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ABSTRACT

Our ability to perform a variety of difficult tasks—everything from reasoning
about the best chess move, to shooting a free throw, or finely dicing an onion—is
due to the coordinated activity of populations of neurons throughout the nervous
system. And yet, we lack an understanding of how the brain generates the activity
appropriate for achieving something as simple as pressing an elevator button. In part,
this is because we do not know which neural activity patterns the brain is capable
of generating, nor how that activity will change with experience. By exploring the
structure and constraints on the activity patterns the brain can express, we move
closer to understanding how the brain can generate the activity supportive of such
a rich variety of behaviors and adaptations.

Presently, in studies of arm or eye movements, we typically don’t know the causal
relationship between neural activity and behavior. Here we use a brain-computer in-
terface (BCI) paradigm to study learning, because the exact relationship between
neural activity and behavior is controlled by the experimenter. To generate profi-
cient behavior, the animal must change the activity of the neurons currently being
recorded. This provides us with the means to causally relate any observed structure
in neural population activity with animals’ performance at the task.

The focus of this thesis is to characterize the structure and time course of neural
population activity during learning. In the first part of this thesis, we note that just
as there is more than one way to win a game of chess, the brain has many different
patterns of neural activity it can produce to drive the same behavior. Which of these
redundant options does the brain prefer? We find that the frequency with which
animals used different patterns of neural population activity was remarkably similar
before and after learning. This suggests that the brain’s ability to take advantage of
redundancy may be somewhat limited, at least within the span of a few hours.

In the second part of this thesis, we asked how internal states such as our arousal,
attention, and motivation interact with how we learn new tasks. We identified
large, abrupt fluctuations in neural population activity in motor cortex indicative
of arousal-like internal state changes, which we term “neural engagement.” We find
that stereotyped changes in neural engagement during learning were unrelated to
goal-seeking behavior, but nevertheless influenced how quickly different tasks were
learned. Overall, this thesis characterizes a variety of different constraints and influ-
ences on how populations of neurons change their activity during learning.
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1 INTRODUCTION

Our ability to learn and perform a variety of difficult tasks—everything from reason-
ing about the best chess move, to shooting a free throw, to finely dicing an onion—is
due to the coordinated activity of populations of neurons throughout the nervous
system. And yet we lack an understanding of how the brain generates the activity
appropriate for achieving something as simple as pressing an elevator button.

How does our brain generate the activity necessary to guide our finger towards
an elevator button? And how does it learn to generate this activity in the first
place? There are three key challenges to answering questions like these, which the
work in this thesis will address. First, we typically do not know the causal rela-
tionship between neural activity and behavior (e.g., the movements of our arm and
finger). To get around this difficulty, we can use a brain-computer interface (BCI)
paradigm (Taylor et al., 2002; Carmena et al., 2003; Hochberg et al., 2006; Ganguly
and Carmena, 2009; Gilja et al., 2012; Hauschild et al., 2012; Sadtler et al., 2014),
where the exact relationship, or “mapping,” between neural activity and behavior
is controlled by the experimenter. In this thesis, we will discuss a series of BCI
learning experiments in which monkeys controlled a computer cursor on a screen by
modulating the activity of hundreds of neurons recorded in motor cortex (Figure
2.1) (Sadtler et al., 2014). To achieve the desired behavior (in this case, moving the
cursor to acquire a target—not unlike moving a finger to touch an elevator button),
the monkey must generate a particular pattern of neural activity. Importantly, the
BCI paradigm provides us with the means to causally relate the neural activity we
record in the experiment with animals’ performance at the task (Golub et al., 2016).

The second challenge is to understand which neural activity patterns the brain
is capable of generating. For example, when we move our arms, millions of neurons
in primary motor cortex (M1) fire up to hundreds of action potentials, also known
as “spikes,” per second. These neurons do not fire independently, but are rather
highly correlated with one another. In the work presented in this thesis, we use
a dimensionality reduction technique known as factor analysis (FA) to identify the
dominant patterns of co-modulation across the recorded neural units (Churchland
et al., 2010; Harvey et al., 2012; Sadtler et al., 2014), termed the intrinsic manifold
(Sadtler et al., 2014). Previous work found that, over the course of a few hours,
monkeys could not readily learn BCI mappings that required neural activity to leave
the intrinsic manifold, suggesting that the intrinsic manifold characterizes which
patterns of neural population activity monkeys could easily generate (Sadtler et al.,
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2014). Later work demonstrated that the set of neural population activity monkeys
could generate was further constrained by a fixed neural repertoire within the intrinsic
manifold (Golub et al., 2018). In this thesis, we characterize constraints on the
distribution of neural population activity within the neural repertoire during short-
term learning, and also find that changes to the neural repertoire occur given weeks
of practice.

The third and final challenge is that we do not know how neural population
activity changes with experience. While reaching out to touch an elevator button
may seem effortless to you now, it is a skill that takes infants months and months of
practice to perfect. Learning requires using feedback about our performance (e.g.,
when our finger misses the elevator button to the right) to change which neural
activity we will generate on future attempts. At the same time, we know that neural
activity changes throughout the brain according to changes in our internal state such
as our arousal, attention, and motivation. How do these two sources of changes in
neural population activity during learning—i.e., those that are learning-driven and
those related to changes in our internal state–interact when we learn something new?
We will present results indicating that even changes in our internal state unrelated
to goal-seeking behavior can nevertheless impact how we learn new tasks.

The contributions of this thesis are organized as follows.

• In Chapter 2, I will describe the brain-computer interface (BCI) paradigm,
including details of the experiments analyzed in this thesis.

• In Chapter 3, I will present results on how the brain selects among the redun-
dant patterns of neural activity that would all achieve the same goal.

• In Chapter 4, I will show how internal state changes such as changes in our
arousal can interact with how quickly we learn different tasks.

• In Chapter 5, I will present work I contributed to regarding the emergence of
new neural activity patterns during long-term learning, as well as a textbook
chapter on intracortical brain-machine interfaces.

• In Chapter 6 I will place our results in a broader context, reviewing what the
field has learned about learning in the brain from studies of neural population
activity.

• Finally, in Chapter 7, I will outline future directions for understanding how
neural population activity changes during learning.



2 BRAIN-COMPUTER INTERFACES

A brain-computer interface, or BCI, directly connects the brain to the external world.
A BCI consists of four basic components: neural recording, a decoding algorithm, an
output device, and sensory feedback. Intracortical BCIs begin by recording neural
signals from electrodes implanted in the cortex. Next, the salient features of the
neural signal useful for control are extracted with a decoding algorithm. This al-
gorithm translates the neural signal into an intended action which is executed by
the output device, which can be a robotic limb, the person’s own muscles, or in the
experiments considered in this thesis, a computer interface. Finally, the user receives
sensory feedback about the action, allowing them to make corrections if they move
off course, and also allowing them to improve over time with learning. We discuss
these components in more detail in the following paragraphs.

Building an effective BCI depends on choosing a brain area for the neural record-
ings, a decoding algorithm, an output device, and feedback for the desired use. These
choices are interrelated. The necessary control signal will depend on the goal of the
task and the device being controlled. In turn, these choices influence which motor
cortical area is most appropriate to record from, and what type of signals to record.
For example, when the goal of a BCI is to provide continuous control of a limb,
primary motor cortex (M1) has long been thought to be an ideal location for record-
ing BMI control signals because it is involved in generating voluntary movements.
A number of groups have reported a correlation between M1 firing rates and vari-
ous kinematic variables, including direction and distance of targets, and direction,
speed, and spatial path of hand displacement (Georgopoulos et al., 1982). Other
groups have found M1 firing rates to be related to forces, and even to muscle activity
(Evarts, 1968). It appears that M1 includes a heterogeneous representation of both
the kinematics and kinetics of limb movements. The good news, from the perspective
of designing a BCI, is that either representation can be exploited as a BCI control
signal, depending on the intended function of the device.

Once the neural signals have been recorded, a decoding algorithm (or “decoder”)
translates the user’s movement intentions into a control signal suitable for guiding
the output device. There are two classes of BCI decoders: discrete and continuous.
A discrete decoder estimates one of several possible movement goals by solving a
classification problem. The most common use for this is a communication device,
where patients use their BCI to type letters, much as one would if one were composing
a text or an email. Communication BCIs focus on the speed and accuracy with which
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a desired key on a keyboard can be selected. A continuous decoder estimates the
moment-by-moment details of a movement trajectory. This is needed for guiding a
computer cursor or robotic limb along a desired path. For example, a person may
wish to guide a robotic limb to pick up a glass of milk without knocking over the
milk carton. The decoder produces a control signal that is then fed into an output
device. There are a variety of output devices for BCIs that depend on the needs of the
user. One common device is a computer cursor, where a person controls the cursor
using their thoughts much as they would control a computer mouse. Other common
devices being developed to help people with paralysis interact with the world around
them include robotic arms and hands and motorized wheelchairs.

The final element of the BCI control loop is sensory feedback. The most common
sensory feedback is visual: a user can look at the device they are controlling and see
how it is responding, which allows them to make corrective movements and learn to
better control the device. Feedback has been shown to dramatically improve BCI
performance. Some tasks, however, require more than just visual feedback to be
performed dexterously. Consider tying a shoelace or fastening buttons. We rely
on touch to perform these tasks correctly, which is why it is difficult to tie one’s
shoes while wearing gloves. This has motivated the inclusion of proprioceptive and
somatosensory feedback into BMI systems.

In the experiments considered in this thesis, we use a continuous decoder to
control the 2D velocity of a computer cursor on a screen (Fig. 2.1). At each moment
in time, the cursor’s velocity, vt ∈ R2, is determined by the simultaneous firing
activity, ut ∈ Rd, of d ≈ 90 neural units recorded in primary motor cortex using a
Utah array:

vt = Avt−1 +Mzt + c

where A ∈ R2×2, M ∈ R2×10, and c ∈ R2×1 are the parameters of the BCI decoder,
or “mapping.” More details can be found in Chapter A.

While BCI technologies can serve as a neural engineering solution to replace or
restore motor or sensory function to patients with neurological injury or disease,
they can also serve as a general tool for understanding the relationship between
neural activity and behavior. This is because the BCI paradigm provides us with
the means to causally relate the neural activity we record in the experiment with
animals’ performance at the task (Golub et al., 2016).
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Figure 2.1. Studying learning using a brain-computer interface (BCI). A. Monkeys
controlled the velocity of a visual cursor (v) by modulating the spike counts (z) recorded from a
multi-electrode array implanted in primary motor cortex. The relationship between spike counts and
the cursor’s velocity was determined by the BCI mapping. Monkeys were rewarded for successfully
guiding the cursor to hit the visually instructed target. B. Each experiment consisted of two blocks
of trials. In Block 1, monkeys used an intuitive BCI mapping, during which they exhibited proficient
cursor control. Later, in Block 2, monkeys learned to control a new BCI mapping they had not
used before. C. A snapshot of the paths taken by the cursor for trials to each target throughout
an example experiment. Early in learning (“Block 2, First 50 trials”), the monkey’s control of
the cursor was poor. But after a few hundred trials of practice (“Last 50 trials”), monkeys had
learned to modify the neural activity they produced, allowing them to achieve more proficient cursor
control.
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3 CONSTRAINTS ON
NEURAL REDUNDANCY

Millions of neurons drive the activity of hundreds of muscles, meaning many different
neural population activity patterns could generate the same movement. Studies have
suggested that these redundant (i.e., behaviorally equivalent) activity patterns may
be beneficial for neural computation. However, it is unknown what constraints may
limit the selection of different redundant activity patterns. We leveraged a brain-
computer interface, allowing us to define precisely which neural activity patterns
were redundant. Rhesus monkeys made cursor movements by modulating neural ac-
tivity in primary motor cortex. We attempted to predict the observed distribution of
redundant neural activity. Principles inspired by work on muscular redundancy did
not accurately predict these distributions. Surprisingly, the distributions of redun-
dant neural activity and task-relevant activity were coupled, which enabled accurate
predictions of the distributions of redundant activity. This suggests limits on the
extent to which redundancy may be exploited by the brain for computation.

Published as: Hennig, J.A., Golub, M.D., Lund, P.J., Sadtler, P.T., Oby, E.R.,
Quick, K.M., Ryu, S.I., Tyler-Kabara, E.C., Batista, A.P., Byron, M.Y. and Chase,
S.M., 2018. “Constraints on neural redundancy” Elife, 7, p.e36774

3.1 Introduction

Neural circuits relay information from one population of neurons to another. This
relay involves successive stages of downstream neurons reading out the activity of
upstream neurons. In many cases, the same activity in the downstream population
can be produced by different population activity patterns in the upstream popula-
tion, a phenomenon termed neural redundancy. Redundancy is ubiquitous in neural
computation, from sensory input to motor output. For example, during a task where
subjects need to discriminate the color of a stimulus while ignoring its orientation
(Mante et al., 2013), population activity patterns corresponding to the same color but
different orientations are read out equivalently, and are therefore redundant. There
is mounting evidence that redundancy in readouts may provide various computa-
tional benefits. For example, neural redundancy may allow us to prepare movements
without executing them (Kaufman et al., 2014; Elsayed et al., 2016), enable stable

7



8

computation despite unstable neural dynamics (Druckmann and Chklovskii, 2012;
Murray et al., 2017; Driscoll et al., 2017), and allow the central nervous system to
filter out unwanted noise (Moreno-Bote et al., 2014).

To fully utilize the proposed benefits of neural redundancy, the population activ-
ity should be allowed to freely vary, as long as the readout of this activity remains
consistent with task demands. This would allow the population activity to perform
computations that are not reflected in the readout. However, a commonly held as-
sumption is that neural activity might also be constrained by energetics: All things
being equal, if two population activity patterns are read out equivalently, the brain
should prefer the pattern that requires less energy to produce (Laughlin et al., 1998;
Barlow, 1969; Levy and Baxter, 1996). These two lines of reasoning raise the fol-
lowing questions: What principles guide the production of redundant neural activity
patterns? Are there constraints on which redundant activity patterns can be pro-
duced? If so, this may limit the extent to which neural circuits can exploit the
proposed computational benefits of redundancy.

Redundancy has been studied extensively in motor control (Lashley, 1933; Bern-
stein, 1967), albeit in terms of muscular redundancy rather than neural redundancy.
During arm movements, different combinations of muscle activity can lead to the
same arm kinematics, meaning these different muscle activity patterns are redun-
dant. Previous work on this muscle redundancy problem has identified two principles
guiding the selection of redundant muscle activity. First, because muscle contraction
requires energy in the form of ATP, the selected muscle activity should require min-
imum energy relative to the other redundant options (Thoroughman and Shadmehr,
1999; Huang et al., 2012; Fagg et al., 2002). Second, a minimal intervention strategy
has been proposed in which subjects control only the aspects of muscle activity that
influence the task outcome, and allow for variability in the aspects of muscle activity
that do not influence the task outcome (Scholz and Schöner, 1999; Todorov and Jor-
dan, 2002; Valero-Cuevas et al., 2009). To generate movements, the brain not only
needs to deal with muscle redundancy, but also neural redundancy, which has been
less studied.

One way in which neural redundancy can arise is when there are more elements
(neurons or muscles) upstream than downstream. During arm movements, the activ-
ity of around thirty muscles in the arm and hand is controlled by tens of thousands of
neurons in the spinal cord (Gray, 1918; Feinstein et al., 1955). Those neurons are in
turn influenced by millions of neurons in the primary motor cortex and other motor
areas (Ettema et al., 1998; Lemon, 2008). Thus, the neural control of arm movement
is redundant (Fig. 3.1A), in that different population activity patterns can generate
the same movement (Li et al., 2001; Rokni et al., 2007; Ajemian et al., 2013). Can the
principles of muscular redundancy inform our understanding of neural redundancy?

A common challenge in studying neural redundancy is that it is typically not
known which neural activity patterns are redundant, because we do not know how
downstream neurons or muscles read out information. In this study we overcome
this problem by leveraging a brain-computer interface (BCI), in which the activity
of dozens of neurons is read out as movements of a cursor on a computer screen (Fig.



9

neurons

time

ne
ur

on
s

v

Output-null

Neuron 1 activity (spikes/s)

N
eu

ro
n 

2 
ac

tiv
ity

 (s
pi

ke
s/

s)

Outp
ut-

pote
nt

v2

v1

R

L

Spikes/s, relative to baseline 

Fr
eq

ue
nc

y

0

Fr
eq

ue
nc

y
Output-null activity

0

muscles BCI mapping

Cursor: v2

A B

C D

Cursor: v1

Figure 3.1. Studying the selection of redundant neural activity. (A) Millions of neurons in
motor cortex drive tens of muscles to move our arms. Thus, different population activity patterns
can be redundant, meaning they produce the same muscle activations and movement. (B) In a
BCI, the mapping between neural activity and movement is defined by the experimenter. A subject
modulates the spiking activity of tens of neurons (green rectangle) to control the 2D velocity (v)
of a cursor on a screen. (C) Example of redundant neural activity in a simplified example where
the activity of two neurons (horizontal and vertical axes) drives a 1D cursor velocity (left, L,
or right, R). For each of the population activity patterns shown (green squares and circles), the
component of the activity along the “Output-potent” axis determines the cursor velocity (e.g., v1

or v2), while the position of this activity along the orthogonal axis (“Output-null” axis) has no
effect on the cursor’s movement. Activity patterns on the same dotted line (e.g., the two dark
green patterns) are redundant, because these patterns have the same output-potent activity and
produce the same cursor velocity (e.g., v1). (D) Example distributions of neural activity along the
output-null dimension (corresponding to dotted lines in (C)). Each black trace depicts the density
of output-null activity observed over the course of an experiment when the cursor velocity was
v1 (top) or v2 (bottom). The output-null activity of the green symbols from (C) are marked for
reference. In the actual experiments, there were two output-potent dimensions and eight output-
null dimensions. Output-null activity has units of spikes/s, presented relative to the vector of mean
activity for each neuron (“baseline”).
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3.1B) (Taylor et al., 2002; Carmena et al., 2003; Hochberg et al., 2006; Ganguly and
Carmena, 2009; Gilja et al., 2012; Hauschild et al., 2012; Sadtler et al., 2014). A
key advantage of a BCI is that the readout of the population activity (termed the
BCI mapping) is fully known and defined by the experimenter (Golub et al., 2016).
This allows us to determine precisely the redundant set of population activity pat-
terns, i.e., those that move the cursor in exactly the same way. To illustrate this,
consider a simplified example where the activity of two neurons controls a 1D cursor
velocity (Fig. 3.1C). The two dark green activity patterns produce the same cursor
movement (v1), and the two light green patterns produce a different movement (v2).
We can decompose any population activity pattern into two orthogonal components:
output-potent activity and output-null activity (Fig. 3.1c, black axes) (Law et al.,
2014; Kaufman et al., 2014). The output-potent component determines the cursor’s
movement, whereas the output-null component has no effect on the cursor. Two
population activity patterns are redundant if they have the same output-potent ac-
tivity, but different output-null activity (e.g., the dark green square and circle on
the “v1” dotted line in Fig. 3.1C). The question we address here is, which redun-
dant population activity patterns were preferred by the nervous system? To answer
this, we assessed the distribution of output-null activity produced during each cursor
movement (Fig. 3.1D), and compared it to what we would expect to observe under
each of several candidate hypotheses for explaining neural redundancy.

We trained three Rhesus macaques to perform a brain-computer interface task in
which they controlled the velocity of a cursor on a computer screen by volitionally
modulating neural activity in primary motor cortex. To understand the principles
guiding the selection of redundant neural activity, we compared the observed distri-
butions of output-null activity to those predicted by three different hypotheses. The
first two hypotheses we considered were inspired by studies of muscle redundancy.
First, by analogy to minimum energy principles (Thoroughman and Shadmehr, 1999;
Huang et al., 2012; Fagg et al., 2002), neural activity may minimize unnecessary
spiking (Barlow, 1969; Levy and Baxter, 1996). Second, by analogy to the minimal
intervention strategy (Scholz and Schöner, 1999; Todorov and Jordan, 2002; Valero-
Cuevas et al., 2009), output-null activity might be uncontrolled (i.e., output-potent
activity is modified independently of output-null activity) because neural variability
in this space has no effect on cursor movement. Third, we considered the possibility
that the distribution of redundant activity may be coupled with the task-relevant
activity, so that producing particular activity patterns in output-potent dimensions
requires changing the distribution of activity in output-null dimensions.

We tested all hypotheses in terms of their ability to predict the distribution of
output-null activity, given the output-potent activity. Hypotheses were tested within
the space in which the population activity naturally resides, termed the intrinsic
manifold (Sadtler et al., 2014). The results of Sadtler et al. (2014) indicate that neu-
ral activity cannot readily leave this manifold, and more recent results demonstrate
that neural activity is further constrained by a neural repertoire within the intrinsic
manifold (Golub et al., 2018). However, a repertoire defines only a set of population
activity patterns, and not how often different activity patterns within the repertoire
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are produced. Therefore, to understand the principles governing the selection among
redundant population activity patterns, we focused on predicting the distribution of
redundant population activity within the intrinsic manifold and neural repertoire.

We found strong evidence for the third hypothesis, that redundant activity is
coupled with task-relevant activity. This indicates that neural redundancy is resolved
differently than muscular redundancy. Furthermore, the output-null space should
not be thought of as a space in which neural activity can freely vary to carry out
computations without regard to the output-potent activity. Instead, the distribution
of output-null activity is constrained by the corresponding output-potent activity. If
the required output-potent activity is defined by the task demands, this can constrain
how the output-null activity can vary, and correspondingly the computations that
can be carried out in the output-null space.

3.2 Results

To study the selection of redundant neural activity, we used a BCI based on 85-94
neural units recorded using a Utah array in the primary motor cortex in each of
three Rhesus macaques. Animals modulated their neural activity to move a com-
puter cursor in a 2D center-out task (see Methods; Supplemental Fig. A.1). At the
beginning of each experiment, we identified the 10 dimensions of the population ac-
tivity that described the largest activity modulations shared among the neural units,
termed the intrinsic manifold (Sadtler et al., 2014). A two-dimensional subspace of
the 10-dimensional intrinsic manifold was mapped to horizontal and vertical cursor
velocity and was therefore output-potent, while the eight orthogonal dimensions were
output-null. Our goal was to predict the joint distribution of the observed neural
activity in this eight-dimensional output-null space.

We tested several hypotheses for the selection of redundant neural activity us-
ing the following logic. First, we predicted the distributions of output-null activity
expected under each hypothesis. All hypotheses’ predictions were consistent with
the observed behavior (i.e., the output-potent activity), and we ensured that none
of these predictions required unrealistic firing rates when combined with the output-
potent activity. Next, we compared the predicted distributions to the observed dis-
tributions of output-null activity to determine which hypothesis provided the best
match to the observed distributions. We built the observed distributions of output-
null activity as follows: At each time step during the BCI task, we assigned the
recorded population activity pattern to one of eight bins corresponding to the direc-
tion of cursor movement (0◦, 45◦, 90◦, etc.) produced by that neural activity. We
binned by the cursor movement because we are studying the population activity that
is redundant for a given cursor movement direction. For each bin, we projected the
corresponding population activity patterns onto the eight output-null dimensions of
the intrinsic manifold. The black histograms in Fig. 3.2, Fig. 3.3, and Fig. 3.4
show the marginal distributions in the first three output-null dimensions (ordered
by variance accounted for). The colored histograms in Fig. 3.2, Fig. 3.3, and Fig.
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3.4 are the predicted output-null distributions built under each hypothesis, which
we compared to the observed distributions. The ensuing three subsections describe
each hypothesis, and compare how well the corresponding predicted distributions
matched the observed distributions.

During each experiment, animals controlled two different BCI mappings (i.e., the
two mappings had different output-potent subspaces). The first mapping was an
“intuitive” one that required no learning for proficient control. The second mapping
was a within-manifold perturbation (see Methods). For the second mapping, we
analyzed the trials after the behavioral performance had asymptoted. Each hypoth-
esis predicted the distribution of output-null activity that the animal would produce
under the second mapping. To form its prediction, a hypothesis could utilize the
output-potent activity observed during the second mapping, as well as all neural ac-
tivity recorded under control of the first mapping. This technique allowed us to avoid
circularity in our results because we built the hypothesized distributions using the
first behavioral context and evaluated those predictions in the second. Additionally,
because animals learned to use the BCI mappings through trial and error, it is pos-
sible that the animals’ assumptions about the output-null dimensions do not align
perfectly with the actual output-null dimensions of the BCI mapping. To control for
this, we estimated the animal’s internal model of the BCI mapping (Golub et al.,
2015). The results in the main text are based on this internal model, and we show in
supplemental figures that all results still hold when using the actual BCI mapping.

Minimal firing hypotheses do not accurately predict output-
null activity

Previous work in motor control has found that subjects select muscle activations that
minimize energy use, i.e., subjects tend not to make movements with more stiffness
or muscular co-contraction than necessary to complete the task (Thoroughman and
Shadmehr, 1999; Fagg et al., 2002; Huang et al., 2012). We tested whether an
analogous principle might hold true at the level of neurons (Fig. 3.2A, Minimal Firing
hypothesis). Because spiking incurs a metabolic cost (Laughlin, 2001; Laughlin et al.,
1998), we first considered the hypothesis that among all the population activity
patterns that produce the same cursor movement, the subject will select the one
requiring the fewest spikes (Barlow, 1969; Softky and Kammen, 1991; Levy and
Baxter, 1996).

To predict the distribution of output-null activity under this hypothesis, at each
time step we found the population activity pattern that would produce the observed
cursor movement with the fewest spikes across all recorded neurons (see Methods).
This means population activity will have minimal variability in output-null dimen-
sions, because spiking in these dimensions does not affect cursor movement. In
Fig. 3.2A, the orange square depicts the activity pattern nearest zero spikes/s (gray
square) among all activity patterns that would produce the same cursor movement
(black dotted line). This would produce a delta distribution of output-null activity,
where the delta would be located at the predicted value (orange square). To make
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Figure 3.2. Minimal firing hypotheses. (A) Minimal Firing hypothesis: Given a particular
output-potent activity (i.e., activity is constrained to black dotted line), subject selects the activity
pattern (orange square) that requires the fewest spikes (i.e., nearest the gray square). (B) Distri-
bution of observed output-null activity (“Data”, in black) and activity predicted by the Minimal
Firing hypothesis (“Predicted”, in orange), in the first output-null dimension for upwards cursor
movements. For this visualization, we applied PCA to the observed output-null activity to display
the dimensions ordered by the amount of shared variance, with only the first of those dimensions
shown here. The range of activity (e.g., ± 150 spikes/s) appears larger than that expected for a
single neuron because the range tends to increase with the number of neural units contributing to
that dimension. Session L20131218. (C) Distributions of observed and predicted output-null activ-
ity as in (B), for time steps when the cursor was moving in eight different directions (rows), in three
(of eight) output-null dimensions explaining the most output-null variance (columns). (D) Minimal
Deviation hypothesis: Given a particular output-potent activity, subject selects the activity pattern
(red square) nearest a fixed population activity pattern chosen for each session by cross-validation
(gray square). (E-F) Same conventions as in (B-C) for the Minimal Deviation hypothesis.
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this prediction more realistic, we incorporated Poisson spiking noise. In addition, for
this hypothesis and those following, we ensured that all predictions were physiologi-
cally plausible (i.e., firing rates were between zero and the maximum rates observed
in the experiment; see Methods).

We constructed histograms of the output-null activity predicted by the Minimal
Firing hypothesis by pooling over all time steps in which the cursor moved in a similar
direction (e.g., 0◦, 45◦, etc.) (Fig. 3.2B, orange). We compared these predicted
distributions to the observed distributions of output-null activity measured for that
movement direction during the experiment (Fig. 3.2B, black). Fig. 3.2C depicts
these histograms for the same session across eight different cursor directions (rows),
in three of the eight output-null dimensions (columns). For visualization, we applied
principal components analysis (PCA) to display the output-null dimensions ordered
by the amount of shared variance in the output-null activity. To assess how well the
Minimal Firing hypothesis predicted the observed output-null activity, we computed
the absolute error between the predicted and observed histograms. These errors
were averaged across histograms for all eight cursor directions and eight output-null
dimensions in a given session. We normalized the errors so that a perfect match
between the observed and predicted histograms would result in an error of 0%, while
complete mismatch between the predicted and observed histograms would yield an
error of 100% (see Methods). We found that the predictions of the Minimal Firing
hypothesis differed from the observed activity by 73.2% ± 1.3% (mean ± SE) across
sessions.

One possible explanation as to why these predictions were so different from the
observed activity is that minimal energy principles in the brain may not equate to
minimal spiking. Perhaps a more relevant constraint is not how far the activity is
away from zero firing, but rather how far the activity is from a different level of
activity, such as the mean firing rate for each neuron. This alternative version of a
minimal energy hypothesis (Fig. 3.2D, Minimal Deviation hypothesis) predicts that
among all the population activity patterns that produce the same cursor movement,
subjects select the one with the smallest deviation from some baseline population
activity pattern. For each session, we identified the population activity pattern that
would minimize the output-null prediction error across cursor directions in a cross-
validated fashion (see Methods) (Fig. 3.2E). This hypothesis yielded an average
histogram error of 30.9% ± 1.2% (mean ± SE) across sessions. While this represents
a substantial improvement over the Minimal Firing hypothesis (paired t-test of his-
togram errors in each session, p < 0.001), the predicted distributions of output-null
activity still show clear discrepancies from the observed distributions (Fig. 3.2F).
Thus, we sought a hypothesis that could better predict the observed distributions of
output-null activity.
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Uncontrolled hypotheses do not accurately predict output-
null activity

It has been shown that muscle activity exhibits more variability in output-null di-
mensions than in output-potent dimensions (Scholz and Schöner, 1999; Todorov and
Jordan, 2002; Valero-Cuevas et al., 2009). An explanation of this variability asym-
metry is the “minimal intervention” principle (Todorov and Jordan, 2002; Valero-
Cuevas et al., 2009; Diedrichsen et al., 2010b), which states that while variability in
output-potent dimensions should be corrected to ensure task success, variability in
output-null dimensions can be left uncorrected because it does not lead to deficits
in task performance. While this principle has been used to explain muscle activity,
here we investigate whether it also explains neural activity. This hypothesis, that
output-null activity will be “uncontrolled” and have high variability, is in contrast
to the minimal firing hypotheses, which predict that output-null activity will have
low variability.

