
Incentivizing User-centric Resource

Allocation in Wireless Networks in

Realtime

Submitted in partial fulfillment for the requirements for
the degreee of

Doctor of Philosophy
in

Electrical & Computer Engineering

Madhumitha Harishankar
B.S., Electrical & Computer Engineering, Rutgers University

Carnegie Mellon University
Pittsburgh, PA

December 2020



Copyright © Madhumitha Harishankar 2020
All Rights Reserved



I dedicate this thesis to my late grandfather, Keemu.
Your love and blessings mean the world to me.



iv



Acknowledgments
I express my gratitude, first and foremost, to my advisors Prof. Carlee

Joe-Wong and Prof. Patrick Tague for their support, encouragement and
advise throughout my doctoral study. I am deeply thankful for the long
rope they gave me to explore my research interests as well as for the
timely direction and insights they provided that kept my pace steady.
They have entertained innumerable requests for meetings and discussions
at a ten minute notice, and have been extremely patient as I struggled
through learning curves and sometimes wavered on the problem statement
to pursue. A single question posed by them would often expose critical
gaps in my carefully constructed argument, and get me rethinking my
approach. Carlee and Patrick, I am a better thinker because of you. During
the five years of my doctoral study, numerous life-changing events unfolded
in my personal life. Words cannot express the gratitude I feel for the
genuine compassion and understanding that my advisors showed during
these times and for giving me the room to process these changes and evolve
as a person. Being advised by Prof. Patrick Tague and Prof. Carlee
Joe-Wong has taught me that the most effective professional counsel from
a mentor comes from a place of truly caring for the protege. Patrick and
Carlee, I will always be deeply grateful to have had you as my advisors
and strive to be a mentor like you.

I would also like to take this opportunity to thank my thesis committee
members, Prof. Aron Laszka and Dr. Anand Raman. I am very grateful
for their invaluable feedback, time, and help.

This research was supported in part by the National Science Foundation
under grant CNS-1645759 and in part by Carnegie Mellon University’s
Electrical and Computer Engineering Department. The views and conclu-
sions contained here are those of the authors and should not be interpreted
as necessarily representing the official policies or endorsements, either
express or implied, of CMU, NSF, or the U.S. Government or any of its
agencies.

I am thankful to my wonderful colleagues and collaborators, including

v



past and current members of the LIONS and MEWS research groups. I
am especially grateful for the multiple collaborations with Jun Han in the
initial days of my doctoral study, which gave me invaluable insights into
how to frame a problem statement and execute a research project. I also
thank Dimitrios-Georgios Akestoridis of the MEWS group and Jinhang
Zuo of the LIONS group for their valuable contributions to my research
projects. I would also like to thank the M.S. students who collaborated
with me on various projects - Nagarjun Srinivasan, Sireesha Pilaka, Pragya
Sharma, Faisal Ali Alqarni, Huijing Zhou, Qingyu Chen, Roberto Del Valle
Rodriguez and Aarushi Wadhwa. I am also grateful to Prof. Anupam
Datta, Prof. Bob Iannucci, Prof. Osman Yagan and Prof. Pei Zhang -
they spent valuable time sharing their insights on my research, giving me
feedback on various talks and applications, and helping recommend me for
numerous opportunities to further my doctoral study.

The friendships that I made during this time helped make my PhD
journey less lonely. I want to thank my friends - Akshay Chandrasekaran,
Abhinav Jauhri, Aniruddha Basak, Aishwarya Prem Renu, Manika Murali,
Swati Goswami, Sarita Ghosh, Ravali Yannamaddi, Manisha Mukherjee,
Tyler Nuanes, Dolly Duan and Vinodh Pramesh. I especially thank Akshay,
Aniruddha and Abhinav for the timely help they always rendered, whether
over whiteboarding sessions, sharing their GPUs or over coffee and dinner.
I thank my friends Manika and Aishwarya for the wonderful times together
and for dutifully cheering me up after each rejection.

My husband Sriram V. Iyer has been my steadfast companion and
unyielding supporter every step of the way during my graduate studies.
He inspired me and gave me confidence, often burnt the midnight oil to
review my applications and papers when I was stressed, brainstormed with
me when I was stuck, critically validated (and sometimes invalidated) my
ideas when I was uncertain of them, taught himself new topics to be able to
follow along my research and contribute, helped with my experiments when
I had too much on my plate, bought me Starbucks and food when I did
not have time to step out of the lab, and made sure food was delivered at
my door minutes after my paper deadlines even when he was in a different
country, knowing full well I would not have eaten all day. He lent not only

vi



his towering intellect and precious time to my graduate studies, but also
his unconditional love. Lots of love to you too, Sriram!

I am always indebted to my beloved parents and sister, Saraswathi
Lakshmanan, Harishankar Krishnamurthy, and Niveda Harishankar, for
their unconditional love, prayers, and encouragement. I could not have
made the leap to quit a promising career in industry and start on a long-
winding path towards an unclear research goal without their complete
support. Neither could I have withstood the downs of this journey without
them. My mom’s conviction in the value of a sound and meaningful
education, and my dad’s fearless attitude in the face of adversities became
my mental crutches to lean on during my doctoral studies. In my sister,
I have always had a shoulder to lean on without fear of judgement. She
has been my companion in right and wrong, in ups and downs, in joy
and sadness throughout my life and so too during my doctoral study. I
love you fam! And thanks Nivi for making illustrations for my papers
and working up your photoshop magic on a moment’s notice! And for the
PhD-care-basket filled with pens, sharpies, notebooks, postits, paper clips
and more!

I also thank the kind and loving folks of my extended family, including
grandparents, aunts, uncles, nieces, nephews, in-laws and cousins - a call or
visit to any of them put a smile on my face even during the most stressful
of times. Special thanks to my aunt Meenakshi Venkateswaran for the
numerous discussions about market theory in economics and for always
being just a phone call away to address any doubts I had on the subject.
My special thanks also to Babu for his timely tutorial on elliptic curve
cryptography that helped push my project along.

I would also like to thank Shree Lal (Didi) and members of the Sai
family for their constant word of encouragements during my studies. They
helped me pick myself back up after the toughest paper rejections and I’m
indebted to them for the stream of affection, support and prayers that
they have sent my way during these five years.

Finally, I am deeply grateful to have encountered Swami Paramarthananda’s
lectures which, filled with patience, clarity, and humility, introduced me
to the philosophy of Vedanta and allayed the tempests of my mind in the

vii



most difficult of times.
“Shraddha aur Saburi"(Conviction and Patience) - Shirdi Sai Baba

viii



Abstract
In this thesis, I propose mechanisms for user-centric resource allocation

in wireless networks. I consider a series of practical motivating contexts
that progressively require lesser trust and reliance on the network provider
and allow for more flexible connectivity schemes benefitting end-devices,
especially for emerging connectivity use-cases like the IoT. The granularity
of typical month-long mobile data plans is such that users must forecast
their network usage over a month and assign a single monetary value to its
utility. Finer-grained real-time information about user needs does not play
a role in resource allocation, though users determine their needs and launch
mobile applications only in realtime. This results in unrealized value for
both the end-user and the network operator and further restricts the user
to availing resources that belong only to their subscribed network(s).

Inspired by Verizon’s recent PopData offering, I first consider supple-
menting typical monthly subscription plans with ad-hoc discount offers,
wherein users may consume unlimited data for the offered hour for a small
fixed fee. This allows users to realize any additional resource needs for
their sessions in realtime by utilizing these simple offers without the risk
of incurring a data overage, while also affording the network a predictable
contract revenue. Second, I consider a user-driven approach to acquiring
network resources by proposing a model wherein a slice of resources is
dynamically created and assigned to a device based on the session needs it
specifies. Devices can then reliably estimate their session performance at
the onset. I explore how these models can be made incentive-compatible for
the network and the user, show that they can be executed in realtime albeit
at a steep cost to users since they are unable to plan spending optimally
in realtime, and that this suboptimality can be alleviated with reinforce-
ment learning techniques. Finally, I remove the inherent device-network
trust relationship that exists in these models by allowing devices to seam-
lessly authenticate with any access point (without subscriptions) and make
real-time payments for consumed data, using public and permissionless
blockchains, in a scalable and secure manner.
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Chapter 1

Introduction

End-devices and last-mile wireless networks that provide internet connectivity to
them treat each other as untrusted black-boxes and hence require a-priori identity,
trust and payment setup in the form of long-term subscriptions to interact. This
model does not allow finer-grained real-time information about a user’s network
needs to play a role the resource allocation process, though users often determine
their network needs sand launch mobile applications in realtime. Network resources
available to users are inherently limited relative to their needs, atleast during certain
congested times-of-day and locations, and hence users inability to influence the resource
allocation process with their realtime valuations results in a poor network experience.
This model further restricts users to primarily connecting only to networks with
which they have subscriptions established. The lack of any real-time and incentive-
compatible information exchange between devices and the network introduce significant
suboptimalities in user utility from data consumption. It occludes the evolution of a
more dynamic, decentralized and scalable network that is suitable for the explosion
of data and devices that is expected with the Internet of Things (IoT). This thesis
identifies the core research challenges in solving these issues, and introduces and
validates techniques to address them.

1.1 Issues with Subscriptions for Internet Access

As new internet paradigms like the IoT and, more broadly, Cyber-Physical Systems
(CPS) emerge, modern wireless networks are faced with an increasing heterogeneity
of resource demands and performance requirements. Machine to machine scenarios
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(e.g., tactile internet [74], telepresence [101]) that require low latency, high bandwidth
and high reliability simultaneously are integral CPS use-cases, as are smart-city
scenarios [191] that require periodic transmission of IoT data to the cloud and low-
latency computing resources at the edge for making real-time actuation decisions.
Simultaneously, the end users’ diversity in network requirements and volume of data
use also grows. Multimedia applications with bandwidth and/or latency sensitive
traffic make up the vast majority of mobile traffic today. In fact, as per Cisco’s
forecast [50], video will constitute 78% of all mobile data traffic by 2021. Supporting
these highly diversified network needs of existing and emerging applications continues
to pose significant challenges to wireless networks and forms the basis of 5G’s vision
for wireless networks [28].

Even as these applications proliferate, our daily experiences with them continue to
be filled with uncertainty. For example, a smartphone user making a video call while on
the bus is entirely uncertain about the call quality. In-fact, the call may drop altogether
due to poor signal strength, noise or congestion. The user’s resulting experience with
the application is indeterminate. This inadequacy results directly from the black-
box interaction paradigm between the network and users today, wherein applications
launched by users have no means of gauging the network’s resource availability, and the
network conversely cannot ascertain the user’s app-usage intentions. This inadequate
interaction model is enabled by long-term subscription contracts wherein no significant
real-time communication of network requirements or associated payments is required
between devices and the network. The network typically relies on a few passively
inferred indicators about network flows to ascertain their Quality of Service (QoS)
needs and attempts to schedule resources to fulfil them, subject to preemption factors
like congestion. Monthly subscription contracts establish the necessary identity and
payment relationships between these otherwise untrusting entites and allow them to
interact (albeit suboptimally) in realtime.

Specifically, we identify two critical shortcomings of today’s networking model.

First, there exists no mechanism for real-time communication of network
needs and corresponding valuations by devices and for the guaranteed pro-
curement of corresponding resources from the Internet Service Provider (ISP).
With typical 4G/LTE/5G connections, the network flows of a device are passively
analyzed and classified by the cellular network into a QoS class (e.g. QCI in the
LTE) which is intended to satisfy a specific SLA (in terms of bitrate, packet drop,
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jitter etc). However, flows complete for available network resources at any QCI level,
and can hence be starved or preempted at any time (e.g. during congestion) since
network resources are (periodically) allocated only for the span of a few milliseconds
(e.g. TTI in LTE and NAV in IEEE 802.11). On the other hand, end-user engage-
ment with applications, especially multimedia apps, occurs over the span of a few
minutes12 [42, 159]. Since devices are unable to relay any real-time session-oriented
resource needs or corresponding payments to the network and instead only make a
monthly payment for an approximate estimation of their total data utilization (as
with typical monthly subscriptions), they are unable to influence the actual resource
allocation process in real-time in accordance with their session-oriented needs. This
leads to indeterminate quality of experience for devices connecting to wireless networks.
If, instead, user-driven session-aware resource procurement in realtime were possible,
we would see the emergence of application protocols that are proactively network-aware,
rather than reactively network-aware like DASH. In fact, Zou et al. [200] show that
existing adaptive bit-rate algorithms achieve only 69−86% of the optimal possible QoE
from their realized bandwidth allocations simply due to not knowing the bandwidth
availability information beforehand.

Network Slicing, one of 5G’s key architectural innovations to handle these diverse
and potentially stringent resource needs of internet applications, involves allocations of
sufficient physical resources to a QoS level (aka slice) to satisfy the traffic demand [79].
These virtual slices potentially span resources all the way from the edge to the
core of the network and are dedicated to satisfying demands of a specific service
level end-to-end. However, this model continues to result in the same indeterminate
network experiences that today’s networks do since a central content provider or
network operator owns slices and controls the admission of end-devices into slices
based on subscription contracts instead of real-time device valuations. In other words,
the slice owner does not know how to prioritize among its users. For instance, a
content provider like Skype contracts a slice from the network operator that delivers
low latency and high bandwidth. This enables high-quality Skype calls for users
admitted to the slice but physical resources within the slice continue to be limited.
Presumably, when multiple users make Skype calls at congested times, they compete

1https://vertoanalytics.com/chart-week-winning-mobile-video-app-war/
2https://www.statista.com/statistics/579411/top-us-social-networking-apps-

ranked-by-session-length/
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for admission into the slice and have no way to influence the outcome, just as is the
case today. For example, a user cannot demonstrate to the slice allocation algorithm
their higher call utility value for a job interview over a recreational call from another
user. Hence, while admission into a slice largely guarantees slice-specified
SLA, admittance itself is entirely controlled by the centralized operator or
the content provider in any case.

Further envisioned Internet of Things (IoT) devices have considerable variations
in their data needs, which also makes different usage-based contracts appropriate for
different devices [54]. For example, a camera continuously sending a video stream, a
temperature sensor sending a single measurement every two hours, and radar sensors
on an autonomous vehicle requiring millisecond latencies all upload varying quantities
of data at varying frequencies and qualities-of-service (QoS). Further, a device’s
resource needs may not be fixed, for e.g., if it uploads data in response to some
environment triggers. The current model of estimating utilization (simply in terms
of net download/upload bytes) at a month-level granularity and signing up for a
corresponding QoS-agnostic payment tier fails to meet the diverse requirements of
these devices. Providing for this will become even more challenging as IoT deployments
grow: the number of smart cities worldwide is expected to grow at a rate of 26%

through year 2022 [94], making up a 34 billion USD market in 2019 [19]. As discussed
earlier, while network slicing promises to allow devices to subscribe to specific network-
supported QoS levels of service in their subscription contracts, proposed models
continue to occlude end-devices from influencing the allocation process in realtime,
thereby subjecting them to indeterminate network experience.

The second significant shortcoming of today’s subscription-based interaction model
between devices and networks is the resulting inability of devices to exploit avail-
able network resources belonging to unsubscribed networks. Subscription
contracts establish a-priori identity relationships (e.g. through SIM) between the
network and the device and serve to introduce trust in the interaction. The device
trusts the usage accounting done by the network and the network trusts that the device
will pay for its usage at the end of the billing cycle. Such a model strictly restricts
end-devices to connecting only to known networks with which identity associations
and usage/payment agreements have been setup a-priori (and out-of-band), or to
open networks. Devices hence have a severely constrained view of network resources
available for consumption at their location at any time. In-fact, our analysis of the
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LifeMap mobility dataset [48] that contains fine-grained mobility information collected
over the course of a few months for a set of students in South Korea shows that at any
given location, participants are in range of 2− 17 closed WiFi hotspots and almost no
open ones. They are, however, presumably restricted to accessing at-most one of these
(e.g. if they own the hotspot and thereby have a subscription with the ISP). Even
taking into account cellular networks, users are likely able to access only one network
that they already have a SIM-based subscription with. Such a severely restrictive con-
nectivity model scales even more poorly to the IoT. The rapid and dense deployment of
IoT devices (e.g. in smart cities) based on the current subscription-based connectivity
model will require device owners to manage increasingly complex usage contracts
with operators’ LoRaWAN (Low-power long-range wide area network) or NB-IoT
(Narrowband - Internet of Things) networks, posing a prohibitively unscalable and
expensive bottleneck for large-scale IoT deployments. The overhead of provisioning
dedicated contracts for each device may accelerate as 5G networks are more widely
installed. Indeed, such networks are expected to include multiple access points of
different radio access technologies, potentially with different operators, making it
even more difficult to pre-specify contracts for individual IoT/user devices with each
operator. In-fact, a significant portion of IoT devices in smart-city deployments are
expected to be WiFi-equipped and could potentially realize their variant data needs
by accessing readily available (and potentially closed) WiFi hotspots nearby. Indeed,
a study from 2016 conducted in the city of Turin found that approximately 50%

of streets around a block were within transmission range of in-home [175] WiFi
networks. Exploiting these private hotpots, however, is impossible with the prevalent
model wherein only open or known hotspots (for which the owner has entered into a
subscription with an ISP) are seamlessly accessible.

1.2 Identifying Core Research Challenges

Incentive compatibility issues underpin these identified shortcomings with using sub-
scriptions for accessing wireless networks. Moving away from the long-term subscription
model to a dynamic negotiation of network requirements, resource allocation, costs and
payment structure introduces several theoretical as well as practical research challenges
in aligning the network’s incentive to maximize revenue with the user’s incentive to
maximize their cost-sensitive utilities from internet usage. These challenges span
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Figure 1.1: (a) It is unclear how to make session-level performance guarantees in a wireless
medium when resource allocation happens in timescales that is orders of magnitude lower.
(b) Devices are restricted to connecting only to subscribed or open networks, using network-
specific authentication and payment mechanisms.

various stages of the device-network connectivity process, as illustrated in Figure 1.2.

First, long-term data contracts afford predictable revenues to the ISPs. A pricing
strategy based purely on real-time network usage introduces, atleast initially, a
substantially high degree of uncertainty in the ISP revenue. This makes it crucial
to ensure that users’ truthful valuations and requirements are extracted, ensuring
that the real-time pricing of network’s resources are competitive and adequately
reflect competition. Second, such truthful elicitation of resource requirements and
valuations is non-trivial to achieve in real-time, i.e. in the timescales where users launch
applications and spontaneously expect to be allocated sufficient network resources
for their session. Several strongly truthful auction allocation strategies, for instance,
require solving NP-hard problems [108] that would require several minutes or hours
before users can be informed of their allocation outcome. These techniques are
therefore a poor fit for real-time determination of allocation outcome for spontaneously
launched user sessions. Further, these assume that users are perfectly rational, which
may well not be true when they are budget constrained and make decisions in realtime
that are influenced by perceived risks of over-spending for data consumption over
time. Third, users may, in-fact, end up making more suboptimal choices under the
constraints of repeated real-time decision making for their data usage as opposed to a
simple monthly usage and utility forecast. Dynamic estimation of future requirements,
prices, and budget constraints is highly challenging and, in-fact, the network may
design its pricing strategy to exploit the suboptimality in user decisions that results
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from inherent lack of knowledge about future prices the network plans to set. Fourth,
it is unclear whether predictable QoS can be ensured in the timescales typical of
session durations in a wireless medium. As Figure 1.1(a) depicts, resources in a cellular
network are periodically scheduled every few milliseconds, which is hence the timescale
for QoS guarantees, whereas user-facing Quality of Experience (QoE) with the session is
experienced in the timescale of minutes [42, 159]. Indeed, available spectrum resources
must be quantified and accurately reconciled with session requirements presumably
expressed in terms of bitrate, latency and duration. Even then, it is unclear whether
performance guarantees of reasonable accuracy are possible despite uncontrollable
wireless influences like fast fading.

Fifth, for devices to be able to connect seamlessly to non-subscribed networks
and make reliable payments, non-custodial identity and payment management is
necessary. Today’s networks rely on network-specific setup to authenticate a device
into the network and process its payments. For instance, as Figure 1.1(b) depicts,
an end-device can connect either through SIM-based auth to its subscribed network
with which a payment structure has already been setup off-band, or to a closed WiFi
network with which credentials and payment structure have been pre-established
or to open hotspots which may prompt the user to setup identity and payments
through a captive portal. To truly enable seamless connectivity to any network in
realtime, we need a non-custodial identity and payment management framework that
is not network-specific and does not involve setup overhead. Sixth, since such an
envisioned non-custodial system will be widely used by end-devices and networks
ubiquitously for authentication and payments, it must be easy to scale. Finally, it is
unclear how to enforce payments as per the dynamically agreed usage terms in this
setup when the device and network do not have prior trust relationships. Without
proprietary hardware that guarantees honest usage monitoring, neither the end-device
nor the network’s report of measured usage can be trivially used as ground-truth to
then enforce corresponding payments as both may have incentives to misreport this
information.

Several of these challenges involve dynamic pricing of network resources to re-
flect real-time congestion, which has been well-studied in literature [157]. However,
proposed techniques have historically been challenging to realize in practice [128]
due to the difficulty users incur in making real-time spending decisions with incom-
plete information about future prices and consumption. Indeed, recent studies have
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shown [87] that dynamic pricing is challenging for end-users who are budget con-
strained; imperfect planning can lead to substially higher data costs at the end of
the month than what users may otherwise incur with a fixed monthly subscription.
In identifying the core challenges here and addressing them, we specifically focus
on practical solutions by identifying imminent scenarios where users may stand to
benefit substantially from dynamic negotiation of utilization and costs despite the
overhead of real-time planning, such as when using real-time multimedia applications
(which cannot be bufferred) and for IoT use-cases (where the subscription model scales
poorly). In the techniques we develop, we emphasize session-oriented resource pricing
and procurement for meaningful QoS at user-perceived timescales, the mitigation of
suboptimality incurred in making real-time spending decisions, and seamlessness when
connecting to non-subscribed network and paying for these dynamically negotiated
contracts.

1.3 Towards Incentivizing User-centric Resource Al-

location in Realtime

We now codify these research challenges based on the various stages of a device’s
interaction with a wireless network and subsequently propose a methodology to tackle
them.

1.3.1 Framework

Figure 1.2 depicts the framework that we arrive at. The first stage of the device-network
connectivity process is Authentication, where the device typically uses network-
specific credentials like SIM or PSK to authenticate with the network. This lets the
network ascertain the corresponding user’s identity and map the initiated session to
an existing user account/contract. Here, our goal is to instead enable a non-custodial
identity management solution, wherein a universal set of credentials can be used to
authenticate against various networks. This overcomes any network-specific out-of-
band setup activity like SIM or key establishment as typically done via subscriptions.
Such an authentication scheme should utilize well-established networking standards,
generalize across radio access network types, and work seamlessly.

Following Authentication, the network executes an Authorization check where it
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Figure 1.2: Starting from Authentication to Payment Processing, the research challenges
in enabling user-centric and incentive-compatible resource allocation affects multiple stages
of the device-wireless network connectivity process.

checks the status of the ascertained user’s contract (e.g. whether the data quota is
reached already or the last bill was paid) and authorizes the establishment of the session
if the checks pass. With typical subscription models, such a contract is established
out-of-band over a long-term basis and does not capture real-time needs. Here,
instead, we aim to facilitate the establishment of usage and payment contracts
in realtime. We wish to enable dynamic negotiation of resource allocation and costs
between the user and the network that reflects the end-user’s session needs, utilities,
valuations, and buget constraints. The realtime aspect here specifically introduces
research challenges both for the network and the user in maximizing their revenues and
utilities respectively. If the network moves entirely to a realtime negotiation model,
it may well lose any predictable notion of monthly revenue based on the dynamic
pricing model used. The user, on the other hand, is forced to routinely forecast future
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network pricing and resource availability to make optimal decisions in realtime, at
any time. Indeed, the user also loses the predictability of fixed monthly costs for their
data usage.

Once a real-time usage contract has been established (correspondingly, the Autho-
rization done), the user’s data consumption begins and leads to the question of usage
monitoring. Subscription contracts also serve to bootstrap trust between the device
and the network; the device trusts the network to perform accurate Accounting of the
data session, based on which the network levies agreed-upon usage-based costs on the
user at the end of the billing cycle. Without subscriptions and the a-priori trust they
bootstrap, it is unclear how any usage-based payment structure agreed in the contract
just established can be enforced. Hence, our goal here is to enable a data utilization
monitoring mechanism that can be reconciled with both the device and the network,
without relying on any proprietary purpose-specific trusted hardware. Finally, we
aim to facilitate payment processing based on utilization measured in realtime, as
per the terms of the established contract. Though the network and the device may
not have associated previously and have performed no setup ceremony establishing
Billing details or authorization, we nonetheless wish to enable seamless and scalable
payments from the device to the network that ensures that the data services provided
by the network is incentive-compatible.

1.3.2 Desired Functionality and Corresponding Scenarios

Together, these four modules enable new functionalities in wireless networking. Note
these these modules simply correspond to the ubiquitous Authentication, Authorization,
Accounting and Billing framework in telecommunications. In the current legacy imple-
mentation based on static subscription models, these functions are simply performed
using network-specific identity management (e.g. SIM) for Authentication, assessing
the subscription status for Authorization, trusted network hardware for Accounting
and out-of-band payment setup process via the susbcription for Billing. As Figure 1.2
illustrates, we instead aim to enable these core functionalities dynamically without
relying on pre-established long-term subscriptions. We further categorize these new
features into three distinct motivating network scenarios, shown in Figure 1.3. These
three network contexts form the basis of our concrete problem statements and further
study:
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Figure 1.3: We identify three distinct connectivity models that enable an increasingly
user-centric resource allocation process and involve decreasing levels of network centralization.
Together, these three contexts enable the study of our core modules of interest, namely,
non-custodial authentication, establishment of dynamic usage/price contracts, truthworthy
usage monitoring of an untrusted device-network session, and in-band payment processing
based on real-time usage.

• Supplementing Subscriptions with Realtime Offers We first consider a
model that captures the notion of influencing the network’s resource allocation
process with user-preferences in realtime. The ISP introduces a real-time
pricing/allocation strategy on top of a subscription-based model in the form
of data discount offers. This allows us to retain the benefits of subscriptions,
namely predictable monthly network revenue and predictable monthly data costs
for the user, while incrementally introducing real-time session-oriented pricing
dynamics. These offers, when made by the ISP, provide a low flat-rate cost
for the next hour’s data usage and thereby allow users to acquire resources for
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their session (typically lasting minutes34) at this cheaper rate as opposed to the
risk of incurring expensive overages. This context captures the challenges in
real-time determination of offer decisions for ISPs that seek to maximize their
revenue as well as the challenges in real-time decision-making for cost-sensitive
users that are unable to accurately predict future offers that the network may
run. We show that, with perfect information, these discount offers can be quite
beneficial for both ISPs and users; however, the ad-hoc nature of these offers
results in information asymmetry between ISPs and users which the former can
exploit to increase its revenue without proportional increase in data benefit to
users. Finally, we illustrate the effectiveness of certain reinforcement learning
techniques that users can employ to predict the ISP’s offer schedule and mitigate
their spending suboptimality.

• User-driven Network Slicing for Real-time Session GuaranteesWe next
consider a more user-driven model where, instead of waiting for the ISP to
make real-time data discounts in addition to a static monthly data plan, users
proactively request the network for the exact network resources they need so
as to secure their session’s performance. We retain the assumption of trusted
usage monitoring by the ISP and off-band payments from the subscription
model without its pre-agreed utilization and pricing terms. At any time, the
network allocates a slice [77] of resources to a device that corresponds to its
session-level needs; hence, this model requires considering practical challenges
of whether session-level performance guarantees can be successfully made in a
wireless medium where flows have externalities on each other and the medium
itself is subject to noise and fading effects. Further, this model also captures
challenges in incentivizing truthful user reports in real-time; without the stability
of monthly subscription revenue, we now contend with the necessity to ensure
that users report their resource needs and valuations truthfully so as to ensure
that such a fully user-driven allocation model is incentive-compatible for the
network to offer in terms of revenue. Further, since users must repeatedly decide
their valuation for each session’s resources in realtime, ensuring that their overall
spending during the course of the billing cycle stays within a prespecified budget

3https://vertoanalytics.com/chart-week-winning-mobile-video-app-war/
4https://www.statista.com/statistics/579411/top-us-social-networking-apps-

ranked-by-session-length/
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becomes challenging but crucial. We use our learnings from the earlier model
to mitigate this significant source of suboptimality stemming from real-time
decision making with incomplete future information (regarding future resource
availability and prices).

• Seamlessly Connecting to Unsubscribed Networks and Making Pay-
ments Finally, we remove the assumption of trusted usage monitoring by the
ISP and off-band billing systems with monthly payments that we had retained
previously. Indeed, practically facilitating session-based incentive-compatible
association between a device and a generic network requires also circumventing
contractual trust models between devices and access points (cellular or otherwise).
The research challenges here span the Authentication, Accounting and Billing
functions. A scalable non-custodial identity management system becomes neces-
sary for an end-device to identify and authenticate itself with a generic network;
SIM-based access methods are specific to the cellular network in question while
PSK can only be established with known hotspots and differ across networks,
hence rendering both schemes unsuitable. Further, when the device has no prior
trust on the connected network, the device vs network’s measurements of data
usage becomes challenging to reconcile. While the previous model provides an
incentive-compatible mechanism for the network to allocate session-oriented
resources to a device in realtime, it is unclear how such a dynamically established
contract can be monitored to ascertain whether the terms of the contract were
successfully met and the corresponding payment enforced, without a mutually
trusted usage monitoring method. With this model, we hence seek to facilitate
trustworthy usage measurements of device data usage that both parties agree on
and that the device can may payments for in realtime without pre-established
off-band payment setup.

1.4 Contributions of This Thesis

The overarching thesis statement spans both theoretical and systems research questions
and is framed as follows:

Thesis statement. Enable end-devices like smartphones, laptops and IoT devices
to connect to wireless data networks without a-priori identity or trust relationships,
establish a dynamic session-oriented contract specifying usage and pricing terms, and
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provide a mechanism for its enforcement. Ensure that the established contract terms
are incentive-compatible for both the network (heeding revenue maximization) and the
user (heeding utility maximization and budget constraints), and any suboptimalities
for the user stemming from incomplete information during real-time decision-making
is mitigated.

Increasingly	user-driven	and	decentralized

Regular	contracts	that	
ISPs	supplement	with	ad-
hoc	short-term	discounts	
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Figure 1.4: I propose to explore the research questions of interest through a variety of
networking models that differ in the degree of user-control and network centralization.

Figure 1.4 illustrates the roadmap of this thesis. The three scenarios of study
proposed involve networking models that progressively allow for more user control over
the network’s resource allocation process and progressively diminish the centralized and
trusted role of ISPs today. The research work in this thesis is presented in this order,
elaborating on each scenario’s formal definition, research questions, methodology and
findings. I now summarize the research contributions made in each of these three
studies:

Supplementing Subscriptions with Realtime Offers – As demand for In-
ternet usage increases, Internet service providers (ISPs) have begun to explore pricing-
based solutions to dampen data demand. However few explicitly consider the dual
problem of monetizing idle network capacity at uncongested times. PopData [178] is
a recent initiative from Verizon that does so by offering supplemental discount offers
(SDOs) at these times, in which users can pay a fixed fee in exchange for unlimited data
in the next hour. This work is the first of its kind to assess the benefits and viability of
SDOs by modeling user and ISP decisions as a game, considering both overall monthly
decisions and hour-to-hour decisions throughout the month. We first use our monthly
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model to show that users are generally willing to accept some SDO offers, allowing the
ISP to increase its revenue. We then show that users face a complex hourly decision
problem as to which SDOs they should accept over their billing cycles, since they are
unaware of their exact future needs or when future SDOs will be made. They must
plan their decisions over the billing cycle, despite not knowing their future usage needs
or when future SDOs will be made. The ISP faces a similarly challenging problem in
deciding when to offer SDOs so as to maximize its revenue, subject to users’ decisions.
We develop optimal decision criteria for users and ISPs to decide whether to make
or accept SDO offers. Our analysis shows that both users and ISPs can benefit from
these offers, which we verify through numerical experiments on a one-week trace of 20
cellular data users. We find that ISPs can exploit user uncertainty in when future
SDOs will be made to optimize its revenue, but show that reinforcement learning
techniques can be employed by users to mitigate this and optimize their real-time
spending decisions.

User-driven Network Slicing for Real-time Session Guarantees – Real-
time multimedia applications such as interactive gaming, live video streaming, and
augmented reality have strict latency and bitrate requirements. However, unpredictable
network conditions like congestion and link quality can severely degrade the Quality
of Experience (QoE). While buffer-based mitigations cannot be applied to real-time
applications due to their immediate resource needs, recent innovations in network
slicing have demonstrated the feasibility of dedicating specified amounts of network
resources to individual sessions in the radio access network. Encouraged by this, we
propose to reserve network resources for multimedia sessions in real time according to
their declared needs, thereby providing ad hoc session-level performance guarantees.
Through WiFi experiments and trace-driven LTE simulations, we show that such
session-level resource provisioning is robust to real-time channel fluctuations and
congestion externalities over the lifetime of a session. This approach, however, raises
challenges: how can the network ensure that users are honest about their resource
needs and optimally allocate its limited resources to users, under uncertainty in future
sessions’ resource needs? We derive a novel Multi-Unit Combinatorial Auction (MUCA)
model with a unique structure that can be exploited for fast winner determination
and yet incentivize truthful bidding, properties not simultaneously achieved in a
generic MUCA but essential to making real-time session guarantees. Further, since
dynamic bidding in real time is challenging for end-users who are budget-constrained,
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we develop a Reinforcement Learning based utility-maximizing strategy to distribute
their budget across sessions, and show that it yields high user utility.

Seamlessly Connecting to Unsubscribed Networks and Making Pay-
ments – Relying on dedicated contracts with specific network operators for Internet
access significantly limits connectivity options for devices. As new usecases for inter-
net access emerge, e.g., with the Internet of Things in smart-cities, managing such
individual contracts for each deployed device with varying data needs is prohibitively
cumbersome and highly expensive. In this work, we enable contract-less connectivity
between end-devices and access points that have no a-priori trust relationship (without
a trusted intermediary). Our core insight is that exchange of services and payments
can be trustlessly enforced by distributed ledger technologies; the credentials that
blockchains use for account management can also be used for TLS-based authentication
in networks. However, this raises several challenges.

First, making cryptocurrency payments in such envisioned bandwidth-sharing
marketplaces in non-trivial. Decentralized marketplace applications demand fast, cheap
and easy-to-use cryptocurrency payment mechanisms to facilitate high transaction
volumes. The standard solution for off-chain payments, state channels, are optimized
for frequent transactions between two entities and impose prohibitive liquidity and
capital requirements on payment senders for marketplace transactions. We propose
PayPlace, a scalable off-chain protocol for payments between consumers and sellers.
Using PayPlace, consumers establish a virtual unidirectional payment channel with an
intermediary operator to pay for their transactions. Unlike state channels, however,
the PayPlace operator can reference the custodial funds accrued off-chain in these
channels to in-turn make tamper-proof off-chain payments to merchants, without
locking up corresponding capital in channels with merchants. Our design ensures
that new payments made to merchants are guaranteed to be safe once notarized
and provably mitigates well-known drawbacks in previous constructions like the data
availability attack and ensures that neither consumers nor merchants need to be
online to ensure continued safety of their notarized funds. We show that the on-chain
monetary and computational costs for PayPlace is O(1) in the number of payment
transactions processed, and is near-constant in other parameters in most scenarios.
PayPlace can hence scale the payment throughput for large-scale marketplaces at no
marginal cost and is orders of magnitude cheaper than the state-of-art solution for
non-pairwise off-chain payments, Zero Knowledge Rollups.
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Even with the PayPlace mechanism in place to facilitate fast cryptocurrency
payments between devices and routers in real-time, it is unclear how the data session
can be metered without using special-purpose trusted hardware at the access point
whose measurements a digital ledger or an intermediary can use as ground truth.
However, specialized hardware or even software modifications at the access point to
integrate with the blockchain significantly hinders solution adoption. Further, the
blockchain’s ability to enforce transaction rules is limited by the extent to which
the underlying exchange of services is digitally trackable, which is susceptible to
manipulation in this case, and blockchains suffer from stringent throughput and
latency limitations and may presumably scale poorly as adoption of this system
increases. Using a AAA-based remote authentication architecture that also takes
advantage of PayPlace’s operator-mediated payment structure and trusted execution
environments that devices today come equipped with, we address these challenges to
design and build DataNet, a system providing seamless and incentivized connectivity
between untrusting end-devices and APs, without significant computation or network
overhead.

1.4.1 Thesis Outline

The remainder of this thesis is organized as follows. We present related work with
respect to the four core modules of interest (Authentication, Authorization, Accounting
and Billing) in Chapter 2. Subsequently, we present our study of the three identified
network contexts from most to least degree of network centralization in Chapters 3, 4, 5
and 6. Chapters 5 and 6 both address the third network scenario, with the former
dealing with Authentication and Accounting (usage monitoring) challenges and the
latter with Billing (payment) challenges. In Chapter 7, we summarize my contributions,
and present future directions of this research.
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Chapter 2

Related Work

Our goal is to enable end-devices and wireless data networks to connect trustlessly
(without any prior contracts), establish session-oriented resource consumption contracts,
and facilitate real-time payments in accordance with this. This end-to-end flow has
four core modules involved that present research challenges of interest as shown
in Figure 1.2, namely, Authentication, Authorization, Accounting and Billing. We
present an overview of state-of-the-art techniques proposed in prior work and compare
them with the contributions of this thesis, with reference to this framework. This is
illustrated in Figure 2.1. We also discuss related work in detail in individual chapters
that each deal with one of the three network scenarios identified in Chapter 1.

We recall that the first and second network models (see Figure 1.3) retain the
assumption of trusted device-network interaction, thereby retaining the authentication,
usage monitoring and billing systems that come with subscription models, while
tackling questions of incentive-compatibility and real-time decision making for dynamic
usage contract establishment. While authorization in legacy networks involves verifying
the device’s contract status based on its identity and payment status, authorization
here is instead substituted by the prices and resource allocation that the network and
device negotiate in realtime. We now briefly review state-of-the-art techniques in this
space of dynamic pricing and allocation.

To limit usage during congested times, some industry [63, 68] and academic [99,
192, 195] research has advocated for time-dependent pricing (TDP) for mobile data.
Under TDP, users are charged higher rates when the network is congested and lower
rates during times of low network utilization. These previous studies assessed the
benefits of TDP compared to static pricing [192, 195], e.g., with game-theoretic
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Figure 2.1: With respect to the four core stages of the device-network connection process
that we are concerned with, we compare existing techniques based on the ubiquitous sub-
scription model against the state-of-the-art proposals in dynamic resource allocation and
trustless networking. Finally, we compare these against our contributions.

models [99]. Complementary work has focused on offloading users’ data traffic from
cellular to WiFi [134], e.g., creating auctions for ISPs to dynamically purchase WiFi
capacity at times of cellular network congestion [62]. None of these works focus on
session-level allocation schemes and guaranteening session-performance through
incentive-compatible resource reservation. Auctions have also been employed for
QoS-aware real-time channel allocation to primary users in mobile networks, but here
as well, such approaches [69, 187] focus on sub-carrier allocation with millisecond
granularity and interference mitigation while a session’s timescales is on the order
of minutes12 [42, 159]. Indeed, resource reservations at session timescales introduce
combinatorial characteristics in the allocation and pricing problem that are often
intractable and cannot be solved in realtime. Approximation algorithms such as the
one in [177] to solve these quickly typically involve tradeoffs in important incentive-

1https://vertoanalytics.com/chart-week-winning-mobile-video-app-war/
2https://www.statista.com/statistics/579411/top-us-social-networking-apps-

ranked-by-session-length/
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compatiblilty properties which are required to ensure that the network’s limited
resources are well-allocated and that rational users are incentivized to participate in
the system. Finally, few works have heeded end-users’ monetary constraints when
considering dynamic spending decisions [86, 97], and none have considered the use
of learning techniques in the context of spending decisions for network resource
reservations. Our work on supplemental discount offers (SDOs) and user-driven
real-time network slicing (that we call UBid) addresses these questions.

Finally, we address the Authentication, Accounting and Biling modules (Figure 2.1)
by facilitating seamless connection of devices and networks with no a-priori identity
or trust relationships (i.e. without subscriptions). We consider the state-of-the-
art techniques in facilitating such trustless networking for each of these functions.
Non-custodial identity management in wireless network authentication has received
little attention. The Hotspot 2.034 specification provides for seamless long-tail WiFi
discovery and aims to enable cellular-style roaming for WiFi networks; it is based on
the IEEE 802.11u standard. However, the end-device can seamlessly connect to the
hotspot only if has valid credentials specific to a domain/vendor who has partnered
with the hotspot. Otherwise, the device is taken to an Online Sign-Up process for
the user to register with a supported provider and agree to a utilization contract
wherein the device trusts the usage measurements made by the hotspot. We note
that 5G introduces support for PKI-based EAP-TLS authentication but requires the
end-device to present SIM-based credentials (the Subscription Permanent Identifier)
and a certificate signed by the network, presumably installed by the network as a
result of the subscription process [194].

While these authentication techniques hence do not enable non-custodial iden-
tity management and integrally assume that the usage measurements made by the
network are trustworthy, other recent works [89, 152, 171] have relied on public and
permisionless blockchain systems to circumvent these issues. A user’s blockchain
keys can be used to identify the user’s escrow account on the blockchain to the
network and subsequently use this escrow account to process cryptocurrency micropay-
ments [45, 144] made by the user. While the use of these credentials for authentication
indeed makes the process network-agnostic, proposed techniques involve modifying

3https://www.cwnp.com/hotspot-2-0-and-the-next-generation-hotspot
4https://gigaom.com/2014/03/07/hotspot-2-0-inches-its-way-into-public-wi-fi-

networks/
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the access point to integrate with the blockchain to perform the necessary verification.
Further, this payment process based on micropayments overcomes the challenge of
getting trustworthy utilization readings by simply requiring that the device make
frequent and incremental micropayments to the network for incremental network
resources consumed. This circumvents the need for trusted utilization measurement,
by instead simply capping the network’s loss to atmost one incremental unit of service
if the device fails to provide the next micropayment (in which case the network may
disconnect the device) and the device’s loss to atmost one incremental unit of payment
if the network fails to provide the corresponding service (if the device is to make the
payment before consumption). There are two significant challenges that this model
poses when implemented in practice for a large number of access points. First, it
requires access points to be modified to process these frequent micropayments from
connected devices, thereby posing deployment challenges. It also requires end-devices
to frequently send cryptographically signed messages to the network they are connected
to; the battery impact of this, especially on lightweight devices, has not yet been
studied. Second, proposed techniques require the establishment of pairwise payment
channels with sufficient deposits between end-devices and each access point (AP) that
they connect to. The PayPlace cryptocurrency payment protocol and the Datanet
system that utilizes this protocol address these challenges.
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Chapter 3

Supplemental Discount Offers

Inspired by Verizon’s recent PopData offering, we consider supplementing monthly
subscription plans with ad-hoc discount offers, wherein users may consume unlimited
data in the next hour for a small fixed fee. This allows users to realize any additional
real-time resource needs for their sessions that is not accounted for in the monthly
forecast by utilizing these simple offers without the risk of incurring a data overage.
This also affords the network a predictable contract revenue. We study the ISP
and user’s revenue and utility maximization problems respectively, illustrate the
suboptimalities in user choices introduced by frequent realtime decision making and
propose techniques to alleviate it.

