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Abstract
Industry 4.0 is driving manufacturing centers to utilize networked devices, many

of which are potentially deployed with security vulnerabilities. Unfortunately, these
devices often lack effective host-level protections and may have service lives be-
yond the vendor’s support. At the same time, traditional network security solutions,
such as firewalls, often leave coverage gaps and lack the necessary trust to ensure
they do not become launchpads for future attacks. Therefore, adopting Industry 4.0
potentially amplifies the manufacturing domain’s attack surface, creating new ways
for attackers to steal proprietary data, sabotage manufacturing operations by making
defective parts, and deny users access to critical machines.

This dissertation aims to design a practical system for defending manufacturing
deployments from network attacks. We leverage advances in software-defined net-
working to provide device-specific network protections that can be “bolted-on” to
existing manufacturing networks in the form of a security gateway. Such a bolt-on
approach allows for protecting existing machines without requiring modifications to
the machines or their software. For a security gateway to be effective it must (1) be
able to identify and mitigate vulnerabilities present in manufacturing devices, and (2)
be trusted to enforce these protections even when the gateway itself is under attack.

The key contributions of this thesis are the following. We build a vulnerability
assessment tool, C3PO, for analyzing networked 3D printers and their deployments,
which we then use to evaluate 13 networked 3D printers and 5 manufacturing center
deployments. Our evaluation identified common vulnerabilities such as susceptibil-
ity to denial of service attacks, not encrypting sensitive data in transit, and a lack
of network isolation. These identified vulnerabilities inform the device-specific net-
work protections the security gateway must provide. Next, we design a low-cost,
trusted security gateway system, Jetfire, by building on top of a micro-hypervisor
root of trust. We use formal modeling to guide the application of micro-hypervisor
provided capabilities to provide an end-to-end guarantee that all packets are pro-
cessed by the correct network protection (e.g., those identified by C3PO). We then
demonstrate how this trusted architecture can be used to secure networked 3D print-
ers by mitigating identified vulnerabilities as well as providing more elaborate pro-
tections such as behavior-based anomaly detection.
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Chapter 1

Introduction

The manufacturing domain is undergoing a revolution that is creating new cyber security risks.

These security risks arise from a heterogeneity of newly networked devices which potentially

allow an attacker to steal data or alter operations. As the industry is dependent upon its currently

deployed, high-cost infrastructure, a practical solution is needed that allows for the continued

usage of legacy machines while mitigating their security vulnerabilities. Such a solution must

provide a trusted means of mitigating the vulnerabilities of heterogeneous machines without al-

tering their operations. This thesis seeks to answer how to build a practical system for defending

manufacturing deployments from network attacks.

1.1 Industry 4.0 Magnifies the Need for Network Security

The new revolution in manufacturing, often referred to as “Industry 4.0” [75], is increasing the

attack surface of a manufacturing center by connecting more machines to the network. Consider

the small manufacturing shop depicted in Figure 1.1, where during its transition to Industry 4.0 it

incorporates new technologies such as Industrial Internet of Things (IIoT) and 3D printing while

simultaneously connecting everything to a common network. Legacy manufacturing machines

(e.g., the milling machine in Figure 1.1) though not designed with network operations in mind,

1



Figure 1.1: Example manufacturing center transitioning from traditional operations to
Industry 4.0 operations. Where Industry 4.0 introduces new technologies (3D printing),
potentially weak devices (IIoT), and connects these and legacy devices to a network. These
changes increase the potential for network attacks.

are connected to the network to increase their productivity. Furthermore, new devices such as net-

worked 3D printers and IIoT devices are deployed to provide new capabilities (e.g., on-demand

production environment details [29]) and collect additional data that informs future actions (e.g.,

predictive maintenance[166]). While these changes promise many beneficial impacts, they also

bring new security concerns as also observed in prior work [21, 114, 223].

Unfortunately, attackers are increasingly taking advantage of these vulnerabilities [44, 90,

98, 119, 159, 163]. Verizon’s 2020 Data Breach and Incident report noted that the number of re-

ported attacks in the manufacturing domain have tripled [204]. With the cyber security company

Rapid 7 noting that small organizations are especially experiencing this and seeing a significantly

a higher rate of attacks (accounting for over 80% of reported attacks) [163]. These attacks are

coming from the network, as the Industrial Security Company Dragos noted their 2020 Threat

Report where 70% of the attacks they evaluated relied upon an attacker having network ac-

cess [60]. According to a 2020 NSA advisory, the goal of these attacker’s is often to: disrupt

the manufacturing process’s operations (such as modifying machine actions or making them un-

available) and to steal proprietary information [137]. The adoption of Industry 4.0 increases

a manufacturing center’s attack surface and magnifies network vulnerabilities that allow an at-

tacker to steal proprietary data [57, 243] and cause incorrect operations [153, 235] (see Section

2.1 for a detailed taxonomy and discussion about potential attacks). The manufacturing domain

needs a practical security solution to protect it from these and other network attacks.
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1.2 Manufacturing Domain Network Security Challenges

A practical security solution must protect both legacy and new machines from both remote and

insider network attacks that aim to steal data, sabotage machine operations, or deny network

access to the machine. This is challenging due to: (1) protecting a heterogeneous set of already

deployed devices and (2) the providing a trust guarantee that network protections are applied.

• Protecting a heterogeneous set of already deployed devices (C1): Manufacturing deploy-

ments are likely to contain a mix of heterogeneous devices from multiple vendors in order to

support diverse operations. For example, consider 3D printing, where a single manufactur-

ing center might have multiple devices to support different materials (e.g., metal vs polymer)

and manufacturing techniques (e.g., electron beam vs binder jetting). These heterogeneous

devices are often produced by different vendors and often lack a unifying protocol (e.g., PJL,

PostScript on paper printers [131]), resulting in a plurality of proprietary protocols. This diver-

sity of protocols makes it challenging to identify and mitigate each device’s network vulnera-

bilities. Further, these devices often have limited support for installing or modifying software,

which limits solutions such as installing antivirus or other specialized hardware/software on

the machine (such as requiring each device to have a trusted execution environment [167]), as

they potentially leaving devices unprotected. Similarly, we want to be able to continue using

existing tools and not require developing new workflows for deployed machines. This makes

approaches such as deploying Azure Sphere’s Guardian impractical as they require developing

new cloud-based operations [126]. Thus, we need a solution for defending deployed devices.

• Providing a trust guarantee that network protections are applied (C2): Manufacturing

machines are often specialized for a single purpose (e.g., 3D printing metal parts) and often

have planned lifetimes that are ą10 years [61, 110], which can exceed the vendor’s existence

or software support, potentially resulting in network-connected machines with software vul-

nerabilities. Alternatively, keeping the software up-to-date requires a software vigilance not

3



traditionally required in the manufacturing domain, especially for security updates that do not

directly impact the machine’s operational performance. These factors increase the potential

of manufacturing machines being vulnerable to network attacks that can result in high finan-

cial consequences (e.g., proprietary designs being stolen [243], replacing defective parts [21],

machine down-time [196]). Thus, any security solution must guarantee the necessary network

protections are enforced, and that any protections do not become launchpads for future attacks.

This guarantee needs to be provided at a low-cost to support protecting small manufacturing

centers which are currently experiencing an increased number of attacks [163]. Further, such

a low-cost solutions should support commonly available hardware and run existing software.

Unfortunately, existing solutions are insufficient for protecting the increased attack surface

of Industry 4.0 manufacturing centers. Simply removing vulnerable devices or creating an air

gap between the network with manufacturing machines and all other networks is rarely realized

in practice [110]. Similarly, traditional security solutions are either not applied (e.g., reluctance

to patch software due to concerns it will negatively impact operations [25]) or provide limited

coverage (e.g., firewallls deployed at the network perimeter that only enforce coarse-grained

protections [227]). While others require devices have specialized hardware (e.g., secure en-

claves [167]) or developing new workflows to interact with deployed devices (e.g., developing

new cloud based interfaces [126]) that require significant modifications to integrate with existing

deployed manufacturing machines. Existing solutions are limited in their ability to address In-

dustry 4.0’s security concerns and leave many deployments vulnerable to network attacks such

as a malicious insider exploiting an unpatched vulnerability to sabotage a machine’s operation.

1.3 Thesis Overview

This thesis aims to address the above challenges by designing a trustworthy network security

gateway. A gateway architecture provides a means of “bolting on” network security protec-

tions without installing or modify the manufacturing machines’ software [95, 227, 229]. The
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application of software-defined networking techniques allows for transparently applying agile,

device-specific protections to all of a machine’s network traffic (both local and external). Further

background on these security gateways is provided in Section 2.2.2.

Threat Model: The security gateway must provide these defenses in the presence of a strong

network attacker with a goal of exploiting a manufacturing device. Our attacker has knowledge

of the security architecture as well as network access to all devices, allowing the attacker to

inject/modify network messages as well as compromise a device’s software stack (including the

gateway itself). We limit our attacker to not have physical access. Thus, we need trust that the

gateway’s protections are applied in the presence of such an attacker.

Requirements: Deploying a trusted security gateway in a manufacturing deployment requires:

• Understanding the vulnerabilities of the machines in a given manufacturing domain. This

knowledge allows for identifying the necessary device-specific network protections the secu-

rity gateway must implement.

• Trusting the security gateway to perform the specified protections, even when under attack.

Such an end-to-end guarantee needs to be available on low-cost hardware.

Towards this, we look to address the aforementioned challenges with respect to networked

3D printers. We select networked 3D printers as being representative of the Industry 4.0 changes

to the manufacturing domain. We start by presenting our thesis statement and our key technical

contributions. Next, we provide an outline of how this dissertation is organized.

1.3.1 Thesis Statement

This dissertation shows that it is possible to provide small to medium sized 3D printer deploy-

ments (e.g., less than 30 networked 3D printers) with trusted, low-cost (e.g., less than $100)

device-specific network security. To this end, we (a) build analysis tools to measure network

vulnerabilities in networked 3D printers and their deployments, and (b) design and implement a

low-cost, trusted system for securing networked 3D printer deployments from network attacks.
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1.3.1.1 Research Contributions

In the context of networked 3D printer security, this dissertation makes two contributions:

• Security Analysis of Networked 3D Printers and their Deployments (Chapter 3): We de-

sign and implement an open-source tool, C3PO [28, 120], for performing systematic security

evaluations of networked 3D printers and their deployments. We use C3PO to analyze 13

networked 3D printers (representing 9 vendors, across the spectrum of costs and printing pro-

cesses) and 5 real-world manufacturing deployments. We identify vulnerabilities that allow

an attacker to perform attacks such as driving the printer into a part, modifying the printing

instructions “on-the-wire”, and Denial of Service (DoS). Specifically, we noted the follow-

ing. All 13 networked 3D printers were vulnerable to simple DoS attacks (e.g., SYN flood);

some requiring a power-cycle to recover. Most (12 of 13) did not encrypt data in transit; all

sent plaintext metadata. 6 of 13 were vulnerable to either a published exploit (such as Wan-

naCry [125]) or network inputs that crashed the machine. The deployments often unnecessarily

placed networked 3D printers on publicly accessible networks, allowing networked 3D printers

to be remotely accessed via IP. Additionally, deployments contained a significant proportion

(ą41%) of embedded devices (e.g., cameras) that could be used as potential launchpads for

future attacks.

• Low-cost, Trusted Security Gateway (Chapter 4): We design and implement a low-cost,

trusted security gateway [47, 121]. The design leverages formal modeling to systematically

identify key loci for applying relevant protections to a software-defined security gateway ar-

chitecture to enable trusting the gateway’s packet processing. We adopt a micro-hypervisor-

based system architecture as it provides a root-of-trust that supports integrating protections in

commodity software across a broad hardware base (to be cost-effective) and allows for rapidly

adding new protections (providing extensibility) [9, 198, 200]. As determined by our formal

model, we use key micro-hypervisor provided capabilities such as attestation to verify software

instances, mediation to enforce correct packet routing, and isolation to prohibit tampering. We
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integrate these protections into the software processing packets on the gateway and controller

to provide an end-to-end guarantee that all output packets are processed by the correct mid-

dlebox in a known good state. Finally, we enable fine-grained per-device security policies on

low-cost platforms by reducing the footprint of canonical security middleboxes such as intru-

sion prevention systems (IPS).

1.3.2 Outline

The remainder of this dissertation is organized as follows (with an overview in Figure 1.2).

Chapter 2 surveys related work identifying security vulnerabilities in 3D printers and broader

networked devices. Additionally, it discusses network security and approaches for integrating

trust into the underlying security architecture. We build upon this background by proposing a

tool for measuring 3D printer’s network vulnerabilities in Chapter 3. We derive insights from

the identified network vulnerabilities to inform the design of potential network defenses for mit-

igating these known vulnerabilities. In Chapter 4, we design and implement a low-cost, trusted

security gateway, Jetfire, to ensure that all output packets are processed by the correct network

function. This gateway provides a platform for bolting-on defenses to deployed networked 3D

printers. We then combine these in Chapter 5 and demonstrate how diverse defenses can be

run on top of our trusted gateway to defend manufacturing deployments. First, by showing

how known vulnerabilities (e.g., those identified by Jetfire in Chapter 3) can be mitigated us-

ing existing network functions (e.g., firewalls to block unused open ports). Second, by showing

how unknown vulnerabilities can potentially be mitigated using state-of-the-art tools to apply

data-derived limits to each device’s network traffic (e.g., learning and enforcing Manufacturer’s

Usage Description specifications to provide access control). We then conclude in Chapter 6 with

limitations and directions for future work.
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Figure 1.2: Thesis Outline: Chapter 3 discusses our measurement of network vulnerabili-
ties in 3D printer deployments, Chapter 4 discusses our low-cost, trusted gateway system,
and Chapter 5 discusses our integration of defenses onto the gateway.
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Chapter 2

Related Work

In this chapter, we provide background on potential threats to networked 3D printers and security

solutions which motivate using software-defined security gateways as a pragmatic approach for

defending networked 3D printers. We build this background by presenting two taxonomies, first

a taxonomy of security threats for 3D printers and second a taxonomy of prior security solutions.

Currently, networked 3D printers lack a systematic measurement of network vulnerabilities ex-

posed by deployed 3D printers. To define a baseline set of network vulnerabilities, we create

a taxonomy of threats that allow an attacker to steal data, print defective parts, deny network

access, or cause physical damage. This baseline aids in determining the types of protections

that a security solution must provide. Our taxonomy of security solutions presents how recent

work in software-defined networking allows for integrating classical security solutions into a lo-

cal security gateway to mitigate potential threats to a networked 3D printer. Finally, we look at

approaches for trusting these software-defined architectures.

2.1 3D Printer Threat Landscape

Multiple works have taxonomized the attack surface of 3D printers [142, 215, 222, 223, 224].

We briefly describe a 3D printing workflow to aid understanding prior attacks and defenses. This
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Figure 2.1: General 3D printing workflow, we focus on security risks inside the red box.

thesis focuses on threats from a network attacker. To understand how these attacks from prior

surveys could potentially be realized by a network attacker, we analyze network vulnerabilities

identified in other networked devices (e.g., IoT, office printers, etc.) to identify the types of

potential threats a security solution for networked 3D printers must defend against.

2.1.1 3D Printing Workflow

Additive manufacturing, often referred to as 3D printing, creates a physical object by sequentially

joining layers of deposited material [16]. This process enables fabricating structures that are not

possible with traditional manufacturing methods [223]. The future of manufacturing relies on

3D printing as it reduces the cost of building complex parts, allows rapid design iteration, and

enables on-demand production [29].

A networked 3D printer’s operating model mirrors that of a peripheral device (e.g., an office

printer), and differs from many IoT devices (e.g., [8]) in two ways: (1) 3D printers lack mobile

apps,1 (2) networked 3D printers are primarily accessed by PCs on the local network whereas

IoT devices often interface with vendor cloud endpoints. Across printing processes (e.g., fused

deposition modeling, electron beam, etc.) a common workflow is used for interacting with a

networked 3D printer. We specifically detail sending a print job, as most other interactions are a

subset of this workflow.

Workflow: A typical 3D printing workflow (shown in Figure 2.1) consists of the following five

steps (where the first three steps can either be performed on the same host or multiple hosts).

1Some vendors are beginning to release mobile apps for remote monitoring [116, 147].
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1. Generate digital representation (CAD). First, a digital representation of the object to be

printed must be created, often as a stereolithography file (*.STL).

2. Convert to vertical layers (Slice). The digital representation is then divided (or sliced) into

vertical layers, defining the sequential layers that will be deposited during the printing opera-

tion.

3. Convert to printing commands. Each layer is compiled into a set of machine-specific com-

mands (e.g., G-code2 [101]) that define the printing actions for each layer. Additional meta-

data such as printing speeds and layer height is included with these commands.

4. Transfer commands over the network. Printing commands are generated for every layer and

placed into a file (with other metadata such as the number of layers) that is sent over the

network to the 3D printer. Most networked 3D printers have an open network socket waiting

to receive commands from a control PC.

5. 3D Print. Once the networked 3D printer receives the file, it is placed into non-volatile stor-

age and added to a local print queue. The commands in the file are then either executed

immediately or after a user action (e.g., pushing a button).

From this baseline on 3D printer operations, we next look at published attacks and defenses.

2.1.2 3D Printer Security Evaluations

Prior works taxonomizing the attack surface of 3D printers have broadly grouped theoretical

and demonstrated attacks based upon their impact into two categories: physical impacts (e.g.,

sabotage machine operations, altering the part’s structure making it defective) and cyber impacts

(e.g., theft of intellectual property, denial of service). We discuss demonstrated attacks within

each of these categories below.

2G-code was used by 3 of the 13 networked 3D printers we analyzed (Section 3.3.2).
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Modify firmware [71]
Firmware static analysis [128]

Out-of-limit cmds [153]
Hazardous cmd

Print
Defects

Add void [21, 186]
Modify orientation [234]

Modify firmware [130, 179]
Side-channel detection

[18, 20, 185]
Modify cmds on-the-wire

Steal Data Malware steals CAD [243]
Watermarking [68, 79]

Side-channels [4, 181]
Min acoustic side-channel [40]

Spoof printer [57]

DoS Make printer unavailable
Design Files 3D Printer Network

Attack Vector

Table 2.1: Prior work on security in advanced manufacturing, characterized by attacker
goal and the attack vector. Previously shown attacks are red and defenses are blue. The
shaded cells denote our contributions, demonstrating attacks in violet.

2.1.2.1 3D Printer Attacks

Attacks with physical impacts result in malicious changes to either the machine’s operations or

the physical parts being printed. Attacks with cyber impacts do not alter the physical part created

but look to provide the attacker an advantage such as proprietary information or making the

networked 3D printer unavailable.

Sabotage Operations: Altering a 3D printer’s firmware can result in catastrophic failures (e.g.,

the machine causing physical damage [71]). Similarly, more subtle changes to the firmware can

ensure printed parts do not meet their prescribed specification (e.g., extruding too much mate-

rial [130], reducing metal fusion by altering measured temperature [179]). To gain an understand-

ing of the potential for these and other attacks on the 3D printer’s firmware, Moore et al. [128]

analyzed an open source 3D printer firmware (for polymer fused deposition modeling machines)

where they noted the potential for buffer overflows due to the use of strcat function and fixed

sized global buffers. 3D printers currently lack input filtering to detect these types of malicious

inputs. Further, an attacker can use a 3D printer’s interface maliciously, such as Do et al. [57]

noted, where a network attacker could maliciously send commands to stop the current printing

12



operation. This is possible due to networked 3D printers having poor authentication of entities

they accept commands from.

Print Defects: 3D printers are also vulnerable to attackers altering the design files (i.e., STL

files) such that they produce an object with similar external dimensions but altered physical

properties. A particular concern, is adding internal defects such as voids that reduce the final

part’s physical properties but cannot be easily detected [186, 234]. Prior work has looked at

modifying these files while they are on a control PC prior to being sent to a 3D printer, with one

end-to-end example that resulted in a latent defect [21].

Steal Data: Prior work looking at purely cyber impacts on additive manufacturing has predom-

inantly focused on stealing a part’s digital design data (e.g., the CAD file for a 3D printed part)

using malware or side channels (e.g., acoustic data to recreate a 3D printer’s operations). The

ACAD/Medre.A worm [243] propagated through PCs used for generating part’s digital represen-

tations and sent copies of CAD files to an attacker’s server. Multiple works have studied the use

of side channels (e.g., acoustic measurements from a cell phone) to allow recreating a part’s dig-

ital design. The side channels analyzed include: acoustic [3], acoustic and magnetic [77, 181],

acoustic and gyroscopic [18], and thermal [4]. In terms of attacks leveraging the network to steal

data directly from a networked 3D printer, Do et al. [57] analyzed a single type of networked

3D printer and identified vulnerabilities in its authentication mechanism that allow an attacker to

retrieve data stored locally on the 3D printer (i.e., the current and previously printed part files).

Unfortunately, this analysis was specific to a single vendor’s network protocol and not easily

generalizable to other 3D printers.

Denial of Service (DoS): While many of the taxonomies have indicated the potential for DoS

attacks [215, 222], these specific types of attacks have not been demonstrated by prior work

analyzing the security of networked 3D printers.
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2.1.2.2 3D Printer Defenses

Unfortunately most defenses for networked 3D printers proposed in the literature have targeted

protecting intellectual property using techniques such as watermarking [68, 79, 80] or by mini-

mizing side channels [40]. Others have relied upon side channels as a means of detection using:

acoustics [20, 39], impedance [6, 205], and power consumption [129]. As noted by Belikovetsky

et al. [21] manufacturing environments have historically relied upon an air gap, where manufac-

turing machines are completely isolated from other networks (e.g., business networks). Unfor-

tunately, this is often not realized in practice as highlighted by McGurk, who after conducting

hundreds of vulnerability assessments noted an average of 11 direct connections between pro-

duction and enterprise networks [110]. Thus a pragmatic security solution is needed to protect

networked devices in the manufacturing domain [19, 27].

2.1.3 Internet of Things Security Vulnerabilities

Industry 4.0 is adding networked devices to the manufacturing domain. To analyze network-

specific security threats, we start by reviewing existing standards [81] and best practices [52, 141]

to gain an understanding of potential network vulnerabilities. Due to limited data on security

evaluations of networked 3D printers, we broaden our search space and look at vulnerabilities

identified on other networked devices (e.g., IoT, office printers, etc.). We use this background to

provide an understanding of potential network security threats (summarized in Table 2.2).

2.1.3.1 Standards and Best Practices

Industry standards have been created for networked devices to promote secure design and op-

eration. Additionally, advocacy groups have developed best practices to aid vendors who are

developing new networked IoT devices.

Standards: In the manufacturing domain, the International Society of Automation (ISA) and

International Electrotechnical Commission (IEC) developed ISA/IEC 62443, which provides an
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overarching series of standards regarding security vulnerabilities in industrial automation and

control systems [81]. Within this set of standards, ISA-62443-4-2 discusses the technical security

requirements for individual components. Specific to network security, it details requirements

about: authentication, data confidentiality, system integrity, and availability. Additionally, ISA-

95 specifies a network architecture that provides isolation between operational machines (e.g.,

networked 3D printers) and traditional IT devices (e.g., office PCs).

Outside the manufacturing domain, the European Telecommunications Standards Institute

(ETSI) developed ETSI TS 103 645 which provides baseline requirements for the cyber secu-

rity of consumer IoT devices [62]. This standard specifies similar requirements to IEC-62443,

including: communicating securely, minimizing attack surface (not having open, unused ports),

and validating input data among others. Similar recommendations have been made by the US

National Institute of Standards and Technology (NIST) [24, 63].

