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Abstract 

Machine learning has revolutionized disciplines within materials science that have been able 

to generate sufficiently large datasets to utilize algorithms based on statistical inference, but for 

many important classes of materials the datasets remain small. After an introduction to various 

types of ML regression, Chapter 1 introduces a rapidly growing number of approaches to show 

how embedding domain knowledge of materials systems are reducing data requirements and 

allowing broader applications of machine learning. Furthermore, these hybrid approaches improve 

the interpretability of the predictions, allowing for greater physical insight into the factors that 

determine material properties. A survey of the modern utilization of machine learning for 

cementitious systems is discussed.  

Chapter 2 discusses a background of cementitious systems along with a Hierarchical Machine 

Learning (HML) approach for improving their workability. The dispersion of cement paste 

induced by various hybrid polymers was explored. PEGylation of lignin derivatives has been 

shown to enhance emulsifying and dispersant activities. Here, the effects of anionic grafts were 

explored for dispersant activity within Portland cement. Kraft lignin and lignosulfonate are two 

important forms of purified lignin whose chemistries are characterized by low concentrations of 

carboxylate and high concentrations of sulfonate groups, respectively. The dispersion of cement 

paste by these hybrid polymers was compared with the PEGylated lignin analogues as well as a 

leading cement superplasticizer, poly (carboxylate ether) (PCE). Slump values significantly 

increased for both the PMAA-grafted lignin compared to the other analogues allowing for 

significant reductions in cement water content, with PMAA-grafted lignosulfonate approaching 

performance of the commercial PCE and suggesting that graft chemistry has a strong effect on 
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dispersant function. Adsorption, zeta potential, and intrinsic viscosity were measured for the 

lignopolymer analogues to explore the interplay between lignin and graft chemistries in the 

mechanism of cement dispersion.  

Blending metakaolin (MK), a calcined clay, into portland cement (PC) improves resulting 

concrete material properties, ranging from strength to durability, as well as reduces embodied CO2 

and energy. However, superplasticizers developed for PC can be inefficient or ineffective for 

improving the dispersion of PC-MK blends. Chapter 3 introduces a novel machine algorithm 

which was applied to tailor a superplasticizer to address poor flowability characteristic of 85/15 

blends of MK-PC. A HML system was trained on a library of seven superplasticizers using a 

middle layer, which represents underlying physical interactions that determine system responses, 

based on polymer contributions to physicochemical forces in both the pore solution and particle 

surface. Synthesis of the algorithm prediction resulted in a water-soluble polymer with a high 

intrinsic viscosity and a resultant slump value in a cementitious paste that was comparable with 

leading poly(carboxylate ether) (PCE) superplasticizers. The results from this study demonstrate 

the importance of HML as a design tool for the molecular engineering of complex material 

systems.  

Chapter 4 introduces alternative binder chemistries (ABC’s) in the form of calcium 

sulfoaluminate (CSA) cements, which have lower embodied CO2 compared to portland cement 

but set rapidly, often within 15 minutes, thus limiting their application. As such, set-retarding 

admixtures are added to increase the length of time before setting is achieved. These admixtures 

are typically small organic compounds with high anionic functionality. Retardation is achieved 

through a complex interplay of mechanisms which involve adsorption onto calcium in the clinker 
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and subsequent prevention of clinker dissolution, complexation with dissociated calcium in the 

pore solution, and adsorption onto nucleated cement hydration products inhibiting further growth. 

A cheminformatics based machine learning methodology for the prediction and virtual screening 

of set retarders for these alternative binder chemistries. Discovery of such compounds is typically 

achieved through extensive iterative testing that does not ensure optimal solutions. Here, the use 

of cheminformatics, a data-driven approach used extensively in drug discovery, is demonstrated 

to identify new set retarders from small datasets for calcium sulfoaluminate (CSA) cements. Based 

on a sparse training set of 23 molecules containing polar and anionic functional groups, the 

cheminformatics approach was used to develop a predictive model relating chemical structure to 

the retarding capability. Then structures of 500,000 compounds were downloaded from a public 

database, and 365 were predicted to extend set time beyond 1 h. Among these, glyphosate is a 

commodity chemical that was found to impart a set time of 55 minutes. This cheminformatics 

approach could be used to develop structure-function relationships and perform rapid virtual 

screening of chemical admixtures to identify novel high-performance chemical admixtures.  

Despite the growing body of work relating to the development of ultra-high performance 

concrete (UHPC) mixes, the process of designing a UHPC mix is still a highly iterative process. 

By aggregating previous work on UHPC, Chapter 5 introduces a machine learning model to predict 

and optimize mix designs based on materials not utilized in the training set. Cement blends are 

represented in terms of the latent variables of particle packing, water film thickness, and equivalent 

cement content in order to create a generalizable model. Two rounds of training and testing of 

were performed utilizing an uncertainty ensemble with a ridge regression while error analysis took 

place through comparing the Mean Squared Error, a prediction score which ignores Bayesian 
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probability and compares how well the mean values of the data fit to the best model; and 

Miscalibration area, a quantification of uncertainty in the model based on calibration techniques. 

The RMSE for the first iteration was 25 MPa and six blends predicted to obtain UHPC strength 

were tested. Two of the six blends were found to exceed 100 MPa in compressive strength, while 

the other four needed major blend modification in order to produce a blend of workable 

consistency. In the second round, three blends were selected with more tightly bound constraints 

to ensure mixture workability. All three blends exceeded 100 MPa, although model improvement 

and more informed feature selection is needed, it was shown that through the incorporation of 

latent variables, a generalizable model could be obtained to predict novel UHPC compositions 

with a disparate source of materials.  

Designing Limestone Calcined Clay Cements (LC3) is a challenge because the factors that are 

correlated with strength are anticorrelated with workability. Chapter 6 presents a ML methodology 

for designing LC3 compositions for materials commonly found in North America subject to CO2 

constraints. A hierarchical machine learning approach is performed to represent cement 

composition as a latent middle layer which can encode any arbitrary composition from a bottom, 

compositional, layer. Cement blends are represented in terms of their particle packing and water 

film thickness in both the prediction of workability and strength, while various parameters 

encoding particle-particle and pore solution forces for superplasticizers in the workability model. 

A random forest model was utilized in the prediction of workability returning an R2=0.93 on the 

training set and R2=0.81 on the test set. A gaussian process regression was utilized in the prediction 

of strength providing a final model training score with an R2=1.0 and showing high generalizability 

to a test set with an R2=0.97. Analysis of the effect of changes in the compositional variables was 
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visualized through the gaussian process regression giving a posterior probability distribution for 

all predictions. Finally, these models were combined with a linear model capturing the CO2 release 

for every compositional variable. A genetic algorithm was performed in order to predict a Pareto 

front corresponding to the points of maximum strength and workability, with minimized CO2, 

predicting novel blends containing various ratios in combining different sizes of the supplementary 

cementitious materials.  

Finally, Chapter 7 presents conclusions and future directions. 
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Chapter 1. Embedding Domain Knowledge for Machine Learning of Complex Material 
Systems1 

1.1. Introduction 

Many important materials are defined by a single underlying interaction or force, which 

allows modeling using analytical expressions having relatively few parameters. Examples 

include ferromagnets, where the magnetism is described by the exchange interactions between 

spins,1 and elastomers, where the resistance to deformation is due to polymer chain entropy.2 In 

contrast, the properties of complex materials are determined by multiple competing forces, the 

interplay of which lead to a rich diversity of physical properties and performance characteristics. 

Complex materials, such as complex fluids,3 metal alloys,4 and  catalysts,5 are ubiquitous, but 

predicting their properties remains a significant challenge.   

Machine learning (ML) is a diverse collection of powerful techniques utilized to identify 

relationships in data, allowing for modeling and optimization of complex systems. With rapidly 

growing datasets available, ML has become a robust methodology applied across many 

materials disciplines and has been increasingly incorporated in conjunction with the Materials 

Genome Initiative.6,7,8 However, the traditional methods of machine learning are based only on 

statistical inference, requiring large datasets to develop predictive models that connect 

composition and processing with properties. While some disciplines within materials science, 

such as metallurgy9 or heterogeneous catalysis,10 have developed methods for high-throughput 

experimentation to produce sufficiently large datasets, most disciplines still use traditional 

 
1 This chapter includes work that was published and reformatted:  

Childs, C. M. & Washburn, N. R. Embedding domain knowledge for machine learning of 
complex material systems. MRS Commun. 9, 806–820 (2019). 
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methods of materials preparation and analysis, precluding the use of ML methods designed for 

Big Data.11,12  

While, in the case of systems described by an exactly known relation, a physical law is 

better utilized, in complex systems, a single physical relation may not exist, but several relations 

could underlie the system. These constituent physical relations can be utilized in conjunction 

with ML to learn the interplay of interactions within these complex systems, and with the 

increasing use of data-driven approaches, science has utilized traditional ML to predict 

molecular solubility13,14,15, discover new thermodynamically stable materials16, and determine 

highly accurate interatomic potentials.17 While a simple, single physical law could be learned 

through statistical inference techniques with a small dataset of, say, 10 datapoints, systems 

defined through several complex relations can require the use Big Data in the range of thousands 

or more datapoints to accurately model. In general, the amount of data needed depends on the 

ratio of datapoints to the number of features. If a small number of features can effectively model 

the data, then fewer datapoints are needed. However, as the complexity of the system increases, 

the higher number of features needed to model the system would require a higher number of 

datapoints to effectively model. 

It is still possible to use the tools of ML on small datasets, but this requires the 

development of hybrid algorithms that embed domain knowledge in order to develop predictive 

models that relate system variables to system responses, thus narrowing the search space that 

data-driven models must explore. In the context of materials science, domain knowledge can 

take a number of forms, and here four different types are surveyed: (1) physicochemical 

properties, (2) similarity, (3) system properties, and (4) physical laws and empirical equations. 
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This introduction will discuss these types of domain knowledge as well as specific examples of 

how they are implemented in ML algorithms.  

1.2. Response Surfaces and Machine Learning 

The general task here is to understand how changes in experimental or system variables 

change the properties of the system. For complex systems, high costs and time demand limit 

data collection to small datasets,18 with examples including adhesives, agrochemicals, pigments, 

paints, coatings, lubricating oils, paper, and pharmaceuticals, all of which have limitations in 

the amount of data that can be acquired under realistic resource assumptions.19,20 Design of 

experiment (DOE) approaches are a common tool for estimating the response surface of such 

systems based on the incomplete exploration of the variable space. In the DOE approach, system 

features are systematically varied so that outputs can be mapped as a continuous response 

surface. These observations allow the discovery of correlations between features and produce a 

function that can be subsequently optimized.21 A common method utilized with the DOE is a 

full-factorial design. In this approach, each of the k-factors (features) are tested at n levels. For 

example, if n=2, the design will measure the value of the response as maximum and minimum 

values of each feature against the maximum/minimum values of every other feature resulting in 

2k simulations being performed. The benefits of DOE allow for correlations between features to 

be discovered and a response surface to be mapped, but disadvantages of the approach include 

limits to the non-linearity of the surface being mapped, exponential growth of the system with 

increasing feature size, and large uncertainty of the surface response mapping in areas that are 

untested, as illustrated schematically in Figure 1.1. Establishing a technique to embed domain 

knowledge would allow for the response to be better predicted between test points by training 
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the algorithm to understand the relationships between system variables and how they determine 

system responses.  

 

Figure 1.1. Illustration of two possible response surfaces that fit the four points of a training 
set shown as green circles. The red concave surface represents a simple model from the DOE 
where the response surface was modeled with a second-order polynomial. This approach fails 
to capture complex underlying interactions, which could take place throughout the domain 
space, as shown in blue. 

ML techniques are applied across systems as diverse as clinical medicine, facial 

recognition, self-driving automobiles, and scientific fields such as cheminformatics and 

bioinformatics. The development of such diverse uses of ML has been predicated on using Big 

Data (datasets routinely including millions of points) enabled by acquisition over large 

populations, such as high-throughput measurements.22 In recent advances, ML techniques 

utilizing image recognition for detecting melanoma have outperformed medical experts in 

diagnosing.23 Where sufficient data are present, ML algorithms have the capability of learning 

relationships between inputs and outputs; however, unlike human learning, traditional ML 

techniques relying on raw features perform poorly at determining relationships utilizing small 
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datasets.24   Foundational research has previously been applied toward developing a general 

unified theory of learning in conjunction with ML and emphasized the need for the development 

of multi-strategy techniques for learning on various types of data, but these have not been widely 

implemented for use in small datasets.25  

Fields such as cognitive neuroscience, which began incorporating early ML techniques 

to model human learning as early as the 1960’s,26 have attempted to better predict the 

relationship between inputs and outputs by explicitly including causal relations, allowing 

algorithms to learn on small data.24,27 For example, recent research has demonstrated human-

level performance for “one-shot” recognition of handwritten characters on sparse datasets. 

Causal knowledge was included through parsing characters into the training set by each ‘pen 

stroke,’ allowing the model to consider how the characters were drawn to identify each 

character.28  The causal relationships create a hierarchical model where domain knowledge can 

be explicitly included or learned to be included in future models. This approach relates the inputs 

of a system to a middle layer as opposed to traditional ML where inputs are related through 

statistical inference in hidden layers (which may or may not be explicitly included in the 

algorithm) as shown in Figure 1.2.  
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Figure 1.2. The traditional model directly predicts the outputs from the inputs with learned 
causal relationships. The hierarchical model allows for the incorporation of domain 
knowledge through human input before predicting outputs. 

However, incorporating domain knowledge into ML algorithms needs to be performed 

in a way which does not block the discovery of unexpected solutions. An heuristic example of 

this is the statement that “trucks can’t drive over water,” but this domain knowledge ignores the 

possibility of the water freezing in winter.29 Translating real-world phenomena, such as 

temperature variations, into ML problems requires expert knowledge so as to not eliminate 

possibilities that could be discovered using data-driven approaches.30  

Research areas in which small datasets are commonly generated face two challenges in 

adopting ML techniques. The first, as discussed, is the challenge in making accurate predictions 

using methods based strictly on statistical inference. The second is that experimental design in 

a laboratory setting tends to be sequential and driven by intuition, and experimental parameters 

naturally tend toward values that lead to maximizing (or minimizing) an objective function. This 

artificially limits the dataset to a narrow section of the input variable space and does not 

adequately train the algorithm on the range of system responses that can be generated, limiting 

as Jain et al. described, the “completeness” of the dataset.31 These point to the importance of 
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embedding domain knowledge in ML algorithms to use causal relationships as hypotheses. 

While incorporating causal relationships to human learning is difficult to formalize27,  extensive 

and formalized knowledge of them are the basis of scientific model building. Through an 

expert’s appropriate incorporation of domain knowledge, a hypothesis-space of the domain 

knowledge can be created on which to train.32 From this perspective, ML can be an effective 

tool for the unbiased analysis of complex material systems with small datasets.  

Here, we discuss methods of embedding physical knowledge into ML algorithms. 

Instead of experimentally defined descriptors being directly used as the sole inputs for ML, 

selected inputs also include physical factors modeling the system.  This embedded knowledge 

can take the form of correlative relations, such as identifying similarity metrics, empirical 

relations in the form of physical equations, or embedding exact relations such as invariance 

properties. It will be shown that by embedding ML algorithms with these techniques, small data 

can be utilized to effectively model a complex material system. 

1.3. Methods 

ML encompasses many varying algorithms. To provide an understanding to some of the 

basic algorithms being surveyed through this review, an overview of these methods will be 

provided.  

1.3.1. Cross-Validation 

ML centers on the development of algorithms that improve in the performance of a given 

task with experience.22 Experience, in terms of scientific research, is synonymous with 

acquiring experimental or computational data. A collection of inputs, sometimes termed features 

or descriptors, is utilized to improve the prediction accuracy through ML, and to establish a 
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relation between inputs and outputs, a direct relation in the form of a regression can be predicted. 

There are numerous variations of regression methods used in ML, and each attempt to achieve 

the same goal: establishing an accurate model of the response surface for a complex system on 

test data. To establish a best-fit to unseen (test) data, regression models have their parameters 

learned on training data through a process called cross-validation as shown in Figure 1.3.  

 

Figure 1.3. (a) The first step of cross-validation is to partition the complete dataset into both 
a training set in which parameters will be optimized against and a validation set in which error 
between experimental data and predicted regression is compared. (b) This shows an example 
of a k-fold cross-validation where the training set is split into training and test folds. Each 
subset of the sample is treated as a test fold through one of the iterations and an optimum 
parameter is chosen which minimizes the test error. (c) The parameter chosen falls in between 
a regime of underfitting and overfitting, where underfitting only exhibits small correlation to 
the dataset and overfitting minimizes the training error but begins to show an increase in test 
error. This optimized parameter would provide the most accurate fit to the validation set. 
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However, validity of the model is not assessed until it is applied to new data, and this 

also requires that it has an appropriate level of complexity. As illustrated in Figure 1.3, while 

training error decreases monotonically with model complexity, the accuracy of predictions on 

test data reaches a minimum at intermediate complexity – overly simple models do not predict 

training or test data, but overly complex models are only valid on training data. Data-driven 

approaches require both the optimization of model parameters and model complexity. These 

basic criteria also hold true when domain knowledge is incorporated. 

1.3.2. Linear Regression 

Ordinary linear regression is a well-known statistical technique that fits a linear model 

to a dataset. A common approach to optimizing the fit of data to a linear regression is through 

minimizing the sum of squared residuals, or the sum of squared distance between a datapoint 

and the best-fit line. These linear least-squares regressions have a trivial solution for the β 

coefficients where the equation for a line is:  

 𝑌 = 𝑋𝛽 Eq. 1.1 

and where the β coefficients corresponding to a minimized sum of squared residuals are: 

 𝛽 =  𝑎𝑟𝑔𝑚𝑖𝑛 ‖𝑌 − 𝑋𝛽‖2
2

  Eq. 1.2 

The trivial solution to β is: 

 𝛽 =  (𝑋 𝑋) 𝑋′𝑌 Eq. 1.3 

Linear regressions can also be regularized and include additional parameters which are optimized 

through cross-validation. The least absolute shrinkage and selection operator (Lasso) was 

originally developed in 1996 by Tibshirani.33 Similar to ordinary linear regression, Lasso finds the 
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minimized sum of squared residuals with an additional penalty term penalizing the L1-norm, or 

sum of the absolute value of β coefficients: 

 𝛽 =  𝑎𝑟𝑔𝑚𝑖𝑛 ‖𝑌 − 𝑋𝛽‖2
2

+  𝜆‖𝛽‖  Eq. 1.4 

The lambda parameter is learned through cross-validation and the value assigned to predicting the 

lowest test error is selected. At this point, non-important features have their β coefficients reduced 

to zero and are eliminated from the calculated equation. If the penalty term in Lasso is set to zero, 

the regression is reduced to an ordinary linear regression where all β coefficients contribute to the 

final calculated equation. 

1.3.3. Neural Networks 

Neural networks, a robust form of ML sometimes referred to as deep learning networks, 

are algorithms used for pattern recognition and regression.34 These networks are composed of 

multiple layers of neurons: an input layer, hidden layer(s), and an output layer. The output of 

each neuron is passed to those in the next layer with an associated weight. The hidden layers 

and output layer also contain associated activation functions that are tuned while learning 

relationships between the input and the output using the training data. Activation functions can 

either be linear or nonlinear, with a common nonlinear choice being a sigmoid function. After 

the initial input is forward-processed through the network, the output is compared to the target 

(correct) output value, and the associated error is calculated between the target value and output 

value from the neural network. A methodology known as backpropagation is then applied to 

minimize the error, updating the weights between neurons. Through these updates, the error is 

minimized to an optimal value determining the best-fit curve to the data. By increasing the 

number of neurons and activation-function complexity in the network, the complexity of the 
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regression increases. Figure 1.4 provides a schematic of a two-layer network (perceptron) and 

a representation of a higher complexity network. 

 

Figure 1.4. (a) A simple neural network is known as a perceptron. This perceptron is made 
up of an input layer connected to an output layer through a linear activation function. A 
method of backpropagation, stochastic gradient descent, is shown where α is the learning rate 
hyperparameter, which controls how fast the weights are updated with the associated error 
through every iteration. The perceptron shown is the same as performing ordinary linear 
regression. (b) This shows a more complex network with an included hidden layer. This 
hidden layer takes inputs and feeds them into an activation function before predicting an 
output. 

1.3.4. Random Forest 

Random forests are made up of an ensemble of decision trees, and for regression 

purposes, the output of all these trees has an average taken to produce a singular best-fit 

regression for the entire collection of trees. Each tree is split utilizing bootstrapping, a technique 

of resampling the dataset many times, with replacement, to test on each tree.35 Each bootstrap 

tree is split on the collection of all features utilizing a random subset of the features with 

replacement for every split. The special case where the random subset of features is equal to the 

total number of features is known as bagging.36 A recursive binary process of splitting, where 

the feature to split on is determined through splitting on the feature which maximizes the 
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reduction in some metric such as the sum of squared errors, is continued at each node either 

until reaching a user-specified end or until complete separation has occurred.37 To control 

overfitting, the maximum depth of the trees along with post-processing methods, such as 

pruning, can be utilized. The number of trees can also be controlled and is typically enough 

when the prediction made by the forest is approximately equal to the prediction of a subset of 

the forest.38 Regression trees work through recursive partitioning and therefore an exact function 

cannot be fit to the model. The predictions to the regression are determined the ensemble 

averaging of each tree in a random forest as shown in Figure 1.5. 

 

Figure 1.5. A collection of n decision trees is created according to bootstrap and bagging 
techniques. The yellow path in each tree corresponds to the same predicted output. The 
ensemble average of these collected outputs corresponds to the final prediction as produced 
from a random forest regression. 
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1.3.5. Bayesian Probability and Gaussian Processes 

A Gaussian process (GP) is based on the concept of including a Bayesian probabilistic 

approach. Bayesian probability determines the posterior probability of an event based on the 

probabilities of the factors constituting the event – prior probabilities and likelihood of these 

occurring as shown in Figure 1.6. 

 

Figure 1.6. Bayes’ theorem states that the posterior probability of a hypothesis occurring 
given data can be calculated through the prior probability a hypothesis is true before collecting 
data, the likelihood that the data are collected given that the hypothesis is true, and the 
probability of collecting that data under all possible hypothesis.   

The posterior probability is updated as part of the GP resulting in a regression with error 

terms represented across the range of the regression. While regression and neural networks are 

parametric approaches, in that the shape of the curve being fit to the data is defined, GP is a 

non-parametric approach, meaning that the best shape and the best fit curve are both learned 

through the regression process.39 As a GP is a Bayesian approach, the entire process is defined 

by a mean and covariance function. While a Gaussian distribution is defined over a set of 

vectors, a GP is defined over a set of functions, that is: 

 𝑓~𝐺𝑃(𝜇, ∑) Eq. 1.5 
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where the optimized function, f, is distributed as a GP across the mean function μ and the 

covariance function ∑. Multiple covariance functions can be utilized, but the chosen function is a 

method of relating similarity. Covariance provides insights into how related two variables are 

through utilizing varying similarity metrics such as linear, squared exponential, periodic, or any 

combination of covariance functions, the covariance function learns similarity through 

mathematically representing assumptions about the function being learned.40 Utilizing the prior 

mean and covariance, an infinite number of possible functions is introduced to the feature space 

of the data. As data are introduced to the GP, the mean and covariance are updated at that point 

with the associated covariance function defining the error in areas without training data introduced, 

that is: 

 𝑓
𝑓∗

~𝑁
𝜇
𝜇∗

,
∑ ∑∗

∑∗ ∑∗∗
 

Eq. 1.6 

Where a joint distribution is created between the function fitting the training data, f, and the 

function fitting the test data, 𝑓∗, across the normal distribution across these functions. As the 

training function f is known, the conditional distribution, (𝑓∗|𝑓), can be updated to solve for the 

new mean and error in the updated function.39 Upon cross-validation, optimized parameters in the 

covariance function are selected defining the smoothness of the function and error between the 

training points. 

1.4. Applications to Material Systems 

1.4.1. Embedding Physicochemical Properties 

In predictive models of molecular materials, quantum chemical (QC) parameters have 

been used to solve chemical Hamiltonians41,   learn force field parameters42, represent crystal 
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structures43, and predict heats of formation44. Embedding physical knowledge with QC inputs 

improves predictive capabilities of ML algorithms and accelerates calculations45, but these 

calculations add computationally intensive steps in ML analysis. However, more accurate 

descriptors can enable the use of simpler ML tools and smaller datasets.   

The two important ML methodologies utilized in this paper were linear regression and 

artificial neural networks (ANNs), which both permit embedding of physicochemical properties 

to improve predictive capabilities. Linear regression is considered to be a simpler formalism, 

but its performance can rival that of the more complex ANNs when provided with a more 

accurate feature set. QC calculations46,47, such as electronic charge distribution, dipoles, 

vibrational frequencies, and reactivity, have been used to increase the accuracy of predictions 

on ionic liquids. Mehrkesh and Karunanithi48 utilized QC-predicted descriptors of the 

symmetrical value, which describes packing density between anions and cations, as well as the 

distance between anions and cations, anion volume and surface area, and the dielectric energies 

of anion and cation liquids along with the temperature as a system condition. Each of these 

properties relates to important factors that impact the mobility of ions within a complex ionic 

liquid. Values of viscosity were aggregated from 20 sources for a total of 131 data points, where 

48 were used to train and the rest were utilized as a validation set. In this work, multivariate 

linear regression was implemented to establish the best fit to the data.  

The predicted equation for predicting ionic liquid viscosity was: 

 ln(𝜂) = 16.5𝜎 + 2.2𝑅 + 0.01𝑉𝑜𝑙 − .03𝐴𝑟𝑒𝑎  
−0.03𝑇 − 15.8𝐷𝑖 − 48.1𝐷𝑖 − 15 

Eq. 1.7 
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Where η is the ionic liquid viscosity, σ is the symmetrical value, Rt is the distance between anions 

and cations, VolA is the anion volume, AreaA is the anion surface area, T is the temperature, and Di 

is the dielectric energy for both the anion and cation. An average relative error comparing to the 

validation set was found to be 7.40%. These results were found to decrease error from 18.0% on 

the same group of tested compounds that were considered from purely thermodynamic 

considerations.49  

Using more complex ANNs, Fatehi et al.50 utilized data purely from chemical structures 

using the features of molecular weight and structural information along with the pressure and 

temperature as inputs to a neural network to predict the viscosity of ionic liquids without QC 

features. Experimental data were aggregated from 28 sources encompassing 736 individual 

datapoints over a range of experimental conditions. An ANN was utilized to relate the model 

weights and structural features to the viscosity for six families of ionic liquids.  For the ionic 

liquid system, 44 combinations of neural networks with a varying number of hidden neurons 

and activation functions were tested. The most accurate neural network was selected, having an 

average error of 1.31% on the validation set, which was 10% of the original data withheld.  

In comparing different approaches to modeling the same system, Kalidindi and De 

Graef51 have discussed the need for standardization and for data-driven protocols for the 

transferability of system models, which is the capability of learning on one system and applying 

the learned model to a separate system.  Fatehi et al. and Mehrkesh et al. utilized datasets of 

different types. While Fatehi et al. utilized a larger dataset and a robust ANN, the QC embedded 

system from Mehrkesh et al. worked on a smaller set of training data only utilizing a linear 

regression. Despite this, it was found that the linear regression model, embedding QC features, 
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fit the data well and was able to extrapolate among multiple types of ionic liquid systems. Still, 

no testing on a standardized dataset for comparison was performed. Creating methods that allow 

for the comparison of the same systems or allow for transferability between systems is a 

necessary step forward. A recent approach to resolve this issue has utilized statistical methods 

to determine the best points to collect data, so that small data can be utilized for valuable 

analysis.12  Through embedding physicochemical properties, linear regression on a small dataset 

was able to predict ionic liquid viscosity with low validation error, establishing that ML can 

effectively embed physical features as inputs.  

1.4.2. Embedding Similarity  

Similarity is a measure of how well common features will relate to a common output. 

For example, comparing similar sequences found in the protein database with the sequences of 

a protein of unknown structure has allowed for the improved prediction of secondary protein 

structures.52 Similarity can be embedded within ML frameworks through the use of a metric, 

and some common metrics utilized to determine similarity include distance metrics such as 

Euclidean or Manhattan distance or through cosine similarity. Choosing the appropriate metric 

to properly model the system being studied also requires expert knowledge to effectively embed 

the physical properties of the system being studied.  

Similarity at a molecular scale operates under the assumption that the more similar 

molecules are, the closer their structure-property relation is.53 Hansen solubility is one such 

property based on underlying assumptions of similarity, and both traditional and QC-embedded 

ML approaches have been utilized in the prediction of Hansen solubility. Hansen Solubility 

Parameters (HSPs) are an extension of the Hildebrand solubility parameter, which define the 



18 

 

intermolecular attraction between molecules as the square root of the cohesive energy density.54 

The more similar the parameters are the higher the likelihood of compounds being soluble, an 

extension of the “like dissolves like” definition of solubility. To better predict the solubility of 

compounds, Hansen split the Hildebrand parameter into three metrics: the dispersion parameter 

δd, the polar parameter δp, and the hydrogen-bonding parameter δh where the sum of these three 

parameters is equal to the Hildebrand parameter.55 Hansen empirically fit a model where the 

solubility of a system can be determined through a similarity metric, the relative energy 

difference (RED): 

 
𝑅𝐸𝐷 =

𝑅

𝑅
 ; 𝑅 = 4𝛿 + 𝛿 + 𝛿  

Eq. 1.8 

If RED is <1 then the substances are considered to be miscible, and at >1 they are insoluble. Hansen 

solubility is widely utilized during the design of new drugs and other material formulations along 

with predictions for the χ parameter in Flory-Huggins polymer solution theory.56 Various statistical 

approaches have been utilized in predicting Hansen solubility. Much the same as viscosity, one 

such approach utilizes the concepts of group contribution methods and chemical structure.57,58 In 

a recent study, Sanchez-Lengeling et al.15, embedded physical knowledge through the algorithm 

in the prediction of HSP. The model features included direct inputs through chemical structure in 

terms of chemical fingerprints, and QC determined data including charge density, electrostatic 

quantities, and molecular shape and size information. Domain knowledge was embedded into the 

system in knowing that HSP values are based on similarity metrics. To embed this concept into 

the model, structural, charge density, electrostatics, and molecular shape information were each 

placed into their own respective vectors. Euclidean distances were then determined as a measure 

of similarity through the use of the sum of four- squared exponential covariance function for each 
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of the four vectors utilizing a GP regression. GPs are a useful method of ML and have the added 

advantage of including rigorous uncertainty estimates for the predictions.59 In most ML 

algorithms, error analysis is commonly based on calculating the mean squared error of how well 

the trained regression fits the validation set. Within GP, error analysis is achieved through applying 

uncertainty to the predicted regression surface itself. Considering that most scientific relations are 

assumed to follow normal distributions, this creates an automatic connection with standard 

research practices. 