3.1 Problem Definition

As mobile data usage continues to grow, with a 66% increase in 2016 [51] alone,
Internet service providers (ISPs), mobile service providers in particular, are exploring
ways to handle this rising demand. In the U.S., many ISPs have advocated changes to
pricing plans; even “unlimited” data plans force users to submit to lower throughputs
upon exceeding specified monthly data quotas [33, 164]. Internationally, most ISPs
still offer quota-based plans with additional fees for exceeding the quota, e.g., Orange’s
EE in the U.K. [131]. Such pricing plans incentivize users to limit their overall mobile
data demands so that they stay within ISPs’ available capacity. However, they do not
address the fact that congestion on ISP networks is concentrated at specific times of
the day [95]. By reducing overall usage, they can thus have the unintended effect of
increasing the amount of idle capacity, and its associated unrealized ISP revenue, at
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uncongested times.

Much recent research has proposed ways to reduce usage at congested times,
e.g., by charging users more at these times [157] or incentivizing them to use WiFi
instead [134]. However, few of these explicitly consider the dual problem of monetizing
idle capacity [88], and many of them have proven complex for users to understand [128,
156]. Supplemental discount offers (SDOs) offer a solution to both problems. SDOs
have recently been deployed by Verizon as PopData, a supplement to Verizon users’
primary data plans [178]. Under PopData, a user pays an additional fee for unlimited
data usage for a limited period of time, e.g., $3 for one hour of unlimited usage. Over
the month, the ISP occasionally makes these SDOs to subscribed users; by making
offers in less congested times, it can offer predictable service quality/QoS to users
and since an SDO spans a duration of thirty minutes to an hour, it allows a user to
realize an entire session’s resource needs with it. These SDOs may be particularly
attractive for users who prefer to use the cellular network instead of public WiFi
due to security concerns. Users can easily understand and react to such SDOs; they
simply decide whether to accept offers when they are made. In-fact, future variants of
time-dependent pricing (TDP) schemes are likely to follow a similar format to address
concerns that TDP is too complex for users to understand [156].

Further inspection reveals, however, that fully understanding or even optimizing a
user’s acceptance of SDOs is quite complex. Such optimization requires a user to plan
their acceptance decisions over the month. For instance, if a user knows she will not
reach her data plan quota, it is better to ignore SDOs. In practice, however, users
would not know their exact usage needs for the rest of the month, nor would they
know when SDOs will be offered in the future. They thus need to optimize over both
sources of uncertainty.

The uncertainty in user decision making leads to an equally challenging decision
problem for the ISP. Namely, the ISP wants to offer SDOs at times and prices
that maximize revenue, subject to network availability and the fact that user SDO
acceptance is based on uncertain future data needs and future SDOs. Yet it is unclear
what this optimal schedule would be. For instance, offering SDOs late in the billing
cycle may or may not maximize ISP revenue: at that time, only users who know they
will exceed their data plan quotas would accept the SDO to avoid overage fees. On
the other hand, these users could be more likely to accept SDOs at the end of the
month, when they know they will otherwise incur overage fees, than at the beginning
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of the month, which may increase ISP revenue.

In this work, we model user and ISP actions in accepting and making SDOs as
a game in the presence of uncertainty, allowing us to assess SDO benefits for users
and ISPs. By handling the uncertainty challenges discussed above, we address five
fundamental questions:

• Which types of users would be most affected by SDOs?

• How should the ISP price its SDOs?

• When should ISPs offer and users accept SDOs?

• Are SDOs viable in practice?

• Can users improve their net data consumption utility with ad-hoc SDOs?

To address the question of which types of users would be most affected
by SDOs, we first consider a model that abstracts away the hour-to-hour SDOs by
considering user utility and ISP revenue on a monthly basis. Under this model, we
derive closed-form expressions for users’ optimal decisions. In this study, we reach
the two important conclusions that (1) subscribers always accept a nonzero number of
SDOs and (2) users who consume more data per accepted SDO also use more of their
data plan, so heavier users are more affected.

To address the question of how the ISP should price SDOs, we extend our
model to include the ISP’s ability to optimize the SDO price at the beginning of
the month. We find that when all users have limited data demands, the ISP should
charge a high price. However, in a more diverse mix of users, ISPs may reduce fees to
incentivize users to accept offers.

To understandwhen ISPs should offer SDOs and when users should accept
them, we model user and ISP hourly decisions with an iterative Stackelberg game.
We then derive conditions under which users would accept SDOs. The ISP’s decision
problem in this model is NP-hard, so we provide a near-optimal heuristic based on
dynamic programming. These user and ISP decision algorithms employ online learning
to optimize over uncertainty in users’ future data needs.

To assess SDOs’ practical viability, we conduct extensive trace-driven simula-
tions with real usage data to measure the effectiveness of our decision algorithms. We
find that ISPs can exploit user uncertainty in future SDO offers, and can compute an
optimal SDO schedule such that users, in their limited ability to be optimal without
knowing the schedule, spend higher with SDOs to realize the same data needs than
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without SDOs using only overages.
Finally, we show that users can mitigate this suboptimality that arises from

their lack of knowledge of future SDO offers by using reinforcement learning tech-
niques. Indeed, using Double Deep Q Networks and Deep N-Step Advantage Actor
Critic Models, users render ineffective the ISP’s gamed SDO schedule that is
designed to exploit their overage averseness and had caused them to spend more with
SDOs for the same amount of data consumption. Users learn to selectively accept
those SDOs over the billing cycle that results in a net higher utility for no or marginal
increase in spending.

3.2 Related Work

To limit usage during congested times, some industry [63, 68] and academic [99, 192,
195] research has advocated for time-dependent pricing (TDP) for mobile data. Under
TDP, users are charged higher rates when the network is congested and lower rates
during times of low network utilization. These previous studies assessed the benefits of
TDP compared to static pricing [192, 195], e.g., with game-theoretic models [99]. TDP
has been shown to be effective in user trials for cellular networks [88, 156] and smart
grids [133]. Users under TDP not only reduced their usage at congested, high-price
times, but also increased their usage at uncongested, low-price times. We focus on
this latter effect in our work. Variations on TDP include incorporating location into
pricing models and using lotteries to offer time-dependent rewards for reducing usage
at congested times [113]. Many works show that ISPs can reduce congestion and
increase revenue by offering different prices at different times of the day, but the
apparent complexity for users has so far prevented deployment.

Complementary work has focused on offloading users’ data traffic from cellular to
WiFi [134], e.g., creating auctions for ISPs to dynamically purchase WiFi capacity
at times of cellular network congestion [62]. Yet while these measures can decrease
congestion for ISPs, they may also decrease ISP profits, not only due to the cost of
purchasing WiFi capacity, but also due to the reduction in usage on cellular networks.
To model this loss in revenue in our discount offers scenario, we include the presence of
WiFi in users’ hourly decisions in Section 3.4.1. Other work has used large-scale usage
datasets to model how users consume their data quotas over a month [29]. We leverage
similar frameworks in developing user and ISP decision algorithms in Section 3.4.
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Table 3.1: We summarize the notation used in the paper.

Symbol Definition

(η, d, p) ISP Data Plan
η Fixed monthly charge
d Data limit
p Overage charge per GB beyond data limit
ρ SDO price
n Number of times ISP offers SDO over a month
β Fraction of SDOs accepted
x Monthly data usage by user
xmax Maximum data consumed by a user during an SDO period
α User price sensitivity
γ Desired monthly maximum data consumption
xc(t) User’s accrued consumption under their data plan until time t.

3.3 Monthly SDO Decision Model

To assess the benefits of SDOs, we model the ISP and users respectively as the leader
and followers in a game. The ISP offers and prices SDOs, and users decide whether to
accept them. We assume a monopolistic ISP that offers a quota-based data plan to
users, imposing a usage-based overage fee p per unit of data used over the monthly
data quota d, with flat fee η. In addition, the ISP periodically makes SDOs; a user
who accepts an SDO pays a fixed price ρ for unlimited data usage in the next time
slot (e.g., one hour). Although a user’s data use during this time slot is contractually
unbounded, usage is still subject to network constraints and would in practice be
finite. We assume that a user consumes a maximum of xmax data during an SDO
session. We further assume there are N users in the system. Table 3.1 summarizes
our notation.

In this section, we derive a monthly model of user and ISP behavior using a
Stackelberg game. While this model is an approximation that abstracts away hourly
dynamics, it provides qualitative insights into user benefits and SDO pricing. Under
this model, the ISP sets the number of SDOs n offered during the month and chooses
the optimal SDO price ρ in anticipation of user decisions. In the model developed in
Section-3.4, the ISP implicitly chooses n, or how many SDOs to offer over the billing
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cycle, by making hourly decisions on whether to offer SDOs. Given n and ρ at the
start of the month, each user further makes two decisions: the fraction β of accepted
SDOs and their monthly data plan usage x.

3.3.1 Modeling User Utility

We model users’ utilities as having two components: utility from data plan usage and
utility from SDOs. We use the standard α-fair models for user utility from monthly
data usage [100, 197] to obtain the utility function

u(x, β) = C1
x1−α

1− α
+ βn

[
C2

x1−α
max

1− α
− ρ
]
− η − p(x− d)+, (3.1)

where C1 and C2 are scaling factors capturing relative utility between data plan and
SDO usage, and α ∈ [0, 1) indicates the user’s price sensitivity. The first terms in
this utility function represents the overall utility from a user’s regular monthly data
plan and from SDOs, respectively. Since β represents the fraction of SDOs that the
user accepts and n the number of offers that are made, we can interpret the utility
from SDOs as the user receiving a utility of C2x

1−α
max/(1− α)− ρ each time an offer

is accepted. C2 scales the utility from xmax usage depending on the received quality
of service (QoS). If the average QoS during SDO periods is high, then the user will
receive a higher utility from consuming data at that time. Similarly, C1 can be scaled
to represent the average QoS at non-discount times. By using different scaling factors
for SDO and non-SDO times, we can model ISPs’ choice of making SDOs only at
uncongested hours of the day. The last term in (3.1) represents the cost of data plan
usage with (x− d)+ ≡ max{x− d, 0} denoting the amount of users’ overage data.

We further suppose that the user’s overall data usage is constrained by a monthly
maximum γ, imposing the constraint

x+ βnxmax ≤ γ. (3.2)

In abstracting away from hourly dynamics, we assume that users know some monthly
statistics about their usage (e.g., xmax and γ). For instance, we could take γ = xmaxT ,
where T is the total number of time periods in a month. This maximum usage indicates
the inherent limit on the amount of data that a user would consume even if not charged
for this data usage. Since users in reality would limit their data consumption so as to
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avoid paying more for data, we assume that γ ≥ max
{
d, (C1/p)

1/α
}
, i.e., maximum

usage γ without data costs is no less than the user’s optimal data plan usage.

3.3.2 Optimizing User Utility

In maximizing the utility (3.1) subject to the constraint (3.2), the user jointly optimizes
the data x consumed under the regular data plan and the fraction β of accepted SDOs
for the month.

Optimizing Monthly Data Usage x. We initially consider β as given and
identify the optimal values of x under different conditions, yielding the following.

Lemma 1. The user’s optimal data plan usage x∗ is given by

x∗ =


d, if (C1

p
)1/α ≤ d

(C1

p
)1/α, if d ≤ (C1

p
)1/α ≤ γ − βnxmax

γ − βnxmax, if (C1

p
)1/α ≥ γ − βnxmax.

Thus, if no SDOs are made (n = 0), the user would consume x∗ = max
{
d, (C1/p)

1/α
}

amount of data.

Proof. In the event that x ≤ d, the utility u(x, β) can be written as

u(x, β) = C1
x1−α

1− α
+ βn

[
C2

x1−α
max

1− α
− ρ
]
− η, (3.3)

for x ≤ d, where u is strictly increasing in x. Hence, the user utility is maximized at
x∗ = d, at which point the user always consumes the data quota, as it is already paid
for. Considering the case where x ≥ d, the user utility expression is

u(x, β) = C1
x1−α

1− α
+ βn

[
C2

x1−α
max

1− α
− ρ
]
− η − p(x− d), (3.4)

for x ≥ d. In this region, u(x, β) is convex and hence a maxima exists. However,
this maxima is the optimal x for (3.4) only if it lies beyond d. Else, the function is
strictly decreasing is this region and the optimal x is simply d. Assuming the maxima
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is beyond d, we find the utility-maximizing x by equating the derivative of the utility
function to 0, yielding

∂u

∂x
= 0

C1x
−α − p = 0

x∗ =

(
C1

p

) 1
α

The optimal value obtained, x∗ = (C1/p)
1/α, is subject to two constraints: it is lower

bounded by d and upper bounded by γ − βnxmax ≥ d due to (3.2). By considering
these bounds, we obtain the desired result.

From Lemma 1, we observe that if (C1/p)
1/α ≤ γ − βnxmax, then the user’s data

plan usage would not change with SDOs. Thus, heavy users’ data plan consumption
is most affected by SDOs; light users would not change their usage behavior. These
“light” users would have lower C1 values, indicating that their marginal value from
data consumption is low compared to the cost of their data plan.

Optimizing the Discount Acceptance Rate β. The above insight into lighter
and heavier users is also reflected in the fraction β of accepted SDOs, as follows.

Proposition 1. Table 3.2 gives the optimal (x∗, β∗) that maximize the utility (3.1)
subject to the usage constraint (3.2).

Proof. We separately consider two cases. If (C1/p)
1/α ≤ d, then x∗ = d, and the user

utility as a function of β is:

u(β) = C1
d1−α

1− α
+ βn

[
C2

x1−α
max

1− α
− ρ
]
− η, (3.5)

for d ≥ (C1/p)
1/α.

From (3.5), we see that the utility function is linear in β. If C2
x1−αmax

1−α − ρ is negative,
(3.5) decreases with β indicating that the satisfaction obtained from using PopData is
less than the cost of PopData, and hence β∗ = 0. A positive co-efficient for β, however,
implies that the user utility increases linearly in β, and hence the difference between
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γ and x (which is, by definition, d in this region) in this region is accommodated by
PopData. The optimal β in this region is hence:

β∗ =
γ − d
nxmax

H

[
C2

x1−α
max

1− α
− ρ
]
, (3.6)

where H denotes the unit step function that equals one if the argument is greater
than 0, and 0 otherwise.

We now consider the second case in which (C1/p)
1/α > d, for which u(β) is

u(β) =C1

((C1

p
)

1
α )1−α

1− α
+ βn

[
C2

x1−α
max

1− α
− ρ
]

− η − p((C1

p
)

1
α − d), (3.7)

for d ≤ (C1/p)
1/α ≤ γ − βnxmax. As in the first case, we see that the optimal β is

either 0 or the upper-bound from the constraint in (3.2),

β∗ =
γ − (C1

p
)

1
α

nxmax
H[C2

x1−α
max

1− α
− ρ] (3.8)

Finally, we jointly optimize β and x over the remaining region. If (C1/p)
1/α ≥

γ − βnxmax, u(β) is given by

u(β) =C1
(γ − βnxmax)1−α

1− α
+ βn

[
C2

x1−α
max

1− α
− ρ
]

− η − p(γ − βnxmax − d), (3.9)

for d < γ − βnxmax ≤ (C1/p)
1/α.
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Upon equating the derivative of (3.9) to 0, we have:

∂u

∂β
= 0

C1nxmax
(γ − βnxmax)α

= n

[
C2

x1−α
max

1− α
− ρ
]

+ pnxmax

γ − βnxmax =

 C1xmax[
C2

x1−αmax

1−α − ρ
]

+ pxmax

1/α

β∗ =

γ −

(
C1xmax[

C2
x1−αmax
1−α −ρ

]
+pxmax

)1/α

nxmax
(3.10)

x∗ =

 C1xmax[
C2

x1−αmax

1−α − ρ
]

+ pxmax

1/α

(3.11)

We now note that Region 2 is a special case of Region 3 when SDO has negative
utility. To see this, substitute [C2x

1−α
max/(1 − α) − ρ] = 0 in (3.10) and (3.11), thus

setting utility from SDO to 0. Then, x∗ and β∗ take the values of x∗ and β∗ for
Region 2. However, if the utility of SDO is 0, H in (3.8) would put β∗ as 0, which is
not the case as seen. Thus Region 2, in fact, does not apply when the Utility from
SDO is non-negative, in which case, Region 3 accounts for the values of x∗ and β∗.
However, when the utility from SDO is negative, i.e, [C2x

1−α
max/(1− α)− ρ] < 0, then

(3.8) correctly results in zero PopData usage and optimal x∗ of (C1/p)
1/α.

We note as well that, by definition of (C1/p)
1/α in Region 3, utility from SDO

cannot be negative in Region 3. That is, if [C2x
1−α
max/(1−α)− ρ] < 0 in Region 3, then

the optimal x∗ given by (3.11) exceeds (C1/p)
1/α, in which case that x∗ is infeasible as

it violates usage constraint (3.2). This means that if utility from SDO is negative and
(C1/p)

1/α > d (i.e, we are not in Region 1), then the user must necessarily be in Region
2. On the other hand, if the utility from SDO is greater than 0 and (C1/p)

1/α > d

(i.e, we are not in Region 1), then the user must necessarily be in Region 3. These
conditions yield the final result given in Table 3.2.

This table defines the different boundary conditions under which distinct utility-
maximizing solutions emerge. We see that users with (C1/p)

1/α ≤ d would not change
their data plan usage based on SDOs, rather supplementing their data plan with SDOs
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Table 3.2: Optimal x∗ and β∗ that maximize user utility (3.1) under different conditions
on d (columns) and ρ (rows).

Conditions d ≥ (C1/p)
1/α d < (C1/p)

1/α

ρ ≥ C2x
1−α
max

1−α

x∗ = d x∗ = (C1/p)
1/α

β∗ = 0 β∗ = 0

ρ < C2x
1−α
max

1−α

x∗ = d x∗ = d′

β∗ = min
{

γ−d
nxmax

, 1
}

β∗ = min
{

γ−d′
nxmax

, 1
}

In the above, d′ =
(

C1xmax
C2x

1−α
max/(1−α)−ρ+pxmax

)1/α

.

as needed. However, heavier users, as identified in Lemma 1, with (C1/p)
1/α > d,

would change their data plan usage. Without SDOs, these users would consume
x∗ = (C1/p)

1/α including overage usage. By inspection of Table 3.2, we conclude that
they always consume less than that when SDOs are made.

Corollary 1. If C2x
1−α
max/(1− α) > ρ, i.e., the user gains positive utility from SDOs,

then β∗ > 0 and the user accepts at least some SDOs. However, data plan usage
reduces with SDOs, as x∗ < max

{
d, (C1/p)

1/α
}
.

We observe from this corollary that if users would have consumed overage data
without SDOs, then no matter how small their utility from the SDOs, they would
replace some of their overage data consumption with SDO usage. However, light users
would still consume their data quota d (cf. Lemma 1), though they might accept
SDOs on top of this usage. We next focus on how heavy users’ data plan consumption
with SDOs depends on their individual characteristics. In particular, we find that
users’ data plan usage x∗ can increase with xmax.

Corollary 2. If (C1/p)
1/α > d and α < ρ(1−α)/(C2x

1−α
max) < 1, usage x∗ is minimized

when xmax = ρ(1/α − 1)1/(1−α). When xmax ≥ ρ(1/α − 1)1/(1−α), x∗ increases with
xmax.
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Proof. Under the stated conditions, users’ data plan usage is given by

x∗ =

(
C1xmax

C2
x1−αmax

1−α − ρ+ pxmax

) 1
α

.

Thus, it suffices to show that x∗α reaches its minimum value at xmax = (ρ(1 −
1/α)1/(1−α). We do so by taking the first derivative and setting it equal to zero, which
is equivalent to

C1

(
C2

x1−α
max

1− α
− ρ+ pxmax

)
= C1xmax

(
p+ C2x

−α
max

)
C2α

1− α
x1−α
max = ρ,

from which the result follows directly.

This result is somewhat surprising; we would expect larger xmax to lead to higher
β, with less data plan usage. However, the opposite effect occurs when xmax is large.
We can partially explain this latter result by noting that as xmax increases, users
would approach their monthly data quota γ faster with each SDO. Thus, they would
prefer to accept fewer offers, spreading their data more evenly throughout the month
by consuming more of their data plan. This is particularly true for less price-sensitive
users (with higher α), whose utility from an SDO session would increase slowly as
xmax increases. They could then realize larger marginal utilities from usage on their
data plans, compared to SDO usage.

We next examine the effect of the maximum usage γ in more detail. In particular,
we observe that γ may be larger for users with a larger xmax, since both represent
bounds on the user’s desired data consumption.

Proposition 2. If γ = cxmax for a fixed c > 0 and a user has positive utility from
SDOs, then both x∗ and β∗ increase as xmax increases, when xmax ≥ ρ(1/α− 1)1/(1−α).

Proof. Corollary 2 shows that x∗ increases as xmax increases, for xmax above the given
threshold, regardless of the value of γ. To show that β∗ increases with γ, we consider
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two cases. First, if (C1/p)
1/α ≤ d, then

β∗ =
γ

n
− d

nxmax
,

which is increasing in xmax by inspection. Second, if (C1/p)
1/α > d, then we find that

β∗ =
γ

n
− 1

n

(
C1x

1−α
max

C2
x1−αmax

1−α − ρ+ pxmax

) 1
α

thus, it suffices to show that

d

dxmax

(
C1x

1−α
max

C2
x1−αmax

1−α − ρ+ pxmax

)
< 0.

Taking this derivative, we find that it is proportional to(
C1

x1−α
max

1− α
− ρ+ pxmax

)
(1− α)C1x

−α
max

− C1x
1−α
max

(
C1x

1−α
max + p

)
= −pC1x

−α
max − αpC1x

1−α
max

which is negative by inspection.

In this scenario, a larger xmax would lead to a larger maximum usage γ, allowing
users to both accept more SDOs and consume more of their data plan. Thus, even
though users would consume more data per SDO as xmax increases, they would still
increase both types of usage. However, users’ data plan usage is still bounded by their
usage without SDOs (Corollary 1); even as xmax →∞, x∗ → max

{
d, (C1/p)

1/α
}
.

3.3.3 Maximizing ISP Revenue

Given the optimal user decisions in Proposition 1, we next find the optimum SDO
price ρ to maximize ISP revenue. Since the ISP would set ρ at the beginning of the
month, the monthly model guides this choice for a given number of SDO offers n. The
ISP’s choice of n is further considered in Section 3.4.2.

The ISP’s revenue function is the sum of the revenue obtained from each user over
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(a) ISP Revenue as a function of SDO Price (b) Effect of SDO Price on Number of SDO Sub-
scribers

Figure 3.1: ISP revenue (a) fluctuates as the SDO price ρ increases, since (b) fewer users
accept SDO offers for large ρ. Users are distributed with mean α = 0.5 and xmax = 0.5GB.

the billing cycle, so the objective is to choose ρ to maximize this revenue, formulated
as

max
ρ

∑
i∈U

(
η + p(x∗i (ρ)− d)+ + β∗i (ρ)nρ

)
s.t. ρ ≥ 0,

(3.12)
where the subscript i is added to indicate user-specific values. We thus see that (3.12)
is a complex optimization problem; the set of users whose x∗ and β∗ expressions fall
into the different categories in Table 3.2 depend on ρ. We do not derive an analytical
solution, since a line search will suffice to find the optimal ρ∗. We can, however,
observe that when all users are light users, the ISP would charge them as much as
possible.

Proposition 3. When all users are homogeneous light users who do not consume
overage data (i.e., (C1/p)

1/α ≤ d, where C1, C2, α, and d are the same for all users),
the optimal price ρ∗ in (3.12) is ρ = C2x

1−α
max/(1− α).

From Table 3.2, we see that as long as these users have positive utility from SDOs,
they would accept as many offers as necessary to realize their maximum usage γ. Thus,
the ISP would have an incentive to charge as much as possible for these accepted
offers. However, when there is a more diverse mix of users, the largest ρ may not
be optimal. Figure 3.1(a) shows the ISP revenue as a function of ρ for a distribution
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Figure 3.2: The optimal ISP revenue always increases compared to revenue without SDOs,
and is higher for less price-sensitive (higher α) users who consume more data with SDOs
(lower xmax).

of 100 light and heavy users. The optimal ρ∗ = $5 is lower than if all users were
“light” users (Proposition 3), since the ISP can decrease ρ to encourage heavy users to
accept more SDOs. Figure 3.1(b) also shows the decrease in the percentage of SDO
subscribers (i.e., users who derive positive utility from an SDO) with SDO session
price ρ. There is a steep drop-off in the subscription rate around ρ = $6, indicating
that many users no longer derive positive utility from SDOs (C2x

1−α
max/(1− α) < ρ).

As in our analysis of SDOs’ benefits in Section 3.3.2, Figure 3.2 shows the optimal
ISP revenue for user populations with different α and xmax values, compared to a
scenario without SDOs. ISPs always increase their revenue by offering SDOs, especially
for users with a higher price sensitivity; these users will accept more SDOs to avoid
overage charges. As xmax increases, ISPs also earn more revenue, as indicated by
Corollary 2, leading to more SDO revenue.

3.4 Hourly Stackelberg Game

Building on the high-level insights provided by the monthly model, we develop a
game between users and ISPs to model hour-by-hour SDO decisions. In what follows,
we derive a decision criterion for users to accept SDOs and propose an algorithm to
optimize ISP SDO schedules.

We break the monthly billing cycle into T time steps, e.g., T = 720 hours in a
30-day month. At the start of each time step t, the ISP notifies users if an SDO
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is offered (yt = 1) or not (yt = 0). An ISP’s SDO schedule is the resulting set of
decisions {yt, t = 1, . . . , T}. If an SDO is offered at time t, users respond by accepting
or declining the SDO at the fixed price ρ. We model overage as an addition of dO to
the user’s data quota at a cost p, as offered by most ISPs [179]1.

Suppose that at time t, a user has previously consumed xc(t) of their data plan
quota and the total data quota currently sits at Dt, including any previously incurred
overages. During time slot t, the user intends to consume xt additional data at a
desired QoS level φt ∈ [0, 1]. For instance, a videoconference session may warrant a
high φt, while accessing email may tolerate a low φt. xt is the hourly counterpart of
the monthly desired data usage γ from Section-3.3, and is independent of yt. Since the
ISP reveals only the current time-slot’s SDO decision to the user instead of the SDO
schedule for the rest of the month, the user makes a reactive decision at the beginning
of each t rather than optimally planning their acceptance decisions and usage for the
month as in Section-3.3. In other words, at the start of t, the user desires exactly xt
consumption during t, and must choose between cellular data plan, public WiFi if
available, or SDO if offered (yt = 1).We account for congestion and price sensitivity
effects as follows. We define the congestion level θt of the cellular network, which
is known to both the user and ISP, as well as the typical congestion θW for public
WiFi networks. We also define δW ∈ [0, 1] as a user-specific parameter that captures
the user’s public WiFi preference, ranging from complete aversion (δW = 0) to no
aversion (δW = 1), e.g., due to WiFi’s greater security vulnerabilities. As φt increases
and θt decreases, users experience more utility from their usage. A detailed list of this
notation is presented in Table 3.3.

3.4.1 User Decision Criteria

At each time t, given an inherent xt, users must decide how to realize this consumption
without the ability to optimally plan their choices for the entire billing cycle (since they
do not know when SDOs will be offered, this would be prohibitively difficult). They
hence make decisions based on perceived utility at the current time, with awareness
of the risk of incurring future overages.

The user’s utility at time t from SDOs, her data plan, and public WiFi are

1Note that our monthly model in Section 3.3.1 uses continuous overage costs, but at the finer
hourly timescale, our overage amounts are discrete.
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Table 3.3: We provide a list of additional symbols and definitions for the dynamic interaction
model.

Symbol Definition

t indexes the time intervals that the billing cycle has been divided into
at Binary variable indicating a user’s SDO decision for tth period
yt Binary variable indicating the ISP’s SDO decision in the t-th period
xt User intended data consumption in tth period
φt QoS needs of a user’s xt ∈ [0, 1]
θt Cellular network congestion measure for the t-th period ∈ [0, 1]
θW Typical Public Wifi congestion measure in the region of interest ∈ [0, 1]
δW User-specific Public WiFi preference metric ∈ [0, 1]

respectively given by

uP (t) = (1− θtφt)xt − ρ(1− α), (3.13)

uD(t) = (1− θtφt)xt −Rtp(1− α) +NtuO(t), (3.14)

uW (t) = (1− θWφt)xtδW , (3.15)

respectively, with corresponding costs of access scaled by the user’s price sensitivity2.
Rt represents the risk of incurring a new overage in the remainder of the billing cycle
(i.e., at time τ ≥ t), which depends on cumulative data plan usage up to time t, as
well as xt. Thus, usage decisions at time t affect the future risk of overage Rτ for
τ ≥ t, as this risk evolves over the billing cycle. We account for the user’s utility from
the extra data quota earned when incurring another overage charge by defining an
overage utility uO(t). Nt = 1 indicates that the user incurs a new overage at time
t (and 0 otherwise), so uO(t) is only realized if Nt = 1. We next discuss how a user
would estimate the overage factors Rt and uO(t).

Modeling Risk Rt of New Overage. We define Rt as the probability that the
user will incur a new overage charge in the remainder of the billing cycle. Computing
this probability, however, is difficult, as the user would not know exactly how much
data they would consume in the rest of the month. We thus propose to estimate this
future usage by leveraging the user’s historical usage patterns. We suppose the user
has a typical pattern of data usage during the billing cycle, e.g., consistent usage

2At a finer time scale, the concavity of a user’s monthly utility as in Section 3.3.1 does not appear;
thus, we assume a utility linear in xt.
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throughout the cycle or gradually ramping up usage toward the end [29]. We model
these consumption trends over the billing cycle as a random process X(t) ∼ Fσ(t)(at

b)

representing the user’s cumulative (non-SDO) data consumption until time t. Fσ(t)

represents a distribution around the mean cumulative usage atb, parameterized by σt,
e.g., a normal distribution with variance σt. We can learn the parameters a, b, and σt
for each user from previous usage patterns3.

The probability Rt of incurring a new overage in the current cycle can then be
written as

Rt = P (X(T ) > Dt|X(T ) ≥ xc(t) + xt) , (3.16)

where X(T ) is the total usage in the billing cycle.

Modeling Utility uO(t) from Overage. We define uO(t) as analogous to users’
data plan utility in (3.14):

uO(t) = H min(Dt + dO,

E[X(T )|X(T ) ≥ xc(t) + xt]), (3.17)

where E[·] denotes expectation. The argument of the min function in (3.17) represents
users’ expected utility from the dO data added to their quotas with an overage subject
to their typical monthly consumption. The factor H ∈ [0, 1] qualitatively captures
any decrease in the actual utility realized in the future from the leftover data, e.g.,
due to future values of (1− φtθt). Predicting these exact values is likely impossible, as
the user does not know their future data needs, but including H abstracts from the
exact details.

Optimizing User Utility. At the start of time step t, the user chooses to
consume data on an SDO, data plan, or WiFi to maximize utility. Given the utilities
from each choice (3.13), (3.14), and (3.15), we derive the user’s optimal decision
criterion.

Proposition 4. The user’s optimal choice c∗ of data access during t when overage is

3The distribution Fσ(t) can be induced by an underlying random process on the parameters of users’
utility functions, which will drive their demands xt. However, these utility parameters are not directly
observable by the user or ISP, so we model the directly observable usage itself as a random variable.
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not incurred (Nt = 0) is given by

c∗ =


SDO, if ρ < Rtp and v > ρα′

Public WiFi, if v < ρα′ and v < Rtpα
′

Data plan, otherwise,

while the optimal choice c∗ during t when overage is incurred (Nt = 1) is given by

c∗ =


SDO, if uO(t) < (p− ρ)α′ and v > ρα′

Public WiFi, if v < ρα′ and v < pα′ − uO(t)

Data plan, otherwise.

where v = xt(1− φt(θt − θW δW )− δW ) and α′ = 1− α.

From Proposition 4, we see that when the user is not expected to go into overage
at time t (Nt = 0), SDO is the dominant choice over data plan if it costs less than the
expected overage price Rtp. Between WiFi and SDO, we see that SDO is the dominant
choice only when the congestion in the cellular network is lower than WiFi’s, subject
to how important QoS is to the user (φt) and the user’s affinity (or lack thereof) for
WiFi δW . The overage case in Proposition 4 results in Rt = 1, and SDO is better
than the data plan only if the estimated future utility from overage uO(t) is less than
additional cost incurred by an overage over SDO, subject to the user’s price sensitivity.

3.4.2 ISP Revenue Formulation

We next consider the ISP’s decision of when to offer SDOs, given that users will
respond according to Proposition 4. The ISP’s revenue ri,t from user i in time period
t is given by

ri,t = ai,tytρ+ (1− ai,tyt)ωi,tNi,tp (3.18)

where ai,t is the user’s binary decision to accept an SDO, depending on whether an
SDO is offered at time t, and ωi,t = 1 if the user does not offload to WiFi. These can
be found from each user’s decision c∗ in Proposition 4. Hence if (1− ai,tyt)ωi,t = 1,
the user does not accept an SDO but continues to use her data plan. If a new overage
is incurred by i at t, then Ni,t = 1, and the ISP earns the overage price p.
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While choosing the optimal yt for (3.18) would maximize the ISP’s revenue in
time slot t, this could be sub-optimal in regard to the monthly billing cycle. The
ISP must then account for the fact that its decision to offer an SDO at time t will
affect users’ risk of incurring an overage and hence the future acceptance of SDOs and
future revenue. Hence, even though the ISP does not reveal the future SDO schedule
to users, the current SDO decision is a function of the optimal schedule over the entire
cycle. Therefore, this must be calculated at t = 0 for maximizing revenue over the
entire billing cycle. The ISP thus aims to maximize the total revenue by optimizing
the SDO schedule y = {y1, . . . , yT} as

y∗ = argmax
y1,...,yT

E

(∑
i∈U

T∑
t=1

ri,t

)
(3.19)

In the revenue optimization in (3.19), note that the revenue terms ri,t are necessarily
dependent on each other over time, seen by the inclusion of overage and conditional
decision terms in (3.18). Most importantly, the expectation appears in (3.19) to
capture the effects of the uncertainty in user decisions. In practice, the ISP could
execute y∗t at each time t and then re-compute its optimal schedule for the rest of a
billing cycle given updated estimates of user parameters.

3.4.3 Optimizing ISP Revenue

To solve (3.19), the ISP must compute the distributions of Ni,t and ai,t for each user
so as to derive the expectation of ri,t in (3.18), noting that both depend on previous
values of yt. To do so, the ISP must estimate the parameters θt, αi, and φi,t that
influence users’ SDO acceptance decisions in Proposition 4. While the ISP would
know the cellular and WiFi congestion levels θt, it would need to use historical data
from the user to estimate the user-specific φi,t and αi parameters. The ISP must then
estimate the distribution of users’ future usage xi,t. We suppose that it does so using
the same method as the user in Section 3.4.1. Given this knowledge of user behavior,
we can then recast (3.19) as a dynamic program and derive a heuristic algorithm to
compute an approximate solution.

Dynamic Programming Formulation. The solution to (3.19) can be found
by formulating the following Bellman equation for computing the optimal revenue
V ∗t at t. It can be expressed as a function of the current time step decision yt that
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maximizes the current time-step revenue rt as well as the revenue from the next
time-step V ∗t (Dt+1, t+ 1), which in turn is a function of yt+1 and so on. That is,

V ∗t (Dt, t) = max
yt

(rt + V ∗t (Dt+1, t+ 1)) , (3.20)

where the boldface Dt is a vector of all users’ data quotas and all of the terms depend
on current and past values of yt. The corresponding yt value becomes the tth entry in
y∗. User quotas Dt+1 at time t+ 1 are a function of yt given by:

Di,t+1 = Di,t + (1− ai,tyt)ωi,tNi,tdO (3.21)

wherein the quota only increases if the user consumes under the regular data plan and
further incurs an overage due to this. Thus, this data quota state update mechanism
at every time step captures the tradeoff between overage and SDO revenue, dependent
on both yt and Dt. The results of solving (3.20) are presented in Section 3.5.

Fast Pruning Algorithm. Finding an optimal dynamic programming solution
is known to be difficult. Since the ISP’s decision variables yt are binary, our problem
is NP-hard. We thus develop an approximation algorithm for (3.20) that efficiently
prunes the search space of possible SDO schedules. Our near-optimal numerical results
are given in Section 3.5.

Algorithm 1 presents the details of the algorithm. To facilitate our discussion, we
define an outcome state Ot,~y at time t as the vector of estimated accrued consumption
for each user and accrued revenue for the ISP, given the yτ decisions chosen at previous
times τ ≤ t. At each time t, we consider both possible ISP decision choices: yt = 0 (do
not offer SDO) and yt = 1 (offer SDO). For each choice, we prune among the possible
SDO schedules by retaining only one outcome state of the option under consideration.

At t = 1, we start with one initial state of no usage or revenue. We then consider
decisions y1 = 1 and y1 = 0 with resulting outcome states O1,1 and O1,0. At the next
time step, t = 2, we again consider y2 ∈ {0, 1} and end up with two outcome states
for each. For example, we could move to y2 = 1 from either O1,1 (ending up in O1,(1,1))
or from O1,0 (ending up in O1,(0,1)). For each choice of y2, we pick the outcome state
that has higher aggregate revenue (hence implicitly choosing the associated parent
state from t = 1). We continue until time T , when we chose the final outcome state
O1,(y1,y2...,1) or O1,(y1,y2...,0) with higher accrued revenue. By not pruning between the
two yt options in each time step, but instead pruning between their possible outcome
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Algorithm 1: ComputeSDOSchedule: Fast Pruning Algorithm for SDO
Schedules.
Input : a,b, σ
Output :T-sized array of binary values

1 . Columns of all matrices are 0-indexed
2 usageState[0, :]← [0]
3 revenue[0, :]← 0
4 for t← 1, . . . , T do
5 for y ← 0, 1 do
6 for prevY ← 0, 1 do
7 currUsage← usageState[t− 1, prevY ]
8 currRev ← revenue[t− 1, prevY ]
9 incRev ← 0

10 for each u ∈ {Users} do
11 [newUserUsage, newRev]←

estIncUsageThisHour(currUsage[u], y, a[u], b[u], σ[u, t])
12 incRev ← incRev + newRev
13 newUsage[u]← newUserUsage

14 revV sY Decision[prevY ]← incRev + currRev
15 usageV sY Decisions[prevY ]← newUsage

16 if revV sY Decision[0] > revV sY Decision[1] then
17 ySchedule[t, y]← 0
18 usageState[t, y]← usageV sY Decisions[0]
19 currRev[y]← revV sY Decision[0]

20 else
21 ySchedule[t, y]← 1
22 usageState[t, y]← usageV sY Decisions[1]
23 currRev[y]← revV sY Decision[1]

24 if currRev[T, 0] > currRev[T, 1] then
25 return ySchedule[0]
26 else
27 return ySchedule[1]
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states, we account for the effect of accruing outcomes between the decision branches
for yt = 1 and yt = 0.

While the ISP calculates optimal SDO schedule at t = 0, it strategically does
not reveal this to the users, hence gaining the advantage (amongst others detailed in
Section 3.5) to observe users’ accrued consumption in the current billing cycle and
measure any significant deviations from the learnt a, b and σ2

T . This deviation from
typical historic trends could be especially considerable when the ISP first introduces
SDOs, as offloading to SDOs impacts the usage trend under the regular data plan.
To accommodate such externalities, the ISP might use the following online learning
procedure to recompute user characteristics and subsequently the SDO schedule for
leftover timesteps.

Update Criteria. The ISP can periodically calculate the likelihood of the observed
xcs over the duration of the billing cycle and determine whether the user’s consumption
trend in the current month is in keeping with the learnt model. Given a vector of
observed ~xc and corresponding time-intervals ~t, the update criteria is defined as:

p( ~xc(t)| ~µ(t), ~Σ(t)) =
t∏
i=1

1√
(2π)t|Σ|

(3.22)

exp
−(xc(i)− ~µ(t))′Σ−1(xc(i)− ~µ(t))

2
(3.23)

u( ~xc(t)) =

1, if p( ~xc(t)|a(t)b, σ2
t ) ≥ TU

0, otherwise
(3.24)

where u is the update decision, and TU is a pre-defined empirical threshold for the
likelihood of observations ~xc(t), below which the user is determined to be significantly
deviant from their expected trend.

Update Algorithm. If the update decision u is affirmative, the ISP can use weighted
Maximum Likelihood estimation to recalculate the learned parameters, where the
observations of the current cycle ~xc are assigned a weight inversely proportional to the
likelihood of the observations, and the rest of the historic observations are weighed
equally. i.e.,

Wi(S) =


(1−p( ~xc(t)|a(t)b,σ2

t ))

|S| , if S = ~xc(t)

p( ~xc(t)|a(t)b,σ2
t )

|S| , otherwise
(3.25)
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Figure 3.3: The revenue from SDOs far exceeds that from overage when the ISP plans its
SDO schedule optimally.

3.5 Trace-Driven Evaluation of the Hourly Model

In this section, we illustrate user and ISP decisions in our hourly model. We use a
cellular usage trace from 20 users to show that ISPs gain revenue from making SDOs
and that the SDO schedule computed by our pruning heuristic (Algorithm 1) is close
to the optimal. We then examine the effect of the SDO price ρ. We show that ISPs
can exploit user uncertainty to earn more overage revenue as ρ increases and that ISPs
experience a tradeoff between maximizing their revenue and their network utilization
in making SDO offers. We also draw comparisons between our findings and Verizon’s
existing PopData deployment.

Simulation Setup. For illustration, we reduce the duration of the billing cycle to
24 hours, with an associated data overage threshold of 50MB (equivalent to a 1.5GB
monthly quota). Our user-specific consumption patterns are taken from a one-week
cellular usage trace of 20 users. The availability of public WiFi hotspots to users is
drawn from a Rayleigh distribution with parameter 0.25 (where an availability below
0.5 is considered unavailable), as are users’ price sensitivities α. We set θw = 0.5 and
draw θt and δW from a uniform distribution between 0 and 1. The ISP never offers
SDO during hours 2-5 as typical network use is very low during these hours of the
night; it also does not offer SDOs at 8AM and 6PM due to already high network
congestion as done by Verizon with PopData [163]. These configurations apply to the
following results unless noted otherwise.

Optimal ISP Revenue We first analyze the revenue calculated by the ISP as
a function of the optimal SDO schedule for each ρ ∈ [1, 9]; for larger ρ, users do
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(a) Optimal SDO Schedule vs. SDO Price (b) ISP Revenue vs. ρ over SDO decision meth-
ods

Figure 3.4: We illustrate the dependence of ISP revenue on the SDO price ρ. Our results
indicate that (a) our heuristic SDO schedule closely matches the optimal one, with an exact
match for very low or high fees ρ, and (b) our heuristic yields nearly the same revenue as the
optimal SDO schedule, with significant improvement over a random schedule.

not accept SDOs as they would prefer to incur overage fees. Figure 3.3 shows that
the optimal revenue is non-convex in ρ, with the maximum revenue at ρ∗ = 3. The
ISP earns substantial revenue from making SDOs compared to not making them
(represented by the revenue at ρ > 9, where users would not accept SDOs), with
this additional SDO revenue exceeding lost revenue from overage. Since users do not
increase their data usage when they avail SDOs (as opposed to consuming under
their regular data plan or under WiFi), this substantial increase in revenue that the
ISP experiences at certain values of ρ with optimal planning is largely attributed
to their successful exploitation of user’s suboptimal and myopic risk assessment (cf.
Propositon 4) stemming from their overage-averseness.

