compare the error rates of different models that incorporate household information to the
baseline unsupervised model. The model that includes household-level variables into the individual model
(top right) performs poorly. The model that includes the group linkage estimated household similarity
(bottom left) performs comparable to the baseline model. Additionally, the model that uses household
information to block (right) performs comparable, but slightly worse than the original individual model.

space, we find the m and u probabilities for the household model are more reasonable than the individual

model (Fig. D.3).

D.2.1 Modeling Household Similarity Directly

In Option 4, we first modeled household matches. We were able to do this because we were using an

unsupervised approach (at this point, we do not know whether or not two households actually match). The

m and u probabilities for the household model are shown in Fig. D.3. The adjusted Jaccard similarity for

gender and birthplace appear to be the most influential. While not large, we still see a difference between

mk, uk for the household-level comparisons of forename, surname and age. Note that the influential fields

here are different than those in the individual-level model (Fig. D.1). We find slightly more reasonable m

and u probabilities, as shown in Fig. D.3. For example, age is now more influential in determining matches.

Given the introduction of an additional likelihood ratio cutoff selection, we explore, in Table D.3, the

sensitivity of error rates as a function of the household match threshold. The top line shows our individual-

level model, with no household level blocking. As we reduce our comparison space with the increase of

the household match threshold, the false negative error rates increase (as expected). Ultimately, we set a

household blocking ratio cutoff of 2, reducing the comparison space from 105118 record pairs to 24298.
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Figure D.3: Convergence of mk and uk within the household matching model. In this model we find that
the adjusted Jaccard similarity for birthplace and sex across the households are driving our likelihood ratios.

Table D.3: Households to block: comparison space reduction

FS ratio cutoff n False Discovery False Negative
-Inf 105118 0.35 0.24

-2.10 65376 0.32 0.27
0.50 49464 0.32 0.28
1.00 28611 0.28 0.28
2.00 24298 0.25 0.32
4.00 22609 0.26 0.34
6.50 2419 0.22 0.48
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