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Abstract

Consumption of fossil fuels has caused climate to change at unmanageable rates,
making adaptation difficult both environmentally and economically. This is shown
by an orders-of-magnitude increase in global extinction rates, signaling environmental
destabilization. It is also shown by an increasing rate and severity of extreme weather
events such as droughts, floods, or wildfires, straining our economies and endangering
our food & water supplies. We may be able to slow these changes by transitioning
from fossil fuels to solar energy, but solar energy’s inconsistent availability makes
implementation difficult. This could be addressed by storing the energy in solar fuels,
which are fuels created from solar energy, CO2, and H2O. Unfortunately, solar fuels
are hindered by a lack of commercial viability. We could solve this issue by finding
catalysts that produce solar fuels more quickly, selectively, and efficiently.

This thesis comprises several projects aimed at discovering catalysts for solar fuel
production. We first show how recent advances in computation and data science
can accelerate the catalyst discovery process. We illustrate this point by creating a
software framework that performs high-throughput density functional theory (DFT)
calculations, which can be used to predict catalyst performance. Then we combine
our framework with a heuristic method for “active discovery”. Active discovery is
the automated process of: using a dataset to choose next experiments; adding the
experiment results to the dataset, and repeating this process iteratively. We used
active discovery to identify several catalysts for CO2 reduction and H2 evolution.
We then work with collaborators to find experimental evidence showing that one of
the candidates, CuAl, can reduce CO2 to ethylene with selectivity of up to 80%.
Next, we improve our active discovery process by creating a multiscale model that
predicts macro-scale catalyst performance from atomic-scale DFT functional theory
and machine-learned predictions. Lastly, we combine this model with a multiscale
sampling strategy for selecting calculations, and we show how this strategy can be
used to discover catalysts even more efficiently.

Thesis Supervisor: Zachary W. Ulissi
Title: Assistant Professor
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5-4 Calibration curves and parity plots of an overconfident NN ensem-

ble, an underconfident Gaussian Process (GP), and better-calibrated

Convolution-Fed Gaussian Process (CFGP). The vertical uncertainty

bands in the parity plots indicate ±2 standard deviations in the un-

certainty predictions of each model. For clarity, we sampled only 20

points of the 8,289 test points to put in the parity plots. It follows

that relatively overconfident models would have more points with un-

certainty bands that do not cross the diagonal parity line; relatively

underconfident models would have more points that cross the diagonal

parity line; and a well-calibrated model would have ca. 19 out of 20

points cross the parity line. . . . . . . . . . . . . . . . . . . . . . . . . 122
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5-5 Parity plots for all UQ methods used in this study. Shading plots were

used in lieu of scatter plots because the large number of test points

(8,289) obfuscated patterns. Darker shading indicates a higher den-

sity of points. Logarithmically scaled shading was used to accentuate

outliers. The dashed, diagonal lines indicate parity. . . . . . . . . . . 123

5-6 Calibration curves for all UQ methods used in this study. Dashed, blue

lines indicate perfect calibration while solid orange lines indicate the

experimental calibration of the test set. The blue, shaded area between

these lines is defined as the miscalibration area. . . . . . . . . . . . . 124

5-7 Distribution plots of the ML-predicted standard deviations for each

method. Sharpness values are indicated by vertical lines. . . . . . . . 125

6-1 Illustration of Myopic Multiscale Sampling (MMS). Given a database

of DFT-calculated adsorption energies (a), we train a ML model to

predict adsorption energies (b). Then we use those adsorption ener-

gies to estimate activities of catalyst surfaces (c), which we then use to

estimate the activities of the bulk catalysts (d). Then we choose which

catalyst to sample next (e); then we choose which surface on the cata-

lyst to sample (f); then we choose which site on the surface to sample

(g); then we perform DFT of that site to add to the database (h).

This procedure is repeated continuously with the goal of classifying all

catalysts as either “relatively active” or “relatively inactive”. . . . . . . 136

6-2 Multiscale modeling strategy for estimating the activity of a catalyst.

For each adsorption site, we obtain a machine-learned estimate of its

adsorption energy along with uncertainty. Then we aggregate the en-

ergy distributions for all sites within each surface through a minimum

operator across sites. Next we transform the energy distributions for

all surfaces into activities using a Sabatier relationship. Finally we av-

erage all the surface activities to obtain an estimate of overall catalyst

activity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
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6-3 Myopic Multiscale Sampling (MMS) overview. At the highest level, we

choose a catalyst to query using level-set estimation—to be specific, we

use the probability of incorrect classification as our acquisition func-

tion. At the medial level, we choose a surface of the catalyst using

uncertainty sampling. At the lowest level, we choose a site on the

surface using Bayesian optimization to find the lowest energy site. . . 141

6-4 Performance and convergence results for the simulations on the synthe-

sized dataset. a. 𝐹1 score of the multiscale model during simulation of

the synthesized data. For clarity of visualization, we plotted the rolling

average of the 𝐹1 score using a window of 20 batches. b. predicted

change in 𝐹1 score (Δ𝐹 ) of the multiscale model during simulation

of the synthesized data. For clarity of visualization, we plotted the

rolling average of Δ𝐹 using a window of 40 batches (excluding the

Myopic Multiscale Sampling (MMS) null line, where no averaging was

done). RS represents “random search” while MMS represents Myopic

Multiscale Sampling. . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6-5 Performance and convergence results for the simulations on the the

Generalized Adsorption Simulator for Python (GASpy) dataset. a. 𝐹1

score of the multiscale model during simulation of the GASpy dataset.

b. Δ𝐹 of the multiscale model during simulation of the synthesized

data. RS represents “random search” while MMS represents Myopic

Multiscale Sampling. . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
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6-6 Example of diagnostic plots that we recommend monitoring during an

active discovery campaign: a. predicted change in 𝐹1 score (Δ𝐹 );

b. residuals between the real data and the surrogate model’s predic-

tions; c. expected calibration error[170] of the surrogate model; d.

the predicted uncertainties of surrogate model in the form of the pre-

dicted standard deviation (𝜎); and e. the negative-log-likelihood of the

surrogate model.[170] These results were simulated by using the My-

opic Multiscale Sampling (MMS) method with the Convolution-Fed

Gaussian Process (CFGP) model on the GASpy dataset. For clarity

of visualization, we plotted rolling averages of all values in this figure

using a window of 100 queries (excluding the Δ𝐹 values, where no

averaging was done) . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

A-1 Elements considered in this screening. Shading of an element

indicates its inclusion in this screening study. . . . . . . . . . . . . . . 179

A-2 Identification of surfaces with near-optimal Δ𝐸H values for

HER. a, Distribution of the number of near-optimal surfaces identi-

fied. b, The normalized distribution of the low-coverage H adsorption

energies of all of the surfaces enumerated by this study. Dashed lines

indicate the ±0.1 eV range around the optimal Δ𝐸H value of -0.27

eV. c, Surfaces whose low-coverage H adsorption energies have been

calculated and verified with DFT. d, Surfaces whose low-coverage H

adsorption energies have been calculated only by the machine learning

models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
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A-3 H2 evolution efficiency map for bimetallics. Visualization of two

component intermetallics whose surfaces have low-coverage H adsorp-

tion energy (Δ𝐸𝐻) values inside the range of [-0.37, -0.17] eV. White

shading indicates an absence of any enumerated surfaces; grey shading

indicates that all Δ𝐸𝐻 values are outside the range of [-0.37, -0.17] eV;

and colored shading indicates possible efficiency. The Δ𝐸CO values

used to create the upper half of this figure were calculated by DFT,

and the values used to create the bottom half were calculated by the

surrogate model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

A-4 Surrogate modeling performance of final model. Performance

metrics for 16 models created from 90/10 train/test splits on all DFT

data for predicting (a) Δ𝐸CO (n=19,644) and (b) Δ𝐸𝐻 (n=23,141).

Black points represent results for each of the 16 models, bar heights

indicate average values, and red lines indicate average values ±1 stan-

dard deviation. Parity plots when predicting catalyst performance for

(c) CO2RR and (d) HER. Parity plots when predicting (e) Δ𝐸CO

and (f) Δ𝐸H. Darker shading indicates a higher density of points;

dashed lines indicate parity; and dotted lines indicate 95% prediction

intervals—i.e., parity±2×MAE. The parity plots in (c-f) were gener-

ated using a model that was trained using a 100/0 train/test split. . . 184

A-5 Learning curves. Error metrics vs. size of training set when calcu-

lating adsorption energies for (a) CO and (b) H. RMSE is the root

mean squared error; MAE is the mean absolute error; and MAD is the

median absolute deviation. . . . . . . . . . . . . . . . . . . . . . . . . 186

A-6 Benchmarking of DFT results. The adsorption energies (Δ𝐸) of

various adsorbate/surface combinations calculated by our framework

vs. the energies calculated by various literature sources.[7, 164] The

diagonal line indicates parity. . . . . . . . . . . . . . . . . . . . . . . 187
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A-7 Alternative method for modeling adsorption energy. a, Alter-

native fingerprinting method. Each item in the “coordination” vector

represents the coordination number for a particular element, e.g., Pt

or Ni. Each item in the “neighbors’ coordination” array represents this

same coordination vector, but for each of the adsorbate’s neighbors.

Note that this example is for illustrative purposes only. The vectors

and arrays actually used contained enough items to represent 31 differ-

ent elements. b, Old method for performing regression. Coordination

was used by TPOT to estimate adsorption energy, then the residuals

of that model were combined with the neighbors’ coordinations and

used by a Gaussian process regressor to estimate residuals of the first

model. Summation of the results of the first and second models yielded

the final estimate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

B-1 An example of the numerical encoding of an adsorption site. Vectors

are created for each element present within the first and second neigh-

bouring shells of CO. Each vector contains the atomic number of the

element (Z), the Pauling electronegativity of the element (𝜒) the num-

ber of atoms of that element within each respective shell (CN), and the

median monometallic adsorption energy of CO on that element (Δ ̃︀𝐸).

Color codes for elements: orange is Cu, light gray is Al, dark gray is

C, and red is O. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
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B-2 A simplified example of a numerical representation of a coordination

site which was used for t-SNE analysis. Each item in the “coordination”

vector represents the coordination number for a particular element,

e.g., Pt or Ni. Each item in the “neighbours” coordination” array rep-

resents this same coordination vector, but for each of the adsorbate’s

neighbours. Note that this example is for illustrative purposes only.

The vectors and arrays actually used contained enough items to rep-

resent 31 different elements, totalling in 31 × 32 features. Color codes

for elements: green is Ni, light gray is Pt, black is C, and red is O. . . 236

B-3 Schematic for the synthesis of different catalysts on gas diffusion layers.

a, evaporated Cu. b, ion-implanted Al-on-Cu. c, evaporated-etched

Al-on-Cu. d, de-alloyed Cu-Al catalysts. . . . . . . . . . . . . . . . . 237

B-4 Morphologies of evaporated Cu catalysts on gas diffusion layers. a,

Top-view SEM images before CO2 electroreduction. b, Top-view SEM

images after 5 hours CO2 electroreduction in 1 M KOH at an applied

current density of 600 mA cm-2 in a flow cell. . . . . . . . . . . . . . 238

B-5 Morphologies of ion-implanted Al-on-Cu catalysts on gas diffusion lay-

ers. a, Top-view SEM images before CO2 electroreduction. b, Top-view

SEM images after 5 h CO2 electroreduction in 1 M KOH at an applied

current density of 600 mA cm-2 in a flow cell. . . . . . . . . . . . . . 239

B-6 Morphologies of evaporated and evaporated-etched Al-on-Cu samples

on gas diffusion layers. a, Top-view SEM images of the as-evaporated

Al-on-Cu samples. b, Top-view SEM images of the evaporated-etched

Al-on-Cu catalyst before CO2 electroreduction. c, Top-view SEM im-

ages of the evaporated-etched Al-on-Cu catalyst after 5 hours CO2

electroreduction in 1 M KOH at an applied current density of 600 mA

cm-2 in a flow cell. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
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B-8 CO2 electroreduction performances on pure Cu, ion-implanted Al-on-

Cu, and evaporated-etched Al-on-Cu catalysts. a, Faradaic efficiencies

of gaseous products on pure Cu, ion-implanted, and evaporated-etched

Al-on-Cu obtained from chronopotentiometry tests at an applied cur-

rent density of 600 mA cm-2. b, C2H4 production partial current den-

sity versus potential on pure Cu, ion-implanted, and evaporated-etched

Al-on-Cu. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

B-9 Auger electron spectroscopic analysis of an ion-implanted Al-on-Cu

catalyst. a, Auger secondary electron microscopic image. b, Auger

spectroscopic survey and narrow-scan spectra. c, Concentrations of

Cu and Al. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

B-10 Auger electron spectroscopic analysis of an evaporated-etched Al-on-

Cu catalyst. a, Auger secondary electron microscopic image. b, Auger

spectroscopic survey and narrow-scan spectra. c, Concentrations of Cu

and Al. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

B-11 Pourbaix diagrams. Pourbaix diagrams of a, Cu and b, Al at ionic

concentrations of 1 𝜇𝑀 . The potentials versus the standard hydrogen

electrode (V vs. SHE) can be converted to the reversible hydrogen

electrode scale (V vs. RHE) according to the Nernst equation, V vs.

RHE = V vs. SHE + 0.059 × pH. According to the Pourbaix diagrams,
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M KOH) and ca. 0.48 VRHE at pH 15 (10 M KOH). Al metal is

cathodically protected at potentials more negative than -2.3 VSHE,

which corresponds to -1.47 VRHE at pH 14 and -1.41 VRHE at pH 15. 244

B-12 EDX analysis of an as-prepared ion-implanted Al-on-Cu sample be-

fore CO2 electroreduction. a, EDX mapping. b, EDX spectrum. c,

Elemental concentrations. . . . . . . . . . . . . . . . . . . . . . . . . 245
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B-13 EDX analysis of an ion-implanted Al-on-Cu sample after 5 hours CO2

electroreduction at 600 mA cm-2 (-1.8 to -2.0 VRHE) in the 1 M KOH

electrolyte. a, EDX mapping. b, EDX spectrum. c, Elemental concen-

trations. Potassium is observed on the surface after the reaction. . . . 246

B-14 EDX analysis of an evaporated-etched Al-on-Cu sample before CO2

electroreduction. a, EDX mapping. b, EDX spectrum. c, Elemental

concentrations. Chlorine is observed on the surface due to the use of

HCl solution in the etching process. . . . . . . . . . . . . . . . . . . . 247

B-15 EDX analysis of an evaporated-etched Al-on-Cu sample after 5 hours

CO2 electroreduction at 600 mA cm-2 (-1.8 to -2.0 VRHE) in the 1 M

KOH electrolyte. a, EDX mapping. b, EDX spectrum. c, Elemental

concentrations. Potassium was observed on the surface after the reaction.248

B-16 EDX analysis of a pure Cu catalyst after half-hour CO2 electrore-

duction in 1 M KOH with 1 mM Al(OH)4-. a, EDX mapping. b,

EDX spectrum. c, Elemental concentrations. Fluorine was from the

PTFE/carbon layer in the gas diffusion electrode. Al was electrode-

posited on Cu at an applied current density of 600 mA cm2. Therefore,

dissolving Al into solution was avoided. . . . . . . . . . . . . . . . . . 250

B-17 Auger electron spectroscopic analysis of a pure Cu catalyst after 0.5-

hour CO2 electroreduction at 600 mA cm2 in 1 M KOH with 1 mM

Al(OH)-. a, Auger secondary electron microscopic image. b, Auger

spectroscopic survey and narrow-scan spectra. c, Concentrations of

Cu and Al. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
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B-19 EDX analysis of a pure Cu after immersing in 1 M KOH with 1 mM

Al(OH)4- for 0.5 hour. a, EDX mapping. b, EDX spectrum. c, Ele-

mental concentrations. We manually selected Al which was automati-

cally marked in red by EDX software (Esprit 2.1) with a large error of

43.81%, indicating Al was actually out of the EDX detection limit. In

SEM image in Figure B-14a, the morphology was also changed. Most

of Cu dissolved into 1 M KOH leaving thin Cu(OH)2 nanowires to be
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B-20 Top-view SEM images of the de-alloyed Cu-Al. a-b, De-alloyed Cu-Al

catalyst prepared on a C-GDL substrate by physical evaporation and
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before CO2 electroreduction. a, EDX mapping. b, EDX spectrum. c,
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B-24 HAADF-STEM with EELS mapping images of Cu and Al of a de-

alloyed Cu-Al catalyst after 5 hours CO2 electroreduction. A nanoporous

structure was observed with the de-alloyed Cu-Al after the CO2 elec-

troreduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

30



B-25 STEM-ADF image of the de-alloyed Cu-Al catalyst. The observation
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B-27 Auger electron spectroscopic analysis of a de-alloyed Cu-Al catalyst

after 5 hours CO2 electroreduction at 600 mA cm2 in 1 M KOH. a,

Auger secondary electron microscopic image. b, Auger spectroscopic
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B-32 A possible pathway with intermediates in the CO2 electroreduction.

Optimized geometries of CO2 reduction intermediates from adsorbed
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B-33 Initial and final intermediates of forming ethanol (red) and C2H4 (blue)
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B-36 Auger electron spectroscopic analysis of a de-alloyed Cu-Al catalyst

soaked in 11 mM CuCl2 solution for 0.5 hour. a, Auger secondary
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B-47 Ex situ and in situ synchrotron analyses of the high-performing de-
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Chapter 1

Introduction

1.1 Motivation: climate change & sustainability

As humanity’s populations continue to grow,[120] our energy demands also rise.[38,

6, 5] The majority of this energy demand has been met through the combustion of

fossil fuels, which has increased atmospheric CO2 concentrations significantly.[114]

This increase in CO2 has exacerbated a global greenhouse effect, increasing average

global temperatures at rates that the world’s environments, biological ecosystems, and

economies have struggled to adapt to.[148, 38] Such destabilization raises concerns

regarding the sustainability of our current, fossil-fuel-based energy economy.[114, 43,

148] We need a way to meet our increasing energy demands while mitigating the

consequential destabilization of the world’s environment, climate, and economies.

Thus alternative methods of energy generation and storage are desired to reduce

dependence on fossil fuels.

The most abundant source of sustainable energy is the sun.[140] Unfortunately,

solar energy is intermittent and must be stored for on-demand use. One possible

solution is to store the energy in battery stations that are connected to electrical

grids.[31] Energy storage in batteries could address the needs of our power grids, but

it does not address the needs of the transportation sector—e.g., automobiles, trains,

or planes. This sector requires fuels that are energy dense and easily transported.

One promising strategy is to store sustainable energy in the form of chemical
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Figure 1-1: Example of a electrochemical cell that uses solar energy to convert CO2

into hydrocarbon fuel. (Credit: Clarissa Towle/Berkeley Lab)

bonds. For example, we could split water into hydrogen and oxygen and then use

the hydrogen to feed fuel cells. Or we could reduce CO2 with water to create syn-

thetic hydrocarbon fuels (Figure 1-1), which could be fed directly into the current

transportation infrastructure for a net-zero carbon emission cycle. These are called

solar fuels,[98, 160] and they represent the idea of storing solar/sustainable energy in

chemical bonds for on-point use.

This idea of using sustainable energy to create chemical bonds could also be ex-

tended beyond the energy storage sector. Why not create solar chemicals as well? We

currently rely on fossil fuels as the chemical feed stocks for the chemical industry.[97]

This includes production of ammonia, which is used to create fertilizer that supports

the world’s food supplies,[67] further exemplifying our reliance on a limited resource.

Reducing our dependence on fossil fuels by enabling solar fuel and solar chemical

production may improve the long-term sustainability of humankind. Thus the goal of

this thesis is to contribute to the research community’s goal of enabling commercial
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production of solar fuels and chemicals.

1.2 The role of catalysis in sustainable energy

Commercial production of solar fuels and chemicals needs to be economically feasible.

Such feasibility is governed by the capital and operating costs of the chemical facilities

that would produce them. In turn, these capital and operating costs are governed by

the rate, selectivity, and thermodynamic efficiency of the reactions. For the reactions

that we are interested in—e.g., CO2 reduction, H2 evolution, or ammonia synthesis—

we do not yet have reaction catalysts that are sufficiently active, selective, efficient,

and stable. We have found catalysts that meet some of these criteria for some of these

reactions, but we have not yet found catalysts that meet all of the criteria.[160] Thus

our current goal is to discover catalysts that are active, selective, efficient, and stable

enough to enable commercial production of solar fuels and chemicals.

Originally, catalyst discovery was performed purely through experimentation. But

advances in quantum mechanical understanding and computational power and have

enabled more sophisticated ab initio studies—e.g., DFT.[137] These studies have im-

proved our understanding of catalytic processes and accelerated our ability to discover

new catalyts.[134] For example, DFT can be used to the calculate the adsorption ener-

gies of reaction intermediates for CO2 reduction to methane (Figure 1-2).[143] These

adsorption energies can then be paired with transition state calculations[62] and/or

Brønsted-Evans-Polanyi relationships[17] to evaluate microkinetic models,[118] which

reveal elementary chemical reaction rates. These reaction rates can elucidate phenom-

ena such as the Sabatier relationship[119] (Figure 1-3), which can be used to quantify

reaction performance. Put simply: We can use DFT to estimate catalyst activity,

selectivity, efficiency, or stability ab initio[133, 119].

Unfortunately, transition-state calculations and subsequent microkinetic modeling

are prohibitively expensive to do for new catalysts, both in terms of computational

cost and human overhead costs. Approximations can be made to reduce these costs,

such as assuming particular reaction pathways or assuming scaling relationships be-
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Figure 1-2: Illustration of how DFT can be used to calculate adsorption energies of
reaction intermediates. These adsorption energies are useful for performing microki-
netic modeling, which provides vital reaction information. Figure obtained directly
from Peterson et al.[143].

tween intermediate energies and/or transition states.[134, 17] These approximations

reduce the fidelity of the results though. Thus there is a tension between the fidelity

of the DFT predictions and the breadth at which we can perform them. In other

words, we need to balance our ability to exploit the accuracy of DFT and our ability

to explore broader search spaces. Given that the solar fuel research community is

still in the initial stages of process development, I propose that we focus on explo-

ration rather than exploitation. Therefore we should focus on generating relatively

large volumes of coarse data so that we can more quickly generate a wider range of

catalysts to screen experimentally.

1.3 Catalysis informatics

Serendipitously, the advancements in computers in the past two decades led to a rise

of large-scale data generation and storage across several industries. This proliferation

of data has led to a surge in research aimed at analyzing large amounts of data—e.g.,

ML or informatics. This surge is exemplified by the success of technology companies

46



Figure 1-3: A set of activity and selectivity volcanoes for CO2 reduction as a function
of CO adsorption energy (GCO*). These are used to predict catalyst performance from
relatively simple descriptors (e.g., GCO*) instead of performing entire microkinetic
modeling analyses. Figures obtained directly from Liu et al.[105].
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Figure 1-4: Example of an “active” method whereby a dataset is used to decide which
datum to query next, after which the datum is obtained and added to the dataset.
This cyclical process is continued iteratively until some stopping criteria are met
that indicate some goal has been achieved (e.g., a surrogate model has been built,
a function has been optimized, or some data were discovered). Reproduced from
Settles.[163]

such as Google, Amazon, or Facebook as well as the explosion in the number of par-

ticipants in conferences such as Neural Information Processing Systems (NeurIPS),

International Conference on Learning Representations (ICLR), or International Con-

ference on Machine Learning (ICML). The use of tools and insights generated from

the ML and technology communities is called “catalysis informatics”.[117]

There are several applications of catalysis informatics. They include software

engineering methods for data generation; database management tools; data analysis;

surrogate modeling; and every combination thereof.[147, 117, 155, 150, 55, 156] Note

that these methods have enabled automatic data generation, which has then enable

a subfield of research on “active” methods. Active methods are defined by their

cyclical procedures that involve analyzing data, choosing which data to search for

next, obtaining it, re-analyzing the updated dataset, and then continuing this process

iteratively (Figure 1-4). Thus “active discovery” is the iterative and automated process

of discovering new data, which is well-suited to the problem of computational catalyst

discovery.
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1.4 Research objective

The goal of my thesis research is to help stabilize the global environment and economies.

I do this by mitigating climate change through advancement of sustainable energy

storage technologies. Specifically, I create and implement methods for discovering

catalysts that may enable commercial production of solar fuels and chemicals.
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Chapter 2

Dynamic Workflows for Routine

Materials Discovery in Surface

Science

This work originally appeared as: Kevin Tran, Palizhati Aini, Seoin Back, and Zachary

W Ulissi. Dynamic Work-flows for Routine Materials Discovery in Surface Science.

Journal of ChemicalInformation and Modeling, 58(12):2392—2400, 2018.

2.1 Abstract

The rising application of informatics and data science tools for studying inorganic

crystals and small molecules has revolutionized approaches to materials discovery

and driven the development of accurate machine learning structure/property rela-

tionships. We discuss how informatics tools can accelerate research, and we present

various combinations of workflows, databases, and surrogate models in the literature.

This paradigm has been slower to infiltrate the catalysis community due to larger

configuration spaces, difficulty in describing necessary calculations, and thermody-

namic/kinetic quantities that require many interdependent calculations. We present

our own informatics tool that uses dynamic dependency graphs to share, organize,

and schedule calculations to enable new, flexible research workflows in surface science.
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This approach is illustrated for the large-scale screening of intermetallic surfaces for

electrochemical catalyst activity. Similar approaches will be important to bring the

benefits of informatics and data science to surface science research. Lastly, we provide

our perspective on when to use these tools and considerations when creating them.

2.2 Introduction

Humans use a substantial amount of fossil fuels to meet increasing energy demands,[4,

3] but this fossil fuel consumption may be causing green house gas emissions and

pollution that are changing global environments and climates[114, 43, 2] at rates that

may be causing an unsafe drop in global biodiversity and ecosystem stability.[148, 151]

To combat this, various alternative energy economies have been proposed.[160, 28]

These alternative economies include the use of photovoltaics, batteries, solar fuels

and chemicals, fuel cells, and other rising technologies.

A common theme among these technologies is that researchers still need to perform

additional materials development to improve economic viability.[160, 146, 24] Some

researchers have turned to ab initio simulations to aid in materials screening and de-

velopment. For example: Density Functional Theory (DFT) is used to predict electro-

catalyst performance for hydrogen evolution, oxygen reduction/evolution, and nitro-

gen reduction;[160] DFT is also used to predict electrolyte stability for batteries;[20]

and both DFT and molecular dynamics (MD) are used to predict material band gaps

for photovoltaics[77, 132]; among many others. These simulations can be computa-

tionally expensive and time consuming to set up, especially when dealing with large

search spaces. This is why many researchers have begun building or using infor-

mation science tools such as workflow management, database creation/management,

or surrogate modeling to accelerate their materials development. These types of in-

formatics tools are plentiful in software engineering fields and are proliferating in

materials informatics fields, but they are less common in the field of surface science

and catalysis.

In this perspective, we first discuss how informatics tools can augment and improve
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computational research for materials screening and development. We then describe

our own informatics tool, GASpy, that we built on top of previous tools to fill a

new niche of data-driven catalyst science: fully automated materials screening. We

show how GASpy can accelerate two common surface science calculation types: low

coverage adsorbate thermodynamics and surface energy calculations. We also show

the recent use of GASpy for the first large-scale screen of intermetallic surfaces for

electrochemical catalyst activity. Finally, we discuss inherent challenges and trade-

offs in developing informatics-based approaches and provide our perspective on their

strengths, their weaknesses, and other considerations for future research efforts.

2.3 Review of informatics tools for inorganics and

surfaces

2.3.1 Databases (DBs)

Computational collaborators often share data in order to avoid performing redundant

calculations, especially when we are in the same research group. We have historically

shared data by simply storing our results in file systems on shared computer resources

and then reporting the location of the files for our collaborators to search and parse

manually. This method is easy to set up and is flexible, but it becomes time-consuming

and intractable as the amount of data that we share increases. This method also

requires that our collaborators have the same access to computing resources that we

do, which is a barrier for other research teams and especially experimentalists. As a

community, some of us have addressed this issue by making new article formats that

contain the underlying data[84] or by making databases, which allow us to store and

share data systematically. Using databases also allows us to reduce the amount of

redundant calculations that we perform as a community.

There are various examples of databases being used in the surface science and

materials community. One widely used databasing tool for small datasets in surface

science is the database module in the open-source Atomic Simulation Environment
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(ASE) which stores simulations as ASE atoms objects in a custom SQL schema.[64]

Many examples of such databases for small calculations have been collected at the

Computational Materials Repository.[95] ASE atoms objects can also be stored in

flexible Mongo schema using the open-source Vasp module,[83] or via the more spe-

cialized open-source pymatgen-db Python module.[136] Other examples of large-scale

databases include (but are not limited to) OQMD,[82] The Materials Project,[72]

Aflowlib,[34] and NOMAD,[1] and we recommend previous reviews for extensive dis-

cussion of their datasets and methods.[63]

The increased use of databases in materials and surface science has drastically

accelerated material discovery by reducing the barrier for collaborative data sharing.

The availability of large, trustworthy databases has also been a primary driver of

surrogate models discussed below. However, these databases are complex systems

and require training for end users to properly populate, query, and manage. For the

most part there are not consistent API’s or schemes to access information or calcu-

lations across databases, in large part due to the overwhelming number of possible

calculation types, levels of theory, and materials classes. Commercial efforts such as

Citrination [63] have attempted to address this API challenge. Jain et. al. also offer

a more detailed review on the impact of databases on the computational research

community.[73]

2.3.2 Workflow Managers (WFMs)

Computational research often involves iterative studies using well-established or deriva-

tive methods, such as calculating bulk formation energies across thousands of mate-

rials or calculating potential energy surfaces across dozens of surfaces. Each of these

calculations takes time for a researcher to configure and manage, and the time required

to repeat the configurations dozens, hundreds, or thousands of times can sometimes

become the limiting factor in these studies. Workflow managers (WFMs) coordi-

nate and automate these common tasks to allow researchers to spend more time on

research and less time performing repetitive tasks.

One of the most established set of WFMs was developed by the same team
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that manages the Materials Project. Their WFMs include Python Materials Ge-

nomics (pymatgen),[136] FireWorks,[71] custodian,[136] and Atomate.[116] Pymatgen

is open-source Python library for materials analysis; it has analysis tools available such

as phase diagram generators or adsorption site finders.[136] FireWorks is is software

that manages calculations across multiple computing clusters, which is known in the

computer science community as pilot abstraction. It provides extensive support for

data-driven science computing such as failure detection and duplication elimination,

long-running project reporting, and dynamic workflows. Custodian manages calcula-

tions for bulk crystal structures in select ab initio codes and can correct some setting

errors.[136] Atomate, which is built on top of pymatgen, FireWorks, and custodian,

provides a number of pre-built and customizable workflows for materials science ap-

plications. Once these tools are installed and learned, performing a larger number

of calculations becomes much easier and performing them consistently becomes more

natural. Other WFMs besides the ones developed by the Materials Project team exist

and are necessary for populating many of the other large database systems. The main

drawback to these WFM tools is that they take time to create and implement, and so

researchers who are developing new calculation methods or dataset classes may not

be able to wait for the construction of the workflow managers for their use-case.

2.3.3 Surrogate Models (SMs)

Even with the development of databases and workflow managers, some processing and

search spaces are still too wide to be able to analyze fully by brute force. This has

spurred the development of numerous surrogate models (SMs). Surrogate models are

substitute models that produce the same predictions as their incumbent models, but

they do so in a fraction of the time and less accurately. For example: Adsorption ener-

gies of intermediates can be correlated using d-band models[58] or scaling relations[8]

instead of DFT. Adsorption properties of surfaces can be predicted using geometric

descriptors, such as the generalized coordination number.[23] Both potential energy

surfaces[13, 60] and reaction mechanisms[172] can be constructed/identified with ar-

tificial neural networks (ANNs). Compounds with low thermal conductivity can be
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Figure 2-1: Literature approaches of various combinations of databases, workflow
managers, and surrogate models.

discovered with Bayesian optimization.[161]

Surrogate models can also be used to discover insights and to supplement ex-

perimental designs. For example: Meredig and Wolverton introduced the Cluster-

Ranking-Modeling (CRM) method to discover chemical descriptors that could be

used to model materials’ behaviors; these descriptors were then used to develop un-

derlying insights into the systems being studied.[123] There is an extensive number of

examples of surrogate modeling showing success, and we refer the reader to textbooks

with further details.[106] The examples we show here are only a small subset of the

amount of published work regarding surrogate modeling.

The main downside of surrogate modeling is that it is inherently less accurate

than classical ab initio models or experiments, and so surrogate model results should

either be used with more caution or verified with classical models and experiments.

2.3.4 Combining DBs, WFMs, and SMs

DBs, WFMs, and SMs can also be combined to yield new combinations of benefits.

The first combination we discuss is the simultaneous use of WFMs with SMs.

An example of this combination can be found in the Atomistic Machine-learning

Package (AMP).[80] AMP is used mainly to create potential energy surfaces with
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machine learning models instead of DFT, but it also has a feature that allows it

to combine these machine-learning-predicted potential energy surfaces with DFT to

perform nudged elastic band (NEB) calculations. AMP’s NEB calculations are per-

formed at drastically accelerated speeds, but the minimum energy pathways that it

yields are still supported by full-accuracy DFT calculations. Other examples of tools

that combine ANNs with DFT workflows are the Atomic Energy Network (ænet)[11]

and PROPhet.[85] Although these tools provide accelerated calculations with full-

DFT-accuracy, they are not protected against data redundancy because they do not

have internal databases to reference.

Another combination is to use DBs with SMs. The natural way to combine these

tools is to use databases of calculations as training data for creating SMs. For exam-

ple, Crystal Graph Convolutional Neural Networks (CGCNN) is one of many packages

that uses calculated properties from the Materials Project database and the Inorganic

Crystal Structure Database to provide material property predictions and atomic level

chemical insights.[184] Materials-Agnostic Platform for Informatics and Exploration

(Magpie) uses data from OQMD to create machine learning based models and predict

properties of crystalline and amorphous materials.[176]

WFMs can also be combined with DBs. For example: the Materials Project uses

its supercomputing resources and workflow tools such as custodian and FireWorks to

perform data processing and analysis for millions of related calculations on bulk mate-

rials. AiiDA is another infrastructure that manages both data and calculations.[145]

This combination of databasing and workflow management helps researchers create

and share large amounts of data while avoiding duplication of calculations. However,

frameworks like these require a relatively high amount of code and data maintenance.
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2.4 Generalized Adsorption Simulations in Python:

GASpy

2.4.1 Dynamic Workflows via Database Queries

The aforementioned databasing/workflow managing frameworks were built mainly

to automate workflows and then applying them to many systems. This is function-

ally different from a standard, manual, expert-driven approach. If an expert wants

to calculate a property of interest for a new system, they typically start by asking

teammates or collaborators for prerequisite data and then checking system folders for

the data. They then submit the smallest set of calculations to fill the gap in knowl-

edge. This expert-driven approach is more flexible in that as long as pre-requisite

data exists—regardless of source or precise method—then the data can be used. Of

course, this method requires the expert to verify calculation context and accuracy,

and there is an inherent trade-off in how verifiable the final calculation is.

For practical, day-to-day scientific explorations we needed a framework that was

more closely aligned with this expert-driven approach, and so we constructed a Gen-

eralized Adsorption Simulator for Python (GASpy).[171] GASpy is an open-source

repository that combines various workflow management packages with databasing

software to create a “smart database” of DFT simulations and results. A user can

query this database and it will return pertinent results that are already stored. If a

user queries the database for results that are not yet stored though, then the “smart”

aspect of the database automatically queues and executes all prerequisite calculations

and stores the results for later reference.

The framework for the smart database is constructed around tasks, which are sin-

gular operations that can be combined dynamically into various pipelines to perform

different calculations. We built our first set of tasks to calculate the adsorption energy

between an adsorbate and a catalyst surface. These tasks are:

• Use DFT to calculate the equilibrium bond lengths within the bulk form of the

catalyst so that the resulting electronic structure and energies can be stored for
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later use. This process is known colloquially as a “relaxation”. GASpy currently

uses bulk structures from The Materials Project.[72]

• Enumerate the various surface facets that may result from the bulk structure

and then relax those surfaces. GASpy uses pymatgen[136] to enumerate the

surfaces of a bulk.

• Enumerate the adsorption sites on the surface. GASpy uses Delauney triangu-

lation as implemented in pymatgen.[128]

• Place the adsorbate on an adsorption site and then relax the adsorbed structure.

• Subtract the gas-phase adsorbate energy and the energy of the surface from the

energy of adsorbed structure to calculate the adsorption energy.[134]

These tasks are then combined with various workflow managers and databasing

software. Some tasks are dependent on others—e.g., a surface needs to be enumerated

from a bulk before any adsorption sites can be identified on the surface. This task

interdependency was managed by Luigi,[15] a software package that simplifies task

execution by managing task prerequisites and interdependencies for the user. All

Luigi tasks that required DFT relaxation are executed through FireWorks.[71] All of

these tasks are summarized in Figure 2-2. New tasks are written by defining: (1)

requirements for the task—usually database queries for results from a previous task,

(2) methods to generate the result from the requirements and specifications, and (3)

a description of where the output will be located so upstream tasks can verify the

task completed and use the results.

All DFT results are stored in Mongo database collections. Mongo is used because

of its ability to change data storage structure easily, which provides flexibility that

is beneficial to a constantly-changing research environment. Note that one Mongo

database collection is dedicated for intermediate DFT results, such as bulk energies.

Another Mongo collection is dedicated for processed results (combining results from

multiple calculations), such as adsorption energies. This separation of intermediate
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Figure 2-2: GASpy workflow in the form of a directed acyclic graph. Each box is
a task, and all tasks are managed by Luigi. The colors of the tasks indicate which
package that Luigi uses to execute the task. Triggering any single task will cause Luigi
to trigger all necessary upstream tasks. Thus querying the database for the adsorption
energy of a specific site will automatically trigger any previously incomplete tasks.
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data from processed data provides the flexibility to create a new collection of pro-

cessed data without needing to unnecessarily parse through extraneous data. For

example: We were able to easily create new tasks that use our intermediate DFT

results from surface calculations to populate a new database of surface energies with-

out ever needing to parse adsorption energy results. This separation of results from

intermediate data allowed us to reuse old data for new a purpose while minimizing

query slow-down from data processing and analysis.