Best Practices: Best practices have been generated for IoT devices; these provide general group-

ings of security deficiencies identified in deployed devices. The Open Web Application Security

Project® (OWASP) identified the ten most common vulnerabilities in deployed IoT devices.

Their list includes vulnerabilities such as insecure interfaces (where sending a malformed input

causes the devices to crash) and insecure data transfer (i.e., not using encryption when send-

ing data) [141]. Similarly, the IoT Security Foundation (IoTSF) identified 15 design items that

impact a device’s security, such as using encryption and signing software updates [52].

These standards and best practices highlight many foundational computer security concepts

such as data confidentiality, access authentication, and least privilege. However, these concepts

are not always implemented. We use the key security concepts identified in the standards and

best practices to guide a survey of security vulnerabilities identified in networked devices.
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Vulnerability Type 3D Printers IoT
Insufficient Access Authentication [57] [1, 7, 8, 53, 66, 72, 123, 135, 178, 197]
Vulnerable Network Services [223] [1, 8, 10, 38, 135, 178]
Vulnerable Applications [130] [1, 7, 8, 66, 72, 123, 131, 133, 178]
Vulnerable Update Process [1, 8, 72, 178]
Data Exposed During Transfer [1, 7, 8, 13, 38, 53, 66, 72, 133, 135]
Vulnerable Default Settings [124] [8, 10, 38, 123, 178]
Vulnerable to DoS [1, 7, 13, 38, 53, 72, 123, 178, 197]

Table 2.2: Prior network security evaluations of 3D printers and IoT.

2.1.3.2 Findings on Related Devices

We analyze findings from evaluations of manufacturing robots, IoT, and office printers to inform

our evaluation and defense of networked 3D printers.

Robots and Drones: Closest to the manufacturing domain are works analyzing the security

of robots and drones. Quarta et al. [55] performed a security evaluation of deployed industrial

robots and noted an increase in network connectivity and a lack of security awareness (with 28

industrial robots directly accessible over the Internet). Specifically, they highlight the ability of

an attacker to violate safety constraints because of weak authentication, network services expos-

ing configuration files, applications vulnerable to buffer overflows, and software updates that do

not use code signing to verify the code. Dieber et al. [55] analyzed the robot operating system

(ROS [154]), and identified vulnerabilities due to allowing unauthorized inputs and susceptibility

to DoS attacks. Similarly, drones were shown to be susceptible to DoS attacks degrading their

ability to track a target [197]. These vulnerabilities and others have prompted others to look for

ways to identify potentially malicious inputs [32, 237].

Security Evaluations of IoT Devices: The Internet of Things (IoT) provides a broad collection

of devices being added to a network, from cameras to simple sensors. Unfortunately, researchers

have identified numerous security vulnerabilities in these devices [1, 7, 8, 13, 26, 38, 53, 66, 72,

123, 133, 135, 178]. Relevant security concerns identified in these works include: data exposed

during transfer (e.g., data sent without encryption, creating a man in the middle situation, ability
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to replay messages) and vulnerable applications (e.g., code injection vulnerabilities, back doors

and other open ports, DoS). Alrawi et al. [8] analyzed 45 smart home devices using a conglom-

eration of existing security analysis tools. They found that 27 devices (60%) use partial or no

encryption when sending data and 18 devices (40%) had at least one unpatched vulnerability.

Office Printers: Müller et al. [131] demonstrate the insecure state of networked office printers

by analyzing 20 different office printers (spanning 8 printer vendors), identifying the ability to:

create a DoS condition (all 20), manipulate a print job (14 of 20), and disclose information (16

of 20). Their security analysis tool, PRET, leverages a set of common network protocols and

printer languages (i.e., PJL, PostScript) to allow repeating analysis across printers from multiple

vendors. Unfortunately, networked 3D printers lack a common protocol or language, making

this tool unable to be applied to networked 3D printers.

In order to mitigate these vulnerabilities, many vendors have been integrating security fea-

tures into the printers (e.g., trusted boot, security information event management integration) [99].

A recommended practice for protecting networked office printers is to place them behind a ded-

icated print server which isolates the office printer on a VLAN [131]. This print server can en-

force actions such as user authentication and an IPS to block malicious inputs. We next discuss

potential protections that can be applied to networked 3D printers.

2.2 Network Security for Industrial Internet of Things

To address the threat landscape to networked 3D printers, we next look to understand potential

bolt-on network security gateway solutions. First, we provide a background on classical network

security solutions and software-defined networking. We discuss these to give a foundation for

bolt-on network security gateways, which are built on top of software-defined networking con-

structs and provide a mechanism for realizing device-specific classical security protections to

each device’s network traffic. Finally, we look at approaches for adding trust to these software-

defined security gateways to ensure their protections are enforced.
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2.2.1 Background on Network Security Solutions

Traditional security solutions include host-based (e.g., antivirus) and network-based approaches

(e.g., firewalls). Unfortunately, not all networked 3D printers can run antivirus software, due to

either the inability to install additional software or limited device resources. Similarly, software

patching cannot be relied upon, as networked 3D printer operators are often reluctant to apply

software updates due to concerns that they may alter the machine’s operations [25]. While not

unique to the manufacturing domain [209], these devices have long operating lives where suc-

cessful attacks have high financial impacts [196]. Thus we look to network-based approaches for

defending deployed networked 3D printers without requiring any modifications to their software.

Classical Network Security Solutions: Early computer network attacks (e.g., the 1998 Mor-

ris worm [184]) spurred the development of network-based security solutions. These include

firewalls to separate local and external networks [14, 83] and intrusion detection systems/intru-

sion prevention systems (IDS/IPS) for inspecting network traffic and identifying potential at-

tacks [15, 73, 136]. Other network functions while not exclusively security focused can be used

for security purposes. These include virtual private networks (VPN) for creating an encrypted

tunnel to a network [59] and proxy servers to authenticating clients [96]. Unfortunately, none of

these traditional solutions alone is sufficient to mitigate all the potential network threats to net-

worked 3D printers. For example, an IDS can detect known exploit payloads, but cannot detect

data integrity attacks that modify printing commands. As deployments grow, the management

of these network protections becomes increasingly complex, leading to the potential for protec-

tions to conflict with each other [231]. Additionally, traditional network security solutions are

only deployed at the network perimeter which does not protect against insider threats. Recent

advances in networking provide a potential solution to these limitations, such as software defined

networking and network function virtualization.

Software-Defined Networking: Software-defined networking (SDN) provides increased flex-

ibility to networks by migrating the controlling logic from distributed hardware to a logically
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centralized entity [31]. This is commonly referred to as separating the data plane (i.e., hardware

forwarding packets) from the control plane (i.e., logic determining where the packets should go).

Separating these planes enables using software to dynamically change how packets are routed

through the network. Building on these capabilities, traditional hardware functionalities (e.g.,

firewalls) have been implemented in software, often referred to as network function virtualization

(NFV) [127]. NFV is continuing to be optimized, allowing them to run on resource-constrained

hosts [118]. The combination of SDN and NFV allows for prescribing in software the specific

network processing for each packet.

These advances have been used in the context of improving enterprise network security to

provide network protections with context, isolation, and agility [88, 111, 173, 218, 227]. Where

SDN allows the network to transparently tunnel all packets to a unique network function, specific

to that device. Each of these network functions are realized using NFV, which allows them to be

dynamically instantiated and reconfigured. Such techniques have proven effective for enterprise

networks with excess computing capability (e.g., spare servers within a data center) to provide

multifaceted protections against both insider and remote threats. This success has led to applying

these software-defined principles to local network security gateways in small networks (e.g., to

protect IoT devices in home networks).

2.2.2 Network Security Gateways

A software-defined gateway architecture [17, 23, 51, 95, 158, 176, 227, 229] has been proposed

to secure IoT deployments. Farris et al. [64] conducted an in-depth study on the applicability

of SDN and NFV for providing security in the IoT domain. They note that SDN and NFV

complement traditional IoT security solutions (e.g., authentication, data filtering, encryption)

and furthermore add robustness in terms of scalability and agility (ability to change protections).

With the potential for a high-overlap between the vulnerabilities in networked 3D printers and

IoT devices, we look at some of the proposed software-defined gateway architectures.
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Figure 2.2: Software-defined IoT security gateway architecture, the controller’s security
policy directs provisioning device-specific middleboxes to process each device’s network
traffic on a local security gateway.

At a high level, the gateway intercepts all network traffic to and from a network device (e.g.,

3D printer) and runs virtualized middleboxes (e.g., firewall) to impose a security policy (e.g.,

block 3D printers from starting secure shell connections). Compared to traditional static network

defenses with baked-in policies, a software-defined architecture uses a centralized controller to

flexibly define and configure customized policies.

Figure 2.2 shows an example deployment protected by a software-defined security gateway.

The controller configures the gateway via the control channel. For example, if a networked

3D printer is found to have an unpatched backdoor [43, 223], the controller could initialize

a firewall on the gateway to block access. The number and type of middleboxes depends on

the defense strategy. A coarse defense strategy could run a few shared middleboxes for all

networked devices [17, 176], while a fine-grained defense strategy may deploy one middlebox

per protected device [95, 227, 229]. A virtual switch (vSwitch [145]) routes packets to the

appropriate middlebox, with the controller dynamically configuring the vSwitch’s routing rules.

These bolt-on gateways are promising for securing manufacturing deployments; however,

they are currently untrusted. Under attack, these security gateways could become ineffective, or

even worse, become a launchpad for new attacks.
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2.2.3 Adding Trust to Software-Defined Architectures

Current software-defined gateways [17, 95, 176, 227, 229] lack a root-of-trust, allowing an at-

tacker who has compromised the gateway to reconfigure the gateway such that packets are not

processed by the correct middlebox. While there is some prior work on securing individual

pieces of the architecture, they lack end-to-end trust. First, recent work on trustworthy mid-

dleboxes uses trusted enclaves to run middleboxes inside untrusted cloud environments (e.g.,

[146, 193]), but this solution requires specific hardware (e.g., SGX [84], TrustZone [11], TPM

[12]) which is not widely available. Second, research on securing the controller (e.g., [149, 172])

has been focusing on using permissions to limit the access of multiple applications, but cannot

provide runtime protections against an attacker capable of compromising the operating system

(OS). Finally, existing secure tunnels (e.g., IPSec, TLS) and work on customized verification

protocols (e.g., [94, 107, 108, 132]) can be used to achieve traffic integrity, but they alone are not

enough to defend against all attacks. We discuss each below.

Secure Enclaves: Trusted hardware (e.g., SGX [146, 193], MPX [240]) has been investigated

for providing increased security guarantees about middleboxes running in untrusted cloud envi-

ronments. These approaches provide code attestation, confidentiality, and mediation3 [146], and

memory access boundaries checking [240]. Unfortunately, the use of a secure enclave comes

with a high performance overhead and lacks generality (limited to a specific CPU and only sup-

porting user space applications with constrained memory allocations). For example, Schwarz

and Rossow proposed a secure gateway architecture [167] leveraging trusted enclaves on both

the gateway and devices to provide trust in the gateway’s operations and messages sent to and

from the gateway. However, this architecture cannot provide these trust guarantees to devices

without a secure enclave, which many networked 3D printers do not currently have.

Secure SDN Controller Software: Researchers have focused on mediating multiple applica-

tions on the controller by adding permissions [87, 168, 172, 212]. Others have looked to ensure

3Mediation requires re-implementing the middlebox software.
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consistency of routing rules generated by separate applications [86, 149]. Our work looks to

support these controllers and provide the ability to provide a foundation for guaranteeing trust

in their operations. Others have developed tools to ensure consistency between the control and

data planes with respect to packet routing, creating tools for identifying forwarding anomalies

[5, 41, 58, 78, 89, 91, 93, 151, 180, 189, 238, 239] and SDN-specific attacks [54, 106, 161, 216].

Unfortunately, none of these provide runtime protections against our threat model.

Trusted Computing: Hypervisors have been used to provide security primitives such as isola-

tion, mediation, and attestation [112, 122, 155, 190, 198, 202]. Micro-hypervisors have been

shown to support adding trust to a variety of hardware platforms (x86 [174, 200], ARM [199],

microcontroller [9]) while running unmodified software (e.g., Linux) [9, 192, 198]. Additionally,

micro-hypervisors have a small Trusted Computing Base (TCB) that is often amenable to formal

verification [201]. To provide specific trust guarantees, remote attestation is often realized using

a Trusted Platform Module (TPM) [12], leading to multiple software implementations [157, 198].

Similarly, secure routing proposals have used digital signatures to verify packet paths [108, 132].

2.3 Path Forward

We leverage this background to bolt-on network security to deployed 3D printers. Chapter 3

provides a measurement of network vulnerabilities on deployed networked 3D printers and com-

pares them to other networked devices. Additionally, it analyzes how a printer’s network deploy-

ment can allow an attacker to achieve the attacks in Section 2.1.2.1. These identified vulnerabili-

ties motivate the need to defend these deployments from a network attacker. Chapter 4 discusses

the design and implementation of low-cost, trusted security gateway. We add trust to existing

network security gateway architectures (those discussed in Section 2.2.2) by adding a low-cost

root of trust and applying fine-grained protections to its packet processing operations. Chapter

5 demonstrates the ability to integrate fine-grained, device-specific defenses, such as the classic

network security solutions on top of a trusted gateway to mitigate identified vulnerabilities.
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Chapter 3

C3PO: A Security Evaluation of

Networked 3D Printers and Deployments

In this chapter, we present C3PO, an open-source network security analysis tool for systemat-

ically identifying network security threats to networked 3D printers. We use C3PO to gain an

understanding of the current state of network security in deployed 3D printers and inform the

design of potential network defenses. C3PO’s design is guided by industry standards and best

practices. It identifies potential vulnerabilities in data transfer, the printing application, availabil-

ity, and exposed network services. Furthermore, C3PO analyzes the security implications of a

3D printer’s network deployment, such as an attacker compromising a camera to modify printing

instructions “on-the-wire.” We use C3PO to analyze 13 networked 3D printers and 5 real-world

manufacturing network deployments. We identified network security trends in networked 3D

printers such as a susceptibility to low-rate denial of service attacks (all 13), transmitting unen-

crypted data (12 out of 13), and being deployed on publicly accessible networks (2 out of 5). We

leverage these findings to provide recommendations on securing networked 3D printers and their

network deployments.
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3.1 Motivation

Attacker Goals: Based on prior work (e.g., [142, 215, 221, 223]), we envision an attacker with

one of the following goals:

• Causing physical hazards [103]. All networked 3D printers have components that can pose

a safety risk (e.g., high-power lasers, high-temperatures heaters, etc.). An attacker could ma-

nipulate these to cause a physical hazard, such as starting a fire by commanding the heater to

its maximum value while turning off safety features (e.g., the cooling fan) and driving the hot

printer nozzle into the part (Figure 3.2).

• Creating defective parts [21]. A network attacker could send malicious commands to a 3D

printer causing its software to crash midway through printing (Figure 3.3), forcing a multi-

hour printing operation to be repeated.

• Stealing proprietary data [243]. Large manufacturing centers are composed of multiple net-

worked 3D printers. Often new printing tasks are sent to the first available networked 3D

printer. An attacker could have a compromised machine advertise itself as a fake 3D printer to

steal designs and create forgeries.

• Halting printing operations [100]. An attacker can send thousands of status requests to a

networked 3D printer to overwhelm its ability to respond to legitimate requests (Figure 3.4),

thereby prohibiting legitimate users from sending new files, resulting in a loss of productivity

and potentially costing thousands of dollars [196].

Most demonstrated attacks have ignored the network as an attack vector. Some modified

STL files at the control PC before they were sent over the network (e.g., [21, 186]). Others

assumed physical access to allow modifying the printer’s firmware (e.g., [71, 179]). Network

security analysis of 3D printers has been limited to a single vendor and only identified data trans-

fer vulnerabilities–missing availability vulnerabilities [57]. Furthermore, most of the prior work

does not identify multiple types of vulnerabilities and does not scale to multiple vendors/pro-
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tocols. Moreover, the 3D printer’s network deployments have been ignored, missing potential

multistage attacks (e.g., those leveraging other devices on the network).

Threat model and scope: We limit our attacker to only accessing the 3D printer over the network

(i.e., no physical access). As a starting point, we do not consider attackers who are seeking to

be stealthy or evade countermeasures. An attacker can start with network access (e.g., insider

threat) or gain it by compromising a device on the network. For example, an attacker could gain

access to a control PC using an e-mail with a malicious link [21], an IIoT device using default

credentials [10], or a networking switch using unpatched vulnerabilities [194]. Thus, the security

of a networked 3D printer is impacted by its network deployment.

The combination of a 3D printer’s individual vulnerabilities and its network deployment cre-

ates an array of possible attack paths for causing a physical hazard, creating defective parts,

stealing data, or halting operations. Our C3PO security analysis tool aims to be a generic tool

for identifying susceptibility to these types of security risks from a connected device’s network

API. Additionally, it informs the design of “bolt-on” network defenses.

3.2 Tool Overview

We identify three requirements of C3PO for identifying network vulnerabilities in 3D printers.

Unfortunately, existing tools do not meet these requirements. Thus, we design C3PO [28], an

open-source security analysis tool for networked 3D printer and their deployments.

3.2.1 Tool Requirements

We identified three requirements for our security analysis tool:

• R1: Increased coverage of vulnerabilities. The tool should cover multiple vulnerabilities as

often combinations of vulnerabilities are required for an attack to succeed (e.g., a broadcast

query and a lack of encryption could be combined to spoof a printer and steal data).
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• R2: Protocol-agnostic. The tool should not be designed for a specific 3D printer (or protocol,

i.e., G-code), but support multiple vendors, including those using a closed-source, proprietary

protocol.1

• R3: Addressing complex deployment models. The tool should be able to analyze complex

deployment models and consider the security impacts from other devices which could be lever-

aged by attackers to achieve their goals.

Existing Tools: We are not aware of 3D printer specific network analysis tools. While many

generic network security tools exist, they do not meet all of the above requirements. Existing

IoT tools can only detect a small set of vulnerabilities. Additionally, some are device-specific

(e.g., IoT Security Checker [49] and IoT Vulnerability Scanner [152] focus on login credentials,

PENTOS [206] focuses on wireless security attributes). While others are protocol specific (e.g.,

PRET [131], OWASP Nettacker [232]) and not compatible with the protocols used by deployed

networked 3D printers.

To achieve high coverage, be protocol-agnostic, and address complex deployment models for

networked 3D printers, we develop C3PO. It leverages existing tools (i.e., Nessus [191], Mutiny

[183], and hping [165]) and adds modules specific to networked 3D printers.

At a high level, C3PO consists of two stages. First, an individual 3D printer analysis for

identifying machine-specific vulnerabilities in a standalone 3D printer. Second, a network de-

ployment analysis for identifying potential multistage attack paths through a 3D printer’s network

deployment using attack graphing. We discuss the first stage and then show how its results are

fed into the second stage to aid analyzing the network deployment.

3.2.2 Individual 3D Printer Analysis Stage

To provide coverage of vulnerabilities (R1), we ensure our tool identified network security at-

tributes described in security standards [81] and best practices [52, 141] for networked devices

1In our survey, 5 of 9 vendors used distinct proprietary protocols.
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Category Attributes Reference In C3PO

1: Data Transfer

Lack Encryption
IEC FR 3 & 4, OWASP #7
IoTSF - G

X

Broadcast Advertisement IEC FR 5 X
Command Actuators IEC FR 2 X
Lack Authentication IEC FR 1 & 3, OWASP #1 X

2: Availability Robust to DoS IEC FR 3 & 7 X

3: Printing
Application

Insecure applications
IEC FR 2 & 3, OWASP #3
IoTSF - E

X

Insecure updates
IEC FR 3, OWASP #4
IoTSF - J

X

Management Commands IEC FR 2 X
Insecure default settings IEC FR 7, OWASP #9 X

Lack of device management
IEC FR 1-3 & 6, OWASP #8
IoTSF - F, K & L

X

4: Network
Services

Network access
IEC FR 1 & 5, OWASP #2
IoTSF - H

X

Outdated libraries OWASP #5, IoTSF - D X

5: Not Applicable

Insufficient privacy OWASP #6, IoTSF - A X

Lack of physical hardening
IEC FR 3 & 7, OWASP #10
IoTSF-B

X

Table 3.1: Security assessment categories for networked devices from industry stan-
dards: IEC 62443-4-2 Foundational Requirements (IEC FR) [81], and best practices: 2018
OWASP IoT Top 10 (OWASP) [141] and IoT Security Foundation (IoTSF) [52].

(shown in Table 3.1). After pruning categories that were not applicable to the manufacturing do-

main (e.g., privacy) or could not be evaluated with only network access (e.g., physical hardening)

we grouped the resulting attributes into four categories:

• Data transfer: Determining if the data is confidential (encrypted), how devices are found on the

network, and if devices limit which network commands are executed (require authentication).

• Availability: Checking if the device is robust to traditional denial of service (DoS) attacks.

• Printing application: Detecting application vulnerabilities such as crashing inputs and un-

signed software updates.

• Network services: Identifying exposed network services and their associated software versions.

Some attributes were unable to be analyzed in an automated manner due to an inability to identify
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a common attribute to test across the various vendor protocols (e.g., testing if a network host is

allowed to command the 3D printer’s actuators). We manually analyze these and include our

findings in Section 3.3.2. These four categories are mapped to four corresponding modules in

C3PO’s first stage as shown in Figure 3.1.

3.2.3 Network Analysis Stage

Identifying vulnerabilities for a standalone networked 3D printer is the first step, but does not

convey the complete security picture because there may be other vulnerable devices (e.g., IIoT

cameras, sensors, etc.) in a manufacturing network. For example, a manufacturing deployment

might add an internet connected camera on the 3D printer’s subnet in order to remotely monitor

the printing process. Thus, it is important to identify how these devices could be used by an

attacker against networked 3D printers (R3).

The network deployment analysis component of C3PO addresses this problem. Its goal is to

create an attack graph which identifies all possible attack paths to the networked 3D printer. Two

inputs are required to achieve this goal. First, C3PO needs to automatically identify all of the

other devices and their network connections to the networked 3D printer. Second, C3PO needs

to identify each device’s vulnerabilities in order to find all possible attack paths. However, this

is challenging due to the wide array of devices, the complex network deployments, and the lack

of models for attacks in the manufacturing domain.

3.2.4 Tool Implementation

We implement C3PO as a Python script [28], that allows for calling specific stages (e.g., network

analysis stage) or individual modules within a stage (e.g., only analyzing data transfer for the

presence of encrypted traffic). C3PO parses the input network capture using scapy [22] to analyze

its contents for the data analysis module and create inputs for the availability module. Other

modules are realized by invoking existing network security evaluation tools, such as Cisco’s
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Figure 3.1: Overview of C3PO’s networked 3D printer vulnerability analysis tool. Blue
(Shaded) boxes represent our additions, and black ones are existing tools.

Mutiny Fuzzer [183] for the printing application module, Nmap for the network service module,

and MulVAL [140] for the network analysis stage. This code has been publicly released [28],

to allow 3D printer vendors and manufacturing center operators analyze their machines. We

next discuss the design and implementation of each of these stages and our findings on deployed

commercial networked 3D printers.

3.3 Individual Networked 3D Printer Analysis

We begin with our individual 3D printer analysis stage. First we discuss the design and imple-

mentation of each module, followed by our findings from analyzing 13 networked 3D printers

and 10 home IoT devices.