The idea that neural activity may be selected according to a minimal interven-
tion principle does not, by itself, specify the form of the distribution in output-null
dimensions. We therefore considered two specific forms of uncontrolled hypotheses.
First, we supposed that if all values of output-null activity are equally likely, then
output-null activity would have a uniform distribution with bounds determined by
each neuron’s physiological range (Fig. 3.3A, Uncontrolled-uniform). We emphasize
that the minimal intervention principle does not specify a candidate distribution,
and so we consider this particular hypothesis as a limiting case, where output-null
activity has maximum entropy within bounds on minimum and maximum activity.
At each time step, we sampled the output-null activity from a uniform distribution
within ranges observed experimentally (see Methods). This procedure predicts that
the output-null activity is selected independently of the current output-potent ac-
tivity, reflecting the minimal intervention principle. However, note that the extent
of the uniform distribution depends on the physiological range of each neuron, and
so the predicted distributions of output-null activity vary slightly with the cursor
direction (Fig. 3.3B-C) (e.g., the length of the green bar in Fig. 3.3A depends
on the output-potent activity). As before, for visualization we ordered the eight
output-null dimensions by the amount of shared variance explained in the recorded
activity, and displayed the first three of these output-null dimensions (Fig. 3.3C).
Because these three dimensions were rotated along the dimensions of highest vari-
ance, the predicted histograms are mound-shaped rather than uniformly distributed
(see Methods). The predictions of the Uncontrolled-uniform hypothesis differed from
the observed output-null activity by 56.6% ± 1.1% (mean ± SE) across sessions.

In the second variant of this hypothesis, we considered a non-uniform distribu-
tion of output-null activity. If the natural variability of output-null activity is truly
unmodified, then the distribution of activity observed in the same dimensions when
a subject was controlling a different (previous) BCI mapping should have the same
distribution under the current mapping (Fig. 3.3D, Uncontrolled-empirical). Thus,
under this hypothesis we construct an empirical distribution of output-null activity,
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Figure 3.3. Uncontrolled hypotheses. (A) Uncontrolled-uniform hypothesis: Given a particu-
lar output-potent activity, subject selects any activity within the physiological range (dark green),
sampled from a uniform distribution. (B-C) Distributions of output-null activity observed and
predicted by the Uncontrolled-uniform hypothesis; same conventions as in Fig. 3.2. The predicted
distributions appear mound-shaped rather than uniform because we applied PCA to display the
dimensions of output-null activity with the most shared variance (see Methods). The range of
activity increases with the number of neural units. Session L20131218. (D) Uncontrolled-empirical
hypothesis: Subject selects output-null activity from the distribution of all output-null activity
produced at any time while subjects used a different BCI mapping. (E-F) Same conventions as in
(B-C) for the Uncontrolled-empirical hypothesis.
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which we form by projecting all of the population activity that the subject produced
under the previous mapping onto the output-null dimensions of the current BCI map-
ping (see Methods). At each time step, we sampled from this empirical distribution
of output-null activity independently of the output-potent activity, again reflect-
ing the minimal intervention principle (Fig. 3.3D). We checked that combining the
output-null and output-potent activity resulted in physiologically plausible popula-
tion activity (see Methods). If it did not, then we re-sampled a different output-null
activity pattern until the combination resulted in physiologically plausible popu-
lation activity. Due to this resampling, the predicted distributions of output-null
activity vary slightly with the cursor direction (Fig. 3.3E-F). The histograms of the
predictions differed from the observed data by only 23.8% ± 0.8% (mean ± SE)
across sessions, which is the lowest error of all hypotheses considered so far. This
suggests that previously observed population activity (in this case, recorded during
use of a different BCI mapping) offers greater predictive power of the selection of
output-null activity than a priori predictions such as those of the Minimal Firing,
Minimal Deviation, and Uncontrolled-uniform hypotheses.

Task-transfer hypotheses accurately predict output-null ac-
tivity

Thus far, the hypothesis that best predicts the observed output-null activity is the
one that uses previously observed activity to generate its predictions (Uncontrolled-
empirical). This motivated us to consider more refined hypotheses that make use of
this previously observed activity to generate predictions.

We first considered the hypothesis that in order to produce a desired movement,
the subject selects neural activity as if he were still using the previous mapping, and
corrects this activity only to ensure task success (Fig. 3.4A, Persistent Strategy).
Conceptually, when the subject wants to move the cursor in a particular direction us-
ing the current BCI mapping, he starts with the population activity patterns that he
used to move the cursor in that direction under an earlier mapping (Fig. 3.4A, light
blue shading). Because this activity will not move the cursor in the same way that
it did under the previous mapping, this activity is modified along the output-potent
dimensions of the current mapping (Fig. 3.4A, red arrows), reflecting the mini-
mal intervention principle (Todorov and Jordan, 2002; Valero-Cuevas et al., 2009;
Diedrichsen et al., 2010b). This is similar to the Uncontrolled-empirical hypothesis
in that we assume activity in output-null dimensions can be corrected independently
of the activity in output-potent dimensions. However, instead of sampling from the
entire distribution of previously observed output-null activity at each time step, here
we only sample from the subset of this activity observed when subjects needed to
move the cursor in the same direction as for the current time step. The predictions
of this hypothesis (Fig. 3.4B-C) differed from the observed output-null activity by
17.4% ± 0.7% (mean ± SE) across sessions.

The principle of minimal intervention posits that output-null activity can change
independently from output-potent activity. Here we examine this assumption in de-
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Figure 3.4. Task-transfer hypotheses. (A) Persistent Strategy hypothesis: Given a particular
output-potent activity, subject selects an activity pattern appropriate under a different mapping
(light blue rectangle), and corrects its output-potent component (red arrows) so as to produce the
desired output-potent value under the current mapping (darker blue rectangle). (B-C) Distribu-
tions of output-null activity observed and predicted by the Persistent Strategy hypothesis; same
conventions as in Fig. 3.2. The range of activity increases with the number of neural units. Session
L20131218. (D) Fixed Distribution hypothesis: Given a particular output-potent activity, subject
selects from the output-null activity patterns that were observed concurrently with this output-
potent activity while controlling a different mapping. Different patterns are selected with the same
frequencies as they were under the previous mapping. (E-F) Same conventions as in (B-C) for the
Fixed Distribution hypothesis.
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tail. Previous work has found that the characteristic ways in which neurons covary
(i.e., the dimensions of the intrinsic manifold) persist even under different BCI map-
pings, perhaps owing to underlying network constraints (Sadtler et al., 2014). All
hypotheses we consider here are evaluated within the intrinsic manifold, and thus
respect these constraints on population covariability. Because the dimensions of the
intrinsic manifold capture the covariability among the neurons, it is plausible that
the activity along different dimensions of the intrinsic manifold can vary indepen-
dently, consistent with the minimal intervention principle. By contrast, in the next
hypothesis we consider the possibility that activity along different dimensions exhibit
dependencies.

We considered the hypothesis that the distribution of activity in output-null
dimensions would be predictably coupled with the activity in output-potent dimen-
sions, even under a different BCI mapping when those dimensions were not neces-
sarily potent and null. Under this hypothesis (Fig. 3.4D, Fixed Distribution), given
the output-potent activity, the distribution of the corresponding output-null activity
remains the same as it was under a different BCI mapping (Fig. 3.4D, blue frequency
distribution), even if this activity was not output-null under the other mapping. This
hypothesis predicts that neural activity patterns are “yoked” across dimensions, such
that producing particular activity in output-potent dimensions requires changing the
distribution of activity in output-null dimensions. The histograms of output-null ac-
tivity predicted by the Fixed Distribution hypothesis were a striking visual match to
the recorded activity, and accurately predicted the dependence of these distributions
on the cursor direction (Fig. 3.4E-F). Overall, these predictions differed from the
observed output-null activity by only 13.4% ± 0.5% (mean ± SE) across sessions.

The Fixed Distribution hypothesis yielded a lower histogram error than all other
hypotheses across sessions from three different animals (Fig. 3.5A). In total, the
Fixed Distribution hypothesis had the lowest histogram error in 41 of 42 sessions.
The histogram error metric does not explicitly capture the degree to which hypothe-
ses predicted the mean output-null activity, or any correlations that exist across
output-null dimensions. We therefore assessed how well the predictions captured
the mean and covariance of observed data in all output-null dimensions jointly (see
Methods). In agreement with our findings for histogram error, the mean (Fig. 3.5B)
and covariance (Fig. 3.5C) of output-null activity was best predicted by the Fixed
Distribution hypothesis, with an average mean error of 23.5 ± 1.4 spikes/s (mean
± SE) and an average covariance error of 1.4 ± 0.1 (mean ± SE in arbitrary units;
see Methods). These error metrics offer further evidence that the Fixed Distribution
hypothesis provides a good match to the output-null distribution, as measured by the
agreement between the first and second moments of the two distributions. Because
these error metrics rely on a limited number of trials, they should not be compared
relative to zero error. We estimated the smallest histogram, mean, and covariance
errors achievable by any hypothesis, given the limited number of samples available
to estimate the true output-null distributions (see Methods, and gray regions in Fig.
3.5). The errors of Fixed Distribution were exceedingly close to the lowest achievable
error given the number of samples available (see Methods). Next, we found that the
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Figure 3.5. Fixed Distribution hypothesis best predicts output-null activity. Boxes
depict the 25th, 50th, and 75th percentile of errors observed across sessions for all animals combined.
Whiskers extend to cover approximately 99.3% of the data. Gray boxes depict the error floor across
sessions (mean ± s.d.), estimated using half of the observed output-null activity to estimate the
histogram, mean, and covariance of the other half (see Methods). Asterisks depict a significant
difference between errors of Fixed Distribution and other hypotheses for a one-sided Wilcoxon
signed rank test at the α = 0.001 (***) level. (A) Error in predicted histograms of output-null
activity. For each session, histogram error was averaged across all output-null dimensions and
cursor directions. Average histogram error floor was 6.7% ± 1.9% (mean ± s.d., also shown in
gray). (B) Error in predicted mean of output-null activity. For each session, mean error was
averaged across all cursor directions, where the mean is an 8D vector of the average activity in each
output-null dimension. Average mean error floor was 6.9 ± 2.5 spikes/s (mean ± s.d., also shown
in gray). (C) Error in predicted covariance of output-null activity. For each session, covariance
error was averaged across all cursor directions. Average covariance error floor was 1.0 ± 0.3 (mean
± s.d., also shown in gray).
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Fixed Distribution hypothesis achieved the lowest prediction errors among all hy-
potheses when data for each monkey was considered individually (Supplemental Fig.
A.2). We repeated our analyses to predict output-null activity produced during the
first mapping using activity observed during the second mapping (Supplemental Fig.
A.3). We also predicted output-null activity using the actual BCI mapping rather
than the animal’s internal model to define the output-null dimensions (Supplemental
Fig. A.4). Both analyses yielded results similar to those in Fig. 3.5.

Predicting changes in neural variability when activity be-
comes output-null

So far we have shown that the Fixed Distribution hypothesis provides a better ex-
planation for the structure of output-null activity than hypotheses incorporating
constraints on firing rates or the minimal intervention principle. We next sought
stronger evidence for the Fixed Distribution hypothesis by assessing our predictions
in the particular dimensions of population activity where it is least likely to hold.
Because cursor velocity is a two-dimensional quantity, all but two dimensions of pop-
ulation activity for each BCI mapping are output-null. Thus, given two different BCI
mappings, most dimensions will be output-null under both mappings, and so most
components of the population activity have no reason to change from one mapping
to the other. Therefore, we assessed whether our results held in dimensions of pop-
ulation activity that were output-potent during the first mapping, but output-null
during the second mapping (see Methods). These are the dimensions in which one
would expect to see the most changes in the population activity between the first
and second mappings.

Our hypotheses make distinct predictions about how the variance of activity
should change if a dimension is output-potent under the first mapping and becomes
output-null under the second mapping. For example, according to the Minimal
Firing and Minimal Deviation hypotheses, the variance of activity will collapse in
dimensions that are output-null because unnecessary spiking is undesirable. Thus,
if a dimension becomes output-null, variance in this space should exhibit a marked
decrease. On the other hand, the Uncontrolled hypotheses predict that, when con-
ditioned on the cursor movement, variance will expand when the activity is output-
null. This occurs because variability in this dimension will no longer affect cursor
movement, and would therefore no longer need to be suppressed. Finally, the Fixed
Distribution hypothesis posits that the same distributions of output-null activity
will be observed regardless of whether a dimension was previously output-potent or
output-null, and so this hypothesis predicts that there will be little to no change in
the variance of activity in a particular dimension under the two mappings.

We asked whether the variance of population activity decreased, increased, or
remained the same in dimensions that changed from being output-potent to output-
null (Fig. 3.6A). Critically, we computed the variance of activity after first binning
by the corresponding angle in the output-potent dimensions of the second mapping.
This was done so that the neural activity in each bin would all result in similar
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Figure 3.6. Variance of neural activity in dimensions that become output-null. (A)
Observed activity from a representative session in the 2D subspace in which activity was output-
potent under the first mapping and output-null under the second mapping. Activity recorded during
use of the first mapping (black points) was output-potent while activity recorded during use of the
second mapping (gray points) was output-null. The covariances during the first and second mapping
(black and gray ellipses, respectively) are depicted as the 95% contours of a Gaussian density fit to
the activity. Session J20120403, for all time steps when the activity would have moved the cursor
to the right under the second mapping. (B) Covariance ellipses for all sessions and eight different
cursor movement angles. Same conventions as in (A). Ellipses shown in (A) indicated by gray box.
(C) Change in variance of neural activity in the same subspace as in (A), for the activity observed
(“Data”) and predicted by each hypothesis. Height of bars depicts the average change in variance
across sessions (mean ± 2 SE).
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cursor movements under the second mapping, and is identical to the procedure used
previously to assess the errors of the hypotheses’ predictions. Notably, binning in
this way means that each bin may contain activity corresponding to different cursor
movements under the first mapping, and so one might expect that in each bin the
activity recorded under the first mapping would be more heterogeneous than the
activity recorded under the second mapping.

We observed that the variance of population activity recorded under the first
and second mappings was remarkably similar in the dimensions that changed from
output-potent to output-null, even though these activity patterns usually corre-
sponded to different cursor movements under the two mappings (Fig. 3.6B). Thus,
the variance of activity did not change much when an output-potent dimension be-
came output-null, in agreement with the predictions of the Fixed Distribution hy-
pothesis. To quantify these observations, we computed the average change in variance
in each session (see Methods). Across sessions, we found that the variance of ob-
served activity showed a small but significant decrease when it became output-null
(Fig. 3.6C, “Data”) (t-test, p < 0.001). This is in contrast to the predictions of
the Minimal Firing and Minimal Deviation hypotheses, which predicted much larger
decreases.

The observed change in variance lies closest to the predictions of the Fixed Dis-
tribution hypothesis. In fact, we observed that the Fixed Distribution hypothesis
also predicted a slight decrease in variance in dimensions that became output-null
(Fig. 3.6C, “Fixed Distribution”) (t-test, p < 0.001). This slight predicted change in
variance occurs because the distributions of activity in the output-potent dimensions
of the second mapping are different under the first and second mappings. Because
the Fixed Distribution hypothesis predicts a fixed conditional distribution of output-
null activity given the output-potent activity, slightly different sets of output-potent
activity will result in a slightly different distribution of the corresponding output-null
activity.

These analyses show that, contrary to the predictions of the minimal firing and
uncontrolled hypotheses, the variance of population activity did not change dramati-
cally in dimensions that were output-potent under the first mapping and output-null
under the second mapping. We also assessed whether the reverse was true—if the
variance of activity changed in dimensions that began as output-null and became
output-potent. To measure this, we repeated the above analyses after predicting
output-null activity produced during the first mapping using the activity observed
under the second mapping (as in Supplemental Fig. A.3). We found that the activ-
ity showed little to no change in variance in these dimensions (t-test, p > 0.5), in
agreement with the predictions of Fixed Distribution (Supplemental Fig. A.6).

Importantly, the agreement between the observed output-null activity and the
predictions of the Fixed Distribution hypothesis in these analyses indicates that our
ability to accurately predict the distribution of output-null activity is not merely a
result of most activity being output-null under both mappings. Instead, the distribu-
tion of output-null activity remains consistent with the Fixed Distribution hypothesis
even in the output-null dimensions that were previously output-potent.
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In Fig. 3.6C, the observed output-null activity showed a larger decrease in vari-
ance than the predictions of the Fixed Distribution hypothesis, at least in the 2D sub-
space of output-null activity that was output-potent during the first mapping. This
slight decrease in variance is in the direction of the predictions of Minimal Firing and
Minimal Deviation. If this decrease in variance is to be explained by Minimal Firing
or Minimal Deviation principles, we would expect that the observed mean output-
null activity would also move in the direction of the predictions of Minimal Firing
and Minimal Deviation, relative to what is predicted by Fixed Distribution. To see
if this was the case, we first computed the distance of the observed mean output-null
activity from the mean predicted by Minimal Deviation for each movement direc-
tion, and compared this to the distance of the mean output-null activity predicted by
Fixed Distribution from the mean predictions of Minimal Deviation (Supplemental
Fig. A.7A). We did not find evidence that the observed mean output-null activity
was closer to the mean predicted by Minimal Deviation than was the mean predicted
by Fixed Distribution (one-sided Wilcoxon signed rank test, p > 0.5; see Supplemen-
tal Fig. A.7B and Methods). Repeating the analysis with Minimal Firing instead
of Minimal Deviation yielded similar results (one-sided Wilcoxon signed rank test,
p > 0.5). Thus, while we observed a slight decrease in the variance of output-null
activity in dimensions that changed from output-potent to output-null, we did not
find any evidence that the mean output-null activity moved in the direction of the
predictions of Minimal Firing or Minimal Deviation.

3.3 Discussion

Recent work has suggested that neural redundancy may be exploited for various com-
putations (Kaufman et al., 2014; Elsayed et al., 2016; Druckmann and Chklovskii,
2012; Moreno-Bote et al., 2014; Murray et al., 2017; Driscoll et al., 2017). However,
if the activity in output-null dimensions is constrained by the output-potent activity,
then this may limit the ability of output-null activity to perform computations with-
out affecting the readout. Here, we studied neural redundancy in the primary motor
cortex using a BCI, where it is known exactly which population activity patterns
are redundant, meaning they produce an identical cursor movement. We generated
predictions of the distributions of output-null neural activity for subjects performing
a BCI cursor control task, and compared them to the distributions observed in our
experiments. We found that hypotheses inspired by minimal firing and minimal in-
tervention principles, drawn from theories of muscle coordination, did not accurately
predict the observed output-null activity. Instead, we found that the distribution of
output-null activity was well predicted by the activity in the two output-potent di-
mensions. This coupling between the output-potent and output-null activity implies
that, when output-potent activity is used to satisfy task demands, there are con-
straints on the extent to which neural circuits can use redundant activity to perform
additional computations.

Our results indicate that the way in which neural redundancy is resolved is dif-
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ferent from how muscle redundancy is resolved. There have been several prevalent
proposals for how muscle redundancy is resolved, including minimal energy, optimal
feedback control (OFC), and habitual control. Models incorporating minimal energy
principles have helped to explain observed gait (McNeill, 2002) and arm reaches
(Thoroughman and Shadmehr, 1999; Huang et al., 2012; Fagg et al., 2002; Farshchi-
ansadegh et al., 2016). By analogy, it has been proposed that the brain may prefer an
“economy of impulses” (Barlow, 1969; Softky and Kammen, 1991; Levy and Baxter,
1996), resolving neural redundancy by minimizing the production of action poten-
tials. However, we found that minimal energy principles in terms of firing rates do
not play a dominant role in the selection of output-null neural activity. Given that
metabolic activity can decrease without corresponding changes in firing rates (Picard
et al., 2013), the brain may implement minimal energy principles without influencing
the way neural redundancy is resolved.

OFC posits that motor control signals are selected to minimize a cost function
that depends on task requirements and other factors, such as effort or delayed reward.
OFC models have been widely used to explain muscle activity during motor tasks
(e.g., Todorov 2004; Scott 2004; Diedrichsen et al. 2010b). Our results for neural ac-
tivity differ in two important respects from OFC predictions with standard cost func-
tions involving task requirements and effort. First, those implementations of OFC
predict that variability in task-irrelevant dimensions should be higher than variability
in task-relevant dimensions, a concept often referred to as the “uncontrolled mani-
fold” (Scholz and Schöner, 1999). We found that the variability of neural activity
did not increase in dimensions that went from being task-relevant to task-irrelevant
(Fig. 3.6C). Second, those implementations of OFC predict a “minimal intervention”
strategy, whereby activity in task-relevant dimensions is corrected independently
of activity in task-irrelevant dimensions (Todorov and Jordan, 2002; Valero-Cuevas
et al., 2009; Diedrichsen et al., 2010b). Three of the hypotheses we tested incorporate
this minimal intervention principle: Uncontrolled-uniform, Uncontrolled-empirical,
and Persistent Strategy. None of these hypotheses predicted neural activity in task-
irrelevant dimensions as accurately as did the Fixed Distribution hypothesis, which
predicts that the distributions of task-relevant and task-irrelevant activity are yoked.
Overall, our work does not rule out the possibility that OFC is appropriate for pre-
dicting neural activity. First, it may be possible to design a cost function such that
OFC predictions are consistent with the findings presented here. Second, one could
consider applying OFC with the control signal being the input to M1 (e.g., PMd
activity), rather than the control signal being M1 activity (as we have done here)
or muscle activity (where OFC has been traditionally applied). This could induce
coupling between the output-potent and output-null dimensions of the M1 activity,
and thereby yield predictions that are consistent with the findings presented here.

It has also been proposed that muscle recruitment is habitual rather than optimal,
such that muscle recruitment under altered dynamics is a rescaled version of that
under normal control (de Rugy et al., 2012). The results for habitual control are
similar to what we found for neural activity, in that (1) we could predict activity from
previously observed activity, and (2) we observed a tight coupling of the distributions
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of task-relevant and task-irrelevant activity (in contrast to minimal intervention).
However, the results for habitual control are different from our findings in that we
found that subjects appear to use the same distribution of activity in each of two
different BCI mappings, whereas different (overlapping) subsets of muscle activation
patterns were used under different conditions in de Rugy et al. (2012).

Given how many dimensions of population activity there are (in this case, 10), it
is somewhat surprising that conditioning on only the two output-potent dimensions
could provide so much explanatory power for predicting the distribution in the re-
maining neural dimensions. This suggests that many of the dimensions of population
activity are coupled, i.e., changing the activity along some dimensions may also lead
to changes along other dimensions, even though those dimensions are mutually or-
thogonal. During arm movement control, output dimensionality and presumably the
neural dimensionality are larger than in our BCI setup. We speculate that during
arm movements, many of the null dimensions will remain coupled with the potent
dimensions, thereby yielding results similar to what we found here. Future work
could examine whether animals can be trained to uncouple dimensions, as well as
the effects of larger output-potent dimensionality on redundancy, by repeating our
analyses with a higher-dimensional effector, such as a multiple degree-of-freedom
robotic limb (e.g., Wodlinger et al. 2014).

The results presented here are related to, and go beyond, those in Golub et al.
(2018). Although the two studies analyzed data from the same experiments, they
ask distinct questions. Golub et al. (2018) focused on explaining the changes in
population activity underlying behavioral learning. By contrast, in the present work
we seek to determine the constraints on activity in the task-irrelevant (i.e., output-
null) dimensions. In other words, while Golub et al. (2018) focused on explaining
the changes leading to behavioral learning, we focus here on the principles other than
behavior that constrain population activity. As a result, all hypotheses we consider
in the present work make predictions consistent with the observed amount of learning
in the output-potent dimensions.

Golub et al. (2018) found that the amount of learning animals showed was consis-
tent with a fixed neural repertoire of population activity patterns being reassociated
to control the second BCI mapping. The repertoire of population activity refers to
the set of population activity patterns that were observed, whereas here we focused
on the distribution, which describes how often the animals produced different activity
patterns. In other words, the finding of a fixed repertoire is a statement about the
support of the distribution of population activity, whereas here we found that the
distribution of population activity can be predicted in output-null dimensions, given
the output-potent activity. Because many different distributions of neural activity
can be constructed from a fixed repertoire, the present results represent a stronger
constraint on population activity than that shown in Golub et al. (2018). Indeed,
the majority of the hypotheses we tested were consistent with a fixed neural reper-
toire, and thus cannot be disambiguated based on our prior work. This is evidenced
by the predicted distributions largely overlapping with the support of the actual
data distributions (Figures 2-4). The two hypotheses that were not fully consistent
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with a fixed repertoire are the Minimal Firing and Uncontrolled-uniform hypotheses.
However, in the context of predicting the distribution of activity in redundant di-
mensions, these hypotheses represent interesting cases worth considering (i.e., where
population activity either obeys minimal firing constraints, or that the output-null
activity is fully unstructured, respectively), and so we included these hypotheses to
cover these possibilities.

It is interesting to consider the relationship between arm movements and BCI cur-
sor movements (Orsborn et al., 2014; Vyas et al., 2018). If the dimensions responsible
for moving the arm overlap with both the output-potent and output-null dimensions
of the BCI, this might explain the coupling we observe between the output-potent
and output-null dimensions. However, in these experiments, the animal’s arm was
not moving during BCI control (see Extended Data Figure 5 in Sadtler et al. 2014).
Thus, the activity we study here resides within the arm’s output-null dimensions.
This implies that in our recordings the arm’s output-potent dimensions do not over-
lap with either the output-potent or the output-null dimensions of the BCI, and so
arm movements (or the lack thereof) are unlikely to explain the coupling we ob-
served between the output-potent and output-null dimensions of the BCI. Overall,
being unaware of extra output-potent dimensions would likely make the predictions
of the Fixed Distribution hypothesis worse, not better. The reason for this is as
follows. The Fixed Distribution hypothesis predicts that the distribution of activity
in output-null dimensions depends upon the corresponding output-potent activity.
Under this hypothesis, the more we know of the output-potent activity, the better
we can predict the output-null distribution. If there is an output-potent dimension
that we have not accounted for in our analyses, accounting for this dimension would
likely improve our predictions. The fact that we were able to accurately predict the
output-null distributions (13% histogram error on average, with the lowest possi-
ble error being 7%) without knowing all the potent dimensions is then evidence that
these extra potent dimensions, if they exist, would not provide substantial additional
predictive power.

In this work, we define a set of population activity patterns as redundant if they all
result in the same readout in downstream areas. This definition of redundancy comes
from early work on motor control (Bernstein, 1967; Sporns and Edelman, 1993),
where it was noted that different motor signals can result in the same movement
kinematics. This is related to but distinct from the information-theoretic definition
of redundancy (Schneidman et al., 2003; Latham and Nirenberg, 2005; Averbeck
et al., 2006). In the information-theoretic case, redundancy describes the extent
to which correlations among neurons limit decoding accuracy for different stimuli.
This is distinct from the type of redundancy studied here, defined as the existence
of multiple population activity patterns corresponding to the same readout. For
example, by the information-theoretic definition, a system may have no redundancy
(e.g., the population activity allows one to perfectly decode the encoded variable),
but there may still be multiple population activity patterns that refer to this same
encoded variable.

We found that the distribution of output-null activity could be well predicted
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using activity recorded under a different BCI mapping. Two factors of our experi-
mental design are particularly relevant when interpreting this result. First, we used
a balanced center-out task design in which subjects made roughly equal numbers
of movements in each direction. If we had, for example, required far more leftward
than rightward movements, this would have altered the distribution of joint activity
and skewed the estimates of output-null activity during the second mapping. Sec-
ond, this study focused on short timescales, where we predicted output-null activity
within one to two hours of subjects learning a new BCI mapping. On this timescale,
the motor system must be able to rapidly learn a variety of different mappings be-
tween neural activity and behavior, and thus, a variety of different sets of redundant
activity. An interesting avenue for further research would be to determine if the
constraints we observe on neural redundancy remain over longer timescales. Given
repeated practice with the same BCI mapping across days and weeks (Ganguly and
Carmena, 2009), it is possible that there are different and perhaps fewer constraints
on neural redundancy than what we found here.

We have tested six specific hypotheses about how neural redundancy is resolved.
These hypotheses cover a spectrum of how strongly the activity in output-null dimen-
sions is constrained, with the minimal firing hypotheses being the most constrained,
the minimal intervention hypotheses being the least constrained, and the Fixed Dis-
tribution hypothesis lying in between. Although the hypotheses we tested are not
exhaustive, the best hypothesis (Fixed Distribution) yielded predictions of the dis-
tributions of output-null activity whose marginal histograms differed from the data
by only 13% on average (Fig. 3.4F), where we estimated the lowest error possible to
be 7% on average. Further improvements to the prediction accuracy may be possible
by incorporating additional constraints, such as dynamics (Shenoy et al., 2013). It
should be stressed that our focus here was on predicting the distribution of output-
null activity. Future work can assess whether output-null activity can be predicted
on a time-step-by-time-step basis.

The central premise of the null space concept is that some aspects of neural
activity are read out by downstream areas (output-potent) while other aspects are
not (output-null) (Kaufman et al., 2014). This idea is related to the study of noise
correlations, where it was recognized that activity fluctuations that lie outside of
a stimulus encoding space (i.e., “stimulus-null”) are not detrimental to the stimu-
lus information encoded by the neurons (Averbeck et al., 2006; Moreno-Bote et al.,
2014). Studies have also shown that structuring neural activity in an appropriate null
space can allow for multiplexing of different types of information (Mante et al., 2013;
Raposo et al., 2014), as well as stable behavior (Leonardo, 2005; Rokni et al., 2007;
Ajemian et al., 2013) and stable working memory (Druckmann and Chklovskii, 2012;
Murray et al., 2017) in the presence of time-varying neural activity. Additionally,
the existence of output-null dimensions in the motor system may facilitate motor
learning (Ranganathan et al., 2013; Moorman et al., 2017; Singh et al., 2016), or
allow for motor preparation (Kaufman et al., 2014; Elsayed et al., 2016) or novel
feedback processing (Stavisky et al., 2017) without causing overt movement. Our
work suggests that there may be limits on the extent to which output-null activity
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might be leveraged for neural computation. The coupling we observe between the
distributions of output-null and output-potent activity suggests that output-null ac-
tivity is not modified independently of output-potent activity. This coupling may
cause activity fluctuations in a stimulus-null space to influence the downstream read-
out, or limit one’s ability to plan the next movement without influencing the current
movement. Moving forward, an important direction for understanding the compu-
tations performed by different brain areas is to find out which aspects of the neural
activity are read out (Pagan et al., 2013; Kaufman et al., 2014) and to understand
how the dependencies like those identified in this study impact the computations
being performed.
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4 LEARNING IS SHAPED BY ABRUPT
CHANGES IN NEURAL ENGAGEMENT

Internal states such as arousal, attention, and motivation modulate brain-wide neu-
ral activity, but how these processes interact with learning is not well understood.
During learning, the brain modifies its neural activity to improve behavior. How do
internal states affect this process? Using a brain-computer interface (BCI) learning
paradigm in monkeys, we identified large, abrupt fluctuations in neural population
activity in motor cortex indicative of arousal-like internal state changes, which we
term “neural engagement.” In a BCI, the causal relationship between neural activity
and behavior is known, allowing us to understand how neural engagement impacted
behavioral performance for different task goals. We observed stereotyped changes in
neural engagement that occurred regardless of how they impacted performance. This
allowed us to predict how quickly different task goals were learned. These results sug-
gest that changes in internal states, even those seemingly unrelated to goal-seeking
behavior, can systematically influence how behavior improves with learning.