SDO Schedules. Figure 3.4(a) compares the optimal ISP schedule for each value
of ρ to the schedule generated by the fast pruning algorithm (Algorithm 1). Our
pruning algorithm yields the optimal schedule when ρ is very low or high, and it
closely trails the optimal schedule in other cases. When ρ = 1, the ISP does not offer
any SDOs. Even though this SDO price is low enough to attract many users, the
resulting SDO revenue does not compensate for the ISP’s loss in overage revenue. As
ρ increases, the ISP selectively makes SDOs in more hours. When ρ is sufficiently
high, at $7, the ISP makes an SDO in all hours, as its revenue from users’ acceptance
of an SDO exceeds any resulting loss in overage fees.

We next examine the revenues achieved by our pruning algorithm in Figure 3.4(b),
with a low data overage threshold of 2MB. Our algorithm nearly achieves the revenue
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(a) Effect of Overage Threshold on Optimal ISP
Revenue

(b) Users’ Overage vs SDO spending over SDO
price

Figure 3.5: As users’ data quota decreases, (a) ISP revenue is maximized at higher SDO fees
ρ. As ρ increases, (b) ISP’s continue to make steady income from SDOs as in Figure 3.4(a).
For each ρ, the ISP exploits user uncertainty in when SDOs will be offered, choosing its
SDO schedule so as to induce users to myopically accept SDOs, even though the SDO fees
incurred exceed users’ future overage charges.

with the optimal schedule at all prices ρ. Both significantly improve the ISP revenue
compared to a random schedule, with a 20% increase at the optimal ρ∗ = 9, emphasizing
the ISP’s benefit from optimizing its SDO schedule. We next examine ISP benefits in
more detail by comparing their overage and SDO revenues and considering the effect
of SDOs on network utilization. These results use the optimal SDO schedule.

Overage vs. SDO revenue. We first examine the effect of users’ overage
thresholds on ISP revenue. Figure 3.5(a) shows that users incur more overage charges,
increasing ISP revenue, as the overage threshold decreases from 50MB to 800KB.
Moreover, the optimal SDO price ρ∗ also increases as the ISP would discourage them
from accepting SDOs and lowering its overage revenue. Hence, only higher values of ρ
incentivize the ISP to offer SDOs as more users go into overage. In Verizon’s PopData
deployment, each PopData session costs $2, indicating that few users would incur
overage charges.

To confirm this intuition, we visualize user spending on overage and SDO fees in
Figure 3.5(b) for an overage threshold of 1.5MB. Surprisingly, users spend more money
overall under most regions of ρ with SDO than without. Without SDOs (at ρ = $10

when no users accept SDOs), users spend approximately $200 total on overage fees.
At 20 users and $10 for an overage, this implies 20 overages overall in the billing cycle.
For the same data needs, users spend significantly more when offered SDOs. We show
below that this substantial increase in revenue is not due to any significant shift from
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Figure 3.6: Distribution of aggregate user usage across the population. The Distributions
are representatives of two populations. One, with price sensitivity 0.8 and another with price
sensitivity 0.3

WiFi to SDOs. Instead, it is a direct consequence of users’ inability to predict when
future SDOs will be offered.

As users approach a new overage, i.e., Rt from (3.14) increases, they are more
likely to accept SDOs. They do not, however, anticipate this increase in Rt in advance.
As shown by users’ myopic hourly utilities in (3.13–3.15), lack of information about
future SDOs forces users to make bounded-rationality choices. Aversion to future
overages then biases users towards accepting the SDO, allowing the ISP to plan its
SDO schedule such that users’ myopic decisions yield much higher revenue than the
ISP could otherwise gain. While some users may avoid these charges, Figure 3.5(b)
shows that most spend more under SDOs. If users, as in the monthly model, could
plan their optimal usage up-front knowing the future SDO schedule, they could avoid
these charges. If users, as in the monthly model, could plan their optimal usage
up-front with the knowledge of the future SDO schedule, then they would properly
balance SDO spending. In Figures 3.6 and 3.7, we show that in our monthly model,
users consume more data with SDOs compared to without. Despite this increase in
usage, however, they spend only slightly less with SDOs than without, indicating that
they better balance their SDO spending with overage charges.

Network utilization vs. revenue. We finally examine the effect of WiFi
availability on ISPs’ revenue and network utilization. Though SDOs could incentivize
users to consume cellular instead of WiFi data, thus allowing ISPs to monetize this
otherwise “lost” usage, we find that there is a tradeoff between maximizing ISP revenue
and the network utilization.

Figure 3.8(a) depicts the amount of data traffic onboarded onto the ISP’s network
from WiFi, as a function of ρ as well as the distribution of users’ WiFi preference
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Figure 3.7: Distribution of total user cost across the population. The Distributions are
representatives of two populations. One, with price sensitivity 0.8 and another with price
sensitivity 0.3

(a) (b)

Figure 3.8: (a) The amount of public WiFi data captured by the ISP’s network due to
SDOs is non-monotonic in ρ, reflecting the ISP’s strategic choices in computing the optimal
SDO schedule. (b) The ISP can make more revenue from users with lower WiFi preferences,
since these users would be more likely to accept SDOs. Comparing the revenue with the
network utilization in (a), the revenue maximizing ρ does not maximize network utilization.
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factor δW . Though the overall network utilization decreases as ρ increases, which we
would expect since a higher SDO price ρ would lead to fewer users accepting SDOs
instead of using WiFi, this decrease is non-monotonic. This is a direct effect of the
ISP jointly optimizing ρ and the SDO schedule such that the optimal SDO offerings
at each price are made strategically in hours that balance the ISP’s predicted revenue
from cellular onboarding and overage fees. Moreover, comparing Figures 3.8(a) and
3.8(b) shows that while network utilization is maximized at ρ = 1, ISP revenue is
maximized at higher prices.

Our result realizes a key consequence of the dynamics of hourly SDO games. The
ISP is able to learn user intentions from historical data and strategically choose the
SDO schedule and price to maximize its revenue. Users are then at a disadvantage;
even though they may increase their utility by switching from WiFi to SDOs, the
ISP’s offered SDO schedule and price does not maximize this utility increase. Thus,
the ISP is able to control the information revealed about SDOs to profit from users’
consequential myopic actions.

3.6 Mitigating User Suboptimality in the Hourly

Model

As the empirical study above shows, the ISP is able to exploit users’ averseness to ex-
pensive overages (along with the ISP’s knowledge of their historical data consumption
trends) to increase its revenue without corresponding increases in user data consump-
tion utility. Indeed, with the optimal ISP schedule and price, the ISP times SDOs such
that users that rely on the overage-averse framework in Proposition 4 to decide their
SDO acceptances end up spending significantly more for equivalent data consumption
as earlier (i.e. without SDOs). However, our analysis of the monthly abstraction in
Section 3.3 shows that users can substantially benefit from SDOs in practice with
complete up-ahead information that allows for optimal planning. This indicates that
simply being overage-averse by accounting for typical monthly utilization when making
real-time decisions about ad-hoc SDOs is insufficient to compensate for the lack of
up-ahead knowledge about future SDOs. Users’ inability to forecast future SDOs and
plan their data consumption optimally effectively eliminates any advantages they may
otherwise gain from SDOs and, in-fact, actively hurts them.
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We hence propose to mitigate this suboptimality in users’ real-time SDO deci-
sions by using reinforcment learning techniques to learn the ISP offer schedule and
make optimal decisions in realtime by using the learnt information. Since individual
users have no prior knowledge either of the ISP offer decision model or of other users’
parameters (e.g α, σ) that the ISP’s offer model depends on, we utilitize model-free
reinforcement learning techniques that directly learn the optimal choices to make by
interacting with the ISP rather than by explicitly attempting to construct a model of
the ISP decision process and then perform optimal planning with it. Since each billing
cycle spent exploring results in monetary costs to the user, we devise techniques to
hasten convergence of the learning algorithm by exploiting partial model knowledge
of how state transitions occur in this environment.

3.6.1 Defining the MDP

We first define the user’s decision process. Each episode spans one billing cycle; let
t = 1, 2, . . . , 24 index the hours within the current billing cycle. A user’s state St at the
beginning of any hour t consists of the following information St = (xt, φt, ψt, yt, Dt −
xc(t), t), where ψt is a binary variable indicating whether public WiFi is available
during t or not. The action At that the user takes at t in state St is indicated by the
tuple (at, wt) where wt is a binary variable indicating whether the user chooses Public
WiFi; note that at = 1 implies wt = 0 and wt = 1 implies at = 0. at = 0 and wt = 0

implies that the user chooses to consume data under their regular Data Plan for that
hour. Note that these state transitions are Markovian; xt, φt and ψt are stochastic
variables parametrized by t, the remaining data quota Dt − xc(t) can be derived from
previous state’s value and action taken, while the ISP’s offer decision yt is independent
of previous states given the last state St−1 of all users (see Algorithm 1). In-fact,
we further assume that the ISP’s SDO schedule is computed using historical user
data before the billing cycle begins. Hence different users’ actions are independent
since the ISP’s SDO schedule is not affected by any individual user’s choice of actions
during the billing cycle/RL game; that is, the environment is stationary. We drop the
user-specific subscript i from ai,t and correspondingly wi,t since we implicitly consider
a generic user i here.

The reinforcement learning (RL) agent (i.e. the user) receives a reward Rt after
executing action At from state St that reflects the data consumption benefit from the
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action less the costs incurred. We now define this reward function as

Rt =



(1− θtφt)xt − Cρ(1− α), if ytat = 1

(1− θWφt)xtδW , if ψtwt = 1

(1− θtφt)xt − CNtp(1− α), if at + wt = 0

−10000 otherwise

(3.26)

where C is a empirically determined cost scaling factor that serves to make the data
benefit term on the LHS (denominated in Bytes) comparable with the data cost term
on the RHS (denominated in $). Note that we abuse the notation of Nt here and
use it to refer to the exact number of overages incurred at t from executing At in
St rather than simply indicating whether an overage occurred or not. Finally, we
set a large negative reward (−10000) when the RL agent attempts to make invalid
state transitions such as choosing SDO when there is no SDO offer (at = 1, yt = 0) or
choosing WiFi when there is no WiFi available (ψt = 0, wt = 1).

3.6.2 24-hour Billing Cycle

We first consider the exact scenario used in Section 3.5 where we perform trace-driven
evaluation with 20 users with a reduced billing-cycle length of 24 hours. This allows
us to compare the effectiveness of the reinforcement learning technique in making
optimal SDO choices with the overage-averse user-decision model (see Proposition 4)
whose results have been analyzed in Section 3.5. Subsequently, we consider a realistic
720-hour billing cycle length; the larger state space that this results in demands more
sophisticated learning techniques that we then study.

Learning Framework. Since the user’s MDP is finite (each episode terminates
after 24 hours of the billing cycle), stationary, and all actions can be repeatedly
sampled in all states, Q-learning[167] is guaranteed to find an optimal action-selection
policy given sufficient exploration time. With this technique, the agent learns the
maximum expected value of the total reward possible for the rest of the episode
from being in a state St and taking an action At from the set of available actions
At at t. Based on the Bellman equation of the Q value [167], this Q value, i.e.
Q(St,At), is updated after every state transition. However, the presence of real-valued
variables like xt and φt make our state space continuous and hence impossible to
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exhaustively traverse and explore in finite time. We hence utilize a deep neural
network for Q function approximation, which aids in generalizing past experiences
to yet unexplored states. We retain an experience replay buffer of fixed size in
memory [122, 123] where traversed episodes are stored, and randomly sample state
transitions from the replay buffer during every training epoch. Such Deep Q Networks
(DQN) though have been shown [176] to be subject to significant overestimation
bias and consequently converge on poor action-value policies or not converge at all.
We therefore utilize Hasselt et al.’s Double DQN technique [176], where we have a
running neural network model Q and a target neural network model Q’. When a state
transition (St,At)→ (St+1,At+1) is sampled from the replay buffer for training, the
target model Q’ is used for selecting the optimal action from transitioned-to state St+1

and the running model Q is used for evaluating this action. That is, the updated Q
value Q∗(St,At) is given by Rt+DQ(St+1, argmaxA′ Q

′(St+1,A′)), where D represents
the discount factor. We minimize the mean squared error between Q∗ and Q and,
at lower frequency, periodically copy the parameters of the running model Q to the
target model Q’.

Increasing Training Samples Per State Transition. Every state transition
that the agent makes where it explores the environment is a source of potential
monetary loss to the user; on the other hand, prematurely minimizing exploration
may result in the agent getting trapped in a local optimum and making consistently
poor SDO acceptance choices going forward, which also results in significant monetary
loss to the user. It is hence highly desirable to extract as much learn-able information
as possible from each state transition to hasten the agent’s convergence to the optimal
solution. Here, we achieve this by generating three training samples instead of just
one from each state transition by using our partial a-priori knowledge of how state
transitions occur.

Note that at any time t, given St and the reward function as defined in Eq 3.26, the
agent can fully calculate the reward it would receive from taking any of the available
actions (i.e. choosing SDO, Public WiFi or Data). However, the agent cannot compute
the subsequent state St+1 at t since xt+1, φt+1, ψt+1 and yt+1 are not known until
the beginning of the next hour t + 1; note that we consider the challenging case
of stochastic xt+1 that makes the user’s hourly consumption variable. The cellular
and WiFi network’s QoS parameters θt and θW required to compute Eq 3.26 are
known up-ahead through historical observation (as assumed for the evaluation of
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the overage-averse hourly model in Section 3.5 as well) and Dt+1 − xc(t+ 1) can be
deterministically computed given St and At.

Given a complete state transition (St,At)→ St+1 however, the agent now also has
knowledge of the previously unknown variables xt+1, φt+1, ψt+1 and yt+1. Crucially,
note that these components of the state do not depend on the action executed in the
previous state. At St+1 then, the agent can retrospectively calculate the hypothetical
reward Rhyp

t and hypothetical state transition Shypt+1 that would have been realized
for each available action Ahypt ∈ At where Ahypt = At has already been executed and
realized as current state St+1.

Exploiting this feature of our environment, we are able to extract three well-formed
state transitions for each actual transition that the agent makes. The actual transition
is realized by picking one of the three available actions, i.e. SDO, Public WiFi or
Data Plan. The hypothetical transitions for the other two actions not executed are
than computed ex-post. Three training samples are extracted per interaction that the
agent has with the environment and all three are added to the relay experience buffer.
A total of 72 state transitions are acquired from one 24-hour billing cycle that the
agent steps through.

Evaluation. For our DQN (running as well as target models), we implement a
3-layer neural network. The input consists of the six values in a state tuple; the first
two layers are 24-unit fully connected dense layers and use ReLu activations. The final
layer uses a linear activation and outputs a 3-sized vector where each value correponds
to the predicted Q value of that action. All layers use the Xavier normal initializer. We
minimize the mean squared error and use the Adam optimizer, with a learning rate of
.0001. We set the discount factor D to .95. We use a replay experience buffer that has
a maximum size of 10000 state transitions and initiatize it with 2000 transitions made
only using valid actions (for e.g. we do not allow the agent to pick WiFi when WiFi is
not available). During training time, we follow an ε-greedy technique for exploration;
we set ε = .5 initially and decrease it by 4.5e−4 every episode. We continue to restrict
the agent only to valid actions in each state, whether exploring or exploiting, but
note that the unexplored actions (whether valid or invalid) are accounted for in the
additional 2-state extraction process described above. Hence the agent also learns
which actions are invalid in specific states. During training time, we continue adding
the agent’s state transitions to the experience replay buffer; once every 8 hours (or
state transitions) in the billing cycle, we pick 128 ∗ 3 samples from the buffer and
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(a) ISP Revenue (aggregated across users) in One
Billing Cycle after Training completes

(b) Aggregate Reward across agents in One
Billing Cycle after Training completes

Figure 3.9: The policy learnt by the RL agents results in (a) net aggregate lower spending
(or ISP revenue) and (b) equivalent or higher cumulative rewards, in comparison with the
regime without SDOs as well as the overage-averse decision strategy to accept SDOs.

train the running model over 12 epochs (with shuffling). At the end of every episode,
we update the target model with the weights of the running model. Since the reward
function values (i.e. Q values) fall in a wide range and are unbounded, we stabilize
the loss function by reducing the reward associated with each state transition with a
multiplicative reward scaling factor. We set this reward scaling factor to 10−5 and
decrease it upto 10−7 for some users whose rewards evaluate to orders of magnitude
larger. We set the cost scaling factor C mentioned in Eq 3.26 to 35; note that we used
the same cost scaling factor in Section 3.5 for the experiments on the overage-averse
hourly user decision model. Finally, we normalize the unbounded parameters of the
state tuple, namely xt and Dt − xc(t), before training the DQN by dividing these by
an estimate of the maximum values they can take in the experiment. We normalize
the sixth state parameter t by dividing it by 24.

We compare users’ performance in terms of their spending and reward with the
RL technique against performance without RL (i.e with the hourly decision model
being used to decide SDO acceptance) and performance without SDOs (i.e. with
the hourly decision model being used to decide between consuming under WiFi and
Data Plan). In the latter two cases, though there is no reinforcement learning being
done by users, reward for user actions are still calculated using the same reward
function as the one in (3.26); these rewards do not inform user actions but serve as
a meaningful metric of how the user’s realized utility changes over the month when
compared to the utility resulting from the RL-derived policy. Figure 3.9 depicts the
total user spending (i.e. ISP revenue) and rewards in one billing cycle; we compare

56



performance without SDOs and with SDOs but without RL (i.e. when the hourly
decision model is used) to performance with the RL agent when its training is finished
(i.e. the agent always exploit in each state of the billing cycle). First, we observe
that the RL technique results in the lowest aggregate user spending and highest total
agent reward even as the variance in users’ hourly desired consumption increases
(xt). Second, we note that performance degrades with the overage-average hourly
decision model compared to the scenario where SDOs are not offered, reaffirming
the observations in Section 3.5 that the myopic decision-making strategy is exploited
by ISPs to have users spending more for the same or marginally lower data benefit
(resulting in a net lower reward). In-fact, the overage-averse model performs worse as
users’ variance in hourly consumption increases, rendering the strategy unsuitable for
practical scenarios. The trained RL agent, on the other hand, is effective in maximizing
users’ aggregate utilities compared to the overage-averse one. It even results in slightly
higher aggregate reward compared to the regime without SDOs (Figure 3.9(b)) by
lowering users’ spending for equivalent data benefit (Figure 3.9(a)). Indeed, this the
best possible outcome; since we do not modify users’ desired data consumption for
an hour in response to that hour’s SDO offer decision, the amount of consumed data
per user is same under all regimes. However, with optimal actions learnt using RL,
some users start to reduce overages they originally incurred (in the regime without
SDOs) and instead strategically accept SDOs in certain hours that result in a net
lower cost for them. Note that this substantiates findings from the analysis of the
monthly model in Section 3.3 where, with full information from the ISP about SDO
offers and optimal planning, users could potentially benefit from SDOs by reducing
spending.

We further delve into this by studying reward and spending changes for individual
users in the simulation when they employ RL for making SDO choices compared to
the regime without SDOs. Figure 3.10 depicts the cumulative distribution function
of percent change in user spending and reward with RL compared to without SDOs,
for different values of variance in hourly user consumption. We observe that the RL
agent sometimes results in increased net spending by accepting SDO offers while
also resulting in decreased net spending for some users (by decreasing overages and
strategically accepting SDOs instead). When the hourly variance is low (between
1− 100KB), spending and rewards largely remain equivalent as without SDOs, with
approximately 10% of users experiencing a net increase in rewards upto 15%. Based
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(a) % Change in User Spending with RL wrt
Without SDO after Training completes

(b) % Change in Agent Reward with RL wrt
Without SDO after Training completes

Figure 3.10: The policy learnt by the RL agents results in (a) equivalent spending as the
regime without SDOs for most users with some users experiencing an increase or decrease
upto 50%, and (b) largely increases in the realized reward for most users.

on the trace-driven parameters of the 20 users in the simulation, the net effect across
users is either equivalent spending or lower spending compared to the regime without
SDOs, as seen in Figure 3.9.

Finally, we show the number of training iterations required for the learning al-
gorithm to converge to an optimal policy that yields stable per-episode spending
and reward for two representative users, in Figures 3.11 and 3.12. For the user in
Figure 3.11, it takes approximately 10 24-hour episodes with the ISP to converge on a
stable policy, while for the user in Figure 3.12, it takes approximately 50. However,
note that as described earlier, 384 interactions with the ISP are used to train the
model per billing cycle; hence data from 16 rounds of 24-hour episodes with the ISP
are used in training in one episode. A convergence time of 10 − 50 billing cycles
observed in Figures 3.11 and 3.12 therefore corresponds to 160− 800 billing cycles of
data that the agent has trained on before convergence. We observe that across the 20

users in the simulation, heavier data users that incur more overages and costs (even
without SDOs) tend to take require more episodes to converge (not shown); the user
depicted in Figure 3.12 takes the longest convergence time in our set. We note that
while convergence time appears to vary across users based on their data consumption
trend over the billing cycle, it does not vary substantially across different values of
variance in hourly consumption for a given user.
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(a) Evolution of Per-Cycle Spending over Train-
ing Iterations

(b) Evolution of Per-Cycle Reward over Training
Iterations

Figure 3.11: We show the moving average of (a) ISP revenue (i.e. user spending) and (b)
agent reward for a single user in the simulation by greedily exploiting the learnt policy at
the end of each training iteration.

(a) Evolution of Per-Cycle Spending over Train-
ing Iterations

(b) Evolution of Per-Cycle Reward over Training
Iterations

Figure 3.12: We show the moving average of (a) ISP revenue (i.e. user spending) and (b)
agent reward for another user in the simulation by greedily exploiting the learnt policy at
the end of each training iteration.
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3.6.3 720-hour Billing Cycle

While the previous setup allowed us to compare results based on the RL technique
with the ones shown in Section 3.5 based on the overage-averse decision model, we
now evaluate whether the RL technique performs equally well on a more realistic
setting with a 720-hour billing cycle as is typical. We first find that the simple
Double DQN technique used above does not yield promising results here. The state
space is now much larger and the agent must learn to associate actions and rewards
that are hundreds of billing-cycle hours away from one another. We hence turn to
more sophisticated RL approaches that allow us to account for realized gains several
timesteps into the future.

Learning Framework. Specifically, we utilize the N-Step Advantage Actor-Critic
Model [167] which provides a balance between bootstrapping the value function and
using the full Monte-Carlo return by using an N-step trace as the learning signal.
Note that with N = 1, this simply reduces to a regular Advantage Actor-Critic
network (A2C) and with N =∞, this reduces to the episodic policy-gradient based
REINFORCE algorithm [167].

The Actor and Critic models are parameterized by two deep neural networks; the
Critic estimates the state-value function V (S) that indicates the maximum expected
reward realizable from a state until the end of the episode, while the Actor network
estimates the optimal policy function and updates the policy distribution in the
direction suggested by the Critic. To mitigate the high variance and noise in vanilla
policy gradients, gradient updates of the Actor network are scaled by the N-step
Advantage values. We minimize the advantage-scaled cross-entropy loss for the Actor
model and the root mean squared error for the Critic model.

Evaluation. For the Actor model, we implement a 4-layer neural network which
takes as input a state tuple of 6 values. Each layer is a dense linear layer that is
initialized using the Variance Scaling method; the 32-unit first layer uses the ReLu
activation function and is followed by two 24-unit layers that also use ReLu activations.
The fourth layer uses the Softmax activation to output a 3-sized vector indicating
the probability with which each of the three actions should be executed. The first
three dense layers all employ a 20% dropout rate. The Critic model uses the same
architecture as the Actor but outputs just one value indicating the predicted maximum
value of being in the input state. Both models use the Adam optimizer with a learning

60



(a) ISP Revenue (aggregated across users) in One
Billing Cycle after Training completes

(b) Aggregate Reward across agents in One
Billing Cycle after Training completes

Figure 3.13: The policy learnt by the RL agents results in (a) substantially lower user
spending than the overage-averse decision model, for (b) equivalent cumulative rewards as
the regime without SDOs.

rate of 10−3. We set the discount factor D to .99. During training time, we follow an
ε-greedy technique for exploration where the Actor model is used to guide exploitation;
we set ε = .8 initially and decrease it by 4.5e−3 every episode. We set N to 200, hence
the agent first samples an entire episode of 720 timesteps, then computes 200-step
lookahead return for the state transitions seen in that episode. The Critic model is then
trained with these 720 states and computed returns over 10 epochs (with shuffling).
Note that the state tuples are normalized as earlier. The Actor model is trained once
every 5 episodes with the normalized Advantage values. As done previously, we retain
a cost scaling factor of C = 35 and a reward scaling factor between 10−5 and 10−7.

As earlier, we compare users’ performance in terms of their spending and reward
with the RL technique against performance without RL (i.e with the hourly decision
model being used to decide SDO acceptance) and performance without SDOs (i.e.
with the hourly decision model being used to decide between consuming under WiFi
and Data Plan). Figure 3.13 depicts the total user spending (i.e. ISP revenue) and
rewards in one billing cycle when the RL agents are finished training. We observe
that the myopic decision model to decide SDO acceptances results in substantially
more spending for the user (for the same net data consumption) compare to the
regime without SDOs; in-fact, the increase in suboptimal spending for this case of
the 720-hour billing cycle is much larger than the increase observed in Figure 3.9(a)
Correspondingly, the cumulative rewards of agents using the hourly decision making
policy for SDOs is negative. The trained RL agent, on the other hand, eliminates
most of the increased spending that the hourly decision model results in; the RL
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(a) % Change in User Spending with RL wrt
Without SDO after Training completes

(b) % Change in Agent Reward with RL wrt
Without SDO after Training completes

Figure 3.14: The policy learnt by the RL agents results in (a) largely equivalent spending
and (b) largely improved reward, as the regime without SDOs.

agent results in marginally higher aggregate spending for users for net equivalent
aggregate rewards across them, when compared to the regime without SDOs. This is
explained by the cost scaling factor C that is used in the reward function (see Eq 3.26)
to reconcile the difference in units between the data benefit terms and the cost terms
involved. This scaling factor essentially determines how sensitive the reward function is
to the cost term; since the RL agent here results only in a marginally higher aggregate
cost, the cost scaling factor is not large enough for this to result in a substantitive
decrease in the reward.

Figure 3.14 depicts the cumulative distribution function of percent change in user
spending and reward with RL compared to without SDOs, for different values of
variance in hourly user consumption. We observe that the RL agent results in a very
significant increase in spending for a very few number of users; most users, however,
experience a net small increase in their reward. Since the RL algorithm optimizes the
policy it learns based on reward maximization, this indicates that the agents at large
learn to choose actions that maximize their reward, despite this resulting in increased
spending for a few users.

Finally, we show the number of training iterations required for the learning algo-
rithm to converge to an optimal policy that yields stable per-episode spending and
reward for the same two representative users as earlier, in Figures 3.15 and 3.16. Note
that in this case, we test the learnt policy once every 25 episodes. As seen, the user in
Figure 3.15, converges to a stable policy within the first test, i.e. within 25 episodes.
For the heavier data user in Figure 3.16 (who required more iterations to converge
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(a) Evolution of Per-Cycle Revenue over Training
Iterations

(b) Evolution of Per-Cycle Reward over Training
Iterations

Figure 3.15: We show the moving average of (a) ISP revenue (i.e. user spending) and (b)
agent reward for a single user in the simulation by greedily exploiting the learnt policy at
the end of each training iteration.

(a) Evolution of Per-Cycle Revenue over Training
Iterations

(b) Evolution of Per-Cycle Reward over Training
Iterations

Figure 3.16: We show the moving average of (a) ISP revenue (i.e. user spending) and (b)
agent reward for another user in the simulation by greedily exploiting the learnt policy at
the end of each training iteration.
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for the 24-hour cycle as well), the agent only converges between 50 − 75 episodes.
Similar to the 24-hour case, we see that while convergence time appears to vary across
users based on their data consumption trend over the billing cycle, it does not vary
substantially across different values of variance in hourly consumption for a given user.

3.7 Discussion

While the reinforcement learning techniques used above are effective in making optimal
SDO acceptance decisions for users, convergence requires upto hundred of episodes
for the 24-hour as well as 720-hour billing cycles. Note that the use of the N-step
advantage function used in the latter also renders the earlier technique of extracting
multiple training samples from a state transition (used in the 24-hour billing cycle
case) inapplicable here. This lengthy convergence time represents expensive billing
costs in the order of thousands of dollars incurred by users in months that they
spend exploring the environment, before starting to exploit the discovered optimal
solutions. To reduce this duration and make the use of this technique practical, we
plan to exploit our paritial model knowledge of how state transitions occur in the
environment to pre-train the model. As described in Section 3.6.2, various state
transitions can be simulated for a given state and action without actually sampling
the real environment, except for the values of yt, i.e. the ISP offer decision each hour.
We can hence use the technique proposed in recent work [170] to first train the model
on simulated state transitions with random policies in place for the ISP offer decisions,
and then construct a new model during real interaction with the ISP that minimizes
KL divergence from the original model. This would allow us to pre-train the model
on behavioral priors that are already known (that is, the user’s typical consumption
patterns and WiFi availability, i.e. xt, φt and ψt); presumably and as observed in
prior work, fewer iterations would then be required in real episodes with the ISP as
the only new aspect of the environment that the model has to incorporate now is the
real ISP offer pattern (as opposed to the random placeholder policies initially used for
the ISP offer decisions).
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3.8 Summary

In this work, we analytically and empirically assess the viability of supplemental
discount offers from ISPs to their users. We first abstract away from hour-to-hour
dynamics to show that most users would accept some SDOs, and that those who
consume the most data per SDO would also consume the most data on their cellular
data plans. We then build on this framework by developing hourly decision algorithms
for users to decide when to accept and ISPs to decide when to make SDOs. We
simulate these algorithms over a two-week trace of data usage, empirically establishing
that SDOs can increase ISPs’ network utilization and revenue. Moreover, ISPs can
exploit user uncertainty in when SDOs will be offered to further increase their revenue.
Our work captures Verizon’s claimed motivation of offering PopData in order to recover
usage that would otherwise have been realized on WiFi networks [103], and indeed we
find a tradeoff between the ISP maximizing its revenue and its network utilization.
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Chapter 4

Network Slicing for Real-time
Session Guarantees

We next consider a more user-driven resource procurement approach, wherein the
end-device specifies the resource needs for its session to the network at the start of
the session. In response, the networks utilizes its radio access network virtualization
capabilities to create a slice of resources for the entire session as specified and allocate
it to the device. We study the feasibility of such session-oriented slicing and its ability
to meet promised performance guarantees, propose mechanisms for the network to
elicit truthful resource requests and valuations from users, and discover methods to
solve the allocation problem in realtime for real-time applications. Finally, we explore
ways to ensure that the user does not exceed their budget constraints and makes
optimal decisions in realtime.

4.1 Problem Definition

Cyber-Physical Systems (CPS) and the Internet of Things (IoT) are emerging paradigms
for increasingly pervasive and real-time computing environments. Users are coming
to rely implicitly on the availability of services like Amazon Alexa and Google Home
for their day-to-day tasks, while ambitious next-gen offerings like HoloLens promise
to enable new use cases for real-time augmented reality like telepresence. However,
the network connectivity that these ubiquitous computing environments rely on is
insufficient [186] even for current applications. Proliferate mobile multimedia services
such as video conferencing and interactive mobile gaming have specific resource needs
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to provide an acceptable Quality of Experience (QoE) for the end-user. Without any
means of conveying these needs to the network, the network may not meet them [35, 98]
leading, for instance, to Google deploying its network Espresso to contend with its
applications’ needs.

In this work, we propose to provide resource guarantees on a per-session
basis to QoE-sensitive applications by reconciling available resources with
their session needs. To see the benefits of such guarantees, consider a Skype
user starting a video conferencing session for a job interview who cannot procure
any guarantees for the call quality and performance. Mechanisms for QoS-aware
allocation [69, 119] typically do not model resource consumption at session-level
timescales, hence allowing demand spikes to potentially interrupt or degrade the call.
Xu et al. [186] and others [200] investigate this problem of high variance in cellular
resource availability in the context of real-time applications. With buffer-based reactive
measures like HTTP DASH infeasible [165, 185], the authors propose a short-term
up-ahead estimation of channel conditions to proactively adjust application behavior,
thereby reducing perceived delay. Improved channel estimation, however, cannot
help sessions that must be preempted altogether due to congestion or spiky traffic,
thereby entirely disrupting the call. Hence, channel estimation itself is insufficient
to guarantee call quality or completion. We instead propose to proactively allocate
resources to real-time sessions to guarantee high QoE over their entire duration.
Proactive resource provisioning has been studied [69, 187] at the time-scale of packets
or transmission time interval (TTI), using dynamic pricing or auction-based methods
to allocate limited resources. However, the resulting allocation at one TTI is largely
independent of the next; even if allocations at past TTIs were accounted for, e.g. to
satisfy a long-term proportional fairness objective, the resulting allocation at some TTI
may end up halting the flow temporarily or pre-empting it altogether, limiting their
use here. For multimedia applications, while millisecond level network performance
affects user perception, user engagement and ultimately QoE occur at the session
level. Therefore, the user’s QoE depends on the resource allocation throughout the
duration of the session, which is on the order of minutes or hours. Our goal in this
work is to proactively provide resource guarantees expressed in terms that
a user agent or application can understand and negotiate for, abstracting
away the lower-level intricacies of network resource allocation as details
left to the network operator. Similar mechanisms have been proposed for the
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Internet backbone [184] and cloud environments [102, 136], and wireless applications
are likely to benefit from them even more due to their best-effort nature. However,
this also makes it challenging to provide such guarantees in wireless networks. In
fact, offering multiple tiers of service guarantees to wireless users is the goal of the
emergent network slicing paradigm in 5G. Critical components of network slicing
are still in their infancy [77], including RAN slicing, i.e., designing the wireless radio
access network to enforce per-flow performance guarantees, and slice admission and
management. This work addresses these research challenges [93] that arise in enabling
proactive, session-level resource provisioning for wireless networks.

Feasibility: To proactively provision flows for their anticipated duration, avail-
able spectrum resources must be quantified and accurately reconciled with session
requirements presumably expressed in terms of bitrate, latency and duration. This
raises important research questions that we seek to answer in this work. Is this feasi-
ble? Even then, are performance guarantees possible despite uncontrollable wireless
influences like fast fading? Recent works in RAN slicing [78, 116] facilitate functional
slice isolation and empirically analyze various factors to provide probabilistic per-
formance guarantees in cellular networks. We herein employ an admission control
algorithm that allows a flow into the network based on a simple resource forecast
and reconciliation model that is generalizable to both scheduled and random-access
wireless networks. We conduct extensive WiFi experiments and trace-driven LTE
simulations with multimedia applications, and find that admitted latency-sensitive
as well as bitrate-heavy flows achieve their promised performances and congestion
externalities are effectively mitigated. In fact the network accommodates even more
flows by implementing incentivized admission control. Further, since this may be
offered as a value-added service that some users may not require, we show reliable
guarantees can be made even in the presence of background flows not controlled by
our admission algorithm.

Allocation and Incentive Compatibility: Given a forecast of network resource
availability and a mechanism to reconcile this with session needs, how should these
limited resources be provisioned? The network will likely need to prioritize users with
higher resource valuations as it cannot accommodate all session requests. Variation
in such valuations could arise from usage context (medium quality for recreational
video calls but high for an interview) or device preferences (lower resolution on a
smartphone vs a 4K monitor). Further, allocating resources for the duration of a
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session is particularly difficult as the operator must account for uncertainty in future
needs, and users may strategically misrepresent their needs and valuations. We address
these concerns in a novel auction model. The operator offers consecutive auctions
throughout the day, and users relay their sessions’ resource needs dynamically in a
combinatorial bid to the current auction; session durations may span multiple auctions.
We show that the spontaneous and real-time nature of sessions can be exploited to
reduce the search space of the intractable optimization problem of determining winning
bids, thereby facilitating spontaneous guarantees. We propose multiple ways for the
operator to incentivize truthful user declarations even under uncertainty of future bid
arrivals and analyze trade-offs in social welfare, incentive compatibility and operator
revenue.

Usability: For users to procure and benefit from performance guarantees in this
system, they must engage in routine auctions by bidding. However, studies have
shown [87] that dynamic pricing is challenging for end users who are budget constrained
and averse to making real-time network consumption decisions. We consequently
address the user-facing challenges of resource-specification overhead, price discovery
and budget constraints. We envision that an automated agent will participate in
these session-oriented resource auctions on each user’s behalf, placing bids using a
parameterized utility model and enforcing the user’s daily budget. We formulate the
distribution of this budget across bids as a dynamic program solved with model-free
reinforcement learning, specifically the Monte Carlo policy iteration algorithm [167].
We show via simulation that these agents maximize user utility for a given budget
within a billing cycle (1 month) without any loss in revenue to the network operator.

Overall, we formulate an end-to-end system for realizing session-level performance
guarantees, addressing challenges in the radio access network, incentive mechanisms
for resource provisioning, and usability.

4.2 Related Work

Auctions in wireless networks have been mainly studied in three contexts: spectrum
license allocation, secondary cognitive radio allocation, and QoS-aware resource al-
location. Auctions for long-term spectrum licenses are held over hours or days with
multiple bidding rounds before the auction ends and winners are determined, like the
popular simultaneous ascending and combinatorial clock auctions [57, 58]. They do
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not account for the faster time scales of session-level allocations for spontaneous appli-
cation sessions. Further, the combinatorial nature of our auctions presents significant
challenges in the context of this prior work. Cognitive radio auctions [196] do not con-
sider session-level app performance, instead availing opportunistic spectrum for much
shorter time scales. Auctions have also been employed for QoS-aware real-time channel
allocation to primary users in mobile networks. The goals of such approaches [69, 187]
differ from ours in their focus on sub-carrier allocation with millisecond granular-
ity and interference mitigation. Using auctions for short-term resource allocation
does not guarantee session-level performance, which introduces new combinatorial
characteristics that we address. Our work furthers 5G’s envisioned network slicing
capabilities [77, 93]. We verify the premise of RAN slicing for both LTE and WiFi
networks, also studied in parallel by Foukas et al. [78] and a few others [116, 137] in
the cellular context, and provide incentive-compatible mechanisms for modeling slices
and admitting users to them. Other recent works since ours have validated our findings
and further proposed techniques for RAN slicing. These proposals [36, 66, 91, 143]
for mapping spectrum resources to virtual slices such that slice performance guar-
antees are closely met further illustrate the practicality of session-level slicing and
the relevance of the incentive-compatible auction protocol that we develop for this.
We also address budget optimization in the context of repeated auctions, which has
been studied in limited settings and even fewer of them combinatorial. Gummadi
et al. [86] study budget-constrained bidding for sponsored search auctions, but with
strong assumptions about the system that guarantee equilibrium. Janssen et al. [97]
study the combinatorial setting, but their work is limited to the combinatorial clock
auction. Almost no work has considered whether reinforcement learning can inform
auction bidding strategies as we do here.

4.3 Feasibility of Session-Level Performance Guar-

antees over LTE

Providing session-level performance guarantees requires an Admission Control (AC)
procedure that only admits flows with demands that can be fulfilled for the stated
session duration. This reconciliation of available and required resources is then expected
to result in admitted flows that are robust to externalities and realize their promised
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(a) Without AC (b) With AC

Figure 4.1: (a) Without a resource-aware Admission Control (AC) algorithm, almost half
of the LTE network’s resources are expended in failed sessions. (b) With the AC in place,
this is reduced to ∼5% while preserving high network utilization.

Figure 4.2: With AC, most performance guarantees are met even in the presence of
uncontrolled background traffic.

performances. While unpredictable real-time channel fluctuations are inevitable (e.g.,
fast fading), our premise is that the short timescale of these fluctuations affects session-
level QoE less than user competition, which occurs at session-level timescales. We
validate this via a proof-of-concept trace-driven simulation of users with different traffic
types sharing the resources of an LTE eNodeB. We show session performance can be
guaranteed by an AC that 1) accounts for resource competition in flow admission and
2) accommodates for unpredictable wireless externalities when provisioning capacity.

Setup: We use SimuLTE and INET1 to simulate LTE with TCP/UDP/IP. Our
simulation includes one eNodeB with 12 resource blocks and a noisy channel. Users
are randomly dispersed in the coverage area, yielding variation in channel qualities.
Data usage is modeled from the multimedia activity found in mobile traffic traces

1http://simulte.com/, https://inet.omnetpp.org/
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of 20 users collected over 10 days. Multimedia content from the traces includes
video streaming, audio streaming and real-time video conferencing, parameterized by
bitrates and latencies of known applications234. Since the AC algorithm compares
these required quantities with the available capacity to determine flow feasibility,
it must translate granular frequency-time network blocks into bitrate and latency
capacity forecasts. While devising an accurate model for this is a challenging task in
itself and out of our scope, we presume a naïve model that is sufficient to indicate
general feasibility and benefits of this approach. In essence, the AC procedure maps
the 12 resource blocks to a conservative estimate of bitrate capacity (e.g., 10Mbps),
thereby allowing a buffer of radio capacity that may be consumed, for example, by an
admitted flow(s) with poor signal strength or temporary channel degradation. A flow
is admitted after verifying that its required capacity can be accommodated, and the
capacity forecast reduced according to the requested bitrate for the specified duration.

Network Performance with AC: We measure link-layer utilization both with
and without session-level AC. Figure 4.1(a) shows that without AC, roughly 47%
of resource blocks are allocated to sessions that fail (i.e., the stream halts before
completion) mainly from excessive resource competition. However, as in Figure 4.1(b),
the AC algorithm drastically reduces this wastage (to below 5%) while preserving
nearly full utilization of available resources. While the AC allocates a conservative
10 Mbps for flow provisioning to guard against externalities, this would presumably
leave the network underutilized. In this case, however, congestion between flows and
impact from other externalities were almost entirely eliminated while retaining high
utilization. These promised performances were achieved with noise and channel quality
variation, indicating that session-level guarantees can be provided in wireless cellular
networks without the significant cost of network under-provisioning. Even the naïve
model of capacity forecasting used by our AC procedure proved sufficient to serve most
admitted flows of different application types. This validates our premise that wireless
radio resource modeling and reconciliation with session-oriented resource requirements
are feasible and can likely provide performance guarantees.

2https://support.skype.com/en/faq/FA1417/how-much-bandwidth-does-skype-need,
http://download.skype.com/share/business/guides/skype-connect-requirements-guide.
pdf

3https://help.pandora.com/customer/portal/articles/166391-minimum-
specifications-to-run-pandora

4https://support.google.com/youtube/answer/2853702
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Figure 4.3: Admission Control has significant impact on flow performance for all application
types. From (a)-(c), we see reduction in unstreamable flows and improved throughput.

(a) (b) (c)

Figure 4.4: (a) The number of encoding switches during TCP-based video streaming
sessions reduces to 0 with negotiated access to the network from upto five without, indicating
that the network is able to effectively eliminate congestion externalities faced by these sessions.
In (b)-(c), we compare application flow performance for three different scheduling algorithms
in terms expectations.

Since AC-admitted sessions may co-exist with unregulated background sessions (of
users that do not require performance guarantees), we reserve some network capacity
for this traffic and apply AC to the remaining capacity. We employ the MAX C/I
scheduling at the MAC layer to prioritize flows with better channel quality [41], and
modify the scheduler to further prioritize AC-admitted flows before ranking by channel
quality. Figure 4.2 compares the resulting performance of sessions belonging to AC
and non-AC traffic. An AC session is deemed successful if it streams for its entire
duration at its guaranteed bitrate on average; real-time sessions additionally require a
packet inter-arrival time below 40 ms. A non-AC session is successful if it achieves
any resolution supported by its traffic type. As in Figure 4.2, the network is highly
congested with non-AC traffic, so only one of eleven non-AC flows succeeds, while
four of the five admitted AC flows succeed. Figure 4.2 demonstrates that session-
level guarantees can be achieved in the presence of non-AC traffic with appropriate
reservations in the capacity forecast and MAC prioritization.

