
SyRust: Automatic Testing of Rust Libraries with
Semantic-Aware Program Synthesis
Yoshiki Takashima

Carnegie Mellon University
Pittsburgh, PA, USA

ytakashi@andrew.cmu.edu

Ruben Martins
Carnegie Mellon University

Pittsburgh, PA, USA
rubenm@andrew.cmu.edu

Limin Jia
Carnegie Mellon University

Pittsburgh, PA, USA
liminjia@andrew.cmu.edu

Corina S. Păsăreanu
Carnegie Mellon University Silicon Valley,

NASA Ames Research Center
Moffett Field, CA, USA
pcorina@cmu.edu

Abstract
Rust’s type system ensures the safety of Rust programs; how-
ever, programmers can side-step some of the strict typing
rules by using the unsafe keyword. A common use of unsafe
Rust is by libraries. Bugs in these libraries undermine the
safety of the entire Rust program. Therefore, it is crucial to
thoroughly test library APIs to rule out bugs. Unfortunately,
such testing relies on programmers to manually construct
test cases, which is an inefficient and ineffective process.
The goal of this paper is to develop a methodology for

automatically generating Rust programs to effectively test
Rust library APIs. The main challenge is to synthesize well-
typed Rust programs to account for proper chaining of API
calls and Rust’s ownership type system and polymorphic
types. We develop a program synthesis technique for Rust
library API testing, which relies on a novel logical encoding
of typing constraints from Rust’s ownership type system.
We implement SyRust, a testing framework for Rust libraries
that automatically synthesizes semantically valid test cases.
Our experiments on 30 popular open-source Rust libraries
found 4 new bugs.

CCS Concepts: • Security and privacy→ Software se-
curity engineering; • Software and its engineering→
Software maintenance tools; Semantics; Software safety;
Software reliability.

Keywords: Rust, API Testing, Program Synthesis

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
PLDI ’21, June 20–25, 2021, Virtual, Canada
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8391-2/21/06.
https://doi.org/10.1145/3453483.3454084

ACM Reference Format:
Yoshiki Takashima, Ruben Martins, Limin Jia, and Corina S. Păsăre-
anu. 2021. SyRust: Automatic Testing of Rust Libraries with
Semantic-Aware Program Synthesis. In Proceedings of the 42nd
ACM SIGPLAN International Conference on Programming Language
Design and Implementation (PLDI ’21), June 20–25, 2021, Virtual,
Canada. ACM, New York, NY, USA, 19 pages. https://doi.org/
10.1145/3453483.3454084

1 Introduction
Rust has gained popularity in a wide range of domains
such as operating systems, embedded devices, and high-
performance web frameworks [1]. A key ingredient of Rust’s
success is the ownership and variable lifetime system, which
guarantees any program passing the type check is free of
unsafe behaviors such as use-after-free, double-free, and
data races. To recover some expressiveness, Rust also allows
programmers to disable some of the safety checks for code
segments labeled with the unsafe keyword. A common use
of unsafe Rust is by libraries, which encapsulate unsafe code
and provide abstractions to safe Rust. Allowing unsafe code
has inevitably led to vulnerabilities in Rust applications. The
Rust Standard Library was found to be vulnerable in 2018 [2]
and recent surveys [28, 38] further demonstrate the danger
of using unsafe Rust.
Effort has been made to help programmers mitigate the

risks stemmed from unsafe code, for instance, coding guide-
lines [4] and the Stacked Borrows project that can determine
if a Rust program exhibits buggy behavior [20]. Fundamen-
tally, it is necessary for programmers to thoroughly test their
libraries that include unsafe code. Unfortunately, such test-
ing relies on programmers to manually construct test cases,
which can be inefficient and ineffective.

Our goal is to automatically generate test cases for Rust
libraries. The main challenges stem from Rust type system
features such as polymorphism and variable ownership and
lifetime restrictions that make Rust safe. The Rust compiler
will reject a large portion of programs that are generated us-
ing traditional random search techniques like JCrasher [12],

1

https://doi.org/10.1145/3453483.3454084
https://doi.org/10.1145/3453483.3454084
https://doi.org/10.1145/3453483.3454084


PLDI ’21, June 20–25, 2021, Virtual, Canada Yoshiki Takashima, Ruben Martins, Limin Jia, and Corina S. Păsăreanu

Randoop [27] and RESTler [7]. Instead, we take inspiration
from the recent success of constraint solving based program
synthesis techniques like H+ [15] and SyPet [14]. These tech-
niques take in a set of API specifications and synthesize valid
programs by solving a constraint formula that encodes the
set of all bounded-length programs that can be built using
the given APIs. In this paper, we propose novel, Rust-specific
constraints that encode the above mentioned Rust type sys-
tem features, allowing us to synthesize valid Rust programs
with high probability.

Concretely, we develop a semantic-aware synthesis algo-
rithm that encodes typing constraints including ownership
and lifetime constraints by keeping track of the typing con-
texts and which variables are active and thus can be used
as arguments to APIs at each program point. Programs that
satisfy these constraints are most likely to pass Rust type
checker. Further, this algorithm facilitates the generation of
valid API call chains, which are necessary for exposing subtle
bugs that would have been missed by testing one API at a
time. Tomake use of APIs with polymorphic types effectively,
we propose a hybrid technique to effectively concretize poly-
morphic object constructors while avoiding combinatorial
explosions through early pruning. Furthermore, we develop
an API refinement algorithm that leverages error reports pro-
vided by the Rust compiler. In the end, we achieve a synthesis
algorithm that can effectively generate programs that make
use of APIs with polymorphic types while only suffering
from a few errors required to refine the API.

We implement the proposed techniques in SyRust, a scal-
able, synthesis driven, testing framework for Rust libraries.
We evaluated SyRust on 30 popular open source Rust li-
braries, and found 4 bugs, including a double-free that re-
quires a complex sequence of five calls to trigger. Further-
more, our evaluation shows that SyRust is highly effective
at generating test programs while reducing compiler errors.
Finally, we demonstrate that the semantic awareness and
hybrid API refinement is critical to the success of SyRust by
observing a significant increase in the number of compiler-
rejected test cases when the respective features are turned
off. We summarize our contributions below.

1. We propose a novel semantic-aware synthesis algo-
rithm that generates valid Rust programs.

2. We improve the state-of-the-art API refinement syn-
thesis technique to accommodate Rust-specific fea-
tures by leveraging Rust compiler error messages.

3. We implement our synthesis algorithm in SyRust, an
automatic testing framework for Rust libraries.

4. We evaluate SyRust on popular Rust libraries and
demonstrate that it can generate semantically valid
test cases that expose bugs.

Due to space constraints, many technical details are omit-
ted and can be found in the companion technical report [32].

2 Background and Motivation
We discuss key features of the Rust type system and highlight
challenges in automatic generation of valid Rust programs.
Considering a simple test case shown in Figure 1 for Vec<T>,
a vector data structure from the Rust standard library. The
type context for each line is shown in the comments. The
test function takes as arguments a String object (s: String)
and a vector of Strings (v: Vec<String>). Line 3 moves v
into mutable vector vm. Line 5 creates a mutable reference vr
pointing to vm, using which s is pushed to the vector on line
8. Line 10 calls into_raw_parts, a function that destroys the
vector and returns a tuple of size 3. Rust-specific terminology,
such as moving and borrowing will be discussed below.

1 fn test(s :String, v :Vec<String>) {
2 //context{s:String,v:Vec<String>}
3 let mut vm = v;
4 //context:{s:String,vm:mut Vec<String>}
5 let vr :&mut Vec<String> = &mut vm;
6 //context:{s:String, vm:Vec<String>,
7 // vr:&mut Vec<String>}
8 vr.push(s);
9 //context:{vm:mut Vec<String>,vr:&mut Vec<String>}
10 let _ = vm.into_raw_parts();
11 //context: {}
12 }

Figure 1. An example Rust program

This small well-typed program chains several API calls
together and is very similar to a test case generated by SyRust
that exposed a bug in bitvec, a bitvector library for Rust.
For the rest of this section, we will use this example program
to review the Rust type system and illustrate challenges in
automatically generating such a test program.
Basic Typing and Subtyping Constraints Rust is stati-
cally typed: all variables are assigned a type at compile time
and all uses of variables are consistent with their types. For
example, if an API takes a string (String) as its argument,
then only expressions that have the type String can be
given as argument to the API. Rust’s type system allows ref-
erence types like &String, which refers to a memory of the
internal type String and is immutable. Programmers can
explicitly make mutable references via &mut String. Rust
also allows subtyping. For example, a mutable reference to a
string &mut String may be used in place of immutable ref-
erence &String, but not the other way around. This means
that our test case generating algorithm needs to keep track
of typing contexts and reason about types and subtyping.
Polymorphism and API Specification Refinement The
type variable T in the polymorphic type Vec<T> can be instan-
tiated with concrete types. To generate test cases for APIs
with polymorphic types, our algorithm needs to know how
the type variable is instantiated and handle subsequent typ-
ing constraints. For example, the push operation seen above

2



SyRust: Automatic Testing of Rust Libraries with Semantic-Aware Program Synthesis PLDI ’21, June 20–25, 2021, Virtual, Canada

has type (&mut Vec<T>,T)→(). Our algorithm needs to
match the concrete vector reference &mut Vec<String>with
the polymorphic input type &mut Vec<T>, and then under-
stand that the other input type should match the type previ-
ously used for instantiating T. Naive enumeration of concrete
types to instantiate type variables is inefficient; polymor-
phic types can be instantiated with other polymorphic types
(Vec<T>, Vec<Vec<T>>, Vec<Vec<Vec<T>>> and so
on), leading to possible infinite instantiation loops. Type
variables that are required to be instantiated with types im-
plementing a trait, indicating supports for sets of methods,
is yet another constraint we need to consider.
We define a notion of API refinement: a type signature

that permits fewer inputs is considered more refined. For
example, the API specification with input type Vec<String>
is considered more refined than that with Vec<T>, as the
former permits only vectors of strings. API refinement is the
process of making the API’s type signature more refined.
Variable Ownership and Lifetime Any value of non-
primitive type, which is allocated on the heap, has one vari-
able that owns it. This ownership can change hands from one
variable to another, but the uniqueness of the owner must
hold across the program. Guaranteeing unique ownership
makes reasoning about when an object can be deallocated
easy. A lifetime of a variable is a region in the code in which
this variable can be used. If a variable is used, then the com-
piler ensures that this usage occurs within the lifetime of
the variable. Rust lifetime checks rule out programs with
memory errors that violate lifetime constraints. To enforce
unique ownership, when the owner variable is used in a
right-hand-side expression, Rust forcefully terminates the
lifetime of that variable at that line, evaluates the expres-
sion, and the ownership of the resulting data is moved to
the left-hand-side variable. For example, the lifetime of s is
terminated at line 8; if we were to call vr.push(s); again on
line 9, the program will no longer type check. Our algorithm
needs to handle lifetime and ownership constraints.
Relationship Between Lifetimes Sometimes, a variable’s
lifetime depends on another variable. For example vr is a ref-
erence to vm. To avoid creating a potential use-after-free bug,
the lifetime of vr must be strictly contained in the lifetime
of vm. Swapping the last 2 lines of Figure 1 (shown below)
yields an ill-typed program, because when vm is destroyed by
into_raw_parts, vr is also removed from the type context.

1 //context:{s:String, vm:Vec<String>,
2 // vr:&mut Vec<String>}
3 let _ = vm.into_raw_parts();
4 //context:{s:String}
5 vr.push(s); // vr not found

Borrowing and References The Rust langauge allows pro-
grammers to make references to a value, which is called
borrowing (to contrast it with ownership). Rust enforces
properties on refrences to rule out memory errors. These

properties depend on whether the reference allows mutation
of the memory location. To prevent data races, Rust enforces
the rule that only one mutable reference can be active for any
location in memory. The compiler will reject any attempts
to borrow a mutable reference to a memory location while
another mutable reference is active. For example, the follow-
ing program attempts to borrow a second mutable reference
vr2. This does not pass the Rust compiler.

