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The booming growth in AI and machine learning is drastically reshap-

ing the landscape of high performance computing. Traditional HPC addresses

scientific problems that are driven by simulation, modeling and analysis in

science domains. Algorithms like linear algebra and methods like differential

equations are at the core of solutions to such problems. However, emerging

machine learning tasks rest on a new set of algorithms and models. The com-

putation and data movement patterns inherent in learning algorithms cannot

be directly mapped to the computation motifs in the physics, chemistry, or

biology simulation problems. As a result, the high performance libraries that

originate in the traditional scientific domains thus cannot be straightforwardly

applied to emerging ML tasks to deliver required performance.

This thesis focuses on performance optimizations of computation ker-

nels in emerging machine learning applications, spanning across a diverse range

from dense, regular to sparse and irregular kernels. In this work, we demon-

strate how code specialization and generation together with expert-built per-

formance models and learned dispatch strategies can together enable ML mo-

tifs to achieve better performance on modern processors.

First, we investigate the performance optimization of dense kernels with

a focus on the convolutional neural networks (CNN). The computation of con-

volution layers in deep neural networks typically relies on high performance

matrix-multiplication routines to improve performance. However, these rou-

tines are not optimized for performing convolution. Extra memory overhead

is incurred due to data transformation, and the performance obtained is also

less than conventionally expected. We demonstrate that direct convolution,

when implemented correctly, eliminates all memory overhead, and yields per-

formance that is between 10% to 4x better than existing high performance im-
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plementations on conventional and embedded CPU architectures. We present

a model-guided optimization approach which utilizes the characteristics of sys-

tem architectures to guide the optimization choices of loop ordering, blocking,

and memory layout transformation. We show that a high performance direct

convolution exhibits better performance scaling than expert-tuned matrix im-

plementation, i.e. suffers less performance drop, when increasing the number

of threads.

Sparse kernel is an equally important computation kernel appearing

in many machine learning applications such as graph analytics and genetic

sequencing. One factor that prevents sparse kernels from achieving high per-

formance on modern processors results from the prohibitively large number of

different implementations and data structures for sparse problems. We start

with the observation that the complicated sparse computations can be distilled

into primitive set of operators such as join, merge, and difference. To acceler-

ate those operators on modern processors with data parallelism, we propose a

vectorization and code specialization approach which can eliminate the control

divergences of these operators. Next, we explore the design space for vectoriza-

tion on CPUs with various vector width, based on which we present the code

generation algorithm that takes the data width and operations as input and

generates various implementations. We then demonstrate the acceleration of

the General Sparse Matrix-Matrix Multiplication (SpGEMM) on GPUs. We

show how the SpGEMM implementation can leverage join/merge operators

to compose a variety of implementations. Another challenge when optimizing

sparse kernels is that their performance behavior is data dependent, while the

input characteristics may change online during iterative updates. To leverage

the different implementations offered by the code generator, we propose a low-

viii



overhead mechanism that collects the data characteristic information to learn

online dispatch decisions over iterations.

Overall, in this thesis, we demonstrate the interplay of code specializa-

tion and generation, together with performance modeling, learned dispatch,

can enable high performance kernels for the emerging machine learning appli-

cations.
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Chapter 1

Introduction

1.1 Motivation

Performance has always been of utmost importance in many computing tasks,

which has been the driving force behind the research of high performance

computing over the decades. Traditional HPC mainly focuses on the scientific

computing tasks which usually arise from the simulation or modeling processes

for biology, physics or chemistry problems. For example, typical scientific

computing tasks include weather prediction, quantum mechanics simulation,

and cosmopolitan analysis.

Solutions to these scientific tasks are usually based on mathematic

methods in linear algebra or differential equations. Thus the computational

kernels of these methods are centered around dense linear algebra or struc-

tured mesh. Over the years tremendous efforts are spent on researching and

designing high performance implementations for those computing kernels in

1



scientific applications. This leads to a handful of libraries and frameworks.

For example, BLAS/LAPACK libraries were developed for the computing ker-

nels in linear algebra, FFTX library was proposed targeting spectral methods,

and OSKI was proposed for the sparse linear algebra kernels in differential

equations.

In recent years, machine learning has made significant breakthroughs

which brought transformations across many aspects of research and industry.

In many real-world problems, the conventional methodologies and algorithms

are now replaced by ML-based models. For example, methods such as deep

learning and graph analytics are now at the core of tasks such as image clas-

sification, voice recognition or object tracking. Despite their wide adoption,

however, it is still ongoing research on how to make the emerging ML models

run faster and efficiently on various platforms. The computation kernels of

ML models are completely different from the conventional scientific kernels,

Thus high performance libraries developed for scientific computing can not be

directly applied to the machine learning field.

Achieve high performance for the emerging machine learning tasks is

challenging due to two reasons. Firstly, computation kernels in machine learn-

ing tasks possess a broad spectrum of distinctions in the characteristics of com-

putation patterns and data movements. At one end of the spectrum, there is

dense applications, in which the computation kernels of such tasks have regular

and structured patterns. The representative dense computation tasks include

convolutional-neural-networks. At the other end of the spectrum is the sparse

2



applications, and such applications usually works with irregular and unstruc-

tured data. The representative sparse applications involves some analytics

tasks in social networks or recommendation systems. Dense and sparse com-

putation kernels present different computational characteristics, which result

in different sets of challenges for software optimizations. The second perfor-

mance challenge results from the complexities of the underlying hardware. In

particular, with the growing computational demand for machine learning tasks,

the underlying computer systems are evolving rapidly. Architecture features

such as cache size, number of registers, memory bandwidth vary across plat-

forms, which makes obtaining high performance consistently across platforms

a non-trivial task.

With the growing prevalence of machine learning techniques and their

widespread deployment onto a broad spectrum of systems, there is a pressing

need for high performance machine learning libraries or frameworks on existing

and future platforms.

The goal of this thesis is to provide understandings on the optimiza-

tions of the computation kernels of the emerging ML tasks. The computation

kernels lay the backbone of understanding the interplay between software op-

timizations and hardware architecture, which is a fundamental step towards

building a portable and efficient end-to-end ML system. In particular, in this

work, we demonstrate how an analytical model, together with code specializa-

tion, and learned dispatch strategies can enable the high performance compu-

tational kernels of machine learning tasks. In the first part of this work, we

3



demonstrate the optimization of the dense kernels in machine learning using

convolution neural networks as an example. We adopt a model-based analysis

to provide a systematic understanding of how the software optimizations such

as loop ordering, blocking, instruction scheduling, should be applied based on

the hardware architectures. In the second part of this work, we investigate the

optimizations of sparse kernels. Sparse kernels present a different set of chal-

lenges compared to dense computations. We present the technique that can

improve the data-parallelism of the irregular computations of sparse kernels,

as well as investigating the effects of algorithm and data structure choices on

the performances.

1.2 Preliminaries

In this section, we provide a brief overview of the computational domains and

the class of operations in these domains that we target.

1.2.1 Domains and Computation Kernels

Researchers from the University of California, Berkeley performed an inves-

tigation across different domains and distilled the computational kernels to

characterize and represent the domain-specific computations [1]. We explain

some kernels that are relevant to this thesis in the following.

Dense linear algebra These computations typically arise in the applica-

tions of scientific simulations. Dense linear algebra computation involves data
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as dense matrices or vectors. The computation pattern is regular with mostly

strided memory access.

Structured Mesh (Stencils). These computations typically arise in the

computation of PDEs using finite-difference methods. The computation of

structure mesh usually involves data represented by a regular grid of n-

dimensional mesh. The connection in the grid represents the relationship

between this data point and its neighbors.

Sparse linear algebra. Sparse linear algebra can appear both in scientific

computing as well as machine learning applications. Many real-world data con-

tain a significant number of zero values. Therefore such data is usually stored

in compressed matrices to reduce the storage and bandwidth requirements to

access the elements. The data format examples include Compressed-Sparse-

Row (CSR), Compressed-Sparse-Column (CSC), Coordinate (COO) format,

etc. Because of the compressed formats, data is generally accessed with in-

dexed loads and stores.

1.2.2 Frameworks and Libraries

One approach to shifting the burden from the user is to implement libraries

that contain commonly used functionality. This approach has been very suc-

cessfully applied to dense computations and libraries like BLAS and LAPACK

are frequently used in scientific codes.

5



Dense Linear Algebra

Dense linear algebra in scientific computing Basic Linear Algebra Sub-

programs (BLAS) specifies a set of standards for the common linear algebra

operations. The linear algebra operations are categorized into Level-1, Level-

2, and Level-3 routines in BLAS specification: Level-1 refers to vector op-

erations such as vector addition, dot product. Level-2 refers to the general

matrix-vector multiplication operation. Level-3 refers to the generalized ma-

trix multiplication. A number of libraries have been proposed conforming to

the BLAS specifications and are tuned for specific hardware. For example,

AMD Core Math Library (ACML) has a high-performance BLAS routine im-

plementation for AMD processors. Intel Math Kernel Library (MKL) is the

BLAS implementation for Intel, and OpenBLAS provides high-performance

BLAS implementations for a wide range of x86 architectures.

Dense linear algebra in machine learning Dense linear algebra kernels

also appear in machine learning applications. Some computations in deep

learning models can correspond to the BLAS operations. As a matter of

fact, many machine learning frameworks heavily depend on high-performance

BLAS routines. For example, the TensorFlow framework transforms the high-

level machine learning computations into primitive matrix operators such

as matrix-matrix-multiplication (convolution neural network), matrix-vector-

multiplication (recurrent neural network), etc.
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Sparse Linear Algebra

Sparse linear algebra in scientific computing Sparse linear algebra ker-

nels appear in both traditional scientific computing and machine learning ap-

plications. For example, the finite discretization in fluid flow simulations can

be formulated using a sparse grid. Libraries have been proposed to accelerate

sparse linear algebra kernels in scientific problems. For example, the Opti-

mized Sparse Kernel Interface (OSKI) [48] exposed an autotuning API along

with providing memory hierarchy aware kernels to match modern architec-

tures, which allows library users to pass domain knowledge to these building

blocks and reap the performance benefit while minimizing the amount of ex-

pensive autotuning.

Sparse linear algebra in machine learning Recent years, a growing body

of research is focusing on sparse problems arising from the social sciences. As

a result, we are seeing the development of sparse libraries and frameworks

designed to accelerate graph analytics — the tasks that are underneath many

social analytics problems. There are a rich amount of graph frameworks that

can target a general set of graph applications [2, 3, 4, 5, 6, 7]. Those frameworks

have different frontend designs. For example, [2] is based on vertex-iterator

programming model where a utility function is supplied and executed on each

vertex, [3] uses linear algebra language to abstract away the graph algorithms,

meanwhile, [4] uses a set of DSL to describe and optimize graph operations,

etc.
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1.2.3 Code Generation

Code generation can overcome the drawbacks of general compilers. The

general compiler is capable of performing some optimizations such as auto-

vectorization, peep-hole optimizations. However, their optimization capabil-

ities are very limited. Firstly, the optimization effectiveness of the general

compilers is highly dependent on accurate modeling of the underlying hard-

ware, whereas it is usually hard to establish an exact model of the hardware

architectures. More importantly, general compilers are unable to capture the

high-level algorithmic optimizations. For example, the compiler is capable to

perform auto-vectorization, but only when the code is inherently expressed as

regular and iterative loops. Code generation offers an alternative approach

that is capable to take into account the high-level algorithmic transformations

while generating different implementations as specified by the programmers.

The code generation approach can therefore ease the burden for programmers

to explore different implementations, especially when facing the fast-changing

and increasingly-complex hardware architectures.

1.2.4 Performance Optimization

Implementing software that performs satisfactorily across platforms and hard-

ware has become an ever-growing challenging task with the evolving complex-

ity of today’s computer systems. In conventional high performance computing,

there are two approaches to achieve high performance: analytic modeling and

automatic-tuning. Analytic modeling requires accurate modeling of the un-
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derlying computer architectures and analytically derive the best optimization

strategies such as loop ordering, blocking strategies, parallelism, etc. Analytic

modeling has been demonstrated to successfully optimize the implementation

of BLAS libraries [8, 9]. Auto-tuning is another way to achieve high perfor-

mance, especially when modeling the machine’s behavior accurately enough

is impossible on today’s computers, auto-tuning can get the actual run time

as feedback. By means of automatic empirical performance tuning, and apply

search techniques to find the best implementation for a given target machine.

Auto-tuning is applied in libraries such as Spiral [10], FFTW [11], and AT-

LAS [12].

1.2.5 Hardware Architectures

Vector instructions. A few years ago major vendors of general-purpose

microprocessors have started to include short vector SIMD (single instruc-

tion, multiple data) extensions into their instruction set architecture (ISA)

primarily to improve the performance of multimedia applications. Examples

of SIMD extensions supporting both integer and floating-point operations in-

clude vectorized loads/stores, logic arithmetics, bit permutations, etc. SIMD

instructions have now become the status quo on modern CPUs to exploit data

parallelism. For example, Intel CPUs have SSE/AVX2 instructions to sup-

port 128-bit and 256-bit vector operations. Similarly, ARM processors have

NEON instructions, and IBM Power processors have AltiVec instructions. The

prevailing SIMD widths on modern processors are 128-bit and 256-bit. More
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recently, the Intel Skylake architecture introduced AVX512 instructions.

Hierarchical memory system. The modern processor is typically built

with hierarchical memory structures. The closest to the processor is the reg-

ister memory. The register file holds the temporary elements that are used

for arithmetic tasks. The next level is the L1-cache (built into the processor)

followed by the L2-cache. L1 caches are usually fast but small. They directly

access the L2 cache which is usually larger but slower. L1-cache and L2-cache

are usually private to each core. In the next level is the L3-cache which is

usually shared among all the cores on the chip. The L3-cache accesses main

memory which—on architectures with virtual memory—exchanges data with

disk storage.

1.3 Dense Computational Kernels in Neural

Networks

Convolution neural networks have received significant attention over recent

years, as they are becoming one of the most popular models for many deep

learning tasks. They are widely deployed for deep learning tasks such as image

classification and segmentation, object detection, video processing, etc.

With CNN’s wide adoption in varying deep learning tasks, as well as the

ever-growing applications and scenarios, it also introduces new challenges and

problems for computation and system designs. For example, there is a growing
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need of running machine learning tasks on devices like smartphones, cars,

drones, etc. On such devices, the compute capability and memory capacity

available are often limited. This naturally limits the size of the deep neural

nets that can be placed on the system.

Carnegie MellonCarnegie Mellon

Convolution Layer

15

Output ImageInput ImageFilter

Convolution Layer

Convnet consists of a sequence of convolutional layers

Figure 1.1: The structure of a convolutional layer.

The computation of convolution layers in deep neural networks typi-

cally relies on high performance routines that trade space for time by using

additional memory (either for packing purposes or required as part of the algo-

rithm) to improve performance. The problems with such an approach are two-

fold. First, these routines incur additional memory overhead which reduces the

overall size of the network that can fit on embedded devices with limited mem-

ory capacity. Second, these high performance routines were not optimized for

performing convolution, which means that the performance obtained is usually

less than conventionally expected. In this chapter, we demonstrate that direct

convolution, when implemented correctly, eliminates all memory overhead, and

yields performance that is between 10% to 400% times better than existing

high performance implementations of convolution layers on conventional and
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embedded CPU architectures. We also show that a high performance direct

convolution exhibits better scaling performance, i.e. suffers less performance

drop, when increasing the number of threads.

1.4 Sparse Computational Kernels in Data

Analytics
Carnegie MellonCarnegie Mellon

Social network analytics Recommendation system Sparse CNN

Sparse Data

Figure 1.2: Sparse data is underlying many data analytics tasks such as social
network anlaytics, recommendation system, sparse machine learning models.

Sparse computations are at the core of machine learning and data sci-

ence applications. They has been employed in a broad range of tasks, such

as graph analytics [13]. neural networks compressing [14], genome sequenc-
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ing [15], recommendation systems [16]. The Sparse matrices in these problems

are usually represented and recorded using the indices of the nonzero. And

the percentage of non-zero elements in these applications can vary drastically,

ranging from 10−6% to 50% depending on the problem domain.

Sparse kernels are hard to attain high performance on modern proces-

sors. Unlike their counterpart in dense and regular applications, sparse appli-

cations have locally varying non-zero (NZ) patterns, leading to unpredictable

control flows and unbalanced workloads which are detrimental to performance.

In addition, sparse applications have irregular compute patterns that are in-

herently sequential, together with random and uncoalesced memory accesses.

These issues can result in low occupancy as well as low resource utilization on

modern processors.

On the other hand, there is a large number of different implementa-

tions and data structures for sparse problems. However, this is also a lack

of understanding of the optimization techniques for sparse problems. It still

remains an open question as to which algorithm or data structure best fits

sparse data. One reason for this is due to the vast problem domains and the

data characteristics (density, distribution) can vary drastically in different do-

mains. Additionally, there are a large number of different methods to process

and deal with sparse data, including different algorithms, parallelism schemes,

etc.

In this dissertation, we start with the observation that the complicated

sparse computations can be distilled into a primitive set of operators such as
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join, merge, and difference. To accelerate those operators on modern proces-

sors with data parallelism, we first propose a vectorization and code special-

ization approach that can eliminate the control divergences of these operators.

Next, we explore the design space for vectorization on CPUs with various vec-

tor width, based on which we present the code generation algorithm that takes

the data width and operations as input and generates various implementations.

We then demonstrate the acceleration of the General Sparse Matrix-Matrix

Multiplication (SpGEMM) on GPUs.

1.5 Thesis Overview

The goal of the thesis is to provide understandings and optimizations on the

computation kernels of the emerging ML tasks including neural networks, so-

cial networks, and data analytics applications. The computation kernels lay

the backbone of understanding the interplay between software optimizations

and hardware architecture, which is a fundamental step towards building a

portable and efficient end-to-end ML system.

In particular, this work is focusing on two sets of computational kernels:

the dense computational kernels in convolutional neural networks, and the

sparse kernels in data analysis tasks such as social networks. These kernels

are fundamental to a majority of machine learning tasks and have received

tremendous attention recently in both academia and industry.

The motivating ideas behind this thesis are: the optimization to achieve

high performance is a codesign between combinatorial factors such as algo-
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rithm, implementation, platforms, etc. By correctly modeling the platform

architectures, we are capable of deriving the ”right” implementation that can

achieve peak FLOPs on given platforms. Furthermore, different platforms can

also exhibit drastic differences that are beyond parameter levels. Under such

circumstances, we need to specialize in the implementations as well as algo-

rithm choices to adapt to hardware attributes. Therefore, we demonstrate how

an analytical model, together with code specialization, and learned dispatch

strategies can enable the high performance for these computational kernels on

modern hardware.

In Chapter 2, we demonstrate the optimization of the dense kernels in

machine learning using convolution neural networks as an example. We pro-

pose a model-based analysis to provide a systematic understanding of how the

software optimizations such as loop ordering, blocking, instruction schedul-

ing, should be applied based on the hardware architectures. The work in this

chapter was published in ICML 2018 [7].

In Chapter 3, we investigate the optimizations of sparse kernels. Sparse

kernels present a different set of challenges compared to dense computations.

We present the technique that can improve the data-parallelism of the ir-

regular computations of sparse kernels, as well as investigating the effects

of algorithm and data structure choices on the performances, using triangle

counting application as an example. The work in this chapter was published

in HPEC 2018 [17].

In Chapter 4, we investigate the vectorization and code specialization
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approach for set intersections on CPUs. This chapter took a step forward from

chapter 3 by focusing on intersections whose result sizes are much smaller

than the input sizes—this property has been observed in many real-world

intersection scenarios. In this chapter, we propose a specialized algorithm for

the small-size intersection problem. We demonstrate the specialized algorithm

has lower complexity than generalized intersection methods. Next we explore

the vectorization accelerations for the specialized intersection algorithm on

modern CPUs. We explore the design space for the fast vectorized intersection

on CPUs with various vector widths, based on which we present the code

generation algorithm that takes the data width and operations as input and

generates various implementations. The work in this chapter was published in

ICDE 2019 [18].

In Chapter 5, we investigate the optimization of Generalized-Sparse-

Matrix-Matrix-Multiplication (SpGEMM) on GPU. We demonstrate how to

break down the sparse matrix computation into a set of primitive opera-

tions of join and union. We further propose several optimizations for join-

based SpGEMM GPU implementations. We perform experimental and theo-

retic analysis on various implementations with both synthetic and real-world

datasets. Finally we propose an online scheduling algorithm that is trained

upon a neural network.

In Chapter 6, we present the concluding remarks and discuss possible

directions for future work.
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Accelerating Dense
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2.1 Overview

The computation of convolution layers in deep neural networks typically rely

on high performance routines that trade space for time by using additional

memory (either for packing purposes or required as part of the algorithm) to

improve performance. The problems with such an approach are two-fold. First,

these routines incur additional memory overhead which reduces the overall

size of the network that can fit on embedded devices with limited memory

capacity. Second, these high performance routines were not optimized for

performing convolution, which means that the performance obtained is usually

less than conventionally expected. In this chapter, we demonstrate that direct

convolution, when implemented correctly, eliminates all memory overhead, and

yields performance that is between 10% to 400% times better than existing

high performance implementations of convolution layers on conventional and

embedded CPU architectures. We also show that a high performance direct

convolution exhibits better scaling performance, i.e. suffers less performance

drop, when increasing the number of threads.
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Figure 2.1: High performance direct convolution implementation achieves
higher performance than a high performance matrix multiplication routine,
whereas matrix-multiplication based convolution implementations suffers from
packing overheads and is limited by the performance of the matrix multipli-
cation routine
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2.2 Introduction

Conventional wisdom suggests that computing convolution layers found in

deep neural nets via direct convolution is not efficient. As such, many existing

methods for computing convolution layers [19, 20] in deep neural networks

are based on highly optimized routines (e.g. matrix-matrix multiplication)

found in computational libraries such as the Basic Linear Algebra Subprograms

(BLAS) [8]. In order to utilize the matrix-matrix multiplication routine, these

frameworks reshape and selectively duplicate parts of the original input data

(collectively known as packing); thereby incurring additional memory space

for performance.