GASpy’s workflow management and databasing framework provides various ben-

efits for computational materials and catalysis informatics. GASpy inherits the main

strength of workflow management frameworks: reduced overhead for performing cal-

culations. Traditional workflows involve training researchers for weeks or months and

then requiring them to spend hours or days managing hundreds or thousands of DFT

relaxations. GASpy users are trained for only a few hours and are able to spend

only minutes to query and queue an arbitrary number of DFT relaxations. GASpy

also inherits the main strength of databases: calculations are pooled together and

never repeated. This includes intermediate calculations as well, which means that a

single bare-surface relaxation queued by one user will be used by all other users when

calculating adsorption energies on that surface.

GASpy’s framework does have some drawbacks though. For small numbers of

calculations, the time required to construct the infrastructure and then use it is

longer than the time required to simply perform and analyze results manually. Thus,

creating and using a GASpy-like framework is efficient when it is based on established

calculation workflows, but it is not efficient when based on non-established calculation

workflows. This drawback is inherent in the framework and unavoidable. There are

other drawbacks to GASpy that could be fixed in the future but have not yet been

addressed. For example: GASpy has no way of handling errors automatically. If a

DFT relaxation fails because a server crashes, then a user must re-query GASpy to re-

queue the relaxation. Or if a DFT relaxation fails because it was unable to converge,

then a user must submit another query to specify different DFT settings and re-

queue the relaxation. There is also no notification system to help users monitor

61



specific DFT calculations. If a user purposefully queues 20 simulations on some

specific copper surfaces, then they only know that their copper surface calculations

are done when they appear in the database. These issues that are unaddressed but

fixable are indicative of one of the main weaknesses of tools such as GASpy: it takes

time to automate everything.

2.4.2 Combining workflow managers, databases, and surro-

gate modeling

Despite these drawbacks, the data querying system of GASpy provides a substantial

advantage: automated simulation frameworks can now be used and implemented

with a few lines of Python code, such as active machine learning. Active machine

learning, also known as optimal design of experiments, is an iterative method for

creating surrogate models. First a surrogate model is trained on a small set of data;

the resulting model is then used to select additional training data.[163, 42] Thus the

model queries its own training data, retrains itself, and repeats this process iteratively

until the model converges. Selection of training data can be performed using various

methods. One example is uncertainty sampling whereby the model queries data at

locations where its predictions are most uncertain. Another example is minimization

of expected error whereby the model queries data at locations that are most likely

to yield useful information that can be used to reduce model error. Most of these

selection criteria are intended to help the surrogate model explore a search space and

thus build a training set to yield a more robust surrogate model.

The querying selection criteria could also be changed to exploit the surrogate

model’s incumbent knowledge. This is the goal of surrogate-based optimization,[59,

32] which is the optimization of a specific objective function based on a simpler,

more inexpensive surrogate model instead of the incumbent, more costly model. For

example: Instead of optimizing the amount of carbon captured by an adsorber by

using a system of partial differential equations, a surrogate model can be used to

perform the same optimization in a fraction of the time.[32]
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2.4.3 Application of GASpy

In the context of surrogate-based optimization, the process of actively and auto-

matically querying new training data is called sample-point refinement.[59] The dif-

ference between active learning and surrogate-based optimization with sample-point

refinement is a subtle but important difference: active learning seeks to construct

a robust surrogate model, but surrogate-based optimization with sample-point re-

finement seeks to optimize an objective function. This difference in goals leads to

different methods for querying new data. An example querying method for optimiza-

tion is the searching surrogate model (SSM) method where new data is selected based

solely on the surrogate model’s prediction of the new data point’s proximity to the

optimum.[59] The fundamental difference between the methods used in surrogate-

model optimization and the methods used in active learning is that the optimization

methods tend to exploit the surrogate model’s knowledge about a search space while

active learning methods tend to explore the search space instead.

In the context of catalysis informatics, the only example of fully automated

surrogate-based optimization with sample-point refinement that we could find is im-

plemented in GASpy. GASpy seeks to find adsorption sites whose adsorption energies

are optimal for particular reactions as determined by literature-sourced volcano scal-

ing relationships.[133, 105] This search/optimization is done by training a surrogate

model on the database of DFT-calculated adsorption energies and then using a com-

bination the SSM sampling method and random/uncertainty sampling to select new

data points. These new data points are simply queried to GASpy’s smart database

framework to queue the DFT calculations. This workflow is illustrated in Figure 2-3,

which we currently use to perform 200–500 DFT calculations per day across three

different computing clusters. These calculations are fully automated and require no

user input at all.

Note that we are able to pause these machine-led DFT calculations and simply

use GASpy as a smart database. Thus we can still use our database of results to

search for both chemical insights and candidate materials, and then we can perform
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Figure 2-3: Active learning/sample-point refinement process for GASpy. Green tasks
are performed with Mongo and gray tasks are performed with Python. The final
task here, “Query GASpy”, is the same final task shown in Figure 2-2. This active
learning/sample-point refinement process is repeated daily.

human-led follow-up calculations in a high-throughput fashion. This is the main

strength of GASpy: we are able to accelerate human-led studies while simultaneously

supplementing these studies with machine-led calculations that ensure that we use

100% of our computing capacity at all times.

We used GASpy in such a fashion to screen intermetallic alloys of 31 different

elements for near-optimal CO adsorption energies, which can be indicative of CO2

reduction activity.[105] GASpy performed approximately 20,000 DFT calculations of

CO adsorption energies over time and found 131 different intermetallic surfaces with

low-coverage CO adsorption energies near the optimal value for CO2 reduction, as

shown in Figure 2-4a. We used the same process to also search for intermetallics

with near-optimal hydrogen bonding energies[133] to search for hydrogen-generating

electrocatalysts; GASpy performed another 20,000 H adsorption calculations to find

304 candidate surfaces.[171]

In addition to identifying candidate surfaces, the DFT results were also used to

identify candidate compositions via t-SNE [113] analysis (Figure 2-4b). This allows

us to gain insights into the potential intermetallic performance based solely on the

number and distribution of potential active sites instead of activity of one surface at

a particular alloy ratio. In this plot, the clusters indicate similarity in site coordina-

tion and elemental combinations. Colors indicate the binding strength between the

adsorbate (CO) and active sites. Black points represent sites that bind too strongly;

pink points indicate sites that bind too weakly; and purple points represent sites with

optimal binding. The clusters that are nearly uniformly purple are further labeled in
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Figure 2-4b; they represent candidate materials for experimental investigation.

We have shown that we can fully automate adsorption energy calculations and

have already begun automating surface energy calculations. It follows that this type

of automation scheme could be extended to other applications, such as transition

state calculations or nanoparticle calculations. Automating such calculations requires

a deep understanding of both the application and software engineering though. This

means that it will be more difficult to create informatics tools for applications and

calculation types that are less understood, such as oxide adsorptions or single-atom-

catalysts (Figure 2-5). It will also be more difficult to create informatics tools without

proper software engineering training, which is another field of expertise itself.

2.5 Perspective on informatics tools

2.5.1 Considerations when using informatics tools

Workflow managers, databases, and surrogate models are all useful informatics tools

that have the potential to accelerate scientific discovery in catalysis. These tools can

be integrated in various combinations to yield new frameworks with new strengths

and weaknesses, summarized in Table 2.1 and Figure 2-6. In general: Both workflow

managers and database tools accelerate and improve informatics-based research at the

cost of increased programming overhead, a longer time for implementation, and re-

duced reliability (compared to expert computational chemists studying new systems).

Surrogate models can be used to screen large search spaces when accuracy is not cru-

cial, or they can be used to gain general insights into important features/factors.

One of Table 2.1’s most interesting insights is that combining workflow managers

with surrogate modeling provides the acceleration benefits surrogate models without

the drawback of reduced accuracy, because the workflow manager is able to automat-

ically verify the surrogate model accuracy at critical points. To use GASpy as an

example: An adsorption site is not considered to be optimal just because the surro-

gate model predicts it to be. It is only considered optimal when the calculation is
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verified by DFT.

The main drawback to many of these tools is the increase in programming overhead

and longer times to implementation. We do not recommend using workflow managers

if you are under severe time constraints, do not have systematically enumerated design

spaces, and/or are still experimenting with the feasibility of the workflows you are

trying to automate. We also note that the management of many of these informatics

tools requires much more strict programming skills and practices.
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2.5.2 Considerations when building informatics tools

We encourage any research teams who intend to build their own informatics tools to

educate themselves on good code documentation, version control, unit testing, effi-

cient coding, and other “good coding practices”.[115, 181, 159] Good code documentation—

e.g., clear and concise naming conventions, document strings, comments, and even

formatting—are crucial for code readability. Code readability is essential because new

team members need to be able to understand and modify old code quickly and eas-

ily. This is especially important for research groups that employ students, since new

students are often working with code written by others. Version control is crucial for

documentation of changes and for managing/minimizing the risks of introducing new

software features. Unit testing is crucial for ensuring that code works and that new

changes do not interfere with other functionalities of the software. The importance

of unit testing scales with the complexity of the software being built, because there

are more opportunities for unintended interactions to cause errors. All of these are

skills are usually taught to computer scientists and not usually taught to classically

trained research scientists. Therefore research groups must ensure that their software

managers learn these programming skills from the numerous available resources, such

as summary articles,[181] textbooks[115, 159] that were written specifically for com-

putational scientists, online video tutorials, workshops, or colleagues. Failure to learn

these skills could result in code bases that are not easily transferable, reproducible,

or sustainable.

We also encourage all researchers who intend to create informatics tools to open

their source code publicly. This helps ensure reproducibility while also allowing oth-

ers to accelerate their research. We could not have made GASpy if the dozens of

researchers and industrial software engineers did not provide their source code pub-

licly. And we publish our source code with the hope that others may be able to

accelerate their work with our code and ideas.

Lastly: We encourage those who are thinking about making their own informatics

tools to first consider whether or not there is already a tool available for you to use.
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If there is an appropriate tool already available, then you will be able to save yourself

the time and effort required in creating something new. If you find a tool that will

“almost work” for your needs, then we encourage you to collaborate with the tool’s

authors to improve that tool. This type of open-source collaboration benefits everyone

and also helps reduce the proliferation of redundant code bases.

2.6 Conclusions

We have both seen and created cases in the materials and catalysis fields where in-

formatics tools have been used successfully to conduct research. Many of these tools

have different strengths and weaknesses; they have different use-cases; and they re-

quire different skills to use effectively. We have both seen and created cases in the

materials and catalysis fields where informatics tools have been used successfully to

conduct research. Many of these tools have different strengths and weaknesses; they

have different use-cases; and they require different skills to use effectively. But when

they are used correctly and in the right situations, they complement and accelerate

incumbent research workflows substantially and are well worth the effort. We encour-

age more researchers in the computational materials and catalysis fields to consider

how they can use informatics tools, and we also encourage them to use these tools

carefully.
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Table 2.1: Various strengths and weaknesses of various informatics tools alongside the corresponding use-cases that we recom-
mend for each.

Informatics tools Strengths Weaknesses Recommended use-case

WFM high-throughput
consistent methods longer time to implement repetitive calculations

derivative methods
DB reduced redundancy increased overhead collaborative efforts

SM accelerated calculations reduced accuracy large search/processing spaces
when searching for general insights

WFM+DB
high-throughput
consistent methods
reduced redundancy

longer time to implement
increased overhead

repetitive calculations
derivative methods
collaborative efforts

DB+SM
reduced redundancy
accelerated calculations
more robust training sets

increased overhead
reduced accuracy

collaborative efforts
large search/processing spcaes
when searching for general insights

WFM+SM

high-throughput
consistent methods
accelerated calculations
no reduction in calculation accuracy

longer time to implement expensive/repetitive calculations

WFM+DB+SM

high-throughput
consistent methods
reduced redundancy
accelerated calculations
enables active workflows

largest overhead
longest time to implement

large screenings
long-term, collaborative projects

71



72



Chapter 3

Active learning across intermetallics

to guide discovery of electrocatalysts

for CO2 reduction and H2 evolution

This work originally appeared as: Kevin Tran and Zachary W. Ulissi. Active learn-

ing across intermetallics to guide discovery of electrocatalysts for CO2 reduction and

H2 evolution. Nature Catalysis, 1:696–703, 2018. It has been edited to include the

supplementary information in Appendix A

3.1 Abstract

Electrochemical reduction of CO2 or H2 evolution from water can be used to store

renewable energy that is produced intermittently. Scale up of these reactions requires

the discovery of effective electrocatalysts, but the electrocatalyst search space is too

large to explore exhaustively. Here we present a theoretical, fully automated screen-

ing method that uses a combination of machine learning and optimization to guide

density functional theory calculations, which are then used to predict electrocatalyst

performance. We demonstrate feasibility of this method by screening various alloys

of 31 different elements, thereby performing a screening that encompasses 50% of

the d-block elements and 33% of the p-block elements. This method has thus far
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identified 130 candidate surfaces across 54 alloys for CO2 reduction and 258 surfaces

across 102 alloys for H2 evolution. We use qualitative analyses to prioritize the top

candidates for experimental validation.

3.2 Introduction

Global energy demands have increased over time and are likely to continue increasing.[4,

3] Meeting these demands using only fossil fuels may not be possible because doing

so may negatively impacts the world’s environments, climate, and biodiversity.[114,

43, 148, 2] Alternative methods for energy production and storage include solar fuels,

which are synthetic fuels created with photovoltaic energy or with photoelectrochem-

ical cells.[98, 160] Examples include H2 created by the electrochemical reduction of

water, which can be combusted or used in hydrogen fuel cells, and synthetic hydro-

carbons created by reducing CO2. Solar fuel production is currently inhibited by a

lack of sufficiently active, efficient, selective, stable, and low-cost catalysts.[129]

High-performing catalysts can be discovered using ab initio methods such as Den-

sity Functional Theory (DFT) to predict catalyst properties. A common approach is

to use DFT to predict thermodynamic energy descriptors that correlate with detailed

microkinetic model results or experimental measurements of catalyst activity and se-

lectivity. For the CO2 reduction reaction (CO2RR), the CO adsorption energy is a

common descriptor for predicting activity towards hydrocarbon production.[105] This

method of using adsorption energies to predict performance is general and has been

applied to many reaction systems,[134] including the Hydrogen Evolution Reaction

(HER).[53] Of course, single descriptors cannot completely describe the electrocat-

alytic performance of an intermetallic, which requires analyses of surface stability,

high coverage thermodynamics, and electrochemical kinetics. These analyses take

considerable resources, and full theoretical studies cannot keep pace with accelerat-

ing experimental studies of intermetallics. Thus, a screening method for prioritizing

experimental and theoretical studies is valuable.

Screening large search spaces is nontrivial. Some methods address this by fo-
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cusing on limited search spaces, such as bimetallic A3B crystals[61] or simple cubic

lattice intermetallics.[101] Other approaches include creating databases of electronic

structure calculations.[68, 154] Such wide-scoped datasets are necessary to perform

robust screening studies, but creating the results in these databases has required col-

laboration between dozens of DFT experts. A consequence of this approach is that

researchers spend a substantial portion of their time configuring, managing, and wait-

ing for DFT calculations, which are inherently time consuming. The personnel cost of

configuring and managing DFT calculations has been adressed by creating computer-

science-based solutions. Generalized frameworks exist that are able to enumerate

surfaces and adsorption sites on arbitrary intermetallic bulk structures.[136, 128]

Software exists that manages computationally intensive calculations across multi-

ple computing clusters.[71] These solutions are vital for performing high-throughput

material screenings.

The computational cost of theoretical materials screenings has been partially ad-

dressed by the development of machine learning (ML) methods to accelerate DFT

calculations. ML regressions on DFT data can yield formation energy predictions at a

fraction of the computational cost[121, 177] or accelerate screenings within individual

bimetallics.[173] Neural networks can accelerate nudged elastic band studies of reac-

tion kinetics[142] or enable the study of disorder on intermetallic configurations.[19]

One of the shortfalls of many of these approaches is that they require experts to man-

ually prioritize new materials to screen and study. Many also rely on DFT-computed

surface features such as the d-band center, or predict activity only at the surface level

without distinguishing between surface sites.[101]

There are some methods that have been used to accelerate computational screen-

ings that may not have been applied to electrocatalyst discovery yet. Surrogate-based

optimization[59] is a method where a surrogate model is built to replace a more com-

putationally expensive model, and then an objective function is optimized on the

cheaper surrogate model. Another accelerative method is active machine learning—

also known as optimal design of experiments.[163] With this method, a surrogate

model is created from a given dataset, and then the model is used to select which
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data should be obtained next. The selected data is added to the original dataset and

then used to create an updated surrogate model. The process is repeated iteratively

such that the surrogate model is improved continuously. This method of iterative

surrogate model screening has already been used in other fields such as discovery of

light emitting diodes,[51] drug discovery,[178] or molecular property prediction.[56]

We created a workflow that borrows ideas from both surrogate-based optimiza-

tion and active machine learning. We used this workflow to screen a search space

of 1,499 intermetallics for potentially selective catalysts for CO2RR and HER. The

workflow identified 54 intermetallics that have surfaces with near-optimal descrip-

tors for CO2RR and 102 intermetallics for HER, including both already-discovered

and undiscovered catalysts. We then use a qualitative, heuristic method for down-

selecting these compounds further, resulting in a shortened list of 10 intermetallics

for CO2RR and 14 intermetallics for HER. Viewing the intermetallic design space

holistically also allows trends and design rules to be identified that are difficult to

see from small case studies. This workflow can be extended easily to other reaction

chemistries for which ideal thermodynamic descriptors are known.

3.3 Results

3.3.1 Framework Construction

Our workflow uses machine learning models to search an arbitrarily large design

space of intermetallic crystals and surfaces for near-optimal activity (Figure 3-1).

Surfaces are searched for ideal CO and H adsorption energies, which are indicative of

catalyst performance for CO2 reduction[105] and H2 evolution,[53] respectively. The

workflow verifies the adsorption energies of these sites by performing DFT calculations

automatically. DFT results are stored in a database, which is used to retrain the

machine learning models. This yields a closed feedback loop of ML screening, DFT

verification, and ML retraining that produces a database of DFT results that grows

continuously, systematically, and without the need for user interaction. It is important
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Figure 3-1: Workflow for automating theoretical materials discovery. a,
The experimental workflow for finding catalysts is accelerated by b, a DFT work-
flow for screening the catalysts ab initio. c, Conventional workflows (blue) require
scientific intuition to select candidates for DFT screenings, while d, our workflow
(red) uses machine learning to select candidates systematically and automatically.
Red text outlines the framework that this study used to perform active machine
learning/surrogate-based optimization.

to note that this workflow does not use ML to accelerate calculations of user-supplied

systems. Instead, it uses ML to guide full-accuracy DFT screenings. Thus we use DFT

to perform a surrogate-based optimization, and we use an active learning feedback

loop as an optimization guide.

3.3.2 Enumeration of search space

To generate a search space of adsorption sites, we obtained 1,499 different intermetal-

lic combinations from the Materials Project[72] across 31 different elements (Sup-

plementary Figure A-1). We enumerated the surfaces on each intermetallic using

pymatgen[136] and then used Delaunay triangulation[128] to enumerate all adsorp-

tion sites on each surface; see the Methods section below for additional details. This

search space encompassed 50% of the d-block elements and 33% of the p-block ele-

ments. Every possible adsorption site on each surface was considered for potential

activity by our ML models.

77



3.3.3 Active learning optimization of catalyst descriptors

We enabled the machine learning of catalyst descriptors by developing a fingerprinting

method to represent an intermetallic adsorption site numerically (Figure 3-2). For

each site, the types of elements coordinated with the adsorbate were tabulated. Each

element type was described with a vector of four numbers: the atomic number of

the element (𝑍), the Pauling electronegativity of the element (𝜒), the number of

atoms of the element coordinated with the adsorbate (CN) as determined by Voronoi

tesselation performed by pymatgen,[136] and the median adsorption energy between

the adsorbate and the pure element
(︁
Δ ̃︀𝐸)︁. Δ ̃︀𝐸 values were calculated from our

own database of adsorption energies, and 𝜒 values were obtained from the Mendeleev

database[110]. We repeated this vector creation process on the second shell of atoms

that are bonded to the coordination atoms. One issue with this method is that it

yields a variable number of features. We addressed this issue using a method found

in literature.[35] See the Methods section below for additional details. Note also that

the illustration in Figure 3-2 this is a simplification. The real fingerprint vector has

4 items per element and 4 elements per shell, which yields a total of 32 items per

fingerprint vector.

These fingerprints were chosen using a combination of intuition, trial-and-error,

and success in other surrogate modeling studies. To account for bulk steric effects,

atomic radii have been used as features.[35] Atomic radii may change depending on

the local environment though, so elemental periods and groups may be appropriate

substitutes for atomic radius. Initial, heuristic investigations showed negligible differ-

ence in performance between using period/group and atomic number though, so we

used the atomic number because of its relatively small dimensionality. To account of

electronic affinity effects, Pauling electronegativity has been shown to be a successful

feature.[101] To account for both sterics and enviromental electronic effects, the coor-

dination number has been shown to be a successful feature.[22] To improve predictive

capability, crude estimates of properties have been show to be successful.[190] In this

setting, the crude estimate of adsorption energy on a specific site is Δ ̃︀𝐸.
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Figure 3-2: Fingerprint of coordination site. Adsorption sites are reduced to
numerical representations, or fingerprints, and these fingerprints are used as model
features by TPOT[135] to predict Δ𝐸𝐶𝑂. 𝑍 is the atomic number of an element; 𝜒
is the Pauling electronegativity; 𝐶𝑁 is the number of atoms of an element within
a shell; and

(︁
Δ ̃︀𝐸)︁ is the median adsorption energy between the adsorbate and the

pure element.

An automated machine learning package, TPOT,[135] was then used to select

a machine learning regression method to predict adsorption energies from the site

fingerprints. TPOT’s recommended modeling pipeline changed regularly due to the

stochastic nature of TPOT and the constantly changing training dataset. To aid

prediction we used a preprocessing pipeline to shift and scale each feature across all

data points so that the averages and variances for each feature were zero and one,

respectively. We also performed a principal component analysis on the fingerprints to

orthogonalize the feature space. Supplementary Note 1 outlines the TPOT settings

used, and the Supplementary Methods section outlines other regression techniques

and feature representations we tested during development.

The regression methods illustrated in Figure 3-2 were combined with all available

DFT data to train and update surrogate models daily. These models were used to aid

in selecting adsorption sites for DFT calculation. First, the trained models were used

to estimate Δ𝐸CO and Δ𝐸H for all the adsorption sites that we enumerated. These

estimates were pooled with the explicit DFT results stored in the database, and ML-

estimated adsorption energies were removed if the DFT result existed for that ex-

act site/surface/adsorbate, leaving only one prediction/estimate per adsorption site.

Then we defined the strongest binding energy on each surface as the low-coverage

adsorption energy of that surface. The surfaces whose low-coverage adsorption ener-

gies were predicted to be near-optimal (as established in the Methods section) were

selected for DFT calculation with a Gaussian probability defined by the distance of

the predicted site from the optimal values with a standard deviation of 0.2 eV.
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The targeting of specific adsorption energies with near-optimal values allows us

to exploit the knowledge that the surrogate models have learned thus far, while the

addition of Gaussian noise is a heauristic method that allows us to explore search

spaces that the surrogate model normally would not suggest. Approximately 80% of

the calculations were dedicated to this descriptor optimization goal. The remaining

20% of our resources were dedicated to simulating all of the sites on surfaces whose

low-coverage adsorption energies were closest to the top of the volcano—i.e., nearest

to a Δ𝐸𝐶𝑂 of -0.67 eV and a Δ𝐸𝐻 of -0.27 eV for CO2RR and HER, respectively.

This mitigated the chances of finding a false minimum adsorption energy on a surface.

The regression and surrogate model prediction was performed once per day, and the

Gaussian selection of DFT calculations was performed four times per day. In total,

42,785 DFT calculations of adsorption energies were completed by this study at a

rate of approximately 200–300 calculations per day. See the Methods section below

for details regarding these DFT calculations.

3.3.4 Performance of active learning optimization

Due to the iterative nature of the surrogate modeling, we calculated prediction er-

rors via evaluation on a rolling forecasting origin.[69] Specifically: We retrospectively

trained a surrogate model on the first 200 data points that we obtained and then cal-

culated the prediction errors between the next 200 data points and this first model’s

predictions of these points. We then trained a second model on the first 400 points and

then calculated the prediction errors between the next 200 data points and this second

model’s predictions of these points. We performed this iteratively until we obtained

a single prediction error for every data point, excluding the first 200 points. All pre-

diction errors are plotted against time in Figure 3-3a and Supplementary Figure A-2

for Δ𝐸CO and Δ𝐸H, respectively, along with a record of the number of near-optimal

surfaces identified over time. The root-mean-squared-error (RMSE), mean absolute

error (MAE), and median absolute deviation (MAD) across all of the time-dependent

Δ𝐸CO predictions are 0.46, 0.29, and 0.17 eV, respectively. The RMSE, MAE, and

MAD of Δ𝐸H predictions are 0.41, 0.24, and 0.16 eV, respectively. Note that we
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chose 200 as the step size because our framework was able to perform at least 200

calcluations per day, and so a step size of 200 served as a proxy for surrogate model

updates.

The profile of the prediction errors over time provide us with practical insights

into our framework. Between November 2017 and January 2018, fellow users of our

computing clusters reduced their usage during the holiday season. This allowed our

automated framework to effectively consume their unused capacity, thereby increasing

our calculation throughput. This temporary increase in throughput is the likely cause

of the relatively high rate of surface identification, and the improvement in prediction

errors at this time may have been caused by an improved sampling of the search space.

Then in February 2018, we expanded the number of elements in our search space

from ca. 20 elements to the 31 elements that we are searching currently. We seeded

this new search space by manually queueing calculations with the new elements. This

expansion in search space and subsequent seeding may have caused the decline in both

predictive performance and identification rate. In May 2018, we refined our zero-point

energy, entropic, and solvation correction calculations to what is now shown in the

Supplementary Methods section. This refinement may have caused the increase in the

number of surfaces identified during that month. Thus the trends in the prediction

errors and identification rates are confounded with both the methods we used and

various managerial events, such as changes in throughput capacity, changes in search

space, or changes in optimization targets.

Performance metrics and plots that are typically used to judge static surrogate

models are shown in the Supplementary Note 2, such as train/test errors, parity

plots, and learning curves. Notably, the errors calculated via rolling forecasting origin

are generally larger than the errors calculated from the classical train/test split and

learning curve methods. This is because classical train/test splitting methods allow

the training sets to share the same sampling space as the test sets. Our workflow

often searches unexplored sampling spaces though, which are more difficult to predict.

Thus the rolling forecasting origin method of evaluating error is more representative of

our use scenario because it restricts the models’ from seeing data that they would not
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Figure 3-3: Identification of surfaces with near-optimal Δ𝐸CO values for
CO2RR. a, Both the number of near-optimal surfaces identified and violin plots
of the absolute error in predicting Δ𝐸CO as a function of time. The outer shells
of the violins bound all data; narrow vertical lines bound 95% of the data; thick
vertical lines bound 50% of the data; and white dots represent medians. Apparently
missing months are not shown because no data were collected during those months.
b, The normalized distribution of the low-coverage, DFT-calculated CO adsorption
energies of all of the DFT-analyzed surfaces in this study. The sub-distribution for
copper is also illustrated in orange. Dashed lines indicate the ±0.1 eV range around
the optimal Δ𝐸CO value of -0.67 eV. c, Surfaces whose low-coverage CO adsorption
energies have been calculated and verified with DFT. d, Surfaces whose low-coverage
CO adsorption energies have been calculated only by the machine learning models.
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normally see in practice. We hypothesize that the rolling forecasting origin errors and

the train/test errors would converge if we had sampled the search space sufficiently.

3.3.5 Discovering potential intermetallic catalysts for CO2 re-

duction

This framework discovered 130 different intermetallic facets with near-optimal Δ𝐸CO

as confirmed by DFT (Figure 3-3, Supplementary Table A.1). These surfaces cor-

respond to 54 different intermetallic combinations and are recommended for experi-

mental verification of activity. Some of these intermetallics have already been inves-

tigated. For example, Cu/Sn blends have been shown to reduce CO2 to either CO

or formate at high Faradaic efficiencies[130]. Ni/Ga intermetallics have been shown

to be active for CO2 reduction,[167, 173]. Pd/Au bimetallics have been shown to be

active for CO2 reduction to C1-C5 products[86], and ML results in this study sug-

gest that single Pd atoms surrounded by Au atoms may be the most likely bimetallic

active site with Δ𝐸CO ca. -0.8 eV, in contrast to the hypothesized Pd-rich Pd/Au

site. Cu/Al bimetallics, which have not been previously studied, also show promis-

ing experimental results in current ongoing work whose results will published in due

course.

3.3.6 Discovering trends in CO2 reduction

In addition to simply finding potential active surfaces, the data that this study gen-

erated can be used to gain insight into the chemistry of CO adsorption. Figure 3-4

illustrates the fraction of enumerated surfaces that have near-optimal values for Δ𝐸CO

for various bimetallic combinations. Elements in Figure 3-4 are rank ordered by the

average pure-surface Δ𝐸CO values as calculated by this study with DFT. Forming

bimetallics with two elements that both have stronger binding than Ge generally led

to inactive materials, but silicon broke this trend, suggesting that it has destabilizing

properties when alloyed into an intermetallic.

Other trends can also be found when analyzing different elemental pairings. A

83



Figure 3-4: CO2 reduction activity map for bimetallics. Visualization of two
component intermetallics whose surfaces have low-coverage CO adsorption energy
(Δ𝐸CO) values inside the range of [-0.77, -0.57] eV. White shading indicates an absence
of any enumerated surfaces; grey shading indicates that all Δ𝐸CO values are outside
the range of [-0.77, -0.57] eV; and colored shading indicates possible activity. The
Δ𝐸CO values used to create the upper half of this figure were calculated by DFT,
and the values used to create the bottom half were calculated by the surrogate ML
model.
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number of strong-weak elemental pairings yield possibly active surfaces, including

combinations of strong-binding elements like Pd, Pt, Ni, or Os with weak-binding

elements like Al, Sn, Ga, or Sb, showing that the strong/weak Ni/Ga motif found in

previous work is more general than previously known.[173] Interestingly, combining

two weak-binding elements can lead to possibly active surfaces. For example: The

strongest binding Ga surfaces and Au surfaces are approximately -0.44 eV and -0.53

eV respectively, based on a combination of DFT and ML predictions. However, a

Ga-Ga bridge site on AuGa2(100) leads to a near-ideal binding energy of -0.57 eV.

Although the volume of data generated by this study is arguably intractable to

study in detail, the size of the data enables certain methods of data analysis. For

example: We are now able to assess potential intermetallic performance based solely

on the number and distribution of potential active sites instead of the activity of one

particular surface at one particular alloying ratio. Figure 3-5 illustrates this point by

showing all 19,644 sites where we performed DFT calculations of Δ𝐸CO. The X and

Y axes in this figure are a reduced 2-dimensional feature space[113]; reference the

Supplementary Methods for details. Clusters of points in this reduced space share

similarities in site coordination and elemental combinations. Sites are colored by

their Δ𝐸CO so that regions of strong-binding (black), weak-binding (light purple) or

near-ideal binding (dark purple) can be identified.

Clusters that are nearly uniformly dark purple are robust combinations are labeled

in Figure 3-5. These are not the only possible active alloys; instead they represent

combinations that are most likely to yield a higher fraction of active adsorption sites

than other alloy combinations investigated thus far. This is especially important when

matching theory with polycrystalline experiments where the precise active surface

may not be known a priori or where there is little control over the surfaces created.

Clusters that contain weak-binding sites alongside active binding sites may still be

active as the CO will prefer the stronger binding, more active sites. Presence of

strong binding sites are the more likely to hide an active site on a surface and should

be avoided. Within a cluster, the embedding shows how active site coordination

or alloying ratios may affect the activity. For example: The bottom-right panel

85



Figure 3-5: Active site motif analysis. Latent space visualization using t-SNE [113]
of all the adsorption sites simulated with DFT. Proximity in this reduced space in-
dicates similarity in the structures of the adsorption sites. Black points represent
sites that bind too strongly; dark purple points represent sites with optimal bind-
ing; and purple points indicate sites that bind too weakly. Stronger binding sites
are overlaid on top of weaker binding sites to indicate that the stronger sites have a
greater influence on activity than weaker sites due to their greater thermodynamic
stability. We labeled dark purple clusters/materials, because we expect them to be
better candidates for further investigation and experimentation.

in Figure 3-5 shows that Si sites in CuSi alloys tend to bind too weakly, thereby

suggesting that higher ratios of Al to Si may improve activity.

The machine learning model in this work also provides activity estimates of sur-

faces without explicit DFT calculations. The model predicts that approximately

81% of surfaces have non-ideal Δ𝐸CO values, defined as outside of the range [−0.8−

MAE,−0.5+MAE] eV. This considerably narrows the potential experimental search

space. Likewise, the search space for bimetallic combinations can be reduced. If at

least one surface must be predicted to be near-optimal for the CO2RR, the search

space can be reduced by 72%. If at least 10% of surfaces must be active (similar to

the robust determination from above), then the search space is reduced by 93%.
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Figure 3-6: Analysis of results for HER performance. a, t-SNE [113] visualiza-
tion of all the adsorption sites simulated with DFT. Similar to Figure 3-5, stronger
binding sites are overlaid on top of weaker binding sites, and dark purple clus-
ters/materials are labeled because we expect them to be better candidates for further
investigation and experimentation. b, Normalized distribution of low-coverage Δ𝐸H

values calculated by our DFT workflow. Dashed lines indicate the ±0.1 eV range
around the optimal Δ𝐸H value of -0.27 eV.

3.3.7 Discovering potential catalysts for H2 evolution

The same types of analyses performed for CO2RR can also be performed for HER.

Figure 3-6a illustrates the t-SNE representation of the 23,141 adsorption sites where

we used DFT to calculate Δ𝐸H. Figure 3-6b shows the distribution of DFT-calculated

Δ𝐸H values, where we found 258 different surfaces with low-coverage Δ𝐸H values

within 0.1 eV of the optimal value of -0.27 eV. All of these surfaces are listed in

Supplementary Table A.2, and the bimetallic map of HER performance is shown

in Supplementary Figure A-3. Similar to our analysis for CO2RR, a number of the

intermetallics that our screening study identified as having surfaces with near-optimal

Δ𝐸H values have already been verified by various literature studies.[27, 185, 102]

Supplementary Figure A-3 shows that, in addition to Pt, there is a band of el-

ements with comparable monometallic adsorption energies that tend to yield inter-

metallic surfaces with near-optimal Δ𝐸H values: As, Al, Si, Sb, Rh, and Pd. Many
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of these elements also appear in the t-SNE diagram for HER as well (Figure 3-6a),

suggesting that these elements warrant further study and experimentation.

3.4 Conclusions

We created a framework that produces and stores DFT data continuously and with-

out the need for user intervention. This framework combines task and calculation

management software with active machine learning and surrogate-based optimization

to enable the automated, systematic selection and execution of DFT calculations.

The framework produced 42,785 adsorption energy calculations to identify 130 can-

didate surfaces across 54 intermetallics with potentially high CO2 reduction activity

and 258 candidate surfaces across 102 intermetallics for hydrogen evolution. A num-

ber of the candidate surfaces found here have already been validated by literature

experiments,[130, 167, 86, 27, 185, 102] suggesting that the unstudied candidates

found in this screening warrant further study. The full list of potential surfaces is

shown in Supplementary Tables A.1 and A.2, and shortened lists of candidate inter-

metallics are illustrated in Figures 3-5 and 3-6.

Our workflow for generating DFT data offers a combination of benefits that we

have not yet seen in other literature frameworks. Our task and calculation manage-

ment systems reduce the amount of time required to configure and process DFT calcu-

lations; our database of DFT results enables holistic analyses across numerous adsorp-

tion sites, surfaces, and material spaces; and our active machine learning/surrogate-

based optimization workflow guides the discovery of candidate catalysts without the

need for expert intuition. The flexibility of the framework also allows for expert-

assisted guidance, allowing us to use the high-throughput DFT workflow to study

specific sites, surfaces, or systems if needed. The combination of flexibility, automa-

tion, and machine learning guidance accelerates the theoretical discovery and study of

catalysts for CO2 reduction, H2 evolution, or any other chemistry with a descriptor-

performance scaling relationship.

A shortfall of our workflow is its heavy reliance on descriptor-performance rela-
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tionships, which are used to guide the active learning algorithms. For example: this

method will have issues with predicting CO2 reduction activity for materials/surfaces

that yield reaction mechanisms where Δ𝐸CO is independent of activity. Additionally,

this method does not address other important aspects of catalyst performance, such as

surface stability or catalyst cost. These issues are acceptable because this framework

is used primarily as a tool to screen for candidate catalysts from a relatively large

search space and to supplement experts’ intuitions with machine-derived suggestions.

Our framework does not replace robust theoretical and experimental studies; it accel-

erates them by reducing search spaces to more tractable sizes and focusing expensive

studies to systems that are more likely to yield interesting results. Future work could

still be done to address the issues of diverse reaction mechanisms or multiple aspects

of catalyst performance.

3.5 Methods

3.5.1 Enumerating search space

For each of the 1,499 intermetallic crystals we obtained from the Materials Project,[72]

we used pymatgen[136] to enumerate symmetrically distinct facets with Miller indices

between -2 and 2. Many intermetallic facets contained asymmetric top/bottom sur-

faces, and in those cases both were analyzed as well as distinct surfaces arising from

the absolute position of the surface cut. In total 1,499 crystal structures were con-

sidered resulting in 17,507 unique surfaces and 1,684,908 unique adsorption sites.