1 //context{s:String,v:Vec<String>}
2 let mut vm = v;
3 //context:{s:String,vm:mut Vec<String>}
4 let vr :&mut Vec<String> = &mut vm;
5 //context:{s:String, vm:Vec<String>,
6 // vr:&mut Vec<String>}
7 let vr2 :&mut Vec<String> = &mut vm;
8 //context: can't have both vr and vr2
9 vr.push(s);

Even if vr2 is an immutable reference, the program still
causes a type error; because mutable and immutable refer-
ences for one memory location cannot co-exist. A memory
location can have many immutable only references. Our
algorithm need to encode these constraints on references.

3 SyRust Overview
The architecture of SyRust is shown in Figure 3. SyRust
implements an iterative approach and consists of three main
components: a semantic-aware test case synthesis engine;
an API specification refinement engine, and a test executor.
Synthesis engine The synthesis engine takes as inputs a
code template and library API typing specifications and re-
turns a set of test cases. The engine implements a novel
semantic-aware synthesis algorithm that takes into consid-
eration constraints such as those discussed in Section 2. The
algorithm is explained in Section 4.

TheAPI typing specifications are collected from the library
to be tested. The code template is manually generated, one
for each target the analyst intends to test. An example code
template for the vector library is shown in Figure 2. It serves
the following purposes. First, it indicates to the synthesizer
where to insert the synthesized code via the (// INSERT)
comment. Second, the main function provides inputs to the
test function. Typically, these inputs are assigned types so
that they can be used as arguments to the APIs to be tested.

1 fn test(s :String, v :Vec<String>) {
2 //INSERT
3 }
4
5 fn main() {
6 let s_0 : std::string::String = "".to_string();
7 let v_0 : Vec<String> = Vec::new();
8
9 test(s_0, v_0);
10 }

Figure 2. An example template for Vec<T>
3



PLDI ’21, June 20–25, 2021, Virtual, Canada Yoshiki Takashima, Ruben Martins, Limin Jia, and Corina S. Păsăreanu

Polymorphic API Refinement Many Rust library APIs
and data structures use polymorphic types. To effectively
test them, we implement a novel hybrid type variable in-
stantiation scheme that eagerly instantiates a small subset
of APIs at the beginning and uses compiler errors to lazily
refine the remaining API specifications. If a compiler error is
encountered when testing generated programs, the polymor-
phic API refinement module alters the API specification, so
that the same error does not occur again. Based on the error,
it first identifies the (polymorphic) API that causes it, then, a
new API specification with the instantiated type is added to
the API specifications to be used in the next round of synthe-
sis. For example, Vec::pop returns Option<T>. Initially, we
only have the polymorphic version. If we were to use this
API with a vector of type Vec<String>, then we add a new
API with T instantiated as String for both the inputs and
outputs. APIs deemed unfixable will be prevented from being
used by the synthesizer. Details of this refinement process
are presented in Section 5.
Test Executor The test executor has two roles. First, it com-
piles the test cases and reports compiler errors. Second, it
executes compiled test cases and reports undefined behavior.
In Rust, undefined behavior is caused by an operation that
lacks well-defined semantics such as dereferencing a pointer
after freeing it. For our implementation, we leverage Miri
[26], an interpreter for Rust that flags undefined behavior
(e.g., dereferencing freed memory). Any tool that can satisfy
the above two roles can be used.

4 Semantics-Aware Synthesis
In this section, we show how we can synthesize code that
follows the Rust semantics described in Section 2.

4.1 Synthesis Algorithm
Algorithm 1 shows an overview of SyRust’s synthesis algo-
rithm. SyRust takes as input a set of API type signatures (A),
a code template (T ), and a maximum number of lines of code
to synthesize (𝑚). The goal of this procedure is to synthesize
a collection of test programs that follow the Rust semantics
and can be successfully compiled by the Rust compiler. To
achieve this goal, we synthesize programs of increasing size
by encoding the search space of all possible programs of size
𝑚 that satisfy Rust’s semantic properties as a SAT formula 𝜑
(line 3). Each model 𝜎 of 𝜑 can be translated to a concrete
program P (line 6) that can be compiled and executed by
the test executor (line 7). If a compiler error is encountered
(line 8), then we analyze the error and detect which APIs
were the cause of the compilation error in order to refine A
such that this error does not occur in the future. This can oc-
cur for instance when an API is polymorphic and we did not
instantiate it. Regardless of the result, we save the solution
and resulting messages from test execution in a database
DB (line 12). Finally, we block 𝜎 to avoid repetition (line 13)

Algorithm 1: High-Level Algorithm of SyRust
Input :API type signatures A, code template T ,

maximum number of lines of code𝑚
Output :database of programs and results DB

1 Procedure SyRust(A, T ,𝑚):
2 for 𝑙 ∈ 1, . . . ,𝑚 do
3 𝜑 ← genConstraints(A,T , 𝑙)
4 while SATSolver(𝜑) ≠ UNSAT do
5 𝜎 ← getModel(SATSolver(𝜑))
6 P ← codeGen(𝜎,T)
7 R ← test(P)
8 if isCompilerError(R) then
9 A ← refine(A,R)

10 𝜑 ← update(𝜑,A)
11 end
12 DB ← DB ∪ R
13 𝜑 ← 𝜑 ∧ ¬𝜎
14 end
15 end
16 return DB

and repeat the process until all models are found and the
formula becomes unsatisfiable.
This section focuses on which properties need to be en-

coded in 𝜑 (genConstraints) to satisfy Rust semantics. For
simplicity, in the remainder of this section, we assume that
all API functions are not polymorphic. Section 5 describes in
detail how we perform polymorphic API refinement (refine)
and carry out hybrid instantiation to make APIs concrete.

4.2 Modeling Programs as SAT Formulas
The syntax of straight-line programs that are synthesized by
SyRust is shown below. To simplify the synthesis process,
we restrict the programs generated to not include branch-
ing and loops. However, our evaluation (Section 6) shows
that even when only generating straight-line programs it
is still possible to find complex memory bugs. Furthermore,
the inputs to the functions (Vars) are restricted to variables
only, and no expressions. This is fine as expressions can be
computed in the prior lines, assigned to a variable, and used
in the following lines.

Program := Line | Line; Program
Line := 𝑓 (Vars) | let 𝑣 : 𝜏 ′ = 𝑓 (Vars)
Vars := 𝑣1, . . . , 𝑣𝑘

To build a SAT formula that represents the space of all possi-
ble programs of size 𝑙 , we start by defining a set of Boolean
variables that will be useful to model Rust semantics. These
variables can be split into two main categories: API variables
and synthesis type-context variables. API variables denote
when an API function occurs in the program and synthesis

4



SyRust: Automatic Testing of Rust Libraries with Semantic-Aware Program Synthesis PLDI ’21, June 20–25, 2021, Virtual, Canada

Semantic-aware
synthesis engine

Test executor
(Miri)

API spec

Polymorphic type 
refinement

Library bug 
reports

Code template

Test cases

Compiler errors
Refined API 

specs

SyRust

Figure 3. Overview of SyRust

type-context variables denote the universe of code variables
that can be used in each line of the program.
For each API function 𝑓 ∈ A we create 𝐴𝑓 ,𝑖 Boolean

variables with 1 ≤ 𝑖 ≤ 𝑙 . We say that 𝑓 is called on line 𝑖 if
𝐴𝑓 ,𝑖 is set to true in 𝜎 . Additional restrictions are added to
ensure that for each line 𝑖 exactly one 𝐴𝑓 ,𝑖 is set to true.

To have valid programs, we must ensure that an API func-
tion 𝑓 : 𝜏1 × . . . × 𝜏𝑘 → 𝜏 ′ can only be called on line 𝑖 if
the program contains variables that have been declared in
previous lines with types 𝜏1, . . . , 𝜏𝑘 , respectively. We use a
mapping from variable names (𝑣) to types (𝜏) in synthesis
type context. For any line, there is a synthesis type context
before it, which is the set of variables and types available
before the function call, and a synthesis type context after
it, which is the set of variables and types available after the
function on this line has been called.

We model synthesis type contexts as subsets of the Carte-
sian product between the set of variable names (𝑆) and the set
of types (𝑇 ). 𝑆 is the union of variables names in the template
and the new variable names that may appear in each line of
code {𝑣𝑖 | 1 ≤ 𝑖 ≤ 𝑙}. 𝑇 is the union of types in the template,
with the output types from the APIs {𝜏 | 𝑓 ∈ A, 𝑓 : ∗ → 𝜏}.
We define Boolean variables 𝑉𝑣,𝜏,𝑖 with 𝑣 ∈ 𝑆 , 𝜏 ∈ 𝑇 , and
1 ≤ 𝑖 ≤ 𝑚. We say that if variable 𝑣 with type 𝜏 occurs in the
synthesis type context of line 𝑖 then 𝑉𝑣,𝜏,𝑖 is set to true in 𝜎 .
Using these variables we can recursively construct the syn-
thesis type context for each line. First, let us consider𝐶1, the
synthesis type context for line 1. This is the synthesis type
context before any APIs are called. This means the only vari-
ables available are those provided by T .𝐶𝑖+1 must propagate
every possible variable in 𝐶𝑖 and include any new variables
defined on line 𝑖 . The following recurrence formalizes how
we construct a synthesis type context for every line in the
length-𝑙 program.
Definition 1 (Construction of Synthesis Type Context).

𝐶1 = {𝑉𝑥,𝜏,1 | 𝑥 : 𝜏 ∈ T }
𝐶𝑖+1 = {𝑉𝑥,𝜏,𝑖+1 | 𝑉𝑥,𝜏,𝑖 ∈ 𝐶𝑖 } ∪

{𝑉𝑥𝑖+1,𝜏′,𝑖+1 | 𝑓 ∈ A, 𝑓 : ∗ → 𝜏 ′}
We write 𝐶𝑙 to denote the set of Boolean variables that

occur in the synthesis type context on line 𝑙 . We overload𝐶𝑙

as a mapping from variables to types, e.g., if 𝑉𝑣,𝜏,𝑙 ∈ 𝐶𝑙 and

𝑉𝑣,𝜏,𝑙=1 then𝐶𝑙 (𝑣) = 𝜏 , and define the domain of the existing
types of a context as dom 𝐶𝑙 = {𝑑 | ∃ 𝜏 st. 𝐶𝑙 (𝑑) = 𝜏}.

4.3 Basic Typing Constraints
We encode a set of rules that guarantees the correct usage
of API functions over a set of variables. These rules are
compatible with most imperative languages.
Rule 1. If T provides the inputs {𝑖1:𝜏1, . . . , 𝑖𝑛 :𝜏𝑛},
then ∀1≤ 𝑗≤𝑛 𝐶1 (𝑖 𝑗 ) = 𝜏 𝑗 .

Rule 1 states that the available variables and types at the
start of the synthesis are the ones in the template T .
Rule 2. Let 𝐿𝑖𝑛𝑒𝑖 = let x : 𝜏 = f(. . .). 𝐶𝑙+1 (𝑥) = 𝜏 and
∀𝑣 ∈ (dom 𝐶𝑙 ∩ dom 𝐶𝑙+1) \ {𝑥},𝐶𝑙+1 (𝑣) = 𝐶𝑙 (𝑣).

Rule 2 describes how the synthesis type context ismodified
from line 𝑖 to line 𝑖 + 1 with the call to function 𝑓 in line 𝑖 .

Next, we define a line 𝑙 type checks with Context𝐶𝑙 , writ-
ten 𝐶𝑙 ⊢ 𝐿𝑖𝑛𝑒𝑙 ⇒ 𝐶𝑙+1 as follows.
Definition 2 (Single-Line Type Check). Let 𝑓 : 𝜏1 × . . . ×
𝜏𝑘 → 𝜏 ′. A line 𝑙 of code containing 𝑓 (𝑣1, . . . , 𝑣𝑘 ) type checks
with Context 𝐶𝑙 if all of the following conditions are satisfied.