Published as: Hennig, J.A., Oby, E.R., Golub, M.D., Bahureksa, L.A., Sadtler,
P.T., Quick, K.M., Ryu, S.I., Tyler-Kabara, E.C., Batista, A.P., Chase, S.M., and
Byron, M.Y. 2021. “Learning is shaped by abrupt changes in neural engagement.”
Nature Neuroscience (in press).

4.1 Introduction

As we move about the world, we experience fluctuations in internal states such as
arousal, motivation, and engagement. Such fluctuations, which do not directly reflect
sensory stimuli or intended movements, are governed by the modulation of neural
activity throughout the brain (Aston-Jones and Cohen, 2005; McGinley et al., 2015;
Allen et al., 2019; Stringer et al., 2019; Steinmetz et al., 2019). The manner in which
these modulations relate to the ongoing computations performed by the cerebral
cortex is not well understood. In predominantly sensory areas of cortex, changes
in an animal’s internal state are known to affect neural response magnitude, signal-
to-noise ratio, timing, and variability (Mitchell et al., 2009; Cohen and Maunsell,
2009; McGinley et al., 2015; Vinck et al., 2015). Depending on how these changes
align with respect to neural encoding of stimulus information or downstream readout,
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How do changes in internal state impact learning? Experiment structure
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Figure 4.1. Studying how changes in neural activity during learning relate to changes
in internal state. a. Here we ask whether changes in internal state relate to how neural population
activity is modified during learning. Before learning, neural activity resides in some region (“ini-
tial activity”) of population activity space, depicted here by the spiking activity of three neurons
(y1, y2, y3). During learning, the neural activity needs to migrate to a different region of popula-
tion activity space to achieve a particular task goal (“goal #1 activity” and “goal #2 activity”).
Changes in the animal’s internal state can push the neural activity closer to (top orange arrow)
or further from (bottom orange arrow) the region appropriate for achieving a given task goal. b.
Monkeys performed an eight-target center-out task using a brain-computer interface (BCI). Neural
activity was recorded using a multi-electrode array implanted in M1. Spike counts (y) were taken
in 45 ms bins (green box). The BCI mapping converted the neural activity into a cursor velocity
(v) at each 45 ms timestep, updating the position of a visual cursor on a screen. Monkeys were re-
warded for successfully guiding the cursor to hit the visually instructed target. c. Each experiment
consisted of two blocks of trials. In Block 1, a monkey completed 200-400 trials using an intuitive
BCI mapping. In Block 2, the monkey completed 500-900 trials with a new BCI mapping he had
not used before.

changes in an animal’s internal state can impact perceptual processing and decision
making (Averbeck et al., 2006; Moreno-Bote et al., 2014; Ruff and Cohen, 2019;
Cowley et al., 2020). Changes in internal state are also known to impact motor
control and behavior, as the speed and latency of both eye movements and arm
reaches are known to be modulated by signals such as motivation, intrinsic value,
and reward expectation (Sugrue et al., 2004; Mazzoni et al., 2007; Xu-Wilson et al.,
2009; Leathers and Olson, 2012). These studies and others illustrate the importance
of understanding the influence of internal states on sensory processing and behavior.
What has been less well studied is the impact of internal state changes on learning
(Fig. 4.1a). When we learn to perform a task, such as shooting a basketball, the firing
activity of populations of neurons in the brain (Fig. 4.1a, gray clouds) is modified
in a particular manner in order to drive improved behavior (Fig. 4.1a, blue and
red clouds) (Li et al., 2001; Andalman and Fee, 2009; Ganguly and Carmena, 2009;
Hwang et al., 2013; Jeanne et al., 2013; Law et al., 2014; Sadtler et al., 2014; Poort
et al., 2015; Athalye et al., 2018; Golub et al., 2018; Vyas et al., 2018; Perich et al.,
2018; Oby et al., 2019). We also know that while animals perform a task, neural
activity undergoes internal state fluctuations that are not directly related to task
performance (Fig. 4.1a, orange arrows) (Arieli et al., 1996; Churchland et al., 2010;
Gu et al., 2011; Ecker et al., 2014; Lin et al., 2015; Stringer et al., 2019; Cowley et al.,
2020). Depending on the task goals, changes in internal state have the potential to
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make some learning-related neural changes easier to achieve (Fig. 4.1a, blue cloud),
while other changes may be made more difficult (Fig. 4.1a, red cloud). When changes
due to internal state are incongruous with learning, how do neural populations modify
their activity to drive improved behavior? One possibility is that the internal state
fluctuations that make learning more difficult might be suppressed. Alternatively,
the impact of internal state fluctuations on learning may be unavoidable, such that
some task goals are harder to achieve than others.

Answering this question is challenging because the causal relationship between
neural activity and behavior is not known in general. This makes it difficult to
understand which changes to neural activity would yield improved performance, as
well as how fluctuations in internal state would either interfere or augment that
performance. To address this difficulty we can leverage a brain-computer interface
(BCI) (Shenoy and Carmena, 2014; Moxon and Foffani, 2015; Golub et al., 2016;
Orsborn and Pesaran, 2017), where the causal relationship, or “mapping,” between
neural activity and behavior is known exactly and determined by the experimenter.

We trained three rhesus monkeys to modulate the activity of ∼90 units in primary
motor cortex (M1) to move a computer cursor on a screen using a BCI (Sadtler
et al., 2014). In previous work, we compared the neural population activity before
versus after monkeys learned to use a new BCI mapping (Golub et al., 2018; Hennig
et al., 2018). Here we study how neural activity changed throughout learning, and
the degree to which these changes were influenced by fluctuations in the monkey’s
internal state.

We first identified the dimensions of the largest fluctuations in M1 population
activity. Surprisingly, abrupt changes in population activity along these dimensions
were triggered by changes in various aspects of the task, ranging from brief pauses in
the task to perturbations of the BCI mapping. Furthermore, trial-to-trial changes in
population activity along these dimensions were correlated with changes in the mon-
key’s pupil size. These observations suggested that changes in population activity
along these dimensions could be related to the monkey’s arousal, engagement with
the task, or motivation throughout the experiment. For this reason, we term these
dimensions neural engagement axes.

To induce learning, we perturbed the mapping between neural activity and cur-
sor movements, requiring monkeys to modify the neural activity they produced in
order to restore proficient control of the cursor towards each target (Sadtler et al.,
2014). This allowed us to study how changes in activity along neural engagement
axes interacted with learning. We found that neural population activity did not take
a direct path from the activity produced prior to learning to the activity produced
at the end of learning. In particular, neural activity changed abruptly along the
neural engagement axes at the start of learning. This change occurred regardless of
the relationship between neural engagement axes and cursor movements, which led
to an immediate improvement in behavioral performance for some targets and im-
paired performance for others. Following the abrupt change, neural activity retreated
along neural engagement axes, which impacted performance differently for different
targets. These findings enabled us to predict which targets would be learned more
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quickly than others, based on how neural engagement interacted with the demands
of the learning task. Our results suggest that changes in internal states, even those
seemingly unrelated to goal-seeking behavior, can influence how behavior improves
with learning.

4.2 Results

To understand how changes in internal state might interact with learning (Fig. 4.1a),
we studied three monkeys performing an eight-target center-out task using a brain-
computer interface (BCI) (Fig. 4.1b; see Methods). On each trial, monkeys con-
trolled a computer cursor by modulating neural activity recorded from primary mo-
tor cortex (M1). The relationship between the recorded neural activity and cursor
velocity was specified by the BCI mapping. In each experimental session, monkeys
used two different BCI mappings (Fig. 4.1c). During the first block of trials, mon-
keys used an “intuitive” BCI mapping, calibrated so as to provide the monkey with
proficient control of the cursor. After monkeys performed the task for a few hundred
trials using the intuitive mapping, we changed the mapping between neural activity
and cursor movement to a new BCI mapping that the monkey had not used before.
This new BCI mapping (a “within-manifold” perturbation (Sadtler et al., 2014)) was
typically learned within one to two hours.

Prior to each experiment, we applied factor analysis to identify the top ten dimen-
sions, or factors, capturing the most covariability of the neural population activity.
The BCI mappings presented during each experiment were chosen such that the cur-
sor velocity was determined by only these top ten factors. In order to ensure that
our results captured changes in neural activity describing substantial covariance in
the population, we analyzed neural activity only in these factors.

Internal state fluctuations in primary motor cortex

We first show that the neural population activity shifted abruptly in response to
salient, experimenter-controlled events. We observed that, while monkeys used the
intuitive mapping, the neural activity produced for a given target showed substantial
trial-to-trial variability (Fig. 4.2a, gray dots). We found the direction of greatest
variance of the neural activity for each target (Fig. 4.2a, orange line). Surprisingly,
later in the session when the new BCI mapping was introduced, neural activity on
the first trial to a given target showed an abrupt change from the neural activity
produced during Block 1, with this change occurring almost directly along the axis
identified earlier (Fig. 4.2b, compare “1st trial of Block 2” to “avg. during Block
1”). Interestingly, on subsequent trials, neural activity gradually retreated down this
same axis (Fig. 4.2b, grayscale indicates trial index).
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We next quantified how these trial-to-trial changes in neural activity progressed
throughout the experiment (Fig. 4.2c). To do this, we identified the axis of greatest
variability during Block 1 for each target separately (e.g., the orange axis in Fig.
4.2a-b), and projected the neural activity for each trial along the appropriate target-
specific axis. So that we could compare these values across trials to different targets,
we normalized the projected values for each target separately (see Methods). This
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Figure 4.2. Neural activity increased abruptly along a neural engagement axis following
experimental events. a. Neural activity in the top three factor dimensions of highest covariance
(z1, z2, z3) for trials to the same target from Block 1 of session J20120528. Each gray point is the
average neural activity recorded within a single trial. Orange axis depicts the direction of maximum
variance of all gray points. The axis was defined in the 10-dimensional factor space, although only
the top three dimensions are depicted here. b. Same as a, but for the first 20 trials to the same
target during Block 2 (color indicates trial index). Orange axis from a shown for reference. Neural
engagement for each trial is the projection of neural activity onto the axis identified during Block 1
for trials to the same target. c. The value of neural engagement is given by the projection (dotted
arrow) of the recorded neural activity (black circle) onto the neural engagement axis (orange)
corresponding to the current target. Projections were normalized relative to the mean and standard
deviation across trials to the same target during Block 1 (see Methods). d. Neural engagement over
time from session J20120528, with annotations indicating timing of various events controlled by the
experimenter. Position along horizontal axis indicates clock time (see legend), with trial indices
marked for reference. Horizontal dashed line at zero indicates average neural engagement across
all trials during Block 1. e. First three subpanels: Neural engagement averaged across sessions
from all monkeys (n = 46 sessions) during cursor control relative to the start of the experiment,
the longest pause during Block 1, and the start of Block 2. Last subpanel: Neural engagement
during the interval of each trial before the monkey had seen the target (see Methods), averaged
across all three experimental events. Shading indicates mean ± SE across sessions. f. Neural
engagement during Block 2 from example session shown in d, alongside monkey’s average pupil
size during the same trials. g. Pearson’s correlation between neural engagement and pupil size
during Block 2 for each session, with sessions from monkeys J, L, and N indicated by squares,
triangles, and crosses, respectively. Example session from f indicated as black square. White circle
and black lines depict the bootstrapped median and 95% C.I. of the correlations across sessions,
respectively. h. Percentage of shared covariance of neural population activity explained by neural
engagement axes during Block 1, across trials to all targets (“Total variance”; n = 46 sessions),
or across trials to a single target (“Variance per target”; n = 368 targets). White circle depicts
median; error bar depicts median ± 25th percentile of correlations across sessions/targets. i. In a
different set of experiments, a monkey performed a center-out task by moving its hand to control
the cursor’s position (see Methods). j. Neural engagement averaged across sessions from hand
control experiments (n = 3 sessions), relative to the beginning of the experiment (left), and relative
to the introduction of a visuomotor rotation (right). Same conventions as e.
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yielded a trial-by-trial measure we call neural engagement, for reasons we discuss
below.

Neural engagement abruptly increased and gradually decreased following various
experimental events, beyond just the introduction of the new BCI mapping (Fig.
4.2d). For example, neural engagement was initially elevated on the very first trials
of the experiment, and then gradually decreased on later trials (Fig. 4.2d, “start of
experiment”). Next, near the middle of Block 1, the experimenter would pause the
experiment for a few minutes to choose the BCI mapping that would be introduced
in the upcoming Block 2. Following these pauses (Fig. 4.2d, “experiment paused”),
neural engagement increased, and then gradually subsided. Finally, a few minutes
later when the experimenter seamlessly introduced the new BCI mapping (without
pausing the experiment), neural engagement again abruptly increased and gradually
subsided on subsequent trials (Fig. 4.2d, “new BCI mapping introduced”). The
ensuing time course of neural engagement was similar following all three of these
experimenter-controlled events, indicating that the changes in neural engagement
during Block 2 were not due simply to the monkey trying to learn the new BCI
mapping. These changes were not specific to the particular BCI mappings used
during a given session, as we observed similar neural changes across multiple sessions
from all three monkeys (Supplemental Fig. B.1). Nor could the abrupt increases in
neural engagement be explained by hand movements, as monkeys showed little to no
hand movements during these experiments, and no increase in hand speeds when the
new BCI mapping was introduced (Supplemental Fig. B.2). Rather, these changes in
neural activity appeared to reflect stereotyped changes in the monkey’s internal state
throughout the experiment, and could reflect changes in arousal (Vinck et al., 2015),
engagement with the task (Steinmetz et al., 2019), or motivation (Mazzoni et al.,
2007). While the specific source of these changes is as yet unknown (see Discussion),
these changes have important consequences for learning, as we discuss below.

Two additional aspects of neural engagement were consistent with it reflecting
variations in the monkey’s internal state. First, when averaged across trials from all
sessions, neural engagement showed a consistent time course following each exper-
imental event (Fig. 4.2e). These changes in neural engagement appeared not only
while the monkeys controlled the cursor (Fig. 4.2e, first three subpanels), but also
during the beginning of each trial before the monkey had seen the visual target (Fig.
4.2e, last subpanel). Thus, neural engagement remained elevated even when the
monkey was not actively performing the task, consistent with this signal reflecting a
slowly-varying change in the monkey’s internal state. Second, changes in an organ-
ism’s internal state are typically correlated with changes in its pupil size (McGinley
et al., 2015). On trials with elevated levels of neural engagement, the pupil was
typically more dilated (Supplemental Fig. B.3), suggesting that neural engagement
may be correlated with an arousal-like state. In agreement with this, we found that
trial-to-trial fluctuations in neural engagement were often strikingly positively cor-
related with the monkey’s pupil size (Fig. 4.2f). For the majority of sessions from
all three monkeys, trial-to-trial changes in neural engagement and pupil size were
positively correlated (Fig. 4.2g), with a median Pearson’s correlation across sessions
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of ρ = 0.27 (bootstrapped 95% C.I. [0.15, 0.40], n = 44 sessions), similar to levels
observed in other work(Cowley et al., 2020).

Changes in activity along the neural engagement axes accounted for a substantial
amount of the covariance of the population activity. When considering population
activity during Block 1 across trials to all eight targets—and thus also including the
across-target variance in neural activity due to the monkey aiming towards different
targets—changes in neural engagement explained ∼30% of the total trial-to-trial
variance of the factor activity (Fig. 4.2h, “Total variance”). Within trials to the
same target, changes along the neural engagement axis explained ∼60% of the trial-
to-trial variance (Fig. 4.2h, “Variance per target”). These results indicate that the
trial-to-trial changes in population activity along the neural engagement axes were
substantial.

To assess whether similar changes in neural engagement were present during arm
movements (as opposed to BCI control), we analyzed data from a fourth monkey
performing an eight-target center-out task by controlling a computer cursor with
his hand (Fig. 4.2i; see Methods). As with the BCI experiments, we identified
a set of neural engagement axes in the population activity after applying factor
analysis. We found that neural engagement was elevated both at the beginning of
each experiment, and following the introduction of a visuomotor rotation (Fig. 4.2j),
with a time course that was strikingly similar to that of BCI control (Fig. 4.2e).
Taken together, we found that neural population activity in M1 during both BCI
and hand control showed large, trial-to-trial variations with a consistent time course
relative to experimental events. In the following, we focus on BCI control, where we
know the causal relationship between neural activity and behavior. This enables us
to directly assess how changes in neural engagement relate to behavior (i.e., cursor
velocities).

Studying the impact of changes in neural engagement on be-
havior using a BCI paradigm

Having established the presence of large fluctuations in neural engagement in M1,
we next wanted to understand how these fluctuations might interact with learning.
Specifically, we asked whether the monkey’s ability to learn to move the cursor in
a given direction with the new BCI mapping could be understood in terms of the
relationship between the neural engagement axes and the new mapping. First, we
explain how a BCI paradigm allows us to quantify the interaction between neural
engagement and behavior (i.e., cursor velocities). Consider a schematic of the neural
activity produced by the monkey during Block 1 (Fig. 4.3a). For a given target,
we can summarize the monkey’s trial-averaged neural activity as a point in neural
space (z), where here we depict the neural activity in the three factor dimensions
of highest variance. The cursor velocity under the intuitive BCI mapping (v) is
given by projecting the neural activity onto the intuitive BCI mapping (v = M1z).
During Block 1, the monkey’s trial-averaged cursor velocities were near the target
direction (Fig. 4.3b), indicating the monkey’s ability to produce cursor movements
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that moved the cursor towards the target on average. We can also characterize the
effect of an increase in neural engagement on cursor velocities by projecting the
neural engagement axis (orange arrow in Fig. 4.3a) onto the intuitive BCI mapping
(orange arrow in Fig. 4.3b). For this target, increasing neural engagement increases
cursor speeds towards the target.

Next, consider the first trial of Block 2, when the monkey first encounters the new
BCI mapping. If the monkey were to continue to produce the same average neural
activity that he did during Block 1 (Fig. 4.3a), this would no longer result in cursor
movements straight to the target (Fig. 4.3c). Thus, the monkey must learn how to
modify the neural activity he produces in order to produce faster cursor speeds in
the target direction. Importantly, the new BCI mapping also changes the manner
in which neural engagement relates to cursor velocity. For this target, increasing
neural engagement would move the cursor velocities even further from the target
direction (orange arrow in Fig. 4.3c). In this manner, changes in neural engagement
can interact with the monkey’s attempts to move the cursor towards the target.

We can gain a more holistic picture of the interaction between neural engagement
and cursor velocities by visualizing the neural activity produced for all eight targets
together (Fig. 4.3d). We observed that, when visualized in factor space (Fig. 4.3d),
the neural engagement axes identified for different targets often appeared quite sim-
ilar. In fact, neural engagement axes were almost always consistent with the firing
rates of all neural units changing in the same direction (Supplemental Fig. B.4). In-
creases in neural engagement corresponded to increased average firing rates in nearly
all units, in a gain-like manner (Supplemental Fig. B.5). However, while the neural
engagement axes for different targets were similar in terms of how they related to
single unit firing rates, these axes also showed behaviorally relevant differences. For
example, under the intuitive BCI mapping, increases in neural engagement typically
led to faster speeds towards each target (Fig. 4.3e), which could not happen if the
neural engagement axes were identical for all targets. A similar feature was also
present during arm movements: By identifying the linear mapping of neural popu-
lation activity most predictive of ensuing hand velocities, we found that increases
in neural engagement typically predicted faster hand speeds towards each target
(Supplemental Fig. B.6). Thus, the orientation of the neural engagement axis in
population activity space depends on the monkey’s intended movement direction.

We now focus on the velocities under the new BCI mapping (Fig. 4.3f), as this
indicates the initial cursor velocities the monkey would expect to produce during
Block 2, were he to continue producing the same activity he did during Block 1.
As discussed above, neural engagement can have different effects on cursor velocities
depending on the monkey’s intended movement direction. For example, increased
neural engagement may increase cursor speeds towards some targets (e.g., purple
target in Fig. 4.3f) and decrease speeds towards other targets (e.g., pink target in
Fig. 4.3b). Additionally, increased neural engagement can affect not just the speed
but also the angular error of the velocity relative to the target direction (e.g., red
and yellow targets in Fig. 4.3f). Overall, we observed that the new BCI mappings
induced a variety of different relationships between neural engagement and cursor
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velocity, both across sessions and within targets of the same session (Supplemental
Fig. B.7). Thus, these experiments provided us with the means to assess how
different relationships between neural engagement and cursor velocity related to how
each target was learned.

Neural engagement increased initially regardless of its impact
on performance

To study how changes in neural engagement might interact with learning, we first
characterized the level of neural engagement on the very first trial to each target
using the new BCI mapping. As shown earlier, monkeys’ initial reaction to the
introduction of the new mapping was, on average, to increase neural activity along the
neural engagement axis (Fig. 4.2e, third subpanel). However, as we have also shown,
there are a variety of ways in which the neural engagement axes affected velocities
under the second mapping (Supplemental Fig. B.7). This raises the possibility that
neural engagement might have increased by different amounts depending on whether
increasing neural engagement was expected to increase (Fig. 4.4a) or decrease (Fig.
4.4b) the speed of the cursor towards the target under the new mapping.

We anticipated that neural engagement might increase more for targets where
doing so would increase cursor speeds towards the target. To assess whether this
was the case, for each target we used the trial-averaged activity from Block 1 to
estimate the expected velocity under the new mapping (Fig. 4.4a-b, filled circles),
as well as the expected impact on that velocity if neural engagement increased (Fig.
4.4a-b, orange axes). We then classified each target as belonging to one of two
groups, based on whether an increase in neural engagement was expected to increase
(“T+”, Fig. 4.4a) or decrease (“T−”, Fig. 4.4b) the speed of the cursor towards the
target direction. We next assessed the levels of neural engagement on the first trial
to each target in Block 2. Across targets from all sessions, the distribution of neural
engagement on the first trial using the new mapping did not differ as a function of
how performance for that target was impacted (Fig. 4.4c) (p = 0.954, two-sample
Kolmogorov-Smirnov test, n1 = 220 and n2 = 148 targets). This indicates that
initially, neural activity increased along the neural engagement axes even when doing
so negatively impacted task performance. As a result, the initial increase in neural
engagement made T− targets more difficult than they would have been otherwise
(relative to the average neural activity produced during Block 1), while T+ targets
were made easier.

Differences in learning across targets can be explained by
changes in neural engagement

We saw that changes in neural engagement on the first trials using the new BCI map-
ping occurred regardless of the impact on performance. We wondered whether, given
repeated practice with the new mapping over subsequent trials, changes in neural
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engagement might interact with learning-driven changes for each type of target.

We visualized how cursor velocities under the second mapping changed through-
out learning, as a function of whether the initial increase in neural engagement
increased (T+) or decreased (T−) the speed of the cursor towards the target (Fig.
4.5a-b). For both types of targets, neural activity on the first trial jumped out
abruptly along the neural engagement axis (Fig. 4.5a-b, white circles have moved
along the orange arrows relative to the gray circles). Then, over tens of trials, veloc-
ities gradually aligned with the target direction, leading to increased speeds towards
the target (Fig. 4.5a-b, projection of the blue and red traces increases along the
target direction). Were these behaviorally beneficial changes to velocity driven by
target-specific changes in neural engagement? We measured the levels of neural en-
gagement for each target during Block 2 after accounting for any changes due to
learning by neural reassociation (Golub et al., 2018) (see Methods). In agreement
with what we observed earlier (Fig. 4.2e, third subpanel), we found that neural
engagement gradually decreased throughout Block 2 (Fig. 4.5c). Importantly, this
decrease in neural engagement was likely beneficial to T− targets, the ones initially
impaired by the increase in neural engagement. In fact, neural engagement decreased
more for T− targets than for T+ targets (Fig. 4.5c). These target-specific differences
in neural engagement could not be explained by differences in the animal’s arousal,
as the average time course of pupil size did not differ between T+ and T− targets
(Fig. 4.5d). These results suggest that, as learning proceeded, changes along the
neural engagement axis were driven by two components, one target-invariant (be-
cause neural engagement decreased throughout learning for both target types), and
one target-specific (because neural engagement decreased by different amounts de-
pending on the target type). This led us to ask whether these differential changes in
neural engagement might explain how quickly the two types of targets were learned.
To quantify the amount of learning for each target, we measured cursor speeds to-
wards the target relative to the speeds monkeys would experience if they continued
to use the neural activity they produced prior to the introduction of the new BCI
mapping (Fig. 4.5e; see Methods). On the first trial of Block 2, the cursor speed
towards the target increased for T+ targets and decreased for T− targets (Fig. 4.5e,
trial 1). This is in agreement with monkeys immediately increasing neural engage-
ment at the start of Block 2, regardless of its impact on performance (Fig. 4.4c). As
Block 2 continued, performance for both target types gradually improved (Fig. 4.5e,
trials 1-75), indicating learning.

Interestingly, monkeys reached peak performance more quickly for T+ targets
than for T− targets (p = 1.259× 10−4, two-sided Wilcoxon rank-sum test, n1 = 220
and n2 = 148 targets; Fig. 4.5f, Supplemental Fig. B.8). This was not due to a
difference in learning rate, as the learning rates for the two target types were not
statistically different (p = 0.202, two-sided Wilcoxon rank-sum test, n1 = 220 and
n2 = 148 targets; see Methods). Additionally, performance levels at the end of
Block 2 for the two target types were not statistically different (p = 0.884, two-sided
Wilcoxon rank-sum test, n1 = 220 and n2 = 148 targets). Other groupings of targets
agnostic to neural engagement did not predict differences in how quickly targets
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Figure 4.5. Relationship between neural engagement axes and task performance pre-
dicted which targets were learned more quickly. a. Average cursor velocities under the
new mapping across trials during Block 2, for an example T+ target (180◦, J20120528) where
an increase in neural engagement initially improved performance relative to the average activity
produced during Block 1 (gray circle). Same conventions as Fig. 4.4a. The blue line depicts how
the trial-averaged velocity evolved throughout Block 2, starting with the first trial to that target
(white circle) and ending with the average during the last trials (blue circle). Velocities gradually
moved towards the target direction, both decreasing angular error and increasing the speed in the
target direction, indicating learning. b. Same as a, but for an example T− target (315◦, J20120601)
where an increase in neural engagement was initially expected to impair performance under the new
mapping. c. Changes in neural engagement during Block 2, averaged across T+ (n = 220) and T−
(n = 148) targets (mean ± SE). Trial index is relative to the start of Block 2 for each target. d.
Changes in pupil size during Block 2. Same conventions and sample sizes as c. e. Changes in cursor
speed towards the target under the new mapping during Block 2, relative to the expected speed
under the new mapping based on the neural activity produced during Block 1. Same conventions
and sample sizes as c. f. Distribution of the number of trials at which each target attained its peak
level of performance (see Methods), for all T+ and T− targets. Triangles depict the median of
each distribution; asterisks indicate that the medians were significantly different (p = 1.259× 10−4,
two-sided Wilcoxon rank-sum test, n1 = 220 and n2 = 148 targets).
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Figure 4.6. Neural engagement changed differently in output-potent versus output-null
dimensions of the new BCI mapping. a. Schematic of decomposing a neural engagement axis
(EA, orange arrow) into output-null and output-potent components. Given the new BCI mapping,
this axis can be decomposed into output-null and output-potent axes, such that only changes in
neural activity along the output-potent axis will affect cursor velocities under the new mapping. b-
c. Changes in neural activity along the output-null (b) and output-potent (c) neural engagement
axes during learning, averaged across T+ (n = 220) and T− (n = 148) targets (mean ± SE).
Same conventions as Fig. 4.5c. Changes in output-null neural engagement do not affect cursor
movements, while changes in output-potent neural engagement do. d. Schematic summarizing
how the evolution of neural activity during learning differed based on whether a neural engagement
increase was predicted to initially improve (T+, blue) or impair (T−, red) performance to a given
target. The average neural activity for each target type was similar on the first trial of Block 2
(white circle), relative to where activity was prior to the introduction of the new BCI mapping
(gray circle), but gradually diverged during learning (blue and red arrows).

reached peak performance (Supplemental Fig. B.9). Overall, these results suggest
that, although performance at the end of learning was similar for T+ and T− targets,
the initial increase in neural engagement gave performance for T+ targets a “head
start,” allowing monkeys to reach peak performance levels for these targets more
quickly. This explanation is at apparent odds with the fact that neural engagement
decreased throughout learning for both target types (Fig. 4.5c), which should have
led to slower cursor speeds for the T+ targets. In the next section we explore how
the initial performance improvements for T+ targets were maintained even as neural
engagement decreased throughout learning.

Neural engagement changed differently in neural dimensions
aligned with the new BCI mapping

Based on the relationship between neural engagement and cursor speed, one might
expect that the gradual decrease in neural engagement (Fig. 4.5c) should have re-
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sulted in gradually slower cursor speeds for T+ targets. But in Fig. 4.5e, one can see
that performance for T+ targets actually increased over time. How is this possible?
Crucially, our measurement of neural engagement does not account for which changes
in neural engagement affect cursor movements, and which changes do not affect cur-
sor movements. We therefore decomposed each neural engagement axis into two
components (Fig. 4.6a; see Methods), where the first component was output-null to
the new BCI mapping (i.e., changes in this direction would not impact cursor veloci-
ties under the new mapping), and the other component was output-potent (Kaufman
et al., 2014; Stavisky et al., 2017; Hennig et al., 2018). This resulted in measures of
output-null and output-potent neural engagement, which allowed us to look specif-
ically at whether neural engagement changed differently depending on whether or
not it impacted cursor movements. Changes along the output-null component of the
neural engagement axis had no impact on cursor velocities (Fig. 4.6b), and followed
the same pattern as the total neural engagement (Fig. 4.5c). By contrast, changes
along the output-potent component of the neural engagement axis moved in the
directions necessary to yield performance improvements for each target type (Fig.
4.6c). In particular, neural population activity for T+ targets remained elevated
along the output-potent component of the neural engagement axis, where perfor-
mance was initially improved by the increase in neural engagement (Fig. 4.6c, blue
trace). This indicates that the net decrease in total neural engagement throughout
learning was not entirely agnostic to task performance, as neural activity remained
elevated specifically in the neural dimensions that were relevant to controlling the
cursor.