Surfaces were enumerated using ideal structures from the Materials Project instead

of relaxed structures. This can cause differences in the number of enumerated facets,

but it allows the enumeration to be completed without DFT relaxations for every

bulk structure.
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3.5.2 Addressing models with a variable number of features

One issue with our fingerprinting method is that it yields a variable number of fea-

tures. For example, two vectors are needed to represent the first shell of a Cu-Al

bridge site, but only one vector is needed to represent a Cu-Cu bridge. This issue

can be addressed with zero-padding, but can be better modeled using a literature

method[35] to make dummy features to replace features that are not populated natu-

rally. To continue with the previous example, the first shell of the Cu-Al site would be

represented by a vector of 4 numbers for the Cu element and 4 more numbers for the

Al element, but a Cu-Cu site would be represented by 4 numbers for the Cu element

and 4 dummy features. These dummy features are the average atomic number (𝑍),

the average Pauling electronegativity (𝜒), the average median adsorption energy of

all elements we studied ( ̃︀𝐸), and a CN value of zero. Using averages of valid feature

values reduces the bias induced from these dummy features while the CN value of zero

ensures that no valid configuration could be confounded with the dummy features.

3.5.3 Calculating optimal adsorption energies

A descriptor/activity relationship[105] was used to predict catalyst activity and selec-

tivity for CO2RR given a free energy change, Δ𝐺CO. This relationship shows that a

Δ𝐺CO of -0.17 eV yields an optimal activity and selectivity, corresponding to a Δ𝐸CO

of -0.67 eV; reference the Supplementary Methods for more details. Similarly, litera-

ture relations were adopted to predict HER performance[53]. This relation predicted

an optimal Δ𝐺H of -0.03 eV corresponding to a target Δ𝐸H of 0.27 eV.[133]

3.5.4 Calculating adsorption energies with DFT

The adsorption energy calculation workflow used in this study mimicked typical com-

putational chemistry methods for calculating adsorption energies for sites of interest

in the catalog.[134] Crystal structures from the Materials Project were relaxed us-

ing DFT. Relaxed crystal structures were used to generate facets of interest which

were then relaxed with free surface atoms and fixed subsurface atoms. Finally the
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adsorbate was placed on the surface at the relevant site and a final relaxation was

completed. Final relaxed structures and their energies were comparable to traditional

expert-made structures, as shown in Supplementary Note 3.

We performed all DFT calculations using: the Vienna Ab initio Simulation Pack-

age[91, 92, 89, 90] (VASP) implemented in ASE ;[64] the RPBE functionals[57]; k-

point grids of 4× 4× 1; an energy cutoff of 350 eV; and the default pseudopotentials

supplied by VASP version 5.4. Bulk relaxations were performed with a 10× 10× 10

k-point grid and a 500 eV cutoff and only isotropic relaxation were allowed. Surfaces

were replicated in the X/Y directions so that each cell vector was at least 4.5 Å.

No spin magnetism or dispersion corrections were included. Slabs were replicated in

the Z direction to a minimum of 7 Å and at least 20 Å of vacuum was included in

between slabs. For some facets this led to slabs with large depth due to constraints

in how the facet could be formed. Generally the bottom layers were fixed and defined

as those atoms more than 3 Å from the top of the surface in the scaled Z direction.

Adsorption energies were calculated relative to gas-phase CO(g) for CO, and relative

to gas-phase 1
2
H2(g) for H.

3.5.5 Automating DFT calculations

DFT calculations and other calculational tasks were coordinated in parallel and in an

automated, high-throughput fashion. Each type of calculation and task was encoded

as an interdependent task, and then dependency management software (Luigi[15]) was

used to manage the tasks in parallel. For example, an adsorption energy calculation

depends on a single surface relaxation which depends on a single bulk relaxation. Re-

questing an adsorption energy calculation automatically triggers the prerequisite bulk

and slab relaxations and then adds the results to a database. When a new adsorp-

tion energy calculation is triggered that requires the same surface, the prerequisite

bulk and slab results are read from the database instead of being regenerated. This

differs from a fixed pipeline approach,[116] because intermediate tasks such as slab

relaxations can be shared across multiple pipelines and at different times. DFT tasks

were managed by a central FireWorks [71] database that distributed DFT relaxation
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tasks across multiple computing clusters. This combined Luigi and FireWorks frame-

work enabled high-throughput DFT calculations, because adsorption energies could

be queried for any of the 1,684,908 enumerated sites without the need for human

management of the intermediate tasks. All DFT relaxations were stored in a Mongo

database that contains DFT calculation settings, the identity of the original crystal

structure, the Miller indices of the slab, the exact, Cartesian location of the adsorp-

tion site, chemical information about the adsorption site such as local coordination,

and the adsorption energy.

Our simulations occasionally yielded abnormal relaxations arising from desorp-

tions, dissociations, surface reconstructions, or DFT non-convergence. These abnor-

malities were omitted from our regressions by excluding data from simulations that

met any of the following criteria: simulations whose final maximum equilibrium force

between any two atoms exceeded 0.5 eV/Å, where the absolute value of the adsorp-

tion energy exceeded 4 eV, where any atom moved more than 0.5 Å during bare slab

relaxation, where the adsorbate moved more than 1.5 Å during adsorption relaxation,

and where any slab atom moved more than 1.5 Å during adsorption relaxation. These

exclusion criteria were used as heuristics to reduce outliers. This approach may in-

duce bias in the dataset if systematic portions of the search space are missing because

they often fail for these reasons. Some DFT errors may be treated by automatically

tuning the DFT calculation settings,[136] but these approaches are not robust across

the full range of calculation errors in adsorption simulations.

The adsorption energy database, which was required to train machine learning

models, was initially seeded with Δ𝐸CO and Δ𝐸H calculations for every unique ad-

sorption site on a variety of surfaces, including the (100), (111), and (211) facets of

the most stable crystal form of each element included in Supplementary Figure A-1.

We also added all unique coordinations types (on-top Ni, on-top Fe, bridge Ni-Fe,

etc.) up to a coordination number of two and then selected the corresponding sur-

faces with the smallest number of atoms. This ensured that the original machine

learning model contained at least some data to begin with.
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Chapter 4

Accelerated discovery of CO2

electrocatalysts using active machine

learning

This work originally appeared as: Miao Zhong,* Kevin Tran,* Yimeng Min,* Chuan-

hao Wang,* Ziyun Wang, Cao-Thang Dinh, Phil De Luna, Zongqian Yu, Armin

Sedighian Rasouli, Peter Brodersen, Song Sun, Oleksandr Voznyy, Chih-Shan Tan,

Mikhail Askerka, Fanglin Che, Min Liu, Ali Seifitokaldani, Yuanjie Pang, Shen-

Chuan Lo, Alexander Ip, Zachary Ulissi, and Edward H. Sargent. Accelerated discov-

ery of CO2 electrocatalysts using active machine learning. Nature, 581(7807):178–183,

2020. It has been edited to include the supplementary information in Appendix B.

*These authors contributed equally.

My contribution in this work involved performing the active learning portion of the re-

search and writing the corresponding sections in the manuscript. I was also a primary

editor of the entire manuscript.

4.1 Abstract

The rapid increase in global energy demand and the need to replace carbon diox-

ide (CO2)-emitting fossil fuels with renewable sources have driven interest in chemi-
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cal storage of intermittent solar and wind energy.[103, 158] Particularly attractive

is the electrochemical reduction of CO2 to chemical feedstocks, which uses both

CO2 and renewable energy.[41, 99, 109, 47, 100, 75] Copper has been the predom-

inant electrocatalyst for this reaction when aiming for more valuable multi-carbon

products,[66, 186, 143, 87, 125, 111, 39] and process improvements have been partic-

ularly notable when targeting ethylene. However, the energy efficiency and produc-

tivity (current density) achieved so far still fall below the values required to produce

ethylene at cost-competitive prices. Here we describe Cu-Al electrocatalysts, identi-

fied using density functional theory calculations in combination with active machine

learning, that efficiently reduce CO2 to ethylene with the highest Faradaic efficiency

reported so far. This Faradaic efficiency of over 80 per cent (compared to about 66

per cent for pure Cu) is achieved at a current density of 400 milliamperes per square

centimetre (at 1.5 volts versus a reversible hydrogen electrode) and a cathodic-side

(half-cell) ethylene power conversion efficiency of 55 ± 2 per cent at 150 milliamperes

per square centimetre. We perform computational studies that suggest that the Cu-Al

alloys provide multiple sites and surface orientations with near-optimal CO binding

for both efficient and selective CO2 reduction.[105] Furthermore, in situ X-ray ab-

sorption measurements reveal that Cu and Al enable a favourable Cu coordination

environment that enhances C-C dimerization. These findings illustrate the value of

computation and machine learning in guiding the experimental exploration of multi-

metallic systems that go beyond the limitations of conventional single-metal electro-

catalysts.

4.2 Introduction

To accelerate catalyst discovery, we developed a machine-learning-accelerated, high-

throughput DFT framework[171] to screen materials ab initio. We provided this

framework 244 different copper-containing crystals from The Materials Project[72],

and it enumerated 12,229 surfaces and 228,969 adsorption sites. We then performed

DFT simulations on a subset of these sites to calculate their CO adsorption energies
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(see Appendix B). These data were then used to train an ML model, which was

used to predict CO adsorption energies on all the enumerated adsorption sites. The

framework then combined the ML-predicted CO adsorption energies with volcano

scaling relationships[105] to predict the most catalytically active sites, which have

CO adsorption energies (Δ𝐸𝐶𝑂) near to -0.67 eV—a value predicted to produce near-

optimal activity in the volcano scaling relationship (Appendix B and Figures B-1

and B-2 for details on calculating the optimal Δ𝐸𝐶𝑂 of -0.67 eV). These optimal sites

were then simulated using DFT to provide additional training data for the ML model.

Cycling among DFT simulation, ML regression, and ML prioritization yielded an

automated framework that systematically searched for surfaces and adsorption sites

with near-optimal CO adsorption energies. In total, the framework performed ca.

4,000 DFT simulations, yielding a set of candidates for experimental testing.

Among the candidate materials that the framework identified, we found that Cu-

Au, Cu-Sn, Cu-Al, and Cu-In alloys were promising for active and selective CO2

reduction. We determined this by creating a 2-dimensional activity and selectivity

volcano plots for CO2 reduction (Figures 4-1a and 4-1b) using the same method

that was used in previous theoretical studies28 (see Appendix B and Figure B-64 for

details). As expected, Figure 4-1a shows that a CO binding energy near -0.67 eV is

required for relatively high activity. It also shows that, given a CO binding energy

ca. -0.67 eV, a H binding energy above ca. -0.5 eV is required for activity and that a

H binding energy above ca. -0.2 eV is required for selectivity towards CO2 reduction

instead of H2 evolution (Figures 4-1a and 4-1b).

Since these criteria were met by multiple copper alloy candidates, we pared the list

of candidates by visualizing and analyzing them in a t-SNE diagram[113] (Figure 4-

1c). Each point on this diagram represents one adsorption site for which we performed

a DFT calculation. Points near each other tend to have similar coordination atoms

and surface compositions (Appendix B). Thus, clusters of sites tend to represent

different archetypes of adsorption sites (Figure 4-1d). Figure 4-1c shows that Cu-Al

exhibits an abundance of adsorption sites and site types with near-optimal Δ𝐸𝐶𝑂

values, suggesting that Cu-Al alloys may be active across a relatively wide range of
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Figure 4-1: Screening of Cu and Cu based compounds using computational methods.
a, A 2-dimensional activity volcano plot for CO2 reduction. b, A 2-dimensional
selectivity volcano plot for CO2 reduction. CO and H adsorption energies in Figs. a
and b were calculated with DFT. Points in yellow are average adsorption energies of
monometallics; points in green are average adsorption energies of copper alloys; and
points in magenta are average, low-coverage adsorption energies of Cu-Al surfaces.
c, t-SNE[113] representation of ca. 4,000 adsorption sites that we performed DFT
calculations on with Cu-containing alloys. The Cu-Al clusters are labeled numerically.
d, Representative coordination sites for each of the clusters labeled in the t-SNE
diagram. Each site archetype is labeled by the stoichiometric balance of the surface,
i.e., Al heavy, Cu heavy, or balanced, and the binding site of the surface.
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surface compositions and site types. The zoomed-in t-SNE diagram with example

adsorption sites (Figure 4-1d) reveals that Al sites tend to bind CO too weakly; Cu

sites surrounded by mostly Al atoms may bind CO too strongly; and Cu-Al bridge

sites surrounded mostly by Cu atoms are predicted to be active. Cu-Al alloys’ low

abundance of low Δ𝐸𝐶𝑂 sites also suggests that Cu-Al may be resistant to CO over-

binding issues. Therefore, Cu-Al alloys with a higher Cu content than Al may be

active for CO2 reduction.

4.3 Methods

4.3.1 Experimental methods

To test these hypotheses, we prepared experimentally a suite of Cu-Al model cata-

lysts: ion-implanted Al-on-Cu and evaporated-and-etched Al-on-Cu (Appendix B and

Figure B-3). Each catalyst shows a morphology similar to that of an evaporated pure

Cu catalyst (Figures B-4–B-6). Compared with the pure Cu catalyst, which attained

a C2H4 Faradaic efficiency (FE) of 35% at a current density of 600 mA cm-2 in a 1

M KOH electrolyte in a flow-cell configuration (Figure B-7), both ion-implanted and

evaporated-etched Al-on-Cu catalysts exhibited higher C2H4 FEs of ∼60% under the

same testing conditions. The CO FEs on both Cu-Al catalysts were suppressed to

∼10%, one-third of that obtained using pure Cu (Figure B-8). Incorporating Al on

Cu thus increased selectivity toward C2H4. Tafel slopes of C2H4 production (Fig-

ure B-8) for pure Cu, ion-implanted, and evaporated-and-etched Al-on-Cu are 180,

147 and 145 mV dec-1, respectively, further highlighting the faster C-C dimerization

kinetics with Al-on-Cu catalysts.

To estimate quantitatively the amount of Al incorporated near the Cu surface,

we used surface-sensitive Auger electron spectroscopic (AES) analysis (Figures B-9

and B-10). AES typically provides compositional information on the top 1–3 nm of

the samples and does so over a relatively large area (100 𝑚𝑢𝑚2 in our studies)[36]. We

estimated Al concentrations on surfaces of 4.5% and 25% for the ion-implanted and
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evaporated-and-etched Al-on-Cu, respectively. SEM and EDX analyses confirmed

no major change of morphologies nor Al concentrations for the ion-implanted and

evaporated-and-etched Al-on-Cu samples before and after 5-hour reaction (Figures B-

5, B-6, and B-12–B-15). (Detailed operating stability information in Supplementary

Information and Figures B-16–B-19). Pourbaix diagrams[141] (Figure B-11) explain

that both Cu and Al are cathodically protected at potentials more negative than their

oxidation potentials of -1.4 V vs. RHE in a pH 14 electrolyte.

We therefore sought to develop an optimized and robust Cu-Al catalyst. We

explored both thermal evaporation and co-sputtering followed by chemical etching

where we synthesized de-alloyed nanoporous Cu-Al catalysts (see fabrication details

in Supplementary Information). As shown in the scanning electron spectroscopy

(SEM) and high angle angular dark field-scanning transmission electron microscopy

(HAADF-STEM) images in Figures 4-2b and B-20, a nanoporous structure with

pore sizes of 5–20 nm was formed. Compared to ion-implanted and evaporated-

etched Al-on-Cu catalysts, the de-alloyed nanoporous Cu-Al catalysts may offer more

catalytically active sites for adsorption and electroreduction of CO2. Following 5 hours

CO2 electroreduction at a current density of 600 mA cm-2, the morphology remained

similar indicating a stable catalyst (Figure 4-2b). The grain size of the catalyst

increased following reaction, potentially due to the surface reconstruction of Cu and

Al in the electrolyte during the reaction. Energy-dispersive X-ray spectroscopy (EDX)

analyses in TEM and SEM, electron energy loss spectroscopy (EELS) spectra, and

elemental mapping in STEM, all confirmed a homogeneous distribution of Al and Cu

in de-alloyed catalysts before and following 5 hours reaction (Figures 4-2c and B-21–B-

24). We performed HAADF-STEM analysis and found that Cu (111) and (200) facets

were observed with interplanar spacings of 0.211 and 0.182 nm (Figure B-25). AES

analysis further revealed ∼9% Al on the surface following the reaction respectively

(Figures B-26 and B-27).
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Figure 4-2: Schematic and characterization of de-alloyed Cu-Al catalyst. a, Schematic
of a de-alloyed nanoporous Cu-Al catalyst on a gas diffusion layer for CO2 electrore-
duction. b, Scanning electron microscopy (SEM) and high angle angular dark field-
scanning transmission electron microscopy (HAADF-STEM) images of de-alloyed Cu-
Al catalyst before (left) and after (right) 5 hours CO2 electroreduction at an applied
current density of 600 mA cm-2 in flow cells. The scale bars for SEM images are
500 nm (top-left) and 200 nm (top-right). The scale bars for TEM images are 200
nm (bottom-left) and 100 nm (bottom-right). c, HAADF-STEM image, and electron
energy loss spectroscopy (EELS) spectra of the de-alloyed Cu-Al catalyst. #1, 2, 3
curves in the EELS spectra represent the EELS results measured at #1, 2, 3 areas
in the corresponding HAADF-STEM image. Al, Al2O3, CuO, Cu2O and Cu EELS
results are plotted as references. The scale bar is 5 nm.
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4.3.2 Computational methods

Given the presence of Cu (111) and (100) surfaces, we used our ML model and DFT

calculations to analyze how the ratio of Al to Cu on these surfaces affects Δ𝐸𝐶𝑂. First,

we enumerated (using Delaunay triangulation[128]) the range of adsorption sites on

the Cu (111) surfaces having different Al concentrations; and then predict Δ𝐸𝐶𝑂 for

these sites using the ML model, creating thereby a distribution of Δ𝐸𝐶𝑂 values. We

repeated this operation for the Cu (100) surfaces at different Al concentrations. The

resulting distributions (Figures B-28a and B-28b) show that adding ∼12% Al to the

Cu (111) surface maximizes the density of sites with Δ𝐸𝐶𝑂 values near the optimum

of -0.67 eV and that adding 4–12% Al maximizes the density of optimal sites for the

Cu (100) surface.

We performed density functional theory (DFT) calculations over the best ML

predicted structures to characterize the changes in energy barriers in the major steps

during CO2 reduction. The reaction energy in the rate-determining step of C-C

bond-making12 decreased from 1.5 eV to 0.9 eV on Cu (111) and from 0.6 eV to 0.4

eV on Cu (100) with the benefit of Al incorporation (Figures B-28–B-31), which is

consistent with ML predictions of increased C2+ production with Al-containing Cu.

The DFT results further showed that the reaction energy for forming HO(CH)CH, an

intermediate of ethanol[182], was higher than that for forming CCH, an intermediate

of C2H4[182] with Al-containing Cu (Figure B-32). Water near the Al atoms may act

as a proton donor for the electrochemical dehydration reduction of HOCCH to CCH

instead of hydrogenation of HOCCH to HO(CH)CH[182]. Thus, oft-produced alcohol

was suppressed and the C2H4 production was promoted.

4.4 Results

4.4.1 Initial catalyst exploration

We tested the CO2 electroreduction activity of de-alloyed Cu-Al catalysts with dif-

ferent Al concentrations on the surfaces. A C2+/C1 ratio of ∼30 was obtained with
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∼10% Al on the surface which is in line with the ML and DFT predictions (Figure B-

33).

We then systematically evaluated the CO2 electroreduction performance of the

de-alloyed Cu-Al catalysts on the conventional carbon-based gas diffusion layer (C-

GDL) substrates with ∼10% Al at the surfaces at current densities from 200 to 800

mA cm-2 in 1 M KOH in flow cells (Figure 4-3a and 4-3b). To quantify FEs for each

product, we carried out CO2 electroreduction in a chronopotentiometry mode. As

shown in Figure 4-4a, we achieved C2H4 FE of 80% at a current density of 600 mA

cm-2. This is a 2-fold increase compared to the 35% FE of pure Cu measured under

the same conditions. An electricity-to-ethylene half-cell power conversion efficiency

(C2H4 PCE) of 34% was achieved (Figure 4-3d), which is similar to the previously

published highest half-cell C2H4 PCE of ∼30% using a plasma-activated copper elec-

trocatalyst13 with a C2H4 FE of 60% at a relatively smaller applied current density

of ∼12 mA cm-2 under the same electrolyte pH condition. An average C2H4 FE of

75% ± 4% was obtained over 17 de-alloyed distinct Cu-Al on C-GDL samples (∼10%

Al on the surfaces) under the same current density of 600 mA cm-2. The overall C2+

product was 85%–90% when we used the de-alloyed Al-based catalyst, appreciably

higher than the 55–60% using the flat Cu catalyst (Figures 4-3c and B-8).

We further designed control catalysts—nanoporous Cu on C-GDL with a very

limited amount of Al on the surface and having similar nanoporosity to that of the

de-alloyed Cu-Al catalyst—to clarify the role of morphology (Appendix B and Fig-

ure B-34). AES analysis revealed that surface Al was decreased from 10% to 2–3%

(Figure B-35). Considering the penetration depth of 1–3 nm in the AES, the sur-

face Al concentration on nanoporous Cu should be lower than 2–3%. The C2H4 FE

was decreased to 53% at the same current of 600 mA cm-2 (Figure 4-4a and B-36).

Therefore, we conclude from these studies that incorporating Al on the Cu surface is

crucial to promote C2H4 production.

The Cu-Al on C-GDL catalysts exhibited stable potentials between -1.8 and -2.1 V

vs. RHE and a C2H4 FE of 75% over 5 hours of continuous operation at 600 mA cm-2

(Figures B-37 and B-38). After 5 hours, C-GDL gradually lost its hydrophobicity
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Figure 4-3: CO2 electroreduction performance on de-alloyed Cu-Al, porous Cu and
deposited Cu catalysts on C-GDL substrates in a 1 M KOH electrolytes. a, C2H4

production partial current density vs. potential with de-alloyed Cu-Al, nanoporous
Cu and evaporated Cu catalysts. b, Faradaic efficiencies for gaseous products with de-
alloyed Cu-Al catalysts at different applied current densities and with nanoporous Cu
and evaporated Cu catalysts at a constant current density of 600 mA cm-2 obtained
using chronopotentiometry. c, Faradaic efficiencies for all products at an applied
current density of 600 mA cm-2 with 17 de-alloyed Cu-Al samples measured. d, Half-
cell power conversion efficiency of C2H4 with de-alloyed Cu-Al catalysts at different
applied current densities and with nanoporous Cu and evaporated Cu catalysts at a
constant current density of 600 mA cm-2 obtained using chronopotentiometry.
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Figure 4-4: CO2 electroreduction performance on de-alloyed Cu-Al catalysts on PTFE
substrates in alkaline electrolytes at different pH values. a, C2H4 production partial
current density vs. potential with de-alloyed Cu-Al in 0.3, 1, 3 and 10 M KOH elec-
trolytes. b, Faradaic efficiencies for gaseous products with its corresponding C2H4

power conversion efficiencies of the de-alloyed Cu-Al catalysts in the different elec-
trolytes and at different applied current densities. c, The CO2 electroreduction sta-
bility of the carbon NPs/de-alloyed Cu-Al/PTFE electrode in a 1 M KOH electrolyte
at an applied current density of 400 mA cm-2. Left axis: potential (V vs. RHE) vs.
time (s), right axis: C2H4 Faradaic efficiency (%) vs. time (s). d, The CO2 electrore-
duction stability of the carbon NPs/de-alloyed Cu-Al/PTFE electrode in a 3 M KOH
electrolyte at an applied current density of 150 mA cm-2. Left axis: potential (V vs.
RHE) vs. time (s), right axis: C2H4 Faradaic efficiency (%) vs. time (s).
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and became flooded with 1 M KOH electrolyte[41]. Therefore, CO2 could no longer

diffuse to the catalyst surface for CO2 reduction.

4.4.2 System optimization

To improve the device stability, we fabricated de-alloyed Cu-Al catalysts on the poly-

tetrafluoroethylene (PTFE) substrates whose hydrophobicity was proved to be stable

during operation in a strong alkaline electrolyte3 (Appendix B and Figures B-20, B-

39, and B-40). Carbon NPs/graphite was coated on the de-alloyed Cu-Al surface to

create a sandwich structure, which distributed the current uniformly over the catalyst

to stabilize its surface during reaction[41]. As shown in Figures 4-4b, 4-4c, and B-41,

we achieved C2H4 FEs over 80% in 1 M KOH at a current density of 400 mA cm-2

over 50 hours.

To improve device efficiency, we studied Cu-Al performance at different pH con-

ditions, which has been shown to affect C-C dimerization[175]. Experimentally, we

found that 3 M KOH (pH 14.5) was optimal to achieve ca. 50% half-cell C2H4 PCE

with C2H4 FE of 70–72% at a current density of 150 mA cm-2 over 50 hours (Fig-

ures 4-4b and 4-4d). We then further optimized the cation concentration by adding

an additional 3 M KI into the electrolyte. KI was chosen because K+ cation and I-

anion are known to increase CO2 reduction activity by accelerating the hydrogenation

of the key adsorbed CO intermediate.[41, 104] This further diminished the CO FE

to below 0.3% and reduced H2 production by 2–3%, leading to a 2–3% increase of

C2H4 FE to 72–75%. As a result, we achieved 55±2% half-cell C2H4 PEC (over 10

distinct samples) at 150 mA cm-2 over 50 hours in a 3 M KOH and 3 M KI solution

(Figures 4-4b and B-42).

4.4.3 System characterization

No obvious leaching of Al and Cu into the solution was observed by inductively

coupled plasma atomic emission spectroscopy (ICP-AES) analysis (Figure B-43), in-

dicating that Cu-Al catalysts remained stable during the tests. Pourbaix diagrams
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suggest that Cu and Al metals are cathodically protected at potentials more negative

than 1.47 VRHE at pH 14, which corresponds to a current density above ca. 320 mA

cm-2 for Cu-Al catalysts in 1 M KOH (Figure 4-4a). We also did not observe obvious

leaching of Al at a lower potential of ca. -0.4 VRHE at pH 14.5 in the ICP-AES anal-

ysis. The Cu-Al catalyst remained physically intact after reaction. This may suggest

that the Pourbaix diagram is not suited to explain the stability of alloys with nanos-

tructured crystal edges and dangling bonds on their surfaces[189]. As reported[189],

materials at nanoscale are usually more stable than its bulk under harsh electrochem-

ical conditions beyond the predictions of the Pourbaix diagram. Another hypothesis

is that Al in the subsurface could be protected by the stable Cu on the top surface,

thereby improving Cu-Al stability

To explore this hypothesis, we used DFT to analyze the reaction energy changes

when Al is placed in the subsurface of either Cu (111) or Cu (100). We added a total

concentration of 12% and 4% Al for Cu (111) and Cu (100), respectively, which were

the ML-predicted optimum Al concentrations for each surface. The reaction energy

in the rate-determining steps is lower with Al in the subsurface compared to that of

pure Cu (Figures B-44 and B-45).

To further understand the reasons for the improved performance of our Cu-Al

electrocatalyst, we performed both theoretical and experimental studies of the local

coordination information during CO2 electroreduction. Experimentally, we performed

in situ synchrotron X-ray absorption near-edge structure (XANES) analysis under

these same testing conditions. Al-Al and Al-O bonds were observed in soft X-ray

absorption spectra (Figure B-46). Cu-O bonding was observable via both ex situ and

in situ XANES analyses with the de-alloyed Cu-Al catalyst before, during and after

the reaction. The intensity of the in situ Cu-O peak is smaller than that of the ex

situ ones, indicating Cu-O in the de-alloyed Cu-Al catalyst was partially reduced to

Cu during the reaction. In contrast, no obvious Cu-O bonding was observed for the

pure Cu during the ex situ and in situ analyses under the same testing conditions

(Supplementary Information and Figure B-47). We propose that a mixture of Cu-

Cu and Cu-O was formed in the de-alloyed Cu-Al catalysts during the reaction.
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This may contribute to the favourable coordination environment that accelerates C-C

dimerization, which is in line with the previous report[183]. DFT simulations suggest

that the reaction energies in the CO2 reduction energy diagrams are reduced with O

on the top surface or in the subsurface to the Cu-Al model (Figures B-48–B-63).

4.5 Conclusions

To conclude, we developed a new de-alloyed Cu-Al catalyst for highly active and

selective CO2 electroreduction to C2H4. We successfully demonstrate the discov-

ery of electrocatalysts by combining volcano relationships, DFT, and active ML to

optimize catalyst performance. We further optimized the theoretically-discovered

electrocatalyst by developing a multi-layered device and then optimizing reaction

conditions for multi-carbon production. The findings suggest avenues to multi-metal

catalysts that outperform single-component catalysts by utilizing an intermediate-

binding-optimization and reaction-electrolyte-optimization strategy for multi-carbon

production via CO2 electroreduction.
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Chapter 5

Methods for comparing uncertainty

quantifications for material property

predictions

This work originally appeared as: Kevin Tran,* Willie Neiswanger,* Junwoong Yoon,

Qingyang Zhang, Eric Xing, and Zachary W Ulissi. Methods for comparing uncer-

tainty quantifications for material property predictions. Machine Learning: Science

and Technology, 1(025006), 2020. It has been edited to include the supplementary

information in Appendix C. *These authors contributed equally.

My contribution in this work involved defining the evaluation methods and procedures

alongside Willie. I then codified the procedures and tested the neural network, neu-

ral network ensemble, Gaussian process, and convolution-fed-Gaussian-process. Zack

and I co-invented the convolution-fed-Gaussian-process. All authors wrote the sections

that corresponded to the work that they did. I wrote all other sections (e.g., abstract,

introduction, conclusions).

5.1 Abstract

Data science and informatics tools have been proliferating recently within the com-

putational materials science and catalysis fields. This proliferation has spurned the
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creation of various frameworks for automated materials screening, discovery, and de-

sign. Underpinning these frameworks are surrogate models with uncertainty estimates

on their predictions. These uncertainty estimates are instrumental for determining

which materials to screen next, but the computational catalysis field does not yet have

a standard procedure for judging the quality of such uncertainty estimates. Here we

present a suite of figures and performance metrics derived from the machine learn-

ing community that can be used to judge the quality of such uncertainty estimates.

This suite probes the accuracy, calibration, and sharpness of a model quantitatively.

We then show a case study where we judge various methods for predicting density-

functional-theory-calculated adsorption energies. Of the methods studied here, we

find that the best performer is a model where a convolutional neural network is used

to supply features to a Gaussian process regressor, which then makes predictions of

adsorption energies along with corresponding uncertainty estimates.

5.2 Introduction

The fields of catalysis and materials science are burgeoning with methods to screen,

design, and understand materials.[117, 55, 155, 9] This research has spurned the

creation of ML models to predict various material properties. Unfortunately, the

design spaces for these models are sometimes too large and intractable to sample

completely. These under-sampling issues can limit the training data and therefore

the predictive power of the models. It would be helpful to have an UQ for a model

so that we know when to trust the predictions and when not to. More specifically:

UQ would enable various online, active frameworks for materials discovery and design

(e.g., active learning,[163] online active learning,[29] Bayesian optimization,[45] active

search,[49] or goal oriented design of experiments[78]).

Such active frameworks have already been used successfully in the field of catalysis

and materials informatics. For example: Peterson[142] has used a neural network to

perform online active learning of nudged elastic band (NEB) calculations, reducing

the number of force calls by an order of magnitude. Torres et al.[168] have also used
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online active learning to accelerate NEB calculations, but they used a GP model

instead of a neural network. Jinnouchi et al.[76] have used online active learning to

accelerate molecular dynamics simulations. These methods are all underpinned by

models with UQ, which have garnered increasing attention.[144, 131]

The goal of UQ is to quantify accurately the likelihood of outcomes associated

with a predicted quantity. For example, given an input for which we wish to make

a prediction, a predictive UQ method might return a confidence interval that aims

to capture the true outcome a specified percentage of the time or might return a

probability distribution over possible outcomes. Performance metrics for predictive

UQ methods aim to assess how well a given quantification of the probabilities of po-

tential true outcomes adheres to a set of observations of these outcomes. Some of the

performance metrics for predictive UQ are agnostic to prediction performance—they

provide an assessment of the uncertainty independent of the predictive accuracy (i.e.

a method can predict badly, but could still accurately quantify its own uncertainty).

We have seen few[74, 153] comparisons of different methods for UQ within the

field of catalysis and materials informatics. Here we examine a protocol[93, 96] for

comparing the performance of different modeling and UQ methods (Figure 5-1). We

then illustrate the protocol on a case study where we compare various models’ abilities

to predict DFT calculated adsorption energies. We also offer anecdotal insights from

our case study. We acknowledge that such insights may not be transferable to other

applications, but we find value in sharing them so that others can build their own

intuition.

5.3 Methods

5.3.1 Dataset information

All regressions in this paper were performed using a dataset of 47,279 DFT calculated

adsorption energies created with GASpy[171, 169]. Within this dataset, there were 52

different elements within the 1,952 bulk structures used as bases for the adsorption
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Figure 5-1: Overview of proposed procedure for judging the quality of models with
uncertainty estimates. First and foremost, the models should be accurate. Second, the
models should be “calibrated”, which means that their uncertainty estimates should
be comparable with their residuals. Third, the models should be “sharp”, which
means that their uncertainty estimates should be low. Lastly, the models should be
“disperse”, which means that the distribution of the uncertainty estimates should be
wide. This study demonstrates how to visualize and quantify these characteristics so
that different methods of UQ can be compared objectively.
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surfaces. The 61 bulk structures that contained one element encompassed 5,844 of

the adsorption calculations; the 1,057 bulk structures that contained two elements

encompassed 31,651 of the calculations; the 774 bulk structures that contained three

elements encompassed 9,139 of the calculations; and the 60 bulk structures that

contained four or five elements encompassed 645 of the calculations. The dataset

also comprised 9,102 symmetrically distinct surfaces and 29,843 distinct coordination

environments (as defined by the surface and the adsorbate neighbors). Lastly, the

dataset comprised 21,269 H adsorption energies; 18,437 CO adsorption energies; 3,464

OH adsorption energies; 2,515 O adsorption energies; and 1,594 N adsorption energies.

GASpy performed all DFT calculations using the Vienna Ab-initio Simulation

Package (VASP)[91, 92, 89, 90] version 5.4 implemented in the Atomic Simulation

Environment (ASE)[64]. The revised Perdew-Burke-Ernzerhof (rPBE) functionals[57]

were used along with VASP’s pseudopotentials, and no spin magnetism or dispersion

corrections were used. Bulk relaxations were performed with a 10× 10× 10 k-point

grid and a 500 eV cutoff, and only isotropic relaxation were allowed during this bulk

relaxation. Slab relaxations were performed with k-point grids of 4× 4× 1 and a 350

eV cutoff. Slabs were replicated in the X/Y directions so that each cell was at least

4.5 Å wide, which reduces adsorbate self-interaction. Slabs were also replicated in

the Z direction until they were at least 7 Å thick, and at least 20 Å of vacuum was

included in between slabs. The bottom layers of each slab were fixed and defined as

those atoms more than 3 Å from the top of the surface in the scaled Z direction.

To split the data into train/validate/test sets, we enumerated all adsorption ener-

gies on monometallic slabs and added them to the training set manually. We did this

because some of the regression methods in this paper use a featurization that contains

our monometallic adsorption energy data[171], and so having the monometallic ad-

sorption energies pre-allocated in the training set prevented any information leakage

between the training set and validation/test sets. After this allocation, we performed

a 64/14/20 train/validate/test split that was stratified[166] by adsorbate. We then

used the validation set’s results to tune various hyperparameters manually. After

tuning, we calculated the test set results and present them in this paper exclusively.
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Note that the test results were obtained using models that were trained only using

the training set, not the validation set. This is acceptable because we only seek to

compare methods here, not to optimize them.

Note that random splits such as this may yield overly optimistic model results.

If a model created with the training set is meant to make extrapolative predictions

in feature domains outside of the training set, then it may be appropriate to use a

train/validate/test split using k-means clustering[122] rather than random splitting.

If the model is meant to be used in an online and iterative fashion, then it may be ap-

propriate to use a time-series split[69]. If the model is meant to be used to interpolate

within a given feature space, then the basic random split may be appropriate. We

chose to use a basic random split in this work to simplify the results for illustrative

purposes. Future work for different applications should use splitting methods that

align with the intended use of the models to be generated.

5.3.2 Regression methods

We explore various methods that aim to quantify the uncertainty for regression pro-

cedures where the predicted quantity is a continuous variable. To standardize the

assessment of performance, we ensure that each UQ method returns predictive un-

certainty results in a consistent format: a distribution over possible outcomes of the

predicted quantity for any specified input point. This result format allows us to

compute all the predictive uncertainty performance metrics which we introduce in

subsequent sections. Figure 5-2 illustrates all of the methods we investigate in this

study, and we describe each method in detail below.

NN: To establish a baseline for predictive accuracy, we re-trained a previously

reported NN[184, 12] on this study’s training set. This NN model projects a three-

dimensional atomic structure into a graph, which is then fed into convolutional layers

to extract local atomic information for predicting global target properties. In this

case, we predict DFT-calculated adsorption energies, ΔE. The graph consists of nodes

representing atoms and edges representing distances between atoms. The NN updates

the node features using the local information extracted in the convolutional layers,
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GP with NN mean (GPNN-μ)

ΔÊ

target := ΔE

E

NN prediction
UQ
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Figure 5-2: Overview of the various UQ methods we investigated in this study. Δ𝐸
represents DFT-calculated adsorption energies; Δ�̂� represents ML-predicted adsorp-
tion energies; 𝑈𝑄 represents ML-predicted uncertainty quantifications; 𝜇 represents
the mean of a sample of points; 𝜎 represents the standard deviation of a sample of
points; 𝜖 represents the residuals between DFT and ML; and 𝜖 represents the residuals
between ML-predicted 𝜖 and the actual 𝜖.
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then hidden layers in the NN maps the node features to the adsorption energies.

Reference Back et al.[12] for additional details.

NN Ensemble: We created an ensemble of NNs by 5-fold subsampling the train-

ing data and then training individual NN models on the 5 folds. Each individual

NN model’s architecture is identical to the base NN architecture outlined previously.

The only differences are their training sets and their individually randomized initial

weights. For the final prediction of the ensemble we computed the mean of the set of

models’ predictions, and for the ensemble’s estimate of uncertainty we computed the

standard deviation of the set of predictions.