There are two problems with this approach: First, the additional work of

reshaping and duplicating elements of the input data is a bandwidth-bounded

operation that incurs an additional, and non-trivial time penalty on the overall

system performance. Second, and more importantly, matrices arising from

convolution layers often have dimensions that are dissimilar from matrices

arising from traditional high performance computing (HPC) application. As

such, the matrix-matrix multiplication routine typically does not achieve as

good a performance on convolution matrices as compared to HPC matrices.

To illustrate these drawbacks of existing methods, consider the 4-thread

performance attained on various convolution layers in AlexNet using an AMD

Piledriver architecture shown in Figure 2.1. In this plot, we present perfor-

mance of 1) a traditional matrix-multiply based convolution implementation

linked to OpenBLAS [21] (blue) and 2) our proposed high performance di-
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rect convolution implementation (yellow). Performance of both implementa-

tions are normalized to the performance of only the matrix-matrix multipli-

cation routine (dashed line). This dashed line is the performance attained by

matrix-matrix multiplication if packing is free. Notice that the performance

of OpenBLAS + Packing achieves less than 80% of the performance of ma-

trix multiplication itself. This implies that the packing routine degrades the

overall performance by more than 20%. In contrast, our custom direct convolu-

tion implementation yields performance that exceeds the expert-implemented

matrix-matrix multiplication routine, even if packing was free. In addition, we

attained the performance without any additional memory overhead.

It is timely to revisit how convolution layers are computed as machine

learning tasks based on deep neural networks are increasingly being placed

on edge devices [22, 23]. These devices are often limited in terms of compute

capability and memory capacity [24, 25]. This means that existing methods

that trade memory capacity for performance are no longer viable solutions

for these devices. Improving performance and reducing memory overheads

also bring about better energy efficiency [26]. While many work have focused

on reducing the memory footprint of the convolution layer through the ap-

proximation [27], quantilization[28], or sparsification of the weights [29], few

work tackle the additional memory requirements required in order to use high

performance routines.

Contributions. In this chapter, we make the following contributions:

• High performance direct convolution. We show that a high perfor-
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mance implementation of direct convolution can out-perform a expert-

implemented matrix-matrix multiplication based convolution in terms of

amount of actual performance, parallelism, and reduced memory over-

head. This demonstrates that that direct convolution is a viable means

of computing convolution layers.

• Data layouts for input/output feature maps and kernel weights. We pro-

posed new data layouts for storing the input, output and kernel weights

required for computing a convolution layer using our direct convolution

algorithm. The space required for these new data layouts is identical to

the existing data storage scheme for storing the input, output and kernel

weights prior to any packing or duplication of elements.
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2.3 Background

In this section, we highlight the inefficiency of computing convolution with

existing methods used in many deep learning frameworks.

Fast Fourier Transform-based Implementations

Fast Fourier Transform (FFT)-based implementations [30, 31] of convolution

were proposed as a means of reducing the number of floating point operations

that are performed when computing convolution in the frequency domain.

However, in order for the computation to proceed, the kernel weights have to

be padded to the size of the input image, incurring significantly more memory

than necessary, specially when the kernels themselves are small (e.g. 3× 3).

Alternative approaches have been proposed to subdivide the image into

smaller blocks or tiles [32]. However, such approaches also require additional

padding of the kernel weights to a convenient size (usually a power of two) in

order to attain performance. Even padding the kernel weights to small multi-

ples of the architecture register size (e.g. 8 or 16) will result in factors of 7 to

28 increase in memory requirement. This additional padding and transforming

the kernel to the frequency domain can be minimized by performing the FFT

on-the-fly as part of the computation of the convolution layer. This, however,

incurs significant performance overhead, especially on embedded devices, as

we will show in the performance section (Section 2.6).
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Matrix Multiplication-based Implementations

Another common approach is to cast the inputs (both the image and ker-

nel weights) into matrices and leverage the high performance matrix-matrix

multiplication routine found in the Level 3 Basic Linear Algebra Subprogram

(BLAS) [8] for computation. There are two major inefficiencies with this ap-

proach:

• Additional memory requirements. In order to cast the image into a ma-

trix, a lowering operation is performed to cast the three dimensional

image into a two dimensional matrix. Typically, this is performed via

an operation conventionally called im2col that copies the Wi ×Hi ×Ci

image into a (Hf ×Wf × Ci) × (Ho ×Wo) matrix which is then used

as an input to the matrix-matrix multiplication call. During this low-

ering process, appropriate elements are also duplicated. The additional

memory required grows quadratically with the problem size [20].

Cho and Brand [20] proposed an alternative lowering mechanism that is

more memory efficient by reducing the amount of duplication required

during the packing process. In their lowering routine, the memory foot-

print is reduced by an average factor of 3.2 times over im2col. This is

achieved by eliminating the amount of duplication required at the ex-

pense of additional matrix-matrix multiplication calls. Nonetheless, this

is still an additional memory requirement, and their computation still

relies on a matrix-matrix multiplication that is often sub-optimal for

matrices arising from convolution.
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Figure 2.2: The 5 × 5 input image with 3 different channels (denoted with
different colors) is convolved with two separate kernels to obtain a 3×3 output
with two output channels. Packing is performed to turn three dimensional
input images (left) into a two dimensional matrix (right) in order to utilize
a high performance matrix multiplication routine. As Co and/or (Ho ×Wo)
are often less than Hf × Wf × Ci, performance of standard matrix-matrix
multiplication in many BLAS libraries are often sub-optimal.

• Sub-optimal matrix matrix multiplication. In most BLAS libraries (e.g.

GotoBLAS [33], OpenBLAS [21], BLIS [34]), the matrix-matrix multipli-

cation routine achieves the best performance when the inner dimensions,

i.e. the dimension that is common between the two input matrices, of

the input matrices are small compared to the overall dimensions of the

output matrix. This particular set of matrix shapes is commonly found

in scientific and engineering codes, for which these libraries are opti-

mized. However, this particular set of shapes exercise only one out of

six possible algorithms for matrix-matrix multiplication [33].

Recall that the im2col reshapes the input into a (Hf ×Wf ×Ci)× (Ho×

Wo) matrix. This means that the inner dimensions of the input matrices

are often the larger of two dimensions (See Figure 2.2). As such, the per-

formance of matrix matrix multiplication on this particular set of input

shapes is often significantly below the best achievable performance. It
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has been shown that alternative algorithms for computing matrix mul-

tiplications should be pursued for shapes similar to that arising from

convolution layers [35].

Another reason that matrix-matrix multiplication is inefficient for con-

volution layers is that parallelism in existing BLAS libraries are obtained

by partitioning the rows and columns of the input matrices [36]. This

partitioning of the matrices skews the matrix shapes even farther away

from the shapes expected by the matrix-matrix multiplication routine.

As such, the efficiency of the routine suffers as the number of threads

increases.
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2.4 High Performance Direct Convolution

A naive implementation of direct convolution (See Algorithm 1) is essentially

six perfectly-nested loops around a multiply-and-accumulate computational

statement that computes a single output element. Any permutation of the

ordering of the loops will yield the correct result. However, in order to obtain

a high performance implementation of direct convolution, it is essential that

these loops and their order are appropriately mapped to the given architecture.

Algorithm 1: Naive Convolution Algorithm

Input: Input I, Kernel Weights F , stride s;
Output: Output O
for i = 1 to Ci do

for j = 1 to Co do
for k = 1 to Wo do

for ` = 1 to Ho do
for m = 1 to Wf do

for n = 1 to Hf do
Oj,k,`+= Ii,k×s+m,`×s+n ×Fi,j,m,n

2.4.1 Strategy for Mapping Loops to Architecture

Our strategy for mapping the loops to a model architecture is similar to the

analytical model for high performance matrix-matrix multiplication [37]. (1)

We first introduce the model architecture used by high performance matrix-

matrix multiplication. (2) Next, we identify loops that utilize the available

computational units efficiently. (3) Finally, we identify the order of the outer

loops in order to improve data reuse, which in turn will reduce the amount
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of performance-degrading stalls introduced into the computation. In this dis-

cussion, we use the index variables show in Algorithm 1 (i, j, k, `,m, n) to

differentiate between the loops.

Model architecture

We use the model architecture used the analytical model for high performance

matrix-multiplication [37]. The model architecture is assumed to have the

following features:

• Vector registers. We assume that our model architecture uses single

instruction multiple data (SIMD) instruction sets. This means that each

operation simultaneously performs its operation on Nvec scalar output

elements. We also make the assumption that Nvec is a power of two.

When Nvec is one, this implies that only scalar computations are avail-

able. In addition, a total of Nreg logical registers are addressable.

• FMA instructions. We assume the presence of Nfma units that can

compute fused multiply-add instructions (FMA). Each FMA instruction

computes a multiplication and an addition. Each of these Nfma units

can compute one FMA instruction every cycle (i.e., the units can be

fully pipelined), but each FMA instruction has a latency of Lfma cy-

cles. This means that Lfma cycles must pass since the issuance of the

FMA instruction before a subsequent dependent FMA instruction can

be issued.
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• Load/Store architecture. We assume that the architecture is a load-

/store architecture where data has to be loaded into registers before

operations can be performed on the loaded data. On architectures with

instructions that compute directly from memory, we assume that those

instructions are not used.

Loops to saturate computations

The maximum performance on our model architecture is attained when all

Nfma units are computing one FMA per cycle. However, because each FMA

instruction has a latency of Lfma cycles, this means that there must at least

be Lfma independent FMA instructions issued to each computational unit.

As each FMA instruction can compute Nvec output elements, this means that

E ≥ NvecNfmaLfma, (2.1)

where E is the minimum number of independent output elements that has to be

computed in each cycle in order to reach the maximum attainable performance.

Having determine that at least E output elements must be computed

in each cycle, the next step is to determine the arrangement of these output

elements within the overall output of the convolution layer. Notice that the

output has three dimensions (Ho×Wo×Co) where Ho and Wo are primarily a

function of the input sizes, while Co is a design parameter of the convolution

layer. Since E must be a multiple of Nvec, i.e. a power-of-two, and Co can be

chosen (and is the case in practice) to be a power-of-two, the j loop is chosen
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as the inner-most loop.

As the minimum number E is highly dependent on the number and

capability of the FMA computation units, we want to ensure that there are

sufficient output elements to completely saturate computation. As such, the

k loop that iterates over the elements in the same row of the output image is

chosen to be the loop around the j loop 1.

Loops to optimize data reuse

The subsequent loops are ordered to bring data to the computational units as

efficiently as possible.

Recall that the inner two loops (j and k) iterate over multiple output

elements to ensure that sufficient independent FMA operations can be per-

formed to avoid stalls in the computation units. As our model architecture is

a load/store architecture, this means that these output elements are already

in registers. Therefore, we want to bring in data that allows us to accumulate

into these output elements.

Recall that to compute a single output element, all Hf×Wf×Ci weights

are multiplied with the appropriate element from the input image and accumu-

lated into the output element. This naturally means that the next three loops

in sequence from the inner-most to outer-most are the i, n,m loops. This or-

der of the loops is determined based on the observation that the input of most

convolution layers is the output of another convolution layer. This means that

1It should be noted that the choice of Wo over Ho is arbitrary as the analysis is identical.
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Algorithm 2: Reorder Convolution Algorithm

Input: Input I, Kernel Weights F , stride s;
Output: Output O
for ` = 1 to Ho do

for n = 1 to Hf do
for m = 1 to Wf do

for i = 1 to Ci do
for k = 1 to Wo do

for j = 1 to Co do
Oj,k,`+= Ii,k×s+m,`×s+n ×Fi,j,m,n

it would be advisable if data from both the input and output are accessed in

the same order. As such, we want to access the input elements in the channels

(i) before rows (n), which gives us the i, n,m ordering of the loops.

Having decided on five of the original six loops, this means that outer-

most loop has to be the l loop. This loop traverses over the remaining through

different rows of the output. The original loop order as shown in Algorithm 1

(i, j, k, l,m, n) is transformed to the (l, n,m, i, k, j) loop ordering as shown in

Algorithm 2.

Blocking for the memory hierarchy

Register Blocking. The astute reader will recognize that we have conve-

niently ignored the fact that E , the number of minimum output elements

required to sustain peak performance, is upper bounded by the number of

registers as described by the following inequality:

E ≤ NregNvec. (2.2)
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This upper bound imposed by the number of available registers means that

at most NregNvec elements can be kept in the registers. This means that

instead of iterating over all Co ×Wo elements, loop blocking/tiling [38] with

block sizes of Co,b
2 and Wo,b has to be applied to the two inner-most loops to

avoid register-spilling that will degrade performance.

Applying loop blocking to the original j and k loops decomposes a row

from each of the output channel into smaller output images, each of which

having a row width and output channel of Wo,b, and Co,b respectively. Since

loop blocking decomposes the overall convolution into smaller convolutions,

the loop ordering previously described remains applicable. However, we now

need to determine how to traverse over the smaller convolutions.

The final algorithm applying loop blocking is shown in Algorithm 3.

The loops j′ and k′ iterate over the blocks in the channel and row dimensions

of the output, respectively. We make the observation accessing input elements

in the same row will require us to also access kernel weights in the same

row. This suggest that the ordering of the loop should be similar to the loops

traversing across the kernel weights. As such, the k′ loop is nested between `

and n loops. The j′ loop is set to be the outermost loop since it is a parallel

loop that facilitates parallelization.

Cache Blocking. On architecture with more levels in the memory

hierarchy, i.e. architectures with caches, we can further partition the input

dataset into smaller partitions such that they fit into the appropriate levels of

2Co,b is chosen to be a multiple of the vector length Nvec so that SIMD instructions can
be better used for computation.
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the cache. Recall that the loops around jj and kk accumulates Hf ×Wf ×Ci

intermediate results into the output stored in the register. Since Hf and Wf ,

i.e. the size of the kernel weights, are typically smaller than Ci, we choose to

partition the i loop which iterates over Ci input channels for the next level in

the memory hierarchy.

The final algorithm for high performance direct convolution is shown in

Algorithm 3.

Algorithm 3: Parallelized Direct Convolution Algorithm

Input: Input I, Kernel Weights F , stride s;
Output: Output O
for j′ = 1 to Co/Co,b in Parallel do

for i′ = 1 to Ci/Ci,b do
for ` = 1 to Ho do

for k′ = 1 to Wo/Wo,b do
for n = 1 to Hf do

for m = 1 to Wf do
for ii = 1 to Ci,b do

for kk = 1 to Wo,b do
for jj = 1 to Co,b do
Oj′Co,b+jj,k′Wo,b+kk,` +=
Ii′Ci,b+ii,sk′Wo,b+kk+m,`s+n ×
Fi′Ci,b+ii,j′×Co,b+jj,m,n

2.4.2 Parallelism

In order to identify possible parallel algorithms, we first make the observation

that all output elements can be computed in parallel. Since the output is a

three dimensional object (Ho ×Wo × Co), this means that parallelism can be

extracted in at least three different dimensions.
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Our direct convolution implementation extracts parallelism in the out-

put channel (Co) dimension. Each thread is assigned a block of output elements

to compute, where each block of output elements is of size Ho ×Wo × Co/p,

where p is the number of threads used.

2.5 Convolution-Friendly Data Layout

We proposed new data layouts for the input and kernel data so that data

is accessed in unit stride as much as possible. This improves data access

and avoids costly stalls when accessing data from lower levels of the memory

hierarchy. A key criteria in revising the layout is that the output and the input

image should have the same data layout. This is because the input of most

convolution layers is the output of another convolution layer. Keeping them

in the same data layout will avoid costly data reshape between convolution

layers. However, to ensure compatibility with original input images, we do not

impose the proposed layout on the inputs to the first convolution layer.

2.5.1 Input/Output Layout

We want to access the output data in unit stride. Therefore, we determine

the output data layout by considering how the elements are accessed using the

loop ordering shown in Algorithm 3. Data accessed in the inner loops should

be arranged closer together in memory than data accessed in the outer loops.

Five loops (j, k, `, kk, jj) iterate over the output data, which suggests
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a five-dimensional data layout. However, this is sub-optimal if we were to use

it for the input data. This is because Wf elements in an input row is required

to compute one output element. With the five-dimensional layout, a row of

the input is blocked into blocks of Wo,b elements. This means that output

elements that require input elements from two separate Wo,b blocks will incur

a large penalty as these input elements are separated over a large distance in

memory. As such we do not layout the data according to the kk loop.

The proposed input/output layout is shown in Figure 2.3 (left). The

output data is organized into sequential blocks of Ho ×Wo × Co,b, where in

each block, elements are first laid out in the channel dimension, before being

organized into a Ho ×Wo row-major-order matrix of pencils of length Co,b.

2.5.2 Kernel Layout

Similar to the input/output layout, we use the loop ordering to determine how

to order the kernel weights into sequential memory. Notice that the `, k′, kk

loops in Algorithm 3 iterates over the height and width of the output in a

single output channel. As all output elements in the same output channel

share the same kernel weights, these loops provide no information as to how

the kernel weights should be stored. As such, we only consider the remaining

six loops.

The kernel layout proposed by the remaining six loops is shown in Fig-

ure 2.3 (right). The fastest dimension in the kernel layout is the blocked

output channel (Co,b) dimension, and is dictated by the inner-most loop. The
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Figure 2.3: Convolution-friendly layout for input/output (left) and kernel
weights (right). The output data is organized into sequential blocks of
Ho × Wo × Co,b, where in each block, the fastest dimension is in the chan-
nel dimension, followed by the column and row dimension of the output. The
kernel weights are organized into blocks of Ho×Wo×Co,b×Ci,b. The fastest di-
mension is the blocked output channel, followed by the blocked input channels,
kernel width and height, input channels and then the output channels.

remaining dimensions from fastest to slowest are the blocked input channel

(Ci,b), followed by the columns (Wf ) and rows (Hf ) of the kernel, the input

channels (Ci/Ci,b) and finally the output channels (Co/Co,b).

2.5.3 Backward Compatibility

Given the successful deployment of convolution neural nets (CNN)in the field,

the proposed change in data layout will mean that trained networks are un-

able to directly benefit from our proposed direct convolution implementation.

However, in order for a trained network to use our proposed algorithm, there

is only a one-time cost of rearranging the kernel weights into the proposed

data layout. Other network layers such as skip layers [39], and activation lay-

ers are point-wise operations that should not require any significant change in
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the implementation. Nonetheless, reordering the loops used to compute these

layers will likely yield better performance.
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Table 2.1: Details of specific architecture used

Intel AMD ARM
i7-4770K FX(tm)-8350 Cortex-A57

Arechitecture Haswell Piledriver ARMv8
Frequency 3.5GHz 4GHz 1.1GHz
Cores 4 4 2
Nvec 8 8 4

2.6 Experiments

In this section, we present performance results of our direct CNN implemen-

tation against existing convolution approaches on a variety of architecture. A

mix of traditional CPU architectures (Intel and AMD) and embedded proces-

sor (ARM) found on embedded devices are chosen.

2.6.1 Experimental Setup

Platform We run our experiments on Intel Core i7-4770K, AMD FX(tm)-

8350, ARM Cortex-A57 architectures. The architecture details of those plat-

forms are shown in Table 2.1.

Software. We implement our direct convolution using techniques from

the HPC community [40]. We compare performance our direct convolution im-

plementation against matrix-multiplication based convolution linked to high

performance BLAS libraries. For matrix-multiplication based convolution, the

input data is first packed into the appropriate matrix using Caffe’s im2col rou-

tine before a high performance single-precision matrix-multiplication (SGEMM)
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routine is called. The SGEMM routine used is dependent on the architecture.

On Intel architecture, we linked to Intel’s Math Kernel Library (MKL) [41],

while OpenBLAS [21] is used on the other two architectures. We also pro-

vide comparison against the FFT-based convolution implementation provided

by NNPACK [32], a software library that underlies the FFT-based convolu-

tions in Caffe 2 [42]. As NNPACK provides multiple FFT-based (inclusive

of Winograd) implementations, we only report performance attained by the

best (fastest) implementation. We use the benchmark program supplied by

NNPACK to perform our tests.

Benchmarks. All implementations were ran against all convolution

layers found in AlexNet [43], GoogLeNet [44] and VGG [45]. The different

convolution layers in these three CNNs span a wide range of sizes of input,

output and kernel weights. They are also commonly used as benchmarks for

demonstrating the performance of convolution implementations.

2.6.2 Performance

The relative performance of the different implementations normalized to the

SGEMM+ packing method are shown in Figure 2.4. Our direct convolution im-

plementations out-performs all SGEMM-based convolutions on all architectures

by at least 10% and up to 400%. Our direct convolution out-performs SGEMM

even when the BLAS library (MKL) optimizes for the appropriate matrix

shapes arising from convolution. Against a BLAS library (OpenBLAS) that

only optimizes for HPC matrices, we see a minimum of 1.5 times performance
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gain on 4 threads.

In comparison with the FFT-based implementations provided by

NNPack, the direct convolution implementation significantly out-performs

FFT-based implementations for all layers on the ARM. As FFTs are known to

be memory-bandwidth bound, we suspect that the FFT may be the bottleneck

on a smaller architecture such as the ARM where available bandwidth may be

limited. On the Intel architecture, the results are similar with direct convo-

lution outperforming FFT-based implementations. However, in this case the

FFT-based implementations are able to out-peform the SGEMM-based approach

only when the dataset is “sufficiently large” to amortize the cost of performing

the FFT itself. The AMD architecture is not supported by NNPACK.