74



Figure 4.3 shows the numbers of flows achieving a given average bitrate for
each traffic type. For audio and video streaming flows in 4.3(a) and (b), the
network incurs no “unstreamable” sessions with the negotiated mechanism. Only
three sessions (constituting real-time flows) over all three applications were unsatisfied
with the auction-based admission compared to 100 without. Thus, with AC-based
flow admittance, users can reduce uncertainty in their application performance to a
large extent and even deterministically plan their sessions/usage, relying on stable
connectivity. We further quantify this stability of admitted sessions by examining
the number of flow switch events [132], i.e., the number of times the client on the
device switches to a different encoding rate, as a result of network performance. As
Figure 4.4(a) depicts, with AC, no TCP-based video streaming flows experience switch
events, while five successful flows experience two to five switch events each without
negotiation. We see a similar trend for both TCP-based audio and real-time sessions
(not shown).

We now study the impact of the MAC scheduling discipline used by the LTE
network on the performance of the AC-admitted flows. We compare three scheduling
disciplines: MAX C/I, Proportionally Fair (PF) and Deficit Round Robin (DRR) [41].
While Max C/I prioritizes scheduling of flows with better channel quality, PF ensures
long-term fair resource allocation among flows, while taking their channel quality into
account. DRR is entirely agnostic channel quality, rather allocating resources in a
round robin fashion subject to resource availability.

As shown in Figure 4.4(b), Max C/I successfully delivers on all audio and video flow
guarantees. However, latency-sensitive traffic is served well only by DRR. Since DRR
allocates limited resources to as many flows in its queue as possible, it services low-
latency flows like real-time traffic frequently, but higher throughput flows suffer. PF
reaches a middle ground between Max C/I and DRR, delivering video guarantees 95%
of the time and UDP guarantees 90% of the time. Realtime sessions particularly benefit
from PF’s long-term fair resource allocation due to their long durations. Figure 4.4(c)
shows the total number of successful negotiated flows. Across all schedulers, uplink
real-time flows perform the worst due to their inability to re-transmit packets. Amongst
the other traffic types, DRR strictly performs the worst in keeping its guarantees to
as many nodes as possible. Max C/I and PF perform almost the same. However, all
three schedulers still provide 80 to 100% guarantees, indicating that with additional
lower-layer optimization that accounts for users’ known flow demands, all performance
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guarantees made to AC-admitted flows can be met by the network.

4.4 Feasibility of Session-Level Performance Guar-

antees over WiFi

We now assess whether performance guarantees can be made in a random access
medium like WiFi. Unlike LTE, WiFi has a short range and operates in unlicensed
spectrum, making the channel more susceptible to interference and externalities. A
likely use case for performance guarantees, however, is where multiple users engaged
with various apps contend for congested resources of a public WiFi network, for
instance, in a cafë-like scenario. Measurement studies [24, 82] have shown extensive
growth in public hotspot traffic and Access Point (AP) deployment, with WiFi traffic
doubling every two years (∼35% video). These experiments verify the feasibility of
session-level guarantees in such scenarios.

Setup: We launch 50 iPerf5 clients in parallel across multiple devices to induce
channel quality variations. Clients connect to an 802.11g AP operating at 2.4GHz and
launch five sequential sessions over 50 minutes, each comprising a random duration of
video streaming, audio streaming or video conferencing (we continue to use resolution
rates and corresponding bandwidth requirements that are widely in practice). We
further incorporate non-AC web browsing traffic at 50 Kbps, thereby inducing overall
activity variance typical of public WiFi.

Network performance without AC: As a baseline, we first engage the 50

clients in their planned mobile activity over this hotspot without the AC algorithm.
Clients request the highest supported resolutions for their multimedia sessions (e.g.,
1.5 Mbps and 4.5 Mbps for video conferencing and streaming, respectively) since they
have no incentive to request lower bitrates due to free hotspot access. An aggregate
data demand of up to 80 Mbps is seen in Figure 4.5(a). However, although the 802.11g
AP has a theoretical capacity of 54 Mbps, only half of this is realized by the network,
indicating severe performance degradation from congestion. The network also exhibits
high latency and jitter, as in Figure 4.5(b), causing real-time video sessions (requiring
∼100ms) to fail or be lag-ridden.

AC Procedure: We now introduce our admission control process. Browsing

5https://iperf.fr/
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(a) Network Throughput (b) Network Latency

Figure 4.5: (a) Due to high data demand, the network is congested and delivers around
30 Mbps throughput despite 54 Mbps capacity and (b) experiences latency spikes between
250− 750 ms and high jitter.

(a) Client Admission (b) Network Throughput under AC

Figure 4.6: (a) The incentive mechanism induces heterogeneity in requested resolution rates
that allows the network to admit all initiated sessions, and (b) with AC, network throughput
increases.

sessions constitute light-weight traffic and always commence upon launch, modeling
the background traffic of regular-access users as in the LTE experiments. The AC
algorithm simply uses an estimated bitrate capacity as an abstracted representation
of available radio resources and permits a session to start only if requisite session
bandwidth is available. We herein refer to this as Non-Incentivized AC and introduce
a corresponding Incentivized version. Since Non-Incentivized AC admits flows (subject
to feasibility) on a first-come first-serve basis, users always request high bitrates even
when they may be content with lower bitrates (e.g., when using a mobile device
with low screen resolution). With Incentivized AC, we presume that an incentive
mechanism induces clients to request only their value-maximizing resolutions for
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(a) Mean latency - Real-time Video (b) CDF of per-second Jitter

Figure 4.7: With AC, (a) admitted real-time video sessions have latencies within 25−50 ms
and (c) jitter less than 40 ms. Incentivized AC further reduces data demand and improves
both jitter and latency.

multimedia sessions. This incentive mechanism may, for instance, be a payment
policy that charges admitted clients to persuade them to state only what they need
(developed in subsequent sections). Using Incentivized AC, users are thus admitted
according to their valuation for the appropriate context. We simulate Incentivized AC
with clients streaming multimedia sessions at a resolution that is randomly chosen from
the supported ones, simulating the distribution of utilities, preferences and budgets in
a population.

Performance With AC: While the AP’s theoretical capacity is 54 Mbps, this is
rarely realized in practice due to time-varying nature of the wireless channel. Since
provisioning based on this capacity may result in poor performance of some flows,
the AC procedure is initialized with a capacity of 50 Mbps. Figure 4.6(a) depicts the
number of clients admitted into the network under AC. A few clients are consistently
rejected for the first half hour due to lack of capacity as aggregate data demand is
highest then, Figure 4.5(a). However, with Incentivized AC, the entire pool of 50

clients is admitted into the network at all times that they initiate multimedia flows. As
clients distribute their requesting resolutions in alignment with their true utilities and
valuations, aggregate user demand decreases so much that the network has sufficient
capacity to now admit all of them (in this case), thereby increasing the utility of the
entire set of users. Even when the provisionable capacity is reduced to 40 Mbps and
number of clients increased to 75, the network admits them all with Incentivized AC,
thereby increasing net social welfare of users.

With AC in place, network throughput increases to almost 50 Mbps, as in Fig-
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Figure 4.8: With AC, all admitted sessions of (a) realtime video and (b) video stream at a
mean bitrate that meets their performance guarantees.

ure 4.6(b). Due to random access in WiFi, congestion externalities have a severe
impact on the network and are almost entirely mitigated with AC. When the Incen-
tivized AC is deployed, as in Figure 4.6(b), only around 30 Mbps is typically required
of the network now, indicating that incentivizing users for truthfulness may allow the
network to serve more users overall. With AC, all real-time sessions stream at mean
latencies below 50 ms, as in Figure 4.7(a), while introducing incentives causes lower
aggregate demand which further reduces the mean latency to a maximum of 20 ms.
In fact, the CDF of per-packet jitter for real-time sessions across all experiments in
Figure 4.7(b) indicates that while more than 80% of packets exhibit jitter above 40 ms
without AC, ∼80% of packets experience jitter below 40 ms with Non-Incentivized
AC and below 20 ms (recommended for real-time video conferencing and gaming)
with Incentivized AC. Further, as in Figures 4.8(a) and 4.8(b), we see all admitted
multimedia sessions with AC (including audio, not shown), exhibit a mean streaming
bitrate that corresponds to a supported encoding rate (i.e. no sessions fail); we also
note that these mean bitrates that each session streams at correpsonds to its promised
bitrates.

By controlling flow admittance based on bitrate demand, performance guarantees
are delivered to latency-sensitive real-time flows as well as other video and audio
streams. We thus validate our premise of session-oriented wireless resource provisioning
and shift our focus to the design of the incentive mechanism employed by the AC
algorithm. Note that given a process for forecasting network resource availability and
reconciling it with session demands, our incentive mechanism is agnostic to the Radio
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Figure 4.9: A bundle Bit received by a user i for request Rit may provide a subset of the
requested resources. For example, Rit specified ηit for the duration φit but received a bundle
providing µik = η′ < ηit for k < a and µik = ηit for k ≥ a.

Access Technology (RAT) in use.

4.5 Modeling Auctions for Session-Level Resource

Guarantees

We now design the incentive mechanism that determines session admission and cost.
We focus on real-time applications that require immediate access, but our model
is generalizable to other application types. The network operator discretizes time
into a total of T slots per day, and an auction At is held in each time slot t. All
resource requests are assumed to have a maximum duration of φmax time slots; a longer
session may simply submit another bid for resources after φmax slots. For instance, the
network may hold an auction each minute (i.e. T = 1440), allowing users to procure
resource guarantees for the full duration of their sessions almost spontaneously as they
launch them, and set φmax = 20, for resources to be periodically freed up once every
20 minutes. Similarly, the operator supports a discrete set of resource modes mn for
n = 1, . . . ,M , each corresponding to an operating bandwidth, bitrate, or similar. We
define a generic mechanism for the network to define these modes, which allows for a
wide range of supported bitrates by common applications, while significantly reducing
computational overhead of the auction. To characterize the resources being auctioned,
the operator computes a forecast C(τ)

t for auction At of the bandwidth resources that
will be available in each time slot t + τ, τ ∈ {0, . . . , φmax}, accounting for resources
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reserved in earlier winning bids.

The total number of users submitting bids for At is denoted by It. For users to
express a desired combination of resources that the network can actually serve, they
must know the resources available to bid on. We develop a two-round interaction
mechanism for this resource discovery. In the first round of each auction At, user i
expresses a request Rit that includes the desired duration φit ≤ φmax and the desired
resource mode ηit ∈ {m1, . . . ,mM}, along with a corresponding valuation vit. We
assume the requested ηit is constant over the duration φit, as real-time applications
typically have fairly stable resource needs over time. In response to resource requests
Rit = (ηit, φit) from users i, the network operator determines if granting Rit is feasible
(given projected availability). If not, it generates a set Sit of alternate resource bundles
(based on forecast capacity and adjusting for underlying wireless channel states),
where each bundle Bit ∈ Sit enumerates the offered resource µik ≤ ηik for time slots
k = t + 1, . . . , t + φit. Figure 4.9 illustrates an example bundle offered in response
to a resource request. Given the set Sit of available bundles, user i may bid on a
bundle Bit ∈ Sit by assigning a new bid value vit on it, yielding a bid bit = (Bit, vit)

for the select bundle Bit ∈ Sit. Once auction At is executed, user i learns the result
xit ∈ {0, 1} of the bid and starts consumption if xit = 1.

Maximizing social welfare to determine bid winners is desirable since Vickrey-
Clarke-Groves (VCG) [108] payments can then be charged to incentivize truthful
bidding. The resulting computation, however, is an NP-hard problem, the solution
time of which is exponential in bid durations. Thus, in the next section we develop
novel reductions to the problem by exploiting the spontaneous nature of winning
sessions, i.e. that they begin consumption immediately. With this, the network can
implement the VCG mechanism in real time, and stating true product valuations vit
becomes the dominant strategy of users. This allows users to avoid complex estimation
of other bidders’ strategies to maximize their own utility and allows the network
operator to discover the distribution of true valuations across bidders, indicating the
perceived value of network resources and the potential revenue. However, bidders are
multi-parameter agents [44] in this setting; they state not just their valuations but
also the desired mode η and duration φ. Incentivizing bidders to truthfully report
φ requires modifications to the mechanism that account for temporal correlations
between the decisions taken in different auctions; that is, users with accepted bids are
allocated resources for future consumption that are no longer available for subsequent
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users to bid for. We develop the resulting allocation and payment schemes and analyze
their auction properties.

4.6 Winner Determination

Since offering performance guarantees is a service in addition to users’ normal mobile
data plans, it will likely represent a small portion of overall operator revenue, and
the operator may rather wish to maximize users’ welfare. Indeed, for “public utility”
goods like network resources that are competitively auctioned, Cramton [58] argues for
maximizing social welfare rather than network revenue for the sake of long-term user
engagement. As such, we study the winner determination problem with the intent
of optimizing social welfare and evaluate the achieved revenue via simulation later.
Thus, in this Multi Unit Combinatorial Auction (MUCA), the network maximizes the
declared user valuations vit in auction At subject to the resource capacity constraints
over time slots, yielding the optimization problem:

max
{xit∈{0,1}}

It∑
i=1

vitxit

s.t.
I∑
i=1

µi(t+τ)xit ≤ C
(τ)
t , τ = 1, . . . , φmax.

(4.1)

We recognize this MUCA formulation as the NP-hard multi-dimensional knapsack
problem (MKP) [81]. The dimensionality stems from the combinatorial nature of the
bids, wherein they span multiple time slots (generalizable to multiple base stations and
flows needing uplink/downlink capacity). Solving (4.1) is thus prohibitive for real-time
network use. Many existing algorithms for fast MUCA winner determination [83,
104, 110] rely on assumptions such as bidder multi-mindedness, sub-modularity and
low number of dimensions in the MKP, which do not apply to our auction model.
Using approximation algorithms or other heuristics [177] to find a solution could
result in significant loss of network revenue when the number of users or the bid
duration increases, especially with frequently repeated auctions. More importantly,
an exact solution to the MKP is required to incentivize users to bid truthfully in the
auction [56]. We instead exploit the nature of real-time flow demands to reduce the
complexity of (4.1) by considering a series of conditions on bid quantities, durations

82



and resource availability. We show the simplification of (4.1) for each case, gradually
leading up to more realistic and less restrictive conditions. The MKP mostly reduces
to the knapsack problem solvable in pseudo-polynomial time [139].

4.6.1 Bundle Generation Policy

Our first task is to define the network operator’s policy for generating the set Sit
of bundles in response to a resource request Rit. The operator constructs a bundle
Bit with resources at time t + τ given by µi(t+τ) = min

(
ηit, C

(τ)
t

)
for τ = 1, . . . , φit,

corresponding to the highest possible resource level not exceeding the request ηit,
based on projected availability. If µi(t+τ) = 0 for any τ , no bundle is offered to that
user due to severe lack of resource availability. Hence the bundle a user receives comes
closest to what the user requested for the specified duration, given capacity constraints.
Given this construction of Bit, a bundle submitted to the auction may have different
resource demands at different time slots, while the original request Rit does not. Note
that if Rit is feasible, then Bit perfectly satisfies it by construction above, and gets
submitted immediately to the auction At. Constructed bundles may have the features
defined below.

Definition 1 (Upswitch). A bundle Bit exhibits an upswitch if ∃ τ ∈ [1, φit − 1] s.t.
µi(t+τ) < µi(t+τ+1). The number of upswitches in Bit is denoted by UBit. Bundle Bit

has an a/b-upswitch if ∃ τ ∈ [1, φit − 1] s.t. a = µi(t+τ) < µi(t+τ+1) = b.

Definition 2 (Downswitch). A bundle Bit exhibits a downswitch if ∃ τ ∈ [1, φit− 1]

s.t. µi(t+τ) > µi(t+τ+1). The number of downswitches in Bit is denoted by DBit. Further,
bundle Bit has an a/b-downswitch if ∃ τ ∈ [1, φit−1] s.t. a = µi(t+τ) > µi(t+τ+1) = b.

4.6.2 Reduction to Tractable Optimization Problems

We first consider a network capacity projection that increases monotically over time.
That is, if the resource availability projection C(τ)

t for future timesteps τ ∈ [1, φmax]

shows no decline within that time period, then the auction round At satisfies this
condition and is said to exhibit property P1(t). This would hold, for instance, in
any time slot t where no sessions carry over from previous auctions. The entire
network’s resource capacity is then available equally at t for all future time slots. If
At exhibits P1(t), then there can be no downswitches in any bundles submitted to this
auction given our bundle generation policy, i.e., DBit = 0 ∀i. We now show several
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simplifications possible to (4.1) when P1(t) holds, and also determine conditions under
which P1(t) is guaranteed to hold.

Definition 3 (Uniform quantity bid). A bid bit is a uniform quantity bid on a
bundle Bit if the corresponding resource levels µit are all equal, i.e., if ∀τ ∈ [1, φit −
1], µi(t+τ) = µi(t+τ+1).

Theorem 1. If P1(t) holds and each bid to auction At is a uniform quantity bid, then
the outcome {xit} that solves (4.1) with only the capacity constraint at τ = 1 is the
solution to (4.1), reducing it to a knapsack problem. Further, P1(t+ 1) is guaranteed
to hold.

Proof. Given P1(t) and uniform quantity bids, no time slot is more constrained than
the first timeslot, and the occupancy of each bid is the same for its entire duration.
Hence, the solution found by the reduced knapsack problem is also the solution to
(4.1). Let cτ be the total resulting consumption of At’s winnings bids in time-step
t+ τ for τ = 1 . . . φmax. The resource availabilities of At and At+1 are then related as
C

(τ)
t+1 = C

(τ+1)
t − cτ . Each winning bid i expresses the same µi across all its time-slots

of consumption, since all submitted bids are uniform by definition. Therefore, the
sequence c1, . . . , cφmax decreases monotonically such that ck − cl = µi whenever a φit
value is reached at k, k > l. We know C

(τ+1)
t is monotonically increasing by P1(t), and

subtracting a monotonically decreasing sequence retains this property for C(τ)
t+1.

While Theorem 1 simplifies the winner determination significantly by reducing
the MKP to a single knapsack problem in one time slot, it only applies when all bids
are of uniform quantity. Consider the following instance. The network has no active
sessions at time t and projects Cτ

t = 10, ∀τ . At t, it admits two flows that consume
3 Mbps for 5 minutes and 5 Mbps for 7 minutes, respectively. At t+ 1, the projected
availability is Cτ

t+1 = 2, τ = 1, . . . , 5 and Cτ
t+1 = 5, τ = 6, . . . , φmax. A user requesting

4 Mbps for 10 minutes at t+ 1 would thus receive a bundle granting 2 Mbps for the
first 4 minutes and 3 thereafter. This bundle exhibits an upswitch and is therefore not
uniform. The network may be able to force the construction of suboptimal uniform
bundles if this is a resonable restriction for some applications or use cases. However,
upswitches are likely due to varying availability constraints and data consumption
patterns.
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Lemma 2. If a bundle Bit exhibits an a/b-upswitch at time τ , then any bundle in At
corresponding to a request Ri′t with ηi′t ≥ b exhibits an a/b′-upswitch with b′ ≥ b at
time τ .

Proof. Given a bundle Bit with a = µi(t+τ) < µi(t+τ+1) = b, the bundle generation
policy implies C(τ)

t = a, ηit ≥ b, C(τ+1)
t ≥ b. Hence, for any other bid bi′t with ηi′t ≥ b,

we have µi′(t+τ+1) = min
(
ηi′t, C

(τ+1)
t

)
≥ b, µi′(t+τ) = a.

We now derive results that guide the network operator in defining its operating
bitrate modes such that the MKP can be simplified even with upswitches. First, if the
quantity expressed by each supported mode is equally spaced, we called these evenly
dispersed modes.

Definition 4 (Evenly dispersed). A set of modes {m1, . . . ,mM} is evenly dispersed
if ∃y, z ∈ N s.t. mn = z(n+ y), ∀n ∈ {1,M}.

Theorem 2. If the auction modes are evenly dispersed, then the outcome {xit} that
solves (4.1) with only the capacity constraint at τ = 1 is the solution to (4.1), reducing
it to a knapsack problem. Further, P1(t) holds for all t if auction modes are evenly
dispersed.

Proof. We first show that if P1(t) holds and modes are evenly dispersed, solving ( 4.1)
in the first time-slot is sufficient to find the optimal solution. Suppose {xit} is the
optimal solution to the knapsack problem at τ = 1. If none of the accepted bids
corresponds to a bundle with an upswitch, i.e., @Bit s.t. xit = 1, UBit > 0, then all of
the bids have uniform quantity and the result reduces to Theorem-1. If, however, an
accepted bid corresponds to a upswitched bundle Bit, then xi′t = 0 for all i′ 6= i, i.e., all
other bids are denied. Otherwise, C(τ)

t ≥ µit +m1, in which case the excess m1 would
have been provided to the accepted bid. The bundle generation policy ensures that
this bid’s bundle satisfies the capacity constraints. To show that P1(t) always holds
when modes are evenly dispersed, we need only show that P1(t) holds when bundles
with upswitches are present. We note that the existence of bundle upswitches implies
C

(τ)
t < mM . Suppose that C(1)

t = mn = z(n + y) with n = 1, . . . ,M − 1, i.e., the
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capacity is equal to one of the modes, and that an accepted bundle Bit has an upswitch
at time slot t+ τ ′. Then C(τ)

t+1 = 0 for τ ≤ τ ′, as the bundle generation policy assigns
the highest possible mode at each time step. Since capacity at any time-slot cannot
be negative, P1(t) holds for At+1 in this case. Now suppose C(1)

t = m is not equal
to one of the modes, i.e., @n, y, z s.t. m = z(n + y). Then, C(τ)

t+1 = argminbm − bz,
since upswitch at time slot t + τ ′ indicates that the bid will consume the highest
possible mode leading up to t+ τ ′. Since incremental capacity at t+ τ ′ that causes
the upswitch will be a multiple of z since it results from the end in consumption of
previously accepted bids, this capacity will continue to reside at t+ τ ′. Hence, P1(t)

holds for At+1 in this case as well. Iterative application of this result completes the
proof.

Theorem 2 allows the network operator to support different operating bitrates
while solving (4.1) with a single knapsack. Specifically, if the supported modes were
evenly dispersed, e.g., 2, 4 and 6 Mbps, then it is sufficient in every auction to solve
(4.1) in the first time slot. The operator can choose the exact operating modes by
examining those required by target applications and its ability to reserve resources.
However, certain real-time applications may not lend themselves to this, e.g., Skype
has discrete modes with unevenly dispersed bitrate requirements6, and the network
may therefore offer arbitrary modes to serve these applications. We first note that
even in this case, the upswitch count UBit cannot exceed M − 1 as long as P1(t) holds.

Theorem 3. If P1(t) holds, modes are not evenly dispersed, and upswitches occur
at time slots τ1, τ2, . . . , τk (as in Lemma 2), where k ≤ M − 1, then restricting the
capacity constraint in (4.1) to these time slots, along with the first time slot, yields the
overall optimal solution. However, P1(t+ 1) need not hold.

Proof. The result essentially follows from Lemma 2, noting that along with the up-
switch time slots, the first time slot must also be checked to satisfy capacity constraints.
To show that P1(t + 1) need not hold any longer, we construct a counterexample.
Let m1 and m2 correspond to supported bitrates of 1 and 3 Mbps, and suppose a
previously scheduled 1 Mbps session is scheduled to end before time slot t + 2, i.e.,

6http://download.skype.com/share/business/guides/skype-connect-requirements-
guide.pdf
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C
(1)
t−1 = 2, C

(2)
t−1 = 2, C

(3)
t−1 = 3. A request at t− 1 for 3 Mbps with φit = 3 would yield

a bundle with µit = 1, µi(t+1) = 1, µi(t+2) = 3. Upon acceptance of this bid, the new
capacity projection is not monotonic as C(1)

t = 1, C
(2)
t = 0.

Theorem 3 shows that even with arbitrarily defined modes, the complexity of the
winner determination scales only with the number of modes supported and not the
number of time slots, as long as the availability projection at t increases monotoni-
cally. However, there is no guarantee that capacity projections will continue to be
monotonically increasing for future auctions.

Algorithm 2: ComputeConstrainedTimeslots - Pruning time slots un-
der uniform quantity bids (µit = µi) when P1(t) does not hold. W is set of
bids
1 .
Input :W,C, t, φmax

Output :An array of positive integers representing timeslots
2 slots[0, :]← [0]
3 consSlotInInterval← 0; consV alue← 0;
4 for τ ← 1, . . . , φmax do
5 sumAllAsks← 0
6 endInterval← 0
7 for i ∈ W do
8 sumAllAsks← sumAllAsks+ µi
9 if φi == (t+ τ) then

10 endRegion← 1

11 currSlotConstraint← sumAllAsks

C
(τ)
t

12 if currSlotConstraint > consV alue then
13 consV alue← currSlotConstraint
14 consSlotInInterval← τ

15 if endInterval == 1 then
16 slots = [slots, τ ]
17 consSlotInInterval← 0
18 consV alue← 0

19 return slots

We can simplify the MKP without P1 if bids are uniform quantity.
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Theorem 4. If P1(t) does not hold, but bids are of uniform quantity, solving (4.1)
in only the time slots given by Algorithm 1 yields the optimal solution. Further, if
all bids are of equal duration, then Algorithm 1 reduces to a single knapsack problem,
solved for the time slot with the largest ratio of requested to available capacity (i.e.,∑

i:bit 6=∅ µit/C
(1)
t ).

Proof Sketch. Let us first consider the special case where the uniform quantity bids
are all of the same duration. Uniform quantity bids imply that µit = µi,∀t, i ∈ W .
Further since bids have the same duration, the requested resources in each time slot
are uniformly equal to the sum of

∑
i∈W µi. The capacity constraint thus reduces to

the single inequality ∑
i∈W

µixit ≤ min{C(τ)
t : τ = 1, . . . , φmax}

as the left side of the constraint no longer depends on τ . Hence, the knapsack for
any most-constrained time slot (there may be multiple) yields the optimal solution.
Algorithm 1 computes the most constrained time slot for each interval with overlapping
bids. Suppose bids overlap during [t, t+ δ1], then sessions expire at t+ δ1, then the
remaining bids overlap during [t + δ1 + 1, t + δ2], and so on for arbitrary δk. The
constraint for (4.1) in each interval [t+ δk + 1, t+ δk+1] need only be enforced at the
most-constrained time slot, yielding optimality of (4.1) for that interval. Algorithm 1
computes this time slot for each interval, and hence solving (4.1) restricted to these
time slots is optimal.

Algorithm 1 iterates over each time-slot τ ≤ t+φmax. If a submitted bid(s) is scheduled
to finish consumption at τ , it finds the time-slot with the largest ratio of requested
to available capacity between τ and the last time-slot when a submitted bid ended.
These timeslots are used to solve (4.1). Hence, if bids are uniform quantity, the
dimensionality of (4.1) scales with the variance in bid durations, not the number of
time slots, leading to relatively fast solutions even for large φmax.
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4.7 Incentive Compatibility

We have shown several ways for the network to simplify the winner determination in
(4.1), making it feasible to optimize for social welfare in real time. This allocation
objective, in conjunction with carefully designed payment schemes, can induce strong
properties. We first consider a single auction At in isolation, and induce a myopic
notion of truthfulness using the VCG mechanism. We then frame At in the context
of repeated auctions, where we account for the impact of decisions made in At on
subsequent auctions. In both cases, we ensure dominant strategy incentive compatibility
while inducing desirable properties that are often challenging to achieve simultaneously,
such as revenue monotonicity and ex post individual rationality.

4.7.1 Myopic Truthfulness

The VCG mechanism has gained wide popularity in its ability to guarantee socially
optimal results through dominant strategy incentive compatibility (DSIC); i.e., every
bidder’s best interest is to bid truthfully, regardless of the strategies of other bid-
ders [108]. Since the network maximizes social welfare, it can implement the VCG
mechanism by charging auction winners their social cost. The social cost of each bidder
i is computed as the difference between the maximum feasible welfare without i and the
welfare to others given i’s presence, i.e., maxxit∈[0,1]

∑k=It
k=1,k 6=i vktxkt −

∑k=t
k=1,k 6=i vktx

∗
kt,

where x∗kt represents the optimal solution with i present.

When applied in combinatorial auctions, however, the VCG mechanism is known
to exhibit undesirable failures in bidder revenue monotonicity [145], meaning the
network’s revenue from VCG payments may in fact decrease when some bids enter the
system. An auction is said to be robust for a set of bidders ∆ under VCG payments
pit if

∀j ∈ ∆
∑
i∈∆

pit(vit,∆) ≥
∑

i∈∆\{j}

pit(vit,∆ \ {j}). (4.2)

See Rastegari et al. [145] for a more formal treatment of revenue monotonicity. An-
other type of VCG failure in combinatorial auctions is goods revenue monotonicity
failure [124], when the operator could increase revenue by not auctioning certain
goods (in our case, resource quantities and time slots), hence acquiring an incentive
to hide goods from bidders. Most prior work on combinatorial auction frameworks
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does not address the issue of VCG-induced monotonicity failures, which are especially
challenging to manage in MUCA settings such as ours. We show, however, that
under certain conditions applying VCG payments is guaranteed to result in revenue
monotonicity. To do this, we rely on the property of bidder submodularity [34, 145]
which builds on the maximum social welfare V (∆) of a set of bidders ∆, corresponding
to the objective in (4.1) restricted to ∆. Bidder submodularity holds for bidder sets
∆ and ∆′ with ∆ ⊆ ∆′ if and only if ∀i V (∆

⋃
{i})− V (∆) ≥ V (∆′

⋃
{i})− V (∆′).

Theorem 5. If (4.1) can be solved in a single time slot t′ (e.g., as in Thm 1), and
µit′ = µi′t′ ∀i, i′ ∈ [1, It], then At is guaranteed to be revenue monotonic in bidders
under VCG payments.

Proof. In this scenario, the winner determination problem reduces to choosing the
bids with the highest valuations in the first time-slot. Let ∆ be a set of bidders. It
suffices to show that

V (∆)− V (∆ \ {i}) ≥ V (∆ ∪ {j})− V (∆ ∪ {j} \ {i}) (4.3)

for bidders i and j; by induction, (4.3) implies the above form of bidder submodularity.
Let A(∆) be the set of winning bidders, i.e., for a solution {xit} to (4.1), A(∆) = {i :

xit = 1}. We consider four cases. First, if j /∈ A(∆
⋃
{j}) and j /∈ A(∆

⋃
{j} \ {i}),

(4.3) holds trivially with equality. Second, if j /∈ A(∆
⋃
{j}) and j ∈ A(∆

⋃
{j} \ {i}),

then V (∆) = V (∆∪{j}) and (4.3) holds if V (∆\{i}) ≤ V (∆
⋃
{j}\{i}), which must

hold since A(∆\{i}) solves the knapsack problem as solved by A(∆
⋃
{j}\{i}). Third,

we can never have j ∈ A(∆
⋃
{j}) and j /∈ A(∆

⋃
{j} \ {i}), by similar reasoning as

previous. Fourth, consider j ∈ A(∆
⋃
{j}) and j ∈ A(∆

⋃
{j}\{i}). First consider the

case vi > vj. Then, j ∈ A(∆
⋃
{j}) implies i ∈ A(∆

⋃
{j}), and j ∈ A(∆

⋃
{j} \ {i})

implies i ∈ A(∆) since the quantity expressed in i and j are the same by definition.
Hence the removal of i in the RHS can, at worst, make no difference if no bids are
left to accept, and at best, admit another bid of the same size with the next highest
valuation. The LHS has the same choice, hence (4.3) holds since the value of the
second highest bid after i is the same in both cases. Next consider vi < vj . If i ∈ A(∆)

and i ∈ A(∆
⋃
{j}), then equality holds in (4.3). If i ∈ A(∆) and i /∈ A(∆

⋃
{j}),
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then the RHS of (4.3) is 0, hence satisfying (4.3). Finally, if i /∈ A(∆), both the LHS
and RHS of (4.3) evaluate to 0. Note that (4.3) holds trivially when vi = vj.

In this scenario, winner determination is a knapsack problem where bids request the
same resources but potentially different valuations. Then, all bids compete equally for
capacity, and therefore, removing a bid cannot increase another’s social cost, resulting
in revenue monotonicity.

Lemma 3. In our auction, bidder revenue monotonicity implies goods revenue mono-
tonicity.

In our auction, bidders desire and bid on exactly one bundle, a property referred to
as single mindedness. When single-minded bidders exhibit bidder revenue monotonicity,
they are goods revenue monotonic as well [124]. Thus, by exploiting the structure of
users’ real-time resource requests, we have shown that under reasonable conditions,
users have an incentive to bid truthfully and the network operator has no incentive to
discourage bids from users or hide resources, as doing so will not increase its revenue.
However, we also note the following limitation.

Lemma 4. As long as the auctioneer solves (4.1) for winner determination of At
and charges winners their social cost, bidders may have an incentive to submit a false
session duration φit.

Consider a case where P1(t) holds and all bids in At are uniform quantity. The
auctioneer then only solves the knapsack problem in the first time-slot (Thm. 1), and
users’ choice of φit has no impact on their bid allocations or payments. Indeed, as
seen earlier, even when P1(t) does not hold and results in arbitrary up/downswitches,
the winner determination and hence payments depend only on the time slots of these
switches. Hence, maximizing the social welfare at At only with respect to At does not
directly incentivize truthfulness in declaration of φit.
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4.7.2 Truthfulness Amidst Temporal Correlations

In our setting, the true social cost of a bit bit is not only a function of other bids
submitted to the current auction (as discussed earlier). Selecting a bid bit as a winner
of auction A(t) directly reduces available capacity in the next φit time slots, which
impacts the bids that can be accepted in subsequent auctions Aj, j ∈ [t+ 1, t+ φit].
To account for this temporal correlation between these periodic auctions, we are faced
with the challenge of factoring in the uncertainty in future bids in admitting the
present bids. We thus develop mechanisms to push this uncertainty either to the user
or the network, inducing different properties accordingly.

The temporal trickle effect of a winning bid may in fact extend beyond its duration;
for instance, allocating resources for a bid bit might preclude allocation for a bid
bj(t+φit−1), which might in turn allow for the allocation of a bid at t + φit + 1 that
would have been infeasible had j’s bid been allocated. We argue, however, that it
is unreasonable to charge users their social cost beyond the duration φit (unlike the
treatment by Parkes et al. [135]). First, it is extremely challenging to predict and
model the trickle effects starting from allocation of a bid until the last auction in
the system, leading to significant computational overhead and possible infeasibility.
Second, since mobile network use is dense and diversified, the extended effects of a
single bid in the system would arguably be too little to cause a significant impact in
the overall social welfare and hence not worth accounting for. Hence we propose to
hold user i accountable for their “first-order" social cost with respect to arriving bids
during [t, t + φmax], hence capturing direct impact during i’s consumption and any
immediate ripples until t+ φmax.

We now formulate strategies that induce desirable properties despite this temporal
correlation amongst auctions and future uncertainty. We first provide definitions of
these properties (see [108] for a thorough treatment). Individual Rationality is
achieved when no bidder receives a negative utility from participating in the auction,
i.e., no winning bid is charged more than its reported value vit and no losing bid is
charged. The winner determination is Allocatively Efficient when social welfare
is maximized in the allocation outcomes. If the sum of all payments charged by the
auctioneer is non-negative, i.e., the auctioneer does not suffer a net loss, then the
mechanism is (weakly) Budget Balanced. A property is said to hold ex ante if
it holds in expectation over the private and unknown information of all bidders, ex
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interim if it holds when a bidder knows their private information but others only in
expectation, and ex post if it is guaranteed to hold even when all bidder parameters
are revealed. We now develop allocation and payment schemes that navigate trade-offs
in these properties by factoring in future bid uncertainty differently.

4.7.2.1 Maximize Expected Social Welfare

Let us consider an allocation strategy alternate to (4.1) to determine winners of
auction At. Let Ot be the set of all feasible allocations of At. Then

o∗t = argmax
Ot

It∑
i=1

vit(ot) +

t+φmax∑
j=t+1

EtD(j)

Ij∑
k=1

[vkj(otj)], (4.4)

where Ij is the number of bidders placing bids in the system at time j and EtD(j) denotes
the expectation at time t taken over the distribution D(j) of bids at j (consisting of
bid arrivals, requested mode in the bid, duration and valuation). With this allocation
rule, the network maximizes the expected social welfare of the next φmax time steps in
deciding the allocation, rather than maximizing only for the welfare of bidders at At.
This is implicit in the dependence between ot and otj, wherein the latter captures the
allocation decision taken at time t for the timestep j in the estimated look-ahead model.
Point estimates derived from, for example, Monte Carlo sampling of outcomes starting
from t can be used for unknown parameters of future timesteps [141]. The approach
in (4.4) presumes that the network has learned this distribution of bids spanning
the next φmax time steps. Indeed, computing a deterministic φmax-step look-ahead
model is far more feasible than computing the optimal solution for the multi-stage
stochastic programming problem of expected welfare maximization for all remaining
auctions [141, 151]. Models requiring computation of the optimal value function at
every time-step [135] pose severe feasibility challenges. Further, the time period φmax

intuitively lends itself as a reasonable look-ahead period since all user allocations
starting at t must end by then, providing a standard and relatively short time window
for computing prices.

4.7.2.2 Charge Expected Social Cost

We now design payment rules which operate in conjunction with the allocation rule
in (4.4) to induce desirable auction properties. First, we consider a rule similar to
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above wherein a winning bidder i is charged its expected social welfare cost pit as
the difference between maximum welfare without i and welfare to others given i’s
presence, i.e.,

pit = W−i
t −

 It∑
l=1,l 6=i

vlt(o
∗
t ) +

t+φmax∑
j=t+1

Ij∑
k=1

EtD(j)[vkj(o
∗
tj)]

 , (4.5)

where W−i
t represents the welfare without i as

W−i
t = max

Ot

 It∑
l=1,l 6=i

vlt(o
−i
t ) +

t+φmax∑
j=t+1

Ij∑
k=1

EtD(j)[vkj(o
−i
tj )]

 , (4.6)

o−it represents an allocation outcome at time t without i in the system, and o∗t is the
optimal solution with i present, with look-ahead model decisions o∗tj. Note that we
assume users have quasi-linear utility functions, as ubiquitously done [108].

Theorem 6. The mechanism implementing the allocation rule in (4.4) and the payment
rule in (4.5) is DSIC in all bid parameters. Further, it is ex post individually rational
and budget balanced.

Proof. The user’s utility may be written as:

uit =vit(o
∗
t ) +

( It∑
l=1,l 6=i

vlt(o
∗
t ) +

t+φmax∑
j=t+1

Ij∑
k=1

EtD̃(j)[vkj(o
∗
tj)]
)
−

max
ot∈O

( It∑
l=1,l 6=i

vlt(ot)−
t+φmax∑
j=t+1

Ij∑
k=1

EtD̃(j)[vkj(otj)]
) (4.7)

The user wishes to state possibly untrue η′it, φ′it, v′it to maximize uit. The third term
in uit can be ignored since it is independent of the user’s bid and hence the user has
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no influence over it.

max
η′it,φ

′
it,v
′
it

uit = max
η′it,φ

′
it,v
′
it

vit(o
∗
t )

+
( I∑
l=1,l 6=i

vlt(o
∗
t ) +

t+φmax∑
j=t+1

Ij∑
k=1

EtD̃(j)[vkj(o
∗
tj)]
)

= max
( It∑
l=1

vlt(o
∗
t ) +

t+φmax∑
j=t+1

Ij∑
k=1

EtD̃(j)[vkj(o
∗
tj)]
)

(4.8)

However, the outcomes ot∗, . . . , o∗tj that the user wishes to maximize their utility over
is computed by design to maximize the term in (4.8), as specified in (4.4). Hence,
regardless of the actual distributions of agent bids or their revealed valuations in
subsequent timesteps, the user maximizes its utility by revealing its true parameters
since the network maximizes on this distribution in its allocation rule. Individual
rationality follows trivially. The user’s payment will always be less than or equal to
their valuation.

By simply maximizing social welfare in expectation of [t, t+ φmax] and charging
winning bids their expected social cost, the network can not only incentivize dominant
strategy truthfulness in ηit, φit and vit, but also ensure that no bidders are charged
more than what they bid for. We now introduce a new property to evaluate this
payment scheme.

Definition 5 (Payment Efficient). A mechanism is said to exhibit Payment Effi-
ciency if it charges winners their social cost. For instance, the VCG mechanism is
payment efficient, since winning bids are charged the difference in social welfare to
others due to their presence.

Lemma 5. The mechanism implementing the allocation rule in (4.4) and the payment
rule in (4.5) is ex ante allocatively efficient and ex ante payment efficient at t for the
time-period [t, t+ φmax].

While this mechanism maximizes expected social welfare, it may well be the case
that the auctioneer under-predicts demand between [t, t+ φmax] in retrospect which
yields the allocation and payment decisions made earlier suboptimal. The auctioneer’s
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revenue would then be higher if winning bids at t were charged their social cost at
t+ φmax after observing the actual demand.

4.7.2.3 Charge Realized Social Cost

The allocation decision for At must be made in real-time for immediate session needs.
However, we realize that payments need not be computed or charged in real time
for users to start their sessions. Consider the payment rule given by the actual
after-the-fact difference between welfare without and with i after t+ φmax time steps
have elapsed:

pt+φmax

it = max
Ot

t+φmax∑
j=t

Ij∑
k=1,k 6=i

(
vkj(o

−i)− vkj(o∗)
)
, (4.9)

where o∗ is the optimal allocation of users other than i given by

o∗ = argmax
Oit

t+φmax∑
j=t

Ij∑
k=1,k 6=i

vkj(o), (4.10)

and Oit is the set of all feasible allocations given fixed allocation for i. Admitted users
are now charged at t + φmax, by which time all bids starting consumption at t are
guaranteed to end. The auctioneer may now use its retrospective knowledge of bids
that came in from t to t+ φmax to calculate the exact first-order social cost for each
bid at t. Before analyzing the unique properties that this rule yields, we first define a
modified notion of DSIC.

Definition 6 (DSICE). Consider bidders that maximize expected future utility. If
truthful revelation maximizes the expected future utility of bidders, regardless of the
strategy of other bidders, then the mechanism is said to be Dominant Strategy
Incentive Compatible in Expectation.

Theorem 7. The mechanism implementing the allocation rule in (4.4) and the payment
rule in (4.9) is DSICE in all bid parameters, ex interim individually rational and ex
post budget balanced.
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Proof. The user’s utility uit evaluated at t+ φmax after pit is charged, is:

ut+φmaxit = vit(o
∗
t )− pit

= vit(o
∗
t ) +

t+φmax∑
j=t

Ij∑
k=1,k 6=i

vkj(o
′)−

max
o∈O

t+φmax∑
j=t

Ij∑
k=1,k 6=i

vkj(o)

where, o′ = argmax
o∈O

t+φmax∑
j=t

Ij∑
k=1

vkj(o)

(4.11)

The user wishes to state v′it, η′it and φ′it at time t to maximize its utility. Since future
payments are unknown at current time, the user instead maxmizes expected utility at
t.