BNN: The aim of Bayesian Neural Network (BNN) is to determine the posterior

distribution of model parameters rather than a single optimal value of the parameters.

In practice, inferring true posterior distributions is very difficult and even infeasible

in most cases. Thus, we approximate the model posterior to be as close as possible

to the true posterior. The same NN architecture was used, but we converted the NN

into BNN by assigning posterior distributions to all model parameters in the hidden

layers in the NN model. The BNN then approximated the true posterior distribu-

tions using variational inference so that it could use the approximated posterior to

predict the adsorption energies. We sampled the model parameters 20 times from

the approximated posterior distributions, and used the mean of these predictions as

the final prediction and the standard deviation of these predictions as the estimation

of uncertainty. We implemented the BNN and performed variational inference using

Pyro.[16]

Dropout NN: Dropout Neural Networks (Dropout NN) have been shown to

approximate Bayesian models.[46] We created a Dropout NN by first replicating the

exact architecture used to create the convolutional NN outlined previously. Then we

enforced a random dropout rate of 30% in the dense hidden layers that followed the

convolutional layers. The nodes were randomly dropped out during both training and

prediction. To make predictions, we sampled the Dropout NN 20 times. The mean of

the predictions was used as the final prediction of the Dropout NN, and the standard

deviation of the predictions was used as the estimation of uncertainty.
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NNΔNN: Suppose we have trained a NN. We may aim to empirically fit an

additional mapping that predicts the error of the first NN. Here we show in-series

NNs (NNΔNN), which trains a secondary NN to predict the residuals of the initial

NN. When training the first NN, we hold out 10% of the training data. Afterwards,

we use the residuals of the initial NN on the held-out portion as training data for the

second NN. After the secondary training, this second NN can predict residuals for the

first NN on some new set of input data. The predictions of the second NN can then be

used as uncertainty estimates. Note that both the NNs included within the NNΔNN

were constructed using the same convolutional architecture outlined previously.

GP: GPs are one of the most common regression methods for producing UQs, and

so we use them here as a baseline. We fit a standard GP using the same exact fea-

tures that we used in previous work.[171] These features are defined by the elements

coordinated with the adsorbate and by the elements of its next-nearest neighbors.

Specifically: We use the atomic numbers of these elements, their Pauling electroneg-

ativity, a count of the number of atoms of each element near the adsorbate, and the

median adsorption energy between the adsorbate and the elements. To ensure that

these features interacted well with the GP’s kernel, we normalized each of the features

to have a mean of zero and standard deviation of one. Reference Tran & Ulissi[171]

for additional details. To define the GP, we assumed a constant mean and used a

Matern covariance kernel. We trained the length scale of the Matern kernel using the

Maximum Likelihood Estimation (MLE) method. All GP training and predictions

were done with GPU acceleration as implemented in GPyTorch.[48].

GP𝑁𝑁−𝜇: GPs are Bayesian models in which a prior distribution is first specified

and then updated given observations to yield a posterior distribution. The mean of

this posterior distribution is used for regression, and the covariance matrix is used for

UQ. Typically, in lieu of any additional prior knowledge, practitioners will take the

prior distribution to have zero-mean. However, we could instead supply an alternative

curve for the prior mean, and then perform the usual Bayesian updates to compute

the posterior of this GP given observations. Here, for the GP prior mean, we supply

the prediction given by a single pre-trained NN. We call this method GP with NN
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mean (GP𝑁𝑁−𝜇). For the input features of this GP, we used the same exact features

we used for the plain GP—i.e., the vector of atomic numbers, electronegativity, etc.

For the covariance kernel of this GP, we used a Matern kernel where we fit the kernel

hyperparameters using MLE. All GP training and predictions were done with GPU

acceleration as implemented in GPyTorch.[48].

CFGP: A limitation of using this formulation of a GP with NN-predicted mean is

that it requires the use of hand-crafted features for the GP. This requirement reduces

the transferability of the method to other applications where such features may not

be readily available. To address this, we formulated a different method where we

first train a NN (as described previously) to predict adsorption energies and then

fix the network’s weights. Then we use the 46 pooled outputs of the convolutional

layers of the network as features in a new GP. The GP would then be trained to use

these features to produce both mean and uncertainty predictions on the adsorption

energies. We call this a CFGP. Note that we normalized the 46 convolution outputs

of the NN so that each output would have a mean of zero and a standard deviation of

one across the training set. To define the GP, we assumed a constant mean and used

a Matern covariance kernel. We trained the length scale of the Matern kernel using

the MLE method. All GP training and predictions were done with GPU acceleration

as implemented in GPyTorch.[48].

5.3.3 Performance metrics

We used five different metrics to quantify the accuracy of the various models: MDAE,

RMSE, MAE, MARPD, and R2 correlation coefficient (R2). We used MDAE because

is insensitive to outliers and is therefore a good measure of accuracy for the majority

of the data. We used RMSE because it is sensitive to outliers and is therefore a

good measure of worst-case accuracy. We used MAE because it lies between MDAE

and RMSE in terms of sensitivity to outliers. We used MARPD and R2 because

they provide normalized measures of accuracy that may be more interpretable for

those unfamiliar with adsorption energy measurements in eV. MARPD values were

calculated with Equation 5.1:
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𝑀𝐴𝑅𝑃𝐷 =
1

𝑁

𝑁∑︁
𝑛=1

⃒⃒⃒⃒
100 · �̂�𝑛 − 𝑥𝑛

|�̂�𝑛|+|𝑥𝑛|

⃒⃒⃒⃒
(5.1)

where 𝑛 is the index of a data point, 𝑁 is the total number of data points, 𝑥𝑛 is

the true value of the data point, and �̂�𝑛 is the model’s estimate of 𝑥𝑛. In this case,

𝑥𝑛 is a DFT-calculated adsorption energy and �̂�𝑛 is the surrogate-model-calculated

adsorption energy. The ensemble of these metrics provide a more robust view of

accuracy than any one metric can provide alone.

To assess the calibration (or “honesty”) of these models’ UQs, we created calibra-

tion curves. A calibration curve “displays the true frequency of points in each interval

relative to the predicted fraction of points in that interval”, as outlined by Kuleshov

et al.[93]. In other words: We used the standard deviation predictions to create

Gaussian random variables for each test point and then tested how well the residuals

followed their respective Gaussian random variables. Thus “well-calibrated” models

had residuals that created Gaussian distributions whose standard deviations were

close to the model’s predicted standard deviations. We discuss calibration curves in

more detail in the Results section alongside specific examples. We also calculated the

calibration errors[93] of our models, which is a quantitative measure of calibration.

As Kuleshov et al.[93] also pointed out, well-calibrated models are necessary but

not sufficient for useful UQs. For example: A well-calibrated model could still have

large uncertainty estimates, which are inherently less useful than well-calibrated and

small uncertainty estimates. This idea of having small uncertainty estimates is called

“sharpness”, and As Kuleshov et al.[93] define it with Equation 5.2:

𝑠ℎ𝑎 =
1

𝑁

𝑁∑︁
𝑛=1

𝑣𝑎𝑟(𝐹𝑛) (5.2)

where 𝑣𝑎𝑟(𝐹𝑛) is the variance of the random variable whose cumulative distribution

function is 𝐹 at point 𝑛. This is akin to the average variance of the uncertainty

estimates on the test set. Here we propose and use a new formulation (Equation 5.3)

where we add a square root operation. This operation gives the sharpness the same

units as the predictions, which provides us with a more intuitive reference. In other
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words: Sharpness is akin to the average of the ML-predicted standard deviations.

𝑠ℎ𝑎 =

⎯⎸⎸⎷ 1

𝑁

𝑁∑︁
𝑛=1

𝑣𝑎𝑟(𝐹𝑛) (5.3)

Another consideration is the dispersion of the uncertainty estimates. If a model

predicts a constant value for uncertainty, it may still be able to perform well with

regards to calibration or sharpness. Constant values for uncertainty are likely to fail

when models are used to make predictions outside the bounds of the training data.

One way to address this issue is to calculate the Cv[96]. See Equation 5.4:

𝐶𝑣 =

√︁∑︀𝑁
𝑛=1(𝜎𝑛−𝜇𝜎)2

𝑁−1

𝜇𝜎

(5.4)

where 𝜎𝑛 is the predicted standard deviation of point 𝑛, 𝜇𝜎 is the average value of 𝜎𝑛,

and 𝑁 is the total number of test points. Low values of Cv indicate a narrow disper-

sion of uncertainty estimates, which may suggest poor performance in out-of-domain

predictions. Thus a higher Cv may indicate more robust uncertainty estimates. But

as Scalia et al.[153] point out, the optimal dispersion is a function of the valida-

tion/test data distribution. Therefore, Cv should be used as a secondary screening

metric rather than a primary performance metric.

We also assessed the performance of each predictive uncertainty method by com-

paring their NLL values the test set. For each test point, we established a Gaussian

probability distribution using the mean and uncertainty predictions of each UQ model.

Then we calculated the conditional probability of observing the true value of the test

point given the probability distribution created from the UQ; this is the likelihood

of one test point. We then calculated the product of all the likelihoods of all test

points, which yielded the total test likelihood. It follows that better UQ methods

yield higher total likelihood values. Equivalently, we could calculate the natural log-

arithms of each likelihood, sum them, and then take the negative of this value; this

is NLL. Equation 5.5 shows how we calculated NLL:
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𝑁𝐿𝐿 = −
𝑛∑︁

𝑖=1

ln𝑃 (𝑦𝑖|𝑁(𝑦𝑖, 𝜎𝑖
2)) (5.5)

where 𝑦𝑖 is the true value of a test point, 𝑦𝑖 is a model’s predicted mean value at that

test point, 𝜎𝑖
2 is the model’s predicted variance at that test point, 𝑛 is the set of all

test points, and 𝑁(𝑥, 𝑦) is a normal distribution with mean 𝑥 and variance 𝑦. Note

how the NLL value depends on the size and location of the test set. This means that

the absolute value of NLL changes from application to application, and so a “good”

NLL value must be contextualized within a particular test set. Within a test set,

a lower NLL value indicates a better fit. We also note that we assumed Gaussian

distributions for our UQ methods’ predictions. This assumption does not necessarily

need to be applied, meaning that the normal distribution in Equation 5.5 may be

replaced with any other appropriate distribution.

We use NLL because it provides an overall assessment that is influenced by both

the predictive accuracy of a method as well as the quality of its UQ. Previous work [50,

37] has shown the NLL to be a strictly proper scoring rule, which intuitively means

that it provides a fair quantitative assessment (or score) for the performance of the

UQ method, and that it can be decomposed into terms that relate to both calibration

and sharpness. NLL is also a popular performance metric that has been used to

quantify uncertainty in a variety of prior work [94] and provides an additional single

score for UQ methods.

5.4 Results

5.4.1 Illustrative examples

Let us first discuss the results of our NN ensemble for illustrative purposes. Figure 5-

3 contains a parity plot, calibration curve, and predicted-uncertainty distribution

of our NN ensemble model. The parity plot shows the accuracy of the model; the

calibration curve shows the honesty of the model’s uncertainty predictions; and the

uncertainty distribution shows the sharpness of the model’s uncertainty predictions.
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Figure 5-3: Results of the NN ensemble. Each figure here was created with the test
set of 8,289 points.

Accurate models have parity plots whose points tend to fall near the diagonal parity

line. Calibrated models have calibration curves that approach the ideal diagonal

line. Sharp models have uncertainty distributions that tend towards zero. Note that

sharpness should not be won at the cost of calibration.

The calibration curve was created by first establishing Gaussian random variables

for each test point where the means were the model’s predictions and the variances

were the model’s predicted variances. The test residuals could then be compared

against their respective random variables. For simplification purposes, we divided

each of the test residuals by their corresponding standard deviations so that we could

test all residuals against the same unit Gaussian distribution. Thus if the normalized

test residuals followed a unit Gaussian distribution, then the model’s uncertainty pre-

dictions could be considered well-calibrated. We tested this by calculating the theo-

retical cumulative distribution of points within the intervals (−∞, 𝑥] ∀ 𝑥 ∈ (−∞,∞)

and then compared it against the observed cumulative distributions. A plot of the

observed cumulative distributions against the theoretical cumulative distributions is

called a calibration curve. A perfectly calibrated model would have normalized resid-

uals that are Gaussian, which would yield a diagonal calibration line. Therefore,

models’ calibration could be qualified by the closeness of their calibration curves to

this ideal, diagonal curve. We quantified this closeness by calculating the area be-

tween the calibration curve and the ideal diagonal. We call this the miscalibration
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area, and smaller values indicate better calibration. We also calculated the calibra-

tion error,[93] which is the mean square difference between the expected cumulative

distributions and observed cumulative distributions.

The shape of a calibration curve could also yield other insights. If a model’s UQs

were too low/confident, then the normalized residuals would be too large and they

would fall outside their distributions too frequently. This would result in a lower ob-

served cumulative distributions compared to the expected cumulative distributions,

which would correspond to a calibration curve that falls below the ideal diagonal.

Therefore, overconfident models yield calibration curves that fall under the ideal di-

agonal, and underconfident models yield calibration curves that fall over the ideal

diagonal. Figure 5-4 illustrates this point by plotting calibration curves of various

models alongside their parity plots that contain error bars corresponding to ±2 stan-

dard deviations. Note that when we say a calibration curve “falls under the diagonal”,

we allude to curves whose right-hand-side fall under the diagonal.

5.4.2 Summary results

Figure 5-5 contains parity plots for all UQ methods studied here; Figure 5-6 con-

tains all calibration curves; and Figure 5-7 contains all distribution plots of the ML-

predicted UQs. These figures illustrate the accuracy, calibration, and sharpness of

the different UQ methods, respectively. Table 5.1 lists their performance metrics.

Regarding accuracy: All methods’ MDAE results are virtually identical, and their

MAE results are within 10% of each other. This suggests that all methods have

comparable predictive accuracies for inliers. The plain GP has a higher RMSE value

than the rest of the methods, indicating that it has the worst predictive accuracy for

outliers. Correlations between residuals and uncertainty estimates are discussed in

the Supplementary Information section briefly.

Regarding calibration: The NN ensemble, BNN, and Dropout NN are overconfi-

dent; the GP is underconfident; and the NNΔNN, GP𝑁𝑁−𝜇, and CFGP models are

relatively calibrated. The three more calibrated methods all share a characteristic that

the other methods do not: They all start with a NN that is dedicated for prediction
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(c) calibration of CFGP

4 2 0 2 4
DFT E [eV]

4

2

0

2

4

NN
 e

ns
em

bl
e 

E 
[e

V]

  MDAE = 0.11 eV
  MAE = 0.18 eV
  RMSE = 0.32 eV
  MARPD = 59%

(d) parity of NN ensemble

4 2 0 2 4
DFT E [eV]

4

2

0

2

4

GP
 

E 
[e

V]

  MDAE = 0.11 eV
  MAE = 0.21 eV
  RMSE = 0.39 eV
  MARPD = 61%

(e) parity of GP

4 2 0 2 4
DFT E [eV]

4

2

0

2

4

CF
GP

 
E 

[e
V]

  MDAE = 0.11 eV
  MAE = 0.19 eV
  RMSE = 0.33 eV
  MARPD = 59%

(f) parity of CFGP

Figure 5-4: Calibration curves and parity plots of an overconfident NN ensemble,
an underconfident GP, and better-calibrated CFGP. The vertical uncertainty bands
in the parity plots indicate ±2 standard deviations in the uncertainty predictions of
each model. For clarity, we sampled only 20 points of the 8,289 test points to put
in the parity plots. It follows that relatively overconfident models would have more
points with uncertainty bands that do not cross the diagonal parity line; relatively
underconfident models would have more points that cross the diagonal parity line;
and a well-calibrated model would have ca. 19 out of 20 points cross the parity line.
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Figure 5-5: Parity plots for all UQ methods used in this study. Shading plots were
used in lieu of scatter plots because the large number of test points (8,289) obfuscated
patterns. Darker shading indicates a higher density of points. Logarithmically scaled
shading was used to accentuate outliers. The dashed, diagonal lines indicate parity.
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(f) GP𝑁𝑁−𝜇
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Figure 5-6: Calibration curves for all UQ methods used in this study. Dashed, blue
lines indicate perfect calibration while solid orange lines indicate the experimental
calibration of the test set. The blue, shaded area between these lines is defined as the
miscalibration area.
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Figure 5-7: Distribution plots of the ML-predicted standard deviations for each
method. Sharpness values are indicated by vertical lines.
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Table 5.1: Performance metrics for all methods used in this study, which include:
Median Absolute Error (MDAE), Mean Absolute Error (MAE), Root Mean Squared
Error (RMSE), Mean Absolute Relative Percent Difference (MARPD), R2 correlation
coefficient (R2), miscalibration area (MisCal), calibration error (CalErr), sharpness
(Sha), coefficient of variation (Cv), and negative log-likelihood (NLL). The units of
MDAE, MAE, RMSE, and sharpness are all in eV. The units of MARPD are in %.
The miscalibration area, calibration error, Cv, and NLL are unitless.

Method MDAE MAE RMSE MARPD R2 MisCal CalErr Sha Cv NLL·103

NN 0.11 0.19 0.34 61 0.80 N/A N/A N/A N/A N/A
NN ensemble 0.11 0.18 0.32 59 0.82 0.12 1.70 0.14 1.06 192.08
BNN 0.11 0.19 0.31 59 0.83 0.20 5.32 0.03 0.30 669.61
Dropout NN 0.11 0.19 0.34 61 0.79 0.14 2.52 0.09 0.82 7.38·1014

NNΔNN 0.11 0.19 0.34 59 0.80 0.05 0.39 0.16 0.71 18.61
GP 0.11 0.21 0.39 61 0.73 0.14 2.35 0.65 0.21 6.41
GP𝑁𝑁−𝜇 0.11 0.19 0.33 59 0.81 0.03 0.08 0.21 0.34 6.09
CFGP 0.11 0.19 0.33 59 0.80 0.03 0.13 0.24 0.33 2.80

alone, and then they end with some other in-series method to estimate uncertainty.

Interestingly, this in-series method of learning predictions and then learning uncer-

tainties is similar in spirit to how gradient boosted models “learn in stages” using an

ensemble of models.

Regarding sharpness: The NN ensemble, BNN, and Dropout NN models yield

the most sharp uncertainties, although they do so at the cost of calibration. Among

the three more calibrated models, the NNΔNN yields the lowest sharpness of 0.16

eV while the GP𝑁𝑁−𝜇 and CFGP yield sharpnesses of 0.21 and 0.24 eV, respectively.

Note how GP-based UQ methods tend to yield less sharp uncertainties than methods

based purely on NNs. This suggests that GPs may yield more conservative UQs.

Regarding NLL: The CFGP method yields the best (i.e., lowest) NLL value of ca.

2,800 while both the GP and GP𝑁𝑁−𝜇 models yield relatively moderate NLL values

of ca. 6,000. Note how the under-confident GP model has a worse miscalibration

area, calibration error, and sharpness than the NNΔNN but a better NLL value.

Simultaneously, the three most over-confident and sharp models (NN ensemble, BNN,

and Dropout NN) yield the worst NLL results. This shows that better NLL values

correlate with relatively conservative estimates of UQ, but not with relatively liberal

estimates. In other words: If we use NLL as our main performance metric, then we
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will favor under-confident UQ estimates in lieu of over-confident estimates.

Given the performance metrics for accuracy, calibration, sharpness, and NLL, we

expect the CFGP or GP𝑁𝑁−𝜇 methods to yield the best performing UQ models for our

dataset. When choosing UQ methods for different applications, other factors should

be considered. For example: Although the GP𝑁𝑁−𝜇 method performed relatively

well, it relied on hand-crafted features. If future researchers wish to use the GP𝑁𝑁−𝜇

method to predict other properties from atomic structures, they may have to define

their own set of features. This process of feature engineering is non-trivial and varies

from application to application. In some cases, it may be easier to use a UQ method

that does not require any additional features beyond the NN input, such as NNΔNN

or CFGP. This is why declare CFGP as the method of choice for our study here; it

has a relatively competitive accuracy, calibration, and sharpness while requiring less

information than GP𝑁𝑁−𝜇.

Another factor to consider is the overhead cost of implementation. For example:

The NN ensemble method is arguably the simplest NN-based UQ method used here

and may be the easiest method to implement. Conversely, NN ensembles also have a

higher computational training cost than some of the other methods used here, such

as NNΔNN or CFGP. This high training cost is exacerbated if the ensemble is meant

to be used in an active framework where the model needs to be trained continuously.

As another example: The BNN method yielded perhaps the worst results of all the

methods studied here. It could be argued that further optimization of the BNN could

have resulted in higher performance. But creation and training of BNNs is still an

active area of research with less literature and support than GPs or non-Bayesian

NNs. This lack of support led to us spending nearly twice as long creating a BNN

compared to the other methods. It follows that further optimization of the BNN

would be non-trivial and may not be worth the overhead investment.

127



5.5 Conclusions

We examined a procedure for comparing different methods for uncertainty quantifi-

cation (UQ). This procedure considers the accuracy of each method, the honesty of

their uncertainty estimates (i.e., their calibration), and the size of their uncertainty

estimates (i.e., their sharpness). To assess accuracy, we outlined a common set of error

metrics such as MAE or RMSE, among others. To assess calibration, we showed how

to create, interpret, and quantify calibration curves. To assess sharpness, we showed

how to calculate and plot sharpness. To assess all three aspects simultaneously, we

suggest using the negative log-likelihood (NLL) as a performance metric. The ensem-

ble of all these metrics and figures can be used to judge the relative performance of

various UQ methods in a holistic fashion.

As a case study, we tested six different methods for predicting Density Functional

Theory (DFT) calculated adsorption energies with UQ. The best performing method

was a Convolution-Fed Gaussian Process (CFGP), which used a pre-trained convo-

lutional output from a NN as features for a subsequent GP that made probabilistic

predictions. Our studies also showed that the GP-based methods we tested tended

to yield higher and more conservative uncertainty estimates than the methods that

used only NNs and NN derivatives. We also found that in-series methods tended

to yield more calibrated models—i.e., methods that use one model to make value

predictions and then a subsequent model to make uncertainty estimates were more

calibrated than models that attempted to make value and uncertainty predictions si-

multaneously. These results are limited to our dataset. Results may vary for studies

with different applications, different models, or different hyperparameters. But the

underpinning procedure we used to compare these models is still broadly applicable.

Note that it would be possible to recalibrate[93] each of the models in this study

to improve their uncertainty estimates. We purposefully omitted recalibration in this

study to (1) simplify the illustration of the UQ assessment procedure; (2) assess the

innate performance of each of these UQ methods without confounding with recali-

bration methods; and (3) reduce overhead investment. Future work should consider
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recalibration if the feasible UQ methods provide insufficiently calibrated uncertainty

predictions

Future work may also consider inductively biased UQs. For example: If we used

the Bayesian Error Estimation Functional with van der Waals correlation (BEEF-

vdW),[179] then our DFT calculated adsorption energies would have been distribu-

tions rather than than single point estimates. Such distributions could be propagated

to certain UQ surrogate models, e.g., as a variable-variance kernel in a GP-type

method. As another example of inductively biased UQs: A model may be able to

make low-uncertainty predictions on a DFT-optimized structure and then also make

high-uncertainty predictions on a similar but DFT-unoptimized structure. UQs do

not need to be derived strictly from data. They may also be derived from previous

knowledge.
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Chapter 6

Computational catalyst discovery:

Active classification through myopic

multiscale sampling

This work has been submitted recently to The Journal of Chemical Physics as: Kevin

Tran, Willie Neiswanger, Kirby Broderick, Eric Xing, Jeffrey Schneider, and Zachary

W. Ulissi. Computational materials discovery: Active classification through myopic

multiscale sampling.

My contribution in this work involved inventing the multiscale modeling framework

and co-inventing the multiscale sampling strategy with Willie, Jeff, and Zack. I also

created and ran all the code used to perform the studies. I wrote the abstract, results,

conclusions, and parts of the introduction & methods sections.

6.1 Abstract

The recent boom in computational chemistry has enabled several projects aimed at

discovering useful materials or catalysts. We acknowledge and address two recurring

issues in the field of computational catalyst discovery. First, calculating macro-scale

catalyst properties is not straight-forward when using ensembles of atomic-scale calcu-

lations (e.g., density functional theory). We attempt to address this issue by creating
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a multi-scale model that estimates bulk catalyst activity using adsorption energy

predictions from both density functional theory and machine learning models. The

second issue is that many catalyst discovery efforts seek to optimize catalyst proper-

ties, but optimization is an inherently exploitative objective that is in tension with

the explorative nature of early-stage discovery projects. In other words: why invest so

much time finding a “best” catalyst when it is likely to fail for some other, unforeseen

problem? We address this issue by relaxing the catalyst discovery goal into a classi-

fication problem: “What is the set of catalysts that is worth testing experimentally?”

Here we present a catalyst discovery method called myopic multiscale sampling, which

combines multiscale modeling with automated selection of density functional theory

calculations. It is an active classification strategy that seeks to classify catalysts as

“worth investigating” or “not worth investigating” experimentally. Our results show

a ∼7–16 times speedup in catalyst classification relative to random sampling. These

results were based on offline simulations of our algorithm on two different datasets:

a larger, synthesized dataset and a smaller, real dataset.

6.2 Introduction

Recent advances in computing hardware and software have led to substantial growth

in the field of computational materials science. In particular, databases of high-

throughput calculations[72, 33, 152, 136, 14, 124] have increased the amount of infor-

mation available to researchers. These databases facilitate the development of models

that supplement human understanding of physical trends in materials.[156, 155, 117]

These models can then be used in experimental discovery efforts by identifying promis-

ing subsets of the search space, resulting in increased experimental efficiency.[30, 70,

25, 54, 171, 191]

However, many materials design efforts use material properties and calculation

archetypes that are too problem-specific to be tabulated in generalized databases.

When such efforts coincide with design spaces too large to search in a feasible amount

of time, we need a way to search through the design space efficiently. Sequential
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learning, sometimes referred to as optimal design of experiments or active learning,

can fill this role. Sequential learning is the process of using the currently available

data to decide which new data would be most valuable for achieving a particular

goal.[107, 157, 81] In practice, this usually involves fitting a surrogate model to the

available data and then pairing the model with an acquisition function that calculates

the values of a new, potential data points. Then we query the most valuable data

points, add them to the data set, and repeat this process. These sequential learning

methods have been estimated to accelerate materials discovery efforts by up to a

factor of 20.[149]

Sequential learning has numerous sub-types of methods that can and have been

used for different goals. One such sub-type is active learning. With many active

learning algorithms, the goal is to replace a relatively slow data-querying process

with a faster-running surrogate model.[163] Since the surrogate model may be used

to query any point, the acquisition functions focus on ensuring that the entire search

space is explored. Another sub-type of sequential learning is active optimization.[45]

With this sub-type, the goal is to maximize or minimize some objective function. Thus

the acquisition functions generally focus on parts of the search space where maxima or

minima are more likely to occur. One of the most common types of active optimization

in Bayesian optimization.[45] Yet another sub-type of sequential learning is online or

on-the-fly learning.[65] The goal for these methods is to accelerate the predictions of

streams of data. In the field of computational material science, this is often applied

to predicting trajectories for DFT or molecular dynamics calculations.[80, 174]

In computational materials discovery, we often have the following task: we have

a set of available materials 𝒳 = {𝑥𝑖}𝑛𝑖=1, where each material 𝑥𝑖 has an associated

quantity 𝑦𝑖, denoting its value for some application. Examples of common proper-

ties for 𝑦𝑖 include—but are not limited to—formation energies of materials, catalyst

activity, tensile strength, or conductivity. The value 𝑦𝑖 is unknown and must be cal-

culated, which can be costly in time, money, or other resources. Further, theoretical

calculations of material properties may be inconsistent with experimental results. As

per a common aphorism among statisticians: “All models are wrong, but some are
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useful.”

Due to these potential model errors and due to the exploratory nature of materials

discovery, we propose reframing the materials discovery question. Instead of trying

to discover materials with optimal 𝑦𝑖 values, what if we instead classify materials as

having promising or unpromising 𝑦𝑖 values? In other words, what if we frame materials

discovery efforts as classification problems rather than optimization problems? Then

these classes could then be used to design physical experiments. Mathematically, this

is akin to assuming that material 𝑖 has a binary value 𝑦𝑖 ∈ {0, 1}, where 0 denotes

“not of interest”, and 1 denotes “of interest”.

The goal is then to determine the values 𝑦𝑖 for each 𝑥𝑖 ∈ 𝒳 as cheaply as possible.

One can view this as the task of most-efficiently learning a classifier that, for each 𝑥𝑖,

correctly predicts its value 𝑦𝑖. In this way, materials discovery problems can be framed

as problems of active classification. Active classification is the task of choosing an

ordering of 𝑥𝑖 ∈ 𝒳 , over which we will iterate and sequentially measure their values

𝑦𝑖, in order to most efficiently (using the fewest measurements) learn a classifier that

predicts the correct label for all materials 𝑥𝑖 ∈ 𝒳 .[112, 188]

Another aspect of computational materials discovery is the ability to turn calcu-

lations into recommendations—e.g., how can we convert DFT results into actionable

experiments? This conversion is relatively straight-forward when properties are di-

rectly calculable, which is the case for properties such as the enthalpy of formation.[44]

If we perform a single DFT calculation that suggests a single material may be stable,

then we can suggest that single material for experimentation. But for many applica-

tions, the properties of interest may not be calculable directly. For example, let us

say we are interested in finding active catalysts. One way we can do that is by using

DFT to calculate the adsorption energy between the catalyst and particular reac-

tion intermediates, and then couple the resulting adsorption energy with a Sabatier

relationship.[160] But in situ, a catalyst comprises numerous adsorption sites and

surfaces. Thus the true activity of a catalyst may be governed by an ensemble of

adsorption energies, and therefore may need multiple DFT calculations. How do we

address the fact that we need multiple DFT queries to resolve the properties of a
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single material?

Here we attempt to address both outlined issues: (1) we need an ensemble of DFT

queries to calculate a single experimental property of interest, and (2) we need a se-

quential learning method designed for high-throughput discovery/classification. We

overcome both issues by creating the MMS method (Figure 6-1). MMS addresses the

first aforementioned issue by using a multiscale modeling framework for estimating

the activity of a catalyst using an ensemble of both DFT and ML predicted adsorp-

tion energies. MMS then addresses the second issue by combining this multiscale

modeling framework with a number of sequential learning methods, including active

classification. Note that MMS, as we describe it in this paper, is tailored to discover-

ing active catalysts. Although this method may not be directly transferable to other

applications, we hope that others may be able to adapt the principles of the method

to their own applications.

6.3 Methods

6.3.1 Multiscale Modeling

In this paper, we use the discovery of active catalysts as a case study. Catalyst activity

is often correlated with the adsorption energy of particular reaction intermediates, as

per the volcano relationships stemming frome the Sabatier principle.[134, 160] These

adsorption energies can be calculated using DFT. Each DFT-calculated adsorption

energy is specific to a particular binding site of a particular surface of a particular

catalyst. Thus the relationship between DFT-calculated adsorption energies and a

catalyst’s activity is not simple.

For example: In cases of lower adsorbate coverage on the catalyst surface, adsor-

bates tend to adsorb to stronger-binding sites before weaker-binding sites. In cases of

higher adsorbate coverage, adsorption energies are difficult to calculate, so it is not

uncommon to assume low adsorbate coverage.[134, 133, 108, 6-26,97-113,126] It fol-

lows that the activity of a surface could be estimated by using the Sabatier-calculated
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Figure 6-1: Illustration of Myopic Multiscale Sampling (MMS). Given a database of
DFT-calculated adsorption energies (a), we train a ML model to predict adsorption
energies (b). Then we use those adsorption energies to estimate activities of catalyst
surfaces (c), which we then use to estimate the activities of the bulk catalysts (d).
Then we choose which catalyst to sample next (e); then we choose which surface on
the catalyst to sample (f); then we choose which site on the surface to sample (g);
then we perform DFT of that site to add to the database (h). This procedure is
repeated continuously with the goal of classifying all catalysts as either “relatively
active” or “relatively inactive”.
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activity of the strongest binding site on a surface.

Given the activities of the surfaces of a catalyst, the next step is to estimate the

activity of the entire catalyst. One way to do this would be to perform a weighted

average of the surface activities, where higher weights are given to surfaces that are

more stable. For simplicity’s sake, we instead propose a uniform average and recognize

that future work may involve investigating more sophisticated averaging methods.

Concretely, suppose we have 𝑛 catalyst candidates {𝑥𝑖}𝑛𝑖=1, where each candidate

𝑥𝑖 has 𝑚 surfaces {𝑢𝑖,𝑗}𝑚𝑗=1, and surface 𝑢𝑖,𝑗 has ℓ sites {𝑠𝑖,𝑗,𝑘}ℓ𝑘=1. For a given site 𝑠𝑖,𝑗,𝑘,

denote its adsorption energy by Δ𝐺(𝑠𝑖,𝑗,𝑘), and for a given surface 𝑢𝑖,𝑗, denote its cat-

alytic activity by 𝛼(𝑢𝑖,𝑗). Likewise, for a given catalyst material candidate 𝑥𝑖, denote

the average catalytic activity for the candidate by 𝛼(𝑥𝑖) =
1
𝑚

∑︀𝑚
𝑗=1 𝛼(𝑢𝑖,𝑗). Suppose

we have a predictive uncertainty estimate for the adsorption energy Δ𝐺(𝑠𝑖,𝑗,𝑘) of a

site, represented by a Normal distribution with mean 𝜇𝑖,𝑗,𝑘 and variance 𝜎2
𝑖,𝑗,𝑘. We can

then perform simulation-based uncertainty quantification of catalyst activity by using

the multiscale modeling process we described above to propagate uncertainties from

sites’ adsorption energies. Specifically, for each material candidate 𝑥𝑖, we generate 𝐻

samples of its catalytic activity, {�̃�ℎ
𝑖 }𝐻ℎ=1, by simulating from the following generative

process:

For 𝑗 = 1, . . . ,𝑚, 𝑘 = 1, . . . , ℓ : (6.1)

{Δ̃𝐺ℎ
𝑖,𝑗,𝑘}𝐻ℎ=1

𝑖𝑖𝑑∼ 𝒩
(︁
𝜇𝑖,𝑗,𝑘, 𝜎

2
𝑖,𝑗,𝑘

)︁
For ℎ = 1, . . . , 𝐻, 𝑗 = 1, . . . ,𝑚 :

�̃�ℎ
𝑖,𝑗 =

⎧⎪⎪⎨⎪⎪⎩
exp(𝑀1Δ̃𝐺ℎ

𝑖,𝑗,1:ℓ +𝐵1) if Δ̃𝐺ℎ
𝑖,𝑗,1:ℓ ≥ 𝑡*

exp(𝑀2Δ̃𝐺ℎ
𝑖,𝑗,1:ℓ +𝐵2) otherwise

For ℎ = 1, . . . , 𝐻 :

�̃�ℎ
𝑖 =

1

𝑛

𝑚∑︁
𝑗=1

�̃�ℎ
𝑖,𝑗
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Figure 6-2: Multiscale modeling strategy for estimating the activity of a catalyst. For
each adsorption site, we obtain a machine-learned estimate of its adsorption energy
along with uncertainty. Then we aggregate the energy distributions for all sites within
each surface through a minimum operator across sites. Next we transform the energy
distributions for all surfaces into activities using a Sabatier relationship. Finally we
average all the surface activities to obtain an estimate of overall catalyst activity.

where 𝑡* is the optimal absorption energy for a given volcano relationship and 𝑀1,

𝑀2, 𝐵1, & 𝐵2 are the linear coefficients associated with the two sides of the log-

scaled volcano relationship of a given chemistry. Figure 6-2 illustrates how we use

our multiscale modeling method to estimate catalyst activity from DFT-calculated

adsorption energies, including uncertainty quantification.

Each catalyst material candidate 𝑥 ∈ 𝒳 has some true catalytic activity level

𝛼(𝑥). Our goal will be to determine the top 𝑝-% of catalyst material candidates in

terms of their activity levels, which we denote 𝒳𝑝 = {𝑥 ∈ 𝒳 : 𝑟(𝛼(𝑥)) ≥
⌊︀

𝑝𝑛
100

⌋︀
},

where 𝑟 : R+ → {1, . . . , 𝑛} is a function mapping the activity level 𝛼(𝑥) to an index

denoting it’s rank (from highest to lowest activity). Given a specified 𝑝, if a candidate

material is in this set, i.e. 𝑥𝑖 ∈ 𝒳𝑝, then we say that its associated binary value 𝑦𝑖 = 1,

and say 𝑦𝑖 = 0 otherwise. In simpler terms: We want to find the top 𝑝-% most active

catalysts. For this paper, we choose 𝑝 = 10% arbitrarily. Any catalyst that falls
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within the top 10% in terms of activity will be labeled as active, and anything below

the top 10% will be labeled as inactive.

We can therefore frame our goal as determining the associated binary value 𝑦𝑖 for

each catalyst material candidate 𝑥𝑖 ∈ 𝒳 = {𝑥𝑖}𝑛𝑖=1. Suppose we have formed point

estimates for each of the binary values, written {𝑦𝑖}𝑛𝑖=1. To assess the quality of this

set of estimates with respect to the set of true candidate values, we focus on the 𝐹1

score—a popular metric for classification accuracy, defined as

𝐹1 = 2× precision × recall
precision + recall

(6.2)

=
2
∑︀𝑛

𝑖=1 𝑦𝑖𝑦𝑖
2
∑︀𝑛

𝑖=1 𝑦𝑖𝑦𝑖 +
∑︀𝑛

𝑖=1(1− 𝑦𝑖)𝑦𝑖 +
∑︀𝑛

𝑖=1 𝑦𝑖(1− 𝑦𝑖)
.

Given a set of ground-truth values {𝑦𝑖}𝑛𝑖=1, we are able to compute the 𝐹1 score for a

chosen set of value estimates {𝑦𝑖}𝑛𝑖=1.

However, in practice, we will typically not have access to these ground-truth val-

ues, and thus cannot compute this score in an online procedure. For use in online

experiments, we will take advantage of a metric that yields an estimate of the change

in 𝐹1 score. This metric is computable using only our model of the activity of each

catalyst, without requiring access to ground-truth values {𝑦𝑖}𝑛𝑖=1, and can be used to

assess and compare the convergence of our methods. Furthermore, it can be used to

provide an early stopping method for our active procedures. We will show experi-

mentally in Section 6.4 that this metric shows a strong correlation to the 𝐹1 score.