2.6.3 Parallel Performance

In Figure 2.5, we compare the scalability of our convolution performance by

parallelizing the implementation with increasing number of threads. On all ar-

chitecture, we report performance per core for multi-threaded implementations

normalized to the performance attained on one thread. Notice that the perfor-

mance per core for existing matrix-multiplication based convolutions decrease

significantly as we increase the number of threads. This is an indication that

as we increase the number of threads, the processors are utilized less efficiently

by the existing matrix-multiplication based implementations. Our direct CNN

implementation demonstrates minimal drop in performance per core as we in-

crease the number of threads. It is only when the number of threads is twice
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as much as the number of physical cores does the performance per core of

our implementation drops significantly. This is expected and important as it

indicates that our implementation utilizes the compute units effectively and

increasing the number of threads beyond the number of physical compute units

creates excessive contention for the compute resources, thereby resulting in a

sharp drop in performance per core.

2.7 Chapter Summary

In this chapter, we demonstrate that direct convolution, a computational tech-

nique largely ignored for computing convolution layers, is competitive with

existing state of the art convolution layer computation. We show that a high

performance direct convolution implementation not only eliminates all addi-

tional memory overhead, but also attains higher performance than the expert-

implemented matrix-matrix-multiplication based convolution. We also show

that our implementation scales to larger number of processors without degra-

dation in performance as our implementation exploits the dimension of the

kernel that has the highest amount of parallelism. In contrast, current high

performance matrix-multiply based implementations do not scale as well to a

larger number of processors.

Our direct convolution implementation currently attains 87.5%, 58.2%

and 88.9% of the theoretical peak of the Intel, AMD, and ARM architecture,

where as the SGEMM on HPC matrices attains peaks of 89% 54% and 92% the

same architecture. While we have shown that our direct convolution imple-
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mentation is competitive (within 3% of peak SGEMM performance), we believe

that the performance gap between our direct convolution, and SGEMM on HPC

matrices can be closed by taking an auto-tuning [46, 12] or analytical ap-

proach [47, 37] to identifying the blocking parameters of the different loops.

These approaches will also allow the exploration of different combinations of

parallelism to determine suitable parallelism strategies. This is something we

intend to pursue in the near future.

Another possible direction arising from this work is to use similar design

techniques to optimize the backward process to update both in image and

kernel. Given the similarity of the forward and backward process, we believe

that only minor changes to the loop ordering are required.

Finally, we believe that our direct convolution algorithm can be ported

to the GPU. Our proposed data layouts are similar to the layout required for

the StridedBatchedGemm operation [48]. As this operation and data layout is

currently supported on Nvidia GPUs using cuBLAS 8.0 [49], this lends support

to our belief that our algorithm can be easily ported to the GPU.
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Sparse computations are important kernels used in many artificial intel-

ligence and machine learning applications. For example, many social analytics

tasks such as anomaly detection, community classification are built upon graph

methods, and graph computations can be described from the perspectives of

sparse matrix computations. Graph-convolutional-neural-networks (GNN) is

an emerging machine learning models used in tasks such as learning molecular

fingerprints, predicting protein interface. GNN works with graph structure

data and such data is also an example of sparse matrix format. Sparse neural

networks is another sparse application that has attracted tremendous atten-

tion in the machine learning tasks. Sparse neural networks can greatly reduce

the model size of the original dense neural networks by pruning a large fraction

of the connecting edges. As a result, the deep neural network models can fit

into small systems or devices.

Sparse kernels are challenging to optimize compared to dense kernels

due to their notorious irregular patterns of computations. In this chapter,

we are going to demonstrate that many sparse computations are built upon

set primitives such as intersections. And next we present strategies that can

leverage the data parallelism in modern systems to accelerate those operations

that were originally irregular and difficult to parallel.

46



3.1 Expressing Computation Kernels in

Sparse Applications

Sparse kernels for graph applications Matrix algebra has been a useful

tool in graph theory as an alternative way to formulate graph algorithms [50].

As a matter of fact, the graph representation as collections of vertices as well

as matrices are considered interchangeable formats and equally important in

the decades of graph theory research. Researchers have leveraged the duality

between graph and matrix representation and proposed the standard for im-

plementing graph libraries [51, 52]. The NIST Sparse Basic Linear Algebra

Subprograms (BLAS) was one of the first standard for sparse problems which

adopts similar standards of dense linear algebra subroutines (BLAS) [53]. It

classifies the sparse operation into three levels — Sparse Vector (Level 1), Ma-

trix Vector (Level 2), and Matrix Matrix (Level 3) operations. These BLAS

were designed for solving the kinds of sparse linear algebra operations that

arise in finite element simulation techniques. More recently, researchers extend

such sparse algebra standards to represent more general graph algorithms —

GraphBLAS. In particular, GraphBLAS extend the BLAS idea to address the

needs of graph algorithms by generalizing the pair of operations involved in

the computations to the notation of semiring. semiring refers to certain ⊕and

⊗ combinations over certain sets of scalars. Some common Semiring examples

include:

• standard arithmetics, where
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⊗ = ×, ⊕ = +, and A,B,C ∈ R

• max-plus semiring, where

⊗ = max, ⊕ = +, and A,B,C ∈ −∞∪R

• max-min semiring, where

⊗ = max, ⊕ = min, A,B,C ∈ ∞∪R≤0

With this more general case of sparse matrix multiply, a wide range of graphs

algorithms can be implemented. We will discuss this in more detail in sec-

tion 3.2.

Sparse kernels for neural networks The primary mathematical operation

performed by a DNN network can be captured using the sparse matrix operator

as well [54]. In particular, the inference process in a deep neural network is a

step executed repeatedly during training to determine both the weight matrices

Wk and the bias vectors bk of the neural network. The inference computes the

following equation:

yk+1 = h(Wkyk + bk) (3.1)

where h is a non-linear function applied to each element of the vector. An

example of h function is the rectified linear unit (ReLU) given by h(y) =

max(y, 0) which sets values less than 0 and leaves other values unchanged.

When training a DNN, it is common to compute multiple yk vectors at once,

which can be denoted as the matrix Yk. In matrix form, the inference step

becomes Yk+1 = h(WkYk + Bk). Therefore, the inference computation can be
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rewritten as a linear function over semirings Yk+1 = WkYk ⊗ Bk ⊕ 0, where

⊕ = max and ⊗ = +.

3.2 Accelerating Sparse Computation: A

Case Study with Triangle Counting

In this section, we use triangle counting task as an example to investigate the

computational kernels in graph applications. In the next section, we will focus

on the acceleration of the sparse computational kernels.

3.2.1 Introduction

As triangle counting is becoming a widely-used building block for a large

amount of graph analytics applications, there is a growing need to make it

run fast and scalable on large parallel systems. In this section we conduct a

preliminary exploration on the optimizations of triangle counting algorithms

on shared-memory system with large dataset.

Graph analytics is becoming increasingly important in a growing num-

ber of domains and there is a need to build fast and scalable systems for graph

analytics. Nowadays, there is a growing trend for the design of graph analyt-

ics engines for shared-memory systems [4, 5, 6]. Shared-memory system has

lower communication costs and lower data access latency. This can potentially

lead to better performance compared with distributed memory systems. On

top of that, a state-of-art high-end multi-core machine can integrate hundreds
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of cores, and terabytes of memory [55]. This further enables shared memory

systems to process large-scale datasets in memory.

In this section, we explore one of the basic applications in graph ana-

lytics: triangle counting. Triangle counting is one of the frequently computed

building block operation in graph analytics, therefore it is important to make

it run fast and scalable to large systems. There are rich amount of graph

frameworks that can target a general set of graph applications. Those frame-

works have different frontend designs[2, 3, 4, 5, 6, 7]. For example, [2] is based

on vertex-iterator programming model where a utility function is supplied and

executed on each vertex, [3] uses linear algebra language as primitives. And

others are based on domain-specific languages, etc. However, those graph

framework’s target are the broad set of graph applications, their backend op-

timizations may be too general to be effective for triangle countings.

In this section, we plan to study the optimizations specific for triangle

counting on the shared-memory systems. There are different algorithms for

triangle counting. And for these algorithms, one could have different imple-

mentations, including a variety of hashing and merging tweaks. In order to

get optimal performance for triangle counting, it is essential to consider sys-

tem characteristics, as well as input graph’s properties to find the effective

optimization method. This chapter conducts a preliminary explorations on

whether such optimizations can be effective for large-scale triangle counting on

shared-memory multi-core systems. The structure of the chapter is as follows:

the discussion of the triangle counting algorithm is presented in section 3.2.2.
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Then the baseline parallel implementation is given in section 3.2.3. Section

3.2.4 discusses a variety of optimization techniques and analyzes whether they

can be effective in practice. The performance results are presented in sec-

tion 3.2.7.

3.2.2 Algorithm

The straight-forward algorithm for triangle counting using the linear algebra

language can be illustrated as [56, 57]:

A2 ◦ A (3.2)

where A is the adjacency matrix of the input graph. The square of A gives all

the wedges (connected two edges) and the element-wise multiplication with A

closes the wedge and forms a triangle. Afterwards, the algorithm sums over

each element in the resultant matrix. However, in this algorithm each triangle

will be counted repetitively for six times. An improvement to reduce the

double counting in the baseline algorithm can use half the adjacency matrix.

In this way, each triangle will only be counted once.

There is an algorithm that can further reduce the triangle counting

complexity. The compact-forward algorithm in [58] can outperform the above

two baseline algorithms by greatly reducing the number of false positives. The

algorithm consists of two steps. The first step is direction assignment: it

assigns a direction to each undirected edge such that the edge points from the
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low-degree vertex to the high-degree vertex. Then the second step counts the

number of triangles based on the directed graph. There are two benefits of

introducing a direction to the edge: First of all, it can avoid double counting.

Second, it reduces the (out-)degree of nodes, especially those with high degrees.

As the counting has the quadratic complexity to the vertex’s (out-)degree and

the high (out-)degree vertex dominates the computation among all the vertices,

this can greatly reduce the complexity.

3.2.3 Parallel Triangle Counting

The most time consuming part of the compact forward algorithm is the second

step—counting triangles from the directed graph. The peudocode for this step

is shown in Algorithm 4. In this step, the algorithm iterates every vertex (v),

and for each one of its (directed) neighbors u, sums up the number of common

neighbors. We first run a baseline parallel triangle counting algorithm on the

shared memory systems. The baseline implementation is based on [59]. The

implementation simply parallelizes the loop among vertex v (line 2) and the

subsequent loop among the neighborhood of v (line 3).

Algorithm 4: count triangles in directed graph

Input: directed graph G
Output: count: number of triangles

1 count← 0
2 for v ∈ G.vertices do
3 for u ∈ v.neighbors do
4 count+ =common neighbors of u and v

5 return count
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In terms of the counting phase in line 4, the implementation has ex-

plored two basic ways to implement counting — hashing-based method and

sort-merge based method. The author finds the sort-merge based implemen-

tation is faster than the hash-based method.

3.2.4 Preliminary Exploration on Optimizations

Counting the common elements of two vertex’s neighbor list is the most time

consuming computation. In this section, we will mostly focus on the optimiza-

tions for the counting phase in line 5. Counting the common elements of two

neighbor lists is essentially founding out the intersecting elements between two

sets. Therefore optimizations explored previously in set-intersection problems

may be applied here.

Algorithm 5: count common elements in two sorted lists

1 i← 0, j ← 0, counts← 0
2 while i < A.size AND j < B.size do
3 if A[i] < B[j] then
4 i++

5 else
6 if A[i] > B[j] then
7 j++

8 else
9 i++, j++, count++

10 return count

Hashing One technique to optimize the set intersection operation is to use

hashing. The hashing method maps each vertex’s neighborhood into a corre-
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sponding hash table. To count the common elements in two vertex’s neigh-

borhood, we can iterate through the elements in the smaller neighborhood list

and probes into the hash table of the bigger neighborhood. The cost of the

hashing based set intersection method is min(n1, n2), where n1 is the size of

small list and n2 is the size of the large list.

Merging is another technique to count the common elements in two lists.

It first sorts each vertex’s neighborhood list in increasing order and counts the

common elements of two sorted list by linear scan through them. The baseline

code to count the intersection of two sorted lists via merging method is shown

in Algorithm 5. The cost for the merging based set intersection is max(n1, n2).

Exploiting binary search to accelerate merging When the two list size

is quite different, we can binary search the smaller list in the large one. The

cost of the counting phase can be reduced to n1log(n2).

Exploiting SIMD to accelerate merging There has been plenty of work

exploring how to utilize the SIMD unit to accelerate set intersection compu-

tation [60, 61, 62]. We implemented a baseline SIMD algorithm based on [62].

Assume the system SIMD width is four-elements, the SIMD intersection algo-

rithm is illustrated with an example in Figure. 3.1. In this example, during

the first iteration the first four-element of list A and B will be compared (the

instructions used will be explained subsequently). Based on comparison of the

tail elements (i.e. the 4th element), one of the pointers is decided to move.
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Figure 3.1: SIMD algorithm assuming simd width is 4 elements.

In the example case, pointer of the list B will advance to the next 4-element

block because its 4th element is smaller than list A. In second iteration, the

first four elements of A are compared with the second 4-element block of B

and finally the second 4-element blocks of A and B are compared.

On CPUs with AVX instruction set architecture, the algorithm exem-

plified in Fig. 3.1 can be implemented using mm cmpeq and mm shuffle

intrinsics. mm cmpeq can compare multiple elements at once and produce

a resulting bit mask. In order to conduct all-to-all comparisons between A

and B, only one mm cmpeq is not enough — the SIMD block of B needs

to left-shift using mm shuffle intrinsics and then compare with A again till

the right-most element in B’s element block is compared with the left-most

element of A. The process is illustrated in Fig. 3.2.
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Figure 3.2: SIMD algorithm illusion.

hybrid hashing and merging A hybrid method represents a node’s neigh-

borhood with a hybrid structure between sparse list and hash table. The

hybrid method partitions the data range into fix-sized (K) blocks. Each block

is indexed by its base value and has an associated bit-vector of length K. Each

bit of the bit-vector indicates the existence of an element on that position. For

example, given a list {0, 1, 4, 52, 102, 493, 534} and K as 64, the list can

be compressed as {0, 64, 448, 512}. We can see the size of the list reduces

from 8 to 4. In this way, the number of comparisons can be reduced subse-

quently. To count the common elements in the compressed block list, it firstly

scan through the block lists to find blocks with common base values via the

merge-sort methods and then count the common elements in the two blocks

by comparing the two corresponding indicator vectors.

3.2.5 Profiling and Analysis

Whether the above algorithms will work largely depends on the property of

the dataset. In this section, we start with the profiling results of some rep-

resentative graphs datasets in order to exam the effectiveness of the above
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techniques.

Cit-Patents. This dataset has 3,774,768 vertices and 16,518,947 edges.

The original maximum degree 793. The maximum degree after sorting is 73.

The degree distribution is shown in Fig. 3.3. We can see that after direction

assignment, the out-degree distribution still follows a power-law distribution.

Majority of vertices has small out-degree.

Friendster. This dataset has 65,608,366 vertices and 1,806,067,135

edges. The original maximum degree among all the nodes is 5214. The max-

imum out-degree in the directed graph is 2389. And their distribution is in

Fig. 3.4.

Graph500-scale23. This dataset has 4,606,314 vertices and 129,250,705

edges. The original maximum degree 272176. The maximum degree after

sorting is 1376. The degree distribution is shown in Fig. 3.5.

We highlight the following observations based on the profilings:

Observation 1. In the directed graph, the number of nodes with high

out-degrees is small. However, intersections between those high out-degree

nodes’ neighbor list dominates the total run-time. And this is not difficult

to verify. If we assume that after reordering the rows from highest degree to

lowest degree in the adjacent matrix of the graph, the number of non-zero

element(nnz, equivalently out-degree) follows a power-law distribution over

the rows, then the comparing cost per row will also be skewed and resemble a

power-law distribution. As plotted out in Figure 3.6, we can see that if the nnz

element follows a power-law distribution of x−1, then in all the two list(a.k.a.
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Figure 3.3: Degree distribution of cit-Patents.
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Figure 3.4: Degree distribution of friendster.
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Figure 3.5: Degree distribution of graph500-scale23.
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rows) comparisons, the top 40% rows takes 50% of the total comparison cost.

If the nnz element distribution is x−2, then the top 10% rows will take up over

50% of the total comparison cost. In general, more skewed the nnz element

distribution is in the graph’s adjacent matrix, the more skewed the computa-

tion cost will be towards the dense part of the matrix. Figure 3.7 shows the

real time and computation cost distribution on some given datasets. Consis-

tent with the theoretical results, the computation cost is also mostly centered

among the beginning rows with larger out degrees.

Observation 2. The density of the high-degree nodes’ neighbor lists

is still very sparse. Each node’s neighbor list is a sequence of numbers whose

value lies in the range from 0 to N − 1. We introduce the metric Density to

measure the sparsity of a vertex’s neighborhood vector. Density is the number

of elements divided by their maximum value. The smaller the density, the

sparser the neighborhood list is. Knowing the density is helpful to determine

the hashing parameters as for a sparser neighborhood list, it may require a

larger hash table. In the directed graph, usually the vertices with higher degree

have higher density. For the scale23 graph, the highest density neighborhood

is around 0.763. The top 10% high out-degree vertex has density between

0.1 − 0.7. For the friendster graph, the highest density 0.01. The top 10

percent high out-degree vertex has density between 0.001− 0.01. We can see

that as a graph scales, the density of the vertex’s neighbor can be sparser.
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Figure 3.6: Theoretical computation distribution and non-zero element distri-
bution on graphs with different skewness.
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Figure 3.7: Number of Non-zero element distribution and computation time
distribution across rows.
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3.2.6 Understanding the Optimizations

Hashing Using hashing method, we didn’t see any improvement on the

speed. Although the complexity of hashing method is min(n1, n2). However,

this is most effective when there is at least an order of magnitude difference

between nA and nB (i.e, max(n1, n1) � min(n1, n2)). But profilng shows

that the comparison cases where max(n1, n2) > 10 ∗min(n1, n2) only makes

up a small part in all the two-pair list comparisons, according to our obser-

vation 1. In other words, majority of time is spent to compare lists n1 ≈ n2

and both n1 and n2 are large. Therefore, hashing technique that is helpful

to accelerate a dense list versus a sparse list is unable to observe performance

improvement.

Exploiting binary search to accelerate merging Similar to the hash-

ing method, the binary search method does not accelerate the computation,

because the binary search also requires the size of two sorted lists to be very

different in order to have observable speedup.

Exploiting SIMD to accelerate merging This method can be applied

regardless of the relative size of the two lists. Therefore, it can be effective to

accelerate the CountCommon process of two big lists. And we will show the

results in the next section.

Hybrid hashing and merging Whether the Hybrid hashing and merging

can be effective highly depends on the density of the neighbor list: whether
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the list has elements condensed together that can be compressed. Otherwise

the size reduction in the compressed block list is not sufficient. We studied

the Friendster dataset and the result suggests the original neighbor list is not

friendly for such compressing. As shown in Table 3.1, the base list size after

256bit compression only reduces from 1,806,067,135 elements to 1,690,408,139

elements (about 7% reduction). Moreover, the comparison operation then

becomes more expensive when there is a match in the base value. One needs

very delicate design in order to draw benefits from such methods.

Table 3.1: Compression savings on Friendster dataset. Its original edge list
size is 1,806,067,135.

64bit 128bit 256bit

Cmpr. list size 1,723,833,467 1,711,082,186 1,690,408,139
Cmpr. Saving 5% 6% 7%

3.2.7 Performance Results

Hardware. The systems used in our experiments were supported by Pitts-

burgh Supercomputing Center [55, 63, 64]. The experiment was tested on

three types of hardware settings:

• Single Core: A single core out of the small multicore system, used to

study the scalar performance.

• Small multi-core: A small multicore system which has two Intel Haswell

(E5-2695 v3) CPUs(sockets) and each CPU has 14 cores.
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• Large multi-core:A large shared-memory multicore system from HPE In-

tegrity Superdome X. It has 16 Intel Xeon E7-8880 v4 CPUs(sockets)

with 22 cores per CPU socket, 55MB Last Level Cache.

Results. We present the performance results on the above three systems in

Table 3.2-3.4.

Single Core: Table 3.2 shows the speedup of our SIMD-based set inter-

section over a scalar implementation on a single core (Intel Haswell (E5-2695

v3)) using the small dataset. We can see that SIMD can bring about 1.2x to

over 3x times speedups over scalar implementation.

Small multi-core: Table 3.3 shows the SIMD speedup on the small mul-

ticore system with media-size dataset. Similar to single-core performance, the

result shows that our SIMD implementation is about 1.4x to 3.6x speedup on

this multicore system.

Large multi-core: Table 3.4 shows the performance on the large shared-

memory multicore system with large dataset. Those large datasets are gener-

ated using the kronecker graph generator [65]. The kron35 dataset runs over

2-days and unfinished by the given submission time frame. We are unable give

the execution time. We estimate the time will be between 60 hours to 100

hours.

Performance comparison with distributed system. Last year graph

challenge champion Pearce, et al. [66] presented their triangle counting per-

formance on distributed systems. They used up to 256 nodes where each node
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has 24 cores. Their total number of cores is higher than ours. Therefore their

overall execution time is shorter. When it comes to performance per-core. The

triangle processed per second per core they achieved is 1.9MTPS at highest

(for WDC dataset, they counted 9.65T triangles in 808.7s on 256 node where

each node has 24 cores). Our implementation can get 3.1MTPS per core.