Taken together, these results explain how monkeys reached peak performance
more quickly for some targets than for others, based on the relationship between
neural engagement and cursor movements (Fig. 4.6d). On the first trial of Block 2,
neural activity increased along the neural engagement axis, regardless of its impact
on performance (Fig. 4.6d, white circle). This led to immediate performance im-
provements for T+ targets and decrements for T− targets (Fig. 4.5e, trial 1). As
the trials continued, neural activity gradually decreased along the neural engagement
axis for both target types (Fig. 4.6d, blue and red arrows). For T− targets, this
decrease in neural engagement was beneficial to performance, yielding progressively
faster cursor speeds towards the target. For these targets, neural activity decreased
similarly along the components of the neural engagement axis that were output-
potent and output-null to cursor velocities under the new BCI mapping (Fig. 4.6d,
red arrow). By contrast, for T+ targets, neural activity decreased along the output-
null components of the neural engagement axis, but maintained the initial increase
in the output-potent components (Fig. 4.6d, blue arrow). This allowed the imme-
diate performance improvements from the increase in neural engagement on trial 1
to be maintained, even as total neural engagement decreased. As a result, monkeys
reached peak performance more quickly for T+ targets than for T− targets.

These results indicate that during learning, neural population activity did not
change gradually from the activity observed before learning (Fig. 4.6d, “avg. in
Block 1”) to the activity at the end of learning (Fig. 4.6d, “end of Block 2”). Rather,
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neural population activity underwent an abrupt change at the start of learning,
improving performance for some targets and impairing performance for others. While
the performance levels at the end of learning were similar for both target types
(Fig. 4.5e), the path along which neural population activity changed to achieve this
performance was quite different (Fig. 4.6d). These findings help to explain why some
targets were learned more quickly than others.

4.3 Discussion

We have shown that large, trial-to-trial fluctuations in M1 population activity along
neural engagement axes exhibit hallmarks of an arousal- or motivation-like process.
On the first trials that monkeys used a new BCI mapping, neural activity increased
abruptly along neural engagement axes, regardless of the effect on behavioral perfor-
mance. On subsequent trials, neural activity retreated along neural engagement axes,
impacting monkeys’ performance using the new BCI mapping. The way that neural
engagement axes related to behavior allowed us to predict which targets would be
learned more quickly than others. Our findings indicate that 1) changes in neural ac-
tivity during learning need not be a gradual transition between the activity produced
prior to learning and the activity produced at the end of learning, and 2) changes
in internal states seemingly unrelated to goal-seeking behavior can systematically
influence how behavioral performance improves with learning.

In this study, we found that trial-to-trial changes in neural engagement were pos-
itively correlated with changes in the monkey’s pupil size, a common psychophysical
index for an animal’s internal state (McGinley et al., 2015). The term “internal
state” is used broadly, but typically refers to any neural signal that does not directly
reflect, but may interact with, sensory encoding or behavior generation (McGinley
et al., 2015). This includes internal states related to computation (e.g., internal
models (Shadmehr and Holcomb, 1997), reward prediction (Schultz et al., 1997),
working memory (Constantinidis and Klingberg, 2016)), as well as those reflective
of more autonomic processes (e.g., arousal (Vinck et al., 2015), motivation (Mazzoni
et al., 2007), task engagement (Steinmetz et al., 2019)). We have termed the inter-
nal state identified in the present work “neural engagement” because its stereotyped
time course was suggestive of changes in the monkey’s engagement with the task
throughout the experiment (e.g., increases in neural engagement following pauses
in the experiment and the introduction of a new BCI mapping). This is likely dis-
tinct from the concept of “task engagement” (Steinmetz et al., 2019), which refers to
the difference between an animal actively performing a task versus passive sensory
stimulation. Our results add to a growing line of work finding that there are large,
systematic changes in M1 activity that are not related on a moment-by-moment basis
to movement kinematics (Kaufman et al., 2016; Russo et al., 2018).

While our current study design does not allow us to identify the exact source
of changes in neural engagement, here we briefly consider multiple possibilities and
how they might explain (or fail to explain) the results in the present work. These
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ideas are addressed in more detail in Supplemental Discussion. First, we observed
that increased neural engagement predicted increased hand speed towards the target
(Supplemental Fig. B.6), suggesting that neural engagement may simply reflect the
monkey’s intended movement speed. However, this seems unlikely given that neural
engagement decreased over time even for T+ targets, which would decrease reward
rate. Thus, neural engagement is likely not directly related to the monkey’s intended
movement speed. Second, neural engagement may reflect a default motor response
such as muscle co-contraction. Co-contraction is thought to be a default strategy for
reducing kinematic errors early in learning (Osu et al., 2002). However, we also ob-
served an increase in neural engagement following pauses during Block 1 (Fig. 4.2e),
when there were no unexpected kinematic errors to correct. Thus, if neural engage-
ment does reflect a default motor response such as co-contraction, this response may
be the manifestation in motor cortex of an uncertainty- or arousal-driven response,
rather than a response to kinematic errors. Finally, neural engagement may reflect
changes in animals’ arousal, as indicated by its correlation with pupil diameter. We
speculate that neural engagement may have a similar origin as the “neural drift”
identified in V4 and prefrontal cortex (Cowley et al., 2020).

How might neural engagement impact learning? We found that neural engage-
ment increased abruptly early in learning, and then gradually decreased on subse-
quent trials, regardless of its impact on behavior. We can imagine two mechanisms
by which these stereotyped changes in neural engagement might impact the learn-
ing process. First, modifying one’s future behavior to improve performance requires
feedback. Thus, whenever changes in neural engagement directly impact behavior
(i.e., BCI cursor movements), this will also impact the monkey’s feedback about his
performance, which will necessarily influence the learning process. This is likely to be
the case during arm movements as well, as we found that changes in neural engage-
ment were related to hand speeds during hand control experiments (Supplemental
Fig. B.6). A second, not mutually exclusive possibility is that neural engagement
may influence which neural activity patterns the monkey returns to on later trials
via a reinforcement-like process (Athalye et al., 2018). For example, early in learn-
ing when levels of neural engagement were higher, animals produced neural activity
patterns with an increased likelihood of reward for T+ (as compared to T−) targets.
If neural activity patterns are more likely to be revisited when they lead to higher
rewards, then the animals may revisit these same neural activity patterns on later
trials for T+ targets. This could explain why T+ targets were learned more quickly
than T− targets.

Previous work has observed an increase in neural variability early in learning
(Athalye et al., 2017). It was proposed that this increased variability may allow the
brain to improve behavior by exploring new neural activity patterns. Our results con-
firm this observation, and may offer a new interpretation. We found that increased
neural engagement corresponded with increased modulation depths and neural vari-
ability in most individual neural units (Supplemental Fig. B.5), consistent with
findings of increased neural variability at the beginning of learning in previous stud-
ies (Athalye et al., 2017). If changes in neural activity at the beginning of learning
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are indeed related to an exploratory drive, our results suggest that this process may
not be a general exploratory process (i.e., an increase in variability without changing
the mean), but rather a stereotyped exploration process (i.e., neural activity moves
in a particular direction along neural engagement dimensions, which also results in
more variability). Importantly, we found that neural engagement (and thus, neural
variability) also increased even in the absence of learning (i.e., following pauses in
Block 1). This raises the possibility that the changes in neural variability observed
during learning in previous work may be driven by different internal states–not only
by an exploratory drive, but also by internal states that reflect the animal’s arousal
or uncertainty about its environment. Future work is needed to disentangle the ef-
fects of these diverse sources of variability in neural population activity, all of which
may impact behavior, and thus learning.

Overall, our results add to a growing body of work finding population-level sig-
natures of internal state fluctuations (Ecker et al., 2014; Rabinowitz et al., 2015;
Lin et al., 2015; Ni et al., 2018; Stringer et al., 2019; Allen et al., 2019; Cowley
et al., 2020). Changes in internal state can influence on a moment-by-moment basis
how we perceive a sensory stimulus (e.g., through attention), or how we execute a
movement (e.g., through vigor). Building upon these previous studies, we found that
changes in internal state can influence how behavior evolves during learning. Thus,
internal state fluctuations can influence not only concurrent behavior, but also future
behavior through their interaction with the learning process.
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5 OTHER CONTRIBUTIONS

5.1 New neural activity patterns emerge with long-

term learning

Consider a skill you would like to learn, like playing the piano. How do you progress
from “Chopsticks” to Chopin? As you learn to do something new with your hands,
does the brain also do something new? We found that monkeys learned new skilled
behavior by generating new neural activity patterns. We used a brain–computer in-
terface (BCI), which directly links neural activity to movement of a computer cursor,
to encourage animals to generate new neural activity patterns. Over several days,
the animals began to exhibit new patterns of neural activity that enabled them to
control the BCI cursor. Thus, new neural activity patterns emerge with learning.
We demonstrate that these new neural activity patterns cause the new behavior.
This suggests that learning to play the piano and other skills might also involve the
generation of new neural activity patterns.

Published as: Oby, E.R., Golub, M.D., Hennig, J.A., Degenhart, A.D., Tyler-
Kabara, E.C., Byron, M.Y., Chase, S.M. and Batista, A.P., 2019. “New neural activ-
ity patterns emerge with long-term learning.” Proceedings of the National Academy
of Sciences, 116(30), pp.15210-15215.

5.2 Intracortical brain-machine interfaces

A brain–machine interface, or BMI, directly connects the brain to the external world,
bypassing damaged biological pathways. It replaces the impaired parts of the nervous
system with hardware and software that translate a user’s internal motor commands
into action. In this book chapter, we discuss the four basic components of an in-
tracortical BMI: an intracortical neural recording, a decoding algorithm, an output
device, and sensory feedback. An introduction to these concepts can be found in
Chapter 2.

Published as: Oby, E.R., Hennig, J.A., Batista, A.P., Byron, M.Y. and Chase,
S.M., 2020. “Intracortical brain–machine interfaces.” In Neural Engineering (pp.
185-221). Springer, Cham.
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6 IMPLICATIONS FOR LEARNING

6.1 Introduction

Learning is an essential ability by which individuals accumulate knowledge and de-
velop skillful behavior. Within a single lifetime, animals must learn how to move
and control their bodies, efficiently navigate their surroundings, obtain resources,
and communicate with others–all in a constantly changing environment. While these
abilities improve with experience due to changes in the firing activity of populations
of neurons throughout the brain, the exact ways in which this happens is poorly
understood.

What principles underlie the brain’s ability to learn? Answers to this question
have spanned a range of different levels of description. At the microscopic level,
studies have revealed how plasticity laws modify synapse strengths between neurons
during learning (Rioult-Pedotti et al., 2000). At the macroscopic level, studies of
organisms’ behavior have revealed that behavioral changes during learning develop
on a range of different timescales (Smith et al., 2006; Wang et al., 2018), and are
guided by different types of feedback such as supervision (Ölveczky et al., 2005),
reward (Schultz et al., 1997), and sensory prediction errors (Shadmehr and Holcomb,
1997).

In this paper, we focus on an intermediary between behavior and plasticity: the
neural population. The firing activity of populations of neurons ultimately drives
behavior while also being affected by changes in plasticity, making the neural popu-
lation an ideal focus point for studying how the brain changes to improve behavior
(Sohn et al., 2020). We argue here that studying learning in neural populations has
already begun to provide unique insights into how the brain learns. Advances in
recording technology provide an opportunity to understand how large numbers of
neurons change their activity throughout a learning experience (Oby et al., 2019;
Zhou et al., 2019; Bartolo et al., 2020a). While many studies have considered how
single neurons or populations of neurons change their activity before and after a
learning experience, studies of how neural population activity changes throughout a
learning experience are relatively rare. Here we place a special emphasis on these
latter studies, highlighting the unique benefits of this approach.

How might we interpret changes in neural population activity observed during
learning? Theories and methods from statistics and machine learning may provide a
useful starting point. After all, while the brain may be the most generally powerful
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learner we are aware of (Lake et al., 2017; Sinz et al., 2019), artificial neural net-
works (ANNs) can also learn complex behaviors, sometimes even exceeding human
levels of performance (Mnih et al., 2015; Brown and Sandholm, 2019; Schrittwieser
et al., 2020). An increasing number of studies of artificial networks have revealed re-
markable similarities between the network activity of trained ANNs and the activity
of neurons in animals performing the same task (Mante et al., 2013; Cadieu et al.,
2014; Sussillo et al., 2015; Engel et al., 2015; Yamins and DiCarlo, 2016; Saxe et al.,
2020). These results make the tantalizing proposal that much of the complexity and
structure we observe in neural population activity during trained behaviors may arise
simply from the task itself. While a correspondence between artificial and biologi-
cal networks has been observed only after each network has finished learning, these
results suggest that we may be able to understand learning in the brain similar to
how we understand learning in artificial networks (Marblestone et al., 2016; Richards
et al., 2019).

From this point-of-view, which we refer to as the optimization framework (Fig.
6.1), learning is a process by which a system optimizes a particular objective or cost
function with respect to some learning rule, subject to constraints. For example,
one can train an artificial network to recognize handwritten digits using an objective
function known as cross-entropy, and a learning rule known as backpropagation. The
idea that the brain learns by modifying its activity to improve an objective function
is not new, and exists in many subfields such as those studying perceptual learn-
ing (Yamins and DiCarlo, 2016), motor learning (Haith and Krakauer, 2013), and
reinforcement learning (Neftci and Averbeck, 2019). While learning in the brain is
certainly more complicated than in artificial networks (e.g., different brain areas may
have different objective functions), trying to identify the brain’s objective function
and learning rule for a given behavior may nevertheless be a promising approach to
understanding changes in neural population activity during learning. However, as we
will argue here, studies of neural population activity during learning have identified
a number of distinct features not typically present in the activity of ANNs. These
include 1) the presence of substantial neural variability throughout learning; 2) the
existence of multiple objective functions, often with distinct time scales; and 3) task-
irrelevant changes in network activity, which can persist even when they negatively
impact task performance. As we will discuss, these results refine our understanding
of the extent to which learning in the brain can be described as an optimization
process.

In what follows we will outline three key observations about learning identified
from studies of neural population activity. These ideas emphasize the importance
of understanding not just the endpoint of learning, but also the path that neural
activity takes to get that endpoint. For each observation, we suggest ways in which
this result may apply to learning in artificial agents, as well as how it refines a
description of learning in the brain as an optimization process. We hope that these
results will spur refinements to our understanding of learning in the brain, which in
turn may inspire improved methods for learning in artificial networks.
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Figure 6.1. The optimization framework for understanding changes in neural population activity
during learning. A. On each trial t, the provided stimulus, or sensory input, cues an animal to
provide a particular behavior. B. This stimulus is provided to the network as input, resulting in a
particular pattern of network activations, or population activity. C. The output of the network is
the animal’s chosen behavior given the stimulus, and the outcome of this behavior is available via
feedback. D. Performance at the task on trial t can then be quantified as a scalar “task objective”
or performance metric. Learning is defined as the improvement in this performance metric over
time. E. At the end of the trial, the network will be updated (e.g., via changes in synapse strengths
in the network) so as to try to improve performance on subsequent trials (black arrow, “Learning-
driven changes”). As discussed in the main text, changes in the network may also be driven by
other sources (green arrows).
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6.2 Learning about learning in neural population

activity

1. Neural “noise” during learning is important but inflexible

Given the same task and context, our behaviors are notoriously variable. Even star
basketball players miss free throws, and professional musicians sometimes play the
wrong note. Rather than being “the unintended consequence of a noisy nervous
system” (Dhawale et al., 2017), behavioral variability may in fact be critical for
learning, allowing us to fully explore reward landscapes and adapt to ever-changing
environments. For example, juvenile songbirds learn the songs of their adult tutors by
trial-and-error, effectively exploring different vocal strategies until they find the one
that best matches their tutor’s song (Ölveczky et al., 2005). The relationship between
variability and learning can be understood through the lens of reinforcement learning
(RL). In RL, an agent tries to maximize its cumulate reward in a particular task by
finding a balance between exploring new actions (i.e., using behavioral variability)
and exploiting successful ones. Evidence in a variety of species suggests that the brain
may regulate its variability dynamically based on the needs of the task, such that
behavioral variability is reduced when the stakes are high (Dhawale et al., 2017).
For example, as a songbird ages, his song “crystallizes,” becoming more accurate
and less variable (Konishi, 1985; Tumer and Brainard, 2007). In humans, when
learning occurs by trial-and-error, the amount of task-relevant behavioral variability
can predict how quickly different task goals will be learned (Wu et al., 2014). These
results suggest that the brain can actively control behavioral variability to facilitate
learning.

Of course, if variability is present at the level of behavior, it should also be
present in the brain areas that drive that behavior. To what extent can the brain
control neural variability during learning? Like behavior, the spiking activity of
neurons shows substantial trial-to-trial variability even given repeated trials with
the same context. And in birdsong, a long line of studies has established a theory
of the relationship between neural variability, behavioral variability, and learning
(Ölveczky et al., 2005; Kao et al., 2005; Ölveczky et al., 2011). However, a substantial
amount of variability in neural population activity does not appear to be driven by
considerations of improving performance or learning. This variability, which we refer
to as “population covariability,” is not private to individual neurons, but is in fact
shared across populations of neurons. As we explain below, there are converging lines
of evidence suggesting that population covariability both limits performance and is
relatively constrained, even over the course of days or weeks of practice.

The first line of evidence comes from learning studies using a brain-computer in-
terface paradigm (BCI), in which the structure of population covariability predicted
which tasks could be easily learned within a few hours. In these experiments, popu-
lation activity recorded in primary motor cortex (M1) controlled the movements of a
visual cursor on a screen according to a BCI “mapping.” The utility of a BCI is that
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it provides a direct causal test of population covariance structure. That is, one can
challenge animals to break that structure, and observe whether or not they are able
to do so. Animals were rewarded for successfully navigating the cursor towards a
cued visual target. To learn, animals used visual feedback about the cursor’s position
to modify the population activity they produced on subsequent trials. Within a sin-
gle day, subjects showed more performance improvements for the BCI mappings that
were aligned with dimensions of the population that reflected the bulk of the shared
covariance among neurons (Sadtler et al., 2014). This suggests that constraints on
population covariability throughout learning limited which types of BCI mappings
could be learned within a day. Later work found that, in fact, the structure of neu-
ral covariability was largely identical before and after learning a new BCI mapping
(Golub et al., 2018; Hennig et al., 2018). This suggests that the amount of learning
subjects could achieve within a day was limited by the inflexibility of the population
covariability. These results indicate that population covariability may not always be
easily modifiable, even when that variability interferes with task performance.

A second line of evidence that population covariability can limit learning relates
to the existence of neural variability that interferes with the ability to decode infor-
mation (e.g., about a stimulus) from neural activity, so-called “information-limiting”
correlations (Moreno-Bote et al., 2014). Because these correlated fluctuations in fir-
ing activity are aligned with stimulus-encoding dimensions of the population, they
cannot simply be averaged away by pooling over large numbers of neurons, potentially
limiting behavioral performance. These correlations may be reduced over the course
of multiple days of learning (Ni et al., 2018). Nevertheless, information-limiting cor-
relations persist even in over-trained animals (Bartolo et al., 2020b). These findings
highlight the fact that, depending on its structure, neural variability cannot always
simply be averaged away or attenuated by continued experience.

The role of variability in the brain during learning can be contrasted with the role
of variability in methods for reinforcement learning (RL). In particular, in deep RL,
one or more artificial neural networks is used to parameterize an RL agent’s policy,
value, or Q function, which in turn determines the agent’s behavior. We can think of
the activations of these networks as akin to the activity of a population of neurons in
the brain. Similar to theories of motor learning discussed above, RL agents discover
optimal behavioral policies by effectively exploring their environment, where explo-
ration occurs due to behavioral variability. Nevertheless, the resulting variability
in an RL agent’s network activity is likely quite distinct from the variability in the
brain. For example, the classical approach to encouraging exploration, known as an
ε-greedy” strategy (?), adds behavioral variability without any corresponding net-
work variability. While more recent work has shown how adding variability directly
to network parameters can result in effective exploration (??), the structure of the
resulting “neural” variability is typically simple (e.g., determined by a single scalar
parameter), and the amount of variability can be actively adapted to optimize perfor-
mance. By contrast, covariability in the brain is non-trivial (e.g., non-isotropic), and
is not readily modifiable. While learning in the presence of substantial variability
can improve the robustness or generalization abilities of artificial networks (??), it is
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as yet unclear how population covariability in the brain might improve the learning
process.

How might population covariability influence how learning proceeds in the brain?
Here we consider two non-mutually exclusive possibilities. First, from the perspec-
tive of reinforcement learning, some aspects of population covariability may reflect
exploratory changes in network activity that can be used to discover (or reinforce)
the population activity patterns that lead to improved behavior. Because variability
exists throughout the network as opposed to only at the level of behavioral output,
this exploratory process may be akin to direct policy search methods such as evo-
lutionary strategies or policy gradient, in which variability in population activity is
used to explore new control policies. Second, as some have suggested, learning in
the brain may proceed in a manner similar to gradient descent (Marblestone et al.,
2016). For either possibility, the brain must use feedback from the task to estimate
the direction, or gradient, in which population activity should be modified in order to
improve future performance. Importantly, this gradient can depend on the structure
of population covariability. For example, it may be easier to learn an accurate gradi-
ent when behavior depends on dimensions of the population with large, as opposed
to small, variability (Feulner and Clopath, 2021). This may explain why some tasks
can be learned in only a few hours while others cannot. Second, if some aspect of
population covariability is external to the learner (and is in this sense “noise”), this
will bias the resulting gradient, as well as the optimized solution (Todorov, 2005).
For example, if the noise distribution is non-isotropic, population activity will not
move along the steepest gradient direction, but will be skewed by the shape of the
noise distribution. These ideas indicate how the structure of population covariability
both limits and shapes how neural activity changes during learning.

Even given knowledge of the objective function and learning rule used by the
brain to learn a given task, understanding the path taken by population activity
during learning depends on characterizing the drivers of population covariability.
For example, while some components of variability are driven by the learning pro-
cess (e.g., due to a policy update or gradient step), other aspects may be exploratory
variability accessible to the learner, while variability not driven by task considera-
tions may be beyond the control of the learner and act effectively as “noise.” The
goal of characterizing covariability during learning is likely a moving target, as pop-
ulation covariability is typically signal-dependent (e.g., different covariance structure
for different task goals), and nonstationary (e.g., due to changes in learning rate).
Whether learning in the brain proceeds in a manner akin to gradient descent or re-
inforcement learning, understanding the structure of neural variability is critical for
understanding how neural activity is modified to yield improved performance.

2. Multiple neural learning mechanisms are in play at all
times

Learning in both artificial and biological systems is often equated with the opti-
mization of a single, scalar objective function over time. From this perspective,
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one natural approach to understanding how learning proceeds in the brain is to see
whether changes in population activity over time indicate signatures of optimizing
that particular objective function. However, most real-world tasks are likely multi-
faceted, such that improving performance at a given task may require optimizing
multiple different sub-objectives, each acting on different sets of information. For
example, a child learning to communicate may use auditory feedback to minimize
errors in motor execution (e.g., a child trying to say “dog” may actually say “dah”),
as well as instruction from a parent or teacher to maximize accuracy (e.g., “No, that’s
not a dog, that’s a cat.”). Indeed, evidence from behavioral and electrophysiological
studies indicates that, even in simple tasks, learning in the brain is driven by im-
provements in a multitude of objective functions, each acting with respect to distinct
feedback signals, and at different time scales (Marblestone et al., 2016). Thus, even
in simple tasks, changes in neural activity during learning are unlikely to be driven
by a single task-related objective function.

Behavioral studies of motor learning provide perhaps the best example that even
a seemingly simple behavior, such as moving one’s hand towards a target, can si-
multaneously invoke a variety of different learning processes, each operating on a
distinct aspect of feedback. For example, it has been proposed that the brain learns
new motor skills via supervised learning, unsupervised learning, and reinforcement–
either all at the same time (Doya, 2000), or switching between them dynamically
(e.g., based on their reliability) (Izawa and Shadmehr, 2011). Distinct learning pro-
cesses may also be present even within a given feedback modality. For example,
errors in the extent of a reach may be learned separately from errors in direction
(Krakauer et al., 2000), and errors in direction may themselves be composed of mul-
tiple processes, one fast and one slow (Smith et al., 2006). These errors, driven by
visual feedback about the movement of the hand, are thought to drive learning of
an internal model that predicts the outcome of motor commands (e.g., population
activity in motor areas) on motor output (e.g., the resulting muscle force or arm
kinematics). Learning processes driven by moment-by-moment error are thought to
minimize error using a gradient-descent-like learning rule. This can be distinguished
from other processes driven only by task success (e.g., the reward given at the end
of the trial) that may resemble reinforcement learning (Diedrichsen et al., 2010a).
These behavioral findings illustrate the variety of different learning processes that
even an apparently simple task might invoke.

Evidence that distinct learning processes coexist even during simple tasks is not
the exception but the rule. Neural correlates of multiple learning mechanisms have
been identified in a variety of different systems, including systems for motor learn-
ing (Zhou et al., 2019; Oby et al., 2019), perceptual learning (Poort et al., 2015),
rule learning, and reinforcement learning (Schultz, 2019). Because these learning
processes must all ultimately act on a common downstream population in order to
influence behavior (e.g., via the spinal cord), it may be inevitable that some of these
learning processes interfere (Mazzoni and Krakauer, 2006). While sometimes these
processes may proceed in distinct brain areas, multiple learning processes may also
co-exist within the same population, either by acting on distinct time scales (Schultz,
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2019), being multiplexed in time (Lak et al., 2016), or by acting on distinct modes
of the neural population. Learning mechanisms may even proceed through entirely
distinct substrates (e.g., via synaptic plasticity vs. population activity) (Sohn et al.,
2020).

The presence of different learning mechanisms in the brain, each with their own
objective functions and time scales, impacts how quickly new behaviors can be
learned. For example, after first being introduced to a new task–such as playing
a new video game–learning the rules and rudimentary strategies may be possible
within only a few minutes, while mastery takes weeks or even years. BCI learning
paradigms similar to those mentioned in the previous sections have begun to identify
the neural signatures distinguishing short vs. long-term learning. In a recent study
(Zhou et al., 2019), population activity showed distinct changes following learning for
a few hours versus learning for multiple weeks. These fast and slow changes to popu-
lation activity appeared to be responsible for distinct aspects of the task–directional
errors and reward rate, respectively. Another study of long-term learning using a
BCI paradigm found that, given weeks of practice, animals learned a difficult BCI
mapping by developing the capacity to generate new patterns of population activity
that were not observed before the learning experience (Oby et al., 2019). In both
of these studies, the neural mechanisms associated with long-term learning involved
substantial changes to the correlations in firing across neural units. Dramatically
changing the correlations between neurons may require altering their functional or
even anatomical connectivity, a process that may be impossible on shorter timescales.
Why might the brain limit how much learning can be expressed on shorter timescales?
One of the primary differences between learning in biological and artificial agents is
that, for a living creature, the environment and reward contingencies are constantly
changing (Neftci and Averbeck, 2019). To deal with the complexities of learning in
such a dynamic environment, rather than being a blank slate of optimization tools,
the brain comes ready-prepared with a variety of ecologically-relevant inductive bi-
ases (Zador, 2019). These inductive biases are effectively “priors” about how to
correct the errors in behavior that are most likely to be encountered, and facilitate
rapid learning. As a consequence, more substantial (and energetically demanding)
neural changes, such as changes to the brain’s architecture and connectivity, may
occur only when doing so is shown to be beneficial over longer timescales. The
process of learning these inductive biases, also referred to as “meta-learning,” may
be the consequence of multiple, nested learning processes, such that the output of
faster learning mechanisms “trains” the slower learning mechanisms (Pasupathy and
Miller, 2005; Wang et al., 2018). This perspective highlights the fact that, in the
short-term, rather than implementing a general-purpose optimization machine, the
brain may employ a collection of heuristics and “good-enough” solutions sufficient
for solving most problems (Beck et al., 2012; Zhou et al., 2019). When the brain’s
inductive bias is insufficient, even seemingly simple tasks can be impossible to learn
(e.g., mirror reversal learning) (Hadjiosif et al., 2021). For more ecologically relevant
problems, these heuristics may not only be sufficient, but they may also explain why
humans can quickly learn some tasks that artificial agents struggle with (Sinz et al.,
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2019).
That the brain learns new tasks using multiple learning objectives strikes a con-

trast with reinforcement learning agents, which learn to optimize a single scalar
value, given by the reward function. Because maximizing this scalar reward is the
primary goal of the agent, the modeler must carefully define the reward function so
that an agent optimizing this reward will perform the behavior he wishes the agent
to exhibit. While choosing the reward function for some tasks is obvious (e.g., win-
ning a chess game), for other tasks the appropriate reward function may be more
ambiguous. This problem, referred to as reward shaping or “reward engineering,” is
an important unsolved challenge in reinforcement learning. So how does the brain
do it? In contrast to RL, the brain does not receive a scalar reward signal from the
environment, but rather a multi-dimensional sensory feedback signal (Schultz, 2015).
This rich feedback is available to the brain during learning, and as we’ve seen, multi-
ple aspects of this feedback may then be used to train various learning mechanisms in
parallel. As discussed above, the objectives of these learning mechanisms are likely a
reflection of inductive biases regarding which objectives are likely to be most useful
given statistics about the environment. Perhaps a focus on developing agents that
can learn the optimal reward functions for a set of tasks, rather than these reward
functions being defined by the modeler, could be a path forward for obviating the
need for reward engineering (Singh et al., 2010, 2019b).