Et[ut+φmaxit ] =vit(o
∗
t ) + Et[

t+φmax∑
j=t

Ij∑
k=1,k 6=i

vkj(o
′)]+

Et[max
o∈O

t+φmax∑
j=t

Ij∑
k=1,k 6=i

vkj(o)]

(4.12)

The last term is entirely independent of the agent’s bid, hence the maximization of
the agent’s utility is:

max
η′it,φ

′
it,v
′
it

Et[ut+φmaxit ] = max
η′it,φ

′
it,v
′
it

vit(o
∗
t ) + Et[

t+φmax∑
j=t

Ij∑
k=1,k 6=i

vkj(o
′)]

= max
η′it,φ

′
it,v
′
it

vit(o
∗
t )+

It∑
k=1,k 6=i

vkt(o
′) + Et[

t+φmax∑
j=t+1

Ij∑
k=1

vkj(o
′)]

= max
η′it,φ

′
it,v
′
it

It∑
k=1

vkt(o
∗
t ) +

t+φmax∑
j=t+1

Ij∑
k=1

Et[vkj(o∗tj)]

(4.13)

where we go from step 2 to 3 by seeing that the expectation at time t of o′ is, in-fact,
what the network calculates in (4.4) at time t. We see from the final expression that
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Payment
Scheme DSIC Payment

Efficiency
Individual
Rationality

Allocative
Efficiency

Budget
Balance

Expected
Social Cost X Ex Ante Ex Post Ex Ante Ex Post

Realized
Social Cost

In Expecta-
tion Ex Post Ex Interim Ex Ante Ex Post

Table 4.1: We summarize trade-offs between charging expected social cost at t and realized
social cost at t+ φmax.

the o∗t that the user wishes to induce to maximize collective expected welfare is what
the network maximizes as well in (4.4). Hence, for expected-utility maximizers, it is
the dominant strategy to reveal their truthful parameters to the network, since the
user wishes to maximizes over the same distribution of future bids that the network
does in its allocation, and future payment. Since actual payments to user at t+ φmax

may hence be more than what they bid, but the user’s truthful bidding is nonetheless
the best strategy in expectation over the future, the users are interim individually
rational.

By charging bidders their true social cost at t + φmax based on actual bids that
arrived after t, the mechanism essentially shifts the risk of demand under-prediction
to the bidder. However, winning bidders now bear the risk of being charged more
than their bid.

Lemma 6. The mechanism implementing the allocation rule in (4.4) and payment
rule in (4.9) is ex ante allocatively efficient and ex post payment efficient with respect
to bids at t for [t, t+ φmax].

As we allocate using (4.4), ex ante allocative efficiency holds. By design of (4.9)
winning bids pay their true social cost at t + φmax and hence the network is also
payment efficient. However, if the auctioneer over-predicts resource demand between
[t+ 1, t+ φmax], charging users their actual social cost at t+ φmax yields less revenue
than charging them their expected cost at t.

We have proposed three distinct payment mechanisms for our auction model:
traditional VCG, paying the expected social cost, and paying the realized social cost.
Since the latter two mechanisms require knowledge of future bids, the network would
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likely introduce VCG payments first. By evaluating each At in isolation (i.e., using
(4.1) and VCG payment), the network can learn users’ true bid valuations and required
bitrates. By estimating bid durations with historical usage, the network may use this
distribution of future bid parameters it has learned to offer the latter mechanisms.
This would likely increase social welfare in the system, since the network now accounts
for the impact of allocation decisions between multiple rounds of auction as in (4.4).
In choosing between the two payment rules as in Table 4.1, the network must make a
design choice. It may either guarantee individual rationality by choosing (4.5) and
assume the risk of under-predicting resource demand, or it may choose (4.9) and
ensure payment efficiency while allowing winners to be charged higher than their
bids. However, in the latter case, the network now assumes the risk of over-predicting
resource demand.

4.8 Usability Constraints

In previous sections, we developed practical allocation and payment strategies for
our auctions that achieve spontaneous resource guarantees for real-time applications.
We now turn to challenges faced by end users of this system. Most data plans in
the US provide known and fixed up-front pricing for the month [198], so engaging
spontaneously in auctions may add uncomfortable expense uncertainty for the average
mobile user. Further, explicitly conveying an app’s resource needs and bid parameters
every time the user desires guaranteed data access can be a significant deterrent. To
address these usability issues, we propose to have automated agents on users’ devices
that act on their behalf, abstracting them away from resource specification and bidding
overhead. We first formulate a user-parameterized utility framework using which
agents can discover user valuations transparently for resource guarantees of specific
sessions. We then propose a reinforcement learning strategy to enforce users’ daily
budgets.

4.8.1 Bundle Utility

We determine user i’s valuation of a resource bundle Rit = (ηit, φit). Let ψit denote
the utility per unit of time consumption for the mode ηit requested, normalized
between [0, 1] across applications and pre-configured by the user. We use an α-fair
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model [197] to capture diminishing returns in utility over longer session durations φit.
The user’s utility associated with request Rit is thus given by Uit(Rit) =

φ1−αit

1−α ψit. If
the network responds with an alternate bundle Bit that returns a mode below that
requested in Rit, we impose a penalty to represent the dissatisfaction in receiving a
lower mode. We model this penalty for each affected time slot t+ τ as a multiplicative
factor ξiτ , such that a higher penalty corresponds to a smaller mode. We denote
ξiτ = 1/(1 + ψit − ψ∗i(t+τ)), where ψ∗i(t+τ) denotes user i’s valuation of the mode
corresponding to the offered µi(t+τ). Since users may be especially dissatisfied if their
session experiences a downswitch, we further apply a downswitch penalty that grows
with the magnitude (a− b) of an a/b-downswitch. We model this penalty for each τ
as a multiplicative factor ζiτ = ρi/(µi(t+τ) − µi(t+τ+1)) when µi(t+τ) > µi(t+τ+1), where
ρi ∈ [0, 1] is user-specific. The utility of Bit relative to that of Rit is then given by

Ui(Bit|Rit) =
φ1−α
it

1− α

φit∑
τ=1

ξiτζiτψ
∗
i(t+τ). (4.14)

4.8.2 Budget Constraints

Building on (4.14), we develop an algorithm for the user agent to satisfy a daily
budget constraint while placing bids that are proportional to the user’s true utility Ui.
If agents distribute budgets poorly (as some of the naïve algorithms demonstrated
later do), users consistently lose in their auctions of interest, hence forming the false
impression that the market rate is prohibitively high and exiting the system. The
budget distribution problem relies on a policy to select a valuation vit to declare on
a given bundle Bit (interchangeably Rit) that maximizes the user’s total expected
future utility, subject to the budget constraint. Without loss of generality, we collapse
the distinction between Bit and Rit by considering a virtual round where the network
offers Bit = Rit if Rit is perfectly available. To discover the optimal policy, we model
the user environment as a Markov Decision Process (MDP) wherein actions correspond
to placing bids, and the user receives a reward equal to the utility Ui(Bit|Rit) if the
bid wins and zero otherwise. As seen in Figure 4.10, the state of user i in time slot t
is defined as σit = (t, βit, Bit, Rit), where βit is the remaining budget at time t (with
βi1 as the total daily budget). The overall system state determines the probability of
winning the bid Pwin(σit, vit), which also represents the state transition probabilities.
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Figure 4.10: The MCPI agent bids based on the current policy. Rewards from the states
encountered and the actions taken during the day are used to update the policy end of day.

The optimal budget distribution policy is then given by:

max
bit

Ui(Bit|Rit)Pwin(σit, vit)+

T∑
k=t+1

Ui(Bik|Rik)Pwin(σik, vik)

s.t.
T∑
k=t

pikPwin(σik, vik) ≤ βit.

(4.15)

However, users cannot solve (4.15) as the environment is only Partially Observable
(yielding a POMDP); they only observe their own actions and rewards and there-
fore cannot compute the transition probabilities Pwin(σit, vit). We hence employ a
model-free reinforcement learning mechanism to determine the optimal user actions
under uncertainty. The offline and episodic Monte Carlo Policy Iteration (MCPI)
technique [167] is particularly suitable here as users typically exhibit periodicity in
daily mobile activities and resource needs, allowing us to consider a day as an episode.
MCPI seeks the optimal bidding policy π∗it = v∗it(σit) by iteratively evaluating a
candidate policy π and updating the action value function qπ(σit, vit) from episodes
sampled from the POMDP. We define qπ(σit, vit) as the return obtained by placing

101



bid vit in state σit and then following policy π, averaged over all future states and
actions. The return Git =

∑T
j=t λ

jUi(Bij|Rij) for a given series of states is the total
future discounted reward, where λ is a discount factor representing how much present
value a user assigns to future rewards. This captures a degree of uncertainty about
the future that stems from the environment as well as the user’s estimate of their
future session desires. At the end of each episode (e.g., day), the action-value function
is updated using

qπ(σit, vit)← qπ(σit, vit) + χ(Git − qπ(σit, vit)), (4.16)

where χ is the learning rate. We follow the well-known ε-greedy approach [167] to
balance the trade-off between exploring the environment further to know it better
(i.e., choose vit randomly with probability ε) and exploiting current knowledge of the
environment to maximize current returns (i.e., chooses vit to maximize qπ). A bid vit
cannot exceed βit, the current available budget. We anneal epsilon to eventually always
exploit after the environment has been explored sufficiently, which yields the optimal
policy if the environment is periodic [167]. We set ε = 1/N(s), where N(s) is the
number of times state s is visited, resulting in continuous reduction of exploration from
a state as it is visited further and guaranteeing that πit approaches the optimal v∗it(σit)
as N(s)→∞. We subsequently show that this exploration leads to convergence in
relatively few iterations and study its performance under increasing complexity.

4.9 Evaluation of Budget Distribution Strategy

Setup: We simulate a network of 100 users that participate in auctions for performance
guarantees over the course of 80 days and have predetermined schedules of resource
requests Rit to place during the day. To allow all users to have a reasonable chance
of acquiring at least some of their desired resources, we set uniform daily budgets as
βi1 = β. Note that the MCPI strategy can only help each user achieve the maximum
utilities for their given budget and is of little help if market rates are prohibitively
high (discussed more later).

Baseline strategies: To assess the performance of MCPI-based budget distri-
bution, we introduce two alternative strategies to compare against. Bidders of the
greedy bidding strategy bid as much of their remaining budget as needed to achieve the

102



desired utility in each auction as vit = min(Ui(Bit|Rit), βit). Bidders of the rationed
bidding strategy spread their daily budgets evenly over their (known) daily resource
requests, setting vit to the minimum of the bid utility Ui(Bit|Rit) and the session
budget. Any residual session budget rolls over to the next session. The maximum
realizable daily utility subject to a user’s daily budget is

Ui,max = max
{yit∈{0,1}}

T∑
t=1

Ui(Bit|Rit)yit s.t.
T∑
t=1

θityit ≤ βi1, (4.17)

where θit is the critical price of the auction At, i.e., the social cost of admitting the bid
in this allocation. Since our auctions incentivize truthfulness, θit is also the payment
charged to user i if their bid wins. Note that users themselves cannot compute Ui,max

due to partial observability. We use this value as the theoretical maximum to evaluate
the MCPI generated utility against.
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Figure 4.11: (a) MCPI far outperforms naïve strategies, achieving 100% of the maximum
utility. (b) After 80 days, there is little deviation in the MCPI bidder’s actions.

Performance of MCPI-based bidding: We first study a deterministic setting
where we ensure resources are available for every auction, meaning every request elicits
a viable bundle. Four scenarios are simulated, with the first two using the greedy
and rationed strategies for all users, respectively. In these cases, we measure the
fraction of Ui,max that bidders achieves at the end of each day and show the mean
and standard deviation across bidders in Figure 4.11(a). In the third and fourth
scenarios, we introduce one bidder using MCPI amongst the greedy and rationed
users, respectively, then measure the MCPI bidder’s Ui. As Figure 4.11(a) shows, the
MCPI bidder succeeds at exploring various actions and reaching 100% Ui,max by day
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Figure 4.12: (a) MCPI realizes 85% utility despite high uncertainty in resource availability.
(b) Temporal variance in resource requests does not significantly degrade performance.
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Figure 4.13: (a) With 10% MCPI bidders, ∼ 70% of the maximum utility is realized past
Day 20. (b) MCPI bidders increase revenue by driving up critical prices in auctions.
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40 (even sooner against the rationed bidders), while neither of the naïve strategies
achieves more than 40%. The MCPI bidder’s bid amounts vit across different auctions
during the first 10 and last 10 days of the simulation, Figure 4.11(b), shows heavy
exploration during the first 10 days. But the MCPI bids during the last 10 days are
much more stable (with some randomness introduced by the ε-greedy exploration),
and the optimal policy is found. In the presence of MCPI bidders, greedy and rationed
bidders continue to have poor mean performance but marginally higher deviation
until the MCPI agent converges (not shown). Hence, a bidder that previously realizes
no more than 40% of the maximum utility achievable with their budget (potentially
believing that the market rate is prohibitively high), now wins more by bidding per the
MCPI-based budget distribution algorithm. To increase realism, we next consider a
congested setting wherein some resource requests may not elicit any bundles. This is
done by increasing session durations, which also increases the likelihood of a resource
request being turned away due to ongoing consumption of previously admitted flows.
Hence, in addition to budget constraints, MCPI learning must implicitly account for
resource availability. For instance, if resources are typically unavailable at 6:00PM,
then the optimal strategy might be to distribute the budget to other times of day,
since the agent will likely not get a chance to express a bid for resource needs at
6:00PM. Figure 4.12(a) shows the resulting increase in the time for the strategy to
stabilize. The MCPI bidder still outperforms the naïve bidders and converges, but
only 85% of Ui,max is reached by day 30. In this case, exploration has a ripple effect
on returned bundles in subsequent auctions, which affects budget changes and slows
convergence.

We increase uncertainty in the environment by offsetting resource request schedules
by a random time period ωit for fraction f of the user population. Hence a user’s
resource request times are no longer perfectly periodic. Resource availability as well as
critical prices during [t, t+ φit + ωit] are affected by this variance, making the MCPI
learning more challenging. However, as Figure 4.12(b) shows, the MCPI bidder’s
utility does not decrease as a function of ωmax or f , even as these vary from 1-3 hours
and 1-100% respectively, indicating that MCPI is beneficial to deploy in realistic
network scenarios. We also incorporate non-determinism resulting from simultaneous
exploration of multiple MCPI bidders. As the number of MCPI bidders increases, the
uncertainty in their models also increases due to non-stationary [167], which reduces
the likelihood of converging to Ui,max. Figure 4.13(a) illustrates the resulting mean and
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deviation of the percentage of realized utility across ten MCPI bidders. We observe
decreased utility and less convergence with higher variance, but still significantly
higher than naïve bidders.

We also study the impact of MCPI bidding on network revenue. Figure 4.13(b)
shows the network revenue increasing marginally with the number of MCPI bidders
(never decreasing). This is a direct effect of combining our budget distribution strategy
with an auction payment and allocation scheme that incentivize truthfulness. Users,
in their best interest, request resources only when needed and have no incentive
to misrepresent their valuation (and no value for leftover budget end of the day).
MCPI bidding then serves only to spend the budget in ways that simultaneously best
represents users’ utilities and the chances of winning.

4.10 Discussion

We now discuss practical considerations around deploying our system.
Network Requirements: Our choice of WiFi and LTE for feasibility experiments

is motivated by the widespread proliferation of these RATs. The auction model can,
in-fact, be executed on any topology where resource availability can be forecasted and
reconciled with session needs. Hence, emerging RATs like mmWave (5G) and other
WiFi versions are candidate network topologies. The resource modeling mechanism,
however, depends on the RAT in use. For instance, in a WiFi network using the MAC-
layer point coordination function instead of the distributed coordination function, the
access points has more centralized control of flows and therefore may better eliminate
wireless externalities. This would likely be factored in the forecast model. In addition,
the underlying network must support real-time flow control, e.g., with software-defined
networking.

Discovering Session Needs: The app-specific resource needs of a session are
best determined by the app itself. Hence, wrapper libraries for network access protocols
such as TCP/IP can be used by apps to state the required resources (e.g., bitrate
or latency) as they open a new socket connection. The user agent may then be
a background process that receives this information. User-specific factors such as
intended session duration or daily budget can be explicitly set by the user or estimated
by the agent based on historical user activity.

Diversity in Budgets: We have proposed propose multiple methods for the
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network to maximize social welfare and incentivize truthfulness in users’ resource and
valuation specifications. This ensures a certain notion of competitive fairness [58].
Since it is not in users’ best interest to lie about their needs, only users who truly have
the highest value for resources win allocations. However, since this value is expressed
in monetary terms, their budgets play a limiting role in their winning chances. In this
case, the RL strategy formulated in Section 4.8 will be especially valuable to help
more constrained users place bids in auctions with lower critical prices and achieve
the best utility possible given their affordability constraints.

4.11 Summary

We design an auction model that captures the market for session-level performance
guarantees, decoupling the user-facing auction from network-facing wireless resource
management. Our model moves away from radio resource auctions and focuses
on application-level provisioning, which is especially useful for emerging real-time
multimedia applications. Through trace-driven LTE simulations and extensive WiFi
experiments, we verify that not only can wireless externalities be minimized with
resource-aware admission control of flows, but more flows can be accommodated
by implementing incentive-compatible auction-based admission control. We further
analyze the winner determination of our proposed auction model with regard to
real-time multimedia applications and show that there are several realistic conditions
that render the multi-dimensional knapsack problem solvable in psuedo-polynomial
time. These reductions make it feasible to implement the incentive-compatible VCG
mechanism and even lead to revenue monotonicity in certain cases. We also analyze
the impact of temporal correlations between auctions on incentive compatibility and
define novel payment and allocation schemes to handle future bid uncertainty and
navigate trade-offs in desirable properties. Finally, we use the Monte Carlo Policy
Iteration technique to show that even budget-constrained users can achieve high utility
from these auctions.
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Chapter 5

Seamless Connectivity without
Subscriptions - Authentication and
Accounting

We now remove the inherent device-network trust relationship that was assumed in the
previous two models by allowing devices to seamlessly authenticate with any access
point (without subscriptions) and make real-time payments for consumed data, using
public and permissionless blockchains. Here, we first develop secure mechanisms for
authentication and bandwidth metering while assuming a simple albeit suboptimal
payment solution. In the next chapter, we develop a secure and scalable payment
protocol in detail and subsequently illustrate its use in the proposed system. In
both these chapters, I address scalability challenges that blockchains pose as well as
practical deployment challenges in techniques that involve access point modification.

5.1 Problem Definition

Devices in the IoT may have widely different network requirements and be deployed
at locations without dedicated internet access Current approaches to IoT connectivity
require device owners to manage individual data contracts and pay separate monthly
fees for each IoT device on a given operator’s network [70, 169]. Managing such con-
tracts with a LoRaWAN or NB-IoT provider for each device in dense IoT installations,
however, appears unscalable, expensive and may be a bottleneck for realizing large-
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scale deployments, e.g., in smart cities. These devices have considerable variations
in their data needs, which also makes different connectivity models appropriate for
different devices [54]. For example, a camera continuously sending a video stream, a
temperature sensor sending a single measurement every two hours, and radar sensors
on an autonomous vehicle requiring millisecond latencies all upload varying quantities
of data at varying frequencies and QoS. Providing for these diverse needs will become
even more challenging as IoT deployments grow: the number of smart cities worldwide
is expected to grow at a rate of 26% through year 2022 [94], making up a 34 billion
USD market in 2019 [19].

The overhead of provisioning dedicated contracts for each device may accelerate as
5G networks are more widely installed: such networks are expected to include dense
deployments of multiple access points (AP) of different radio access technologies [27, 28,
193], potentially with different operators, making it even more difficult to pre-specify
contracts for individual IoT devices on each nearby operator. In this work, we propose
to solve this challenge with Datanet, a system that allows an end-device to seamlessly
and securely connect to a nearby closed network that meets its needs, with no a-priori
trust or identity association, and provide compensation for availed data services in
real time. Datanet avails the EAP-TLS authentication mechanism, and is therefore
compatible with any access network that supports TLS-based authentication, e.g.,
WPA2-Enterprise WiFi networks and 5G networks [21].

Datanet has the potential to benefit not only IoT devices in future 5G networks,
but also IoT devices and phones/laptops that avail existing network infrastructure.
As smart-cities become more widely deployed, cheap WiFi hotspots are expected to be
ubiquitous; indeed, a 2016 study from Turin, Italy, found that approximately 50% of
streets around a block were within transmission range of in-home WiFi networks [175].
Densely deployed IoT devices, of which a significant portion are expected to be WiFi-
equipped, could then realize their variant data needs by accessing readily available
(and potentially closed) WiFi hotspots nearby using Datanet. Our analysis presents an
even stronger case, showing that an average IoT device in the deployment we analyze
is well within range of at least 10 WiFi hotspots. users with typical mobility patterns
are within range of several WiFi networks (many of them closed) at any given time.
Users of Datanet can then significantly reduce or even eliminate their usage of cellular
data, instead utilizing one of the network connectivity options around them that are
now accessible through Datanet; they can then subscribe to less expensive cellular
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data plans.

Research Challenges. While a significant body of literature now exists on
heterogeneous networks and optimal network selection [182], practical challenges in
seamless association with access networks have prevented many of these proposals
from being realized. Though private WiFi networks are often underutilized and can
be availed by end-devices for data offloading, it is unclear how end-devices with no
prior subscriptions to these hotspots can authenticate with them or be trusted to
compensate hotspot owners for the availed data services. These devices may not
even be able to discover which closed networks are available to them. Even open
hotspots often use captive portals for enforcing sign-up and up-ahead payment charges
(e.g., in airports), inhibiting a seamless experience. Though 5G provisions EAP-
TLS authentication, this is expected to be coupled with SIM-based identifiers, hence
continuing to require long-term subscription contracts and network-specific setup [194].
This continues to exacerbate a fragmented landscape of radio access technologies and
network controllers.

We now distill these research challenges. First, Datanet raises trust and identity
issues. An access point1 must be able to securely validate that an end-device (user or
IoT device) is able to pay for its connectivity, with no a-priori association or trust-
relationship with the device. The access point must also be able to enforce payment
upon providing network connectivity, which generally requires a trusted intermediary
to play the role of an adjudicator. However, trusted intermediaries like ISPs typically
require fixed-fee subscriptions that lock in the device. Further, the end-device is
also not guaranteed that its data needs will be fully met by the access point even
after payment since the access point is untrusted. Note that privacy concerns can
be addressed by encrypting the session payload at the transport/application layer;
though Datanet enables PHY-layer encryption of the traffic between the AP and the
device, higher-layer payload encryption protects against other potentially malicious
AP behavior such as leaking the PHY encryption key.

Second, fully solving Datanet’s trust and identity related challenges requires
trusted metering and support for scalable payments. Though decentralized
ledger technologies like blockchains can often act as a proxy for trusted intermediaries,
their ability to enforce and adjudicate interactions between the end-device and the

1Note that we use the term “access point” to refer to last-mile internet gateways of any Radio
Access Technology, including WiFi ruoters, WiFi access points and cellular base stations.
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access point requires the payments and device data usage to be digitally tracked in a
tamper-proof manner. Trusted metering is challenging to achieve in these situations
without dedicated trusted hardware. Hence, recent works [45, 144, 153, 160] addressing
bandwidth sharing have proposed that end-users make incremental payments for
incremental quantities of availed service, such that at most one round of incremental
payment or service is wasted if the other party fails to provide the corresponding service
or payment. However, these solutions generally require pre-establishing individual
payment channels between each device and each access point, and thus scale poorly to
scenarios where an end-user may connect to multiple different access points over time.
Even so, a metering mechanism of some granularity is required to facilitate even the
simplest QoS agreements/resource-use contracts essential for most applications, and
to form a basis for discerning between unreliable and reliable access points and users.

Finally, Datanet should be easily deployable: a generic access point must be
able to participate in Datanet without requiring special-purpose hardware or even
software (e.g., even reflashing the firmware). Key wireless technologies like LoRaWAN
for the IoT have faced a slow adoption rate due to the significant infrastructure setup
costs they come with [166]. For practical widespread adoption, it is highly desirable to
have the solution be general-purpose, agnostic of radio access technology, and require
little modification to existing deployed access points. This constraint makes handling
remuneration details with a connecting end-device and trusted metering even more
difficult, since a generic access point does not have protocols to deal with payment
flows. We must also that these operations can be performed without significant
resource overhead; the Datanet mechanism must be cheap resource-wise for practical
use in battery-constrained smartphones and IoT devices.

Our Contributions. Datanet relies on three core insights to address these chal-
lenges. Our system relies on three core insights. First, APs can validate unknown
users’ payment ability by analyzing records in tamper-proof and public
decentralized ledgers, where users’ balances can be locked in escrow accounts
to enforce payments. However, this requires significant AP hardware and software
modification to integrate with the blockchain for authentication and processing the
micropayments. Our second core insight is that the Authentication, Authorization
and Accounting (AAA) mechanism that is widely used for cellular networks and
enterprise WiFi solutions can also be used here. A Datanet operator can modify the
cloud-based AAA server to use blockchain-based credentials to authenticate
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and authorize AP access to untrusted end users. A simple configuration change
to the AP suffices to offload these operations to the external AAA server, with no
hardware or software changes needed. However, this introduces centralization and
potential scope for the AAA operator to enforce long-term subscriptions on APs
and end-devices for its services. Further, the access point presumably still requires
modifications to process micropayments, and more importantly, requiring users to
setup dedicated payment channels with sufficient funds for each AP they may interact
with imposes significant liquidity and capital constraints on users. To overcome this,
we propose a highly scalable, operator-mediated cryptocurrency payment
protocol called PayPlace for large marketplaces like the bandwidth-sharing one
here; PayPlace also natively enables multi-tenancy of AAA Datanet operators,
ensuring that end-devices can connect to any AP and APs can switch AAA operators
at any time with no loss of funds. Finally, to address the problem of tamper-proof
monitoring/statistic collection of the Datanet network, we design a novel solution
based on a trusted execution environment, which is widely available in mobile
phones and is expected to be deployed in IoT devices [138]. While, as we show,
having proprietary software on the access points helps unlock additional and more
sophisticated use-cases, a fully functional flow is achieved as is. We demonstrate
Datanet’s benefits by designing, prototyping, and evaluating Datanet based
on these insights.

Note that we defer the detailed explanation of the PayPlace payment protocol to
subsequent Chapter 6.

5.2 Related Work

Blockchain’s potential in displacing the role of centralized ISPs in the device-AP
association process has received attention recently. Althea [171] facilitates an incen-
tivized wireless mesh network (with possible gateway to the Internet) by providing
Raspberry-Pis running specialized routing and pricing software, which users can plug
into their off-the-shelf routers. Althea users make cryptocurrency micropayments to
APs to pay incrementally for their data forwarding services, using pre-established
payment channels with each router they connect to. This pairwise payment channel
model incurs significant scalability challenges as discussed in Section 5.4. Orchid [152]
also has similar requirements to facilitate device access to a previously unknown
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router; however, it requires routers to be reflashed with special-purpose software.
Helium [89] creates a wireless mesh network of proprietary LongFi hotspots that
eventually have internet backhaul. These LongFi networks are expected to serve
IoT devices and to be deployed by end-users. These protocols thus require APs to
install special-purpose hardware or software to accept and validate micropayments
that users send over pairwise user-AP channels, posing significant adoption barriers.
DataNinja [161] enables smartphone end-users, not APs, to share their cellular data or
WiFi connection with another nearby user. However, it does not use any remuneration
mechanism, instead relying on altruism. DataNinja meters the bandwidth exchanged
but does not perform TEE-based integrity checks to verify these measurements.

Some existing solutions also including mechanisms for bandwidth metering. Ammbr [25]
requires the deployment of proprietary routers, which can then be instrumented to be
tamper-proof and provide trusted ground-truth measurements; however, this poses
infrastructure setup costs for users and is necessarily specific to WiFi. Orchid [152]
proposes to impose a high economic penalty (via staking mechanisms) if router fraud
is detected. While this may disincentivize routers from setting up “fake” APs to inflate
market perception of the network’s value, it does not provide a technical solution
and it is not clear how router fraud can be efficiently detected. Finally, we note that
while all of these proposals facilitate a pay-per-use model between the end-device and
access point, they do not, to the best of our knowledge, facilitate practical pay-per-use
strategies like utilization-based pricing, which we enable with TEE-attestation network
measurements from the end-device.

5.3 Potential Datanet Impact

We first demonstrate the impact of a system like Datanet that allows devices to
seamlessly connect to potentially closed access points, without requiring a-priori trust
relationships with the APs or an intermediary, as shown in Figure 5.1.

Impact on IoT Devices. To assess potential connectivity benefits afforded to
IoT devices, we consider the Array of Things project [20], which currently has a
smart-city testbed of 126 IoT devices deployed in the city of Chicago. With Datanet,
WiFi-capable IoT devices can utilize any Datanet-enabled WiFi access point that
is in range for transmitting the sensed data periodically to the cloud for processing.
As shown in Figure 5.1, any WiFi AP can join Datanet as long as the AP supports
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Figure 5.1: With Datanet, end-devices are able to access closed hotspots, as long as the
hotspots support authenticating via EAP-TLS (e.g. using WPA-Enterprise) and use a
Datanet operator for performing the authentication remotely. Hence, an end-device now has
multiple candidate networks to choose between to get internet connectivity.

authenticating with EAP-TLS (e.g. if the AP supports WPA-Enterprise as most
do, changing its AAA server to a Datanet operator is a one-click setting change).
Using crowdsourced information about WiFi hotspots in the area obtained from
WiGLE [183], we correlate the location of each device in the testbed with WiFi APs
in transmission range, categorized by the authentication mechanism used by the AP.
We consider APs within a 0− 50m radius of the IoT device, based on previous studies
on how the WiFi RSSI decays with distance from the WiFi AP [175].

As shown in Figure 5.2, an IoT device in this testbed, on average, can reach approxi-

Figure 5.2: Approximately 12 closed Datanet-compatible WiFi access points (WPA/WPA2)
are available on average to each deployed IoT device in the testbed, even within a close
transmission range of 10m.
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mately 14 hotspots (omitting APs whose network access control mechanisms/employed
security suite is unknown) even within a conservative range of 10m that presumably
yields strong signal strength. Only 1 of these APs is open on average, while approxi-
mately 12 of the 13 closed APs use the WPA1 or WPA2 security suite (hence capable
of supporting WPAx-Enterprise standard for remote AAA-based EAP-TLS auth),
which make them candidate Datanet APs. Upon widening the acceptable transmission
range to 50m, the fraction of open hotspots does not exceed 10%, while the number of
closed WPA2 networks increases over tenfold. With Datanet, these private hotspots
can become candidate Internet gateways for IoT devices, and be compensated for the
occasional data transport services they provide, without requiring prior information.

Impact on End-user Devices. Smartphone users, who must typically utilize
a combination of cellular data, open WiFi hotspots (if available) and known private
routers (e.g. at home), have significantly more network choices if they join Datanet.
Indeed, they may even consider cheaper data plans with lower data limits if Datanet
APs are widespread and provide a contract-less means of data access at more com-
petitive rates. To quantify this hypothesized gain from Datanet, we verify whether a
dense deployment of currently inaccessible closed APs exists around locations that
users typically visit based on their regular mobility patterns. Though Datanet also
enables access to EAP-TLS enabled future 5G networks [21], we conservatively limit
our analysis to currently deployed WiFi networks.

For this evaluation, we utilize fine-grained mobility traces collected using the
LifeMap mobility learning system [48, 49], which track the locations of eight students
in Seoul, South Korea once every two minutes for two months. Prior analysis [48, 49]
on this dataset showes that students are stationary 85% of the time, indicating that
they would not suffer from frequent handoffs between short-range WiFi networks if
they were to use Datanet.

Figure 5.3 illustrates the densities of locations visited by these participants weighted
by the duration spent in each, zoomed in on South Korea and Seoul. Some participants
also made occasional trips outside South Korea, including locations in the United
States. Datanet users who make such visits can particularly benefit from Datanet by
avoiding the high international or roaming fees typical of most cellular data plans.

For each unique location in this dataset, we retrieve information about WiFi
hotspots found nearby from WiGLE and estimate the average number of accessible
APs for different transmission ranges, accounting for user localization errors specified
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(a) (b)

Figure 5.3: Heapmap of locations visited by users in the LifeMap mobility dataset [48]
over the course of two months, weighted by duration spent in each location. Shown for (a)
South Korea and zooming in, (b) Seoul.

0 10 20 30 40 50 60 70
Number of Hotspots

0.0

0.2

0.4

0.6

0.8

1.0

Reverse CDF of Num. Hotspots across Locations 
 10m range

Exp. Open Hotspot Available
Exp. WPA Hotspot Available
Exp. WPA2 Hotspot Available
Exp. WEP Hotspot Available

(a) Reverse CDF of estimated number of acces-
sible APs within a 10m range of each location,
categorized by encryption used

0 10 20 30 40 50 60 70
Number of Hotspots

0.0

0.2

0.4

0.6

0.8

1.0

Reverse CDF of Num. Hotspots across Locations 
 30m range

Exp. Open Hotspot Available
Exp. WPA Hotspot Available
Exp. WPA2 Hotspot Available
Exp. WEP Hotspot Available

(b) Reverse CDF of estimated number of acces-
sible APs within a 30m range of each location,
categorized by encryption used

Figure 5.4: We depict statistics for the number of accessible hotspots for each unique
location in the LifeMap mobility dataset [48]

in the mobility trace. Figures 5.4(a) and 5.4(b) depict reverse CDFs of mean hotspot
availability corresponding respectively to 10m and 30m radius from each user location
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Figure 5.5: Estimated average number of accessible routers across all locations in the
LifeMap mobility dataset, weighted by duration spent in that location and categorized by
encryption type of routers.

in the trace. There is less than a 5% chance of a user encountering an open hotspot
within a 10m radius, compared to a 35% likelihood of finding a closed hotspot in that
range (i.e. WPA/WPA2/WEP encryption) and even a 10% chance of encountering upto
five WPA2 hotspots. Even after expanding the radius to 30m, there are significantly
fewer open hotspots than private ones. There is a 20% probability of encountering
atleast 15 closed hotspots in a given location while only a 5% chance of encountering
atleast five open hotspots.

Finally, we account for time spent in each location. Figure 5.5 shows the average
count of each type of router accessible within different transmission distances from
users’ locations, weighted by the time users spent in that location. A typical user is
within range of 2− 17 closed WPA2 hotspots at any given time, while very few open
routers are deployed. Opportunity to utilize these private hotspots thus significantly
increases connectivity options for the end-user, demonstrating Datanet’s potential
benefit.

Impact on Access Points. We next demonstrate that private routers have
sufficient idle capacity to serve additional users through Datanet. We analyze the
hourly bandwidth utilization of 1,200 home routers from the Measuring Broadband
America initiative [154], collected in October 2017.

Figure 5.6 shows a mean network utilization of at most 2 Mbps across routers for
all days observed, including peak evening hours. With typical home network capacity
of 40 − 75 Mbps [96], over 90% of this capacity is unused. Though closed routers
in corporate environments may be more heavily utilized, this analysis nevertheless
indicates that many private APs would be able to monetize their additional capacity
with Datanet.
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Figure 5.6: The mean downlink and uplink utilization for home routers from the analyzed
dataset do not exceed 2Mbps, though the maximum recorded utilizations (shown in shaded
region) reaches upto 8Mbps.

To measure these APs’ incentive to join Datanet, we estimate the potential AP
benefit by correlating government-provided population density traces for Seoul, South
Korea [158] with the APs for which they are in transmission range. The population
dataset partitions Seoul’s total area of 605sq. km. into 19153 regions, and provides
hourly measures of the number of people in each region. From the WiGLE database,
we find approximately 650000 APs with unique MAC IDs in Seoul. Similar to the
trend observed so far, approximately 88% of the APs support WPA2/WPA encryption,
while 6% of them are open. Most of Seoul lies within a 50m transmission range of at
least one AP (Figure 5.7).

With Datanet, closed APs may seamlessly connect to and serve any interested
user. We thus aim to estimate the number of such users for each AP. We pick a
representative day for our analysis from the extensive population density traces, and
conservatively consider users within a short 10m transmission range. For each closed
AP, we estimate the potential number of users it may serve each hour by multiplying
the population density in the AP’s region for that hour by the transmission coverage
area. Figure 5.8(a) shows the resulting mean and standard deviation across the APs,
indicating that they could serve over 10 additional users for at least 10 of the busiest
hours of the day. Note, however, the user may be in range of multiple such APs
(including, for instance, a known router), so APs might compete with each other to
attract users. Further, if closed WEP routers do not switch over to WPA-Enterprise
authentication (note that only the dated IEEE 802.11a standard does not support it,
which few APs still use [130]), then the number of potential users that may connect to
closed WPA/WPA2 routers is even higher. Figure 5.8(b) further weights this potential
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Figure 5.7: Area within a 50m range of an AP with known encryption type in Seoul,
retrieved from WiGLE.

(a) Mean and standard deviation of potential
number of users that a closed router in Seoul may
connect to within 10m range, based on region
density for each hour of day

(b) Mean additional downlink and uplink uti-
lization at closed APs from potential Datanet
end-devices, by hour of day

Figure 5.8: Depicting the potential benefit to private APs in Seoul by serving data needs
of devices accessible through Datanet.
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benefit by users’ typical data usage over a day, which is estimated from network usage
measurements collection on 20 users’ smartphones over 10 days. Factoring this in, a
closed router may serve up to several hundred megabytes of additional network traffic
on average at some hours of the day.

5.4 Blockchain Background

We briefly review background material on micropayments and cryptocurrency payment
protocols. While the payment protocol for Datanet, called PayPlace, is developed in
the next chapter, we use the well-understood Custodial Payment Hubs construction
as a simple proxy in this chapter which allows us to develop the rest of the Datanet
architecture.

Micropayments. Transactions on the blockchain are known to incur expensive
mining fees and confirmation time [180], introducing considerable overhead when small
payments (sometimes less than the transaction fee) must be made repeatedly between
two entities. The ability to make granular and frequent payments, however, is crucial
to Datanet, allowing a device to pay an AP incrementally as bandwidth is consumed
and limiting the user’s loss to one micropayment if the AP unexpectedly stops serving
the user. Hence, the ability to make micropayments allows the untrusted device and
AP to transact with minimal risk (reduced to an incremental unit of data service and
micropayment) in case the other withholds payment or data service.

To facilitate frequent micropayments at low or no cost, pairwise state channels
are commonly used to move micropayments off the blockchain [60, 120, 160]. With
such channels, the device (i.e. the corresponding user) makes one transaction on the
blockchain (incurring fees and latency) to setup the initial payment/state channel
with the AP and deposits some amount of cryptocurrency in it. Subsequent payments
from the user to the AP can be made entirely outside the blockchain by just sending
cryptographically signed payment promises to the AP (upto the value of the funds
deposited), without incurring any blockchain-related costs. When the state chan-
nel protocol is correctly followed, these cryptographically signed off-chain payment
promises can be redeemed for real payments on the root chain at any time.

Challenges with Pairwise Micropayments. While pairwise state channels
can reduce micropayment costs as described above, they are still inadequate for the
user-AP payments required in Datanet. Datanet users (i.e., end-devices) may purchase
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data from multiple nearby APs during their use of the marketplace. Establishing
pairwise payment channels with each transient AP then incurs significant overhead
since users must commit funds in each channel that they believe will be used later
for payments to that AP. Though researchers have proposed to enable off-chain
payments between unconnected parties by routing via intermediaries connected by
pairwise channels [120, 160], this requires intermediaries to commit their liquidity for
others’ transactions, a considerable cost in large marketplaces like Datanet. Indeed,
recent work has exposed incentive compatibility issues with intermediaries in such
routing protocols [37]. Further, fortuitous routes may well not exist between arbitrary
user-AP pairs. Another potential solution would be to have an intermediary (e.g.,
owner/operator of the marketplace) set up pairwise channels with each AP and end-
device, for the sole purpose of routing payments between them. However, this operator
must then deposit its own capital/liquidity in each individual channel with an AP,
which, given the size of the data connectivity market, could be prohibitively large.

Custodial Payment Hubs as a placeholder solution. More expressive side-
chain models, which allow non-pairwise payment transactions to be conducted off-
chain, incur tradeoffs in security. For instance, users in the popular side-chain model
Plasma MVP [8] must frequently monitor the side-chain for malicious activity or
risk losing their funds. The protocol PayPlace that we subsequently develop in the
next chapter is a new side-chain mechanism specifically addressing security issues for
large-scale marketplace-based payment scenarios like the bandwidth-sharing one here.
For Datanet, PayPlace thus presents an appealing alternative to un-scalable pairwise
payment channels. However, since we defer the development of PayPlace, we utilize
Custodial Payment Hubs as a temporary solution in this chapter, which allows us to
construct the remaining Datanet components without any major modifications. With
Custodial Payment Hubs, users/payers deposit funds and establish payment channels
with a single custodial intermediary, whom they make instant off-chain payments to for
transactions in the marketplace. The intermediary periodically calculates the amounts
to be forwarded to each payee (APs in our case) and makes root-chain transactions to
withdraw corresponding balances from its channels with consumers and transfer them
to the specified APs. This circumvents any liquidity requirements otherwise imposed
on such intermediaries in non-custodial solutions.
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5.5 Datanet Design

We provide an overview of the challenges in designing Datanet and our approach to
addressing them. We then highlight Datanet’s key goals and describe the system
design in detail.

5.5.1 Approach

Datanet’s goal is to enable seamless connectivity between end-devices (i.e., users)
and APs, without subscriptions, a-priori device-AP trust relationships, long-term
contracts with intermediaries, or complex key sharing and/or key generation schemes.
Datanet achieves this by federating access to end-device identity and funds using the
blockchain, which also allows funds allotted by users for use in data consumption
to not be tied to a single provider. To avoid the significant hardware and software
modifications required for APs (of different radio technologies) to integrate with the
blockchain, Datanet uses remote AAA servers for blockchain-based user authentication,
authorization and payments, allowing LTE, WiFi etc. APs to easily join Datanet.

As explained in Section 5.4, using micropayments eliminates the need for a prior
device-AP trust relationship by allowing the end-device to withdraw at the first sign of
misbehavior. It also allows the AAA operator to instruct the AP to terminate a user
session at the first sign of user misbehavior (e.g. user stops sending micropayments
to the operator for the AP’s services). To avoid these AAA servers from becoming
centralized intermediaries that then impose long-term contracts on end-devices and
APs that use them for auth, Datanet’s smart-contract has native support for multiple
AAA controllers (equivalently, AAA operators) to simultaneously offer data services,
fostering a competitive marketplace of these AAA operators on the Datanet smart-
contract. This multi-tenancy relies on the PayPlace technique (introduced later),
which allows Datanet users to make incremental micropayments to the AAA operator
that their currently connected access point uses.

Finally, Datanet’s novel architecture combines off-the-shelf hardware for Trusted
Execution Environments (TEE), available commonly on end-devices today, with smart-
contract based decentralized execution rules to measure the amount of data exchanged
between Datanet access points and users. While the granularity and reliability of the
metered information can vary, e.g., due to limitations imposed by the operating system
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on the use of the TEE and TEE availability at the AP, at a minimum Datanet enables
enforcement of custom payment schemes based on metered data exchange between
the access point and the device, and also provides robustness to market manipulation
of the Datanet crypto-token.

5.5.2 Goals and Constraints

We set the following goals for Datanet; the extent to which related work meets these
goals is discussed in Section 5.2.

• Seamlessness: devices can seamlessly and instantly associate with a (private)
AP on Datanet for Internet connectivity without prior identity, association, or
payment contract with the AP or an intermediary.

• No Subscriptions: the AP serving a device in Datanet should be forced into
neither a long-term contract nor a trust relationship with an intermediary.

• Deployability: establishing device-AP connectivity should be feasible without
requiring special-purpose hardware or software at the AP.

