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Pathological neural oscillations, particularly in the beta and delta bands, are hallmarks of 

dysfunction in the basal ganglia (BG) of patients with Parkinson’s disease (PD). While 

Parkinsonian beta oscillations have received more attention than delta oscillations in the 

scientific literature, it remains unclear how these oscillations emerge, propagate through the 

brain, and relate to motor symptoms in PD. Animal models of PD have been a valuable tool for 

studying these oscillations, but the oscillatory landscape of awake, behaving mice, a common 

animal model for the study of PD, has not been investigated. 

Here, we record from the substantia nigra pars reticulata (SNr), the primary output 

nucleus of the mouse BG, and other BG nuclei in the dopamine depleted (DD) mouse model of 

PD. Using a novel signal processing method to distinguish oscillations from neural noise, we 

establish that delta, but not beta, oscillations are present in single neural units throughout the 

BG in dopamine depletion, and that these oscillations arise due to insufficient activation of D2 

receptors. We also establish that the prevalence of delta oscillations in SNr neurons correlates 

with the overall level of motor dysfunction and dopamine loss and dynamically correlates with 

bouts of akinesia. These oscillations in SNr neurons lead DD-induced delta oscillations in motor 

cortex (M1), suggesting a subcortical basis for their generation, and their relationship to M1’s 

oscillations define a novel dichotomy of SNr into active-predicting (AP) and inactive-predicting 

(IP) subpopulations of neurons. 

Next, we take a computational modeling approach to further investigate how these 

oscillations propagate in the brain and how the AP and IP subpopulations of SNr neurons arise. 

Using a realistic conductance-based model of SNr neurons, we test if delta oscillations in GPe 
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neurons which project to our model SNr neurons are sufficient to replicate the SNr oscillations 

we observe in vivo. We demonstrate that a simple connection architecture, in which GPe and 

other SNr neurons compete for a limited number of synapses on each SNr neuron, is sufficient 

to generate AP and IP populations in SNr whose firing properties match experimental data. This 

model demonstrates how delta oscillations can effectively propagate through the basal ganglia 

despite neural noise. 

Finally, we review how these results fit within and inform our understanding of neural 

oscillations and Parkinsonian motor dysfunction. We discuss and attempt to reconcile the 

disparities between observations in different animal models and human PD and explore 

potential mechanisms by which delta oscillations could cause Parkinsonian dysfunction. We 

close with a discussion of the future directions we envision for these topics and how they may 

inform new potential targets and treatments for PD. 
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1 INTRODUCTION 

 

 

Parkinson’s disease (PD) is the second-most common neurodegenerative disorder, afflicting 

over ten million people worldwide (Marras et al. 2018). Treatments for PD exist, such as 

dopamine replacement therapy, in which drugs such as levodopa are given to replenish brain 

dopamine levels (Hornykiewicz 2010), and deep brain stimulation (DBS), in which a stimulating 

electrode is implanted in a dysfunctional locus in the patient’s brain (Volkmann 2004). While 

these treatments can be extremely effective, there are many drawbacks – levodopa loses its 

effectiveness over time alongside the advent of debilitating dyskinetic side effects (Cenci and 

Lindgren 2007), and the invasive surgery for DBS harbors its own potential dangers and 

complications (Beric et al. 2001; Constantoyannis et al. 2005). 

A major roadblock toward improving treatment of PD are holes in our knowledge of the 

underlying neurophysiological changes that occur in PD and how treatments affect or mask 

these changes (McGregor and Nelson 2019). In studying such neurophysiological changes in 

the Parkinsonian brain, PD also provides a window into understanding dopamine, motor control, 

and neural dynamics, in both health and disease. 

In this chapter, we will briefly review the literature surrounding these topics. First, we will 

look at the evidence linking PD and animal models of PD, with a focus on dopamine depletion. 

Then, we will examine the existing literature on neural changes in the brains of PD patients and 

animal models of PD, with a focus on abnormal oscillatory activity. 
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1.1 CONNECTIONS BETWEEN DOPAMINE DEPLETION AND PD 

Parkinson’s disease (PD) is a neurodegenerative disorder characterized symptomatically 

by progressively worsening akinesia, bradykinesia, rigidity, and tremor, as well as non-motor 

symptoms such as sleep disturbances, depression, and cognitive deficits (Chaudhuri et al. 

2006; Poewe 2008; Sveinbjornsdottir 2016). In the brain, typically observed in post-mortem 

studies, Parkinson’s disease is characterized by the loss of dopamine (DA) neurons (Naoi and 

Maruyama 1999) and the presence of Lewy body inclusions in the substantia nigra pars 

compacta (SNc) (Gibb and Lees 1988), a region which normally provides dopaminergic 

innervation to the basal ganglia primarily by its projections to the striatum through the medial 

forebrain bundle (MFB). 

Animal models of Parkinson’s disease typically aim to replicate this disease 

symptomology through disruption of dopamine signaling. Toxins such as 1-methyl-4-phenyl-

1,2,3,6-tetrahydropyridine (MPTP), which is typically administered systemically in monkeys, or 

6-hydroydopamine (6-OHDA), which is injected directly into the SNc, MFB or striatum in 

rodents, model PD through ablating dopaminergic neurons, which leads to a significantly 

impaired dopamine depleted (DD) brain state. Reversible pharmacological treatments, such as 

the injection of reserpine or dopaminergic antagonists, disrupt dopamine’s packaging and 

release from the presynaptic terminal (Leão et al. 2015) or its ability to activate postsynaptic 

dopamine receptors, respectively, thereby silencing or greatly decreasing dopamine signaling. 

Genetic models knockout or introduce mutations into genes such as LRRK2 , PINK1, parkin, 

and α-synuclein which are implicated in heritable forms of PD; these mutations lead to a more 

progressive loss of dopamine neurons, more closely mimicking the etiology of PD in human 

patients (Dawson et al. 2010). 

Many complications lead to difficulties synthesizing the results from experiments across 

different species and models of PD, and a rich literature exists comparing and contrasting the 

findings from extensive studies on these and other animal PD models (Blandini and Armentero 
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2012; Blesa et al. 2012; Jackson-Lewis et al. 2012; Schober 2004). For instance, toxin models 

can quickly lead to a profound dopamine depletion, and thus cause profoundly debilitating motor 

symptoms. However, this swift time course fails to replicate the progressive onset of 

symptomology observed in patients and the progressive loss of dopamine occurring for years 

before symptoms even begin to appear (Willard et al. 2019). In contrast, genetic models 

typically deplete dopamine from the brain much more gradually which more closely mimics the 

time course seen in human PD patients. However, such models may never yield PD-like 

symptoms, due to both a depletion of dopamine which only reaches asymptomatic preclinical 

levels and the long length of time it takes to reach such levels of depletion (Blandini and 

Armentero 2012; Dawson et al. 2010). These factors allow for compensatory effects in the brain 

to mask the symptoms that might have appeared in a swifter depletion model. 

This makes it difficult to relate the physiology of these models to behavioral or motor 

deficits. More complicated still is the selectivity of the model. Systemic toxins such as MPTP or 

reserpine cast a wide net, affecting systems beyond dopamine that may not be perturbed in 

such a way in clinical PD. In contrast, a targeted injection with 6-OHDA requires an invasive 

surgery, confounding the inflammatory changes known to occur in PD (McGeer and McGeer 

2004; Whitton 2007) and requiring control surgeries to correct for this. 

A successful study must choose the right model for the question at hand, and a well-

rounded study could be best served by the use of multiple models with opposing confounds; the 

intersection of results across models can give a clearer picture of what aspects of 

neurophysiology truly represent changes in PD and which are merely side effects of the chosen 

model. It is through such an argument from observations across many animal models of PD that 

at least one common thread is clear: a profound loss of dopamine signaling leads to PD-like 

akinesia, bradykinesia and rigidity across species. While symptoms may not appear until a 

sufficient level of dopamine signaling loss occurs, a measurement which can be difficult to make 

and compare across models, a significant loss of dopamine signaling leads to progressively 
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worsening PD-like symptoms, and as such, DD and other manipulations to the dopamine 

system serve as our primary experimental window to the physiology of PD in this work. 

 

1.2 PARKINSONIAN NEUROPHYSIOLOGICAL CHANGES  

Given the causal relationship between dopamine loss in the basal ganglia and PD-like 

motor symptoms, there still remains an important missing causal link between these two events: 

how does dopamine loss affect signaling in the brain, and which, if any, of these changes in 

neural signaling lead to Parkinsonian motor symptoms? There is a vast and contentious body of 

literature addressing these questions (Galvan and Wichmann 2008; Hammond et al. 2007). 

The rate model provides one of the earliest explanations for Parkinsonian dysfunction in 

the brain, which follows from observed firing rates increases in two basal ganglia nuclei, the 

globus pallidus interna (GPi) and subthalamic nucleus (STN), and decreased firing rates in the 

globus pallidus externa (GPe) in DD models of PD in monkeys and rats (Miller and DeLong 

1987; Pan and Walters 1988; Soares et al. 2004; Wichmann et al. 1999).  

The physiological explanation for these firing rate changes in DD come from simple 

wiring diagrams of basal ganglia nuclei. Striatal projection neurons (SPNs) make up the vast 

majority of neurons in the striatum, the main input nucleus of the basal ganglia, and typically 

express either D1 or D2 receptors. When dopaminergic tone is lost, the differing dopamine 

receptors on these populations of neurons cause their spontaneous firing rates to diverge – D1-

expressing SPNs slow their firing, while D2-SPNs quicken. This leads to opposite firing rate 

changes in these populations’ targets. Specifically, D1-SPNs form the “direct pathway” by 

directly inhibiting the main output nuclei of the basal ganglia, the subtantia nigra pars reticulata 

(SNr) and GPi, and this loss of inhibition in DD increases their firing rates. Meanwhile, D2-SPNs 

form an “indirect pathway” to these output nuclei by first inhibiting the GPe, and a DD-induced 

firing rate increase in D2-SPNs slows GPe. GPe, in turn, projects to D1-SPNs’ primary targets, 

SNr and GPi, and compounds the effects of disinhibition from D1-SPNs to further raise SNr and 
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GPi firing rates. Finally, these output nuclei more strongly inhibit their primary target, the 

thalamus, which now fails to sufficiently excite the motor cortex (M1) and other motor targets. As 

such, motor signals that would normally travel through the basal ganglia are dampened or shut 

off. 

While elegant, this model oversimplifies basal ganglia physiology. While the dichotomy 

of D1-SPNs as direct pathway neurons and D2-SPNs as indirect pathway neurons is elegant, its 

cleanliness falls apart in both directions. A sizable population of SPNs coexpress D1 and D2 

receptors (Deng et al. 2006; Surmeier et al. 1996), and a neuron’s dopamine receptor 

expression does not perfectly predict its projection targets – D1-SPN axons make passing 

synapses in GPe (Cazorla et al. 2014), though these may specifically target the arkypallidal 

GPe population which does not project to SNr and GPi (Ketzef and Silberberg 2021). An explicit 

connection between basal ganglia firing rates and motor activity is also mired with mixed 

evidence. In the striatum, the story remains relatively clear – optogenetic excitation of D1-SPNs 

in mice leads to clear, time-locked increases in motor activity, whereas excitation of D2-SPNs 

leads to time-locked freezing behaviors (Freeze et al. 2013). Elsewhere in the basal ganglia, the 

story is muddied – optogenetic excitation or inhibition of GPe fails to yield any clear behavioral 

change, requiring careful consideration of cell types to explain behavioral effects (Mallet et al. 

2016; Mastro et al. 2017). 

In PD and DD, there are further complications. While GPe and GPi alter their firing in DD 

as predicted by the rate model, changes in SNr firing rates are inconsistent, with most studies 

showing no change due to DD (Seeger-Armbruster and von Ameln-Mayerhofer 2013; 

Wichmann et al. 1999). Surgical ablation of GPi through a pallidotomy in PD attenuates motor 

symptoms (Dogali et al. 1995; Lozano et al. 1995; Vitek et al. 2003), consistent with the theory 

that GPi’s overactive output causes Parkinsonian motor dysfunction, but ablation of GPe does 

not induce Parkinsonism as would be predicted (Soares et al. 2004). Indeed, high-frequency 

DBS can ameliorate PD symptoms when targeted at either GPi or GPe (Chiken and Nambu 
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2016; Vitek et al. 2012), despite their opposite roles in the rate model, and STN DBS increases 

the firing rate of already overactive GPi neurons (Hashimoto et al. 2003) while GPi DBS in 

monkeys increases firing rates in motor thalamus (Anderson et al. 2003), neither of which fit 

with the predictions of the rate model. In humans, it is difficult to compare firing rates to those of 

healthy control subjects as these studies are performed during surgery, but compared to 

patients with dystonia, GPi firing rates in PD patients are higher in at least certain parts of GPi, 

as expected, but there is no difference in the firing rates in GPe (Levy et al. 1997; Starr et al. 

2005; Tang et al. 2007) or in striatum (Valsky et al. 2020). Altogether, these conflicting results 

suggest that the rate model is at best insufficient to completely explain Parkinsonian motor 

symptoms. 

Other changes in neural firing pattern may instead underlie Parkinsonian dysfunction. 

Increases in the irregularity of neural firing has been observed in rodent and monkey models of 

PD – namely, regions of the basal ganglia which typically fire in a pacemaking fashion with high 

discharge rates such as GPe and SNr begin to exhibit a more irregular, Poisson-like firing 

pattern in DD (Filion and Tremblay 1991; Seeger-Armbruster and von Ameln-Mayerhofer 2013; 

Wang et al. 2010). This irregularity may be due to a downregulation of hyperpolarization and 

cyclic nucleotide-gated (HCN) channels in DD; however, while upregulation of HCN channels to 

healthy levels in GPe neurons leads to resumed pacemaking, DD-induced motor deficits are 

unchanged (Chan et al. 2011a), suggesting that irregularity in BG neurons may be a side-effect 

of DD rather than a cause of its motor symptoms. 

Excessive bursting activity – short periods of time where several spikes occur from a 

neuron in quick succession – is also associated with a Parkinsonian state (Lobb 2014). 

Increased incidence and duration of bursts has been observed in the STN, GPe and GPi of 

MPTP-treated monkeys (Bergman et al. 1994a; Wichmann and Soares 2006) and in PD 

patients (Gale et al. 2009; Hutchison et al. 1994), though, as before, it remains difficult to 

compare this activity in PD to that of healthy control subjects. Neural oscillations, which we 
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explore more in the following section, can be interpreted (or misinterpreted) as regularly 

occurring bursts of activity, and it is possible that results regarding one can be conflated with the 

other. However, bursts can be observed both alongside or without oscillations in a single neuron 

and are argued as being distinct neural properties in the Parkinsonian basal ganglia (Chan et al. 

2011b; Kaneoke and Vitek 1996). The relationship between non-oscillatory bursting activity and 

PD symptoms remains unclear; levodopa has conflicting effects on bursting activity, reducing 

the number of bursts slightly in GPi while having no effect on GPe (Boraud et al. 1998), while 

the effects of the dopamine agonist apomorphine on bursting in PD patients are inconsistent 

(Hutchison et al. 1997; Levy et al. 2001). 

 

1.3 PARKINSONIAN NEURAL OSCILLATIONS 

A firing pattern which has gathered substantial evidence and explanatory power in PD 

research is increased power of neural oscillations in a variety of frequency bands. Neural 

oscillations can be measured in the local field potential (LFP), a more easily recorded signal 

comprising the sum of electrical activity from many nearby neurons and their synaptic input, or 

in the spiking patterns of individual neurons themselves. Neural oscillations are correlated with a 

large number of normal processes throughout the brain (Buzsáki and Draguhn 2004), such as 

memory encoding (Ward 2003), attention (Fries et al. 2001) and sleep (Steriade et al. 1993). 

However, abnormal increases or decreases of power in certain frequency bands are also 

associated with disease states, such as schizophrenia (Uhlhaas and Singer 2010), epilepsy 

(Englot et al. 2015), dystonia (Starr et al. 2005), and PD. Two frequency bands have received 

particular attention in PD: beta oscillations, and lower frequency delta or theta oscillations. 

1.3.1 Beta oscillations 

In the PD literature, abnormally high beta power is the most well-studied oscillatory 

phenomenon. Beta oscillations have been observed in the LFP of several basal ganglia nuclei, 

thalamus and M1, but in human studies, the most common loci of interest have been the 



8 
 

subthalamic nucleus (STN) and globus pallidus interna (GPi) as they are the most common 

regions for surgical recordings during implantation of a DBS electrode. Many studies have 

shown a high level of beta power in LFP recordings from the STN and GPi (Halje et al. 2019; 

Hammond et al. 2007; Jenkinson and Brown 2011) and a smaller number of studies have 

shown such oscillations in the spike trains of individual STN and GPi neurons as well (Du et al. 

2018; Weinberger et al. 2006). When simultaneous recordings of STN and GPi are performed, 

there exists a strong beta band coherence between the two nuclei (Brown et al. 2001; Cassidy 

et al. 2002), and similar studies have shown STN beta coherence to EEG, MEG or ECoG 

recordings in M1 or premotor cortex (Hirschmann et al. 2011; Lalo et al. 2008; Williams et al. 

2002), suggesting synchronization of these oscillations across many motor-related brain 

regions. 

Dissecting the relationship between beta oscillatory power and PD symptom severity is a 

more complicated task, but many studies have provided correlative evidence for this 

relationship. In cases of asymmetric Parkinsonism where one side of the body is more 

significantly affected, beta oscillations are stronger in the STN of the more affected 

(contralateral) hemisphere (Shreve et al. 2017). When performing motor tasks, execution is 

typically slower during bouts of cortical beta (Gilbertson et al. 2005), and periods of time with 

higher STN beta power predict higher motor error scores (Ahn et al. 2020), though this is also 

the case for other frequency bands. On the other hand, studies show an increase in STN-M1 

beta coherence during movement (Belova et al. 2020; Hirschmann et al. 2013), which 

complicates the simple idea of beta as an akinetic signal. 

Beta oscillations also tend to weaken in the STN with treatments such as levodopa in a 

manner proportional to symptom reduction (Weinberger et al. 2006; Ray et al. 2008; Brown et 

al. 2001; Alonso-Frech et al. 2006; Kühn et al. 2006; Giannicola et al. 2010), though some 

studies show a levodopa-induced increase in cortical beta power through non-invasive EEG 

(Melgari et al. 2014) and MEG (Cao et al. 2020) recordings. Indeed, cortical beta may have a 
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complex relationship with beta oscillations in the basal ganglia – corticospinal and 

corticomuscular coherence in the beta band is abnormally low in patients with PD, and this 

coherence is heightened back to normal levels with levodopa (Brown 2007; Salenius et al. 

2002). 

Studies on DBS give similar results, lending credence to the relationship between beta 

oscillations and PD motor symptoms but also providing some confusing contradictions. The 

power of beta oscillations at a DBS stimulation site is a predictor for its effectiveness at that site 

(Boëx et al. 2018). Beta oscillations tend to weaken during stimulation (Kühn et al. 2006, 2008; 

McCairn and Turner 2015) but in other studies are unaffected (Rossi et al. 2008), decrease in 

some patients but not others (Giannicola et al. 2010), or return before symptoms reemerge 

(Foffani et al. 2006), complicating the relationship between DBS, symptom reversal and beta 

oscillations. 

Similar oscillations are observed in some animal models of PD, though the literature is 

significantly more contentious. Strong oscillations at slightly higher frequencies (25-35 Hz) occur 

in 6-OHDA lesioned rats and are termed beta oscillations, while lower frequencies (8–15 Hz) 

are referred to as beta in MPTP-treated monkeys (McCairn and Turner 2009; Raz et al. 2000). 

In these models, however, the link between beta oscillations and motor symptoms is less clear. 

In studies tracking symptoms and STN beta power over several days, beta oscillations did not 

increase until after symptoms arose and plateaued, a result found in both monkeys (Leblois et 

al. 2007) and rats (Mallet et al. 2008), and there appears to be no consistent correlation 

between symptoms and beta power across animal subjects or as symptoms progress in 

individual subjects (Muralidharan et al. 2016). Conversely, beta power in animal models does 

not consistently decrease when symptoms are treated with STN DBS (McConnell et al. 2012). 

Furthermore, high STN beta power can occur in both Parkinsonian and healthy animals 

(Connolly et al. 2015), though the key difference between healthy and Parkinsonian animals 

may be longer bouts of beta oscillations rather than stronger or more frequent bouts (Deffains et 
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al. 2018). Attempts to artificially induce beta oscillations in these animals have not been 

sufficient to cause PD-like symptoms of akinesia (Swan et al. 2019), though such attempts have 

recapitulated nontraditional PD motor symptoms such as blink abnormalities (Kaminer et al. 

2014).  

Altogether, these studies demonstrate a strong correlative relationship between beta 

oscillations, PD, and its motor symptoms. However, the relationship between human beta 

oscillations and the oscillations defined as beta in animal studies may be tenuous, and some 

conflicting human studies, particularly regarding the relationship between beta oscillations and 

various PD treatments, raises questions on whether beta oscillations are the whole story behind 

Parkinsonian dysfunction. 

1.3.2 Delta oscillations 

 While beta oscillations have achieved significant attention in the PD literature and 

success in explaining its pathophysiology, increased power in the delta band has also been 

observed in studies of PD patients. The delta band in cortex is typically defined as 1–4 Hz; here, 

we include studies considering oscillations as high as 6 Hz, which covers the wide range of slow 

oscillations observed in BG nuclei in both human and animal studies but remains distinct from 

the higher frequency beta oscillations discussed in the previous section. 