It was found that through embedding similarity through use of a squared exponential 

covariance function to model similarity between molecular properties, the GP model utilized by 

Sanchez-Lengeling et al. was able to predict the Hansen parameters. The model found a R2 of 

0.70, an average accuracy of 80%, and an average modeling error of 2.58 MPa0.5 between 

predicted and actual Hansen values. In terms of determining a RED ratio, this is a model capable 

of many correct predictions. The GP was compared to other ML methods in this paper such as 

Kernel Ridge, Lasso, and a Regularized Greedy Forest. The GP technique that embedded the 

similarity metric outperformed all of these techniques in the prediction of each of the solubility 

parameters. This technique illustrates that even inclusion of expected correlative relations, in 

this case similarity between inputs, can be utilized in a model.  

A second example within materials science which utilizes similarity to improve ML 

results is predictions made on cluster expansions. Cluster expansions are widely used for the 

prediction of material properties which display substitutional disorder, such as crystals. 

However, when studying low symmetry systems such as nanoparticles, the computational cost 

involved in density functional theory (DFT) calculations, which need to consider many-body 
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interactions, have limited capability in quickly predicting properties of the material. This has 

led to the importance of developing ML algorithms which can accurately measure cluster 

expansions for various materials on small datasets.60  

Mueller and Ceder applied a Bayesian method to cluster expansions in order to embed 

physics.61 The coefficients for the cluster expansion are known as effective cluster interactions 

(ECIs). The aim of cluster expansion techniques is to predict the appropriate ECI values that 

best reproduce the property value. The authors utilized a Bayesian approach to apply a priori 

belief on the nature of the ECIs. Three separate conditions were embedded into algorithm: 

1. Property predictions should be close to that predicted by a simple model. 

2. The greater number of sites in a cluster and the greater distance between sites should 

lead to a smaller ECI. 

3. ECIs for similar clusters should be similar values. 

To satisfy the first condition, the prior means of the ECIs are set to zero. The second 

condition is satisfied through the use of a Gaussian distribution to model the ECIs with a 

variance assigned as a decreasing function of the number of sites in a cluster and distance 

between clusters. Finally, the third condition is satisfied through the use of a second prior 

distribution where the variance is the function of similarity between clusters, where the more 

similar the clusters are the closer the predicted ECIs. The above three conditions were applied 

utilizing Bayes’ theorem to derive a maximum likelihood estimate for the ECIs. Various 

functions were utilized as a representation for updating the variance. 

Ten thousand cluster expansions of 201-atom cuboctahedral Ag-Au nanoparticles were 

created for testing. It was found that the best results on test data were still obtained utilizing the 
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largest set of candidate clusters and training set size. However, in the absence of these large 

datasets (as could be the case for complex nanomaterials with computational limits to DFT 

calculations) the best regularization functions embedding similarity performed half to two times 

better while only utilizing half the training data compared to cluster expansions where similarity 

is ignored. The use of physically meaningful prior distributions successfully limited the size of 

data needed for effective modeling. 

1.4.3. Embedding System Properties 

Physical systems operate under a set of laws that govern their responses, and these laws 

remain true for any physical system. Data representation, a form of converting raw data into 

suitable features, becomes an essential component to quickly and accurately utilize ML.62  As 

opposed to being learned through data-driven approaches, embedding these system properties 

into ML has been shown to improve results on smaller material datasets. Stress-strain 

relationships are an essential part of understanding material deformation. In solid mechanics, 

one such field studied is crystal elasticity. Utilizing molecular dynamics (MD), stress-strain 

relations of crystal deformation can be predicted with high precision,63 and the Cauchy-Born 

model establishes a relation between atomic pair potentials and continuum models for elastic 

deformation in crystals.64 Ling et al.63 utilized high-throughput MD analysis of 15,000 data 

points to perform ML analysis in determining crystal deformations under applied loads. All 

simulations were performed on a nickel crystal at 0 K, and the results predicted agreement with 

the Cauchy-Born rule for homogenous deformations on a perfect crystal. Under these 

assumptions, the system can be treated as having invariant properties.  For crystal deformations, 

invariant properties imply that the system does not change upon rotation around the tensile stress 
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axis, only stretching. The strain energy function, W, is the function of the deformation gradient, 

F, which is a nine-component tensor composed of the derivatives of atomic positions in a 

material to their reference positions. The strain energy function can be differentiated with 

respect to F in order to determine the strain, and the goal of this ML regression was an attempt 

to discover the function W, relating material deformation to strain. 

Two separate approaches were explored in this work: a traditional one based on 

statistical inference and a physically embedded approach. Knowing that invariance properties 

are essential to the behavior of the system, both approaches built assumptions of invariance into 

the training set, already demonstrating the importance of expert knowledge applied to material 

systems.  The traditional ML approach artificially increased the number of training examples 

through manually transforming a system’s rigid body or cubic rotations; this will not change the 

output of the model--as rigid body and cubic rotations are invariant properties--but  the artificial 

rotations allow the model to learn on more examples to recognize the invariance through 

training. For this procedure, the nine components of F were utilized as inputs. This deformation 

technique of artificial rotations has been utilized in prior ML algorithms in order to recognize 

hand-written images.65 The artificial deformation is introduced through  the nine components of 

F as features multiple times from multiple angular orientations of the same structure. This allows 

the algorithm to learn invariance properties on its own. The hierarchical approach utilized a 

symmetry basis set of six invariant relationships, based on the two invariance properties of W 

for a cubic crystal. Kambouchev et al.66 determined the six basis set equations which fully define 

the invariance of rigid body rotations and other rotations and inversions based on the cubic 

symmetry group. Ling et al. utilized these equations to embed the invariance properties of F 
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into the model in order to learn W from a causal, physics-based relationship as opposed to 

artificial deformation of the data. These six invariant properties were utilized as inputs into the 

ML algorithms.  

To assess the effectiveness of embedded similarity, two ML algorithms were utilized for 

regression: neural networks and random forests. Both the neural network and random forest 

models were trained to find the strain energy function, W, by utilizing the nine components of 

F or the six-component invariant vector as inputs and the stress as the output.  After testing both 

types of invariance, the approach embedding rigid body and cubic invariance was shown to have 

lower validation error than any of the traditional ML approaches for 2D and 3D transformations. 

Training on embedded domain knowledge arrives at an error <3% compared to MD simulation. 

Ordinary linear regression of the physics embedded data itself only performed 7% worse than 

the next most accurate neural network model trained with traditional techniques. Another issue 

that became apparent was the extremely large data size of random forests trained with the 

traditional approach, which was large enough that it could not be trained on 3D transformation 

data. It also had a significant impact on the training times for both random forests and neural 

networks with a traditional method trial time of 434 hours in the neural network as opposed to 

0.6 hours in the invariant neural network. Embedding system properties was thus shown to 

improve training time and reduce error as compared to purely data-driven learning. 

Although not strictly a material property, it is important to mention that the same authors 

and others also looked at turbulence modeling. Similar procedures were followed as to 

predicting strain in materials. A basis of invariants was modeled under physical assumptions 

that certain changes in orientation do not affect Reynolds stress anisotropy.  One approximate 
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method of calculating Reynolds stress is through the Reynolds-averaged Navier Stokes 

(RANS).67 Recent research has focused on improving RANS measurements through the 

incorporation of ML techniques by including what is called physics-informed ML (PIML) and 

has shown success compared to traditional techniques.68,69  

1.4.4. Embedding Physical Equations 

The methods reviewed up to this point have looked at QC properties that can be obtained 

in a high-throughput approach and in embedded invariance properties, which are well defined 

to a system.  For systems with physicochemical relations that are not well defined, selections of 

appropriate descriptors allow for causality to be discovered. Ghiringhelli et al. applied this 

principle towards discovering physical causality through the use of a feature selection for 

predicting energy differences in semiconductors.70  This was performed through the utilization 

of Lasso.  

Due to the L1 penalty term, Lasso has the benefit of providing a natural method of feature 

selection as non-important features are suppressed to zero. Lasso performed as well as more 

advanced ML techniques in predicting the same energy differences in semiconductors with 

fewer descriptors.70 The benefit of feature selection in materials allows for easy optimization of 

the discovered equation and a possibility to reduce tests to only those necessary for successful 

ML to be performed on a system.  

A combination of the prior reviewed approaches for embedding domain knowledge into 

systems has led to another ML approach, hierarchical machine learning (HML). Unlike PIML, 

HML incorporates physical domain knowledge through utilizing equations to predict the 

physical interactions that determine the properties or responses of a complex material system. 
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True for all methods of embedding domain knowledge, the appropriate selection of physical 

interactions driving a system must at least include the essential descriptors behind any 

experiment. HML is a methodology that has been successfully implemented to extremely small 

datasets with the appropriate descriptor selections. The first implementation of HML, as 

described by Menon et al.,71 embedded domain knowledge into polymer dispersants to probe 

their effect in a cement based system. Magnesium oxide is a popular non-setting model of 

portland cement and dispersant design was the first system modeled using HML.72 The generic 

model of an HML system is shown in Figure 1.7.  

 

Figure 1.7. Akin to the hierarchical approach shown in Figure 1.2, HML parameterizes a 
complex system in terms of either system structure or formulation. A bottom layer of observed 
features is directly measured. This bottom layer is related to the middle layer through 
embedding domain knowledge into the system through physical equations. This bottom to 
middle layer allows for the embedding of system physics without it having to be learned in a 
blackbox approach. The middle layer is utilized as inputs into the statistical learning 
techniques, such as Lasso, with cross-terms included so that multi-physics interactions are 
accounted for. After learning, an equation based on physical interactions utilizing ML the 
upward movement is complete. The predicted equation can be reparametrized in terms of the 
initial material structure or formulation on the bottom layer and optimized, as shown by the 
downward arrow. 
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A polymer dispersant used in cement systems is known as a superplasticizer. 

Superplasticizers are utilized to reduce yield stress without an increase in water addition, which 

reduces strength.73 Individual measurements of adsorption (θ), zeta potential (ζ), sedimentation 

experiments (s), intrinsic viscosity (η), and the osmotic second virial, A2, were performed. Each 

of these individual measurements was related to the associated force through physical equations, 

which define how superplasticizers reduce yield stress within cementitious systems. For 

example, an increase in viscous force was assumed to vary linearly with free polymer 

concentration (co) so that:  

 𝜂 = 𝑐 (1 − θ)[𝜂 (�⃑�)] Eq. 1.9 

Where [𝜂 (�⃑�)] is parameterized in terms of polymer structure.  

A library of 10 polymers was utilized for the training set. Each polymer was 

parameterized in terms of their chemical group composition. Upon representing each polymer 

in terms of their respective force interactions through connecting the bottom to middle layer, an 

input of these interactions along with their squared and cross-terms was included in order to 

increase the system dimensionality and incorporate multi-physics interactions into the 

hypothesis-space of the material. The selected regression technique utilized was a regularized 

linear regression, Lasso.  

Lasso has the added benefit of a natural form of feature selection in order to reduce the 

final predicted regression to a line of only the physical interactions most contributing towards 

dispersibility effects. The regression resulted in Eq. 1.10 for the change in yield stress ∆𝜏: 
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 ∆𝜏 = −0.26𝜁 + 1.93𝜂 + 0.13𝜋 − 
1.00 𝜂𝜋 + 1.40𝜂𝑠 + 0.03𝜋𝜁 

Eq. 1.10 

After solving for the regression, optimization was performed in order to parameterize chemical 

composition in terms of superplasticizer structure. The optimized polymer structure was found to 

correspond with a novel polymer, a polycarboxylate-grafted lignosulfonate. The synthesized 

polymer approached reductions in yield stress similar to those of the leading class of 

superplasticizers, polycarboxylate ethers, showing that embedded physical equations within ML 

are capable of learning fits and optimizing systems.  

1.5. Overviews and Conclusions 

Early ML approaches in cement research came through the utilization of artificial neural 

networks (ANNs). In 1998, Yeh74 utilized an ANN on a collection of 1030 concrete samples 

from 17 data sources. Utilizing the compositional proportions of cement, SCMs, aggregate, 

water, age, and admixture, they were able to reproduce results with a R2 slightly higher than 

0.90 on both training and test sets. These models outperformed traditional regression analysis. 

Numerous ML algorithms have since been applied to this published dataset comparing how well 

their algorithm can predict compressive strength.75  

In 2001, Haj-Ali et. al76 utilized an ANN to predict sulfate-induced concrete expansion as 

a function of water to cement ratio (w/c), cement C3A content, and time. While improving on 

the predictions produced by analytical equations, despite having over 8000 datapoints from 51 

different mixtures, the ANN was as much as 0.3% in the predicted expansion percentage on the 

test set. Although a solution to improve ML algorithms is to increases the size of data, these 

samples take over 40 years to complete making iterative testing impractical.  
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The commonality of prior ML techniques for cement-based materials is that the inputs are 

all based on the compositional space of the cement-based materials. Training on the 

compositional space causes lack in both interpretability and generalizability of the model. For 

example, while training on the Yeh dataset, Dutta et. al77 found gaussian process regression 

(GPR) along with two other probabilistic ML models had a R2 on the test sets of 0.95. Upon 

performing a sensitivity analysis was also performed indicating that ‘cement content’ was the 

most important factor in determining cement compressive strength. This, however, provides no 

microstructural or chemical insight into the development of cement strength.  

Also, with the disparity of source materials, cement composition, and processing 

conditions there are limitations on the ability to generalize a model trained with specific source 

materials to a disparate dataset of new materials. Young et. al78 trained multiple models on the 

Yeh dataset, finding typical results as other research with a R2 around 0.85 on the validation set. 

However, they also trained on a dataset consisting of 9994 datapoints of various compressive 

strengths from job-site mixtures across the United States. Despite having ten times as many 

datapoints as the Yeh dataset, the best performing model was only able to achieve an R2 of 0.60. 

Similarly, Chou et. al trained on five compressive-strength datasets from various nations around 

the world. Utilizing various ensemble methodologies to find the best performing ML algorithms, 

each dataset was found to have a different ML model minimizing the error in prediction. This 

exemplifies the lack of generalizability in current ML models for cement-based systems. For 

generating new understanding that improves the design, utilization, and performance of cement-

based systems, models which account for the disparity in source materials and processing 

conditions must be developed. 
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While ML can successfully model datasets easily available which consist of over 10,000’s 

of unique samples, smaller datasets require embedded domain knowledge to improve ML 

modeling.79 Although many ML models for cement-based materials have developed and trialed 

new algorithms for property prediction, one of the most important factors in developing a 

successful ML algorithm is domain-specific feature engineering which has been lacking in the 

study of these materials.80 

For further examples of domain-specific feature engineering, Bone et. al81 utilized HML 

to physically relate ink concentration and print parameters to viscosity, shear rate, and 

proportionality in a model to predict and optimize print fidelity in 3D printed biopolymers. 

Similarly, Menon et. al82 predicted the young’s modulus of polyurethanes through relating the 

molecular composition to a middle layer of physicochemical properties utilizing stochastic 

simulation and molecular modeling. Finally, cheminformatics approaches can be utilized as a 

chemistry-specific methodology to relate molecular structure to function. Cheminformatics 

approaches have been utilized for such tasks as predicting the glassy transition temperature of 

polymers,83,84 drug discovery,85 and improving quantum mechanical calculations for 

molecules.86 These methodologies are developed for cement-based materials throughout this 

thesis. 

In Chapter 2 an analysis of the working mechanisms of an optimized polycarboxylate-

grafted lignosulfonate polymer is discussed and compared to the predictions of the 

physicochemical forces discovered as the working mechanisms of cement dispersion through 

the Lasso equation. An overview of cementitious systems is also introduced in order to provide 

for an understanding into cement rheology and hydration for the development of machine 
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learning techniques through the rest of the thesis. Chapter 3 utilizes HML to model rheology in 

a Metakaolin (MK) modified cementitious system. MK is a calcined clay additive for improved 

cement strength. However, MK decreases cement workability.87 MK-Portland Cement (MK-

PC) systems were studied to design an effective dispersant utilizing HML.88,89 A similar set of 

procedures was followed for the ML algorithm as in the MgO study and optimization followed 

on the resulting force-driven equation as predicted by Lasso. It is interesting to note that in both 

systems, an increase of viscous force, η, was an important determinant in maximizing the slump. 

Upon optimization, a novel styrene sulfonate-methacrylic acid-poly(ethylene glycol) 

methacrylate copolymer was synthesized. In line with the Lasso prediction, this optimized 

polymer resulted in having a higher intrinsic viscosity than any of the training set, yet still 

imparted high workability to MK-PC systems.  

In Chapter 4, ML is applied to develop a cheminformatics model for the virtual screening 

of molecules for use as set retarding admixtures in Calcium Sulfoaluminate (CSA) cements. 

Concepts of molecular similarity are utilized as a form of domain knowledge in order to compare 

molecular structure towards set retarding capability. The commercial compound glyphosate was 

identified through virtual screening and predicted to have a set time of 61 +/- 26 min, and 

experimentally glyphosate was found to impart a set time of 55 minutes at a cost that is 

competitive with the leading set retarder for CSA cement, citric acid. 

In Chapter 5, a HML model was developed for the design and optimization of ultra-high 

performance concrete utilizing a Bayesian uncertainty ML ensemble. Modeling was performed 

to allow generalizability to produce high strength cements from locally sourced materials. 
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In Chapter 6, a HML model was developed to represent cement composition as a latent 

middle layer which can encode any arbitrary composition from a bottom, compositional, layer. 

Cement blends were represented using latent variables of particle packing, water film thickness 

in both the prediction of workability and strength, while various parameters encoding particle-

particle and pore solution forces for superplasticizers in the workability model. A random forest 

model was utilized in the prediction of workability, while gaussian process was found to provide 

accurate predictions of strength. Analysis of the effect of compositional variables was modeled 

through the gaussian process regression giving a posterior probability distribution for all 

predictions. Finally, these were combined with a linear model capturing the CO2 release for all 

compositional variables. A genetic algorithm was used to identify a Pareto front corresponding 

to the points of maximum strength and workability, with minimized CO2. These blends were 

reproduced and tested, showing the models ability to predict blends with 50% less CO2 

emissions as compared to ordinary cement, with set workability and strength requirements. 

In the utilization of ML for science, physical theories can be utilized to improve models 

in conjunction with data as opposed to being relearned through only the incorporation of data. 

ML approaches for physical systems have quickly developed to incorporate scientific fields. 

Starting with purely statistical analysis of raw data, techniques have progressed over time to 

include expert knowledge, incorporate physical parameters as features, incorporate metrics of 

correlation between data, discover physical laws which model simple systems, and now 

approach a level as to embed multiple physical laws to predict outputs from complex systems. 

The guiding hypothesis behind this thesis’ research is displayed in Figure 1.8, where through 
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the utilization of domain knowledge, small datasets can be effectively modeled and transferred 

via the utilization of this parameterization.  

 

Figure 1.8. The goal of modeling a complex system is to predict the best relation possible. 
Knowing the physical laws of the system and interactions between the features allows an 
analytical model to be proposed based on physics alone, as shown on the horizontal axis. 
Statistics can also allow for the prediction of a good model if sufficient data are collected as 
is shown on the vertical axis. For many complex systems, neither of these is achievable. By 
having a combination of both physical and statistical modeling, a good model is able to be 
predicted and illustrates the importance of embedding physical knowledge into a system. 

With complex materials being expensive, time-intensive systems on which to test, 

methods to improve the cost-effectiveness and reduce the time to find an optimized system are 

essential. Deploying these hybrid physical-statistical approaches, more accurate modeling and 

relationships can be extrapolated and understood using domain knowledge embedded machine 

learning. 
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Chapter 2. Interplay of Anionic Functionality in Polymer-grafted Lignin Superplasticizers 
for Portland Cement 1 

2.1. Introduction to Cement and Admixtures 

Concrete is the most widely used construction material in the world today,1 with over 25 billion 

metric tons used each year.2 As the world’s infrastructure continues to expand, the demand for 

concrete will also increase showing an over 10-fold growth in consumption over the previous 70 

years.3  

Most concrete is composed as a mixture of aggregate, sand, and Portland cement (PC). 

Production of PC now accounts for approximately 5% of global CO2 production due to energy-

intensive processing and the release of CO2 during limestone calcination.4 In order to reduce the 

carbon footprint of this ubiquitous infrastructure material without compromising performance, it 

has been proposed that concrete increasingly incorporate alternative binder chemistries (ABC), 

supplementary cementitious materials (SCMs), and also improve cement and cement admixtures 

to increase specialization and decrease environmental effects. PC is a complex mixture of 

inorganic materials- the major components, abbreviated in cement-chemist notation (Table 2.1), 

being tricalcium silicate (C3S), dicalcium silicate (C2S), tricalcium aluminate (C3A), and 

tetracalcium alumino ferrite (C4AF).5 Following hydration, a complex set of reactions occur 

between the water and mineral species. These dissolution and remineralization reactions allow 

nucleation and growth processes resulting in strong hydration products.1,5,6 A critical parameter in 

hydraulic cement is the water: cement (w/c) ratio.  

 
1 This chapter includes work that was published and reformatted:  

Childs, C. M., Perkins, K. M., Menon, A. & Washburn, N. R. Interplay of Anionic 
Functionality in Polymer-Grafted Lignin Superplasticizers for Portland Cement. Ind. Eng. 
Chem. Res. 58, 19760–19766 (2019). 
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Table 2.1. Cement Chemist Notation (CCN) 

CCN Actual Formula 

C CaO 

S SiO2 

A Al2O3 

F Fe2O3 

 S SO3 

H H2O 

Following the addition of water, the mineral constituents of PC shed a diversity of ionic 

species, including calcium, sodium, potassium, silicate, aluminate, and hydroxide ions, resulting 

in a complex mosaic of charged multi-phase mineral particles.7 Despite the charge density of the 

particles, the strong ionic environment of the pore solution, with a pH of at least 12.4 and an ionic 

strength of 250 mM, screens interparticle coulomb forces, and London forces drive aggregation,8 

which results in the development of a high yield stress in cement pastes and concrete that reduces 

the workability, for a given water-to-cement ratio. Water-reducing admixtures are a diverse class 

of polymer dispersants, specified under ASTM C494, used in cement–based materials to improve 

workability (i.e., exhibiting fluidity and cohesion) without additions of water. ‘Superplasticizers’ 

are a subset of these, designed to significantly improve workability while maintaining water 

content or to reduce water content by larger amounts, up to 12-30%, while maintaining 

workability. Superplasticizers are a diverse class of polymer dispersant that are used to improve 

the workability of cement paste while reducing water requirements. These are based on anionic 

polymers, such as lignosulfonate or polynaphthalene sulfonate, but the most effective 

superplasticizers are polycarboxylate ether (PCE)- copolymers based on methacrylic acid (MAA) 

and poly (ethylene glycol) methacrylate (PEGMA). The main variables tuned in their composition 

are the MAA:PEGMA ratio and the length of the pendant PEG chain. Current understanding into 
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their mechanism of action postulates that the carboxylate functional groups mediate adsorption 

onto cement particle surfaces while pendant PEG groups reduce particle coagulation and network 

formation via steric interactions.9  

The global scale of cement production makes these admixtures a widely used class of 

material. However, PCE superplasticizers are currently synthesized from petroleum-based 

feedstocks. Developing strategies to augment the performance of plant-derived lignin dispersants 

would be an important applicant of renewable materials. Currently there are two main classes of 

purified lignin feedstock: lignosulfonate (LS) and kraft lignin (KL). Prepared through sulfite 

pulping, lignosulfonates have high concentrations of sulfonate functional groups, making them 

only soluble in water. This characteristic makes them the most widely used lignin-based dispersant 

in cement. In contrast, the anionic functionality in kraft lignin is predominantly carboxylate groups 

and this biopolymer has not been shown to be an effective superplasticizer despite being produced 

at significantly greater quantities than lignosulfonates.  

Recently, a machine-learning algorithm was used to guide the design of a novel superplasticizer 

based on lignosulfonate grafted with a poly(methacrylic acid) (PMAA) corona, which reduced the 

yield stress of Portland cement paste to comparable levels as a commercial PCE. The algorithm 

incorporated polymer effects on solution properties (viscosity and osmolality), particle properties 

(electrostatic and electrosteric interactions), as well as coupling between solution and particle 

properties, providing a comprehensive approach to molecular design.10, 11 The representation of 

physicochemical interactions contributing to the reduction in yield stress are shown in Figure 2.1.  
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Figure 2.1. The degree of polymer adsorption, θ, onto cement particles is calculated through 
a Freundlich fit to experimental data at various polymer concentrations, Ci. The adsorbed 
polymer, where negatively charged polymer chains attract to the positively charged portion of 
cement particles, induces dispersion through both electrostatic effects, ζpol, as fit to zeta 
potential measurements and electrosteric effects, spol, as fit to sedimentation experiments. Free 
polymer induces solvent-mediated dispersing effects through both osmotic forces, πpol, as fit 
utilizing the second virial (A2) as calculated through vapor pressure osmometry measurements 
and viscous forces, ηpol, as fit to intrinsic viscosity measurements. 

Here, the effects of anionic polymer grafts with carboxylate or sulfonate functional groups 

on the dispersant function of kraft lignin and lignosulfonate were compared with PEGylated 

analogues. Following lignopolymer synthesis, changes in yield stress in cement pastes containing 

varying superplasticizers was assessed by mini-slump testing and paste viscosity measurements 

through rheometry. The mechanism of dispersion was explored by measuring adsorption onto 

cement as well as measurement of zeta potential and intrinsic viscosity. Molecular design provides 

a framework for understanding trends in superplasticizer activity as a function of lignin and graft 

chemistries.  
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2.2. Experimental Methods 

2.2.1. Materials 

Borresperse sodium lignosulfonate (effective Mn 25,000) was purchased from Borregaard 

Lignotech and Biochoice Kraft lignin (effective Mn 20,000) was obtained from Domtar 

Corporation. 3-Sulfopropyl methacrylate potassium salt (SPMA), 2,2ˊ-bipyridine (bpy), copper (I) 

bromide, ethyl 2-bromoisobutyrate (EBriB), N,N,N′,N′′,N′′-pentamethyldiethylenetriamine 

(PMDETA), trifluoroacetic acid (TFA), DOWEX 50WX8 hydrogen form, basic alumina, and 

neutral alumina were purchased from Sigma Aldrich. Tert-Butyl methacrylate (tBMA) from Sigma 

Aldrich was filtered through basic alumina prior to use. Sodium hydroxide, methylene chloride, 

and dimethylformamide were obtained from Fisher Scientific. Acetone was purchased from 

Pharmco-AAPER. ADVA 190, a commercial PCE (GCP Applied Technologies) was dialyzed and 

lyophilized to collect the pure polymer. Dialysis filtration was achieved using pre-treated dialysis 

tubing, Spectra/Por®, from Spectrum Labs. All materials were used as received from the 

manufacturer unless otherwise indicated. Cement pastes were prepared using Type I/II Saylor’s 

Portland cement in accordance with ASTM C150.12 

2.2.2. Polymer Synthesis 

Preparation of the grafted polysulfonate and polycarboxylate lignin is described below and 

the schematic for PMAA grafted lignosulfonate is shown in Figure 2.2. The synthesis of the 

PEGylated lignins was performed according to previous methods.13 Polymer NMR and GPC data 

can be found in Figure 2.10-Figure 2.16. 
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2.2.3. Synthesis of Poly (3-sulfopropyl methacrylate) 

To a flask, SPMA (3.69 g, 15 mmol), CuBr (0.043 g, 0.3 mmol), and bpy (0.23 g, 1.5 

mmol) were added and placed under an inert nitrogen atmosphere using vacuum-nitrogen cycles. 

EBriB, H2O, and dimethylformamide (DMF) were deoxygenated by purging with nitrogen for 60 

mins. H2O (5 mL) and DMF (5 mL) were then added to the reaction flask to solvate the reactants. 

EBriB (44µL, 0.3 mmol) was then added to the flask and the reaction mixture was allowed to stir 

for 3 h at room temperature. The reaction was then exposed to air and filtered through Dowex and 

neutral alumina. The filtrate was concentrated under vacuum, reconstituted into H2O, and then 

purified via dialysis for 72 h using 2 kDa tubing. The product was then concentrated under vacuum 

to yield a white solid with an estimated weight of 2300 g/mol as predicted through kinetic 

information predicted in Masci et. al.14  

2.2.3. Synthesis of Poly(methacrylic acid) 

For synthesis preparation, tBMA, EBriB, and acetone were deoxygenated by purging with 

nitrogen for 90 min. Cu(I)Br (0.059 g, 0.41 mmol) was added to the flask and placed under an inert 

nitrogen atmosphere using 3 vacuum-nitrogen cycles. tBMA (10 mL, 61.5 mmol), EBriB (120 µL, 

0.82 mmol), and acetone (2 mL) were added to the flask and allowed to stir for 10 min. PMDETA 

(86 µL, 0.41 mmol) was then added to the flask and the solution was allowed to stir for 5 h at 50 

°C. The solution was then exposed to air and diluted with acetone prior to filtration through Dowex 

and neutral alumina. The filtrate was concentrated under vacuum to yield PtBMA, a white solid 

with representative characteristics (Mn = 3880 g mol-1, polydispersity index (PDI) = 1.25). PtBMA 

was dissolved into a solution of TFA (8 mL) in DCM (20 mL) and allowed to stir for 72 h. The 

resulting solution was then concentrated under vacuum to yield a white solid.  
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2.2.4. Grafting onto Lignin 

A solution of LS (3.8 g, 0.15 mmol) and water (100 mL) was brought to pH 11 using conc. 