3.3.1 Individual Stage Tool Design and Implementation

Recall that our individual stage is composed of four modules: data transfer, availability, printing

application, and network services (shown in Figure 3.1). We will discuss each of these in turn.
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3.3.1.1 Data Transfer Module

As many networked 3D printers use a closed-source, proprietary format to encode their printing

commands, it is challenging to differentiate encryption from packed binary data. To overcome

this challenge, we leverage prior work (e.g., [207, 210]) to determine if the data is encrypted by

using three tests on the data: (1) calculate the entropy per byte, (2) perform a chi-squared test

for a uniform distribution, and (3) calculate the serial correlation coefficient. We performed all

three test on a per-packet level for the complete network capture. We separated out data with

identifiable file headers (e.g., Gzip, JPEG, etc.). We infer that encryption is used if there is high

entropy (ą6.75 bits),2 the chi-squared test results in a probability of a uniform distribution (p-

value ą0.01), and low serial correlation (ă0.3).3 If the data exchanged in both directions passes

these tests we consider encryption to be used. If it only passes in a single direction, we consider

the commands to possibly be encrypted but not sent over an encrypted channel.

Implementation: We use scapy to parse the TCP payload data from the input network capture.

First we divide the packets based upon their direction (i.e., those going to the printer from those

sent by the printer). Next, we check these payloads for known identifiers (e.g., a gzip file be-

ginning with 0x1F8B or a JPEG image beginning with 0xFFD8FF). Packets corresponding to

such a known file format are ignored from further analysis for use of encryption. The remaining

packets are analyzed both individually and as a single group containing the concatenation of all

the packet’s payloads with the following tests. Entropy per byte is measured by measuring the

distribution of each byte and summing the log base two of each. We leverage scipy’s chi-sqaured

test (from its stats package), and compare the distribution of bytes with a normal distribution. Fi-

nally, we use the statsmodels.tsa.stattools module to perform an autocorellation test. The results

of each of these tests are reported for the input network capture.

2Test files of random string values had a maximum entropy of 6.65 bits.
3Files with ą128 random bytes had a maximum serial correlation of 0.29.
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3.3.1.2 Availability Module

Our availability module identifies DoS at two network layers.

• Transport layer. Analyzes the underlying network layer capabilities of the 3D printer, not

sending any data to the printing application. Specifically, we test with a SYN flood (using

hping [165]) and TCP connection exhaustion (e.g., multiple TCP sessions).

• Application layer. In order to remain protocol-agnostic, we use the input network capture as the

input for generating all test cases. Specifically, we perform a stress test (e.g., sending multiple,

concurrent status requests) and partial data exchange (e.g., only send the first 100 Bytes of a

printing file, then keep the connection open indefinitely).

We used repeated messages (assumed to be status requests) for the stress test and the stream

where the largest amount of data is sent from the control PC to 3D printer for the partial data

exchange (assuming this to be the printing command file). Additionally, we run a slowloris [46]

variant of the stress test to identify low-rate DoS vulnerabilities.

Implementation: This module takes an input address (port and IP address) and a few of the

initial packets to generate inputs to test the networked 3D printer. It provides a series of test to

evaluate different potential DoS conditions. First, the industry tool hping [165] is used to launch

a SYN flood, and check if the printer remains available. Second, a threaded python program at-

tempts to generate 2,000 simultaneous TCP connections to the networked 3D printer. We re-run

this program five times to evaluate different potential DoS situations. Initially, we simply estab-

lish TCP connections to determine if there is a per-host limit on open TCP connections and if

the printer times out and resets inactive TCP connections. Next, we send junk data (e.g., a single

character) to determine if this changes the maximum number of connections or when a timeout

is triggered. Subsequently, we replay data from packets in the network capture. Specifically, we

replay the first packet on each connection and the first large packet (we assume this is the packet

where data is being transferred to the printer). Finally, we replay the initial packet’s data one

byte at a time to determine if the printer is susceptible to a slowloris-type attack.
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3.3.1.3 Printing Application Module

To identify potential vulnerabilities within the networked 3D printer’s application software, we

used an existing mutational fuzzer (Radamsa [74]) that generates inputs that match the proto-

col format found in the network capture [183]. This allows C3PO to leverage network fuzzing

without having to know the protocol format (e.g., required for [144]) or requiring access to the

control PC application (e.g., IoTFuzzer [37]). Fuzzed inputs were transmitted for 30 minutes

while a benign status request message was used to identify an input that caused the application

to crash. We implement this functionality by integrating a call to Cisco’s Mutiny Fuzzer [183].

3.3.1.4 Network Services Module

To identify the network services a 3D printer is exposing, we use an existing network mapping

tool, Nmap [115]. Next, we scan the device for susceptibility to known vulnerabilities using

the known network security evaluation tool Nessus [191]. C3PO calls functions within these

respective programs to collect its evaluation data.

3.3.2 Findings

In this section, we present our findings from running C3PO on 13 networked 3D printers. In

total, we identified vulnerabilities within each of the categories identified by industry standards

and best practices (Table 3.1): insecure data transfer, lack of robust availability, insecure printing

application, and insecure network services.

3.3.2.1 3D Printers Evaluated

The 13 networked 3D printers evaluated ranged from low-cost, desktop polymer machines to

$1M+, industrial metal 3D printers as shown in Table 3.2. The networked 3D printers represent

two classes: desktop and industrial. The desktop machines generally print a polymer material

and have a lower cost (ă$5,000). While the industrial machines print either polymers or metals,
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3D Printer Cost (US$) Release Year Material Printing Protocol
D

es
kt

op
OctoPiŸ 0 2011 Polymer G-code
Machine A 300 2015 Polymer G-code
Machine B‘ 1,400 2019 Polymer G-code
Machine C 1,500 2014 Polymer proprietary
Machine D 2,850 2015 Polymer proprietary
Machine E 4,200 2016 Polymer compressed G-code

In
du

st
ri

al

Machine F* 17,000 2017 Polymer compressed proprietary
Machine G*˛ 18,900 2008 Polymer compressed proprietary
Machine H*˛ 31,900 2007 Polymer compressed proprietary
Machine I˛ 50,000 2007 Polymer STL
Machine J‘ 150,000 2016 Metal proprietary
Machine K:˛ 600,000 2010 Metal proprietary
Machine L* 750,000 2011 Polymer compressed proprietary
Machine M: „1,000,000 2014 Metal proprietary

Ÿ: Open-source network front-end that supports 100+ USB controlled machines
‘: Machines are the first model released by a new vendor
˛: Machines in operational use but no longer supported by the vendor
*: Machines F, G, H & L are produced by the same vendor
:: Machines K & M are produced by the same vendor

Table 3.2: Individual networked 3D printers evaluated using C3PO, spanning a range of
costs and printing processes.

require significant space, and have higher costs (ą$15,000). The desktop machines selected

were among the top 10 sold on Amazon, and the industrial models were from the top industrial

vendors. During our evaluation we transferred printing instructions for the same design file4 to

each networked 3D printer and observed six different protocols (five of which were proprietary).

We group our individual networked 3D printer findings based upon the logical network layer

where the vulnerability manifests, specifically looking at the transport and application layers.

3.3.2.2 Transport Layer

Our findings in the transport layer revealed an implicit assumption by 3D printers that the net-

work is non-adversarial, placing high trust in the network and those with access to it.

4A CAD file for a small boat [50]
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Insight 1 (I1): 12 of 13 networked 3D printers did not use encryption when transferring data

over the network (i.e., a local attacker could steal proprietary data).

Encryption: None of the networked 3D printers encrypted data in both directions (i.e., to and

from the 3D printer, reference Table 3.3). Most data transfers exhibit an entropy of ă5.48 bits

and a serial correlation of ą0.38 in one direction.5 Additionally, only two had a majority of their

packets pass a chi-squared test for their data being a uniform distribution, which encrypted data

should pass. These two may be encrypting the printing commands file prior to sending it over an

unencrypted channel; however, all exposed file meta-data (e.g., filenames, length, etc.). As most

did not utilize encryption, known file headers could be identified (e.g., Gzip, JPEG, etc.).

To put this in context of other IoT markets, we also ran C3PO on 11 commodity IoT devices

(e.g., Amazon Alexa, D-Link camera, etc.). Among these IoT devices, 6 out of the 11 utilized

encryption when transferring data. We manually confirmed that 5 of these IoT devices utilized

TLS for data exchange. This suggests that networked 3D printers are behind the state of the art

with respect to encrypting data being sent over the network. This is particularly surprising for

the industrial networked 3D printers, as it creates a risk that proprietary data could be stolen.

Insight 2 (I2): 12 of 13 networked 3D printers were vulnerable to simple transport layer denial

of service attacks (e.g., SYN flood crashes the 3D printer, requiring a power-cycle).

We analyzed two transport layer denial of service issues: SYN flood and TCP connection

exhaustion (with results shown in Table 3.4). These classic network security vulnerabilities

allow many of the DoS attacks we demonstrated.

SYN Flood: During a SYN flood, 9 of the 13 networked 3D printers analyzed were unavailable

on the network. Additionally, two (one desktop and one industrial) were still unavailable after

the attack and required a power-cycle to regain network connectivity.
5Encrypted data has an entropy of ą6.75 bits and ă0.3 serial correlation.
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Device Encrypted Entropy/byte Serial Correlation Percent Packets
Sent Recv Sent Recv χ2 ą 0.01

OctoPi http No 4.15 5.53 0.40 0.51 0.20%
https: Yes 7.99 7.94 0.0006 0.031 98.8%

Machine A No 4.26 5.16 0.65 0.47 0.5%
Machine B No 4.16 5.01 0.39 0.58 0%
Machine C No 6.64 4.70 0.49 0.48 0%
Machine D Possible 7.88 5.29 0.10 0.50 0.2%
Machine E No 6.87 5.14 0.29 0.44 0.3%
Machine F No 5.54 5.48 0.58 0.62 0%
Machine G No 3.26 5.36 0.54 0.59 0%
Machine H No 6.37 5.32 0.47 0.59 0%
Machine I No 6.75 6.50 0.49 0.48 63.7%
Machine J No 4.13 2.87 0.35 0.46 41.1%
Machine K Not analyzed, machine configured as a NAS server*
Machine L No 4.61 5.34 0.57 0.42 0%
Machine M Possible 7.99 5.39 0.02 0.38 93.1%
Paper Printer No 5.56 N/A 0.22 N/A 0%
IoT A No 5.92 5.93 0.09 0.16 35.7%
IoT B No 5.94 6.43 0.08 0.26 0.8%
IoT C No 5.60 7.31 0.51 0.32 18.5%
IoT D Yes 7.78 7.78 0.17 0.17 12.6%
IoT E No 5.04 4.86 0.37 0.43 0%
IoT F Yes 7.93 7.96 0.08 0.06 97.7%
IoT G: Yes 7.93 7.99 0.12 0.001 97.7%
IoT H: Yes 7.99 7.99 0.006 0.02 91.5%
IoT I: Yes 7.52 7.74 0.33 0.24 74.8%
IoT J: Yes 7.92 7.76 0.08 0.17 77.3%
:: Manually verified to be using TLS *: Not specific to networked 3D printers

Table 3.3: Entropy, serial correlation and χ2 measurements use to identify encrypted data
transfer from individual devices’ network traffic.

TCP connection exhaustion: Most networked 3D printers were designed assuming a small

number of simultaneous clients (often less than 20). However, an attacker could create a tem-

porary DoS condition with less than 4,000 connections on 10 of the 13 networked 3D printers.

In general, the industrial printers allowed a smaller number of connections (6-65) and were thus

easier to DoS; while the desktop printers allowed significantly more connections (960-4,000).

Of the networked 3D printers vulnerable to TCP connection exhaustion, four did not imple-

ment a timeout for inactive TCP connections (one desktop and three industrial). Thus an attacker

could slowly create a large number of connections and render the 3D printer unavailable without

sending any data (e.g., only need to send SYN and ACK packets for each connection).
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Device SYN Flood Maximum TCP Connections TCP Timeout
OctoPi # 2123 900 seconds

Machine A  * 1 6 seconds
Machine B  * 1,194 340 seconds
Machine C # 295 47 seconds
Machine D # 998 None
Machine E # 4,000 30 seconds
Machine F  33 150 seconds
Machine G  10 60 seconds
Machine H  33 150 seconds
Machine I  1 None
Machine J  * 6 None
Machine K  4,095 60 seconds
Machine L # 65 None
Machine M # 10 10 seconds

Paper Printer  7 300 seconds
#: No impact  : DoS * 3D printer required power cycling after DoS attack

Table 3.4: Characteristics of networked 3D printer’s listening TCP socket.

The more robust machines generally allowed each host a limited number of connections

(10-135), less than its maximum capacity. An attacker could delay network operations (e.g.,

increase the time required to send printing commands over the network) but could not render the

networked 3D printer unavailable.

3.3.2.3 Application Layer

Moving up to the application layer, we noted an assumed trust between the control PC and the

3D printer. This is evidenced by the lack of authentication between the control PC and the 3D

printer. When coupled with other aspects of the 3D printer’s network operations (as discussed

below), this creates significant vulnerabilities.

Insight 3 (I3): 12 of 13 networked 3D printers did not authenticate the control PC (e.g., any

host on the network could send commands that the 3D printer would execute).
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Device Receive Files Management Commands Actuator Commands
OctoPi X: X: X:

Machine A X X X
Machine B X X
Machine C X* X:

Machine D X*
Machine E X X X:

Machine F X*
Machine G X* X
Machine H X
Machine I X*
Machine J X X X
Machine K X*
Machine L X*
Machine M X*
Paper Printer X X:

*: Required UI action :: Required authentication

Table 3.5: Network application programming interfaces (APIs) available on networked 3D
printers and their operating requirements.

Authentication: Given proprietary protocols, C3PO can only guess if the connection is au-

thenticated by analyzing the initial data packets sent after a TCP handshake. If similar packets

are repeated, it assumes this is a data exchange (e.g., status request) and no authentication oc-

curred. We manually validated each 3D printer’s network traffic to determine if authentication

was utilized. Only one desktop 3D printer appeared to be using authentication and one additional

desktop printer supported authenticating a subset of commands.

Insight 4 (I4): 3 of 13 networked 3D printers execute unauthenticated commands received over

the network (e.g., attacker can drive the print head into a part, Figure 3.2).

Network APIs: Each networked 3D printer exposes a set of network APIs to support printing

operations that fall into three categories: (1) receive files, (2) basic management (e.g., pause,

abort, etc.), and (3) direct actuator commands (shown in Table 3.5).

All networked 3D printers were able to receive files (e.g., printing commands) over the net-
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work, though each vendor utilized a different protocol (e.g., compressed G-code over HTTP

to proprietary command format over a Windows communication foundation protocol). Addi-

tionally, some networked 3D printers provide an API for issuing management commands (e.g.,

pause the current printing job). An attacker could maliciously use these exposed management

commands (e.g., adding delays by pausing or restarting the current printing task). Finally, a small

number of networked 3D printers provided direct access to 3D printer actuators (e.g., moving the

print head), which could be used to cause more serious problems. We show one such example.

Execute Actuator Commands: One networked 3D printer blindly executed actuator commands

sent over the network, directly executing G-code commands as they arrive. This creates vulnera-

bilities because of two factors. First, the networked 3D printer does not authenticate the control

PC sending the commands; it accepts commands from any network host. Second, the machine

does not limit commands that will be executed while it is printing (e.g., moving the print head).

Thus, in the middle of printing a part, an attacker can send malicious actuator commands

(e.g., increase heater temperature, drive print nozzle into part, etc.). The printer will perform

the malicious command at its current location in the print file. This creates a safety risk that

allows an attacker to cause the networked 3D printer to create an object different from what was

specified (e.g., a defective part due to damage from the printer nozzle, shown in Figure 3.2).

To demonstrate this vulnerability, we emulated a network attacker with a goal of creating a

defective part. We connected to the networked 3D printer by simply opening a TCP connection.

Next, we sent a single command6 to the 3D printer, driving the 220°C print head into the part

(Figure 3.2b) and creating a defect by melting the plastic (Figure 3.2c).

Insight 5 (I5): 4 of 13 networked 3D printers had printing applications that lacked input filter-

ing (e.g., a malformed input could crash the networked 3D printer’s firmware).

6A G-code command to move the print nozzle down (e.g., G1 Z-10.00).
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(a) Normal printing operation. Note separation between
nozzle and boat.

(b) Attack: print nozzle impacts
boat.

(c) Permanent damage to part after attack.

Figure 3.2: A network API that executes actuator commands while printing allows an at-
tacker to create defects.

Lack of Input Filtering: While most networked 3D printers generate unique filenames at the 3D

printer, one of the industrial machines had the client (control PC application) generate unique file

names. The networked 3D printer would blindly save received files with their provided filename.

If two files with the same filename but differing data were received, the printer firmware would

crash (error message shown in Figure 3.3). The crash would persist across reboots, and could

only be cleared by starting the machine in a “safe-mode” (where the printing application is not

started) and deleting the file.

Malicious Inputs: While some 3D printer applications did not crash when given a fuzzed in-

put, three desktop machines crashed from malformed inputs. For example, one expected an
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Figure 3.3: Error message after sending two different files with the same filename.

HTTP PUT request of ‘GETPRINTERINFO’, while slightly modifying this request by adding

garbage characters to the beginning (e.g., ‘GRINTERINFINFOGETPRINTERINFO’) caused

the machine’s firmware to crash. This is similar to well-known injection attacks against web-

servers [148]. The crash causes the current printing task to stop, and upon power-cycling, the

printing task must be restarted at the beginning. We additionally tested for susceptibility to com-

pression bombs [117], but did not identify any susceptible networked 3D printers.

Insight 6 (I6): 11 of 13 networked 3D printers were vulnerable to application layer DoS attacks

(e.g., an attacker transmitting 1,000+ status requests simultaneously, renders the 3D printer

unable to receive new print files).

We identified three types of application layer DoS attacks: (1) stress test where a high volume

of requests are sent to the networked 3D printer, (2) low-rate DoS attacks (e.g., Slowloris),

and (3) stopping a data transfer before it completes without closing the underlying connection.

Stress Tests: While the transport layer usually limits the maximum number of connections,

three networked 3D printers (two desktop, one industrial) supported fewer simultaneous status

requests (e.g., 4,000 TCP connections to 576 status requests). Further, one of these waited for
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(a) Available prior to DoS (b) Unable to connect during attack

Figure 3.4: All 3D printers analyzed exhibited a DoS vulnerability (many at ă10 kbps).

the client (i.e., attacker) to terminate the connections even when data was no longer being sent,

due to the printer disabling TCP timeouts.

Slowloris: Three industrial networked 3D printers exhibited vulnerability to a Slowloris-

type attack [46]. These machines accept data transferred one byte per packet (allowing up to

five seconds between packets), and would not process the data until all the bytes of a protocol

message were received. This means a standard status request message can be used to DoS the

printer for up to 45 minutes by sending only „290bps per connection.

Partial Data Transfer: Three networked 3D printers (two desktop, one industrial) had unique

vulnerabilities when only part of a file is transferred. These machines disabled TCP timeouts

when receiving a file, allowing an attacker to start but not complete multiple file transfers (some

vulnerable to as few as 10). This rendered the 3D printer unavailable, which would persist as long

as the attacker’s TCP connections remained established without sending any data. Furthermore,

one of the desktop machines required a power-cycle to recover from this attack, as the DoS

continued even after the attacker closed all open TCP connections.

Insight 7 (I7): 10 of 13 networked 3D printers respond to a control PC’s broadcast query for

3D printers (e.g., attacker can spoof a networked 3D printer to create a MitM situation where

printing files could be modified in transit).
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Device Minimum
Bandwidth for DoS

Susceptible to
Slowloris

Susceptible to Partial
Transfer

OctoPi 108 kbps X
Machine A 0.96 kbps
Machine B 834.7 kbps
Machine C No DoS
Machine D 679.6 kbps X
Machine E 368.1 kbps
Machine F 2.2 kbps X
Machine G 0.67 kbps X
Machine H 2.2 kbps X
Machine I 6.4 kbps X
Machine J 8.2 kbps X
Machine K Not analyzed*
Machine L 4.4 kbps X X
Machine M No DoS X

Paper Printer 8.7 kbps
* 3D printer configured as a shared network directory

Table 3.6: Application-layer DoS vulnerabilities characteristics for networked 3D printers.

3D Printer Discovery: In order to send printing instructions to a networked 3D printer, a control

PC must first find the 3D printer on the network. Most networked 3D printers utilize an existing

UDP-based, broadcast protocol (e.g., mDNS, LLMNR, SSDP, etc.) to enable zero-configuration

networking. These protocols begin with the control PC sending out a broadcast query. At a

minimum, these protocols provide the control PC with the hostname and IP address for each

networked 3D printer. Some also include additional details in their reply (e.g., firmware version).

In the event of multiple replies for the same networked 3D printer, the control PC only utilizes

the first reply and drops subsequent ones.

3D Printer Spoofing: This becomes a security vulnerability as the control PC does not authen-

ticate the 3D printer identified by its broadcast query before sending printing commands. An

attacker attempting to impersonate a networked 3D printer only needs to reply to the control

PC’s broadcast query before the networked 3D printer. Subsequently, the attacker must imitate

the 3D printer’s network API, which can be as simple as a listening TCP socket. As this point,
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Device Network Services Hosts Contacted Known attacks Old Libraries
Exposed Used Local Remote Metasploit CVE

OctoPi 3 2 1 0 0 0 -
Machine A 1 1 1 0 0 0 -
Machine B 4 1 1 0 0 3 FTP server
Machine C 3 3 1 1 0 1* SSL v2
Machine D 1 1 1 0 0 0 -
Machine E 1 1 1 0 0 0 -
Machine F 5 1 1 0 Unable to run -
Machine G 1 1 1 0 Unable to run -
Machine H 1 1 1 0 Unable to run -
Machine I 2 1 1 0 0 0 -
Machine J 10 1 1 0 0 2 Apache
Machine K 5 3 1 0 1 0 Remote Desktop
Machine L 1 1 1 0 Unable to run -
Machine M 14 4 1 0 1 3 SMB

Paper Printer 6 3 1 0 0 0 -
IoT A 0 0 0 7 0 0 -
IoT B 3 0 0 6 0 0 -
IoT C 2 1 1 0 1 2* Default Credentials
IoT D 2 2 1 51 0 1* -
IoT E 0 0 0 2 0 0 -
IoT F 0 0 0 2 0 0 -
IoT G 2 0 0 15 0 0 -
IoT H 5 1 0 23 0 0 -
IoT I 0 0 0 11 0 0 -
IoT J 0 0 0 19 0 0 -

*CVE for a weak cipher suite.

Table 3.7: Network services and known vulnerabilities identified for individual devices.

the control PC will send printing commands to the attacker thinking they are destined for the

networked 3D printer, allowing the attacker to steal data or worse modifying design files (e.g.,

adding defects) before forwarding the file to the real 3D printer.

Insight 8 (I8): 6 out of 13 networked 3D printers had unnecessary network services exposed

(e.g., an attacker could control a networked 3D printer using an exposed service à la [10]).
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Open Ports: Exposed network services were identified using the Nmap tool [115].7 In order

to identify if the network services were used, we analyzed the networked 3D printer’s network

traffic for use of these ports. The majority of 3D printers had unused, exposed TCP services,

with some exposing up to 10 unused services (reference Table 3.7). Interestingly, we noted that

in general higher cost networked 3D printers had more unused, open ports. This is likely due to

the increased complexity of printing operations performed by the higher cost 3D printers. When

comparing with commodity IoT devices, we noted fewer unused ports and that networked 3D

printers primarily communicated with hosts on the local network while the IoT devices often

contacted multiple remote hosts.