The coexistence of multiple learning processes in the brain poses a challenge to
the optimization framework for understanding biological learning. For one, under-
standing learning in the brain would appear to require not only a description of the
multitude of learning objectives, time scales, and neural mechanisms employed to
learn any given task, but also a characterization of the organism’s inductive biases.
In particular, the brain may come with various heuristics for learning “out-of-the-
box.” For example, animals in decision-making tasks often exhibit substantial biases
to choose one target over the other, regardless of the stimulus or task (Ashwood et al.,
2020). Additionally, while the stimuli shown on subsequent trials may be indepen-
dent in a statistical sense, this does not mean that the brain’s learning mechanisms
treat learning experiences on adjacent trials as independent (Mendonça et al., 2020).
These results suggest that an understanding of how neural activity changes during
learning may need to consider not just the presently learned task, but the history of
tasks the animal has been previously exposed to.

3. Not all changes to neural activity during learning are
driven by task performance

We tend to think of different brain regions as performing different functions. For
example, visual cortex represents sensory stimuli, while motor cortex drives move-
ments. Continuing this line of thought, sustained changes in a region’s population
activity during learning may reflect improvements in that region’s function with
respect to the task (Li et al., 2001). For example, following perceptual learning,
changes in earlier visual areas may reflect improved representations of stimuli shown
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in the task (Schoups et al., 2001; Yan et al., 2014), while changes in downstream ar-
eas may reflect improved readout of those representations (Law and Gold, 2008; Uka
et al., 2012). In this approach, correlating changes in neural activity with changes
in behavioral performance before and after learning provides a means for identifying
which brain areas are recruited during learning.

However, even in the absence of learning pressure, neural activity is not stable,
but shows substantial “drift” over time (Mau et al., 2020; Cowley et al., 2020). Thus,
sustained changes in neural activity observed during learning are not solely driven by
improving performance, and may also reflect task-irrelevant changes (Rokni et al.,
2007; Okun et al., 2012; Singh et al., 2019a; Hennig et al., 2020). Task-irrelevant
changes in neural activity may arise from a variety of sources, including synaptic
turnover (Holtmaat and Svoboda, 2009), the accumulation of neural noise (Rokni
et al., 2007), and the influence of task-irrelevant considerations such as changes
in arousal (Cowley et al., 2020; Hennig et al., 2020). Regardless of their source,
these neural changes have the potential to impact neural computation, and thus task
performance. To prevent a task-irrelevant change from influencing behavior, the
brain must account for the change so that it does not impact downstream processing
or actions (Clopath et al., 2017; Rule et al., 2020). Indeed, some evidence suggests
that the brain may do this by utilizing the redundant numbers of neurons encoding
any given stimulus or action (Rokni et al., 2007; Xia et al., 2021).

Nevertheless, the impacts of “neural drift” and other task-irrelevant changes
in neural activity are not always negated by downstream circuits, such that these
changes impact behavior. For example, global changes in neural activity reflecting
changes in an organism’s arousal also have behavioral impacts. If you are chopping
an onion and suddenly someone jumps out and scares you, the resulting change in
your arousal will likely have an impact on your control of your knife. Similarly, sus-
tained changes in arousal, due to fatigue, represent a task-irrelevant factor that has
clear impacts on behavior, and thus performance.

While the impact of task-irrelevant changes in neural activity on concurrent be-
havior is clear, these changes also impact the learning process, influencing how neural
activity changes over time. One recent example comes from a BCI learning study
(Hennig et al., 2020). In this study, population activity in motor cortex varied not
only with the direction in which subjects intended to move the cursor, but it also
showed large and stereotyped changes following experimentally-controlled changes
to the experiment such as pauses in the task, or changes to the BCI mapping. These
task-irrelevant changes in neural activity impacted the speed and the direction in
which the cursor moved, which in turn impacted how neural activity was updated
on future trials. As a result, the manner in which these changes impacted cursor
movements led to neural activity taking distinct paths in population space during
learning, as well as predicted how quickly different task goals were learned. This
study indicates that task-irrelevant changes in neural activity can nevertheless im-
pact how learning proceeds via their impact on behavior.

Task-irrelevant changes in the brain during learning can be contrasted with the
network activity in ANNs, where task-irrelevant changes are typically non-existent.
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Figure 6.2. We assessed the extent to which trial-to-trial changes in neural population activity
during learning in a BCI task (Sadtler et al., 2014) reflected the optimization of task-relevant
feedback. A. During each block of trials (t), we compared the actual change in neural population
activity (δt) during the next block of trials (t+ 1) to the prediction that population activity would

change (δ̂t) were it improving a hypothesized objective function (e.g., maximize rt). B. Here we
considered predictions made by two task-relevant objective functions (inset): the speed (“progress”)
and angular error of the cursor with respect to the target. Histogram depicts dot-product between
predicted and actual directions across sessions. Neither hypothesized objective function reliably
predicted the direction in which population activity changed on subsequent trials. C. According to
a task-irrelevant hypothesis, population activity changes in a consistent direction regardless of the
impact on task feedback. Same conventions as panel A. D. A task-irrelevant prediction based on
decreasing “neural engagement” (Hennig et al., 2020) consistently predicted the direction population
activity changed during learning. Same conventions as panel B. E. Combining task-relevant (as in
panel A) and task-irrelevant (as in panel C) predictions. Same conventions as panel A. F. Changes
in population activity during learning were best predicted by a combination of task-relevant and
task-irrelevant influences. Black dots and error bars indicate mean ± SE across sessions.
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For example, in an ANN trained by gradient descent, changes in network activity
are determined by the learning rule, related to the gradient of the task objective,
such that all changes are task-relevant. What relevance might the existence of task-
irrelevant changes in the brain have for artificial learning? One possibility is that
learning in the presence of task-irrelevant changes contributes to the robustness of
the learner, allowing generalization to new contexts by encouraging insensitivity
to large variance changes in neural activity. A second possibility is that studying
how the brain manages both task-relevant and -irrelevant objectives has relevance
to studies of multitask learning. For example, in addition to performing any given
task, the brain is also responsible for maintaining all sorts of homeostatic processes
(such as arousal, satiety, etc.) unrelated to the specifics of the task. Understanding
how the brain distributes its available resources to maintain sufficient performance
with respect to multiple objectives in parallel may be critical for developing artificial
agents that can learn to perform a variety of different tasks.

The presence of substantial task-irrelevant changes in neural activity during learn-
ing may prove to be a critical ingredient in attempts to reverse-engineer the process
by which the brain learns (Lak et al., 2016; Richards et al., 2019; Ashwood et al.,
2020). Not accounting for task-irrelevant changes in population activity might yield
incorrect conclusions about what the system’s objective is. For example, one might
observe population activity moving up a gradient rather than down (Richards et al.,
2019); this doesn’t mean your objective is wrong–it may instead be due to task-
irrelevant changes in activity (Fig. 6.2). One important question is to what extent
the different learning mechanisms in the brain are able to account for the influence
of task-irrelevant changes in neural activity. For example, suppose that learning pro-
ceeds by exploration of new neural activity patterns, where the patterns that lead
to improved reward are reinforced. Then it is important to understand whether the
task-irrelevant components are accounted for by the learner, or whether they are
treated as an additional exploratory pattern that may be reinforced. For example,
performance during a learning session may begin as a monotonic curve indicating
increased performance, but as time passes, mental and physical fatigue may set in,
leading to performance decreasing back to baseline levels. If the learner is unaware
of the influence of fatigue on neural activity, it may conclude that the neural activity
generated at the end of the session was no better than its activity at the start of
learning, given that performance was similar. Overall, understanding how neural
activity changes during learning may require accounting for the influence of other
processes being managed concurrently with task execution.



7 FUTURE DIRECTIONS

In this chapter I will present some unpublished analyses and discussion relating to
the structure of population activity during learning. These results, though tenta-
tive, represent my current understanding of these experiments, and might serve as a
roadmap for future analyses or experiments.

First, the bulk of this chapter is Section 7.1, in which I will discuss how monkeys
learn to use a particular type of new BCI mapping (a “within-manifold perturbation”,
or WMP; (Sadtler et al., 2014; Golub et al., 2018; Hennig et al., 2020)) given a
few hours of practice. I will provide evidence that simply combining the results of
neural reassociation and neural engagement is insufficient to describe the full range
of results. I will then present a new, model-free hypothesis capturing many of the
key features of how population activity changes during WMP learning. In addition,
I will discuss how the covariance structure of population activity can influence the
asymptote of learning, and I will also summarize what we currently know about how
learning generalizes across adjacent targets.

Next, in Section 7.2 I will provide a simple firing rate model that explains differ-
ences in the “shapes” of population activity one might see when visualizing popu-
lation activity in these experiments. In Section 7.3 I will show how the population
activity on one trial can be used to decode the target identity on the previous trial,
and I will provide a hypothesis for why this might be the case. In Section 7.4 I will
summarize the variety of hypotheses for why learning WMPs is generally easier than
learning OMPs. Finally, in Section 7.5 I will sketch out a probabilistic approach to
inferring an animal’s “objective function” during learning.

7.1 How are within-manifold perturbations (WMPs)

learned?

Though we have gained many insights over the years about these BCI learning ex-
periments, there is still much left to understand regarding how neural population
activity changes throughout learning. In the following subsections I summarize my
understanding on this topic.
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Evidence for model-free learning

Introduction. To learn, the brain must use feedback to modify its neural activity
in order so as to improve its future performance. Here we study how neural activity
evolves during learning in a BCI experiment, where the relationship between neural
activity and behavior is known. Say for a given target, we look at neural activity,
z(t) ∈ Rd, from time t = 1, . . . , T during learning. (Suppose that t refers to a trial.)
Let the BCI mapping from neural activity to cursor velocity be g(z) = v ∈ R2.
What determines how neural activity evolves from time t to t + 1? We’ll suppose
that during learning, neural activity is changing in order to maximize some objective
function, f , which is a function of the cursor velocity. In other words, the monkey’s
objective is to generate neural activity, z(t), that maximizes r(t) = f(g(z(t))).

Neural reassociation as “reaiming”. From previous work (Golub et al.,
2018), we know the repertoire of neural activity patterns produced at the beginning
and end of learning is largely the same. The reassociation hypothesis, as imple-
mented, actually makes an even stronger prediction: The relationship between the
monkey’s intended movement direction, θ ∈ [−π, π), and neural activity, z ∈ Rd,
is fixed. Let h be a function that maps the intended movement direction θ into
the high-d population activity associated with that movement direction, so we have
z = h(θ) (Fig. 7.1). Then the Reaiming model says that, after learning a new
BCI mapping, the monkey has simply found the θ that maximizes f(g(h(θ))). (In
previous work, f is cursor progress, but in general it could be anything.)

Figure 7.1. Average neural activity (z ∈ Rd) before learning during an example session,
in the first three factor dimensions, for each intended movement direction (θ ∈ [−π, π)),
with activity for the eight target directions indicated by the colored circles. According to
neural reassociation, neural activity throughout learning lives somewhere on the gray ring,
because the relationship between θ and z is fixed throughout learning. In other words, the
figure depicts z = h(θ) for each value of θ, where h is some fixed function relating θ and z.

We’d like to upgrade this hypothesis as a model that describes how neural activity
changes from time t = 1 to t = T . For simplicity, let’s suppose that the actual target
direction is the 0◦ target, so that θ(t) can be thought of as how much reaiming the
monkey is doing on trial t. To put the Reaiming hypothesis another way, we know
that at the end of learning we have z(T ) = h(θ(T )), where θ(T ) is what’s been
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learned. So let’s suppose that, during learning, the monkey is gradually reaiming,
by updating θ(t). For simplicity let’s suppose that our objective is to maximize
f(v(t)) = −1

2
e(t)2, where e(t) ∈ [−π, π) is the angular error of the velocity v(t).

Then our learning rule is:

z(t) = h(θ(t)) + ε(t)

θ(t+ 1) = θ(t)− γle(t)
(7.1)

where γl ∈ R is the learning rate, θ(1) = 0◦ (since we’re assuming 0◦ is the actual
target direction), and ε(t) ∈ Rd is i.i.d. noise. This model essentially performs
gradient descent on θ with respect to our objective of minimizing squared angular
error. You can think of this model as describing how neural activity during learning
moves along the gray ring in the figure above.

Reaiming + engagement. From our work on neural engagement (Hennig et al.,
2020), we know that the model above is incomplete. This is because during learning
we also have changes in neural engagement, δne(t) ∈ Rd, where ‖δne(t)‖ is large on
t = 1, and exponentially decays towards zero on subsequent trials. Here we’ll assume
that changes in neural engagement during learning can be written as:

δne(t+ 1) = γne‖δne(t)‖x(t+ 1) (7.2)

where γne < 1 is the decay rate, and x(t) ∈ Rd is the neural engagement axis at time
t. Note that x(t) depends on θ(t), since we know the neural engagement axis varies
with the intended movement direction.

So to improve on the Reaiming model, we have that neural activity during learn-
ing is described by learning-driven changes (characterized by reaiming), and learning-
irrelevant changes (characterized by neural engagement):

z(t) = h(θ(t)) + δne(t) + ε(t)

θ(t+ 1) = θ(t)− γle(t)
δne(t+ 1) = γne‖δne(t)‖x(t+ 1)

(7.3)

Reaiming + engagement is insufficient. To assess how well this learning
model describes our data, we can see if it can reproduce our main results at a
qualitative level. For each target in sessions from monkey J, I simulated the time
course of neural activity during learning using the Reaiming + engagement model
with γl = 0.01, γne = 0.95, and ‖δne(1)‖ = 2. Var[ε(t)] was 0.01 times the variance
of factor activity during intuitive control.

Reaiming + engagement can reproduce the differences in performance we see
between T+ and T- targets (Fig. 7.3, middle column; top row is the data, bottom row
is the model). However, there are a few signs here that this model is an insufficient
description of the data. First, this model cannot reproduce the differences in neural
engagement between T+ and T- targets (left column). This is because, according to
this model, changes in neural engagement during learning occur regardless of their
impact on performance. Second, in the data we see more speed improvements than in
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Figure 7.2. Same as previous figure, but with the neural engagement axes, x, corresponding
to each intended movement direction shown as orange vectors. According to the Reaiming
+ engagement model, neural activity during learning can move anywhere along the gray
ring, while also decreasing down the orange axes.

the model (compare y-axes in middle column). Finally, in the data we have potent-
engagement asymptoting to different values for T+ vs. T- targets, whereas under
Reaiming it decays to zero in both cases (right column). All of these points suggest
there are more (or different) learning-driven changes beyond simply reaiming.

Weight perturbation (model-free). According to the above model, all of
the learning-driven changes in neural activity are due to changes in θ, the amount
of reaiming. This greatly limits the space that neural activity can explore during
learning, because our model parameter, θ, has lower dimensionality than our neural
activity, z. Alternatively, we could consider a model-free approach, where we can
fully explore neural activity space, and maintain any changes that happen to improve
our objective.

z(t) = h(θ) + δl(t) + δne(t) + ε(t)

δl(t+ 1) = γdδl(t) + γl(r(t)− r(t))ε(t)
(7.4)

where θ is our initial aiming direction (which we assume does not change), r(t) refers
to a running mean of r(t) (e.g., computed via exponential smoothing), and γd > 0 is
a weight decay term, discussed below.

Above, our learning-driven activity is δl(t+ 1). This term accumulates the noise,
ε(t), based on whether or not we just had above- or below-average evaluations of
the objective value, r(t). This is a REINFORCE learning rule Williams (1992) that
approximates gradient ascent on neural activity to maximize our objective Jabri
and Flower (1992); Cauwenberghs (1993), provided δne(t) is constant, and γd = 1.
(Compare to Reaiming, where we optimize our model parameters, θ, instead of neural
activity.) However, if our objective is unbounded (e.g., cursor progress) this model
predicts that neural activity will continue to change without ever converging (i.e.,
eventually leaving the neural repertoire). To prevent this, we suppose that our
learning-driven changes, δl(t), have some decay, by setting γd < 1. This is also
known as gradient descent with weight decay (with parameter λ = 1−γd

γl
), which is
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Figure 7.3. Actual (top row) and simulated (bottom row; Reaiming + engagement) levels
of neural engagement and progress for T+ (blue) and T- (red) targets from all monkey J
sessions. The Reaiming + engagement model was able to capture differences in performance
(middle column) between T+ and T- targets during learning, but not differences in neural
engagement (left column) or potent engagement (right column) between T+ and T- targets.

equivalent to saying that our objective is to minimize f plus a penalty on the squared
`2 norm of δl.

Simulations for this Weight perturbation model used f(v) = v>θ (i.e., cursor
progress, aka “speed to target” as shown below), γl = 0.01, γd = 0.95, γne = 0.95,
‖δne(1)‖ = 2. Var[ε(t)] was 0.01 times the variance of factor activity during intuitive
control. In this case, we were able to fully capture all of the qualitative features of
the data during learning (Fig. 7.4).

Results for this model were largely the same when using the squared angular
error objective instead of progress. Results were also similar when changing the noise
covariance of ε (i.e., letting it be anisotropic, and target-specific). This suggests that
we will need a more detailed analysis to distinguish between different forms of the
Weight perturbation model.

Note on terminology. I had been calling this model “Node perturbation”. If you
have inputs x and a network output h(x), node perturbation compares f(h(x)+ε) to
f(h(x)), while weight perturbation compares f(h(x+ε)) to f(h(x)). This distinction
becomes important if we think about learning as happening in terms of some internal
parameters, with the factor activity being the (potentially nonlinear) readout of these
parameters (i.e., via h). I think really though, this model is more safely called simply
an “evolutionary strategy.”
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Figure 7.4. Actual (top row) and simulated (bottom row; Weight perturbation) levels of
neural engagement and progress for T+ (blue) and T- (red) targets from all monkey J
sessions. The Weight perturbation model was able to capture differences in performance
(middle column) between T+ and T- targets during learning, as well as differences in neural
engagement (left column) and potent engagement (right column).

Does noise influence the asymptote of learning?

Variability exists throughout the nervous system, both at the level of neural popu-
lations as well as behavior. During learning, we modify our neural activity based on
feedback about our past performance. Thus, variability in neural activity can drive
variability in our performance, resulting in variability in how we modify our future
neural activity based on that feedback.

But does this variability really matter? In other words, can this variability not
simply be averaged out over time? As I will show here, for any aspect of variability
in neural population activity that is not accessible to the learning process, this vari-
ability can influence the asymptote of learning. In particular, we will show in two
examples (one model-based, one model-free) how the asymptote of learning depends
on the shape of the noise covariance of population activity.

Model-free gradients are impacted by noise. First, consider the Weight
perturbation model discussed above. In this model (Eqn. 7.4), z(t) will eventually
converge in expectation as long as γd < 1, and δne(t) converges for large enough t.
The value of z(t) at convergence depends on the shape of the noise distribution. To
see this, let R(t) = r(t) − r(t), Σ = Cov[ε(t)], and suppose E[ε(t)] = 0. Then at
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convergence (i.e., for large enough t) we will have:

E[δl(t+ 1)] = E[γdδl(t) + γlR(t)ε(t)]

E[δl(t+ 1)− γdδl(t)] = E[γlR(t)ε(t)]

(1− γd)E[δl(t)] = γlE[R(t)ε(t)]

E[δl(t)] =
γl

1− γd
Cov[R(t), ε(t)]

=
γl

1− γd
Cov[r(t), ε(t)]

(7.5)

where in the last line we are assuming r(t) and ε(t) are uncorrelated (because r(t)
depends only on previous values of ε(t), and ε(t) is i.i.d.). Now, remember that r(t) =
f(g(z(t))). We’ll also use the fact that, in our BCI mapping, g(z) = Bz for some
matrix B ∈ R2×d. Let’s write z(t) = E[z(t)]+ε(t), so that r(t) = f(BE[z(t)]+Bε(t)).

First let’s suppose that f is affine, so we can write f(v) = c>v + d, for some
c ∈ R2 and d ∈ R. This gives us r(t) = a>E[z(t)] + a>ε(t) + d, where a = B>c.
Thus, Cov[r(t), ε(t)] = Cov[a>ε(t), ε(t)] = a>Σ. Putting it all together, when f is
affine, at convergence we have:

E[z(t)] = h(θ) + E[δl(t)]

= h(θ) +
γl

1− γd
a>Σ

(7.6)

where a = B>c is determined by the BCI mapping and the (affine) objective func-
tion, and Σ is the covariance of the noise distribution (i.e., the covariance of ε(t)).
Geometrically (and empirically), it seems like δl(t) converges to the point on a par-
ticular covariance ellipse (i.e., the set of points with equal probability under the p.d.f.
of ε(t)) that maximizes the objective. I suspect this might also be true if f is not
affine but has only one maxima (though this is just a hunch).

Now, what happens if learning is happening in terms of some internal parame-
ters θ, where z = h(θ), and h is nonlinear? Here we’re imagining we still have a
Weight perturbation learning rule, with high-dimensional learnable parameters (e.g.,
inputs to M1 coming from a different brain area). But suppose we have a nonlin-
ear relationship between our learned parameters and the actual neural activity. For
example:

z(t) = h(θ0 + δl(t) + ε(t)) (7.7)

where θ0 is the initial parameter value (e.g., from intuitive control), and h is some
unknown nonlinear function. In this case, all of our convergence equations above
are still correct, in that we have δl(t) → γl

1−γd
Cov[r(t), ε(t)]. But it’s now harder to

go any further with this equation since the relationship between ε(t) and z(t) (and
therefore r(t)) involves going through h.

Model-based gradients are also impacted by noise. Now, suppose that
rather than directly modifying their neural activity during learning, monkeys learn
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Figure 7.5. Example simulation of how neural activity (z1:T , colored lines) evolves during learning
for eight different targets under the Weight perturbation model (Eqn. 7.4). The noise covariance,
Σ, is shown as gray ellipses, and is the same for each target. The objective for each trace is to
maximize its distance from the origin in a target-specific direction (e.g., the red trace wants to
minimize its y-value), subject to a norm constraint. Because Σ is non-isotropic, the asymptotes
across targets do not lie along a circle, but rather differ based on the alignment between the target
direction and the orientation of Σ, as in Eqn. 7.6.

an internal forward model of the BCI mapping, which they then use to select the
neural activity they expect will improve their performance. Let z ∈ Rd be our neural
activity. Suppose we receive feedback v = b>z ∈ R, for some unknown b ∈ Rd. (For
simplicity, we assume here that v is a scalar.) Our goal is to update our internal

model estimate (IM), b̂ ∈ R, to minimize our expected prediction error.
Suppose that at each time t, we sample zt = µ + εt, with εt ∼ N (0,Σ). Our

model’s prediction at each time t is v̂t = b̂>t zt. Then our loss we want to minimize is
et = E[1

2
‖v̂t − vt‖22], where the expectation is w.r.t. the distribution of zt. We learn

by gradient descent:

b̂t+1 = b̂t − γzt(v̂t − vt)> (7.8)

What I want to know is, what is our average gradient step? In other words, what
is E[zt(v̂t − vt)>]?

(v̂t − vt)> = (µ+ εt)
>(b̂t − b)

→ zt(v̂t − vt)> = (µ+ εt)(µ+ εt)
>(b̂t − b)

→ E[zt(v̂t − vt)>] = µµ>(b̂t − b) + Σ(b̂t − b)

(7.9)

So what does this tell us? Well, suppose µ = 0, and Σ = I, so we have zero-mean,
isotropic exploration noise. In that case, our expected gradient step is b̂t−b, which
is exactly what we want: With learning, our internal model of the BCI mapping
will move, on average, directly towards the true BCI mapping. But what if Σ is
something else? Then we will be updating our IM in the direction b̂t − b projected
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along our search covariance Σ. In other words, our search covariance influences our
expected gradient steps. (Note that if we have multiple target directions, such that
the µ updates will essentially cancel out across targets, this effectively leaves us in
the same situation as if µ = 0.)

As our IM is updating, we will also want to modify our average neural activity,
µ, according to some different objective. We’ll assume for simplicity that our IM
has already converged to b. Now suppose that our inverse model’s objective is to

maximize the expected feedback, i.e., E[b̂
>
z] = b̂

>
µ. If we update µ via gradient

descent, then our updates will be in the direction b̂. Because our inverse model’s ob-
jective is unbounded, we will allow convergence by adding shrinkage, with parameter
α > 0, to our µt update. So in total we have:

µt+1 = αµt + ρb̂t (7.10)

At convergence we have E[µt+1] = E[µt] = µ, and E[bt+1] = E[bt] = b̂, for all
t > t0. This tells us the following:

E[µt+1] = E[αµt + ρb̂t]

→ µ = αµ+ ρb̂

→ µ =
ρ

1− α
b̂

(7.11)

Thus, at convergence, we can think of µ as a stretched out estimate of b̂ (i.e., we

have µ/‖µ‖ = b̂/‖b̂‖). Note that if we have µ = µ0 + δ, where µ0 is constant, δ is
the learned component, and shrinkage is applied to δ instead of µ, we can instead
think of δ (i.e., µ− µ0) as our stretched estimate of b̂.

Finally, consider the case where we have B ∈ R2×d, so that our feedback v = Bz is
2D. For a given target direction x ∈ R2 with ‖x‖22 = 1, suppose our inverse model’s
objective function is xBz. Then by the same logic above, at convergence we can
think of δx (i.e., our change in neural activity for direction x after learning) as our

stretched estimate of xB̂. Thus, whether learning be model-based or model-
free the asymptote of neural population activity at the end of learning
can depend on the noise covariance.

Animals do not appear to learn a global internal model (IM)

In the WMP learning experiments, the BCI mapping specifies the relationship be-
tween neural activity and cursor movements. Previous work has suggested that
animals may learn an internal estimate (IM) of this BCI mapping to account for
sensory feedback delays (Golub et al., 2015). One possibility is that they also use
this IM for learning. For example, to move straight toward the target, monkeys may
generate whichever neural activity would do so according to their current internal
estimate of the BCI mapping.
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Figure 7.6. Changes in the cursor’s (signed) angular error for all eight targets (colored lines)
during an example session. Vertical gray lines indicate when the new BCI mapping was first
introduced. Center panel indicates the total number of time steps (“samples”) that the monkey
received sensory feedback for each target throughout learning. Targets with more samples also
exhibited larger improvements in the cursor’s angular error during learning.

The true BCI mapping is “global” in the sense that it is the same for all targets.
If the monkey’s internal estimate is also global, this means they can use the error
feedback from all targets combined to update their internal model estimate. One
of the predictions of this hypothesis is therefore that the monkey’s angular errors
should improve with the same learning rate across targets, as any errors in their
performance for a given target can be used to improve performance for all other
targets, via the resulting improvement in the internal model estimate.

Instead, we frequently observe angular errors decreasing at different rates across
targets. In the example session shown in Fig. 7.6, for example, angular errors rapidly
decrease to zero for the 0◦ and 45◦ targets, whereas for the 270◦ and 315◦ targets,
angular error barely improves at all. In fact, the targets that showed more improve-
ment in angular errors are the targets where the monkey received more samples of
error feedback (Fig. 7.6, center panel), because trials to these targets were longer.
This pattern of results is exactly what you would expect if monkeys are
not learning a global internal model, because in that case the errors for one
target do not generalize to improvements for other targets.

Why would the monkey not learn a global internal model (IM)? This may be
explainable by changes in neural engagement. A global IM assumes there to be
a consistent relationship between neural activity and cursor movements. But if i)
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neural engagement has target-specific effects on velocity, and ii) the animal does not
have access to its level of neural engagement, then from the monkey’s perspective
there is not a global internal model.

Generalization across targets.

From the above results, we might conclude that learning occurs somewhat indepen-
dently for different targets. However, from other studies of motor learning (Haith
and Krakauer, 2013), we might expect that learning might generalize to adjacent
targets (as opposed to all other targets).

If this is the case, and learning updates are shared across adjacent targets, what
happens when the error feedback for these adjacent targets is inconsistent? For
example, under a particular WMP, the 0◦ target might have an initial angular error
of 45◦, whereas the adjacent, 45◦ target might have an opposite angular error of −45◦.
If learning updates are shared between these “competing” targets, this might lead
to interference, since the 0◦ target is “voting” to reaim clockwise, whereas the 45◦

target is voting to reaim counter-clockwise. By contrast, targets adjacent to targets
with similar errors would likely be learned more quickly than the competing targets.
I will refer to these targets as “supported.”

To see if this was the case, I classified each target during WMP learning based
on whether the target’s adjacent targets had opposite initial WMP angular error
signs (“competing,” red) or with the same angular error sign (“supported,” blue).
We expected to see faster learning for supported targets than for competing targets,
because for competing targets, experience from flanking targets interferes.

Figure 7.7. Changes in angular error during learning, split by targets whose neighbors had
identical (“supported,” blue) versus opposite (“competing,” red) signs of initial WMP angular
error.

In fact, what we found was that the WMP angular errors for both types of tar-
gets decreased at similar rates (Fig. 7.7, left). However, we only saw concomitant
changes in intuitive angular error for the supported targets (Fig. 7.7, right). Thus,
competing and supported targets were learned differently, indicating that
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Figure 7.8. Time course of neural engagement (left), cursor progress (middle), and potent en-
gagement (right), averaged across T+ (blue) and T- (red) targets, during the freeze period on each
trial. Compare to Fig. 4.5c, Fig. 4.5e, and Fig. 4.6c, respectively, for the same quantities during
the cursor control period.

how a target is learned is influenced by the error feedback from adja-
cent targets. In particular, these results suggest that we may be seeing signs of
“reaiming” for supported targets (because we see angular errors under the intuitive
and WMP mapping changing together), but something else entirely for competing
targets.

Neural engagement has a distinct timecourse during move-
ment preparation

In Chapter 4, we saw how changes in neural engagement during learning appeared to
reflect both learning-driven and nonlearning-driven sources. For example, Fig. 4.5c
shows how neural engagement decayed during learning for both T+ and T- targets,
but to target-specific levels.

One interesting aspect of the data is that if you look at changes in neural en-
gagement after the monkey has seen the target, but before he has begun controlling
the cursor (i.e., during the “freeze period”), neural engagement appears to decay
throughout learning (Fig. 7.8, left) to similar levels for both targets. At the same
time, changes in both performance (Fig. 7.8, middle) and potent engagement during
the freeze period are still target specific (Fig. 7.8, right). This suggests that the
target-specific changes we see in total neural engagement during the con-
trol period (Fig. 4.5c) may be due to feedback, whereas the target-specific
changes in potent engagement we see are established during preparation.

To assess whether this is the case, one may need to account for the fact that the
freeze period is not a true “preparatory” period. Notably, different monkeys appear
to have different strategies for what they do during the freeze period.
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7.2 Interpreting geometries in neural population

activity

Visualizing neural population activity often reveals interesting geometrical structure.
For example, during BCI control, the average neural population activity produced
within trials to different targets sometimes looks like a head massager (Fig. 7.9, top
left), while for other sessions or animals it looks more like a gramophone (Fig. 7.9,
top right). Can we understand the differences in these shapes in terms of differences
in single neuron tuning (Fig. 7.9, bottom)?