1. 𝑣1, . . . , 𝑣𝑘 ∈ dom 𝐶𝑙

2. ∀1≤𝑝≤𝑘𝐶𝑙 (𝑣𝑝 ) ⊑ 𝜏𝑝
3. ∀1≤𝑝<𝑞≤𝑘 compatibleTypes(𝐶𝑙 , 𝑣𝑝 , 𝜏𝑝 , 𝑣𝑞, 𝜏𝑞)

We use the subtype operator (⊑) instead of = to not miss
generating valid programs, in particular for the following
two aspects. First, Rust has subtyping for reference mutabil-
ity: &mut String ⊑ & String. Second, by allowing type
variables to match the broadest range of types (i.e., ∀𝜏 , 𝜏 ⊑
T), the synthesis can generate code that uses polymorphic
types; for instance Vec⟨𝑆𝑡𝑟𝑖𝑛𝑔⟩ ⊑ Vec⟨𝑇 ⟩. However, if the
same type variable occurs in multiple places, then it must be
matched to compatible types. For example, for Vec::push,
we must ensure T from first input &mut Vec⟨𝑇 ⟩matches with
a type that is compatible with what T matches in the second
input. To this end, we use a compatibleTypes function that
determines if a polymorphic match is compatible for every
pair of polymorphic variables 𝑣𝑖 , 𝑣 𝑗 . Note that if 𝑣𝑖 and 𝑣 𝑗
are not polymorphic then they are always compatible. More
discussions on polymorphic types are presented in Section 5.

5



PLDI ’21, June 20–25, 2021, Virtual, Canada Yoshiki Takashima, Ruben Martins, Limin Jia, and Corina S. Păsăreanu

We can inductively extend Definition 2 to define type
checking for a multi-line program below.

Rule 3. Let 𝑃𝑟𝑜𝑔𝑟𝑎𝑚 = 𝐿𝑖𝑛𝑒0; . . . ;𝐿𝑖𝑛𝑒𝑛−1 and 𝐿𝑖𝑛𝑒𝑖 contain
a call to 𝑓𝑖 . Then there exists 𝐶1, . . . ,𝐶𝑛 such that for every
1 ≤ 𝑖 ≤ 𝑛, 𝐶𝑖 ⊢ 𝐿𝑖𝑛𝑒𝑖 ⇒ 𝐶𝑖+1.

4.4 Ownership and Variable Lifetime
We show how to encode variable and reference lifetime con-
straints in Rust as described in Section 2.

4.4.1 Basic Variable Lifetimes. A variable 𝑣 ’s lifetime,
denoted 𝐿𝑣 , is the set of continuous contexts in which 𝑣 oc-
curs:

Definition 3 (Variable Lifetime). A lifetime for variable 𝑣
that is created on line 𝑠 and ends in line 𝑒 is defined as follows:
𝐿𝑣 = {𝐶𝑙 | 𝑠 ≤ 𝑙 < 𝑒, 𝑣 ∈ dom 𝐶𝑙 }.

Some types can be used at most once in a line. The algo-
rithm needs to add the following condition to the compati-
bleType function presented in Definition 2. If the variables
are the same, then the types must be a primitive type or
static reference (&), the only type of reference that is allowed
to be used in interleaving terms on the same line. That is,

Rule 4. compatibleTypes(𝐶, 𝑣, 𝜏𝑖 , 𝑣, 𝜏 𝑗 ) with 𝑖 ≠ 𝑗 is true if
and only if 𝜏𝑖 = 𝜏 𝑗 is a static reference.

Further, non-primitive variable lifetimes need to be termi-
nated upon use.

Rule 5. Let 𝑣 be a non-primitive variable used on the right-
hand-side in 𝐿𝑖𝑛𝑒𝑖 , then 𝑣 ’s lifetime terminates here. We require
that 𝑣 ∉ dom 𝐶𝑖+1, and therefore 𝐶𝑖+1 ∉ 𝐿𝑣 .

4.4.2 Relationship between Lifetimes. Next, we encode
rules for references. In particular, we need to define the
notion of a variable outliving another one.

Definition 4 (Lifetime Containment). A lifetime 𝐿𝑣1 contains
another lifetime 𝐿𝑣2 if and only if 𝐿𝑣2 ⊆ 𝐿𝑣1 .

Because our algorithm treats borrowing (& and &mut) as
a special kind of API, the lifetime containment rule will be
formalized as follows.

Rule 6. Let 𝐿𝑖𝑛𝑒𝑖 be a call (& or &mut) to borrow variable 𝑣 to
produce a reference 𝑣 ′, which points to 𝑣 , then 𝐿𝑣′ ⊆ 𝐿𝑣 .

4.4.3 Paths and Lifetimes. Rule 6 alone does not capture
all of the constraints in lifetime management; constraints on
implicit movements of references are missing. The Rust type
signatures are annotated with lifetime variables [3, 5] (e.g.
’a). These annotations can be programmer-provided, or in
some cases, the Rust compiler automatically annotates using
Lifetime Elision rules [3].
Consider the option type Option<T>. Assuming it is not

None, it serves as a wrapper for that can be unwrapped with
unwrap : Option<T> → T. This carries no significance

when T is not a reference. However, when 𝑇 is a reference,
we need to make sure that the output of type T= &𝑚𝑢𝑡 𝜏

must be as a valid reference and all of the reference rules
must be applied to it. To formalize implicit movements, we
define Path to model data flow.

Definition 5. (Path) A path is a sequence of variable-line
pairs (𝑣𝑠 , 𝑙𝑠 ), . . . , (𝑣𝑘 , 𝑙𝑒 ) such that for every (𝑣𝑖 , 𝑙 𝑗 ) the variable
associated with 𝑙 𝑗+1 is not equal to 𝑣𝑖 . Moreover, there exists a
function call on 𝐿𝑖𝑛𝑒 𝑗 that propagates the lifetime of 𝑣 𝑗 to the
new variable defined on 𝐿𝑖𝑛𝑒 𝑗 .

This rule formalizes the notion that we need to keep the
lifetime relation even when the types change and content is
moved out.

Rule 7. For every path (𝑣𝑠 , 𝑙𝑠 ), . . . , (𝑣𝑘 , 𝑙𝑒 ), 𝐿𝑣 ⊆ 𝐿𝑠 is enforced
for every 𝑣 ≠ 𝑠 in the path.

Note that the above rule is enforced using a post-
processing check, rather than encoded in the formula. This
is because this notion of connectivity may lead to a cubic
number of additional SAT clauses [31] and it is more efficient
to either solve it lazily or via a post-processing check.

4.4.4 Banned Operations and Lifetimes. Recall the ex-
ample in Section 2 where creating a mutable reference (vr2)
was prevented because another mutable reference (vr) was
already active in the context. Our goal is to add constraints
to prevent these kinds of programs from being synthesized.
For any non-primitive variable with a reference borrowed
on it the following 3 rules must be obeyed:

1. while &mut is active, prevent another &mut,
2. while &mut is active, prevent another &,
3. while any & is active, prevent another &mut.

In the last category, any is emphasized as it is possible to
have multiple static references, but every static reference
must be exclusive against mutable references.

Rule 8. If 𝐿𝑖𝑛𝑒𝑖 is a call to mutable borrow (&mut) 𝑣 and the
resulting mutable reference is stored in 𝑣 ′, then ∀𝐿𝑖𝑛𝑒 𝑗 such
that 𝑗 > 𝑖 and 𝑣 ′ ∈ dom 𝐶 𝑗+1, 𝐿𝑖𝑛𝑒 𝑗 cannot be a mutable
borrow or static borrow of 𝑣 .

Rule 9. If 𝐿𝑖𝑛𝑒𝑖 is a call to static borrow & 𝑣 and the resulting
mutable reference is stored in 𝑣 ′, then ∀𝐿𝑖𝑛𝑒 𝑗 such that 𝑗 > 𝑖

and 𝑣 ′ ∈ dom 𝐶 𝑗+1, 𝐿𝑖𝑛𝑒 𝑗 cannot be a mutable borrow of 𝑣 .

4.5 Connecting to SAT
We have presented the rules that we use to encode the se-
mantics of Rust in our synthesis engine. We convert these
rules into a Boolean Satisfiability formula and solve it using
an off-the-shelf SAT solver. We refer the reader to Technical
Report [32] for further details on the SAT encodings.

Getting back to Algorithm 1, the rules of this section corre-
spond to what genConstraints generates. Once this formula
is solved, we will have a truth assignment 𝜎 for the Boolean

6



SyRust: Automatic Testing of Rust Libraries with Semantic-Aware Program Synthesis PLDI ’21, June 20–25, 2021, Virtual, Canada

variables that correspond to a valid program in Rust. Us-
ing the one-to-one correspondence between the Boolean
variables that represent the APIs and inputs with their code
representation, the codeGen function parses the solution
and builds the test case line-by-line.

4.6 Properties of the Synthesized Programs
Remark 1. The programs synthesized by SyRust satisfy the
requirements of the Rust compiler for the following properties.

1. The synthesized program type-checks (Rules 1, 2, 3).
2. Variable aliases are not allowed except for static refer-

ences (Rule 4).
3. All non-primitive variables are uniquely owned (Rule 5).
4. While any references are active, the memory location

cannot be moved or deallocated (Rules 6, 7).
5. For any given variable, there is at most 1 active mu-

table reference or an arbitrary number of active static
references, but not both (Rules 8, 9).

Even though the synthesized programs can still result in
compilation errors, our evaluation (Section 6) shows that
only a very small percentage of programs are rejected by the
compiler and these errors are due to other factors not cap-
tured in the above properties, e.g., polymorphic errors that
can be lazily fixed with the approach presented in Section 5.

4.7 Suppressing Redundancy
While the above synthesis rules are sufficient for generat-
ing valid programs that pass the compiler checks, we need
additional rules to prevent the synthesizer from generating
programs that are semantically equivalent to previously gen-
erated programs. The goal here is to be more efficient, as
the set of valid programs is infinite and grows exponentially
with respect to the number of lines. SyRust must effectively
avoid generating programs that do not contribute to testing.
We do not aim to rule out every program that is seman-

tically equivalent to a previously generated one, which in
itself is computationally intensive. Instead, we define effi-
cient constraints that we can add to the SAT formula to rule

1 fn redundant(s : String) {
2 let v_old : Vec<String> = Vec::new();
3 let mut v : Vec<String> = v_old;
4 //P_1...
5 let mut v2 : Vec<String> = v;
6 //P_2...
7 }
8
9 fn removed(s : String) {
10 let v_old : Vec<String> = Vec::new();
11 let mut v : Vec<String> = v_old;
12 //P_1...
13 //[v/v2]P_2...
14 }

Figure 4. An example redundant move operation.

out programs containing obviously redundant operations.
Such programs are semantically equivalent to a previously
generated program of a shorter length.

4.7.1 Example of a Redundant Operation. Let us con-
sider the function redundant in Figure 4. Assume the com-
ments P_1 and P_2 are arbitrary length straight-line code
that is well typed with respect to the rest of the program. We
observe that line 5 of the above program is redundant. Since
v is already a mutable variable of type Vec<String>, there is
no need to move it to v2. Furthermore, since this ownership
movement does not alter the underlying memory, the func-
tion redundant is equivalent to the function removed. If we
remove line 5 and substitute v for v2 in the code following
it, the function redundant becomes the same program as
function removed.

4.7.2 Characterizing Redundancy. We consider a more
general characterization of redundant operations based on
the following three observations of Rust programs.

1. Moving an object via simple assignment does not alter
its value.

2. Consecutively made unique references (&mut) to the
same object can be replaced by a single one.

3. Making a reference to an object does not alter its value.
While we do not formally prove it, the soundness of these ob-
servations is supported by the semantics of Rust’s primitive
operations [20, 29, 35].
The above 3 observations yield corresponding syntactic

characterizations of redundant operations. Figure 4 illus-
trates the pattern identified by the first observation, where
the assignment on line 5 is redundant.

The second one yields the pattern shown in Figure 5. Mu-
table references vr and vr2 have to be unique, and thus
creating the second reference vr2 to v in line 5 terminates
the lifetime of the previous mutable reference vr. Removing
line 5 and substituting vr for vr2 in P_2 yields a semantically
equivalent program.

1 fn test(i : i32) {
2 let mut v : Vec<String> = Vec::new();
3 let mut vr : &mut Vec<String> = v;
4 //P_1...
5 let mut vr2 : &mut Vec<String> = v;
6 //P_2...
7 }

Figure 5. An example redundant unique reference.

The third observation yields the pattern: a line is consid-
ered redundant if it creates a reference that is never used.
We define the following three constraints over straight-

line Rust programs that suppress the generation of programs
containing the above mentioned redundant operations.

7



PLDI ’21, June 20–25, 2021, Virtual, Canada Yoshiki Takashima, Ruben Martins, Limin Jia, and Corina S. Păsăreanu

1. For any variable that is already mutable, do not move it
to another mutable variable. This is encoded by negat-
ing the use of such variable by the special API that
represents a move to a mutable variable.