6.3.2 Sampling Strategy

The goal of MMS is to discover catalysts that are likely to be experimentally active.

Optimization of catalytic activity is not the main priority, because we assume that

unforeseen experimental issues are likely to obsolete most candidate catalysts. In-

stead, a greater focus is given on identification of a large number of candidates rather

than finding “the most active” candidate. That is why the core sequential learning
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algorithm we use in MMS is active classification.[112, 188] To be specific, we use

Level Set Estimation (LSE) to identify catalysts for DFT sampling. After identifying

catalysts for DFT sampling, we then need to choose which surface of the catalyst

to sample; here we use active learning. Once a surface is chosen, we then attempt

to find the strongest binding site on that surface by using active optimization of the

adsorption energies. Thus we combine three different sequential learning strategies

across three different length scales to decide which site-based DFT calculation will

help us classify active vs. inactive catalysts (Figure 6-3).

We first describe the initial step of our sampling strategy, which consists of se-

lecting a catalyst material candidate from our candidate set 𝒳 = {𝑥𝑖}𝑛𝑖=1. Note

that our high-level goal is binary classification, in that we want to efficiently produce

accurate estimates {𝑦𝑖}𝑛𝑖=1 of the binary value for each material candidate. Based

on our definition of 𝑦𝑖 = 1
[︀
𝑥𝑖 ∈ 𝒳𝑝

]︀
, this problem can be equivalently viewed as

the task of LSE, in which we aim to efficiently produce an accurate estimate of the

superlevel set 𝒳𝑝 = {𝑥 ∈ 𝒳 : 𝑟(𝛼(𝑥)) ≥
⌊︀

𝑝𝑛
100

⌋︀
}. There has been a body of work

on developing acquisition functions for choosing candidates to query in the task of

LSE.[52, 79] In particular, we focus on the probability of incorrect classification ac-

quisition function,[21] defined for an 𝑥𝑖 ∈ 𝒳 as

𝜙(𝑥𝑖) = min(𝑝, 1− 𝑝),where (6.3)

𝑝 = Pr

(︃
𝑟(𝛼(𝑥)) ≥

⌊︂
𝑝𝑛

100

⌋︂)︃

≈ 1

𝐻

𝐻∑︁
ℎ=1

1

[︃
𝑟(�̃�ℎ

𝑖 ) ≥
⌊︂
𝑝𝑛

100

⌋︂]︃
⏟  ⏞  

Empirical probability 𝛼(𝑥) in top 𝑝-%

Thus to select a subsequent catalyst candidate, we compute 𝜙(𝑥𝑖) for each 𝑥𝑖 ∈ 𝒳

and return the maximizer 𝑥* = argmax𝑥𝑖∈𝒳 𝜙(𝑥𝑖). In simpler terms: We choose

the catalyst that we are most likely to classify incorrectly. Note how this implies

that we not query catalysts that we are confident are active, which is different from

active optimization methods. This provides a more exploratory method rather than
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Figure 6-3: Myopic Multiscale Sampling (MMS) overview. At the highest level,
we choose a catalyst to query using level-set estimation—to be specific, we use the
probability of incorrect classification as our acquisition function. At the medial level,
we choose a surface of the catalyst using uncertainty sampling. At the lowest level,
we choose a site on the surface using Bayesian optimization to find the lowest energy
site.
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an exploitative one, which is appropriate in early-stage computational discoveries and

screenings.

The selection of a catalyst candidate 𝑥𝑖 depends on its estimated catalytic activity,

which we model as an average of the catalytic activities across the surfaces of the

candidate, i.e. 𝛼(𝑥𝑖) = 1
𝑚

∑︀𝑚
𝑗=1 𝛼(𝑢𝑖,𝑗). Though we select a candidate based on its

ability to help improve our estimate of the superlevel set 𝒳𝑝, once selected, we then

wish to most efficiently improve our estimate of this candidate’s catalytic activity.

Our goal at this stage is therefore to most efficiently learn the catalytic activities

for each surface of that candidate. This can be viewed as an active regression task,

where we aim to sample a surface that will most reduce the uncertainty of our surface

activity estimates. To select a surface, we use an uncertainty sampling for regression

acquisition function from the active learning literature[162], defined as

𝜙(𝑢𝑖,𝑗) = Var
[︁
Pr
(︀
𝛼(𝑢𝑖,𝑗)

)︀]︁
(6.4)

≈ 1

𝐻 − 1

𝐻∑︁
ℎ=1

⎛⎝�̃�ℎ
𝑖,𝑗 −

1

𝐻

𝐻∑︁
ℎ′=1

�̃�ℎ′

𝑖,𝑗

⎞⎠2

,

which selects a surface 𝑢*
𝑖 of material candidate 𝑥𝑖 that has the greatest variance. In

simpler terms: We choose the surface of a catalyst that has the most uncertainty,

because we suspect that this choice is most likely to reduce our uncertainty estimate

of catalyst activity.

The catalytic activity of a given surface 𝛼(𝑢𝑖,𝑗) is function of the adsorption ener-

gies of the sites on this surface, according to the relationship 𝛼(𝑢𝑖,𝑗) = exp(−|𝑀Δ̃𝐺𝑖,𝑗,1:ℓ+

𝐵|) from Equation (6.1), where Δ̃𝐺𝑖,𝑗,1:ℓ is the set of adsorption energies over all sites

on the surface. Therefore, given a selected surface 𝑢𝑖,𝑗, we wish to determine efficiently

the site on this surface with minimum adsorption energy. This can be viewed as an

optimization task. We therefore use the expected improvement acquisition function

from Bayesian optimization[126], defined as
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𝜙(𝑠𝑖,𝑗,𝑘) = E
[︁
(Δ𝐺(𝑠𝑖,𝑗,𝑘) ≤ Δ𝐺*)1

[︀
Δ𝐺(𝑠𝑖,𝑗,𝑘)−Δ𝐺*]︀]︁

≈ Φ

(︃
Δ𝐺* − �̃�𝑖,𝑗,𝑘

�̃�𝑖,𝑗,𝑘

)︃
𝜑

(︃
Δ𝐺* − �̃�𝑖,𝑗,𝑘

�̃�𝑖,𝑗,𝑘

)︃
(6.5)

×
(︀
Δ𝐺* − �̃�𝑖,𝑗,𝑘

)︀
,

where �̃�= 1
𝐻

∑︀𝐻
ℎ=1 Δ̃𝐺

ℎ

𝑖,𝑗,𝑘 is the expected adsorption energy, �̃� =

√︂
1

𝐻−1

∑︀𝐻
ℎ=1

(︁
Δ̃𝐺

ℎ

𝑖,𝑗,𝑘 − �̃�
)︁2

is its standard deviation, Φ is the cumulative density function (CDF) of a standard

normal distribution, 𝜑 is the PDF of a standard normal distribution, and Δ𝐺* is the

minimum observed adsorption energy. This selects a site 𝑠*𝑖,𝑗 which is expected to

most reduce the site adsorption energy relative to the current minimum observed en-

ergy, and allows for efficient estimation of the minimum energy site on surface 𝑢𝑖,𝑗. In

simpler terms: We choose the site on a surface that is most likely to help us identify

the strongest/lowest binding site on the surface.

6.3.3 Active Learning Stopping Criteria

Assessing convergence of an active algorithm is useful for enabling early stopping,

which can save resources. Measures of convergence can also provide diagnostics in

online use settings. To quantify convergence, we use the Δ𝐹 [10]. Intuitively speaking,

this rule says to stop an active learning procedure when Δ𝐹 drops below a predefined

threshold 𝜖 when for 𝑘 consecutive windows, i.e.,

Stop if Δ𝐹 < 𝜖 over 𝑘 windows

Continue otherwise.

In our setting, Δ𝐹 is defined to be

Δ̂𝐹 = 1− 2𝑎

2𝑎+ 𝑏+ 𝑐
, (6.6)
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where 𝑎 is the number of bulks for which the model at iterations 𝑖 and 𝑖+1 both yield

a positive label, 𝑏 is the number of bulks for which the model at iteration 𝑖 yields

a positive label while at iteration 𝑖 + 1 yields a negative label, and 𝑐 is the number

of bulks for which the model at iteration 𝑖 yields a negative label while at iteration

𝑖 + 1 yields a positive label. Each of 𝑎, 𝑏, and 𝑐 are computed over the previous

𝑘 iterations. This measure provides an estimate of the change in accuracy at each

iteration, and it allows us to control how conservatively (or aggressively) we stop early

via an interpretable parameter 𝜖. We show results of this measure alongside our 𝐹1

score in Section 6.4. Note that Altschuler & Bloodgood[10] recommend using a stop

set of unlabeled points over which to calculate Δ𝐹 . Here we use the entire search

space of catalysts in lieu of a stop set, because it was non-trivial for us to define a

stop set that was representative of the search space.

6.3.4 Management of Data Queries

Implementation of MMS also involves definition of several hyper-parameters. For

example, most surrogate models require training data before making predictions to

feed the sampling method. This means that we needed to seed MMS with initial

training data. We chose to create the initial training data by randomly sampling 1,000

adsorption energies from the search space. We used random sampling for simplicity,

and we sampled 1,000 adsorption energies because that was the minimum amount of

data on which CFGP could train on and maintain numerical stability.

Another consideration for MMS is the batch size and how to handle queries in-

tandem. Normal sequential learning assumes that we can make one query at a time.

But in applications such as ours, it may be possible to make multiple queries in

parallel—i.e., we can perform multiple DFT calculations at a time. There are sev-

eral methods for handling queries in parallel; we chose to use a type of look-ahead

sampling.[40] With look-ahead sampling, we began by choosing the first point to

sample using the standard acquisition strategy. Then, while that point was still “be-

ing queried”, we assumed that the first point was queried successfully and set the

“observed” value equal to our predicted value. In other words, we pretend that we
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sampled the first data point and that our prediction of it was perfect. This allowed

us to then recalculate our acquisition values to choose a second point. This process of

“looking ahead” one point at a time was continued until a predetermined number of

points were selected for querying—i.e., the batch size. Here we chose a batch size of

200 points, because that was roughly the number of DFT calculations that we could

perform in a day during our previous high-throughput DFT studies.[171] Note that

we did not re-train the surrogate models within each batch of 200 points; we only

re-calculated acquisition values between each sample within each batch. We skipped

re-training of surrogate models within each batch to reduce the amount of model

training time required to perform this study. Although this may have reduced the

effectiveness of the look-ahead method, we found the increased algorithm speed to be

worthwhile.

6.3.5 Estimating Performance through Simulation

We aim to experimentally assess the performance of MMS and compare it with a vari-

ety of baseline methods without incurring the high cost of repeated DFT calculations.

To do this, we simulate each procedure using a database of pre-determined adsorption

energies. Specifically, suppose we have chosen a set of 𝑛 catalyst material candidates

{𝑥𝑖}𝑛𝑖=1 of interest. For each candidate 𝑥𝑖, we already have all the adsorption energies

Δ𝐺(𝑠𝑖,𝑗,𝑘) for the full set of sites across the full set of surfaces on 𝑥𝑖. We can then run

our procedures in a relatively fast manner, where we can quickly query the database

at each iteration of a given method rather than running DFT. Similar offline-data

discovery procedures have been pursued by previous work in optimization and active

learning, where expensive evaluations have been collected offline and used for rapid

online evaluation[26, 187, 180].

One notable baseline method is random search, which at each iteration samples

sites to carry out DFT calculations uniformly at random from the full set of sites over

all catalyst material candidates. We provide simulation results using random search

as a benchmark to compare MMS against.
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Surrogate Models Used

Our objective in this paper is to assess the performance of MMS. The performance

of MMS is likely to depend on the surrogate model used to predict adsorption ener-

gies from atomic structures. We assume that surrogate models with high predictive

accuracy and calibrated uncertainty estimates[93] will outperform models with low

accuracy and uncalibrated uncertainty estimates, but we are unsure of the magni-

tude of this difference. We therefore propose to pair at least two different models

with MMS: a “perfect” model and an “ignorant” model.

We define the “perfect” model, hereby referred to as the “prime” model, as a model

that returns the true adsorption energy of whatever data point is queried. This per-

fect prediction ensures a high model accuracy. When asked for a standard deviation

in the prediction, the prime model will return a sample from a 𝜒2 distribution whose

mean is 0.1 eV. This uncertainty ensures a sharp and calibrated[93, 170] measure of

uncertainty. We do not use standard deviation of zero because (1) it causes numer-

ical issues during multiscale modeling and (2) any model in practice should not be

returning standard deviations of zero.

We define the “ignorant” model, hereby referred to as the “null” model, as a model

that returns the optimal adsorption energy no matter what is queried. This constant

prediction ensures a relatively low model accuracy. When asked for a standard devi-

ation in the prediction, the null model will return 1 eV. This uncertainty ensures a

relatively dull and uncalibrated measure of uncertainty.

Lastly, we also choose to use a third, most practical model: CFGP.[170] CFGP is

a Gaussian process regressor whose features are the output of the final convolutional

layer in a trained graph convolutional neural network. This model is our best current

estimate of both an accurate and calibrated model that could be used in practice.

Thus we have three models: null, CFGP, and prime, which are intended to give

quantitative estimates of the minimal, medial, and maximal performance of MMS,

respectively.
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Search Spaces Used

Previous studies have shown that different materials discovery problems have varying

difficulties.[81] Searching for a needle in a hay stack is generally more difficult than

searching for a leaf on a branch. Thus any simulation we do depends on the search

space we use. To obtain a range of potential MMS performances, we perform sim-

ulations using two different data sets. Both data sets comprise thousands of atomic

structures that represent CO adsorbing onto various catalyst surfaces, as well as cor-

responding adsorption energies. We then use Sabatier relationships from literature

to transform the adsorption energies into estimates of activity.[105]

We defined our first search space by synthesizing it randomly. We did so by

retrieving a database of enumerated adsorption sites from GASpy[171, 169]. These

sites composed all the unique sites on all surfaces with Miller indices between -2 and

2 across over 10,000 different bulk crystal structures. We then randomly selected 200

of the bulk crystals along with all of the resulting surfaces and sites, yielding over

390,000 adsorption sites. Then for each bulk crystal, we randomly sampled its “bulk

mean adsorption energy” from a unit normal distribution. Then for each surface

within each crystal, we randomly sampled its “surface mean adsorption energy” from

a normal distribution whose mean was centered at the corresponding bulk mean and

whose standard deviation was set to 0.3 eV. Then for each site within each surface,

we randomly sampled its adsorption energy from a normal distribution whose mean

was centered at the corresponding surface mean and whose standard deviation was

set to 0.1 eV. Thus the adsorption energies were correlated within each bulk, and they

were also correlated within each surface.

We defined our second search space by retrieving our database of ca. 19,000 DFT-

calculated CO adsorption energies calculated by GASpy, hereafter referred to as the

GASpy dataset. The sites in this database were chosen using previous iterations of

our sequential learning methods,[171] and they therefore have bias in the locations at

which they were sampled. Specifically, the sites in this database were chosen based

on the likelihood that their adsorption energies were close to the optimal value of
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-0.67 eV.[105, 171]

There are several advantages of using the synthesized data set over the real GASpy

data set, and vice versa. The synthesized data set contains pseudo-random adsorption

energies that are difficult for CFGP to predict, thereby hindering its performance

unfairly. Therefore, we should not and did not use CFGP with the synthesized data

set; we used it with the GASpy data set only. On the other hand, the number of

surfaces per bulk and the number of sites per surface in the GASpy data set was

relatively sparse compared to the synthesized data set. This can result in catalysts

that require relatively few site queries to sample fully, which reduces the number of

queries necessary to classify a catalyst. This reduction in the number of required

queries per catalyst could artificially improve the observed performance of MMS.

6.4 Results

At the beginning of the simulations, the multiscale models made their catalyst class

predictions (i.e., active or inactive) using the adsorption energy predictions and un-

certainties of the models. As the simulations progressed and adsorption energies were

queried, the models’ predictions of each queried energy were replace with the “true”

value of the query and the corresponding uncertainty was collapsed to 0 eV. This was

done to mimic a realistic use case where we would not use model predictions when

we had the “real” DFT data instead. It follows that, as the simulations progressed

and nearly all points were queried, most models performed similarly because they all

had comparable amounts of “true” data to use in the multiscale model.

6.4.1 Performance on Synthesized Data

This behavior is seen in Figure 6-4a, which shows how the 𝐹1 changes at each point

in the simulation of the synthesized data set. Here we see that the simulations using

the prime model began with an 𝐹1 score of ca. 0.6 that increased to 1 over time. On

the other hand, simulations using the null model began with an 𝐹1 score closer to

0 or 0.2 before gradually increasing to 1. This shows that more accurate surrogate
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Figure 6-4: Performance and convergence results for the simulations on the synthe-
sized dataset. a. 𝐹1 score of the multiscale model during simulation of the synthe-
sized data. For clarity of visualization, we plotted the rolling average of the 𝐹1 score
using a window of 20 batches. b. Δ𝐹 of the multiscale model during simulation of
the synthesized data. For clarity of visualization, we plotted the rolling average of
Δ𝐹 using a window of 40 batches (excluding the MMS null line, where no averaging
was done). RS represents “random search” while MMS represents Myopic Multiscale
Sampling.

models for adsorption energies led to more accurate multiscale models, even initially.

Note also that the rate at which the 𝐹1 score improved was better when using MMS

than when using random sampling, especially when using the null model. These data

may suggest that the rate of improvement is governed by the acquisition strategy

while the initial performance is governed by the model.

Figure 6-4b shows how the Δ𝐹 changes at each point in the simulation of the

synthesized data set. The simulations using random search generally yielded higher

Δ𝐹 values. This indicates slower convergence, which is consistent with the slower

𝐹1 increase seen in the random search curves Figure 6-4a. Note also how the Δ𝐹

values for the MMS-prime simulation decreased at around 500 batches, which is the

number of batches it took the 𝐹1 score to reach ca. 1. Lastly, we note that the Δ𝐹
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values for the MMS-null simulation were often zero. This is because the null model

was a “stiff” learner that did not result in any multiscale modeling changes unless a

low-coverage adsorption site was found. This shows that slow-learning models may

result in relatively low Δ𝐹 values, which may necessitate higher 𝜅 values to offset this

behavior. In other words: Worse models may need longer horizons before stopping

the discovery to mitigate the chances of missing important information.

These simulations provided us with an estimate of the improvement in active

classification that we may get from using MMS. With the synthesized data set, we

saw that the MMS-with-null case achieved an 𝐹1 score of ∼0.6 after ca. 250 batches

(or 50,000 queries). This was over seven times faster than the random-sample-with-

null case, which achieved an 𝐹1 score of ∼0.6 after ca. 1,800 batches (or 360,000

queries). When using the prime model, MMS was able to achieve an 𝐹1 score of

∼0.75 in 200 batches, while the random search achieved this same performance in ca.

1,200 batches, or six times slower.

6.4.2 Performance on DFT Data

Figure 6-5 shows the 𝐹1 score and the Δ𝐹 of the multiscale model at each point in

the simulation of the GASpy data set. Interestingly, the system performance when

using CFGP was similar to the performance when using the null model, both of which

were overshadowed by the relatively good performance when using the prime model.

This suggests that there is a large room for improvement for the CFGP model. Note

also how the MMS strategy outperforms random sampling for this data set as well.

These simulations provided us with a second estimate of the improvement in active

classification that we may get from using MMS. With the GASpy data set, we saw

that the MMS-with-null case achieved an 𝐹1 score of ∼0.8 after ca. 6 batches (or

1,200 queries). This was over sixteen times faster than the random-sample-with-null

case, which achieved an 𝐹1 score of ∼0.6 after ca. 80 batches (or 16,000 queries).

When using the prime model, both MMS and random search were able to achieve an

𝐹1 score of ∼0.8 after only a single batch.
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Figure 6-5: Performance and convergence results for the simulations on the GASpy
dataset. a. 𝐹1 score of the multiscale model during simulation of the GASpy dataset.
b. Δ𝐹 of the multiscale model during simulation of the synthesized data. RS repre-
sents “random search” while MMS represents Myopic Multiscale Sampling.
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6.4.3 Recommended diagnostics

We note that the 𝐹1 scores illustrated in Figures 6-4a and 6-5a cannot be calculated

without knowing all the true classes, which is not possible to know during a real

discovery process. We need metrics to monitor the behavior of both our discovery

algorithm. We recommend monitoring the Δ𝐹 as well as the accuracy, calibration,

and sharpness (i.e., the magnitude of the predicted uncertainties) of the surrogate

model over time. Figure 6-6 shows an example of such diagnostic metrics over the

course our simulation that used MMS and CFGP on the GASpy dataset.

Δ𝐹 estimates the amount of overal improvement in the discovery process. Sus-

tained low values of Δ𝐹 are a necessary but not sufficient indicator of convergence.

To improve our confidence in the predictive strength of Δ𝐹 , we can test one of its un-

derlying assumptions: that the multiscale model becomes progressively more accurate

as it receives more data. This assumption is true when we replace surrogate model

predictions with incoming DFT results, but it is not necessarily true for unqueried

points. We can estimate the accuracy on unqueried points by calculating the residuals

between the surrogate model and the incoming DFT results (Figure 6-6b). As each

“batch” of queries is recieved, we compare the queried, true adsorption energies with

the energies predicted by the surrogate model just before retraining—i.e., the predic-

tions used to choose that batch. Any improvements in accuracy on these points show

that the overall, multiscale model is improving over time and that the Δ𝐹 metric is

an honest indicator of convergence. Figure 6-6b shows that model accuracy improves

within the first ca. 10 batches (or 2,000 adsorption energy queries), but pleatueas

afterwards. This indicates that, after 10 batches, improvements in overall classifica-

tion accuracy came from receipt of additional DFT data rather than improvements

in surrogate model predictions.

Prediction accuracy of adsorption energies is not the only indicator of improved

model performance. If a surrogate model’s accuracy does not change but its un-

certainty predictions decrease/improve, then our confidence in the overall material

classification may still improve. Of course, improvements in uncertainty must not be
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Figure 6-6: Example of diagnostic plots that we recommend monitoring during an
active discovery campaign: a. predicted change in 𝐹1 score (Δ𝐹 ); b. residuals
between the real data and the surrogate model’s predictions; c. expected calibration
error[170] of the surrogate model; d. the predicted uncertainties of surrogate model in
the form of the predicted standard deviation (𝜎); and e. the negative-log-likelihood of
the surrogate model.[170] These results were simulated by using the Myopic Multiscale
Sampling (MMS) method with the Convolution-Fed Gaussian Process (CFGP) model
on the GASpy dataset. For clarity of visualization, we plotted rolling averages of all
values in this figure using a window of 100 queries (excluding the Δ𝐹 values, where
no averaging was done)
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obtained at the expense of worse calibration. In other words, reductions in predicted

uncertainties may also indicate improved model performance and better confidence

in Δ𝐹 , but only if the expected calibration error[170] does not increase. In our illus-

trative example, Figure 6-6c shows the predicted uncertainty while Figure 6-6d shows

the calibration. Unfortunately, the uncertainty predictions do not decrease over the

course of the discovery process. Note that all uncertainty and calibration estimates

for each batch should be calculated using the surrogate model predictions used to

choose that batch, just as was done for the residuals.

Lastly, we also recommend monitoring the negative-log-likelihood[170] of the sur-

rogate model for each incoming batch. This metric incorporates model accuracy, cal-

ibration, and sharpness into a single metric. Lower values of negative-log-likelihood

indicate better model performance. Figure 6-6e shows that this metric improves until

ca. 2,000 queries, after which it stagnates. This is consistent with the improvement

in accuracy until 2,000 queries and subsequent stagnation of all performance metrics

thereafter.

6.5 Conclusions

Here we created a multi-scale modeling method for combining atomic-scale DFT re-

sults with surrogate/ML models to create actionable plans for experimentalists—i.e.,

a classification of catalysts as “worthy of experimental study” or “not worthy”. We

then coupled this modeling method with a Myopic Multiscale Sampling (MMS) strat-

egy to perform automated catalyst discovery via active classification. We tested this

strategy on two hypothetical datasets using three different surrogate models, giving

us an estimate on the range of performance we might see in the future. In some

cases, the results show up to a 16-fold reduction in the number of DFT queries com-

pared to random sampling. The degree of speed-up depends on the quality of the

ML model used, the homogeneity of the search space, and the hyperparameters used

to define convergence of the active classification. Speed-up estimates on more real-

istic use cases show a more conservative 7-fold reduction in number of DFT queries.
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Lastly, we provide a set of recommended diagnostic metrics to use during active clas-

sification (Figure 6-6): Δ𝐹 and the ML model’s residuals, uncertainty estimates, and

calibration.

Our results elucidated a number of qualitative behaviors of active classification.

First, we observed that higher-quality ML models yielded better initial performance

of the classification process. Conversely, we observed that higher-quality sampling

strategies yielded better rates of improvement over time. We also observed that our

latest ML model (CFGP) yielded performance closer to a naive, ignorant model than

to a perfect, omniscient model. This suggests that there is a relatively large amount of

potential improvement left in the ML modeling space. Next, we observed that better

sampling strategies (as quantified by 𝐹1 score) led to lower rates of change in classes

(as quantified by Δ𝐹 ), suggesting that Δ𝐹 may be an indicator of sampling strategy

performance. Conversely, we observed that slow-learning ML models may also reduce

Δ𝐹 . This phenomena could be counteracted by using more conservative convergence

criteria. All these details were observed in specific and synthetic use cases though.

The behaviors seen here may not be observed in situations where search spaces and/or

ML models differ.

We encourage readers to focus on the main goals of this work: (1) converting

atomic-scale simulations and ML models into actionable decisions for experimental-

ists, and (2) relaxing the active discovery process from an optimization/regression

problem to a classification problem. The ability to convert computational results into

experimental recommendations helps us serve the research community better. Simul-

taneously, relaxing the discovery process to a classification problem helps us prioritize

exploration rather than exploitation, which is more appropriate for early-stage dis-

covery projects.

We also recognize several future directions that may stem from this research. Fu-

ture work might include incorporation of DFT-calculated surface stability by perform-

ing weighted averaging of surface activities when calculating bulk activities. Future

work may also include cost-weighted sampling such that less computationally inten-

sive calculations are chosen more frequently than more intensive ones, which may
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improve discovery rates in real-time. Perhaps most importantly, future work should

incorporate some ability to feed experimental data and information to computational

sampling strategies—e.g., multi-fidelity modeling.
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Chapter 7

Conclusions

In Chapter 2, we begin by outlining several aspects of catalysis informatics and

how they can be used. Specifically, we review the advantages and disadvantages

of databases, workflow managers, surrogate models, and any combination thereof.

The underpinning theme with these tools is that they require an initial overhead in-

vestment with varying rates of return, i.e., the project will take longer to start up.

This means that these tools complement larger-scale projects that continue for longer

times, because those projects are more likely to see a positive return on investment.

We then outline an example of such an investment: GASpy, the software we built to

perform high-throughput DFT calculations.

Next we paired GASpy with a heuristic active discovery algorithm to calculate ca.

40,000 CO and H adsorption energies, as outlined in Chapter 3. These adsorption

energies were then combined with volcano scaling relationships to screen for candi-

date catalysts that may be active for either CO2 reduction or H2 evolution. Several

of the candidates we discovered were already studied in literature and were found

to be active, thereby validating our use of the GASpy framework. Unfortunately,

most of the catalysts validated this way were unsuitable for further study for other

reasons (e.g., insufficient selectivity or stability). This warranted follow-up studies

for experimentalists to test the other candidates we found.

The Sargent group at The University of Toronto were kind enough to study one of

our CO2 reduction candidates in particular: CuAl. The results of this collaboration
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are outlined in Chapter 4. We found that CuAl was indeed active in reducing CO2,

but we also found that it was able to produce ethylene with a selectivity of up to

80%—higher than we had ever seen before. These findings further validated our

methods for catalyst discovery.

Given the heuristic nature of our discovery methods, we sought do develop more so-

phisticated algorithms for active discovery. But such work required that we first have

surrogate models for predicting DFT-calculated adsorption energies and that these

models also have corresponding uncertainty estimates for their predictions. Chap-

ter 5 outlines how we and our collaborators in the Machine Learning Department

attempted to create such a model. This chapter also outlines the methods we used

to assess the quality of uncertainty predictions. We show how uncertainty predic-

tions should be sharp (i.e., small), but not at the expense of being dishonest (i.e.,

they must be calibrated). Then we show that, of the various models we developed, a

Convolution-Fed Gaussian Process (CFGP) yielded a relatively good balance between

model accuracy, sharpness, and calibration.

Armed with CFGP, we continued to work with the Machine Learning department

to begin development of an active discovery algorithm better tailored for our applica-

tion, as outlined in Chapter 6. Here we created a multiscale method that estimated

macroscopic catalyst activity by combining DFT calculations of adsorbate binding

energies with CFGP predictions. The method bridged the gap between atomic-scale

simulations and lab-scale decision making. Next we coupled the multiscale model

with a Myopic Multiscale Sampling (MMS) method that we created. MMS comprised

several active selection strategies for choosing calculations that helped us differenti-

ate higher-quality catalyst candidates from lower-quality ones. Our key insight here

was relaxing the discovery process from an optimization problem to a classification

problem. This relaxation allowed us to implicitly favor exploration over exploitation,

which was more appropriate our early-stage catalyst discovery work.

This thesis illustrates a series of projects all aimed to accelerate the rate of catalyst

discovery for solar fuel production. Although we show direct evidence of success both

here and in other studies,[108] we believe that further work should be done to quantify
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the degree of success. We believe that it would be valuable to quantify the impact

that the catalysis informatics field is having on the field of experimental catalyst

discovery. Such quantification would offer an explicit feedback mechanism between

experimental and computational studies. It may also help us maintain focus on our

primary goal: mitigating climate change through commercialization of sustainable

energy storage technologies.
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Figure A-1: Elements considered in this screening. Shading of an element
indicates its inclusion in this screening study.
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Figure A-2: Identification of surfaces with near-optimal Δ𝐸H values for
HER. a, Distribution of the number of near-optimal surfaces identified. b, The
normalized distribution of the low-coverage H adsorption energies of all of the sur-
faces enumerated by this study. Dashed lines indicate the ±0.1 eV range around the
optimal Δ𝐸H value of -0.27 eV. c, Surfaces whose low-coverage H adsorption ener-
gies have been calculated and verified with DFT. d, Surfaces whose low-coverage H
adsorption energies have been calculated only by the machine learning models.
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Figure A-3: H2 evolution efficiency map for bimetallics. Visualization of
two component intermetallics whose surfaces have low-coverage H adsorption energy
(Δ𝐸𝐻) values inside the range of [-0.37, -0.17] eV. White shading indicates an absence
of any enumerated surfaces; grey shading indicates that all Δ𝐸𝐻 values are outside
the range of [-0.37, -0.17] eV; and colored shading indicates possible efficiency. The
Δ𝐸CO values used to create the upper half of this figure were calculated by DFT, and
the values used to create the bottom half were calculated by the surrogate model.

A.2 Supplementary Notes

A.2.1 Supplementary Note 1

We performed a coarse study of the TPOT[135] hyperparameters and how they ef-

fect model performance. Details can be found on the Github website mentioned in

the main text’s Code Availability section. This coarse study yielded the following
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settings for using TPOT: 1 generation, a population size of 16, and an offspring size

of 16. A generation size of 1 was used because the coarse study showed that the

error did not change as a function of the number of generations. The study also

showed that population and offspring sizes of 16 were sufficent and that changes in

population/offspring were overshadowed by stochastic variations inherent in TPOT’s

genetic algorithm. Note that we used a median absolute deviation scoring function

to allow the model to fit the majority of the data well at the expense of more severe

outliers, and we used TPOT’s default setting of 5-fold cross validation.

We also performed a cursory hyperparameter optimization test to verify whether

or not TPOT’s hyperparameter tuning worked well, because we were concerned that

the resolution of hyperparameter changes that TPOT examined were too coarse to

perform an optimization properly. We performed this test by comparing TPOT’s

hyperparameter tuning with SigOpt’s tuning for one example pipeline that TPOT

has chosen—Random Forest Regression. Using a 90/10 train/test split for predicting

Δ𝐸CO, TPOT’s choice of hyperparameters yielded a test RMSE, MAE, and MAD

of 0.32, 0.18, and 0.10 eV, respectively. SigOpt yielded a test RMSE, MAE, and

MAD of 0.33, 0.19, and 0.10 eV, respectively. These results suggest that TPOT’s

hyperparameter tuning is sufficient for our use-case.

A.2.2 Supplementary Note 2

Static surrogate models are typically judged via train/test errors and parity plots.

These were omitted from the main manuscript in favor of evaluations that focus on

dynamic, iterative workflows—i.e., evaluation on a rolling forecast origin.[69] We still

show the classical evaluations here for the sake of completeness.

We took the 19,644 DFT-calculated Δ𝐸CO values that we have and performed

16 different stratified 90/10 train/test splits,[166] and then we used TPOT create 16

different models from these splits. We repeated this for our 23,141 Δ𝐸H calculations,

resulting in 32 total models. Of the 32 models, 19 of them were K-nearest-neighbor

models, 3 were gradient boosting regressors, and 10 were random forest or extra

trees regressors. The subsequent distributions of root-mean-squared-error (RMSE),

182



mean absolute error (MAE), and median absolute deviation (MAD) are shown in

Supplementary Figures A-4a and b for Δ𝐸CO and Δ𝐸𝐻 , respectively.

We then used TPOT to train final models on 100% of our DFT data—i.e., 19,644

for Δ𝐸CO and 23,141 for Δ𝐸H. When predicting Δ𝐸CO, TPOT identified an extra

trees regressor with a 5-fold cross-validation (CV) MAD of 0.09 eV. This regressor

was created with a maximum feature splitting proportion of 0.95, a minimum of 5

samples per leaf, a minimum of 6 samples per split, 100 trees, and is fit to minimize

RMSE. When predicting Δ𝐸H, TPOT identified a random forest regressor with a 5-

fold CV MAD of 0.07 eV. This regressor was created with a maximum feature splitting

proportion of 0.65, a minimum of 11 samples per leaf, a minimum of 18 samples per

split, 100 trees, and is fit to minimize RMSE. We then converted the final models’

adsorption energy predictions to performance metrics using scaling relations.[53, 105]

The subsequent parity plots of catalyst performance are shown in Supplementary

Figures A-4c and d for CO2RR and HER, respectively. Darker shading indicates a

higher density of points. Lastly: We created parity plots for this model’s predictions

of Δ𝐸CO and Δ𝐸H in Supplementary Figures A-4e and f, respectively.
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Figure A-4: Surrogate modeling performance of final model. Performance met-
rics for 16 models created from 90/10 train/test splits on all DFT data for predicting
(a) Δ𝐸CO (n=19,644) and (b) Δ𝐸𝐻 (n=23,141). Black points represent results for
each of the 16 models, bar heights indicate average values, and red lines indicate aver-
age values ±1 standard deviation. Parity plots when predicting catalyst performance
for (c) CO2RR and (d) HER. Parity plots when predicting (e) Δ𝐸CO and (f) Δ𝐸H.
Darker shading indicates a higher density of points; dashed lines indicate parity; and
dotted lines indicate 95% prediction intervals—i.e., parity±2×MAE. The parity plots
in (c-f) were generated using a model that was trained using a 100/0 train/test split.
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It is common with surrogate modeling to calculate the modeling error as a func-

tion of training set size—i.e., a learning curve. Learning curves give the modeler a

quantitative estimate for how much training data was actually necessary to converge

on a final model. We do not have a final model because we are not yet finished ex-

ploring (or even defining) our search space, and so any learning curve we make may

not illustrate properly the amount of data needed to converge. We can still show ret-

rospective learning curves as if we treated our current DFT data set as if it was our

entire search space—Supplementary Figure A-5. These figures were created by fitting

20 different models using varying sizes of training data that were randomly selected

from our database of DFT results. Test errors were calculated from the remaining

data—e.g., given a training size of 2,000 points from a pool of 19,000, the test size

would be 17,000 points.
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Figure A-5: Learning curves. Error metrics vs. size of training set when calculating
adsorption energies for (a) CO and (b) H. RMSE is the root mean squared error;
MAE is the mean absolute error; and MAD is the median absolute deviation.

A.2.3 Supplementary Note 3

To verify the integrity of our 42,785 DFT calculations, we compared a subset of our

results for pure metal calculations on simple facets with RPBE calculations found

in literature,[7] including sources[164] that used the BEEF-vdW functional (Supple-

mentary Figure A-6). Some of the differences between our results and literature
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results may be caused by our frameworks’ neglect in accounting for spin magnetism

for magnetic elements like Fe and Ni, in contrast to other literature methods.

2.0 1.5 1.0 0.5 0.0 0.5
Literature E [eV]

2.0

1.5

1.0

0.5

0.0

0.5

Th
is 

wo
rk

's 
E 

[e
V]

CO (111), Shi et al. BEEF-vdW, RMSE=0.18 eV
CO (100), Shi et al. BEEF-vdW, RMSE=0.05 eV
CO (111), Abild-Pedersen et al. RPBE, RMSE=0.09 eV
CO (110), Abild-Pedersen et al. RPBE, RMSE=0.01 eV
H (111), Shi et al. BEEF-vdW, RMSE=0.08 eV
H (100), Shi et al. BEEF-vdW, RMSE=0.04 eV

Figure A-6: Benchmarking of DFT results. The adsorption energies (Δ𝐸) of
various adsorbate/surface combinations calculated by our framework vs. the energies
calculated by various literature sources.[7, 164] The diagonal line indicates parity.

A.3 Supplementary Methods

A.3.1 Calculation of free energies

Supplementary Equation A.1 can be used to calculate the change in chemical potential

(Δ𝐺𝑋) during adsorption of arbitrary adsorbate 𝑋,[134] which is the descriptor that

this study uses to predict catalyst performance[53, 105]. 𝜇𝑋* is the chemical potential

of the adsorbate bound on a surface, 𝜇* is the chemical potential of the surface, and

𝜇𝑋 is the chemical potential of the adsorbate in gas phase.