High delta power has been observed in the STN, GPi and motor thalamus of PD patients 

in LFP recordings and, more often, in the firing patterns of individual spiking neurons or multiunit 

spiking activity (Du et al. 2018; Steigerwald et al. 2008; Zhuang et al. 2019). In STN LFP 

recordings, many patients exhibit both delta and beta band oscillations, but more patients 

exhibit only delta oscillations than only beta oscillations (Levy et al. 2002). Similarly in motor 

thalamus, delta oscillations occur in more recorded neurons than beta oscillations (Du et al. 

2018). 

 Delta oscillations in PD have often been referred to as tremor oscillations due to their 

typical coherence with Parkinsonian tremor (Bergman et al. 1994b). However, tremor-oscillating 
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neurons can exhibit these oscillations with or without a coherence to Parkinsonian limb tremor 

measured through electromyography (EMG) (Du et al. 2018; Hurtado et al. 1999). Individual 

delta oscillating neurons may also phase in and out of coherence with EMG signals over the 

course of a recording (Hurtado et al. 2005). Notably, these oscillations’ relationship to other PD 

symptoms such as akinesia and rigidity has not been investigated in either human or animal 

studies, though their connection has been hypothesized (Magnin et al. 2000). 

Similar oscillations have also been observed in animal models of PD. In monkeys, 

oscillations as low as 3–7 Hz have been observed (Raz et al. 2000; Heimer et al. 2006; McCairn 

and Turner 2009), but these have mostly been viewed as an extension of the beta band. In 

anesthetized rodents, oscillations at even lower frequencies (0.5–4 Hz) are most prevalent 

(Tseng et al. 2001a; Walters et al. 2007; Parr-Brownlie et al. 2009; Aristieta et al. 2016), but 

these have been mostly discounted as artifacts of anesthesia or artificial respiration (Ruskin et 

al. 2002). Indeed, delta oscillations in the striatum of 6-OHDA-lesioned rats were shown to have 

high coherence to anesthesia-induced slow waves in motor cortex (M1) (Tseng et al. 2001b; 

Belluscio et al. 2003) and were weakened after cortical ablation (Magill et al. 2001), leading to 

the conclusion that these oscillations merely infiltrate the basal ganglia through M1 and are not 

relevant to the awake, behaving Parkinsonian animal. Because experiments investigating the 

presence of sub-beta band oscillations in awake, behaving Parkinsonian animals have not been 

performed, however, this theory is uncertain. 

 

1.4 SUMMARY AND AIMS OF DISSERTATION 

Our understanding of Parkinson’s disease neurophysiology is rich but incomplete. It is 

clear that a loss of dopamine signaling in the basal ganglia leads to widespread neural 

dysfunction in basal ganglia nuclei and other movement centers in the brain such as M1 and 

motor thalamus; in particular, these regions experience a stark increase in their individual 

spectral power and coherence between regions in multiple oscillatory bands. However, a 
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number of unanswered questions remain. Which oscillatory bands are critical and causal to 

Parkinsonian motor dysfunction, and in which brain regions? If such abnormal patterning is 

causal to motor symptoms, how does it exert this influence? By what mechanism does a loss of 

dopamine lead to the appearance of these oscillations, and how do they propagate through the 

brain? 

In this dissertation, we attempt to answer some of these questions, utilizing mouse models 

of Parkinson’s disease and computational models derived from that experimental data. In 

Chapter 2, we characterize the oscillatory landscape of the dopamine depleted basal ganglia, 

with a focus on its main output nucleus in the mouse, the SNr. We also explore how these 

oscillations relate to motor symptoms and by what mechanisms they arise. In Chapter 3, we 

take a biophysical modelling approach to dissect how these oscillations propagate through the 

brain and lead to the unique neurophysiology we observe in the dopamine depleted SNr. In 

Chapter 4, we summarize our findings and future directions for these topics. We also discuss 

how our results relate to the overall literature and improve our understanding of Parkinson’s 

disease and oscillatory dynamics. 
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2 DELTA OSCILLATIONS INDICATE SEVERITY OF DOPAMINE DEPLETION AND 

MOTOR DYSFUNCTION 

 

 

Delta oscillations are a robust feature of basal ganglia pathophysiology in Parkinson’s disease 

(PD) patients in relationship to tremor, but these oscillations’ relationship to other Parkinsonian 

symptoms has not been investigated. While delta oscillations have been observed in mouse 

models of PD, they have only been studied in anesthetized animals, which suggests that the 

oscillations may be an anesthesia artifact and has limited the ability to relate them to motor 

symptoms.  

In this chapter, we establish a novel approach to detect spike oscillations embedded in 

neural noise to study delta oscillations in awake, DD mice. We find that approximately half of 

neurons in the substantia nigra pars reticulata (SNr) exhibit delta oscillations in dopamine 

depletion and that these oscillations are a strong indicator of dopamine loss and akinesia, 

outperforming measures such as changes in firing rate, irregularity, bursting and synchrony. 

These oscillations are typically weakened, but not ablated, during movement. We further 

establish that these oscillations are caused by the loss of D2 receptor activation and do not 

originate from motor cortex, contrary to previous findings in anesthetized animals. Instead, SNr 

oscillations precede those in motor cortex (M1), and these neurons’ relationship to M1 

oscillations can be used as the basis for a novel classification of SNr into two subpopulations. 

These results give insight into how dopamine loss leads to motor dysfunction and suggest a 

reappraisal of delta oscillations as a marker of akinetic symptoms in PD. 

 



14 
 

2.1 INTRODUCTION 

The oscillatory landscape of basal ganglia nuclei and motor cortical regions has been 

studied in patients with Parkinson’s disease as well as in animal models of PD. While beta 

oscillations have received the most attention in studies, lower frequency delta oscillations 

appear prominently in both PD patients (Du et al. 2018; Levy et al. 2002; Steigerwald et al. 

2008; Zhuang et al. 2019) and animal models under anesthesia (Aristieta et al. 2016, 2019; 

Tseng et al. 2001b, 2001a; Walters et al. 2007). These oscillations are often termed “tremor 

frequency” oscillations due to their typical coherence with Parkinsonian tremor (Bergman et al. 

1994b), though neurons can exhibit these oscillations with or without this tremor coherence (Du 

et al. 2018; Hurtado et al. 1999), or in a more complex, time-varying fashion (Hurtado et al. 

2005). Meanwhile, these oscillations’ relationship to other PD symptoms such as akinesia and 

rigidity has not been investigated.  

A major confound in animal studies of these low frequency oscillations in DD has been 

the use of anesthesia which, even in healthy animals, elicits a strong delta oscillation throughout 

cortex. Indeed, delta oscillations in the striatum of anesthetized 6-OHDA-lesioned rats were 

shown to have high coherence to anesthesia-induced slow waves in M1 (Tseng et al. 2001b; 

Belluscio et al. 2003) and were weakened after cortical ablation (Magill et al. 2001). This led to 

the conclusion that delta oscillations in DD are merely anesthesia-induced slow waves 

infiltrating the basal ganglia through M1’s corticostriatal projections and are not relevant to the 

awake, behaving Parkinsonian animal.  

No experiments have been performed exploring the oscillatory landscape of the basal 

ganglia in awake, DD mice. This fact, despite mice frequently being used as a model for PD, 

has led to a dearth of understanding of Parkinsonian oscillations in these animals and, critically, 

how they relate to movement and Parkinsonian motor symptoms. 

One factor limiting these investigations, particularly at frequencies near or below 1 Hz, is 

the high levels of noise that contaminate low frequency signals, particularly during awake 
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recordings. So-called “1/f”, “pink”, or “flicker” noise is most prevalent at low frequencies and 

typically observed in LFP recordings but is also present in the spiking of individual neurons. This 

complication makes reliable detection of delta oscillations difficult with current methods, which in 

turn makes it difficult to relate these signals to Parkinsonian behavior and untangle their 

dynamics within individual regions and across the brain. 

Here, we develop a method to reliably distinguish spike oscillations from noise and use 

this approach to characterize the oscillations we observe in DD mice. We focus on the SNr, the 

major output nucleus of the mouse basal ganglia which encodes motor information (Barter et al. 

2015) and projects to downstream motor areas (Capelli et al. 2017; Roseberry et al. 2016). We 

demonstrate that delta (0.5–4 Hz), not beta, oscillations are the primary oscillatory feature in 

SNr neurons after loss of dopamine, and that the strength of delta oscillations is both predictive 

of an animal’s overall level of motor dysfunction and correlates with akinesia on a moment-to-

moment basis. 

We show that, contrary to prior reports, delta oscillations in the SNr precede those in M1, 

and that M1 is not necessary for these oscillations to develop in the SNr. Moreover, the latency 

and sign of SNr neurons’ relationship to oscillations in M1 subdivide SNr into two novel 

subpopulations. We also establish that a loss of D2 receptor activation is sufficient to 

immediately and reversibly generate both delta oscillations and PD-like akinesia in awake mice, 

suggesting a direct link between dopamine loss, delta oscillations, and Parkinsonian symptoms. 

Altogether, these results provide evidence that delta oscillations in basal ganglia neurons are a 

critical component of Parkinsonian pathology in DD mice and suggest that DD mice may be a 

valuable model of the low frequency oscillations seen in PD patients. 
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2.2 MATERIALS AND METHODS 

2.2.1 Animals 

 All experiments were conducted in accordance with guidelines from the National 

Institutes of Health and with approval from the Carnegie Mellon University Institutional Animal 

Care and Use Committee.  Male and female mice on a C57BL/6J background aged 8-15 weeks 

were randomly allocated into experimental groups (e.g. Control, Bilateral 6-OHDA, Reserpine, 

etc.), except insofar as to ensure that male and female mice were both represented in every 

group. 

2.2.2 Stereotaxic surgery 

2.2.2.1 Headbar implantation 

Animals were anesthetized with 20 mg/kg ketamine and 6mg/kg xylazine and placed in a 

stereotaxic frame (Kopf Instruments). Anesthesia was maintained throughout surgery with 1.0-

1.5% isoflurane. All coordinates were measured in mm with AP and ML measured from bregma 

and DV relative to the dural surface. The scalp was opened and bilateral craniotomies (for later 

probe insertion) approximately 1.5 x 1.5 mm in size were drilled over SNr (AP: -3.00, ML: 

±1.50), GPe (AP 0.00, ML: ±2.12), or STN (AP: -1.70, ML: ±1.52). A custom-made copper or 

stainless steel headbar was affixed to the mouse’s skull with dental cement (Lang Dental). A 

well of dental cement was then built around the exposed skull (see in vivo recordings) and filled 

with a silicon elastomer. 

2.2.2.2 Dopamine depletion 

A hole was drilled on one (for unilateral) or both (for bilateral) hemispheres of the skull 

over the medial forebrain bundle (MFB, AP: -0.80, ML: ±1.10). A unilateral infusion cannula 

(PlasticsOne) was slowly lowered into the brain 5mm below the dura. 1 µL of 5 µg/µL 6-OHDA 

(Sigma-Aldrich) or 0.9% saline was injected over the course of 5 minutes with a GenieTouch 

Hamilton syringe pump (Kent Scientific). The infusion cannula was left in place for 5 minutes 



17 
 

post-injection before being slowly retracted. For animals undergoing bilateral depletion, this 

process was repeated on the opposite hemisphere. 

2.2.2.3 Cannula implantation 

For experiments involving acute drug infusion into the MFB or gradual dopamine 

depletion with 6-OHDA, a bilateral guide cannula (Plastics One) was implanted (same 

coordinates as dopamine depletion) using dental cement (Lang Dental) and a dummy cannula 

was placed in the guide. Before infusion, the dummy was replaced with an infusion cannula and 

attached to the same Hamilton syringe pump as above. Gradually depleted animals were 

infused with 1 µL of 0.75 µg/µL 6-OHDA every 5 days (See Willard et al 2019 for full details).  

2.2.2.4 ECoG connector implantation 

For experiments involving electrocorticogram (ECoG) recordings, a male gold connector 

(Ampityco Electronics) was soldered to a stainless steel wire, and the connector was gently 

lowered above left or right motor cortex (M1, AP: +1.40, ML: ±1.00) such that the wire touched 

the dural surface then secured in place with dental cement (Lang Dental).  

2.2.2.5 Aspiration lesions 

For experiments involving M1 lesion, a craniotomy was drilled bilaterally over M1 (AP 

0.0-2.5, ML 1.0:2.5) and the dura was removed. Using a 20-gaugse suction tube (Miltex) 

attached to a vacuum source, we aspirated cortex to a depth of 2.1 mm on the medial side of 

the craniotomy gradually decreasing to 2.5 mm near the lateral side of the craniotomy, but 

leaving the most ventrolateral portion intact to preserve somatosensory cortex. In the anterior 

portion of the craniotomy, the mediolateral extent of the lesion was approximately 2.4–1.0 mm, 

becoming gradually less lateral to approximately 1.7–1.0 mm in the posterior portion. The 

craniotomy was periodically lightly rinsed with saline. We filled the lesioned space with triple 

antibiotic (bacitracin, neomycin, polymyxin) before sealing the craniotomy with a silicon 

elastomer (Smooth-On) 
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The size and location of lesions was confirmed post-hoc through imaging sections of the 

brain tissue (see Histology). Of the lesioned animals included in the study, two brains were 

sectioned sagitally and two coronally to get the best sense of the 3-dimensional extent of the 

lesions. We compared the sections to a mouse brain atlas (Paxinos Mouse Brain Atlas in 

Stereotaxic Coordinates, Second Edition) to ensure that M1 was entirely lesioned (two of the six 

animals which underwent aspiration were excluded at this point due to insufficient aspiration 

depth). In our endeavor to ensure that M1 was completely lesioned, some other brain regions 

were also partially lesioned. In 2 of the 4 animals, the cingulum was partially lesioned due to 

excessive aspiration ventrally, and a small portion of the dorsal striatum was erroneously 

removed contralateral to the recording site in one animal. Small portions of medial S1, 

particularly on the posterior edge of the lesion, and very small portions of the lateral edge of M2 

were removed in each animal.  

2.2.2.6 Post-operative care 

Upon completion of surgery, animals were injected subcutaneously with 0.5 mg/kg 

ketofen and placed inside their cage half on/half off a heating pad to recover. Dopamine 

depleted animals were supplied with trail mix and moistened food to maintain weight and 

hydration, in addition to their usual food pellets and water bottles, and animals were tracked 

regularly to ensure proper health and weight. 

2.2.3 Drugs 

In addition to the drugs used above during surgery, animals were given the following 

drugs (Sigma-Aldrich, except when specified) dissolved in 0.9% saline (except when specified). 

For reserpine depletions, animals were injected i.p. daily for three days with 5 mg/kg reserpine 

in 2% acetic acid (diluted in 0.9% saline). For recordings involving dopamine agonists and 

antagonists, animals were injected i.p. during recording with either 0.4 mg/kg SCH22390, 3 

mg/kg raclopride. 1 mg/kg SKF81297 (Tocris Biosciences), or 3 mg/kg quinpirole. Acute 

infusions into the MFB used 2% lidocaine. 
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2.2.4 In vivo recordings 

Mice were head-fixed atop a free-running wheel (Heiney et al. 2014). After acclimation to 

head-fixation for ten minutes, the silicon elastomer was removed and craniotomies were 

cleaned with saline. Using a micromanipulator (Sutter Instruments), a linear microelectrode 

probe with sixteen channels spaced 50 µm apart (NeuroNexus) was lowered into the craniotomy 

at the coordinates listed above for SNr, GPe or STN. After the initial lowering, a ground wire 

was placed in saline in the dental cement well on the skull. Once the top of the nucleus (SNr, -

4.0mm, GPe: -3.60mm, STN: -4.00mm from the top of the brain) was found and high firing rate 

units were observed, the probe was held stable for at least ten minutes prior to recording. 

Spiking (bandpass filtered for 150-8000 Hz, sampled at 40 kHz) and local field potential 

(bandpass filtered to 0.5-300 Hz, sampled at 1 kHz) recordings were collected through an 

OmniPlex amplifier (Plexon, Inc.) with common median virtual referencing. After recording for at 

least three minutes, the probe was lowered to obtain recordings from the full dorsal-ventral 

extent of the nucleus. Simultaneous to these recordings, the mouse’s walking speed on the 

wheel was recorded using an optical mouse and fed to a TTL-pulser which was connected to 

the OmniPlex amplifier analog input. For ECoG recordings, the gold implant was connected to a 

headstage with a ground wire in saline on top of the skull. The headstage was connected to an 

amplifier (A-M Systems) with 1000x gain and 0.1–500 Hz bandpass filtering and this amplifier 

was connected to the OmniPlex amplifier analog input. 

2.2.5 Histology 

After recording, animals were sacrificed and perfused with 4% paraformaldehyde (PFA). 

The brain was extracted from the skull and stored in PFA for 24 hours then moved to a 30% 

sucrose solution for at least 24 additional hours. Tissue was sectioned using a freezing 

microtome (Microm HM 430; Thermo Scientific) and primary antibody incubations were 

performed on these sections at room temperature for 24 hours. A tyrosine-hydroxylase (TH) 

antibody (rabbit anti-TH, 1:1000; Pel-Freez) was used to confirm successful dopamine depletion 
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in 6-OHDA-depleted animals; animals required at most 15% TH fluorescence compared to 

controls on both hemispheres (for bilateral 6-OHDA injection) or the contralateral hemisphere 

(for unilateral 6-OHDA injection) to be considered for analysis. and an Iba1 antibody (rabbit anti-

Iba1) for microglia activation was used to confirm probe location and guide cannula placement 

in animals undergoing infusion during recording. Epifluorescent images were taken at 10x 

magnification (Keyence BZ-X) and outlines of nuclei of interest were overlaid on the images 

(from Paxinos Mouse Brain Atlas in Stereotaxic Coordinates, Second Edition). 

2.2.6 Data pre-processing 

Spikes were manually sorted into single units using Offline Sorter (Plexon). For 

classification as a single unit, the following criteria were set: 1) principal component analysis of 

waveforms generated a cluster of spikes significantly distinct from other unit or noise clusters (p 

< .05), 2) the J3-statistic was greater than 1, 3) the Davies-Bouldin statistic was less than 0.5, 

and 4) fewer than 0.15% of ISI’s were less than 2ms. In the case where a unit was lost during 

recording, it was only used in analysis for the time period when its spike cluster satisfied these 

criteria, and only if its cluster was present for at least three minutes. Data were then imported 

into MATLAB (MathWorks) in which all further analysis was performed using custom code 

except when specified.  

Since units must fire quickly enough to exhibit an oscillation, only units with a firing rate 

greater than 5 Hz (over 95% of sorted units) were considered for analysis. As ECoG signals 

were occasionally corrupted for short time windows, generally due to muscle activity, we visually 

determined a noise threshold for each recording and zeroed any length of signal within 250 

milliseconds of any data point whose absolute value exceeded that threshold. ECoG signals 

were then delta (0.5–4 Hz) bandpassed using a 2nd order Butterworth filter, except for analyses 

looking at higher frequency bands. 
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2.2.7 Oscillation detection and visualization 

2.2.7.1 Renewal-Corrected Power Spectrum 

 For each unit, we downsampled its spike train to 1 kHz and split it into segments of 212 

ms, advancing from one segment to the next with time step size 𝛥𝑠 = 29 ms.  For each 

segment, we calculated its interspike interval (ISI) probability distribution, 𝑃0(𝑡). We calculated 

𝐶̂0(𝜔), the theoretical power spectral density (PSD) of a renewal process defined by 𝑃0(𝑡) 

scaled by the number of spikes in the segment: 

𝐶̂0(𝜔) = 𝑅𝑒 (
1 + 𝑃̂0(𝜔)

1 − 𝑃̂0(𝜔)
) 𝑛 

where 𝑅𝑒(𝑥) indicates the real part of x, 𝑃̂0(𝜔) indicates the Fourier transform of the ISI 

distribution in appropriate frequency units, and n is the number of spikes in the segment. This is 

a variant of a method presented previously for calculating 𝐶̂0(𝜔) analytically rather than 

approximating it through Monte Carlo shuffling simulations (Rivlin-Etzion et al. 2006). 

We next calculated an estimate of the PSD of the spike train in that segment: 

𝐶̂∞(𝜔) = |𝐹𝐹𝑇(𝑥(𝑡))|2 

where x(t) is the mean-subtracted spike train in the segment, FFT is the fast Fourier transform 

(MATLAB function fft) and vertical bars indicate absolute value. Finally, we normalized this 

estimate to achieve the renewal-corrected PSD of a single segment: 

𝐶̂(𝜔) =
𝐶̂∞(𝜔)

𝐶̂0(𝜔)
 

and averaged 𝐶̂(𝜔) values across segments to obtain the renewal-corrected PSD. All PSD’s in 

this study have undergone this renewal-correction, but are simply referred to as PSD’s for 

brevity. 

2.2.7.2 Phase Shift 

 For the kth time segment, we calculated the uncorrected phase 𝜙̃ at each frequency: 

𝜙̃(𝜔, 𝑘) = tan−1 (𝐹𝐹𝑇(𝑥(𝑡))) 
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and made the following correction such that the phase of each frequency is defined relative to 

the start of the recording rather than the start of the segment: 

𝜙(𝜔, 𝑘) = 𝑚𝑜𝑑(𝜋 + (𝜙̃ − 2𝜋𝜔(𝑘 − 1)𝛥𝑠), 2𝜋) − 𝜋 

where mod is the modulus operator and 𝛥𝑠 is the time step between adjacent segments (here, 

29/1000 seconds). In other words, for each frequency, imagine a perfect oscillator with zero 

phase at the start of the recording. For each segment, we determined what phase this oscillator 

would reach at the start of the segment and defined that phase to be zero for that segment. This 

correction ensures that a perfect oscillator would have the same corrected phase 𝜙 for every 

segment. 