2. The number of mutable borrows of any variable is at
most once. This is encoded as a numerical inequality
constraint over the actions on all given variables.

3. All references must be used at least once. This is again
encoded as a numerical inequality over actions.

These constraints are used in conjunction with other rules
during synthesis. The corresponding SAT formulas can be
found in the Technical Report [32].

5 Hybrid API Refinement
In this section, we present our hybrid approach to instantiate
polymorphic APIs. Rust allows users to specify that a type
variable can only be instantiated with types implementing
a given trait (i.e., types that support a set of functions). We
also discuss how SyRust deals with traits here.

A type𝜏 is concrete if it has no type variables, and polymor-
phic otherwise. APIs with only concrete inputs and output
are concrete, and otherwise polymorphic. The following are
the three most common types of polymorphic Rust APIs

1. No Input Polymorphism:
Example: Vec :: new () → Vec⟨𝑇 ⟩

2. Polymorphic Input, Concrete Output:
Example: Vec :: push (&mut Vec⟨𝑇 ⟩,𝑇 ) → ()

3. Polymorphic Input, Polymorphic Output:
Example: Vec :: pop (&mut Vec⟨𝑇 ⟩) → Option⟨𝑇 ⟩

While these categories are not exhaustive; it is certainly
possible to write a function that has type variables in the
inputs different from type variables in the output. In practice,
we find this extremely uncommon.

Prior works dealt with polymorphism by either exhaus-
tively instantiating type variables beforehand (purely ea-
ger) [14] or keeping all APIs polymorphic and refining them
incrementally (purely lazy) [15]. Our observation is that nei-
ther purely lazy nor purely eager approaches are sufficient
for Rust. Purely lazy approaches cannot synthesize types
for no input polymorphism; while purely eager approaches
result in too many incorrect APIs (see Section 7.1 for more
details). Therefore, SyRust combines the two.

5.1 No Input Polymorphism
Let’s start with the most simple case: a function with a poly-
morphic output and no inputs. These functions are often
used as constructors in data structure libraries. Since the
function has no inputs, we cannot infer the concrete output
type automatically. The Rust compiler is often able to reason
about the output by looking ahead (i.e. Resolve to Vec<i32>
because the vector gets i32 pushed onto it sometime later).
Such information is not available to our synthesis algorithm
that builds programs from the ground up. Instead, we opt

to eagerly concretize the output type. We need to find con-
crete types to substitute type variables with. As we noted in
Section 2, we must be careful as this space is infinitely large.
The hybrid API refinement module mines concrete types
from the API set and template. For example, if we collect
i32 and u32 from the API and template, we add 2 variants of
Vec::newwhere the output type is changed to Vec⟨i32⟩ and
Vec⟨u32⟩ respectively. This combinatorial enumeration gen-
erates a large number of APIs, so it should be only sparingly
used. We only use it for No Input Polymorphism.

The eager concretization also ignores trait annotations on
type variables. Thismeans some of the type instantiations are
incorrect due to trait mismatches. Because the instantiated
APIs are concrete, they cannot be refined further. SyRust
removes fully concrete APIs that caused trait errors to avoid
a combinatorial explosion of incorrect programs.

5.2 Polymorphic Inputs, Concrete Output
Let us now consider cases where a function has polymorphic
inputs and concrete output. We only need to instantiate the
inputs. For a majority of the cases, the subtyping strategy
outlined in Section 4 works fine. However, this strategy fails
when type variables in the input are annotated with traits
that any matching type must support.
While it is certainly possible to support traits at the syn-

thesis level, Rust’s trait system is fairly complex. Traits can
be polymorphic themselves, and a few complex traits are
even defined on other traits. Instead of dealing with complex
trait requirements, we use the compiler errors as feedback
to refine specifications of polymorphic variables. When a
type match fails because of mismatching traits, we refine the
specification of the type variable to no longer match that
particular type. The refinement is usually complete after a
few rounds.

5.3 Polymorphic Inputs, Polymorphic Output
In the final category, let’s consider, Vec :: pop : &mut Vec<T>
→ Option<T>, which takes a mutable reference of a vector
and returns a wrapped value containing the vector’s last ele-
ment if such exists, and None if the vector is empty. Because
this output may be used in later API calls, we must get the
exact type of the output. We must do so without modifying
the original API as we want to use to match other types later.
Our solution is to duplicate the function for that set of inputs
only.

We begin the process the same way as we deal with func-
tions that have no polymorphic outputs. For example, the
synthesis algorithm matches &mut Vec<T> with a concrete
type such as &mut Vec<i32>. The synthesizer generates a
test case where Vec::pop is used with the input of type &mut
Vec<i32> and predicts the output type as Option<i32>. This
test case is then passed to the test executioner, which at-
tempts to compile and run the test case.

8



SyRust: Automatic Testing of Rust Libraries with Semantic-Aware Program Synthesis PLDI ’21, June 20–25, 2021, Virtual, Canada

If the test case compiles successfully, we duplicate the
function and fully concretize the duplicated API’s inputs with
the current input types. Since the program type-checked, the
predicted output type is correct. We replace the output of
the duplicated API with the prediction.

If the test case fails to compile, what happens next depends
on what error we get. If the error is originating from the
inputs to the API, then we perform the same refinement
as in the previous section. Other errors are fixed directly.
For example, if we get the message “expected String, got
Vec<i32>” then we duplicate the API, concretize the inputs,
and set the output type to Vec<i32>.
Because we are duplicating APIs, we must be careful to

keep the duplicated API disjoint from the original. After
duplicating the API, we add a constraint to the original API
to prevent it from being used with the same combination of
input types. We block combinations rather than individual
input types because APIs like Hash Map’s get function has
multiple type variables involved, and blocking individual
types will block too many potential candidates.

6 Implementation and Evaluation
We implemented our proposed approaches in SyRust, an
automatic testing tool leveraging semantic-aware synthesis
and type refinement. We evaluated it against Rust libraries
on the following research questions.

RQ1. How effective is SyRust in generating valid Rust test
cases and in finding bugs in Rust libraries?

RQ2. How do the various semantic-aware synthesis features
(Section 4.4) help generate valid test cases?

RQ3. How does the polymorphic API refinement algorithm
help find bugs?

6.1 Implementation
The synthesizer is implemented as a Java program that takes
in a configuration file that specifies the APIs to be tested
and a template to use in the tests, and generates test cases
through constraint solving. We use Sat4J [10] to solve SAT
formulae. The type refinement is also implemented in Java.
The test executioner uses cargo [30], the offi-

cial build system for Rust. We run cargo with the
–message-format=json flag to get compiler errors in JSON
format, and send back the parsed data to the synthesizer. To
detect bugs, we use Miri [26], a bug detection interpreter
already integrated with cargo. Miri relies on the Rust com-
piler to generate the Mid-Level Intermediate Representation
(MIR), which Miri then interprets. It flags any behavior that
is considered undefined according to its dynamic semantic
model for Rust [20]. Coverage given in Section 7.3 was taken
using grcov [25]. We used lcov [23] and GNU Parallel [33]
to post-process the coverage data.

The API type signatures used for synthesis are collected
using a modified Rust compiler. We compile the target li-
braries with the modified compiler and derive the API type
signatures. Since the total number of APIs is too large, a
smaller subset is used in testing. Section 6.2 provides further
details on how this selection is done for our experiments.

6.2 Library and API Selection
To select a sufficiently large and representative set of Rust
libraries for our evaluation, we examine crates.io, the offi-
cial library repository for Rust. We focus on Data Structure
and Encoding categories. This is because these libraries are
often used as the building blocks of other libraries and thus
are highly critical to the Rust ecosystem. Furthermore, they
are also more likely to contain unsafe code as they often
perform low-level operations. From the two categories, we
select the 30 libraries by download count, while making sure
that the libraries have the following 2 properties.

1. The library and all of its dependencies arewritten
purely in Rust. This is required as Miri cannot handle
foreign functions.

2. The library must also be API based. Libraries con-
sisting mostly of macros cannot be used as no type
signatures are readily available for these libraries.

We also prioritize libraries that contain unsafe code. For
details about library versions, popularity, and other features,
we refer the reader to Technical Report [32].

For each library in the evaluation, we select a subcompo-
nent to test. We pick the most prominent component in the
library, but we randomly pick one if more than one compo-
nent is prominent. For many libraries, the most prominent
library is a data structure or function that represents the
intended use case of the library. For example, we selected
bitvec::vec::BitVec for the bitvec library as that was
the data structure that represents it. Our component selec-
tions are shown in the Technical Report [32]. Then, we select
a set of 15 APIs belonging to that subcomponent. We allow 2
APIs out of 15 to be manually selected to simulate the scenar-
ios where the programmers want to test specific APIs. Then
the rest of the APIs are chosen through weighted random
selection. The weights depend on whether the API contains
unsafe code or not. APIs that contain unsafe code are given
50%more weight than APIs that are completely free of unsafe
code. To this set of 15, we add 3 default APIs that represent
operations built into Rust: for assignment to mutable (let
mut x = y) and 2 kinds of borrowing (&, &mut). In practice,
we find that this number of APIs gives us a good trade-off
between having a diverse set of APIs and synthesizing com-
plex programs with multiple lines of code. With the APIs
selected, we write one code template for each library. The
effort of writing it is similar to that of a fuzz driver.

9



PLDI ’21, June 20–25, 2021, Virtual, Canada Yoshiki Takashima, Ruben Martins, Limin Jia, and Corina S. Păsăreanu

6.3 Experiment Setup
Since SyRust generates a large number of test cases, the
majority of the computational resources is spent on running
these test cases. Exploiting the fact that the test cases can be
run independent of each other, we deployed 64 containers
running the test executioner across 4 machines, each of them
running an Intel i9-9900K with 128GB of RAM. On the other
hand, we find that in practice, solving the constraint formulas
is quite fast. Therefore, the synthesizer node is deployed on
an Intel i7-6700K with 32GB of RAM. All nodes are running
Ubuntu Linux, with the test execution nodes running 19.10
and the synthesizer running 18.04. We used the 2020-10-
01 nightly build of Rust and Miri (Miri only comes with
nightly builds). Nodes communicate using ZeroMQ, with the
synthesizer node running using JeroMQ Java library version
0.5.0 and test executioners using PyZMQ version 19.0.0 as
the respective driver. Due to memory constraints, we limit
the size of the queue at 10,000 programs.

7 Evaluation Results
We present our evaluation results and answer RQ1-RQ3 here.
Due to the lack of prior work in Rust library API testing, we
are unable to provide an external baseline.

7.1 RQ1: New Bugs and Test Effectiveness
We ran SyRust on 30 libraries with a timeout of 10 hours
per library. We excluded two libraries cookie-factory and
jsonrpc-client-core from the result as they use first-class
functions, not supported by our syntax. For libraries that
overlap (e.g. crossbeam-queue and crossbeam), we test dif-
ferent components with no shared APIs. The results are
summarized in Figure 6. The columns denote the library
name, number of lines enumerated, number of test cases
processed, the number of programs that were rejected by
the compiler, followed by a percent-wise breakdown of the
rejections into categories. The “Type errors” are caused by
wrongly instantiated polymorphic types; “Lifetime & Own-
ership” is self-explanatory; “Miscellaneous errors” typically
indicate errors in collected API type signatures (done in the
experiment setup phase). Finally, Libraries that were flagged
as buggy by SyRust are marked with a ★.

Overall, we observe that for most libraries, the portion of
test cases rejected by the compiler is extremely low (often
less than one percent) indicating the effectiveness of our
tool in generating valid Rust programs. However, for certain
libraries, the error rate is significantly higher than for the
rest and this is due to features that are not supported yet in
SyRust. These include an unsupported lifetime corner case
involving anonymous parameterized lifetimes in libraries
for which we had non-zero “Lifetime & Ownership” errors,
and missing default values for type variables in Petgraph.
We believe the former issue can be fixed with improved API
collection and fixing the latter requires modifying the rules

of Section 5 and Section 4 to accommodate default values of
type variables. We leave these improvements to future work.
Miscellaneous errors, such as “expected n arguments,

found j,” are often caused by errors in API type signa-
tures. However, the large number of miscellaneous errors in
generic-array and hashbrown are “method not found” errors,
which can be caused by both polymorphism and API issues.
We chose to conservatively include them in Miscellaneous,
but we suspect a large number of them are polymorphism
induced.