Δ𝐺𝑋 = 𝜇𝑋* − 𝜇* − 𝜇𝑋 (A.1)
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Chemical potentials can be calculated[134, 105] using Supplementary Equation A.2,

where 𝐸 is the electronic energy as calculated by density functional theory (DFT),

ZPE is the zero-point energy, 𝐶𝑝 is the heat capacity, 𝑇 is temperature, 𝑆 is entropy,

Δ𝜇𝑠𝑜𝑙𝑣 is the change in chemical potential from solvent [de]stabilization, and Δ𝜇𝑐𝑜𝑟𝑟 is

any experimental correction required to account for differences between experimental

chemical potentials and DFT-based chemical potentials.

𝜇 = 𝐸 + 𝑍𝑃𝐸 +

∫︁
𝐶𝑝𝑑𝑇 − 𝑇𝑆 +Δ𝜇𝑠𝑜𝑙𝑣 +Δ𝜇𝑐𝑜𝑟𝑟 (A.2)

Literature[165] reports that 𝑍𝑃𝐸𝐶𝑂 is 0.130 eV,
∫︀
𝐶𝑝, 𝐶𝑂𝑑𝑇 is 0.091 eV at 298 K,

𝑆𝐶𝑂 is 0.002092 eV K−1, and that Δ𝜇𝑒𝑥𝑝, 𝐶𝑂 is 0.02 eV for gas phase CO. Thus the

chemical potential of CO in the gas phase is:

𝜇𝐶𝑂, 𝑔 = 𝐸𝐶𝑂, 𝑔 + 𝑍𝑃𝐸𝐶𝑂, 𝑔 +

∫︁
𝐶𝑝, 𝐶𝑂𝑑𝑇 − 𝑇𝑆𝐶𝑂, 𝑔 +Δ𝜇𝑠𝑜𝑙𝑣, 𝑔 +Δ𝜇𝑐𝑜𝑟𝑟, 𝑔

𝜇𝐶𝑂, 𝑔 = 𝐸𝐶𝑂, 𝑔 + 0.130 𝑒𝑉 + 0.091 𝑒𝑉 − (298 · 0.002092) 𝑒𝑉 + 0 𝑒𝑉 + 0.02 𝑒𝑉

𝜇𝐶𝑂, 𝑔 = 𝐸𝐶𝑂, 𝑔 − 0.362 𝑒𝑉

(A.3)

The same method can be used to calculate the chemical potential of CO in the

adsorbed-state (𝜇𝐶𝑂*) given literature values[165] for 𝑍𝑃𝐸, 𝐶𝑝, and 𝑆 as well as a

solvation correction term[105] (𝜇𝑠𝑜𝑙𝑣) and an empirical correction correction term[7]

(𝜇𝑐𝑜𝑟𝑟)—see Supplementary Equation A.4. Note that we assumed a CO stretch fre-

quency of 2,000 cm−1, and deviations from this frequency may cause errors.

𝜇𝐶𝑂* = 𝐸𝐶𝑂* + 𝑍𝑃𝐸𝐶𝑂* +

∫︁
𝐶𝑝𝑑𝑇 − 𝑇𝑆𝐶𝑂* +Δ𝜇𝑠𝑜𝑙𝑣 +Δ𝜇𝑐𝑜𝑟𝑟

𝜇𝐶𝑂* = 𝐸𝐶𝑂* + 0.192 𝑒𝑉 + 0.085 𝑒𝑉 − (298 · 0.000452) 𝑒𝑉 − 0.2 𝑒𝑉 + 0.2 𝑒𝑉

𝜇𝐶𝑂* = 𝐸𝐶𝑂* + 0.142 𝑒𝑉

(A.4)
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Assuming that 𝜇* is equal to 𝐸* and by combining Supplementary Equations A.1, A.3,

and A.4, we can calculate the change in chemical potential of adsorbing CO:

Δ𝐺𝐶𝑂 = 𝜇𝐶𝑂* − 𝜇* − 𝜇𝐶𝑂

Δ𝐺𝐶𝑂 = [𝐸𝐶𝑂* + 0.142 𝑒𝑉 ]− 𝐸* − [𝐸𝐶𝑂, 𝑔 − 0.362 𝑒𝑉 ]

Δ𝐺𝐶𝑂 = 𝐸𝐶𝑂* − 𝐸* − 𝐸𝐶𝑂, 𝑔 + 0.50 𝑒𝑉

Δ𝐺𝐶𝑂 = Δ𝐸𝐶𝑂 + 0.50 𝑒𝑉

(A.5)

where the change in electronic energy, Δ𝐸𝐶𝑂, is defined using Supplementary Equa-

tion A.6 and is calculated with DFT.[134]

Δ𝐸𝑋 = 𝐸𝑋* − 𝐸* − 𝐸𝑋, 𝑔 (A.6)

We combined Supplementary Equation A.5 with the optimal Δ𝐺𝐶𝑂 found in

literature,[105] -0.17 eV, to calculate the optimal Δ𝐸𝐶𝑂: -0.67 eV. Note that the

optimal Δ𝐺𝐶𝑂 of -0.17 eV was based on microkinetic modeling of the reaction path-

way from CO2 to methane on single metal surfaces where the rate-limiting step was

hydrogenation of CO, which is why the binding energy of CO is used as a descriptor

of activity. By using this descriptor, we assume that CO is still involved in the rate-

limiting step of CO2 reduction. This is acceptable because our framework is used only

as a screening method. If we want to find a catalyst for a reaction where CO is not

a key intermediate in a rate-limiting step, then we can use our framework to model

the adsorption of whichever intermediate is appropriate. Note also that the source of

the CO2RR scaling relationship used the BEEF functional[179] while our work used

the RPBE functional,[57] which may impart errors in our estimates of activity.

In contrast to the methods we used to find the optimal Δ𝐸𝐶𝑂 for CO2 reduction,

the literature sources[133, 53] we used for the HER already performed the chemical

potential calculations, allowing us to use their energy calculation methods directly:

Δ𝐺𝐻 = Δ𝐸𝐻 + 0.24 𝑒𝑉 (A.7)
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where the optimal Δ𝐺𝐻 value is -0.03 eV, yielding an optimal Δ𝐸𝐻 value of -0.27 eV.

A.3.2 Previous surrogate modeling methods

We used various methods for fingerprinting adsorption sites and various regression

methods during the development of our workflow. The primary method used during

development involved both a different fingerprint and a different regression method

than the one described in the main text. This alternative fingerprint was composed

of a vector of coordination numbers for each element and an array of neighbors’ coor-

dination numbers as determined by Voronoi tesselation performed by pymatgen.[136]

Supplementary Figure A-7a illustrates a simplified example of the fingerprint. The

coordination vector contains one item for each of the 31 elements considered in the

screening, and each item in this vector is the sum of the number of atoms of that

element that are coordinated with the adsorbate. The neighbors’ coordination vector

is a flattened array that contains 31×31 items for each elemental pairing, and each

item in this vector is the sum of the number of atoms of one element that are coordi-

nated with the all adsorbate neighbors that belong to another element. Algorithm 1

outlines explicitly how we calculated the neighbors’ coordination number.

190



Pt Ni
[1 4]

Pt Ni
Pt  [  3 8
Ni 16 12]

coordination

neighbors’ coordination
ΔÊTPOTTPOT

𝜀	TPOT := ΔÊTPOT - ΔEDFT

Gaussian process 
regressor �̂�TPOT

ΔÊTPOT + �̂�TPOT ΔÊX

a b

Figure A-7: Alternative method for modeling adsorption energy. a, Alter-
native fingerprinting method. Each item in the “coordination” vector represents the
coordination number for a particular element, e.g., Pt or Ni. Each item in the “neigh-
bors’ coordination” array represents this same coordination vector, but for each of
the adsorbate’s neighbors. Note that this example is for illustrative purposes only.
The vectors and arrays actually used contained enough items to represent 31 different
elements. b, Old method for performing regression. Coordination was used by TPOT
to estimate adsorption energy, then the residuals of that model were combined with
the neighbors’ coordinations and used by a Gaussian process regressor to estimate
residuals of the first model. Summation of the results of the first and second models
yielded the final estimate.

Algorithm 1 Calculating array of neighbors’ coordination numbers for an adsorption
site
1: 𝑛𝑐𝑛 := 𝑧𝑒𝑟𝑜𝑠(𝑛, 𝑛) ◁ where 𝑛=31, the total number of elements we are

investigating

2: for all neighbors do

3: 𝑖 := index of the element of neighbor

4: for all neighbor’s neighbors do

5: 𝑗 := index of the element of neighbor’s neighbor

6: 𝑛𝑐𝑛𝑖,𝑗 := 𝑛𝑐𝑛𝑖,𝑗 + 1

The alternative regression method used these coordination and neighbors’ co-

ordination fingerprints in a multi-staged regression approach to predict adsorption

energies (Supplementary Figure A-7b). In the first stage, we used TPOT[135] to

regress the DFT-calculated adsorption energies (Δ𝐸𝐷𝐹𝑇 ) against the vector of coor-

dination numbers. In the second layer, we used SKLearn’s[138] Gaussian processor
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to regress the residuals of the first stage’s estimates (𝜖𝑇𝑃𝑂𝑇 ) against the neighbors’

coordination numbers. The dimensionality of the neighbors’ coordination numbers

was reduced by using principal component analysis as implemented in SKLearn. We

then added the estimates of the models from both stages to yield a final estimate for

adsorption energy (Δ�̂�𝑋*).

These alternative fingerprinting and regression methods were eventually forgone

in favor of methods that yielded lower test errors. Test set root mean squared error,

mean absolute error, and median absolute deviation values were approximately 0.91,

0.23, and 0.14 eV, respectively. A stratified, 90/10 train/test split was used to build

the model that yielded these errors.

A.3.3 t-SNE methods

We then used the t-SNE algorithm[113] to visualize our data by reducing all of the

DFT-modeled adsorption sites into a 2-dimensional representation. We did so by tak-

ing the fingerprints illustrated in Supplementary Figure A-7 and then scaling them

such that each feature had a mean of zero and a variance of one, and then sending

the fingerprints through SKLearn’s[138] principle component analyzer where the di-

mensionality was reduced until only 85% of the variance was accounted for, yielding

a vector of 113 items instead of 31×32 items. This reduced vector was processed by

the t-SNE algorithm[113] with a perplexity of 50 and a learning rate of (𝜖) of 750 and

then stopped after 3,000 iterations, yielding a 2-dimensional reduction of the adsorp-

tion sites. Note that the fingerprint in Supplementaly Figure A-7a was still used to

create the t-SNE diagrams instead of the fingerprint in Figure 2, because Supplemen-

tary Figure A-7’s fingerprint codified adsorption sites only by the identities and the

numbers of neighboring atoms. Thus the sites in the reduced space were described

only by elemental identities and coordination numbers, which we assumed to be more

representative of our controllable materials design space.
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A.4 Supplementary Tables

When using adsorption energies as descriptors of catalyst performance, it is common

to characterize an entire surface by calculating the adsoprtion energies of all the

adosorption sites on that surface and then assuming that the lowest energy site is

representative of the entire surface, because that site is the most thermodynamically

stable and therefore more likely to bind the adsorbate. Thus we define an “adsorption

energy of a surface” as the minimum adsorption energy of all sites on that surface.

Using this method, we identified dozens of surfaces with near-optimal adsorption

energies. These surfaces are listed in Table A.1 and Table A.2 for CO2 reduction and

H2 evolution, respectively. Note that we chose to include surfaces whose energies were

below the optimal energy targets by 0.2 eV and above the optimal targets by 0.1 eV,

because we assumed that over-binding surfaces were more likely to perform well than

under-binding surfaces.
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Table A.1: List of possibly active surfaces for CO2 reduction. All of the sur-
faces whose minimum CO adsorption energies were between -0.87 and -0.57 eV. MPID
represents the Materials Project ID. Apparently duplicate entries for MPID/Miller
index combinations are caused by different, nonidentical cuts along a Miller plane,
which yields multiple surfaces for a single Miller index. All energies reported here
were calculated by DFT, not with machine learning.

Formula Miller index Δ𝐸𝐶𝑂 [eV] MPID

Ag3Pd [2, 0, 1] -0.84 mp-985296

Al2Cu [1, 1, 0] -0.66 mp-985806

Al2Cu [1, 1, 1] -0.75 mp-985806

Al2Cu [1, 1, 1] -0.73 mp-985806

Al2Cu [2, 1, 0] -0.75 mp-985806

Al2Cu [2, 1, 0] -0.68 mp-985806

Al2Cu [2, 2, 1] -0.73 mp-985806

Al2Cu6 [0, 0, 1] -0.79 mp-12802

Al2Cu6 [0, 0, 1] -0.64 mp-12802

Al2Cu6 [1, 1, 0] -0.80 mp-12802

Al2Cu6 [1, 1, 2] -0.84 mp-12802

Al2Cu6 [1, 2, 0] -0.65 mp-12802

Al2Cu6 [1, 2, 1] -0.69 mp-12802

Al2Cu6 [1, 2, 2] -0.78 mp-12802

Al2Cu6 [2, 1, 0] -0.70 mp-12802

Al2Cu6 [2, 2, 1] -0.76 mp-12802

Al3Cu2 [1, 1, 1] -0.83 mp-10886

Al3Cu2 [1, 1, 1] -0.82 mp-10886

Al3Cu2 [2, 0, 1] -0.82 mp-10886

Al5Cu5 [1, 1, -2] -0.83 mp-2500

Al6Cu2 [1, 0, 1] -0.58 mp-985825

Al6Cu2 [2, 1, 0] -0.83 mp-985825

Continued on next page. . .
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Table A.1 Continued from previous page

Formula Miller index Δ𝐸𝐶𝑂 [eV] MPID

AlCu [1, 1, 1] -0.80 mp-1022721

AlCu3 [1, 1, 0] -0.76 mp-1008555

AlCu3 [1, 1, 0] -0.72 mp-1008555

AlCu3 [1, 1, 1] -0.84 mp-12777

AlCu3 [2, 1, 0] -0.78 mp-1008555

AlCu3 [2, 1, 0] -0.75 mp-1008555

Al2N2 [2, 1, 2] -0.66 mp-661

Al2Pd [2, 2, 1] -0.85 mp-16522

Al6Pd10 [1, 0, 0] -0.78 mp-16523

AlPd [1, 0, 0] -0.85 mp-829

Al2Pt [1, 0, 0] -0.72 mp-1502

Al2Ti2 [0, 0, 1] -0.60 mp-1953

Al4Ti2 [0, 0, 1] -0.82 mp-11809

Al12W [1, 0, 0] -0.77 mp-11227

AsGa [1, 0, 0] -0.81 mp-2534

AsGa [2, 1, 1] -0.76 mp-2534

As4Si3 [1, 1, 1] -0.87 mp-570744

As6Si6 [2, 2, -1] -0.67 mp-1863

As4Zn4Cu4 [1, 0, 1] -0.66 mp-676828

As4Zn4Cu4 [1, 2, 1] -0.75 mp-676828

As4Zn4Cu4 [2, 1, 0] -0.75 mp-676828

As4Zn4Cu4 [2, 1, 2] -0.79 mp-676828

Au2Al [0, 0, 1] -0.73 mp-1018179

Au2Al [1, 0, 2] -0.74 mp-1018179

Au4Al4 [0, 0, 1] -0.62 mp-1399

Au2AlCu [1, 1, 1] -0.73 mp-867306

Continued on next page. . .
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Table A.1 Continued from previous page

Formula Miller index Δ𝐸𝐶𝑂 [eV] MPID

Au2AlCu [2, 1, 0] -0.79 mp-867306

Au2Cu2 [0, 0, 1] -0.67 mp-522

Au2Cu2 [1, 0, 0] -0.69 mp-522

Au2Cu2 [2, 1, 0] -0.84 mp-522

Au3Cu [2, 1, 0] -0.76 mp-2103

Au3Cu [2, 1, 0] -0.61 mp-2103

Au3Cu [2, 1, 1] -0.64 mp-2103

Au3Cu [2, 2, 1] -0.71 mp-2103

AuCu3 [1, 1, 0] -0.68 mp-2258

AuCu3 [1, 1, 0] -0.63 mp-2258

AuCu3 [2, 1, 0] -0.80 mp-2258

AuCu3 [2, 1, 0] -0.79 mp-2258

AuCu3 [2, 1, 1] -0.75 mp-2258

AuGa2 [1, 0, 0] -0.57 mp-2776

AuPd2In [2, 2, 1] -0.79 mp-863724

Au5Sn [1, 1, 0] -0.64 mp-30418

Au4Ti [1, 1, 0] -0.58 mp-12635

Co8Al20 [0, 0, 1] -0.69 mp-196

Cu [1, 1, 0] -0.63 mp-30

Cu [2, 1, 0] -0.78 mp-30

Cu [2, 1, 1] -0.69 mp-30

CuAlPt2 [1, 1, 0] -0.77 mp-12550

Cu28In12 [0, 0, 1] -0.84 mp-21985

Fe2Al12 [1, 1, 0] -0.69 mp-570001

FeAl [1, 0, 0] -0.60 mp-2658

Ga2Cu [0, 0, 1] -0.78 mp-11359

Continued on next page. . .
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Table A.1 Continued from previous page

Formula Miller index Δ𝐸𝐶𝑂 [eV] MPID

Ga2Cu [1, 0, 0] -0.64 mp-11359

Ga2Cu [1, 0, 1] -0.67 mp-11359

Ga2Cu [1, 1, 1] -0.66 mp-11359

Ga2Cu [1, 1, 2] -0.74 mp-11359

Ga2Cu [2, 0, 1] -0.72 mp-11359

Ga2Cu [2, 1, 0] -0.82 mp-11359

Ga2Cu6 [1, 0, 0] -0.79 mp-865798

Ga2Cu6 [1, 0, 0] -0.69 mp-865798

Ga2Cu6 [1, 0, 1] -0.75 mp-865798

Ga2Cu6 [1, 1, 0] -0.80 mp-865798

Ga2Cu6 [1, 1, 1] -0.72 mp-865798

Ga2Cu6 [2, 2, 1] -0.84 mp-865798

Ga10Pd2 [1, 1, 2] -0.66 mp-30660

Ga6Pd10 [1, 0, 0] -0.79 mp-2408

Ga2Pt [1, 0, 0] -0.64 mp-22095

Ga2Pt [1, 1, 0] -0.65 mp-22095

Ga2Pt [2, 1, 0] -0.70 mp-22095

Ga3Pt2 [1, 1, 0] -0.65 mp-21400

Ga3Pt2 [2, 1, 1] -0.68 mp-21400

Ga3Pt2 [2, 2, 1] -0.81 mp-21400

GaPt2Cu [1, 1, 0] -0.74 mp-644280

Ge2 [2, 1, 1] -0.75 mp-32

Ge4Co4Cu2 [1, 0, 0] -0.71 mp-19955

Ge2Cu6 [1, 0, 2] -0.71 mp-19724

Ge2Cu6 [1, 2, 1] -0.75 mp-19724

Ge2Cu6 [2, 1, 0] -0.72 mp-19724
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Formula Miller index Δ𝐸𝐶𝑂 [eV] MPID

Ge4Fe4Cu2 [1, 0, 0] -0.70 mp-21141

H6Al2 [2, 1, 1] -0.74 mp-23933

H2Si2 [1, 0, 0] -0.77 mp-29803

H2Si2 [2, 0, 1] -0.85 mp-29803

H2Ti [0, 0, 1] -0.68 mp-24726

H2Ti [1, 0, 0] -0.64 mp-24161

H2Ti [1, 1, 0] -0.63 mp-24726

Ir4In12 [0, 2, 1] -0.86 mp-636498

IrRhGa2 [1, 0, 0] -0.81 mp-865743

Mn2Al2 [0, 0, 1] -0.74 mp-771

Mn3GaN [1, 0, 0] -0.85 mp-627439

N4 [1, 1, 0] -0.84 mp-999498

NIn [1, 0, 0] -0.76 mp-20411

N2V2 [1, 1, 1] -0.74 mp-1017532

N2V2 [2, 1, 0] -0.77 mp-1017532

Ni4Al12 [0, 0, 1] -0.64 mp-622209

NiAl [1, 0, 0] -0.69 mp-1487

NiFeAl2 [1, 0, 0] -0.73 mp-867330

NiGa [1, 1, 1] -0.75 mp-1941

Ni4Si4 [0, 1, 0] -0.70 mp-351

NiZnCu2 [1, 0, 0] -0.68 mp-30593

NiZnCu2 [1, 1, 0] -0.87 mp-30593

OsAl [1, 0, 0] -0.73 mp-875

Pd4Cu16 [0, 0, 1] -0.71 mp-30594

Pd4Cu16 [2, 1, 0] -0.82 mp-30594

PdCu [1, 0, 0] -0.66 mp-1018029
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PdCu3 [1, 0, 0] -0.66 mp-580357

PdCu3 [1, 1, 0] -0.76 mp-580357

PdCu3 [1, 1, 1] -0.82 mp-580357

PdCu3 [2, 2, 1] -0.84 mp-580357

Pd2CuIn [1, 0, 0] -0.79 mp-867308

PtCu [0, 0, 1] -0.72 mp-644311

PtCu3 [1, 0, 0] -0.69 mp-12086

PtCu3 [1, 1, 0] -0.79 mp-12086

PtCu3 [2, 2, 1] -0.76 mp-12086

PtIn2 [2, 1, 0] -0.74 mp-22682

Re2Al12 [0, 0, 1] -0.66 mp-16528

Re2Al12 [1, 1, 0] -0.70 mp-16528

ReAl12 [1, 0, 0] -0.80 mp-1648

RuCoGa2 [1, 0, 0] -0.69 mp-865779

RuIrGa2 [1, 0, 0] -0.65 mp-866041

Sb2Al2 [1, 0, 2] -0.82 mp-1018100

SbAl [1, 1, 1] -0.82 mp-2624

SbAl [2, 1, 1] -0.80 mp-2624

SbCuNi2 [1, 0, 0] -0.66 mp-30069

Sb2Ga2 [2, 0, 1] -0.76 mp-1018059

SbGa [1, 1, 1] -0.57 mp-1156

Sb2Pd2 [1, 1, 1] -0.57 mp-1769

Sb2Pd2 [2, 2, 1] -0.58 mp-1769

Sb8Pd4 [2, 1, 0] -0.71 mp-1356

Sb2Pt2 [1, 0, 1] -0.61 mp-2845

Sb2Pt2 [1, 1, 0] -0.67 mp-2845
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Sb2Pt2 [2, -1, 2] -0.61 mp-2845

Sb2Pt2 [2, 1, 0] -0.68 mp-2845

Si2Cu6 [1, 0, 0] -0.60 mp-867317

Si2Cu6 [1, 0, 2] -0.73 mp-867317

Si2Cu6 [1, 0, 2] -0.73 mp-867317

Si2Cu6 [1, 1, 0] -0.78 mp-867317

Si2Cu6 [1, 1, 1] -0.79 mp-867317

Si2Cu6 [2, 0, 1] -0.83 mp-867317

Si2Cu6 [2, 1, 1] -0.71 mp-867317

SiCu3 [0, 0, 1] -0.65 mp-972828

SiCu3 [1, 0, 0] -0.69 mp-972828

SiCu3 [2, 0, 1] -0.82 mp-972828

SiCu3 [2, 1, 0] -0.77 mp-972828

SiCu3 [2, 1, 1] -0.81 mp-972828

SiCu3 [2, 1, 1] -0.79 mp-972828

Si16Fe8 [0, 1, 0] -0.86 mp-1714

Si4Pd4 [0, 1, 1] -0.83 mp-389

Si4Pd4 [1, 0, 0] -0.63 mp-389

Si4Pt4 [1, 0, 1] -0.80 mp-696

Si4Pt4 [1, 2, 0] -0.67 mp-696

Si4Rh4 [0, 1, 0] -0.83 mp-818

Sn10Cu12 [0, 1, 0] -0.64 mp-1233

Sn10Cu12 [1, 0, 0] -0.68 mp-1233

Sn10Cu12 [1, 1, -2] -0.70 mp-1233

Sn16Cu20 [0, 0, 1] -0.65 mp-845

Sn16Cu20 [1, 0, 0] -0.63 mp-845
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Sn16Cu20 [1, 0, 0] -0.61 mp-845

Sn2Cu2 [2, 1, 1] -0.61 mp-10598

Sn12Pd4 [1, 1, 2] -0.76 mp-1371

Sn12Pd4 [1, 2, 1] -0.77 mp-1371

Sn12Pd4 [2, 0, 1] -0.74 mp-1371

Sn16Pd8 [1, 1, 0] -0.66 mp-1573

Sn4Pd4 [1, 0, 0] -0.58 mp-2369

Sn2Pt [1, 1, 0] -0.69 mp-19962

Sn2Pt2 [1, 0, 1] -0.75 mp-19856

Sn2Pt2 [2, -1, 2] -0.74 mp-19856

Sn2Pt2 [2, 1, 0] -0.85 mp-19856

Zn4Au2Cu2 [0, 1, 2] -0.62 mp-12759

Zn4Au2Cu2 [1, 1, 1] -0.68 mp-12759

Zn4Au2Cu2 [1, 2, 1] -0.63 mp-12759

Zn4Au2Cu2 [1, 2, 2] -0.79 mp-12759

ZnAu2Cu [1, 0, 0] -0.78 mp-864623

ZnAu2Cu [2, 1, 0] -0.72 mp-864623

Zn16Cu10 [1, 1, 0] -0.82 mp-1368

ZnCu [1, 0, 0] -0.61 mp-987

ZnCu [2, 1, 0] -0.79 mp-987

Zn2Pd2 [2, 0, 1] -0.58 mp-1652
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Table A.2: List of possibly efficient surfaces for H2 evolution. All of the sur-
faces whose minimum H adsorption energies were between -0.47 and -0.17 eV. MPID
represents the Materials Project ID. Apparently duplicate entries for MPID/Miller
index combinations are caused by different, nonidentical cuts along a Miller plane,
which yields multiple surfaces for a single Miller index. All energies reported here
were calculated by DFT, not with machine learning.

Formula Miller index Δ𝐸𝐻 [eV] MPID

Ag3Pd [1, 0, 0] -0.24 mp-985296

Al2Cu [1, 1, 1] -0.45 mp-985806

Al2Cu [1, 1, 1] -0.21 mp-985806

Al2Cu [2, 1, 0] -0.34 mp-985806

Al2Cu [2, 1, 0] -0.28 mp-985806

Al2Cu [2, 1, 1] -0.37 mp-985806

Al2Cu6 [1, 1, 0] -0.18 mp-12802

Al2Cu6 [1, 1, 1] -0.21 mp-12802

Al2Cu6 [1, 2, 2] -0.21 mp-12802

Al3Cu2 [1, 1, 1] -0.20 mp-10886

Al4Cu2 [1, 0, 1] -0.22 mp-998

Al4Cu2 [1, 1, 2] -0.23 mp-998

Al5Cu5 [1, 1, -1] -0.17 mp-2500

Al5Cu5 [1, 1, -2] -0.25 mp-2500

Al6Cu2 [1, 1, 1] -0.22 mp-985825

Al6Cu2 [1, 1, 2] -0.20 mp-985825

AlCu3 [1, 1, 1] -0.30 mp-12777

Al2Pd [2, 1, 0] -0.37 mp-16522

Al4Pd4 [1, 0, 0] -0.22 mp-7189

Al4Pd8 [0, 0, 1] -0.24 mp-2824

Al2Pt [2, 2, 1] -0.37 mp-1502

Al3Pt2 [2, 1, 1] -0.46 mp-10905

Continued on next page. . .
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Formula Miller index Δ𝐸𝐻 [eV] MPID

Al4Pt12 [0, 0, 1] -0.29 mp-607111

Al4Pt12 [1, 0, 1] -0.40 mp-607111

Al4Pt4 [1, 0, 0] -0.42 mp-10904

Al4Pt4 [2, 1, 1] -0.38 mp-10904

Al4Pt4 [2, 1, 1] -0.34 mp-10904

Al4Pt8 [0, 0, 1] -0.42 mp-16526

Al4Pt8 [1, 0, 0] -0.37 mp-16526

Al6Pt10 [1, 0, 0] -0.34 mp-1501

AlPt3 [1, 0, 0] -0.38 mp-188

AlPt3 [1, 1, 1] -0.45 mp-188

Al3V [1, 1, 0] -0.46 mp-2554

Al3V [1, 1, 1] -0.35 mp-2554

Al3V [1, 1, 2] -0.33 mp-2554

Al12W [1, 1, 1] -0.47 mp-11227

As2 [1, 1, 1] -0.21 mp-11

As2 [2, 1, 0] -0.47 mp-11

As2 [2, 2, 1] -0.23 mp-11

As4Co4 [1, 0, 0] -0.43 mp-15679

As4Co4 [1, 1, 0] -0.45 mp-583

As2Ga2 [2, 2, 1] -0.19 mp-8883

AsGa [2, 1, 0] -0.21 mp-2534

AsIn [2, 1, 0] -0.44 mp-20305

As4Os2 [1, 1, 1] -0.37 mp-2455

AsPd5In [2, 1, 0] -0.23 mp-1025293

AsPd5In [2, 1, 2] -0.46 mp-1025293

As4Rh4 [0, 0, 1] -0.46 mp-22079
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Formula Miller index Δ𝐸𝐻 [eV] MPID

As4Rh4 [0, 0, 1] -0.19 mp-22079

As4Rh4 [1, 0, 2] -0.25 mp-22079

As4Rh4 [2, 2, 1] -0.45 mp-22079

As4Rh4 [2, 2, 1] -0.33 mp-22079

As8Rh4 [1, 0, -1] -0.45 mp-15954

As2Rh10Ga4 [1, 0, 0] -0.46 mp-18561

As6Si6 [1, 1, 0] -0.20 mp-1863

AsSn [1, 1, 1] -0.23 mp-2182

As6Ti8 [1, 1, 0] -0.33 mp-567082

As4Zn4Cu4 [1, 1, 1] -0.36 mp-676828

As4Zn4Cu4 [1, 1, 1] -0.24 mp-676828

As4Zn4Cu4 [1, 2, 1] -0.31 mp-676828

As4Zn4Cu4 [2, 1, 0] -0.30 mp-676828

AsZnPt5 [0, 0, 1] -0.40 mp-1025356

AsZnPt5 [1, 1, 1] -0.44 mp-1025356

Au4Al4 [0, 0, 1] -0.29 mp-1399

Au4Al4 [0, 0, 1] -0.21 mp-1399

Au4Al4 [2, 2, 1] -0.30 mp-1399

AuAl2 [1, 1, 1] -0.46 mp-2647

AuAl2 [2, 1, 0] -0.36 mp-2647

AuAl2 [2, 2, 1] -0.37 mp-2647

Au2AlCu [2, 1, 0] -0.28 mp-867306

Au3Pd [2, 1, 1] -0.19 mp-973834

AuPd3 [1, 0, 0] -0.30 mp-999298

AuPd3 [1, 0, 0] -0.18 mp-999298

AuPd3 [2, 1, 1] -0.40 mp-999298
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AuPd3 [2, 1, 1] -0.36 mp-999298

AuPd3 [2, 2, 1] -0.29 mp-999298

AuPdCu2 [2, 1, 0] -0.19 mp-862256

Co4Al18 [0, 0, 1] -0.41 mp-16488

CoFeAl2 [2, 1, 0] -0.45 mp-862691

Co4Ga12 [1, 0, 1] -0.21 mp-20559

Co4Ga12 [1, 1, 0] -0.18 mp-20559

Co4In12 [1, 0, 0] -0.33 mp-22236

Co4In12 [2, 1, 0] -0.31 mp-22236

Co4N2 [1, 0, 1] -0.41 mp-22631

Co2Pt2 [1, 0, 1] -0.40 mp-949

CoPt3 [1, 0, 0] -0.36 mp-922

CoPt3 [2, 1, 0] -0.36 mp-922

CoPt3 [2, 2, 1] -0.37 mp-922

Co2Sn4 [1, 1, 1] -0.24 mp-20155

Co2Sn4 [1, 1, 1] -0.18 mp-20155

Co2Sn4 [2, 1, 1] -0.20 mp-20155

Co3Sn3 [2, 1, 1] -0.40 mp-20536

CrCoPt2 [1, 1, 1] -0.35 mp-570863

CrCoPt2 [1, 1, 2] -0.36 mp-570863

CrCoPt2 [2, 1, 0] -0.45 mp-570863

CrCoPt2 [2, 1, 0] -0.39 mp-570863

CuAlPt2 [0, 0, 1] -0.40 mp-12550

CuAlPt2 [1, 0, 0] -0.27 mp-12550

CuAlPt2 [1, 1, 1] -0.33 mp-12550

CuAlPt2 [1, 1, 2] -0.29 mp-12550
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CuAlPt2 [2, 1, 0] -0.43 mp-12550

CuAlPt2 [2, 1, 2] -0.44 mp-12550

Cu28In12 [0, 1, 0] -0.29 mp-21985

Fe2Al12 [0, 0, 1] -0.30 mp-570001

Fe2Al6 [1, 0, 0] -0.43 mp-984873

Fe2Al6 [1, 1, 0] -0.24 mp-984873

Fe2Al6 [2, 1, 1] -0.46 mp-984873

Fe4Ga12 [1, 0, 1] -0.33 mp-636368

Fe4Ga12 [1, 1, 0] -0.25 mp-636368

Fe2Pd2 [1, 0, 1] -0.44 mp-2831

Fe2Pd2 [1, 1, 0] -0.30 mp-2831

Fe2Pd2 [2, 1, 2] -0.35 mp-2831

Fe2Pd2 [2, 1, 2] -0.33 mp-2831

FePd3 [1, 0, 0] -0.30 mp-21845

FePt [1, 0, 0] -0.40 mp-2260

FePt [1, 1, 1] -0.41 mp-2260

FePt [2, 0, 1] -0.41 mp-2260

FePt [2, 1, 1] -0.47 mp-2260

Fe2WAl [1, 0, 0] -0.44 mp-862288

Fe2WAl [2, 1, 0] -0.44 mp-862288

Ga2N2 [1, 0, 1] -0.37 mp-804

Ga10Pd2 [1, 1, 0] -0.27 mp-30660

Ga3Pd7 [0, 0, 1] -0.27 mp-31467

Ga3Pd7 [1, 0, 0] -0.38 mp-31467

Ga3Pd7 [1, 0, 0] -0.35 mp-31467

Ga3Pd7 [1, 1, -1] -0.31 mp-31467
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Ga4Pd8 [0, 0, 1] -0.27 mp-1869

Ga4Pd8 [0, 1, 0] -0.24 mp-1869

Ga4Pd8 [1, 0, 1] -0.24 mp-1869

Ga4Pd8 [1, 0, 1] -0.23 mp-1869

Ga4Pd8 [1, 1, 0] -0.34 mp-1869

Ga4Pd8 [1, 1, 0] -0.31 mp-1869

Ga4Pd8 [2, 1, 0] -0.32 mp-1869

Ga6Pd10 [0, 0, 1] -0.34 mp-2408

Ga2Pd2Ti2 [1, 0, 0] -0.26 mp-1025045

Ga2Pt6 [0, 0, 1] -0.27 mp-862621

Ga2Pt6 [0, 0, 1] -0.19 mp-862621

Ga2Pt6 [1, 0, 1] -0.42 mp-862621

Ga2Pt6 [1, 0, 2] -0.42 mp-862621

Ga3Pt5 [0, 0, 1] -0.43 mp-30663

Ga3Pt5 [0, 1, 0] -0.39 mp-30663

Ga3Pt5 [0, 1, 1] -0.43 mp-30663

Ga3Pt5 [0, 1, 1] -0.43 mp-30663

Ga3Pt5 [1, 1, 2] -0.43 mp-30663

Ga4Pt12 [0, 0, 1] -0.32 mp-623066

Ga4Pt12 [1, 0, 2] -0.43 mp-623066

Ga8Pt16 [1, 0, 0] -0.45 mp-2223

GaPt3 [1, 0, 0] -0.46 mp-11407

GaPt3 [1, 1, 0] -0.33 mp-11407

GaPt3 [2, 1, 1] -0.42 mp-11407

GaPt2Cu [1, 0, 0] -0.44 mp-644280

GaPt2Cu [1, 0, 2] -0.42 mp-644280
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GaPt2Cu [1, 1, 0] -0.45 mp-644280

GaPt2Cu [1, 1, 0] -0.35 mp-862791

GaPt2Cu [1, 1, 1] -0.39 mp-862791

GaPt2Cu [1, 1, 2] -0.35 mp-644280

GaPt2Cu [2, 0, 1] -0.46 mp-644280

GaPt2Cu [2, 1, 0] -0.41 mp-644280

GaPt2Cu [2, 1, 1] -0.28 mp-644280

GaPt2Cu [2, 1, 2] -0.37 mp-644280

GaPt2Cu [2, 2, 1] -0.44 mp-644280

Ge4Co4Cu2 [1, 0, 0] -0.22 mp-19955

Ge2Cu6 [1, 1, 2] -0.21 mp-19724

Ge2Cu6 [1, 2, 1] -0.18 mp-19724

Ge2Mn2Ga2 [2, 0, 1] -0.47 mp-1018802

Ge2Mo [1, 1, 2] -0.35 mp-10201

GePtTi [2, 1, 0] -0.45 mp-1008680

Ge4Rh4 [0, 0, 1] -0.44 mp-22239

Ge4Rh4 [0, 2, 1] -0.38 mp-22239

Ge4Rh4 [1, 0, 0] -0.28 mp-20866

Ir [1, 1, 1] -0.37 mp-101

Ir2Al6 [0, 0, 1] -0.44 mp-2294

Ir2Al6 [0, 0, 1] -0.41 mp-2294

Ir2Al6 [1, 0, 0] -0.46 mp-2294

Ir2Al6 [1, 0, 0] -0.26 mp-2294

Ir2Al6 [2, -1, 2] -0.33 mp-2294

IrFeAl2 [1, 1, 0] -0.45 mp-866031

Ir4Ga18 [1, 2, 0] -0.31 mp-31311
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Ir6Ga12 [0, 0, 1] -0.43 mp-31253