Table 3.2: Single-core performance scalar vs. SIMD

Dataset V E T Scalar
time(s)

SIMD
time(s)

SIMD
speedup

cit-HepTh 27,770 352,285 1,478,735 0.08 0.03 1.22
cit-Patents 3,774,768 16.518,947 7,515,023 1.23 1.01 2.66
flickrEdges 105,938 2,316,948 107,987,357 1.57 0.569 2.76
graph500-scale18 174,147 3,800,348 82,287,285 3.35 1.17 2.86
graph500-scale19 335,318 7,729,675 186,288,972 8.51 2.84 3.01
graph500-scale20 645,820 15,680,861 419,349,784 21.9 7.29 3.00
graph500-scale21 1,243,072 31,731,650 935,100,883 55.6 19.8 2.80
graph500-scale22 2,393,285 64,097,004 2,067,392,370 142 52.9 2.68

Table 3.3: Small 28-core system performance

Dataset V E T Scalar
time(s)

SIMD
time(s)

SIMD
speedup

Friendster 65,608,366 1,806,067,135 4,173,724,142 96.7 67.1 1.44
graph500-scale23 4,606,314 129,250,705 4,549,133,002 63 17.7 3.56
graph500-scale25 17,043,780 523,467,448 21,575,375,802 259 72 3.60
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Table 3.4: Performance on a HP Superdome X system with 16 sockets, 352
cores

Dataset V E T Time(s)
Triangles/
(sec*core)

kron26 68,175,120 6,281,609,376 222,966,186,844 202 3.1M
kron31 1,090,801,920 33,501,916,672 1,380,824,051,328 2572 1.5M
kron35 1,380,546,180 1,256,845,342,648 >50h
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4.1 Abstract

Set intersection is an important operation and widely used in both database

and graph analytics applications. However, existing state-of-the-art set in-

tersection methods only consider the size of input sets and fail to optimize

for the case in which the intersection size is small. In real-world scenarios,
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the size of most intersections is usually orders of magnitude smaller than the

size of the input sets, e.g., keyword search in databases and common neighbor

search in graph analytics. In this chapter, we present FESIA, a new set inter-

section approach on modern CPUs. The time complexity of our approach is

O(n/
√
w+r), in which w is the SIMD width, and n and r are the size of input

sets and intersection size, respectively. The key idea behind FESIA is that it

first uses bitmaps to filter out unmatched elements from the input sets, and

then selects suitable specialized kernels (i.e., small function blocks) at runtime

to compute the final intersection on each pair of bitmap segments. In addition,

all data structures in FESIA are designed to take advantage of SIMD instruc-

tions provided by vector ISAs with various SIMD widths, including SSE, AVX,

and the latest AVX512. Our experiments on both real-world and synthetic

datasets show that our intersection method achieves more than an order of

magnitude better performance than conventional scalar implementations, and

up to 4x better performance than state-of-the-art SIMD implementations.

4.2 Introduction

Set intersection selects the common elements appearing in all input sets, which

is a fundamental operation in database applications. For example, given a

search query with multiple keywords, a list of documents containing all input

keywords can be computed through a set intersection [71]. In addition, set

intersection is becoming a critical building block for a wide range of new ap-

plications in graph analytics, such as triangle counting [72, 73], neighborhood
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Table 4.1: The summary of our approach vs. state-of-the-art set intersection
approaches.

Methods FESIA BMiss[67] Galloping[68] Hiera[69] Fast[70]

Complexity n/
√
w + r n1 + n2 n1 log n2 n1 + n2 n/

√
w + r

Small Intersect X X X
SIMD X X X X

Multicore X
n1 � n2 min(n1, n2) n1 + n2 n1 log n2 n1 + n2 n/

√
w + r

k-way
intersection

kn/
√
w + r n1 · · ·+ nk

n1(log n2+
· · ·+ log nk)

n1 · · ·+ nk n/
√
w + kr

Portable X X

discovery [74], subgraph isomorphism [75], and community detection [76, 77].

For example, the common friends of two people on social networks can be

computed through a set intersection as well.

Recent work focusing on accelerating set intersection operations in

database systems [67, 69, 68] proposed the use of merge-based approaches,

in which the runtime cost usually only depends on the size of the input sets.

However, in real-world scenarios, the intersection size is usually dramatically

smaller than the sizes of the input sets. For example, 90% of the intersections

resulting from search queries in Bing is an order of magnitude smaller than

the size of the input sets, and the intersection size of 76% of the queries is

even two orders of magnitude smaller than the input [70]. A similar result

is also observed in graph analytics [78], in which the size of over 90% of the

intersections is smaller than 30% of their input size.

In this chapter, we propose FESIA, a fast and efficient set intersection

algorithm targeting at modern CPU architectures. Our key insight is that a
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large number of comparisons required by existing merge-based set intersection

approaches are redundant. These redundancies result in significant overheads

especially when the intersection size is small. To this end, FESIA accelerates

set intersections by avoiding these redundant and unnecessary comparisons.

Specifically, we take a two-step approach: it builds an auxiliary bitmap data

structure for pruning unnecessary comparisons in the first step. Since the

earlier pruning may leave some false positive matches, our approach further

compares these elements to produce the final intersection in the second step.

Prior work [70] focusing on new data structures for set intersection

achieves lower time complexity but does not take advantage of SIMD instruc-

tions available on modern processors. In contrast, other work [67, 69, 68]

focusing on vectorizing set intersections with SIMD instructions has higher

time complexity. FESIA is the first approach that considers both aspects at

the same time. It achieves fast and efficient set intersections for two reasons:

firstly, the new segmented-bitmap data structure and the course-grained fil-

tering step can make the complexity depend on the intersection size instead

of the size of input sets. In summary, the time complexity of our approach is

O(n/
√
w + r) as in [70], in which w indicates the SIMD width, and n and r

indicate the size of the input set and the intersection size. Secondly, the data

structure and intersection algorithm are designed with SIMD in mind, allow-

ing our approach to exploit more data parallelism and be portable to different

SIMD widths. This includes an efficient design of the course-grained filtering

implementation with the bitwise operations, combined with our specialized
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SIMD intersection functions for small input sizes, which are more efficient

than existing vectorization methods [79, 67].

In summary, this chapter makes the following major contributions:

• We present FESIA, a fast and efficient set intersection approach target-

ing modern CPUs, which leverages the SIMD instructions and achieves

better complexity simultaneously.

• We introduce a coarse-grain pruning approach which can be efficiently

implemented with the bitwise SIMD operations.

• We design a code specialization mechanism to reduce the cost of fine-

grained intersections required after the initial coarse-grained pruning

step.

• We describe an implementation of FESIA for two different Intel platforms

with SSE, AVX, and AVX512 instructions.

• Our experiments on both real-world and synthetic datasets show that

our intersection method achieves more than a order of magnitude better

performance than conventional scalar implementations, and up to 4x

better performance than state-of-the-art SIMD implementations.

4.3 Background and Related Work

In this section, we describe conventional scalar set intersection approaches and

introduce how SIMD instructions are used to accelerate set intersection.

74



010110001110

2 1 3

0 2 3

1 15 4 21 32 34

𝐴 = { 1, 4, 15, 21, 32, 34}

offsetA

101010101001

2 12 6 16 21 23

2 2 2

0 2 4

𝐵 = { 2, 6, 12, 16, 21, 23}

Segment comparison

Result index extraction

1 2

000010001000

Step 2: Segment Level 
Intersection

&

21 32 34 21 23VS

21 21 21

23 23 23

bcast

bcast

cmp
cmp

0x00

0x00

or

0xF0

46 16 VS

bcast

4 4cmp

0x00 0x00

Intersect2x3

Step 1: Bitmap Level Intersection

2 1 3

2 2 2

10 26

1 15 4 21 32 34 2 12 6 16 21 23

1 2

BitmapA

BitmapB

sizeA

sizeB

ReorderedSetA ReorderedSetB

Kernel2x1

BitmapA

BitmapB

sizeA

sizeB

offsetB

ReorderedSetA

ReorderedSetB

010110001110

101010101001

000010001000

0000 0xFF 0xFF

000010001000

Jump Table

Ctrl  
code

Intersect 
Kernels

Address

1 Intersect0x1 0x23a54534

2 Intersect0x2 …

… … …

10 Intersect2x1 0x3c656b54

… … …

26 Intersect2x3 0xa335d554

… … …

0 2 3 0 2 4

“pcmpeq”

“pextrb”

Segment transformation

“vandps”

010110001110

2 1 3

0 2 3

1 15 4 21 32 34

𝐴 = { 1, 4, 15, 21, 32, 34}

offsetA

101010101001

2 12 6 16 21 23

2 2 2

0 2 4

𝐵 = { 2, 6, 12, 16, 21, 23}

Segment comparison

Result index extraction

1 2

000010001000

Step 2: Segment Level 
Intersection

&

21 32 34 21 23VS

21 21 21

23 23 23

bcast

bcast

cmp
cmp

0x00

0x00

or

0xF0

46 16 VS

bcast

4 4cmp

0x00 0x00

Intersect2x3

Step 1: Bitmap Level Intersection

2 1 3

2 2 2

10 26

1 15 4 21 32 34 2 12 6 16 21 23

1 2

BitmapA

BitmapB

sizeA

sizeB

ReorderedSetA ReorderedSetB

Kernel2x1

BitmapA

BitmapB

sizeA

sizeB

offsetB

ReorderedSetA

ReorderedSetB

010110001110

101010101001

000010001000

0000 0xFF 0xFF

000010001000

Jump Table

Ctrl  
code

Intersect 
Kernels

Address

1 Intersect0x1 0x23a54534

2 Intersect0x2 …

… … …

10 Intersect2x1 0x3c656b54

… … …

26 Intersect2x3 0xa335d554

… … …

0 2 3 0 2 4

“pcmpeq”

“pextrb”

Segment transformation

“vandps”

Figure 4.1: Illustrating the data structure and the set intersection algorithm
in FESIA. There are two steps in the set intersection: (1) the bitmaps are used
to filter out unmatched elements, and (2) a segment-by-segment comparison is
conducted to compute the final set intersection using specialized SIMD kernels.
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4.3.1 Scalar Set Intersection Approaches

Merge-based set intersection is the most common approach to compute the

intersection of two (or more) sorted sets, and an example is shown in C in

Listing 4.1. Suppose there are two sets L1 and L2 of size n1 and n2 respec-

tively, and we use r to denote the number of common elements. The algo-

rithm starts with two pointers that point to the beginning of the two sorted

lists. Pointers are iteratively advanced based on the comparison result of their

pointed elements. The algorithm finishes when one pointer points to the end

of the list. The time complexity of merge-based set intersection is O(n1 + n2)

for two sets and O(n1 + · · · + nk) for k-way set intersection. One limitation

of merge-based set intersection is that it cannot be easily extended to exploit

multicore parallelism. This is because there exists a loop-carried dependency

when pointers are advanced.
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1 int scalar_merge_intersection(int L1[],

2 int n1 , int L2[], int n2) {

3 int i = 0, j = 0, r = 0;

4 while (i < n1 && j < n2) {

5 if (L1[i] < L2[j]) {

6 i++;

7 } else if (L1[i] > L2[j]) {

8 j++;

9 } else {

10 i++; j++; r++;

11 }

12 }

13 return r;

14 }

Listing 4.1: A code example of scalar merge-based set intersection

Hash-based set intersection is another popular approach. It builds a

hash table from the elements of one set and then probes the hash table with

all elements from the other set. The time complexity of hash-based set in-

tersection is O(min(n1, n2)), which makes it the best method when one set is

dramatically smaller than the other set. As we will discuss in later sections,

the time complexity of our approach is the same as hash-based set intersection

when two input sets have dramatically different sizes.

In additional, many other data structures have been proposed to com-

pute set intersection, such as treap [80], skiplist [81], bitmap [82, 70], and

adaptive data structures [83].
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4.3.2 Accelerating Set Intersections

Data parallelism using SIMD: SIMD instructions have become the status

quo on modern CPUs to exploit data parallelism. For example, Intel CPUs

have SSE/AVX2 instructions to support 128-bit and 256-bit vector opera-

tions. Similarly, ARM processors have NEON instructions, and IBM Power

processors have AltiVec instructions. The prevailing SIMD widths on modern

processors are 128-bit and 256-bit. More recently, the Intel Skylake architec-

ture introduced AVX512 instructions. Additionally, Intel SSE4.2 introduces

the STTNI instruction for string comparisons and it has been used for all-pair

comparisons between two vectors in parallel.

The state-of-the-art set intersection methods: Prior work has proposed

different ways to accelerate set intersections, which are summarized and com-

pared with our approach in Table 4.1. We now introduce each method in more

detail.

BMiss [67] aims at reducing the number of branch mispredictions in

merge-based set intersections and demonstrates this on Intel and IBM Power

processors. The complexity of this method is the same as other merge-based

methods. Note that BMiss performs better when the intersection size is small,

in which mispredictions are more likely to occur.

Galloping [84] and its extension SIMDGalloping [68] are approaches

based on binary search. Each element from the smaller set is looked up in the

larger set through a binary search. This method usually performs better when

the size of two input sets is significantly different. Note that the complexity
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of k-way intersection with binary search is n1(log n2 + · · · + log nk), in which

each element from the smallest set (L1) is used as an anchor point and looked

up in all other sets.

Hiera [69] is an approach that leverages the STTNI instruction to ac-

celerate merge-based set intersections. Since it is a merge-based approach, its

time complexity is O(n1 + n2) on two sets. In addition, a hierarchical data

structure is used in Hiera, since STTNI instruction supports only 8-bit and 16-

bit data types. One limitation of Hiera is that its effectiveness highly depends

on the data distribution. For example, it downgrades to a scalar approach

when the elements in input sets are sparse. In addition, it is not portable to

processors without the STTNI instruction.

Fast [70] is an approach that leverages bitmaps for fast comparisons

and it performs better when the intersection size is small. Its time complexity

is O(n/
√
w + r), in which n, r, and w indicate the size of input sets, the

intersection size, and the word size, respectively. This method has a better

time complexity compared to other merge-based methods, however, it fails

to consider SIMD instructions and may not have competitive performance

compared to other merge-based methods with SIMD accelerations.

4.4 The FESIA Approach

In this section, we start with an overview of our FESIA approach. We next

explain our data structure and the set intersection algorithm in detail. Finally,

we present a theoretical analysis of our approach.

79



4.4.1 Overview

The intersection process is built upon our segmented-bitmap data structure.

It first compresses and encodes all elements of a set into a bitmap in an offline

phase. To exploit data-level parallelism, every s bits from the bitmap are

further grouped into a segment. When performing online intersection, the

bitmap serves as a data structure to quickly filter out the unmatched elements

between two sets. The online intersection process therefore consists of two

steps: (1) bitmap intersection: we compare the segmented bitmaps of two given

sets using a bitwise-AND operator and output the segments that intersect, and

(2) segment intersection: given a list of segments whose bitmap intersects with

one another (i.e., the result of bitwise-AND is not zero), we go through their

corresponding lists and compare the relevant elements from each segment to

compute the final set intersection. A larger m can eliminate more false-positive

intersections on the bitmap, but leads to more comparison time in step 1. The

segment size s affects the intersection sizes at step 2. The m and s are chosen

to minimize the total time. A theoretical analysis on the choice of m and s

will be presented in Section 4.4.4.

We now introduce our data structure and set intersection algorithm in

in more details.

4.4.2 Data Structure

FESIA is built on our segmented bitmap data structure. This data structure

encodes the elements of a set using a bitmap, and groups the bits as well as the
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corresponding elements of the bitmap into segments. Specifically, given a set

of n elements, its elements are mapped into a bitmap of size m with a universal

hash function h. With a properly designed h, all elements can be uniformly

distributed in the bitmap. For clarity, we now assume all bitmaps have the

same size m and we will relax this assumption with a simple transformation

at the end of Section 4.4.3. Every s elements of the bitmap are grouped as a

segment. Since the size of the bitmap can be less than the number of elements

in the set, more than one element can be mapped to the same location in the

bitmap. Therefore, we associate a list to each segment such that elements

mapped to this segment are inserted into the list. Note that all elements in a

list are always kept in an increasing order.

We now introduce the details of our data structure, as shown in Fig. 4.1.

Bitmap is a 0/1 binary bit vector of size m. Size is an array of size m/s,

storing the size of each segment. ReorderedSet is an array having all elements

of a set but with a different ordering. Intuitively, it is a concatenation of

all segments and the elements are sorted in an increasing order within each

segment. offset is an array of size m/s, storing the starting index of each

segment in ReorderedSet. We now use the example in Fig. 4.1 to illustrate

how the data structure works.

Example 1. Suppose there are two sets: A = {1, 4, 15, 21, 32, 34}, and B =

{2, 6, 12, 16, 21, 23}. The size of the bitmap is 12, and we use function f(x) =

x mod 12 as our hash function. After mapping all elements into the bitmap, we

now have BitmapA = {010110001110}, sizeA = {2, 1, 3}, offsetA = {0, 2, 3},
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ReorderedSetA = {1, 15, 4, 21, 32, 34}, BitmapB = {101010101001}, sizeB =

{2, 2, 2}, offsetB = {0, 2, 4}, and ReorderedSetB = {2, 12, 6, 16, 21, 23}.

4.4.3 Intersection Algorithm

For the ease of presentation, we discuss the intersection algorithm of two sets

in this section. The k-way intersection will be discussed later in Section 4.7.

Our algorithm first compares the associated bitmaps to quickly elim-

inate unmatched segments between two sets. It streams through the two

bitmaps, compares each bit to find the segment pairs that intersect. Next,

it intersects the lists associated with those segments with our specialized in-

tersection kernels. A kernel is a specialized intersection function block for a

certain size. We now use Example 1 to demonstrate our intersection algorithm.

In the first step, we compare the bitmaps of the two sets with a bitwise AND

operation to get a list of segments. In Example 1, we compare BitmapA and

BitmapB with a bitwise AND operation, and the result is {000010001000}. In

the second step, we go through each segment to compute the final intersection

result, as shown in Algorithm 6. This is because it’s possible to have false

positives, i.e., a segment whose bitmap intersects with another one but they

do not have common elements. In Example 1, we focus on only non-zero seg-

ments, i.e., the second and the third segment. Note that the elements mapped

to these two segments are {4}, {6, 16} and {21, 32, 34}, {21, 23}. Finally, we

use the 1-by-2 kernel to compare {4} against {6, 16}, and the 2-by-3 kernel

to compare {21, 23} against {21, 32, 34} to compute the final result of the
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intersection. The details of these kernels will be discussed in Section 4.6.

Algorithm 6: The intersection algorithm in FESIA

Input: List LA, List LB, BitmapA, BitmapB, ReorderedSetA and
ReorderedSetB

Output: the intersection size r
1 r = 0
2 N = m/s // the number of segments
3 for i ∈ 0 . . . N − 1 do
4 if BitmapAi

& BitmapBi
! = 0 then

5 r = r + Intersect(ReorderedSetAi
, ReorderedSetBi

)

6 return r

Different bitmap sizes: For any pair of sets, there may exist a pair of sets

that have different bitmap sizes. When a bitmap has a different size from the

other one, our algorithm requires that the bitmap size m1 of the larger set can

be divided by the bitmap size m2 of the smaller set. Therefore, the choice of

bitmap size in our algorithm is to round the bitmap size to the nearest power of

two. When we compare two bitmaps with different sizes, the ith segment from

the larger set only needs to compare with the kth segment from the smaller

set, in which k = i mod m2.

4.4.4 Theoretical Analysis

We now give an analysis of the time complexity of our intersection algorithm.

For clarity, we start our analysis with lists L1 and L2 with the same size n.

We use w to denote the word size and r to denote the intersection size.

Proposition 1. The time complexity of Algorithm 6 is O(n/
√
w + r).
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Proof. There are two steps in the algorithm: (1) bitwise AND on the two

bitmaps, and (2) Computing the intersection on the matched segments. The

time spent in bitwise AND on the two bitmaps is linearly proportional to m, the

size of a bitmap. SIMD allows us to conduct the bitwise operation in parallel.

Given the SIMD width w, the time for the bitwise operation is m/w. Let’s

now analyze the time spent in computing the intersection on the matched seg-

ments, which depends on the number of matched segments. There are two

types of matches: (1) the true matches, and (2) the false positive matches.

The number of true matches equals the intersection size r. A false-positive

match happens when there are elements in both lists mapped to the same

segment but they are not identical.

More precisely, the number of true matches is

E(IT ) = r

while the expected number of false positive matches is:

E(IFP) =
∑

e1∈L1,e2∈L2
e1 6=e2

P (h(e1) = h(e2)) ≤
(
n

2

)
× 1

m

=
n(n− 1)

2m

Note that E(IFP ) depends on the choice ofm, which affects the time complexity

of Algorithm 6. For example, when m = 1, the time spent in the second step

is O(n2). When m = n2, the time spent in the second step is O(1). However,
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the time spent in the first step now becomes O(n2). When m = n
√
w, E(IFP)

equals to n/
√
w. Therefore, we have the total number of both true and false

positive matches:

E(I) = E(IT ) + E(IFP) = n/
√
w + r

In summary, whenm = n
√
w, the time complexity of Algorithm 6 isO(n/

√
w+

r). It achieves the same theoretical bound as in Fast [70]. As we will show in

later sections, due to the use of SIMD instructions, our approach also has the

best performance in practice.