I assume that for trials to target θ, each neuron’s time-varying firing rate, y(t, θ),
can be modeled as the sum of a target-specific (cosine tuned) component and a
generic, target-irrelevant component. Specifically:

y(t, θ) = max[0, yspont + revoked(t, θ)]

yevoked(t, θ) = gτ1(t)rgeneric + gτ2(t)rstimcos(θ − θpd)

where gτ1(t) and gτ2(t) are gain terms that ramp up exponentially from 0 to 1 with
timescales given by τ1 and τ2; rgeneric and rstim are scalars controlling the strength
of the target-irrelevant and tuned components, respectively; and θpd is the neuron’s
preferred direction.

I found that simply varying the gain and timescale of the target-specific
and target-irrelevant components independently can result in a variety
of different shapes in population space, including shapes that look like head
massagers, gramophones, spiders, or snowflakes. This suggests that the different
shapes one might observe when visualizing population activity can be understood
in terms of the above model of single neuron firing. See https://mobeets.github.

io/psth-to-population/ for an interactive version of this model.

7.3 Decoding the target identity on previous trial

using neural activity

We tend to think of primary motor cortex (M1) as reflecting only intended or upcom-
ing movements. Surprisingly, in these BCI experiments, I have found strong evidence
that M1 reflects information about previous movements. In particular, given the neu-
ral population activity on trial t, an LDA classifier can decode the target identity on
trial t − 1 (Fig. 7.10), even using activity roughly half a second after the previous
trial has completed. This finding was incredibly robust, existing across nearly all
sessions for all three monkeys.

(Note: While decoding accuracy was similar during the intuitive block and during
the WMP block, the decoding planes were different—i.e., a decoder trained on the
intuitive block would perform poorly on the WMP block.)

https://mobeets.github.io/psth-to-population/
https://mobeets.github.io/psth-to-population/
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Figure 7.9. Understanding the relationship between single neuron firing to the geometry of neural
population activity. When neural population activity looks more like a head massager (top left)
than a gramophone (top right), can we understand these differences in terms of the PSTH of single
neurons (bottom)?

The ability to decode the target on the previous trial even during cursor control
on the following trial indicates that the previous target’s identity can influence cursor
velocities on the current trial (Fig. 7.11, top), depending on the alignment of the
decoder. In fact, the influence of the previous trial’s target on intuitive mapping
velocities on the next trial seems to be consistent with slower velocities towards that
previous target (Fig. 7.11, bottom). For example, if the previous target was 0◦, on
the next trial neural activity was consistent with slower velocities in the 0◦ direction.
It’s almost as if the prior is to be moving in the exact opposite direction. In fact, in
these WMP experiments, the target shown on trial t was almost never the same as
the target shown on trial t − 1.). Thus, I speculate that the ability to decode
the target identity on the previous trial may reflect the fact that monkeys
have a prior expectation that the following trial’s target is more likely to
be in the opposite direction.

7.4 Explaining differences in single-day WMP and

OMP learning

The difference between WMP and OMP learning is not fully understood. There
are a few distinct explanations for why the intrinsic manifold was unchanged during
single-day BCI learning, as well as why WMPs were learned more often than OMPs
in a single day (Sadtler et al., 2014). I summarize these possible explanations below.

Feedforward synaptic changes. Wärnberg and Kumar (2019) found that
synapse changes that respected the intrinsic manifold required smaller changes than
those that did not respect the intrinsic manifold. This suggests that synaptic learning
rules that respect the intrinsic manifold may requiring limiting the total magnitude
of synaptic changes, e.g., with an `2 norm penalty.
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Figure 7.10. Percent of trials for each target (dots) where the target identity on trial t − 1 was
accurately decoded from the average neural activity on trial t (during time steps 4-10, approximately
400-850 ms after trial t−1 ended), using an LDA classifier trained on held-out trials for each session.

Figure 7.11. Impact of previous trial’s target identity on cursor velocities during the following
trial (L: intuitive mapping velocities; R: WMP mapping velocities) during an example session. Top:
Trial-averaged cursor velocities to six targets conditioned on whether the previous trial’s target was
0◦ (solid) versus 180◦ (dashed). Bottom: Average cursor velocities during the first two time steps
of all trials, conditioned on the previous trial’s target identity (colors).
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Recurrent synaptic changes. Feulner and Clopath (2021) found they could
explain differences in WMP and OMP learning given i) the presence of erroneous
feedback signals, ii) sparse feedback signals (e.g., only some neurons get the feedback
signal), or iii) if the number of plastic connections within the network is constrained.
Also, the correct feedback weights could be learned for WMPs but not OMPs, sug-
gesting another possible explanation. (Also note that they could not reproduce the
findings of Wärnberg and Kumar (2019) as described above, though there were dif-
ferences in their learning rules.)

Input changes. Perich et al. (2018) found evidence that the functional connec-
tivity between PMd and M1 was unchanged during both force field perturbations and
VMRs, and results suggested that adaptation in force field perturbations occurred
by PMd changing its M1-null activity in order to provide new inputs to M1 (e.g.,
“setting the starting point” of the dynamical system). This suggests that synaptic
plasticity may not be required/possible for either WMP or OMP learning. A 2020
Cosyne poster from Jorge Menendez and Peter Latham took the same perspective,
simulating BCI learning where only the inputs to M1 could change with learning.
They found that constraints on the dimensionality of the input signal to M1 (i.e.,
2D reaiming signal) would preserve the intrinsic manifold, while also explaining why
WMPs were better learned than OMPs.

Network structure. Williamson et al. (2016) showed that clustered networks
(i.e., where excitatory neurons are more likely to synapse onto other excitatory neu-
rons in their cluster than outside their cluster) yields an intrinsic manifold of pop-
ulation activity. From this it seems possible that the network structure itself (and
not the learning rule) could constrain how M1 activity can change with learning.
Note that this idea hasn’t been directly applied to BCI learning in any way, so the
connection is a little vague.

7.5 What is the brain’s objective function?

Introduction

Learning a new behavior or skill requires coordinated changes in the neural pop-
ulation activity we use to perform the task. In particular, we must use feedback
about our performance to modify the neural population activity we use to perform
the task in the future. How does the brain do this? More specifically, what aspects
of feedback does the brain utilize to drive changes to neural population activity?

In this section, I propose a simple, probabilistic method for inferring the objective
function that is driving changes to neural population activity during learning. This
method takes as input a time series of neural population activity, z1:T ∈ Rd, alongside
the corresponding feedback v1:T ∈ Rk, recorded during learning. The method then
attempts to use the changes in neural population activity that occur during learning
to infer the objective function that is being optimized.

Importantly, this method assumes that sustained changes to neural population



81

Figure 7.12. Assumed graphical model for inferring how reward (rt), which is some unknown
readout of task feedback (vt), influences changes in neural population activity (µt+1) during learn-
ing.

activity occur only in order to improve the task objective, f , which is some function
of the feedback. While recent results indicate that feedback is not the only driver
of changes in neural activity during learning (Hennig et al., 2020), it may be a
useful starting point for future methods trying to infer the objective function driving
learning in neural population activity.

Preliminaries

For each time t (e.g., a trial), let our observed neural activity be zt ∈ Rd. Let the
task feedback (e.g., cursor velocities) be vt = Bzt ∈ Rk, where B ∈ Rk×d is known.
Our assumption is that the recorded neural activity zt is a noisy sample of some
underlying latent state, µt, which evolves to optimize rt = f(vt) ∈ R, some scalar
function of vt (see Fig. 7.12).

To start, we must specify a generative model for our observations z1,..,T . Here,
for concreteness, we will consider the following generative model:

zt = µt + εt

εt ∼ N (0,Σ)

µt+1 = µt − λ(rt − rt)εt

where λ > 0 is the learning rate, rt = f(vt) = f(Bzt) is the “reward” (the objective
value) at time t, and rt = αrt−1 + (1−α)rt−1 is the expected reward. In this model,
the mean neural activity, µt = E[zt], is being updated in a model-free manner to
optimize some function of the feedback. Specifically, µt is changing in order to
minimize E[f(vt)] ∈ R, where f is our objective function. The question is: Can we
infer f?
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Approach

To estimate f , which may be nonlinear, we will approximate it as a linear combination
of basis functions:

f(v) = a>Φ(v)

where Φ(v) ∈ RK are our basis function responses to v, e.g., radial basis functions
Φi(v) = exp(−‖v − ci‖2/σ2

i ) for i = 1, ..., K.
We will treat α (used to define rt) and the parameters in Φ as hyperparameters.
There are a few unknowns: µ1,...,T , Σ, λ, and a. (Note that εt = zt − µt.) We

can’t distinguish a and λ so we can only infer λa. We will use coordinate descent,
where we (1) estimate Σ given the other parameters; (2) estimate µ1,...,T given the
other parameters; (3) estimate λa. We repeat this process until convergence.

1. Estimating Σ

We know that zt = µt + εt, where εt ∼ N (0,Σ). In other words, Σ = E[(z−µ)(z−
µ)>]. Thus, we have Σ̂ = 1

T

∑T
t=1(zt− µ̂t)(zt− µ̂t)>. Initially, Σ could be estimated

by assuming that µt is the sample mean of z1,...,t.

2. Estimating µ1,...,T

Estimating µ1,...,T is simply Kalman smoothing of our observations z1,...,T under the
following state-space model:

µt+1 = µt − λ(rt − rt)εt
= Atµt +Btzt

zt ∼ N (µt,Σ)

where At = (1 + λ(rt − rt))I is a time-varying dynamics matrix (known, given a),
zt are our inputs to the system (known), and Bt = −λ(rt − rt)I is how the inputs
impact the state.

3. Estimating λa

We first define f t = Φ(Bzt) ∈ RK , which is observed. This lets us write rt =
a>Φ(Bzt) = a>f t. Now let f t = αf t−1 + (1 − α)f t−1. Now note that a>f t =
a>αf t−1+a

>(1−α)f t−1 = rt. Putting this all together, we have rt−rt = a>(f t−f t).
Now we can plug this into our learning rule and rearrange:

µt+1 = µt − λ(rt − rt)εt
µt+1 = µt − λa>(f t − f t)εt

µt+1 − µt = −λa>(f t − f t)εt
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Let Xt = −εt(f t − f t)> ∈ Rd×K , and yt = µt+1 − µt ∈ Rd. (For simplicity we
will assume λ = 1, since we can’t resolve any differences in λ.) We want to estimate
a as follows:

â = arg min
a

1

T

T∑
t=1

‖yt −Xta‖2F

= (X>X)−1(X>Y )

where X ∈ RTd×K and Y ∈ RTd are constructed so that the ith row of X corresponds
to the ith row of Xt, and the ith row of Y corresponds to the ith column of yt, for
some t. In practice, we get better performance if we add a sparsity penalty on ‖a‖2,
so that â = (X>X + ρI)−1(X>Y ) for some ρ > 0.

Results

1. Target feedback.

In this simulation, you receive reward proportional to your distance from a target
value of feedback, v∗ (yellow). The true objective, a, is shown on the left. The
estimated objective, a is shown in the middle. In the right panel, the error shown is
based on the cosine angle between a and ât.

2. High speed with no angular error.

In this simulation, we suppose that your feedback is velocity, and that you receive
reward for being near zero angular error, with higher rewards for faster speeds. Also
note that here the RBFs are arranged using a polar coordinate grid.
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A APPENDIX TO CHAPTER 2

A.1 Methods

Defining the mapping between neural activity and cursor move-
ment

Experimental methods are described in detail in both Sadtler et al. (2014) and Golub
et al. (2018). Briefly, we recorded from the proximal arm region of primary motor
cortex (M1) in three male Rhesus macaques using implanted 96-channel microelec-
trode arrays (Blackrock Microsystems). All animal care and handling procedures
conformed to the NIH Guidelines for the Care And Use of Laboratory Animals and
were approved by the University of Pittsburgh’s Institutional Animal Care and Use
Committee. The population spiking activity in each non-overlapping 45 ms bin was
computed as the number of threshold crossings on each channel. In each session, 85-
94 neural units were recorded (25 sessions from monkey J, 6 sessions from monkey L,
11 sessions from monkey N). These sessions were analyzed previously in Golub et al.
(2018). Data from monkeys J and L were first presented in Sadtler et al. (2014).
The average firing rate of the neural units per session was 50 ± 8, 42 ± 4, and 55 ±
14 spikes/s (mean ± s.d.) for monkeys J, L, and N, respectively.

Each session began with a block of calibration trials. The calibration procedure
for monkey J involved either passive observation of cursor movement, or closed-loop
BCI cursor control using the previous day’s BCI mapping. For monkeys L and N,
we used a closed-loop calibration procedure that gradually stepped from passive
observation to closed-loop control, as described in Sadtler et al. (2014). We then
applied factor analysis (FA) to the spike counts recorded during these calibration
trials to identify the 10D linear subspace (i.e., the “intrinsic manifold”) that captured
dominant patterns of co-modulation across neural units (Churchland et al., 2010;
Harvey et al., 2012; Sadtler et al., 2014; Athalye et al., 2017). We then estimated
the factor activity, zt ∈ R10×1, as the posterior expectation given the observed spike
counts, ut ∈ Rq×1, where q is the number of neural units:

zt = L>(LL> + Ψ)−1(ut − d) (A.1)

Here, L,Ψ, and d are FA parameters estimated using the expectation-maximization
algorithm, where Ψ is constrained to be a diagonal matrix. The factor activity, zt,

85
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can be interpreted as a weighted combination of the activity of different neural units.
We refer to zt as a “population activity pattern.”

We next orthonormalized zt so that it had units of spike counts per time bin (Yu
et al., 2009), using the following approach. In our FA model, L defines a mapping
from low-dimensional factor space to the higher-dimensional neural space. Because
the columns of L are not orthonormal, the factor activity does not have the same
units (spikes counts per time bin) as the neural activity. However, we can fix this by
finding an orthonormal basis for the columns of L (Yu et al., 2009). To do this, we
apply the singular value decomposition, yielding L = USV >, where U ∈ Rq×10 and
V ∈ R10×10 have orthonormal columns and S ∈ R10×10 is diagonal. Then, we can
write Lzt = U(SV >zt) = U z̃t. Because U has orthonormal columns, z̃t = SV >zt
has the same units (spike counts per time bin) as ut. For notational simplicity, we
refer to z̃t as zt throughout. The values in zt appear larger than those expected for a
single neuron because this value tends to grow with the total number of neural units.

Over the course of each experiment, animals used two different BCI mappings
(see “Behavioral task” below). Each BCI mapping translated the resulting moment-
by-moment factor activity (zt) into a 2D cursor velocity (vt) using a Kalman filter:

vt = Avt−1 +Bzt + c (A.2)

For the first BCI mapping, A ∈ R2×2, B ∈ R2×10, and c ∈ R2×1 were computed
from the Kalman filter parameters, estimated using the calibration trials. For the
second BCI mapping, we changed the relationship between population activity and
cursor movement by randomly permuting the elements of zt before applying Eqn.
A.2. This permutation procedure can be formulated so that Eqn. A.2 still applies to
the second BCI mapping, but with an updated definition of B (Sadtler et al., 2014).

Behavioral task

Each animal performed an 8-target center-out task by modulating its M1 activity
to control the velocity of a computer cursor. Each session involved two different
BCI mappings. The first mapping was chosen to be intuitive for the animal to
use. The animal used this first mapping for 200-400 trials, after which the mapping
was changed abruptly to a second BCI mapping. The second mapping was initially
difficult for the animal to use, and the animal was given 400-600 trials to learn to use
the second mapping. Both mappings were chosen to be within the animal’s instrinic
manifold, mappings that we found in previous work could be readily learned within
one session (Sadtler et al., 2014).

At the beginning of each trial, a cursor appeared in the center of the workspace,
followed by the appearance of one of eight possible peripheral targets (chosen pseu-
dorandomly). For the first 300 ms of the trial, the velocity of the cursor was fixed at
zero. After this, the velocity of the cursor was controlled by the animal through the
BCI mapping. If the animal acquired the peripheral target with the cursor within
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7.5 s, he received a water reward, and the next trial began 200 ms after target acqui-
sition. Otherwise, the trial ended, and the animal was given a 1.5 s time-out before
the start of the next trial.

Session and trial selection

The data analyzed in this study was part of a larger study involving learning two
different types of BCI mapping changes: within-manifold perturbations (WMP) and
outside-manifold perturbations (OMP) (Sadtler et al., 2014). We found that animals
learned WMPs better than OMPs. Because we need animals to show stable cursor
control under both mappings, we only analyzed WMP sessions in this study. Among
the WMP sessions, we further selected those in which the animal learned stable
control of the second mapping (42 selected and 12 discarded). This was important
because performance with the second mapping was generally not as good as with the
first mapping (Supplemental Fig. A.1), and we wanted to ensure that any potential
results were not due to incomplete learning of the second mapping (see also “Internal
model estimation” below). We further subselected from each session only those trials
which exhibited stable behavioral performance, using a metric defined below. This
was done to ensure that we were analyzing trials for which animals used a consistent
strategy for selecting activity patterns.

We included sessions in which there existed a block of at least 100 consecutive
trials that showed both substantial learning of the second mapping and consistent
behavior. To identify trials showing substantial learning, we computed the running
mean of the target acquisition time (on correct trials only), smoothed with a 100-
trial boxcar shifted one trial at a time. The smoothed acquisition time for a trial
corresponded to the average acquisition time within a 100-trial window centered on
that trial. We then normalized these values so that 1 corresponded to the largest
acquisition time in the first 50 trials using the second mapping, and 0 corresponded
to the smallest acquisition time in the subsequent trials using the second mapping.
We defined trials showing substantial learning as those with normalized acquisition
times below 0.5. Next, to identify trials with consistent behavior, we computed
the running variance of the target acquisition time. This was computed by taking
the variance of the smoothed acquisition time above in a 100-trial boxcar, shifted
one trial at a time. We then normalized these variances so that 1 corresponded
to the largest variance in the first half of trials using the second mapping, and 0
corresponded to the smallest variance in any trial using the second mapping. We
defined trials showing stable behavior as those with normalized variance below 0.5.
We then identified blocks of consecutive trials that passed both of these criteria,
joining blocks if they were separated by no more than 10 trials. We then selected
the longest such block of at least 100 trials for our analyses. If no such block of trials
was found, we excluded that session from our analyses. This procedure resulted in
the 42 sessions across three monkeys that we included in our analyses.

We analyzed only successful trials. To avoid analyzing time steps with potentially
idiosyncratic cursor control, we also ignored portions of the trial when the cursor
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was closer than 50mm or more than 125mm away from the origin. We repeated our
analyses without the latter exclusion and obtained quantitatively similar results.

Internal model estimation

When an animal uses a BCI mapping, its internal conception of the BCI mapping
can differ from the actual BCI mapping, even during proficient control (Golub et al.,
2015). As a result, the animal’s conception of output-potent versus output-null di-
mensions can be different from those defined by the actual BCI mapping. To control
for this possibility, we evaluated our predictions based on the animal’s internal con-
ception of the output-null dimensions, rather than the actual output-null dimensions
of the BCI mapping. This is particularly important for the second mapping, but we
also did this for the first mapping. We used a method (Internal Model Estimation,
IME) that we developed previously for estimating the animal’s internal model of the
BCI mapping (Golub et al., 2015), with the exception that here we apply the model
directly to the factor activity (zt) as opposed to the neural activity (ut), as was done
in Golub et al. (2015).

The main idea of the IME framework is that the animal generates neural activity
consistent with aiming straight to the target through an internal model of the BCI
mapping. Due to natural visual feedback delay, the animal cannot exactly know the
current cursor position, and thus aims from an internal estimate of the current cursor
position. The internal estimate of the cursor position is a feedforward prediction
based on previously issued neural activity and the most recently available visual
feedback. Supplemental Fig. A.5A shows a single-trial BCI cursor trajectory (black),
along with the animal’s internal belief (red “whisker”) about how cursor position (red
dots) evolved from the cursor position known from the most recently available visual
feedback. The final segments of the trajectories reflect the same neural activity, which
produces the actual cursor velocity (black arrow) through the actual BCI mapping,
or the animal’s intended cursor velocity (red arrow) through the animal’s internal
model. The animal’s velocity command viewed through the internal model points
closer toward the target than the actual movement of the BCI cursor, corresponding
to a smaller angular error. Across sessions, the animals’ angular errors when using
the second BCI mapping did not usually return to the original level of error that
the animal achieved under the first mapping (Sadtler et al., 2014) (Supplemental
Fig. A.5B). However, when viewed through the animals’ internal models of the BCI
mappings, angular errors during the second mapping were more similar to those
observed during the first mapping (Supplemental Fig. A.5C). Thus, the internal
model helps to control for possible incomplete learning of the second mapping.

We used IME to obtain the animal’s internal model of the BCI mapping (in the
form of A,B, c in Eqn. A.2), which yielded a corresponding set of cursor veloci-
ties (vt), cursor-target angles (θt), and bases for the output-potent and output-null
dimensions of each mapping (see N and R below) that we used in our offline anal-
yses. The results reported in the main text are based on these quantities obtained
from IME. When we analyzed the data without using IME (i.e., using the actual
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output-null dimensions of the BCI mapping), all of the results we report still held
(Supplemental Fig. A.4).

Defining output-null activity

In Eqn. A.2, the matrix B ∈ R2×10 linearly projects a 10-dimensional input (factor
activity) to a 2-dimensional output (cursor velocity). Thus, for any given cursor
velocity (vt) there are multiple values of factor activity (zt) that would produce it.
These multiple values of factor activity are all behaviorally equivalent, and we refer
to their existence as “neural redundancy.”

Mathematically, it is useful to consider the null space, Nul(B), and the row space,
Row(B), of the matrix B. The critical property of Nul(B) is that for any element
y ∈ Nul(B) ⊆ R10, we have Bx = B(x + y) for all x ∈ R10. In other words, any
change in activity within the null space of B has no effect on the cursor movement
produced. On the other hand, to achieve a particular cursor velocity (vt), there is
exactly one x ∈ Row(B) such that Bx = vt. Thus, the activity in the row space
of B uniquely determines the cursor movement. To find a basis for Row(B) and
Nul(B), we took a singular value decomposition of B = USV T , where the diagonal
elements of S were ordered so that only the first two values were nonzero. Then, we
let R ∈ R10×2 be the first two columns of V , and N ∈ R10×8 be the remaining eight
columns. The columns of N and R are mutually orthonormal and together form an
orthonormal basis for the 10-dimensional space of factor activity. This allowed us to
decompose the factor activity zt at each time step into two orthogonal components:
(1) activity in the row space of B that affects the cursor velocity, which we call the
output-potent activity (zrt ∈ R2); and (2) activity in the null space of B that does
not affect the cursor movement, which we call the output-null activity (znt ∈ R8):

zt = Nznt +Rzrt

where znt := N>zt, zrt := R>zt (A.3)

Note that all behaviorally equivalent activity will have the same output-potent
activity (zrt ), but can differ in output-null dimensions. Thus, for time steps with sim-
ilar cursor movements, the subject’s choice of 8D output-null activity (znt ) describes
how the subject selected activity from a set of behaviorally equivalent options. Be-
cause the cursor velocity (vt) at each time step is a combination of output-potent
activity and the cursor velocity at the previous time step (see Eqn. A.2), output-
potent activity can be thought of as driving a change in the cursor velocity. Note
that in the depictions of hypotheses in Fig. 3.1, Fig. 3.2, Fig. 3.3, and Fig. 3.4, we
used vt = Bzt instead of Eqn. A.2 for clarity.
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Predicting output-null activity

Our goal for each experiment was to predict the distribution of observed output-null
activity during the second mapping across time steps corresponding to a given cursor
movement direction (defined as the angle of vt in Eqn. A.2). In the context of the
center-out task, we assumed that cursor movements in the same direction but with
different speeds were still behaviorally equivalent to the animal. This is supported
by previous work that found substantially more direction-related information than
speed-related information in both single-unit and population activity in M1 (Golub
et al., 2014). For this reason we assessed the output-null distribution in bins of cursor
movement direction rather than cursor velocity (i.e., direction × speed).

All hypotheses generated predictions of the distribution of output-null activity
observed while animals used the second BCI mapping, unless otherwise noted. To
generate predictions of the distributions of output-null activity, we made predictions
of the output-null activity at each time step. This allowed us to ensure that our pre-
dictions were consistent with the cursor kinematics observed during the experiment.
We then aggregated the predictions across all time steps during the experiment with
a similar cursor movement direction. In all cases, the predicted output-null activ-
ity respected the intrinsic manifold (Sadtler et al., 2014), because the output-null
activity lies in an 8-dimensional subspace of the 10-dimensional intrinsic manifold.

To generate a prediction of the output-null activity for a particular time step
(znt ), each hypothesis had access to three sources of information recorded during the
experiments. First, all hypotheses used the observed output-potent activity (zrt ), in
order to ensure that every prediction was physiologically plausible (see below). Sec-
ond, all hypotheses except for the Minimal Firing hypothesis utilized factor activity
recorded during use of the first BCI mapping to form their predictions of output-null
activity. Finally, the Persistent Strategy hypothesis also utilized the current position
of the cursor relative to the target, defined as the cursor-target angle (θt).

We ensured that all predictions of output-null activity (ẑnt ) corresponded to phys-
iologically plausible neural activity (ût). By “physiologically plausible” we mean that
the neural activity was non-negative, and no greater than the maximum number of
spikes (per 45 ms time step) observed for that neural unit during trials using the
first BCI mapping (umax). To enforce the constraint, we either incorporated the
constraint 0 ≤ ût ≤ umax directly in the optimization problem (Minimal Firing hy-
pothesis), or rejected predictions of neural activity that fell outside of the constraint
(all other hypotheses). In the latter case, we combined the predicted output-null
activity with the observed output-potent activity at that time step to form the pre-
dicted factor activity (ẑt). We then converted this value to neural activity using the
FA generative model:

ût := Lẑt + d (A.4)

If this neural activity was not physiologically plausible, we attempted to generate
a new prediction of ẑnt according to the hypothesis. This was possible because all



91

hypotheses incorporated some form of sampling to generate their predictions. If
this procedure failed even after 100 attempts to generate a physiologically plausible
prediction, we skipped making a prediction for that time step. This happened for
less than 1% of all time steps.

Minimal firing hypotheses. According to the Minimal Firing hypothesis, gen-
erating spikes incurs a metabolic cost. Thus, the subject should select the population
activity pattern that involves the fewest spikes among all patterns that generate the
desired cursor movement. Predictions for this hypothesis were generated as follows.
For each time step, we find the spiking activity closest to zero firing that produces
the observed cursor velocity:

ût := arg min
u
‖u‖22

subject to vt = Avt−1 +Bf(u) + c

and 0 ≤ u ≤ umax

(A.5)

Above, f(u) refers to the factor activity corresponding to u, as in Eqn. A.1.
Because f(u) is a linear function of u, the above minimization is a convex problem.
umax is the maximum activity level observed for each neuron, as described above. We
solved for ût at each time step t using Matlab’s quadprog. All trends in results were
the same if the L2 norm in the optimization problem was changed to an L1 norm.
After solving the above minimization, we incorporated variability in spike generation
by sampling from a Poisson: û′t ∼ Poisson(ût). We repeated this last step if necessary
until û′t was physiologically plausible. Finally, we converted the prediction to factor
activity, so that the resulting prediction of ẑnt was ẑnt := N>f(û′t).

We chose to incorporate Poisson variability into the predictions of the Minimal
Firing (above) and Minimal Deviation hypotheses (below), rather than the Gaussian
noise assumed by our FA model. The observed spike counts are discrete, whereas
adding Gaussian noise would make the spike counts predicted by these hypotheses
continuous. For this reason, to ensure a fair comparison we used Poisson variability,
which will ensure the predictions remain discrete even after adding variability.

For the Minimal Deviation hypothesis, we generalized the Minimal Firing hy-
pothesis so that instead of predicting the spiking activity nearest zero spikes/s, we
predicted factor activity closest to some unknown activity level η ∈ R10. Solving
this problem in the 10-dimensional factor space for the optimal value of η yields
lower prediction error than doing so in the q-dimensional neural space because we
ultimately evaluate the hypotheses’ predictions in factor space. After choosing η (see
below), the predicted factor activity was obtained by solving the following optimiza-
tion problem:

ẑt := arg min
z
‖z− η‖22

subject to vt = Avt−1 +Bz + c
(A.6)
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The above problem is known as a “minimum norm” problem, and it turns out
that the resulting solution’s output-null activity, ẑnt , is a constant, for all t:

ẑnt = N>η (A.7)

Because of the simple form of this solution, it was possible to choose the best
value of η for each session by minimizing the resulting output-null prediction error
across cursor directions (see “Error in mean” below). This value is:

η := N

(
1

8

8∑
i=1

µni

)
(A.8)

where µni is the average output-null activity in the ith cursor direction bin, which
we estimate using activity recorded during the first BCI mapping. This ensures that
the data used to evaluate the predictions were not used to obtain η. Finally, we incor-
porated spiking variability just as we did for the Minimal Firing hypothesis. To do
this, we first converted the above prediction (ẑt) to neural activity using the FA gen-
erative model (ût := Lẑt+d). We then incorporated Poisson variability as described
above, repeating the procedure until the resulting prediction was physiologically
plausible, where the prediction of ẑnt was ẑnt := N>f(û′t), with û′t ∼ Poisson(ût).

Uncontrolled-uniform hypothesis. According to the uncontrolled manifold
concept (Scholz and Schöner, 1999), variability in output-null dimensions will be
higher than that in output-potent dimensions. One explanation of this idea is the
minimal intervention principle (Todorov and Jordan, 2002; Valero-Cuevas et al.,
2009; Diedrichsen et al., 2010b), which states that the variability in output-potent
dimensions is controlled independently of the output-null activity, with the output-
null activity being unmodified. While this principle specifies that output-null activity
is independent of output-potent activity, it does not specify what the distribution
of output-null activity actually is. Thus, we considered two hypotheses about this
distribution. First, we supposed that the output-null activity would be uniformly
distributed within bounds determined by the physiological range of population ac-
tivity. This hypothesis thus predicts that activity in output-null dimensions has
maximal entropy within the physiological range. For each t, we sampled:

ẑn
t ∼ Uniform(znmin, znmax) (A.9)

Above, znmin and znmax set the range on the minimum and maximum possible
output-null activity. These bounds were set using population activity recorded during
use of the first BCI mapping. We then resampled if necessary until our predictions
generated physiologically plausible spiking activity when combined with the output-
potent activity.