Insight 9 (I9): 4 out of 13 networked 3D printers had network services vulnerable to known

exploits, often from out of date libraries (e.g., an attacker could utilize a published attack to

gain root access on the 3D printer [119]).

Known Vulnerabilities: Multiple existing tools were used to perform vulnerability scans of

the 3D printer’s network services. These tools checked for susceptibility to Metasploit attack

modules[113], Common Vulnerabilities and Exposures (CVEs) [67], and web server vulnerabil-

ities [187]. Note, some scans were unable to be completed.8 Four networked 3D printers were

vulnerable to published exploits due to outdated libraries (reference Table 3.7).

This becomes a security concern, as we observed a disconnect between software updates for

the printing application and the supporting libraries. On some networked 3D printers, supporting

libraries were not updated when the firmware was updated (e.g., no OS patches were applied).

This left the networked 3D printer vulnerable to known/released exploits (e.g., WannaCry [125]).
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Figure 3.5: Summary of individual 3D printer findings, ordered by pervasiveness.

3.3.2.4 Summary of key findings

In summary, C3PO identified 33 vulnerabilities across 13 networked 3D printers evaluated (our

consolidated findings are given in Figure 3.5 ordered by pervasiveness of the security issue).

Twelve did not use an encrypted channel (though two may send already encrypted files). Ad-

ditionally, all networked 3D printers were vulnerable to DoS attacks, some resulting in the ma-

chines being unavailable until it was power cycled. Ten utilized broadcast protocols (e.g., mDNS,

SSDP, LLMNR) which an attacker could spoof to create a MitM situation between the control

PC and the networked 3D printer. Four had applications that were susceptible to malformed

inputs, requiring a power-cycle to recover. Combinations of these vulnerabilities allowed us to

perform the four attacks in Table 3.8 on multiple networked 3D printers.

In analyzing our findings, we noted a couple of trends. As the cost of a networked 3D printer

increased, there was not a significant reduction in the number of identified vulnerabilities. A part

of this is likely due to issues such as lack of encryption and susceptibility to DoS being pervasive

across all networked 3D printers analyzed. We did note that the higher-cost industrial machines

were more likely to be running additional services and therefore more likely to be vulnerable

to published exploits (especially as the machines aged). In contrast, the desktop networked 3D

printers were more likely to expose network APIs that allowed for directly manipulating the

7Machines D, F, G, H, I, & L did not use any of the top 1,000 TCP ports.
8The 3D printer would establish connections then not send replies, causing the scanner to wait indefinitely.
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Attack
3D Printer Hazard Modify print Crash app DoS

D
es

kt
op

OctoPi X
Machine A X X X
Machine B X X X
Machine C X X X
Machine D X X
Machine E X X

In
du

st
ri

al

Machine F X X
Machine G X X
Machine H X X
Machine I X X
Machine J X
Machine K X
Machine L X X
Machine M X X X

Table 3.8: Attacks we demonstrated on networked 3D printers, illustrating susceptibility
to a range of attacker goals.

printing actuators. Additionally, desktop machines were more likely to have their firmware crash

from malformed inputs.

A networked 3D printer’s release year did not directly impact the number of vulnerabilities

identified, with machines of different ages having a similar number of vulnerabilities. However,

we noted that known best practices were least likely to be incorporated on a vendor’s initial

product, as these machines generally had the most vulnerabilities, regardless of its release year

(e.g., a 2019 model had the most vulnerabilities). We assume this is likely due to the pressure

to bring a product to market; however, with these machines likely having lifespans of 10+ years

(potentially never being patched) it creates significant security risks. Next, we identify how the

network deployment allows an attacker to use these vulnerabilities.

3.4 3D Printer Network Deployment Analysis

As a 3D printer’s network security is not limited to the device itself, but also its network de-

ployment we build a tool for analyzing their network deployments. We use attack graphing to
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Figure 3.6: Overview of C3PO’s network deployment analysis tool, extending prior attack
graphing tools, blue (Shaded) boxes represent our additions.

identify how other devices on the network could be part of an attack path targeting a networked

3D printer. We discuss the design and implementation of this tool below.

3.4.1 Network Analysis Tool Design and Implementation

Our network deployment component includes three modules as shown in Figure 3.6.

Network Blueprint Module: Creates a network topology, listing all of the devices a single hop

from our key assets (i.e., networked 3D printers and control PCs).

Device Vulnerabilities Module: Includes vulnerabilities for both networked 3D printers and other

devices. The networked 3D printer’s vulnerabilities can be provided by C3PO’s individual 3D

printer analysis. For other devices, we can either apply known vulnerabilities (e.g., from a vul-

nerability scan) or incorporate theoretical scenarios (for example, scenarios could be based upon

common vulnerabilities for devices, such as IIoT cameras having default credentials [10]).

Attack Models Module: Takes the outputs from the previous two modules to create an attack

graph. It consists of the set of networked 3D printers to evaluate, the attacker goals, the attacker’s

starting location (i.e., same local network or a remote network), and a mapping of vulnerabilities

to attacks. With these inputs and models, we extends the attack graphing tool MulVAL [140] to

perform a “what-if” analysis. It uses vulnerabilities from our theoretical scenarios (e.g., what

attack paths exist if all IIoT cameras on the network have default credentials) to generate an
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attack graph, showing how an attacker can cause a physical hazard, create defective parts, steal

data, or halt operations on the networked 3D printer(s) being evaluated.

Implementation: In C3PO, we approximate a network blueprint by using Nmap [115] to detect

all machines on the same subnet. The network blueprint output along with the device vulnera-

bilities are parsed into a JSON file that specifies the scenario being evaluated. C3PO then parses

this JSON into a MulVAL compatible input file to generate an attack graph.

MulVAL [140] is written in Prolog to evaluate a series of predicates in order to identify attack

paths. We extend this functionality by defining predicates for the four attacker goals presented

in Section 2.1.2.1: sabotage operations, print defects, steal data, and create DoS. These attacker

goal predicates depend upon identifying situations that allow an attacker to create situations

such as compromising a network device and executing malicious code, creating a man-in-the-

middle situation, and others. MulVAL outputs identified attack graphs as both a .CSV listing and

graphically as a PDF.

3.4.2 Findings

We evaluated 5 real-world 3D printer network deployments in order to gain an understanding of

how networked 3D printers are currently deployed. This allowed us to demonstrate the benefits

of C3PO as we analyzed large and complex networks.

3.4.2.1 3D Printer Deployments Evaluated

The 5 network deployments evaluated ranged from small, single 3D printer deployments (e.g.,

small, research-focused additive manufacturing labs) to an active makerspace with four types of

networked 3D printers on multiple subnets. The five network deployments can be grouped into

three deployment categories based upon their network blueprint (depicted in Figure 3.7):

• Flat network. All devices are on the same subnet.
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(a) Flat Network
(b) Purdue Architecture [213]

(c) Complex

Net Type 3D Printers PCs Other
Deployment A Purdue 1 1 5
Deployment B Flat 1 1 9
Deployment C Flat 3 39 27
Deployment D Complex 2 8 14
Deployment E Complex 18 80 96

Figure 3.7: Types of real-world 3D printer network deployments, and description of those
surveyed.

• Purdue Enterprise Reference Architecture [213].9 Networked 3D printers are on an isolated

subnet, which is bridged by PCs with multiple NICs.

• Complex. A publicly accessible subnet, often connected to multiple subnets.

For each network deployment, the network devices identified during the network scan were

placed into 4 categories: (1) networked 3D printers, (2) PCs, (3) other devices (e.g., IIoT, paper

printers, building automation, etc.), and (4) network hardware. Each deployment had a large

number of other devices, accounting forą41% of all the devices on each network. These devices

often have weak security properties, increasing the security risks to 3D printers on the same

network.

We analyzed 19 scenarios, where each scenario had a different set of assumed vulnerabilities

(e.g., network hardware having code execution vulnerability [194], or other devices, such as IIoT

cameras, having default credentials [10]). These scenarios were generated from a combination

of prior attacks (e.g., Stuxnet using malicious USBs in order to compromise PCs connected to

manufacturing networks) and discussions with operators (e.g., need for legacy systems that were

9This is the architecture specified in ISA-95 [2].

49



Device Category Scenario Assumed vulnerability
Baseline 0 No assumed vulnerabilities

PCs
1 Malicious USBs (e.g., [102])
2 Malicious links (e.g., Phishing)
3 Old OS (e.g., Windows 95)

Network hardware 4 Exploitable firmware (e.g., [194])

Other devices (e.g., IIoT)
5 Default credentials (e.g., [10])
6 Exploitable firmware (e.g., [139])

Network hardware & PCs
7 Scenario 1 & 4
8 Scenario 2 & 4
9 Scenario 3 & 4

Network hardware & other devices
10 Scenario 4 & 5
11 Scenario 4 & 6

Other devices & PCs

12 Scenario 1 & 5
13 Scenario 1 & 6
14 Scenario 2 & 5
15 Scenario 2 & 6
16 Scenario 3 & 5
17 Scenario 3 & 6

All 18 Scenario 1, 2, 3, 4, 5 & 6

Table 3.9: Theoretical vulnerability scenarios (based upon prior and related attacks) used
to evaluate each network deployment for allowing network attacker to achieve their goal.

added to the network). The complete list of scenarios is given in Table 3.9.

Each scenario was analyzed once with an attacker on the local network (e.g., an insider

threat) and again with an attacker on a remote network (i.e., starting on a public network). The

total number of attack paths for all attacker goals (i.e., cause a physical hazard, create defective

parts, steal data, or halt operations) were normalized based upon the number of networked 3D

printers and the number of devices with assumed vulnerabilities on the network, the results are

shown in Figure 3.8. On average, C3PO identified 5 multistage attack paths to each 3D printer

per insecure device on the network.

Across the network deployments analyzed we observed two trends. First, we noted a lack of

network isolation. Many networked 3D printers were deployed with a large number of unnec-

essary and unrelated devices. Attack graphing aided our identification of how these can directly

impact the security of a networked 3D printer.
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Insight 10 (I10): 2 of 5 surveyed 3D printer network deployments made 3D printers easily ac-

cessible to an attacker (e.g., placing networked 3D printers on the public internet).

Lack of Network Isolation: Most networked 3D printers were configured to be on a private

network and only accessible by other devices on the same subnet. However, one network de-

ployment placed networked 3D printers on public IP addresses. This was not required for the 3D

printer’s operation. Using the Censys [34] and Shodan search engines [175], 49 additional net-

worked 3D printers from the same manufacturer were found similarly configured with publicly

accessible IP addresses. This configuration allows anyone on the internet to view the networked

3D printers’ camera output, as well as potentially being able to remotely stop 3D printing jobs.

Similarly, other researchers found ą3,700 publicly accessible hosts running a popular web

interface for 3D printers in 2018 [124]. Despite the documentation suggesting access control

be enabled, many of these instances were found to not require any authentication for sending

commands to the 3D printer’s actuators and viewing their attached web cameras.

After discussing our findings with the manufacturing center operators, they have since mod-

ified their network deployment and removed these 3D printers from the public internet.

Insight 11 (I11): 2 of 5 surveyed 3D printer network deployments had a non-network hard-

ware device that bridged subnets. A vulnerability in this device amplifies the number of attack

paths (e.g., 54% of attack paths in Deployment A rely on a specific PC being compromised).

Devices bridging networks: In Deployment A, the 3D printer appeared to be on an isolated

network. However, the control PC bridged multiple networks, some of which eventually access

the internet. Thus if a remote attacker could compromise this host (e.g., using a malicious link

in an e-mail [21]), it would enable them to access the 3D printer as if they were on the local

network. This can be observed in our simulation data where attack paths only exist when the
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category with the bridging devices (generally control PCs) is assumed vulnerable. This analysis

aids in identifying which devices are most critical to secure, as they are a part of the largest

number of attack paths. Defenders can use this type of analysis to prioritize security efforts and

resources to minimize the threats to a networked 3D printer.

Printers attacking printers: A networked 3D printer can also be part of an attacker’s multistage

attack. Larger deployments often have multiple 3D printers (e.g., Deployment C). If one of these

networked 3D printers is compromised by an attacker (e.g., using a published exploit) it can

be used for attacking other 3D printers on the same network. This is similar to how an IIoT

device could be used by an attacker to launch attacks on 3D printers. Thus, adding a new type

of networked 3D printer could alter the threats posed to existing 3D printers in a manufacturing

center.

Summary: C3PO demonstrated its ability to analyze real-world 3D printer deployments. All of

the surveyed 3D printer network deployments were found to contain a majority of non-traditional

IT devices (e.g., IIoT). C3PO was able to use theoretical attack scenarios to identify devices,

which if compromised, result in the greatest increase in the number of possible attacks paths. We

grouped the attack paths a remote attacker (e.g., on a public network) could perform based upon

the vulnerabilities assumed for each category of device (depicted in Figure 3.8). We plot the data

normalized for the number of networked 3D printers in the deployment as well as the number

of devices with assumed vulnerabilities to allow for comparison between networks of different

sizes. For example, Deployment A has a maximum of 44 attack paths while Deployment E has

15,773 attack paths (both having approximately five attack paths per networked 3D printer and

assumed vulnerable devices).

3.5 Implications from Network Security Findings

As our study shows, today’s networked 3D printers and deployments contain a number of se-

curity vulnerabilities. We focus on four high-level vulnerability categories shown in Table 3.10
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(a) Normalized number of attack paths when assuming vulnerabilities in a single device category.

(b) Normalized number of attack paths when assuming multiple vulnerabilities across
combinations of device categories.

Figure 3.8: Normalized number of potential multistage attack paths for each 3D printer
network deployment analyzed given different assumed vulnerabilities.

and summarize potential classical security techniques for mitigating each (see Chapter 5 for a

discussion about realizing these defenses).

Our goal here is to suggest pragmatic defenses rather than wholesale changes to the en-

tire ecosystem or suggest draconian measures that will impact operations (e.g., avoid other IoT

products or lockdown systems). Specifically, our discussions with the operators of these man-

ufacturing centers suggest that they cannot adopt a single, fixed security solution, as they often

need 3D printers from different vendors to perform different operations (e.g., printing polymers

vs. metals). Thus, manufacturing centers need a flexible defense that can be tailored to the spe-
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Vulnerability Noted In Implication Recommendation
Vulnerable to traditional DoS 13 of 13 Block access to 3D printer Limit concurrent sessions
No encryption 12 of 13 Steal data Place 3D printer on a VPN
Unused network service exposed 6 of 13 Increases attack surface Drop traffic to unused services
Bad inputs crash application 4 of 13 Stop printing operations Drop improperly formatted inputs
Vulnerable to known exploits 4 of 13 Modify firmware Implement patch in the network

Table 3.10: Vulnerabilities in surveyed 3D printers, their security implications, and classi-
cal security solutions to mitigate the vulnerability.

cific needs of their networked 3D printers. Additionally, as manufacturing centers increasingly

incorporate new connected devices (e.g., IIoT) there is a high potential that they will be used in

multistage attacks against critical assets (e.g., their 3D printers). Indeed, the increased produc-

tivity and efficiency of Industry 4.0 is predicated on incorporating these networked devices [75].

To counter the security vulnerabilities identified by C3PO, we look to apply classical network

security solutions such as:

• Rate Limiting: Traditional DoS attacks are mitigated by limiting the number of simultaneous

connections each host may have with a 3D printer.

• Encryption and Authentication: Setting up a VPN tunnel between the control PC app and the

networked 3D printer can provide data encryption and host authentication.

• Signature Detection: Known exploits can be detected in the network by running an Intrusion

Prevention System (IPS) which drops traffic matching the exploit’s signature.

• Input Filtering: Malformed inputs can be dropped by running an IPS to filter inputs such that

it only allows data payloads matching the networked 3D printer’s expected protocol.

What is needed is a platform for applying these defenses, specifically configured for each

device, to defend 3D printer network deployments. Such as the low-cost, software-defined se-

curity gateways proposed for defending IoT deployments [17, 95, 176, 229]. These route each

device’s traffic through a security gateway which leverages software-defined networking and net-

work function virtualization to apply device-specific protections to each device’s network traffic.

54



3.6 Summary

C3PO allows for systematic security evaluations of networked devices and their network deploy-

ments. We presented an example use case where we analyzed the security of 13 networked 3D

printers and 5 active manufacturing network deployments. We identified 33 vulnerabilities re-

lated to lack of encryption, unpatched known vulnerabilities, crashing inputs, and multiple types

of DoS. Next, we demonstrated a practical application of attack graphing for identifying potential

multistage attack paths in 3D printer network deployments. Analyzing 19 simulated scenarios,

we identified 3D printer on public networks, the preponderance of embedded devices in these

network deployments, and the potential for 3D printers to be both targets and launch points for

attacks.

With the diversity and scale of networked devices in manufacturing networks, we envision

that the ideal way to secure these devices is to push security into the network. A promising

pragmatic solution is to utilize a security gateway. However, any network protection must be

trusted to ensure it does not become ineffective, or even worse, become a launchpad for new

attacks. Furthermore, this trust needs to come at a low-cost to ensure it is an accessible option

for small manufacturing centers which are more likely to have limited security budgets. Towards

this Chapter 4 describes our design of a low-cost, trusted security gateway system that can be

deployed locally to defend deployed networked 3D printers.
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Chapter 4

JETFIRE: A Low-cost, Trusted Security

Gateway

The numerous network security vulnerabilities identified in deployed 3D printers (Chapter 3)

demonstrate the need for a security solution that can be applied to already deployed devices. To

be practical in the manufacturing domain, a protection system need to defend a diverse set of al-

ready deployed 3D printers, while minimize any changes to how they are operated and not adding

or modifying the printer’s software. Additionally, as a successful attack can have a large finan-

cial impact, the security system needs to provide a guarantee that its protections are enforced.

Finally, this trust is needed at a low cost, where the system doesn’t require any specialized hard-

ware and can run existing software. Thereby allowing small manufacturing centers, which are

experiencing an increasing number of attacks [163] while likely having limited security budgets,

to deploy these defenses.

Recent efforts have recommended pragmatic “bolt on” security gateways at the network layer

to secure deployments of insecure networked devices using software-defined principles [95, 229].

While such gateways are an attractive option, they raise two natural concerns: (1) Can the gate-

way architecture be trusted? and (2) Can we deliver these benefits to low-cost deployments?

This chapter presents JETFIRE, a practical, low-cost system with built-in trust for software-
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defined security gateways [47, 121]. In designing and implementing JETFIRE, we make three

key contributions: (1) A practical and deployable basis for trust using a micro-hypervisor root-

of-trust; (2) A scalable low-cost system design and implementation to support fine-grained per-

device policies; and (3) A formal analysis of the protection JETFIRE offers against infrastruc-

ture threats by construction. We demonstrate that JETFIRE provides intrinsic security against

a broad spectrum of known attacks against such software-defined architectures. We also show

that JETFIRE offers security at low cost (e.g., a $35 Raspberry Pi can effectively support custom

per-device IPS instances for small deployments of 50+ devices).

4.1 Security Gateways to Defend 3D Printers

Security gateways have been proposed as a possible non-intrusive defense solution that can be

deployed in the network without modifying deployed device operations [17, 95, 176, 227, 229].

We expand upon the background provided in Section 2.2.2 and then discuss our envisioned gate-

way deployment.

4.1.1 Security Gateway Background

As discussed in Section 2.2.2, industry and academia have proposed securing (potentially vulner-

able) IoT devices on edge networks with on-site security gateways [17, 23, 51, 95, 158, 176, 229].

These security gateways are designed to intercept all traffic to and from a device and apply secu-

rity protections via middleboxes at the network level (e.g., a firewall). A simple gateway might

employ a single network function such as a firewall. However, this is often not fine-grained

enough to protect diverse devices. For example, a firewall might mitigate one 3D printer’s un-

used service, while leaving another 3D printer exposed to crashing inputs (when the vulnerability

is on the same network service used by the 3D printer for receiving print jobs). To overcome this,

recent work [95, 227, 229] has advocated for using a software-defined approach to apply device-

specific middleboxes tailored to each device. For example, using a firewall for a 3D printer with
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unused network services and an IPS for the another 3D printer to detect malicious inputs. This

allows for protecting devices that might not support patching (e.g., a device vendor goes out of

business) or are unable to run host-based defenses (e.g., antivirus software). The specific pro-

tections are determined by a policy agent running on a centralized controller which manages the

gateway.

Such a security gateway architecture results in two main operating stages for each device

it is defending. First, there is a setup stage, which begins when the security gateway receives

a packet from a new device. The gateway queries the controller to determine what action (if

any) should be taken. The controller checks for a policy entry for the device’s MAC address, if

an entry exists, the controller sends the corresponding device-specific middlebox configuration

and routing rules to the gateway, otherwise the controller configures the gateway to drop packets

from that MAC address. The gateway runs the configuration commands that it receives from

the controller, spinning up the device-specific middleboxes and associated routing rules. Once

configured, the gateway enters the runtime stage. During this stage, packets are processed by the

gateway following the routing rules and middlebox configuration specified during the setup stage

without requiring the controller’s involvement. Middleboxes are configured to send messages

to the controller, for example reporting packets violating a firewall rules. The controller upon

receiving these messages queries the security policy to determine if the gateway needs to be

reconfigured, for example transitioning from a firewall to an IPS to analyze packet payloads

for a potential exploit signature. Thereby allowing the controller to update or reconfigure the

device-specific middleobes on the gateway based upon the security policy.

These “bolt-on” security gateways are promising for tackling the challenges of 3D printer net-

work security as they are: practical, deployable, and agile. They are practical as they can be used

immediately for defending existing deployments, at a low-cost (e.g., less than $100 [17, 95]).

They are deployable as they can run on existing hardware and support existing software. Addi-

tionally, their defenses are applied transparently, thereby allowing devices to use their existing

58



Figure 4.1: Conceptual overview of a local security gateway system for defending deployed
networked 3D printers.

workflows. Finally, they are agile as they can provide network protections which are tailored

to each device. Next, we discuss a proposed deployment of such a security gateway system to

defend networked 3D printers.

4.1.2 Proposed 3D Printer Security Gateway Deployment

We envision the security gateway to be deployed locally, in close proximity to the devices it is

protecting (as shown in Figure 4.1). For example, at the switch next to a local cluster of net-

worked 3D printers connected to a wired local area network (LAN), or where the gateway serves

as a WiFi access point for wireless devices. Where multiple gateways could be deployed across a

manufacturing floor, each defending a set of nearby devices. For example, one gateway defend-

ing a group of polymer networked 3D printers, and another gateway defending metal additive

machines in a separate location. For the controller, it could be deployed locally (e.g., with other

computing resources) or remotely (e.g., hosted in a cloud environment). While a remote con-

troller would incur additional latency and potentially have times when it is out of contact with

the gateway(s), we view this as having minimal impact on the gateways operations as after the

initial setup stage the gateway can process packets without a connection to the controller. Any

latency of availability issues with the controller would only impact new devices being connected

to the gateway and policy transitions, which occur infrequently. For the remainder of this chapter,

we will focus on a locally deployed controller and a single gateway.
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Figure 4.2: Example attacks against current software-defined security gateway architec-
tures altering a gateway’s packet processing.

4.2 Need for Trustworthy Gateways

While software-defined gateways are promising for securing manufacturing deployments, it be-

comes ineffective when the architecture itself is under attack. We present four concrete, real-

world attacks against such gateways, as identified by prior work [106, 121, 146, 193, 208, 225]

and limitations of existing piecemeal solutions to mitigate all of these attacks.