After computing the corrected phase of all segments, we approximated the time 

derivative 𝜙𝑠(𝜔, 𝑘) by computing the difference of phase across successive time steps and 

averaged over each difference to obtain the average absolute rate of phase shift: 

𝜉(𝜔) =
1

𝑁 − 1
∑|𝜙𝑠(𝜔, 𝑘 + 1) − 𝜙𝑠(𝜔, 𝑘)|

𝑁−1

𝑠=1

  

where N is the number of segments. For brevity, we refer to 𝜉(𝜔) as the phase shift. 

2.2.7.3 Oscillation Detection 

 We detected oscillations in a two-step process by first seeking frequencies with high 

power and then determining whether these frequencies also had low phase shift. 

 To determine whether a unit reached statistically significantly high power at a particular 

frequency, we found each local maximum of 𝐶̂(𝜔), defined as a value higher than its three 

neighbors on both sides, within the band 0.5–4 Hz (or 7–35 Hz for detecting beta oscillations). 

We then estimated a 99% confidence interval of renewal-corrected power from the region of 

𝐶̂(𝜔) between 250 and 500 Hz, correcting for multiple comparisons (Bonferroni correction) of all 

frequencies in the band of interest. A peak of 𝐶̂(𝜔) was considered significant if it fell above this 

confidence interval. 
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 As our second step, we determined if any frequency detected in the previous step had a 

significantly low phase shift. We estimated a 95% confidence interval of phase shifts from the 

region of 𝜉(𝜔) between 250 and 500 Hz, correcting for multiple comparisons (Bonferroni 

correction) if multiple frequencies were detected from the PSD. We concluded that an oscillation 

was present at a frequency with significant power if the phase shift at that frequency fell below 

this confidence interval. 

2.2.7.4 Spike Spectrograms 

 For time frequency analyses, the process outlined in section 2.2.7.1: Renewal-Corrected 

Power Spectrum was modified to use segments of length 213 ms with 211 ms overlap to improve 

visualization. Rather than averaging over segments, the resultant matrix was smoothed with a 

3x3 2-D gaussian filter and plotted as a normalized heatmap (MATLAB function imagesc). Due 

to the loss of fine frequency resolution at low frequencies, this procedure was only used on 

spike trains in which an oscillation was detected in the previous procedure. 

2.2.8 Neural measures 

 Beyond oscillations, we investigated several other neural measures – firing rate, firing 

variability, bursts and synchrony. A unit’s firing rate was defined as its number of spikes divided 

by the total time of recording. Variability was measured as the coefficient of variation (standard 

deviation divided by mean) of a unit’s interspike intervals. Bursts were quantified using the 

Poisson surprise algorithm (Legendy and Salcman 1985) with a surprise threshold of 5, initial 

firing rate threshold of 200% of baseline calculated over the entire recording, and removal of 

any burst with fewer than 3 spikes. 

 To determine if two units were synchronous, we used the method and parameters 

outlined in Willard et al. 2019, which determines the fraction of synchronous spikes above 

chance after correcting for nonstationarity in a unit’s firing rate (Willard et al. 2019). In brief, we 

windowed both spike trains into 12-second segments and zeroed the first and last four seconds 

of the segment taken from the second spike train. We performed cross-correlation with a 
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maximum lag of four seconds. Since this maximum lag is equal to the length of time zeroed on 

the second spike train, this ensures a constant number of non-zero-padded comparisons (nc) at 

each lag, as opposed to traditional cross-correlation in which nc is a function of lag. We divided 

the cross-correlogram for the segment by the mean value from 0.5–4 seconds on both sides, 

which allows the correlation’s units to be interpreted as the fraction of spikes greater than 

chance at a given lag (where 1 = chance). We repeated this process on overlapping segments 

(time step = 4 seconds) and then averaged these results together to get the mean, 

nonstationarity-corrected cross-correlogram. We generated a 99% confidence interval from the 

data with lag ≥ 0.5 s (which is a reasonable null distribution due to nc, and thus the variance of 

the correlation estimate, being held constant). We conclude that a pair is synchronous if its 

normalized cross-correlation at lag zero is larger than the upper boundary of this confidence 

interval. 

2.2.9 Behavioral testing and metric 

 Full details on the behavioral testing and the principal component analysis (PCA) metric 

for gradually depleted animals can be found in Willard et al. 2019. In brief, PCA was performed 

on the following metrics from behavioral tests: mean speed in an open field, number of rears in 

10 minutes in a small enclosure, total time spent traversing a pole task, and latency to fall on a 

wire hang task.  

2.2.10 Linear regression 

 Linear regression was performed using ordinary least squares. To determine if a linear fit 

was statistically significant, we computed 1000 fits each using a random subsample containing 

80% of the data. We computed a bootstrapped confidence interval of the slope of this linear 

relationship from the middle 99% of the slopes of these 1000 fits, and the relationship was 

considered significant if this interval did not include zero. 
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2.2.11 Decision tree regression 

  We sought to determine the relationship between dopamine loss, motor symptoms and 

neural firing by predicting animals’ TH immunofluorescence (see Histology) and the first 

principal component (PC1) of their behavior (see Behavioral Testing and Metric) from four 

physiological measures (see Neural Measures) and prevalence of delta oscillations. Firing rate, 

CV and bursts/second were averaged across all neurons for each animal, synchrony was 

measured as the fraction of synchronous pairs of units, and oscillations were measured as the 

fraction of delta oscillating units. Because of the highly nonlinear nature of these parameters’ 

relationships to dopamine loss and behavior (Willard et al. 2019), we used a variant of decision 

tree regression, a highly nonlinear regression method. 

 We built an individual tree on 80% of the data (20 animals) using the fit method of the 

DecisionTreeRegressor class in the scikit-learn package for Python to predict the percent of TH 

remaining (Y) from the above neuronal parameters (a set X). In brief, this method places all 

training data at the topmost node of a tree and calculates the mean squared error (MSE) of this 

node as if each animal’s TH were estimated to be the mean TH of every animal at the node. We 

determined, for each parameter X, the threshold T that would most reduce the mean squared 

error (MSE) of the animals if they were to be estimated in two different sets depending on 

whether their value of X is “greater than” or “less than or equal to” T. We then found the 

parameter for which the best T most reduces that MSE and split the animals at that node into 

two new child nodes according to the identified threshold. We iteratively repeated this process 

at every node until all terminal nodes had two or fewer animals at them, at which point each 

terminal node is termed a “leaf” of the tree. 

 We tested the remaining 20% of the data (5 animals) using the DecisionTreeRegressor 

test method, which runs each animal through the tree (picking > or ≤ at each node as 

determined by the animal’s data) until it reaches a leaf. The mean value of Y at each leaf is the 
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prediction for that animal. We computed the error of the tree as the root-mean-squared error 

(RMSE) of its 5 predictions. 

 We computed a forest of 1000 such trees through subsampling the data into training and 

testing sets (Monte Carlo cross-validation) and calculated the top and bottom 2.5 percentiles to 

approximate a 95% confidence interval for the forest. We generated an intercept-only forest 

(using no parameters in the training set) and oscillation-only forest (using only the fraction of 

oscillations and an intercept term in the training set) on the same 1000 bootstrapped training 

and testing sets. 

 The importance of each parameter was determined using a variant on permutation 

importance. For a given parameter and tree, consider the set S of values for that parameter in 

the test set. We produced pseudo-test data with every derangement of S (i.e. 5 animals × 44 

derangements of 5 values = 220 pseudo-test animals with shuffled data for one parameter). The 

difference between the RMSE of the real test data and the pseudo-test data is the importance of 

that parameter for that tree. To determine the parameter importance for the entire forest, we 

approximate a 95% confidence intervals as above from the 1000 trees. 

 A forest predicting the first principal component (PC1) of behavior instead of % TH 

remaining was computed in the same manner. 

2.2.12 Movement analysis 

 To analyze how oscillations were affected by movement, we considered recordings 

during which the animal was both stationary and voluntarily walked or ran on the wheel for at 

least 8 FFT windows each. Windows were considered “rest” if there was no detected movement 

and were considered “movement” if there was at least two seconds of not necessarily 

consecutive movement in the window. Since noise in any individual unit’s spike train was 

typically consistent over time, we were able to directly compare each unit’s delta power during 

rest and movement. To do so, we took the mean of the renewal-corrected PSD’s computed for 
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these windows to generate the average rest and movement PSD’s and identified the 0.5–4 Hz 

peak in each PSD.  

2.2.13 Time series regression 

To determine if SNr neurons have a significant lead/lag relationship with M1, we built a 

series of regression models predicting an M1 ECoG signal from the spiking of a single SNr unit 

at various lags. First, we binned the ECoG into 10ms bins and defined the dependent variable Y 

as the difference between adjacent ECoG measurements to reduce nonstationarity. We then 

built a 10th order autoregressive model of Y which served as the null model. 

 To incorporate SNr firing into the prediction, we calculated the spike density function 

(SDF) for an SNr unit by convolving its spike train with a Gaussian function with a standard 

deviation of 100 ms. We then aimed to determine which time shift of the SDF best improves the 

prediction of the ECoG. One might use a distributed lag model for this task, where the 

explanatory variables consist of the time shifted ECoG (autoregression) and all considered time 

shifts of the SNr SDF simultaneously in a single model, but the multicollinearity of the SDF at 

different time shifts can heavily bias the regression coefficients. Instead we assumed that, if a 

lag exists by which the unit firing influences the ECoG or vice versa, then there is only one such 

lag by which this influence occurs. Thus, we could build an individual model for each time shift 

of the SDF. Each model used the 10th order autoregressive terms and one SDF term shifted 

from between -100 and +100 bins (-1000 to +1000 ms) as its explanatory variables. We built 

201 such models, which covers the entire range of lags at 1 bin increments. 

 To determine if a significant lead/lag existed, we found the best model as determined by 

its mean squared error (MSE). We then determined if the model at this lag was significantly 

better than the null autoregressive model by performing an F-test at α < 0.05, correcting for 201 

comparisons (Bonferroni correction). As choosing ECoG as the independent variable and using 

autoregressive terms from the past could introduce bias in favor of SNr predicting M1, we also 

performed these analyses using SNr as the independent variable (i.e. computing a null 
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autoregressive model for SNr spiking and then computing 201 models at distinct ECoG time 

shifts to compare to the null), and performed the same analysis as above but in backwards time 

(i.e. building an autoregressive model of the ECoG from future ECoG samples). These analyses 

gave very similar results to the original analysis but were omitted for brevity. 

 To predict neural firing from the spike train of a simultaneously recorded neuron, we 

used a similar procedure. Instead of the continuous ECoG signal, we used spike counts from an 

individual neuron as the response variable. We performed generalized linear regression with a 

log link function (i.e. Poisson regression) using the MATLAB function glmfit, which optimizes the 

coefficients using Fisher’s scoring method. When reporting residuals for the generalized linear 

models, we used deviance residuals. Heatmaps of deviance residuals over time computed the 

residuals over a moving 5-second window with a step of 25 ms. 

2.2.14 Quantifying neural phase lags 

 To quantify the oscillation phase lags between pairs of units, we first computed the SDF 

of each oscillating unit using a Gaussian filter with σ = 50 ms, a value long enough to smooth 

fast fluctuations in spiking but preserve lower frequency delta oscillations. For each pair, we 

performed cross-correlation using a moving window procedure to minimize the effects of 

nonstationarities in firing rate over the course of the recording. We used a window size of 20 

seconds with a maximum lag of 4 seconds and zeroed the first and last 4 seconds of the one of 

the SDF’s to ensure the correlation computation at each lag would have an equal amount of 

zero-padding. We then divided the cross-correlation by its mean at lags greater than 4 seconds 

so that the value at each lag could be interpreted as a fraction of the neuron’s mean firing rate. 

This procedure was computed on every window with a moving window step size of 8 seconds 

then averaged together to obtain the final normalized cross-correlation between the two signals. 

 Since most data did not include an ECoG reference to determine the SNr neuron’s 

identity (AP or IP), we determined that the pair was in the same population if their cross-

correlation peak was closer to lag zero than their trough, and different populations if their trough 
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was closer to lag zero than their peak. We defined their relative phase as the absolute value of 

the lag at which this extreme occurred (whether peak or trough). 

2.2.15 Statistical tests 

Statistical tests were performed to establish if fractions of oscillatory units and fractional 

ECoG bandpowers were significantly different across conditions. For comparisons with two 

groups, a two-sample t-test was performed, unless data were paired before and after a 

manipulation (e.g. acute drug infusion), in which case a one-sample t-test was performed. For 

comparisons with multiple groups compared against a control group, a one-way ANOVA was 

performed, and if this reached significance at the α = 0.05 level, a Dunnett’s post-hoc test was 

performed to determine if there were individual differences comparing groups to control. 

Asterisks above comparisons in figures correspond to *: p < 0.05, **: p < 0.01, *** p < 0.0001. 

 

2.3 RESULTS 

2.3.1 Dopamine depleted mice exhibit 0.5–4 Hz spike oscillations in SNr units 

We recorded single units from the substantia nigra pars reticulata (SNr) of awake, head-

fixed mice (Figure 2-1A–B) that had been bilaterally dopamine depleted with 6-OHDA or 

injected instead with saline. To investigate oscillations in the spiking activity of single units, we 

first examined spike trains and their autocorrelograms for the full extent of recordings 

(regardless of motor activity). In control animals, units typically fired in a regular, pacemaking 

pattern, indicated by a fast oscillation in their autocorrelograms which corresponded to the 

interspike interval of pacemaking and flattened within 20-100 ms (Figure 2-1C). In contrast, 

units in bilaterally dopamine depleted animals exhibited autocorrelograms that showed much 

slower oscillations between 0.5 and 4 Hz that remained autocorrelated for several seconds, 

visible in the raw spike trains as peaks and troughs or pauses in firing (Figure 2-1D). The units 

tended to exhibit oscillations around a particular frequency in the 0.5 – 4 Hz range that was 
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consistent for oscillating units within the animal but differed between animals. These slow 

oscillations were never observed in the autocorrelograms of units from control animals. 

2.3.2 Phase shift analysis distinguishes delta oscillations and neural noise 

First, we sought to reliably quantify these oscillations in DD mice. Neural noise is more 

prevalent in awake than anesthetized animals, and typically manifests in a power law fashion 

(called “pink” or “flicker” noise) such that it is dominant in low frequencies. Since the oscillations 

we observe in SNr units in DD were in the range typically tainted by pink noise, we could not 

reliably detect them using standard approaches based solely on the power spectral density or 

transformations of it.  Specifically, random peaks in the power spectral density atop pink noise, 

or the pink noise itself, can easily be misidentified as an oscillation of interest (Figure 2-2C) 

 

Figure 2-1: Dopamine depletion leads to low frequency spiking oscillations in SNr units. 
A. Schematic of recording setup. Mice were head-fixed atop a free-running wheel with attached 
movement sensor and single units were recorded with a 16-channel probe. B. Example sagittal slice with 
IBA immunofluorescence showing location of the recording probe in SNr. Dotted line indicates 
approximate location of target nucleus, arrow indicates probe location. Scale bar = 500 µm. C. Two 
seconds of an example SNr unit firing from a control animal (top) and the unit’s autocorrelation (bottom). 
Inset is zoomed into the first 200 milliseconds of the autocorrelation using a smaller bin size. D. Same as 
C for a bilaterally dopamine depleted animal. 
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To overcome false positive detections, we used both the power and phase information 

provided by the short time Fourier transform to identify oscillatory components of spike trains 

with consistent phase over time (see Methods). By requiring that an oscillation have both high 

spectral power and low phase shift (Figure 2-2A), we successfully distinguished the oscillations 

of interest embedded in pink noise from the noise itself (Figure 2-2B). Notably, spike trains that 

exhibit a relatively flat autocorrelation but have delta peaks in their PSD are successfully 

disregarded as oscillators when phase shift analysis is applied (Figure 2-2C). 

2.3.3 Delta, not beta, oscillations in SNr units are a marker of dopamine depletion 

Using this detection method, we observed that very few SNr units from control animals 

exhibit an oscillation in the 0.5–4 Hz range (2 of 85 units pooled across animals), whereas in 

each bilaterally dopamine depleted animal, 33–92% of units exhibited significant delta 

oscillations (117 of 226 units pooled) three days after depletion (Figure 2-3A). Without using the 

phase shift criterion, a much greater number of units were flagged as oscillating, particularly in 

control mice (28% of units vs 2% after phase shift correction, Figure 2-3B), despite these units 

having a nearly flat autocorrelation as in Figure 2-2C. To determine whether these oscillations 

remained stable at longer time points after depletion, we recorded from the SNr of unilaterally 

depleted mice 2-4 weeks after depletion.  We found that a significant proportion of SNr neurons 

still exhibited delta oscillations at these later time points (22–82% for each animal, 48 of 83 units 

pooled), suggesting that these oscillations are a stable feature of basal ganglia pathophysiology 

following dopamine depletion.  A small number of units on the contralateral side of the lesion 

also exhibited delta oscillations (0–19% for each animal, 7 of 72 units pooled) (Figure A-1). 
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To ensure that delta oscillations were not merely an immune or inflammatory side effect 

of the injected toxin or cell death, we treated a cohort of animals intraperitoneally with reserpine, 

a compound that blocks the vesicular monoamine transporter 2 (VMAT2) complex from 

packaging monoamines into vesicles. This yielded a monoamine (including dopamine) depletion 

without any intracranial injection or cellular death and produced akinetic symptoms similar to 

those observed in bilateral 6-OHDA depleted mice. When we recorded three days after the start 

of daily reserpine injections, these animals exhibited a high proportion of slowly oscillating units 

in the SNr (33-100% for each animal, 74 of 119 units pooled), similar to bilaterally depleted 

animals (Figure 2-3A).  

Pooling all DD animals together (bilaterally and unilaterally 6-OHDA depleted and 

reserpine-treated), we saw that each animal typically exhibited oscillations tightly centered 

around a frequency specific to that animal. The intrinsic frequencies across animals extended 

over the full 0.5–4 Hz range we have defined for delta oscillations, with a mode between 1–2 Hz 

(Figure A-2) 

Given the prevalence of beta oscillations in the PD and PD animal model literature, we 

sought to determine if these animals’ SNr units also exhibited beta oscillations. We defined a 

wide frequency range for beta oscillations, 7–35 Hz, in order to fully encompass the definition of 

beta oscillations across humans (typically 13–30 Hz) and common model species (monkeys 

Figure 2-2: A phase shift measure to distinguish oscillations from noise. 
A. Diagram of the phase shift oscillation detection method. A spike train is divided into overlapping 
windows (1st row) and its Fourier transform is computed (corrected for its interspike interval distribution, 
see Methods). We identify statistically significant peaks in the 0.5-4 Hz range (compared to a control 100-
500 Hz range) in the averaged power spectral density (PSD) across all windows (2nd row) and label the 
oscillation phase (3rd row) at that frequency. Notice while the peak frequency (red) has consistent phase 
across windows, an arbitrary noise frequency (blue) has inconsistent phase. We take the absolute circular 
difference of phases at each frequency (4th row) and compute whether the frequency identified in the 
power spectrum also has statistically significantly lower phase difference than the control band. A spike 
train which has both a significant spectral peak and significant phase difference trough at the same 
frequency is labeled oscillating. B. Data from two example oscillating units. Top: Autocorrelation exhib-
iting oscillations. Middle: Significant peaks (red dots) in the PSD surrounded by pink noise. Bottom: The 
phase difference at these detected frequencies is significantly lower than control frequencies. C. Same as 
B but for two units whose autocorrelation appears non-oscillating yet which have a peak in their PSD and 
which would be “false positive” detections if only PSD’s were analyzed without considering phase shift.  
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typically at 7-13 Hz and rats typically at 13-35 Hz) thereby ensuring that we did not miss beta 

oscillations due to a species-specific difference in the frequency band. We saw no increase in 

the fraction of beta oscillating units after any form of dopamine depletion, with or without our 

phase shift criterion (Figure 2-3C–D). We also looked analyzed the SNr LFP signal, as beta 

oscillations are more typically associated with the LFP rather than individual spike trains, but 

found no significant change in LFP beta power between DD and control mice (Figure A-3). 

Taken together, our results suggest that delta, not beta, oscillations are the primary oscillatory 

feature in the SNr of awake, DD mice. 
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Figure 2-3: Dopamine depleted, but not control, SNr units exhibit phase-consistent delta 
oscillations, but no change in beta oscillations. 
Fraction of oscillating units from each animal in control conditions (black circles, n = 7) or various 
methods of dopamine depletion – bilateral 6-OHDA (green diamond, n = 9), unilateral 6-OHDA (blue 
triangle, n = 5), or systemic reserpine (orange square, n = 7). Lines indicate mean. A. Delta (0.5–4 Hz) 
oscillations detected using both PSD peak and low phase shift criteria. ANOVA: p = 5.206*10-5; bilateral: 
p = 9.506*10-5; unilateral: p = 0.00172; reserpine: p = 5.908*10-5, Dunnett’s post-hoc test. B. Same as A 
but using only the spectral power criterion. ANOVA: p = 4.668*10-4; bilateral: p = 5.645*10-4; unilateral: p 
= 0.00601; reserpine: p = 5.794*10-4. C–D. Same as A–B but for beta (7 – 35 Hz) oscillations. With phase 
shift, ANOVA: p = 0.8936; without phase shift, ANOVA: p = 0.8908. 
 