4.5 Bitmap-Level Intersection

In this section, we discuss how to use SIMD instructions to conduct the bitmap-

level intersection, which prunes out the unmatched elements. The discussion of

segment-level intersection that computes the final intersection will be discussed

in Section 4.6.

Given two sets and the corresponding two bitmaps BitmapA and

BitmapB, there are three steps in the bitmap-level intersection to generate

a list of segments where one bitmap intersects with the other:

Step 1: Bitwise AND on bitmaps: The key idea is to perform a bitwise AND

operation on bitmaps BitmapA and BitmapB with SIMD instructions. The

SIMD instruction that we use is the vandps instruction, which operates on w

bits at the same time. Note that w is the SIMD width of the processor and
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it’s a multiple of the segment size s. For example, if w = 256 and s = 8, a

single vandps instruction can perform the bitwise AND operation on 256/8 = 32

segments in parallel.

Step 2: Segment transformation: We next summarize the output of bit-

wise AND operation from the step above by applying a transformation on each

segment, i.e., every s bits in the bitwise AND output. A collection of SIMD

comparison instructions (e.g., pcmpeqw, pcmpeqq, etc) are provided on Intel

processors such that comparisons can be performed on every 8, 16, 32, or 64

bits at the same time. Similar instructions are also provided on other proces-

sors, such as ARM or IBM Power processors.

With the support of these SIMD instructions, we can use a single in-

struction to compare s bits with integer 0 for multiple segments at the same

time. Note that the SIMD instruction we use depends on the value of s, i.e.,

different values of s lead to the use of different SIMD instructions. The output

for each segment also has s bits. Suppose s = 16 and if one segment intersects

with the other one, the result is 0xFFFF. Otherwise, the result is 0x0000.

Step 3: Non-zero segment index extraction: We now pick the segments

with value 0xFFFF. Given a list of segments, we use the pextrb instruction

to extract the non-zero segments. The instruction uses 1-bit to represent the

output for each segment. Suppose the segment size s = 16 and there are two

segments 0xFFFF0000. We will get 0x2 (i.e., 10 in the binary format) after

applying the instruction on the two segments above.

We next use the tzcnt instruction to extract the index of bits that
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are set to one. Given an integer, the tzcnt instruction returns the number

of trailing zeros (i.e., the index of the least-significant 1-bit). Then we set

this bit to zero. We iteratively apply the above process until all the ones are

extracted.

4.6 Segment-Level Intersection

In the previous section, we discussed how to use bitmap intersection to generate

a list of pairs of segments that may have common elements. In this section,

we focus on using SIMD instructions to accelerate intersection for each pair of

segments.

Suppose there are N segments from the output of bitmap intersection,

which are indexed by i1 . . . iN . The task in this step is to find the inter-

section size with elements from ReorderedSetA,i1 . . . ReorderedSetA,iN and

ReorderedSetB,i1 . . . ReorderedSetB,iN . Prior work has proposed different

ways to vectorize set intersections with SIMD instructions, but most of them

target the general intersection problem in which the input size is sufficiently

large. However, in our segment-level intersection, the number of elements in

each segment are usually very small. Therefore, a solution to the general in-

tersection problem may suffer from undesirable performance. As a result, we

design specialized SIMD intersection kernels for inputs with small sizes. These

specialized kernels are more efficient, since they are able to avoid unnecessary

computations. For example, if one set has two elements and the other set has

four elements, a general SIMD set intersection approach usually assumes that
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v3 = _mm_set1_epi32(A[2]);
c3 = _mm_cmp_epi32(v3, vb);

0xFF 0xFF …… 0x0F … 0xFF … 0x0F … … 0xFF

v4 = _mm_set1_epi32(A[3]);
c4 = _mm_cmp_epi32(v4, vb);

cmp = 
_mm_or_si128(_mm_or_si128(c1, 
c2), _mm_or_si128(c3, c4));
mask = _mm_movemask_ps(cmp);
count += _mm_popcnt_32(mask);
return count;

… … 0xF0

A1 A2 B1 B2 B3 B4
broadcast load
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vb = _mm_load_si128(B);
v1 = _mm_set1_epi32(A[0]);
c1 = _mm_cmp_epi32(v1, vb);

v2 = _mm_set1_epi32(A[1]);
c2 = _mm_cmp_epi32(v2, vb);

v3 = _mm_set1_epi32(A[2]);
c3 = _mm_cmp_epi32(v3, vb);

v4 = _mm_set1_epi32(A[3]);
c4 = _mm_cmp_epi32(v4, vb);

cmp = 
_mm_or_si128(_mm_or_si128(c1, 
c2), _mm_or_si128(c3, c4));
mask = _mm_movemask_ps(cmp);
count += _mm_popcnt_32(mask);
return count;

0x0F

0xFF

… … … 0x0F 0xFF… …

4x4 intersect Specialized 2x4 code 

Figure 4.2: Illustrating the difference between a general and a specialized
SIMD set intersection kernels. A general kernel is shown on the upper part
of this figure, which is implemented with SSE-128 instructions and can be
used for any intersection with input size less than 4-by-4. A specialized 2-by-4
kernel is shown on the bottom, which reduces unnecessary computation and
memory accesses (highlighted in purple).
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both sets have four elements, which introduces unnecessary computations.

In this section, we will first discuss how to dispatch each segment to the

corresponding specialized intersection kernel in Section 4.6.1. The implemen-

tation of each kernel will be described later in Section 4.6.2.

4.6.1 Runtime Dispatch

To achieve the best performance, we have implemented and compiled set in-

tersection kernels in advance for all possible scenarios. For example, if there

are at most S elements in a segment, we will have (S + 1)2 different set inter-

section kernels, i.e., from 0-by-0 up to n-by-n set intersection. Note that some

kernels may never be used, e.g., kernel 0-by-i (0 ≤ i ≤ n). With all set inter-

section kernels, a runtime dispatch mechanism is needed, which allows us to

use the correct set intersection kernel given different input segment sizes (i.e.,

sizeA,ik and sizeB,ik). We now describe how the runtime dispatch mecha-

nism is implemented with switch statement. Note that the GCC compiler will

generate a table in assembly instead of a sequence of if-else statements, which

are prohibitively expensive.
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1 /* the dispatch control code */

2 int ctrl = ((Sa << 3) | Sb);

3 /* jump to a specialized intersection kernel */

4 switch(ctrl & 0x7F){

5 /* Each specialized kernel is a macro */

6 case 0: break; // kernel0x0

7 case 1: break; // kernel0x1

8 case 2: break; // kernel0x2

9 /* case 3 to 62 are omitted .... */

10 case 63: Kernel7x7; break;

11 default: GeneralIntersection (); break;

12 }

Listing 4.2: The jump table for specialized kernels

We implement and place all set intersection kernels in memory. Their

starting addresses are referenced by a jump table as shown in Algorithm 4.1.

The entries of the jump table are managed in a way such that a correct entry

can be easily located through a control code, which is computed through simple

arithmetic computation given a pair of segment sizes. Given the kth pair of

segments A and B from a list of segments, we use Sa and Sb to denote their

sizes sizeA,ik and sizeB,ik . The control code for the jump table is computed

by concatenating the two integers Sa and Sb.

We now use a concrete example to show how we compute the control

code. Assume that there are 64 different set intersection kernels (from 0-by-

0 up to 7-by-7 set intersection) in Listing 4.2. Since the maximum segment

size is 7, it’s sufficient to use three bits to represent Sa or Sb. As a result,
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we concatenate Sa and Sb into one integer through the following statement:

ctrl← (Sa �
⌈
logS2

⌉
)|Sb.

In summary, bits 3 to 5 of the control code indicate size Sa. Similarly,

bits 0 to 2 of the control code indicate size Sb.

4.6.2 Specialized vs. General Set Intersection Kernels

The reasons that a specialized set intersection kernel achieves better perfor-

mance than a general one are twofold: (1) less computations, and (2)more

efficient memory access. We illustrate the difference between a general and

specialized set intersection kernel in Fig. 4.2. We show a general 4-by-4 in-

tersection kernel on the left-hand side of the figure. The general kernel is

implemented with the SSE-128 instructions and can be used for any pair of

sets with input size smaller than 4-by-4 (e.g., 2-by-4). However, it is not as

efficient as the specialized 2-by-4 intersection kernel, which is shown on the

right-hand side of the figure. The specialized kernel on the right-side of Fig. 4.2

is also implemented with the SSE-128 instructions but it avoids unnecessary

computations and memory accesses (highlighted in purple in the figure).

In addition, specialized kernels can take more advantage of data reuse.

For example, when the set size is larger than the vector length, some elements

may be used in multiple comparisons. With a specialized kernel, these elements

can be put in registers to avoid redundant memory accesses and minimize the

cost of comparisons at the same time.
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4.6.3 Implementing Specialized Intersection Kernels

with SIMD

We now describe how we implement the specialized intersection kernels with

SIMD for different input sizes. We start with a scenario in which the size of

both input sets equals to the vector length (i.e., Sa = Sb = V ). Note that Sa

and Sb denote the sizes of the input sets and V = w/Se, in which w is the

SIMD word width and Se is the size of each element in the set.

V -by-V set intersection (Sa = Sb = V ): We first describe the key idea

of implementing a V × V intersection kernel, which performs a complete all

pair comparisons between all V elements of the two input sets. Our SIMD

implementation iteratively picks one element from set A and compares it with

with all V elements in set B simultaneously. Note that the comparison results

of all V elements of set A are combined together into a single vector (e.g., cmp

as shown in Fig. 4.2).

There are four types of SSE instructions on 32-bit integers in

our SIMD implementation, namely, (1) load: mm load si128, (2) broad-

cast: mm set1 epi32, (3) compare: mm cmp epi32, and (4) bitwise OR:

mm or si128. We now describe the details as follow. First, the V elements

of set B are loaded into one vector register vb. Second, each element of set A

is broadcast to a different vector vi (i = 1, 2, 3, 4), and is compared with vb.

The comparison result between vi and set vb is stored in vector ci. Finally, the

four comparison results c1, . . . , c4 are combined together into one mask register

with a bitwise OR instruction.
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𝑣𝑏 = _mm_load_si128(𝐵)

𝑣1 = _mm_set1_epi32(𝐴1)

𝑐1 = _mm_cmp_epi32(𝑣1, 𝑣𝑏)

𝑣2 = _mm_set1_epi32(𝐴1)

𝑐2 = _mm_cmp_epi32(𝑣1, 𝑣𝑏)

cmp = _mm_or_si128(𝑐1, 𝑐2)

mask = _mm_movemask_ps(cmp)

𝑣𝑏 = _mm_load_si128(𝐵 + 4)

𝑐1 = _mm_cmp_epi32(𝑣1, 𝑣𝑏)

𝑐2 = _mm_cmp_epi32(𝑣1, 𝑣𝑏)

cmp = _mm_or_si128(𝑐1, 𝑐2)

mask = _mm_movemask_ps(cmp)

count += _mm_popcnt_32(mask)

return count
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𝑣𝑎 = _mm_load_si128(𝐴)

𝑣1 = _mm_set1_epi32(𝐵1)

𝑐1 = _mm_cmp_epi32(𝑣1, 𝑣𝑎)

𝑣2 = _mm_set1_epi32(𝐵2)

𝑐2 = _mm_cmp_epi32(𝑣2, 𝑣𝑎)

𝑣3 = _mm_set1_epi32(𝐵3)

𝑐3 = _mm_cmp_epi32(𝑣3, 𝑣𝑎)

𝑣4 = _mm_set1_epi32(𝐵4)

𝑐4 = _mm_cmp_epi32(𝑣4, 𝑣𝑎)

𝑣5 = _mm_set1_epi32(𝐵5)

𝑐5 = _mm_cmp_epi32(𝑣5, 𝑣𝑎)

𝑣6 = _mm_set1_epi32(𝐵6)

𝑐6 = _mm_cmp_epi32(𝑣6, 𝑣𝑎)

𝑡1 = _mm_or_si128(𝑐1, 𝑐2)

𝑡2 = _mm_or_si128(𝑐3, 𝑐4)

𝑡3 = _mm_or_si128(𝑐5, 𝑐6)

cmp = _mm_or_si128(𝑡1, 𝑡2)

cmp = _mm_or_si128(cmp, 𝑡3)

mask = _mm_movemask_ps(cmp)

count += _mm_popcnt_32(mask)

return count
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𝑣5 = _mm_set1_epi32(𝐵5)

𝑐5 = _mm_cmp_epi32(𝑣5, 𝑣𝑏)

𝑣6 = _mm_set1_epi32(𝐵6)

𝑐6 = _mm_cmp_epi32(𝑣6, 𝑣𝑏)

𝑡1 = _mm_or_si128(𝑐1, 𝑐2)

𝑡2 = _mm_or_si128(𝑐3, 𝑐4)

𝑡3 = _mm_or_si128(𝑐5, 𝑐6)

cmp = _mm_or_si128(𝑡1, 𝑡2)

cmp = _mm_or_si128(cmp, 𝑡3)

𝑣𝑏 = _mm_load_si128(𝐵4)

𝑐5 = _mm_cmp_epi32(𝑣5, 𝑣𝑏)

𝑐6 = _mm_cmp_epi32(𝑣6, 𝑣𝑏)

cmp = _mm_or_si128(𝑐5 , 𝑐6)

mask = _mm_movemask_ps(cmp)

count += _mm_popcnt_32(mask)

return count
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Figure 4.3: Illustrating the specialized kernels: (1) a 2-by-7 intersection ker-
nel (small-by-large), (2) a 4-by-5 intersection kernel (small-by-large and Sb is
slightly larger than V ), and (3) a 6-by-6 intersection kernel (large-by-large).

We next describe how we implement the specialized intersection kernels

for other input sizes. Without loss of generality, we divide all intersection

kernels into three categories based their input sizes: (1) small-by-small set

intersection (Sa ≤ Sb ≤ V ): the size of both input sets is less than the vector

length, (2) small-by-larger set intersection (Sa ≤ V < Sb): the size of one input

size is less than the vector length, and the size of the other input size is larger

than the vector length, and (3) large-by-large set intersection (V < Sa ≤ Sb):

the size of both input sets is larger than the vector length.

Small-by-small set intersection (Sa ≤ Sb ≤ V ): When Sa and Sb are both

less than the vector length V , the implementation of our specialized kernels

removes unnecessary operations, as shown in Fig. 4.2. Compared to the general

4-by-4, the specialized 2-by-4 kernel does not need to perform complete 4-by-4
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comparisons. Instead, it only compares between the two elements in set A and

the four elements in set B, which only takes two broadcasts, two comparisons

and one bitwise OR instruction. In summary, the number of comparisons and

memory access operations in the specialized kernel is only half of that as in

the general 4-by-4 kernel.

Small-by-large set intersection (Sa ≤ V < Sb): The kernels for small-by-

small intersections can be used to build the specialized kernels for small-by-

large intersections, in which the size of one set is less than the vector length V

and the size of the other set is larger than the vector length V (Sa ≤ V ≤ Sb).

The key idea is that we first compare all elements in set A with the first V

elements of set B.

We now use the 2-by-7 set intersection (as shown in the left side of

Fig. 4.3) as an example. We start with comparing the two elements in set A

against the first four elements in set B. In particular, two elements A1 and

A2 are broadcast into vector registers v1 and v2. They are next compared

with the first 4 elements in set B in vector register vb. Line 7-9 combines the

comparison results together through a bitwise OR operation. We next apply

the the same process to compare the two elements in set A with the remaining

three elements in set B, by loading the three elements into one vector register

all together, as shown at line 10-15. Note that two elements A1 and A2 can

be reused from registers v1 and v2.

Compared to the general kernel, this specialized kernel reduces compu-

tation, has better data reuse and avoids redundant loads. In summary, the
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number of broadcasts in the specialized kernel equals to the size of the small

set (i.e., Sa = 2). The number of loads equals to the size of the large set

divided by the SIMD width (i.e.,
⌈
Sb/w

⌉
=
⌈
7/4
⌉

= 2). The number of com-

parisons is 2Sa, since each element in the small set requires two comparisons

with the large set.

However, this specialized kernel may be sub-optimal for some cases due

to more comparisons. For example, when the size of set A is 4 and the size

of set B is only slightly larger than the vector size V (e.g., Sb = 5), the fifth

element in set B requires four comparisons against set A. This is because the

four elements A1, . . . , A4 are in four different vector registers due to broadcast

operations. The Intersect4by5 example in the middle of Fig. 4.3 illustrates a

better way to implement such scenario. First, set A is loaded into a vector

register. Second, elements in set B are broadcast and compared with this

register. In total, the number of comparisons is only five instead of eight.

Large-by-large set intersection (V < Sa ≤ Sb): The implementation of

our specialized kernels is built on top of small-by-large and small-by-large

kernels, when both Sa and Sb are larger than the vector length V .

Let’s now take the 6-by-6 set intersection (as shown in the right side

of Fig. 4.3) as an example. We first apply a 4-by-4 intersection to compare

the first V elements between set A and set B. There are two scenarios in the

second step: (1) A4 ≤ B4: To maximize data reuse, it is more efficient to load

all elements from set B into one vector and broadcast all elements from set A.

Therefore, we apply a 2-by-6 intersection between the fifth and sixth element
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of set A and all six elements of set B. The example in the right side of Fig. 4.3

corresponds to this scenario. (2) A4 > B4: This is the symmetric scenario.

Therefore, it is more efficient to load all elements from set A into one vector

and broadcast all elements from set B. Note that we have implemented both

kernels above, and use the correct one based on the comparison result between

A4 and B4 in runtime.

4.7 Discussion

In this section, we first describe how our approach is used for k-way intersection

and its time complexity. We next discuss the case for input with dramatically

different sizes and how to extend our approach to exploit multicore parallelism

and wider vector width.

k-way intersection: Similar to the process of set intersection between two

sets, our approach can also leverage the segmented bitmaps to quickly prune

the mismatches among k sets. Given k sets L1, L2, . . . , Lk, we now describe the

two-step set intersection as follows: (1) for each set Li, there is a corresponding

Bitmapi. In this step, we compare the k bitmaps (i.e., Bitmap1 . . . Bitmapk)

using a bitwise AND operation to quickly filter out segments whose bitmaps do

not have intersection with others. As discussed in Section 4.4, the output is a

list of non-zero segments; (2) we next apply the specialized k-way intersection

kernels to the list of segments to perform the intersections over their associated

elements. Since the expensive k-way intersection kernels are only performed

on the matched segments (i.e., output from the first step), the complexity
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of the k-way set intersection with our data structure is proportional to the

intersection size, instead of the entire input size. The performance advantage

is more significant when the final intersection size is small.

We now give a theoretical analysis of the time complexity of our k-way

intersection approach. For clarity, we assume the size of each set is n and we

use w to denote the word size and r to denote the intersection size.

Proposition 2. The time complexity of the k-way intersection algorithm is

O(kn/
√
w + r).

Proof. There are two steps in the algorithm: (1) bitwise AND on k bitmaps,

and (2) computing the intersection on the matched segments. The analysis for

the time spent in each step is similar to what we discussed in Proposition 1.

Therefore, the time for the bitwise operation with SIMD instructions is O(k ∗

m/w). The time spent in the second step depends on the number of false

positive matches. As in Proposition 1, we have the expected number of false

positive matches:

E(IFP) =
∑

e1∈L1,...,ek∈Lk

P (h(e1) = · · · = h(ek)) =
nk

mk−1

In summary, when m = n
√
w, we have the total number of both true and false

positive matches:

E(I) = E(IT ) + E(IFP) = n/
√
w
k−1

+ r

In summary, the time complexity of the k-way intersection algorithm is
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O(kn/
√
w + r).

Input with dramatically different sizes: When two sets have dramatically

different sizes (i.e., n1 � n2), we adapt our approach to a different strategy

such that we can achieve the same time complexity as in a hash-based method,

i.e. O(min(n1, n2)) = O(n1). The key idea is that we go through each element

in the smaller set and check the existence of the element in the larger set. Note

that if the larger set has the element, then the element must be in segment v

mod m2, in which m2 is the size of larger set’s bitmap. If the corresponding

bit in the bitmap is not set, meaning the element is not in the larger set,

all subsequent comparisons are avoided. Otherwise, the element is compared

against all the elements mapped to that position.

Multicore parallelism: Our set intersection approach can be easily extended

to exploit more parallelism on multicore processors, since there are no cross-

iteration dependencies.

The bitmaps of input sets can be partitioned and distributed onto differ-

ent CPU cores such that each core can independently perform the bitwise AND

operation on its partition and use specialized kernels to compute the inter-

section result on the matched segments. Note that when the two input sets

have dramatically different sizes, we only partition and distribute the elements

in the small set so that each core can next perform our approach agains the

bitmap of the large set independently.

Wider vector width: Intel is introducing the AVX512 instructions the Sky-

lake and Cannonlake architecture. As discussed earlier, there is a bitwise AND
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operation in the first step, which can have linear speedups with wider SIMD

width. In addition, our specialized kernels are also designed to support arbi-

trary vector length V . However, directly applying our approach with wider

SIMD instructions leads to significant performance degradation. This is be-

cause increasing segment size s leads to more elements in a segment on average.

As the segment size goes up, more specialized intersection kernels for larger

sizes are needed. As a result, the complexity of the jump table goes up as

well. When the size of the jump table exceeds the instruction cache size,

severe performance degradation will happen.

To reduce the number of specialized intersection kernels in the jump

table, some specialized intersection are omitted and not implemented. In

particular, instead of enumerating intersection kernels for all size pairs, we only

implement intersection kernels at some sampled sizes (e.g., the even sizes). For

a segment whose size falls in between those sampled sizes, its size is rounded

up to the next larger size, meaning we will use a slightly larger specialized

kernel for this segment. Although this causes some redundant computations,

it significantly reduces the number of intersection kernels in the jump table.