As shown in Fig. 4.2, the controller ( 1 ), components on the gateway ( 2 , 3 ), and interaction

between the controller and the gateway ( 4 ) can be exploited. While we discuss each attack

separately, it is possible for a single attack to consist of a combination of these example attacks.

Attack 1 - Tamper with security policy(A1): The first attack ( 1 in Figure 4.2) targets the

controller’s security policy (derived from [208]). An attacker who gains access to the controller

can modify the security policy. For example, specifying a more lenient middlebox (e.g., changing

an IPS to a firewall), allowing the attacker’s exploit to transit the gateway without detection.

Attack 2 - Alter middlebox operations (A2): The second example attack ( 2 in Figure 4.2)

targets modifying the middlebox (similar to threats noted in [146, 193]). An attacker can gain

access to the gateway, using credentials (e.g., from a data breach) or an unpatched vulnerability
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Project Root of trust Mitigates Attacks
A1 A2 A3 A4

Prior Gateways [17, 95, 176, 227, 229] OS N N N N
Trustworthy Middleboxes [76, 146, 167, 193] SGX, TrustZone N Y N N
Secure Controllers [86, 149, 172] OS N N N N
Secure Protocols [59, 94, 107, 108, 132] OS + Crypto N N Y Y
JETFIRE (Our system) Micro-hypervisor + Crypto Y Y Y Y

Table 4.1: Prior gateways and piecemeal security solutions.

(e.g., [138, 220]). Once on the gateway, the attacker can modify the middlebox’s configuration

and remove rules that block a device’s known vulnerability. Now the attacker’s exploit can bypass

the security gateway’s middlebox protections and compromise the device.

Attack 3 - Alter packet path (A3): The third example attack ( 3 in Figure 4.2) targets a packet’s

path on the gateway (similar to [121]). An attacker that has compromised the OS could modify

the packet’s header to cause it to be routed to the incorrect middlebox, which fails to block the

exploit payload.

Attack 4 - Inject malicious control channel messages (A4): The fourth example attack ( 4

in Figure 4.2) targets the control channel (noted in [106, 121, 208, 225]). In practice, a secure

control channel (e.g., TLS) is not often used [170, 217]. An insecure channel allows an attacker

to inject malicious messages. For example, sending openflow commands to reconfigure the

vSwitch such that packets bypass a middlebox, thereby allowing the attacker’s exploit to pass

through undetected.

Limitations of existing solutions: As shown in Table 4.1, current gateways [17, 95, 176, 227,

229] do not secure any of the above attacks. While there is some prior work securing individual

pieces of the architecture, they still lack end-to-end trust (see details in Section 2.2.3). First, re-

cent work on trustworthy middleboxes uses trusted enclaves to run middleboxes inside untrusted

cloud environments (e.g., [146, 193]), but this solution requires specific hardware (e.g., SGX

[84], TrustZone [11], TPM [12]) which is not widely available. Second, research on securing the

controller (e.g., [149, 172]) has been focusing on using permissions to limit the access of multiple
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applications, but cannot provide runtime protections against an attacker capable of compromising

the OS. Finally, existing secure tunnels (e.g., IPSec, TLS) and work on customized verification

protocols (e.g., [94, 107, 108, 132]) can be used to achieve traffic integrity, but they alone are not

enough to defend against all attacks.

4.3 Overview

In the previous section, we have made a case for a trustworthy gateway. For such a gateway

to be deployed in practice across a wide range of manufacturing deployments, it must also be

low-cost. In this section, we first define what we mean by trustworthy and low-cost, then present

JETFIRE’s overall architecture, assumptions, and challenges.

4.3.1 System Goals

Overarching Trust Property (G1): a trustworthy software-defined security gateway should

provide a guarantee that all output packets are processed by the correct middlebox, even when

under attack. We formulate this guarantee in Section 4.4 and examine how it mitigates existing

attacks in Section 4.8.

Achieving the overarching trust property (G1), requires a root-of-trust that current software-

defined security gateway approaches lack (Table 4.1). This root-of-trust must provide founda-

tional capabilities (e.g., memory isolation) to enable building a holistic defense on both the data

and control planes.

Low-Cost (G2): A security gateway that meets the above trust requirements alone is not very

useful if it cannot be readily deployed within today’s manufacturing ecosystems. We view small,

localized deployments in manufacturing floors as those that are most likely to experimentally

deploy a security gateway (often having less than 20 localized devices [33, 82, 156, 195]) and

experience more frequent attacks [163]. However, they often have limited budgets for network
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security. A high-end solution would not be practical for these customers. We therefore focus on

providing low-cost gateways for small to medium enterprises supporting upto 50 devices with a

single hardware gateway costing less than $100.

4.3.2 Key Components

To meet these goals, we envision JETFIRE, a trustworthy and low-cost software-defined security

system. While we focus on a local deployment, we envision our system enabling different de-

ployment models such as a new trustworthy “security-as-a-service” offering that providers (e.g.,

ISPs, CDNs) can offer to consumers. Where a security provider could run the controller in a

cloud environment, and provide security gateway(s) for their customers to deploy locally in their

manufacturing center.

In contrast to existing gateway architectures [95, 227, 229], JETFIRE runs both the controller

and gateway software on top of a carefully chosen root-of-trust (4.5.1).The root-of-trust pro-

vides capabilities for isolating sensitive data (e.g., control policy, secure keys) and attesting the

integrity of running software (e.g., middleboxes), while supporting many hardware platforms

and commodity software (e.g., Linux, Docker). Building upon the root-of-trust, we add four

extensions to achieve our overarching trust property (G1) while mitigating the attacks previously

mentioned in Section 4.2.

1. We migrate the control policy into the isolated memory protected by the root-of-trust (miti-

gating attack class 1 ).

2. We use a performant attestation approach to verify the integrity of running software (mitigat-

ing attack class 2 ).

3. In each gateway, we design a trusted signing mechanism between the vSwitch and each mid-

dlebox to protect a packet’s path and data (mitigating attack class 3 ).

4. We create a secure channel between the controller and the gateway to protect control messages

(mitigating attack class 4 ).
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Figure 4.3: JETFIRE’s trusted security gateway adds fine-grained protections to provide
low-cost, end-to-end packet processing guarantees.

Our formal system model (Section 4.8.1.1) and comprehensive system evaluation (Section 4.8.2)

show that JETFIRE can achieve our trust property and mitigate several prior attacks.

4.3.3 Assumptions

System Assumptions: We assume all packets to and from an device must go through the gateway

as their first-hop. And we scope our system to only providing network protections to devices

using an IP-based network. While some devices use other protocols (e.g., BLE, ZigBee), many

use IP directly or connect to a hub on an IP network. We also assume middleboxes are correctly

implemented and are able to block all network exploits targeting the device they are protecting.

Threat Model: We consider a powerful network adversary capable of compromising the gate-

way and controller’s operating system (OS) via the network. The adversary’s aim is to render

the gateway ineffective, and then access unprotected devices. The adversary can flexibly choose
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combinations of attacks from the literature (e.g., attacks in Section 4.8.2), but cannot directly

access a device or use an evil twin attack (e.g., [162]) to bypass the gateway.

We do not aim to protect against an attacker generating DoS conditions1 on the gateway itself

(e.g., maliciously dropping packets that arrive on the gateway so that they are never forwarded

to the appropriate end-host [225]), nor provide confidentiality to packets and middleboxes (e.g.,

[146, 193]). Attacks modifying the controller’s global network view by impersonating a device

or advertising false paths (e.g., [54, 208, 225]) are out-of-scope of this work.

4.3.4 Challenges

We highlight two challenges towards achieving our trustworthy and low-cost goals.

• Good performance with a small TCB (Section 4.5) For a trustworthy security gateway to

be used in practice, it must provide good performance. Additionally, the added trust should

not come at the expense of a large TCB. Our key idea is to use a combination of isolation and

attestation techniques so that we can isolate small pieces of critical software while attesting

bigger, legacy software components.

• Scalable middleboxes on low-cost platforms (Section 4.6) A low-cost gateway needs to sup-

port continuing growth of networked devices ([33, 82, 156, 195]). However, existing low-cost

platforms (e.g., Raspberry Pi) only support 3 IPS middleboxes (see details in Section 4.9.1),

which is insufficient for many manufacturing deployments. We identify that memory con-

sumption is the main bottleneck for scalability and propose two optimization techniques for

scaling support to approximately 50 devices.

1A Jetfire gateway can be used to mitigate the DoS attacks identified by C3PO in Chapter 3; however, the
gateway architecture creates a new DoS vector. An attacker who compromises the gateway could maliciously drop
packets on the gateway so that they do not reach their end destination (e.g., the networked 3D printer being protected
by the gateway).
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4.4 System Trust Properties

We create a formal model of today’s software-defined security gateways (Section 2.2.2) to inform

the design of JETFIRE (see discussion and evaluation of this model in Section 4.8). This model

helps us define our overarching trust property and derive four required sub-properties protecting

critical components and interfaces. These properties then define JETFIRE’s trust requirements

for achieving our overarching trust property.

4.4.1 Overarching Trust Property

Given a network where all of a device’s inbound and outbound traffic goes through our trusted

security gateway, GW , our goal is to ensure that any packet, pkt , output by the gateway was

processed by the correct middlebox while operating in a known state, so that benign packets are

allowed and malicious packets are dropped. Our trust goal can be denoted as:

@pkt P BenignPkt , processPktpGW , pktq “ Allow

@pkt P MaliciousPkt , processPktpGW , pktq “ Drop
(4.1)

To achieve this goal in the presence of an attacker, the entire gateway architecture must be trust-

worthy, expressed formally as:

TrustedGatewaypGW ,Controllerq ðñ

tamperProof ppolicyq ^ correctInstancepvSwitch,mbox0 ,...,n , appsctlq ^

secureChannelpchannelgw , channelctlq ^ @mboxi , authenticateRoutepvSwitch,mboxiq

(4.2)

Where:
GW “ tvSwitch, tmbox0 , . . . ,mboxnu, channelgwu

Controller “ tpolicy , appsctl , channelctlu
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4.4.2 Required Sub-Properties

Our overarching security property is composed of four sub-properties, where each maps to a

trustworthy requirement: tamperProof (TRsw1), correctInstance (TRsw2), secureChannel (TRcomm1),

and authenticateRoute (TRcomm2).

Security Policy Isolation and Mediation (TRsw1): The first sub-property is to protect the se-

curity policy stored in the controller. Controller applications are subject to attacks [208, 225]

which make the security policy vulnerable. As the correctness of the rest of the system is based

upon this policy, we need to ensure it is tamper proof. To achieve this, the security policy needs

to be isolated in protected memory with all access mediated by a trusted entity (e.g., blocking

the OS and other untrusted applications from accessing the security policy). Our security policy

isolation and mediation sub-property (TRsw1) can be denoted as:

tamperProof ppolicyq ðñ

isolatedMemoryppolicyq ^ mediatedAccessppolicyq

(4.3)

Component Instance Validation (TRsw2): Besides the security policy, the software of key

components must not be altered by an attacker (e.g., Attack 2 where the middlebox was altered

[146, 193]). Such alterations can be detected by validating key software components are running

the correct instance. Software components that must be validated includes the controller appli-

cation, vSwitch and all middleboxes. Our component instance validation sub-property (TRsw2)

can be denoted as:

correctInstancepvSwitch,mbox0 ,...,n , appctlq ðñ

remoteAttestpappsctlq ^ remoteAttestpvSwitchq ^ @mboxi , remoteAttestpmboxiq

(4.4)

Packet Path and Data Validation (TRcomm1): Each packet must be routed to the correct mid-

dlebox as specified by the security policy. Prior work on Internet routing has advocated for
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per-hop path authentication to validate that packets followed the specified path [108, 132]. We

aim to provide similar guarantees in order to detect packets maliciously routed to the wrong mid-

dlebox (e.g., Attack 3). In particular, we need to verify whether the intended path of a packet has

been enforced, and whether packet data has been modified in-between. We denote our packet

path and data validation sub-property (TRcomm1) as:

@mboxi , authenticateRoutepvswitch,mboxiq ðñ

@pkt ,
`

intendedPathppkt , policyq “ mboxi
˘

ùñ

`

actualPathppktq “ vSwitch ; mboxi ; vSwitch
˘

^ unmodifiedDatappkt , vSwitch,mboxiq

(4.5)

Control Message Integrity and Authentication (TRcomm2): To protect against control channel

attacks (e.g., Attack 4)[54, 106, 208, 217, 225], we aim to ensure that the control channel is

secure. To achieve this, the control channel needs to be authenticated and encrypted so that data

transmitted over the channel has not been modified or spoofed (e.g., only the controller can send

middlebox configuration commands to the gateway). Meanwhile, the secret keys used by the

channel need to be isolated and any access is mediated by a trusted entity, denoted:

secureChannelpchannelgw , channelctlq ðñ

authenticatedEncryptedpchannelgw , channelctlq ^

isolatedMemorypkeysq ^ mediatedAccesspkeysq

(4.6)

A system that provides these properties will be secure by construction and mitigate the ex-

ample attacks in Section 4.2. Next, we design a system to provide these trust requirements.
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4.5 Design for Trust

Based on our formal model of software-defined security gateways (Section 4.8.1.1), we first

identify a low-cost, low-TCB root-of-trust that provides the foundational security capabilities

(e.g., isolation) required to achieve our overarching trust property (Section 4.4.1). Then, we

discuss our approach for building fine-grained security protections that realize each of our trust

requirements (Section 4.4.2) on top of this root-of-trust.

4.5.1 Micro-hypervisor as a root-of-trust

As prior software-defined security gateways lack a root-of-trust (Table 4.1), we begin by selecting

an appropriate root-of-trust. The root-of-trust must be available for low-cost hardware (e.g.,

ARM) and support legacy software without requiring reimplementation to be practical.

Design Alternatives for Root-of-Trust: The design space for root-of-trust can be categorized

along two axes (summarized in Table 4.2). First, hardware dependent approaches (e.g., SGX en-

claves [146, 193]) have been used to secure middleboxes in cloud environments. Unfortunately,

these hardware features are not common on low-cost platforms and only support limited appli-

cations (e.g., no system calls [84]). On the other hand, pure software approaches such as formal

verification and secure programming languages too have limitations. However, these approaches

are hard to directly deploy today as they require significant reimplementation and verification

effort to add protections to existing software. As many commonly used software applications

can span over 100,000 lines of C/Java, these approaches quickly become intractable.

Why a Micro-hypervisor: Rather than using a pure hardware or software approach, we advocate

using a hybrid approach in the form of a micro-hypervisor. A micro-hypervisor [122, 174, 198,

200] is in essence a software reference monitor [164], that acts as a guardian of system resources

(e.g., files, sockets). Hypervisors have been used to integrate fine-grained security protections

into commodity software; e.g., identifying covert malware, providing trusted system calls, at-

testation, debugging, tracing, application-level integrity and confidentiality, trustworthy resource
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Root-of-Trust Security Capabilities Low-Cost
Legacy software Hardware

Trusted enclave
(SGX, TrustZone)

isolation, attestation
No system calls,
Limited memory

Limited processors

Secure languages
(Rust, OCaml)

isolation, mediation
Requires

reimplementation
x86, ARM

Micro-hypervisor
isolation, mediation,

attestation
Supports

x86, ARM,
microcontroller

Table 4.2: Comparison of root-of-trust design space options.

accounting, on-demand I/O isolation, trusted path, and authorization [36, 56, 65, 112, 122, 155,

169, 171, 177, 190, 190, 202, 203, 211, 219, 226, 236, 241, 242]. A micro-hypervisor retains

the foundational capabilities (isolation, mediation, attestation and extensibility) of traditional

feature-rich hypervisors, but with a small software base that is amenable to formal verification to

ensure it is implemented without vulnerabilities [9, 198, 200]. Further, they only require hard-

ware support for virtualization, allowing it to run on most existing low-cost hardware platforms

(e.g., ARM [199], x86 [174, 200], microcontroller [9]). It directly supports commodity software

without any limitations or modifications. Thus, a micro-hypervisor is a low-cost root-of-trust

that is well suited to the manufacturing domain.

4.5.2 Micro-hypervisor Extensions for Achieving Trust Sub-properties

Unfortunately, a root-of-trust alone is insufficient for achieving our overarching trust property

(Section 4.4.1) as it does not innately integrate with the gateway’s software to enforce specific

protections. Next, we show how we build on top of the micro-hypervisor to achieve each of our

trust requirements. To this end, we build four micro-hypervisor extensions (shown in Figure 4.3):

data capsule and vTPM for protecting the software (TRsw1, TRsw2), and packet signing and

trusted agent for protecting the communications (TRcomm1, TRcomm2). We discuss our design

for realizing each of these sub-properties in the sections below.
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Figure 4.4: JETFIRE migrates the policy file and processing logic into a data capsule, pro-
tected by the micro-hypervisor. An application (App2) that is not in the whitelist or fails at
attestation cannot access it.

4.5.2.1 Data Capsule for Security Policy Isolation and Mediation

Recall that our trust guarantee requires that the security policy be in isolated memory with me-

diated access. A naı̈ve approach is to place the entire controller into memory protected by the

micro-hypervisor. However, this approach creates two unwanted impacts: (1) it significantly

increases the TCB, potentially exposing the micro-hypervisor to new attacks.2 (2) it incurs per-

formance penalties for all operations as every system call or external functionality needs to be

mediated by the micro-hypervisor.

Our Approach: Instead of placing everything into the TCB, we carve out small critical pieces

(e.g., control policy, secret keys) from the software, and migrate them into the micro-hypervisor

as a data capsule. Each data capsule is isolated from unprotected memory and all accesses are

meditated, providing fine-grained protection.

Figure 4.4 shows an example data capsule protecting the controller’s security policy. The

security policy specifies a finite state machine (FSM) for each device. Each state of the FSM

describes a specific middlebox configuration (e.g., Snort with ruleset 1). Transitions between

2A typical SDN controller (e.g., NOX, ONOS, OpenDayLight) has a code base from 20-300k lines of code,
which is an order of magnitude larger than many micro-hypervisors.
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states are based upon alert messages sent by the middlebox. For example, an alert message

(or series) could indicate a network “scan detected”, triggering the controller to reconfigure the

middlebox with ruleset 2 which performs deep packet inspection.

In a traditional security gateway, the security policy along with other controller applications

run in unprotected memory which is exposed to attackers (e.g., 1 in Figure 4.2). Rather than

placing all of them (20k lines of code for OpenDaylight) into the root-of-trust, we only migrate

the control policy and its state transition logic into a data capsule, which is a small portion of

the controller’s code (195 lines of code). Access to the data capsule which is placed in isolated

memory protected by the micro-hypervisor, is then mediated by the micro-hypervisor via code

white-listing [150, 202]. This scheme ensures that the data capsule can only be accessed by the

middlebox management application. The original code base is then refactored to access these

data capsules.

4.5.2.2 vTPM for Component Instance Validation

The code of critical software components (e.g., middleboxes) must be protected from malicious

modifications. Instead of carving out individual pieces of these components, we relax our pro-

tection to only identifying changes to the code using remote attestation [12, 48] via a vTPM. This

limits the TCB increase to only the attestation operations and measurements. This combination

of isolation and attestation allows us to maintain a small TCB with good per-packet performance.

Our Approach: Attestation is often provided by a Trusted Platform Module (TPM). As a phys-

ical TPM is not available on all hardware, we leverage a software implementation, a virtual

trusted platform module (vTPM) in the micro-hypervisor. We utilize a subset of its capabilities

to securely store a chain of measurements, by extending a platform configuration register (PCR),

and its ability to securely provide the stored values (i.e., a PCR quote). These vTPM measure-

ments can be trusted as access to the vTPM is mediated by the micro-hypervisor and the PCR

values are placed in a data capsule, precluding an attacker from maliciously altering the PCR val-
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Figure 4.5: Packet signing operations to verify packet path and data between the vSwitch
and middleboxes.

ues (e.g., resetting the PCR and/or injecting malicious PCR extensions). While the vTPM does

not provide persistent secure storage and attestation keys by itself, it has performance advantages

compared to a physical TPM (e.g., not limited by physical memory or data bus).3 This allows

applying vTPM measurements at a fine granularity, providing increased PCRs (100+) and lower

access latency (0.9 msecs).

4.5.2.3 Packet Signing for Packet Path and Data Validation

To provide packet path and data validation on the gateway, a strawman solution is to use existing

secure tunneling protocols (e.g., IPsec, TLS). Unfortunately, this has two limitations: (1) Most

tunneling implementations rely on the OS to protect secret key files (e.g., .ssh directory), allow-

ing an attacker who has compromised the OS to craft secure messages, (2) Existing tunneling

approaches are too heavyweight for traffic on the gateway (data path traffic). As we show in

Section 4.9.2, when enforcing tunneling between the vSwitch and middleboxes for every packet,

it could reduce packet processing throughput by greater than 67% of the baseline throughput.

3Note that a vTPM can be bridged with a platform hardware (physical) TPM, if available, to provide persistent
secure storage and attestation keys.
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Our Approach: Inspired by prior work on path verification protocols (e.g., [108, 132]), we

design a simple packet signing mechanism to enforce each packet follows the correct path with

the correct data. Figure 4.5 shows our packet signing mechanism. We extend the vSwitch and

each middlebox by adding two functions: sign and verify Both functions use keys stored in the

micro-hypervisor to generate a digital signature. The sign is triggered when sending a packet

and verify is called when receiving a packet.

For example, a packet pkt arrives at the vSwitch, which looks up its intended path to mboxa

(configured by the controller). Then vSwitch calls sign to create a digital signature over the

entire packet (header and payload) using key ka1 , a unique key shared between the vSwitch and

the mboxa . After the middlebox receives the packet, it uses its key ka1 to verify the signature. If

the packet has been tampered with or routed to the wrong destination (e.g., Attack 3 in Section

4.2), the verification fails and the packet is dropped. After the middlebox processes the packet, it

signs the packet using another key (e.g., ki2 ). Note that this is necessary as the middlebox might

modify the packet data, resulting in the previous signature being obsolete. The vSwitch similarly

verifies this signature.

Compared to traditional tunneling, our verification approach is more lightweight. It does

not require expensive setup (unlike TLS) and uses a simpler verification header (unlike IPSec).

Furthermore, the micro-hypervisor provides assurances that the digital signatures can be trusted,

as it protects the secret keys and sign/verification functions, thereby stopping an attacker from

forging signed packets. Thus, our signing mechanism ensures that packets follow the correct

paths at a low performance overhead (see comparison in 4.9.2). Next, we discuss how we secure

the control channel.

4.5.2.4 Trusted Agent for Control Message Integrity and Authentication

Existing SDN architectures often support an encrypted message exchange mechanism (e.g.,

IPsec/TLS) for the control channel. Unfortunately, these do not protect the secret keys.
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Attack in Section 4.2 Requirement Defense
Attack 1 TRsw1 Limit access via data capsule
Attack 2 TRsw2 Attest component via vTPM
Attack 3 TRcomm1 Identify modification via packet signatures
Attack 4 TRcomm2 Protect secret keys via trusted agent

Table 4.3: Summary of design components for achieving trust requirement in order to
mitigate attacks from Section 4.2.

Our Approach: We add trusted agents on the controller and gateway to secure control channel

traffic. These agents intercept all control channel messages and protect the secret keys in a data

capsule. Further, micro-hypervisor mediation ensures only trusted applications can access the

secret keys. We assume that the secret keys are exchanged out of band and that a unique pair

exists for each controller and gateway set. Since the secret keys and agents are memory-protected

and isolated by the micro-hypervisor, they are immune to attacks from untrusted components

including the OS.