Finally, we observe that some libraries have significantly
fewer test cases synthesized than others. For most such li-
braries, there are simply not enough valid combinations to
generate a large number of valid test cases. This means that
the synthesis terminates early, with a small number of solu-
tions found. These libraries also exhibit higher error rates as
APIs become more refined towards the end of the run. One
exception is dashmap, where the library was extremely slow
to be interpreted by Miri. Therefore, only about half as many
test cases can be executed within the 10 hour limit.
In total, SyRust found 4 previously unknown bugs in 3

different libraries, all of which were accepted by the library
authors. These bugs are shown in Figure 7. The columns de-
note the library in which the bugs were found, the minimum
number of lines required to trigger the bug, the type of bugs,
and whether the authors accepted the bug. We will go over
these noteworthy bugs in detail.

Bug★1 is a memory leak in crossbeam-queue’s ArrayQue-
ue data structure that can be induced by initializing the
ArrayQueue with a non-zero initial capacity. While this is
a one-line trivial bug, it exposes problematic assumptions
about internal memory layout, and the issue was cited in a
vulnerability report [6].

Bug★3 is a dereference-after-free bug in bitvec, a bitvector
library. This bug occurs when deallocating a non-empty
BitBox object, a fixed-length equivalent of BitVec.

The bug-inducing code in Figure 8 is particularly challeng-
ing to synthesize. First, note that it involves ownership move-
ment through the into_boxed_bit_slice function. This
means that the same call sequence cannot be triggered using
a loop-based fuzzing harness because it would not pass com-
piler checks when the ownership moves inside the fuzz loop.
Therefore, it can only be triggered using synthesis-driven
approaches like ours. Second, the bitvector library uses exten-
sive polymorphism and trait-driven programming. For exam-
ple, the type BitVec<Msb0, usize> is really BitVec<O,T>
with O and T instantiated with Msb0 and usize. One must be
careful in the instantiation because BitVec<usize,Msb0>
will not pass compiler checks, since usize does not support
the BitOrder trait (Msb0 = Most significant bit is index 0).
Finally, the sheer size of the bug-inducing case makes this a
difficult bug to induce.

Finally, bugs★2 and★4 provide interesting insight into the
operational semantics of Rust. These bugs may look benign,

10



SyRust: Automatic Testing of Rust Libraries with Semantic-Aware Program Synthesis PLDI ’21, June 20–25, 2021, Virtual, Canada

Library Max Test
Case Length # Synthesized # Rejected

(% of total) Type Error (%) Lifetime &
Ownership (%) Misc. (%)

smallvec 9 1225952 66 (< 0.01 %) 95.45 % 0.00 % 4.55 %
crossbeam-utils 5 1242990 703 (0.06 %) 58.61 % 2.99 % 38.41 %
bytes 7 1194703 43 (< 0.01 %) 93.02 % 0.00 % 6.98 %
slab 6 1229924 811 (0.07 %) 64.24 % 35.76 % 0.00 %
crossbeam-deque 6 1216076 957 (0.08 %) 100.00 % 0.00 % 0.00 %
generic-array 10 1216241 2088 (0.17 %) 1.29 % 0.00 % 98.71 %
crossbeam-queue ★1 5 1153651 19463 (1.69 %) 100.00 % 0.00 % 0.00 %
num-rational 4 1255485 4506 (0.36 %) 99.82 % 0.00 % 0.18 %
hashbrown 6 1122196 17649 (1.57 %) 7.25 % 0.54 % 92.21 %
crossbeam ★2 4 1231844 1367 (0.11 %) 98.76 % 0.88 % 0.37 %
petgraph 4 1318138 143347 (10.87 %) 100.00 % 0.00 % 0.00 %
im-rc 6 1226829 25531 (2.08 %) 95.06 % 0.06 % 4.87 %
bitvec ★3 7 1221730 120 (< 0.01 %) 100.00 % 0.00 % 0.00 %
ndarray 9 1188730 830 (0.07 %) 100.00 % 0.00 % 0.00 %
dashmap 7 660986 918 (0.14 %) 82.57 % 0.22 % 17.21 %
encoding_rs ★4 6 1233420 152 (0.01 %) 100.00 % 0.00 % 0.00 %
bstr 9 1207815 258 (0.02 %) 93.80 % 1.55 % 4.65 %
csv-core 6 14961 478 (3.19 %) 5.02 % 93.72 % 1.26 %
data-encoding 10 900509 136 (0.02 %) 64.71 % 23.53 % 11.76 %
encode_unicode 6 1238800 67 (< 0.01 %) 94.03 % 0.00 % 5.97 %
urlencoding 6 1139257 48 (< 0.01 %) 100.00 % 0.00 % 0.00 %
rmp-serde 6 11544 963 (8.34 %) 99.27 % 0.00 % 0.73 %
bytemuck 5 112030 19568 (17.47 %) 86.26 % 13.74 % 0.00 %
sval 10 86606 392 (0.45 %) 44.39 % 55.61 % 0.00 %
base16 6 1194409 78 (< 0.01 %) 100.00 % 0.00 % 0.00 %
cbor-codec 6 17292 656 (3.79 %) 36.59 % 63.41 % 0.00 %
hcid 5 1158079 100 (< 0.01 %) 100.00 % 0.00 % 0.00 %
utf8-width 4 1267697 168 (0.01 %) 100.00 % 0.00 % 0.00 %

Figure 6. This table gives rejection rates for all the tested libraries, and breaks down the rejections by categories (right 3
columns). For every row, the right 3 cells add up to 100 %, showing which kind of error was dominant in the compiler rejection.
Libraries in which we found bugs are marked with a ★. For information about each bug, see Figure 7.

★ Bug Type Min. Lines
to Induce

Time to
Discovery (s)

Accepted by
Authors?

★1 Memory Leak 1 4.45 Yes
★2 Hanging Pointer 3 2850.3 Yes
★3 Use-After-Free 5 200.61 Yes
★4 OOB Pointer 4 238.99 Yes

Figure 7. Bugs Caught by SyRust

let x1_1: BitVec<Msb0,usize> = BitVec::with_capacity(0);
let mut x2_0 = x1_1;
let x3_0 = &mut x2_0;
x3_0.push(true);
let x5_0: BitBox<Msb0,usize> = x2_0.into_boxed_bitslice();

Figure 8. Buggy Case for bitvec

as simply having an out-of-bounds (OOB) or hanging pointer

is not considered to be harmful as long as it is not derefer-
enced. However, Miri considers it to be buggy, because Rust’s
standard library provides the std::mem::MaybeUninit
wrappers for dealing with pointers that may possibly be
uninitialized. By not using MaybeUninit, the library risks
becoming buggy if the compiler behavior changes at a later
time. For example, if deallocation scheduling changes, it may
cause a use-after-free bug because the compiler is not aware
that this buggy pointer is pointing to.
Further discussions and the bug-inducing code are pre-

sented in the Technical Report [32].

7.2 RQ2 and RQ3: Effectiveness of SyRust Features
In RQ2 and RQ3, we will examine how SyRust’s features

contribute to its success in testing Rust libraries. RQ2 will
compare fully featured SyRust against a variant of SyRust
with semantic-aware constraints (Section 4.4) turned off; RQ3
will compare fully featured SyRust against a variant of SyRust

11



PLDI ’21, June 20–25, 2021, Virtual, Canada Yoshiki Takashima, Ruben Martins, Limin Jia, and Corina S. Păsăreanu

★
# Lines
to Induce

Time to
Discovery (s)

Increase in
# Errors

Increase in # Lifetime/
Ownership Errors

Ownership
Errors

Borrowing
Errors

★2 2 (+0) 9879.8 (×3.47) 1475 (×2.08) 1467 (×123.25) 94.12 % 5.88 %
★3 4 (+0) 6007.07 (×30.25) 73460 (×613.17) 73454 (0→ 73454) 99.85 % 0.15 %

Figure 9. Selected libraries with semantic awareness turned off. The top row shows error rates regardless of kind. Blue is
baseline and purple is with semantic awareness turned off. Second row of graphs show the portion occupied by each error
kind. Green is Lifetime/Ownership, blue is type error, and orange is misc.

that employs a fully eager strategy to resolve polymorphic
types instead of our hybrid API refinement (Section 5).

Before diving into the setup, we note a few restrictions on
our evaluation. For RQ2, the semantic-aware constraints are
highly dependent on each other. Turning off one will cause
the rest of the constraints to behave incorrectly. We believe
these constraints should be evaluated as a whole, leading to
this on/off comparisons instead of fine-grained feature-for-
feature comparisons. For RQ3, we cannot simply turn off the
polymorphism strategy as our SAT encoding cannot reason
about the infinite space of polymorphic type instantiations. A
purely lazy strategy trivially fails as it cannot handle object
constructors in Rust. This leads us to use a purely eager
strategy from prior work [14] as a point of comparison.
Using 2 of the 4 libraries that had previously unknown

bugs, we attempt to replicate the results with the respective
features turned off. We excluded crossbeam-queue (★1) and
encoding_rs (★4) because the former is a 1-line bug, and the
latter is extremely simple with respect to lifetime/ownership.
Once again, we run every experiment for 10 hours. Our focus
will be on the time-to-bug, as well as the rates of rejection
by the compiler. We refer to the latter as the error rate.

Results are shown in Figure 9 and Figure 10. The top row
of graphs plot the growth of errors over the execution of
SyRust. The x-axis is time, from 0 to 10 hours. The y-axis is
the percent of test cases up to that point that were rejected
by the compiler, shown in logarithmic scale. This metric is
cumulative, and the overall rejection rate is the y value of the
rightmost point on the curve. Lower is better as it implies
a low rejection rate. The dotted red line is SyRust with the
respective feature turned off, and the solid blue is the baseline
with all features. The second row is a breakdown of the
errors by category, and across time. These graphs are only for

executions with the respective feature turned off. The x-axis
is again time, and the y-axis is the percent this error category
occupies out of the total programs rejected by the compiler
(in linear scale). The blue solid line corresponds to type errors,
green dashed line corresponds to Lifetime/Ownership errors,
and the orange dotted line corresponds to miscellaneous
errors. This means the sum of the 3 lines is always 100%. The
higher the line, the more dominant this particular error is.
Finally, we provide a table with the size of the synthesized
bug-inducing case, time-to-bug, error rates, error rates for
the error category of interest, and the breakdown within
the error category of interest. For the first 4 data points, we
also provide the difference compared with the fully featured
SyRust; the breakdown cannot be compared because the total
error rate for that error category differs significantly.

We observe that turning off either semantic-awareness or
hybrid polymorphic API refinement results in a significant
increase in errors. There is a corresponding delay in bug dis-
covery, with SyRust without hybrid polymorphic API refine-
ment failing to find the bugs. Furthermore, these increases
are driven by the error categories the respective features
were meant to address. The negative effects are more severe
for more complex API sets, with bitvec suffering larger
increases in errors and time-to-bug than crossbeam. From
this, we conclude that SyRust’s features, semantic-aware
constraints and hybrid API refinement, are critical to testing
and finding bugs in Rust APIs, with more pronounced effects
for more complex API sets.
7.3 Coverage
We further investigate the effectiveness of SyRust by mea-
suring coverage attained by the test cases synthesized by
SyRust and its variants. We measure line and branch cov-
erage for both the subcomponent we tested (i.e., selected

12



SyRust: Automatic Testing of Rust Libraries with Semantic-Aware Program Synthesis PLDI ’21, June 20–25, 2021, Virtual, Canada

★
# Lines
to Induce

Time to
Discovery (s)

Increase in
# Errors

Increase in
# Type Errors

Trait
Errors

Polymorphism
Errors

Misc.
Errors

★2 Not Found - (N/A) 4810914 (×3520.32) 4464091 (×3307.73) 0.00 % 95.11 % 4.89 %
★3 Not Found - (N/A) 1150435 (×9587.96) 807844 (×6733.03) 100.00 % 0.00 % 0.00 %

Figure 10. Selected libraries with hybrid API refinement turned off. The top row shows error rates regardless of kind. Blue is
baseline and purple is with refinement turned off. Second row of graphs show the portion occupied by each error kind. Green
is Lifetime/Ownership, blue is type error, and orange is Misc.