NaOH. The solution was then heated to 70 °C and PSPMA (2.3 g, 1 mmol) was added to the 

solution while ensuring that the pH was maintained at pH 11 by adding additional NaOH if 

necessary. The solution was allowed to stir overnight at 70 °C and was subsequently purified via 

dialysis with 8 kDa dialysis tubing over the course of 72 h. The product was then concentrated 

under vacuum to yield a brown solid.  The same procedure was used to graft PMAA chains and 

the kraft lignin derivatives, only with variations in the mass of lignin and polymer to yield the 

same mole ratio of 1 mmol of the graft reacted with 0.15 mmol lignin. 

 

Figure 2.2. Schematic showing preparation of PMAA grafted lignosulfonate. 

2.3. Polymer Characterization 

2.3.1. Adsorption Measurements 

Adsorption of the different polymers onto PC was performed by total organic carbon 

(TOC) analysis. Samples of 0.5, 1 and 5 mg ml-1 of each superplasticizer were prepared. A 

reference sample for each sample was made to compare the difference in amount of carbon before 

and after adsorption. For each different sample, the superplasticizer solution was mixed with 0.1 

g cement for 1 h. The samples were then centrifuged for 11 min at 4400 rpm. The supernatant was 



46 

 

collected, filtered through a 0.45 μm syringe filter, diluted with water, and immediately analyzed 

using a combustion-based TOC (Shimadzu TOC-L).  

2.3.2. Zeta Potential 

Zeta potential across a range of pH values from 3-11 were measured in aqueous solutions 

with a polymer concentration of 10 mg mL-1 using a Zeta-sizer Nano-ZS (Malvern Instruments) 

and a DTS1070 zeta cell (Malvern Instruments). 

2.3.3. Osmotic Pressure 

Osmolality of aqueous solutions for all lignopolymers was measured at 0.1, 0.2, and 0.4 g 

mL-1 using a vapor pressure osmometer (Wescor 5520). To differentiate the behavior of polymer 

in the pore solution of cement, the second virial coefficient of each was acquired by plotting 

osmolality values versus concentration of all the polymer solutions. The slope of this line was 

determined and multiplied by the molar volume and molality of water to obtain the A2 

coefficient.15  

2.3.4. Polymer Intrinsic Viscosity 

Due to the low solubility at higher concentrations of most of the lignopolymers, Kraemer 

and Huggins curves were not well fit to the data. Instead, a single-point determination of the 

intrinsic viscosity at a low concentration of 3.3 mg ml-1 was used. The lower concentration reduced 

polymer aggregation so that intrinsic viscosity could be determined utilizing the Solomon–Ciuta 

equation.16 An Ubbelohde Viscometer (Canon Instrument Company) was used to determine the 

relative viscosity by taking the ratio of the time to pass through the capillary of the polymer 

solution to the pure water elution time. Three trials for each polymer along with the solvent elution 

time were performed and averaged to yield the reported values.  
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2.3.5. Assessment of Workability 

To assess the workability and changes in yield stress of the cement pastes mini-slump 

testing was performed. In accordance with ASTM C 305, cement pastes were prepared at room 

temperature using a planetary mixer (Hobart) with a paddle speed of 62 rpm.17 To the mixer, 200 

g of cement and 70 mL of water were added to produce a 0.35 w/c ratio paste. Superplasticizer 

was added at a ratio of 0.25% to weight of cement. To ensure optimal effectiveness of the 

superplasticizers, a fraction of the total water volume was added and mixed for 1 min. The 

remainder of the water containing the dissolved superplasticizer was added immediately 

afterwards and mixed for another 1 min for delayed addition of water.  

Immediately after mixing, the cement pastes were added into a mini-slump cylinder (BASF, 

Construction Chemicals Division) with dimensions 3 cm in diameter and 5 cm in height. The 

cylinder was slowly lifted allowing the cement pastes to slump as shown in Figure 2.3. The change 

in height was recorded along with the spread.  

 

Figure 2.3. The image on the left exhibits a poor slump from cement with no added 
superplasticizer. The image on the right exhibits a high slump from cement at the same water 
to cement ratio (0.35 w/c), but with added commercial PCE (Adva 190) superplasticizer at 
0.25% by weight of cement. 
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2.3.6. Rheology 

Viscosity measurements of superplasticizer solutions with PC were performed. Cement 

pastes were made by mixing PC and water at a 0.5 w/c ratio with 1% w/w of cement 

superplasticizer added. The pastes were sonicated for 1 h and then immediately vibrated for 2 min 

and placed in a DHR Rheometer (TA Instruments) using a vane fixture to test viscoelastic 

properties of the paste. All samples were subjected to pre-shear of 100 s-1 to ensure they had the 

same mixing history. Then the shear rate was increased from 0 to 90 s-1 over the course of 1 min 

to obtain oscillatory strain data. 

2.4. Results 

2.4.1. Workability 

Cement paste is a complex fluid based on a mosaic of charged ceramic particles suspended 

in an aqueous medium. The pore solution has a pH of 11 and an ionic strength of order 250 mM, 

which effectively screens coulombic interactions between particles. This screening makes van der 

Waals forces dominant, driving rapid coagulation and resulting in the formation of a percolating 

network of hydrating cement particles.18,19,20 Cement paste behaves as a Herschel-Bulkley 

material,21 characterized by a yield stress and Newtonian flow post-yield.  

The yield stress is the most common metric for workability of cement paste, and slump 

tests are a widely used method for assessing this.22,23 To gauge the effects of lignopolymers on 

cement yield stress, slump was measured by examining the height difference between the top of 

the slump cylinder and cement paste. The results of the slump for the KL and LS series of 

dispersants, pure polymer grafts, and the dialyzed commercial PCE used for comparison are shown 

in Figure 2.4. 
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Figure 2.4. Slump height difference for the LS and KL-series, pure polymer grafts, and 
dialyzed PCE at 0.35 w/c ratio. 

As expected, cement paste without superplasticizer exhibited the smallest slump value. 

Interestingly, the graft chemistry had a greater effect on slump than the lignin core. While 

homopolymers of PMAA and SPMA have not been found to be effective dispersants for ceramic-

particle suspensions, it appears that synergies with lignin cores in a grafted molecular architecture 

lead to enhanced interfacial activities with PMAA being significantly more active than SPMA in 

the grafted polymer. In Table 2.4, Figure 2.17, and Figure 2.18 it is shown this same synergy does 

not occur with unreacted mixtures of the homopolymer and lignin. In comparing across the 

lignosulfonate series, LSPMAA, as predicted in prior machine learning study, had the largest 

slump of the lignosulfonates exhibiting twice the slump of LSPEG. The PMAA-grafted kraft lignin 
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also exhibited over twice the slump to any other kraft lignopolymer, but still imparted 0.7 cm less 

slump than LSPMAA. When comparing lignin cores with similar graft chemistry LS promoted 

dispersion over KL, indicating that the lignin was still active.  

2.4.2. Rheology 

Viscosity measurements of the cement pastes were conducted at higher w/c ratios and higher 

superplasticizer percentages than the slump tests to set the values in the range accessible by the 

rheometer, and the results are shown in Figure 2.5. While yield stress measurements, such as 

slump, probe network formation in colloidal materials, responses in steady-shear rheology are 

thought to be dominated by floc or aggregate formation, which are increasingly disrupted as the 

shear rate was increased. Interestingly, paste plasticized by LSPSPMA had the lowest viscosity 

across both the LS and KL series. This suggests that while LSPSPMA may not effectively inhibit 

network formation under static conditions, it may reduce cohesive forces in aggregates so that even 

small applied stresses can disrupt their formation. 

 

Figure 2.5. Viscosity of admixtures in cement pastes: (a) lignosulfonate series, (b) kraft lignin 
series. 
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There was not a direct correspondence seen between slump and viscosity, however, lower viscosity 

measurements were seen for the polymers with higher amounts of adsorbed polymer.  

For the LS series, LSPMAA and LSPEG both had adsorption plateaus at approximately 10 

mg superplasticizer per gram of cement, while adsorption of LSPSPMA continued adsorption up 

to 50 mg superplasticizer per gram of cement. Viscosity testing was performed at 20 mg 

superplasticizer per gram of cement. At this range LSPMAA and LSPEG would increase the pore 

solution viscosity, along with causing an increase in depletion flocculation, which would raise 

cement paste viscosity higher than LSPSPMA which multilayer adsorption of the polymer. A 

similar trend is seen for the kraft lignin series as well. 

2.4.3. Adsorption 

Polymer adsorption onto cement particles is known to be an important mechanism in 

inhibiting cement particle flocculation, generating electrostatic as well as electrosteric 

repulsions.20 As can be seen in Figure 2.6, the lignosulfonate series of polymers adsorb at a much 

lower amount than the kraft lignin series and while LSPEG and LSPSPMA follow Langmuir 

adsorption behavior, the kraft lignin derivatives continued to adsorb with increasing concentration. 

This is likely due in part to the aggregation of kraft lignin in high-concentration solutions where 

solubility becomes a limiting factor.24, 25 LSPEG and LSPMAA both appeared to reach a plateau 

consistent with a monolayer adsorption profile, while LSPSPMA appeared to exhibit lower 

solubility and multilayer adsorption, similar to unmodified lignosulfonate.13  
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Figure 2.6. Adsorption isotherms for: (a) lignosulfonate series, (b) kraft lignin series. 

For most superplasticizers in cement, only low concentrations in the range of 0.25 wt.% were 

needed for use as a superplasticizer. Table 2.2 shows values for percent adsorption, which reflects 

the partitioning between solution and adsorbed states. 

Table 2.2. The percentage of polymer adsorbed was determined through taking the difference 
of the amount of carbon in the reference and test samples and then dividing by the amount in 
the reference sample. Initial concentrations of 1, 5, and 10 mg ml-1 were each used and 
compared to calculate the adsorption at 0.25 wt.% of the lignin to the cement. 

Polymer LSPEG KLPEG LSPSPMA KLPSPMA LSPMAA KLPMAA 

 

Percent 
Adsorbed 

25% 85.40% 44.10% 64.10% 32% 52.80% 

 

The kraft lignin analogues adsorbed at higher amounts than the corresponding lignosulfonates, 

which is attributed to the hydrophobicity of the lignin core. However, it is interesting to note that 

PEGylated kraft lignin had the highest overall adsorption, but for the lignosulfonate series, the 

PSPMA-grafted analogue had the greatest adsorption onto cement particles while the PEGylated 

analogue had the least. This suggests the presence of specific interactions between the polymer 
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graft and the lignin core, such as binding of PEG onto the core, which has been shown to be 

important in PEGylated proteins.26 The interactions of the polymer graft with lignin, pore solution, 

and cement particles influences the adsorption profile, which also contribute to changes in the 

forces that underlie dispersion. Understanding the impact of these interactions can be assessed 

through measurement of solution and particle forces, which will provide design principles for 

polymer-grafted lignin dispersants.  

2.4.4. Polymer Characterization 

The zeta potential of polymer additives to cement is widely used as an indication of 

electrostatic repulsion between adsorbed polymers on the cement surface. Characterization of the 

polymer zeta potential as a function of solution pH provides insight into how dispersants can 

interact with hydrating cement particles. Zeta potentials greater than an absolute value of 20 mV 

indicate a net repulsive electrostatic effect according to Derjaguin-Landau-Verway-Overbeek 

(DLVO) theory.27 Shown in Figure 2.7, zeta potential was performed over a range of pH values 

for each of the free lignopolymers in aqueous solution. 

 

Figure 2.7. Zeta potential measurements for as a function of pH for: (a) lignosulfonate series, 
(b) kraft lignin series. 
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The zeta potential of the lignosulfonates displayed weaker pH dependence than that of the 

kraft lignin analogues, indicating that the chemistry of the anionic groups in the lignin core strongly 

determined the net charge of the conjugates. In contrast, the kraft lignin analogues had a strong 

dependence of zeta potential on pH, with KLPEG ranging from ca. -20 mV at pH 3 to -40 mV at 

a pH 9. Interesting, KLPMAA had the largest range of zeta potential values, ranging from ca. -25 

mV at pH 3 to -70 mV at pH 11. This is consistent with the pH-sensitivity of the carboxylate graft, 

which was nearly as strong for LSPMAA. It may be concluded that the overall zeta potential of 

the grafted materials was due to distinct contributions from the lignin core and the polymer graft. 

The lignosulfonate core and the PEG and PSPMA grafts all displayed weak pH dependences, while 

kraft lignin and the PMAA grafts had stronger pH dependence. This suggests that the grafts do not 

strongly interact with the core, and the overall architecture is hypothesized to be a lignin core with 

an extended polymer corona. This structural model suggests further that both the lignin core and 

the polymer corona are accessible for interactions with the charged surface of cement particles.  

In Figure 2.8 is shown a comparison of the zeta potential values at pH 7 with the slump values 

reported in Figure 2.4 There is a weak correlation between these measurements, suggesting that 

the effects of adsorbed polymer on particle charge is only partially responsible for changes in 

slump due to the lignopolymer superplasticizer. 
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Figure 2.8. Zeta potential of lignopolymers at pH 7 with corresponding slump values shown 
as a trend line: (a) lignosulfonate analogues, (b) kraft lignin analogues. 

While dispersant design has focused on the role of adsorbed polymer in mediating particle-

particle interactions, the machine learning model that led to the design of LSPMAA incorporated 

solution forces in addition to particle forces.10 Indeed, experimental studies have demonstrated that 

intrinsic viscosity is important in determining the yield stress in concentrated suspensions,28, 29 

suggesting it needs to be considered as a design principle on par with effects on particle 

interactions. 

Intrinsic viscosity [] reflects the hydrodynamic volume of dissolved species.30 While the 

conformation of polymer grafts from the lignin core can tune this, so too can aggregation in 

solution, which is known to be a factor in aqueous media,31 although the details depend on the 

compactness of aggregate formed. Thus, it is difficult to determine if differences in intrinsic 

viscosity of lignopolymers were due to partial collapse of the polymer grafts onto the lignin core 

or differences in extent of aggregation, presumably mediated by the lignin core.  
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In Figure 2.9 are shown intrinsic viscosity values at pH 7 for the lignosulfonate and kraft 

lignin series with the slump values superimposed as a trend line. The PEGylated analogues of 

lignosulfonate and kraft lignin had the lowest intrinsic viscosities for each lignin type, while the 

highest value was recorded for KLPMAA. The extremely low values of [] for KLPEG and 

LSPEG (less than 5 mL g-1) suggest that these have aggregated in aqueous solution. For 

comparison, PEG homopolymer having Mn of 750 g mol-1 (one graft on the PEGylated lignin) has 

an [] of 5.5 mL g-1.32  

It is interesting that the correlation between intrinsic viscosity and slump was much stronger 

for the kraft lignin series than the lignosulfonate series. Because LSPMAA and KLPMAA 

imparted the greatest increases in slump, it indicates that the high intrinsic viscosity and strongly 

negative zeta potential were central factors in the dispersing effects of KLPMAA. However, 

LSPMAA had moderate values of both these parameters and the largest slump, which suggests 

that other, undetermined factors may also be important for determining dispersant effects.  

 

Figure 2.9. Intrinsic viscosity measurements of lignopolymers at pH 7 with corresponding 
slump values shown as a trend line: (a) lignosulfonate analogues, (b) kraft lignin analogues. 
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2.5. Discussion 

It is well established that lignosulfonate is a much more effective dispersant for cement 

than kraft lignin,33 which can be attributed to the presence of sulfonate groups that increase 

aqueous solubility and interact more weakly with calcium ions than the carboxylate groups in kraft 

lignin. Based on this, it was expected that the polymer-grafted lignosulfonates would be more 

active superplasticizers than the polymer-grafted kraft lignins. However, the effects of 

lignopolymers on cement-paste slump appeared to be most strongly correlated with the chemistry 

of the polymer graft, with the PMAA-grafted lignins both resulting in the largest slump values, 

corresponding to the lowest yield stresses. 

In the model of superplasticizer action used here, both solution and particle forces mediate 

colloidal network formation, which is responsible for reductions in cement workability. 

Lignopolymer adsorption is an underlying variable that determines the balance of the dispersant 

effects between solution and particle forces. This can be attributed to the greater hydrophobic 

nature of kraft lignin, which would have a greater tendency to be driven from aqueous solution. 

Of the six derivatives investigated, only LSPEG had an adsorption profile that resembled the 

classic isotherm characterized by monolayer formation. LSPMAA actually had lower adsorption 

at 5 mg mL-1 than at 2.5 mg mL-1, which may suggest formation of an aggregated species with 

lower affinity for the surfaces of the cement particles. In contrast, LSPSPMA and all the kraft 

lignin analogues continued to show monotonic increases in adsorption even at concentrations of 5 

mg mL-1.  This suggests the formation of multilayer coatings on the cement particles, which could 

be due to continued adsorption onto the initial monolayer or could be due to aggregates formed in 

solution adsorbing onto the particle surfaces. At 2.5 mg mL-1, the superplasticizer loading level 
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for the slump measurements, the PMAA-grafted kraft lignin and lignosulfonates both displayed 

the lowest adsorption levels for both series.  

One clear trend in the adsorption data was the much greater fraction of all the kraft lignin 

analogues that adsorbed compared with the ones based on lignosulfonate. However, it is interesting 

to compare this with the zeta potential results. At neutral pH and higher, all lignopolymers had a 

zeta potential values of -40 mV or more negative, which would predict the formation of a stable 

species in solution.34 It is possible that the combination with strongly hydrophobic alkyl and 

aromatic species makes these unstable against aggregation in solution, but it may be that the 

mechanism of multilayer formation is based on continued adsorption of essentially monomeric 

lignopolymer species. Further characterization of solution structure will be necessary to resolve 

this.  

General trends observed in the zeta potential and intrinsic viscosity results was that the 

polymer-grafted lignosulfonate series had the same trends in both physical properties, with 

PEG<PMAA<PSPMA. This would be expected based on the harder sulfonate anions providing a 

more negatively charged corona as well as increase the hydrodynamic volume by swelling in 

water, resulting in an increase in intrinsic viscosity. 

In contrast, the kraft lignin series displayed a complex relationship between the kraft lignin 

core and the polymer corona, despite having the PMAA-grafted analogue result in the greatest 

slump value as was observed for LSPMAA. The zeta potential for KLPSPMA had the most 

negative value, as expected based on swelling of hard anionic grafts, but the intrinsic viscosity was 

anomalously large for KLPMAA, which was not consistent with the structure-property model 

developed. It is not clear if the high intrinsic viscosity is due to nascent network formation that, 
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even in dilute solution, results in interactions that increase the effective hydrodynamic volume 

relative to other members of the lignopolymer series. Regardless, the increase in slump due to 

KLPMAA may be due predominantly to its high intrinsic viscosity.35  

2.6. Conclusion 

Lignosulfonate and kraft lignin were grafted with water-soluble polymers to explore synergies 

between graft and lignin chemistries using PEG, PSPMA, and PMAA grafts prepared via 

controlled polymerization. Grafting anionic polymers resulted in significant increases in 

superplasticizer activity over PEG grafts. Increases in the slump of cement paste comparable to 

commercial PCE superplasticizers were observed for PMAA-grafted analogues of both lignin 

derivatives. The mechanism of dispersion was explored by measuring the effects of lignopolymers 

on both solution and particle properties. For the lignosulfonate derivatives, the PSPMA graft 

resulted in the largest values for zeta potential and intrinsic viscosity but the PMAA graft imparted 

the largest slump value for the lignopolymers investigated in this work. For the kraft lignin 

derivatives, the PMAA graft also imparted the largest slump, but there were not readily understood 

trends in intrinsic viscosity, despite this being the largest value across all the lignopolymers. Thus, 

it appears that PMAA grafting is a promising strategy for enhancing the superplasticizer capability 

of lignins but the molecular mechanisms depend strongly on the chemistry of the lignin core. 

2.7. Research Contributions 

C.M. Childs performed polymer property characterization and measurements of cement 

properties. K.M. Perkins performed lignopolymer synthesis and chemical characterization. A. 

Menon provided support for rheological measurements.  
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2.8. Appendix 

1H NMR spectroscopy was used to confirm polymer synthesis and successful grafting of the 

polymers onto the lignin core shown in Figure 2.10, Figure 2.12-Figure 2.16. The molecular weight 

distribution of the PtBMA was determined using gel permeation chromatography with THF as a 

solvent as shown in Figure 2.11. The molecular weight of PMAA was calculated assuming PtBMA 

was 100% deprotected. Internal standards, maleic acid and dimethyl sulfone, were used to 

determine grafting density of PSPMA and PMAA grafts, respectively. 1H NMR spectroscopy of 

polymers with internal standards are shown in Figure 2.12 and Figure 2.13. The internal standards 

were chosen for solubility and to avoid overlap with polymer peaks. Quantitative proton NMR to 

determine grafting density was done by utilizing known concentrations of either homopolymer or 

lignopolymer and known concentrations of internal standard in 1.5 mL of solvent. The peak area 

was normalized utilizing the known quantity of protons present in the spectra due to the internal 

standard. This was then utilized to determine the concentration of homopolymer or lignin 

(depending on the peak chosen) present in the lignopolymer solution which along with the 

molecular weight and the initial concentration of lignopolymer was used to determine the grafting 

density. Similar to the PEG grafted lignopolymers, the grafting density was found to be ~2 for 

PMAA and PSPMA. Figure 2.14-Figure 2.16 show 1H NMR’s of varying synthesized polymer-

grafted lignins. An expanded table of the lignopolymer physical properties is presented in Table 

2.3. Table 2.4 presents the slumps associated with the pure homopolymers, mixtures of 

homopolymer and lignin, and the grafted lignopolymers. Figure 2.17 and Figure 2.18 show 

representative pictures of these slumps from Table 2.4. 
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Figure 2.10. 1H NMR of PtBMA in CDCl3. 

 

 

Figure 2.11. GPC elugram (a) and Mw profile (b) of PtBMA. 

 



62 

 

 

Figure 2.12. 1H NMR of PMAA (a), kraft lignin (b), and PMAA grafted kraft lignin (c) in 
dimethyl sulfone (MSM) internal standard. PMAA and PMAA grafted kraft lignin were 
measured in D2O while kraft lignin was measured in DMSO-d6. Figure 2.14 shows better 
shows the presence of the kraft lignin peak for KLPMAA.  

 

 

Figure 2.13. 1H NMR of PSPMA in D2O with maleic acid internal standard. 
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Figure 2.14. 1H NMR comparison between kraft lignin (red) and KLPMAA (blue). Both 
NMR’s were performed in DMSO-d6 for comparison as kraft lignin is not soluble in D2O. 

 

 

Figure 2.15. 1H NMR of LSPSPMA in D2O. 
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Figure 2.16. 1H NMR of KLPSPMA in D2O. 

 

Table 2.3. Lignopolymer properties table. 

Polymer Slump 
(cm) 

 

Intrinsic Viscosity 
(mL/g) 

A2 (mol*mL/g2) 
*103 

Zeta 
Potential 
at pH 7 
(mV) 

LSPEG 2.8 6.459 1.98 -41.36 
KLPEG 1.5 3.726 -1.47 -39.35 

LSPSPMA 4 47.38 0.317 -51 
KLPSPMA 3.3 47.38 -0.892 -61.2 
LSPMAA 2.5 23.17 -0.460 -51.7 
KLPMAA 1.6 186.5 -1.01 -73.2 
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Table 2.4. Polymer mixture properties table. The lignin:polymer graft ratio was set at 2:1 by 
weight to be similar to the synthetic ratio. All tests were performed at 0.35 w/cm ratio and 
0.25% superplasticizer by weight of cement. 

PEG 
Polymers 

Slump 
(cm) 

 
PMAA 

Polymers 
Slump 
(cm) 

PEG 1.3 
 

PMAA 3.2 
KL + PEG 1.2 

 
KL + PMAA 1.5 

KLPEG 1.6 
 

KLPMAA 3.3 
LS + PEG 1.5 

 
LS + PMAA 1.8 

LSPEG 1.8 
 

LSPMAA 3.8 

 

 

Figure 2.17. On the left is a slump with PEG graft, the middle is a slump with the 2:1 weight 
mixture of kraft lignin and PEG, respectively, and the slump to the right is KLPEG. 

 

 

Figure 2.18. On the left is a slump with PMAA graft, the middle is a slump with the 2:1 
weight mixture of lignosulfonate and PMAA, respectively, and the slump to the right is 
LSPMAA. 
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Chapter 3. Molecular Engineering of Superplasticizers for Metakaolin-Portland Cement 
Blends with Hierarchical Machine Learning1 

3.1. Introduction 

Portland cement (PC) is most widely used engineered material in the world and has become 

a foundation for modern society1, 2, 3 due to its unique combination of processability in the plastic 

state and mechanical properties and water resistance in the hardened state. However, production 

of portland cement now accounts for 5% of global CO2 production due to energy-intensive 

processing and the release of CO2 during limestone calcination. In order to reduce the carbon 

footprint of this ubiquitous infrastructure material without compromising performance, it has been 

proposed that concrete increasingly incorporate minimally processed clays as partial replacement 

for cement, a practice which significantly reduces the CO2 intensity and actually improves many 

important material characteristics, such as corrosion resistance and strength. Calcined clays are 

available worldwide, and thus present a good option for partial cement clinker substitution on a 

broad scale.4 However, calcined clays retain much of the structure5 of clays from which they are 

produced. Derived as calcined kaolinite clay, metakaolin (MK) is a common source of pozzolanic 

material utilized in cementitious systems. The particle size of MK is typically 10x finer that of the 

cement it replaces, which in concrete reduces porosity and contributes to strength and 

impermeability. Also, MK exhibits a very high surface area to volume ratio and a high 

concentration of hydroxyl groups, resulting high reactivity including a strong capacity for water 

binding. Together, these factors significantly reduce fluidity in pastes, mortars, and concrete, 

practically limiting the amount of MK that can be combined with PC to~6-10% by mass in 

 
1 This chapter includes work that was published and reformatted:  

Menon, A., Childs, C. M., Poczós, B., Washburn, N. R. & Kurtis, K. E. Molecular 
Engineering of Superplasticizers for Metakaolin-Portland Cement Blends with Hierarchical 
Machine Learning. Adv. Theory Simul. 2, (2019). 
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conventional applications.  The addition of water to improve fluidity results in significantly 

increased porosity and reduced strength, which increases permeability and compromises 

durability.6, 7, 8 Dispersion of MK, then, is a critically important step toward increasing the rate of 

MK substitution for cement clinker, leading to improving the sustainability of modern 

infrastructure. However, PCEs have unpredictable performance in cements that include 

metakaolin, which can be due to reduced superplasticizer adsorption to particle surfaces.9, 10 

Metakaolin-blended cements are becoming an important strategy for improving the performance 

and reducing the environmental impact of cement, but there is a need for superplasticizers tailored 

to these materials, particularly to facilitate cement blending with larger MK fractions. 

Data-driven methods have led to radical changes in the process of materials discovery, but 

these methods are predicated on large datasets.11, 12 Hierarchical machine learning (HML) was 

developed to model the response surfaces of complex physical systems using small, primarily 

experimental datasets.10 This is accomplished through embedding domain knowledge of the 

underlying forces that determine system responses to changes in input variables and separately 

decomposing the system responses into the underlying forces that most strongly determine 

variance of the responses using methods of statistical learning. Cement-based materials represent 

a highly complex and broad range of physicochemical systems. As an initial step toward 

developing dispersants for use with cement-based systems, the HML methodology was validated 

on the development of a novel dispersant for concentrated MgO suspensions, which can be 

considered as a non-setting rheological model of portland cement. Machine learning techniques, 

such as neural networks,13 fuzzy logic14 and support vector regression,15 have been applied to MK-
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PC systems but in these studies, only mechanical properties (e.g., compressive and flexural 

strength) were modeled as system responses, not plastic properties.  

In the application of superplasticizers for clay-blended cements, hypothesis-driven 

research has resulted in advances,16  but a general design methodology still has not been 

established. Here, HML was applied to the design of superplasticizers for pastes composed of MK 

and PC. It is believed that this is the first time machine learning methods have been used for 

dispersant design in cement-based systems. Polymer dispersants were designed based on their 

effects in the pore solution and the mineral particle surfaces, and surrogate physical measurements 

were performed to elucidate both the functional form of these forces and how the workability of 

cement paste, as assessed through mini-slump (herein, “slump”) measurements,17, 18 was 

determined by these forces. The model was trained using a library of seven commercially available 

superplasticizers, and model predictions were validated through polymer synthesis and assessment 

of paste workability in MK-PC systems produced with the predicted dispersant design.  

3.2. Experimental Methods 

3.2.1. Materials 

Cement pastes were prepared using an ASTM C150 Type I/II ordinary Portland cement 

(Saylor, Essroc)12 and metakaolin (MetaMax, BASF). For the seven tested polymers, Borresperse 

sodium lignosulfonate (LS1), was received from Borregaard Lignotech. PEGylated Borresperse 

lignosulfonate (LS1PEG) was synthesized according to the procedure from Gupta et al.13 Other 

superplasticizers received from BASF include: a commercial lignosulfonate MasterPozzolith 80 

(LS2), a polynapthalene sulfonate MasterRheobuild 1000 (PNS), and two different polycarboxylic 
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ethers, MasterGlenium 3030 (PCE1) and 7500 (PCE2) were obtained from BASF, and one PCE 

was acquired from GCP Applied Technologies, Adva-190 (PCE3).  