Ir6Ga12 [1, 1, 0] -0.37 mp-31253

IrGa [1, 1, 1] -0.46 mp-11388

Ir4In8 [0, 1, 0] -0.38 mp-22812

IrRhAl2 [1, 1, 1] -0.33 mp-862694

Ir6Sn14 [1, 0, 0] -0.21 mp-22040

IrSn2 [1, 0, 0] -0.31 mp-2083

IrSn2 [2, 1, 1] -0.22 mp-2083

Ir6V2 [1, 1, 0] -0.39 mp-865496

MnRh2In [2, 1, 0] -0.47 mp-864968

Mn2RhPt [2, 1, 0] -0.39 mp-865032

Mn2RhPt [2, 1, 0] -0.33 mp-865032

MnRhTi2 [1, 0, 0] -0.39 mp-866218

MoN [2, 2, 1] -0.38 mp-13036

MoZn7 [1, 1, 1] -0.40 mp-644500

N2V2 [2, 1, 0] -0.18 mp-1017532

Ni [1, 1, 0] -0.41 mp-23

Ni2Al3 [1, 1, 1] -0.38 mp-1057

Ni2Al3 [2, -1, 2] -0.45 mp-1057

Ni2Al3 [2, 1, 0] -0.30 mp-1057

Ni2Al3 [2, 2, 1] -0.32 mp-1057

Ni4Al12 [0, 0, 1] -0.35 mp-622209

Ni4Al12 [0, 1, 0] -0.40 mp-622209

Ni5Al3 [0, 0, 1] -0.41 mp-16514

Ni5Al3 [0, 2, 1] -0.31 mp-16514

Ni5Al3 [1, 1, 2] -0.46 mp-16514
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Ni5Al3 [1, 1, 2] -0.45 mp-16514

Ni5Al3 [2, 0, 1] -0.32 mp-16514

NiAl [1, 0, 0] -0.36 mp-1487

NiAl [1, 1, 1] -0.23 mp-1487

NiAl [2, 1, 0] -0.43 mp-1487

Ni2AuSn4 [1, 0, 1] -0.23 mp-568925

NiCo2Ga [1, 0, 0] -0.32 mp-20551

NiCo2Ga [2, 1, 1] -0.41 mp-1018060

Ni2Fe2 [1, 0, 0] -0.41 mp-2213

Ni2Fe2 [2, 1, 0] -0.42 mp-2213

Ni2Fe2 [2, 1, 2] -0.41 mp-2213

Ni3Fe [1, 0, 0] -0.40 mp-1007855

Ni3Fe [1, 1, 0] -0.42 mp-1418

NiFeAl2 [2, 1, 0] -0.40 mp-867330

NiFePt2 [0, 0, 1] -0.39 mp-13463

NiFePt2 [0, 0, 1] -0.31 mp-13463

NiFePt2 [1, 0, 0] -0.39 mp-13463

NiFePt2 [1, 0, 0] -0.37 mp-13463

NiFePt2 [1, 1, 1] -0.38 mp-13463

NiFePt2 [2, 1, 1] -0.45 mp-13463

Ni13Ga9 [1, 0, 0] -0.42 mp-21589

Ni2Ga3 [2, -1, 2] -0.43 mp-11397

Ni2Ga3 [2, -1, 2] -0.43 mp-11397

Ni4Ga2 [1, 1, 1] -0.39 mp-570904

Ni5Ga3 [0, 0, 1] -0.44 mp-11398

Ni4Ge4 [1, 0, 2] -0.37 mp-1099
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Ni2In3 [1, 1, 1] -0.22 mp-21385

Ni6Mo2 [0, 1, 0] -0.46 mp-11506

Ni2Pt2 [0, 0, 1] -0.36 mp-945

Ni2Pt2 [1, 0, 1] -0.39 mp-945

Ni2Pt2 [2, 1, 0] -0.47 mp-945

Ni2Pt2 [2, 1, 0] -0.39 mp-945

Ni2Pt2 [2, 2, 1] -0.45 mp-945

Ni2Pt2 [2, 2, 1] -0.42 mp-945

Ni3Pt [1, 0, 0] -0.43 mp-12798

Ni3Pt [1, 0, 0] -0.33 mp-12798

NiRh2Ga [1, 1, 1] -0.44 mp-866037

NiRh2Ga [2, 1, 0] -0.43 mp-866037

NiRh2Sn [1, 1, 1] -0.40 mp-11519

Ni2Si2 [0, 0, 1] -0.31 mp-999192

Ni2Si2 [1, 2, 1] -0.38 mp-999192

Ni2Si2 [1, 2, 2] -0.36 mp-999192

Ni2Si2 [2, 1, 2] -0.36 mp-999192

Ni4Si4 [1, 0, 2] -0.39 mp-351

Ni8Si4 [1, 1, 1] -0.45 mp-1118

Ni3Sn4 [1, 1, -2] -0.28 mp-20174

Ni6Sn2 [1, 0, 0] -0.17 mp-20112

Ni3SnN [2, 1, 1] -0.40 mp-1017632

Ni4W [0, 0, 1] -0.40 mp-30811

OsAl [1, 0, 0] -0.29 mp-875

Os4Ga12 [0, 0, 1] -0.29 mp-570844

OsV3 [1, 1, 1] -0.41 mp-866121

Continued on next page. . .
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PbMnRh2 [2, 1, 0] -0.36 mp-4652

Pb4Pt2 [1, 0, 1] -0.27 mp-21318

Pb10Rh8 [0, 1, 0] -0.18 mp-569678

Pd [1, 1, 0] -0.41 mp-2

Pd [1, 1, 1] -0.45 mp-2

Pd4Cu16 [1, 0, 0] -0.19 mp-30594

PdCu3 [1, 1, 1] -0.22 mp-580357

PdCu3 [2, 2, 1] -0.20 mp-580357

Pd2CuIn [1, 0, 0] -0.21 mp-867308

Pd2CuIn [1, 1, 0] -0.24 mp-867308

Pd2CuIn [2, 1, 0] -0.20 mp-867308

Pd3In [1, 0, 2] -0.36 mp-510436

Pd3In [1, 1, 1] -0.42 mp-510436

Pd3In [2, 0, 1] -0.39 mp-510436

Pd3In [2, 0, 1] -0.36 mp-510436

Pd3In [2, 1, 0] -0.39 mp-31337

Pd3In [2, 1, 0] -0.36 mp-31337

Pd3In [2, 1, 2] -0.46 mp-510436

Pd3In [2, 1, 2] -0.40 mp-510436

Pd8In4 [1, 0, 2] -0.36 mp-22646

Pd8In4 [1, 1, 0] -0.38 mp-22646

Pd8In4 [2, 1, 0] -0.23 mp-22646

Pd2Ti [1, 1, 0] -0.42 mp-1018121

Pd2Ti [1, 1, 2] -0.37 mp-1018121

Pd2Ti [2, 1, 2] -0.47 mp-1018121

Pd2V [1, 0, 1] -0.26 mp-11549

Continued on next page. . .
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Pd2V [1, 1, 0] -0.44 mp-11549

Pd2V [2, 1, 2] -0.41 mp-11549

Pd3V [1, 0, 0] -0.40 mp-873

Pd3V [1, 0, 1] -0.34 mp-873

Pd3V [1, 1, 0] -0.32 mp-873

Pd3V [2, 1, 1] -0.40 mp-568711

Pd3V [2, 1, 1] -0.33 mp-568711

Pd3V [2, 2, 1] -0.39 mp-568711

Pd6V2 [1, 0, 0] -0.46 mp-979980

Pd6V2 [1, 0, 2] -0.24 mp-979980

Pd6V2 [1, 1, 1] -0.37 mp-979980

Pt [1, 1, 1] -0.36 mp-126

Pt7Cu [1, 0, 0] -0.44 mp-12608

Pt7Cu [1, 0, 0] -0.36 mp-12608

PtCu3 [1, 1, 0] -0.34 mp-12086

PtCu3 [1, 1, 0] -0.28 mp-12086

PtCu3 [1, 1, 1] -0.32 mp-12086

PtCu3 [2, 1, 1] -0.27 mp-12086

PtCu3 [2, 2, 1] -0.25 mp-12086

Pt2CuIn [1, 0, 0] -0.35 mp-639659

Pt2CuIn [2, 0, 1] -0.44 mp-639659

Pt2CuIn [2, 1, 1] -0.46 mp-639659

Pt2FeCu [0, 0, 1] -0.31 mp-3702

Pt2FeCu [1, 0, 1] -0.42 mp-3702

Pt13In9 [1, 0, 0] -0.44 mp-571060

Pt13In9 [2, 0, -1] -0.37 mp-571060

Continued on next page. . .
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Pt3In [1, 0, 0] -0.46 mp-20516

Pt3In [1, 0, 0] -0.25 mp-20516

Pt5In5 [0, 0, 1] -0.36 mp-510438

Pt5In5 [1, 1, -1] -0.30 mp-510438

Pt8Ti [2, 1, 1] -0.38 mp-30852

Pt2V [0, 0, 1] -0.35 mp-12108

Pt2V [0, 1, 2] -0.27 mp-12108

Pt2V [1, 1, 0] -0.45 mp-12108

Pt2V2 [1, 0, 0] -0.45 mp-1017531

Pt3V [0, 0, 1] -0.44 mp-2705

Pt3V [0, 0, 1] -0.21 mp-2705

Pt3V [1, 1, 2] -0.26 mp-2705

Pt3V [2, 1, 0] -0.31 mp-372

Re2Al12 [0, 1, 0] -0.17 mp-16528

Re2Al12 [1, 1, 0] -0.46 mp-16528

ReAl12 [1, 0, 0] -0.22 mp-1648

Re6Pt2 [0, 0, 1] -0.46 mp-862589

Re4Si4 [1, 0, 0] -0.44 mp-7948

Rh [1, 0, 0] -0.45 mp-74

Rh [1, 1, 1] -0.39 mp-74

Rh4Al18 [0, 0, 1] -0.40 mp-1645

Rh4Al18 [0, 0, 1] -0.20 mp-1645

Rh4Al18 [0, 1, 1] -0.37 mp-1645

Rh4Al18 [1, 0, -1] -0.19 mp-1645

Rh4Al18 [1, 0, 0] -0.35 mp-1645

Rh4Al18 [1, 0, 0] -0.30 mp-1645

Continued on next page. . .
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Rh4Al18 [1, 0, 1] -0.36 mp-1645

Rh4Al18 [1, 1, 0] -0.31 mp-1645

Rh4Al18 [1, 1, 0] -0.30 mp-1645

Rh8Al20 [0, 0, 1] -0.45 mp-1791

Rh8Al20 [1, 1, 0] -0.42 mp-1791

RhAl [1, 0, 0] -0.37 mp-364

RhAl [1, 1, 0] -0.26 mp-364

RhAl [2, 1, 0] -0.18 mp-364

RhAl [2, 1, 1] -0.17 mp-364

RhAl [2, 2, 1] -0.34 mp-364

Rh2AlTi [2, 1, 0] -0.45 mp-866153

Rh2AlTi [2, 1, 0] -0.41 mp-866153

Rh2CoSn [1, 0, 0] -0.42 mp-1018085

Rh2CuGa [1, 1, 1] -0.47 mp-862485

Rh2CuV [1, 0, 0] -0.43 mp-979910

Rh2CuV [1, 1, 1] -0.37 mp-979910

Rh2CuV [2, 1, 0] -0.42 mp-979910

Rh2FeAl [2, 1, 0] -0.42 mp-861953

Rh6Ga10 [0, 0, 1] -0.23 mp-30923

Rh6Ga10 [1, 0, -2] -0.29 mp-30923

Rh6Ga10 [1, 2, -1] -0.20 mp-30923

RhGa [1, 0, 0] -0.37 mp-2444

RhGa [1, 0, 0] -0.36 mp-2444

Rh4In12 [1, 0, 0] -0.28 mp-18614

Rh4In12 [1, 0, 1] -0.28 mp-18614

Rh4In12 [2, 1, 1] -0.31 mp-18614

Continued on next page. . .
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Rh3Pt [1, 0, 0] -0.45 mp-974370

Rh3Pt [1, 0, 0] -0.39 mp-974370

Rh3Pt [1, 0, 0] -0.34 mp-974376

Rh3Pt [1, 0, 1] -0.42 mp-974376

Rh3Pt [1, 0, 1] -0.39 mp-974376

Rh3Pt [1, 1, 1] -0.43 mp-974370

Rh3Pt [2, 1, 0] -0.41 mp-974376

RhPt3 [0, 0, 1] -0.41 mp-974616

RhPt3 [1, 1, 2] -0.37 mp-974616

Rh3Sn [1, 1, 2] -0.42 mp-978974

Rh4Sn4 [1, 0, 0] -0.23 mp-317

Rh4Sn4 [1, 1, 0] -0.37 mp-317

Rh4Sn4 [1, 1, 1] -0.33 mp-317

Rh4Sn4 [2, 1, 0] -0.25 mp-317

Rh2SnTi [1, 0, 0] -0.34 mp-865707

Rh2SnTi [2, 1, 0] -0.45 mp-865707

Rh2V2 [0, 0, 1] -0.34 mp-971751

Rh2V2 [1, 0, 0] -0.32 mp-1251

Rh2V2 [2, 2, 1] -0.46 mp-1251

Rh2V2 [2, 2, 1] -0.41 mp-1251

Rh2V6 [1, 1, 0] -0.44 mp-1578

Rh3V [1, 0, 0] -0.43 mp-1185

Ru2 [1, 0, 0] -0.44 mp-33

Ru2As4 [1, 2, 0] -0.19 mp-766

Ru2As4 [2, 1, 0] -0.43 mp-766

RuCoAl2 [1, 1, 1] -0.41 mp-862695

Continued on next page. . .
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Ru4In12 [1, 0, 0] -0.31 mp-672326

Ru2SiGa [2, 1, 0] -0.35 mp-865615

Ru2Zn6 [1, 0, 1] -0.46 mp-1380

Sb2Al2 [1, 1, 1] -0.45 mp-1018100

Sb2Al2 [1, 1, 1] -0.28 mp-1018100

Sb2Al2 [2, 1, 1] -0.35 mp-1018100

Sb2Al2 [2, 1, 2] -0.32 mp-1018100

SbAl [1, 1, 1] -0.38 mp-2624

SbAl [2, 2, 1] -0.34 mp-2624

Sb4Co2 [2, 1, 2] -0.30 mp-9835

Sb8Co4 [2, 1, 0] -0.20 mp-755

Sb8Co4 [2, 1, 1] -0.22 mp-755

Sb2CuNi [1, 0, 0] -0.36 mp-11834

Sb2CuNi [1, 0, 1] -0.29 mp-11834

Sb2Ga2 [2, 1, 1] -0.24 mp-1018059

SbGa [2, 1, 0] -0.31 mp-1156

Sb8Ir4 [1, 1, 0] -0.37 mp-1247

SbMnRh [2, 1, 0] -0.37 mp-4846

SbMnRh2 [1, 1, 2] -0.42 mp-571163

SbMnRu2 [2, 1, 0] -0.41 mp-864957

Sb2Ni2 [1, 0, 0] -0.43 mp-810

Sb2Ni2 [1, 1, 1] -0.25 mp-810

Sb2Ni2 [1, 1, 1] -0.21 mp-810

Sb2Ni2 [2, 1, 1] -0.23 mp-810

Sb2Ni2 [2, 1, 1] -0.21 mp-810

Sb4Os2 [0, 1, 2] -0.43 mp-2695

Continued on next page. . .
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Sb4Os2 [0, 1, 2] -0.40 mp-2695

Sb2Pt2 [1, 0, 0] -0.33 mp-2845

SbPt7 [1, 0, 0] -0.33 mp-1030

SbPt7 [1, 1, 1] -0.29 mp-1030

Sb4Rh4 [1, 0, 0] -0.20 mp-20619

Sb4Rh8 [1, 0, 0] -0.35 mp-21359

Sb4Rh8 [2, 0, 1] -0.42 mp-21359

Sb8Rh4 [1, 1, -2] -0.41 mp-2682

Sb8Rh4 [1, 2, -1] -0.20 mp-2682

Sb8Rh4 [2, 1, -1] -0.21 mp-2682

SbRh2Cu [2, 1, 0] -0.44 mp-867753

Sb8Si8Pt8 [1, 0, 0] -0.45 mp-11152

Sb8Si8Pt8 [1, 1, 0] -0.43 mp-11152

SbSiPt5 [0, 0, 1] -0.30 mp-1025366

SbSiPt5 [1, 0, 0] -0.31 mp-1025366

SbSiPt5 [2, 1, 2] -0.47 mp-1025366

Sb4V2 [2, 1, 1] -0.41 mp-2851

SiAgPt5 [1, 0, 0] -0.44 mp-1025220

SiAgPt5 [1, 0, 1] -0.44 mp-1025220

SiAgPt5 [2, 1, 2] -0.47 mp-1025220

Si2Co2Al [1, 1, 0] -0.41 mp-10010

Si2Co2Al [1, 1, 1] -0.42 mp-10010

Si2Co2Al [2, 1, 0] -0.42 mp-10010

Si2Co2Al [2, 1, 0] -0.42 mp-10010

Si2Fe4 [1, 1, 1] -0.43 mp-22787

Si8Fe4Al12 [1, 1, 0] -0.38 mp-505229

Continued on next page. . .
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Si8Fe6Al4 [0, 0, 1] -0.40 mp-29111

SiFe2Al [1, 1, 1] -0.37 mp-867878

Si2Ir6 [0, 0, 1] -0.30 mp-1841

Si2Ir6 [2, 1, 1] -0.47 mp-1841

Si4Ir4 [0, 1, 1] -0.44 mp-1128

Si2Mn6Al18 [1, 1, 0] -0.37 mp-15819

Si16Os8 [0, 0, 1] -0.47 mp-17123

SiOs2V [2, 1, 0] -0.46 mp-865506

SiOs2V [2, 1, 0] -0.45 mp-865506

Si3Pd6 [1, 0, 1] -0.19 mp-697068

Si4Pd12 [0, 0, 1] -0.34 mp-20622

Si4Pd12 [0, 1, 1] -0.25 mp-20622

Si4Pd12 [1, 0, 0] -0.31 mp-20622

Si4Pd12 [1, 0, 2] -0.35 mp-20622

Si4Pd12 [1, 0, 2] -0.32 mp-20622

Si4Pd12 [1, 2, 0] -0.33 mp-20622

Si4Pd12 [2, 1, 0] -0.31 mp-20622

Si2Pt6 [0, 1, 0] -0.42 mp-13363

Si2Pt6 [2, 0, -1] -0.33 mp-13363

Si4Pt12 [0, 0, 1] -0.44 mp-21163

Si4Pt12 [1, 2, 0] -0.39 mp-21163

Si4Pt12 [1, 2, 1] -0.40 mp-21163

Si4Pt4 [2, 0, 1] -0.46 mp-696

SiPt2 [1, 1, 2] -0.44 mp-1299

SiPt5In [1, 0, 0] -0.41 mp-1025370

SiPt5In [2, 0, 1] -0.34 mp-1025370

Continued on next page. . .
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SiPt5In [2, 1, 0] -0.40 mp-1025370

Si6Rh10 [1, 0, 0] -0.38 mp-21012

SiRh2Cu [1, 1, 0] -0.47 mp-978532

SiRh2Zn [1, 0, 0] -0.46 mp-977384

SiRh2Zn [2, 1, 0] -0.42 mp-977384

SiSnPt5 [1, 0, 0] -0.42 mp-1025324

SiSnPt5 [1, 1, 1] -0.45 mp-1025324

Si6V3 [1, 0, 0] -0.34 mp-10711

Si6V3 [1, 1, 0] -0.21 mp-11190

Si6V3 [2, 1, 1] -0.36 mp-11190

Si2W [1, 1, 0] -0.38 mp-1620

Si6W3 [1, 1, 0] -0.34 mp-8939

Sn2Cu2 [1, 0, 0] -0.39 mp-10598

Sn4Pd4 [0, 1, 0] -0.26 mp-2369

Sn4Pd4 [1, 0, 1] -0.17 mp-2369

Sn4Pd4 [2, 1, 2] -0.26 mp-2369

Sn4Pd8 [1, 0, 1] -0.28 mp-1851

Sn4Pd8 [1, 1, 0] -0.23 mp-1851

Sn4Pd8 [1, 1, 2] -0.24 mp-1851

Sn4Pd8 [1, 2, 2] -0.29 mp-1851

SnPd3 [1, 0, 0] -0.39 mp-718

SnPdTi [2, 1, 0] -0.46 mp-961682

Sn2Pt2 [1, 1, 1] -0.36 mp-19856

Sn2Pt2 [2, 1, 0] -0.17 mp-19856

SnPt3 [1, 0, 0] -0.46 mp-20971

Sn2Ti4 [1, 0, 0] -0.20 mp-30875
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TiPd2In [1, 0, 0] -0.32 mp-866168

TiRh2In [1, 0, 0] -0.39 mp-866170

TiRh2In [2, 1, 0] -0.47 mp-866170

Zn2As4Sn2 [1, 0, 0] -0.38 mp-5190

Zn3Co [1, 1, 2] -0.20 mp-971948

Zn13Fe [2, 0, 1] -0.41 mp-1722

ZnPt3 [1, 0, 0] -0.45 mp-30856

ZnPt3 [2, 1, 0] -0.39 mp-30856

ZnPt3 [2, 1, 0] -0.38 mp-30856

Zn2RhPd [2, 1, 0] -0.43 mp-864839

ZnRh2V [1, 0, 0] -0.35 mp-865487

ZnRh2V [2, 1, 0] -0.45 mp-865487

ZnRh2V [2, 1, 0] -0.43 mp-865487

Zn3Ti [2, 2, 1] -0.34 mp-21289
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Appendix B

Supplementary Information for

Chapter 4

This work originally appeared as the Supplementary Information for: Miao Zhong,*

Kevin Tran,* Yimeng Min,* Chuanhao Wang,* Ziyun Wang, Cao-Thang Dinh, Phil

De Luna, Zongqian Yu, Armin Sedighian Rasouli, Peter Brodersen, Song Sun, Olek-

sandr Voznyy, Chih-Shan Tan, Mikhail Askerka, Fanglin Che, Min Liu, Ali Seifi-

tokaldani, Yuanjie Pang, Shen-Chuan Lo, Alexander Ip, Zachary Ulissi, and Edward

H. Sargent. Accelerated discovery of CO2 electrocatalysts using active machine learn-

ing. Nature, 581(7807):178–183, 2020.

B.1 Computational Methods

B.1.1 DFT/ML screening methods

The automated DFT framework was constructed using various Python and shell soft-

ware packages. The Materials Project[72] was used to establish bulk structures; the

Atomic Simulation Environment[64] was used to manage the structures; pymatgen[136]

was used to enumerate all facets with Miller indices between -2 and 2 and all sym-

metrically distinct facet terminations; pymatgen was also used to perform Delaunay

triangulation on the surfaces to enumerate adsorption sites; and VASP[91, 92, 89, 90]
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was used to perform the DFT calculations. Each surface/site enumeration, DFT cal-

culation, and various administrative computational tasks were encoded as interdepen-

dent tasks so that they could be managed automatically by dependency management

software, Luigi[15]. FireWorks[71] was also used to manage calculations across several

computing clusters.

DFT results were then used by a machine learning workflow to predict CO adsorp-

tion energies for each adsorption site enumeratedṪo accomplish this, a method was

developed to encode each adsorption site into a numerical array (Figure B-1). Each

element present in the bulk structure was tabulated. Each element was described

with a vector four numbers: the atomic number (Z), the Pauling electronegativity

(𝜒), the number of atoms of that element coordinated with the CO molecule (CN) as

determined by a cut-off radius of 5 Åand a Voronoi polyhedral angle cutoff tolerance

of 0.8,[136] and the median monometallic adsorption energy of CO on that element

(Δ ̃︀𝐸) as calculated from our database of results. The vector creation process was

then repeated on the “second shell” of atoms. Given that our database included al-

loys with no more than three components, the final number of features was 4× 2× 3.

These features were fed to an automated machine learning tool, TPOT[135], which

automatically chose and tuned an appropriate regression method (typically a com-

bination of random forest and boosted tree regressors). The MAE of the models we

created with TPOT were ca. 0.18 eV using 90/10 train/test splits and ca. 0.29 eV

using time-series splitting. You can refer to the Tran & Ulissi paper[171] for more

details.

The resulting ML model and DFT framework were then coupled to create an ac-

tive machine learning workflow. The ML model was used to predict all the adsorption

energies of every adsorption site enumerated by the DFT framework. The sites whose

ML-predicted adsorption energies were closest to the optimal value of -0.6 eV were

then automatically simulated by the DFT framework to yield a DFT-predicted ad-

sorption energy. The additional DFT data was then used to retrain a new ML model,

which created new predictions and prioritizations. Thus, the ML model used the

DFT framework to query its own training data continuously, resulting in a database
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of DFT data that grew automatically and systematically. In total, the active learning

workflow performed over 300 ML regressions to guide DFT calculations of CO bind-

ing energies on ca. 4,000 different adsorption sites on Cu-containing surfaces, and ca.

1,000 of those were performed on CuAl surfaces.

B.1.2 DFT settings for screening

We performed all DFT screening calculations using the Vienna Ab initio Simulation

Package (VASP)[91, 92, 89, 90] implemented in ASE.[64] The RPBE functionals[57]

were used along with k-point grids of 4×4×1 and an energy cutoff 350 eV. The default

pseudopotentials supplied by VASP version 5.4 were also used. Bulk relaxations were

performed with a 10 × 10 × 10 k-point grid and a 500 eV cutoff, and only isotropic

relaxation was allowed. All surfaces were replicated in the X/Y directions so that

each cell vector was at least 4.5 Å. Corrections for spin magnetism or dispersion were

not included, so we excluded from this study all materials that contained Mn, Fe, Ni,

Co, or O. All slabs were replicated in the Z direction to a minimum height of 7 Åwith

at least 20 Åof vacuum between slabs. Generally, the bottom layers were fixed and

defined as those atoms more than 3 Åfrom the top of the surface.

B.1.3 Calculating the optimal Δ𝐸𝐶𝑂 value

The literature-sourced scaling relationships[105] calculate an optimal adsorption free

energy of CO (Δ𝐺𝐶𝑂) of -0.17 eV. This value was based on microkinetic modeling

of the full reaction pathway from CO2 to methane on single metal terrace (111)

and step (211) surfaces and kinetic/thermodynamic scaling relationships. For Cu,

hydrogenation of CO was predicted to be the rate-limiting step. If we assume that

CO is still involved in the rate-limiting step of other hydrocarbon formation reactions,

such as CO-CO or HCO-HCO coupling, then similar Δ𝐺𝐶𝑂 targets should apply. If

we do not make this assumption, then the Δ𝐺𝐶𝑂 target becomes a necessary-but-not-

sufficient criterion of activity, because we still know that CO will be an intermediate

in the CO2 reduction pathway and will therefore need to have a quasi-stable Δ𝐺𝐶𝑂
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of ca. -0.17 eV. Thus, we need a way to calculate Δ𝐺𝐶𝑂.

Equation B.1 can be used to calculate the change in chemical potential (Δ𝐺𝐶𝑂)[105].

Δ𝜇𝐶𝑂* is the chemical potential of CO bound on a surface, Δ𝜇* is the chemical po-

tential of the surface, and Δ𝜇𝐶𝑂 is the chemical potential of CO in the gas phase.

Δ𝐺𝐶𝑂 = 𝜇𝐶𝑂* − 𝜇* − 𝜇𝐶𝑂 (B.1)

Chemical potentials can be calculated using Equation B.2[134, 105], where E is the

electronic energy as calculated by DFT, ZPE is the zero-point energy, Cp is the heat

capacity, T is temperature, S is entropy, Δ𝜇𝑠𝑜𝑙𝑣 is the change in chemical potential

from solvent de-stabilization, and Δ𝜇𝑐𝑜𝑟𝑟is any experimental offset required to account

for differences between experimental chemical potentials and DFT-based chemical

potentials.

𝜇 = 𝐸 + 𝑍𝑃𝐸 +

∫︁
𝐶𝑝𝑑𝑇 − 𝑇𝑆 +Δ𝜇𝑠𝑜𝑙𝑣 +Δ𝜇𝑐𝑜𝑟𝑟 (B.2)

Literature[165] reports that 𝑍𝑃𝐸𝐶𝑂 is 0.130 eV, 𝐶𝑝,𝐶𝑂𝑑𝑇 is 0.091 eV at 298 K, SCO is

0.002092 eV K-1, and Δ𝜇𝑐𝑜𝑟𝑟,𝐶𝑂 is 0.02 eV for gas phase CO[165]. Thus, the chemical

potential of CO in the gas phase is:

𝜇𝐶𝑂, 𝑔 = 𝐸𝐶𝑂, 𝑔 + 𝑍𝑃𝐸𝐶𝑂, 𝑔 +

∫︁
𝐶𝑝, 𝐶𝑂𝑑𝑇 − 𝑇𝑆𝐶𝑂, 𝑔 +Δ𝜇𝑠𝑜𝑙𝑣, 𝑔 +Δ𝜇𝑐𝑜𝑟𝑟, 𝑔

𝜇𝐶𝑂, 𝑔 = 𝐸𝐶𝑂, 𝑔 + 0.130 𝑒𝑉 + 0.091 𝑒𝑉 − (298 · 0.002092) 𝑒𝑉 + 0 𝑒𝑉 + 0.02 𝑒𝑉

𝜇𝐶𝑂, 𝑔 = 𝐸𝐶𝑂, 𝑔 − 0.362 𝑒𝑉

(B.3)

The same method is used to calculate the adsorbed-state chemical potential of CO

(𝜇𝐶𝑂*), given literature values[165] for ZPE, Cp, and S as well as a solvation correction

term[105] (𝜇𝑠𝑜𝑙𝑣) and an empirical correction term[7] (𝜇𝑐𝑜𝑟𝑟) as shown in Equation B.4.

Note that we assumed a CO stretch frequency of 2,000 cm-1, and deviations from this

frequency may cause errors.
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𝜇𝐶𝑂* = 𝐸𝐶𝑂* + 𝑍𝑃𝐸𝐶𝑂* +

∫︁
𝐶𝑝𝑑𝑇 − 𝑇𝑆𝐶𝑂* +Δ𝜇𝑠𝑜𝑙𝑣 +Δ𝜇𝑐𝑜𝑟𝑟

𝜇𝐶𝑂* = 𝐸𝐶𝑂* + 0.192 𝑒𝑉 + 0.085 𝑒𝑉 − (298 · 0.000452) 𝑒𝑉 − 0.2 𝑒𝑉 + 0.2 𝑒𝑉

𝜇𝐶𝑂* = 𝐸𝐶𝑂* + 0.142 𝑒𝑉

(B.4)

Assuming that 𝜇* is equal to 𝐸*. By combining Equations A.1, B.3, and B.4, we can

calculate the change in chemical potential of adsorbing CO:

Δ𝐺𝐶𝑂 = 𝜇𝐶𝑂* − 𝜇* − 𝜇𝐶𝑂

Δ𝐺𝐶𝑂 = [𝐸𝐶𝑂* + 0.142 𝑒𝑉 ]− 𝐸* − [𝐸𝐶𝑂, 𝑔 − 0.362 𝑒𝑉 ]

Δ𝐺𝐶𝑂 = 𝐸𝐶𝑂* − 𝐸* − 𝐸𝐶𝑂, 𝑔 + 0.50 𝑒𝑉

Δ𝐺𝐶𝑂 = Δ𝐸𝐶𝑂 + 0.50 𝑒𝑉

(B.5)

where the change in electronic energy, Δ𝐸𝐶𝑂, is defined using Equation B.6 and is

calculated with DFT[134].

Δ𝐸𝑋 = 𝐸𝑋* − 𝐸* − 𝐸𝑋, 𝑔 (B.6)

We combined EquationB.5 with the scaling relationship’s optimal Δ𝐺𝐶𝑂 value of -

0.17 eV to calculate an optimal Δ𝐸𝐶𝑂 value of -0.67 eV. Note that we used RPBE[57]

while the source of the scaling relationships used the BEEF-vdW[179] functionals

though, so any differences that may be caused by using different functionals may

impart errors into our estimates of activity.

B.1.4 Method for creating 2-dimensional activity & selectivity

volcanoes

We thank Xinyan Liu for providing us the code that she used to create the 2-

dimensional activity map in her manuscript[105] to generate Figure 4-1a and Fig-

ure B-64. to visualize our DFT/ML predicted results. The code combines adsorption
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energy scaling relationships with microkinetics of elementary reactions for both CO2

reduction and H2 evolution to predict adsorbate coverages, reaction rates, and thus

activity and selectivity for CO2 reduction vs. H2 evolution. Additional details can

be found in the Supplementary Information of Liu et al.[105]. Note that we set the

scaling between H and CHX such that they would be linearly independent; we did

this to address convergence issues with the microkinetic models. Refer to Figure B-64

for additional results from the microkinetic modeling.

B.1.5 Method for creating t-SNE diagrams

To represent each adsorption site numerically, we developed two vectors: a coordina-

tion vector and a neighbours’ coordination vector. Figure B-2 illustrates a simplified

example of these vectors. The coordination vector contains one item for each of

the 31 elements considered in the screening[171], and each item in this vector is the

sum of the number of atoms of that element that are coordinated with CO. The

neighbours’ coordination vector is a flattened array contains 31 × 31 items for each

elemental pairing, and each item in this vector is the sum of the number of atoms of

one element that are coordinated with the all adsorbate neighbours that belong to

another element. Algorithm 2 outlines explicitly how we calculated the neighbours’

coordination number (ncn).

Algorithm 2 Calculating array of neighbors’ coordination numbers for an adsorption
site
1: 𝑛𝑐𝑛 := 𝑧𝑒𝑟𝑜𝑠(𝑛, 𝑛) ◁ where 𝑛=31, the total number of elements we are

investigating

2: for all neighbors do

3: 𝑖 := index of the element of neighbor

4: for all neighbor’s neighbors do

5: 𝑗 := index of the element of neighbor’s neighbor

6: 𝑛𝑐𝑛𝑖,𝑗 := 𝑛𝑐𝑛𝑖,𝑗 + 1

The coordination vector and the neighbors’ coordination vector were then concate-
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nated into one vector, scaled such that each item in the new vector had a mean of

zero and a variance of one, and then sent through SKLearn’s[138] principle compo-

nent analyzer where the dimensionality was reduced until only 85% of the variance

was accounted for, yielding a vector of 113 items instead of 31 × 32 items.

This reduced vector was processed by the t-SNE algorithm[113] with a perplexity

of 120 and a learning rate of (𝜖) of 200 and then stopped after 2,000 iterations, yielding

a 2-dimensional reduction of the adsorption sites that our workflow performed DFT

calculations for.

B.1.6 DFT calculations

The DFT calculations were performed using a VASP package in the Generalized

Gradient Framework formulated by Perdew et al[139], including the RPBE flavour of

DFT and the projector augmented wave (PAW) method to account for core-valence

interactions[18, 88, 139, 90]. The cutoff of kinetic energy for plane wave expansions

was set to 400 eV and the reciprocal space was sampled by the Γ-centered Monkhorst-

Pack scheme[127] with a grid of 4× 4× 1 and an energy cutoff 350 eV. The Cu (111)

and (100) surface slabs were constructed with three Cu layers using ASE (Atomic

Simulation Environment)[64] using the RPBE-optimized lattice parameter with a

vacuum layer of at least 15 Å.

Zero-point energies (ZPE), enthalpy and entropy contributions to free energies

at room temperature (298.15 K) were calculated from vibrational modes of surface

species using numerical six-point derivatives in VASP and ASE. Note that very low-

frequency modes were obtained in some cases because the explicit water molecules are

not properly constrained by the hydrogen bonding network presented in water bulk.

Such low-frequency modes can cause unphysically large entropy contributions, so they

were reset to a threshold value of 60 cm-1 and excluded frequencies smaller than the

threshold, corresponding to the acoustic translational mode of the six-member rings

in water bulk. For the surface reaction (i.e., 𝐴* → 𝐵*), the change in Gibbs free

energy at temperature T and 1 atmospheric pressure is given by:
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Δ𝐺𝐴*→𝐵*(𝑇, 𝑃 0) = Δ𝐸𝑟𝑥𝑛 +Δ𝐻0(𝑇 )− 𝑇Δ𝑆0(𝑇, 𝑃 0) (B.7)

where Δ𝐸𝑟𝑥𝑛 is the calculated reaction energy of 𝐴* → 𝐵*. Δ𝐻0(𝑇 ) and Δ𝑆0(𝑇, 𝑃 0)

are the enthalpy and entropy differences between the initial and final states. In

addition, Δ𝐻0(𝑇 ) gives the zero-point energy and the temperature dependence of

enthalpy change at a standard pressure of 1 atm for adsorption of molecule A (here,

it is room temperature of 298.15 K), which is given by:

Δ𝐻0(𝑇 ) = 𝐻𝐴
𝑡𝑟𝑎𝑛𝑠 +𝐻𝐴

𝑟𝑜𝑡 +𝐻𝐴
𝑣𝑖𝑏 +𝐻𝐴*

𝑣𝑖𝑏

Δ𝑆0(𝑇 ) = 𝑆𝐴
𝑡𝑟𝑎𝑛𝑠 + 𝑆𝐴

𝑟𝑜𝑡 + 𝑆𝐴
𝑣𝑖𝑏 + 𝑆𝐴*

𝑣𝑖𝑏

(B.8)

where 𝐻𝐴
𝑡𝑟𝑎𝑛𝑠, 𝐻𝐴

𝑟𝑜𝑡, 𝐻𝐴
𝑣𝑖𝑏, 𝐻𝐴*

𝑣𝑖𝑏 is the enthalpy at the temperature T and a standard

pressure of 1 atm for the translational, rotational, vibrational modes of the A. 𝑆𝐴
𝑡𝑟𝑎𝑛𝑠,

𝑆𝐴
𝑟𝑜𝑡, 𝑆𝐴

𝑣𝑖𝑏, 𝑆𝐴*

𝑣𝑖𝑏 are entropy contributions from the 3-D translational, 2-D rotational,

vibrational modes.