4.5.2.5 Design Summary

Table 4.3 summarizes key components of our system design, the trust requirements they address

and the class of attacks they protect against. Our system design relies on a micro-hypervisor

root-of-trust to provide the needed trust capabilities at a low-cost, running legacy software on a

broad base of existing hardware. Our performant, low-TCB hypervisor extensions (data capsule,

vTPM, packet signing, and trusted agent) work in synergy towards achieving our overarching

trust property. As shown in Table 4.3, the data capsule (TRsw1) blocks an attacker from modify-

ing the security policy (Attack 1). Attestation via the vTPM (TRsw2) detects an attacker modi-

fying a middlebox (Attack 2). Packet signatures (TRcomm1) mitigate local attackers modifying

packets (Attack 3). Finally, trusted agents (TRcomm2) block an attacker from forging control

channel messages (Attack 4).
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4.6 Enabling Low-Cost with Scalable Middleboxes

In the previous sections, we described how we can design a trustworthy gateway based on a low-

cost root-of-trust. Another key challenge is scalability, where a single gateway can protect all

deployed devices in a localized area (e.g., a production line). In this section, we first identify the

scalability bottlenecks and then present two of our optimizations.

4.6.1 Identifying Bottlenecks

We start with testing how many middleboxes a low-cost Raspberry Pi 3 can run simultaneously.

Since each middlebox is assigned to one device, this test shows the maximum number of de-

vices the current platform can protect. We pick Snort [45] as an example middlebox because

an intrusion prevention system (IPS) is likely required by all deployments. For each Snort in-

stance, we run it using the default configuration with the full community rule set [45] to provide

broad coverage. Unfortunately, we could only run three snort instances simultaneously, which is

insufficient.

When running multiple Snort instances, we noted that the main bottleneck limiting scalabil-

ity was the memory required by each Snort instance. One Snort instance consumes 452 MB of

memory. We used Intel’s VTune Amplifier profiling tool to identify the most significant con-

tributors to memory consumption and found that the majority of the memory was allocated on

the heap for rules and their processing, followed by socket buffers. Based on these findings, we

propose two optimizations to reduce the memory consumption.

4.6.2 Optimizations

Customized Configurations: Our first optimization is to customize Snort configurations based

on the protected device. Our analysis shows that the memory required by a Snort instance is

directly proportional to the number of rules it is configured with („27.5 KB per rule). The full

community rule set, composed of 10,918 rules, is designed to protect a wide array of devices.
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Our idea is to use custom profiles that only contain the rules that are applicable to that particular

device (e.g., a device running Linux does not need Windows rules). Thus, we categorize the com-

munity rules (based upon rule descriptions and exploit references) into 116 separate categories to

more precisely identify which rules might be applicable for a given device. This customization

realized up to a five-fold decrease in Snort rules.

We also optimize the socket buffer, the second largest memory consumer. Snort has a default

socket buffer of 166 MB, to support analyzing network traffic from multiple devices at rates of

200-500 Mbps. For our use case, supporting such high throughput is unnecessary, as each device

has its own instance of Snort and peak bandwidths of less than 30 Mbps.4 Using this observation,

we reduce the socket buffer and free up 163 MB per Snort instance.

Sharing Rules: After categorizing rules for each device, we noted that many of the rules were

still common across multiple devices, with only a small fraction of the rules being device-

specific. This results in the same rule being in memory multiple times (i.e., once for each device

being protected). Our insight is to place these common rules into a shared memory region, so that

we only have one instance of the rules in memory (similar to [143]). Subsequent instances can

be instantiated at a significantly reduced memory footprint (e.g., 30 MB per instance). Combin-

ing these optimizations, reduces the memory footprint of Snort by more than 12x per instance,

allowing a single hardware platform to support more than 50 simultaneous Snort instances (Fig-

ure 4.7a).

Our approach and optimizations are general and can apply to other platforms and middle-

boxes as well. For instance, many other low-cost platforms (e.g., OpenWRT routers) have

less than 2 GB of RAM giving them the same bottleneck. Similarly, other middleboxes (e.g.,

Zeek [233], Suricata [188]) that use a common set of rules across multiple devices, could also

benefit from our analysis approach and optimizations.

4In sampling 13 commercial networked 3D printers, we noted an average throughput of less than 2 Mbps.
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Figure 4.6: Overview of key implementation components of JETFIRE prototype.

4.7 Implementation

We implemented a JETFIRE prototype using two Raspberry Pi 3Bs, one for the controller and

the other for the gateway [47]. Both use the uberXMHF micro-hypervisor framework [198]

and Raspbian Jessie (Linux 4.4.y). For the controller, we use OpenDayLight (Aluminum), the

largest open source SDN controller. For the gateway, we run Dockerized middleboxes (e.g.,

Snort, Squid, iptables) with OpenvSwitch (OVS 2.12.1) for packet routing. These components

are depicted in Figure 4.6. Next, we describe uberXMHF and how we extend it to achieve our

trust properties.

uberXMF micro-hypervisor: Our trust architecture is built on top of uberXMHF, an open-

source,5 formally verified, micro-hypervisor framework [198, 199, 201]. We chose uberXMHF

because it supports both x86 and ARM platforms and provides a modular framework for com-

positional verification. This allows for adding hypervisor extensions while preserving the core

micro-hypervisor’s memory integrity without needing to repeat the verification [198].

We use uberXMHF (v6.0) and realize our protections (Section 4.5.2) as hypervisor exten-

sions. Each hypervisor extension exposes a hypercall interface that is callable from both user

and kernel space and allows for transferring up to 4 KB of data. Our security policy extension

stores and transitions each IoT device’s current FSM state, it prohibits adding states by setting

5https://uberxmhf.org
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the maximum number of states for each device’s FSM and limiting this to only occur once.

Our packet signing extension uses the micro-hypervisor’s internal cryto library to perform an

SHA256-HMAC on an input data buffer using secret keys stored in the micro-hypervisor. Our

trusted agent uses a secret key in the hypervisor to encrypt a data buffer using AES encryption.

Trusted Data and Code (TRsw1, TRsw2): We integrate our security policy into our modified

OpenDayLight controller so that each policy query goes to the micro-hypervisor (to achieve

TRsw1). As the hypervisor extensions are in C and the controller in Java, we build a shared library

that performs the hypercalls and leverage a Java Native Interface (JNI) to integrate these into the

controller’s operations. For attestation, we create a Python daemon that measures each mid-

dlebox’s executables and configuration. Measurements are stored in the the micro-hypervisor’s

vTPM, using its PCR extend interface. Then measurements are sent to the controller (as a vTPM

quote), which the controller checks against the value in its security policy (to achieve TRsw2).

These measurements and quotes are then repeated periodically (e.g., 1 min) to detect an attacker

adding code or modifying configurations after the middlebox is instantiated.

To demonstrate the performance benefits of using a vTPM, we compared the time required

to store a measurement (e.g., extend a PCR) on a physical TPM with a virtual TPM. As shown

in Table 4.4, the virtual TPM was 20x faster while providing 8x more measurement storage

locations (PCRs).

TPM Median Time PCR Registers
Physical 17.2 milliseconds 24
Virtual 0.86 milliseconds configurable, up to 120

Table 4.4: TPM PCR extend comparison between virtual and physical TPMs on the Rasp-
berry Pi 3B.

Trusted Communications (TRcomm1, TRcomm2): We integrate our packet signing into OVS

and our Dockerized middleboxes (to achieve TRcomm1). We determined that a SHA256-HMAC

was optimal on the Raspberry Pi platform by benchmarking a range of potential algorithms,

from public-key signatures (e.g., ECDSA) to signed message authentication codes (e.g., HMAC,

79



CMAC, etc.). Our benchmark compared the network throughput when computing a signature in

user space for each packet to a baseline throughput when no signatures were calculated (shown

in Table 4.5).

Algorithm Normalized Throughput Signature Length (bytes)
Baseline (no signing) 1.0 0
HMAC-SHA256 0.221 32
CMAC-AES 0.0313 16
CMAC-RC2 0.0274 8
ECDSA 0.00013 72
UMAC* 0.00067 16
GMAC* 0.27 16
HMAC-SHA1: 0.243 20
HMAC-MD5: 0.236 16
*Requires random nonce/IV : Hash algorithm has been broken

Table 4.5: Signing algorithm comparison on Raspberry Pi 3B for a user space application
signing full MTU packets.

Within OVS, we add two new actions (sign and verify) to both the user and kernel space

virtual switch functionality (where the kernel module realizes a 2x throughput increase (Section

4.9.2). The sign function appends the signature returned by the hypercall to the packet’s payload.

For this added data to arrive at the middlebox, the packet’s headers are modified to account for the

increased packet length. The verify function strips the signature from the packet, re-calculates

the packet header, and performs a hypercall to verify whether the two signatures match.

For middleboxes, we leverage NFQUEUE interfaces to implement our signing in userspace.

Since NFQUEUE can intercept both received and output packets, we added a userspace callback

to perform operations similar to the sign and verify actions added to OVS. This allows for an

unmodified packet to be analyzed by the network function (e.g., Snort). We also integrate our

trusted agent into the middleboxes (to demonstrate TRcomm2). We implement a Python daemon

that checks the middlebox’s log files for alerts. Upon a modification, the daemon performs a

hypercall to encrypt the new data prior to sending it to the controller which decrypts the data

using a hypercall to its trusted agent (integrated similar to the security policy).
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SDN Controller and Example Middleboxes: Realizing our prototype system required extend-

ing the OpenDayLight controller (adding approximately 2k lines of code). This includes adding

functionality for remotely configuring the Dockerized middleboxes (leveraging the Docker API),

sending flow rules to that included our added actions (as these are not a part of the OpenFlow

protocol), and integrating remote attestation of middleboxes. Additionally, we realize example

middleboxes running commodity network functions: (1) Snort IPS to block known vulnerabili-

ties, (2) iptables as a firewall, and (3) Squid authenticating HTTP proxy to add authentication

for devices with default credentials.

4.8 Security Evaluation

We analyze the security of JETFIRE’s design along four axes: model-based validation of our

design (Section 4.8.1), the architecture’s robustness to attacks from the SDN literature (Section

4.8.2), validation of our implementation using synthetic attacks (Section 4.8.3), and measurement

of the increase of the micro-hypervisor’s TCB (Section 4.8.4).

4.8.1 Validating JETFIRE’s Design

We build a formal model of our software-defined security gateway to specify our trust properties

(4.4). We describe this model and then evaluate it using bounded model checking to validate our

design is secure by construction.

4.8.1.1 Formal Model Description

We specify our software-defined gateway model using the Alloy modeling language[85]. We

briefly introduce Alloy before describing our model.

Alloy Modeling Language: Alloy models are defined using first-order, relational logic. At its

core, the Alloy language is an easy to use but expressive logic based on the notion of relations,

and was inspired by the Z specification language and Tarski’s relational calculus [85]. The Alloy
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model is compiled into a scope-bounded satisfiability problem and analyzed by off-the-shelf

SAT solvers. We use this analysis to identify counter examples to constraints and verify our trust

properties.

Software-defined Gateway Model: JETFIRE’s software-defined security gateway model con-

sists of a centralized controller and a set of gateways that process packets to and from devices.

For brevity, we discuss an example architecture with a single gateway to explain our abridged

Alloy model in Listing 1.

1. Controller and Gateway. We first model two key entities: a Controller and a Gateway

using Alloy’s sig interface (lines 1-10). A sig, or signature, defines a set (i.e., Controller)

and its relationship to other sets (i.e., each Controller has one Policy, line 2). The controller

maintains the security policy, and the control applications use the control channel to configure

each gateway based on the policy. Each gateway runs one vSwitch and a set of middleboxes. The

gateway receives commands over the control channel for instantiating middleboxes and installing

paths in the vSwitch. Each path specifies which middlebox a specific device’s traffic should be

routed through.

2. ProcessPkt. We model how the gateway processes packets using Alloy’s function

interface (lines 11-18). A function evaluates a series of statements and returns all possible

solutions. A packet received by the gateway is sent to the vSwitch for routing. The vSwitch

routes the packet to the specific middlebox (line 12). Then the middlebox processes the packet

and determines if the packet is benign or malicious (line 13). Benign packets are routed back to

the switch and sent to the device while all other packets are dropped.
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Listing 1 Abridged formal model of JETFIRE’s trusted software-defined security gateway archi-
tecture.

1: sig Controller {
2: policy : one Policy ,
3: apps: set Application,
4: controlchannel : one Channel
5:
6: sig Gateway {
7: vswitch : one vSwitch,
8: mbox : set Middlebox ,
9: controlchannel : one Channel

10:
11: function PROCESSPKT(pkt : Packet , g : Gateway)
12: g .mboxi “ ROUTEPKT(pkt , g .vswitch)
13: pkt .state “ MIDDLEBOXPROCESS(pkt , g .mboxi )
14: if pkt .state ““ Benign then
15: pkt .action “ Allow
16: else
17: pkt .action “ Drop
18: return pkt .action

19:
20: pred TRUSTEDGATEWAYpg : Gateway , c : Controllerq
21: TAMPERPROOF(c.policy)
22: SECURECHANNEL(g .controlchannel , c.controlchannel )
23: REMOTEATTEST(c.apps)
24: REMOTEATTEST(g .vswitch)
25: for g .mboxi in c.policy do
26: REMOTEATTEST(g .mboxi )
27: AUTHENTICATEROUTE(g .vswitch, g .mboxi )
28:
29: assert PROCESSPKTCORRECTLY(g : Gateway , pkt : Packet)
30: TRUSTEDGATEWAY(g)
31: pkt P BenignPkts ùñ PROCESSPKT(pkt , g) ““ Allow
32: pkt P MaliciousPkts ùñ PROCESSPKT(pkt , g) ““ Drop

3. TrustedGateway. Next, we define a trusted gateway (Eq 4.2) using Alloy’s pred inter-

face (lines 20-27). A pred, or predicate, evaluates a series of constraints. It returns true only if

all the constraints are met and false otherwise. Thus, the following conditions must all be met

for a gateway to be trusted. First, an attacker must not be able to tamper with the policy on the
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controller (line 21, Eq 4.3). Second, the control channel between the controller and the gateway

must be secure so that it is immune to an attacker injecting malicious messages (line 22, Eq 4.6).

Third, the correct software must be running on the controller, vSwitch, and middlebox ( lines 23-

26, Eq 4.4). Finally, each packet must follow the path specified by the controller. This must be

enforced by the vSwitch and each middlebox (line 27, Eq 4.5). If all of these conditions are true

then the gateway is trusted.

4. ProcessPktCorrectly. Finally, we define our goal (Eq 4.1) that all output packets were

processed correctly using Alloy’s assert interface (lines 29-32). In Alloy, an assert claims

that a series of statements must be true based upon the model, and will generate a counter exam-

ple if any of the claims do not hold to be true. A trusted gateway achieves the goal of allowing

all benign packets while dropping all malicious packets.

4.8.1.2 Model Evaluation

We analyzed our system model up to a bound of 100 (i.e., 100 instances of each sig) and were

unable to identify a counter example resulting in the model outputting a packet processed by an

incorrect middlebox. Additionally, we systematically removed constraints related to our trust

requirements (e.g., middlebox code does not need to be attested, violating TRsw2) and verified

that each resulted in a counter example that violated our overarching trust property. This analysis

provides confidence in our our system’s design and trust requirements.

Our Alloy model aided in identifying nuances and helped us refine our design. The model

highlighted the need to prohibit packets from completely skipping a middlebox. For example, if

a middlebox signs input and output packets with the same key it allows a packet to bypass the

middlebox without being detected. Similarly, our model highlighted software components that

either needed to be trusted or be regularly attested in order to trust the system’s operation (e.g.,

the controller software). Next, we extend this model to evaluate JETFIRE’s applicability beyond

this use case, and look at securing broader SDN architectures.
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Listing 2 Example Alloy analysis of prior attacks, search for ability of attacker to modify a
controller application’s state.

1: pred CANMODAPPSTATE pc : Controller , a : Appsq
2: a in c.apps ^ a.state ““ Exposed
3: assert ATTACKERNOTMODTRUSTAPPSTATE(c : Controller , a : Apps)
4: TRUSTCONTROLLER(c)
5: a.state ““DataCapsule ùñ CANMODAPPSTATEpc, aq ““ False

Attack Type Example Attack Our Defense Mitigates

(a) Controller
Application

A1: Manipulate controller’s state [225]
Data Capsule + vTPM

X
A2: Manipulate controller’s operations [106, 208, 225] X
A3: Manipulate command or variable [106, 172] Data Capsule X

(b) Control
Channel

A4: Sniff messages [106]
Trusted Agent

X
A5: Inject messages [54, 106, 208, 217, 225] X
A6: Modify messages [106, 208, 225] X

(c) Gateway
Application

A7: Subvert middlebox execution [146, 193] Data Capsule + vTPM X
A8: Manipulate command or variable [106, 172] Data Capsule X

(d) Data
Channel

A9: Modify packet path [121]
Packet Signing

X
A10: Modify packet data [121] X

Table 4.6: JETFIRE’s mitigation of known SDN attacks.

4.8.2 Robustness to Prior Attacks on Similar Architectures

We further evaluated JETFIRE’s system model against 10 representative attacks from the SDN

security literature (summarized in Table 4.6) [54, 106, 121, 208, 217, 225]. To identify if our

system could protect against these attacks, we extend our Alloy model. Listing 2 provides an

example extension for checking if a controller application’s software state can be modified (the

full model of all attacks can be found in [47]). This example verifies an attacker cannot modify

an application’s state if it is protected by a data capsule. The attacks we analyze fall into the

following four groupings based upon the attack’s target: (a) controller applications, (b) control

channel, (c) gateway applications, and (d) data channel. We discuss each type of attack below.

(a) Controller Application Attacks: An attacker compromising the controller or a controller

application could alter its state or operations (e.g., controller’s global network view [225]). JET-

FIRE can defend against this type of attack by placing the critical data (e.g., security policy

in Section 4.5.2.1) into a data capsule, and use a vTPM to attest other pieces.
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(b) Control Channel Attacks: Attacks could tamper with an established control channel be-

tween the controller and gateway by injecting malicious flow rules into the vSwitch [225]. Our

trusted agent (Section 4.5.2.4) on the controller and each gateway can prevent this type of attack

by using an encrypted and authenticated channel. Further, JETFIRE can mitigate an attacker on

the gateway/controller from accessing the secret keys and sending malicious messages from a

compromised host.

(c) Gateway Application Attacks: Attackers could attack applications running on the gateway

including middleboxes and the vSwitch. For example, an attack could change the vSwitch’s

routing rules or modify a middlebox’s binary [146]. These will result in incorrectly process-

ing network traffic (e.g., disabling a firewall’s drop action). As discussed in Section 4.5.2.2, a

combination of vTPM attestation and data capsule isolation can be used to detect such attacks.

(d) Data Channel Attacks: Attackers that have tampered with the OS can modify a packet’s

processing path or its data, such as bypassing a middlebox or modifying a packet payload. These

could result in incorrect gateway operations (e.g., allow a malicious packet the firewall should

have dropped). JETFIRE’s per-packet signing mechanism (Section 4.5.2.3) can detect such data

channel modifications.

This analysis implies our architecture’s applicability beyond software-defined security gate-

ways and could be used for securing a wider array of SDN-based architectures. Future extensions

such as confidential storage, controller DoS protections, and topology verification could provide

additional guarantees against prior attacks.

4.8.3 Synthetic Attacks on the Prototype

Beyond analyzing our system model, we generated synthetic attacks to validate that our prototype

implementation provided each of our trust requirements (Section 4.4.2). We discuss each below.

(a) Rogue security policy modification (testing TRsw1): We simulate an attacker with local

access to the controller attempting to modify the controller’s security policy (i.e., loading new
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values). We verified that the micro-hypervisor access mediation (via code white listing) denies

this process access to the security policy (as only the security policy application has access), and

that the security policy remains unchanged.

(b) Booting a modified middlebox image (testing TRsw2): We start a modified middlebox to

simulate an attacker tampering with a middlebox. The controller detects this misconfiguration

(based upon the PCR quote it received) within 10 seconds of the middlebox booting.

(c) Malicious control channel injection (testing TRcomm1): We inject false middlebox alert

messages over the control channel to simulate an attacker attempting to change the middlebox

on the gateway. As these messages did not go through the trusted agent, the messages were

dropped by the controller for failing authentication.

(d) Send packets on wrong path (testing TRcomm2): To simulate an attacker sending packets

to the wrong middlebox, we sign packets with the wrong key (to generate an invalid signature).

These malicious packets were injected both before and after the middlebox processes the packet

to demonstrate both OVS and the middlebox drop these invalid packets.

These validation tests gave us confidence that our implementation achieves our trust require-

ments. A more robust guarantee about our implementation could be achieved using code verifi-

cation; we leave this to future work.

4.8.4 TCB of Micro-hypervisor and Extensions

Recall that one of our challenges from Section 4.3.4 is to achieve our trust properties while keep-

ing a small TCB. Our baseline is the uberXMHF micro-hypervisor used in our implementation,

which itself has a small TCB (5544 source lines [199]) and has been formally verified [200, 201].

As shown in Table 4.7, we add three main hypervisor extensions; each extension was imple-

mented in less than 200 source lines of code. All of them add a total increase of 6.6% of TCB

size. This keeps the micro-hypervisor code base amenable to (future) formal verification as

demonstrated by uberXMHF’s x86 verification [201].
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Hypervisor Extension Lines of code Percent increase
Data capsule 195 3.5%
Packet signing 70 1.3%
Trusted agent 102 1.8%
All extensions 367 6.6%

Table 4.7: The impact of Jetfire’s extensions on TCB size.

4.9 Performance Evaluation

4.9.1 Scalability

For our architecture to be deployable in many settings (e.g., smart homes, factories), a single

hardware gateway needs to support small deployments (ă20 devices, Section 4.3.1). This scala-

bility is highly dependent upon the middlebox being used. We utilized the most widely deployed

IPS, Snort [45], as we anticipate each device requiring this security functionality.

As shown in Figure 4.7a, applying the optimizations discussed in Section 4.9.1, we achieved a

19x increase in the number of simultaneous Snort instances. In particular, custom configurations

(CC) enabled an 8x increase (24 instances, average 69.8 MB/instance), and utilizing both custom

configurations and shared memory enabled an additional 2.4x increase (57 instances, average

36.1 MB/instance).

We noted a minimal impact on per-packet latency (with sharing reducing latency) that these

scalability optimizations had on HTTP GET requests. As anticipated, the reduced configurations

had similar latency. Moving the signature rules into shared memory reduced the median latency

by 4.3 milliseconds (52% reduction). We hypothesize that this latency reduction is from the

shared memory not being evicted from the cache during context switches.

4.9.2 Packet Processing Throughput

To protect data packets, Jetfire uses a lightweight signing mechanism to add signatures for each

packet (Section 4.5.2.3) in vSwitch. In this experiment, we evaluate its throughput impact. As
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(a) Simultaneous Snort instances realized for each optimization.

(b) Virtual memory profiling of single Snort instance.