Sodium styrene sulfonate (NaSS), methacrylic acid (MAA), poly(ethylene glycol) methyl ether 

methacrylate (Mn=500) (PEGMA), and azobisisobutyronitrile (AIBN) were purchased from 

Sigma-Aldrich.  Dimethylformamide (DMF) was purchased through Fisher Scientific, and acetone 

was purchased from Pharmco-AAPER. All materials were used as received from the manufacturer. 

Ultrapure water was obtained through a purification system (Milli-Q Gradient).  

3.2.2. Polymer Synthesis  

The synthetic procedure was modified from previous methods and is expected to yield a 

random copolymer.19, 20 To a flask under N2 environment were added NaSS (2.500 g, 0.01212 

mol), MAA (0.5 mL, 0.0061 mol), and PEGMA (2.8 mL, 0.0061 mol). The monomers were 

dissolved to 1.0 M in a 50/50 w/w mixture of water and DMF. The reaction mixture was again 

purged with flowing N2 then the radical initiator AIBN (0.0035 g, 2.4x10-5 mol) was added. The 

reaction was allowed to stir under a nitrogen atmosphere for 12 h at 80 C. After exposure to air, 

the solution was introduced dropwise into cold acetone and precipitated. After washing and 

decanting with acetone, the polymer was dissolved in water and concentrated under vacuum to 

yield a white solid. A schematic reaction is shown in Figure 3.1. Characterization via 1H NMR and 

IR analysis were performed are presented in the Chapter 3 appendix. 
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Figure 3.1. Reaction schematic for synthesis of NaSS-PMAA-PEGMA terpolymer. 

3.2.3. Adsorption Measurements 

Adsorption of the polymers in the training set onto MK and PC was performed by total 

organic carbon (TOC) analysis. Samples of 0, 0.25, 0.50, and 1.00 wt% to binder of each 

superplasticizer were prepared. A reference sample for each sample was made to compare the 

difference in amount of carbon before and after adsorption. For each different sample, the 

superplasticizer solution was mixed with 25 g cementitious material and vibrated for 3 minutes. 

The samples were then centrifuged for 10 min at 4400 rpm. The supernatant was collected, filtered 

through a 0.45 μm syringe filter, diluted to 40 mL with water, and immediately analyzed using a 

combustion-based TOC (Shimadzu TOC-L).  

3.2.4. Zeta Potential 

Zeta potential was measured in aqueous solutions with a polymer concentration of 10 mg 

mL-1 using a Zeta-sizer (Malvern Instruments). 

3.2.5. Osmotic Pressure 

Osmolality of aqueous solutions of each polymer was measured 0.1, 0.2 and 0.4 g mL-1 

using a vapor pressure osmometer (Wescor 5520). To model changes in osmotic pressure due to 

superplasticizer dissolved in the pore solution, the second virial coefficient of each was acquired 
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by plotting osmolality values versus concentration of pure polymer solutions. The slope of this 

line was determined and multiplied by the molar volume and molality of water to obtain the A2 

coefficient.21  

3.2.6. Polymer Intrinsic Viscosity 

Due to the poor solubility at higher concentrations of many of the polymers, Kraemer and 

Huggins curves22 did not fit to the data accurately. Instead, a single-point determination of the 

intrinsic viscosity at a low concentration of 0.0033 g ml-1 was used. The lower concentration 

prevented polymer aggregation so that intrinsic viscosity could be determined utilizing the 

Solomon–Ciuta equation.23 An Ubbelohde Viscometer (Canon Instrument Company) was used to 

determine the relative viscosity by taking the ratio of the time to pass through the capillary of the 

polymer solution to the pure water elution time. Three trials for each polymer along with the 

solvent elution time were performed and the results were averaged.  

3.2.7. Sedimentation 

Direct measurement of electrosteric interactions in a particle suspension is difficult to 

measure exactly and the results, when parametrized by the details in chemical structure, are not 

gauged directly on a per polymer basis.24 Here, sedimentation, as a quantitative gauge of 

electrosteric interactions, was measured for all the polymers at 0.5 wt% for 50 wt% of MgO 

particles. As components of PC could dissolve over the course of this test, MgO was used as a 

non-setting model, although hydration also can occur. The same conditions were used to determine 

the electrosteric effects of polymer and MK by adding 0.5 wt% polymer in a 50 wt% MK 

suspension. Following a previously published method,25 the height of the supernatant was 

measured after 24 h and 120 h. Electrosteric parameters are expressed in percent change in 
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supernatant height relative to suspensions in pure water. Positive numbers imply lower dispersion, 

resulting in a more-compact sediment and more supernatant, and negative numbers imply good 

dispersion relative to suspensions in pure water. The negative values measured for MK are 

attributed to the smaller particle size than MgO, but relative differences in the MK measurements 

can be attributed to dispersing effects of the superplasticizer. 

3.2.8. Assessment of Workability 

To assess the workability and changes in yield stress of the cement pastes mini-slump 

testing was performed.26 Cement pastes were prepared at room temperature using a planetary 

mixer (Hobart) with a paddle speed of 62 rpm. To the mixer a 15% MK/85% PC mixture was 

added. Total water addition produced a 0.50 water-to-cementitious materials (w/cm) ratio paste, 

where both MK and PC were considered as cementitious materials. Superplasticizer was added at 

a ratio of 0.25% to total weight of cementitious material. To ensure optimal effectiveness of the 

superplasticizers, a fraction of the total water volume was added and mixed for 1 min. The 

remainder of the water containing the dissolved superplasticizer was added immediately 

afterwards and mixed for another 1 min.27  

Within 60 s after mixing, the cement pastes were added into a mini-slump cylinder (BASF, 

Construction Chemicals Division) with dimensions 3 cm in diameter and 5 cm in height. The 

cement was lightly compressed with the backside of a spoon to even with the top. The cylinder 

was slowly and evenly lifted in a continuous motion allowing the cement pastes to slump. The 

change in height due to the slump was recorded along with the spread, and the results were 

expressed in percent as the change in height divided by the original height of 5 cm. For every 
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mixture of cement tested, three slumps were tested in succession with an average of the trials being 

used for analysis. 

3.3. Computational Methodology 

All modeling was performed in MATLAB. The dependence of physicochemical forces on 

polymer composition were determined using the LSQR method by dividing the seven-dimensional 

vector of each polymer property by the matrix of polymer composition for all seven polymers in 

our training set. Variable selection in decomposing the slump into contributions from the 

physicochemical forces and their cross-products were performed using Lasso with leave-one-out 

cross-validation (LOOCV). Finally, constrained nonlinear optimization was performed on the 

master function expressing system response (slump) as a function of compositional variables in 

the bottom layer of the model using the fmincon solver from optimization toolbox in MATLAB. 

3.3.1. Model Development 

The HML algorithm developed has three layers. The top layer represents the system 

response to be predicted or optimized, and the bottom layer represents input variables that are used 

to control this response, similar to neural network models. However, in HML, the middle layer 

represents the underlying physicochemical relationships that determine system responses. These 

can be considered latent variables that can be estimated via surrogate physical measurements, 

resulting in expressions parametrized for these forces by general compositional variables. The 

complete structure of the algorithm for superplasticizer design is shown schematically in Figure 

3.2.  
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Figure 3.2. A schematic for HML approach for the MK-PC/SP system. In this work, the 
cement and MK composition, w/cm, and superplasticizer dosage were held constant, making 
superplasticizer composition (represented by combinations of functional groups) and 
architecture (branched or linear) the only free variables. 

The goal was ultimately to predict the optimal superplasticizer composition that maximized slump. 

However, the algorithm used estimates of the underlying forces in the optimization process, which 

improves interpretability of the algorithm predictions and allows for molecular engineering in 

complex material systems.  

In suspensions, adsorption determines the partitioning between dissolved and adsorbed 

polymer, setting the balance between solution and particle forces that superplasticizers exert in 

tuning the rheology of cement paste. In modeling the underlying forces that determine the slump 

of cement paste, solution forces are gauged through measurement of intrinsic viscosity ([η]) and 

the second virial coefficient (A2). These parameters give related insight into polymer-solvent 

interactions, reflecting the hydrodynamic volume of polymer chains under flow and the colligative 
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effects of dissolved polymer, respectively.28, 29 Both parameters can be measured directly using 

low-concentration polymer solutions.  

The effects of adsorbed polymer on particle forces were represented by changes in 

electrostatic and electrosteric interactions. While changes in electrostatic forces of particles due to 

adsorbed polymer can be estimated through direct measurement of the zeta potential (ζ), the high 

ionic strength of the pore solution in cement paste can make this ineffective in inhibiting particle 

coagulation. Electrosteric forces (s) are a combination of electrostatic forces, which mediate 

adsorption onto the charged cement surfaces, and steric forces due to pendant water-soluble 

oligomers that generate an additional barrier to particle aggregation. The mechanism of PCE 

dispersion is hypothesized to be due primarily to electrosteric effects, but these are difficult to 

measure directly.30 In the previous study on dispersant design using HML, the electrosteric 

contribution to particle-particle interactions was gauged using sedimentation measurements on 

dilute solutions of MgO.10 While this only provides trends, it was found to be sensitive to 

aggregation effects and thus provided the algorithm with information on electrosteric design 

principles.  

In the first step of developing an HML model, the forces that mediate system response, 

which are represented in the middle layer, are estimated from separate measurements of these 

physical properties in the training set. Using least-squares regression, functional representations 

of these four forces are represented in terms of superplasticizer composition (�⃗�), where �⃗� is the 

vector of functional groups represented in mole fraction and polymer architecture (linear or 

branched). Each of these forces and equations for representing them based on the measurements 

for the machine learning model are shown in Figure 3.3. 
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Figure 3.3. This schematic represents the connection between the first and second layers of 
HML. Individual polymer measurements are modeled by the physical equations determining 
the forces.  

The next step in the HML algorithm is decomposing the system response in terms of the 

underlying forces in the middle layer. In doing so, the goal was to develop an expression for the 

system response in terms of the underlying forces (and combinations of forces) to elucidate which 

were dominant predictors of the system response. These forces were estimated for the training set 

based on experimental measurements and were normalized onto the range [-1, 1] or [0, 1], 

depending on the allowed values, to make the relative values of the coefficients meaningful in the 

expression for system response. In defining the basis set for representing system response, cross-

products of the forces (e.g., product of intrinsic viscosity and zeta potential variables) were 

included, which can be interpreted as couplings between the different forces. However, these 

additional combinations of the forces result in a total basis set composed of 10 variables, which 

can lead to overfitting of the training set and low accuracy in the predictions of the performance 

of new polymers. 
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Variable selection is a central component of machine learning and particularly challenging 

in modeling physical systems for which dimensionality reduction is of critical importance but the 

functional form of the response surface has physical significance.31 In this study regularized 

regression using the least average shrinkage and selection operator (Lasso) was performed to 

identify the physicochemical forces that most strongly determined the slump. In modeling the 

dependence of responses y to independent variables x, Lasso includes an additional term in the 

cost function based on a positive tuning parameter  and the L1 norm of the model coefficients :32  

 𝑚𝑖𝑛 (‖𝑦 − 𝛽𝑥‖ + 𝜆‖𝛽‖ )  (1) Eq. 3.1 

The L1 penalty drives coefficients of variables that are weaker predictors of responses to zero as 

the tuning parameter is increased,33 which, in the context of physical models, allows for 

identification of a sparse feature set of forces that determine responses, facilitating minimal model 

development and improving interpretability.  

In the final step of the algorithm, the system response (slump) was re-parametrized from 

the underlying forces to a representation based on system variables (superplasticizer composition) 

via the relationships established in the first step. This resulted in a functional representation of 

system response in terms of system variables, thus providing an efficient method for learning the 

response based on small numbers of experimental measurements. From this response surface, 

global maxima can be identified, subject to constraints in composition or allowed slump values, 

using standard optimization techniques. Thus, HML can serve as a design tool for complex 

physical systems based on knowledge of the underlying forces that drive system responses.  
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3.4. Results, Discussion, and Validation 

3.4.1. Results and Discussion 

The system response to be optimized was the workability of a 0.50 w/cm paste consisting 

of 15% MK and 85% PC, and a constant superplasticizer dose of 0.25% [based on total 

cementitious mass (cm)]. By holding the cement and MK composition, w/cm ratio, and polymer 

dose constant, the only free variables were polymer composition. The training set used to develop 

the algorithm was composed of seven superplasticizers, six of which were commercial products, 

and the structures of these polymers are shown in Figure 3.4. A simple representation of these 

polymers was adopted here for the purposes of optimization and guiding subsequent synthesis: the 

chemical structures were parametrized by the estimated mole fraction of each functional group 

estimated from 1H NMR spectroscopy, as well as the chain architecture – branched for the three 

lignin derivatives and linear for the rest of the library. This resulted in a vector representation of 

polymer chemistry to be optimized for maximizing the workability of MK-PC pastes, which are 

tabulated in the appendix. Differences in the structures of the three PCE’s were due to the 

MAA:PEGMA ratio and the molecular weight of the pendant PEG oligomer, and the two LS 

analogues were differentiated by sulfonate:alkyl ratio. The base structures are shown in Figure 3.4. 
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Figure 3.4. Chemical structures of the superplasticizers used to train the algorithm where (a) 
is lignosulfonates i.e.  LS1 and LS2,  (b) LS1PEG, (c) PNS and (d) PCE1, PCE2, and PCE3. 

To train the algorithm, the first step was determining changes in paste workability across 

the polymers in the library. Slump measurements (in units of cm) are a quantitative assessment 

tool of workability, and relate to the yield stress of the paste, which is thought to follow the 

predictions of the Bingham model:34  

 𝜏 = 𝜂�̇� + τ  Eq. 3.2 

and predicts that mechanical equilibrium will be reached when the shear stress 𝜏 is equal to the 

sum of the product of the viscosity 𝜂 and shear stress rate �̇� with the yield stress τ . Slump is a 

commonly used measure of cement paste workability, providing a gauge of these rheological 

parameters.22  
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The slump values across the training set are shown in Figure 3.5. For comparison, the 

values across the training set for paste based on plain portland cement paste at constant w/cm ratio 

of 0.35 and polymer dose of 0.25%. Large slump values were measured for all PC pastes except 

LS1 and LS1PEG. However, in MK-PC blends, the slump values were significantly lower for 

several members of the training set, as expected, with particularly large decreases in efficacy for 

PCE1, LS2, and PNS with the use of MK. Overall, the lignosulfonates, LS1 and LS1PEG, were 

less effective, with generally lower slump values (or less workable pastes), as expected since these 

are generally considered to be mid-range water reducing admixtures. PCE2 and PCE 3 appeared 

to be relatively effective at achieving workability at this w/cm and at this MK-PC blending rate; 

in practice, lower w/cm are desirable for both strength and durability. 

 

Figure 3.5. Slump values for PC and MK-PC blends containing superplasticizers dose in the 
training set at 0.25%.  

The accepted mechanism of superplasticizer function in PC pastes is based on adsorption 

to the particle surface.35, 36 For blends of MK and PC, adsorption was modeled utilizing the 
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Freundlich equation, which is an empirical model useful for heterogenous materials and not limited 

to single-layer adsorption:37  

 𝜃 = 𝐾𝐶  Eq. 3.3 

Here θ is the fraction of adsorbed polymer, Ci is the polymer concentration, and K and n are 

empirical parameters. The parameters log(K) and n are the intercept and slope, respectively, of the 

best fit line to the log-log plot of adsorbed amount vs concentration.38 With adsorption data, a 

Freundlich model was developed for each polymer-cementitious material pair allowing an 

integrated parameter for the algorithm in terms of polymer composition. To account for the MK-

PC mixture the amount of expected adsorption between the two components was predicted 

according to Eq. 3.4: 

 
𝜃 =

𝑀𝐾

𝐶𝑀
∗ 𝜃 +

𝑃𝐶

𝐶𝑀
∗ 𝜃  

Eq. 3.4 

where 𝜃  is the total percentage of expected adsorbed polymer,  is the ratio of metakaolin 

to total cementitious material,  is the ratio of portland cement to total cementitious material 

(expressed in terms of mass, not surface area), 𝜃  is the concentration-dependent fraction of 

polymer adsorbed onto MK, and  𝜃  is the concentration-dependent fraction of polymer adsorbed 

onto PC. 

Adsorption values across the polymer training set are shown in Figure 3.6. Only PCE1 and 

PCE3 had a significantly higher affinity for the MK than PC, whereas most superplasticizers 

exhibited much lower adsorption. However, the relationship between adsorption and slump values 

was complex. While PCE3 had a high affinity for MK and resulted in large slump values for MK-
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PC blends, PCE1 also adsorbed more strongly onto MK than PC but the slump values were lower 

in the blends.  

 

Figure 3.6. Adsorption results plotted in terms of fraction of adsorbed polymer on metakaolin 
and portland cement at superplasticizer dose of 0.25%.  

For the PCE’s, the high slump and relatively low adsorbed fractions suggest that higher 

than necessary dosages of superplasticizer were introduced in these PC pastes. The 0.25% dosage 

rate was used to restrict the variance to superplasticizer chemistry, but the slump values were near 

the maximum possible for most of the experiments with PCE’s. While this reflects the high 

performance of these dispersants, it does result in an insensitive measure of their relative dispersing 

power in PC and MK-PC. Future experiments could identify doses that result in a constant slump 

value.9 However, this requires including superplasticizer concentration as an additional variable, 

and the admixtures may have different mechanisms at different concentrations, which involves 

more data and potentially a more robust model. 
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The polymer effects on solution forces of viscosity and osmotic pressure, and on the 

electrostatic and electrosteric interactions between particles were measured separately, and the 

results are tabulated in the Chapter 3 appendix along with the cross-correlation matrix that 

illustrates correlations between the different physicochemical parameters. The intrinsic viscosity 

and A2 measurements provide complementary insight into polymer-solvent and polymer-polymer 

interactions in which the former associated are associated with polymer hydrodynamic volume 

under applied shear stress and the latter are associated with changes in colligative properties of the 

solution due to dissolved polymer. Indeed, the difference between these can be appreciated from 

considering the molecular weight dependence of the two quantities: the intrinsic viscosity depends 

directly on chain dimensions while the osmotic pressure depends on volume fraction and has at 

most weak dependence on molecular weight (scaling approximately as M-0.25 in good solvents).39  

While the two measures were positively correlated, there were differences in members of 

the same group that suggested details of the chemistry were important. For example, the highest 

intrinsic viscosity, which is associated with the largest hydrodynamic volume, was measured for 

PCE2 while the largest value of A2, indicating the most favorable polymer-solvent interaction, was 

measured for PCE1. Similar trends in the zeta potential of the dissolved polymer and the 

electrosteric parameters estimated from sedimentation experiments were observed.  

Based on these values, a polynomial to predict the slump (S) for MK-PC (SMK-PC) expressed 

as a function of these polymer properties was developing using Lasso with cross-validation. For a 

basis set composed of the five physicochemical forces (, A2, , sMK, sPC) and the nine cross-

products (A2, , sMK, sPC, A2, A2sMK, A2sPC, sMK, sPC), the 14-variable basis set exceeded 

the 7-element training set. To avoid artificially low error estimates in a significantly 
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underdetermined statistical model, Lasso was performed in three stages. In the first, variable 

selection was performed using only the linear force terms (, A2, , sMK, sPC). At a tuning parameter 

value of 0.002, Lasso selected  and  as the two forces that most strongly determined slump in 

pastes of the MK-PC blend. Then a variable set based on the cross-products of the second virial 

coefficient were included with the two linear terms from the first round as a second trial basis set 

(, , , A2, A2, A2sMK, A2sPC). However, at  = 0.002, Lasso discarded the cross-term  and 

all the terms in A2, suggesting that these cross-terms were not descriptors of slump in this system. 

Finally, the remaining cross-terms were included with  and  to form a feature set (, , sMK, 

sPC, sMK, sPC, sMKsPC) for describing the changes in slump in terms of the underlying solution- 

and particle-mediated forces. At  = 0.002, the final variable set was identified as (, , sMK, 

sPC). Following cross-validation, a function for slump of the form was identified: 

 𝑆 = 1.11𝜂 − 0.55𝜁 + 0.36𝜁𝑠 + 0.12𝜂𝑠  Eq. 3.5 

It is unexpected that the model assigned the greatest weight to the viscosity term (), which 

contrasts with accepted models of dispersant design that focus on the role of adsorbed polymers in 

tuning the electrostatic () and electrosteric (s) forces between particles.40 The other terms in (5), 

based on polymer electrostatic and electrosteric characteristics, also tune the slump in MK-PC 

paste, but the strongest dependence was founded to be through the polymer intrinsic viscosity.   

Reparameterization of Eq. 3.5 by the composition-dependent representations of the forces 

derived from surrogate physical measurements results in a response surface for the slump of MK-

PC paste as a function of superplasticizer composition. The maximum of this surface corresponded 
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to a polymer having a linear architecture and the combination of functional groups shown in Table 

3.1.  

Table 3.1. Optimal mole fractions of functional groups identified through maximization of 
the response surface for slump in terms of superplasticizer composition defined by functional 
groups.  

Functional 
Group 

sulfonate carboxylate PEG alkyl aromatic 

 0.20 0.17 0.20 0.22 0.20 

 

3.4.2. Validation 

Based on these mole fractions of functional groups, a random terpolymer composed of 

styrene sulfonate (SS), methacrylic acid (MAA), and poly(ethylene glycol) methacrylate 

(PEGMA) was synthesized by free radical polymerization. Styrene sulfonate was chosen due to 

the equal values of sulfonate and aromatic groups and a necessary fraction of alkyl group to form 

the backbone, and MAA and PEGMA were incorporated at approximately the prescribed mole 

fractions in synthesizing poly(SS0.50MAA0.25PEGMA0.25). From a molecular engineering 

perspective, this terpolymer resembles a PCE combined with poly(styrene sulfonate) (PSS). PSS 

has been explored as a dispersant for cement,41 but it has minimal effects on workability. However, 

the homopolymer had a high intrinsic viscosity that depends strongly on polymer and salt 

concentration,42 but no reports of copolymers for cement applications have been reported. While 

the effects of adsorbed PCE have been studied and modeled in great detail,24 solution 

characteristics of PCE’s have not been explored in depth.  

The physical properties of the HML prediction are shown in Table 3.5, and this terpolymer 

that was rich in SS monomers displayed a very high intrinsic viscosity of 443.0 mL/g, but 
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otherwise the A2, zeta potential, and sedimentation values were similar to other polymers in the 

training set. In analyzing the relationships between structure and composition and the resultant 

properties, the intrinsic viscosity was generally higher for linear polymers than the crosslinked 

lignosulfonates, although the lowest value of intrinsic viscosity was found for PNS, but in this case 

the high aromatic content resulted in a negative A2 coefficient, which correlates with a reduced 

hydrodynamic volume due to unfavorable solvent interactions. Incorporation of alkyl carboxylate 

and PEG functional groups would serve to increase solubility as well as increase the repulsive 

electrosteric interactions between MK particles due to adsorption of this terpolymer.  

To test the effects of the algorithm predictions on the workability of MK-PC paste, 

adsorption and slump measurements were performed at the same superplasticizer dose in both PC 

and MK-PC at the same w/cm values as in the training set. As shown in Figure 3.7, while the 

addition of poly(SS0.50MAA0.25PEGMA0.25) had no visible effect on the PC paste slump, but it 

resulted in a significant increase in slump of MK-PC paste. In comparing with the results from the 

training set shown in Figure 3.5, the slump value of 72% was similar to those measured for the 

commercial PCE superplasticizers in MK-PC paste. This was unexpected because with currently 

available superplasticizers, the reverse is common but there have been no reports of selective 

plasticization of MK-blended cements. This suggests that blended superplasticizer systems could 

be useful in exploiting multiple plasticization mechanisms. 
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Figure 3.7. (a) Slump and adsorption values for poly(SS0.50MAA0.25PEGMA0.25) in pastes 
composed of PC or MK-PC. (b) Representative slump images for pastes PC (left) and PC-MK 
(right) with poly(SS0.50MAA0.25PEGMA0.25). 

In exploring the mechanism of plasticization, it was also unexpected that 

poly(SS0.50MAA0.25PEGMA0.25) adsorbed weakly to both PC and MK, with adsorbed fractions of 

7.9% and 10.6%, respectively. This was significantly lower than all members of the training set, 

and less than half of any of the adsorption values measured for the PCE’s. This suggests that the 

mechanism is not based primarily on adsorbed polymer but instead follows the predictions of Eq. 

3.5 in having the dominant force be due to pore solution viscosity. As the other particle-based 

terms in Eq. 3.5 suggest, adsorbed polymer still plays a role, and the carboxylate and PEG 

functional groups in poly(SS0.50MAA0.25PEGMA0.25) are hypothesized to mediate adsorption and 

steric interactions as with the PCE copolymers, although the details of this interaction with MK 

will need to be elucidated in the context of the complex chemistry and morphology of calcined 

clays.5 However, the HML algorithm led to the design of a superplasticizer specific for MK-PC 

with a novel mechanism of action involving significant contributions from non-adsorbed chains in 

contrast with the role of non-adsorbed PCE in PC plasticization where reductions in PCE 

adsorption due to longer PEG side chains resulted in increases in yield stress and plastic viscosity 

of the paste.43  
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While the structure of the HML algorithm has provided insight into the mechanism of 

action via the viscosity of the pore solution, there are still fundamental questions that need to be 

addressed. The first is understanding how the algorithm determined the connections between 

polymer composition and the physical properties. The model for superplasticizer effects on the 

slump as a function of the underlying forces in MK-PC indicated a strong effect for intrinsic 

viscosity, but the PCE polymers in the training set had the highest intrinsic viscosities while the 

polymers with aromatic sulfonates had relatively low intrinsic viscosity. This may have been a 

coincidence, although there are clear correlations between intrinsic viscosity and solubility in the 

aromatic sulfonates, and increasing the solubility through incorporation of alkyl carboxylate or 

PEG functionality could significantly increase the intrinsic viscosity. This question can be better 

addressed through parametrization of superplasticizer chemistry by discrete monomers, not 

functional groups. Doing this would require a larger training set, but would resolve ambiguity in 

interpreting the results.  

A second fundamental question surrounds the physical basis of how the solution viscosity 

can have a significant effect on the yield stress of a concentrated suspension. In the original 

application of HML to designing dispersants for concentrated MgO suspensions, the dominant 

forces were products of solution forces and particle forces, particularly coupling between the 

osmolality and the zeta potential mediated by free and adsorbed polymer. While there is theoretical 

support for this in models of polymer dispersants, there has been less work on the role of purely 

solution forces on workability, although experimental measurements on model systems indicate 

that this can be a strong determinant of suspension yield stress.44 The introduction of metakaolin, 

which is believed to retain much of its intrinsic clay structure, lends further complexity due to its 
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heterogeneous surface charge density and pH-dependent flocculation and adsorption behaviors. 

Addressing these issues may require parametrization of the system chemistry to resolve 

contributions from particle-particle interactions in the percolating network that comprises paste 

from solution-mediated effects due to changes in viscosity and polymer adsorption,45 but this 

would provide a broader understanding of the forces that drive the rheological properties of MK-

PC paste.  

Finally, the broader applications of HML to molecular engineering, in advanced 

cementation systems but more broadly to complex material systems, require further study. The 

results here suggest that the algorithm can develop novel predictions for molecular design based 

on small experimental datasets and knowledge of underlying forces, but open questions center on 

determination of learning rates, transfer learning, and other algorithm structures that allow 

embedding of domain knowledge. Advances in machine learning algorithms for discovery can be 

leveraged in reducing the uncertainty of predictions, and not simply in optimization.46, 47 There is 

great potential in the application of machine learning to molecular engineering of complex 

systems, and hierarchical models may provide a powerful framework in designing for function, 

not composition. 

3.5. Conclusion 

The HML algorithm was used in the molecular engineering of a superplasticizer tailored for 

MK-PC blends. Based on knowledge of the underlying forces in concentrated particle suspensions 

and data on seven superplasticizers, the algorithm predicted that the workability of MK-PC blends 

was strongly determined by the intrinsic viscosity of the pore solution, with contributions due to 

electrostatic and electrosteric interactions between particles being secondary factors. Following 
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reparametrization of the function for slump by superplasticizer composition and architecture, the 

global minimum of this response surface was consistent with a random terpolymer 

poly(SS0.50MAA0.25PEGMA0.25), which was distinct in having high fraction of styrene sulfonate. 

Evaluating this terpolymer superplasticizer, the MK-PC paste slump was found to be significantly 

greater than in pure PC paste. Furthermore, this terpolymer was found to have a high intrinsic 

viscosity but low adsorption onto PC and MK, indicating that the HML algorithm had predicted a 

novel mechanism for the plasticization of MK-PC blends and identified a polymer composition 

that achieved this. This terpolymer could be an important step toward improving the performance 

of low-energy cements and improving the sustainability of this vital infrastructure material. 

Furthermore, HML could be broadly useful in the molecular engineering of technologically 

relevant materials for complex physical systems. 

3.6. Research Contributions 

 C.M. Childs performed polymer and cement property characterization along with polymer 

synthesis, chemical characterization, and support in ML analysis. A. Menon performed ML 

analysis and optimization along with providing support in polymer and cement property 

characterization.  
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3.7. Appendix 

Table 3.2. Composition of polymers in the training set. 

Polymer Sulfonate Carboxylate PEG Alkyl Aromatic Crosslinked Linear 

PCE1 0 0.33 0.33 0.34 0 0 1 

PCE2 0 0.25 0.5 0.25 0 0 1 

PCE3 0 0.3 0.4 0.3 0 0 1 

LS1 0.33 0 0 0.34 0.33 1 0 

LS1PEG 0.25 0 0.25 0.25 0.25 1 0 

LS2 0.4 0 0 0.2 0.4 1 0 

PNS 0.5 0 0 0 0.5 0 1 

 

 

Figure 3.8. Freundlich adsorption curves for LSPEG. 
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Figure 3.9. Freundlich adsorption curves for MG7500. 

 

Table 3.3. Polymer properties for polymers in the training set. 