Note that in Fig. 3.2, Fig. 3.3, and Fig. 3.4 we applied PCA to the observed
output-null activity to depict the three output-null dimensions with the most shared
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variance in the observed activity. Because of this, our visualizations of the distribu-
tions predicted by the Uncontrolled-uniform hypothesis in Fig. 3.3 appear mound-
shaped rather than uniform. To understand this, suppose we sample from a uniform
distribution over a rectangle in 2D. If we rotate this rectangle slightly, and visualize
the distribution of points along the x-axis, the distribution will be mound-shaped.
Similarly, the Uncontrolled-uniform hypothesis samples from a uniform distribution
in the 8-dimensional output-null space, where the bounds of the rectangle are deter-
mined by znmin and znmax above. Applying PCA rotates this activity, such that the
density along the PC dimensions appears mound-shaped.

Uncontrolled-empirical hypothesis. Next, we considered a different hypoth-
esis about the distribution of output-null activity under the minimal intervention
principle. Rather than assuming output-null activity is uniformly distributed, we
obtained an empirical distribution using population activity observed under the first
mapping. To produce predictions of output-null activity during the second mapping,
for each time step during the second mapping we sampled randomly from the popu-
lation activity observed under the first mapping, and assessed the projection of that
activity in the null space of the second mapping.

Concretely, let T1 be the set of all time steps under the first mapping, and T2 be
the set of all time steps under the second mapping. Our prediction for each t ∈ T2
is obtained by randomly sampling with replacement:

ẑn
t ∼ {N>zi | ∀i ∈ T1} (A.10)

In other words, at each time step using the second mapping, we randomly select
factor activity observed during the first mapping (zi), and project it into the null
space of the second mapping (N>zi). We then resampled if necessary until our
predictions generated physiologically plausible spiking activity when combined with
the output-potent activity.

Persistent Strategy hypothesis. An extension of the Uncontrolled-empirical
hypothesis is motivated by the idea that the subject may select activity under one
mapping by modifying the activity he used under the first mapping. For a given
cursor-target angle, if the subject selects the same population activity under the
second mapping as under the first mapping, that activity may not move the cursor
towards the target under the second mapping. To correct the cursor movement,
he modifies this activity according to the minimal intervention principle (Todorov
and Jordan, 2002; Valero-Cuevas et al., 2009; Diedrichsen et al., 2010b), correcting
activity only along output-potent dimensions of the current mapping. Concretely,
for each t ∈ T2, we sampled with replacement:

ẑn
t ∼ {N>zi | ∀i ∈ T1 such that θi ∈ θt ± 22.5◦} (A.11)

where θt is the cursor-to-target angle at time t. As before, we resampled if
necessary until our predictions generated physiologically plausible spiking activity
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when combined with the output-potent activity. This hypothesis is identical to the
Uncontrolled-empirical hypothesis, except that at each time step we sampled only
from time steps during the first mapping that had a similar cursor-target angle (i.e.,
within a 45◦ wedge around θt). We found no consistent improvements in varying
the constraints on the cursor-target angle (i.e., using values other than 22.5◦ in Eqn.
A.11), or when using the output-potent angle rather than the cursor-target angle.

Fixed Distribution hypothesis. According to the Fixed Distribution hypothe-
sis, the activity in output-null dimensions is tightly coupled to the activity in output-
potent dimensions, even under different BCI mappings when these dimensions are
not necessarily still null and potent. This is in contrast to the three previous hy-
potheses (Uncontrolled-uniform, Uncontrolled-empirical, Persistent Strategy), which
all incorporated a minimal intervention principle, whereby output-null activity can
be modified independently of the output-potent activity, within the physiological
limits on the firing rate of each unit.

Under the Fixed Distribution hypothesis, we predict that the distribution of
output-null activity given the output-potent activity will be the same distribution as
it was under the previous mapping. To implement this hypothesis, for each time step
during the second mapping, we predict that the subject selects whichever activity
pattern he produced under the previous mapping that would best match the cur-
rent output-potent activity. Specifically, given the output-potent activity produced
during the second mapping (zrt ), we found the time step during the first mapping
(i∗ ∈ T1) where the factor activity zi∗ would have come closest to producing that
output-potent activity using the second mapping. Our prediction for output-null
activity was then the output-null component of zi∗ through the second mapping
(NTzi∗). Mathematically, for each t ∈ T2 our prediction was:

ẑn
t := N>zi∗

where i∗ = arg min
i∈T1
‖zrt −R>zi‖22

(A.12)

We observed that these predictions all satisfied physiological constraints, which
suggests that the values of zi∗ selected at each time step each produced output-potent
activity sufficiently close to zrt .

This above implementation is also equivalent to the following: At each time step
we identified the K previously observed population activity patterns that would
produce output-potent activity closest to the current output-potent activity under
the second mapping. We then selected one of these patterns at random, and used
the output-null activity of that pattern as our prediction at that time step. In our
above implementation, K = 1. We found that using other values of K (e.g., K = 50,
K = 200) yielded similar results.

Evaluating predictions

For each session, we evaluated the predicted output-null distributions of the above
hypotheses in terms of how well they matched the observed output-null distributions
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for all time steps with similar cursor movements. To do this, we first grouped time
steps by their corresponding cursor velocity into eight non-overlapping bins of cursor
movement directions (0◦±22.5◦, 45◦±22.5◦, ..., 315◦±22.5◦). We then evaluated the
accuracy of the predictions for each cursor movement direction.

For consistency, all predictions were evaluated in terms of factor activity. The
Minimal Firing hypothesis generated its predictions in terms of neural activity, and
we converted these predictions to factor activity using Eqn. A.1.

Histogram overlap. We compared the predicted and observed distributions
of output-null activity in each dimension in terms of the average overlap of their
histograms. For each session, we selected a single bin size for all histograms using
cross-validation (Rudemo, 1982). Then, for each cursor direction and output-null
dimension, we computed the error between the observed (y) and predicted (ŷ) his-
tograms. Let yi be the normalized frequency in the ith bin, so that

∑m
i=1 yi = 1, and

similarly for ŷ. Then the histogram error was computed as follows:

L(y, ŷ) =
1

2

m∑
i=1

|yi − ŷi| (A.13)

Above, 1
2

is included so that L(y, ŷ) = 1 if the two histograms are completely
non-overlapping. L(y, ŷ) = 0 if the two histograms are identical. This error was then
averaged across all cursor directions and output-null dimensions. We multiplied this
value by 100 to yield the average histogram error percentages reported in the main
text.

For the visualizations in Fig. 3.2, Fig. 3.3, and Fig. 3.4, we displayed the
marginal histograms in the three output-null dimensions with highest variance in
the observed output-null activity, as found by PCA. For all error calculations we
considered all eight output-null dimensions without applying PCA.

Error in mean. We assessed how well our predictions matched the observed
mean output-null activity for each cursor movement direction. For all time steps in
the same cursor movement direction bin, let µn ∈ R8×1 be the vector of the mean
observed output-null activity, and µ̂n ∈ R8×1 the mean output-null activity predicted
by a particular hypothesis. These are both vectors, and so we computed the distance
between them using the `2 norm:

L(µn, µ̂n) = ‖µn − µ̂n‖2 (A.14)

For each hypothesis, we computed the error in mean in each cursor movement
direction bin, and took the average of these values as the error in mean for each
session.

Error in covariance. We next assessed how well our predictions matched the
observed covariance of output-null activity for each cursor movement direction. Let
Cn ∈ R8×8 and Ĉn ∈ R8×8 be the covariance of the observed and predicted output-
null activity, respectively. There are a variety of methods for comparing covariance
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matrices, such as comparing their trace or determinant. We chose a metric invari-
ant to affine transformations (e.g., scaling, translations, rotations) of the coordinate
system (Dryden et al., 2009). Because the amount of variance in the recorded pop-
ulation activity might vary from session to session, this property of affine invariance
helps ensure we can reasonably compare our covariance errors across sessions.

Let λi(C
n, Ĉn) be the ith generalized eigenvalue of Cn and Ĉn (i.e., a value λ such

that det(Cn − λĈn) = 0). Then following Lang (1999) and Förstner and Moonen
(2003), we computed the distance between these two matrices as:

L(Cn, Ĉn) =

√∑
i

log2 λi(Cn, Ĉn) (A.15)

If Cn = Ĉn, then L(Cn, Ĉn) = 0. For each hypothesis, we computed the error
in covariance in each cursor movement direction bin, and took the average of these
values as the error in covariance for each session.

Error floor. To estimate the smallest errors achievable by any hypothesis (the
“error floor”), given a limited number of samples to estimate the true output-null
distributions, we performed the following analysis. For each session, we randomly
split the data during the second mapping in half, and measured the histogram, mean,
and covariance errors when using the output-null activity from one half to predict
the distribution of the output-null activity during the other half. We repeated this
process 100 times per session, and took the averages of the resulting errors as our
estimates of the error floors for that session.

Activity that became output-null in the second mapping

We sought to assess whether the variance of population activity changed in dimen-
sions that became output-null under the second mapping. To do this, we identified
the subspace of activity that was output-potent under the first mapping, but output-
null under the second mapping.

As before, let the columns ofN be a basis for the null space of the second mapping.
Now let the columns of R1 be a basis for the row space of the first mapping. Then the
space spanned by the columns of (NN>)R1 ∈ R10×2 describes the activity that would
move the cursor during the first mapping but would not move the cursor during the
second mapping. Let S ∈ R10×2 be an orthonormal basis for (NN>)R1, which we
obtained by performing a singular value decomposition. Now let Z ∈ R10×n be a
matrix of n factor activity patterns. To measure the amount of variance of Z in the
subspace spanned by the columns of S, we computed Trace(Cov(Z>S)) ∈ R.

To assess how the variance of activity changes when it becomes irrelevant to
cursor control, we grouped the time steps based on the cursor movement angle under
the second mapping, for activity recorded under both the first and second mappings.
First conditioning on the movement angle under the second mapping is consistent
with our earlier analyses, when comparing the predicted and observed output-null
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distributions. To compute the cursor movement angle through the second mapping
for activity recorded under the first mapping, we used the terms of Eqn. A.2 not
involving the cursor velocity at the previous time step (i.e., we computed vt =
Bzt + c). For consistency, we recomputed the cursor movement angle for activity
recorded under the second mapping in the same way.

Let Z1 and Z2 be the factor activity in the same cursor movement angle bin
recorded during the first and second mappings, respectively. We then computed the
ratio of variance R as follows:

R = log

(
Trace(Cov(Z>2 S))

Trace(Cov(Z>1 S))

)
(A.16)

The sign of R specifies whether the variance of activity increased (R > 0) or
decreased (R < 0) when that activity became irrelevant to cursor control under
the second mapping. We took the average of this ratio across all cursor movement
direction bins to compute a ratio for each session.

To compute this ratio for the predictions of our hypotheses, as in Fig. 3.6C,
we substituted Z2 with the predictions of our hypotheses, i.e., by combining their
predicted output-null activity with the observed output-potent activity under the
second mapping.

We also repeated the above analyses on our predictions of output-null activity
produced during the first mapping using the activity observed under the second
mapping, as shown in Supplemental Fig. A.3 and Supplemental Fig. A.6. This was
done by swapping the roles of the first and second mappings in the above analysis
description.

Distances of mean output-null activity from Minimal Firing
and Minimal Deviation

For each cursor direction on each session, we computed the distance from the mean
observed output-null activity to the mean predicted by the Minimal Deviation hy-
pothesis, where the distance was computed as the `2 norm between the two 8D mean
vectors. We then compared this distance to the distance between the mean predicted
by Fixed Distribution and the mean predicted by Minimal Deviation (Supplemental
Fig. A.7). If the latter distance was consistently smaller than the former, this would
be evidence that the observed mean output-null activity had moved towards the pre-
dictions of Minimal Deviation, relative to what was predicted by Fixed Distribution.
We did not find evidence that this was the case (one-sided Wilcoxon signed rank test,
p > 0.5), suggesting that the mean observed output-null activity was not closer to
Minimal Deviation than expected under Fixed Distribution. We repeated the same
analysis using the mean predicted by Minimal Firing instead of Minimal Deviation,
and reached the same results (one-sided Wilcoxon signed rank test, p > 0.5).
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mapping (red). Success rates were smoothed using a 100-trial moving window. (C) Average success
rate across all sessions for each of three animals, during the three blocks highlighted in (B). Error
bars depict mean ± SE. (D) Same conventions as (B), for target acquisition time. Acquisition
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the smoothed acquisition times shown here (see Methods). Only correct trials within this block
were analyzed. (E) Same conventions as (C), for acquisition time.
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Figure A.2. Fixed Distribution hypothesis best predicts observed output-null activity
for each animal. (A) Monkey J. (B) Monkey L. (C) Monkey N. Same conventions as Fig. 3.5.
Asterisks denote a significance level of α = 0.05 (*), 0.01 (**), and 0.001 (***).
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Figure A.3. Predicting output-null activity produced during the first mapping using
activity observed during the second mapping. Throughout this work, we predict the output-
null activity recorded while subjects used the second BCI mapping, and hypotheses can use activity
recorded during use of the first BCI mapping to make their predictions. However, most of the
hypotheses do not depend on the order in which the two mappings were presented to the subjects.
Here we predict the output-null component of the activity recorded during use of the first BCI
mapping, and hypotheses can use activity recorded under the second BCI mapping to make their
predictions. Same conventions as Fig. 3.5.
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Figure A.4. Predicting output-null activity without using animal’s internal model
(IME) to define the output-null dimensions. Same conventions as Fig. 3.5. Asterisks denote
a significance level of α = 0.05 (*), 0.01 (**), and 0.001 (***). “n.s.” is not significant.
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Figure A.5. Identifying the animal’s internal model of the BCI mapping. (A) BCI cursor
trajectory (black) for an example trial during the second mapping. At each time step, the subject
takes its most recent visual feedback (where red whisker touches black trajectory) and propagates
it forward in time (red whisker) using an internal model and neural activity produced in the recent
past. This yields the subject’s internal estimate of the current cursor position (red open circle),
which is different from the actual BCI cursor position (black open circle). At this time step, the
cursor movement according to the internal model (red arrow) points more directly to the target
(green circle) than the actual BCI cursor movement (black arrow). Each dot indicates a 45 ms time
step. (B) Average absolute angular cursor error (in degrees) for each session based on the actual
BCI cursor movements (analogous to black arrow in (A)). Angular errors during stable control of
the second mapping were larger than the angular errors during control of the first mapping. (C)
Average absolute angular cursor error (in degrees) for each session based on IME (analogous to red
arrow in (A)). When viewed through animals’ internal estimates of the BCI, angular errors during
control of the first and second mapping were similar.
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Figure A.6. Variance of neural activity in dimensions that became output-potent. We
repeated the analyses shown in Fig. 3.6 on the predictions of output-null activity produced during
the first mapping using activity observed during the second mapping (shown in Supplemental Fig.
A.3). This analysis amounts to assessing the change in variance in dimensions that were output-null
during the first mapping and output-potent during the second mapping. Same conventions as Fig.
3.6B-C.
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Figure A.7. Output-null activity was not closer to the mean predicted by Minimal
Deviation than expected under Fixed Distribution. (A) Determining whether the observed
mean output-null activity (“Data”) was closer to the Minimal Deviation (“MD”) prediction than
expected under Fixed Distribution (“FD”). Dots and ellipses indicate the mean and covariance
of output-null activity observed (black), predicted by Fixed Distribution (blue), and predicted by
Minimal Deviation (red), for all time steps from session J20160714 corresponding to the same cur-
sor movement, in the first two of eight output-null dimensions. Similar to Fig. 3.6, the observed
covariance (black ellipse) is slightly smaller than that of Fixed Distribution (blue), suggesting the
observed covariance is moving in the direction of the small covariance expected under Minimal
Deviation (red). Do we see a similar trend in the mean activity, where the observed mean activity
is closer to the Minimal Deviation mean than expected under Fixed Distribution? We can assess
this by comparing the lengths of the dotted lines, which indicate the distances of the mean activity
observed (black) and predicted by Fixed Distribution (blue) from the mean predicted by Minimal
Deviation. (B) Distance of the observed and predicted output-null activity from the activity pre-
dicted by Minimal Deviation. Each dot indicates the average distance of the output-null activity
observed (horizontal axis) and predicted by Fixed Distribution (vertical axis, ‘FD’) from the Mini-
mal Deviation (‘MD’) in a session. For each cursor direction, the distance was computed as the `2
norm of the difference between the mean 8D output-null activity (predicted or observed) from the
mean activity predicted by MD, similar to (A). Session distances were the average distances across
all cursor directions. Most points lie below the diagonal, suggesting that the observed output-null
activity was not closer to the MD predictions than expected under Fixed Distribution. Results were
similar when comparing distances to the means predicted by Minimal Firing instead of Minimal
Deviation.
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Appendix

To understand how our results might change if we recorded from more neural units,
we assessed the dimensionality and shared variance of population activity with a
varying number of units (Williamson et al., 2016) (Fig. A.8). For each session,
we fit factor analysis (FA) models (as defined in Eqn. A.1) to subsets of varying
numbers of units and identified the number of factors needed to maximize the cross-
validated data likelihood. This resulted in estimates of the model parameters L
and Ψ. As in Williamson et al. (2016), dimensionality was defined as the number
of eigenvectors of LL> needed to explain 95% of the shared variance. Concretely,
if the eigenvalues of LL> are λ1, λ2, ..., λD, then dshared is the smallest J such that(∑J

i=1 λi

)
/
(∑D

i=1 λi

)
≥ 0.95. Note that the absolute dimensionality depends on

the method (% shared variance threshold) and criterion (threshold = 95%) used for
assessing dimensionality. This is the same method used in Williamson et al. (2016),
but differs slightly from the method used in Sadtler et al. (2014). We found that the
dimensionality of the population activity increased with the number of units (Fig.
A.8A).

As in Williamson et al. (2016), we computed the percentage of each neural unit’s
activity variance that was shared with other recorded units (% shared variance). We
calculated the average percent shared variance across neurons as follows:

Percent shared variance for neuron k = 100
LkL

>
k

LkL>k + Ψk

(A.17)

where Lk is the row of L corresponding to unit k. We found that the % shared
variance initially increased with the number of units, then reached an asymptote,
such that the % shared variance was similar with 30 and 85 units (Fig. A.8B).

The results in Fig. A.8A-B imply that the top ∼10 dimensions explain nearly all
of the shared variance, and that additional dimensions identified by recording from
more units explain only a small amount of additional shared variance. Thus, record-
ing from more units beyond the ∼85 units that we recorded in these experiments is
not likely to reveal additional dimensions with substantial shared variance.

We next measured the principal angles between modes identified using 30 units
with those identified using 85 units (Fig. A.8C) (Björck and Golub, 1973). Modes
were defined as the eigenvectors of the shared covariance matrices corresponding to
units from the 30-unit set (i.e., the eigenvectors of LL> where L includes only the
rows corresponding to the same 30 units). To restrict the analysis to the number
of modes used to estimate the intrinsic manifold, only the ten modes explaining the
most shared variance were included in the principal angle calculations. The small
principal angles between modes identified using 30 and 85 units indicate that the
dominant modes remained largely unchanged when using more units, in agreement
with Williamson et al. (2016). These modes define the intrinsic manifold, the space
within which we perform all of our analyses in the current work. Thus, recording
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from more units beyond the ∼85 units that we recorded in these experiments is not
likely to substantially change the results reported in this work.
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Figure A.8. Recording from more units is likely to reveal an intrinsic manifold similar
to that identified in this study. (A) We assessed the dimensionality (dshared) of population
activity after applying factor analysis to varying numbers of units from each session. Dimensionality
is defined as the number of factors needed to explain 95% of the shared variance. Dimensionality
increased with the number of units. Error bars depict mean ± SE, across sessions. (B) We also
computed the percentage of each neural unit’s activity variance that was shared with other recorded
units (% shared variance). The % shared variance is based on the same factor analysis models
identified in (A). The % shared variance initially increased with the number of units, then reached
an asymptote, such that the % shared variance was similar with 30 and 85 units. Error bars
depict mean ± SE, across sessions. (C) We next measured the principal angles between the modes
identified by factor analysis using 30 units with those identified using 85 units. Modes are defined as
the eigenvectors of the shared covariance matrices corresponding to units from the 30-unit set. The
small principal angles between modes identified using 30 and 85 units indicate that the dominant
modes remained largely unchanged when using more units. Gray points represent principal angles
between random 30-dimensional vectors. Error bars for black points depict mean ± SE, across
sessions, while error bars for gray points depict mean ± s.d.
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B APPENDIX TO CHAPTER 3

B.1 Methods

Experimental details

Experimental methods are described in detail in previous work (Sadtler et al., 2014;
Golub et al., 2018). Briefly, we recorded from the proximal arm region of primary
motor cortex (M1) in three male rhesus macaques (Maccaca mulatta; age, monkey J:
7 years; monkey L: 8 years; monkey N: 7 years) using implanted 96 electrode arrays
(Blackrock Microsystems). Data collection was performed using Labview (2012-2014)
and Matlab (2011b-2015a). All animal care and handling procedures conformed to
the NIH Guidelines for the Care and Use of Laboratory Animals and were approved
by the University of Pittsburgh’s Institutional Animal Care and Use Committee.
We recorded from 85 to 94 neural units in each session. The activity of each neural
unit is defined as the number of threshold crossings recorded by an electrode in non-
overlapping 45 ms bins. The average firing rate of the neural units across sessions
was 46 ± 7, 38 ± 8, and 56 ± 13 spikes/s (mean ± s.d.) for monkeys J, L, and N,
respectively.

During each experimental session, a monkey performed an eight-target center-out
task by modulating his recorded neural activity to control the velocity of a computer
cursor on a screen. Each session involved two different BCI mappings. The first
‘intuitive’ mapping was chosen to provide the monkey with proficient control of the
cursor. The animal used the intuitive mapping for 321 ± 96 trials (mean ± s.d.),
after which the mapping was switched abruptly to a second, new BCI mapping that
the monkey had never controlled before. This new mapping was chosen so as to be
initially difficult for the monkey to use, and the monkey was given 698 ± 227 trials
(mean ± s.d.) to learn the new mapping. Both BCI mappings were chosen so that
they were controlled exclusively by the neural activity within the monkey’s intrinsic
manifold (defined below). During the BCI task, each animal’s arms were loosely
restrained. We monitored hand movements using an LED marker (PhaseSpace Inc.)
on the hand contralateral to the recording array. During BCI control, animals showed
little to no arm movements (Sadtler et al., 2014) (Supplemental Fig. B.2).

At the beginning of each trial, a cursor appeared in the center of the workspace,
followed by the appearance of one of eight possible peripheral targets (chosen pseu-
dorandomly among θ ∈ {0◦, 45◦, 90◦, 135◦, 180◦, 225◦, 270◦, 315◦}). For the first 300

109



110

ms of the trial, the velocity of the cursor was fixed at zero. After this, the velocity
of the cursor was controlled by the animal through the BCI mapping. If the animal
acquired the peripheral target with the cursor within 7.5 s, he received a water re-
ward, and the next trial began 200 ms after target acquisition. Otherwise, the trial
ended, and the animal was given a 1.5 s time-out before the start of the next trial.

During all experiments we monitored the monkey’s pupil diameter (arbitrary
units) using an infrared eye tracking system (EyeLink 1000; SR Research, Ottawa,
Ontario). The eye tracker was first turned on while monkeys used the intuitive
mapping, but this time varied from session to session. Pupil diameter was always
measured while monkeys controlled the new BCI mapping.

Defining the BCI mappings

Each session began with the monkey performing a block of calibration trials, as
described in previous work (Sadtler et al., 2014). Using these calibration trials, we
z-scored the spike counts separately for each neural unit. We then applied factor
analysis (FA) to the z-scored spike counts to identify the 10D linear subspace (i.e.,
the ‘intrinsic manifold’) that captured dominant patterns of co-modulation across
neural units (Santhanam et al., 2009; Churchland et al., 2010; Harvey et al., 2012;
Williamson et al., 2016; Athalye et al., 2017; Huang et al., 2019). We used 10
factors (i.e., dimensions), as this was the average dimensionality identified by cross-
validation across experiments from monkeys J and L (Sadtler et al., 2014). In fact,
in this paper we used exactly the same FA model and 10D latent factors that were
found during the experiment to drive the BCI cursor (see below).

The factor activity, zt ∈ R10×1, was estimated as the posterior expectation given
the z-scored spike counts, yt ∈ Rq×1, where q is the number of neural units:

zt = L>(LL> + Ψ)−1(yt − d) (B.1)

Above, L, Ψ and d are FA parameters estimated using the expectation-maximization
algorithm, where L is termed the loading matrix, and Ψ is constrained to be a diag-
onal matrix. The factor activity, zt, can be interpreted as a weighted combination
of the activity of different neural units. Prior to analysis, we orthonormalized zt so
that it had units of spike counts per time bin (Yu et al., 2009; Hennig et al., 2018).
We refer to zt as a “population activity pattern.”

As discussed above, each experiment consisted of animals using two different BCI
mappings. Each BCI mapping translated the resulting moment-by-moment factor
activity (zt) into a 2D cursor velocity (vt) using a Kalman filter:

vt = Avt−1 +Mzt + c (B.2)

For the intuitive BCI mapping, A ∈ R2×2, M = M1 ∈ R2×10, and c ∈ R2×1

were computed from the Kalman filter parameters, estimated using the calibration
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trials. For the second, new BCI mapping, we changed the relationship between
population activity and cursor movement by randomly permuting the elements of zt
before applying Eqn. B.2. This permutation procedure can be formulated so that
Eqn. B.2 still applies to the second BCI mapping, but for a new matrix M2 ∈ R2×10

used in place of M1 (Sadtler et al., 2014).

Hand control experiments

Data were collected from a fourth monkey (monkey G) for three sessions. During
these experiments, the monkey performed an eight-target center-out task by moving
his hand to control a computer cursor. An infrared marker was taped to the back
of the monkey’s hand and tracked optically using an Optotrak 3020 system. The
marker position was used to update the position of the cursor in real-time on a
stereoscopic computer monitor. During these experiments we recorded from the
proximal arm region of primary motor cortex (M1) using an implanted 96 electrode
array (Blackrock Microsystems).

Similar to the BCI control experiments, the targets shown on each trial were
chosen pseudorandomly. At the beginning of each trial, a target (sphere; radius: 6
mm) was presented in the center of the reaching workspace. The animal was trained
to move the cursor (sphere; radius: 6 mm) to this start target and hold for 0-100
ms. A peripheral target (sphere; radius: 6 mm) was presented at the end of this
hold period. Water reward was delivered if the target was acquired within 1.5 s and
the cursor was held on the target for a random hold period drawn uniformly from
150-550 ms. The next trial was initiated 200 ms after the trial ended, regardless of
success or failure. The data analyzed includes 160 trials of baseline center-out trials,
where the marker position was directly mapped to the cursor position, followed by
320 trials where a visuomotor rotation was applied to all reaches (40◦ CW, 40◦ CCW,
and 30◦ CW for the three sessions, respectively).

To match the analysis procedure used in the BCI experiments, we took spike
counts in non-overlapping 50 ms bins, and z-scored the spike counts using the mean
and standard deviation of each neural unit during baseline reaches. We then applied
FA to the z-scored spike counts recorded during all baseline reaches to identify a 12D
linear subspace, where 12 was the number of dimensions that maximized the cross-
validated log likelihood. We then orthonormalized the resulting 12D factor activity.
All analyses of population activity considered only these top 12 factors.

Data analysis

Session and trial selection

The data analyzed in this study were part of a larger study involving learning two
different types of BCI mapping changes: within-manifold perturbations (WMP),
described above, and outside-manifold perturbations (OMP) (Sadtler et al., 2014).
We found that animals learned WMPs better than OMPs, and so we only considered
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WMP sessions in this study. We analyzed all sessions regardless of whether or not
animals showed learning. For consistency, we excluded two sessions where the WMP
was not the first perturbation shown during that experiment. In total, we analyzed
46 WMP sessions (monkey J: 25 sessions, monkey L: 10 sessions, monkey N: 11
sessions). No statistical method was used to pre-determine sample sizes but our
sample sizes are similar to those reported in previous publications (e.g., (Oby et al.,
2019; Golub et al., 2018; Hennig et al., 2018; Cowley et al., 2020)).

In the BCI experiments, spike counts were taken in non-overlapping 45 ms bins
(“timesteps”), indexed here by j = 1, ..., J , where J is the number of timesteps in
a given trial, and j = 1 is the timestep where the target first appeared. Each trial
consisted of three intervals of interest: 1) the pre-target interval (j ≤ 2, or 90 ms),
during which the monkey had not yet perceived the target due to sensory processing
delays; 2) the freeze interval (j ≤ 6), during which the cursor was frozen in place at
the center of the workspace; and 3) the cursor control interval (j ≥ 7), where the
cursor velocity was determined by Eqn. B.2. Unless otherwise noted, all analyses
used data only during the cursor control interval.

We noted that when the cursor was near the target, or at the end of long trials,
cursor movements were often idiosyncratic (e.g., reflecting small corrective move-
ments), and so we discarded from our analyses any timesteps where the cursor was
more than 65% of the way to the target, and any timesteps j > 20. To report trial-
averaged quantities, we wanted to ensure that all neural activity within the same trial
came from timesteps where the monkey attempted to push the cursor in the same
direction. This was especially important given that we compared the time course
of neural engagement during learning on a target-by-target basis (see Figs. 4.4, 4.5,
and 4.6). We therefore analyzed only the timesteps where the angle between the
cursor and target was within 22.5◦ of the target direction on that trial. Performing
our analyses without this exclusion criterion did not change our results.

We analyzed both correct and incorrect trials in this study. We reasoned that
sufficiently large increases in neural engagement (e.g., on the first trial using the new
BCI mapping) may slow down the cursor’s speed to the extent that the monkey is
unable to obtain the target. Removing incorrect trials would then bias any analyses
that compare levels of neural engagement between targets whose performance was
improved versus impaired by neural engagement (see Figs. 4.4, 4.5, and 4.6). We
did, however, remove trials where the monkey appeared to quit the task, by removing
any sequence of more than 5 consecutive incorrect trials that occurred following at
least one correct trial during Block 2. This occurred in only 11 of 46 sessions, and
resulted in the removal of 0.71% of all trials. All results were qualitatively similar
without this exclusion criterion.