35 
 

2.3.4 Oscillations predict dopamine depletion severity and behavior better than other 

physiological measures of dysfunction 

To understand how delta oscillations relate to the severity of dopamine depletion, we 

used an existing dataset of SNr recordings from mice gradually depleted to varying levels of 

dopamine loss through successive small injections of 6-OHDA (Willard et al. 2019). In this data, 

we looked at the relationship between an animal’s fraction of units exhibiting a delta oscillation 

and its level of dopamine neuron loss (as measured by striatal tyrosine-hydroxylase (TH) 

immunoreactivity). Performing a linear regression to predict %TH remaining from oscillation 

fraction showed a relatively strong (r2 = 0.5267) and significant (p < 0.01 from a bootstrapped 

99% confidence interval, see Methods) relationship between dopamine loss and the fraction of 

oscillating units (Figure 2-4A). 

Since striatal TH immunoreactivity is not a perfect indicator of Parkinsonian symptoms, 

we also used these measures to predict motor behavior. Prior to in vivo recordings, these 

animals were given a series of behavioral tests to measure their mobility, dexterity, and strength 

(see Methods & Willard et al., 2019), and we performed principal component analysis on the 

results of these tests to get a single measure – the first principal component (PC1) – of their 

motor deficits. A linear regression predicting PC1 from the fraction of oscillating units illustrated 

a similarly strong and significant relationship (Figure 2-4B, r2 = 0.6406, p < 0.01). 

Besides oscillations, many other neural measures in the basal ganglia have been 

suggested as correlates of dopamine depletion severity – most commonly, changes in firing 

rate, firing regularity, burstiness, and synchrony between units. To see how delta oscillations 

compare to these measures in reliably predicting dopamine depletion severity, we built a set of 

statistical models to predict %TH in each animal from five physiological parameters measured 

from single units in the SNr: 1) median firing rate, 2) median coefficient of variation (CV) of 

interspike intervals (ISIs), 3) median rate of bursts, as measured from the Poisson surprise test, 

4) fraction of significantly synchronous pairs of units, and 5) fraction of units with significant 0.5–
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4 Hz oscillations. Due to the highly nonlinear relationship between the first four of these 

measures and dopamine depletion severity (Willard et al. 2019), we performed a series of 

nonlinear regressions on this data by building 1000 decision trees from randomly selected sets 

of 20 (out of 25) animals, excluding the remaining 5 animals as a testing set for each tree (Figure 

2-4C). We estimated a 95% confidence interval of mean squared errors (MSE’s) from these 

1000 trees and showed that a tree built from these parameters predicts TH significantly better 

than a naive intercept-only model (Figure 2-4D). 

To determine how each parameter informs the model, we shuffled the testing data for 

that parameter and calculated how much this loss of information increased the MSE of the 

model (the ‘importance” of that parameter). We then estimated 95% confidence intervals for the 

importance of each parameter (see Methods). The fraction of oscillating units was the only 

parameter whose confidence interval did not extend below zero (Figure 2-4E), suggesting that, 

when the model is built to include oscillations, they are the only parameter that provides reliably 

predictive information. In other words, while other parameters may provide information, that 

information is redundant when the fraction of oscillating units is known.  

To confirm this in another manner, we rebuilt the models using the same cross-validated 

training and testing sets as above using only a single parameter at a time or using all of the 

parameters except oscillations. The first four parameters fall outside (FR) or on the edge (CV 

ISI, Burst and Sync) of the full model confidence interval, but the model with all four parameters 

performs better than any individual parameter (Figure 2-4D), confirming results seen previously 

(Willard et al. 2019). However, the model built using only oscillations as a predictor is, on 

average, better than any other model including the combined parameter model, providing further 

evidence that other physiological parameters are not additionally informative when oscillations 

are considered. 



37 
 

 

Figure 2-4: Delta oscillations 
predict severity of dopamine 
depletion. 
A. Scatterplot showing 
relationship between levels of 
remaining striatal TH and 
fraction of oscillating SNr units 
in animals (n=25) gradually 
dopamine depleted to different 
severities. Each dot denotes 
one animal, dashed line is the 
least squares fit. B. Same as 
A showing relationship 
between the first principal 
component (PC1) of several 
behavioral metrics (see 
methods, more negative 
indicates more dysfunctional) 
and the fraction of oscillating 
SNr units. c. The first three 
rows of one example decision 
tree predicting striatal TH from 
SNr neural properties (firing 
rate, irregularity, burstiness, 
synchronicity and fraction of 
delta oscillating units). D. A 
95% confidence interval of 
MSE from 1,000 trees 
predicting TH. Each square is 
the MSE of the median model 
trained using a subset of 
parameters (grey: intercept-
only, i.e. no parameters; light 
blue: firing rate; dark blue: CV 
of interspike intervals; pink: 
bursts/second; purple: mean 
synchrony across pairs; 
yellow: fraction of delta 
oscillating units; green: all 
parameters except fraction of 
delta oscillating units). E. 
Middle 95 percentile (box) and 
median (colored line, same 
color scheme as in D) of 
feature importances 
(permutation importance, see 
Methods) for each neural 
measure in the TH model 
computed from 1,000 trees. 
Dotted line indicates zero 
importance. F–G. Same as D–
E for the model predicting PC1 
of behavior. 
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Using the same procedure as above to predict PC1 of the animals’ behavior, we found 

very similar results to those predicting TH levels – namely, firing rate, irregularity, burstiness and 

synchrony provide some information in predicting behavior, particularly when considered 

together. However, when the fraction of oscillatory units is included in the model, it is the only 

important variable, and is significantly so, in predicting motor dysfunction (Figure 2-4F–G). 
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Figure 2-5: Movement in dopamine depleted animals modulates oscillations in a unit-specific 
manner biased towards attenuation. 
A. Example unit with an oscillation negatively modulated by movement. Top: smoothed movement 
trace of mouse walking on wheel during recording. Middle: spike spectrogram illustrating an oscillation 
attenuating during movement bouts. Bottom: PSD’s of the unit above averaged over windows 
containing only rest (black) or movement (red). ΔPower illustrates the power difference used in D to 
summarize the data. B. Same as A for a unit whose oscillation is unaffected by motor activity. C. Top: 
boxplot of the average power of all units from 6-OHDA-depleted animals with a significant oscillation 
(computed across the whole trial) during rest (black) and movement (red). Vertical line indicates 
median, box indicates 25th – 75th percentile, whiskers indicate minimum and maximum. Bottom: 
Histogram showing full distribution of delta power during rest and movement, with overlap in purple. 
Note that since these are renewal-corrected PSD’s, a value of 1 indicates no power at that frequency 
compared to chance (see Methods). D. Same as C for the paired difference (movement – rest) for all 
units in C. Dashed line indicates zero difference. p = 0.0076, one-sample t-test for non-zero mean. 
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2.3.5 Oscillations are modulated by movement in a unit-specific manner 

 Because of known associations between slow oscillations and rest states or drowsiness, 

we proceeded to check whether the oscillations observed in DD animals would be attenuated 

during movement bouts. To test this possibility, we examined how delta oscillations differed 

during periods of movement and rest. Acutely depleted animals spent no more than 4% of their 

recording time moving and several did not move at all, but gradually depleted animals (to <15% 

TH remaining) moved up to 10% of their recording time on average, a distribution similar to that 

of control animals. Since we saw no difference in how units responded during movement activity 

between acutely and gradually depleted animals, we pooled these animals for this analysis to 

increase the number of units recorded during movement bouts.  

To quantify how delta oscillations relate to bouts of movement, we analyzed units 

recorded when the animal underwent periods of both rest and movement and separately 

analyzed the oscillatory power of each SNr unit during these two behavioral states. We found 

that many units exhibited decreased oscillatory power during movement (Figure 2-5A), but other 

units exhibited little to no change (Figure 2-5B) or even increased power during movement. 

Pooling all units together, we found a wide distribution of power shifts when comparing 

movement to rest with a small but statistically significant (approximately 10% on average) 

decrease in oscillatory power during movement (Figure 2-5C-D). Overall, during movement 

53.9% of SNr units decreased their delta power by at least 10%, whereas only 19.8% increased 

their delta power by at least 10%. This result suggests that oscillations do not completely 

preclude motor activity and oscillatory power can even strengthen in some units during 

 movement, but on average, SNr oscillations in DD mice are weakly attenuated during motor 

activity. Moreover, these low frequency oscillations are not seen exclusively in rest or inactive 

states in DD animals. 
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2.3.6 Delta oscillations arise immediately following loss of either MFB transmission or 

D2 receptor activation 

The mechanism behind these delta oscillations is unclear, but they could arise due to a 

wide range of immediate biophysical changes in the basal ganglia after dopamine depletion or 

emerge more slowly through plasticity or compensation. To determine this time course, we 

recorded from the SNr of healthy animals while acutely infusing lidocaine (a voltage-gated Na+ 

channel blocker) into the medial forebrain bundle (MFB), the same injection site for 6-OHDA in 

our other experiments, to quickly disrupt MFB transmission. We found that oscillations arose in 

the SNr within 2 minutes of the start of lidocaine infusion (before infusion ended) and waned 

within ten minutes after the end of infusion, mirroring the time course of akinesia observed 

during the experiment (Figure 2-6A-C). This result is consistent with the similarly rapid onset of 

slow oscillations produced by TTX infusion to the MFB under anesthesia (Galati et al. 2010) and 

demonstrates that low frequency oscillations arise in the SNr almost immediately after loss of 

MFB transmission, ruling out long-term mechanisms for their generation. 

To determine whether the loss of dopamine signaling is causal to the onset of delta 

oscillations, we recorded from the SNr of healthy animals before and during the systemic 

injection of a D1-receptor (D1R) antagonist (SCH233890) or a D2-receptor (D2R) antagonist 

(raclopride). While both drugs caused reduced movement on the wheel, only the D2R 

antagonist led to the development of oscillations in the SNr (Figure 2-6D–F). We then performed 

the converse experiment, injecting a D1R agonist (SKF81297) or D2R agonist (quinpirole) 

systemically into bilateral DD animals. Similarly, while both led to highly increased motor activity 

(though highly dyskinetic in the case of D1 agonism), only the D2R agonist injection attenuated 

delta oscillations in the SNr (Figure 2-6G–I). This suggests that low frequency oscillations are 

mediated purely due to a loss of action on D2Rs and are not affected by D1Rs.  
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Figure 2-6: Acute manipulations of MFB signaling or D2-receptors modulate oscillations. 
A. Effects of lidocaine infusion into the MFB of healthy mice. Top: Speed of mouse on running wheel 
during lidocaine infusion (black bar). Bottom: Spike spectrogram of an example SNr unit during the same 
infusion as above. B. Top: PSDs from the same unit before (left) and after (right) lidocaine infusion. 
Bottom: Phase shift plots corresponding to the above PSDs. A dashed line from the detected oscillation in 
the right PSD (red dot) connects to the same frequency in the corresponding phase shift plot. C. Fraction 
of oscillating units from all animals before and after lidocaine (top, n = 3, p = 0.00219) or saline (bottom, n 
= 2, p = 1.000) infusion into the MFB. Each dot is one animal, bars indicate mean, and lines connect the 
same animal before and after infusion. D–F. Same as A–C, but for systemic injection of a D2R antagonist 
(raclopride, n = 3, p = 0.0233) compared to a D1R antagonist (SCH233890, n = 2, p = 1.000) G–I. Same 
as D–F, but for systemic injection of a D2R agonist (quinpirole, n = 3, p =8.686*10-4) compared to a D1R 
agonist (SKF81297, n = 2, p = 0.7455) in DD animals. 
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2.3.7 Delta oscillations appear in depletion throughout the indirect pathway 

Since the indirect pathway of the basal ganglia is a primary location of D2R-expressing 

neurons, we posited that oscillations may also be present elsewhere in the indirect pathway. We 

thus recorded from healthy and dopamine depleted globus pallidus externa (GPe) (Figure 2-7A) 

and subthalamic nucleus (STN) (Figure 2-7C), two reciprocally connected nuclei in the indirect 

pathway that both project heavily to SNr. We found a similar pattern of oscillatory activity across 

units in the GPe (40–80% of units in each animal, Figure 2-7B) and STN (15–70% of units in 

each animal, Figure 2-7D) after dopamine depletion, whereas only 1 of 111 total GPe and 1 of 

63 STN units exhibited oscillations in the healthy state. 

2.3.8 Two populations of delta oscillating SNr units lead oscillations in motor cortex 

Previous literature suggests that oscillations in the dopamine depleted basal ganglia 

arise due to input from oscillating neurons in motor cortex (M1) under anesthesia (Tseng et al. 

2001b). However, since we have shown that these oscillations arise from antagonism on D2R’s, 

a receptor more prevalent in the basal ganglia than M1, a possible alternative in awake animals 

is that these oscillations arise first in the basal ganglia and then entrain M1. 

To distinguish between these possibilities, we sought to characterize oscillations in M1 

of DD animals and determine the phase lag between M1 and SNr oscillations. We recorded an 

electrocorticogram (ECoG) in M1 while simultaneously recording from single units in SNr 
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Figure 2-7: Delta oscillations pervade the 
dopamine depleted, but not healthy, indirect 
pathway. 
A. IBA immunofluorescence showing example 
probe locations in GPe. Dotted line indicates 
approximate location of GPe, arrow indicates 
probe location. Scale bar = 500 µm. B. Fraction of 
oscillating units from each animal in control (black 
circles, n = 5), or bilateral 6-OHDA (green 
diamond, n = 5) animals in GPe (p = 3.847*10-6, 
two-sample t-test). C–D. Same as A–B targeting 
STN (p = 0.00106, both control and bilateral n = 
5). 
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(Figure 2-8A). Compared to healthy controls, the M1 ECoG of DD animals exhibited a large 

increase in delta oscillations and reduction in theta (4–7 Hz) oscillations, which are typically 

seen in the cortex of healthy mice (Tort et al. 2018) (Figure 2-8B–C).  

Determining the relationship between two oscillating signals from their phases is a 

difficult task – if the phase of one perfect oscillator slightly leads that of a second perfect 

oscillator, it is impossible to distinguish whether the first leads the second at a short lag or if the 

second leads the first at a long lag. However, neural oscillations do not match the activity 

patterns of perfect oscillators, but have profiles that vary across periods and highly varying 

period lengths that are merely centered on a range of values. While analyses in the frequency 

domain average out these fluctuations, we can perform an analysis in the time domain 

specifically on units already determined to exhibit delta oscillations to characterize whether 

fluctuations in neural firing lead or lag the same fluctuations in M1 (Figure 2-8D). 

To quantify this relation, we performed a series of Granger causality regressions which 

predict changes in M1 ECoG based on its own history (the null, autoregressive model) or by 

additionally including SNr spiking information from a single unit. For each unit, we computed 

201 separate models predicting M1, each using SNr spiking information at a different lag 

between -1 (i.e., past spikes) and +1 seconds (i.e., future spikes). Aligning the lag coefficients of 

the models for a single unit illustrates a periodicity in their values that matches the oscillation 

period (Figure 2-8E-F).  

We computed the mean squared error (MSE) of each model at each lag and considered 

the lag that minimized MSE. To quantify whether this model significantly outperforms the purely 

autoregressive ECoG model, we performed an F test on the two models, correcting for multiple 

lag comparisons (Figure 2-8E-F). We find that 51 of 63 of oscillating units in SNr predicted 

changes in the ECoG significantly better than the null autoregressive model, suggesting that 

there is significant correlation between SNr and M1 at a consistent time lag. 
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Figure 2-8: Delta oscillations define two SNr populations which both lead M1 oscillations. 
A. Example simultaneous M1 ECoG and spike trains from two SNr units exhibiting coherent oscillations. 
B. Example M1 ECoG power spectra from control (left) and bilaterally depleted (right) animals. Power 
spectra were normalized to their total 0.5-100 Hz power and multiplied by 1000 for visualization. C. 
Fractional delta and theta band power in M1 ECoG across all control (n = 8) and acutely depleted (n = 9) 
animals. Bars indicate mean, error bars indicate standard error (p = 0.00818 for delta, 0.0173 for theta, 
two-sample t-test test). D. Example data demonstrating SNr predicting M1. Top: 5 second rasters from 
two simultaneously recorded SNr units. Middle: spike density functions (SDF) of the above SNr rasters of 
matching colors. Bottom: Simultaneously recorded M1 ECoG. Lines between the bottom two panels 
illustrate M1 exhibiting peaks at a consistent time lag after the peak of an SNr SDF, even amidst variance 
in oscillation period length. E. Example regression results predicting M1 ECoG from an “active-predicting” 
(AP) SNr unit. Top: Regression coefficients for each individual lag. Negative lag corresponds to SNr 
oscillations leading M1. Bottom: MSE of regression results using each lag. The red dot indicates that the 
model using that lag significantly outperforms an autoregressive model of the ECoG (F-test, p < 0.05 
correcting for multiple lag comparisons). The dotted line to the upper panel lands at a peak in the 
coefficients, defining the unit as “active-predicting”. F. Same as E for an “inactive-predicting” (IP) SNr unit, 
whose significant lag is labeled in blue. G. Summary histogram of regression coefficients from all 
oscillating SNr units recorded simultaneously with M1 ECoG (n = 59). Counts are colored as in D–F 
based on their regression coefficients (red: positive, blue: negative, dashed line at zero), which define 
their type (AP or IP). H. Same units colored as above grouped by the phase offset at which they best 
predict the M1 ECoG (as in E–F, negative phase offsets correspond to SNr oscillations leading changes 
in M1). I. Boxplots comparing the firing rate (top) and coefficient of variation of interspike intervals 
(bottom) of AP (red) and IP (blue) units. Wilcoxon rank sum test, FR: p = 0.4371; CV ISI: p = 3.449*10-5. 
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When analyzing the regression coefficients at these significant lags, we found a clear 

bimodal distribution of units determined by whether the active or inactive phase of their spike 

oscillation predicted positive deflections in M1 (Figure 2-8G). We term these “active-predicting” 

(AP) and “inactive-predicting” (IP) units, and examples of each can be seen in Figure 2-8D-F, 

We see further evidence of these two distinct populations through cross correlation analysis of 

SNr unit pairs (Figure A-4). 

When clustering units based on their phase lag relative to M1, SNr units also organize 

into a bimodal distribution, with one mode dominated by AP units and the other by IP units. 

(Figure 2-8G). Critically, all significant lags were negative – that is, SNr spikes from both 

populations of SNr units consistently predicted future changes in the ECoG, but not the inverse 

(Figure 2-8H). The relative timings of these signals suggest an order in which oscillations 

propagate through the SNr and cortex - AP units enter their active phase (increase firing), then 

IP units enter their inactive phase (decrease firing or pause), and finally M1 enters its active 

phase. More specifically, AP units increase firing 0.24 ± 0.06 (mean ± standard deviation) 

periods before M1’s active phase (corresponding to 180 ± 45 ms for a 1.5 Hz oscillation), and IP 

units decrease firing 0.1  ± 0.02 periods (120 ± 15 ms for a 1.5 Hz oscillation) before M1’s 

active phase. These results suggest a consistent timeline of oscillatory dynamics by which two 

oscillating populations in SNr both dynamically predict M1 activity. 

To determine if AP and IP units exhibit different firing properties, we compared their 

firing rates (FR) and the coefficient of variation of their interspike intervals (CV ISI). We saw no 

significant difference in firing rates, but AP units exhibited a significantly higher CV ISI than IP 

units (Figure 2-8I). This is primarily due to the units’ behavior during their inactive phase – IP 

units tended to slow down whereas AP units tended to pause completely.  
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M1 is not required for delta oscillations in SNr  

The results of our regression analysis suggest that oscillations in SNr are not caused by 

M1, but rather that oscillations in the SNr precede and predict those in M1. To test this 

hypothesis, we performed M1 aspiration lesions in DD mice (Figure 2-9A) and recorded units 

from SNr. SNr units in the DD + M1-lesioned mice had similar oscillations to those DD mice 

without M1 lesions (Figure 2-9B). These mice had a significantly higher fraction of oscillating 

units than control animals, but there was no difference between DD animals with or without an 

M1 lesion (Figure 2-9C). These results provide additional evidence that M1 is a recipient, not 

the source, of delta oscillations in dopamine depletion.  

Figure 2-9: M1 lesion does not disrupt oscillations in SNr 
A. Example coronal slice from an M1 lesioned animal. Scale bar = 1 
mm. B. Autocorrelation (top), PSD (middle) and phase shift (bottom) for 
an example SNr unit exhibiting a delta oscillation in an M1-lesioned DD 
animal. C. Fraction of oscillating units in SNr for each animal in control 
(black circle, n = 7), bilaterally depleted (green diamond, n = 8) and 
bilaterally dopamine depleted with M1 lesion (purple square, n = 4) 
conditions ANOVA: p = 6.039*10-6; control: p = 0.2367, DD: p = 
8.472*10-4, Dunnett’s post-hoc test compared against DD with M1 
aspiration. 
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2.3.9 SNr neurons exhibit consistent non-zero pairwise phase lags 

Having determined the phase lags between SNr neurons and M1, we considered whether 

such lags exist between individual SNr neurons, both within and between the AP and IP 

populations. To analyze this, we performed a cross-correlations analysis of the SDF’s of 

simultaneously recorded SNr neurons. Specifically, we performed sequential cross-correlations 

with a moving window and normalized the cross-correlogram at each step (see Methods); this 

both reduced the effect of nonstationarities on the resulting mean cross-correlogram and 

allowed us to observe if the lags at which peaks or troughs occurred in the cross-correlogram 

varied over time.  