Polymer Intrinsic 
Viscosity 

A2 Zeta PC 
sedimentation 
property 

MK 
sedimentation 
property 

PCE1 26.78 5.84 -12.13 26.47 -82.72 

PCE2 54 4.17 -14.10 74.03 -246.78 

PCE3 42 1.82 -20.60 32.46 0.00 

LS1 4 -1.66 -53.97 53.42 -356.15 

LS1PEG 4.5 2.67 -47.67 8.86 -106.35 

LS2 2.64 1.12 -19.97 0.00 -79.80 

PNS 2 -1.81 -19.77 6.41 -93.96 
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Table 3.4. Polymer properties for individual compositional variables calculated using LSQR 
method. 

Polymer Intrinsic 
Viscosity 

A2 Zeta PC 
sedimentation 
property 

MK 
sedimentation 
property 

Sulfonate -13.96 -2.14 -2.93 -21.47 20.11 

Carboxylate -7.23 30.00 291.20 -455.11 2502.12 

PEG 53.05 3.50 -37.90 65.80 -186.16 

Alkyl  7.05 -21.56 -236.38 391.47 -2112.40 

Aromatic -13.96 -2.14 -2.93 -21.47 20.11 

Crosslinked 6.56 7.49 26.78 -73.78 377.87 

Linear 18.39 0.16 -15.73 33.00 -134.10 

 

 

Figure 3.10. Polymer properties for individual compositional variables calculated using 
LSQR method. 
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Figure 3.11. Lasso trajectory and mean-squared cross-validation error as a function of tuning 
parameter. 

Table 3.5. Measured properties of the synthesized PSS-PEGMA-PMAA polymer. 

PSS-PEGMA-PMAA properties 
 

  

Intrinsic Viscosity (mL/g) 443.00 

A2 1.40 

MK Sedimentation at 0.5 SP (% change) -100.00% 

PC Sedimentation 0.5 SP (% change) 31.60% 

Zeta (mV) -48.47 

Slump Height Change MK/PC (cm) 3.63 

Slump Height Change PC (cm) 1.23 

Freundlich Adsorption Predictions at .25%SP 

PC 0.08 

MK 0.11 
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Figure 3.12. IR spectrum of the synthesized PSS-PEGMA-PMAA polymer. 

 

 



99 

 

 

Figure 3.13. The 1H NMR spectrum of the synthesized PSS-PEGMA-PMAA polymer. 
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Chapter 4. Cheminformatics for Accelerated Design of Chemical Admixtures1 

4.1. Introduction 

The rational discovery of new chemicals and materials through data-driven methods is the 

basis for the fourth paradigm of science. This new paradigm has helped to mitigate both the cost 

and time involved as compared to a traditional approach which requires multiple iterations (i.e., 

trial-and-error approaches) for scientific discovery.1, 2  Developed over the past three decades, 

cheminformatics is  among the early data-driven methods for materials development and has been 

widely implemented for virtual screening to accelerate drug discovery.3 One of the well-known 

techniques in cheminformatics is quantitative structure activity relationship (QSAR), which 

represents molecules as a vector of descriptors. Quantitative methods are utilized to learn a 

relationship between these descriptors and molecular function, which in drug discovery can be a 

complex interaction such as protein binding.4 These chemical descriptors can be physicochemical 

in nature, such as logP and dipole moment, or they can directly represent molecular structure. 

These structural descriptors can be zero-dimensional in nature, such as molecular weight, one-

dimensional in nature, such as counting of specific fragments, or be two/three-dimensional in 

nature as to encode the molecular topology.5 Common descriptors utilized to model topological 

information are known as molecular fingerprints. Fingerprints transform molecular structure into 

a bit string, and depending on the fingerprint method this bit string can be either an integer (count) 

or binary (true/false) vector.6   

 
1 This chapter includes work that was published and reformatted:  

Childs, C.M.; Canbek, O.; Kirby, T.; Zhang, C.; Zheng, J.; Szeto, C.; Póczos, B.; Kurtis, K.; 
Washburn, N.R. Cheminformatics for Accelerated Design of Chemical Admixtures. Cement 
and Concrete Research. 2020, 136, 106173. 
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Informatics approaches are based on the concept of similarity, which imply that the more 

alike two molecules are, the more similar their function will be.7 Initially, the most widely utilized 

quantitative approach towards determining similarity was Tanimoto similarity, which defines 

similarity between molecules ‘A’ and ‘B’ as the number of bits encoded (that is being an integer 

value) in the fingerprint for ‘A’  divided by the sum of bits encoded in ‘A’ and ‘B’. This results in 

a score between 0 and 1, where 1 is a perfect similarity and 0 is no similarity.8 Early methods for 

virtual screening in drug discovery utilized Tanimoto or other similarity metrics to discover new 

molecules with high similarity which could function similar to an existing molecule for testing.9  

Machine learning (ML) techniques are being explored for predictive modeling of the 

properties of cement and concrete. An early example was the use of an artificial neural network in 

determining the susceptibility of concrete to sulfate attack based on compositional factors from 

over 100 samples with over 8000 datapoints.10 A number of more recent studies have used 

significantly larger datasets and a broader range of ML algorithms to predict the compressive 

strength of concrete as a function of mix design, including both cementitious and aggregate 

variables.11,12,13,14 There are few examples of data-driven models used for design of novel chemical 

admixtures.  

A recently developed algorithm, hierarchical machine learning (HML), was used to 

develop a new superplasticizer for blends of portland cement and metakaolin.15 The algorithm 

predicted a dispersant having a novel composition and a mechanism of action based on high 

viscosity and osmotic pressure of the pore solution rather than electrosteric forces mediated by 

adsorbed polymer. However, the algorithm represented polymer chemistry by mole fractions of 

functional groups, requiring additional interpretation in how the monomers were composed of 
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these groups. A more sophisticated representation of molecular structure was taken in the 

prediction of the surface tension for shrinkage-reducing admixtures, which utilized a cross-

validation technique with a multiple linear regression to predict their effectiveness and discover 

structures of alternative admixtures represented in terms of a molecular signature.16 However, 

these tests were based on only the polymer properties, not considering the effects of the predicted 

structures in a cementitious system. Also, as a forward-stepping selection for features was utilized, 

only four simple hydrocarbon-based structural fragments were found as contributing to the best 

model. This can create wide variability in prediction as the molecular structures increase in 

complexity. 

ML regression techniques can be used in tandem with advanced cheminformatics methods 

for representing chemical structure. Recent cheminformatics approaches in conjunction with ML 

beyond drug design have been utilized to screen conjugated polymers and predict photovoltaic 

power conversion efficiency17,18, predict compound toxicity19, and predict solubility parameters20. 

Until recently, ML and cheminformatics have been limited to applications with high-throughput 

and large data availability, which has largely precluded cementitious materials where data 

collection is limited. However, with recent research into ML techniques on sparse datasets21,22,23, 

cheminformatics approaches can be used to develop structure-function relationships and perform 

rapid virtual screening of chemical admixtures. These ML techniques for sparse datasets allow for 

higher complexity representations of molecules which can then be reduced through feature 

selection techniques, allowing for more complex architectures and variability in the dataset.  
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Calcium sulfoaluminate (CSA) cements are rich in belite, calcium aluminosulfate (i.e., 

Ye’elimite) and calcium sulfate phases with a general clinker phase composition shown in Table 

4.1.  

Table 4.1. General clinker phase composition of a CSA cement. 

Phase Amount (%) 
Belite (C2S) 10-60 

Ye’elimite (C4A3 S) 10-55 

Ferrite (C4AF) 0-40 
Anhydrite (C S) 0-25 

Monocalcium aluminate (CA) 0-10 
Mayenite (C12A7) 0-10 

Free Lime/Calcite (C) 0-25 

 

Because no tricalcium silicates are found in typical CSA clinker, their embodied CO2 is 15-50% 

lower compared to portland cement.24 Just the C3S calcination alone in PC accounts for 0.578 g of 

CO2 per g a raw material. Lifecycle assessments in CSA calcination show CO2 production at only 

0.216 g per g of raw material.25 CSA cements hydrate rapidly to produce ettringite (AFt or 

C6A𝑆̅H32) and gibbsite (AH3), leading to a short set time that is ideal for use in tunnel linings, 

bridge decks, airport runways, and repair applications. Figure 4.1 shows the initial hydration 

reactions occurring in CSA with high initial reactivity due to the sulfate and aluminate phases.   
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Figure 4.1. CSA early hydration reactions and early product formation.26,27 AFt and AH3 

phases are shown in the microscopic schematic forming from residual clinker. 

Set retarding admixtures are commonly required to prevent premature setting that can occur 

within 20 min post mixing.28 A diverse range of chemistries ranging from sugars, lignosulfonates, 

and polynaphthalene sulfonates (PNS) to both organic and inorganic acids have been used.28,29,30,31 

Retarders are thought to have a diversity of mechanisms that depend on cement phases but are 

typically thought to operate through selective blocking of reactive surface sites, formation of ion 

complexes, or hydrate growth inhibition.32 Small anionic organic compounds such as tartaric, 

gluconic, and citric acids have been reported for use in CSA cements, with citric acid (CA) 

commonly used to prolong hydration reactions without adversely affecting mechanical properties 

when dosed appropriately.30,33 It has been established that combinations of polar and anionic 

functionality, such as those in nitrilotris(methylene)triphosphonate (ATMP), have been shown to 

prolong set times for portland cement, suggesting there may be complex synergies between 

functional groups and molecular architecture.34 Due to this complex interplay between chemical 

features in set retarders, cheminformatics is a promising methodology to predict set times and 

screen a diversity of retarder chemistries. 
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The objective of this work was to demonstrate a cheminformatics approach to accelerated 

design of chemical admixtures, capable of extending set time of CSA cement to greater than 1 

hour.  Here, a library of 23 small molecules were screened as set retarders for CSA cement at 

constant dose of 1%. While this dose of citric acid resulted in an excessively long set time, it 

allowed discrimination of the performance of less active retarders. Three different molecular 

fingerprint formalisms were explored, and the resulting models were optimized by standard 

methods of machine learning. To demonstrate the potential of cheminformatics in rapid virtual 

screening of chemical admixtures, the structures of 500,000 small-molecule compounds from an 

online library were downloaded and candidates were screened following constraints of molecular 

weight and functionality. A novel set retarder from this screening was tested, and its effects on 

CSA cement set time were found to be within the uncertainty estimates of the model. 

4.2. Experimental 

4.2.1. Materials 

All cement pastes were prepared utilizing CSA cement (CTS Cement, RapidSet). The 

cement composition, as determined by quantitative x-ray diffraction. As shown in Table 4.2, the 

main phases identified are belite, ye`elimite, bassanite, anhydrite and calcite. 
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Table 4.2. Phase composition of CSA clinker used, determined by QXRD  

Phase Amount (%) 

Ye`elimite 30.3 

Belite 42.0 

Anhydrite 12.1 

Bassanite 5.5 

Calcite 2.7 

Rwp
a
 (agreement factor), % 12.4 

a  <15 % Rwp is considered as an accurate fit for the quantitative phase analysis.35  

All chemical retarders were purchased from Sigma-Aldrich Corporation or Fisher Scientific and 

used without further purification. A representation of the chemistry and abbreviations of the high 

activity retarders are shown in Figure 4.2. Deionized water with a resistivity of 18.2 MΩ was 

utilized for all experiments. 
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Figure 4.2. Chemical structures of high activity retarders: Citric acid (CA), phosphonoacetic 
acid (PAA), nitrilotrimethylphosphonic acid (ATMP), 2-phosphonobutane-1,2,4-
tricarboxylic acid (PBTCA), phosphonomethyliminodiacetic acid (PMIDA), and N,N-
bis(phosphonomethyl) glycine (glyphosine). The arrows in the figure connect compounds 
with high chemical similarity. 

4.2.2. Test Methods 

Cement pastes were prepared utilizing a hand-held mixer (HamiltonBeach). The admixture 

was dissolved in the mix water,  and added to the cement, dosed in percentage by weight of cement. 

The paste was mixed for 30 s at low speed setting and then an additional 60 s at medium. A 30 s 

rest period was followed with a final 60 s medium-speed mixing period. All mixes were tested 

immediately followed mixing.  

Set time was determined through Vicat needle testing, ASTM C191.36  Here, a constant w/c of 

0.40 was used and tests were conducted every 5 min. In order to maintain consistency in the 
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computational procedure, the time where the needle failed to penetrate 25 mm from the top of the 

mold was utilized as the initial set time.  

Heat evolution of CSA cement pastes mixed with different retarders was determined up to 72 

h using a commercial isothermal calorimeter (TAM Air, TA Instruments). Cement pastes were 

prepared at room temperature (23 °C) outside the calorimeter with a water-to cement (W/C) ratio 

of 0.40 then placed inside the calorimeter. Retarder dosages were kept constant at 1 % by weight 

of cement for all mixes. The results were compared with a plain CSA cement paste prepared 

without adding any retarder.    

4.3. Computational Methods 

4.3.1. Fingerprint Generation 

Set retarders were first represented as a simplified molecular-input line-entry system 

(SMILES) string, which is a line notation utilized to represent a chemical structure. The SMILES 

strings were then input into RDKit37, an open-source cheminformatics software in Python. Each 

molecule was transformed into a vector of descriptors for use in ML as a molecular fingerprint. 

Three various fingerprints were utilized and compared with one another. The first was a custom 

set of 15 descriptors based on the counting of groups, ratios of functional groups, expected charge 

of each molecule at pH 10.5 similar to that found in CSA cement, and ratio of charge to the number 

of groups as a similar descriptor to charge density. Figure 4.3 presents PAA represented as this 

custom fingerprint with each descriptor of the vector explained.  
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Figure 4.3. Listing of each of the 15 descriptors utilized in the custom descriptor set 
representing PAA. 

The second fingerprint, implemented through RDKit, is a binary circular fingerprint based 

on the Morgan algorithm.38 In this algorithm, each atom is represented by its molecular 

environment as defined by the atomic connectivity within circles of radius set by an integral 

number of bonds. The variant of this fingerprint used was an extended-connectivity fingerprint 

(ECFP), which represents each possible connectivity within the molecular topology as a binary 

vector, where the bit is encoded as 1 if the specific connectivity is present, and 0 if absent.38 A 

radius of three was chosen so that any path of atoms within three or less bonds of the molecule 

would be represented. Morgan type fingerprints in RDKit are hashed into a 2048 length bit vector. 

Through a process known as folding this vector can be decreased based on a modulo operation to 

lengths of 1024, 512, 256, 128, 64, and 32, however each fold leads to an increasing amount of bit 

collision where multiple features are encoded on the same bit.39  

A third fixed-length fingerprint modeled through RDKit is the 79-bit vector 

Electrotopological State (E-state) fingerprint. This fingerprint sums the electronegativity 



113 

 

contribution (as determined through connectivity) for each of 79 various chemical groups that 

could be present in a molecule40, thus providing basic physicochemical descriptors.  

4.3.2. Machine Learning  

Methods of machine learning were used to optimize the cheminformatics model, which 

was built on a training set of a single CSA cement and a small library of 23 candidate set-retarding 

molecules. It is important to note that extension to other CSA cements is dependent on the 

similarity to the phase composition of the CSA utilized in this work, but it is expected that the 

trends in the model will generalize. In ML it is necessary that the number of features remains less 

than the number of training points to avoid overfitting. For this reason, a sparse linear model was 

determined using the least absolute shrinkage and selection operator (Lasso).41 Lasso is a linear 

model which utilizes the cost function for least squares regression with an added penalty term in 

the form of the L1-Norm as shown in Eq. 4.4.1: 

 𝑚𝑖𝑛 (‖𝑦 − 𝛽𝑥‖ + 𝛼‖𝛽‖ ) Eq. 4.4.1 

In this equation, y represents the responses, where the set time of unmodified CSA cement is set 

equal to zero. All admixtures are set relative to this so that the intercept term can be set to zero. 

Here, x represents the independent variables of the molecular fingerprints for each molecule. The 

β parameters are the model coefficients minimized through the cost function in order to find the 

best fit line, and α is the hyperparameter which is optimized through cross-validation. Tuning the 

hyperparameter to larger values drives non-important β parameters and the corresponding features 

to zero. This decreases the dimensionality to avoid overfitting in which the model provides an 

excellent fit to data in the training set, but it can still have low predictive power for data outside 

the training set. All data analysis was performed in Python using the Scikit-Learn package.42 
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Cross-validation is an approach utilized to find the optimal hyperparameters for a ML 

model. Here, a leave-one-out cross validation (LOOCV) was applied. In this approach 22 of the 

23 independent variables were used as a training set and the 23rd was a test point which has its 

error, in this paper the mean squared error (MSE), from the predicted value calculated for each 

hyperparameter value. This process was repeated 23 times, such that each independent variable 

was treated as a test point and the average of all the MSE’s was calculated along with a standard 

deviation based on testing all CV folds. The goal was to determine the hyperparameters 

corresponding to a low MSE along with a low standard deviation in the MSE, as these would 

predict the unseen screened molecules most accurately. For the ECFP, cross-validation was 

utilized to minimize the error for both fingerprint length and α. Gutlein and Kramer43, termed a 

similar technique as a folding and filtering process where folding is a process of setting the 

fingerprint vector length and filtering, as applied to this research, through utilizing Lasso to reduce 

the dimensionality. The goal in the minimized CV error is meeting the condition of (number of 

features) < (number of samples) in order to prevent having an underdetermined system of 

equations. An overview schematic of this process is presented in Figure 4.4. As the custom and 

Estate fingerprints are constant-length vectors, no folding was performed leaving α as the only 

tunable hyperparameter for the filtering process. 
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Figure 4.4. Schematic representation of the computational methodology. First the molecules 
were transformed into binary molecular vectors through fingerprinting techniques. These 
vectors then pass through both folding where bits from a large vector are mapped onto a vector 
of smaller size, and filtering, a method of feature selection through utilization of Lasso and 
cross-validation. The most accurate model was selected and virtual screening of molecules 
was performed to find molecules with set times above 1 h. 

 

4.3.3. Selection of Compounds of Virtual Screening 

Virtual screening was performed by downloading 500,000 compounds in spatial data file 

(‘.sdf’) format from the public depository PubChem.44 Initial constraints applied to the molecules 

were selected as to only screen molecules similar to those found in the tested library: That they 

were of the basis set of atoms [H,C,N,O,P,S], no aromatic or aliphatic rings, having >5 but <20 

non-hydrogen atoms, having >2 hydrogen donors and >2 hydrogen acceptors, having >1 carbon, 

and a ratio of oxygen/carbon ≥1, and any mixtures of compounds were not formally screened.  



116 

 

4.4. Results and Discussion 

4.4.1. Set Time  

The set time for the CSA cement without admixture occurred rapidly, as expected, with initial 

set at 15 min. Of the 23 candidate admixtures examined, only six produced initial set times in 

excess of the 1-hour target. Set times for those six admixtures range from 75 to 180 min, as shown 

in Figure 4.5. The complete results of each candidate admixture in the training set are shown in 

Figure 4.13. 

 

Figure 4.5. Comparison among those retarders producing a set time greater than 1 h. All 
measurements were performed by using a Vicat apparatus with admixture concentration set 
to 1% by weight of cement at a 0.40 w/c ratio.  

4.4.2. Folding, Filtering, and Fitting 

The custom fingerprint, Estate fingerprint, and ECFP’s were each optimized utilizing 

Lasso. The minimum uncertainty in the MSE where the number of selected features < the number 
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of molecules tested, as determined through CV, was reported and shown in Figure 4.6. At larger 

fingerprint lengths this implies that the RMSE in Figure 4.6 does not correspond directly to the 

minimized MSE as calculated through Lasso. The alpha hyperparameter had to be selected to 

prevent an underdetermined system. The complete plots for all the folds of the ECFP’s are shown 

in Figure 4.14 and Table 4.4. 

 

Figure 4.6. The ECFP fingerprint was tested at multiple fingerprint lengths after folding. Both 
the Estate and custom fingerprints are set length vectors and therefore are shown as a straight 
line. The custom and Estate fingerprints have a similar constant error in the predicted set time 
of 45 min and also have similar RMSE uncertainty, but ECFP has a minimum error of 26 
minutes in the predicted set time at a fingerprint length of 32 with the smallest RMSE 
uncertainty. 

The minimum MSE was found for the 128 length Morgan Fingerprint with a mean value 

of 647 while the 32 length vector had the next lowest MSE value of 710. However, the minimum 

uncertainty, as shown by the standard deviation in the MSE, corresponded to the folded 32-bit 

ECFP with a value 196 compared to 317 at the 128 length vector. The goal in ML is to minimize 

both the MSE in mean prediction, along with the uncertainty. As such the 32-bit ECFP was selected 

for the visual screening of various chemical structures as it corresponds to the lowest amount of 
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predicted uncertainty for the model, but still putting the mean around the minimum of the 128 

length vector. The individual Lasso CV plots for the 32-bit ECFP, Estate, and custom fingerprints 

are shown in Figure 4.7, represented as MSE. Note that the RMSE shown in Figure 4.6 corresponds 

to the uncertainty in predicted set times, but the MSE is the quantity that is minimized in Eq. 4.4.1.  

 

Figure 4.7. Lasso CV plots for a) Custom fingerprint, b) Estate Fingerprint, and c) 32 length 
ECFP.  

Alpha is the Lasso hyperparameter which at small values causes the regression to become 

equivalent to an ordinary least squares regression. As alpha increases, more parameters are forced 

to zero as shown on the top axis. The goal was to identify an optimal alpha value to both minimize 

the MSE, uncertainty in the MSE and have the number of non-zero coefficients (features) < the 

number of samples tested (23). The dashed vertical line in the plots shows the selected alpha 

coefficient best meeting these criteria. 
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4.4.3. Regression Analysis 

Due to the folding procedures for circular fingerprints, interpretability suffers due to the 

high density of information encoded in each bit. However, the custom and Estate fingerprints are 

interpretable because they map directly from chemical structure, and methods for calculating each 

bit in Estate have been reported in literature.40 The selected alpha values, number of selected 

features, MSE’s, standard deviation in the MSE and correlation coefficients (R2) are shown in 

Table 4.3. When selecting the alpha value which minimizes the uncertainty in MSE for the Estate 

fingerprint it resulted in a very sparse model comprised of only two parameters, which represented 

the hydroxyl and carbonyl groups, respectively. They were both positive, indicating an increase in 

set time associated with each. As Estate is a summation of the electronegativity contributions due 

to the surrounding environment these groups are found in, having more hydroxyl and carbonyl 

groups associated with anionic functionalities such as carboxylate and phosphonate, were 

associated with longer set times. However, only utilizing these two descriptors led to a 

significantly higher MSE than the ECFP and a low correlation coefficient on the training set. This 

is also similar to the custom fingerprint, where upon selecting the appropriate alpha value only one 

descriptor is selected for set time prediction. This descriptor is the charge of each molecule after 

dissociation when introduced to a CSA slurry of around pH 10.5. This predictor shows a positive 

correlation between charge and set time, but it is a poor predictor in terms of MSE and R2 values 

as shown in Table 4.3. 
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Table 4.3. The selected alpha values, number of selected features, MSE’s and R2 values 
associated with each fingerprint. 

Fingerprint 
Method 

Alpha 
Value 

Number of 
Selected 
Features 

MSE RMSE 
(min) 

Standard 
Deviation 
in MSE 

R2 

ECFP 0.45 18 710 26.6 196 0.983 
Custom 12.5 1 2088 45.7 857 0.273 
Estate 171 2 2094 45.8 833 0.240 

 

4.4.4. Virtual Screening 

The model presented in this work is designed to perform rapid virtual screening of 

candidate chemical admixtures. While the methodology does not allow for optimization, it can 

provide an accurate estimate for the performance of any chemical species that meets the constraints 

of the compositional space. Here, after the initial set of 500,000 compounds were reduced 

according to these constraints, 886 molecules were identified for virtual screening. Each of these 

molecules were parameterized as a 32-bit ECFP and introduced into the ECFP Lasso regression 

model to predict the set time. From this group, 365 compounds were predicted to impart set times 

beyond 1 h. These compounds were then screened for cost and commercial viability in order to 

find compounds suitable for testing. As a test case, glyphosate was chosen as a commercially 

available molecule from the screened database for testing and is shown in Figure 4.8 Glyphosate 

is the most widely utilized herbicide worldwide45, but its activity as a set retarder in CSA or other 

cements has not been previously documented. This potential application was only predicted by 

rapid virtual screening of a chemical library. In addition, while not commercially available, the 

three molecules with the longest predicted set times are also shown. 
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Figure 4.8. The structure of glyphosate along with the three structures in the screened 
molecules leading to the longest predicted set times. 

Glyphosate was predicted to have a set time of 61 min.  With an MSE of 710 identified 

through cross-validation within ECFP, molecules would be expected to be predicted within a range 

of the RMSE, +/- 26 min. Using Vicat testing, the set time of glyphosate was measured to be 55 

min, within the predicted error of the cheminformatics analysis. As shown in Figure 4.9, the set 

time of glyphosate was found to be predicted within the range of molecules with similar measured 

set times. 
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Figure 4.9. Plot of all molecules within the RMSE predicted for glyphosate. The prediction 
for glyphosate (gray) is shown along with experimentally measured set times of these 
molecules (blue), including the measured value for glyphosate, and despite the molecular 
structure variations within this range, glyphosate was shown to have a set time within 6 min 
of the prediction. 

4.4.5. Hydration Kinetics 

To assess the validity of the machine learning predictions and to provide insight into the 

set time results, heat evolution was measured for CSA cement pastes prepared with four high 

activity retarders selected from the training set and glyphosate selected for validation from the 

virtual screening. Figure 4.10 compares the rate of heat evolution and cumulative heat evolved for 

ordinary CSA cement paste with pastes at the same 0.40 w/c ratio, but containing 1% by mass 

addition of these retarders.  

A near-instantaneous first peak was observed in all samples due to the wetting and early 

dissolution of cementitious phases.46 In the  ordinary CSA, a single peak with a maximum at ~ 54 

min was observed. With retarders, dual peaks, extending between 160 and 600 min, were observed, 

where broader peaks are associated with increasing retardation effect. The presence of bassanite 
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in the CSA cement is associated with the observation of dual peaks, as its rapid dissolution leads 

to a first peak associated with exothermic gypsum formation that then results in a second peak 

indicative of ettringite precipitation.47 Without admixtures, these dual peaks are not typically 

resolved because  the rapid formation of gypsum from bassanite occurs almost simultaneously 

with other early reactions. However, in the presence of different set retarders, the peak associated 

with formation of gypsum is shifted towards longer hydration times and can be identified as a 

shoulder or a distinct peak before the main peak. This phenomenon was also demonstrated by 

Burris and Kurtis46  and Velazco et al.48 for CSA systems containing citric acid. The characteristics 

of the early CSA cement hydration exotherms in the presence of these 3candidate admixtures are, 

then, also consistent with effective retardation.  

 

Figure 4.10. a) Rate of heat evolution of CSA cement pastes prepared, and b) cumulative heat 
evolved comparing plain CSA cement paste (green) with high-activity set retarders in the 
training library.  

After about 14 hours hydration time, the cumulative heat of ordinary CSA is exceeded by 

each of the CSA cement pastes containing retarders (Figure 4.10 (b)). However, there is not a clear 

correlation between cumulative heat evolved at 72 hours (which ranges between 2.88% and 

13.28% greater than the ordinary CSA), and retardation of early hydration kinetics.  For instance, 



124 

 

PAA delayed the initial peak more than glyphosine and glyphosate, but the CSA paste including 

phosphonoacetic acid liberated the least amount of heat among all samples including retarders. 

However, comparing the time until the first peak after the dormant period may be correlated with 

set-time results. Based on this metric, the effectiveness of the retarders can be ranked as:  

CA (most retarding) > ATMP > PAA > Glyphosine > Glyphosate (least retarding) 

This trend generally agrees with the set-time results (Figure 4.11), with the exception of longer 

setting-time observed for CSA paste mixed with PAA than ATMP.  

 

Figure 4.11. Setting time determined by Vicat test versus time to main peak of heat release 
observed in calorimetry curves, showing a correlation with a plot of the best fit line.  

4.4.6. Interpretability and Modeling Sparse Data 

Interpretability of data-driven models is often assessed through comparison with 

established mechanistic models.49 For set retarders, an important mechanism is through adsorption 

directly onto cement clinker phases. It has been shown that sulfate ions preferentially adsorb onto 

aluminate phases, and that the addition of sulfonated water reducers, such as PNS, leads to varying 

degrees of competitive adsorption with gypsum, which modifies the set time depending on the 
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cement phase composition.50 The second mechanism occurs through ion complexation of an 

anionic admixture with cationic cement species, primarily Ca2+. This results in a two-fold effect, 

the first being complexation of anionic admixtures, such as citric acid forming insoluble 

precipitates, and the secondary result being changes in cement solubility kinetics due to the change 

in ionic strength caused through complexation.46 The third mechanism occurs through adsorption 

of admixtures onto hydration products inhibiting further crystal growth.51  However, the exact 

mechanisms of many of these retarders and their interactions with ions in CSA cements are still 

poorly understood and may involve more than one physicochemical mechanism and vary based 

on CSA phase composition.31,52 The cheminformatics model presented here is not based on 

mechanism but rather strictly on the effects on set time, and it may be that the retarding effects of 

different compounds in the library operate through distinct physicochemical interactions in the 

cement paste. It also may be that the retarding effects of these admixtures have limitations in their 

generalizability to CSA cements, particularly those with different compositions than utilized in 

this study. Integration of molecular descriptors derived from cheminformatics and knowledge of 

physicochemical interactions will be necessary to combine the powerful representations of 

chemical structures with mechanistic understanding. 

Another challenge in data-driven approaches to modeling complex physical systems is 

developing methods for small datasets. This can also be addressed through embedding domain 

knowledge in these models, either in the form of chemical and physical knowledge or in terms of 

similarity.21  ECFP methodology relies upon the concept of similarity, while the custom and Estate 

descriptors had mixtures of similarity and chemically embedded knowledge. However, as is shown 

with the high errors in the custom and Estate fingerprints, chemically embedded knowledge must 
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also be meaningful to the system. Charge and electronegativity had a small amount of predictive 

capability, but yielded less accurate predictions than embedded similarity. In order to improve the 

model with embedded physiochemical parameters, features experimentally determined such as ion 

complexation and other mechanisms leading to CSA set time can be included as a form of causal 

knowledge to improve quality and interpretability of this sparse dataset. 