APIs from) and the entire library. Since SyRust only uses 15
APIs, we expect to see a difference in the coverage between
the entire library and the subcomponent. To identify cover-
age saturation point, coverage snapshots were taken at 900
second intervals. The results are shown in Figure 11, with
bitvec denoted as BV and crossbeam denoted as CB. RQ1
is the fully featured SyRust; RQ2 is SyRust without semantic
awareness; RQ3 is SyRust that has hybrid API refinement
replaced by a purely eager strategy.

Library
and
RQ #

Component
Line
Coverage

Component
Branch
Coverage

Library
Line
Coverage

Library
Branch
Coverage

BV RQ1 76.67 % 34.88 % 61.87 % 31.95 %
BV RQ2 76.67 % 34.88 % 61.87 % 31.95 %
BV RQ3 0.5 % 17.39 % 26.82 % 28.89 %
CB RQ1 71.88 % 37.84 % 28.88 % 8.48 %
CB RQ2 71.23 % 37.67 % 28.24 % 8.48 %
CB RQ3 19.19 % 6.85 % 7.97 % 1.52 %

Figure 11. Library and Component Coverage

When looking at the component under test, fully featured
SyRust has about 75% line coverage and 35% branch coverage
in bitvec, with similar numbers reported for crossbeam.
The low branch coverage is mainly caused by the lack of
input mutations. The decrease of whole library coverage
from component coverage is larger for crossbeam, because
crossbeam is much larger than bitvec.

Comparing between the SyRust variants, we observe that
the data for RQ1 and RQ2 are roughly identical. However, the
coverage using tests generated by SyRust with all features
turned on converges much faster than those from other vari-
ants. For bitcec, tests generated by the RQ2 variant with se-
mantic awareness turned off took approximately 50% longer

(2.25 hours) to reach saturation point than those generated
by full-featured SyRust, which saturated after 1.5 hours. For
crossbeam, tests generated by the RQ2 variant never reaches
the same coverage. For crossbeam, tests generated by RQ1
SyRust saturated after 5.5 hours. Running RQ2 variant for a
longer time (longer than the 10 hours that we allowed) would
allow it to generate enough tests to reach coverage satura-
tion. Finally, the RQ3 variant shows significantly worse cov-
erage, demonstrating the necessity of our hybrid approach
to polymorphic API specification refinement.

7.4 Limitations and Future Work
While our tool has been shown empirically to be capable
of finding bugs, some limitations remain. Due to scalability
issues, we are only able to use 15 APIs per library. Further,
we do not mutating inputs to APIs. All of the above limit
the tool’s ability to exercise the library APIs. We believe
addressing these limitations may allow us to achieve higher
library coverage and find more bugs.

Some of the limitations are inherited from the Rust tooling.
We expect the situation to improve as the Rust ecosystem
evolves. Others are more fundamental and offer insight into
a need for further work in this area. We discuss them below.

7.4.1 Closures and Asynchronous Functions. Recall
that SyRust failed to generate valid test cases for libraries
cookie-factory and jsonrpc-client-core. This is due to
the lack of syntax support for closures. Closures in Rust are
used to define anonymous functions that are treated as first-
class objects. Because our synthesizer is limited to straight
line code, defining new closures is not allowed. Because asyn-
chronous functions rely on closures to perform callbacks,
asynchronous APIs are off the table as well. Given some

13



PLDI ’21, June 20–25, 2021, Virtual, Canada Yoshiki Takashima, Ruben Martins, Limin Jia, and Corina S. Păsăreanu

recent work in synthesis of asynchronous programs [9], we
believe this will be an interesting area of research.

7.4.2 Inputs to the Test Program. Currently, our test
framework runs on user-provided input parameters, and
we do not mutate them. Mutation of the inputs is likely to
trigger more bugs, but we chose to focus on the orthogonal
API problem for now. Because this problemmay be addressed
with BoundedModel Checking (BMC) techniques, we believe
that extending our tool into a BMC tool in the style of CRUST
[34] is an interesting path forward.

7.4.3 Optimal Scheduling of Tests. We run the tests
in whichever order the SAT formula was solved. This is
not necessarily the best order, and we may be able to find
bugs quicker if we prioritize certain programs. This is a
well studied problem in the fuzzing community [37] and we
expect that some of those techniques are applicable to our
domain.

7.4.4 Miri Limitations. As noted in Section 6, we use
Miri [26] to run our test cases. While Miri will not miss any
bugs, its precision comes at the cost of speed. Given all the
checks performed, Miri is significantly slower than running
the compiled code. In particular, some of the Stacked Bor-
rows rules [20] results in cases where the loops of linear
complexity require polynomial number of operations to in-
terpret. This significantly limits our ability to test APIs that
internally contain large loops and iterations.

8 Related Work
Automatic test case generation is useful for testing language
interpreters and compilers [13, 16, 17, 39] and libraries [7,
12, 22, 24, 27]. Some mutate and piece together existing code
segment [16, 19], some generate code from scratch [13, 39],
and some like ours, generate API call chains [7, 12, 27].
A number of techniques have been proposed for API

testing. Tools like RESTler [7] mutate call sequences [40].
FUDGE [8] and FuzzGen [18] generate fuzz drivers for C/C++
libraries from existing code bases. FUDGE uses recursive
search to combine API calls. FuzzGen performs program
analysis of API usage to generate A2DG graphs that rep-
resent data and control dependencies and uses the graph
to generates programs. Since these works are for C/C++,
lifetime and ownership is not an issue.
Leveraging advances in constraint-solving, component-

based program synthesis techniques [19] have been ap-
plied to many languages. Most closely related to ours, are
SyPet [14] (Java) and H+ [15] (Haskell), which use constraint-
solving-based technique to generate loop-free straight-line
code. Both SyPet and H+ employ a graph-based encoding,
which is unwieldy for encoding the lifetime and ownership
of variables; and therefore SyRust does not use. To handle
polymorphism, SyPet takes a completely eager approach to
Java Generic Types. To support Haskell’s polymorphism and

partial evaluation, H+ starts by assuming every API takes
and returns the universal polymorphic type and refines lazily
from there. SyRust takes a hybrid approach. Since Rust has
polymorphic struct constructors but not partial evaluation,
we start with a mix of both concrete and polymorphic types
and use the hybrid approach to refinement.
Dewey et al. [13] encode the Rust syntax and semantic

constraint in Prolog [11] to generate code to test the Bor-
row Checker. Their lifetime and ownership constraints are
roughly equivalent to ours. They generate programs with
complex structures such as loop nesting and define and use
of data structures. Because they aim to test the compiler,
they only support polymorphism through a few standard
library features like Box<T> and cannot be easily modified
for API testing.

Several projects aim to formalize Rust’s operational seman-
tics [21, 29, 35], Stacked Borrows [20], being the most recent.
Stacked Borrows is used as a correctness model in Miri [26],
a component in SyRust to detect unsound behaviors.
Finally, Oxide [36] formalizes static checks of Rust. We

could connect to it to formally verify the completeness of
our constraints as future work.

9 Conclusion
We have proposed a semantic-aware synthesis algorithm for
Rust that effectively synthesizes valid API usage across a
wide range of libraries exercising complex language features
like ownership and polymorphism. Our algorithm encapsu-
lates Rust’s compiler checks through a logical encoding and
leverages a hybrid API refinement strategy to drive polymor-
phic APIs. We implement our algorithm in SyRust, a library
testing framework for Rust. Our experiments demonstrate
SyRust’s ability to generate valid test cases for a wide range
of libraries and find 4 confirmed bugs. In future work we
plan to investigate whether coverage information can be
used to improve the synthesis of valid test cases. We also
plan to apply our framework to testing the Rust compiler
and to formally prove the correctness of the synthesis.

Acknowledgments
This work was supported in part by the National Science
Foundation via grant CCF-1901136. We would like to thank
our shepherd Ben Hardekopf and the anonymous reviewers
for helping improve our paper. We would also like to thank
the anonymous artifact reviewers for helping improve our
artifact and Darion Cassel for helping test our artifact before
submission. Finally, we thank Ralf Jung for helping us un-
derstand Miri’s output and Maverick Woo for maintaining
the compute cluster on which our evaluation was done.

References
[1] 2018. Built In Rust. https://www.rust-lang.org/what/
[2] 2018. CVE-2018-1000810. https://nvd.nist.gov/vuln/detail/CVE-2018-

1000810

14

https://www.rust-lang.org/what/
https://nvd.nist.gov/vuln/detail/CVE-2018-1000810
https://nvd.nist.gov/vuln/detail/CVE-2018-1000810


SyRust: Automatic Testing of Rust Libraries with Semantic-Aware Program Synthesis PLDI ’21, June 20–25, 2021, Virtual, Canada

[3] 2020. Built In Rust. https://doc.rust-lang.org/nomicon/lifetime-
elision.html

[4] 2020. Rust’s Unsafe Code Guidelines Reference. https://rust-
lang.github.io/unsafe-code-guidelines/

[5] 2020. Trait and lifetime bounds. https://doc.rust-lang.org/reference/
trait-bounds.html

[6] 2020. Undefined Behavior in bounded channel. https:
//github.com/RustSec/advisory-db/blob/main/crates/crossbeam-
channel/RUSTSEC-2020-0052.md

[7] Vaggelis Atlidakis, Patrice Godefroid, and Marina Polishchuk. 2019.
RESTler: Stateful REST API Fuzzing. In Proceedings of the International
Conference on Software Engineering (ICSE). IEEE Press, 748–758.

[8] Domagoj Babic, Stefan Bucur, Yaohui Chen, Franjo Ivancic, Tim King,
Markus Kusano, Caroline Lemieux, László Szekeres, and Wei Wang.
2019. FUDGE: Fuzz Driver Generation at Scale. In Proceedings of the
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (FSE). ACM,
975–985. https://doi.org/10.1145/3338906.3340456

[9] Suguman Bansal, Kedar S. Namjoshi, and Yaniv Sa’ar. 2018. Synthesis
of Asynchronous Reactive Programs from Temporal Specifications. In
Proceedings of the International Conference on Computer Aided Verifica-
tion (CAV). Springer International Publishing, 367–385.

[10] D. L. Berre and Anne Parrain. 2010. The Sat4j library, release 2.2. J.
Satisf. Boolean Model. Comput. 7 (2010), 59–6.

[11] D.L. Bowen, L.H. Byrd, and William Clocksin. 1983. A portable Prolog
compiler. In D.A.I. research paper. 9.

[12] Christoph Csallner and Yannis Smaragdakis. 2004. JCrasher: An
Automatic Robustness Tester for Java. Journal of Software: Prac-
tice and Experience (SPE) 34, 11 (Sept. 2004), 1025–1050. https:
//doi.org/10.1002/spe.602

[13] K. Dewey, J. Roesch, and B. Hardekopf. 2015. Fuzzing the Rust Type-
checker Using CLP (T). In Proceedings of the International Conference
on Automated Software Engineering (ASE). IEEE Computer Society,
482–493. https://doi.org/10.1109/ASE.2015.65

[14] Yu Feng, Ruben Martins, Yuepeng Wang, Isil Dillig, and Thomas W.
Reps. 2017. Component-based synthesis for complex APIs. In Proceed-
ings of the ACM SIGPLAN Symposium on Principles of Programming
Languages (POPL). ACM, 599–612.

[15] Zheng Guo, Michael James, David Justo, Jiaxiao Zhou, Ziteng Wang,
Ranjit Jhala, and Nadia Polikarpova. 2019. Program Synthesis by Type-
Guided Abstraction Refinement. In Proceedings of the ACM SIGPLAN
Symposium on Principles of Programming Languages (POPL). ACM,
12:1–12:28. https://doi.org/10.1145/3371080

[16] HyungSeok Han, DongHyeon Oh, and Sang Kil Cha. 2019. CodeAl-
chemist: Semantics-Aware Code Generation to Find Vulnerabilities
in JavaScript Engines. In Proceedings of the Network and Distributed
System Security Symposium (NDSS). The Internet Society.

[17] Christian Holler, Kim Herzig, and Andreas Zeller. 2012. Fuzzing with
Code Fragments. In Proceedings of the USENIX Security Symposium.
USENIX Association, USA, 445–458.

[18] Kyriakos Ispoglou, Daniel Austin, VishwathMohan, andMathias Payer.
2020. FuzzGen: Automatic Fuzzer Generation. In Proceedings of the
USENIX Security Symposium. USENIX Association, 2271–2287.