• Trusted Payments: neither an end-device nor AP should be at risk of signifi-
cant monetary loss (i.e., the AP failing to provide service after the user pays for
it; or a user failing to pay after AP agrees to it) in a Datanet network association.

• Trusted Metering: Datanet sessions must result in tamper-proof, auditable
statistics of the network traffic and payment for the session.

5.5.3 Datanet Overview

Figure 5.9 illustrates Datanet’s core components and the typical end-device flow in
Datanet. We define the Datanet smart-contract on a blockchain (e.g. Ethereum);
the contract implements the PayPlace sidechain (introduced later) for enabling scalable
device-AP payments which also supports operator multi-tenancy. The user of an
end-device (smartphone, IoT device, etc.) first registers with the Datanet contract
(step 1 in Figure 5.9) by depositing some value of cryptocurrency that they wish to
later redeem for data connectivity services through Datanet access points. Similar
to prior works, we denote this smart-contract’s native crypto-token, e.g., an ERC20
token like EOS, by c. The registering user’s details (public key, amount of c deposited,
etc.) are broadcasted by the contract onto the blockchain’s event queue (similar to
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Figure 5.9: We illustrate Datanet’s core components and interactions for an end-device to
onboard and avail Datanet APs.

Ethereum events [162]) which Datanet operators are subscribed to (steps 2-3). A user’s
deposit into the Datanet smart-contract essentially establishes a payment channel
between the user and an operator(s); users may specify multiple operator that they
wish to split their deposit between. The PayPlace protocol specified in the subsequent
chapter details how users may later shift their balances to other operators.

A Datanet operator hosts cloud applications for (1) performing AAA functions
that specify whether an AP should accept connection requests from untrusted end-
devices, and (2) processing micro-payments received in real time from end-devices
connected to APs that use the operator’s AAA service. Remote AAA servers decouple
the complex business logic of network admission decisions from the AP, aiding in
easy deployability of the blockchain-based mechanism since most radio access tech-
nologies can easily integrate remote AAA servers, which are ubiquitously used for
authentication in 3GPP networks. Specifically, Datanet AAA servers rely on end-
users’ blockchain credentials to authenticate them using EAP-TLS certificate-based
credential verification. Hence using Datanet AAA servers for authentication also
allows for a seamless connectivity experience as end-devices and WiFi hotspots almost
ubiquitously support the EAP-TLS standard; with 5G, even cellular networks are
expected to support EAP-TLS [21]. We note that the authority signing the end-user’s
certificate is irrelevant since the Datanet smart-contract on the blockchain specifies
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public-keys of valid end-users. Similarly, operators register their credentials with
the Datanet smart-contract on the blockchain. End-devices thus retrieve the list of
Datanet operators from the blockchain asynchronously and can verify whether the
AAA server’s credentials belong to a valid Datanet operator during the EAP-TLS
handshake.

An access point then onboards onto Datanet simply by associating with a Datanet
operator of its choice, i.e. directing its auth module (that usually defaults to WPA-
Personal for home routers) to the operator’s remote AAA service, configurable via
the administration interface. We note that the AP may continue to provision WPA-
Personal authentication for home users, if needed, using a separate isolated SSID. An
end-user then, with their blockchain credentials and the Datanet application installed
on their device, has seamless access to such Datanet-enabled APs. Discovering these
access points is easiest if they can beacon Datanet support; Hotspot 2.0 frames support
signalling details like associated Datanet operator, price charged by the access point,
QoS capabilities, and others. For APs that do not yet support Hotspot 2.0, the
Datanet operators may be queried off-band to retrieve details of surrounding Datanet
APs. AP-specific information can always be signalled at the application layer by the
corresponding Datanet operator after an end-device establishes a successful connection
to the AP. Note that the TLS handshake reveals to the device whether a Datanet
operator’s AAA server is being used.

An end-device initiates association by sending an EAP-TLS authentication
request to a Datanet AP using its blockchain credentials (step 4) that is forwarded to
the corresponding operator’s AAA service (step 5). Once a successful handshake is
established with the end-device (steps 6-7), the Datanet application initiates periodic
micropayments to the operator identified in the handshake (step 8). For instance, if the
advertised charge is .001c per minute, the Datanet application makes an incremental
payment promise of .001c every minute. The remote payment processing service
performs continuous authorization of connected users, ensuring that the user has
sufficient funds left in their payment channel with the operator to make micropayments
and that each received micropayment is valid (i.e. contains a valid signature and
assigns the expected amount of funds to the operator in that channel). Processing
micropayments remotely through the operator’s cloud services allows APs to use
Datanet without requiring special-purpose software to handle its users’ micropayments.
If an active user misses consecutive payments, the payment service notifies the AAA
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server, which issues a disconnect command [125] to the AP that terminates the user’s
session. If, on the other hand, the user finds the AP’s service quality poor, the user may
halt micropayments and the application searches for an alternate Datanet AP. Through
this mechanism, untrusting APs and end-devices engage in incentive-compatible data
sessions with negligible loss.

APs periodically receive incremental income due to them from the operator (which
receives the micropayments that end-devices make for data services provided by
APs and holds on to these funds custodially) based on the PayPlace side-chain
mechanism. For illustrative purposes here, we may simply refer to the Custodial
Payment Hub model, wherein the custodial operator periodically makes root-chain
transactions transferring funds due to payees. Note that this process does not require
any modifications on the AP itself to integrate with the blockchain. It may be desirable
for AP owners to periodically verify that the income they are assigned by the operator
is in keeping with the data services rendered to users, to minimize their trust on
the operator and detect any malfeasance immediately. In case a lower payment than
expected is received, APs may simply switch the Datanet operator they use for AAA
services.

Finally, we instrument the Datanet application running on end-devices to
generate trusted network utilization measurements that facilitate valuable usage-based
micropayment structures (e.g. .001c for 1MB of data) and a tamper-proof assessment
of the value created by the Datanet system. Since the Datanet application on the
end-device is trusted (explained later) and TEE capabilities leveraged to attest that
its usage summaries are not tampered with, these periodic measurement reports also
guard the c token against market manipulation from incentivized actors, as explained
later.

5.5.4 Specialized Micropayment Structures with Tamper-Proof

Metering

To limit AP and user losses from misbehavior, the AP must be able to terminate a
user’s connection upon non-payment. However, since the Datanet operator and not
the AP receives micropayments (to avoid AP hardware/software modifications, as
discussed in Section 5.5.3), the operator must compare the received payments to the
services provided and issue a termination if needed. Such remote monitoring requires
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tamper-proof metering of provided data services, since end-devices may maliciously
attempt to provide a lower compensation than the rate specified by the AP. Note
that if APs modified their software to directly collect micropayments, this concern is
mitigated (though it results in pairwise payment channels between APs and the user).

Simple micropayment structures [45, 144] that are based only on the duration
for which a user is connected to an AP, are easily monitored by a remote Datanet
operator. However, more reasonable payment structures likely include some measure
of the data service rendered in exchange for micropayments. For instance, the AP
may wish to charge .004c per MB of data transferred; in this case, the micropayment
amount that the operator receives every minute varies based on the amount of
data transferred between device and AP. Running traffic monitoring software on
the end-device’s Trusted Execution Environment (TEE) and reporting the recorded
incremental network utilization to the operator would be a straightforward solution.
However, popular mobile and embedded operating systems do not typically support
running third-party software in their TEE (e.g. ARM TrustZone [190]). Hence, we
instead design the Datanet end-device application to be trusted (as in Figure 5.9),
incorporate network traffic monitoring capability, and require periodic attestations
from the device’s OS (e.g. with Google’s SafetyNet API [31]) that Datanet is running
on an un-compromised device.

Ensuring that the Datanet application is publicly trusted is done by open-sourcing
the codebase and explicitly relating this code to the executable available in App
Stores (e.g. Google Play Store’s APK) through certified compilation techniques
(e.g. [150]) and publicly auditable Continuous Integration servers. Then, for every
time period that a micropayment is issued for a usage-based payment structure, the
application reports the data usage statistics along with an attestation summary from
the OS that may include [31] the calling application, timestamp, unique nonce, and
an indication of any known integrity issues (e.g. root capabilities that invalidate OS
trust). If the timestamp matches current time, the stated package name of the calling
application matches the trusted Datanet application, no integrity issues are indicated,
and signature verification of the attestation is successful, then the operator considers
the reported utilization as accurate. The operator may further corroborate the reported
end-device utilization with coarse per-session network utilization information that it
receives from APs (e.g. via RADIUS Accounting packets).

Reliability Metrics with Tamper-proof Metering. With sophisticated resource-
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use contracts (e.g., real-time network slice agreements [92]), devices may face steep
opportunity costs if contracts are violated, even though their monetary loss is in-
significant due to the micropayment structure. For instance, a user may be seriously
inconvenienced if she cannot complete a video call due to her connection being prema-
turely interrupted by the AP. The tamper-proof network utilization readings collected
from the trusted Datanet application running on attested end-devices can be used by
the operator, smart-contract or any third-party service to assess different APs’ and
end-devices’ reliability, potentially leading to a reputation system that informs users’
decisions to connect with specific APs and vice-versa. Note that WiFi access points
are increasingly equipped with Trusted Platform Module [173]that provide attestation
capabilities as well. Such APs can also provide their own trusted measurements to
the Datanet operator for computing ground truth about session performance and
influencing the reputation mechanism.

5.5.5 Assessing Datanet Utilization with Trusted Activity Sum-

maries

The Datanet application on the end-device also periodically sends a coarse summary of
related network activity to the Datanet smart-contract, along with an attestation from
the OS. As long as the attestation is verified, the contract broadcasts an event indicating
that a Datanet utilization summary was published by an end-device. The summary
information can then be cheaply learnt by parsing the block data corresponding to
the broadcast event [4] and may be utilized by other services for recounting purposes
(step 10 in Figure 5.9) to provide publicly verifiable statistics on Datanet usage. Since
Datanet services are availed with special-purpose crypto-tokens c, this trusted metering
guards against market manipulation of the token value by token-holders, APs and
Datanet operators alike, who have strong incentives to inflate the coin value to increase
their revenues [152]. As noted above, availing similarly trusted readings from APs,
when possible, increases the robustness of this measure.

5.6 Evaluation

While section 5.3 shows that Datanet can benefit generic end-users and IoT devices,
We now prototype the proposed Datanet mechanism and assess its overhead.
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(a) Execution Time for generating Attestations
and Micropayments

(b) CPU utilization as a % of a single CPU for
generating Micropayments and Attestation

Figure 5.10: We analyze Datanet-related overhead incurred by the end-device in terms of
(a) execution times and (b) CPU utilization.

5.6.1 End-device Overhead

To assess the overhead on end-devices in Datanet, we implement a functional proto-
type as follows. A Datanet operator is setup on AWS cloud, with a FreeRADIUS
instance [80] providing the blockchain-based AAA services and a payment service as
described in Section 5.5. We setup a test blockchain network using Ganache [172]
including a smart-contract for coordinating user balances and payment transactions.
Accounts for the operator and test users are created on Ganache with sample c deposits
on the smart-contract. We use an off-the-shelf UniFi AC Pro [174] AP for processing
Datanet connection requests from end-devices, configured to use the FreeRADIUS
AAA cloud instance.

Next, we develop the Datanet Android application that downloads the list of
nearby Datanet APs (resolving to the single UniFi AP in this case), including their
MAC address, SSID and price per minute in c. The application initiates an EAP-TLS
connection to our AP if its (SSID, MAC) tuple is located in the WiFi scan. Upon a
successful connection, the application initiates a background service that, for every
minute, creates a micropayment transaction specifying the net amount owed by the
device to the Datanet operator, including the specified incremental c for the last
minute. The user then cryptographically signs this message with credentials that
identify them on the root blockchain and sends it to the operator’s payment service.
The TLS handshake identifies the operator to the application with its public key.

Micropayments and Attestations. We run the Datanet application on three
devices – Google Pixel 3a, Samsung Galaxy Note 9 and OnePlus 7 Pro – and assess
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(a) Data transferred over the network per mi-
cropayment and attestation call, in KB - log
scale

(b) Battery drain per minute for micropayment
and attestation operations

Figure 5.11: We measure Datanet overhead in terms of (a) network traffic and (b) battery
drain by performing attestation and micropayment every minute for 3 hours.

the overhead incurred by each. For attestation calls, we use Android’s Safetynet
API, which returns a signed response from Google attesting the calling application’s
package name, version number, timestamp, and device integrity indicator, as described
previously [31]. Attestation and micropayment calls are separately repeated every
minute at each device for for upto 5 hours. As Figure 5.10(a) depicts, generating a
micropayment takes ∼ 100 ms on average, and attestation takes ∼ 1 s.

We next analyze the CPU utilization time of micropayments and attestation. The
SafetyNet API’s attestation call invokes hidden device processes whose details are not
readily accessible publicly; thus the time spent by the calling application’s thread in
the CPU may not fully capture the call’s CPU utilization. Instead, we profile system
usage by frequently executing the top command, finding that non-negligible CPU
utilizations of the com.android.gms.unstable and com.google.android.gms.snet

processes tend to correlate with attestation calls. Figure 5.10(b) depicts the CPU
utilization for each of these operations. We label the utilization for the Datanet applica-
tion, com.android.gms.unstable and com.google.android.gms.snet as App-Att,
Unstable-Att and Snet-Att, respectively. While micropayments consume 40−80% CPU
for the few hundred milliseconds that they execute, the attestation processes have
wider variance. The OnePlus 7 Pro did not run com.google.android.gms.snet.

We next depict the network activity of these operations in Figure 5.11(a). Sending a
micropayment to the Datanet operator’s payment service consumes less than 500 bytes
on average, while sending the attestation command response over the network incurs
approximately 10KB. However, the attestation call invocation of hidden Google Play
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Figure 5.12: Latencies in connecting to a Datanet-enabled AP is seen to be equivalent to
connecting with a private shared key or to a Hotspot 2.0 enabled EAP-TTLS AP.

processes may transfer additional information over the network to Google’s server. We
hence use Android’s BatteryHistorian and BatteryProfiler tools [30] to infer this
network traffic and the resulting battery drain. As Figure 5.11(a) shows, the typical
network traffic generated by Google Services (measured by BatteryHistorian) is
around 10KB/minute (GS-Base) but increases to 100KB/minute when the attestation
call is performed every minute (GS-Att), indicating a 100KB overhead per SafetyNet
API call. As seen in Figure 5.11(b), the battery drains at a rate of .04 − .08% per
minute, across attestation and micropayment, indicating no significant increase in
battery consumption from these operations.

EAP-TLS Negotiation. Since Datanet relies on the EAP-TLS handshake for
network authentication and end-devices may frequently associate with different APs,
we measure the corresponding network overhead incurred. We configure the Android
devices to repeatedly authenticate and then disconnect with the UniFi access point
around 100 times. The AP is first setup with WPA-PSK, then with EAP-TLS via
the remote RADIUS server, and finally, with Hotspot 2.0-enabled EAP-TTLS (with
MSCHAPv2). We compare with Hotspot 2.0 since Datanet can use Hotspot 2.0 to
signal relevant AP information like compatibility or operator. For this, we setup the
AP to use a popular Hotspot 2.0 provider’s remote AAA server and beacon settings,
and install the provider’s OSU profile on the Android devices to detect and connect to
any Hotspot 2.0 networks that beacon this provider’s information. Figure 5.12 shows
that the EAP-TLS mechanism incurs comparable AP connection latency to PSK and
Hotspot 2.0.
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5.7 Discussion

The Datanet client application running on end-devices that send micropayments and
utilization readings to Datanet operators is trusted ; that is, the application is open-
source, its code verified to be correct. Further, the operator can verify whether they
are communicating with this particular application or not through remote attestation
like the SafetyNet API. Even though the end-device is not trusted, operators can
trust measurements reported by the Datanet client application since the remote
attestation API (e.g. SafetyNet) that helps the operator verify the application they
are communicating with also attests the integrity of the device that the application
is running on. However, this setup does not necessarily port over easily to other
operating systems and devices that may not natively offer such attestation APIs
out-of-the-box, for instance, IoT devices. Further, our experiments on client-side
resource impact of Datanet does not consider IoT devices, which are significantly more
battery constrained than smartphones. As future work, we hence plan to implement
Datanet client-side operations on a Raspberry Pi (emulating an IoT device). To verify
device integrity, we plan on using remote attestation software like Shadow-box2 that
protects the Linux kernel from unauthorized executable file attacks (using Linux IMA)
and kernel object attacks using ARM TrustZone capabilities in the Pi 3. For the
operator to verify that it is talking to the trusted Datanet client application when it
receives utilization readings, we intend to run the application as a Trusted Application
on the device, using ARM TrustZone and TEE. Finally, we will repeat the power
measurement and latency experiments on this Raspberry Pi prototype implementation
of Datanet.

5.8 Summary

Though TLS-based authentication is ubiquitously supported in WiFi access points and
expected to be deployed in future 5G networks, end-devices generally cannot connect
to these access points; they must instead establish dedicated long-term payment
contracts with ISPs for Internet access. In this work, we propose Datanet to instead
enable seamless connectivity between end-devices and access points without any prior
subscriptions using trustless blockchain-federated authentication and authorization.

2https://github.com/kkamagui/shadow-box-for-arm
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We employ remote AAA servers to perform this blockchain-based auth when unknown
devices attempt to connect with untrusting APs, thereby avoiding any hardware
or even software modification at access points (which otherwise would considerably
impede adoption). To mitigate trusted relationships with the intermediate AAA
service providers, we adapt a recently proposed protocol for secure and scalable
blockchain-based payments in marketplaces to natively support multiple AAA service
providers. This effectively enables a marketplace of Datanet-compatible AAA services
whose interactions with devices and APs are federated by the Datanet smart-contract
on the blockchain, thereby avoiding AAA operator monopolies. Finally, to enable
practically useful payment models like usage-based payments, we design a novel use
of trusted execution environments that are available for performing device integrity
checks and attestations in the mobile OS, to provide tamper-proof network utilization
metering without specialized hardware support. We demonstrate Datanet’s potential
benefit to IoT devices and end-users alike by correlating the location of deployed IoT
devices as well as recorded user mobility patterns with WiFi access points around
them. We finally show that Datanet is practical, introducing little overhead to the
end-user, access points and the AAA operator alike, by building and evaluating a
Datanet prototype.
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Chapter 6

Seamless Connectivity without
Subscriptions - Billing

We now develop the PayPlace payment protocol for use in the Datanet system to
facilitate fast, cheap and operator-mediated payments between large numbers of users
and routers. Making cryptocurrency payments in such envisioned bandwidth-sharing
marketplaces in non-trivial. The standard solution for off-chain payments, state
channels, are optimized for frequent transactions between two entities and impose
prohibitive liquidity and capital requirements on payment senders for marketplace
transactions. We propose PayPlace, a scalable off-chain protocol for payments between
consumers and sellers and show that is has strong security guarantees, leaves a low
resource footprint on the blockchain, and is orders of magnitude cheaper than the
state-of-the-art cryptocurrency payment system, Zero Knowledge Rollups.

6.1 Problem Definition

Facilitating fast and cheap cryptocurrency payments is important for several market-
place applications that use blockchains, and especially so for large-scale blockchain-
based networks like Datanet and others [89, 126, 152] that aim to facilitate sharing
of last-mile network resources. There is also increasing interest in enabling well-
established two-sided marketplaces like Amazon and Uber on blockchains [75, 76],
which requires a scalable mechanism for consumers to make cryptocurrency payments
to merchants. Since blockchain transactions are known to be limited by long finality
times, low throughput, and high fees [180], off-chain payment mechanisms have come to
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be regarded as a promising alternative. However, predominant solutions [64, 121, 160]
rely on state channels that are optimized for frequent pairwise payments between two
entities (unlike typical marketplace interactions) and impose prohibitively high capital
and liquidity requirements on payment senders and intermediaries in the marketplace
scenario (more in Section 6.3). Yet other off-chain protocols for broader non-pairwise
scenarios [11, 118] rely excessively on the root-chain for securing off-chain funds; the
number of blockchain transactions they initiate (and often the associated on-chain
computational load) scales linearly in the number of payment transactions (between
consumers and merchants), thereby incurring substantial transaction fees and being
inherently limited by the throughput of the root-chain.

To the best of our knowledge, no work has yet addressed these practical capital
and liquidity challenges in making large quantities of consumer-merchant cryptocur-
rency payments in limited-throughput, high-cost and resource-constrained blockchains.
On the other hand, several proposals [26, 73, 126, 181] have presumed the exis-
tence of such a mechanism to design sophisticated blockchain-federated marketplaces,
e.g. for crowdsensing. In this work, we develop PayPlace, a protocol enabling
flexible cryptocurrency payment schemes for large-scale marketplace ap-
plications. PayPlace takes advantage of the presence of marketplace operators
(e.g. Uber/Amazon) that can act as dedicated intermediaries for payment transactions.
Hence, PayPlace does not impose excessive capital requirements on consumers; they
simply pay the operator for their marketplace orders rather than establish a state
channel with dedicated capital with each corresponding merchant. Unlike typical
payment intermediary-based routing methods, however, PayPlace does not impose
any liquidity requirements on the operator. Instead, the PayPlace operator
temporarily holds consumers’ off-chain payments custodial and periodically makes
off-chain payments to corresponding merchants by directly referencing these accrued
off-chain funds. For every such holding period, the operator generates a short com-
mitment or hash of the aggregate payments to merchants and notarizes it on the
root-chain.

This operator-mediated temporarily custodial model enables flexible payment
schemes, e.g. by allowing marketplace operators to match buyers with sellers asyn-
chronously. For instance, Amazon may decide which of multiple merchants should fulfil
an order well after the consumer has paid for it. The custodial holding and periodic
forwarding also allows for a natural reduction in the amortized cost per payment
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transaction; the operator aggregates off-chain payments for multiple orders received
from multiple consumers in that duration and makes just one root-chain transaction
to represent the off-chain payments made in-turn to each merchant.

Assuring safety of users’ funds is challenging in such protocols that involve periodic
notarization by an operator of off-chain payment activity on the root-chain [8, 9,
85, 106, 107, 140] (called commit-chains or sidechains). To minimize computational
and storage resource expenditure on the root-chain, only a short commitment of the
off-chain payment activity (typically an irreversible hash) between users is revealed to
the smart-contract. Hence the contract often does not have the ability to assess the
validity of the represented transactions and resulting balances. This threatens safety
of users’ funds and is a major source of concern in PayPlace. Indeed, a merchant or
operator must not be able to withdraw a larger portion of a consumer’s funds than
what the consumer has already sent as off-chain payments for marketplace orders to
the operator. Similarly, funds once assigned by the operator as payments to merchants
must be safeguarded from future tampering as well, including double-spend attacks
that the operator may launch, wherein the amount assigned by the operator merchants
exceeds what the operator has available as off-chain payments from consumers.

Merchants must also be safe from data availability attacks [10]. With previ-
ously proposed commit-chains [8, 9, 85, 106, 107, 140], the operator could submit
a commitment to the root-chain without revealing included transactions (used to
generate the hash) to users. Users then cannot verify whether their transactions
were included, leaving them unsure of whether the operator has included malicious
transactions, whether previously assigned funds are safe, and how much they are
eligible to withdraw as of the latest commitment. Neither can the smart-contract
verify the validity of off-chain transactions from the (irreversible) hash it receives. This
in turn necessitates that users be online and monitor the root-chain; if malicious
activity like the data availability attack is detected, users are expected to initiate
withdrawal of their funds, leading to the well-known problem of mass exits [23, 65].
Expecting consumers and merchants to be online, however, significantly limits the
practicality of the solution, especially in retail/marketplace settings.

PayPlace solves these challenges with novel constructions tailored to the market-
place context. Figure 6.1 llustrates key aspects of the protocol. First, we provide
an easy-to-use view of the system to consumers, wherein they deposit funds in the
PayPlace smart-contract and regard this as a virtual unidirectional payment
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Figure 6.1: The PayPlace operator periodically tallies the accrued consumer payments that
it owes to each merchant, acquires their signatures on a representative commitment, and
submits it to the root-chain.

channel [1] with the operator. Consumers then make fast payments to the oper-
ator off-chain for orders placed in the marketplace without needing to be online
to guard their funds. Second, the operator periodically computes payments to
merchants based on accrued off-chain payments, generates a short commitment or
hash of this, broadcasts these computed payments and the commitment to merchants,
and also reveals the off-chain funds accumulated in its virtual channels with
consumers to merchants. Third, online merchants attest their signatures to this
commitment if they successfully verify that no double-spend attacks have been
launched in the operator-generated payments. Fourth, the operator consolidates
signatures received from merchants on the generated commitment and submits it to
the PayPlace smart-contract for notarization. We utilize Boneh–Lynn–Shacham (BLS)
signature aggregation [39] to securely and efficiently combine merchants’ sig-
natures of a commitment into a single signature, avoiding the resource costs of
large-scale signature verification. The contract hence stores only an aggregated public
key of merchants and notarizes a commitment if the provided aggregate signature is
verifiable against the stored aggregate key. Our construction uniquely enables the
contract to accept commitments even when some merchants’ signatures are missing and
also protect funds assigned to them in previous notarizations despite not storing
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merchants’ individual public keys or balance. The contract ensures that the
total amount withdrawn by a merchant or operator against a consumer’s deposit does
not exceed the funds assigned by the consumer to the operator as off-chain
payments. PayPlace is hence resilient to data availability attacks, provides strong
merchant safety and never results in mass exits since notarized merchant funds
are guaranteed to be safe even if the operator later deviates from the protocol.

Our evaluation shows that on-chain computational and monetary costs of PayPlace
are orders of magnitude lower than the recently deployed state-of-the-art technique
for non-pairwise off-chain payment scaling, Zero Knowledge Rollups.

6.2 Overview

6.2.1 Goals

We refer to a generic consumer by c and a merchant (also referred to as service provider
or simply provider) by p. We define confirmed funds fc,t and fp,t as the funds available
to a consumer c for spending in the marketplace as of time t and the funds available
for a merchant p for withdrawal as of time t, respectively. fc,t′ equals the deposited
amount when a consumer c first joins the system at time t′ by depositing funds into
the smart-contract, and fp,0 = 0 for all merchants when the system is starting out at
t = 0 (i.e. no payments yet). Note that PayPlace allows consumers and merchants to
join and leave at largely any time. We say that an honest user (consumer or merchant)
is active at t, denoted as A(u, t) = 1, if she is “online” listening to smart-contract
events and incoming messages at t and follows the protocol in response. Our first
property ensures predictable execution time for withdrawals initiated by payment
recipients:

Definition 1 (Liveness). A merchant or an intermediary (involved in relaying con-
sumer to merchant payments) can initiate a withdrawal of their funds at any time t or
wait at most a predefined duration to do so. Once initiated, a withdrawal must impose
no wait-times and execute to completion immediately, subject to transaction processing
latency of the root chain.

Liveness is not satisfied by existing commit-chain designs [8, 9] that rely on exit
games where the smart-contract forces users to wait for a significant period of time
after they initiate withdrawals in order to prevent potential attacks. Next, it is
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important to ensure that neither consumers nor merchants are at risk anytime of
having funds already assigned to them stolen, even if they are arbitrarily inactive.

Definition 2 (Consumer Safety). For any t′ > t, fc,t′ = fc,t −
∑

i αi where {αi} are
the values of all payments and withdrawals that consumer c makes in time interval
(t, t′].

Definition 3 (Merchant Safety). For any t′ > t, fp,t′ ≥ fp,t −
∑

i αi where {αi} are
the values of all withdrawals that merchant p makes in time interval (t, t′].

Note that merchants may have accrued additional confirmed funds during (t, t′]

from consumer payments. Indeed, our next property assures that a protocol-compliant
merchant is not affected by malicious/colluding merchants.

Definition 4 (Income Certainty). ∃θ > 0, δ ≥ 0 such that any valid payment initiated
at time t by a consumer to a merchant p is available as a part of p’s confirmed funds by
t+ θ if the merchant and any involved intermediary ω are continuously active during
[t′, t′ + δ] for some t′ ≥ t (i.e. A(p, t′′) = 1 and A(ω, t′′) = 1 for all t′′ ∈ [t′, t′ + δ]).

The next property provides resilience to data availability attacks that are common
in commit-chains and sidechains, wherein users are left unsure of their available funds.

Definition 5 (Data Availability). Merchants and consumers know their confirmed
funds fp,t and fc,t at any time t and the information necessary to use them. That is, if
fp,t > 0, ∃t′ < t with A(p, t′) = 1 such that p was notified at t′ of the value of fp,t and
received necessary information to withdraw it. If fc,t < Dc,t, ∃t′ < t with A(c, t′) = 1

such that c is notified or aware at t′ of the value of fc,t and information to spend it.

We define liquidity and root-chain footprint requirements.

Definition 6 (Pooled Liquidity). A consumer can initiate a valid payment at t of
value up to fc,t to any merchant.

Definition 7 (Single-Source Liquidity). An intermediary involved in relaying con-
sumer payments to recipient merchants does not need to deposit funds in the system.

In other words, consumers need not partition their funds ahead of time for use
with individual merchants and their capital is directly used for finishing initiated
payments. We next define additional notation for characterizing transaction efficiency
on the root-chain. Let nt,t′ and pt,t′ be the number of initiated consumer payments and
the corresponding number of unique merchant recipients during some time interval
[t, t′], respectively. Let rt,t′ be the number of root-chain transactions required during
[t, t′] to complete the initiated payments (i.e. to confirm the payments available for
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withdrawal/reuse by recipients).

Definition 8 (On-Chain Efficiency). ∃β > 0, δ ∈ [0, β] such that ∀k = 0, 1, 2, . . .,
the protocol satisfies rkβ,(k+1)β = o(nkβ,(k+1)β) and rkβ,(k+1)β = o(pkβ,(k+1)β) as long as
merchants are active for [kβ + t, kβ + t+ δ] for some t ∈ [0, β − δ].

6.2.2 Threat Model and Assumptions

Attacker PayPlace aims to satisfy the goals identified in Section 6.2.1. Of these,
the security properties are Consumer Safety, Merchant Safety, Data Availability, and
Income Certainty. Correspondingly, the key attack vectors are:

• A malicious operator may attempt to double-spend consumer payments to mul-
tiple merchants or re-assign funds assigned to merchants in previously notarized
commitments. The operator may also attempt to withdraw more funds from
a consumer’s deposit than what has been assigned to the operator through
the consumer’s off-chain payments. These attacks would violate Consumer
and Merchant Safety. The operator may collude with merchants and may also
attempt to impersonate other merchants (e.g. the rogue public-key attack [148])
to launch these attacks. The operator may also withhold information about a
submitted commitment and hence violate Data Availability.

• Merchants may collude to withdraw more funds from the PayPlace contract
than what has been assigned to them, thereby violating both Consumer and
Merchant Safety.

• Merchants may attempt to avoid computational burden (like attesting signatures)
when possible, thereby potentially violating Income Certainty in PayPlace.

• Malicious consumers may attempt to make invalid off-chain payments to op-
erators or to withdraw funds already assigned to the operator. These attacks
violate Merchant Safety and often requires violating Liveness to guard against.

• Even if some merchants are temporarily inactive (e.g. their communication links
with the operator are attacked), their already assigned funds must not be subject
to risk, i.e. Merchant Safety, and other active merchants must still be able to
receive additional income, i.e. Income Certainty.

Assumptions We assume that the root chain is secure; in other words the
adversary cannot compromise execution of the PayPlace smart-contract on the root-
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Protocol Liveness Consumer
Safety

Merchant
Safety

Income
Cer-
tainty

Data
Avail-
abil-
ity

Pooled
Liq-
uidity

Single-
Source
Liq-
uidity

On-
Chain
Effi-
ciency

Blockchain
Tx. 3 3 3 3 3 3 3 −−

Direct
Channels 3 3 −− 3 3 −− 3 3

PCN −− 3 −− 3 3 3 −− 3

Payment
Hubs −− 3 −− 3 3 3 −− 3

Custodial
Hubs 3 3 3 3 3 3 3 −−

Plasma-
style
CC

−− −− −− 3 −− 3 3 3

Plasma CC
w/ Sign. 3 −− 3 −− 3 3 3 3

Snappy 3 3 3 3 3 3 3 −−
ZK Rollup 3 3 3 3 3 3 3 −−
PayPlace 3 3 3 3 3 3 3 3

Table 6.1: Properties provided by different cryptocurrency payment mechanisms applied to
the marketplace context.

chain or impact the consensus process of root-chain miners. We also assume that
the root-chain supports BLS signature verification [38, 39, 40]. The BLS signature
scheme and associated operations like hashing to the elliptic curve are currently
being standardized [22, 59] and popular systems like Ethereum 2.0, Zcash, Chia,
and Polkadot already utilize BLS signatures [13, 14, 17, 46]. We assume that users’
secret keys are secure (not leaked). Finally, we assume that the root-chain offers an
inexpensive mechanism to broadcast messages and write them to logs (like Ethereum
Events [16]); the root-chain logs can be traversed to recover messages by clients who
missed the broadcast.
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6.3 Related Work and Strawman Designs

Before proceeding to explain the PayPlace protocol, we provide an at-a-glance review
of how existing solutions perform in terms of meeting the goals stated above. Table 6.1
summarizes this. As a baseline, we first note that directly using the root chain
to make regular crytocurrency payments to merchants would satisfy almost all
identified goals but On-Chain Efficiency. Transactions processed on the root chain
consume permanent disk space in mining nodes and also incur mining fees that can
become prohibitively high during congestion periods. Consider, for instance, the
ride-sharing economy that Uber facilitates by matching drivers and riders in the
two-sided marketplace. Bitcoin and Ethereum transaction fees for July 2020 average
approximately $1.56 and $1.04 respectively [188, 189] , which represents a 6-10% fee
for a typical 5 km Uber ride in Switzerland of average cost $13.90 and 44-54% fee
for a typical 5 km Uber ride in India of average cost $1.34 [147]. In comparison,
credit card fees per transaction is typically 1.5-3%. Since blockchains also have limited
throughput,On-Chain Efficiency is highly desirable.

In the following review of alternate cryptocurrency payment mechanisms that have
been proposed, we find that none simultaneously satisfy Merchant/Consumer Safety
and On-Chain Efficiency ; the latter requires moving payment transactions off-chain
which then requires users to be online atleast periodically to ensure that their funds
are not stolen.

First, we consider consumers establishing direct unidirectional payment chan-
nels with each merchant they transact with for frequent off-chain payments [1].
This crucially fails to enable Pooled Liquidity and also violates Merchant Safety, though
it provides On-Chain Efficiency ; indeed, since consumers use the root-chain for deposit
transactions very infrequently and only after making several off-chain transactions
that exhaust the deposited amount, essentially any values of β (cf. Defn.) provides
On-Chain Efficiency. We next consider Payment Channels Networks (PCN) and
a specific instance of PCNs called Payment Hubs. With PCNs [64, 121, 160], payment
senders rely on non-custodial intermediaries that provide indirect routes (composed of
state channels) to the payment recipient. Though this allows consumers to establish
state channels (with locked-in funds) with a limited number of intermediaries in order
to pay merchants, significant limitations exist with this. First, this is not guaranteed
to enable Pooled Liquidity since the number of pairwise channels that consumers split

143



their funds in depends entirely on the network topology. Second, this fails to provide
Single-Source Liquidity since consumers intrinsically rely on intermediaries’ liquidity.
In-fact, it has been observed that the resulting rapid fluctuations in intermediaries’
link capacities makes it challenging to find routes reliably between payment senders
and recipients [142]. Recent empirical analysis of the Lightning Network [37] fur-
ther confirms that 1) “merchant" nodes [6] receive 80% of the off-chain payments,
2) nodes are hence forced to frequently close and rebalance their channels due to
steady depletion of liquidity in the consumer→merchant direction [71] and 3) routing
intermediaries have low return on investment on their locked-in funds. These issues
are exacerbated in the context of large-scale marketplaces with frequent payments
between consumers and arbitrary merchants.

Payment Hubs are PCNs where an intermediary is dedicating to providing
a 1-hop route between consumers and merchants. In comparison with PCNs, this
facilitates Pooled Liquidity by allowing consumers to pool their capital (intended for use
in marketplace orders) in a single unidirectional channel with the intermediary, e.g. as
with Plasma Debit [12]. However, the other challenges with PCNs carry over. We also
consider a custodial version of Payment Hubs (also considered as the placeholder
payment mechanism in Chapter 5), where the intermediary operator receives consumer
payments in dedicated state channels with consumers and periodically initiates root
chain transactions to make corresponding payments from to each merchant. However,
this violates On-Chain Efficiency since the number of on-chain transactions grows
with the number of merchants (receiving payments) every period.

Plasma-style commit-chains [8, 9, 107] involve periodic notarization of arbitrary
off-chain payment activity on the root-chain by a dedicated intermediary and can be
used to alleviate liquidity requirements. The notarization information is simply a short
hash of off-chain transactions and does not allow the contract to track and validate
individual transactions and resulting balances (by design, to minimize computational
and storage resources consumed on the root-chain). This results in violation to
both Consumer and Merchant Safety violated as the operator may simply insert
invalid/malicious transactions in a block and use it to withdraw their funds; users
can protect their funds only if they are online to detect such activity and withdraw
their funds in response. There is no clear definition of confirmed funds for users
such that these funds are safe even if users are arbitrarily offline. The operator may
fail to reveal the set of transactions associated with a published commitment to
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users, violating Data Availability. We consider a strawman modification to this called
Plasma-style commit-chains with Signature, wherein merchants’ signatures
are required by the contract on the commitment to ensure that they have been
revealed necessary information about the corresponding Plasma block. While this
ensures Data Availability, it crucially violates Income Certainty. A few merchants
withholding signatures maliciously (or even accidentally inactive) lend a commitment
unfit for notarization. Merchant Safety holds since merchants implicitly agree on the
transactions included in a block and the validity of resulting balances by unanimously
attesting their signature on a notarized commitment. However, consumers are then
subject to collusion attacks by merchants and the operator, where older payments from
consumers that have already been withdrawn by receiving merchants may be included
again a block. Hence, consumers’ signatures are also required on commitments to
ensure that they can protect themselves from such attacks (and exit games avoided),
which in-turn necessitates that they be active to secure their funds; Consumer Safety
is violated.

We also consider Snappy [118], a protocol for marketplace payments that has been
recently proposed in parallel to ours. With Snappy, consumers directly send payments
to merchants on the root-chain, but are unrestrained by the root-chain’s transaction
confirmation latency. However, atleast one root-chain transaction is made for each
payment; hence Snappy does not provide On-Chain Efficiency. Finally, we consider
the state-of-the-art solution for off-chain payments that extends beyond pairwise
transactions, Zero Knowledge (ZK) Rollup [11]. ZK Rollup is advocated by the
Ethereum Foundation and have been deployed by multiple companies recently. Unlike
Snappy, the number of on-chain transactions required to process initiated payments is
typically much smaller than the number of such payments and the number of payment
recipients, though not sublinear in growth (i.e. no On-Chain Efficiency). By using
ZK proofs to periodically assert the validity of several off-chain transactions at once
on the root-chain, ZK Rollups simultaneously assure Safety and Liveness. Consumers
deposit their funds in the Rollup contract, and transact with merchants off-chain
via a non-custodial operator, which enables Pooled Liquidity as well as Single-Source
Liquidity. Updated account balances are explicitly revealed in the root-chain, ensuring
Data Availability.

As shown in Table 6.1, PayPlace satisfies all identified goals. Using periodic
operator-driven notarization on the root-chain, PayPlace ensures non-revocation of
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off-chain payments made by the operator to merchants and hence provides Merchant
Safety. Requiring p’s signature on a block for successful notarization also overcomes
the Data Availability attack and ensures that merchants know and can access their
confirmed funds. The operator makes one root-chain transaction periodically to assign
funds to merchants; the computational costs of this transaction is constant in the
number of underlying transactions and at-worst, sublinear in then number of payment
recipients, thereby guaranteeing On-Chain Efficiency.

6.4 PayPlace Architecture

Consumers A consumer c with public key pkc deposits funds in the PayPlace smart-
contract for making payments in the marketplace (intended for any merchant). This
design directly results in Pooled Liquidity. The consumer may deposit more funds
at any time; we use Dc,t to denote the total funds deposited by consumer c as of
time t. The PayPlace smart-contract is designed to allow consumers to view their
deposit as virtually establishing a unidirectional payment channel with the operator
(with refunds and returns as external to the protocol). That is, consumers make
incremental off-chain payments to the operator for each order placed and need not
be online to protect their unspent funds, as with unidirectional state channels. The
contract’s commitment verification and withdrawal modules ensure that the total
amount withdrawn by the operator and merchants against a consumer’s deposit does
not exceed the amount assigned by the consumer to the operator, thereby facilitating
this simple view.

An off-chain payment from c for an order consists of a transaction T = (µ, pkω, pkc)

and the digital signature of the transaction σ = S(T, skc). µ is the payment amount
and indicates the total amount promised by the consumer to the operator as of when
T is generated, incorporating the incremental amount the consumer intends to pay for
their latest order in the marketplace. pkω is the operator’s public key (the payment
recipient), skc is the consumer’s private key and S(T, skc) generates a cryptographic
signature using skc on T . We let s(T ) and µ(T ) denote the sending consumer’s public
key pkc and the amount µ specified in transaction T respectively. We use µ∗c,t to
denote the total funds spent by c in off-chain payments to the operator as of t. The
operator verifies an off-chain payment transaction T received from c at t by evaluating
if the sender has sufficient balance to make this transaction (i.e. µ(T ) ≤ Dc,t) and
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Figure 6.2: Sequence diagram illustrating typical interactions between Consumers, Mer-
chants, the PayPlace contract and the Operator.
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Figure 6.3: State of consumer c’s channel with the operator at time t.

ensuring that the operator balance in c’s payment channel only increases as a result of
T (i.e. µ∗c,t ≤ µ(T )). The operator also verifies the digital signature σ with verification
function V ; V(pkc, T, σ) = 1 if skc was used to sign T to yield σ. We use Ct to denote
the set of the last off-chain transaction received by the operator from each consumer
as of time t (reflecting the operator-owned balance in each virtual channel with a
consumer as of t).

Consumers are not permitted to withdraw funds already deposited in the channel
(e.g. akin to topping up a store card). Then, a consumer’s confirmed funds at time t is
simply their total deposits less off-chain payments, i.e., fc,t = Dc,t − µ∗c,t (Figure 6.3).
We let w∗c,t denote the total funds withdrawn (by the operator and merchants) against
the operator-owned portion of c’s deposit (assigned via off-chain transactions by c to
the operator) as of time t. We show in Section 6.5.2 that w∗c,t never exceeds µ∗c,t; i.e.
Consumer Safety is guaranteed. As shown in Figure 6.2, for convenience, the contract
may broadcast (through a mechanism like Ethereum Events) the updated value of Dc,t

(and w∗c,t) when it processes a consumer deposit (or withdrawals against a consumer’s
funds, correspondingly). Such broadcasted data is also written out to logs.

Operator The operator holds consumers’ off-chain payments custodial and for-
wards them off-chain to appropriate merchants every β timesteps. Note that to start
receiving payments from the operator, merchants must register first by performing
a one-time registration ceremony that involves the operator and the smart-contract.
This is depicted as the Merchant Registration Module in Figure 6.2 which shows
key entities and interactions in PayPlace, and explained in detail in Section 6.5.2.
Every β time slots, the operator periodically consolidates payments owed to each
registered merchant and generates payment transactions T ′. Here, T ′ = (µ′, pkp, pkc)

where µ′ represents the total amount owed by the operator to merchant p based on
orders from consumer c since the time p last withdrew her funds on the root-chain.
We abuse notation and use µ(T ′) and s(T ′) to denote the payment amount µ′ and the
referenced source consumer pkc in T ′. Every β timesteps, a merchant p hence receives
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an off-chain transaction T ′ for each consumer whose order(s) p has fulfilled since p last
withdrew her funds on the root-chain; we use Tp to denote these transactions. The
PayPlace smart-contract allows merchants to later withdraw funds assigned to them in
such off-chain payment transactions T ′ directly from the deposit of the corresponding
consumer s(T ′), thereby enabling Single-Source Liquidity. Note that a successful
withdrawal at t by a merchant p transfers all of p’s confirmed funds fp,t to p.