For the hand control experiments, we analyzed data from the 15 timesteps of each
trial immediately following the appearance of the target (which cued the monkey to
begin moving his hand towards the target).
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Quantifying behavioral performance

To quantify the monkey’s moment-by-moment performance, we calculated the speed
of the cursor in the target direction (i.e., “cursor progress” (Golub et al., 2018)). To
do this, we first calculated the “single timestep” cursor velocity:

vsingle−timestepj = M2zj + c (B.3)

where zj is the neural activity produced at timestep j, and M2 and c are the new
BCI mapping parameters (see Eqn. B.2). The cursor’s speed towards the target, sj,
is then given by:

sj = (vsingle−timestepj )>pj (B.4)

where pj is a unit vector pointing from the cursor position at timestep j to the target
position. Assessing performance in this manner ensures that our measures of neural
engagement and performance (as in Fig. 4.5) were both assessed using precisely the
same neural activity, and at the same resolution (i.e., every timestep).

Changes in performance during Block 2 (Fig. 4.5e) were calculated as follows.
Let sθ(t) be the average of sj for all timesteps j from the tth trial to target θ. Let
sθ(0) be the expected speed to the target under the new BCI mapping before learning
begins, given by projecting the monkey’s trial-averaged neural activity to the same
target during Block 1 into the new BCI mapping (i.e., using Eqn. B.3 and Eqn.
B.4). For each t, Fig. 4.5e depicts ∆sθ(t) = sθ(t)− sθ(0) averaged across all targets
in the same group (e.g., all T+ targets).

To find the trial at which performance for each target θ reached its peak (Fig.
4.5f), we first found the running mean of ∆sθ(t) in a sliding eight trial window. Let
∆s̃θ(t) be the resulting running mean. The trial at which performance for each target
θ reached its peak was then arg maxt ∆s̃θ(t).

To test whether performance levels at the end of Block 2 differed between T+
and T− targets, we used ∆s̃θ(t̃θ) as the performance level of target θ at the end of
Block 2. To assess whether learning rates differed between T+ and T− targets, for
each θ we fit a saturating exponential to sθ(t) with free parameter τ > 0:

ŝθ(t) = sθ(1) + (s̃θ(t̃θ)− sθ(1))(1− exp(−(t− 1)/τ)) (B.5)

where τ is the learning rate, governing how quickly sθ(t) transitions from initial
performance, sθ(1) (unsmoothed because s changed more quickly early in learning),
to performance at the end of Block 2, s̃θ(t̃θ). For each target, τ was chosen so as to
minimize the mean squared error between ŝθ(t) and sθ(t) for all t.
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Identifying neural engagement axes

For each experimental session (for either BCI or hand control), we identified a
set of neural engagement axes, capturing the dimension along which neural activ-
ity varied in the absence of learning pressure (i.e., while monkeys used the intu-
itive BCI mapping, or during baseline reaches, respectively) for each target θ ∈
{0◦, 45◦, 90◦, 135◦, 180◦, 225◦, 270◦, 315◦}. Let aθ ∈ R10, with ‖aθ‖ = 1 be the neural
engagement axis for target θ. We defined aθ as the direction of greatest variance in
the factor activity recorded during all trials to that target. Identifying this direction
in the factor activity rather than in the spiking activity ensures that we focus on the
shared covariance among neural units rather than variance that is independent to
each unit.

We observed that the neural engagement axes involved the activity of nearly all
neural units changing in the same direction (Supplemental Fig. B.4). We therefore
choose the sign of aθ so that positive values of neural engagement corresponded to
increases in the firing rate for the majority of units. This allowed us to average across
values of neural engagement across targets and sessions, as presented in the main
text.

Quantifying neural engagement

During Block 1, we defined the value of neural engagement, ej ∈ R, for each timestep
j to target θ, as follows:

ej = (zj − z̄θ)
>aθ (B.6)

where z̄θ is the mean neural activity produced to target θ during Block 1. The level
of neural engagement on trial t was then defined as the average of ej for all timesteps
j from trial t.

To compute neural engagement during Block 2, we cannot simply use Eqn. B.6,
because some of the changes in neural activity across trials will also be due to learning
(e.g., by neural reassociation (Golub et al., 2018)). According to neural reassociation
(Golub et al., 2018), to move the cursor in a particular direction θ ∈ [0, 2π) during
Block 2, the monkey samples the neural population activity he used for movements
in a potentially different direction θ′ ∈ [0, 2π) during Block 1. Thus, to estimate
neural engagement during Block 2 (as shown in Fig. 4.5 and Fig. 4.6), we used the
following:

ej = (zj − z̄θ′j)
>aθ′j (B.7)

where θ′j is no longer necessarily equal to the target direction, θ. We estimated θ′j from
the neural activity, zj, which is reasonable provided that changes in neural activity
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due to θj and ej are not entirely overlapping. Specifically, θ′j was defined as the direc-
tion that the cursor would have moved if zj were produced under the intuitive map-
ping, as changes in neural engagement tended to have less effect on the cursor’s move-
ment direction using the intuitive mapping. This procedure allowed our estimate of
θ′j to vary as the monkey learned to control the new BCI mapping, thus accounting
for any changes in neural activity due to neural reassociation. To compute z̄θ′j and

aθ′j for any continuous value of θ′t ∈ [0, 2π), we used a cubic spline to interpolate

between the values measured for each θ ∈ {0◦, 45◦, 90◦, 135◦, 180◦, 225◦, 270◦, 315◦}.
In the above procedure, the neural engagement axes corresponding to a given θ

are assumed to be the same during both Block 1 and Block 2. We confirmed that the
neural engagement axes estimated before learning (during Block 1) and after learning
(at the end of Block 2) were similar (Supplemental Fig. B.10), indicating that the
largest fluctuations in neural activity occurred along similar dimensions throughout
the experiment.

To compare values of neural engagement across trials to different targets in Fig.
4.2 and Supplemental Fig. B.1, we z-scored the neural engagement for each target
separately using the mean and standard deviation across all trials to each target
during Block 1. In all other figures, neural engagement was z-scored using the mean
of the last 10 trials to each target during Block 1. This was done so that the level
of neural engagement on the first trial of Block 2 was relative to the average level at
the end of Block 1 (e.g., see Fig. 4.4c and Fig. 4.5c).

Comparing neural engagement to pupil size. For each session, we esti-
mated the trial-by-trial correlation between neural engagement and the monkey’s
pupil size (Fig. 4.2f-g). To do this, we first found the average pupil size and neural
engagement during the control interval of each trial. Similar to previous work cor-
relating population activity and pupil size (Cowley et al., 2020), we applied boxcar
smoothing to the trial-averaged measurements of each quantity with a sliding win-
dow of 30 trials, and then computed the Pearson’s correlation between the resulting
time series. Pupil recordings began partway into Block 1 and continued throughout
Block 2 (see Experimental details above). Thus, the analysis shown in Fig. 4.2g
used trials throughout Block 2, for all sessions where Block 2 consisted of at least
200 trials (44 of 46 sessions). During the 13 sessions where pupil size was measured
during Block 1 for at least 200 trials (all sessions were from monkey J), the median
correlation between neural engagement and pupil size was ρ = 0.67 (bootstrapped
95% C.I. [0.41, 0.79], n = 13 sessions).

Variance explained by changes in neural engagement. We sought to
estimate the amount of variance in the neural population activity due to changes in
neural engagement during Block 1 (Fig. 4.2h). To estimate the variance for trials
to a given target, we first found the average neural activity zt during each trial to
that target, along with the corresponding neural engagement, et. The measure of the

variance explained by changes in engagement for that target was then Vart(et)

Tr Covt(zt)
.

To compute the total amount of variance explained by changes in engagement, we
computed the same metric above, but used the activity from all trials combined
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rather than just the trials to a particular target.
Predicting the impact of neural engagement on performance under

the new mapping. We labeled a target as T+ or T− based on whether an initial
increase in neural engagement would increase (T+) or decrease (T−) the cursor’s
speed towards the target under the new mapping (e.g., Figs. 4.4, 4.5, and 4.6).
Specifically, let z̄θ be the average neural activity recorded during Block 1 for target
θ, and let aθ be the corresponding neural engagement axis. Then we labeled that
target as T+ if an increase in neural engagement led to an increase in the cursor’s
speed to the target (see Eqn. B.4):

(M2(z̄θ + εaθ) + c)>p > (M2z̄θ + c)>p (B.8)

where M2 and c are the parameters of the new BCI mapping, p is a unit vector
corresponding to the target direction, and ε > 0 is a small constant. Otherwise, the
target was labeled as T−.

Identifying output-potent and output-null engagement axes. Given a
neural engagement axis, a ∈ R10, not all changes in neural activity along this axis
will lead to changes in cursor velocity through the new BCI mapping, M2. This
is because the mapping between neural activity and cursor velocity, given by Eqn.
B.2, is a linear mapping from 10D to 2D, implying that M2 has a non-trivial null
space, Nul(M2). To identify which components of a will result in changes in cursor
velocity, we can find bases for the null space, Nul(M2), and the row (or potent) space,
Row(M2) (Hennig et al., 2018). To do so, we took a singular value decomposition
of M2 = USV T , with U ∈ R2×2, S ∈ R2×10, and V ∈ R10×10, where the columns of
S were ordered so that only the first two columns had non-zero elements. Then, we
let R ∈ R10×2 be the first two columns of V , and N ∈ R10×8 be the remaining eight
columns. The columns of N and R are mutually orthonormal and together form an
orthonormal basis for the 10-dimensional space of factor activity. This allows us to
rewrite the neural engagement axis for each target θ as the sum of a null-engagement
axis, anullθ , and a potent-engagement axis, apotentθ :

aθ = anullθ + apotentθ (B.9)

anullθ = aθNN
> (B.10)

apotentθ = aθRR
> (B.11)

We then normalized anullθ and apotentθ to be unit vectors. We then used these axes in
Eqn. B.7 to compute values of null and potent engagement (Fig. 4.6).

Statistics & Research Design

Data collection and analyses were not performed blind to the conditions of the experi-
ments. Experiments were not grouped, and thus no group randomization procedures
were performed. Statistical analyses were conducted in Matlab (2015a). To test
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whether the distributions of neural engagement were different for T+ and T− tar-
gets at the start of Block 2, we used a two-sample Kolmogorov-Smirnov test. To
compare the medians of two distributions we used a two-sided Wilcoxon rank-sum
test (unpaired) or a two-sided sign test (paired). Statistical tests were non-parametric
and so did not assume normality. When depicting standard error (SE), data distri-
butions were assumed to be normal but this was not formally tested. For additional
information on statistics and research design, see the Life Sciences Reporting Sum-
mary.

Code availability

The code used in this study for performing analyses and generating figures can be
found at https://github.com/mobeets/neural-engagement.

B.2 Supplemental Figures

https://github.com/mobeets/neural-engagement
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Figure B.1. Neural engagement showed stereotyped changes relative to experimental
events, in multiple example sessions. Same conventions as Fig. 4.2d. Note that in contrast to
other figures (e.g., Fig. 4.5c), here neural engagement is shown across trials to all eight instructed
targets, where trials to different targets were interleaved. As a result, each time course shown here
includes variability due to the target-specific differences in neural engagement during learning (e.g.,
see Fig. 4.5c). Position along the horizontal axis indicates clock time (see legend indicating “5
minutes”), so that pauses in the experiment are more visible. All sessions are plotted with the
same time scale, and trial indices are marked for reference.
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Figure B.2. Changes in neural engagement during BCI control could not be explained
by hand movements. a-c. During the BCI experiments, we recorded the hand speed of two
animals (monkey J, shown in panel a; and monkey L, shown in panel b), for the hand contralateral
to the recording array (the other hand was restrained). Monkey N’s hand speed was not recorded
because his hand was restrained in a tube, and the reflection of the light on the tube made his
hand difficult to track. We also recorded the hand speed of monkey G (shown in panel c), who
performed a center-out arm reaching task (as shown in Fig. 4.2i-j). This allowed us to compare
hand speeds across both types of experiments. We found that the arm movements during the BCI
task (panels a and b) were substantially smaller than during the center-out arm reaching task.
Black line indicates median across trials to all sessions, while shading indicates median ± 25th
percentile (a, n = 25 sessions; b, n = 10 sessions; c, n = 3 sessions). d-e. Even if animals showed
little to no arm movements (as shown in panels a and b), might it be the case that the increase
in neural engagement at the start of Block 2 (Fig. 4.4c) can be explained by animals moving their
hands more than they did on previous trials? We found no substantial increase in hand speed at
the start of Block 2 for either monkey. Black line indicates median across sessions, while shading
indicates median ± 25th percentile (d, n = 25 sessions; e, n = 10 sessions). Thus, the increase
in neural engagement we observe at the start of Block 2 cannot be explained by animals suddenly
moving their hands more than during Block 1.
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Figure B.3. Trials with elevated levels of neural engagement also showed increased
pupil size. a-c. In Fig. 4.2g, we related neural engagement and pupil size by first averaging the
pupil size across time points within a trial. To further explore this relationship, here we consider
the time course of pupil size within a trial. Trial-averaged pupil sizes are shown for three example
sessions after grouping trials separately based on whether neural engagement during the control
interval of each trial during Block 2 was above- (dark gray) or below- (light gray) the median across
trials during Block 2. Vertical dashed line indicates the time within each trial when the cursor was
released (300 ms; see Methods), i.e., the beginning of the control interval. Shading indicates mean ±
SE across trials (a, n = 456 trials; b, n = 296 trials; c, n = 202 trials). Within each example session,
the time course of pupil size was similar for trials with above- versus below-average levels of neural
engagement, but with a larger overall pupil size on trials with above-average neural engagement. d.
Prior to computing the correlations between neural engagement and pupil size shown in Fig. 4.2g
(and in the previous panel), we first smoothed the trial-by-trial time courses of pupil size and neural
engagement with a 30-trial boxcar filter, similar to previous work correlating population activity
and pupil size (Cowley et al., 2020). Here we show that neural engagement and pupil size were
typically positively correlated even without smoothing. Without smoothing, the median Pearson’s
correlation across sessions was ρ = 0.12 (bootstrapped 95% C.I. [0.09, 0.18], n = 44 sessions). Same
conventions as Fig. 4.2g. e. Although the recording of pupil size began part way into Block 1
due to experimental constraints, we computed the trial-by-trial correlation between pupil size and
neural engagement during Block 1 for the 13 sessions with a sufficient number of trials (all from
monkey J). The median Pearson’s correlation during these sessions was ρ = 0.67 (bootstrapped
95% C.I. [0.41, 0.79], n = 13 sessions). Thus, a positive correlation between neural engagement and
pupil size was also present before learning. Same conventions as Fig. 4.2g.
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Figure B.4. Changes in neural engagement corresponded to nearly all neural units
increasing or decreasing their activity together. We wanted to understand how changes
in neural engagement were represented by the activity of individual units. For each target, a
neural engagement axis was defined in 10-dimensional factor space. We used the q × 10 loading
matrix from factor analysis (see Methods) to define the neural engagement axis in the q-dimensional
population activity space of the q recorded units. For example, if there were 90 units, the neural
engagement axis would have 90 coefficients, describing how changes in neural engagement for a
given target would be represented by the activity of each of the 90 units. For each target, we
computed the percentage of units whose coefficients had the same sign (for whichever sign was in
the majority, so that percentages could never be below 50%). Shown in black is the distribution of
these percentages across the neural engagement axes for all targets across all sessions (bootstrapped
95% C.I. [97.6%, 97.7%], n = 368 axes (one per target)). This relationship means that an increase
in neural engagement corresponds to an increase in the firing rate of most units (by an amount that
is unit- and target-dependent). For reference, in gray, is the distribution after sampling random
dimensions in factor space, and computing the corresponding effects on individual neural units
(bootstrapped 95% C.I. [59.7%, 62.5%], n = 368 random axes). Triangles depict the medians of the
“data” and “chance” distributions, which were significantly different (p < 10−10, paired, two-sided
sign test, n = 368 axes).
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Figure B.5. Increased neural engagement corresponded with increased baseline firing
rate, modulation depth, and spiking variance in single units. To understand the relation-
ship between neural engagement and the firing properties of individual units, for each experiment
we grouped trials during Block 1 based on whether they had above- versus below-average levels of
neural engagement (similar to Supplemental Fig. B.3). A-B. For each individual unit from all ses-
sions, we fit two cosine tuning models to each unit’s z-scored spike counts: one model was fit to the
average spike counts on trials with above-average levels of neural engagement (“high engagement
trials”), while the other model fit to the spike counts on trials with below-average levels of neural
engagement (“low engagement trials”). The cosine model was of the form y = b+m cos(θ− θpref ),
where y is the unit’s expected firing rate on a trial to target θ, b is the unit’s baseline (average) firing
rate, m is the unit’s modulation depth, and θpref is the unit’s preferred direction. We estimated
b, m, and θpref using linear regression. Each dot corresponds to one unit. For most units, both
the baseline firing rate (b; panel A) and the modulation depth (m; panel B) were higher on high
engagement trials than on low engagement trials (in both cases: p < 10−10, paired, two-sided sign
test, n = 4074 units). C-D. For each session, we fit a factor analysis (FA) model to the z-scored
spike counts of all units during low engagement trials, and then fit a separate FA model to the
z-scored spike counts during high engagement trials. Each model had the same form as Eqn. B.1,
resulting in parameter estimates of L and Ψ. The estimated private variance of unit i is given by
Ψii, while the shared variance is given by (LL>)ii, where the ii subscript indicates the ith diagonal
element. Each dot corresponds to one unit. We found that both the private variance (panel C)
and shared variance (panel D) of most units was higher on high engagement trials than on low en-
gagement trials (in both cases: p < 10−10, paired, two-sided sign test, n = 4074 units). This result
is expected from Supplemental Fig. B.4 because the sum of a unit’s shared and private variances
equals its spike count variance. Because a unit’s spike count variance tends to increase with its
mean spike count, a higher firing rate will typically correspond with a higher shared and/or private
variance.
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Figure B.6. Increased neural engagement during arm movements predicted faster hand
speeds towards most targets. a. For the experiments involving arm movements (see Methods),
we visualized the average neural population activity (circles) and neural engagement axes (orange
arrows) during baseline reaches to each of eight targets. Same conventions as Fig. 4.3d. “Target
directions” panel is a legend depicting the color corresponding to each target direction. b. We also
visualized the monkey’s average hand velocity during reaches to each target (circles), similar to Fig.
4.3e. Unlike during BCI control, we do not know the causal relationship between neural population
activity and hand velocity. To understand how changes in neural engagement related to hand
velocity, we used linear regression to predict the monkey’s hand velocity during baseline reaches
at each 50 ms timestep during the movement epoch of every trial, using the neural population
activity recorded 100 ms prior. Cross-validated r2 for the x- and y- components of hand velocity
were 67% and 77%, respectively. The linear regression model (M̂) allowed us to estimate how
increases in the neural engagement related to the monkey’s average hand velocity towards each
target (orange dashed arrows), and to intermediate target directions (gray dashed lines). In this
session, an increase in neural engagement predicted an increase in the monkey’s hand speed towards
all but the 135◦ target. This suggests that differences in the neural engagement axes across targets
may have behavioral relevance. c. We repeated the procedure from b during the other two arm
movement sessions. Across sessions, increased neural engagement during arm movements predicted
faster hand speeds towards most targets.
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Figure B.7. New BCI mappings induced a variety of relationships between neural
engagement and cursor velocity, across targets and sessions. Same conventions as Fig.
4.3f, for multiple example sessions (all with the same scale). “Target directions” panel is a legend
depicting the color corresponding to each target direction.
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Figure B.8. Changes in neural engagement and performance per monkey. a-b. Changes
in neural engagement (a) and performance (b) during Block 2, averaged across T+ and T− tar-
gets for each monkey separately (J: nT+ = 119, nT− = 81 targets; N: nT+ = 50, nT− = 38; L:
nT+ = 51, nT− = 29). Same conventions as Fig. 4.5c (a) and Fig. 4.5e (b). c-d. Difference in
learning speed between T+ and T− targets is robust to amount of smoothing (c) and how the peak
performance was determined (d). We found the number of trials at which performance for a given
target reached x% of its maximum, after first smoothing the performance for each target with a k-
trial boxcar filter (see Methods), where in Fig. 4.5f, k = 8 and x = 100. Here we sweep the amount
of smoothing (k; panel c) while holding x = 100 constant, and sweep the threshold percentage (x;
panel d) while holding k = 8 constant. Across all monkeys, the blue line was always below the red
line, indicating that our result that T+ targets reached peak performance more quickly than T−
targets was robust to different parameter settings.
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Figure B.9. Non-uniform task performance did not predict how quickly different tar-
gets reached peak performance. a-b. In BCI tasks, performance across targets is often non-
uniform. Can differences in the animal’s pre-learning performance across targets predict how quickly
different targets were learned? We defined pre-learning performance in two ways: using the perfor-
mance under the intuitive BCI mapping during Block 1 (panel a), and using the predicted initial
performance under the new BCI mapping (panel b). For the latter quantity, we projected the
trial-averaged neural activity for each target during Block 1 onto the new BCI mapping. For each
definition of pre-learning performance, we divided all targets from each monkey into two groups
based on whether pre-learning performance was above (green, “easier”) or below (gray, “harder”)
the median performance level across all targets. We then found the number of trials needed for
each group of targets to reach peak performance during Block 2, similar to Fig. 4.5f. The median
number of trials needed to reach peak performance was not different for targets that were initially
harder (gray triangle) versus easier (green triangle) during Block 1 using the intuitive BCI mapping
(p = 0.91, two-sided Wilcoxon rank-sum test, n1 = 184 and n2 = 184 targets; panel a). Nor was
there a difference in the median number of trials needed to reach peak performance for the targets
that were predicted to be initially harder (gray triangle) versus easier (green triangle) under the
new BCI mapping (p = 0.06, two-sided Wilcoxon rank-sum test, n1 = 184 and n2 = 184 targets;
panel b).
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Figure B.10. Neural engagement axes were largely unchanged after learning. Distribu-
tion of the angle (“data”, in black) between the neural engagement axis identified for each target
during Block 1 (“before learning”) vs. during the last 50 trials of Block 2 (“after learning”). To
identify neural engagement axes during the last 50 trials of Block 2, we used the same procedure
as used during Block 1 (i.e., the procedure used in the main text; see Methods), but applied to the
last 50 trials of Block 2. “Chance” (in gray) indicates the distribution of the angle between random
directions in ten-dimensional space. Triangles depict the medians of the “data” and “chance” distri-
butions, which were significantly different (p < 10−10, two-sided Wilcoxon rank-sum test, n1 = 368
(data) and n2 = 50, 000 (chance) axes).
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B.3 Supplemental Discussion

Here we discuss potential sources of neural engagement in more detail.
Is it intended speed? Neural engagement may be related to, but is likely distinct

from, the monkey’s intended movement speed. Neurons in M1 have long been known
to reflect movement speed (Georgopoulos et al., 1986; Moran and Schwartz, 1999).
We observed that during arm movements, increased neural engagement predicted
increased hand speed towards the target (Supplemental Fig. B.6). This raises the
possibility that neural engagement may simply reflect the monkey’s intended move-
ment speed. However, during BCI learning, we observed a gradual decrease in neural
engagement during repeated trials to the same target, despite the fact that perfor-
mance for many targets would have been improved by maintaining this increased
neural engagement (Fig. 4.5c). Therefore, if neural engagement simply reflected
intended movement speed, it would be necessary to explain why monkeys would
intend to move slower when doing so would reduce their reward rate. One possi-
ble explanation might be that the monkey’s intended movement speed is modulated
by an internal state such as motivation or reward expectation. In fact, studies of
“movement vigor,” measured behaviorally as the reaction time and/or peak move-
ment speed during eye or reaching movements (Mazzoni et al., 2007; Xu-Wilson
et al., 2009; Dudman and Krakauer, 2016; Yttri and Dudman, 2018; Sedaghat-Nejad
et al., 2019; Shadmehr et al., 2019), have found that the vigor (or speed) with which
we execute a movement is not constant over time, but varies depending on context.
Movement vigor is therefore thought to reflect a cost-benefit analysis, such that vigor
increases when there is a higher subjective utility (e.g., expected reward) for doing
so (Shadmehr et al., 2019). Consistent with this prediction, neural engagement was
higher at the start of the experiment, and following pauses in the experiment (Fig.
4.2e); in both cases, the resumption of the experiment indicates to the monkey a
higher expectation of reward, because completing trials resulted in a reward. How-
ever, we also saw an increase in neural engagement following the introduction of the
new BCI mapping, a time when the monkey’s reward expectation should be lower,
given that the new BCI mapping will immediately decrease his reward rate. Thus,
increases in neural engagement do not always reflect increased reward expectation,
suggesting that neural engagement may not simply reflect movement vigor.

Is it a feedback response? Previous work has established that M1 population ac-
tivity reflects sensory feedback following a perturbation, for both mechanical (Pruszyn-
ski et al., 2011, 2014; Omrani et al., 2014, 2016) and purely visual (Stavisky et al.,
2017) perturbations. At first glance, these results may appear similar to our obser-
vation of an immediate increase in neural engagement following the introduction of
a new BCI mapping. However, our results differ in two key ways. First, while we did
find a fast increase in neural engagement (within a single trial), neural engagement
then decreased gradually over subsequent trials (Fig. 4.2e). It is not known from
these previous studies whether the magnitude of the sensory feedback signal should
decay over subsequent trials, but we would expect it to decay more quickly than did
neural engagement. Second, neural engagement followed a similar time course during
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the portion of each trial before cursor feedback was available (Fig. 4.2e, last sub-
panel), indicating that this signal was not directly reflecting visual feedback. Thus,
neural engagement does not simply reflect sensory feedback. Another line of work
has observed that, in the presence of novel dynamics between intended and actual
movement, subjects stiffen their limbs using muscle co-contraction (Osu et al., 2002;
Heald et al., 2018). Co-contraction is thought to be a default strategy for reducing
initial kinematic errors early in learning, as the amount of co-contraction gradually
decreases as a new internal model of the environment is learned. The time course
of co-contraction during learning might therefore resemble the time course of neu-
ral engagement that we observed during Block 2. Because we did not record EMG
during our experiments, we cannot determine whether or not changes in neural en-
gagement are related to co-contraction. We observed a similar time course of neural
engagement following pauses during Block 1 of the experiment (Fig. 4.2e), when
there is no reason for animals to co-contract, as there are no unexpected kinematics
to correct. Thus, if neural engagement does reflect a default motor response such as
co-contraction or a change in response gains, this response may be the manifestation
in motor cortex of an uncertainty- or arousal-driven response (as discussed below),
rather than a response to kinematic errors.

Is it arousal? Recent work identified a slowly varying correlate of internal state
in the neural population activity of prefrontal cortex and visual area V4 while mon-
keys performed a perceptual decision-making task (Cowley et al., 2020). The authors
present evidence that this “slow drift” in population activity reflected an arousal or
impulsivity signal, which biased animals’ decisions. The authors propose that this
signal may arise from the release of a neuromodulator such as norepinephrine (NE),
distributed by the locus coeruleus (LC) (Aston-Jones and Cohen, 2005; Joshi et al.,
2016; McGinley et al., 2015). We speculate that the neural engagement signal iden-
tified in the present work may have a similar origin. This would also be consistent
with recent work in rodents reporting brain-wide modulation associated with behav-
ioral variables such as facial expression (Stringer et al., 2019) and licking (Stringer
et al., 2019; Allen et al., 2019) that can indicate changes in arousal. What might
be the role of an arousal signal, if any, in M1? It has been proposed that the LC
signals uncertainty in the environment (Yu and Dayan, 2003; Sales et al., 2019), and
that the release of NE modulates a trade-off between explorative-exploitative behav-
iors (Aston-Jones and Cohen, 2005). From this perspective, the increases in neural
engagement that we observe following pauses in the experiment and at the start of
learning may be due to the release of NE by the LC. If these changes indeed serve a
function, such as indicating a change in the environment or driving exploration, our
results suggest that this response is relatively coarse or stereotyped across task goals,
because the increase in neural engagement persisted even when it was detrimental
to behavior.

B.4 Finding neural engagement in your own data
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The below procedure may be helpful for identifying neural engagement axes in
your own data. I do not know how many of these steps are essential (e.g., the time
bin size), but they are the ones I used, so they will likely be a helpful starting point.

Preprocessing

• Resample your data (if necessary) so that you have spike counts in ∼50 ms
bins. Let u ∈ Rq be the resulting vector of spike counts from q units in a single
time bin.

• Identify an analysis window of interest for each trial, so that each trial con-
tributes roughly the same amount of data (e.g., for 50 ms bins, using 250 ms
starting from movement onset would give you 5 time steps per trial).

• Select a “baseline” block of trials in which there is no learning. (The idea is
that for all trials in this block with the same task condition, we will be able to
treat any fluctuations in neural activity as being unrelated to the task.)

• Normalize (z-score) the spike counts for each unit separately, using the baseline
trials to find the mean and variance per unit. After z-scoring, each unit’s spike
counts during the baseline block should be zero mean and unit variance. Let
each z-scored spike count vector be y ∈ Rq.

• Apply factor analysis (FA) to the z-scored spike counts from the baseline block,
and use the resulting FA parameters (i.e., L ∈ Rq×d and Ψ ∈ Rd×d, where d is
the FA model’s dimensionality) to convert each z-scored spike count (y ∈ Rq)
to factor activity (z ∈ Rd). Make sure to orthonormalize the resulting factors.
(If you’re in a rush you can use PCA instead of FA.)

Estimating neural engagement axes

• For each task condition θ (e.g., reach direction), apply PCA to the factor
activity from all baseline trials to get the eigenvector corresponding to the first
principal component. This eigenvector, a ∈ Rd, is the neural engagement axis
for this task condition.

• Optional: In the step above, even though we are applying PCA to trials with
the same task condition, during trials with no learning, there may nevertheless
be some task-related variability. For example, for arm reaches to the same
target, there may be some trial-to-trial variability in reach direction due to the
subject making small (but task relevant!) corrections to their reach. To get
around this, you may want to identify a subspace in which this task-related
neural variability is most salient, and then apply PCA to the null space of this
subspace. This will help ensure that your resulting neural engagement axis is
ignoring some of the task-related neural variability.
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• The eigenvector resulting from PCA is unsigned, meaning there is no distinction
between a “positive” versus “negative” direction. We will define positive neural
engagement so that increasing factor activity in the direction a corresponds to
most units increasing their spike count. To do this, for each engagement axis
a, ensure that we have La > 0 for as many units as possible, flipping the sign
if necessary (i.e., setting a := −a).
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