Figure 4.7: Scalability evaluation of the number of simultaneous Snort instances on a Rasp-
berry Pi 3B after optimizations.

shown Figure 4.8, our baseline is ‘OVS kern’, which runs the original OVS kernel module for

routing without involving any extra overhead. First, we compare our kernel signing (‘Sign-

kern’) with IPsec tunnels, both without protection. We noted our packet signing provided an

additional 18% throughput for full MTU, and 19% for 256 Byte packets. Second, we compare

our hypervisor protected packet signing (‘Hyp-Sign’) with an alternative approach that performs

signing in an enclave. As noted earlier, trusted enclaves can only support user space applications,

thus attempting to enable signing for vSwitch in an enclave would require operation in user

space. We use OVS packet signing in user space (‘OVS user’) to emulate this approach. While
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Figure 4.8: Packet signing impact on median packets per second (pps) throughput for user
and kernel vSwitch.

this comparison favors our approximation of a secure enclave as the real enclave implementation

would add extra overhead (e.g., memory copying), our approach still outperforms this situation,

particularly for smaller sized packets.

To further understand the impacts from the micro-hypervisor protected signing, we mi-

crobenchmarked this operation. We noted that the packet signing overhead is „1 millisecond

(544 µseconds for HMAC and 519 µseconds for hypervisor call).

Impact on Real Deployment: We measured the median time for sending a 1 MB file to 3D

printer B (which utilized an HTTP interface for sending and receiving files) and noted an increase

of 765 milliseconds, which is less than the processing time required to generate the file (1.54

seconds). This deployment shows that JETFIRE can provide strong security protections without

impacting the normal use of the machine.

4.10 Summary

JETFIRE addresses a fundamental question for future manufacturing deployments: How can we

create a foundation for trustworthy gateway architectures to retrofit security onto manufacturing
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deployments with potentially insecure devices? In designing JETFIRE, we tackled key challenges

in providing practical foundations for trust and ensuring scalable yet low-cost capabilities for

fine-grained security postures. JETFIRE is trustworthy by construction and is backed by a formal

validation of its design and interfaces. Our evaluation shows that JETFIRE can serve as the

basis for a low-cost, deployable, and trustworthy foundation for future software-defined security

gateways. Using JETFIRE, we can support deployments with 50+ devices where each has a

customized IPS (Snort) module running in a single Raspberry Pi 3B gateway.

We next discuss deploying this trusted platform to defend networked 3D printer deployments.

Specifically looking at deployment considerations and integrating proof-of-concept defenses for

mitigating both known vulnerabilities (such as those identified in Chapter 3) and unknown vul-

nerabilities.
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Chapter 5

Demonstration of Fine-Grained

Protections for Networked 3D Printers

In this chapter, we discuss an example walk-through of our trusted security gateway, JETFIRE,

being deployed in a manufacturing space to mitigate security vulnerabilities in networked 3D

printers (such as those identified in Chapter 3). Initially, we discuss hardware requirements to

support a JETFIRE deployment, followed by a discussion of the baseline data that need to be

collected from each machine to inform the gateway’s security policy. Next, we discuss types

of defense that a JETFIRE gateway can support. We realize device-specific classical network

security tools (e.g., firewalls) to mitigate the known vulnerabilities, such as those identified in

Section 3.5. We then show initial steps to automatically identify and patch some of these known

vulnerabilities. Finally, we demonstrate the architecture’s ability to mitigate potentially unknown

vulnerabilities by using data-driven mechanisms that learn and then enforce network protections.

Specifically we apply state-of-the-art defenses that implement access control and limit network

behaviors.
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Platform
Architecture

Cost CPU Memory NIC Controller
Startup

Max Click
Containers

Hypercall
Latency

ARM $35 4x 1.4GHz 1 GB 100 Mbps 261 seconds 88 0.22 msec
x86 $200+ 4x 3.2GHz 4 GB 1000 Mbps 11.4 seconds 101 162.2 msec

Table 5.1: Security gateway high-level comparison between ARM and x86 based platforms.

5.1 Hardware Requirements for a Deployment

A local deployment of JETFIRE requires both a controller and at least one gateway. Chapter 4

discussed a prototype running both components on local, low-cost ARM hardware. While such

low-cost platforms are ideal for deployments needing multiple gateways, migrating the controller

to an x86 platform poses benefits from increased capabilities and the potential for cloud hosting

the controller. We envision migrating the controller to be cloud hosted, such that deployments

might only require adding local hardware gateways further reducing the cost of deployment.

While such a configuration does create the potential for increased latency and availability im-

pacts, there is a low probability that they will significantly impact gateway operations as the

gateway is designed to enforce its current protections even without a connection to the controller

(as discussed in Section 4.1.2). The design of JETFIRE is amenable to this migration because all

of the software components are architecture agnostic.

We compare two example hardware platforms in Table 5.1, an ARM platform (Raspberry

Pi 3B) which comes at a lower cost, and an x86 platform that provides increased performance.

The total number of gateway platforms required for a deployment is dependent upon the number

of IP-based networked manufacturing machines being protected. To provide an upper bound

on the maximum number of manufacturing machines a single gateway can protect, we set the

maximum number of Click1 containers that can run simultaneously. However, some network

functions (e.g., Snort IDS discussed in Section 4.6) may require additional memory and create

different scalability limitations.

We note these different hardware platforms provide different constraints. For processor and

1Click [97] is an open-source software framework that can be used to realize many network functions.
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memory intensive operations, such as starting up the controller, the x86 platform provides a sig-

nificant performance benefit. The higher cost of a hypercall is acceptable on the controller where

hypercalls are not occurring for each packet, whereas the ARM platform provides more perfor-

mant hypercalls needed to minimize increases to per packet latency while providing scalability

in the number of middleboxes it can support simultaneously.

5.2 Device Network Operations Data Collection

With the gateway hardware identified, next a security policy needs to be generated to enforce the

needed device-specific network protections. We begin by discussing how a manual audit of the

machines can be used to generate this policy and then look at how these protections might be

specified in a more automated manner.

In order to identify the specifics for each device’s required security policy, we first collect

some baseline data about the device’s benign network operations. Additionally, we can use the

results of any security evaluations to further inform these device-specific policy items. Chapter

3 discussed analyzing a set of deployed networked 3D printers to collect such baseline data. The

needed baseline data consists of:

• Network Capture: A network capture of the machine under benign operating conditions, which

can provide insights about items such as if encryption is used, network services, and hosts it

interacts with. In Section 5.4 we discuss how these data can also be used to generate behavioral

protections.

• Targeted Scans: Specific vulnerabilities can be identified using targeted scans, such as those

in C3PO for detecting susceptibility to known exploits and DoS conditions. Similarly, sending

fuzzed inputs can potentially identify additional malicious inputs.

We will use these baseline data, collected for 13 commercial networked 3D printers (in Section

3.3.2), as an example to guide the identification of needed network security protections that the

security policy should specify.
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Vulnerability Network Function Memory per Instance Per-packet Latency˚

Send plaintext VPN server 2.74 MB 3.3 msec
Unused services Firewall (FW)

1.89 MB 1.9 msec
DoS Susceptible Connection limiting FW
Malicious inputs IPS 17.2 MB 4.3 msec
Combination FW + VPN + IPS 25.7 MB 5.8 msec

˚The baseline per-packet latency (with no NFs) is 1.0 msec.

Table 5.2: Networked 3D printer vulnerabilities and their associated network function mit-
igation with performance parameters for the Raspberry Pi 3B.

To deploy JETFIRE, a security policy must be generated for a given network deployment,

which specifies the device-specific protections needed to mitigate any identified vulnerabilities.

We begin by detailing how the manually identified protections discussed in Section 3.5 can be

realized on JETFIRE, followed by a discussion about initial steps to automate this process.

5.3 Mitigating Known Vulnerabilities

Recall the networked 3D printer-specific vulnerabilities identified in Section 3.3.2: lack of en-

cryption, susceptibility to DoS, unused network services, and malicious inputs. We discuss each

of these categories and identify existing network functions that can be applied to preclude an at-

tacker from leveraging these vulnerabilities. Furthermore, we discuss deployment considerations

such as memory requirements and the increased network latency from each protection (summa-

rized in Table 5.2). We begin by discussing mitigations for each vulnerability individually (Sec-

tion 5.3.1) then how these can be chained together to protect against a set of vulnerabilities on a

given machines (Section 5.3.2).

5.3.1 Single Vulnerability Mitigation

Considering the vulnerabilities identified by C3PO in Chapter 3, we highlight three classic net-

work security solutions that are able to mitigate the majority of security vulnerabilities identified.

These network functions are a virtual private network (VPN) for encryption and authentication,
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a firewall (FW) for blocking access to unnecessarily exposed services and to limit each host’s

number of simultaneous connections, and an intrusion prevention system (IPS) to block known

exploits and perform limited input filtering. We discuss each of these in further detail in the

following sections.

Implementation: We implement each of these classic network security solutions as a Docker

container [47]. Each docker container was configured to have two virtual network interfaces and

run an existing open source network security tool (e.g., iptables for a firewall). The network

security tool was configured to bridge the two virtual interfaces and analyze all packets on the

bridge. To promote generality for a given docker image, the security tool was setup to configure

itself based upon a provided configuration file. Each container required a baseline set of features

to support the JETFIRE functionality of signing/verifying packets and sending messages to the

controller. To sign and verify packets, each container needed to have NFQUEUE installed along

with our sign and verify callbacks. Finally, each container also had a python daemon to take

outputs (e.g., log entries for IPS rule violations) and send them to the controller using the trusted

agent. This setup allowed for new network functions to be quickly realized by simply installing

the corresponding tool in a baseline Docker image with the required JETFIRE components. Each

of these docker images can used to process a device’s network traffic by specifying it in the

security policy.

5.3.1.1 VPN to Encrypt Data

All networked 3D printers surveyed did not encrypt all data sent over the network (with two

possibly encrypting the design files, but not metadata sent along with these files). A lack of

encryption coupled with limited authentication allows an attacker to steal data using a man-

in-the-middle attack. Furthermore, limited integrity checks allow for the data to be stealthily

modified such that the printed part is defective. The ideal way to fix such vulnerabilities is by

using end-to-end encryption; however, this can only be done by modifying the networked 3D
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printer’s software.

VPN: To encrypt the data between the control PC and the gateway, we create a VPN tunnel. A

VPN has the added benefit of also providing host authentication. JETFIRE uses openVPN to

serve as a VPN server. In our system, control PCs authenticate themselves to the gateway and

send encrypted data using pre-shared secret keys. The VPN server requires little memory per

instance, on average just 2.74 MB. A Raspberry Pi 3B can handle a maximum of 457 simul-

taneous instances. However, the encryption operations come at an average latency cost of 3.3

milliseconds per packet on the Raspberry Pi 3B. Further, these encryption operations reduce the

maximum throughput to 6 Mbps.

5.3.1.2 Firewall to Block Unused Services and DoS

Nearly half of the networked 3D printers surveyed (6 of 13) exposed unused network services.

Several of these unused services had known vulnerabilities or were leveraged in prior attacks.

As these services are unused by the networked 3D printer during benign operations, all network

traffic to these services can simply be dropped without effecting the 3D printer’s operations.

Therefore, a simple firewall can reduce these networked 3D printers’ attack surface.

Additionally, all analyzed networked 3D printers were vulnerable to DoS attacks. While there

were multiple attack strategies that could result in the 3D printer being unavailable, most had a

common requirement of the attacker starting multiple TCP connections. Standard operations

require at most two simultaneous TCP connections from any host; however, many networked

3D printers allowed a single host to create over 1,000 simultaneous connections. To increase

a networked 3D printer’s robustness to DoS attacks, the gateway can limit each host’s TCP

connections thereby requiring an attacker to compromise multiple devices to launch a successful

DoS attack.

Firewall (FW): We use the iptables firewall to limit both the hosts that can access the net-

worked 3D printer (i.e., only control PCs can send network packets to the 3D printer), and ad-
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ditionally limit each host’s number of simultaneous TCP connections. A connection-limiting

firewall mitigates an attacker who has compromised a single host on the network from being

able to successfully launch a DoS attack on all but two of the networked 3D printers we ana-

lyzed. These two networked 3D printers only allow a single TCP connection, which if acquired

by an attacker allows them to deny access to legitimate users. Such a FW requires little mem-

ory per instance, on average just 1.89 MB. On a Raspberry Pi 3B this allows for a maximum

of 138 simultaneous instances, where the Raspberry Pi 3B can process packets through such a

firewall with an average latency of 1.9 milliseconds per packet, with a maximum throughput of

15.2 Mbps.

5.3.1.3 Intrusion Prevention System to Block Malicious Inputs

We identified multiple types of malicious inputs, some through fuzzing and others through known

exploit signatures. Some of these vulnerabilities can be mitigated by checking for a signature

within the packets without impacting benign traffic. However, this is a limited solution, as slight

changes to the malicious input may not be detected, allowing attacks to succeed.

Intrusion Prevention System (IPS): We used snort [45] to serve as an IPS and block packets

matching known malicious signatures. Signatures for known attacks can be gathered from public

repositories, and some malicious inputs can be identified using regular expression matching. The

IPS can be configured to require an average of 17.2 MB of memory per instance. On a Raspberry

Pi 3B this allows for a maximum of 76 simultaneous instances. Processing packets with an

average latency of 4.3 milliseconds per packet, with a maximum throughput of 2.47 Mbps.

5.3.2 Defending Deployed 3D Printers from Known Vulnerabilities

As most networked 3D printers analyzed had multiple vulnerabilities, they require multiple net-

work functions to mitigate all of the vulnerabilities identified. Protection can be achieved by

having a service chain or a series of network functions that process each packet. For example,
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Device Vulnerabilities Service Chain
OctoPi replay DoS FW(conn. limiting)
Machine A plaintext data, SYN flood, malicious inputs VPN + FW + IPS
Machine B plaintext data, SYN flood & replay DoS, unused

services, known exploits, malicious inputs
VPN + FW + IPS

Machine C plaintext data, malicious inputs VPN + IPS
Machine D plaintext metadata, TCP connection DoS VPN + FW(conn. limiting)
Machine E plaintext data, replay DoS VPN + FW(conn. limiting)
Machine F plaintext data, SYN flood & slowloris DoS, unused

services
VPN + FW

Machine G plaintext data, SYN flood & slowloris DoS VPN + FW(conn. limiting)
Machine H plaintext data, SYN flood & slowloris DoS VPN + FW(conn. limiting)
Machine I plaintext data, SYN flood & TCP connection DoS,

unused services
VPN + FW

Machine J plaintext data, SYN flood & TCP connection DoS,
unused services, known exploits

VPN + FW + IPS

Machine K SYN flood, unused services, known exploits FW + IPS
Machine L plaintext data, slowloris DoS VPN + FW(conn. limiting)
Machine M plaintext metadata, partial data transfer DoS, unused

services, known exploits, malicious inputs
VPN + FW + IPS + unique
file name check

Table 5.3: Potential network service chains to protect networked 3D printers analyzed by
C3PO.

a networked 3D printer (such as Machine B) exposes plaintext data, is vulnerable to DoS and

malicious inputs. A gateway would need to deploy a service chain composed of a FW, VPN, and

an IPS to mitigate all of these vulnerabilities. Such a service chain would require an average of

25.7 MB of memory per chain (i.e., per networked 3D printer being protected). On a Raspberry

Pi 3B this allows for a maximum of 35 networked 3D printers per hardware gateway, processing

packets with an average latency of 5.8 milliseconds per packet, with a maximum throughput of

2.77 Mbps.

Based upon our analysis in Chapter 3, we discuss the specific chains required by each of the

networked 3D printers surveyed. In general, we noted that most require a FW and a VPN.
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5.3.3 Automatically Mitigating Network Vulnerabilities

It is unrealistic for small manufacturing shops to manually configure a network security gateway

to mitigate their networked 3D printer’s vulnerabilities. Proper configuration requires multiple

manual steps. First, security analysis tools such as C3PO must be used to identify vulnerabilities.

Second, these vulnerabilities must be mapped to a network function which mitigates the vulner-

ability. Correctly mapping identified vulnerabilities to network functions requires an expertise

which is not guaranteed to be available at small manufacturing centers. Thus, it is impractical

for a manufacturing center to manually create its own security policy.

An ideal solution is to have the gateway automatically scan each device and deploy the appro-

priate network function automatically. We prototype such functionality by using running pieces

of C3PO’s individual analysis (e.g., open port scan, known vulnerability scan) and automatically

deploying a network function that mitigates any identified vulnerabilities. We implement this

as a two-stage policy. First, an active scanning stage which runs a detection tool for identifying

potential vulnerabilities. Second, the controller configures and deploys the appropriate network

function based upon the vulnerabilities detected. We describe two examples below:

• Unused Network Services: Needed network services (ports) are defined as a part of the pol-

icy to mitigate potential false positives if example network data do not utilize all necessary

network ports (e.g., infrequently used port for software updates). We use nmap to identify all

running services on the device. Any ports not listed in the needed ports are given to the firewall

configuration to block access to these unused ports.

• Known Exploits: Similar to unused network services, we use nmap to scan a networked 3D

printer for known vulnerabilities. If one is identified, we check a local database for signatures

of this attack. These signatures are added to an IPS’s configuration file, and deployed to block

these attacks.

Implementation: Incorporating this functionality required two extensions to the controller.

First, the controller had to be extended to account for middleboxes that were actively sending
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packets to a network device, where previously the controller assumed all middleboxes were pas-

sive. These middleboxes only had a single network interface, and expected the controller to

provide the target’s IP address upon its initialization. Second, the controller’s API for handling

messages from a middlebox had to be extended to parse the scanning tools message (e.g., nmap

ports reported) and convert this to a middlebox configuration (e.g., iptables rules). Each of

these automated tools required approximately two man-weeks implement the extensions.

Unfortunately, these demonstrations of automated protections are limited. First, they often

require some domain/device knowledge (e.g., used ports). Second, they only provide incomplete

protections and cannot directly identify and mitigate all of the findings gathered by C3PO. For

example, findings from fuzzing often cause the 3D printing application/firmware to crash. These

crashes often require manual intervention to recover the networked 3D printer. Furthermore, the

cause of the crash is not always clear. Both of these make it hard to automate the mitigation

logic. In order to provide similar automated configuration and protection, we look to alterna-

tive approaches for protecting networked 3D printers from unknown vulnerabilities by limiting

network host’s with access and network behaviors.

5.4 Mitigating Potentially Unknown Vulnerabilities

Signature-based network protections are inherently limited, as an attacker can often modify the

attack to use a polymorphic variant that is not detected by the signature. Behavioral-based net-

work anomaly detection is robust to these as it detects changes in network behavior as opposed to

looking for specific signatures. Networked 3D printers have a tractable set of behavioral profiles

because they perform a limited set of operations. We demonstrate how JETFIRE can be used to

enforce behavioral network profiles: (1) manufacturer’s usage description (MUD) [105] specifi-

cations, and (2) inferred finite state machine (FSM) network interaction model. We discuss each

below in turn.
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5.4.1 Enforcing Access Control Using MUD Specifications

MUD is a standard describing networked devices, including their intended communication pat-

terns [105]. These allow a device manufacturer to specify the network operations a device per-

forms. Unfortunately, few devices currently have published MUD specifications. To emulate this

type of network behavior enforcement, we use tools to generate example MUD policies from a

device’s network traffic [69, 70].

We generate example MUD specifications using sample network traffic from the networked

3D printers we surveyed in Chapter 3 using the MUDgee tool [69]. Most networked 3D printers

had similar results of allowing local traffic to the port it received print jobs on, with some also

contacting a vendor’s public server for software updates.

Implementation: We extend the JETFIRE controller to take these MUD specifications as an input

and configure the appropriate firewall rules to enforce the MUD specification. To realize this, we

first implement a middlebox that forwards the traffic, while also making a local copy. This local

copy is then processed using the MUDgee tool to generate a MUD specification. The controller’s

API is extended to parse the received MUD specification and convert it into firewall rules. We

utilize the FSM policy abstraction proposed by Yu et al. [227] to specify this type of dynamic

security policy on JETFIRE’s controller. Where the initial state is to learn the MUD specification

and the second state is to enforce it with a firewall. Where the transition is triggered once the

controller receives a MUD specification.

The MUD specification is primarily concerned with specifying access control (i.e., limiting

which network hosts that can interact with a device), and does not specify additional aspects such

as limiting the number of concurrent connections or modeling benign network behavior. Thus, if

a compromised host is allowed to send network messages to a networked 3D printer, these MUD

specifications may still allow an attack to succeed.
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5.4.2 Enforcing Benign Behaviors using FSM Models

As networked 3D printers only perform a limited set of network operations (e.g., receive a file,

send status), they are amenable to having their behaviors completely defined. Yu et al. [230]

advocate for using FSMs to model their network behaviors. We discuss a prototype application

of these FSM-based behavioral protections below.

5.4.2.1 Developing FSM Models

We leverage prior work by Yu et al. [230] to build FSM models using a device’s plaintext network

traffic. Their approach determines behaviors by looking at the series of Application-layer Data

Units (ADUs) within each TCP session. They define an ADU as a chunk of application data

(potentially spanning multiple packets) in one direction that is specific to the execution of a single

task. The collected sequences of ADUs are used to define a Mealy FSM, where the next state

is determined based upon the current state and its input (i.e., the previous ADUs). The resulting

FSM defines a 3D printer’s network behavior. Behavioral based network traffic limitations, in

the form of IPS rules, can be derived from the FSM.

We extend this prior work in order to generate FSM behavioral models [47] for nine of

the networked 3D printers surveyed in Chapter 3. We selected these nine as they represent 5

distinct network protocols (the remaining protocols were not 3D printer specific, such as sending

commands over telnet). To learn these FSMs, we follow the workflow shown in Figure 5.1. First,

the Bro/Zeek IDS [233] parses a network capture into sessions and a vendor specific parsing

script identifies ADUs. Second, the FSM is inferred using the sequence of ADUs in each session

and is reduced to its smallest state representation.

Identifying ADUs: As many of the networked 3D printers surveyed utilized proprietary net-

work protocols, existing parsing tools were insufficient to extract detailed ADUs. Based upon

manual analysis of these network captures, we added vendor-specific parsing scripts to extract

ADUs from these protocols. These ADUs consisted of an ADUkey, which can contain multiple
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Figure 5.1: Workflow for generating behavioral model enforcement rules from network
capture, with example outputs for each stage of processing.

ADUsubkey to provide finer resolution on the behavior.2 For example, a networked 3D printer that

sent data over HTTP had an ADU of: POST /command GETPRINTERINFO, where “POST

/command” is the ADUkey and the ADUsubkey is “GETPRINTERINFO”. The subsequent ADU

provided the networked 3D printer’s serial number. Without the ADUsubkey an ADU of: POST

/command GETPRINTERSTATUS would be part of the same state, despite it having a dif-

ferent reply message containing twice the amount of data. Beyond simply collecting a string

representing the ADU, we also collect metadata about the ADU such as its offset within a packet

and the packet’s length, as well as the direction (i.e., to or from the networked 3D printer). A

portion of an example ADU sequence is shown in Figure 5.1.

In implementing the vendor-specific ADU parsers, the predominant difference between them

was identifying a key to signify the start of a potential ADU, where some networked 3D printer’s

ADUs might be encoded in a JSON format while others could be noted by specific packet sizes

(e.g., all commands are in 64 Byte packets). These vendor-specific parsers in combination with

2We added the ADUsubkey as without them the generated network behavior models had states that encompassed
divergent actions.
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Figure 5.2: Example networked 3D printer behavioral FSM for Machine B. Showing states
in ovals with the ADUs as arrows connecting states.

the Bro/Zeek network security monitoring tool generate a log file containing the ADU sequences

for each session in a given network capture.