4.8 Experiments

In this section, we study the performance of our approach compared to the

state-of-the art set intersection algorithms on both synthetic and real-world

datasets.
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Table 4.2: Hardware specifications

Processor 1 Processor 2

Processor Model Intel E5-2695 Intel i7-7820X
Architecture Haswell Skylake
Frequency 2.3 GHz 4.3 GHz
Cores 28 8
L1 cache/core 32 KB 32 KB
L2 cache/core 256 KB 1 MB
L3 cache 35 MB 11 MB
SIMD feature SSE, AVX2 SSE, AVX2, AVX-512

4.8.1 Experimental Setup

Platforms: We implement our algorithms on platforms with SSE/AVX/AVX-

512 instructions and compare with state-of-the-art set intersection methods.

We use two Intel platforms in our evaluation: (1) Intel E5-2695, which is

a Haswell architecture and supports SSE(128-bit) and AVX(256-bit) instruc-

tions, and (2) Intel i7-7820X, which is a Skylake architecture and has the latest

AVX-512 instruction support. All SSE/AVX experiments are performed on the

Haswell processor, and all AVX-512 experiments are performed on the Skylake

processor. The detailed hardware specifications are given in Table 4.2.

Datasets: We perform the evaluation on both synthetic and real-world

datasets, focusing on how the following three key factors: (1) input size (n),

(2) selectivity (r/n), and (3) skew in the input sizes (n1/n2).

Methods: We study and compare the performance of our approach with

the following state-of-the-art implementations: (1) Scalar: This is an opti-

mized scalar merge implementation similar to the code in Listing 4.1, but it
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replaces the expensive if-else branch statements with conditional moves, (2)

Shuffling [79]: This is a SIMD implementation for set intersection and it is

similar to what is presented in Fig. 4.2. It uses the SIMD shuffling in-

struction to perform all pair-wise comparisons between two input vectors by

creating all variations of one vector. (3) scalarGalloping [84]: This is a binary-

search based intersection method. (4) SIMDGalloping [68]: A SIMD optimized

version of scalarGalloping, and (5) BMiss [67]: A merge-based intersection ap-

proach with SIMD and optimizations on reducing branch mispredictions. Note

that the data structure is built offline. The built time is not included in our

experiments.

4.8.2 Result of Specialized Intersection Kernels

As discussed in Section 4.6, our system adopts different strategies and gener-

ates specialized kernels for intersections with different sizes. The specialized

kernels can take advantage of SIMD instructions, which perform fewer memory

accesses, shuffle and comparison computations.

We now study the performance of our specialized intersection kernels

compared to the generalized SIMD implementation. Fig. 4.4 shows the result

of SSE kernels. We generated kernel sizes from 1-by-1 up to 7-by-7, which is

twice larger than the SSE SIMD width. We can observe that our specialized

kernels are up to 70% faster than the general SIMD intersection implementa-

tion. Similarly, Fig. 4.5 shows the result of AVX kernels. The kernel size goes

up to 15-by-15 and the specialized kernels are faster than the general AVX
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Figure 4.5: Performance of AVX kernels

intersection implementation in all scenarios. The performance advantage is

even more significant when the size of one set is much larger than the other
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set.

4.8.3 Effect of Varying the Input Size

We next study the performance of different intersection approaches with a

varying input size. In this experiment, we evaluate each intersection method

with two synthetic sets. In addition, we make the size of input sets identical

and their intersection size be 1% of the input size. We vary the number of

elements in input from 400K to 3.2M. Note that our approach is implemented

on two different Intel processors with three different SIMD instruction sets:

(1) SSE, (2)AVX, and (3)AVX-512. The performance of our SSE, AVX imple-

mentation is measured on an Intel Haswell architecture, which is reported in

Fig. 4.6a. The performance of our AVX-512 implementation is measured on

an Intel Skylake architecture, which is reported in Fig. 4.6b.

In Fig. 4.6, the y-axis shows the CPU time in million cycles (i.e., the

lower, the better). We can observe that the relative performance of these

methods remains consistent as we increase the input size. On the Haswell ar-

chitecture, our SSE and AVX implementation can achieve up to 7.6x speedup

compared to scalar methods, and 1.4x-3.5x speedup compared to other meth-

ods with SIMD. On the Skylake architecture, our AVX-512 implementation

can achieve 2-4x speedup compared to other SIMD methods. On both ar-

chitectures, Scalar and ScalarGalloping are the slowest, since scalar imple-

mentations cannot leverage data-level parallelism. SIMDGalloping performs

poorly as well. This is because it is based on binary search, which has higher
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Figure 4.6: Performance comparison with a varying input size
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complexity when two input sets have similar size.

4.8.4 Effect of Varying the Selectivity

Selectivity is the metric that describes how large the intersection size is relative

to the input size. It is defined as the ratio of the intersection size divided by the

input size (i.e., r/n). We now study the performance of different intersection

approaches when varying the selectivity. In this experiment, we fix the size of

the two input sets to one million and report the relative speedup of different

approaches to the Scalar intersection method in Fig. 4.7 and Fig. 4.8.

Fig. 4.7 shows the performance of each approach on the Haswell archi-

tecture using SSE and AVX instructions. We observe that our approach can

achieve up to 7.6x speedups compared to state-of-the-art Scalar intersection

methods, and 1.8x speedups compared to state-of-the-art SIMD intersection

methods. Fig. 4.8 shows the performance of each approach on the Skylake

architecture using AVX-512 instructions. We observe that our approach can

achieve up to 6x speedups compared to state-of-the-art Scalar intersection

methods, and 1.4-3x speedups compared to state-of-the-art SIMD intersection

methods.

In addition, we see that the our method’s speedup is higher when the

selectivity becomes lower. Note that in most real-world scenarios, the inter-

section size is usually less than 10% of the input set (i.e., selectivity is less

than 0.1).

K-way intersection: We also study the performance of each method on
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three-way intersection. We fix the input size to one million as in the experiment

above, and report the result in Fig. 4.9. The y-axis is the relative speedup

to the Scalar method. The x-axis shows the set density, which describes how

clustered the elements are distributed among a given range. For example,

elements in a dense set are randomly drew from a small range, while a sparse

set have elements drew from a larger range. Density can affect the intersection

size. For example, two dense sets are more likely to have common elements.

When k = 3, the selectivity is proportional to the third power of set density.

We can observe that FESIA can achieve up to 17.8x speedups com-

pared to scalar intersection methods on 3-way intersection, and up to 4.8x

speedups compared to state-of-the-art SIMD set intersection approaches. The

speedup is higher when the density is lower. When the density is zero, the

maximum speedup achieved in 3-way intersection is higher than that in 2-

way intersection, which shows the speedup of our approach is more prominent

with a larger k. This is because multi-way comparisons are more expensive for

larger k. However, our approach can avoid the cost of unnecessary multi-way

comparisons through cheap bitmap intersections.

4.8.5 Performance of Two Sets with Different Sizes

We now study the performance of each approach when the two input sets have

different sizes. In this experiment, we fix the size of the larger input size to

one million and the selectivity to 0.1. The x-axis is the skew, i.e., the ratio of

the smaller set size to the larger set size (n1/n2). The y-axis is the relative
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Figure 4.10: Performance comparison on varying skew

speedup to the Scalar method. Note that our approach can adapt to different

strategies depending on the value of skew. We use FESIAmerge to denote the

strategy we use when the input has a similar size and FESIAhash to denote the

strategy we use when the input has dramatically different sizes. We report the

performance of both strategies in Fig. 4.10.

Theoretically, when the skew is small (n1 � n2), the hash-based method

has the lowest average complexity and the merge based method has the highest

average complexity. The complexity of the binary search method is between

the two above. When the skew is large (n1 ∼ n2), the average complexity of

the merge method is comparable with the hash-based method, and the binary

search method has the highest complexity.

As shown in Fig. 4.10, the actual performance of the intersection meth-

ods can match the theoretical analysis. When the skew is small, our method
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Figure 4.11: Results on the database query task

based on hash (i.e., FESIAhash) has the best performance, which is 2-3x faster

than the binary-search based method SIMDGalloping, while SIMDGalloping

is faster than the two SIMD merge-based methods (Shuffling and BMiss). As

the skew goes up to more than 1/4, FESIAmerge starts to outperform FESIAhash

and it achieves the best performance among all approaches. For other meth-

ods, the SIMD merge-based method can outperform methods based on binary

search.

In summary, FESIA can adapt to different strategies given different

skew in input, and achieves better performance than other approaches. All

other approaches only perform well when the skew is either small or large.
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Table 4.3: The details of each graph dataset

Dataset # of nodes # of edges

Patents 3,774,768 16,518,948
HepPh 34,546 421,578
LiveJournal 3,997,962 34,681,189

4.8.6 Performance on Real-World Datasets

We next study the performance of each intersection approach on two real-world

tasks: (1) a database query task, and (2) a triangle counting task in graph

analytics.

The database query task: In Fig. 4.11, we report the result of each ap-

proach on a real-life dataset called WebDocs from the Frequent Itemset Mining

Dataset Repository [85]. The WebDocs dataset is a web crawl dataset built

from a collection of web HTML documents. The whole collection has about

1.7 million documents with 5,267,656 distinct items.

To simulate the low selectivity of real-world queries, we generate random

queries from the dataset and keep the set intersection size below 20% of the

input size. We show the result of set intersection with two input sets and three

input sets on the top of Fig. 4.11. We observe that our approach achieves close

to 4x speedup compared to the Scalar method, 2x speedup compared to the

SIMD Shuffling, and 3.8x speedup compared to SIMDGalloping. The bottom

of Fig. 4.11 shows the performance of each approach when the sizes of input

sets are skewed. Overall, we observe that our approach has an up to 3x speedup

compared to other approaches.
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Figure 4.12: Results on the triangle counting task

The triangle counting task: We now study the performance of each ap-

proach on the triangle counting task with three graph analytics datasets. The

three datasets are from the Stanford Large Network Dataset Collection [86]

and we report the details of each dataset in Table 4.3. In Fig. 4.12, we can ob-

serve that our approach can achieve up to 12x speedup compared to the Scalar

method and up to 1.7x speedup compared t the SIMD Shuffling approach. In

addition, the speedup can scale linearly with the number of CPU cores.

4.9 Conclusion

In this chapter, we presented FESIA, an efficient SIMD-vectorized approach for

set intersection on modern CPUs. In many real-world tasks such as database

queries and graph analytics, the intersection size is usually orders of magni-

tude smaller than the size of the input sets. FESIA leverages this observation

by adopting a bitmap-based approach to efficiently prune necessary compar-
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isons and refine a list of smaller segments with intersecting elements. These

segments are later processed by specialized SIMD kernels for final intersection.

Experiments on both real-world and synthetic datasets show that our approach

can achieve an order of magnitude speedup compared to scalar set intersection

methods and be up to 4x faster than state-of-the-art SIMD implementations.
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5.1 Abstract

Accelerating applications that involve sparse and irregular computational pat-

tern has received increasing attention in recent years. Sparse computational

kernels are appearing in a variety of different domains from social sciences to

machine learning. Data in these domains can have drastically distinct sparsity

characteristics. This may lead to different algorithm/implementation choices.

Meanwhile, with the advent of processor technologies, modern processors have
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more computing power and higher memory bandwidth. But sparse compu-

tational kernels tend to perform poorly on modern processors due to irregu-

lar computational patterns and random memory accesses. There is a lack of

understanding on how the sparse problem should be accelerated on modern

processors with massize scale of parallelism.In this chapter, we investigate the

performance of parallel sparse-Matrix-Multiplication(SpGEMM) implementa-

tions on GPUs. We focus on the (masked-)sparse-matrix-matrix multiplica-

tion (SpGEMM) used in many social network analytics tasks. We demonstrate

how the sparse matrix computation can be broken down into a primitive set

of join/union operations, based on which we propose several optimizations for

join-based SpGEMM implementations. We perform experimental and theo-

retic analysis with both synthetic and real-world datasets. Finally, we propose

an online scheduling algorithm that performs a light-weight calculation on-

line to adaptively pick out the right implementation for iterative SpGEMM

problems.

5.2 Introduction

Sparse computations are at the core of a variety of domains. They have been

employed in a broad range of tasks, such as graph analytics [13], neural net-

works compressing [14], genome sequencing [15], recommendation systems [16].

Many applications in the above domains work with irregular and nonuniform

data that can be represented and structured as sparse matrices. Meanwhile

the percentage of non-zero elements in these application can vary drastically,
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ranging from 10−6% to 50% depending on the problem domain.

With the growing popularity of sparse computations in various domains,

there is a growing effort to the optimize and accelerate sparse computations

on modern processors. For example, there are a growing number of graph

analytics systems that are proposed recently to tackle social network-related

sparse computations [87, 88, 89, 90, 91, 92, 93]. A common feature in these

frameworks is that they accelerate high-level sparse problems by providing the

interface to a set of primitive sparse operations. At the heart of these frame-

works is the primitive sparse operation implementations such as sparse-matrix-

vector computation, generalized sparse-matrix-matrix-multiplication. For ex-

ample, graphBLAS defined a specification that can formulate many sparse

computations as sparse matrix computations over semirings. Such specifica-

tion simplifies the sparse problem and provides a unified interface that sepa-

rates the high-level problem and the design and optimization of underlying im-

plementations. Among them, sparse-matrix-times-sparse matrix(SpGEMM)

and masked-sparse-matrix-times-sparse-matrix are two important operators.

One challenge in optimizing sparse computations is that they are hard

to attain high performance on modern processors. Unlike their counterpart in

dense and regular applications, sparse applications have locally varying non-

zero (nnz) patterns, leading to unpredictable control flows and unbalanced

workloads which are detrimental to performance. In addition, sparse applica-

tions have irregular compute patterns that are inherently sequential, together

with random and uncoalesced memory accesses. These issues can result in low
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occupancy as well as low resource utilization on GPUs. Meanwhile, modern

GPUs are usually designed to attain peak performance when high throughputs

and parallelism can be achieved.

On the other hand, there is a lack of understanding of the optimiza-

tions for the sparse matrix-multiplication problems. It still remains an open

question as to which algorithm or data structure best fits sparse data. One

reason for this is due to the vast problem domains and the data characteristics

(e.g., density, distribution) which can vary drastically in different domains.

Additionally, there are a large number of different methods to process and

deal with sparse data, including different algorithms, parallelism schemes, etc.

This broad design space naturally leads to questions such as which algorithm

is best suited for sparse data, how the parallelism schemes should adapt to

the algorithms, and how we should make cheap online decisions for iterative

SpGEMM, etc

In this work, we investigate the optimizations of sparse computations

on GPU platforms. Existing work has proposed different optimizations on

accelerating sparse computation on general platforms such as GPU, CPU, or

ASIC designs [94, 95, 96, 97]. However, they are mainly focused on design-

ing new data structures to resolve the load unbalancing issues, or designing

new hardware to improve the data flow. In this work, we take a different

perspective. We focus on the algorithm choices. We investigate and compare

the different SpGEMM implementations on GPU. We explore how different

algorithms such as join, merge, as well as different implementations can affect
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performance.

In this work, we focus on the sparse-matrix-times-sparse-matrix (iden-

tical matrix) problem, The contributions of this chapter include:

• We investigate different methods to compute sparse matrix multiplica-

tion, including union-based methods, and intersection-based methods

• We propose and implement the data-parallel join-based SpGEMM meth-

ods on GPU

• We propose and implement the hash-based SpGEMM join methods on

GPU

• We propose a sparsity-aware scheduler that is capable of choosing the

best method according to the data distribution for iterative SpGEMM

computations

5.3 Background and Related Work

5.3.1 GPUs.

Modern GPUs relies on largescale multithreading to attain high computational

throughput and hide memory access time. A GPU contains many “streaming

multiprocessors” (SMs) with up to hundreds of arithmetic logic units (ALUs).

A SM is a “multiprocessor” that contains many cuda cores while each cuda

core is an execute unit for integer and float numbers of one thread. Each
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is the average nonzeros per row. If the matrix is short and fat, k is average
nonzeros per column.

SM contains hierarchical memories, including shared memory for fast data

interchange between threads, and L1, texture, constant caches. For example,

the latest Nvidia Turing architecture has 72 SMs. Each Turing SM includes 4

warp-scheduler units, each SM provides 64 FP32 cores, 64 INT32 cores.

GPU programs are called kernels, which run a large number of threads

in parallel in a single-program, multiple-data (SPMD) fashion. The threads

are arranged in hierarchies: Each kernel is split into a grid of threads called

thread blocks or concurrent thread arrays (CTA). A CTA is a basic workload

unit assigned to an SM in a GPU. Threads in the same block have access

to shared memory and their execution can be synchronized. Threads in a

CTA are sub-grouped into warps, the smallest execution unit sharing the

same program counter, which contains 32 threads. These 32 threads execute
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the same instruction on each clock cycle in lockstep. For a program to achieve

high performance on GPU, a good implementation needs to consider coalesced

memory access, because the memory bandwidth can be maximized only when

threads are accessing consecutive memory addresses. Secondly, divergence is

another factor that can degrade performance. Divergence can break the control

flow, introducing extra branches and scheduling overheads.

5.3.2 SpGEMM and Masked-SpGEMM Problem

SpGEMM computes the problem of:

Cij =
∑
k

Aik ·Bkj (5.1)

The computation involves multiplications between every row/column pair of

matrix A and matrix B. While masked-SpGEMM computes the problem of:

Cij = Mij

∑
k

Aik ·Bkj (5.2)

Different from general SpGEMM, masked-SpGEMM applies a matrix M on

top of the A× B result. Elements in the A× B result matrix will be filtered

out if their corresponding positions are zeros in M . In other words, the com-

putation of masked-SpGEMM only involves multiplications between a fraction

of row/column pairs between A and B. There are many real-world problems

that can be formulated as SpGEMM or masked-SpGEMM problems. For ex-

ample, triangle counting is a fundamental operator widely used in many graph
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analytic tasks in social network applications [98]. The number of triangles can

be an approximation of the closeness between neighbors. The algorithm to

compute triangle counting can be formulated as a masked-SpGEMM problem.

Suppose A is the adjacency matrix of the given graph, the i-th row of A has

all the edges adjacent to node i, and the j-th column of AT contains all the

edges incident to node j. The multiplication between the i-th row of A and

j-th column of AT generates all the “wedges” between node i and node j.

The subsequent masking operation will filter out the wedges that do not have

closing edges. Therefore the total number of triangles between every node

pairs can be obtained by computing A · AT . K-truss is another computation

that is widely used in graph analytics. K-truss finds out a subgraph in which

each node is connected to at least K other nodes. K-truss is computed by

iteratively applying triangle counting procedure — each iteration of triangle

counting outputs the nodes that are part of a triangle in the input graph and

these nodes will be the new input graph for the next iteration.

5.3.3 Sparse Data Structure

Existing literature has proposed different schemes to store sparse data. Among

them, compressed sparse row (CSR) format is one of the most popular storage

schemes. CSR format stores the column indices and values of nonzeroes by

row orders in the sparse matrix. It represents the sparse matrix using three

arrays: an array storing the (accumulative) length of each row (col index ), one

array that stores the nonzero column indices (col index ), and the third array
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that stores the nonzero values (val). CSR format requires n + 2nnz memory

for storage, where n is the number of rows and nnz is the number of nonzeros

of the sparse matrix. Similarly, if the matrix is stored in column-major order

— when successive elements in the same column are contiguous in memory —

it is called compressed sparse column (CSC) format.

5.3.4 SpGEMM Computations

Researchers have proposed a variety of optimizations for sparse computations

over the past years. The early works are mainly focused on accelerating sparse

matrix-vector multiplication problem (SpMV) [99, 100, 101, 102, 103, 104,

105]. It has been investigated that there can be different computations meth-

ods for SpMV problems. For example, previous work have proposed the push-

or-pull optimizations for SpMV computation. “Push” and “pull” are methods

that compute the matrix-vector product in two different orderings, and they

can result in different performance according to the input sparsity. Existing

literature has investigated how push and pull methods can affect the perfor-

mance on different platforms [106, 107, 108].

Recently, more attention has been given to SpMM (sparse-matrix-times-

dense matrix) and SpGEMM computations [109, 110, 111, 112, 113]. Many

literatures are using merge-based methods to compute SpGEMM [114, 115,

116, 117, 118]. The merge-based method iterates the sparse matrix in rows.

It takes one row in matrix A (Ci) and multiplies with the matrix B. This

generates the result that corresponds to one row in matrix C (Ci). Specifically,
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the sparse row-vector-matrix-multiplication is performed by iterating through

each element in row i, and multiplies this element with the corresponding row

in B. The results will be merged together. This merge-based method is good

for a sparse matrix that is tall and skinny.

Notation nnz is used to denote the number of non-zero elements in the

sparse matrix. Lowercase n is used to denote the row dimension. The sub-

scription number represents the row of the matrix (e.g, Ai represents the i-th

row of matrix A). And ATi denotes the i-th row of the transpose matrix AT ,

which is also the column vector of A.

5.4 The Family of SpGEMM Algorithms

In this section, we will discuss in detail the three ways to compute SpGEMM

as illustrated in Figure 5.1. The complexity of SpGEMM method depends

on the number of non-zero elements of the sparse matrices. Note that in this

work, we primarily focus on the SpGEMM problem with two identical sparse

matrices, i.e., A = B. In other words, the SpGEMM problem we are interested

is A · AT . The subsequent complexity analysis are all for this problem.