B.2 Experimental Methods

B.2.1 Preparation of evaporated Cu on gas diffusion layers

(GDLs)

Cu was evaporated on the GDL (Fuel Cell Store, Sigracet 39 BC) by a thermal

evaporation process. GDL is made of an air-brushed polytetrafluoroethylene (PTFE)

on carbon nanoparticles layer as a conductive and hydrophobic layer atop a carbon

fibre layer as a conductive and supporting layer. 0.5 g Cu foils were placed in a

crucible inside the evaporation chamber (Edwards AUTO 360 Thermal Evaporator).

A thin Cu layer (𝑠𝑖𝑚500 nm) was deposited at an evaporation rate of approximately

1-2 nm s-1 under a base pressure of 10-6 Torr. GDLs were kept rotating at a slow

speed of 50 rpm during evaporation.
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B.2.2 Preparation of ion-implanted Al-on-Cu on GDLs

Evaporated Cu on GDL samples were used as substrates and placed in ion implan-

tation chamber (50 keV Aluminum Implantation at Western University). A 99.999%

purity aluminium (Al) rod is installed in a copper target in the caesium (Cs) sputter

source. A 100 keV Al2- molecules are produced in the sputter source injector, selected

by the injector magnet and injected into the Tandetron accelerator. Al2- is preferred

because it has six times the flux of Al-. For ion implants below 100 keV, the Tandetron

terminal pump and stripper gas are turned off. The Tandetron is used as a large lens

to focus a negative beam to target in the implant chamber. The high energy magnet

steers the Al2- down the beamline with the implant chamber. As the beam travels

down the beamline it passes through NEC Electrostatic Raster/Scanner which sweeps

the beam in the X direction at 517Hz and 64Hz in the Y direction over an aperture

which defines the implant area on the implant stage. The Al2- molecule breaks into

Al each having an energy of 50 keV after the collisions with the sample. The implant

stage has 4 sides. Each side can be rotated to face the beam for implantation. The

implant stage in the Implant Chamber is suspended in a Faraday cage to suppress the

secondary electrons. The ion charge is collected from the implant stage and fed to an

Ortec 439 current integrator. The charge is converted into pulses which are counted

by a computer to determine the dose. To avoid substantial ion-beam induced damage

and over-heating to the samples, we ion implanted 2 w% Al into Cu which corre-

sponded to 6 × 1015 ions cm2. It took 112 minutes to finish this experiment. Auger

spectroscopic analysis determined that the Al/(Al+Cu) molar concentration on the

surface is 4.5%. We implanted 5 wt% and 10 wt% Al into Cu and it took 180 and

360 minutes, respectively. Surface Al concentrations are determined to be 5% and

5.5 %, indicating making more Al on Cu surface is difficult by the ion implantation

method. This may be due to the ion-beam-induced damage and heating effect. Al

may gradually migrate into the bulk at a large implantation dose.
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B.2.3 Preparation of evaporated-etched Al-on-Cu on GDLs

Evaporated-etched Al-on-Cu was synthesized via a two-step process of evaporation

and etching. First, 0.3 g Al foils were placed in a crucible inside the evaporation

chamber. A thin Al layer (∼100 nm) was deposited on evaporated Cu-on-GDL sam-

ples at an evaporation rate of approximately 1-2 nm s-1 under a base pressure of 10-6

Torr. The evaporated Al-on-Cu sample was then immersed in a 5 wt% hydrochloric

acid solution to remove the excessive Al. The solution was kept stirring at a low

speed of 250 rpm during the 5 minutes etching. Deionized water was used to wash

off remained hydrochloric acid and other residual ions from the sample surface. An

airbrush was used to dry the samples.

B.2.4 Preparation of de-alloyed Cu-Al and nanoporous Cu on

GDLs

De-alloyed Cu-Al was synthesized via an evaporation and etching process. First, 0.5

g Cu foils and 0.25 g Al foils were placed in a crucible inside the deposition chamber.

They were melted under a base pressure of 10-6 Torr for 2 minutes to form greyish

Cu-Al alloys. Then, a thin layer of Cu-Al alloy (∼500 nm) was deposited on GDLs

at an evaporation rate of approximately 1-2 nm s-1 under a base pressure of 10-6

Torr. After cooling down to room temperature naturally, the evaporated Cu-Al alloy

on GDL samples were transferred to a 5 wt% hydrochloric acid solution to fabricate

de-alloyed Cu-Al catalyst at a mild stirring speed of 250 rpm. Deionized water was

used to wash off remained hydrochloric acid and other residual ions from the sample

surface. An airbrush was used to carefully dry the samples.

Nanoporous Cu samples were prepared by immersing de-alloyed Cu-Al catalysts

into 10 mM CuCl2 solution for 10 minutes with a mild stirring speed of 50 rpm. Then,

the samples were washed with deionized water and dried by an airbrush carefully.
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B.2.5 Preparation of de-alloyed Cu-Al on polytetrafluoroethy-

lene (PTFE) substrates

De-alloyed Cu-Al was fabricated on the PTFE (pore size: 0.45 𝜇𝑚) substrates via a

co-sputtering and etching process. Co-sputtering is used to avoid the PTFE melting

at high temperatures during evaporation. First, a 200 nm thick Cu-Al layer was co-

sputtered on the PTFE using a Cu target (99.99%) and an Al target (99.99%) at a

sputtering rate of 3.1 Å/s and 1.1 Å/s respectively under a base pressure of 10-6 Torr.

Following the same chemical etching process in a 5 wt% hydrochloric acid solution at

a stirring speed of 250 rpm, the co-sputtered Cu-Al were de-alloyed. The remained

hydrochloric acid and residual ions on the surface was washed off by deionized water.

The samples were then carefully dried with an air gun. For the stability test, carbon

black NPs (Sigma-Aldrich, < 100 nm) and graphite particles were dispersed in a

mixture of isopropanol, water and Nafion solution (50 microliter of Nafion solution

in 0.5 mL of isopropanol:water mixture). The mixture was sonicated for 1 hour and

then spray coated on the Cu-Al/PTFE electrodes.

B.2.6 Characterizations

The morphologies of the prepared samples were investigated using scanning electron

microscope (SEM) on a Hitachi SU 5000 VPSEM, transmission electron microscope

(TEM) on a Hitachi HF-3300 instrument with an acceleration voltage of 200 kV and

high-angle annular dark-field scanning transmission electron microscopy (HAADF-

STEM) in a Cs-corrected STEM (JEOL, JEM-ARM200F) at an accelerating voltage

of 200 kV. Compositions of the prepared samples were studied using Energy-dispersive

X-ray spectroscopy (EDX) on a Bruker Quantax EDX in SEM and TEM, respectively,

and electron energy loss spectroscopy (EELS) elemental analysis by GIF Quantum

965. Al concentrations on surfaces of the prepared samples were measured using

Auger electron spectroscopy (AES) on a 710 Scanning Auger Nanoprobe instrument

(Ulvac-PHI, Chigasaki, Japan). The beam settings used for the acquisition are 10

keV and 10 nA. We performed AES analyses at different locations on the surface
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for each sample to trace the Al concentrations and homogeneity. We found that ion

implantation gave rather uniform distributions of Al on the surfaces. In contrast,

Al concentrations on those chemical etched samples may vary ± 5-10% especially

for those samples with high Al concentrations, indicating that the chemical etching

condition using HCl solutions might be further optimized. The Cu and Al ion concen-

trations in the testing solutions were measured using an Inductively Coupled Plasma

Atomic Emission Spectrometer (ICP-AES Agilent Dual-View 720 with CCD for full

wavelength coverage between 167 to 785 nm).

Ex situ and in situ X-ray absorption spectra at Cu K-edge on catalysts and stan-

dard references were collected at the beamline of 1W1B from Beijing synchrotron

radiation facility, China. The electron storage ring was operated at 2.5 GeV with an

average current of 200 mA. A Si (111) double crystal was used as a monochroma-

tor and the data of absorption were collected in fluorescence mode. The energy of

the absorption spectra was calibrated by measuring the X-ray absorption near edge

spectroscopy (XANES) of a Cu metal foil. The obtained data were processed by

established methods with the ATHENA software package. The normalized extended

X-ray absorption fine-structure spectroscopy (EXAFS) was converted from energy to

k-space and weighted by k3. These data were then Fourier transformed to R-space.

For in situ measurements, a self-built flow cell consisting of two chambers for

CO2 diffusion (chamber I) and holding the reaction liquid (chamber II) was used.

The sample is sandwiched between the two chambers with pressed the Teflon spacers

(sample size: 1.2 × 1.2 cm2; thickness: 500 nm). CO2 gas is introduced into the

chamber I with the gas controller and diffuses and passes through the samples and

finally reaches the liquid to participate in the reaction. The thickness of the liquid

can be controlled from 1000 to 200 𝜇𝑚. After the liquid cell filled with 1.0 M aqueous

KOH, 30 mL KOH solution with the same concentration is flowed into the liquid cell

at 0.5 mL/min by using an automatic pump syringe. The measurement of the Cu

K-edge is started simultaneously with the stop of the flowing.
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B.2.7 Electrochemical reduction of CO2

All CO2 electrolysis experiments were performed using a three-electrode set-up in

a flow-cell configuration connected to an electrochemical workstation (Autolab PG-

STAT302N). An Ag/AgCl (in saturated KCl solution) and a platinum wire were

used as reference and counter electrodes, respectively. 1 M KOH was used as the

electrolyte. To quantify FEs for each product, we performed CO2 electrolysis in a

chronopotentiometry mode. For Tafel analysis, we performed CO2 electrolysis in

a Chronoamperometry mode. For linear sweep voltammogram (LSV) analyses, we

cycled the LSV until it was stable.

The cathodic chamber was separated from the gas chamber by a 1.5 cm × 1.5 cm

gas diffusion electrode (GDE). GDEs were made of catalysts on GDLs as discussed

in detail above. A plastic plate with a 1 cm × 1 cm window is placed between the

GDE and cathode chamber. The cathodic chamber was separated from the anodic

chamber by an anion exchange membrane (Fumasep FAA-3-PK-130). Rubber spacers

were placed in between different chambers to avoid mixture of electrolytes or gaseous

products.

CO2 gas was delivered into the gas chamber at a rate of 56 standard cubic centime-

tres per minute (s.c.c.m.) and was routed into a gas chromatograph (Perkin Elmer

Clarus 680) to quantify the gaseous products. The liquid products were quantified

by NMR (600 MHz Agilent DD2 spectrometer), in which electrolyte was mixed with

D2O (deuterated water) and dimethyl sulfoxide (DMSO, Sigma, 99.99%) was used as

an internal standard.

Faradaic efficiencies (FEs) for different products can be calculated as follows: FE

= F × m × n / Q = F × m × n / (I × t), where F is the Faraday constant, m is the

electron numbers needed for one CO2 molecule reduction to the desired product and

n is the amount of the desired product (in moles). Half-cell electricity-to-ethylene

power conversion efficiency (Half-cell C2H4 PCE) can be estimated as follows: Half-

cell C2H4 PCE = FE × Vtheoretic / Vreal, where Vtheoretic = 1.17 (VRHE), Vreal

= (1.23 – Vapplied) (VRHE).
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Figure B-1: An example of the numerical encoding of an adsorption site. Vectors
are created for each element present within the first and second neighbouring shells
of CO. Each vector contains the atomic number of the element (Z), the Pauling
electronegativity of the element (𝜒) the number of atoms of that element within each
respective shell (CN), and the median monometallic adsorption energy of CO on that
element (Δ ̃︀𝐸). Color codes for elements: orange is Cu, light gray is Al, dark gray is
C, and red is O.

Figure B-2: A simplified example of a numerical representation of a coordination site
which was used for t-SNE analysis. Each item in the “coordination” vector represents
the coordination number for a particular element, e.g., Pt or Ni. Each item in the
“neighbours” coordination” array represents this same coordination vector, but for
each of the adsorbate’s neighbours. Note that this example is for illustrative purposes
only. The vectors and arrays actually used contained enough items to represent 31
different elements, totalling in 31 × 32 features. Color codes for elements: green is
Ni, light gray is Pt, black is C, and red is O.
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Figure B-3: Schematic for the synthesis of different catalysts on gas diffusion layers.
a, evaporated Cu. b, ion-implanted Al-on-Cu. c, evaporated-etched Al-on-Cu. d,
de-alloyed Cu-Al catalysts.
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Figure B-4: Morphologies of evaporated Cu catalysts on gas diffusion layers. a, Top-
view SEM images before CO2 electroreduction. b, Top-view SEM images after 5 hours
CO2 electroreduction in 1 M KOH at an applied current density of 600 mA cm-2 in a
flow cell.
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Figure B-5: Morphologies of ion-implanted Al-on-Cu catalysts on gas diffusion layers.
a, Top-view SEM images before CO2 electroreduction. b, Top-view SEM images after
5 h CO2 electroreduction in 1 M KOH at an applied current density of 600 mA cm-2

in a flow cell.
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Figure B-6: Morphologies of evaporated and evaporated-etched Al-on-Cu samples
on gas diffusion layers. a, Top-view SEM images of the as-evaporated Al-on-Cu
samples. b, Top-view SEM images of the evaporated-etched Al-on-Cu catalyst before
CO2 electroreduction. c, Top-view SEM images of the evaporated-etched Al-on-Cu
catalyst after 5 hours CO2 electroreduction in 1 M KOH at an applied current density
of 600 mA cm-2 in a flow cell.
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Figure B-7: Schematic of the cathode side in a flow-cell configuration.

Figure B-8: CO2 electroreduction performances on pure Cu, ion-implanted Al-on-
Cu, and evaporated-etched Al-on-Cu catalysts. a, Faradaic efficiencies of gaseous
products on pure Cu, ion-implanted, and evaporated-etched Al-on-Cu obtained from
chronopotentiometry tests at an applied current density of 600 mA cm-2. b, C2H4

production partial current density versus potential on pure Cu, ion-implanted, and
evaporated-etched Al-on-Cu.
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Figure B-9: Auger electron spectroscopic analysis of an ion-implanted Al-on-Cu cat-
alyst. a, Auger secondary electron microscopic image. b, Auger spectroscopic survey
and narrow-scan spectra. c, Concentrations of Cu and Al.
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Figure B-10: Auger electron spectroscopic analysis of an evaporated-etched Al-on-Cu
catalyst. a, Auger secondary electron microscopic image. b, Auger spectroscopic
survey and narrow-scan spectra. c, Concentrations of Cu and Al.
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Figure B-11: Pourbaix diagrams. Pourbaix diagrams of a, Cu and b, Al at ionic
concentrations of 1 𝜇𝑀 . The potentials versus the standard hydrogen electrode (V
vs. SHE) can be converted to the reversible hydrogen electrode scale (V vs. RHE)
according to the Nernst equation, V vs. RHE = V vs. SHE + 0.059 × pH. According
to the Pourbaix diagrams, Cu metal is cathodically protected at potentials more
negative than ca. -0.4 VSHE which corresponds to ca. 0.43 VRHE at pH 14 (1 M
KOH) and ca. 0.48 VRHE at pH 15 (10 M KOH). Al metal is cathodically protected
at potentials more negative than -2.3 VSHE, which corresponds to -1.47 VRHE at
pH 14 and -1.41 VRHE at pH 15.
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Figure B-12: EDX analysis of an as-prepared ion-implanted Al-on-Cu sample before
CO2 electroreduction. a, EDX mapping. b, EDX spectrum. c, Elemental concentra-
tions.
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Figure B-13: EDX analysis of an ion-implanted Al-on-Cu sample after 5 hours CO2

electroreduction at 600 mA cm-2 (-1.8 to -2.0 VRHE) in the 1 M KOH electrolyte.
a, EDX mapping. b, EDX spectrum. c, Elemental concentrations. Potassium is
observed on the surface after the reaction.
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Figure B-14: EDX analysis of an evaporated-etched Al-on-Cu sample before CO2

electroreduction. a, EDX mapping. b, EDX spectrum. c, Elemental concentrations.
Chlorine is observed on the surface due to the use of HCl solution in the etching
process.
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Figure B-15: EDX analysis of an evaporated-etched Al-on-Cu sample after 5 hours
CO2 electroreduction at 600 mA cm-2 (-1.8 to -2.0 VRHE) in the 1 M KOH electrolyte.
a, EDX mapping. b, EDX spectrum. c, Elemental concentrations. Potassium was
observed on the surface after the reaction.
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B.2.8 The stability of Al for CO2 electroreduction under our

testing condition

To further test the electrochemical stability of Al, we performed a control experiment

of electroreducing CO2 using a pure Cu catalyst in 1 M KOH solution in the presence

of 1 mM Al(OH)4- anions. Energy-dispersive X-ray spectroscopy (EDX) analysis

showed ∼4% Al after 30 minutes of CO2 electroreduction at 600 mA cm-2 (Figure B-

16). AES analysis confirmed over 80% Al on the surface, indicating electrodeposition

of Al (Figure B-17). Thus, the reverse reaction of dissolving Al into the solution to

form Al(OH)4- anions was avoided. However, C2H4 production activity suffered at

the expense of dramatically increased H2 production (Figure B-18), highlighting the

importance of realizing a homogeneous distribution of Al on Cu surface. As another

control, we immersed a pure Cu electrode in the same solution of 1 M KOH and 1

mM Al(OH)4- for half hour without applying electrical bias. Al concentration was

below EDX detection limit (Figure B-19).
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Figure B-16: EDX analysis of a pure Cu catalyst after half-hour CO2 electroreduction
in 1 M KOH with 1 mM Al(OH)4-. a, EDX mapping. b, EDX spectrum. c, Elemen-
tal concentrations. Fluorine was from the PTFE/carbon layer in the gas diffusion
electrode. Al was electrodeposited on Cu at an applied current density of 600 mA
cm2. Therefore, dissolving Al into solution was avoided.
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Figure B-17: Auger electron spectroscopic analysis of a pure Cu catalyst after 0.5-
hour CO2 electroreduction at 600 mA cm2 in 1 M KOH with 1 mM Al(OH)-. a, Auger
secondary electron microscopic image. b, Auger spectroscopic survey and narrow-scan
spectra. c, Concentrations of Cu and Al.
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Figure B-18: CO2 electroreduction performance. Faradaic efficiencies for gaseous
products with a pure Cu catalyst at a constant current density of 600 mA cm2 in 1
M KOH with the presence of 1 mM Al(OH)4- obtained from Chronopotentiometry
tests.

252



Figure B-19: EDX analysis of a pure Cu after immersing in 1 M KOH with 1 mM
Al(OH)4- for 0.5 hour. a, EDX mapping. b, EDX spectrum. c, Elemental concen-
trations. We manually selected Al which was automatically marked in red by EDX
software (Esprit 2.1) with a large error of 43.81%, indicating Al was actually out of
the EDX detection limit. In SEM image in Figure B-14a, the morphology was also
changed. Most of Cu dissolved into 1 M KOH leaving thin Cu(OH)2 nanowires to be
dissolved.
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Figure B-20: Top-view SEM images of the de-alloyed Cu-Al. a-b, De-alloyed Cu-Al
catalyst prepared on a C-GDL substrate by physical evaporation and chemical etch-
ing. c-d, De-alloyed Cu-Al catalyst prepared on a PTFE substrate by co-sputtering
and chemical etching.

Figure B-21: EDX analyses in TEM of de-alloyed Cu-Al catalysts. a, as-prepared
de-alloyed Cu-Al catalyst. b, de-alloyed Cu-Al catalyst after 5 hours CO2 electrore-
duction in 1 M KOH at 600 mA cm2 in a flow-cell configuration.
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Figure B-22: EDX analysis in SEM of the as-prepared de-alloyed Cu-Al catalyst
before CO2 electroreduction. a, EDX mapping. b, EDX spectrum. c, Elemental
concentrations. Chlorine was detected because of the use of a 5 wt% HCl solution in
the etching process to prepare a de-alloyed Cu-Al catalyst.
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Figure B-23: EDX analysis in SEM of a de-alloyed Cu-Al catalyst after 5 hours CO2

electroreduction at 600 mA cm2 (-1.8 to -2.0 VRHE) in 1 M KOH. a, EDX mapping.
b, EDX spectrum. c, Elemental concentrations. Potassium was detected because of
the use of KOH electrolyte in CO2 electroreduction.
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Figure B-24: HAADF-STEM with EELS mapping images of Cu and Al of a de-
alloyed Cu-Al catalyst after 5 hours CO2 electroreduction. A nanoporous structure
was observed with the de-alloyed Cu-Al after the CO2 electroreduction.

Figure B-25: STEM-ADF image of the de-alloyed Cu-Al catalyst. The observation
was performed in the same area where we performed EELS analysis (Figure 4-2c)
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Figure B-26: Auger electron spectroscopic analysis of an as-prepared de-alloyed Cu-
Al catalyst. a, Auger secondary electron microscopic image. b, Auger spectroscopic
survey and narrow-scan spectra. c, Concentrations of Cu and Al.
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Figure B-27: Auger electron spectroscopic analysis of a de-alloyed Cu-Al catalyst
after 5 hours CO2 electroreduction at 600 mA cm2 in 1 M KOH. a, Auger secondary
electron microscopic image. b, Auger spectroscopic survey and narrow-scan spectra.
c, Concentrations of Cu and Al.
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Figure B-28: ML and DFT analyses of the (111) and (100) facets across varying ratios
of Al concentrations. a, b, The distribution of Δ𝐸𝐶𝑂 values for the adsorption sites
on Cu (111) and (100) surfaces with different amounts of Al replacement on the top
layer of atoms.

Figure B-29: Reaction Gibbs free energy diagram. Reaction Gibbs free energy dia-
gram from adsorbed CO2 to OC2H4, an intermediate to C2H4, and to CHOCH3, an
intermediate to C2H5OH, on the pure Cu (111) surface (blue lines) and ML predicted
12% Al incorporated Cu (111) surface (red lines). The ML predicted structure of
12% Al incorporated Cu (111) is inserted in the lower left.
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Figure B-30: Reaction Gibbs free energy diagram. Reaction Gibbs free energy dia-
gram from adsorbed CO2 to OC2H4, an intermediate to C2H4, and to CHOCH3, an
intermediate to C2H5OH, on the pure Cu (100) surface (blue lines) and ML predicted
4% Al incorporated Cu (100) surface (red lines). The ML predicted structure of 4%
Al incorporated Cu (111) is inserted in the lower left.
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Figure B-31: A possible pathway with intermediates in the CO2 electroreduction.
Optimized geometries of CO2 reduction intermediates from adsorbed CO2* to OC2H4

and CHOCH3 over the 12% Al incorporated Cu (111) s
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Figure B-32: A possible pathway with intermediates in the CO2 electroreduction.
Optimized geometries of CO2 reduction intermediates from adsorbed CO2* to OC2H4

and CHOCH3 over the 4% Al incorporated Cu (100) s
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Figure B-33: Initial and final intermediates of forming ethanol (red) and C2H4 (blue)
on the 12% Al incorporated Cu (111) and 4% Al incorporated (100) surfaces. A
possible pathway with intermediates in the CO2 electroreduction. According to the
previous work reported by Goddard et al.[182], surface water may play an important
role to determine the key intermediates that branch toward ethanol and C2H4 pro-
duction especially at high pH conditions. We use their method to calculate the Gibbs
free energy barriers of the key intermediates on the 12% incorporated Cu (111) and
4% Al incorporated Cu (100) surfaces. The energy barriers for forming ethanol are
0.343 eV and 0.223 eV larger than that for forming C2H4 on the Al incorporated Cu
(111) and Cu (100) surfaces, respectively.

264



Figure B-34: De-alloyed Cu-Al with different surface Al concentrations. a, SEM im-
ages of de-alloyed Cu-Al with different etching time. b, Al concentrations on surfaces
determined by surface-sensitive Auger spectroscopic analysis. Surface Al concentra-
tions could be roughly varied from 4–28% by controlling the etching time. c, Faradaic
efficiencies of C2+ and C2+/C1 ration with de-alloyed catalysts at different surface
Al concentrations.

Figure B-35: SEM images of a de-alloyed Cu-Al catalyst soaked in 10 mM CuCl2
for 10 minutes. 10 minutes is an optimal time that we used to roughly maintain
nanoporosity while replacing surface Cu with Al by the displacement reaction of 2 Al
+ 3 CuCl2 → 2 AlCl3 + 3 Cu. We also found that nanopores were gradually blocked
by the precipitated Cu with a prolonged CuCl2 treatment.
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Figure B-36: Auger electron spectroscopic analysis of a de-alloyed Cu-Al catalyst
soaked in 11 mM CuCl2 solution for 0.5 hour. a, Auger secondary electron microscopic
image. b, Auger spectroscopic survey and narrow-scan spectra. c, Concentrations of
Cu and Al. The Al concentration calculated from Al narrow-scan spectrum is already
close to the AES detecting limit.

266



Figure B-37: CO2 electroreduction performance. Faradaic efficiencies for all products
at an applied current density of 600 mA cm2 obtained with of a de-alloyed Cu-Al
catalyst after soaking in 10 mM CuCl2 solution for 10 minutes.

Figure B-38: CO2 electroreduction stability of the de-alloyed Cu-Al/C-GDL elec-
trode. The CO2 electroreduction activity of a de-alloyed Cu-Al/C-GDL electrode at
an applied current density of 600 mA cm2. Left axis: potential (V vs. RHE) vs. time
(s), right axis: C2H4 Faradaic efficiency (%) vs. time (s)
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Figure B-39: Configuration of de-alloyed Cu-Al catalysts on (a) C-GDL and (b) PTFE
substrates for CO2 electrolysis in a flow cell system. Optical images were taken on
the backside of the samples to show the hydrophobicity of a, Cu-Al/C-GDL before
and after 5 hours stability test in 1 M KOH, and b, Cu-Al/PTFE before and after
50 hours stability test in 3 M KOH with 3M KI) solutions.

Figure B-40: Co-sputtering, chemical etching and spray coating to make
graphit/carbon NPs/de-alloyed Cu-Al /PTFE substrates.
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Figure B-41: CO2 electroreduction performance with graphite/carbon NPs/de-alloyed
Cu-Al/PTFE samples in a 1 M KOH electrolyte. a, Faradaic efficiencies for all prod-
ucts at an applied current density of 400 mA cm2 with 10 distinct samples measured.
b, Faradaic efficiency of gas products vs. time during the stability test.

Figure B-42: CO2 electroreduction performance with graphite/carbon NPs/de-alloyed
Cu-Al/PTFE samples in a 3 M KOH and 3 M KI electrolyte. a, Faradaic efficiencies
for all products at an applied current density of 150 mA cm2 with 10 distinct samples
measured. b, Faradaic efficiency of gas products vs. time during the stability test.
c, The CO2 electroreduction stability at an applied current density of 150 mA cm2.
Left axis: potential (V vs. RHE) vs. time (s), right axis: C2H4 Faradaic efficiency
(%) vs. time (s)
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Figure B-43: ICP-AES results of Cu and Al ions in the testing solution with different
the testing time. The de-alloyed Cu-Al catalysts on PTFE was measured at 400 mA
cm2 in 1 M KOH solution and at 150 mA cm2 in 3 M KOH solution for 50 hours.
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Figure B-44: Reaction Gibbs free energy diagram. Reaction Gibbs free energy dia-
gram from adsorbed CO2 to C2H4 and C2H5OH on Cu (111) facet with (red lines)
and without (blue lines) Al incorporation in the subsurface (the grey circle shows the
Al atoms’ positions). The model of Al incorporated Cu is described in lower left. The
energy barrier of the rate determine step (OC-CO dimerization) decreases after Al
incorporation.
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Figure B-45: Reaction Gibbs free energy diagram. Reaction Gibbs free energy dia-
gram from adsorbed CO2 to C2H4 and C2H5OH on Cu (100) facet with (red lines)
and without (blue lines) Al incorporation in the subsurface. The model of Al incor-
porated Cu is described in lower left. The energy barrier of the rate determine step
(OC-CO dimerization) decreases after Al incorporation.

B.2.9 In situ and ex situ X-ray absorption studies

A large amount of Cu-O bonding was visible continuously in the ex situ and in

situ XANES analyses with the de-alloyed Cu-Al catalyst before, during and after

the reaction (Figure B-47). In situ Fourier transform extended X-ray absorption fine

structure (FT EXAFS) spectra of the de-alloyed Cu-Al catalysts, together with ex-situ

reference spectra of Cu foil, Cu2O and CuO, gave precise coordination information.

We observed a prominent peak at 2.2 Åfrom Cu-Cu contribution, which agrees with

the prominent peak of Cu-Cu in Cu foils, and a weak peak at 1.5 Å, which agrees with

the prominent peak of Cu-O in Cu2O and CuO. Moreover, the Cu-O peak intensity

remained almost the same during in situ synchrotron measurement. It is smaller

than that obtained with the same sample without CO2 electroreduction (Figure B-
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47), indicating Cu-O in de-alloyed Cu-Al catalysts was partially reduced to Cu. A

stable balance of Cu-Cu and Cu-O in the de-alloyed catalyst was established within

a short time right after starting CO2 electroreduction. As a control, we measured in

situ XANES with a pure Cu on GDL under the same condition. No obvious oxidation

state of Cu was observed (Figure B-47).

Figure B-46: Synchrotron analyses of the de-alloyed Cu-Al catalyst before and after
5, 10, 20 and 30 min. of the CO2 electroreduction reactions.
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Figure B-47: Ex situ and in situ synchrotron analyses of the high-performing de-
alloyed Cu-Al catalyst and pure Cu catalyst. a-b, In situ X-ray absorption near-edge
structure (XANES) spectra of de-alloyed Cu-Al catalyst before, during and after CO2

electroreduction tests and ex situ XANES spectra of Cu foil, Cu2O, CuO. c-d, In situ
X-ray absorption near-edge structure (XANES) spectra of pure Cu catalyst before
and during CO2 electroreduction tests and ex situ XANES spectra of Cu foil.
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Table B.1: The reaction energies in the rate-determining step of C-C bond making
on different configurations in the Figure B-48.

No. 1 2 3 4 5 Pure Cu

RD step barrier (eV) 0.51 0.52 0.51 0.56 0.53 0.62

Figure B-48: Models used to calculate the reaction energies in the rate-determining
step of C-C bond making in the CO2 reduction. 4% Al incorporated Cu (100) surface
with different amounts of Cu-O bonds as shown in configurations 1–5.

Figure B-49: The distribution of Cu-O bond length in the Figure B-48.
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Table B.2: The reaction energies in the rate-determining step of C-C bond making
on different configurations in the Figure B-50.

No. 1 2 3 4 5 Pure Cu

RD step barrier (eV) 0.45 0.47 0.45 0.48 0.49 0.62

Figure B-50: Models used to calculate the reaction energies in the rate-determining
step of C-C bond making in the CO2 reduction. 4% Al incorporated Cu (100) surface
with different amounts of Cu-O bonds as shown in configurations 1–5.

Figure B-51: The distribution of Cu-O bond length in the Figure B-50.
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Table B.3: The reaction energies in the rate-determining step of C-C bond making
on different configurations in the Figure B-52.

No. 1 2 3 4 5 Pure Cu

RD step barrier (eV) 0.53 0.57 0.59 0.51 0.60 0.62

Figure B-52: Models used to calculate the reaction energies in the rate-determining
step of C-C bond making in the CO2 reduction. 4% Al incorporated Cu (100) surface
with different amounts of Cu-O bonds as shown in configurations 1–5.

Figure B-53: The distribution of Cu-O bond length in the Figure B-52.
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Table B.4: The reaction energies in the rate-determining step of C-C bond making
on different configurations in the Figure B-54.

No. 1 2 3 4 5 Pure Cu

RD step barrier (eV) 0.46 0.42 0.56 0.52 0.51 0.62

Figure B-54: Models used to calculate the reaction energies in the rate-determining
step of C-C bond making in the CO2 reduction. 4% Al incorporated Cu (100) surface
with different amounts of Cu-O bonds as shown in configurations 1–5.

Figure B-55: The distribution of Cu-O bond length in the Figure B-54.
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Table B.5: The reaction energies in the rate-determining step of C-C bond making
on different configurations in the Figure B-56.

No. 1 2 3 4 5 Pure Cu

RD step barrier (eV) 1.103 1.02 0.98 0.95 1.07 1.47

Figure B-56: Models used to calculate the reaction energies in the rate-determining
step of C-C bond making in the CO2 reduction. 12% Al incorporated Cu (111) surface
with different amounts of Cu-O bonds as shown in configurations 1–5.

Figure B-57: The distribution of Cu-O bond length in the Figure B-56.
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Table B.6: The reaction energies in the rate-determining step of C-C bond making
on different configurations in the Figure B-58.

No. 1 2 3 4 5 Pure Cu

RD step barrier (eV) 0.98 0.99 1.17 1.21 1.03 1.47

Figure B-58: Models used to calculate the reaction energies in the rate-determining
step of C-C bond making in the CO2 reduction. 12% Al incorporated Cu (111) surface
with different amounts of Cu-O bonds as shown in configurations 1–5.

Figure B-59: The distribution of Cu-O bond length in the Figure B-58.
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Table B.7: The reaction energies in the rate-determining step of C-C bond making
on different configurations in the Figure B-60.

No. 1 2 3 4 5 Pure Cu

RD step barrier (eV) 0.92 1.03 1.03 1.10 1.13 1.47

Figure B-60: Models used to calculate the reaction energies in the rate-determining
step of C-C bond making in the CO2 reduction. 12% Al incorporated Cu (111) surface
with different amounts of Cu-O bonds as shown in configurations 1–5.

Figure B-61: The distribution of Cu-O bond length in the Figure B-60.
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Figure B-62: Models used to calculate the reaction energies in the rate-determining
step of C-C bond making in the CO2 reduction. 12% Al incorporated Cu (111) surface
with different amounts of Cu-O bonds as shown in configurations 1–5.

Figure B-63: The distribution of Cu-O bond length in the Figure B-62.
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Figure B-64: Activity, selectivity, and coverage maps at -0.5 V applied potential,
based on (211) metal scaling relations and microkinetic models. a, Activity of CH4

and H2 production (in units of log(TOF [1/s]) as a function of Δ𝐸𝐶𝑂 vs. Δ𝐸𝐻 . b,
Selectivity towards CH4 and H2 production as a function of Δ𝐸𝐶𝑂 vs. Δ𝐸𝐻 . c,
Surface coverages of CHO, CO, H, and OH adsorbates as a function of Δ𝐸𝐶𝑂 vs.
Δ𝐸𝐻 .
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Table B.8: The reaction energies in the rate-determining step of C-C bond making
on different configurations in the Figure B-62.

No. 1 2 3 4 5 Pure Cu

RD step barrier (eV) 0.87 0.92 0.90 0.94 1.19 1.47

Table B.9: Zero-point energy and specific heat of different reactants, intermediates
and products on the Al incorporated Cu (111) surface. It corresponds to the data
used in Figure B-32.

Structure 𝐸𝑍𝑃𝐸 (eV) 𝐶𝑣,𝑡𝑟𝑎𝑛𝑠(0 → 𝑇 ) (eV) 𝐶𝑣,𝑟𝑜𝑡(0 → 𝑇 ) (eV) 𝐶𝑣,𝑣𝑖𝑏(0 → 𝑇 ) (eV) H (eV)

Initial 2.17 0.0390 0.0390 0.330 2.61
Finala 2.62 0.0390 0.0390 0.430 3.16
Finalb 2.15 0.0390 0.0390 0.377 2.63

Table B.10: Entropy and Gibbs free energy of different reactants, intermediates and
products on the Al incorporated Cu (111) surface. It corresponds to the data used
in Figure B-32.

Structure 𝑆𝑡𝑟𝑎𝑛𝑠 (eV/K) 𝑆𝑟𝑜𝑡 (eV/K) 𝑆𝑣𝑖𝑏 (eV/K) 𝑆 (eV/K) TS (eV)

Initial 0.00219 0.00204 0.00208 0.00632 1.88
Finala 0.00219 0.00200 0.00278 0.00697 2.08
Finalb 0.00219 0.00203 0.00668 0.00668 1.99

Table B.11: Zero-point energy and specific heat of different reactants, intermediates
and products on the Al incorporated Cu (100) surface. It corresponds to the data
used in Figure B-32.

Structure 𝐸𝑍𝑃𝐸 (eV) 𝐶𝑣,𝑡𝑟𝑎𝑛𝑠(0 → 𝑇 ) (eV) 𝐶𝑣,𝑟𝑜𝑡(0 → 𝑇 ) (eV) 𝐶𝑣,𝑣𝑖𝑏(0 → 𝑇 ) (eV) H (eV)

Initial 2.15 0.0390 0.0390 0.188 2.44
Finala 2.43 0.0390 0.0390 0.182 2.71
Finalb 1.97 0.0390 0.0390 0.176 2.25
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Appendix C

Supplementary Information for

Chapter 5

This work originally appeared as the Supplementary Information for: Kevin Tran,*

Willie Neiswanger,* Junwoong Yoon, Qingyang Zhang, Eric Xing, and Zachary W

Ulissi. Methods for comparing uncertainty quantifications for material property pre-

dictions. Machine Learning: Science and Technology, 1(025006), 2020.

Figure C-1 shows how the residuals of each model are correlated with each other.

All pairs of models show a positive correlation between each other. This suggests that

poor predictions made by one model were also made by most other models, qualita-

tively speaking. This observation is consistent with the finding that the accuracy of

all models in this study were comparable. No single model was substantially better

at predicting the outlying points than any other model.

Figure C-2 shows how the predicted uncertainties of each model are correlated

with each other. The only pattern we could discern was the correlation between the

GP and GP𝑁𝑁−𝜇 methods. This correlation likely due to the fact that both methods

used the same exact feature space for their GPs. The only difference between the two

were their mean functions.
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Figure C-1: Corner plot of the residuals of all models. Each subfigure shows the
parity between the residuals of pairs of models. Solid contour lines delineate quartiles
of the point distribution. Single, faded points indicate parity points in the fourth,
least dense quartile of points. Shaded pixels indicate the highest density of points
with darker shading indicating a higher density. The figures along the diagonal show
histogram distributions of the residuals for each model. All units are in eV.
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Figure C-2: Corner plot of the residuals of all models. Each subfigure shows the
parity between the estimated standard deviations of pairs of models. Solid contour
lines delineate quartiles of the point distribution. Single, faded points indicate parity
points in the fourth, least dense quartile of points. Shaded pixels indicate the highest
density of points with darker shading indicating a higher density. The figures along
the diagonal show histogram distributions of the predicted standard deviations for
each model. All units are in eV.
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