We computed these cross-correlograms for every pair of simultaneously recorded SNr 

neurons and found pairs which had in-phase relationships with lags centered near zero (Figure 

2-10A), as well as nearly in-phase relationships with lags centered at small delays (typically 

Figure 2-10: Delta oscillating SNr units exhibit non-zero phase lags.  
A. Top: Example rasters from a pair of simultaneously recorded SNr units exhibiting an in-phase 
relationship. Bottom: Normalized cross-correlation of the above two units. The red dot indicates the peak 
of the cross-correlation at 6 ms. The inset boxplot shows the variability of the peak location measured at 
each overlapping 20-second window over which the cross-correlogram was computed (box is 25–75th 
percentile, whiskers extend to minimum and maximum). Note that the boxplot extends across the zero 
line (dashed gray line). B. Same as A for a second pair of units indicating a consistently non-zero lag 
(mean peak at 51 ms). C. Top: Histogram summarizing the mean pairwise phase lags (zero line to 
nearest extreme point, red dots in A and B) for all pairs of units whose extreme point closest to zero lag 
was a peak. Bottom: Same as top for all pairs of units whose extreme point closest to zero lag was a 
trough. 
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<100 ms, Figure 2-10B). Critically, many of these relationships were consistently non-zero 

across all computed windows – that is, the two units exhibited a consistent lead-lag relationship 

at a consistent time lag. We also computed these pairwise relationships using a Poisson 

regression method and plotted the residuals of the best fit over time to confirm that these lead-

lag relationships for individual neurons were consistent across the full recording time (Figure 

A-6). 

We considered all units whose cross-correlograms had a peak closer to lag-zero than a 

trough to be from the same population (either both AP or both IP) and found that their 

distribution of lags peaked at zero with a median lag of 34 ms and a long tail extending out to a 

maximum 213 ms lag. Conversely, we considered all pairs whose cross-correlograms had a 

trough closer to zero to be from opposite populations (one AP, one IP) and found a wider 

distribution with median 61 ms and maximum 233 ms, indicating longer average lags between 

neurons of opposite populations (Figure A-6C). This additional time lag when comparing 

between populations on average is consistent with the tendency for AP neurons to lead IP 

neurons. 

 

2.4 DISCUSSION 

We have demonstrated that delta (0.5–4 Hz), not beta (7–35 Hz), oscillations are the 

predominant oscillatory feature in basal ganglia neurons in awake, dopamine depleted mice, 

including during movement, and that the fraction of units exhibiting these oscillations is a good 

marker of dopamine loss and motor deficits. These results are consistent with data from the 

human PD literature demonstrating that delta oscillations are the dominant or only oscillatory 

feature in some PD patients (Du et al. 2018; Levy et al. 2002). We further show that these 

oscillations arise from a loss of action on D2 receptors and that, contrary to conclusions drawn 

from anesthetized experiments, motor cortex is not required for their generation but rather 

follows the oscillations evident in the basal ganglia. 
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2.4.1 A novel method to distinguish oscillations from noise 

Although several studies demonstrate the presence of delta oscillations in the LFP (Levy 

et al. 2002; Priori et al. 2004) and single units (Steigerwald et al. 2008; Du et al. 2018; Zhuang 

et al. 2019) of PD patients, many more studies ignore oscillations in this band completely. 

Difficulties in detecting these oscillations may contribute to this lack of attention. Most studies 

examining oscillations in PD patients investigate the LFP, not individual spiking units, and the 

intrinsic low frequency noise of LFP signals makes reliably detecting oscillations in the delta 

range difficult. Even when it is possible to record from single units, we have demonstrated that 

low frequency noise can make it difficult to reliably detect these spiking signals as well. 

To reliably detect low frequency spike oscillations in awake animals, we have introduced 

phase shift as a novel detection technique which utilizes phase information typically discarded 

from the Fourier transform. Phase shift measures the local stationarity of a signal composed 

primarily of one frequency – a perfect sine wave would have zero phase shift and high power, 

but a sine wave with a phase that randomly advances would have high phase shift while 

maintaining high power. This measure can distinguish our signal of interest – a single oscillatory 

signal that shifts in phase only gradually or rarely – from low frequency pink noise, a 

phenomenon that is not restricted to a single frequency and in which phase components 

measured at individual frequencies may shift rapidly between adjacent windows. 

Note that, in all spectral analysis in this chapter, a rectangular window was used rather 

than a tapered window more typically used in modern signal processing applications. We chose 

a rectangular window for two reasons. First, window choice involves a tradeoff between 

discrimination of nearby peaks (frequency resolution) and detection of smaller peaks in the 

PSD. The rectangular window maximizes frequency resolution, and since our signal of interest 

is typically near a lower frequency peak due to pink noise, this window ensures that these signal 

and noise peaks are not smoothed together and conflated. Second, multiplication with a window 

function manifests as a convolution (i.e., smoothing) in the frequency domain. The phase shift 
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signal is weak compared to that of the PSD, and the smoothing that occurs due to a tapered 

window confounds this signal and compromises detectability. For other applications of phase 

shift where the former requirement (high frequency resolution) is not necessary, it may be wise 

to use perform two separate Fourier analyses – using a tapered window function such as the 

Hamming window to compute the PSD, while maintaining a rectangular window for the 

computation of phase shift. 

2.4.2 Relationship to previous studies on Parkinsonian oscillations 

In PD research, much of the oscillation literature has focused on the beta band 

(Hammond et al. 2007; Jenkinson and Brown 2011). Here, we demonstrate dopamine loss and 

PD-like symptoms in mice without the presence of beta oscillations in basal ganglia neurons or 

LFP. One recent study has demonstrated beta oscillations in the basal ganglia of parkin 

knockout mice, a model of early stage PD (Baaske et al. 2020); however, this model does not 

lead to any PD-like motor dysfunction or dopamine loss, and to our knowledge, beta oscillations 

have not been linked to either of these phenomena in mice. Instead, our study indicate that 

delta oscillations are an important signal in the DD basal ganglia in mice and track the 

progression of akinetic motor symptoms. While beta oscillations are not present in DD mice, this 

does not discount this oscillatory band from playing an important role in PD. Instead, we 

suggest that delta oscillations observed in Parkinsonian patients may contribute to Parkinsonian 

dysfunction alongside beta oscillations, or may be a primary driver of motor symptoms in the 

subset of patients with delta but without beta oscillations (Du et al. 2018; Levy et al. 2002). 

The low frequency oscillations that we observe resemble those seen in anesthetized DD 

mice and rats, although oscillations in awake settings are generally noisier. Importantly, by 

performing these experiments in awake mice, we rule out concerns that oscillations in the basal 

ganglia are simply entrained by anesthesia-induced oscillations from cortex (Tseng et al. 2001b; 

Belluscio et al. 2003) or by artificial respiration devices (Ruskin et al. 2002). Instead, we see that 

oscillations in the basal ganglia arise even during wakefulness and in fact lead and predict 
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oscillations in M1. While we can rule out one causal direction (M1 to SNr) being solely 

responsible for the propagation of these oscillations through the basal ganglia and cortex, it is 

difficult to know whether SNr entrains M1 directly or if both SNr and M1 are entrained by a 

common source. While we have demonstrated that M1 is not necessary for these oscillations, it 

is likely that feedback loops between M1 and several basal ganglia nuclei allow both systems to 

shape the dynamics of these oscillations. 

By referencing SNr oscillations to M1, we distinguish two populations of oscillating SNr 

neurons. These populations and how they are defined share similarities with the Type-A (TA) 

and Type-I (TI) populations observed in GPe whose discharge is high and low, respectively, 

during the active phase of M1 oscillations (Mallet et al. 2008). While active-predicting (AP) and 

inactive-predicting (IP) SNr neurons may be viewed as analogous to TA and TI GPe neurons 

respectively in terms of their timing relative to M1, the analogy does not extend to several other 

properties. First, the granularity of our regression analysis illustrates that AP and IP neurons are 

not simply active or inactive during the active phase of the M1 oscillation but begin discharging 

(AP) or slowing down (IP) 100–300 ms before the active component of the M1 oscillation. To 

our knowledge, a precise timing analysis of TA and TI neurons with M1 oscillations has not 

been performed to determine if a similar phenomenon occurs in GPe. Second, SNr AP and IP 

neurons are approximately equal in number, whereas TI neurons are the prevailing population 

in GPe (72% TI, 17% TA) (Mallet et al. 2008). Lastly, GPe TA neurons fire significantly slower 

than TI neurons; we see no such difference here, although we do observe a difference in firing 

pattern. The TA and TI populations of GPe neurons were later shown to have anatomical (Corbit 

et al. 2016; Mallet et al. 2012), genetic (Abdi et al. 2015), and functional (Gage et al. 2010; 

Mallet et al. 2016) differences, forming the prototypic (TI) and arkypallidal (TA) populations. AP 

and IP neurons may exhibit such differences as well upon further study. 
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2.4.3 Mechanisms of generation 

A previous study demonstrated that delta oscillations in anesthetized mice arise 

immediately after loss of dopamine signaling through the MFB (Galati et al. 2010), a finding that 

we have replicated here in awake mice. This fast onset (<2 minutes) contrasts with the typical 

longer timescale associated with beta oscillations in dopamine depletion (Mallet et al. 2008). We 

further show that these oscillations arise due to a loss of D2R activation and can be ablated in 

DD animals through D2R agonism. It is unclear where the D2 receptors responsible for this 

ablation are located, but the high density of D2R’s in the striatum make it a strong candidate. 

Lack of D2R activation causes a wide array of biomolecular changes within D2R-expressing 

neurons, including the opening of NMDA (Higley and Sabatini 2010; Wang et al. 2012) and L-

type calcium channels (Hernández-López et al. 2000), which have been shown to be involved in 

membrane potential and calcium oscillations, respectively, in other circuits (Guertin and 

Hounsgaard 1998). 

In addition to striatum, another candidate for the generation of delta oscillations in 

dopamine depletion is the STN-GPe loop. While often associated with beta oscillations (Mallet 

et al. 2008; Nevado-Holgado et al. 2014; Pavlides et al. 2012; Wei et al. 2015), this loop was 

originally implicated in generating much lower frequency oscillations (0.8 – 1.8 Hz) in cultured 

neurons (Plenz and Kital 1999), a phenomenon that has been demonstrated subsequently in 

computational models (Terman et al. 2002; Modolo et al. 2008). The slow rates associated with 

the dynamics of T-type calcium channels and of some after-hyperpolarization currents have 

been shown to contribute the generation of oscillations and could explain the low frequency of 

these oscillations as well (Devergnas et al. 2015). 

Delta oscillations are a common feature of non-REM sleep and arise throughout cortex 

through oscillations involving thalamocortical relay neurons. Thalamic delta oscillations arise 

from the interplay of HCN and low threshold T-type Ca2+ channels in thalamocortical neurons 

when they are hyperpolarized (Steriade et al. 1993), which occurs in part due to decreased 
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levels of acetylcholine in thalamus (Jones 2005). While there may be many mechanisms by 

which delta oscillations are generated in the brain, the neurotransmitter systems and intrinsic 

currents critical for the generation of sleep oscillations play important roles in the basal ganglia 

and may be useful avenues for investigating the oscillations we observe in this study. For 

instance, cholinergic interneurons in the striatum express D2R’s (Maurice et al. 2004), and HCN 

channels are prevalent in BG regions such as GPe (Surmeier et al. 2005). 

Delta oscillations have previously been observed in mouse barrel cortex phase-locked to 

respiration (Ito et al. 2014), and while it is not clear why loss of action on D2 receptors would 

cause this rhythm to leak into the basal ganglia, it is one possible mechanism by which these 

oscillations could arise from a rhythm already present in the nervous system. Whether or not the 

oscillations we observe are generated within the basal ganglia or entrained from another source 

(which may have a physiological function elsewhere in the brain), we have demonstrated that 

the emergence of these oscillations in the basal ganglia correlate strongly with akinesia, 

suggesting that they become pathological once they emerge in these nuclei. 

2.4.4 Relationship between oscillations and motor dysfunction 

Of those studies that examine low frequency oscillations in PD patients, many consider 

only their relationship to tremor, seeing primarily units with positive correlation to EMG signals 

during tremor bouts but also units with no such correlation (Hurtado et al. 1999; Du et al. 2018), 

or a correlation which changes in time due to phase slips in the unit’s oscillation (Hurtado et al. 

2005). No study, to our knowledge, has investigated low frequency oscillations in relationship to 

other PD symptoms. Here, we have established a strong relationship between delta oscillations, 

dopamine loss, and akinetic dysfunction in mice. Further research and re-examination of 

existing patient data could elucidate a role for delta oscillations in predicting or causing PD 

motor deficits in humans. 

When comparing the strength of delta oscillations between periods of rest and 

movement, we found that delta oscillations weakened on average during periods of movement, 
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but occasionally strengthened and were rarely ablated completely. In contrast, an animal’s 

fraction of oscillating SNr units was a strong predictor of the animal’s overall motor dysfunction. 

We see the discrepancy between the strength of these results to be due primarily to a difference 

of timescale – the long timescale of predicting overall motor activity versus the short timescale 

of individual motor bouts. We suggest that delta oscillations on average represent a decreased 

probability to engage in motor activity, but for individual motor bouts, other parallel or further 

downstream motor circuits could override the akinesia-promoting delta signal. We also note the 

difficulty of correlating oscillations with movement bouts, which can be shorter than a single 

period of a delta wave. The long window size necessary to quantify oscillations in our movement 

analysis means that some windows containing movement activity (and thus labeled as 

movement) still contain periods of rest, which may dilute the relationship we have observed. 

While we cannot demonstrate a causal link between oscillations and motor dysfunction 

in this work, it is notable that the emergence of delta oscillations in the SNr from multiple 

experimental manipulations is consistently paired with a time-locked and commensurate 

reduction in motor activity, and that motor activity dynamically attenuates (though does not 

ablate) delta oscillations in a majority of SNr neurons as Parkinsonian mice shift between motor 

and resting states. These results suggest a reappraisal of delta oscillations as a potential cause 

or marker of motor dysfunction in Parkinson’s disease patients that could be an 

underappreciated target for PD therapies. 
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3 PROPAGATION OF DELTA OSCILLATIONS IN A BIOPHYSICAL MODEL OF THE GPE-

SNR NETWORK 

 

 

In the previous chapter, we showed that delta oscillations are a strong and robust signal which 

arise in the Parkinsonian substantia nigra pars reticulata (SNr) after dopamine depletion (DD) 

and are a useful predictor of motor dysfunction. However, a key question remains – once 

dopamine has been depleted, what causes delta oscillations to arise in the SNr? In this chapter, 

we take a computational approach to model a subset of basal ganglia circuitry and suggest that 

delta oscillations may not arise within the SNr alone, but can arise through entrainment by the 

globus pallidus externa (GPe). We propose a network architecture which, through simulation, 

generates firing patterns in model SNr neurons which match those measured in vivo solely 

through inhibition from oscillating GPe neurons and fellow SNr neurons. In particular, we see 

the spontaneous generation of active-predicting (AP) and inactive-predicting (IP) neural 

populations whose firing patterns match observations in vivo. These results demonstrate how 

delta oscillations can propagate through the basal ganglia despite imperfect oscillatory 

synchrony in the source node, narrowing down potential targets for the source of delta 

oscillations in DD and giving further insight into the dynamics of SNr oscillations. 

 

3.1 INTRODUCTION 

 Delta oscillations in the SNr are a strong signal and predictor of motor dysfunction in the 

Parkinsonian mouse basal ganglia. However, the SNr is not the only nucleus which exhibits 

delta oscillations in DD. Within the basal ganglia, GPe and subthalamic nucleus (STN) neurons 
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also strongly modulate their firing rate at a delta frequency in DD conditions, and 

electrocorticogram (ECoG) signals in motor cortex (M1) exhibit a strong delta component due to 

DD. With all of these brain regions oscillating at a similar frequency, it is unlikely that they each 

develop this firing pattern completely independent of each other. Instead, one of two scenarios 

is likely: 1) delta oscillations arise in a single region of the brain in DD and propagate throughout 

the basal ganglia and M1 (and potentially unexplored additional regions) through synaptic 

connections, or 2) delta oscillations arise in several regions of the brain in DD, but connectivity 

between independently oscillating regions amplifies and entrains downstream regions based on 

the particular oscillating patterns of the presynaptic population(s). Depending on the region, 

either of these hypotheses could be true – for example, each basal ganglia nucleus may 

oscillate individually and be entrained by its presynaptic partners, but M1 may require input from 

the basal ganglia (directly or indirectly) in order to oscillate at all. 

 In either scenario, the synaptic connectivity between oscillating regions likely plays a 

major role in shaping these oscillations. In Chapter 2, we demonstrated through simultaneous 

recordings of the SNr and M1 that SNr oscillations dynamically predict oscillations in M1, 

strongly suggesting that M1 is entrained by SNr or that the delta oscillations in M1 are directly 

caused by those in SNr. However, the propagation of these oscillations between basal ganglia 

nuclei has not been studied. 

 We also demonstrated in Chapter 2 that delta oscillations are directly tied to action on 

dopamine D2 receptors – systemic antagonism of D2 receptors causes delta oscillations in the 

healthy SNr, while D2 agonism in DD conditions ablates the SNr oscillations. D2 receptors are 

present throughout the basal ganglia, but are especially prevalent in the striatal neurons which 

initiate the indirect pathway. It is feasible, then, that oscillations arise in the indirect pathway and 

arrive at SNr through connections from GPe. 

 However, the oscillation phase distributions we observe in vivo make propagation more 

complicated. It is intuitive that oscillations in the brain would propagate most effectively when 
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each input to the postsynaptic population is synchronous, as in synfire chains (Abeles 1982) 

except on the timescale of the oscillation, not necessarily on the timescale of individual spikes. 

That is, when comparing the oscillatory rate function for two neurons in a presynaptic 

population, the two would most effectively entrain a common downstream target if they share 

identical phases. In both GPe and SNr, this phase synchrony is not present. There are, of 

course, near-antiphase populations of neurons within these nuclei – prototypic (TI) and 

arkypallidal (TA) in GPe (Abdi et al. 2015; Mallet et al. 2008, 2012), AP and IP in SNr – but even 

within these populations, individual neurons’ oscillations lead and lag one another. It is unclear if 

or how effectively a network with such imperfect synchrony may allow for oscillatory 

propagation. 

 We aim to test whether it is possible for GPe to entrain a delta rhythm in SNr neurons in 

a computational model of the SNr receiving input from simulated GPe spike trains. Specifically, 

we seek to determine if there exists a GPe-SNr circuit architecture which can reproduce our 

experimental observations from Chapter 2 – namely, the near-antiphase AP and IP populations 

in the SNr and their intrinsic firing patterns and phase relationships. The successful architecture 

we find suggests that a competitive process for GPe and SNr synaptic formation on the somas 

of SNr neurons is sufficient to allow for the spontaneous generation of AP and IP populations 

when inhibited with oscillatory GPe input. Despite phase lags in GPe, oscillations arise as 

expected in the two SNr populations with inherited phase lags which match experimental data. 

These results suggest that SNr need not develop its own intrinsic oscillations in DD but can 

instead inherit them from other basal ganglia nuclei. We also generate hypotheses to test the 

validity of this model of oscillatory propagation to further narrow down where delta oscillations 

may arise, a critical detail in targeting the source of these oscillations for potential PD 

treatments. 
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3.2 MATERIALS AND METHODS 

3.2.1 Biophysical model of SNr eurons 

 We used the condunctance-based biophysical model of SNr neurons from (Phillips et al. 

2020) with small modifications noted below. Parameters were originally adapted from (Abbott et 

al. 1997; Corbit et al. 2016; Xia et al. 1998) or tuned from experimental data in (Connelly et al. 

2010; Zhou et al. 2008), except where otherwise noted. 