4.4.7. Future Directions 

With cheminformatics methods primarily being developed for quantum chemical and 

pharmaceutical methods, many of the chemical databases, such as PubChem, contain substantial 

numbers of pharmacological and theoretical compounds that are not commercially available or yet 

to be synthesized. In the context of the cement industry, any screened molecules would need to be 

economically feasible and readily acquired. As opposed to manually examining the remaining 

compounds leading to long set times, establishing a link to common chemical suppliers to import 

availability and price would improve this selection process in future research. 

While basic physical exploration into the working mechanisms of these retarders was 

performed, a more in-depth analysis needs to be undertaken. Phosphonated molecules have not 

garnered much attention for the use as cementitious retarders, and they deserve further study. 

Measurement of ion complexation and adsorption behavior of these alternative anionic chemistries 

need to be performed in order to develop a physiochemical understanding of the behavior of these 

compounds within CSA cement. This understanding could lead to alternative approaches to model 

these small datasets, such as similar past approaches which utilized physiochemical understanding 

and ML in development of cement superplasticizers.15,53  
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This methodology could be extended to the screening and prediction of any of the number 

of small organic admixtures for cementitious systems. A similar approach was performed in the 

prediction of shrinkage-reducing admixtures16, but could also be extended to air-entraining 

admixtures, defoaming agents, and set accelerating admixtures designed for specific cementitious 

systems.  While data-driven research can require extensive experimentation, the tools of machine 

learning can be used for model building even with small training sets. In this work, folding and 

feature selection were utilized to learn over a sparse dataset, and an ML process was still able to 

develop an accurate model relating chemical structure to function. However, as this model still has 

a RMSE of 26.6 min, increasing the number of datapoints along with higher diversity in the 

screened compounds would allow for more accurate feature selection and predictions. 

The work presented here is an example of the broader field of computer-aided molecular 

design, which is becoming an important methodology in the development of advanced materials. 

The broad challenge is efficiently screening the vast space of chemical species to determine which 

could perform particular functions in materials applications. Bayesian cheminformatics is a 

powerful formalism for performing this screening54, and it has been applied to the optimization of 

thermal conductivity in polymers. Similar approaches can be applied towards the prediction of 

chemical admixtures, where ML can model the physiochemical factors and molecular structures 

generated which correspond to maximum efficacy. With the shifting nature of science into a data-

intensive fourth paradigm1, these approaches could be combined with experimental design in order 

to develop better predictions of different classes of chemical admixtures. 
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4.5. Conclusion 

The efficacy of a cheminformatics approach for chemical admixture design was 

demonstrated with an example application  in the use of virtual screening methods for 

identification of small organic molecules capable of retarding CSA set time beyond 1 hour. 

Methodology was developed to utilize molecular fingerprints with the sparse datasets to virtually 

screen similarity between compounds and predict set times within CSA cement. It was determined 

that commercially available glyphosate would extend set time to beyond 1 h and experimentally 

determined to be 55 min, well within the predicted standard deviation of 26 min. Set times 

determined via Vicat testing were consistent in trends found through isothermal calorimetry. While 

physical insight into set time trends could not be discovered due to the folding process, multiple 

anionic chemistries were shown to be effective in prolonging set time where experimentation and 

insight can be obtained in future experimentation.  

While the folding operations performed in Morgan fingerprints make interpretability 

difficult, they do offer a powerful methodology for performing virtual screening, particularly in 

exploring specific hypotheses, such as the effects of anionic groups.38, 43, 55 The results from this 

study suggest that for small molecules, the phosphono chemistry is a critical component of activity.  

As the exact retarding mechanisms for each of these molecules is not fully understood, the 

cheminformatics approach was applied as a mechanism for learning similarity between molecular 

structures which contribute to the retarding mechanisms. 

The development of this machine learning tool that guides the testing of chemical retarders 

for sustainable, durable cementitious binders allows for efficient, cost-effective virtual screening. 

This same method also allows for the possibility of building upon this dataset to create large 
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datasets with more bits encoded in the fingerprints, similar to many bioinformatics approaches in 

drug discovery. Progress in informatics tools are catalyzing new ways of research, which could 

translate to significant advances in cement research. 

4.6. Research Contributions 

C.M. Childs performed set time analysis, cheminformatics and ML analysis, and virtual 

screening. O. Canbek and C. Szeto performed cement characterization and hydration kinetics 

measurements. T. M. Kirby, C. Zhang, and J. Zheng performed set time analysis. 

4.7. Appendix 

Vicat testing was utilized for set time experimentation. The Vicat needle apparatus and set up is 

shown in Figure 4.12.  

 

Figure 4.12. Vicat Needle Apparatus utilized for set time experimentation. 

A complete graph, showing the set times of all 23 tested molecules is presented in Figure 4.13. 
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Figure 4.13. Complete summary of Vicat needle measured set times for all 23 tested retarders. 
All experiments are recorded at 1% loading of retarder by weight of cement.   

Complete cross-validation plots for each fold of the ECFP are shown in Figure 4.14. The alpha 

value corresponding to the lowest uncertainty in MSE is demarcated with a dashed line. The results 

of this alpha value, MSE, and standard deviation in MSE are presented in Table 4.4. 
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Figure 4.14. ECFP cross validation results for each fold: a) 32 bits, b) 64 bits, c) 128 bits, d) 
256 bits, e) 512 bits, f) 1028 bits, and g) 2056 bits. Note that in some cases the minimum MSE 
and minimum standard deviation of MSE occur in areas with >23 descriptors. As this would 
create more features than compounds in the test set, alpha must be chosen at a higher value. 
This selected α value is represented as the dashed vertical black line. 
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Table 4.4. Summary of the selected α hyperparameter along with the corresponding MSE and 
standard deviation in MSE at these values for the various length ECFP’s. Note the tradeoff 
between minimizing the MSE or minimizing uncertainty between the 32 bit ECFP and 128 
bit ECFP. Finding the area to minimize the standard deviation (uncertainty) was selected as 
the method utilized to select the best model and thus the 32 bit ECFP was utilized for virtual 
screening. 

# of Bits Alpha Value MSE Standard 
Deviation in 

MSE 
32 0.45 710 196 
64 0.472 973 429 

128 0.14 647 317 
256 0.35 1007 389 
512 1.2 1160 547 

1028 2.7 2325 1134 
2056 0.98 2085 1049 

 

Table 4.5. Summary of calorimetry data showing plain CSA cement paste and the high-
activity set retarders. 

Chemical Abbreviation Time to first 
peak after initial 

wetting (h) 

Cumulative heat 
evolved (J/g) 

CSA Cement (No Admixture) No Admixture 0.88 223.1 
N,N-Bis(phosphonomethyl) 

glycine 
Glyphosine 4.26 250.5 

Nitrilotrimethylenetriphosphonic 
acid 

ATMP 7.47 242.6 

Phosphonoacetic acid PAA 5.97 229.5 
Citric acid CA 8.53 252.7 
Glyphosate Glyphosate 2.7 245.7 
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Chapter 5. A Machine Learning Approach for the Prediction of Ultra-High Performance 
Concrete Compressive Strength Based on Latent Variables 

 

5.1. Introduction 

Ultra-high performance concrete (UHPC) is a class of concrete having high binder content, 

which includes supplementary cementitious materials (SCMs) and fine aggregates, very low water 

content, high-range water reducers, and fiber reinforcement. These materials are defined by 

compressive strengths in excess of 150 MPa and high tensile strengths of around 15 MPa.1,2 Due 

to the low water ratios, lack of course aggregate, and high binder contents, UHPC cement content 

is roughly three times greater than normal strength concrete (NSC).3 One of the earliest utilizations 

of the compositional factors which are the basis of UHPC was performed by the Pittsburgh office 

of the US Army Corps of Engineers in 1983. This work was performed on the Kinzua Dam, which 

was completed in 1966 along the upper Allegheny River, primarily as a flood control measure for 

Pittsburgh, Pennsylvania.4 However, by the 1983, the spillway floor had already been replaced 

once in 1974 and was again in failure due to abrasion and erosion as shown in Figure 5.1.5  

 

Figure 5.1. Eroded stilling basin of the Kinzua Dam in Warren County, Pennsylvania, in 
1983. 
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The US Army Corps of Engineers performed a series of tests to design high strength 

cements which they thought would correlate well with abrasion resistance. Their final blend 

exceeded 85 MPa at 28-day strength testing and was designed with high amounts of silica fume as 

an SCM, high-range water reducers, water-to-cement ratios (w/c) less than 0.30, and utilization of 

fiber reinforcement.6 A diver inspection in 2013 showed little damage to the basin and as of 2018 

has lasted five times longer than the original concrete.5 Although these compositions did not reach 

compressive strengths consistent with modern-day UHPC, the principles in the design of the 

Kinzua Dam formulations allowed for the development of UHPC.  

Improvement in both materials and composition allowed for the first utilization of UHPC 

in an engineering structure in Sherbrooke, Canada, in 1997 as shown in Figure 5.2.7  

 

Figure 5.2. First UHPC engineering structure. A pedestrian bridge in Sherbrooke, Canada. 

The first UHPC highway bridge in the United States was the Mars Hill Bridge in Wapello 

County, Iowa in 2006 and shown in Figure 5.3. The strength provided by UHPC allowed for the 

elimination of stirrups in the shear-reinforcement in the I-girders.8  
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Figure 5.3. Mars Hill Bridge in Wapello County, Iowa.9 

UHPC strength is developed through both chemical and mechanical improvement to that 

of NSC. The improvement in chemical strength is due to the pozzolanic activity induced through 

the utilization of SCMs. SCMs are amorphous materials composed of silica and alumina, which 

do not react as cementitious materials. Instead, these materials which include silica fume, 

metakaolin, and fly ash, react with latent CH from hydrated portland cement. This pozzolanic 

reaction is responsible for formation of a strong C-S-H and C-A-H amorphous phases.10 In UHPC, 

both metakaolin and silica fume are widely studied materials due to their high purity and high 

specific surface areas which promote the pozzolanic reaction.11,12  

The improvement in UHPC strength from mechanical improvement is due to the 

minimization of porosity in the microstructure.13 In UHPC there are several types of void 

formation. The first is interlayer spacing within the C-S-H and C-A-H phases. The size of these 

pores is between 5-25 Å and as such are within the realm of van der Waals interactions, therefore 

are not detrimental to cement strength.14 A second type of void formation is capillary pores. These 
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pores have been found to be inversely related to cement strength and the size and continuity vary 

directly with the w/c.15 Finally, void formation is found in the interfacial transition zone (ITZ) 

between the hydrated cement paste and aggregate phase in UHPC. Generally, the ITZ is considered 

as the strength-limiting phase in concrete.14 However, the void formation within the ITZ can be 

reduced through the utilization of pozzolanic, high surface area SCMs which lead to increased 

chemical bonding and physical interactions through increased packing, respectively.16  

A traditional methodology to minimize the void ratio in the ITZ for UHPC is through 

particle packing models. Two common models for optimizing UHPC compositions include the 

modified Andersen and Andreasen model and the compressible packing model (CPM). The 

modified Andersen and Andreasen model17 incorporate particle size distributions and an adjustable 

parameter, q, to generate an ideal gradation curve where actual compositions can be manually fit 

with the q parameter to find an optimal packing density. The CPM was first developed by de 

Larrard and calculates a packing index, K, which can be optimized to a specified value, where K=4 

is a suggested value for a self-consolidating concrete mix.18  

A second factor into minimizing UHPC porosity is having a low w/c. This ratio decreases 

the formation of capillary pores through limiting the amount of unreacted water in the system.13 

While packing density is solely based on the solid content and particle diameters of the mixture, 

WFT considers the water content and surface areas available for water adsorption.19 Even with an 

optimized packing density, excess water could lead to capillary pore formation. While increasing 

particle packing leads to an increase in compressive strength, an increase in WFT leads to a 

decrease.20 Depending on the size and surface area of solids, along with the w/c ratio, a complex 

interplay occurs between attempts to optimize particle packing, WFT, and SCM reactivity.     
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Recently, traditional analysis of experimental testing has been supplemented with machine 

learning (ML) methods. ML is a diverse collection of statistical algorithms which are utilized to 

predict a system’s properties. Ghafari et. al21 trained an artificial neural network (ANN) on 53 

different UHPC compositions, optimizing a composition which experimentally agreed with 

predicted compressive strengths less than 5%. Although the optimized blend did not extrapolate 

to predicting an optimized blend outside of the range of tested compositions, the ANN 

outperformed traditional statistical mixture design approaches based on multiple linear regression.  

However, this ANN is parameterized by the specific materials in the training set, which 

limits its predictions to these components. For each various material with a different size, surface 

area, or reactivity there would be a lack of generalizability for this model and additional 

experimentation would have to be performed to retrain an ML algorithm. One method for 

improving generalizability, particularly for small datasets, is through representing the system in 

terms of latent variables.22 With the preexisting literature for optimizing blends based on particle 

packing and WFT equations, a hierarchical machine learning (HML) model23,24 was established 

for the prediction and optimization of UHPC compressive strength. Data from literature, 

supplemented with experimentally collected data, was encoded with latent variables based on the 

CPM and WFT, allowing for generalization to unseen, local source materials of various size, 

reactivity, and surface area. A Bayesian optimization approach was followed to predict UHPC 

compositions of high compressive strength with low model uncertainty. 



142 

 

5.2. Experimental 

5.2.1. Materials  

Cement mortars were prepared using a Type I ordinary Portland cement (Lafarge Holcim), 

metakaolin (MetaMax, BASF), and silica fume (Elkem Materials, Inc.), masonry sand (Vulcan 

Materials) with a particle diameter of 400 μm and river sand (River Sand Inc.) with a particle 

diameter of 600 μm. Also included as part of the compositions were a high range water reducer 

(MasterGlenium 7920, BASF) and steel fibers (Dramix, Bekaert) with a 13 mm length and 0.20 

diameter.  

5.2.2. Assessment of Strength 

All mixes were conducted in 0.03 ft3 batches in a tabletop mixer. Additional time was 

allowed for the mix to come together before fibers were added. The specimens cast for 

compression testing were 2 in by 2 in mortar cubes. There were six specimens cast for each mix, 

with compression testing being performed at 7 and 28 days. The specimens were loaded in the 

compression machine at a rate of 18,000 pounds per minute, on average. 

5.2.3. Data Collection 

A database was compiled of UHPC mixtures from published literature. Four datasets were 

chosen for training the model and are summarized in Table 5.1.  
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Table 5.1. Datasets compiled for training. 

Data Source Tafraoui et. al12 Ghafari et. al21 Berry et. al13 Wille et. al25 

# Datapoints 24 106 54 7 

SCMs Silica Fume 
Metakaolin 

Silica Fume Fly ash 

Silica Fume 

Metakaolin 

Fine 
Aggregates 

Sand- 230 μm 

Quartz- 11 μm 

Sand- 400 μm 

Quartz- 7 μm 

Sand- 500 μm Sand- 110 μm 

Sand- 500 μm 

Glass- 5 μm 

Temperature 20C, 90C, 150C 20C and 90C 20C 20C 

 

The seven mixes from Wille et al.25 were selected for use in validating the model.  

5.3. Computational Methods 

5.3.1. Data Representation 

The amount of cement, supplementary cementitious materials, filler materials, aggregates, 

water, superplasticizer, and steel fibers in each mix was recorded. Additionally, the curing 

temperature and 28-day compressive strength results of each mix were included as the output for 

the dataset. All reported mix design parameters from the training mixes were converted on a per 

mass basis of the whole mixture (solid and water phases) utilizing an assumed specific gravity for 

each phase. The reported average particle diameter (D50) and specific surface area (SSA) from 

each data source for the fine aggregates were utilized. However, for SCM particles where particle 

sizes are not routinely recorded, the values listed in Table 5.2 were assumed based on existing 

laboratory data. 
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Table 5.2. Assumed particle parameters for UHPC components. 

Particle Specific Gravity D50 (μm) SSA (m2 kg-1) 

Cement 3.15 15 394 

Fly Ash 2.38 25 500 

Silica Fume 2.22 0.2 18000 

Metakaolin 2.3 12 14000 

Sand 2.5 Varies by Source Varies by Source 

Quartz 2.65 Varies by Source Varies by Source 

 

Six parameters were chosen for inclusion as domain knowledge in the model. These six 

parameters are the equivalent cement content, the particle packing of the mixture, the water film 

thickness, the superplasticizer content, the fiber content, and the curing temperature. These 

parameters were selected for consideration based on established knowledge of established 

relationships in cement to direct the HML model from compositional to middle layer variables as 

shown in Figure 5.4.  
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Figure 5.4. The bottom layer represents the compositional space for UHPC. This high feature 
space increases with each new type and source of aggregate utilized, preventing models from 
being established without prior trials being conducted. A middle layer represents latent 
variables and allows for the introduction of new source materials which can be parameterized 
by six features for any new source or size material introduced. 

5.3.1.1. Equivalent Cement Content  

The concept of an “equivalent cement” value first appeared in a paper on the thermal 

control of mass concrete placements.26 In this application, it serves as an estimate of the 

approximate amount of heat generated by a concrete that includes SCMs. The equation below 

normalizes each mix component into an “equivalent” weight of cement based on its assumed heat 

generation. For example, class F fly ash is assumed to produce half as much heat as regular 

Portland cement, so the amount of class F fly ash is multiplied by 0.5 as shown in Eq. 5.1. This 

concept was incorporated as domain knowledge as a way of measuring the reactivity of a mix 

design in the absence of calorimetry data. The higher the equivalent cement content, the more 

reactive the mix is assumed to be.  
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 Cement + 0.5*(Amount of Class F Fly Ash)  
+ 0.8*(Amount of Class C Fly Ash)  
+1.2*(Amount of Silica Fume)  
+ 1.2*(Amount of Metakaolin) 
+ X(Amount of Slag) 
Where X = 1.1 for 0-20% replacement of cement by slag, 
1.0 for 20-45% replacement, 0.9 for 45-65% replacement, 
and 0.8 for 65-80% replacement. 

 

 

 

Eq. 5.1 

5.3.1.2. Particle Packing  

Including particle packing as domain knowledge requires an input parameter that will 

summarize the packing of the mixture in a single parameter. The packing model will be based 

upon the CPM, which has been demonstrated to be well-suited for multi-component, polydisperse 

systems.27,28 The CPM summarizes the packing of the mixture into a single parameter, K. Higher 

K values correspond with denser mixtures and higher compressive strengths. Particle packing is 

also considered to be a critical in determining the material properties of cement in both the plastic 

and hardened states, and it can be used as a design variable in increasing the loading of fine 

aggregate and SCMs and controlling the material properties of these materials. In order to 

automatically calculate this K value, a Python script was developed and included in the model as 

shown below in Eq. 5.2-Eq. 5.5:  

 

𝑎 = 1 − 1 −
𝑑

𝑑

.

 

 

Eq. 5.2 

 
𝑏 = 1 − 1 −

𝑑

𝑑

.

 
 

Eq. 5.3 

 
Φ∗ = 𝛽 1 − 1 − 𝑏 1 −

1

𝛽
Φ −  

𝑎

𝛽
Φ    

 

Eq. 5.4 
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𝐾 =  

Φ
Φ∗

1 −  
Φ
Φ∗

 

 

Eq. 5.5 

Where:   

di = grain size of rank i 

 dj= grain size of rank j 

aij = coefficient for the loosening effect, exerted by the grains of rank j on those of rank i 

        (j > i )           

 bji = coefficient for wall effect, of the grains of class i on the grains of rank j ( j < i ), with 

    d1 > di > dn 

 * = maximum possible volume in the presence of other particles 

  = volume of particles present 

   = virtual packing density 

 K = Packing index, a unitless number that relates to packing.  

 

The objective here is to maximize packing index (K). Based on particle size distributions for each 

of n components, the loosening (aij) and wall (bij) coefficients are determined and used to calculate 

the maximum possible volume for each particle size (*), similar to study,29 suggesting particle 

packing models can be used to predict flow and strength, particularly at early ages, in these 

systems. A Python script was created to uniquely represent each blend without the need to 

explicitly measure the actual packing density. ф was represented as 1-water content, while β was 

held constant for each UHPC blend.  

5.3.1.3. Water Film Thickness  

The water film thickness is a relationship between the amount of water present in the 

mixture and the surface area of all particles present in the mixture. A higher water film thickness 
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value corresponds with higher workability and self-consolidating behaviour.19 For UHPC it is 

assumed that there is no excess water to fill the voids in the mix. In a cementitious system, the 

pore solution phase can be split into two distinct types. The first type, filling water, is the water 

which fills voids between solid particles, and does not contribute to workability. The second 

portion of water occurs after these voids have been filled and is known as the excess water as 

shown in Eq. 5.6:30  

 𝑢 = 𝑢 − 𝑢 Eq. 5.6 

Where: 

 𝑢 = excess water 

 𝑢 = ratio of water in system by volume 

  𝑢 = voids ratio 

The amount of excess water is divided by the average specific surface area of all the 

particles in order to determine the WFT as shown in Eq. 5.7: 

 
𝑊𝐹𝑇 =

𝑢

𝐴
 

 

Eq. 5.7 

Where: 

WFT= water film thickness 

 𝐴 = average specific surface area 

WFT has been shown to correlate well with cement paste rheology and strength as it 

embeds a standard knowledge, and similar to particle packing models, that as the w/c ratio 

increases there is an increase in WFT. However, unlike the CPM, the average specific surface area 
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of cementitious particles is also considered and an increase in surface area leads to a corresponding 

decrease in WFT.19,31 A python script was written to theoretically represent each cement 

composition in terms of WFT. As the actual packing density, ф, for these blends was not measured, 

the voids ratio, 𝑢, was calculated as shown in Eq. 5.8: 

 
𝑢 =

(1 − ф)

ф
 

 

Eq. 5.8 

Where: 

ф = (1 −water content)  

This allows for a consistent way to represent ф without individually measuring the extent of 

packing density for each blend.  

5.3.1.4. Superplasticizer Content  

The model was directed to evaluate the superplasticizer content of all mixes in the database. 

While superplasticizer lends UHPC its workability, an excess of superplasticizing admixture can 

cause the strength development to be delayed. Thus, it is important for the HML model to consider 

the amount of superplasticizer present.  

5.3.1.5. Fiber Content  

Generally, UHPC contains 2-3% steel fibers by volume. Further addition of steel fibers can 

cause a loss of workability and an increase in entrapped air, leading to lower compressive 

strengths. For these reasons, the model was directed to consider fiber content as domain 

knowledge.  



150 

 

5.3.1.6. Curing Temperature 

It is well established that curing temperature has a large effect on the compressive strength 

of UHPC. Higher curing temperatures lead to accelerated strength development and higher overall 

compressive strengths.32,33,34  

5.3.2. Machine Learning Model 

Bayes’ theorem determines the posterior probability of an event based on the probabilities of 

the factors constituting the event – prior probabilities and likelihood of these occurring. We use 

this posterior distribution in Bayesian optimization (BO), for sample-efficient optimization of the 

concrete formulation. At each iteration in BO, an approximation to the posterior probability density 

function can be produced by sampling from this posterior distribution. This allows an acquisition 

function to be defined from which subsequent UHPC formulations can be chosen from to measure 

in the optimization routine. The approach of utilizing Bayesian analysis is to marginalize over the 

posterior distribution of parameters so that you get a better prediction result both in terms of 

accuracy and generalization capability. Error analysis will take place through comparing the Mean 

Squared Error, a prediction score which ignores Bayesian probability and compares how well the 

mean values of the data fit to the best model; and Miscalibration area, a quantification of 

uncertainty in the model based on calibration techniques developed by Kuleshov et. al.35 

Miscalibration area utilizes a predictive uncertainty method that makes a prediction and gives an 

uncertainty in the form of a "X% credible interval", which aims to capture the true point X% of 

the time. A hold-out test set is then utilized to measure on how many test points the credible 

intervals contains the true point. By performing this hold-out test for every X% between 0% and 

100%, an average difference between the goal percentage and the measured percentage (averaged 
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over each goal percentage value from 0% to 100%) can be computed giving the miscalibration 

area. This Bayesian metric tells us how well the uncertainty errors capture where the values should 

be. Hence, the model learns if it is predicting well or poorly to each test point. Beyond 

generalization capability, this error metric will give the capability of knowing the optimal points 

to test to minimize error in the model. Working in conjunction with HML, the capability of 

determining the best points to minimize error leads to finding the best model with the minimal 

amount of data collection.  

In this work, to perform approximate Bayesian inference, we used a probabilistic ensemble 

model, consisting of an ensemble of 20 ridge regression models (i.e., linear models with l2 

regularization). Each element of the ensemble was instantiated with a randomly drawn 

regularization strength and initial random state. After training each ensemble element on a given 

dataset, the mean and variance of the ensemble for a given input were taken as parameters of a 

Gaussian approximation to a posterior distribution over functions of that input. We then apply a 

monotonic transformation of the posterior variance parameter, learned with respect to a given 

validation set, which produces a modified posterior approximation with improved average 

calibration. 

The optimization routine was performed by first defining an acquisition function based on the 

posterior of our Bayesian model—in our case, we chose the probability of improving the 28-day 

strength over the best-observed value—and then finding the concrete formulation (i.e., set of input 

variables) that maximizes this acquisition function. To perform this optimization, we must proceed 

in two phases, based on the hierarchical structure of our HML model. In the first phase, we begin 

by determining the formulation of variables in the middle layer that maximize the acquisition 
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function via a mutation-based algorithm procedure. Fixing this set of optimal middle-layer 

variables, we then performed a second optimization routine, which determined a set of input 

variables that map to this set of optimal middle-layer variables. This second optimization routine 

returns a set of input variables that is restricted to a custom set of constraints over the input variable 

space. Taken together, this procedure yields a set of input variables which maximize the 

probability that we will measure a value that improves upon the highest-observed 28-day strength. 

5.4. Results and Discussion 

5.4.1. Regression and Optimization 

The results for the uncertainty ensemble utilizing a ridge regression for the bottom layer 

(Figure 5.5) and middle layer (Figure 5.6) are shown below. The MSE, RMSE, and miscalibration 

areas are tabulated in Table 5.3. 

 

Figure 5.5. Results to the regression showing A.) the predicted and actual values and B.) 
miscalibration area utilizing the bottom layer compositional variables as inputs. The points 
with the larger dark circles represent the validation dataset (Wille et. al25). 
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Figure 5.6. Results to the regression showing A.) the predicted and actual values and B.) 
miscalibration area utilizing the six middle layer variables as inputs. The points with the larger 
dark circles represent the validation dataset (Wille et. al25). 

Table 5.3. Statistics representing the bottom and middle layers MSE, RMSE, and 
miscalibration area. 

 MSE RMSE (MPa) Miscalibration Area 

Bottom Layer 424 20.6 0.20 

Middle Layer 660 25.7 0.06 

 

The bottom layer and middle layer resulted in RMSEs of 34.0 MPa and 43.0 MPa on the 

validation set, respectively. While the bottom layer regression outperforms the middle layer by 

slightly over 5 MPa in terms of RMSE, utilizing the middle layer parameterization allows for 

generalizing an optimization routine to unseen material sizes. However, it is also shown that the 



154 

 

middle layer has a lower miscalibration area, indicating that this model performs better in 

measuring uncertainty of the predicted datapoints.  

Upon initial optimization, the only constraints applied were that the total sum of the 

cementitious components added to 100% and bounds were provided utilizing the minimum and 

maximum for SCMs and fine aggregate as in the dataset trained on. However, these optimized 

blends were characterized with a high SCM : aggregate ratio with low water ratios, making the 

initial provided blends unmixable.  

For the second round of optimization, additional constraints were developed according to 

recommendations provided by the Federal Highway Administration for UHPC mix design.36 These 

constraints were: 

1. Sand to cement ratio limited to between 1.0 and 2.0  

2. Maintain a water to cement ratio between 0.2 and 0.3  

3. Limit silica fume to 18% of the combined weight of binder materials  

4. Limit filler materials to 18% of the combined weight of binder materials  

5. Limit superplasticizer to 10% of the amount of water present in the mix  

Figure 5.7 shows the optimization results with the prior conditions applied. The top six 

blends corresponding to the minimized compressive strength: uncertainty ratio were selected for 

further testing as shown in Table 5.4. 
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Figure 5.7. Optimization results for with the prior constraints for curing at 20 ºC with silica 
fume as the utilized SCM. 
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Table 5.4. Initial proportional mix designs (by weight of cement) along with the predicted 
and measured 7 and 28 day compressive strengths. For the first round of optimization, 
metakaolin was constrained to zero, allowing for only predictions of blends containing silica 
fume. 

 Mix A-1 Mix A-2 Mix A-3 Mix A-4 Mix A-5 Mix A-6 

Cement 1 1 1 1 1 1 

Silica Fume 0.219 0.219 0.255 0.264 0.132 0.305 

Metakaolin 0 0 0 0 0 0 

Steel Fibers 0.284 0 0 0 0 0 

Water 0.226 0.226 0.201 0.191 0.181 0.215 

Superplasticizer 0.025 0.025 0.023 0.022 0.017 0.024 

Masonry Sand 0 0 0 0 1.169 2.577 

River Sand 1.581 1.581 1.500 1.459 0 0 

Limestone-45 0.215 0.215 0.071 0 0 0.069 

Curing Temperature 20 20 20 20 20 20 

Predicted Strength 
(MPa) 

254 254 279 275 270 265 

Standard Deviation in 
Prediction (MPa) 

6.5 6.5 11.1 11.9 11.1 11.5 

Measured 7-day 
Strength (MPa) 

134.6 75.6 96.8 63.6 77.0 28.1 

Measured 28-day 
Strength (MPa) 

189.9 79.2 123.6 82.6 87.1 53.0 

 

The above designs were also not workable and were adjusted with various amounts of 

superplasticizer for the capability to mix the blends. Table 5.5 provides the initial amount of 

superplasticizer predicted compared to how much had to be added for the composition to be 

workable.  
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Table 5.5. Predicted amount of superplasticizer to add, the actual amount of superplasticizer 
added, and the corresponding flow test for each of the six optimized mixtures in mL/ft3. 