The distribution of the non-zero elements in the sparse matrix is an im-

portant factor that can affect the amount of computation performed. For ex-

ample, the non-zero elements could be centered among a few columns. At other

times, some graph datasets may have unevenly-distributed elements where the

non-zero elements are centered around some hub nodes. We categorize the

124



sparse matrix into three cases: the tall-and-thin sparse matrices are matri-

ces whose row dimension is much larger than the column dimension (i.e., the

average number of nonzeros per row); the short-and-fat sparse matrices are

matrices whose column dimensions are much larger than the rows. In both

tall-and-thin and short-and-fat sparse matrices, the nonzeros are uniformly

distributed. The third case refers to matrices that nonzeros are skewedly-

distributed ( and we use the power-law distribution to simulate the skewed-

distribution, because it has been widely acknowledged that many skewedly-

distributed graph datasets usually follow such distribution [119, 120]). And

the later analysis will target these cases separately.

5.4.1 Matrix-Vector SpGEMM

The first way to compute SpGEMM is based on vector-matrix multiplication.

This method breaks down the matrix multiplication into a sequence of row-

vector-matrix-multiplication between a row of matrix A and the matrix B. The

row-vector-matrix-multiplication generates the result corresponding to one row

in matrix C.

Specifically, row Ai multiplies matrix B will generate row Ci. The

computation of the vector-matrix multiplication leverages the merge operation:

to compute sparse-vector-sparse-matrix-multiplication, the algorithm iterates

every non-zero element in the row of matrix A, indexing into the corresponding

row vector of matrix B. The resulting row is obtained by merging all those

rows together. The pseudocode in algorithm 7 illustrate the idea of the matrix-
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vector based computation.

For matrix-vector-multiplication based SpGEMM implementation,

when the non-zero elements are uniformly distributed and the sparse matri-

ces are tall-and-skin, the computational complexity is O(nkk) where n is the

number of rows of A, k is the average number of non-zero elements per row.

Specifically, the vector-matrix-multipliciation method computes matrix C row

by row. For each row of matrix C, the process involves iterating each non-zero

element in matrix A. And this therefore would involve in total nk iterations.

And inside each iteration is the merging process that merges the row Bele into

row Ci. Usually the merging takes time that is linear as the list size — k in

this case. The total time is therefore O(nkk). For the second case in which

the sparse matrix is short-and-fat and the nonzeros are uniformly distributed

among the columns, the computational complexity is O(nkk). As there are

in average k nonzeros in each column, and the k nonzeros are uniformly dis-

tributed among the dimension N . Therefore the average elements per row is

k. each The outer two loops that iterate along each row and the nonzeros of

that row would take nk iterations considering that there are n rows and each

row has in average k elements. The merging operation inside the loop takes

k as well. For the third case where the distribution follows a skewed distribu-

tion, and the distribution can be simulated by a power-law curve (βxα), the

complexity of this method is less than nζ(α). Note that this complexity is a

rough estimation and gives a very rough upper bound.
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Algorithm 7: matrix-vector based SpGEMM

Input: Sparse matrix A stored in csr format: OffsetA, ColA

Sparse matrix B stored in csr format: OffsetB, ColB

Output: the result matrix C

1 for i ∈ N do

2 for ele ∈ Ai do

3 Ci ← merge(Ci, Bele)

4 end

5 end

5.4.2 Inner-Product-Based SpGEMM

The second way to compute SpGEMM is what we call inner-product-based

method. This method is based on join operations. It breaks down the matrix

multiplication into a sequence of inner-products between one row of matrix

A and one column of matrix B. The row-vector-matrix multiplication gener-

ates the result corresponding to one element in matrix C. This algorithm is

illustrated in Algorithm 8.

For inner-product-based SpGEMM implementation, when the non-zero

elements are uniformly distributed and the sparse matrices are tall-and-skin,

the computational complexity is O(nkk). Specifically, the method computes

matrix C element by element (Cij for i ∈ 1 to n and j ∈ 1 to n), and this

process involves in total n2 iterations. And inside each iteration is the inner-

product that merges the row Ai with column Bj. The inner-product between
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Algorithm 8: inner-product based SpGEMM

Input: Sparse matrix A stored in csr format: OffsetA, ColA

Sparse matrix B stored in csr format: OffsetB, ColB

Output: the result matrix C

1 for i ∈ N do

2 for j ∈ N do

3 Cij ← join(Ai, Bj)

4 end

5 end

two sparse lists are essentially a join operation, and join implementation takes

time that is linear as the list size — k in this case. The total time is therefore

O(nnk). For the second case in which the sparse matrix is short-and-fat and

the nonzeros are uniformly distributed among the columns, the computational

complexity is O(nkk). As the row dimension of A is k, the dimension of A·B is

k ·k. The outer two loops that iterate along the rows(i) and columns(j) of ma-

trix C would therefore have k2 iterations. The complexity of the join between

Ai and Bj is n, as there are in average n nonzeros in Ai and Bj. Therefore the

total complexity is O(nkk). For the third case where the distribution follows

a skewed distribution, and the distribution can be simulated by a power-law

curve (βxα), the complexity of this method is less than O(n3). Note that this

complexity is a rough estimation and gives a very rough upper bound.

The complexity of this method depends on the matrix size N , which

is irrelevant to the number of non-zero elements because it requires to iterate
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every element in the resulting matrix.

Compared to the above matrix-vector based SpGEMM method, when

the sparse matrix size is small, the innter-product-based SpGEMM may not

have advantage over the inner-product based method. However, the inner-

product method may have the advantage when the matrix is dense. On the

other hand, the join operation may be more efficient than merge operation,

because it requires less intermediate memory, and it is also prone to better data

parallelism. Moreover, if the problem is mask-SpGEMM, the inner-product

method complexity is linear to the number of non-zero elements, because it

can skip intersections of elements that are outside the masks.

5.4.3 Outer-Product-Based SpGEMM

The third way to compute SpGEMM is based on outer products. It breaks

down the matrix multiplication into a sequence of outer-products between one

column vector of matrix A and one row vector of matrix B. The result is later

merged into matrix C. Algorithm 9 illustrates the peudocode of this method.

For outer-product-based SpGEMM implementation, when the non-zero

elements are uniformly distributed and the sparse matrices are tall-and-skin,

the computational complexity is O(nkk). Specifically, the method computes

matrix C by iterating every column-row vector pairs of A and AT , and this

process involves in total n iterations (cause there are n different columns).

And inside each iteration is the outer-product between column Ai and row Bj.

The outer-product takes k · k time (because the column length of A (Ai) is
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Algorithm 9: Outer-product based SpGEMM

Input: Sparse matrix A stored in csr format: OffsetA, ColA

Sparse matrix B stored in csr format: OffsetB, ColB

Output: the result matrix C

1 for i ∈ N do

2 for j ∈ N do

3 C ← (Ai ×Bj) ∪ C

4 end

5 end

in average k). Therefore the total time is therefore O(nkk). For the second

case in which the sparse matrix is short-and-fat and the nonzeros are uniformly

distributed among the columns, the computational complexity is O(nkk). The

analysis is similar with the first case. For the third case where the distribution

follows a power-law curve (βxα), the complexity of this method is less than

O(n3).

5.5 Join-Based SpGEMM

5.5.1 The Baseline Join-Based SpGEMM

Suppose the matrix has N rows, and M non-zero elements. The baseline

join-based SpGEMM iterates through each element in matrix C by rows and

columns. And the element cij is obtained by intersecting the i-th row of A (Ai)

with the j-th column of B (Bj). Listing 5.1 shows the merge-based intersection
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method.

1 int scalar_merge_intersection(int L1[],

2 int n1 , int L2[], int n2) {

3 int i = 0, j = 0, r = 0;

4 while (i < n1 && j < n2) {

5 if (L1[i] < L2[j]) {

6 i++;

7 } else if (L1[i] > L2[j]) {

8 j++;

9 } else {

10 i++; j++; r++;

11 }

12 }

13 return r;

14 }

Listing 5.1: A code example of scalar merge-based set intersection

5.5.2 The Data-Parallel Join-Based SpGEMM

Previous research focusing on CPU intersection has proposed methods to lever-

age the SIMD instructions for accelerations. In order to leverage the SIMD in-

struction, the method performs all-pair comparisons between elements held in

two vector registers. This all-pair comparison introduces more computations,

yet it is actually faster than the scalar-based intersection method on CPU with

vector instructions. The reasons are two-fold: first, the all-pair comparisons
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can replace the compare-and-advance operations in scalar intersection. The

all-pair comparison operation is inherently data-parallel, which is capable of

reducing the number of branch instructions executed, and thus reducing the

mispredictions that can cause expensive pipeline stalls. Second, it is capable

of leveraging the SIMD instructions which can introduce more compute ca-

pabilities than only using scalar instructions. In the following, we introduce

two different data-parallel join-based implementations for intersection-based

SpGEMM on GPUs.

All-pair comparisons. The first method allocates 32 threads in a block to

perform join using 32x32 all pair comparisons. Specifically, the 32 threads

in the thread block first load 32 elements from both row i of matrix A and

column j of matrix AT , and reserve the loaded element in the local register.

Next, the thread block compares the 32 elements in a round-robin fashion. In

the first iteration, the first thread broadcasts its local value A0 to all the other

threads using the shuffle instruction shlf. The other threads will compare A0

with their local element Bi (for thread i). If A0 == Bi, they will increment

their local counter by 1. This process will be repeated for all 32 elements.

After the 32x32 comparison is done, the algorithm will proceed to the next

32 elements. To decide which list gets the next 32 elements, the algorithm

compares the A31 with B31, and the pointer of the list that has a smaller

value will proceed to the next 32 elements. After either iterator reaches the

end of the two lists, the comparison will stop. Afterward, the local counter

of all threads in this block will be aggregated together as the final result and
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stored into Cij. Figure 5.4 illustrates this method.

There can also be different blocking choices for the all-pair comparison

based joins. For example, we can launch 64 threads in a block and arrange

them as 8-by-8 pairs. Figure 5.4 illustrates this method.

0 1 2 3

0 1 2 3

. . .

. . .

31

31

. . .

A

AT

𝑖

C

. . .

Do 32x32 all-pair comparisons:
broadcast each element to all 32 

threads in this warp and compare 
locally 

Ai

AT
j

tidx.0 tidx.1 tidx.31

Figure 5.3: All-pair comparison based join implementation: a 32-by-32 imple-
mentation.

5.5.3 Join Using Wider Data Types

CUDA also provides wider instructions(e.g. int2, int3, int4). Those instruc-

tions can simultaneously manipulate data types that are larger than the con-

ventional 64-bit. With these instructions, wider memory bandwidth can be

achieved. As the scalar-based join method is memory bound, we can further

leverage those wider instructions for acceleration.
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Figure 5.4: All-pair comparison based join implementation: a 8-by-8 imple-
mentation.

The wider integer type requires the array to be memory-aligned. To

fulfill this requirement, one solution is to pad the matrix. However, padding

comes with extra overheads, and padding may not always be guaranteed or

available if the input is provided via an external interface. In such situations,

we need to manually take care of the data alignment. We break down the

neigh list into three regions: the middle region has the aligned starting and

ending addresses, the prelog region is the region from the beginning of the list

to the first memory-aligned point, the epilog region is the region from the last

memory-aligned point to the end of the list. The idea is to compute the middle

region using int4 data types with all-pair data parallelism comparisons and to

compute the prolog and epilog region using the scalar intersection.

Listing 5.4 shows how the intersection using int4 data types is computed.

Firstly, we need to compute the prolog of the two lists. The compute prelog
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1 __device__ uintptr_t compute_prelog(int* addr){

2 char* p = reinterpret_cast <char*> (addr);

3 uintptr_t p_ru = ((( uintptr_t)(p+15) >>4) <<4);

4 return p_ru;

5 }

Listing 5.2: function to get the aligned address of the list start

1 __device__ uintptr_t compute_epilog(int* addr){

2 char* p = reinterpret_cast <char*> (addr);

3 uintptr_t p_rd = ((( uintptr_t)p>>4) <<4);

4 return p_rd;

5 }

Listing 5.3: function to get the aligned address of the list end

function in Listing 5.2 obtains the prolog region by rounding up the list’s

starting address to the closest point that is memory aligned. Elements from

the beginning to the aligned rounding point of the two lists are intersected

using scalar methods. Similarly, the compute epilog function in Listing 5.3

obtains the epilog region by rounding down the list’s ending address to the

closest memory aligned point. The epilog regions are intersected using scalar

intersections. The middle regions that are between the memory-aligned start-

ing and ending points are perfectly aligned, therefore they can be intersected

using the 4-by-4 all-pair data-parallel intersections.

135



1 __global__ int scalar_merge_intersection(int L1[],

2 int n1, int L2[], int n2) {

3 int i = 0, j = 0, r = 0;

4 int tid;

5 uintptr_t prelogi = compute_prelog(i);

6 uintptr_t prelogj = compute_prelog(j);

7 uintptr_t epilogi = compute_prelog(i);

8 uintptr_t epilogj = compute_prelog(j);

9

10 // compute prelog via scalar -intersection

11 while (i < prelogi && j < prelogi) {

12 if (L1[i] < L2[j]) {

13 i++;

14 } else if (L1[i] > L2[j]) {

15 j++;

16 } else {

17 i++; j++; r++;

18 }

19 }

20

21 // compute the middle using wide data types

22 // convert the pointer to int4* pointer

23 int4* pint4_prelogi = reinterpret_cast <int4*> prelogi;

24 int4* pint4_prelogj = reinterpret_cast <int4*> prelogj;

25 int4* pint4_epilogi = reinterpret_cast <int4*> epilogi;

26 int4* pint4_epilogj = reinterpret_cast <int4*> epilogj;

27 while(pint4_prelogi < pint4_epilogi && pint4_prelogj <

pint4_epilogj){

28 int4 n1 = *pint4_prelogi;

29 int4 n2 = *pint4_prelogj;

30 tt += (n1.x==n2.x) + (n1.x == n2.y) + (n1.x == n2.z)

+ (n1.x == n2.w);

31 tt += (n1.y==n2.x) + (n1.y == n2.y) + (n1.y == n2.z)

+ (n1.y == n2.w);

32 tt += (n1.z==n2.x) + (n1.z == n2.y) + (n1.z == n2.z)

+ (n1.z == n2.w);

33 tt += (n1.w==n2.x) + (n1.w == n2.y) + (n1.w == n2.z)

+ (n1.w == n2.w);

34 }

35

36 // compute the epilog using scalar intersection

37 // convert the int4 pointer back to int , start from

where is left

38 int* pi = (int*) pint4_prelogi;

39 int* pj = (int*) pint4_prelogj;

40 while(pi < colA + indA[i+1] && pj < colB +

41 return r;

42 }

Listing 5.4: GPU intersection with wide data types
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5.6 Join-Based SpGEMM Using Hash Meth-

ods

We have discussed above the merge-based SpGEMM methods. Note that the

primitive operations in the join between rows of matrix A and matrix B. The

previous section mainly focuses on using the pointer-based merge method.

Such method takes zero additional memory overheads but is inherently se-

quential. We have also explored different ways to make the scalar join method

parallel across warps. Another way to compute sparse data is by using a hash

table. And there are different ways to optimize the hash table. The hash table

is based on the linear-probing open address method, where we have a fixed

size hash table for each row. One way to leverage hash is to build a hash table

for a row each time, and use the elements in the multiplicand matrix to probe

the hash table. complete the row-matrix-multiplication.

There are different ways to implement hash-based join SpGEMM de-

pending on how the threads are assigned. The first way of hash-based

SpGEMM is to assign all the threads in a block to process the same row.

Figure 5.5 shows the details of this process. This process composes of three

steps. The first step builds a hash table for K rows of the matrix B (K is the

blocking parameter). In order to differentiate elements from different rows, we

use rowid ·N + columnid as the hash key. Afterward, the algorithm performs

the multiplication between each row of A and the block of B by indexing in the

hash table. Then the results of all the threads in this block will be aggregated
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together into Cij.

Another way is to assign all the threads in a block to process different

rows. It has a similar step one as the above method, which builds a hash

table for K rows of matrix B (K is the blocking parameter). But in step two

of indexing the nonzeros in A, this approach assigns each thread to process

a different row of A. In addition, in step three, unlike the previous method,

this method does not need to perform block-wise reduction — the local sum

at each thread corresponds to the nonzero count of one row. Figure 5.6 shows

the details of this process.SpMM using Hash-based Join 
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ck.y
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Figure 5.5: Hash-based SpGEMM implementation: parallel across columns.
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SpMM using Hash-based Join 
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Figure 5.6: Hash-based SpGEMM implementation: parallel across rows.

5.7 Online Scheduling

As we discussed in section 5.3.2, many applications require to perform

SpGEMM iteratively. As the density of the sparse matrix input can change

across iterations, the SpGEMM algorithm should be able to adapt accord-

ingly to the density patterns of the input matrix. Therefore, we need an

online scheduling mechanism that is capable of picking the best performant

SpGEMM algorithm in each iteration.

The design of the online scheduling mechanism should take into account

two important aspects: Firstly, as the scheduling process is happening online,

the process should be light-weight, i.e., the time to compute the scheduling

decision should be negligible compared to the SpGEMM computation time.

Secondly, the online scheduling mechanism should respond appropriately to

the change of input density characteristics.
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There are two different approaches to design the online scheduling mech-

anism: The first approach is based on a theoretical analytic solution. Through

theoretical modeling, one can build the model to work out which SpGEMM

can perform best under a multitude of situations, and only need to pick the

solution suggested by the analysis during the online computation. The advan-

tage of this approach is that it has the assurance of a correct outcome, but

the disadvantage is also that it requires the construction of analytic modeling.

And the computation of online analytics may be too expensive. Meanwhile,

more recently, a lot of research is investigating using machine learning models

to replace traditional analytic models. For example, machine learning based

approaches have been applied in many database tasks to replace traditional

data structures in tasks such as indexing, searching, etc. Comparing to an-

alytical modeling, learning-based approach does not that strong correctness

guarantees. But the advantages of using machine learning models are: first,

the computation of the machine learning model is usually regular. Second,

using a machine learning model is proof of the noise in the input data.

In this work, we plan to use machine learning based scheduling, based on

two considerations: first, there are a variety of different SpGEMM algorithms

and data structures, and it is impractical to construct the analytic solution

for all the combinatorial cases. Secondly, the computation of machine learning

model can be fast and light-weight. Previous work have demonstrated that it

can be used to substitute the complex analytic models for online scheduling.

The online scheduling procedure is illustrated in Figure 5.7. We use
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Figure 5.7: Online scheduling strategy.

a fully-connected neural network as our scheduling model. The reasons are

two-fold: a fully-connected neural network is an important component to con-

struct a classifier. Additionally, it is simple and easy to compute, making it a

light-weight choice for online scheduling. The input to the scheduling model

is the sparse matrix density information. If the sparse matrix is pre-sorted

by row degrees, the power-law parameter can be approximated by the row

density histograms. Therefore, the number of elements per row can be used

to approximate the distribution. But as the neural network requires the input

dimension to be fix-sized, while the data set dimension can vary. To ensure

the input dimension, we subsample the rows of the input matrices uniformly

so that we take a fixed number of rows, and use their densities (the number

of nonzeros divided by N), as the input to the NN model. The model acts as
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a simple classifier and outputs a single value which represents the SpGEMM

method choice. Then the corresponding SpGEMM implementation will be

selected to compute the sparse matrix multiplication problem.

5.8 Experiments

5.8.1 Experimental Setups

Dataset

In the experiments, we use both synthetic and real-world datasets. The syn-

thetic datasets are generated using the boost power-law graph generator [121].

The power-law generator generates graph whose nodes degree follow an expo-

nential distribution:

P (x) = βx(−α) (5.3)

The parameter α controls the skewness of the data distribution. The larger

the α, the more skewed the dataset is. When α = 0, the generated matrix

has uniformly distributed nonzeros. β controls the sparsity of the matrix by

changing the average number of elements per row.

Methods

In the experiments, we compare our four different join-based SpGEMM im-

plementations with a baseline merge-based SpGEMM implementation from

cusparse. The four join-based SpGEMM implementations are join baseline,
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join int4, join dp, and join hash. These four implementations are all based on

the SpGEMM-using-intersection method illustrated in Algorithm 8.

More specifically, we evaluate two SpGEMM computations in our ex-

periments: AAT (non-masked-SpGEMM ) and A� AAT (masked-SpGEMM ).

These two computations are primitive operations appearing in many graph an-

alytics tasks where A is the input graph which is stored as a sparse matrix. In

our experiments, we assume A is stored in CSR format. To compute AAT , the

join-based approach first allocates a dense matrix to store the temporal result.

The dense matrix takes O(N2) space where N is the number of vertices. Next,

the join-based approach computes the intersection for every row-column pair

between A and AT . Note that the i-th column of matrix AT is the i-th row

of matrix A. So no transpose is needed. How the four join-based SpGEMM

methods perform the intersection are summarized below. After intersecting

every row-column pair, the result matrix C which is temporarily stored in the

dense O(N2) matrix will be compactified and transform into CSR format. To

compute the masked-SpGEMM A�AAT , join-based SpGEMM methods first

allocate the memory space of O(nnz) in which nnz the number of nonzeros in

matrix A. Next, the method performs the intersection on the positions of A

that have nonzeros elements.

• Join baseline. The join baseline method computes SpGEMM by in-

tersecting every row and column of the matrices A and B as illustrated

in Algorithm 8. The intersection is based on the sequential intersection

method as shown in listing 5.1. The computation is parallelized such that
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a warp is assigned to compute one row in matrix C, and each thread is

assigned to a different column. In the following experiments, without

special notice, the block size is set to 64, and the grid size is set to 1024.