Each neuron is modelled with a synaptic and dendritic compartment with respective 

membrane potentials VS and VD governed by the equations 

𝐶𝑆

𝑑𝑉𝑆

𝑑𝑡
= −𝐼𝑁𝑎 − 𝐼𝑁𝑎𝑃 − 𝐼𝐾 − 𝐼𝐶𝑎 − 𝐼𝑆𝐾 − 𝐼𝑙𝑒𝑎𝑘 − 𝐼𝐺𝐴𝐵𝐴

𝑆 − 𝐼𝐷𝑆 

𝐶𝐷

𝑑𝑉𝐷

𝑑𝑡
= −𝐼𝑇𝑅𝑃𝐶3 − 𝐼𝑆𝐷 − 𝐼𝑆𝑇𝑁 

where C is that compartment’s membrane capacitance and each I is an ion current: a fast (INa) 

and persistent (INaP) Na+ current, delayed rectifying K+ current (IK), Ca2+ current (ICa), Ca2+-

activated K+ current (ISK), leak current (Kleak) in the somatic compartment, and a transient 

receptor potential channel 3 current (ITRPC3) in the dendritic compartment. IDS and ISD are coupling 

currents representing the current flow from the dendritic to somatic compartments and vice-

versa. 𝐼𝐺𝐴𝐵𝐴
𝑆  denotes the synaptic current due to projections from simulated GPe neurons (see 

below) and local connections from other SNr neurons. ISTN denotes a transient excitation from 

STN whose neurons synapse primarily on dendrites in the SNr (Kita and Kitai 1987) which is 

included in lieu of spiking STN neurons. Each current is governed by the following equations: 

𝐼𝑁𝑎 = 𝑔𝑁𝑎 ∙ 𝑚𝑁𝑎
3 ∙ ℎ𝑁𝑎 ∙ 𝑠𝑁𝑎 ∙ (𝑉𝑆 − 𝐸𝑁𝑎) 

𝐼𝑁𝑎𝑃 = 𝑔𝑁𝑎𝑃 ∙ 𝑚𝑁𝑎𝑃
3 ∙ ℎ𝑁𝑎𝑃 ∙ (𝑉𝑆 − 𝐸𝑁𝑎) 

𝐼𝐾 = 𝑔𝐾 ∙ 𝑛𝐾
4 ∙ ℎ𝐾 ∙ (𝑉𝑆 − 𝐸𝐾) 

𝐼𝐶𝑎 = 𝑔𝐶𝑎 ∙ 𝑚𝐶𝑎 ∙ ℎ𝐶𝑎 ∙ (𝑉𝑆 − ln (
[𝐶𝑎]𝑜𝑢𝑡

[𝐶𝑎]𝑖𝑛
) 𝐸𝐶𝑎) 

𝐼𝑆𝐾 = 𝑔𝑆𝐾 ∙ 𝑚𝑆𝐾 ∙ (𝑉𝑆 − 𝐸𝐾) 
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𝐼𝑙𝑒𝑎𝑘 = 𝑔𝑙𝑒𝑎𝑘 ∙ (𝑉𝑆 − 𝐸𝑙𝑒𝑎𝑘) 

𝐼𝐺𝐴𝐵𝐴
𝑆 = 𝑔𝐺𝐴𝐵𝐴

𝑆 ∙ (𝑉𝑆 − 𝐸𝐺𝐴𝐵𝐴
𝑆 ) 

𝐼𝐷𝑆 = 𝑔𝐶

𝐶𝑆

𝐶𝑆 + 𝐶𝐷
∙ (𝑉𝑆 − 𝑉𝐷) 

𝐼𝑇𝑅𝑃𝐶3 = 𝑔𝑇𝑅𝑃𝐶3 ∙ (𝑉𝐷 − 𝐸𝑇𝑅𝑃𝐶3) 

𝐼𝑆𝐷 = 𝑔𝐶

1

1 − 𝐶𝑆
𝐶𝑆+𝐶𝐷

∙ (𝑉𝐷 − 𝑉𝑆) 

𝐼𝑆𝑇𝑁 = 𝑔𝑆𝑇𝑁 ∙ (𝑉𝐷 − 𝐸𝑔𝑙𝑢𝑡) 

where each g is the current’s maximum conductance, E is the current’s reversal potential, and 

each m, h and s is a gating variable governed by an equation of the type 

𝑑𝑥

𝑑𝑡
=

𝑥∞ − 𝑥

𝜏𝑥
 

where x is an m, h or s gating variable of a particular current, x∞ is the gate’s steady state and τ 

is the gate’s time constant, governed by the following equations 

𝑥∞(𝑉) = (1 + 𝑒−(𝑉−𝑥1/2) 𝑘𝑥⁄ )−1 

𝜏𝑥(𝑉) = 𝜏𝑥
0

𝜏𝑥
1 − 𝜏𝑥

0

𝑒(𝜏1/2
𝑥 −𝑉)/𝜎𝑥

0

+ 𝑒(𝜏1/2
𝑥 −𝑉)/𝜎𝑥

1 

where all variables besides V are constants. 

An exception is the Ca2+-gated SK channel, whose m gate is governed by 

𝑚𝑆𝐾([𝐶𝑎]𝑖𝑛) = (1 + (
𝑘𝑆𝐾

[𝐶𝑎]𝑖𝑛
)

𝑛𝑆𝐾

)

−1

 

where kSK is the half-activation calcium concentration and nSK is the Hill coefficient. The 

intracellular Ca2+ concentration [Ca]in is governed by 

𝑑[𝐶𝑎]𝑖𝑛

𝑑𝑡
= −𝛼𝑆𝐾 ∙ 𝐼𝐶𝑎 −

[𝐶𝑎]𝑖𝑛 − [𝐶𝑎]𝑚𝑖𝑛

𝜏𝐶𝑎
 

where 𝛼𝑆𝐾 is a constant relating current with the rate of change of [Ca2+]in, 𝜏𝐶𝑎 is the time 

constant for calcium efflux through Ca2+ pumps, and [Ca]min is the minimum calcium 
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concentration at which these pumps are active. The parameters for this equation were adapted 

from (Xia et al. 1998). 

The synaptic conductance 𝑔𝐺𝐴𝐵𝐴
𝑆  is governed by 

𝑑𝑔𝐺𝐴𝐵𝐴
𝑆

𝑑𝑡
= −

𝑔𝐺𝐴𝐵𝐴
𝑆

𝜏𝐺𝐴𝐵𝐴
𝑆 + 𝑊𝐺𝐴𝐵𝐴

𝐺𝑃𝑒 ∙ 𝐷 ∙ 𝛿(𝑡 − 𝑡𝑛) + 𝑊𝐺𝐴𝐵𝐴
𝑆𝑁𝑟 ∙ 𝛿(𝑡 − 𝑡𝑚) 

where 𝜏𝐺𝐴𝐵𝐴
𝑆  is the synaptic decay time constant, W is the synaptic weight matrix from either 

GPe or other SNr neurons, 𝛿 is the delta (impulse) function, and 𝑡𝑛,𝑚 is the presynaptic spike 

times for GPe and SNr, respectively. D is a scale factor for short-term synaptic depression  

governed by (Abbott et al. 1997) 

𝑑𝐷

𝑑𝑡
= −

𝐷0 − 𝐷

𝜏𝐷
+ −𝛼𝐷 ∙ (𝐷 − 𝐷𝑚𝑖𝑛) ∙ 𝛿(𝑡 − 𝑡𝑛) 

We tuned two of the parameters to match differenced in DD and control (non-DD) 

conditions. gTRPC3 in the model was tuned to match the findings in (Zhou et al. 2008) – that is, 

under Na+ channel block, blockade of TRPC3 channels yields a 10 mV hyperpolarization of the 

membrane potential. Since activation of D1 receptors is required for the opening of TRPC3 

channels in SNr (Zhou et al. 2009), gTRPC3
 was set to 0 in DD conditions. 

gSTN was tuned such that the firing rate of SNr neurons in the full network model in DD 

conditions would match the mean firing rate observed in vivo in DD. Since electrophysiological 

data from chapter 2 indicated a 50% increase in mean STN firing rates in control compared to 

DD conditions, this value was scaled by 1.5 in the control model. 

3.2.2 Simulated GPe spike trains 

 Rather than simulating GPe neurons, we generated artificial spike trains to serve as 

input to the SNr model neurons. In DD, GPe spike trains were of two types, Poisson or 

oscillating. Both types are modelled as inhomogeneous Poisson processes with rate function 

𝜆(𝑡). In Poisson spike trains, that rate function is 
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𝜆(𝑡) = {
0        𝑡 − 𝑇 ≤ 𝑡𝑟𝑒𝑓𝑟𝑎𝑐

𝜆𝑐       𝑡 − 𝑇 > 𝑡𝑟𝑒𝑓𝑟𝑎𝑐
 

where 𝑡𝑟𝑒𝑓𝑟𝑎𝑐 is the absolute refractory period and 𝜆𝑐 is the baseline firing rate which was fit to 

the mean firing rate of GPe neurons recorded in Chapter 2. Since the median GPe firing rate did 

not differ significantly in control and DD animals (34.47 Hz in control compared to 33.09 Hz in 

DD, p = 0.803, Wilcoxon rank sum test), 𝜆𝑐 was set to 34 Hz and was unchanged between 

control and DD simulations. 

 Oscillating spike trains have a rate function as follows: 

𝜆(𝑡) = {
0                                    𝑡 − 𝑇 ≤ 𝑡𝑟𝑒𝑓𝑟𝑎𝑐

𝜆𝑐 + 𝑓𝑜𝑠𝑐(𝑡, 𝐴, 𝜔)      𝑡 − 𝑇 > 𝑡𝑟𝑒𝑓𝑟𝑎𝑐
 

where 𝑓𝑜𝑠𝑐(𝑡, 𝐴, 𝜔) is a periodic function of time 𝑡, frequency 𝜔 chosen as 2 Hz to be near the 

median delta frequency observed in our GPe units, and amplitude 𝐴 chosen such that a spike 

train would have a 1 Hz firing rate at its trough. 

 Since the delta oscillations we observe in the SNr are not perfect sine waves but rather 

modelled better as oscillatory processes with up and down states, we chose 𝑓𝑜𝑠𝑐 to be a square 

wave with unequal up and downstate durations; that is 

𝑓𝑜𝑠𝑐(𝑡, 𝐴, 𝜔) =  {

𝐴

2
         𝑚𝑜𝑑(𝑡,

1

𝜔
) ≤

𝑢

𝜔

−
𝐴

2
     𝑚𝑜𝑑(𝑡,

1

𝜔
) >

𝑢

𝜔

 

where 𝑢 is the fraction of each period spent in the upstate. To fit an appropriate value for 𝑢, we 

analyzed the oscillation shapes of GPe neurons recorded in Chapter 2. We included only 

neurons with detected oscillations and whose firing rates exceeded 20 Hz to ensure that no 

arkypallidal neurons were included, as they do not project to SNr (Abdi et al. 2015; Mallet et al. 

2012). For each neuron, we computed its spike density function (SDF) by convolving the spike 

train with a Gaussian filter with σ = 50 ms; this produces a smooth instantaneous firing rate 

function, but one which is coarse enough such that delta oscillations can still be seen. We then 

computed a moving mean m(t) of the SDF with a rectangular window of 5 seconds to obtain a 
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mean firing rate over a much longer timescale, but short enough to change along with long-

timescale nonstationarities in firing rate (Figure A-6A) We then computed the fraction of time F 

for which sdf(t) > m(t), and found the median F across all neurons to be approximately 0.55. 

Thus, we chose the upstate to comprise 55% of the period while the downstate comprises the 

remaining 45%. 

 In the control model, we generated spike trains with a more regular firing pattern, 

mimicking the firing patterns observed in the healthy GPe. All neurons in the control model fired 

spikes with an interspike interval of 1000/F ± 2 ms, where F is their pre-determined firing rate in 

Hz, and the ±2 ms jitter was sampled randomly from a uniform distribution. 

3.2.3 Fitting GPe phase lag distributions 

 Like SNr, oscillations in GPe neurons can exhibit non-zero delays relative to one 

another. To incorporate these delays into our model, we computed the pairwise phase lag 

distribution for GPe (Figure A-6B), as done in Chapter 3 for SNr. In order to simulate a 

population of neurons with phases such that this distribution was maintained, we sought to 

estimate the distribution of individual phases from this pairwise phase lag distribution. We 

assumed that the phases are normally distributed following N(0,σ) and sought to estimate σ. 

The pairwise phase lags we measured can be considered the absolute difference of two 

independent samples from N(0,σ), which means they follow a half-normal distribution 

𝐻(0, √2σ2). The best fit to the pairwise distribution gives an estimate of σ = 34.6164 ms. At the 

start of each simulation, a GPe neuron’s phase was chosen from this distribution, resulting in a 

pairwise phase distribution similar to the one observed experimentally (Figure A-6B). 

3.2.4 Connection architecture 

We chose populations of 100 SNr neurons (50 in each of Population A and B when 

applicable) and 100 GPe spike trains (50 in each of the oscillating and Poisson populations 

when applicable). Equally sized populations were chosen because the number of neurons in 
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SNr in vivo is approximately equal to the number of GPe neurons which project there (Simmons 

et al. 2020). 

Each SNr neuron received four (in the basic and partially segregated models) or an 

average of four (in the competitive model) connections from both GPe and other SNr neurons, 

as real SNr neurons receive a small number (approximately two to six) of unitary connections 

from GPe (Simmons et al. 2020) and an average of four from other SNr neurons (Higgs and 

Wilson 2016). While the large strength of these connections is likely due to many synapses from 

a single presynaptic neuron forming on the postsynaptic neuron (Simmons et al. 2020; Smith 

and Bolam 1989), we modelled these nests of boutons as a single, strong synapse from each 

presynaptic cell. 

3.2.5 Simulations and analysis 

 Code to simulate the biophysical network was written in C++. Differential equations were 

evolved using Euler’s method with a timestep of 0.05 ms. Simulations were run for a total of 50 

simulation seconds, and the first three seconds were discarded. Results from the simulation 

were imported into MATLAB for analysis. 

3.2.6 Measuring irregularity with CV2 

 Since real spike trains have a greater degree of nonstationarity than those in our 

simulations, we used the CV2 measure of irregularity (Holt et al. 1996) which computes the 

coefficient of variation (C ) over a moving window of two interspike intervals (ISI’s) thereby 

correcting for nonstationarities in firing rate. Specifically, we compute the CV for all pairs of 

adjacent ISI’s and compute this distribution’s mean: 

𝐶𝑉2 =
1

𝑁
∑

2|𝛥𝑡𝑖−1 − 𝛥𝑡𝑖|

𝛥𝑡𝑖−1 + 𝛥𝑡𝑖

𝑁

𝑖=1

 

where 𝛥𝑡𝑖 is the length of the ith ISI and N is the number of adjacent pairs of ISI’s in the spike 

train. 
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3.2.7 Identifying oscillating neurons 

 Oscillations in single neurons were detected using the same procedure as in section 

2.2.7: Oscillation detection and visualization, requiring that oscillations passed both the power 

and phase shift criteria. Although the forcing frequency in our simulations was known to be 2 

Hz, our oscillation detection algorithm remained agnostic to this information. 

 Since we did not simulate motor cortex, we could not define AP and IP units in the same 

manner as in Chapter 3. Instead, we compared the phases of SNr oscillations with those in 

GPe. We computed an SDF of the sum of all GPe neurons’ spike trains and calculated the 

cross-correlation of this mean GPe signal with each SNr neuron which exhibited a delta 

oscillation. Beyond their relationship to M1, a defining feature of the AP population is that it, on 

average, leads IP units in vivo. Since the only way in our simulations for an oscillation in SNr to 

become approximately in phase with GPe oscillations would be through a bisynaptic (GPe to 

SNr to SNr) or higher multisynaptic connection, we defined IP neurons as those whose GPe 

SDF cross-correlation peak was closer to zero lag than their trough, and AP neurons as those 

whose trough was closer to zero lag than their peak. To lend evidence to our assumption, we 

ran a simulation of the “basic” model with no GPe phase delays (so lead-lag relationships could 

be easily identified) and confirmed that every neuron defined as AP through this process led 

every neuron defined as IP. We also confirmed that the AP lead bias remained in our final 

model (the competitive model, Figure 3-2E) While our assumption appears accurate, the units in 

this section may be more accurately referred to as putative AP and IP units; we primarily drop 

the “putative” modifier for brevity. 

3.2.8 Quantifying model fit 

 To compare the model results to experimental data, we computed means and two-sided 

95% confidence intervals for several metrics on the data, such as the firing rate of SNr neurons 

and the fractions of neurons which exhibited an oscillation. Confidence intervals were computed 

in one of two ways: 
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1. The fraction of non-oscillating, AP and IP neurons each follow a binomial distribution 

B(pg) with the assumption that each recorded neuron’s identity is independent of all 

others. For each group (AP, IP, or non-oscillating), pg represents the probability that a 

neuron is a member of that group. We estimated a 95% confidence interval around the 

sample mean for each group using the analytic Clopper-Pearson method implemented in 

the MATLAB function binofit. 

2. For all other measures where an analytic estimate was not possible, we computed 1000 

bootstrapped samples and calculated the statistic being estimated (e.g. mean, CV), then 

used the 2.5th and 97.5th percentile from all samples as the confidence interval. 

3.2.9 Clustering 

 Cluster analysis of AP and IP neurons was performed using an unsupervised k-means 

algorithm with k=2. The boundary between clusters was defined as the line orthogonal and 

equidistant from the two cluster centroids. Distance from each point to the boundary was 

defined as the shortest path to the boundary (i.e. a line orthogonal to the boundary). 

 

3.3 RESULTS 

3.3.1 A model with partially segregated pathways matches in vivo recordings 

 We sought to test the hypothesis that the features of SNr oscillations observed in our 

data can be explained by SNr inheriting its oscillatory pattern from its GPe inputs. That is, we 

sought to determine if there exists a reasonable GPe-SNr architecture that replicates our 

observations in Chapter 2. To investigate this, we built networks of 100 biophysically realistic 

SNr neurons receiving input from a population of 100 simulated GPe spike trains and compared 

the results of these simulations to in vivo data from SNr.  

 To start, we built a model with a simple architecture restricted in such a way that two 

antiphase populations were likely to form. We simulated GPe spike trains split into two 

populations – 50 Poisson trains and 50 trains spiking with an underlying 2 Hz oscillation (see 



67 
 

Methods). Then, we initialized 100 SNr neurons split into equal populations A and B – Pop. A 

received synaptic input only from oscillating GPe neurons and Pop. B SNr neurons, whereas 

Pop. B received input only from Poisson GPe neurons and Pop. A SNr neurons (Figure 3-1A). 

Synaptic connectivity was determined randomly at the start of the simulation – as such, each 

SNr neuron received the same number of synapses, but each GPe train and SNr neuron did not 

necessarily make an equal number of synaptic connections. 

 To compare the model results with real data, we first looked at the power of oscillations 

for each neuron in each population (AP or IP) as defined by their relationship to GPe (see 

Methods) and compared these to the delta powers of AP and IP neurons recorded in vivo 

(Figure 3-1B-C). Note that the underlying oscillations in our simulations are stationary (i.e. they 

are exactly a function of time, so their autocorrelation does not decay at long lags), whereas 

oscillations in the experimental setting have an autocorrelation which decays to zero after a few 

periods. As such, it is difficult to compare raw power values between the simulations and 

experimental data, and thus we will scale these values to make better quantitative comparisons 

later in this chapter. 

Qualitatively, the results of this simulation show a clear AP/IP dichotomy, which is 

determined completely by the neuron’s identity in the network architecture – those in Pop. A 

receiving oscillatory inhibition from GPe make up the AP population, while those receiving 

Poisson inhibition from GPe and thus inheriting their oscillations only from SNr connections 

make up the IP population. The AP neurons also have greater power than the IP neurons, as 

seen in vivo. However, the distributions of power differ from those seen in vivo, with no overlap 

between the AP and IP power distributions. 

To quantify the fit of our model to experimental data, we checked whether the SNr spike 

trains in our simulation fell within a 95% confidence interval of metrics derived from real SNr 

data in three categories: basic firing properties, size of oscillatory populations, and properties of 

oscillations (Figure 3-1D). 
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 For basic firing properties, we looked at firing rates and regularity of firing measured 

using CV2, a measure of irregularity which corrects for nonstationarities in firing rate over time. 

In this initial model, the neurons were significantly more regular (CV2 closer to zero) than in the 

experimental data. 

We next looked at the putative identities of neurons – active-predicting (AP), inactive-

predicting (IP) or non-oscillating. In this case, the differences from experimental data were stark 

– since each neuron’s identity is determined exactly by which of Pop. A or B it was assigned to, 

there are exactly 50 AP and 50 IP neurons with no non-oscillating neurons. Because of this, the 

results fail to replicate experimental data here. 

Finally, we looked at properties of the AP and IP neurons. Since it is difficult to directly 

compare oscillatory powers between experiments and simulations, we computed a mean power 

ration between the two populations, defined as the ratio between the mean power of all AP 

neurons in the simulation and the mean power of all IP neurons at the forcing frequency from 

GPe, as this ratio should cancel out the differences in stationarity between the experimental and 

simulated data. This model matches experimental data in that AP neurons are stronger than IP 

neurons, but significantly less so than in vivo.  We also computed the CV of powers in each 

population to determine if the variability of oscillation strengths across neurons in each 

population matched the real data. In the basic model, there was significantly less variability in 

oscillation strength in both populations than in vivo. 

Figure 3-1: Performance of models with segregated pathways. 
A. Architecture for the “basic” model, where two SNr populations receive entirely distinct GPe inputs (one 
oscillating, one Poisson) and only project to each other. B. Delta power of each neuron in vivo in the AP 
and IP SNr populations. C. As in B, but from the results of a simulation of the basic model. Black dots are 
neurons from Population A from the architecture in Panel A, green dots are neurons from Population B. D. 
Performance of the basic model on measures derived from in vivo data. Each bar is a bootstrapped or 
analytically derived confidence interval (see Methods) and each red arrow is the model’s results 
computed from all simulated SNr neurons. FR: mean firing rate (Hz); CV2 ISI: mean CV2 of interspike 
intervals; Frac AP/IP/No Osc: fraction of neurons in the AP, IP, or non-oscillating populations. Power 
Ratio: ratio of the mean delta power of all AP neurons to the mean power of all IP neurons. AP/IP Power 
CV: CV of the distribution of AP/IP delta powers. E. Architecture for the “partially segregated” model, 
which extends the basic model to include probabilities of connections crossing over from the population 
they would normally project to. F-G. Same as C-D for the results from the partially segregated model. 
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This basic model’s primary deviation from experimental data is in the variability of its 

oscillations – all neurons within a population oscillate at similar strengths, whereas neurons in 

vivo have more varied oscillations or no detectable oscillations at all. As such, we extended this 

model to add additional noise by relaxing its strict connectivity rules. Instead of all Pop. A 

neurons receiving input only from oscillating GPe neurons and Pop B. SNr neurons, we included 

a “crossover probability” such that 25% of Pop. A’s GPe synapses instead came from Poisson 

neurons and 25% of SNr synapses were from other Pop. A neurons. This was mirrored in Pop. 

B; 25% of GPe synapses were now from the oscillating population and 25% of SNr synapses 

were from Pop. B. We termed this the “partial segregation model” (Figure 3-1E). 