 Predicted 
Superplasticizer 

Actual 
Superplasticizer  

Flow Test (in) 

Mix A-1 483 600 4’’ 

Mix A-2 483 600 6 ½’’ 

Mix A-3 483 1280 5 ½’’ 

Mix A-4 493 2220 6’’ 

Mix A-5 467 1460 6’’ 

Mix A-6 500 2820 6’’ 

 

It can be seen that Mix A-1 provided the highest compression strengths and in fact reaches 

compressive strengths well above the generally-accepted lower bounds for UHPC compressive 

strength. This strength comes at great cost, however, due to the high percentage of fibers in the 

mixture. This mix is the only one of the six tested that included fibers, containing around 7% steel 

fibers by volume of the mix. The usual recommendation for UHPC is 2% steel fibers by volume. 

This large amount of steel fibers reduced the workability to essentially zero, as can be seen by the 

four flow test result. These fibers would also serve to make this mix very expensive to produce 

commercially. 

Mix A-2 was identical to Mix A-1, except fibers were excluded from the mixture. These 

samples exhibited swelling and exhibited much lower strengths due to this. The swelling is 

believed to be related to additional porosity from the extended 30-minute mix time necessary for 

the mix to blend. This swelling was not observed in any of the other mixes. The fibers present in 

Mix A-1 seem to have added enough confinement to prevent this expansion.  
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Mix A-3 was the second-best performing mix, nearly reaching 18,000 psi compressive 

strength by 28 days. Mix A-3 also require the second-least addition of superplasticizer. A negative 

correlation between additional superplasticizer content and compressive strength can be observed. 

Mix A-6, which required the most superplasticizer performed the worst of all mixes tested. 

Likewise, Mix A-4 had the second lowest compressive strength at 7 days, the third lowest 

compressive strength at 28 days, and also required the second highest admixture dosage.  

Mix A-5 presents an interesting case because it performed similarly to Mix A-4 but had far 

less added superplasticizer. The reduction in strength is believed to be due to Mix A-5 having the 

lowest water to cement ratio. This reduced cement hydration in turn affected how much the silica 

fume could contribute to the strength. 

Figure 5.8 provides the updated regression parity plots utilizing the results from the first 

round of optimization as additional datapoints for the model.  
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Figure 5.8. Results to the regression showing A.) the predicted and actual values and B.) 
miscalibration area utilizing the six middle layer variables as inputs. The points with the larger 
dark circles represent the validation dataset (Wille et. al25).  

The RMSE for the updated regression is 28.1 MPa, which is a slight 2.4 MPa increase as 

compared to the first round. However, the RMSE for the validation set in the second iteration with 

only six additional data points decreased from 43.0 MPa to 41.8 MPa. The slight improvement in 

the validation indicates that training with the middle layer improves generalization capability of 

the model. 

Figure 5.9 provides the next round of optimization results with an updated regression which 

includes the six prior tested blends. To reduce issues with workability, the minimum compressive 

strength was lowered to 200 MPa to allow for the prediction of blends with lower uncertainty and 

lowered the bounds for fibers to be closer to a maximum of 2% volume. The selected blends are 

shown in Table 5.6. 
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Figure 5.9. Optimization results for with the prior constraints for curing at 20 ºC with both 
silica fume and metakaolin as the utilized SCMs. The minimum compressive strength was 
also lowered to 200 MPa to predict blends with lower accompanied uncertainty. 
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Table 5.6. Initial proportional mix designs (by weight of cement) along with the predicted 
and measured 7 and 28 day compressive strengths. In this round of optimization two blends 
containing metakaolin and a single blend containing silica fume were selected for analysis. 

 Mix B-1 Mix B-2 Mix B-3 

Cement 1 1 1 

Silica Fume 0 0 0.206 

Metakaolin 0.206 0.102 0 

Steel Fibers 0.245 0 0.245 

Water 0.215 0.182 0.215 

Superplasticizer 0.021 0.0175 0.021 

Masonry Sand 0 0 0 

River Sand 1.378 1.198 1.378 

Limestone-45 0 0 0 

Curing Temperature 20 20 20 

Predicted Strength (MPa) 217 261 217 

Standard Deviation in Prediction (MPa) 5.1 16.0 5.1 

Measured 7-day Strength (MPa) 125.8 94.0 102.2 

Measured 28-day Strength (MPa) 148.7 109.2 130.5 

 

Mixtures B-2 and B-3 were also not initially workable; however, superplasticizer was 

added in much lower amounts than the first round of optimization, while mix B-1 was workable 

with these ratios. Table 5.7 provides the initial amount of superplasticizer predicted compared to 

how much had to be added for the composition to be workable. 
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Table 5.7. Predicted amount of superplasticizer to add, the actual amount of superplasticizer 
added, and the corresponding flow test for each of the six optimized mixtures in mL/ft3 for the 
second round of optimization. 

 Predicted 
Superplasticizer 

Actual 
Superplasticizer 

Flow Test (in) 

Mix B-1 518 518 8’’ 

Mix B-2 497 696 9’’ 

Mix B-3 517 714 8 ¼’’ 

 

Unlike the first round of iterations, all blends exceeded 100 MPa in strength as there was less 

change to the compositional parameters to produce a workable blend. Although this algorithm is 

capable of predicting UHPC compositions from a disparate source of materials, better feature 

representation needs to be incorporated for future modeling. 

5.4.2 Future Directions 

The major disadvantage in optimizing strength for UHPC was placing constraints to allow for 

the prediction of workable blends. First, more realistic constraints can be designed through several 

iterations of the optimization to attempt to approach predicted compositions which are workable. 

Also, future models incorporating UHPC flow test measurements along for a multi-objective 

design approach. These models can be similarly parameterized by water film thickness and 

packing density measurements, which have both been shown to have association with 

workability.27,30   

The optimized blends selected here were based primarily on exploitation, a concept of finding 

blends which maximize strength. However, to take full advantage of the Bayesian optimization, 

additionally considering exploration to minimize model uncertainty can be utilized. Through 

exploration, the algorithm guides the design of experiment approach for the next best blends to 
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test in order to decrease uncertainty, and can do so in the minimal number of experiments to reach 

a target uncertainty throughout the model.37  

The disparate sources of data utilized for predicting compressive strength have inherent error. 

Although the D50 of many of the fine aggregates were reported and utilized from each individual 

source, particle sizes of SCMs and specific surface areas were not widely reported. This led to an 

assumption in the model that these particle sizes would be the same across all datasets. Future data 

collection for analysis should include more exact measurements of particle size and surface areas. 

Also, cement and SCM reactivity is currently treated as similar by the equivalent cement equation. 

Future models could embed thermodynamic modeling into the calculation to model cementitious 

chemistry based on the cement clinker composition and reactive phase contents of the SCM source 

materials.  

5.5 Conclusion 

The ubiquity and the necessity of concrete infrastructure prompts the need for increasing 

innovation to address the global challenge of meeting societal needs in the most sustainable and 

economical ways possible. This challenge is to generate new understanding that improves the 

design, utilization, and performance of UHPC.  The feature space for property prediction in UHPC 

has been largely limited to the initial compositional formulation, leading to models which are valid 

only when testing the same compositional space. However, UHPC is a dynamic system which is 

characterized by changes in physicochemical forces, continuous reactivity, and changes in 

microstructure. The latent variables of particle packing, WFT, and equivalent cement provide 

better feature representation for UHPC, predict blends in excess of 100 MPa, and allow for greater 

generalization capability to a diversity of possible compositional materials. 
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5.6. Research Contributions 

 C.M. Childs performed ML analysis, latent variable design, and data collection. A. Miller 

performed compressive strength testing, data collection, and support in UHPC blend design. W. 

Neiswanger performed ML analysis and Bayesian optimization.  
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Chapter 6.  Hierarchical Machine Learning of LC3 Cements: Multi-Objective 
Optimization of Rheology, Strength, and Sustainability 

6.1. Introduction 

Concrete is the most widely used engineering material in the world,1 however, due to the 

calcining process involved in the production of clinker, approximately 6% of anthropogenic CO2 

emissions can be attributed to cement.2 The reactive mineral phase for most concrete is ordinary 

Portland cement (OPC), and global production is 4.1 Gt per year.3  To decrease the environmental 

impact, supplementary cementitious materials (SCMs) can act as partial replacement to OPC and 

commonly include pozzolanic clays, limestone, and slag.4 Although the environmental 

sustainability of these materials is well documented, economic and engineering sustainability of 

these materials often put them at a disadvantage to OPC. 

Recent research has led to the development of limestone-calcined clay cements (LC3). LC3 

blends can be designed with around 50% OPC replacement while approaching the mechanical 

performance of OPC.5 One advantage of the utilization of calcined clay and limestone as SCMs is 

the abundance and availability of natural reserves across the world, with billions of tonnes of 

kaolinite clay stockpiled.5 Kaolin clays are composed of aluminum and silicon oxides which are 

easily calcined at relatively low temperatures, as compared to OPC, of 600-800 ºC to produce 

highly pozzolanic metakaolin.6 Numerous sources of kaolin clays can be found throughout the 

world, having various pozzolanic activity and particle sizes which are currently an area of study.7  

The advantages of LC3 systems, as compared to other SCMs, is the ability to produce 

cements with superior mechanical properties to OPC. These mechanical properties are improved 

through additional hydration reactions which can occur from both the introduced calcined clay and 

limestones. Metakaolin allows for pozzolanic reactivity which consumes portlandite over time to 

form the strong amorphous calcium aluminum silicate hydrate (CASH) phase. In addition, 
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limestones are able to react with aluminum from the tricalcium aluminate (C3A) and metakaolin 

to form carboaluminate hydrates.8 Gypsum is typically introduced at <5% by weight, which retards 

the dissolution of C3A which prevents flash setting and allows for the formation of stronger 

hydration products.9 Finally, the small particle size of both the limestone and metakaolin 

influences known as the ‘Filler Effect’, where higher surface areas allow for a larger number of 

suitable surfaces for nucleation and growth.8 However, clay and limestone behavior in suspension 

is sharply affected by solution concentration, such as during cement hydration. As a result of their 

physical and chemical characteristics, use of calcined clays produce sharp reductions in flow in 

the plastic pastes and concrete.8 

Numerous studies have made attempts to elucidate the working mechanisms within LC3 

systems to reduce environmental impact while improving mechanical properties and durability. 

However, with the advent of the 4th paradigm of science,10 the data-guided discovery and 

optimization of physical and engineering processes necessitates a need for machine learning (ML). 

With the increasing power in computational resources and refinement of ML methodologies, the 

ability to transition from a human-centered to human-guided approaches in engineering systems is 

a core component of a grand challenge to both engineering and scientific research. To resolve the 

mechanical, economic, and sustainability constraints, along with reducing extensive iterative 

testing, utilization of ML can lead to improved material systems with lower time and data 

requirements.11  

Here, a hierarchical machine learning (HML) framework is presented to establish models 

for LC3 workability and strength. The models are represented in terms of latent variables which 

are able to better generalize to the diverse compositional space found in LC3 raw materials. Particle 
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packing and water film thickness are utilized as latent, middle layer variables to embed domain 

knowledge of particle size and water ratios for both the workability and strength models. The 

strength model is further represented to embed knowledge of strength evolution, gypsum, and clay 

kaolin contents. The workability model is represented in terms of admixture behavior consistent 

with prior research into HML.12,13,14 The life-cycle assessment of LC3 is studied to determine the 

effect of composition on the global warming potential (GWP). Finally, a multi-objective 

optimization is performed to find an LC3 composition which maximizes strength and workability, 

with constraints that the GWP is less than half of OPC. 

6.2. Experimental 

6.2.1. Materials  

Cement pastes were prepared using ordinary Portland cement (Argos), three types of 

metakaolin (Imerys and BASF) and four separate size limestones (Imerys). Gypsum was acquired 

from Sigma Aldrich. In North America, highly pure metakaolin is the most common calcined clay 

used in LC3, and the model is being built assuming the use of this. While there are numerous 

calcining options for metakaolin, major producers, such as Imerys, produce it within a narrow 

range of amorphous content and soluble aluminate, so processing and purity were not considered 

as variables in the initial model. A list of all materials utilized for LC3 mixtures is shown in Figure 

6.1, and all mineral feedstocks were used as received. Additional variables include the particle size 

distribution of the mineral phases, limestone with D50 values ranging from 3 µm to 40 µm are 

included and metakaolin with D50 values of 2 µm and 10 µm are being tested. Deionized water 

with a resistivity of 18.2 MΩ was utilized for all experiments. Table 6.1 provides the specific 

surface areas (SSA), D50’s, and specific gravities for all materials utilized for the optimization. 
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Figure 6.1. Materials used in the LC3 mixes. 

Table 6.1. Specific surface area, D50, and specific gravity for all materials utilized in multi-
objective analysis and testing. 

Material SSA (cm2 g-1) D50 (μm) Specific Gravity 

Cement 1140 12.2 3.15 

Gypsum 15000 10 2.32 

Metakaolin 1000 20000 9.46 2.5 

Metakaolin 1200s 25000 4.5 2.5 

Metakaolin Meta 26000 3.37 2.5 

Limestone 3 4700 3.03 2.7 

Limestone 15 1000 13.02 2.7 

Limestone 25 800 17.65 2.7 

Limestone 40 480 24.99 2.7 

6.2.2. Data Collection 

6.2.2.1. Workability Model Data Collection 

For the first generation of the workability model, the training set included three commercial 

PCE superplasticizers from BASF (MG7920, MG3030, and MG7500) that were used as received 

following recommended doses and protocols. Due to MG7920 outperforming at all levels of 

concentration, the data for modelling was limited to only this superplasticizer. A total of 58 unique 
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blends with superplasticizer concentration ranging from 0.25-1% were tested. Three metakaolin 

clays and four limestones, all of various D50’s and SSA’s were incorporated into the dataset.  

6.2.2.2 Strength Model Data Collection 

The complete dataset consisted of 97 unique blends with a total of 442 training points 

which included multiple curing times of each blend. Data were collected from strength assessment 

with our Georgia Tech collaborators (GT data), and supplemented with data provided by Dr. Karen 

Scrivener’s group (Data Benchmark, Top-Down, and Validation). While all datasets had various 

sizes of materials and w:cm ratios which were tested, the GT data primarily tested a range of OPC: 

Calcined Clay: Limestone ratios without gypsum addition. The Data Benchmark set primarily 

focused on changes to the kaolin content of the calcined clays utilized. The Top-Down set 

primarily focused on changes in the Calcined Clay: Limestone ratio and gypsum. Finally, the 

Validation set was selected as this set contained different limestone sizes than found in the previous 

three datasets and at a higher w:cm ratio. The ranges of compositions for each tested blend are 

shown below in Table 6.2. 
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Table 6.2. Ranges and sources of the LC3 compositions for all tested blends. 

Data Source GT Data 
Benchmark 

Top-Down Validation 

OPC (%) 

 

4055 53 53.454.65 5469.7 

Clay:LS Ratio 

 

1:22:1 2:1 0.152:1 1:22:1 

Kaolin Content 
(%) 

 

95 095 95 46 and 62 

# Different 
Clays 

 

1 44 1 2 

# Different 
Limestones 

2 1 3 

(Included 
Limestone 
Blends) 

6 

(Included 
Limestone 
Blends) 

w:cm 

 

0.416 0.50 0.400.459 0.530.55 

Gypsum (%) 

 

0 2 0.351.6 0.31 

Days of Curing 
Tested 

3,7,28 1,3,7,28,90 1,2,3,7,28,90 2,7,28 

# Datapoints 

 

54 217 108 63 

 

6.2.3.1 Adsorption Measurements 

Adsorption to mineral surfaces is an important mechanism of superplasticizer action.15 

Partitioning of the dialyzed MG 7920 in the training set onto limestone, metakaolin, and portland 

cement was performed by total organic carbon (TOC) analysis. Samples of 0, 1.25, 2.5, 5.0, and 

10 mg admixture/g cementitious material of each superplasticizer were prepared. A reference 



173 

 

sample for each sample was made to compare the difference in amount of carbon before and after 

adsorption. For each different sample, the superplasticizer solution was mixed with 5 g 

cementitious material at a w/cm ratio of 4 to ensure ability to collect the pore solution for testing. 

The mixture was immediately vibrated on a mini-vortex mixer for 3 minutes. The samples were 

then centrifuged for 10 min at 4400 rpm. The supernatant was collected, filtered through a 0.45 

μm syringe filter, and 1mL of the pore solution was diluted to 40 mL with water, and analyzed 

using a combustion-based TOC (Shimadzu TOC-L).  

6.2.3.2 Zeta Potential 

Zeta potential was measured in aqueous solutions with a dialyzed superplasticizer 

concentration of 10 mg mL-1 using a Zeta-sizer (Malvern Instruments).  

6.2.3.3. Osmotic Pressure 

Osmolality of aqueous solutions of each dialyzed admixture was measured 0.1, 0.2, 0.3 

and 0.4 g mL-1 using a vapor pressure osmometer (Wescor 5600). Three trials at each concentration 

were performed and the results averaged. 

6.2.3.4. Polymer Intrinsic Viscosity 

An Ubbelohde Viscometer (Canon Instrument Company) was used to determine the 

relative viscosity by taking the ratio of the time to pass through the capillary of the commercial 

polymer solutions to the pure water elution time. Three trials for each polymer along with the 

solvent elution time were performed and the results were averaged. 

6.2.4. Assessment of Workability 

Cement pastes were prepared utilizing a hand-held mixer (HamiltonBeach). To the mixing 

bowl various ratios of portland cement: metakaolin: limestone was added. Total water addition 
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produced a 0.40 water-to-cementitious materials (w/cm) ratio paste, where portland cement, 

metakaolin, and limestone were considered as cementitious materials. The commercial PCE was 

dissolved in the mix water and added to the cement, dosed in percentage by weight of cement. The 

paste was mixed for 30 s at the low-speed setting and then an additional 60 s at medium. A 30 s 

rest period was followed with a final 60 s medium-speed mixing period. All mixes were tested 

immediately followed mixing. 

To assess the workability of the cement pastes, mini-slump testing was performed.16 Within 

60 s after mixing, the cement pastes were added into an acrylic mini-slump cone with a bottom 

PAT dimension of 3.8 cm in diameter and 5.7 cm in height as shown in Figure 6.2. The cement 

was leveled with the backside of a spoon to ensure an even finish with the top. The cylinder was 

slowly and evenly lifted in a continuous motion allowing the cement pastes to slump. The change 

in height due to the slump was recorded along with the spread. For every mixture of cement tested, 

three mini-slumps were tested in succession with an average of the trials being used for analysis.  

 

Figure 6.2. Mini-slump cone utilized for measurements of cement workability. 
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6.2.5. Assessment of Strength 

2-inch cube specimens were prepared for compression strength testing at a constant w/cm 

of 0.4. First, the measured materials were dry blended for 30 seconds in a Hobart mixer to ensure 

homogeneity. The mix water was then stirred with the admixture prior to adding to the 

cementitious materials. The paste was mixed on low setting for 30 seconds, then on medium for 

an additional 60 seconds, and stopped for a 30 second rest period. During this time, the sides and 

bottom of the mixer bowl were scraped to better incorporate the paste solids and any unmixed 

material. The mixing regime is ended with a final 60 seconds on medium setting. Paste samples 

were molded in accordance with ASTM C109 and then kept in a humidity chamber at 23±2 °C 

and 100% humidity for 24 h. After demolding, the samples were cured in water (23±2 °C) until 

testing. The compressive strength was measured after 7 and 28 days of hydration for the optimized 

blend based on the average of six specimens. The cube and compressive strength machine are 

shown in Figure 6.3.  
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Figure 6.3. Compressive strength samples in the process of being tested. 

6.2.6. Lifecycle Assessment 

Research on more sustainable alternatives to OPC, are driven by the need to find reliable 

and durable materials that are also more environmentally friendly. Therefore, a preliminary life 

cycle assessment has been carried out for LC3. 

Life Cycle Assessment (LCA) is an effective method to evaluate the environmental impacts 

of all products and processes associated to a given system. There are various LCA approaches that 

can be adopted depending on the analysis and the product of interest. In this case it has been chosen 

to follow a “cradle to gate” approach, hence considering all the components of the production 

process but only until the product is released to the market, hence not considering the 

transportation, placement, maintenance, durability, and disposal of the product outside the cement 
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plant. This is a common approach due to the fact that cement can be part of various end-products. 

In this preliminary LCA the goal is to compare the GWP, expressed as kg CO2 eq released during 

the production of LC3 cements and compared to the production of OPC.  

The choice of the functional unit should reflect the similar function and performance that 

may be obtained using two products. While Portland cement is an established and regulated 

material, LC3 cements are in a research stage and norms that regulate their applicability are still 

lacking. As a result, it has been chosen to consider 1 ton of cement as functional unit. Therefore, 

the results that will be presented in the following sections may be considered to compare the 

environmental impact of products that are based on these cements, but critically considering the 

assumptions made. 

The LCA software OpenLCA 1.8.017 was used to evaluate the environmental impacts of 

inventory elements of portland cement and LC3 cement. The geographic area considered in this 

study is the South East of the United States, assuming the location of the cement plant in Atlanta 

(GA). When possible open source available data from USLCI National Renewable Energy 

Laboratory18 are preferred since related to the North American framework. The electrical energy 

provider is related to the SERC distribution (specific to the South East region of the United States), 

while the fuel mix for the combustion during the calcination process is a mix obtained from coal, 

gasoline, natural gas, residual fuel oil, liquefied petroleum gas, petroleum coke, middle distillates, 

and waste. Data for the average fuel mix for cement kiln in the US have been considered as a 

reference (obtained from Portland Cement Association).19  
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6.2.7. Computational Methods 

6.2.7.1. Particle Packing and Water Film Thickness 

The same procedure for calculating the WFT and packing index, k, were utilized as in 

Section 5.3.1.2 and Section 5.3.1.3. The WFT and K were utilized as inputs for both the strength 

and workability models. 

6.2.7.2. Workability Model 

The schematic representation of the cement workability model is shown in Figure 6.4 for 

LC3, for which workability remains a key technological hurdle facing adoption. Workability is 

assessed through mini-slump measurements. In HML, the effects of compositional variables on 

workability are assumed to be mediated by a diversity of latent variables. In LC3, the input 

variables are the amounts of OPC, limestone, and calcined clay, the water: cementitious ratio, and 

the type and dose of superplasticizer. The latent variables, represented in the middle layer, 

represent underlying forces that drive system responses, as explored in modelled in prior 

research.13,14,20 In the absence of chemical admixtures, particle-particle interactions are assumed 

to drive these responses, but superplasticizers can exert an effect via both particle and solution 

forces. The approach in this research is to estimate the constituents of the middle layer 

experimentally or computationally.  
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Figure 6.4. Schematic structure of the HML model for workability. The input variables on the 
bottom layer represent the composition of the mineral and admixture components as well as water: 
cementitious ratio although this is currently held constant at 0.40. 

Modeling of the mini-slump (top layer) as a function of compositional variables (bottom 

layer) and physicochemical variables (middle layer) was performed using the random forest 

algorithm. Random forests are made up of an ensemble of decision trees, and for regression 

purposes, the output of all these trees have an average taken to produce a single best-fit regression 

for the entire collection of trees. In order to establish a best-fit to unseen (test) data, regression 

models have their parameters learned on training data through cross-validation (CV), a 5-fold CV 

was utilized for all hyperparameter turning. A random forest model was performed on both the 

bottom and middle layer variables representing LC3 compositions. The bottom layer is composed 

of the mass fractions of the LC3 composition and superplasticizer concentration, while the middle 

layer represents the composition in terms of latent variables that capture mechanistic domain 

knowledge of workability. Initially, the dataset was composed of three separate PCE architectures, 

however, due to the large disparity between the top-performing MG 7920 and the remaining 2 

architectures, MG 7920 was utilized to build a model for workability and multi-objective 
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optimization with this specific PCE. Due to the small size dataset containing 58 individual slump 

values the middle layer containing embedded domain knowledge should outperform bottom layer 

performance among proper selection of physical knowledge. The workability model was trained 

with the output and each input standardized utilizing the StandardScalar methodology from scikit-

learn and Random Forest as performed utilizing RandomForestRegressor in scikit-learn.21 The 

data was randomly split into 90% training and 10% test data for validation on unseen values.  

6.2.7.3. Strength Model 

The schematic representation of the LC3 strength model is shown in Figure 6.5. Strength is 

quantified through compressive strength measurements over the course of multiple time points. 

In LC3, and similar to the workability model, the input variables are the amounts of OPC, 

limestone, and calcined clay, and the water: cementitious ratio. The latent variables, represented 

in the middle layer, represent particle packing and water film thickness as a way to encode the 

effects of surface area and particle size. Kaolin content to allow the model to learn the effects of 

the primary reactive phase and differentiate between the effects of pure and impure clays. The 

log of the curing time is calculated to help the model in learning the plateauing of cement 

strength over time and common ratio information for cement, gypsum, and water are elevated 

from the bottom layer in order to help capture effects which may not be fully represented in the 

embedded domain knowledge. 
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Figure 6.5. Schematic structure of the HML model for strength. The input variables on the 
bottom layer represent the composition, size, and surface area of the mineral components as 
well as water: cementitious ratio and curing time. 

A gaussian process regression (GPR) was utilized as the ML technique in the prediction of 

LC3 compressive strength. GPR is a Bayesian methodology which can be utilized to learn both 

the predicted mean and posterior probability for the expected range of error at each prediction.22 

GPR utilizes a metric of distance known as a covariance function (or kernel) to learn the 

distribution of functions over the training data.22 From a prior establishment of mean and 

covariance function, GPR finds a posterior distribution based on the training data. Instead of 

utilizing a cross-validation approach as is common in many ML methodologies, GPR updates 

hyperparameters in the covariance function through an optimization procedure on the log marginal 

likelihood.23 The strength model was trained with the output and each input standardized utilizing 

the StandardScalar methodology from scikit-learn and GPR was performed utilizing 

GaussianProcessRegressor in scikit-learn.21 The data were randomly split into 70% train and 30% 

test sets.   
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6.2.7.4. Multi-objective Optimization 

A multi-objective evolutionary algorithm known as the nondominated sorting genetic 

algorithm (NSGA-II) was utilized. This genetic algorithm randomly samples a set of points in the 

compositional space and outputs the predicted strength and slumps for those points. Crossover and 

mutation occur to create a new generation of points and a sorting algorithm selects the points which 

move towards a non-dominated (points where no better objectives exist) pareto front solutions.24 

A python package, jMetalPy, was utilized to perform the multi-objective analysis.25  

6.3. Results and Discussion 

6.3.1. Workability Results 

6.3.1.1. Adsorption 

The most common mechanism for PCE function is through exhibiting steric interaction 

after adsorption onto the particle surface.26 For LC3, adsorption was modeled through the 

Freundlich equation, an empirical model of representing heterogenous surfaces:27  

 𝜃 = 𝐾𝐶  
 

Eq. 6.1 

Here θ is the amount of adsorbed polymer/g material, Ci is the initial added polymer/g 

material, and K and n are empirical parameters. A curve-fitting routine from NumPy in Python 

was utilized in order to fit the optimal parameters to model the adsorption isotherm. With 

adsorption data, a Freundlich model was developed for each polymer-cementitious material pair 

and overall adsorption was modeled according to equation below: 

 
𝜃 =

𝑀𝐾

𝐶𝑀
∗ 𝜃 +

𝑃𝐶

𝐶𝑀
∗ 𝜃 +

𝐿𝑆

𝐶𝑀
∗ 𝜃  

 

Eq. 6.2 
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where 𝜃  is the total amount of expected adsorbed polymer,  is the ratio of metakaolin to 

total cementitious material,  is the ratio of portland cement to total cementitious material and 

 is the ratio of limestone to total cementitious material (all expressed in terms of mass, not 

surface area- an individual isotherm was measured for each size clay and limestone tested). The 

Freundlich curves for the PCE’s in the workability model are shown below in Figure 6.6: 

 

Figure 6.6. Adsorption isotherm for MG7920. The isotherm was measured on the calcined 
clay, portland cement, and the smallest size limestone. All limestones with average size 
greater than 3 µm did not exhibit adsorption of the polymer. 

The total amount of adsorbed polymer is utilized as the input to the model as a singular value 

representation for steric interactions. 

 6.3.1.2. Zeta Potential 

The measurement of the MG7920 zeta potential was found to be -17.35 mV.  While PCE’s 

primary mechanism is generally associated with steric repulsion, electrosteric interactions can also 

be induced through changes of the surface charge of cementitious grains via adsorption.28 Here, 

the effect of adsorbed admixture on particle surface was assumed to take the form: 
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 𝜻𝒑𝒐𝒍 = 𝒄𝒐𝜽 𝜻𝒎𝒂𝒙  Eq. 6.3 

where, as the polymer concentration would approach complete coverage of the material surface, 

the zeta potential would approach the maximum value as determined through the pure polymer 

zeta. The calculated value of zeta is introduced to the model as a representation for electrostatic 

effects. 

6.3.1.3. Viscosity 

The plots and 2nd order fits for concentration vs relative viscosity are shown for the 

MG7920 are shown in Figure 6.7. Viscous forces induced by non-absorbed polymer in the 

interstitial spaces of adjacent cement particles has been shown to provide a lubricating effect to 

improve workability.29  

 

 

Figure 6.7. Plot of relative viscosity over a concentration range for MG7920. 

The relative viscosity, as a function of admixture concentration, was utilized as the input for the 

ML model. 
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6.3.1.4. Osmotic Pressure 

To model changes in osmotic pressure due to superplasticizer dissolved in the pore 

solution, the plots of concentration vs osmolality/conc were fit with a linear trend in order to 

capture the A1 and A2 virial parameters and allow for the calculation of osmotic pressures 

depending on the admixture concentration in the pore solution.30 The plot for MG7920 is shown 

below in Figure 6.8 with the associated equations and R2. 