Inferring FSMs: We infer a Mealy FSM model of the network behaviors based upon an input

set of TCP sessions, where each session contains a series of ADUs. We assume all ADUs are

positive samples (i.e., the network capture did not contain any attack traffic), and build an initial

FSM tree. In general this tree consists of repeated sets of requests and responses (e.g., a request

for the networked 3D printer’s status followed by the 3D printer’s response). Next, the initial

tree is reduced by creating loops to account for repeated ADU sequences (e.g., periodic status

requests). The reduced model is output, with the ADUs specifying the transitions between each

state (an example behavioral FSM for Machine B is shown in Figure 5.2). Table 5.4 provides

details about the number of states and unique ADUs for the nine networked 3D printers analyzed.

Next, we use these models to configure network protections that limit a networked 3D printer’s

network traffic to the behavior defined in the FSM model.

5.4.2.2 Model-based Network Protections

We used the snort IPS [45] to enforce a networked 3D printer’s FSM models on live network

traffic. Specifically, we used snort’s flowbits to implement the FSM logic. However, as

snort’s inspection is on a per-packet level, we utilized a second set of flowbits to track ADUs

that require multiple packets. We compile the FSM model into a set of snort rules that realize the
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Device FSM Details Network Capture Snort Config
States ADUs Duration Size Rules Flowbits

Machine A 21 14 174 seconds 40 MB 56 47
Machine B 7 9 205 seconds 9.7 MB 47 47
Machine D 10 4 20 seconds 10 MB 38 23
Machine E 10 8 61 seconds 3 MB 60 26
Machine F 22 17 1 second 505 KB 44 32
Machine G 9 10 2 seconds 839 KB 24 37
Machine H 16 13 1 second 1.5 MB 31 26
Machine L 12 11 1 second 4.4 MB 28 24
Machine M 2 3 9 seconds 780 KB 47 23

Table 5.4: Details about the FSM behavioral models and their Snort IPS configurations for
9 of the networked 3D printer evaluated in Chapter 3.

behavioral model specified in the generated FSM.

FSM to IPS Rules: Traditionally, an IPS takes an action, such as dropping a packet, upon

detecting a specified signature. We inverted this operation to realize our network protections, by

configuring the IPS to only allow packets containing the correct ADU keys to be allowed. Packets

not matching these constraints are dropped. We extend our controller to take an input model

and realize the corresponding network protections. Table 5.4 details the number of rules and

flowbits required to realize these network protections with a snort middlebox for the networked

3D printers analyzed.

Online Learning: While most learning is performed off-line, we prototyped having JETFIRE

learn a networked 3D printer’s behavioral model online and automatically implement the corre-

sponding behavioral protections. We assumed that the initial network traffic from a networked

3D printer is benign (i.e., it does not start out compromised) and that the initial traffic was suf-

ficiently representative of the networked 3D printer’s behavior. JETFIRE initially deployed a

pass-through middlebox that allowed all network traffic while also collecting a network capture

of this traffic. The network capture was then processed to generate an FSM which informed the

configuration an IPS that was deployed and replaced the pass-through middlebox.

Implementation: We implemented the behavioral protections as a dynamic policy with two
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states [47]. The first learns the behavior, by deploying a pass-through middlbox. A copy of

all network traffic is collected, and analyzed with Bro/Zeek [233] with our custom networked

3D printer ADU parsers. A Java program parses these logs to infer the networked 3D printer’s

behavioral FSM model, which is sent to the controller. We decided to send the FSM model

due to its small size and to provide future flexibility (e.g., utilize a different IPS). We extended

the controller’s API to parse the FSM model and convert it into the corresponding snort IPS

rules. The controller then replaces the pass-through middlebox with this snort IPS middlebox

which only allows network traffic conforming to the learned FSM model. These protections

are amenable to the five protocols analyzed, extending it to cover a new protocol would require

adding a new ADU parser (as a Bro/Zeek script).

5.5 Vision for Deployment Defenses

The prior sections discussed three complementary defenses: mitigating known vulnerabilities,

limiting access control, and limiting network behaviors. While these were shown in isolation,

ideally they could be combined to provide a robust network defense. Where upon a device ini-

tially connecting a middlebox would be deployed that scanned the device for known vulnerabili-

ties and subsequently collect a network capture of the device’s benign behavior to support learn-

ing both access control and a behavioral model. After collecting this information, the gateway

would deploy middleboxes to mitigate any known defenses and augment these with a firewall

enforcing the access control limits and an IPS limiting network behaviors.

5.6 Summary

This chapter demonstrated how multiple, complimentary defenses can be deployed on top of

JETFIRE. We demonstrated running the system on multiple hardware platforms (x86 and ARM)

as groundwork for enabling the controller to be run by a bare metal cloud-hosting service to
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reduce the hardware required for a deployment. Next, we demonstrated integrating defenses

onto the JETFIRE platform. We realized the network protections to mitigate known vulnerabil-

ities (e.g., those identified by C3PO in Chapter 3), chaining multiple middleboxes to mitigate

the vulnerabilities identified by C3PO in deployed networked 3D printers. We the demonstrate

initial steps towards automating these defenses by scanning for specific vulnerabilities and de-

ploying appropriately configured network security tools. We further augment these defenses by

integrating state-of-the-art tools that learn from network traffic in order to reduce the potential

for unknown vulnerabilities to be exploited. Specifically, we demonstrate learning MUD specifi-

cations to enforce access control and FSM-based behavioral models to limit network behaviors.

These complementary defenses demonstrate the diversity of defenses that JETFIRE can support

and can be used together to provide a robust, device-specific network defense.
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Chapter 6

Conclusions

In this chapter, we summarize our contributions and discuss their potential impact on the manu-

facturing domain. We discuss limitations of our proposed solution and conclude by identifying

key future research directions.

6.1 Contributions and Impact

We make two overarching contributions: (1) a systematic measurement of network vulnerabili-

ties in networked 3D printers and their deployments and (2) a low-cost, trusted security gateway

system for defending small to medium sized deployments.

Security Evaluation of Networked 3D Printers: Our tool, C3PO, analyzed 13 networked 3D

printers and 5 network deployments to provide a snapshot of the current state of 3D printers’

network security. These security measurements noted that all 13 networked 3D printers analyzed

were vulnerable to simple DoS attacks (e.g., SYN flood), most (12 of 13) did not encrypt data

in transit, and some (4 of 13) allowed network inputs that crashed the machine. Further, many

network deployments did not isolate networked 3D printers, unnecessarily placing them on pub-

licly accessible networks with multiple embedded devices. These findings provide concrete data

confirming anecdotal evidence that manufacturing centers have network vulnerabilities.
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After disclosing our findings with all of the networked 3D printer vendors, many are im-

plementing our recommendations and some have requested additional analysis of their new 3D

printers to improve their product’s security. Additionally, our tool has been requested by manu-

facturing center administrators and used to understand and improve their security posture.

Low-cost, Trusted Security Gateway: Our system, JETFIRE, demonstrates the ability to pro-

vide a low-cost, trusted solution to patch real network vulnerabilities in deployed 3D printers.

We use model-driven analysis to show that it provides security by construction, guaranteeing that

all output packets are processed by the correct middlebox. We achieve this by building on top of

a micro-hypervisor and integrating fine-grained protections into the packet processing software.

We further optimize the system to provide performant and scalable network-level defenses.

We envision these bolt-on security solutions being used to protect deployed networked 3D

printers and other networked devices, mitigating their security vulnerabilities without impacting

standard user interactions. These solutions provide a practical solution to an urgent problem, and

allowing advanced manufacturing centers to fully utilize the advantages of Industry 4.0 while

minimizing their network security risks.

6.2 Limitations

We now examine the limitations of our proposed solutions.

Limitation #1: IP-based Network Communication. Our tools are limited to analyzing and

protecting devices that operate on IP-based networks. While all networked 3D printers we ana-

lyzed used this network protocol, expanding this work to defend other manufacturing devices is

limited as some devices use different wireless networking protocols (e.g., BLE, Zigbee, etc.).

Limitation #2: Operational Impacts. Our analysis tool, C3PO, leverages existing tools to

probe for network vulnerabilities. These tools are intrusive and can impact the machine’s opera-

tions (e.g., crashing the firmware); there are reports of some legacy devices suffering permanent
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failures when scanned with these tools. Thus our scanning tool may negatively impact some

legacy devices ability to operate. Similarly, our bolt-on security gateway increases network la-

tency. While networked 3D printers are robust to this slight increase, some manufacturing ma-

chines (e.g., using real-time closed-loop control over the network) might become unusable and

need an alternative, low-latency security solution.

Limitation #3: Encrypted Data. Similar to many current network security solutions, JETFIRE

does not identify attacks sent over an encrypted channel (e.g., known exploits transmitted over

a TLS channel), but can potentially identify anomalous behavior in the meta-data (e.g., sudden

large traffic volume in a DoS attack). Complementary works show promise for analyzing en-

crypted traffic [134, 214]. Such tools require a trusted foundation, as they gain access to the data

and could modify it without being detected.

Limitation #4: Middleboxes Mitigating All Vulnerabilities. Our analysis assumed that mid-

dleboxes mitigated all of a networked 3D printer’s vulnerabilities. It is unlikely such middle-

boxes will be realized in practice (e.g., zero-day vulnerabilities). Additionally, the mapping of

identified vulnerabilities to middlebox protection is currently an imprecise operation. We demon-

strated performing this manually and for a subset of vulnerabilities. Additionally, our analysis

tool (C3PO) does not guarantee identifying all vulnerabilities, particularly those in the printing

application (our fuzzing is limited based upon the input network capture). Complementary tools

such as source code analysis could provide more complete coverage of potential vulnerabilities

related to the 3D printer’s firmware [35, 182]. Finally, JETFIRE’s protection of a middlebox’s

source code from modification is limited to detecting changes to binary executables (using attes-

tation). This does not mitigate all attacks (e.g., return-oriented programming attacks [160]).

Limitation #5: Required Operator Effort. The JETFIRE defenses currently assume a knowl-

edgeable administrator generates the security policy. This complexity limits the ability of a

manufacturing center to properly configure a security gateway to ensure the needed defenses

are realized. Additionally, it currently lacks a user interface describing the current middleboxes
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deployed on the gateway. Related efforts have developed prototype interfaces to aid operators

understanding the gateway’s current configuration [109].

Limitation #6: Deployment Complexity. This thesis demonstrated protecting small to medium

sized deployments using a single hardware gateway. The techniques and architecture is designed

to be able to scale and support multiple gateways. However, the impacts of realizing such scal-

ing as well as questions such as device mobility pose potential challenges to directly utilizing

JETFIRE to defend more complex deployments.

6.3 Future Work

Our ultimate vision is to secure advanced manufacturing deployments from network attacks. Our

work in this dissertation has laid some steps towards achieving our goal. To this end, we now

identify future research directions:

• A trusted security gateway provides a foundational building block for building advanced se-

curity capabilities (Section 6.3.1).

• Our security gateway is a pragmatic solution. Additional steps could enhance its deployability

(Section 6.3.2).

6.3.1 Advanced Security Capabilities

Automated Network Defenses: We demonstrated an initial example of automating network

patches in Chapter 5. This could be further generalized to be able to scan for and identify ad-

ditional types of network vulnerabilities and implement an appropriate mitigation. Identifying

some of these vulnerabilities becomes challenging as some tools such as fuzzing often detect

vulnerabilities by inducing a crashing condition which might require manual intervention to re-

connect to the network. Additionally, identifying the part of the input that caused the crash is not

always straightforward. Further, such automated patching needs to address challenges related
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to updates, identifying new vulnerabilities and removing unneeded network protections after ap-

plying software patches to a device.

More Robust Online Learning: We demonstrated applying state-of-the-art defenses that learned

from network traffic. These demonstrations utilized a single print job transfer for their learning,

additional network samples might be required to reduce false positives and negatives. Addition-

ally, as some network behaviors might not occur naturally during the initial training window

expanding these tools to allow for learning updates while rejecting potentially malicious traffic

would increase the robustness of such tools.

Active Deception: As network adversaries continue to evolve and advance, it becomes more

important to gather information about the attacker. Traditional deception techniques, such as

static honeypots, can fail to gain sufficient information about an attacker. Recent studies in

cybersecurity and artificial intelligence have shown a great potential of cyber deception strategies

in thwarting cyber attacks effectively [30, 92]. Our trusted gateway (Chapter 4) provides a trusted

platform for realizing deceptive cyber artifacts (e.g., honeypots, mock sensors, fake services) that

defenders can trust to only confuse attackers and thereby reduce an attack’s effectiveness without

being used by the attacker to deceive the defender.

Federated Machine Learning: As demonstrated by Yu et al. [228], data about device operations

collected by multiple security gateways can be used to detect malicious behaviors. Such privacy

preserving learning is ideal for the manufacturing domain where different manufacturing centers

want to maintain their proprietary data while also having a resilience to malicious usage. Our

trusted security gateway could be used to collect needed contextual information about device

operations, and similar approaches could be used to provide trust in the centralized machine

learning agent.

Leverage Physical World Characteristics: This thesis focused on network traffic based de-

fenses. As manufacturing machines are interacting with the physical world, there is the potential

for augmenting these defenses by incorporating physical world data (e.g., motor voltage [129],
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vibrations and acoustics [18]). Such data could be collected by adding sensors [104] which if

correlated with the network data might aid in identifying malicious behaviors (e.g., a 3D printer

deviating from a part’s design).

6.3.2 Enhanced Gateway Deployability

Running Micro-hypervisor on a Bare-Metal Cloud Hosting Service: Our prototype of JET-

FIRE utilized a local controller. Ideally, the controller could be hosted by a cloud service. Cur-

rently, the micro-hypervisor requires knowledge of the hardware platform to specify parameters

and modification of the bootloader. Some of this knowledge and access is not always provided by

cloud hosting services. Additionally, the micro-hypervisor would likely need to run on top of the

cloud service’s hypervisor. This integration challenges some of our system’s trust assumptions

and requires additional integration between the different virtualization layers.

Generalizable Across Different Micro-hypervisors: We utilized uberXMHF [198, 199] for

our prototype of JETFIRE because of its amenability to formal verification. Our system de-

sign is generalizable and could be realized on alternate micro-hypervisor platforms such as

NOVA [192] which also support ARM and x86. Similarly, the small TCB could be traded for a

more widespread hypervisor (e.g., XEN [42]); however, such a large code base potentially brings

new vulnerabilities.

Evaluation of Operational Impacts: In implementing JETFIRE, we performed benchmark eval-

uations to characterize the system’s impact on a networked 3D printer. These insights could be

improved by evaluating the impact of a security gateway on a real-world manufacturing environ-

ment. Such a deployment could aid in identifying operational issues.

Increased Scalability: In Chapter 4, we discuss an approach for implementing lightweight mid-

dleboxes. This approach could be applied to additional types of middleboxes. Additionally, the

gateway’s scalability could be further increased by employing checkpoint restore in userspace

to save inactive middleboxes and thereby allow for increased scalability. A naive approach for
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checkpointing middleboxes would be based upon time since last use, but alternate approaches

might provide better memory usage.

Support Additional Wireless Network Protocols: Our work focused on IP-based network traf-

fic; however, many manufacturing devices utilize other wireless network protocols (e.g., BLE,

Zigbee, etc.). Our approach could likely be applied to these alternate protocols. However, pro-

tocol specific challenges must be addressed. Additionally, integrating data from devices using

various protocols may provide additional insights and capabilities.

6.4 Closing Remarks

This thesis provides a measurement of network security vulnerabilities in networked 3D print-

ers and demonstrates a low-cost, trusted system to mitigate these vulnerabilities. We hope our

findings will aid vendors in developing more secure devices and manufacturing centers in de-

fending their deployed machines. We hope this work inspires other to further security efforts in

the manufacturing domain.
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[161] RÖPKE, C., AND HOLZ, T. Preventing malicious sdn applications from hiding adverse

network manipulations. In Proceedings of the 2018 Workshop on Security in Softwarized

Networks: Prospects and Challenges (2018), pp. 40–45. 22

[162] ROTH, V., POLAK, W., RIEFFEL, E., AND TURNER, T. Simple and effective defense

against evil twin access points. In Proceedings of the First ACM Conference on Wireless

133

https://www.myrattrap.com
https://www.ibm.com/downloads/cas/MKJOL3DG
https://www.ibm.com/downloads/cas/MKJOL3DG


Network Security (New York, NY, USA, 2008), WiSec ’08, Association for Computing

Machinery, p. 220–235. 65

[163] RUDIS, B., WOOLWINE, W., AND LIN, K. 2020: Q2 threat report. https://

www.rapid7.com/research/report/2020Q2-threat-report/, 2020. 2, 4,

56, 62

[164] RUSHBY, J. M., AND RANDELL, B. A distributed secure system. In 1983 IEEE Sympo-

sium on Security and Privacy (April 1983), pp. 127–127. 69

[165] SANFILIPPO, S. hping. http://www.hping.org, 2006. Accessed: 2019-05-10. 26, 31

[166] SCHMID, R. Industrial iot: How connected things are changing manufacturing.

https://www.wired.com/wiredinsider/2018/07/industrial-iot-

how-connected-things-are-changing-manufacturing/. Accessed:

11-02-2020. 2

[167] SCHWARZ, F., AND ROSSOW, C. SENG, the sgx-enforcing network gateway: Authoriz-

ing communication from shielded clients. In 29th USENIX Security Symposium (USENIX

Security 20) (2020), USENIX Association. 3, 4, 21, 61

[168] SCOTT-HAYWARD, S. Design and Deployment of Secure, Robust, and Resilient SDN

Controllers. In NetSoft (2015), IEEE. 21

[169] SESHADRI, A., LUK, M., QU, N., AND PERRIG, A. SecVisor: A tiny hypervisor to

provide lifetime kernel code integrity for commodity OSes. In Proc. of SOSP (2007). 70

[170] SEZER, S., SCOTT-HAYWARD, S., CHOUHAN, P. K., FRASER, B., LAKE, D.,

FINNEGAN, J., VILJOEN, N., MILLER, M., AND RAO, N. Are we ready for sdn? im-

plementation challenges for software-defined networks. IEEE Communications Magazine

51, 7 (2013), 36–43. 61

[171] SHARIF, M. I., LEE, W., CUI, W., AND LANZI, A. Secure in-vm monitoring using

hardware virtualization. In Proc. of CCS (2009). 70

134

https://www.rapid7.com/research/report/2020Q2-threat-report/
https://www.rapid7.com/research/report/2020Q2-threat-report/
https://www.wired.com/wiredinsider/2018/07/industrial-iot-how-connected-things-are-changing-manufacturing/
https://www.wired.com/wiredinsider/2018/07/industrial-iot-how-connected-things-are-changing-manufacturing/


[172] SHIN, S., SONG, Y., LEE, T., LEE, S., CHUNG, J., PORRAS, P., YEGNESWARAN, V.,

NOH, J., AND KANG, B. B. Rosemary: A robust, secure, and high-performance network

operating system. In Proceedings of the 2014 ACM SIGSAC conference on computer and

communications security (2014), pp. 78–89. 21, 61, 85

[173] SHIN, S., XU, L., HONG, S., AND GU, G. Enhancing network security through soft-

ware defined networking (sdn). In Proceedings of The 25th International Conference on

Computer Communication and Networks (ICCCN’16) (August 2016). 19

[174] SHINAGAWA, T., EIRAKU, H., TANIMOTO, K., OMOTE, K., HASEGAWA, S., HORIE,

T., HIRANO, M., KOURAI, K., OYAMA, Y., KAWAI, E., ET AL. Bitvisor: a thin hypervi-

sor for enforcing i/o device security. In Proceedings of the 2009 ACM SIGPLAN/SIGOPS

international conference on Virtual execution environments (2009). 22, 69, 70

[175] Shodan. https://www.shodan.io, 2019. Accessed on 2019-02-13. 51

[176] SIMPSON, A. K., ET AL. Securing vulnerable home iot devices with an in-hub security

manager. In 2017 IEEE PerCom Workshops (2017). 19, 20, 21, 54, 57, 61

[177] SINGARAVELU, L., PU, C., HAERTIG, H., AND HELMUTH, C. Reducing TCB com-

plexity for security-sensitive applications: Three case studies. In EuroSys (2006). 70

[178] SISODIA, D. On the state of internet of things security: Vulnerabilities, attacks, and

recent countermeasures. University of Oregon, Tech. Rep (2020). 16

[179] SLAUGHTER, A., YAMPOLSKIY, M., MATTHEWS, M., KING, W. E., GUSS, G., AND

ELOVICI, Y. How to ensure bad quality in metal additive manufacturing: In-situ infrared

thermography from the security perspective. In Proceedings of the 12th International

Conference on Availability, Reliability and Security (New York, NY, USA, 2017), ARES

’17, ACM, pp. 78:1–78:10. 12, 24

[180] SON, S., SHIN, S., YEGNESWARAN, V., PORRAS, P., AND GU, G. Model Checking

Invariant Security Properties in OpenFlow. In ICC (2013), IEEE. 22

135

https://www.shodan.io


[181] SONG, C., LIN, F., BA, Z., REN, K., ZHOU, C., AND XU, W. My smartphone knows

what you print: Exploring smartphone-based side-channel attacks against 3d printers. In

Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications

Security (New York, NY, USA, 2016), CCS ’16, ACM, pp. 895–907. 12, 13

[182] SONG, D., BRUMLEY, D., YIN, H., CABALLERO, J., JAGER, I., KANG, M. G., LIANG,

Z., NEWSOME, J., POOSANKAM, P., AND SAXENA, P. Bitblaze: A new approach to

computer security via binary analysis. In International Conference on Information Sys-

tems Security (2008), Springer, pp. 1–25. 111

[183] SPADARO, J., AND WYATT, L. Mutiny fuzzer. https://github.com/Cisco-

Talos/mutiny-fuzzer, 2019. Accessed: 2019-05-03. 26, 29, 32

[184] SPAFFORD, E. H. The internet worm program: An analysis. ACM SIGCOMM Computer

Communication Review 19, 1 (1989), 17–57. 18

[185] STURM, L., ALBAKRI, M., WILLIAMS, C. B., AND TARAZAGA, P. In-situ detection of

build defects in additive manufacturing via impedance-based monitoring. In 27th Annual

International Solid Freeform Fabrication Symposium–An Additive Manufacturing Con-

ference (2016). 12

[186] STURM, L. D., WILLIAMS, C. B., CAMELIO, J. A., WHITE, J., AND PARKER, R.

Cyber-physical vulnerabilities in additive manufacturing systems: A case study attack on

the .stl file with human subjects. Journal of Manufacturing Systems 44 (2017), 154 – 164.

12, 13, 24

[187] SULLO, C., AND LODGE, D. Nikto2. https://cirt.net/Nikto2, 2019. Accessed:

2019-04-03. 44

[188] https://suricata-ids.org, 2020. 77

[189] SYED, A., ANWER, B., GOPALAKRISHNAN, V., AND VAN DER MERWE, J. Depo: A

platform for safe deployment of policy in a software defined infrastructure. In Proceedings

136

https://github.com/Cisco-Talos/mutiny-fuzzer
https://github.com/Cisco-Talos/mutiny-fuzzer
https://cirt.net/Nikto2
https://suricata-ids.org


of the 2019 ACM Symposium on SDN Research (2019), pp. 98–111. 22

[190] TA-MIN, R., LITTY, L., AND LIE, D. Splitting interfaces: Making trust between ap-

plications and operating systems configurable. In Proceedings of the 7th symposium on

Operating systems design and implementation (2006), pp. 279–292. 22, 70

[191] TENABLE. Nessus. https://www.tenable.com/downloads/nessus, 2019. Ac-

cessed: 2019-05-03. 26, 32
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