 This model distributes neurons into AP and IP populations with much more realistic delta 

power distributions (Figure 3-1F). Notably, a neuron’s fate was not determined completely by 

whether it was in Pop. A or B as was the case in the basic model – by chance, some Pop. A 

neurons have an IP relationship to GPe rather than the expected AP relationship, and vice-

versa for Pop. B. This model also performed significantly better quantitatively, as each of the 

properties we measured fell within the confidence intervals derived from experimental data 

(Figure 3-1G). The small number of crossover connections led to weaker oscillations in some 

neurons, thereby increasing the breadth of oscillation strengths seen in each population and 

leading to some neurons which had no detectable oscillation due to their combination of 

synaptic inputs. 

3.3.2   si pler, “co petiti e”  odel also  atc es in vivo recordings 

 While it fits experimental data better than the basic model, the partial segregation model 

still assumes the existence of two anatomically distinct populations in SNr which are biased to 

receive particular patterns of connectivity from GPe and fellow SNr neurons. To relax this 

assumption, we considered an architecture which could potentially allow for such a dichotomy 

through natural heterogeneity. This model has a single heterogenous population of SNr neurons 

which receive a total of 8 synapses, each with equal likelihood to arise from a GPe or fellow SNr 
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neuron. We term this the “competitive model”, as GPe and SNr (randomly) compete for 

synapses on each neuron (Figure 3-2A). With this model, we posited that the neurons which, 

through random chance, had a high level of inhibition from GPe would form the basis of the AP 

population and those with a high level of inhibition from those AP neurons would form the IP 

population, while neurons receiving more balanced input would fall to one side or the other 

through more complicated multisynaptic dynamics or not oscillate at all. 

Figure 3-2: Performance of the competitive model.  
A. Architecture for the “competitive” model, where the number of GPe and SNr synapses are not fixed but 
each SNr neuron’s fixed number of synapses have an equal chance of arising from GPe or SNr. B. Delta 
power for each neuron in the AP and IP populations from a simulation of the competitive model. C. 
Performance of the competitive model on measures derived from in vivo data, see Figure 3-1C. D. Left: 
Architecture of the healthy version of the competitive model where all oscillating and Poisson GPe 
neurons are replaced with pacemakers. Right: Same as C, but only comparing to measures from control 
in vivo data and only looking at measures which do not depend on the presence of delta oscillations. E. 
Analysis of AP/IP lead-lag relationship. Histogram of the phase lags between all pairs of simultaneously 
recorded AP and IP neuron pairs in vivo. Counts on the left indicate AP leading IP. F: Same as E for the 
results of the competitive model. G. Analysis of broader lead-lag relationships. Top: histogram of the 
absolute phase lags between all pairs of neurons in the same population (putatively AP vs. AP or IP vs. 
IP). Bottom: same as top-left for the results of the competitive model. H. Same as G for all pairs of 
neurons in opposite populations (putatively AP vs IP). 
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 Simulations of the competitive model showed similar results to the partial segregation 

model, in that it demonstrated a reasonable distribution of delta powers in the AP and IP 

populations (Figure 3-2B) and all quantitative measures fell within the confidence intervals 

determined from in vivo data (Figure 3-2C). 

Having identified a model which both fit the basic properties of the data and had a 

reasonably simple and realistic architecture, we asked if a version of this model which didn’t 

exhibit features of dopamine depletion would reasonably fit our control in vivo data. As such, we 

made three modifications to the competitive model: 1) Instead of oscillating and Poisson spike 

trains, all simulated spike trains from GPe were approximately pacemaking (see Methods); 2) 

the passive TRPC3 current was tuned up to match experimental data (Zhou et al. 2008, 2009); 

3) tonic STN excitation was tuned up to match our in vivo data. Without further tuning, the 

results of this model matched the expected firing rates and variability observed in vivo in healthy 

animals (Figure 3-2D). As such, this model of competitive synaptic allocation in SNr from GPe 

and other SNr neurons matches our SNr data in both the control and DD conditions. 

3.3.3 Imperfectly synchronous GPe oscillations propagate and entrain phase lags in 

SNr 

Next, we sought to delve deeper into some of the dynamics of the competitive model in 

DD. First, we investigated the phase delays between neurons within and between AP and IP 

populations. A feature of the AP/IP dichotomy is that oscillations in AP neurons tend to lead 

those in IP neurons (Figure 2-8). Since we do not have an M1 reference signal in the model as 

we did in some of our in vivo data, we attempted to replicate this finding using the cross-

correlations between spike trains from individual neurons (see Methods). Using all of our 

labeled pairs of simultaneously recorded AP and IP neurons, we see a clear bias towards AP 

neurons leading simultaneously recorded IP neurons (Figure 3-2E, p = 0.0179, Wilcoxon signed 

rank test). In our results from the competitive model (in which we can simulate many more pairs 
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of simultaneously recorded neurons), we see a similar bias toward the AP population leading IP 

neurons (Figure 3-2F, p = 4.490*10-13). 

We also compared the more general distributions of within-population and between-

population distribution of pairwise phase lags. In our experimental data, both distributions 

peaked at zero as expected. While the within-population distribution has a sharper peak in the 

real data than in our simulation (indicating that our simulation has slightly inflated lags over the 

real data), the distributions are not significantly different from one another (Figure 3-2G, p = 

0.2850, two-sample Kolmogorov-Smirnov test). Similarly, the between-population distributions in 

both the real and simulated data are wider than the within-population distributions, and the 

simulation is again not significantly different from the real data (Figure 3-2H, p = 0.1443). As 

such, this model replicates the phase delays evident in the DD SNr network, though may be 

biased slightly towards longer delays. 

3.3.4 The power of oscillatory inputs from GPe and SNr define the AP and IP clusters 

 Finally, we sought to more deeply understand the dynamics leading to the distinct AP 

and IP populations in our competitive model. Since the number of synapses that each SNr 

neuron receives from either population (GPe or SNr) follows a unimodal binomial distribution, 

we might expect a continuous spectrum of oscillatory profiles, with a large number of non-

oscillating neurons receiving a near equal number of GPe and SNr synapses while neurons on 

the tails of this distribution express a strong AP or IP oscillation. However, the large number of 

strongly oscillating AP and IP neurons suggests that the neurons’ intrinsic dynamics and 

synaptic interactions may combine to separate units into the more distinct AP and IP classes. 

 To investigate this idea, we plotted each neuron’s sum of synaptic weights from GPe 

against its sum of weights from SNr. As expected, these two measures have an inverse 

relationship as dictated by the competitive nature between the number of GPe and SNr 

synapses on a single neuron. Additionally, we see that AP neurons tend to receive more GPe 

input while IP neurons tend to receive more SNr input, as expected. Note that each neuron’s 
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placement on this scatterplot is determined completely by the random setup of the network, as 

no synaptic weights are changed during the simulation. As such, there is an expected binomial-

like density of points along the y = –x line. 

 Next, we weighed each synaptic weight by its oscillatory power at the forcing frequency 

(2 Hz) to visualize the total oscillatory power each neuron receives from GPe and SNr 

synapses. Here, we see the AP and IP neurons separate into more distinct clusters. Using the 

kmeans (with k=2) clustering algorithm, we derived a boundary that best separates the two 

clusters and found that only 4 neurons were mislabeled (i.e., an AP neuron in the IP-dominant 

cluster or vice-versa). Most notably, we noticed an unexpected level of separation between 

these two clusters. To quantify this, we computed the distance from each point to the boundary 

Figure 3-3: Model SNr neurons cluster based on presynaptic GPe and SNr delta power.  
A. Scatterplot of AP (red) and IP (blue) neurons based on their total synaptic strength from other SNr and 
GPe neurons. Dashed line is a boundary based on the kmeans clustering algorithm with n = 2, used as a 
comparison against the clusters in panel B. B. Same as A, except plotting the total 2 Hz power (Σ[2 Hz 
power * synaptic strength]) from SNr and GPe. C. Distance from each neuron to the kmeans boundary for 
panel A (top) and B (bottom), totaled over 5 runs of the competitive model with different randomly 
instantiated connections and strengths. The non-zero peak in the bottom panel indicates a separation of 
clusters from the boundary. 
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and found its distribution not centered at zero. As a comparison, we performed the same 

kmeans clustering and distance computation on the strength scatterplot in Figure 3-3A and 

found a distance distribution centered at zero, as would be expected from this visually unimodal 

2-D distribution. This lack of neurons in this area between clusters is surprising, as it is not clear 

how the presynaptic oscillatory powers received by each neuron would dichotomize to leave this 

area sparse unlike what we observe in the strength scatterplot. Nevertheless, this demonstrates 

that the neurons in this model undergo an unexpected bifurcation into two mostly distinct AP 

and IP populations. 

 

3.4 DISCUSSION 

In this chapter, we have demonstrated that GPe oscillations are sufficient to entrain 

oscillations in SNr that mimic those observed in vivo. This is possible in a network architecture 

which explicitly defines SNr subdivisions by their distinct synaptic connectivity patterns, where 

neurons tend to (but do not always) fall into AP or IP-like phase relationships based on which of 

the two subdivisions they are in. However, we show this dichotomy is also possible through a 

simpler and less assumptive model wherein SNr and GPe compete for a limited number of 

synapses on each SNr soma. With small, realistic changes to this model to simulate a healthy 

state, we show that the model exhibits firing rates and patterns that match what we observe in 

healthy control mice, lending further credence to the realism of our model. We have also 

demonstrated that, despite their imperfect synchrony, delta oscillations in GPe are able to 

propagate to downstream targets and generate realistic phase distributions in SNr. 

3.4.1 Network architecture assumptions 

 Our initial model assumed two anatomically distinct populations of SNr neurons 

receiving connections from specific types of GPe and SNr cells. Specifically, we assumed that 

oscillating and Poisson neurons in GPe are each biased toward distinct projection targets in 

SNr, and that these two SNr populations primarily project to one another rather than to 
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themselves. Experimentally, there is clear evidence of topographical pathways through the 

basal ganglia, including the GPe-SNr pathway, which are segregated by the higher order 

processes they are associated with – motor, limbic, or associative (DeLong and Wichmann 

2010; Yelnik 2002). However, the topography is likely more complicated, continuous or 

convergent than the two discrete populations we present in this model (Foster et al. 2020; 

Nakano 2000). Given our results in Chapter 2 demonstrating the connection between delta 

oscillations and motor symptoms, it is possible that oscillations may be restricted primarily to 

motor pathways in the basal ganglia while not penetrating limbic or associative pathways, which 

could lend credence to our built-in dichotomy, although there is no direct evidence for this. 

However, even if two distinct GPe-SNr pathways exist as we have modelled them here, it is 

unlikely that the two SNr populations would be more likely to project to each other rather than 

back to themselves, and this is a critical detail for our basic and partially segregated models’ 

oscillatory behaviors. As such, we consider these initial models a proof of concept for how 

realistic oscillations could form in such a system, but not necessarily a realistic model of the 

GPe-SNr network. 

In contrast, our competitive model does not rely on any of these assumptions. Instead, 

the only architectural assumption is the existence of competition between GPe and SNr neurons 

for forming and maintaining synapses on SNr somas. While there is no direct evidence of this to 

our knowledge, other examples of similar synaptic competition exist. For example, synaptic 

scaling occurs in many regions of the brain to approximately balance a neuron’s output 

(although this has primarily been studied at excitatory rather than inhibitory synapses) 

(Turrigiano 2008), and nascent synapses may be pruned if nearby synapses are particularly 

active (Lo and Poo 1991). Notably, SNr neurons tend to exhibit large nests of synapses all 

arising from the same presynaptic neuron (Simmons et al. 2020; Smith and Bolam 1989); this 

redundancy may explain the atypical strength of these connections onto SNr, and could also 

increase synaptic competition if there is simply not enough physical space for more synaptic 
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nests. While studies have looked closely at the synaptic connectivity from GPe to SNr and 

within SNr (Higgs and Wilson 2016; Simmons et al. 2020), no study has looked at the 

relationships between these connections and whether strong inhibition from one source affects 

the probability of receiving strong inhibition from the other. A study directly testing whether 

levels of inhibition from GPe and SNr on a single SNr neuron are inversely correlated, as we 

have predicted here, would lend credence to our proposed model of delta propagation to SNr 

through GPe. 

3.4.2 Limitations 

In comparing the results from models to real data, we ran statistical tests or derived 

confidence intervals to determine if the simulated results were statistically indistinguishable from 

the real data in a classical statistical sense. We caution strongly, however, that our failure to 

reject the null hypothesis that our simulation produces distributions which are the same as those 

observed in vivo is not an acceptance of that null hypothesis. Such a claim can, in fact, never be 

proven, as even two samples from identical distributions will never have precisely the same 

mean (or any test statistic of interest). For the purposes of this study, we consider these 

classical techniques sufficient to claim that our model reasonably matches the experimental 

results. 

As with any computational model, certain aspect of realism must be sacrificed, both for 

the simplicity of building the model and in interpreting its results. We used a conductance-based 

model of SNr neurons which grounds this model in biological realism based on the known ionic 

currents driving these neurons’ electrochemical dynamics and allows them to be well fit to 

experimental data. However, even this relatively realistic model requires many simplifications. 

We included only two compartments, one somatic and one dendritic, which neglects features 

like dendritic computation and variable or even failed propagation of action potentials down an 

axon. While we include short-term synaptic depression, longer term plasticity is neglected, due 

both to the complexity this would induce in the model and a lack of experimental understanding 
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of plasticity in the SNr. Since it is not clear how delta oscillations initially arise in the basal 

ganglia, our choice to force these oscillations in artificial GPe spike trains allows us to study the 

propagation of oscillations to and within SNr. While we attempted to fit our artificial oscillations 

to data from GPe, features such as nonstationarities in oscillatory power, frequency and firing 

rate were not modeled, and could affect the propagation and integration of these oscillations in 

SNr. 

While we use the term “competitive model” for the connection architecture we propose, 

we caution that the particulars of such synaptic competition have been ignored here. We 

assume that there is limited space for the large synaptic nests that are made on SNr somas 

(Simmons et al. 2020; Smith and Bolam 1989), and we begin the model at a state in which that 

limited space has already been allocated to GPe and SNr neurons. The endpoint of this inferred 

competition can be tuned in the model by adjusting the probability that a unitary connection 

arises from GPe rather than SNr, but the details of how that underlying competition might occur 

in the brain are not considered. In biological neurodevelopment, such competition could exist in 

many forms, with synapses being formed, pruned, strengthened, and weakened through a 

number of activity-dependent plasticity mechanisms (Fino et al. 2005; Thoenen 2000), or the 

synapses could genuinely be distributed in a simple random fashion. The details of such 

development and plasticity in the SNr are not known, but do not affect the endpoint of the 

system that we are modeling here. 

Despite these limitations and simplifications, we find that our model is a good fit to our 

data in the particular questions we are investigating in this chapter. In order to truly determine 

the usefulness of this model, however, it is important to tie its results to predictions that can be 

verified experimentally and test its veracity. 

3.4.3 Model predictions and extensions 

A major conclusion of our work is that oscillations in GPe are sufficient to recreate the 

oscillations we observe experimentally in SNr. This hypothesis could be tested by comparing 
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the oscillatory power in SNr neurons before and after the ablation of GPe. We caution, however, 

that while GPe may be sufficient to entrain SNr in this way, it may not be the only nucleus doing 

so – delta oscillations in the STN could also play a role in entraining SNr. As such, an ablation 

of GPe could silence delta oscillations, but it could also merely weaken them, adjust their 

patterning, or have little to no effect if only a single oscillating nucleus projecting to SNr is 

needed to effectively entrain it. 

As such, a clear next step for this model would be the inclusion of STN. Adding a 

nucleus with oscillations that have a shorter upstate (approximately 30% of the period compared 

to GPe’s 55%) and are projected via excitatory synapses could considerably change the 

dynamics that emerge when GPe and STN’s signals are integrated in SNr. Our simulations 

suggest an architecture of balanced inhibition such that individual neurons receive an 

approximately equal sum of strong GABAergic inhibition, whether through synapses from GPe 

or other SNr neurons – similarly, the addition of STN could suggest rules by which STN may 

innervate SNr neurons, such as a balanced level of excitation across all SNr neurons or a 

competitive level of innervation with D1 neurons from striatum, since both nuclei tend to 

synapse onto dendrites. 

Additionally, certain newly discovered aspects of GPe and SNr physiology could have 

significant implications if included in this model. While GPe is canonically an inhibitory nucleus, 

it has been shown to have both inhibitory and excitatory effects in SNr (Freeze et al. 2013; 

Phillips et al. 2020) which may be due to a shift in the chloride reversal potential due to high 

chloride influx from a large amount of GABAergic tone from SNr’s many sources of inhibitory 

input (Phillips et al. 2020). Such shunting or excitatory effects of GPe could greatly shift how 

effectively it propagates oscillations to SNr, especially in a model in which chloride dynamics are 

allowed to dynamically shift ECl. A sufficiently depolarized ECl also allows for the spontaneous 

emergence of delta oscillations in a network of interconnected SNr neurons (Phillips et al. 

2020). While these oscillations are much weaker than those we see in vivo, exhibiting only 
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approximately a 2 Hz difference between peak and trough compared to the complete cessation 

of firing observed in many SNr neurons in vivo, this intrinsic drive to oscillate at a delta 

frequency under certain conditions could make SNr more effective at amplifying oscillations it is 

entrained to by other nuclei orbe the source of these oscillations that are amplified within SNr by 

other biophysical mechanisms or through a multisynaptic loop as has been observed in the 

generation and amplification of beta oscillations in other computational models of basal ganglia 

circuitry (Corbit et al. 2016; McCarthy et al. 2011). 

We find the separation of neurons into mostly distinct AP and IP populations in the 

competitive model surprising, as it is not clear how the dichotomous clusters in Figure 3-3 form. 

Here, we are looking at the total power of oscillatory activity each neuron receives – that is, its 

presynaptic profile – and it is unclear how the AP and IP neurons could shape their presynaptic 

profile in such a way except through a subtle and complicated multisynaptic network within SNr. 

We posit that, through the random connectivity and strengths randomly determined at the start 

of the simulation, mini circuits within SNr allow, for example, an AP neuron to effectively entrain 

the neurons which synapse onto it, or neurons which synapse onto other nearly synchronous 

neurons in the AP population (and similarly in the IP population). Simulated experiments 

controlling the connectivity of individual neurons could help to better understand the phenomena 

occurring here – for instance, if we specifically instantiate a test neuron whose presynaptic 

profile falls in this between-cluster region, will it be fated to move out of this region into one of 

the clusters? Such experiments may illuminate some of the interesting dynamics that can 

spontaneously arise through random connectivity and may be critical for synchronization in PD 

or other emergent phenomena in the brain. 

3.4.4 Propagation of imperfectly synchronous oscillations 

A particularly interesting result is the effective entrainment of SNr by GPe despite the 

imperfect synchrony of GPe oscillations. Within the prototypic GPe population, we observe 

pairwise delta phase differences as large as 100 ms, a much larger delay than we had 
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expected. We posit that delayed oscillations at the same frequency could still effectively 

integrate in a single SNr neuron in a manner which causes oscillatory firing merely by changing 

the shape of the resultant oscillation – for instance, in the case of square wave oscillatory 

profiles, oscillations with a large delay integrated in the same SNr neuron may simply change 

the relative durations of the neuron’s up and down states while still allowing the delta oscillation 

to express. 

These long delays may hint at why delta oscillations are such a strong feature in DD, 

and perhaps in the brain as a whole. A 20 ms delay between two neurons undergoing a 1 Hz 

oscillation still keeps them approximately in phase, covering only 1/50 of their cycle. Yet, the 

same delay in, for example, a 25 Hz oscillation gives these neurons an antiphase relationship. If 

lags of this size are a common feature of neural oscillations regardless of the oscillation 

frequency, a group of neurons oscillating at the same high frequency would essentially tile the 

phase space, so the integration of these signals in downstream neurons would undergo 

destructive interference, making the propagation of these high frequency oscillations difficult. 

This suggests that delta oscillations may be particularly robust to the natural variability in 

relative timing across neurons within a population, and could help explain why they are such 

effective synchronizers, able to entrain the entire cortex during slow-wave sleep and, indeed, 

extend throughout the basal ganglia as we have established in DD. 
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4 SUMMARY AND CONCLUSION 

 

 

Through a thorough analysis of oscillatory activity in dopamine depleted mice, we have shown 

that delta oscillations are a robust neural signal of motor dysfunction in the SNr and across 

other basal ganglia nuclei. These oscillations correlate with Parkinsonian motor deficits and 

track the timeline of akinesia induced by D2R antagonists in healthy mice and the rescue of 

motor function in DD mice with D2R agonists. 

 The relationship between the oscillations we observe in SNr neurons and in M1 defines 

two novel SNr subpopulations: those whose firing predicts upcoming active states in M1, and 

those pauses or troughs predict active states in M1. This dichotomy mimics one of the defining 

features of the prototypic and arkypallidal population in GPe, and studies which establish other 

analogies to these GPe subpopulations could help to uncover the roles of distinct cell types in 

SNr as has been done in striatum (Albin et al. 1989; DeLong 1990) and GPe (Mallet et al. 2012; 

Mastro et al. 2014). 

 The predictive nature of both AP and IP SNr population activity on future M1 states 

(100–300 ms later) suggest that these oscillations arise in the basal ganglia and propagate to 

other motor centers of the brain like M1, and we have shown through a computational model 

how these oscillations can effectively propagate within the basal ganglia in a way which 

matches in vivo data. This lends credence to the hypothesis that the delta oscillations we 

observe may arise from a single source in the basal ganglia, though it remains unclear which 

nucleus this is and the exact mechanism by which they arise. 
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4.1 WHY DO PARKINSONIAN OSCILLATIONS VARY ACROSS SPECIES? 