 

Figure 6.8. Osmotic pressure curves for MG7920. The plot depicts the ratio of osmotic 
pressure over the polymer concentration against the polymer concentration, and a linear fit 
suggests the first two virial coefficients provide an adequate model of activity. 

The osmotic pressure, as a function of admixture concentration, was utilized as the input for the 

ML model. 

6.3.1.5. Random Forest Model for Workability 

Results comparing the training and test set data for both the bottom and middle layers are 

shown in Figure 6.9 and Figure 6.10 and statistical results shown in Table 6.3. For the bottom 

layer, the optimal parameters were found to be: [Number of Estimators=600, Bootstrapping=True, 

Number of features to split= Number of samples, Maximum depth of tree=80, minimum samples 

in a leaf node=1, minimum samples required for a split=5]. For the middle layer, the optimal 
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parameters were found to be: [Number of Estimators=200, Bootstrapping=True, Number of 

features to split= sqrt(Number of samples), Maximum depth of tree=50, minimum samples in a 

leaf node=1, minimum samples required for a split=2]. 

 

Figure 6.9. Bottom layer plots for random forest model of workability with A.) training set 
and B.) test set. 

 

Figure 6.10. Middle layer plots for random forest model of workability with A.) training set 
and B.) test set. 
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Table 6.3. Statistics representing the bottom and middle layers for both the test and training 
sets. 

 R2 MSE RMSE (cm) 

Training Set 

Bottom 
0.90 0.73 0.85 cm 

Training Set 

Middle 
0.93 0.54 0.73 cm 

Test Set 

Bottom 
0.55 1.92 1.39 cm 

Test Set 

Middle 
0.81 0.82 0.91 cm 

 

Measured slump spread differences vary between 0 and 9.3 cm. (Note that 0 cm is 

considered as 3.80 cm, the width of the slump cone). The middle layer outperformed the bottom 

layer in terms of R2 and MSE for both the training and validation sets. 

Finally, relative importance of features can be derived from the random forest models 

based on parameterization by the bottom layer and middle layer as shown in Figure 6.11. When 

parameterized by the bottom layer, increases in the cement ratio was most strongly correlated with 

increases in workability, consistent with the expectation that reducing metakaolin and limestone 

content will increase the mini-slump. When parameterized by the middle layer, the water film 

thickness was the strongest variable in determining the workability. These variables are in fact 

related since water film thickness decreases with decreasing average particle size. 
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Figure 6.11. Feature importance from random forest models of workability as a function of 
A.) bottom layer variables and B.) middle layer variables. 

6.3.2. Strength Results 

In developing the strength model, two rounds of training were performed. The first 

withheld the ‘Validation set’ shown in Table 6.2 and was trained on the remaining three datasets. 

As this set contained different sizes of limestone compared to the first three datasets and a higher 

w/cm ratio, a robust model would be able to generalize to this data. Second, after generalization 

was shown to achieve adequate results, all datasets were combined in order to train a full model. 

For all models, a combined summation kernel of the radial basis function and rational quadratic 

with an added noise were found to minimize error on the test sets and utilized for all analysis. 

The first round of training compared performance between the middle and bottom layers 

of the HML model and compared their generalization capability to the ‘validation set’. First, a 

linear regression was performed as a baseline model. The bottom layer results are provided in 

Figure 6.12, while the middle layer results are provided in Figure 6.13. Statistics comparing the 

bottom and middle layers are shown in Table 6.4.  
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Figure 6.12. Linear regression results performed using the compositional (bottom) layer 
features for the A.) training and B.) test sets. 

 

Figure 6.13. Linear regression results performed using the middle layer features for the A.) 
training and B.) test sets. 
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Table 6.4. Statistics representing the bottom and middle layers for both the test and training 
sets through an ordinary linear regression. 

 R2 RMSE (MPa) 

Training Set 

Bottom 
0.60 11.29 MPa 

Training Set 

Middle 
0.87 6.50 MPa 

Test Set 

Bottom 
0.49 12.81 MPa 

Test Set 

Middle 
0.83 7.46 MPa 

 

It is clearly shown that an ordinary linear regression on the middle results in RMSE’s 

around half of that as the bottom layer with less features. This is a methodology to show that 

embedding domain knowledge achieves the goal of simplifying the response surface from a 

complex compositional space to a more constrained and generalizable middle layer. 

Second, a more robust GPR was performed to acquire an accurate model for determining 

compressive strength. The bottom layer results are provided in Figure 6.14, while the middle layer 

results are provided in Figure 6.15. Statistics comparing the bottom and middle layers are shown 

in Table 6.5. 
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Figure 6.14. GPR results performed using the compositional (bottom) layer features for the 
A.) training and B.) test sets. 

 

Figure 6.15. GPR results performed using the middle layer features for the A.) training and 
B.) test sets. 
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Table 6.5. Statistics representing the bottom and middle layers for both the test and training 
sets using a GPR. 

 R2 RMSE (MPa) 

Training Set 

Bottom 
0.97 3.11 MPa 

Training Set 

Middle 
0.98 2.59 MPa 

Test Set 

Bottom 
0.92 4.80 MPa 

Test Set 

Middle 
0.81 4.65 MPa 

 

A GPR was able to outperform the linear regression in terms of RMSE due to the higher 

robustness of the model. However, it is still clear that middle layer results are able to outperform 

bottom layer results.  

Finally, a comparison of how well the bottom and middle layers were able to generalize to 

the unseen ‘validation set’ with our GPR are shown in Figure 6.16 and statistics provided in Table 

6.6. 
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Figure 6.16. GPR generalization predictions performed using the A.) bottom layer features 
and B.) middle layer features on the validation set. 

 

Table 6.6. Statistics representing the bottom and middle layers on the validation set. 

 R2 RMSE (MPa) 

Validation Set 

Bottom 
-0.02 11.74 MPa 

Validation Set 

Middle 
0.95 2.54 MPa 

 

After showing that utilization of the middle layer provides better results in terms of R2 and 

RMSE, along with much improved generalization capability by showing a drop of over 9 MPa in 

the RMSE as compared to the bottom layer, all four datasets were combined and retrained utilizing 

the middle layer with a GPR. The results are shown in Figure 6.17 and Table 6.7. 
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Figure 6.17. GPR results performed using the middle layer features for the A.) training and 
B.) test sets on all four combined datasets. 

Table 6.7. Statistics representing middle layer results for both the test and training sets 
utilizing a GPR on all four combined datasets. 

 R2 RMSE (MPa) 

Training Set 1.00 0.88 MPa 

Test Set 0.97 3.50 MPa 

 

With the additional data included, there was a continued decrease in RMSE and increase 

in R2 values compared to only training on the three datasets. With this improved model, GPR can 

be utilized to visualize the effects changes in the compositional space will have on compressive 

strength. Figure 6.18 predicts the effect of changes in strength over varying gypsum contents have 

in the predicted compressive strength.  
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Figure 6.18. Changes in the GPR predicted compressive strength based on limestone size, 
kaolin content and gypsum addition at three separate curing times. The dark lines represent 
the predicted mean by GPR while the associated distributions represent the expected standard 
deviation of error in the prediction. 

It is observed that the gypsum ratio steadily increases as the concentration increases until 

a plateau begins around 2.0% addition, but with growing uncertainty, as no tested blends had 

gypsum added beyond 2.0%. Surface area and size of limestone appear to have only minor effects 

at these compositional levels, with only a slight noticeable impact of higher 2-day strengths for the 

smaller limestone size blends, which is consistent with prior studies into the filler effect.31 A 

second tested compositional variation was varying the w/cm ratio and is shown in Figure 6.19. 
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Figure 6.19. Changes in the GPR predicted compressive strength based on limestone size, 
kaolin content, and w/cm ratio at three separate curing times. The dark lines represent the 
predicted mean by GPR while the associated distributions represent the expected standard 
deviation of error in the prediction. 

As expected, there is a decrease in strength predicted at higher water ratios. However, there 

appears to be an initial plateau of strength at low w:cm values before decreasing monotonically, 

particularly at 90-day strength as indicated by the yellow highlighted circles. These 2:1 blends may 

indicate a need for higher water amounts for complete hydration of the metakaolin and indicates 

that increasing w:cm ratio does not result monotonic loss in strength. It can also be noted that at 

these low w: cm ratios, that impure clays approach strengths on par with pure metakaolin clays. 

This result can also be viewed through a middle layer perspective as shown in Figure 6.20. 
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Figure 6.20. Predicted compressive strengths of various kaolin content clays at various A.) 
particle packing densities and B.) water film thickness levels.  

It can be seen above that when the particle packing reaches a certain level high value of 

compaction, there is little difference in the effect of low and high kaolin content clays. 

6.3.3. Lifecycle Assessment Results 

As previously mentioned, the GWP of OPC has been used as a benchmark for this study. 

Figure 6.21 presents the GWP in kg CO2 eq. related to OPC production. In total 942.21 kg CO2 

eq. per ton of OPC are associated with OPC production, with the calcination of limestone as 

primary contributor followed by the CO2 emissions directly related to the fuel mix used. 



198 

 

 

Figure 6.21. GWP potential (kg CO2 eq. per ton) of OPC production. 

A typical LC3 consists of 50% OPC clinker, 5% calcium sulfate source (anhydrite or 

gypsum), 30% metakaolin and 15% limestone by mass. LC3 gives comparable mechanical and 

durability properties to OPC with the additional advantage of a reduction of ~50% in wt. of clinker 

compared to OPC.  

To better assess the GWP of LC3, we analyzed our material feedstock such as limestone 

and metakaolin. Figure 6.22 and Figure 6.23 summarize the GWP of limestone and calcined clay 

when different production scenarios are considered. The variable considered are particle size for 

limestone and the fuel mix for clay calcination. A reduction of ~80% GWP is observed for coarse 

limestone (30 µm or 20 µm) compared to fine (3 µm) limestone (see Figure 6.22). This difference 

is due to the additional processing needed to produce a finer limestone.  

For the clay calcination (see Figure 6.23), depending on the choice of fuel, a potential 

reduction of up to ~80% in CO2 eq. might be achieved when coal is replaced with biogas. In other 
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words, considering the high mass percentage of metakaolin (30%) in a typical LC3 blend, any 

significant reduction in CO2 emissions from metakaolin production might result in a considerable 

GWP saving for the overall LC3 mix. However, for this study, an average fuel mix (mainly based 

on heavy fuel and coal) has been considered to assure consistency with the OPC results. 

 

Figure 6.22. GWP potential (kg CO2 eq. per ton) of limestone production. 
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Figure 6.23. GWP potential (kg CO2 eq. per ton) of calcined clay production. 

The raw material analysis was followed by the investigation of several LC3 mix design 

with varying mass percentages of OPC, calcined clay, and limestone (see Table 6.8). LC3 blend 

“55:30:15” refers to 55% OPC, 30% metakaolin, and 15% limestone mass percentages.  

Table 6.8. LC3 blends investigated. 

Material 
(wt. % of 
binder) 

55:30:15 55:15:30 50:25:25 45:25:30 45:20:35 40:20:40 

OPC 55 55 50 45 45 40 

Metakaolin 30 15 25 25 20 20 

Limestone 15 30 25 30 35 40 

 

The GWP of the different LC3 blends introduced in Table 6.8, is given in Figure 6.24. The 

analysis is based on cement paste, hence not including any aggregate. The variability shown by 

the error bars represents the impact of limestone particle size and the red bar indicates the project 
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target of 450 kg CO2 eq. per ton of cement as this is under 50% the GWP of OPC. It can be deduced 

that embodied energy ≤ 450 kg CO2 eq./ ton cement can be achieved with all LC3 formulations 

examined. Increasing the limestone content in exchange for OPC or metakaolin contents seems as 

beneficial in further reducing the GWP.  

 

Figure 6.24. GWP potential (kg CO2 eq. per ton) of different LC3 blends investigated in 
laboratory. The red line indicates 450 kg CO2 eq. per ton, or roughly 50% of OPC GWP. 

To aid designing LC3 for GWP considerations, we have ranked the OPC, limestone, and 

calcined clay in terms of their contributions to GWP, as shown in Figure 6.25. OPC production is 

the primary contributor to GWP with ≥ 95%.  
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Figure 6.25. Relative GWP contributions of OPC, limestone and calcined clay for different 
LC3 blends. 

Finally, Figure 6.26 shows a comparison of the average GWP of an alternative cement 

(Calcium Sulfoaluminate, CSA), LC3 and OPC. It can be seen that both CSA and LC3 display 

considerable savings in terms of kg CO2 eq when compared to OPC. From this analysis CSA 

cements can be produced with a GWP that is between 25-35% lower than OPC, while for LC3 

cement savings are higher than 50% in kg of CO2 eq.  



203 

 

 

Figure 6.26. GWP comparison of OPC, CSA, and LC3 cements. The red line indicates 
roughly 50% GWP potential of OPC. 

The final equation utilized for modeling GWP is shown below in Eq. 6.4 and accounts for 

variation among 4 various size limestones which will be included for optimization. 

 
               𝐺𝑊𝑃 =   

942.21 𝐾𝑔

𝑡𝑜𝑛
𝑃𝐶 +

435 𝐾𝑔

𝑡𝑜𝑛
𝑀𝐾1

+
435 𝐾𝑔

𝑡𝑜𝑛
𝑀𝐾2 +

435 𝐾𝑔

𝑡𝑜𝑛
𝑀𝐾3 +

269 𝐾𝑔

𝑡𝑜𝑛
𝐿𝑆3

+
117 𝐾𝑔

𝑡𝑜𝑛
𝐿𝑆15 +

52 𝐾𝑔

𝑡𝑜𝑛
𝐿𝑆25

+
31.1 𝐾𝑔

𝑡𝑜𝑛
𝐿𝑆40 +

11.4 𝐾𝑔

𝑡𝑜𝑛
𝑔𝑦𝑝𝑠𝑢𝑚 

 

 

 

 

Eq. 6.4 

6.3.4. Multi-objective Optimization Predictions 

The HML strength model was utilized in conjunction with the workability model and a 

multi-objective optimization was performed. OPC, three separate metakaolin’s and four various 

limestone sizes along with gypsum were included in the optimization procedure with a constant 

water: cementitious ratio of 0.40 and MG7920 utilized as the superplasticizer. The optimization 

conditions are shown below in Eq 6.5-6.10:  
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𝐿𝑒𝑡 𝑡ℎ𝑒 𝑏𝑎𝑠𝑖𝑠 𝑠𝑒𝑡 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑏𝑒: 

 
𝜃 = 𝐶𝑢𝑟𝑖𝑛𝑔 𝑇𝑖𝑚𝑒, 𝑃𝐶, 𝑀𝐾1, 𝑀𝐾2, 𝑀𝐾3, 𝐿𝑆3, 𝐿𝑆15, 𝐿𝑆25, 𝐿𝑆40, 𝑔𝑦𝑝𝑠𝑢𝑚,

𝑊

𝐶𝑚
, 𝑆𝑃%   

Eq. 6.5 

𝑴𝒂𝒙𝒊𝒎𝒊𝒛𝒆: 

  
        𝑂𝑝𝑡𝑖𝑚𝑎𝑙 𝐶𝑒𝑚𝑒𝑛𝑡 𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = 𝑊𝑜𝑟𝑘𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝜃), 𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ(𝜃)  
 

𝑊𝑜𝑟𝑘𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝜃) = 𝑅𝑎𝑛𝑑𝑜𝑚𝐹𝑜𝑟𝑒𝑠𝑡(𝑊𝑜𝑟𝑘𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑚𝑜𝑑𝑒𝑙) 
 

𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ(𝜃) = 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛𝑃𝑟𝑜𝑐𝑒𝑠𝑠(𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ 𝑚𝑜𝑑𝑒𝑙) 
 

 

Eq. 6.6 

Eq. 6.7 

Eq. 6.8 

 

𝑺𝒖𝒃𝒋𝒆𝒄𝒕 𝒕𝒐:     

                          𝑃𝐶 + 𝑀𝐾1 + 𝑀𝐾2 + 𝑀𝐾3 + 𝐿𝑆3 + 𝐿𝑆15 + 𝐿𝑆25 + 𝐿𝑆40

+ 𝑔𝑦𝑝𝑠𝑢𝑚 +
𝑊

𝐶𝑚
= 1 

 

                      
942.21 𝐾𝑔

𝑡𝑜𝑛
𝑃𝐶 +

435 𝐾𝑔

𝑡𝑜𝑛
𝑀𝐾1 +

435 𝐾𝑔

𝑡𝑜𝑛
𝑀𝐾2 +

435 𝐾𝑔

𝑡𝑜𝑛
𝑀𝐾3

+
269 𝐾𝑔

𝑡𝑜𝑛
𝐿𝑆3 +

117 𝐾𝑔

𝑡𝑜𝑛
𝐿𝑆15 +

52 𝐾𝑔

𝑡𝑜𝑛
𝐿𝑆25 +

31.1 𝐾𝑔

𝑡𝑜𝑛
𝐿𝑆40

+
11.4 𝐾𝑔

𝑡𝑜𝑛
𝑔𝑦𝑝𝑠𝑢𝑚 <

450 𝐾𝑔

𝑡𝑜𝑛
 

 

 

 

 

 

 

Eq. 6.9 

 

Where: 

 𝐶𝑢𝑟𝑖𝑛𝑔 𝑇𝑖𝑚𝑒 = 7 𝑜𝑟 28 𝑑𝑎𝑦𝑠; 𝑆𝑃% = 0.25, 𝑜𝑟 0.50% 𝑏𝑦 𝑐𝑒𝑚𝑒𝑛𝑡;   
𝑊

𝑐𝑚
= 0.40 

 

 
Eq. 6.10 
 

Variations in the MK:LS ratios and percentage of cement were allowed subject to the 

constraints that the total percentage of the composition summed to 100%, and CO2 emissions were 

confined to < 450kg CO2/ton of material as to optimize blends with under 50% reduction in GWP 
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as compared to OPC. The algorithm was allowed to run for 500,000 iterations taking 

approximately 10 h. The Pareto front associated with this optimization is shown in Figure 6.27 and 

the selected composition for testing is shown in Table 6.9.  

 

Figure 6.27. Pareto front of the maximized slump and compressive strength values. Slump is 
measured as the change in slump from the original mini-slump cone diameter. 

Table 6.9. Selected composition from pareto front utilized for testing. 

 

6.3.5. Optimization Performance 

The selected blend was tested at both 0.25% SP and 0.5% SP with the results and 
comparison shown for workability and strength in Table 6.10- 

Table 6.11 with the estimated CO2 output and discussion following.  

Table 6.10. Workability results for the optimized blend. 

SP% Predicted PAT 
(cm) 

Measured PAT 
(cm) 

Standard Deviation 
(cm) 

0.25% 5.8cm 4.56cm 0.10cm 

0.50% 7.11cm 11.6cm 0.54cm  

 



206 

 

Table 6.11. Compressive strength results for 7 and 28 day strength. The SP was held constant 
at 0.25% for testing. 

Cure 
Time 

Predicted 
Strength (MPa) 

Measured Strength 
(MPa) 

Standard Deviation 
(MPa) 

7 days 65.7MPa 46.32MPa 4.4MPa 

28 days 78.8MPa 45.88MPa 5.6MPa 

 

The predicted PAT from the random forest model trend with the measured PAT for the optimized 

blend. The predicted GWP for the optimized blend was found to be 439 kg CO2/ton which 

represents over a 50% GWP reduction as compared to OPC. The gaussian process predicted 

strengths are higher than the measured strengths. The CO2 constraint created LS:MK ratios of 2:1, 

however only 22 of the 97 unique compositions had ratios which met or exceeded this ratio, while 

the rest were predominately a LS:MK ratio of 1:2. This could exhibit a need for further expanding 

the dataset with a more diverse set of LS:MK ratios. The prediction error in these blends also could 

indicate an underestimation in the beneficial addition to compressive strength from the pozzolanic 

activity of the calcined clay. While the model had kaolin content as an input parameter, there was 

a lack of an embedded latent variable to account for the lower chemical reactivity of the high 

LS:MK ratio blends.  

6.3.6. Future Directions 

With the disparate materials and cement utilized from combining these datasets, 

differences in OPC clinker phase were not accounted for in these models. The complex reactions 

in cementitious systems have been long researched through experimental techniques in 

characterizing the microstructure through scanning electron microscopy, nano-computed 

tomography, and X-ray diffraction.32 Computational techniques such as thermodynamic 
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modeling33 and molecular dynamic simulations34,35 have been utilized in elucidating the 

microstructure of hydrated cement. Although these approaches have led to insight into the 

characterization of cement microstructure, little insight has been accomplished into establishing 

quantitative relationships to the experimentally determined macroscopic properties of 

cementitious systems. Thermodynamic modeling has been shown to predict the hydrated phase 

assemblage, including Ca:Si ratios in C-S-H and porosity.36 Through embedding chemical 

knowledge of LC3 systems, a more generalizable model will be able to be modeled and tailored 

with to the initial OPC clinker phase assemblage.  

Also, the introduction of more data would be helpful in improving model performance. 

Due to constraints on GWP, the LC3 composition was limited to 2:1 LS:MK ratios, which were 

underrepresented in the training set. Through improving the range of data analyzed, more accurate 

models will be able to be predicted. Beyond a human-centered approach to selecting compositions 

to train for refinement of the model, a Bayesian optimization routine can be established. Bayesian 

optimization considers both exploration, where compositions would be selected to minimize 

uncertainty in the model, and exploitation, where compositions are selected to maximize the target 

goals of the optimization. This allows for an algorithm guided design of experimentation which 

can learn the best model in a minimal number of tested compositions.37   

Finally, the utilization of multi-objective optimization can be extended to design blends 

that are not only sustainable environmentally, but also economically. Constraints based on material 

costs can be tailored to keep costs competitive with OPC. While calcined clays in this research 

were highly pure, impure clays of lower costs can be included for future modeling in strength, 

workability, GWP, and cost. Studies involving cement are an interdisciplinary field involving 
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material science, civil, and mechanical engineering with a continually progressing connection to 

ML. With concrete as the leading construction material in the world it is necessary to combine 

knowledge from natural sciences, engineering, and statistics to improve the manufacturing, 

placement, strength, longevity, and costs associated with the varying uses of cement   

6.4. Conclusion 

A multi-objective optimization was able to predict LC3 blends based on commonly 

available raw materials in the North American market which maximized strength and workability 

requirements while keeping GWP less than 50% of that for OPC. Physical insight gathered from 

the ML modeling agreed with prior literature in the factors which improve LC3 strength and 

workability. While improvements in particle packing due to smaller size particles were found to 

be beneficial to LC3 strength, tradeoffs in water film thickness negatively affected both GWP and 

workability predictions. These models can be supplemented in the future with a higher diversity 

of LS:MK ratios in order to more effectively predict both workability and strength associated with 

blends corresponding to low GWP. 

6.5. Research Contributions 

C.M. Childs performed latent variable design, ML analysis, multi-objective optimization, 

rheological testing, and polymer characterization. O. Canbek performed compressive strength 

testing and data collection. F. Lolli performed the lifecycle assessment. T.M. Kirby performed 

rheological testing and provided support in polymer characterization. 
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Chapter 7. Conclusions and Future Directions 

7.1. Benefits of Domain Knowledge 

It has been shown that embedding domain knowledge into cementitious systems allows 

learning physical interactions on small datasets. This knowledge can be incorporated into machine 

learning (ML) algorithms through the use of the correct data representation as shown in Figure 

7.1.  

 

Figure 7.1. A common representation for a material or formulation is as a vector representing 
the structure or makeup of the system. The original vectors for materials m and n are shown 
through the four pathways of data representation which were discussed in this thesis to form 
transformed vectors m’ and n’. Method 1 represents the materials in the form of computational 
or experimental properties, P(x), for the original material. Method 2 represents the vectors 
through finding a (di)similarity metric to compare the two. Method 3 represents the vectors 
through a direct transformation of the x components in order to embed properties such as 
invariance. Method 4 represents the original material in terms of physical interactions utilizing 
known physical equations. These transformed vectors are a latent variable representation that 
are utilized as the features for ML techniques to learn an associated output. 

 Chapter 1 provided a review of various representations for embedding domain knowledge 

in material systems. These representations were applied towards machine learning tools that guide 
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the design of more sustainable, durable cementitious binders that can accommodate variations in 

materials through customized cement compositions and chemical admixture formulations.  

In Chapter 2, mechanistic understanding of cement dispersion due to polymeric admixtures 

was discovered through the measurement of physicochemical forces responsible for dispersion. 

Chapter 3 embeds these physicochemical forces as latent variables to discover the importance of 

the contributions due to molecular architecture, anionic functionality, and anionic ratios with a 

hierarchical machine learning (HML) approach. Understanding was gained to predict adsorption 

mechanisms, and nonadsorbed polymer contributions in the development of a superplasticizer 

designed specifically for a metakaolin (MK) modified portland cement (PC) system.  

In Chapter 4, concepts of physiochemical properties and similarity were embedded into 

modeling the effects of various small organic compounds as retarders in calcium sulfoaluminate 

(CSA) cement. Models relating chemical properties and chemical structures to the predicted set 

time were built. The latent representation of chemical structures through binary fingerprints 

allowed for the ability of the model to determine retarding capability of unseen test molecules 

proceeded through the utilization of virtual screening. Insight into the importance of phosphono 

and carboxylate groups in retarder structures was developed and methodology into the 

development of a machine learning tool that guides the discovery of chemical admixtures for 

sustainable, durable cementitious binders allows for efficient, cost-effective virtual screening, was 

established. 

Finally, in Chapter 5 and 6, concepts combining a mixture of embedding system properties 

and physical equations in an HML framework were utilized in the prediction of the compressive 
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strength of cementitious systems. The latent variable representation for these systems allowed for 

the design of models which allow for generalizability to locally sourced materials. 

Broader impacts for this research include both environmental and economic benefits. Large 

reductions in CO2 from utilizing the supplementary cementitious materials (SCMs) and alternative 

binder chemistries (ABCs) that were studied through this thesis are possible. However, due to 

drawbacks such as limited production and quick setting in CSA cements along with availability 

and necessity for specialized admixtures in SCM based cements, economic factors limit their 

utilization. Through the utilization of ML techniques, costs will be decreased due to improvement 

in the utilization and knowledge of cementitious systems, leading to wider adoption of these 

systems. Worldwide adoption of these cements will not only decrease overall economic costs 

associated with procuring raw material and processing cements, but will lead decrease in CO2 

production in the partial replacement of ABCs and SCMs over PC. 

7.2. Future Directions 

One future prospect in research to allow improvement and usefulness will be on transfer 

learning. A transferrable HML model which can be further tested and trained on various types of 

cements to include: PC, ABC cements, and customized cement blends containing supplementary 

cementitious materials which can be utilized to specifically tailor cement properties.  Transfer 

learning would allow for learning on one system similar to another and have the added benefit of 

increasing the size of the dataset through learning on similar systems. For systems following 

similar physical relations, introducing statistics from prior ML studies could easily be remodeled 

in the new system. Figure 7.2 is an adapted schematic from Hutchinson et al.1 showing 3 

techniques of transfer learning. This methodology has already been studied in quantum chemical 
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(QC) applications of ML where small molecules were studied to understand relations in larger 

molecules, an example of multi-task transfer learning.1,2 The ultimate goal for such studies with 

proper relations being embedded or learned through ML would be a universal reactive force field.3 

QC has also utilized approaches of difference transfer learning where computational and 

experimental outputs are compared to predict a system output. Learning on the difference allows 

for variables to be found to fit a closure model. Such learning techniques have been studied on the 

prediction of turbulence flow.4  

 

Figure 7.2. Schematics for three types of transfer learning adapted from Hutchinson et al.1 (a) 
Multi-task transfer learning is when one model is learned to fit multiple systems. (b) Latent 
variable transfer learning is a technique where a latent domain variable is learned on one 
system and included as a feature for predicting the output of another system. (c) Difference 
transfer learning is a technique where training data are relabeled as the difference between 
features and a model is learned from this difference. 

One issue that needs to be resolved in transfer learning is ensuring proper physics are 

embedded as the system is changed. Determining the appropriate transfer learning approach for 

each domain knowledge ML technique may be a system independent approach that again may 

require prior human knowledge with test and error approaches. If the physics in the interactions 
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within the complex system do not change, multi-task learning may be the best technique to utilize. 

If the underlying physics do change, then other transfer learning techniques may need to be 

considered. 

The ability to transition from a human-centered to data-guided approaches in engineering 

systems is a core component of a grand challenge to both engineering and scientific research. To 

resolve economic and sustainability constraints, along with reducing extensive iterative testing, 

utilization of data science can lead to novel innovations in material systems in at an accelerated 

rate of innovation. Data-based engineering can also optimize conditions to address big challenges 

in engineering such as producing highly sustainable materials and improvement in urban 

infrastructure.5  

By nature, studies involving cement are an interdisciplinary field involving chemistry, 

material science, and civil engineering. While significant improvements in this field – from more 

efficient production to increased service life – have been realized over the past decades through 

traditional research paradigms, non-incremental innovations are necessary to meet global goals for 

sustainable development. Data science is revolutionizing the rate of discovery and accelerating the 

rate of innovation for material systems. This research connects the continually growing field of 

machine learning. With cement as the leading construction material in the world, research at the 

interface of pure science, engineering, and statistics need to work together to improve the 

manufacturing, placement, strength, longevity, and costs associated with the varying uses of 

cement. Through the utilization of latent variables, coupled approaches to dimensionality reduction 

driven both algorithmically as well as through domain knowledge, better feature representation is 

provided for cement-based materials which allow for more accurate models and greater 
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generalization capability. This enables concrete structures of higher durability and longer service 

life lowering overall costs, along with reduced environmental impact. Finally, from this research 

a wide variety of cements can be modeled and tested to discover unique cementitious blends 

leading to widespread and accepted utilization of novel cementitious materials.   
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