	

Figure 6.4: Transactions in Tp reflect payments that p is owed from different consumers.
Tp is hashed to a leaf node Lp(M) in the Merkle tree. A succinct Merkle proof of inclusion
Pp(M(κ)) for Tp(κ) can be given using the values of nodes with yellow borders.

After computing Tp for all p, the operator generates a “block" κ = (T,M) that
consists of the set T =

⋃
∀p Tp and a Merkle treeM. Note that Tp is an element of

T. We use T(κ) to denote the set T in κ and M(κ) to denote the Merkle tree M
included in κ;M(κ) is generated from T(κ) and its root is denoted by R(M(κ)). Each
leaf Lp(M) in the Merkle treeM(κ) corresponds to the hash of the set of payment
transactions Tp(κ) for a merchant p (illustration in Figure 6.4). The operator also
includes a similar set of transactions Tω assigned to herself, reflecting any commission
retained from consumers’ payments for providing the PayPlace service. Since Tω
is identical to any other Tp, we do not differentiate between the operator and the
merchant when referring to the payees of a block, unless required. Finally, we denote
the Merkle proof [90] of Tp(κ) by Pp(M), i.e. Pp(M) proves that Tp(κ) corresponds
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to Lp(M) and that Lp(M) is a leaf of a Merkle tree with root R(M(κ)). The set of
merchants that have leaves inM(κ) is denoted by P(κ).

Numerical Example of the PayPlace model. We now provide a numerical
example illustrating off-chain payment transactions in PayPlace. To illustrate the con-
sumer and provider transaction models in PayPlace, consider t = t1, . . . , t8. Consumers
c1 and c2 deposit 30c and 20c respectively into the PayPlace smart-contract at time
t1. Suppose c1 additionally deposits another 40c at t3. Then, Dc1,t = 30 ∀t ∈ [t1, t3)

and = 70 ∀t ∈ [t3, t8], and Dc2,t = 20 ∀t ∈ [t1, t8]. To send 10c to the operator at
t4, c1 generates a transaction Ta = (10, pkω, pkc1) and signature σTa = S(Ta, skc1);
then µ∗c1,t4 = 10. Suppose c2 similarly sends 10c to the operator at t4 via transac-
tion Tb. To send another 10c at t5, c1 generates a transaction Tc = (20, pkω, pkc1)

and the corresponding σTc ; then µ∗c1,t5 = 20. At t5 then, the latest transactions
Ct5 = {Tb, Tc} and the remaining funds available for consumers c1 and c2 to use at
t5 is fc1,t5 = 50 and fc2,t5 = 10 respectively. Suppose two registered providers p1

and p2 participate in the system, with no operator fees, and the orders for Ta and
Tb are fulfilled by p1 while Tc is fulfilled by p2. At t8, the operator generates the
block κ = (T,M), where T(κ) = {{(10, pkp1 , pkc1), (10, pkp1 , pkc2)}, {(10, pkp2 , pkc1)}}
(with Tω(κ) = ∅ since the operator did not deduct any fees in this case). We
then have Tp1(κ) = {{(10, pkp1 , pkc1), (10, pkp1 , pkc2)}, Tp2(κ) = {(10, pkp2 , pkc1)}, and
Tω(κ) = ∅. Further, the Merkle tree M(κ) = H(H(Tp1(κ)), H(Tp2(κ)), H(Tω(κ))),
where H is the one-way irreversible hash function used for generating the Merkle tree
and the leaves ofM are Lp(M) = H(Tp(κ)), p = p1, p2, ω. Suppose pkp1 withdraws
their specified funds at t10. Further, suppose the operator generates another block
at t16 and neither pkp1 nor pkp2 fulfil any additional consumer orders from t8 to t16.
Then the generated block at t16 is κ′ = (T′,M′), where T(κ′) = {(10, pkp2 , pkc1)}}
(with Tω(κ) and Tp1(κ) as ∅).

Merchants The operator then broadcasts the generated block κ to merchants
along with the set Ct , and the current timestamp st. Then, merchants verify the block,
attest their (BLS) signatures to its commitment (a hash of R(M(κ)) and st) and send
it to the operator. In doing so, they protect themselves from double-spend attacks by
the operator ; a merchant signs the root only if the operator’s payments specified in κ
to merchants does not exceed what the operator has been assigned from consumers.
This directly also ensures Data Availability ; indeed, a merchant’s confirmed funds in
PayPlace corresponds to funds assigned to her in the last notarized commitment that
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she attested her signature on. The notarization process used by the PayPlace smart-
contract makes any incremental income specified in a notarized block inaccessible to a
merchant unless her signature on the corresponding Merkle root was provided by the
operator during notarization. This design also incentivizes merchants to be periodically
active and participate in the signing process to receive their incremental income for
the last β timesteps. Note that each commitment generated by the operator reflects
cumulative payments owed to merchants, hence a merchant that fails to participate
in one commitment round (e.g. communication links are down) can simply receive
the incremental income by participating in the next round. The operator verifies
returned merchant signatures on the commitment, aggregates them into a single one,
and submits this to the smart-contract for notarization of the off-chain payments
made to merchants in this block. This process of computing merchants’ payments and
acquiring their signatures is referred to as the Commitment Generation Module
in Figure 6.2 and explained in detail in Section 6.5.2.

Smart-Contract By submitting a new commitment for notarization, the operator
triggers the Commitment Verification Module of the smart-contract. We use Kt

to denote blocks that have been notarized as of time t, where Kt(−1) refers to the
last notarized block, Kt(−2) to the last block and so on. If all registered merchants
have signed the submitted commitment, indicating that they have verified the validity
of their assigned payments, the commitment is accepted. However, we must allow
notarization even when some signatures are missing to ensure Income Certainty. Hence,
the PayPlace contract reserves funds that were assigned to non-signing (or “missing")
merchants in the last notarized commitment κp which included their signature, i.e.
corresponding to Tp(κp). To do this, however, it requires the operator to prove that
signing merchants (i.e. whose signatures are included in the submitted commitment)
are aware of the funds that will be set aside by the contract for non-signing ones.
Combined with the design of the contract’s Withdrawal Module (explained in
Section 6.5.2), this ensures that funds assigned to a merchant through a notarized
commitment that contains her signature are secure, even if she subsequently becomes
inactive. In other words, a merchant’s confirmed funds fp,t corresponds to those
assigned in Tp(κp). PayPlace is hence impervious to the problem of mass exits. The
vendor actively participates in commitment generation only to receive additional
income. If malicious operator actions are detected (e.g. the operator fails to generate a
commitment), then the merchant stops fulfilling orders that are handled through this
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Figure 6.5: Depicting timing events in PayPlace.

operator; a merchant’s risk exposure in this semi-custodial model does not exceed the
revenue of one notarization period. PayPlace also provides On-Chain Efficiency. Only
one root-chain transaction per β is required to assign the corresponding payments to
merchants regardless of the number of consumer orders and recipients.

Timing Considerations To protect against timing-related attacks on Consumer
and Merchant Safety , we introduce temporal restrictions on merchant and operator
actions. Suppose the operator starts the PayPlace system at time t0; WLOG, we
take t0 = 0. Let γ � β denote the (predefined) maximum time required for the
operator to generate a new commitment for notarization, and δ � β the maximum
finality time for the root blockchain. The smart-contract enforces freeze periods during
which funds may not be withdrawn and new merchants may not register, namely,
[β−δ, β+γ+δ], [2β−δ, 2β+γ+δ], [3β−δ, 3β+γ+δ], . . . The operator may submit new
commitments for notarization only during the commitment submission window within
each freeze period, given by [β, β + γ], [2β, 2β + γ], [3β, 3β + γ], . . . Figure 6.5 depicts
the timing of these events, which can be triggered and managed using decentralized
oracles [53]. A withdrawal triggered outside a freeze period is immediately processed
by the PayPlace smart-contract (without imposing any wait-times) as described in
Section 6.5.2, thereby providing Liveness.

BLS Signatures PayPlace relies on signature aggregation to enable the contract on
the root-chain to cheaply verify merchants’s signatures on the submitted commitment
in constant time. We utilize the BLS (Boneh-Lynn-Shacham) signature scheme [39, 40]
based on elliptic curve pairing-based cryptography for this; it provides short signatures
that can be securely aggregated. We let e : G0 × G1 → GT denote an efficiently
computable, non-degenerate pairing where G0, G1 and GT are groups of prime order q,
and g0, g1 are generators of G0, G1 respectively. Suppose signatures reside in G0 and

152



public keys in G1. H0 then denotes the hash function that maps from the message space
into G0. S(m, sk) generates sk’s (BLS) signature on m, returning σ = H0(m)sk ∈ G0.
V(pk,m, σ) verifies if sk signed m to yield σ by evaluating if e(g1, σ) = e(pk,H0(m)),
and returning 1 in that case. We use the multiplicative notation for groups, and
references to PKI credentials and signatures mean BLS, unless otherwise stated. Using
BLS signatures, only one signature verification (two bilinear pairings) is required to
check whether all required signers (represented by their aggregate public key) have
signed the presented aggregate signature. PayPlace’s design, however, goes further
to allow the smart-contract to determine exactly which merchants have not signed a
commitment despite storing only an aggregated public key of registered merchants (as
opposed to each key individually, to save on expensive storage resources). Identifying
these non-signing merchants enables the contract to safeguard their previously assigned
funds from possible misappropriation in the submitted commitment.

We now also briefly describe the rogue public-key attack on BLS signatures which
is especially of importance in PayPlace. Consider a set of n keys K = {(ski, pki) :

1 ≤ i ≤ n} whose public keys and signatures are to be aggregated via BLS. An
attacker who knows the public keys in K can choose some β ∈ Zq where q is of
prime order and compute a false public key pkatt = gβ1 ∗ (

∏n
u=1 pku)

−1 where g1 is
a generator for group G1 of prime order q. The aggregate public key computed by
a verifier is pka = pkatt ∗

∏n
u=1 pku. The attacker can then declare the signature

σa,m = H0(m)β (where H0 is a random oracle mapping into G0 which is also of prime
order q) and convince the verifier that this has been signed by all n ski’s as well as
pkatt’s skatt. To see this, note that verification of σa,m requires checking if e(g1, σa,m) =

e(pkatt ∗
∏n

u=1 pku, H0(m)) where e is a pre-specified non-degenerate bilinear function
(e : G0 ×G1 −→ GT ). But e(g1, σa,m) = e(g1, H0(m)β) as declared by the attacker to
the verifier, and e(g1, H0(m)β) = e(gβ1 , H0(m)), and gβ1 = pkatt ∗

∏n
u=1 pku by definition

of pkatt.

6.5 Protocol Details

6.5.1 Smart-Contract State

The PayPlace smart-contract tracks a minimal amount of information, as specified in
Table 6.2. Note that we refer to list elements by their indices depending on usage. At
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Name Description
pkω Public key of the operator
apk Aggregate public key of merchants
apka Aggregate public key of merchants whose signature was in-

cluded in the last notarization
g Time that the last commitment generation event was to be

triggered by the operator
s Time that the last notarized commitment was submitted

R(M(Kt(−1))) Merkle root of the last notarized commitment as of t
X Pub keys of merchants who exited/unregistered after the last

block was notarized
B Pub keys of merchants who registered after the last block was

notarized
W Pub keys of merchants who withdrew their funds after the last

block was notarized
M Pub keys of registered merchants whose signatures were not

included in the last notarized commitment and the number
of consecutive commitments that each of these merchants has
missed signing so far

N Tracks the amount of funds merchants in M(−x) have been
assigned from pkc, ∀c whom p ∈ M(−x) have been assigned
funds from in the last notarized block Kt(−x + 1) that had
their signature, ∀x ∈ [1, η]

L Hash of payment transactions assigned to missing providers
(p ∈M) in the κp

Table 6.2: State of the PayPlace smart-contract, representing the information it tracks
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any time t, the contract stores two aggregate public keys of merchants and only the
last notarized block’s Merkle root R(M(Kt(−1))). Further merchants in X ∪W ∪ B
have zero confirmed funds and those in W ∪ B wait until the next notarization to
acquire new payments as confirmed funds, if any.

The public keys of registered merchants whose signatures were missing from the
last notarized commitment are saved in M. The contract also tracks the number
of notarized commitments that these merchants have consecutively missed. We
use M(−x) to refer to merchants whose signatures have been absent since the last
x = 1, 2, . . . commitments. Let η denote the maximum value of x (i.e. the maximum
number of consecutive commitments missed by a non-signing merchant inM); note that
M =

⋃x=η
x=1 M(−x). Note that the last notarized block κp that was signed by a missing

merchant p ∈M(−x) is simply Kt(−x+ 1) by definition of M(−x). The contract also
tracks the public keys of consumers whom these missing merchants were assigned funds
from in the last notarized commitment that they signed (i.e. Y−x = {s(T ′),∀T ′ ∈
Tp(Kt(−x + 1)),∀p ∈ M(−x)}) , as well as the total amount that they had been
assigned from each consumer (i.e. µpkc−x =

∑
p∈M(−x)

∑
T ′∈Tp(Kt(−x+1)) 1s(T ′)=pkcµ(T ′)).

We use N to denote the resulting set of balances {µpkc−x ,∀pkc ∈ Y−x,∀x ∈ [1, η]}, and
use N(−x)pkc to refer to µpkc−x . For each merchant p ∈ M, the contract also stores
in list L the leaf node Lp(κp) assigned to her in the last notarized block that had
their signature. Note that the smart-contract’s state is also accessible to anyone
traversing the blockchain, and updates to these state values can be broadcast by
the contract as well. We illustrate an example usage of states M and N. Suppose
M(−1) = {pka}, M(−2) = {pkb, pkc, pkd} and that pka, pkb, pkc, pkd had 10c, 30c,
40c, 50c sourced from pkc1,pkc5,pkc1,pkc5 respectively. Then N(−1) = {(pkc1, 10)},
N(−2) = {(pkc1, 40), (pkc5, 80)}. Further, N(−1)pkc1 = 10c, N(−2)pkc1 = 40c and
N(−2)pkc5 = 80c. Finally, M = {pka, pkb, pkc, pkd} in this example.

For ease of protocol description, we assume that consumer information (i.e. pkc,Dc,t,
w∗c,t for all c) is part of the smart-contract’s stored state. However, this information is
only required when consumers deposit additional funds into the contract or merchants
initiate withdrawal of assigned funds. These events are considerably infrequent in
comparison with the periodic notarization events. This information can therefore be
moved off-chain and instead represented just by a hash. If storage is significantly more
expensive than compute on the underlying DLT, we can optimize for storage at higher
computational cost. Similar to the storage mechanism proposed in ZK Rollup [11],
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the contract can track just two Merkle roots instead of individual consumer data:
one for a Merkle tree A of registered consumers’ public keys pkc; and the other for a
Merkle tree B of tuples (Dc,t, µ

′
c,t, w

∗
c,t), such that pkc that is stored in the n-th leaf of

A corresponds to (Dc,t, µ
′
c,t, w

∗
c,t) in the n-th leaf of B. Consumer registrations can use

the same process as ZK Rollup [11]; however, note that these functions are now more
compute-intensive since each requires the contract to verify Merkle proofs. Similarly,
provider and operator withdrawals require computation to verify the Merkle proofs
for the consumer’s balance in B against which they attempt withdrawal. However,
all changes to B can be broadcast to others (stored in blockchain’s logs), hence all
providers and operators can compute the leaves and Merkle proofs in B for any
consumer, even if they have been offline.

In exchange, marginally more computational work is expended when consumer
information is required (during consumer top-ups or merchant withdrawals).

6.5.2 Detailed Protocol Specification

We now explain the core PayPlace modules (cf. Figure 6.2) in detail and illustrate how
they fulfil the security properties identified in Section 6.2.1. We omit the specification
of state updates for variables in Table 6.2 that are straightforward. For instance,
when a merchant p successfully registers with the PayPlace smart-contract, we do not
explicitly state the addition of p to B. B tracks this information by definition. We
ensure that the PayPlace contract is provided sufficient information during registration,
notarization and withdrawal processing to ensure that updates to these variables can
be correctly executed.

Merchant Registration To register, merchant p first sends a Proof of Possession
(PoP) of her credentials to the operator. In other words, the merchant uses her secret
key skp to sign her public key, generating σp,init = S(pkp, skp). If the operator success-
fully verifies p’s signature on the PoP, i.e. V(pkp, pkp, σp,init) = 1, it signs the tuple of
p’s public key and current timestamp τr, i.e., ω generates σω,p = S(m=(pkp, τ), skω).
The operator returns σω,p to the merchant, who provides it along with τr to the
smart-contract’s enrollment function. Algorithm 3 shows the contract’s registration
processing function; the Data field in the Algorithm denotes relevant internal state of
the executing entity (the contract in this case). Let t denote the time when the contract
receives the registration request (note t > τr). Merchant registrations are processed
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Algorithm 3: Merchant registration by Contract
Input : σω,p, τr, verified public-key of the caller pkp
Output : 0 or 1
Data: s, g, B, X, M, W, apk, current time t

1 if not (g + γ + δ < t < g + β − δ and s < τr) then
2 return 0

3 if pkp ∈ B ∪ X ∪M ∪W then
4 return 0

5 if V(pkω,m=(pkp, τr), σω,p) = 1 then
6 apk = ⊥ ? apk = pkp : apk = apk · pkp
7 return 1

only when no freeze windows are currently active (cf. Figure 6.5 in Section 6.4) and
no commitment has been notarized since the time reflected in the provided timestamp
(Lines 1-3). As long p is not known to have already registered (i.e. p /∈ B∪M∪W), or
deregistered only since the last notarization (i.e. p /∈ X), and the provided signature
on pkp and τr is valid, the registration is successful and the contract updates the
aggregated public key to include p’s key (Lines 3-7). The operator ω must also register
using this function to assign any portion of consumer payments that it retains as a
fee to itself; it is treated like any other merchant with respect to the notarization
and withdrawal of its funds. Note that PayPlace does not rely on the root-chain
to support BLS account keys though this specification assumes for readability. If
the root-chain does not support BLS account keys (i.e., the keys used for signing
blockchain transactions do not support BLS operations), the merchant must explicitly
specify their BLS public key pkp to the smart-contract during registration and provide
a PoP for it. This PoP is denoted by σp,BLS = S(m=(pkp, pk

′
p), skp), where pk′p is p’s

root-chain account key. Since the account credentials on the root chain are different
from the ones used for signing in PayPlace, the merchant must provide σp,BLS for any
transaction (e.g., withdrawals) with the smart-contract to prove its identity.

Lemma 8. p can register only once unless ω colludes with p.

Proof. First, we show that a public key pkp can be registered only by its owner p
(who knows skp). Let p’s public and private keys on the root chain (i.e. account
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keys that are used for signing blockchain transactions) be denoted by pk′p and sk′p

respectively. Consider (pk′p, sk
′
p) = (pkp, skp), i.e. the root chain supports BLS

account keys which can also be used with PayPlace. By design of the underlying
blockchain, miners process transactions only if the transaction is signed by the stated
sender, in this case, pkp; hence registering a provider implicitly provides Proof of
Possession (PoP) to the blockchain. However, this can be attacked with an oracle [148]
OMSign(pki,msg) that returns msg signed by ski. In that case, the attacker with
a maliciously computed pkatt = gβ1 ∗ (

∏n
i=1 pki) may provide a signed transaction

on the root chain by computing σm,att = H0(m)β/
∏n

i=1OMSign(pki,m) where m is
the transaction to be submitted to the blockchain calling the contract’s registration
function and registering pkatt as a vendor, i iterates over the registered providers, and
some β ∈ Zq. In PayPlace, however, this requires that all registered providers (even
honest ones) sign this transaction asking for pkatt’s enrolment, which they have no
reason or incentive to do.

Consider the other case where (pk′p, sk
′
p) 6= (pkp, skp). By design of the underlying

blockchain, miners process transactions only if the transaction is signed by the stated
sender, in this case, pk′p; hence registering a provider implicitly provides Proof of
Possession (PoP) to the blockchain. It then suffices to show that pk′p’s owner also
owns pkp. First, we note that the provided PoP σp,BLS establishes that pkp is not a
rogue public key. Even if OMSign is available, employing separate hash functions for
signing POP messages and other messages [148] guarantees resilience of the provided
PoP to the rogue public-key attack. Second, since a provider p generates this PoP by
signing the combined hash of their root account public key pk′p and BLS key pkp, if
V(pkp, H(pkp, pk

′
p), σp,BLS) = 1, then pkp’s owner is the owner of pk′p.

Finally, note that the contract rejects the registration unless σω,p was generated
after the latest freeze period (using the provided timestamp τr. Hence, σω,p provided
by the operator to p for registration is only valid until the next freeze window begins.
If p registers successfully with σω,p, it cannot register again (with σω,p) even in the
current open window since pkp is added to B. The only way p can register multiple
times is if a colluding operator, knowing that p has already registered, waits for the
next notarization to succeed (which clears B) and generates σω,p with the latest τr
and p again calls the registration function with this.

Even if a colluding operator generates a σω,p to allow an already registered merchant
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to maliciously re-register, the resulting corruption to apk does not affect confirmed
funds of any participant, as we later show.

Commitment Generation The block generation process executed by the op-
erator every β timesteps follows the description in Section 6.5.1 and is shown in
Algorithm 5. As shown in the Data field of Algorithm 5, the operator keeps track of
Kt(−1), W,B and the set R of registered merchants in the system. After generating κ,
the operator broadcasts κ, Ct and the current timestamp τ to merchants. Algorithm 4
details the process used by merchants for verifying the validity of κ and signing it.
Note that Tm(κm) for all m ∈ M is known to all merchants (though not stored by
the contract) since it is broadcast by the contract’s commitment verification module
(explained later). The binary flag hasWithdrawn is 1 if the verifying merchant p
withdrew their funds after the last notarization, i.e. p ∈W. p verifiess that a commit-
ment window is active (Lines 1-3), and that her confirmed funds does not decrease
in this block as long as p /∈ W (Line 4-8). The merchant further ensures that a
valid source transaction, i.e. an off-chain payment from the consumer to the operator,
accompanies each operator-generated payment transaction (Line 9-13). Finally, the
merchant guards herself against double-spend attacks from the operator by verifying
that, for each consumer who is listed as the source for a stated payment to p, the sum
of payments promised to other merchants with this consumer as the source does not
exceed the operator-owned balance in the consumer’s virtual channel (Lines 14-22).
If these checks succeed andM(κ) is correctly generated from T(κ) (Lines 23-28), p
signs the tuple (R(M(κ)), τ) and returns it.

Let set At and Mt respectively denote the public keys (or corresponding indices,
based on usage) of registered merchants who return the signed commitment to the
operator within timeout duration γ′ < γ and those who do not. Here, γ′ is set by
the operator such that γ − γ′ is sufficient duration for the operator to perform the
remaining steps and submit the commitment to the root-chain. Let set Xt denote
the public keys of previously-registered merchants who had deregistered (i.e. exited)
since the last block was notarized (which may be different from X tracked by the
contract, as we see later). After verifying received signatures, the operator computes
an aggregated root signature arsκ =

∏
p∈At σp,κ, and submits the following commitment

to contract for notarization of κ: R(M(κ)), τ , Xt, and information on signing and
missing merchants. The signing merchant information consists of their aggregated
public key apkactive =

∏
p∈At pkp and arsκ. Further, for signing merchants whose
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Algorithm 4: Commitment Signing by registered merchant
Input : κ, Ct, τ
Output : σp,κ or ⊥
Data: Tp(κp), M, Tm(κm)∀m ∈M, W, g,Dc,t for each c, w∗c,t for each c,

current time t, hasWithdrawn={0, 1}
1 if not g < τ ≤ t < g + γ then
2 return ⊥
3 consPay, consOpBal= {}
4 for T ′ = (µ′, pkp, pkc)) ∈ Tp(κ) do
5 if hasWithdrawn=0 then
6 T ′′ =getTransaction(pkc,Tp(κp)) . Cf. Alg 5
7 if T ′′! = ⊥ and µ(T ′′) > µ′ then
8 return ⊥

9 T =getSourceTransaction(pkc,Ct)
10 if T = ⊥ then
11 return ⊥
12 consOpBal[pkc] = µ(T )
13 consPay[pkc] = µ′

14 regMissingMerchants = M−W
15 if not [regMissingMerchants ⊆ P(κ) and

(Tm(κm) ⊆ Tm(κ),∀m ∈regMissingMerchants)] then
16 return ⊥
17 for T ′ = (µ′, pkp, pkc)) ∈ (T(κ) \ Tp(κ)).flatten do
18 T =getSourceTransaction(pkc,Ct)
19 if s(T ) ∈ consPay.keys then
20 consPay[pkc] += µ(T )

21 if consPay[pkc] > consOpBal[pkc]− w∗c,t then
22 return ⊥
23 M′ = merklize(T(κ))
24 if M′ =M(κ) then
25 σp,κ = S(m = (R(M(κ)), τ), skp)
26 return σp,κ
27 else
28 return ⊥
29 Def getSourceTransaction(pkc, Ct):
30 for (T, σ) ∈ Ct do
31 if s(T ) = pkc and V(pkc, T, σ) = 1 and µ(T ) ≤ Dc,t then
32 return T

33 return ⊥
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Algorithm 5: Block Generation by the Operator
Input : Set Ot with elements of type (µ′, pkp, pkc) reflecting the total value

µ′ of c’s orders from the last γ timesteps fulfiled by p
Output : κ
Data: current time t, Kt(−1), W, B, R

1 for p ∈ R do
2 if p /∈W ∪ B then
3 Tp = Tp(Kt(−1))
4 else
5 Tp = {}
6 for (T ′ = (µ′, pkp, pkc)) ∈ Ot do
7 T ′′ =getTransaction(s(T ′),Tp) . Pass by ref
8 if T ′′ = ⊥ then
9 Tp.insert(T ′)

10 else
11 µ(T ′′) = µ(T ′′) + µ(T ′)

12 T =
⋃
p∈R
{Tp}

13 M = merklize(T) . Generates a Merkle tree whose leaves are hashes of
elements in the input set.

14 κ = (T,M)
15 return κ
16 Def getTransaction(pkc, Tp):
17 for T ′ ∈ Tp do
18 if s(T ′) = pkc then
19 return T ′ . Pass by ref

20 return ⊥
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signatures were missing in the last notarized commitment, i.e. p ∈M and p ∈ At, the
operator provides Tp(κp). The missing merchant information consists of Mt; for each
missing merchant who signed the previous notarized block, i.e. p ∈Mt|κp = Kt(−1),
the operator also includes: σp,init (collected during registration), Tp(κ), Pp(M(κ)),
Tp(Kt(−1)), and Pp(M(Kt(−1)). If the commitment is not submitted within γ, the
operator must wait for the next commitment generation event.

Commitment VerificationWhen the operator submits a new block commitment
at t, the smart-contract performs the verification steps described in Algorithm 6, where
return values of 0 and 1 indicate commitment rejection and acceptance respectively.
For merchants whose signatures were not included in the last notarized block but
included in the current one, the contract requires the notarized payment transactions
that they had last signed for (Lines 3-6). Since these merchants must be removed
from M, N and L, this provides the contract with necessary information to correctly
update the state. If all registered merchants have signed the tuple of the provided
Merkle root and timestamp τ , the verification immediately succeeds (Lines 9-10) since
their signature conveys that their double-spend and safety checks on the generated
commitment succeeded (cf. Algorithm 4). If, however, only a subset of registered
merchants have signed the commitment, then extra steps (Lines 11-26) are needed
to ensure merchant safety and data availability for those whose signatures are not
included.

First, merchants who recently exited must be removed from apk. Though the
contract hence stores their public keys in X, the contract cannot determine which
exited merchants were registered. Since the contract neither tracks individual keys of
registered merchants nor validates the full Merkle tree corresponding to a committed
root, the operator may well assign payments even to unregistered merchants in a
generated Merkle tree (they are now guaranteed security of their notarized funds or
protected from data availability attacks). The contract must update apk to remove
merchants who have exited while retaining registered merchants; however, requires
knowing 1) which exited merchants were registered, and 2) the public keys of remaining
merchants to recompute apk. Second, registered (non-exited) merchants who have not
signed the submitted commitment must be identified so that their previously assigned
funds can be secured against any malfeasance in this commitment.This is challenging
for similar reasons; the individual keys of merchants are not stored. Algorithm 6 is
designed to efficiently overcome this problem.
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Algorithm 6: Commitment Verification
Input :R(M(κ)), τ , Xt, apkactive, arsκ, Mt, (σp,init, Tp(κ), Pp(M(κ)),

Tp(Kt(−1)), Pp(M(Kt(−1)))) for p ∈Mt|κp = Kt(−1), Tp(κp) for
(p ∈ At and p ∈M)

Output : 1 or 0
Data: apk, apka, M, N, X, L, B, W, R(M(Kt(−1))), current time t

1 if not g′t < st ≤ t < g′t + γ then
2 return 0

3 for p ∈M and p /∈Mt ∪ Xt do
4 . H is the hash func. used by Merklize
5 if not H(Tp(κp)) = Lp then
6 return 0

7 if X ∩Mt 6= {} then
8 return 0

9 if V(apk,m = (R(M(κ)), τ), ars) = 1 then
10 return 1

11 if |Xt| > 0 or M 6= Mt then
12 if apkactive ·

∏
v∈Mt

v ·
∏

p∈Xt p 6= apk then
13 return 0

14 else
15 if apkactive 6= apka then
16 return 0

17 if not [Xt ⊆ X and V(apkactive, (R(M(κ)), τ), arsκ) = 1] then
18 return 0

19 for p ∈Mt −M− B−W do
20 if not V(pkp, pkp, σp,init) = 1 then
21 return 0

22 . checkMP verifies a Merkle Proof
23 if not [checkMP(Pp(M(κ)), R(M(κ))) and

checkMP(Pp(M(κ)), R(M(Kt(−1))))] then
24 return 0

25 if not (Tp(κ) ⊇ Tp(Kt(−1))) then
26 return 0

27 if |Xt| > 0 then
28 apk = apkactive ·

∏
p∈Mt

p

29 return 1
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The contract first verifies that apk matches the key generated from aggregating
the provided keys of active, missing, and exited merchants (Lines 11-16). Then, the
contract checks the validity of Xt and the provided arsκ against the provided apkactive

(Lines 17-18). At this point, it is not yet guaranteed that all registered merchants have
been accounted for in arsκ; potential attacks against these checks are demonstrated
in the proof of subsequent Theorem 9. Additional checks are hence performed. If
missing merchant p is in M , then p’s credentials have already been verified through
the notarization process for a past commitment and its confirmed funds already secure.
If missing merchant p ∈ B+W, then p’s credentials have already been verified though
a recent registration or withdrawal event in the root-chain and she has zero confirmed
funds to secure as she joined only after the last block was notarized or withdrew all
her funds since. For the rest of the missing merchants, the contract checks that a
correct PoP has been provided for each, that the provided Merkle proofs are correct,
and that the payment transactions assigned to them in the current commitment is at
least equivalent to the transactions assigned in the previous commitment (Lines 19-26).
In that case, the verification of the submitted commitment succeeds. Further apk is
updated to remove deregistered merchants (Line 27-28). Through these checks, the
contract can assess whether all registered merchants have been accounted for in the
provided commitment despite no explicit long-term record of their public keys, balances
or payment transactions. If the commitment is accepted, the contract’s state variables
(in Table 6.2) are updated as necessary. Note that all non-signing merchants of this
commitment are identified are tracked appropriately; if a newly missing merchant had
been in B or W, the contract simply stores the Lp = H({0}) for her. The contract
broadcasts any updates to apk as well as any additions and deletions of merchants p
to M and their corresponding Tp(κp).

Theorem 9. Suppose p is a registered merchant whose signature is not included
in arsκ. If the commitment is accepted, p was detected as a non-signing merchant,
i.e.pkp ∈Mt.

Proof. For ease of explanation, we set Xt = ∅ in the provided commitment (the proof
trivially extends to the case where |Xt| > 0). The contract necessitates apkactive ·∏

p∈Mt
= apk to proceed with the commitment verification. First note that registration
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of a rogue public key is not possible here, as shown in Lemma 8; hence the typical
rogue public key attack on BLS signature aggregation is infeasible here.

If the operator omits a registered provider from apkactive or Mt, then apkactive ·∏
p∈Mt

6= apk. To omit a registered provider while also ensuring apkactive·
∏

p∈Mt
= apk,

the operator generates an unregistered key-pair (pkatt, skatt) and includes σatt,κ when
generating arsκ (or may simply set arsκ = σatt,κ). Let A′t ⊆ At be the subset of
active signing providers whose signatures the operator includes in arsκ along with
σatt,κ. The corresponding aggregate public key that will then verify arsκ successfully
is pkatt ·

∏
p∈A′t

pkp. Hence, the operator provides apkactive = pkatt ·
∏

p∈A′t
pkp to the

contract. To satisfy the contract’s requirement, the operator generates pkmissing =

apk · (apkactive)
−1 and sets Mt = {pkmissing}. This ensures that contract’s check

apkactive ·
∏

p∈Mt
= apk passes; however, note that the contract also requires proofs

of possession σp,init from each p ∈ Mt. To generate σmissing,init requires computing
the secret key skmissing given the public key pkmissing (which requires violating the
Diffie-Hellman assumption), while it can be trivially provided for legitimately missing
providers who relayed their σp,init at the beginning to acquire σω,p for registration.
Even if the operator includes legitimately missing providers in Mt, the presence of a
POP-less pkmissing in Mt is imminent, which renders the attack unsuccessful.

Theorem 10. If a commitment is accepted, apkactive and Mt only consist of merchants
who had registered with the PayPlace smart-contract at some earlier time, and Xt only
consists of merchants who had registered at some earlier time and deregistered after
the last notarization.

Proof. For ease of explanation, we set Xt = ∅ in the provided commitment (the proof
trivially extends to the case where |Xt| > 0). We show that inserting credentials
that have not been registered with the PayPlace smart-contract in apkactive or Mt

will cause the commitment to be rejected. Consider that the operator generates an
unregistered key-pair (pkatt, skatt) and includes σatt,κ in generating arsκ (or may simply
set arsκ = σatt,κ). Let A′t ⊆ At be the subset of active signing providers whose signature
the operator includes in arsκ along with σatt,κ. The corresponding aggregate public key
that will then verify arsκ successfully is pkatt ·

∏
p∈A′t

pkp. Hence, the operators provides
apkactive = pkatt ·

∏
p∈A′t

pkp to the contract. To satisfy the contract’s requirement
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that apkactive ·
∏

p∈Mt
= apk, the operator generates pkmissing = apk ∗ (apkactive)

−1

and sets Mt = {pkmissing}. This ensures that contract’s check apkactive ·
∏

p∈Mt
= apk

passes; however, note that the contract also requires proofs of possession σp,init from
each p ∈Mt. To generate σmissing,init requires computing the secret key skmissing given
the public key pkmissing (which requires violating the Diffie-Hellman assumption),
while it can be trivially provided for legitimately missing providers who relayed their
σp,init at the beginning to acquire σω,p for registration. Even if the operator includes
legitimately missing providers in Mt, the presence of a POP-less pkmissing in Mt is
imminent, which renders the attack unsuccessful. Finally, consider that the operator
generates arsκ =

∏
p∈At σp,κ and the corresponding apkactive =

∏
p∈At p correctly. It is

straightforward to see that inserting unregistered key pkatt in a correctly generated
Mt will cause the commitment to be rejected since then apkactive ·

∏
p∈Mt

6= apk.
For credentials in Xt of an accepted notarization, note that the contract requires

Xt ⊆ X, where X consists of merchants who have exited or deregistered the system
(using the contract’s withdrawal module) since the last notarization. Hence Xt is
guaranteed to consist of merchants who had deregistered after the last notarization. If
Xt consisted of merchants who had not registered at an earlier time with the PayPlace
smart-contract, then apkactive ·

∏
p∈Mt

∏
p∈Xt 6= apk based on the same reasoning above,

in which case the contract would reject the commitment.

Note that this leaves room for 1) a registered merchant to be simultaneously present
in apkactive and Mt of an accepted commitment, and 2) for a deregistered merchant
in Xt to be simultaneously present in apkactive, and 2) for a deregistered merchant
who had deregistered in earlier notarizations (i.e. not tracked in X) to be present in
apkactive and/or Mt of subsequently accepted commitments. These states only occur
when a merchant has maliciously registered with the PayPlace smart-contract despite
being already registered (by colluding with the operator, cf. Lemma 8). However,
Lines 7-8 in Algorithm 6 combined with the construction of our withdrawal module
ensures that these apparent corruptions are ineffective in violating Consumer and
Merchant Safety.

Withdrawal Algorithm 7 describes the procedure used by the contract’s with-
drawal function to determine the amount of funds to be transferred to a merchant (or
operator) when invoked. As input, merchant p submits a set of transactions Tp that
assigns payments to her, a set C′p of off-chain transactions between each consumer
whose funds p has been assigned payments from and the operator. Note that C′p ⊆ Ct′ ,
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Algorithm 7: Contract processing p’s withdrawal
Input :Tp, C′p, (optional) Pp(M)
Output :Amount of c to transfer to p
Data: apk, M, N, X, B, W,L, R(M(Kt(−1))), Dc,t for consumers c, µ′c,t, w∗c,t,

g′t, current time t
1 fundsToTransferToP ← 0
2 blocksPMissed ← 0
3 if not g′t + γ + δ < t < g′t + ta − δ then
4 return 0

5 if p ∈ X ∪ B ∪W then
6 return 0

7 if p ∈M then
8 if H(Tp)! = Lp then
9 return 0

10 blocksPMissed ← x|p ∈M(−x)

11 if p /∈M and not checkMP(Pp(M)), R(M(Kt(−1))) then
12 return 0

13 for T ′ = (µ′, pkp, pkc) ∈ Tp do
14 T = getSourceTransaction(pkc,C′p) . Cf. Alg 4
15 if T = ⊥ then
16 return 0

17 if µ(T ) > µ′c,t then
18 µ′c,t = µ(T )

19 fundsToTransferToP
+= min{max{µ′c,t −

∑blocksPMissed−1
i=η N(−i)pkc − w∗c,t, 0}, µ′}

20 return fundsToTransferToP
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where Ct′ denotes the set of off-chain transaction from each consumer to the operator
that was revealed to p as a part of some commitment-generation process at time
t′. The merchant must also specify whether the withdrawal is a permanent exit (i.e.
deregistration). If p’s signature was included in Kt(−1), p also submits a corresponding
Merkle proof for Tp.

Note that a merchant who has already withdrawn funds since the last block
was notarized (or has registered only since) cannot maliciously initiate a withdrawal
since all of the merchant’s confirmed funds are transferred to her upon a successful
withdrawal (Lines 5-6). If the merchant’s signature has not been included in the last
notarized block, the function expects that the provided transaction set Tp is equivalent
to what she last signed for (i.e. Tp(κp)) (Lines 7-10). On the other hand, if the
merchant’s signature was included in the last notarization, then the contract requires
a valid Merkle proof for Tp against R(M(Kt(−1))) (Lines 11-12).

The contract then iterates over each payment transaction T ′ ∈ Tp to determine
the total funds to be transferred to p (Lines 13-20). First, each T ′ must be associated
with a valid consumer→operator transaction and associated signature (T, σ) in the
provided input C′p. The contract then ensures that no more funds are withdrawn
against the source consumer s(T ′) than what the consumer has assigned as off-chain
funds to the operator. µ(T ′) < µ(T ) does not suffice as prior merchant withdrawals
may have been processed against this consumer s(T ). While total withdrawals against
a consumer’s channel w∗c,t is known to the contract (since withdrawals happen through
it), it may not know the most recent value of the operator-owned balance µ∗c,t in that
channel since consumer payments to the operator happen off-chain. We hence use µ′c,t
to represent the highest operator-owned balance in the channel with c known to the
contract (as revealed by the consumer→operator source transactions submitted by
merchants during withdrawals). Note µ′c,t ≤ µ∗c,t ≤ Dc,t. Finally, the contract must also
secure funds of merchants whose signatures have been missing in the last notarization,
since double-spend attacks may have been launched against these merchants in that
block (by the operator and colluding merchants). The state N stored by the contract
that tracks missing merchants’ total funds against each consumer that they have stake
in is used for this. After the withdrawal, the contract’s state variables (in Table 6.2)
are updated as necessary.

Theorem 11. PayPlace ensures Consumer Safety.
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Proof. A consumer’s confirmed funds fc,t at time t is Dc,t− µ∗c,t; hence the cumulative
funds withdrawn by merchants or the operator against c’s deposit should not exceed
µ∗c,t at any time t. In other words, if w∗c,t denotes the total funds withdrawn against c’s
deposit as of time t, then we need to show w∗c,t ≤ µ∗c,t. As described in the withdrawal
module, w∗c,t is tracked and updated by the contract every time a withdrawal against
c’s funds is made successfully. From Algorithm 7, we see that the maximum funds
transferred upon a successful withdrawal by provider p is min{µ′c,t −

∑x−1
i=η N(−i)pkc −

w∗c,t, µ(T ′)}. Let wp denote this value. Even if no missing merchants exist (i.e. N = ∅),
a maximum of only wp = µ′c,t − w∗c,t is transferred to the merchant; w∗c,t+1 is then
updated to w∗c,t+wp = µ′c,t and µ′c,t ≤ µ∗c,t by definition. Since w∗c,t+1 = µ′c,t, subsequent
withdrawals will not transfer any funds out of c.

Theorem 12. PayPlace ensures Merchant Safety.

Proof. To show Merchant Safety, we show that a merchant following the PayPlace
protocol when signing a commitment is guaranteed safety of funds assigned therein to
her even if she becomes arbitrarily unavailable to sign future commitments (or does not
wish to, due to detecting malfeasance in subsequent operator-generated commitments).
Since the operator is subject to the same rules as a merchant for the registration
and withdrawal process (and implicitly attests a commitment by generating it and
submitting it to the smart-contract), showing Safety for merchants also secures the
Operator’s funds in the commitment. We prove this by showing that the following
two statements hold:

• Case 1: Suppose p signs a block κ’s commitment (i.e. the tuple (R(M(κ)), τ))
and κ’s notarization is published to the contract with σp,κ included in arsκ.
Then p’s funds are safe as long as Kt(−1) = κ, i.e. p’s funds in κ are fully
available for p to withdraw as long as κ is the latest commitment.

• Case 2: Suppose p’s signature is not included in the commitment of a block κ′

and κ′ is published to the contract (i.e. Kt(−1) = κ′ at some time t). Define x
such that Kt(−x) = κp, where κp is the last notarized block that p signed. Then
funds assigned to p in κp (Tp(κp)) are available for withdrawal by p at t.

169



Case 1. Part a) We first show that p’s funds in a notarized block κ that p signed
for at t′ is safe for any t > t′ as long as providers and the operator can only withdraw
funds that have been assigned in κ.