• Join int4. The join int4 method is similar to the join baseline. It

uses the same join-based SpGEMM idea as illustrated in Algorithm 8,

but when performing the two list intersection, it uses the wider data

types (int4) as discussed in section 5.5.3. Listing 5.4 illustrates the pseu-

docode of this method.

• Join dp. The join dp refers to the methods that use the data-parallel

all-pair comparison intersection scheme as described in section 5.5.2.

Among them, join dp8x8 assigns all 32 threads in a warp to performs 8-

by-8 all pair comparisons. join dp32x1 assigns all 32 threads to perform

1-by-32 all pair comparisons.

• Join hash. The join hash is the join-based SpGEMM method using

hashtable for the intersection as described in 5.6.

• Merge cusparse. The merge cusparse refers to the cusparse library

implementation. The cusparse implementation is based on the merge

method.

System

The experiments in this section are run on a Linux workstation with a TITAN

V GPU. The TITAN V GPU has 12 GB HBM2 memory with 5120 cores, 80
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streaming multiprocessors. The total memory bandwidth is 652.8 GB/s. The

CPU is a 4-core Intel Core i7-4770K architecture, running at a frequency of

3.5GHz.

The GPU programs were compiled with NVIDIA’s nvcc compiler (ver-

sion 8.0.44). The C code was compiled using gcc 4.9.3. All results ignore

the transfer time (from disk-to-memory and CPU-to-GPU). The merge path

operation is from the Modern GPU library [122]. The version of cuSPARSE

used is 8.0 [123].

5.8.2 Performance of GPU Joins with Very Sparse Ma-

trices

In this experiment, we compare our different join-based SpGEMM implemen-

tations on very sparse matrices (i.e., the average nonzeros per row is fixed

and of a limited amount). The methods compared in the experiment include

the sequential join, the two data-parallel join variants, and the merge-based

SpGEMM. In the experiment, we fix the matrix dimensions N to 1000 while

varying the average NNZ per row from 0 to 50. The experiment is based on

masked-SpGEMM. Figure 5.8 shows the performance result.

We can see from the result that the merge is slower than join-based

approaches. There are two reasons for this: firstly, the merge approach does

not efficiently utilize all the threads in a block, when the number of nonzeros

per row is small, as the merge-based method assigns the entire thread block

to process one row. When the nonzeros in a row are smaller than the thread
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block size, some threads will be idle. Secondly, when the nonzeros per row

are very small, the hash merge overheads kick in, and iterating the hash table

takes time linear to the hashtable size, which is much larger than the number

of non-zeros.

Performance of join-based SpMM
• Synthetic data, very sparse matrices ( average nonzeros <100 per row)

• Masked-SpMM

❖ For very sparse matrices, merge-based 

SpMM is slower than join-based SpMM:
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Figure 5.8: Comparison of join implementations on very sparse matrices.

5.8.3 Performance of Join-Based SpGEMM

We have presented the analysis on how the computational complexities of

those algorithms are affected by the density of the matrix in Figure 5.2. In

Figure 5.9 and Figure 5.10, we show the execution time comparisons of those

algorithms on synthetically generated power-law matrices with different den-

sities. We control the densities of the sparse matrices by changing the β value
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of the power-law generator when generating these synthetic datasets. From

the results, we can see that the relative performance can be quite different for

different SpGEMM methods depending on the matrix densities. Figure 5.9

shows the execution time on sparse matrices of different sizes whose density

is 0.3. For this density, we can see that join-based methods generally perform

better than the merge-based methods. We can see that the sequential join-

based method is faster than the merge-based method (cusparse) by 40% ∼ 10x.

The optimized join method leveraging the wider data types (join int4) can be

up to 2x faster than the join sequential. Figure 5.10 shows the execution time

result on sparse matrices whose density is 0.01. For this density, we can see

that the performance of join-based methods is not as good as the merge-based

methods. This is because join-based SpGEMM would have much higher com-

plexity when the matrices are sparse. They need to check and perform many

unnecessary joins on the elements that do not exist in the result.

5.8.4 Comparison on Different Densities

Figure 5.11 shows the performance of different SpGEMM methods on varying

sparsities. The result is based on generalized SpGEMM (without mask). We

can that for sparse matrices in which densities are less than 0.1, merge-based

methods are better. This is because their complexity is lower than join meth-

ods, which needs to perform many unnecessary joins even the elements are

zero in the result. When density is above 0.1, join-based SpGEMM methods

are faster than merge-based methods. This is because the amount of compu-
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Figure 5.9: Comparison of join implementations on relatively dense synthetic
data in which the densities are 0.3.Sparsity = 0.01

0

10

20

30

40

50

60

70

N

cusparse

join_base

join_int4

❖ For small N ( < 4000), join 
method is better than 
merge-based method.

❖ Large N, merge-based 
method is faster than 
join-based method

Performance on varying sizes (sparsity =0.01)
Time(ms)

Figure 5.10: Comparison of join implementations on relatively sparse synthetic
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tation performed by the merge method and join method comparable when the

matrices are relatively dense. On top of that, the merge method would incur

overheads. In particular, when the result is relatively dense, there would be

many contentions in the hash table merge operation.Time vs sparsity on join-based methods
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Figure 5.11: Comparison of join implementations on varying sparsities.

5.8.5 Performance on the Hash-Based Join Kernels

In this section, we compare the performance of our hash-based SpGEMM

implementations. The results are shown in Figure 5.12 and Figure 5.13. Hash1

refers to the method where all the threads in a warp collectively process the

columns across the same row, and Hash2 refers to the method where threads

in a block process different rows. Experiments are conducted on synthetic
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datasets whose densities are 0.05.

Our implementation uses an open-addressing hash. In the implementa-

tion, we build 1K hash table for each row, and warps build hashtables for blocks

of rows simultaneously. The result in Figure 5.12 and Figure 5.13 demonstrates

the impact of different blocking parameters on performance. Both experiments

have similar settings, but the hash table size per row changes. Figure 5.13 has

larger hash table size per row. We can see from the result that Hash2 (threads

parallel across different rows) is faster than Hash1 (threads access different

columns). And increasing the hash table size can help improve performance.

This is because a larger hash table can reduce contention in the hash building

process.

Performance on the Hash-Based Join Kernels with Varying Densities

In this experiment, we compare the performance of our hash-based SpGEMM

implementations against the merge method. The general SpGEMM (without

mask) problem is implemented in this experiment. The results are shown in

Figure 5.14 and Figure 5.15. Figure 5.14 shows the performance on synthetic

datasets whose densities are 0.3. We can see that hash-based implementation

can be 10x faster than merge based method. Figure 5.15 shows the perfor-

mance on datasets whose densities are 0.01. We can see that for such sparse

datasets, merge based cusparse is faster than hash-based implementations.

This is because for very sparse datasets, the complexity of the join-based

methods is related to N2, which is much higher than that of merge based
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Figure 5.14: Comparison of hash-based join implementations on relatively
sparse synthetic data in which the densities are 0.3.

5.8.6 Performance on Real-World Dataset

We evaluate our implementations on real-world datasets. These real-world

datasets are collected from the SuiteSpare Matrix Collection. Their details are

shown in Table 5.1. In this experiment, we compare our iterative SpGEMM

implementations with machine-learning based scheduling against the baseline

method which keeps using the merge-based SpGEMM implementations cross

iterations.

Specifically, our scheduling method is based on the neural network
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scheduler as described in section 5.7. The scheduler is a two-layer fully con-

nected network. Each layer has 100 neurons, followed by a softmax layer in the

end. The output of this neural network is a scalar, whose value will be rounded

to an integer between 0 to 5, representing the join baseline, join int4, join dp,

merg cusparse, and join hash based method respectively. In each iteration, we

first execute the scheduling neural network. And based on the output of the

scheduling neural network, we chose the corresponding SpGEMM method.

From the experiment result, we can see that our scheduling-based im-

plementation can be up to 3.6x faster than the non-scheduling one, after run-

ning for three iterations. The speedups come from the fact that the matrix

is progressively becoming denser and denser after several iterations, and our

scheduling mechanism is capable of capturing the density change and switch

to a faster SpGEMM implementation accordingly. For example, the bcsstk13

dataset has a sparse input matrix A which has on average 20 elements per row.

The first AAT iteration is performed using the merge-based method. But after

the first iteration, the density of the resulting matrix is significantly increased.

Our scheduling mechanism is capable to adapt such change in density and

switch to a hash-based SpGEMM method (join hash) for the subsequent iter-

ations. This can result in over 3x speedups comparing to the baseline method

that sticks to merge-based implementations. On the other hand, we didn’t

observe speedups for dataset bcsstk17 and cant. This is because these two

datasets didn’t trigger the change in SpGEMM method, either because their

density didn’t change much across iterations, or the neural network scheduler
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Table 5.1: Performance comparison on iterative SpGEMM computations with
real-world datasets.

Dataset No. nodes No. edges baseline scheduling speedup

bcsstk13 2003 42943 23.777984 6.475968 3.675
bcsstk17 10974 428650 79.097119 89.09 0.88
cant 62451 2034917 4088.257021 4085.100191 1.00
opt1 15450 973052 4681.783642 951.42 4.92
msc 10849 620313 7175.93 522.25 13.74

didn’t produce the correct prediction. That is why there are no speedups or

and there is even a performance drop because of the extra overheads incurred

when running the scheduler.

5.8.7 Performance on Real-World Graph Datasets with

Skewed Distribution

Many graph datasets have skewed distributions, in which some rows can have

a lot more elements than others, and this would introduce the load balanc-

ing problem in sparse matrix multiplication computation. To tackle the load

balancing problem, we introduce a diverse set of thread assignment strate-

gies. Specifically, we propose to introduce block strategies to divide the input

matrices into regions of different row densities. Then we can assign different

thread blocks to process different regions. For example, we could group rows

whose density is more than 50% together, and assign large thread blocks to

process such rows. And for rows whose density is rather sparse, we should

assign smaller thread blocks to achieve better resource utilization. Therefore,
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we introduce the following assignment plans to tackle the skewed datasets: we

assume that the input matrix is presorted by row degrees, and we have a pool

of pre-defined thread assignment strategies as illustrated below. At run time,

A light-analysis analysis will be performed on the input matrix densities and

the best-fit thread assignment strategy will be selected based on the analysis:

• Assignment strategy 1. The whole matrix is treated the same. Each row

is assigned with one thread block of 32 threads.

• Assignment strategy 2. The whole matrix is treated the same. Each row

is assigned with one thread and one thread block has 32 threads.

• Assignment strategy 3. The matrix is divided into a “dense” region

and a “sparse” region. The “dense” region consists of rows at the top

twenty percent (after sorting by row degrees in descending order), and

the “sparse” region is the rest of the rows. The top twenty percent rows

are assigned with thread blocks of size 256, and the rest of the rows are

assigned with thread blocks of size 32.

• Assignment strategy 4. The matrix is divided into a “dense” region and

a “sparse” region. The “dense” region consists of rows at the top ten

percent after degree sorting, and the “sparse” region is the rest of rows.

The top ten percent rows are assigned with thread blocks of size 256,

and the rest of rows are assigned with a single thread per row and the

thread block size is 32.

The experiment in this section is based on masked-SpGEMM problem.
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We extend the join baseline with the above assignment strategies. Figure 5.16

shows the performance of these different assignment strategies on real-world

graph data collected from the SNAP datasets [86]. The graph dataset statis-

tics are shown in listing 5.2. We can see that different datasets can favor

different assignment strategies. There is no one-size-fits-all strategy that fits

all datasets.

In order to pick the best assignment strategy, we leverage the neural

network scheduler to perform a light-weight analysis on the densities of the

input matrices. We re-train the neural network scheduler with these amended

assignment options. The input to the neural network is the same as before:

a 1x100 vector that represents the densities of 100 rows subsampled from the

sparse matrix. The output now becomes an integer value from 0 ∼ 9, instead

of from 0 ∼ 5. Value 6, 7, 8, and 9 refers to the assignment strategy 1, 2, 3,

and 4 respectively. After the retraining, the accuracy of our neural network

predictor drops from 83.8% to 72.2%, but it is able to incorporate different

assignment strategies for skewed datasets.

Note that the above experiment is a preliminary step towards solving

the load balancing issue with the skewed datasets. In the experiment, we have

only demonstrated four different assignment strategies and on a join baseline

implementation, but we believe that this idea can be easily extended to more

assignment strategies, and we can incorporate into more join- or merge-based

SpGEMM methods. Additionally, how to better design the neural network

scheduler for better accuracy and speedup is also an interesting open question
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Table 5.2: Graph dataset characteristics.

N M avg nnz/row

cit-HepPh 34,546 421,578 12.2
cit-HepTh 27,770 352,807 12.7
web-Stanford 281,903 2,312,497 8.2
com-dblp 317,080 1,049,866 3.3
ca-CondMat 18,772 198,110 10.5
web-Google 875,713 5,105,039 5.8
roadNet-PA 1,088,092 1,541,898 1.4
p2p-Gnutella 10,876 39,994 3.6

that can be left as future work.
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Chapter 6

Summary and Future Directions
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In this dissertation, we investigate the acceleration and performance

tuning of the motifs in machine learning tasks on modern processors. The

motifs form the backbones of understanding the interplay between software

optimizations and hardware architecture, which is a fundamental step towards

building a portable and efficient end-to-end ML systems. In particular, this

work is focusing on two sets of computational kernels: the dense computa-

tional kernels in convolutional neural networks, and the sparse kernels in data

analytical tasks such as social networks. These kernels are fundamental to a

majority of machine learning tasks, and have received tremendous attention

161



recently in both academia and industry. Figure 6.1 demonstrates the overview

of this dissertation.

Carnegie MellonCarnegie Mellon
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Problem: Traditional high-performance scientific 
library fails to optimally address ML kernels.

Figure 6.1: Overview of this dissertation

6.1 Summary

In chapter 2, we investigate the optimization of dense kernels in machine learn-

ing using convolutional neural networks as an example. The computation of

convolution layers in deep neural networks typically rely on high performance

routines that trade space for time by using additional memory (either for pack-

ing purposes or required as part of the algorithm) to improve performance. The

contributions are:
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• We demonstrate that a high performance direct convolution implemen-

tation can not only eliminate all additional memory overhead, but also

attain higher performance than the expert-implemented matrix-matrix-

multiplication based convolution.

• We also show that our implementation scales to larger number of proces-

sors without degradation in performance as our implementation exploits

the dimension of the kernel that has the highest amount of parallelism.

In contrast, current high performance matrix-multiply based implemen-

tations do not scale as well to a larger number of processors.

In chapter 4 and chapter 5, we investigate the optimization of sparse

kernels. Sparse kernels present a different set of challenges compared to dense

computations. We present the technique that can improve the data-parallelism

of the irregular computations of sparse kernels, as well as investigating the

effects of algorithm and data structure choices on the performances. Overall,

in these chapters, we demonstrate how to accelerate the notoriously irregular

sparse operations on modern processors (i.e., CPU, GPU).

• We primarily focus on Sparse Matrix multiplication with another sparse

matrix (SpGEMM) as it is a dominant and versatile component used in

social science analytics tasks very low fractions of peak processor perfor-

mance.

• We demonstrate how the implementation of SpGEMM can be bro-

ken down into different combinations of primitive operations such as
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merge/join, and explored how the different implementation choices can

affect performance under varying input.

6.2 Takeaways and Reflections

Algorithm and implementation codesign

Algorithms. Algorithm choice is an important factor that constitute the

foundation for computation complexity. For sparse applications, we demon-

strate that there are no one-size-fits-all algorithms, and that algorithms should

adapt for different input.

Implementations. Despite the fact that the choice of algorithms is a fun-

damental factor affecting the total complexity, it is not the only determinant

factor. Implementation has an equally important influence. In performance

optimization and tunings, implementation sometimes can overtune the algo-

rithm choices — some low complexity may end up performing poorly on mod-

ern architectures. The specific evidence have been demonstrated in both our

dense and sparse works — in the optimizations of dense convolution neu-

ral networks, we demonstrated that the algorithms with lower complexities

such as FFT-based implementations, Winograd-based implementations do not

have advantages over direct convolution methods, in both aspects of memory

and performance. This is because despite of low complexity, FFT and Wino-

grad implementations have computational pattern that fails to take the most

out of the computational resources on today’s processors, and also they come
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with extra memory overheads which can result in inefficiencies. Similarly for

the sparse applications, we also see that sometimes all-pair comparisons (the

inner-product based method) that have higher complexity can be faster than

merge-based methods on real systems. The results obtained in this disserta-

tion emphasize the importance of algorithm and implementation co-designs

when we are tuning the performance on modern processors.

AI vs. scientific computational motifs

Scientific computational kernels are appearing in the domains of linear algebra,

signal processing, differential equations, etc. There are decades of research in-

vestigating the computational motifs in the above domains. AI and machine

learning as an emerging domain, shares similarities as well as differences with

the traditional scientific computing in computational motifs. Broadly speak-

ing, the motifs of these two domains can be categorized based on their access

patterns as dense and sparse. For example, the neural networks are similar

as traditional linear algebra computations in scientific domains, because they

are both dense and regular. Graph or data analytic tasks in learning and data

science domains are similar to the traditional sparse scientific problems such

as differential systems, in that they both work on sparse data that has random

and irregular computational patterns. Despite the dense/sparse similarities,

however, when it comes the computation details, AI/machine learning tasks

and scientific tasks are not exactly the same. For example, the data they

are working on can have different dimensions, the computation can have dif-
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ferent orderings, or the data types can be different. All of these factors can

result in different data reuse, blocking choices, etc. The optimized implemen-

tation strategies therefore would be different. Thus the traditional libraries

designed for scientific applications can not be directly used for the emerging

AI applications. But on the other hand, the general lessons/methods learned

from optimizing scientific applications can be adapted to the emerging do-

mains when it comes to the general design principles, performance models,

optimization approaches.

Performance tuning

Performance comes from co-designs of algorithms and implementations. To

attain high performance on a given platform, traditional approaches can be

divided into two categories: the auto-tuning approach which treats the appli-

cation as a black-box and enumerates all the possible design parameters to

find the best configuration. Another approach is analytical modeling. The an-

alytical modeling approach constructs the model for the underlying systems,

and attempts to derive the best configuration based on the analytics. The

auto-tuning approach can be inefficient, because there can be explosive range

of search space which is impractical to enumerate, especially with the growing

complexity of nowadays hardware designs. In contrary, an analytical model

can leverage expert knowledge to alleviate the search burden. But for new

applications/systems, it may fail to accurately capture the systems or appli-

cation characteristics. Additionally, it can not incorporate the actual system
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response. Model verification can be a nontrivial task. Therefore, a combina-

tion of analytical modeling and auto-tuning may be a more practical choice

for the future performance tuning research.

6.3 Future Directions

We foresee a variety of directions and topics that could potentially benefit

from the work and ideas in this dissertation. In the last section, we provide

discussion and suggestions on future search opportunities.

Accelerating diverse machine learning “motifs”

With the booming growth of machine learning research, learning models are

vigorously progressing. New learning models are coming out one of another,

and existing models are also constantly updated and optimized, and evolving

towards different scenarios. For example, a lot of research work have proposed

different ways to prune and compress CNN models. Some work are focusing

fine-grained pruning that prune out the neurons of small values in the network.

Fine-grained pruning can result in irregular layer structures where nonzeros

show up randomly. Some work are focusing on regular pruning where they

prune out an entire set of rows/columns/layers of neurons. In addition, there

are also a great number of research over these years on how to compress the

networks by using fix-point numerical numbers. On top of this, the network

model structures are also evolving to adapt to different domains. For example,

167



there are 3D neural networks, or networks with mixed filter shapes. All these

models would requires more acceleration and performance tuning. We believe

there are a plenty of opportunities for hardware/software codesigns . And the

acceleration would need to consider the hardware features and computational

patterns. We suspect that these followups can benefit from the optimization

principles discussed in this thesis.

Implications for AI/ML accelerator design

There is an increasing number of work focused on the design of accelerators

for learning applications. Moreover, in industry, hardware companies have re-

leased new architectures/accelerator engines for learning applications. Many of

these accelerator engine designs are intended for matrix or tensor operations —

as matrix/tensor multiplication is believed to be at the heart of machine learn-

ing models such neural networks. Our work in this dissertation can provide

insights for the accelerator designs. We have provided the model-based analy-

sis on the convolution neural networks, demonstrated the data reuse pattern,

parallelism design. These can be directly applied when designing the memory

hierarchies, and the execution engines.

Implications for cross-stack system optimizations

Over recent years, a handful of machine learning libraries and systems have

been built and released such as pytorch, tensorflow, graphlab, etc. An effi-

cient systems would benefit from cross-stack optimizations. The reasons are
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two-fold: cross-stack optimization enables the maximum customization from

hardware, compiler to algorithm, and the thorough customization ensures the

resources are being fully utilized. Secondly, cross-stack design can enable per-

formance portability. Performance portability across platforms and processors

is an nontrivial task, because different platforms and processors can have dis-

tinct architecture characterstics, and there is hardly an one-size-fits-all imple-

mentation that can overcome all the differences. Secondly, different platforms

and systems have their specific languages and instructions. Programs opti-

mized for one platform cannot be directly migrated to another system. But in

our work we have demonstrated that the implementation strategies can share

some similaries across processors (different GPUs, and also across CPU and

GPU). Moreover in the optimization for sparse applications, we demonstrate

that how a computation kernel (SpGEMM) can be broken down into a se-

ries of primitive operations (join, union, etc), which can result in a variety of

implementations. Therefore, there is a chance for the use of high-level DSL

that is capable to express different algorithms, and transform the algorithm

choice to the lower-level implementation methods, and then platform-specific

code. In addition, the layered DSL transformation enables the separation of

low-level implementations from high-level algorithms, facilitating the process

of performance portability across platforms.
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