[19] Susmit Jha, Sumit Gulwani, Sanjit A. Seshia, and Ashish Tiwari. 2010.
Oracle-Guided Component-Based Program Synthesis. In Proceedings
of the International Conference on Software Engineering (ICSE). Associ-
ation for Computing Machinery, 215–224.

[20] Ralf Jung, Hoang-Hai Dang, Jeehoon Kang, and Derek Dreyer. 2020.
Stacked Borrows: An Aliasing Model for Rust. In Proceedings of the
ACM SIGPLAN Symposium on Principles of Programming Languages
(POPL). ACM, Article 41, 32 pages.

[21] Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer.
2018. RustBelt: Securing the Foundations of the Rust Programming
Language. In Proceedings of the ACM SIGPLAN Symposium on Principles

of Programming Languages (POPL). ACM, Article 66, 34 pages. https:
//doi.org/10.1145/3158154

[22] Y. Kim, Y. Kim, Taeksu Kim, Gunwoo Lee, Y. Jang, and M. Kim. 2013.
Automated unit testing of large industrial embedded software using
concolic testing. In Proceedings of the International Conference on Au-
tomated Software Engineering (ASE). IEEE, 519–528.

[23] Linux Test Project. 2020. lcov 1.15. https://github.com/linux-test-
project/lcov

[24] L. Ma, C. Artho, C. Zhang, H. Sato, J. Gmeiner, and R. Ramler. 2015.
GRT: An Automated Test Generator Using Orchestrated Program
Analysis. In Proceedings of the International Conference on Automated
Software Engineering (ASE). IEEE Computer Society, 842–847.

[25] Mozilla. 2021. grcov v0.7.1. https://github.com/mozilla/grcov
[26] Scott Olson. [n.d.]. Miri. https://github.com/rust-lang/miri
[27] Carlos Pacheco, Shuvendu Lahiri, Michael D. Ernst, and Thomas

Ball. 2006. Feedback-directed Random Test Generation. Technical
Report MSR-TR-2006-125. Massachusetts Institute of Technology.
14 pages. https://www.microsoft.com/en-us/research/publication/
feedback-directed-random-test-generation/

[28] Boqin Qin, Yilun Chen, Zeming Yu, Linhai Song, and Yiying Zhang.
2020. Understanding memory and thread safety practices and issues
in real-world Rust programs. In Proceedings of the ACM SIGPLAN
International Conference on Programming Language Design and Imple-
mentation (PLDI). ACM, 763–779.

[29] Eric Reed. 2015. Patina: A formalization of the Rust programming
language. Technical Report. University of Washington.

[30] Rust Foundation. 2020. cargo 1.47.0.
[31] Takehide Soh, Daniel Le Berre, Stéphanie Roussel, Mutsunori Banbara,

and Naoyuki Tamura. 2014. Incremental SAT-Based Method with
Native Boolean Cardinality Handling for the Hamiltonian Cycle Prob-
lem. In Proceedings of the European Conference on Logics in Artificial
Intelligence (JELIA), Vol. 8761. Springer, 684–693.

[32] Yoshiki Takashima, Ruben Martins, Limin Jia, and Corina Pasareanu.
2021. SyRust: Automatic Testing of Rust Libraries with Semantic-Aware
Program Synthesis–Technical Report. Technical Report. Carnegie Mel-
lon University. https://doi.org/10.1184/R1/14356949

[33] O. Tange. 2011. GNU Parallel - The Command-Line Power Tool. ;login:
The USENIX Magazine 36, 1 (Feb 2011), 42–47. http://www.gnu.org/s/
parallel

[34] John Toman, Stuart Pernsteiner, and Emina Torlak. 2015. CRUST: A
Bounded Verifier for Rust. In Proceedings of the International Conference
on Automated Software Engineering (ASE). IEEE Press, 6 pages.

[35] F. Wang, F. Song, M. Zhang, X. Zhu, and J. Zhang. 2018. KRust: A
Formal Executable Semantics of Rust. In Proceedings of the International
Symposium on Theoretical Aspects of Software Engineering (TASE). IEEE
Computer Society, 44–51.

[36] AaronWeiss, Daniel Patterson, Nicholas D.Matsakis, andAmal Ahmed.
2019. Oxide: The Essence of Rust. CoRR abs/1903.00982 (2019).
arXiv:1903.00982 http://arxiv.org/abs/1903.00982

[37] Maverick Woo, Sang Kil Cha, Samantha Gottlieb, and David Brumley.
2013. Scheduling Black-Box Mutational Fuzzing. In Proceedings of
the ACM SIGSAC Conference on Computer & Communications Security
(CCS). Association for Computing Machinery, 511–522.

[38] Hui Xu, Zhuangbin Chen, Mingshen Sun, and Yangfan Zhou. 2020.
Memory-Safety Challenge Considered Solved? An Empirical Study
with All Rust CVEs. arXiv:2003.03296 https://arxiv.org/abs/2003.03296

[39] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding
and understanding bugs in C compilers. In Proceedings of the ACM
SIGPLAN International Conference on Programming Language Design
and Implementation (PLDI). ACM, 283–294.

[40] Andreas Zeller, Rahul Gopinath, Marcel Böhme, Gordon Fraser, and
Christian Holler. 2019. Fuzzing APIs. In The Fuzzing Book. Saarland
University. https://www.fuzzingbook.org/html/APIFuzzer.html Re-
trieved 2019-12-17 16:45:28+01:00.

15

https://doc.rust-lang.org/nomicon/lifetime-elision.html
https://doc.rust-lang.org/nomicon/lifetime-elision.html
https://rust-lang.github.io/unsafe-code-guidelines/
https://rust-lang.github.io/unsafe-code-guidelines/
https://doc.rust-lang.org/reference/trait-bounds.html
https://doc.rust-lang.org/reference/trait-bounds.html
https://github.com/RustSec/advisory-db/blob/main/crates/crossbeam-channel/RUSTSEC-2020-0052.md
https://github.com/RustSec/advisory-db/blob/main/crates/crossbeam-channel/RUSTSEC-2020-0052.md
https://github.com/RustSec/advisory-db/blob/main/crates/crossbeam-channel/RUSTSEC-2020-0052.md
https://doi.org/10.1145/3338906.3340456
https://doi.org/10.1002/spe.602
https://doi.org/10.1002/spe.602
https://doi.org/10.1109/ASE.2015.65
https://doi.org/10.1145/3371080
https://doi.org/10.1145/3158154
https://doi.org/10.1145/3158154
https://github.com/linux-test-project/lcov
https://github.com/linux-test-project/lcov
https://github.com/mozilla/grcov
https://github.com/rust-lang/miri
https://www.microsoft.com/en-us/research/publication/feedback-directed-random-test-generation/
https://www.microsoft.com/en-us/research/publication/feedback-directed-random-test-generation/
https://doi.org/10.1184/R1/14356949
http://www.gnu.org/s/parallel
http://www.gnu.org/s/parallel
https://arxiv.org/abs/1903.00982
http://arxiv.org/abs/1903.00982
https://arxiv.org/abs/2003.03296
https://arxiv.org/abs/2003.03296
https://www.fuzzingbook.org/html/APIFuzzer.html


PLDI ’21, June 20–25, 2021, Virtual, Canada Yoshiki Takashima, Ruben Martins, Limin Jia, and Corina S. Păsăreanu

A Target Library Statistics
Figure 12 provides a list of libraries used for RQ1, along with
statistics about popularity, the presence of polymorphic APIs,
the subcomponent that was targeted by the test, and finally,
a revision hash of the library used.

B Bug Inducing Code
We will also provide source code for the bugs found and de-
tails surrounding the bug. For readability, the code presented
is a simplified version of what is actually synthesized.

C Synthesis as Boolean SAT
In prior Section 4, we have built up a logical encoding that
encapsulates the typing and ownership rules of Rust. In this
section, we aim to provide the exact formulas of how we
encode the SAT formula.
Let us begin by considering the exact layout of SAT vari-

ables. Recall from Section 4 that we had API variables 𝐴𝑓 ,𝑖

whose value denotes the use of API 𝑓 in line 𝑖 , a synthesis
context variables 𝑉𝑥,𝜏,𝑖 whose value denotes the availability
of Rust program variable 𝑥 of type 𝜏 in line 𝑖 . We also carry
over other notations from Section 4 such as the line count 𝑙
In addition to the former 2 categories, we define an aux-

iliary variable set called Use Variables. Use variable 𝑈𝑉𝑥,𝜏,𝑖

𝑗,𝑓

is true if and only if variable 𝑥 , represented by 𝑉𝑥,𝜏,𝑖 is used
as the 𝑗th input to 𝑓 . We cannot forget the index 𝑗 as some
APIs may have multiple inputs of the same type.

The remainder of this section is provided in Figure 14. The
table displays the exact SAT formulas with the left column as-
sociating each individual formula with the Rules in Section 4.
For rules that were too primitive to be discussed explicitly,
we label them as “Primitive.” Rule 7 will not show up as it is
checked via post-processing. Note that some constraints are
pseudo-Boolean instead of SAT, but SAT4J supports pseudo-
Boolean constraints natively [10].

We consider each row of the table.

1. ∀
1<𝑖≤𝑙

𝑉𝑥,𝜏,𝑖⇒𝑉𝑥,𝜏,𝑖−1. This rules enforces the prop-
erty that, if a variable is active in line 𝑖 , then it must be
active in the previous line. This property does not ap-
ply if a predecessors 𝑖 − 1 does not exist. This happens
when the variable is freshly created on line 𝑖 − 1, or
when 𝑖 = 0, in which case, this rule is not applicable.

2. ∀
1<𝑖≤𝑙

Σ
𝑓 ∈A

𝐴𝑖,𝑓 = 1. This rule set enforces the property

that only one function can be called on a given line.
This is trivially required.

3. ∀
1≤𝑖≤𝑙

𝑓 ∈A 1≤ 𝑗≤ |inputs 𝑓 |

𝑈
𝑉𝑥,𝜏,𝑖

𝑗,𝑓
⇒𝑉𝑥,𝜏,𝑖 .

This rule enforces the property that if a function call
on some line uses a variable, then, the used variable

must exist first. Otherwise, the synthesized programs
will contain references to unbound variables.

4. ∀
1≤𝑖≤𝑙

𝑓 ∈A 1≤ 𝑗≤ |inputs 𝑓 |

𝑈
𝑉𝑥,𝜏,𝑖

𝑗,𝑓
⇒𝐴𝑖,𝑓 . This rule is the

dual of the previous rule, enforcing the property that,
if a variable is used, then the function call that uses it
must be active on the same line.

5. ∧
𝑥 :𝜏 ∈T

𝑉𝑥,𝜏,0. This rule forces true all variables that are
passed to the test function by the template.

6. ∀
1≤𝑖≤𝑙
𝑓 :∗→𝜏

𝐴𝑖,𝑓 ⇐⇒ 𝑉𝑥𝑖+1,𝜏,𝑖+1. This rule links the

function call and its output. A function call is on a
line ⇐⇒ the output is true on the next line.

7. ∀
1≤𝑖≤𝑙

𝑓 :𝜏1,...,𝜏2→𝜏

𝐴𝑖,𝑓⇒ ∀
1≤ 𝑗≤𝑘

(
Σ
𝜏⊑𝜏 𝑗

𝑈
𝑉𝑥,𝜏,𝑖

𝑗,𝑓

)
≥ 1. If a func-

tion call is made, then all of its inputs must be satisfied.
This property is enforced by requiring that, for every
input index, at least one use varaible in the correspond-
ing set is true.

8. ∀
1≤𝑖≤𝑙

𝑓 :𝜏1,...,𝜏2→𝜏

∀
1≤ 𝑗1<𝑘2≤𝑘
𝜏⊑𝜏 𝑗 , 𝜏′⊑𝜏 𝑗′

¬compatibleTypes(𝐶𝑖 ,𝑥,𝜏 𝑗 ,𝑥
′,𝜏 𝑗′ )

𝑈
𝑉𝑥,𝜏,𝑖

𝑗,𝑓
=⇒

¬𝑈𝑉𝑥′,𝜏′,𝑖′
𝑗 ′,𝑓 . For every pair of use variables in which the

usage is incompatible (discussed in Section 4), we
enforce the rule that if one of the elements of the pair
is true, then the other must be false. This is roughly
equivalent of putting an XOR constraint for every
said pair.