Funds assigned to be Tp are of the form shown in Figure 6.4; for each consumer
whose order p fulfiled, it specifies a payment amount to be sourced from that consumer’s
deposit. WLOG, assume that p has funds assigned from exactly one consumer c in
Tp; i.e. |Tp = 1| and Tp = T ′ where s(T ′) = pkc. Let T be the corresponding source
transaction that is revealed to p by the operator as part of Ct′ for block verification
and signing. Recall that the set of providers that each have a leaf inM(κ) is denoted
by P(κ). Let P(κ)−p = P(κ) \ p. Then it suffices to show that: (1) at time t the
contract has at least µ(T ′) amount available as c’s deposited funds Dc,t, and (2)
that the total funds that can be withdrawn by P(κ)−p cannot exceed Dc,t − µ(T ′).
To prove (1) Note that by definition of PayPlace (Algorithm 4), µ(T ) ≤ Dc,t′ and∑

v∈P(κ)

∑
T ′′∈Tv(κ) 1s(T ′′)=c µ(T ′′) ≤ µ(T )− w∗c,t, implying µ(T ′) ≤ µ(T ) ≤ Dc,t. Note

that Dc,t is a weakly monotonically increasing function of t since consumer withdrawals
are prohibited in PayPlace; hence (1) holds. To prove (2), first note that a merchant
can withdraw funds in κ only once as they are then tracked in X ∪W and further
withdrawals against κ cancelled (Line 5-6 of Algorithm 7) . Let µ−p be the total
funds assigned to P(κ)−p with c as the source consumer. By definition, when p signed
κ at t′, the following held: µ−p + µ(T ′) ≤ µ(T ) ≤ Dc,t′ . Subtracting µ(T ′) from
this, we get µ−p ≤ µ(T ) − µ(T ′) ≤ Dc,t − µ(T ′). However, this is contradictory if
µ−p > Dc,t′ − µ(T ′). Since Dc,t monotonically increases with t as well (weakly), this
proves (2).

Part b) To show Case 1 then, it suffices to show that as long as Kt(−1) = κ, a
withdrawal initiated by any merchant p′ corresponds to funds accounted for p′ in κ. By
design of the withdrawal function (Algorithm 7), if p′ /∈M, then p can only withdraw
funds assigned to her in Kt(−1) (i.e. the contract requires a Merkle proof showing
that the submitted transaction set Tp′ is included inM(Kt(−1). If p′ ∈M, note that
the withdrawal function only allows p′ to withdraw funds stated in Tp′(κp′) (i.e. the
last notarized block p′ signed). If p ∈ M(−x) for x ≥ 2 (i.e. p′ had missed signing
Kt(−2) as well), then Lines 14-16 of Algorithm 4 ensures that p does not sign Kt(−1)

unless Tp′(κp′) is included in Kt(−1). If, instead if p′ ∈M(−1), then the commitment
verification module that notarized Kt(−1) enforced that Tp′(Kt(−1)) ⊇ Tp′(Kt(−2)

(Lines 19-29 in Algorithm 6). Hence this reduces to the proof of Part a) above. Note
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that the timing constraints in PayPlace (i.e. the checks in Lines 1-2 of the commitment
generation Algorithm 6) ensures that older blocks signed by p cannot be re-notarized
by the operator.

Case 2: From Theorem 9, p is detected as missing in any commitment that does
not contain p’s signature (since p has registered). When the contract processes the
commitment for Kt(−x+1) (i.e. the first commitment submitted without p’s signature
after the last notarized block containing p’s signature), the funds in Tp(Kt(−x)) are
recorded in N against each source consumer, based on the definition of N. Hence,
(1) since p is detected as missing, p’s confirmed funds (i.e. funds in the last block
κp = Kt(−x) signed by p) are tracked in N. Further, note that the contract updates
N to remove release the reservation of these funds only when p is detected as having
signed a submitted commitment again (Line 1− 6 of Algorithm 6 ensures that the
contract is provided the original transaction set Tp(Kt(−x)) again in that case to
perform the update). Next, (2) no merchant who has signed a commitment that
was subsequently published after Kt(−x) can withdraw funds locked by N(−y) for
y ∈ [x, η] assigned to merchants whose last signature was on Kt(−x) or earlier. The
maximum allowed withdrawal for a merchant p′ in Algorithm 7 Line 19 ensures
this: min{max{µ′c,t −

∑blocksP’Missed−1
i=η N(−i)pkc − w∗c,t, 0}, µ′} for each T ′ ∈ Tp′ with

c = s(T ′). Finally, (3) at the time t′ that p signed Kt(−x), note that funds reserved
so far in N, i.e.

∑x−1
i=η N(−i)pkc ,∀c have already been incorporated (accounted for)

in Kt(−x). Lines 15 − 16 of Algorithm 4 executed by merchants for commitment
signing ensures this. Hence the double-spend verification checks performed by p in
Lines 17-20 of Algorithm 4 ensures that funds assigned to p are not double-spent
against the funds already reserved in B (cf. Case 1 above). Note that confirmed funds
of a non-signing merchant is reserved in N only the first time that their signature is
detected missing after being present on the last notarization; subsequent commitments
with the merchant’s signature continuing to be absent does not result in modifications
to N.

Corollary 1. PayPlace provides Data Availability and Income Certainty.

Given Theorem 12, Income Certainty is straightforward to infer from Algorithm 6
and Algorithm 7. Data Availability follows by design of the Withdrawal Function. A
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merchant p’s confirmed funds fp,t in PayPlace corresponds to the funds assigned to
them in the last notarized block they signed, Tp(κp). If p signed the last notarized
block, Algorithm 7 expects a Merkle proof for Tp(κp) against R(M(Kt(−1)), which p
knows since p signed Kt(−1). If p did not sign the last notarized commitment, then
the contract simply expects the transaction set they last signed for, Tp(κp). Since p is
detected as missing in the first commitment she misses after the last notarization that
had her signature (Theorem 9), (Algorithm 6, Lines 25-26 ensures that the contract is
provided Lp by the operator when p is missing to store H(Tp(κp)) in Lp), as long as p
provides Tp(κp), the check in Line 8 of Algorithm 7 succeeds.

6.6 Evaluation

We evaluate the computational and monetary costs incurred by PayPlace for its
main recurring operations, commitment generation by the operator and commitment
verification by the smart-contract. We use ZK Rollup as the baseline in our analysis;
ZK Rollup has become a popular solution for non-pairwise off-chain payments and
has recently been deployed by multiple teams on Ethereum 2.0 mainnet [7, 117]. Note
that it also satisfies almost all properties identified in Table 6.1.

Notation Let n be the number of payments made by consumers during β and
pu the number of unique payment recipients. Consider PayPlace and ZK Rollup
notarization executed at the end of β. Let pr and cr be the total number of registered
merchants and consumers, and cu the average number of unique consumers that a
merchant has been assigned payments from. Let pm , pm′ and pa respectively be the
number of non-signing merchants in the submitted commitment, the subset of these
that had not signed the previous notarization either (note pm′ < pm), the number of
signing merchants who had not signed the previous commitment. Let px, pb and pw
respectively be the number of deregistered merchants , newly registered merchants
and the number of registered merchants who had withdrawn their funds since the last
notarization. For the zkSNARK circuit used in the ZK Rollup, let g′ be the number of
gates, w′ the number of wires and l′ the number of known circuit inputs (for maximum
instance size).

Off-Chain Computational Overhead Computing zkSNARK proofs is highly
expensive, with bilinear pairings and group exponentiations dominating all other in-
volved operations in cost. We sidestep this in PayPlace by offloading some computation
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Runtime # Pairing & Exp.
PayPlace ZKR PayPlace ZK Rollup

Op. O(pr) O(n) 2pr
n

zmax
(4g′ + w′ − l′)

Mer. O(cu · pr) O(1) 2cu 0

Table 6.3: Comparing off-chain computational load and runtime.
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Figure 6.6: The number of pairings and exponentiations scales linearly with n for ZK
Rollup and linearly in pr + cu for PayPlace. As n increases, PayPlace incurs orders of
magnitude lower computational load, even for large marketplaces (high pr) with maximum
cu.

173



to each merchant, who protects her assigned funds in a block by the verification steps
she performs before signing it. We hence assess the runtime complexity and dominant
computational load for both the operator and merchants. For ZK Rollup, we consider
Groth16 SNARKs [84], which are in wide use and recently deployed [18, 111, 114]
in live ZK Rollup implementations. The number of off-chain payment transactions
that can be included in the proof depends on the arithmetic circuit and further
optimizations; let this maximum number of transactions be denoted by zmax. For
n total transactions then, dn/zmaxe prover computations need to be performed by
the operator. Table 6.3 reflects the corresponding amortized computational load and
runtime complexity. For PayPlace, note that Merkle root of a pr-leaved tree can be
computed in O(log2(pr)) time [168] (given O(log2(pr) space). Hence, the operator’s
runtime complexity for commitment generation is dominated by the signature verifica-
tion operations (pr verifications in the computational worst-case when all merchants
return signed commitments) while merchants’ by the double-spend verification checks
they do before signing a block (Algorithm 4). In essence, computational costs for a
ZK Rollup operator scales linearly in n while for PayPlace it is primarily a function
of pr and cu. For both PayPlace and ZK Rollup, the operator and merchant runtimes
can be reduced to O(1) with arbitrary space complexity (i.e. these computations are
fully parallelizable).

We now empirically study the computational load of the two techniques in practice
(in terms of the expensive cryptographic operations - pairings and exponentiations).
We vary the number of transactions during β from 100−10B. To put this in perspective,
Amazon is estimated to process roughly 27M order per day and Uber roughly 15M
rides per day worldwide [61, 127, 129]. Recent data [111, 115] from ZK Rollup systems
indicate a capacity of 2 − 3K transactions per proof, hence we conservatively set
rmax = 3000 and consider a load of only 150K total pairings and exponentiations
per SNARK proof computation (in practice, 150K is approximately the number
of constraints in the Rollup circuit reported by benchmarks, yielding much higher
4g′+w′−l′). As Figure 6.6 depicts (log-log scale), the dominant off-chain computational
load in ZK Rollupincreases linearly in the number of transactions. From Table 6.3,
however, it is evident that the number of such operations is PayPlace is not a function
of n but of pr and cu. We hence vary pr from 100 − 1M merchants; to put this
in perspective, Amazon and Uber have around 2M sellers and drivers respectively.
To assess worst-case load, we let cu equal the number of transactions per merchant.
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Operation Best
Case

Average
Case

Worst Case

Bilinear Pairings O(1) O(1) O(pm − pm′ − pb − pw)
Multiplications in G1 O(1) O(1) O(pm + px)
Hashing into G0 O(1) O(1) O(pm − pm′ − pb − pw)
Non-G0 Hashes O(1) O(1) O(pa + (pm − pm′ − pb − pw) ·

log2(pr))

Table 6.4: Best, Worst and Average-case. Runtime Complexity of notarization in PayPlace,
categorized by the operation type.

For instance, if n = 1000 and pr = 100, then we evenly distribute the orders across
merchants as 10 orders per merchant, and assume a worst-case scenario of 1 unique
consumer per order, resulting in cu = 10. If pr > n, only n merchants receive orders
(cu = 1 for them). In practice, marketplaces may involve recurrent transactions
between consumers and merchants (e.g. due to co-location and especially if β spans
longer time periods). We hence also consider cu no greater than pr to model this.
We refer to this as the "Limited" or Lim cu in Figure 6.6 and the former as the
"Maximum" or Max cu. As we see from Figure 6.6, even as the number of merchants
increase exponentially, the computational load across the operator and all merchants in
PayPlace is orders of magnitude lower than ZK Rollup as the number of marketplace
transactions increase exponentially. In-practice, the PayPlace operator factors in for
typical pr and uc in the marketplace to estimate the duration γ required to execute
these off-chain operations.

Off-Chain Execution Time. We implement the off-chain computations per-
formed by the PayPlace operator and merchants. We use Chia-Network’s implementa-
tion of BLS signatures [47] that avails the BLS12-381 curve, and execute the operations
on a 2015 Macbook Pro with 2.5 GHz Quad-Core Intel Core i7 processor and 16GB
RAM.

Figure 6.7(a) depicts the execution (wall clock) time and the total CPU time
(both user and kernel mode) for the operator to generate the Merkle tree of merchant
payouts (with dashed lines representing CPU times). For each merchant, the operator
generates a list of consumers who have sent payments as well as the payment amount.
This resulting transaction set for a merchant constitutes one leaf of the Merkle tree.
Since the size of this transaction set, and correspondingly the time to hash it into
the Merkle tree, depends on the number of consumers that have made payments for
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(a) Time taken by the operator to generate
the Merkle tree specifying merchant payouts.
Dashed lines represent CPU time.

(b) Time taken by merchants to verify and sign
the operator-generated Merkle tree. Dashed lines
represent CPU time.

Figure 6.7: We depict the CPU and total execution time for recurring off-chain PayPlace
operations. Note that the axes of all figures are in log scale.

Figure 6.8: Time taken by the operator to verify merchants’ signatures on the Merkle root
and aggregate them. Note that the axes of all figures are in log scale.

the merchant, we vary this quantity cu to study its effect on system utilization, along
with varying the number of merchants pr. Even for 100, 000 merchants with 10, 000

paying consumers each, the Merkle tree generation time does not exceed 100 seconds.
For a given number of access points, the execution and utilization times increase with
the number of user addresses; however, this relationship appears sub-linear until the
number of users paying an AP reaches 10, 000.

Figure 6.7(b) shows the cost for the Merkle tree verification and signing operations
that merchants perform when the operator publishes the computed set of transactions.
For a given pr, the execution time and CPU load increases linearly with cu. When
100, 000 merchants are present and 10, 000 paying consumers listed in each leaf, the
execution time exceeds 2 hours. This linear overhead manifests in the merchant’s
verification function, since it scans every leaf and transaction within a leaf, to ensure
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that the operator is not staging double-spend attacks through a maliciously computed
Merkle tree. Finally, Figure 6.8 depicts the worst-case execution and CPU time taken
by the operator to verify the signed Merkle roots. The operator aggregates the signed
Merkle roots and performs a single verification of the aggregate signature to see if
all merchants have correctly signed it, which is O(1) in pr. If this fails, the operator
checks each signature until the malicious merchant is found. The worst-case time thus
scales linearly in the number of merchants.

These results shows that the operator and merchants’ recurring PayPlace operations
may take a fraction of a second to several hours, depending on the number of merchants
and the number of users performing transactions. Further splitting merchants into sets
such that the resulting sets of merchants are owed payments from non-overlapping sets
of users significantly controls this overhead. For instance, in the Datanet case where
merchants are access points and consumers end-devices, a user in the United States
would rarely make payments to access points in France. Finally, the periodicities of
Merkle tree generation and fund settlement on the root blockchain should be chosen
according to these overheads.

On-Chain Notarization Complexity We next assess the on-chain runtime
complexity of PayPlace and ZK Rollup notarizations. For PayPlace, we further
categorize this by three scenarios and the core operations involved. We consider the
best-case scenario as px = 0, pa = 0, pm = 0 (i.e. all registered merchants have signed
the submitted commitment with no one having recently exited or missed the previous
one), and otherwise as the worst-case. We consider the case where all non-signing
merchants had missed the previous notarization as well (i.e. pm′ = pm), all signing
merchants had signed the previous notarization as well (i.e. pa = 0), and no merchants
exited since the last notarization (i.e. px = 0) as the average case. In practice,
merchants registering and exiting the system is likely infrequent in comparison with
notarization events, especially since PayPlace guarantees safety of their notarized
funds and does not incur any exit games.

Table 6.4 specifies the runtime complexities for PayPlace. PayPlace is overwhelm-
ingly O(1) in the number of transactions n and recipient providers pr (cf. Algorithm 6)
except in the worse-case, where the hashes required for verifying Merkle proofs for
newly non-signing merchants scales logarithmically with pr. This directly results in
On-Chain Efficiency in PayPlace. In the best-case as well as average-case scenario,
PayPlace is O(1) in all operations. This provides an important insight; the complexity
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of the smart-contract’s notarization module in PayPlace does not increase even for
arbitrarily large quantities of non-signing merchants as long as these non-signing mer-
chants remain inactive for multiple notarizations once they become inactive. Further,
well-known marketplace operators like Amazon and Uber are often atleast semi-trusted
and merchants may well opt to only intermittently participate in the signing process
to receive additional income, leading often to low pm − pm′ and pa = 0. In the worst
case, the most expensive operation, Bilinear Pairings, scales only in pm − pm′ . For ZK
Rollup, though the Groth16 SNARK verification can be run in constant time, only
zmax transactions can be included in one proof. Hence the amortized time complexity
is O(n).

On-Chain Notarization Costs To assess the on-chain computational resources
required for frequent notarization operations, estimate the gas costs incurred in
the Ethereum blockchain for ZK Rollup and PayPlace notarizations. As of the
Istanbul network update [72], the SNARK verification for Rollup is estimated to cost
approximately 300K gas [115, 199]. Transactions further have to be published on the
root chain at least in CALLDATA to ensure data availability [11]. CALLDATA is
then a recurring cost of 16 gas [72] per byte and each included transaction is 15 bytes.
We add an overhead of 50K gas to account for additional costs, e.g., due to logging,
storage slot modifications, etc. as done previously [11]. For PayPlace, we set pa, pb
and px to 0 as these represent negligible overheads. As evident from Table 6.4, the
computational complexity is affected significantly by pm, pm′ and pr; we study those
here. While native support for BLS12-381 curve operations (i.e. pre-compiles) is being
planned in Ethereum [2, 5, 15], the alt_bn128 curve is mainly used for zkSNARKs
and BLS signatures. We hence use gas costs charged by the alt_bn128 pre-compiled
contract offered in Ethereum [3] to estimate the cost for BLS signature operations.
Parings cost 34K · numpairings + 45K gas, the cost of a key multiplication in G1 (for
public key multiplication) is 150, and the cost per keccak256 hash is 42. We estimate
a higher cost of 100 gas for hashing into G0. Note that verifying x PoPs can be done
with x+ 1 pairings (rather than 2x) [38, 39]. We assume a fixed overhead of 30K (for
addition/assignment operations, broadcasting events) and a variable overhead of 10K
in the number of additional non-signing merchants in the submitted commitment (i.e.
pm − pm′) to account for the storage and broadcast operations involved.

Figure 6.9 illustrates these estimated gas costs in PayPlace and ZK Rollup no-
tarizations. We set pr = 1000 in Figure 6.9(a), and vary the value of pm − pm′ for
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Figure 6.9: (a) Gas cost for PayPlace notarization primarily scales with the pm−pm′ rather
than with pm. It increases with additional merchants who have not signed the notarization
compared to the previous one. (b) Gas cost for ZK Rollup increases with n while worst-case
PayPlace is orders of magnitude cheaper when pm is relatively low wrt n.

different values of pm. Crucially, we observe that even as the number of non-signing
merchants pm increases, the gas required is near-constant as long as pm − pm′ is the

179



same. This directly corroborates the analysis in Table 6.4, where only multiplications
in G1 scales with pm corresponding to Line 10 from Algorithm 6. Since bilinear pairings
far exceed the rest in cost per operation and scales linearly only with pm− pm′ , we see
in Figure 6.9(a) that notarization costs predominantly increase only in the number of
additional non-signing merchants in a commitment and not the recurring non-signers.
In-fact, very little gas is expended when pm = pm′ irrespective of the value of pm. In
the marketplace context, this implies that notarization costs are high only if merchants
tend to oscillate between being active and inactive during consecutive commitment
submission windows (resulting frequently in pm′ � pm) . In practice, we may expect
merchants to participate reliably in the notarization process to receive additional
income on-time, or to frequently miss the signing process and only sporadically accrue
income (i.e. the operator is highly trusted). Essentially, PayPlace is designed so that
merchants impose a relatively high cost the first notarization that they miss after
being active, but little cost for subsequent ones. Figure 6.9(b) (log scale) compares
gas estimates for ZK Rollup vs the worst-case gas estimates for PayPlace (i.e. when
pm′ = 0) for different pr based on the fraction of the merchant population that is
non-signing (i.e. pm). Unsurprisingly, the former scales linearly in n, as also seen in
Table 6.4 and is O(1) in pm and pr; however, even with pm′ = 0, the latter is often
orders of magnitude lower in cost (even for large pm if pm � n). It is evident that
operators choosing between these two off-chain payment solutions must assess the
expected transaction volume and the merchant population. When merchants’ devices
can reasonably be expected to participate in the signing process (once per day or
hour, based on β) or atleast stay in their active or inactive states for extended periods,
PayPlace is highly beneficial by scaling throughput at no marginal gas cost.

6.7 Integrating PayPlace with Datanet

PayPlace can be seamlessly integrated into Datanet. Indeed, the PayPlace operator
can also perform the remote AAA functions that the Datanet operator does. In-fact,
as Figure 5.9 in Chapter 5 depicts, the Datanet operator does indeed subsume the
functions of the PayPlace operator as well, by receiving the micropayments from
devices, verifying them, and periodically using the PayPlace process to assign funds
to appropriate access points and notarize this in the root-chain. PayPlace renders
Datanet robust to the scalability challenges faced by other micropayment protocols,
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and guarantees that the operator cannot manipulate funds owed to their APs once
notarized. PayPlace assumes a single operator in the marketplace; correspondingly,
consumers’ funds deposited for use in the contract are locked to that single operator.
In our case, however, multiple Datanet operators exist in the marketplace, and we
would like users to effortlessly connect to access points of any AAA operator without
requiring separate deposit transactions with multiple smart-contracts. We therefore
modify the PayPlace mechanism accordingly. When depositing c into the contract,
users specify a split of these funds between different registered AAA operators of
their interest (e.g. based on operators often used by nearby APs). The contract then
restricts the total amount that can be withdrawn by APs and the operator against
this user to the amount specified in this split. At a later time, if the user wishes to
shift funds currently tied with one operator for use with another, the contract initiates
a challenge period, when the original operator or its APs can contest the user’s action,
by showing proof (via user-signed micropayments) that the user is attempting to
shift funds already spent for data access with the current operator. In the absence of
such a challenge, the user’s specified funds are marked as transferred for use with the
specified new operator. This incurs significantly less overhead than the inter-contract
coordination and fund transfers that would be required if each operator instead used
a separate, dedicated PayPlace contract.

APs receive their due income from the operator based on the PayPlace side-chain
mechanism. AP owners attest their signature to the root of the Merkle tree that their
Datanet operator periodically generates, assigning income to each AP. Note that a
single network controller may own multiple APs onboarded with a Datanet operator;
as long as the same blockchain credentials are specified for the underlying APs by
the owner, only one signature by the corresponding private key is required on the
generated Merkle root. Before signing, AP owners verify that funds being assigned to
them by the operator in the Merkle tree have not been double-spent by the operator
and that the Merkle tree has been generated correctly. Note that this can be fully
automated and run on any device (cloud or personal computer) that has the AP’s
key available for signing. It may be desirable for AP owners to periodically verify
that the income they are assigned by the operator is in keeping with the data services
rendered to users, to minimize their trust on the operator and detect any malfeasance
immediately. PayPlace guarantees that once the signed Merkle root is notarized on
the smart-contract, the funds assigned to APs in the corresponding Merkle tree are
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irrevocable and cannot be misappropriated. Hence, APs may switch the Datanet
operator they use for AAA services without concerns about loss of prior income.

6.8 Discussion

In practice, most blockchains impose limits on the amount of computations that can
be performed as a part of a single transaction. The notarization process executed
by the PayPlace smart-contract, however, scales linearly with factors like pm − pm′
in the worst-case analysis from Table 6.4, imposing limits on these factors to stay
within the block limit. One way to overcome this is to allow operators to force the exit
of such non-signing merchants using the withdrawal module before submitting the
notarization. Alternatively, the operator may use a zkSNARK to prove to the contract
that funds previously assigned in the last notarization to newly non-signing merchants
pm − pm′ have been included in the Merkle tree whose root has been submitted for
notarization. Finally, the operator may entirely avoid this linear cost of non-signing
merchants by instead submitting an additional aggregate signature of newly joined
merchants (since the last notarization) on the previous notarized root. This ensures
that these new merchants can detect if the operator has malicious omitted a merchant
who was assigned funds in the previous commitment from the current one; hence
signing merchants can still protect themselves from double-spend attacks.

6.9 Summary

We develop PayPlace, an off-chain payment protocol optimized for large marketplaces
that overcomes liquidity and capital drawbacks of previous solutions while keep the
root-chain footprint low. PayPlace takes advantage of the presence of marketplace
operators and introduces them as semi-custodial intermediaries in the payment process.
Consumers pay the operator off-chain during order placement, and the operator
periodically forwards the accrued payments off-chain without requiring any liquidity.
Our construction results in highly usability; consumers are able to view their off-chain
payments to the operator as transactions in a unidirectional payment channel, while
merchants are guaranteed safety of their notarized funds even if they are arbitrarily
offline. We show that, based on how frequently merchants oscillate between being
available to sign notarizations and not, PayPlace is potentially orders of magnitude
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cheaper in on-chain and off-chain execution costs compared to the state-of-the-art
technique for non-pairwise off-chain payments, Zero Knowledge Rollups.
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Chapter 7

Summary of Contributions and
Future Directions

7.1 Summary of Contributions

In this thesis, we aim to facilitate incentive-compatible and seamless connectivity
between unsubscribed devices and wireless networks. The ubiquitous subscription
model prevalent today serves a multitude of purposes: 1) it creates a-priori identity
relationships between the device and the network that enable authentication, e.g.
using SIM or PSK, 2) it subsumes a trust relationship wherein the device trusts the
usage metering done by the network in order to impose the terms of the subscription
contract and the network trusts the device to make the corresponding payment at
the end of the billing cycle, 3) it implicitly provides authorization to the device to
connect to the network during the subscription period based on the agreed-upon terms
and authorizes the network to levy usage-based charges as per the contract, and 4) it
forces the device owner to setup payment details off-band with the network that is
then used by the network to charge the appropriate amount at the end of the billing
cycle based on the contract and monitored usage during the cycle.

Removing pre-established subscription contracts therefore leads to a variety of
research challenges that span across these four core functions of Authentication,
Authorization, Accounting and Billing. However, limitations of such a static long-
term usage-based contract are already felt today as networks often fail to keep up
with applications’ resource needs that can be determined only in realtime, and the
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subscription model becomes an increasingly poor fit for emerging connectivity use-cases
like the IoT. The granularity of typical month-long mobile data plans is such that
users must forecast their network usage over a long period of time and assign a single
monetary value to its utility. Finer-grained real-time information about user needs
does not play a role in resource allocation, though mobile applications are launched
and their resources allocated only in real time. This results in unrealized value for
both the end-user and the network operator and further limits the user to availing
resources that belong only to their subscribed network(s). Further, the rapid and
dense deployment of IoT devices (e.g. smart cities) will require device owners to
manage increasingly complex usage contracts with operators’ LoRaWAN or NB-IoT
networks, posing a prohibitively unscalable and expensive bottleneck for large-scale
IoT deployments. The overhead of provisioning dedicated contracts for each device
may accelerate as 5G networks are more widely installed. Such networks are expected
to include multiple access points of different radio access technologies, potentially
with different operators, making it even more difficult to pre-specify contracts for
individual IoT/user devices with each operator.

The goal of this thesis is to enable seamless and subscription-less connectivity
between devices and wireless networks with no a-priori identity or trust relationships,
and to facilitate the establishment of user-driven session-oriented usage contracts with
the network in realtime. We setup three distinct networking scenarios that retain
progressively fewer characteristics of the subscription-based model and address the
research challenges in each.

In Chapter 3, we first propose that typical monthly data subscription plans be
supplemented with ad-hoc discount offers, wherein users may consume unlimited data
for the offered hour for a small fixed fee if they accept the discount offer. This scheme
allows users to realize additional resource needs for their sessions in realtime that
had not been accurately captured in their monthly forecast when signing up for the
subscription; indeed, these simple offers, when available, can be utilized to avoid
risking unforeseen overages which are much more expensive in comparison, while the
retention of monthly subscriptions continues to provide a predictable source of revenue
to the network. We first develop a monthly abstraction of such supplemental discount
offers (SDOs) to show that users are generally willing to accept some SDOs, allowing
the ISP to increase its revenue and the user to maximize their data consumption
utility. We then develop a dynamic model that captures the ad-hoc nature of these
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offers, and show that users face a complex hourly decision problem as to which SDOs
they should accept over their billing cycles, since they are unaware of their exact
future needs or when future SDOs will be made. The ISP faces a similarly challenging
problem in deciding when to offer SDOs so as to maximize its revenue, subject to
users’ decisions. We develop optimal decision criteria for users and ISPs to decide
whether to make or accept SDO offers. Our analysis shows that both users and ISPs
can benefit from these offers, and we verify this through numerical experiments on a
one-week trace of 20 cellular data users. Critically, however, we find that ISPs can
exploit user uncertainty in when future SDOs will be made to maximize its revenue
at a net loss to users. This hence alludes to the challenges that end-users face in
practice when attempting to make realtime decisions about their consumption and
costs without complete information. To establish dynamic usage contracts between
the device and the network in practice, it becomes important to mitigate this. We
employ popular reinforcement learning techniques like Double Deep Q Networks and
Actor Critic Models for the user to learn the ISPs offer schedule and the variation in
their own resource needs over time, and show that the suboptimality from real-time
decision making that users incur can almost entirely be eliminated.

In Chapter 4, we consider an even more dynamic user-driven approach to acquiring
session-oriented network resources in realtime by proposing a model wherein a slice of
network resources is dynamically created and assigned to an end-device based on the
session needs it explicitly specifies. By acquiring resources for the entire duration of
their session, devices can then reliably estimate their session performance at the onset
rather than waiting for SDOs to be offerred to realize realtime needs that were not
captured in the monthly subscription contract. Our focus is on real-time multimedia
applications such as interactive gaming, live video streaming, and augmented reality
that have strict latency and bitrate requirements but are resistant to buffer-based
mitigations like HTTP DASH since resource needs are immediate. Recent innovations
in network slicing have demonstrated the feasibility of dedicating specified amounts of
network resources to individual sessions in the radio access network, and encouraged
by this, we propose to reserve network resources for multimedia sessions in real time
according to their declared needs, thereby providing ad hoc session-level performance
guarantees. Through WiFi experiments and trace-driven LTE simulations, we show
that such session-level resource provisioning is robust to real-time channel fluctuations
and congestion externalities over the lifetime of a session. This approach, however,
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raises challenges: how can the network ensure that users are honest about their
resource needs and optimally allocate its limited resources to users, under uncertainty
in future sessions’ resource needs? We derive a novel Multi-Unit Combinatorial
Auction (MUCA) model with a unique structure that can be exploited for fast winner
determination and yet incentivize truthful bidding, properties not simultaneously
achieved in a generic MUCA but essential to making real-time session guarantees.
Further, since dynamic bidding in realtime is challenging for end-users who are budget-
constrained, we develop a Reinforcement Learning based utility-maximizing strategy
to distribute their budget across sessions, and show that it yields high user utility and
effectively again mitigates the suboptimalities from real-time decision making (as with
the case of SDOs too).

While Chapters 3 and 4 explore the establishment of dynamic usage contracts
between devices and networks that capture devices’ session-oriented resource needs,
utilities and valuations, this addresses only the Authorization stage of device-network
connectivity process. After negotiating on the resource allocation and price, the
network authorizes the device’s connection to begin and is authorized by the device
to levy charges based on the agreed terms. However, it is yet unclear how the device
can Authenticate with the network in the first place without any prior identity setup,
and how the network’s measurement of device usage can be relied on as ground
truth for enforcing payments when there is no trust relationship between the two.
In Chapter 5, we introduce Datanet, a system to facilitate seamless authentication
with non-custodial credentials and trustworthy utilization metering of data sessions
between untrusting devices and wireless networks. Our core insight is that exchange
of services and payments can be trustlessly enforced by distributed ledger technologies;
the credentials that blockchains use for account management can also be used for
TLS-based authentication in networks using the widely supported EAP-TLS standard
(across WiFi and more recently, Cellular networks as well). However, this raises several
challenges: for instance, requiring special-purpose trusted hardware for bandwidth
metering that is tamper-free and can be trusted by a smart-contract as ground truth,
or even software modifications at the access point to integrate with the blockchain
significantly hinders solution adoption. Further, the blockchain’s ability to enforce
transaction rules is limited by the extent to which the underlying exchange of services is
digitally trackable, which is susceptible to manipulation in this case. More importantly,
considering the sheer ubiquity and scale of internet-enabled devices and last-mile
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access points, the load imposed by such a system on the blockchain if it were to
be used to adjudicate every session between devices and networks is prohibitively
large. Public and permission-less blockchains, which we must rely on to enable a
non-custodial solution, are known to suffer from throughput and latency limitations as
is. Using remote authentication servers based on the AAA framework, incremental off-
chain micropayments for trust-minimized and incentive-compatible connectivity, and
trusted execution environments for establishing usage-based micropayment schemes, we
address these challenges to design and build DataNet, a system providing seamless and
incentivized connectivity between untrusting end-devices and APs, without significant
computation or network overhead.

Finally, in Chapter 6, we develop a scalable and cheap cryptocurrency payment
system that seamless integrates with the Datanet system and allows devices to quickly
make payments for their ongoing data sessions with APs without requiring any access
point modification. Facilitating fast and cheap cryptocurrency payments is important
for several marketplace applications that use blockchains, and especially so for large-
scale blockchain-based networks like Datanet and others [89, 126, 152] that aim to
facilitate sharing of last-mile network resources. The standard solution for off-chain
payments, state channels, are optimized for frequent transactions between two entities
and impose prohibitive liquidity and capital requirements on payment senders for
marketplace transactions. We propose PayPlace, a scalable off-chain protocol for
payments between consumers and sellers. Using PayPlace, consumers establish a
virtual unidirectional payment channel with an intermediary operator to pay for
their transactions, thus allowing AAA operators in Datanet to also performs the
payment-related functions of a PayPlace operator. Unlike state channels, however,
the PayPlace operator can reference the custodial funds accrued off-chain in these
channels to in-turn make tamper-proof off-chain payments to merchants, without
locking up corresponding capital in channels with merchants. Our design ensures that
new payments made to merchants are

7.2 Future Directions

I plan to address limitations of current work and explore promising venues of further
research based on enabling session-oriented real-time usage contracts between devices
and wireless networks without subscriptions.
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Modeling Competition between Networks. Without being restricted to
connecting only to networks with which devices have a subscription contract established,
devices are now faced with a significantly more competitive market of providers at any
time that. In this work, however, we have not explicitly considered the impact of this
increased real-time competition between networks on prices and resource availability.
Both with SDOs as well as UBid, we assume a monopolistic ISP that the device
is constrained to connecting to and focus on challenges of incentive-compatibility,
revenue maximization and making optimal decisions in realtime. Though the SDO
model does consider users’ option to consume WiFi instead of cellular data, we do not
model competition between ISPs. In a competitive setting, SDOs may attract new
users to an ISP by allowing them to supplement their data plans; on the other hand,
other ISPs could counter these offers by simply increasing their plans’ monthly quotas.
Similarly, in case of UBid, devices will likely get pricing quotes from multiple ISPs for
their desired session resources and evaluate between them. Though competition from
multiple accessible radio access networks has been studied in the context of hetnet
selection [32, 67, 105], these models do not consider session-level resource reservations.

Session-oriented Resource Guarantees for Other Broader Scenarios. UBid
is a first study of modeling auctions for network resources in a manner that decouples
the auction model from wireless-specific scheduling details. In structuring this auction
and studying its properties, we ignored concerns of mobility in the dimensionality of
the MKP as well as more sophisticated bundle generation policies that might handle
buffer-based video streaming as well as take into account concurrent resource requests
to structure returned bundles to better schedule users in conjunction. Relaxing each
of these restrictions has non-trivial implications on our results, and are interesting
venues of future work. One might also consider the repeated nature of the auction not
just in budget distribution of users (as we do) but also in availability projected by the
network. In other words, the network might have incentive to impose reserve prices or
hide a portion of its availability in order to increase its revenue.

Faster Coordinated User-Learning for Real-time Decisions. In this thesis,
we show the promise of reinforcement learning techniques in mitigating the subopti-
mality induced in real-time user decisions due to incomplete information about future
prices and consumption. As illustration in Chapters 3 and 4, this suboptimality
results in significantly higher spending for a net lower data consumption utility for
users, and hence these mechanisms to improve real-time spending dynamics are im-
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portant. However, we do not consider explicit user coordination in this process. If
the ISP changed recomputed their SDO offer schedule during the billing based on
users’ current data quota states rather than computing it once at the beginning of the
cycle based on historical data, then the environment becomes non-stationary since
users (in the current setup) use reinforcement learning to learn independently. Such
non-stationarity is also seen with multi-agent RL in UBid, where as the number of
agents independently learning increases, the effectiveness of the learning technique
drops. A promising direction of future work is to explore coordinated learning in this
context. Users may have incentive to share certain information about their states but
not others; since each user is self-interested and rational, it is especially important in
this case to study the incentive-compatibility of coordinated learning techniques.

Implementing PayPlace. In Chapter 6, we estimate gas costs for PayPlace and
ZK Rollup and show that on-chain costs of PayPlace is often orders of magnitude
lower. As future work, we plan to implement the PayPlace smart-contract on the
Ethereum blockchain. Pre-compiles for BLS signature operations are expected to be
added to Ethereum [2, 5, 15]. By deploying PayPlace, we wish to measure the realized
computational and gas costs and compare this with reported numbers from live ZK
Rollup systems that have recently been deployed on Ethereum 2.0 mainnet [7, 117].
We expect these results to be similar to our estimations in Chapter 6 which are also
based on real data and prices. More importantly, this implementation will allow us to
study the configurations and impact of hueristic parameters in PayPlace.

For instance, since PayPlace payments are decomposed into consumer→operator
and operator→provider transactions, a shorter interval aggregation ta indicates a
lower counter-operator risk to providers in receiving compensation for the consumer
orders fulfilled during the last ta. At the same time, notarizations are root-chain
transactions that impose monetary fees on the operator. The choice of ta must reflect
these considerations. Providers may even periodically vote on ta’s value to reflect their
trust in the operator over time; the fees charged by the operator (i.e., commissions on
consumer’s payments) can reflect the overhead of notarization costs every ta. Similarly,
as seen in the evaluation presented in Chapter 5, the time taken for generating a block’s
Merkle tree increases with the number of providers registered in the system, since each
provider has a leaf of transactions in the tree. Further, the number of checks performed
by a provider before signing the Merkle tree’s root is directly proportional to the
number of providers as well as the number of consumers sourcing the provider payments.
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Limiting γ without limiting the size of the marketplace therefore requires horizontally
scaling the PayPlace sidechain in a manner this is transparent to consumers. Most
importantly, most blockchains impose limits on the amount of computations that
can be performed as a part of a single transaction. In Ethereum, for instance, this
corresponds to a limit of 10M gas per block1. The notarization process executed by
the PayPlace smart-contract, however, scales linearly with factors like pm − pm′ in the
worst-case analysis from Table 6.4 in Chapter 6, imposing limits on these factors to
stay within the block limit. As noted towards the end of Chapter 6, there are multiple
potential ways to overcome this in PayPlace and an analysis of the tradeoffs presented
is left as part of the implementation in future.

Extension to Just-in-Time Spectrum Sharing. An important research focus
in the multi-year OfCom DSA study conducted in the UK2 has been the extension
of mobile network coverage to rural areas. Mobile operators incur significant capital
expenses in setting up base stations and other infrastructures in an area, as well as
operating costs. Without sufficient demand in the region, it becomes prohibitively
unprofitable for them to provide service there, even if they already have the spectrum
licenses to operate there. This has caused wide gaps in coverage in rural areas where
cellular data demand is less dense.

Companies like Vanu solutions3 have entered this space and tried to provide
coverage in these area using small cell technologies with innovative energy solutions
that make them cheaper to operator. They then sub-license the spectrum owned
by the primary operators in that area and use their equipment to provide coverage.
In-fact, this is a realization of the idea of carrier-driven offload to long-tail WiFi and
other radio access technologies [146], where carriers enter into long-term negotiations
with private owners of WiFi routers so that they may initiate user equipment offload
to those access points when load on their base station is deemed to high. This becomes
especially important during peak load times, like football games and concerts when the
stadium capacity routinely over-congests the networks which have not been provisioned
with the hardware to scale to such high demand. During such times, if private owners
of hotspots could deploy their routers in the area and engage into contracts with
operators to allow operator-driven offload to these routers, both end-user and operators

1https://etherscan.io/chart/gaslimit
2https://www.ofcom.org.uk/research-and-data/technology/general/emerging-tech/

decentralised-spectrum-access
3https://www.vanu.com
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stand to gain significantly.

However, this has been challenging to achieve in practice since all of these rely
on establishing prior contracts between the operator and equipment owner, either
to sub-license the operator’s spectrum (as in the case of Vanu providing rural area
coverage) or to allow the operator to drive offload to private hotspots. The operator
must be able to audit usage in Vanu to ensure that appropriate commission is paid to
them while access point owners need to ensure that operators pay them their dues for
each person consuming data on their router. As evident, this requires fine-grained
accounting and auditing, and necessitates either a prior trusted relationship between
the parties or significant system engineering and integration on both ends. We again
see the potential of trust-less and publicly auditable transactions over a blockchain in
making this system highly efficient and practically feasible. If Vanu-user transactions
were, by design, recorded in a public blockchain, they are auditable by the operator
who can ensure the fees they are paid. Similarly, we can apply the AAA-based
architecture from Datanet to route users on the offloaded WiFi access points to a
blockchain-based AAA server.

Economics of Blockchain-basedWireless Service Provisioning. Blockchain-
based resource sharing applications like Datanet make use of native crypto-tokens
for payments and rewards on the platform. However, crypo-tokens are a very new
offerring, and it is unclear how to design them, both from micro- and macro- economic
perspectives. For instance, there are several types of monetary policies that a token
may employ (inflationary vs deflationary, policy revealed up-ahead vs withheld) [52]
and different pay-out schemes for contributors (miners) that strongly influence their
incentives to provide service for the platform [109, 112, 149, 155]. These tokens are
also typically traded on the exchange, which make them all the more challenging to
model since we must account for market speculation and other forces [43, 55]. Further,
we have large degrees of freedom in designing the monetary policy to facilitate certain
micro-economic incentive goals. For example, we may provide early users of the
network more tokens for being early adopters. Or we may increase the tokens paid
to a router over time the longer it is engaged with the system the longer a router is
engaged with the system. Some of these broadly economic research challenges are
detailed below and pose promising venues of future research to realize systems like
PayPlace and Datanet in practice:

• What should be the rate at which new coins are minted? Should this be fixed at

193



all? Should the mining pool be fixed? While a deflationary model increases the
likelihood of growth in coin value over time (provided the network grows in value),
the factors that influence the coin minting rate over the span of several years
may be impratical to predict at the onset. In-fact, if coins rise in value beyond
the underlying market utility of the networks’ services due to severe scarcity, the
network may well collapse as consumers switch to alternate/competing service
providers that offer market-competitive rates and expose them to less market
instability.

• How should mining rewards change over time? Initially, contributors are com-
pensated from the unminted pool of coins created by the company. However,
as cash flows in from customers in terms of the token, a larger portion of the
contributor compensation would come from the fees paid by consumers. We
would then expect contributor rewards come from consumer fees. How should
the contributor reward be changed over time, accounting for the decrease in
unminted pool and increase in consumer demand and hence payments?

• Under what conditions can a “stable" exchange rate emerge for these tokens?
What is the expected behavior of contributors and speculators when tokens are
no longer a store of future value? In a traditional stock market an asset with zero
growth nevertheless has a value and an incentive for shareholders to hold on to
it due to fixed dividends that it pays out (as a result of the cash flows sustained
at the final growth stage). Since there is no notion of dividends here, what is
the expected market behavior (consumers/contributors/speculators/early-spage
investors) in this case?

These venues of future work presented above address both limitations in current
work and explore new applications of study.
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