 The complete lack of beta oscillations in our recordings, in both LFP and individual 

neurons, was surprising. An argument could be made that, through some unknown mechanism, 

the delta oscillations we observe in DD mice are merely a slowed down beta oscillation: since 

beta oscillations already vary widely in frequency across species (roughly 13-30 Hz in humans, 

20-35 Hz in rats, 8-15 Hz in monkeys), it is possible that an even greater slowdown of beta 

oscillations is occurring in mice. We would argue against this hypothesis for two reasons. First, 

since rats and humans exhibit both delta and beta oscillations in DD and PD respectively, it is 

more likely that the delta oscillations we observe in mice are mimicking the similar oscillation 

observed in these subjects, rather than the concurrent but much faster beta oscillations. 

Second, the delta oscillations we have measured exhibit a closer relationship to the timeline of 

motor symptoms than the beta oscillations observed in animal models of PD – delta oscillations 

arise immediately and along with symptoms in DD or acute D2R antagonism and attenuate 

along with symptoms when treated with D2 agonists, but beta oscillations in rats and monkeys 

require longer to arise and do so after symptoms first appear (Leblois et al. 2007; Mallet et al. 

2008). 

It is perplexing that DD in mice could replicate such profound Parkinsonian symptoms 

without bearing its signature beta oscillations, which are seen, in some form, in other animal 

models of PD. However, our expectation of such an elegant connection between disease states 

across species may have been naïve. Animal research is based on the expectation that certain 

aspects of physiology will be conserved to some extent across species – effective biological 

systems within organisms have evolved and been maintained because changes to them would 

be naturally selected against. The unnatural or rare states we study in disease research do not 

follow these conservation rules – there is no direct evolutionary pressure to conserve how a 

diseased system will perform.  
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Of course, disease states are a product of their surrounding physiology. In PD, for 

instance, the physiology of the basal ganglia determines how it will react to a loss of dopamine, 

and many aspects of this physiology are conserved between humans and model species. But, 

changes which could have minimal effect on BG physiology in health could lead to drastically 

different outcomes when dopamine is lost – the evolutionary pressure conserving similarity in 

disease states is almost entirely indirect. We should thus expect significantly more genetic drift 

in regard to disease states than healthy states, which would lead to, on average, an even 

smaller coherence between model species and humans in disease than we see in health. 

Does this mean our use of animal models for studying diseases is fundamentally 

doomed? Clearly not, as decades of successful translational research have shown – our 

understanding of disease states across the entirety of human biology has been valuably 

informed by animal models, and countless treatments have graduated from bench to bedside. 

Instead, this tenet – that we should expect lower conservation across species in disease states 

than in health – recommends a certain humility in interpreting our models. We should not be 

surprised when aspects of disease physiology are changed or completely absent in animal 

models, and when we see physiological similarities, we should attempt to verify that these 

phenomena really do play similar roles in the disease states across species. 

Delta oscillations, we hope, are one of these useful similarities between DD mice and 

patients suffering from PD, but further research is needed to make such a confirmation. The 

relationship between delta oscillations and motor symptoms, both predicting overall dysfunction 

and dynamically predicting periods of akinesia, are a hopeful indicator that the similar appearing 

oscillations in PD patients may play a similar role, but until such a hypothesis has been directly 

tested as it has been for beta oscillations, it remains a conjecture. We are hopeful that 

methodological tools such as the use of phase shift will make it easier to identify these slow 

oscillations amidst the high levels of low frequency biological noise present in both awake 

animals and human subjects and thus make such studies easier to pursue. 
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There may even be scientific benefits to the poor evolutionary conservation we expect 

(and, in the case of PD models, observe) in disease states. The existence of beta oscillations in 

DD rats but not DD mice, despite similar physiology, constrains which facets of BG physiology 

may be necessary for beta oscillation generation. A missing or altered ion channel in a BG 

nucleus, for instance, could have little effect on BG functioning in health, but may be responsible 

for the generation of beta oscillations in rats or their absence in mice. By comparing physiology 

in these species, we may find clues to the biophysical causes for beta oscillations, which can 

then be the target of directed experiments and potential disease-modifying interventions. 

 

4.2 HOW MIGHT DELTA OSCILLATIONS LEAD TO PARKINSONIAN SYMPTOMS? 

 In chapter 2, we established two correlations between delta oscillations and motor 

deficits in DD mice. First, the fraction of neurons exhibiting a delta oscillation in SNr is correlated 

with the level of motor dysfunction in a barrage of standard behavioral tests. Second, delta 

oscillations in individual SNr neurons are weakened, though not completely ablated, during 

periods of movement. Such findings of course do not prove causality, and it would be difficult to 

do so in this situation. One could perform an experiment in which delta oscillations are 

electrically or optogenetically induced in a population of neurons to determine if this patterning is 

sufficient to cause PD-like motor deficits, but it would be difficult to accurately mimic the 

dynamics of these oscillations in DD. For instance, if we were to optogenetically excite or inhibit 

SNr neurons at a delta frequency, we would not be respecting the AP/IP dichotomy that arises 

in DD, or the small phase differences that exist within these populations. If these nearly 

antiphase populations with rich phase relationships are critical to the development of motor 

symptoms, such an experiment may erroneously conclude that delta oscillations are not causal 

to Parkinsonian deficits merely due to a limitation of our experimental procedures. This may be 

why analogous experiments inducing artificial beta oscillations have failed to replicate motor 

symptoms (Swan et al. 2019). 
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 Aberrant patterning in BG spike trains is typically hypothesized to induce symptoms by 

sending an undesired “stop” signal to downstream motor networks, effectively “jamming” these 

circuits and rendering them unable to properly integrate motor plan information or output desired 

motor sequences (Rubin and Terman 2004; Turner and Desmurget 2010). Evidence from 

pallidotomy studies reinforce this idea – the complete removal of the aberrantly firing GPi greatly 

improves motor symptoms (Dogali et al. 1995; Lozano et al. 1995; Vitek et al. 2003), with only 

minor side effects involving learning of new motor skills (Obeso et al. 2009; Turner and 

Desmurget 2010). The question then becomes, what feature of delta oscillations could cause 

them to be a jamming signal? 

 Answering this question requires an understanding of how BG output usually transmits 

information to downstream targets. Synapses made by GPi and SNr typically exhibit short-term 

synaptic depression (Uno et al. 1978), as neurotransmitter-filled vesicles cannot be replenished 

quickly enough to cause significant neurotransmitter release and binding after every individual 

spike by these high-frequency firing neurons. Depending on the exact timescale of recovery 

from short-term depression at these synapses, delta oscillations could be an especially 

damaging signal – the pause or significant slowdown in firing at the oscillation’s trough gives 

time for the vesicle pool at the presynaptic terminal to be replenished, so when the oscillation 

enters an upstate, a sudden release of neurotransmitter excessively inhibits postsynaptic 

targets. Indeed, the induction of strong synaptic depression at pallidothalamic synapses is one 

of the hypotheses for DBS’s mechanism of symptom reduction (Erez et al. 2009; McIntyre et al. 

2004). In the other direction, thalamic post-inhibitory rebound after an upstate in a GPi or SNr 

neuron’s delta oscillation can lead to undesired thalamic spiking, and DD has been shown to 

exaggerate post-inhibitory rebound in the mouse thalamus (Kim et al. 2017). More studies 

directly investigating the properties of BG-thalamic synapses and the thalamus’s response to 

various types of signals from GPi and SNr could determine if this mechanism is plausible. 
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 While we are studying delta oscillations in the context of a motor disorder, delta 

oscillations are most famous for their role in a completely different akinetic state – 

unconsciousness. Multiple sleep disorders, including sudden onset of sleep without warning 

have been well established as nonmotor symptoms of PD (Comella 2007; Ito 2015); as such, 

we find the parallels between the delta oscillations observed in DD mice and those observed 

under anesthesia and non-rapid eye movement (NREM) sleep fascinating. Such states are 

characterized by strong delta oscillatory synchrony across the cortex, though notably this 

oscillation is not present in the sleeping or anesthetized basal ganglia in healthy conditions 

(Mallet et al. 2016; Walters et al. 2007). It is not clear how delta oscillations could be causal to 

the lack of motor activity in NREM sleep and under anesthesia, but if such a relationship exists, 

it is possible that the delta oscillations originating in the basal ganglia in PD which entrain M1 

(and possibly thalamus) could essentially be mimicking a sleep-like state of low activity 

specifically in the motor system. 

On the other hand, such oscillations could be unrelated. It is likely that there are many 

mechanisms by which slow oscillations can arise in the brain, and as we suggest through our 

phase lag analysis in Chapter 3, oscillations at these slow timescales may be particularly 

resistant to natural neural noise that can dampen faster oscillations, allowing relatively slow 

oscillations to arise more easily in the brain than those of higher frequencies. While delta 

oscillations in DD mice (0.5–4 Hz) match quite closely with the frequency of oscillations 

associated with sleep and anesthesia in both mice and humans, Parkinsonian delta oscillations 

in humans are slightly faster on average, with a range from 2–6 Hz, and thus overlap with the 

sleep delta band but do not match it perfectly. Depending on the frequency sensitivity of a 

hypothetical mechanism by which delta oscillations drive akinesia in both sleep and PD, this 

mismatch may pose problems with such a connection. 
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4.3 FUTURE DIRECTIONS FOR DELTA OSCILLATIONS AND SNR PHYSIOLOGY 

Our thorough investigation of the oscillatory landscape of the mouse SNr in dopamine 

depletion demonstrates the importance of delta oscillations in DD and gives useful insights into 

SNr physiology and neural dynamics. But this research also sets the groundwork for further 

questions regarding delta oscillations and nigral physiology in the realms of clinical 

investigation, basic science, and computational modeling. 

Perhaps the most obviously important question regards our findings’ relationship to PD – 

that is, does the connection between motor symptoms and delta oscillations in mice translate to 

the analogous oscillations observed in PD? Many questions could be investigated in clinical 

research studies during the implantation of DBS electrodes which could mimic previous studies 

regarding beta oscillations – for instance, does delta power in BG nuclei or delta coherence to 

cortex change during a motor task? Do delta oscillations attenuate from treatment with levodopa 

or DBS, and does the time course of their modulation match the time course of motor symptom 

improvement? Are delta oscillations predictive of effective loci for DBS targeting? These 

questions may be difficult to answer from LFP recordings where there tends to be high levels of 

noise in low frequencies, but the notion of local stationarity which enabled our phase shift 

analysis to distinguish single unit oscillations from noise may have useful applications in LFP 

analysis as well. Such questions may even be able to be tackled outside of laboratory settings – 

as microelectrode technology improves, the popularity of DBS electrodes which can also serve 

as continuous recording devices has increased (Paff et al. 2020), and with large sets of data 

from many patients paired with behavioral or motor data from sources like wearable fitness 

trackers, it may be possible to relate neural signals such as delta oscillations to motor 

phenomena in more realistic situations. 

In a more basic science direction, the question of where and how delta oscillations arise in 

DD is largely unclear. We have demonstrated that a loss of activation of D2 receptors is 

necessary and sufficient to generate delta oscillations in SNr, but it is not clear which effects of 
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a lack of action on D2Rs lead to delta oscillations or where these D2Rs reside. Targeted D2R 

antagonist injections or conditional knockouts or knockdowns of D2R’s in specific BG nuclei 

could narrow down the locus of delta oscillation generation. However, we caution that the large 

dose of D2R antagonists needed for the development of delta oscillations may make such 

targeting difficult if an entire nucleus must be affected. Furthermore, it is possible that DD 

causes delta oscillations in multiple BG regions independently. In Chapter 2, we suggest some 

channels which are associated both with D2R-mediated signaling cascades and the generation 

of oscillations – namely, NMDARs and L-type Ca2+ channels – and targeted pharmacological 

manipulations of these or other targets could shed further light on the intracellular or network 

mechanisms underlying this oscillation generation. 

In Chapter 2, we also discuss the parallels between the AP/IP dichotomy in SNr and the 

TA (arkypallidal) and TI (prototypic) populations in GPe. Such GPe populations were first 

defined by their relationship to M1 in DD under anesthesia (Mallet et al. 2008), much like we 

have done to define the AP and IP populations. Juxtacellular labeling of AP and IP neurons after 

electrophysiological identification may allow us to find distinct projection targets of AP and IP 

neurons which could demonstrate their distinct roles in BG neural circuits, and immunostaining 

for potential molecular differences in these populations driven by distinct genetic expression 

could lead to easier and more targeted experiments observing or manipulating these 

subpopulations (Mallet et al. 2012). 

We proposed extensions to our biophysical model in the discussion of Chapter 3, but wide 

ranges of potential parameter choices make rigorously fitting such a model difficult to achieve 

manually, especially if additional complexity is added. An alternative could be to fit a 

computational model of the GPe-SNr (and perhaps STN) network using a statistical approach. 

New methods allow for the fitting of simpler models of neural populations (rather than individual 

spiking neurons) such as the Wilson-Cowan model (Wilson and Cowan 1972) directly from the 

spiking data like we recorded in Chapter 2 (René et al. 2020; Schwalger et al. 2017). This would 
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allow a more rigorous fit to our experimental data and could suggest how connections from GPe 

and/or STN differently innervate the AP and IP populations to achieve the dynamics we observe 

in vivo, producing useful and testable hypotheses regarding these novel populations’ distinct 

roles in BG circuits. 

 

4.4 FINAL REMARKS 

Our results demonstrate that delta oscillations are a critical feature in dopamine depletion 

and its accompanying motor impairments. This suggests a reappraisal of delta oscillations in PD 

as a source of Parkinsonian symptoms beyond tremor. If such a connection can be made 

through further animal and human research, our results pose mice as a valuable animal model 

for further study into the generation, propagation, and pathological capabilities of delta 

oscillations and ways in which they could be targeted for PD treatments. 

The oscillatory landscape of PD and animal models of PD is complex in many ways. 

Oscillations can be difficult to reliably detect amidst neural noise, especially at frequencies as 

low as delta oscillations. Multiple oscillating sources, within or between brain regions, can 

exhibit complex relationships with one another which can be computationally difficult to 

disentangle; these relationships can be further muddled when there are several concurrent 

oscillations at multiple frequencies, a phenomenon which occurs with beta and delta oscillations 

in many PD patients. Oscillation strength can vary dynamically, and because oscillations are 

processes evolving over time rather than distinct events, it can be especially difficult to 

rigorously relate them to behavioral states or events. Finally, the high variability of findings 

across different animal models further clouds a clear picture of oscillatory dynamics and their 

relevance to PD. 

 We are hopeful that the approaches taken in this work help to disentangle some of these 

difficulties through the use of new tools and lenses for the analysis of oscillations in PD and in 

general. Delta oscillations are not a new phenomenon in the PD literature, but in many ways 
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they have been neglected, and we are optimistic that a greater understanding of their 

physiology can improve our understanding and treatment of Parkinsonian dysfunction. 
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APPENDIX A  

 

 

 

 

Figure A-1: Unilaterally depleted animals exhibit a small number of delta oscillating units in the 

SNr of their intact hemisphere.  

A. Example autocorrelation (top), PSD (middle) and phase shift (bottom) for an example SNr unit 

exhibiting a delta oscillation in the intact hemisphere of a unilaterally depleted animal. B. Fraction of 

oscillating units in SNr for each animal in the control condition (black circle) and in the intact hemisphere 

of unilaterally depleted animals (dark blue triangle). The difference between these conditions is not 

significant at the α = 0.05 level (p = 0.0  1). 

 



93 
 

 

 

 

 

 

 

 

 

 

 

 

 

  

Delta Oscillation Frequency by Animal

1 2  4

Frequency (Hz)

0

2

4

 

C
o
u
n
t

Figure A-2: Central delta oscillation frequency in SNr for each DD animal 
Histogram showing median delta oscillation frequency in SNr, where each count is one animal. Data were 
pooled across bilaterally and unilaterally 6-OHDA-injected and reserpine-injected animals. Frequency 
bins were determined by the Rayleigh frequency of our windowing procedure (0.2441 Hz) 
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Figure A-3: Power of SNr LFP beta oscillations is not affected by DD.  
Fractional beta power (compared to total 1–100 Hz power) in control animals (grey), animals gradually 
dopamine depleted to 85%, 60%, 30% or 5% striatal DA remaining (increasing shades of pink from left to 
right), and acutely dopamine depleted animals (purple). Grey squares illustrate individual animal means. 
No significant difference was found between conditions (ANOVA, p = 0.7557). A version of this figure was 
first published in Willard et al. 2019. 
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Figure A-4: Pairwise phase relationships corroborate the existence of two populations of 
oscillating units in dopamine depleted SNr.  
A. Top: Spike rasters from a pair of simultaneously recorded SNr units, scale bar = 1 s. Bottom: 
Normalized cross correlations (see Neural Measures section of Methods) of the above pairs 
demonstrating an in-phase relationship. B. Same as a for a near anti-phase relationship. C. Scatterplot of 
all pairs of oscillating units. The horizontal axis measures their mean phase offset (0 indicating in phase, 
π indicating antiphase), and the vertical axis measures circular variance of phase offset computed across 
time windows. D. Histogram collapsing the above scatterplot to show counts of pairs based on their 
phase difference. 
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Figure A-5 Poisson regression on spike trains corroborates consistent non-zero lags within SNr 
populations.  
A. Example regression results predicting single unit SNr firing with zero lag (i.e. perfect in-phase 
relationship). Top: regression coefficients for each individual lag. Bottom: sum of squared deviance 
residuals at each lag. Red circle indicates that the model using that lag significantly outperforms a purely 
autoregressive model of the spike train. This best model appears at a peak of the coefficients (top) 
indicating that the two neurons are from the same population. B. Heatmap indicating the fit of each model 
over time as measured by their sum of squared deviance residuals calculated over a moving 5-second 
window. Cooler (more blue) colors indicate lower residuals (i.e. better fit). C-D. Same as A-B with a pair 
who are from the same SNr population but whose phase relationship is consistently non-zero. 
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Figure A-6: Fitting simulated GPe spike trains.  
A. Example visualization of the process for computing the mean fraction of time a GPe neuron spends in 
its upstate. The black line shows the SDF of the example neuron’s spike train with visible delta 
oscillations. The red line shows a longer rolling mean of the neuron’s firing rate. The fraction of time the 
SDF exceeds the rolling mean is the approximate time that neuron spent in its upstate. B. Computation of 
GPe pairwise lag distribution. Top: Histogram showing the pairwise delta phase lags of all simultaneously 
recorded pairs of prototypic GPe neurons which exhibited a significant delta oscillation in vivo. Bottom: 
One instantiation of the pairwise delta phase lag distribution computed from the GPe spike trains fed into 
the model after fitting the lag distribution to the top distribution. 
 



98 
 

Table A-1: Intrinsic current parameters for SNr biophysical model 

Current E gmax Gate 𝐱𝟏/𝟐 𝐤 𝛕𝟎 𝛕𝟏 𝛕𝟏/𝟐 𝛔𝟎 𝛔𝟏 xmin 

Na 50 35 m -30.2 6.2 0.05 0.05 1 1 1  

   h –63.3 8.1 0.59 35.1 –43.0 10.0 –5.0  

   s –30.0 –0.4 10.0 50.0 –50.0 18.3 –10.0 0.15 

NaP 50 0.175 m –50.0 3.0 0.03 0.146 –42.6 14.4 –14.4  

   h –57.0 –4.0 10.0 17.0 –34.0 26.0 –31.9 0.154 

K –90 50 m –26.0 7.8 0.1 14.0 –26.0 13.0 –12.0  

   h –20.0 –10.0 5.0 20.0 0 10.0 –10.0 0.6 

Ca 13.27* 0.7 m –27.5 3.0 0.5 0.5     

   h –52.5 –5.2 18.0 18.0     

SK*** –90  m  0.4 0.1 0.1     

TRPC3 –37 0.2**          

Leak –60 0.04          

 
Units for E, x12, k, and σ are in mV, τ is in ms, g is in nS/pF.  

* ECa is scaled by the log of the relative Ca2+ concentration, see Section 3.2.1. 

** gTRPC is only used in the control model, and is zero in DD. 
*** Non-standard parameters for Ca2+-activated SK current are in Table A-2. 
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Table A-2: Synaptic and miscellaneous parameters for SNr biophysical model 

𝑪𝑺 = 100 pF 𝑪𝑫= 40 pF 

[𝑪𝒂𝒐𝒖𝒕]= 4.0 mM 𝑛𝑆𝐾= 4 

𝒈𝑪= 26.5 nS 
 

𝑬𝑮𝑨𝑩𝑨= –70 mV 𝜏𝐺𝐴𝐵𝐴
𝑆 = 3 ms 

𝑫𝟎= 1.0 𝜏𝐷= 1000 ms 

𝜶𝑫= 0.565 𝐷𝑚𝑖𝑛= 0.67 

𝑾𝑮𝑨𝑩𝑨
𝑮𝑷𝒆  = 0.5 – 2.5 nS/pF 

𝑾𝑮𝑨𝑩𝑨
𝑺𝑵𝒓  = 0.5 – 2.5 nS/pF 

𝒈𝑺𝑻𝑵= 0.15 – 0.25 nS/pF* 

 
Values with ranges are sampled uniformly from that range for each neuron. 
* The maximum and minimum for gSTN are each scaled by 1.5 in the control model, see Section 3.2.1. 
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