9. ∀
1<𝑖≤𝑙

(
Σ

𝑓 ∈A 1≤ 𝑗≤ |inputs 𝑓 |
𝑈

𝑉𝑥,&𝑚𝑢𝑡𝜏or𝜏,𝑖
𝑗,𝑓

)
≤ 1. Normal

types and mutable refernces can only be used once
in line.

10. This rule enforces the property that standard objects
(which are subject to Rust’s ownership rules) can be
used once, passed along to the next line, but not both
(i.e. ≤ 1). Note that both mutable and immutable bor-
rowing is excluded. They will be dealt with in the next
3 rules.

11. This rule enforces the property that all borrowed ref-
erences outlive the object it refers to. In some cases
(such as wrapper types around references), this rule is
insufficient, so Rule 7 applies via post-processing.

12. This rule prevents another borrow while a mutable
reference is active.

13. This rule is identical to the previous one, but for im-
mutable references. Since we can have multiple im-
mutable references to the same object, we allow im-
mutable borrow operations, but deny mutable borrows

16



SyRust: Automatic Testing of Rust Libraries with Semantic-Aware Program Synthesis PLDI ’21, June 20–25, 2021, Virtual, Canada

Library Name Cat. Total Downloads Polymorphism Subcomponent Rev. Hash
smallvec DS 21780282 Yes smallvec::SmallVec 9ae7076
crossbeam-utils DS 19491917 Yes crossbeam_utils::atomic::AtomicCell 5a68889
bytes DS 16302396 No bytes::BytesMut b7f7582
slab DS 15575908 Yes slab::Slab e6b8676
crossbeam-deque DS 15140300 Yes crossbeam_deque::Injector 5a68889
generic-array DS 12145172 Yes generic_array::GenericArray 04fe34c
crossbeam-queue DS 10081038 Yes crossbeam_queue::ArrayQueue 5a68889
num-rational DS 7250507 No num_rational::Ratio bb4c920
hashbrown DS 6577360 Yes hashbrown::HashSet 34c1189
crossbeam DS 5645952 No crossbeam::epoch::Collector 5a68889
petgraph DS 4538136 Yes petgraph::graph::Graph 397b9fc
im-rc DS 916529 Yes im::ordset::OrdSet b586a96
bitvec DS 799016 No bitvec::vec::BitVec 293e670
ndarray DS 684962 Yes ndarray::ArrayBase 9cba023
dashmap DS 465022 Yes dashmap::DashMap b2951f8
encoding_rs EN 7344939 No Decoder 8e3eee5
bstr EN 5789836 No bstr::BString 7f0ad15
csv-core EN 4144518 No csv_core::Reader:: 70c8600
data-encoding EN 2240282 No data_encoding::Encoding 34d1f0e
encode_unicode EN 1985895 No encode_unicode::Utf8Char 47f8483
urlencoding EN 1119712 No urlencoding:: a86f1c4
rmp-serde EN 816677 Yes rmp_serde:: 00eeadf
bytemuck EN 727756 No bytemuck 68ed5fe
sval EN 414356 No sval::stream::OwnedStream c432b60
cookie-factory EN 292900 No cookie_factory a935a81
base16 EN 133173 No base16 a532182
cbor-codec EN 108378 No decoder::Decoder ea76c0c
jsonrpc-client-core EN 78992 No example::ExampleRpcClient 4fde208
hcid EN 75423 No hcid::HcidEncoding 2caee15
utf8-width EN 64822 No utf8_width 938c0b2

Figure 12. Libraries selected from cargo.io for evaluation. Libraries were selected from 2 popular categories: data structures
(DS) and encodings (EN). For some libraries, we tested a subcomponent. The import path of the item tested is in the subcompo-
nent column.

to make immutable references exclusive from mutable
references.

17



PLDI ’21, June 20–25, 2021, Virtual, Canada Yoshiki Takashima, Ruben Martins, Limin Jia, and Corina S. Păsăreanu

Code Description
fn buggy() {

// bug inducing code
let x1_0: ArrayQueue = crossbeam_queue::ArrayQueue::new(1);

}

crossbeam-queue (★1) has a deallo-
cation bug when the internal capac-
ity (specified in the constructor) is big-
ger than the number of elements. This
is induced by simply creating an Ar-
rayQueue object with initial alloca-
tion size > 1, and deallocating without
putting any elements in it.
The deallocation occurs by converting
Arrayqueue’s internal memory into
a Vec, and dropping the memory us-
ing Vec’s standard deconstructor. This
means differing size will cause Vec
to drop incorrect amount of memory,
possibly leading to memory corrup-
tion [6].

fn buggy() {
// bug inducing code
let x1_0: crossbeam::epoch::Collector = crossbeam::epoch::Collector::new();
let x2_1: & crossbeam::epoch::Collector = & x1_0;
let x3_0: crossbeam::epoch::LocalHandle = x2_1.register();

}

crossbeam (★2) creates a dangling
pointer during deallocation. Like with
the previous bug, simply having a dan-
gling pointer is considered to be a bug
unless it is done through specificmeth-
ods (i.e. MaybeUninit)

fn buggy() {
// inputs
let bool_0_0: bool = true;
let usize_0_1: usize = 0;
let bitvecordermsb0_0_2: bitvec::order::Msb0 = bitvec::order::Msb0;

// bug inducing code
let x1_1: = bitvec::vec::BitVec::with_capacity(usize_0_1);
let mut x2_0: = x1_1;
let x3_0: &mut = &mut x2_0;
x3_0.insert(usize_0_1, bool_0_0);
let x5_0: = x2_0.into_boxed_bitslice();
return;
}

bitvec (★3) has a use-after-free bug
The above code creates a bitvector,
then casts it as mutable and borrows
it. Using the borrowed reference, it in-
serts a new bit into the bitvector. Fi-
nally, it converts the bitvector into Bit-
Box, a data structure that serves as a
rough approximation of a pointer into
the heap. The deallocation of the Bit-
Box triggers the use-after-free.
This bug is notable because it
cannot be triggered by a static
fuzzing harness. This is because the
into_boxed_bitslice operation
moves value out of bitvec, prevent-
ing this from called within a loop of
a fuzz harness driven using random
input.

fn buggy() {
//inputs
let s_0 : & [u8] = "";
let b_0 : &mut [u16] = &mut Vec::with_capacity(0)[..];
let t : bool = true;

// bug inducing code
let x1_1 = encoding_rs::UTF_8.new_decoder_without_bom_handling();
let x2_1 = mut x1_1;
let x3_2 = &mut x2_1;
let x4_5 = x3_2.decode_to_utf16_without_replacement(string, b_0, t);

}

encoding_rs (★4) creates a out-of-
bound pointer. In Miri’s dynamic se-
mantics, creating a pointer out of
bounds (not just dereferencing) is con-
sidered to be undefined behavior. This
occurs when converting from UTF-8
to UTF-16 as the pointer scans an ar-
ray to find alignment.

Figure 13. Bugs SyRust found.

18



SyRust: Automatic Testing of Rust Libraries with Semantic-Aware Program Synthesis PLDI ’21, June 20–25, 2021, Virtual, Canada

Rule Constraint

primitive ∀
1<𝑖≤𝑙

𝑉𝑥,𝜏,𝑖⇒𝑉𝑥,𝜏,𝑖−1

primitive ∀
1<𝑖≤𝑙

Σ
𝑓 ∈A

𝐴𝑖,𝑓 = 1

primitive ∀
1≤𝑖≤𝑙

𝑓 ∈A 1≤ 𝑗≤ |inputs 𝑓 |

𝑈
𝑉𝑥,𝜏,𝑖

𝑗,𝑓
⇒𝑉𝑥,𝜏,𝑖

primitive ∀
1≤𝑖≤𝑙

𝑓 ∈A 1≤ 𝑗≤ |inputs 𝑓 |

𝑈
𝑉𝑥,𝜏,𝑖

𝑗,𝑓
⇒𝐴𝑖,𝑓

Rule 1 ∧
𝑥 :𝜏 ∈T

𝑉𝑥,𝜏,0

Rule 2 ∀
1≤𝑖≤𝑙
𝑓 :∗→𝜏

𝐴𝑖,𝑓 ⇐⇒ 𝑉𝑥𝑖+1,𝜏,𝑖+1

Rule 3 ∀
1≤𝑖≤𝑙

𝑓 :𝜏1,...,𝜏2→𝜏

𝐴𝑖,𝑓⇒ ∀
1≤ 𝑗≤𝑘

(
Σ
𝜏⊑𝜏 𝑗

𝑈
𝑉𝑥,𝜏,𝑖

𝑗,𝑓

)
≥ 1

Rule 3 ∀
1≤𝑖≤𝑙

𝑓 :𝜏1,...,𝜏2→𝜏

∀
1≤ 𝑗1<𝑘2≤𝑘
𝜏⊑𝜏 𝑗 , 𝜏′⊑𝜏 𝑗′

¬compatibleTypes(𝐶𝑖 ,𝑥,𝜏 𝑗 ,𝑥
′,𝜏 𝑗′ )

𝑈
𝑉𝑥,𝜏,𝑖

𝑗,𝑓
⇒¬𝑈

𝑉𝑥′,𝜏′,𝑖′
𝑗 ′,𝑓

Rule 3 ∀
1<𝑖≤𝑙

(
Σ

𝑓 ∈A 1≤ 𝑗≤ |inputs 𝑓 |
𝑈

𝑉𝑥,&𝑚𝑢𝑡𝜏or𝜏,𝑖
𝑗,𝑓

)
≤ 1

Rule 3, 4, 5 ∀
1<𝑖≤𝑙

isNonPrimitiveObj 𝜏

𝑓 ≠borrow_mut,borrow

(
Σ

𝑓 ∈A 1≤ 𝑗≤ |inputs 𝑓 |
𝑈

𝑉𝑥,𝜏,𝑖

𝑗,𝑓

)
+𝑉𝑥,𝜏,𝑖+1 ≤ 1

Rule 6 ∀
1<𝑖≤𝑙

𝑓 =borrow_mut,borrow

𝑈
𝑉𝑥,𝜏,𝑖

𝑗,𝑓
⇒ ∀

𝑖<𝑖2≤𝑙
𝑉𝑥𝑖+1,(& or &𝑚𝑢𝑡 𝜏),𝑖2⇒𝑉𝑥,𝜏,𝑖2

Rule 8 ∀
1<𝑖≤𝑙

𝑈
𝑉𝑥,𝜏,𝑖
𝑗,borrow_mut⇒ ∀

𝑖+1<𝑖2≤𝑙
𝑓2=borrow_mut,borrow

𝑉𝑥𝑖+1,&𝑚𝑢𝑡 𝜏,𝑖2⇒¬𝑈
𝑉𝑥,𝜏,𝑖2−1
𝑗,𝑓2

Rule 9 ∀
1<𝑖≤𝑙

𝑈
𝑉𝑥,𝜏,𝑖
𝑗,borrrow⇒ ∀

𝑖+1<𝑖2≤𝑙
𝑉𝑥𝑖+1,&𝑚𝑢𝑡 𝜏,𝑖2⇒¬𝑈

𝑉𝑥,𝜏,𝑖2−1
𝑗,borrow_mut

Figure 14. Exact SAT formulas used for the encoding.

19


	Abstract
	1 Introduction
	2 Background and Motivation
	3 SyRust Overview
	4 Semantics-Aware Synthesis
	4.1 Synthesis Algorithm
	4.2 Modeling Programs as SAT Formulas
	4.3 Basic Typing Constraints
	4.4 Ownership and Variable Lifetime
	4.5 Connecting to SAT
	4.6 Properties of the Synthesized Programs
	4.7 Suppressing Redundancy

	5 Hybrid API Refinement
	5.1 No Input Polymorphism
	5.2 Polymorphic Inputs, Concrete Output
	5.3 Polymorphic Inputs, Polymorphic Output

	6 Implementation and Evaluation
	6.1 Implementation
	6.2 Library and API Selection
	6.3 Experiment Setup

	7 Evaluation Results
	7.1 RQ1: New Bugs and Test Effectiveness
	7.2 RQ2 and RQ3: Effectiveness of SyRust Features
	7.3 Coverage
	7.4 Limitations and Future Work

	8 Related Work
	9 Conclusion
	Acknowledgments
	References
	A Target Library Statistics
	B Bug Inducing Code
	C Synthesis as Boolean SAT

